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Preface 

You may be an engineering student, a practicing engineer work­
ing with control engineers, or even a control engineer. But I am 
going to assume that you are a manager. 

Managers of control engineers sometimes have a difficult chal­
lenge. Many companies promote top managerial prospects laterally 
into unfamiliar technical areas to broaden their outlook. A manager 
in this situation often will have several process control engineers 
reporting directly to her and she needs an appreciation for their 
craft. Alternatively, technical project managers frequently supervise 
the work of process control engineers on loan from a department 
specializing in the field. This book is designed to give these manag­
ers insight into the work of the process control engineers working 
for them. It can also give the student of control engineering an alter­
native and complementary perspective. 

Consider the following scenario. A sharp control engineer, who 
either works for you or is working on a project that you are managing, 
has just started an oral presentation about his sophisticated approach 
to solving a knotty control problem. What do you do? If you are a 
successful manager, you have clearly convinced (perhaps without 
foundation) many people of your technical competence so you can 
probably ride through this presentation without jeopardizing your 
managerial prestige. However, you will likely want to actually critique 
his presentation carefully. This could be a problem since, being a 
successful manager, you are juggling several technically diverse 
balls in the air and haven't the time to research the technological 
underpinnings of each. Furthermore, your formal educational 
background may not be in control engineering. The above-mentioned 
control engineer, embarking on his presentation, is probably quite 
competent but perhaps he has been somewhat enthralled by the 
elegance of his approach and has missed the forest for the trees (it 
certainly happened to me many times over the years). You should be 
able to ask some penetrating questions or make some key suggestions 
that will get him on track and make him (and you) more successful. 
Hopefully, you will pick up a few hints on the kind of questions to 
ask while reading this book. 

xvii 
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The Curse of Control Engineering 
The fundamental stumbling block in understanding process control 
engineering is its language-applied mathematics. I could attempt to 
skirt the issue with a qualitative book on control engineering. Not 
only is this difficult to do but it would not really equip the manager 
to effectively interact with and supervise the process control engineer. 
To do this, the manager simply has to understand (and speak) the 
language. 

If terms like dy or ra dte51 strike fear in your heart then you should 
dt Jo 

consider looking first at the appendices which are elementary but 
detailed reviews of the applied mathematics that I will refer to in the 
main part of the text and that control engineers use in their work. 
Otherwise, start at the beginning of the book. As you progress 
through it, I will often show only the results of applying math to the 
problem at hand. In each case you will be able to go to an appendix 
and find the pertinent math in much more detail but presented at an 
introductory level. The chapters are the forest; the appendices are 
the trees and the leaves. 

You may wonder why much of the math is not inserted into the 
body of the text as each new topic is discussed-it's a valid concern 
because most books do this. I am assuming that you will read over 
parts of this book many times and will not need to wade through the 
math more than once, if that. After all, you are a manager, looking at 
a somewhat bigger picture than the control engineer. 

Also, you may wonder why there are so many appendices, some 
of them quite long, and relatively few chapters. You might ask, "Are 
you writing an engineering book or an applied mathematics book?" 
To those who would ask such an "or" question I will simply pause for 
a moment and then quietly say, "yes." 

Style 
The book's style is conversational. I do not expect you to "study" this 
book. You simply do not have the time or energy to hunker down and 
wade through a technical tome, given all the other demands of your 
job. There are no exercises at the ends of the chapters. Rather, I foresee 
you delving into this book during your relaxation or down time; 
perhaps it will be a bedtime read ... well, maybe a little tougher than 
that. Perhaps you could spend some time reading it while waiting in 
an airport. As we progress through the book I will pose occasional 
questions and sometimes present an answer immediately in small 
print. You will have the choice of thinking deeply about the question 
or just reading my response-or perhaps both! 

On the other hand, if this book is used in a college level course, the 
students will likely have access to Matlab and the instructor can easily 
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assign homework having the students reproduce or modify the figures 
containing simulation and control exercises. I will, upon request, sup­
ply you with a set of Matlab scripts or m-files that will generate all the 
mathematically based figures in the book. Send me an e-mail and con­
vince me you are not a student in a class using this book. 

References 
There aren't any. That's a little blunt but I don't see you as a control 
theory scholar-for one thing, you don't have time. However, if you 
are a college-level engineering student then you already have an 
arsenal of supporting textbooks at your beck and call. 

A Thumbnail Sketch of the Book 
The first chapter presents a brief qualitative introduction to many 
aspects of control engineering and process analysis. The emphasis is 
on insight rather than specific quantitative techniques. 

The second chapter continues the qualitative approach (but not 
for long). It will spend some serious time dealing with how the 
engineer should approach the control problem. It will suggest a lot 
of upfront time be spent on analyzing the process to be controlled. If 
the approaches advocated here are followed, your control engineer 
may be able to bypass up the development of a control algorithm 
altogether. 

Since the second chapter emphasized process analysis, the third 
chapter picks up on this theme and delves into the subject in detail. 
This chapter will be the first to use mathematics extensively. My basic 
approach here and throughout the book will be to develop most of 
the concepts carefully and slowly for simple first-order systems (to be 
defined later) since the math is so much friendlier. Extensions to more 
complicated systems will sometimes be done either inductively 
without proof or by demonstration or with support in the appendices. 
I think it is sufficient to fully understand the concepts when applied 
to first-order situations and then to merely feel comfortable about 
those concepts in other more sophisticated environments. 

The third chapter covers a wide range of subjects. It starts with an 
elementary but thorough mathematical time-domain description of 
the first-order process. This will require a little bit of calculus which 
is reviewed in Appendix A. The proportional and proportional­
integral control algorithms will be applied to the first-order process 
and some simple mathematics will be used to study the system. We 
then will move directly to the s-domain via the Laplace transform 
(supported in Appendix F). This is an important subject for control 
engineers and can be a bit scary. It will be my challenge to present it 
logically, straightforwardly, and clearly. 
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Just when you might start to feel comfortable in this new domain 
we will leave Chapter Three and I will kick you into the frequency 
domain. Chapter Four also adds two more process models to the 
reader's toolkit-the pure dead-time process and the first-order with 
dead-time process. 

Chapter Five expands the first-order process into a third-order 
process. This process will be studied in the time and frequency 
domains. A new mathematical tool, matrices, will be introduced to 
handle the higher dimensionality. Matrices will also provide a means 
of looking at processes from the state-space approach which will be 
applied to the third-order process. 

Chapter Six is devoted to the next new process-the mass/ 
spring/ dash pot process that has underdamped behavior on its own. 
This process is studied in the time, Laplace, frequency and state-space 
domains. Proportional-integral control is shown to be lacking so an 
extra term containing the derivative is added to the controller. The 
chapter concludes with an alternative approach, using state feedback, 
which produces a modified process that does not have underdamped 
behavior and is easier to control. 

Chapter Seven moves on to yet another new process-the 
distributed process, epitomized by a tubular heat exchanger. To study 
this process model, a new mathematical tool is introduced-partial 
differential equations. As before, this new process model will be 
studied in the time, Laplace, and frequency domains. 

At this point we will have studied five different process models: 
first-order, third-order, pure dead-time, first-order with dead-time, 
underdamped, and distributed. This set of models covers quite a bit 
of territory and will be sufficient for our purposes. 

We need control algorithms because processes and process signals 
are exposed to disturbances and noise. To properly analyze the 
process we must learn how to characterize disturbances and noise. 
So, Chapter Eight will open a whole new can of worms, stochastic 
processes, that often is bypassed in introductory control engineering 
texts but which, if ignored, can be your control engineer's downfall. 

Chapters Eight and Nine deal with the discrete time domain, which 
also has its associated transform-the Z-transform, which is introduced 
in the latter chapter. As we move into these two new domains I will 
introduce alternative mathematical structures for our set of process 
models which usually require more sophisticated mathematics. 

In Chapter Five, I started frequently referring to the state of the 
process or system. Chapter Ten comes to grips with the estimation of 
the state using the Kalman filter. A state-space based approach to 
process control using the Kalman filter is presented and applied to 
several example processes. 

Although the simple proportional-integral-derivative control 
algorithm is used in the development of concepts in Chapters Three 
through Nine, the eleventh chapter revisits control algorithms using 
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a slightly different approach. It starts with the simple integral-only 
algorithm and progresses to PI and the PID. The widely used concept 
of cascade control is presented with an example. Controlling processes 
subject to white noise has often been a controversial subject, especially 
when statisticians get involved. To stir the pot, I spend a section on 
this subject. 

This completes the book but it certainly does not cover the 
complete field of process control. However, it should provide you 
with a starting point, a reference point and a tool for dealing with 
those who do process control engineering as a profession. 

If you feel the urge, let me know your thoughts via 

dmkoenig@alumni.uchicago.edu. 

Good luck while you are sitting in the airports! 
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CHAPTER 1 
Qualitative 

Concepts in Control 
Engineering and 

Process Analysis 

This will be the easiest chapter in the book. There will be no math­
ematics but several qualitative concepts will be introduced. Filst, 
the cornerstone of control engineering, the feedback controller is 

discussed. Its infrequent partner, the feedforward controller is presented. 
The significant but often misunderstood differences between feedback 
and feedforward control are examined. The disconcerting truth about the 
difficulty of implementing error-free feedback control is illustrated with 
an indusbial example. Both kinds of controllers are designed to respond 
to disturbances, which are discussed briefly. Finally, we spend a few 
moments on the question of what a control engineer is. 

1-1 What Is a Feedback Controller? 
Consider the simple process shown in Fig. 1-1. The level in the tank is to 
be maintained "near'' a target value by manipulating the valve on the 
inlet stream. Now, place the "~yet-undefined" controller in Fig. 1-2. 
The controller must sense the level and decide how to adjust the 
valve. Notice that for the controller to work properly 

1. There must be a way of measuring the tank level (the "level 
sensor") and a way of transmitting the measured signal to the 
controller. 

2. Equally important there must be a way of transmitting the 
controller decision or controller output to the valve. 

3. At the valve there must be a way of converting the controller 
output signal into a mechanical movement to either close or 
open the valve (the "actuator"). 

1 
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Llr-Vain? 
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fiGURE 1-1 A tank of liquid (a process). 

Set point Sl 
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control~ 1 

element ' y 

fiGURE 1-2 A tank of liquid with a controller added. 

An abstract generalization of the above example is shown in Fig. 1-3, 

·which is a schematic block diagram. The lo·wer box represents the 
process (the tank of liquid) The input to the process is ll (the vah·e 
position on the inlet pipe). The output is Y (the tank level). The process 

S (Sd point) 

Process 
U (Process input) 

0 (Disturbances)-----' 

fiGURE 1-3 Block diagram of a control system. 
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I I 
I I 
I_ ---------------------

Process 
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U (Process input) 

D (Disturbances)-----' 

F1auRE 1-4 Block diagram of a control system showing the error. 

is subject to disturbances represented by D. The process is therefore 
an engine that transforms an input U and disturbances D into an out­
put Y. The inputs to the controller are the process output Y (the tank 
level) and the set pointS or target. The controller puts out a signal U 
(the valve position) designed to cause the process output Y to be "sat­
isfactorily close" to the set pointS. You need to memorize this nomen­
clature because Y, U, S, and D, among some others soon to be intro­
duced, will occur repeatedly. 

A more specific form of the controller is shown in Fig. 1-4. The 
process output is subtracted from the set point to form the controller 
errorE, which is then fed to another box containing the rest of the 
control algorithm. The controller must drive the controller error to a 
satisfactorily small value. Note that the controller cannot "see" the 
disturbances. It can only react to the error between the set point and 
the current measurement of the process output-more about this 
later. Also note that there will be no control actions unless there are 
controller errors. Therefore one must reason that an active feedback 
controller (meaning one where the control output is continually 
changing) may not keep the process output exactly on set point 
because control activity means there are errors. 

1-2 What Is a Feedforward Controller? 
Before getting into a deep discussion of a feedforward controller, 
let's develop a slightly modified version of our tank of liquid. Con­
sider Fig. 1-5, which shows a large tank, full of water, sitting on top 
of a large hotel (use your imagination here, please). This tank is 
filled in the same manner as the one in the previous figures. How­
ever, this tank supplies water to the sinks, toilets, and showers in 
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~V,1h·L' 

Ll' ~~ 
+ 

Faucets ,md toilets 

FrcuRE 1-5 Large hotel water tank. 

the hotel's many rooms. At any moment the faucet or toilet usage 
could disturb the level in the tank. Moreover, this usage is 1111prcdict­

aMc (later on we will use the word "stochastic"). There is also a drain 
vah·e on the tank which, let's say, the hotel manager occasionally 
opens to fill the swimming pool. Opening the drain valve would 
also be a disturbance to the tank level but, unlike the faucet usage, 
it could probably be considered "deterministic" in the sense that the 
hotel manager knows \vhen and approximately how much the 
adjustment to the valve would be. We will spend a fair amount of 
time discussing stochastic and deterministic disturbances in subse­
quent sections. 

A feedforward controller might be designed to control this latter 
kind of disturbance. Figure 1-6 shows how one might construct such 
a controller. Again, the reader must use her imagination here, but 
assume there is some way to measure the drain vah·e position and 
that there is some sort of algorithm in the feedforward controller that 
adjusts the inlet pipe valve appropriately whenever there is a change 
in the drain valve. 

As before we need to generalize and abstract the concept so 
Fig. 1-7 shows a block diagram of the feedforward concept. The input 
to the feedforward controller is the measurement of the disturbance 
D. The output of the feedforward controller is signal U designed to 
somehow counteract the disturbance and keep the process output Y 
satisfactorily near the set point. Unlike the feedback controller, the 
feedforward controller does "see" the disturbance. Howe\'er, it does 
not "see" the effect of the control output U on the process output Y. It 

is, in effect, operating blindly with regard to the consequences of its 
actions. 
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y 

F,niCt?ts and toilets 

fiGURE 1-6 A feedforward controller. 

Controller 
U (Controller output/proCL'SS input) 

Process Y (Proct'ss output) 

0 (DisturbancL's) __ ...J...._ ___ ___, 

fiGURE 1-7 Feedforward controller block diagram. 

1-3 Process Disturbances 
Referring back to Fig 1-5, the tank on the hotel roof, let's spend some 
time discussing the impact of the faucets, the toilet flushings, and the 
drain \'alve on the tank level. First, consider the response of the tank 
level to a step change in the drain valve position. That is, we sud­
denly crank the drain \'alve from its initial constant position to a new, 
say more open, position and hold it there indefinitely. Figure 1-8 
shows the response This kind of a disturbance is considered dctcr­
lllillistic because one would usually know the exact time and amount 
of the val\'e adjustment. 
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FIGURE 1.-8 Response to a drain valve disturbance. 
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F1auRE 1.-9 variation of tank level due to unpredictable actions. 



Qualitative Concepts in Control Engineering 7 

0.5 .-----.--....---....----.-----.-----.-----:-----.---r----.----, 

0.4 

0.3 

0.2 

Qj 0.1 

~ 
~ 0 

~ -0.1 

-0.2 

-0.3 

-0.4 

-0.5~~570--~~~~~~~~~~~~~~~~500 

Time 

F1oURE 1-10 Autocorrelated stochastic variation of the hotel tank level. 

When the flushing of the toilets and the usage of the faucets in the 
rooms is completely unpredictable and independent of each other, the 
tank level variation might look like Fig. 1-9. For the time being we will 
refer to these kinds of fluctuations as wumtocorrelated stochastic distur­
bances where the word "stochastic" means conjectural, uncertain, or 
unpredictable. We will avoid using the word "random" because of the 
many confusing connotations. Also, we will defer the definition of 
"unautocorrelated" until a later chapter. If the stochastic variation is 
autocorre/ated, the hotel tank level might look like Fig. 1-10. 

Later on in Chap. 8, a significantly more quantitative definition 
will be attached to these two kinds of disturbances and we will find 
out how to characterize them. For the time being, suffice it to say that 
unautocorrelated disturbances are stochastic variations with a con­
stant average value while autocorrelated disturbances exhibit drift, 
sometimes with a constant overall average and sometimes not. 

1-4 Comparing Feedforward and Feedback Controllers 
The feedforward controller can act on a measured event (such as the 
drain value position) before it shows up as a disturbance in the process 
output (such as the tank level). Unfortunately, the feedforward controller 
has no idea how well it did. Furthermore, it is often rather difficult to 
measure the disturbance-causing event. Sometimes there will be many 
disturbance-causing events, some of which cannot be measured. Also, it 
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is not ahvays clear how the algorithm should react to the measured 
disturbance-causing event. Often, each feedforward control algorithm 
is a special custom application. Finally, if perchance, the feedforward 
control algorithm acts mistakenly on a perceived disturbance-causing 
event it can actually generate a more severe disturbance. 

The feedback controller cannot anticipate the disturbance. It can 
only react "after the damage has been done." If the disturbance is 
relatively constant there may be a good chance that the feedback con­
troller can slowly compensate for it and perhaps even remove it. As 
we will show in the next couple of pages, there are some disturbances 
that simply should be left alone. The feedback controller can tell how 
well it has been done and it can often react appropriately. Unlike the 
case with feedforward control algorithms, there are a few well­
known, easily applied feedback control algorithms that, under appro­
priate conditions can deal quite effectively with disturbances. 

Question 1-1 Can a set point change be considered as a disturbance? If so, could 
it be used to easily test a feedback controller? 

Answer Yes, to both questions Changing a set-point is a repeatable test for 
e\"aluating the tuning of a feedback controller 

1-5 Combining Feedforward and Feedback Controllers 
Figure 1-11 shows how feedforward and feedback controllers can be 
combined for our hotel example and Fig. 1-12 shows an abstraction of 

Faucets and toilets 

FIGURE 1-11 A feedforward/feedback controller. 
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Feedforward 
controller 

U (Controller output 
/process input) 

D (Disturbances) ---...L...-------------1 

FIGURE 1·12 A feedforward/feedback controller block diagram. 

the concept. The outputs of the feedforward and feedback controllers 
are combined at a summing junction and fed to the valve actuator. 
This scheme has the advantage of being able to react, via the feedback 
controller, to any unmeasured and unpredictable (stochastic) distur­
bances, such as the faucets and toilets, as well as to inaccuracies in 
the feedforward controller algorithm should it be needed during a 
swimming pool filling. The feedforward algorithm can provide 
anticipation for the feedback algorithm while the feedback algorithm 
can provide a safety net for the feedforward algorithm. 

1-6 Why Is Feedback Control Difficult to Carry Out? 
Depending on the type of disturbances, feedback control can be dif­
ficult to carry out. To illustrate this point, consider the act of driving 
an automobile. The left-hand side of Fig. 1-13 shows that driving a car 
is a skillful combination of feedforward and feedback control with a 

Feedforward 
Look ahead for read conditions. 

Anticipate upcoming disturbances. 
And adjust accordingly using training. 

Feedback 
Can ONLY look down through hole in 

floorboard. Respond to current 
disturbances. 

FIGURE 1·13 Comparison of feedback and feedforward control. 



10 Chapter One 

strong emphasis on the feedforward component. At the risk of over­
simplification, driving a car depends heavily on the driver looking 
ahead, noting changes in the road and traffic, anticipating distur­
bances, and making adjustments in the steering wheel, gas pedal, and 
brake pedal. The actions taken by the driver are the result of many 
months and sometimes years of training and constitute a human 
feedforward algorithm. There are human feedback components to 
these feedforward adjustments but they are mostly corrections for 
inaccuracies (hopefully small) in the training and experience that 
constitutes the human feedforward algorithm. 

If the automobile were to be driven exclusively by feedback con­
trol, the right-hand side of Fig. 1-13 shows that the driver could not 
look out through the windshield. Instead, the driver must make 
adjustments based only on information gathered by looking at the 
road through a hole in the floorboard. This kind of restriction would 
force the driver to maintain a slow speed. Here the driver is carrying 
out feedback control and is able to react only to current disturbances 
and has no information on upcoming disturbances. 

Consider the case of driving down the center of the road by follow­
ing the white line as seen through the hole in the floorboard in the face of 
strong gusting crosswinds. Since this is a hypothetical question, put 
aside the obvious fact that this activity would be illegal and dangerous. 
One can surmise that a strategy of reacting aggressively to short-term ran­
dom bursts of wind to keep the white line precisely in the center of the 
floorboard opening would probably put the car off the road. Instead, 
because the disturbances are not constant but unpredictable, the driver's 
best strategy might be to conservatively adjust the steering wheel to keep 
the white line, on the average, "near" the center of the floorboard opening 
and tolerate a reasonable amount of variation. Therefore, rather than 
react to sl10rt-temt variations, the driver would have to be content with 
addressing /ong-temt drifts away from the white line. I recently drove 
from New York to Colorado and back. I found myself reacting to sus­
tained bursts of crosswind in a feedback mode. Therefore, the arguments 
of this section suggest that the sustained bursts of crosswind might not 
be classified as unautocorrelated. 

Based on this rather extreme example, we can perhaps conclude that 
using feedback control on a noisy industrial process will probably not 
produce perfect zero-error control. Since feedforward control is rarely 
available for industrial processes, if one really wants to decrease the 
impact of short-term nonpersistent disturbances, he must actually "fix" 
the process, that is, minimize the disturbances affecting the process. 

1-7 An Example of Controlling a Noisy Industrial Process 
To illustrate the impact of feedback control on noisy processes, con­
sider a molten glass delivery forehearth shown in Fig. 1-14. Since the 
reader may not have a glass-manufacturing background, a little 
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FtouRE 1-14 A molten glass forehearth. 

explanation of the process depicted in Fig. 1-14 is necessary. The fore­
hearth is a rectangular duct made of refractory material about 1 ft 
wide, about 16ft long, and about 6 in deep. Molten glass at a relatively 
high temperature, here 1163°C, enters the forehearth from a so-called 
refiner. The forehearth is designed to cool the glass down to a suitable 
forming temperature, in this case 838°C. There is a gas combustion 
zone above the glass where the energy loss from the glass is con­
trolled by maintaining the gas (not tlte glass) temperatures at desired 
values via controllers, the details of which we will gloss over for the 
time being. 

There are three zones: the rear, mid, and bowl. In each zone, the 
gas combustion zone temperature above the glass is controlled by 
manipulating the flow of the air that is mixed with the natural gas 
before combustion. The amount of gas drawn into the combustion 
zone depends on the amount of air flow via a ventura valve. In the 
rear zone, a master control loop measures the TG(l) glass tempera­
ture (as measured by a thermocouple inserted into the molten glass) 
and adjusts the set point for a second loop, called a slave loop, which 
controls the gas combustion zone temperature TG(2) by in tum 
manipulating the flow of combustion air. There is a similar pair of 
control loops in the midzone and the bowl zone. In Chap. 11, we will 
treat this combination of two control loops, called a cascade control 
structure, in detail. 

Therefore, in each zone the control challenge is to adjust the com­
bustion zone temperature set point so as to keep the bowl tempera­
ture TG(3) sufficiently close to 838°C. It is a tough task. The incoming 
glass varies in temperature, the manufacturing environment ambient 
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FIGURE 1-15 Control of a molten glass forehearth. 
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temperature varies because of drafts, and there are variations in the 
"pull" or glass flow rate. These disturbances are manifested in "noisy" 
TG(1), TG(2), and TG(3) temperature values. 

Figure 1-15 shows a time trace of TG(3) for three cases: (a) no 
zones under control, (b) front zon~nly under control, and (c) all 
three zones under control. The nominal values of the temperatures 
have been normalized by subtracting a constant value. A temperature 
value of 1.0°C in Fig. 1-15 represents the desired 838°C. A tempera­
ture value of 1.5°C in Fig. 1-15 represents 838.5°C. 

Satisfactory glass forming requires that the bowl temperature 
varies no more than about 0.3°C. For no control, the TG(3) tempera­
ture in Fig. 1-15 shows significant excursions beyond the desired limit 
and the average value is nowhere near the desired value of 1.0°C. 
Figure 1-16 shows a closer view of the TG(3) temperature when under 
the two control schemes. Having all three zones under control is bet­
ter than having only one but, even with all zones in control, the TG(3) 
trace still exhibits noise or disturbances. 

To further remove variation, the emphasis probably should be 
placed on decreasing the variation of the glass entering the forehearth 
from the refiner and on environmental variation. To illustrate the idea 
that the controller could in fact drive the process output to set point if 
it were not for the noise and disturbances consider Fig. 1-17. Near the 
middle of the simulation (at timet= 250) I have magically removed 
the disturbances and I have changed to set point to 1.0. Notice that, in 
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FIGURE 1·16 Control of a molten glass forehearth, alternative view. 
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FIGURE 1-17 Effect of removing disturbances. 
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the absence of disturbances, the controller drives the process variable 
to new set point quickly. 

Before leaving this example, we should make a few comments on 
the nomenclature associated \Vith the disturbances discussed. In 
Chap. 8, we will discuss how to quantitatively characterize these dis­
turbances but for the time being consider the noise riding on the tem­
perature signals in Fig. 1-15 as an example of a stochastic variation. 

We perhaps can conclude the following from this example: 

1. When process is subject to stochastic disturbances, feedback 
controllers can 11ot "drmv straight lines." 

2. Although there may be some attenuation, Disturbances In --7 

Disturbances Out. As we shall see later on, the process itself 
may tend to attenuate input disturbances. Controllers can aid 
in the attenuation. 

3. Controllers can move the process to a neighborhood of a ne\v 
set point. Controllers may not be able to "draw straight lines" 
but they may be able to move the mxragc value of the process 
output satisfactorily near a desired set point. 

Figure 1-18 gives a pictorial summary of the above comments 
When confronted with set-point changes in the face of relatively 
small stochastic disturbances a feedback controller can be extremely 
useful. If one is so lucky to have good measurements on incoming 
streams that represent disturbances to the process, feedforward 
control coupled with feedback control probably is a good choice 

Use fl'L'dback 

FrcuRE 1-18 Different approaches for different problems. 

Use fL'L'dfon' ard 
control 
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Finally, if the main challenge is trying to maintain a process output 
satisfactorily near a set point in the face of persistent stochastic dis­
turbances then the best approach probably should be the formation 
of a problem-solving team to deal with both the process and the 
environment. 

1-8 What Is a Control Engineer? 
So far we have implied that a control engineer designs control algo­
rithms. In fact, the title of control engineer can mean many things. 
The following list, in no particular order, covers many of these 
"things": 

1. Installer of control/ instrumentation equipment (sometimes 
called an "instrumentation engineer"): In my experience this 
is the most prevalent description of a control engineer's 
activities. In this case, the actual design of the control 
algorithm is usually quite straightforward. The engineer 
usually purchases an off-the-shelf controller, installs it in an 
instrumentation panel, probably of her design, and then 
proceeds to make the controller work and get the process 
under control. This often is not trivial. There may be control 
input sensor problems. For example, the input signal may 
come from a thermocouple in an electrically heated bath of 
some kind and there may be serious common and normal 
mode voltages riding on the millivolt signal representing the 
thermocouple value. There may be control output actuator 
problems. There may be challenging process dynamics 
problems, which require careful controller tuning. In many 
ways, instrumentation engineering can be the most 
challenging aspect of control engineering. 

2. Control algorithm designer: When off-the-shelf controllers 
will not do the job, the scene is often set for the control 
algorithm designer. The vehicle may be a microprocessor 
with a higher-level language like BASIC or a lower-level 
language like assembly language. It may even require 
firmware. Many control/instrumentation engineers fantasize 
about opportunities like this. They have to be careful to avoid 
exotic custom undocumented algorithms and keep it simple. 

3. Process improvement team member: Although this person is 
trained in control engineering, success, as we shall see in 
Chap. 2, may result from solving process problems rather 
than installing new control algorithms. 

4. Process problem solver: This is just a different name for the 
previous category although it may be used when the team 
members have developed a track record of successes. 
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1-9 Summary 
Compared to the rest of the book, this chapter is a piece of cake-no 
equations and a lot of qualitative concepts. Hopefully, we have laid 
the foundation for feedback and feedforward control and have shown 
how difficult they can be to apply especially in the face of process dis­
turbances. The next chapter will retain a qualitative flavor but there 
will be hints of the more sophisticated things to come. Good luck. 



CHAPTER 2 
Introduction to 

Developing Control 
Algorithms 

Before embarking on the quantitative design of a control algo­
rithm it is important to step back and consider some of the softer 
issues. What kind of approaches might a control engineer take? 

What kind of up-front work should be done? Is there a difference when 
dealing with an existing process as compared to bundling a process 
with the control algorithm and selling the package? 

2-1 Approaches to Developing Control Algorithms 
Each control/process analysis project is unique but every strategy 
that I have been involved with has components from the following 
three approaches. 

2·1·1 Style, Massive Intelligence, Luck, 
and Heroism (SMILH) 

In a stylish manner, the engineer speculates on how the process 
works, cooks up a control approach, and somehow (heroically) makes 
it work, at least on the short-term. Massive intelligence not only helps 
but it usually is essential. A massively intelligent person, using the 
SMILH approach, can, sans substance, exude style and confidence 
sufficient to overcome any reservations of a project manager. Because 
this engineer has avoided a couple of methods to be mentioned fur­
ther, the project will likely experience setbacks and a wide variety of 
troubles. The successful SMILHer will use these problems as oppor­
tunities to show how heroically hard he can work to overcome them. 
I have always been amazed at the number of managers who can 
pat the heroic SMILHer on the back for his above-and-beyond-duty 
hard work and never ask the fundamental question: 11Why does this 
engineer have to resort to such heroics ?" Over the years I have 
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worked with scores of SMILHers. One of the first ones, a great guy 
named Fred, was the hardware designer while I was the algorithm/ 
software guy. I would program the minicomputer in some combina­
tion of FORTRAN and assembly language to (1) act on the inputs 
served up by Fred's hardware and to (2) send the commands to the 
output drivers, again provided by Fred. Fred also designed the elec­
trical hardware to connect the operator's panel to the computer. Our 
trips to the customer's plants had a depressing similarity. We would 
fire up the system, watch it malfunction, and then I would proceed to 
find ways to amuse myself, sometimes for days, while Fred dug into 
the hardware to fix the problems. He was indeed heroic, often putting 
in "all-nighters." Fred never upset the project manager who thought 
the world of him ... actually, as did everyone, including myself. 
Nobody ever asked "Fred, why don't you do a more thorough job of 
debugging the system before it goes out to the field or a better job of 
design in the first place?" Fred went on to be a successful manager. 

2·1·2 A Priori First Principles 
Some processes invite mathematical modeling up front. The idea, 
often promulgated by an enlightened (or at least trying to appear 
enlightened) manager, requires that some mathematically gifted 
engineer develop a mathematical model of the process based on first 
principles. Proposed algorithms are then tested via simulation using 
the mathematical model of the process. This approach is extremely 
attractive to many people, especially the mathematical modeler who 
will get a chance to flex his intellectual muscles. Early in my career 
this was my bag. In retrospect, it makes sense that I would be rela­
tively good at it. I was fresh out of graduate school and knew practi­
cally nothing about real-life engineering or manufacturing processes 
but I did know a little mathematics and I was quite full of myself-a 
perfect combination. 

Success depends mostly upon the style with which the modeler 
applies himself and presents his results. Many times I have seen beau­
tiful computer graphics generated from modeling efforts that, when 
stripped of all the fanfare, were absolutely worthless ... but impres­
sive. Later on, if the algorithm does not work as predicted by the mod­
eling there were always a host of excuses that the modeler could cite. 

At least in my experience, a priori mathematical modeling, espe­
cially transient time domain modeling, is almost always a waste of 
time and money. The real goal of this approach should be the gaining 
of some unexpected insight into how the process works. Unfortunately, 
mathematical modeling rarely supplies any unexpected performance 
characteristics because the output is, after all, the result of various pos­
tulates and assumptions put together by the modeler at the outset. 
Often one could just look at the basis for the model, logically conclude 
how the process was going to behave and develop a control approach 
based on those conclusions without doing any simulation. 
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Far more frequently, a priori mathematical modeling simply is 
not up to the task. Most industrial processes are just too complex and 
contain too many unknown idiosyncrasies to yield to mathematical 
modeling. I have more to say on this problem in Sec. 2-4. 

2-1-3 A Common Sense, Pedestrian Approach 
If the process exists and is accessible, the control engineer adds extensive 
instrumentation, studies the process using the methods presented next, 
and, if necessary, develops an algorithm from the process observations. 

When the process is not accessible, one makes a heavily instru­
mented prototype of the process and develops a control algorithm 
around the empirical findings from the prototype. 

Alternatively, if it is a new process, yet-to-be-constructed, and a 
prototype is not practical, the engineer negotiates for added monitor­
ing instrumentation. In addition and, even more difficult, he negotiates 
for up-front access to the process during which planned disturbances 
will be carried out so that one can find out how the process actually 
works dynamically. During this up-front time, many unexpected prob­
lems can be discovered and solved. The control algorithm vehicle, usu­
ally digitally based, is designed with extensive input/output "hooks" 
for diagnosis. Finally, the control algorithm is designed around these 
findings. I have frequently made mathematical models based on the 
empirical evidence gathered during these up-front trials. 

This approach is significantly more expensive in the short-term 
and often violently unpopular with project managers. I have consis­
tently found it to be a bargain in the long-term. There is some style 
required here; the engineer must convince the management that the 
extra instrumentation and up-front learning time is required. Junior 
control engineers usually are not aware of this approach-mostly 
because they have not yet experienced the disasters associated with 
SMILH and a priori methods. But, even if they are aware they usually 
cannot convince a seasoned project manager about the benefits of 
taking a pedestrian approach simply because they haven't a track 
record of success in this area. 

If the process for which the control algorithm is to be developed 
already exists then this empirical approach is really the only valid 
choice IMHO. Since this case is so prevalent and special it will com­
mand a whole next section. 

2-2 Dealing with the Existing Process 
Consider the following scenario. A section supervisor in a manufac­
turing plant is not satisfied with the performance of the process for 
which he is responsible. The end-of-line product variance is too high. 
Thinking that the solution is more or better process control, he calls in 
the control engineer. 
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2·2·1 What Is the Problem? 
Although most engineers working in a manufacturing environment 
are formally trained in problem solving, they almost uniformly 
bypass the most important first step, which is to clearly and exhaus­
tively define the problem. The number of manufacturing-plant sec­
tion supervisors that I have irritated by persistently and perhaps 
obnoxiously asking this question seems countless. They often do not 
want to be bothered by such nonsense. After all, they know more 
about the process than some staff engineer from headquarters and 
have already figured out that there is a need for a control upgrade ... 
now, just get busy and do it! 

Early in my career I obediently plowed ahead and did the project 
manager's bidding. There were some successes-at least enough to 
keep me employed-but there were enough failures that I was basi­
cally forced to develop the so-called road map for process improve­
ment shown in Fig. 2-1 and discussed in great detail in the following 
sections. 

Before jumping into the approach championed in this chapter, it 
is critical to convince the project sponsor/manager to develop a team 
containing the control engineer as a member. This team should be 
diverse, not necessarily in the politically correct ethnic manner, but in 
the technical strengths of the members. There is little point in foster­
ing competition so only one member of each important discipline 
should be present. Furthermore, the control engineer need not be the 
leader; in fact, in my experience it is better to have someone with 
more leadership skills than technical skills in that position. 

2·2·2 The Diamond Road Map 
Figure 2-1 shows a diagram containing four corners of a diamond but 
really consisting of many steps. 

Compartmentalization and Requirements Gathering 
This is a fancy phrase that simply means, "divide and conquer." Man­
ufacturing processes are almost always complex and consist of many 
parts, steps, and components. Breaking the process down into all of 
its components or dynamic modules is the first step in getting a handle 
on improving the performance. 

Our method will attempt to decrease the variance of the process 
variables local to each module with apparent disregard for the end-of­
line performance. Once each module becomes more controllable, the 
targets for each module can be adjusted more precisely to affect the 
end-of-line performance beneficially. One usually finds that even 
without changing the targets of the improved modules, the decreased 
local variance tends to have a salutary effect on the end-of-line prod­
uct characteristics. Therefore, there are three benefits to the localiza­
tion. The first benefit is better control, allowing the local set point to 
be adjusted with the confidence that the module will actually operate 
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FIGURE 2-1 The diamond road map. 
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at or satisfactorily near that set point. The second benefit is the impact 
of less variance in that module on the downstream end product. The 
third benefit is that once the module is put under control, the set point 
can be adjusted to optimize the end-of-line product. 

Gathering information about each module, especially its perfor­
mance requirements, is often the most difficult step. What defines 
"good performance" for each module? At the end of the manufactur­
ing process where the product emerges, good performance is rela­
tively easy to define. But as you move back into the process this can 
become quite difficult. There may be no measurements available for 
many of the "interior" or upstream modules in the process. How do 
you know if it is performing properly? Could this module be a big 
player in the observed poor performance at the end of the process? To 
make sense of these studies one must have a reference point that 
describes the satisfactory behavior of the module in quantitative 
terms. In subsequent sections we will discuss in detail methods for 
studying the performance of a module. 
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Where to Start? 
This is a tough question. Sometimes it is best to start near the product 
end of the process and work back upstream, especially if analysis 
suggests that the local variance seems to be coming from the upstream 
modules. Alternatively, one might start at the most upstream module 
and work down. In this case the impact of solving problems in an 
upstream module may not be discernible in the downstream mod­
ules because there has been no previous reference point. Finally, it 
may make sense to start where the hands-on process operators think 
the most problems are. It's always good practice to include the hands­
on process operators in the strategy development, the data review, 
and the problem-solving activities. 

Massive Cross Correlation 
Before moving on with the road map, we should make a few comments 
about an alternative complementary and popular approach to process 
problem solving-the "product correlation approach." Here one cross­
correlates the end-of-line performance characteristics with parameters at 
any and all points upstream in an attempt to find some process variable 
that might be associated with the undesirable variations in the product. 
This can be a massive effort and it can be successful. However, I have 
frequently found that plant noise and unmeasured disturbances through­
out the process and its environment will corrupt the correlation calcula­
tions and generate many "wild goose chases." Often an analyst will 
stumble across two variables, located at significantly different points in 
the process, that, when graphed, appear to move together suggesting a 
cause and effect. Unfortunately, in a complex process there are almost 
always going to be variables that move together for short periods of time 
and that have absolutely no causal relationship. 

Figure 2-2 shows a hypothetical block diagram of a complex pro­
cess. The end-of-line product is the consequence of many steps, each of 
which can suffer from noise (N), disturbances (D), and malfunctions 
(M). A massive cross-correlation might easily show several variables 

N/D/M 

fiGuRE 2-2 A complex process with many sources of noise (N), disturbances (D), 
and malfunctions (M) . 



Introduction to Developing Control Algorithms 23 

located at various points in the block diagram that have similar short­
term trends due to these disturbances and malfunctions. A good proj­
ect manager can have both approaches active and complementary. 

Time Domain Analysis 
Now that a module has been identified and the specifications gath­
ered, it is time to "look" at the process in the simplest most logical 
way-in the time domain. This means collecting data on selected pro­
cess variables local to the module and studying how they behave 
alone and when compared to each other. Before starting to collect the 
data the team should agree on the key process variables to collect and 
on what frequency to sample them. This may require installing some 
new sensors and even installing some data-acquisition equipment. 

Decades ago, the only source of data was the chart recorder. 
Nowadays, most processes have computer-based data-acquisition 
systems, many of which not only collect and store the data but can 
also plot it online. These systems can also plot several process vari­
ables on the same graph. The opportunities to look at the process 
dynamics in creative ways are nearly endless. Use your imagination. 

Gaining insight and solving problems are the primary goals of 
the activities associated with each of the four comers of the diamond 
in Fig. 2-1. The time domain plots will likely reveal problems that 
should be solved by the team (as soon as possible) thereby reducing 
variation in the local process variables connected with the module. 
Reducing variance locally is the immediate challenge. Do not worry 
about the impact of these activities on the end-of-line product vari­
ance. That will come later. 

Frequency Domain Analysis 
Once the time domain analysis/problem revelation/problem solving 
has begun, it often makes sense to look at the process module in some 
other domain. The road-map diagram shows a second corner labeled 
"Frequency domain analysis." Here, without going into too much 
technical detail, one uses Fast Fourier Transform software to develop 
line spectra or power spectra for selected variables. Essentially, long 
strings of time domain process data are transformed to the frequency 
domain where sometimes one can discover heretofore unknown peri­
odic components lurking in noisy data. Few computer-based data­
acquisition/ process-monitoring systems have the frequency domain 
analysis software built in, so the engineer will have to find a way to 
extract the desired process variables and transfer them to another 
computer, probably off-line, for this type of analysis. 

Figure 2-3 shows a long string of time domain data for a process 
variable. The variable was sampled at a rate of 1.0 Hz (or every second). 
In the time domain it simply looks noisy and seems to drift tightly 
around zero (perhaps after the average has been subtracted). When 
transformed into the frequency domain, Fig. 2-4 results. Here the 
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signal power at all the frequencies between 0.0 and 0.5 Hz is plotted 
versus frequency (see App. C for information on why the frequency 
is plotted only up to 0.5 Hz). Strong peaks occur at frequencies of 
0.091 Hz and 0.1119 Hz, suggesting that buried in the noisy signal are 
periodic components having a periods of 1/0.091 = 11 sec and 1/0.119 = 
8.9 sec. Warning: These two periodic signals could also be aliases of 
higher-frequency signals (see App. C for a discussion of aliasing). 
Additionally, there is power at low frequencies (less than 0.05 Hz) as 
a consequence of the stochastic drifting about an average of zero. 

If this were real process data it would now be up to the team to 
collectively figure out where these unexpected periodic components 
were coming from. Are they logical consequences of some piece of 
machinery that makes up the manufacturing process or are they 
symptomatic of some malfunction not immediately obvious but 
about to blossom into a major problem? In any case they may be sig­
nificantly contributing to the variance of the local process variable 
and there may be good reason to remove their source and lower the 
local variance. 

In App. C the power spectrum is discussed in more detail. There, 
the reader will find that the area under the power spectrum curve is 
proportional to the total variance of the process variable. Therefore, 
portions of the frequency spectrum where there is a significant amount 
of area under the power spectrum curve merit some thought by the 
process analyst. That appendix will also discuss why only the powers 
of signals with frequencies between 0.0 and 0.5 Hz (half of the sam­
pling frequency) are plotted. 

The data stream should be relatively stable for the frequency 
domain analysis to be effective. For example, the data analyzed above 
varies noisily but is reasonably stable about a mean value of zero. 
Data streams that contain shifts and localized excursions will yield 
confusing line spectra and may need some extra manipulation before 
analysis begins. 

As with the first corner of the diamond dealing with time domain 
analysis (Fig. 2-1), the outputs from the frequency domain comer are 
problem revelation and insight. Should there be problems revealed 
and then solved, the local variance will be reduced and the module 
will be more under control. 

Step-Change Response Analysis 
The first two comer activities provide insight and problem revelation 
based on noninvasive observation. Sometimes this is not enough. 
Sometimes, to get enough insight into a process to actually control it, 
one must intervene. This is where the step-change response analysis 
comes in. 

First of all, the problem-solving team should make a hypothesis 
regarding what they expect to see as a step response. Then, to carry 
out the experiment properly, the engineer must tum off any of the 
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fiGURE 2·5 A typical step-change response. 

existing control loops that have any effect on this module. Once the pr<r 
cess settles to some acceptable approximation of steady state, the engi­
neer makes an isolated step change to a process input variable. Since this 
is usually the manipulated variable in a control loop, the step change can 
often be easily made via the actuator. 

Figure 2-5 shows a typical step-change response. Both the process 
input and output variables have been normalized to lie within the 
range of 0 to 1 for simplicity. The team should consider if this step 
response is what they expected. If it is not, then they may have found 
a problem. Later on, when we talk about the first-order process, the 
characteristics of this kind of plot will be examined. 

Step-change analysis can be useful for at least two reasons. First, 
as suggested above, it can point out errors in the actuator system 
and malfunctions in the process. Second, it can give the control 
engineer valuable information on the dynamic characteristics of the 
process, which in turn can be used to develop the appropriate con­
trol algorithm. 

Control Development 
This corner of the diamond is where the control engineer has a 
chance to shine. It is where I used to start when I was inexperienced. 
Ironically, if the activities associated with the other corners are suc­
cessful, the variance is often so significantly reduced that there is 
little need to concoct a sophisticated control algorithm. It has been 
my experience that a well-constructed process problem-solving 
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FIGURE 2-8 The diamond road map icon. 

team can basically obviate the need for the activities in the "control 
development comer." 

However, should an algorithm be developed and installed, one 
would move on to the top of the diamond and study the controlled 
process in the time domain. Having done this, one could continue 
around the diamond gaining insight and solving problems. For mne­
monic purposes the diamond is symbolized in Fig. 2-6. 

2-3 Dealing with Control Algorithms 
Bundled with the Process 

What if you are selling a product such as an optical amplifier and you 
want to augment your product with a controller that will, say, main­
tain a desired optical output power? Now, you are bundling the pro­
cess to be controlled with the controller and forming a product that 
contains two components. This is quite a different situation compared 
to that covered in Sec. 2-2. 

What Is the Problem? 
The product now has two components that can have problems: the 
process and the controller. If the product is constructed so that only 
the final output, say the optical power in the case of an optical ampli­
fier, can be monitored then how do you diagnose problems? Is it the 
process or is it the controller? 

Separation and Success 
The key to success lies in designing the product with ports that 
will allow the problem solver to tap into internal signals, namely 
the controller input and the controller output. With these sig­
nals available, the problem solver can isolate the controller from 
the process. 
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Pay me Now ... or ... ePay me Later 

FIGURE 2-7 The old Fram oil filter phrase. 

How often does this happen? Rarely. It is difficult to convince 
a project manager to authorize the extra money to design-in the 
necessary ports. However, it is another example of "pay me now 
or pay me later" (a phrase from the perhaps famous Pram oil filter 
advertisements sometimes seen in the 1950s; Fig. 2-7). The money 
lost in designing the extra ports will pail in comparison to the 
costs of the engineering time required to diagnose and solve the 
problem. 

Problem Solving with Bundling 
The key to problem solving is having access to both the so-called pro­
cess and the controller. H ports are in place then problem solving can 
be divided immediately into verifying that the process and the con­
troller are performing properly. Without these ports problem solving 
becomes a guessing game (see Fig. 2-8). 

There are ancillary benefits to having the extra ports. During 
product development, the ability to monitor the process and con­
troller separately can allow for parallel beneficial development (see 
Fig. 2-9). H the learning about the process and controller are concur­
rent and interactive, their development can be also be interactive­
leading to a synergism and a better final product. 

Test control 
separately 

Tune ~ 1----- Success , 

,-

Bundle process and • O Try SMILH 
control then Tune 

Failure 
J, 

Crisis mode r 
FIGURE 2-8 Bundling process and control as part of a saleable product­
testing the process and the algorithm separately. 
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F1caURE 2·9 The benefits of separation: interaction, evolution, synergism, and 
problem isolation. 

2-4 Some General Comments about 
Debugging Control Algorithms 

This is a sore subject with a lot of engineers, yours truly included. 
Perhaps it's best to simply tell a couple of war stories. 

Rookie Fright 
I joined a large manufacturing company with only a couple of years 
of experience after leaving graduate school with a Ph.D. in chemical 
engineering. Although I had been into a plethora of hobbies and 
projects before college, my life as a professional student had been 
reclusive and narrow and I had no hands-on engineering experi­
ence, nor much interest in gaining any-hey, I was an applied math­
ematician (I thought)! 

When in Doubt, Simulate-Not! 
Given the comments of the above paragraph, I really was good for 
little other than generating sophisticated mathematical simulations. 
At my previous job I had been adept at making mathematical models 
of complicated processes, cooking up complicated algorithms for 
controlling the model, and using the process model to show how 
wonderfully the control algorithm would work. 

The rationale for using simulation to develop a control algorithm 
is simple and, in my opinion, quite incorrect. This approach is flawed 
because the model basically contains the knowledge of the modeler 
and little else. When it is put through its paces, it will surprise no one. 
Furthermore, the model will likely not contain any of the subtle idio­
syncrasies of the real process-idiosyncrasies that might defeat the 
control algorithm developed by using the model. 

The motivation for using a mathematical model often comes from 
a manager who has little actual knowledge of mathematical model­
ing. He has, however, observed that suggesting mathematical model­
ing as a solution to some difficult process problem often comes across 
as an enlightened commandment. 
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The logic behind using a mathematical model to gain insight 
into a difficult process problem or develop a control algorithm 
should be faulty on its face. The model is going to be based on the 
problem-solving group's best knowledge and understanding of the 
process. Unfortunately, the problem is present because that knowl­
edge and understanding is insufficient. In cases like these, the 
answer to the problem lies in the process and its discovery almost 
always requires disturbing the process in a manner similar to that 
presented in Sec. 2-2. 

You, as a manager, should always carefully question the basis for 
your charges embarking on a mathematical simulation. It can waste an 
enormous amount of engineering time. I, as a mathematical modeler, 
never had any problem demonstrating how wonderful and useful my 
model was and I wasted a lot of the company's money doing it. On the 
other hand, using a mathematical model to debug a control algorithm 
is an entirely different matter-see in the following sections. 

These last handful of paragraphs have in large part been a regur­
gitation of earlier material. Sorry, but it's really important. 

At Last-Busted! 
In my new job, I escaped practical projects for a couple of years but 
eventually I was given responsibility for putting in a new instru­
mentation control room for a new process. I was awed by my lack of 
ability in the hands-on aspect of instrumentation. Consequently I 
resorted to obsessive planning, preliminary debugging, and exten­
sive use of competent resources (such as the hourly instrument 
technicians). The instrumentation included a data-logging com­
puter (called minicomputers in those days). To cover myself, I broke 
all inputs and inserted test voltages to simulate real conditions. I 
also wrote little subroutines to generate fake signals to the data­
logging algorithms. I found many problems and enlisted the aid of 
talented associates to solve them. The list of debugging tricks could 
go on but to make a long story short, when it came time for the pro­
cess to start up, all my stuff worked and there was no opportunity 
for SMILH-which was a good thing because I simply was not cut 
out for that kind of thing anyway. 

My "customers," the boys who designed and would run the pro­
cess, were astounded. It was the early days of using computers to 
monitor industrial processes and they had been conditioned to bring 
their new processes in without the aid of the data-logging computer 
for a simple reason: The engineers doing the instrumentation hard­
ware and software were experienced, talented, and confident that 
they could solve any problems that would come up so they avoided 
any extensive pre-bring-in debugging and left any problems that 
would crop up to SMILH. 

Although I gained points with my boss over the success of the 
project, I concluded that large-scale instrumentation installation 
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projects were not fun and did not use my skills properly. I proceeded 
to avoid them like the plague. 

Surprise Sub 
After several years of avoiding projects like the one described (and 
paying for it with an unimpressive rate of promotion), I got involved 
with a junior engineer, whom I will call Bill, as his mentor. Bill was 
formally trained as an electrical engineer and had morphed into a 
software engineer primarily engaged in programming the minicomputer­
based data-acquisition and control systems. Without much prior 
experience, Bill was charged with the instrumentation and control 
responsibility for another new process. By this time our group had 
started installing analog output cards and using the minicomputer 
to close control loops and replace stand-alone analog controllers. I, 
as a semisenior, semiexperienced associate, was supposed to be 
available to Bill for questions and counsel. 

Bill invited me over to the site once, well into the installation, and 
showed me around. Since he was programming the computer and 
since I had minimal knowledge of software systems, the tour was 
nothing more than a long cup of coffee. I really gained no idea of how 
he was doing, except that everything looked OK and Bill was cool. I 
heard no more from him. The process started up without incident 
until a few days into the operation when a major flaw in the process 
design was discovered and the boys who owned the process went 
back to the drawing boards for several months. 

When the redesign was finished, three things were apparent. First, 
nothing topologically had changed with the process so all of Bill's work 
would supposedly still be applicable. Second, Bill's 5-year company 
anniversary had arrived and he had planned to spend his extra 3 weeks 
of vacation (5 weeks total) in Europe with a bunch of like-minded 
youngsters. So, even though the vacation coincided with the restart of 
the process he still was allowed to go because of all the trip commit­
ments he had made. Third, because Bill's stuff had apparently worked 
during the first abortive bring-in, there was no need for his presence 
and Uncle Dave (moi) could simply drop by on the start up day and be 
available for questions, should there be any (unlikely). 

This situation bothered me. I had no idea what Bill had done. So, 
even though the first process bring-in had been uneventful from an 
instrumentation point of view, I dropped by during the week before 
the second bring-in and proceeded to dig into the software. I found 
that there were several proportional-integral control loops, some con­
nected in a cascade configuration (things we will talk about later). 

To check things out I did the obvious. I put test signals into the 
computer and monitored the data-logging CRTs to see what the con­
trol loops did. To make another long story short, there was a plethora 
of errors, some serious (the cascade loops) and some minor (derived 
variables based on data-logging inputs). I could correct the FORTRAN 
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source code but since I did not have the software system expertise to 
link everything together I had to create quite a brouhaha to get the 
necessary and scarce software resources in time for the bring-in. I 
was careful not to castigate Bill when he came home blithely 
exhausted and nearly penniless. Because of the stink I had made 
about getting software resources, his return was less than pleasant. 
Ironically, about 15 years later Bill became my boss for a short 
time-we got along swimmingly. 

In retrospect, I was at fault as much as anyone. I should have 
consulted closely with Bill. Unfortunately, the approach of the soft­
ware-engineering arm of the instrumentation and control group, of 
which Bill and I were members, had been to code, compile, link, and 
turn on the data acquisition and control software. If the computer did 
not crash at that point then they "shipped it." Unfortunately, this 
experience did not have a major impact on the managerial approach 
of the company's software-engineering arm and this kind of nonsense 
continued for quite a while. 

Totally Covering Myself 
After several more years of avoiding major installation projects and 
doing fun process analysis and control design projects in our manu­
facturing plants I stumbled onto a project in the research wing of the 
company where I got a chance to design and, with the help of a great 
team and a great team leader, install a nonlinear dead-time compen­
sation control algorithm that was later patented. It was for a batch 
process where we started with a "blank" of material, heated it, and 
formed it into the final product. A batch run would take approxi­
mately an hour and consume the blank, which was quite expensive. 

After some initial fumbling around we got to the point where I 
would cook up the latest modifications to the algorithm (it went 
through some 200 versions before we finally installed it in a manufac­
turing plant) on my desktop computer terminal as a FORTRAN (and 
later, C) subroutine. I would link the subroutine to a FORTRAN (and 
later C) test program of my design, also accessed by my desktop ter­
minal, which simulated the inputs to the process and put the control 
algorithm through an approximate start up. The process model 
embedded in my test software was purposely crude and simple but 
in a qualitative sense it behaved roughly as the real process and it 
made my algorithm jump through the correct hoops. 

After verifying that my algorithm would bring the simulated pro­
cess up properly, I would e-mail the subroutine to my software team 
member, located at the research facilities. He would link it to the on­
the-floor control minicomputer. Unfortunately, the control computer 
was used by many other scientists and the software guy always 
seemed to have trouble with the linking. It appeared that the only way 
to find out if the linking had gone well was to start the batch process 
up and see if things worked. (Some alarm bells should be going off in 
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the reader's head about now.) With few exceptions, the linking never 
went well and we would frequently destroy an expensive blank. 

To address this, I hooked up a PC to the analog inputs and outputs 
of the minicomputer on the research facility's floor and used the PC to 
crudely simulate the process. I think I did this with an early version of 
Quick BASIC. With this "process simulator" in place, we could test the 
linking without worrying about destroying a blank. Again, the process 
model in the PC was extremely crude but sufficient. 

So, any algorithm that I cooked up went through a test simulation on 
my desktop, a test simulation using the on-the-floor process simulator, 
and finally, a test on the real process. We ruined no more blanks. It is 
important to note that the simulation test systems, either on my desk or 
on the floor, were not particularly sophisticated. I simply wanted to test 
the control algorithm on a rough approximation of the process to see if, 
at least, the algorithm was functionally correct. The process (and only the 
process) itself would tell us if the algorithm was any good at control. 

We ended up taking the debugged control system to a manufac­
turing plant where it was installed without any problems-no SMILH 
required. 

It's Too Complicated-Use the Process for Debugging 
This topic is a sore point with many engineers, especially moi. Some 
of my best friends, people who I greatly respect, are staunch support­
ers of the idea that in some cases one just has to use the process to test 
out the control system. The decision to use the process to test a con­
trol system has taken place repeatedly during my career. Each time 
I've seen the engineering online debugging costs (never anticipated) 
overwhelmingly outstrip any cost that would be required to put together 
a test system that simulates in some way the process to which the con­
trol system is to be applied. 

Whether to simulate or not is a question that will not be settled 
here. However, I will present my point of view, unpopular though it 
is. Start with the big picture; the process and the control system with 
all the interconnections (Fig. 2-10). Let's assume that there are many 

FIGURE 2·1.0 Interactions between process and control system. 
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Control 
system 

FlcauRE 2-11 Interactions between process and control system with interfaces. 

connections between the process and the control system: analog 
inputs and outputs, digital inputs and outputs, and/ or serial inputs 
and outputs. At first glance it may be overwhelming but after the 
dust has settled, one can look beneath the surface of the process where 
the lines come from and leave to the control system. At each point 
there is some sort of conversion of electrical to mechanical, 
mechanical to thermal, kinetic to electrical, and so on. Some of 
these conversions can be explicit as in a motor turning a screw but 
all can be conceptually represented by the small black boxes as 
shown in Fig. 2-11. It is the inside irregularly shaped object that can 
be simulated. In Fig. 2-12 a rectangle (a purposely crude approxima­
tion to the irregularly shaped object representing the real process) is 
the simulated process that can be used to test the control system. All 
of the small black boxes must be simulated, too. 

Control 
system 

FIGURE 2-12 Interaction between the simulated process and the control 
system. 
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This task of simulation at first looks incredibly difficult but it 
is my position (a minority one, at best) that once the engineer 
takes the time and trouble to conceptualize the process and con­
trol system as shown in Fig. 2-12, she will be able to construct an 
approximation of the process that is quite useful for testing the 
control system. It will take time, effort, and resources but the cost 
will be minuscule compared to the cost of using the process to 
test the control system. 

2-6 Documentation and Indispensability 
Consider the following scene. My manager /boss stops by my cubicle I 
office and says, "Dave, you are doing an absolutely great job on the 
project. Your contribution is playing a critical part in the success that 
we are enjoying. You have become indispensable! I will give you a 
month to thoroughly and clearly document what you have done or I 
will have to fire you." 

That conversation has never taken place with me and my boss 
nor have I ever heard of it taking place with a coworker. How­
ever, I have seen innumerable instances where it should have 
taken place. 

Much folklore and fear has developed around undocumented 
equipment, algorithms, and methods that at one time, at least, 
were successful. Many of these "successes" were used with rev­
erence long after they had lost their effectiveness simply because 
no one knew how or why they really worked. Therefore, they 
were not improved, adapted, or replaced out of ignorance (and 
the incompetence of the original manager who did not demand 
documentation). 

Documentation is usually abhorred by engineers until the time 
comes to solve a problem associated with an undocumented piece of 
equipment or algorithm (after a call-in at 2:00A.M.). Many companies 
have documentation czars who legislate cumbersome structures. This 
usually extinguishes any creativity or enjoyment on the part of the 
person best qualified to write the document. Worse yet are the docu­
mentation writers who almost always haven't an ounce of technical 
competence. I have always thought that the person who did the work 
should document it in any format she liked as long as it had content 
and clarity. Finally, I have always thought the manager should take a 
few moments to peruse the document to see if it, in fact, has content 
and clarity. 

I have no other advice other than to ask, "How many managers 
do you know that lost a promotion because they had their engineers 
spend too much time on documentation?" ... or ... "How many 
times have you been in a troubleshooting situation where even a 
snippet of verbiage would have been helpful?" 
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2-7 Summary 
Well, the party is basically over. The next chapter will start with the 
heavy lifting, the mathematical stuff. 

This chapter presented the SMILH concept, which you as a man­
ager probably used (perhaps unaware) to get promoted to your cur­
rent position. The pedestrian approach, which I advocate will be 
tough to sell but in the long run, provides measurable benefits. 

The road map to process analysis is another tough sell but it can 
yield great rewards and it is a lot of fun to do. 

If, in fact you or your group does develop a control algorithm, it 
can be a painful experience unless you spend the extra money up front 
and develop your system to be extremely flexible and accessible for 
debugging. 

OK, on to the math. 



CHAPTER 3 
Basic Concepts in 
Process Analysis 

Since the basic tenet of this book is to analyze the process before 
one attempts to control it, we will have to develop some process 
analysis concepts. Furthermore, since controlling a process 

inherently deals with transient behavior we will have to deal with 
process dynamics. Finally, since we need to keep the level of the mate­
rial in this book reasonable, that is, attractive to a busy manager, we 
will start with the simplest of constructs-the first-order process. In 
fact, we will beat it to death. During the beating, the widely used 
proportional-integral (PI) control algorithm will be introduced. One 
of the sophisticated tools of control engineering, the Laplace trans­
form, will also be introduced. For technical support, the reader may 
want to consult App. A (introductory calculus), App. B (complex 
numbers), App. E (first- and second-order differential equations), 
and App. F (Laplace transforms). 

3-1 The First-Order Process-an Introduction 
Let's go back to the tank of water introduced in Chap. 1 (Fig. 3-1). It 
will be our prototypical first-order process. The dynamic analysis of 
this tank often consists of studying the step response, which is shown 
in Fig. 3-2. Here the process input U, the valve, is given a step at time 
t = 9, from an initial value of zero to unity. The process output Y, the 
tank level, begins to rise and appears to line out at a value of 2.0. For 
convenience, we have chosen the initial value of the valve and the 
tank level to be zero. In general, these quantities could have almost 
any initial value but this graph would still apply if the reader is will­
ing to allow us to subtract these nonzero initial values, that is, nor­
malizing the initial values of these quantities to zero. 

To proceed we need some nomenclature. First, let the change in 
the process input be signified as ~U. The symbol~ usually signifies a 
change in the quantity following it (or upon which it operates). Sec­
ond, let the resulting change in the tank level be signified as ~ Y. 
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FIGURE 3-2 The step change response of the water tank. 

The Process Gain and Time Constant 
The transient response for the tank can be characterized by two 
parameters. The first is the process xaill, or x, which is the ratio of the 
change~ Y to the change ~U. 

(3-1) 

The "infinity" subscript in Eq. (3-1) indicates that these changes 
are those observed after the process has settled in a steady state. 

In tlus case the process gain is 2 0 since ~U = 1.0 and ~ Y 1. .. = 2 0 . 
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The second parameter, called the process time constant r is defined 
as the time required for the process output to reach 63% of its final 
value in response to a step change in the process input. Careful exam­
ination of Fig. 3-2 will show that the time constant for the water tank 
is 10.0 time units. 

For the time being, these two parameters, the process gain and 
the process time constant, will suffice for our characterization of the 
process. Note that the process gain is a static characterization param­
eter. It can tell the analyst where the process will ultimately settle 
after a step-change to the input. On the other hand, the time constant 
is a dynamic characterization parameter for it tells us how the process 
gets from one state to another. 

3-2 Mathematical Descriptions of the 
First-Order Process 

To describe the dynamic behavior of a process we must decide in 
which domain we will work. The obvious first choice is the continu­
ous time domain where for our purposes time will vary continuously 
from zero to infinity. There are many reasons why one might want to 
"transform" the domain of analysis into something else, say, the 
Laplace domain, or the frequency domain, or the discrete time 
domain. However, first things first! Let us now delve into the con­
tinuous time domain. Beware! There will be a lot of math. It will be 
my challenge to minimize it and keep it simple. 

3-2-1 The Continuous Time Domain Model 
How can we develop an equation that will describe the behavior of a 
process? What do we have to work with? Often one has to start with 
the fundamental conservation laws for mass, momentum, and energy. 
For our tank of water the apparent fundamental law would be the con­
servation of mass; in crude terms, what goes in has to either go out or 
accumulate: 

Rate of water in= rate of water out+ rate of accumulation of water 
in the tank 

The rate of water flowing in can be represented by F 1 the inlet flow 
rate in kg/ sec. The rate of water leaving the tank can be represented by F.,. 
The rate of accumulation of water in the tank is the rate of change of the 
mass in the tank with respect to time. Does this sound familiar? Yes, it is 
the derivative from first-year calculus (also reviewed inApp. A), namely, 

(3-2) 
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where pis the water density in kg/m3
, A is the cross-sectional area 

(which we are assuming is cylindrical with constant diameter) of the 
tank in m2, Y is the tank level in m, and the quantity pAY is the 
amount of the water in the tank. 

Altogether now, one gets 

(3-3) 

For control purposes, F; would probably be adjusted to maintain 
Y on target, so there might be another equation describing the con­
troller's dynamic behavior which we will leave to later. On the other 
hand, F., depends on the level of water in the tank, so we need to come 
up with a "constitutive" equation relating the rate F., to a potential or 
tank liquid height Y. A simple relationship is 

y 
F=­

o R (3-4) 

where R is the resistance associated with the tank's outlet piping. If Y 
has units of m and F., has units of kg/ sec, then R must have units of 
m·sec/kg. This is a bit of an idealization because from high school phys­
ics the reader probably remembers Torricelli's law, which states that the 
jet of liquid emerging from a hole in the side of a tank is given by 

(3-5) 

Therefore, Eq. (3-4) is a linearization of Eq. (3-5). The concept of 
linearization is mentioned in App. Din the section about the Taylor's 
series. Since we expect our controllers to keep the process "near" its 
nominal values, linearization may well suffice. 

Combining Eqs. (3-3) and (3-4) gives 

Y dY 
F=-+pA-
' R dt 

which, after some simple rearrangement, is 

dY 
r-+Y=RF dt I 

(3-6) 

(3-7) 

where r = RpA. This last quantity is the time constant and the reader 
should check that the units of the time constant work out to be sec. 

For the sake of generality rewrite Eq. (3-7) as 

dY 
r-+Y=gU 

dt 
(3-8) 
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where g is the process gain. The reader should check that the units of 
the gain are m·sec/kg. 

We can verify that g is in fact the process gain by letting time go 
to infinity assuming that the process input U jumps from zero to a 
constant value Uc at time zero. At time equals infinity, the process has 
supposedly settled out to a new steady state where the rate of change 
of all the variables is zero, that is, 

or 

1. dY O I.Dl.,_.dt= 

and 

lim,_. Y(t) = Y .. 

which causes Eq. (3-8) to become 

which in turn yields 

(3-9) 

The definition of the process gain in Sec. 3-1 shows that the gin Eq. (3-9) 
is indeed the process gain. 

In summary, the model was developed by first applying a conser­
vation law which related flows, that is, Fi and F"' to the rate of change 
of the potential, that is, Y. Then, a constitutive equation was used to 
replace one of the flows with an expression containing a potential. 
This left us with a model equation that gave the response of the pro­
cess output Y to the process input U in terms of the process parame­
tersgand f. 

Scaling 
As an alternative, the general first-order model equation presented 
above could be scaled to have unity time constant and unity gain. 
One would start with 
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and make the following changes of variable 

Y=gy 

t=fT 

fd(gy) +gy=gu 
d(-rt) 

dy +y=u 
dT 

We will not make much use of this variable change concept until 
Chap. 5 when it becomes helpful in addressing round-off error. 

3·2·2 Solution of the Continuous Time Domain Model 
We will solve the model for the first-order process developed in 
Sec. 3-2-1 for a variety of conditions. First, consider the case where the 
process input, initially zero, is assigned the nonzero value of Uc at 
time zero and held there for all time. The reader hopefully will recog­
nize that this situation is the same as giving the process a step change 
in the process input at time zero. Hence, if the equation can be solved, 
the step-change response will be obtained and we can compare the 
results with the graph in Fig. 3-2. 

For this case of a constant process input, Eq. (3-8) becomes 

(3-10) 

There are many ways of solving this equation and a couple of 
them are reviewed in App. E. The solution for the case of a constant 
input is 

(3-11) 

We will refer to this equation repeatedly in this book so the reader 
should be comfortable with its development before proceeding. 

Comments about the Solution 
First, the readers should convince themselves that Eq. (3-11) behaves 
just like the curve in Fig. 3-2 for the case of Y

0 
= 0, f= 10.0, g = 2.0, and 

Uc = 1.0. To verify the time constant value, look where the process 
output appears to reach 63% of the final value. It should take f seconds 
to get there. Now, look at the final value. It should be two units greater 
than the initial value of 0.0 because the process gain is 2.0. 
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With Y0 = 0 there is only one term left in Eq. (3-11), namely, 

(3-12) 

At time zero, this equation yields Y = 0 and then, as time increases, 
Y finally asymptotically approaches gU,. Second, by taking the deriv­
ative of Eq. (3-11), or by solving Eq. (3-10) for the derivative, the rate 
of change of Y can be obtained as 

Therefore, when Y0 = 0 the rate at time zero (when the step in U 
is first applied) can be obtained as 

Y(O)= gU, 
f 

(3-13) 

Since Y and its rate of change were zero before the step in U was 
applied at time zero, Eq. (3-13) tells us that, at the time of the step in 
U, the rate of change of Y experiences a discontinuity, jumping from 
zero to gUc/f. Examination of Fig. 3-2 should support this conten­
tion. We know that in real life there are few process quantities that 
experience true discontinuities, that is, "Mother Nature abhors dis­
continuities." Therefore, this model is, among other things, an ideal­
ization, albeit useful (as we will see). 

Equation (3-13) also tells us that the initial rise rate of Y is directly 
proportional to the strength of the step in U, directly proportional to 
the gain of the process, and inversely proportional to the process time 
constant. It is comforting that common sense is supported by simple 
mathematics, no? 

Third, note that when time equals the value of the time constant, 
that is, when t = f, and when Y0 = 0, Eq. (3-12) yields 

r 
Y = gU,(1- e -r) = gU,(1- e-1) = gU,(1- 0.36788) = 0.63212gU, 

Therefore, at t = f, Y equals 63% of its ultimate final value gU; 
hence the basis for the above definition of the time constant. 

For future reference, Eq. (3-10) can be rewritten as 

dY = (-.!.)y + .R..u 
dt f f 

dY 
-=aY+bU 
dt 

(3-14) 
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The simple model equation now has the form that we will use 
when we get to state space formulations where Y and U will be 
vectors and a and b will be matrices. We know intuitively that, in 
the face of steps in U, the response of Y will be bounded or that Y 
will behave stably. Equation (3-14) suggests that as long as a is 
negative (which it has to be for our simple example), stability will 
result. The reader should quickly convince himself that when a is 
positive (physically unrealistic for this model), the response of Y 
will be unbounded or unstable. 

