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1

Taking a general view of the present state of the art in terms of modeling and 
computation of manufacturing processes it appears that the finite element flow 
formulation is one of the most widespread numerical methodologies for the 
 analysis of complex, industrial metal forming and resistance welding processes.

The finite element flow formulation is capable of providing very efficient 
 computer programs that can take into account the practical non-linearities in the 
geometry and material properties as well as the contact change typical of the inter-
action between workpieces and tools to produce accurate predictions of displace-
ments, strain rates, strains, stresses, damage, temperature and current density, 
among other variables.

Nowadays, commercial computer programs based on the finite element flow 
formulation such as DEFORM, FORGE, QFORM and eesy-2-form are stand-
ard engineering tools for designing and optimizing metal forming processes. 
SORPAS, also based on the flow formulation, is the reference commercial com-
puter program for industrial resistance welding processes.

In contrast to the active role performed by manufacturing research groups dur-
ing the theoretical and numerical developments of finite element computer pro-
grams that were produced during the 1980s and 1990s [1], current practice seems 
to indicate a total or near-total engagement of the majority of these groups on 
applications rather than on developments. A critical gap was formed between the 
developers of the computer programs and the users having the know-how on the 
metal forming and resistance welding technologies.

This book deals with the above-mentioned gap between developers and users 
and it is designed with a three-fold objective:

•	 to provide readers with a better understanding of the fundamental ingredients in 
plasticity, heat transfer and electricity that are necessary to develop and proper 
utilize computer programs based on the finite element flow formulation;

•	 to discuss computer implementation of a wide range of theoretical and 
numerical subjects related to mesh generation, contact algorithms, elasticity, 

Introduction
Chapter 1

C. V. Nielsen et al., Modeling of Thermo-Electro-Mechanical Manufacturing  
Processes, SpringerBriefs in Applied Sciences and Technology,  
DOI: 10.1007/978-1-4471-4643-8_1, © The Author(s) 2013



2 1 Introduction

anisotropic constitutive equations, solution procedures and parallelization of 
equation solvers, among others;

•	 to draw from the fundamentals of the flow formulation to aspects of accuracy, 
reliability and validation of numerical modeling by presenting industrial exam-
ples related to the development of new products and to the optimization and 
increasing know-how of existing products and processes.

Besides special purpose examples taken from metal forming applications, which 
are included for enriching the presentation of specific theoretical and numerical 
contents, the last chapter is focused on industrial applications of joining technolo-
gies by metal forming and resistance welding. Joining technologies combine main 
aspects of plasticity, electricity and heat transfer for assembling individual com-
ponents to complete and useful end products and offer the possibility of select-
ing industrial applications that deal with state-of-the-art engineering concepts that, 
although not being commonly available in the open research literature, are a good 
option for establishing communication links between the developers of finite ele-
ment computer programs and the professional engineers having the know-how on 
metal forming and resistance welding technologies.

In order to get full benefit of the industrial applications included in the book, 
those readers who are not familiar with metal forming or resistance welding tech-
nologies may enjoy reading and exploring the reference handbooks provided by 
The American Society of Metals [2] and The Resistance Welding Manufacturers’ 
Association [3].

References

 1. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite element method. Oxford 
University Press, Oxford

 2. American Society of Metals (1988) Forming and forging. ASM International, Materials Park
 3. Resistance Welding Manufacturers’ Association (2003) Resistance welding manual. RWMA, 

Philadelphia



3

The governing equations for problems solved by the finite element method are 
typically formulated by partial differential equations in their original form. 
These are rewritten into a weak form, such that domain integration can be uti-
lized to satisfy the governing equations in an average sense. A functional � is set 
up for the system, typically describing the energy or energy rate and implying 
that the solution can be found by minimization. For a generic functional, this is 
written as

where the functional is a function of the coordinates xi and the primary variable 
ui being e.g. displacements or velocities for mechanical problems depending on 
the formulation. The domain integration is approximated by a summation over a 
finite number of elements discretizing the domain. Figure 2.1 illustrates a three-
dimensional domain discretized by hexahedral elements with eight nodes. The var-
iables are defined and solved in the nodal points, and evaluation of variables in the 
domain is performed by interpolation in each element. Shared nodes give rise to 
an assembly of elements into a global system of equations of the form

where K is the stiffness matrix, u is the primary variable and f is the applied load, 
e.g. stemming from applied tractions F on a surface SF in Fig. 2.1. The system of 
equations (2.2) is furthermore subject to essential boundary conditions, e.g. pre-
scribed displacements or velocities u along a surface SU.

The basic aspects of available finite element formulations in terms of mod-
eling and computation are briefly reviewed in this chapter. This will support 
the choice of formulation to be detailed and applied in the remaining chapters, 
where an electro-thermo-mechanical finite element formulation is presented 

(2.1)
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



= 0

(2.2)Ku = f

Finite Element Formulations
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4 2 Finite Element Formulations

together with a range of aspects to complete a computer program capable of 
modeling manufacturing processes such as metal forming and resistance weld-
ing. This chapter is focused on the mechanical formulations because they rep-
resent major differences and because the mechanical model plays a central role 
in the overall modeling strategy. From a process point of view the mechanical 
model is responsible for material flow, contact and stress distribution, and from 
a computational point of view is responsible for the largest amount of CPU 
time. In addition, the overall structure of the presented computer program is 
built upon the mechanical formulation with the remaining thermal and electrical 
modules integrated.

One fundamental difference between the finite element formulations is 
the governing equilibrium equation, being either quasi-static or dynamic in 
the modeling of manufacturing processes. Another fundamental choice to 
cover is the material model suited for describing the materials under consid-
eration, bearing in mind the process to simulate and thereby the expected 
range of deformation and deformation rate. The available constitutive mod-
els to utilize in the material description are rigid-plastic/viscoplastic and 
elasto-plastic/viscoplastic.

Table 2.1, after Tekkaya and Martins [1], provides an overview of the quasi-
static formulations and the dynamic formulation. The quasi-static formulations are 
represented by the flow formulation and the solid formulation, distinguishable by 
the underlying constitutive equations. The following two sections are devoted to 
give a brief overview of the quasi-static and dynamic formulations including their 
advantages and disadvantages.

Presentation of the quasi-static and dynamic formulations follows the gen-
eral outline given by Tekkaya and Martins [1] and additional information can be 
found in major reference books by Zienkiewicz and Taylor [2], Banabic et al. [3], 
Wagoner and Chenot [4] and Dunne and Petrinic [5].

i
xv

i
yv

i

zv

F

u

Fig. 2.1  Illustration of three-dimensional finite element model composed of isoparametric, hex-
ahedral elements with eight nodes. Each node has three degrees of freedom for representation of 
vector fields and one degree of freedom for representation of scalar fields



5

2.1  Quasi-Static Formulations

The quasi-static formulations are governed by the static equilibrium equation, 
which in the absence of body forces takes the following form,

where σi j , j denotes the partial derivatives of the Cauchy stress tensor with respect 
to the Cartesian coordinates x j. This equation expresses the equilibrium in the cur-
rent configuration, i.e. in the mesh following the deformation.

By employing the Galerkin method, it is possible to write an integral form of 
Eq. (2.1.1) that fulfills the equilibrium in an average sense over the entire domain 

(2.1.1)σi j, j = 0

Table 2.1  Overview of finite element formulations and commercial computer programs applied 
in the metal forming industry

Quasi-static formulations Dynamic
formulationFlow formulation Solid formulation

Equilibrium  
equation:

Quasi-static Quasi-static Dynamic

Constitutive  
equations:

Rigid-plastic/ 
viscoplastic

Elasto-plastic/ 
viscoplastic

Elasto-plastic/ 
viscoplastic

Main structure: Stiffness matrix  
and force vector

Stiffness matrix  
and force  
vector

Mass and damping  
matrices and internal  
and external  
force vectors

Solution schemea: Implicit Implicit Explicit
Size of  

incremental  
step:

Large Medium to large Very small

CPU time per  
incremental step:

Medium Medium to long Very short

Time integration  
schemeb:

Explicit Implicit Explicit

Accuracy of  
the results  
(stress and strain  
distributions):

Medium to high High Medium to low

Springback and  
residual stresses:

No (although the basic 
formulation can be 
modified to include 
elastic recovery)

Yes Yes/no

Commercial FEM  
computer  
programs related  
to metal forming

FORGEc, DEFORMc,  
QFORM,
eesy-2-form

Abaqus (implicit),  
Simufact.forming,  
AutoForm, Marc

Abaqus (explicit),  
DYNA3D,  
PAM-STAMP

aExplicit/implicit if the residual force is not/is minimized at each incremental step.
b Explicit/implicit if the algorithm does not/does need the values of the next time step to compute 
the solution.

cElasto-plastic options available.

2.1 Quasi-Static Formulations
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instead of satisfying the equilibrium point-wise. This formulation allows domain 
integration to substitute the more tedious solution of the original differential equa-
tions. The integral over domain volume V  is

with δ ui being an arbitrary variation in the primary unknown ui, which is either 
displacement or velocity depending on the implementation. Displacement is the 
primary unknown in rate independent formulations and velocity is the primary 
unknown in rate dependent formulations.

Applying integration by parts in Eq. (2.1.2), followed by the divergence theo-
rem and taking into account the natural and essential boundary conditions, it is 
possible to rewrite Eq. (2.1.2) as follows,

where ti = σi j n j denotes the tractions with direction of the unit normal vector n j 
applied on the boundary surface S. Equation (2.1.3) is the ‘‘weak variational form’’ 
of Eq. (2.1.1) because the static governing equilibrium equations are now only sat-
isfied under weaker continuity requirements.

The above listed equations together with appropriate constitutive equations 
 enable quasi-static finite element formulations to be defined by means of the fol-
lowing matrix set of non-linear equations,

which express the equilibrium condition at the instant of time t through the stiff-
ness matrix K, the generalized force vector F resulting from the loads, pressure 
and friction stresses applied on the boundary. The equation system is non-linear 
due to the stiffness matrix’s dependency of the primary unknown u to geometry 
and material properties.

The quasi-static finite element formulations utilized in the analysis of metal 
forming and resistance welding processes are commonly implemented in conjunc-
tion with implicit solution schemes. The main advantage of implicit schemes over 
alternative solutions based on explicit procedures is that equilibrium is checked at 
each increment of time by means of iterative procedures to minimize the residual 
force vector R(u), which is computed as follows in iteration number n,

The non-linear set of equations (2.1.4), derived from the quasi-static implicit 
formulations, can be solved by different numerical techniques such as the direct 
iteration (also known as “successive replacement”) and the Newton–Raphson 
methods. In the direct iteration method, the stiffness matrix is evaluated for the 
displacements of the previous iteration in order to reduce Eq. (2.1.4) to a linear 
set of equations. The method is iterative and converges linearly and uncondi-
tionally towards the solution during the earlier stages of the iteration procedure 

(2.1.2)

∫

V

σi j, j δ ui dV = 0

(2.1.3)

∫

V

σi j (δui ), j dV −
∫

S

ti δui d S = 0

(2.1.4)K
t
u

t = F
t

(2.1.5)R
t
n = K

t
n−1u

t
n − F

t
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but becomes slow as the solution is approached. The standard Newton-Raphson 
method is an alternative iterative method based on a linear expansion of the resid-
ual R(u) near the velocity estimate at the previous iteration,

This procedure is only conditionally convergent, but converges quadratically in 
the vicinity of the exact solution. The iterative procedures are designed in order to 
minimize the residual force vector R(u) to within a specified tolerance. Control 
and assessment is performed by means of appropriate convergence criteria.

The main advantage of the quasi-static implicit finite element formulations is 
that equilibrium conditions are checked at each increment of time in order to mini-
mize the residual force vector R(u) to within a specified tolerance.
The main drawbacks in the quasi-static implicit finite element formulations are 
summarized as follows:

•	 Solution of linear systems of equations is required during each iteration;
•	 High computation times and high memory requirements;
•	 Computation time depends quadratically on the number of degrees of freedom 

if a direct solver is utilized, and with the Newton-Raphson method the solution 
is only conditionally convergent;

•	 The stiffness matrix is often ill-conditioned, which can turn the solution proce-
dure unstable and deteriorate the performance of iterative solvers;

•	 Difficulties in dealing with complex non-linear contact and tribological bound-
ary conditions are experienced, and that often leads to convergence problems.

2.2  Dynamic Formulation

The dynamic finite element formulation is based on the dynamic equilibrium 
equation in the current configuration, here written in the absence of body forces 
with the inertia term expressed through the mass density ρ and the acceleration üi,

Applying a mathematical procedure similar to that described in the previous 
section results in the following weak variational form of Eq. (2.2.1),

The above equation enables dynamic finite element formulations to be repre-
sented by the following matrix set of non-linear equations,

(2.1.6a)R
t
n = R

t
n−1 +

[

∂R

∂u

]t

n−1

∆u
t
n = 0

(2.1.6b)u
t
n = u

t
n−1 + ∆u

t
n

(2.2.1)σi j, j − ρ üi = 0

(2.2.2)

∫

V

ρ üiδui dV +
∫

V

σi j (δui ), j dV −
∫

S

ti δui d S = 0

(2.2.3)M
t
ü

t
+ F

t

int = F
t

2.1 Quasi-Static Formulations
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which express the dynamic equilibrium condition at the instant of time t. The sym-
bol M denotes the mass matrix, Fint = Ku is the vector of internal forces resulting 
from the stiffness, and F is the generalized force vector.

The non-linear set of equations (2.2.3), derived from the dynamic formulation, is 
commonly solved by means of an explicit central difference time integration scheme,

If the mass matrix M in Eq. (2.2.4a, b) is diagonalized (or lumped) its inversion 
is trivial, and the system of differential equations decouples. Its overall solution 
can then be performed independently and very fast for each degree of freedom. 
Further reductions of the computation time per increment of time stem from utili-
zation of reduced integration schemes that are often applied even to the deviatoric 
parts of the stiffness matrix, and finally numerical actions related to mass scaling 
and load factoring contribute. Load factoring is described ahead.

Additional computational advantages result from the fact that dynamic explicit 
schemes, unlike quasi-static implicit schemes, do not check equilibrium require-
ments at the end of each increment of time. The analogy between the dynamic 
equilibrium equation (2.2.1) and the ideal mass-spring vibrating system allows 
concluding that explicit central difference time integration schemes (frequently 
referred as explicit integration schemes) are conditionally stable whenever the size 
of the increment of time ∆t satisfies

where Le is the typical size of the finite elements discretizing the domain, E is the 
elasticity modulus and ce is the velocity of propagation of a longitudinal wave in the 
material. In case of metal forming applications, the stability condition Eq. (2.2.5) 
requires the utilization of very small increments of time ∆t, say microseconds, and 
millions of increments to finish a simulation because industrial metal forming pro-
cesses usually take several seconds to be accomplished. This is the reason why com-
puter programs often make use of the following numerical actions in order to increase 
the increment of time ∆t and, consequently, reducing the overall computation time:

•	 Diagonalization of the mass matrix;
•	 Mass scaling—by increasing the density of the material and thus artificially 

reducing the speed ce of the longitudinal wave;
•	 Load factoring—by changing the rate of loading through an artificial increase in 

the velocity of the tooling as compared to the real forming velocity;
•	 Reduced integration of the deviatoric part of the stiffness matrix, which is usu-

ally fully integrated.

(2.2.4a)M
t

(

u̇
t+1/2 − u̇

t−1/2

∆ t t+1/2

)

+ F
t
int = F

t

(2.2.4b)u̇
t+1/2 =

(

M
t
)−1 (

F
t − F

t
int

)

∆ t t+1/2 + u̇
t−1/2

(2.2.4c)u
t+1 = u

t + u̇
t+1/2

∆ t t+1

(2.2.5)∆t ≤
Le√
E/ρ

=
Le

ce
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The above-mentioned numerical actions can artificially add undesirable inertia 
effects, and it is therefore necessary to include a damping term Ct

u̇
t in (2.2.3),

The damping term Ct
u̇

t is not only necessary because of the above-mentioned 
numerical actions to reduce the computation time but also to ensure fast conver-
gence of the solution towards the static solution describing the actual process.

This turns dynamic explicit formulations into close resemblance with damped 
mass-spring vibrating systems and justifies the reason why these formulations 
loose efficiency whenever the material is strain-rate sensitive or thermo-mechanical 
phenomena need to be taken into consideration.
The main advantages of the dynamic explicit formulations are:

•	 Computer programs are robust and do not present convergence problems;
•	 The computation time depends linearly on the number of degrees of freedom 

while in alternative quasi-static implicit schemes the dependency is more than 
linear (in case of iterative solvers) and up to quadratic (in case of direct solvers).

The main drawbacks of the dynamic explicit formulation can be summarized as 
follows:

•	 Utilization of very small time increments;
•	 Equilibrium after each increment of time is not checked;
•	 Assignment of the system damping is rather arbitrary;
•	 The formulation needs experienced users for adequately designing the mesh 

and choosing the scaling parameters for mass, velocity and damping. Otherwise 
it may lead to inaccurate solutions for the deformation, prediction of forming 
defects and distribution of the major field variables within the workpiece;

•	 Springback calculations are very time consuming and may lead to errors. This 
specific problem is frequently overtaken by combining dynamic explicit with 
quasi-static implicit analysis.

The last two drawbacks apply if the dynamic explicit formulations are used in the 
‘‘high-speed-mode’’.
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+ F
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t
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This chapter presents a coupled finite element approach for thermo-mechanical 
modeling of metal forming and for electro-thermo-mechanical modeling of resist-
ance welding. The finite element approach is based on the flow formulation which 
was described in Chap. 2 as one of the implicit quasi-static formulations.

Direct comparison of the performance achieved with the implicit quasi-static 
formulations based on flow and solid approaches (refer to Table 2.1) are provided 
by Boer et al. [1] and Kobayashi et al. [2], who emphasize the advantages of the 
flow approach in modeling the mechanical response (plastic flow) of materials 
undergoing large deformations.

3.1  State-of-the-Art

Taking a general view to the bibliographic retrieval by Brännberg and Mackerle [3] 
and Mackerle [4, 5] it appears that the finite element flow formulation is one of 
the most widespread numerical methodologies for the analysis of metal forming 
processes.

In the flow formulation, the material is treated in a similar way to an incom-
pressible fluid. Rigid-plastic/viscoplastic constitutive laws are utilized and the 
elastic response is neglected, simplifying the problem and offering additional 
computational advantages. The computer programs based on the flow formulation 
can successfully take into account the non-linearities in the geometry and material 
properties as well as the contact changes typical of metal forming and resistance 
welding processes to produce accurate predictions of plastic flow, temperature, 
current density and microstructure.

In order to calculate temperatures and its resulting effects, the flow formula-
tion is coupled with heat transfer analysis to achieve complete thermo-mechanical 
modeling. In resistance welding this coupling is further extended to include elec-
trical analysis with special treatment of contact interfaces and to account for Joule 

Coupled Finite Element Flow Formulation
Chapter 3

C. V. Nielsen et al., Modeling of Thermo-Electro-Mechanical Manufacturing  
Processes, SpringerBriefs in Applied Sciences and Technology,  
DOI: 10.1007/978-1-4471-4643-8_3, © The Author(s) 2013

http://dx.doi.org/ 10.1007/978-1-4471-4643-8_2
http://dx.doi.org/10.1007/978-1-4471-4643-8_2#Tab1
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heating. The extended model is electro-thermo-mechanically coupled and enables 
utilization in a wide range of manufacturing applications by industry, research and 
education institutions with the aim of:

•	 Developing new products and processes in shorter time;
•	 Optimizing existing products and processes by cost and quality;
•	 Increasing process understanding and strengthening technological know-how;
•	 Performing more efficient experimentation by providing starting parameters and 

support to the analyses.

Modeling and simulation of manufacturing processes are tools to better understand 
and thereby solve new problems arising when forming or joining new materials 
and geometries. In what concerns resistance welding, Singh [6] pointed out that 
simulation cannot replace or substitute ingenuity or creativeness, but it can help 
in gaining understanding of the process, and thus it can reduce the amount of time 
spent during development.

The interaction with industry has been the motivation for applying and continu-
ously developing the finite element flow formulation for manufacturing applica-
tions over the past decades. A brief overview of the previous research in the field is 
given in what follows with the aim of providing a timeline of the major contribu-
tions and identifying the current state-of-the-art.

The finite element flow formulation was originally developed by Lee and 
Kobayashi [7], Cornfield and Johnson [8] and Zienkiewicz and Godbole [9] during 
the 1970s with the aim of simulating metal forming processes. During the 1980s, 
the flow formulation was primarily set up for modeling two-dimensional bulk 
forming processes and such efforts gave rise to the development of a first genera-
tion of commercial software with applicability limited to plane strain and axisym-
metric conditions. Even so, authors such as Altan and Knoerr [10] were able to 
report case studies in which the two-dimensional constraint was ingeniously 
stretched out in order to obtain useful information regarding three-dimensional 
metal forming applications.

In order to extend applicability of the flow formulation to modeling condi-
tions involving more than the mechanical behavior alone, a thermal model was 
introduced to simulate thermo-mechanical manufacturing processes. The first 
attempt to handle a coupled thermo-mechanical metal forming process was made 
by Zienkiewicz et al. [11] who used a finite element iterative procedure to solve 
the material flow for a given distribution of temperature, in conjunction with the 
heat transfer phenomenon, during plane strain extrusion. Later, Zienkiewicz et al. 
[12, 13] modified the procedure to allow the temperature distribution within the 
workpiece to be obtained simultaneously with the solution of the velocity field. 
The modification, commonly known as “direct coupled thermo-mechanical” was 
applied to solve steady-state extrusion and rolling. The heat exchange with the 
tools was either neglected, as in the case of the extrusion problem, or taken into 
account by imposing a constant temperature on the tools, as in the case of steady-
state rolling.
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Direct coupled thermo-mechanical finite element algorithms were further 
developed by Rebelo and Kobayashi [14, 15] to allow the numerical simulation of 
non-steady-state metal forming processes. The technique was applied to solid cyl-
inder and ring compression testing.

As regards resistance welding, early contributions, being analytical or numeri-
cal, were focused on the temperature field under a given voltage potential. Nied 
[16] was the first to present electro-thermo-mechanical modeling of spot weld-
ing by finite elements using the commercial program ANSYS. The study was 
performed in two dimensions with assumed Hertzian elastic contact. Contact 
conditions are crucial for the numerical simulation of resistance welding due to 
dynamically developing contact area and Nied [16] addressed this problem by 
means of surface elements that were capable of supporting compressive stresses, 
but not tensile stresses. Relative sliding was allowed assuming frictionless contact 
and electrical and thermal properties were included in the aforementioned surface 
elements.

The work of Nied [16] was the first numerical simulation of resistance welding 
being so complete. Subsequent published work in the field was also based on com-
mercial finite element computer programs for general purpose modeling, e.g. Zhu 
et al. [17] modeled projection welding of an automotive door hinge with two pro-
jections to a sheet metal by means of a two-dimensional analysis based on ANSYS.

Newer developments in computers and reduction in the associated compu-
tational costs are presently extending the availability and effectiveness of finite 
element software to simulate three-dimensional manufacturing processes. As a 
consequence, complex processes are now being simulated precisely without the 
need to take advantage of possible geometrical and material flow simplifications. 
A detailed survey of the state-of-the-art regarding numerical simulation of metal 
forming processes is given by Brännberg and Mackerle [3] and Mackerle [4, 5].

In resistance welding state-of-the-art is the prediction of weld parameters in 
spot welding with the only input being the geometries of sheets and electrodes 
as well as the desired weld nugget size (refer, for example, to the presentation of 
weld planning in SORPAS by Zhang [18]). SORPAS is a commercial finite ele-
ment program dedicated to simulation and optimization of resistance projection 
and spot welding. The program is based on the finite element flow formulation and 
has been primarily developed for axisymmetric and plane-strain industrial appli-
cations. However, recent developments by Nielsen et al. [19] have extended the 
capabilities of SORPAS to simulate complex three-dimensional resistance welding 
applications.

