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Preface 

Quid est ergo tempus? 
Si nemo ex me quaerat, scio; 
si quaerenti explicare velim, 
nescio. 

What then is time? 
If no one asks me, I know, 
if I want to explain it to someone 
who asks, I do not know. 

S. Augustine Confessions, Book XI 

I he flow of time is smooth and imperceptible—fluctuations originate 
in the measurement systems: Earth rotation is defined as a day-night 
cycle; Earth motion around the Sun is defined in years; astronomical 
observations of the motion in the universe last for centuries or for mil-
lennia, and so on. All these measurement systems introduce unpre-
dictable imperfections and even errors designated as noise. The diffi-
culty is also present in modern systems based on the atomic time 
definition. 

The time fluctuations did not cause problems with ideas or their 
use until the twentieth century, with the introduction of modern tech-
nologies and the advent of the importance of the rapid delivery of mes-
sages, goods, even of people. 

In today's methods of communications, our delivery channels are 
generally based on electromagnetic media that provide a sort of the 
common property that cannot be expanded. Only the channels perfect-
ed by technology and by reducing mutual interference or by extension 
of frequency ranges can be used (see Fig. PI). In this context, the time 
and frequency stability is of prime importance, and study of noise prob-

xv 
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lems still proceeds. There are many papers, books, and even libraries 
about this topic of frequency and time stability.1 Why a new one? 

The intent of this book is twofold: to refresh students' memory of 
the field and provide additional information for engineers and practi-
tioners in neighboring fields without recourse to complicated mathe-
matics. 

The first noise studies on frequency stability were based on earlier 
results of the probability of events and were connected with LC oscil-
lators. However, their short-term time stability was soon insufficient 
even for the simplest radio traffic. Introduction of very stable crystal 
oscillators provided better stability (they even proved irregularities in 
the Earth's rotation), but their application on both transmitting and re-
ceiving positions, often with the assistance of frequency synthesizers, 
was soon insufficient for the increasing number of needed dependent 
communication channels. 

To alleviate the situation, there were investigations of the frequency 
stability of local generators from both theoretical and practical points of 
approach on one hand, and the progress of technology toward the mi-
crowaves and miniaturization on the other. This situation is depicted in 
Fig. PI. 

These problems are connected with the time and frequency stabili-
ty, the extent of the used frequencies into microwave ranges, and the 
technology of application of miniaturization of integrated circuits on a 
large scale. In accordance with the intent of this book to refresh the 
memory of students in the field and provide additional information for 
engineers in neighboring fields, we divided the subject matter into six 
chapters. 

Chapter 1 introduces the basic concepts of noise. It begins with the 
term power spectral density (PSD), that is, with the magnitude of fluc-
tuations (phase, frequency, power, etc.) in the 1-Hz frequency span in 
the Fourier frequency ranges. The most important noises are: 

1. White noise, with a constant PSD: S(f) = constant. It is generated 
by black-body radiation (thermal noise) or on-spot fluctuations of 
the delivering media (as current shot noise). 

'IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 
Metrology—IEEE Std 1139/1988. IEEE Standard Definitions of Physical Quantities for 
Fundamental Frequency and Time Metrology—Random Instabilities IEEE Std 1139/1999. 
IEEE Std 1139/2008. 
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Fig. PI. The state of the art of frequency synthesis from the lowest frequency ranges 
to the optical frequencies; frequency division and multiplication.2 

2. Flicker noise or 1//noise with the PSD S(J) - \/fa, where the su-
perscript a is very close to one. It is generally present at low Fouri-
er frequencies; its origin may be manifold in accordance with the 
performed studies. 

3. Random walk with PSD S(f) -f~2, represented by Brownian move-
ment. 

In the second part of Chapter 1, we investigate fluctuations from 
the probability point of view. The simplest is the rectangular distribu-
tion of events. A larger number of rectangular distributions results in 
the central limit or Gaussian distribution. Another approach provides 
the binomial distribution near to the Gaussian distribution or into the 
Poisson distribution. We mention the stochastic processes, the station-
ary processes invariant with respect to the time shift, and fractional in-
tegration, resulting in the possibility of explaining the flicker frequen-
cy phenomena and the random walk processes. 

Chapter 2 investigates the noise generated in resonators, particu-
larly, in quartz crystal resonators, with the assumption that 1//"noise is 
generated by material (dielectric) losses. It concludes that the product 
of the quality factor Q times the resonant frequency f0 is a constant. Its 

2From V.F. Kroupa Phase Lock Loops and Frequency Synthesis, Wiley, 2003. Reproduced 
with permission. 
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validity was verified experimentally in the laboratory and by referring 
to the published noise data of crystal resonators in the entire frequency 
range from 5 MHz to nearly 1 GHz. Further, we discuss oscillating 
conditions and conclude, with the assistance of a sampling model, that 
the small phase error (e.g., noise) is compensated for by the integrated 
frequency shift of the resonant frequency. Vice versa, this experience is 
applied to the Leeson model. 

Chapter 3 is dedicated to noise properties of very stable oscilla-
tors, quartz crystals, and new sapphire resonators (cryocooled), which 
are often used as a secondary frequency standard. We also include dis-
cussion of noise properties in oscillators stabilized by large-g dielec-
tric or optoelectronic resonators. Finally, the noise of integrated mi-
crowave oscillators in ranges designed for both LC- and RC-ring 
resonators is addressed. The advantage of the latter is simplicity and 
the problems are the large noise and power consumption. 

Chapter 4 is dedicated to noises generated in individual elements 
and circuit blocks: resistors, inductances, capacitors, semiconductors, 
and amplifiers. A detailed discussion is dedicated to the different types 
of mixers, diode rings, and CMOS balanced and double-balanced sys-
tems. The spurious modulation signals with two-tone performance are 
investigated (third-order intercept points, IIP3), together with the ex-
pected noise performance. 

Discussion of dividers is extended to the synchronized systems in 
the gigahertz ranges, to their noise, and to the regenerative division 
systems that provide the lowest additional noise. 

Chapter 5 is devoted to the time measurements performed via the 
Allan variance. It discusses the reliability of the measurement and the 
connection of the slope of the measured characteristic with the type of 
investigated noise. Special attention is dedicated to the so-called modi-
fied Allan variance. The second part of this chapter deals with time jit-
ter evaluations. Further, the probability of the time error, the bit error 
ratio (BER), is investigated. Eye diagrams and histograms are briefly 
discussed. Finally, we pay attention to the time jitter evaluation from 
the frequency and time domain measurements. 

The last chapter, Chapter 6, deals in some detail with phase-
locked loop (PLL) problems. It starts with a short introduction, pro-
ceeds to design, and stresses the importance of the design factors, 
such as natural frequency and damping. Further, we deal with the or-
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der and the type of PLLs, and their transients and working ranges. We 
discuss the properties of digital loops and tristate-phase detectors in 
greater detail, and investigate the noises generated in individual parts 
of the PLL. Finally, we investigate the synchronized oscillators, on a 
PLL basis, for frequency division and multiplication applications. 
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fo 
fr 
JLO 

h 
fl 
At) 
fc 
JPLL 

fn 
fr 
Ax),F(x) 
F 
FET 
FOM 
FPN 
F(s) 
FL(s) 
^ res ( s ) 
FFN 
FPN 
FFN 
FFT 

Duty cycle distortion, jitter 
Data-dependent j itter 
Direct digital synthesizers 
Dielectric resonators 
Dielectric resonator oscillator 
Aging (as per day) 
Flicker noise or \lf noise with the PSD 
Random walk or Brownian movement (often as Wiener-

Levy process) with S(f) -f~2 

Root-mean-square (rms) noise voltage (V) 
Electromagnetic interference 
Mean or expected value 
Emitter coupled logic 
Energy loss during one time period 
Frequency bandwidth, often upper-bound frequency 
Intersection frequency between flicker and white noise 

PSD 
Modulation frequency 
Natural frequency (PLL) 
Resonant frequency 
Cut-off frequency of transistors 
Local oscillator frequency 
Upper-bound frequency 
Lower-bound frequency 
General time function, frequency time function 
Intersection frequency 
Band-pass frequency (PLL) 
Natural frequency (PLL) 
Reference frequency (in PLL) 
Probability density function or, simply, probability density 
Noise factor, noise figure 
Field-effect transistors 
Figure of merit 
Flicker phase noise 
Fourier transform 
Loop-filter function (in Fourier transform) 
Resonator filter function (in Fourier transform) 
Flicker frequency noise 
Flicker phase noise 
Flicker frequency noise 
Fast Fourier transform 
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g 
gm3 
G=\IR, 
G(s), G(a) 

GP 

Gv 

GM 

GPS 
GSM 
HBT 
HMT 
H(s) 
h 

A-i 

K 
hi 
ISI 

u 
h 
■̂ BE 

•̂ BC 

^ES 

^CS 

ID 

Ids 

!P 
IC 
IpDt IpU 
IIP3 
JFET 
JD 

J„(mf) 

JR 

JApp a n ( i JDpp 
J(UI) 
At) 
k 
K 
KA 

Kd 

Kdi 

Conductance, transconductance 
Transconductance of current mirors 
Conductivity [Ω] 
Open-loop gain (in PLL) 
Amplifier power gain 
Amplifier voltage gain 
Mixer-conversion gain 
Global positioning system 
Global system for mobile communications 
Heterojunction bipolar transistors 
Modulation-doped (MODFET) 
Transfer function, filter function 
Planck constant (h = 6.625 χ 10"35 Js) 
Flicker noise fractional frequency noise constant 
White noise fractional frequency noise constant 
Fractional frequency noise constant (/' = -2, - 1 , . . . , 2) 
Intersymbol interference 
Current (A) 
Current of the current mirror 
Saturation current 
Collector saturation current 
Forward short-circuit saturation current 
Reverse short-circuit saturation current 
Drain current 
Saturation current 
Peak phase detector current 
Integrated circuit 
Charging and discharging peak currents 
Third-order intercept point 
Field-effect transistors with junction gates 
Deterministic parts representing the time jitter 
Bessel functions of the first kind and nth order 
Unbounded random time jitter 
Advanced and delayed peak-peak deterministic jitter 
Unit interval 
Jitter in units of time 
Boltzmann constant 
Overall gain (in PLL) 
Amplifier gain 
Phase detector gain (coefficient) 
Phase detector gain (current) 
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K0 

Κγ 

κν 
KF 
L 

2(f) 
m„ 
Mod 
MESFET 
MIM 
MODFET 
MOSFET 
M(s) 

N 

OEO 
Pit) 
Pi") 
Pix) 
PJ 
P(a < x, 

PDC 

P«, 
Pnis) 
Po,Pr 
PJPdiss = Q 
Ρ(ω) 
PDF 
PLL 
PJ 
PM 
Q 
Qfo 
1 
rhs 

*) 

rms 

Oscillator gain (ΗζΑ^) 
Temperature coefficient 
Velocity error constant 
Empirical constant in flicker noise PSD 
Inductance (H, mH, μΗ), length (m, km), channel length; 

conversion loss 
Effective channel length 
Laplace transform of the time function fit) 
Power spectral density [= S(f) ({)] 
nth-order moments 
Modified (Allan variance) 
Schortky barrier gates 
Metal-insulatior-metal 
Modulation-doped field-effect transistors 
Metal oxide semiconductor 
Mixer gain (in Fourier transform) 
Effective refractive index, index of noise variables; num-

ber of variables 
Division factor 
Division factors from min to max 
Opto-electronic oscillators 
Periodic rectangular function, unit rectangular pulse 
Probability distribution 
Probability density function or, simply, probability density 
Periodic jitter 
Probability for x between a and b 
DC (input) power 
Noise power (W, J/s) 
Polynomial 
Effective power in the system (W, mW) 
Presents the device (resonator) quality factor 
Fourier transform of the rectangular unit pulse p(t) 
Probability density function 
Phase-locked loop 
Periodic jitter 
Phase modulation 
Resonator device quality factor 
Product as a material constant 
Electron or hole charge (1.6 x 10"19 C) 
Right-hand side 
Root mean square 
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Rx 

Rx(T) 
RC 
RF 
RW 
RWF 
RL,Rs 
p 

Rp,Rs 
r.v. 
S 
SCL 
SPICE 
sx(f) 

Sy{f) 
sjf) 
S(f) 

Si.n 

^m.n 

sr(tk) 
5,(x) 
Spi 
SAW 
STALO 
T 
T 
1 obs Ά,τ2 

To 
TQ\X 

TTL 
UI 
vD,vDD 
Vc 

VGs 
VT 

vco 
WFN 
WPN 
y(t) 

Resistance of the conductor in (Ω) 
Autocorrelation of the process x(i) 
Time constant (s) 
Radio frequency 
Random walk 
Random walk frequency 
Load, source resistance 
Leaking resistor 
Parallel, series resistance 
Random variable 
Tangent slope close to the zero level 
Source-coupled logic 
Simulation computer programs 
Power spectral density (PSD) of x(t) (generally in 1 - Hz 

bandwidth) 
Power spectral density of the fractional frequency noise 
Power spectral density of the phase noise 
Constant white noise power spectral density (PSD) (in 1 -

Hz bandwidth) 
PSD of the noise current (A2 in 1-Hz bandwidth) 
s-factors in ^-parameter techniques 
Time modulation function 
Function of the cosine integral 
PSD of spurious signals 
Surface acoustic wave 
Stabilized microwave local oscillator 
Absolute temperature (K) 
Observation time 
Time constants (in PLL) 
Time period 
Resonance mode 
Transitor-transistor logic 
Unit interval 
Drain votage (V) 
Gate voltage 
Gate source voltage 
Threshold voltage 
Voltage control oscillator 
White frequency noise 
White phase noise 
Fractional frequency fluctuations 
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Y Admittance (1/il) 
W Channel width 
<z2(t)> Power (Parceval's theorem) 
Z0 Load impedance 
Z{s) Impedance (of the loop filter) 
(x) Convolution symbol 



Frequency stability or instability is a very important parameter in both 
modern terrestrial and space communications, in high-performance 
computers, in GPS (global positional system), and many other digital 
systems. In this connection, even very small frequency or phase 
changes of steering frequency generators (exciting oscillators, clock 
generators, frequency synthesizers, amplifiers, etc.) are of fundamen-
tal importance. Since all physical processes are subject to some sort of 
uncertainties due to fluctuations of individual internal or external para-
meters, generally designated as noise, the investigation of the overall 
noise properties is of the highest importance for the analysis of fre-
quency stability. 

In practice, we encounter three fundamental types of noises that 
differ by the power in the time or frequency unit S(f) (generally in the 1 
Hz bandwidth), the latter being called the power spectral density 
(PSD—see Fig. 1.1). 

There are three major types of noises: 

1. White noise with a constant PSD: S(J) ~ const. 
2. Flicker noise or 1//"noise with the PSD S(f) ~ \lfa, where the pow-

er a is very close to one. 
3. Random walk or Brownian motion (often as the Wiener-Levy 

process) with S(J) ~f~2. 

Frequency Stability. By Venceslav F. Kroupa 1 
Copyright © 2012 the Institute of Electrical and Electronics Engineers, Inc. 
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White 

to 

logf 

Fig. 1.1 Fundamental types of noises [1.1, 1.2]. (Copyright © IEEE. Reprinted with 
permission.) 

The last two noise processes with their integrals [generating PSD S(f) 
proportional to ~p, ~f4, etc.] are often called colored noises. 

1.1 WHITE NOISE 

Typical representation of white noise consists of black body radiation 
or the thermal noise of resistors, or shot noise, in electronic devices. 

1.1.1 Thermal Noise 

In 1928, Johnson [1.3] andNyquist [1.4] published a theory explaining 
the existence of thermal noise in conductors. It is caused by short cur-
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rent pulses generated by collisions of a large number of electrons. The 
result is such that a noiseless conductor is connected in series with a 
generator with a root mean square (rms) noise voltage, en (see Fig. 1.2) 

e„ = AkTRbf 1.1 

where k is the Boltzmann constant, T the absolute temperature (see 
Table 1.1), R is the resistance of the conductor (Ω), and Δ/is the fre-
quency bandwidth (in Hz) used for the appreciation of the noise action. 

After dividing (1.1) by the frequency bandwidth Δ/J we arrive at 
the PSD in 1-Hz bandwidth, that is, 

Se,n(f)=4kTR (V2/Hz) 1.2 

Similarly, with the assistance of the Thevenin theorem we get the noise 
current, /„, flowing into the resistance R or the conductivity G = l/R, 
that is, 

Voltage 
Source 

10"5 

^ 10-* 

I 
> 
|^" io-7 

10"9 

e* = AkTRAf 0 
Current source 

., 4kTAf 

V ^ ' " 

7 = 290 K = 17° c 
e„ 

-10-io 

10-" 

10-'2 

X 
< 

10-'3 [£= 

10-1 4 

10 10z 103 10" 105 106 107 108 109 

Α[Ω] 

Fig. 1.2 Thermal noises of conductors [1.2]. (Copyright © IEEE. Reprinted with 
permission.) 
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Table 1.1 Several physical constants 
Physical constants Symbols Numerical Values 
Planck constant 
Boltzmann constant 
Electron charge 
Speed of light 
Noise voltage 
Noise voltage 

h 
k 

1 
c 
AkTR; T=296K,R = 1Ω 
4kTR;T=296K,R = 50il 

6.625 x 10 35(Js) 
1.380 x 10~23(J/K) 
1.6 x 10"19(C) 
299,792,458 (m/s) 
10-198(V2,rms) 
10- |81(V2,rms) 

5,.„(/) = 4A:rG (A2/Hz) 1.3 

(See Fig. 1.2.) In instances with a general impedance or admittance, 
we introduce only the real parts into the above equations. Further, 
since both PSDs (1.2) and (1.3) are constant in a very large frequency 
bandwidth (with no filter at the output), we call this type of noise white 
( i n accordance with optical physics). By considering the noise power 
in a frequency range A/"=/high -f]ow, we get 

S,Äf) ,r 

R 
df=WT{fhiRh-fioJ~4kTfh (Ws) 1.4 

However, by increasing the upper bound fhigh above all limits the noise 
power P„ would also increase above all limits. But this is not possible 
and the correct solution is provided by quantum mechanics, which 
changes noise PSD for extremely high frequencies into relation (1.5), 
where h is the Planck constant, h = 6.625 χ 10"35 (Js). 

EXAMPLE 1.1 
Compute the thermal noise generated in the 1 Hz bandwidth in 
the R = 50-Ω resistor placed at room temperature 

W 
hflkT _ 

(Ws) 1.5 

A: =1.38* 10-23(J/K) 
7-=296(K) 
R = 50 (Ω) 
<e2> = 4 x ! 3 8 x 10-23 x 296 x 50 = 8.17 χ 10 1 9= 10" 

or e„= 1.10"9mV 
18.1 (V2) 
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1.1.2 Shot Noise 

In all cases where the output current is composed of random arrivals of 
a large number of particles, we again witness fluctuations of the white 
noise type [1.5]. 

By considering an idealized transition in Fig. 1.3, where electrons 
flow randomly from A to B and holes flow from B to A, in a negligible 
transit time, each particle arrival is connected with transport of a cur-
rent pulse. Consequently, in a time unit τ (s) the number of n charges 
generates the current 

T 
1.6 

where q is the electron or hole charge, q = 1.6 χ 10 19 (C). It was shown 
earlier [1.5] that the probability of the transition of the charge carriers 
was subjected to the Poisson distribution (see also Section 1.4.2.3): 

/ * 0 - ^ . ~ 1.7 

where <n> is the mean value of the number of carriers in the time unit. 
In such cases, the variance is equal to 

cr2 («) = <«> 

By reverting to (1.6), we get for the mean current 

1.8 

T 
1.9 

electrons I 
B 

Fig. 1.3 Circuit model for the shot noise [1.2]. (Copyright © IEEE. Reprinted with 
permission.) 
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and for its variance value, 

σ\ΐ)" <n> _? 1.10 

To arrive at the PSD, we use a bit heuristic approach with the assis-
tance of the autocorrelation [cf. (1.94)] 

Si,„ = 2\(T2cos(cot)dt« 2\(r2(i)cos(a>t)dt = 
o o 

2 sin<y/ ,T q ωτ 
2σ\ΐ) ll~2?-l— = 2ql 

/ > ! " T / . I r <y 

1.11 

EXAMPLE 1.2 

Find the PSD £,„(/) of the shot noise for the transistor current 

/ = 1 mA 5,.„ = 2 x 1.6 x 10 l9 χ 10 3 = 3.2 χ 10"22 

For PSD of other currents, see Fig. 1.4. 

- 1 0 10 

I io-12 

10 -14 

«^Shot r 
42 = 2c 

oise 
7/Δί 

1 0 -J0 i o - 8 i o - 6 iQ-4 1 0 - 2 

/ 

Fig. 1.4 Noise current through a semiconductor junction [1.2]. (Copyright © IEEE. 
Reprinted with permission.) 
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1.2 COLORED NOISES 

Until now we have discussed PSD of noises generated by slow time-in-
dependent fluctuations, that is, with constant PSD over a large Fourier 
frequency range. However, with oscillators and other frequency gener-
ators, we encounter phase fluctuations with frequency-dependent 
PSDs proportional to l/f, l/f2, or even to l//3, l/f4, at very low Fourier 
frequencies that are often called colored noises. 

In the mid-1920s, Johnson [1.3] found that at very low frequencies 
the shot noise in vacuum tubes did not follow white noise at low fre-
quencies and he introduced for the additive noise the name flicker 
noise. This name is still used. Subsequent observations proved the l/f 
law for a much larger set of physical phenomena on one hand and its 
validity at very low frequencies on the other hand. Some years later, 
Bernamont [1.6] suggested a law for its PSD: 

S„(/) = — 1.12 

where the power of a was in the vicinity of one. In electronic devices, the 
higher order noises are often generated by integration in the correspond-
ing Fourier transform division by s (cf. Table 1.2). The only exception 
presents 1//"noise fluctuations encountered both in crystal resonators and 
oscillators, and in many other physical systems [1.7] (dispersions of cars 
on highways [1.8], frequency change around 50 or 60 Hz in power line 
systems [ 1.9], or even flooding in the Nile river valley [ 1.1 ]; the latter ref-
erence is based on the time dependence of generating fluctuations). Note 
that all are based on the time. 

The problem of colored noises was investigated by many authors 
in the past from different points of approach and often with different 
results; particularly, with the ever-present l/f noise. For example, 
Keshner [1.10] investigated noises with different slopes, l/f, and ar-
rived at a number of variables needed for generation of the desired col-
ored noise (cf. Fig. 1.5). His finding for l//"noise is one degree of free-
dom per decade. 

1.2.1 Mathematical Models of 1 / f Processes 

Characterization of the frequency stability of all types of generators, 
inclusive of phase-locked loops (PLLs), is important for applications; 
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1/(0 
[WHITE V(f) 

NOISE] -

(a) 

log S(f) 

logf 

(b) 

Fig. 1.5 (a) A linear system yielding 1//noise (approximately) (each section has a 
one-state variable, which is the capacitor voltage), (b) A curve fit of the power spectral 
densities of an approximating linear system to obtain \lfa (a = 0.25, 0.5, 1, 1.5, 2) 
[Adapted from 1.10.] 

in the first place for their designers, and vice versa for users. In the 
mid-1960s, theoretical principles of the phase noise theory in frequen-
cy generators were established [1.11] and later a number of practical 
papers were published (e.g. [1.12, 1.13]). Here, we will briefly recall 
the corresponding theory. 

Solution of the noise problems is performed with the assistance of 
statistics by investigating correlations and by the transformation of the 
time domain processes into the (complex) frequency domain via the 
Laplace transform (cf. Appendix at the end of this chapter). 

£(f(t)) = ]f(t)es'dt 1.13 
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In instances where the lower bound of the above integral is -°° the 
Laplace transform changes into the Fourier transform, the correspond-
ing pairs for important time functions encountered in practice are sum-
marized in Table 1.2. 

Reverting to the investigated time function, fit) in (1.13), the 
process can be represented as a power series: 

f{t) = a0 + ait + a2t
2 + · ·'; \xm.^J,ant") = const 1.14 

By retaining only the first two terms, we arrive at the exponential ap-
proximation that represents a large set of actual situations of the time 
domain fluctuations, 

f(t) = ao-a\ + n(t)~a0e
( - -- -aae 

with the respective Fourier transform (cf. Table 1.2), 

1.15 

F{s) = a0 

s + a 
1.16 

After multiplication with the complex conjugate of F(s), we arrive at 
the so-called Lorenzian PSD (cf. Section 1.5.1, Brownian Motion): 

S(f)-
2 

a0 

f^a2 
1.17 

Table 1.2 Fourier and Laplace transform pairs for important time functions, 
encountered in practice 
Type 

Unit step 
Ramp 
Differentiation 
Time delay 

At) 

«(/) 
t 

dfljt)ldt 
At-r) 

i/Vwi 
2ΐ4ϊ7π 

& ■ * 

e-°< 
te-al 

sin(ai) 

F(s) 

\/s [F(s)/s] 
Ms2 

sF(s) 
F{s)e-ST 

l/yfs 
S-V2 

r(k)/sk(k>o) 
l/(a+s) 
\/(a+s)2 

al(a2 + s2) 

Process 

Integration 
Aging 

T(k) = (k-\y. 
Exponential decay 
Exponential decay with aging 
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1.2.2 1/f Noise (Flicker Noise) 

To generate the PSD of the l//"slope, so often observed in practice, we 
encounter a large number of approaches. McWorther [1.14] suggested 
the mathematical model (for the flicker noise generated in semicon-
ductors) as a multistep process composed of single events (cf. Fig. 
1.6a): 

Xr—f-^Ti 1-18 

By assuming that in the time domain we have a set of events of the 
type in equation (1.15), the PSD will retain the shape as in equation 
(1.17) as long as the time constants, a, do not change appreciably from 
one. The final amplitude of the PSD is then still al at low Fourier fre-
quencies. To arrive at the flicker noise behavior, we start with inspec-
tion of the PSD, S(f), in (1.17) and find that in the neighborhood of the 
corner frequency, 2ττ[~ l/τ, its slope is approximately proportional to 
\lf. Evidently, by proportionally increasing the time constant and de-
creasing the amplitude in the corresponding series, 

*/)%, I7;; * 119 

T, (2 i r / + l/r,-) 
The summation reveals a slope of l/f(see the example in Fig. 1.66), 
where we have chosen τ,/τ,+1 « 10 and arrived at a nearly perfect slope 
of \lf. This finding is in a good agreement with a discussion by Keshn-
er [1.10]. However, note a rather forceful, not random, condition on the 
amplitudes and time constants in the set of the Lorentzian noise char-
acteristics (1.19) needed for the generation of the flicker noise system. 
The difficulty is that this is true for voltage or current fluctuations 
(e.g., [1.15, 1.16]), however, in instances of other physical quantities 
(transfer of power, flow of cars on a highway, etc.) the rms of (1.19) 
must be used. Effectively, we face a fractional integration discussed in 
connection with the 1//fluctuations by Halford [1.17] or suggested by 
Radeka[1.18]. 

In another approach, let us again consider a flow (e.g., of power) 
with losses during defined time periods (cf. Fig. 1.7). In that case, we 
introduce a sampling process with the dissipated energy, Pdiss, during 
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S M 
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Fig. 1.6 (a) Flicker phase noise generated by a set of several l//2 noises. Their sum-
mation (the solid line) presents the ideal slope 1//[1.14]. (b) The simulated slope \lf, 
with five Xlf1 noise characteristics providing the background set. 
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P-1 P-2 P-3 

JUUl 
-37 -27 -7 ψ t 

Fig. 1.7 Generation of the phase noise in the sampled form reduced to a set of puls-
es. 

one sampling period T0. In the next period, we encounter nearly the 
same energy losses, and so on. Generalization reveals a sampling 
process whose noise model in the z-transform is (cf. [1.19, 1.20]) 

P n o i s e ( Z ) = (.Pdiss,0+.Pdiss,lZ~ + Pdiss.2Z~ +Pdiss,lZ~ + " · ) ~ 
p° 1.20 

i diss^ * 

Po I-*"' 

where P0 is the energy of the flux. To get the corresponding Fourier 
transform, we have to replace z~x with esT° and multiply by the transfer 
function H{s) 

H(s) = LLL·^ 1.21 

with the result 

P„oise(*) = — · - 1.22 
Po s 

However, to get the PSD of the noise power we must apply on the com-
plex product of Pnoise x P*oise m e ims operation and thus we arrive at 
the l//slope (i.e., at the slope of PSD 10 dB/dec in 1-Hz bandwidth): 

S„„ise( / )=—4 L 2 3 

Po f 
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Where PdisS), are losses in individual periods and P0 the overall power 
in the steady-state flow. 

In this connection, we recall the paper by Kasdin and Walter [1.19] 
who suggested the sampling process for generation of the flicker noise. 
By assuming the memory system shown schematically in Fig. 1.8 and 
the corresponding z-transform, they assumed both X{z) and Y(z) to be 
energy during one sampling period. After very complicated computa-
tions, they arrived at the desired 1//slope and found the approach ac-
ceptable from the stochastic point of view but had to apply the frac-
tional integration (i.e., to arrive at the PSD, application of the rms 
operation on the respective transfer function). 

Finally, we have to mention Hooge's formula presented 1969 
[1.21], since it was intensively studied, for relation of the power spec-
tral density of current or resistance fluctuations: 

^ = ̂  = cons t l 1.24 
I2 R2 f 

(see Section 1.5.2.2.) 

1.2.3 1/f2, 1/f3, and 1/f4 Noises 

The PSD of the first type of noises, also designated as the so-called 
random walk, is generated by the randomly distributed pulses of the 
type (l. 15). With the assistance of (1.17) we get for the system of« 
pulses the PSD: 

X(z) 

+ 

z-1 

Y(z) 

Fig. 1.8 Basic block diagram of the z-transform approach for generation of 1//noise. 
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2 

a, Sm = X-TT°-2 1-25 
n J +an 

Note that the above PSD changes into a pure l/f2 spectrum for high 
Fourier frequencies (f> an). To this class of noise generators, the sto-
chastic Wiener-Levy process (Sec. 1.5.2) may be enclosed. Another 
origin of the l/f2 noise is integration of white noise (e.g., in oscilla-
tors) and due to the Laplace transform the process as realized by divid-
ing by s (cf. Table 1.2). 

EXAMPLE 1.3 
In oscillators, the thermal white noise originating in the maintain-
ing electronics generates frequency fluctuations with PSD, as in 
(1.2): 

, _ 4*77? 2kT 
S9{f)^—— = 1.26 

Vl Po 

However, the oscillating condition requires that the phase around 
the loop is equal to 2 ττη (n = 1,2,...). But this condition is connect-
ed with integration (i.e., division by s in the Fourier transform), 
which changes the white phase noise inside the resonance range 
into the random walk with the PSD (cf. Chapter 2, Sec. 2.1.3): 

2kT 
W ) = — 7 1-27 

Po J 
Similarly, the higher order noises (l//and \lf2) in the oscillator 
maintaining electronics generate the phase noise with PSD in-
versely proportional to / - 3 o r / ^ due to the integration process. 

1.3 SMALL AND BAND LIMITED PERTURBATIONS 
OF SINUSOIDAL SIGNALS 

Till now, we have considered single-frequency generators, that is, os-
cillators with rather small and continuous amplitude and phase pertur-
bations. However, in frequency synthesizers, particularly direct digital 
synthesizers (DDS), we encounter many spurious signals. In the fol-
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lowing sections, we will investigate some of their properties [1.2, 
1.22]. 

1.3.1 Superposition of One Large and a Set of 
Small Signals 

In actual frequency synthesizers, PLL systems not excluded, we al-
ways encounter many generally small spurious signals accompanying 
the carrier. The composite signal may be written as 

ν(ί) = %νηϊο$(ωηί + φη) 1.28 

After introducing 

co„t + φ„=ω[ + (ω„- ü)\)t + φ„ = a>\t + Φ„(ί) 

and after putting 

1.29 

1.30 

we get 

N 

n=\ 
N N 

Vx cos^OXanCOst^i)] -Vx sin(w,OXa,2sin[^n(0] 
n=l n=\ 

or 

v(0 = ^o(0cos[<uii + <P(t)] 

where a(t) is the normalized instantaneous amplitude 

a\t) = 
N 

£ a „cos <Pn(t) 
n=\ 

2 

+ X««sin <Pn{t) 

1.31 

1.32 

1.33 
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and Φ(ή is the instantaneous phase departure 

N 
^ansm0n(t) 

<P{t) = arctan n=\ 
N 
^ ancostpn(t) 

1.34 

Without any loss of generality, it is possible to choose the time scale in 
such a way that 

φι = ΦΜ = 0 1.35 

If only small perturbations are assumed one may put 

a\>a„; (n = 2,3,...,N) (noteai = l) 1-36 

With this situation, the spurious amplitude is 

N 

o(t)~l + ^ancos<pn(t) 1.37 

and the spurious phase is 

N N 
<P(0 = arctan ^ a „ s i n < p „ ( 0 = % ansin0n(t) 1.38 

n=\ n=\ 

EXAMPLE 1.4 
For the superposition of one strong signal K, cos(w,i) and one 
weak signal V2 cos^t + <p2) (i.e., Vx > V2) we get 

v(i) = F, 1 +—cos(ni + <̂ 3) cos ω ι ί + — sin(nr+0,) 
Vx 

1.39 

Evidently, in the first approximation we face a simultaneous am-
plitude and phase modulation of the stronger signal at the rate of 
difference frequency, Ω, = \ω2- ω{\, with the modulation indexes 
VjjVx. In the case of its larger value, higher order terms must be 
added. 
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1.3.2 Narrow Bandwidth Noise 

In instances where the noise power is concentrated in a relatively nar-
row band around the frequency ωΐ5 the noise voltage can be expressed 
as 

e(t)= ec(Ocos ft>,/ - es(/)sin ωιί 1.40 

where the slowly varying time functions ec{t) and es(t) are statistically 
independent. Note that (1.40) resembles (1.31). Consequently, the 
product of the mean values is zero if <e(t)> is zero, that is, 

< ec{t)e,{t) > = < ec(t) >< es{t) > = 0 1.41 

and also 

<ec(0> = <e,(0> = 0 and < e \ t )> = <el(t)> = <e){t)> 1.42 

1.4 STATISTICAL APPROACH 

In the previous sections, frequency stability was discussed from the 
point of view of common noises. However, the problem is much more 
complicated since actual situations may contain both continuous and 
sampled systems, both random and discrete fluctuations, and even oth-
er processes solved with the advantage of statistical approaches whose 
basic properties are discussed briefly in the following sections. 

1.4.1 Probability 

When inspecting physical, biological, economical, and many other 
processes, we find either a deterministic model or start from experi-
mental observations and guess the details. One of the tools we use is 
the appreciation of the outcome with the assistance of probability the-
ory, which is the ratio of the positive outcomes of an experiment np to 
all trials nm: 

P = ^ 1.43 
nm 
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The corresponding theory was well established in the past (e.g., 
[1.22]). Here, we recall the three axioms, namely, that the result is al-
ways a positive number between zero and one, that the probability of 
mutually independent events is equal to the sum of individual proba-
bilities, and that the probability of the whole set of events is equal to 1 
(cf. Fig. 1.9) 

P(ei<x)>0; P(x = S) = l 

P{AX + Bx) = P(AX) + P(BX) - P(AX)P(BX) 
1.44 

In addition, conditional probability of mutually independent events is 
equal to their product 

Ρ(ΑΧ\ΒΧ) = Ρ(ΑΧ)·Ρ(ΒΧ) 1.45 

Note that all operations are performed on sets subjected to the Boole 
summations and multiplications. 

1.4.2 Random Variables, Distribution Function, 
Density of Probability 

Let us assume an experiment E with events e, identified by real or 
complex numbers, £(e,), which will be designated as random variables. 
Next, we define the probability of a set of events meeting condition 

#e, )<* P{€<,x) = F£x) 1.46 

Fig. 1.9 Idealization of the probability space S = 1 of all the events e„. A represents 
the set of the e ,̂ events and B the set of the es, events. 
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where F^x) defines the distribution of the probability, which is a 
monotonic nondeclining function from 0 to 1. A typical behavior is 
presented in Fig. 1.10 for both continuous and discrete variables. 

By reverting to the continuous variable, we define its derivative 
and designate it as the probability density function or simply probabil-
ity density f(x) oxp(x), 

/ (*) = 
SF(x) 

δχ 
1.47 

if this derivative exists. Further, the probability for x between a and b is 

P(a<x<b) = F(b)-F(a) 1.48 

The mean or the expected value (the moment of the first order) is 

Ε(χ)=μ(χ)= \xf(x)dx or Ε(χ)=-^Χι 1.49 

i n^ 
Generally, the mean values of the «th order of random variables are 
designated as the «th-order moments: 

v = < r > = *"/■(*)<& .50 

0 s Si-

Fig. 1.10 Probability distribution function: (a) a continuous variable and (b) a dis-
crete variable. 
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Central moments are important: 

μ„ = <(£- m«.()n >= \(x- m„.f)"f(x)dx 1.51 

The central moment of the second order defines the variance, o2, or 
distribution and the corresponding rms, σ, the so-called dispersion: 

μ2~σ -ntn-nin 1.52 

1.4.2.1 The Uniform Distribution 

The simplest probability density function f(x) is assumed to be constant 
between a and b on the x axis and zero otherwise (cf. Fig. 1. 11): 

/ ( * ) = 
l 

b-a 
and 0 elswere 1.53 

The corresponding mean and variance are 

b-a 2 l 2 1.54 

1.4.2.2 Binomial Distribution 

We face a discrete distribution and the task is to compute the proba-
bility of the event ξ in n trials. Let p be the probability of the positive 

Fig. 1.11 The probability density function J{x) of the uniform distribution. 
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outcome and q = 1 - p the probability of the opposite. The probabili-
ty of the occurrence of the event ξ occurring only once in a sequence 
of trials is 

In instances where the sequence is unimportant, the probability is 

Pn(& = n-p-q"] 1.56 

Finally, if the event ξ should repeat k times the probability is 

PM = Qpq"-k ! · 5 7 

The first and second moments are computed in Section 1.4.3.1: 

μ = pn σ2 = pn 1.58 

1.4.2.3 Poisson Distribution 

For a very large number of trials, n —> °°, and, p —> 0, the binomial 
distribution passes into the Poisson distribution [1.22 p. 72] from 
(1.57): 

pj£) = (k)p<i ~ ,„„ , „ H ^—rr^-P")" 
1.59 

« / 

Λ * 
nn _ Λ -χ 

(np)* 

Jfc/ 

The mean and variance are the same as above, namely, equal to λ = pn 
(cf. shot noise). 

1.4.2.4 Gaussian Distribution 

Another limiting process of the binomial distribution for large n results 
in the Gaussian or normal distribution. Computation of the probability 
density is a cumbersome one. The asymptotic solution is based on in-
troduction of a new variable, k = np + x, and application of the Stirling 
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approximation for factorials, and after approximating powers of bino-
mials close to one, 

n! = nne-n4l^n{\ + —) (l + af ~eßlg(l+a) ^e^all) 1.60 
V \2n) 

After introduction of these approximations into (1.59), we finally ar-
rive at the density function: 

p, - (pni 

(pn+x) 

(pn + x)(pn+x)e-(p"+x)yPMpn + x) 

1 
/ \(P"+x) 

V PnJ 
e~xyj27r{pn + x) 

(*-*,) 

euf 

Clpn e la2
 r , s 

ρ"+χ)^[ι-Τρ-η}-χ]*τ]2π{ρη + χ) ^ΐττρη σ<ΐ7Γ 

and after integration we arrive at the Gaussian distribution function 
F(x): 

F{x) = -^]e^^^dx Χο = μ 1.62 
σ\Ι2π -̂  

where a2 is the variance, σ is the dispersion, and μ is the mean value of 
the process. Note that this distribution is also designated as the normal 
distribution and is, by far, the most important. It is often postulated in 
concrete situations when solving actual probability problems. Numeri-
cal values of F(x) are published in tables or on-spot computed. The nor-
malized distribution function F(x) for σ= 1 and μ = 0 is depicted in Fig. 
1.12. Note that there are other distributions; however, we feel that those 
mentioned here are sufficient for information needed in this book. The 
sample distributions χ2 is discussed in Chapter 5, Sec. 5.2.4. 

EXAMPLE 1.5 
Determination of the density function of fy (y)= g(x), where x is 
randomly distributed in the interval (-π,π). Papoulis [1.22] pos-
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Fig. 1.12 The normal distribution for σ = 1 and μ = 0. 

tulated the fundamental theorem: If xu x2, ..., x„, ... are all real 
roots of/J, (y)= g(x), then the density function is 

/^ = ψ1^ψΙ^ g'W-ψ- 1-63 
g Gci) g U J <& 

For an important case (cf. Fig. 5.166), 

y = sm(x + ff) fr(y)= \ = 1.64 
Injl-y1 

1.4.3 Characteristic Functions 

The Fourier transform of the probability density f£x) is the so-called 
characteristic function of the random variable ξ: 

Φΐύ) = < e
M > = J f^x)eJ

uxdx 1 -65 

We have seen that the introduction of the moments simplified some 
conclusions and certain computations encountered in the probability 
applications. Similarly, adoption of the characteristic function and its 
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logarithm simplifies some statements about moments. Expansion of 
the e-funtion in (1.65) in series reveals 

1.66 

Note that the characteristic function of the random variable ξ is easily 
evaluated from the knowledge of moments, the first and second order 
often suffice. 

1.4.3.1 Characteristic Function of the Binomial 
Distribution 

For a large n, the integration in (1.65) can be approximated with the 
summation of the binomial series: 

ΦΑ») ~ £ ( > Y~ V"< = (peJu + q)" 1.67 

The first derivation reveals the mean value (the first moment): 

mu = -jn(peJ" + <?Γ V O ' ) / ^ = ηρ = <ξ> 1.68 

Similarly, the second moment and the variance are: 

m2,( = <i2> = np(np + l) σ
1 = <ξ1>-<ξ>1 =np 1.69 

1.4.3.2 Characteristic Function of the Gaussian 
Distribution 

After introducing the probability density function of the Gaussian dis-
tribution J[x) (1.62) into the characteristic function definition (1.65), 
we have 

, . (jux)k 

1+1UX+-+——'—+■■■ + J k! 
dx 
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<P(u)= —]= \e-i*-'"?'«<>\*a'dx~ 

- "° 1.70 
1 ' e^

x-xJ/{2al)cos( jxu)dx 
σ\]27Γ _Μ 

For the evaluation, we used the property thaty(x) is an even function, 
that is,y(-x) =J(x), and that it is concentrated around x = 0. With the 
assistance of the Dwight formula 861.20 [1.23] we arrive at 

Φ(Μ) = - β " ν / 2 + ^ ° 1.71 

1.4.3.3 Characteristic Function of the Sum of 
Distributions 

The Fourier transform of the probability density simplifies some solu-
tions, for example, of sums of random variables: 

1.72 
φν(ιι) = < e

Juri > = < eMai+b) > = eJub<Pt(au) 

or generally for 

<Γ=£ + £ + - + £ 
1.73 

φ£μ) = φ^(μ)φξί(μ)...φίΛ{μ) 

Note, that limitation of the characteristic function to the two first mo-
ments reveals 

( " λ 2 " 
φ Ο Ο « 1 + Xy«£ - — X < ^ i > + h i g h e r order terms) 1.74 

from which it follows that the mean value is the sum of the individual 
mean values and the variance is the sum of individual variances. Now, 
let us calculate the distribution for «-Gaussian probability distributions: 
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F(X) =—— ί β'<"2ΐ2'>'·^+σ22+--+σΙ)+ΜχΟΙ+χο2+
 +Xo,)(lu = 

I Αχ-χοϊΙΟ-σ)1 

σ42 ττ 
xo 2<Xoi σ 2i°Oi 

1.75 

After comparing (1.74) with (1.75), we conclude that the sum of par-
tial distributions, irrespective of the type, finally results in the Gauss-
ian or normal probability distribution. The process is often designated 
as the central limit theorem. 

1.4.4 Stochastic Processes 

In instances where the evaluated system is accompanied with a lot of 
disturbing signals subjected, in addition, to time fluctuations, it is la-
beled as a stochastic process encountered in different fields of engi-
neering. The situation is generally so complicated that it is difficult to 
solve in the closed form; the proper situation is with frequency stabili-
ty of oscillators, frequency synthesizers, communications channels, 
and so on. Now, let us assume an experiment formed by a set of e, 
events with assigned time functions x,{t); in such a case, we face a 
class forming a stochastic process x(t), where time t may have any val-
ue, either continuous or discrete. In instances where the time is fixed, t 
= i„ then x,{t) is a random variable of the event e,. 

1.4.4.1 Distribution Functions and Probability 
Density 

Similarly, as with the time-independent system, the probability distrib-
ution function is 

F((JC, ...*„,·*,.../„)) = P[x(td < x,...x{tn) < x„] l-76 

with the probability density 

r, N_ S"F(x]...x„;t\...tnt) . 
J\x\...x„;t\...t„) - 1.1/ 

οχ\...Οχ„ 
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It is evident that the above equations are not suitable for solving sto-
chastic processes. The solution provides either an analytical descrip-
tion, where the parameter is the random variable as, for example, 

v(t) = Asm(a,J + & 1.78 

or we must content ourselves with partial information about the inves-
tigated stochastic process, such as the knowledge of the moments. 
Generally, the mean or the expected value which, however, remains a 
function of time is 

mXt) = <x(t)>=\xf(x,t)dx 1.79 

Similarly, the autocorrelation is the moment of the second order of the 
random variables x{tx) and x(t2), that is, 

R(t\,ti) =< x(ti)x(t2) ^ J x\xj(x\,xi;t\,ti)dx\dx2 1.80 

Furthermore, the autocovariance is 

C(tl,t2)=<[x(u)-7j(td][x(t2)-v{t2)]> 1.81 

and the variance of the random variable (r.v.) x(t) is given by 

al(,)=C{t,t) = R(t,t)-V\t,t) 1.82 

Autocorrelation or, eventually, autocovariance characterizes the statis-
tical relationship of both random variables x(tx) and x(t2) for any times 
t\ and t2. 