Question 3-1 Do you understand the comments about "instability"? 

Answer Look at Eq. (3-11) with a replacing -1/r. 

We know that, by definition, a is negative but if it were not, note that Y would 
increase without bound in the face of a positive value of u.., that is, there would 
be instability. For this simple case of a first-order model there is no question 
about the sign of a but later on when the models get more sophisticated this 
will not always be the case and the "sign" of whatever replaces a will give us 
insight into stability. 

This temporarily concludes our development of the simple first­
order model where we have really beaten a couple of elementary 
equations to death. As things get more complicated we will repeat­
edly come back to this model. 

3-2-3 The First-Order Model and Proportional Control 
Although optional, it would be quite helpful if the reader is able to 
follow the math in App. E used to arrive at the solution of the dif­
ferential equation for the first-order model. We will now take a little 
side trip and see what can be learned from this model from the con­
trol point of view. 

Let's tack a simple "proportional" controller onto our model 
and see if we can control the process output to a desired set point. 
Our starting point is the first-order model for the process to be 
controlled 

dY 
r-+Y=gU 

dt 
(3-15) 

Our goal is to try to keep the process output Y "acceptably near" 
the set pointS by adjusting U in some fashion. The simplest "fashion" 
is to form an error 

e=S-Y (3-16) 
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and to manipulate U in proportion to the error, that is, 

U = ke = k(S- Y) (3-17) 

where k is the proportional control gain. 
Before proceeding, let's think about Eq. (3-17) with reference to 

the water tank. Assume that initially Y is equal to the set pointS so 
that e is initially zero. Also, assume that the nominal initial values 
have been subtracted from all of the quantities, so Y, S, e, and U are 
initially zero. If S is stepped up, then e would become nonzero and 
positive. This would mean that U would increase, assuming that k is 

positive. An increase in U means more flow into the tank and the 
level Y should rise. Okay, at least the control algorithm has the correct 
signs and moves the controller output in the right direction. 

Schematically, this feedback control system can be presented as a 
block diagram (Fig. 3-3). This is a classic schematic that will reappear 
many times in many forms in the balance of this book. Note how the pro­
cess output Y is fed back and subtracted from the set pointS producing the 
errorE which is fed to the controller which produces the process input U. 

Combine Eqs. (3-15) and (3-17) 

and get 

S (Set point) 

dY 
fdt+Y=gU 

U=k(S- Y) 

dY 
f-+Y=gk(S- Y) 

dt 

Proportional 
controller 

Process 

U (Controller output/ 
process input valve position) 

Y (Process output (Tank) U (Process input) 
height) L..-----r---.J 

D (Disturbances)------' 

F1auRE 3-3 A feedback controller. 
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A little rearrangement, which the reader should verify, will yield 

(3-18) 

This is the differential equation that describes the closed-loop sys­
tem containing the process under simple proportional control. It has 
the same form at Eq. (3-10) except for the following replacements 

1 
1

=> 1+gk 
gk 

g=> 1+gk U=>S 

Therefore, by observation, we can obtain the solution to a process 
under simple proportional feedback control subject to a step in the set 
point (from 0 to S) at time zero. That is, Eq. (3-11), with the above 
substitutions, becomes 

(3-19) 

Faster Response 
Since both g and k are positive, the new effective time constant is less 
than the original one (where there was no control) by a factor of 
1/ (1 + gk). As the control gain k increases, the effective time constant 
decreases. This is something we would hope for since the effect of 
adding control should be to speed things up. 

Offset from Set Point 
Look at what Eq. (3-19) yields when t ~ oo (which drives the expo­
nential terms to zero): 

So, the proportional control does not ultimately drive the 
process output all the way to the set point. In fact, the process 
output settles out at a fraction, namely, gk I (1 + gk), of the set 
point S c· If the controller gain k is quite large, as in the case of 
an aggressive controller, this fraction will be nearly unity. Rais­
ing the control gain k so as to decrease the offset is risky because 
our model is an idealization and in real life a high control gain 
might cause some problems that would lead to instability. Also, 
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high values of k might cause large (and perhaps unacceptable) 
excursions in the controller output. Figure 3-4 shows the offset 
that results with proportional-only control. 

In case you want to do some simulation yourself, these results 
were derived from a process that had f = 10, g = 2.5, and the pro­
portional control gain was k = 1.1. The Matlab code that generates 
the results is given in the scripts mentioned in the preface. 

Question 3·2 Can you see that no matter how large you make the value of 
the proportional control gain k, this idealized controlled system cannot go 
unstable? 

Answer Let k increase without bound in Eq. (3-19). The result will be 

The controller output is proportional to the error and as the error decreases 
because of the controller action, so does the output. This, in turn, decreases the 
controller output. This ''backing off" of the control output leads to the offset. 
To obtain a zero error in the face of a step in the set point, we need a controller 
action that will "keep on going" until the error is removed, even after it stops 
changing. By the way, we could also have obtained the final value of Y by letting 
the derivative in Eq. (3-18) go to zero. 
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3·2·4 The First-Order Model and Proportional-Integral 
Control 

The "keep on going" control feature can be obtained if the controller 
algorithm is modified to be 

I 

U(t) = ke(t) +I J due(u) 
0 

(3-20) 

where we have added a second term that is proportional to the inte­
gral of the error with I being the proportionality constant. (The inte­
gral is reviewed in App. A.) In the face of a step in the set point, 
assume that the error does not go to zero and remains, say, positive. 
The second term in Eq. (3-20), because e(t) is positive, will increase 
and continue to do so. This will cause U to increase until either the 
error is driven to zero or until U runs out of room. 

To get a better feel of how Eq. (3-20) behaves let's simply set the 
error equal to a constant at time zero, namely, 

e(t) = 0 t < 0 

e(t) = C t ~ 0 

That is, let's assume that some sort of disturbance is taking place 
that keeps the process variable away from the set point by a con­
stant amount. Don't worry about how this could actually happen. 
Eq. (3-20) becomes 

t 

U(t) = kC+I jduC 
0 

= kC+ICt 

which says that, in the face of a constant error C that starts at t = 0, the 
controller output makes an initial jump of kC (the proportional com­
ponent) at time zero and then ramps up at a rate of IC. (The integral 
of a constant is reviewed in App. A.) The continual increase in the 
controller output, due to the term ICt, is the integral action and it is 
telling us that, as long as the error is constant and as long as the pro­
cess does not respond to the controller output, the controller output 
will continue to increase. This is the feature that we needed to reduce 
the offset between the process output and the set point when propor­
tional-only control was used. 

Showing That There Is No Offset 
Can we prove this contention of zero offset with our simple mathe­
matics? Well, sort of. Let's combine Eqs. (3-20) and (3-10): 
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dY 
-r-+Y=gU 

dt 
I 

U(t) = ke(t)+ I J due(u) 
0 

To combine these two equations, and in the process get rid of the 
unwieldy integral, we have to take the derivative of each equation 
and replace e with its definition of S - Y. The derivative of the first 
equation is 

The derivative of the second equation is 

dU =kde +le=kd(S-Y) +l(S-Y) 
dt dt dt 

dS dY 
=k--k-+15-IY dt dt 

In taking the derivative of U(t) we used the fact that differentiat­
ing the integral simply releases the integrand. For more on this check 
App.A. 

Now, do some minor algebra to eliminate dU I dt between the two 
equations and get 

(3-21) 

To avoid some difficulties that we will deal with later on, let's 
assume that the set point S is constant and has been so for all time, 
hence dS I dt = 0 and 

(3-22) 

How could we use Eq. (3-22) to show that Y ultimately goes to 
Yss? We could try to solve Eq. (3-22) and then let t -+ oo. This would 
take some effort and at this point it probably is not worth it. Instead, 
let's just suggest that as t -+ oo, things do settle down to a final 
steady state where 

and dy -+0 
dt 
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If you can accept this, then Eq. (3-22) immediately yields 

lim1-+oo Y(t) = Yss 

However, for future reference, we need to slightly expand the 
above manipulations and try to find a partial solution to Eq. (3-22). 
We follow the same path (in App. E) that led to the solution of the 
first-order differential equation in Eq. (3-10). Assume that the solu­
tion consists of a transient part Y, and a steady-state part Yss, as in 

The transient portion of the solution Y, satisfies 

d2Y. dY. 
-r---f+(l+ gk)-d I+ glY, = 0 

dt t 
(3-23) 

and the steady-state part satisfies 

(which we already suggested). If we let t -+ oo then the derivatives in 
Eq. (3-23) will go to zero, as should Y, that is, 

t-+ 00 

dY, 
--+0 
dt 

Y, -+0 

If the transient part of the solution goes to zero then all that is left 
is Y .. which is the same as saying 

This means that as t -+ oo, Eq. (3-22) simplifies to 

so, 

So, when t -+ oo, Y, goes away and the steady-state part remains and 
it is equal to the set point. 
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Question 3-3 Does any of this logic based on assuming derivatives go to zero 
as t -+ oo bother you? 

Answer Actually, it should. What if, somehow, the integral gain was mistakenly 
set to a negative number? Using the tools of the next section you should be 
able to show that a negative integral gain will cause instability and that the 
derivatives will definitely not settle out to zero. 

Trying a Partial Solution for the Transient Part 
As in App. E, a solution of the form 

Y, =Ce"1 (3-24) 

is tried. When Eq. (3-24) is inserted into Eq. (3-23), the following qua­
dratic equation results (the reader should try this, verify it, and then 
perhaps check App. E) 

-rCa2e"1 + (1 + gk)Cae"1 + g1Ce"1 = 0 (3-25) 

or, after cancelling Ct!" 

-ra2 + (1 + gk)a + gl = 0 

1his quadratic equation can be solved for a (the root of the equation), 
yielding two values, a1 and a2• The roots of a quadratic equation can be 
found from the famous quadratic equation root solver (see App. B): 

Critical Damping 
Eq. (3-26) shows that the roots will have two parts and that if 

or 

(1 + gk)2 = 4-rgl 

I= (1+gk)2 
4-rg 

then both roots will be the same 

(3-26) 
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and they will be negative. Since these roots appear as a coefficient in 
the argument of exponential terms, it stands to reason that the tran­
sient part of the solution will die away as time increases and this in 
tum suggests that the process output will settle out at the set point 
which is the steady-state part of the solution. This situation repre­
sents the case where the response is critically damped. We will worry 
about this concept later on. 

In the meantime, Fig. 3-5 shows the response of the process vari­
able to a unit step in the set point for the case of critical damping. For 
this simulation, I used -r= 10, g = 2.5, k = 1.1. The integral control gain 
was calculated from 

(1 + gk)2 = 4-rgl 

Overdamped Response 

(1 + 2.5 X 1.1)2 

4x10x2.5 °·14 

Note that the two roots, a1 and a2' will be real, negative, and different, 
if the argument inside the square root is positive or if 
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(1 + gk)2 > 4-rgi 

so, (3-27) 

I< (1+ gk)2 
4-rg 

(Note how this integral gain I is less than that for the critically damped 
case.) 

Since there are two roots, the solution will have the form 

(3-28) 

Although we will touch on this later, the response of the process vari­
able for this case will be overdamped and might look something like 
Fig. 3-6. For this simulation I used -r = 10, g = 2.5, k = 1.1, and I= 0.1. 
There is not much difference between Figs. 3-5 and 3-6. 

By the same crude argument given above, you could reason that 
the transient component of the solution will die away as time increases 
and the process output will approach the set point. 

Question 3-4 Can you support the contention for this last case, namely that the 
transient part will die away for the overdamped case? While you are at it, can 
you show that a negative integral gain will cause instability? 
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Answer Use the quadratic equation root solver 

If Eq. (3-27) holds then the argument of the square root will be positive and 
the roots will be real. Also, the square root term will be less in magnitude than 
(1 + gk) so the roots cannot be positive. As to the second question, the quadratic 
equation root solver shows that if I < 0 then one of the roots would be positive 
and in turn would lead to an unbounded response. 

Underdamplng 
Finally, consider the case when 

so, 

(1 + gk)2 < 4-rgl 

I> (1+ gk)2 
4-rg 

(3-29) 

(Note how the integral gain is greater than that for critical damping.) The 
argument inside the square root is now negative. But we know that 

and "-4 = 2j 

and because of the inequality in Eq. (3-29), the roots are 

where a< 0 and fj > 0 are real numbers. 1his means that the solution will 
have exponential terms with imaginary arguments (see App. B) as in 

e(a+jfJ)t or 

The e«1 term (with a < 0 ) means that the transient response will 
die away, but what about the other factor? Euler's equation (see App. B) 
can be useful here. 

ei/JI = cos(fjt)+ jsin(fjt) 

The eiflt factor implies sinusoidal or oscillatory behavior while 
the eat factor decreases to zero at a rate depending on a. Both factors 
promise an underdamped behavior where there are oscillations that 
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F1auRE 3-7 Underdamped response of the process variable to a unit step in 
the set point. 

damp out with time. Since this condition can result if the integral 
control gain I is relatively high, overly aggressive control action may 
lead to underdamped behavior as shown in Fig. 3-7. For this simula­
tion I used t'= 10, g = 2.5, k = 1.1, and I= 0.4. 

By applying initial conditions on Y and dY I dt, the two coefficients 
C

1 
and C

2 
in Eq. (3-28) could be determined for all of these conditions. 

Unfortunately, this gets messy quite quickly and we will not proceed 
in this direction simply because it doesn't add much to our insight. 
The reader can consult App. E for details. 

Question 3·5 What happens to the roots and the system behavior when the 
control gain l gets really large? 

Answer The quadratic root solver equation is 

When l gets really large, 
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That is, the square root term dominates and the roots become purely imaginary 
and the dynamic behavior becomes purely oscillatory with no damping. It is not 
unstable because the amplitude of the oscillations becomes constant in steady 
state. This condition is sometimes called marginal stability. 

Figure 3-8 shows the process output for the cases covered above. 
Note that the underdamped response reaches the set point first but 
overshoots. The overdamped response reaches the set point last and 
the P-only response does not reach the set point at all. 

So What? 
This has been the longest section in the book so far and, if you have 
gotten through it without losing your temper or your patience, there 
is a good chance that you will make it through the rest of the book­
although it will be a little tougher from now on. 

I always wonder if going through the mathematics is necessary. 
Why not just tell about the behavior of the controlled system and let 
it go at that? There are two reasons, neither of which may be satisfac­
tory to you. First, using the relatively simple mathematics (compared 
to conventional textbooks on control theory, anyway) may help the 
reader understand the concepts. Second, this is the language of the 
control engineers whom you are working with and it may be to your 
benefit to be somewhat on the same footing as them. 

This section hopefully showed that it is possible to tack a simple 
"proportional" controller onto a simple first-order process and use it 
to speed up the response of the process output to a set-point change. 



Basic Concepts in Process Analysis 57 

It also showed that proportional control alone will not drive the pro­
cess variable all the way to set point. The response, although inade­
quate because of the offset between the process output and set point, 
was smooth and without oscillations. 

When the integral component was added, the process output was 
driven to set point. Aggressive integral control could cause some 
overshoot. Excessively aggressive integral control could cause sus­
tained oscillations. 

This might be considered a logical point to end the chapter but I 
choose not to for the simple reason that I need you to quickly move 
on from the time domain to the Laplace domain before you forget the 
above results and insights. 

3-3 The Laplace Transform 
In the last section we had a little trouble with the second-order differen­
tial equation. In this section we introduce a tool, the Laplace transform, 
which will remove some of the problems associated with differential 
equations but with the cost of having to learn a new concept. The theory 
of the Laplace transform is dealt with in App. F so we will start with a 
simple recipe for applying the tool to the first-order differential equation. 

The first-order model in the time domain is 

dY 
T-+Y=gU 

dt 
(3-31) 

To move to the Laplace transform domain, the derivative operator is 
simply replaced by s, the SO<alled Laplace transform operator, and wig­
gles are placed over the symbols Y and U since they are in a new domain 

(3-32) 

Before dealing with Eq. (3-32) consider some Laplace transform 
transition rules in the box: 

d 
dt => s 

Y(t) => Y(s) 

U(t) => U(s) 

c 
C=>­

s 

J Y(u)du => Y(s) 
0 s 

lims-+O sY(s) = Y(oo) 
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Most control books have extensive tables giving the transforms 
for a wide variety of time functions. Note the following comments 
about the contents of the box given in Sec. 3-3. 

1. All initial values must be zero. (Later on, nonzero initial 
conditions will be covered. 

2. The differential operator d/dt is replaced with s. 

3. The integral operator J; ... du is replaced with 1/s. 

4. The quantity C is a constant. 

5. The last equation in the box is really not a transform rule. 
Rather it is the final value theorem and it shows how one can 
find the final value in the time domain if one has the Laplace 
transform. The basis for these rules and the final value 
theorem are given in App. F. 

For the case of the water tank, Y had units of length or m, U had units 
of volume per unit time or m3 I sec, and time thad unit of sec. In the new 
domain, s has units of reciprocal time or sec-1, Y has units of m-sec, and 
U has units of m3

• It's not obvious why Y and U have those units-that 
should be apparent from the discussion in App. F-but it may make sense 
that s has units of sec-1 by looking at the appearance of -rs in Eq. (3-21) 
and realizing that it would be nice to have this product be unitless. 

In any case, Eq. (3-32) does not contain ~erivatives-in fact, it is 
an algebraic equation and can be solved for Y: 

Y=-g-U=GU 
'rS + 1 p 

G =-g­
P 'rS + 1 

(3-33) 

This equation gives the Laplace transform of Y in terms of the 
Laplace transform of U and a factor G, that is called the process trans­
fer function. 

Equation (3-33) will be solved for Y(t) later on in Sec. 3-3-2 but 
for the time being let's comment on the big picture. We have to take 
two steps. First, the Laplace transform for U must be found. In the 
examples so far U has been a step change, so the Laplace transform 
for the step-change function must be developed. App. F gives the 
derivation of the Laplace transform of a step change. As a tempo­
rary alternative, consider the step in U at time zero as a constant Uc 
that had zero value for t < 0 . In this case, using the fourth entry in 
the box given in Sec. 3-3, ~e Laplace transform of U is U/s. 

Second, after replacing y with its transform in terms of s, the modi­
fied algebraic equation for Y must be inverted, that is, transformed back 
to the time domain. There are a variety of ways of doing this but the 
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simplest is to break the expression for Y into simple algebraic terms and 
then go to the mentioned box of Laplace transforms and find the corre­
sponding time domain function. We will get into this soon but, first, a 
few comments about the transfer function G,in Eq. (3-33). 

3-3-1 The Transfer Function and Block Diagram Algebra 
The introduction of the transfer function GP(s) in Eq. (3-33) is useful 
because of the block diagram interpretation (Fig. 3-9). The expression 
in the box multiplies the input to the box to give the box's output. 

Alternatively, one can play some games with Eq.(3-33) and get 

Y=-g-ii 
'l'S+1 

- - -Y+-rsY=gU 
(3-34) 

-rsY=gii- Y 

- 1(1)( - -) Y=-; ~ gU-Y 

The last line of Eq. (3-34) suggests that (1) there is some integra­
tion going o~ via the 1 Is operator and (2) there is some negative feed­
back since Y is on the right-hand side of the equation with a minus 
sign. That last line of Eq. (3-34) can be interpreted using block algebra 
as shown in Fig. 3-10. 

The reader should wade through Fig. 3-10 and deduce what each 
box does. The process output Y is fed back to a summing junction 

U(s) Y(s) 

FIGURE 3-9 The transfer function in block form. 

O(s)~~--· Y(s) 

-~ 
Y(s) =_L_

1 
D(s) 

ts+ 

t~; + Y=gU 

FIGURE 3-10 Block diagram showing integration and negative feedback as 
part of the process model. 
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where it is subtracted from the product of the process input U multi­
plied by the process gain g. This result is multiplied by 1/-r. The 
resulting signal, which is sY(s) _or dY/dt, is then integrated via 
1/s to form the process output Y(s) or Y, which is fed back, and 
so on. This structure is similar to the analog computer patch­
board of the 1960s. (It is also similar to the block diagrams that 
make up models in Matlab's Simulink.) This approach to block 
diagrams will be used in a latter chapter (Chap. 6) when an 
underdamped process is modified by feedback to present a better 
face to the outside world. 

3-3-2 Applying the New Tool to the Rrst-Order Model 
Returning to Eq. (3-33), assume that the time domain function U(t) is 
a step function having a constant value of Uc. Therefore, it will be 
treated as a nonzero constant for t ~ 0 . As with all of our variables, 
U(t) is assumed to be zero for t < 0. The Laplace transform for Uc (see 
App. F and/ or the box given in Sec. 3-3) is 

and Eq. (3-33) becomes 

- g u 
Y=---' 

'rS + 1 S 
(3-35) 

To invert this transform to get Y(t), Eq. (3-35) needs to be simpli­
fied to a point where we can recognize a familiar form and match it 
up with a time domain function. Partial fractions can be used to split 
Eq. (3-35) into two simpler terms. ~eferring to App. F the reader can 
verify that the new expression for Y is 

- g u 
Y=---' 

'rS + 1 S 

_ gU, gU, 
--s----1 

s+­
'r 

=gU,[~-~J 
s+­

'r 

We already know the time domain functions for the Laplace trans­
forms, namely, 
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1 
and 

s 
1 

1 
s+­

'r 

The first transform is for a step (or a constant) and the second is 
for an exponential. So, by inspection, we can write the time domain 
form as 

Now, if the reader remembers Eq. (3-11), she will see that a second way 
has been obtained to solve the differential equation [Eq. (3-10)]. 

3·3·3 The Laplace Transform of Derivatives 
According to the recipe, the derivative in Eq. (3-31) was replaced by the 
operator s. App. F shows that the basis for this comes directly from the 
definition of the Laplace transform, which, for a quantity Y(t), is 

(3-36) 

Note that e-''Y(t) is integrated from t = 0 to t = oo. It may seem 
like a technicality but the integration starts at zero so the value of 
the quantity Y(t) fort < 0 is of no interest and is assumed to be zero. 
If the quantity has a nonzero initial value, say Y0

, then strictly speak­
ing we have to look at it as 

Y0 = limt-H Y(t) = Y(O+) 

That is, Y0 
is the initial value of Y(t) when t = 0 is approached from 

the right or from positive values of t. So, effectively, a nonzero initial 
value corresponds to a step change at t = 0 from the Laplace trans­
form point of view. This subtlety comes into play when one evaluates 
the Laplace transform of the derivative, as in 

L{dY} = r-dt -st dY 
dt Jo e dt 

The evaluation of this equation presents a bit of a challenge so I 
put the gory details in App. F for the reader to check if she wishes. 
However, after all the dust settles the result is 

{
dY} -L dt =sY-Y(O+) (3-37) 
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Thus, the Laplace transform of a derivative of a quantity is equal 
to s times the Laplace transform of that quantity Y, minus that quan­
tity's initial value Y(Q+). In our example and in our recipe box, ~e 
stipulated that the initial value was to be zero, so replacing Y by s Y is 
the correct way to take the transform of the derivative, just as we 
proposed in the previous section. In most of this book, the initial 
value of transformed variables will be assumed to be zero. 

The Laplace transform of the second-order derivative: 

L{~:n= s2L{Y}-sY(O)- ~; lo 
(3-38) 

= s2Y -sY(o+)- Y(O+) 

That is, the Laplace transform of the second derivati~e of a quan­
tity is s2 times the Laplace transform of that quantity, Y, minus the 
initial value of that quantity times s, minus the initial value of that 
quantity's first derivative. 

Thus, when the initial conditions are all zero, the various deriva­
tives can be transformed by replacing the derivative by Laplace trans­
form of the quantity times the appropriate power of s. 

3-3-4 Applying the Laplace Transform to the Case 
with Proportional plus Integral Control 

Equation (3-21) can now easily be transformed. Start with the time 
domain equation derived earlier 

Apply th~ Laplace transform rules and get an algebraic equation 
solvable for Y 

('rs2 + (1 + gk)s + gl) Y = (gks + gl)S 

where Y and S have been factored out. 
Solving for Y gives 

Y= gks+gl S=GS 
-rs2 + (1 + gk)s + gl 

G= gks+gl 
-rs2 + (1 + gk)s + gl 

(3-39) 

where G represents the transfer function from S to Y. 
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Assume that the set point S is given a step at time zero and that 
Y(O) is zero. Since for t ~ 0 , S is a constant, the transform for S is then 
(remember that for t < 0, S(t) = 0 ). 

where Sc is the size of the set-point step. 
Equation (3-39) becomes 

Y= gks+gl sc 
1's2 +(1+ gk)s+ gl s 

(3-40) 

Question 3-8 What can the final value theorem tell us about whether this 
controlled process will settle out with no offset? 

Anlwlr Applying the final value theorem to Eq. (3-40) gives 

Y(oo) = lim sY = lim s gks + gl 5c 
•-tO .-tO -rs2 +(1+gk)s+gl s 

=lim (gks+ gl)Sc 5c 
•-tO -rs2 +(1+ gk)s+ gl 

So, the presence of integral control removes the offset. 

Questloa 3-7 Using the result in App. F for the Laplace transform of the integral, 
could you arrive at Eq. (3-40) starting with 

or 

dY f-+Y=gU 
dt 

' U(t) = ke(t) +I J due(u) 
0 

Anlwlr Applying the Laplace transform to Eq. (3-41) gives 

- - e -rsY+Y=gkt+gl-
s 

(3-41) 
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where Eq. (F-19) or the fifth entry in the box was used for the integral. Using 
the definition of e gives 

fsY + ¥ = g(k+;)e = g( k+;)(s- ¥) 

Y(rs+ 1 + g~+~))= g~+~)s 

If the set point is constant then 

and 

- 5 
5=...£.. 

s 

( I) g k+-
Y- s 5c _ gks+I 5c 

-( ( I)~ s n 2 
+(1+ gk)s+ gi s 

fs+1+g k+-
s 

Questloa 3-8 What can the final value theorem tell us about proportional-only 
control? 

AniMir Start with 

dY 
f-+ Y = gk(5- Y) 

dt 

and apply the Laplace transform to get 

fY + ¥ = gk(S- Y) 

but 

so y gk5c 
s(fs+1+gk) 

and Y(oct =lim sY = gk5
c 

•-tO 1+ gk 

........_ 3-8 In the development of Eq. (3-22) we set d5/dt = 0 and then looked 
at the dynamic behavior for the case of a constant set point. If we take the Laplace 
transform of Eq. (3-21) we do not get the Eq. (3-40). Why? 
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Anlwlr By setting dS/dt = 0 we have specified that 5 has been and forever will 
be constant. On the other hand, by specifying that 5 is a step change at time zero 
we have created an entirely different disturbance to our controlled process, hence 
the appearance of the different numerator in Eq. (3-40). 

3-3-5 More Block Diagram Algebra and Some 
Useful Transfer Functions 

The transfer function GP(s) for the process in Eq. (3-33) was 

Y=-g-ii=G ii 
-rs+l P 

G =-g­
P -rs+l 

The transfer function for the control algorithm, G c' can be devel­
oped as follows 

t 

U(t) = ke(t)+ I J due(u) 
0 

li(s)= kE(s)+ /~•) = (k+~)E(s) 

£= ks+l =G 
E s c 

where G c is the transfer function for the PI controller. The block dia­
gram for a controlled system can be quickly modified from Fig. 3-3, as 
in Fig. 3-11. 

The overall transfer function relating 5 to Y under closed-loop 
control can be derived using the following block diagram algebra: 

Eliminate ii to get 
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S (Set point) 

U (Controller output/ 
process input valve position) 

Gp(s) 
Y (Process output U (Process input) 

height) L-----r----' 

D (Disturbances) __ __, 

F1auRE 3-11 Block diagram for a controlled system. 

Insert the definition of the error 

Solve for Y 

E=s-¥ 

Y=GPG,(s- ¥) 

(3-42) 

The readers should work through the above steps cu.!d _make 
sure she is comfortable with them. The transfer function Y IS or H 
describes the response of the process output to changes in the set 
point while under feedback control. 

Another, probably more useful, transfer function, which we will 
call the error transmission function, can be derived using block _di!­
gram algebra. Using Fig. 3-12 as a basis, this transfer function, E/N, 
can be developed as follows: 

U=G,E 

Y=GPG,E 
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S (Set point) 

U (Controller output/ 
process input valve position) 

+ L...----~ 

U (Process input) 

L...----N (Disturbances and sensor noise) 

FaauRE 3-12 Block diagram for a controlled system subjected to 
disturbances and sensor noise. 

The error is corrupted by the noise N 

For the time being, ignore the set point 

Solve forE 

E(1 + GPG c)= -N 

E 1 
N = 1+GpGc 

(3-43) 

During the development of E/N the set point was removed 
because it is assumed constant at zero. More will be made of f./N 
when the frequency domain is introduced in the next chapter. 

3·3·8 Zeros and Poles 
This section will repeatedly refer to Eq. (3-40) which is 

Y= gks+gl sc 
-rs2 +(1+ gk)s+ gl s 
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The numerator in Eq. (3-40), namely,gks+ gi, has one zero. That 
is, the value s =-I I k causes this term to be zero, so the zero of this 
factor is -I I k. 

The denominator in Eq. (3-40), namely, 

(~s2 +(1 + gk)s+ gi) s 

has the same form as the quadratic in Eq. (3-25) with one extra factor. 
Therefore, the denominator in Eq. (3-40) has three zeros (values at 
which a quantity equals zero). Conventionally, we say that Eq. (3-40) 
has three poles (values at which the quantity becomes infinite) and 
one zero (the value at which the quantity becomes zero). 

Partial Fractions and Poles 
Applying the quadratic equation solver, the poles of Eq. (3-40) are 
found to be 

1+ gk ~(1+ gk)2 -4~gi 
----2-~-±~---2-~--~- and o.o (3-44) 

Two of the roots in Eq. (3-44) are the same as those obtained in 
Eq. (3-30). Assume for the time being, that the argument of the radical 
in Eq. (3-44) is positive so that the poles will all be zero or negative 
real numbers. 

To make the following partial fraction algebra a little easier I will 
factor out ~ so that the coefficient of s2 is unity and Eq. (3-40) 
becomes 

(gks+ gl)Sc 
Y= (gks+ gi)Sc = ~ 

2 (1 + gk) gi) (s- s1)(s- s2)s 
~ s +---s+- s 

~ ~ 

(3-45) 

The resulting quadratic equation for poles is a little different 

Question 3-10 Is this expression for the poles really different from Eq. (3-30)? 

Answer No, a little algebra can show that they are identical. 
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For the time being, assume that s
1 

and s
2 

are different and real, 
that is, assume that 

Expanding Eq. (3-45) using partial fractions gives 

(gks+ gl)S, 
'f (3-46) 

The details of the partial fraction expansion and the inversion are 
carried out in App. F but Eq. (3-46) shows that Y(t) will have three 
terms: two exponentials from the poles at s1 and s2 and one constant 
from the pole at zero (or at s3 ). After the inversion is complete, the 
result is 

(3-47) 

Therefore, starting with a Laplace transform, partial frac­
tions allowed the transform to be broken down into three sim­
ple terms, each of which had a known time domain function as its 
inverse. 

Question 3·11 If Eq. (3-44) had yielded complex poles, how would the 
development of the partial fraction expansion have changed? 

Answer First, One has to remember that s1 and s2 are now complex conjugates. 
Second, one has to figure out how to use Euler's fonnula to present the result. So, 
there is no major difference other than a lot more algebra that includes complex 
numbers. If you are energetic you might try it. 

Poles and Time Domain Exponential Terms 
The development of Eq. (3-47) suggests that a nonzero pole in the 
Laplace transform of a quantity relates directly to an exponential 
term in the time domain. In fact, this is always true and it is a good 
reason for being so interested in poles. That is, a factor in the Laplace 
transform having the form showing a pole at s = p, as in 

1 
s-p 
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corresponds to a time domain term of 

Poles can be complex but if so then they must occur in conjugate 
pairs. Therefore, the factor occurring in a Laplace transform as in 

1 1 1 
(s- p)(s- p·) (s-(a+ jb}}(s-(a- jb}} 

has two complex poles that occur as conjugates. As a consequence, 
the factor is purely real which you would want because an imaginary 
process transfer function does not make physical sense. 

These complex conjugates also correspond to exponential terms 
in the time domain except now they occur as 

and end up contributing sinusoidal terms in the time domain. 
These pairings suggest several things: 

1. A pole at s = 0 corresponds to a constant or an offset. 

2. When the pole lies on the negative real axis, the corresponding 
exponential term will also be real and will die away with time. 

3. As the pole's location moves to the left on the negative real axis 
the exponential term will die away more quickly. As the pole 
moves to the right along the negative real axis in the s-plane it 
will soon reach s = 0 at which point it corresponds to a constant 
in the time domain. As the pole continues to move into the right­
hand side of the s-plane, still along the real axis, the exponential 
component now increases with time without bound. 

4. When the poles appear in the s-plane with components dis­
placed from the real axis then the poles are complex and appear 
as complex conjugates. The corresponding time domain terms 
will contain sinusoidal parts and underdamped bounded 
behavior will result if the poles lie in the left half of the s-plane. 

5. If the complex poles are purely imaginary they still appear as 
conjugates on the imaginary axis and they correspond to 
undamped sinusoidal behavior that does not dissipate. As 
the imaginary component of the complex conjugate poles 
moves away from the real axis (while staying on the imaginary 
axis) the frequency of the underdamping will increase. 

6. If the transfer function has poles that occur in the right-hand 
side of the s-plane, that is, if the poles have positive real parts, 
then the process represented by the transfer function will be 
unstable. 
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For example, in the development of Eq. (3-33) for the first-order 
model 

- g u Y=---c 
't'S + 1 S 

there is a pole at s = -1 I -r and at s = 0. These poles correspond to an 
exponential term e-1/r and a constant term. 

In general, the Laplace transform can be written as a ratio of a 
numerator N(s) to a denominator D(s) 

(3-48) 

showing that G(s) has m zeros, Z1, z2, ••• , zm and n poles, p1, p
2

, ••• , Pn' 
any of which can be real or complex; however, complex poles and 
zeros must appear as paired complex conjugates so that their product 
will yield a real quantity. 

The inversion of N(s)/D(s) will yield 

II 

Y(t) = L CkePk' 
k-1 

(3-49) 

Note that if some of the poles are complex they will occur as com­
plex conjugates and the associated exponential terms will contain 
sinusoidal terms via Euler's formula. Finally, note that to find the 
poles one usually sets the denominator of the Laplace transform, 
D(s), to zero and solves for the roots. 

The transfer function for the controlled system is 

To see if this controlled system is stable one could find the values 
of s (or the poles of G(s)) that cause 

or 

(3-50) 

We will return to this equation many times in subsequent chapters. 
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The term 11pole" may come from the appearance of the magni­
tude of a Laplace transform when plotted in the s-domain. Consider 
the first-order Laplace transform 

G(s)=-g ___ 3_ 
-rs+1- s+3 

g = 1 'f = 0.3333 

which has a pole at s = -3. The magnitude of G(s) can be obtained 
from its complex conjugate, as explained in App. F, as 

s=a+ jb 

3 3 
G(s) = -r(a + jb) + 3 -ra + 3 + j-rb 

First, plot the location of the pole in the s-plane where a repre­
sents a point on the real axis and b represents a point on the imagi­
nary axis (Fig. 3-13). Next, plot the magnitude of G(s) against the s­
plane as in Fig. 3-14. Notice how the magnitude of G(s) looks like a 
tent that has a tent pole located at s = -3.0 which lies on the real axis 
in the s-plane. 

Imag(s) 

-1/t=-3.0 
------iT---+-----Real (s) 

First-order model has 
a ''real" pole p1 here 

Thes-plane 

F1eURE 3-13 Location of a pole in the s-plane. 
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-5 Real part of s 

fiGURE 3-14 Magnitude of the first-order Laplace transform. 

3-4 Summary 
It's time for a break. This chapter has been the first with a lot of math­
ematics and it probably has been difficult to digest. Hopefully, you 
haven't lost your motivation to continue (or to reread this chapter 
along with the appropriate appendices). 

We started with an elementary dynamic analysis of a tank filled 
with liquid. The conservation of mass coupled with a constitutive 
equation yielded a linear first-order differential equation that 
described the behavior of an ideal model of the tank. Using elemen­
tary methods, the differential equation was solved and the solution 
was shown to support our intuitive feelings for the tank's dynamics. 
The important concepts of time constant and gain were introduced. 

Simple proportional feedback control was attached to the process, 
producing another first-order differential equation that was also rela­
tively simple to solve. The failure of proportional control to drive the 
process output all the way to set point was noted. 

Integral control was added. Now, the offset between the process 
output and the set point could be eliminated. The differential equa­
tion that described this situation was second order and required a 
little more mathematical sophistication to solve. The concepts of crit­
ical damping, underdamped behavior, and overdamped behavior 
were introduced. Although the liquid tank under proportional-inte­
gral control could exhibit underdamped behavior, its response to a 
step change in the set point was shown to always be stable. 
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The example process was quite simple but the idea that proportional­
only control leaves an offset between the set point and the process 
variable is general. That the addition of integral control can remove 
the offset but can cause underdamped behavior if applied too aggres­
sively is another general concept. 

Perhaps the reader could see that the mathematics required to 
describe the behavior of anything more complicated than PI control 
applied to a first-order process was going to get messy quite quickly. 
This set the scene for the introduction of the Laplace transform which 
allowed us to move away from differential equations and get back to 
algebra. The recipe for using the s (or Heaviside) operator was intro­
duced and shown to be useful in gaining insight into the differential 
equations that described the dynamic behavior of processes. The 
Laplace transform also facilitated the introduction of the block dia­
gram and the associated block algebra. 

Coupled with the appendices the reader saw that Laplace trans­
forms could often be inverted by use of partial fractions. From the 
simple examples, the reader saw that poles of the s-domain transfer 
function are related to exponential terms in the time domain. 

At this point it appears as though the Laplace transform is mostly 
useful in solving differential equations. Later on, we will see that the 
Laplace transform can be used to gain significant amounts of insight 
in other ways that do not involve inversion. 

We have broken the ice and are ready to dive into the cold, deep 
water. First, we will move into yet one more domain, the frequency 
domain. Then a couple of processes more sophisticated than the sim­
ple liquid tank will be introduced before we look at controlled sys­
tems in the three domains of time, Laplace, and frequency. 



CHAPTER4 

A New Domain 
and More Process 

Models 

Chapter 3 introduced the reader to a relatively sophisticated 
tool, the Laplace transform. It was shown to be handy for 
solving the differential equations that describe model pro­

cesses. It appeared to have some other features that could yield 
insight into a model's behavior without actually doing an inversion. 

In this chapter the Laplace transform will be used as a stepping 
stone to lead us to the frequency domain where we will learn more 
tools for gaining insight into dynamic behavior of processes and con­
trolled systems. 

Chapter 3 also got us started with a simple process model, the 
first-order model that behaved approximately as many real processes 
do. However, this model is not sufficient to cover the wide variety of 
industrial processes that the control engineer must deal with. So, to 
the first-order process model we will add a pure dead-time model 
which will subsequently be combined with the former to produce the 
first-order with dead-time or FOWDT model. For technical support 
the reader may want to read App. B (complex numbers), App. D (infi­
nite series), App. E (first- and second-order differential equations), 
and App. F (Laplace transforms). 

As in previous chapters, each new process will be put under con­
trol. In this chapter the new tool of frequency domain analysis will be 
used to augment time domain studies. 

4-1 Onward to the Frequency Domain 

4·1·1 Sinusoidally Disturbing the First-Order Process 
Instead of disturbing our tank of liquid with a step change in the 
input flow rate, consider an input flow rate that varies as a sinusoid 
about some nominal value as shown in Fig. 4-1. The figure suggests 

75 



DDDI\1\DI\1\DDD 
v v vrv vvrvlVlV v v 

Y DDDI\1\DI\1\DDI\ 
V4V v v v \Tv v vlV v 

Put in a sinusoidal flow rate U of given amplitude and frequency 
-what does the output flow rate Y do? 

fKiun 4-2. Frequency response of tank of liquid. 

that if the input varies sinusoidally so will the level (and the output 
flow rate, too). Assume that the input flow rate is described by 

U(t) = Uc +Au sin(21r ft) 

The input flow rate has a nominal value of Uc. The flow rate is 
varying about the nominal value with an amplitude Au and a fre­
quency f which often has units of hertz or cycles per second. Another 
frequency represented by m is the radian frequency, usually having 
units of radians per second. It is related to the other frequency by 
m = 21r f . Therefore, the input flow rate could also be written as 

U(t) = Uc +Au sin(mt) 

For the time being, consider the output flow rate F
0 

as the process 
output. In Chap. 3 the level L was the process output. The simple 
equations describing these quantities were 

or, after combining, 

or 

dL 
1'-+L=RF df I 

L 
F=­

o R 

R-rdf, +RF =RF 
df 0 I 

(4-1) 
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Equation (4-1) shows that, when the output flow rate is the pro­
cess output and the input flow rate is the process input, the process 
gain is unity and the time constant is the same as when the level is 
the process output. Making this choice of process input and output 
variables will simplify some of the graphs and some of the interpre­
tations. Later on, we can extend the presentation to nonunity gains 
with ease. 

Now, with this simple background in mind, what will the output 
flow rate look like when the input flow rate oscillates about some 
nominal value? First, F

0 
will have a nominal value Fe and it will vary 

about its nominal value with an amplitude, AY' a frequency, f, and a 
phase (relative to that ofF;), 8, as in 

(4-2) 

Note that the frequency of the oscillations in the input flow 
rate and the tank level is the same. This is an assumption that we 
will support soon. However, the amplitudes and the phases are 
different. 

Assume that the tank has a time constant of 40 min. Consider 
Fig. 4-2 where the input flow rate has a period of 100 min or a fre­
quency of 0.01 min-1• Note that the output flow rate lags the input 
flow rate (has a positive nonzero phase relative to the input flow rate) 
and has a smaller amplitude. 
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F1auRE 4-2 Input flow rate and level for f = 0.01 min-1• Sinusoidal response 
of tank with period = 100. 
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FIGURE 4-3 Input flow rate and level for f = 0.025 min-1• Sinusoidal 
response of tank with period = 40. 

In Fig. 4-3 the frequency of the input flow rate frequency is 
increased to 0.025 min-1 (a period of 40 min). Notice that the output 
flow rate lags the input flow rate even more (greater phase lag) and 
the ratio of the output amplitude to the input amplitude is smaller 
(more attenuation) than for the case of the lower frequency. 

Figure 4-4 shows the input/output relationship for the case of an 
input frequency of 1.0 min-1• The amplitude of the output flow rate is 
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FIGURE 4-4 Input flow rate and level for f = 1.0 min-1• Sinusoidal response 
of tank with period = 1. 
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barely discemable and the lag is almost 90°. Notice that the scales of 
the time axes on these last three plots are different. The first has a 
span of 350, the second 120, and the third has a span of 3.0. 

What is going on? The inertia associated with the mass of liquid 
in the tank (characterized by the tank's time constant) causes the out­
put flow rate's response to be attenuated as the frequency of the input 
flow rate increases. At low input frequencies, in spite of the inertia, 
the output flow rate is nearly in phase with the input flow rate and 
there is almost no lag. The slowly varying input flow rate gives the 
mass of liquid time to respond. As the frequency increases, the mass 
of the liquid cannot keep up with the input flow rate and the lag 
increases and the ratio of output amplitude to input amplitude 
decreases. Note, however, that the frequency of the output flow rate 
is still identical to that of the input flow rate. As you might expect, 
and as we will soon show, the phase lag is directly related to the pro­
cess time constant. Likewise, the attenuation in the amplitude ratio 
depends on the process time constant. 

From the point of view of the flow rates, the tank behaves as a low 
pass filter, that is, it passes low frequency variations almost without atten­
uation with almost zero phase lag. For high frequency variations it atten­
uates the amplitude and adds phase lag. Filters as processes or processes 
as filters will be dealt with later on in this chapter and in Chap. 9. 

4-1-2 A Uttle Mathematical Support In the Time Domain 
Let's see if some simple math can "prove" our contentions. Another 
way of writing Eq. (4-2}, ignoring the constant offset value, is 

U(t) =Au sin(2tr ft) =Au Re(ei2nftt 

This makes use of Euler's equation that is presented in App. B. It 
simply says that a sine function is the real part of a complex exponen­
tial function. If this bothers you and you do not want to delve into 
App. B, then you had best skim the rest of this subsection. If not, then 
temporarily forget about the "real part" and use 

(4-3) 

This is a common method of control engineers. It says, "make the 
input flow rate a complex sinusoid (knowing full well that you are 
only interested in the real part) and use it to solve a problem; then 
when the solution has been obtained, if it is complex, take the real 
part of the solution and you're home!" The simple algebra of complex 
exponentials is often preferable to the sometimes sophisticated com­
plexity of the trigonometric relationships. 

With this leap of faith in hand, feed the expression for U(t) given 
in Eq. (4-3) into the differential equation describing our simple tank 
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of liquid, that is, Eq. (4-1), and assume that the process outlet flow 
rate, Y(t}, will also be a sinusoid with the same frequency but with a 
phase relative to U(t), namely, 

Y(t) = Cei<2nft+8) (4-4) 

Note that the amplitude of the process outlet C is as yet 
unknown as is the phase 8. As mentioned in our leap of faith state­
ment, assume that the actual process outlet flow rate is the real 
part of the expression in Eq. (4-4). Using Eq. (4-4) also assumes 
that after making the process input U a sinusoid, all of the tran­
sients associated with that change have died out leaving the outlet 
flow rate to be a complex sinusoid with a modified amplitude and 
phase. If the choice of Eq. (4-4) is incorrect it will show up quickly 
as we turn the crank. 

With all these nontrivial preliminaries out of the way, put 
Eqs. (4-2) and (4-4) into Eq. (4-1) and see if something insightful hap­
pens. A lot of the details will be left to App. B. After plugging in the 
expression for U andY, Eq. (4-1) becomes 

-r(j2tr f)Cei<2nft+B) + Cei<2~rft+B) = Auei<2~rft) 

This messy looking expression is really a simple (but complex) 
equation that has real and imaginary parts. In App. B these real and 
imaginary parts are collected algebraically and the real parts on the 
left-hand side of the above equation are equated to the real parts on 
the right-hand side. The same thing is done with the imaginary parts. 
This gives two equations that, with the help of some inverse trigono­
metric identities, can be solved for the unknown amplitude C and the 
phase 8. The result is 

A 
C= u 

~1 + {2tr f-r)2 

(4-5) 

This supports the earlier contention that as the frequency increases 
the phase lag increases (or the phase becomes more negative) as does 
the amplitude attenuation. It also tells us that as the tank size and its 
associated time constant increase so does the phase lag and the ampli­
tude attenuation. Furthermore, it supports our contention that the 
frequency of the process output is the same as that of the input [if this 
were not the case then the idea of plugging in assumed functions for 
U(t) and Y(t) would not have worked]. Finally, it suggests that the 
maximum phase lag for this first-order process is 90°. 
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Question 4-1 Why is the maximum phase lag of the first-order model 90°? 

AniWM' As m, in 8 = -tan-1 (0r1 increases without bound to oo, the arctangent 
function yields tan-1(oo) = 1C /2 or 90°. 

4-1-3 A Uttle Mathematical Support In the Laplace 
Transform Domain 

From Chap. 3 and App. F, the transfer function for the process 
described by Eq. (4-1) can be obtained directly from Eq. (3-33) by set­
ting g = 1.0, resulting in 

- 1 - -Y=--U=GU -rs+1 P 

1 
G =-­

P t'S + 1 

(4-6) 

Now, another trick! Let s = j2.1Cf and find the magnitude and the 
phase of the result 

G ('2nf)-
1 

pi --rj2.nf+1 

= 1 -r j2.n f + 1 
1' j2.1r f + 1 . -1' j2.1r f + 1 

- -1' j2.1r f + 1 
- (r2n f)2 + 1 

1 . 1'2.1r f 
- (-r2n /)2 + 1 I (-r2.n /)2 + 1 

Here, the numerator and denominator of the complex transfer 
function were multiplied by the conjugate of the denominator 
-1' j2.n f + 1. This got rid of imaginary components in the denomina­
tor and allowed us to separate GP into its real and imaginary parts. 

The transfer function is now a complex quantity with a magni­
tude and a phase, as in 

As shown in App. B, the magnitude of a complex quantity is the 
square root of the real and imaginary parts 

(4-7) 
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and the phase is the angle whose tangent is the ratio of the imaginary 
to the real part 

(
-r2nf) 6=tan-1 -

1
- =-tan-1(r2nf) (4-8) 

The last two equations tum out to be the same as Eq. (4-5). So, we 
see one more reason why the Laplace transform can be so useful: 
there is an easy, straightforward path from the Laplace domain to the 
frequency domain. All you have to do is accept the serendipitous 
effect of replacing the Laplace operator by jm. There is one caveat. 
The result of making the substitution gives the steady-state sinusoidal 
solution after the transients have died out-remember, when you 
feed a sinusoid to a process, the process output requires some time to 
evolve toward a sinusoidal function. Refer to App. B where the full 
solution, including the transient part, is given. 

4·1·4 A Uttle Graphical Support 
How can this information be presented more compactly? Try plotting 
the amplitude ratio and the phase lag versus the frequency. For this 
example the result, called a Bode plot, would be as shown in Fig. 4-5, 
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F1auRE 4-6 Bode plot for liquid tank. (A) Ratio of amplitudes: F JFr (B) Phase 
of F
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which is derived from Eqs. (4-7) and (4-8). Often control engineers 
use decibels or dB instead of magnitude where 

dB= 20log10(magnitude) 

Replotting Fig. 4-5 in these units gives Fig. 4-6. Note how the 
amplitude ratio decreases with increasing frequency and how the 
phase gets more negative as frequency increases. While the ampli­
tude ratio appears to continue to decrease indefinitely as frequency 
increases, the phase appears to reach an asymptote of -90°, which is 
consistent with earlier comments. 

In the extreme case of an oscillating input flow rate having a 
nearly zero frequency (or an extremely long period) there would 
be plenty of time for the output flow rate to respond to any 
change in the input flow rate and overcome the inertia. There­
fore, the amplitude ratio reaches a left-hand asymptote of unity. 
Likewise, the phase angle between the input and output would 
essentially be zero. Effectively this asymptote represents a quies­
cent steady state. 

On the other hand, with an extremely high frequency, the inertia 
of the liquid in the tank would tend to wash out the effect of any 
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input flow rate oscillations. The output flow rate would remain nearly 
at its nominal value, almost completely undisturbed by the input 
flow rate oscillations. The ratio of the outlet amplitude to that of 
the input would be nearly zero, which cannot be plotted on log­
log graphs. 

Had we used linear scales the picture would be as in Fig. 4-7. 
The linear plot tends to compress some of the action and for some 
kind of design problems is less popular and less useful than the 
log-log plot. Before leaving the linear plot consider Fig. 4-8, an 
extension of Fig. 4-7, which has a linear frequency axis with a log­
arithmic amplitude ratio axis and includes negative frequencies. 
We will come back to this graph later on when we deal with the 
discrete time domain. Linear frequency axes are sometimes useful 
in filter design. 

Question 4-2 Why is the magnitude in Fig. 4-8 symmetrical about zero 
frequency? 

AniWII' Look at Eq. (4-7). Note that the frequency Jappears only as a squared 
quantity. Therefore, the magnitude does not depend on the sign of the 
frequency. 
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F1auRE 4-8 Linear frequency axis showing negative and positive frequencies. 

4·1·5 A Graphing Trick 
As we will see, some processes can be modeled with a series of first­
order components so it is sometimes handy to be able to sketch the 
first-order magnitude on the log-log plots. 

First, when f-+ 0 or ro-+ 0, Eq. (4-7) shows that the magnitude 
approaches an asymptote of unity or a value equal to the gain g if it is 
not unity. On a dB plot with g = 1, this asymptote would be at zero. 

Second, to see how the magnitude behaves when ro -+ oo, start 
with Eq. (4-7) and apply some of the rules of logarithms. 

1 

= log10 (( -rro)2 + 1) 2 

= -~log10((-rro)2 + 1) 

limco-+•IGP(jro)l = -~log10((-rro)2 ) 
= -log10(-rro) 

Therefore, if IGI is plotted against -rro on a log-log plot, at large 
values of -rro the graph will show a straight line with a slope of -1. 
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Question 4-3 What would the slope at large frequencies be if dB units were used? 

Answer For large frequencies dB= 20 log10( TCCJ) so the slope would be -20 dB 
per decade change in frequency. 

Third, when -rro = 1, the magnitude in dB is given by 

20log10 IG,(jCtl~ = 20 log10 \j(1)~ + 1 = 20log10 * 
= -20log10 J2 = -3.0103 dB 

IG' (jCtl ~ = \j(1)~ + 1 0. 7071 

Thus, the graph of IGI is approximately 0.7071 or 3 dB down when 
-rro = 1 This frequency, roco, = 1/-r or fcor = 1/(2m) is called the corner 
frequency. 

The shape of the IGI curve can be approximated with two straight 
lines-one is horizontal from small -rro to the point where t' ro = 1. 
The second has a slope of -1 and starts at -r ro = 1 . 

The phase in Eq. (4-8) shows a left-hand asymptote at 0° and a 
right-hand asymptote at 90°. When -rro= 1, the phase is 45°. 

Figure 4-9 shows a Bode plot for the case of unity gain and a time 
constant of 10.0. The magnitude is plotted against -rro on a log-log 
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scale and the phase is plotted on a semilog scale. The vertical line 
indicates -reo = 1 and the horizontal line indicates a phase of 45°. 

4-2 How Can Sinusoids Help Us with Understanding 
Feedback Control? 

In the Sec. 4-1, the input flow rate was varied sinusoidally and the 
output flow rate was observed. This was an open-loop disturbance 
with no control involved. Now, let's dreg up the closed-loop sche­
matic that we talked about in Chap. 3. There is one change, however. 
For the time being, the process output will be the process outlet flow 
rate, so Eq. (4-1) with its unity gain describes the behavior of our pro­
cess. The process input will still be the process input flow rate. 

In Fig. 4-10 note that the set point is varied sinusoidally and the 
feedback loop is cut just before the process output is fed back and 
subtracted from the set point. We will focus on the output of the cut 
line as a response to the sinusoidally varying set-point input. The 
gain and phase of the output at the cut point will be called the open­
loop gain and phase. 

However, before looking at that input/ output relationship, con­
sider what happens at the point where the process output is subtracted 
from the set point. An equivalent diagram appears in the upper right­
hand comer of Fig. 4-10. Here the subtraction is broken up into a nega­
tion followed by an addition. What happens to a sinusoid (the process 
output) that is negated before it is added to the set point? When the sign 
is changed from positive to negative the process variable immediately 
experiences a phase lag of 180° or, in other words, negating a quantity 
causes it to have a phase of -180°. To see this, look at Fig. 4-11. 

{\{\f\(\(\{\{\{\(\{\f\ 
v v1U v-v10 viV v-v-v 

S (Set point) 

Cut 

s 

U (Controller output/process input) 

F•auAE 4-10 varying the set point and cutting the loop. 
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F18UAE4-11 Negating a quantity. 

Now, go back to Fig. 4-10. What can we say about the process 
output at the cut point? First, we can guess that, relative to the set 
point (the input) the process output will have less amplitude and 
more phase lag because of inertial effects in the process (which has 
unity gain). The controller also might modify the amplitude and 
phase of this signal. But, for the time being, assume that neither the 
process nor the control adds phase lag and that neither attenuates the 
amplitude. 

When the loop is closed and Y is subtracted from S, the phase 
lag of Y immediately gains 180°. So, a signal with -180° of phase 
and unity amplitude is now being added to a signal (the set point) 
having zero phase and unity amplitude. The result is "annihilation" 
or cancellation. 

Now, what if the process and controller were to add -180° of 
phase to the process output without changing the amplitude from 
unity? When the addition takes place at the summing junction, the set 
point with zero phase and unity amplitude will be added to a signal 
with a phase of -360° (sum of the phase lag &om the process/ controller 
and the negation) and unity amplitude. So, the result of the summing 
junction will be to produce a signal with an amplitude that is larger 
than either the set point alone or the process variable alone. When 
this enlarged signal passes through the loop again, the result of the 
summing will produce a signal with yet a larger amplitude. This 
sequence is shown in Fig. 4-12. 
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FIGURE 4-12 Signal growth when process/controller provides -180° of 
phase lag. 

At the risk of beating this to death, we repeat the sequence. After 
one pass through the hypothetical system, the effect of the process I 
controller causes the process output to maintain the amplitude of 
unity but to experience a phase lag of 180°. Then when the process 
output is negated at the summing junction (and becomes the error 
signal) it gains another 180° of phase lag so that it is now perfectly in 
phase with the set point and the two signals add. Figure 4-13 shows 
how the error signal grows without bound (actually after 12 passes 
through the loop) when there is a phase lag of 180° in the process 
output. This argument suggests that when a signal in a feedback loop 
has unity amplitude and -180° of phase just before the subtraction 
point, there will be unbounded amplification. It further suggests that 
when the phase lag of the signal being fed back is less than 180° (other 
things being the same) the unbounded amplification will not occur. 
Consider the case where the phase lag of the fed-back signal is 170° in 
Figs. 4-14 and 4-15. Figure 4-15 shows that the signal is amplified as it 
cycles through the loop but it levels out at a value of about 11.5. So, 
there is growth but it is bounded. 

We leave this section with the thought that we should design a con­
troller such that the open-loop gain (the gain when the loop is cut as in 
Fig. 4-10) of the total system is less than unity if the phase lag is 180°. 
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F1aURE 4-1.5 Bounded growth when phase lag is 170°. 

Alternatively, we should design a controller such that the open-loop 
phase lag is less than 180° when the open-loop gain is unity. The com­
bination of open-loop amplitudes greater than unity and phase lags 
greater than 180° spells trouble. 

With these concepts in mind, let's take an alternative look at our 
first-order process under feedback control. 

4-3 The First-Order Process with Feedback Control 
in the Frequency Domain 

Back in Sec. 3-2-3 the first-order process under feedback control 
was studied. With proportional-only control, the differential equation 
describing the controlled system was first order and suggested that the 
response was bounded under all conditions. When integral control 
was added the order of the describing differential equation jumped 
to two but the response still appeared to be bounded although at high 
integral control gains there could be underdamped behavior. 

Before we can use the results of this section for actual design we 
need to discuss some process models that have more phase lag than 
the simple first-order system. These models are not only more com­
plicated but they also are able to describe important characteristics of 
real processes. But for the time being, we will stick with the first­
order process. 

When the Laplace transform was applied to this first-order pro­
cess under PI (proportional-integral) control in Otap. 3, the behavior 
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of the controlled system was shown to be described by the two trans­
fer functions, one for the process GP and one for the controller Gc. The 
algebraic development of the transfer function for response of the 
process output just before the summing point in response to the set 
point is as follows: 

Y=GpGcE 

Y=GpGcS 

Y g ks+I 
S~oop=GpGc= -rs+1-s-=G 

Note that E = S because there is no feedback connection-yet. 

(4-9) 

Had there been feedback and had the loop actually been closed, 
the algebra would have been carried out as follows: 

U=GE c 

Y=G,GCE 

Y = GpGc(S- Y) 

Y + GpGc Y = GpGcS 

y _ G,Gc 
S lc~osedloop- 1 + G G 

p c 

gks+gl 
-rs2 +(gk+ 1)s+ I 

which is the closed-loop transfer function. However, since we are not 
going to close the loop yet we will stick with the result of Eq. (4-9), 
that is, the open-loop transfer function GcG . 

To move to the frequency domain we ~pply the trick of letting 
s = j2tc f = jro, where ro is the frequency in radians per second, while 

fis the frequency in cycles/sec. 

G( "ro)=G G =-g_kjro+l 
I c P -r jro+ 1 jro (4-10) 

The above transfer function contains four factors: two numerators 
and two denominators, each a complex quantity with a magnitude 
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and a phase. The simplest way to get the overall magnitude and 
phase is to look at each factor separately and convert it into a mag­
nitude and a phase. After this conversion, the magnitudes can be 
multiplied and divided as necessary and the phases can be added or 
subtracted as necessary: 

G( . :\-G (" )G(" :\- g kjro+l 
Ja>,- P Ja> 'Jro,--.--1-.-

-r Ja>+ Ja> 

_ geio .J<kro~2 + 12 eilz 

- ~( -rro)2 + 1 ei~ 1ei~r/2 

= g~(kro)2 + J2 ei<'z-6t-lf/2) 

J<-rro)2 + 1 

= 1Giei9 

8=82-81-tc/2 

81 = tan-1(-rro) 

92 =tan-•(¥) 
IGI = g.J(kro)2 + J2 

~(-rro)2 + 1 
(

kroJ tc 8= tan-1 -
1
- -tan-1(-rro)- 2 

(4-11) 

The development of these equations used the simple algebra of com­
plex exponentials where the magnitudes multiply and the angles add. 

Question 4-4 Could you derive the appropriate equations for the magnitude and 
angles for the case where I= 0? 

Answer With I= 0 and k = 1, Eq. (4-9) simplifies to the equation in Sec. 4-2 for 
the first-order process without control. See Eqs. (4-7) and (4-8). 

Question 4-5 Could you derive the appropriate equations for the magnitude and 
angles for the case where k = 0? 

Answer Take the limit ask~ 0 in Eq. (4-11) and remember that the angle whose 
tangent is zero is zero. The result will be 
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F1aURE 4-1.6 Open-loop Bode plot for first-order process with 1-only. 

In Chap. 3 the parameter values used were T = 10, g = 2.5. For the case of 
proportional-only control, the Bode plot will be basically the same as that shown 
in Figs. 4-7 and 4-8. 

For the case of integral-only control with I = t the Bode plot is 
shown in Fig. 4-t6. Note that at low frequency the phase is already 
slightly less than -90° because of the integral controller, which has a 
constant phase of -90° independent of the frequency (see Sec. 4-3-t). 
As the frequency increases, the phase lag increases but never exceeds 
t80°. The small circle indicates the point where the amplitude ratio is 
unity. So, no matter what the integral gain is, this controlled system 
cannot become unstable. This can also be seen from Eq. (4-11) by let­
ting (.()~oo. 

4-3-1 What's This about the Integral? 
We may have slipped one past you in the above paragraph where it 
was quietly stated that ''because of the integral controller which has 
a constant phase of -90° independent of the frequency." To see this 
take the integral of the sine function: 

J sinudu =-cosu+C 

The sine and negative cosine functions are plotted in Fig. 4-t7. 
Note that the negative cosine function, which is the integral of the 
sine function, lags the sine function by a constant 90°. Therefore, the 
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F1auRE 4-17 The sine and negative cosine functions. 

presence of an integrator in the controller adds an immediate phase 
of -90° to the Bode plot. 

Question 4-6 If the integral component in a controller adds a constant -90° of 
phase what does the proportional component do? 

Answer If the controller is proportional-only then Gc = k and the open-loop 
transfer function becomes G k. The presence of the additional factor k simply 
modifies the amplitude but has no effect on the phase. In fact, our approach 
in analyzing controlled processes will be to start with proportional-only 
control with a control gain of k = 1 because the Bode plot is simply that of the 
process. Then to avoid too much gain when the phase equals -180° we will 
adjust the control gain appropriately. Since the phase remains independent 
of the value of k, only the magnitude plot will shift in response to changes 
ink. 

4-3-2 What about Adding P to the I? 
The integral gain for the previous 1-only controller will be lowered to 
0.4 and a proportional component with a control gain k of 1.0 will be 
added. The impact on the Bode plot is shown in Fig. 4-18. One notices 
that the phase does not come anywhere near -180°. The time domain 
behavior for this set of control gains is shown in Fig. 4-19. 

Finally, look at the error transmission curve [introduced in Chap. 3, 
Eq. (3-43)] for this controlled system in Fig. 4-20. 

The error transmission curve (sans the phase curve) is replotted 
with linear frequency axes in Fig. 4-21. This curves shows how 
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FIGURE 4-18 Open-loop Bode plot for PI controlled first-order process. 
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F1auRE 4-20 Error transmission curve for first-order process with PI control. 
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disturbances of different frequencies are controlled. From Chap. 3, 
the "comer" frequency of 

m cor = 1 I r = 1 I 10 = 0.1 rad I sec 

or 

fcor = l.Ocor I (2n) = 0.0159 = 1.5910-2 Hz 

denoted a point on the Bode plot where the process magnitude and 
phase plot showed a change. It is a key variable in the error transmis­
sion plot. Disturbances having frequencies below the comer frequency 
in Fig. 4-20 are attenuated. Figure 4-21 shows that zero frequency dis­
turbances, that is, constant offsets, are completely removed. At the cor­
ner frequency things start to change. Disturbances having frequencies 
above the comer frequency are passed with little effect. Physically, this 
is to be expected because disturbances with low frequencies would be 
relatively easy to control whereas high-frequency disturbances would 
be beyond the capabilities of the controller. Disturbances having fre­
quencies around 0.08 Hz are actually amplified slightly. Sometimes it is 
difficult for one to grasp the reality that only a small part of the distur­
bance spectrum is actually controlled when feedback control is applied. 
This suggests that process improvement and process problem solving 
is the best way to improve performance. 

4-3-3 Partial Summary and a Rule of Thumb Using Phase 
Margin and Gain Margin 

Based on the example in this section it looks like we can gain some 
insight into the controllability of a process by looking at the Bode 
plot for the open-loop transfer function G,GP. We want to avoid 
design situations where the phase lag of G,GP is near 180° when the 
amplitude ratio is unity. Experience suggests that a phase margin of 
at least 45° is required for good control performance. That is, when 
the amplitude ratio is unity we would like the phase lag to be no 
more than 135°. 

Conversely, we want to avoid situations where the amplitude 
ratio is near unity when the phase lag is 180°. Again, experience has 
shown that a gain margin of at least 6 dB is desirable. That is, when the 
phase lag is 180° we would like the gain to be less than 0.5 where 
20 log10 (.5) = -6.02 dB. 

We can't seem to find a way to make our first-order process go 
unstable when we put it under PI control. This situation will be changed 
when we study some new processes in the upcoming sections. 

Question 4-7 Why are we having trouble making first-order processes go 
unstable by adding controUers? 
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Answer The most phase lag that can come out of a first-order process is 90° 
and that is only at high frequencies. Proportional-only control adds no phase 
lag and integral-only adds 90° so the first-order process under integral-only or 
proportional-integral control can only have 180° phase lag as a limiting case 
when the frequency is extremely high. 

4-4 A Pure Dead-Time Process 
Consider the process depicted in Fig. 4-22. Imagine many small buck­
ets nearly contiguous such that when the inlet flow rate is continuous 
so is the outlet flow rate. With this in mind, Fig. 4-22 suggests that the 
process output Y will be identical to the process input U except with 
a shift in time, namely, 

Y(t) = U(t- D) (4-12) 

where D is the dead time. If the conveyor belt speed is v and the dis­
tance between the filling and dumping points is L then the dead time 
would beD= L/v. 

Figure 4-23 shows the step response of a process having a dead 
time of 8 time units. The process gain is unity-what goes in comes 
out unattenuated and unamplified. The time constant is zero but 
there is a dead time between the step in the input and the response of 
the output. 

So much for the time domain. What does the Bode plot for the 
pure dead-time process look like? Figure 4-24 shows magnitude and 
phase plotted for linear frequency and Fig. 4-25 shows the same 
thing plotted with logarithmic frequency. Both figures support our 
contention that the amplitude ratio of the output to the input is 
unaffected by frequency. However, the phase lag of the output 

Valve position (U) 

~ 
' 

Flow rate (Y) 

F1auRE 4-22 A dead-time process. Imagine many small buckets together so 
that the flow is effectively continuous. 
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increases linearly with increasing frequency. This makes sense if the 
reader can visualize a sine wave entering the pure dead-time pro­
cess. When it leaves it will still be a sine wave with the same ampli­
tude but it will be shifted in time and the shift will be a function of 
frequency. At low frequency the outlet will see the beginning of the 
same cycle that is still entering the process. At high frequency there 
will be many cycles inside the process and the emerging cycle will 
be significantly displaced from the entering cycle. 

The Laplace transform of a pure dead-time process is 

L{Y(t- D)J = e-Dszi(s) (4-t3) 

The basis for Eq. (4-t3) is in App. F and the rule is simple. When­
ever a quantity Y(t) is delayed in time by an amount D, the Laplace 
transform of Y(t- D) is the transform of Y(t) multiplied by exp(-Ds), 
as in e-DsY(s). 

Moving to the frequency domain by letting s = jm causes the 
multiplier to become e-iOJD. The magnitude of the delayed quantity is 
unaffected because the magnitude of the exponential is unity. How­
ever, the phase lag is increased by roD. This linear dependence of the 
phase on frequency is demonstrated in Fig. 4-24. 

101 
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4-4·1 Proportional-Only Control of a Pure Dead-nme 
Process 

Based on Chap. 3, we can guess that there will be an offset between the 
set point and the process output. The open-loop transfer function is 

where k is the proportional control gain that we wish to estimate. 
When s is replaced by jro, the open-loop transfer function becomes 

GpGc(jro) = e-it»Dk = 1Giei6 

IGI=k 
6=-roD 

(4-14) 

The Bode plot for k = 1 and D = 8 is the same as that in Fig. 4-24. 
Find the point where the phase lag reaches 180°. The amplitude 
remains unity at all frequencies so a control gain of unity will cause 
problems. When the control gain k is decreased to 0.7 the whole ampli­
tude line is shifted down to a value of 0.7 and the phase margin 
requirement is satisfied. Using this control gain, a simulation in the 
time domain shows the response to a step in the set point (Fig. 4-26). 

1.5 

1 ... ""· ............. . . . . 

:::s 0.5 

0 • • 0 0 0 ·.· .. · ..... : .... · ... ·.· ... ·.· .. 

--0.5 
0 

1.5 

1 
V) 

1 0.5 
>-

0 

--0.5 0 10 20 30 40 50 60 70 80 90 100 
Time 

F1auRE 4-28 Proportionak>nly control of pure dead-time process, k = 0. 7. 
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F1auRE 4-27 Proportionakmly control of pure dead-time process, k = 1.0. 

Note the step in the controller output at the time of the step in the set 
point. For the period of the dead time there is no action until the effect 
of the controller passes through the dead time. Also, note the offset 
between the set point and the process output. In Fig. 4-27 the control 
gain is set to unity and the response is on the cusp of instability. 