Most of the scientific and numerical ingredients that are necessary to develop 
computer programs (discretization procedures, solution techniques, contact algo-
rithms and remeshing schemes) are drawing continuous attention in the literature 
with the purpose of enhancing the overall standards of accuracy, performance and 
robustness of existing computer software. Despite the many contributions in lit-
erature, it is becoming more evident that industrial, and to some degree also aca-
demic, use of finite element modeling is relying on existing commercial computer 

3.1 State-of-the-Art
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programs, where the user naturally has limited access to implementation details 
and the physical models behind the calculations. This leads to potential pitfalls if 
the users are not aware of the best use and potential limitations of such programs, 
as recently discussed by Tekkaya and Martins [20].

This chapter is aimed to describe the fundamentals and numerical implementa-
tion of the thermo-mechanical and electro-thermo-mechanical coupled approaches 
that are available in academic (e.g. I-Form [21]) and commercial (e.g. SORPAS 
[18]) computer programs that are based on the finite element flow formulation.

3.2  Theoretical Background

3.2.1 Plastic Flow

The flow formulation is based on the quasi-static equilibrium equations, which 
in the absence of body forces and after some mathematical treatment that takes 
into consideration the natural and essential boundary conditions, can be written as 
(refer to Eq. (2.1.3) in Chap. 2).

where V  is the domain volume, S is the boundary surface where tractions 
ti = σi j n j are applied and ε̇i j are the components of the strain rate tensor,

In the flow formulation, velocities ui are the primary unknown instead of dis-
placements, there is no strain tensor and the stress σi j is directly related to the 
strain rate by means of rigid-plastic/viscoplastic constitutive equations.

In case of using the von Mises yield criterion, also called the “distortion energy 
criterion”,

where f  is the yield function and σ ′
i j is the deviatoric stress tensor, the constitutive 

equations (also known as the “Levy–Mises equations”) are written as

The proportionality factor λ̇ in the above equation is given by

(3.2.1.1)

∫

V

σi j δε̇i j dV −
∫

S

ti δui d S = 0

(3.2.1.2)ε̇i j = 1
2

(

ui, j + u j ,i

)

(3.2.1.3)f
(

σi j

)

= 1
2
σ

′
i j σ

′
i j

(3.2.1.4)ε̇i j = σ
′
i j λ̇

(3.2.1.5)λ̇ =
3

2

˙̄ε
σ̄

http://dx.doi.org/10.1007/978-1-4471-4643-8_2
http://dx.doi.org/10.1007/978-1-4471-4643-8_2
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with effective strain rate ˙̄ε and effective stress σ̄ obtained from

The variational principle associated with (3.2.1.1) requires that among admis-
sible velocities ui, satisfying the conditions of compatibility and incompressibility 
as well as the velocity boundary conditions, the actual solution gives the following 
functional a stationary value (minimum of the total energy rate),

where σ̄ ˙̄ε = σi j ε̇i j according to (3.2.1.6) and (3.2.1.7). Equation (3.2.1.1) corre-
sponds to a zero first order variation of the total energy rate of the system (3.2.1.8) 
and is accordingly rewritten as follows,

This is a weak form of the quasi-static equilibrium condition (2.1.1) because it 
lowers the continuity requirements on the stress field and allows solving the equi-
librium condition by domain integration instead of the more tedious direct solving 
of differential equations.

In order to guarantee that the flow formulation is capable of providing a geo-
metrically self-consistent velocity field that ensures the incompressibility con-
dition it is necessary to ensure a zero first order variation of the functional � 
(3.2.1.8), subject to a general constraint, ε̇kk = 0 over the entire domain. This can 
be done in several different ways, where the two most widespread techniques are 
based on the utilization of Lagrange multipliers (treating incompressibility as a 
mixed velocity–pressure approach) or penalties.

The utilization of a Lagrange multiplier λL, corresponding to the mean stress 
σm, modifies (3.2.1.9) to the following form,

whereas the utilization of a penalty K, which is a large positive number related to 
the mean stress through K ε̇kk = 2σm, modifies (3.2.1.9) to the following form,

(3.2.1.6)˙̄ε =
√

2
3

{

ε̇i j ε̇i j

}

1
2

(3.2.1.7)σ̄ =
√

3
2

{

σ
′
i j σ

′
i j

}

1
2

(3.2.1.8)� =
∫

V

σ̄ ˙̄ε dV −
∫

S

ti ui d S

(3.2.1.9)δ� =
∫

V

σ̄ δ ˙̄ε dV −
∫

S

ti δui d S = 0

(3.2.1.10)

δ� =
∫

V

σ̄ δ ˙̄ε dV +
∫

V

λL δε̇ j j dV +
∫

V

δλL ε̇ j j dV −
∫

S

ti δui d S = 0

(3.2.1.11)
δ� =

∫

V

σ̄ δ ˙̄ε dV + K

∫

V

ε̇ii δε̇ j j dV −
∫

S

ti δui d S = 0

3.2 Theoretical Background
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The advantage of the Lagrange multipliers is the exact solution, but on the 
expense of prolonged computation time due to additional unknowns in form of the 
mean stress σm = σkk

/

3 pressure terms.
The penalty approach does not introduce additional unknowns but suffers from 

a dilemma in the selection of the value of the penalty factor K. It has to be as 
large as possible to enforce incompressibility but it cannot be chosen too large 
because the system of equations becomes ill-conditioned with increasing penalty 
factor and leads to locking (trivial solution) whenever the penalty constraint takes 
a dominant role. The penalty based approach (also named as the “irreducible finite 
element flow formulation”) is applied hereafter, such that the variational equation 
(3.2.1.11) is utilized.

3.2.2 Heat Transfer

The purpose of simulating heat transfer and heat generation is to model the effects 
of the temperature increase due to plastic work, to heat generated by electrical Joule 
heating and to temperature variation due to exchange of heat with the tools and the 
surrounding environment. In an arbitrary volume, the energy rate balance requires

where q̇in and q̇out are the energy rates per unit volume into the volume and out of 
the volume, respectively. The heat rate per unit volume due to generation inside 
the volume is q̇generate, and q̇store is the rate of stored energy per unit volume giv-
ing rise to a temperature gradient Ṫ  according to

where ρm is the mass density and cm is the heat capacity.
In the temperature range of melting and solidification, i.e. Tsol < T < Tliq with 

solidus temperature Tsol and liquidus temperature Tliq, an effective heat capacity is 
defined to include an approximation of the latent heat L as follows [22],

Applying Fourier’s law for heat conduction, q̇ = −kT,i with thermal conductiv-
ity k, and assuming the control volume to be infinitesimal, the transient heat diffu-
sion equation can be obtained from (3.2.2.1) as

The heat generation has several contributions. In the material volume, heat gen-
eration exists due to dissipated energy from the plastic work and the electrical heat 
source due to Joule heating. On the boundary surface, the contributions are con-
vection and radiation to the surroundings and to the tools as well as friction gener-
ated heat in contact interfaces with relative sliding.

(3.2.2.1)q̇in − q̇out + q̇generate = q̇store

(3.2.2.2)q̇store = ρmcm Ṫ

(3.2.2.3)c̃m = cm +
L

Tliq − Tsol

(3.2.2.4)
(

kT,i

)

,i
+ q̇generate = ρmcm Ṫ
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The contribution from the plastic work, is the fraction of the plastic deforma-
tion energy dissipated as heat,

where β ≈ 0. 85 − 0. 95.
The generated Joule heating due to electrical resistance ρ and current density J 

is given by

which will be analyzed more detailed in Sect. 3.2.3 dealing with the electrical field 
and resulting heat generation.

Newton’s law for convection, applying to all free surfaces, is given by

with heat transfer coefficient h, surface temperature Ts and temperature of the sur-
roundings T f .

Similarly Stefan-Boltzmann’s law for radiation, applying to all free surfaces, is 
given by

with emission coefficient εemis and Stefan-Boltzmann coefficient σS B.
At surfaces contacting the tools, convection follows

where Ttool is the tool temperature and hlub is the relevant convection coefficient, 
typically taken for an applied lubricant.

Finally, the heat generated by friction shear stresses τ f  in the contact interfaces 
with relative sliding vr is given by

The transient heat diffusion equation (3.2.2.4), was firstly implemented by 
Rebelo and Kobayashi [14, 15] in a finite element computer program for modeling 
thermo-mechanical metal forming processes, and subsequently implemented by 
Zhang et al. [22] for modeling the heat developed by Joule heating in resistance 
welding.

From this point of the presentation the thermal conductivity will be assumed 
constant within each integration domain, implying that 

(

kT,i

)

,i
 simplifies to kT,ii. 

Under these circumstances and applying the classical Galerkin method, the heat 
transfer equation (3.2.2.4) can be written as follows,

(3.2.2.5)q̇plast ic = βσi j ε̇i j = βσ̄ ˙̄ε

(3.2.2.6)q̇electrical = ρ J 2

(3.2.2.7)q̇convect ion = h
(

Ts − T f

)

(3.2.2.8)q̇radiat ion = εemisσS B

(

T 4
s − T 4

f

)

(3.2.2.9)q̇tool = hlub (Ts − Ttool)

(3.2.2.10)q̇ f rict ion = τ f |vr |

(3.2.2.11)

∫

V

kT,iδT,i dV +
∫

V

ρm cm Ṫ δT dV −
∫

V

q̇generateδT dV −
∫

S

kT,nd S = 0

3.2 Theoretical Background
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where T,n is the gradient of T  along the outward normal to the surface S. The third 
term in (3.2.2.11) is the heat generated from plastic deformation (3.2.2.5) and 
Joule heating (3.2.2.6), and the fourth term is the heat flux on boundary surfaces. 
Along free surfaces S f ree conduction and radiation follow (3.2.2.7) and (3.2.2.8), 
and along surfaces in contact with the tools Stool, convection and friction gener-
ated heat follow (3.2.2.9) and (3.2.2.10). All these terms can be summarized as 
follows,

3.2.3 Electricity

The distribution of electric potential Φ utilized in the coupled electro-thermo-
mechanical finite element implementation is based on Laplace’s equation,

Although this approach considers the distribution of the electric potential to be 
solely determined by geometry under steady conditions (Φ̇ = 0) [23], it is gener-
ally considered a good approach because an electric field has a much faster reac-
tion rate than a temperature field.

Along boundaries with power supply, the electric potential is the supplied 
potential, Φ = Φ0, and along free surfaces electric potential is zero. Integrating 
Laplace’s equation for an arbitrary variation in the electric potential Φ and apply-
ing the divergence theorem, equation (3.2.3.1) becomes

where Φ,n is the normal gradient of the electric potential to the free surfaces. The 
right hand side of (3.2.3.2) can be omitted because Φ,n = 0 along free surfaces. 
Having solved the electric potential, the current density J in any direction is avail-
able through

Defining the squared current density as J 2 = Ji Ji, the heat generation rate due 
to Joule heating (3.2.2.6) is available through q̇electrical = ρ J 2.

(3.2.2.12)

∫

V

kT,iδT,i dV +
∫

V

ρm cm Ṫ δT dV −
∫

V

(

q̇plast ic + q̇electrical

)

δT dV

+
∫

S f ree

(q̇convect ion + q̇radiat ion)d S +
∫

Stool

(

q̇tool − q̇ f rict ion

)

d S = 0

(3.2.3.1)Φ,ii = 0

(3.2.3.2)
∫

V

Φ,iδΦ,i dV =
∫

S

Φ,nd S

(3.2.3.3)Ji =
1

ρ
Φ,i
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3.3  Numerical Implementation

The above presented models for the mechanical, thermal and electrical responses 
can be combined and implemented in finite element computer programs based on 
the flow formulation. This section describes the coupling of the models and the 
details of computer implementation for each individual model.

3.3.1 Basic Coupling Procedures

Figure 3.1 includes a schematic outline of the couplings of the presented models. 
The thermal and mechanical models are generally coupled as shown in Fig. 3.1a 
for the purpose of modeling thermo-mechanical metal forming processes, whereas 
the electrical, thermal and mechanical models are coupled as shown in Fig. 3.1b 
for the electro-thermo-mechanical modeling of resistance welding processes.

Besides the immediate difference due to the electrical model, the two imple-
mentations differ by the number of times the mechanical model is applied during 
each step. In both cases the mechanical model is applied at the beginning of each 
step to setup a velocity field and a stress response.

The next step in the thermo-mechanical modeling of metal forming processes is 
to run the thermal model, and in this case it is run fully coupled with the mechani-
cal model, such that the new temperature field and resulting changes in material 

(a) (b)

Fig. 3.1  Numerical coupling of mechanical, thermal and electrical models for a thermo-
mechanical modeling of metal forming processes and b electro-thermo-mechanical modeling of 
resistance welding processes

3.3 Numerical Implementation
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properties are converged with the mechanical response including the heat genera-
tion at the end of each step.

When it comes to the electro-thermo-mechanical modeling of resistance weld-
ing, this strong coupling between the thermal and mechanical models is loosened 
due to the very small time steps in order to capture the effects of the welding 
process. For example, when using alternating current with frequency 50 Hz as 
energy source, each half period has duration 10 ms, and proper modeling there-
fore requires time steps of 1 ms or preferably less. Instead of having a strong cou-
pling, the implementation is relying on the small time steps in a weaker coupling, 
where the new material properties of the resulting temperature is only affecting the 
mechanical response from the following time step, and the corresponding change 
in the heat generation due to plastic work is ignored due to the insignificant influ-
ence compared to the electrically generated heat.

In this type of implementation, the electrical model is applied after the mechan-
ical model to supply the thermal model with the current density giving rise to the 
heat generation. The electrical model is linear and thus inexpensive compared to 
the mechanical model; hence the electrical and thermal models are strongly cou-
pled such that the electrical model is run during each of the iterations of the ther-
mal model. The implemented coupling is outlined in Fig. 3.1b and follows the 
work of Zhang et al. [22].

3.3.2 Finite Elements

The discretization of the main equations dealing with the physics of plastic flow, 
heat transfer and electricity is based on 8-node hexahedral elements under three-
dimensional conditions. Other elements could be employed in the discretization as 
will be discussed in Chap. 5 in relation to mesh generation.

The 8-node hexahedral element provides three degrees of freedom in each 
node for the velocity components of plastic flow in the mechanical model and one 
degree of freedom for modeling the scalar fields of temperature and potential in 
the thermal and electrical models, respectively.

In the mechanical model, discretization by hexahedral elements implies that 
velocity inside an element is interpolated from its nodal values as follows,

where u is the vector containing the velocity components in an arbitrary location 
within the element, v is the vector of nodal velocities and N is a matrix including 
the shape functions Ni at the corresponding arbitrary location in natural coordi-
nates ξ , η, ς (e.g. Ni = (1 + ξiξ)(1 + ηiη)(1 + ςiς)

/

8).

(3.3.2.1a)u = NT v

(3.3.2.1b)u =
{

ux , uy , uz

}T

(3.3.2.1c)v =
{

u1
x , u1

y , u1
z , u2

x , u2
y , u2

z , . . . , u8
z

}T

http://dx.doi.org/10.1007/978-1-4471-4643-8_5
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The temperature and electric potential are interpolated similarly, except that the 
interpolation is for scalars rather than vectors of components. In all cases, the for-
mulation is isoparametric, such that coordinates and field variables are interpolated 
by the same shape functions.

Matrix notation is introduced in what follows for better understanding the com-
puter implementation of the discretized finite element equations.

3.3.3 Mechanical Model

3.3.3.1 Finite Element Discretization

The strain rate matrix B relating strain rates to nodal velocities is built from the 
derivatives of the shape functions in the following manner,

Introducing a diagonal matrix D = diag
{

2
3

, 2
3
, 2

3
, 1

3
, 1

3
, 1

3

}

 the effective strain 
rate (3.2.1.6) is written as

or, in the following alternative matrix form after introducing (3.3.3.1) and defining 
P = BT DB,

The volumetric strain rate ε̇ii is expressed as follows,

with C being the vectorial form of the Kronecker delta δi j.

3.3.3.2 Newton–Raphson Iterative Procedure

By insertion of the above equations into (3.2.1.11), the first derivative of the 
energy rate functional is obtained as

(3.3.3.1)ε̇ = Bv = LNT v, L =



















∂

∂x
0 0

0 ∂

∂y
0

0 0 ∂

∂z
∂

∂y
∂

∂x
0

0 ∂

∂z
∂

∂y
∂

∂z
0 ∂

∂x



















(3.3.3.2)
( ˙̄ε

)2 = ε̇
T Dε̇

(3.3.3.3)
( ˙̄ε

)2 = vT BT DBv = vT Pv

(3.3.3.4)ε̇ii = CT Bv

(3.3.3.5)
∂�

∂v
=

∫

V

σ̄

˙̄ε
PvdV + K

∫

V

B
T

CC
T

BvdV −
∫

S

NFd S
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where F is the matrix form of the applied boundary surface tractions ti = σi j n j.
The second derivative of the energy rate functional is obtained as

A second order linearization of (3.2.1.11) by Taylor expansion near an initial 
guess v = v0 of the velocity field leads to

which can be discretized by M finite elements and assembled to the system of 
equations

From (3.3.3.7) and (3.3.3.8) it is seen that (3.3.3.6) is the stiffness matrix K and 
that (3.3.3.5) is the load vector f except for the sign. The stiffness matrix and the 
load vector are integrated in each element by Gauss integration and assembled into 
the global system of equations (3.3.3.8), which is solved for the velocity increment 
∆v. The velocity v is updated according to

where n is the iteration number and αN R ∈ ]0;1[ is a deceleration coefficient to 
avoid overshooting and oscillations in the solution. The update is carried out until 
convergence,

that is, until the velocity field v is not changed considerable by including one more 
iteration. A typical value of αconv is taken around 10−5.

3.3.3.3 Direct Iterations

When applying direct iterations, the constitutive relation is evaluated at the previ-
ous converged velocity field, such that the iterations become linear. By insertion 
of (3.3.2.1a), (3.3.3.3) and (3.3.3.4) into the variation of the functional (3.2.1.11) 
and canceling out the virtual velocity field δvT due to arbitrariness, the following 
system of equations is obtained,

(3.3.3.6)

∂
2
�

∂v2
=

∫

V

σ̄

˙̄ε
PdV +

∫

V

(

1

˙̄ε
∂σ̄

∂ ˙̄ε
−

σ̄

˙̄ε2

)

1

˙̄ε
Pvv

T
PdV + K

∫

V

B
T

CC
T

BdV

(3.3.3.7)

∂�

∂v

∣

∣

∣

∣

v=v0
︸ ︷︷ ︸

≡−f

+
∂

2
�

∂v2

∣

∣

∣

∣

v=v0
︸ ︷︷ ︸

≡K

∆v = 0

(3.3.3.8)

M
∑

m=1

{K∆v − f} = 0

(3.3.3.9)vn = vn−1 + αN R∆vn

(3.3.3.10)
|∆vn|
|vn−1|

< αconv

(3.3.3.11)





�

V

σ̄

˙̄ε
PdV + K

�

V

B
T

CC
T

BdV





� �� �

≡K

v =
�

S

NFd S

� �� �

≡f
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where the stiffness matrix K and the load vector f are defined as well. Discretization by 
M finite elements and assembling into a global system of equations (3.3.3.11) lead to

with update following

In the above equation n is the iteration number and αD ∈ ]0;1[ is a measure of 
the degree of updating, which acts as a stabilizer to avoid the solution to overshoot.

3.3.3.4 Combination of Direct and Newton–Raphson Iterative Procedures

The Newton–Raphson iterative procedure usually results in fast convergence near 
the actual solution, i.e. when a good estimate of the initial guess v = v0 is pro-
vided. The initial velocity field can, however, be difficult to obtain and, therefore, 
the procedure employed in direct iterations is often applied to generate a velocity 
field close to the actual solution before the Newton–Raphson solution is applied 
for a fast convergence towards the required tolerance (3.3.3.10).

In the first step (that is, at the beginning of the numerical simulation), a velocity 
field corresponding to a constant strain rate in all elements may serve as the start-
ing point for the direct iterations.

Schematic illustrations of the two iterative procedures are provided in Fig. 3.2 
for a simplified one-dimensional velocity field. Figure 3.2a illustrates the fast con-
vergence of the direct iterations in the early stages and Fig. 3.2b shows the fast 
convergence of the Newton–Raphson iterations near the solution. Figure 3.2c 
shows divergence with the Newton–Raphson iterative procedure in case of an ini-
tial guess for the velocity field further away from the actual solution or in case of a 
sudden complication due to non-linearities such as contact.

In case of divergence of the Newton–Raphson iterative procedure, convergence 
may be sought with direct iterations.

(3.3.3.12)
M

∑

m=1

{Kv − f} = 0

(3.3.3.13)vn = αDvn + (1 − αD) vn−1

Fo
rc

e

Velocity

0v 1v 2v solutionv

Solution

Applied forceFo
rc

e

Velocity

1v 2v solutionv

Solution

Applied force

3v

Fo
rc

e

Velocity

0v 1v 2vsolutionv

Solution

Applied force

3v

(a) (b) (c)

Fig. 3.2  Convergence schemes with subscript numbers referring to iteration number. a Direct 
iterations, b Newton–Raphson iterations with convergence, c Newton–Raphson iterations with 
divergence. Subscript zero identifies the initial guess for Newton–Raphson iterations
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3.3.3.5 Selection of Deceleration Coefficients

As mentioned previously the deceleration coefficients αD and αN R control the 
degree of updating of both direct and Newton–Raphson iterative procedures. In 
case of direct iterations the selection of αD is obtained after analyzing the ratios 
�vn − vn−1� / �vn−1� and �Rn−1� / �f� of the velocity v and residual R at itera-
tions n and n − 1, where

A similar approach is performed in case of Newton–Raphson iterative proce-
dures, where the residual R is obtained from a Taylor expansion of the residual 
near the velocity estimate at the previous iteration,

In addition, it is also a good choice to determine the deceleration coefficient 
αN R by means of a line search procedure that consider the residual R at the end of 
each iteration to be orthogonal to the velocity correction term ∆v [24],

3.3.3.6 Domain Integration

The integration of the integrals in (3.3.3.5), (3.3.3.6) and (3.3.3.11) is performed by 
means of a selective Gauss integration scheme. Volume integrals are integrated by 
full integration (23 Gauss points) except for the second term in (3.3.3.5), the last term 
in (3.3.3.6) and the second term in (3.3.3.11), which are related to the volumetric 
part of the stiffness matrix K. These terms are integrated by reduced Gauss integra-
tion (one Gauss point) to avoid locking. The surface integrals that include boundary 
pressure and friction along the tools are integrated by 52 Gauss points [25].

3.3.3.7 Stress Calculation

The direct results of (3.3.3.8) and (3.3.3.12) are the velocities and the strain rates. 
The strains are accumulated at the end of each simulation step by multiplying the 
strain rates by the increment of time and the effective strain allows determination 
of the effective stress directly from the applied material law.

The distribution of stress at the end of each simulation step requires determin-
ing the mean stress σm (refer to Sect. 3.2.1),

(3.3.3.14)Rn−1 =
M

∑

m=1

{Kn−1vn − f}

(3.3.3.15)R (vn) ≈ Rn = Rn−1 +
[

∂R

∂v

]

n−1

∆vn = 0

(3.3.3.16)∆vT
n · R (vn−1 + αN R∆vn) = 0

(3.3.3.17)σm =
K

2
ε̇kk
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and adding this value to the corresponding deviatoric stress obtained from the 
constitutive equations via the strain rate values (3.2.1.4) and (3.2.1.5),

The penalty K may be chosen as a constant value or as an adaptive value that 
changes for each element. If an adaptive value is chosen, small elements take 
larger penalty values because small elements are generally placed in the regions of 
more interest. The accuracy is thereby increased in the regions with refined mesh, 
while keeping the overall penalization as low as possible in order to diminish ill-
conditioning of the matrix systems.

An option is to scale the penalty K according to the ratio of the maximum ele-
ment volume to the actual element volume. If any scaling factor is above 10, all 
scaling factors are rescaled such that the maximum scaling is 10. This is to avoid 
very large penalty factors resulting in increased ill-conditioning.

