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Preface

This book presents the mathematical foundation for building and imple-
menting industrial control systems. It contains mathematically rigorous
models and techniques for control systems, in general, with specific orien-
tation toward industrial systems. Industrial control encompasses several
types of control systems. Some common elements of industrial control
systems include supervisory control and data acquisition systems, dis-
tributed control systems, and other generic control system configurations,
such as programmable logic controllers, that are often found in industrial
operations and engineering infrastructures.

Industrial control systems are not limited to production or manufac-
turing enterprises, as they are typically used in general industries such
as electrical, water, o0il and gas, and data acquisition devices. Based on
information received from remote sensors, automated commands can be
sent to remote control devices, which are referred to as field devices. Field
devices are used to control local operations. These may include opening
and closing valves, tripping breakers, collecting data from sensors, and
monitoring local operating conditions. All of these are governed by some
form of mathematical representation. Thus, this book has great impor-
tance in linking theory and practice.

Distributed control systems are used to control industrial processes
such as electric power generation, oil and gas refineries, water and waste-
water treatment, and chemical, food, and automotive production. They
are integrated as a control architecture containing a supervisory level of
control overseeing multiple, integrated subsystems that are responsible
for controlling the details of a localized process. Product and process con-
trols are usually achieved by deploying feed-back or feed-forward control
loops, whereby key product and/or process conditions are automatically
maintained around a desired set point. To accomplish the desired product
and/or process tolerance around a specified set point, specific program-
mable controllers are used.

Programmable logic controllers provide Boolean logic operations,
timers, and continuous control. The proportional, integral, and/or differ-
ential gains of the continuous control feature may be tuned to provide

X0



xvi Preface

the desired tolerance as well as the rate of self-correction during process
disturbances. Distributed control systems are used extensively in process-
based industries. Programmable logic controllers are computer-based
solid-state devices that control industrial equipment and processes. They
are used extensively in almost all industrial processes. That makes this
book very important and appealing to a wide range of readers, includ-
ing students, professors, researchers, practitioners, and industrialists. The
book is an amalgamation of theoretical developments, applied formula-
tions, implementation processes, and statistical control. The contents of
this book include

Industrial innovations and systems analysis

Systems fundamentals

Technical systems

Production systems

Systems filtering theory

Systems control

Linear and nonlinear systems

Switching in systems

Systems communication

Transfer systems

Statistical experimental design models (factorial design and frac-
tional factorial design)

* Response surface models (central composite design and Box-
Behnken design)

Adedeji B. Badiru
Oye Ibidapo-Obe
Babatunde J. Ayeni

For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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chapter one

Mathematical modeling
for product design’

Product design has normally been performed by teams, each with expertise
in a specific discipline such as material, structural, electrical, systems.
Traditionally, each team would use its members’ experience and knowledge
to develop the design sequentially. Collaborative design decisions explore
the use of optimization methods to solve the design problem, incorporat-
ing a number of disciplines simultaneously. It is known that the optimum
of the product design is superior to the design found by optimizing each
discipline sequentially due to the fact that it is enabled to exploit the inter-
actions between the disciplines. In this chapter, a bi-level decentralized
framework based on memetic algorithm (MA) is proposed for a collab-
orative design decision using a forearm crutch as the case. Two major deci-
sions are considered: weight and strength. In this chapter, we introduce
two design agents for each of the decisions (Wu et al., 2011). At the system
level, one additional agent termed “facilitator agent” is created. Its main
function is to locate the optimal solution for the system objective function
that is derived from the Pareto concepts; thus, Pareto optimum for both
weight and strength is obtained. It is demonstrated that the proposed
model can converge to Pareto solutions.

Introduction

Under a collaborative design paradigm, the first common topic is multi-
disciplinary design optimization (MDO), which is defined as “an area of
research concerned with developing systematic approaches to the design
of complex engineering artifacts and systems governed by interacting
physical phenomena” (Alexandrov, 2005). Researchers agree that inter-
disciplinary coupling in the engineering systems presents challenges in
formulating and solving MDO problems. The interaction between design
analysis and optimization modules and multitudes of users is compli-
cated by departmental and organizational divisions. According to Braun
and Kroo (1997), there are numerous design problems where the product
is so complex that a coupled analysis driven by a single design optimizer

*T. Wu, S. Soni, M. Hu, E. Li, and A. Badiru, The application of Memetic algorithms for
forearm crutch design: A case study, Mathematical Problems in Engineering, 3 (4), 1-15, 2011.
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2 Industrial control systems

is not practical as the method becomes too time-consuming either because
of the lead time needed to integrate the analysis or because of the lag
introduced by disciplinary sequencing. Some researchers have taken proj-
ect management as a means to facilitate and coordinate the design among
multidisciplines (Badiru and Theodoracatos, 1995; Thal et al., 2007).

Early advances in MDO involve problem formulations that circumvent
the organizational challenges, one of which is to protect disciplinary pri-
vacy by not sharing full information among the disciplines. It is assumed
that a single analyst has complete knowledge of all the disciplines. As indi-
cated by Sobieszczanski-Sobieski and Haftka (1997), most of the work at this
phase aims to tackle the problems by a single group of designers within one
single enterprise environment where the group of designers shares a com-
mon goal and requires less disciplinary optimum. The next phase of MDO
gives birth to two major techniques: optimization by linear decomposi-
tion (OLD) and collaborative optimization (CO). These techniques involve
decomposition along disciplinary lines and global sensitivity methods that
undertake overall system optimization with minimal changes to disciplin-
ary design and analysis. However, Alexandrov and Lewis (2000) explore
the analytical and computational properties of these techniques and con-
clude that disciplinary autonomy often causes computational and analyti-
cal difficulties that result in severe convergence problems.

Parallel to these MDO developments there also evolves the field of
decision-based design (Simpson et al., 2001; Hernandez and Seepersad,
2002; Choi et al., 2003; Wassenaar and Chen, 2003; Huang, 2004; Li et al.,
2004), which provides a means to model the decisions encountered in
design and aims at finding “satisfying” solutions (Wassenaar et al,
2005; Nikolaidis, 2007). Research in decision-based design includes the
use of adaptive programming in design optimization (Simon, 1955) and
the use of discrete choice analysis for demand modeling (Hernandez and
Seepersad, 2002; Choi et al., 2003). In addition, there has been extensive
research ranging from single-objective decision-based design (Hernandez
and Seepersad, 2002) to multi-objective models (Lewis and Mistree, 1998,
1999). It combines game theory, utility theory, and decision sciences for
collaborative design that can be conducted among a group of designers
from different enterprises. This technique has several computational dif-
ficulties in calculating the “best reply correspondence” and the rational
reaction sets, especially when the designs are very complex. Besides, sev-
eral approximations like using response surfaces within these techniques
make them prone to errors (Fernandez et al., 2005).

Note most methods reviewed so far have strict assumptions on the utility
functions and/or constraints (e.g., convexity and quasi-linear of the func-
tions), which limits the application to product design. In this research, we
explore the use of a heuristic method, memetic algorithm (MA), and a com-
bination of local search (LS) and genetic algorithm (GA) to a forearm crutch
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design that has a non-convex objective for one of the decisions. Forearm
crutches had been exclusively used by people with permanent disability.
Nowadays, it is beginning to serve for some shorter-term purposes as well.
The design of the forearm crutch needs to consider multidisciplinary deci-
sions. For example, the structure designer wants to ensure that the design
is lightweight. The material engineer wants composite material to have the
right number of layers at right angles to make the product durable. The
outsourcing engineer wants the supplier to provide low-cost, highly reli-
able, lightweight parts. Another important factor impacting the design is
cost. Here, we introduce the design agent for each disciplinary decision
problem and one system agent facilitating the communication among the
design agents and guiding the design to convergence. To achieve this, the
overall decision space is partitioned into two sets: one for coupled variables
(the ones shared by at least two designers) and one for local variables (the
ones that can be fully controlled by each designer). Next, an iterative pro-
cess between design agent decisions on local variables and facilitator agent
decisions on the whole design space launches. It is demonstrated that a con-
verged Pareto optimum is achieved after a number of iterations for the fore-
arm crutch design which has nonlinear-form decision functions.

This chapter is organized as follows: the related literature is briefly
reviewed in Section 1.2, followed by the detailed explanation on the pro-
posed bi-level decentralized framework in Section 1.3. The forearm crutch
case is explained in Section 1.4 with the conclusions being drawn in
Section 1.5.