4-4-2 Integral-Only Control of a Pure Dead-Time Process 
The open-loop transfer function is 

G G (s)=e-sD.!. 
p c s 

After using the s = jro trick, the open-loop transfer function is 

G G (J"ro) = e-it»D ~ = 1Giei9 
p c }(J) 

6=-roD-!! 
2 

(4-15) 
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F1auRE 4-28 Bode plot for integral-only control of a pure dead-time process, 
I= 1, 0=8. 

The presence of integral produces an additional phase lag of 90° and 
the dead-time contribution builds on that. The integral component also 
causes the amplitude ratio to decrease directly with frequency. Equation 
(4-tS) shows that the phase is independent of the integral control gain I 
and is never greater than -90° so it appears as though integral-only con­
trol with this gain is not an attractive option. The Bode plot is shown in 
Fig. 4-28 for the case of D = 8. However, if we try an integral control gain 
of I= O.t the Bode plot is given in Fig. 4-29 and the time domain behavior 
is given in Fig. 4-30. Note how the control output changes continually 
compared to that for the proportional-only control case. 

Question 4-8 Why does the control output change continually compared to the 
stepped behavior of the proportional-only case? 

Answer During the period of the dead time after the set point has been changed, 
the error is constant and nonzero. As a result, the integral output ramps up. 

Figure 4-3t shows the error transmission curve for the integral­
only case. Disturbances with frequencies above O.t rad/ sec are passed 
or even amplified. 

The error transmission curve is replotted in Fig. 4-32 with linear 
axes. The peaks occur with a spacing of 0.125 Hz which is the recipro­
cal of the dead time. Notice, once again, how little of the spectrum of 
disturbances is attenuated. 
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FIGURE 4-29 Bode plot for integral-only control of a pure dead-time process, 
1=0.1, 0=8. 
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4-5 A First-Order with Dead-Time (FOWDT) Process 
Consider Fig. 4-33 where the tank of liquid has been placed upstream of 
the pure dead-time process. The placement of the buckets-on-the-belt 
ahead of the tank suggests a dead time in series with a first-order pro­
cess. Please do not be confused by the length of the pipe at the outlet of 
the tank. Let's assume that it is actually relatively short and that the pipe 
diameter is small so that the transit time of the liquid spent in the pipe is 
negligible compared to the time spent in the buckets on the belt 

Figure 4-34 shows the open-loop step-change response of the pro­
cess for the case of g = 2.5, -r= 10, D = 8. This is the first example pro­
cess in this chapter that has had a nonunity gain. 

In the continuous time domain, this model would be described 
by an extension of the first-order model: 

-r~~ +y=gU(t-D) 

In the Laplace domain, the open-loop transfer function is 

G (s) = e-sD_g_ 
P t'S+ 1 

(4-16) 

(4-17) 

After applying s = jro, the magnitude and phase can be found as 
follows: 

G (jro) = e-it»D -. _g_ = IG lei' 
p ]t'OJ+ 1 p 

IGI- g 
P- J<-rrof + 1 

(4-18) 

8= -tan-1(-rro)- roD 

Valve position (U) 

I 
J; 

' 

F1auRE 4-33 First-order process with dead time. 
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fiGuRE 4-34 Open-loop step response of FOWDT process (T= 10, D = 8, g = 2.5). 

The magnitude is identical to that of the dead time-less first-order 
model in Eq. (4-7) but the phase lag is increased by the contribution 
of the dead time. 

The Bode plot for the open-loop transfer function is given in Fig. 4-35. 
Note the circles that indicate unity magnitude and -t80° phase. 
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FIGURE 4-35 Bode plot for FOWDT process (T= 10, D = 8, g = 2.5). 
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4·5·1 The Concept of Minimum Phase 
The FOWDT process is an example of a nonminimum phase model 
(NMP), which means there are other processes that have the same 
magnitude but have less phase lag. The first-order process (without 
dead time) is such a model. Figure 4-36 shows the open-loop Bode 
plot of a FOWDT process along with that of the minimum phase (MP) 
model. We will not use this concept but the manager may come across 
it and needs to be aware of it. 

4·5·2 Proportional-Only Control 
If the proportional-only control gain k is unity then the Bode plot for the 
open-loop transfer function would be identical to that in Fig. 4-35 and it 
would appear that this system would be unstable because at a frequency 
of about 0.05 Hz the phase is -180° and at that same frequency the ampli­
tude is a little over 2.0. Likewise at a frequency of about 0.2 Hz the ampli­
tude is about 1.0 while the phase is off-scale so it is at most -300°. This 
suggests that stability might be obtained by applying a control gain less 
than unity such that the overall gain is reduced below unity. To make it 
just stable the overall gain should equal unity or 

gk= 1=2.5·k 

k=0.4 

To obtain a little gain margin let us reduce the proportional control 
gain to 0.3 so that the overall gain is 0.75 instead of 2.5. Then the Bode 
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F1auRE 4-36 Bode plot for FOWDT model and the MP model (g = 0. 75). 
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FIGURE 4-37 Bode plot for FOWDT process with P-only control (T= 10, D = 8, 
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plot for the open-loop transfer function is shown in Fig. 4-37. Now the 
amplitude is always less than unity so even though the phase lag equals 
1800 at a frequency of about 0.05 Hz there is no concern about stability. 

A simulation of proportional-only control for these conditions is 
shown in Fig. 4-38. 

Note the offset between the set point and the process output. 
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FIGURE 4-38 Bode plot for Proportional-only controlled FOWDT process to 
unit set-point step. 
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4·5·3 Proportional-Integral Control of the FOWDT Process 
Adding integral control causes the open-loop transfer function to 
become 

G G ( ) _ -sD g ks +I s -e ----
pc -rs+l s 

Applying s = jro gives a relatively messy expression-but the 
reader might try wading through the following algebra-it's worth it: 

G G ('ro)=e-it»D_g_kjro+I 
p c J t'jOJ+ 1 jOJ 

= g ~(kro)2 +I e-itoO/tan-•(~) 
~( -rro)2 + 1 OJ eitan-1 (r<»>ei~r 

= g ~(kro)2 +I e-jcoD+jtan-•(k~}jtan-•(r<»Hi 
~(-rro)2 + 1 OJ 

= 1Giei9 

G _ g ~(kro)2 +I 

I 1- ~( -rro)2 + 1 ro 
(4-19) 

(k(J)) tr 8= -roD- tan-1(-rro)+ tan-1 -I- -2 

This is the most complicated transfer function yet. Note how each 
term was treated as a compte~ number z with a magnitude lzl and an 
angle cp according to the 1zleJ" format discussed in App. B. Then the 
magnitudes multiplied or divided and the angles added or sub­
tracted. The idea therefore is to break a relatively complicated struc­
ture up into its factors in the numerator and denominator, convert 
each factor into a complex quantity with a magnitude, and an angle 
and then combine the quantities according to basic algebra. 

Using the Bode plot to find the correct control gains k and I is not 
particularly fruitful. Instead, I used time domain simulation to find 
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F•auRE 4-39 Response of PI controlled FOWDT process to unit set-point 
step. 

by trial and error values that appeared to be acceptable using the 
results of the P-only analysis as a starting point. After a couple of tri­
als the values of k = 0.4 and I= 0.03 resulted in the behavior shown in 
Fig. 4-39. The control output jumps at the moment of the set-point 
step and then integrates up during the dead-time period when there 
is no process response. Then when the process response finally gets 
through the dead time and starts to rise, the proportional component 
responds and pulls the control output back because the error is 
decreasing. 

The error transmission curve is shown in Figs. 4-40 and 4-41. Dis­
turbances with low frequencies are attenuated and high frequencies 
are passed with little or no amplification or attenuation. The ripple in 
the transmission curve is a consequence of resonance that occurs 
when a disturbing sinusoid has a frequency that is some integral fac­
tor of the reciprocal of the dead time. 

The Bode plot for the FOWDT process shows that as long as 
there is a dead time, no matter how small, there will be a frequency 
for which the phase lag goes beyond 180°. Every real process has 
some dead time, no matter how small, therefore every real process 
can become unstable if the control gain is high enough. This is to 
be compared with the true first-order process without dead time 
which can never become unstable no matter how large the control 
gain is. 
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FIGURE 4-40 Error transmission curve for FOWDT with PI control. 
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4·6 A Few Comments about Simulating Processes 
with Variable Dead Times 

Consider the process idealized in Fig. 4-33 where the describing 
equation is 

dy 
-r-+ y = gU(t- D) 

dt 

We will discuss the discrete time domain in Chap. 9, but assume 
for the time being that the time domain is broken up into discrete 
points, t1,t2 , ••• that are separated by a constant interval, h, as in 
t; = t;_1 +h. To determine the value of y at time t we need the value of 
U at time t- D. Assume that we have an infinitely long delay vector 
V(i), i = 1, 2, . . . available for the storage of U. At every discrete 
moment of time t;, we increment the index i, to the vector V and insert 
the value U(t;) as in 

i+-i+1 

V(i) +- U(t;) 
(4-20) 

Further, assume that the dead time D is an even multiple of the 
constant interval, as in D = nh . 

To simulate the process we need U(t- D); how do we get it? One 
way is to augment the simple algorithm in Eq. (4-20) as follows: 

i+-i+1 

V(i) +- U(t;) 

j +-i-n 
(4-21) 

U(t- D)+- V(j) 

In words, Eq. (4-21) says "increment the delay index, place the 
current value of U in the delay vector, decrement the delay index by 
the number of increments in the dead timeD, and fetch the delayed 
value of U." 

If the speed of the belt v is the controller output and is therefore 
variable, how can the correct value of U be obtained? The simplest 
and in my experience the most common approach uses a variable 
index calculated from the speed. The distance over which the belt has 
to carry the buckets L, is related to the dead time and the belt speed 
according to 

L=vD=vnh 

(4-22) 
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where "int" means taking the integer value of L/(vh). 
To get a feel for how Eq. (4-22) might work, let's put in some num­

bers. Let L = 100.0, and h = 1. Let the nominal value of the speed be 
v = 10.0. Consequently, the nominal delay vector decrement n = 10. 
Therefore, at every instant t1,t2, ••• the index i is incremented, the 
speed is placed in the delay vector V(i), the decrement n is calculated 
and the delayed speed V(i- n)= V(i-10) is fetched. Assume that at 
some point in time t' the speed is decreased from 10.0 to 5.0 because 
of a control move. The index is incremented to i', the new speed is 
placed in the delay vector and a new decrement is calculated from 

n'= inf~0)=20 

The delayed speed is fetched from V(i'- 20) = V(i + 1-20) = 
V(i- 19) which is a problem. On the previous instant the delayed 
value was fetched from V(i- 1 0) but on the very next instant of time 
the delayed value is fetched from V(i- 19) which contains speed that 
is older than the one just fetched. This violates our common sense 
and more importantly could cause problems if the fetched value is 
being used in a simulation, which in tum is being used for control 
purposes. 

To solve this problem one must realize that Eq. ( 4-22) represents a 
steady-state model and is not valid when the speed is varying. In fact, 
a common sense (and rigorous) definition of the dead time requires 
the use of the integral to take account of the varying speeds, as in 

t 

L = I v(u)du 
t-D(t) 

(4-23) 

which says that the integral of the conveying speed v(t) over the 
period of the dead time D(t), which is now a variable, equals the dis­
tance over which the buckets are conveyed. In the special case where 
the speed is constant, v(t) = vc' then Eq. (4-23) gives 

t 

L = I v du = v D = v hn c c c 
t-D(t) 

which is the same as Eq. (4-22). 
To actually solve Eq. (4-23) online, the integral can be approxi­

mated, as in 

L = h[v(t;)+ v(t;- h)+ v(t;- 2h) + ··· + v(t;- hn)] (4-24) 
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Now, the problem is to find n such that the right-hand side of 
Eq. (4-24) equals L. This can be done quickly with an iterative method 
of the engineer's choosing. 

This situation has actually occurred in my experience and this 
algorithm does in fact work. I suggest that this is a good example of 
using simple calculus to solve a problem that is often overlooked. 

4-7 Partial Summary and a Slight Modification 
of the Rule of Thumb 

Our approach has been to find a proportional control gain, called the 
critical gain, that makes the open-loop amplitude ratio unity or the 
open-loop phase lag 180°. In the former case we reduce the critical 
proportional control gain to make the phase lag less than 180° by 
about 45°. In the latter case we reduce the critical proportional control 
gain by a factor of 0.5. 

Therefore, as a starting point we are trying the find the critical 
values of m and k, namely m, and k,, such that the open-loop gain has 
a magnitude of unity and a phase of -180°. The App. B shows that the 
complex number -1.0 has a magnitude of unity and a phase of -180°, 
so we are really trying to find values of m, and k, that satisfy the fol­
lowing equation: 

or 

or 

IG(j mc>l = 1 

9(jm,) = -n 

(4-25) 

Since several of the closed-loop transfer functions have a denom­
inator of 1 + G,G,, it follows that finding the poles of these transfer 
functions is equivalent to solving Eq. (4-25). 

If the proportional gain is set equal to k, the performance should 
be on a cusp between instability and stability. That is, the process 
with the controller should experience sustained oscillations. 

The critical values for proportional-only control of the FOWDT 
process would be the solution of the following two equations that 
come directly from Eq. ( 4-25): 
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~(-rmc)2 + 1 
1 

(4-26) 

-m,D- tan-1(-rmJ = -n 

Equation (4-26) gives two equations in two unknowns: k, and m,. 
A closed form solution to this problem is not straightforward (and 
probably not possible, at least for me) so a numerical solution based 
on a two-dimensional minimization (using fminsearch in Matlab) 
yielded the following values for g = 2.5, 'f = 10, D = 8, k, = 1.06, fc = 
0.039. Had we tried the same approach for PI control there would still 
be two equations but now there would be three unknowns. 

Using a proportional gain of 1.06 in a simulation for this process 
shows sustained oscillations (see Fig. 4-42) suggesting that the appli­
cation of the critical values does indeed provide marginal stability. In 
a previous simulation shown in Fig. 4-38 the proportional-only gain 
of 0.3 was used and the performance was acceptable. Here the gain 
margin was 0.3/1.06 = 0.283 or 10.9 dB which is more conservative 
than the rule of thumb mentioned in Sec. 4-7. 

Question 4-9 Consider this algebraic approach for the pure dead-time process 
under proportional-only and integral-only control described in Eqs. (4-14) and 
(4-15). What kind of problems would occur? 

1.5 

1 

0.5 
::::::1 

0 

-0.5 

10 20 30 40 50 60 70 80 90 100 

2 

1.5 
U') 

"'0 
ij 

>o 0 

-0.5 . . . . .... .. . ... 

-1 
0 10 20 30 40 50 60 70 80 90 100 

Tune 

fiGURE 4-42 Response of PI controlled FOWDT process to unit set-point step 
indicating marginal stability. 
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Answer The equations used to solve for kc and me for the case of proportional­
only control of a pure dead-time process are 

G,Gc(jwc) = e-J"',0 k = 1Gie'8 = -1 

IGI=kc = 1 

By inspection kc = 1 and CIJc = tr I D or fc = CIJc I (2tr) = (tr I D) I (2tr) = 1 I (2D). 
Since D = 8, it follows that fc = 0.125. 
For integral-only control the equations are 

Therefore, I, = m, and CtJc = tr I (2D) or fc = 1 I (4D) = .0625. 

The reader might conclude that the Bode plot is effectively a 
graphical solution of Eq. (4-25). If the reader is interested in this 
approach, conventional textbooks on control usually contain many 
methods for quickly constructing Bode plots by hand. With the 
incredible access to computers and software like Matlab, these graph­
ical techniques have become less attractive to some (especially mor) 
and will not be covered here. 

4-8 Summary 
The frequency domain was introduced by means of the substitution 
s ~ jm into the Laplace transform. A stability requirement for sinu­
soidal forcing was developed in terms of the amplitude ratio or mag­
nitude and the phase lag of the open-loop transfer function G,GP. 

The phase of G,GP should not equal-180° when the magnitude of 
G,G is unity. 

When the amplitude ratio is unity the phase margin should be on 
the order of 30° to 45°. That is, the phase lag should be less than 150° 
when the magnitude is unity. Alternatively, when the phase is -180° 
the gain margin should be on the order of 0.5. 

The Bode plot of the open-loop amplitude ratio and phase ver­
sus frequency provided a graphical means of checking the stability 
of the candidate process and controller. Bode plots were constructed 
for the first-order process presented in Chap. 3. An auxiliary curve 
of the magnitude of the transfer function, E/N = -1/(1 + G,Gl'), 
called the error transmission curve, provided insight into the abihty 
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of the controlled system to deal with disturbances or noise N of dif­
ferent frequencies. 

The pure dead-time process and the first-order with dead-time or 
FOWDT process were introduced and the frequency domain analysis 
was applied. Because of the dead time, both processes could become 
unstable if the controller parameters were aggressive. Experience has 
shown that the FOWDT model is often a good approximation to 
industrial processes. It has the overall qualitative response of most 
processes and it is a good test for control algorithms because it can 
become unstable in a closed-loop configuration. 

In the next chapter more processes and a new mathematical tool, 
matrices, will be introduced. 
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CHAPTER 5 
Matrices and 
Higher-Order 

Process Models 

I n Chap. 4 the first-order with dead-time (FOWDT) process model 
was presented. In this chapter higher-order models will be intro­
duced. The simplest third-order model is constructed from three 

cascaded first-order models which come from the water tank process. 
The mathematical bookkeeping required by higher-order models 
sometimes gets involved. To ameliorate this problem, matrices can 
often provide aid. Appendix G contains an elementary introduction 
to mabices in case the reader is a bit rusty in this area. Matrices form 
the backbone of the state-space approach which will make its debut 
in this chapter. All of the higher-order models covered in this chapter 
will be written as differential equations in the time domain, as trans­
fer functions in the Laplace s-domain, as magnitudes and phases in 
the frequency domain, and as matrix differential equations back in 
the time domain. 

5-1 Third-Order Process without Backflow 
Figure 5-1 shows three independent tanks-independent in the sense 
that each downstream tank does not influence its upstream neighbor. 
Each tank in the series of three can be treated like the single tank we 
treated earlier except that the outlet flow rate of the upstream tank 
feeds into the next tank down the line. The single tank is described by 

dL L 
pAdt+ R =F 

m ~ 

dL 
-r-+L=RF -r= pAR 

dt 

m 
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U = F0 

~ 
I 

+ 
Jx, 

y = x, 
f.., 

~-

1 

fiGURE 5-1 Three independent tanks. 

For the tanks in the three-tank system let XI, x2, and x, represent 
the three levels in the tanks. Similarly let Fw F 1, F2, and FJ represent 
the four flow rates shown in Fig. 5-1. The overall process input is 
U = F

0 
and the overall process output is Y = Xr 

The equations describing their behavior can be deri\·ed from 
Eq. (5-l) by inspection: 

dXI XI 
f'A~--~-+-R =F;~ 

ttf I 

dX, X.., XI 
f'A,-- +--=-

- dt R
2 

R
1 

dX, X, X, rA -+-=--
.... dt R, R2 

Y= X1 u = F;, 

(5-2) 

As we will see later on, X1, X2, and XJ are the states of the system 
and the last line in Eq (5-2) says that the process output Y is the third 
element of the state. 

The Laplace Transform Version 
By inspection, the reader should be able to rewrite Eq. (5-2) in the 
Laplace domain. 
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(pA,s+ ~)X,(s) = _i
1 
i 1(s) 

(pA,s+ ~)X,(s)= ~ i 2(s) 

Y(5)=X3(5) 

(5-3) 

These equations can be combined in the Laplace domain, eliminat­
ing the X;· First, rewrite Eq. (5-3) slightly, introducing three time 
constants. 

(~p~5 + 1)X1 (5) = U(5) 1'1 = ~p~ 

(~p~5+1)X2(5)= ~ X1(5) -r2 =~p~ 

- R3 -
(~pA35 + 1)X3(5) = ~ X2(5) -r3 = R3pA3 

Starting with the last equation, eliminate the three X; and develop 
an expression for the process transfer function G. 

Second, eliminate X1 and X2 to get X3: 

1 ~ 1 ~-
= 1'35+ 1 ~ 1'25+ 1 ~ X1(5) 

1~1~~-
= 1'35+1 ~ 1'25+1 ~ 1'15+1 U(5) 

Next, use the fact that Y(5) = X3(5) and find the transfer function: 

(5-4) 

- ~ 
- (1'11'21'3)53 + (1'11'2 + 1'11'3 + 1'21'3)52 + (1'1 + 1'2 + 1'3)5 + 1 



124 Chapter Five 

The last line shows that the denominator of G is a third-order 
polynomial in s results, so the system is indeed a third-order sys­
tem. Equation (5-4) also shows that the transfer function G has three 
poles at 

1 1 1 
s=--:z:-, --:r-, t:3 

1 2 

Having hopefully survived this fusillade of equations in the time 
and Laplace domains, let's look at the step-change response of this 
third-order process for the case of p = 1, all ts being 10.0, and all R's 
being 10.0 (Fig. 5-2). 

Note how the first tank level behaves just like the single tank 
studied in Chap. 3, but tanks two and three start to have inflec­
tion points (points where the rate of change of the slope of the 
curve changes, that is, where the second derivative changes sign). 
Also, note that the levels of the three tanks all line out at the 
same value. 

Question S-1 Why do all three tanks line out at the same value? 

Anawer Each tank has the same parameters and each tank is described by the 
same equation. At steady state the outlet flow from tank three has to equal that 
from tank two. Also, it must equal that from tank one and finally it must equal 
the inlet flow rate. Each tank is experiencing the same inlet and outlet flows and 
has the same dimensions. Since each tank's outlet flow rate depends only on its 
level, all of the levels will be the same at steady state. 

lOr----.----~~~~~~~~-.======~ ··· ·;::..-· -Tank 1 
9 .~:···0 0 ,,<. 0 0 0 0 0 0. 0 ... Tank 2 

oo'o 0 ,., 
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FIGURE 5-2 Step-change response of three independent tanks with no backflow. 
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The Frequency Domain Version 
As we have done for all our example processes, let's move on to the 
frequency domain. Since we know that a single tank exhibits amplitude 
attenuation and phase lag with increasing frequency, what do you 
expect with this process? The tanks are in series. The input to the second 
and third tanks is the output from the first and second tanks, respec­
tively, so, the amplitude attenuation and phase increase should be accu­
mulative. This can be demonstrated easily by using s = jm in Eq. (5-4). 

R3 1 1 
G(s) = -r3s + 1 -r2s + 1 -r

1
s + 1 

G("m)= R3 1 1 1 -r3 jm + 1 -r2 jm + 1 -r1jm + 1 

R3 1 1 
=1?==~~~·-r==~==~-~==~==~ 

~(-r3m)2 + 1 eiB3 ~(-r2m)2 + 1 ei~ ~(-rtm)2 + 1 eiB, 
(5-5) 

~e-ifl,e-i82e-i8, 1 1 

- ~(-r3m)2 + 1 ~(-r2m)2 + 1 ~(-rtm)2 + 1 

_ ~e-i<B,~+B1 ) 

- ~(-r3m)2 + 1~(-r2m)2 + 1~{-rtm)2 + 1 

9; = tan-1 (-r;m) i = 1,2,3 

Equation (5-5) shows that the amplitude attenuations for each tank 
multiply and the phase lags for each tank add. Figure 5-3 supports this. 
Each tank is first order and contributes 90° of phase lag and Fig. 5-3 
shows that the phase lag of the three-tank process approaches 270° at 
high frequencies. Figure 5-3 also shows that the magnitudes at low 
frequencies are the same. 

Note that at high frequencies, the slopes of the magnitude plots for 
tanks 1, 2, and 3 are -20 dB/ decade, -40 dB/ decade, and -60 dB/ 
decade, respectively. 

The Matrix (State-Space) Version 
Return to the time domain and rearrange Eq. (5-2) slightly 

dX1 =-~+~F. 
dt t't t't 0 

dX2 _ ~ X 1 X 2 
dt- R

1 
~-~ 

dX3 _ ~ x 2 X 3 

dt-~ ~-~ 

Y=X3 

(5-6) 
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F1aURI 6-3 Bode plot of three-tank process with no backflow. 

These equations can be rewritten compactly using matrices 
which are discussed in App. G. It is shown there that Eq. (5-6) can be 
written as 

1 
0 0 --

(~}[~]Fo ~(~:)= 
t'l 

~_.!_ 1 
0 

dt X ~ t'2 t'2 
3 ~1 1 

0 (5-7) 
~ t'3 t'3 

Y=(O 0 1{~:) 
In general, many linear models of processes can be written to fit 

the general format of 

d 
-X=AX+BU 
dt 

Y=CX 

(5-8) 



Matrices and Higher- 0 r de r Process Mode Is 127 

For this particular process the vectors and matrices occurring in 
Eq. (5-8) are 

0 0 

X=[~ :l 
rt ~ 

A= 
R, 1 

0 B= rt U = F0 
RI r2 r2 0 

RJ _!_ 0 
0 

R2 r3 rJ 

c = (0 0 1) Y= XJ 

Here, the process input ll has one element that is presented to the 
model via the column vector B. The process output Y has one element 
that is extracted from the state \·ector via the row vector C. The state 
of the process X has three elements. This is called the state-space 
approach to presenting the process model. 

To illustrate the flexibility of the state-space approach, consider 
the slightly modified process in Fig. 5-4 

The process input is now two-dimensional: the flows VI and v2 
replace the old single input flow F0• The process output is also rn·o­
dimensional. ·we are interested in the tank levels of tanks rn'o and 
three. What changes? The basic first-order matrix differential equa­
tion is unchanged: 

r=v, 
.!!_X= AX+ BU 
dt 

Y=CX 

+ jx, ~v 
L_--~==~~ ~ 2 

I I x, f, 
~-

1 

F1ouRE 5-4 Three independent tanks with different inputs and outputs. 
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The mabices Band C change to accommodate the two-dimensional 
process, input and output, which have become two-dimensional col­
umn vectors. The matrix A and the state X are the same. 

1 
0 0 

X=(~:) 
t't 

B=[~ ;] A= ~_!_ 
1 

0 U=(~) ~ t'2 t'2 

0 ~ 1 1 

~ t'3 t'3 

Y=CX 

c=(o 1 
0 0 ~) Y=(~:) 

Using the "across the row and down the column" matrix multi­
plication rule, the reader should check that these equations do indeed 
describe the process in Fig. 5-4. 

In terms of the matrices and vectors, the state-space formula­
tion appears to be first order. This suggests that there is a solution 
of the form 

for the homogeneous form of the state-space equation which is 

dXh =AX 
dt ,, 

Here, C is a column vector and a is a scalar. If this trial solution is 
inserted into the homogeneous part of the matrix differential equa­
tion the following results: 

d 
dt Ceat =ACe" 

(5-9) 

Since the rule for differentiating a matrix is simply the derivative 
of the elements in the matrix, Eq. (5-9) becomes 

Caeat = ACeat 

alC=AC 

or (5-10) 

{A-al)C= 0 
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As is shown in App. G, solving Eq. (5-10) yields the eigenvectors 
and eigenvalues of the matrix A. When the eigenvectors have nega­
tive real parts, the process represented by Eq. (5-7) is stable. 

Following the development in App. G, the eigenvalues of the A 
matrix can be determined by finding the values of A. that satisfy 

0 0 

0 =0 

0 

Therefore, the eigenvalues are equal to the poles of the transfer 
function G. 

It is important that the reader not move on until the material from 
this section (and App. G) has been thoroughly digested. 

5-2 Third-Order Process with Backflow 
Figure 5-5 shows an interconnected three-tank system with forward 
and backflow. If we treat each tank separately, the equations of Chap. 3 
derived from mass balances can be applied immediately. 

dX
1 

_ X
1
-X2 

pAtdt-U R.2 

,A dX2 _ X1 -X2 x2 -X3 
p .. ~dt- ~2 ~ 

(5-11) 
~ dX3 _ X2 -X3 X3 

p dt- ~ R
3 

Y=X3 

The variables X1, ~, and X3 represent the levels in each of the 
tanks. The net flow leaving the first tank is 
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FIGURE 5-5 A three-tank system with backflow. 

The A
1
,i = 1,2,3, represent the respective cross-sectional areas of 

the tanks and the R's represent the resistances in the connections 
betvveen the tanks and at the outlet. The quantities X

1
, X:-!, and X, are 

the states of the system and the last element of Eq. (5-11) says that the 
process output is the third element of the state. There are three equa­
tions and if all the equations were combined to eliminate the states, a 
third-order differential equation would be generated. 

Alternati\'ely let's mo\·e directly to the Laplace domain and do 
some algebra. 

- - XI- X., 
('A X "=U -----

1 I" Rl:-! 

(5-12) 

Soh·ing for Y yields the following: 

c, =(''A, R:-!, R,, A:-! R1:-! AI 

c:-! = (':-!(R, A:-! R1:-! A 1 +A:-! R1:-! R:-!, A 1 + AJ R:-! 3 R, A:-! 
(5-13) 

+A, R::!., R, AI +A, R, AI Rl::!.) 

c.= ('(AI Rl::!. +A::!. R::!., + R::!., AI+ A, R, + R, A::!.+ R, AI) 
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Before the reader gets too impressed, I did not do this algebra by 
hand. Rather, I used the Matlab Symbolic toolbox-the algebra is just 
too tedious and the opportunity to make an algebraic bookkeeping 
mistake is too large. Note that all of the coefficients c; in the denomi­
nator's polynomial are positive. 

As an aside, the Matlab script that I used to develop Eq. (5-13) is 

% interconnect.m 
clear 
syms Al A2 A3 R12 R23 R3 s I2 U rho 
syms X y z Zl Z2 R33 
syms Rl2Al Rl2A2 R23A2 R23A3 R3A3 
syms lam w 
syms Tl T2 T3 % declare these variables as symbolic 

% tanks with back flow 
S=solve( rho*Al*s*x+(x-y)/Rl2-U, rho*A2*s*y-((x-y)/ 
R12-(y-z)/R23) , rho*A3*s*z-((y-z)/R23-z/R3)); 
Zl=S.z; 
Zl=collect(Zl,s); 
pretty(Zl) 

Although I do not expect you to be adept at creating Matlab 
scripts, I do think you can browse the above code and get a feel for 
how simple it is to have the computer do the algebra. 

On looking at Eq. (5-13) carefully, one sees the combination 
pAR occurs frequently. This combination has units of seconds 
and could be considered a time constant of sorts. However, find­
ing the poles of the transfer function is not as straightforward as 
for Eq. (5-4). 

In any case, Eq. (5-13) shows that the highest power of the Laplace 
operator s is three, meaning that the equations describe a third-order 
system. Figure 5-6 shows the response of the three tank levels for a 
step in the input flow rate. The parameter values used were A1 = 0.1, 
A2 = 0.1, A3= 0.1, R12 = 10, R23 = 10, and~= 10. Note how the steady­
state levels are all different. 

Question 5-2 Why are the steady-state levels different? 

Answer At steady state all the flows must be the same. The net flow between 
tanks one and two is 

Since U is nonzero and positive, X1 must be greater than X2• A similar argument 
shows that X2 must be greater than X3• Since the levels drive the flows, they must 
also be different. 

The frequency domain behavior can be obtained in a manner 
similar to that for the three-tank process with no backflow and is 
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F1aURI 5-8 Step response of third-order process-three-tank system with 
backftow. 

given in Fig. 5-7. Note that, unlike the case with no backflow, the three 
amplitude curves do not converge to a common asymptote as the fre­
quency decreases because, as we mentioned in question 5-2, the steady­
state levels are not the same. 
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F1aURE 5-7 Bode plot for three tanks with backftow. 
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The State-Space Version 
Based on the reader's experience with studying the no-backflow case, 
he should be able to rewrite Eq. (5-12) as follows. (Actually, the reader 
might better off to try this as an exercise.) 

.!!...(~·]= dt 2 

x3 

1 

pA•R12 
1 

p~Rt2 

0 

1 

PA1Rt2 

-(p~R 12 + p~RJ 
1 

pA3R23 

Note that only the 1, 3 and 3, 1 positions in the A matrix are zero. 
The full second row shows that the second tank is coupled with the 
other two tanks. 

Question 5-3 If, for the three-tank system, the A matrix were diagonal, what 
would that mean physically and mathematically? 

Answer The absence of off-diagonal terms in the A matrix means that there is no 
cross coupling and that each tank acts completely independent of the others. A 
diagonal A matrix also means that, instead of a set of three connected differential 
equations, there are three separate first-order differential equations that can be 
solved separately using techniques already presented in this book. 

5-3 Control of Three-Tank System with No Backflow 
These two example processes have a potential for control problems 
because at high frequencies the phase lag approaches 270°. To make it 
even more interesting, let's try integral-only control which we know 
adds an immediate 90° of phase lag to whatever is being controlled. 
With integral-only control the open-loop transfer function for the 
three-tank process with no backflow becomes 

R3 1 1 I 
G(s) = G (s)G (s) = -------

P c ~s+1~s+l~s+1s 
3 2 1 

I 
G =­

c 5 
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- ~e -i(B3+B2+811) I 

- ~(-r3ro)2 + 1~(-r2ro)2 + 1~(-r1ro)2 + 1 m 

(5-14) 

The Bode plot of the process with (I= 1) and without integral 
control is shown in Fig. 5-8. Note how the addition of integral-only 
control raises the amplitude curve and lowers the phase curve. 

The critical points where the phase equals -180° or where the 
amplitude or overall gain equals unity (or 0 dB) can be found graph­
ically from Fig. 5-8. This suggests that if I= 1 were to be used, insta­
bility would result. (Can you convince yourself of this?) To get the 
magnitude plot down below unity, when the phase equals -180°, 
requires that we lower I significantly. Figure 5-8 suggests that we 
might want to lower the gain by at least as much as 50 dB or a factor 
of 0.003. It is a bit difficult to estimate this using the graph. 
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F1auRE 5-8 Bode plot for no backflow three-tank process with and without 
integral control. 
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Alternatively, a two-dimensional valley-seeking algorithm can be 
easily constructed to find the values of I and ro that minimize the fol­
lowing quantity 

( 
R3 I 1)

2 

J<-r3ro)2 + 1J(-r2ro)2 + 1J(-rtro)2 + 1 ro 

+( tan-•(~,<») + tan-1
( ~,<»)+tan-·<~,<»)+ i +If r (5-15) 

which is equivalent to solving Eq. (4-25) in Chap. 4 which is repeated 
here: 

or 

or 

or 

For this case, the quantity in Eq. (5-15) is minimized by I= 0.0089 
and/= ro/2tr= 0.00929 Hz. 

A Matlab script to carry out this minimization is 

clear 
close all 
xO=[l .001]; 
x=fminsearch('ThirdCrit',xO); 
disp('for Third Order process no back flow') 
disp( [ •k.c = ' mun2str(x(l)) ' fc = ' mun2str(x(2)) ] ) 
% get mag and angle at this w and k 
freq=x(2); 
k=X(l); 
R=lO; 
tau=lO; 
w=2*pi*freq; 
yl=k*R/(sqrt( (tau*w)A2+1 ))A3; %magnitude at wand k 
y2=-atan(tau*w)-atan(tau*w)-atan(tau*w); 



y3=R/(sqrt( (tau*w)A2+1 ))A3; %magnitude at wand 
kdisp(['at critical point mag= ' num2str(y1) ' angle 
(deg) = ' num2str(y2*180/pi)]) 
disp(['process ampl at critical freq = 'num2str(y3) ' ' 
num2str(20*log10(y3)) 'dB']) 
disp(' ') 
% now add integral-only to three tank process with no 
back flow 
clear 
close all 
x0=[1 .001]; 
x=fminsearch('ThirdCriti',xO); 
disp('for Third Order process with integral-only') 
disp(['I = 'num2str(x(1)) ' fc = 'num2str(x(2)) ]) 
freq=x(2); 
I=X(1); 
R=10; 
tau=10; 
w=2*pi*freq; 
y1=I*R/(w*(sqrt( (tau*w)A2+1 ))A3);% magnitude at wand k 
y2=-atan(tau*w)-atan(tau*w)-atan(tau*w)-pi/2; 
y3=R/(w*(sqrt( (tau*w)A2+1 ))A3); %magnitude at wand k 
disp(['at critical point mag= 'num2str(y1) 'angle 
(deg) = ' num2str(y2*180/pi)]) 
disp(['process ampl at critical freq = 'num2str(y3) 
num2str(20*log10(y3)) 'dB']) 
%-------------------
function y=ThirdCrit(x) 
% called by critpars.m 
k=X(1); 
W=X(2)*(2*pi); 
R=10; 
tau=10; 
y1=k*R/(sqrt( (tau*w)A2+1 )A3) - 1; 
y2=-atan(tau*w)-atan(tau*w)-atan(tau*w)+pi; 
Y=Y1A2+y2A2; 
%--------------------------------
function y=ThirdCriti(x) 
% called by critpars.m 
k=X(1); 
w=x(2)*(2*pi); %convert to radian freq 
R=10; 
tau=10; 
y1=k*R/(w*(sqrt( (tau*w)A2+1 ))A3) - 1; 
y2=-atan(tau*w)-atan(tau*w)-atan(tau*w)-pi*.S+pi; 
Y=Y1A2+y2A2; 

Note that the above script calls two functions, Thirdcrit and 
Thirdcriti. It also uses a built-in Matlab function fminsearch. 

Using the integral gain from these calculations for a simula­
tion would result in marginal stability, namely sustained but not­
growing oscillations. Decreasing the integral gain by a factor of 
0.5 to 0.004 provides a little better gain margin and produces a 
new Bode plot shown in Fig. 5-9. Note that the circles in this 
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F1aURE 5-9 Bode plot for no backflow thre~tank process, integral-only 
control with i = 0.004. 

figure show that when the phase is -180° the gain is less than 
unity (or 0 dB). Likewise, when the gain is unity the phase is 
greater than -180°. The time domain performance for this gain is 
shown in Fig. 5-10. 
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F1aURE 5-10 Integral-only control of thre~tank process without backflow. 
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F•auRE 5·11 Thre~tank process without backflow (0.004), adding 
proportional control (P = 0.1). 

The closed-loop performance can be improved by adding propor­
tional control. Using the above conservative integral gain of 0.004 
along with a guess for the proportional control gain of k = 0.1 gives 
the following performance in Fig. 5-11. 

Our approach to designing the PI control parameters that gives 
this acceptable performance is partially trial and error. We arrived 
at the critical integral gain of 8.9 x 10-3 and cut it in half before try­
ing it. Had we done the critical analysis with proportional-only we 
would have found a critical proportional control gain of approxi­
mately 0.8. Halving that parameter and using it with the above 
conservative integral control gain would have given performance 
with too little damping and we could have made adjustments from 
that point. So, the Bode analysis can give approximate starting 
points. 

Closed-Loop Performance In the Frequency Domain 
Figure 5-12 shows the Bode plot for the closed-loop system under 
integral-only control (shown in Fig. 5-10). Here the magnitude and 
phase of 

y GcGp 

S- 1+GcGp 
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F1aURE 5-12 Bode plot of no backflow, integral-only control, three-tank, 
closed-loop. 

is plotted against frequency. This figure is to be compared with Fig. 5-9 
which dealt with the open-loop Bode plot for G,G,. Figure 5-12 shows 
that for low frequencies the magnitude of the Y IS is near unity and the 
phase lag is relatively low. 

In other words, the process output Y follows the set point S fairly 
well at low frequencies, say below 5 x 1o-' Hz. As the frequency of S 
increases, the process output Y does not follow the set point as well­
there is an attenuation of Y relative S and there is phase lag. Physi­
cally, this is to be expected. At low frequencies, the inertia of the pro­
cess is not enough to keep the process output from effectively 
following the set point. However, at high frequencies, the inertia is 
such to cause the process output not to follow the set point. 

5-4 Critical Values and Finding the Poles 
In Chap. 3, the poles of the appropriate transfer function for the con­
trolled system could be found by solving Eq. (3-50) or 

(5-16) 

In these last couple of examples, we have shown that, after replac­
ing s with jm, Eq. (5-16) essentially becomes a complex equation 

(5-17) 
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where the dependence on the critical radian frequency m, is shown. 
(Note that Eq. (5-17) is a consequence of the expression el11 = -1 that 
we mentioned in App. B). Actually, Eq. (5-17) depends on both m, and 
the critical control gain k, (if the control is proportional-only). If the 
control is integral-only then the critical control gain would be 1,. Since 
Eq. (5-17) is now a complex equation, there are real and imaginary 
parts. Therefore, there are two equations in the two unknowns, 
m, and k,. This argument suggests that the pole-finding approach 
and the Bode plot approach are basically the same. 

5-5 Multitank Processes 
Expand the concept presented in Fig. 5-1 toN tanks, each with no 
backflow, and specify that all N tanks have the same volume and that 
the interconnecting piping is the same. Therefore, all tanks will have 
the same time constant, say 1.0 after scaling, and the same resistance 
to flow. The ith tank will be described by 

dx. 
r-' +x. =x. 1 dt I 1-

i = 1, ... ,N 

where x0 will be the inlet flow rate and X; will be the flow rate leav­
ing the ith tank. The step-change response of the tanks is shown in 
Fig. 5-13. 

Look at the first curve to the left of the graph for N = 1. The 
response reaches a value of 0.63 at t = 1 which is the time constant of 
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F1auRE 5-13 Step response of N tanks-each tank time constant = 1.0. 
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the single-tank process. The next curve on the right is for N = 2 and 
the response reaches a value of 0.63 at about t = 2. Note that as N 
increases the response curves take on a sharper inflection and the 
time at which the process output passes the value of 0.63 increases. 
For large N, the process appears to have a significant dead time even 
though there is no explicit dead time in the model. 

Now, repeat this thought experiment except make the time con­
stant of each tank decrease as N increases such that the total effective 
time constant is held constant at 1.0, for each N. 

dx. 
T--1 +x. =x. 1 I df I 1-

1 
T-=-

1 N 

i = 1, ... ,N 

The step-change response of this system is shown in Fig. 5-14. 
Note that the process output of all the tanks tends to pass 0.63 at 

a time of 1.0 and as N increases the inflection point becomes sharper. 
In the limit of an infinite number of tanks, the step response will 
become a sharp step at t = 1.0 identical to that of the pure dead-time 
process with a dead time of 1.0. 

The Bode plot given in Fig. 5-15 is an extension of that in Fig. 5-3. 
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F1auRE 5-15 Bode plot of multitank system. 

Matching the N-Tank Model with a FOWDT Model 
The FOWDT model introduced in Chap. 4 has quite a bit of flexibility 
and is simple to use. Figure 5-t6 shows how a 20-tank model with 
each tank having a time constant of t/20 can be approximated by a 
FOWDT having a time constant of 0.2 and a dead time of 0.732. 

t 
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FlauAE 5-16 Matching a FOWDT model with N-tanks in the time domain. 
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F1auRE 5-17 Matching a FOWDT model with multitank system in the 
frequency domain. 

For a complementary point of view, the two models are compared 
in the frequency domain in Fig. 5-17. The comer frequencies of the 
two models are approximately the same but for higher frequencies 
the amplitude drops off much more quickly for the 20-tank model. 
This makes sense because the FOWDT model is basically first order 
so the magnitude drops off at 20 dB/decade while the other model's 
attenuation rate is 20 times that. On the other hand, the phase plot 
shows that the FOWDT model with the true dead time has a much 
higher drop-off rate. Furthermore, we know that each of the tanks in 
the 20-tank model contributes 90° of phase so the maximum phase 
lag at infinite frequency will be 1800°. 

For simulation purposes and control algorithm testing, the 
FOWDT model might provide a simple computational approxima­
tion to the multiple tank process. 

5-6 Summary 
The toolkit of model processes has been expanded to include multi­
ple-stage systems. The mathematical toolkit has been expanded to 
include matrix methods to simplify and enhance the mathematical 
bookkeeping and to pave the road to more methods using state-space 
concepts. In the next chapter our process toolkit will be enlarged to 
include yet another model process-one that rings. 



This page intentionally left blank 



CHAPTER 6 
An Underdamped 

Process 

6-1 The Dynamics of the Mass/Spring{Dashpot Process 
All of the example processes mentioned so far have been "over­
damped" in that the open-loop step response does not generate over­
shoot or oscillations of any kind. The first-order process really has no 
choice-its behavior is dictated by its gain and time constant. The 
three tank third-order process has an inflection point in the step 
response but it will never oscillate or "ring" when subjected to a step 
change in the process input with no feedback control. These over­
damped processes are typical of most of the real-live industrial pro­
cesses that I faced for most of my career. However, near the end I got 
involved in some new photonics processes that were underdamped 
and posed many new challenges. 

When we close the control loop on the overdamped processes we 
could get underdamped and even unstable behavior when the feed­
back was aggressive but the processes by themselves could not exhibit 
this kind of performance. 

Not so with the so-called mass/ spring/ dash pot process shown in 
Fig. 6-1. To derive an equation that describes its behavior one needs 
to apply Newton's second law of motion: 

(6-1) 

The sum of the forces acting on the mass causes the mass to accel­
erate. The displacement of the mass is given by y. The first compo­
nent of the forces is due to the spring that applies a force proportional 
to the extension of the mass's position y, the process output, from 
equilibrium. The spring constant is k. The direction of this force, -ky, 
is opposite to the direction of the mass's movement. The second force 
is the friction of the dashpot. It acts in proportion to the speed of the 
mass and is also in a direction opposite to the motion of the mass, as 

145 
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u 

Dashpot 

F1auRE 6-1 Massjspring,tdashpot process. 

in -B(dy Jdx). The coefficient of friction is B. Finally, the third compo­
nent is the applied external force U, which is also the process input. 

With this in mind, Eq. (6-1) becomes 

d2y dy 
m dt2 = -8-;u- ky + gU 

By convention, Eq. (6-2) is rewritten as 

d2y dy - 2 di2 + 2{co, dt+ ~ y- gco, U 

co= rr " vm 
B 

{= 2Ji(m 

(6-2) 

(6-3) 

where the damping factor { and the natural frequency C0
11 

appear as 
functions of the mass, spring constant, and coefficient of friction. When 
the damping factor { varies between 0 and 1 the behavior is under­
damped. When { = 1 the behavior is critically damped and when { > 1 
the behavior is overdamped. The natural frequency is effectively the 
frequency of the "ringing'' that the mass experiences after a distur­
bance. A higher natural frequency means a faster response and higher 
frequency ringing. The natural frequency has units of radians/ sec and 
is related to f,, the frequency in cycles/ sec, as follows: 

co"= 21r /, 

Alternatively, Eq. ( 6-3) can be written as 

2m 
T=-

8 
B 

{= 2Ji;i 
(6-4) 

Figure 6-2 shows the step-change response of the mass/spring/ 
dashpot process for various values of the damping coefficient. 



A n U n d e r d a m p e d P ro c e s s 147 

Time 

F1auRE 6-2 Step response of massjspringjdashpot process-typical 
second-order Bode plot; g = 1, ron = 100. 

Question 6-1 How do the physical parameters of the mass/spring/dashpot 
process relate to your intuition? 

Answer The damping factor is proportional to the coefficient of friction B. Thus, 
as the dashpot provides more resistance, the damping factor increases and the 
response becomes less oscillatory. However, the time constant will decrease. 

The damping factor is inversely proportional to the spring constant k. But, the 
natural frequency is directly proportional to the spring constant. Therefore, as the 
spring gets stiffer (ask increases) the damping factor decreases and the natural 
frequency increases. This means there will be more underdamped behavior and 
the frequency of the oscillations will be higher. The time constant is unaffected 
by the spring constant. 

FinaUy, both the damping factor and the natural frequency are inversely 
proportional to the mass but the time constant is directly proportional to the mass. 
Thus, as the mass increases, the natural frequency decreases and the damping 
decreases. So, with more mass the process will exhibit more underdamped 
behavior, the frequency of the oscillations will decrease and the time constant 
will decrease. That the damping will increase with less mass may be a little 
counter-intuitive. 

To help get a feel for this consider Fig. 6-3 where the spring constant and 
the dashpot friction are kept constant but the mass is varied. Here the spring 
constant k is 5 and the coefficient of friction B is 1. As the mass increases, the 
natural frequency and the damping coefficient both decrease giving a more 
drawn-out underdamped behavior shown in Fig. 6-3. Figure 6-4 shows how the 
dynamics change with the spring constant and Fig. 6-5 shows the same thing 
with the coefficient of friction. 
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F1auRE 6-5 Effect of friction on dashpot dynamics. 

6-2 Solutions In Four Domains 

6·2·1 Time Domain 
As is our usual approach, we could attempt to solve Eq. (6-3) by try­
ing a solution for the homogeneous part of the form: 

Yh =Ce"' 

This would generate a quadratic equation for a, which would 
lead to a homogeneous solution that had two exponential terms. For 
the time being this approach will be sidestepped. 

6·2·2 Laplace Domain Solution 
Alternatively, let's go directly to the Laplace domain and take the 
Laplace transform of Eq. (6-3), as in 

(6-5) 
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The poles of the transfer function are located at the roots of the 
quadratic in the denominator: 

If the damping factor {is less than unity, these poles become com­
plex conjugates and the solution will contain sinusoidal components 
suggesting underdamped behavior, as in 

where Euler's formula e"+ib = e"[cos(b) + jsin(b)] can be used to bring 
in the sinusoids. 

Figure 6-6 shows how the roots (or poles) move in the s-plane as 
the damping factor changes from 0.1 to 1.1. For this case, the natural 
frequency was kept constant at 100 Hz. When { = 1.1, the poles are 
both real but when { = 0.1 both poles nearly lie on the imaginary axis. 
When { = 1 the poles are the same and real. 

6·2·3 Frequency Domain 
Letting s = jro in Eq. (6-5), which gives 

y(jro) _ gro; 
U(jro) - (jro)2 + 2{ro" (jro) + ro! (6-6) 
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F1auRE 8-8 Poles of seconc::k»rder model; ~ = 0.1 to 1.1. 
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F1cauRE 8-7 Typical second-order Bode diagram showing effect of damping. 

Figure 6-7 shows the Bode plot constructed for the magnitude 
and phase from Eq. (6-6). Note that as the damping decreases a peak 
develops in the amplitude plot suggesting the start of a resonance at 
the natural frequency, which for this example is at 1.0 rad/ sec or 
O.t59 Hz. Therefore, lightly damped systems will have oscillations or 
"ringing" at the natural frequency which will die off in time. In the 
phase diagram, as the damping decreases, the slope of the phase 
curve increases sharply at the natural frequency. Note that the maxi­
mum phase lag is t80°. 

6-2-4 State-Space Representation 
Let's start with the time domain representation: 

(6-7) 

we construct two elements of the state as 
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Substituting these in Eq. (6-7) generates two first-order equations 

dx1 
dt=x2 

dx2 2 _ 2 Tt + 2{conx2 +con x1 - gco,. u 

These two equations can be written in matrix form as follows: 

A-( 0 1 ) - -co; -2{con 

(6-8) 

The eigenvalues of the A matrix are the values of A. that satisfy the 
following equation: 

I( 0 1 ) ;t(1 0)1- 0 -co; -2{co,. - 0 1 -

I(~ -~.-!JI=O 
(-A.)(-2{co,- A.)-(1)(-co;) = 0 

Jt2 + 2{co,.A.+to; = 0 

Therefore, the poles of the transfer function in Eq. (6-5) are the 
eigenvalues of the A matrix in Eq. ( 6-8). 

6·2·5 Scaling and Round-Off Error 
The quadratic equation whose roots yield the eigenvalues contain 
terms that have widely varying numerical values and this can provide 
round-off errors in the computation of simulations and Bode plots. To 
address this, the time and the dependent variables can be scaled. To 
make the bookkeeping less messy we start with primes to indicate the 
time t' and the dependent variable y'. Our starting point is 

d2yl dy' 2 I - 2 
dt'2 + 2{con tit'+ cony - gco, u 
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Introduce a new independent variable t' = t I m, and a new 
dependent variable y' = gy. Applying these substitutions gives 

The scaled process has a natural frequency and a gain of unity. 
Note that if the natural frequency is 1.0 rad/ sec then the natural fre­
quency will also be 

1.0 rad/sec f- = 0.159 cycles/sec 
- 2n rad/ cycle 

The equation yielding the eigenvalues becomes 

and the eigenvalues or poles become 

A,,~ =-{±~{2 -1 =a±jb 

The next batch of computations will deal with the scaled process. 

6-3 PI Control of the MassfSpringfDashpot Process 
You have been exposed to attempts to control the first-order process 
(the single water tank) and the third-order process (the three-tank 
process). The approach has been to feed the process output back and 
subtract it from the set point and generate an error signal. Then an 
adjustment to the process input was developed based on signals pro­
portional to the error and proportional to the integral of the error. The 
time domain has been used to demonstrate the effectiveness (or lack 
thereof) of these methods. The frequency domain has been used to 
get an estimate for one of the control gains by making sure that the 
open-loop combination of the process and controller, represented by 
GPG" had sufficient gain margin when the phase was -180° (or suffi­
cient phase margin when the gain was unity). 

For the mass I spring/ dashpot process with proportional-integral 
control GpGc looks like 

G G = 1 ks+l 
P c s2 + 2{ s + 1 s 
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The real negative zero at s =- I/k from Gc will not cancel either of 
the complex conjugate poles at -~ ± ~~2 

- 1 from GP. This suggests 
that proportional plus integral control may not have much impact 
on the complex poles that produce the underdamped behavior. The 
presence of these complex conjugate poles poses a different control 
challenge relative to that posed by the single water tank and the 
three-tank process. 

A more detailed approach will be given to tuning PI control algo­
rithms in Chap. 11 but for control of the dashpot process with ~ = 0.1 a 
crude trial and error approach will suffice here. First, the proportional 
gain k was chosen to be unity because the process has unity gain and a 
good rule of thumb suggests that the process gain and the control gain 
be reciprocals. The integral gain was another matter. We started with 
conservative values of I and increased them until a semblance of accept­
able behavior was arrived at with I= 0.3. 

Figure 6-8 shows the response to a step in the set point. Note that 
the average value tends to be the set point but the oscillations take a 
while to damp out. Figure 6-9 shows that open-loop Bode plot for 
GpGc. Note that the low frequencies are amplified and that the phase 
changes dramatically at the natural frequency of 0.159 Hz. For fre­
quencies beyond the natural frequency, the phase lag stays relatively 
constant in the neighborhood of 180°. 

Figure 6-10 shows the closed-loop Bode plot for (G G)/[1 +G GJ 
Note that again there is a dramatic change near the nahuai frequ:Ocy. 
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F1cauRE 6-8 Set-point step-change response under PI control. 
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F1cauRE 6-11 Error transmission curve for massjspringjdashpot with PI 
control. 

The error transmission curve for this case is shown in Fig. 6-11. 
Note how disturbances with frequencies below the natural frequency are 
all attenuated by about 6 dB while those with frequencies above the natu­
ral frequency are passed with neither attenuation nor amplification. 

6-4 Derivative Control (PID) 
The proportional-integral-derivative (PID) control algorithm has an 
additional term proportional to the derivative of the error: 

U(t) = K,( e(t)+ 1! due(u)+ Dd~)) 

li(s) = K, (e(s) + ~i(s) + Dsi(s)) 

= K,( 1+~+ os)e(s) 

U(s) = G = K (1 !_ D ) = K s +I+ Ds2 
-() c c + + s c e s s s 

We have ignored the initial value of U(t) and the presence of the 
error term in the derivative-both problems will be dealt with in 
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Chaps. 9 and 11. Furthermore, an overall control gain Kc has been intro­
duced to be consistent with wide usage among control engineers. 

Unlike the PI control algorithm, PID has two zeros in the numera­
tor of Gc 

U(s) = G = K s +I+ Ds
2 

e(s) c c s 

-1±~ 
sl' s2 = 2D 

which can be complex conjugates if 4DI > 1. Therefore, these poten­
tially complex zeroes in G c might ameliorate the presence of the com­
plex poles in G,: 

G G = 1 K s+l +Ds
2 

P c s2 +2{s+1 c s 

Thning the PID algorithm for the dashpot process was done by 
trial and error. We kept the proportional and integral gains of the 
previous simulation for PI and started with a conservative value for 
D and increased it until satisfactory control was obtained with D = 4.0. 
Figure 6-12 shows the poles of G and the zeroes of Gc for the PID 
controller and for the PI controller used in Sec. 6-3. Figure 6-13 
shows the poles of closed-loop transfer function (G,GJ/[1+G,Gc1· 
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F1caURE 8-12 Poles of process and zeroes of PI and PID controller. 
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Note how the addition of the derivative component brought the 
closed-loop poles down and away from the imaginary axis. 

Figure 6-14 shows the response to a step in the set point. 
Comparing Figs. 6-14 and 6-8, shows that the addition of derivative 
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fiGURE 6-14 Set-point step-change response with PID control. 
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F1aURE 6-15 Open-loop Bode plot under PID control-mass/springfdashpot 
process with derivatives. 

appears to have solved the problem of the oscillations. But at what 
cost? There are two set-point changes in Fig. 6-14. The first takes 
place at timet= 0 and the Matlab simulink simulation does not 
detect the full impact of that change. The second step at time 
t = 15 shows the effect of the derivative of a step: the control 
output goes off scale in both directions. In reality this output would 
be clamped at 0% and 100% of full scale but the extreme move­
ment should give the reader pause on two counts. First, the 
extreme activity of the controller output might cause ancillary 
problems and second, one must be a little careful when carrying 
out simulations. 

The Bode plot for the open loop shows how the presence of the 
derivative radically changes the shape of the phase curve such that 
the phase margin is quite large. The closed-loop Bode plot is shown 
in Fig. 6-16. Compare this plot with Fig. 6-11 for PI control. Figure 6-17 
shows the error transmission curve. Compared to the error transmis­
sion curve for PI in Fig. 6-12, the addition of derivative changes the 
ability of the controller to attenuate low-frequency disturbances. The 
high-frequency disturbances are passed without attenuation or 
amplification. 
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6-4-1 Complete Cancellation 
Perhaps the reader is wondering: what would happen if the zeros of 
the PID controller were chosen to exactly match those of the process? 
That is, what if: 

-1±~ =-{±~{2-1 
1 

D=-
2~ 

1 
I=-

2~ 

This would cause the open-loop transfer function to become 

G G = 1 K s +I+ Ds2 Kc 
P c s2 + 2{ s + 1 c s s 

and the closed-loop transfer function would be 

Kc 
s - 1 

--K-- s +
1 1+-c 

S Kc 

which means that the response to a step in the set point would look 
like a unity-gain first-order process with a time constant of 1 I Kc. 

In general, using controller zeros to cancel process poles can be 
dangerous. If a zero in the controller is used to cancel an unstable 
process pole, problems could occur if the cancellation is not exact. For 
this case, the perfect cancellation values for D and I are much larger 
than those used in the simulation. As an exercise you might want to 
use the Matlab script and simulink model that I used to generate 
Fig. 6-14 to see what happens when these "perfect cancellation" val­
ues are applied. 

6-4-2 Adding Sensor Noise 
At this point, as a manager, you might be impressed to the point 
where you would conclude that the addition of derivative was the 
best thing since sliced bread (aside from the preceding comments 
about the extreme response to set-point steps). However, when the 
process output is noisy, troubles arise. For the purposes of this simu­
lation exercise, we will add just a little white sensor noise (to be 
defined later) to the PI and the PID simulations. Figures 6-18 and 6-19 
show the impact of adding a small amount of sensor noise on the 
process output signal for PI and PID. The added noise is barely 
discernible when PI control is used but when the same amount of 
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process noise is added to PID control there is quite a change in the 
control output. The addition of the derivative component to the con­
trol algorithm still drives the process output to set point without 
oscillation, but there is a tremendous price to pay in the activity of the 
control output Also, note the spike in the output at t = 30 when the 
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Aa .. 8-20 PID control of a set-point step In the face of process output 
noise. 

set point is stepped. This excessive activity might wear out the con­
trol output actuator quickly and/ or it might generate nonlinear 
responses in the real process that in tum might lead to unacceptable 
performance. Furthermore, the range of the control output is ±200, 
which is to be compared to [0, 2] for PI controL 

Figure 6-20 shows that the simulated reaction to both the noise 
and the step in the set point for the case where the slew rate of the 
input to the continuous differentiator was limited to 1.0 unit per unit 
time. In real life there would be physical limitations depending on the 
hardware involved but in any case one must be careful using the 
derivative component. 

8-4-3 RlterlnJ tile Derivative 
The moral of this short story is to be careful about adding derivative 
because it greatly amplifies noise and sudden steps. Adding a first­
Older filter (with a time constant of 1.0) to the derivative partially 
addresses the problem as shown in Fig. 6-21. The outrageous control 
output activity has been ameliorated but there is still ringing. 

Using the Laplace transform is the easiest way to present the fil­
tered derivative: 

U(s) ( I s ) _() =Gc: =Kc: 1+-+D--1 e s s -r0s+ 
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fiGURE 6-21. PlfD set-point step-change response with added noise. 

Note the presence of the 1 I ( r 0 s + 1) factor in the derivative term. 
For our simulation, the filter time constant r 0 was chosen to be equal 
to 1 I co, = 1. Since this algorithm will most likely be implemented as 
a digital filter, its detailed discussion will be deferred until the dis­
crete time domain is introduced in Chap. 9. However, why do you 
suppose that modifying the derivative term by the factor: 

has the necessary beneficial effect? This factor (or transfer function) is 
the same as that for a first-order process with unity gain. We know 
from Chap. 4 that it will pass extremely low-frequency signals almost 
unaffected while attenuating high-frequency signals. The perfor­
mance of the PID algorithm with a filter (or PlfD) is anchored by this 
ability to attenuate the higher frequency part of the sensor noise. 

Some insight into this problem may be gained by studying the 
Bode plots of Gc for the PI, PID, and PlfD algorithms in Fig. 6-22. All 
three algorithms deal with low-frequency disturbances similarly. PI 
does nothing with disturbances having frequencies above the natural 
frequency as indicated by the magnitude gain of 0 dB in Fig. 6-22. PID 
aggressively addresses higher-frequency disturbances-in fact, the 
higher the frequency, the more aggressive the action. PlfD applies a 
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F1auRE 6-22 Bode plot for PI, PI D. and PlfD controllers; Kc = 1, I= 0.3, 
0=4, T=1. 

relatively constant gain of about 14 dB to disturbances greater than 
the natural frequency. 

As an aside, Fig. 6-23 shows the Matlab simulink block diagram 
that I used along with a Matlab script to generate the graphs for this sec­
tion. It is not my goal to show you how to use Matlab and simulink 
but you, as a manager, should be aware that these tools are somewhat de 
facto accessories to any control engineer that has to do computations. 
You might want to study the block diagram. First, there is one block for 
the dashpot process. Second, the PlfD algorithm is composed of several 
blocks, all of which should be fairly straightforward. 

6-5 Compensation before Control-The Transfer 
Function Approach 

Since the dashpot process has given us so much trouble, another 
approach will be taken in this section. We are going to modify the 
process by feeding the process variable and its first derivative back 
with appropriate gains. The gains will be chosen to make the modi­
fied process behave in a way more conducive to control. 

Without compensation, the dashpot Laplace transform from 
Eq. (6-5) is 

(6-9) 
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Remember that the s operator takes the derivative of what fol­
lows it. Solving Eq. (6-9) for the second derivative of y, namely s2y(s) 
or d2y/dt2 or y", gives 

s2y(s) = -2{ron s y(s)- ro~ y(s) + gro; ii(s) 

In the time domain, Eq. (6-10) would look like 

(6-10) 

Note that ron and g have reappeared but remember that t and y 
can always be scaled to make both quantities unity. 

The block diagram of Eq. (6-10) is given in Fig. 6-24. This block 
diagram is a little more complicated than that given in Fig. 3-10 in 
Chap. 3 for the first-order model. The reader should make sure she 
understands how Fig. 6-24 works before proceeding. Start where 
you see s2y(s) in the diagram. This signal passes through one inte­
grator represented by the #1 block containing 1/s. As a result, sy(s) 
or dyfdx or y' is generated. This signal is then passed through 
another integrator (block #2) and y is generated. Each of these sig­
nals is fed back to summing points where they add up to form s2y(s), 
which is consistent with Eq. (6-10). Therefore the dashpot process 
can be considered as having internal feedback loops even when no 
feedback controller is present, just as with the first-order process 
back in Chap. 3. 

Why use this block diagram form, with all the internal details 
exposed, rather than the simpler version where just one block repre­
sents the process and the overall transfer function? To feed y' back, 
we need to gain access to it. The overall transfer function block dia­
gram does not provide a port for this signal so the ''bowels" of the 
process have to be revealed. 

#1 #2 

u y(s) 

F1auRE 6-24 The dashpot model before compensation. 
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FIGURE 6-25 The dashpot model with states fed back. 

Figure 6-25 shows a modified block diagram where y and dy fdx are 
fed back again, this time with gains ~Y and KY .. Note that no control is 
being attempted yet. We are feeding these sigltals back to create a new 
modified process that will have more desirable properties. Everything 
inside the dotted line box represents the structure of the original process. 
All the lines and blocks outside the box represent the added compensa­
tion. The Laplace transform of the modified system is 

(6-11) 

The logic behind the structure of this block diagram is the same as 
that for the unmodified process shown in Fig. 6-24. Three gains, 
K:v, K:v', and Ku have been introduced. 

The values for these gains will be chosen so that the modified 
process looks like a desired process shown in Fig. 6-26. The Laplace 
transform for the desired system is 

u 

FIGURE 6-26 The desired dashpot model. 
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u 

u 

F1auRE 6-27 Choose Ku• Ky. Ky to make the compensated and desired 
models identical. 

Note that this desired process has the same structure as the origi­
nal process but the parameters, g0 , { 0 , and co0 are yet to be speci­
fied. We will specify the values and then find the values of 
K:v, K:v,, and Ku that will make them happen (Fig. 6-27). As you 
might expect, we would wantthedampingparameter {0 to be greater 
than that of the original process so that there is less ringing. Likewise, 
we might want to make the natural frequency co0 greater than con so 
that the response would be quicker. To make life simple, g0 is chosen 
to be unity. 

To find the values of K:v, K:v,, and Ku after having picked values 
for , 0 , co0 , and g0 , one compares Eqs. (6-11) and (6-12), as in 

s2y = Kugco!U +(K:vgco! -co!}9+(K:v-gco! -2{corr)s9 

s2y(s)= g0 cof,U -cof,y(s)-2{0 co0 sy(s) 
(6-13) 

Comparing the coefficients of U, y, and sy gives the following 
expressions. 

Kugco! = Korob 

K gco2 -co2 =-ai y n n D 
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which can be solved for KY, KY,, and Ku as in 

(6-14) 

This completes the construction of the modified process. There is 
one nontrivial problem remaining-how does one get values of 
dy / dx or y' so it can be fed back? For the time being we will assume 
that y' is available by some means. In Chap. 10, the Kalman filter will 
be shown as one means of obtaining estimates of y and y' or, in gen­
eral, the state of the process, especially in a noisy atmosphere. Alter­
natively, we might try generating dy I dt or y' by using a filtered 
differentiator in a manner similar to what was used in generating the 
PID single in the Sec. 6-4. 

Figure 6-28 shows how a process with g = 1.0, co,= 1.0, and 
{ = 0.1 can be compensated such that g0 = 1.0, co0 = 1.5, and 
{ 0 = 0.7. Before one gets too excited by these results, remember that 
the compensation algorithm makes use of complete knowledge of the 
state, that is, y andy'. The estimate of the state is assumed to be perfect. 
How one actually estimates the state will be deferred until Chap. 10. 

1.8 r----r---r--~-~----.-..,....-----,.----r:=:::::t:;:;:==:J=::::;, 

1.6 

1.4 

::s 1.2 

t 1 
0 

Ia 
(U 0.8 e 

Q... 0.6 

0.4 

0.2 

00 

. . 

\. 

5 10 15 

g=1: 

co,= 1 . ..... 

...... " 

~=0.1 

20 25 30 
Time 

F1auRE 6-28 Effect of compensation. 
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FacauRE 8-29 Effect of compensation in the face of noise using a filtered 
derivative for y'. 

If sensor noise is added to the process output and a filtered deriv­
ative is used to estimate y' then the response to a step in the set point 
at t = 2 is shown in Fig. 6-29. The filter has a time constant of 1.0 Oust 
as it did for the PlfD case in Sec. 6-4). The ringing appears to be 
removed but the 11hash11 riding on the process output appears to be 
amplified slightly. 

6-6 Compensation before Control­
The State-Space Approach 

The state-space model for the dashpot process is 

M:}(-~ -~m.)(:}(g~)u 
dx 
-=Ax+BU 
dt 

sx=Ai+Bii (6-15) 
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sX=AX+BU 
- 1 - -X= 5 (AX+BU) X= (xt) = (Position) 

x2 speed) 

FIGURE 8-30 A state-space block diagram. 

A block diagram for this model is shown in Fig. 6-30 and should 
be easy to follow if you understand the block diagram in Fig. 6-24. 
This block diagram has the same structure as that for the first-order 
model in Fig. 3-10 except that the signals are vectors of dimension two. 
The state vector contains the position and the speed of the mass, the 
same signals that we referred to as y and y' in the previous section. 

As in the previous section, the state will be fed back such that a 
modified process is constructed, as in Fig. 6-31. This block diagram is 
general in the sense that it applies to any process model that can be 
described by the state-space equations, not just the dashpot model. 
There is only one integrator but it acts on the vector x rather than a 
scalar as was the case in Sec. 6-5. The gain, Kx = l kxt kx2 I, a row vec­
tor, has two components while the gain K" is a scalar. The equation 
describing the behavior of the modified process is 

u 

si = K"BU + KxBi+ Ai 

=(A+ KXB)i+ KUBU 

~------------~ Kx 

FIGURE 8-31. Compensation in state space. 

y 
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or 

These three gains will be chosen to make the modified process 
behave as a desired process defined by 

:,(~)=(~ -~:mJ~)+(g~)u 
s(~)=(~ -~:wJ::)+(g~)a 
dx 
Tt=A0 x+B0 U 

si = A0 i + B0U 

Ao =( 0 
2 

1 
) -wo -2,oWo 

(6-17) 

To make Eqs. (6-16) and (6-17) match, the following must be 
true: 

( o 1 ) + ( o )Lk k J _ ( o 1 ) 
-~ -2'(1)" g~ xt x2 - -w5 -2,oWo 

or 

(6-18) 

This single matrix equation yield two scalar equations: 
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The following must also be true: 

which yields (6-19) 

K,gto! =ga>b 

Equations (6-18) and (6-19) are similar to Eq. (6-14). 
Depending on your comfort level with the different mathematical 

tools, you might agree that the state-space approach is a little less 
cluttered and more general than the transfer-function approach. Later 
on, when methods of estimating the state are presented in Chap. 10, 
the strength of the state-space approach will become even more 
apparent. 