1.4.4.2 Stationary Stochastic Processes 

Very important are stochastic processes that are invariant with respect 
to shift on the time axis and are designated as stationary in the strict 
sense. In this case, the probability density for any time shift δ is 

f{x\...x„;t\ + S...t„ + $) = f(x\...x„;t\...t„) 1.83 
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When choosing δ = -tx we find out that the probability density is a 
constant, and consequently the mean or expected value is also a con-
stant 

< x{t) > = E[x(t)] = mx] = const 1.84 

However, the second-order moment is a function of the time differ-
ence: 

< [x(tMti)] >=< [x(0x(t + τ)]> = R^T) 1.85 

In instances where x(t) is real, the autocorrelation is also real and in 
addition is an even function: 

RÄT) = RÄ-T) 1-86 

and the autocovariance is 

CÄT) = Rj.T)-m1
xi 1.87 

Furthermore, it follows that autocorrelation of a sum 

z(t) = x(t) + y(t) 1.88 

may be expressed as a sum of autocorrelations: 

Rzz = RÄr) + Ryy{T) + Rxy{T) + Ryx{r) 1.89 

and for any time shift τ, the probability density is constant. However, 
the autocorrelation of a product 

w(t) = x(t)y(t) 1.90 

generally cannot be expressed as a function of the second-order mo-
ments. Only in instances where both time processes are independent is 
the autocorrelation equal to the product of partial autocorrelations 

RM = Rxx(T)-Rxy(T)<Rmv(0) 1.91 
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Finally, we conclude with the fact that usually we do not know all the 
information needed for stationary processes (cf. 1.83). In such cases, 
we must be content with the statement that me process is stationary in 
the wide sense or weakly stationary. 

1.4.4.3 Random Walk 

The random walk is the sampling process taking equal steps either in 
the positive or negative sense (direction). By taking advantage of the 
central limit theorem, we may assume that the corresponding probabil-
ity density of individual steps is 

p(x) = χβ~
χ2/σ· 1.92 

The corresponding variance after n steps is (Dwight [l.23], Eq. 860.12) 

σ=Σ\χβχ1/σ·άχ = ησ
2

ί 1.93 
ί=1 _„ 

1.4.5 Ergodicity 

Ergodicity deals with problems of determining the statistics of the 
process x(t): The process is ergodic in the most general form if all its sta-
tistics can be determined from a single function x(t, ξ) of the process, or 
the process is ergodic if the time averages equal ensemble averages. The 
various criteria for ergodicity are discussed in detail by Papoulis in [ 1.22]. 

1.5 POWER SPECTRA OF STOCHASTIC PROCESSES 

Power spectra or spectral density of the process x(t) is the Fourier 
transformation of its autocorrelation: 

S(co)=JR(T)e^
TdT 1.94 

with the inversion formula 

R(T) = — \s(cü)eJü,Tda) 1.95 
27Γ J 
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and with the results for real processes 

S(-<w) = S(<w) 

1.96 
S(co)= 7?(r)cos(iyr)i/r R(r) = —\S(cü)cos(cüT)dco 

— X _ C C 

Table 1.3 Shows the correspondence between a process x(t), its auto-
correlation R(T), and the power spectrum 5(ω). 

1.5.1 Brownian Motion 

The random movement of particles immersed in liquids is referred to 
as Brownian motion. The first observations (1827) were provided with 
mechanical particles, however, later studies proved a more general 
process. Let us start with the velocity of a free particle in a viscous 
medium. With the assistance of the laws of motion, we arrive at the 
following differential equation: 

m - ^ + bv(t) = B(t) = m-n(t) 1.97 
dt 

where m is its mass, b is the friction force proportional to the velocity 
v(/), and B{f) represents the collision force [1.22]. In cases where the 
observation time is long, one may assume that v(i), B(t), and n(t) are 

Table 1.3 Correspondence between a process x(t), its autocorrelation (R)t, and 
power spectrum S(w) [1.22] 

*w m SJM 

ax{t) 

dx(t) 
dt 

d"x(t) 

dt" 

x(?)e±ytU0' 

\a\2R(r) 

d2R(r) 

dr2 

dr 

R(T)e±J-oT 

R(T) cos ω0τ ί[5(ω 

\a\2S(<o) 

a?S(a)) 

ω ^ ω ) 

S ( ( r ) + £ϋ0) 

+ ω0) + 5(ω-ω0)] 
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stochastic processes but n{t) is normal white noise with a zero mean 
and spectrum S„ if) = a. Now let us assume a long observation time, 
that is, 

/ ► ^ = ! 1.98 
b ß 

one may consider v(i) as a stationary process and (1.97) as stochastic. 
With the rules for the derivation of the spectra of stochastic processes 
(cf. Table 1.3) we get 

co2SXü>) + ß2SXo>) = S„((o) 1.99 

Consequently, we arrive at the Lorezian spectrum 

SXf) = — -2~—2 (ω>β) 1.100 
f2 + (ß/27r)2 f 

1.5.2 Fractional Integration (Wiener-Levy Process) 

Let us consider the situation where the output events are random, with 
nearly equal changes in one or the opposite direction, with the nearly 
constant variances (Ae,)2 in each period or time span. By taking into 
account the central limit theorem, the variance of the expected change, 
after n steps, will be 

<(A e)2> = «ro<(Aeonestep)2> 1.101 

The situation is explained in the following example: 

EXAMPLE 1.6 
One hundred years ago, K. Pearson and Lord Rayleigh [1.24] pre-
sented the following random-walk problem: A man (presumably 
very drunk) takes steps of equal length m from a starting point O, 
one after the other in successively random directions. Where will 
he likely be after n steps? If« is large, the probability that he is at 
a distance r and r + dr from the starting point is 

2r 
P(r)dr = -er"nm)dr 1.102 
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His average distance is equal to the distribution σ, that is, 

rav = \rP(r)dr = ——4nm 1.103 

[cf. Eq. (1.93)] with the assistance of Dwight formula 860.12. 
Since each step takes some time, n is a measure of time, and so the 
distance will increase with the square root of time (see Fig. 1.13). 

1.5.2.1 Power Spectra with Fractional Integration 
Proportional to ^Jt 

Reverting to relation (1.102) and considering the time dependence of 
the final σ, we may also suppose Ae,· to be a function of time without 
any appreciable error. In the first approximation, we propose for its 
time dependence 

Ae(i)«σ{Δβ)41 1.104 

Probability 
Density, P(r) 

2 0 2 4 
Number of paces from starting point 

(a) 

Probability 
Density, P(r) 

8 10 12 14 

16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 
Number of paces from starting point 

(b) 

Fig. 1.13 Probability surface of a random walk (position of the drunken man): (a) af-
ter 18 random paces, and (b) after 72 random paces) [ 1.24]. 
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With the assistance of the Table 1.2, we get for the Fourier transform 

F(s)^ = s-
3'2ai^) 1-105 

and for the corresponding PSD 

ΞΜ) = ψα(Δβ) 1.106 

1.5.2.2 Power Spectra with Fractional Integration 
Proportional to 1/Jt 

In Section l .2, we have showed that the origin of the flicker fluctua-
tions in physical systems is based on the loss of energy [1.20]. Here we 
recall, once more, the problem in a much more general way, where the 
resonator (oscillator) system is supplied from an ideal voltage source V 
with current /. However, during its passage through the system some 
energy is lost; let it be £diss during one time segment. With the assis-
tance of the corresponding power, the loss is equal to 

EiKS = PdisT„ 1.107 

Since the dissipated energy in each period (or time span) is rather con-
stant, the effective power decreases and after n periods it may be equal to 

D ~<-·2 p ^ - nPi™,JO -yi- l)Pdiss.»-ir0 _ l „ i ine 
nTo t 

which is inversely proportional to the elapsed time. Hence, the noise 
current is also a function of time and without any appreciable error, in 
the first approximation, we propose for its time dependence 

/ n o i s e W - j - · ^ ^ 1-109 

whose Fourier transform is (Table 1.2) 

/noised) ~ / - · ^ ! > 1.110 
V S Rdiss 
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and the corresponding PSD with respect to the current P (i.e., the 
phase noise) is 

ΞΦω- " i diss i o T PaissTo _ 1 77 1 
f I2R f Po 

ÜR 

/ f0Q f 
1.111 

where P0 is the effective power in the system and P0/Pdiss = Qis the de-
vice quality factor. The last expression in (1.111) is valid for the quartz 
crystal resonators or oscillators (cf. Chapter 2). Since the process is 
much more general, here we recall an earlier example shown in Fig. 
1.14, presenting the PSD SR(j)IR2 for an India ink resistor in accordance 
with (1.109). The validity extends for more than 10 decades with a ~ 
1.21 [1.1]. 
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Fig. 1.14 Relative resistance fluctuation spectrum, SR(j)IR2, for India ink resistor. 
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APPENDIX 

Throughout the entire book we refer to the instantaneous phase or fre-
quency, 

^ ) ^ — {ωοί + φ(0) = (ωο + φ(ί)) A.l 

and to their power spectral densities (PSD) SJJ) or the normalized 
fractional frequency PSD Ξφ(/) = (//}0)

2Ξφ(β (i.e., to the one-sided 
PSPs). Actually, however, we deal with the double-sided PSD: 

S(a>)*>£-[S,(a> + a>0) + S,(a>-a,0)] A.2 

where Ps is the carrier power. The approximation is valid except for 
± ω0 and the surrounding narrow bands containing all the high modu-
lation index, low frequency side bands. In the case of the validity of 
(A.2), we define the two-sided PSD <£(ω) as 

2{ώ)~8φ{ω + ω0)~8φ{ω-ω0) A.3 



Noise in oscillators, particularly in crystal oscillators, has been studied 
for some 50 years. The progress is closely connected with perfection of 
the manufacturing processes on the one hand and reduction of the 
noise in maintaining electronics on the other hand. In addition, preci-
sion crystal oscillators are indispensable in standard time and frequen-
cy systems and laboratories. 

2.1 NOISE GENERATED IN RESONATORS 

Investigation of the noise in crystal resonators started in the mid-1970s 
[2.1, 2.2]. Many papers were to follow [e.g., 2.3, 2.4]. With the help of 
Fig. 2.1, we can express the noise current of the investigated system in 
the Laplace notation as 

R 2.1 

In accordance with discussions in Chapter 1, the noise can be generat-
ed by temperature fluctuations, power losses in the system, and by 
fluctuations (random walk) of the resonance: 

< ^ 2 > = l £ i ^ + I < ^ i s > + <A/- 2
r

2 > 2.2 
V2 2 p 
" osc ^* Γ o 
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'in(0 = /outsin(too0 Out(0 = 4utSinK?-(p(0] 

Λ -Λ , 

Fig. 2.1 A 
onator [2.5]. 

schematic arrangement for investigation of the noise generated in a res-

where the noise voltage en is generated in the effective resistence of the 
investigated circuit (1.1), the losses are defined by (1.22 or 1.108), and 
the random walk of the resonant frequency by (1.97 or 1.104). Note 
that the middle term in (2.2) is divided by 2 since one-half of the noise 
is phase noise and one-half is the amplitude noise. 

2.1.1 White Frequency Noise (WFN) Generated in 
Resonators 

Inspection of (2.1) reveals that outside of the passband the noise is 
generated mainly in the circuit resistance, and for the phase noise pow-
er spectral density (PSD) we get 

2.3 

By assuming the effective power in the resonator to be 1 dBm, we get 
for the PSD at room temperature (in 1 Hz bandwidth) approximately 

ΞΦω< 
10" 
10 

10" 2.4 

2.1.2 Flicker Frequency Noise Generated in 
Resonators 

The resonator, as an isolated system, would reveal only the thermal 
noise. However, a continuous flow of the current generates the flicker 
frequency components or flicker phase noise fluctuations [2.5]. To get 
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more insight into the problem, we will investigate the resonator alone; 
the situation was explored in Chapter 1 [cf. relation (1.111)] with the 
conclusion that 

Uf) f 2Po f 2f0Q~aRf 

where P0 is the effective power in the system and PJPdiss = Q repre-
sents the resonator quality factor. Figure 2.1 illustrates the situation for 
the case where we have at its input the current i(t), 

i(t) = 10sm(u>J) 2.6 

When the sinusoidal carrier is supplying energy during one period, T„, 
the corresponding power, P0, is equal to the power P0: 

Po = -ll-R 2.7 

At the output of the resonator, we meet a reduced current and a bit 
smaller output power due to the losses in the body of the resonator: 

i™t(0 = IoMcos(üj0t) - Σ/„(0 2.8 

where Σ/„(ί) is a set of noise side bands close to the carrier. Evidently, 
at the output we meet a reduced carrier current and the output power is 
lowered due to the losses, P„, with the simultaneous amplitude and 
phase modulation [therefore division by 2 in (2.5) refers to the phase 
noise only, since half of the noise is phase noise and half is the ampli-
tude noise]. Note that the thermal wastes are orders smaller [2.3]; how-
ever, the product Qf0 is a material constant. For the quartz [2.6, 2.7] 
(see also, Fig. 2.2 and Section 1.5.2.2), 

i'ou.(0 = /out c o s W ) - Σ/„(ί) 2.9 

and after introducing (2.9) into (2.5) we get for the 1//~PSD of the 
quartz resonators 

c m - i-^orj-'^io-" , , . 
S.t.reAj )-ag— r~:— — 2.10 
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Fig. 2.2 The frequency dependence of the quality factor Q of the crystal resonators 
as found by Warner [2.7]. 

Next, we evaluate the important fractional frequency fluctuations by 
using the fact that in the vicinity of the resonant frequency,^, the rela-
tion between phase and frequency fluctuations is nearly linear and 
equal to the time delay τ (cf. Fig. 2.3): 

Δ 0 _ 2 β _ 
Δω 

2.11 
(t)o 

Δφ 

1 

Δω 

Fig. 2.3 Relation between phase and frequency in the resonant circuit. 
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and the important fractional frequency fluctuations follow: 

1 _h-i_(Q-for 

4Q2 f 8Q2f 
Sy(f) = S*(f)—2=ΠΤ= ' ι , 2.12 

By introducing (2.9) into the above relation, we arrive at 

10" 
Sy(f)~o7 2'13 

Finally, we compute the noise constant h_{ for the quartz crystal res-
onators as a function of the resonant frequency/: 

5 y ( / = l) = ^ , = 1 0 l 4 x i 0 - 2 6 / ^ 1 0 - 4 0 / ' 2.14 

Note that the flicker phase noise (FPN) PSD SJf) of the quartz res-
onators is independent both of the carrier frequency, f,, and of the res-
onator quality factor Q (cf. 2.10). Further, note that (2.13) is in good 
agreement with an earlier value for the PSD of the fractional frequency, 
Sy, found by Parker [2.3] for surface acoustic wave (SAW) oscillators. 

2.1.3 Random Walk of the Resonant Frequency 

By assuming that the resonant frequency/, is also subjected to the ran-
dom changes Δω,, either in each period or larger time spans caused by 
voltage or temperature steps in the oscillating circuit, we face another 
contribution to the effective noise (cf. also Section 1.5), which we be-
gin to investigate. Let us start with a voltage separation, ΔΚ. In accor-
dance with Kurokawa [2.8.] and (6.161), the corresponding frequency 
change is 

flo ·_/· / \ ^ - ö o 'syn (l)o ^V T i c 
(On sin(0 ) ^ ~ α ) η — - — = 2..1D 

2LAa
 Wo> 2LA0 °2QIosc 2Q Vo 

and the corresponding Fourier transform of individual steps is (Table 
1.2) 

Δ £ φ 0 = 1 ω ^ 
s2Qv„ 
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By supposing that the noise voltage is generated by temperature fluc-
tuations in the resonator band pass, the variance of the fractional fre-
quency will be 

'ΔαΛ2 

V OJo J f 
1 

2ß 
4kTRßw 

vl 
2.17 

After introducing P0, that is, the radio frequency (RF) power in the res-
onator, we get for the PSD of the fractional frequency fluctuations 

, „ 1 f Π 2kT 

r 2ß 
A-2 

2 
/ 

2.18 

EXAMPLE 2.1 
Let us investigate the expected random walk noise of the quartz 
crystal resonator/!, = 107 MHz with Q = 106. When introducing 
the thermal noise 2kT= 10'20' from Table 1.1 and 1 mW for Pout, 
we arrive at fractional PSD: 

sjLfY 
10" 
f2 2.19 

which is close to the actually measured values (cf. Table 5.5). 

2.1.4 Spurious Frequency Modulation Generated in 
Resonators 

By considering that resonators of stable oscillators are placed in 
ovens, we may expect, in addition, rather small temperature fluctua-
tions originating in the regulation system causing frequency variations 
around the resonant frequency of the resonator. Starting from this po-
sition, we can estimate the temperature variations to be nearly period-
ic with approximately the same amplitudes Δω and frequency fm. By 
considering a sinusoidal frequency modulation, the corresponding 
PSD is 

Sif) = 
ΐ ί Δ - Λ 2 

\.ω 
V (Oo ) 

■S(fm) 2.20 
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Frequency variations due to temperature changes are generally de-
scribed by a polynomial. However, if the fluctuations are small we can 
retain the linear term only, that is, 

df 
Kr~jf 2.21 

By introducing the expected temperature variations ΔΓ and the frac-
tional frequency temperature coefficient KT, we get a PSD of the frac-
tional frequency noise in a general form: 

Sy(f)-
(-^jP- 2.22 

J o 

2.1.5 The Aging and Drift of the Frequency of 
Resonators 

The long-term time dependence of a frequency generator is often called 
frequency aging. In accordance with [2.9,2.10] its main causes are mass 
transfer due to the contamination between the resonator and the enve-
lope, stress relief of the fastening mechanics, changes in the sustaining 
circuitry and oven control, and so on. Note that according to earlier rec-
ommendations, aging is the systematic change in frequency with time 
due to internal changes in the oscillator, particularly when factors exter-
nal to the oscillator (environment, power supply, etc.) are kept constant, 
whereas drift is defined as the systematic change in frequency with the 
time of an oscillator (i.e., it encloses all frequency changes). Even if the 
sources of the frequency instability in frequency resonators are so dif-
ferent, they are generally controlled by an exponential law: 

fß)~f0e'D~fß + D-t) 2.23 

However, in tens, hundreds, or thousands of seconds the change is 
nearly linear with time and is generally expressed by fractional fre-
quency in 1 day. For a 5- or 10-MHz crystal oscillator, practical values 
are 

D = 10"" per day or D ^ I O " 1 6 per second 2.24 
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Cryocooled sapphire oscillators reveal aging as low as Dy = 10~l7/day 
(see Chapter 3). 

2.2 PHASE NOISE OF RESONATORS: 
EXPERIMENTAL RESULTS 

In the presented theory of the resonator, particularly the crystal res-
onator, phase noise will be compared with actual measurements per-
formed in the last 30 years [2.1-2.5 and 2.11-2.17]. However, certain 
caution with the published results is necessary because additional 
losses or sources of noise may distort conclusions. This is the case 
with the earlier measurements performed with a rather low-frequency, 
nonevacuated resonator in which the energy is wasted in much higher 
proportions than expected for the material limit only (see the noise 
data for different oscillators in Fig. 2.4). The other difficulty in com-
paring earlier and actual noise measurements might be due to the 
technology and mechanical construction used: quality of the surface 

Q LC TRANSISTOR OSCILATOI 
X CRYSTAL OSCILATORS 
+ SAW OSCILATORS 
• GUNN OSCILATORS 
Δ GaAs IMPATT DIODES 
V Si IMPATT DIODES 
© REFLEX KLYSTRONS 

Fig. 2.4 The earlier measurements of the noise constant h_x and h0 for different os-
cillators as functions of load QL [2.18]. 
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of resonators, nonadherent and adherent electrodes (BAV), and so on 
[2.19,2.20]. 

2.2.1 Flicker Phase Noise in Crystal Resonators: 
Experimental Results 

The flicker phase noise of quartz crystal resonators has been investi-
gated since the early 1960s [cf. 2.7]. From the wealth of performed 
measurements, we have summarized a few results published by differ-
ent authors from different laboratories over the last 50 years. We as-
sembled these important results in Table 2.1. First, we investigated the 
validity of (2.9) both for resonators and oscillators. Results gained 
with oscillators are enclosed in the data and designated by an asterisk 
[2.16, 2.17]. The data reveal that the flicker frequency constant aRX is 
nearly independent of the carrier frequency f0 over the entire investi-
gated frequency range of 5-1000 MHz, as expected. From column 7, 
we find the mean value and the dispersion of constant aRX to be 

flei = -130±1.2 (dB) 2.25 

Table 2.1 Summery of crystal resonator properties in the frequency range from 5 
MHz to 1 GHz" 

/ . ^ ( l ) (dB) Sy{\) A_, aRl 

(MHz) g*103 β*/ο*1013 (oscillator)" (x 10"26) (dB) (dB) 0LIQ Reference 

5 
5 
5 

10 
10 
10 
40 
80 

100 
160 
401 
450 
800 
919 

2600 
2600 
2700 
1200 
1320 
1320 
250 
125 
119 
75 
24 
22 
10.7 
9.3 

1.3 
1.3 
1.35 
1.2 
1.32 
1.32 
1 
1 
1.19 
1.2 
1.04 
0.98 
0.856 
1.7 

-111* 
-128 
-135 
-123* 
-120 
-123* 

-80* 
-74* 
-76* 
-72* 
-55* 
-52* 
-45* 
-Λ2* 

31.6 
0.8 
0.25 
0.63 
1 
0.63 

100 
631 
200 
252 

1800 
2850 
2800 
6800 

-245 
-261 
-266 
-262 
-261 
-262 
-240 
-232 
-237 
-236 
-227 
-227 
-226 
-222 

-131 
-132 
-134 
-131 
-131 
-131 
-130 
-130 
-132 
-134 
-133 
-133 
-132 
-132 

0.16 
0.6 
0.8 
0.47 
0.48 
0.53 
0.54 
0.5 
0.71 
0.9 
1.07 
0.84 
1.7 
1.4 

[2.1] 
[2.5] 
[2.12] 
[2.13] 
[2.14] 
[2.15] 
[2.16] 
[2.16] 
[2.16] 
[2.16] 
[2.17] 
[2.17] 
[2.17] 
[2.17] 

"Asterisk indicate computed values from/, and h_x [see (2.14)]. 
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Furthermore, we learn that the noise constant h_{ is inversely propor-
tional to Q~2, which is in agreement with the earlier data in Fig. 2.4 
and the later data in Fig. 2.5. 

More important, to get additional information about problems of 
the flicker noise in quartz crystal resonators, several authors investi-
gated nonoscillating systems. Here, we reproduce only two measure-
ments in Figs. 2.6 and 2.7. Note that for larger Fourier frequencies 
they reveal a steeper slope of l/f2. The difficulty is easily explained 
by using the simplification of (2.1). After reverting to the noise equa-
tion 

In 
e„ 
R \ + jka)T 2.26 

we get for the phase noise power in one period T0 

2τ i dissi o (Qfor 
/?[1 + (Δωτ)2] 1 + (Δωτ)2 1 + (Δωτ)2 2.27 

" - 1 
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Fig. 2.5 Summary of crystal resonator properties in the frequency range from 5 MHz 
to 1 GHz. Points on the full line are theoretical values of h.x in accordance with (2.14), 
whereas rectangles represent values taken from Table 2.1. 
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Fig. 2.6 Phase noise characteristic of a 80-MHz resonator reproduced from [2.11]. 
(Copyright © IEEE. Reproduced with permission.) 

Fig. 2.7 Phase noise characteristic of a 10-MHz resonator reproduced from [2.13]. 
(Copyright © IEEE. Reproduced with permission.) 
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and further at the PSD of the output phase noise of the resonator 

-1 

c in-«**. l - l l
 9,R 

2) \ + (2π/τ) j 1 + (2π/τ) 

Evidently, in the resonator bandpass we might expect the PSD of the 
slope l//(i.e., 10 dB/decade) and outside \lp to be as predicted by Gag-
nepain [2.2, cf. Fig. 2.8]. However, our own experience with noise mea-
surements [2.4] and many earlier measurements [e.g., 2.11] and later 
ones [2.15] reveal slopes of the PSD's l/fand l//2 only. The difficulty is 
easily solved by introduction of additional white (thermal) losses: 

2kT 
a0 = 2.29 

In that case, the output phase noise characteristic of the resonators can 
be simulated as follows: 

S<I>,KS\J)' 

f Λ i 
an , \ 1 

+ a0 
1 + (2π/τ)2 

v / j 

which agrees with observations (see Example 2.2). 

EXAMPLE 2.2 
Let us examine the phase noise characteristic from [2.13], which 
is reproduced in Fig. 2.7: 

/ ο = 1 0 Μ Η ζ ; β = 1 . 2 χ 106; Qf0= 1.2 χ 1013 

Sv (1) = -131 dB or the l//noise (from the published charac-
teristic [2.13]) 

Sv (100) = -158 dB for the white noise (from the published 
characteristic [2.13]) 

τ= 0.038 (from [2.11]) 

2.30 

After introduction into (2.30), we arrive at 

W) : l ^ _ + 1 0 - , 5 , 

J J 

1 
l + (0.25/)2 + 10"16 2.31 

The above resonator noise characteristic is plotted in Fig. 2.9 with 
several points read from the original characteristic in Fig. 2.7 
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Fig. 2.8 The expected power spectra of fractional frequency fluctuations of quartz 
crystal resonators at different frequencies [2.2]. (Copyright © IEEE. Reproduced with 
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Fig. 2.9 The resonator noise characteristic plotted in accordance with (2.31); circles 
have been read from the original characteristic in Fig. 2.7. 
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2.2.2 Random Walk of the Frequency Noise 
Generated in Resonators 

From the measurements performed with resonators, Gagnepain [2.2] 
predicted the noise slope Mf2 at very low Fourier frequencies (cf. Fig. 
2.7). However, the problem is that neither of the investigated phase 
noise characteristics of stable resonators reveals this slope. On the oth-
er hand, analysis of the fractional frequency noise characteristics of os-
cillators, particularly of crystal oscillators (e.g., [2.3] and Section 3.1) 
indicates the presence of this type of frequency noise. Its origin may 
result from the random walk noise, RW, due to environmental influ-
ences or the resonant frequency. 

Here, we encounter several difficulties. One of them is the depen-
dence of the noise constant h_2 on the magnitude of the effective power 
P0 in the resonators [cf. relation (2.18)]. Another is the need of the 
noise measurements at low Fourier frequencies in the frequency do-
main (below ~ 1 Hz). The expected behavior of the phase noise charac-
teristics at these low frequencies were provided by Gagnepain [2.2] 
(Fig. 2.7) but, many years ago, Parker [2.17] published frequency fluc-
tuations of SAW resonators operating in the 400- and 900-MHz range 
(see Fig. 2.10). In Table 2.2, we tried to summarize data from several 
earlier publications in which the random walk was noticeable. 

2.3 NOISE IN OSCILLATORS 

There exist a large number of papers dealing with the fundamental os-
cillator theory. However, discussion of noise problems is limited most-
ly to only white noise [e.g., 2.8, 2.20], with different approaches to the 
solution of the problem. Here, we repeat only the leading ideas, recall 
our own investigations [2.4], and thereafter compare the theoretical re-
sults with experimental findings. 

In principle, the oscillator is formed by a feedback system satisfy-
ing the Barkhausen condition of the overall gain to be equal to one and 
the all-round phase to be equal to 2πΝ (Νbeing an integer). 

2.3.1 Analogue Arrangement 

An analogue arrangement is depicted in Fig. 2.11; the oscillation is 
started either by ever-present noise or by switching-in. The amplifier 
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Fig. 2.10 Frequency fluctuations of a SAW 984-MHz resonator exhibiting random 
walk fluctuations with slopes \lf2 and 1 ^f3 [2.21]. (Copyright © IEEE. Reproduced 
with permission.) 

supplies the necessary oscillation power and its nonlinearity is respon-
sible for keeping the overall gain equal to 1, whereas the remaining ex-
cess power is pushed into harmonics. The condition of zero phase 
shifts (2πΝ) around the loop is accomplished via the small compensat-
ing shift of the resonant frequency. The basic phase noise equation in 
Fourier transform notation recalls that of the PLL (phase-locked loop). 
The starting linearized relation is 

i I I I I I I I I I I I I I 1 T ^ 

Spectral density of frequency fluctuations 

02185D 
984 MHz resonator 

1 " m
2 
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Table 2 .2 Summery of crystal resonators (oscillators) exhibiting random walk 
noise fluctuations 

/„(MHz) 

5 
5 

10 
100 
400 
400 
984 

A_2 (dB) 

-267 
-291 

-230 
-240 
-220 

A-i (dB) 

-266 
-267 
-252 
-238 
-212 
-180 
-210 

K (dB) 

-275 
-264 
-250 
-275 

Reference 

[2.20] 
[2.21] 
[2.22] 
[2.16] 
[2.17] 
[2.17] 
[2.23] 

VM = [νφ) - VaM(s)B(s)]R(s)A(s) 

The transfer function follows: 

V0M(s) 
H(s)-

R(s)A(s) 

2.32 

2.33 
Vm(s) * ' l-A(s)B(s)R(s) 

The oscillation condition is met if \AB\ = 1 and φΑ + φΒ + (d(pR/dt)r=0. 

2.3.2 Sampling Arrangement 

A schematic sampling arrangement is shown in Fig. 2.12. In the first 
time segment, the output noise is equal only to the noise of the main-
taining electronics, 

^ o u t r j 2.34 

Vin(s) 

Fig. 2.11 Block diagram of the oscillator: principle of analogue feedback. 
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T >Λ Λ 
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Fig. 2.12 Block diagram of the oscillator as the sampled noise generator. 

After one delay period, the output noise is changed into a frequency 
correction term by division with T(cf. 2.11) and decreases or increases 
the instantaneous frequency deviation generated in the resonator itself: 

^ o u t , l - <t>e,\ + 

- - i Λ 

^±-+φι τ=φ,ι+φ,οΖ-ί+φιτ 2.35 
V T ) 

The next sampling period results in 

0ou.,2 - £.2 + 

f A. "I 
Φοη,,Ι Ζ 

V r 
+ φ2 

<Pe,2+ Φβ,\Ζ~*+Φε,0Ζ~2 + (φ2Ζ~]+ Φ\)Τ 

2.36 

and so on. Since individual phase and frequency contributions are 
nearly of the same magnitude, we get, after summation of the series, 
for the oscillator output phase noise 

Tout T e 
Φ€

+ΦΤ 

1-z-1 
2.37 

Finally, by changing the z-transform into the Fourier transform [see, 
e.g., 2.18], we arrive at 

&» = 0» + —We(*) + fart = 
ST 

ΦΡ) + ~[φβ(5) + φκ^)] 
ST 

2.38 
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Note that (2.38) recalls the well-known relation for combination of the 
phase noises generated in the resonator and maintaining circuit (cf. 
Section 3.1). The corresponding PSD of the oscillator output phase 
noise is 

o <i.outvy ) ' 
(l)o 

2Q(o [SW/) + .SV(./")] + S*e(/) 2.39 

Note that we have limited our investigation to the first-order terms and 
omitted all nonlinearity. 

2.3.3 Evaluation of the Oscillator Output Phase 
Noise 

The phase noise introduced by the maintaining electronics is com-
posed of the flicker and random walk noise contributions at low Fouri-
er frequencies and the inevitable white noise at higher frequencies: 

aE s^ö9=Jr 
2kTF a\E 

+ 
f Po f 

a0 
2.40 

where P0 is the oscillator output power and F is the noise factor. To the 
electronics phase noise, we must add the resonator noise (cf. 2.30), 

J Γr 
2.41 

and after their combination together with the noise of the maintaining 
output electronics, we finally arrive at the oscillator output phase noise 

»Ji^.OScl/ / " 
2Qa> 

aR2 , a « i + g £ + 2 ^ ( 1 + F ) 

r / Pr 
+ 

f Pr 

2.42 

which can be expressed as a polynomial inf. 

c ( f \ - a* A. °3 4_ β 2 4_ α ' 4. 

Ξφ.οΛ/) ~ —r + -p + —2+ —\ + ao 
2.43 
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and the coefficients of the noise characteristic asymptotes are (see Fig. 
2.13) 

( 3 2 -
(f λ 

J 0 

Uß, 

( f V 
J o 

UeJ 
2 2kT 

Pr 

ÜR1 

(1 + F) 

Ö 3 -

r f \2 

J o 

2ß 
(«Äl + iZf) 

2kT 
2 A4 

a\- ÜE aa- Pr 
(1 + F)] 

Note that constants, a4 ... a0, are easily found by asymptotic approxi-
mation applied on the measured oscillator-phase noise characteristic. 

EXAMPLE 2.3 
We performed a phase noise measurement of the HP crystal oscil-
lator at 10 MHz, type 10811. Values for several Fourier frequen-
cies are summarized in Table 2.3 (2nd col.).With the assistance of 
the computer, we plotted the corresponding phase noise charac-
teristic (see Fig. 2.13). Next, we evaluated the slopes of three as-
ymptotes with the following result: 

1 0- io3 1 0 -n .3 1 0 

^(/) = "ÜLr- + 1 V + i V + 10-
Γ r f 

2.45 

Table 2.3 Phase noise PSD of the HP crystal oscillator" 
Frequency (Hz) 

1 
2 
3 
5 

10 
20 
30 
50 

100 
200 

1,000 
10,000 
80,000 

PSD (dBc/Hz) 

-102 

-132 

-160 

-160 
-160 
-160 

PSD (dBc/Hz) 

-98 

-133 

-148 

-153 
-158 
-160 

PSD (dBc/Hz) 

-120 
-132 
-137 
-147 
-154 
-159 
-161 
-163 
-168 
-170 
-175 
-179 
-181 

"At 10 MHz, type 10811, of a technical crystal oscillator 5 MHz, and noise constants of a 5-
MHz crystal oscillator with SC cut resonator with the FPN characteristic exhibiting slope 
l / / 4 at low Fourier frequencies [2.20]. 
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Fig. 2.13 Asymptotic approximation of the oscillator phase noise characterics. 

For information, we reproduce in Fig. 2.14 the phase nose charac-
teristics of crystal oscillators for important carrier frequencies 
over the entire frequency range from 5 to 500 MHz. 

2.3.4 Evaluation of the Oscillator Output Fractional 
Frequency Noise 

In the above sections, we introduced the concept of fractional frequency 
as the noise measure by multiplying the phase noise by the factor (flf0)

2: 

Sy{f) = 
J_ 
fo 

h-i , h 
' i^,OSC + ^ + ho + hJ+h2f 

r f 
2.46 

Inspection of the PSD of the fractional frequency noise reveals the in-
variance with respect to the carrier frequency f0, that is, in instances of 
frequency multiplications or divisions no changes are expected. In ad-
dition, in the same diagram we can compare noise properties of oscil-
lators with different resonant frequencies. With the assistance of (2.44) 
and (2.42), we can express Ä, constants as functions of the frequency 
noise constants a, as 

hi = 
f2 

J O 

2.47 
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(dB) 

Fig. 2.14 Phase noise characteristic adapted from technical data of the present-day 
crystal oscillators. ( · ) Oscillaoquartz 5-MHz type 8607, (D) HP 10 MHz, type 
10811, (o) Frequency Electronics 100 MHz, and (O) SAV 500 MHz. Adapted from 
[2.18]. 

Values of the A_, coefficient for both resonators and oscillators form 
column 6 in Table 2.1 allow us to provide at least a partial check on the 
resonator Q; see column 8 in Table 2.1. 

Q 
1 

,1/3 

.8A-./„. 
2.48 

This is particularly useful when investigating crystal oscillators, since 
the constant h_x is read from the analyzed phase noise characteristic 
with the assistance of the a3 coefficients [(2.44)]. From this follows, 
vice versa, other important information about the expected output 
flicker phase noise characteristic as a function of the fundamental fre-
quency,/,, of the crystal oscillators, namely, 

ι3 0,οιιΛ/ / ~l 2.49 
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(cf. column 4 in Table 2.1). However, in instances in which multiplica-
tion is applied, we get a lower flicker phase noise, since the output fre-
quency f0 is replaced with/0 = N *finp: 

ιοΛΓ4 xyv2 

W/)~ p 2 · 5 0 

EXAMPLE 2.4 
For a 1-GHz crystal oscillator, the flicker phase noise at 1 Hz 
would be from Table 2.1 and from (2.49) 

S„(l) = -400 + 360 = -40 (dB/Hz) 

However, multiplication of the 10-MHz oscillator in the 1-GHz 
range will result in a much larger noise. With the use of (2.50), 
we arrive at 

Sv(l) = -400 + 280 + 40 = -80 (dB/Hz) 

2.3.5 Asymptotic Evaluation of the Fractional 
Frequency Noise Characteristics 

The slope of the asymptotes in the phase noise characteristics of stable 
oscillators are very steep at low Fourier frequencies, making an estima-
tion of noise constants, a_3, and so on, rather vague. The difficulty may be 
alleviated with the assistance of the PSD of the fractional frequency noise 
[relation (2.40)]: The corresponding approximating asymptotes provide 
more reliable results. We will explain the procedure in Example 2.5. 

EXAMPLE 2.5 
In this case, we will evaluate the noise constants of a 5-MHz 
crystal oscillator with an SC-cut resonator with the PN-character-
istic exhibiting a slope l//4 at low Fourier frequencies on the one 
hand and low white noise on the other hand, as depicted in Figure 
2.15. From this plot, we have read phase noise values for several 
Fourier frequencies and summarized them in Table 2.2 (4th col.). 
Then, we plotted the Sy (/) characteristic, multiplied byfl. The 
result is illustrated in Fig. 2.16. From intersections with the verti-
cal line/= 1, we read the values for all a,·, and the evaluated PN-
characteristic is 



2.3 NOISE IN OSCILLATORS 59 

- 1 1 U 

- 1 3 0 ( - \ 

-150 

-170 

'» \ 
• \ 

I 

·** 
I 

• PM noise 
• AM noise 

PM model 
AM model 

I I 
0.001 0.01 0.1 1 

Fourer frequency (kHz) 

100 

Fig. 2.15 Phase noise characteristic of a 5-MHz crystal oscillator with SC-cut res-
onator [2.20]. (Copyright © IEEE. Reproduced with permission.) 

Ξφ(/)-
1Q-'2 , K r ' 3 , 10 137

 H 1 0 1 4 7 

f4 f r f 
+ 1(T 2.51 

and compared with the authors' published fitting model using 
minimal variations: 

S,(/) = 
10 10" 10 

r f f 
+ 10" 2.52 

There is good agreement for both results. A detailed inspection of 
Fig. 2.16 reveals that the flicker-phase noise contribution is mini-
mal. This confirms the asymptotic approximation to the original 
phase-noise characteristic shown in Fig. 2.15. Only three asymp-
totes are of importance. 

Further, we mention important information about crystal res-
onators and oscillators, namely, the value of the expected Allan vari-
ance in its lowest plateau. From its definition (5.27), we obtain the fol-
lowing equation: 

a(r) = y]2x\n(2)xh-

Application of (2.14) reveals the best value: 

<r(T)~\0-20:fo 

2.53 

2.54 

a value suggested by Parker [2.23]. 
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Fig. 2.16 Plot of the fractional frequency noise characteristic Sy (/) of a 5 MHz SC 
oscillator (solid line; all other lines are marked with their respective constants). 

2.3.6 Higher Order Noise Terms 

In some instances, interpretation of the oscillator phase noise PSD 
characteristics reveals higher order terms of the type l/f4 or even high-
er, expressed as a polynomial inf. 

03 ai , a\ W / ) = ̂ + ^ i + ̂  + ̂  + ̂  + 0O 2.55 

however, their origin is difficult to trace since they may be attributed both 
to the additional noises generated in the resonators or in amplifiers and 
integrated, often with the additional filtering in phase noise measuring 
systems. One example is the term l/f5 in Fig. 2.17. One explanation 
might involve additional integration of the l/f3 term, misinterpretation 
of the phase-noise characteristics at very low Fourier frequencies; anoth-
er possibility is its connection with aging. 

2.4 LEESON MODEL 

On the occasion of the special issue of the IEEE proceedings devoted 
to the problems of frequency stability [2.25] Leeson [2.26], published a 
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Fig. 2.17 Phase noise characteristic exhibiting the phase noise characteristic with the 
slope \lp close to the 1-Hz Fourier frequency [2.24]. (Copyright © IEEE. Repro-
duced with permission.) 

letter discussing the oscillator phase-noise model: A heuristic deriva-
tion without formal proof. His reasoning starts from our (2.37) and 
(2.38), that is, from the mean value of the electronics phase noise that 
is compensated by frequency fluctuations. However, they are only im-
portant in the passband of the resonator and are changed into addition-
al phase noise as explained in Section 2.2.2. After summation of both 
components, he arrived at his famous relation: 

S(j>\U)m) SM 1 + 
f \ 

2ß COmJ 
2.56 

After comparing the above results with (2.41), we conclude that the 
Leeson relation deals with only the electronics noise. But some 50 
years ago, the noise generated in electronic circuits was much larger 
than the frequency noise originating in the resonators themselves. So 
far, the application of the Leeson formula is correct. However, in both 
modern crystal and SAW oscillators, the resonator noise often pre-
dominates and application of (2.56) is not justified. One must revert 
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to a more precise definition by (2.38). Unfortunately, we often witness 
efforts to amend Leeson's results with more sophisticated oscillator 
networks, which in many cases is not justified. 

REFERENCES 

2.1. F.L. Walls and A.E. Wainwright, Measurement of the Short-Term Stability of 
Quartz Crystal Resonators and the implications for Crystal Oscillator Design 
and Applications, IEEE Tr., IM-24, (Mar. 1975), pp. 15-20. 

2.2 J.J. Gagnepain, Fundamental Noise Studies of Quartz Crystal Resonators, in 
Proceedings of the 37th Frequency Control Symposium (1976), pp. 84—91. 

2.3 T.E. Parker, Characteristics and Sources of Phase Noise in Stable Oscillators, in 
Proceedings of the 37th Frequency Control Symposium (1987), pp. 99-100 

2.4. V. F. Kroupa, Flicker Frequency Noise in BAW and SAW Quartz Resonators, 
IEEE Tr., UFFC-35 (1988), pp. 406-420. 

2.5. V.F. Kroupa, Theory of l//Noise—A New Approach, Phys. Lett. A, 336 (2005), 
pp. 126-32. 

2.6. L.E. Halliburton and D.R. Koehler, Properties of Piozoelectric Materials, in 
Precision Frequency Control, Academic Press, Orlando, 1985 (eds. E.A. Ger-
ber and A. Ballato), 1985, pp. \-H5. 

2.7. A.W. Warner, Design and Performance of Ultra Precise 2.5-mc Quartz Crystal 
units, Bell System Tech. J., 33 (Aug. 1960), pp. 1193-1217. 

2.8. K. Kurokawa, Noise in Synchronized Oscillators, IEEE Tr., MTT-16 (Apr. 
1968), pp. 234-240. 

2.9. J.R. Vig and T.R. Meeker, The Aging of Bulk Acoustic Wave Resonators, Fil-
ters and Oscillators, in Proceedings of the 445th Frequency Control Symposium 
(1991), pp. 77-101. 

2.10. J.R. Vig and F.L. Walls, Fundamental Limits on the Frequency Instabilities of 
Quartz Crystal Resonators, in Proceedings of 1994 International Frequency 
Control Symposium (1994), pp. 506-523. 

2.11. M.M. Driscoll, Low Noise Crystal Oscillators using 50 Ohm Modular Amplifi-
er Sustaining Stages, in Proceedings of the 40th Frequency Control Symposium 
(1986), pp. 329-35. 

2.12. V. Candelier, P. Canzian, J. Lamboley, G. Marotel, and P. Poulain, State of the 
Art in Ultra Stabile Oscillators for Accurate/Precise on Board and Ground Ap-
plications, in 2001 IEEE International Frequency Control Symposium (2001), 
pp. 767-73. 

2.13. E. Rubiola, J. Groslambert, M. Brunet, and V. Giordano, Flicker Noise Mea-
surement of HF Quartz Resonators. IEEE Tr., UFFC-47 (2000), pp. 361-368. 

2.14. F. Stahl, M. Mourey, S. Galliou, F. Marionnet, and R.J. Besson, Characteriza-
tion of Quartz Crystal Resonators on Phase Modulation Noise Without an Oscil-
lator, in 2000 IEEE International Frequency Control Symposium (2000), pp. 
393-396. 



REFERENCES 63 

2.15. S. Galliou, F. Sthal, N. Gufflet, and M. Mourey, Predicting Phase Noise in 
Crystal Oscillators, in 2003 IEEE International Frequency Control Symposium 
(2003), pp. 499-501. 

2.16. M.M. Driscoll and W.P. Hanson, Measured vs. Volume Model-Predicted Flick-
er Frequency Instability in VHF Quartz Crystal Resonators, in 1993 IEEE Inter-
national Frequency Control Symposium (1993), pp. 186-92. 

2.17. T.E. Parker, D. Andres, J. A. Greer, and G.K. Montrress, 1//Noise in Etched 
Groove Surface Acoustic Wave (SAW) Resonators, IEEE Tr., UFFC-41 
(1994), pp. 853-862. 

2.18. V.F. Kroupa Phase Lock Loops and Frequency Synthesis, New York: Wiley, 
2003. 

2.19. F. Stahl, J.J. Boy M, Mourey, and F. Marionnet, Phase Noise Study of Quartz 
Crystal Resonators Versus the Radius of Curvature, in 2001 IEEE International 
Frequency Control Symposium (2001), pp. 639-642. 

2.20. M.L. Nelson, C.W. Nelson, and F.L. Walls, Relationship of AM to PM Noise in 
Selected RF Oscillators, IEEE Tr., UFFC-41 (1994), pp. 680-406-420. 