3.3.3.8 Rigid Regions

To avoid singularities in the system of equations when having rigid regions, where 
the strain rates approach zero, a cut-off strain rate ˙̄ε0 is introduced [2]. Whenever 
˙̄ε < ˙̄ε0, the cut-off strain rate ˙̄ε0 replaces the actual strain rate to overcome the prob-
lem of singularities. The cut-off strain rate is taken as a value considerably smaller 
than the average strain rate of the deforming body. A too large value will model 
rigid regions poorly, and a too small value may lead to numerical inaccuracies.

An improvement of the above approach has been implemented by the authors 
to avoid excessive strain accumulation in rigid regions. The strain is only accu-
mulated if the equivalent strain rate is increasing (which will not be the case if it 
is constantly equal to the cut-off strain rate) or if the equivalent strain has already 
exceeded a certain strain level meaning that the region should not be treated as rigid.

3.3.4 Thermal Model

Using the same shape functions as for the mechanical model, the temperature can 
be interpolated as

where T contains the nodal temperatures and N contains the shape functions at 
positions to realize the summation over nodal values. Similarly a matrix N′ is 
defined such that

by having N ′
i j = Ni, j.

(3.3.3.18)σi j = σ
′
i j + δi j σm

(3.3.4.1)T = NT T

(3.3.4.2)T,i = N′T T

3.3 Numerical Implementation
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Inserting (3.3.4.1) and (3.3.4.2) into (3.2.2.11) and canceling out the arbi-
trary temperature variation, the system of equations for the thermal model, 
KcT + CṪ = q, becomes

where Kc is the heat conduction matrix, C is the heat capacity matrix and q 
includes the boundary flux and the source term. The right hand side q is expanded 
as follows to include the heat sources and heat loses due to Eqs. (3.2.2.5)–
(3.2.2.10) as in (3.2.2.12),

The domain integration of the thermal system of equations (3.3.4.3) is per-
formed over hexahedral elements in the usual manner, whereas the time inte-
gration is more complicated. The presence of the term including Ṫ makes the 
system of equations differ from typical forms utilized in the mechanical models,  
e.g. (3.3.3.12). Details regarding the solution of the system of equations can be 
found in several references, e.g. in the pioneering work of Rebelo and Kobayashi 
[14, 15], which requires the utilization of the following time-stepping scheme,

where θ is a parameter varying between 0 and 1. A value of θ = 0. 75 is typically 
chosen.

3.3.5 Electrical Model

The shape functions and shape function derivatives are introduced similarly to 
(3.3.4.1) and (3.3.4.2), such that they interpolate the potential and its derivatives as 
follows,

(3.3.4.3)

∫

V

kN′N′T dV

︸ ︷︷ ︸

≡Kc

T +
∫

V

ρmcmNNT dV

︸ ︷︷ ︸

≡C

Ṫ =
∫

V

q̇generateNdV +
∫

S

kT,nNd S

︸ ︷︷ ︸

≡q

(3.3.4.4)

q =
∫

V

(

q̇plast ic + q̇electrical

)

NdV −
∫

S f ree

(q̇convect ion + q̇radiat ion) Nd S

−
∫

Stool

(

q̇tool − q̇ f rict ion

)

Nd S

(3.3.4.5)Tt+∆t = Tt + ∆t
[

(1 − θ) Ṫt + θ Ṫt+∆t

]

(3.3.5.1)Φ = NT
Φ

(3.3.5.2)Φ,i = N′T
Φ
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Inserting (3.3.5.2) in (3.2.3.2) and canceling out the right hand side and the 
arbitrary potential variation, the discretized form of the electrical model (3.2.3.2) 
can be written as

where Ke is the electrical conductance matrix to be integrated over elements and 
assembled into the global system of equations.

3.4  Incorporation of Anisotropy

Finite element modeling of manufacturing processes often treats materials as iso-
tropic but when it comes to materials supplied as sheets, anisotropic behavior can be 
important due to the effect of prior rolling of the material. This section describes the 
implementation of Hill’s quadratic anisotropic yield criterion [26] and Sect. 3.4.1 
describes the necessary rotation between global axes and local material axes as they 
in general differ after deformation.

Hill’s quadratic anisotropic yield criterion takes the following form,

where the anisotropic parameters, F, G, H, L, M and N, are to be determined from 
material testing through the following relations involving uniaxial and shear effec-
tive stresses σ̄i j,

The yield function (3.4.1) can be written as

(3.3.5.3)

∫

V

N
′
N

′T
dV

︸ ︷︷ ︸

≡Ke

� = 0

(3.4.1)
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]

(3.4.2)
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where

The upper left (UL) and lower right (LR) submatrices are identified for later 
use.

The yield function f a (3.4.3) is defined as counterpart to the isotropic yield 
function f  associated with the von Mises yield criterion (3.2.1.3) and the effective 
stress is defined as

which is the counterpart to the effective stress associated with von Mises isotropic 
yield criterion (3.2.1.7).

The proportionality factor associated with Hill’s criterion is given by

Insertion of (3.4.3) and (3.4.6) into the flow rule leads to the counterpart of the 
Levy–Mises constitutive equations; namely the relation between strain rates and 
deviatoric stresses that is consistent with Hill’s criterion,

where the last equality is seen by insertion of σi j = σ
′
i j + δi j σm and recognition of 

Pijklδkl = 0 for any i j.
The deviatoric stress components are available through

(3.4.4)
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which follows from (3.4.7), except for the fact that Pijkl is singular and therefore 
cannot be inverted. The tensor Mijkl is therefore introduced instead of the non-
existing inversion of Pijkl. The structure of Mijkl is

due to the structure of Pijkl. The two non-zero submatrices are independent inver-
sions of the corresponding submatrices defined in (3.4.4) as long as they would 
be regular. The lower right submatrix in (3.4.4) is regular, so 

[

ML R
]

=
[

PL R
]−1

. 
The upper left submatrix in (3.4.4) is singular, so 

[

PU L
]−1 does not exist. Instead, 

[

MU L
]

 is introduced such that

since this will have the same effect as if 
[

MU L
]

 was equal to 
[

PU L
]−1. This is 

possible due to the last equality sign where it is utilized that σ ′
ii = 0. The matrix 

[

MU L
]

 satisfying (3.4.10) is written out together with 
[

ML R
]

 to form the entire 
tensor Mijkl with positions as defined in (3.4.4),

Insertion of (3.4.8) into σ̄ ˙̄ε = σi j ε̇i j yields an expression for the effective strain 
rate similar to that of the isotropic formulation based on von Mises’ yield criterion 
(3.2.1.6),

which by insertion of (3.4.11) and utilization of ε̇ii = 0 leads to

(3.4.9)[M] =
[ [

MU L
]

[0]

[0]
[

ML R
]

]

(3.4.10)
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′
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′
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

σ
′
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σ
′
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σ
′
33




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Mijkl =

















Fk − (F + G) k − (H + F) k 0 0 0

− (F + G) k Gk − (G + H) k 0 0 0

− (H + F) k − (G + H) k H k 0 0 0

0 0 0 1
2N

0 0

0 0 0 0 1
2L

0

0 0 0 0 0 1
2M

















,

k =
1

3 (FG + F H + G H )

(3.4.12)˙̄ε =
√

2 (F + G + H)

3

{

ε̇i j Mi jkl ε̇kl

}

1
2

(3.4.13)

˙ε̄ =

√

2 (F + G + H)

3

{

F ε̇
2
11

+ Gε̇
2
22

+ H ε̇
2
33

FG + F H + G H

+

(2ε̇12)
2

2N
+

(2ε̇23)
2

2L
+

(2ε̇31)
2

2M

}

1
2

3.4 Incorporation of Anisotropy
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From (3.4.13) it is seen that an equation similar to (3.3.3.2) can be set up by 
defining another diagonal D-matrix, namely

which is related to the effective strain rate like in (3.3.3.2). The anisotropic finite 
element formulation follows the derivations in Sect. 3.3 with substitution of 
(3.4.14) into (3.3.3.2) and (3.3.3.3).

3.4.1 Rotation Between Global Axes and Material Axes

In the above formulation, Da refers to the global coordinate system, which may 
not be the same as the material coordinate system. In general, part of the deforma-
tion is rigid body rotation, which gives rise to misalignment between material axes 
and global axes. Therefore an incremental rotation matrix is set up to rotate Da in 
each step according to the rigid body rotations associated with the previous step.

From the updated nodal velocities, the spin rate tensor,

can be calculated in each step in each element. It is set up for the central point 
(in natural coordinates) of each element through the shape function deriva-
tives. Assuming small incremental rigid body rotations, the incremental rota-
tion matrix is approximated by adding the unit matrix and the incremental spin 
matrix, i.e.

This incremental rotation matrix is a 3 × 3 matrix, which rotates another 3 × 3 
matrix D̃a through

where k represents step number. Da in (3.4.14) is transferred into a 3 × 3 format 
during the rotation by the following translations between positions, posi (used 
towards right before rotation and used towards left after rotation),

(3.4.14)D
a

=

2 (F + G + H)

3
diag

{

{F , G, H}

FG + F H + G H
,

1

2N
,

1

2L
,

1

2M

}

(3.4.1.1)ω̇i j =
1

2

�

∂ui

∂x j
−

∂u j

∂xi

�

=





0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0





(3.4.1.2)∆R = I + ω∆t

(3.4.1.3)D̃a
k = �RD̃

a

k−1�RT

(3.4.1.4)

diag {pos1, pos2, pos3, pos4, pos5, pos6} ↔





pos1 pos4 pos6

pos4 pos2 pos5

pos6 pos5 pos3




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This translation follows the translation between the stress vector and the stress 
matrix defined as

The stress calculation should also be carried out with attention to rotation. The 
deviatoric stress is related to the strain rate according to (3.4.8). In this equation, 
Mijkl is defined in a material coordinate system, whereas the available strain rates 
are defined relative to the global coordinate system. Due to possible material rota-
tion, these two systems may not coincide. It is therefore necessary to rotate one 
of the quantities from one system to the other. The implemented procedure is as 
follows; the strain rate in each element is rotated from global axes to material axes 
through the following rotation,

where R is the accumulated rotation during Nrot rotation steps defined as

Now in material axes, the deviatoric stress can be computed by insertion of 
(3.4.1.6) into (3.4.8), and finally the deviatoric stress in the global system is avail-
able by rotation,

Rotation of the Cauchy stress is possible without introduction of artificial con-
tributions from rigid body rotation since it is an objective stress measure. The 
remaining stress calculation follows (3.3.3.17) and (3.3.3.18).

As a final remark to the anisotropic formulation, it should be mentioned that 
with F = G = H = 1 and L = M = N = 3, the anisotropic formulation reduces 
to the isotropic formulation.

3.5  Incorporation of Elastic Effects

The core of the mechanical model is the rigid-plastic/viscoplastic flow formula-
tion as presented so far. In this formulation the elastic effects are neglected due to 
the large deformations typically simulated. The elastic effects may, however, be of 
importance in some cases when only part of the volume is heavily deformed. In 
these cases, the remaining volume will only deform slightly, such that the elastic 
part should not be neglected.

(3.4.1.5)σ = {σ11, σ22, σ33, σ12, σ23, σ31}T ↔





σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33





(3.4.1.6)ε̇mat = Rε̇R
T

(3.4.1.7)R = I +
Nrot
∑

i=1

(ω∆t)i

(3.4.1.8)σ
′ = R

T
σ

′

mat R

3.4 Incorporation of anisotropy



32 3 Coupled Finite Element Flow Formulation

An example where elastic deformation is of importance is resistance welding 
including bending of a sheet (gap between sheets or welding of a component to a 
sheet structure). In this case the overall deformation is governed by elastic defor-
mation and only local deformation is governed by plasticity. The amount of elastic 
bending can be of importance to the actual contact area, which is essential for the 
welding process.

Elastic effects can be included in computer programs based on the finite ele-
ment flow formulation following the procedure or variants of the procedure pro-
posed by Mori et al. [27]. By doing this, the elastic effects are captured while the 
advantages of the flow formulation are kept for the remaining elements considered 
rigid-plastic due to the large deformations. A possible implementation of this pro-
cedure can be implemented as described in what follows.

All elements are initialized as elastic elements before loading. After loading to 
the vicinity of the yield stress Y , the relevant elements are turned into elastoplastic 
elements, and after further loading the relevant elements are turned into rigid-plas-
tic elements ignoring any further elastic deformation. In order for the programs to 
be more efficient, a range of stress is assigned to define the elastoplastic behavior 
of the elements. With reference to Fig. 3.3a, the constitutive laws are applied as 
follows,

where typical factors are chosen around fl = 0. 95 and fu = 1. 01 where the flat-
tened curve after yielding is reflected in the upper factor being closer to unity than 
the lower factor.

A stress situation in the vicinity of yielding is illustrated in Fig. 3.3b, where 
a stress path is exceeding the yield stress of the material causing strain harden-
ing. The present stress state P is elastic with effective stress less than the yield 
stress, σ̄t < Y . The assumed load increment will cause a stress path through yield-
ing (point Q) followed by strain hardening to a stress state in point R with effective 
stress, σ̄t+∆t = σ̄t + ∆σ̄t+∆t, equal to the new flow stress. A ratio Re of the elastic 
part of the stress to the total stress increment is defined and approximated, respec-
tively, as follows with reference to Fig. 3.3b,

Yamada et al. [28] presented the correct solution corresponding to P Q

P R
, but the 

approximation by PW

PS
 is considered sufficient for the present purpose.

The ratio Re was originally used to scale the load increment according to the 
elastic element closest to yielding to achieve a situation where it just reaches the 
yield stress. Hereafter, the element will be considered plastic. Another approach is 

(3.5.1)

constitutive law =







elastic, σ̄ ≤ flY

elastoplastic, flY < σ̄ < fuY

rigid−plastic/viscoplastic, σ̄ ≥ fuY

(3.5.2)Re =
P Q

P R
≈

PW

PS
=

Y − σ̄t

σ̄t+∆t − σ̄t
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to avoid splitting the time step (corresponding to the load increment). The ratio of 
the elastic contribution to the stress increment is instead used to scale the amount 
of the stress–strain matrix stemming from either the elastic relation or the elasto-
plastic relation according to

where e refers to elasticity and p to plasticity.
For pure elasticity (3.5.3) reduces to Hooke’s generalized law after inversion 

and the elastic stress–strain matrix is written as follows,

For elastoplasticity, (3.5.3) resembles the inverse Prandtl-Reuss equations. The 
starting point is taken by the deviatoric part of the Prandtl-Reuss equations,

where G = E
2(1+ν)

 is the shear modulus and H ′ = d σ̄

d ε̄ p is the slope of the stress–
strain curve. The corresponding elastoplastic stress–strain matrix originally 

(3.5.3)�σ = D
ep
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(

ReD
e + (1 − Re) D

p
)

�ε
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Fig. 3.3  Definitions in the vicinity of the yield stress Y. a Limits defining elastic, elastoplastic 
and rigid-plastic/viscoplastic regions. b Stress path for definition of elastic and elastoplastic frac-
tions of stress increment

3.5 Incorporation of Elastic Effects
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obtained by Yamada et al. [28] is built by inverting (3.5.5a) and can be written as 
follows,

with

The elastoplastic solution presented by (3.5.3) with elastic and elastoplastic 
stress relations by (3.5.4) and (3.5.6) requires the stress to be incremented in each 
step, which is not the case in the flow formulation where the stress is given solely 
by the accumulated effective strain and the strain rate of the current step. In the 
flow formulation, the stress is therefore not necessarily saved between steps unless 
written to result files. On the contrary, in the solid formulations, the stress field of 
the previous step is of importance as the new step is only solving a stress incre-
ment. The stress of the previous step enters the equations as an initial stress, and in 
the end of the step it is incremented by the solution obtained in (3.5.3).

In general, the deformation will include rigid body motion between simulation 
steps. It is therefore necessary at each step to rotate the stress from the previ-
ous step into the new configuration, both for the role of initial stress and for the 
incremental update in the end of the step. With incremental rotation as defined 
in (3.4.1.2) and calculated stress increment ∆σ t+∆t, the stress after the new time 
step is

where the last term is identical to the stress field of the previous time step rotated 
into the new configuration. This term is also applied as the initial stress.

The presented formulation includes a mixture of elastic, elastoplastic and 
rigid-plastic/viscoplastic elements. Whenever elastic effects are relevant, all the 
elements are initialized as elastic as mentioned previously. They are changed to 
elastoplastic elements in the vicinity of yielding according to (3.5.1) and later 
changed to rigid-plastic/viscoplastic elements. The different states of the elements 
are working simultaneously, implying that typical situations will include a local 
deformation zone with rigid-plastic/viscoplastic elements, a transition zone of 
elastoplastic elements while the remaining elements are elastic.

(3.5.6)
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Elastic unloading at the end of a simulation is performed by changing all 
 elements to the elastic state and performing one more iteration step with the actual 
stress field as the initial stress. Dynamic elastic unloading was covered by Mori 
et al. [27] by changing elements back to the elastic state according to (3.5.1) and 
Fig. 3.3a.

References

 1. Boer CR, Gudmundson P, Rebelo N (1982) Comparison of elastoplastic FEM, rigid-plastic 
FEM and experiments for cylinder upsetting. In: Pittman JFT (ed) Numerical methods for 
industrial forming processes. Pineridge Press, Swansea

 2. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite element method. Oxford 
University Press, Oxford

 3. Brännberg N, Mackerle J (1994) Finite element methods and material processing technology. 
Eng Comput 11:413–455

 4. Mackerle J (1998) Finite element methods and material processing technology, an addendum 
(1994–1996). Eng Comput 15:616–690

 5. Mackerle J (2004) Finite element analyses and simulations of sheets metal forming pro-
cesses. Eng Comput 21:891–940

 6. Singh S (2004) Can simulation of the welding process help advance the state of the art in 
resistance welding? In: Proceedings of the 3rd international seminar on advances in resist-
ance welding, Berlin, Germany, pp 5–11

 7. Lee CH, Kobayashi S (1973) New solutions to rigid plastic deformation problems using a 
matrix method. J Eng Ind, ASME 95:865–873

 8. Cornfield GC, Johnson RH (1973) Theoretical prediction of plastic flow in hot rolling includ-
ing the effect of various temperature distributions. J Iron Steel Inst 211:567–573

 9. Zienkiewicz OC, Godbole PN (1974) Flow of plastic and viscoplastic solids with special ref-
erence to extrusion and forming processes. Int J Numer Meth Eng 8:3–16

10. Altan T, Knoerr M (1992) Application of 2D finite element method to simulation of cold 
forging process. J Mater Process Technol 35:275–302

11. Zienkiewicz OC, Jain PC, Oñate E (1978) Flow of solids during forming and extrusion. 
Some aspects of numerical solutions. Int J Solids Struct 12:15–38

12. Zienkiewicz OC, Oñate E, Heinrich JC (1978) Plastic flow in metal forming—I. Coupled 
thermal behavior in extrusion—II. Thin sheet forming. In: Proceedings of winter annual 
meeting of ASME on application of numerical methods to forming processes, San Francisco, 
vol 28, p 107

13. Zienkiewicz OC, Oñate E, Heinrich JC (1981) A general formulation for coupled thermo 
flow of metals using finite elements. Int J Numer Meth Eng 17:1497–1514

14. Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat trans-
fer—I. Theoretical considerations. Int J Mech Sci 22:699–706

15. Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat trans-
fer—II. Applications. Int J Mech Sci 22:707–718

16. Nied HA (1984) The finite element modeling of the resistance spot welding process. Welding 
Res Suppl 63:123–132

17. Zhu W-F, Lin ZQ, Lai X-M, Luo A-H (2006) Numerical analysis of projection welding on 
auto-body sheet metal using a coupled finite element method. Int J Adv Manuf Technol 
28:45–52

18. Zhang W (2010) Weld planning with optimal welding parameters by computer simulations 
and optimizations. In: Proceedings of the 6th international seminar on advances in resistance 
welding, Hamburg, Germany, pp 119–127

3.5 Incorporation of Elastic Effects



36 3 Coupled Finite Element Flow Formulation

19. Nielsen C, Martins PAF, Zhang W, Bay N (2011) Mechanical contact experiments and simu-
lations. Steel Res Int 82:645–650

20. Tekkaya AE, Martins PAF (2009) Accuracy, reliability and validity of finite element analysis 
in metal forming: a user’s perspective. Eng Comput 26:1026–1055

21. Alves ML, Rodrigues JMC, Martins PAF (2004) Three-dimensional modelling of forging 
processes by the finite element flow formulation. J Eng Manuf 218:1695–1707

22. Zhang W, Jensen HH, Bay N (1997) Finite element modeling of spot welding similar and 
dissimilar metals. In: Proceedings of the 7th international conference on computer technol-
ogy in welding, San Francisco, USA, pp 364–373

23. Greenwood JA, Williamson JBP (1958) Electrical conduction in solids II. Theory of tempera-
ture-dependent conductors. Proc R Soc Lond A, Math Phy Sci 246:13–31

24. Alves ML (2004) Modelação numérica e análise experimental de operações de forjamento. 
PhD thesis, IST-Technical University of Lisbon (in Portuguese)

25. Barata Marques MJM, Martins PAF (1990) Three-dimensional finite element contact algo-
rithm for metal forming. Int J Numer Meth Eng 30:1341–1354

26. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London
27. Mori K, Wang CC, Osakada K (1996) Inclusion of elastic deformation in rigid-plastic finite 

element analysis. Int J Mech Sci 38:621–631
28. Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application 

for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 
10:343–354



37

Due to the highly non-linear behavior, contact modeling remains among the more 
difficult disciplines within finite element simulations. Contact between workpieces 
and tooling and in-between workpieces defines the shape of formed components in 
metal forming as well as the contact conditions in resistance welding between the 
components to be joined and the welding electrodes. Section 4.1 presents a direct 
contact algorithm to handle the contact between a deformable workpiece and rigid 
tools. Section 4.2 presents a variational approach to the contact between deform-
able objects and Sect. 4.3 presents an industrial application by fabrication of seam-
less cylindrical reservoirs by tube forming that combines the two aforementioned 
contact modeling approaches.

Descriptions are given based on mechanical contact while thermal and electrical 
contacts are included by simplification of the mechanical description. The mechan-
ical contact conditions can be separated into normal constraints and tangential 
constraints. The normal constraint is always that the contacting surfaces cannot 
penetrate into each other. The tangential constraints depend on the treatment of 
friction. In case of a frictionless approach, there are no tangential constraints and 
in case of full sticking, the tangential constraints are similar to the normal con-
straint since relative sliding is not allowed. In case of frictional conditions (includ-
ing combined sticking and sliding), the constraints are governed by the employed 
friction law. At low, medium and high normal pressures, the following three fric-
tion laws are commonly employed:

•	 Amonton-Coulomb τ f = µ p, typically assumed for normal pressure below 
∼1. 5 p

/

Y .
•	 Law of constant friction (Tresca) τ f = mk, typically assumed above ∼3 p

/

Y .
•	 Wanheim-Bay general friction model τ f = f αk, applicable over the entire 

range of normal pressure and especially relevant in the range between the two 
aforementioned models above ∼1. 5 p

/

Y  and below ∼3 p
/

Y .

In the above friction models, the friction shear stress is τ f , p is the normal pressure 
and Y  is the material flow stress of the softest contact surface, k is the shear flow 
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stress, µ is the friction coefficient, f  and m are the friction factors and α is the ratio 
of the real contact area to the nominal contact area.

4.1  Contact Between Workpiece and Tooling

During non-stationary processes, boundary conditions are progressively modified 
as a result of the interaction between workpiece and tooling. The contact algo-
rithm implemented in both I-Form3 and SORPAS 3D is based on Barata Marques 
and Martins [1] and requires the workpieces to be discretized by hexahedral  
elements and tools (treated as rigid) to be discretized by spatial triangular surface 
elements. This discretization of tool surfaces had originally been proposed by 
Chenot [2], while Shiau and Kobayashi [3] and Yoon and Yang [4] preferred to 
describe the tool geometry by Bezier surfaces. However, the choice of a discretiza-
tion by spatial triangles is somewhat natural in finite element modeling which is 
already based on discretization procedures.