6-7 An Electrical Analog to the Mass /Dashpot/Sprlng 
Process 

Consider the RLC circuit in Fig. 6-32 where R refers to resistance of 
the resistor, L the inductance of the coil, and C the capacitance of the 
capacitor. The applied voltage is V and it will also be the process 
input U. The voltage over the resistor is iR where i is the process out­
put Y. The voltage over the capacitor is 

1 t 
C Ji(u)du 

0 

and the voltage over the inductor is 

v--+......___ 

T 
F1auaE 8-32 RLC circuit. 

L di 
dt 

R 

L 
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These three voltages have to add up to match the applied 
voltage. 

V "R 1 It "( )d L di 
=' +Co' u u+ dt (6-20) 

Eq. (6-20) could be differentiated to get rid of the integral. Alter­
natively, the equation could be transformed to the Laplace domain 
yielding 

- - i -V=iR+-+Lsi 
Cs 

The output/input transfer function is 

1 
i Y 1 Cs t 5 

V = Q = G = R + _1_ + Ls = LCs2 + RCs + 1 = 52 + R 
5 
+ _1_ 

Cs L LC 

This expression looks similar to Eq. (6-5), which is repeated 
here as 

This suggests that 

which further suggests 

Therefore, the RLC process has the potential of behaving in an 
underdamped manner similar to that of the mass/dashpot/spring 
process. For example, with R, C, and L chosen such that~ < 1, the step 
response will exhibit damped oscillations with a frequency of co,. 

Question 6-2 Can you conceive of an electrical circuit that behaves similarly to 
the first-order process introduced in Chap. 3? 
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Anlwer Construct a simple RC circuit by shorting the inductor in Fig. 6-32. The 
resulting circuit is described by 

V = iR+~ j i(u)du 
0 

- - i V=iR+­
Cs 

Alternatively, construct a simple RL circuit by shorting the capacitor in 
Fig. 6-32. The resulting circuit is described by 

V 'R Ldi =I+-
dt 

6-8 Summary 
This chapter has been devoted to just one process, the mass/spring/ 
dashpot process, because it has the unique characteristic of ringing 
in response to an open-loop step input. In trying to control this pro­
cess the derivative component was added to the PI algorithm. After 
showing that this modification could deal with the ringing but was 
susceptible to sensor noise, a derivative filter was added and the 
PIID algorithm was conceived. 

In an alternative approach, the process was modified by state 
feedback, after which it presented attractive nonringing dynamic 
behavior. The compensation was developed using transfer functions 
and state-space equations. To feed the state back, the mass's speed 
had to be estimated. A filtered derivative was used to provide that 
estimate. In general, the state may consist of other signals needing 
something other than filtered differentiation. In this case Chap. 10 
will show that the state-space approach along with the Kalman filter 
will be needed. 



CHAPTER 7 
Distributed 
Processes 

Most of the example processes presented so far have been 
lumped. That is, the example processes have been described 
by one or more ordinary differential equations, each repre­

senting a process element that was relatively self-contained. Further­
more, each ordinary differential equation described a 11lump." A 
process with dead time does not yield to this 11lumping" approach 
and can in some ways be considered a distributed process which is 
the subject of this chapter. 

7-1 The Tubular Energy Exchanger-Steady State 
Consider Fig. 7-1 which shows a jacketed tube of length L. A liquid 
flows through the inside tube. The jacket contains a fluid, say steam, 
from which energy can be transferred to the liquid in the tube. To 
describe how this process behaves in steady state, a simple energy 
balance can be made, not over the whole tube but over a small but 
finite section of the tube. Several assumptions (and idealizations) 
must be made about this new process. 

1. The steam temperature ~ in the jacket is constant along the 
whole length of the tube. The tube length is L. The steam 
temperature can vary with time but not space. 

2. The tube is cylindrical and has a cross-sectional area of 
A = trD2 I 4 where D is the diameter of the inner tube. 

3. The liquid flows in the tube as a plug at a speed v. That is, 
there is no radial variation in the liquid temperature. There is 
axial temperature variation of the liquid due to the heating 
effect of the steam in the jacket but there is no axial transfer of 
energy by conduction within the fluid. This is equivalent to 
saying the radial diffusion of energy is infinite compared to 
axial diffusion. The temperature of the flowing liquid 
therefore is a function of the axial displacement z, as in T(z). 

171 
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Steam in jacket 

Flow Q 

I I 
:=0 : + ~: : = L 

fiGURE 7-1 A jacketed tube. 

4. There is a small disc placed at some arbitrary location z along 
the tube that has cross-sectional area A and thickness ~z. This 
disc will be used to deri,·e the model describing equation. 

5 The liquid properties of density p, heat capacity c,,J thermal 
conducti,·ity k are constant (independent of position and of 
temperature). 

6. The flux of energy between the steam in the jacket and the 
flowing liquid is characterized by an O\'erall heat transfer 
coefficient U. 

A thermal energy balance O\'er the disc of thickness~::: at location 
::: will describe the steady-state behavior of the tube exchanger. The 
result is gi\'en in Eq (7-1) which is boxed below. You might want to 
skip to that location if deri\'ations are not your bag. Otherwise, the 
derivation proceeds as follows 

Energy rate in at z due to convection: 1.'A{>C
1
,T(z) 

Energy rate out at:::+~::: due to convection: 1.'Af>C,.T(z + ~z) 

E t · f · k t [ ( ::: + ::: + ~z )] nergy ra em rom JaC e : U(1rO~:::) T, - T 
2 

In this last term the energy rate is proportional to the difference 
between the jacket temperature T.. and the liquid temperature in the 
middle of the disc, at the point 

(::: + z + ~z) I 2 

The energy balance then becomes 

After a slight rearrangement and after di,·iding all terms by ~::: 

one gets 

<•ArC1,T(z + "':~- PArC1,T(z) = UlrD[T, _ T( z + :
2
+ t.: )] 
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The thickness of the disc is decreased to differential or infinitesi­
mal size as in 

From App. A one sees that the above equation contains the defini­
tion of the derivative ofT with respect to z, as in 

dT 
vApCP Tz = U1rD(T5 - T(z)] (7-1) 

This ordinary differential equation describes the steady-state 
behavior of the idealized jacketed tube energy exchanger. From Chap. 3 
we already know how to solve this equation if we know an inlet tem­
perature, as in T(O) = T0• 

If Eq. (7-1) is rearranged slightly, the reader can see the similarity 
to the equation for the liquid tank presented in Chap. 3. 

vApCpdT 
U(1rD) Tz + T = Ts 

dT 
ytdz+T=Ts (7-2) 

vApCP vDpCP 
Yl = U1rD = --ru-

The reader has seen Eq. (7-2) before, at least structurally. By 
inspection, the reader can arrive at a solution to Eq. (7-2) as 

(7-3) 

The parameter yt can be considered as a kind of 11Space constant," 
somewhat analogous to the time constant used in transient analysis. 
In fact, yt is the tube length needed for T(z) to reach 63% of the jacket 

temperature ~-
The reader should spend a few moments looking at Eq. (7-3) to 

see how T(z) changes as various parameters change. First, it shows 
that as one travels down the tube axially the temperature T(z) 
approaches ~- Second, as the overall heat transfer coefficient U 

increases, the parameter yt decreases. Thus, T(z) approaches ~ more 
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fiGURE 7·2 Steady-state temperature profile t(O) = 0.5. 

rapidly with respect to axial distance (not time-remember this is a 
steady-state solution). Conversely, as the flow rate v of the liquid 
increases, yt increases and it will require more tube length for T(z) to 
reach the same temperature value than it would for a lower flow rate. 
Figure 7-2 shows a steady-state temperature profile for a tubular heat 
exchanger of length 2.0 with yt = 1 , ~ = 1, T(O) = 0.5. 

Note that the liquid temperature reaches 63% of the ultimate 
value of~ when z = yt, so the reader sees that yt plays the same role 
in the spatial domain that 'f played in the time domain for the first­
order process. This process is called a distributed process because the 
variation of the process variable Tis distributed over the length of the 
tube as is the effect of the steam in the jacket. 

7-2 The Tubular Energy Exchanger-Transient Behavior 
The dynamic behavior can be described by a partial differential equa­
tion that also evolves from a thermal energy balance over a small disc 
of length Az located somewhere in the interior of the tube and over a 
moment in time of length At. The balance proceeds as in Sec. 7-1 but 
with one more term-the temporal accumulation of thermal energy 
in the disc. The temperature now depends on both the axial distance z 
and the time t, as in T(z,t). Furthermore, the jacket temperature ~ 
may now depend on time but, as specified above, it is not a function 
of axial position. A second balance could be written for the steam in 
the jacket; however, for the time being, the dynamics of the steam are 
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assumed to be much quicker than those of the liquid flowing through 
the tube. 

As with the steady-state derivation in Sec. 7-1, the reader can skip 
to the result in Eq. (7-6) which is boxed. For the adventurous, the bal­
ance proceeds as follows. 

Energy rate at z due to convection at time t during the interval At: 

Energy rate out at z+LU due to convection at time t during the 
interval At: 

Energy rate in from jacket at time t during the interval At: 

Accumulation of energy in the disc between time t and time t +At 
in the volume AAz: 

AAzpC T(z + z + 4z t At)- ALUpC T(z + z + 4z t) p 2 ,+ p 2 I 

Entering the various elements into the balance equation 

In- out= accumulation 

gives 

[ (
z+z+LU )~ vApCPT(z,t)At+U(nDLU) ~-T 2 ,t ~At-vApCPT(z+LU,t)At 

Dividing by At4z and doing a little rearranging gives 
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H the space element 4z and the time element At are both decreased 
to an infinitesimally small size, then the following partial differential 
equation results. 

aT oT 
-vApCP az-+U(nD)[T5 - T(z,t)) = ApCP at (7-4) 

Dividing all terms by ApCP and remembering that A= nfY/4, 
gives 

aT 'i1f 4U 
a,+vaz-= DpC [T5 -T(z,t)] 

p 
(7-5) 

The quantity DpCP I 4U has units of sec, so Eq. (7-5) could be 
written as 

aT 'i1f 1 
-+v-=-[T -T(z t)] at dz 'fr 5 I 

DpC 
'rr = __ P = VI 

4U v 

(7-6) 

where 'rr has units of time and is a time constant. Equation (7-6) is 
a partial differential equation describing the time-space behavior 
of the temperature in the tube. It is subject to initial conditions, 
such as T(z,O) = T0, 0 S z S L, and a boundary condition on the inlet, 
such as T{O,t) = 1f, t > 0. Since we have added the dependence on 
time, this process model can be used in simulations to test control 
algorithms. 

As an aside, the quantity 

oT 'i1f 
-+v­
at az 

is often called the total derivative or the convective derivative of tem­
perature and is sometimes given the symbol DT I Dt. 

7 ·2·1 Transfer by Diffusion 
The model in Eq. (7-6) describes the transfer of energy along the tube 
by convection. Energy can also be transported axially by molecular 
diffusion where the rate is proportional to the axial gradient of tem­
perature, as in -k('i1f I d:z) where k is the thermal conductivity. Hone 
modifies the above energy balance on an element of length 4z by 
adding the contribution of diffusion, the result is 

(7-7) 
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where the added mechanism of transport is described by the term 
(k I pCP) I (d2T I ()z2). The presence of this term makes the solution 
procedure significantly more difficult and we will not refer to Eq. (7-7) 
until later in this chapter when lumping is discussed. 

7-3 Solution of the Tubular Heat Exchanger Equation 
There are a variety of approaches to solve Eq. (7-6) but we will pick the 
one using the tools already developed in this book and the one that will 
lend itself to using the frequency domain to gain insight. This means 
transforming the time dependence out of Eq. (7-6) using the Laplace 
transform. This will leave us with a first-order ordinary differential 
equation in the spatial dimension z which we can solve using stand­
ard techniques. The details are given in App. F. 

The result of applying the Laplace transform to Eq. (7-6) is 

- dT 1 - -
sT+v-=-(T -T) 

dz 'Cr s 
(7-8) 

You should convince yourself that Eq. (7-8) is indeed the result of 
multiplying Eq. (7-6) by exp(-st) and integrating over [O,oo) with 
respect to time. In any case, after the dust has settled, Eq. (7-8) is a 
first-order ordinary differential equation of the form 

v-+ s+- T=......!... dt ( 1 )- f 
dz 'Cr 'rr 

(7-9) 

where the Laplace variable s is just a parameter. Remember that T
5 

is 
the Laplace transform of the jacket temperature which we specified 
could be a function of time but not of axial position, that is, ~or T

5 
is 

not a function of z. 
Now, how do we solve Eq. (7-9)? We could apply the Laplace 

transform again with a different variable, say p, instead of s and 
remove the spatial dimension or we could solve the ordinary differ­
ential equation by trying a solution of the form cecz. Both of these 
approaches have been used elsewhere in this book. The details of the 
solution are presented in App. F and the result is 

(7-10) 

where 
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So, we have solved Eq. (7-9) for the spatial dependence of the 
temperature with the Laplace transforms as a parameter. Alterna­
tively, we could look at Eq. (7-10) as the Laplace transform of T{z,t) 
with the spatial dimension z as a parameter. 

7-3-1 Inlet Temperature Transfer Function 
Equation (7-10) contains two transfer functions of interest. The first 
transfer function shows how the inlet temperature affects the outlet 
temperature (at z = L): 

T(L s) - L( s+..!..) L -....!::.... 
---'- = t V\. rT = t -SV t vrT 
T0 (s) 

(7-11) 

where t 0 = L I v is the average residence time or delay time for the 
tube. Equation (7-11) ignores the impact of~ and shows that T(L,t) 
lags T(O,t) by t0 and is attenuated by a constant factor of e-1

v/rT. This 
makes physical sense based on the assumptions of plug flow for the 
liquid. Thus, when T0 is the input, Eq. (7-11) suggests that the 
response of T(L,t) behaves as dead-time process with an attenua­
tion factor. 

Question 7-1 What does a time plot of this response look like and is it physically 
realistic? 

Answer A sharp step in the inlet propagates through the reactor as a sharp step 
in the liquid temperature. Thus plug flow is idealistic because there is bound 
to be some axial mixing either from turbulence or diffusion. U Eq. (7-7) were 
solved, the propagation would be more realistic with less sharpness. Later when 
lumping is discussed this issue of idealistic sharpness will be revisited. 

7-3-2 Steam Jacket Temperature Transfer Function 
Equation (7-10) yields a second transfer function relating the steam 
jacket temperature to the outlet temperature. 

to 

f(L,s) _ 1- e-sto e -r; 
T

5
(s) - -r1 s + 1 

(7-12) 

We will use this transfer function later on when assessing the fea­
sibility of controlling the outlet temperature by manipulating the 
steam temperature. The denominator of Eq. (7-12) has appeared 
before so we can expect T1 to act as a time constant in a way similar 
to previous transient analyses. 
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7-4 Response of Tubular Heat Exchanger to Step 
In Jacket Temperature 

Let the jacket temperature be a step of size U, at time zero. Equation 
(7-12) becomes 

(7-13) 

Appendix F shows that the inversion of Eq. (7-13) gives 

(7-14) 

Appendix F also explains the nature of the unit step function U(t). 

7-4-1 Tlle Large-Diameter case 
Figure 7-3 shows the behavior of T(L,t) for the case where U,= 1, L = 1, 
'rr = 1, t0 = 1, and v = 1. Note for t > tD' the outlet temperature is con­
stant at 

0.7 ......-----,---,---,.------r--,--,.------r---r--.....------. 
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F1auRE 7-3 Response of largtH:tiameter tubular heat exchanger to step in 
jacket temperature. 



186 Chapter Seven 

0.9 r;:::::::;:~::::::::~:::::::::==:::::;--:--.--~-:-~ 
-Outlet temperature 

0.8 Undelayed component 

0.7 

~ 0.6 
-; 
R. 0.5 
e 
~ 0.4 

~ 
:s 0.3 
0 

0.2 

. -.Delayed component 
•• ·.t 

... .. · 
;.:.-··:· 

Uc = 1 L = 1 v = 1 

rr = 1 

t0 /rr = 1 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Tune 

FIGURE 7-4 Components of the outlet temperature for large-diameter tube. 

This makes physical sense because t 0 seconds are required for the 
liquid entering the tube to pass completely through. Because rr = 1 , 
the liquid temperature only reaches 63% of the steady-state value 
before it exits the tube. After that time it does not increase because it no 
longer sees the jacket temperature. Remembering that rr = DpCP. I 4U 
suggests that the time constant could be decreased if the tube had a 
smaller diameter. This makes sense because a smaller-diameter tube 
would allow the energy to be transferred from the steam to the liquid 
more quickly. Let us agree to have this current collection of parameters 
describe the large-diameter tube exchanger. This large-diameter tube 
exchanger might pose control problems if we try to adjust the jacket 
temperature to drive the liquid outlet temperature to set point. 

Figure 7-4 shows the same outlet temperature along with the two 
components in Eq. (7-14): the undelayed first-order response and the 
delayed first-order response which has the attenuation factor of e-to/rr. 

7-4-2 The Small-Diameter Case 
For comparison, consider the case where Uc= 2, L = 1, rr = 0.1, and 
v = 1, shown in Fig. 7-5. The time constant rr is now a tenth of its 
value in the previous simulation. We will refer to this piece of equip­
ment as the small-diameter tube exchanger. 

The residence time t0 = L I v is still 1.0 but because the time 
constant rr is so much smaller, the liquid flowing through the tube 
has time (10 time constants) to almost completely reach the jacket 
temperature before it exits. The liquid reaches 63% of the steady­
state value after t = rr or 0.1 sec but the liquid spends t0 = 1.0 sec 
in the tube. Figure 7-6 shows the components of Eq. (7-14). Since rr 
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is so small, the attenuation factor e-tolrT = 4.5 x 10-s snuffs out 
the delayed component leaving only the conventional first-order 
component. 

This small-diameter tube exchanger might be more amenable to 
the idea of adjusting the jacket temperature to control the liquid out­
let temperature. 

7-5 Studying the Tubular Energy Exchanger 
In the Frequency Domain 

We wish to analyze the effect of a sinusoidal variation in the jacket 
temperature on the liquid outlet temperature. Start with the transfer 
function between the process output, which is the liquid temperature 
as it emerges from the tube at z = L, and the process input/ output 
control which in this case is the jacket temperature, given in 
Eq. (7-12). Make the usual substitution of s ~ jro: 

T{L,jro) 

T
5
(jro) 

_!!! 
1- e rT e-it»to 

-r1 jro+ 1 

Appendix F shows that this transfer function can be reformed in 
terms of magnitude and phase as 

~ -2!e. 

I
T(L,jro)l= 1-2e rT cos2(rot0 )+e rT 

T
5
{jro) (-rro)2 + 1 

(7-15) 

Figure 7-7 shows a Bode plot for this process model for the large­
diameter tube exchanger where L = 1, 'rr = 1, and v = 1. 

First, note that the magnitude and phase curves start to decrease 
near the comer frequency which is 

1 
(J) =-=1 

a" "'r 
(J) 

fcor = 2; = 0.159 Hz 
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FIGURE 7-7 Bode plot for large-diameter tube exchanger. 

Second, note the "resonances" or "ripples." The large-diameter 
tube exchanger Bode plot is replotted in Fig. 7-8. There appears to be 
a ripple that has peaks at multiples of 1 Hz. This makes sense because 
the residence time t 0 is 1.0 sec. 
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FIGURE 7-8 Linear Bode plot for small tube exchanger. 
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fiGURE 7-9 Bode plot for special tubular energy exchanger with v = 1.5, 
rt = 0.5, fcor=0.31831, tofr= 1.3333. 

If the flow rate v is increased from 1.0 to 1.5 and r1 is decreased 
from 1.0 to 0.5 for this large-diameter tube exchanger, the linear Bode 
plot is given in Fig. 7-9. 

The ratio of the delay time t0 to T1 is now 1.333 and the spacing 
between peaks in the frequency is 1.333 Hz which is equal to t0 I -r1 . 

Therefore, the ripple or resonance appears to depend on the number 
of time constants the liquid spends in the tube. I have used terms like 
resonance and ripple, but keep in mind that this is taking place in the 
frequency domain, not the time domain. 

One perhaps can understand this rippling shape in the magni­
tude and phase curves if one starts with a sinusoidal steam jacket 
temperature having a period equal to the residence time, namely, 
t0 • For the case shown in Fig. 7-8 where v = 1.0, L = 1.0, 'r = 1.0, the 
residence time is t0 = 1.0 sec. If the jacket temperature frequency is 
1.0 Hz then the period of the jacket temperature will be 1.0 and 
liquid traveling through the tube will see one sinusoidal cycle of 
the jacket temperature variation, from minimum to maximum, 
during its residence. There is a small valley in the magnitude curve 
in Fig. 7-8 atf= 1.0. 

Now, increase the jacket temperature frequency to 1.5 Hz. The 
period of the jacket temperature variation will be 0.67 sec so the liq­
uid passing through the tube will see one cycle plus part of the next 
cycle which will contain the maximum jacket temperature amplitude. 
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Consequently, the outlet liquid will be slightly higher in temperature, 
as indicated by the local peak in the magnitude curve at about f = t.5 Hz 
in Fig. 7-8. This argument can be continued to explain the other peaks 
and valleys as the frequency changes. 

Also, note that the maximum amplitude at low frequencies is not 
unity but 0.6321 which was the maximum outlet temperature for the 
step-change response. This is because the tube is too short for the 
outlet temperature to reach full value no matter how low the steam 
jacket frequency. Even with these relatively strange phenomena, the 
phase lag never exceeds 110° and bounces around 90°. 

The small-diameter tube exchanger, where L = 1, rr = 0.1, and v = 1, 
is a different story in Fig. 7-10. 

There are no resonances and the maximum phase lag is 90°. The 
magnitude and phase curves behave like a first-order system with a 
corner frequency of 

1 
(J) =-=10 

ror fr 

(J) 

f. = ~= 1.59 Hz 
ror 21r 

The ratio t 0 I rr = 10 indicates that the liquid spends 10 time con­
stants in the tube. For jacket temperature frequencies below 0.1 Hz, 
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FIGURE 7-10 Bode plot for small tube exchanger. 
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which would have periods of 10.0 sec or more, there appears to be no 
resonance because the amplitude is nearly unity. This suggests that 
for these low frequencies, the jacket temperature variations are passed 
through the tube unattenuated. Thus, for low jacket temperature fre­
quencies, the tube is long enough to cause the outlet temperature to 
have the same amplitude as the jacket temperature. 

7-6 Control of the Tubular Energy Exchanger 
The open loop step-change response and the Bode plot suggest that there 
should not be too much trouble if feedback control is attempted. The 
large-diameter tubular energy exchanger has some idiosyncrasies but 
the total phase lag varies about 90° (why?-because, despite the dis­
tributed nature of the process, it is still basically first order). 

This section starts by applying PI control to the large-diameter 
tubular exchanger where L = 1, v = 1, rr = 1. Since the process gain is 
nominally unity, an initial proportional gain of unity was tried. This 
was increased to 3.0 by trial and error simulation using a Simulink 
model. Then the integral gain was increased slowly until a value of 
2.0 was found to be satisfactory. Figure 7-11 shows the response to a 
unit step in the set point at time zero. 

Implicit in this control scheme is the presence of a slave loop that 
will manipulate a valve so as to affect the steam jacket temperature 
set point which is the control output of the master loop that we are 

3r---~--~----~--~----~==~==~ 
-SteamT 
.. OutletT 

2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ° 0 0 0 0 0 0 0 0 , 0 0 ° 0 0 0 0 0 _ Set point 

2 

L=1 v=1 t=1 

1 
.•·•••••r 

0.5 -· .... 
P=3 1=2 D=O 

1 2 3 4 5 6 
Time 

F1auRE 7-11 PI control of the large-diameter tubular heat exchanger. 

7 
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going to key on. The dynamics of the slave loop are considered to be 
so much faster than those of the liquid temperature control loop that 
they can be neglected. This master I slave configuration is a cascade 
control structure and will be dealt with in Chap. 11. 

At time zero, the step in the set point causes the proportional 
component of the control algorithm to jump to 3.0 (which makes 
sense because the proportional gain is 3.0). As the outlet temperature 
starts to respond, the proportional component backs off. At t = 1.0 the 
initial contents of the tube have passed through the exchanger. 
Although there is a delay for the liquid to pass through the tube, all 
of the liquid sees the step in the jacket temperature immediately so 
there is no dead-time effect. For t > 1. 0 the tube will contain material 
that has entered the exchanger after the set point was stepped and the 
outlet temperature will back off slightly with an associated response 
of the proportional component. All this time, the integral component 
has been slowly working to bring the outlet temperature near the set 
point. The reader can try other control gain combinations by modify­
ing the Matlab script that generated Fig. 7-11. 

The same control gains are applied to the small-diameter tubu­
lar exchanger, where L = 1, v = 1, rr = 0.1. The results are shown in 
Fig. 7-12. 

Unlike the large-diameter tubular exchanger, there is no residence 
time effect here-rather, the process behaves similarly to a simple 
first-order process. Figure 7-12 suggests that the proportional gain is 
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F1aURE 7-12 PI control of the small-diameter tubular heat exchanger. 
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FIGURE 7-13 PI control of the small-diameter tubular heat exchanger 
(lower proportional gain). 

unnecessarily high and the integral gain is too low. Trying p = 1, I = 10 
produces the behavior shown in Fig. 7-13. 

Curiously, these control gains cause the control output to be a 
straight line such that the steam jacket temperature takes on the value 
of 1.0 immediately upon the step in the set point and stays at the 
value indefinitely. 

7 • 7 Lumping the Tubular Energy Exchanger 

7 · 7 ·1 Modeling an Individual Lump 
Often, process analysts like to approximate distributed models, 
described by partial differential equations, with lumped models, 
described by ordinary differential equations. The tubular exchanger 
could be approximated in this way. For example, consider Fig. 7-14 
where the tubular exchanger is to be modeled by N tanks. TheN-tank 
model has the following characteristics: 

FIGURE 7-14 N-lump approximation to tubular exchanger. 
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1. Each tank is completely mixed in the sense that the exit 
temperature is the same as the temperature throughout the 
lump or tank. These lumps are often called continuous stirred 
tanks (CSTs). 

2. Each tank is jacketed and is exposed to the jacket temperature 
~· Although this need not be case in general, each tank sees 
the same jacket temperature. That is, the jacket temperature 
does not vary from tank to tank. 

3. The temperature leaving the kth tank is the inlet temperature 
for the k+ 1 th tank. 

4. Parameterwise, each tank is identical. This is not necessary 
but it does make the mathematics more manageable. 

The mixing in each lump, mentioned in condition 1, will change 
the propagation of step changes significantly. The relationship 
between the number of lumps and the degree of axial mixing (or axial 
diffusion) will be examined later. 

A dynamic energy balance over the kth tank yields the following: 

In from (k- 1)th tank: vAvCppTk-t 
Out from kth tank: vAvCppTk 
Into the kth tank from steam jacket: UAr(Ts- Tk) 

dT. 
Accumulation in kth tank: VC,p dt 
Where ~ is the cross-sectional area for flow into and out of the 

tank, Ar is the transfer area between the jacket and the tank, and V is 
the volume of the tank. 

The balance becomes 

Equation (7-16) can be simplified slightly with the introduction of 
a time constant and two gains, as in 

(7-17) 

_ vAvCpp 
K; - UAr + vAvCpp 

Note that both gains, independent of the parameterization, have 
to be less than unity and, what's more, they add up to unity, as in 

K; + Ks = 1 (7-18) 
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Although there appear to be eight parameters in Eq. (7-17), only 
three, 'r, Ks (or K;) and N are independent. Note that 'r is not the 
same as 'rr. There are a variety of ways to choose the parameters. For 
example, one could specify that the area for energy transfer of each 
tank Ar could be the total transfer area of the tubular exchanger 
divided by N. The same approach could be taken for choosing the 
volume of the tank or the length. However, before diving into a simu­
lation let's play some simple mathematical games with the tank equa­
tions and try to gain some insight. 

7 • 7 ·2 Steady-state Solution 
First, in steady state we would like the N-tank model to look some­
thing like the steady-state solution obtained in Sec. 7-1 which was 

The N-tank steady-state solution is quite simple since the deriva­
tive in Eq. (7-17) is zero, so 

Tt = KsTs + K;To 

T2 = KsTs + K;Tt = KsTs + K;(gsTs + Klo) = KsTs(1 + K;)+ K1To 

T3 = KsTs + K;T2 = KsTs + K;(gsTs + Klt) = KsTs(l + K; + g1}+ glTo 

(7-19) 

When a quantity like K; is less than unity, the sum of the geomet­
ric series, contained in the parentheses in Eq. (7-19), can be written 
compactly as 

(7-20) 

Remember that 

1. Ks and K; depend on the area for energy transfer Ar of each 
tank. 

2. Ks + K; = 1. 
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3. N increases A,-, the energy transfer area for the kth tank 
decreases so as to maintain the total energy transfer area 
constant. 

Therefore, Eq. (7-20) becomes 

This is to be compared with Eq. (7 -3) 

T(L)=T0e ~ +-• ~ }; 
(7-21) 

This suggests that if the tube length L is divided up so that each 
tank has length LIN= !Jz, then gr =e-Ll, or g; = e-L/N, = e-flzl". 
Thus, N ~oo, g

5 
~ 0, and g; ~ 1. This exercise suggests that the 

lumping approach is approximately similar to the continuous 
approach, at least in steady state. 

7 • 7-3 Dlscretlzlng the Partial Differential Equation 
An alternative approach to lumping returns to the partial differential 
equation in Eq. (7-6) and replaces the partial derivative with respect 
to axial distance z with a finite difference, as in 

ar +v ar = _!_(T- T) 
at az fr s 

- DpCP- f/1 
rr ----ru-v 

aT Tk-Tk-1 
a.z=> !Jz 

-=- -+- T. +-T. +-T dTk ( v 1) v 1 
dt !Jz rr k !Jz k-1 rr s 

If the reader makes the following substitutions 

A = trrJZ 
v 4 

(7-22) 

in Eq. (7-17), she will arrive at Eq. (7-22). As before, the small-diameter 
tube has L = 1, v = 1, and r1 = 0.1 and the large diameter tube has 
L = 1, v = 1, and r1 = 1. 
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FIGURE 7-15 Response to steam temperature jacket T
5
-matching large 

tubular reactor with lumped models, t'r = 1.0. 

5 

Figures 7-15 and 7-16 show one, two, three, and four tank 
approximations to the large-diameter and small-diameter tube 
energy exchangers, respectively. The approximation is poorer for 
the large-diameter tube exchanger probably due to the extensive 
mixing in the tank approximations as compared to none in the 
plug-flow model. 

Equation (7-22) can also be solved for a step in the inlet tempera­
ture to the first tank. Figures 7-17 and 7-18 show the response for the 
two cases. 

In Fig. 7-17, for the large-diameter tube, one can see a slow 
improvement in the approximation as the number of lumps increases. 
Note the unrealistically sharp response for the tube. In Fig. 7-18, for 
the small-diameter tube, there is the same progression. The 10-lump 
model is visually indistinguishable from the tube. 

Therefore, one needs to be aware of the physical consequences 
of solving a partial differential equation by replacing one (or 
more) of the partial derivatives with a finite difference. In effect, 
you might be replacing a model that has no axial mixing or axial 
diffusion with a model that has extensive axial mixing. Section 7-8 
takes a closer look at the relationship between lumping and axial 
transport. 
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7-8 Lumping and Axial Transport 

1.5 

For reference, we repeat the partial differential equation that has 
energy transport by convection and axial diffusion: 

;rr ;rr 4U k a2T 
at+v-az= DpC [T5 -T(z,t)]+ pC az2 (7-23) 

p p 

If the tubular exchanger model without axial diffusion is to be approx­
imated by N lumps of length 4z, then each lump is described by 

(7-24) 

Using Taylor's series (see App. D), the temperature of the k- 1th 
lump can be related to that of the kth lump by 
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or (7-25) 

ar a2T (az)2 
Tk-Tk-1 = dz az- ijz2 -2-+h.o.t. 

Replacing the Tk- Tk_1 term in Eq. (7-24) with the expression in 
Eq. (7-25) while ignoring the higher-order terms, one obtains 

or 

dTk dT 1 az iJ2T 
-+v-=-(T -T.)+v---
d t dz -rT s k 2 az2 

k az L 
--=v-=v-
pCP 2 N 

(7-26) 

Since Eq. (7-26) follows from Eq. (7-24), one can conclude that 
lumping introduces an effective axial transport mechanism which is 
inversely proportional to the number of lumps in the approximation. 
This suggests that as N increases the sharpness in the propagation of 
steps through the tubular exchanger will increase because there will 
be less axial mixing or diffusion. 

This analysis is consistent with the discussion we had in Sec. 5-5 
about multitank processes and with the results obtained in Sec. 7.7. 

Questlon7-2 Can you make sense out of Fig. 7-18? 

Answer As was shown in Section 7-4-2, Fig. 7-6, for the small diameter case 

the time constant rT = D~, is 0.1 seconds, the dead time is 1.0 second, the 

attenuation factor exp( -t 0 I rT) equals 4.5e-5 and there is no axial transport other 
than convection. Note that the energy transfer coefficient U occurs in the factor 
and the relative smallness of rT suggests a large amount of energy transfer (and 
attendant loss of temperature). On the other hand, the one-tank approximation 
has an effective axial diffusion of (from Eq. 7-26) equal to vL/ N. The one­
tank approximation exhibits perfect mixing such that the inlet temperature step 
appears at the tube outlet in first order fashion. There is no axial mixing in 
the tubular exchanger so, although there is a small step at time t = t 

0 
because 

of the attenuation factor it is virtually undetectable. As the number of tanks 
increases there is less axial mixing. The ten-tank approximation is relatively 
close to tubular exchanger. 
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7-9 State-Space Version of the Lumped Tubular 
Exchanger 

The equations describing the finite difference approximation in the 
Sec. 7-8 can be written as 

-(~+-Y az -rT 

:~[ ~~ ]= 
v -az 

TN-t 0 
TN 

0 

1 
0 

'fT 

0 
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1'T 
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0 0 

0 0 

0 0 

-(~+_!_) az -rT 
0 

0 

0 

0 

0 

1 
'fT 

0 

-(~+_!_) az -rT 

v 
az 

0 

Ts, 
0 

T-'2 

0 TSN-1 

1 
TSN 

'fT 

d 
-X=AX+BU 
dt 

Z=CX 

0 

0 [ ~~ l 
0 

TN-t 

TN 

-(~+_!_) az -rT 

(7-27) 

This form is different (and more general) in that the steam jacket 
temperatures for each lump have been specified. This is equivalent 
to a different physical situation where the tube is sectioned into 
N zones and where each zone's steam jacket temperature is 
adjustable. 

Figures 7-19 and 7-20 show the step-change response of a 20-lump 
approximation of the tubular energy exchanger for the two cases of 
small- and large-diameter. All of the lump's steam temperatures were 
stepped in unison from 0.0 to 100.0. This is the first time we have tried 
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7-10 Summary 
With the simple tubular energy exchanger we have completed the 
introduction of process models. This model is described by a par­
tial differential equation instead of an ordinary differential equa­
tion and has some idiosyncrasies, especially if the residence time 
is on the order of the time constant. The analysis in the frequency 
domain showed how some interesting resonances can appear. Still, 
the new process did not present any insuperable obstacles in the 
face of control. 

The tubular exchanger is a particularly simple example of a dis­
tributed process. In more complicated cases the partial differential 
equation that might appear as an attractive model is often relatively 
difficult to solve. Lumping, using several sequential continuous 
stirred tanks as a replacement model, is sometimes attractive because 
the tanks are described by ordinary rather than partial differential 
equations. Continuous stirred tanks can be used to approximate the 
tubular exchanger but the effective axial mixing introduced by the 
lumping can lower the quality of approximation. On the other hand, 
the partial differential equation model does have the physically unre­
alistic characteristic of sharp step propagation so the axial mixing 
introduced by the lumping may be more realistic. 

In the next chapter, a new subject, stochastic disturbances and the 
discrete time domain will be presented. 



CHAPTER 8 
Stochastic Process 

Disturbances and 
the Discrete Time 

Domain 

Developing a successful control algorithm often requires proper 
identification of the disturbances. In Chap. 1, unautocorrelated 
process disturbances (white noise) and autocorrelated process 

disturbances were presented using the ''large hotel water tank" example. 
In this chapter these terms and concepts will be revisited with a lit­
tle more rigor using the autocorrelation, the line spectrum, the cumula­
tive line spectrum, and the expectation operator. The ability of a PI 
controller to deal with diHerent kinds of disturbances will be discussed. 

Chapter 9 will revisit the discrete time domain and introduce the 
Z-transform. 

8-1 The Discrete Time Domain 
In the previous chapters, for the most part, the time domain was consid­
ered as continuous. Differential equations were derived based on this 
concept. Laplace transforms were used to solve these diHerential equa­
tions and also to provide a path to the frequency domain which was also 
considered continuous. In this chapter the time domain will be discrete 
in the sense that a data stream will now consist of a sequence of numbers 
usually sampled at a constant interval of time. For example, a data stream 
might consist of samples of a temperature T(t), as is 

T(t1), T(t2), ••• , T(tN) 

or 

205 
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with the sample-instants in time being equally spaced, in the sense 
that 

i = 1,2, ... 

where h is the sampling interval, which will be assumed to be con­
stant unless otherwise stated. The sampling frequency is 1/h. 

Instead of differential equations where the independent variable 
is continuous time, there will be algebraic equations with the inde­
pendent variable being an index, such as i, to an instant of time. A 
simple example of an indexed equation would be a running sum of a 
data stream consisting of sampled values of the variable x, as in 

i= 2, 3, ... IN 

The average of the x11 x2, ••• data after N samples would be 

The sample average xN is an estimator of the population mean Jl, 
which we will discuss in more detail later in this chapter. 

8-2 White Noise and Sample Estimates 
of Population Measures 

Consider a data stream of infinite extent 

from which N contiguous samples have been taken. Figure 8-1 shows 
two views of the data stream. The infinite data stream represents a 
population having certain population characteristics and the subset of 
size N mentioned above is a sample of that population. The subset 
has certain sample characteristics, which can be used as estimates of the 
population characteristics. The data shown in Fig. 8-1 will soon be 
shown to be samples of "white noise." For now, we simply refer to it 
as a stochastic sequence. The word "stochastic," means "nondeter­
ministic" in that the value at timet; does not completely determine 
the value at time ti+l" In the white noise stochastic sequence shown in 
Fig. 8-1, the value at t; has no influence whatsoever on the value at ti+t· 
In other non-white stochastic sequences to be covered later in the 
chapter, the value at ti+t still is nondeterministic but the value at t; 
does have an influence. Note that the two streams shown in 
Fig. 8-1 have different sample standard deviations. 
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F1aURE 8-1. Two views of a white noise sequence with a = 0.515. 

8·2·1 The Sample Average 
The sample average of the finite subset of the infinite stream of data 
is 

(8-1) 

The average of many stochastic sequences used in this book will 
be removed from the data stream. H that were the case here, the sub­
set would have a zero average. Equation (8-1) applies to any data 
stream, white noise, or otherwise. As mentioned in Sec. 8-1, the sample 
average is an estimate of the population mean J1 which we will dis­
cuss later on in this chapter. 

8·2·2 The Sample Variance 
A measure of the strength of the variation of w1,w2, ••• about its 
average (which may be zero if the average has been removed) is the 
sample variance V rot defined as 

(8-2) 
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As \Vith the average, the sample Yariance is an estimate of the 
population \'ariance a 2 The square root of the population \'ariance is 
called the population standard de\'iation and is often symbolized by 
a. Note in Fig. 8-1 that "almost" all of the \'alues lie between -3a and 
3a. The sample \'ariance and the sample standard de\'iation are often 
symbolized by s2 and s, respecti\'ely. 

8-2-3 The Histogram 
The \'alues in the data stream shown in Fig. 8-1 seem to cluster about 
the a\'erage of approximately zero. A picture of hmv these \'alues are 
distributed is gi\'en by the histogram in Fig. 8-2 \vhere the range O\'er 
·which the data stream \'aries is divided into 10 "bins" or cells and the 
number occurring in each bin is plotted \'ersus the center of each bin. 
The histogram augments and extends the sample \'ariance to gi\'e the 
analyst a feel for how the elements of the data stream \'ary about the 
a\'erage. In effect, the histogram is a sample estimate of the popula­
tion's probability distribution In this case, the population probability 
distribution is normal or Gaussian and is gi\'en by 

We will return to the probability distribution later on in this chapter. 
Figure 8-3 shows the shape of two normal probability distributions. 
Each has zero mean but one has a standard deYiation of 1.0 while that 
for other is 1.5. Note how these cur\'es qualitati\'ely match that of the 
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F1auRE 8-3 Two normal or Gaussian probability distributions. 

histogram in Fig. 8-2. The histogram gives no insight into how the ele­
ments are interrelated in time. To gain some insight in that area we 
need other tools such as the autocorrelation and the line spectrum. 

8·2·4 The Sample Autocorrelation 
The white noise data stream in Fig. 8-1 is unautocorrelated because 
each sample, W;, is independent of each and every other sample. That 
is, W; is independent of wk for every k ¢ i. This condition could also be 
described using a lag index n, where samples W; and wi+n are consid­
ered uncorrelated in the sense that an average of the products of W; 

and wi+n taken over a set of N samples would be so close to zero as to 
be insignificant. 

The sample estimate of the autocorrelation, rw(n), which uses the 
lag index n as a parameter, is one way to characterize this condition 
and is defined as follows: 

(8-3) 

The sample estimate of the autocorrelation is basically an average 
of the product of the lagged products over the available data set for 
all possible lags. As the lag size increases, the size of the data set avail­
able for the calculation in Eq. (8-3) becomes smaller and the estimate 
becomes less reliable. 
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F1auRE 8-4 Autocorrelation of a white noise sequence. 

If the data stream symbolized by w is unautocorrelated, rw(n) will 
be small for all n. On the other hand, if there is a periodic component 
in data stream then rw(n) will have a significant value for the value of 
n (and multiples of it) corresponding to the period of the oscillating 
component in the data stream. 

The rw(n) of the white noise sequence plotted in Fig. 8-1 is shown 
in Fig. 8-4. Notice that the autocorrelation for a lag index of zero is 
unity because the ith sample is completely autocorrelated with 
itself. For the other lag indices the "u(n) bounces insignificantly 
around zero. 

After adding a sine wave to the noisy data in Fig. 8-1, a new 
signal is created that also looks like white noise. This new signal is 
shown in Fig. 8-5. The histogram of this sequence is shown in 
Fig. 8-6. The autocorrelation of this second data sequence is shown 
in Fig. 8-7. The peaks show that there is a periodic component that 
appears to have a period of approximately six or seven samples. 
That is, samples spaced apart by 6 or 7 samples are autocorrelated. 
In fact, the sine wave buried in the white noise has a period of 6.5 
sample intervals. The time domain plot of the data in Fig. 8-5 gives 
no hint as to the presence of a periodic component because of the 
background noise. However, the autocorrelation plot shows peaks 
because the averages of the lagged products tend to allow the noise 
to cancel out. 
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fiGURE 8-5 A white noise sequence containing a sine wave. 
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F1auRE 8-7 Sample autocorrelation of a white noise sequence containing a 
sine wave. 

8·2·5 The Line Spectrum 
In Chap. 2, the line spectrum was shown to be a handy tool for ana­
lyzing noisy processes. In App. C it is discussed in more detail. When 
applied to the white noise sequence in Fig. 8-1 the line spectrum 
shown in Fig. 8-8 results. Unfortunately, this spectrum does not give 
us much insight. Like the time domain sequence, it contains so many 
localized peaks that one could draw incorrect conclusions about hid­
den periodic signals. For the signal to be "white," its spectrum should 
contain power at all frequencies, that is, the spectrum should be flat. 
Figure 8-8 suggests otherwise, so is the signal really white noise? 

8·2·6 The Cumulative Line Spectrum 
To address this question, one uses the cumulative line spectrum, 
which is basically a running sum of the line spectrum. As we have 
suggested in App. A and will show later in this chapter, the operation 
of summing a sequence is analogous to integrating a function. As we 
will also see, both operations are low-pass filters. When the line spec­
trum is summed, many high-frequency stochastic variations are 
attenuated and the true nature of the signal is revealed. If the line 
spectrum of white noise is supposed to be flat (as in being constant) 
then the running sum (or the integral) of a straight flat line would be 
a ramp. 

The cumulative line spectrum of the data in Fig. 8-1 is shown in 
Fig. 8-9. Note that the cumulative line spectrum behaves as a ramp 
and is well within the upper and lower K-S test limits shown in 



Shchastic Precess Disturba1ces a1d the Discrete Ti•e De•ail 213 

.... 
cu 

35 

30 

25 

~ 20 

15 

10 

5 

. . . .... , .... , ............. , ...... . 

0o 0.05 0.1 0.15 0.35 0.4 0.45 0.5 
Frequency 

fiGURE 8-8 Une spectrum of a white noise sequence sampled at 1Hz. 

Fig. 8-9. (H the cumulative line spectrum lies within the K-S limits 
there is a 99o/o probability that the associated stochastic sequence is 
white.) No more mention of the K-S, as in Kolmogorov-Smimov, test 
limits will be made here. The interested reader can search the web 
and perhaps check out Kolmogorov-Smimov in the Wikipedia. 
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For the sake of completeness, Figs. 8-10 and 8-11 show the line 
spectrum and cumulative line spectrum for the signal containing the 
periodic component presented in Fig. 8-5. Here, there is no need to 
resort to the cumulative line spectrum to convince the reader that 
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there is a periodic signal lurking in the sequence that looks like white 
noise. Note that the peak in Fig. 8-10 appears at a frequency of 
approximately 0.153 Hz which is consistent with the sine wave hav­
ing a period of 6.5. 

In summary, this section introduced the concept of white noise 
via the autocorrelation and the line spectrum. We used the sample 
estimate, the sample variance, and the histogram to help characterize 
white noise data streams. 

8-3 Non-White Stochastic Sequences 

8-3-1 Positively Autoregressive Sequences 
Stochastic sequences that are autocorrelated can be generated by 
feeding white noise into various equations that will be shown in 
Chap. 9 to be discrete time filters. A simple example is the autoregres­
sive filter, as in 

Yk =ayk_1 +wk k= 1,2,3, ... (8-4) 

The input to the filter is the white noise sequence, wk, k = 1, 2, ... 
and the output is yk, k = 1,2, ... with y0 as an initial value. This 
sequence is termed autoregressive because it depends on its own 
previous values. The parameter a is the autoregressive parameter. 
Although the value of Yk is nondeterministic because of the impact 
of W;, it is influenced by Yk-1 because of the presence of a. In gen­
eral, an Mth-order stochastic autoregressive sequence can be 
defined as 

M 

Yk = L amYk-m + Wk 
111=1 

(8-5) 

An example ofEq. (8-4) when a= 0.9 is shown in Fig. 8-12. Unlike 
the white noise sequence, this data stream tends to wander about 
with a low-frequency variation. In fact, it might even look as though 
it is periodic but that is not the case. 

The histogram of this autoregressive sequence is shown in 
Fig. 8-13. Note that the histograms of white noise and the autore­
gressive sequence have the same overall shape, namely a "normal" 
or "Gaussian" or "bell" shape indicating that the values are distrib­
uted around the average with the most frequently occurring values 
being near the average. 
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FIGURE 8-12 An autoregressive sequence. a= 0.9. 

The autocorrelation, line spectrum, and cumulati\'e line spectrum 
are shown in Figs. 8-14,8-15, and 8-16. The shape of the autocorrelation 
cur\'e makes sense because the height of each stem is approximately 
90% of the height of its neighbor on the left The line spectrum shows 
signal pmver in the lower frequencies consistent with apparent low­
frequency \'ariation shown in Fig. 8-12. 
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Flaun 8-1.4 Autocorrelation of an autoregressive sequence, a= 0.9. 

450 

400 

350 

300 

~250 
£ 200 

150 

100 

50 

. . ·.· ... ·.· .. ·: ... : ... ·.· ... ·.· ... : ... 
. . . I 0 e 0 . . . . . . . . . . . . . . . . . ................ . . . . I I I I 

I I I I I I I I I ............................................ 
• 0 • 0 • 0 • • • 

I 0 e 0 .................. 
I 0 e 0 

; .... · ..... · .... : ... 
I I I I 

......... ·' .............. ·'· .............. ' .. . 
0 • 0 • 0 • • • 

.................... 
I 0 e 0 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Frequency 

Flaun 8-1.5 Une spectrum of an autoregressive sequence, a= 0.9. 



218 Cba11ter Eigbt 

1 .... : ..... : ..... : .... ; .... ; .... : .... . · .... : .-··· 

0.8 

0.6 

0.4 

0.2 
.. ,, , .. 
,"" ;..,· : : : : : -- Ref line 

0 .~: ... ··:· ... ·.· ... ·.· ... ~ .... : ... ·: ··· UpperK-Slimit 

: ·- · Lower K-S limit 

-0.
2o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Frequency 

,__ 8-:1.8 Cumulative line spectrum of an autoregressive sequence, a= 0.9. 

8-3·2 Negatively Autoregressive Sequences 
If the autoregressive parameter is changed to a= -0.9 an entirely dif­
ferent looking sequence results as is shown in Fig. 8-17. This sequence 
exhibits localized bursts of high-frequency variation rather than the 
low-frequency wandering shown in Fig. 8-12 for the positively 
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Flaun 8-1.7 A negatively autoregressive sequence. 
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Fiala 8-18 Autocorrelation of a negatively autoregressive sequence, a= -0.9. 

autoregressive stochastic sequence. At first glance, it might not look 
much different than white noise, but the autocorrelation, line spec­
trum, and cumulative line spectrum, shown in Figs. 8-18, 8-19, and 
8-20, point out the difference. Note the spectral power at the high 
frequencies in Fig. 8-19. 
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Fiala 8-1.9 Une spectrum of a negatively autoregressive sequence, a= -0.9. 
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F1auRE 8-20 Cumulative line spectrum of a negatively autoregressive 
sequence, a= -0.9. 

8·3·3 Moving Average Stochastic Sequences 
The simplest moving average sequence is defined as 

(8-6) 

If b1 = b2 = 0.5 then Eq. (8-6) would be a common two-point moving 
average of a white noise stochastic sequence. In general, there can be 
M terms on the right-hand side as in 

M 

Yk = Lb111wk-111-1 
111•1 

(8-7) 

Figure 8-21 shows a two-point moving average stochastic sequence 
with b1 = b2 = 0.5. The autocorrelation of this sequence is shown in 
Fig. 8-22. Note that there is but one significant stem at lag one. In 
general, moving averages will have M- 1 stems of significance. 

Question 8-1 Why does the autocorrelation of the two-point moving average 
have but one significant stem? 

Anlwer The value of y
1
, by definition, depends strongly on y

1
_

1 
but not on y1_2 

or any other sample, hence the single stem. 
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F1auRE 8-21 A two-point moving average stochastic sequence, m = 2. 
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F1auRE 8-22 Autocorrelation of a two-point moving average stochastic 
sequence, m = 2. 

The line spectrum of the moving average stochastic sequence is 
shown in Fig. 8-23. Here there is nothing of great distinction in the line 
spectrum so it appears that the autocorrelation is useful in revealing 
the presence of a moving average. However, note that when the input 
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F1auRE 8-23 Line spectrum of a two-point moving average stochastic 
sequence, m = 2. 

signal has a frequency of 0.5 (the folding frequency) the moving aver­
age output has zero power-more about this in the next paragraph. 

Consider the case where M = 3 and b1 = b2 = b3 = 1 I 3, that is, a 
common three-point moving average. The time domain plot looks 
about the same as previous stochastic sequences so it will not be 
shown. The autocorrelation in Fig. 8-24 has two significant stems 
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F1auRE 8-24 Autocorrelation of a three-point moving average stochastic 
sequence, m = 3. 
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fiGURE 8-25 Line spectrum of a three-point moving average stochastic 
sequence, m = 3. 

other than the one at a lag of zero. The line spectrum in Fig. 8-25 
shows a valley centered at a frequency of 0.333 corresponding to a 
period of three samples. It makes sense that a sinusoid having a 
period of three samples would be completely obliterated by a moving 
average of three terms. For the first moving average sequence with 
M = 2, signals having a period of two samples would be obliterated 
and those signals would have a frequency of 0.5, which coincides 
with the folding frequency. Think about why this is the case. 

This characteristic of obliterating a particular frequency tends to 
raise its ugly head in unexpected situations. Occasionally, I have 
come across line spectra of noisy processes sampled by a micropro­
cessor that had strange steep valleys at certain frequencies. Subse­
quent detective work revealed that somewhere in the bowels of the 
microprocessor program that carried out the sampling there was 
some averaging. Therefore, one should be careful of doing anything 
to the raw data before carrying out a spectral analysis. 

8-3-4 Unstable Nonstatlonary Stochastic Sequences 
The variances of the stochastic sequences presented herein have 
always been finite. However, it is possible to have stochastic sequences 
that are not bounded. For example, consider a simple autoregressive 
stochastic sequence that has an autoregressive coefficient a where lal ~ 1. 
Figure 8-26 shows a sequence that has a= 1.002 This sequence 
behaves as though its population mean were shifting in time. The 
behavior of the sequence suggests that it will continue to wander off 
with an unbounded variance. The autocorrelation becomes numerically 
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F1auRE 8-28 An unstable autoregressive sequence, a= 1.002. 

unwieldy and the line spectrum in Fig. 8-27 shows excessive low-fre­
quency power. In cases like these where the excessive low frequency 
may be washing out something in the data stream it behooves the 
analyst to difference the data and generate a new data stream from 
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Differencing, which is the discrete time analog of differentiating, 
removes low-frequency power in the signal, making it a bounded sig­
nal that might yield to further analysis. 

8·3·5 Multidimensional Stochastic Processes 
and the Covariance 

Consider the two stochastic sequences shown in Fig. 8-28. One way of 
describing these two sequences is the covariance matrix, which con­
tains the auto- and crosscorrelations of the sequences, as in 

Later on, when dealing with the estimation of the state in Chap. 10, 
we will use Rxy(O). For the time being, note that if the two sequences 
were interdependent then cross terms in the covariance matrix 
ryx(1) would be significant. 

3 
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FIGURE 8-28 Two crosscorrelated stochastic sequences. 
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8-4 Populations, Realizations, Samples, Estimates, 
and Expected Values 

8-4-1 Realizations 
Each of the preceding examples is a finite sequence that is a realization 
of a population. For example, Fig. 8-29 shows three realizations of an 
autoregressive stochastic sequence that has an autoregressive param­
eter of 0.95 and a 0.0 mean. They all are described by 

Y; = 0.95yi-1 + W; i = 1, 2, ... IN (8-8) 

Each is driven by a white noise sequence, wi'i = 1, ... ,N, whose 
average is approximately zero and whose variance is approximately 
unity. However, the three white noise sequences used to generate the 
sequences in Fig. 8-29 are three different realizations drawn from a 
population of white noise having zero mean and unity variance. After 
N samples have been realized, estimates of the population mean, 
called the average, and the population variance, called the sample 
variance, can be made. The averages of the three autoregres­
sive sequences shown in Fig. 8-29 are -0.841, +0.957, and -0.548, 
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FIGURE 8·29 Three realizations of an autoregressive stochastic sequence. 
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while the population mean is zero. On the other hand, the three sam­
ple estimates of the variance are 8.96, 11.02, and 8.07, while the popu­
lation variance is 10.26 (we will show how to arrive at this population 
parameter in the next section). 

Implicitly, we have introduced the concept of a population as an 
infinite data stream from which finite length samples can be taken. 
These sample data streams of length N can be used to calculate esti­
mates of the population parameters. This approach suggests that con­
ceptually one could obtain, say, the population mean by averaging 
the infinite population. 

At the other extreme, let's say you started at sample point num­
ber 500 in the first realization shown in Fig. 8-29 and averaged over 
samples 500, 501, and 502. Alternatively, one could have started at 
sample point number 500 in each of the three realizations in Fig. 8-29 
and computed an average from those three values. That is, one could 
have averaged over the three realizations at one point in time. Hope­
fully, the reader will see the difference between these two approaches. 
Extending this concept, one could say that the population mean at 
sample point 500 is the average over all the realizations of the sto­
chastic sequence sampled at point 500. 

8·4·2 Expected Value 
Following up on the latter approach, consider an infinite sequence of 
values, T(t1),T(t2 ), ••• ,T(t;), ... defining a stochastic sequence. At 
any sample point in timet; there is a probability density p(Y;,t)dT that 
gives the probability that T will have a value between T(t;) and 
T(t;) + dT. This probability density is the same quantity that was intro­
duced in Sec. 8-2-3. By definition, the integral of the probability density 
over all of the possible values ofT, at t;, would equal unity. That is, 

J p(T,t;)dT = 1 (8-9) 

This is just saying that the probabilities of each of the possible 
values ofT at sample point t; have to add up to unity. The integration 
is done over all realizations at time t;, not over all time. Since T(t;) 
varies continuously, we can use an integral rather than a sum. 

The expected value ofT at sample point t; would be the weighted 
integral of all the possible values of T(t;) at the sample point t;, as in 

J p(T,t;)T(t;)dT = E{T,i} = JlT(i) (8-10) 

In a crude sense, Eq. (8-10) is a weighted sum of all the possible 
temperatures at time t; with the weight being the probability density. 
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The expected value is also the population mean, sometimes symbol­
ized by p.. 

Compare this with the average of T over one realization of length 
N, as in 

(8-11) 

The average is taken over N discrete samples of one realization 
while the expected value is taken over all of the realizations at one 
particular point in time. 

8-4-3 Ergodlclty and Stationarity 
If the population parameters such as the mean can be determined by 
taking the average of a data stream of infinite extent then the popula­
tion is said to be ergodic. This assumes that, as one passes through all 
of the infinite number of values in the data stream, one will also pass 
over all the possible values in all of the realizations. This word ergodic 
will be of absolutely no use to you or your control engineer associates 
but it does have name-dropping value. 

Another more useful term is stationarity. If the population 
parameters do not change with time and the population is bounded 
in value, the population is considered stationary. In this case we 
could suppress the appearance of t; in the probability density 
p(T(t;),t;). 

8-4-4 Applying the Expectation Operator 
Extending the idea of the expected value, one can define the popula­
tion variance at the instant t; as the expected value of deviations of T 
from its mean, as in 

00 

af,(i) = E{[T; -Jl.T(r)]2} =I p(T,t;)[T; -Jl.T(i)]ldT (8-12) 

Compare this with the sample estimate of the variance 

1 N -2 
VT =-l',(T;-T) 

N k=t 
(8-13) 

The autocorrelation function for a population is defined as 

00 

R,-(n) = E{('f; -Jl.T)(T; .. n -Jl.T)} =I p(T,t;)(T; -Jl.T)(T;+n -Jl.T)dT (8-14) 
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which can be compare to the sample estimate of 

1 N-n _ _ 

rr(n) = (N- n) V L (Tk - T)(Tk+n- T) 
w k-1 

We can use the expectation operator E{ ... } to calculate the means, 
population variances, and other values. For example, the autoregres­
sive sequence mentioned in Eq. (8-8) has a population mean deter­
mined by applying the expected value operator as follows: 

i = 1, 2, ... 

Jl.y = E{yk} = aE{yk_1} + E{w;} 
(8-15) 

The expected value of yk should be the same as that of yk_1 if the 
population is stationary (which we assume it to be) and the expected 
value of the white noise sequence W; is zero. Therefore, Eq. (8-15) can 
be continued as follows 

Jl.y = aJJ.y + 0 

Jl.y=O 
(8-16) 

The variance of that stochastic sequence can be calculated by apply­
ing the expectation operator to the square of the sequence as follows. 

vY = E{y~} = E{a2y~_1 + 2ayk_1wk +wn 

= E{a2yl_1} + E{2ayk_1wk} + Efwll 

The white noise sequence wk, by definition, is not correlated with 
Yk-1,soE{yk_1wk} = 0. Furthermore, Efyll = E{y2 } = a2 because of sta-
tionarity and E{w;} =a; by definition, so t-1 Y 

(8-17) 

Question 8-2 Why is wt not correlated with Yt-1? 

Answer Yt-1 occurs at sample time tt_1 and wk, which occurs at time 
tt, is independent of, or not correlated with, anything that took place earlier. 

Therefore, E(yt_1wt} = 0. 
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Question 8-3 What is the variance of the moving average stochastic sequence? 

Answer Apply the expectation operator to the square of Eq. (8-7): 

Since white noise is not autocorrelated all of the cross terms, as in Efw,.w.) 
will be zero, that leaves 

1 

For the case where it is just a conventional moving average, b, = 1 I M and 

which is a formula dear to the hearts of many statisticians. 

8-5 Comments on Stochastic Disturbances 
and Difficulty of Control 

8-5-1 White Noise 

(8-18) 

How well can a process be controlled when it is subject to white noise 
only? This is an interesting question because many statisticians will 
immediately throw up their hands and make some condescending 
comment suggesting that control engineers should keep their hands 
off processes subject to white noise because any attempts to control 
such a process only causes troubles. 

Part of that answer, minus the condescension, is correct, at least 
in my opinion. Consider the case where you are the controller and 
you observe samples of the process output whose average has been 
satisfactorily close to set point and that suffers only from white noise 
disturbances. Should you make an adjustment to the control output 
upon observing a sample of the process output that is not on set 
point? If the average of the process output is indeed nearly at the set 
point then any deviation, if it is really white or unautocorrelated, will 
be completely independent of the previous value of the control out­
put and it will have no impact on subsequent disturbances. There­
fore, if you should react to such a deviation, you would be wasting 
your time because the next observation will contain another 
deviation that has nothing to do with the previous deviation on 
which you acted. You, in fact, may make things worse. 



Stochastic Process Disturbauces and the Discrete Time Domain 231 

1.5 

1 

:::s 0.5 

0 

-0.50 100 200 300 400 500 600 700 

1.5 

1 
Vl 
"'0 

0.5 s= Noise 0'= 0.10604 · · ns 
)... y 0'= 0.1148 

0 ....... .. 

-0.50 100 200 300 400 500 600 700 
Tune 

fiGURE 8·30 Controlling in the face of white noise. 

But what happens when you want to change the set point? Con­
sider Fig. 8-30 where the process output is subject to white noise 
(whose standard deviation is 0.103), the process is first-order with a 
time constant of 10.0 time units and a PI controller, conservatively 
tuned, is active. Note the activity of the control output as the noise on 
the process output feeds through the controller. At 50 time units, the 
set point is stepped and the controller satisfactorily drives the aver­
age value of the process output to the new set point. However, the 
standard deviation of the process output about the set point is 0.115. 
So, the controller has amplified the noise. Ha! The statistician is 
smirking. A feedback controller cannot decrease the standard devia­
tion of the white noise riding on the process output. At best it can 
keep the average on set point. The catch is that in most industrial 
situations one needs the controller actively watching and controlling 
the process in case there are set-point changes and in case some non­
white noise disturbance appears. To quote a famous control engineer, 
"life is not white noise." This subject will be revisited in Chap. 11. 

8·5·2 Colored Noise 
Now, let's make the noise riding on the process output autocorrelated 
with an autoregressive coefficient of a= 0.95. This noise wanders 
around its nominal average value of zero. Because of the autore­
gressive nature, it occasionally spends some time near its last devia­
tion. That is, each sample does indeed depend somewhat on the 
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F1auRE 8-31 Controlling in the face of autoregressive noise (a= 0.95). 

previous sample. This suggests that it might be beneficial to go after 
the deviation because it has some persistence. Figure 8-31 shows 
what happens in this case. Here the autocorrelated noise riding on 
the process output has a standard deviation of 0.267 but the standard 
deviation of the controlled process output is 0.134. The controller has 
actually lowered the noise level. Note the different nature of the con­
troller output as it moves around to deal with noise that is not unau­
tocorrelated (double negatives, sorry). The reader may see a trend 
here. 

Consider the next situation where the autoregressive parameter is 
a= 1.001 in Fig. 8-32. Now we have a nonstationary noise sequence 
riding on the process output. If left uncontrolled, the process output 
would wander off into the boonies. The same controller, however, turns 
the noise standard deviation of 0.68 into a noise standard deviation of 
0.13. Note how much movement the control output has to make to 
keep the process output on set point. By the way, the value of 0.68 
comes from the autocorrelated noise added to the process output before 
it is fed to the controller during the period of simulation. In fact, the 
population standard deviation of the added noise is unbounded. 

Figure 8-33 shows the error transmission curve for the first-order 
process with Pl. Note that only power in the frequency range from 0.0 
to 0.05 Hz is attenuated. Fortunately, that is where the nonstationary 
power of the noise resides, as was shown in Fig. 8-27. 

As mentioned previously, we will touch on this subject again in 
Chap. 11 when we do the summing up. 
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8-6 Summary 
We have introduced several kinds of stochastic disturbances and 
have presented tools for detecting them. The difference between sam­
ple estimates and population estimates has been discussed along 
with an admittedly painful introduction to probability density, con­
cept of realizations, and expectation operator. 

The nature of the disturbance affecting the process is often ignored 
by the control engineer. Depending on its nature there may be a vari­
ety of solutions, some not including feedback control. When the dis­
turbance is primarily white, feedback controllers cannot lower its 
standard deviation. Controllers still may be needed to handle set­
point changes and unexpected changes in the nature of the distur­
bance. When the disturbance takes on color, feedback controllers can 
indeed lower its standard deviation. 

The next chapter will stay in the discrete time domain and intro­
duce the Z-transform. 



CHAPTER 9 
The Discrete Time 

Domain and the 
Z-Transform 

The discrete time domain is important because (1) most data col­
lected during a process analysis consists of samples at points in 
time separated by a constant interval, (2) most custom control 

algorithms are implemented digitally, and (3) concepts like white 
noise and the delta function for pulses are physically realizable in 
this domain. (Remember how the Dirac delta function in the continu­
ous time domain had no specific shape and had to be defined in 
terms of an integral.) In the previous chapter stochastic processes 
defined in the discrete time domain were introduced. Here, several 
familiar continuous time model equations will be discretized and 
the Z-transform will be introduced. Just as the Laplace transform 
aided and abetted our attempts to solve problems and gain insight 
in the continuous time domain, the Z-transform will be used in the 
discrete time domain. 

There are a couple of ways to introduce the Z-transform: (1) using 
the backshift operator in a manner similar to using the Laplace opera­
tor s to replace derivatives, or (2) deriving the Z-transform from the 
Laplace transform of a sampled time function. The latter approach is 
quite elegant and more general but I think it is best placed in App. I. 
Therefore, in Sees. 9.1 and 9.2 the backshift operator approach will 
naturally fall out of the discretization of the first-order model. With 
the new tool in hand, several other models, algorithms, and filters 
will be recast and studied in the Z-transform domain. As with the 
Laplace transform, there will be a transition to the frequency domain 
where more insight will be gained. The chapter closes with a discus­
sion of fitting discrete time domain data to models. 

This will perhaps be the longest chapter in the book, so you might 
want to break your reading plan into four parts. In the first part, you 
will learn about the Z-transform. In the second part, you will see how 
several unconventional control algorithms can be designed using 
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both the Z-transform and the Laplace transform. In the third part, we 
will move from the Z-transform domain to the frequency domain. 
The fourth part deals with the discrete time domain data-fitting prob­
lem. Take your time. 

9-1 Dlscretizlng the First-Order Model 
This and the following three sections are busy. The first-order process 
model is studied for a special case where the process input is a series 
of steps. The describing equation will be modified slightly when time 
is discretized. The result will be rewritten using the backshift opera­
tor which will lead to the Z-transform. This necessitates a discussion 
of sampling and holding. The discretized unity-gain first-order model 
is then reinterpreted as a discrete time filter. 

Back in Chap. 3 we presented the first-order model in the contin­
uous time domain via the differential equation 

t~~ +y=gU(t) (9-1) 

In the Laplace domain we wrote the transfer function between 
process input and output as 

Y(s) -G (s)- g 
li(s}- P - ts+l 

(9-2) 

When Eq. (9-1) or (9-2) was solved for the case where the process 
input U is a step change we obtained 

(9-3) 

Before moving to the discrete time domain, let's apply Eq. (9-3) for 
one time increment of size h over which U(t) is held constant at U0• 

(9-4) 

Equation (9-4) moves information at t = 0, namely y0 and UCY to t = h 
to produce y(h). The information at t = h can be moved to t = 2h by 
reapplying Eq. (9-4) suitably modified, as in 

(9-5) 
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Note that the value of U(t) over the interval h S t < 2h is held con­
stant at U1 which may be different from U0• We have eHectively moved 
to the discrete time domain by breaking the time variable up into sam­
ples spaced apart by h sec. This means that time is described by 

t ~ t; = hi i = 0, 1, 2, ... 

The process output becomes 

y(t)~ Y; i = 0, 1, 2, ... 

The process input becomes 

U(t)~U; i = 0, 1, 2, ... 

With this in mind, Eqs. (9-4) or (9-5) can be written as 

Spend a few moments thinking about Eq. (9-6). It is the same as 
Eq. (9-4) except that it is applied over the time interval from t;_1 to t; 
during which Ui-t is held constant. Figure 9-1 shows how a first-order 
process with a time constant of 5.0 sec and a gain of 1.1 responds to a 
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0 • • • 

0o 10 20 30 40 50 60 70 80 90 100 
Ttme 

FaJRE 9-1 Response of first-order model to a series of steps in the process input. 
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series of steps in U lasting 10 sec (h = 10) during which U is held con­
stant. Eq. (9-6) gives the values of the process output at the end of 
each time period over which U was held constant. It provides no 
information for y(t) during t; < t < t;+1. 

The stepwise behavior of U(t) could be the result of a digital-to­
analog converter that is activated every 10 sec. 

9-2 Moving to the Z-Domaln via the Backshlft Operator 
The quantity yin Eq. (9-6) can be converted to its Z-transform coun­
terpart y(z) by introducing the backshift operator z-1 defined as fol­
lows 

y(t- h)= z-1 y(t) (9-7) 

where h is the sampling interval. I have not added the "hat" to the 
variable y(t) because Eq. (9-7) is in a kind of limbo between the time 
and the z domains. It is perhaps better to proceed with the actual 
definition of the Z-transform which is 

00 

y(z) = Z(y(t)} = Lz-ky(k) (9-8) 
k-0 

Note that this is a weighted sum over all of the sampled values of 
y(t) as compared to the Laplace transform which is a weighted inte­
gral over all the continuously variable values of y(t). In both cases, 
values of y(t) are considered zero for t < 0. 