2.21. V. Candelier, P.Canzian, J. Lamboley, M. Brunet, and G. Santarelli, Space 
Qualified Ultra Stabile Oscillators, in 2003 IEEE International Frequency Con-
trol Symposium (2003), pp. 575-582. 

2.22. S. Galliou, M. Mourrey, F. Marionnet, R.J. Besson and P. Guillemot, An Oscil-
lator for Space, in Proceedings of the 2003 IEEE International Frequency Con-
trol Symposium (2003), pp. 430-434. 

2.23. T. E. Parker, \lf Fluctuations in Quartz Acoustic Resonators, Appl. Phys. Lett., 
46(3), 1985, pp. 246-248. 

2.24. E.N. Ivanov and M.E. Tabor, Low Phase-Noise Sapphire Crystal Microwave 
Oscillators: Current Statutes, IEEE Tr.UFFC, 56 (Feb. 2009), pp. 263-269. 

2.25. Proceedings of the IEEE, Special Issue on Frequency Stability, 54 (Feb. 1966). 
2.26. D.B. Leeson, A Simple Model of Feedback Oscillator Noise Spectrum, Pro-

ceedings of the IEEE (Feb. 1966), pp. 329-330. 



The need to designate information channels began at the time electro-
magnetic waves began to be used for communications. First it started 
with the length of the respective waves, and then with carrier frequen-
cies, which were generated both in transmitter exciters and receiver lo-
cal oscillators. Their reliability and precision soon became indispens-
able for dependable transfer of information. In the beginning, and 
often to the present time, the role was dominated by LC oscillators 
with the resonant circuit built from an inductor and a capacitor. Since 
the early 1930s, we encountered more precise quartz oscillators whose 
stability was able to demonstrate irregularities in the Earth's rotation. 
Their use as frequency and time standards was supplanted in the 1950s 
by atomic devices. Nevertheless, the area between the primary stan-
dards and practical applications still calls for stable crystal oscillators. 
At the same time, we witnessed efforts to reduce instability, frequency, 
and phase fluctuations of the generated carrier frequencies for long-
distance communication, particularly in space activities (global posi-
tioning systems, GPS). 

3.1 PRECISION OSCILLATORS 

Investigations performed in the second half of the twentieth century 
provided evidence that the larger the quality factor, Q, of the resonator, 
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the higher the stability of the respective oscillator. In Chapter 2, we es-
tablished the following relation for the noise in oscillators: 

*J <£,osc 

f V " + Q „ + q£ + 2^r(1 + j F ) Wo 

2Qw Γ f Pr 
3.1 

+ - f + — ( i + ^)+s**d(/) 

Note that this relation is valid even in instances in which the flicker 
noise generated in maintaining electronics exceeds the corresponding 
components generated in the resonator. The search for larger Q values 
requires dielectric materials with smaller losses, that is, with smaller 
tg{S), on the one hand and application of cryogenic temperatures on 
the other hand. 

3.1.1 Quartz Crystal Oscillators 

Precision quartz crystal oscillators are manufactured predominantly 
with the 5- or 10-MHz carrier frequencies. This choice is preferred for 
several reasons. First, in Chapter 2 we saw that the crystal resonator 
flicker noise constant aRX is nearly the same over the entire frequency 
range (cf. 2.9) and equal to the product \IQf0, irrespective of the res-
onant frequency f0 in the entire frequency range from 1 to 1000 MHz 
[3.1]: 

Further, the phase noise is proportional to the square of the resonant 
frequency. The third motive is that RF and low GHz frequencies, the 
flicker noise generated in the maintaining electronics aE (transistors 
and amplifiers) is < aRl, that is, 

a£~10-14 3.3 

and values even more than one order lower were reported [3.2]. This is 
not the case with higher carrier frequencies. In the range from 500 to 
1000 MHz, the flicker noise constant aE starts exceeding aRl. By ap-
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plying what was discussed in Chapter 2, we have, for the fractional fre-
quency PSDs, 

SHf) = Sy,0Sc(f)-
\f o) 

W ) = 3.4 

( i Vr 
v2ßy 

α„, αΒ1 +αΓ 2&J *Λ2 ι " A l l UE 

/ 2 / p r 
(1 + F) + 

J * r 

f ω^ 

\<Oo) 

from which, with the assistance of (3.2), the most important noise co-
efficients are found: 

and 

1 2kT 
k-2~\2Qf P. 

Ί0 - 4 3 ™/! 

h-r 
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2 10" 
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in _ l o - " / : _ i o " " · ' / ; 

3.5 

aF 1 , 
Α ι = - Γ " ^ 2 a n d 

/ / : ■"re s 7 0 

3.6 

Since the first three noise coefficients are proportional to the square 
of the carrier frequency, they provide the second reason for building 
stable oscillators in the low megahertz (MHz) ranges. The increasing 
mechanical dimensions keep 5 MHz as the lower bound. Reverting to 
the fundamental measure of stability in the time domain [the Allan 
variance (5.27)], we get for the flicker frequency noise the plateau 
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In addition, resonators contribute another source of noise due to medi-
um fluctuations in the environment, which in most instances are tem-
perature, humidity, and so on, that are responsible for the random walk 
coefficient, aR2. However, after placing resonators in vacuum enclo-
sures and ovens, the corresponding noise can generally be neglected. 
This conclusion is confirmed by Walls and Vig [3.2], particularly if the 
oven temperature is placed into the inflection point of the resonator 
frequency characteristic (Tvs.f„). Here, the first difference Δ/ΙΔΤ is 
zero (SC cuts) and the oven is carefully designed with a very high ther-
mal quality factor, βτ;ονεη. Note that the above indicated guidelines for 
the stability of crystal oscillators require a careful selection of both of 
the resonators [3.3, 3.4] and a cautious design of the whole oscillating 
network. In summarizing the results, we may expect the following re-
lation for the output phase noise power spectral density (PSD) both of 
BAV as well as SAW crystal oscillators in the entire frequency range 
from 5 to 500 MHz (see Fig. 3.1). 

ΞΦ(η- LL 
1 0 - m 1 0 - . 3 ^ 1 0 - . 7 . 6 

r r r + S<t>;. add 

J o 

| Λ - 4 4 . 5 ± 0 . 5 ,^-39.5±0.5 | Λ ^ 4 ± Γ 

r r r 
10 

f 
+ 10 

Note that we have also enclosed the term exhibited at the very low 
Fourier frequencies, which is the random walk, that is, the term is in-
versely proportional t o / 4 (cf. Section 2.1.3 and the discussion in 
Chapter 5, Section 5.2.2), the part of the Allan variance proportional to 
T05 (cf. Fig. 3.2). 

3.1.2 Precision Microwave Oscillators 

Nowadays, there are a number of scientific and technological applica-
tions requiring generators with very high frequency stability even in the 
microwave ranges. Mere multiplication of lower radio frequency (RF) 
carrier frequencies does not solve the problem because of the phase-
noise multiplication in the entire Fourier frequency range (see Section 
2.3.4 and cf. Fig. 3.3 lines a and b). Application of special microwave 
oscillators with high Q resonators also does not alleviate the problem, 
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Fig. 3.1 The expected hase noise characteristics of precise quartz crystal oscillators: 
(a) 5 MHz and (b) 10 MHz. Continued on next page. 
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Fig. 3.1 (cont) Phase noise characteristics of precise quartz crystal oscillators: (c) 
100 MHz and (d) 500 MHz. 
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Fig. 3.2 Time domain frequency stability of a 5-MHz ultrastable quartz crystal oscil-
lator measured with the CSO reference [3.5]. (Copyright © IEEE. Reproduced with 
permission.) 

since the flicker noise term due to losses in the resonator, aRU starts to 
be masked by the term, aE, generated in the maintaining electronics (see 
the cooled sapphire oscillators below). Nevertheless, they are praised 
for their lower white-phase noise floor, which is much lower compared 
with that after multiplication of the best crystal oscillator (cf. Fig. 3.3). 
The reason is because the overall phase noise, in accordance with (3.1), 
still holds and a larger power, P0, is used. Another possibility is applica-
tion of the phase-lock systems that make it possible to retain both of the 
low-phase noises that are close to the carrier and in the white noise 
range (see Chapter 6 for more information). 

3.1.2.1 Microwave Self-Excited Oscillators 

In its simplest form, these oscillators may recall the well-known Leeson 
model, which is investigated in Section 2.4. The corresponding block di-
agram is shown in Fig. 3.4. Note that the additional bandpass filter takes 
care of oscillation in the intended mode of the microwave resonator. The 
output phase noise can be computed with the assistance of (2.38): 

ST 
3.9 
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SSB Phase Noise 

-180 
1,000 

Frequency (Hz) 
1,000,000 

Fig. 3.3 Phase noise of the 10-MHz crystal oscillator (a), compared with its multi-
plied noise at 20 GHz (b), with the phase noise of cooled sapphire 20-GHz microwave 
oscillator (c), and with a phase-locked loop (PLL) system noise of 20-GHz DRO (di-
electric resonator oscillator) and a 100-MHz crystal oscillator (d). (Adapted from 
[3.6]. Copyright ©IEEE.) 

The oscillation condition requires that the mean value of frequency 
fluctuations is zero (the term in parentheses) and the overall phase is 
equal to 2πΝ(Ν= 0, 1,2,...). To this end, a phase shifter φ is included. 
The corresponding output phase noise is 

■J 0,OUt(,/ / ' 

( f V 
J o 

2Qf 
[5*™(/) + 5*.(/)] + 5*.(/) 3.10 

HBT amplifiers 
TC200 ,. SS9A 6-dB coupler 

ΐΜ> 
H ̂ K^b— j[ 

DBR 
Resonator 

Fig. 3.4 Block diagram of the self-excited oscillator (Leeson model). 
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In the instance at which the noise generated in the resonator is small 
compared with the electronic noise originating in the loop, we get 

»J(4,outv/ ) ' 
( f Vr 1^ 

2Qf 

üa,e , 
+ aa f 

+ γ + αα.0 3.11 

EXAMPLE 3.1 
Let us examine phase-noise properties of a precise microwave os-
cillator [3.7] with 

f0 = 9 GHz £unloaded = 700,000 aae = 10'1 '5 

From the measured characteristic in [3.7, Fig.7], we read numeri-
cal values presented in Table 3.1. 

After their plot, we draw asymptotes for establishing the poly-
nomial PSD (see Fig. 3.5) and find the following numerical val-
ues of the PSD characteristic: 

Μ Λ - ^ ^ ^ ^ . 0 - " 3.12 

In Fig. 3.5a, we evaluate the asymptotic slopes and in Fig. 3.5ft we 
verify or correct the noise coefficients with the assistance of the 
frequency noise characteristic (cf. Example 2.5). Finally, with the 
assistance of (3.5), we find the noise constants to be approximately 

flÄ2 = io-11 «Λ1 = ιο-12 « a . e =io- 1 5 « α . 0 = ι ο 1 6 

The expected Allan variance is plotted in Fig. 3.5c. 

3.1.2.2 Stabilized Microwave Local Oscillators 

The block diagram of the stabilized microwave local oscillator 
(STALO) is displayed in Fig. 3.6. It is a feedback system correcting 

Table 3.1 Phase noise properties of a precise microwave oscillator with/, = 9 
GHz" 
/(Hz) 1 3 10 30 100 400 700 1000 4000 104 105 

S(/)(dB) -25 ^ 5 -60 -77 -95 -112 -120 -125 -142 -151 -160 
"unloaded = 700,000; <*„,, = 10"" 5 [3.7]. 
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Fig. 3.5 Evaluation of the asymptotic slopes of the noise characteristic computed in 
Example 3.1: (a) evaluation of the asymptotic slopes from the published phase noise 
characteristic (Adapted from [3.7]). (b) Verification or correction of the noise coeffi-
cients with the assistance of the modified fractional frequency noise characteristic. 
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T 10"" -

i rr5 10-4 io - 3 o.oi o.i 1 10 100 10-3 10-4 

T(S) 

(c) 

Fig. 3.5 (conL) Evaluation of the asymptotic slopes of the noise characteristic com-
puted in Example 3.1: (c) The corresponding Allan variance, which will be discussed 
in Chapter 5. 

the oscillator phase noise <posc with the assistance of the signal passed 
through a stable resonator. By using PLL theory [e.g., 3.8], we get for 
the phase detector (PD) output 

KÄs) = KÄ<p0M(s) - Fm(s)] [φ^) + <prts(s) ] + tp^s) ■■ 

1 
Kc <p<J.s)-

Kd 

WM* 9J<S)] + 9M 

+ <P?D(S) 

1 + ST 

<Po«(s)ST-<PKs(s) 
1 + ST 

3.13 

Pose (s) 
Microwave 
oscillator 

K0ls 

-

«Out (s) 

output 

1 

P lc\ 
i w i 

HighQ 
resonator 

Fres(s) 

«Out (s) 
PD 

9PD 

*d\s) 

0. ') 

Fig. 3.6 Block diagram of the microwave STALO. 
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where <pres(s) is an additive phase noise generated in the resonator itself 
and filtered together with the output noise <pou,(s) by the corresponding 
transfer function, Fres(s): 

F™(s)z 1 1 2Qn 

l + s 2ß„ 1 + 57 
3.14 

Note the phase shifter, δφ, which takes care of the necessary 90° shift 
between PD input signals. Proceeding further in accordance with PLL 
theory, we encounter the amplifier gain KA; the loop filter, FL(s), be-
tween the phase detector and the oscillator (if any); and the oscillator 
gain KJs, which form the open-loop gain G(s): 

l + ST S (1 + ST)S 
3.15 

The preliminary output phase is 

<Pou«(S) = <PosdS) - G(S)[<Pou,(S)ST- <PKS(S) + 0 + ST)<P?D] 3 Λ 6 

After rearranging the above relation, we obtain 

<PoJS) = 
G(s)[<pKS(s) - (1 + ST)9?D(S)] + <posc(s) 

\ + G(S)ST 
3.17 

In the case in which the gain G(s) is large compared to one (for small 
Fourier frequencies), the approximation reveals 

φ°αΛ ' G(s)sr 
3.18 

ST 

and the PSD of the output phase is (after introducing for the time delay 
T=co0/2ßres) 

SrAft ~ / . 

v 2 ß r e s /y L K 
3.19 
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Note that PDS of the STALO close to the carrier is controlled by the 
resonator phase fluctuations (cf. 3.1) if the gain, K, is large compared 
to one. 

a — aR2 +
 aR\ _i_ 

0(e,res 2 r aa 
3.20 

3.1.2.3 Interferometric Stabilization of Microwave 
Oscillators 

In instances where the noise contributions of the open-loop VCO is 
large compared with the intrinsic noise of the resonator, we would 
need to increase the gain, K, substantially, particularly with the assis-
tance of an amplifier in the feedback path beyond a reasonable value. 
Another solution may be provided by an interferometric system de-
creasing the VCO noise level. The principle is depicted in Fig. 3.7 

To a summation amplifier, we directly feed the output signal [v,(i)], 
and to the subtracting input we feed the same signal [v2 (t)], passed 
though the high-g resonator but in the opposite phase. The correspond-
ing low-frequency output of the summation amplifier is 

4K,cosW + <£ 0J-F 2cosW + (<£out + <£jF res)]~ 
A[(Vi - V2)cos((oJ)-(V] - ν2)[ΦΰΜ - (Φ0Μ - Fres(<£out + 0 J ] s i n W ) ] 

«Out 
Output 

Fig. 3.7 Interferometric reduction of the output noise level (adapted from [3.9]). 
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After introduction of the resonator filtering function Fres (3.14) and 
following phase detection in the mixer, we arrive at the output in the 
Fourier transform: 

M(s)~Kd AV 
ST<f>0Ut(s)+<f>KS(s)(l + ST) 

\ + ST 

And after closing the effective PLL we get 

+ <f>M(s) 3.22 

3.23 

-—FL(s) 
s 

KdK AV 
5ΤφαΛ(5)+φ„(5ΧΙ + 5ί) 

\ + ST 
ΚαΦΜ{ζ) 

Finally, we get the effective output phase 

Ko 

*»(*)-
F L\S)KdK AV 

φ^)=-
l + ST 

- + ΦΜ(*) 
KoFL(s)Ka 

Ko 
3.24 

1 + -

Φ 

FL{s)KdKAvST 

\ + ST 

Ko 

1 + -
FL(s)KdKAVST 

\ + ST 

In the vicinity of the carrier ST <4 1 and for FL ~ 1, 

ΦΛΞ) 
Φ^) + 

Φο(*Υ 
KAV , ΦΜ^ 

sr \ + TKFL(S) 
3.25 

Note again the similarity to relation (2.40). Consequently, we may 
write for the output phase noise PSD 

U 0,OUt\/ ) ' W/)+^# 
K AV 

| Scf>,oscKJ ) 

\\ + TKFL(S)\2 · 

K — KoKdK AV 
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After comparing (3.26) with that for the STALO output phase noise 
(3.19), we see that the interferometric stabilization results in reduction 
of the spurious phase noises due to the reduction of the carrier signal. 
After comparing (3.26) to (3.4), we arrive at 

l t ( / ) : ' f V 

J o 

2QT) 

aR2,res ,UR\,rts , fl£ 

r f f 
+ 5^.add(/) 3.27 

The result is that the noise close to the carrier is that of the resonator 
and associated circuitry, whereas the contribution of VCO and other 
spurious sources is substantially reduced. 

3.1.2.4 Microwave Oscillators Stabilized with 
Ferrite Circulators 

Another possibility for the carrier reduction provides application of a 
ferrite circulator that works on the same principle as the interferometer 
(see Fig. 3.8). 

The circulator consists of a ferrite cylinder with three ports at 120°, 
biased on an axial direct current (DC) field that introduces a Larmor pre-
cession. The voltage transfer function between planes A-A and C-C is 

/v(<w) = Γ(ω) = er-W) 
er((o) 

3.28 

A Circulator C 

Matching screw 

-e 

Fig. 3.8 Ferrite circulator as a carrier suppression network [3.10]. (Copyright © 
IEEE. Reproduced with permission.) 
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where er and et are voltages at the output and input ports of the circula-
tor, respectively. Since the circulator insertion loss is usually small, < 
0.2 dB from port to port, the transfer function is equal to the reflection 
coefficient at the B-B plane: 

Ρν{ω)~Υ(ώ) = *^ί 3.29 

To arrive at the transfer function Γ(ω), we use the equivalent circuit in 
Fig. 3.9a. The Thevenin theorem reveals the effective voltage (Fig. 
3.9b) and, finally, in Fig. 3.9c, the Norton current source (Yis the total 
circuit admittance): 

1 
+ j 

nZo 
aC_±)^*m^»^ 3.30 

a>Lj nZo 

where ^(ω) is the cavity admittance, Qv = nZJü)0, the unloaded cavity 
Q, and ω0 = 1 / V L C the cavity resonant frequency. 

Finally, with the input admittance and the transformed load admit-
tance, Υα(ω) = (n2RG)~l, we arrive at the reflection coefficient: 

nZj^ , . Λ 2Δω 

Γ(ω) = — J c v ^ - ^ ^ YG-Yc(<»)_nRo u «>o 
YG + Yc(w) j^o_ + l+.Q 2AüJ 

n2Ro ω° 
2Δω 

3.31 

J*u ω0 ST 0_ Zo 
ß=-

ß+i + JQu— 2 nRc 

(Oo 

Its plot is shown in Fig. 3.10. 
Note that the circulator isolates the input generator from the output 

load and that the typical insertion loss between points 1 and 3 in Fig. 
3.8 is ~ 0.3 dB. When maximum cavity absorption (maximum power 
transfer) occurs, the result is close to the carrier and the amplitude of 
the output signal is proportional to \Γ(ω)\ and the phase fluctuations are 
changed into frequency fluctuations and resonator frequency varia-
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RG = nZ0 

(a) 

n,E@ 

B' 

Rn=nZn 

Φ) 

Rc=nZ0 

Fig. 3.9 Equivalent input and output circuit of the circulator: (a) equivalent circuit, 
(b) the Thevenin theorem of the effective input voltage, (c) the effective Norton cur-
rent source. The parameter Κ(.(ω) is the cavity admittance and Υ(ω) is the total circuit 
admittance (adapted from [3.10]). 
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Fig. 3.10 Carrier suppression by circulator versus Fourier frequency for two cavi-
ties: 2|oad = Qi/2 (a) carrier suppression for gload = 1 χ 108 (full line) and Q]oai = 75 χ 
104 (points), (b) gload =1 χ 108 (full line) corresponding phases. 

tions. Evidently (3.25-3.29) are also valid for microwave oscillators 
stabilized with ferrite circulators. 

Recently, combination of interferometric and circulator carrier 
suppression was reported [3.9, 3.11], with the result that carrier sup-
pression may be as large as 90 dB. The principle is explained with the 
assistance of Fig. 3.11. The phase noise close to the carrier is deter-
mined by the noise generated in the resonator only. 
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Circulator /?, = 0.95. 

80-90 dB 
carrier sup 

Low noise 
amplifer 

Fig. 3.11 Combination of simultaneous interferometric and circulator carrier sup-
pression [3.9]. (Copyright © IEEE. Reproduced with permission.) 

3.1.2.5 Pound Stabilization 

Another possibility for stabilizing microwave oscillators is based on 
the arrangement suggested by Pound [3.12]. Again the ferrite circula-
tor is used for correcting the VCO. However, the efficiency is in-
creased with an auxiliary frequency modulation of the carrier (see Fig. 
3.12). 

To the input port (1) of the circulator, we supply the frequency 
modulated carrier 

ei(0 = Ei[sm(a>J + <Kt) + W/sin(»O)] 3.32 

where ω0 = ωΚΒ +Δω, φ(ί) is the phase instability close to the carrier, 
and mfsm(i4) is the signal generating a large auxiliary frequency mod-
ulation. Expansion of (3.32) proceeds with the assistance of Bessel 
functions, Jn(mß, 

ei(0 = EiJo(mf) s » W + Φ(0] ± Jimf)sm[(o0t + φ(ί) ±ι4]± 

J2(mf)sm[co0t + φ{ί) ± 2i4] ± j3(m /)sin[iyo? + φ(ί) ± 3vt] + ■■·] 
3.33 
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Detector 

Fig. 3.12 Block diagram of the Pound stabilized oscillator. 

and for the output signal, e3(t), we have 

e3(t)« EU o{mf)T{<Oo)sm{u)J)) ± 
Jimf)T{wo±v)sH(Oo + <Kt)±vt) + ···] 

3.34 

which is composed of the carrier reduced in accordance with (3.33). 
Further, it exhibits the delayed phase, the added frequency noise gen-
erated in the resonator, and the reflected and effectively unattenuated 
modulation side bands. Operation of the Pound circuit can be under-
stood as conversion of the phase modulation (PM) to the amplitude 
modulation (AM). The process may be explained with the assistance of 
Figs. 3.13 and 3.14 (cf. also the discussion in [3.13]). 

EXAMPLE 3.2 
Inspection of Fig. 3.13 reveals for a nearly zero amplitude of the 
carrier the modulation index m ~ 2.4, which is an important con-
tribution of the sidebands Jx (2.4) = 0.518, J2 (2.4) « 0.433, J3 

(2.4) = 0.198, and nearly negligible values for all other modula-
tion sidebands. Another possibility is the choice of the modula-
tion index m = 1. In this case, due to the attenuation of the carri-
er, the output signal e3(t) will be amplitude modulated as in Fig. 
3.14. Then, after HF detection, we filter out the modulation sig-
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Fig. 3.13 Bessel functions. 

128 

J I I I I I I I l_ 

Time (arbitrary units) 

(b) 

Fig. 3.14 (a) Amplitude modulated output signal e3(t), and (b) sample of the detect-
ed output of the Pound discriminator [3.14]. (Copyright © IEEE. Reproduced with 
permission.) 
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nal, which contains the phase shift introduced by the resonator 
that will be extracted with the assistance of the synchronous de-
tection and used further as the feedback signal. In cases in which 
a larger modulation index is used, say m = 2.4, one must filter out 
the higher harmonics of the modulation signal (cf. Fig. 3.15 
where a block diagram of an actual Pound stabilized low noise re-
ceiver with a cryogenic sapphire oscillator is reproduced). 

3.1.3 Cryogenic Stabilized Oscillators 

Improvements of both short- and long-term stability of precision oscil-
lators could be obtained by cooling resonators to very low tempera-
tures, thus reducing acoustic losses. Generally, the cryogenic tempera-
tures are imperative in cases in which augmentation of Q by one or 
more orders is desired. However, this is the source of several difficul-
ties, such as separation of the maintaining electronics network from 
the deep cooled resonator in liquid gasses, and so on. (Recently, appli-
cation of the tunnel diode, which does not freeze, was reported for am-
plitude detection [3.15]). In this connection, Table 3.2 summarizes the 
boiling temperature of several gases. 

800 MHz CSO output 

800 MHz 
VCO 

Af 

Frequeny 
lock amp 

x13 
10,400/GHz, 

>jr .·· 5.yyy MHz 
«9 / 

dc 

5.yyy MHz 
synthesizer 

Phase 
lock amp 

Fig. 3.15 Schematic diagram of the "low-noise" receiver with a cryogenic sapphire 
oscillator [3.15]. 
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Table 3 . 2 The Boiling temperature of several gases 

Gas Boiling temperature (K) 

Carbon dioxide 192.5 
Krypton 120.1 
Air 78.6 
Nitrogen 77.1 (57 freezing temp.) 
Hydrogen 20.1 
Helium 4.1 

3.1.3.1 Quartz Crystal Oscillators 

To the author's knowledge, only a few experiments were performed 
with quartz crystal resonators cooled to cryogenic temperatures. Here, 
we illustrate the expected quality factor (inversion of acoustic losses) 
according to the measurements by Robichon et al. [3.16] (his results 
are reproduced in Fig. 3.16). Similar results about material losses, 
tg(S), were reported by Halliburton and Koehler [3.17], and the corre-
sponding characteristic is similar to the one reproduced in Fig. 3.16. 
Inspection of both figures teaches us that the expected increase of the 
quality factor, Q, of quartz crystal resonators, even when cooled to 
liquid helium temperature, provides only about one order of improve-
ment. This value is not too impressive. In such a situation, one may 
expect that the l//-noise generated by processes in the resonator will 
be comparable with the \lf electronic contribution and the random 
walk of frequency (l//2) processes. The only real advantage would be 
reduced aging. 

3.1.3.2 Oscillators with Ceramic Resonators 

Typical commercial dielectric resonators (DR) are made from ceramic 
materials with large permittivity and quality factors ranging from sev-
eral thousands to a few hundred thousand at room temperature that in-
creases only three to four times after cooling too a few kelvin [3.18]. 
The most popular are sapphire resonators (cylinders or rings), ma-
chined from a low defect A1203 monocrystals in which microwave res-
onance modes are excited with Q-factors in the range of 105 at room 
temperature. 
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Fig. 3.16 Acoustic losses of the cooled quartz resonator, (a) Linear increase in tem-
perature. (b) Logarithmic increase in temperature. 
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3.1.3.3 Cooled Sapphire Oscillators 

Cooled sapphire resonators are preferred over quartz crystal resonators 
since the cooled single-crystal sapphire resonators offer the highest 
short-term stability of any secondary frequency sources designed to 
date. Due to the high Debye temperature of 1047 K, a reasonable in-
crease of the Q-factor is observed for temperatures just < 100 K and 
another augmentation of the effective Q, by more than one order, for 
the liquid helium bath (see Fig. 3.17) (compared with cooled crystal 
and ceramic resonators). 

10-1 

10-' 

t io-7 

o-1 

IO"8 

10" 

10" 

O Present work, 9.624 GHz 
x Present work, 8.066 GHz 

Braginsky, et al 
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Fig. 3.17 Acoustic losses of the cooled sapphire resonator (adapted from [3.19]). 
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The problem is the nonexistence of the piezoelectric effect with 
the consequence that the sapphire oscillators depend on the properties 
of dielectric resonators. For cryogenic applications, TE01;c-mode res-
onator arrangements that have rather large dimensions compared to 
the effective wavelengths (cf. Fig. 18) are popular. However, the even-
tual radiation losses may reduce Q for the device. A remedy provides 
use of the whispering-gallery modes that confine the electromagnetic 
energy to the resonator body (cf. Fig. 3.18c and [3.19]). However, in 
these cases we encounter problems with identification 
of the resonant frequency because of an infinite number of TE0U 
modes. 

The temperature dependence causes another inconvenience since 
pure sapphire does not exhibit a turnover temperature [3.20]. However, 
there are always residual impurities that are responsible for an eventual 
turnover temperature peak (e.g., for the 10 K systems). An example is 
reproduced in Fig. 3.19. 

Different compensation techniques were devised at higher temper-
atures (additional doping, auxiliary dielectric tuning posts, etc.). Evi-
dently, cryogenic sapphire oscillators are suitable to provide secondary 
frequency standards in microwave ranges as required by a new genera-
tion of passive atomic frequency standards for space and other applica-
tions. In Fig. 3.20, we reproduce a cryogenic insert. 

3.1.3.4 Frequency Stability of Sapphire 
Oscillators 

Frequency stability of sapphire oscillators evaluated from the effective 
Q of the resonator may be treated from different points of view (the 
frequency domain, time domain, practical applications domain, etc.). 
If we revert to the time domain we may consider the short-term stabili-
ty. This stability is closely related to the effective Q of the resonator; 
the medium term stability, with emphasis on good isolation from the 
environment (vibration, temperature, pressure, etc.), and long or very 
long term stability characterized by aging of resonators, electronic cir-
cuits, and so on. 

The short-term stability is generally limited by flicker noise. For 
room temperature, the Qf0 may dominate (cf. 3.2, 3.5, and 3.7) and the 
expected minimum of the Allan variance would be (5.27) 
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Fig. 3.18 (a) High-g TE0U-mode arrangement, (b) High-β TE01;c-mode arrange-
ment, and (c) whispering-gallery mode arrangement (adapted from [3.18]). 

oir) = 4h^lg{2)"~^- 3.35 

(see Example 3.3). Equation (3.35) is also applicable in stabilized os-
cillator systems discussed in previous paragraphs. In Table 3.3, we 
summarized noise properties of several cryo-cooled sapphire frequen-
cy generators and in Fig. 3.21 we reproduce two Allan variance mea-
surements. 
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Fig. 3.19 Temperature turnover characteristic for a cryo-cooled sapphire resonator 
[3.21]. (Copyright © IEEE. Reproduced with permission.) 
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Fig. 3.20 An example of a cryogenic insert arrangement. 

Table 3 . 3 Properties of sapphire oscillators 

fo (GHz) <*>(#)„ T(K) Reference 

11.9 2*10" -331 
12 2 x 108 -305 
16 1.4 x 108 -290 
9/12.6 3 x 107 -306 

11.2 1.5 x 109 -334 
9 2 x 105 

■296 
278 
277 
-294 
-307 
266 

3 x 10-15 

2 x 101 4 

3 x 10"14 

3.5 x 10-14 

5 x 10-'6 

6 x lO"14 

-270 
-270 
-270 
-295 
-296 

«7° [He] 
=6° [He] 

=40° 
=50° [N] 
=7° [He] 

300° [room 
temperature] 

[3.23] 
[3.5, 3.24] 

[3.25] 
[3.26] 
[3.27] 
[3.28] 
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Fig. 3.21 Allan variance measurements of two cryo-cooled sapphire frequency gen-
erators. (a) adapted from [3.21] and (b) adapted from [3.23]. 

EXAMPLE 3.3 
Here, we will only discuss the short-term stability of the stabilized 
sapphire oscillator at room temperature. In accordance with the 
theory for the origin of the flicker noise in crystal resonators and in 
accordance with relation (3.7), we evaluate the A_, noise coeffi-
cient and the corresponding Allan variance. By assuming the car-
rier frequency f0 = 10 GHz and the resonator Q = 2 χ 105 we get 
for the Qf0 product QfB =2* 1015 and, finally, from relation (3.5) A_, 
= 10 26 and σ (τ) ~ 10-13. Actual measurement revealed nearly 
the same results (see the last line in Table 3.3). Note that similar 
quantities would be found for a 10-MHz quartz crystal oscillator 
(cf. Fig. 3.2). On the other hand, Q's of the cooled sapphire res-
onators are so large that the noise introduced by maintaining elec-
tronics dominates, but it is still lower than with the best crystal os-
cillators, due to the sophisticated noise reduction methods. Re-
cently, it was also due to using low-noise SiGe amplifiers. 

The white frequency noise constant h0 due to the resonator it-
self is 

h„* 
1 2kT 

(2QY Pn 
3.36 

where Pres is the energy stored in the resonator itself. For room 
temperature, Q ; 

(cf. Table 3.3). 
2 x 105 and PKS = 0 (dBm), we get A0 = 10" 28 
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3.1.4 Opto-electronic Oscillators 

Research on opto-electronic devices started some 20 years ago. Since 
then, substantial improvements in the level of spurious signals and of 
noise properties have been demonstrated, particularly in oscillator ap-
plications. The latter approach has the unique features of providing 
spectrally pure signals up to 80 GHz [3.30, 3.31]. 

3.1.4.1 Basic Arrangement 

The basic scheme of an opto-electronic oscillator is illustrated in Fig. 
3.22. 

In its simplest form, these oscillators may recall the well-known 
Leeson model investigated in Chapter 2. They include a CW laser, an 
electro-optic modulator, a photodetector at the end of a single-mode 
optical fiber with the necessary RF amplification, coarse RF filtering, 
and RF coupling in the feedback branch. They allow a high tunability 
and almost no limitations on the range of possible oscillation frequen-
cies, due to high mode density generated as long as the oscillating con-
dition is met, that is, for all wavelengths A satisfying 

( \Λ c Nc 
\N + - A = L A= — / „ « — 3.37 
I 2) nfo

 J° Ln 
where N is an integer, c is the speed of light, n is the effective refractive 
index of the fiber, and L is its length in meters (m). By considering the 
distributed length element R, L, and C (cf. Fig. 3.23), we can approxi-

Optical fiber 

Laser 

RF 
output 

Optical 
modulator 

1 1 

RF 
coupler 

RF 
filter < — RF 

amplifier 
4 

' ■ 

Photodetector 

Fig. 3.22 The basic scheme of an opto-electronic oscillator [3.31]. (Copyright © 
IEEE. Reproduced with permission.) 
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Fig. 3.23 Distributed length elements R, L, and C of the transmission line. 

mate the RF propagation in the optical fiber with the assistance of the 
telegraph equation (by neglecting the leakage A): 

„tfv _<5v <5v2 

dt2 dt dx2 

For a periodic signal v(t) = H?/(<ü'+:t), its solution is 

V = V+e
rx + V.e'rx 

— — + J=:ß+ja 

3.38 

3.39 

where ß is the damping constant and a is the phase constant. The res-
onating transmission line exhibits the effective quality factor Q: 

Q = 
2βλ 

3.40 

Another approach for the computation of the g-factor provides the 
propagation time rd: 

nL 
Td- 3.41 

from which, with the assistance of (3.37), the quality factor of the 
opto-electronic oscillator (OEO) is 
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Q = ̂ = * f 0 - = ^ 3.42 
2 c 

Note that the quality factor, Q, is proportional to the multiplication 
factor, N, of the effective resonant frequency. This difficulty presents 
neighboring modes at distances Af apart: 

Δ/ = — 3.43 
nL 

For illustration, we present a numerical example. 

EXAMPLE 3.4 

Find the Q of the optical fiber of length L = 2 km with the refrac-
tive index n = 1.5. From (3.41), we get for propagation delay 

T, « — ^ γ χ 2 χ 103= 10 5 (s) d 3x l0 8 

From (3.42), for/D = 10 GHz the Q factor 

ρ = πχ /„χ 10"5 = 3χ 105 

and the mode difference 

4/= 100 kHz 

3 .14 .2 Noise Properties of OEOs 

Noise in OEOs is subjected to similar analysis as in other oscillators dis-
cussed in previous sections. By assuming the validity of the relation (3.1), 
first we evaluate the integration factor with the assistance of (3.42): 

/ Y 
J o | _ 

2ß 

fo'C 
2-irfjiL \2irnL 

3 A4 

Note that it is independent of the carrier frequency but is inversely pro-
portional to the square of the length of the fiber, and one may begin in-
vestigations of the phase noise properties with discussion of the rela-
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tion (3.4). Close to the carrier, we expect either flicker frequency noise 
(FFN) with the slope of the phase noise characteristic \lp or the ran-
dom walk of frequency (RWF) with the slope of the phase noise char-
acteristic \lp or \/f5. To this end, we have summarised some data in 
Table 3.4. 

1. FFN Noise: Its sources may be either acoustic losses in the res-
onator or in the maintaining electronics. By using the heuristic 
(1.111), we would get for the flicker noise constant, am, of the OEO 
(in accordance with the discussions in Example 3.4): 

a^iQfy^lxlO-" 3.45 

However, from the data summarized in Table 3.4 one may conclude 
that the contribution of the electronics noise at such high frequen-
cies is much more important because of the combination 

(lR\-r (ΧΕ' 1 x 1 0 ' " 3.46 

Evidently, in the present state of OEOs the electronics noise con-
stant, aE, predominates (cf. 3.4) 

2. RWF Noise: The proportionality t o / 4 follows from the assumption 
that the resonator is subjected to the RW dimensions-fluctuations 
changing the resonant frequency, in most instances by fluctuations 
of the fiber longitude or of its refractive index: 

f 
Jo 2 

M Δ« i-X II 

■ + 
L n ) 

ΔΓ 3.47 

T a b l e 3 .4 Properties of OEOs 

f„ (GHz) h_2 (dB) A_, (dB) h0 (dB) Q L (m) Qf0 Reference 

10 
10 
10.57 
10.4 
10 
10 

-200 
-200 
-200 

-190 

-220 
-223 
-210 
-212 
-220 
-235 

-280 0.2 x 105 

0.3 x 105 

0.6 x 105 

0.1 x 106 

2000 

1200 
2000 
4000 
6000 

[3.30] 
[3.31] 
[3.32] 
[3.33] 
[2.34] 
[3.35] 



98 CHAPTER 3 Noise Properties of Practical Oscillators 

Authors in [3.31] state that the temperature dependence of the ef-
fective refraction index is dominant for the frequency instability. 
Some information noise coefficients provide data summarized in 
Table 3.4. 

By comparing OEO phase noise with that of the multiplied 10-
MHz quartz crystal oscillator, we see a substantial improvement at 
Fourier frequencies > 1 kHz and a practical equivalence with the 
free-running sapphire oscillator (cf. noise characteristics in Fig. 
3.24). The difficulty is the mentioned high density of the generated 
neighboring modes, of the thermal dependence of the fiber length, 
of its refractive index, and of the RF filter. 

3.1.4.3 More Loops Arrangement 

In addition to the investigated noises, one must consider the spurious sig-
nals. The problem of the large number of spurious modes [cf. (3.43)] is 
discussed in some depth by Eliyahu and Maleki [3.30,3.33,3.34]. For al-
leviating the drawback, they suggest an interferometric suppression of 

I 
=s 
2 m 2_ 
O 
to 
Q. 

30 
10 

-10 

-30 

-50 

-70 

-90 

-110 
-130 
-150 

1E-
I I I Mill 1 I I lllll[ 1 I I l l l l l | 1 I I l l l l ip I I I lllllj 1 I I Mill 

1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 

Frequency offset from the carrier [Hz] 

• Multiplied quartz 

• Stabilized sapphire oscillator 

+ Free running sapphire oscillator 

▲ JPL's OEO (2 km of fiber) 

Fig. 3.24 Phase noise of an experimental opto-electronic device is comparable with 
that of the multiplied 10-MHz quartz crystal oscillator with stabilized sapphire oscilla-
tors [3.32]. (Copyright © IEEE. Reproduced with permission.) 
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some modes with the assistance of the dual (or threefold) optical loop 
OEO reproduced in Fig. 3.25. The corresponding suppression is illustrat-
ed in Fig. 3.26 and the corresponding phase noise characteristic of the sin-
gle loop is reprinted in Fig. 3.27. Inspection of this figure reveals the pre-
dominance of the random walk coefficient aR2 at low Fourier frequencies. 

3.1.4.4 Synchronized Opto-Electronic Oscillators 

Recently, Zhou and Blasche [3.35] suggested application of the principle 
of synchronized oscillators for suppression of the spurious modes (cf. Fig. 
3.28). The slave short fiber of the OEO is synchronized with the low noise 
signal of the long loop. The problem is discussed in depth in Chapter 6, 
Section 6.10, where for the PSD of the output signal was found (6.162): 

b<t>,out\J ) "JcjUongV// 
Kl 

K* + f+S**»«Kj' K2 + f ■ . ( / > f 3.48 

the constant K is defined as 

K 
_ VsynCUo _ <A)o IP 

2QV0 2 ß \ p0 

3.49 

An example of the output phase noise PSD is shown in Fig. 3.29. In-
spection of (3.48) reveals that for small Fourier frequencies, K </ , the 
output noise is controlled by that of the long loop and vice versa. 
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Fig. 3.25 Opto-electronic oscillator with dual optical loop [© 3.34]. 
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Long fiber 

RF filter 

o | i f2M-a 14 Is |6 

(a) 
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Dual loop OEO 

^Δ -Ä*. 

(c) 

Fig. 3.26 (a) Illustration of the modes in a single loop of an OEO, (b) interferometric 
suppression, and (c) the output. 

Fig. 3.27 The SSB phase noise of a single-loop OEO measured by the heterodyne 
method [3.34]. The solid curve describes phase noise measurment in units of dBc/Hz. 
The dotted line describes highest spurious measured in units of dBc. (Copyright © 
IEEE. Reproduced with permission.) 
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Fig. 3.28 Injection-locked dual OEO with ultralow-phase noise [3.35]. (Copyright ( 
IEEE. Reproduced with permission.) 
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Fig. 3.29 Output phase noise characteristic of injection-synchronized dual optical 
loop of an OEO. The thin full line is the PSD of the OEO with the long fiber, the 
dashed line is that of the short fiber OEO, the thick dashed line has been computed 
with the assistance of (3.48), and rectangles are taken from [3.35]. 
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3.2 PRACTICAL OSCILLATORS 

First the wavelength was in meters (m), but very soon their carrier fre-
quencies were in kHz, MHz, and GHz, generated both by transmitter 
exciters and receiver local oscillators. Their reliability and precision 
was indispensable for reliable transfer of information. Shortly, the role 
was dominated by LC oscillators with the resonant circuits built from 
an inductor and a capacitor. Since the early 1930s, we encountered 
more precise quartz oscillators (which were able to demonstrate irreg-
ularities in the Earth's rotation). At the same time, we witnessed efforts 
to reduce frequency instability and phase fluctuations of the generated 
carrier frequencies both on the transmitter and receiver sites with some 
sort of frequency synthesis which, with present applications, is wide-
spread. 

3.2.1 LC Oscillators 

The basic problems of noise in oscillator design have been discussed in 
the previous chapters together with the expected noise properties (Sec-
tion 2.3). The main feature is the phase noise close to the carrier, 
which is generally inversely proportional to the square of the quality 
factor, Q, of the resonant circuit, irrespective of the oscillator type. To 
prove the validity of this feature, we plotted A_, and h0 constants for 
several earlier LC oscillators in Fig. 2.4. However, due to the progress 
of frequency synthesis, VCOs based on LC oscillators lost their impor-
tance in lower RF wave ranges, but this is not the case with microwave 
systems. 

3.2.2 Microwave LC Oscillators 

Microwave oscillators are at the heart of modern communications sys-
tems, providing clock signals for microprocessors and transmission 
channels to wireless base stations, radar, satellite links, and so on. The 
ever growing importance of telecommunications in microwave ranges 
has introduced the need for small, cheap, and low-power RF compo-
nents and even efforts for design of single-chip transceivers fitted with 
frequency synthesizers for generation of the local oscillator signals 
with corresponding noise qualities. To meet the latter conditions, we 
witness efforts for construction of the LC voltage controlled oscillators 
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Fig. 3.30 The earlier measurements of the noise constant h_x and h0 for different os-
cillators as functions of load QL [2.18]. 

(VCO) on IC chips. Listed here are several techniques [3.36-3.67] for 
the carrier frequency generation: 

1. Divide by two via a frequency divider following the (VCO) oscilla-
tor. This arrangement requires the smallest area. 

2. Two VCOs forced to run in quadrature. 
3. Application of phase shifters, particularly for operation in frequen-

cy synthesis. 
4. Other techniques [flat-coil inductors suitable for integration on 

chips (Fig. 3.31). 

A typical block diagram of the monolithic VCO is depicted in Fig. 
3.32. 

3.2.3 Noise in Microwave LC Oscillators 

Noise properties of microwave LC oscillators are the same as dis-
cussed in Section 3.1. Equations for the phase (3.1) and fractional fre-
quency noise (3.4), respectively, are valid: 
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Fig. 3.31 An example of a flat-coil inductor suitable for integration on chips [© 3.36]. 
(Copyright © IEEE. Reproduced with permission.) 

8ν(ί) = 8Φ{/) 
\foJ 

Y + h0 + hJ + h2f
2 3.50 

Interdependence between Α,-constants and phase noise constants is 
shown in Table 3.5. Note that the lowest output phase noise requires 
resonant circuits with the quality factor Q as high as possible, low res-
onator noises aR2 and aRU as well as the electronic contributions aE, 
and the low thermal noise in the maintaining amplifiers. However, 
modern microwave communications require construction of LC oscil-
lators (VCOs) in the IC form with flat coils suitable for integration on 
chips (cf. Fig. 3.31). Their properties are generally low quality factor 
Q, from 3 to 25 (exceptionally higher [3.37]), and inductances in nH. 
A basic block diagram of the microwave LC oscillators in the differen-
tial arrangement is illustrated in Fig. 3.32. All important noise sources 
are the same as encountered in other oscillators, namely, those of the 
resonant circuit. Transistors and diodes used, however, are subjected to 
the changes due to the differential disposition. 