The resulting contact formulation is based on node-to-triangle contact as illus-
trated in Fig. 4.1 by a workpiece node contacting a triangular element of the tool. 
Boundary nodes, like NP in Fig. 4.1, are analyzed for each triangular surface ele-
ment of the tool. The orthogonal projection NP∗ of node NP to the plane spanned 
by the triangle is calculated. Figure 4.1b shows an example of the orthogonal 
projection being inside the considered triangular element, which is one of the 
conditions for being in contact. Figure 4.1c shows an example of the orthogonal 
projection lying outside, and hence node NP and this triangular element are not in 
contact. The evaluation of whether or not the projection lies inside the triangle is 
based on a comparison of the total area of the triangle AN1 N2 N3 and the area sum 

PN

PN

PN

PN

3N 1A

2A

PN

PN

(a) (b) (c)

2N

1N

3A
2N

1N

3N

3A

2A

1A

Fig. 4.1  Contact between the hexahedral mesh and the triangular surface mesh of a rigid tool.  
a Node NP and its projection NP∗ in a triangular element, b normal projection NP∗ of node NP 
lying inside triangular surface element and c normal projection NP∗ of node NP lying outside 
triangular surface element
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A1 + A2 + A3 of the triangles spanned by the projection point and two of the tri-
angle vertices. If the point is inside, the two areas are identical. Another condition 
for being in contact is that the distance between NP and NP∗ is less than a specified 
value in order to avoid nodes far from the tool to be considered in contact.

The time increment necessary for a nodal point to get in contact with the tools 
is evaluated implicitly (θ = 0) or explicitly (θ = 1) according to

The implemented computer program is calculating the time increment based on 
the explicit approach, such that the time needed for each of the potential nodes to 
get in contact with a tool is calculated according to

where the denominator is the normal velocity difference between the candidate 
node NP and its projection NP∗ on the tool, which if it is negative corresponds to 
an increasing gap and in that case it is discarded as a candidate. Among the can-
didates, the minimum time ∆tmin

P  from (4.1.2) is decisive for the following time 
increment. If the time step is larger than the minimum time for a contact point 
to arise, it is split to ∆t = ∆tmin

P . All points getting in contact to the tools within 
a specified tolerance in the following step are projected to the tool and assigned 
boundary conditions to enforce the points to follow the movement of the tool.

Taking the constant friction law as an example, the friction stress τ f = mk acts 
in the opposite direction of the relative velocity ur between workpiece material 
and tool and can therefore be written as

This friction model is illustrated in Fig. 4.2a at the vicinity of a neutral point 
(no relative velocity). The derivative of the friction stress with respect to the rela-
tive velocity is also shown as it is relevant for the finite element implementation, 
and it is seen that the derivative goes to infinity. To avoid this singularity, Chen 
and Kobayashi [5] proposed the following approximation,

which resembles the friction stress as shown in Fig. 4.2b when u0 is a constant 
much smaller than the magnitude of the relative sliding velocity. The friction con-
tribution to the functional Π (3.2.1.8) is

(4.1.1)xt+∆t = xt +
[

θ ut + (1 − θ) ut+∆t

]

∆t

(4.1.2)∆tp =
NP NP∗

vNP − vNP∗

(4.1.3)τ f = −mk
ur

|ur |

(4.1.4)τ f
∼= −

2

π
mk · arctan

(

ur

u0

)

(4.1.5)� f =

�

Stool





|ur |
�

0

τ f dur



 d S

4.1 Contact Between Workpiece and Tooling
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The first and second variations of this term are evaluated and added to equations 
(3.3.3.5) and (3.3.3.6), thereby entering (3.3.3.7) and (3.3.3.11) also. The derivatives 
of (4.1.5) are integrated by 5 × 5 Gauss quadrature [1].

Once a node is in contact with the tools, it is kept in contact until the normal 
stress eventually becomes positive, which corresponds to a release of contact. 
Whenever a node is in contact it is treated mechanically as above, but also thermal 
and electrical effects may be relevant. The thermal effects are due to heat exchange 
with the tool (3.2.2.9) and friction generated heat (3.2.2.10). The electrical boundary 
conditions are either an applied potential or isolation (isolation is similar to a free 
surface).

4.2  Contact Between Deformable Bodies

An indirect, variational approach is taken to the modeling of contact between 
deformable objects. A modification to the variation of the functional expressing 
the total energy-rate of the system is performed by adding a term due to the con-
tact constraints. Traditionally, Lagrange multipliers or the penalty method has 
been applied. The method of Lagrange multipliers solves the problem exactly, but 
at the cost of additional unknowns.

The penalty method does not include additional unknowns, but suffers from 
a compromise in choosing high penalty factors for improving accuracy and low 
penalty factors for avoiding ill-conditioned stiffness matrices. Taking advantages 
from both strategies, the augmented Lagrangian method has become popular; see 
e.g. Wriggers et al. [6] for an early presentation of the augmented Lagrangian 

Fig. 4.2  Friction between 
workpiece and rigid tools. 
a Relative velocity (upper), 
corresponding friction stress 
according to the constant 
friction law (middle) and 
the derivative of the friction 
stress with respect to the 
relative velocity. b Modified 
friction stress according to 
(4.1.4) and its derivative

(a) (b)
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method. This method does however imply longer computation time than the pure 
penalty method due to iterations involving solution of the main system of equa-
tions in order to find the Lagrange multipliers. These iterations do not always  
converge fast, cf. Zavarise and Wriggers [7] who proposed an improved conver-
gence scheme. Fast convergence is particularly critical for complex finite element 
computer programs involving non-linearities due to mechanical, thermal and elec-
trical constitutive models. Many solutions assume frictionless or sticking contact, 
but friction has been included as well. Among the pioneers in frictional modeling 
are Simo and Laursen [8] using the augmented Lagrangian method.

In relation to resistance welding, Song et al. [9, 10] modeled contact in two 
dimensions by the penalty method. The contact between deformable objects in three 
dimensions to be presented in this section follows the work of Nielsen et al. [11]  
and is based on penalties for avoiding penetration of one object into another object 
or self-penetration of an object. All boundary nodes are analyzed for potential con-
tact to another element face in each simulation step. If a certain node and a corre-
sponding element face are identified as a potential contact pair, a normal gap velocity 
gc

n is set up, such that if it is positive, the given velocity field will result in a gap in 
the contact pair, and if it is negative, the velocity field will result in penetration of 
the node and the element face. Depending on the mesh and the contact conditions, a 
node may be a contacting node in one contact pair, and at the same time take part in 
target surfaces in other contact pairs. This introduces symmetry in the contact algo-
rithm naturally.

Figure 4.3a shows an example of a node NP contacting an element face 
N1 − N2 − N3 − N4 of another element, in this case from another object. 
Identification of such contact pairs is based on a distance criterion by a small 
tolerance and that the relative velocity of NP to the element face is orthogonally 
projecting to the element face. The definition of a plane is necessary from the ele-
ment face in order to evaluate the orthogonal projection, but from four nodes, it 
 generally does not exist, since a plane is defined by only three points. Therefore, 
the quadrilateral surface element is divided into triangles by one of the following 
two algorithms:

•	 Algorithm I: The face is divided into two triangles by division through a 
 diagonal as shown in Fig. 4.3b. Doghri et al. [12] experienced loss of symmetry 
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Fig. 4.3  Definition of contact pairs between deformable objects. a Node NP contacting a quadrilat-
eral element face N1 − N2 − N3 − N4 of another element. b Division of element face by diagonal. 
c Division of element face by temporary center node t

4.2 Contact Between Deformable Bodies
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when applying this method. Division by a diagonal leaves two choices, thus 
resulting in two potential pairs of two triangles, and the problem is which pair 
to choose. In the present work, both divisions are evaluated, resulting in two 
overlapping triangles both containing the contact node projection. Among these, 
the triangle where the projection point results in most equal area coordinates is 
chosen. Area coordinates are defined as

with areas Ai defined in Fig. 4.1b. This selection of triangle has resulted in better 
representation of symmetry.

•	 Algorithm II: The face is divided into four triangles by a temporary center 
node t in the face as shown in Fig. 4.3c. This method was adopted by Doghri 
et al. [12] to overcome their loss of symmetry with the above method due to the 
unique choice of triangle. This algorithm is computationally more demanding 
due to larger expansion of the skyline of the stiffness matrix as the target face is 
represented by all four nodes compared to three nodes in the above algorithm.

When applying algorithm I, the normal gap velocity for contact pair c is defined 
as

where α j are the area coordinates (4.2.1), v j

i  is the velocity of the j ′th node of the 
selected triangle, and ni is the normal to the triangle spanned by three of the ele-
ment face nodes. Note the summation in i and j. Similarly for algorithm II, the 
normal gap velocity becomes

where index t refers to the temporary center node. Approximation of the velocity 
in the temporary center node by linear interpolation from the four face nodes, i.e. 
averaging, leads to

The normal gap velocity can be written in compact notation to ease subsequent 
derivations of the variational contribution to the energy rate functional. The fol-
lowing parameters are introduced for algorithms I and II to assist the compact 
notation,

(4.2.1)α j =
A j

∑3
i=1 Ai
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v P
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ni
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v P
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The velocity gap functions can then be written in the following compact nota-
tion for each of the algorithms φ,

which by definition are equivalent to (4.2.2) and (4.2.4).

4.2.1 Frictionless Contact

According to the definition, action has to be taken only when gc
n < 0 correspond-

ing to penetration in the contact pair. In these cases, the velocity field is con-
strained by penalizing the penetration, through

which is to be added to the variation of the energy rate functional (3.2.1.11). The 
total number of contact pairs to be constrained is Nc, and P is a large positive con-
stant. Equation (4.2.1.1) handles frictionless contact. In order to handle friction or 
full sticking, tangential velocity terms should be included.

Evaluation of (4.2.1.1) is accomplished for both algorithms by inserting the gap 
velocity gc

n, while at the same time replacing v by v0 + ∆v resembling the incre-
mental finite element solution when using Newton–Raphson iterations. It is also 
noted that gc(ϕ)

n = n
T
ϕ

Aϕvϕ is equivalent to (4.2.13), since it is simply the trans-
pose of a scalar. Note also that AT

ϕ
= Aϕ, since Aϕ is a diagonal matrix. The sub-

stitution is shown in the following, where it has been utilized that the variation of 
the constant v0 is zero and gc

nδ gc
n = δ gc

ngc
n,

(4.2.7)v
T
I = {vP , v1, v2, v3}T

(4.2.8)n
T
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
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Utilizing that δ∆vφ is to be chosen arbitrarily, it is possible to recognize the 
contributions to the stiffness matrix and the load vector after rearranging terms,

The contribution from the c′th contact pair to the stiffness matrix is Kc, and the 
corresponding contribution to the load vector is fc. For algorithm I, the dimensions 
will be 12 × 12 for Kc and 12 × 1 for fc, whereas for algorithm I I, the dimensions 
will be 15 × 15 and 15 × 1, respectively.

Regarding the assembly, an overview is best given by writing the contributions 
to the stiffness matrix and the load vector in the following forms, where for the 
load vector it is recognized that the initial gap velocity is gc

n0
= n

T
ϕ

Aϕv0ϕ,

When using direct iterations, v is solved directly, rather than the incremental 
velocity ∆v when using Newton–Raphson iterations. For direct iterations it fol-
lows (similar to (4.2.1.2) and (4.2.1.3)) that Kc is identical, but fc = 0.

The factor P is the penalty, αϕ

m is given by either (4.2.5) or (4.2.9), and ni is the 
unit normal vector to the contact face. The position of each of the components, 
K

ijmn
c  and f

jm
c , in the global system of equations is shown by Fig. 4.4, where 
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blocks of 3 × 3 positions, i j, are identified as the relation between nodal points 
m and n. Each block is symmetric (i j = j i) and the blocks are symmetric around 
the main diagonal (mn = nm). In cases (mn = {2P , 23, (43)} in Fig. 4.4) where 
the penalty blocks lie above the skyline, the skyline profile has to be expanded to 
allow the additional penalty blocks.

4.2.2 Sticking Contact

In sticking contact there is no sliding between the surfaces in contact. The tangen-
tial velocity difference is therefore penalized in addition to the normal gap velocity. 
The variational penalty term stemming from the tangential velocity difference gc

t  is 
given by

which is similar to (4.2.1.1). The derivations are also identical except that the tan-
gential contributions result in two sets of penalty terms corresponding to the two 
tangential components of the tangential velocity difference written as

with notations following (4.2.5)–(4.2.12) and tϕ1 and tϕ2 being vectors of the two 
tangential unit vectors. The resulting terms after insertion into (4.2.2.1) are similar 
to (4.2.1.4)–(4.2.1.5) with the normal vector exchanged by each of the tangential 
vectors.

4.2.3 Frictional Contact

As for the contact between workpiece and rigid tools, the constant friction law, 
τ f = mk, will be taken as an example. To avoid the derivatives going to infinity cf. 
the discussion related to Fig. 4.2, the friction stress is written as (4.1.4), here with 
the tangential velocity difference defined by (4.2.2.2),

The contribution to the energy rate functional due to friction and its corresponding 
variation are
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where frictional force is introduced by the product of the frictional stress τ f  and 
the area of the contact pair Ac. Insertion of the friction stress and the tangential 
velocity difference components (4.2.2.2) into the variational form (4.2.3.3) results 
in the following additional terms to the stiffness matrix K ijmn

f  and generalized load 
vector f

jm

f
 for each of the tangential components (one set for each of the inserted 

tangential unit vectors),

4.2.4 Electrical and Thermal Contact

Electrical and thermal contact properties are included in contact interface elements 
on one or both of the objects in contact and eventual drops over the interface due 
to contact resistances are included in these elements, see Chap. 7 for a description 
of the physical properties. The contact implementation here is therefore limited to 
ensure that the electrical potential and the temperature are identical on both sides 
of the contacting finite elements. This is ensured by penalizing electrical potential 
difference Φd and temperature difference Td by

Both the potential and the temperature are scalar fields, and the derivation is 
therefore a reduced form of the frictionless contact derivation in the absence of the 
normal vector. The contributions to the system matrices are

while there are no contribution to the right hand sides.
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4.3  Application of Contact Modeling

The numerical simulation of the forming process utilized for producing small 
size, seamless, cylindrical metallic reservoirs requires successful utilization of 
both contact modeling approaches that were presented in previous sections of this 
chapter. The forming process is schematically shown in Fig. 4.5 and consists of:  
(i) upper and lower semi-ellipsoidal shaped dies, (ii) a container, (iii) a mandrel 
and (iv) a tubular preform [13, 14].

The raw materials utilized in the fabrication of the reservoirs consisted of com-
mercial tubes of aluminum AA6063-T0 and internal mandrels made from a com-
mercial low melting point alloy MCP137 (Tmelt = 137 ◦C) comprising bismuth, 
lead, tin and cadmium.

As seen in Fig. 4.5, the forming operation is accomplished by axial pressing of 
the open ends of a tubular preform with the upper semi-ellipsoidal shaped die until 
achieving the desired geometry. The upper and lower dies are the active tool com-
ponents and its sharp-edges are protected against collapse due to circumferential 
tensile stresses by means of the container which acts as a shrink fit tool part. The 
dies are dedicated to a specific outer radius of the tube r0 and its profile defines the 
geometry of the reservoir. The container constrains material from outward flow in 
order to avoid the occurrence of buckling and helps minimizing the errors due to 

l rm
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α
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Fig. 4.5  Shaping a tubular preform into a small-size cylindrical reservoir with semi-ellipsoidal 
ends by cold forming. The enclosed photograph shows the preform and the final reservoir made 
from Aluminum AA6063-T0 with 60 mm diameter
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misalignment between the tubular preforms and the individual dies. Both dies and 
container are modeled as rigid bodies.

The mandrel provides internal support to the tubular preform during plastic 
deformation in order to avoid collapse by wrinkling and local instability at the 
equatorial region. The mandrel is made from a low melting point alloy that is 
capable of continuously adapting its shape to that of the formed tube and is easily 
removed by melting (recyclable), while leaving the reservoir intact, at the end of 
the process. The mandrel is modeled as a deformable body.

The forming process shown in Fig. 4.5 is the result of four basic mechanisms 
that compete with each other; plastic work, friction, local buckling and wrinkling. 
Plastic work is caused by compression along the circumferential direction which 
gradually deforms the tube against the dies. Friction develops gradually as the tube 
deforms against the semi-ellipsoidal shaped dies. Local buckling and wrinkling are 
associated with compressive instability in the axial and circumferential directions 
and limit the overall formability of the process by giving rise to non-admissible 
modes of deformation.

Figure 4.6 shows the computed predicted geometry of the reservoir at the end 
of the process. As can be seen, the interaction between the tube and the internal 
deformable mandrel allows fabricating sound reservoirs whereas forming without 

Fig. 4.6  Forming tubular preforms into cylindrical reservoirs with semi-ellipsoidal ends. Finite 
element predicted geometry at the end of the process without and with internal deformable 
mandrel
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a mandrel will inevitably lead to failure. Subsequent removal of the internal man-
drel by melting, while leaving the shell intact, results in the reservoir shown in 
Fig. 4.5. This example puts into evidence the critical role played by contact algo-
rithms in ensuring adequate estimates of plastic flow.
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A significant amount of time in finite element modeling of manufacturing processes 
is spent in mesh generation. Setting up three-dimensional meshes is a cumbersome 
task due to complexity of the processes and the involved geometries. Moreover, 
additional meshing challenges often appear due to the fact that manufacturing 
processes based on large plastic deformations present progressive mesh distortion 
(or degeneracy), potential interference between mesh and contour of the tools and 
possible contact of the mesh with itself. This poses the need for robust, automatic, 
mesh generation and regeneration (remeshing) procedures in order to ensure that 
complex processes are modeled from the beginning to the end with high levels of 
accuracy both in terms of geometry and distribution of field variables.

The choice of element type has large impact on the simulations, and the 
 typical dilemma in three dimensions arises from the selection between  tetrahedral 
and hexahedral elements. The arguments for the tetrahedral elements are the 
 robustness, versatility and availability of meshing algorithms. Based on Delaunay 
tessellation, Coupez et al. [1] opened the possibility of effectively and automati-
cally simulating the whole forming process of complex three-dimensional parts 
from beginning to the end. On the other hand, the argument for the hexahedral 
elements is the accuracy. Furthermore, standard tetrahedral elements suffer from 
locking due to the incompressibility constraint in plasticity. Second-order tetra-
hedral elements overcome this problem but perform poorly in the tool-workpiece 
contact interfaces, often leading to stability problems in the contact algorithms as 
stated by Tekkaya and Martins [2]. As a result of this, special tetrahedral elements 
with interior nodes have been developed for preventing locking. These elements, 
however, still suffer from some of the typical drawbacks of tetrahedral elements: 
They are overly stiff, very sensitive to mesh orientation and frequently require up 
to an order of magnitude more elements to achieve the same level of accuracy as 
hexahedral elements. Benzley et al. [3] also noticed that meshes based on tetra-
hedral elements result in larger models, and therefore in larger computational 
requirements, than meshes based on hexahedra for the same level of accuracy. 
Kraft [4] observed that tetrahedral elements cause critical errors when distorted, 
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whereas hexahedra have better behavior even when distorted. This chapter deals 
with hexahedral elements due to the challenges currently posed by all-hexahedral 
meshing and remeshing algorithms and computer implementation.

Meshes based on hexahedral elements can be divided into two groups. One 
group is structured meshes, which can be recognized by all interior nodes of the 
mesh having equal number of adjacent elements. The simplest geometries are eas-
ily meshed and the more complicated can be handled by isoparametric meshing of 
superelements as described in Sect. 5.2. The utilization of this method is limited to 
geometries that can be divided into hexahedral superelements. The second group 
is unstructured meshes, which, in principle, should cover all three-dimensional 
geometries.

The simplest unstructured meshing by hexahedral elements is performed by 
means of an indirect approach, where the geometry is first meshed by tetrahedral 
elements using Delaunay tessellation. Each tetrahedron is subsequently decom-
posed into four hexahedral elements. This approach is robust but always leads 
to distorted elements with only a fraction of the quality of an ideal hexahedron. 
Furthermore, the indirect meshing by decomposition always leads to nodal points 
with high valence, which artificially increases the overall stiffness of the finite  
element models. The poor quality obtained by this approach is considered the rea-
son why some well-known commercial finite element programs currently utilized 
in metal forming do not offer hexahedral elements as an option, or do not provide 
automatic remeshing if hexahedra are available. The alternative approach for the 
automatic generation of good quality hexahedral elements in arbitrary domains 
was originally proposed by Schneiders and Bünten [5] and it will be hereafter 
named as “all-hexahedral meshing.”

All-hexahedral meshing is presented in Sect. 5.3 and all-hexahedral remeshing 
is presented in Sect. 5.4. Because description of tooling is relevant for meshing 
and remeshing, a brief review of the techniques that are utilized for the description 
of tool surfaces is given in Sect. 5.1.

5.1  Description of Tooling

Tools can be described by analytical or parametric surfaces, surface meshes and 
clouds of points, Santos and Makinouchi [6]. In most of the commercial finite 
 element computer programs, the surfaces are described by means of surface 
meshes (e.g. triangular elements, Fig. 5.1a). The utilization of a grid of trian-
gular elements instead of alternative approaches based on analytical functions, 
parametric surfaces (Fig. 5.1b) or clouds of points, is due to the fact that the  
former always guarantees successful discretization of the surfaces while other 
techniques often face difficulties whenever complex shapes and/or small geomet-
rical details are to be discretized.

However, triangular elements fail to ensure smoothness and, therefore, intro-
duce artificial roughness on the surface of tooling. This can bring in geometrical 
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errors, for instance in case of small fillet radii which may be poorly captured if the 
discretization is too coarse.

Tools deform elastically but are commonly modeled as rigid in three-
 dimensional finite element modeling of metalworking processes because their 
deformations are negligible when compared to the plastic deformation of the 
workpieces. However, the simplification is not always feasible as shown by 
Tekkaya and Martins [2] by means of a metal forming example displaying signifi-
cant erroneous tool force when assuming the tool rigid instead of elastic. In such 
situations there is a need to take the elastic deformation of tooling into consid-
eration. When it comes to resistance welding applications, the tools are acting as 
the coupling between electrodes and the welding machine and are therefore suf-
ficiently modeled as rigid.

The majority of the applications reported in the literature that deal with the  
elastic deformation of tools is restricted to the utilization of finite elements both in 
the workpiece material and tools, Boussetta et al. [7] and Behrens and Kerkeling 
[8]. This results in limitations in terms of the size and complexity of the overall 
computer models when the tools, having complex geometrical shapes, are to be 
discretized and included in the overall set of finite-element computations. Some of 
these limitations can be solved by alternative approaches based on combination of 
finite element and boundary element methods; see Fernandes et al. [9].

The utilization of boundary elements for performing the elastic deformation 
of the dies not only avoids over-sizing the resulting computer models as it offers 
significant computational advantages over the existing approaches fully based on 
finite elements. The first advantage is due to the fact that boundary elements only 
require discretization of the die surfaces. The second advantage is seen by tak-
ing into consideration that numerical simulation of manufacturing processes is 
generally accomplished through a succession of displacement increments, each  
modeling a small percentage of the initial height of the preform. In practical 
terms, this means that a simulation based on several hundreds of increments 

Fig. 5.1  Two main approaches utilized in the discretization of a hemispherical tool: a surface 
meshes and b analytical functions or parametric surfaces

5.1 Description of Tooling
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will require the elastic deformation of the dies to be also calculated hundreds 
of times. This is the reason why alternative approaches based on boundary ele-
ments make a difference against fully finite element based solutions. Similar 
finite element—boundary element combined approaches can also be utilized for 
solving thermo-mechanical coupling in the tool-workpiece interface, as shown by 
Rodrigues and Martins [10].