Literature review

CO, introduced by Braun and Kroo (1997), is a bi-level optimization
approach where a complex problem is hierarchically decomposed along
disciplinary boundaries into a number of subproblems which are brought
into multidisciplinary agreement by a system-level coordination process.
With the use of local subspace optimizers, each discipline is given com-
plete control over its local design variables subject to its own disciplinary
constraints. The system-level problem sets up target values for variables
from each discipline. Each discipline sets the objectives to minimize
the discrepancy between the disciplinary variable values and the target
values. The system-level optimization problem is formulated as minimiz-
ing a global objective subject to interdisciplinary consistency constraints.
The interdisciplinary consistency constraints are equality constraints
that match the system-level variables with the disciplinary variables. In
OLD (Sobieszcanaski-Sobieski, 1982, 1988; Sobieszcanaski-Sobieski et al.,
1985), the disciplines are given the autonomous task of minimizing disci-
plinary design infeasibility while maintaining system-level consistency.
The system-level problem is to drive design infeasibility to zero. At the
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local-level problem the disciplines use their local degrees of freedom to
minimize the violation of the disciplinary design constraints, subject to
matching the target value for the disciplinary output that is fed into the
discipline. Balling and Sobieszcanaski-Sobieski (1994) introduce a combi-
nation of CO and OLD where the disciplinary subproblems minimize the
discrepancy in the system-level targets as well as the disciplinary design
infeasibility given the disciplinary design constraints.

Both CO and OLD depend on a design problem’s amenability to hier-
archical decomposition with the system objective explicitly defined. On
the other hand, concurrent subspace optimization (CSSO) (Sobieszcanski-
Sobieski, 1988) is a nonhierarchic system optimization algorithm that
optimizes decomposed subspaces concurrently, followed by a coordina-
tion procedure for directing system problem convergence and resolving
subspace conflicts. In CSSO, each subspace optimization is a system-level
problem with respect to the subset of the total system design variables.
Within the subspace optimization, the nonlocal variables that are required
to evaluate the objective and the constraint functions are approximated
using global sensitivity equation (GSE). Interested readers are referred to
Sobieszczanski-Sobieski (1988) for detailed description of GSEs.

The bi-level integrated synthesis (BLISS) (Sobieszczanski-Sobieski
and Kodiyalam, 1998) method uses a gradient-guided path to reach the
improved system design, alternating between the set of modular design
spaces (the disciplinary problems) and the system-level design space.
BLISS is an all-in-one method in that the complete system analysis is per-
formed to maintain multidisciplinary feasibility at the beginning of each
cycle of the path. The overall problem is decomposed such that a set of
local optimization problems deal with the detailed local variables which
are large in number, and one system-level optimization problem deals
with a small number of global variables.

Decision-based design (Simpson et al., 2001; Fernandez et al. 2002;
Hernandez and Seepersad 2002; Choi et al., 2003) is a paradigm focus-
ing on distributed and collaborative design efforts. For the cases where
continuous variables are used, adaptive linear programming (Lewis
and Mistree, 1999) is employed; in case of mixed discrete and continu-
ous variables, foraging-directed adaptive linear programming has been
used (Lewis and Mistree, 1999). In a noncooperative environment, game
theoretic principles are used to arrive at the best overall design (Lewis and
Mistree, 1998, 1999). Recently, design-for-market systems grows out of the
decision-based design and emerges as an area focusing on establishing
a solid basis in decision theory, by taking microeconomics into account
to support engineering design. Kumar et al. (2007) propose a hierarchical
choice model based on discrete choice analysis to manage and analyze
customer preference data in setting design targets. Azarm’s group stud-
ies new product designs that are robust from two perspectives—from the
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engineering perspective in terms of accounting for uncertain parameters
and from the market perspective in terms of accounting for variability in
customer preferences measurement (Besharati et al., 2006). They conclude
incorporating consumer heterogeneity in considering that the variability in
customer preferences may have significant impact on the ultimate design.
Research led by Michalek explores the use of game-theoretic approach to
finding market equilibrium under various regulation scenarios (Shiau and
Michalek, 2007). A metric for agility measurement is introduced by Seiger
et al. (2000) to explore the product development for mass customization.

In general, some common criticisms and/or challenges facing col-
laborative design decisions are the convergence and information-sharing
issues:

¢ Will the decision model converge? If yes, under what condition
(assumptions on the function form and design spaces) will it con-
verge? How fast will it converge?

* Most models (CO, OLD, BLISS, etc.) take a top-down approach with
the full knowledge of the design space (e.g., the form of utility func-
tions, constraints) being available. For the cases when the design
information is partially known, what decision model is appropriate?

To address these challenges, we propose a general decision framework
based on MA that allows distributed design teams to arrive at Pareto solu-
tions which is explained in Section 1.3.

Memetic algorithm and its application
to collaborative design

MA is one of the emerging areas in evolutionary computation. It integrates
GA with LS to improve the efficiency of searching complex spaces. In MA,
GA is used for global exploration while LS is employed for local exploitation.
The complementary nature of GA and LS makes MA an attractive approach
for large-scale, complex problems, for example, collaborative design.

Proposed framework for collaborative design

Let us consider a general collaborative design with z design teams. The
problem can be represented as

Min J(x,y)
St.g(x)<0

h(x,y) <0
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Xi T S X SinB (i=1,...,1’11)
it <yi<yt® (i=1...,m)

where
J=1:(xy) - J2x 9
X =[x ... x]"
y =1 Yool
g8 =181 ... gm)I"
h =[x y) ... b, I
x is the set of n, local variables
y is the set of 1, coupled variables
g is the set of m, local constraints
h is the set of m, coupled constraints

Figure 1.1 illustrates the iterative decision process between system
facilitator agent and disciplinary design agents. First, the facilitator ini-
tializes the global solution space over both local and coupled variables.
For any solution, for example, [x*, y*], each design agent will execute local
optimizer over the sub-design space which consists of x only, that is, Min
J(x, y*). The results fed back to the facilitator are the value of objective
function and the gradient of objective function over coupled variables.
The facilitator will (1) employ local search for the recent results updated
by each designer using the related gradient information for the improved
design (2) next, traditional GA operators, crossover, and mutation are
applied to introduce new candidates to the solution space.

Pseudo Code

This section shows the layout of the Pseudo Code for the proposed meth-
odology as illustrated in Figure 1.2.

System facilitator:

N
Z w;J;
i=1

v J5, VIF|y

A

Design disciplinary optimizer:
Min J(x, y*)

Figure 1.1 Overall decision framework.
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~

1) //Initialization

2) The set of final Pareto solutions FP = g;
3) The set of GA population PS = g;

4) The set of weights combination WS = ¢;

(
(
(
(
N
(5) Given N objective functions, we have Z,- 1W’Ji (x:,y)
(
(
(
(
(

6) Begin (at facilitator agent level)
) //[Enumerate weights combination

8) Setw,=w,=..=wy,=0;
9)  Given weight step size 1/W;
10) Leteachw, (i =1, ..., N-1) increases 1/W, wy =1 - w; — ...wy_,, and add (wy, w,, ..., wy)
to WS;

(11)  //Weights loop N

(12) For each weights combination (w;, w,, ..., wy) in WS, z _ 1w,-]l- (x:,y) is constructed;

(13)  //GA loop ‘

(14) //Initialization

(15) Generate random population of P solutions and add them to PS;

(16) For n = 1 to maximum # of generations for GA loop;

17) /ICrossover and mutation

(18) Random select two parents p, and p, from PS;

19) Generate two offspring p’, and p’, by crossover operator;

(20) if p’, and/or p’, are not feasible, generate new feasible offspring

(21) p”, and/or p”, using mutation operator;

(22) //Selection

N
(23) Using fitness function (2‘ ) w;J; (xi,y)j evaluate the solution, update PS with
improved solutions;

(24) /ILocal search loop

(25) For each chromosome p; in PS;

(26) Call each Design Agent for local optimization on x (note different opti-
mization engines can be employed based on the design disciplines);

(27) Given updates from Design Agent on x, Facilitator agent employs sub-
gradient algorithm [19] as local search algorithm to iteratively locate
improved solution p’; with respect to y;

(28) Next p;;

(29) //Pareto filter:

(30) For each chromosome p; in the set PS;

(31) If p; is not dominated by all the solutions in the set FP;

(32) Add P; to the set FP;

(33) Else If there are solutions in the set FP are dominated by pj;

(34) «— Remove those solutions in the set FP;

(35) End If;

(36) Next p;

(37) Next n;

(38) End;

Figure 1.2 Pseudo Code 1.