3.2.3.1 White Noise Constant 

Estimation of the white noise constant starts again with (3.5): 

2kT irr20 

A o ~ ^ - = —™ j —196 (dB) 3.51 
4Q2

Po 4-10210~3 

which is in agreement with experimental data summarized in Table 3.6 
as well as with Example 3.5. 

EXAMPLE 3.5 
In accordance with the noise in amplifiers and mixers discussed 
in Chapter 4, we find that the white current noise is generated in 
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Table 3 . 5 Λ,-Constants as a function of the phase noise constants 

aR2/(2Q)2 (aR]+aE)/(2Q)2 2kT(l + F)/(2Q)2P0SC ajft 2kT(l + F)/(f2
0P0SC) 

the biasing circuit (cf. 4.87), in the switching transistors (cf. 
4.92), and in the LC output circuit: 

Bw ττ V w RL 

The corresponding PSD of the white phase noise is 

s*(f)- ^T7gml + 
\6kT7 iB Akt 

ττ 
- + ■ 

VLO RL 

Rl 
Vic/2 

3.52 

3.53 

By approximating in (4.37), the current ID with lB = VDEIRL ~ 2 
x (\/RL) » 2 x (l/CPRs) (A) and by putting VGS- V, « 0.2 (V), we 
obtain for the transconductance of the biasing stage 

8ml 
2h 20 8 1 . « — > > — 

RL KRL RL 

3.54 

© " 
M1 I 

J -_. 

ΐ M2 

-· ·— 

Fig. 3.32 Basic block diagram of the LC microwave oscillator in the differential 
arrangement (NMOS topology [3.36]). (Copyright © IEEE. Reproduced with permis-
sion.) 
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Table 3.6 Noise properties of several recent LC microwave VCOs 

fo 
(GHz) 

1.2 
1 
1.3 
1.57 
1.74 
1.8 
2 
2.27 
3.98 
4.9 
4.88 
5.35 
5.32 
4.5 
4.6 
9.93 

15.2 
24.2 

265 

Q 

13 
10 
4.5 

20 
4 

10 
11 
6 

13 
4 
9 
7 

10 
11.5 
12 
20 
30 
6.5 

20 

A-i 
(dB) 

-150 
-146 
-133 
-154 
-137 
-140 
-155 
-145 
-127 
-139 
-146 
-137 
-145 
-143 
-149 
-165 
-128 
-124 

142.4±10.5 
-124 

K 
(dB) 

-202 
-195 
-186 
-202 
-185 
-195 
-196 
-197 
-187 
-189 
-199 
-191 
-200 
-195 
-193 
-202 
-184 
-183 

193.4±6.5 
-188 

FOM 
(dB) 

192 
183 
175 
187 
174 
187 
180 
184 
185 
168 
185 
182 
188 
185 
181 
190 
179 
174 

182±6.3 
182 

aRl+aE 

(dB) 

-121 
-119 
-111 
-105 
-119 
-114 
-128 
-124 

-99 
-121 
-121 
-114 
-119 
-115 
-121 
-133 

-92 
-111 

-116±.9.9 
-104 

aa 

(dB) 

-179 
-175 
-173 
-176 
-173 
-159 
-175 
-181 
-169 
-183 
-180 
-175 
-180 

-166 
-168 
-148 
-160 

-171.7±9 
-156 

Reference 

[3.37] 
[3.38] 
[3.39] 
[3.40] 
[3.41] 
[3.49] 
[3.42] 
[3.43] 
[3.44] 
[3.45] 
[3.46] 
[3-47] 
[3.48] 
[3.50] 
[3.51] 
[3.52] 
[3.53] 
[3.54] 

[3.68] 

log 
(A-1/A-2) 

5.2 
4.9 
5.3 
4.8 
4.8 
5.5 
4.1 
5.2 
6.0 
5.0 
5.3 
5.4 
5.5 
5.2 
5.4 
3.7 
5.6 
5.9 

4.8±0.12 
6.4 

Consequently, we realize that gm3 is the largest contributor to the 
white noise coefficient h0 in (3.52). By assuming further that in 
LC microwave oscillators with Q for 5-10, the series resistance is 
close to Rs ~ 1 [Ω] (RL = 25-100 il) and we get for the noise co-
efficient h0 

h0 « ΜΤγ—-^V-=- ~ AkTT5Rs-2 « 10"192 3.55 
RL4Q2 Vic 

3.2.3.2 Flicker Noise Constant 

Reverting to the relations (3.4) and (3.5), we get for the flicker noise 
constant h_\ 

, _ aR, + aE _(Qfo) +CIE ~ ,£ 
h-\ 5 5— 3.JO 

(202 (202 

In Example 3.6, we estimate its size: 
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EXAMPLE 3.6 
Let us choose/0 = 5 GHz, Q « 10, a£ « 10"12 and apply (1.111), 
then 

_ , I O ^ - ' + I O - " _ I Q - " " ,33 , S 7 

*- Ϊ55 l u ^ " 1 0 3 · 5 7 

In the past 10 years, noise properties of differential microwave LC os-
cillators were investigated by many authors from various points of 
view. The published experimental data are fairly consistent and prove 
the randomly chosen data in Table 3.6 for the range from 1 to 25 GHz. 
In addition, analysis reveals some important facts. From the available 
data, we have computed the noise coefficients A_, with the mean val-
ue, 

A.,«-142 ±10 (dB) 3.58 

which is about one order smaller compared with the estimation in Ex-
ample 3.6. This discrepancy may be explained with the rather crude es-
timation of (3.57), with low-frequency feedback (introduced by the 
current source in the differential arrangement in Fig. 3.32, which sup-
presses the flicker noise component generated in the LC resonator it-
self [3.37]), and other not yet specified processes. Note that the mean 
intersection frequency,/. =» h_xlh_2, recalled in the ninth column in the 
Table 3.6 is ~ 100 kHz . 

3.2.3.3 Random Walk Noise Constant 

We will estimate the value of the random walk noise constant with the 
assistance of (3.5) and the discussion in Section 2.1.3: 

1 in-20·3 

'- 1 0 -1Q-19±' 3.59 
(2xl0)210"4±1 

3.2.3.4 Expected Output Phase Noise of the 
Microwave LC Oscillators 

By summarizing all of the above results, we may expect the following 
relation for the output phase noise for differential LC microwave oscil-
lators: 
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s,(/): L SyifV J o 

yf j 
Y + h0 + hJ + h2f

2 3.60 

Next, we examine the phase noise parameters, 

( f \2<~ 
J o h~\ , , , , r , , j-2 

f 
+ h0 + hj + h2f 3.61 

with the following numerical mean values for VCO in the gigahertz 
ranges/, ~ 3 GHz: 

— i r>'7 sXO = io 
1Q-1 9 ± 1 , 1Q- ' 4 ± 1 , 1Q-1 9 ± 1 

f f f 
1Q-2±1 , 103 ± ' , 10 2±1

 + 1 0 ' 1 2 " 

f f f f 

in 12±1 

+ 10 

/ 

-15±1 

3.62 

A typical noise characteristic of LC microwave oscillators close to the 
carrier is shown in Figure 3.33. 

Fig. 3.33 A typical noise characteristic of LC microwave oscillators. [3.40] (Copy-
right © IEEE. Reproduced with permission.) 
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3.2.4 Varactor Tuning of Microwave LC Oscillators 

By assuming the LC resonant circuit with the capacity fully or at least 
partially formed by a varactor, we get for the change of the oscillator 
frequency due to the varactor tuning voltage 

Αω- ^ . _ L . J C « ^ · — · — Jv 
2 Co 2 Co & 

With the assistance of the relation for the varactor capacity 

( Φ y» 
Cv = C(v=0) -

\ν + Φ) 

and its derivation with respect to the voltage 
φ V' 

dv = C (v=0) ν + Φ 
(v + cpy'i-yjdv 

we get for the frequency change 

3.63 

3.64 

3.65 

Δω~-^(ν + Φ)Χ-Ύ^αν~ΚοΔν 3.66 

where we have introduced the VCO gain due to the vararctor voltage, 
that is, K„ (Hz/V). Evaluation of (3.66) reveals for an approximate val-
ue 0fKo [cf. 3.55] 

Ko (Oo 
1 

Vnn/2 3 
1 4 ^ - « 2 / 0 [VDD = 2(V)] 3.67 

Note that, K0 = f0. Spurious voltages that may cause modulation of 
varactors in LC oscillating circuits are fluctuations of the DC voltage, 
parasitic couplings generated on the chip itself, vibrations, and so on. 
In addition, we must consider the influence of the noise current gener-
ated in the biasing stage (cf. Fig. 3.32) and, eventually, the noise volt-
ages generated in the resonant circuit itself, which are of the l/fand 
white noise type. The corresponding fractional frequency is 

< 
'Δω^ 

\0)o J 
>' ν + Φ 

<en> 3.68 
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By reverting to the results in Section 3.2.3, we expect the PSD of the 
additive fractional frequency to be 

> y.ada ( / ) « ■ 

1 
+ h0 3.69 

[see (3.55 and 3.57)]. A further reduction of the noise generated in the 
varactor may be achieved by combination with of the circuit capacity 
(see Fig. 3.34). 

3.2.5 Figure of Merit of Microwave Oscillators 

For evaluation of the quality of the microwave VCOs, the fractional fre-
quency noise at the Fourier frequency, Af= 600 kHz, the overall input 
power is taken into account. Its definition, used by many authors, is 

FOM = 10xlog 
4Λ 

10" 
2 ( 4 / > E 

3.70 

and called figure of merit (FOM) with PSD (AJ) in the side band, Af= 
600 kHz. The PDc parameter is the DC input power in W. From (3.62), 
we conclude that !£(Af) generally would be in the white frequency 
noise range. In that case, we can simplify the above relation, with the 
assistance of (3.4), into 

Fig. 3.34 A general arrangement of the LC resonant circuit with varactor tuning. 
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FOM = 10 x log 2xiQ"3 

hoPoc 
3.71 

Finally, with the above relation and values introduced in Example 3.5, 
we arrive at a numerical estimate (FDD =2 V, IB = 15 mA) 

FOM = 192 + 3-101og((/DD/5) = 182 3.72 

Referring to Table 3.6, where we compare several recently published re-
sults, we find for the mean value FOM = 182. On the other hand, recent 
evaluation presented by Linten et al. [3.53] provides a bit larger value, 
namely, FOM = 186.7 or even FOM = 190 [3.66, 3.67]. 

3.3 PRACTICAL RC OSCILLATORS 

Another type of integrated microwave generators provide simple RC 
oscillators either in the relaxation or the time delay form (ring oscilla-
tors). The advantage is a simple and straightforward integration with a 
much smaller area required on the IC chip compared to LC oscillators. 
However, this leads to increased phase noise, due to the nonexistence 
of the storing element (circuit Q) [cf. 3.56], which in some instances 
causes limitations of applications in various modern microwave com-
munications systems. 

3.3.1 Relaxation Oscillators 

Earlier RC oscillators were based on the relaxation circuits mostly on 
the emitter-coupled multivibrator with a floating timing capacitor. The 
major drawback is a poor frequency stability (~ 1%), a rather low fre-
quency range from 1 to 100 kHz, and, occasionally, to several mega-
hertz (e.g. [3.68]), and rather large output noise. 

A schematic design is reproduced in Fig. 3.35(a). The switching 
process is due to charging and discharging the capacity C with the as-
sistance of the resistor R. Consequently, the output wave form has the 
shape of two e-functions with the period T0 = 2r = RC [Fig. 3.35(6)]. 

To estimate the output phase noise, we must first evaluate the time 
jitter due to uncertainties of individual voltage crossings. Similarly, as 
with the noise in mixers (4.81) and dividers, we write 



112 CHAPTER 3 Noise Properties of Practical Oscillators 

24)" Ί 

1Ü 

8 

6 

"3" 
4 

2 

ü< 

I 

-/ 

i 200 
r 

I 

1 

400 

τ 

1 

600 

1 1 1 1 1 

\ / \ 

\ / \ 

\ / \ " 

800 1000 1200 1400 1600 18 

τ 

(c) 

Fig. 3.35 Relaxation oscillator circuit: (a) a simplified block diagram of a Schmitt 
trigger in an RC feedback loop, (b) the corresponding schematic design, and (c) the 
output wave form in form of two e-functions with the period T0 = 2r. 
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ATi = 
vit,)-v(iT) 

v(iT) 
3.73 

Here the numerator presents the spurious noise voltage at the instants of 
the level crossings, whereas the denominator is the corresponding volt-
age slope at the moments of mutual intersection. By taking into account 
that the reference level is in the middle of the output wave, we may ap-
proximate, without any appreciable error, the slope of the tangent as 

dv(t) 
° T 

3.74 
dt T0/2 

and the corresponding time uncertainty due to the noise voltage en as 

2V K 
3.75 

where τ is the time constant, τ = RC, in the relaxation system. The ef-
fective phase noise is easily computed as 

< 
(ΔΤΧ ( en

 Λ 

> = < " \To) , 2V , 
V PP J 

>=Siy{f)Bw = SyU)Bw 3.76 

However, the output phase noise of an oscillator is subjected to inte-
gration (cf. 3.1 and 3.4). Consequently, we get 

O 0.OSC ύ φ,ν 3.77 

where the noise voltage is approximately 

AkTR 2kT 
ΞΦ.Λ/)~ 

(2vppr Po 
3.78 

EXAMPLE 3.7 
By putting Vpp = 1 (V) and VppIR = 0.025 (mA) we get for the 
PSD of the white fractional frequency noise 
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By considering the intersection frequency to be ~fc χ 105 Hz, as 
in Example 3.6, we may estimate the value of the l//factional fre-
quency to be 

S , R C ( / > 
1 0 , 0 _ A , 
/ / 

3.80 

and, finally, we arrive at the expected output phase noise of the 
regenerative oscillator 

f f \ 
S£f) = f 

f 
SjLf)~fo 

10 ^10-.o 

f r 
\$\ 

+ S. 3.81 

This crude noise evaluation is in a good agreement with much more 
profound calculations performed, for example, by Abidi and Meyer 
[3.56] or by Nizhnik et al. [3.57]. Note that Qeff = 1. 

3.3.2 Ring Oscillators 

Another type of RC oscillators, particularly in microwave ranges, 
brings about the ring oscillator system built up by a chain of invertors. 
The corresponding block diagram is depicted in Fig. 3.36. In con-
tradistinction to the above discussed relaxation oscillators, the maxi-
mum carrier frequency can be much higher and tuning ranges can be 
larger. In addition, these circuits are used to build up high-speed 
blocks in digital and optical communications systems, due to their 
simplicity, compact size, and ease of integration, even in tens of giga-
hertz wave ranges. 

A ring oscillator is formed by a loop of an odd number, N, of in-
verting amplifiers with approximately the same gains A(Jai) (see Fig. 
3.37). This feedback system will oscillate whenever the overall gain 
G(s) is equal to - 1 . This condition expressed in complex form is 

\G(M\e» = -l 3.82 

that is, for a chain of TV stages, 

|G(>>) 1 = 1 ^ 0 ) 1 " and Νψ=(2Ιο + 1)π (k = ±\,±2,...) 3.83 

From (3.83) one concludes that generally N should be odd. The oscil-
lating frequency is given by charging and discharging times: 
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-0— 

Fig. 3.36 Block diagram of the ring oscillator, (a) The corresponding chain of in-
verters and (b) the inverting amplifier [3.56]. (Copyright © IEEE. Reproduced with 
permission.) 

/„ = 
1 1 

jV(rCh + rdis,ch) 2NT 
3.84 

where τ is an approximate time delay generated by charging and dis-
charging the steering capacity (in Fig. 3.36) formed by pnp field-effect 
transistors (FET) and N is the corresponding number of invertors. 

Fig. 3.37. 
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3.3.2.1 Noise in Ring Oscillators 

To evaluate the expected time jitter of the 2N voltage crossings (with 
application of the central limit theorem) we start with (3.76): 

<ΔΤ2>~2Ν(-^-)Τ2
0 3.85 

The PSD of the corresponding fractional frequency noise is 

UT^2 

\To 

> ■ ■ 

1 

2Ν\νί 
3.86 

which is increased by ifjj)2 in the case in which the system oscillates: 

*(f)< L 1 2 

e„ 
( f ^ AkTR 

f f V 
J o 

f 
2kT 

2N Vl 

J o 

Λ 

L 
f 

kT 

2NVi 
1' f Λ 

J o NP-„ f 

3.87 

By assuming the smallest number of invertors in the chain, that is, N = 
3, we get for the power of individual inverters, Pimertor ~ 0.1 mW, 

ho' 
2kT kT 10 

2NP NP 1 n" 
inverter inverter ixJ 

10 3.88 

which is in good agreement with practical values summarized in the 
third column in Table 3.7. The flicker frequency noise will be intro-
duced by the electronics noise current and its value may be expected to 
be the same as in (3.80). In Table 3.7, second column, only a few h_x 

values are mentioned since time jitter below ~ 10 kHz is generally not 
referred to. 

3.3.2.2 Figure of Merit of Ring Oscillators 

Computation of the FOM follows from (3.70) and (3.71): 

FOM = 10xlog ' 2 χ10 - 3 Λ 

hA 
= 10xlog 

DC J 

2χ10-3χΛ^η , 
kTx 

3.89 
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By introducing Pinvertor = 0.1 (mW) and PDC = 2*0.02 (W) we have for 
7V=3 

FOM «10 x log "2X3X10"3 '4" 
v ΑτΓχΟ.04 , 

156 (dB) 3.90 

which is again in good agreement with practical values summarized in 
Table 3.7, fifth column, but compared to LC microwave LC oscilla-
tors it is ~ 25 dB smaller. There are two reasons for the lower value: 
the absence of the resonator Q and nearly 2N-times larger input pow-
er. 

EXAMPLE 3.8 
Comparison of FOM of the LC and ring microwave oscillators: 

1. Reduction due to the absence of Q 20 log (2 χ Q) 
2. Increase of the input power 10 log (2N) 

For Q = 5 and N = 3, the difference is -20 log (2 χ 5) + 10 log (6) 
= 28 dB 

For an LC oscillator with Q ~ 5 we get from (3.70) FOMLC = 
181 dB 

The actual difference due to (3.88) is 181 - 156 = 25 dB 

Table 3.7 Properties of several ring oscillators 

/„(GHz) 

0.106/9 
0.261/5 
0.232 

0.838/4 
0.3908/4 
0.475/3 

2 
5.8/3 
1.81/9 
3.87/9 
1.33/3 
11.5/2 
32/1 

A-i 

-111 
-128 
-116 
-100 

-112 

-106 

-112±9 

K 
-158 
-175 
-166 
-160 
-160 
-167.5 
-170 
-175 
-175 
-160 
-152 
-169 
-175 

-168±8.5 

h2 

Fig. 13 

Fig. 17c 

Fig. 11 

FOM 

140 
154 

150 
156 

K„ (MHz/V) 

220 
615 
280 
290 

Sun 05 

16% 

References 

[3.58] 
[3.58] 
[3.59] 
[3.60] 
[3.61] 
[3.62] 
[3.63] 
[3.64] 
[3.64] 
[3.60] 
[3.60] 
[3.65] 
[3.66] 



118 CHAPTER 3 Noise Properties of Practical Oscillators 

A similar calculation was recently provided by Abidi (3.56) who 
found the ring oscillator is not suitable for use in integrated de-
vices. 
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Practically all physical systems are generators of fluctuations around 
the desired output signal, which are mostly designated as noise. The 
problem was discussed in many papers and books. Here we mention 
one, very comprehensive paper, prepared years ago by Gupta [4.1]. 

4.1 RESISTORS 

The thermal noise generated in resistors is white noise and was dis-
cussed in Section 1.1.1. However, in many instances we also en-
counter, at low Fourier frequencies, the flicker noise component (cf. 
Section 1.5.2.2). 

4.1.1 Resistors: 1/f Noise 

In Chapter l, we started with the finding by Johnson [4.2] that at very 
low Fourier frequencies the shot noise in vacuum tubes did not follow 
the white noise law any more. He introduced for this additive noise the 
name flicker noise, and the name is still used. Subsequent observations 
proved its validity for a much larger set of physical phenomena on one 
hand and its prevalent appearance at very low Fourier frequencies on 
the other. Some years later, Bernamont [4.3] suggested a law for its 
PSD: 
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Snif)~Ja 4.1. 

where the magnitude of a was in the vicinity of one. 
Reverting to resistors, Van der Ziel [4.4] states that practically all 

resistors, including wire wound, semiconductor films, thin metal 
films, and others, show 1//"noise, particularly at very high current den-
sities. This finding is in agreement with our conclusions in Section 
1.5.2.2, where we arrived at the hypothesis that \lf fluctuations are 
caused by periodic losses of energy (cf. 1.108 and Fig. 1.14). 

4.2 INDUCTANCES 

Let us consider an inductance in series with a resistance R at a tempera-
ture T. Estimate a total mean-square noise current <f> in the inductor. 
The classical statistical mechanics state that a system that is in equilib-
rium (with constant temperature) contains an average energy [e.g., 4.5] 

= X-kT 
2 

(Ws) 4.2 

Consequently, the energy stored in the inductor is (Fig. 4.1a) 

-L<i2> = -kT (Ws) 
2 2 

4.3 

L 

(a) 

V2 = 
kT 

(b) 

Fig. 4.1 The total Johnson noise current (voltage) squared in an inductance in series 
with a resistance (a) and across a capacitance in shunt with a conductance (b) [4.5]. 
(Copyright © IEEE. Reproduced with permission.) 
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The corresponding noise current is 

2 k T 

<I2> = — 4.4 

This must be true for all values of the series resistance R. Since the noise 
current is composed of various frequency components, more low-fre-
quency current must flow in instances where R is small, and vice versa, 
since the total mean-square current should be the same in both cases. 

4.2.1 Inductances: White Noise 

By considering the current noise 

i„ = — - — 4.5 
R + jwL 

and by introducing the PSD of the noise power, we get for lower fre-
quencies at room temperature, T= 300 (K), 

Sn(f) = ̂ f ^ ~ W {f«*^-~ 6-34X10'3] 4.6 
e 1 h 

After integration over the range from zero tofB<fH, we arrive at the 
well-known equation for the square of the noise voltage: 

f, 

<e>=\ Sa{f)Rdf = AkTfB R 4.7 
0 

and for the noise current 

2 4kTR-fB 
<i>~ 2 , Λ 4.8 

Note that h is the Planck constant, h = 6.625 χ 10"35 (Js), and k is the 
Boltzmann constant, k = 1.380 χ 10~23 (J/K). 

4.2.2 Inductance: 1/f Noise 

To the author's knowledge, the publications about this topic at radio fre-
quency (RF) are scarce. Here, we refer to one of them [4.6]. From this 
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work, we infer that the phase modulation (PM) noise in the air core coils 
is nearly indistinguishable from the background noise. On the other 
hand, inductances with ferrite and other windings exhibit the additional 
l/fnoise. They may be explained by losses in the bulk of the material, in 
accordance with discussions in (1.108) (cf. Fig. 4.2). 

4.3 CAPACITANCE 

The capacitors' noise property is closely related to their Q factor, 
which is frequency dependent and dominated at low frequencies by 
losses due to the surface leakage through parallel resistance Rp. But at 
high frequencies, the capacitor Q is lowered due to the losses in the di-
electric body itself, which is represented by the series resistance Rs 

(Fig. 4.3a). Consequently, 

Q = 
Im(Y) (oCRp (oCRp 

Re(Y) l + (o2C2R2s + tü2C2RsRp l + co2C2RsRP 

4.9 
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Fig. 4.2 Flicker phase noise at different inductances [4.6]. (Copyright © IEEE. Re-
produced with permission.) 
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Rp c : 

(a) 1-105 

'(Hz) 

(b) 

Fig. 4.3 (a) Losses in the capacitor: Rp represents losses due to the surface leakage 
and resistance Rs are losses in the dielectric body itself, (b) The corresponding Q-f&c-
tor (dashed) and the Qf0 relation (solid line). 

As an example, we reproduce the g-factor of a varactor (Fig. 4.3b). 
Note that the peak of Q is 

*-■ max 

1 1 
^L· y RpRs 

4.10 

4.3.1 Capacitance: White Noise 

The situation is similar to that in Section 4.2.1. Again, the classical sta-
tistical mechanics is satisfied [cf. (4.2)], and the noise energy stored in 
the capacitor is (cf. Fig. 4.16) 

-C<V2> = -kT (Ws) 
2 2 

4.11 

The corresponding noise voltage is 

2 kT 
< y > = — 

C 
4.12 
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However, for the noise current at lower frequencies we arrive at (4.13) 
with the assistance of (4.6) and circuit equations 

<i>~ 2 ' 2 4.13 

The noise voltage is computed in Example 4.1: 

EXAMPLE 4.1 
Evaluate the variance of the noise voltage for a capacitive load. 
With the assistance of Fig. 4 Ab and (4.13), we have 

+(<wcr(<ucy 
4 1 4 

\ 2ftTR r 1 
l + (wRC)2 7rr J 1 + x' 4kT\———zdf = idx 

where x = a>RC = 2·7ΓΓΓ. After integration, we get for the noise 
voltage a constant value, that is, 

, 2kTR „„ r , kTR kT n„ . ,, 
<e2

c„> = tan-'(2ir/Ar)<- = — T = RC 4.15 
7ΓΓ T L 

4.3.2 Capacitance: 1/f Noise 

Compared with inductances, the situation was much more often 
analysed, particularly due to the investigations of the \lf noise in 
quartz crystal resonators and resonators with other dielectrics where 
the intrinsic losses with delays forming a memory system are believed 
to be at the origin of the l//"noise (cf. Chapter 2). Experimental obser-
vations revealed that quality factor multiplied by the resonant frequen-
cy is a material constant: 

Qf0 = const 4.16 

from which the PSD of the 1//noise is [cf. (1.111)] 

SJJ).M£.m 
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The Qf0 constants for several dielectric materials are summarized in 
Table 4.1. In addition, 1//"noise characteristics of capacitors with dif-
ferent dielectrics are reproduced in Fig. 4.4. 

EXAMPLE 4.2 
We present a simple evaluation of the Qf0 product using a rather 
heuristic approach. For carrier frequencies/, >f0Qm3X, the quality 
factor is from (4.9) approximately 

ρ = —!— 4.18 
CüoCRs 

In this case, the effective capacity and resistance of the dielectric 
resonator can be approximated as follows: 

C = -ss„ y = -L = - i . 4.19 
d Rs dp 

where A is the approximate area of the electrodes, d is the mutual 
distance, ε is the dielectric constant, and p is the resistivity. For 
Qf0 or the inverse loss factor, that is, tg 8, we get (4.20) after in-
troducing the above relations into (4.17) and multiplying the re-
sult with the carrier frequency 

Qf0 = ! = const 4.20 
2π·εεα-ρ 

4.4 SEMICONDUCTORS 

When discussing frequency stability problems, we must consider prop-
erties of semiconductor diodes and transistors that we encounter in 
amplifiers, oscillators, frequency mixers, and synthesizers, in output 

Table 4.1 The Qf0 constants for several dielectric materials 
Material 

εα 
Quartz 
Sapphire 
Sapphire 
Varactors 

Qfo 

1013 

1015 

1019 

1012 

Temperature 

Room temp 
10K 

Dielectric Constant 

8.859*10 18 [As(Vm)1] 
4.4 
90 
90 

Reference 

[3.17] 
[3.28] 
[3.28] 
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Fig. 4.4 Flicker phase noise in capacitors with different dielectric material ([4.6]). 
(Copyright © IEEE. Reproduced with permission.) 

and distributing circuits, and so on. There are devices with either n- or 
/»-type conducting channels: bipolar junction transistors (BJT), hetero-
junction bipolar transistors (HBT), field-effect transistors with junc-
tion gates (JFET), metal oxide semiconductors (MOSFET), Schottky 
barrier gates (MESFET), complementary metal oxide semiconductors 
(CMOS), modulation-doped (MODFET or HMT) based on GaAs 
junction, and others [4.4, 4.7]. 

Semiconductor devices operate as amplifiers or rectifiers with an 
effective channel between a source and a drain that presents a modulat-
ed resistor that is the origin of the thermal noise. At the same time, the 
current flow is formed by carriers crossing barriers, independently and 
at random. Consequently, the shot noise is generated. In addition, the 
ever-present l/for flicker noise is encountered. 

4.4.1 Shot Noise in Diodes 

As discussed in Chapter 1, Section 1.4.2.3, the PSD of the shot noise is 
white. Here, we follow Van der Ziel's reasoning [4.4]. Let us consider 
an n-type Schottky barrier diode with the following characteristics be-
tween the current / and the voltage V: 

—— Silver mica 
- ■ - Mylar 
- * - NPO cog 
" » - Monolithi ceramic 
■·■©■■· Ceramic disc 
- e - Monolithi ceramic 
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I = Io[exy-\] A = -2 -«40(v - 1 ) 4.21 
kT 

where λ is a constant relaying i-v semiconductor exponential law char-
acteristics. Note that the current / is composed of a nearly constant 
backward current I0 and a much larger forward component. The same 
characteristic holds for the n + -p junctions as well. Since the diode 
current consists of carriers crossing barriers at random, we have for the 
PSD of the shot noise current 

S,(f) = 2qlae
w + Iql „ = 2q{I + 2/„) 4.22 

With the assistance of the low-frequency conductance 

So dV ° kT 

we can also express the PSD of the shot noise current as 

SI(f) = 2kTga^^ [I>Io] 4.24 
o 

At zero bias (V= 0,1=0), the noise is approximately equal to the ther-
mal noise of the conductance itself having the PSD 

S,(/) = 4*7ife0 (go0 = Ioq/kT) 4.25 

By comparing the latest result with (4.24), we find that the high-fre-
quency shot noise is equal to one-half of the above thermal noise for / 
> I0, that is, 

S!(f) = 2kTgo0 4.26 

After introducing the internal resistance of the device (R0 = l/g0) the 
open-circuit noise voltage PSD is 
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W ) = 7 ^ ~ 2 * T R o ^ - ^ ~ 2 * T R o [ / W J 4.27 

4.4.2 Shot Noise in Bipolartransistors 

We will continue our investigations with the assistance of [4.4], the 
Ebbers-Moll transistor model [4.7, 4.8] for emitter and collector cur-
rents: 

IE = lES[e^-l]-aRIcs[e'Avb'-\] 
4 28 

Ic = arl Es[eAvt- -1] - aRI cs[e^' -1] 

where vbv is the emitter base voltage, aF and aR are the forward and re-
verse short-circuit current gains, and IES and 7CS are emitter and collec-
tor saturation currents mutually related through the reciprocity relation 

CKFI ES = CXRICS apOtR^l 4.29 

All the currents in (4.28) show the full shot noise in accordance with 
(4.22), that is, 

5,, = V £
+ 2 9 / E S and S!c = 2qIc + aF2qIES 4.30 

Note that currents 7BE and IBC are very small and can be neglected un-
less one is operating devices at extremely low currents [cf. (4.28)]. 
However, there is difficulty with the mutual correlation between the 
above noises (cf. Fig. 4.5a). The arrangement in Fig. 4.5b removes this 
drawback by introducing the voltage noise with the PSD, 

Se = i2,Rl = 2kTReQo
lB + 2lBE 4.31 
IB + IBE 

originating in the input conductance at the emitter: 

geo = — = 4 ^ = (9 / « l / E s e A - = (q / kT)(iE + /Es) 4.32 
Rto «Vbe 

The situation with the common emitter connection is displayed in Fig. 
4.6a; for low frequencies, the transconductance at the collector is given by 
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Fig. 4.5 Shot noise sources in transistors, (a) Common base configuration with two 
strongly correlated current noise generators, (b) common base configuration with two 
nearly uncorrelated current noise generators, (c) equivalent circuit ([4.4,4.9]). 

S„ — = ate / kT)lΕ5β
λ^ + aR(q / kT)l<&>-*"* '■ 

dvbc 4.33 

aR{q/kT)lc^{q/kT)U 

where gmo is the transconductance and Fbe is the base-emitter voltage. 
Nevertheless, here we must also consider the shot noise of the base 
current 

S,. = 2qIE(l-aF)~2qIB 4.34 
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The difficulty might be correlation between the base and collector 
noises 

SCOT = < ' " " ' /'en > = < (/'en - /'en) " /'en > = 2kT(Yce - gm0) 4.35 

However, it is generally so small that without any appreciable error we 
can discard it and use, for high frequencies, the equivalent circuit pre-
sented in Fig. 4.6b [4.4]. Another phenomenon one must take into con-
sideration, namely, the lifetime of the carriers, is with the consequence 
of a larger transconductance, which for a long junction is approximate-
iy 

g' = g0Re(l + JcoT)ll2~g[ \ + -(ωτ)2 

. 2 . 
4.36 
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Fig. 4.6 (a) Equivalent circuit of the common emitter configuration, (b) For low-car-
rier frequencies, (c) For high-carrier frequencies [4.4]. 
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4.4.3 White Noise in Field-Effect Transistors 

In contradistinction to the above discussed amplifiers, all field-effect 
transistor (FET) systems exhibit low input admittance, highly linear 
(nearly ideal) tranconductance, and lately, microwave applications 
[e.g., 4.10, 4.11]. The drain current of the MOSFET is given by 

I° = K^S~VT)\~K(VCS-VT)2 K=l--f^ 4.37 
1 + ̂ Fos-Fr ) 2 L 

where μ is the mobility, W is the channel width, Cox is the capacitance 
per unit area, L is the channel length, and Θ is the normal field degen-
eration factor. Further, VD is the drain voltage, VG is the gate voltage, 
and VT is the turn-on or threshold voltage [4.4,4.7]. The differentiation 
reveals the transconductance gm: 

_ ^ ( Κ Ο 5 - Κ Γ ) [ 2 + 0 ( Γ Ο 5 - Γ Γ ) ] ^ 
Sm~ K 7 ^ 

[I + KVGS-VT)] 4 3 8 

2K(vGS-yT)= 2I° ( f o r ^ l ) 
KGS VT 

The drain conductance for zero drain bias, gdo, is given by 

gd0 : — ( V C - V T ) gm :—VD 4.39 

The corresponding thermal noise is expressed as 

<?,(/) = 4«>satgdo 4.40 

where ysat = 2/3 for a fully closed channel, y = 1/2 for a fully open 
channel, and y = 1 is for VD = 0 [more detail is found in 4.4]. 

4.4.4 The Flicker (1/r) Noise in Semiconductors 

Today, the origin of low-frequency 1//" noise in bipolar transistors is 
still not fully understood. There are several theories about its origin: 
the recombination-generation process, fluctuation of the diffusion 
constant [4.4, 4.7, 4.12], temperature dependence [4.13], bulk material 
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losses [4.14], and so on. Despite these difficulties, many attempts were 
made to find empirical models, particularly for the simulation comput-
er programs (SPICE) and so on. In this case, the low-frequency current 
noise PSD is evaluated as a function of the base current, Ib, 

,1 
AF 
b 

S„b(f)^2qIb + KF^- 4.41 

where the first term on the right-hand side (rhs) is the shot noise due to 
the base current, Ib, and KF and AF bring up empirical constants. The 
difficulty with the above relation is the value of the exponent AF in the 
second rhs term. Some authors suggest AF = 1 and others AF = 2 [e.g., 
4.15, 4.16]. The latter estimation is supported by the physical dimen-
sion of the left-hand side (lhs) (A2) and by the corresponding phase 
noise. 

The flicker noise model of the MOSFET is similar. In accordance 
with the Berkeley User's Manual [4.9], 

.AF 

S*(f)= '" . , ' 4.42 
KF -7a5 

■Lin · / 

where KF is again the flicker noise coefficient, AF is the flicker noise 
exponent (AF = 1), 7ds is the saturation current, and Leff is the effective 
channel length. Note that low-frequency noise increases with shrink-
ing of the active area [4.17, 4.18]. 

Another model, particularly in a system working in higher RF and 
MW ranges (carrier frequencies/, >X,gmax), may start with the gener-
al 1//"noise (1.109) when the quality factor is expressed with the assis-
tance of (4.20). Then 

[e = 9; p = 2xl0~3±'(üm)] 

Finally, a general approximation suggested for the overall phase noise 
PSD, has been put forth in [4.19]: 

s^f) = sdß=h.(l + KFi^-^(^f 
il 2qf 

\ 

f . 
4.44 



4.5 AMPLIFIERS 137 

where X is the intersection frequency between flicker and white noise 
characteristics. It may be as low as 10 Hz, but more often it is found in 
the low kilohertz ranges. With the assistance of (4.43) and thermal 
noise we get approximately (cf. Table 4.2) 

/ > 1 0 - ' 2 ± 1 - ^ ~ 1 0 8 > o ( / f~10 5for />0~1(T3) 4.45 

4.5 AMPLIFIERS 

By discussing frequency stability problems, we encounter amplifiers 
in oscillators, frequency synthesizers, output circuits, distributing nets, 
measurement devices, and others. The appreciated features are voltage 
or power gain, low noise figure, and stability, particularly of feedback 
systems. 

Silicium (Si) bipolar junction transistors are suitable for wireless 
RF applications, whereas GaAs HBTs are valued for their superior 
flicker noise properties, short base transit time, and so on [4.19]. 

The JFETs are praised for their high input and out impedances, 
good linearity, low noise, and high cut-off frequencies fT, making it 
possible to work in microwave ranges. Nowadays, field-effect transis-
tors, particularly CMOS systems, are predominant in IC applications, 
in mobile communications, in synchronized data transmissions, and so 
on. 

4.5.1 Linear Two Ports Representation 

In the last 50 years, many papers and books were written about design 
and applications of transistor amplifiers. Here, we mention solutions 
based on the linear two-port models (Fig. 4.7). We start with the y pa-
rameters preferred in RF systems (Fig. 4.7a): 

u = y»Vl + y"V> 4.46 
i2 = y2yx + y22V2 

where yu represent the short-circuit input admittance (V2 = 0), yn the 
short-circuit reversed transfer admittance (y2i = gm + j(üCin), y2\ the 
transconductance, and j>22> m e short-circuit output admittance. For mi-
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PORT 1 Vi TWO-PORT NETWORK Vz PORT 2 

TWO-PORT 
NETWORK 

a2 ·*-

Fig. 4.7 Two-port models. Top: y parameters; bottom: s parameters (adapted from 
[4.20]). 

crowave frequencies > 1 GHz, the s parameters, that is, the generalized 
scattering parameters based on the wave functions, are predominantly 
used (Fig. 7Ab). 

The wave functions, the independent variables a, (/ = 1,2), and de-
pendent variables bt (i = 1,2) are defined [4.20] as 

_V, + I,Zo , _Vi-I,Zo 

2 Λ / Ζ 0 Uz» 
4.47 

and equations describing the two-port network are 

b\~ s\\d\ + snai 

bl ~ S21Ö1 + S22Ü2 
4.48 

where αλ and a2 are incident voltage waves and b\ and b2 are reflected 
voltage waves. The s-factors (smn) are defined as 

= C 'f'mj, = m I = Γ Φπ,π = " I 
Sm.n tJ m.nß 'am=o Sm,m O m,m£ U„=o 

a„ "' am 

4.49 

where sx x and s22 are input and output reflection factors and su and s2\ 
are reverse and forward transfer factors. In the ideal case, where no re-
flection and reverse transfer takes place, then 
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ί 2 1 _ · 4.50 

4.5.2 Feedback in Amplifiers 

In amplifiers, we encounter feedback connections, wanted or unwant-
ed, between input and output ports. The positive outcomes are the in-
creased linearity or bandwidth. On the other hand, we may encounter 
desired or undesired oscillations, modified transconductance, and oth-
er factors. 

EXAMPLE 4.3 
As an example, we investigate the effective transconductance of 
the bipolar transistor amplifier shown in Fig. 4.8. After introduc-
tion into (4.28), we have 

iAt)~Ice^'U) = lAvA'yiA,)\z'+ 

Differentiation reveals the transconductance 

R,+rb> 

4.51 

dic(0 ΙΛ 
ό m ί 

1 + /.Λ Ze + 
Rs + rbb 

V 

Ze 
for Z„ > 

ß . 

4.52 

in a much more general case (Fig. 4.8), we arrive at 

ΙΛ 
o m 

1 + ΛΑ Ze + 
RSZL , 1 

ZM RS P 

RsZM 

ZM RS , 
~rbb 

4.53 

Note that for ZM —> °° the above relation converges into (4.52) as 
expected. 

4.5.3 Voltage and Power Gains 

As an example, we have chosen the simplified circuit arrangement of 
the common emitter configuration drawn in Fig. 4.8. The amplifier 
voltage gain is (ZM —> °o) 
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OVn 

Fig. 4.8 The simplified circuit arrangement of the common emitter configuration. 

„ _ Vout _ JCZL _ VG _ _ SmZm 
O , ~8m ZL 

VS Vs VS Rs+Zir 

ZL=y2IZL~gmRL 4 .54 

and the corresponding power gain is 

GP = Re\y2lZLZs\~g2
mRLRs 4.55 

4.5.4 Maximum Operating Frequency 

At very high frequencies field-effect transistors (MOSFET and CMOS) 
exhibit a rather small input impedance Z, = l/j(oCgs (cf. Fig. 4.9). By re-
verting in such an instant to the relation for the voltage gain (4.54), we 
find that the gain may be lost when the product gmZj is reduced to < 1. 
The result is that the maximum operating frequency can hardly exceed 

Cgs L 
4.56 

This drawback can be alleviated by increasing the input and other imped-
ances; for example, to parallel resonances with auxiliary inductances. 
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Jgd 

c i n ^ = 

S Lil I 
RL 

Fig. 4.9 Simplified block diagram of the field-effect transistors (MOSFET and 
CMOS). 

4.5.5 Noise Figure 

The noise figure is an important property characterizing amplifiers, 
mixers, and so on, and is equal to the ratio of the noise accompanying 
the output signal to the noise accompanying the input signal in the white 
noise region. In this connection, we encounter thermal noises generated 
in the associated network, noises provided by the active semiconductor 
layers, and current shot noises [4.4, 4.21]. First, we will investigate the 
common base circuit arrangement. The overall input noise voltage, in 
accordance with the block diagram in Fig. A.5b, is (in 1-Hz band pass) 

eÜünput = 4kTR, + 4kTrbb + e
2
n,mcot + i\c \ Zs + rbb + Ze + Zc 4.57 

W n e r e £M>uncorr is the thermal noise (cf. 4.31) and enc
2 is the collector 

noise current (cf. 4.35): 

@η,υ = AkTR iic = a24kTgm~4kTgri 4.58 

The noise contribution generated in the transistor transconductance is 
white and defined by 

<(*„,·)>= 2 
S fs 

-■ 4kTBwRn 
& fs 

4.59 

where gfs is the common source JFET forward transconductance, and 
Bw is the effective bandwidth in hertz. In the case of the saturation con-
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dition y = 0.67, after some computations, we arrive at the sought noise 
figure 

Rs Rs 

Inspection of Fig. 4.5c effectively reveals, for the common emitter cir-
cuit arrangement, the same noise figure as above. 

4.5.6 1/f Noise Up-Conversion 

In RF circuits, amplifiers, oscillators, dividers, frequency mixers, and 
so on, we encounter, close-to-the-carrier phase and amplitude noise, 
often recalling the DC 1//"flicker noise. Some investigations suggest an 
up-conversion into RF systems. In this connection, we refer to the arti-
cle by Walls et al. [4.22], where the origin of 1//" noise is explained 
with the inherent modulation of the transconductance, namely, by in-
troducing the current noise fluctuations (4.41 or 4.43) into the conduc-
tance relation (4.52) or (4.53), that is, by replacing I0 with IQ + in, 
where the noise component encloses both sine and cosine components 
(cf. Section 1.3.2). The consequence is that after multiplication with 
the input voltage the output signal would reveal full 1//" noise ampli-
tude and phase modulation. Further, by taking into consideration the 
slowly varying l//"signal, the emitter feedback impedance, Ze, may re-
duce the up-conversion process substantially if it presents appreciable 
impedance in the corresponding frequency range [4.23]. The difficulty 
is that the overall amplifier gain is also reduced. 

From the earlier measurements of the phase noise in oscillators it 
was found that the phase noise PSD due to the flicker noise was ~ Sv(f 
= 1) x 10"112, which is nearly equal for all transistor types [4.24,4.25]. 
Laboratory experiments proved that the flicker noise generated in the 
corresponding transistor was responsible for the phase modulation of 
the RF carriers. The improvement (typically > 30 dB) has been 
achieved by negative feedback with the assistance of the bypassed re-
sistance RE in the emitter connection (emitter degeneration). This was 
shown in Fig. 4.8, which introduces a feedback for low frequencies 
with the effective transconductance 

1 4.61 
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whereas for high frequencies, the transconductance remains to be 

£m,high 1 , 1 , 4 . Ö 2 
1 * + l c.oof ee f"ee 

and the up-converted, low-frequency phase noise is reduced propor-
tionately: 

6 11 _ fee fee A f\\ 

gm ree
 +RE RE 

The improvement was earlier experimentally verified by Halford et al. 
[4.24] and Healey [4.25]. Similarly, there are possibilities of application 
of the active feedback for reduction of the up-converted noise [4.26]. 

4.6 MIXERS 

Frequency mixers are encountered in nearly all frequency stability de-
vices: precision frequency generators-synthesizers, measurement sys-

Table 4 .2 Noise properties of different amplifiers 

fo (MHz) 

DC (at 0.1 Hz) 
5 

5/10 
10 
40 
100 
500 

1,000 
1,300 
2,000 
2,500 

3,500 (SiGe) 
3,500 
4,000 
10,000 

10,000 (GaAs) 
100 (GHz) 

Vi//W (dB)/= 1 
-170 
-135 

-140 (?) 
-130 
-143 

-148Ü36 
-115±5 
-130±5 

-130 
-120±5 

-140 
-125±5 

-115±125 
-115±5 

-105±2.5 
-80 

Sftwhi* (/) (dB) 

-176 
-154 (?) 