5.2  Isoparametric Structured Meshing

Structured meshes of hexahedral elements can be created by a method based 
on isoparametric meshing of superelements as first shown by Zienkiewicz and 
Phillips [11]. Martins and Barata Marques [12] developed a three-dimensional 
mesh generator based on this technique and published the source code.

The method is applicable when the geometry to be meshed can be divided into 
a number of sub-blocks, the so-called superelements. An example is shown in 
Fig. 5.2a in terms of a quarter of an electrode for spot welding. The top face shows 
a typical division of solid cylindrical faces in order to achieve well shaped superel-
ements resulting in well-shaped 8-node hexahedral elements.

The superelements are 20-node elements specified by the user by the coordi-
nates of the eight corner points and 12 mid-side points. The mid-side points are 
automatically placed half distance on the straight line between two corner points if 
not specified. Otherwise, the edges of the superelements are represented parabolic 
by the mid-side nodes and their two respective corner points. Any point within the 
superelements is given by interpolation using the standard shape functions for a 

(a) (b) (c)

Fig. 5.2  Isoparametric structured meshing of a quarter of an ISO type B0 electrode for spot 
welding. a Subdivision of geometry into 20-node superelements. b, c Subsequent division of 
superelements into 8-node hexahedral elements
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20-node hexahedral element. Division of the superelements into 8-node elements 
is based on specified number of divisions along each superelement side along with 
a corresponding grading of the element division. Note that divisions should only 
be specified for the three mutual orthogonal (with respect to natural coordinates) 
directions due to the structured nature of the created meshes. Figures 5.2b, c show 
an example of the resulting mesh.

In combination with a user interface for setting up the superelements, this 
meshing technique is a powerful tool in setting up initial geometries and meshes. 
The method is not automatically applicable in remeshing procedures because the 
underlying geometries of the meshes with need for remeshing usually cannot be 
identified by a reasonable number of superelements. Remeshing is therefore solely 
accomplished by meshing techniques based on unstructured meshing.

5.3  All-Hexahedral Unstructured Meshing

All-hexahedral meshing is a grid based approach that involves the construction 
of a structured three-dimensional mesh of hexahedra in the interior of the volume 
(core mesh) followed by subsequent generation of an extra layer of elements for 
linking the core with its projection on the boundary of the workpiece. The method 
proposed by Schneiders and Bünten [5] is an extension of the two-dimensional 
approach based on quadrilateral elements that was previously developed by 
Schneiders et al. [13]. Among other contributors to the all-hexahedral meshing 
techniques are e.g. Kraft [4], Zhu and Gotoh [14], Karadogan and Tekkaya [15] 
and Kwak and Im [16].

The all-hexahedral meshing algorithm to be presented in what follows was 
originally developed by Fernandes and Martins [17], who provided a detailed 
description of the major procedures and programming solutions, and further devel-
oped by Nielsen et al. [18], who included adaptive core meshes and the possi-
bility of handling multiple objects besides enhancing the overall robustness and 
versatility.

5.3.1  Identification of Geometric Features and Selection  
of Core Mesh

The starting point is a triangular surface mesh of the geometry, e.g. provided by a 
CAD program, and the meshing procedure is then responsible for supplying a hex-
ahedral mesh within the surface. An important step before the meshing itself is the 
recognition of geometrical features in form of vertices and edges that must be kept 
during meshing. Figure 5.3a shows a triangular surface mesh and Fig. 5.3b shows 
the geometrical features that were identified after applying algebraic algorithms 

5.2  Isoparametric Structured Meshing
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based on the evaluation of surface normals to the triangles and analyzing nodal 
valences. As illustrated in Fig. 5.3a, a typical segment 1 − 2 shared by two adja-
cent triangular elements ‘123’ and ‘142’ is taken as an edge segment if the angle 
α between the normals n123 and n142 to the triangular elements is greater than a 
specified threshold angle (say θ = 45◦),

The summation and sorting of adjacent edge segments before and after 1 − 2 in 
a sequential manner leads to the edge A − B (Fig. 5.3b).

Vertices are collected from the end points of edge segments that are connected 
to at least three neighboring edge segments. Edges are classified into three main 
groups (Fig. 5.3b): (i) open edges (ii) closed edges and (iii) fading edges. Open 
edges connect two different vertices (A − B, B − C, C − D and D − A), closed 
edges start and end in the same point and do not contain vertices, and fading edges 
start in a vertex but smoothly vanish along the surface (e.g. B − E and C − F).

The first step of the meshing procedure is the generation of the core mesh of 
hexahedral elements. This is generated by creating a bounding box of elements as 
those shown in Fig. 5.3c and subsequently removing the elements with at least one 
node outside the provided surface. Selection of the bounding box depending on 
the dominant geometric primitive identified from the surface mesh was proposed 
by Nielsen et al. [18] and proved to increase mesh quality significantly. It is noted 
that the choice of bounding box is not limited to those shown in the figure, but 
could potentially be any mesh easily generated by means of isoparametric based 
procedures outlined in Sect. 5.2. The removal of elements outside the provided 
surface is accommodated by a ray-tracing algorithm described by O’Rourke [19] 
to judge if a node is inside or outside the surface. Following a vector in an arbi-
trary direction from a certain node the number of intersections with surface trian-
gles determines if the node is inside (odd number of intersections) or outside (even 
number of intersections).

(5.3.1.1)n123 · n142 > cosθ

(a) (b) (c)

Fig. 5.3  Identification of geometrical features and examples of bounding boxes. a Identi-
fication of edge segments from triangular surface mesh. b Identification of edges and vertices.  
c Examples of bounding boxes
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5.3.2 Reconstruction of Geometry

Reconstruction of the geometry includes introduction of an additional layer of  
elements on the core mesh with projection to the surface, projection of selected 
nodes to vertices and projection of nodes to reconstruct edges. The reconstruc-
tion of surfaces is successfully performed with the isomorphism technique origi-
nally proposed by Schneiders and Bünten [5] and later modified by Fernandes and 
Martins [17]. The isomorphism technique is based on the generation of a layer of 
elements between the core mesh and the triangular surface mesh that defines the 
contour of the workpiece. The core mesh is smoothened before projecting the out-
most nodal points to the triangular surface mesh in order to avoid crossing of adja-
cent surface normals that would create projection problems.

Reconstruction of vertices is performed by projection of nodal points of the 
aforementioned layer of hexahedral elements to the vertices of the triangular surface 
mesh. The algorithm implemented by Nielsen et al. [18] is based on a combination 
of the usual distance criterion and the valence (the number of element edges attached 
to a node) in order to avoid creating degenerated elements that will need subsequent 
repairment. Moreover, the algorithm is built upon an iterative search for the best can-
didate to be projected to the vertex. The iterative searching procedure is important 
for reconstructing sharp corners, where the distance to the core mesh can be large 
and no candidates are likely found at first. On the other hand, the iterative procedure 
allows the search radius to be progressively increased from small values in order to 
avoid candidates located far away to be projected onto the existing vertex.

Edge reconstruction is the most critical step in all-hexahedral based meshing. 
The procedure is illustrated in Fig. 5.4 and is based on the algorithm by Kwak and 
Im [16] modified by Nielsen et al. [18] to include additional geometrical features 
and topology based constraints. Figure 5.4a shows the final mesh of the example 
and Fig. 5.4c–e show magnified details of the intermediate meshes. The mesh 
included in Fig. 5.4c was plotted after vertex reconstruction while the meshes in 
Fig. 5.4d, e were taken after partial (from vertex node V  to edge node P) and final 
reconstruction of edges. It is important to notice that ‘final reconstruction’ of an 
edge should not be confused with its ‘completeness’, as can be easily observed in 
Fig. 5.4e. Completion of edges is discussed in Sect. 5.3.3.

In the selection of the best candidate to project to the edge after P, the first step 
is the identification and sorting of up to three candidate nodes based on the dis-
tance to the last projected node P. Nodal point k(1) is the first potential candidate, 
but it is discarded because its angle with the previous part of the edge is larger 
than a critical threshold value (say 60◦), implying that k(1) is not considered as a 
node ahead of P. The next nodal point to be evaluated is k1, which fulfills all the 
necessary conditions and is accepted as candidate number 1. Node k(2) is discarded 
as second candidate because it is diagonally opposed to P (that is, line segment 
drawn from k(2) to P is a diagonal of the quadrilateral face). Node k2 is selected 
as candidate 2, and during selection of candidate 3, k(3) is discarded for also 
being diagonally opposed to P, and k3 is selected instead. The introduction of the 

5.3 All-Hexahedral Unstructured Meshing
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topology based criterion avoiding diagonally opposite nodes on the edge prevents 
the occurrence of degenerated hexahedral elements along the edges. However, this 
type of constraint should not be confused with the necessity of having diagonals 
on the edges for ensuring its completeness as addressed in Sect. 5.3.3.

The second step is to choose between the three identified candidates. Figure 5.4b 
illustrates such a situation with respect to the latest projected node P for candidate 
nodes k1, k2 and k3.The first priority is obtained after applying the following func-
tion (hereafter named g-function),

where nR is the unit vector from P to R and ni are the unit vectors from P towards 
the candidates. The distances from the candidates to P are denoted li and the dis-
tances from the candidates to the edge segment Q − R of the triangular surface 
mesh are represented by di, where index i refers to the candidates. The constant 
C0 refers to the characteristic element side of the core mesh. In choosing between 
candidates, first priority is given to the candidate minimizing the g-function while 
the candidate maximizing the g-function is directly discarded. In the example in 

(5.3.2.1)
g = (1 − nR · ni ) +

di

max (d1, d2, d3, C0)
+

li

max (d1, d2, d3, C0)

(a)

(c) (d) (e)

(b)

Fig. 5.4  Reconstruction of edges in a typical forged flange component. a Final hexahedral 
mesh. b Schematic illustration of reconstruction process on edge segment QR. c Mesh after  
reconstruction of vertices. d Mesh after partial reconstruction of edges. e Mesh after final recon-
struction of edges showing k1 projected on the edge and evidence of lack of completeness
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Fig. 5.4, candidate k1 is selected from the minimization of the g-function, and the 
projection of k1 is shown in Fig. 5.4e together with the remaining projections based 
on the application of the proposed algorithm.

The first two terms of the g-function were originally suggested by Kwak and 
Im [16] and account for the selection of candidates that minimizes collinearity and 
distance to the edge segment. The third term was added by Nielsen et al. [18] to 
force minimization of the g-function to be dependent on the distance to the latest 
projected node P. The importance of the new term is best illustrated by an exam-
ple where two candidates are equidistant to a straight edge, such that the second 
term in (5.3.2.1) is of no importance. In this case the first term alone would pri-
oritize the candidates further away from P due to collinearity, although the nearer 
node may fulfill all other criteria for being chosen. The third term adds robustness 
by compromising between collinearity and distance to node P.

5.3.3 Edge Repairment

As it was mentioned in relation to reconstruction of edges in Fig. 5.4 and exem-
plified further in Fig. 5.5 by an extreme geometry in form of a hexahedron, there 
is often necessity of performing repairment of the edges in order to ensure com-
pleteness of the edges. Figure 5.5a shows the core mesh generated from a cuboid 
bounding box and Fig. 5.5b shows the intermediate mesh after reconstruction of 
surfaces, vertices and edges.

Fig. 5.5  Selected overview 
of topology based repairment 
of edges in all-hexahedral 
meshing of a tetrahedron. 
a Core mesh obtained from 
a cuboid bounding box. b 
Mesh after reconstruction of 
surfaces, vertices and edges. 
c Mesh after topology based 
repairments illustrated by 
node pairs 1a, 1b and  
2a, 2b. d Final mesh after 
application of templates for 
eliminating degenerated 
hexahedra (e.g. ‘3’) by means 
of its decomposition into 
well-shaped hexahedra

(b)(a)

(d)(c)

5.3 All-Hexahedral Unstructured Meshing
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The necessity of repairment to complete the edges by element sides and to 
improve the element quality is obvious. Projection of nodes, such as 1a and 1b 
in Fig. 5.5b, is one of the topology based repairment procedures applied. Nodes 
1a and 1b are characterized by being neighbors of two consecutive nodes on the 
edge that do not share an element side. Their projections will locally complete the  
corresponding edges. Another topology based repairment is the projection of neighbor-
ing pairs of nodes such as 2a and 2b in Fig. 5.5b. Each of these nodes is neighboring 
one of two consecutive nodes on the edge, which do not share an element side. Again, 
the repairment ensures local completion of the edge. The mesh of the tetrahedron after 
performing the two previously mentioned types of repairment is shown in Fig. 5.5c.

At this stage the edges are complete, but additional repairment is still necessary 
to resolve degenerated elements, such as that labeled ‘3’ in the figure. The element 
has three nodes along the edge and can be split into four elements of better quality 
by means of the template proposed by Schneiders and Bünten [5]. The template is 
illustrated by the detail in Fig. 5.5d, where also the resulting hexahedral finite ele-
ment mesh is shown.

5.3.4 Smoothing

Smoothing procedures are applied with the purpose of repairing distorted ele-
ments and improving their shape in different stages of meshing and remeshing. In 
general terms, smoothing is accomplished by changing the position of the nodal 
points to new positions given by a weighted average of the neighboring nodal 
points without modifying the topology of the mesh.

Several constraints must be taken into account to preserve the geometrical con-
sistency of the hexahedral meshes. Vertices are excluded from smoothing as their 
positions are fixed. Edge nodes stay on the edges and the surface nodes remain on 
the surfaces. To overcome these constraints, edges are smoothed first by means of a 
parametric based procedure presented by Nielsen et al. [18]. Surfaces are smoothed 
next while excluding the edge nodes, and finally, the volume is smoothed while 
excluding all nodal points located on edges and surfaces. Surfaces are smoothed by 
averaging nodal positions according to the weighted areas of the neighboring surface 
quadrilaterals and volume smoothing is performed by averaging nodal positions of 
the core mesh according to weighted volumes of neighboring hexahedral elements. 
Both surface and volume smoothing procedures are comprehensively described else-
where; see Karadogan and Tekkaya [15] and Fernandes and Martins [17].

5.3.5 Application of All-Hexahedral Meshing

A connecting rod is presented in Fig. 5.6 to illustrate the applicability of the 
presented all-hexahedral meshing technique. The shape of the connecting rod 
is provided by a triangularized surface from AutoCAD. Following the above 
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presented procedures from identification of geometric features, generation of 
core mesh and reconstruction of edges, the smoothened mesh with improved  
element conditions is obtained as shown in Fig. 5.6.

5.4  Remeshing

The description of the remeshing procedures is based on the example shown 
in Fig. 5.7, which is an industrial case consisting of the resistance welding of a 
square nut to a sheet. Resistance welding is an extreme case of multi-object simu-
lation involving electro-thermo-mechanical modeling as described in the present 
work, and in terms of remeshing it presents several complications due to multiple 
objects and local effects presented by the process.

Figure 5.7a shows the initial mesh of the case simulated by one quarter due to 
symmetries. A standard component in the automotive industry in form of an M10 
steel square nut (1) is welded to an AISI 1008 steel sheet (2) of 1.4 mm thickness. 
A 50 μm thin layer of elements (3) on top of the sheet provides the interface prop-
erties between the square nut and the sheet. Electrical and thermal resistances stem-
ming from oxide layers, surface films and contaminants are included in this layer. 
The electrical and thermal contact properties change with temperature and contact 
pressure due to formation of real contact area break down and squeeze out of the 
impurities. A 15 kA direct current is applied through the copper alloy electrodes (4) 
and (5) from each side of the square nut and the sheet.

The temperature field after simulating 80 ms of the resistance welding process 
is shown in the deformed mesh of Fig. 5.7b. Figure  5.7c, d show the temperature 
of the original and the remeshed cases after additionally 40 simulation steps, cor-
responding to 100 ms in total. Nearly identical shape and temperature distributions 
prove the accuracy, reliability and validity of the overall procedure, which is out-
lined in the following.

Fig. 5.6  Hexahedral mesh of a connecting rod showing the capabilities of the presented all-hex-
ahedral meshing technique

5.3 All-Hexahedral Unstructured Meshing
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At the stage shown in Fig. 5.7b several elements in the bottom of the square nut 
(1) are flattened such that remeshing becomes necessary to carry on the simula-
tion with high accuracy. However, the meshes in the remaining objects (2–5) are 
practically not distorted and, therefore, do not undergo remeshing. In other words, 
remeshing is only performed in the selected object (1). In case of  remeshing, the 
surface mesh is extracted from the deformed geometry by splitting each of the sur-
face quadrilaterals into two triangular elements. Hereafter follow the procedures 
outlined in Sect. 5.3 for the individual object.

(d)

(b)(a)

(c)

Fig. 5.7  Resistance welding of a square nut to a sheet. a Initial mesh of the multi-object finite 
element model. b Temperature distribution in original deformed mesh after 80 ms. c Temperature 
distribution in original deformed mesh after 100 ms. d Temperature distribution in the remeshed 
configuration after 100 ms, where remeshing took place after 80 ms
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5.4.1 Multi-Object Procedures and Tool Contact

The presence of multiple objects poses the necessity of paying special attention 
to ensure that penetration or gaps are avoided in regions where contact conditions 
prevail. The majority of nodes after remeshing will in general be located on the 
element faces of the previous distorted mesh but without coinciding with previous 
nodes. As a result, the surface of an object after remeshing will not be identical 
to the surface before remeshing, and therefore contact conditions are not guaran-
teed to be maintained unless the interfaces are planar. The solution is to reposition 
nodes of one object by orthogonal projection to an element face of another object 
if the orthogonal distance between them is less than a certain threshold tolerance. 
Additionally, all surface nodes of an object are tested for penetration into elements 
belonging to any other objects even if it exceeds the aforementioned tolerance.

A similar procedure is implemented for maintaining contact conditions between 
an object and a rigid tool with the constraint that only nodes of the object can be 
moved.

5.4.2 Transfer of History Dependent Variables

An additional step is necessary to complete the remeshing. The history dependent 
field variables, such as strain, damage, current density and temperature, need to be 
transferred from the old to the new mesh. This requires the evaluation of the nodal 
values of these quantities in the old mesh.

Averaging by weighted volumes of surrounding Gauss points is frequently 
applied, but it is possible to compute better nodal values extrapolated from Gauss 
points by applying a recovery technique based on least square fitting. The applica-
tion of least square fitting requires the minimization of the following functional, I,

where ck is the known value of the time-integrated field variable at the centre 
Gauss point of element k, fi is the nodal quantity to be determined and Ni is the 
conventional shape function of node i. Details of the procedure are comprehen-
sively described by Martins et al. [20] and Fernandes and Martins [17].

Detailed views of the mesh and transfer of field variables in the example of 
the square nut to sheet welding case are provided in Fig. 5.8. A large number of 
elements have been applied to capture the details of the leg of the square nut (see 
also Fig. 5.7c, d). However, because the remaining part of the square nut has no 
or little deformation, the mesh density in this region is made lower in order to 
reduce the overall number of elements. The resulting mesh is shown in Fig. 5.8, 
where the entire square nut is shown in the lower figures and the details near a 

(5.4.2.1)I =
∫

∑

k

[

∑

i

Ni fi − ck

]2

dVk

5.4 Remeshing
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leg are shown in the upper figures. The overall number of elements is raised by a 
factor of 2.5 due to remeshing and resulting refinement in order to capture all the 
technological relevant local details.

The transfer of field variables (here exemplified by the effective strain) is per-
formed from the original mesh in Fig. 5.8a to the new mesh in Fig. 5.8b, c. In 
Fig. 5.8b the transfer is accomplished by averaging of neighboring Gauss point 
values by weighted volumes, whereas the least square method according to 
(5.4.2.1) has been applied in Fig. 5.8c. As observed, the peak values (compare the 
dark color) are kept better when the transfer is performed by least square fitting 
than by volume weighted averaging.
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When solving large finite element problems, solution time becomes a factor 
which cannot be ignored. It is among the concerns when considering modeling in 
three dimensions instead of two dimensions. Different approaches are  available 
to reduce the computational cost. Decomposition of a finite element domain 
into  subdomains allows naturally for parallel computation of the subdomains to 
save overall computation time; see e.g. El-Sayed and Hsiung [1]. Interface nodes 
between substructures couple the substructure solutions, and thus  communication 
between the processors are needed. In order to keep the amount of interface nodes 
minimal, Farhat [2] and Al-Nasra and Nguyen [3] have proposed algorithms for 
optimal decompositions. Another way of saving computation time is to apply 
faster solution techniques to solve the system of equations. This can be done either 
by solving iteratively, sequentially or in parallel, or by parallelizing the equation 
solver, such that it remains a direct solver.

6.1  Strategies of Solution Techniques

In iterative solvers, the solution is found iteratively to satisfy the equation system 
to within a specified tolerance. This is faster than directly solving the equation sys-
tem as long as the rate of convergence is fast enough. Lanczos [4] and Hestenes 
and Stiefel [5] have e.g. proposed conjugate gradient (CG) iterative solvers, which 
were later improved by preconditioning, see Meijerink and van der Vorst [6], 
where a matrix is multiplied to each side of the system to precondition the system 
and thereby improving the convergence behavior.

The drawback of the iterative solving is that accuracy is lost compared to direct 
solving. The accuracy depends on the threshold value used for accepting the solu-
tion, and a compromise between accuracy and computation speed is necessary. 
The small inaccuracies accumulate and may result in poor satisfaction of bound-
ary conditions, and symmetries may not be exactly obeyed (for instance, a zero 
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displacement associated with a symmetry condition may be computed as a very 
small non-zero displacement creating problems in the overall modeling accuracy). 
In problems involving contact it may, for larger threshold values, also disturb 
the contact algorithms, eventually leading to penetration. Iterative solvers have 
also been reported unstable when dealing with ill-conditioned equation systems, 
whereas direct solvers are more robust, cf. Farhat and Wilson [7]. Due to the highly 
ill-conditioned systems dealt with in the present finite element implementation (the 
irreducible flow formulation with penalty contact), direct solvers are preferred and 
therefore parallelization of the iterative solver will not be considered, although it 
should be considered for other finite element implementations.

Parallelizing direct solvers is another way of saving computation time. 
The parallelization itself is considered more tedious, but once it is done, the 
time savings are easily obtained, and the accuracy is maintained to precision 
comparable to the sequential direct solver. Applying a parallel direct solver 
also diminishes the need for decomposition, although they can go together. 
Diminishing of this necessity entails that the parallel solver can be directly 
applied to any problem. Parallelization can be applied for local memory pro-
cessors as well as for shared memory processors, where the first typically is 
applied to a cluster of multiple computers, whereas the latter typically would be 
one computer with multiple threads.

6.2  Parallel Skyline Solver

This section deals with parallelization of a skyline solver and follows the algorithms 
and computer implementation that was originally developed by Nielsen and Martins 
[8]. The skyline format of the system matrices is chosen because of the large spar-
sity typical for finite element models. Alternative compressed sparse row storage 
formats would also be relevant. When finite element programs are transferred to the 
industry, they are increasingly often intended for execution on standard PC’s, which 
nowadays are equipped with several cores and threads with shared memory. It is 
therefore an obvious request that the programs can utilize all the threads to reduce 
the computational time.

The skyline solver is parallelized by OpenMP instructions in a FORTRAN 
implementation with details and source code provided by Nielsen and Martins [8] 
and with source code reproduced in Appendix A of this book.