8 Industrial control systems

Parameters

N, no. of disciplinary design agents

w;, weight for the objective function of ith disciplinary design agent,
wherei=1,..., N

1/W, weight step size

P, population size

Pseudo Code lines

As shown in the Pseudo Code, there exist three loops, from outer to inner
in the proposed method: weight enumeration (lines 11-37), GA loop (lines
13-37), and local search loop (lines 24-28). That is, given a weights com-
bination (e.g., w; = 0.3, w, = 0.7 for two agents), GA is triggered, which
applies crossover and mutation operators and selection mechanism (in
this case study, elitism selection is employed) for the population update.
In addition, for the updated population, local search is further employed
to identify improved solutions within the neighborhood. This is achieved
by having sub-gradient information from each designer on the coupled
variables fed back to the facilitator. Specifically, given any chromosome
from the population, each design agent assumes the coupled variables
are set and thus conducts optimization on the local variables only. Each
design agent would also study the gradients on the coupled variables.
Thus, given the values of the coupled variables, both the optimal design on
local variables and the sub-gradient on the coupled variables are sent back
to the facilitator. Since the priorities of the objective functions reflected
by the weight assignments are enumerated exhaustively, all the possible
Pareto solutions are located forming the Pareto frontier. In some cases
where the priority is known, the weight loop can be removed. Please note
that the Pareto filter operation (lines 29-36) is triggered by the facilitator
within each weight combination. That is, it is possible that some Pareto
solutions given a specific weight may be dominated by the Pareto solu-
tions obtained with other weights.

One distinguishable feature of this proposed approach from other
existing methods is that the information exchanged iteratively between
the facilitator and the design agent is values instead of function forms. For
example, passing from the facilitator to the design agent (top-down) is the
values of the coupled variable; passing from the design agent back to the
facilitator (bottom-up) is the values of the objective function and associated
gradient values, passing from the facilitator to the design agents (top-down)
is the values of the coupled variables. The main advantage of this approach
is a “black box” disciplinary optimizer can be easily plugged in. Secondly,
since the facilitator explores the solution space based on the knowledge of
the solution candidates (x* y*), the candidate performance (J*) instead of
the function formulation, a truly decentralized decision without the full
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knowledge of the design space can be implemented. An industry case is
explored to demonstrate the applicability of the proposed framework.

Forearm crutch design

Crutches are mobility aids used to counter mobility impairment or an
injury that limits walking ability. Forearm crutches are used by slipping
the arm into a cuff and holding the grip (Figure 1.3). It has been increas-
ingly used for patients with shorter-term needs. Earlier study conducted
by National Medical Expenditure Survey (NMHS) in 1987 indicates that an
estimated 9.5 million (4%) noninstitutionalized U.S. civilians experience
difficulty in performing basic life activities; some need crutches for leg
support for walking. This number increases due to the baby boomer effect.

Typical forearm crutches are made of aluminum and are criticized by
customers for being heavy, noisy, and less durable. Customers suggest that
a small reduction in the weight of forearm crutches would significantly
reduce the fatigue experienced by crutch users. However, the reduction in
weight should not be accompanied by a strength reduction. Most crutches
on the market are designed for temporary use and wear out quickly.

—

0
o % ,
o—\ 7

®

Components list
@ —— 1. Foot, rubber

2. End cap, aluminum

3. Main tube, composite

4. Union fitting aluminum

5. Handle tube, composite

6. Grip, eva foam

7. Handle end cap, aluminum

@ . / @ 8. Arm support tube, composite
- . .

—— 9. Arm support pivot rivets
‘ 10. Arm support fitting, aluminum

11. Arm support clip, plastic

Figure 1.3 Exploded view of a forearm crutch.
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Crutch users commonly have to replace their crutches two to three times a
year. This drives the need to redesign forearm crutches which are robust,
appropriate for a wide range of users from lighter-weight adults to users
weighing up to 2501b with considerable upper body strength and who
may use them aggressively on a continuous basis.

One solution is to use composite material for crutch which is light-
weight with good performance in strength. However, it comes with rela-
tively expensive cost. After in-depth marketing survey, the design team
decides to outsource the aluminum union fitting (component #4 in Figure
1.3), use appropriate composite tube, and apply adhesive from Hysol to
bond the tubes with union fitting.

Aluminum union
The design team first develops a computer model based on finite element
method to determine the necessary wall thickness and to calculate the
load on the handle necessary to produce yielding. An aluminum union
which costs $150 and stands >6301b is used. The use of Hysol adhesive
to bond the union with the tube needs to be tested to ensure the strength
requirement is satisfied.

Composite tube

A typical composite tube is 39in. in length. The tube can be cut into
smaller pieces for the forearm crutch assembly. Approximately 2% tubes
are needed to make a pair of crutches. Here three smaller tubes are used as:
handle (component 5 in Figure 1.3) which is fixed as 4.75in., arm support
tube (component 8 in Figure 1.3) which usually ranges from 6.5 to 7.8in.,
main tube (component 3 in Figure 1.3) which ranges from 30.69 to 34.25in.
The inner diameter of the tube is critical to maintain the proper bond-
line thickness for each adhesive joint. It ranges from 0.7605 to 0.7735in.
The outer diameter is determined by the number of plies and it ranges
from 0.922 to 0.935in. Usually, the arm support tube is less concerned with
strength; the main tube needs to be tested for the strength consideration.
Thus, we have two decision problems constructed: weight and strength.

Design problem formulation

Design agent for weight decision
In this research, we focus on the weights of the tubes (arm support and
main tubes) and a minimization problem is introduced as

Min: W = W, + W,

cesf[2](3] e
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2 2
(3]
30.6875 < [} £34.25
6.5<L, <78

0.922< D, <0.935
0.7605 < D, + 2T /1000 < 0.7735

where
W, (in.) is the weight of arm support tube
W, (in.) is the weight of main tube
p (Ib/in.®) is the density of the composite tube, which is 0.08
L, (in.) is the length of the arm support tube
L, (in.) is the length of the main tube
D, (in.) is the outer diameter
D, (in.) is the inner diameter
T (mils, 1 mils = 0.0011in.) is the bondline adhesive material thickness

Design agent for strength decision
Since the strength from aluminum fitting is satisfactory from finite ele-
ment analysis (FEM), the strength model will consider two potential fail-
ures: the adhesive applied joint and the strength of the main tube. Thus,
the problem is constructed as

Max: S = Min (S, Sa)
St:

_ PEI

L
I=p(D}-D})/64
12<E<16

St

S = (~6.0386T> +7.7811T + 4644.5) x % x(D2-D?)
0.922<D, <0.935
0.7605 < D; + 2T /1000 < 0.7735

30.6875 <L <34.25
0<T<17
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where
S, (Ib) is the strength of the bottom of the lower tube
E (msi, 1msi = 10° psi) is the modulus of elasticity
I (in.%) is the area moment of inertia
S4 (Ib) is the strength of the joint after applying adhesive

Implementation

For the decision problems explained earlier, optimization code written in
MATLAB® is executed. Here, we provide a detailed explanation of how
the system problem is constructed and how the facilitator agent guides
the design agents to converge to the solution using MA.

Step 1 Initialization: Given w,, w, construct system search space as
w,W* — w,5* (W* and S* are the values of the objectives from each design
agent, w, + w, = 1).

Step 2 Real Code Genetic Algorithm: The chromosome is represented with
real numbers, that is, (L,, L, D, D, T, E). Note L;, D,, D;, T are coupled
variables, L, is the local variable for weight agent and E is the local vari-
able for strength agent.
Step 2.1 (Initial population): For (L, L;, D,, D, T, E), without losing
generalization, assume a and b represent the lower bound and upper
bound of one of the variables, 7, be a random number r € [0, 1], we get
(b — a)r + a. Thus, a new chromosome is generated as for the initial
population. A pool of 40 chromosomes is created.
Step 2.2 (Selection of parents): To ensure all chromosomes have the
chance to be selected, solutions are classified into three groups accord-
ing to their fitness: high fitness level, medium fitness level, and low
fitness level. The fitness is assessed based on w,W* — w,S* the lower,
the better.
Step 2.3 (Crossover): Given two chromosomes C, = (L., L}, D}, D}, T, E!)
and C, = (L2, L}, D%, D? T2, E?), the offspring are generated as

Ci=qC+(1-9)C
G =(1-q)C +aC,

where 0 € [0,1].

Step 2.4 (Mutation): Mutation is applied by simply generating a new
feasible solution to replace the infeasible one.