-152 

-163 

-SiGe HBT 
-SiGe FET 
-SiGe HBT 
-SiGe FET 

SiGe the lowest 
GaAs HEMFET 

-130/-165 

Reference 

[4.27] 
[4.28] 
[4.29] 
[4.30] 
[4.31] 
[4.32] 
[4.33] 
[4.28] 
[4.34] 
[4.35] 
[4.36] 
[4.35] 
[4.37] 
[4.38] 
[4.39] 
[4.36] 
[4.39] 
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terns, communications equipment, an so on. In all of these instru-
ments, low noise and low level of spurious signals are of the foremost 
importance, particularly since they are based on the nonlinearity be-
tween voltage and current of electronic circuits. Both of these proper-
ties will be discussed in the following sections. 

4.6.1 Multiplicative Mixers 

Multiplicative mixers exploit the nonlinearity between voltage and 
current in many electronic elements (diodes, transistors, etc.). The par-
abolic dependence is ideal: 

i = a0 + α,ν + a2v
2 4.64 

In the case where the voltage v is formed by two sinusoidal signals, 
then, due to the quadratic term in (4.64), the circuit generates two side 
bands with sum and difference frequencies 

veered« = 2a2*X[sin[U - a>0)t + 0,(0 - φο(ί)] + 
4.CO 

One of them, together with both leaking carriers, is undesired and 
must be removed by filtering. Note that there are other important prop-
erties of mixers that must be taken into account: the reduced level of 
the desired signal and the noise or spurious contributions of the input 
signals that appear at the output. 

However, this ideal case is not encountered in practice since all 
mixing devices contain even higher order terms initiated in the gener-
alized (i.e., polynomial) equation (4.64). As an example, consider 
semiconductor elements that exhibit exponential dependence between 
current and voltage as explained in Section 4.5.6 [cf. (4.22)]. The con-
sequence is that the mixer output contains higher order terms, several 
of them quite large [4.40], with frequencies 

Lrrf^sf2 (r,5 = 0,±l,±2,...) 4.66 

Special attention should be paid to those mixing products whose fre-
quencies lie in the band pass of the output filter as shown in Fig. 4.10. 
Its application for solving intermodulation problems will be explained 
with the assistance of the following example: 
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0 0-1 0-2 0-3 0-4 05 0-6 0-7 0-8 C-9 1-0 

h 

Fig. 4.10 Diagram for investigation of intermodulation signals of the lower order in 
the output pass band of a mixer (reproduced with permission from [4.44].) 

EXAMPLE 4.4 
Let us investigate intermodulation properties of the mixer having 
input signals with frequencies/, = 260 to 300 MHz and^ = 300 to 
310 MHz, and output low-pass filter with corner frequency at^, max 
= 50 MHz. The solution is simple. We mark extremes (f\lf2)mm = 
0.84 and (f{/f2)max = 1 on the x-axis and (£//2)min = 0 and (fp/f2)max 

= 0.167 on the y-axis. We draw through these points horizontal and 
vertical lines that bound a rectangle in Fig. 4.10. Parameters (r and 
s) of all straight lines intersecting its area indicate the order of the 
intermodulation signals that are present in the output: 

pmin J p J pmax 4.67 
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With the assistance of the diagram in Fig. 4.10, we find (f2 -f\), 
(2f2 - 2/1), (3/2 - 3/1), and so on. Note that all higher order terms 
are not indicated. Because of the clarity of reading in the diagram, 
we have limited the intermodulation order in Fig. 4.10 to 

|r | + | i | = 7 4.68 

The other reason for this restriction is that terms of higher order 
than those in the above relation are generally below the level of 
-80 dB and tolerable in most instances (cf. [4.42, 4.43] and Table 
4.3). Note that the rectangle that would be drawn in Fig. 4.10 is in 
reality a polygon. However, we feel that computer applications 
will provide the desired correct information for investigation of 
the intermodulation signals. 

4.6.2 Switching or Balanced Mixers 

A nonlinear electronic element often encountered is a switch, which is 
schematically depicted in Fig. 4.11. The working mode is such that the 
input signal either passes to the output or is blocked. The mathematics 
is very simple: 

V2(0 = v,(0p,(0 4.69 

where p(t) is a periodic rectangular function with two levels, either +1 
or zero, with the switching frequency OLO. Consequently, (4.69) can be 
rearranged: 

v2(0 = Ki sinU,/) · 
Θ ^ , 2 . r& , 

— + > —sin—cos(r/2LoO 
ITT r4|2,... T77" 2 

4.70 

Discussion of the mixing properties is found elsewhere [e.g., 4.41, 
4.42]. But note that each diode in the switching element is a generator 
of the additive noise as discussed above. 

4.6.3 Ring or Double-Balanced Mixers 

The ring modulator represented in Fig. 4.12 is equivalent during one 
half-period of the switching signal to the lattice-resistive network in 
Fig. 4.12b, and in the following half-period to a similar network with 
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v,(t) 

v^sincusf 

v2U) 

P(t) 
(a) 

Output signal Λ , « rb
 v i s i n c ü = f 

v2 rsin(ws±rnL0) i nLO(0 

vL0cosQLOi 
(b) 

^ N j f p v 

(c) 

Output Signal 

v2rsin(eu ±r O.l0)t 

Fig. 4.11 Switching mixer: (a) idealized circuit, (b) parallel diode switch, (c) input 
and output signal of the parallel switch, (d) series diode modulator [4.41]. 

V, sin<usf 

Switching signal 

(a) 

V2rsm((os±mL0Q 

Fig. 4.12 Ring modulator, (a) Arrangement of diodes and balanced transformers, (b) 
The equivalent lattice-resistive network during one-half period of the switching signal. 
In the following half-period, rb and rf are interchanged, (c) The ideal phase inverter. 
(d) Idealized input and output waveforms. (Reproduced with permission from [4.41].) 
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rb and /y interchanged. However, this is equivalent to a fixed lattice-re-
sistive network followed by the periodic phase inverter (Fig. 4.12c). 
Being an ideal ring modulator (rf = 0, rb = 4), it reduces to the phase 
inverter alone and the output voltage is 

v2(0 = /2(0ÄLoud = h(t)p2(t)RLoud 4.71 

where p2(t) is the switching function 

Piit) = - sin(/2f) + -sin(3/2/) + -sin(5/?0 +.. . 4.72 

By investigating properties of this mixer, we arrive at the desired out-
put voltage: 

2 * 1 
v2(0 =—ZiÄLoud X - s i n K ^ i r / ^ o M 4.73 

7Γ Γ=ΪΛ5, . . .Γ 

The relation between the amplitude of the input signal and that of the 
desired side band is called conversion loss, and for the impedance-
matched ring modulator (i.e., Vx = V2) we have 

L = 20 log 4 dB 4.74 
\1T; 

However, the ring modulator is no ideal switch; consequently, the con-
version loss is larger, practically in the range of-5.5 to -7 dB. In addition, 
due to the balancing properties as evaluated with the assistance of Fig. 
4.13 and Table 4.3, a lot of intermodulation signals are reduced or elimi-
nated and no harmonics of the input signals should be present. But the re-
ality is not so bright. Information about suppression of some spurious 
side bands in the output of the double-balanced mixers in dB is shown in 
Table 4.4. More information can be found in [4.41] and other references. 
(Note, that transformers shown in Fig. 4.12a are only provided for sup-
plying the switching voltage and are assumed to have a 1:1 ratio.) 

4.6.4 Current-Commutating CMOS Mixers 

Progress in communications systems, particularly in microwave ranges 
and the widespread use of IC technology introduced compatible mix-
ers, very often in the doubly balanced form. The so-called Gilbert cell 
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' l l= '3 - '4 

(D2vsf 

Ί - ' 2 

Ί = 'ΐ + ' 2 - ' 3 - ' 4 
(I) 

. <-. 'ill = Ί-'2+'3-'4 
' 2 - ' 3 A « -

< ^ j 

(III) 

(b) 

Ί - ' ; 

Ί = Ί + '2 - '3 - '4 

0 i fa 

Ίΐ = Ί - ' 2 - ' 3 + ' 4 

(ID 

Fig. 4.13 Instantaneous voltages and currents in switching mixers: (a) series modu-
lator; (b) ring modulator; and (c) ring modulator with VLO and VL interchanged [4.41]. 
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Table 4.4 

Harmonics 

r 

1 
2 
3 
4 

6 
7 

Intermodulation 

1 

0 
35 
10 
32 
14 
35 
17 

suppression in double-balanced mixers in dB 

2 

ΔΡ + 41 
ΔΡ + 39 
ΔΡ + 32 
ΔΡ + 39 

ΔΡ + 39 

3 

2ΔΡ + 28 
2ΔΡ + 44 
2ΔΡ+18 

2ΔΡ+14 

2ΔΡ+ 11 

Note: r corresponds to the high-level (LO) input and s corresponds to the low-level (RF) 
input; ΔΡ = PLO (dBm) - PRF (dBm). 

arrangement (see Fig. 4.14) consists of the driver stage (M3 or M3 and 
M6) biased at a fixed operating point and two (or four) switching pairs 
driven by the LO signal. The output current is 

/o»t = / . i - / o 2 = ( / i - / 2 ) - ( / 5 - / 4 ) 4.75 

The mixing properties of the switching pairs are the same as in the 
above discussed ring mixers with conversion loss [cf. (4.74)].The ma-
jor difference is due to the biasing circuit providing an additional con-
version gain [cf. 4.44, 4.45]. Further, direct conversion architecture 
(zero IF) offers the unique advantage of image rejection. The switch-
ing process is induced by a rather large LO signal (VLO input in 
Fig.4.14). The switching function, p(t), is the same as in Sections 4.6.2 
or 4.6.3 and has an approximately rectangular form or a limited sine 
wave with a nearly trapezoidal form. Its first harmonic is described as 
above in (4.71) and (4.72) for the double-balanced mixer. The tail cur-
rent IB is held constant with the assistance of M3 or M3-M6 transis-
tors. However, when used as the RF input, the AC input voltage Vin 

adds to the output current IB the component is (cf. Fig. 4.14): 

is = V in g„i 4.76 

The output signal is generated by switching the bias current in the 
rhythm of the LO wave and we arrive with the assistance of (4.71) at 

ι».(0 = [/* + /,(0]\Ρ(0 4.77 
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'01 - Ί _ '2 

+ ·—11 M1 M2 

V, LO 

A / 

Ηζ» 
/ 3='ß+ 's 

M3 

(0) 

Ό='θ1- /θ2=(Ί - /2) - ( /5- /4) 

'01 

1 
r< 

4L U'· 

Ό2 

M1 M2 ||—T—II M4 M5 

~\s 

VLO 
T 

"%/ 
'3 = 'e+'s 

rt 

?h 
4 = 'ß~ 's 

M3 ^Jh 

^ 

(b) 

Fig. 4.14 Block arrangement of CMOS (a) balanced and (b) double-balanced 
(Gilbert cell) mixers [4.44]. 
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The conversion gain is equal to the conversion loss (4.74) times the in-
put RF gain (4.55), that is, 

or 

PouJA _i2
mtRL/2(2 

'M - I -.1 I 1 „ 1 _ I I _' Smi 
Pin V TTj Vtn/2RsKnJ VTT-

RSRL 4.78 

GM = 20\og\--gm3\ + \0\og(Rs-RL) [dB] 4.79 
U J 

4.6.5 Noise Sources in Mixers 

The mixer or frequency convector is often a significant noise contribu-
tor in a lot of communications and measurement systems. By reverting 
to the relation (4.65), we see that the output signal also contains phase 
noise contributions of both mixed signals, of the input and the local os-
cillator signals as well as of the switching process. 

4.6.5.1 Noise in Diode or Switching Mixers 

By referring to Fig. 4.11 or 4.12, we see that there are always two 
diodes in series contributing the noise [cf. (4.25) or (4.42)]. In addi-
tion, time shifts generated in switching instances present another con-
tribution to the phase noise accompanying the output signal. The prob-
lem is illustrated with the assistance of Fig. 4.15, where the 
superimposed spurious voltage fluctuations change the reference level. 
For solution, the first two terms of the Taylor expansion of the effec-
tive voltage are sufficient, that is, 

ν(ί/) = ν(ιΤ) + ν(ιΤ)(//-ιΤ) 4.80 

From (4.80), we compute the time jitter of the z'th triggering as: 

ν(ί,)-ν( ίΤ) 
ΔΓ, 

v(/T) 
4.81 

By referring to the limited sine wave (depicted in Fig. 4.16), we get for 
the tangent slope S, close to the zero level, 
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>4-v(f) + vsp(f) " 

Triggering 
level 

Triggering 
level 

iT t-

(a) 

Fig. 4.15 (a) Time shift of the triggering level in the presence of the low-frequency 
interfering signal, (b) Time shift of the triggering level due to slow changes of the 
switching level due to fluctuations in temperature, humidity, and so on [4.41]. 

n O - — Emco0 Em-b 
dxt dxt To 

( St ^ 
for — <0.1 

To 
4.82 

By assuming that noise currents generated in diodes, or in local oscil-
lators, are responsible for the corresponding time fluctuations, we get 
(4.83) 

AT = - , + ;. ln.l^ln.2 

Wo/peak / p e a k ( 2 7 7 - / r o ) 
4.83 

where we have introduced the slope S = 27r/peak/T0 of the switching 
signal in the instant of the transition reference level. By assuming the 
fractional timer jitter as autocorrelation i?(0) - R(r) ~ R(0), the PSD 
of the additive phase noise is evaluated as 

1 o J 

AT \ 2 

>δτ'- 2SUf)„ ISjLf) 
( 2 πΙ peak) 

4.84 
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Note that the autocorrelation is localized around zero, in which case 
we have simplified the integration with the delta function operation. 

EXAMPLE 4.5 
Let us investigate the phase noise introduced by the diode ring 
modulator in instances in which the switching peak current is ~ 6 
mA. For the white noise component, we get 

W ) = < 
'ΔΤλ2 4^r(/peak) _ q 

To) ( / p e a k ' 2 7 r ) 2 / p e a k « ) 2 4.85 

By introducing /peak = 0.006, q = 1.6 χ 10-19, and the corner fre-
quency/,, = 10,000 (cf. 4.44), we get 

S*Af)"*^j- +10"'73 4.86 

which is in good agreement with experimental findings (e.g. 
[4.46]) for a ring modulator used as a phase detector. 

4.6.5.2 Noise in Current-Commutating CMOS 
Mixers 

There are three sources of white noise: (1) the driving stage, (2) the 
switching pair or pairs, and (3) the output stage. For the single-bal-
anced mixer, we take into account the noise of the source resistance Rs, 
the gate resistance rg3, possible emitter (source) feedback impedance, 
and the thermal noise of the transistor A/3 [cf. Fig.4.14a and relation 
(4.57)]. The corresponding white-noise current PSD is 

sUf) = UT 
Ύ Λ 

Rs + rgi+\Ze\+— g SL· 4.87 
m 3 / 

In the case of the double-balanced Gilbert cell (Fig. 4.146), we intro-
duce rg3 twice. 

The situation is similar to that discussed in Section 4.6.5.1. By re-
ferring to Fig. 14a, one easily finds out that the output current is suc-
cessively supplied either by A/1 or A/2, and in this case is determined 
by the bias current 73 = IB. Consequently, the switching pair contributes 
to the output noise only during the transition interval δ (cf. Fig. 4.16) 
when both transistors are conducting and generating noise. The corre-
sponding thermal noise may be computed from 
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Fig. 4.16 The limited sine wave (adapted from [4.41]). 

iimt ~2<4kT7g(t)> 4.i 

Next, we must estimate the effective transconductance <g(t)>. The im-
perfect switching due to the transistor or noise accompanying the LO 
signal introduces random time shifts. With the assistance of (4.81), we 
find for the time interval AT, introduced with the effective noise voltage 

Δ Γ - Vo 
S VL02ir/T0 

4.89 

and for the corresponding current pulse, averaged over one-half of a 
period, we get for the noise current /'„ out 

2ΙΛΤ 2IBVoa 
_ B _ ._B._on. ^-<Q>Va </l,OUt rp , -

TJ2 VLOTT 

with the effective transconductance 

Geff *** 
2/ , 

4.90 

4.91 
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After introducing this transconductance into (4.88), we get for the 
thermal current noise PSD 

SM-^-p- 3Α/)-!ψ+ 4.92 

where VLO is the amplitude of the switching oscillator (cf. [4.44,4.45]) 
Sv(f) « -160 dB for VLO = 0.1 (V) and 1 mA. 

4.6.5.3 Aliasing of the Switching Noise 

The above investigation was for noise generated in switching mixers in 
the T0 or TJ2 period. Consequently, the spectra around the individual 
harmonics of the sampling frequency overlap (we face the process of 
aliasing) and the wide-sense stationary process changes into the so-
called cyclostationary random process based on periodically time-
varying statistics. There are different approaches for solution of the 
problem. Here, we start with the application of the digital approach 
[4.41, 4.47]. The Laplace transform of the sampling time function p(t) 
is 

Hs) = ̂ XHs-jnwo) 4.93 

By replacing variable s with jb> and applying the transfer function, 
Hh{s) = (1 - es^lsT, we finally have 

PÜ<o)=i\^^\P„ü<o-ncoo) 4.94 
„=_x (πω/ηωο) 

where P„ are amplitudes of individual harmonics of the rectangular 
wave/?(?)· Consequently, the PSD at the output of the switches is 

So,M) = 2SJf) {£) P\f) = 2Sm(f) 4.95 

2 ΐ γ , s in(^/^) 2 

- ' *-* {πω/ ηωο) 
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From this, we find for the white noise (with the assistance of the 
Dwight formula 48.13 [4.47]) 

SUf)^2SJf) 
' 2 Y f , 1 1 1 > 1 + —+— + — + . 

I2 C 2 - 7 2 

v 3 5 7 ) 
\TTJ 

4.96 

2 V 2 

Evidently, the noise increase due to aliasing is compensated for by the 
loss in the switching mixer. 

4.6.5.4 Flicker or f / f Noise 

All transistors are generators of 1//"noise. This finding is also true for 
the noise generated in the driving stage and the corresponding 1//"com-
ponent appears at the output. The same is also true for the flicker noise 
accompanying the LO signal. 

A bit different situation is found with the flicker noise generated 
by the uncertainty of the switching instants [cf. (4.81 or 4.82)]. The 
flicker noise from the switching pair will appear at DC and even har-
monics of the LO frequency, yix>, but around t h e ^ 0 itself and its odd 
harmonics, it is compensated for due to biasing (see Fig. 4.17). How-
ever, this is not the case with harmonics. Nevertheless, the feedback 
introduced by a resonant circuit tuned to the second harmonic placed 
in the driving stage helps to reduce, with feedback, this contribution 
of the flicker noise. On the other hand, the 1//" noise power also may 
be reduced, with the switching square wave having effectively infinite 
slopes. A secondary source of the flicker noise is provided with para-
sitic capacitances shunting the driving stage [e.g., 4.45]. 

4.6.6 Noise Figure of Current-Commutating CMOS 
Mixers 

The noise figure is defined as the ratio of the overall white output 
noise to the white noise supplied by the source referred either to the in-
put or output (cf. Secton 4.5.5). The output noise is composed of the 
noise generated in the driving stage (4.87) plus the noise generated in 
the switching stages (4.92), both modified by aliasing (4.94), along 
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Fig. 4.17 Flicker noise from the switching pair that appears at DC and even harmon-
ics of the LO frequency [4.45]. (Copyright © IEEE. Reproduced with permission.) 

with the noise generated in the load resistance itself. For the noise fig-
ure, we use the computed output phase noise PSD divided by the input 
phase noise PSD and the gain (cf. 4.55): 

FN = 
[SUf) + Sin(f)]Rl + 8kTRL 

1 + 3 \Ze\ 

Rs Rs 

4kTRs 

Ύ 

gm3Rs 

1 
gm}RsRL 

4 y IBRL 

77" V R\s2 + -
Rhl 

4.97 

4.6.6 Two-Tone Performance of Current-
Commutating CMOS Mixers 

In the mixer application, one also encounters the intermodulation be-
tween two closely separated input signals^, and^2 , particularly with 
approximately the same power. They mix with each other or with the 
LO/LO to generate third-order intermodulation signals of the type 

J iti -(m + \)fRX-mfR2)±Fu m-. 1 4.98 

The origin is found in the nonlinearity of the mixing or amplifying 
characteristic of the systems. Application of the Taylor expansion on 
the output current reveals 



160 CHAPTER 4 Noise of Building Elements 

'(Oo* = / . + ^ ( Δ ν ) + ^ ( Δ ν ) 2 + i - 4 - (Δν)3 + · di 
,„u, Ζ .+ ^ 

\_dl _ 
2</V '' 3\dV 

Io + g,(Av) + g2(Av)2 + g3(Av)3 + · · 
4.99 

where g\,g2, and so on, are the first and higher order transconductances. 
For the bipolar transistors, we have with the assistance of (4.32) 

'(0out-Av(0,n + ^ 2 v(0- n + ̂ A3v(0L + · 4.100 

whereas for the field effect transistors with application of (4.37) we ar-
rive at 

m^K (l + Veff)
2 v(0 ,+-

Q + V.ff) 

1 60 

j v iO; 4.101 

+ — 
6(l + Vt0)A v(o;+-

where we have introduced Vg = VGS - Vth. In the case of the source or 
emitter feedback, we introduce an effective input voltage for vin (t), in 
agreement with (4.53): 

Vin.ef/(0 ' 
Vi„(0 4.102 

i + g.z, 

In the case of two spurious signals, 

v](t) + v2(t) = Visin((ült) + V2sm(co2t) (V2~V{) 4.103 

the fourth-order term in (4.99) reveals the third-order components 

W\sm2(w,t)V2sm{w2t) + Wx sm(a\t)V\ ύη2{ω2ί) 4.104 

with amplitudes 

-V2V 7~-V.V2 4.105 
4 ' 2 4 ' 2 
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The third-order intercept point, the so-called IIP3, where the power of 
the spurious signal would be the same as that of the desired signal, pro-
vides important information about the linearity of the system. To this 
end, observing measurements at lower levels and a plot in the log-log 
diagram, we find that the desired output signal levels would be on a 
straight line increasing with the slope of 10 dB/dec, whereas the third-
order products on the line increase by 30 dB/dec versus the input pow-
er. Their intersection is the IIP3 intercept point (see Fig. 4.18 and Ex-
ample 4.6). 

EXAMPLE 4.6 

4.106 A3 y-y3 = x-x} 

_-y3+y]
 + 2x3-xi 

The straight lines we were looking for are a, and a3. 
From Fig. 4.186, we read: y3 = -95 dBm, y{ = -25 dBm, x3 = x, 

= -40 dBm, and xIIP3 = -5 dBm. 

A general formula for IIP2 and IIP3 (HPn) magnitudes is given in 
[4.48]: 

_-y,+yi+nx*-xi 
xiipn : 4.107 n-\ 

4.7 FREQUENCY DIVIDERS 

Frequency dividers are encountered in frequency stability measure-
ment systems, however, their major field of application is in communi-
cations devices, particularly in modern mobile or satellite microwave 
systems. In practice, we encounter three major types of dividers, 
namely, static digital, injected digital, and analogue frequency di-
viders. However, digital dividers are preferred for their compatibility 
with modern IC systems and they are used in direct digital frequency 
synthesizers (DDS) [4.50] and phase-locked loops (PLL) withfrequen-
cy dividers (FD) in the feedback path, particularly in the high mega-
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Fig. 4.18 Third-order intermodulation. (a) The corresponding straight lines of the 
the second- and third-order intermodulation plot [4.48]. (Copyright © Rohde & 
Schwarz, reproduced with permission.) (b) A practical example of the third-order in-
termodulation [4.49]. (Copyright © IEEE. Reproduced with permission.) 
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hertz and low gigahertz communications bands. In addition, the low-
noise and small spurious signals around the carrier, with negligible 
leakage from channel to channel, are of highest importance for reliable 
connections. Note that analogue frequency dividers are nowadays used 
in measurement systems at the highest frequencies and in applications 
where the low additive noise is of importance. 

4.7.1 Digital Frequency Dividers 

Static digital frequency dividers are based on application of the IC 
gates forming memory systems. In practical applications, we en-
counter several basic IC families (see Fig. 4. 19): 

TTL (transistor-transistor logic; not recommended for new applica-
tions) 

CMOS (Complementary metal-oxide surface) 
ECL (emitter coupled logic) 
SCL (source-coupled logic), CML (current mode logic), and so on 

The basic divide-by-two circuits are built from bistable flip-flop cir-
cuits, formed generally by two cross-coupled latches, for example, the 
D-type master-slave configuration (cf. Fig. 4.19c/). A schematic 
arrangement is illustrated in Fig. 4.20a. Figure 4.206 has a chain of n 
divide-by-two D-latches with the division factor N = 2". The maximum 
input operation frequency was recently reported to be in the range of 
100 GHz [4.52]. 

In most practical applications, we encounter the need for an arbi-
trary or variable division ratio in digital frequency dividers. In in-
stances where small division factors are required, a few D or JK type 
cells, generally four, are arranged in one package. The output pins are 
so arranged that division by a small number (2, 3, 4, 5, etc.) is possible 
[4.53]. Recently, the arrangement for alternative division by 2 and 3 
has become more important [4.54]. 

4.71.1 Dual Modulus Dividers 

The principal arrangement of dual modulus dividers is shown in Fig. 
4.21. The operation is as follows. First the input divider operates with the 
division factor, P + Q. Its output is fed simultaneously into both auxil-
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Fig. 4.19 (a) The TTL logic technology gate, (b) CMOS logic technology gates, (c) 
emitter-coupled logic, and (d) current-mode logic [4.51]. (Copyright © IEEE. Repro-
duced with permission.) 

iary counters with the division factors A and M. As soon as the divider A 
overflows, the output signal changes the division factor, P + Q, to P and 
blocks the input to itself. This state remains unchanged until the divider 
Mis full. Its output signal resets the main divider to the P + Q state again 
and the auxiliary divider A to zero. Then the cycle starts to repeat. The 
time available for the change is ideally P periods. The final division ra-
tio from the input to the output is computed from the following relation: 

N = (P + Q)A + P(M - A) = PM + AQ (output 1) 

N = P + — (output 2) 
M 

4.108 
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Fig. 4.20 (a) A schematic arrangement of divide-by-two circuits formed by two D 
flip-flops, (b) A chain of n divide-by-two D-latches with the division factor TV = 2". 

The minimum division factor Nmin will be for M„,in = 1 and A„ 

/Vmin _ PMmm + Amin ~ P 4.109 

which leads to the smallest possible dual-modulus divider of PIP + 1 = 
2/3. 

A 2/3 divider is comprised of two blocks, as depicted in Fig. 4.22. 
In accordance with information delivered by the latter divider block or 

Input 

>■ Output 1 

*■ Output 2 

Fig. 4.21 Principle of dual-modulus digital frequency dividers [4.41] 
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Fig. 4.22 A 2/3 divider cell [4.54]. (Copyright © IEEE. Reproduced with permis-
sion.) 

supplied by the input/?, the circuit performs division by 2 or by 3, as 
discussed in Example 4.7. A chain of n 2/3 cells provides an output 
signal with a period of 

Γ™. = r i n · (2 + Po) · (2 + P])- (2 + PJ = 

T1n-(2"p„ + T-,p„_i + - + 2p] + P0) 
4.110 

This equation shows that division by all integers from 2" to (2"+1 - 1) 
can be realized [4.54]. 

EXAMPLE 4.7 
In this example, we examine a divider by 32 or 33. The principal 
arrangement is shown in Fig. 4.23. The design uses a 2/3 divider 

+2/3 

£ 
-* +2 Γ * +2 

1 

+2 

1 

+2 Flip flop Out 

Fig. 4.23 (a) Block diagram of the divide-by-eight injection locked frequency di-
vider. (b) Corresponding D-latch cell [4.55]. 
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as the input stage. In instances where division by 32 is the desired 
operation, the 2/3 divider divides by two continuously so that the 
output is one thirty-second; if the input frequency is divided by 
33, the NOR gate switches from the input modulus 0001 to 0000 
and G4 generates a signal that changes the modulus of the 2/3 to 
three for one cycle out of four cycles, resulting in the total divi-
sion factor by 33. 

4.7.1.2 Fractional-N Dividers 

The fractional-TV frequency divider is similar to the divide-by-TV di-
vider; however, with the assistance of an auxiliary divider, one input 
pulse is periodically removed (suppressed). The idea and operation 
of the fractional-TV divider is explained with the assistance of Fig. 
4.24. 

For a better understanding of the problem, we assume that the aux-
iliary DDS frequency synthesizer is a simple divider by an integer F, 
which divides the reference frequency/.. By assuming the circuit with-
out pulse swallowing contains the period TrN, the output signal is equal 
to the TV periods T0 of the input frequency: 

TN=NTo 4.111 

However, after each overflowing of the divider F, one pulse is missing 
in the input train T0 and the respective period TrN is prolonged by one 
T0. Consequently, the fundamental repetition period of the output sig-
nal is exactly 

TrN 

Tr 

TON 

ωοΝ 

Pulse 
swallower 

-=-F 
(DDFS) 

-

fr 

1 

F 
t. 

Fig. 4.24 Factional-jV frequency divider. 
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ToNF + T0=TrF 

and the effective division ratio is easily computed as 

T 1 
To F 

4.112 

4.113 

4.7.2 Spurious Signals in Variable-Ratio Digital 
Frequency Dividers 

Inspection of the output period of the variable-ratio digital frequency 
dividers reveals irregularities introduced by the process of the pulse 
swallowing. In instances where the output period is only prolonged by 
one input pulse in the division period, we face a phase modulation by 
a sawtooth wave with an amplitude of 2π (cf. Fig. 4.25). 

The corresponding phase modulation is given by the sawtooth 
wave with spectral lines [cf. 4.50]: 

^ = 2 2 - s i n 2TT 
m-

V TNF + T o J 
sin 

m=l 

2TT 
m 1 

V TrF j 
4.114 

with the power of the spurious signals at the output of the divider 

* ΡχΚττ_Γ\_ΓΤ_ΓΤ_π_Γί_π 
ω0 w Π_Γί_Γ\_Π_Π_ΓΤ_Π n 

run 
F = 8 

Fig. 4.25 Spurious phase modulation generated by quasiperiodic omission of each 
eighth pulse [4.50]. (Copyright © IEEE. Reproduced with permission.) 
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2m2N2 « ν , ^ - 7 7 7 4.115 

In instances where F in relation (4.112) is a fraction F = YIX, the 
effective division factor is 

Ν^ = Ν + γ 4.116 

and the output phase is time dependent: 

(pr(tk) = u)rTr=a>rTo N + — = sXtk) 4.117 
v Y J 7Ve 

with the time modulation function sr(tk) that is similar to the DDS fre-
quency synthesizers: 

Sr(tk) = 27T 
, Χ . (,Χλ 

k integer k— 
Y l ί 

4.118 

The shape and periods of the spurious signals are investigated with the 
assistance of the modified continued fraction expansion applied to the 
factor in brackets in (4.118). The result is a superposition of sawtooth 
waves. Details were discussed earlier in [4.41] and [4.50]. 

4.7.3 Noise in Digital Frequency Dividers 

Study of the divider noise properties started over 30 years ago [4.56], 
and the preliminary experimental findings revealed that the power 
spectral density PSD, SvD(J), of the output frequency fout =f0 for the 
TTL logic family dividers is approximately 

i n - 1 4 · 7 

S*,D(f)~^j- + \0->65 4.119 

which resembles the noise PSD found for the switching mixers [cf. 
(4.86)]. However, in addition, in each bistable stage there is some de-
lay between the arrival of the input pulse and the instant when the 
stage settles into its new state. Further, due to inherent semiconductor 
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noises, ambient temperature variations, supplying voltage variations, 
and so on, there is a small time jitter of the leading and trailing edges 
of the output rectangular wave form. The remedy provides, at least par-
tially, application of synchronous clocking (cf. Fig. 4.26). 

However, the real situation is a bit more complicated since the out-
put noise of frequency dividers is composed of the input signal noise, 
the PSD of which is reduced by the square of the division factor, N2, 
and the contributions added by the division circuits themselves, partic-
ularly the last one: 

> <£,out ( / ) 
O φ,Ίη 

~1F +s ̂ ,div 4.120 

Very often, especially for large division factors, N, the first term on the 
rhs of (4.120) disappears. In addition, as early as the 1970s, authors of 
[4.56] suggested, for larger output frequencies, f0, that the divider out-
put PSD contained frequency-dependent terms proportional to the in-
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Fig. 4.26 The four-stage binary counterdivider. (a) Schematic diagram and (b) the 
respective waveforms with the time jitter [4.41]. 
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creasing/,. This was verified by later investigations based on much 
larger experimental sets [4.57, 4.58]. In a deeper discussion of the 
problem, performed by the present author, after plotting experimental 
measurements and applying asymptotic approximations (lines), depict-
ed in Fig. 4.27, he arrived at the following equations for the PSD of the 
output noise of digital frequency dividers: 

i (r14±1 +10"27±1 Γ* 
s , . D ( / ) ~ - f—^+io'6±1 + io-22±,/0 f 

4.121 

Finally, for the GaAs divider family (and many other high-frequency 
dividers) (4.121) requires correction in the first term: 

ΞΦΑ/)-
10 ,0±1 + 10 -27±1 y-2 

J o , , ,-,-16±l , ,„-22±l 

/ 
■+io-,6±,+io-22±7<( 4.122 

However, until now the origin of the experimental constants, which are 
functions of the output frequency, fofiut, and hold to the highest in-
put-output frequencies, has not been discussed. By taking into account 
that the noise contribution of the earlier divider stages slowly disap-

100 
/■(MHz) 

1-104 1-105 

Fig. 4.27 The (PSD of digital frequency dividers: Sv%1(f= 1) (dB/Hz) in the 1//noise 
region (for clarity, we shifted them by +20 dB) and Svfi(J) (dB/Hz) in the white phase 
noise region (diamonds) of TTL, ELC, and CML digital dividers. 
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pears, we must assume that the frequency dependent terms in (4.121 or 
4.122) are generated in the final stage or stages of dividers. Conse-
quently, evaluation of the output noise PSD requires appraisal of the 
spurious time jitter. By assuming that the time jitter is generated by the 
white and flicker phase noise components only, we arrive with the as-
sistance of (5.80) at 

' Δ Γ ^ 
\To J 

2 

>=_zL /f(A_L+Ao 
(2ΤΓ)2 11 / 

df-
J 

^ A - . l n 
(277-) 

hH V_|_ Jo , J H 
+ ~n0—z-fj (2*r 

J o 

(2ττγ 
■A-iln J H 

\J Lj 
+ aa-

4.123 

In Example 4.8, we try to get to the measured numerical approxima-
tions. 

EXAMPLE 4.8 
The white noise constant from (4.123) is 

J o j J H Jo & o J out i n - 2 / 

(2π) 2 (277-) fo 2 

4kT\Q-2fM"\0nfM 

4.124 

Assuming that the white noise constant is a0 = 4kT, we arrive at 
the experimental value 10"22. Similarly, we arrive at the sought 
value of the constant in relation to the flicker noise in (4.121) or 
(4.122), that is, 

10 i f, i f , 10"5 

= 10" 4.125 

4.7.4 Injection-Locked Frequency Dividers 

Until now, we have discussed frequency dividers composed of latches 
that can store the logic state for an infinite time and with no lower limit 
to the input frequency, which are designated as static digital frequency 
dividers. Major difficulties with these static digital frequency dividers 
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are finite upper-bound frequencies in the gigahertz ranges [cf. 4.52, 
4.59] and rather large operation currents. The latter, the effective large 
power consumption, is in contradistinction to the modern digital com-
munications in microwave ranges, such as GSM (Global System for Mo-
bile Communications) and other emerging communications systems in 
the gigahertz ranges. The remedy is provided by injection-locked fre-
quency dividers usually consisting of oscillating flip-flops (cf. Fig. 4.28) 
or oscillators phase-locked on their harmonic or subharmonic equal to 
the input frequency. 

The situation is discussed in more detail in Section 6.10.3.2. The 
major advantage is low power consumption (in contradistinction to the 
static digital frequency dividers) without impairing the expected out-
put phase noise. The difficulty is the reduced sensitivity of the input 
voltage versus input frequency, as depicted in Fig. 4.29, together with 
operation on low harmonics only. The latter difficulty may be alleviat-
ed by using ring oscillators for synchronization [e.g., 4.60, 4.61]. 
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Fig. 4.28 (a) Block diagram of the divide-by-eight injection locked-frequency di-
vider. (b) Corresponding ß-latch cell [4.55]. (Copyright © IEEE. Reproduced with 
permission.) 



174 CHAPTER 4 Noise of Building Elements 

0 2 4 6 8 1012141618202224262830323436 

fin [GHz] 

(a) 

28 30 32 34 36 38 40 42 44 46 48 50 

fin [GHz] 

(b) 

Fig. 4.29 Sensitivity of input voltage versus input frequency of (a) the static fre-
quency dividers and (b) the dynamic dividers [4.55]. (Copyright © IEEE. Reproduced 
with permission.) 

4.7.5 Regenerative Frequency Dividers 

Regenerative (or Miller [4.62]) dividers use positive feedback to gen-
erate an output signal with a fractional frequency. A block diagram is 
shown in Fig. 4.30 and the operation was discussed in [4.41]. First, 
without the input signal the regenerative action cannot take place. 
When the signal is switched on, a small signal, an(t), is generated 
through the transient phenomenon at the second input of the mixer 
(double balanced) and, due to the feedback frequency division, is ac-
complished if the overall gain exceeds one and saturation effects limit 
the amplitude, as in a conventional oscillator. In addition, the oscilla-
tion requires zero-phase shift around the loop, that is, 

ωΐ + φί ωί + φΛ+φβ = — + 
V n ) n 

4.126 

and 

n ) n 
4.127 

After eliminating <p„_x from (4.126) and (4.127), we get the relation be-
tween the output and input phases φ„ and φί, respectively: 
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Fig. 4.30 Block diagram of a regenerative frequency divider [4.41 ]. 

The corresponding noise PSD is 

Φί + <t>g-<ßb 

n 
4.128 

^ ( / ) - ^ - + i o 1 6 5 4.129 

4.7.S.I Spurious Signals in the Regenerative 
Frequency Dividers 

If no multiplier is included in the loop frequency, division is by two. For 
larger division factors, the chain of such dividers is often used [4.63]. 
Given appropriate loop filters, other division factors can be realized, 
such as one-third and two-thirds, generally 1/n and (« - l)ln, n being an 
integer, However, the operational bandwidth of the loop decreases with 
an increasing division ratio [4.64]. The latter depends predominantly on 
the selectivity of the band-pass filters, (ω/η) and [ω(η - l)/n], and, in ad-
dition, on the loop gain for the next possible working modes, that is, ω(η 
± 1) [and naturally for all others ω(« ± k) as well], which must be safe-
ly below one. A block diagram of such a conjugate frequency divider is 
reproduced in Fig. 4.31. With higher division ratios, we face a comb of 
frequencies in Fig. 4.32 and reproduce an output spectrum of the divide-
by-five divider. Note that loop filters eventually comprise additional 
time delays that may reduce the tuning range or even cause an asyn-
chronous operation mode, particularly if the effective Q of the band-
pass filters is too high (cf. [4.64] and Fig. 4.33). 



176 CHAPTER 4 Noise of Building Elements 

e0(v) -

e,(v/4) 
e2(3v/4) 

-x e01(3v/4) 

y e02(v/4) > f 
v/8 

V 
v/2 7v/8 

-E 
rTv 

e01L(3v/4) 

e02L (v/4) 

•v/4 

Fig. 4.31 Schematic diagram of divide-by-four regenerative divider [4.50]. (Copy-
right © IEEE. Reproduced with permission.) 

4.7.5.2 Noise Sources in Regenerative Frequency 
Dividers 

Regenerative dividers are potentially very-low-noise circuits. Note the 
similarity between (4.129) and (4.120). Again, the input noise is re-
duced by the squared division factor. However, due to feedback, the 
same reduction is applied to all component noises as well. This proper-
ty groups analogue frequency dividers into a divider set with the low-
est output noise. This might be one reason for their application at very 
high frequencies [4.65 or 4.66], at which digital systems are noisy (cf. 
4.123 or 4.124) and cumbersome. 

Experimental investigation of the output noise of the regenerative 
dividers performed by several authors reveals that (4.86) is valid for 

A T T E N a O e l E 
R U 1 O . O d S r 

M K R — 3 1 . S O < 
ΛΟΟ. SMI - l as 

M K R 
■ t o o 
— 3 1 

1 

. 5 
s c 

·/ H = 
t d S m 

J W B ^ ^ ^ ^ ^ I r W w r W W ^ i r l ^ ^ P ^ ^ ^ F ^ I i ^ ^ ^ ^ ^ W T I ^ ^ r ^ W 

I I I 

S T A R T O M a : 
R B W 1 . O M H : 

S T Q f = > 4 5 0 . O M M J 
V B W 1 . O M H a ; S W F " S O r 

Fig. 4.32 Schematic diagram of a divide-by-four regenerative divider [4.63]. 
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Fig. 4.33 Output of the regenerative divide-by-four divider: (a) synchronous output; 
(b) asynchronous operation mode [4.63]. 

mixers and digital dividers (4.119) with low output frequency and also 
could be applied to analogue frequency dividers since the components 
generating noise are mainly mixers and amplifiers. Actual background 
noise was analyzed by several authors in the ranges from hundreds of 
megahertz to tens of gigahertz. It is interesting that the phase noise in 
the investigated regenerative frequency dividers is approximately 

irr135 

S*(f)~^-— + 10165 4.130 
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4.8 FREQUENCY MULTIPLIERS 

Since the start of practical applications of electromagnetic waves in 
communications or, more properly, in radio communications, we en-
counter frequency multipliers used to generate more channels with 
higher harmonic frequencies, but retaining the frequency stability of 
the original oscillators, particularly after introduction of crystal res-
onators. These early frequency multipliers used electronic circuits with 
nonlinear voltage-current characteristic that distorted output wave 
forms and filtered out the desired harmonic signal. At present, nearly 
all frequency multiplications are performed with the assistance of 
PLLs, which will be discussed in detail in Chapter 6. 

Reverting to the frequency multiplication via generation and filter-
ing of harmonics, still encountered in standard frequency laboratories 
and institutes, we recall that an ideal frequency multiplier would 
change the input signal y4incos ωίηί directly into the desired harmonic 
multiple ^outcos ηωιηί with the assistance of the nonlinear elements 
and Chebyshev polynomials1 [4.67]: 

Y = cos(n-cos-[X) = T„(X) 4.131 

Graphical solution (e.g., on CRT) leads to the well-known Lissajous 
figures. Simple realization of condition (4.131) is only encountered for 
the generation of the second harmonic that requires the parabolic non-
linearity easily realized through a push-push connection of diodes of-
ten encountered. Very effective for frequency multiplication are volt-
age or current pulses generated by Schottky barrier diodes producing 
combs of higher harmonics still used for generation of microwave sig-
nals in the 100 GHz and higher frequency ranges [cf. 4.68, 4.69]. 
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There is a general agreement that the phase noise power spectral densi-
ty, PSD, in the range of the Fourier frequencies close to the carrier, f0, 
is the basic measure of the frequency stability of oscillators, frequency 
synthesizers, and other electronic systems or components. However, 
the possibility of direct measurements of the PSD, Sv(f), with the assis-
tance of common frequency analyzers, usually stops somewhere be-
tween 1 and 10 Hz. This difficulty is solved by using the time domain 
measurements [5.1, 5.2]. The disadvantage of the time domain mea-
surement is a rather poor resolution caused by a low Q of the equiva-
lent filter function, H(s), and its spurious responses at harmonics of 
the equivalent fundamental frequency (Fig. 5.1). 

The commonly accepted measure is the Allan or two-sample vari-
ance, CT^T), with the assumption that the phase noise PSD SJJ) is piece-
wise linear. Barnes [5.3] computed a conversion chart between (^(τ) 
and^(/) . 

It was Baugh [5.4] who, several years later, suggested the remedy by 
using a more sample variance; the corresponding procedure is generally 
designated as the Hadamard transform. The major achievement was a 
larger effective Q of the measurement system, but the problem with spu-
rious responses remained and was not satisfactorily solved even with a 
more elaborate system of more sample variances [5.5] (Fig. 5.2). 

In the following sections, we summarize properties of the impor-
tant two-sample variance, generally designated as the Allan variance, 
and we make reference to connections between these time domain 
variances and their PSD counterparts. 
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1 

V^7 

(a) 

Fig. 5.1. Two-sample variance, (a) The effective time domain function and (b) the 
corresponding transfer function. 

In Section 5.3, we discuss the problem of time domain measure-
ments, namely, of the time jitter so important in modern communica-
tions in microwave ranges, and other applications of digital circuits. 

5.1 BASIC PROPERTIES OF SAMPLE VARIANCES 

Because of the divergence difficulties caused by the flicker phase noise 
or the random walk in oscillators and standard frequency generators with 
time domain variances, Allan [5.6] suggested the following two-sample 
variance as a measure of the frequency stability in the time domain: 

o-2
y{r) = \<{yk+rykY> 5.1 
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4A 
π 2π 3π 4π 

(a) 

π 2π 3π 4π 

Fig. 5.2. The transfer function of the Hadamard variance formed by eight rectangles 
in the time domain: (a) without additional weighting (b) with binomial weighting. 

where y is the mean fractional frequency in the time interval r. 
. lk='k-] + T . . . . tk = tk-) + T i . . 