The parallel skyline solver is easily implemented into existing finite element 
codes as only the call to the skyline solver has to be replaced by a call to the 
presented solver. The requested inputs are the stiffness matrix in skyline storage 
format together with the corresponding pointers to the diagonal positions, the 
right hand side, the number of equations and the number of threads to be utilized. 
Before this solver, Farhat and Wilson [7] published a parallel skyline solver pro-
grammed in Force, and Synn and Fulton [9] have proposed procedures to predict 
the performance of parallel skyline solving.
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A regular system of equations, like Kv = f, is considered, where K is a sym-
metric n × n matrix and v and f are n × 1 vectors containing the unknowns and the 
right hand side, respectively. Due to symmetry of the system matrix, only half of 
the matrix needs to be built and stored (slightly more than half due to storage of all 
diagonal positions). Furthermore, since most finite element systems are sparse and 
by proper node numbering have many zeros far from the diagonal, a skyline for-
mat as depicted in Fig. 6.1 is adopted. Omitting all zeros above the skyline reduces 
the storage and later the solution time significantly. Zeros may still exist below 
the skyline as the skyline encloses all non-zero positions. In skyline format, the 
system matrix is typically stored in a one-dimensional vector s with an additional 
index vector i pointing to the diagonal positions. This is illustrated in Fig. 6.1c 
up to the seventh column. The size of the skyline vector is the number of posi-
tions under the skyline. The size of the index vector equals the number of rows or 
columns n. Then, it follows that the size of the skyline vector is in, since the last  
diagonal is the last position in the skyline vector.
The solution of the equation system is commonly performed by Gauss elimination 
with column reduction, which is divided into the following three steps:

•	 Factorization of system matrix and reduction of right hand side (this step is per-
formed column by column, thereby being “with column reduction”).

•	 Division of right hand side by system matrix diagonals.
•	 Backward substitution.

The factorization of the system matrix and reduction of the right hand side is par-
allelized, whereas the division of the right hand side by the system matrix diago-
nals as well as the backward substitution are left sequential because the time spent 
on these tasks are marginal compared to the factorization and reduction.

The parallelization is column based in the sense that each thread is assigned 
a column to process, and when finishing one column assigned the next unpro-
cessed column. The columns, however, cannot be processed independently, imply-
ing that communication between the threads is necessary. This is accomplished 

(a) (b) (c)

symmetric symmetric

zeros

K (skyline format) s i

Fig. 6.1  System matrix in skyline storage format. a System matrix storage by utilizing symmetry 
only. b Skyline format by omitting zeros. The dashed line by the tallest skyline indicates the storage 
in banded format. c Format of skyline vector s and index vector i based on the original system matrix 
K. Numbers correspond to position in the skyline vector

6.2  Parallel Skyline Solver
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through the shared memory by updating the relevant variables from each thread 
while making sure that only one thread is updating certain variables at a time. The 
complete processing of a column requires completion of all preceding columns, 
but partial processing can be initiated even if this is not fulfilled. Then, while per-
forming the partial processing, more of the preceding columns may have been 
fully processed in other threads, and in that case the remaining, or yet another par-
tition, of the column can be processed. This procedure may lead to waiting time 
in each thread while dependent variables are being processed in other threads, 
especially when the differences in the skyline heights are large, corresponding to 
increased unevenness of the skyline profile in Fig. 6.1b.

6.3  Comparison of Skyline Solver with Other Solvers

The parallel skyline solver is compared with a band solver and an iterative solver. 
The band solver is a direct solver as the skyline solver, but it works on a system 
matrix stored in band form shown in Fig. 6.1b by the dashed line and many zeros 
are therefore stored and processed compared to the skyline storage format decreas-
ing the overall efficiency. The iterative solver included in the comparison is based 
on the conjugate gradient method with preconditioning; see more details provided 
by Fernandes and Martins [10]. All simulations are performed on a Dell Optiplex 
980 desktop with an Intel(R) Core(TM) i7-860 processor with four cores and eight 
threads. It has 8 GB RAM, 8 MB cache and a clock frequency of 2.8 GHz. The 
system is 64-bit, but the program is running in 32-bit. The operating system is 
Windows 7. In order to keep the computer under the same global workload when 
testing the solution speed, all eight threads have been active during all simulations. 
When testing solution time using N threads, the remaining 8 − N threads have 
been running similar dummy simulations.

Figure 6.2a shows the test case used in the comparison of different solvers. The 
test is simple upsetting of a cube between two flat parallel platens. Two of the cube 
faces have prescribed symmetry, and contact between the cube and the tools is 
frictionless. The cube with dimensions 10 × 10 × 10 mm3 is compressed to half 
height through 100 simulation steps of ∆t = 0.05 s with a velocity v = 1 mm/s. 
The cube with material described by the flow stress curve σ = 180.65ε

0.183 MPa 
is discretized by e3 8-node isoparametric elements of equal initial size. This dis-
cretization implies (e + 1)

3 nodes and 3 (e + 1)
3 degrees of freedom with three 

unknown velocity components per node.
Figure 6.2b shows the solution time as function of the number of degrees of 

freedom. The solution time is normalized by the solution time of the parallel 
skyline solver using eight threads. As expected, the band solver is much slower 
than the other solvers, and having the other solvers available, the band solver 
becomes outdated. Among the skyline solvers, the solution time is ideally halved 
when going from sequential (one thread) to two threads, from two to four threads, 
and from four to eight threads. The solution time is not completely halved since 
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the program is not 100 % parallel due to the waiting time described in the end 
of Sect. 6.2, other tasks than equation solving, and due to overhead. The itera-
tive solver has solution time comparable with the skyline solver. Comparing to 
the parallel skyline solver using eight threads, the iterative solver is slower below 
approximately 20,000 degrees of freedom, and above it is faster. When using 
fewer threads in the skyline solver, this separation number of degrees of freedom 
is smaller. On the other hand, if more threads were available, the parallel skyline 
solver would be faster than the iterative solver at even larger number of degrees of 
freedom.

When the solution times of the iterative solver and the parallel skyline solver 
are in the same range, the iterative solver has the benefit that other threads are still 
available for other computations. However, the skyline solver has the benefit of 
being a direct solver implying better accuracy than the iterative. Figure 6.3 shows 
an example of the accuracy differences between the solvers. The vertical stress 
component is shown on the cube after compression to half height. The resulting 
stress distribution when applying the iterative solver varies as shown in Fig. 6.3a 

Fig. 6.2  Comparison of band solver, iterative solver and parallel skyline solver. a Simple upset-
ting test case. b Normalized solution time as function of degrees of freedom. The solution time is 
normalized by the solution time of the skyline solver using eight threads

(a) (b)

Fig. 6.3  Vertical component of the stress field in the cube compression example for 20 elements 
along each side. a Solution by iterative solver. b Solution by direct skyline solver (any number of 
threads). Common scale bar takes the minimum and maximum values according to (a)

6.3  Comparison of Skyline Solver with Other Solvers
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between −166.3 MPa and −171.4 MPa, whereas the distribution when applying 
the direct skyline solver is uniform with a value of −168.8 MPa. The deviations 
in the result from the iterative solver are −1.48 % and 1.54 % relative to the result 
from the direct solver. Observations of the iterative solver showed that the solution 
did not converge in any of the 100 steps. Decreasing the tolerance for convergence 
would therefore not have an effect. Instead, the limit on the number of iterations 
was removed to ensure convergence (if possible). The average number of iterations 
was increased about 1.20 times, and the solution of the equation system converged 
in all steps. The above deviations reduced to −0.178 % and 0.237 %. However, due 
to the increased number of iterations, the solution time increased about 13 %. The 
longer solution time for the iterative solver makes it less attractive than it appears 
in Fig. 6.2b. For a more ill-conditioned system of equations (e.g. due to rigid 
zones or contact between deformable bodies), the increase of iterations and solu-
tion time would be even more.

The differences between the results in Fig. 6.3, even when the iterative 
solver converges, become crucial when analyzing more complex geometries 
including contact between deformable bodies. On top of accuracy problems, 
the iterative solver may become unstable when dealing with ill-conditioned 
 equation systems; see Farhat and Wilson [7] and Fernandes and Martins [10]. 
Ill-conditioned equation systems are likely to appear when penalty methods are 
applied as in the present computer program.The skyline solver has therefore 
been adopted as the standard solver, and after the parallelization, the solution 
time is not further minimized by an iterative solver for the majority of system 
sizes dealt with.

6.4  Performance Evaluation of Parallel Skyline Solver

Speed-up is evaluated based on the compression of a cube to half height presented 
in Sect. 6.3. The speed-up (ratio of the solution time on one thread to the solution 
time on N threads—ideally equal to N) is shown in Fig. 6.4 as function of degrees 
of freedom. The finite element program is not entirely parallel, so the speed-up is 
less than the ideal. Part of the program is still sequential, since only the equation 
solver of the main system of equations has been parallelized, and in addition head-
ing (physical communication to and between the threads) takes time. As the sys-
tem size (degrees of freedom) increases, relatively more time is necessary to solve 
the equation system, which means that the fraction of the code running in paral-
lel becomes relatively larger. This results in the larger speed-up seen in Fig. 6.4 
at increasing number of degrees of freedom. It is also seen in the figure that the 
speed-up is largest for the smaller number of threads. This is a result of increased 
heading time and increased waiting time between threads when more threads are 
used, but it is also a result of a relatively smaller time fraction being parallel, sim-
ply because the amount of solution time with more threads is less compared to the 
overall time.
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Amdahl’s law (originating from Amdahl [11]) is estimating the speed-up σ̃ for a 
certain number of threads N based on the fraction P of the program being parallel 
according to

where 1 − P is the sequential contribution and 
P

N  is the parallel contribution. 
Rearranging allows the estimation of the parallel fraction from the actual speed-up.

For the larger system sizes (here 36,501 degrees of freedom), the parallel frac-
tion is estimated to approximately 97.5 % for all number of threads. Note that this 
is of the entire program, not only the skyline solver, which means that the CPU 
time taken in the rest of the program is negligible. Insertion into (6.4.1) with the 
number of threads going to infinity shows that this parallel fraction corresponds 
to a maximum achievable speed-up of 40. Amdahl’s law can also estimate the 
speed-up for a standard PC with 16 threads to 11.6. Dreaming further to reach 
e.g. 32 and 64 threads in standard PC’s, the estimated speed-ups are 18.0 and 24.9, 
respectively.

6.4.1 Evaluation by a Resistance Welding Case

The parallel skyline solver is also tested for an industrial case by evaluating the 
solver in simulation of resistance welding with different number of threads. The 
welding case is shown in Fig. 6.5a and consists of two AISI 1008 steel alloy sheets 
of 1 mm thickness that are spot welded between two copper alloy electrodes with 
tip diameter ∅6 mm.

The electrode center axes are placed in a distance 13 mm to three of the sheet 
edges, but only 4 mm from the fourth edge. Total simulated process time is 
340 ms. The electrode force is raised linearly to 3 kN within 20 ms and kept con-
stant hereafter. AC current is applied after 40 ms, lasting 200 ms at a level of 8 kA 
RMS with a conduction angle of 80 %. After the current is turned off, the elec-
trode forces are kept for additionally 100 ms while the weld nugget solidifies.  

(6.4.1)σ̃ =
1

(1 − P) + P

N

Fig. 6.4  Speed-up for 2, 4 
and 8 threads as function of 
degrees of freedom

6.4  Performance Evaluation of Parallel Skyline Solver
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The mesh shown in Fig. 6.5b consists of 7,666 nodes giving rise to 22,998 degrees 
of freedom in the mechanical model and 7,666 degrees of freedom in the electri-
cal and thermal models. Figure 6.5c shows the resulting temperature field after 
the applied welding time. The spot seems almost axisymmetric showing that the 
chosen distance to the edge may not be a problem. However, this is without analy-
sis of splash, which may be determining. Due to less material on the edge side, 
the temperature decreases slower near the edge and this asymmetric cooling may 
result in a microstructure and residual stress distribution that the welding engineer 
has to be aware of.

The solution times in the welding case are shown in Fig. 6.6 for two approaches 
to node numbering optimization. The approach in Fig. 6.6a is optimization of 
node numbering without consideration of contact between the objects shown 
individually in Fig. 6.5b. The approach in Fig. 6.6b is optimization of node num-
bering including information of initial contact, i.e. the contact arising when the 
objects are just brought vertically together. Solution times are shown as function 

(a) (b)

(c)

Fig. 6.5  Resistance spot welding test case. a Arrangement of electrodes and sheets for testing 
spot welding near an edge. b Applied mesh using symmetry. Total number of nodes is 7,666. c 
Temperature field (shown without upper electrode) in the end of the weld time
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of applied threads, where, as in the above analyses, when applying N threads, the 
remaining 8 − N threads have been applied to a similar dummy simulation.

The solution times are shown for the total running time of the entire simulation 
as well as for the pure solution time of the equation system in the mechanical model 
and in the electrical and thermal models. These pure solution times are accumulated 
over the entire simulation. It is clear from the figures that the equation solving in the 
mechanical model is the main contributor to the total solution time. The combined 
solution time in the electrical and thermal models is much less, partly due to fewer 
iterations and in particular due to the smaller system size (7,666 degrees of freedom 
compared to 22,998 degrees of freedom in the mechanical model). The figures also 
include the remaining time spent in the simulation, i.e. the total time subtracted the 
pure solution time in the main equation systems. Thus, the remaining solution time 
is a sum of setting up the equation systems, searching for and evaluating contact, 
updating variables before time stepping, etc.The overall solution time decreases 
with increasing number of applied threads. This is mainly accommodated by the 
shorter time spent in the pure solution of the mechanical equation system. The time 
spent in pure solution of the electrical and thermal equation systems decreases only 

Fig. 6.6  Solution time of the entire solution, the pure equation solving in the mechanical model (M), 
and the combined pure equation solving in the electrical and thermal models (E + T). The solu-
tion time of the “remaining” is also included, which is the total subtracted the pure equation solv-
ing. a Normalized solution time as function of applied threads with node numbering optimization 
independent of contact. b Normalized solution time as function of applied threads with initial 
contact included in the node numbering optimization. c Comparison of total solution times in a 
and b

6.4  Performance Evaluation of Parallel Skyline Solver
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little, and the time spent on remaining tasks should be unchanged, since it is not 
parallelized.

An interesting difference is observed between the two approaches to the node 
numbering optimization. When the optimization is performed without informa-
tion of the contact, the solution time does not decrease noticeable when applying 
more than three threads (Fig. 6.6a). On the other hand, the solution time decreases 
remarkably over the whole range of applied threads when node numbering optimi-
zation includes information on initial contact (Fig. 6.6b). The reason for this dif-
ference is explained by Nielsen and Martins [8] to stem from peaks in the skyline 
heights due to contact. When contact is not included in the node numbering opti-
mization, the skyline profile becomes relatively even with low skyline heights, but 
when contact is detected, the skyline has to be expanded as discussed in relation to 
Fig. 4.4 resulting in peaks of the skyline profile. The differences in skyline heights 
reduce the speed-up above a certain number of threads. On the other hand, when 
initial contact is included in the optimization of node numbering, a more even sky-
line profile is achieved after contact between the objects, but on the expense of an 
overall increase of skyline heights.

When it comes to speed-up, the above comparison shows that the node num-
bering optimization taking initial contact into account is clearly better than the 
optimization without contact information. Figure 6.6c compares the actual solu-
tion time of the two approaches for different numbers of applied threads. The 
solution times are normalized by the solution time of the optimization without 
contact information. The figure shows that the approach including initial contact 
(which has the better speed-up) is slower by a factor of 1.4 when using one thread. 
However, due to the better speed-up, it becomes faster when applying six or more 
threads. The reason for the slower solution when using few threads is that the ini-
tial contact is much more than the contact after separation of the sheets outside the 
weld zone, and therefore the optimized skyline according to the initial contact is 
not optimal throughout the entire solution.

Figure 6.6b, as well as the figures related to the cube compression example, 
proves that parallelization of skyline solvers is computationally efficient. Hereafter, 
it is up to a correct approach for the node numbering optimization to get the best 
use out of it. In the specific welding case, an improved strategy would be to start 
out with an optimized node numbering based on the initial contact, and then reop-
timize the node numbering when the sheets have separated outside the weld zone.
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Awareness and understanding of the basic procedures to determine the flow stress, 
the frictional response and the electric and thermal contact resistances under 
 different conditions of strain-rate and temperature are fundamental for improving the 
quality of data to be inserted in finite element computer programs. Because accuracy 
and reliability of numerical simulations are critically dependent on input data, the 
following sections will provide a brief overview of the most widespread experimen-
tal techniques that are utilized for material, friction and contact characterization.

7.1  Mechanical Properties at Room Temperature

From a metal forming point of view, the most important data for modeling material 
behavior is the flow curve because it characterizes strain-hardening and determines 
the force and work requirements of a process as well as the relative material flow. 
In case of cold forming, the flow curve should be available to strain levels above 
“1” for bulk metal forming, and up to “1” for sheet metal forming processes.

The compression test performed on solid cylinder specimens is one of the most 
widespread mechanical testing methods for determining the flow curve in the field 
of metal forming. The capability of evaluating material response to much larger 
strains than in tensile tests, due to the absence of necking, in conjunction with the 
aptitude to better emulate the operative conditions of real forming processes, such 
as forging, rolling and extrusion, which are carried out under high compressive 
loads, are seen as the main reasons for its extensive utilization.

The compression test is performed by axially pressing a solid cylinder speci-
men between two flat polished, well lubricated, parallel platens and the flow curve 
is determined by combining the experimental values of force and displacement.  
A variant of the compression test is utilizing Rastegaev specimens, see Lange [1] 
and illustration in Fig. 7.1a, to reduce friction towards the platens by having a  
reservoir for the lubricant. This reduces barreling effectively, but leads to errors in 
measuring the height of the specimens due to bending of the surrounding walls and 
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end faces not remaining plane. Figure 7.1b shows an example of a flow stress curve 
by tabulated data giving a best fit of the measured data, in this case best fit of six 
repetitions. Molykote DX paste was utilized as lubricant in the specific example.

The flow curve is in many cases approximated by fitting curves for easy description 
of the material, e.g., in finite element programs. Two typical approximations are shown 
in Fig. 7.1b by the Hollomon (7.1.1) and Swift (7.1.2) equations,

where C is the flow stress at strain ε = 1 or B + ε = 1, n is the strain-hardening 
exponent and B corresponds to a pre-straining. Both fitted curves are representing 
the overall behavior, but details like the yield point phenomenon existing in low-
carbon steels, see detail in Fig. 7.1b, cannot be captured by such approximations. 
Due to the additional parameter in terms of the pre-strain, the Swift equation pro-
vides a better approximation, but only taking the details near the yielding point in 
an average sense. To overcome this problem, computer programs not only include 
more sophisticated flow stress models (e.g. Johnson–Cook and Preston–Tonks–
Wallace, among others) as they have the option of including tabulated data, such 
that the actual material response can be modeled.

The solid cylinder specimens utilized in the compression test are limited 
within the aspect ratio range 1 ≤ h0/d0 ≤ 3 of the height h0 to the diameter d0, 
Gunasekera et al. [2] and Czichos et al. [3], though practically not exceeding 
h0/d0 = 1. 5. The upper limit on the aspect ratio prevents failure by buckling or 
bending while the lower limit is commonly justified by the increased sensitivity 
to friction along the contact interface with compression platens (Alves et al. [4]), 
by technical difficulties to operate extensometers directly on the specimens, House 
[5], or not having enough displacement at all compared to the uncertainty of the 

(7.1.1)σ = Cε
n

= 777ε
0.243

[M Pa]

(7.1.2)σ = C (B + ε)
n

= 775 (0. 012 + ε)
0.243

[M Pa]

(a) (b)

Fig. 7.1  Material testing by upsetting of Rastegaev specimens. a Geometry of the Rastegaev’s 
compression test specimen. b Experimental stress–strain curve for a structural steel S235JR + AR 
and approximations by Hollomon and Swift curves. The size of the test specimens is defined by 
A = 20 mm
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measurement. This inhibits the utilization of the compression test for constructing 
the flow curve of materials available in form of sheets and plates.

As discussed by Alves et al. [4], the stack compression test proposed by 
Pawelski [6] is the best alternative experimental procedure for evaluating the flow 
curve of raw materials supplied in form of sheets and plates. The test makes use of 
circular discs that are cut out of the blanks and stacked to form a cylindrical speci-
men with an aspect ratio in the range of solid cylinders employed in the conven-
tional compression test (Fig. 7.2).

As shown in Fig. 7.2 the stack compression test can be utilized for the construc-
tion of flow curves, although the procedure is not standardized. The resulting flow 
stress is nearly identical to that obtained by means of conventional compression tests.

However, it is worth noting that compression (as well as tensile) tests are per-
formed under proportional loading while metalworking processes often involve 
non-proportional or cyclic loading. During non-proportional loading, the strain 
path influences the flow stress behavior as discussed by Huml and Lindegren [7] 
for cyclic loading and shown by Tekkaya and Martins [8] in finite element mod-
eling of fullering with intermediate 90º turning of the specimen in-between two 
blows. The simulation was able to model the load-displacement response accu-
rately in the first blow, but not as accurate in the second blow due to induced ani-
sotropy. This is important when analyzing multi-stage processes with different 
loading paths in each stage because uniaxial material testing (under proportional 
loading) can be insufficient for accurate modeling of such cases.

Flow curves for a large number of materials can be found in Doege et al. [9].

7.2  Friction Characterization

Part of the characterization of frictional behavior is the recognition of levels of 
normal pressure and corresponding selection of friction model. Amonton–
Coulomb’s law,

(7.2.1)τ f = µp

Fig. 7.2  Conventional and stack compression tests of Aluminum AA2011-O

7.1 Mechanical Properties at Room Temperature
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is prone to overestimate the friction in metal forming because of the high normal 
pressures typically involved. On the other hand, the constant friction law,

may also overestimate the friction in regions of low normal pressure because it 
does not take into account the actual stress state. Wanheim and Bay [10] have pro-
posed a general friction model resembling the two laws at low and high normal 
pressures and providing a smooth transition in-between, see Fig. 7.3. The model,

is based on slipline analysis calculating the ratio between real and apparent area of 
contact α between a rough workpiece surface and a smooth tool surface assuming 
the friction stress in the real area of contact τr to be constant and a fraction f  of the 
material shear flow stress k,

where 0 ≤ f ≤ 1. The curves are determined by discrete points but later put on 
formula [11]. It should be pointed out that although the model in principle solves 
the problem of describing friction in the entire interval from low to high normal 
pressures, it does not account for bulk plastic deformation of the subsurface when 
calculating the real contact area. This simplification implies underestimation of the 
contact area and thus also friction.

As regards determination of friction data, µ, m or f , one of the well-known 
standard tests is the ring compression test. If calibration curves are not avail-
able, they may be constructed by finite element simulation as shown in Fig. 7.4.  

(7.2.2)τ f = mk

(7.2.3)τ f = f αk

(7.2.4)τr = f k

Fig. 7.3  Normalized friction 
stress versus normalized 
normal pressure with friction 
factor as a parameter
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The ring test, however, only supplies friction data for the given contact pressure 
and surface expansion valid for this test. It should furthermore be emphasized that 
the interface temperature during testing should be correctly emulated since viscos-
ity of many metal forming lubricants is very sensitive to temperature.

Since modeling and quantification of friction by means of simple models such 
as Amonton–Coulomb’s law and the law of constant friction is questionable, fric-
tion coefficients or factors are in many cases tuned by the users during the numeri-
cal simulation in order to provide good estimates of the forming loads and of the 
deformed shape of the workpiece.

7.3  Mechanical Properties at Elevated Temperatures

At elevated temperatures, e.g., in warm and hot forming processes or resistance 
welding, the flow curve is not only a function of the strain but also of the strain 
rate and temperature.

Figure 7.5 presents a set of flow curves obtained experimentally by upset-
ting ∅8 × 10 mm specimens between to flat parallel anvils at different tempera-
tures and deformation rates. In this testing procedure, performed on Gleeble 1500 
equipment, the temperatures in the specimens are controlled by sending high cur-
rent pulses through the specimens to increase temperature. The temperature on the 
specimen surface is measured by a mounted thermocouple. The compression is per-
formed in three intervals; an acceleration interval, a compression interval and an 
overtravel interval in order to obtain a strain rate during the compression interval 
as constant as possible. The specimen end faces are flat in contrast to the Rastegaev 
specimens in order to ensure proper contact to the anvils for the resistance heating. 
The friction is lowered by inserted graphite foils to minimize barreling. Additional 

Fig. 7.4  Friction factor calibration curves obtained by finite element simulations under assump-
tion of constant friction law and flow curve obtained from Aluminum AA1100-O. Experiments 
correspond to testing with lubricant Castrol Iloform PNW 124 mineral oil

7.2 Friction Characterization
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corrections in the establishment of the flow curves are due to machine compliance 
and thermal expansion of the test specimens. This follows earlier work by Song  
et al. [12].