Step 3 (Local Search): The facilitator agent applies sub-gradient-method-
based LS over coupled variables to improve the solutions. First, each
design agent evaluates the gradients of the design decision problems
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(disciplinary) with respect to the coupled variables. For example, given
the coupled variables L, = L;,D, =D D;=D/,T=T", each decision prob-
lem is solved independently for W* and S*. The gradients are obtained as

oW dS

lW,LL =7 4 lS,LL =
oLy | 1,=1} ,p,=D ,Di=D} , T=T" 0Ly |1,=13,D,=D},Dy=D} T=T"
oW dS

lwp, == r lsp, = ——
0D, | 1,13 ,p,=D,Di=Df , T=T" 0D, | 1, =1} ,p,=D D=0} ,T=T*
oW dS

lW,D,’ = 4 lS,D, =
0D; | 1, =13 ,p,=D ,D;=D} , 7=T" 0D; | 1, =13 ,p,=D D=0} , T=T"
oW dS

lW’T = * * S * ’ lS’T = * * S £
oT Ly=L1,Do=D, ,Di=D; ,T=T oT Lp=Lr,Do=D, ,Di=Dj ,T=T

The gradients of the system problem are then calculated as
1, =wler, —wolsy,
1p, = wily,p, —Walsp,
1p, = w1lyp, —Wols p,

lr=wilyr —wolsr

Based on 1 =[1;,,1p,, 1p;, 1r], the facilitator agent non-summable dimin-
ishing method to update the coupled variables. That is, at iteration k + 1,

(k+1) (k) (k)
LL LL 1LL
Du Do lDo
= — 8k
Dl Di i le
T T 1r
where step size a, satisfies
lima, =0
k—oo
ak = oo
k=1

The coupled variables are updated based on the aforementioned sub-
gradient method until no further improvement of the weighted system
problem is required.
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Results and analysis

The Pareto frontier obtained by the proposed decentralized framework is
shown in Figure 1.4. Note that the problem has min—-max structure. Since
this project focuses on the composite tube design (main tube and handle
tube), the weight for the handle tube (component #5) is computed as

{7}

Other components in Figure 1.3 are outsourced with the weights sum-
marized in Table 1.1.

We choose Pareto solution (A and B) to compare with the com-
posite crutch from Ergonomics and the Invacare crutch which are two

r
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Figure 1.4 Pareto frontier in performance space for the crutch design.

Table 1.1 Weight for Each
Component of the Crutch

Components (Figure 1.3)  Weight (Ib)

#2 0.006
#4 0.05
#7 0.0074
#10 0.025

Others (#1, #6, #9, #11) 0.2
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Table 1.2 Comparison of Crutch Weight and Strength

Crutch design Weight (Ib)  Strength (Ib)
Invacare 2.3 630
Ergonomics 1 715
Pareto design (A) 0.9498 921
Pareto design (B) 1.0945 1107
Nash equilibrium (C) 0.9532 926
Weight leader strength 0.9532 926
follower (D)
Strength leader weight 0.9879 951
follower (E)
Weight complete control (F) 0.9499 922
Strength complete control (G) 1.0952 1100

commercial products in Table 1.2. Apparently, most composite crutches
outperform Ergonomics and Invacare for both weight and strength except
that Design B outweighs Ergonomics by 0.09 Ib. However, Design B is more
durable, with strength being 11051b compared with 7151b of Ergonomics.

It is expected that the cost of the composite crutch will be high. In
this case, it is around $460 in total (tube and other components shown in
Figure 1.3). The price of the crutch produced by Invacare and Ergonomics
ranges from $60 to $250. Although the composite crutch is several times
more expensive, it lasts much longer. Instead of having replacement two
to three times a year, it can be used for a number of years since the lighter
composite crutch could sustain greater than 11001b load.

Conclusion

Collaborative design decisions involve designers from different disci-
plines with different specific domain knowledge. The decision process is
a sequence of phases or activities where mathematical modeling can be
employed. In this chapter, a bi-level distributed framework based on MA
is proposed. Since the information communicated is neither the form of
the decision function nor the decision space, private information is pro-
tected. In addition, in the cases where the information is not complete, the
proposed framework can still guarantee the convergence to Pareto solu-
tions. To demonstrate the applicability of the framework, a forearm crutch
design is studied in detail. The results confirm converged Pareto set can be
obtained for any form of decision function. While promising, the decision
problems constructed are deterministic; our next step is to explore the use
of this framework for design decisions under uncertainty. Computational-
efficient approach in the area of reliability-based design optimization would
be explored.
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chapter two

Dynamic fuzzy systems modeling

Introduction: Decision support systems
and uncertainties

This chapter discusses scientific uncertainty (Beer, 2006; Benjamin and
Cornell, 1970), fuzziness, and application of stochastic—fuzzy models in
urban transit, water resources, energy planning, and education (universi-
ties” admission process and other higher educational institutes [HEIs] in
developing economies). It enunciates the prime place of decision support
systems (DSS) models in providing a robust platform for enabled action
on developmental issues. Scientists now recognize the importance of
studying scientific phenomenon having complex interactions among their
components. These components include not only electrical or mechanical
parts but also “soft science” (human behavior, etc.) and how information
is used in models. Most real-world data for studying models are uncer-
tain. Uncertainty exists when facts, state, or outcome of an event cannot
be determined with probability of 1 (in a scale of 0-1). If uncertainty is not
accounted for in model synthesis and analysis, deductions from such mod-
els become at best uncertain. The “lacuna” in understanding the concept
of uncertainty and developmental policy formulation/implementation
is not only due to the non-acceptability of its existence in policy foci, but
also the radically different expectations and modes of operation that sci-
entists and policymakers use. It is therefore necessary to understand these
differences and provide better methods to incorporate uncertainty into
policymaking and developmental strategies (Figure 2.1) (Ibidapo-Obe,
1996; Ibidapo-Obe and Asaolu, 2006; Ibidapo-Obe and Ogunwolu, 2004).
Scientists treat uncertainty as a given, a characteristic of all data and
information (as processed data). Over the years, however, sophisticated
methods to measure and communicate uncertainty, arising from vari-
ous causes, have been developed. In general, more uncertainty has been
uncovered rather than absolute precision (Zadeh, 1965, 1973). Scientific
inquiry can only set boundaries on the limits of knowledge. It can define
the edges of the envelope of known possibilities, but often the envelope
is very large and the probabilities of the content (the known possibilities)
occurring can be a complete mystery. For instance, scientists can describe
the range of uncertainty about global warming and toxic chemicals and
perhaps about the relative probabilities of different outcomes, but in
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Figure 2.1 Basic cycle of probabilistic modeling and analysis.

most important cases, they cannot say which of the possible outcomes
will occur at any particular time with any degree of accuracy. Current
approaches to policymaking, however, try to avoid uncertainty and gravi-
tate to the edges of the scientific envelope. The reasons for this bias are
clear. Policymakers want to make unambiguous, defensible decisions that
are to be codified into laws and regulations (Mamdani and Assilian, 1975).

Although legislative language is often open to interpretation, regula-
tions are much easier to write and enforce if they are stated in absolutely
certain terms. Science defines the envelope while the policy process
gravitates to an edge—usually the edge that best advances the policy-
maker’s political agenda! But to use science rationally to make policy, the
whole envelope and all of its contents must be considered.

Decision support systems

A decision is a judgment, choice, or resolution on a subject matter made
after due consideration of alternatives or options. It involves setting the basic
objectives, optimizing the resources, determining the main line of strategy,
planning and coordinating the means to achieve them, managing relation-
ships, and keeping things relevant in the operating environment. A com-
petitive situation exists when conflicting interests must be resolved. A good
decision must be auditable; that is, it must be the best decision at the time
it was taken and must be based on facts or assumptions as well as other
technical, socio-political, and cultural considerations (Rommelfanger, 1988).
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DSS are computer-based tools for problem formulation through solu-
tion, simulation implementation, archiving, and reporting (Ogunwolu,
2005). These tools include operations research software tools, statistical and
simulation programs, expert systems, and project management utilities.
DSS scheme is as follows:

Problem statement (modeling—dry testing)

Data information requirements (collection and evaluation procedure)
Performance measure (alternatives—perceived worth/utility)
Decision model (logical framework for guiding project decision)
Decision making (real-world situation, sensitivity analysis)
Decision implementation (schedule and control)