- i | Δββ^.Ι I „„*_!** 5.2 
tk-\ tk-\ 

With the assistance of the convolution theorem, we may rearrange the 
above equation as 

y'k = -y(t)®p(t) 5.3 
T 

where p(t) is the unit rectangular pulse starting at time t and ending at t 
+ T. In the case of the variance of more samples, we get 
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σ2
γ(τ) = — <[a0y{t)®p(t) + ay{t + T)®p(t + T) + -~+ $ 4 

a„-At)®p(t + (n-l)r)]2> 

where a0,..., an_x are weighting coefficients that will be dealt with later 
in more detail. After reverting to (5.1), its simple rearrangement leads to 

σΧτ) = < [y(t) ® h(t)}2 > = < z\t) > 5.5 

With the assistance of Parceval's theorem, stating that total power over 
all time must equal power over all frequencies [a conservation princi-
ple, applied to (5.5)], we have 

so 

<z2(0>= \z(a>)z*{a>)df 5.6 
—co 

By using the theorem that the Fourier transform of a convolution is 
equal to the product of the corresponding Fourier transforms, we arrive 
at the relationship between the time and frequency domain stability 
measures, that is, 

GO X 

al(r) = \sy{a>)[H{ü>)HXü>)]df = \sy{co) \ H(a>fdf 5.7 
0 0 

Here Sy(w) is the one-sided power spectral density of the instantaneous 
fractional frequency fluctuations y(t) and//(ct)), which is the equivalent 
transfer function of the time domain measurement system. 

5.2 TRANSFER FUNCTIONS OF SEVERAL TIME 
DOMAIN FREQUENCY STABILITY MEASURES 

For the founding fathers of the frequency stability theory [5.1], the 
evaluation of the integral in (5.7) was difficult to compute; therefore, 
they used the piecewise properties of the oscillator phase noise (cf. 
Fig. 2.13) for solving the Allan variance. The integration is not a prob-
lem with modern computers. However, the piecewise approach makes 
it possible to understand better the stability problem at very low Fouri-
er frequencies. 
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5.2.1 Two-Sample (Allan) Variance 

The two-sample variance was first introduced into frequency stability 
measurement by Allan [5.6] in the form of (5.1). The Fourier transform 
of the rectangular unit pulse p(t) of width τ is 

Ρ{ω)=Χ-Ί )
e-Mift = I . _ L ( e - ^ - e > r / i ) = «5ί»^21 5 8 

r > T —ja> ωτ/2 
-ir/2) J 

Since the Allan variance is composed of one negative and one positive 
pulse, the height of the rectangular pulses hA(t) in the two sample (Al-
lan) variance is 1/V2 because of the normalization, \, in (5.1) (see Fig. 
5.1a). Thus, by applying the shifting theorem we find the transfer 
function ΗΑ(ω) to be 

HÄ») =P«o)(e^ - e-*-")± = J l ™ ^ 5.9 
V2 ωτ/2 

By introducing the normalized frequency, x, which simplifies compu-
tation, we get 

■ 2 

I HA(x) | = V 2 ^ ^ - χ = ωτ/2 = πτ/ 5.10 

The plot of the square of the transfer function \HA (*)|2 is shown in Fig. 
5.16. After introduction of the above relation into (5.7), we get for the 
Allan variance 

,. . ( , . 2sin x 
a){T) = \Sy(x) — 

0 

dx 5.11 

where Sy(x) is the PSD of the fractional frequency noise. 

5.2.2 Evaluation of the Transfer Functions 

Another approach for evaluation of the above transfer functions in the 
closed form may proceed with the assistance of autocorrelation. After 
reverting to (5.1) and (5.2), we obtain 
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σ\{τ) =-< (ykH - ykf > = < [φ(2τ) -φ(τ)- φ(τ) + φ(0)Ϋ >= 
1 V-πτ) „) 

1 < [φ\2τ) + Αφ\τ) + φ\0) - 4φ(2τ)φ(τ) - Αφ{τ)φ(0) + 2φ(2τ)φ(0)] >= 
(2πτ// 

2{2ΤΓΤ/Ο) 

1 

1 5.12 
Ϊ [ 6 Α , ( 0 ) - Ζϋφ(τ) + 2R4,{2T)] = 

i^rff 
\SJLW - 4cos(27r/r) + COS(4TTfr)]df 

and finally (with the Dwight formula 404.14 [5.7]), 
GO oc 

av(T) = —^—I\s*(fhm\irfT)df = -^—2 f ^ s i n V A ) # 5.13 

Since noise characteristics of oscillators have a piecewise characteris-
tic (cf. Section 2.3.3), 

W ) = i i 5.14 

we easily find that Allan variances also have a piecewise property: 

oo oo . 

2 ί \ 2 f hi . 4 / r x »/· 2/j, fsin (x) , r , c 
W ) = ——jj -£s in {irfr)df = —"]TT Κ τ ώ 5 > 1 5 

which is applied for evaluation of individual contributions [5.8]. 

5.2.2.1 White Phase Noise 

The PSD of the phase and fractional frequency noise in this range is 

Sy(f) = S4,(f) 
\f oj 

= hif2 5.16 

With the assistance of (5.12) or the Korn formula No. 189 [5.9], we 
evaluate the partial Allan variance as 

<r»M>~-^—7 5.17 
(2πτ) 
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5.2.2.2 Flicker Phase Noise 

The PSD of the Flicker phase noise (FPN) is 

W ) = hjl 
f 

and Sy(f) = hJ 5.18 

and with the assistance of (5.12) the partial Allan variance is 

^(T) = 7T^f V - T A * l^^W (5·19) 

(2πτ) I J (2«r) J
0 j 

1 f" h 

(27ΓΤ)2 I f 

(2ΤΓΤΥ J 

(277T) 

1 - cos(x) 1 - cos(2x) 

WSiix^-Si&x»)] 

dx = 

where Sx(x) is estimated using the cosine integral [5.9]; for small argu-
ments of x, its value is approximately 

4 
5.20 

However, for large arguments of x the value is 

Sl(x)^lg(x)+7 (7-0.5772) 

After introduction into (5.19), we finally arrive at 

Ai 
<rl,(T)=„ ,2 

(2πτγ 

Ai 

l{lg{TrrfH) + 7)-lg(2) 

3/i, 

5.21 

5.22 

\ΐ7ττ) {2πτ) 
lg(irrfH) 
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Note that both partial variances, for white and flicker phase noises, are 
inversely proportional to r2, however, for stable crystal oscillators the 
first one generally prevails. 

5.2.2.3 White Frequency Noise 

The PSD of the white noise fractional frequency fluctuations is 

f "' 
Sy{f) = S4{f) 

\JoJ 
ho 5.23 

For the closed-form solution of the Allan variance, we apply (5.15) for 
i = 0 and use tables of the trigonometric relations [5.7] and of definite 
integrals 

J H . Λ , J H 

2 , s J . f sin x , - ho f cos(4x)-4cos(2.x) + 3 

0 , ° 5.24 
}u_ f -2sin(2sy + 8sin( *) ' ^ _ h^ 

5.2.2.4 Flicker Frequency Noise 

This time, we start again with the PSD of the fractional frequency 
noise 

Sy(f)
 = 2T 5.25 

and after its introduction into (5.11 or 5.15), we arrive at 

2 ,(,) = *_, f ^ Φ = 2Λ., f cos(4,)-4cos (2, ) + 3 ^ ^ 

Solution of the integral is performed with the assistance of trigonome-
try and the Korn formulas (2.97, 2.87, and 2.96) in several steps [5.9] 
until we eventually arrive at 

^ . , ( r ) = A-,2/g(2) 5.27 
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5.2.2.5 Random Walk Frequency Noise 

The PSD of the corresponding fractional frequency is 

Sy{f) = Y 5.28 

and after its introduction into (5.15), we obtain 

al2(r) = h^r\M^dx 5.29 

Solution of the integral is again performed with the by parts theorem 
(or with the assistance of the Dwight formula 431.9 [5.7]), applied in 
several steps, with the result 

2 (2TT-)V 
.(τ) = Α_2^—^-~6.58rA_2 5.30 

5.2.2.6 Aging 

In all secondary frequency standard generators, we encounter aging, 
which generally is controlled by an exponential law. However, in tens 
or hundreds of seconds we may consider a linear change of frequency 
with time: 

Λ ( 0 = / β + ̂ - Δ / 5.31 

from which the fractional frequency is 

1 ίΔ/ 
y*+ry,+-r\-£-dt = yi,+DyT 5.32 

Jo 0 

With the assistance of (5.1) the Allan variance is 

(XaginglTJ 5 . J J 

where the secular frequency change, Dy, is in fractional frequency per 
second or per day. 
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5.2.2.7 Sinusoidal Frequency Modulation 

By considering a sinusoidal frequency modulation (FM) with frequen-
cy Λι> w e obtain for its PSD 

s,(/>4 
ίχω\ A 

S{fm) 5.34 
V (Oo J 

where 8(fm) is the power of the spurious modulation designated as a 
delta function, and after introduction into (5.11), we arrive at the cor-
responding Allan variance: 

<XFM ( T ) = 

/ J . A 2 „ : _ 4 
ω 

V (Oo ) 

sin (irfm T) 

WmTY 
5.35 

Examination of (5.35) reveals zeros for^,T= integer. From this condi-
tion, we easily find the carrier of the modulation frequency (Fig. 5.3a) 
with Tplotted linearly and rplotted logarithmically (Fig. 5.36). A prac-
tical example is illustrated in Fig. 5.3c, where the FM is generated by 
the oven switching on and off. 

5.2.3 Piecewise Property of the Allan Variance 

The mutual relationship between the time domain frequency stability 
measurement, with the assistance of the Allan variance, and the corre-
sponding PSD of the fractional frequency noises, expressed as Sy (/), is 
summarized in Table 5.1 

In the previous sections, we evaluated the Allan variance as a func-
tion of the different types of noises encountered in practice. Since both 
PSDs Sy(J) and SJJ) can be piecewise approximated (cf. Chapter 1), 
we conclude the same property for the Allan variances as well (Fig. 
5.4a): 

a\r) = ^ + ̂  + b0 + bir + b2T
1 5.36 

T r 

Note that bt constants, read from the time domain measurements and 
summarized in Table 5.2, are proportional to the fractional frequency 
noise constants A,·. A short investigation reveals that b_2 is generated by 
white and flicker phase noises and is proportional to the upper bound 
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Fig. 5.3. (a) Allan variance with a sinusoidal FM by a 5-Hz signal with τ plotted lin-
early. (b) Allan variance with a sinusoidal FM by a 100-Hz signal with τ plotted loga-
rithmically. Finally, a practical example is illustrated in (c), where the FM modulation 
may be generated by the oven switching on and off [5.10]. (Copyright © IEEE. Repro-
duced with permission.) 
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T a b l e 5 .1 Conversion between spectral densities, Sy (/), two-sample variances, σ2(τ), 
and modified Allan variances, Mod σ2(τ), for a power law noise spectral density model 

SyW 

h2p 

hj 

K 
A.,// 

hj1 

Sinusoidal PM 
modulation 

Aging 
dyldt = Dv 

σ?(τ) 

3h2fH/(2wr)2(2TnfH>\) 

A,[1.38 + 31n(7nf„)]/ 
(2πτ)2 

V 2 T 

2A_,ln2 = 1.39 A , 

(2T7)2TA_2/6 = 6.58TA_2 

( Δ ω / η ω ) 2 ^ - / , ) times 
[sin2(77/-„T)/2(iif„T)]2 

(TÖ//2 

Slope of CT (̂T) 
vs. r(dB) 

-20 

-20 

-10 

Zero change 

+ 10 

Periodic 
change 

+20 

Mod σ*(τ) 

6τττΜΑ2ττΝτ0)
3 

Α,[1.38 + 1η(2Λί/„τ„„)] 
\(2πΝτ„Υ 

AO/27VT0 

Α_,21η2= 1.39 Α_, 

(2TT)2/VA_2T/6 =» 6.58Μ-Α_2 

(Δω/ηω0)2 times 
[2sin\NTTfmTo)/2(N-nfmT0)r 

(NrJJ^/2 

Slope of σ^(τ) 
vs. r(dB) 

-30 

-20 
(N> 1) 

-10 

Zero change 

+ 10 

Periodic 
change 

+20 

of the low-pass measurement filter^. For large corner frequency^, the 
white phase noise (WPN) dominates, whereas for small fh the FPN 
prevails. The value of b_x is generated by white frequency noise 
(WFN) and, for example, for crystal oscillators in the 5- or 10-MHz 
ranges its contribution is small. The Allan variance plateau provided 
by the b0 constant corresponds to the flicker frequency noise (FFN). 
Often this is the most important information about frequency stability 
at low Fourier frequencies of the investigated generators. However, 
care is necessary since its magnitude might often be smeared by the 
neighboring terms [cf. (5.36)]. The constant b, originating in the ran-
dom walk of frequency is generally related to environmental fluctua-
tions and infrequently with additional nonlineanty in the oscillating 
network. The last right-hand side (rhs) term in (5.36) is generated by 
aging and provides very important information about the quality of the 

T a b l e 5 . 2 Allan variance and slopes of the reconstructing asymptotes 

b-i 2,βφ2Ι(2ττττ)2 + -20 dB/decade h_2 = 0.076 b_2/hH 

A,[1.38 + 3\η(ωΗτ)]/(2π)2 h_x = 7.15 b_2 

b_x hjlr -10 dB/ decade h0 = 2b_] 

b0 2A_,ln2 Zero change h_x=ba 

bt (iTffrhJd +10dB/decade A_2 = 0.15 6, 
b2 ( T D ) 2 / 2 +20dB/decade Dy = 2b2 
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investigated precision frequency standards. Summarizing, we are able 
to read from the Allan variance stability plot at least a few frequency 
domain characteristic constants, particularly for very low Fourier fre-
quencies where the type of the originating noise is often uncertain. The 
situation is illustrated in Example 5.1. 

EXAMPLE 5.1 
As an illustration, we investigate the phase noise and time do-
main characteristic for a 5-MHz ultrastable crystal oscillator dis-
cussed by Candelier et al. [5.11]. The mean phase noise readings 
are summarized in Tables 5.3 and 5.4, the respective time domain 
measurements. With their assistance, we plot the piecewise ap-
proximation of the corresponding Allan variance (see Fig. 5.4a); 
from intersections with the vertical line, τ = 1, we find out the in-
dividual bt constants summarized in Table 5.5(a): 

σ
2 ( τ ) ~ - ^ + — + 10-264 + 10-28'V+10-32V 5.37 

T T 

Note that (5.37) enables us to estimate the aging to be ~ 10~1615/s, 
(i.e., ~ 10""/day). Further, we may compute the random walk of 
frequency (RWF) and FFN noise coefficients h_2 and h_u and, 
surprisingly, also the WFN h0 coefficient (Table 5.5b). However, 
the usefulness of b_2 is doubtful since it combines the FPN and 
WPN noises with the measurement filter passband fH. The phase 
noise characteristic plotted with the assistance of Table 5.3 to-
gether with the information about the RWF from the time domain 
measurements reveals (Fig. 5 Ab) 

Table 5 . 3 PDS of an ultrastable 5-MHz crystal oscillator" 

Frequency offset/in (Hz) 1 10 100 1,000 10,000 
PSD SJif) (dB/Hz) -131 -147 -156 -156 -150 

"Adapted from [5.11]. 

Table 5 .4 Allan variances of an ultrastable 5-MHz crystal oscillator" 

T(S) 1 2 4 8 16 100 400 1000 5000 
σ<τ)χ10-13 0.67 0.6 0.58 0.65 0.75 1.1 1.5 2 6 

"Mean values from [5.11]. 
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Fig. 5.4. (a) Plot of the Allan variance. Circles mark the Allan variance data from 
Table 5.4; points indicate contribution of the WPN; thin full line asymptote contribu-
tion from FPN; dashed line asymptote from WFN; the horizontal thin full line, contri-
bution from FFN; the dashed line, asymptote with the positive slope RWN contribu-
tion; points with positive slope, aging (b). The corresponding phase noise 
characteristic based on the data from Table 5.4 with the RWN asymptote estimated 
from the Allan variance plot. Circles mark the phase noise data from Table 5.3; full 
line the estimated PSD; asymptotes; points are the FPN; dash-dot FFN; dash RWN. 
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Table 5.5 (a) Constants b, of a 5-MHz oscillator read from Fig. 5.4a 
i - 2 - 1 0 1 2 
bi 10-27.6/-27.4 {fH=T,\e Hz) 10272 10264 10283 10"323; Aging 101615(Hz/s); 

10" (Hz/day) 

Table 5.5 (b) The frequency and phase noise coefficients of a 5-MHz oscillator 
computed from the Allan variances read from Fig. 5 Ab 
i 
K 
SJf= 1) 

-2 
, 0-29.1 
10-15.7 

-1 
! 0-26.7 

10-13.3 

0 
! 0-26.9 
! 0-13.4 

1 
! 0-27.2 

. 1 0 < 1 3 8 

2 
io-29 

,0-15.6 

W ) 7 7 7 7 a ' ~ 
10-.,7 | 1 Q - , 3 . 3 | 1 Q - . 3 . 3 | 1 Q - . 3 , | ^ [ s 6 5.38 

/4 f f f 

The value of the coefficient a4 = h_2fl is found from the Allan 
variance plot for large τ = s. We expect that the term a4 If

4 is due 
to the environmental variations, probably temperature. The au-
thors indicate the thermal sensitivity of the frequency to be ~3 χ 
10"13/°C, which corresponds to the temperature fluctuations of 
~0.01°C. 

5.2.4 Confidence Interval 

The true Allan variance is defined as the mean from an infinite num-
ber of samples. This is not the case in real life, particularly, for larger 
evaluation times. Consequently, introduction of the confidence inter-
vals is of importance, especially in cases where only a few measure-
ments are available. The general approach is based on χ1 statistics 
(e.g., [5.12 or 5.13]): 

f- = 4 ; E[x2] = d.f; VM[/] = 2(d.f) 5.39 

where s2 is the sample variance, a2 is the true variance, ΕΙχ2] is the av-
erage or the expectation value, and d.f. is the number of degrees of 
freedom. 
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In short, here we recapitulate the investigation performed by sever-
al authors [5.14-5.16]. The effort was to find the value of d.f. for dif-
ferent types of noises. The results for the normalized variances are 
summarized in Table 5.6. Generally, 

σ d.J. 

Note that for the white and flicker phase noises, degrees of freedom 
are defined as 

, . M m-\ 
d.f.~— = 5.41 

2 2 

where m is the number of measurements of individual mean frequen-
cies {y). However, for flicker and random walk frequency noises, indi-
vidual samples are nearly independent of each other and the processes 
retain the full number of degrees of freedom, that is, d.f. =m-\ (see 
Table 5.6 and Example 5.2). 

The relative uncertainty on the estimated Allan variance provides 
another approach for estimation of the confidence limits [5.14]: 

1 m 

σ\τ) 7%(yt-y,-i)2 i, x i, , 
A _ M-l^T _a(r)-s (r,m) $ 4 2 

σ\τ,τή) σ\τ,ηΐ) 

T a b l e 5 . 6 Normalized variances for different types of noises, evaluated by several 
authors [5.14-5.16] 

Noise Lesage and Yoshimura Howe, Allan, and 
type Audoin[5.14] M>\ [5.15] M>\ Barnes[5.16] M>\ 

WPN (35M-\%)/9M2 3.89/M ((35-18)/9M2 

FPN 35M-18V9M2 3.89/Λ/ M=2 

2.83/A/ 

WFN (iM-l)IM2 VM (3M- l)/\fi 

FFN (23M-.3)/M2 2.VM M = 2 
2Λ/Μ 

RWN (9M-\)/AM2 2.25/M 21M 

3.89/M 4(Αί+1)/Λ/(Λ/+3) AIM 

M= 100 
3.73/Λ/ 

VM 9(M + 2)/(3M2 + ΊΜ + 6) VM 

W=100 {2.3M-0.3)/M2 2.VM 
2.21IM 

21M 2{M-\)I 21M 
[M(M+ 1)2-3(M+ l) + 4] 
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With the assistance of (5.41), we get for the expected true variance 

σ(τ)« Ä(T) 5.43 

Another simple method for computing the confidence interval, applic-
able for d.f. > 10, which assumes a symmetric normal (Gaussian) dis-
tribution, uses the relation 

I a" sir) 
Kg 

4m 
5.44 

where Ia is the confidence interval (for 1 σ or 68% confidence interval) 
and Ka the experimental constant evaluated by Lesage and Audoin 
[5.14, 5.18] are shown in Table 5.8. 

EXAMPLE 5.2 
Evaluate the confidence limits for σ(τ) of the corresponding S{T) 
= 5 x io-12 computed from 10 measurements, that is, m - 1 = 9 
degrees of freedom. From Table 5.7, we find for the range be-
tween 5 and 95% for the 9 degrees of freedom: 

^(0.05) = 3.33 and ̂ (0.95) = 16.92 

where the corresponding confidence interval of σ(τ) is 

3.6 x 10"12<σ(τ)<8.2χ 10~12 

Table 5.7 χ1 Distribution for the 1-a confidence Interval for a2 for 1-10 d.f. (i.e., for 
the 90, 80, and 60% confidence intervals) [5.4, 5.14] 

d.f. 

a = 0.95 
a = 0.05 
a = 0.90 
a = 0.10 
a = 0.80 
a = 0.20 

1 

0.0039 
3.841 
0.016 
2.706 
0.064 
1.642 

2 

0.103 
5.991 
0.211 
4.605 
0.446 
3.219 

3 

0.352 
7.8.15 
0.584 
6.251 
1.005 
4.642 

4 

0.711 
9.488 
1.064 
7.779 
1.649 
5.989 

5 

1.145 
11.070 

1.610 
9.236 
2.343 
7.289 

6 

1.635 
12.592 
2.204 

10.645 
3.070 
8.558 

7 

2.167 
14.067 
2.833 

12.017 
3.822 
9.803 

8 

2.733 
15.507 
3.490 

13.362 
4.594 

11.030 

9 

3.325 
16.919 
4.168 

14.684 
5.380 

12.242 

10 

3.940 
18.307 
4.865 

15.987 
6.179 

13.442 
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Table 5 .8 Constants Ka for approximate evaluation of the confidence interval in 
accordance with relation (5.44)" 

Type of noise 

Ka 

(a) WPN (2) 

0.99 

FPN(l) 

0.99 

WFN (0) 

0.87 

FFN(-l) 

0.77 

RWF (-2) 

0.75 

"See [5.18]. 

Evaluation of the true variance in accordance with (5.43) reveals 
the confidence limit 

2.64 x 10-12<σ(τ)<7.36χ 10"12 

whereas with (5.44) for m = 9 and FFN 

3.72 x 10-12<σ(τ)<6.28χ 10"12 

5.2.5 More Sample Variances 

Investigation of Fig. 5.1b reveals that the effective Q of the Allan vari-
ance is rather low (actually ~ 0.75). Much activity was dedicated to 
mending this drawback. One remedy is to use more sample variances, 
especially the so-called Hadamard transform [5.4]. It is based on (5.4) 
with equal weighting coefficients a,·. Its transfer function is shown in 
Fig. 5.2a. The difficulty with spurious responses could be solved by 
applying a binomial weighting on coefficients a, (see Fig. 5.2b). 
Nowadays, these special time variances [5.5] are rarely encountered. 
However, this is not the case with the modified Allan variance or the 
discrete Fourier transform. 

5.2.6 Modified Allan Variance 

The modified Allan variance is based on the overlapping of time sam-
ples, as depicted in Fig. 5.5a [5.19, 5.20]. 

The original definition of (5.1) is enlarged to 

Modo-2,; 1 
2r2 

2/V2 

' 1 N 

5.45 

< %(yi+N-y) > 
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ô 

τ = ητ0 
■4 >> 

10 11 

(3π-1)τ0 

(a) 

h(t) 
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Fig. 5.5. (a) Time domain function of the modified Allan variance with overlapping 
samples, (b) Time response h(t) of one pulse. 

where 

yi+N' 
X,+2N ~ X,+N _ <Kt + iT+ 2NT) - φ(ί + iT+ NT) 

T 2πν0τ 
5.46 

Evidently, the time response h(t) is formed by a superposition of ./V 
pulses of the duration (depicted in Fig. 5.5b) 

r=NTo 5.47 

and delayed successively by T0 (cf. Fig. 5.5a). The corresponding 
Fourier transform of the delaying process is 

1 1 JNmT„ _ 1 

5.48 
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After introducing the negative parts of the pulses, correspondingly de-
layed, we arrive at the transfer function of the modified Allan variance: 

\ΗΜ(ω)\ - 2 — -Τ-Γ—1 
(ΝωΤο/2) Ν 

va\NnfTo) 1 un\N7TfTo) _ 1 

JN ωτ,/2 

, sin 2 sm6(NirfT„) _ 
(ΝΤΓ/ΤΟΫ N2 s i n V / r . ) N4 {irfΤοΫ s i n V / r . ) 

5.49 

sin '(Mc) 1 
N4 x2 sin'W 

(χ = π/Το) 

For small values οίΝτττ/, the last factor, sin2 (Ν/τττ0)/5Ϊη2(/πτ0), sim-
plifies to N2. Thus, for small upper bounds, the modified Allan vari-
ances are equal to simple Allan variance if we introduce in (5.15) the 
variable Nx. However, for larger values of N, the contribution of the 
mentioned factor is negligible (cf. Fig. 5.6). Consequently, the trans-
ferfunction of the investigated type of the Allan variance changes into 
(5.15) and we arrive at 

ay(NTo)= \sy(x) 
J _ A sin6(Afr) 
N4 x2

 sin2W 
d{Nx) 

1 2A, '[ x1 sin6(Nx) 

^ (πτ0Γ ' x2 sin2(*) 

5.50 

Fig. 5.6. Contributions to the modified Allan variance [cf. (5.49)]. 
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In the next step, we evaluate the ratio sin6 {Ν/τττ0)Ιήν^{[τττ0) and get 

s i n \Nx^ = ~[cos(4Nx) - 4cos(2Mc) + 3] = 
s inW 8 5 5 1 

-[-2sin'(2Mc) + 8sin2(Mc)] 
o 

Finally, we arrive at the value of the modified Allan variance as in 
(5.15): 

H (πτ,Γ 8 (NxY 
σΙ(Ντο) = -τ;, 2l",A I -JLi[cos(4Aö:)-4cos(2Aöc) + 3]rf(*) 5.52 

5.2.6.1 White Phase Noise 

With the assumption that the contribution of trigonometric terms in 
(5.52) is small, we evaluate the white phase noise (WPN) component 
of the modified Allan variance as 

σΜ{Ντο) 3 5.53 
(2ΤΓΝΤ0) 

5.2.6.2 Flicker Phase Noise 

The modified Allan variance follows immediately from (5.52) and 
(5.19): 

*1(Ντ0) « f ]*' 2k-S,(4NxH) + 4 5 , ( 2 ^ ) ] - 0 5.54 
{TTNTO) 8 

However, for large sampling times Νπτ0, we arrive at 

VUWTO) ~ ,„ h' ,3([lg(2NxH) +1.038] 5.55 
(2ΤΓΝΤΟ) 

5.2.6.3 White Frequency Noise 

With the assistance of (5.51) and (5.24), we find for the modified Al-
lan variance 
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2h„ 1 -2sm(2Nx) + Ssm2(Nx) J/hr ^ h„ 

πΝΤο[ 8(7Vx) 2NTo 

5.2.6.4 Flicker Frequency Noise 

Solution of the integral will be performed by applying the same proce-
dure as used in connection with solution of (5.27): 

oUNrJ-ΐΗλ^ψα,-2hJ cos(4 )̂-4cos(2 )̂ + 3 ^ ^ 
'„ (Νχγ '{ S(Nx)1 

that is, with the assistance of Korn formulas 2.97, 2.87, and 2.96 in 
several steps [5.9]) until we eventually arrive at a result that is not de-
pendent on the upper-bound frequency: 

o-2*(tfre)~A-,2/g(2) 5.58 

5.2.6.5 Random Walk (RW) 

We proceed in the same way as above and find that the simple Allan 
variance and the modified Allan variance are the same with respect to 
sampling time: 

< Γ * ( # Γ β ) ~ Λ - 2 # τ „ ^ - 5.59 

5.2.6.6 Relation Between Allan Variance and the 
Modified Allan Variance 

Comparing modified Allan variance relations (5.52)—(5.57) with the 
time domain measure of frequency stability with the simple Allan vari-
ances, discussed in Section 5.2.2, reveals a major difference only for 
the WPN and in instances where the cut-off frequency, fh, of the mea-
surement device is rather large. In that case, we encounter the change 
of the slope from 20 to 30 dB/decade (see Table 5.1). In all other cases, 
the differences are rather small (see Fig. 5.7). However, the confidence 
interval is narrower because of increased d.f., since TV = M in Section 
5.2.4. 
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Fig. 5.7. Allan (dashed) and modified Allan variances (N= 16 full line). Points indi-
cate the contribution of the WPN, a thin full line contribution is from FPN, a dashed 
line is that from WFN, the horizontal thin full line contribution is from FFN, and the 
dashed line is with the positive slope RWN contribution. Circles mark the phase noise 
data from Table 5.3. 

5.2.7 Triangular Variance 

In the digital age, the transfer function of the triangular variance is effec-
tively a sampled one. Consequently, one must expect that the triangular 
variance is equal to the modified Allan variance with a very large N. 

5.3 TIME JITTER 

Time jitter measurement is another time domain method for evaluation 
of the frequency stability. Precise timing information is required in 
many applications, particularly in those dealing with digital signals. 
The consequence is the increased demand on the frequency stability of 
clock oscillators, modulation processing, transmission hardware, and 
prompt information about the quality of the connection. Degradation 
of the digital information depends on the presence of the phase or fre-
quency noises, particularly by shifting the switching levels between in-
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dividual l's and O's (cf. Fig. 5.8) Consequently, the corresponding time 
jitter of individual bit edges becomes a significant and very important 
parameter in modern communications, in high-performance comput-
ers, and many other digital devices. To this end, new measurement sys-
tems also were introduced. Evaluation of the time jitter (generally 
specified in picoseconds) from the phase noise spectra yields the most 
important method for its evaluation [5.21, 5.22]. A very important 
technique is the investigation of the HF signal traces on oscilloscopes, 
the so-called eye diagrams, and application of the statistics of the tim-
ing errors as a tool for decisions about the origin of the time jitter, par-
ticularly for evaluation of the expected bit error resolution (BER), for 
histogram appraisal, and for investigation of some problems in digital 
communications [5.23-5.25]. 

5.3.1 Types of the Time Jitter and Defining Units 

First, we consider the carrier transferring information 

^sin Αύη[ω0ί + \co(t)T0 + <p{t)l-

5.60 

^sin co0(t + A(t) + 
<FÜ) 

Ct)o 

where Δ(/) and φ(ί)Ιω0 are slowly varying time functions representing 
the time jitter. As to their origin, they are composed of the bounded de-

Ideal (averaged) waveform 

*ΤΛ, 

ΤαΛ 

AT, d,2 AT, d,3 AT, dA 

Fig. 5.8. Time jitter definitions. 
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terministic parts and the unbounded random time changes (thermal or 
shot-noise phase fluctuations and 1//"components): 

A(t) = j D + JR 5.61 

The origins of the deterministic jitter include 

Duty cycle distortion (DCD): asymmetric rise/fall times 
Intersymbol interference (ISI): from channel dispersion, filtering, 

and so on 
Periodic jitter (sinusoidal spurious signals): power supply, leaking 

reference signal 
Uncorrelated: cross talk coupled to an adjacent signal-carrying con-

ductor 
Electromagnetic interference (EMI): unwanted radiated or leaking 

emissions 
Reflections due to the signal interfering with itself 

5.3.1.1 Period Jitter 

Period jitter simply measures the duration of each period of the investi-
gated waveform (i.e., Tdx, Td2, Tdi) (cf. Fig. 5.8, e.g., in the instants of 
positive zero crossings) with respect to zero crossings of an ideal clock 
period: 

l " 
ATjiner = — ZJ\TVV~ Tclock) 5.62 

It would be zero for the random behavior of ΔΓρεΓ, but not for the cor-
responding variance. The published or sought results are the calculated 
rms difference. 

5.3.1.2 Cycle-to-Cycle Jitter 

Cycle-to-cycle jitter is the time difference between successive periods 
of the investigated signal, that is (cf. Fig. 5.8), 

AC = Td,n*\ ~ Td.n 5.63 
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and can be found by applying the first-order difference operation on 
the period jitter. 

5.3.1.3 Peak-to-Peak Jitter 

Peak-to-peak jitter (the worst case of cycle-to-cycle jitter) is the measure 
of the random jitter combined with deterministic components. However, 
estimation is not a clear-cut one because of the observation time spent on 
unbounded random components (oscilloscope persistence). It is ob-
tained from a histogram of successive edge measurements: 

Atpp*** JD,PP
 + JR.PP 5.64 

The knowledge of the peak-to-peak jitter is needed to appreciate the ex-
pected time interval error. To this end, the total time jitter is defined as 

Atpp.^^Japp + ^o- 5.65 

5.3.1.4 Time Interval Error 

The time interval error is the time difference between the actual and 
expected zero crossing (see ATdi in Fig. 5.8). Its importance is in the 
cumulative effect; once the time interval error reaches ± 0.5 of unit in-
tervals, the eye on the sought oscilloscope is closed and the system ex-
periences bit errors (more on this in Section 5.3.3). 

5.3.1.5 Jitter in the Unit Interval 

The unit interval is the ratio of the spurious phase noise in radians, Δ<ρ, 
divided by 27r(cf. Fig. 5.9): 

j(vtHt) 5-66 

5.3.1.6 Jitter in Units of Time 

Jitter in units of time results by dividing the unit interval by the pulse 
frequency: 

■/(0 = 7 7 L [ / ,= bit period in (s"1)] 5.67 
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Fig. 5.9. Simplified eye diagram with definition of the unit interval (UI) [5.23]. 

5.3.2 Probability Density of the Time Error 

By considering both types of timing errors, that is, the deterministic 
jitter <pjD and the unbounded random jitter <pjR (thermal noise, shot 
noise, 1//"noise), we have 

< φ Xt)> < ψ ID(t)+ φ iR(t)> 
<At>= ' = jD jR 5.68 

2 ^ / „ 2irf„ 

with the variance 

< A(2 >= < <pJD{tY > +2 < <pJD(t) >< φ^ί) > + < <pjR{tf > 

<<pjD{tY>+<<PjR(fy> 

(2irfd)
2 

The above approximation takes into account that the mean value of the 
random jitter is zero. However, the deterministic jitter has different 
sources (cross-talk, spurious magnetic fields, power-supply switching, 
etc.) (cf. Section 5.3.1). It is of a bounded nature usually specified in 
terms of the peak-to-peak value. In statistics, it may be approached 
with the assistance of the uniform distribution (see Fig. 5.10 and Sec-
tion 1.4.2.1): 

p(jc)~ = — — 5.70 
ΔΓ„-(-ΔΓ„-,) 2ΔΓ, 

with mean value (ΔΓ„ + Δί„_,)/2 and variance (ΔΓ)2/3, (1.54). 

(2W\)2 

J"' 5.69 
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-ATX 0 +ΔΤΧ 

Fig. 5.10. Uniform distribution of the discrete noise jitter. 

In the case of the random time jitter, the probability density pre-
sents a Gaussian distribution (Section 1.4.2.4) with mean value μ and 
dispersion a(see Fig. 5. 1 la): 

Λ ( , ) = - | = ^ » - " " ΐ ! 5.71 

with the probability of the investigated event being between points a 
and b (cf. Table 5.9): 

Xb * lb / \ 
I r I Y — / / i 

5.72 PR(x) = —L= L^-^2dx = 4 - \e^'2dt ί = ^ 
σ^2πs V277-J V σ j 

Xa la 

and the corresponding variance o2. 
To estimate the dispersion σ, in instances where we only know the 

mean value μ and the plot of the probability density pR{x), we find on 
the plot the point 

PR(*) = P«.™^5 = 0.607 pRrmx 5.73 

and the distance on the x-axis between pRmaK and/?/Ä=0607 is just equal 
to σ (see Fig. 5. 11a). Nevertheless, there are other points on the x-axis 
that are multiples of small fractions of σ. This information is summa-
rized in Table 5.10. 

Often, estimation of the dispersion is evaluated from the peak-to-
peak jitter, that is, from the difference between the end points xmax and 
xmin. However, resolution depends on the use of a DAC (digital-to-ana-



5.3 TIME JITTER 2 1 1 

0.88 

0.75 

0.63 

? « 
0.38 

0.25 

0.13 

/i\ 
/ ' \ 

/ σ~~* σ \ 

/ \ 
/ ! \ 

/ ' \ 

I I I I I ^ * * « * 

-3 0 

(b) 

1 

Fig. 5.11. Plot of the Gaussian probability density: (a) with the mean value and vari-
ance σ, and (b) normalized with μ = 0 and variance σ = 1. 

logue converter) for the pR{x) reading. From the last two rows in Table 
5.10, we may conclude that 

σ- 7.75 ±0.25 
5.74 

The difficulty with the latter appraisal is that the reading of the end 
points xmax and xmin is rather vague and often blurred with determinis-
tic jitter components. 
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Table 5.9 Gaussian distribution: probability for different ranges from 1 to 3σ 

±1σ 68.27% 1-σ 31.7% 
± 2 σ 95.45% 1-2σ 4.6% 
± 3 σ 99.% 1-3σ 0.27% 

5.3.3 Bit Error Ratio (BER) 

The BER defines the probability of one bit error, that is,, the probabil-
ity for success or failure of the bit transition. Investigation must take 
into account both discrete and random noises. By considering the sam-
pling point just in the center of the unit interval (cf. Fig. 5.9) and the 
random time jitter only, we get for one bit error probability 

Γ erTor 

1 ( Ί T°P 
1 . Z f „ r . 2 1 — 7 = e-**'dt 

V *2π o 
5.75 

where robs is the observation time and the factor \ is for the one branch 
only. Evaluation of the BER for observation times extending over sev-
eral sigmas is summarized in Table 5.11 and the respective plot is re-
produced in Fig. 5.12a. Note that even for BER = 10"18, both branches 
do not close even for a 10-Gbps system. It would take over 3 x 108 s (~ 
10 years) to arrive at one BER. However, in real life the situation is not 
as bright because of the discrete time jitter components. In instances 
where the sampling point is just at the edge of the unit interval of the 

Table 5 . 1 0 Relations between the normalized 
y-values, yly0, the Corresponding x-values, and the 
matched as 

χΐσ 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.7 
4.0 

yiya 

0.882 
0.607 
0.325 
0.135 
0.044 
0.011 
0.001 
0.00034 



5.3 TIME JITTER 213 

discrete jitter, uniform distribution prevails in the range from 0 to ΔΤΧ 

(cf. Fig. 5.10) and one bit error probability is just \. The corresponding 
plot is shown in Fig.5. Mb and is labeled as the bathtub plot since it re-
sembles the cross section of a bathtub (numerical values are recalled in 
Table 5.11). 

5.3.4 Eye Diagrams 

Eye diagrams provide important information about time jitter. Effec-
tively, they are based on the Lissajous figures and present a composite 
view of superimposed waveforms, with a deeper knowledge about the 
bit periods. This knowledge enables a quick appreciation of the total jit-
ter. Advantages of the process are speed and easy measurement arrange-
ment (even with live data). Generally, no more than one or two unit in-
tervals are displayed (see Fig. 5.13), whereas investigation of Fig. 5.13a 
reveals four different trajectories on the bottom in contradistinction to 
only two in the upper part (one may expect four zeros, but only two ones 
in the analyzed waveform part). Further, we notice two different slopes 
for rising and falling edges caused by the deterministic jitter. In addi-
tion, intersections below the threshold level indicate DCD distortion. 
The upper part of the diagram, recalled in Fig. 5.13&, allows more de-
tailed analysis of the random and deterministic jitter. Note that peak-to-
peak deterministic jitter components are identified and labeled J\w and 
J%pp (for advanced and delayed peak-peak deterministic jitter). Finally, 
Fig. 5.13c is used for explaining the total time jitter. We close by stating 

Table 5.11 Bit error ratios of Gaussian 
distribution: probability for a different number of 
as. 

BER 2Νσ 

10^ 7,438 
10 6 9,507 
10 7 10,399 
10 9 11,996 
10-" 13,412 
10 l2 14,069 
1014 15,304 
10^18 17,512 



214 CHAPTER 5 Time Domain Measurements 

- > Νσ ■*-

One bit interval 

Fig. 5.12. (a) Evaluation of the BER for different sigma values in the presence of ran-
dom noise only, (b) The bathtub plot. (Adapted from Agilent Technologies publica-
tions [5.23]. 
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Fig. 5.13. (a) An eye diagram with an irregular shape; (b) the upper part only, allow-
ing analysis of its random and deterministic jitter; and (c) used for explaining the total 
time jitter ([5.23], Agilent Technologies publications). 
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that an oscilloscope with a long-persistent display mode is the easiest 
way to create eye diagrams, that the closing eye points to the presence of 
random time jitter (not to be mistaken for the time-dependent determin-
istic jitter, periodic spurious modulation, etc.), and that multiple rising 
and falling edges result from data-dependent jitter (DDJ). 

5.3.5 Histograms 

A histogram is a plot of the measured set of data (events) on they-axis 
with respect to the number of bins of the parameter (digitized time jit-
ter and others) on the x-axis. Examples are depicted in Fig. 5.14. The 
envelope provides a good estimate of the probability density function 
(PDF) of the process. For a set of the measured data, M, the recom-
mended number of bins (for the Gaussian distribution) on the x-axis is 

« , -2-M 1 ' 3 5.76 

The histogram in the event of a Gaussian distribution of the disturbing 
noise due to triggering on one trajectory only is recalled in Fig. 5.14a. 
In the case of time jitter investigations, such a situation would be 
unique (cf. Fig. 5.9 with singular crossing points without any discrete 
components). However, there is generally a set of triggering points (in-
stants) brought about by deterministic jitter components (cf. Fig. 5.13). 
Each triggering point is accompanied by random noise fluctuations: 
The corresponding histogram of the two neighboring triggerings is de-
picted in Fig. 5.146. 

The resulting dissimilar height of the peaks might be caused by 
different slopes of trajectories since the dispersion, σ, of both noises is 
expected to be the same. Further, the distance between the peaks pre-
sents the corresponding deterministic jitter. Reverting to the two peaks 
here may require a different origin, namely, the presence of a harmonic 
or harmonics in the carrier signal. (The block diagram of a histogram 
principal arrangement is reproduced in Fig. 5.15.) 

5.3.6 Separation of the Random and Deterministic 
Jitter 

Separation of random and deterministic jitter enables a deeper under-
standing of spurious processes in the system and in many instances 
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Fig. 5.14. (a) The histogram in the event of a Gaussian distribution of the disturbing 
noise due to triggering on one trajectory only and (b) a histogram of the two neighbor-
ing triggerings. 

the decomposition may spare difficult or time-consuming measure-
ments. The jitter model most commonly used is based on the hierar-
chy shown in Fig. 5.16. The total jitter of the investigated system is 
first separated into bounded and unbounded families. Furthermore, 
the deterministic group is subdivided in to several categories: for ex-
ample, periodic jitter (PJ), DDJ, and DCD (see Section 5.3.1). Statis-
tical theory teaches that if two or more random processes are inde-
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Oscilloscaope 

Power 
splitter 

Fig. 5.15. Block diagram of the principal arrangement of a histogram measurement. 

pendent, the resulting distribution is equal to the convolution of indi-
vidual distributions. 

The Gaussian distribution was already discussed. The periodic jit-
ter originating from the phase modulation by a sinusoidal signal has 
the following distribution (cf. Fig. 5.17 and [5.13]): 

fy{y) = 
2π§-

for \y\<i 5.77 
y 

On the other hand, the triggering processes (DDJ, DCD, etc.) result in 
simple vertical lines, as indicated in Fig. 5.17. 

Total jitter 
(TJ) 

c* 
Determionistic 

jitter (DJ) 

/ - ► 

. 

^ 

Periodic jitter 
(PJ) 

Data dependent 
jitter (DDJ) 

Duty-cycle 
jitter (DCJ) 

Unbounded 
Random jitter 

(RJ) 

Typical PDFs 

t* >|PJ 

, *u °pj 

, t t DCD 

/ - > i 

^ / V RJ 

Fig. 5.16. The hierarchy of the time jitter model (Adapted from [5.24]). 
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fv(y) 

-0.5 o 0.5 1 

Fig. 5.17. The periodic jitter originating from phase modulation by a sinusoidal signal 
(cf. Fig. 5.16 and [5.13]). 

Separating the random jitter and the deterministic components, de-
picted in the combined histogram, results in finding the corresponding 
dispersion, σ, of the random noise. To this end, it is recommended that 
we evaluate the dispersion sigmas of the far left and right tails of the his-
togram with the experimental fit to the Gaussian distribution graph. 
This is difficult because of the scarcity and insufficient precision of the 
data in the tails due to quantization. The method is described in Exam-
ple 5.3. 

EXAMPLE 5.3 
Estimate the random noise distribution, σ, from the histogram in 
Fig. 5.18. In the first approximation, we compute the peak-peak 
difference p-p = 57 ps and with the assistance of (5.74) we esti-
mate the dispersion: σ= 7.4 ps. For more precise results, we read 
several normalized y- values, yly0, on the left side of the histogram 
(Fig. 5.18), preferably for quantities suggested in Table 5.10, and 
the corresponding x-values minus the expected mean value xy/yo. 
Then we map them on the normalized Gaussian distribution piot 
(Fig. 5.19a) and find the optimum compliance by dividing the 
difference (x - xv/yo) with the anticipated aL (left-hand term). 
Note that changing the estimated xy/yo shifts the curve to the right 
or left, but compliance with the tail values is being set by modify-
ing the sought σ. We apply the same procedure to the right-hand 
tail of the histogram and evaluate aR. The mean value of both sig-
mas is taken for the actual sigma: 

σ = ^(8.0 + 5.5) = 6.75 (ps) 

In addition, we estimate the difference between both mean values 
as the deterministic jitter 
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Fig. 5.18. A histogram to assist computation of crs (Adapted from [5.25]). 

μκ-μι = 5886 - 5875 = 11 ps 

With respect to these difficulties, rareness, and granularity of the 
data, the final solution via a log-log system is recommended (cf. 
Fig. 5.1%, bottom). 