If the variable y(t) is shifted in time one sample, Eq. (9-8) 
would be 

00 

Z(y(t-1)} = Lz-ky(k-l) 
k-0 

00 

= L z-(p+1)y(p) 
p-1 

00 

= z-1 L z-Py(p) 
p-1 

00 

= z-1Lz-Py(p) 
p-0 

= z-1z(y(t)} 

= z-1y(z) 

(9-9) 
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The summation index in the third line of Eq. (9-9) is changed to 
zero because, like the Laplace transform, y(t) is assumed to be zero 
fort< 0. The manipulations in Eq. (9-9) should convince the reader 
that z-1 is a backshift operator. 
With this in mind, Eq. (9-6) becomes 

y, = y1_1e ~ + gU,_,(l-e-~) 

j(z) = e ~z-1 j(z)+ g(l-e ~ )z-11i(z) 

i = 0, 1, 2, ... 

(9-10) 

As with the Laplace transform, Eq. (9-10) is algebraic and can be 
solved for y as in 

(9-11) 

or 

y(z) = G(z)U(z) (9-12) 

where G(z) is the transfer function in the Z-domain for the first-order 
process model. For this multiplication in Eq. (9-12) to be valid, the 
time domain variable U(t) has to behave as in Fig. 9-1. 

9-3 Sampling and Zero-Holding 
In Eq. (9-10), U(t) is a series of steps, as if it were the output of a 
digital/analog (0/ A) on a microprocessor. Alternatively, and more 
elegantly, one can say that U(t) has been put through a sampler and 
a zero-order hold device which samples the value of U(t) at time t; and 
holds it for a period of h sec. The device releases it at time ti+t at 
which time the device samples the new value of U(t) and holds it. 
There is no zero-order hold device associated with y(t) so it is con­
sidered as a sequence of isolated sampled values that exist only at 
time t;, i = 0, 1, 2, .... The sampled variable y(t) could also be con­
sidered as a train of spikes with the height of each spike equal to the 
value of y(t;) as depicted in Fig. 9-2. Figure 9-3 shows how the zero­
order hold device is introduced. Note the samplers that act on U(t) 
and on Y(t). 
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FIGURE 9-2 Response to a series of steps in the process input, alternative 
view. 

Y(s) 

G(z) -~·I G(z) t---•• Y(z) 

FIGURE 9-3 The sampler zer<Hlold device as part of the Z-transform transfer 
function. 

In App. I, the zero-order hold is studied in detail and it is shown 
that the transfer function in Eq. (9-11) can be written as 

g(l-e~)z-1 
Y(z) = h U(z) = Z{nh(s)G(s)}U(z) (9-13) 

1-e --:rz-1 

where 

G(s)- g 
- 'l'S+ 1 
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That is, the Z-transform transfer function can be obtained from 
the Laplace transform of the zero-order hold applied to the Laplace 
transform transfer function for the first-order process. Equation (9-13) 
represents a great leap of faith and unless the reader is familiar with 
the Z-transform she should spend some time reading App. I where 
the origin of nh(s) is explained. In this chapter, we have taken the 
path that moves directly from the discrete time domain to the Z­
transform domain via the backshift operator. Appendix I goes 
through the analysis of the sampling and holding functions via the 
Laplace transform. For our needs, either approach is sufficient but it 
will greatly help the reader to study both. Therefore, the Z-transform 
transfer function relating the sampled and zero-held process input 
to the sampled process output is 

This transfer function can come from the discrete time domain 
with a stepped process input augmented by the backshift operator or 
from the Laplace transform domain where transfer functions in s are 
converted to Z-transforms in z. 

If y(t) turns out to be the input to another stage as in Fig. 9-4, then 
the Z-transform cannot be used without some consideration. Note 
that no sampler is applied to y(t) before it becomes an input to the box 
represented by H(s). 

Q(z) -----+~•1 Z{G(s)H(s))l t---• W(z) 

F•auRE 9-4 The zero-hold device as part of the Z-transform. 
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The correct expression to yield W(z) would be 

W(z) = Z{nh(s)G(s)H(s)JU(z) (9-14) 

However, if a sampling device w~ to be placed between stages G(s) 
and H(s) then the expression for W(z) would be 

W(z) = Z{llh(s)G(s)} Z{H(s)}Z{U(s)} 

= G(z)H(z)U(z) 
(9-15) 

To complete the concept of sampling and holding, consider the 
case where there is a sampler applied to the input but there is no 
hold as is shown in Fig. 9-5. Now the process is responding to a 
train of spikes and the response in Fig. 9-6 is quite different from 
that in Fig. 9-1. Note the first-order response to each of the U spikes 
(or un-zero-held samples). 

U(t) •I I I U(l;)•l G(s) ~Y(s) 
Sampler 

FIGURE 9-5 Removing the zero-hold device. 
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FIGURE 9-8 Response to a series of spikes in the process input. 
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9-4 Recognizing the First-Order Model as a Discrete 
Time Filter 

If in Eq. (9-6) we set the gain to unity, then 

can be written as 

,, 
a=e r 

h 
t'=-­

lna 

i = 0, 1, 2, ... 

b=1-a 
(9-16) 

Equation (9-16) is the widely used unity-gain discrete first-order 
filter with a time constant t' (also sometimes called the "exponential 
filter"). 

For the special case where the input U is white noise, one can apply 
the expected value operator to the square of Eq. (9-16) and obtain the 
variance reducing property of the discrete first-order filter, as in 

E{y2 J = Vy = E{(ay; +bU;_1)2 J 

= E{ a2y1 + 2aby;_1U;_1 + b2U~1 1 

=a2VY +b2Vu 

Note that the cross-term in Eq. (9-17), 2abE{y;_1U;_1J, disappears 
because Y;-1 and U;_1 are not cross-correlated. From the definition of 
the parameter a in Eq. (9-16), it is clear that as the time constant is 
increased, the variance gain, b2 I 1- a2, is decreased. In Sec. 9-12, 
after we have moved from the discrete time domain to the frequency 
domain, the increased lag of the filter output will become apparent. 
Alternatively, one could look as the first-order process model as a 
filter acting on the process input U. The engineer can use Eq. (9-16) as 
a filter to reduce noise. The amount of noise reduction, if the noise is 
white, is given by Eq. (9-17). As the parameter a increases (remember 
it has to be < 1), the filter time constant t' increases, as does the noise 
reduction. The increase in the filter time constant may have adverse 
effects if the filter resides in a feedback loop. Therefore, there is a bal­
ance between the benefits of noise reduction and the disadvantage of 
increased lag. 
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9-5 Descretlzlng the FOWDT Model 
In Chap. 4, the FOWDT model was presented as 

dy 
-r-+ y = gU(t-D) 

dt 
(9-18) 

In the Laplace domain, the FOWDT model transfer function was 
written as 

M=G (s)=e-.o_K_ 
U(s) P -rs+1 

(9-19) 

In Chap. 4, we rushed to the frequency domain without solving 
Eq. (9-18) for a constant process input. To obtain the solution in the 
discrete time domain, adjust the indices of U, as in 

y1 = y,_1e ! + g( 1-e ! )u,_t-n i= o, 1, 2, ••. 

- h - ( h) Y(z) = e r z-1 Y(z) + g 1-e r z-1-n U(z) 

(9-20) 

where dead time is D = nh. For the time being, assume that the dead 
time D can be exactly divided up into n increments, each of size h. 

The transfer function between y and U follows from Eq. (9-20): 

- g(1-e :)z-1
-n 

w=G(z)= h 

U(z) 1-e 1 z-1 
(9-21) 

where, again, the process input is passed through a sampler and a 
zero-order hold. 

9-6 The Proportional-Integral Control Equation 
In the Discrete Time Domain 

The proportional-integral (PI) control equation, introduced in Chap. 3, 
can be written as 

I 

U(t) = U0 + ke(t) +I J due(u) 
0 

(9-22) 
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If Eq. (9-22) is evaluated at discrete points in time, the result is 

e(t;) = S;- Y; (error) 

Q; = Qi-1 +he; (integral component) (9-23) 

(PI algorithm) 

The transition from Eq. (9-22) to (9-23) bears some discussion. The 
integral of the error is approximated simply (and crudely) by 

I N J due(u): I,hek 
0 k=O 

t=Nh 

But, to put this approximation directly into Eq. (9-22) would pose imple­
mentation problems when it comes to evaluating the sum (try it with 
some practice code in any language such as BASIC). It is simpler to use 
three equations, as in Eq. (9-23), and update the integral of the error sep­
arately. Failure to break the PI control equation into these parts has been 
the bane of many a microprocessor programmer. Several times in my 
caree~ by separating the equation into three parts, I was able to help out 
a junior engineer, who just couldn't get his code to work. 

Equation (9-23) presents the positional form of the PI control algo­
rithm. Alternatively, the PI control algorithm can be implemented as 

If autent > aumax then au = aumax 

If autent < -aumax then au= -aumax 

else au= autent 

utent = u;_1 +au 

if utent > umax 

if utent < umin 

else U; = Utent 

then U; = Umax 

then u; = umin 

(9-24) 

where the first line of Eq. (9-24) is the incremental form of the PI con­
trol algorithm. A new symbol a is the differencing operator and it 
operates on a variable to generate a difference, as in 
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The differencing operator can be related to the backshift operator as 

.6.E=E;-E;_1 

=(1-z-1)E; 

Note that the minimum and maximum allowed values of U and .6-U 
are included in Eq. (9-24). This is preferable to Eq. (9-23) because the 
clipping of U and aU is easier in the sense that one does not have to 
figure out how to clip the integral component Q in Eq. (9-23). 

A common problem occurs when a programmer "talks the algo­
rithm out" before coding it. He might say, "I will compute the error 
between the set point and the process output, multiply it by a propor­
tional control gain, and add it to the old value of the control output 
and send it on its way via aD/ A converter." In doing so, the follow­
ing algorithm is being implemented: 

U; =U;_1 +K(S- Y;); (9-25) 

Equation (9-25) is an integral-only control algorithm. As you might 
already suspect, and as we will show later in this chapter, this algo­
rithm adds an immediate phase lag of 90° and can be deadly if the 
process under control already contributes 90° or more of phase lag. 
Many junior engineers consider Eq. (9-25) to be a proportional control 
algorithm and are mystified when the controlled system oscillates. 

Finally, there is often a temptation, when programming the PI 
control algorithm in a microprocessor, to take a short cut as in 

where 

.6-U(t;) = Ae(t;) + Be;_1 

U; = U;_1 + .6-U(t;) 

A=k+Ih and 

B=-k 

(9-26) 

Equation (9-26) appears to be equivalent to Eq. (9-24). It also 
appears to save one computational step. But, if the control interval h 
and the integral gain I are small (and they often are) then A and -B might 
be numerically quite close, especially if the microprocessor has a rela­
tively short word length. This can cause serious round-off errors. I 
always recommend avoiding Eq. (9-26). 

9-7 Converting the Proportional-Integral Control 
Algorithm to Z-Transforms 

To move to the Z-transform domain, one merely applies the backshift 
operator to Eq. (9-24), as in 
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(1-z-1)il = k(1-z-1)E +I hE 

u = k(1-z-1)E+IhE 
(1-z-1) 

=(k+ 1-Ihz-').e 

(9-27) 

In the development of Eq. (9-27), the reader should have per­
ceived that there are some matches between discrete and continuous 
time operators as in 

Derivative : s <=> DiHerence: 1-z-1 

Integral: 
1 

Sum: 
1 - <=> 

1-z-1 s 

9-8 lbe PlfD Control Equation In the Discrete 
Time Domain 

The PlfD algorithm was introduced as a tool for controlling the 
underdamped process in Chap. 6. In the Laplace transform domain 
the PlfD algorithm can be written as 

(9-28) 

The discrete time realization of this algorithm can be constructed 
as follows. First, construct the proportional-integral-derivative (PID) 
without the filter, as in 

(9-29) 

where 

&E; = E; - E;_1 

a2E; = E; - 2E;_1 + E;_2 
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Note that a2E; can be obtained by a repeated application of the 
differencing operator a, as in 

a2E; = a(&E;) = a(E; -E;_1) 

=aE;-&Ei-1 

= (E; - Ei-1)- (E;-t - E;-2) 

Also, note that the h appears in Eq. (9-29) because the derivative 
is being approximated by a difference, as in 

dE. &E. 
I_ I 

dt=h 

Two modifications should be made immediately. First, the set 
point should be removed from the derivative term because, if there 
be a step in the set point, the derivative of a step change is a spike 
which would disrupt the controller behavior. 

where 

a2y. 
au;= P&E; + lhE;-DT 

u; = u;_1 +au; 

aE; = E; - E;_1 

i1
2
Y; = Y;- 2Y;-1 + Y;-2 

Second, the derivative term should be separated from the 
main equation and put through our newly introduced first-order 
filter, as in 

q. = Y; -Yi-1 
I h 

q{ = (1-a)q; + aqf-t 
II 

a=e t' 
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where q{ is the filtered difference. The PlfD algorithm becomes 

q. = Y;-Y;-1 
I h 

q{ = (1- a)q; + aqf-1 

&U; = P&E; + lhE; - Daq{ 

u; = ui-1 +au; 

(9-30) 

The Z-transform version of Eq. (9-30) can be written by 
inspection as 

or 

(1- z-1 )U = P(1- z-1 )E + lhE- 0(1- z-1 )qf 

[1- (1- a)z-1 ]qf = a (1- z-
1

) y 
h 

9-9 Using the Laplace Transform to Design Control 
Algorithms-the Q Method 

(9-31) 

We have put this subject off until we could carry out the design in 
both the continuous and discrete time domains. The fonner is more 
straightforward because there are no samplers or zero-order holds. 

9·9·1 Developing the Proportional-Integral Control Algorithm 
We will start with the first-order process model and derive a control 
algorithm that will accomplish a desired response of the process out­
put to a step in the set point. This means that the transfer function 
relating the process output to the set point will be the same as that 
given in Eq. (3-42) in Chap. 3, namely, 

y _ GPG, 

S-1+GpGc 
(9-32) 
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where, in this case, the process transfer function G,(s) is known to be 

G =-g­
P -r,s+1 

(9-33) 

The transfer function for the controller Gc(s) is unknown and is to be 
determined. 

We specify that the response of the process output to a step in the 
set point should be first order with a specified time constant T d as in 

y 1 
S=Q= Tds+1 (9-34) 

Equation (9-34) means that the controller will drive the process 
output to the set point in a first-order fashion described by a time 
constant Td. You might expect that we would want Td < -r,. The gain 
is unity in Eq. (9-34) because we want the process output to line out 
at the set point. 

Eliminating Y I Sbetween Eqs. (9-32) and (9-34) gives 

or, after solving for G c' 

u Q 1 
..... =G =----
E c 1-QG 

p 
(9-35) 

which is the desired transfer function for the controller. All 
that remains is to replace Q and G, which we will do in the 
following: P 

u Q 1 
..... =G =----
E c 1-QG, 

1 
Tds+ 1 1 

=-=----
1 g 

1-----
Tds+1 -r,s+1 

-r, 1 
=-+--

g-rd g-rds 



The Discrete Time Domain and the Z-Transform 251 

This is nothing more than the PI control algorithm! This can be 
seen by continuing the algebra 

- -rp - t E 
U=-E+--

g-rd gfd s 

- E 
=PE+l­

s 

(9-36) 

Therefore, given the process time constant 1 P and the process gain 
g, the proportional control gain and the integral control gain can be 
adjusted by choosing the desired time constant fd. Equation (9-36) 
shows that as 1 d decreases the tuning gets more aggressive. It is com­
forting that the PI control algorithm is the natural outcome of asking 
the response of the first-order process model output to behave in a 
first-order manner to a step in the set point. 

The practical use of Eq. (9-36) is important. Many processes 
behave approximately as first-order processes. Therefore, one would 
apply a step change to the process input while the controller is inac­
tive and collect the response. Visually or otherwise, one would then 
estimate the process gain and the process time constant. Then the 
controller gains could be obtained from Eq. (9-36) after the desired 
time constant is specified. My experience suggests that fP I fd = 2 is a 
good start. 

Many PI controllers are designed to fit the following format: 

(9-37) 

where 11 is often called the "reset time" and Kc is an overall control 
gain. In this case the tuning rules are slightly different. 

ii=iE+-1-! 
gfd gfd s 

=K,(l+ :,)E 

(9-38) 

Now the reset time is directly equal to the desired time constant 
and one would only adjust Kc to tune the algorithm. In this case, one 
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adjustable parameter fd, easily visualized, can be used to determine 
values for two controller parameters. 

By the way, note that the controller gain is inversely proportional 
to the process gain. This makes sense because when the process gain 
is high the controller gain should be low and vice versa. 

In general, when the process is not first order, the controller 
designed by this method will not be PI and in fact may be difficult to 
implement in the continuous time domain. 

9·9·2 Developing a PID·Uke Control Algorithm 
Having gone through the painful algebra for the simple first-order 
case, we will quickly develop a control algorithm for the under­
damped process discussed in Chap. 6. First, the process transfer func­
tion is given as 

Next, the transfer function for the desired second-order response 
of the process output to a step in the set point is specified as 

Once again, the gain is unity because we want the process output to 
line out at the set point. Note that md and 'd are specified by the con­
trol designer. 

These two transfer functions are inserted into Eq. (9-35), the alge­
braic crank is turned and out pops the following algorithm: 

G = (s2 +2,m,s+m~) m~d 
c m~gs s + 2'dmd 

which, after some further manipulation, becomes 

(9-39) 

Equation (9-39) is seen to be a PID control algorithm, namely, 
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which is put through the following first-order filter: 

In tuning this algorithm one would perhaps choose a desired 
damping factor such that 'I'd is less than unity (the desired response 
would not be as underdamped as the uncontrolled process) and a 
desired natural frequency such that md I run was greater unity (the 
desired natural frequency would be faster than the uncontrolled pro­
cess). It is interesting that a four-parameter PID control algorithm 
(including the filter time constant) ends up requiring just two param­
eters, both of which are easily visualized: 

For both the example algorithms in this section, the reader should 
see that knowledge of the process parameters is critical in tuning the 
controllers. 

9·10 Using the Z·Transform to Design Control Algorithms 
To design a discrete time domain controller we start again with a 
feedback control loop but we insert a sampler and a zero-order 
hold as in Fig. 9-7. The block diagram algebra is similar to that for 
the Laplace transform except that one has to ensure that the loca­
tion of the samplers and zero-order holds make sense. Here, the 
controller error is formed, sampled, and fed to the controller 
(which is probably implemented digitally) as a train of pulses. The 

Y (Process output) 

D disturbances 

F1auRE 9-7 A feedback controller with a sampler and a zero-order hold. 
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output of the controller, U, is sampled, held and fed to the process 
as a sequence of steps. 

Y = Z{nh(s)GP(s)}U(z) 

U=G E c 

Y = Z{nh(s)GP(s)}G c(z)E 

E=S-Y 
Y = Z{n1,(s)G,(s)}G c(z)(S- Y) 

_ Z{nh(s)GP(s)}Gc(z) _ -
Y= S=HS 

1 + Z{nh(s)GP(s)}Gc(z) 

(9-41) 

This look messy, but the only difference between Eq. (9-41) and 
Eq. (3-42) is the additional factor of the zero-order hold nh(z) which 
is dealt with in detail in App. I. 

As in Sec. 9.9, the desired relationship between the process out­
put and the set point is specified as 

y 
--=Q(z) s (9-42) 

Equations (9-41) and (9-42) are combined as before giving the 
expression for the controller 

or 

(9-43) 

If we are dealing with first-order models, the desired response 
would be characterized by the discrete first-order unity gain transfer 
function 

(1-e :.)z-t 
Y(z) = h S(z) = Q(z)S(z) (9-44) 

1-er;z-1 
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Continuing the first-order approach, the expression for nh(z)GP(z) 
would be obtained from Eq. (9-13): 

+-· :.}-1 
Y(z) = h U(z) = Z{Dh(s)G{s)}U(z) (9-45) 

1-e r,z-1 

The only difference between Eqs. {9-44) and (9-45) is the gain and 
the subscript on the time constant. 

The algebraic crank-turning yields 

The control algorithm is therefore 

where 

- 17 1-e r" 1- z- e ' ( h)( h) 
- _ - _ 811 (1-Az-1) 

U(z)- ( _!_) (1-z-1) E(z)- gB (1-z-1) 
g 1-e r, 

h 

A=e r, 

(9-46) 

(9-47) 

A little (actually, a lot of) algebraic manipulation of Eq. (9-47) 
gives 

- B - B z-1 -U(z) = -
8
d E(z) + ...L--1 E(z) g g 1-z-

(9-48) 

The first term on the right-hand side of Eq. (9-48) is the propor­
tional component and the second term is the integral component with 
an extra delay of one sample in the numerator. In practice, one would 
remove the extra delay because, from a common sense point of view, 
it adds nothing to the performance. 
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Therefore, converting to the discrete time domain we have a PI 
control algorithm: 

Bd Bd 
~U. =-~E.+ -E. 

I gB 1 g 1 

= P~E; +IhE; 

with the following tuning rules. 

II 

B 1- e rd 

P= ; = g(l-e-~) 
II 

I=.! Bd = 1-e rd 

h g gh 

(9-49) 

(9-50) 

Question 9-1 If the control interval h is decreased to an infinitesimal value, will 
the tuning rules in Eq. (9-50) evolve into those of Eq. (9-36)? 

Answer Yes, they would and I will leave it to the reader as an exercise. Sorry, 
unless you trust me you will have to work it out on your own. 

As with the tuning rules given in Eq. (9-36), these in Eq. (9-50) are 
practical. When the digitally implemented PI controller has a control 
or sampling interval that is quite small relative to the dominant pro­
cess time constant, these two sets of tuning rules are virtually identi­
cal and I would recommend using the former. 

9-11 Designing a Control Algorithm 
for a Dead-Time Process 

Before we get started, we have to understand that there really is no 
panacea for controlling processes with a dead time. The controlla­
bility of a process with a dead time can never be as good as that for 
a process without dead time, no matter how fancy the control algo­
rithm is. Consider the following sequence of events. A disturbance 
causes the process output to deviate from the set point. You, acting 
as the controller, immediately initiate a control move to address 
the deviation. There will be no response to that control move until 
the dead time has elapsed. During that dead-time period, more 
nasty things can happen to the process output but you still haven't 
seen the effect of your initial action. This situation often leads to 
impatient and aggressive moves that cause more trouble than the 
original disturbance. 
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The discrete time domain is perhaps a better place to concoct a 

control algorithm for processes with dead times because to be some­

what effective the algorithm will have to store past control outputs or 

process outputs. A delay vector, digitally implemented, is probably 

the best way to deal with this problem. 

The FOWDT process model from Eq. (9-21) will be used. 

Y(z) gBz-1-'1 

U(z) = G(z) = 1-Az-1 (9-51) 

B=1-A 

The desired response to a change in the set point will be 

Y(z) B z-1-" 

---= Q = __.;;;d'----::-

S(z) 1- Adz-1 
(9-52) 

This desired response contains the dead time. Therefore, we are 

conceding that our desired response cannot occur until the dead time 

has elapsed and only then can we specify a desired time constant rd. 

Combining Eqs. (9-51) and (9-52) results in 

(9-53) 

To get Eq. (9-53) into a better form we add z-1 to and subtract z-1 

from both the numerator and the denominator (try it!) and get 

- - ~ - ~ -
(1- z-1) U(z) =Btl (z-1-"- z-1) U(z)+ -(1- z-1)E(z)+ -z-1E(z) (9-54) 

gB g 

This may be off-putting at first but after a closer look the reader 

will see the change in the controller output on the left-hand side of 

Eq. (9-54), namely, (1-z-1) U(z), equals a difference of delayed 

controller outputs, (z-1-" - z-1) U(z). Next, there are two terms that 

look just like the PI algorithm obtained in Sec. 9.10 if one is willing to 

remove, once again, the backshift operator in the last term on the 

right-hand side of Eq. (9-54). In fact, the P and I control gains in these 

last two terms are the same as those arrived at in Sec. 9-11. The first 

term on the right-hand side of Eq. (9-54) 
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can be realized by using a delay vector of the controller outputs. 
In the discrete time domain the algorithm looks like 

Therefore, the control of a FOWDT process can be accomplished via 
an augmented PI control algorithm. 

Figures 9-8 and 9-9 show the control of a dead-time process using 
the augmented algorithm and using regular Pl. The process has a 
time constant of 10.0 time units and a gain of 2.0. The control interval 
is 1 time unit. The dead time is 5 time units. The desired time constant 
is 5 time units. The extra term in Eq. (9-55), containing the delayed 
control outputs, causes the PI controller to behave as though there 
were no dead time. Therefore, in Fig. 9-8 the control output responds 
to the step in the set point as though there were no dead time. Note 
how the control output immediately starts to back off after the first 
step associated with the set-point change. This backing off occurs 
before the process starts to respond. 

Figure 9-9 shows the same process under regular PI control with 
the same P and I control gains (admittedly too high). Note how the 
integral component ramps up after the initial proportional jump at 
the time of the set-point change. This ramping occurs because the 
process has not yet responded and the error is constant. 
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FIGURE 9-8 Control of a FOWDT process with compensated Pl. 
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FIGURE 9-9 Control of a FOWDT process with Pl. 

In this example the process model parameters matched those of the 
actual process perfectly. In realistic cases there will be a mismatch and 
the performance will not be as good. However, I have used this type of 
control algorithm with reasonable success in a variety of industrial set­
tings and I rarely chose the desired time constant to be less than half 
the process time constant. Anything smaller will likely be too aggres­
sive and accentuate the differences between the model and the actual 
process. Just in case you come across the Smith Predictor, the algorithm 
in Eq. (9-55) is quite similar in concept and application. 

Finally, note that this algorithm requires fetching values of U from 
a delay vector. If the dead time is variable, the algorithm discussed in 
Sec. 4-6 would be required. 

9-12 Moving to the Frequency Domain 
In the continuous time domain, the Laplace transform provided a 
path from differential equations to algebraic equations and then to 
the frequency domain via the substitution of s ~ jm or s ~ j2tt f. In 
the discrete time domain there is a similar path. The Z-transform con­
verts discrete time index equations into algebraic equations. The tran­
sition to the frequency domain is provided by the substitution 

z = e51' ~ eiOJI, = ei2ttfh = ei0 = cos.Q+ jsin.Q 

259 
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where n varies from 0 to 21r, ro varies from 0 to 21r I h, and f varies 
from 0 to 1 I h (later on you will see that the range for f can be quite a 
bit wider). As can be seen from App. I, this substitution logically fol­
lows from the sampled Laplace transform. 

9-12·1 The First-Order Process Model 
Consider a first-order process with a time constant of 5.0 min and a gain 
of 2.0. Upon applying the above substitution to Eq. (9-11), one gets, after 
some serious algebra, which I don't think you are interested in, 

G(ei0 ) = g(1 - A) ei9 

~1- 2Acos(21r f h)+ A2 

6 = -tan-t ( sin(21r f h) ) 
cos(2~r f h)- A 

(9-56) 

The Bode plot for this transfer function is shown in Fig. 9-10 for 
three different values of the sampling interval h. The plot also gives the 
magnitude and phase for the continuous first-order model with the 
same time constant and gain. 

This figure bears some study. First, note that as h decreases (or as 
the sampling frequency increases) the curves for the discrete models 
approach that of the continuous model. Second, note that for each h 
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F1auRE 9-10 Bode plots for sampled first-order process models, -r = 5. 
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there is a different folding frequency JN,,. The frequency range in 
Fig. 9-10 is [0, 5] which includes the foldirig frequency for the highest 
sampling frequency of the three cases. For the two examples that 
have smaller folding frequencies, the magnitudes show a strange 
ripple that will be explained later. 

For the continuous first-order model, the phase curves show that 
the maximum phase lag is 90°. The phases for the discrete model drop 
off precipitously once the folding frequency has been exceeded. 

The sampling interval acts as a dead time with a value equal to one 
half the sampling interval. Consider the case when the process input is 
stepped. If the step happens to occur exactly at the sampling instant then 
it will appear as though there were no dead time. At the other extreme, 
if the step happens just after the sampling instant there will be an effec­
tive dead time of one sampling interval. On the average, the step will 
occur in the middle of the interval, hence the effective dead time of one­
half sampling interval. This means that even the idealized dead-time­
less first-order model becomes potentially unstable when discretized. 

9-12·2 The Ripple 
Now, what about those ripples in the magnitude curves? Before 
addressing this issue, we replot the magnitude curves with a linear 
frequency axis, in Fig. 9-11. In addition, we plot the continuous 
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FIGURE 9-11 Magnitudes of discrete models. 
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FIGURE 9-12 Discrete and continuous magnitude plot. 
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and discrete version of the magnitude in Fig. 9-12. Three things 
should be apparent. First, the act of sampling causes the contin­
uous magnitude to be replicated at frequency intervals equal 
to the sampling frequency. For example, when h = 0.5 or fs = 2.0, 
the continuous magnitude curve, centered at f = 0.0 is replicated 
at f = -4,-2,0,2,4, . . . . Second, the discrete time magnitudes 
overlap causing the discrete magnitude at, say, f = 1.0, to be 
greater than continuous magnitude. This is a consequence of the 
folding of higher frequencies into the Nyquist interval as aliases 
(see App. C for more discussion of aliasing). Third, note that the 
magnitude is symmetrical about the folding frequency. There­
fore, there is really not much reason to construct the Bode plots 
for any frequency range other than [0 /Ny1· 

9-12-3 Sampling and Replication 
Although I am not going to demonstrate it, in general, sampling 
in one domain, say, the time domain, causes replication in the 
frequency domain, as in the case here. Conversely, sampling in 
the frequency domain causes replication in the time domain. For 
example, in App. C, it was suggested that the discrete Fourier 
transform was the result of sampling a continuous Fourier trans­
form in the frequency domain and that periodicity resulted in the 
time domain data. 
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9-13 Rlters 

9·13·1 Autogresslve Rlters 
We have mentioned filters in passing several times in earlier parts of the 
book. In the continuous time domain, the first-order low-pass filter 

1 
1'S+1 (9-57) 

was used to smooth out the derivative in the PlfD control algorithm. 
The Bode plot for first-order processes in Chap. 4 supports the moni­
ker of "low pass." 

Earlier in this chapter the first-order discrete model 

Y; = ayi-t + bU;-1 

h 

a=e' b=1-a 

y _ bz-1 

U-1-az-1 

i= 0, 1, 2, ... 

(9-58) 

was suggested as a low-pass filter. In general, any operation on data 
that changes its spectral content can be considered a filter. Most 
industrial processes are low-pass filters. 

The choice of the indices is somewhat arbitrary because Eq. (9-58) 
can also be written as 

Y; = ayi-1 + bU; 
,, 

a=e' b=1-a 

- b lt.=---u 1-az-1 

i = 0, 1, 2, ... 

In general, Eq. (9-59) can be written as 

n-1 m 

Y; = I,akYi-k + l:,bkUi-k 
k-1 k-1 

(9-59) 

(9-60) 
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Note that Eq. (9-60) contains additional nonautoregressive terms 
in U; that, in the next section will be considered as moving average 
components. 

Question 9·2 If the first-order process model evolves into a discrete time first­
order filter, what would the second-order model, say, 

look like after discretization? 

B 
{= 2Jk; 

Anlwar The second-order process model would become a second-order discrete 
time model. There are several ways to approach this, none of which will be 
shown here, but using the following Matlab script is one of the simpler paths: 

w=1; % natural frequency 
z=.1; % damping coefficient 
[n d] =ord2 (w, z); 
sys=tf(n,d); 
disp('display Laplace transform') 
sys 
disp('convert to discrete') 
dsys=c2d ( sys, 1) ; 
disp('display Z-transform') 
dsys 

which generates the following screen output: 

display Laplace transform 

Transfer function: 
1 

s"2 + 0.2 s + 1 

convert to discrete 
display Z-transform 

Transfer function: 
0.431 z + 0.4023 

z"2 - 0.9854 z + 0.8187 

Sampling time: 1 

This transfer function equals Y I a or 

(z2 -0.985z+0.819) y = (0.431z+0.4023) a 
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Multiplying by z-2 gives 

(1-0.98Sz-1 +0.819z-2 ) Y = (0.43tz-t +0.4023z-2 ) U 

Knowing that z-1 is a backshift operator allows us to move to the time 
domain directly and get 

Yt =0.98Sy,._1 -0.819yk_2 +0.431uk-t +0.4023uk_2 

which is a second-order filter of the type shown in Eq. (9-60). 

9·13·2 Moving Average Filters 
An alternative to the first-order discrete filter is the moving average filter 
already alluded to in Chap. 8. For the case of two "taps," we have 

Yk = b1Uk + b2Uk-1 
(9-61) 

where often the coefficients would be chosen to effect a two-sample 
conventional average, as in 

In general, the moving average filter is 

M 

Y -~bU k- ~ 111 k-m-1 (9-62) 
111•1 

Note that the so-called autoregressive filter in Eq. (9-60) contains a 
moving average component. Therefore, Eq. (9-60) really represents an 
autoregressive-moving average filter. 

Consider the two simple cases, a first-order filter with a time con­
stant of 10 time units and a moving average filter with 10 "taps." 

Y; = ayi-1 + bUi-1 

1 
a=ew b=1-a 

1 10 

Yk = 10 I,uk-m-1 
m-1 

i = 0, 1, 2, ... 

(9-63) 

Figure 9-13 shows the step-change responses of the two filters. 
Note how the moving average filter ramps up to the final value and 
flattens out at the tenth sample. On the other hand, the first-order 
filter reaches 63% of its final value at about the tenth sample. You 
should think about the response of the moving average filter and con­
vince yourself that it makes sense. 
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flauRE 9-13 Moving average versus first-order filters, step-changer response. 

Figure 9-14 shows the Bode plot magnitude of the two filters. 
Note how the moving average filter actually obliterates signals that 
have frequencies that are multiples of 1/10. Signals with these fre­
quencies line up with the sampling such that positive values cancel 
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F1auRE 9-:14 Moving average versus first-order filters, Bode plot. 
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.._ 9-15 Ten point moving average versus 10 sec time constant first-order filters. 

out negative values and the net output of the filter is zero. Figure 9-15 
shows the phases of these two filters. Note the linearity of the phase 
for the moving average filter. 

9·13·3 A Double-Pass Filter 
As the reader can tell from the Bode plots, the first-order filter carries 
out attenuation, which is usually a desirable thing. However, it also 
adds phase lag to the output and this can sometimes be a problem 
when the data is analyzed graphically. For example, you might want 
to plot the raw data over the filtered data and you would probably 
want the filtered and unfiltered streams to be in phase. To address 
this problem, the filter is sometimes applied twice; once in the for­
ward direction and once in the backward direction, as in 

i = 1, 2, ... , N Yo=Uo 

i=N,N-1, ... , 1 
(9-64) 

In the forward (left to right) direction there is a phase lag intro­
duced but in the reverse direction (right to left) the additional phase 
cancels the phase lag of the first pass. 

In the Z-transform domain, Eq. (9-64) becomes 

- b -
y = 1-az-t U 

- z-1b -w=--y 
z-1 -a 
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or, after combining 

- bz-1 b u-w = --:-----·--"""7"" 
(z-1 -a) (1- az-1) 

iiJ b2 
(9-65) 

a- 1-a(z-1 +z)+a2 

This filter is now a second-order filter and in the denominator, the 
term z-1 + z, after the substitution z = ei0 = cos(O) + j sin(O), is sim­
ply 2cos(O). Therefore, in the frequency domain, the filter's transfer 
function is real, as in 

iiJ(jO) _ b2 

U(jO)- 1-2acos(O)+a2 (9-66) 

and the phase is zero-meaning no lag. So, the filtered signal is com­
pletely in phase with the input signal. 

Figures 9-16 and 9-17 compare the first-order filter (which would 
have phase lag) and the double-pass filter. The first plot compares the 
frequency domain magnitudes and the second compares how they 
filter noisy data. 
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F1auRE 9-:16 First-order versus double-pass filter, Bode plot. 
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F1auRE 9-:17 First-order versus double-pass filter, time domain. 

There is more attenuation for the latter because it is a second­
order filter. Also, the time domain plot in Fig. 9-17 shows that the 
double-pass filter keeps the filtered signal in phase with the raw 
data. 

9-13-4 High-Pass Filters 
The differentia tor filter in the Laplace domain would be simply s. Its 
implementation is not obvious but you can probably conceive of a 
way to hook up a capacitor and a resistor to do it. If not, don't worry; 
the digital approach is probably simpler and more direct. 

In the discrete time domain, differentiation is approximated 
by the difference filter, the simplest of which is the backward 
differencer: 

u.-u. 1 Y; = I h 1-

y 1- z-1 

u=-h-
-<n> 1 ~ = -~2- 2cos(O) ei8 

U(O) h 

9= tan-1( sinO ) 
1-cosn 

(9-67) 
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F•auRE 9-:18 Backward difference Bode plot. 

Figure 9-18 shows the magnitude and phase of the backward dif­
ferencer. Note how the filter gain increases with frequency and how 
the phase starts at +90° and slowly decreases. The magnitude and 
phase for the theoretical continuous differentiator is also shown in 
Fig. 9-18. Since the gain at zero frequency (the frequency of a constant 
signal) is zero, the differencer is often used to remove offsets in data. 
Should analyst then do a spectral analysis on the data, say, looking 
for periodic components, they should be aware of the high frequency 
power that will appear in the spectrum. 

Because the backward differencer amplifies noise, the more so the 
higher the frequency, a central difference is sometimes used. 

u.-u. 2 Y; = I 2h ,_ (9-68) 

which can be considered as the average of two backward differences, 
as in, 

The Bode plot for this difference operator is shown in Fig. 9-19. 
Note that both the backward and central differences have zero gain at 
zero frequency but the central difference has zero gain at the folding 
frequency, also. 
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FIGURE 9-19 Backward and central differences, Bode plot. 

9-14 Frequency Domain Filtering 
There are a plethora of sophisticated computer-aided design techniques 
for moving average and autoregressive filters. A simple alternative uses 
frequency domain filtering where the Fourier transform of the data is 
multiplied by a magnitude factor which removes part of the spectrum. 
The modified transform is inverted back to the time domain yielding the 
filtered data. For example, should the analyst wish to remove a band of 
frequencies from the data, he might apply the factor shown in Fig. 9-20 
to the transformed data in the frequency domain. This factor suggests 
that components in a signal having frequencies greater than about 0.21 
Hz would be removed while those with frequencies less than 0.21 Hz 
would be passed unattenuated. For the readers who have read App. C, it 
might be worth noting that when multiplying in the frequency domain, 
one convolves in the time domain. However, that is a detail that is a little 
bit beyond the scope of this section. 

Finally, note that the factor is symmetrical about the folding fre­
quency of 0.5 Hz. Figure 9-21 shows the factor (after scaling to make 
it more presentable) and the spectrum of the signal to be filtered (two 
sinusoids, one in the pass band and one not). Figure 9-22 shows the 
result of applying the filter. One needs only the fast Fourier transform 
(and some code) to use this filtering method. The following is a crude 
Matlab script that carries out frequency-domain filtering. 
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F1auRE 9-22 Original and filtered signal. 

N=lOO; % generate test signal having two sinusoids 
t=l:N; 
y2l=sin(2*pi*t/21.75); 
yll=sin(2*pi*t/2.533); 
ysig=yll+y21; 
fNy=.S; % set up frequencies 
delf=l/N; 
f=O:delf:l-delf; 
Ysig=fft(ysig); %transform signal 
il=22*N/100; % set up indices for factor 
i2=5l*N/100; 
n=N; 
nf=n/2+1; 
fac(l:nf)=ones(l,nf); %construct the factor: start 
with all ones 
fac(il:i2)=zeros(l,i2-il+l); %zero out the removal region 
fac(n:-l:n/2+2)=fac(2:n/2); 
fac(n:-l:n/2+2)=fac(2:n/2); %duplicate the other half 
of factor 
Yfil=fac.*Ysig; %apply the 0-1 factor in frequency domain 
yfil=ifft(Yfil); %transform back to time domain 

9-15 The Discrete Time State-Space Equation 
In Chap. 5 the continuous time state-space formulation was pre­
sented. It consists of two equations, as in 
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d 
-X=AX+BU dt 

y=Cx 

The discrete time version has a similar form 

Y.=Cx. 
I I 

(9-69) 

(9-70) 

A method for determining the matrices <I> and A from A and B is 
given in App. H. Note that Eq. (9-70) has the same form as Eq. (9-16) 
except that the quantities <I> and A, which are analogous to a and b, 
are matrices. Extensive use of this form of the state-space equation 
will be made in Chap. 10. 

9-18 Determining Model Parameters 
from Experimental Data 

One of the control algorithm tuning approaches presented in this 
chapter requires knowledge of the time constant and gain from a 
first-order model that best fits the actual process. Often, these param­
eters can be determined numerically from experimental data, say, 
resulting from applying step changes to the process. 

9-16·1 First-Order Models 
The discrete form of the first-order model is 

Y; = ayi-t + bU;-t 

-.!!.. 

i = 0, 1, 2, ... 

a=e r, 

h 
'r =--

p Ina 

b=g(1-a) 

b 
g=1-a 

(9-71) 

Assuming that reader knows how to apply least squares regres­
sion to find a1 and a2 in Y; = a1X1; + a2X2;, it should not be too much 
of a stretch for him to believe that least squares regression could be 
applied to Y; = ay;_1 + bU;_1 to find the model parameters a and b by 
the following comparison: 

Y; <=> Y; 
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where Xli is equivalent to Y; shifted by one step. Using Eq. (9-71), the 
time constant and gain would follow from a and b and the PI control 
parameters would be 

Figure 9-23 shows how this would work for the case of slightly 
noisy data. Close inspection of Fig. 9-23 reveals that, due to the addi­
tive noise, the process output bounces slightly around the theoretical 
noiseless process output (to a degree almost undetectable with the 
naked eye). Furthermore, the plotted model determined by the least 
squares analysis is visually indecipherable from the theoretical model. 
The noiseless model used to generate the data (and to which the noise 
was added) was 

Y; = 0.6065y;_1 + 0.4328U;_1 i = 0, 1, 2, ... 

or 

Y(z) 0.4328z-1 

U(z)= 1-0.6065z-1 

1.8 .-----,----r-"""'"T'"-"""T"""-~--r--.-----,----r---, 

1.6 .................... ' ... '. 
r-

1.4 · ·aofad~edn~ise=9.01~2 · ·! 
1.2 ................. . 

1 ......... . 

0.8 . . . ... .. • ... .... . . . . .. . ........... " .... 

0.6 .. . . .. . .. g= 1.1 't=2 

0.4 0 Experimental data 
, .... 

0.2 - Model output ..... 
True model 

0 ... . . - - Model input 

-0.20 5 10 15 20 25 30 35 40 45 50 
Ttme 

F1auRE 9-23 Fitting a slightly noisy first-order process with a first-order 
model. 
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This model has a z-plane pole at z = 0.6065 and the sampling 
interval h is 1.0. The model is a discrete time version of a first-order 
model 

_g_ 
'fS+ 1 

g= 1.1 'f=2 

The pole of this model is at s = -1 I 'f = -.5. As was shown in App. I, 
the s- and z-plane poles are related by 

e-O.s = 0.6065 

The least squares model determined by using the Matlab arx 
function was 

Y; = 0.6064Y;-t + 0.4326U;_1 i = 0, 1, 2, ... 

(In the absence of the Matlab System Identification Toolbox, these 
parameters could be determined by any regression program-1 used 
to write my own back in the QUICKBASIC era.) One could use the 
parameters from the least squares model, 0.6064 and 0.4326, to back­
calculate the time constant and the gain and then the control param­
eters. Note that the pole of the numerically determined model is quite 
close to that of the theoretical noiseless model. 

Alternatively, and sometimes preferably, you might want to esti­
mate the parameters from physical considerations. If the above first­
order model were for the liquid tank presented in Chap. 3, the time 
constant could be estimated from 'f= RpA. The resistance to flow R 
could come from a measurement of the flow F and the liquid height 
Y0 and R = Y0 I F. At least, you should use this kind of approach to 
check the numbers coming from the least squares fit. 

9-16·2 Third-Order Models 
Before the reader gets too excited, consider the third-order extension 
of this example where the starting model is 

Y(s) _ g 
ii(s) - (-r1s + 1)(-r2s + l)(-r3s + 1) 

(9-72) 

This model might have been constructed for a three-tank process 
similar to that in Chap. 5 where 'f; = R;PA;, i = 1, 2, 3 and g = R3• 

This model has s-plane poles at -1 I -r11 -1 I -r2, -1 I -r3 or -1, -0.5, 
-0.333. 
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The corresponding noiseless discrete time model, developed from 
Eq. (9-72) using Matlab model conversion routines, is 

Y(z) 0.01957z-1 + 0.05016z-2 + 0.007828z-3 

UW' = 1-1.1691z-t + 0. 9213z-2- 0.1599z-3 (9-73) 

This model has z-plane poles at 0.71653, 0.60653, and 0.36788 (the 
roots of the denominator). The z- and s-plane poles are related by 

z = e51
' 

lnz 
s=-

h 
e-1 = 0.36788 e-O.s = 0.6065 

e-0·3333 = 0.7165 

Adding the same small amount of noise to this model as was 
done to the first-order model and trying to fit a third-order least 
squares model (using arx) produces the results in Fig. 9-24: 

As with the first-order case, the true model and empirically deter­
mined model are virtually visually indistinguishable because the 
added noise is so slight. The noiseless model, generating the data 
derived from Eq. (9-73), namely, 

Y; = 1.1691y;_1 -0.9213y;_2 +0.1599y;_3 +0.01957U;_1 

+ 0.05016Ui-2 + 0.007828Ui-3 i = 0, 1, 2, ... 

Noise gain = 0.01 
1.6 r-------r-----r---r----r---r---.,....--,...------.......-----r-....., 

,-----
1.4 · a ~f ad~ed no.ise = ~-009~928 f · 

1.2 .... : .... : ..... . 

1 ............ .. 

0.8 ............ . 

0.6 .......... . :' .. ·: .. g= 1.1 .... 

o Experimental data 
- Model output 
· Truemodel 

- - Model input 

(9-74) 

-0.
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FIGuRE 9-24 Fitting a slightly noisy third-order process with a third-order model. 
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has z-plane poles of 0.71653, 0.60653, and 0.36788. On the contrary, 
the empirically determined least squares model, derived from the 
noisy data in Fig. 9-24, using Matlab's arx routine, namely, 

Y; = 0.7923y;_1 + 0.2457y;_2 - 0.2002y;_3 + 0.008279U;_1 

+0.06248U;_2 + 0.1088U;_3 i = 0, 1, 2, .. 
(9-75) 

has z-plane poles of -0.50001, 0.77656, and 0.51572. Therefore, unlike 
the case for the first-order model, one should not expect to be able to 
backsolve Eq. (9-75) for the values of the three time constants in 
Eq. (9-72). By the way, when I did the least squares fit for data gener­
ated from Eq. (9-74) with no noise, I got back Eq. (9-74). 

Why not use Eq. (9-75) as a basis for designing a control algo­
rithm? If you expect to operate the three-tank process only over the 
range of values that generated the data in Fig. 9-24 then perhaps it is 
OK. However, if you ever plan to operate the process under different 
conditions the model in Eq. (9-75) may give you problems. Since you 
were able to convince the process owner to let you disturb the process 
and generate the data in Fig. 9-24, you might ask for permission to 
run experiments that would yield numbers for the time constants and 
flow resistances. Then you might be able to generate a model that 
would behave well over a wider set of operating conditions. 

9-16-3 A Practical Method 
In practice, I have used numerical methods extensively in trying to 
find model parameters that I can then use for tuning or designing 
controllers. Without appearing to be a dinosaur, I sometimes avoid 
the regression techniques when dealing with noise-corrupted data 
(always much worse than the examples shown above).Instead, I read 
the step-change response data for y and U into a Matlab script that 
roughly has the form 

1. Guess values for -rP and g (and D if there is an apparent dead 
time). 

2. Calculate the values of a and b using 

b = g(1-a) 

3. Using the process input data, U;, i = 1, 2, ... and the initial 
value of the process output y0, calculate the model response 
from 

Y; = ayi-l +bUi-l-D i = 1, 2, ... 
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4. Plot the model response and the actual response. 

5. Adjust ~l'' g, and D based on visual assessment of the graph 
(it's not that difficult). 

6. Go to step 2. 

Repeat this cycle until you are satisfied. With a computer, this 
approach is quite quick and it will, at least, give you physically mean­
ingful values. 

In doing the parameter determination this way, I avoid the noise 
sensitivities of a black box regression method. As a manager, beware 
of the pitfalls of numerical model determination via least squares. 
Make sure that the engineer has visually verified the model by plot­
ting it against the original data. In addition, make sure the verifica­
tion plots are generated by feeding the process input and just the ini­
tial values of the process output Oust enough process output data to 
get the model started) to the model. In effect, you are extrapolating 
from initial conditions. Do not use the model to predict the process 
output based on process input and process output data (one-step­
ahead prediction). If this is done the model will always look great 
whether it is or not. Early in my career I fooled myself (and a lot of 
others) doing this. 

9-17 Process Identification with White Noise Inputs 
In App. F the Laplace transform of the impulse or Dirac delta func­
tion I(s) was shown to be unity [see Eq. (F-11)]. 

L{c5(t)J = I(s) = 1 

If one were to move from the Laplace domain to the frequency 
domain via the s --7 j m substitution, the unity-valued transform would 
mean that the spectrum was constant. That is, all frequencies equally 
contribute power to the signal. 

I(jm) = 1 -co< (J) < 00 

Alternatively, from the Fourier series point of view, one might say 
that to fit sinusoids to a pulse all of the frequencies are required. 

Earlier, the Laplace transform of the process impulse response 
I,(s) was shown to be equal to the process transfer function [see 
Eq. (F-26) and (F-27)]. 

I,(s) = G(s)I(s) = G(s) 

L{I,(t)J = G(s) 
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This suggests that if one could somehow measure the process 

impulse response then one could also identify the process transfer 

function. The enthusiasm for this idea is tempered by the difficulty in 

constructing a pulse in the time domain. 

The spectrum of white noise is, in theory, also flat in the sense 

that each frequency contributes equally to the total power. In 

Chap. 8 the cumulative line spectrum was introduced to deal with 

the variability of the white noise line spectrum and to emphasize 

its flatness. This suggests that the impulse response is, in some 

way, equivalent to the white noise response. Thus, if white noise is 

the process input and a line spectrum is constructed from the 

resulting process output, the line spectrum of that output signal 

should have the shape of the Bode plot magnitude for the process 

transfer function. 

Consider a first-order process with a time constant of 4.0 sec and 

a gain of unity (for simplicity). Its transfer function is 

G(s)=-g­
'l's+1 

The Bode plot magnitude is 

which has a "comer" frequency of m, = 1 I 'l' or J, = 1 I (2n'l') = 

0.0398 Hz. 
Now, feed a discrete time white noise stream to the process and 

sample the response (and the input) at 1.0 Hz. The Nyquist or folding 

frequency is 0.5 Hz. For one run of 4096 points the spectrum of the 

white noise input is given in Fig. 9-25. 

Note the rather strange shape because the frequency is plotted on 

a logarithmic scale but the actual spacing in the frequency domain is 

constant at 

J.. = 1 I (Nh) = 1 I (4098) = 2.4402e- 004 Hz 

Also, note the "ratty" variation of the line spectrum. This is consistent 

with comments in Chap. 8 about white noise spectra. 

The spectrum of the response of the first-order process to the 

white noise is shown in Fig. 9-26. This line spectrum does not look 

much like the magnitude from the Bode plot for a first-order pro­

cess because of the erratic nature of the white noise. To get any­

thing resembling the Bode plot one must repeat this exercise many 
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times and average the results. Figure 9-27 shows the average line 
spectrum of the input white noise for 100 runs and Fig. 9-28 shows 
the average line spectrum of the process output for those same 
runs. 
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Figure 9-28 shows the approximate shape of a first-order Bode 
plot magnitude where one can see the comer frequency of 0.0398 Hz. 
Figure 9-29 shows the theoretical Bode plot magnitude for the dis­
crete time first-order process. The gain in Fig. 9-28 depends on the 
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intensity of the white noise input so the graphs were adjusted verti­
cally to make the comparison clearer. 

This exercise suggests that using white noise as an input for pro­
cess identification may require quite a bit of work. Alternatively, one 
could look at decreasing the length of the sample run which, as 
pointed out in Chap. 8, would decrease the number of "bins," increase 
the power per bin and decrease the variation while also decreasing 
the frequency resolution. 

9-18 Summary 
As warned, this has been a long chapter. We introduced the reader to 
the discrete time domain by discretizing the first-order model's step­
change response and then breaking the input up into a series of con­
tiguous steps. The model became an indexed algebraic equation. The 
backshift operator was applied to this equation and the result was 
called the Z-transform. A couple of mathematical subtleties associ­
ated with sampling and the zero-order hold were discussed and ref­
erence was made toApp. I where a more elegant and general approach 
is taken. The concept of a discrete time filter was mentioned in con­
nection with the first-order model. 

This discretization operation was applied to several common 
equations that had been derived earlier in the book in the continuous 
time domain, such as the FOWDT model and the PI and PIID control 
algorithms. 
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An approach to designing control algorithms in the continuous 
and discrete time domains was presented. Here the response of the 
process output to the set point is specified via an easily understood 
parameter such as a time constant. The transfer function describing 
this specification is combined with the closed-loop transfer function 
and the as-yet-undetermined control algorithm is derived. This 
approach was applied to the first- and second-order models, yielding 
an easily tunable PI control algorithm in the former case and a filtered 
PID control algorithm in the latter case. In the discrete time domain 
the control of a first-order process model yielded a discrete time PI 
control algorithm with another set of easily tunable control gains. 
When applied to the FOWDT model, a special dead-time compensa­
tion algorithm resulted. 

A simple variable substitution allowed for the transition to the 
frequency domain where some of the special concepts associated 
with the discrete time domain were brought out via the Bode plot. 
This tool was applied to several kinds of filters: low-pass autore­
gressive filters, double-pass no-phase-lag autoregressive filters, 
moving average filters, and high-pass or differencing filters. Finally, 
filtering in the frequency domain was covered. The discrete time 
state-space system was briefly introduced. We will return to it in 
Chaps. 10 and 11. 

The chapter closed with a brief discussion of model parameter 
determination. First, the method of least squares was applied to step­
change response data. This exercise suggested that the presence of 
noise can cloud the issue when the models are of higher order. Second, 
spectral analysis was applied to white noise response data. This exer­
cise suggested that extensive averaging might be required for a fea­
sible identification. 

We did not spend any time on developing time-domain solutions 
to problems having Z-transforms via inversion simply because there 
were more important and useful things to do. However, App. I does 
briefly touch on that topic. 

Next, we tackle the problem of combining process models with 
noisy experiments to estimate the state of the system. 



CHAPTERlO 

Estimating the 
State and Using It 

for Control 

I n Chap. 5, matrices and the concept of the state were introduced. 
In Chap. 6 an underdamped process was studied where the state 
consisted of the position and speed (or derivative of the position) 

of the mass in the mass/ spring/ dashpot process. We showed that 
regular proportional-integral (PI) control, which uses only the position, 
did not do a good job for this process. However, the proportional­
integral-derivative (PID) algorithm which uses the position and the 
speed, that is, the state, performed significantly better. Another 
method fed back the state to create a new process that had better 
dynamic characteristics. It appears that an estimate of the state can 
play a crucial part in the successful control of a process. 

This chapter will present a method that combines a model of the 
actual process with process measurement(s) to produce an estimate 
of the state. It will be applied to the control problem posed in Chap. 
6. The method, called the Kalman filter, was developed in the late 
1950s. To use the Kalman filter, one must find values of a vector called 
the Kalman gain. Two ways to find this gain will be presented. The 
first is based on choosing variances associated with the process model 
and with the process noise. The second is based on placing the eigen­
values of the system. 

The Kalman filter will also be applied to the three-tank problem 
presented in Chap. 5. However, the variables to be controlled will be 
extended to include all the three tank levels and the variables to be 
manipulated will be extended to include all the input flow rates. The 
resulting multidimensional control algorithm will contain integral 
control and will be tuned by placing the eigenvalues of the con­
trolled system. For the sake of comparison, the same three-tank pro­
cess will be controlled by three separate PI controllers. Finally, the 
state-space control approach will be applied to a lumped approxima­
tion of the tubular energy exchanger process presented in Chap. 7. 

285 
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10-1 An Elementary Presentation of the Kalman Filter 
The Kalman filter combines the predicted value of the state from a 
model with suitably adjusted process measurements to provide an 
estimate of the state. The first component of the Kalman filter is the 
process model. 

10·1·1 The Process Model 
Consider the continuous time case where the process is described by 

d 
dtx=Ax+BU 

Z=Hx 
(10-1) 

where xis a (n, 1) vector, A is a (n, n) matrix, B is a (n, m) matrix, 
U is a (m, 1) vector, and His the (p, n) "measurement" matrix. The 
quantity Z, a (p, 1) vector, is the measured quantity. If all the ele­
ments of the state are measurable, then p =nand the H matrix is 
square. If some of the states are not measurable, then p < n. In the 
case of the underdamped process, it might be the position that is 
the only part of the state available for measurement and there­
fore, n = 2, p = 1. 

The discrete time version of Eq. (10-1) is developed in App. Has 

Xi+l = cJ) X;+ rU; 

Z;=Hx; 
(10-2) 

This discrete time model is augmented by two sources of noise, as 
follows: 

Xi+l = cJ) X;+ rU; + W; 

Z; =HX;+V; 
(10-3) 

where w is sometimes called process noise and can represent the error 
between the model and the actual process. The symbol vis sometimes 
called measurement noise. Both of these stochastic processes are con­
sidered to be white, have zero mean, have a normal distribution, and 
have covariances (with zero lag), symbolized by matrices Q and R, 
respectively. The covariance matrix was introduced in Chap. 8. In the 
scalar case we will use a;, and a;. The covariance matrix Q is a 
measure of the model uncertainty and the covariance matrix R is a 
measure of the measurement noise. 
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10-1-2 The Premeasurement and Postmeasurement 
Equations 

In many texts the derivation of the Kalman filter appears, in my 
humble opinion, to be one of the most convoluted exercises in con­
trol engineering theory. I will not attempt to derive it here. If the 
reader thinks, after the presentation in this section, that she needs 
to delve into the derivation for a better understanding, I recom­
mend Applied Optimal Estimation, edited by Arthur Gelb. This book 
was first published in 1974 and is still probably one of the most 
readable books around. Do not attempt to read Rudolf Kalman's 
original paper! As an interesting alternative, one might visit the 
Internet and see what the Wikipedia has to say about the Kalman 
filter. 

There are two stages in the estimation: Before the measurement 
and after the measurement. A quantity estimated before the measure­
ment is taken (using the model) will have(-) appended to its symbol. 
Quantities estimated after the measurement is taken will have the(+) 
appendage. 

Before a measurement is taken at the kth sample time, the model 
can be used to generate an estimate at time tk, as in 

A A 

Xk(-) = <I>Xk-1(+)+ ruk-1 (10-4) 

Equation (10-4) gives the premeasurement state estimate Xk(-) at 
time tk based on knowledge of the process input uk-1 and th~ post­
measurement estimate of the state from time tk_1 which is Xk_1(+). 
Using the model to predict a value at time tk based on information at 
time tk_1 is sometimes referred to one-step extrapolation. Note that the 
tilde symbolizes that the quantity is an estimate of the true value Xk. 

The postmeasurement estimate at time tk is calculated from 

A A 

Xk(+) = KkZk +(I- KkH)Xk(-) (10-5) 

where Zk is the measurement at time tk and Kk is the (n, p) Kalman 
gain vector at time tk. Equation (10-5) suggests that the postmea­
surement is a weighted sum of the ~easurement Zk and the pre­
measurement model-based estimate Xk(-). Equation (10-5) can also 
be written as 

(10-6) 

which shows that the postmeasurement esti!pate Xk(+) is equal to 
the premeasurement model-based estimate Xk(-) plus a correction 
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term proportional to the difference b ... etween the measurement Zk and 
the model-based estimated state ... Xk(-) modified by the measure­
ment matrix H, namely, Zk- H Xk(-). The reader should take a 
moment and try to figure out the dimensions of the matrices and vec­
tors in Eqs. (10-5) and (10-6). Th~ measurement vector Zk has a dimen­
sion of (p, 1). The state vector Xk(-) has a dimension of (n, 1), where 
n ~ p. The measurement matrix H has dimension (p, n) and the Kal­
man filter gain Kk has dimension (n, p). Equation (10-6) shows how 
the constraint of not being able to measure the full n-dimensional 
state does not mean it cannot be estimated (oops, double negatives 
again). 

I would hope that the presentation of the Kalman filter, so far, 
does not conflict with the reader's common sense. Equation (10-4) is 
used to generate a premeasurement estimate via a process model and 
Eq. (10-5) or (10-6) is used to improve that estimate using measured 
values. 

10-1-3 The Scalar Case 
Temporarily consider the scalar first-order case where n = 1, p = 1, 
and m = 1. In this case the state is one-dimensional and the measure­
ment of the state is available but may be noisy. The premeasurement 
state estimate, via extrapolation, is 

(10-7) 

and the postmeasurement correction is 

... ... ... 
Xk(+) = Xk(-)+ Kk[Zk- Xk(-)] (10-8) 

where all of the quantities are scalars. If the model is quite accurate, 
and the measurement is noisy, then a w = 0 and a v would be rela­
tively large and you might expect that Kk would be small. Con­
versely, if the model is only approximate but the measurement is 
quite good, then av = 0 and a,u would be relatively large and you 
would expect Kk to be significant. 

10-1-4 A Two-Dimensional Example 
For the two-dimensional case, namely, the underdamped process 
covered in Chap. 6, we have n = 2, p = 1, and m = 1, where the only 
measurement available is the position of the mass. Equation (10-4) 
would look like 
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where 

Xi+t = eAhX; + A-1(eAh- I)BU; 

xi+t = cJ) X; + ru; 

A=(~ -~J 
X = (position) 

speed 

H=(1 0) 

B=( O 2) 
gro" 

(10-9) 

The numerical values for the eAh, cJ), and r matrices are devel­
oped in App. H. The last element of Eq. (10-9), H = (1 0), says that 
only the position is measurable. You are urged to pause here and 
study these equations and perhaps take a look at App. H. 

The premeasurement prediction based on the model is 

... ... 
Xk(-)= cJ)Xk-1(+)+ ruk-1 

and the postmeasurement correction is 

(10-10) 

where zk is the scalar measurement of the position. 

10·1·5 The Propagation of the Covarlances 
In addition to the pre- and postmeasurement state estimates, there 
are pre- and postmeasurement covariances associated with these 
state estimates. The premeasurement covariance matrix is denoted by 
Pk(-) and is defined as 

(10-11) 

where Xk(-) is the state estimation error at time tk, as in 

(10-12) 
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In the scalar case, Pk(-) would be a standard deviation that gives 
an indication of the quality of the model. In general, Pk(-) is calcu­
lated from 

Pk(-) = cJ)pk-t(+)cJ)T +Q 

Po(-)=Q 
(10-13) 

where Q is the covariance matrix associated with the model uncer­
tainty. Equation (10-13) shows that the model uncertainty propagates 
via extrapolation. Neither the measurement nor the measurement 
error appears in this equation. For the one-dimensional scalar case, 
Eq. (10-13) becomes 

2h 

~(-)=e-7 ~_1(+)+a;, 

The postmeasurement covariance matrix, denoted by Pk(+) and 
defined similarly to Pk(-), is calculated from 

(10-14) 

This covariance matrix is a measure of how much the state esti­
mate uncertainty is changed by making the measurement. 

10·1·6 The Kalman Filter Gain 
The derivation of the equation for the Kalman filter gain Kk is the 
point where the amazons are separated from the girls and, as men­
tioned in Sec. 10-1-2, I will not attempt to present it here. Instead, I 
will show you the results of the derivation. There are many horribly 
intricate derivations of this equation in the literature but one of the 
easiest to follow is in the book by Gelb, cited in Sec. 10-1-2. 

The Kalman filter gain is calculated from 

(10-15) 

In the scalar case, the full set of equations would be as follows. 

1. The premeasurement prediction based on the model 
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2. The propagation of the premeasurement covariance. 

2h 

Pk(-)=4>Pk-1(+)4>r +Q ~ Pk(-)=e"7Pk-1(+)+Q 

P0(-)=Q P0(-)=a; 

3. The calculation of the Kalman filter gain 

Note that if the model is quite good relative to the measurement 
then a" would be small and Kk = 1. On the other hand, if the 
measurement is quite good relative to the model then aw would 
be small and a" would be large and Kk would be small. 

4. The correction of the premeasurement prediction with the 
measurement 

Xk(+) = Xk(-)+ Kk[Zk- HXk(-)] 

~ Xk(+)=Xk(-)+Kk[Zk-Xk(-)] 

5. The updating of the postmeasurement covariance. 

10-2 Estimating the Underdamped Process State 
For the case of '= 0.1 and h = 0.5 the discrete time process model is 
shown in App. H to be 

,.. ,.. 

xk = C~>Xk-1 + ruk-1 

cJ) = Air = ( 0.694054 0.455438 ) 
e -0.455438 0.05643988 

r = A-1(1 -eAh)B = (g:::~~6) (10-16) 

zk = (1 o)(xu) 
xk2 



For this example, the following covariance components were 
chosen: 

and 

R =a~ 0'" =0.4 and 

There are two sets of standard deviations: the first for the case where 
the model is better. 

Figure 10-1 shows how the two elements of the Kalman gain 
settle out to steady-state values. The solid line represents the 
"poorer" model case and the magnitude of the Kalman gains are 
relatively large. Note that by about 30 steps the gains have reached 
steady values. 

For the "good" model case, the estimated and "true" (from the 
model) states are shown in Fig. 10-2. In addition, for the good model 
case, the measured value, the "true" value from the model, and the 
estimated value of the position is shown in Fig. 10-3. The "true" val­
ues were calculated from the model, sans noise. 

Note that the estimate is relatively close to the model and puts 
less weight on the measurements. 
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F1auRE 1.0-1. Kalman filter gains for underdamped process. 
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F18URE 1.G-2 "Good" model case: estimated and true states. 

Estimated position, <JR = 0.4, CJQ = 0.1 
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F1auRE 1.G-3 "Good" model case: estimated, true, and measured position. 
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F18URE 1.G-4 "Poorer" model case: estimated and true states. 

For the "poorer" model case, the estimated and "true" states are 
shown in Fig. 10-4. Finally, for the "poorer" model case, the measured 
value, the "true" value from the model, and the estimated value of 
the position is shown in Fig. 10-5. 
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F1auRE 1.G-5 "Poorer" model case: estimated, true, and measured position. 
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Compared with Fig. 10-3, Fig. 10-5 shows that more weight is 
placed on the measurements. 

The element-by-element calculations come from the following 
equations (sometimes it is not obvious to a novice how these vectors 
and matrices go together so I will show you the gory details): 

1. The premeasurement prediction based on the model. 

Xk(-) = (!)Xk-1(+)+ ruk-1 => 

(~1k)<-> = ( 0.694054 0.455438 )(ilk-1)(+) 
x2k -0.455438 0.05643988 i 2k_1 

(
0.3059456) 

+ 0.455438 uk-1 

2. The propagation of the premeasurement covariance. 

Fa:(-)= (!)Pa:-1(+)(J)T +Q => 

(Pnk P12k)(-) = ( 0.694054 0.455438 )(Pnk P12k) 
p21k p22k -0.455438 0.05643988 p21k p22k 

(
0.694054 -0.455438 ) (1 0) 

(+) 0.455438 0.05643988 + o 1 a; 

3. The calculation of the Kalman filter gain 

Kk = Pk(-)HT[HPk(-)HT +R]-1 => 

(!:)=(::: ::)<->(~)[(1 0)(:::: ::)<->(~)+ :J 
After multiplying out the matrices, the element in the square 
brackets is a scalar so taking the inverse is trivial. 

4. The correction of the premeasurement prediction with the 
measurement 

Xk(+) = Xk(-) + Kk[Zk - H Xk(-)] => 

( ~:,)<+> = ( ~ )<-> + ( ::)[ z• - (1 o>( ~:)<->] 
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After the matrix multiplication, the element in the square 
brackets is a scalar. 

5. The updating of the postmeasurement covariance. 

Pk(+) =(I- Kk H)Pk(-) => 

(
Pttk Pt2k)(+) = ~(1 0)- (klk)(t o)](Pttk Pt2k)(-) 
P21k P22k ~ 0 1 k2k P21k P22k 

In this example the "true" values came from the process model. 
A more correct approach would have used a separate model 
for the actual process to generate the measured values. 

Before getting too excited about the results of this idealized simu­
lation, remember that we have assumed that the process is perfectly 
represented by the state-space model. In reality, this will not be true 
and, if the model is really poor, the Kalman filter may do more harm 
than good. Also, choosing the elements of the covariance matrices Q 
and R can sometimes be more of an art than a science. 

The graphs show that the values of the Kalman gain tend toward a 
steady-state value which we will denote simply as K. Similarly, the 
covariance matrices, Pk(+) and Pk(-) converge to steady values. 
The equations of the Kalman filter show that the calculation of these 
three quantities is independent of the measurements and that they can 
be calculated separately. Often, the steady-state values are calculated 
initially and stored before they are used in the estimation calculations. 

10-3 The Dynamics of the Kalman Filter 
and an Alternative Way to Find the Gain 

The dynamics of the Kalman filter can be studied by combining the 
model with the measurement, when the steady-state value of the 
Kalman gain K is used. First, the extrapolation equation using infor­
mation at time tk-t 

is combined with the measurement update equation using informa­
tion at time t k 

to eliminate Xk(-), resulting in 
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Collecting coefficients of Xk_1(+) yields 

(10-17) 

This indexed discrete time equation, in a manner analogous to 
differential equations, has a homogeneous part and a nonhomoge­
neous part, as in 

homogeneous nonhomogeneous 

To solve the homogeneous part, 

(10-18) 

one can try 

(10-19) 

where C is a vector and A is a scalar. This is similar to trying Ce11 for 
a continuous time differential equation. 