The material response represented by Fig. 7.5 is representative for many  metals 
in terms of the lowered strength with increasing temperature. However, other 
responses can be identified by the testing procedure as e.g., blue brittleness in 
some steels, where the strength increases from room temperature to a level, say 
400 °C, after which the strength decreases. The effect of strain rate is furthermore 
available from Fig. 7.5, showing little or no influence at lower temperatures, while 
at higher temperatures, the material has higher strength with increasing strain rate. 
The range of strain rates in the example is limited and sparse. Flow curves for a 
large number of materials at different temperatures and strain rates can be found in 
Doege et al. [9].

The need to perform material characterization for higher strain and strain rates 
than those currently attained requires the utilization of torsion testing machines, 
drop hammers, Hopkinson bar apparatus and inverse analysis. Viscous effects, 
such as viscoplastic behavior, are usually handled by a simplified approach of 
specifying the flow curves as a function of the equivalent plastic strain rate. 
However, it is important to notice that the associated constitutive equations are 
time independent.

7.4  Electrical Contact Properties

The electrical contact resistance across an interface between metals is difficult 
to predict and can vary significantly between batches or even from one weld to 
another. When two metal surfaces are brought in contact, only a fraction of the 
apparent area is in real contact. The load bearing area is formed on the surface 

Fig. 7.5  Experimentally obtained flow curves for Aluminum AA6060-T6 at different tempera-
tures and strain rates
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asperities and increased with normal pressure. The current is therefore constricted 
with resulting increase of contact resistance. Additionally, surface films, coatings, 
oxides and contaminants will influence the contact resistance. Besides the depend-
ency of the contact pressure, the contact resistance is also temperature  dependent. 
The asperities become softer with increasing temperature and the resulting 
increased real contact area lowers the contact resistance. Increased contact pres-
sure and/or temperature can cause break down and squeeze out of surface films, 
coatings, oxides and contaminants resulting in lowered contact resistance.

Figure 7.6 shows a test setup employed for characterization of the electrical con-
tact resistance. Two cylindrical specimens are placed between the anvils in Gleeble 
equipment for the characterization of the interface between the two cylinders. The 
temperature is controlled by a thermocouple mounted close to the interface and 
high current pulses as described in Sect. 7.3. The contact pressure is controlled by 
movement of the anvils. A Rogowski coil is introduced as shown in Fig. 7.6a to 
measure the current of the applied pulses for heating the specimens, and the cor-
responding voltage drop over the interface is measured by mounted wires shown 
in Fig. 7.6b. Based on corresponding values of current and voltage drop, the resist-
ance is given from Ohm’s law. This follows earlier work by Song et al. [12].

The data pairs of current and voltage are selected at the time instants where the 
current peaks. This is to avoid the influence of induced electromotive force (emf) 
in the voltage measurement, which would otherwise lead to errors in the calculated 
resistance. The electromotive force is proportional to the first derivative of the cur-
rent, and therefore supposed to vanish when the current peaks. It is furthermore 
proportional to the spanned area of the wires measuring the voltage drop, and the 
twisting of the wires seen in Fig. 7.6b is in order to minimize the spanned area.

Electrical bulk resistivity can be measured in a similar way by using only 
one specimen and typically increasing the length of the measured voltage drop. 
Obtained bulk resistivities are used to improve the calculation of contact resist-
ance by subtraction of the resistance of the bulk material between the wires for 

(a) (b) (c)

Fig. 7.6  Measurement of electrical contact resistance. a Test setup in Gleeble with a Rogowski 
coil to measure the applied current pulses. The test specimens are placed between two anvils 
applying a certain compression. b Close-up of the test specimens with mounted thermocouple for 
temperature measurement near the contact interface and mounted wires for measuring the voltage 
drop across the interface. c Example of testing at high temperature

7.4 Electrical Contact Properties
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measurement of the voltage drop. Further corrections are due to the changed cross-
sectional area and distance between the wires for voltage drop measurement stem-
ming from the compression and thermal expansion.

An example of obtained contact resistance between two specimens of stainless 
steel AISI 316L with end faces prepared by turning is presented in Fig. 7.7 as function 
of contact pressure at different temperatures. The figure shows the typical behavior of 
decreasing contact resistance with increasing contact pressure and temperature. The 
contact resistance is represented by the product of the contact resistance and the con-
tact area in order to present the data independent of the contact area, which changes 
during testing. The relation to the finite element modeling is obtained through

where Rc Ac (the product of contact resistance and contact area) is directly the 
presented curves and lc is the thickness of the contact layer of elements intro-
duced in the simulations as interface layers. Once the thickness of the layer has 
been decided, the contact resistivity ρc is available for input to the simulation. The 
following model [13] is applied for the electrical contact resistivity between two 
materials in the numerical simulations,

where σsof t is the flow stress of the softer material in contact, σn is the contact 
normal pressure, ρ1 and ρ2 are the electrical bulk resistivities of the two con-
tacting materials and ρcontaminants is the resistivity stemming from surface con-
taminants such as oxides, surface films and dirt. The model scales the contact 
resistivity through the fraction in front of the parenthesis according to the ratio 

(7.4.1)ρclc = Rc Ac

(7.4.2)ρc =
3σsof t

σn

(

ρ1 + ρ2

2
+ ρcontaminants

)

Fig. 7.7  Experimentally obtained contact resistance times contact area as function of contact 
pressure at different temperature levels for stainless steel AISI 316L
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of real contact area to the apparent contact area based on the theory by Bowden 
and Tabor [14]. The parenthesis consists of the average bulk resistivity plus the 
term ρcontaminants stemming from the actual surface condition. This term is used to 
scale the model according to the experimental curves (7.4.1) and Fig. 7.7.
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Accuracy, reliability and validity of the coupled finite element flow formulation 
are evaluated by performing numerical simulations of industrial manufacturing 
processes. Emphasis is put on joining technologies by tube forming and resistance 
welding due to its importance for assembling individual components together in 
complete and useful end products and also due to the fact that selected applications 
deal with state-of-the-art engineering concepts that are not commonly available in 
the open literature. Several of the presented examples are industrial cases.

8.1  Mechanical Joining of Tubes

Conventional tube branching technology provides joining of tubes by means 
of tee connections and is widely utilized in plumbing, air conditioning, refrig-
eration, process piping and lightweight structures, among other applications. 
There are several different joining methods and each has its own advantages and  
disadvantages (Fig. 8.1).

The most well-known types are based on commercially available tee fittings, 
saddle adapters and weld-o-lets for standard geometries and materials, such as 
carbon steel, stainless steel, copper and polyethylene, among other thermoplastics 
(Fig. 8.1a–c). A standard tee fitting (Fig. 8.1a) has three welds; two in the main 
tube and one in the branch tube. Saddle adapters or weld-o-lets (Fig. 8.1b, c) also 
need to be brazed or welded to the main tube over a pre-cut hole and the attach-
ment to the branch tube is made through a weld or a threaded connection.

Because joining tubes by means of standard tee fittings or commercially avail-
able saddle adapters is not an appropriate technology for obtaining connections 
with non-standard geometries, there are alternative tube branching methods that 
take advantage of the user’s ability to fabricate own connections (Fig. 8.1d–f). The 
nozzle-weld is the most commonly fabricated tee connection but other solutions 
based, for instance, on spin-forming are also frequently employed.

Applications
Chapter 8

C. V. Nielsen et al., Modeling of Thermo-Electro-Mechanical Manufacturing  
Processes, SpringerBriefs in Applied Sciences and Technology,  
DOI: 10.1007/978-1-4471-4643-8_8, © The Author(s) 2013
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Nozzle-weld connections (Fig. 8.1d, e) require cutting a hole in the main tube, 
shaping a contoured end in the branch tube to match the diameter of the main tube 
and welding along the contour. In some cases the procedure is simplified by let-
ting the branch tube to be inserted into the hole and just welding along the contour 
resulting from the intersection between the tubes.

Spin-forming (Fig. 8.1f) also requires cutting a hole in the main tube. The dif-
ference is that material around that hole is subsequently shaped into a tee fitting 
where the branch tube will be brazed or welded.

8.1.1 Asymmetric Compression Beading

Figure 8.2 presents the fundamentals of the cost competitive tube branch-
ing process developed by Alves and Martins [1] that makes use of out-of-plane 
local buckling for joining tubes by means of asymmetric compression beads. 
Asymmetric compression beading works at room temperature and is accomplished 
by forcing one tube end towards the other (or the two tube ends towards one 
another) while leaving a gap opening in-between the dies that support and hold 
the tubes. The tube collapses at the gap opening creating the required asymmetric 
bead upon compression by the upper die.

On the contrary to axisymmetric beads, which are naturally formed by local 
buckling (during successive in-plane instability waves) in tubes subjected to axial 
loading between parallel flat dies, asymmetric beads require the development 

(a) (b) (c)

(d) (e) (f)

Fig. 8.1  Conventional tube branching methods by means of a tee fittings, b saddle adapters,  
c weld-o-lets, d nozzle-welds, e nozzle-welds (by shaping a contoured end in the branch tube) 
and f spin-forming
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of out-of-plane instability waves between contoured dies [2]. A tool set-up for 
 producing out-of-plane instability waves in tubes consists of two (upper and 
lower) contoured dies and an inner mandrel (Fig. 8.2a). The dies are dedicated to 
a specific reference radius r0 of the tube. Their geometry, together with the initial 
gap opening lg between them, is responsible for defining the shape and position of 
the beads.

The asymmetric compression bead shown in Fig. 8.2b was performed in a com-
mercial S460MC carbon steel tube that was formed in the ‘as-received’ condition. 
The stress–strain curve of the S460MC tubes was determined by means of tensile 
and stack compression tests performed at room temperature on a universal testing 
machine with a cross-head speed equal to 100 mm/min (refer to Sect. 7.1),

Numerical simulation of asymmetric compression beading involved a standard 
discretization procedure based on the utilization of approximately 7,500 eight-
node hexahedral elements. In order to ensure the incompressibility requirements 
of the plastic deformation of metals, both complete and reduced Gauss point 
integration schemes were utilized. Dies and mandrel were discretized by means 
of contact-friction spatial linear triangular elements. The effects of strain rate and 
anisotropy on material flow behavior were neglected.

Convergence studies with varying arrangements of elements in the thickness 
direction showed that the utilization of three elements was adequate for modeling 
the distribution of the major field variables and for getting a proper evolution of 
the load–displacement curve.

The finite element predicted evolution of the out-of-plane instability wave for 
a test case performed with a mandrel inside the tube (Fig. 8.3) illustrates the key 
role played by the upper and lower contoured dies in establishing the final shape 
of the instability wave and the limits of its propagation path. The utilization of a 

(8.1.1.1)σ = 616. 4ε
0.06

[M Pa]

Fig. 8.2  Asymmetric 
compression beading of thin-
walled tubes. a Schematic 
representation of the process 
and b commercial S460MC 
carbon steel tube showing an 
asymmetric bead
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mandrel inside the tube not only avoids defects along the surface of the tube but 
also guarantees the dimension of the inner diameter (which in many applications is 
a critical dimension) to stay within tolerances. In practical terms, the use of a man-
drel eliminates inward material flow and forces the asymmetric beads to develop 
exclusively outwardly.

Figure 8.4 shows the finite element predicted and experimental evolution of the 
load–displacement curve for the component shown in Fig. 8.2b. As seen, both evo-
lutions compare well and allow distinguishing three different forming stages:  
(i) triggering the out-of-plane instability wave (labeled ‘A’ in Fig. 8.4), (ii) shaping 
the asymmetric compression bead from the out-of-plane instability wave (labeled ‘B’) 
and (iii) contacting of opposite sides of the asymmetric compression bead between 
the upper and lower contoured dies at the end of the stroke (labeled ‘C’).

In the first stage, the load increases steeply as the tube starts being axially com-
pressed. A peak load of approximately 100 kN is obtained after which the load 
drops and the out-of-plane instability wave progressively begins to create the 
asymmetric compression bead in the free gap opening between the contoured dies.

The value of the peak load is similar to the critical instability load 
Pcr

∼= 93. 5 kN for the occurrence of axisymmetric local buckling (that is plot-
ted as a horizontal dashed line) because there is almost no difference between in-
plane and out-of-plane instability waves at the early stages of axial compression  
(refer to Fig. 8.3). The drop in load that is registered throughout the second stage 
(refer to ‘B’ in Fig. 8.4) is justified by the fact that forms of equilibrium resulting 

Fig. 8.3  Finite element predicted evolution of the out-of-plane instability wave for a test case 
performed with a mandrel
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from local buckling necessitate small values of the axial compressive load as the 
degree of instability increases.

The final sudden increase in the forming load during the third stage is triggered 
when the opposite sides of the compression bead get in contact between the two 
dies (refer to ‘C’ in Fig. 8.4).

8.1.2 Application

The utilization of two opposite asymmetric compression beads allows joining 
(locking) tubes by plastic deformation at room temperature and is the basis for the 
new tube branching process that was utilized for producing the tee fitting shown in 
Fig. 8.5.

8.2  Resistance Spot Welding

Resistance spot welding is a key technology in automotive assembly production, 
and it is by number the most used welding process. According to Zhu et al. [3], 
more than 200 sheet metal parts are spot welded together resulting in 4,000–7,000 
spot welds of two and three sheet combinations in each car.

The development of new materials [such as e.g., advanced high strength steels 
(AHSS)] presents challenges to the resistance spot welding process when com-
bined with other materials. These new steel types are often used in supporting parts 
of the car and in safety parts that are designed to absorb the impact of a crash. The 
parts are typically joined to considerably thinner and softer low-carbon sheet mate-
rials that act as the outer panels of the car. There is therefore an increasing trend 

Fig. 8.4  Experimental and finite element predicted evolution of the load–displacement curve

8.1 Mechanical Joining of Tubes
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of assembling three sheets by spot welding, which typically involves two thicker, 
high strength steels and one, thin mild steel as one of the outer sheets. This combi-
nation has attracted a lot of attention because of the difficulties in attaining a weld 
nugget at both interfaces as illustrated by Nielsen et al. [4].

The following three subsections deal with different challenges in resistance spot 
welding. An example consisting of three sheets as described above is dealt with 
in the first subsection by comparison of simulation and experiment. The second 
subsection elaborates on the same example by showing the effect of electrode mis-
alignment, which is an important issue in production where the flexibility of the 
welding gun arms can result in a slight rotation of the electrodes. Another compli-
cation in industrial spot welding is the shunt effect between two consecutive spots. 
This is illustrated in the third subsection by spot welding a two sheet assembly.

8.2.1 Three Sheet Spot Welding

As already outlined above, spot welding of three sheets is the main challenge in 
automotive spot welding. Two thicker high strength steels and a thin low carbon 
steel is the typical combination. The specific combination chosen in the present 

Fig. 8.5  Tube branching by means of asymmetric compression beading. a Typical tee fitting 
produced with the proposed joining process and b schematic representation of the inner sec-
tioned die and preform of the main tube
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example consists of a 1.5 mm DP600 dual phase steel (advanced high strength 
steel) as the bottom sheet, a 0.8 mm HSLA340 (high strength low alloy) steel in 
the middle and a 0.6 mm DC06 (low carbon deep drawing steel) as the top sheet. 
This combination is welded between two type B conical electrodes with tip 
 diameter ∅8 mm towards the DP600 and tip diameter ∅6 mm towards the DC06 
as illustrated in Fig. 8.6a with its finite element discretization and numerically pre-
dicted weld nugget in Fig. 8.6b. This example is reproduced from Nielsen et al. [4] 
with weld settings as follows. The weld force is constant 3.5 kN and the weld cur-
rent is applied during 180 ms at 7.2 kA RMS through an AC weld machine with 
estimated conduction angle of 75 %.

As the DC06 sheet is considerably thinner than the DP600 sheet, the interface 
between the DC06 and the HSLA340 is located closer to the neighboring electrode 
than the interface between the DP600 and the HSLA340 is to its corresponding 
neighboring electrode. This results in larger heat conduction to the upper electrode 
and thus an asymmetric heat distribution. In the particular case (Fig. 8.6b), the 
heat input was too small to create a nugget that develops into the thinner sheet. 
On the other hand, if the heat input was too large, splash would be likely to occur 
between the two thicker sheets, leading to uncontrollable material removal, loss of 
strength, and excessive electrode wear. Compared to welding of two sheets, these 
restrictions result in a rather narrow window of applicable weld settings.

The simulated temperature distribution and weld nugget are compared to the 
corresponding experiment in Fig. 8.7a (cf. [4]). The overall weld nugget size is 
matching between the experiment and the simulation, and of specific interest in 
this case is that the finite element simulation reproduces the fact that the nugget 
does not develop into the thin sheet. This is in many cases a reason to reject the 
weld settings in order to achieve a weld nugget that covers both interfaces.

Due to the narrow window of appropriate weld settings (if any), innovative 
solutions have been developed to initiate the weld nugget in the interface towards 

Ø6 (tip)

Ø8 (tip)

DP600

HSLA340

DC06

(a) (b)

Fig. 8.6  Example of three sheet spot weld consisting of a thin 0.6 mm DC06 steel sheet, a 
0.8 mm HSLA340 steel sheet and a 1.5 mm DP600 steel sheet welded between two type B elec-
trodes with tip diameters ∅6 mm and ∅8 mm. a Quarter of the geometry showing material combi-
nation. b Detail showing the finite element predicted temperature field

8.2 Resistance Spot Welding
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the thin sheet as noted by Nielsen et al. [4], who at the same time proved that 
plug failure mode (the desired failure type in tensile-shear testing) can be achieved 
without melting into the thin sheet. The strength in the interface towards the thin 
sheet is in those cases achieved by solid state bonding facilitated by heat and plastic 
deformation.

Having the temperature history simulated including maximum temperatures 
and cooling rates as well as knowing the compositions of the base materials [4], 
it is possible to calculate the resulting hardness distribution (Fig. 8.7b) and micro-
structure distributions. The individual fractions of selected phases of the micro-
structure are shown in terms of martensite (Fig. 8.7c), bainite (Fig. 8.7d) and 

(a)

(b) (c)

(d) (e)

Fig. 8.7  Three sheet spot welding industrial test case. a Comparison between experimental and 
simulated maximum temperature distribution with indication of simulated weld nugget mirrored 
onto the experiment. b Simulated hardness distribution in Vickers. c Simulated martensite distri-
bution. d Simulated bainite distribution. e Simulated pearlite distribution
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pearlite (Fig. 8.7e) and demonstrate the potential of multi-object simulation by 
means of the electro-thermo-mechanical coupled finite element flow formulation 
to predict the metallurgical behavior of materials.

Following time–temperature–transformation (TTT) diagrams for the specific 
steels, the fractions of the different phases are found by comparison with critical 
cooling rates. Typically, and also in Fig. 8.7c, the center of the nugget consists 
mainly (here 95 %) of martensite due to the prior full transformation into austenite 
followed by rapid cooling. Outside the nugget, the material may form bainite 
and pearlite depending on the initial composition and the actual cooling rates 
(Fig. 8.7d, e) or more martensite as in the DP600 steel.

The estimation of the quantities inside the nugget is complicated by the pres-
ence of more than one material. The contribution of each material to the combined 
microstructure and hardness distribution is evaluated by volume weighting assum-
ing that the material inside the nugget is fully mixed in its molten stage.

The hardness is evaluated by the model by Blondeau et al. [5] based on the 
actual cooling rate and the carbon equivalent. More details of the evaluation of 
microstructure and hardness distributions can be found in the work by Pedersen  
et al. [6], who also compare experimental and simulated results.

8.2.2 Electrode Misalignment

The above industrial case with three sheets will now be analyzed under the 
assumption of electrode misalignment, which is relevant to assembling in a pro-
duction line. A potential source of electrode misalignment is the flexibility of 
the welding machine arms for positioning the electrodes. These arms are neces-
sary in order to reach the locations of the spots on larger panels. Rotation of the 
electrodes can occur as illustrated in Fig. 8.8 when applying the electrode force 
through these arms.

detail

Fig. 8.8  Electrode misalignment due to rotation caused by flexibility of the arms of a welding 
gun typically applied in production in order to reach the location of the spots. The detail enclos-
ing the electrodes is enlarged in Fig. 8.9a

8.2 Resistance Spot Welding
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A situation like the one illustrated in Fig. 8.8 is simulated with the same sheet 
setup and weld settings as in the above case. The electrode rotation is assumed 
to be 2. 5◦ for each of the electrodes as illustrated in Fig. 8.9a showing the detail 
of Fig. 8.8. The finite element model including the electrode misalignment con-
sists of 5,542 elements and Fig. 8.9b shows the simulated peak temperature field 
and indication of the weld nugget. The weld nugget can be compared to Fig. 8.7a 
because all other parameters than the electrode misalignment are identical.

The resulting weld nugget is clearly asymmetric as a result of the angled elec-
trodes which are initially only touching the sheets on the outer edge until a certain 
indentation has developed. Figure 8.9c shows a close up of the weld nugget as 
well as a clear angled indentation of the upper electrode into the thin low carbon 
steel sheet. By comparison to the symmetric weld in Fig. 8.7a, the indentation is 
more severe in case of electrode misalignment due to the small initial contact area.

The larger and localized indentation causes the thin sheet to lift more (right 
side in Fig. 8.9c), and complicates the overall assembly process because distor-
tion can create relative movement of the sheets to a degree that makes the sheets 
off position at the location of following spots. This is already an issue under ideal 
conditions that need to be taken care of in the planning of the sequence of the 

5.2

5.2

(a) (b)

(c)

Fig. 8.9  Electrode misalignment in the three sheet spot welding case of Sect. 8.2.1. a Electrode 
misalignment by rotation of each electrode by 2. 5◦. b, c Simulated peak temperature distribution 
with indication of asymmetric weld nugget and visible excessive electrode indentation of the upper 
electrode into the upper thin sheet (c)
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welds. This procedure is further complicated by the additional distortion due to 
eventual misaligned electrodes.

The simulation also shows that the gap between the two high strength steels 
is increased by the introduction of angled electrodes, while at the same time the 
nugget forms towards the gap opening. This increases risk of splash significantly, 
which would lead to uncontrolled joining conditions.

From the discussion in Sect. 8.2.1, it is clear that the chosen weld settings 
are too low to form a weld into the thin upper sheet, and that the weld settings 
should be increased (i.e., increased current/weld time or lowered electrode force). 
However, due to the lowered splash limit by the electrode misalignment, it might 
not be possible to increase the weld settings in this case. Formation of a weld nug-
get into the thin sheet may therefore be impossible in case of electrode misalign-
ment (leaving out of account innovative solutions to initiate the weld nugget at the 
interface towards the thin sheet).

8.2.3 Shunt Effect

Shunt effect is taken as another complication occurring in industrial joining with 
multiple spot welds. The effect is considered in a case with two sheets welded 
between two type B electrodes (cone shaped as in Fig. 8.6a) with tip diameter 
∅6 mm. The two sheets are chosen to be different steels with different thicknesses. 
The bottom sheet is a 1.2 mm DP600 steel and the upper sheet is a 0.7 mm DC06 
steel.

The squeeze time is simulated as 40 ms to reach the constant welding force 
2.5 kN. The AC welding current is kept constant at 8 kA RMS for 160 ms, such 
that the welding current of the first spot is ending at time 200 ms (temperature 
field shown in Fig. 8.10). The electrode force is kept during a hold time of 80 ms 
finishing the first weld at time 280 ms. Hereafter follows 3 s where the electrodes 
are repositioned to the location of the second spot (temperature fields at selected 
instants of time (370, 1,310, 2,230, and 3,190 ms) during the repositioning are 
shown in Fig. 8.10).