Another possibility for resolving random and deterministic jitter 
provides application of the fast Fourier transform (FFT) on the TIE. In 
this way, deterministic spectral lines (cf. Fig. 5.16) are removed from 
the corresponding output and the inverse FFT reveals only the random 
noise. 

5.3.7 Time Jitter Evaluation from PSD Noise 
Characteristics 

Evaluation of oscillator jitter of phase-locked loops (PLL's) and digital 
communications devices from the measured-phase noise characteristic 
provides the most accurate values for the corresponding time jitter. 
Starting with (5.69) and after limitation to the random process only, we 
arrive at 

< At2 > col = < φ(ίΜΫ ~ 2<AtM)<fit) + <fit)2 >= 

5.78 
2[Ä, (0 ) - / ?„ (T) ] (r = /,♦,-*,·) 

As long as the time readings φ,+, and φ, are uncorrelated, the autocor-
relation RV(T) approaches zero and the root-mean-square (rms) time 
error is 
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Fig. 5.19. Top: Mapping values xv/yo on the normalized Gaussian distribution plot. 
Bottom: Mapping in the log-log presentation. 

1 f" 

A/L = — IsjLfW 5.79 

In instances where the PSD's of the noises of the investigated system 
are known (oscillators, phase-locked loops, PLL, etc.) the estimation 
of the mean value is replaced by integration, that is, 
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i f" 
AfL = — \sjif)df--

J L 

J_'fSy0) 1 
ßnf l~Tdf= (2nf 

hi^^ogUA+h2fH 2/1 fL ' b\f L 

5.80 

Note that introduction of the fraction frequency PSD to the time jitter, 
being a function of the fractional frequency constants /z, only, is not 
changed by frequency multiplication or division. In addition, when we 
know the phase noise characteristic, that is, the power spectral density 
SJJ) in the entire frequency range of the investigated device, the time 
jitter evaluation by the relation (5.78) or (5.79) provides dependable re-
sults. The effective time jitter is generally slightly influenced by the low-
er integration bound. Consequently, it should be defined (e.g., for 
SONET the bandwidth is 12 kHz to 20 MHz), whereas the upper inte-
gration bound is determined by the cut-off frequency, fH, of the mea-
surement pass band. In instances where the approximation of the PSD 
characteristic is known or can be estimated (e.g., the measured phase 
noise characteristic of the PLL, as reproduced in Fig. 5.20) the random 
time jitter can be evaluated with either the assistance of h-factors (5.80) 
or integrated with the assistance of the measured values of Ξψ(β: 

1 f» 
Δί = — J2l0s*</ ' ,"° 

ω° \frfi 

J j+1 —-/ i-
5.81 

Note that SJJ) = 2!£(f) is equal to the two noise side bands. Finally, the 
dispersion of the phase noise in degrees evaluated from the time jitter is 

A^degree = A;™.!-/I)-360o 5.82 

EXAMPLE 5.4 
Evaluate the period jitter of the precision 5-MHz oscillator dis-
cussed in Example 5.1. By introducing the numerical noise fac-
tors A, from Table 5.5(6) into (5.80), we find that the only impor-
tant contribution to the jitter in the entire frequency range from 1 
Hz to 1 MHz is from white phase noise, that is, 

1 (Af)ms« — Vl(T2<" + l(r292+6=0.4x 1(T12 (s) Δ^ = 0.72° 5.83 
Ίττ 
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EXAMPLE 5.5 
Evaluate the period jitter of the PLL having output frequency in the 
range of 3.5 GHz with the 50-MHz crystal oscillator reference. 
With the assistance of the phase-noise characteristic, shown in Fig. 
5.20, and (5.81) in the range from 10 kHz to 100 MHz, we get for 
the rms of the time jitter and degrees in the unit interval 

4/™, = 1.56 x 10- A<PdeK = 2° 

5.3.7.1 Time Jitter with Spurious Signals 

Spurious side bands generated by phase or frequency modulation by 
small sinusoidal signals are uncorrelated with the random components. 
Consequently, evaluation of the time jitter proceeds in accordance with 
(5.80), that is, 

Δί 
1 /« 

(2πγ fL 

Sy(f) 

+ * i 
\.ωη 

\ Cum J 
*/„) df 5.84 

5.3.8 Time Jitter Evaluation From the Time Domain 
Measurements 

The time jitter evaluation in the time domain is commonly measured 
between zero crossing of two or more periods. In that case, the differ-
ence between the consecutive readings is 
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Fig. 5.20. Phase-noise characteristic of the PLL. 
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2nfoti + <pitl) = 0 and 2π/οίι + φ(.ί2) = 2πΝ 5.85 

(cf. Fig. 5.8) from which 

2irf0{t2-ti) + v(t2)-9<ti) = 2irN 5.86 

The time jitter accumulated during the Nperiods [cf. 5.1, 5.26] is 

Δί = ( ί 2 - ί ι ) - Μ ; 5.87 

and with the assistance of (5.78) we arrive at 

0O 

: Δί2 > = -^[RjiO) - RJ[T)] = —2 \sjj\\ -coS(2irfT)]df = 
COo Wo J

0 

_ oo 

i\s*f)&m\nfT)df (r=tIH -t,=NT0) 2 

Note again the similarity with (5.12), but the filtering function is sim-
pler, given by (5.8) (cf. Fig. 5.56). However, in real life actual integra-
tion bounds are reduced by the measurement system XofH and by the 
measurement time t o ^ . By considering that the overall phase is equal 
to the measurement time τ, we may assume that 

fL~T- XL=irrfL = 0.5 5.89 

After introduction of the PSD of fractional frequency fluctuations, we 
change relation (5.88) into 

<Af2> = - M ^ s i n W Y ) r f / 5.90 
2π \L f 

and with the assistance of (5.14) and (5.11) we arrive at 

A/L^j^einWr^^-^J^Ä 5.91 
2π J / 2(τττ) J x 

J L XL 
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Next, we investigate the time jitter brought about by individual noise 
segments. 

5.3.8.1 White Phase Noise (WPN) 

In this range, the phase noise PSD SV(J) is independent of the Fourier 
frequency. However, the upper b o u n d s depends on the measurement 
system. Consequently, its contribution is easily evaluated with the as-
sistance of (5.88): 

AtL ^~^\ήη2(χ)αχ = -^/Η^-2ΞΦ(η/Η 5.92 
2(ΤΓΤ) ' (277") Wo 

However, in the steady state, the corresponding time jitter variance is 
proportional toy^ (i.e., to the upper bound of the integration range). 

5.3.8.2 Flicker Phase Noise 

We start with the assistance of (5.88) and (5.91), and with application 
of the cosine integrals (e.g., [5.9] p. 866) we arrive at (i = l ) 

2x 

<At'>=-^-2 [ ' T ^ 7 d(2x) = -r-i[Si(2xH) -Sx(2XL)] -
(2π)2} 2χ (2π)2 

(27Γ) 
:[lg(2x„) + 7-Ci(2XH) - lg{2XL) - γ+ Ci(2XL)] » 5.93 

h 
(277) 

lg(f„/fL) ^ = 0.5; r = 0.5772) 

5.3.8.3 White Frequency Noise 

By introducing from (5.14) the corresponding PSD of fractional fre-
quency fluctuations into (5.91), we get 

<At2> = ~\^2^Adx 
x 

2^_h0T [ sin2(*) , _ h„T 
2TT J x2 2ir 

77 ^^^dx 
2 i 2 

\~ o x J 

277-12 XL) 2ΤΓ (27T-)2/ 

5.94 

* * Ι ~ τ ^ ~ „ . 2 . [ 1 ^ 0 . 5 ] 
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In instances where the integration limits are from zero to infinity, the 
time jitter would be 

4 
5.95 

5.3.8.4 Flicker Frequency Noise 

After introducing the coefficient ht (i = -1) into relation (5.91), we ar-
rive at 

< Δ , 2 > = Α ν Τ ΐ - « ^ 2 χ ) ^ ) = 

2 J 2x 

h-ιτ 1 COS(2JC) sin(2x) 
' 2 7 + _2? x~ 

XH . ( cos(2x) ,. . 
+ 2 I —L—Ld(x) 

x 
5.96 

h\T r , c ,,_ ,^ \τ_. Α-ιτ - [1 .5-2α(2χ,)] = [^ = 0.5] 
4 ' - " """ 2 

with the assistance of the Korn formula 287 and 297 [5.9] at (/' = -1). 

5.3.8.5 Random Walk Frequency (RWF) 

Finally, we pay attention to the case of the RWF noise, however, from 
the artificial rather than the practical point of view. In the same way, 
we proceed as with the FFN and arrive at 

<^>=JLllLl^dx = !L^l^cos(2X)d(x) = 

2(ΤΓΤ)~ 

h-iirr 

4 

h-2-η-τ 2 
4 3 

1 cos(2x) 
3(x)3 3(x)3 

sin(2x) cos(2x) 
2(x)2 

u 3 i x3 

XH . f sin(2x) .. . 
- 2 I —L—Ld(x) 

x 
5.97 

h-iTTr 1 (IT 

XL 

h-ιΐττ 

■SP-xL) 

...[** = 0.5] 
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5.3.9 Correspondence between Time Jitter 
Measurements 

Principles of the frequency stability of precision oscillators, frequency 
synthesizers, and other frequency generators and devices are based on 
both frequency and time domain systems. The principles were dis-
cussed in a special issue of the IEEE Proceedings, Feb. 1966 [5.1], and 
have been finalized since then. The efforts to eliminate the conver-
gence problem in instances of the \lfa or pink noises initiated in the 
time domain frequency stability measures of the two-sample variance, 
generally designated as the Allan variance. Here, we have summarized 
the corresponding properties and provided an analytical solution with 
the goal of finding the closest relations to the frequency domain mea-
sures. We have paid particular attention to the confidence intervals and 
to the relations between the original Allan and the newer modified Al-
lan variances. 

The second part of this chapter was dedicated to the problems of 
time jitter, which gained importance with the introduction of digital 
communications in the gigahertz ranges. We have paid attention to de-
finitions, to bounded and unbounded (discrete) fluctuations, and other 
particular properties, and evaluated the expected rms jitter with both 
approaches (i.e., by integrating the known PSD's from the frequency 
and time domains). An accurate analytical solution proved that both 
approaches are identical despite the phase accumulation problems 
[5.26] mentioned for the time jitter digital measurements [cf. (5.78) 
with (5.90-5.97)]. 

5.3.9.1 Correspondence between Simple Time Jitter 
and Allan Variances 

After comparing the above evaluated time jitter relations, normalized 
to the square of the averaging time r, with the earlier computed Allan 
variances, we easily find a mutual correspondence. To this end, we di-
vide (5.15) by (5.88) to find the correspondence 

2h,r ismixldx f m M Ä 

<rW_ (̂ ),+IJo x2-' _ / , ^ 5 9 g 

< Δ ' 2 > _A,r2 .7sn! i i i Ä 7sin2(x) 
2(πτ),+ί } x2- ) x2,dx 
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As a rule of thumb, Δί2 estimated from the Allan variance is about 
three times larger than that obtained in the period jitter measurements 
or computed from noise PSD characteristics. 
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Today's phase-locked loops (PLLs) are important tools in modern 
communications. They are encountered practically in all types of fre-
quency synthesizers, precision frequency generators, transmitter-ex-
citers, receiver-local oscillators, and other devices. Their most appre-
ciated properties are the increased stability of the output frequency, 
reduced noise close to the carrier, and frequency synthesis even in re-
duced integrated systems. 

6.1 PLL BASICS 

There are many textbooks [cf. 6.1-6.7] dealing with the design and 
properties of PLL systems. Here, we follow the earlier treatment by 
Kroupa [6.6]. The most important starting feature is the output frequen-
cy fa, and its range and frequency tuning steps, if any. Next are the 
choice of the input frequency^ and the reference frequency/, (if differ-
ent from^). From the stability point of view, the input frequency gener-
ator should be a precision oscillator. Generally, it is a crystal oscillator, 
preferably with a carrier frequency of tens of megahertz. An input fre-
quency in the range of tens of megahertz is advantageous. 

With this preliminary information, we are prepared to discuss the 
essentials needed for understanding or designing PLLs. The basic fea-
ture is the feedback system whose simplified block diagram is shown 
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in Fig. 6.1, which has a phase detector, reference and output frequen-
cies, phase amplifier, and stabilized output oscillator. 

However, this simplest first-order arrangement will be applicable 
in exceptional instances only. Usually, in the forward path we en-
counter a loop filter and in the feedback path either a simple divider or 
system of mixing circuits, as shown in Fig. 6.2. The analysis of the 
PLLs locked loops is performed using the Laplace transform notation: 

K 1 
[<pm(s) - 0ont(s)]KdKAFL(s) — — = Φνα,Ο) + ΦΜ 

s N 
6.1 

6.1.1 Loop Gain and the Transfer Functions 

Analysis of a PLL begins with investigation of the open-loop gain. The 
most important blocks are the phase detector with gain Kd (V/2TT), 

Input 

o>hV>i{t) 

Phase detector 
(PD) 

Vd(s) - Kd<fie(s) 

i i 

vd(t) 

DC gain 

KA 

< — 

Volatge controlled 
oscillator (VCO) 

v2(t) 
Φο^νζ(ε) 

Output 

i 

ω 0 ; <Po { 

Fig. 6.1 The block diagram of a first-order PLL with an additional DC gain KA [6.6]. 

Input 

α>ί'<Ψί(*) 
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Feedback 

Volatge controlled 
oscillator (VCO) 

v2(f) 
Φο^νζ(3) 
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Ou 

ω0 

Fig. 6.2 Block diagram of a PLL synthesizer with a divider in the feedback path 
[6.6]. 
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loop-filter transfer function FL(s), oscillator gain K0 (Hz/V), and the 
feedback transfer function, which is generally the frequency division 
factor N = ω,/ω0. In exceptional instances, an amplifier gain KA is 
added: 

K 1 K 
G(s) = KdXKAXFL(s)x — x — = FL(s)x— 6.2 

s N sN 

After introducing the loop gain into (6.1), we find that the steady-state 
output phase is 

(ZU*) = 0m(s). f ^ . + ΦΜ, ^ I, , 6.3 
1 + G(s) 1 + G(s) 

and the transfer function /f(s) between the output and input phases of 
the closed loop is 

II(s)_0Us)_ G(s) _ KFL(s)/sN _ KFL(S)/N ß4 

0js) \ + G{s) \ + KFL{s)/sN s + KFL{s)/N 

The asymptotic approximation reveals 

H(s)~\ s<KFL{s)/sN for small (s) 

H(s)~ KF^s1* s>KFL(s)/sN for large (s) 

The transfer function, 1 - H(s), between the output and the VCO phase is 

l _ 7 / ( s ) = * - ! ( £ ) = _ L _ = £ 6 .6 
0vco(s) l + G(s) s + KFL(s)/N 

The asymptotic approximation reveals 

l - / / ( s ) = S<KFL(S)/SN for small (s) 
KFL(S)/SN 6.7 

l - # ( s ) « l s>KFL(s)/sN for large (s) 

In the majority of practical PLLs (in communications), the feedback 
block is a divider. Without any loss of generality, we assume that the 
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gain KdK0 = K' is reduced in proportion to the division factor N to a 
new value K primed (an effective multiplication of the output phase is 
performed in accordance with Fig. 6.3c) and a new reduced gain is 

K' = KdKolN 6.8 

The transfer functions of these simple PLL's normalized to the gain K 
are reproduced in Fig . 6.3. 

Fi(s) 

■+—r+ F,(s) 

F2(s) 

-*— 

F2(s) F,(s) ■ F2(s) 

(a) 

— H + X r + 

F,(s) + F2(s) 

(b) 

?w 
r 

KF(s) 
s 

N 

1 r 

Hi ?w 
r 

KF(s) 
SN 

4 

■ N 

(c) 

Λ* 

r 

KF(s) 

■M 

' ' 
- € > KF(s)M 

t>- M 

(d) 

Fig. 6.3 Simplification of the block diagrams of PLL: (a) series connection, (b) par-
allel connection, (c) and (d) feedback arrangement. There are even more complicated 
systems [6.6], 
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6.1.2 The Loop Filter 

The next step in evaluating the open-loop gain, G(s), and PLL proper-
ties is to introduce the filter function into the PLL relation (6.2). At 
first, we suggest a simple RC filter (Fig. 6.4a), then an RRC or (RCC) 
arrangement (Fig. 6.4b), or even an integrating RCC filter (Fig. 6.4c), 
which combines advantages of both filters with additional integration 

=pc 
T1 = RC 

F(S): 1 
1 +ST-, 

(a) 

« 1 

T, = C{R, + R2) 
12 = Ori2 I 

X 
F(s) = 

c2 
II 
II 

R 

η = (C + C2)R 

1 I 

(b) 

AZ, 

i 2 o 3 

R5 I C μώ^ 

^s ) = - = — ^ , 1 «. lim F(s) = -^- F(s)~ 
Ζ2-Ζλ(Α-Λ) A - » - W Z, r^> SCR^ 

(c) 

1 + sCRo 1 + sT? 
sT. 

Fig. 6.4 Second-order PLL loop filters: (a) a simple RC filter; (b) phase-lag lead 
or proportional-integral networks (RRC or RCC combination): (c) general arrange-
ment and active phase-lag lead network (dashed line is the third-order loop configura-
tion). 
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and at the same time changes the loop from type I into type II (see 
Section 6.1.5). For all three layouts, we get the following transfer 
function: 

F(s)= l + sTl 6.9 
sTj + l/A 

For arrangement (a) we put T2 = 0 and A = 1; for (b) we put A=\; and, 
finally, for (c) A is approximately infinity. 

6.1.3 The Voltage-Controlled Oscillator Gain 

The VOCs were discussed in Chapter 3, where we concluded that a 
small spurious voltage introduced into the resonant circuit changes the 
oscillating frequency and, after integration, also changes the oscillator 
phase in addition to the effective gain KJs. (See also Section 6.10 on 
synchronization.) 

6.1.4 The Open-Loop Gain 

When introducing the above relations Kd and K0 into (6.2), we get for 
the open-loop gain 

sTi + l/A s N s T\ 

where K' divided by Tx has a dimensions of Hz2. Its introduction into 
(6.4) reveals a general form of the PLL transfer function: 

( ΐ + ,Γ ,χ* ' /Γ , ) 6 1 1 

s +s(K'T2/A)/Ti + K'/Tl 

6.1.5 Order and Type of the PLL 

The order of the PLL depends on the order of the polynomials in the 
denominator of (6.11). We designate the PLL as first order if no filter 
is used, that is, FL(s) = 1, as second order with a filter of the type indi-
cated in (6.9), and so on. In accordance with the number of integrators 
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in the open-loop gain (1/s or \ls2) we call the loops type I or type II, 
and occasionally type III. The second-order loop of type I or II pro-
vides the bases for the design of many PLLs. Its main feature is the un-
conditional stability of the corresponding feedback systems (of the 
second order) that are be discussed later. Note that the operation am-
plifier in the loop filter in Fig. 6.5c changes the transfer function of the 
loop filter (6.9) into an imperfect integrator and the PLL from type I to 
type II (cf. also the behavior of the loop impedance in the current-
pump systems). 

6.2 PLL DESIGN 

The most important design feature of the PLLs is the choice of the ref-
erence frequency (fr) with the corresponding division factor (TV), the 
passband frequency (fPLL), the expected noise behavior, the power of 
spurious modulation signals, the consumption of DC power, and so on. 
In this connection, we examine the behavior of the gain G(s), the prop-
erties of the transfer functions H(s) and 1 - H(s), the lock-in times, the 
tracking properties, and, particularly, the overall stability of the system. 

10 
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' " " " ♦ 
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0.01 100 

Fig. 6.5 Transfer functions Him = \H{s)\2, Hom = 11 - H(s)\, and 1 - H(s) of the simple 
first-order PLL loop, normalized to gain K \xm =fm\f„ [6.6]. 
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6.2.1 Natural Frequency and Damping Factor 

For general investigation and solution of the PLL problems, we recom-
mend introduction (in agreement with the theory of the servomech-
anism of the dynamic motion equation or damped oscillations) of the 
natural frequency ω„ and the damping factor ζ [e.g., 6.8], which was 
also adapted by Gardner [6.1]: 

ω„ , ζ~ — 
Τι 2 

( 1 

r 2 + 1 ~ω" 
V ΑΚ' 

Π 2ζ 
Τι ωη = — = — 6.12 

2 Τι RC 

After introducing (6.12) into the corresponding loop gain and transfer-
functions (6.10) and (6.11), we have 

G(s) = 
8{2ζω„ - col / Κ') + ω\__ 2ζ8ωη + col 

s(s + col/AK') s
2 

2 2 

H(s)= 2
2ζ8ω^ω" l-H(s)^-

6.13 

s2 + 2£scon + cül 3ϊ + 2ζ3ω„ + ω1 

Intersection of the transfer functions H(s) and 1 - H(s) approximately 
indicates the passband of the corresponding PLL system (cf. Fig. 6.5). 
However, more precise investigation starts with zeros and poles en-
countered with the transfer function H(s). In addition, plotting of the 
corresponding root locus, which will be discussed later, provides more 
information about the mutual interdependence between the natural fre-
quency ω„ and the damping factor ζ. 

Computation of the denominator roots reveals the needed informa-
tion: 

32 + 2ζ5ω„ + ωΙ = 0 6.14 

Note that (6.14) is the analytic geometry equation of a circle and the 
solution of the corresponding second-order relation (6.14) reveals 

Xl,2 = -(On£±J\((Oni) ~ ωη=-(ϋηζ± jtOnyt ~\ 6.15 

The idealized plot is shown in Fig. 6.6. Closer inspection reveals that 
for the damping factors close to unity (i.e., ζ «« 1) the change of the 
normalized frequency ω„ is small and is effectively independent of the 
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Fig. 6.6 The root locus of 1 + G{a) for the second-order PLL type II with the RRC 
filter (see Fig. 6.4b) [6.6]. 

damping factor ζ (roots placed at the far left). The advantage is a small 
overshoot of the PLL transfer functions. 

6.2.2 Normalized Frequency 

Normalization of the base band frequency ω with respect to the natural 
frequency ω„, makes application of the generalized PLL relations for 
the problems to be solved possible. By introducing 

s ιω er = — = — = jx 
ω„ ω„ 

6.16 

we get for the open-loop gain 

„ , 4 \ + 2σζ-σωΙ ΑΚ' 
G(a) = ;-* 2 or 

σ2+σω I AK' 

^l + 2j£x-jxcoJAK'_\ + 2j£x 
-x2+jxcoJAK' -x2 

6.17 
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and for the normalized transfer functions for high-gain loops {ω„ΙΚ < 1) 

H(jx) = 
\ + 2]ζχ 

-x2 + 2j£x + l 
l-H(jx) -χ 

-x2 + 2j£x + \ 
6.18 

Normalized transfer functions of the high-gain PLLs are plotted in Fig. 
6.7 for different damping factors ζ [see, e.g., 6.6]. 

6.2.3 The PLL Band Pass 

As the PLL band pass of the second-order loops we designate the fre-
quency where the transfer functions \H(jx)\2 equal one, that is, 

■o 0 

f - 2 0 

t -30 

- 4 0 

0,1 

f -03 
0.5 

-m. x = ω/ωη 

10 

(b) 

Fig. 6.7 Plots of the normalized transfer functions of the high-gain PLLs as func-
tions of the damping factor ζ [6.6]. 
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-x2 + 2j£x + l 
6.19 

From this 

Xl,2 = V2 or / m - 1 . 4 / „ 6.20 

for different damping factors ζ (see Fig. 6.7). Note that for ζ « 1 the 
overshoot of the transfer function //(s) is rather small. We will revert to 
this problem later. 

6.2.4 The Higher Order Loops 

Practical PPLs are formed with the basic second-order loops (in most in-
stances of Type II) enlarged by one or two simple filter sections (gener-
ally independent or nearly independent; Fig. 6.8), changing the gain to 

G(s) = G2(s)· 
1 1 

Ι + 5Γ3 1 + STA 

6.21 

Not more than two additional RC sections are used. Other types of fil-
ters, such as twin-T or acive low-pass filters, are used in uncommon 
instances [cf. 6.6]. Simplification of the relation (6.21) follows after 
introduction of the normalized time constants: 

Γ3 
K 

Ti 

TA 
77 

Γ3 

T
 2£ Ti 

ω„ 
6.22 

from which the normalized gain is 

0{σ) = 02{σ)-
1 1 

1 + 2σκ 1 + 2σκτ] 
6.23 

Fig. 6.8 A PLL filter with two RC sections in series [6.6]. 
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The advantage is a simplified solution. Note that increasing the order 
of PLL above the fourth order does not make sense, since both the am-
plitude changes and phase shifts in the whole band pass of interest are 
negligibly small. 

6.2.5 The Third-Order Loops 

The most often encountered arrangement of practical PLL systems is 
the third-order loop type II, realized by addition of an independent RC 
section. By starting with the second-order high-gain loop, we have for 
the open-loop gain 

Gi^=
 ΠΜ T V i x „ =G2(S)GK(S) 6.24 

In the type II systems, we achieve this goal by changing the feedback 
path in the integrating OP amplifier system (see the dashed part in Fig. 
6.4c). For the loop gain, we get 

Gi{:;)^K 1 + SR2(C + C3) _K \ + sT2 _K \ + ST2{\-K) 6 2 5 

S 5Ä,C(1 + 5Ä2C3) 5 ST1Q + KST2) ■« sTt 

where we have introduced an important design factor: 

κ = ̂  κ<\ 6.26 
T 

After introduction of the natural frequency ω„ and the damping factor 
ζ, in accordance with (6.12), we get for the transfer functions 

HAfi)-- J'2i+> 

jx2£fc-x
2 + jx2£+l 

6.27 
i - w = .3,Τ2ίΓΓ* 

-]χ2ζκ-χ2 + )χ2ζ+\ 

Typical transfer functions are plotted in Fig. 6.9. The appreciated ad-
vantages are the slopes of 40 dB per decade in both stop passbands, 
ease of the design on the basis of the second-order PLL, and, effective-
ly, a reasonable phase margin (the unconditional stability), defined as 
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0.01 0.1 1 10 100 

Fig. 6.9 Transfer functions of the third-order PLL loop of Type II as a function of 
the normalized frequency x. The input transfer functions Ht{jx) = 20 log(|//3(/x)|). The 
output transfer funtions HJJx) = 20 log(| 1 - H3(jx)\), and the open-loop gain G3(jx) for 
K = 0.3 and ζ= 1.5 [6.6]. 

^ = - ^ - [ - 7 r + tan-'(2^)-tan-'(2^Ar)] > 0° 6.28 
IT 

Note that the time constant Γ3, in accordance with the design proce-
dure, is smaller than T2. Then even the third-order loop is uncondition-
ally stable and H(s) exhibits a positive phase margin. 

To enable design from this point of view, we have summarized 
some third-order loop properties in graphical form in Fig. 6.10. Its in-
spection reveals as optimum the original damping factor ^ « 0 . 7 from 
the point of the phase margin, overshoots, and spurious signals. Typi-
cal transfer function characteristics are shown in Fig. 6.11. 

6.3 STABILITY OFTHE PLL 

Phase-locked loops have been used for years in control systems. The 
first applications were in mechanical engineering (e.g., for maintain-
ing the correct speed of a steam engine shaft). In this connection, the 
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M = 0 

-150 
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Fig. 6.10 Properties of the third-order PLL for different damping constants of the 
original second-order loop for different κ of the additional RC section: (a) phase of the 
open-loop gain; (b) magnitude of the overshoot Mp of the transfer function 10 
log(|//3(/x)|2) [6.6]. 

book by C.J. Savant [6.8] deserves to be mentioned. However, applica-
tions in electronics, particularly in frequency synthesis systems, re-
quire some special treatment that will be discussed below. Since PLLs 
are feedback systems with the feedback transfer function G(s), they 
will oscillate whenever the gain G(s) is equal to - 1 , that is, 

1 + G(i) = 0 6.29 

This condition expressed in complex form is 

\G(ja>)\e
J* = -l 6.30 

that is, 

| G ( » | = 1 and ^=(2£ + 1)ττ (Jfc = ±l,±2,...) 6.31 

Note that all second-order PLL loops are unconditionally stable since 
from (6.28) we arrive at a positive phase margin 

<A=-—[-7r+ tan- ' (2£ t ) ]=£ l80 o -90 o ^180 o 6.32 
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{=1.5 

Fig. 6.11 Transfer functions of the third-order PLL for three different damping fac-
tors ζ of the original second-order PLL for the constant κ = 0.3: (a) for 10 
log(|//3(/x)|2), (b) for 10 logfll -H}(jx)\2) [6.6]. 

In instances where the normalized frequency x = 1 and the damping is 
> 0.5, the safety margin is nearly 90°.The unconditional stability is 
also true for the third-order loops discussed above and for many higher 
order loops, where additional filtering sections are added for suppres-
sion of the reference signal and other spurious signals [6.6], since 

1 Ofl° 
ψ = - - ^ - [ - T T - + tan"' (2ζχ) - tan"1 (2ζχκ) -tan"1 (2ζχκη)] ■■ 

π 

+180° --^-[ίΆη\2ζχ) - tan-'(2ir/f)] > 0° 
IT 

6.33 
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See also Fig. 6.9 or Table 6.1. There are many criteria for appreciating 
the stability of the PLL systems. In the contemporary literature, with 
the assistance of simple Bode plots, it is investigated in accordance 
with the old tradition of servo systems. However, application of mod-
ern computers provides better insight and possible perfection, particu-
larly, in cases where current-pump phase detectors are used. Further-
more, we can easily plot transfer functions \H(s)\2 and 11 - H(s)\2 and 
evaluate gain and phase margins, even for loops of higher orders. 

6.3.1 Bode Plots 

In the Bode plot, we combine the open loop gain in decibel measure 
and the respective phase shift in one figure, that is, 

180 
201og(|GO:x)|) and log(G(») 6.34 

We have seen that the open-loop gain G{s) or G(jx) consists of factors 
with simple transfer functions 

G(jw) = KAXA2...Αηβ-Άφ<+Φ>+- φ-] 6.35 

When drawing Bode plots, we revert to (6.35) and compute its loga-
rithm: 

logG(jco) = logK + log^ + log 4, + ·■ ■ + log4 -
6.36 

Κφι + φ2 + - + φ, + ωτ) 

After plotting the right-hand side (rhs) of (6.36) in two separate graphs 
we get quick information about the system stability. In addition, the 
gain characteristic GQ'a)), for frequencies above ω„, also provides in-
formation about the transfer function H(jw) or H(jx). 

For construction of the Bode plots, we apply the asymptotes. Here 
we will repeat some basic rules for their construction. 

Table 6.1 The phase margin ψ in degrees 

tan-'(2£r) 1 1.19 143 1.73 2.14 2.74 3.73 
ψ[°] 45 50 55 60 65 70 75 
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Fig. 6.12 Bode plots of the first three simple transfer functions cited above in Part A: 
(a) 1/Frequency independent gain K = KJi.AK0. (b) Characteristic with one zero in the 
origin, (c) Characteristic with one pole in the origin. In Part B, (a) logarithm of the 
gain, (b) phase plots [6.6]. 

1. Frequency independent gain is represented with a straight line at a 
distance of 20 log(ÄT) dB from the horizontal axis (see the plot in 
Fig. 6.12). 

2. A factor with one zero in the origin is represented with a straight 
line with the slope of-20 dB/dec drawn through the zero in the hor-
izontal axis. The phase characteristic is +90°. 
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3. Similarly, the factor with one pole in the origin is represented with 
a straight line with a slope o f -20 dB/dec drawn through the zero in 
the horizontal axis. The phase characteristic is -90°. 

4. The factor with one zero in the transfer function 

l + jtoT0 6.37 

is composed from two asymptotes: one is the straight line in the 0-
dB level and the other is the straight line with the slope +20 dB/dec 
starting from the cut-off frequency 

<yCut,o = 1 / ? o 6.38 

Note the plot in Fig. 6.13a. The error is small with a maximum of 
- 3 dB since 

101og|l + y|2 = 3dB 6.39 

For ω = 2/Γ0 or ω = 1/2 T0, the error due to the asymptotic approxi-
mations is ~ 1 dB. The phase is 

180 „ x Ψο = tan (ωΤ0) 6.40 

which for wcut0 is just +45. With the assistance of the Taylor expan-
sion, we find asymptotic approximation, as shown in Fig. 6.136. 
Note that the errors are in the range of ±5 or ±6 degrees. 

5. The factor with one pole is 

1 6.41 
l + jmT, 

The characteristics are shown in Fig. 6.14 and are provided as mir-
rors of the previous cases discussed step 4. 

6. The time delay is represented by the factor 

e ~]ωτ 6.42 

The phase shift due to the time delay is plotted in Fig. 6.15. 
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Fig. 6.15 Phase shift due to the time delay. The measures are in accordance with 
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EXAMPLE 6.1 
Straight-line Bode plot for the popular third-order PLL with ζ = 
0.7 and κ = 0.3 (Fig. 6.16). Reverting to (6.12) and (6.21) we plot 
relation 

1 1 + /x1Ax 
—rx—" 
-x 1 + j x 0.4x 

6.3.2 The Root-Locus Method 

The root-locus method of the function 1 + G(s) is intended to find the lo-
cation of the respective roots in the complex plane [e.g., 6.1, 6.8]. In the 
past, a set of rules were devised for finding at least an approximate posi-
tion or direction of the roots. Nowadays, our situation is much simpler 
since computer solution of the «th polynomial of Pn(s), with the chang-
ing parameter K or any other, provides us with a set of roots that can 
thereafter be plotted in the complex plane. Nevertheless, we feel that a 
little information about the basic definition and rules would be useful: 

Zero is designated as variable s for which the gain G(s) = 0 [i.e., for 
which the numerator of G(s) is zero]. 

Pole is designated as variable s for which the numerator of G(s) is zero 
[i.e., for which both G(s) and 1 + G(s) are nearing infinity]. 
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Fig. 6.16 Straight-line Bode plot for the popular third-order PLL with ζ = 0.7 and κ 
= 0.3 [6.6]. 

Root is designated as variable s for which 1 + G(s) = 0. 

Theorem 1: Branches of the root locus plot start in each pole of G(s) 
for the gain K = 0 and end in zeros for K —»· °°. 

Theorem 2: The root locus coincides with the zero axes, where an odd 
number of poles plus zeros is found to the right of the point. Verify 
this statement with the assistance of Fig. 6.17. 

Theorem 3: For large values of the gain K, the locus is asymptotic to 
the angles 

(2*+ 1)180° 
P-Z 

k = 0,1,2,..., 6.43 

where P is number of poles and Z is number of zeros. 

There exist other theorems for estimation of the locus plot; howev-
er, with the application of computers they lose their importance. Nev-
ertheless, we want to mention one important property, namely, that we 
can estimate the effective damping of the PLL from the distance of the 
operating point from the imaginary axis. We will illustrate this prob-
lem with the assistance of Example 6.2. 
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Fig. 6.17 The root locus of 1 + G(s) for the second-order PLL loop with a simple RC 
filter. 

EXAMPLE 6.2 
The problem of the root locus will be illustrated with a simple ex-
ample of the second-order loop with a lagging RC filter with a gain 

G(5) = 6.44 
S(J7 ;+1) 

Since (6.44) has only two poles, 

s = 0 and s = -l/Tl 6.45 

both branches of the root locus must end in zeros in infinity. After 
introducing G(s) into (6.29), we arrive at quadratic equation 

52Γ, + ί + Α: = 0 6.46 

the roots of which are 
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For K = 0, we get 

s, = 0 s2=-\/Tx 6.48 

In agreement with Theorem 1, as long as 4ÄT, < 1 both roots are 
real and negative and move along the zero axis. As soon as 4ÄT, 
> 1, the roots become complex with a constant real part and the 
locus proceeds as a vertical line parallel with the imaginary axis 
at the distance —1/27", from the origin (see Fig. 6.17) 

6.4 TRACKING 

Up to this point, we have investigated properties of PLLs in steady-
state conditions. However, we encounter either wanted or unwanted 
frequency changes both in reference generators and more often in volt-
age-controlled oscillators connected with communications application 
(mainly due to adjusting the division ratio in the feedback path). The 
encountered changes in the PLL state can be divided into three major 
groups: 

1. Phase or frequency steps. 
2. Periodic changes (spurious phase or frequency modulations, dis-

crete spurious signals, etc.). 
3. Noises accompanying both reference and VCO signals. 

Section 6.4.1 discusses the first of the problems. 

6.4.1 Transients in PLLs 

Applications of PLLs in modern communications are associated with 
nearly permanent carrier frequency changes. Evidently, for proper op-
eration we need to know the duration of the switching process. We are 
interested in how long it takes before the output frequency is settled and 
how large the eventual steady-state error might be. This information 
provides the phase difference at the output of the phase detector <Pe(s), 

*^± = X-H{s) 6.49 
Φ,Ο) 
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or more exactly its time domain behavior φε(ί). To this end, we investi-
gate the following relation with its time response: 

0e(s) = A0(s)[l-H(s)] = A<P,(s)—i- = A<Pi(s)^- 6.50 
1 + G(s) Ä B(s) 

and evaluate the time needed for setting of the phase error to the prede-
termined value. For the final steady state, we take into account the 
Laplace limit theorem, 

lim[0e(Ol = I™ 
6.51 A(s) + snB(s) 

t->oo s^O 

6.4.2 Laplace Transforms of Typical Step Errors 

Investigations of the steady-state errors, in PLLs of different orders 
and types, will proceed after introduction of the Laplace transforms of 
the respective input phase steps, input frequency steps, and input 
steady frequency changes, 

^ = — — = ̂  — = ^ = ^ Γ 6 · 5 2 

s s s s s s 

into (6.50) or (6.51). 

6.4.2.1 Phase Steps: First-Order Loop 

After introducing the Laplce transform of phase steps, Δφ/s, into (6.6), 
we find that for the first-order loop, with the assistance of the Table l .2, 

φΑ{ί) = Αφ,βκ< 6.53 

6.4.2.2 Phase Steps: Second-Order Loop 

With the assistance of (6.6) and (6.52) we get 

/ x Δφ. σ{σ+ω„/Κν) . . (σ+ωη/Κν) 
<Pe(cr) = — , . y , . =Δφί- -

σ σ2 + 2ζσ+1 {σ-σ,){σ-σλ) 
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and with application of the Laplace transform tables [e.g., 6.9] we ar-
rive at the time domain transient 

ΦΜ) = - ^ - [ ( σ - ι + ω„ I Κ^σ,ω"')-{σ2 + ω„ / Kv)e
i"lü"'y\ 6.55 

σ\- er2 

Plotting the above relation (see Fig. 6.18) reveals that for reasonable damp-
ing factors 0.7 < ^ < 1.5 the transient effectively ends after ωηΐ ~2π. 

6.4.2.3 Frequency Steps: Second-Order Loop 

With the assistance of the Laplace transform tables, we find [6.9] 

&2(') = 
Δω,/ωη 

σ\- σι 

(σι + ω,,/Κ) ( g W ) (σ2 + ωη/Κ) ^ma,.t) 
+ 

Aw, 
Κ 

6.56 

This simplifies for very high gain type II loops to 

A ^ , g
( - ^ - l w - g

( - f - ^ - l w , Aa>, 
(Or, 2yj£2-l Kv 

6.57 

ω„ί 

Fig. 6.18 Normalized transients Δφ£|(/)/Δφ>,< due to the phase step Δφ, for different 
damping factors ζ for a high-gain loop with a lagging lead RC filter. 
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Evidently, in all PLLs of the second order a frequency step results in a 
steady-state phase error inversely proportional to the so-called velocity 
error constant Kv, in agreement with the terminology used in the feed-
back control systems (cf. [6.8]). In PLLs of type II, with two integra-
tors in the loop, the DC gain F(0), as well as Kv, is very large. Conse-
quently, the steady-state error is negligible. 

-— <m„t 

(b) 

Fig. 6.19 Normalized transients Δφε2(ή/(Δωι/ω„) due to the frequency step Δω, for 
different damping factors ζ for a high-gain loop, (a) For a simple RC loop filter and 
(b) for a high-gain loop with a lagging lead RC filter. 
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Plotting of the above relation (see Fig. 6.19) reveals that for rea-
sonable damping factors 0.7 ^ ζ < 1.5 the transient ends after co„t ~ 
2π, as above. 

6.4.2.4 Frequency Ramps 

The solution proceeds as above with the result 

4>Jt)-

2 e 

Δώ,/ , Δώ, 
Κν (ο„ 

1 2^„ 
Κν 

2ζω„ 

Κν ) 
cosh(üjntyji;2-i) 6.58 

ζ-(ω„/ΚΧ2ζ2-\) ΠΓ-' 
τ = = &νηΆ(ωηί^ζ - 1 ) 

For the damping factor ζ < 1, the hyperbolic functions change in the 
trigonometric functions and the steady state is approached with the 
damped oscillation (see Fig. 6.20). However, the steady frequency change 
Δω/s2 results in the so-called acceleration or dynamic tracking error Ka: 

lim φί}(ί) [^ = Δώ, 5(0) 
A(0) 

n=2 

Δώ, 
K. 

6.59 

<; = o.3 

Fig. 6.20 Normalized transients 4φί,3(ί)/(Δω,/ω^) due to the frequency ramp Δώ, for 
different damping factors ζ for a high-gain loop (DC phase error is retained). 
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6.5 WORKING RANGES OF PLL 

An important problem encountered with PLLs is the question about a 
reasonable difference between the input frequency, ω,, and the true 
free-running frequency of the VCO, ω€. The maximum frequency dif-
ference before losing the lock of the PLL system is called the hold-in 
range. Another criterion might be the frequency difference |ω, - ωα\, 
for which the phase lock will take place in all circumstances, the so-
called pull-in range. However, as the ideal state we can design the situ-
ation in which the lock is achieved without any cycle slipping, that is, 
without any loss of lock after switching on. This state between the in-
put and output frequencies of the PLL is called the lock-in range. 

The final question when investigating working ranges is the prob-
lem of tolerating the progressive frequency difference before the lock 
breakdown, the so-called pull-out frequency. A graphical representation 
of the above discussed parameters is schematically plotted in Fig. 6.21. 

6.5.1 Hold-in Range 

Proceeding with the definition given in the introduction to this chapter, 
the hold-in range ΔωΗ = |ω, - ωε\ is the largest frequency that can be 

static stability range 

dynamic stability range 

hold-in range 
±Au>u 

pull-in range 

pull-out range 

lock-in range 
ίΔω, 

normal operating 
range 

exceptionally possible 
operation 

operation not recommended ^ 

Fig. 6.21 Working ranges of PLLs. 
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tolerated in the PLL before losing lock without any serious conse-
quences. In these circumstances, we can define ΑωΗ as a function of 
the phase detector output, as long as it is valid: 

^ = 0 6.60 
dt 

Figure 6.21 indicates clearly that the hold-in range has no practical ap-
plications. 

6.5.2 The Pull-in Range 

The pull-in range presents a much more complicated task. The prob-
lem was solved in the past by many authors from different points of 
view. Here, in short, we repeat the earlier discussion by Kroupa [6.6] 
and provide a solution as simply as possible but accurate enough for 
practical applications. For investigation of the PLL pull-in range Δωρ, 
we may use two methods: 

1. Either compute the time needed for a given frequency difference |ω, 
- (uc|, then increase this difference and note |ω, - a>c\ = Δωρ for 
which the pull-in time starts to be nearly infinite. 

2. In the second approach, we will proceed the other way, namely, by 
choosing the difference Δω = |ω,· - coc| sufficiently large that no lock-
ing takes place. Then we will reduce the difference until the beat note 
at the PD output starts to be constant; in other words, as long as the 
differential equation of the system has a periodic solution: 

Αω+^β1=κ K (0 661 
dt 

The smallest detuning, Δω = Δωρ, is the sought pull-in range. In the 
asynchronous steady state, the VCO is phase modulated with a beat 
frequency v. After expressing the free-running frequency ωα as a func-
tion of the difference frequency v we have 

u = \ W i n - < y 0 u i l = l o ) m - wc\-Δω = i>c-Δω 6.62 

where the frequency shift Δω is a function of the modulation frequen-
cy v. Solution of the relation (6.61) can be approached from different 
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points of view. In [6.6], comparison of harmonics was used; here we 
apply a simple approximation with estimation of the voltage v2(0 by its 
Fourier transform, V2(s) (nearly the DC magnitude): 

V2(s)**KAKjKoF(s)-*>KF(P)F(jv)— 6.63 
s jv 

After introduction into (6.61), we get 

AK1 

Α ω + ^ ) = — Φ ( ρ ) 6.64 
2v 

Furthermore, with the assistance of (6.63) we arrive at the beat fre-
quency, v, as function of the free running frequency vc: 

vc = v + ^-4>{v) 6.65 
2v 

Reduction of the original detuning will finally lead to a minimum beat 
note frequency: 

v-vm 6.66 

where the asynchronous state is not to be held any further and the pull-
in starts. The respective vcmin is the sought Δωρ, that is, the pull-in 
range frequency. To this end, we differentiate the rhs of relation (6.65) 
and equalize to zero: 

l+AK2 

2v2 —^-ν-Φ(ρ) 
dv 

6.67 

Its solution reveals vm and after its introduction into (6.65) we get the 
upper limit of the pull-in range (i.e, Δωρ). In instances where Φ(ν) is 
nearly independent of the beat frequency v, that is, where 

d<P{v)ldv~0 6.68 

solution of (6.67) is simplified to 
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After introduction of the above relation into (6.65), we get for the pull-
in range: 

Atop = 2vm = Κ^2ΑΚβ[Φ(ΑωΡ)] 6.70 

At this stage, we are prepared for application of the above theory on 
practical examples. 