When Eq. (10-19) is tried, Eq. (10-18) becomes 

or, after dividing both sides by the scalar quantity A k, 

(10-20) 

As shown in App. H, A is an eigenvalue of the matrix CJ)- K H CJ). 

If the size of this matrix is (n, n), then the solution will have the 
form 

(10-21) 

Common sense suggests that for the Kalman filter to behave in a 
stable manner, all of the eigenvalues of CJ)- K H CJ) should lie inside 
(or on) the unit circle in the complex z-plane just as we required the 
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eigenvalues of the differential equations to lie in the left-hand side of 
the complex s-plane. In general, the eigenvalues will be complex, as 
in A.; = a; + jb;, therefore, stability requires that 

(10-22) 

Furthermore, as the location of the eigenvalues (or poles) moves 
toward the origin of the z-plane, the transient or homogeneous com­
ponent will die away more quickly (and the Kalman filter will be 
more aggressive). 

The requirement represented by Eq. (10-22) and the discussion 
about the dependence of the dynamics on the placement of the eigen­
values inside the unit circle suggests an alternative approach to 
designing the Kalman filter. That is, instead of playing number games 
with the covariance matrices, Q and R, one specifies where they want 
the eigenvalues of CJ)- K H CJ) to lie inside the unit circle and then 
determines the value of the Kalman gain K from the resulting equa­
tions. In fact, Matlab has a built-in function, place, that can be used 
to do this for you (and me) transparently. 

10-3-1 The Dynamics of a Predictor Estimator 
A slight modification to the preceding Kalman filter equations uses 
information, including the measurement, at time tk_1, rather than at 
time t k' as in 

A A 

xk<-> = CJ)Xk-1(+)+ ruk-1 

Xk-1 (+) = Xk-1 (-)+ Kk[Zk-1- H Xk-1 (-)] 

Depending on how you configure your estimation/ control prob­
lem, this structure may pop up rather than that in Eq. (10-17). The 
reader should take a moment and compare this predictor estimator 
with the equations presented above. A 

Combining the~ two equations to eliminate Xk_1(+) and collect­
ing coefficients of Xk_1(-), gives 

(10-23) 

When the dynamics of this indexed equation are studied in the 
same manner as earlier in this section, one obtains the following 
eigenvalue problem: 

[CJ)- KH- A.I]C = 0 (10-24) 

where the eigenvalues of the matrix CJ)- K H are to be found. Equa­
tion (10-24) will be referred to in Sec. 10-5. 
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10-4 Using the Kalman Filter for Control 
In Sec. 6-5 the state of the underdamped process was fed back to make 
the compensated system behave differently, namely, without the rip­
ples. We then applied integral-only control to the compensated sys­
tem with reasonable success. The state was constructed from the 
measured position and the estimated filtered derivative. 

In this section, the Kalman filter will be used to estimate the two 
components of the state, which will be fed back just as in Sec. 6-5. In 
addition, the estimated position will be used in an integral-only con­
trol loop. Figure 10-6 shows a condensed version of a Matlab Simu­
link model of the controlled system. If you are not familiar with 
Simulink, treat the figure as a block diagram. Box 1 contains the com­
pensation gain K", which is applied to the controller output. Box 2 
contains the two compensation gains, which are applied to the state 

Box 1: 
Ku 

ControUer 
output 

Integral 
gain 

Process input g•OA2(s) 

s'l + 2·o·:r.s + 01\2 

Box4: 
Actual process 

Measurement 
noise 

y(n) = Cx(n) + Du(n) 
x(n+l) = Ax(n) + Bu(n) 

Box 3: Discrete state-space • 
model for estimator K u 

from Kalmanunder.m M . 
easgam 

Box2: 
Compensation 
gain to remove 

undamped behavior 

Box6: 

vector (puUs out 
premeasurement 

estimated position) 

Posbneasurement 
estimated state 

F1auRE 1.0·6 Simulink model: control using the Kalman filter. 

Box 5: Steady state 
Kalman matrix gain 

from Kalmanunder.m 
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FIGURE 1.0-7 Closed-loop control of compensated underdamped process. 

before it is fed back. These three compensation gains are the same as 
those applied in Sec. 6-5. The state is estimated in box 3 while box 4 
simulates the actual process. The steady-state Kalman filter, the same 
as that used in the so-called "good" model example of Sec. 10-3, is 
applied in box 5. Box 6 contains an integrator that is applied to the 
estimated state and fed back as the controller output. Therefore, after 
state estimation and the compensation via feeding back the estimated 
state, integral-only control is applied to the estimated position. The 
noise added in box 7 has the same variance as that used in Sec. 6-5. 

Figure 10-7 shows that the performance is similar to that when 
PIID was used. Since the estimated states are fed back for compen­
sation and also used in the control, there may be less noise in the 
controller output. However, the continuous process model in the Simu­
link model uses the same parameters as those in the discrete Kalman 
filter. In reality, the Kalman filter process model will not match the 
actual process and there will be error introduced. In spite of the 
potential problems that can arise from differences between the pro­
cess and the model, I have used this control scheme with success for 
a similarly underdamped process. 

10·4·1 A Little Detour to Find the Integral Gain 
By the way, the logic behind tuning the integral-only controller is the 
following. Feeding the state back creates a new process that has dif­
ferent dynamics and unity gain, especially at the new natural frequency 
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OJ0 (review Sec. 6-4 for a discussion of OJ0 and ron). In the frequency 
domain this means 

(This might require a little thought and a short review of Bode 
plot analysis.) When integral-only control is applied the open-loop 
transfer function is 

KI G(s) 
s 

After making the substitution s = jOJ and deriving the magni­
tude, we get (when OJ= OJ0 ) 

A rule of thumb, not too widely known, that often provides a 
satisfactory phase margin (see Chap. 4 for a discussion of phase 
margin) specifies that the open-loop gain at the desired frequency 
be 1/6. Therefore, 

which yields K1 = ro0 I 6 because IG(jro0 )1 = 1. Note that other 
approaches to finding K1 could have been used and that PI could also 
have been used. 

10-5 Feeding Back the State for Control 
In previous chapters one-dimensional proportional-only control was 
accomplished by feeding back the process variable and subtracting it 
from the set point. In state-space one could apply this approach as 
follows. 

xk = ci»Xk-1 + ruk-1 

Uk = K,(Sk - Xt) 
(10-25) 

where K, is a feedback gain. The state Xk can be available through 
measurements or through estimation via the Kalman filter. 

When these two equations are combined we get 

xk = ci»Xk-1 + rK,(Sk-1- xt-1> 
= (CI»- rK,)Xt_1 + BK,Sk_1 

(10-26) 
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which describes the dynamics of a closed-loop system. As with the 
Kalman filter equations in Sec. 10-1-2, this is an indexed equation that 
has a homogeneous and nonhomogeneous part. The homogeneous 
part, namely, 

(10-27) 

has a solution of the form 

which, when applied to Eq. (10-27), gives 

(10-28) 

Equation (10-28) can be rearranged to give 

(CI»- rK,- .tl)C = 0 

where, for a solution to exist, .t must satisfy the eigenvalue-yielding 
equation of 

(10-29) 

Therefore, the dynamics of the controlled system are dictated by 
the eigenvalues of the matrix Cl»- rK, which, in turn, depend on the 
control gain K,. 

As mentioned in Sec. 10-3, Matlab has a built-in function that will 
calculate K, if the eigenvalues of Cl»- rK, are specified. This provides 
an alternative method of finding control parameters. 

10·5·1 Integral Control? 
In the case of the underdamped process, the state consists of the 
position and the speed. For there to be integral control one must 
augment the state with the integral of the position, or preferably, the 
integral of the difference between the position and the set point. 
This will be done in Sec. 10-6. 

10-5-2 Duals 
When the reader compares Eq. (10-23) for the prediction estimator 
with Eq. (10-26), they notice that the solution of the estimator prob­
lem is similar to that of the control problem. The estimation problem 
requires finding the eigenvalues of Cl»- K H while the control 
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problem requires the same thing of <1>- rK,. If the reader ·were to take 
the transpose of <1>- K Hand get <J>I -HI K I they would see that both 
eigenvalue problems hm·e the same structure and the same Matlab 
place algorithm can be used to place the eigenvalues. In this case, 
the control literature calls the control problem the "dual" of the esti­
mation problem and vice versa. 

10-6 Integral and Multidimensional Control 
Feeding back the state for control purposes is often equivalent to 
proportional-only control and therefore exhibits offset. To be more 
effective, integral control should be added. This can be accomplished 
by adding the integral of the state and constructing an augmented 
state-space model. When the augmented state is fed back, the result­
ing control will contain an integral component and there should be 
no offset. 

10-6-1 Setting Up the Example Process and Posing 
the Control Problem 

It would be attracti,·e if the state-space approach could be used to 
address multidimensional problems where there is more than one 
,·ariable to be driven to set point and more than one variable to be 
adjusted. The three-tank process with backflow will be chosen to 
illustrate the approach. Figure 10-8 shows the three-tank process with 
two additional process inputs that will be used to drive the three-tank 
levels to their set points 

Since you now have a familiarity with estimating the state of a 
process using the Kalman filter, I \Viii specify that in this problem the 
state is measurable (or estimable). Should the state not be measur­
able, I will assume that you can construct a Kalman filter that \Vould 
supply estimates of the state that could be used for control. 

Input flow rate 1 Input flow rate 2 Input flow rate 3 

~ ~ ~ 
I x, I ttJ 

x2 + 

~ 
x1 + 

IJ ~ 
Le\·e) measurement Y1, Y2, Y1 

fiGURE 10-8 A three-tank system with backflow. 
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In the continuous time domain the process is described by 

1 1 
0 ---

dt)-
p~R12 pAtRt2 

(~:) 1 -(p~R 12 + p~R,) 1 
dt x2 - p~R12 p~R23 

x3 
1 -(pA,~,. + p~R.) 0 

pA3R23 

1 
0 0 

pAt 

(~;) 0 
1 

0 + 
p~ 

1 
0 0 

p~ 

(10-30) 

or more compactly as 

d 
-X=AX+BU 
dt 

Y=CX 

We use that same parameter values as those in Chap. 5, namely, 

p= 1, A1 = 0.1,A2 = 0.1, A3 = 0.1, R12 = 10, Rn = 10, R3 = 10 

10·6·2 Developing the Discrete Time Version 
Using Matlab routines cited in App. H, one can develop the discrete 
time version directly, as in 

xi+t = CJ) X; + ru; 

Z;=HX; 

where H, CJ), and r are (3, 3) matrices. The measurement matrix His a 
(3, 3) unit matrix because all the states are considered measurable, 
perhaps due to a Kalman filter. 
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The three components of the integral of the state can be intro­
duced as the first three elements of the new augmented state: 

where 

That is, xf, i = 1, 2, 3 are the sums (integrals) of the three states, 
X; 1 i = 1, 2, 3. 

The augmented system now looks like 

xi 
1 1 0 0 1 0 0 xi 

1 0 0 0 
xi 0 1 0 0 1 0 xi 0 0 0 

m:L 
2 2 

xi 0 0 1 0 0 1 xi 0 0 0 3 = 3 + 
x1 0 0 0 Cl»u Cl)12 Cl)13 x1 ru r12 r13 

x2 0 0 0 Cl)21 Cl)22 Cl)23 x2 r21 r22 r23 

x3 k 
0 0 0 Cl)31 Cl)32 Cl)33 x3 k-1 r31 r32 r33 

or 

(10-31) 

or 

where 

9=(~ ~) 

This augmented system is really just two matrix equations put 
into one matrix equation. The two matrix equations, obtained from 
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Eq. (10-31) by multiplying across and down, as specified by the defi­
nition of matrix multiplication, are 

[
x{) (1 0 OJ(x{) (1 0 OJ(x1

) X~ = 0 1 0 X~ + 0 1 0 x2 

x3 k 0 0 1 x3 k-t 0 0 1 x3 k-l 

and 

The first is the integration (summation) of the state and the sec­
ond is the original discrete time state-space model. Make sure that 
you understand where these last two equations came from. 

10-6-3 Finding the Open-Loop Eigenvalues and Placing 
the Closed-Loop Eigenvalues 

The open-loop dynamics are described by the six eigenvalues of the 
augmented matrix e. If the augmented state is fed back then 
the closed-loop dynamics will be described by the eigenvalues of the 
matrix 9- 'I' Kaug where Kaug is the control gain matrix of size (3, 6), 
applied to the augmented state. (You may want to go back to the 
development of Eq. 10-29 to review why this is so.) The matrix K

11 
is 

of size (3, 6) because Kaug X is fed back to be the controller outpu"t U 

which is size (3, 1). That is, 

(3,1) - (3,6) (6,1) 

(10-32) 

To find the value of Kaug we first find the six eigenvalues of the 
open-loop system by solving the equation 

We can use these eigenvalues for the closed-loop system or we can 
modify them. For this example, the open-loop eigenvalues are 1.0, 
1.0, 1.0, 0.8203, 0.2112, and 0.0389, where the first three are from the 
integration equation and the last are from the process model. All of 
these eigenvalues lie on or inside the unit circle. For the closed loop, 
after a couple of trials, we decided to multiply all six of the eigenval­
ues by 0.7 and use the following Matlab statement 

Kcaug = place(ADaug, BDaug, eigaugspec); 
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to determine the control gain. Here Kcaug is Kaug' ADaug is 9, BDaug 
is '1', and eigaugspec is a vector of the six modified eigenvalues: 
0.7, 0.7, 0.7, 0.5743, 0.1478, and 0.0272. The multiplication by a factor 
less than 1.0 tends to move the location of the eigenvalues closer to 
the origin in the z-plane, thereby decreasing the transients and mak­
ing the control more aggressive. 

10-6-4 Implementing the Control Algorithm 
The application of the control vector Kaug is a bit tricky and perhaps it 
is best explained via the Matlab Simulirik diagram in Fig. 10-9. 

Boxes 1 and 2 show how the basic model was constructed using 
CJ) (or AD) and r (or BD). Box 3 contains the three set points. Box 4 is 
a multiplexer that combines the three-tank level errors with the inte­
grals of the tank level error into a six-dimensional state vector. Box 5 
contains the control gain K

11
'!K that multiplies the state vector to gen­

erate the three-dimensional controller output. Boxes 6 and 7 are 
one-sample delays. The control outputs are clipped to keep them 
nonnegative. 

Note that the control gain multiplies not the three-tank levels and 
their integrals but rather the three-tank level errors and the integrals 
of those errors. Therefore, Eq. (10-32), the control output equation, 
becomes 

{3,1) - (3,6) (6,1) 

{Le)l 
{Le)2 

U = (Kaug) (Le)3 
el 

e2 
e3 

(10-33) 

The control equation from Eq. 10-33, with the numerical values in 
place, and after partitioning is 

[

U1) ~( o.o480 -0.0177 o.oo5 ](0.1095 
U2 = -0.0294 o.o6o -O.oo57 o.o1o3 
u3 o.oo17 -0.0154 o.0295 o.oo74 

0.0194 0.0002]~ [~:l:] 
0.0729 0.0574 {Le)3 
0.0251-0.307 [::) 

(10-34) 
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FIGuRE 1.0·9 Simulink model: augmented state control of three-tank system with back flow. 
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The diagonal elements of the left hand (3, 3) matrix in the parti­
tioned (3, 6) augmented gain matrix relate the sums of the ith state 
variable to the ith control output and generate the integral compo­
nents of the controller output. Note that those diagonal elements are 
all positive and are a little larger than the nondiagonal elements in 
that (3, 3) part of the (3, 6) matrix. That the nondiagonal elements are 
not zero or negligible means the interaction between the tanks is 
being used in the control algorithm. The diagonal elements of the 
right-hand (3, 3) matrix in the partitioned augmented gain matrix 
relate the error in the ith state to the ith control output. Again, they 
are a little larger in magnitude from the nondiagonal elements in that 
(3, 3) part of the (3, 6) matrix. However, note that Ka11g36 

element is 
negative. 

Figure 10-10 shows the performance of this control algorithm. 
The first of the two plots in Fig. 10-10 contains the process outputs 
and their respective set points. 

One must choose the set points carefully. For example, it would 
not make sense to have a set point of 100 for the second tank while 
the first and third tanks had set points of 50. Were this the case 
both the flow rates into tanks one and three would be driven to 
zero and the levels would significantly miss their targets. As an 
exercise, the reader should verify this by modifying the Matlab 
code that generates Fig. 10-10. 
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F1auRE 1G-10 Augmented state-space control of three-tank system with back 
flow. 
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10-7 Proportional-Integral Control Applied 
to the Three-Tank Process 

For the sake of comparison, three PI controllers were applied to the 
control of the same three-tank process. As with the previous example, 
we are assuming that all three elements of the state are measurable. If 
this is not the case then the Kalman filter could be used to estimate 
them. Figure 10-11 shows the Matlab Simulink diagram. After 
some trial and error tuning of the six controller gains, the follow­
ing performance shown in Fig. 10-12 was obtained. 

Comparing Fig. 10-10 with Fig. 10-12, it appears that both 
approaches perform about the same. Given the Matlab routines to aid 
in the control design and the task of tuning the three PI controllers, I 
think I would prefer the approach of Sec. 10-6. 

As another exercise, take a look at Eq. (10-34) and see if you could 
reformulate it to fit the three separate PI control loop approach. The 
noninteraction of the three loops means that the nondiagonal ele­
ments in the two 3 x 3 matrices would be zero, as in 

(Le)J 

(u')-(1, 0 0 PI 0 

~J 
(L,e)2 

u2 - o /2 0 0 p2 (Le)3 
U3 o 0 13 0 0 eJ 

e2 
e3 

10-8 Control of the Lumped Tubular Energy Exchanger 
In Sees. 7-7 through 7-9, the tubular energy exchanger was approxi­
mated by a series of continuous stirred tanks (CSTs) or lumps. The 
equations describing the lumping can be written in state-space form 
where each CST has an adjustable steam jacket temperature. This 
suggests a control problem, challenging but perhaps of academic 
interest only, where one has the means to adjust the steam tempera­
tures of the individual lumps. The method of Sec. 10-6 could be 
brought to bear on this problem. 

We choose to approximate the process with 20 lumps so the state 
will consist of the temperatures of these lumps. With only a few detail 
modifications, one can develop the discrete time model equations 
from Eq. (7-27) using the Matlab routines mentioned in App. H. 

Because integral control will be used, the open-loop dynamics are 
described by the eigenvalues of the augmented matrix e and there 
will be 40 of them. If the augmented state is fed back then the closed 
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1:1 Flau• :1.0-11 Simulink model: PI control of three-tank process. 
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F1auRE 10·12 PI control of three-tank process with backflow. 

loop dynamics will be described by the eigenvalues of the matrix 
e- 'I' Ktlllg where Kaug is the control gain matrix of size 20 X 40 applied 
to the augmented state. 

(20,1) - (20,40) (40,1) 

(10-35) 

(Note that the preceding verbiage is paraphrased from Sec. 10-6.) 
To find the value of K

11
,,_ we find the eigenvalues of the open-loop 

system by solving the equation 

for the 40 eigenvalues. We can use these eigenvalues for the closed­
loop system or we can modify them. As in Sec. 10-6, I chose to attenu­
ate them by a factor of 0.7. The results are shown in Figs. 10-13 through 
10-16. Note that the control outputs (the steam jacket temperatures) 
were clipped at 200°. 

For the large-diameter tube, Fig. 10-13 suggests that the steam 
jacket temperatures of lumps 1 through 10 stay maxed-out at 200° 



Estimating the State and Using It for Control 313 

~ 200 .a 
~ 150 
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t: multiples of h = 0.1 

fiGURE 10-13 Control of the large-diameter tube energy exchanger, steam 
temperatures along the tube. 

and that only the jacket temperatures near the end of the tube settle 
down with time. Figure 10-14 shows that only the lumps near the 
outlet actually reach the set point of 100°. 

The behavior of the small-diameter tube energy exchanger is a 
little different. Figure 10-15 shows that most of the lump's jacket tem­
peratures come off the maximum allowed values. 

150 
Q) 

.2 100 
~ 
~ 50 
E 
~ 0 

0 

Lump position 

t: multiples of h = 0.1 

fiGURE 10-14 Control of the large-diameter tube energy exchanger, internal 
temperature along the tube. 
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~ 200 ::s 
~ 150 
~ 100 E 
~ 50 

0 
0 

Lump position 

t: multiples of It = 0.01 

fiGURE 10-15 Control of the small-diameter tube energy exchanger, steam 
temperatures along the tube. 

Finally, Fig. 10-16 shows that the most of the lumps reach the set 
point. Admittedly, this may not be a frequently occurring problem 
but I am including it to show how the general state-space approach 
can be applied to a variety of problems with minor changes in the 
dimensions and in the elements of the matrices involved. Note that 
many of the sophisticated mathematical operations like eigenvalue 
determination and control gain calculation are carried out transpar­
ently by Matlab routines. 

150 
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.a 100 
<U 
!i) 
0.. 50 
E 
~ 0 

0 
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t: multiples of It = 0.01 

fiGURE 10-16 Control of the small-diameter tube energy exchanger, internal 
temperatures along the tube. 
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10-9 Miscellaneous Issues 
This section is a kind of grab bag of material that I do not think is 
worth presenting in detail but which you might be exposed to. 

10-9-1 Optimal Control 
The gains in Eq. (10-25) or (10-33) can also be found by minimizing 
the objective function I in the following equation 

(10-36) 

subject to the constraint that the state-space model be satisfied, as in 

k = 1,2, ... ,N (10-37) 

The object is to drive the state to zero over theN instants of time 
such that the weighted sums of the state and the control output are 
minimized. 

Minimizing I in Eq. (10-36) subject to the constraint in Eq. (10-37) 
is a reasonably standard problem, solvable by the method of Lagrange 
multipliers. The matrices Q1 and Q2 are adjustable by the user. If, for 
example, Q2 were small or zero, then the minimal (or optimal) solu­
tion would probably have Xk quickly going to zero with massively 
(and probably unacceptably) large movement in the controller output 
Uk. Conversely, a small Q1 would have relatively small control output 
movement and large deviations of Xk from zero. There is an art to 
choosing the weighting matrices and many books have been written 
on this approach to control. However, I would rank optimal control a 
little bit below the other techniques presented in this book (consider 
the source). 

In passing, it should be mentioned that the Kalman filter problem 
can be presented in a similar manner, that is, as a minimization prob­
lem, although I will not attempt it here. This may not be too surpris­
ing since it was mentioned earlier that the estimation problem and 
the control problem are duals of each other. 

10-9-2 Continuous Time Domain Kalman Filter 
All of the Kalman filter equations have an analog in the continuous 
time domain. I will not spend much time on them simply because the 
implementation of the Kalman filter is usually done in the discrete 
time domain with microprocessors. However, some authors prefer to 
develop all the equations and solutions in the continuous time domain 
and then convert the solutions to the discrete time domain using a 
variety of tools provided by Matlab or other computer-aided design 
software packages. 
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The continuous time domain state-space description is 

d 
-x=Ax+BU+w 
dt 

Z=Hx+v 

A continuous time Kalman filter would look like 

d A A A 

dt x=Ai+BU +K(Z-Hx) 

!!_P=AP+PAT +BQBT -KRKT 
dt 

(10-38) 

(10-39) 

where Q and R are the covariance matrices associated with the sto­
chastic sequences w and v, respectively. If the reader looks closely, he 
will hopefully see parallels between the discrete time and continuous 
time formulations. There are many ways of developing these contin­
uous time equations and perhaps the least painful is the somewhat 
formal derivation in the book by Gelb where the discrete time equa­
tions are shown to morph into the continuous time equations as the 
time interval is shrunk to infinitesimal size. 

10-10 Summary 
The Kalman filter has been presented, without derivation, as a method 
of using a process model to augment the process measurements avail­
able such that the state is estimated. Two methods of using the Kalman 
filter were presented. In the first, the user chooses the two covari­
ances Q and R and calculates the state estimates accordingly. The 
second, allows the user to specify the location of certain eigenvalues 
(poles) and to apply this specification to a Matlab routine that can 
generate the steady-state values of the Kalman filter gain. The litera­
ture sometimes refers to this approach as "pole placement." 

With this state estimation tool in hand, we represented a control 
approach that fed the state (probably estimated by a Kalman filter) 
back. Via augmentation, integral control was added to this state-space 
approach that also required the user to specify the eigenvalues of a 
certain matrix. 

This augmented state-space control approach was applied to the 
three-tank process originally presented in Chap. 5. Although this con­
trol approach was found to be satisfactory, similar performance was 
obtained from three PI control loops applied to the same process. The 
same augmented state-space control approach was applied to a 20-lump 
approximation of the tubular energy exchanger. 



CHAPTER II 
A Review of Control 

Algorithms 

I f you have read through the first 10 chapters I am pleased and 
amazed at your effort. This chapter will be much easier. As the 
title suggests, it is indeed a review of some of the control algo­

rithms that we have covered (or uncovered). It also looks at a couple 
of extensions like cascade control. Just in case the reader has some 
exposure to statisticians, this chapter spends some time dealing with 
an often misunderstood subject: statistical process control (SPC) and 
controlling processes in the face of white noise disturbances (again). 

To get started, we visit the Strange Motel Shower Stall (at the 
Bates Motel?). 

11-1 lhe Strange Motel Shower Stall Control Problem 
You are on a business trip for your company, visiting a far-flung plant 
in the hinterlands. You check into the local motel/hotel and decide to 
take a shower (Fig. 11-1). 

Not being familiar with the plumbing in this motel you have to 
develop a strategy for adjusting the shower water temperature before 
getting into the shower. I suggest that it would be something like that 
shown in Fig. 11-2. 

Let's try to quantify the algorithm outlined in Fig. 11-2. The stick 
figure (you) is standing outside the stall and sampling the shower 
head spray. Once you have turned the valve you might carry out the 
following steps: 

1. Sample the water temperature at time t;, i = 1, with your finger 
(the start of "digital" control). You will not have a numerical 
value but we will still denote the temperature by T(t;). 

2. Adjust the valve to an amount that is proportional to the 
perceived error E(t;) 

E(t;)= S-T(t;) 

317 
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,.._ 11·2. The Strange Motel shower stall control algorithm. 

1\un on valve 

~ 
Waitlor~~ 

OK Test tem~ture 
~NotOK 

[ 
Adjust valve & temp error 

Step under shower head 

,.._ 11-2 The Strange Motel shower stall control strategy. 
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As with the temperature, you will not have a numerical value 
for the error but you probably will have a feeling for the deviation 
as to sign and approximate amount. The adjustment will be 

aU(t;) = K E(t;) = K(S- T(t;)] 

U(t;) = U(t;_1)+ aU(t;) 

where K is a proportionality constant that is a measure of 
your patience and aggressiveness and au is the change in 
the valve position. Note that the second equation simply says 
that you added the increment (positive or negative) to the 
previous valve position. 

3. Wait a period of time h for the water temperature to respond 
to your adjustment. This wait time will probably include any 
dead time and at least one time constant. The time is now 
t; = t;_1 + h, i = 2. Note that you have implicitly incremented 
the time index i. 

4. Sample the water at time t; with your fingers and go to step 2. 

You would continue this loop until the error is perceived to be 
acceptable and you would then step into the shower stall. 

Figure 11-3 shows how the temperature and adjustments might 
proceed if you were a patient and conservative person. Note that 
after each adjustment there is a small dead time, probably associated 
with the transport of the water through the piping, followed by a 
first-order-like response. The wait time h is long enough for the expi­
ration of the dead time and 99% of the time constant response. 
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fiGURE :1.1-3 Conservative Strange Motel shower stall control. 
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Aggressive Strange Motel shower stall control. 

If you used the same strategy but had less patience and felt more 
aggressive, the results might be like those shown in Fig. 11-4. 

In this case, you did not wait for the full response of the tempera­
ture and your adjustment sizes were greater for the same perceived 
size of the error. As a result, there was overshoot, although the desired 
temperature may have been arrived at earlier than with the more con­
servative strategy of Fig. 11-3. 

The control strategy fits the closed-loop structure that we have 
been using in the rest of the book as shown in Fig. 11-5. 

5 (Set point) 

c_ Error (sensed by your fingertips) 

U (Controller output/ 
E Controller process input valve position) 

(You) 

Process 
Y (Process output (Shower stall) 

Temperature) 

D (Disturbances) ___ __, 

U (Process input) 

fiGURE 11-5 The Strange Motel shower stall control strategy, block diagram. 
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11-2 Identifying the Strange Motel Shower Stall Control 
Approach as Integral Only 

The basic control algorithm is 

AU(t;) = IhE(t;) = Ih[S- T(t;)] 

U(t;) = U(t;_1) + AU(t;) 
(11-1) 

where the proportionality constant has been replace with lh so as to 
include the control interval in the algorithm. 

Combine the control moves, as in 

AU(t;) = IhE(t;) 

U(t;) = U(t;_1) + IhE(t;) 

U(t;.1) = U(t;_1) + lhE(t;) + IhE(t;+1) 

(11-2) 

U(tn) = U(t0)+ IhE(t1)+ IhE(t2)+ ··· + IhE(tn) 

n 

U(tn) = U(t0)+ lh I,E(t;) 
i-1 

The reader should recognize Eq. (11-2) as a discrete time version 
of integral-only control algorithm. This is especially apparent if we 
shrink the control interval h to an infinitesimal value while increasing 
n such that nh is held constant at t1-t0• 

(11-3) 

= U(t0)+ If' duE(u) 
to 

Note that integral control will continue to modify the control out­
put until the error is driven to zero. Also, based on the previous 
chapters, one can guess that becoming aggressive and impatient 
when there is a dead time can lead to overshoot. 

Each person visiting the Strange Motel will have a slightly differ­
ent approach to adjusting the water temperature before stepping 
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under the shower but for the most part I suggest this integral-only 
control strategy approximates the initial strategy that you might 
apply. I often used this example in the internal company courses that 
I used to teach and several attendees have commented that they 
reflexively think of this example whenever they arrive at a motel 
while traveling for the company. The course was given to a wide vari­
ety of engineers and was entitled Digital Control. After presenting the 
strange shower stall algorithm one gentleman who had little formal 
background in engineering but a wealth of practical experience in 
analog instrumentation, asked me "why not just keep your right 
hand in the water stream all the time and continually adjust the fau­
cet valve with the left hand until a satisfactory temperature is 
obtained?"-a valid and interesting question from someone with an 
entirely different background than mine. 

Finally, note that since the control change is proportional to the 
error (not the change in the error), this algorithm is often mislabeled 
and misinterpreted as proportional control. This is a key distinction 
because, as pointed out in Chap. 4, integral control adds 90° of phase 
lag whereas proportional control does not. On the other hand, pro­
portional-only control exhibits an offset between the set point and the 
process output. 

11-3 Proportional-Integral, Proportional-Only, 
and Proportional-Integral-Derivative Control 

11·3·1 Proportional-Integral Control 
The integral-only control algorithm can be modified by the addition 
of a term proportional to the change in the error, as in 

AU(t,) = llzE(t;)+ PAE(t;) 

U(t;) = U(t,_1) + AU(t,) 
(11-4) 

Figure 11-6 shows how the shower control strategy is changed 
with the addition of the proportional component. The first step is 
larger because of the one-time step in the set point. At each subse­
quent instant of control (every 10 time units) the proportional compo­
nent bounces up and down because it is proportional to the error 
which is alternating in sign. 

There are opportunities to improve this situation. The reader 
notices that the time constant of the shower stall process is about 1.0 
and the dead time is about 2.0. This small time constant suggests a 
smaller control interval. 

When the control interval is decreased from 10.0 to 0.1 and the 
proportional and integral gains are modified to 0.5 and 0.3, respec­
tively, the result is shown in Fig. 11-7. 
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FIGURE 1.1.-8 PI shower stall temperature control, large control interval. 
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FIGURE 1.1.-7 PI control of shower stall temperature, short control interval. 
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The first control move AU at time t = 3 consists mostly of the pro­
portional component PAE which is responding to the large error when 
the set point is stepped. At this point in time, £=100-0=100 and 
AE = 100-0 = 100. Therefore, the proportional component of AU is 
PAE = 0.5 x 100 = 50 and the integral component is I hE = 0.3 x 
0.1 x 100 = 3. The proportional component goes off-scale in the third 
part of Fig. 11-7. At the next control instant, when t = 3.1, 
E = 1 00- 0 = 1 00, and AE = 100- 1 00 = 0, so, the proportional com­
ponent is zero and the integral component is again 3. The propor­
tional component and the integral component remain the same at 
every control instant until t = 5 when the dead time has elapsed and 
the process output starts to respond. From t = 5 until about t = 8, E ~ 0, 
and AE < 0, that is, the temperature is below the set point and it is 
rising so the change in the error is decreasing. The integral compo­
nent is still positive but it is decreasing. The proportional component 
is negative but rising and it is starting to overcome the integral com­
ponent and bring the control output back down. At approximately 
t = 8.0 the temperature increases past the set point and the sign of E 
changes from positive to negative. The integral component becomes 
negative while the proportional component continues to rise. At 
about t = 9 the proportional component changes sign and becomes 
positive. 

Therefore, the proportional and the integral components some­
times augment each other and sometimes oppose each other. It is the 
interaction between these two components that makes the PI control 
algorithm so simple and so effective. 

11-3-2 Proportional-Only Control 
Figure 11-8 shows the effect of removing the integral control for the 
same conditions as those in Fig. 11-7. Here the control output jumps 
to 50 at t = 3 and stays there until the process output starts to respond 
at t = 5. During this period there is no control output movement 
because the error does not change. When the process responds, AE is 
negative and the control output backs off and moves around by a 
small amount until the error stops changing. Unfortunately, when the 
process output and the error stop changing, the latter is not zero. 
Since there is no integral component to continue to work on the con­
stant but nonzero error, there will be an offset between the process 
output and the set point. 

11-3-3 Proportlonal-1 ntegrai-Derlvatlve Control 
Adding derivative to Eq. 11-4 gives 

AU(t;) = IhE(t;)+ PAE(t;)+ Dg A[AE(t;)] 

U(t;) = U(t;_1)+ AU(t;) 
(11-5) 
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F1auRE 1.1.-8 Proportional-Only control of shower stall temperature. 

The first line contains a difference of a difference, A[AE(t;)L which is 

In Chap. 6 the derivative was shown to amplify noise. In the 
strange shower stall example, I have conveniently ignored noise so as 
to illustrate the basic features of the various components of the con­
trol algorithm. In the case of noise, you might consider the use of a 
filter applied to the derivative component as shown in Chap. 6. 

Returning to the strange shower stall example, I kept the same P 
and I gains at 0.5 and 0.3, respectively, and added extremely small D

8 
values until I arrived at reasonable performance which is shown in 
Figs. 11-9 and 11-10. 

Figure 11-9 shows that the addition of a small amount of deriva­
tive (D

8 
= 0.1) changes the nature of the control output by adding 

spikes at the moment of the set-point change and when the process 
output starts to respond. The overshoot of the process variable is 
decreased as a consequence of this extra-jerky activity. Figure 11-10, 
when compared to Fig. 11-7, shows that the presence of the derivative 
component causes the proportional component to change consider­
ably from its performance in the PI case. 

Adding derivative can often improve performance but there is a 
risk of spikes and noise amplification. 
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FIGURE 11-9 PID control of shower stall temperature. 
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FIGuRE 11-:1.0 PID control of shower stall temperature-components of 
control output. 

11-3-4 Modified Proportional-Integral-Derivative Control 
If the set point is removed from the error term in the derivative, the 
algorithm is 

AU(t;) = IhE(t;) + PAE(t;)- D
1 

A[AT(t;)] 

U(t;) = U(t;_1) + AU(t;) 
(11-6) 
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FIGuRE 1.1.-1.1. Modified PID control of shower stall. 

Steps in the set point will no longer generate spikes in the 
controller output. The performance is about the same as is shown 
in Figs. 11-11 and 11-12. The derivative gain was raised slightly 
to 0.2. 
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FIGURE 1.1.-:1.2 Modified PID control of shower stall-components of control 
output. 
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11-4 Cascade Control 
Figure 11-13 sho\vs the familiar \Vater tank in a slightly different 
configuration. The source of the process input is a secondary 
tank that has an input flow rate of unknO\vn origin. The valve is 
adjusted to maintain the level in the primary tank. Now, what 
·would happen if there were a significant disturbance in the sec­
ondary tank? This disturbance \Votlld first cause the flow rate to 
the primary tank to vary. This flO\v rate variation would cause the 
primary tank level to deviate from set point. The control loop would 
then adjust the valve in an attempt to bring the level back to the 
set point. 

The process output, namely the primary tank level, experiences a 
significant deviation in response to the upstream disturbance. For the 
controlled system to react to the disturbance, an error has (and will) 
show up in the primary tank process output. Figure 11-14 shows the 
set point being stepped at time t = 1. Later on, at time t = 30 there is a 
disturbance in the secondary tank and Fig. 11-14 shows the resulting 
disturbance in the primary tank level. 

This problem can be addressed if a second flow-control loop is 
added, as shown in Fig. 11-15. In this case, the flow rate coming into 
the primary tank is controlled to a flow-rate set point generated by 
the level control loop Should there be a disturbance in the second­
ary tank, it will be sensed by the flow-rate controller and quickly cor­
rected such that there may be little or no variation in the primary tank 
level. 

Ill 

+ 
Secondary t,mk 

L__j 
Set point 

Primary tank 

fiGURE 11-13 A single control loop. 
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FIGURE 11-15 Cascade control. 

The schematic in Fig. 11-16 shows how the master loop (le\'el con­
trol) generates a set point for the sla\'e loop (flow control) Refer to 
Fig. 11-17 where the same primary tank as in Fig. 11-13 has a process 
gain of unity and a time constant of 10 0 time units. The secondary 
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s, 

fiGURE 1.1.-18 Cascade control schematic. 
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fiGURE 1.1.-17 Cascade control performance. 

tank is smaller than the primary with the same process gain but with 
a time constant of 1.0 time units. The flow-controller dynamics are 
even quicker with a gain of unity and a time constant of 0.5 time 
units. As in Fig. 11-14, there is a disturbance in the secondary tank 
level at time t = 30. Figure 11-17, when compared to Fig. 11-14, shows 
the improvement in performance by using cascade control. 

The Matlab Simulink model used to generate the simulations in 
Figs. 11-14 and 11-17 is given in Fig. 11-18. 

Cascade control, sometimes with several levels of embedded 
master I slave structure, is widely used in industry. It is especially 
effective where a secondary loop is much faster than a primary loop. 

In Chap. 1, Sec. 1-7, cascade control appeared in an example pro­
cess that tended to behave like a molten glass forehearth. The master 
control loop reads the glass temperatures via a thermocouple and 
sends a temperature set point to the combustion zone slave controller. 
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flow controller 

I;SI flaun :1.1.-2.8 Simulink model for single and cascade control. 
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Although not mentioned there, the combustion zone slave control 
loop sends a position signal (in percent open) to another slave con­
troller that positions a valve. So, in this example there are three levels 
of controllers in a cascade configuration. 

In Chap. 7, the master controller reads the temperature of the liq­
uid in the tubular energy exchanger and sent a temperature set point 
to a steam jacket temperature slave controller. As with the forehearth 
example, there would probably be another slave controller that would 
respond to the steam jacket temperature slave controller and manipu­
late a steam valve. 

In these two examples each level in the hierarchy of controllers 
deals with effective time constants that are significantly smaller than 
those associated with the master loop. In the tubular energy exchanger 
example, the liquid temperature response would be characterized by 
a time constant much larger than that for the steam jacket tempera­
ture. Likewise, the steam jacket temperature effective time constant 
would be larger than that for the valve adjustment subprocess. 

11-5 Control of White Noise-Conventional Feedback 
Control versus SPC 

In the 1980s there was a great rush to a relatively old concept that was 
relabeled statistical process control (SPC). Although statisticians will 
go into cardiac arrest at this description, SPC is basically an alarm 
system that detects non-white noise riding on the signal of a process 
variable. Most SPC systems are based on the so-called WECO rules 
that were published by Western Electric in 1956. These rules claim 
that a process is "out of control" when one or more of the following 
conditions are satisfied: 

1. One sample of the process output has deviated from the 
nominal value (probably a set point) by three standard 
deviations. 

2. Two out of three samples have deviated from the nominal by 
two standard deviations. 

3. Three out of four samples have deviated from the nominal by 
one standard deviation. 

4. Eight samples in succession have occurred above or below 
the median line. 

All the above conditions have a 1.0% probability of occurring 
if the process variable is behaving as a normally distributed un­
autocorrelated stochastic sequence. 

An important, in fact critical, part of the SPC strategy is to commit 
to a search for the "assignable cause" of the out-of-control condition 
and to solve the associated problem. During my career I have seen 
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SPC teams rigorously apply these rules and thereby solve many prob­
lems. The mindset of committing to find the "assignable cause" and 
do what is necessary to solve the problem often provides a tremen­
dously open-minded environment. 

To many control engineers, SPC is a sophisticated alarming sys­
tem associated with a nearly religious commitment to "make the pro­
cess right." It is, however, not a feedback control system in the sense 
that control engineers understand the term. In spite of this, there have 
been many times in my professional career when managers, in the 
face of a process problem, would call for the engineers to "just apply 
SPC." For a short period of time in the 1980s and 1990s SPC became a 
universal solution. 

Correlated with the rise in the stature of SPC was the influx of 
statisticians into control engineering areas. Statisticians consistently 
claim that processes subject to white noise should not be controlled 
because the act of control amplifies the white noise riding on the pro­
cess variable. The logic (which we have already touched on in earlier 
chapters) goes something like this. Consider the case where you are 
the controller and you are responsible for making control adjustments 
based on a stream of samples coming at you at the rate of, say, one per 
minute. Assume that you know that a sample is deviating from the 
target solely because of white noise. Therefore, the deviation of the 
ith sample is completely unautocorrelated with the deviation of the 
i -1th sample and will be completely unautocorrelated with the i + 1 
th sample. Consequently, it would be useless to make a control adjust­
ment. If you did make an adjustment based on the ith sample's devia­
tion, it would likely make subsequent deviations larger. On the other 
hand, if you knew the deviation of the ith sample was the result of a 
sudden offset that would persist if you did nothing, then you would 
likely make an adjustment. 

I certainly agree with this logic but there are some realities on the 
industrial manufacturing floor where automatic feedback control of 
process variables subject to white noise is unfortunately necessary, 
especially when a load disturbance comes through the process or 
when there is a need to change the set point. 

Furthermore, there is the question of degree. Processes with large 
time constants act as low-pass filters and though the feedback con­
trollers may increase the standard deviation about the set point, the 
increase may be negligible. 

To illustrate this idea, consider two processes. The first has a time 
constant of 40 time units and the second has a time constant of 0.5 
time units. Both have a process gain of 2.0 and are subject to white 
noise. Both are initially in manual (no control adjustments). Both will 
be put into automatic PI control with a new set point. The standard 
deviation, before and after control, will be computed. 

Figures 11-19 and 11-20 show the performance of the two pro­
cesses. At time t = 200 the controllers are activated with a set point 
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of 1.0. Before that time both process outputs had been bouncing 
about 0.0 in a unautocorrelated white noise manner. Both PI con­
trollers were tuned such that the desired time constant was half of 
the actual process time constant using the tuning rules presented 
in Sec. 9-9. 

For a long-time constant process, visual observation suggests that 
the intensity of the hash riding on the process variable after control 
has been initiated (and after the controller has settled out) is about the 
same as that before control. For samples one to 199, the standard 
deviation is 0.031811 and for samples 300 to 500 it is 0.032456---an 
increase of less than 2%. (I am keeping way more decimal places than 
I need!) 

For the short time constant process, visual observation suggests 
that, after control is initiated, the intensity of the hash has signifi­
cantly increased, especially on the control output. The standard devi­
ation is 0.031811 before control and 0.041859 after control-an increase 
of almost 31%. 

Processes act as low-pass filters and the long-time constant pro­
cess does significantly more filtering. For the long-time constant pro­
cess, the control output is not as active (because of the filtering effect 
of the process) and the increased activity shows up as less white noise 
intensity riding on the process output. 

Many industrial processes are subject to white noise but they also 
often have large time constants, relative to the control interval, such 
that the application of an automatic feedback controller will do more 
good than harm. 

11-6 Control Choices 
We have stopped the deluge of different control algorithms that you 
or your control engineer can choose from. This does not imply that 
there are not more-there definitely are-however, I think we have 
covered the "big picture" of control algorithms. 

The proportional-only control algorithm was presented first in 
Chap. 3 and then again in this chapter. For industrial situations it 
would probably not be your first choice. However, it occurs in many 
places. For example, your automobile engine coolant flow is regu­
lated by a thermostatic valve. When the engine is cold, the thermostat 
closes the valve to restrict coolant flow and allow the engine to quickly 
reach a satisfactory operating temperature. As the engine heats up, 
the thermostat opens the valve and allows more coolant to circulate. 
The movement of the valve is proportional to the temperature of the 
coolant and there really is no set point as such. There also is no his­
tory of engine temperatures available to the thermostat so there is no 
integral effect that might be able to slowly work the temperature back 
to the desired value. 
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The proportional-integral control algorithm is the workhorse of 
the process control industry. In my opinion, it should be the first 
choice. Before some more sophisticated approach is taken it should 
be conclusively shown why PI is not acceptable. 

The PI tuning rules were presented in Chap. 9 

'r 
P=-P I=-1-

g'rd g'rd 

or 

'r 
K =-P 'r' = 'rd 

c: g'rd 

To use these effectively the control engineer should identify the 
effective process time constant and gain. Actually, the identification 
should be part of the thorough study of the process that was pre­
sented in Chap. 2. 

The PID control algorithm was shown to be effective for processes 
that have unusual characteristics such as underdamped behavior. The 
presence of noise riding on the process variable may require the control 
engineer to apply a low-pass filter to the derivative before using it in 
the algorithm. I did not present tuning rules for the PID because I 
really do not feel that comfortable with those in the literature. I usu­
ally tune the P and I components with a zero derivative gain using 
the above approach and then slowly increase the derivative gain. 
When I arrive at something that improves the behavior without 
amplifying the noise unacceptably, I iterate on the P and I gains which 
sometimes can be increased after the derivative has been added. 
However, Zeigler-Nichols PID tuning rules have been in the literature for 
60 some years and you might suggest them to your control engineer. 

An alternative approach of feeding back the "state" of the process 
to produce a modified process that has more desirable properties was 
presented and applied to the underdamped process. 

The so-called "Q method" was presented in Chap. 9 as a means of 
developing control algorithms. For first-order processes the Q method 
yielded the PI control algorithm and associated tuning rules. For the 
underdamped process, it yielded a variant of the PID algorithm with 
a built-in low-pass filter. For processes with dead time, one could use 
the Q method to derive a special control algorithm that did dead time 
compensation in a manner similar to the famous Smith Predictor. 

The idea of feeding back the state, mentioned earlier, prompted a 
presentation of the Kalman filter. If a good model of the process is 
available, the Kalman filter can provide a neat method of mixing 
measurements which may be noisy with model predictions to 
produce an estimate of the state. Two methods were presented for 
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determining the Kalman filter gains. The first required the user to 
pick elements in covariance matrices associated with the process and 
sensor noise. The second required the user to place the eigenvalues 
(or poles) of the dynamical system. 

The state could also be fed back for control purposes perhaps in 
concert with a Kalman filter that would estimate the state. In the one 
example presented in Chap. 10, the control gains were chosen by the 
eigenvalue placement method although an alternative method based 
on picking the covariance matrices was mentioned in passing. 

I think you could conclude that there is a relatively broad spec­
trum of control approaches to choose from. I hope you will agree that 
before embarking on any of them you or your control engineer should 
thoroughly study the dynamics of the process. 

11-7 Analysis and Design Tool Choices 
We started with the simple first-order process model and used an 
ordinary differential equation in the continuous time domain to 
describe its behavior. As the models became more involved, the 
Laplace transform was used to move from the continuous time 
domain to the s-domain where differential equations became alge­
braic equations and life was often simpler. Laplace transforms were 
used to generate transfer functions which in turn could be used in a 
block diagram algebra that opened up many new methods of design 
and analysis. The dynamics of process models were shown to be 
characterized by the location of poles in the s-plane. 

A simple substitution allowed us to move from the Laplace s­
domain to the frequency domain where we could use concepts like 
phase lag, phase margin, and gain margin to develop insight into 
dealing with dynamics, both open loop and closed loop, often with­
out having to solve differential or algebraic equations. 

Matrices were shown to be a compact method of dealing with 
higher dimensional problems. The state-space approach brought us 
back to the time domain but presented us with an enlarged kit of 
tools. Eigenvalues of certain matrices were shown to be equivalent to 
the poles of transfer functions. 

The movement from the continuous time domain to the discrete time 
domain was facilitated by the Z-transform where another simple substi­
tution allowed us to move to the frequency domain to develop more 
insight. The state-space approach was represented in this new domain. 

Finally, the Kalman filter was introduced and shown to provide a 
means of estimating the state from a noisy measurement if a process 
model was available. Several control approaches using the Kalman 
filter and the state-space concept were presented. 

As with the control choices, I think you have been presented with 
a broad spectrum of analysis and design tools. Use them wisely and 
good luck. 
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APPENDIX A 
Rudimentary 

Calculus 

You probably had a passing exposure to calculus in college but 
never really used it during your career and the dust has 
gathered. Perhaps we can refresh and perhaps even enhance 

your understanding. However, if you were never exposed to calculus 
at all then this appendix may not get you out of the starting blocks. 
You might want to read this appendix completely and then go back to 
Chap. 2 or 3. Alternatively, you can refer to it while you read Chap. 3 
and beyond. 

A-1 lbe Automobile Trip 
This section uses the metaphor of an automobile trip to introduce the 
concepts of integration and differentiation. Consider taking a trip 
with an instrumented automobile that can log the time, distance, and 
speed of the automobile. Figure A-1 shows a plot of the speed of the 
automobile as a function of time. 

This shows a gradual, idealized acceleration up to 50 mi/hr, 
taking 10 min. Then there is a period of 100 min when the car's speed 
is constant at 50 mi/hr. 

A-2 lbe Integral, Area, and Distance 
How far does the automobile travel in the 110 min shown in the 
figure? Since distance 5 is related to constant speed v and time t as 

S=vt (A-1) 

we can quickly estimate that the distance covered between 10.0 
and 110.0 min (where the speed is constant at 50.0 mi/hr) as 

S = vt = 50 mi/hr x 100 min/ (60 min/hr) = 83.33 mi 

339 
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F1auRE A-1 Automobile speed during a trip. 

This calculation suggests that S is the area under the speed curve 
(which is a straight horizontal line) between 10.0 and 100.0 min. 

Since the speed curve, up until10.0 min, forms the side of a right 
triangle, the distance traveled during this period is the area of the 
appropriate triangle: 

S=~10 min/(60 min/hr)x50 mi/hr=4.17 mi 

The total distance covered for the whole time period from 0 to 110 min 
is the total area under the speed curve or 83.33 + 4.17 = 87.5 mi. 

In general, the distance covered is the integral of the speed over 
the time period of interest 

t 

S= J vdt (A-2) 

'• 
which is also the area under the v curve between t1 and t2• For the 
case between 10 and 110 min the distance covered is 

110 50 110 50 
S= J vdt=-t I =-(110-10)=83.33 

10 60 10 60 
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Since vis a constant, valued at 50/60 mi/ min, and since the integral 
of a constant is just that constant multiplied by the time interval (we 
will talk about this more in the next paragraph), the above integral is 
quite simple to evaluate. 

The integral of constant, say C, with respect to the variable t, 
between the limits of a and b is 

b b 

I Cdt=Ctl =C(b-a) 
tl 

(A-3) 
tl 

If C = 50/60 = 0.833, then that would be pictured in Fig. A-2. 
The area under the line representing C = 50 I 60 = 0.833 is the 

integral of the constant and, from the graph, has the value of 0.833 x 
100=83.33. 

Back to the trip. For the time period from 0 to 10.0 min, the speed 
(miles/minute) is increasing linearly and has the following formula: 

50 1 
v=t 6010 

The distance covered during this acceleration period is given by the 
integral of the speed with respect to time over the interval 0 to 10, as in 

10 10 50 1 50 1 10 

s = I vdt =It 6o 10 dt = 6o 10 I tdt 
0 0 0 

1.-~----~----~----~----~----~-. 
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F1auRE A-2 Graph of a constant. 
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From the aicltives of your mind you might remember that the 
integral oft with respect tot is P/2 or 

b t2 b 1 
I tdt =-I= -(b2 -a2

) 
tl 2 tl 2 

(A-4) 

Consequently, the distance expression becomes 

10 50 1 50 1 10 50 10 
5 = ! t 60 10 dt = 60 10 ! tdt = 60 X 10 X 2 t

2 ~ 

During the acceleration period, the automobile covered 4.17 mi. 
The total distance covered for the whole time period from 0 min 
to 110 min is the total area under the speed curve or 83.33 + 4.17 = 
87.5miles. 

110 10 50 1 110 50 
5 = I vdt = It 6o 10 dt + I 6o dt 

0 0 10 

50 10 50 110 

= 60 X 10 X 2 t
2 

~ + 60 t 1~ 
= 4.17 +83.33 = 87.5 

For our purposes, the integral of a variable Y(t), also called the 
integrand, with respect to t over the domain oft from a to b is 

b 

IY(t)dt 
tl 

Pictorially, the value of this integral is the area under the curve of 
Y(t) between t =a and t = b. 

Sometimes in this book, the order of the integrand, here Y(t), and 
dt will be exchanged, as in 

b b 

I Y(t)dt =I dt Y(t) 
tl tl 
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This can be handy if one is looking at the integral as the operaHon 

" of I dt ... on the quantity Y(t). 
Q 

The reader should realize that the argument of the integrand t, is 
a dummy argument and any symbol will do, as in 

b b 

I dtY(t) =I duY(u) 
tl tl 

Consider the speed history of another trip in an instrumented 
automobile shown in Fig. A-3. Here the speed changes suddenly, 
abruptly, and unrealistically at t = 60 min and again at t = 80 min. 
Temporarily ignoring the fact that an infinite braking force would 
be required to make the sudden changes in speed at those two times, 
the distance covered for the whole trip is again the area under the 
speed curve. In this case there are four areas. The first, from time 
0 to 10.0 min, when there is acceleration, the second, from time 10.0 
to 60.0 min, when the speed is constant at 50 mi/hr, the third, from 
time 60.0 to 80.0 min, when the speed is constant at 40 mi/hr and 
the fourth, from time 80.0 to 95.0 min, when the speed is constant at 
30 mi/hr. The four areas can be calculated by observation. The first 
is the area of a right triangle and is 1/2(0.833 x 10.0), the second is 

0.9 .-~---r--""T"'""--r------r--,--"""T"'""-...------..-----. 

0.8 

0.7 

~ 0.6 

~ 0.5 

:;- 0.4 

& 
CJ') 0.3 
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0.1 

.................... 

... · ... . · .... : . .. • ..... . 

o oo • • o oO o o : o o o • I o o o •'--_..;..-~ 

0o 10 20 30 40 50 60 70 80 90 100 
Tlme(min) 

F1auRE A-3 Speed history for another trip. 
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0.833 x 50.0, the third is 40.0/60.0 x 20.0, and the fourth is 30.0/60.0 
x 15.0 or 

95 

S= I vdt 
0 

10 60 80 95 

=I vdt+ I vdt+ I vdt+ I vdt 
0 10 60 80 

1 
= 2(0.833 X 10) + 0.833 X 50+ 0.666 X 20 + 0.5 X 15 

This exercise shows that the integral has been broken up into a 
sum of four calculations of contiguous areas. 

A-3 Approximation of the Integral 
In general, when the integrand is known numerically at variable 
sampling points of the independent variable, t in this case, as in 

then the integral of Y with respect to t can be approximated as a sum of 
the areas of relatively small rectangles 

t, n-1 I dt Y(t) = l',Y(t;)(ti+1- t;) = Y(tl )(t2- tl) + ... + Y(t,_l)(t, - t,_1) (A-5) 
tl i-t 

Here, the height of the ith rectangle is Y(ti) and the width of the 
rectangle is (ti+t - t;). If the spacing between the sampling points 
t 1, t2, •• • ,t, can be made smaller and the number of sampling points n 
can be made larger, it is reasonable to expect that the approximation 
will get better. The reader probably can imagine that there might be 
more accurate ways to numerically estimate the integral when the 
values of the integrand are given at sample points and there certainly 
are. This superficial discussion of the integral suggests the notion that 
(1) the integral can be looked at as an area under a curve, (2) it can be 
approximated numerically with a sum of areas of rectangles, and (3) the 
approximation gets better when the rectangles get narrower. 

If it happens that the spacing between sampling points is uniform, 
as in ti = ti-t + h then Eq. (A-5) can be written as 

'" n-1 n-1 I dt Y(t) = L Y(t;)(ti+l- ti) = h L Y(t;) 
tl i=1 i=l 

(A-6) 
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A-4 Integrals of Useful Functions 
First, the integral of a constant C 

b b 

I Cdu=Cul =C(b-a) 
tl tl 

The integral of a ramp, Ct, (with a slope of C) is 

b t2 b c I Ctdt = C-1 = -(b2 -a2
) 

tl 2 tl 2 

and the integral of an exponential function is 

b b 

Ie"du=e" I =eb-ea 
tl tl 

(A-7) 

(A-8) 

(A-9) 

Frequently, the exponential has an argument so the challenge is to 
evaluate 

(A-10) 

tl 

This requires a substitution to make Eq. (A-10) look like Eq. (A-9), 
namely, 

v=cu or 

dv=cdu or 

Applying this to Eq. (A-10) gives 

or 

1 
u=-v 

c 

1 
du=-dv 

c 

(A-ll) 
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The integral of X" is useful 

where n cannot be -1. 
When n is -1 then 

" x"+t" 
Jx"dx=-1 
, n+1, 

"1 " b J -dx = ln(x) I= lnb-lna = ln-
, x , a 

(A-12) 

(A-13) 

A-5 The Derivative, Rate of Change, and Acceleration 
How could you estimate the acceleration during the trip represented 
in Fig. A-3? From physics we know that acceleration is the rate of 
change of velocity or speed with respect to time. In other words, 
acceleration is the derivaHve of speed with respect to time. Furthermore, 
for our trip, the acceleration is the slope of the speed curve. 

A crude way to estimate the acceleration at some timet = t' would 
be to make a ratio of the difference in velocity to that in time at time 

t' as in 

a(t') = v(t' +h)- v(t'- h) v(t' +h)- v(t'- h) 
- (t' + h)-(t'- h) 2h 

The above is a ratio of the change in speed at time t = t' to the 
associated change in time. The time change is 2h where his a small 
time interval. The above expression is an approximation to the exact 
rate of change at time t = t' and the approximation gets better as h 
gets smaller. In the limit, the ratio defines the derivaHve of v with 
respect to t which in our example is the acceleration 

(t') • dv I = li v(t' +h)- v(t'- h) 
a dt t=t' mh-..O 2h (A-14) 

(Note that the symbol a has occasionally been used to represent a 
constant but here it is the acceleration which can be a function oft.) 
This formula requires that the value of v(t'), arrived at from v(t' +h) at 
time t' + h by letting h ~ 0, be the same as that arrived at from v(t'- h) 
at time t'- h by letting h ~ 0. That is, 

lim1,_.0 v(t' +h)= limh-..o v(t'- h)= v(t') 



Rudimentary Calculus 347 

In other words, one should get the same value of v(t') as one 
approaches t' from the left as when one approaches t' from the right. 
That is the same thing as saying that v(t) must be continuous at t = t'. 
This is clearly the case at t = 5 min. 

In Fig. A-3 the acceleration at t = 5 min can be estimated from the 
ratio of differences using the formula for the speed 

50 1 
v = t 60 10 = 0.0833t 

as applied to Eq. (A-14) 

_ dv _ lim v(t' +h)- v(t'- h) 
a - d t - 1'-+0 2h 

= lim 0.0833 X (5 +h)- 0.0833 X (5- h) 
,, ..... o 2h 

= lim 2 X 0.0833h 
11.....0 2h 

=0.0833 

The units of the numerator are miles/minute and those of the 
denominator are minute so the acceleration at time t = 5 min is 0.0833 
mi/min2 and it stays constant at this value until timet= 10 min when 
it changes abruptly to zero and stays at zero until t = 60 min. 

If we ask for the acceleration at t' = 60 min, we have a problem as 
can be seen by applying the above formula 

dv . v(t' +h)- v(t'- h) 
a(60) = dt lt·-oo= limh.....o 2h lt·-oo 

As pointed out above, and worth repeating here, this formula 
requires that the value of v(t'), arrived at from v(t' +h) at time t' + h 
by letting h ~ 0, be the same as that arrived at from v(t'- h) at time 
t'- h by letting h ~ 0. This is clearly not the case at t = 60 min. Here 
the limit of v(t'- h) as h ~ 0 is 0.833 but the limit of v(t' +h) as h ~ 0 
is 0.666. Therefore, the speed is not uniquely defined at t = 60 min 
because it is discontinuous. Therefore, the acceleration, or the derivative 
of v(t), at that time is undefined. 

Question A-1 Is there a discontinuity at t = 10 min? 

Answer Yes. The speed is continuous but acceleration is not. Fort < 10 min the 
acceleration is constant and positive. At t = 10 min the acceleration suddenly 
becomes zero. 
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A-6 Derivatives of Some Useful Functions 
The derivative of eat with respect to time tis the coefficient a times the 
original function. 

(A-15) 

The derivative of a constant C with respect to time is zero because 
it is not varying. 

~ 
~ 

(A-16) 

The derivative of the ramp Ct, where C is a constant and the rate 
of the ramp, with respect to t is 

~ 
~ 

and the derivative of Ct2 with respect to t is 

In general, the derivative oft" is 

(A-17) 

(A-18) 

(A-19) 

Derivatives can be 11chained" in the sense that the ''second" 
derivative is the derivative of a first derivative, for example, 

-etr1 = - -eat = -(ae"1
) =a -etr1 = a2e•' d

2 
d (d ) d d 

dt2 dt dt dt dt 

The derivative of the trigonometric functions occurs frequently. 

;, (sin( at))= acos(at) 

;, (cos( at))= -a sin( at) 
(A-20) 
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A-7 The Relation between the Derivative and the Integral 
The derivative and the integral are inverses of each other. We can 
show this simply be using the definition of the derivative. 

WAJtNlNG: This subsection may get a little messy so you might want to 
breeze through it (or skip it altogether). However, it will provide a good 
exerdse of your knowledge of calculus. 

Let 

t 

I(t) =I duY(u) 
II 

represent the integral of Y(t) where the upper limit is the independent 
variable t and u is a dummy variable. 

The derivative of the integral of Y(t) is 

!!_I'd Y( )= dl(t) =1" I(t+h)-I(t-h) 
dt u u dt rm,,.....o 2h 

tl 

Replace I(t) by its definition 

f+h ,_,, 

1 I duY(u)- I duY(u) 

:t I duY(u) = limh-+O a 2h a 
(A-21) 

tl 

To make this a little more tractable, use the relation 

1+11 t-h f+h 

I duY(u) = I duY(u)+ I duY(u) 
II II ~h 

This is simply splitting the integral from a to t + h into an integral 
from a to t - h plus an integral from t - h to t + h. If this is hard to 
grasp, think in terms of a graph of Y(t) versus t and remember that 
the integral is the area under the Y(t) curve and we are just breaking 
one area up into two smaller contiguous ones. 
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Equation (A-21) becomes 

l+h 1-1• 

1 I duY(u)- I duY(u) 

:t I Y(u)du = limh-+O a 2h a 

tl 

1-h l+h 1-h I duY(u)+ I duY(u)- I duY(u) 

= limh-+0 tl 1-11 2h tl 

l+h 

I duY(u) 
-lim 1-h 
- h-+0 .:......:.:....-=-2-=-h-

= limh-+O y~~2h = Y(t) 

The next-to-last line contains a 11trick" in the sense that the integral 
from t - h to t + h is approximated by a rectangle of height Y(t) and 
width2h: 

l+h I duY(u) = Y(t)2h (A-22) 
1-h 

This is consistent with our concept of the integral being the area 
under a curve. As h ~ 0, the approximation becomes more exact and 
since we are letting h ~ 0 in the definition of the derivative, all is well. 

So, after all the dust is settled we have used the definitions of the 
integral and the derivative to show that they are inverses of each 
other. 

d t 
dt I Y(u)du = Y(t) (A-23) 

tl 

You will probably never have to use Eq. (A-23) but in arriving at 
it you have had to exercise your knowledge of calculus and perhaps 
a few cobwebs have been scraped away. 

A-8 Some Simple Rules of Differentiation 
The derivative of the product of two functions is 



l1~imentarr Calcnlns 351 

The derivative and the integral of the product of a constant and a 
function is 

d d 
-Cu=C-u 
dt dt 

b b 

I dtCu(t) = C I dtu(t) 
II II 

The derivative and integral of the sum of two functions is 

d d d 
-(u+v)=-u+-v 
dt dt dt 

b b b 

I dt(u+ v) =I dtu+ I dtv (A-24) 
II II 

A-9 The Minimum/Maximum of a Function 
A function f(t) obtains localized minimum or maximum values at 
values of t that satisfy 

df =0 
dt 

For example, consider the function 

y(t) = cos(21Ct/20) 

The first derivative is 

y'(t) =-:CO sin(21Ct/20) 

and the second derivative is 

These three quantities are plotted in Fig A-4 where one sees 
that y(t) takes on localized maximum values when the derivative 
y'(t) is zero and when the second derivative y"(t) is negative. On 
the other hand, y(t) takes on localized minimum values when the 
derivative y'(t) is zero and when the second derivative y"(t) is 
positive. 
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F1auRE A-4 Arst and second derivatives of a cosine. 

A-10 A Useful Test Function 
Consider the following function 

I 

Y(t)= l-ets t~O 
(A-25) 

Y(t) = 0 t < 0 

The graph of this function is shown in Fig. A-5. Unlike the 
previous functions for the car trip examples, this function has no 
discontinuities. This function has the shape of ''diminishing returns'' 
in that it continually rises but the rate of change (the derivative) 
decreases continually. 

Applying the rules of Sec. A-6 for the derivative of an exponential 
[Eq. (A-15)] and a constant, the derivative of the test function, where 
a= -1/15, yields 

-Y(t)=- l-eTS' =0+-e TS' =-e TS' 
d d( -') 1 _, 1 _, 
dt dt 15 15 

and Fig. A-6 shows a graph of this derivative. Note that the derivative 
or slope or rate of change is highest initially and then slowly, or 
asymptotically, decreases toward zero. Considering times before 
t = 0 where Y(t) = 0 and where dY I dt = 0, one sees that the derivative 
experiences a discontinuity at t = 0. 
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FIGURE A-5 Test function: Y = 1 - exp (-t/15). 
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FIGURE A-8 Derivative of the test function. 

The integral of exponential is also an exponential 

I 1 t 1 J due'"' = -e'"' I = -(e"' -1) 
o a o a 

(A-26) 
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and the integral of a constant C is a ramp 

I t 

JduC=Cul =Ct 
0 0 

(A-27) 

So, the integral of our test function is 

which is shown in Fig. A-7. 
Note that since the test function is always positive, the integral of 

that function is constantly, or monotonically, increasing because it is 
accumulating area under the test function curve. 

QuestlonA-2 Examine Figs. A-7 and A-5. Does the curve in the latter figure look 
like the derivative of the curve in the former? 

Anlwlr It should because the derivative of an integral is the integrand. 

80 0 0 0 0 0 0 0 0 0 0 0 0 

70 

20 0 0 0 0-0 0 0 0 ooo 0 

10 0 • • • • ............................. 
I 0 0 0 I 

0o 10 20 30 40 50 60 70 80 90 100 

F1auRE A-7 Integral of the test function. 
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A-11 Summary 
Using the automobile trip as an example, the concept of the integral 
was presented as the area under the speed curve--a way of 
determining how far you might travel when you have data on your 
speed as a function of time. The analytical integrals of a couple of 
common and useful functions were developed. The area under the 
curve was shown to be approximated numerically by a sum of 
rectangular areas. 

The automobile trip example was used next to review the concept 
of the derivative. A ratio of differences was shown to evolve into the 
derivative when the separation in the denominator was reduced to 
an infinitesimal value. The derivative could provide a way of 
determining your acceleration throughout the trip should you have 
data on the speed as a function of time and should the speed be 
continuous. The derivative was also shown to be useful in finding 
locations of maxima or minima of a function. The two concepts 
(derivative and integral) were compared via an example that behaved 
in the "diminishing returns" fashion. 
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APPENDIX B 
Complex Numbers 

consider the relatively simple d!allenge ol solving 

n-1=0 

for the value of the variable n that will satisfy the equation. The solution 
is n = 1 where n represents an integer, as in ... -3, -2, -1, 0, 1, 2, 3 .... 

Next, solve the following equation for x 

2%-3=0 

The solutions to this type of equation are the rational numbers that 
are defined as ratios of integers with nonzero denominators. 

The solution to an equation like 

xl-2=0 

or 

2x-31C=O 

is an i"ational number. That is, no ratio of integers will yield .J2 or 
31C/2. The integers, along with the rational and irrational numbers 
form the real numbers. 

Graphically, a real number can be represented as the length of a 
line or as a point on the abscissa. For example the quantity x = 1.5 
could be represented as in Fig. 8-1. 

The solution to 

is an imllginary number. 

x= i.J2 
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F1auRE B-:1. Representation of a real number x = 1.5. 

where the symbol j signifies that what follows is imaginary. 
Graphically, this number could be represented on the ordinate of a 
graph as in Fig. B-2 

Real numbers, whether integers, rationals or irrationals, are plotted 
on the abscissa. Imaginary numbers are plotted on the ordinate. 

2.---.----r---.----.---.----.---..---. 

1.5 ..... ; ..... ~. 

1 0 0 0 0 0: 0 0 0 0 0: 0 0 0 0 0:0 0. 0 0 

0.5 . 0. 0 0:0 ••• 0:0 0. 0 0:0 0. 0 0 

0 0 0. 0 0. 0 0. 0 0. 0 

--0.5 

-1 0 0. 0 0. 0 0. 0 0. 0 

0 0 ................ 