Uncertainty

In science, information can be, for example, objective, subjective, dubious,
incomplete, fragmentary, imprecise, fluctuating, linguistic, data based, or
expert specified. In each particular case this information must be ana-
lyzed and classified to be eligible for quantification. The choice of an
appropriate uncertainty model primarily depends on the characteristics
of the available information. In other words, the underlying reality with
the sources of the uncertainty dictates the model (Rayward-Smith, 1995).
A form of uncertainty stems from the variability of the data. In equal
and/or comparable situations each datum in question may not show iden-
tical states. This kind of uncertainty is typically found in data taken from
plants and animals and reflects the rich variability of nature. Another kind
of uncertainty is the impossibility of observing or measuring to a certain
level of precision. This kind of precision depends not only on the power of
the sensors applied but also on the environment, including the observer.
This type of uncertainty can also be termed as uncertainty due to partial
ignorance or imprecision. Finally, uncertainty is introduced by using a natu-
ral or professional language to describe the observation as a datum. This
vagueness is a peculiar property of humans and uses the special structure
of human thinking. Vagueness becomes more transparent in a case where
we deal with grades, shades, or nuances, expressed verbally and repre-
sented by marks or some natural numbers. Typical phrases used in such
vague descriptions include “in many cases,” “frequently,” “small,” “high,”
“possibly,” “probably,” etc. All these kinds of uncertainty (uncertainty due
to variability, imprecision, and vagueness) can also occur in combinations.
One approach is to investigate uncertainty by the use of sensitivity
analysis whereby the given data are subjected to small variations to see
how these variations will influence the conclusions drawn from the data.
The problem with sensitivity analysis, however, has to do with its “point-
oriented” approach as to where and in what dimensions the variations
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are to be fixed. Another approach is the use of interval mathematics, in
which each datum is replaced by a set of “possible” surrounding data
on the real line. The problem with interval mathematics is the difficulty
of specifying sharp boundaries for the data sets, for example, the ends of
the intervals. A third approach for tackling uncertainty is the stochastic
approach. This involves realization of each datum as a random variable
in time, that is, the datum is assumed to be chosen from a hypothetical
population according to some fixed probability law. This approach works
well with modeling of variability and small imprecision. Finally, uncer-
tainty can be taken into account using notions and tools from fuzzy set
theory. In this approach each datum is represented by a fuzzy set over a
suitable universe. The main idea of fuzzy set is the allowance of membership, to
a grade, for every element of a specified set. With this notion, uncertainty can
be modeled mathematically more adequately and subtly using only the
common notion of membership of an element to a set. Fuzzy set models
both imprecision and vagueness.

However, in typical real-world systems and decision-making pro-
cesses, virtually all the three types of uncertainty (variability, impreci-
sion, and vagueness) manifest. Since, stochasticity captures variability and
small imprecision well and fuzzy set captures imprecision and vagueness
in data description well, then for a comprehensive treatment of uncer-
tainty in data, it is advisable to exploit a combined effect of stochastic and
fuzzy types of uncertainty. Simply put, randomness caters for objective
data while fuzziness caters for subjective data.

Fuzziness

Fuzzy logic (and reasoning) is a scientific methodology for handling
uncertainty and imprecision. Unlike in conventional (crisp) sets, the mem-
bers of fuzzy sets are permitted varying degrees of membership. An ele-
ment can belong to different fuzzy sets with varying membership grades
in each set. The main advantage of fuzzy sets is that it allows classification
and gradation to be expressed in a more natural language; this model-
ing concept is a useful technique when reasoning in uncertain circum-
stances or with inexact information which is typical of human situations.
Fuzzy models are constructed based on expert knowledge rather than on
pure mathematical knowledge; therefore, they are both quantitative and
qualitative, but are considered to be more qualitative than quantitative.
Therefore, a fuzzy expert system is a computer-based decision tool that
manipulates imprecise inputs based on the knowledge of an expert in that
domain (Zimmermann, 1992).

A fuzzy logic controller (FLC) makes control decisions by its well-
known fuzzy IF-THEN rules. In the antecedence of the fuzzy rules
(i.e., the IF part), the control space is partitioned into small regions with
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respect to different input conditions. Membership function (MF) is used
to fuzzify each of the input variables. For continuity of the fuzzy space,
the regions are usually overlapped by their neighbors. By manipulating
all the input values in the fuzzy rule base, an output will be given in
the consequent (i.e., the THEN part). FLCs can be classified into two major
categories: the Mamdani (M) type FLC that uses fuzzy numbers to make
decisions and the Takagi-Sugeno (TS) type FLC that generates control
actions by linear functions of the input variables.

Fuzzy set specifications

In classical set theory, the membership of elements in relation to a set is
assessed in binary terms according to a crisp condition. An element either
belongs or does not belong to the set; the boundary of the set is crisp. As
a further development of classical set theory, fuzzy set theory permits the
gradual assessment of the membership of elements in relation to a set; this
is described with the aid of a membership function.

If X represents a fundamental set and x are the elements of this funda-
mental set, to be assessed according to an (lexical or informal) uncertain
proposition and assigned to a subset A of X, the set

A={x,my(x)|x e X} .1

is referred to as the uncertain set or fuzzy set on X (Figure 2.2).

Ua(x) is the membership function of the fuzzy set and may be continu-
ous or discrete with elements assessed by membership values.

The uncertainty model fuzziness lends itself to describing impre-
cise, subjective, linguistic, and expert-specified information. It is capa-
ble of representing dubious, incomplete, and fragmentary information
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Figure 2.2 Fuzzy set.
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Figure 2.3 Fuzzification of information from a very small sample.

and can additionally incorporate objective, fluctuating, and data-based
information in the fuzziness description. Requirements regarding spe-
cial properties of the information generally do not exist. With respect
to the regularity of information within the uncertainty, the uncer-
tainty model fuzziness is less rigorous in comparison with probabilis-
tic models. It specifies lower information content and thus possesses
the advantage of requiring less information for adequate uncertainty
quantification.

Primarily, fuzzification (Figure 2.3) is a subjective assessment, which
depends on the available information. In this context, four types of infor-
mation are distinguished to formulate guidelines for fuzzification. If the
information consists of various types, different fuzzification methods
may be combined.

Information type I: Sample of very small size

The membership function is specified on the basis of existing data com-
prising elements of a sample. The assessment criterion for the elements
x is directly related to numerical values derived from X. An initial draft
for a membership function may be generated with the aid of simple inter-
polation algorithms applied to the objective information, for example,
represented by a histogram. This is subsequently adapted, corrected, or
modified by means of subjective aspects.

Information type 1I: Linguistic assessment

The assessment criterion for the elements x of X may be expressed using
linguistic variables and associated terms, such as “low” or “high” as
shown in Figure 2.4. As numerical values are required for a fuzzy anal-
ysis, it is necessary to transform the linguistic variables to a numerical
scale. By combining the terms of a linguistic variable with modifiers, such
as “very” or “reasonably,” a wide spectrum is available for the purpose of
assessment.
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Figure 2.4 Fuzzification of information from a linguistic assessment.

Information type 11I: Single uncertain measured value

If only a single numerical value from X is available as an uncertain result
of measurement X,,, the assessment criterion for the elements x may be
derived from the uncertainty of the measurement, which is quantified
on the assigned numerical scale. The uncertainty of the measurement is
obtained as a “grey zone” comprising more or less trustworthy values.
This can be induced, for example, by the imprecision of a measurement
device or by a not clearly specifiable measuring point.

The experimenter evaluates the uncertain observation for differ-
ent membership levels. For the level u,(x) = 1, a single measurement or
a measurement interval is specified in such a way that the observation
may be considered to be “as crisp as possible.” For the level of the support,
uA(x) = 0, a measurement interval is determined that contains all possible
measurements within the scope of the observation. An assessment of the
uncertain measurements for intermediate levels is left to the experimenter.
The membership function is generated by interpolation or by connecting
the determined points (x, (). Figure 2.5 shows an example.

/1 g 1.0 +
== a
=) X
a #X) Gray zone
1.0
.
= 0.0
w(X) 210 212 215 X
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Figure 2.5 Fuzzification of a single uncertain measurement due to imprecision
of the measuring device or imprecise measuring point.
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Information type 1V: Knowledge based on experience

The specification of a membership function generally requires the consid-
eration of opinions of experts or expert groups, of experience gained from
comparable problems, and of additional information where necessary.
Also, possible errors in measurement, and other inaccuracies attached to
the fuzzification process may be accounted for. These subjective aspects
generally supplement the initial draft of a membership function. If nei-
ther reliable data nor linguistic assessments are available, fuzzification
depends entirely on estimates by experts.

As an example, consider a single measurement carried out under
dubious conditions, which only yields some plausible value range.
In those cases, a crisp set may initially be specified as a kernel set of
the fuzzy set. The boundary regions of this crisp kernel set are finally
“smeared” by assigned membership values y,(x) < 1 to elements close to
the boundary and leading the branches of ,(x) beyond the boundaries
of the crisp kernel set monotonically to u,(x) = 0. By this means, ele-
ments that do not belong to the crisp kernel set, but are located “in the
neighborhood” of the latter, are also assessed with membership values
of y,(x) > 0. This approach may be extended by selecting several crisp
kernel sets for different membership levels (a-level sets) and by specify-
ing the u,(x) in level increments.

Stochastic—fuzzy models

Fuzzy randomness simultaneously describes objective and subjective
information as a fuzzy set of possible probabilistic models over some
range of imprecision. This generalized uncertainty model contains fuzzi-
ness and randomness as special cases (Méller and Beer, 2004).

Objective uncertainty in the form of observed/measured data is
modeled as randomness, whereas subjective uncertainty (see Figure
2.6), for example, due to a lack of trustworthiness or imprecision of
measurement results, of distribution parameters, of environmental
conditions, or of the data sources, is described as fuzziness. The fuzzy-
random model then combines but does not mix objectivity and subjec-
tivity; these are separately visible at any time. It may be understood
as an imprecise probabilistic model, which allows for simultaneously
considering all possible probability models that are relevant to describ-
ing the problem.