EXAMPLE 6.3 
Let us perform solution of the pull-in range for the second-order 
loop with lag lead or RRC filter. For large beat frequencies, we 
have from (6.9) 

< W = 7V7", 6.71 

After application of (6.69) and (6.70), we arrive immediately at 
the known formula: 

ΑωΡ = KpT21 Tx 6.72 

which for the high-gain loop simplifies with the assistance of the 
basic PLL parameters (cf. 6.12) to 

ΑωΡ~2^ζω„Κ 6.73 

What remains is to investigate the validity of the above solution. 
To this end, we would calculate the normalized frequency x„ (cf. 
6.64-6.66): 

xm-vm/ojn- y]£K / ω„ 6.74 

For the high-gain loops, we have, ζ > ω„ΙΚ. Consequently, xm > 1 
and the above simplification (6.71) is justified. This also follows 
from Fig. 6.22 where we have compared solutions (6.73) with 
those by Greenstein in [6.10]. 

6.5.3 False Locking 

In the neighborhood of the upper bound, close to the Δω^, the pull-in 
process is slow before the lock is realized. A closer investigation of the 
process reveals that the PD output phase signal seems to be fed into 
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ω„/Κ 

Fig. 6.22 Plot of the normalized pull-in range for the second-order high-gain 
PLL with a lag-lead RRC loop filter as a function of x = ω„/Κ; data by Greenstein 
[6.10]. 

two paths, that is, in an AC with the transfer function, Tl/T2, and a qua-
si DC path with the integrator. The situation is illustrated with an ap-
proximating block diagram in Fig. 6.23. For the slowly varying com-
ponent, Δω(/), we have found in Section 6.5.2 

Aiw = ^ ^ | G ( » | s i n i ' 6.75 

In accordance with the block diagram in Fig. 6.23, we must introduce 
F(0) = 1, and (6.75) is changed into 

Δω = — | F ( » | cos !P 
2v 

6.76 

However, additional low-pass filters, introduced willingly or unwilling-
ly in the forward path (additive pole due to the operational amplifier or 
to the VCO tuning connection) inclusive of the time delay due to the IF 
filters or digital operation, may generate the phase shift Ψ > π/2 for 
some error frequencies. The consequence is that the slowly varying 
component, Δω (cf. 6.75), changes sign, that is, v2jDC(0 will be negative 
and start to pull the PLL the other way from the correct frequency. 

In Fig. 6.24a, we have plotted the normalized component Δω/ω„ 
for the fourth-order loop with two additional RC filter sections. Inves-
tigation reveals that the phase shift does not exceed -180° and the nor-
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Fig. 6.23 Approximating block diagram of the second-order PLL type II with the 
frequency difference Δω = |ω, - ω0\ only a bit smaller compared with the pull-in fre-
quency ΔωΡ. 
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Fig. 6.24 The plot of the normalized components Αω/Κ and Δω/ω„: (a) for the 
fourth-order loop with two additional RC filter sections and (b) for the second-order 
PLL with the time delay equal to ω„τ = 0.3. 
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malized frequency error is only once equal to zero. This zero is unsta-
ble. The other situation plotted in Fig. 6.246 is for the second-order 
PLL with time delay equal to ωητ= 0.3. Investigation reveals a charac-
teristic with several zero crossings. We easily find out that zeros with 
positive slope are stable. The consequence is that the steering voltage 
v2(t) will be pushed, from both sides, to the respective Fourier frequen-
cy where it will be zero, and without any action from the outside, the 
PLL will be locked to the respective false frequency. Only detection of 
the beat note with an oscilloscope (or by another means) will discover 
this undesired situation. However, be careful of noise or spurious sig-
nals in such situations. 

6.5.4 Lock-in Range 

The look-in range is defined as such a frequency difference between 
the input reference frequency ω, and the free-running frequency CJC 

that after closing the loop converges monotonously to a steady-state 
value, that is, 

AioL = | ωί -(ocL | 6.77 

By investigating ω£, we start from the Byrne consideration [6.11], 
starting with the worst situation, namely, where zero crossing of the 
reference and the VCO signals coincide. Closing at this moment in the 
PLL causes the PD output phase φε(ή to be formed from the two 
components of the ipe\{t), which is caused by an effective step change 
(in the worst case, either π/2 or τή, and (pe2(t), generated with the fre-
quency difference AioL. The undesired cycle skipping of the beat fre-
quency is prevented if the PD outputs are zero. This condition is met 
for 

dMl + ̂ M = 0 678 
dt dt 

After summation of (6.55) and (6.56), we perform the derivation and 
then reduction by (σ, - σ2Υ

λ ω„: 

Δ ,̂Κσ-, + α>η /K)ax(0ne™"' - (σ2 + ω„ I'Κ)σιω„β
σιω"'} + 6J9 

Δω,[(σ, + ω„ /Κ)ω„β
σ'""' - (σ-2 + ω„ /Κ)ω„β

σ2ω"']= 0 
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Inspection of Figs. 6.18 and 6.19 reveals that the maxima of the tan-
gents, both for the phase and frequency steps, are at t = 0. Consequent-
ly, (6.79) simplifies to 

Αωχσί-σ2)+Δφ,[(σ] ~ σ\)ω„ + (er,-σ2)ω„/Κ] = 0 6.80 

After a second reduction by (σλ - σ2), we arrive at 

Αωί = Αφιωη{2ζ-ω„/Κ) 6.81 

By introducing starting conditions Δ<ρ, = ττ, and, Δω, = Δα^, we readi-
ly find 

Δω,=πωη(2ζ-ωη/Κ) 6.82 

By considering PD with a sine wave output and a PLL with a lag-lead 
filter and very high gain K, we arrive at 

Δ ω , = 2 ^ „ 6.83 

or at 

^L=K^± = Kr 6.84 
7Ί 

From (6.84), it follows that the lock-in range is equal to the reduced 
gain Kr (cf. 6.9) at very high frequencies as suggested by Gardner 
[6.1]. He states that this conclusion is generally valid for the systems 
with filters having the same number of nulls and zeros. 

6.5.5 Pull-out Frequency 

There are instances where one of the output frequencies fed to the PD 
experiences a frequency step (as an example, we mention PLL fre-
quency synthesizers with digital dividers in the feedback path). At a 
certain magnitude, designed as ΔωΡΟ {pull-out range), the PLL looses 
lock, often for only a short time. The situation is the same as that dis-
cussed for transients (6.56 and Fig. 6.19). We see that the phase error, 
due to the frequency step, increases from zero to a maximum and then 
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dies out either periodically or aperiodically. In instances where the 
maximum phase error φ2{ί) is equal to or exceeds the working range of 
the PD, the phase lock is lost. For this maximum, we find from (6.56), 
in instances of very large or infinite gain Kv, the respective normalized 
time K 0 m a x : 

arctanhiJl-/2/^-) 
(».0- = 1 J ' 6.85 

for the damping factor ζ > 1. In instances where ζ = 1, we get 

(wt) =1 6.86 
v n / max 

For cases where ζ < 1, 

a rc tanUl- / 2 /^ ) 
K 0 - = V ; ' 6.87 

From these relations, we conclude that the normalized time is a func-
tion of the damping factor ζ only. Consequently, for the maximum 
phase error we can write 

ΦΛ^ =—fV) 6.88 
ωη 

For a sawtooth wave PD with the maximum tolerated error of π, we 
get for the pull-out range ΔωΡΟ in the normalized form [6.1 or 6.6] 

ΔωΡ0/ωκ=χΡ0 = π//(ζ)~\.*{ζ+\) 6.89 

6.5 .6 The Lock-In Time 

We may define the lock-in time as the time that the PLL needs to re-
duce the phase error q>e(t) to one-tenth of its maximum without cycle-
skipping between +<pemax and -<peimjn. For the first-order loop with 
sawtooth or triangular output wave PD, we arrive, with the assistance 
of (6.53) at the relation 

ΤΙΛ~23/Κ 6.90 
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Similarly, for sine wave PD we approximately find [6.6] 

2.3 
l-,\ 6.91 

κφ-(Δω/Κ)2 

As soon as \Δω/Κ\ < 0.9, we can simplify the above relation to 

TLl<5/K 6.92 

The lock-in time for PLL of the second-order may be approximated as 

2.3 4.67; 4.6 
TL.2~ — ~ L ~ — 6.93 

ζω„ ΚΤι Kr 

Several authors quote values for the lock-in time to be two times 
longer than that indicated for the above relations. 

6.6 DIGITAL PLL 

The boom in communications systems in the last decades has been en-
abled by combination of digital technique, small size, and power-sav-
ing circuits on chips, with mastering of the microwave RF ranges with 
scores of channels. Such a situation required a new approach to fre-
quency synthesis techniques and PLLs. The backbone is digital circuit-
try or processing, which are also true for PLLs. However, the proper 
approach is based on the investigation with the assistance of the z-
transform. The other possibility is to modify the original Laplace 
transform of G{s) in the following way: 

Gmai{s) = Fh{s)G{s) 6.94 

Where 

Fh(s) = X-~^- 6.95 
s 

After introduction of the sampling frequency ω,, 

G(s) = ̂ G{s-jna>s) ω ^ 6.96 
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we arrive at 

Gma(s)=l-^—^%G(s-jnM,)«'^-^-^G(s) 6.97 

The simplification is justified since we expect that the higher order 
terms of Gmod(s) are attenuated with the loop filter F(s). For small fre-
quencies, s, that is, for \s7] < 1, we can rearrange Gmod(s) to 

__ sinh(^r / 2) T/2 2 G(s) 
Gmaiis) ———G(s)e ~G(s)e ~ 6.98 

sT/2 l+sT/2 
In the normalized form, we introduce 

sT /2 = σωχ/2 = σπ^ = σδ 6.99 
J s 

Consequently, the normalized open-loop gain is 

Ο - Μ - ^ Ο Μ . - 6.100 
σδ 

The situation with the sampled PLL is illustrated in Fig. 6.25. Finally, 
we arrive at the often suggested approximation of the sampling 
process, namely, with the assistance of an additional RC section. 

6.6.1 Phase Detectors 

Each phase detector is effectively a frequency mixer in which both in-
put frequencies are equal or nearly equal. When referring to a simple 
multiplicative mixer (cf. Sec. 4.6.1) the low-frequency or DC output is 

VOU.,DC(0 = Vm cos(<omt + φ.η)ν ref sin(<yref t + φκ() = 
vm vKi 

2 
Vm Kref 

sin[(win - a)ref)t + (f>m - Φκί] = 6 1 0 1 

(<An - Φη{) = ΚΛΦϊη ~ Φκ{) 

where Kd is designated as the phase detector gain. Note that for maxi-
mum sensitivity both input signals should be in quadrature. 
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Fig. 6.25 PLL with a sampling phase detector: (a) block diagram of the loop and (b) 
the simulating analogue system. 

6.6.2 Phase Frequency Detectors 

In digital systems, we encounter the effective phase frequency detec-
tors (PFD), which at present are the most often employed in practice. 
Their advantages are the large operation range from zero or from -2π 
to +2π. This is a combination of the frequency and phase detection, 
with an eventual narrow pulse output and easy large-scale manufactur-
ing in the IC form. 

The principal arrangement is illustrated with the assistance of Fig. 
6.26. This PFDs are composed of two or four D flip-flops and delaying 
NAND gates. Operation is explained with time diagrams in Fig. 6.27. 
In the first case, we assume frequency/j to be permanently higher than 
f2. Consequently, only output V] in Fig. 6.26 (a) or (b) is activated. In 
the opposite circumstances, again only the output V2 will be working 
and switching on or off branches of the charge pumps (in Fig. 6.28) 
that supply current pulses Ip from two current generators into the loop 
filter. The mean value of the current is effectively proportional to the 
phase difference cpe and designated as the current gain: 

Id' 
277-

: Kdi 6.102 
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Fig. 6.26 The principal arrangement of the phase-frequency PD: (a) with the saw-
tooth wave output signal; (b) with a NAND gate to deal with the dead-zone problem. 

6.6.3 The Loop Filter Impedance 

The current pump working as a current generator supplies pulses into 
the impedance Z(s) in the simplest arrangement formed by a resistor in 
series with a capacitor (cf. the simplified form in Fig. 6.28): 

^, , „ 1 l + jwCR 
Z(s) = R + = — 

JÜJC jcüCR 

6.103 
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Fig. 6.27 Time diagrams of the phase frequency PD. (a)fx =f2; the leading edge of/, 
delays/,. (b)fx =f2; the leading edge of/, delays/, [6.6]. 

However, the actual impedance Z(s) is shunted with a large leaking re-
sistor R, leak: 

Z(S) Rs.kak 
(l + sRC)/sC (1 + sRQ/sC 

/?„eak + (1 + sRC)/sC sC + (\ + sRC) /RsMak 
6.104 

In such a case, the filter impedance is easily approximated for a large 
^s,leak a s 

Z{s)< 
\ + sRC 

sC 
6.105 

Fig. 6.28 A current-pump phase detector and passive integrating RC filter [6.6]. 



272 CHAPTER 6 Phase-Locked Loops 

which behaves as an integrator and the loop is actually of type II. The 
phase error is integrated and stored in the form of the voltage on the ca-
pacitor (the so-called velocity constant, in accordance with the theory of 
a servomechanism [6.8]). Consequently, the effective phase difference 
steers the current pump-phase detector close to zero. With this situation, 
the switching would depend heavily on the present noise. The remedy is 
provided by the time delay introduced by inverters in the NAND circuit. 
The details are discussed later. Note the gate arrangement in Fig. 6.26b. 

6.6.4 The Second-Order Digital Loops 

The open-loop gain is found after replacing the phase detector gain in 
(6.2) with the current gain from (6.102), that is, 

G(s) = Kdi ~^r. = KM ~^7~. = KdiKo 2^»r 6.106 

sCN s sCN s s CN 

where we have inserted, in agreement with (6.12), the time constant 

T2=RC 6.107 
In the next step, we evaluate the corresponding transfer functions by 
referring to (6.4) and (6.6): 

H(s)= , *<1 + ^ > I-His)- 2
 S2CN 6.108 

s2CN + sKT2+K s2CN + sKT2+K 

In accordance with (6.12), we introduce the natural frequency ω„, 

ωΙ = ̂ - 6.109 

and the damping factor ζ, 

C= — Ti=—RC 6.110 
2 2 

By taking into account that the natural frequency is effectively fixed 
by the desired PLL passband (6.20), the damping factor by the design 



6.6 DIGITAL PLL 273 

conditions of the small overshoot and a comfortable phase margin (i.e., 
ζ ~ 0.75 ± 0.25), the time constant RC should be equal to 

RC^^- 6.111 

The above conclusion is important in instances where we are designing 
PLLs in the IC form, since the space-consuming capacity C may be re-
duced by the proper choice of the resistor R. After introducing (6.111) 
into (6.109), we have 

2 _ KdiKo _ IpRRKo _ IpRKo CÜn - _ 
ω" NC~~ITTNCR' 2ΤΓΝ Ύζ 6 · 1 1 2 

from which we arrive at the approximate value of the natural frequency 
and of the effective passband (see 6.20): 

_ I pRKo __ IpRKo /! \ Λ-Ι 
con ' 6.11 j 

2ττΝ2ζ 477JV 

6 .6 .5 The Third-Order Digital Loops 

Inspection of the block diagram in Fig. 6.28 reveals that the full volt-
age generated by switching on the PD output impedance affects on the 
varactor input of the VCO, that is, 

Vpmm~IpR 6.114 

Its reduction may be provided by an additional filtering section or sec-
tions, depicted in Fig. 6.29. The effective impedance in accordance 
with Fig. 6.29a is 

1 + ,*(C + C3) = l + sT2 K = _C±_ 

sC(\ + sRC3) SC(1 + SKT2) C + C3 

Furthermore, the effective impedance in accordance with Fig. 6.296 is 

„ , . 1 + sRC \ + sT2 c 3 
Z ^ = 7 ^ Γ ^ ^ - Τ ^ Τ Γ — V T " = 7ΓΤΤΓ 6.116 s(C + C3) \ + sR CCl 

v c + c,j 
SC(\ + SKT2) C + C 
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ί 
h" !*. 

Fig. 6.29 Three different filter arrangements of the passive integrator of the charge 
pump PD of third-order type II [6.6]. 

and the effective output voltage in accordance with Fig. 6.29c is 

Z 2 _ / , R + (\ + sC) _ Ip 1 + sRC _ Ip l + sT2 

' Z\ sdO- + sC) = Ri sCl + sR3C3 SCI + SKT2 

K-
RC 

6.117 

and the effective impedance Z(s) is as in (6.116). 

6.6.6 The Fourth-Order Digital Loops 

At present, in PLL frequency synthesizers we often encounter fourth-
order loops, which are generally used for the reduction of spurious sig-
nals, mostly the reference spurious signals. The simplest one is appli-
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cation of a mere low-pass RC section. Its addition, we will increase the 
slopes of G(s) and H(s) in the stop band to -60 dB/dec. We limit our 
discussion to the high-gain, second-order loop with two independent 
RC sections. The open-loop gain will be 

GAU*>) = r —^- 6.118 
-co 1 + j(oT3 1 + ja>TA 

After introduction of the normalized time constants 

Τ3/Τ2=κ TJT, = V TJT3=KV 6.119 

and original second-order loop damping factor and normalized fre-
quency, ω/ω„ « σ, we get for the fourth-order PLL the following trans-
fer functions: 

" < ( - ) = - , ' + 2ζσ ; 6 · 1 2 0 

σ4 {2ζκ)2η + σ* 2ζκ{ 1 + η) + tS + σ2ζ+1 

1-//4(σ)= o-\m2£+o>W + V) + o> 6Λ21 

σ\2ζκ)2η+(Τί2ζκ(\ + η) + σ2+σ2£+\ 

Since the constant 77 is small compared with κ, the phase margin does 
not deteriorate considerably. Its evaluation proceeds with the assis-
tance of (6.33) and reaches the positive phase margin. 

180 
<ppm ~ [-7Γ+arctan(2£r) - arctan(2£c*·) - arctan(2£c/c?7)] 6.122 

π 

6.7 PLL PHASE NOISE 

The PLL phase noise is composed of the reference generator noise, the 
VCO noise, and the additive noise generated in the loop itself, that is, 
in the phase detector, in the loop filter and in the feedback system. The 
situation is discussed with the assistance of Fig. 6.30. 

The present solution is based on the fact that the noise power gener-
ated in individual stages is small compared with the effective power of 
the respective carrier frequency in signals. Consequently, we can apply 
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Fig. 6.30 Block diagram of the PLL with the generalized feedback path network and 
additive noise sources [6.2]. 

the rule of superposition by adding noise generators to inputs or outputs 
of individual blocks. In addition, application of the Laplace transform 
may be used for solving the problem and, eventually, we arrive at the 
spectral density, Ξφ out(/), of the output phase noise. By assuming the 
locked loop and by considering a rather general block diagram in Fig. 
6.30, we may write for the investigated phase-locked loop (cf. 6.1) 

Φ,η + Φρθ.η + —rf + ΦυΚη 
N 

[Kd + VpD,n + VFJFL(S)— = Φο, + Φοπ, 

6.123 

where n indicates noise components that are in the Laplace transform 
notation. However, for simplicity we leave out the Laplace transform 
symbol s throughout. The output noise supplied by the PLL is 

Φο„ = 

Φί,η+ Φ?Ό,η+ ΦθΝ,„ + 
VPD.n + VF,n 

Kd 

KdKoFL(,s) 
Φοπ,η 

NG'(s) 

1 + KJKOFL(S) 

0in+ ΦρΌ,η+ ΦθΝ.η + VpD.n + VF,n 

Kd 

6.124 

+ Φο 

l + G'(s) 
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With the assistance of eq. (6.2)-(6.4) and the PSDs of the individual, 
noncoherent, noises, we arrive at output noise power spectral density 
(PSD): 

ΞΦ.Λί) = Ν2\Η'(ϊΠ ^ + W / ) + W/)+%y^ 

+ | l - / / W S < , v c o ( / ) = Λ̂ 2 \H\jff 

+ | l - i / ' Ü O f o . v c o ( / ) 

~~~2 ~*~ S>t>MA\J ) 

6.125 

where we have introduced the effective loop gain H'(ja>) (inversely 
proportional to the division factor N, that is, K' = KIN [see (6.8)] and 
summed up all noises due to the phase detector, circuits associated 
with the loop filter, the feedback divider, and the VCO into an effec-
tive output noise: 

^,ο«σ)=Λί2ι//'ο/)Γ 
Q2 

"Shadow ) ■s,.vco(/)|i-#'(iOI 

6.126 

Investigation of (6.123)—(6.126) and Fig. 6.30 reveals that each of the 
individual noises is connected with a frequency: 

1. The input frequency ft or the reference frequency/. 
2. The reference or loop frequency^ =fJQ 
3. The natural frequency/, or PLL bandwidth frequency f?LL 

4. The output frequency fout =f0 

Next, we look into origins of individual noises and try to evaluate, ap-
proximately, the corresponding PSD. 

6.7.1 Reference Generator Noise 

Crystal oscillators are usually applied as reference generators in most 
instances when designing PLL system. Their phase noise characteris-
tics were discussed in Chapter 3 and here we recall their PSD: 
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Ξφ,(Ω: L· 
1 Q - 1 7 ' , I P ' 1 3 , 1 0 " ' 7 6 

f4 f f2 ~*~>SVadd 6.127 

or when referring to the reference frequency only, without recourse to 
the crystal Q factor, 

ΞΦΛΩ~Γ, 
., lQ- 3 9 - 5 ± 0 · 5 , 1 0 ^ 4 ± l 

r / 
+ 

10 -14.5±0.5 

/ 
10"17±1 6.128 

Equation (6.128) is recommended for preliminary designs. Later we 
will see that, generally, in PLL systems the reference noise is impor-
tant at low Fourier frequencies and affects mainly the long-term fre-
quency stability. 

6.7.2 Voltage-Controlled Oscillator Noise 

Another important source of the overall noise in PLL systems is the 
VOC, which is particularly important for large and out-of-band Fourier 
frequencies. In Section 3.2.3, we found an approximate formula for the 
fractional frequency noise of the microwave oscillators: 

Sfif)' 
10" 

/ 
+ 10" 6.129 

However, inspection of the phase noise PSDs of the on-chip VCOs 
generally reveals much larger flicker noise. Investigation of some pub-
lished noise properties of the PLL reveals for the on-chip microwave 
oscillators a bit more noise, and the important flicker noise is (also see 
Table 6.2) 

> 0,vco' ( / ) ~ L 
f) 

10" 
/ 

+ 10 -19±1 + 10" 6.130 

6.7.3 Phase Noise of the Charge Pump 

The current pump phase detector generally exhibits one or two narrow 
current pulses of amplitude Ip and duration τ. The mean value of the 
effective transconductance of the pumping process (cf. 4.39) is 
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Table 6.2 Noise constants of the VCO on chips 

/„ (GHz) Λ_, (dB) h0 (dB) Q CMOS" Reference 
1.2 -123 -180 0.13 μιη CMOS [6.12] 
2.2 -112 0.35 μηι CMOS [6.13] 
2.4 -112 2 0.13 μηι CMOS [6.14] 
4 -125 16 0.09 μηι CMOS [6.15] 
5.5 -190 10.5 0.18 μηι CMOS [6.16] 
8.5 -189 0.18 μπι CMOS [6.17] 

10 -190 0.18 μηι CMOS [6.18] 
16 -195 0.18 μηι CMOS [6.19] 
24 -187 O.^mBiCMOS [6.20] 
55 -103 25 0.130 μηι CMOS [6.21] 
50 -114 0.09 μηι CMOS [6.22] 
77 -193 20 O.^mBiCMOS [6.20] 
3 -157 -199 15 0.25 μπι CMOS [6.23] 

"Complementary Metal Oxide Surface = CMOS. 

Seff 
T 6.131 

VGS~VT T,e( 

with the corresponding noise current and the power spectral-density 
PSD: 

i,PD = 4kTgeff $ , ( / ) 
f ■ Λ2 

In.PD 6.132 

EXAMPLE 6.4 
Numerical evaluation of the current pump noise and PSD. 

1. The peak current is approximately / « 2 ( VdJR) (A) 
2. The supply voltage in modern systems is about Vdd = 2 (V) 
3. The current pump trasconductance gefT = [2Ip/( Vcs - VT)] (τ/Τκί) 
4. After introducing for VGS - VT (cf. 4.38) (VGS - VT) « 0.3 (V) 
5. The current pump trasconductance (2/p/0.3)(T/7,

ref) = 
(VJR)/(03)(T/TTef) 

6. The phase noise PSD 

^ . „ . ^ = 1 3 ^ . - 1 - 6.133 
l \ Vdd Tr 
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6.7.4 The Loop Filter Noise 

The loop filter noise (at low Fourier frequencies) is predominantly the 
thermal noise of the resistor R (cf. Fig.6.28) with the PSD of the noise 
voltage: 

SKFL( / ) "4 *7K 6.134 

The corresponding phase noise is 

c m - W / ) . . 4*7*_,4*7K 
o<t>.rL\J ) ; , ^77 ~ — 2 — 0.1 J J 

v* (ipR) v« 

EXAMPLE 6.5 
Add the phase noise contributions by the charge pump and the 
loop filter: 

4kTR 

V\d 

4V T 

VG'VT Tre 

AkTR 
-^γ- 6.136 

V dd 

It seems that the charge pump noise may be neglected. 

6.7.5 The Feedback-Divider Noise 

The divider noise problems were discussed in (4.123^.125) with the 
result 

W/)-10
 f

 Λ + Ι Ο - 1 6 ± Ι + Ι Ο ^ Λ - ^ - ^ + Ι Ο - 2 2 ± 7 

6.137 

which can be simplified for a mean reference frequency of ~ 100 MHz to 

in"*' 
5 ^ - - ^ — + 1(T,4±' 6.138 

6.7.6 The PLL Output Noise 

Here, we summarize all noise contributions discussed above, insert 
them into (6.126), and investigate the eventual noise properties of the 
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explored PLL. From the knowledge of the synthesized output frequen-
cy, f0, and of the desired passband, fpll ~ f„, we start by splitting the 
range of the Fourier frequencies into three parts: 

1. Very low frequencies, say < 100 Hz. 
2. Middle range up to the end of the desired passband (approximately 

up to the natural frequency/,). 
3. Finally, to the high and very high Fourier frequencies. 

In the second step, we use relation (6.125) and plot the PSD of the in-
dividual noise contributions in accordance with (6.126) (see Fig. 
6.31a). By putting to zero either the transferfunction \H(jß2 or |1 -
H(jß2, we easily appreciate the weight and the frequency range of indi-
vidual noise contributions. 

EXAMPLE 6.6 
At the preliminary design stage, we start with the output frequen-
cy,^,, and the desired passband width,//, .f„. With the assistance 
of (6.113), we find the preliminary division ratio to be 

N"M 4πω„ 8π2 /„ /„ 

f
 K

 Λ 

to — = 0-1 I no r 
V Jo 

6.139 

Next, we must choose the reference frequency. There are two points 
of approach. Because of the spurious signals, discussed below, the 
reference frequency should be ~ 10 to 30 times larger than/,: 

/>(20±10)/„~(20±10)/;ΐ(Γ3 = 2/„·1(Γ2 6.140 

at the same time, integer-TV division frequency synthesis systems 
evidently require division factors from yVmjn to Λ ^ to be integers 
for the numerical example, where 

f0 = 4 GHz and fr = 200 MHz 
Nmm is « 200 

Choice of the magnitude of the resistor, R (see Fig. 6.28), from 
the point of view of the noise, should be small, say 

R = 1000 Ω, [cf. relation (6.135)] 



282 CHAPTER 6 Phase-Locked Loops 

0 

-20 

^ 0 

-60 

-80 

-100 

-120 

-140 

-160 

0 

-20 

-40 

-60 

-80 

-100 

-120 

-140 

-160 

V 

_\\ 
\ s 
\ \ 

-*"** · ·« \ v 
"- .^ '->^ 

" 

' 

• 
* # ooo 

. „ S/(0 + 45 
• · . — sout(f) 

* . · · · Svco{f) 
• · . - - - - (10logSDN(f)) + 45 

• 
• i s ^ * 

v v ·-N ^ S s ^ r > e 

*̂**. oV 

1 10 100 1-103 MO 4 1·105 MO 6 1-107 1-108 

f 

(a) 

1 10 100 M 0 3 M 0 4 1·105 MO 6 MO 7 MO 8 

f 

(b) 

Fig. 6.31 Simulation of the PLL output noise, (a) Contribution in accordance with 
relations (6.146). (b) The reduced VCO output noise [i.e., H(s) = 0], (dash-dot line). 
The circles in both cases indicate the measured noise. 
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However, the product, RC, is a function of the natural frequency 
and of the damping factor (cf. 6.12), that is, for a proposed PLL 
and dimensions of the integrated circuit, the capacity, C, on the 
chips is restrained. These conditions require R to be as large as pos-
sible [cf. (6.110), say 100 kfl]. In accordance with the choice of the 
resistor R, the peak current Ip is between 1 mA and 10 μΑ, and the 
PLL output noise in the midrange for N = 100 and R = 10 kü, is 

$Vc 104-^V + 10-22/r + 12*r-104 

/ 
\H\ff 

+ s,,vco|i-///'(/)l2 ^ r + i o - , 8 / r + io- 1 

10 
/ 

- + 10" ι+/ΐ 

Ji+/ ; 

6.141 
/ 

The preliminary evaluation of the PLL noise is shown in Fig. 
6.31a and the contribution of the VCO noise is shown in Fig. 
6.3 \b. The noise problems with spurious signals will be discussed 
in a separate section. 

6.8 PLLTIME JITTER 

In Section 5.3.7, we investigated the relation between the phase noise 
PSD and the time jitter, (5.80) and (5.81). For communications appli-
cations, the time jitter is usually evaluated in the range from 10 kHz to 
the effectively natural frequency f„, or, more exactly, to the fpU (cf. 
6.20), since for higher output frequency the noise contribution is very 
small. However, in this frequency range the PLL noise is effectively 
white at about -80 ± 10 dB/Hz, as is found in the above relation. Con-
sequently, for the time jitter we get 

Af- 1 
2 ί Γ Λ 

J o 

yUJo- 6.142 

Practical measurements reveal that the mean value of the time jitter of 
the PLL in the gigahertz ranges is approximately 

Δί-lO"1 2 (s) 6.143 
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6.9 SPURIOUS SIGNALS 

We have investigated noise properties of the PLLs. However, there are 
also present spurious signals generated by spikes, particularly in digi-
tal systems. The situation is shown in Fig. 6.26, where the PFD detec-
tion utilizes two flip-flops to produce three stages (e.g., pull-up and 
pull-down, for delivering charging or discharging currents). However, 
in the third position the switches are open and isolate the loop filter 
from the PFD section. In addition, the opening of the up and down 
paths is prolonged with a delay, rd (cf. Fig. 6.32). Prolongation is gen-
erated by inserting a few inverters into the feedback path of the PDF 
(see Fig. 6.33a). Note that the gate delay is ~ 30-50 ps; thus, the in-
verter delay is ~ 100 ps, and delays in the PFD blocks are ~ 300-400 
ps. What remains is computation or at least estimation of the intro-
duced spurious signals. Note that the addition of the slave charge 
pump (cf. Fig. 6.33c) is one means of reducing spurious spikes. 

6.9.1 Spurious Signals of the First Type 

Reverting to the charge-pump systems, the working mode is effective-
ly the zero-phase error technique due to the combination of the PFD 
and the loop memory (type II loops). The situation being such, the 
charge pump may switch randomly close to the zero-phase difference 

_n n_ 
| ft Delay k Q : 

D Q 

*d 

Dn 
•cp 

■4— 

vco 

-ft/ 
As) 

~JT 

Fout 

W V ) 

Multi-modulus divider 

ΔΣ 
modulus Q 

N[k] 

Fig. 6.32 The PDF with prolongation of opening of the up and down paths with a de-
lay, rd, generated by inverters [6.24]. (Copyright © IEEE. Reproduced with permission.) 
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Fig. 6.33 (a) A general arrangement of the PFD. (ύ) A general circuit of the PFD 
[6.24]. (Copyright © IEEE. Reproduced with permission.) 
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and generate a large noise. The remedy provides an intentional shifting 
of the working mode from the zero error zone [6.7]. In the simplest 
arrangement, the leaking resistance might serve the purpose. However, 
there is a problem, namely, the overall current must be zero (the situa-
tion is shown in Fig. 6.34). That is, the large current peaks, lasting only 
for a short time τ, and building on the capacity C (cf. Fig. 6.28), a volt-
age, Δν, must be compensated for during the remainder of the refer-
ence period, Tn by the leaking current. The situation may be approxi-
mated with (6.144) 

IPT = i{TKi-r) : 7\ef 6.144 

Spurious harmonic signals are generated predominantly in the pulsed 
section (the discharging process exhibits nearly DC behavior). The 
Fourier series of short pulses is very simple (e.g., limiting of the rec-
tangular signal expansion, [cf. 6.2]). For the peak current (6.144), we 
get 

IPUt) = IPT(t)~2Ip — 
1 r 

1 n<r 

T + Xcos 

2/ 
_R_ 

Rsp 

1 n<r 

—+ Vcos 

f 2π) 
n 1 

V Tr ) 

( 2TT ^ 
n 1 

\ Tr ) 

+ Remainder terms : 

6.145 

t 
'a 

τ τ 

Tr 

"j 

, 

' 
fsp 

l 

Fig. 6.34 Currents in the simplest working mode of the charge pump (charge-pump 
phase detector based on the leaking resistance). 
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Since the leakage resistance Rsp is generally undefined, designers of 
the PLL systems try to suppress this source of the spurious signals as 
much as possible. Nevertheless, some leakage is still present and the 
spurious signals of this type must be considered. For the second-order 
loop, we get the power of the spurious spike amplitude, 

{Ip,f 
'ΔαΛ 
V (Or J 

'■u ±ΖΛ1^2: 
\ Tr (Ur J 

va Rsp J r 

Λ2 

[K„ (HzV 1 ) ] 6.146 

EXAMPLE 6.7 
Evaluating the power of the fundamental spurious spike in the 
typical second-order loop with the assistance of (6.116), we get 
the impedance Z(fr) ~ R and for the reference spike 

Sp} 
'A*-V ( 

\2<°rJ 7> 6.147 

In Example 6.4, we found that IpR ~ VdJ2 ~ 1 (V). Thus, for/D = 
5 GHz and/. = 50 MHz, β0 ~ 0.1, and after introducing an esti-
mate of value (R/Rsp) =10-3, we arrive at 

Spx « -46 dB 

Next, we evaluate the power of the fundamental spurious spike in 
the typical third-order loop; with the assistance of the rel. (6.116), 
we get the impedance, 

z(fr)-
l + jCQrRC R 

R- ω„ 
jd)rC{\ + J<OKRC) 1 + jojrKRC )ωΜκ 

6.148 

For/0 = 5 GHz and/, = 50 MHz, β0 = 0.1,/„ = 1 MHz, κ « 0.2, 
and (R/Rsp) =10-3, we arrive at 

Spi -86 dB 

6.9.2 Spurious Signals of the Second Type 

Spurious signals of the second type are generated by the mismatch be-
tween the charging and discharging peak currents IpU and IpD (Fig. 
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6.35). To meet condition (6.144), that is, that the mean charge is zero, 
the following relation must be met: 

IPu{Tr+Tä + ^) = IpD{Tr+Tä) 6.149 

and the time situation of this type of three-step phase detection is de-
picted in Fig. 6.36. 

The investigated current-time signal consists of two narrow pulses 
with opposite polarity and duration rd. What remains is computation, 
or at least estimation, of the generated spurious signals. The time-error 
difference Δί is 

I pU I p 
Tr=Tl 6.150 

Assumption of the fluctuating one-bit phase error leads to current fluc-
tuations with the period 2Tr: 

2I.T-, __. 21 „, τ. __. 
, « _ £ L L V m s n » M A £LJ_2cos(2rtw r0-7; + 7-2) iA.0 ~ -P' 2 X cos(2«a>rf) - -

271 Tr 

2Iplr2 

IT. 
2jZO%(2n(urt) + —-—2^cos(2«iy/.(i-7,

r + r2) 
n 1 r n 

AI T 
——Xcos(2«<wr0 « 2ΔΙρ ^cos(2«it>.0 

6.151 

This current generates, at the output of the filter impedance, a spurious 
voltage, which, multiplied by the PLL voltage gain, K0, modulates the 
frequency of the output signal at the rate of 2fr: 

Sp2 
' Δ α Λ 

K2(ÜrJ 

2 f 
2Δΐρ 

Z(2fr)K0 

2ω 
2π [Ko (HzV1)] 6.152 

6.10 SYNCHRONIZED OSCILLATORS 

Synchronization in microwave ranges of dividers, frequency multipli-
ers, mixers, and so on is achieved due to the reduced size and power 
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Asymmetry between 
charge and discharge 

Phase difference between 
ref. and div. out (deg) 

Fig. 6.35 Mismatch between the charging and discharging peak currents IpU and IpD 

(adapted from [6.25]). 

consumption of IC chips on one hand and improved reliability, lower 
cost, and versatility on the other. The background is injection locking 
of oscillators by external signals. These systems form simplified PLL 
versions. Often, a low-power, low-noise signal is used for synchroniza-
tion of a higher power oscillator to reduce noise close to the carrier and 
sometime to filter out the desired frequency from a comb (cf. Sec. 
3.1.4.4, Synchronized Optoelectronic Oscillators). Another application 

Fig. 6.36 Time situation of the three-step phase detection with unmatched currents. 



290 CHAPTER 6 Phase-Locked Loops 

provides synchronized frequency dividers (cf. Section 4.7.2) or multi-
pliers [e.g., 6.26-6.28]. 

6.10.1 Principles of Injection Locking 

In principle, injection locking is based on the phase shift introduced in 
the synchronized oscillator by a small voltages or currents of the syn-
chronizing signal (Fig. 6.37). Their sum would result in a simultaneous 
amplitude and phase modulation of the stronger signal at the rate of the 
difference frequency, Ω=\ω2-ωι\, with modulation indices VJV0 (see 
Example 1.4). Referring to the phase modulation only, we get 

v(i)ÄF0cos 
γ 

ωοί +—ύη{ωο-ω5)ί V0cos[toj+Au)t] 6.153 

Close to the carrier, the modulation disappears and the frequency dif-
ference is compensated for by a phase shift in accordance with (cf. Fig. 
6.38) 

6.154 

from which 

V V 

Vo Vo 
6.155 

Γί , 
<~>1Ψ1 

o1 

κ0 

PD 
Kd 

Kai <Pi - «Pout) 

«Pout 

Fig. 6.37 The idealized PLL of an injection-locked oscillator system. 
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and the largest steady-state difference is 

A(0 = ^LK± 6.156 
2QV0 

(Note that Vs corresponds to Kd and (UJ2QV0 to the K0.) The same re-
sult was arrived at by both Kurokawa [6.29] and later by Adler [6.30]. 

6.10.2 Noise Properties of Synchronized Oscillators 

First, we will investigate noise properties of the combined system with 
the idealized PLL system of synchronized oscillators illustrated in Fig. 
6.37. Note that the function of the phase detector is performed in the 
high-power oscillator 02 . For the corresponding phase fluctuations, we 
can write in the Laplace transform notation, 

Ms) - 4>J,S)-\KM - φ2{8) = <t>0Js) 6.157 
s 

from which 

im^m Κ.ΚΛ 6,58 
s + K 

Since the above discussed PLL of the synchronized oscillator system is 
on the order of one (cf. Section 6.1.5) the lock-in rage for the sine-
phase detector is equal to the loop gain K (i.e., to the corresponding 
frequency shift Δω^). For its evaluation, we take recourse to the 
Kurokawa investigation of the disturbed oscillator [6.29]. Referring to 
Fig. 6.38a, we have 

T 1 

cuC (oC ) 

ά φ - 2 - 6.159 
dt ATo 

I 

J [(ao + Aa)cos(ü>synt + ψ)ήη(ωοί + φ)]άί 

ι-Το 

To study the phase-locking mechanism, we replace the voltage e{t) 
with a harmonic signal a0 cos(ajsyn/), where a0 is the amplitude of the 
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Fig. 6.38 (a) Principle of injection locking based on the phase shift introduced in the 
synchronized oscillator by a small voltage, or (b) by the synchronizing signal in the 
parallel arrangement, or (c) on the harmonic arrangement. 

injected voltage and A0 is the current of the synchronized oscillator. 
After evaluation of (6.159), we have 

„ , . ~rd<t> cio + Δα . , . ,N ^ ι^ Λ 
-2Ζ,Δω-2Ζ,—= sin(<£-<A) 6.160 

dt Ao 

and further for the steady state, where άφ/dt = 0, the frequency shift is 

Δ ω η ~ - - ^ 8 ΐ η ( 0 ο ) - α° 
2LA„ ω0-2LA0 "2QI 

6.161 

By putting Δω0 = K, we get, with the assistance of (6.158), for the out-
put phase noise 

K2 2 

S V o u t U ) = Stf\J ) 2 , , , 2 5 ^ , syn (7 ) 
ω2 + Κ2 synV./ > 2 , „ 2 

ω + Λ 

6.162 

Since we may evaluate K as a function of incident powers as Q = 2Qe 

R Ü)o 1 
K2 = ^ ■ A,.—2cos' 0o < - ^ - · Ρΰ1—2 6.163 

ß P„2 
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6.10.3 Noise Properties of Oscillators Synchronized 
on Harmonics 

In instances in which carrier frequencies of the synchronized and syn-
chronizing signals are not equal but are in a harmonic relation, the 
phase locking takes place on the common harmonic. 

6.10.3.1 Frequency Multiplication 

First, we investigate the case in which the injected signal is a subhar-
monic of the synchronized oscillator (frequency multiplication). The 
Mh harmonic, VsN, generated either in the synchronizing generator 
(cf. Fig. 6.38c) or in the input circuit, replaces Vs in (6.155), that is, 

\(üT = ^sm(<p)<^ 6.164 
Vo Vo 

Reverting to the PLL system configuration, we get 

[ ^ s y n ( s ) ~ * « . ( * ) ] * - ' — - <Pl(s) = <"» . (*) 6 . 1 6 5 

s 

from which 
«"«.(*) = — 6.166 

s + K 

and evaluation of the output phase noise reveals 

_ m_M/X**)2 , ? m _ « L _ 6167 
ύφ,σαυ) T~ 2 + J^,syn(7 J - 7 " J 0 . 1 0 / 

ω +Λ ω +Κ 
with the conclusion that the output noise, close to the carrier, is N2 

times larger than the noise of the synchronizing input signal, as expect-
ed in the multiplication process. An example is reproduced in Fig. 
6.39, where the phase noise of a 5-GHz oscillator is synchronized on 
the third harmonic of the injected signal. 
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Fig. 6.39 Phase noise of a 5-GHz oscillator synchronized on the third harmonic of 
the injected signal [6.28]. (Copyright © IEEE. Reproduced with permission.) 

6.10.3.2 Frequency Division 

Next, we investigate an injection-locked frequency divider. This 
process is based on the interaction between the injected signal and the 
corresponding (Mh) harmonic of the local oscillator. In the case in 
which both frequencies are very close to each other, their sum has a 
slowly varying phase: 

AOM sin(tf<wo0 + ,4synsin(7Vwo0 + Acot + ψ)~ 

Λ sin(Antf + ψ) 6.168 
Al.N + A2yn · sin Νωοί + arc tan^^ 

In the case in which the frequency of the synchronizing signal and the 
corresponding harmonic frequency of the synchronized oscillator are 
sufficiently close to each other, the phase modulation disappears and 
the frequency difference is compensated by a phase on the oscillator 
frequency but N times smaller, that is, 

A&>osc T '-
AO,N<P+ As. 

(Ao.N + Asyn)N (Ao.N + ASyn)N 
6.169 
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After introducing the time delay from (6.154), we arrive at the edge of 
the synchronizing range at 

Acoosc^-^ ^ Ξ 6.170 
( 2 0 (Ao,N + Asyn)N 

From (6.157), we conclude that the PSD of the output noise, close to 
the carrier, is N times smaller, that is, 

ΙΦ^-Νφ^)]- - <posc(s) = <pM(s) 6.171 

s 

from which evaluation of the output noise PSD reveals 

K2 2 

IJ i^.outv/ ) ~ ύ (P.synV/ ) ~' 2 2 " ^.oscV/ / 2 1 ·, 2 2 

with the conclusion that the output noise, close to the carrier, is TV2 

smaller than the noise of the synchronizing signal (cf. Section 4.7.4.). 
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135 
Shot noise, 5, 132 



302 INDEX 

Small and band limited perturbations of 
sinusoidal signals, 14 

narrow band noise, 17 
superposition of one large and a set of 

small signals, 15 
Stationary stochastic processes, 27 
Stochastic processes, 26 
Synchronized oscillators, 288 

frequency division, 294 
frequency multiplication, 293 
noise properties of, 291 
noise properties of oscillators 

synchronized on harmonics, 293 
principles of injection locking, 290 

Thermal noise, 2 
Time domain measurements, 183 
Time error, probability density of, 209 
Time jitter, 205 

correspondence between time jitter 
measurements, 227 

correspondence between simple 
time jitter and Allan variances, 
227 

cycle-to-cycle jitter, 207 
flicker phase noise, 225 
jitter in the unit interval, 208 
jitter in units of time, 208 
peak-to-peak jitter, 208 
period jitter, 207 
random walk frequency, 226 

separation of the random and 
deterministic jitter, 216 

time interval error, 208 
time jitter evaluation from PSD noise 

characteristics, 220 
time jitter evaluation from the time 

domain measurements, 223 
time jitter with spurious signals, 223 
types of, 206 
white frequency noise, 225 
white phase noise, 225 

Transfer functions, 186 
aging, 191 
evaluation of, 187 
flicker frequency noise, 190 
flicker phase noise, 189 
random walk frequency noise, 191 
sinusoidal frequency modulation, 192 
white frequency noise, 190 
white phase noise, 188 

Two-sample (Allan) variance, 187 

Uniform distribution, 20 

White frequency noise, 190, 203 
White noise, 1, 2 

shot noise, 5 
thermal noise, 2 

White phase noise, 188, 203 
Wiener-Levy process, 31 