••••• :. 0 ••• : • •••• : • •••• 0 0 0 

••••• :. 0 •••••••••• • ••••• 

0 0 0 

-1.5 . 0. 0 0:0 ••• 0:0 0. 0 0:0 0. 0 0:.0 0. 0:.0 0. 0 o:•. 0. 0 o:• 0 •• 0 

-2~--~--~--~----~--~--_.--~~~ 
-2 -1.5 -1 --0.5 0 0.5 1 1.5 2 

F1auRE B-2 Representation of an imaginary number x = j1.4141414. 
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Two values of x satisfy the quadratic equation 

ax2 +bx+c=O (B-1) 

and they are 

(B-2) 

If b2 < 4ac then the two solutions will be 

and (B-3) 

which have a real and an imaginary part and are called complex 
numbers. While real numbers lie at a point along the abscissa and 
imaginary numbers lie at a point along the ordinate, complex numbers 
lie at a point in the so-called complex plane. 

As an aside, it doesn't stop with complex numbers. In 1843, the 
famous Irish mathematician W. R. Hamilton developed a four­
dimensional construct called quaterions which are basically complex 
numbers in four, not two, dimensions. Fortunately, there are no 
realistic needs for quaterions in control engineering but if your control 
engineer is giving you a hard time you might suggest she try using 
them to solve problems. Now, back to reality. 

B-1 Complex Conjugates 
Note that the two complex numbers appearing in Eq. (B-3) are 
complex conjugates of each other (the imaginary part of one is the 
negative of the imaginary part of the other) and that their product 
is real, as in 

(a+ jb)(a- jb) = a2 + b2 

For the above expression to be true the variable j must satisfy 

P=-t 
The basis for this equation will be developed below. In general, 

an asterisk indicates the complex conjugate as in 

z=a+ jb z•=a- jb 
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B-2 Complex Numbers as Vectors or Phasors 
The complex number x = 1.5+ j,Jl has areal part, 1.5, that can be plotted 
on the abscissa and an imaginary part, J2, that can be plotted on the 
ordinate as in Fig. B-3. This suggests that a complex number z = a+ jb 
can be considered a vector (also sometimes called a phasor in electrical 
engineering) with length or magnitude M 

M =lzi=.Ja2 +b2 (B-4) 

and an angle (or phase) 9 with the abscissa of 

(B-5) 

which, in words, says that the vector representing the complex 
number z has the angle in radians whose tangent is given by the 
imaginary part divided by the real part. Figure B-3 shows this vector 
with the angle 6. 

Therefore, positive real numbers have an angle of 0° and positive 
imaginary numbers have an angle of 90° or tc I 2 radians. A negative 
real number like -1.0 would have an angle of 180° or tc radians. A 
negative imaginary number like -j would have an angle of 270° or 
3tc I 2 radians. Note that the magnitude of a complex number is the 

2.---.----.---.----.---.----.---..---. 

-0.5 o o o oro o o o o, o o o , o o o o 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-1.5 • • • • • ~ • • • • • : • 0 • • • : • • • • 0 . . . ••••• :. 0 ................ . . . . 

-~2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

F1auRE B-3 Representation of a complex number z = 1.5 + }\12. 
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square root of the sum of the squares of the real and imaginary parts. 
Further, note that the magnitude of a complex number z =a+ jb can 
be obtained by taking the square root of the product of the number 
and its complex conjugate, as in, 

M = lzl =$?=~(a+ jb)(a- jb) = .Ja2 + b2 

Turning the magnitude and angle concept around, one could use 
the projections of the phasor on the real and imaginary axes and say 
that the real part of a complex number is Mcos(6) and the imaginary 
part is Msin(6), as in 

z=Mcos(6)+ jMsin(6) 

Symbolically this is represented by 

z=a+ jb=Mcos(6)+ jMsin(6) 

R(zJ = Mcos(6) 

I(zJ = Msin(6) 

B-3 Euler's Equation 

(B-6) 

We will frequently use an extension of famous Euler equation for an 
exponential with a complex argument 

ec+jd = ec[cos(d) + jsin(d)] (B-7) 

Strictly speaking, Eq. (B-7) is not Euler's equation; rather the 
following is 

eid = cos(d) + j sin( d) 

which is simply Eq. (B-7) with a zero real component. 
Euler's equation can be inverted to give expressions for the sine 

and cosine 

eid +e-id 
cosd= 2 

. eid -e-id 
smd= 2j 

(B-8) 
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Note that the Euler equation provides a convenient shorthand 
way of showing the magnitude and angle of a complex number z. 

where 

z=a+ jb 

= M[cos(6)+ jsin(6)] 

=Mei' 

M =ec =.Ja2 +b2 

6=d=arctan(~) 

So, in this book we will often write a complex number as 

z=Mei' 

(B-9) 

(B-10) 

There are advantages of looking at a complex number as a vector 
or a phasor with magnitude M or lzl and angle (or phase) 6. This 
suggests that the simple algebra of exponentials can be used in 
complex multiplication, as in 

z1 = ~ei'• z2 = M2eilz 

zt x z2 = M1ei'• x ~ei'z = M 1M 2ei(S.+Bz) 

So, in complex multiplication, magnitudes multiply and angles 
add. The phasor presentation is useful for conjugates. H the complex 
number of interest is 

z=Mei' 

then the conjugate is 

Using this approach we can develop an alternative expression for 
the complex operator j, as in 

j!2 (tf) . . (tf) 0 "1 . e =cos 2 + JSm 2 = + 1 = 1 
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This means that the complex operator j has a magnitude of unity 
and a phase of tr /2 . 

As an aside, consider 

eiw = -1 

which follows from Euler's equation. Isn't that a pretty expression? It 
contains five important parts of mathematics: the exponential, the 
imaginary operator, tr, the unit number, and the minus sign. As a 
manager, you will likely never have any use for this expression but it 
might come in handy sometime to drop on a hotshot control engineer 
to impress her with your depth of mathematical understanding. 

Question 1·1 What is the exponential form of the number -3- 4 j? 

Anlwlr The magnitude is .j32 + 42 = 5. The angle of the number is 

tan-1(=!)= 53.13° + 1800 = 233.13° 

I added 180° to the phase because both the real and imaginary components 
are negative so the phasor lies in the third quadrant. The angle in radians is 
233.13°1r I 1800 = 4.07. Therefore, the complex number can be presented as 
5eJ4.o7. 

Complex numbers can be added and multiplied using the 
z = x + jy representation also. For example, addition of two complex 
numbers is 

zt +z2 = xt + iYt +x2 + iY2 

= (xt + x2) + j(yl + Y2) 

Multiplication follows as in 

zl Z2 = (xl + iY1)(x2 + iY2) = X1X2 + jx1Y2 + jx2Y1 + i2Y1Y2 

Now, what is J'2? The exponential form for j can be used to answer 
that question. 

So, multiplication of two complex numbers is as follows 

Z1 Z2 = (xl + iYt)(x2 + iY2) = X1X2 + jx1Y2 + jx2Y1 + fY1Y2 

= (x1x2- Y1Y2) + j(x1Y2 + X2Y1) 
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B-4 An Application to a Problem In Chapter 4 
Early in Chap. 4, a complex sinusoid was chosen to be the input for 
the first-order process, as in 

dY 
T-+Y=U dt 

U(t) =Au cos(2tr ft) =Au Re{ei2wftJ 

(B-11) 

The input is replaced by a complex sinusoid with the agreement 
that when the solution has been obtained, if necessary, only the real 
part will be kept. Here, we have ignored the constant offset Uc. 

U(t) = Auei2wft 

The process output is assumed to be a sinusoid with an amplitude 
C and a phase 9 relative to the input, as in 

Y(t) = Re{cei<2wft+B>} 

In the proceeding manipulations, we will remove the Re operator 
and use 

Y(t) = Cei<2wft+8) 

When the expressions for U andY are inserted into Eq. (B-11), the 
result is 

-r(j2tr f)Cei<2wft+8) +Cei<2wft+8) = Auei<2wft) (B-12) 

Now comes the busy part. We must (1) separate the real and 
imaginary parts of Eq. (B-12), (2) equate them, thereby developing 
two equations, and (3) solve for the two unknowns, C and 9. The 
following steps should be straightforward since they use the algebra 
of the exponentials and Euler's formula. See if you can go from line to 
line and figure out what change was made. 

Factor the exponential: 

Remove the common factor: 

-r(j2trf)Cei9 +Cei9 =Au 
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Collect the Cei9 term: 

[-r(j2tr/) + 1]Cei9 =Au 

Use Euler's formula: 

[-r(j2tr/)+ 1]C(cos6+ jsin6) =Au 

Expand the product into individual terms: 

-r(j2trf)Ccos6+Ccos6+ -r(j22trf)Csin6+Cjsin6= Au 

Use j 2 =-1 

j-r(2trf)Ccos6+ jCsin6+Ccos6- -r(2trf)Csin6= Au (B-13) 

The imaginary part of Eq. (B-13) is 

-r(j2tr f)C cos6 + C sin6 = 0 

-r(2trf)cos6+ sin6= 0 

tan 6 = --r(2tr /) 

Therefore, the phase can be shown to be dependent on the time 
constant and the frequency. 

(B-14) 

The real part of Eq. (B-13) is 

Ccos6- -r(2trf)Csin6= Au 

C= Au 
cos 6- -r (2tr f) sin 6 

Replacing 9with Eq. (B-14) and using m = 2trf gives 

C = cos[-tan-1((J)'r)]-~ sin[-tan-1((J)'r)] (B-1S) 

There are two trigonometric identities that can be useful, namely, 

1 
cos[tan-1(x)] = ~ 

v1+x2 

sin[tan-1(x)] = .J x 
1+r 
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which, when combined with Eq. (B-15) yield 

or, finally 

Au 
C=--~1--------~-----~--------

~ J1+an·2 

This means that the solution is 

Y(t) = Cei(2tr/f+B) = Au eifl ei2trft 
~1+(~)2 

(B-16) 

In other words, Y(t) is a sinusoid with an amplitude of Au 
and phase 6. J1 + (~)2 

B-5 The Full Monty 
You may wonder what the full solution to Eq. (B-11), including the 
transient part, looks like and you may be a bit lazy like me. If so, then 
you would probably apply Matlab's symbolic toolbox via the 
following script (called sol vetransient): 

syms y t w f g T Au % declare time domain quantities 
syms Y s u % declare a-domain quantities 
Y=l/(T*s+l); % transfer function of unity gain 1st order 
process 
U=Au*w/(sA2+wA2); % LT of the sinusoidal input 
Y=Y*U; % combine 
disp('Laplace Transform of Y') 
pretty(Y) 
y=ilaplace(Y); %find the inverse LT 
disp ( 'inverse' ) 
y=simple (y) ; 
pretty(y) 

which would yield the following computer output: 

>> solvetransient 
Laplace Transform of Y 

Au w 

2 2 
(T s + 1) (s + w ) 
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inverse 

Au (-T exp(- t/T) w + w T cos(w t) - sin(w t)) 

2 2 
w T + 1 

>> 

This Matlab script uses the Laplace transform (see App. F) to 
solve Eq. (B-11) in full. You can see that the transient component does 
in fact die away at a rate dictated by the time constant. Unfortunately, 
I had to do some Web searching to find a trigonometric identity 

asin(x) + bcos(x) = .Ja2 + b2 sin(x +D) 

that would give me the final result of 

A ccn __!_ A 
2 

u
2 

e r + u sin( cot+ 11) 
-r co + 1 .J-r2co2 + 1 

11 = -tan-1(ccn) 
(B-17) 

So, we have used two computer-based tools to show that Eqs. (B-16) 
and (B-17) are related. 

B-8 Summary 
I can remember being introduced to the infamous evil imaginary i in 
high school (to become j in engineering school). It was something to 
be feared-even the amazing convention of using the word 
"imaginary" is kind of scary. It should have been an exdting experience 
to learn that the numbers we had been using actually had another 
dimension that could be quite useful in solving problems. Numbers 
were really locations in a plane rather than just along a line! 



This page intentionally left blank 



APPENDIX c 
Spectral Analysis 

I n Chap. 2, spectral analysis of process data was discussed briefly. 
Now that complex numbers have been introduced in App. B, a 
more detailed look at spectral analysis can be taken. 
Spectral analysis can be considered as 

1. A transformation of a data stream from the time domain to the 
frequency domain using the Fast Fourier Transform (FFT). 

2. A least squares fit of a series of sines and cosines with a fixed 
frequency grid to a data stream. Furthermore, the least 
squares fit can take advantage of the orthogonality of the 
sines and cosines to speed up the calculations. 

3. A cross-correlation of the data stream with a selected set of 
sinusoids. 

4. A special fit of sines and cosines with a specialized grid of 
frequencies that might require time-consuming calculations. 

Each of these viewpoints has its advantages and it is important 
for the manager and engineer to be aware of the differences. This 
appendix will examine the first two viewpoints in some detail but the 
reader should spend a few moments considering the second two. 

Using the FFT to transform the data stream into the frequency 
domain is the most popular because it is the easiest and quickest. 
Matlab (see App. J) has a built-in function that carries out the FFT as 
does the widely used program, Excel. On the other hand, the least 
squares approach is perhaps more easily digested from a mathematical 
point of view. 

C-1 An Elementary Discussion of the Fourier Transform 
as a Data-Fitting Problem 

In the least squares approach to fitting data, the problem is usually 
stated as, "given the data, Y; = y(t;), i = l, ... ,N, where the sample 
points are f;, i = l, ... ,N, find the parameters in the fitting function 
F(t;) such that the error at each point, namely, e; = y(t;)-F(t;), is 

369 
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N 

minimized in the least squares sense-that is, such that Le~ is 
minimized." i-t 

For the line spectrum and for the Fourier transform, the data­
fitting function is 

F(t;) = a0 +at cos(21r ftt;) + bt sin(21r ftt;) 
(C-1) 

and the sampling points are equally spaced, as in f; = ih, i = 1, ... ,N. 
The data fitting problem is therefore, "find the coefficients, 
a0 ,a1'a2 , ••• ,b1'b2, ••• , in Eq. (C-1) such that F(t;) fits Y; for i = 1, ... ,N." 
For each one of the N data points there will be an equation like 

Y; = a0 +at cos(21r ftt;) + bt sin(21r ftt;) + a2 cos(21r At;) 
(C-2) 

+b2 sin(21r f 2t;) + · · · + e; 

Note that in Eqs. (C-1) and (C-2), the zero frequency term is a0 
because cos(O) = 1 and sin(O) = 0. Since all of the sinusoids in Eq. (C-1) 
vary about zero, a0 is the average value of theY;= y(t;), i = 1, ... ,N 
data stream. H the average is removed from the data, then one would 
expect a0 = 0. 

Each sine and cosine term in Eq. (C-1) has a frequency ft that is a 
multiple of the fundamental frequency f., which has a period equal to 
L = nh, the length of the data set. That is, the fundamental frequency 
is given by 

(C-3) 

The sampling frequency f. is the reciprocal of the sampling interval h. 

(C-4) 

If the size of the data stream is 1000 samples and the sampling 
interval is 2 sec then N = 1000, L = 2000, ft = 1 I 2000 = 0.0005Hz, 
fs = 1 I 2 = 0.5 Hz, h = 2 sec. The other frequencies, N 12 of them, 
appearing in Eq. (C-1), are multiples of the fundamental frequency 
and are called harmonics of the fundamental frequency. 
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or, since 

and, since 

1 
ft= Nh 

k 
fk= Nh 

1 
/,=h 

k 
fk = Nfs 

N 
k=1, ... ,2 

N 
k=1, ... ,2 

(C-5) 

Thus, the spacing between frequencies is f. and Eq. (C-5) shows 
that one can get a tighter grid of frequencies by increasing the number 
of sample points with the same sampling interval. Increasing the 
sampling frequency (or decreasing the sampling interval in the 
time domain) actually widens the spacing of the frequencies for 
the same number of samples. The last and largest frequency in the 
Eq. (C-5) sequence is the so-called folding frequency or Nyquist 
frequency which can also be written as 

N N 1 fs 
fN/2 = fN,=2ft =2Nf,=2 

The frequency interval between zero and the folding frequency is 
sometimes called the Nyquist interval. 

Since t; = ih, Eq. (C-2) can be written as 

Y; = lZo + a1 cos(2n f 1ih) + b1 sin(2n ftih) + ~ cos(2n f2ih) 

+ b2 sin(2n f2ih) + · · · + aN12 cos(2n fN12ih) 

i= 1, ... ,N 

1 
But, fk = k Nh, so Eq. (C-6) becomes 

( 2ni) . (2ni) (4ni) . (41ci) Y; =a0 +a1 cos N +b1 sm N +a2 cos N +b2 sm N 

+ · · · + aN12 cos(ni) + bN12 sin(nt) + e; 

(C-6) 

(C-7) 

The last sine term in Eq. (C-7) is zero because sin (nt) = 0 
for i = 1, ... ,N. 
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Using the summation operator, Eq. (C-7) can be rewritten as 

(C-8) 

There are N unknown coefficients: a0 ,a1, ••• ,aN12,b11 b2, ••• ,bN/l-t 
and there are N data points. Since the number of data points equals 
the number of unknown coefficients in the data-fitting function, 
we can expect that the data-fitting function will indeed go 
through every data point and that the least squares errors will be 
zero. 

One could go through the least squares exercise of finding 
the coefficients such that sum of the squares of the fitting errors, 
e;, i = 1, ... ,N, would be minimized, where the fitting error is 
defined as 

i = 1, ... ,N (C-9) 

To minimize the sum of the squares of the errors with respect to 
the coefficients, one would generate the following N equations: 

and 

a N 
-I,e~=O 
aa" ;-1 ' 

a N 
ai]Lel =0 

lc i•l 

k = 0,1, ... ,N I 2 

k = 1, ... , N I 2 - 1 
(C-10) 

This should be familiar from calculus (App. A) where it is 
demonstrated that the minimum value of a function occurs when that 
function's derivative is zero. Using Eq. (C-9) to replace e; in Eq. (C-10) 
and doing some straightforward calculus and algebra would yield 
the so-called "normal equations." 

However, it is simpler to multiply Eq. (C-8) by each sinusoid in 
turn and sum over the data points. For example, multiplying Eq. (C-8) 
by the mth cosine, cos(2nmi IN), and summing over the data points 
would yield 

~ (2nmi) ~ (2nmi) ~ y; cos ---r;:r- = a0 ~cos ---r;:r-
•·1 l=l 

~ N/
2

[ (2nmi) (2nki) (2nmi) . (2nki)~ + f.i ~ ak cos ---r;:r- cos r::J + bk cos ---r;:r- sm r::J lj 
(C-11) 
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Because of orthogonality, the sinusoidal products, when summed 
over the equally spaced data, satisfy 

Orthogonality is an important property of equally spaced 
sinusoids and provides the cornerstone of spectral analysis. 

Therefore, in Eq. (C-11) all the cross-products, where m ¢ k, drop 
out, leaving only 

~ (21rmi) ~ (2trmi) (21rki) N ~y;cos ~ =a111 ~cos ~cos ----r::J" =a"'T 
1=1 1•1 

which can be solved for a, : 

2 N 
am= N LY;Cos(2trmi) 

i•1 
m = 0, 1, ... , N I 2 (C-12) 

Note that for m = 0, Eq. (C-12) shows that a0 is indeed the 
average. 

There is a similar set of equations for the b"' shown in Eq. (C-13). 

m = 0, 1, ... , N I 2 (C-13) 

This orthogonality will occur only if the data is equally spaced in 
the time domain and if the frequencies in the data fitting equation are 
chosen as multiples of the fundamental frequency. 

Neither Eq. (C-12) nor (C-13) should be used to calculate the 
coefficients. Instead, one would use the Fast Fourier 'Ii"ansform (FFf) 
algorithm which makes extensive use of trigonometric identities to 
shorten the calculation time. Fortunately, you do not have to 
understand the FFf algorithm to use it because of the algorithms in 
Matlab and Excel mentioned earlier and illustrated in App. J. 

C-2 Partial Summary 
The foregoing has been quite involved. First, the least squares concept 
was applied to a data-fitting problem. This approach was not 
continued to its bitter end because the orthogonality of sines and 
cosines, defined on an equally spaced grid provided a simpler path to 
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the equations for the coefficients. In effect, Eqs. (C-12) and (C-13) 
transform the problem from 

y,, i= 1, ... , N 

t; = h, 2h, ... , N 

in the time domain to 

in the frequency domain. 

C-3 Detecting Periodic Components 
If there is a periodic component lurking in a noisy data stream, the 
above data fit will yield relatively large values for the coefficients a, 
and b, associated with the sinusoidal term in the least squares fit 
having a frequency!, near that of the periodic component. This 
periodic component lying in concealment must have a frequency that 
is less than the folding frequency. If the periodic component has a 
frequency that is higher than the folding frequency, it will show up as 
an alias and the analysis will yield a large value for coefficients 
associated with another frequency that does lie in the so-called 
Nyquist interval. We will discuss aliasing in more detail later in this 
appendix. 

If the spectral analysis reveals a periodic component that you 
suspect is an alias of a higher frequency then the data collection 
should be repeated with a different sampling interval. If the 
subsequent spectral analysis shows that the periodic component has 
moved then you can safely conclude that it is an alias. 

Question C·l Why is this? 

Answer Wait until we talk about aliasing later on in this appendix. 

C-4 The Line Spectrum 
The line spectrum or power spectrum is a plot of the magnitudes of the 
data fit coefficients af + bf or ~af + b"f, versus the frequencies, h_. In 
the example data stream shown in Fig. 2-3 (and in Fig. C-1 in this 
appendix) the coefficients associated with sinusoidal terms having a 
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Fleu•• C-1. A noisy signal containing two sinusoids. 

frequency near 0.091 Hz and 0.1119 Hz were relatively large (see 
Fig. C-2). In effect, fitting the sinusoids to the time domain data allows 
one to estimate how much spectral or harmonic power is present at 
various frequencies. 
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Fleu•• C-2 Spectrum of a noisy signal with periodic components. 
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For this type of analysis to "find" a periodic component buried in 
a signal, that component must repeat (or really be periodic) so that 
the least squares fit will work. Consequently, data having an isolated 
pulse or excursion (a nonperiodic component) will not be approximated 
well by a sinusoid of any frequency. In this case, if the sinusoidal 
least squares approximation is still carried out the results may be 
confusing. 

C-5 The Exponential Form of the Least Squares 
Fitting Equation 

Using Euler's equation, an alternative equivalent (and easier) 
approach can be taken. Instead of a sum of real sinusoids, the data­
fitting equation is a sum of complex exponentials, as in 

(C-14) 

For the sake of convenience, the average has been subtracted from 
the data stream so there is no constant term in Eq. (C-14). 

Euler's equation 

ildi (2nki) .. (2nki) e N =cos-- +Jsm --
N N 

suggests that Eq. (C-14) is equivalent to Eq. (C-8) and that the 
coefficients ck in Eq. (C-14) will be complex. An expression for the 
coefficient c, can I?e obtained relatively quickly by multiplying 

.21flfll 

Eq. (C-14) by e -J""N and summing over the data points, as in 

Once again, orthogonality rears its lovely head, as in 

N .2wmi .2di {O 
""' -}- J-~e N e N = 
i•t N 

so the Eq. (C-15) collapses to 

kil=m} 
k=m 

1 N .2wmi 

L -J-c =- y.e N 
m N r 

i•l 

(C-15) 

(C-16) 

(C-17) 
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The line spectrum or power spectrum can be constructed from the 
magnitudes of the coefficients, as in lc,l or lc,l 2, m = 1,2, ... ,N I 2. 
Note that only half of the coefficients are used because there is 
symmetry. 

To illustrate this symmetry, consider a data stream of 64 equally 
spaced samples computed from 

(2nt.) 
Y; =sin 141 t. = i 

I 
i = 1, 2, ... , 64 

The sampling interval is 1.0 sec, the sampling frequency is 
fs = 1 I h = 1.0 Hz and the folding frequency is /NY = fs I 2 = 0.5 Hz. 
Figure C-3 shows the data stream and the absolute value of the 
coefficients, lc"'l or I Y 1, in Eq. (C-16). 

Note that the absolute values are symmetrical about the folding 
frequency of 0.5 Hz. 

Some authors combine Eqs. (C-17) and (C-14) to form a finite 
discrete Fourier transform pair, as in 

>--

1 N .2wmi 
~ _,_ 

y =-~y.e N 
m N i•l I 

m = 1, ... , N 

(C-18) 
i = 1, ... , N 

-1o~--~1·o----2~o~--~~~-4~0----5~o~--ro~--~~ 
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F•auRE C-3 A data stream and its Fourier transform (absolute value). 
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where the ~"' m = 1, ... ,N are the elements (perhaps complex) of the 
discrete Fourier transform (they were the coefficients ck, k = 1, ... ,N 
in the data-fitting equation) and the y,, i = 1, ... ,N are the elements of 
the inverse transform (or the original data stream in the time domain). 
Furthermore, many authors place the 1 IN factor in front of the 
inverse transform rather than the transform. Hopefully, the reader 
will agree that the complex exponential approach to spectral analysis 
is far more elegant and efficient. 

C-6 Periodicity in the Time Domain 
Because of the periodic nature of the sinusoids used in the data fit, 
whether it is in the exponential form or not, one can show that if the 
Fourier series fitting equation is evaluated outside the time domain 
interval of [t

1
, t"'f] the series will repeat. That is, 

Therefore, the act of fitting the data to a Fourier series is 
tantamount to specifying that the time domain data stream repeats 
itself with the period equal to the length of the data stream. This 
feature can be put another way, as in Sec. C-7. 

C-7 Sampling and Replication 
In general, one might consider the magnitude of the Fourier transform 
in Fig. C-3 as a train of samples in the frequency domain. This is a 
realistic viewpoint because, although I will not demonstrate it, there 
is a continuous spectrum in the frequency domain associated with 
the sampled time domain data in Fig. C-1 and, in fact, the Fourier 
transform shown in Fig. C-2 is the result of sampling it at a frequency 
interval of f 1 = l/L = 1/Nir. Therefore, without proof, I suggest to you 
that sampling in the frequency domain causes replication in the time 
domain in the sense that the time domain function is periodic with a 
period equal to Nil. 

This suggests an inverse relationship between the time and 
frequency domains. If the number of samples N is increased, the 
spacing in the frequency domain, f 1 = l/L = 1/Nh decreases but the 
Nyquist frequency interval [0, 1/(211)] stays the same. If the sampling 
interval h decreases, the Nyquist frequency interval (0, 1/(211)] is 
enlarged. Therefore, to obtain finer spacing in the frequency domain, 
one does not sample at a higher frequency; rather one samples more 
data. To increase the frequency range one must increase the sampling 
frequency. 
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C-8 Apparent Increased Frequency Domain Resolution 
via Padding 

If you use the Fast Fourier Transform to analyze your time domain 
data stream, the spacing (or resolution) in the frequency domain will 
be 1/(Nh). This may not be enough if you are trying to determine 
the frequency of a periodic component with great precision. Based 
on the discussion so far, you might simply double the length of the 
time domain data stream and thereby halve the frequency domain 
resolution. 

Alternatively, if one "pads" the original data stream with zeroes, 
the apparent frequency domain resolution is increased. Actually, the 
padding allows the analyst to interpolate between the frequencies in 
the original frequency grid but since there is no additional information 
the true resolution is not improved. 

Figure C-4 shows the spectrum of the same noisy data stream that 
was used for the spectrum in Fig. C-2. However, only 512 points of 
the stream are used and there is no padding. This spectrum shows 
vague hints that there may be two periodic components lurking in 
the data stream. The frequency resolution is 

500 

400 ............ '. . ..... . 

200 

Frequency 

F1auRE C-4 Spectrum of a 512 point data stream sampled at 1 Hz, no 
padding. 
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F1aURI C-5 Spectrum of a 512 sample data stream sampled at 1 Hz padded 
with 1024 zeroes. 

Figure C-5 shows the spectrum of the same 512 samples after 
appending 1024 zeroes in the time domain. This padding does not 
add any information but the apparent resolution is now 

1 1 
Nh = (512 + 1024) 0.00065104 Hz 

and two peaks associated with the periodic components are more 
clearly apparent. The spectrum in Fig. C-2 is based on 2000 
samples that have been padded with 2048 zeroes in the time 
domain. 

C-9 The Variance and the Discrete Fourier Transform 
The variance of a data stream from which the average has been 
subtracted is 

1 N 
V=-LY1 

N i=t 
(C-19) 

In general, the data may be complex so we will modify the 
definition of the variance as follows 

1 N 2 

V= NLIY;I 
r-1 

(C-20) 
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where the absolute value can be determined from IY;I2= yy•, where 
y • is the complex conjugate {see App. 8). 

Replacing Y; in Eq. {C-20) using Eq. {C-18) gives 

1 N 

1

N /ttkir 
V=-I,I,Yke N 

Ni-t t-t 

{C-21) 

where two things have happened. In the first row of Eq. {C-21) the 
absolute value was replaced by the product of the quantity and its 
complex conjugate, as in 

and second, the order of the summing was exchanged in the last row 
of Eq. {C-21). This is allowed because Yk does not depend on the data 
index i. Equation {C-16) shows that 

N 2ttki 2ttki 
I,e'Ne-'N=N 
i-1 

therefore, the variance of the time domain data Y;' i = 1, ... ,N, is also 
given in terms of a sum that is proportional to the variance of the 
elements of the Fourier transform which are Ym, m = 1, ... ,N. That is, 
Eq. {C-21) becomes 

{C-22) 

Equation {C-22) says that the variance of the time domain data is 
proportional to the power of the sinusoidal components in the discrete 
finite Fourier transform. The sum 

is proportional to the area under the line spectrum curve hence the 
comment in Chap. 2 that the variance of the time domain data stream 
is proportional to the area under the power spectrum. 
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C-10 Impact of Increased Frequency Resolution 
on Variability of the Power Spectrum 

For each of the N /2 frequencies in the Nyquist interval there is a power 
given by ~~ or ~J, depending on your preference. Some analysts talk 
about the power in each of theN /2 "bins." As was shown in Eq. (C-22), 
the sum of the bin power is equal to the total power in the signal. If the 
number of samples, N, is increased (perhaps to increase the frequency 
resolution) then there are more bins and each bin has less power. 
Because of the variability in the time domain signal, these bin powers 
becomes more variable as the bins get smaller. This is somewhat similar 
to the increase in the variability of the histogram (see Chap. 8) as the 
bin sizes get smaller. To address this, some analysts will break a data 
stream into subsets, compute a spectrum for each subset, and then 
average the spectra to reduce the variability. 

C-11 Aliasing 
The ability to identify hidden periodic or cyclical components in a 
noisy data stream requires being able to sample these sinusoidal 
components enough times per cycle. For example, if the sampling 
rate is 1.0 Hz (or one sample per second) and the frequency of the 
suspected sinusoid is 2.0 Hz then only one sample of the suspect 
sinusoid will be available every two cycles. It doesn't take a rocket 
scientist to suspect that the sampling rate would be insufficient to 
identify that periodic component. 

Figure C-6 shows two sine waves sampled at 1.0 Hz (once per 
second). The higher frequency sine wave is sampled approximately 
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FIGURE C-6 Two identifiable sine waves with penods 3 and 12, sampled at 1 Hz. 
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fiGURE C-7 Two sine waves that are aliases with periods 0.92308 and 12, 
sampled at 1 Hz. 

three times per cycle and could be identified. The lower frequency 
wave is sampled approximately 11 times per cycle and also could 
be identified. Furthermore, the sampled values of the low frequency 
sine wave are different from those of the higher frequency sine 
wave. 

Consider Fig. C-7 which shows two more sine waves sampled 
at 1Hz. Both sine waves have identical samples. The true periodic 
signal may have a period of 0.92308 sec (with a frequency of 1.0833 
Hz) but the samples suggest that the apparent period is 12.0 sec 
(with a frequency of 0.0833 Hz). The lower frequency signal, whose 
frequency is less that the folding frequency of 0.5 Hz and lies 
inside the Nyquist interval, is the alias of the higher frequency 
signal (frequency of 1.0833 Hz or 13/12 Hz). From the sampler's 
point of view, constrained to view life from within the Nyquist 
interval, these two sine waves are identical. Had this data stream 
been from a real-life sample set then the real signal might have 
had a frequency of 1.0833 Hz but it appears as one with a frequency 
of 0.0833 Hz. 

The frequency of the alias !alias can be obtained from the actual 
frequency factual by using the following equation: 

!alias = l!actual - m 1s I m = 1, 2, 3, ... (C-23) 

where fs is the sampling frequency. To use Eq. (C-23), one would try 
successively higher values of m until the calculated !alias lies inside 
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the Nyquist interval. In our example, factual= 13 I 12, fs = 1, so for 
m = 1, Eq. (C-23) would give 

--1 =-=0 0833 
1

13 I 1 
12 12 . m=1 

which lies inside the Nyquist interval. If the sampling frequency is 
1.0 Hz then the folding frequency is 0.5 Hz. This means that any 
signal in the data stream with a frequency greater than 0.5 Hz will 
appear as a lower frequency alias that does lie in the Nyquist interval. 
It is a good rule to sample periodic components at a rate of at least 
four times higher than their suspected frequency. 

If your spectral analysis reveals a suspected alias then you should 
resample at a different, preferably higher, frequency. If the signal is an 
alias then Eq. (C-23) will tell you that a new alias will appear. If it is 
an actual periodic component with a frequency inside the folding 
interval, then the location of the peak in the line spectrum will not 
move. 

C-12 Summary 
The basis for spectral analysis is presented from the least squares 
data-fitting point of view, although other approaches that the control 
engineer might take are mentioned briefly. When the data is uniformly 
spaced, a set of sinusoids are orthogonal and they can be used to fit 
the data efficiently. Fast Fourier Transform packages to carry out this 
data fit are ubiquitous. One should keep in mind that there is a 
constraint on the resolution in the frequency domain. Padding can be 
used to increase the apparent resolution. However, if one has good 
information on the neighborhood of a suspected peak and wants to 
obtain its location precisely, they may want to set up a finer frequency 
grid in that neighborhood and use a least squares fit that does not 
take advantage of the orthogonality and therefore precludes the use 
of the Fast Fourier Transform. Finally, one must consider aliases when 
attempting to detect periodic components. 
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Infinite and Taylor's 

Series 
A ~ction can be expanded into an infinite series using the 

.t-\.Taylor's series 

which says that the value of a function I at x can be estimated from the 
known value of I at x0 and higher derivatives off, also evaluated at x01 
where x0 is near x. The approximation gets better if the higher-order 
terms (h.o.t.) are added and if xis nearer x

0
• These h.o.t.'s consist of 

higher-order derivatives, also evaluated at x
0

• If the h.o.t.'s were 
removed, the second-order approximation would look like 

1 
l(x) = I(Xo) + l'(x0)(x- x0) + 2 IN(x0)(x- XrJ) (D-2) 

We will occasionally use the first-order approximation given in 
Eq. (D-3). 

l(x) = l(x0) + l'(x0)(x- XrJ) (D-3) 

For the Taylor's series to work, the derivatives of/(x) at x0 have to 
be available. If they are, as in the case for the exponential and 
trigonometric functions, the following useful expressions can be 
obtained: 

x2 x3 
e" = 1+x+-+-+··· 2! 3! 

. x3 xs x1 
smx=x--+---+··· 

3! 5! 7! 

x2 x• x' 
cosx= 1--+---+··· 2! 4! 6! 

(D-4) 
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where it's best to keep the argument x real but you could use complex 
arguments. The first of the infinite series in Eq. {D-4) says that a crude 
approximation to the exponential is simply 

This is the first-order Taylor's series for x0 = 0 where /{0) = 1 and 

/'{0) = !!_ex I = 1 
dt x-o 

In Chap. 3 a passing reference was made to Torricelli's law 
which relates to outlet flow rate, F, of a column of liquid that has a 
heightofY 

The flow depends in a nonlinear way on the height Y which is 
sometimes inconvenient for the simple math that we use in this book. 
A first-order Taylor's expansion about Y0 can be useful 

x~Y 

f(x)~cJ; 

c -! 
f'(x)=-x 2 

2 

Therefore, the linearized expression for the flow rate as a function 
of tank height is 

In Chap. 3, this equation is used with the assumption that the 
initial steady-state values, F0 and Y 01 are zero {or, alternatively, that 
the average steady-state values are subtracted from F and Y). 

Depending on the reader's energy levels, it might be interesting 
to use the infinite series representations in Eq. {D-4) to confirm that 

eix = cosx+ jsinx 
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However, if you are willing to take my word for it, don't waste 
time on it. 

D·l Summary 
This has been the shortest appendix but the Taylor's series is an 
important tool and has been used often in this book. 
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APPENDIX E 
Application of 

the Exponential 
Function to 
Differential 

Equations 

E·l Rrst-Ord• Differential Equatlo• 
For the case of a constant process input Uc, Bq. (3-8) &om Chap. 3 
becomes 

(B-1) 

There are many ways of solving this equation and we will start 
with the simplest. Assume that Y consists of a dynamic or transient 
part or lromogeneous part and a stell/ly-Bfllft or non1romogmeous part, 
namely, 

Y=Y,+Y. (B-2) 

where Y, the transient part satisfies 

(B-3) 

• 
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which is often called the homogeneous part of the differential 
equation. The steady-state part Y _, sometimes called the particular 
solution, satisfies the remaining part or the nonhomogeneous part of 
the differential equation. 

because 
d¥

55 -=0 
dt 

{E-4) 

Since the input is constant, the steady-state solution is obtained 
immediately. 

The transient solution to the homogeneous part of the differential 
equation requires a little more work. As is often the case when one is 
trying to solve a differential equation, one 11tries" a general solution 
form. Experience has shown that a good form to try is 

Y, =Ce"' 

where C and a are, as yet, undetermined coefficients. 

or 

Plugging this trial solution into Eq. {E-3) yields 

-rCaeat + ceat = 0 

-rCaeat = -Ce11t 

Cancelling C and e"' gives 

-ra+l=O or -ra=-1 or 
1 

a=-­
T 

One of the undetermined parameters a is now known and we 
have 

t 

Y, =Cer 

By the way, the value of a that satisfies 

Ta+l=O 

could be considered a root of the above equation. We will extend this 
idea later on in this section. 

Now that we know the transient solution, Eq. {E-2) becomes 

t 
Y=Cef' +gU, {E-5) 
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To find the coefficient C we apply the "initial" condition, which 
says that at time zero, that is, at t = 0, Y is Y0 and Eq. (E-5) becomes 

so, 

and Eq. (E-5) becomes 

0 

Y0 =Cer+gUc 

=C+gUc 

IY= Y,e -f +gu,(t-e·hl (E-6) 

This example suggests that the exponential function has some neat 
properties that make it quite useful in engineering mathematics. 

E-2 Partial Summary 
The first-order differential equation was divided into its homogeneous 
part and nonhomogeneous part. A solution was constructed for each 
part and added together to form the total solution. This total solution 
contained an unknown constant which was determined by applying 
the initial condition. This is a procedure that will be followed for a 
wide variety of more complicated differential equations appearing 
later on. 

E-3 Partial Solution of a Second-Order Differential 
Equation 

Consider the second-order differential equation 

d2Y dY 
-+a-+bY=c 
dt2 dt 

where a, b, and c are known constants. 

(E-7) 

Following the mode of dividing and conquering, assume that the 
solution consists of a transient part (that will change with time t) Y, and 
a constant or steady-state part Yss that will depend on the constant c: 

Y=Y, +Yss 
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Furthermore, assume that Y, satisfies only the so-called 
"homogeneous" part of the differential equation, that is, the part on the 
left-hand side: 

(E-8) 

The following trial solution is tried for the transient part 

(E-9) 

where C and a are as yet unknown constants. This is called a "trial" 
solution because once we plug it into the differential equation we 
may find that it is useless. Inserting the trial solution into Eq. (E-8), 
the homogeneous part of the differential equation, yields 

Now one can perhaps see that the form of the trial solution was 
somewhat clever because Ce"1 is in every term and it can be factored 
out leaving 

a 2 +aa+b=O 

which is a quadratic equation for which the two values (perhaps 
complex) of a can be found. Let's say that the two solutions to the 
quadratic equation are p + jq and p- jq. (These two solutions must 
be complex conjugates for the quadratic to remain real.) Each of these 
values for a is associated with a value for C. Since the solution has the 
form of Eq. (E-9), one can use Euler's equation to conclude that the 
solution will look like 

Y(t) - C
1
e(p+jq)t + C

2
elP-iq)t 

- C1eP1[cos(qt) + jsin(qt)] + C2eP1[cos(qt)- jsin(qt)] 
(E-10) 

It may be a bit of a stretch but Y(t) has to be real to be physically 
acceptable as a solution so, again, take my word for it, the imaginary 
parts of the above solution cancel out such that Y(t) is, in fact, real. 
However, the reader should deduce from Eq. (E-10) that, depending 
on the values of p and q, Y(t) will have an exponential part eP1 that 
grows or dies out at a rate depending on p, and an undamped part eiqt 

that will oscillate at a rate depending on q. One could continue with 
Eq. (E-10), combining it with the particular solution, applying the 
initial conditions, and, after many manipulations, arrive at a solution. 
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However, we will find there are better more insightful ways to deal 
with second- and higher-order differential equations--specifically, in 
App. F, the Laplace transform will be used with great success. 

E-4 Summary 
We have used the exponential form as a trial solution for a first- and 
second-order differential equation. Each has generated equations for 
the undetermined coefficients. This approach has been used widely 
in the book. 
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APPENDIX F 
The Laplace 

Transform 

Some of this section is paraphrased from Chap. 3 just in case you 
want to have everything you need in one place. Also, it is so 
important that it bears repeating. 

The definition of the Laplace transform is 

00 

L{Y(t)} = Y(s) =I dte-51Y(t) (F-1) 
0 

In words, this equation says using a weighting factor of e-st, integrate 
the time function Y(t) from zero to infinity and generate a function depending 
only on s. 

With Eq. (F-1) in hand, it may be clearer why the units of Y must 
be m·sec if the units of Y(t) are m. By integrating over all positive time, 
the Laplace transform removes all dependence on time, represented 
by Y(t) and creates a new function of s represented by Y(s). 

The Laplace transform is interested only in time after time zero so 
the lower limit on the integral is zero. There are exceptions which will 
be noted but for the most part the Laplace transform assumes that 
everything before time zero is zero. 

The inverse operation of finding a time function for a given 
Laplace transform is 

1 c+joo 

Y(t)=~ I Y(s)e51ds 
It] c-joo 

(F-2) 

We will not use this formula because there are less sophisticated 
and more effective ways of inverting Laplace transforms but it is 
good for you to be aware of it. If your control engineer knows how to 
use contour integration in the complex plane (I did, once) she may 
use Eq. (F-2) to invert especially complicated transforms. 

395 
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F-1 Laplace Transform of a Constant (or a Step Change) 
Let's do a simple example just to remove some of the awe from Eq. (F-1). 
Consider the step function which is zero for time less than zero but is 
constant at the value, say C, for t > 0. For this case, Eq. (F-1) becomes 

00 00 

L{C} =I dte-stc = C I dte-st 
0 0 

001 c-oo 
= -C I -d(-st)e-st =--I due" 

0 s s 0 

so, 

(F-3) 

Another way of doing this uses the unit step function U(t) where 

zi<t> = o t < o (F-4) 

zi(t) = 1 t ~ o 

It follows from Eq. (F-3) that the Laplace transform of the unit 
step function is 

L{U(t)} = j U(t)e-stdt =.!. 
0 s 

F-2 Laplace Transform of a Step at a nme 
Greater than Zero 

The modified unit step U(t-l) is defined as 

zi(t- l) = o t < -r 

zi<t- l) = 1 t ~ -r 

That is, U(t- l) is a unit step that "turns on" at timet= l. 

(F-5) 

The Laplace transform of this delayed unit step is quite 
straightforward 

.. 
L{U(t- l)} = I U(t- l)e-'1dt 

0 
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A change of variable from t to t' will make things simple. The 
new variable is related to the old as follows: 

t' = t- A dt' = dt t = t' +A 

With this new variable the transform can be written as 

00 

L{U(t- A)} = I U(t')e-s(t'+A)dt' 
-A 

But the term e-sA is a constant relative to the integration, so 

00 

L{U(t- A)} = e-sA I U(t')e-sr dt' 
-A 

Since U(t) is zero for t < 0, the lower limit on the integral can be 
zero instead of -A. This means that the integral is just the Laplace 
transform of the unit step function which is 1/s. Therefore, 

(F-6) 

This is a handy formula because, as will be seen in Sec. F-3, 
anytime there is a process dead time of length A, one can add the 
factor e-sA to the transfer function. 

F-3 Laplace Transform of a Delayed Quantity 
In a pure dead-time processes the process output Y(t) is simply the 
input U(t) delayed by the dead timeD or 

Y(t) = U(t- D)U(t- D) (F-7) 

Be ~ful not to confuse the process input U(t) with the unit step 
function U(t). Using Eq. (F-6) as guide, the Laplace transform of Y is 
seen to be 

An alternative way to present this operation is 

I L-1 { e-sD Y(s)} = Y(t- D)U(t- D) I (F-8) 
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F-4 Laplace Transform of the Impulse or Dirac 
Delta Function 

On the one hand, the Dirac delta function is a somewhat difficult 
concept but, as we will see, its Laplace transform is the easiest to 
compute. The Dirac delta function B(t- r) is a "spike" at time t = r 
that has indeterminate height and width but that has unit area under 
its curve in the time domain. At every value of time other than t = 'l' 
the Dirac delta function has a value of zero. Since we have already 
agreed that the integral of a function can give the area under the 
function's curve, the definition of Dirac delta function is simply 

B(t) = 0 fort¢ 0 

undefined for t = 0 (F-9) 

I dta<t> = 1 
0 

Equation (F-9) says the area under the Dirac delta function is unity 
but the definition says nothing about the Dirac delta function's shape. 
An additional characteristic expands the definition of Dirac delta, 
namely, 

I dtf(t)B(t- r) = f(r) (F-10) 
0 

Equation (F-10) says that the Dirac delta "spike" at t = 'l' is so high 
and so narrow that it "plucks" the value of f(t) at t = r and snuffs it 
out elsewhere. Envision a graph of f(t)B(t- r). Assuming that 'l' > 0, 
the graph would show a zero until t = 'l' at which time f(t)B(t- r) 
would have an undetermined value. Fort> 'l', f(t}B(t- r) would again 
equal zero. Let's try to approximate the integral in Eq. (F-10) with a 
sum of the areas of small rectangles, each with a width of size~~. The 
first rectangle is located at t = 0, the second at t = ~t, and so on, 

I dtf(t)B(t- r) = ~~ /(0)15(-r) + ~~ f(~t)B(~t- r) 
0 

+ ~~ /(2~t)t5(2~t- r) + · · · + ~~ f( r)B(O) + · · · 

+ ~~ f(r+ ~t)B(~t)+ ~~ f(r+ 2~t)t5(2~t)+ ··· 

All of the rectangles except the one at t = 'l', namely, ~t f(r)B(O), 
would contribute zero to the sum. In the limit as ~t ----+ 0 and, as the 
rectangle approximation gets more and more accurate, this rectangle 
at t = 'l' would contribute f( r) because, in the limit, the factor ~tt5(0) 
contributes unity, as in ~tt5(0) ----+ 1. 
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With this in mind, look at the Laplace transform of the Dirac delta 
function 

00 

L{6(t)} =I 6(t)e-stdt 
0 

The delta function plucks the value of the integrand, which is e-st, 
at t= O,so 

00 

L{6(t)} =I 6(t)e-stdt = 1 (F-11) 
0 

Laplace Transform of the Exponential Function 

00 00 

L{e-"1} =I dte-ste-"1 =I dte-<,...,)1 
0 0 

let u=(s+a)t 

so du=(s+a)dt or dt=~ 
s+a 

00 1 
=-I-due-u 

0
s+a 

= --1-Joo due• 
s+a 

0 

= __ 1_eu ~oo =-_1_(0 -1) = _1_ 
s+a s+a s+a 

so 

IL{e-..l= s!a I (F-12) 

Laplace Transform of a Sinusoid 
There is but one reference to this transform in App. B so you will not 
be bothered with the derivation. 

L{sin(mt)} = 2 ° -~2 s+ar 
(F-13) 
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F-7 Final Value Theorem 
The final value theorem is a handy way of using the Laplace transform 
to determine if the asymptotic value of a variable settles out in the 
time domain. 

(F-14) 

Question F-1 Apply the final value theorem to the transform of the constant, 
that is, C/s, and to the transform of the exponential, that is, 1/(s+a). Do the 
results make sense? 

Answer 

lim1 __,~ Y(t) = lim,__,0 s~ = lim,__,0 C = C 

1. 1" 1 0 1m Y(t)= 1m s--=--=0 
1 ..... ~ ...... o s+a O+a 

The results do, in fact, make sense because CIs is the transform of the constant 
C which has an ultimate value equal to its initial value, namely C. The expression 
1/{s +a) is the transform of e-at and its ultimate value as t---+ oois zero. 

F-8 Laplace Transform Tables 
As the reader might imagine, there are a huge number of Laplace 
transform/ time domain function pairs simply because there are a 
huge number of useful time domain functions. We really only need 
the transforms of the constant, the sine, the exponential, and the Dirac 
delta function to get off the ground. To get a better perspective the 
reader should browse a standard engineering mathematics textbook 
and find the table for Laplace transform pairs. 

F-9 Laplace Transform of the Time Domain Derivative 
By definition the transform of a derivative is 

(F-15) 

To evaluate Eq. (F-15) we need to review integration by parts. As 
presented in Eq. (A-20), the differential of a product of two functions 
u and vis 

d(uv) = udv + vdu 
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Likewise, the integral is given by 

b b b 

I d(uv) = I udv +I vdu 
tl tl tl 

Solving for the first integral on the right-hand side gives 

b b b b 

I udv =I d(uv)- I vdu = uv I!-I vdu 
tl tl tl tl 

b b 

I udv = uv I! -I vdu (F-16) 
tl tl 

Compare Eqs. (F-15) and (F-16) and match dv with dY and u 

with e-st 

{
dY} • • • 

L- = Ie-stdY=e-51¥10-IYd(e-st)= 0-Y(O)- IY(-se-51dt) 
dt 0 0 0 

-
=-Y(O) + s I dte-sty =-Y(O) + sL{Y} 

0 

so, we arrive at the desired result 

{
dY} -L dt =sY-Y(o+) (F-17) 

Note that the initial value Y(o+) is the value arrived at from the 
right as t decreases toward zero from positive values, as in 

Y(o+) = lim1_.o+ Y(t) 

F-10 Laplace Transform of Higher Derivatives 
Since the development of Eq. (F-17) was a little bit painful, I will 
simply give the result for the second-order derivative: 

L{d
2
Y} = s2L{Y}- sY(o+)- dY I 

d~ ~ ~ (F-18) 

= s2Y- sY(o+)- Y(o+) 

That is, the Laplace transform of the second derivative of a 
quantity is s2 times the Laplace transform of that quantity, Y, minus 



402 lppe1dil F 

the initial value of that quantity ~es s, sY(O+), minus the initial value 
of that quantity's first derivative, Y(O+). 

Thus, when the initial conditions are all zero, the various 
derivatives can be transformed by replacing the derivative by Laplace 
transform of the quantity times the appropriate power of s. 

F-11 Laplace Transform of an Integral 
By definition we are dealing with 

{

, } - t 
L I duY(u) =I dte-st I duY(u) 

0 0 0 

(F-19) 

Integration by parts will be used to address the evaluation ofEq. (F-19) 
and although its relatively straightforward you may want to skip to 
the result in the box. 

From above, the integration by parts formula is 

b b 

I udv = uv 1: -I vdu 
tl tl 

Match up u and v according to the following 

t 

u = I dxY(x) and dv = dte-51 and a=O b=oo 
0 

so 

du = Y(x)dx and 
t t -st 

v= Idv=Idte-51 =-~ 
0 0 s 

This means that the integration by parts formula takes on the 
following form: 

• ' est' 1. 
I dte-st I dxY(x) =--I dxY(x) 10 +-I dte-51Y(t) 
0 0 s 0 so 

e-$110 • e-so o 1 • 
=--I dxY(x) +-I dxY(x) +-I dte-51Y(t) 

s 0 s 0 so 

1-= -Y(s) 
s 
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So, after all the dust settles the result is 

(F-20) 

Therefore, to get the Laplace transform of a derivative one multiplies 
by s and to get the Laplace transform of the integral one divides by s. 
This symmetry is consistent with the observation that the derivative 
and the integral are inverses of each other. 

F-12 The Laplace Transform Recipe 
The set of rules presented in Chap. 3 are repeated here, with a few 
extras, as a summary of the Laplace transforms developed earlier in 
this appendix. 

d 
dt ~s 

d2 2 
dt2 ~s 

Y(t)~ Y(s) 

U(t)~U(s) 

c~c 
s 

' Yi(s) JY(u)du~-
o s 

lim~ sY(s) = Y(oo) 

e-•t~_l_ 
s+a 

sin( cot)~ 
2 

to __ 
2 s+ur 

o<t>~ 1 

U(t- D)Y(t-D)~ e-50Y(s) 

Note that these rules are a special case of the rules derived in this 
appendix in that the initial value of Y is assumed to be zero. 
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F-13 Applying the Laplace Transform to the Rrst-Order 
Model: llle Transfer Function 

Return to Eq. (3-22) in Chap. 3 where we studied the tank of liquid 
that had an input flow rate of U and a tank height of Y. The behavior 
of the tank was described by the following differential equation 

dY 
1'-+Y=gU 

dt 
(F-21) 

After following the rule of replacing the derivative with the 
operator s, and assuming that initial values were all zero, Eq. (F-20) 
would become 

Y=-g-ii 
1'S+1 

Y=G(s)U 

This suggests that the response Y(t) can be obtained from the inversion 
of the product of the quantity G(s), which is the transfer function, and 
U(s), which is the transform of the input U(t), as in 

Y(t) = r 1 {G(s)U(s)} (F-22) 

So, in the Laplace transform domain, the response is the product 
of the transfer function and the transform of the input. 

F-14 Applying the Laplace Transform to the Rrst-Order 
Model: llle Impulse Response 

As mentioned above, the behavior of the tank is described by the 
following differential equation 

dY 
1'-+Y=gU 

dt 
(F-23) 

After following the rule of replacing the derivative with the 
operator s, and assuming that initial values were all zero, Eq. (F-23) 
would become 

(F-24) 



The Laplace Transfer11 405 

Specify that the time domain function U(t) is a unit impulse or a 
Dirac delta function at time t = 0. Based on the above discussion of the 
Dirac delta function, having U(t) be an impulse is a relatively difficult 
thing to conceive of physically, but bear with me. If, in fact, the input 
is an impulse then 

and 

U(s) = L{U(t)} = L{o(t)} = 1 

Y=-g­
-rs+1 

Note that we can also write 

Y=-g-=G(s) 
-rs+1 

(F-25) 

(F-26) 

so, the transfer function is also the transform of the impulse response. 
Remember this because we will refer to it in App. I on the Z-transform. 

Using Eq. (F-12), the inverse is obtained from Eq. (F-26) quickly as 

t 
Y(t)= Ke r =I (t) 't' , (F-27) 

where the symbol I,,(t) is used to indicate the impulse response (we 
will refer to it later on). Comparing Eqs. (F-26) and (F-27) we see again 
that the transfer function is the Laplace transform of the impulse 
response 

L{I,(t)} = G(s) (F-28) 

The response of the first-order process to a unit impulse at time 
t = 0 is an exponential decay from an initial value of g/-r. In other 
words, a spike in the input flow rate is manifested in an immediate 
height jump at t = 0 from zero to g/-r followed by a slow (or exponen­
tial) decay to zero. 

Admittedly, it is difficult for the reader to conceptualize exactly 
how she would apply an impulse input to a process like the tank of 
liquid. However, don't let that bother you. Simply treat the impulse 
input as a handy mathematical idealization and stay tuned because it 
will raise its pretty head again. 
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F-15 Applying the Laplace Transform to the Rrst-Order 
Model: llle Step Response 

In the previous sections the relationship between the input and 
output for the first-order model has repeatedly shown to be 

Y=-g-ii 
-rs+1 

(F-29) 

Assume that the time domain function U(t) is a step function 
having a constant value of U.: fort~ 0 and a value of zero fort < 0. The 
Laplace transform for ul: would be 

So, Eq. (F-29) becomes 

- u U=-' s 

- g u 
Y=---' 

't'S+1 S 
(F-30) 

To invert this transform to get Y(t), Eq. (F-30) needs to be simplified 
to point where we can recognize a familiar Laplace transform and 
match it up with a time domain function. Partial fractions can be used 
to accomplish this. 

Questlln F-2 What can the final value theorem and Eq. (F-30) tell you about 
whether Y{t) settles down as t-+ oo? 

Anlwlr Applying the final value theorem to Eq. (F-30) gives 

lim s-g_U.: =lim gU.: = U 
.-o ·rs+l s ·~ ·rs+l g .: 

F-18 Partial Fraction Expansions Applied to Laplace 
Transforms: llle First-Order Problem 

In Sec. F-15 we arrived at the following Laplace transform while 
trying to solve the differential equation [Eq. (F-23)]. 

Y=-g_U, 
-rs+1 s 

(F-31) 

where U, is a constant. To get the time domain solution for Y(t) we 
have to invert this transform. Finding a time domain function that 
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has a transform like that in Eq. (F-31) would be nice. This transform 
looks somewhat familiar but it does not match up perfectly with the 
small group of transforms that we have already developed. 

The tool of partial fractions, can be used to expand Y into two terms 

- Ku A B Y=-'r ___ c =-+--
1 s s 1 

(F-32) 
s+- s+-

1 'r 

where the constants A and B are as yet undetermined. These two 
terms on the right-hand side of Eq. (F-32) should look familiar-they 
are the Laplace transforms of a constant (or step change at time zero) 
and an exponential. Before proceeding, the values of A and B need to 
be found. Upon cross-multiplying Eq. (F-32) by s(1 + 1 I -r), the 
denominator of the transform in question, gives 

Letting s = 0 in Eq. (F-33) yields a value for A 

Then, letting s = -1 I 1 in Eq. (F-33) yields a value for B 

gU, B 
--=-- or 

'r 1 

So, the new expression for Y is 

Y= gU,- gU, =gU (! __ 1_) 
s 1 c s 1 

s+- s+-
1 'r 

(F-33) 

(F-34) 

Thus, Eq. (F-31) has been expanded into two simpler terms, each 
of which is the Laplace transform of a known time domain function. 
From Eqs. (F-5) and (F-12) we can match the two transforms up with 
a constant and an exponential 

-1 { (1 1 )~ ( -!.) L gU, .- s+~ r =gU, 1-e • 
(F-35) 
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So, we have anived at the solution to the first-order differential 
equation by a second method. Equation (F-35) is the classic diminishing 
returns curve. Comparing Eqs. (F-35) and (F-27), one sees that the 
response of our first-order process to a spike or impulse is quite 
different from that to a step (as you should suspect). 

F-17 Partial Fraction Expansions Applied to Laplace 
Transforms: The Second-Order Problem 

Later on in Chap. 3, where a second-order differential equation 
appears, the following transform is encountered in Eq. (3-39) 

Y= gks+gl s, 
-rs2 +(1+ gk)s+ gl s 

Equation (3-39) has three poles, namely, 

and one zero 

1+ gk + J(l+ gk)2 -4gl 
2-r 2-r 

I 
s=-k 

(3-39) 

To expand Eq. (3-39) into partial fractions I resorted to the Internet 
because my algebraic bookkeeping skills are abysmal. Using Coogle, 
I searched "partial fractions" and ended up at a site called "QuickMath 
Automatic Math Solutions" (your search may tum up something 
different but keep trying unless you want to do the math by hand­
ugh!). At this site I entered 

(a+ bx)l[ x(x- c)(x- d)] 

for 

(F-36) 

in a little box on the site page. The site, using Mathematica, returned 

a a+bc a+bd --+ +~~---~ 
cdx c(c- d)(x- c) d(d- c)(x- d) (F-37) 

So far, so good. The association between the variables, a, b, c, d, 
and x and the quantities in Eq. (3-39) should be apparent, especially 
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the equivalence between x and 5. With a little luck the reader 
should be able to deduce that the above three terms in the Laplace 
domain correspond to a constant and two exponentials in the time 
domain. 

Still not trusting my algebraic abilities, I wrote a short Matlab 
script (using the symbolic toolbox) to make the substitutions and 
arrived at 

(F-38) 

As you might have perceived from this exercise, applying partial 
fractions is a busy algebraic exercise subject to many bookkeeping 
errors. For years I have pursued it with trepidation but now with the 
help of the Internet and Matlab I feel less dependent on my horrible 
bookkeeping skills. In any case, Eq. (F-38) shows the step response of 
a second-order system, namely a first-order process subject to 
proportional-integral feedback control. Note that there are two 
exponential terms and a constant. Also, note that neither 51 or 52 can 
be positive. Therefore, the exponential terms will die away and Y(t) 
settle out at IgS/(t5152 ). 

Question F-3 Can you simplify this a little further and obtain the final value? 

Answer Using the expressions for s1 and s2, you should be able to show that 
s1s2 = gl/r so that the constant term becomes s ... Since the other terms have 
exponentials that die away with time, the constant term shows that the process 
output reaches the set point. 

F-18 A Precursor to the Convolution Theorem 
Note that the common word "convoluted" means complicated, 
intricately involved, twisted, or coiled. That should be a due as to the 
difficulty that we will encounter in this section. 

We have been studying a first-order system based on a tank of liquid 
where the process variable Y is the tank height and the process input U 
is the input flow rate. At any time, Y(t) is the result of past values of Y 
and past values of U. We can see this if we manipulate Eq. (F-23) 

dY 
tdt+Y=gU 

dY _ -Y+gU 
dt- t 

dY= -Ydt+gUdt 
t 

(F-39) 
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Integrate both sides of Eq. (F-39) with respect to time and get 

so, 

' 
1 I du(-Y(u)+ gU(u)) 

I duY(u) =Y(t)- Y(O) = ..:...0 -----
o ~ 

' I du[-Y(u)+ gU(u)] 

Y(t)= ¥(0)+..;;..0
----­

~ 
(F-40) 

The integral is the sum of the area under the integrand. Thus, Eq. 
(F-40) shows that Y(t) is a weighted sum of all the past values of Y(t) 
and U(t). This is not a particularly useful equation because it contains 
the response variable Y(t) on both sides of the equation. 

Question F-4 Can you use the Laplace transform to solve Eq. (F-40) for Y? 

Anlwlr Taking the Laplace transform of Eq. (F-40) yields 

- Y(O) gli-Y 
Y=-+--

s 'CS 

Here, Eqs. (F-3) and (F-19) were used. Solve for Y and get 

Y(1 + ..!...) = Y(O) + £!!. 
'CS 'CS 'CS 

Y(-r s + 1) = Y(O) + gli 

Y= Y(O)+gii 
-rs+1 

which, if Y(O) = 0, is the same as obtained in Eq. (F-29). 

F-19 Using the Integrating Factor to Obtain 
the Convolution Integral 

Consider yet another way to solve the first-order diHerential equation 
that describes the tank of liquid 

or 

dY 
~dt+ Y= gU(t) 

dY 1 g 
-+-Y=-U(t) 
dt ~ ~ 

(F-41) 
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Note that the argument of U is added to emphasize that U may be a 
function of time rather than just a constant. Instead of using the Laplace 
transform or instead of trying an exponential time domain function as a 
solution, apply an integrating factor of e1h to both sides of Eq. (F-41) 

!..dY !..1 !..g 
er-+et-Y=er-U 

dt -r -r (F-42) 

The left-hand side of Eq. (F-42) can be written as a derivative of 
the quantity e11tY because 

d (.!.. J .!.. dY !..1 - erY =et-+et-Y 
dt dt -r 

so, Eq. (F-42) can be written as 

- e"'iY = e"'i Ku d ( t J t 
dt -r 

Now, integrating across Eq. (F-43) gives 

d(efY} = ef Kudt 
-r 

t ( U ) t 11 

J d eiY = J ei Ku(u)du 
0 0 -r 

u t I u 

ei"Y I~= eiY(t)- Y(O) = J ei Ku(u)du 
0 -r 

{F-43) 

After multiplying both sides by e-(l/r) and doing a little rearranging 
we get 

If we place the factor e-(t/r) inside the integral (which we may do since 
it is a constant with respect to the dummy integration variable u) we get 

I I t u 

Y(t) = Y(O)e 1 + J e re"'i Ku(u)du 
0 -r 

(F-44) 
I I -(1-u) 

= Y(O)e 1 + J e 7 Ku(u)du 
0 -r 

Now comes the clever step! Remember the impulse response for this 
differential equation derived above and represented in Eq. (F-26)? Do 
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you see anything in the integrand of Eq. (F-44) that resembles it? In fad, 
the impulse response is lurking there and we can rewrite Eq. (F-44) as 

t I 

Y(t) = Y(O)e -'f +.£.I lm{t- u)U(u)du 
-ro 

-(1-u) 
l,,(t-u)=e 1 

(F-45) 

This is the infamous convolution integral where the process input 
U(t) is "convolved" with the impulse response Im(t). 

Return to Eq. (F-44) and spend a few moments trying to figure 
out how you might evaluate the integral numerically. 

t t Jt-u) 
Y(t)= Y(O)e-"f +.£.I e 17 U(u)du 

-ro 

Suppose g =1 and -r = 10. The integrand is e-l(t-u)/fJ U{u). Suppose 
that input U is a downward ramp described by U(t) = 1-0.1t. Thus, the 
input is initially 1.0 and then drops to zero at time t = 10. The varying 
factor in the impulse response is e-(ll/f) and this initially equals 1.0 also 
and drops off slowly to a value of e-1 = 0.368 by timet= 10. However, the 
integrand contains the factor e-l(t-u)/rJ which has a mirror image shape to 
that of e-(u/f). These different components are shown in Fig. F-1. 

The response Y is seen to be a sum of the input U weighted by the 
impulse response that is "folded back" from the point of interest, namely, 

-U(u) 
0.9 0 0 0 0 0 0 0 0 ••• Exp (-u/tau) 

0.8 0 0 0 0 0 0 0 0 ·-·Exp (-(t-u)/tau) 
-- U (u),. exp (-(t-u)/tau) 

0.7 :: :;: ::::::: ··~··:·:-::·:·:.:.~.>>( ::::: :::::::: 
0.6 . . . . .... ·.. . . .. , ··. 

~~ ~:.~:~.:.:.~::.:-:··::·.·:·~:::::: .:. ....... ; .. :·:;.:.:.:.:~.:.:.; 
-------

.... : ..... :. ~ .-. ~:~ .-.-::: ~ .-.-: ~ 0.3 ... 
0.2 0 0 0 0 : 0 0 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 ? :- .... 0..: 0 0 0 0 0 : 0 0 0 

~', 0 

0.1 0 0 0 0:0 0 0 0 0: 0 0 0 0.0 0 0 0 0. 0 0 0 0 0:0 0 0 0:0 0 0 0: 0 0 0 0: 0 0 :" 

0o 1 2 3 4 5 6 7 8 9 10 
u 

F1auRE F-1 Components of the convolution integrand. 
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time t. The Germans actually avoid the use of the word 11 convolution" 
and instead refer to the integral as the 11 folding'' or 11 faltung" integral. 
The numerical evaluation of this integral is indeed convoluted. 

Now, let's compare convolution in the time domain with another 
operation in the Laplace transform domain. We remember from 
Eq. (F-22) that the response Y(t) is also the inverse of the product of 
the transfer function and the Laplace transform of the input, as in 

1 t _(t-u) 
Y(t)= L-1{G(s)U{s)} = Y{O)e r +.[I e ~r U(u)du 

-ro 

So, we conclude that in the time domain we convolve and in the 
Laplace domain we multiply-which would you rather do? 

F-20 Application of the Laplace Transform 
to a First-Order Partial Differential Equation 

In Chap. 7 the following partial differential equation was derived to 
describe the behavior of a tubular heat exchanger. 

aT aT 1 
-+v-=-[T -T(z t)] at az 'rr s ' 

(F-46) 

The Laplace transform can be applied to remove the time 
dependence of Eq. (F-46). It could also be applied to remove the spatial 
dependence. Since we ultimately want to move from the time domain 
to the frequency domain, the Laplace transform will be applied to the 
time dependence first. The result, an ordinary differential equation, 
will then be solved by conventional means although the Laplace 
transform could be used again as an alternative. 

We will apply the Laplace operator 

00 

I dte-51 ••• 

0 

to every term in Eq. (F-47) whether they are terms like T
5 
-Tor aT I at 

or aT I az. The result is 

The first term on the left-hand side (LHS) is the Laplace transform 
of a derivative and yields 

sf{z,s) 

where the initial value T{z,O), for all z, is assumed zero. 
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The next term on the LHS contains the partial derivative with 
respect to z so we exchange the order of the operators (we can do this 
since both operators are linear) and get 

00 

dT d
00 af vI dte-st- =v-I dte-stT = v-

0 az azo az 

The two terms on the right-hand side (RHS) of Eq. (F-47) are 
Laplace transforms of T and ~' both divided by -r1. Therefore, the 
result of applying the Laplace transform to the partial differential 
equation is 

- df 1 - -
sT+v-=-(T -T) 

dz 'rr s 
(F-48) 

In review, dT I dt was replaced by sf (assuming for the time being 
that the initial value ofT is zero). Next, dT /dz was replaced by df /dz 
because we can exchange the order of the Laplace opera!or ~d the 
partial differentiation operator. Finally, Ts- T became Ts- T. Note 
that f is a function of s and z, so we could emphasize this by writing 
f(z,s), but most of subsequent development will use f. The units of 
fare °C sec. 

Hopefully, you will admit that removing the time dependence 
from a partial differential equation is not that big of a deal. Thus, after 
the dust has settled, Eq. (F-48) is a first-order ordinary differential 
equation of the form 

v-+ s+- T=......!... df ( 1 J- f 
dz 'rr 'rr 

(F-49) 

where the Laplace variable s is just a parameter and where the 
independent variable is the position z. Remember that fs is the 
Laplace transform of the jacket temperature which we specified could 
be a function of time but not of axial position, that is, ~or fs is not a 
function of z. 