The uncertainty model fuzzy randomness is particularly suit-
able for adequately quantifying uncertainty that comprises only some
(incomplete, fragmentary) objective, data-based, randomly fluctuating
information, which can simultaneously be dubious or imprecise and
may additionally be amended by subjective, linguistic, expert-specified
evaluations.
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Figure 2.6 Model of a fuzzy-random variable.

This generalized uncertainty model is capable of describing the
whole range of uncertain information reaching from the special case of
fuzziness to the special case of randomness. That is, it represents a viable
model if the available information is too rich in content to be quantified
as fuzziness without a loss in information but, on the other hand, can-
not be quantified as randomness due to imprecision, subjectivity, and
non-satisfied requirements. This is probably the most common case in
applied science.

Uncertainty quantification with fuzzy randomness represents an
imprecise probabilistic modeling, which incorporates imprecise data as
well as uncertain or imprecise subjective assessments in terms of prob-
ability. The quantification procedure is a combination of established methods
from mathematical statistics for specifying the random part and of fuzzification
methods for describing the fuzzy part of the uncertainty.

Applications
Development model

Development is the vital summation of all efforts made by man to
increase the quality of life, while sustainability is the continued successful
upholding and enhancement of this quality of life by getting replenished
the necessary ingredient/resources such as human labor and ecologi-
cal resources. Development occurs when the intrinsic aspect is applied
through technology to generate the physical aspect. Technology confirms
the existence of the intrinsic aspects and creates the physical aspect to
manifest development (Olunloyo, 2005).
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Figure 2.7 Hierarchical representation of macro- and micro-development
variables.

Considering development as a hierarchical (Figure 2.7) multivariate
nonlinear function

D=(C,T,IK,F, H) 2.2)

where
C is capital
T is technology
I'is information technology
Kis knowledge
F is food
H is health
clearly, C, T, I, K, F, and H are not independent variables

A compact analysis of the behavior of D can be facilitated by the following
dimensionality reduction.

Capital can be defined as an inventory of infrastructures machinery,
m, that is, plant, equipment, etc., materials, m,, and human resources, h.

C = C(my, m, h) 2.3)

Since human resources, 1, itself can be viewed as function of population,
health, and food, the functional representation for h alone becomes

h=hP,H,F) 2.4)

Thus, capital C can be represented as a compound functional repre-
sentation as

C =C(my,my, h(P,H,F)) (2.5)
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Following similar argument, since the technology variable T depends on
the average performance measure of all productive processes in the econ-
omy: E, the level of development and utilization of information technol-
ogy: I, and the average experience and intelligence in the society, that is,
knowledge, K, T becomes

T=T(E,IK) 2.6)

Thus, the development nonlinear equation can be written as

D =D(C,T)=D(C(m;,my,h(P,H, F)),T(E,,K)) 2.7)

This is obviously functionalizing development at a macro-level. At the
micro-level are myriads of variables on which each of the aforemen-
tioned variables depends. The decision-making organelle in optimizing
for development definitely consists of optimization at the macro- and the
micro-level functions.

Uncertainty of different kinds influences decision making and hence
development. In optimizing functions of development, the effects of uncer-
tainty cannot be ignored or rationalized else the results of such decision will
atbestbe out of relevance to effect economic growth. At the micro-level, where
the numerous variables that influence decision making are influenced by the
macro level, cognizance must be taken of uncertainty in quantifying devel-
opment variables. Inherent in the quantification are elements of uncertainty
in terms of variability, imprecision, vagueness of description, randomness.
As amply explained in earlier sections, such quantities are better realized
as combinations of fuzzy and random variables (Takagi and Sugeno, 1985).

For example, food security (see Table 2.1) is influenced by a myriad
of variables including level of mechanization of agriculture, population,
incentives, soil conditions, climatic conditions, etc. These variables may
not be measured precisely. Some may be fuzzy, some stochastic, and
others manifesting a combination of stochasticity and fuzziness in their
quantification. In effect, quantification of food (F) in the development
model is a fuzzy-stochastic variable.

The other variables in the aforementioned development can also be
viewed as fuzzy-stochastic variables; thus, the developmental model can
be viewed as a fuzzy-stochastic developmental model.

D=D(e,%)=D[c(nzl,nzz,h(ﬁ,ﬁ,;))T(g,},fz]] )

where the symbols — and ~ represent fuzzification and randomization,
respectively, of the various variables.



30 Industrial control systems

Table 2.1 A Typical Uncertain Description of Variables
Influencing Food Production

Food-related variable Description Class of uncertainty

Mechanization Linguistic description, e.g., Fuzzy
“high” level of mechanization

Population A range of numbers, random Fuzzy-stochastic
over a time space

Incentives A range of numbers Fuzzy

Soil conditions A random variable subject to Stochastic
variation over time

Climatic conditions Quantitative, and variable over Fuzzy-stochastic
time space

Yield Quantitative description Fuzzy-stochastic

The optimization of the fuzzy—stochastic development model

The realization of the relational effects of the variables of development is
in hierarchies, even at the macro-level. A good strategy for optimizing the
function is to use the concept of multilevel optimization model.

Multilevel-optimizing models are employed to solve decentralized
planning decision problems in which decisions are made at different hier-
archical decision levels in a top-to-down fashion. Essentially, the features
of such multilevel planning organizations are as follows:

® Interactive decision-making units exist within a predominantly
hierarchical structure.

¢ Execution of decisions is sequential, from top to lower level.

¢ Each unit independently maximizes its own net benefit but is
affected by the actions of other units through externalities.

* The external effect of a decision maker’s (DM’s) problem can be
reflected in both the objective function and the feasible decision space.

The mode of execution of such decision problem is as follows:

* The upper-level DM sets his goal and accepts the independent deci-
sions at the lower levels of the organization.

e The upper-level DM modifies it within the framework of the overall
benefit of the organization.

® The upper-level DM’s action further constrains the lower-level deci-
sion space and may or may not be acceptable at that level. If it is not
acceptable, the upper-level DM can still make a consensus that the
constraints are relaxed further.

e This process is carried out until a satisfactory solution to all levels
and units of decision making is arrived at.
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In solving the fuzzy-stochastic development model, each level of the
macro-level model is taken as a decision level optimizing variables of its
concern.

The complete fuzzy-stochastic multilevel formulation of the fuzzy-
stochastic development model is, therefore,

Max D 2.9
C,T
where, C,T is obtainable from
Max f(V2) (2.10)
Vs

with V, = {rﬁl, 2,}:1, ij, f,I:(}, which again is obtainable from

Max f(V2) (2.11)
Vs

where V, = {):(, 1:’, H, 1:: } and i = relevant variables at the micro-level of the
development model.
Subject to

6,’1:,'02,’03,}26 S

where S is the constrained space of development variables (constrained by
the limitations in realizing the various variables).

Realistically, this type of model may be difficult to solve for large
spaces such as the national development pursuit but may be solved with
smaller decision spaces. The worst solution scenario will be those that are
not amenable to analytical solutions for which there are many heuristics
to be coupled with simulation-optimization techniques.

Urban transit systems under uncertainty

A relevant work (Ibidapo-Obe and Ogunwolu, 2004) on DSS under
uncertainty is the investigation and characterization of combinations of
effects of fuzzy and stochastic forms of uncertainty in urban transit time-
scheduling. The results of the study vindicate the necessity for taking
both comprehensive combinations of fuzzy and stochastic uncertainties
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Figure 2.8 Conceptual, procedural, and methodic frame of the transit time-
scheduling research study.

as well as multi-stakeholders” objective interests into account in urban
transit time-scheduling. It shows that transit time-scheduling perfor-
mance objectives are better enhanced under fuzzy—stochastic and sto-
chastic-fuzzy uncertainties and with the multi-stakeholders’ objective
formulations than with lopsided single stakeholder’s interests under
uncertainty. Figure 2.8 shows the modeling framework, which covers
the following:

Mathematical modeling

Algebraic, fuzzy, and stochastic methods
Multi-objective genetic algorithm
Algorithmic computer simulation technique
Mixed integer models

Max—min techniques

Water resources management under uncertainty

An ongoing research on water resources management also suggests
the need for incorporating comprehensive scientific uncertainty into
account in developmental models (Figure 2.9). This involves using a
three-level hierarchical system model for the purpose of optimal tim-
ing and sequencing of project development for water supply, the opti-
mal allocation of land, water, and funds for crop growth, and optimal
timing for irrigation. Major functions and inputs in the hierarchical
fuzzy-stochastic dynamic programming developmental model are to
be realized as fuzzy, stochastic, and/or fuzzy-stochastic inputs of the
model. Particularly, the demand and supply of water over a time horizon
are taken as fuzzy-stochastic.
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Water resources balance Third level
Water Benefits Water T
price price Costs
Demand model T
Supply model Second
upply mode level
Sub-region1 | o o ¢ | Sub-regionN l
Alloctated Return Alloctated Return
water water
from 1 from N |
Optimal timing of irrigation Optimal timing of irrigation
model for subsystem 1 PP model for subsystem N First level

Figure 2.9 Multilevel dynamic programming structure for planning and man-
agement of agricultural/water system.