The location of the center of the second spot is 12 mm away from the center 
of the first spot. This distance corresponds to two electrode tip diameters, which 
is closer than the recommended minimum distance between spots. This is cho-
sen in order to magnify the shunt effect to support the presentation. After moving 
the electrode, the squeeze time is again initiated and the same weld schedule is 
applied as for the first weld, implying that also the weld current is kept at the same 
level. The shunt effect is therefore not compensated by an increased current and a 
comparison of the weld nuggets will show the effect of shunting. The weld current 
of the second weld ends at time 3,480 ms (temperature field shown in Fig. 8.10).

The above referred temperature fields and instants of time are collected in 
Fig. 8.10 to give an overall representation of the shunt effect. The upper left tem-
perature field shows the ending of the first weld current. Following the arrows, the 

8.2 Resistance Spot Welding
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following four temperature fields illustrate the temperature evolution during the 
movement of the electrodes to the location of the second spot. The first weld cools 
while the surrounding sheet material is moderately heated due to heat conduction. 
The last temperature field shown in the figure corresponds to the ending of the 
second weld current. At this stage the second weld nugget has formed, but also 
the temperature in the first spot has risen as seen by a comparison between the two 
last instants of time. This is due to electrical heating caused by the shunting cur-
rent flowing through the first spot while welding the second spot.

The shunting current is shown in Fig. 8.11a by the current density at the peak cur-
rent of the third half cycle. While the majority of the current flows through the sheet 
interface at the location of the second spot, it is seen that a considerable amount of 
current flows through the first spot because of the absence of an interface after weld-
ing. At the location of the first weld, the current density is seen to be higher where 
the sheets start to separate towards the second spot due to the singularity. The amount 
of shunting current varies during the welding time of the second spot. The contact 
resistance between the sheets is larger at low temperatures indicating a larger shunt-
ing current in the beginning, but on the contrary the bulk resistivity increases with 
temperature, which indicates a larger shunting at the later stages because the material 
between the spots as well as the first spot remain at moderate temperature.

The peak temperature distribution achieved during the second weld is shown in 
Fig. 8.11b, where it is shown that the temperature in the first spot raises to 330 °C 
during the second spot welding. As a result of the shunting current and the temper-
ature increase in the first spot, less heat is dissipated in the second weld compared 
to the first one. This is also directly readable from the resulting weld nuggets 
shown in Fig. 8.11c where the overall peak temperature distribution of the entire 
welding process is shown. The nugget sizes measured at the interface between the 
sheets are 4.84 mm in the first spot and 4.18 mm in the second spot, which is a 
decrease of 14 %.

200ms 370ms 1310ms

3480ms 3190ms 2230ms

Fig. 8.10  Shunt effect between two consecutive spot welds illustrated by the temperature field at 
different instants of time
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In a production line where the shunt effect will play a role due to the necessity 
of having spot welds located close to each other, the current can be increased to 
compensate for the heat dissipated in the neighboring spot(s).

8.3  Projection Welding by Longitudinal Embossment

Projection welding is another important variant of the resistance welding pro-
cesses, where the current is concentrated to the weld region by a projection (natural 
or fabricated) instead of being concentrated through the electrodes as in the above 
spot welding examples. Figure 8.12 shows an application of projection welding 

mm84.4 mm18.4

(a)

(b)

(c)

Fig. 8.11  Detail of the finite element predicted simulation of the shunt effect between two con-
secutive spot welds of two sheets. a Current density after 5/4 cycles of the second weld current 
on a 0–210 A/mm2 scale out of maximum 1683 A/mm2. b Peak temperatures reached during  
the second weld showing the weld nugget achieved in the second weld while reaching 330° C in 
the first spot. c Comparison of the two weld nuggets by overall peak temperatures (first spot to the 
left and second spot to the right)

8.2 Resistance Spot Welding



102 8 Applications

of two sheets perpendicular to each other, which is relevant to e.g., fabrication of 
housings and containers that are not required to be water or air tight and to the 
addition of perpendicular stiffeners to sheet panels.

The presented example is an industrial case provided by a Japanese company. 
In order to facilitate joining of two sheets perpendicular to each other by projec-
tion welding, one of the sheets is embossed as shown in Fig. 8.12a. When the other 
sheet is positioned as shown in Fig. 8.12b, the longitudinal embossments ensure 
local contacts between the two sheets. Resistance projection welding is carried out 
under constant weld force and DC current resulting in the joint shown in Fig. 8.12c. 
A close up of one of the projection welds is shown in Fig. 8.12d and a cross-section 
is shown in Fig. 8.12e.

The two sheets are 0.8 mm thick high strength low alloy steel sheets (grade 
similar to HSLA340). The welding parameters are as follows: 700 N weld force, 
3.5 kA DC weld current and 30 ms weld time.

Figure 8.13a shows a finite element discretization of one of the projection 
welds by 5,630 hexahedral elements for simulation of the above industrial case. 
The simulation utilizes a natural symmetry plane along the longitudinal projection 
(that is the cutting plane utilized to show the cross-section in Fig. 8.12e). An addi-
tional symmetry plane is assumed in the simulation to reduce the model size. It 
is introduced in the center of the vertical sheet in Fig. 8.12e, such that the final 
model utilizing both symmetry planes is as shown in Fig. 8.13a. The round part of 
the sheet is only to make structured meshing easier of the round end of the projec-
tion. It does not influence the simulation due to the distance from the weld.

(a) (b) (c)

(d) (e)

(d)

(e)

(e)

Fig. 8.12  Industrial example of projection welding of two sheets perpendicular to each other.  
a Sheet with stamped longitudinal projections. b Positioned perpendicular sheets before welding 
and c after welding. d Side view after welding (view indicated in (c)). e Cross-section as indicated 
in (d)
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The second symmetry plane is justified as follows with reference to Fig. 8.12e. 
The differences on each side of the vertical sheet in terms of the electrical and 
thermal fields are considered negligible. This is in light of the short process time 
(weld time is 30 ms) and considering the distance to the end of the embossment 
on one side and to the end of the bottom sheet on the other side. As regards the 
mechanical aspects of the assumed symmetry plane, the geometry after welding 
(Fig. 8.12e) is symmetric around the vertical sheet. The longitudinal embossment 
does not bend towards the free end and therefore the free end can be omitted from 
the simulation. The side including the rounded end of the embossment is included 
to prevent the embossment from flattening, and the mirroring of that does not 
affect the overall deformation.

The simulated weld is shown in Fig. 8.13b with the peak temperature distribu-
tion shown. In the interface of the two sheets, the material melts and squeezes out 
as in the real case (compare detail in Fig. 8.13b to the cross-section in Fig. 8.12e) 
while the upper sheet closes towards the bottom sheet (compare Fig. 8.13b to the 
side-view in Fig. 8.12d).

A detailed comparison of the real example (Fig. 8.12) and the simulated pro-
jection weld (Fig. 8.13) is presented in Fig. 8.14 in the cross-section similar to 
Fig. 8.12e. The comparison covers the final geometry as well as the temperature 
history. As regards the geometry, the main difference is the shape of the metal 
that is squeezed out between the two sheets in a molten or mushy state. The exact 
shape might be of less importance compared to the volume squeezed out and the 
formed contact area during welding as it relates to the heat development. In the 
specific example, more elements would be required in the volume that is squeezed 
out if the details of the squeeze out are of importance.

The heat development and the heat balance were of more importance when 
doing the presented simulation in collaboration with the company. The compari-
son of the temperatures can be facilitated by the simulated temperature field and 
the resulting microstructure of the real case. The simulated temperatures shown in 
the simulation are the peak temperatures achieved during the simulation, and these 
can be related to the changes in microstructure. The selected isothermal lines in 

(a) (b)

Fig. 8.13  Projection welding of two perpendicular sheets. a Initial finite element mesh and  
b predicted peak temperature field at the end of the welding showing molten volume squeezed 
out between the two sheets

8.3 Projection Welding by Longitudinal Embossment
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the simulated temperature field are mirrored onto the cross-section of the real case, 
revealing that the temperature gradients are simulated correctly as the isother-
mal lines of the simulated temperature field match the shape of the border lines 
between the different microstructures.

8.4  Welding of Bellow to Disc by Natural Projection

This section presents an industrial resistance welding example from a Danish 
company. The specific welding case is part of the production of thermostat valves 
for radiators. Inside the thermostat valve is a bellow that expands or contracts 
due to temperature changes and thereby opens or closes the valve controlling the 
heating of the radiator. A few steps of this production are illustrated in Fig. 8.15.

A tin-bronze bellow tube with a conical collar (2) is resistance welded to a steel 
ring (3) between electrodes (1) and (4) as schematically shown in Fig. 8.15a by 
its setup. A result of this welding process is the joined bellow tube and steel ring 
shown in Fig. 8.15b (upside down compared to Fig. 8.15a). The bellow is hereafter 
formed as shown in Fig. 8.15c before it is mounted in a container as depicted in 
Fig. 8.15d (turned back to the same orientation as Fig. 8.15a). The joint between 

700˚C

900 ˚C

1100˚C

1300˚C

Fig. 8.14  Comparison of cross-section of the real component and simulated peak temperature 
distribution in the cross-section view similar to Fig. 8.12e. The simulated peak temperature is 
shown on a 20–2,000 °C scale with selected isothermal lines. These lines are mirrored onto the 
actual cross-section
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the steel ring and the container is also accomplished by resistance projection  
welding. This section focuses on the resistance projection welding of the bellow 
tube to the steel ring (Fig. 8.15a, b).

The ∅8 mm bellow tube is produced in tin-bronze CuSn6 (W.Nr. 2.1020) with 
a wall thickness of 0.14 mm. A 90◦ conical collar is formed prior to welding such 
that the contact to the steel ring forms a natural projection. The 1 mm thick mild 
steel (W.Nr. 1.0338) ring has outer diameter ∅29 mm and hole diameter ∅8. 3 mm

and it is coated with a 2–6 μm thick layer of electroless deposited Ni–P alloy 
(8–12 % P) to facilitate welding. The upper 90◦ conical electrode is a standard 
copper alloy for resistance welding, CuCr1Zr, A2/2 after ISO 5182:1991.

This welding case was analyzed by Rasmussen [7] and Bay et al. [8] with focus 
on electrode wear and the influences on the weld quality. The joint is tested for 
leakage in the production by an applied pressure. Very few (of the order of per 
thousand) defects are observed when welding up to 40,000 pieces, but the defect 
rate increases with electrode wear. The influence of electrode wear is therefore 
analyzed and presented in the following by new finite element simulations.

The electrode geometry changes significantly due to electrode wear as illus-
trated by a new and a worn electrode in Fig. 8.16a, b. A cross-section of a worn 
electrode after 580,000 welds is shown in Fig. 8.16c showing severe change in 
electrode geometry from the original conical shape. This number of welds is well 
beyond the normal tool life and is made for the analysis such that clear effects are 
noticed.

The differences in the resulting welds are analyzed by a combined metal-
lographic study of selected cross-sections and a numerical study based on the  
electro-thermo-mechanical finite element flow formulation that has been presented 
throughout the book. The numerical study is based on the axisymmetric finite ele-
ment models shown in Fig. 8.17. The setup including a new electrode is shown in 
Fig. 8.17a with a close-up of the simulated deformation and temperature in the end 
of the weld time in Fig. 8.17b. The model including a worn electrode is shown in 

(a) (b) (c) (d)

Fig. 8.15  Selected process steps utilized in the production of thermostat valves. a Resistance 
projection welding of bellow tube to steel ring. b Joined bellow tube and steel ring. c Formed 
bellow. d Mounting in container by resistance projection welding of steel ring to container

8.4 Welding of Bellow to Disc by Natural Projection
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Fig. 8.17c with the shape of the electrode equal to the worn electrode shown by 
its cross-section in Fig. 8.16c. Figure 8.17d shows the simulated deformation and 
final temperature as a result of welding with the worn electrode.

The simulated temperature fields of Fig. 8.17b and Fig. 8.17d are compared 
with the cross-sections of the real welds in Fig. 8.18 contributing to the overall 
analysis. Deformation and microstructure show clear differences between the 
welds stemming from a new electrode and the worn electrode.

After welding with a new electrode, an investigation of the microstructure 
(Fig. 8.18a) shows that the steel adjacent to the weld interface has a very coarse, 
ferritic grain structure, which is observed as a thin, bright zone. Apparently, the 
steel in this zone has been heated close to, but not above, 900 °C leading to grain 
growth in the ferrite. This is confirmed by the corresponding numerical simulation 

Fig. 8.16  Illustration of electrode wear. a New electrode. b Model of a worn electrode. c Cross-
section of a real worn electrode after 580,000 welds, which is well beyond the normal tool life

(b)(a)

(d)(c)

Fig. 8.17  Simulated projection welding of bellow tube to steel ring with new and worn electrode. 
a Model including new electrode with detail shown in b including the simulated deformation and 
final temperature field. c Model including worn electrode with detail shown in d including simulated 
deformation and final temperature field
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(Fig. 8.18b), where the white isothermal line corresponds to 900 °C peak tempera-
ture. This isothermal line is seen to leave a small gap to the interface confirming 
the above hypothesis.

Below this zone, the microstructure appears to be dark indicating that the peak 
temperature in this part of the steel has been raised to above 900 °C causing a 
phase transformation to fine-grained austenite. During the subsequent rapid cool-
ing this austenite transformed to very fine-grained ferrite, which appears dark on 
the micrograph. The microstructure of Fig. 8.18a indicates that the highest temper-
ature during the welding process was reached inside the steel at a certain distance 
from the weld interface, and not at the interface itself. This is due to the large 

(a) (b)

(c)
(d)

Fig. 8.18  Cross-sections of welded bellow tube to steel ring. a Weld performed with a new elec-
trode. b Simulation with new electrode. c Weld performed by worn electrode and indication of 
partial melting and liquid metal embrittlement in the bellow tube. d Simulation with worn elec-
trode. Figures b and d show the final temperature field together with contour lines corresponding 
to the 900 °C isothermal line of the peak temperature field

8.4 Welding of Bellow to Disc by Natural Projection
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difference in electric resistivity of the tin-bronze bellow tube and the steel ring. 
This effect is also seen in the simulation (Fig. 8.18b). No phase transformations 
are observed in the tin-bronze bellow tube, which is thus kept in a good condition.

Welding with the heavily worn electrode results in a microstructure 
(Fig. 8.18c), which as regards the steel contains the same microstructural elements 
as those seen in Fig. 8.18a. Due to the poor contact between the upper electrode 
and the tin-bronze tube in the first phase of welding, the tube experiences higher 
temperatures than with a new electrode. The dark areas in the tin-bronze represent 
areas of partial melting and hot cracking. This occurs for the bellow tube mate-
rial when the temperature is above approximately 900 °C, cf. the Cu–Sn phase 
diagram provided in Fig. 8.19 [9], where the actual tin-bronze alloy (CuSn6) is 
marked by the dashed line.

The simulated weld by the worn electrode (Fig. 8.18d) also reveals peak tem-
peratures above 900 °C in the tin-bronze by the white isothermal line. The real 
weld is seen to have experienced heavier partial melting than the simulation 
shows. This can stem from asymmetric wear of the electrode, which will result in 
further localization of the heat along the circumference, whereas the axisymmetric 
simulation distributes the heat evenly along the circumference.

Fig. 8.19  Phase diagram of copper (Cu) and tin (Sn) with the actual tin-bronze alloy marked 
by the dashed line at 6 weight-% tin. The specific alloy experiences partial melting in the region 
above approximately 900 °C
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Besides the partial melting, liquid metal embrittlement is noticed in Fig. 8.18c. 
This is caused by penetration of melted Ni–P coating into the grain boundaries of 
the tin-bronze. These phase transformations are explained by the elevated tempera-
tures reached when welding with a worn electrode.

8.5  Micro Joining of Fork and Wire

An industrial case from the electronics industry is provided by means of a collab-
orative work with a German company. The application is micro joining of a fork 
to a wire as shown in Fig. 8.20 in its configuration before joining. The wire (1) is 
pure copper of diameter ∅0. 73 mm coated by a 5 μm thick polyimide plastic (2).  
It is joined to an alloyed copper fork (3) between two tungsten electrodes (4 and 5). 
The tungsten electrodes close the fork legs around the wire by an applied force to 
form the joint. A current is simultaneously applied for two reasons. The resistance 
heating caused by the current facilitates the closing of the fork around the wire due 
to softening of the material. At the same time, the induced temperature melts the pol-
ymer coating locally on the wire to create electrical connection between the wire and 
the fork, which is required for the use of the component while the polymer keeps the 
remaining wire isolated.

Although no weld is created (there is no melting except for the coating), the 
joining is facilitated by the principles of resistance welding, and the multi-object 
numerical simulation based on the electro-thermo-mechanical coupled finite ele-
ment flow formulation appears very effective for performing the analysis of the 
process. Two natural symmetry planes are utilized to reduce the finite element 
model, such that the finite element mesh in Fig. 8.21a consisting of 4,856 elements 
represents the overall geometry. The process conditions shown in Fig. 8.21b are 
applied in the simulation. The applied force is built up to a level of 120 N and 
kept constant until and during the first current pulse. The first current pulse has an 
up-slope time of 80 ms reaching 0.75 kA DC, which is kept constant for addition-
ally 80 ms. The force is raised to 150 N before the second current pulse, which is 
applied as a constant current of 1.2 kA DC during 50 ms.

12
3

4

5

Fig. 8.20  Initial configuration of fork to wire joining process of copper wire 1 coated by poly-
imide plastic 2 to a copper alloy fork 3 between two tungsten electrodes (4 and 5)

8.4 Welding of Bellow to Disc by Natural Projection
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The effect of the two applied pulses is shown in Fig. 8.22 by the simulated process. 
Figure 8.22a shows the moment where the tungsten electrodes just touch the legs of 
the fork. This corresponds to time 0 ms in Fig. 8.21b where the force is applied. After 
80 ms, the applied force has been kept constant for 30 ms and the first current pulse 

Fig. 8.21  Simulation of micro joining of fork to wire. a Initial mesh by utilization of two natural 
symmetry planes. b Applied current and force as function of process time

(a) (b)

(c) (d)

Fig. 8.22  Finite element predicted temperature in micro joining of fork to wire. a Start of the 
joining process at time 0 ms, where the electrodes just touch the fork. b Joining process after 
80 ms corresponding to the onset of the first current pulse. c End of first current pulse at time 
250 ms. Maximum temperature reached at this stage is 334 °C. d Completion of the joining  
process including the two current pulses at time 300 ms. Maximum temperature reached is 507 °C
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is ready to be applied. At this stage (Fig. 8.22b) the deformation of the fork is enough 
to close the initial gap towards the wire such that a sound contact is setup before 
applying the current. At the end of the first current pulse, the tips of the fork legs are 
closed (Fig. 8.22c). This deformation happens under the same applied force due to 
softening of the material. The temperature field after the first current pulse is shown in 
Fig. 8.22c with a maximum reached temperature 334 °C. In order to perform the final 
closing of the fork, the second pulse is applied while at the same time increasing the 
applied load. This results in the final geometry shown in Fig. 8.22d. The figure also 
shows the temperature field with a maximum reached temperature 507 °C, which is 
sufficient to melt the polymer coating to create electrical contact between the fork and 
the wire of importance to the final component.

The final geometry is compared to the real component in Fig. 8.23. The left 
figures compare the overall deformation showing that both the simulation and the 
real joint result in closing of the fork to a degree where the fork legs touch each 
other along the majority of their length. A detailed view of the region near the wire 
is shown in the right figures, where it is seen that the fork is closed around the 
wire with almost no deformation of the wire, which has part of its stiffness from 
the wire outside the contact area to the fork. The right figures also show that the 
amount of closing of the fork is simulated correctly near the wire.

Fig. 8.23  Comparison of simulation (upper) and the real component (lower) in terms of the final 
geometry of the joined wire and fork

8.5 Micro Joining of Fork and Wire



112 8 Applications

References

 1. Alves LM, Martins PAF (2012) Tube branching by asymmetric compression beading. J 
Mater Process Technol 212:1200–1208

 2. Gouveia BPP, Alves ML, Rosa PAR, Martins PAF (2006) Compression beading and nosing 
of thin-walled tubes using a die: experimental and theoretical investigation. Int J Mech Mater 
Des 3:7–16

 3. Zhu W-F, Lin Z, Lai X-M, Luo A-H (2006) Numerical analysis of projection welding on 
auto-body sheet metal using a coupled finite element method. Int J Adv Manuf Technol 
28(1–2):45–52

 4. Nielsen CV, Friis KS, Zhang W, Bay N (2011) Three-sheet spot welding of advanced high-
strength steels. Weld J 90(2S):32s–40s

 5. Blondeau R, Maynier P, Dollet J (1973) Prediction of the hardness and strength of plain and 
low-alloy steels from their structure and composition. Memoires Scientifiques de la Revue de 
Metallurgie 70(12):883–892

 6. Pedersen KR, Harthøj A, Friis KL, Bay N, Somers MAJ, Zhang W (2008) Microstructure 
and hardness distribution of resistance welded advanced high strength steels. In: Proceedings 
of the 5th international seminar on advances in resistance welding, Toronto, Canada,  
pp 134–146

 7. Rasmussen MH (2000) Kvalitetssikring af pressvejseprocessen (in Danish). Ph D thesis, 
Technical University of Denmark

 8. Bay N, Zhang W, Rasmussen MH, Thorsen KA (2003) Resistance welding: Numerical mod-
elling of thermomechanical and metallurgical conditions. DMS Winter Annual Meeting, 
Danish Metallurgical Society, pp 87–100

 9. ASM International (1992)  Alloy phase diagrams. ASM Handbook 3:2167–2182



113C. V. Nielsen et al., Modeling of Thermo-Electro-Mechanical Manufacturing  
Processes, SpringerBriefs in Applied Sciences and Technology,  
DOI: 10.1007/978-1-4471-4643-8, © The Author(s) 2013

Appendix A

The FORTRAN source code including OpenMP instructions for the parallel  
skyline solver is listed as follows:
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Anisotropy, 27

C
Computing

domain decomposition, 67
iterative solver, 67, 70
parallelization, 67, 69, 113
skyline solver, 68, 70, 72, 113

Contact
electrical, 46
frictional, 39, 45
frictionless, 43
resistance. See Material characterization
sticking, 45
thermal, 46
tool, 38

Coupling procedures, 19

D
Domain integration, 24
Dynamic formulation, 5, 7

E
Elasticity, 32
Electrical model. See Electricity
Electricity, 18, 31
Elements

contact, 41
hexahedral, 3, 20, 38, 51
tetrahedral, 51
triangular, 38, 52

Index

F
Flow formulation, 1, 5, 11
Friction characterization, 81
Friction laws, 37, 81

G
Gauss integration. See Domain integration

H
Heat transfer, 16, 25

I
I-Form, 14, 38
Incompressibility, 15

J
Joule heating, 17, 18

L
Lagrange multipliers, 15, 40

M
Material characterization

compression test, 79
compression test at elevated  

temperatures, 83
electrical contact resistance, 84
friction, 81
stack compression test, 81
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transfer of field variables, 63
unstructured (all-hexahedral), 61

Residual, 6, 24
Resistance welding

general reference, 2
micro joining (no weld), 109
projection welding, 62, 101, 104
spot welding, 74, 93–94, 97, 99

Rigid regions, 25
Rotation, 30

S
Skyline

profile, 45, 69
solver. See Computing

Solid formulation, 5
Solution scheme

direct, 6, 22–24
implicit/explicit, 5
Newton-Raphson, 6–7, 23, 24

SORPAS, 1, 13, 14, 38

T
Thermal model. See Heat transfer
Time integration, 5, 8, 26

Mechanical model. See Plasticity
Meshing

general, 51
structured (isoparametric), 54
tools, 52
unstructured (all-hexahedral), 55

Metal forming
general reference, 2
joining of tubes, 89, 94
reservoir, 47

Microstructure, 96, 107

P
Parallelization. See Computing
Penalty, 15, 25, 40, 43, 45
Plasticity, 14, 21, 32

Q
Quasi-static formulation, 5, 11

R
Remeshing

general, 51
multi-object, 63
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