F-21 Solving the Transformed Partial Differential Equation 
Now, how do we solve Eq. (F-49)? We could apply the Laplace 
transform again to remove the dependence on z with a different 
variable, say p, instead of s. Alternatively, we could look at the 
homogeneous part of Eq. (F-49) 

v-1' + s+- T, =0 df: ( 1 J-
dz 'rr h 
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and try a solution of the form 

f,=Ce•z 

This would yield 

Note that the variable a has units of cm·1• 

The nonhomogeneous part of the equation (with the derivative 
equal to zero) would give us 

( 1)- f S+- T,.,=.....!.. 
'rr 'rr 

t- f,- f, 
,,-~)- -r1s+1 

'rr s+-
'rr 

Therefore, the total solution would be 

- T(s) 
T(z s) = ce-z + -'-

' -r1s+ 1 
(F-50) 

To find the value of C, the condition at z = 0, the inlet condition of 
T(O,t) = T0(t), t ~ 0, is applied to Eq. (F.:50). Since ~e are dealing with 
Laplace transforms, we write T(O,s) = T0(s)where T0(s)is the transform 
of the inlet temperature. Setting z = 0 in Eq. (F-50) gives 

- - T(s) 
T(O s)=T.(s)=C+-'-

' o 'rrs+ 1 

C= f 0(s)('rrS+1)-f,(s) 
-r1s+ 1 

Inserting the value of C into Eq. (F-50) gives 

- - - 1-e•z T(z,s) = T0 (s)e11Z + T,(s)--
1 'rrs+ (F-51) 
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Eq. (F-51) contains two transfer functions of interest. First, the 
transfer function showing how the inlet temperature affects the outlet 
temperature in the tube (at z = L), namely, 

(F-52) 

where t0 = L I vis the average residence time or delay time for the tube. 
Second, Eq. (F-51) yields the transfer function relating the steam 

jacket temperature to the outlet temperature. 

(F-53) 

To invert Eq. (F-53) for the case where T, is a step change of size 

Uc, as in 

- u 
T{s)=-' 

5 s 

one would separate the terms as follows: 

..!!!. 
1 U U e 1T e-flo 

=---'--'---
'frS + 1 s -r1s + 1 s 

(F-54) 

From Eqs. (F-31) and (F-34) we lmow that the first tenn on the RHS 

has an inverse of 
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The second term on the RHS of Eq. (F-54) is the same as the first 
except for the constant coefficient of e-<to/rr) and the factor e-sto whicp 
Eq. (F-6) shows is an indicator of a delayed unit step function U. 
Therefore, the inverse of the second term on the RHS of Eq. (F-54) is 

{ 
_!R._ 1 e-51o} _!R._ ( -!:!R.} ,. 

L-1 U e rr ---- =U e rr 1-e rr U(t-t0 ) 
' 'rrs+ 1 s ' 

(F-55) 

and the total solution is 

F-22 The Magnitude and Phase of the Transformed 
Partial Differential Equation 

This section supplements Sec. 7-5 and assumes that the reader has 
read Chap. 4 which deals with moving from the Laplace s domain to 
the frequency domain. Start with the following transfer function 
which gives the response of the outlet tube temperature to the steam 
jacket temperature. 

to 
T(L,s) _ 1-e-51oe-r; 
1Js} - -r1s + 1 

Make the usual substitution of s-+ jw getting 

to 
1-e t;e-imto 

-r1 jw+ 1 (F-57) 

The denominator is an old friend and can be turned into magnitude 
and phase by inspection, as in 

If there is some question about this the reader can consult App. B. 
The numerator is a little more involved. The complex exponential 

is replaced using Euler's formula. 

lo 1o 

1-e-r;e-i01o = 1-e-;;-(cos(wt0 )- jsin(wt
0

)) 

_i _i 
= 1-e rr cos(wt0 )+ je rr sin(wt0 ) 
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The magnitude is the square root of the sum of the squares of the 
real and imaginary parts, so the final expression for the numerator is 

_!R. -2!.r2.. = 1- 2e rr cos(wt0 )+e rr ei9 .. 

The phase of the numerator is 

6 _ _1 [ e ~ sin(wt0 ) ] n - tan -~,-..;...._..=.;__ 

1-e -~ cos(wt0 ) 

Therefore, the overall expression is 

T(L,jw) 

T
5
(jw) 

_!g_ -2!.r2.. 
1-2e rr cos(wt0 )+e rr ei9 .. 

J<-rw)2 + 1ei9., 

_!!L -2!!L 
= 1- 2e rr cos(wt0 )+e rr ei9 

(-rw)2 + 1 

F-23 A Brief History of the Laplace Transform 

(F-58) 

The transform is named after the Frenchman Pierre Simon Laplace 
but he did not actually come up with Eq. (F-1). There is some evidence 
that the Swiss mathematician Leonhard Euler may have used 
formulas of type in Eq. (F-1) in the 1700s. Probably unaware of Euler, 
the English engineer Oliver Heaviside, in the late 1800s, developed 
the recipe of replacing derivatives by the s operator (he used the 
symbol p). He then inverted by using partial fractions and tables of 
precomputed Laplace transforms. His recipe was largely empirical 
but quite useful. Mathematicians consistently criticized Heaviside for 
his lack of mathematical rigor. He is said to have replied, "I don't 
understand the digestive process but I still eat." 
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In the 1920s the German mathematician John I' Anson Bromwich 
developed a rigorous basis for Heaviside's recipe using equations 
similar to Eq. (F-1) but little was made of the connection in engineering. 
In 1937, Bromwich published a book The Theory and Application of the 
Laplace Transform in German. Also, in 1937 L. A- Pipes published an 
article in English showing how to use the Laplace transform for circuit 
analysis. In 1942, Gardner and Barnes published a classic text 
Transients in Linear Systems: Studied by the Laplace Tranform and the use 
of the transform in engineering quickly became wide spread. So, 
although Simon Laplace died in 1827, the transform named after him 
did not become an engineering tool until110 years later. 

F-24 Summary 
Wow! This has been a long, painfully detailed appendix. Unfortunately, 
it is a subject that really has to be delved into. Just be happy it was not 
placed in the main body of the book. 

The Laplace transform was introduced as a simple integral 
operation designed to move things to a new domain where there 
were not as many nasty differential equations. Transforms of several 
common and useful time domain functions were developed and 
catalogued. The Laplace transform was applied to the first-order 
differential equation to develop (1) the transfer function concept, (2) 
the impulse response, and (3) the step-change response. Partial 
fractions were shown to be a practical tool for breaking up a 
complicated transform into simple ones that could be associated with 
simple time domain functions. This tool was applied to solving first­
and second-order differential equations. 

The convolution integral was introduced to show that multiplica­
tion in the Laplace domain is equivalent to convolution in the time 
domain (and vice versa). Finally, the Laplace transform was applied 
to a simple partial differential equation which also described the 
behavior of the tubular energy exchanger discussed in Chap. 7. 

The Laplace transform is the basic tool of control engineering so 
it would behoove the reader to be reasonably familiar with the 
material in this appendix-you may have to reread parts of it many 
times while wading through the rest of the book. 
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APPENDIX G 
Vectors and 

Matrices 

Matrices have a long history starting as early as 300 B.C. We 
will use them as a convenient and compact way of writing 
several equations as one. For example, in Chap. 4, equations 

describing the dynamics of the three-tank process were presented as 

d~ = _!.t_+ ~ Fo 
dt "'t 'ft 

dX2 -~ X 1 X 2 
dt- ~ -:r;-- -:r;-
d~ _R, x2 x 3 
dt- ~ -:r;-T, 

Y=X, 

These equations could also be written as 

1 0 

~(~:)= ~ 'f~ 1 
dt X ~ -r2 1'2 

3 0 R, 1 
~ 'f3 

(G-1) 

(G-2) 
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where 

is a matrix with three rows and one column, called a size (3, 1) column 
vector, and 

1 
0 0 

1'1 

~_!_ 1 
0 

Rt 1'2 1'2 

0 ~1 1 

~ 1'3 1'3 

is a square matrix with three rows and three columns, as in a size 
(3, 3) matrix, sometimes called the coefficient matrix, and 

(0 0 1) 

is a matrix with one row and three columns, called a size (1, 3) row 
vector. 

The matrices with either one row or one column are called vectors 
because they could represent the components of a vector in an 
appropriate dimensional space. For example, the column vector w 

w=(:) 
could represent a vector having a magnitude of .J a2 + b2 , an x-axis 
component of a and a y-axis component of b. likewise, the vector u 

could represent a vector having the same direction as w but with a dif­
ferent magnitude, ;t.Ja2 + b2 , because of the scalar multiplier ,\. This 
expression used scalar multiplication which will be discussed in 
Sec. G-1. The elements of the example matrices have been one­
dimensional quantities called scalars. They can be real, imaginary, or 
complex. In addition, the elements of matrices can be matrices them­
selves as we shall see. 
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G-1 Addition and Multiplication of Matrices 
To make matrices useful there must be rules for addition, subtraction, 
and multiplication. Regarding addition, one adds matrices element 
by element: 

(a b)+ (e !) = (a+ e b + !) 
c d g h c+g d+h 

Multiplication is a little more subtle. When a matrix is multiplied 
by a scalar then all elements in the matrix are multiplied by the scalar, 
as in 

a(b c)= (ab ac) = (b c) a 
d e ad ae d e 

Note that this multiplication is commutative. 
When matrices are multiplied together, one goes across the rows of 

the left matrix and down the columns of the right matrix and adds up 
the products of the appropriate elements as in 

(~ :)(; {)=(::~ ~ :!~) 
(; {)(~ :)=(;.:! ;::~) 

For matrix multiplication to work, the number of columns of the 
left-hand matrix must equal the number of rows of the right-hand 
matrix. Unlike scalar multiplication, matrix multiplication is not 
commutative. 

As an aid to following complicated equations containing many 
multiplications one often writes the number of rows and columns as in 

(3,2) (2,3) = (3,3) 

(a~ ;b](xu yv z) (ax+ bu ay + bv az + bt) t = cx+du cy+dv cz+dt 
ex+ fu ey+ fv ez+ ft 

That is, the inside dimensions must be the same and can be 
crossed out leaving the outer two numbers as the size of the product 
matrix as in 

(3,2)(2,3) = (3,3) 



Sometimes it is useful to use subscripts and generalize a bit, 
as in 

(n,mXm,l) = (n,l) 

m ... 

Note that the number of columns m of the left-hand matrix must 
equal the number of rows of the right-hand matrix. The result of 
multiplying a size (n, m) matrix into a size (m, p) matrix is a size (n, p) 
matrix. Also note that for two-dimensional matrix elements the first 
subscript refers to the row and the second to the column where the 
element resides. Therefore, a;i is the element lying in the ith row and 
the jth column. 

A special case of multiplication is the "dot product" where a size 
(l,n) row matrix (or vector) is multiplied into a size (n,l) column 
matrix (or vector) producing a scalar, as in 

With these rules, hopefully the reader should be able to understand 
Eq. (G-2). 

G-2 Partitioning 
A matrix can be partitioned into submatrices as follows. 
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The rules of multiplication still apply to the elements of the 
partititioned matrix, as in 

[

ax+cy+zd] = ex+ gy+hz 
fx+my+nz 

G-3 State-Space Equations and Laplace Transforms 
Equation (G-2) can be further compacted as follows: 

Equation (G-3) shows the state-space way of writing the describing 
equations for processes. Note that the appearance of nonzero elements 
in the second row and first column (the nondiagonal positions) 
indicates a coupling between the first and second tank. This is 
discussed at length in Chap. 4. 



The elements of a matrix can also be Laplace transforms. For 
example, Eq. (5-3) from Chap. 5 could also be written as 

1 
0 0 pA1s+ ~ 

(i}(~)a(sl 1 1 
0 

-~ pA,_s+ ~ 

0 
1 1 

-R2 p~s+ Ra 
(G-4) 

Y(s)= (0 0 lH:J 
or, after separating the Laplace s operator, 

or 

G(s)X(s) = Bii 

1 
0 0 

~ [p~ 0 

pt) 
(G-6) 1 1 

G(s)= 
-~ ~ 

0 +S ~ pA,_ 

1 1 
0 

0 
-~ Ra 
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G-4 Transposes and Diagonal Matrices 
TheumMp~ofa~u~ 

is 

(

a d g] 
AT= b e ~ 

c f l 

That is, the off diagonal elements are exchanged but the diagonal 
elements are left unchanged. The umMp~ is denoted by a superscript 
11T' as in 

A diagonal matrix has nonzero elements only on the diagonal, 
as in 

[
a 0 OJ 
0 b 0 
0 0 c 

In the previous examples, the elements in the off-diagonal 
positions suggest coupling between the scalar equations. 

In general, one could write the umMpose in terms of the 
elements 

Sometimes one needs to find the umMp~ of a mamx product 
as in 

Therefore, taking the umMp~ of a product requires exchanging 
the order. 
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G-5 Determinants, Cofactors, and Adjolnts of a Matrix 
There are a variety of ways that the determinant of a mabix is 
introduced. In the simplest, usually given in high school, one goes 
diagonally down the matrix, computes the products of the elements 
and adds them up with plus signs for the forward diagonals and 
negative signs for the backward diagonals as in 

(
a b c) 
d e ~ =aei+bfg+chd-(ceg+bdi+ahf) 
g h I 

(G-7) 

An alternative more elegant definition uses cofactors which are 
the determinants constructed from the original matrix by deleting the 
ijth element and computing the determinant of the remainder with a 
plus or minus sign depending on whether the element indices add up 
to an even or odd number, as in 

Cof(A)11 =~ {I Cof(A)12 = -~ {I Cof(A),3 =-I; :1 etc. 

Note that the cofactors are scalars. 
The determinant of a matrix can then be defined as the sum of the 

cofactors times the deleted element from an arbitrarily chosen row or 
column, as in 

n 

IAI = La;kCof(A);k i = l, ... ,n 
k-1 

where the elements of the matrix A are denoted as a;i and where the 
above equation could also be written as 

n 

IAI = La;kCof(A);k k = l, ... ,n 
r-1 

Finally, the adjoint of a matrix is constructed by placing the 
cofactors of the matrix in the place of the various elements of the 
matrix and transposing it, as in 

A= (aik) 

Adj(A) = (Cof(A);k)r 



Vectors and Matrices 429 

Question G-1 Can you find the adjoint of the matrix in Eq. (G-7). 

( 

ie- fh -ib+ch bf -ce) 
Adj(A)= -id+ fg ia-cg -af +cd 

dh-eg -ah+bg ae-bd 

_}_= -rd+fg Ad'(A) 1 ( i~- fh 
1 A 1 iae-afh-idb+dch+ gbf- gee dh-eg 

-ib+ch 
ia-cg 

-ah+bg 

I used the symbolic toolbox in Matlab to verify that 

bf -ce) 
-af+cd 
ae-bd 

where I represents the identity matrix; More on this in Sec. G-6. 

G-6 The Inverse Matrix 
Equation (G-6) is an algebraic equation in X(s) so it would be ni£e if 
we could divide both sides of the equation by G(s) and solve for X(s). 
There is no rule for the division of one matrix by another but we can 
use the concept of the inverse matrix which in this case would be 
(G(s)]-1 and which satisfies 

(
1 0 OJ 

I= 0 1 0 
0 0 1 

(G-8) 

where I is the identity matrix, in this case for a (3, 3) matrix. Multiplying 
by the inverse is analogous to dividing by a factor in scalar algebra: 

ax=5 

a-1ax=a-15 

5 
x=a-15=­

a 

A formal definition of the inverse uses the adjoint matrix and the 
determinant, as in 

(G-9) 



Assuming for the time being that there is a way of obtaining the 
elements of [G(s)]-1, the solution for X(s) in Eq. (G-6) would be 
obtained by multiplying both sides of the equation on the left by 
[G(s)]-1 as in. 

-1 
1 

0 0 
Rt 

[p~ 0 

p~] 1 1 
X(s)= 

~ ~ 
0 +s 0 p~ BU (G-10) 

1 1 
0 0 

0 
R2 ~ 

The form of Eq. (G-10) is somewhat reminiscent of the first-order 
process: 

X(s) = _g_ii = ('rs + lt1 gii 
TS+l 

Finding the determinants and inverses of matrices is not trivial 
but almost every engineer has a package at her disposal that will 
compute them numerically (even Excel has an algorithm available). I 
used Matlab's Symbolic Toolbox to obtain the symbolic, rather than 
numeric, inverse of G(s) in Eq. (G-10) which is 

~ 0 0 
pA1R1s+1 

G(s)-t = ~ ~ 0 
(p~~s+ 1)(pA1~s+ 1) p~~s+1 

~ ~ ~ 
(p~~S+ 1)(p~~S+ 1)(pA1~s+ 1) (p~~s+ 1)(p~~s+ 1) (p~~s+1) 

The Matlab script to accomplish this is 

syms Rl R2 R2 R3 s Al A2 A3 rho A Ainv yt % declare the 
variables as symbolic 
A=[rho*Al*s+l/Rl 0 0 

-1/Rl rho*A2*s+l/R2 0 
0 -1/R2 rho*A3*s+l/R3 ]; %define the matrix A 

Ainv=inv(A) % calculate and display the symbolic inverse 
pretty(Ainv) % display the results •prettier• form 
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The solution to Eq. (G-10) (still in the Laplace domain) for Y(s) is 
obtained by multiplying the matrices: 

X(s) = G(s)-1 BU 

X(s)= 

(p~~s+ 1)(p~~s+ 1) 
~ii 

(p~~S+ 1)(p~~S+ 1)(p~~S+ 1) 

0 0 

p~~s+1 
0 

~ ~ 
(pA3~s+ 1)(p~~s+ 1) (pA3~s+ 1) 

- - ~U(s) 
Y(s) = (0 0 1)X(s) (pA3~s + 1)(p~~s + 1)(p~ ~s + 1) 

which is seen to be identical to the result obtained in Chap. 5, Eq. (5-4). 
As with transposes, the inverse of a matrix product is the product 

of the inverses in reverse order, as in 

Question 8-2 What is the inverse of a diagonal matrix? 

Answer Simply invert the nonzero diagonal elements, as in 

Verify this by multiplying the matrix by its inverse and see if you get the 
unity matrix. 
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G-7 Some Matrix Calculus 
The derivative of a matrix is a matrix containing the derivatives of its 
elements. 

[
da db] 

d a b _ dt dt dt(~ g)- de dg 
dt dt 

Likewise, the integral of a matrix is a matrix containing the 
integrals of its elements. This means that the Laplace transfonn of a 
matrix can be the matrix of the transfonned elements. 

G-8 The Matrix Exponential Function and Infinite Series 
Matrices can also occur as arguments of functions. For our book, the 
most important is the exponential. 

A=(: !) 

Note that 

is a matrix of size 2 x 2. There are a variety of ways to evaluate the 
exponential of a matrix but we used the extension of the infinite series 
given in Eq. (D-4) in App. D. 

1 1 
eA =l+A+ 

21
AA+ 

31
AAA+h.o.t. 

For the size (2, 2) example, the first three terms of the infinite 
series would be 

A=(: !) 
•A =•(: !L(~ 

=(~ ~)+(: 
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Later on in this appendix, the Cayley-Hamilton theorem will 
provide a better way to evaluate the exponential of a matrix. 

The derivative of and exponential with a matrix argument is 
similar to that in the scalar case, as in 

d -eAt =AeAt 
dt 

G-9 Eigenvalues of Matrices 
Although we will not use the concept in this book, a square matrix 
(one that has an equal number of rows and columns) is sometimes 
considered as an operator that can rotate a vector and produce a new 
vector with a different orientation. For example, in two dimensions, 
the following equation represents the rotation of a vector having a 
component only along the x-axis. 

(c~6 -sin 6)(1) 
sm6 cos6 0 

If the angle of rotation is 30° or tr I 6 radians then the rotation 
produces a new vector, as in 

(
0.8660 -0.500 )(1)=(0.8660') 
0.500 0.8660 0 0.5000) 

The "input" vector has a component along the x-axis and no 
component along they-axis. The new "rotated" (or output) vector has 
an x-axis component of 0.8660 and a y-axis component of 0.500 and 
represents a vector that has a 30° angle with the x-axis along which 
the starting vector 

pointed. This example is a special case but, in general, the equation 

Ax=y 

can be considered as an example of a matrix A acting on a vector x 
and, as a result, rotating it into the vector y. After the rotation, the 
length (magnitude) and angle may have changed. 

There is a special situation when the matrix A rotates an arbitrary 
vector x into a new vector that has the same direction, as in 

Ax=h (G-11) 
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where ~is a scalar multiplier or scaling factor indicating that the 
vector h has the same direction (or the same ratio of components) as 
the x vector but can have a different magnitude. Hopefully, the reader 
can accept that the two-dimensional vector 

(:) 
has the same direction as the vector 

The length of the former vector is .Ja2 + b2 while the length of the 
latter vector is ~.J a2 + b2 • At first blush, this idea of an operator 
generating something that is proportional to what it is operating 
on may seem nonsensical but it occurs many times in applied 
mathematics. 

For example, if one considers d I dt as an operator, then when it 
operates on eAt it generates something proportional to that which it 
operated on, as in 

Note that eiAt can also be an eigenvector of the dId t operator. 

Question G-3 Can you verify that eiJ.t is also an eigenvector of the d I dt 
operator? 

Answer The following should convince the reader: 

Using the identity matrix, Eq. (G-11) can be rewritten as 

(A-~I)x=O 

In two dimensions this equation would look like 

(G-12) 
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Without dredging up too much college algebra, Eq. (G-12) represents 
an example of a homogeneous system of equations. A nonhomogeneous 
version of Eq. (G-12) would be 

The obvious but trivial solution to Eq. (G-12) is 

To have a nonzero solution to Eq. (G-12), the determinant of the 
coefficient matrix must equal zero (hopefully you remember this 
from high school or college algebra). That is, we need to find values 
of ..t such that the following equation is satisfied 

(G-13) 

When the determinant in Eq. (G-13) is expanded, the following 
quadratic equation in ..tis generated 

,t2 -(a+ g)A.+ag-cb=O 

The two roots, ~ and ~ of this quadratic equation are called the 
eigenvalues of the matrix A. For each of these eigenvalues there will be 
a size (2, 1) vector satisfying Eq. (G-12). These two vectors, V1 and V2, 

are called the eigenvectors of the matrix A and they satisfy the following 
equations. 

(A-~1)~ =0 

(A-~I)V2 =0 

However, there is a problem in that the two equations generated 
by plugging the eigenvalue~ into Eq. (G-12) are not independent. 
Therefore, the eigenvector V1 associated with ~ will have a 
definite direction but an arbitrary magnitude. Usually, one makes 
the magnitude unity. 

Consider the following numerical example. Find the eigenvalues 
and eigenvectors of the matrix 

(! ~) 
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The defining equation and the associated algebra for determining 
the eigenvalues and eigenvectors are given in the following 

((! ~)-!(~ ~))(::)=(~) 

(! ~)-!(~ ~)1=0 
(1;! 5:!)1=0 
.. tl-6~-1=0 

A, =-0.1623 v. = ( -0.8646) 1 0.5025 

v. = ( -0.3613) (G-14) 

~ =6.1623 2 -0.9325 

where V1 and V2 are the two eigenvectors, the numerical origin of 
which will be explained shortly. These eigenvectors have been 
normalized to have unit magnitude. 

Now, to the origin of these eigenvectors. When ~ is plugged into 
the first line of Eq. (G-14) one gets 

or 

or 

or 

(A-A,I)V1 

(1.1623 2.0 )(vu) = (0~ 
3 5.1623 v21 o) 

1.1623v11 +2.0v21 =0 

3v11 +5.1623v21 = 0 

This represents two equations in two unknowns. If one were to 
multiply the first of the two equations by 2.4270 one would get the 
second equation. This is supported by the fact that the determinant of 
the coefficient matrix is zero 

1(
1.1623 2.0 Jl = 0 

3 5.1623 
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This last equation basically says that the preceding two equations 
in v11 and v21 are not independent so we can only solve for v11 in 
terms of v21 • This is why we can find the direction of the eigenvectors 
but the magnitude is arbitrary-in fact, in this case, we arbitrarily 
choose the magnitude to be 1.0. For the sake of completeness, take one 
of the preceding two equations and solve for one of the components in 
terms of the other: 

Vu = -1.~:23 v2t = -1.7207v2t 

(:::)=( -1.~207)v21 
This is as far as we can go in getting numbers. To make this vec­

tor have unit magnitude we choose v21 to be the reciprocal of the 
magnitude of the vector, as follows. 

1 
1.9902 

Now, the eigenvector has unit magnitude, as in 

(
v11 ) = (-1.7207)_1_ = (-0.8646) 
v21 1 1. 9902 0.5025 

Note that the eigenvectors have been scaled to have unit 
magnitude, such that 

You might want to multiply this out to confirm my contention. 

G-10 Eigenvalues of Transposes 
If the readers have access to Matlab, they should verify that the 
eigenvalues of a matrix A are the same as those of the transpose A r. 

G-11 More on Operators 
At the risk of beating this eigenvalue thing to death, consider the 
operator 
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The eigenvalue and eigenvector of this operator could be obtained 
from 

as with many differential equations, let's try a solution of y = Ce"1 

and see what happens. 

( ~2 )ce"' = ea2e'J = .tee" 

~=a2 

Question G-4 What is the eigenvector result if a trial solution of ei-1 is used for 
the d2 I dt2 operator? 

So, ejtl' is an eigenvector. 

These last few paragraphs have probably been relatively painful 
but there is a reason for my madness and it has to do with solving the 
state-space equation for our process which is dealt with in App. H. 

G-12 lbe Cayley-Hamilton lbeorem 
In general, the following equation that is used to solve for the 
eigenvalues, namely 

IA-~II=O (G-15) 

is called the characteristic equation for the size (n, n) matrix A. In the 
case for the two-dimensional system, a polynomial of order two 
resulted. In general, a polynomial of order n in ~ is generated, as in 

~:]-~[-~. -~- ::: -~-] =0 
a,., 0 0 ... 1 

(G-16) 
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It is left to the reader to multiply Eq. (G-16) out and convince 
himself that this determinant generates an nth-order polynomial in ~ 
that has n roots which are the eigenvalues of the matrix A. 

The Cayley-Hamilton theorem says that each square matrix satis­
fies its own characteristic equation. Our two-dimensional example, 
introduced in Sec. G-9, gives 

A=(! ~) 
(A-~I)=O 

( (! ~)-A(~ ~) )( ::)= ( ~) 
I(! ~)-A(~ ~)1=0 

1e; A 5 ~A )I = 0 

If A satisfies its characteristic equation, then 

(G-17) 

To test this contention, plug the matrix A into the characteristic 
equation and get 

or 

(! ~)(! ~)-6(! ~)-t(~ ~) 

=(is !~)-(t6s !~)-(~ ~) 

=(~ ~) 

Another way of writing Eq. (G-17) is 

A2 =6A+I 
(G-18) 
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which suggests that higher powers of this (2, 2) matrix can be written 
in terms of A and the identity matrix I. For example, 

and 

A3 = AA2 = A(6A+I)=6A2 +A 

=6(6A+I)+A 

=37A+6I 

A 4 =AA3 =A(37A+6I)=37A2 +6A 

= 37(6A + I)+6A 

= 222A+37I 

This is quite important because in control engineering there is a 
frequent need to deal with functions of a matrix like eA. For this case, 
we know that 

1 1 1 
eA =I+A+-AA+-AAA+-A4 +··· 

2! 3! 4! 

This looks a bit awesome at first but from the Cayley-Hamilton 
theorem and Eq. (G-18) we know that all the powers of the (2, 2) 
matrix A can be condensed into a sum of two terms. It follows that eA 

can be written as 

(G-19) 

Although I will not prove it here, a consequence of the Cayley 
Hamilton theorem is thatEq. (G-19) is also satisfied by the eigenvalues 
of A, as in 

eAt= lzoi +~ ~ 

e~ =hoi+~~ 

These two equations can be solved for 1zo and ~. 

(G-20) 

In general, functions of the (n, n) matrix A can be condensed into 
a sum of n terms containing up to the n - 1 th power of the matrix A. 
Hopefully, you will agree that the Cayley-Hamilton theorem is quite 
handy. In App. H, the Cayley-Hamilton theorem is applied to the 
development of the discrete time state-space equations. 
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G-13 Summary 
Like the Laplace transform, matrices frequently occur in control 
engineering and are quite useful for condensing the mathematics, 
especially in the state-space approach. This appendix has covered 
only a few features of matrices such as the transpose, the inverse, the 
Cayley-Hamilton theory, and eigenvalues, which are used elsewhere 
in the book. 
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APPENDIX H 
Solving the 

State-Space 
Equation 

1: appendix will address the solution of the state-space 
equations in two ways. The first, for the special case of a constant 
mput, attempts to show the parallels between the mabix 

approach and the scalar approach in App. E and Clap. 3. Although it 
may be considered an interesting example of applying the mabix bicks 
presented in App. G, it can get quite involved so you may want to scan 
it first before diving in. The second approach uses the integrating factor, 
is more general, and may be a little easier to follow. 

H-1 Solving the State-Space Equation In the Time 
Domain for a Constant Input 

In Clap. 5 we introduced the state-space formulation, namely, 

d 
-X=AX+BU 
dt 

Y=CX 

As with our scalar first-order differential equation, we break the 
state-space solution up into two parts: the homogeneous part and the 
particular part: 

X=X11 +X, 

To make life simple, assume that the input is a constant vector Uc 
of size (p, 1). This means that the vector B must have size (n, p). Start 
with the particular part of the state-space equation because in this 
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case it is easier. Try a solution X'-' a size (n, 1) vector which is constant 
since the input is a constant, as in 

d 
dt X, = 0 =AX,+ BU, 

(n,tl)(tl, 1)(n, f)(f,1) 

O=AX,+BU, 

AX, =-BU, 

(n, 1)(n,Jt)(Jt, f)(f,1) 

X =-A-1BU p c 

where we have used the inverse of the square, size (n, n) A matrix 
which we assume exists. This requirement will be satisfied if the 
determinant of A is nonzero. 

The homogeneous part of the solution Xh comes next and it 
satisfies 

where the size of Xh is (n, 1) and that of A is (n, n). Try a solution with 
an exponential form 

where C is an unknown column vector of size (n, 1) and A is a scalar. 
The result of trying this solution is 

(H-1) 
(A-Al)C=O 

Note that both sides of Eq. (H-1) have been divided by eM because 
it is a scalar. However, we can not "divide" both sides of Eq. (H-1) by 
C because C is a column vector and does not have an inverse. 

The solution of Eq. (H-1) will yield the eigenvalues of A, namely 
A.,~,~ ... , A" and the eigenvectors of A, namely C1 ,C2, C31 ... , C". As 
pointed out in App. G, the directions of these eigenvectors can be 
found, but the magnitudes are not determinable. The solution to the 
homogeneous differential equation therefore is a sum of the n 
exponential terms weighted by the eigenvectors, as in 
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X =C eAt' +C e~' +···+C eA,t h 1 2 n 

(H-2) 

Hopefully the reader can see parallels with the approach to 
solving first- and second-order differential equations presented 
earlier in App. E. You may want to think twice about continuing this 
section. 

In Eq. (H-2) the size (n, 1) Xh vector is the dot product between a 
row matrix containing the size (n, 1) column vectors C1 i = 1, nand a 
size (n, 1) column vector containing the scalar exponentials. This is a 
valid matrix multiplication because the number of columns in the 
left-hand row matrix (whose elements are column vectors) is nand 
the number of columns in the right-hand column vector, whose 
elements are scalars, is also n. Equation (H-2) is a n-dimensional 
extension of the kind of equations we used when solving the second­
order differential equation. 

Perhaps the reader remembers that only the directions of the 
eigenvectors are known so that we could write them as C.= b.B. 
where B;is a known size (n, 1) vector with a magnitude of unity that 
contains the direction of C; and b; is the unknown scalar magnitude of 
the ith eigenvector. 

This means that Eq. (H-2) could be rewritten as 

(H-3) 

These last equations could be a bit off-putting. The reader is 
encouraged to wade through them. Remember that the leftmost row 
vector on the right-hand side of Eq. (H-3), namely, 
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actually contains n size (n, 1) vectors and therefore can be considered of 
size (n, n) or if we look just at the elements of the matrix then it is a row 
matrix of size (1, n). 'fl¥lt is, it can be considered a square matrix 
which we will denote as B so as to keep it from being confused with the 
input matrix B. 

As with the first-order differential equation that we solved in 
Chap. 3, we need to combine the particular solution with the 
homogeneous solution before we can apply the initial conditions and 
find the values of the b/ s. The sum of the two parts of the solution is 

(H-4) 

Assume that the initial value of the X vector is known as X
0 which is 

also a size (n, 1) vector. Then, applying this condition to Eq. (H-4), 
remembering that the elements in the vector of exponentials are all unity 
when t = 0, gives 

(H-5) 

The only unknown in Eq. (H-5) is the column vector containing 
the b.'s. To solve for that column vector we multiply both sides of 
Eq. (i.f-5) by the inverse of B. 

(H-6) 

Since 8-18 =I, Eq. (H-6) can be solved for the column vector 
containing the b;'s. 
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Therefore, the solution to the state-space equation for the special 
case where the input is a constant (as in a step change at time zero) is 

(H-7) 

For the sake of comparison to what we did with the first-order 
process model in the book, we could try to expand Eq. (H-7). However, 
it would get us unnecessarily deeper into matrix manipulations so 
we will pass on to the next section which is a little cleaner and more 
general. The reader might want to redo Eqs. (H-1) through (H-7) with 
n = 1 and p = 1 and see how those equations collapse into the equations 
derived early for one dimension. 

After all the considerable matrix dust has settled, the reader 
should see that (1) the solution of the state-space equation depends 
on the eigenvalues and eigenvectors of the A matrix and that (2) the 
eigenvalues, which end up as the arguments of exponentials, 
should all have negative real parts if stability is to be obtained. The 
reader had to navigate through some serious matrix manipulations 
that should stand him in good stead for the other parts of this 
book ... or not. 

Question H-1 Can you check that Eq. (H-7) is a multidimensional version of the 
scalar equation that we derived earlier, namely, Eq. (E-6)? 

Answer Make the following pairings 

y" = Ce111 <=> x1, = CeAl 

l<=>n l<=>p 

I n 

d 
-x=Ax+Bu 
dt 

y = Ce r <=> x = l',btBkeAt1 

k=l 
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or 

So, the manipulations for the simple first-order differential equation are 
in many ways parallel to those for the multidimensional state space. It is 
worthwhile to wade through the n, p dimensional approach and collapse it to 
one dimension. 

Question H-2 What is a difference between the unity matrix 

and a column vector of ones 

[-~} 
Anlwlr The unity matrix multiplies any matrix or vector of correct dimension 
and produces that same matrix, as in 

IA=A=Al or lx=x=xl 

However, a column of ones generates a new vector as in 

(!)La bJ=(: :) 
Thissubsectionhasbeen tough sledding and relatively unimportant. 

The next subsection on the integrating factor is more important and 
easier to follow. 
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H-2 Solution of the State-Space Equation Using 
the Integrating Factor 

The matrix approach in the time domain has some interesting and 
perhaps elegant features but the reader can see that if the process 
input were nonconstant then the approach given in Sec. H-1 would 
be insufficient. However, it is possible to extend the integrating factor 
that was used for the first-order differential equation (in App. F) into 
n dimensions. 

The state-space differential equation can be written as 

d 
-x-Ax=BU 
dt 

(H-8) 

Upon applying an integrating factor of e-At , which is a matrix of 
size (n, n), Eq. (H-8) becomes 

e-At .!!_x-Axe-At = e-AtBu 
dt 

The left-hand side is an exact differential, as in 

Therefore, the following manipulations should be relatively straight­
forward. 

First, change the differential equation slightly to enable integration 

I I 

I d(e-A1x) =I e-AvBU(v)dv 
0 0 

Carry out the integration on the left-hand side by observation 

t 

e-Atx- x
0 
=I e-AvBU(v)dv 

0 

Multiply both sides by eAt which is a square matrix with the same 
dimensions as the matrix A. 

I 

x=eA1x
0
+ IeAte-AvBU(v)dv 

0 

I 

x=eA1x
0
+ IeA(I-v}BU(v)dv 

0 

(H-9) 
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Note that the inverse of the integrating factor is straightforward. 

(e-At>-1 =eAt 

e-At eAt= 1 

Everything here is in parallel with the development of Eq. (F-43) in 
App. F which was for the first-order scalar process model. There are, 
however, a couple of interesting differences. First, the integrating factor 
is a matrix e-At of size (n, n). Second, we will give the inverse of the 
integrating factor a name, namely, the fundamental matrix (also sometimes 
called the transition matrix), 4>(t) = eAt, so Eq. (H-9) becomes 

t 

x = 4>(t)x0 +I 4>(t- v)BU(v)dv 
0 

(H-10) 

The fundamental matrix is analogous to the impulse response in the 
convolution integral ofEq. (F-44). Now, if the process input U is variable, 
in principle, the process response can be found using Eq. (H-10). 

H-3 Solving the State-Space Equation In the Laplace 
Transform Domain 

You must have been wondering how long it would take me to conjure 
up the Laplace transform, once we got cracking with the state-space 
equations. The procedure is relatively straightforward as shown in 
the following. 

d 
-x=Ax+BU dt 

si(s)- x(O) = Ai(s) + BU(s) 

(sl- A)i(s) = x(O) + BU(s) 

i(s) = (sl- A)-1 x(O) + (sl- A)-1 BU(s) 

The inverse Laplace transform gives x(t) 

x(t) = L-1{(sl- A)-1 x(O)} + L-1{(sl- A)-1 Bii(s)} (H-11) 

From Eq. (H-9) we had 

I 

x= eA1x
0 
+I eA<t-v)BU(v)dv 

0 

so, comparing the two equations suggests the following 

L-1 { (sl- A)-1 x(O)} = eAtx0 
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and 

t 
L-1{(sl- A)-1BU(s)} = J eA(t-v)BU(v)dv 

0 

This further suggests that 

From App. G, the inverse of a matrix is given by 

A-t- Adj(A) -v 
Therefore, Eq. (H-12) can be written 

(H-12) 

(H-13) 

The inverse is the matrix Adj(sl- A) divided by the scalar determinant 
lsi-AI· 

This is analogous to inverting the scalar Laplace transforms in 
App. F where the roots of the denominator of the Laplace transform 
in question (the poles of the Laplace transform in question) were 
directly related to exponential terms. Also, the real part of those roots 
had to be in the left-hand side of the s-plane for there to be stability. 

The determinant lsi- AI generates a polynomial ins and the roots 
of that polynomial are the eigenvalues of the matrix A. These roots, s1, 

s2,. • • ,sn, correspond toe'·' terms in the time domain solution for x. 

H-4 The Discrete Time State-Space Equation 
In Chap. 9, a transition from the continuous time domain to the 
discrete time domain was made via step-change inputs to the scalar 
first-order model. 

-r~~ +y=gU(t) 

lr ( '') y(h)=yaer+gUh 1-er 
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Earlier in this Appendix, the continuous time state-space equation 
was solved as follows: 

d 
-X=AX+BU 
dt 

Y=CX 
t 

x(t) = eAt x 0 + J eA(t-v)B U( v)dv 
0 

(H-14) 

When the process input is constant at the value U; over a time 
interval of size h between t; and ti+t Eq. (H-14) can be written as 

(H-15) 

where the order of the multiplication of the matrices is important. 
For the sake of brevity and ease of bookkeeping, Eq. (H-15) will be 
written as 

(H-16) 

r=A-1(eAh -I)B 

Equation (H-16) shows that in the multidimensional case, the 
state and process input satisfy a simple discrete time indexed matrix 
equation. 

For the case of the underdamped process covered in Chap. 6, we 
have in the continuous time domain 

.!!._(x1)-( 0 
dt x2 - -to; -~a>J;}(g~)u 

A=(-~ 
" 

-~0>.) 
(H-17) 

B=(g~) 

y =(1 o>(::) H=(1 0) 
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By combining knowledge of the A and B matrices from Eq. (H-17) 
with knowledge of the Cayley-Hamilton theorem in App. G, one 
could compute numerical values for the size (2, 2) <!) and r matrices 
relatively straightforwardly. For example, with '= 0.1, h = 0.5, and 
the other parameters scaled to unity, one can calculate the following 

<!) = Ah = ( 0.88154 0.45624) 
e -0.45624 0.79029 

r=A-l(I- AI•)B=(0.11845) 
e 0.45624 

At this point, one is ready to use the discrete time form of the state­
space equation for the underdamped process. 

If you or your control engineer associate is familiar with the 
software tool, Matlab, then the above can be done quite quickly with 
the following Matlab script: 

zeta=.7; 
omega=l; 
h=l.; 
g=l; 
A=[O 1;-omega~2 -2*zeta*omega]; 
B=[O;g*omega~2]; 

GsysD = c2d(ss (A, B, [1 0] 1 0) 1 h 1 I zoh I); 
[AD1BD1CD1DD] = ssdata(GsysD); 

AD 
BD 

The built-in functions c2d and ssdata do the calculations 
seamlessly. The last two lines simply ask for the numerical values of 
the matrices AD and BD to be displayed. As with many mature 
software packages, there are several ways to carry out the same 
calculation other than that shown in the above script. 

H-5 Summary 
The continuous time state-space equation was solved in two ways. 
The first approach, for the case of a constant input, showed parallels 
with the approach for the scalar first-order model. The second 
approach used the integrating factor and was both more general and 
easier to develop. 

The discrete time state-space equation was developed from 
the continuous time domain equations in a manner similar to that 
done in Chap. 9. A simple Matlab script showed how one might 
generate numerical values for the discrete time version if one has 
information about the continuous time version. 
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APPENDIX I 
The Z-Transform 

I n Chap. 9 we uncovered the Z-transform by starting with the 
time domain solution of the first-order model in response to a 
step change in the process input. The process input was divided 

into a series of steps of different value separated by a constant time 
interval h. The time domain solution for the process output was 
appropriately modified. The back shift operator z-t was introduced 
and the time domain solution was converted to a Z-transform. This 
"backdoor" approach is similar to that in Chap. 3 (and App. F) 
where we used the Heaviside operator p (or s) to replace derivatives 
and generate algebraic equations; a technique that led to the Laplace 
transform. 

The act of breaking the process input into a series of contiguous 
steps of constant value separated in time by a constant interval 
is, in effect, the same as repeatedly sampling the process input 
every h seconds and holding it at that sampled value over the 
subsequent interval lasting h seconds. To develop a rationale for 
the Z-transform, the sampling and the holding process have to be 
quantified. In this appendix the Laplace transform will provide a 
starting place. 

1-1 The Sampling Process and the Laplace 
Transform of a Sampler 
Sampling a continuous signal at a constant time interval can be 
accomplished by modulating the signal with an infinite sequence of 
pulses. If the continuous signal to be sampled is y(t), then the sampling 
is equivalent to multiplying the signal by an infinite string of Dirac 
deltas (see App. F), as in 

00 

y•(t)= LY(t)6(t-kh) 
k-0 (I-1) 

= y(t)6(t) + y(t)6(t- h)+ y(t)6(t- 2h) + ... 

455 
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where y•(t) denotes the sampled signal. As mentioned in App. F, the 
Dirac delta 6(t) is defined as a pulse 

6(t) = 0 for h~ 0 

undefined for t = 0 

00 

but I dt6<t> = 1 
0 

The last expression with the integral specifies that the Dirac delta 
has unit area. The definition says nothing about the height or width 
of the pulse. Also, as part of its definition, the Dirac delta can "pluck" 
the integrand from an integral, as in 

00 

I dt t<t>6<t- -r> = t<-r> 
0 

This definition suggests that Eq. (1-1) might yield the following 
values: 

00 

y·(h I 2) = LY(h I 2)6(h I 2- kh) = 0 
k-0 (1-2) 

00 

y·(2h)= LY(2h}6(2h-kh)= y(2h}6(0)=7 y(2h) 
k-0 

Equation (1-2) for y • (2h) is a little bit shaky (hence the? mark) because 
of the rather nebulous definition of the Dirac delta function. Nowhere in 
the definition of the Dirac delta do we specify that 6(0) = 1 which 
Eq. (1-2) implies. We will not pursue this here; consider it a mathematical 
slight of hand that many respected authors tend to gloss over and let it 
go. Instead, we will move immediately to the Laplace s-domain where 
the discomfort in Eq. (1-2) will perhaps be ameliorated. 

The Laplace transform of the sampled signal can be written as 

00 

L{y•(t)l = f(s) =I dte-sty•(t) 
0 

= j dte-stfy(t)6(t- kh) 
0 k-0 (1-3) 

= f,j dte-sty(t)6(t-kh) 
k-Oo 
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In the third line of Eq. (I-3) the order of the summation and the 
integration is exchanged. In going from line three to line four, the 
11plucking" feature of the Dirac delta function has been applied (does 
this truly make Eq. (1-2) more bearable?). Frankly, you might have to 
look at Eq. (I-2) as an artificial starting point, chosen because it leads 
to a useful result. 

The simple change of variable z = e51' converts Eq. (I-3) into 

00 

LY(kh)z-k 
k=O 

which is the Z-transform of y(t) or y(z), as in 

00 

Z(y(t)} = y(z) = LY(kh)z-k (1-4) 
k=O 

Therefore, the Z-transform is a somewhat cunning result of 
applying the Laplace transform to a sampled signal (a signal modulated 
by an infinite train of impulses). By the way, remember that change of 
variable, z = esh; we will refer to it later in this appendix. 

1-2 The Zero-Order Hold 
Chapter 9 introduced the zero-order hold by modifying the time 
domain solution of the first-order process model when the process 
input is a contiguous series of steps. The backshift operator was 
inserted into the modified equation and the result was called a 
Z-transform. We need to quantify this operation by finding the 
Laplace transform transfer function of the zero-order hold. The term 
11transfer function" is used because the zero-order hold operates on 
an input and generates an output. In App. F the step response of a 
process described by the transfer function G(s) was shown to be 

where 1 Is represents the Laplace transform of a unit step at time zero. 
Likewise, the impulse response of a process described by G(s) was 
shown to be 

L-1 (G(s) 1} = L-1 (G(s)} 

where 1 represents the Laplace transform of a unit impulse at time 
zero. 
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Therefore, the transfer function of the zero-order hold will be 
developed by starting with its impulse response in the time domain 
and working backward. If the input is a unit pulse at time zero, then 
the zero hold should generate an output consisting of a step that lasts 
for h seconds during the interval 0 S t < h, as in 

(1-5) 

where U(t) is the unit step function at time zero and n,,(t) is the 
symbol denoting the zero-order hold having an interval of h. The 
Laplace transform of n,,~) can be obtained from Eq. (1-5) by __ taking 
the Laplace transform of U(t) and subtracting the transform of U(t- h). 
Referring to App. F, if necessary, one finds that the Laplace transform 
of the time domain function in Eq. (1-5) is 

- 1 e-sh 
L{nh(t)} = nh(s) =--­

s s 

1-e-sh 
---

5 

(1-6) 

Before applying Eq. (1-6), a small repertoire of Z-transforms will be 
developed. 

1-3 Z-Transform of the Constant (Step Change) 
Consider the transform of a constant C. 

00 00 

Z{C} = Lcz-k =CLz-k = C(1+z-1 +z-2 +z-3 +···) 
k-0 k-0 

=C-1-
1-z-1 

(1-7) 

where the reader can verify the second line of Eq. (1-6) by long 
division. For the long division to be valid, the infinite series must 
converge which is ensured if lz-11 < 1 or lzl > 1. Since transformed 
quantities are assumed to be zero for t < 0 , Eq. (1-7) is also the 
Z-transform of a step change at t = 0 . More formally, we can write 

" 1 z 
Z{U(t)} = --_1 =-

1-z z-1 
(1-8) 

By the way, do not confuse the rounded hat of the Z-transforms, 
as in Y(z), with the sharp hat of the unit step change, as in U(t). 
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Questlolll-1 What is the Z-transform of a step change starting at t = nh ? 

Z(U(t-nh)J = fu(tk -nh)z-k =(O+···+z-" +z-,_1 +z-n-3 +···) 
k-0 

= z-"(l+z-1 +z-2 +···) 

1-4 Z-Transform of the Exponential Function 
The exponential function e-at in the continuous time domain becomes 
e-aih, i = 0, 1, 2, ... in the discrete time domain. The Z-transform is 

00 00 

Z(e-aihJ = Le-akhz-k = L(e-ilhz-l)k 
k-0 k-0 

1 (I-9) 

z 
= z-e-ilh 

As with Eq. (1-7), long division has been invoked and convergence of 
Eq. (1-9) requires that ~-ahz-11 < 1 or lzl > e-ah. 

1-5 The Kronecker Delta and Its Z-Transform 
In the discrete time domain, the unit pulse or Kronecker delta B(k- n) 
is simply an isolated spike of unit magnitude at time tn = nh (not a 
Dirac delta function 6(t) which in this book has no sharp hat) as in 

B(k-n)= 0 ki* n 

=1 k=n 

Analogously to the Dirac delta function, the Kronecker delta can 
also "pluck" a value, not from an integral but from a sum, as in 

f,y(k)6(k-n)= y(n) 
k-0 
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The Z-transform of the Kronecker delta is 

Z{B(k-n)} = f,B(k- n)z-k = cS(O- n)1+B(l- n)z-1 
k-0 

+8(2-n)z-1 +···+8(n- n)z-n +··· 

=0+0+0+···+z-n +··· 

For the special case of a Kronecker delta at time zero, the Z­
transform is simply 

00 

Z{6(k)} = L6(k)z-k = 6(0)1 + 6(1)z-1 + 6(2)z-1 + ... 
k-0 

=1 

1-6 Some Complex Algebra and the Unit Circle 
In the z-Piane 

The Laplace transform variable s was shown to be complex in App. F. 
Its domain was the complex plane and we found that poles of a 
transfer function had to occur in the left-hand side of the complex 
plane for Laplace transforms to represent stable functions. The 
Z-transform variable z is also complex and Z-transforms also have 
poles. The Z-transform of the exponential function in Eq. (1-9) has a 
pole at a value of z that causes the denominator of the Z-transform to 
vanish, that is, that satisfies 

or 

or 

Since both a and hare real and positive, the pole is real, and lies on the 
positive real axis. Furthermore, it lies inside the unit circle in the 
complex z-plane, defined by lzl = 1 because k-llhl < 1. 

The idea that lzl = 1 defines a unit circle can be understood as 
follows. Since z is a complex number it can be written as a phasor or 
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vector z = lzlei8 where lzl is the magnitude of the vector and 8 is the 
angle of the vector with the x-axis (see App. B). If the magnitude is 
constant at unity and the angle is allowed to vary from 0 to 21r , a 
circle with unit radius is described in the complex z-plane. The pole 
of the Z-transform for the exponential function e·ail,, i = 0, 1, 2, ... , lies 
inside the unit circle at e-al, and, as long as a > 0, the function is 
bounded. 

Had we been working with eat or eail•, i = 0, 1, 2, ... , where a> 0, 
we could formally show that the Z-transform would look like 

00 00 

Z{eaih} = l',eakhz-k = l',(ea''z-l)k 
k=O k=O 

(1-10) 

But this is, in fact, a formality because we can conclude simply by 
observation that this infinite series will not converge. We also see that 
the pole of Eq. (1-10) lies at z = eRh which is outside the unit circle on the 
positive real axis in the z-plane because leal' I> 1. This suggests that the 
unit circle in the z-plane plays an analogous role to the imaginary axis 
in the s-plane. More about this later in this appendix. 

I· 7 A Partial Summary 
So far we have developed three Z-transforms and we know, from 
App. F and Chap. 3, the associated Laplace transforms. The following 
table summarizes this. 

The Z-transform for the zero-order hold will be developed in the 
following section. 

Laplace 
Function Transfonn Z-Transfonn 

Dirac delta or Kronecker delta L{6(t- a)}= e-sa Z{6(k- n)J = z-n 

Step Change at t = L = Nh 
e-sL z-N 
-

1-z-1 5 

Exponential Function e-at = e-iah 1 z -- z-e-al1 s-a 

TABLE 1-1 Laplace and Z-transforms for Three Functions 



462 Appendix I 

1·8 Developing Z·Transform Transfer Functions 
from Laplace Tranforms with Holds 
If the process model is described by G(s) and if there is a sampler/ 
zero-order hold applied to the process input, what is the Z-transform 
transfer function that can be used to find the process output? In Chap. 9 
we arrived at an answer by developing the time domain solution for 
a piecewise stepped process input and then applied the backshift 
operator. Here, the following must be evaluated: 

Start with the first-order process where 

G(s)- g 
- -rs+1 

Remember that the zero-order hold Tih(t) has the Laplace 
transform of 

So, now we must evaluate the following: 

y(z) - z{1-e-slr g } uw- -S-TS+1 

It is simplest to manipulate the expression a little and use partial 
fractions. 

z{1-e-slr g } - z{ (1 -str) 1 } 
-s--rs+1 - g -e s(-rs+1) 

(I-ll) 

where partial fractions were used to expand 1 I [s( -rs + 1)] (see App. F 
for the algebraic manipulations). Using the table given in Sec. 1-7, we 
can write the Z-transforms for 1 Is and 1 I (s + 1 I -r) immediately. 



The Z-Tra1sform 463 

Furthermore, we know that z-1 corresponds to e-slr. Therefore, 
Eq. (1-11), by inspection, becomes 

y(z) = zjg(1-e-sh)(!--
1-)l= g(1-z-1)( 

1 
-1 

1 
h ) (1-12) U(z) s 1 1-z 

1 
- 1 s+- -e ,z-

-r 

To make sense out of Eq. (1-12) one simply collects coefficients of 
the backshift operator z-1 and after a little algebra, one obtains 

or 

j(z)=e ! r 1j(z)+ g(l-e !}-•ii(z) 

which is the same as Eq. (9-6) which is 

y1 =y._1e~+g(l-e !)u,_, i = 0, 1, 2, ... 

(1-13) 

(1-14) 

Therefore, we have shown the effect of the zero-order hold in 
both the time and the Z-domains. 

1·9 Poles and Associated Time Domain Terms 
In Sec. 1-7 we hinted at a general feature of the Z-transform where 
poles in the Z-domain correspond to terms in the time domain 
containing Crk where Cis a coefficient, k is the sample index, and r is 
a pole of the Z-transform. To illustrate this concept, consider Eq. (1-13) 
which can also be written as 

= g(l-e~) 
,, 

z-e' 
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If the process input is a step or a constant with a value of U,, 
then 

- u z 
U(z)=-'­

z-1 

so, the process output can be written as 

(I-15) 

The same approach used for inverting Laplace transforms will 
be used here. First, partial fractions can be used to expand Eq. (1-15), 
as in 

y(z)=gU,(z~1- z h) 
z-e r 

(I-16) 

Second, from the above developments, we can pick off the two 
time domain functions associated with the two terms in Eq. (1-16), 
as in 

(I-17) 

There should be nothing startling about Eq. (1-17) but I show it 
because it points to the fact that the two poles in Eq. (I-15), at e-h/1' and 
1.0, lead to two terms in the time domain of the form 

(I-18) 

Therefore, one might induce a general rule that the poles in the 
z-plane must lie inside or on the unit circle for there to be stability. 
Furthermore, a pole at z = r corresponds to a time domain term of rk 
and a pole at z = 1 leads to a constant. Finally, as the position of the 
pole moves toward the origin of the z-plane, which is also the center 
of the unit circle, the transient will have shorter duration. For example, 
in Eqs. (1-17) and (I-18) one can see that, as the time constant T 

decreases, the pole location r2 moves toward the origin and the 
transient becomes shorter. 
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Before leaving this section we need to pointoutthe correspondence 
between the z-plane poles of a Z-transform and the s-plane poles of a 
Laplace transform. Remember that 

corresponds to 

-sh [1 1 ] g(1-e ) s---1 
s+­

T 

g(1-z-1)(~- \ ) 
1-z -- 1 1-e rz-

(1-19) 

(1-20) 

By inspection, Eq. (1-19) has poles at s = 0 and s = -1 IT. Those two 
poles in the s-plane correspond to the two poles in Eq. (1-20) located at 
z = 1 and z = exp(-h I -r), respectively. These two equivalences are 
special cases of the general relationship between the poles of a Laplace 
transform and a Z-transform given in 

(1-21) 

which was just the variable substitution made in the development of 
Eq. (1-4). 

1·10 Final Value Theorem 
Fittingly, we conclude the appendix with a handy trick called the final 
value theorem which we will present witJtout derivation. The final 
value of y(t), given the Z-transform Y(z), can be obtained the 
following operation: 

lim,_y(t) = limz-+1 (1- z-1 )Y(z) 

z-1-= limz-+1--Y(z) 
z 

Applied to Eq. (1-15), the final value theorem gives 

(1-22) 

( h) g 1-e"f 

li () -lim (1 -1)Y-( ) -1· z -1 U, z 
m,_y t - z-+1 -z z - lmz-+1 z _!! z-1 

z-e r 

_ . g(t-e{) _ 
-limz-+1 '' U, - gU, 

z-e r 
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which makes sense because in response to a unit step change the 
process output of a first-order model should settle out to the gain 
multiplied by the value of the input step. 

By the way, remember the final value theorem for the Laplace 
transform? 

What is the connection? In the Laplace domain, sis an operator 
that causes differentiation. In the Z-transform domain, 1-z-1 is an 
operator that causes differencing. 

1-11 Summary 
In Chap. 9, we used the backshift operator as a means of familiarizing 
ourselves with the Z-transform. In this appendix we took a more 
rigorous approach using the Laplace transform as a starting point. 

With this alternative approach in hand we developed the 
Z-transform of the zero-order hold and a couple of common time 
domain functions. The Kronecker delta was introduced and shown to 
be analogous to the Dirac delta. 

The poles of a Z-transform were discussed in a manner similar to 
that used with the Laplace transform. An important equivalence 
between the poles of a Laplace transform and Z-transform was 
discussed. Finally, the final value theorem was presented. 



APPENDIX J 
A Brief Exposure 

to Matlab 

Back in the early 1980s I got my first copy of Matlab. The slim 
manual began with, "If you feel you can't bother with this 
manual, start here." In effect, Matlab was presented using 

"backward chaining. " The manual quickly showed you what it could 
do and motivated you to dig into the details to figure out how you 
could avail yourself of such awesome computing power. Encountering 
Matlab was a mind-blowing experience (remember, this was circa 
1984 and most of us were using BASIC, Quick BASIC, and Fortran). 

Matlab mfiles consist of "scripts" which you write in a BASIC­
like language and which allow you to call many built-in incredibly 
powerful routines or functions to carry out calculations. For example, 
the function eig calculates eigenvalues of a matrix. You can use the 
Matlab editor to look at the eig function code and find out that "it 
computes the generalized eigenvalues of A and B using the Cholesky 
factorization of B. " Fortunately, you do not have to understand the 
Cholesky factorization to use the function-it is completely 
transparent. 

This appendix will show an example script with some comments 
(anything after a o/o is a comment) and let you take it from there. 

% Matlab Example script 
close all % close all existing graphs from previous 
% sessions 
clear % clear all variables 
% make up a (3,3) numerical matrix and display it 
Am=[l 2 4;-4 2 1;0 9 2]; 
disp ( I starting matrix 1 

) 

Am 
Aminv=inv(Am); %numerically calculate the matrix inverse 
and display 
disp([ 1 inverse I ]) 

Aminv 
disp([ 1 determinant = 1 num2str(det(Am))]) %determinant 
disp( 1 eigenvalues 1

) %calculate the eigenvalues 
eig(Am) 

467 
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% do some symbolic math 
syms R1 R2 R2 R3 s A1 A2 A3 rho A Ainv yt % declare the 
variables as symbolic 
% make up a matrix symbolically 
A=[rho*A1*s+1/R1 0 0 

-1/R1 rho*A2*s+1/R2 0 
0 -1/R2 rho*A3*s+1/R3 ]; 

disp('starting matrix') 
pretty(A) 
disp ( ' inverse' ) 
Ainv=inv(A); %invert the matrix symbolically 
pretty(Ainv) 
% invert a laplace transform 
disp('Laplace transform') 
pretty(1/(rho*Al*s+1/R1)) %a simple first order transform 
yt=ilaplace(1/(rho*A1*s+1/R1)) %invert the transform 
disp('inverse Laplace transform') 
pretty(yt) 
% generate a test sinusoid and plot it 
N=1000; 
t=O:N-1; 
y=sin(2*pi*t/50); 
figure(1) 
plot(t,y),grid %plot the sinusoid on a grid 
title('A Test Sinusoid') 
xlabel ( ' time' ) 
ylabel ( •y•) 
% put the signal through a filter 
tau=20; % filter time constant 
a=exp(-1/tau); %filter parameters 
b=1-a; 
n=[O b); %filter numerator 
d=[1 -a]; %filter denominator 
yf=filter(n,d,y); %apply the filter toy 
figure(gcf+1) % set up the next graph 
plot(t,y,t,yf),grid% plot the sine and the filtered 
signal 
xlabel ( ' time' ) 
legend('y', '{\ity}_{\itf}') %put subscripts in the legend 
ylabel('filter input & output') 
% develop the FFT of the filtered signal (1000 pts) 
YF=fft(yf); % (YF is a complex number) 
h=1; % assume sampling at 1 sec intervals 
fs=1/h; % sampling frequency 
f1=1/N; % fundamental frequency 
fNY=fs/2; % Nyquist frequency 
f=O:f1:fNY; % generate the frequencies in the Nyquist 
interval 
Nf=length(f); %number of frequencies 
mag=abs(YF); %calculate the power 
magplot=mag(1:Nf); %pick only the magnitudes in the 
Nyquist interval 
figure(gcf+1) 
set(gcf, 'DefaultLineLineWidth',1.5) %choose a thicker 



% line 
plot(f,magplot),grid 
xlabel('frequency') 
ylabel('Magnitude') 
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title('Power Spectrum of Filter output') 

Use the editor to save this script and give it a name, as in test. m. 
Then run in by entering the name at the Matlab prompt, as in 

>>test 

Use the help function to get information on the built-in functions, 
as in 

>> help filter 

FILTER One-dimensional digital filter. 
Y = FILTER(B,A,X) filters the data in vector X with the filter 

described by vectors A and B to create the filtered data Y. The filter is 
a "Direct Form II Transposed" implementation of the standard 
difference equation: 

a(l)*y(n) = b(l)*x(n) + b(2)*x(n-1) + ··· + b(nb+l)*x(n-nb) 
- a(2)*y(n-1) - ··· - a(na+l)*y(n-na) 

If a(1) is not equal to 1, FILTER normalizes the filter coefficients 
by a(1). 

FILTER always operates along the first non-singleton dimension, 
namely dimension 1 for column vectors and nontrivial matrices, and 
dimension 2 for row vectors. 

[Y,Zf] = FILTER(B,A,X,Zi) gives access to initial and final 
conditions, Zi and Zf, of the delays. Zi is a vector of length MAX 
(LENGTH(A),LENGTH(B))-1 or an array of such vectors, one for 
each column of X. 

FILTER(B,A,X,[),DIM) or FILTER(B,A,X,Zi,DIM) operates along 
the dimension DIM. 

See also FILTER2 and, in the Signal Processing Toolbox, 
FILTFILT. 

>> 

Overloaded methods 

help par/filter.m 
help dfilt/filter.m 
help cas/filter.m 

I also use Matlab's Simulink extensively but I will leave it to the 
reader to figure it out, other than to say that it is equally friendly and 
powerful. Aside from the basic Matab and Simulink packages, I use 
the following toolboxes in the book: control systems, signal processing, 
symbolic and system identification. 
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-A-
Actuator,3 
Aliasing, 262, 382 
Autocorrelated disturbances, 7 
Autocorrelation, 3 

sample,209 
Autoregressive filters, 263 
Autoregressive sequences, 

5, 215,218 
Average, 206, 207, 228 
Axial transport and lumping, 200 

-a-
Backshift operator, 228 
Block diagram algebra, 59 
Bode plot 

dBunits,82 
graphing trick, 85 
linear units, 82 
PI control, 97 

-c-
cascade control, 4, 12, 328-332 
Cayley-Hamllton theorem, 438 
Characteristic equation, 438 
Colored noise, 231 
Common sense approach, 19 
Compensation by feedback before 

control, 165-174 
Complex conjugate, 81, 359 
Complex numbers, 54, 357 
Conservation of mass, 39 
Constitutiveequation,40 
Continuous stirred tanks, 195 
Control development, 26 
Control engineer, 15 
Controlling white noise, 230 
Convolution theorem, 409 
Comer frequency, 86, 98 

Index 
Covariance, 225 

propagation of, 289 
Critical damping, 51, 146 
Critical gain and critical frequency, 

138 
Critical values and poles, 139 
Cumulative line spectrum, 212 

-o-
o I A converter, 246 
dBunits,83 
Dead-time controller, 

256-269 
Dead-time 

computation of in simulations, 114 
pure, 99-105 

Debugging control algorithms, 29 
Delta operator, 37 
Derivative 

integral relationship, 349 
rate of change, 346 

Derivative control, 156 
Determinants, 428 
Determining model parameters, 

274 
Deterministic disturbances, 4, 5 
Diamond road map, 20 
Differencing data, 224 
Dirac delta function, 279,398,456 
Discontinuity, 43 
Discrete time domain, 205 
Discrete time state-space equation, 

273,451 
Disaetizing a partial differential 

equation,197 
Distributed processes, 177,180 
Disturbance removal, 98 
Documentation, 35 
Double pass filter, 267 
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-E­
Eigenvalues 

closed and open loop, 306 
and eigenvectors, 129, 433 

Ergodicity, 228 
Error transmission curve or function, 

66,95,156 
Euler's equation, 79, 361, 392 
Expected value, 227, 228 
Exponential filter, 243 
Exponential form of Fourier series, 

376 

-F-
Fast Fourier Transform (FFT), 373 
Feedback control, difficulty of, 9 
Feedforward and feedback 

controllers 
combining, 8 
comparison, 7 

Feedforward control, 3 
Feeding back the state, 165, 171 
Filtering derivatives, 163, 243, 263 
Filters and processes, 243, 335 
Final value theorem, 63, 400, 465 
First-order process, 37, 39 
Folding frequency, 371 
Fourier series, transform, 369 
FOWDT process, 107-113, 244 
Frequency domain 

analysis, 23 
filtering, 271 
sampling and replication, 262 

Fundamental frequency, 370 
Fundamental matrix, 450 

-G­
Gain margin, 98 
Gaussian distribution, 208 
Glass manufacturing process, 10 

-H­
Harmonics, 370 
High-pass filters, 269 
Histogram, 208 
Homogeneous part of solution, 

389 -·-Impulse response, 279, 404 
Incremental form of PI controller, 

245 
Instability, 44 

Integral 
approximation of, 344 
area,339 
90 deg phase lag, 94 

Integral control and state space, 303 
Integral only controller, 246, 301, 321 
Integrating factor, 410,449 
Inverse matrix, 429 

-K­
I<alman filter, 286-298 

continuous time, 316 
dynamics of, 296 
gain,290 
use of in control, 299 

Kolmogorov-Smimov (K-S) limits, 
212 

Kronecker delta, 459 

-L--
Laplace transform, 57, 395 

applied to PDEs, 414 
of derivatives, 61, 400 
history, 418 
state space, 425, 450 

Least squares, 372 
linespec~,212,374,377 
linearization, 40 
Lumped processes, 177 

control of, 310 
Lumping, 194 

-M-
Magnitude and phase for POE, 

417 
Mass/spring/dashpot model 

process, 145 
Massive cross correlation, 22 
Mathematical modeling, 18 
Matlab scripts, 131, 135, 468 
Matrices,421 

for third-order models, 125 
Matrix exponential function, 

432 
Mean,229 
Minimization algorithm, 135 
Minimum and maximum of a 

function, 351 
Minimum phase, 109 
Moving average filters, 263 
Moving average stochastic 

sequences, 220 
Multitank model processes, 

140-143 



=N= 
Noise 

impact on derivative control, 162 
process and measurement, 286 

Nonhomogeneous part of solution, 
389 

Nonstahonary stochastic sequences, 
223 

Nyquist frequency, 371 
Nyquist interval, 371 

= 0-------' 
Open loop sinusoidal response, 87 
Optimal control, 315 
Orthogonality, 372, 376 
Owrdamped response, 52 

=P= 
Padding, 379 
Parhal differential equations, 

182,413 
Parhal fractions, 60, 68, 406 
Parhtioning of matrices, 424 
Phase angle, 82 
Phase margin, 98 
Phasors, 360 
PifD controller, 163,247 
Pole placement, 296 
Poles, 67, 463 

time domain exponentials, 69 
Pole-zero cancellahon, 161 
Population characteristics, 206, 

227,227 
Populations of stochastic sequences, 

226 
Positional form of PI controller, 

245 
Power spectrum, 25,374,377 
Practical method for determining 

parameters, 278 
Probability density, 227 
Process disturbances, 5 
Process gain, 38 
Proportional control, 44, 322, 324 

offset, 46 
Proportional-integral control, 48, 244, 

310, 322 
offset, 48 

Proportional-integral-deri\·atiw 
control, 156, 324-327 

-Q= 
Q method for designing controllers, 

249-256 
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=R= 
Realizations of stochastic sequences, 

226 
Reset time, 251 
Ringing, 145 
RLC analog to mass/dashpot/spring 

process, 174 

=s= 
Sample average, 207 
Sample characteristics, 206 
Sample variance, 207 
Sampling and replication, 378 
Sampling and zero-holding, 239 
Sampling frequency, 370 
Sampling interval, 206, 370 
Scaling, 41, 152 
Second-order differential equation, 

391,408 
Sinusoidal input response, 76 
SMILH, 17 
Space constant, 179 
Spectral analysis, 369 
Stability requirement \'ia phase and 

magnitude, 91 
Standard deviation, 206,208 
State-space approach, 127, 151, 202 
State-space equation, solving, 445 
Stationary stochastic sequences, 228 
Statistical process control (SPC}, 332 
Steady state part of solution, 50 
Steady state sinusoidal response, 82 
Step change response analysis, 25 
Step response, 406 
Stochastic disturbances, 4, 206 
Strange motel shower stall control, 317 

=T= 
Taylor's series, 200, 385 
Thermal energy balance, 178 
Third-order process models, 121 
lime constant, 38 
lime domain process analysis, 23 
Torncelli's la·w, 40 
Total derivahw, 182 
Transfer bv diffusion, 182 
Transfer funchon, 58,239,404 
Transient part of a solution, 50, 390 
Transpose of matrix, 427 
Tubular energy exchanger, 177 

=U= 
Unautocorrelated disturbances, 7 
Underdamped process, eshmating the 

state, 291 
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Underdamping, 54, 145 
Unit circle, 4.60, 464: 
Unstable stochastic sequences, 223 
Using the process to debug control, 33 

-v-
variance, '111l, 229 
Variance and discrete Fourier 

transform, 380 
Vecton,421 

-·­White noise, 206, 230 
White noise inputs for process 

identification, 219 
White noise, control of, 161, 230, 332 

-z-
Zero-order hold, 239, 457,462 
Zeros,67 
Zrtransform, 236, 238, 455 
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