Energy planning and management under uncertainty

One of the immediate future thrusts is on energy planning and man-
agement modeling under uncertainty. Energy information systems are
organized bodies of energy data often indicating energy sources and
uses with information on historical as well as current supply-demand
patterns, which are naturally bugged with uncertainties (see Figure 2.10).
These information systems draw upon energy surveys of various kinds
as well as upon other sources of information such as the national cen-
sus (another potential source of uncertainty in evaluation over time and
space); information on energy resources and conversion technologies as
well as consumption patterns (which are also better realized considering
inherent uncertainties). A typical structure of national energy planning
system is shown in Figure 2.10.

University admissions process in Nigeria: The post-UME
test selection saga

There are many issues related to the Nigerian education system (universal
basic education UBE, the 3-3 component of the 6-3-3-4 system, funding,
higher education institution admissions, consistency of policies, etc.).

In spite of the opening up of the HEIs space to more states, private,
open, and transnational institutions, the ratio of available space to the
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Figure 2.10 A structure for national energy planning.

number of eligible candidates is 87:1000 (University of Lagos, 2006). It is,
therefore, imperative that the selection mechanism be open and ratio-
nal. The realization problem for rational access is further compounded
with the introduction of post-UME test. With two assessment scores per
candidate given the department/faculty/university of choice quota, the
question is how best can we optimize a candidate’s opportunity to be
admitted? That is,

¢ How do we establish that a particular candidate actually sat for the
JAMB examination?

¢ [s the JAMB examination score enough to measure competence?

¢ Is it sufficient for the various universities to select based on their
own examinations?

¢ To what extent will the university post-UME test help judge candi-
dates’ suitability?

® Could there be a rational middle-of-the-road approach in deter-
mining a candidate’s admission to the university based on the two
regimes of scores he or she holds?

* To what confidence level can a university assert that it has selected
rationally?

* Answers to these and many more questions and issues on this sub-
ject matter are subjects of wide variability, imprecision, and vague-
ness. The objective is to formulate a fuzzy-stochastic decision
support model for the resolution of this matter.
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¢ The just-concluded University of Lagos admission process was
reflective of the underlying uncertainty in rationally giving candi-
dates to its programs based on the two regimes of scores:

e Stochastic aspect: A candidate for admission must reach a partic-
ular scholastic level at the JAMB UME examination. UME is a
highly stochastic scheme with randomness in performance over
time and space. The various performance levels of all candidates
for a particular course/faculty/university may be assumed as
normally distributed.

* Fuzzy aspect: Candidates for admission need another scholas-
tic assessment based on the score of the post-UME screening
exercise conducted by the university. This is fuzzy based on
a reference course faculty/university mean score(s). The post-
UME screening score may be assumed as having membership
grade distribution which is equivalent to the fuzzy set (rep-
resented by the course/faculty/university mean score (x; to
100/400).

In other words, candidates must satisfy post-UME screening (fuzzy) cri-
terion before being considered for admission based on the UME scores
(stochastic).

Mathematically expressed,

MaxA = A(Pu,, U, /q,) 2.12)

subject to

qo = go (merit, catchment, ELDS)

where

A is the probability of admission at the university of first choice and
first course

U, is the UME score

g, is the course admission quota

Pu, is the post-UME screening score

“merit” is the absolute performance (independent of state of origin
of candidate)

“catchment” is the contingent states of location of institution

“ELDS” is the educationally less disadvantaged states in the federation

Conclusions

This chapter outlined scientific uncertainty in relation to optimal DSS
management for development. The two principal inherent forms of uncer-
tainty (in data acquisition, realization, and processing), fuzziness and
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stochasticity, as well as their combinations are introduced. Possible effects
on developmental issues and the necessity for DSS which incorporate
combined forms of this uncertainty are presented.

e In particular, the major focus of this submission is the proposal to
deal with scientific uncertainty inherent in developmental concerns.

e Uncertainty should be accepted as a basic component of develop-
mental decision making at all levels and thus the quest is to cor-
rectly quantify uncertainty at both macro- and micro-levels of
development.

e Secondly, expert and scientific DSS which enhance correct evalua-
tion, analysis, and synthesis of uncertainty inherent in data manage-
ment should be utilized at each level of developmental planning and
execution.
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chapter three

Stochastic systems modeling

Introduction to model types

Proper modeling of a system is the first step to the formulation of an opti-
mization strategy for the system. There are different types of models.

First, a system is a collection of interrelated elements brought together
to achieve a specified objective. Normally, a system processes an input to
yield an output or response.

Next, models are needed to represent the system.

A model is an abstraction of a real-world system. It is a simplified
representation of reality which employs descriptive (linguistic, physical,
or mathematical) concepts and/or symbols; that is, a model mirrors or
approximates only some aspects of reality and evaluates others. Models
provide a safe and cost-effective means for the study of entities and phe-
nomena and their interactions. Two major types of models are material/
iconic (including robotic/expert) models as well as mathematical models.
Proper modeling of a system is the first step toward formulating an opti-
mization strategy for the system. The criterion for objective/cost selection
of a model would be to minimize the errors between the model and the
actual system. The “goodness-of-fit” criterion can be evaluated when the
model and the system are forced by sample inputs.

Material/iconic models

The material/iconic models simulate the actual system as a prototype in
the physical space. It could be a scaled model of an empirical system or a
direct physical analogue. The study of its behavior under various condi-
tions possible is undertaken, for example, wind-tunnel laboratories, test
piloting, moot trials, etc.

Robotic/expert models

This is a feedback control system—a device that can measure its own state
and take actions based on it.

39
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Mathematical models

Mathematical modeling involves the application of mathematics/empirical
knowledge to real-life problems. Stimulators to this approach include
the advent of high-speed electronic computers (for large environmental
problems—parallel computers), developments in information and com-
munication technology, progress in applied mathematics (functional
analysis and numerical methods), and progress in empirical knowledge
(engineering). A mathematical model consists of a set of mathematical
formulae giving the validity of certain fundamental “natural laws” and
various hypotheses relating to physical processes.

The direct engineering problem is to find the output of a system,
given the input (see Figure 3.1), and the inverse problems are of three main
divisions—the design/synthesis, control/instrumentation, and modeling/
identification (Figure 3.2) (Liebelt, 1967; Sage and Melsa, 1971).

1. Design/synthesis: Given an input and output, find a system descrip-
tion which fits such a physically realizable relationship optimally.

2. Control/instrumentation: Given a system description and a response,
find the input which is responsible for the response (output).

3. Modeling/identification: Given a set of inputs and corresponding out-
puts from a system, find a mathematical description (model) of the
system.

The criterion for objective/cost function selection would be to mini-
mize the errors between the model and the actual system. The “goodness
of fit” criterion can be evaluated when both the model and the system are
forced by sample inputs (see Figure 3.3).

Input Response
—————— | Dynamic system ——mm———>

Figure 3.1 Input-response relationship in system modeling.

Measurement
noise
— Observation Observed
Input/plant System v e
noise device —
vector
Unknown
parameter
vector

Figure 3.2 General system configuration.
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» System
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Model

i

Parameter
adjustment
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Figure 3.3 Parameter models.

General problem formulation
Let

% = f(x(t), u(t), w(t), p(t),t) (3.1)
be the system equation where

x(f) is the system state vector

u(f) is the input signal/control

w(t) is the input disturbance/noise

p(t) is the unknown parameters

Assume that the observation is of the form
z(t) = h(x(t), u(t), w(t), p(t), v(t)t) 3.2)

where v(t) is the observation noise.

The identification/estimation problem is to determine p(f) (and per-
haps x(t) as well as the mean and variance coefficients of system noise w(t)
and observation noise v(t)).

System:
PO _ fatey ), wio, po, ) 63
Observation:
2(t)=Dy+Eu, D, E are matrices (34)
Model:
WO _ o y0),ute), (), p' 1) 65

dt
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Criterion function:

T
1T, p) = [ x)- o), (36)
0
W is an appropriate weighing matrix (Bekey, 1970).
Problem
Seek an optimum set of parameters p* which minimizes J. That is,
J(T, p*) = min J(T, p') (37)
Analytical expressions for p* is possible, namely,
2
;F{ ~=0 provided 5;7,]2 >0 in special cases. (3.8)

Search techniques are useful when the number of parameters is small.
The technique consists of

1. Random selection of preselected grid pattern for parameters p’;,
P’ ... and corresponding J,, J,, ...
2. Simple comparison test for the determination of minimum J

Gradient methods are based on finding the values of p’ for which the
gradient vector equals zero, namely,

] 9J] dJ
VoJ=| =, — .. |= X
/ L’Pl op, apk} 0 39)

and
Y = p —KVoJ(p?) (3.10)
where for
1. Steepest descent, K =k]J, k = constant (3.11)
2. Newton—Raphson, K = I(p) 5 (3.12)
Vi)
-1
a 9°J
3.Newton, K =H =| —— (3.13)
Ip;opx

T -
4. Gauss—Newton, K =d™' = [J. 2VyVy’dt} (3.14)
0
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It is desirable to have online or recursive identification so as to make opti-
mum adaptation to the system goal possible in the face of environmental
uncertainty and changing environmental conditions.

Systems filtering and estimation
Identification

Identification problems can be categorized into two broad areas, namely,
the total ignorance/“black box” identification and the grey box identifica-
tion. In the grey box identification, the system equations may be known
or deductible from the basic physics or chemistry of the process up to the
coefficients or parameters of the equation. The methods of solution con-
sist of classical (deconvolution, correlation, etc.) and modern techniques
(Gelb, 1974; Albert and Gardner, 1967) (Figure 3.4).

Given u(t) and y(t) for 0 < t < T, determine h(t).

Observe input and output at N periodical sampled time intervals,

say A seconds apart in [0,T] such that NA =T.
It is known that

y(t) = Jh(t —t)u(t)dt (3.15)

called the convolution integral.
Assume that

u(t) = u(EA) or u(t)~ %{u(nA)+ um+1)al (3.16)

fornA <t<(n+ 1A

h(t) = h(Z”” A), nA <=t<(@n+1)a, (3.17)
If
<~  (2n-1
y(nA) = AZ h( A= iAju(iA) (3.18)
i=0
Input u(t) h(t) Output y(t)

Impulse function

Figure 3.4 Single input—output function.
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If
(3)
y(4) 3A
N R Yo h(Z) (3.19)
yNA) h((ZN— 1)A)
L 2 .
then
y(T) = AUK(T) (3.20)
where
[ u(0) 0 0 0 0]
u(A) 1u(0) 0 0 0
u-= u(2A) u(A) u(0) . 0 (3.21)
L u(N-1)A)  u((n-2)A) . u(0)  (0)]
From Equation 3.20,

h(T) = U'A-y(T), so that

= h(zn_lA), = YA
2 Au(0)

1 fyma) ¢,
_u(O){ A ;hn,u(m)}

Advantages (Stewart, 1973):

1. Simple.

2. Quite effective for many identification problems.

3. FFT (fast Fourier transform) may be used to reduce the computa-
tional requirements.

4. Any input may be used (no need for special test inputs).
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Observation
noise v(t)
+
Test input . h(t)l y(©) )\ Observation
> mpulse »( ) >
u(t) function + z(t)

Figure 3.5 Configuration.

Disadvantages:

1. Sequential/online use of algorithm is impossible unless the time
interval of interest is short.

2. Numerical round-off errors make the technique inaccurate for
m — o (Figure 3.5).

Correlation techniques

Correlation techniques use white noise test signal, u(f); hence, it is nec-
essary to have wide bandwidth to detect high-frequency components
of h(t). For zero error, u(t) must be proper “white” (infinite bandwidth)
(Figure 3.6).

1. It is assumed that steady state is reached.

2. Noise u(t) and v(t) ergodic and Gaussian distribution with zero mean

t

Xo(t) = %jx(l)dl (3.22)

0

<

(®

u(t) [ | (L z(t)
h(t) O

y
=
S,
2
=
Qu
>~

u(t—1)

+

— Op(t-1)

Figure 3.6 Identification correlator.
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x(t) = z(t)u(t—t) (3.23)

z(t) = y(t) +o(t) (3.24)

y(t)= j J(b)u(t —h)dh (3.25)
0

Now,

t

Efx,(t)) = %jE{x(l)}dl

0

= Eix) (3.26)

— Elz(tu(t —t))
= Ruz(t)
Ru(t) = Efu(t)z(t + t)}

From Equations 3.24 and 3.25, E{x,(t)} = R..(t) = j : J(h)R.(t —h)dh
Taking Fourier transforms:
R,.(s) = h(s)R,(s)
If the assumption on bandwidth holds,
R,.(s) = Kh(s), R,.(2) = kh(z)
And if u(t) is white, §,, is a Dirac-delta:
R, =R,8(0), R,(5) =R,
And then, for R, =1,

R.:(t) = E{x, (1)} = h(t)

Complete system identification is subsequently obtained by using N
correlators in parallel, such that the quantities

R,(t)=h(t;), i=1,2,..N are measured.
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Advantages

1. Not critically dependent on normal operating record.

2. By correlating over a sufficiently long period of time, the amplitude
of the test signal can be set very low such that the plant is essentially
undisturbed by the white noise test signal.

3. No a priori knowledge of the system to be tested is required.

System estimation

A new formulation of the Wiener (classical) theory expressing the results
of the estimation in the time domain rather than in the frequency domain
was initiated in 1960 (Sage and Melsa, 1971). The modern theory is more
fundamental, requires minimum mathematical background, is ideal for
digital computation, and provides a general estimator, whereas the classi-
cal method can only deal with restricted dimension, is rigorous, and has
limited applicability to nonlinear systems.

Problem formulation
Given

0 =0() (3.27)

where
@ is a vector of m observations
X is a vector whose variables are to be estimated

The estimation problem is continuous if ® is a continuous function of time,
otherwise it is a discrete estimation problem. Estimating the past is known
as smoothing, estimating the present as filtering while estimating the future is
prediction/forecasting.

Nomenclature

1. An estimate x of x is unbiased if E(x) = x.
2. Lete=x — xand C, = E[(x — x)(x — %)].

Maximum likelihood
Let

O=Bx+vVv (3.28)

where v is the noise. The maximum likelihood method takes x as the
value which maximizes the probability of measurements that actu-
ally occurred taking into account known statistical properties of v. The
conditional probability density function for ® given X, is the density of
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v centered around Bx. If v is zero mean Gaussian distributed with covari-
ant matrix C, then

-1 a
~1(©-Bx)Cy L (0-Bx)
7 e[ 2 } (3.29)

1
O)=—F—7

So that
Maximum p(©|x) = Max{_zl((a —-Bx)C,(® - Bx)]

Hence
x=(B'C,”'B)'B'C,"'® (3.30)

Least squares/weighted least squares
The least squares choose x as that value which minimizes the sum of
squares of the deviations 6; — 0, that is, minimizes

] =(©—Bx)'(©-Bx) (3.31)
thus setting d]/dx = 0 yields
x= (B'B)'B'® (3.32)
For weighted least squares, minimize
J=(©-Bx)W'(©-Bx) or ]=|0-Bx|, . (3.33)
yielding
= (BW'B)'BW'0 (3.34)

Bayes estimators
For Bayes estimators, statistical models for both x and © are assumed
available. The a posteriori conditional density function is p(x|®), since it
contains all the statistical information of interest.

p@[x)p(x)

p(x|©)= 2(©)

(Bayes’ rule) (3.35)

x is computed from p(x|©).



Chapter three:  Stochastic systems modeling 49

Minimum variance
Minimize

J= ]i ]:]i (X —x)'S(x—x) p(x|©)dx;...dx, (3.36)

where S is an arbitrary, positive, semi-definite matrix.

Set d]/dx =0 to yield

xX= ]i ]: ]: xp(x|®)dx;...dx, (3.37)

—00 —00  —00

- %=E[x|0] (3.38)

For linear minimum variance unbiased (Gauss—Markov)
Let x = A6, where A is an unknown parameter and C, = E(xx'), C,, =
E(x0") and C, = E(09’). Now,
C, = E(ee’) = E[(x —x)(x —x)]
= E[(Aq - x)(Aq - x)']
=E[(Aaq’A" —xq’ A" — Agx’ + xx”)]
= E[Aqq’A” |- E[xq" A’] - E[Aqx’] + E[xx’]
=ACA'-C (A" - ACx+C,

= (A—CqC5")Cq(A—C,qCq") — CqC5'Clg + C,

Minimum is obtained when A - C,,C5' =0.
That is

A=C,C (3.39)

sx=CWyClg, Co=C,—CyyC5'Cly (3.40)
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(i) If 8= Bx + v, then

C [xq']

xq — E
= E[x(Bx +v)’]
= E[xx'B’]+ E[xv’]

Cy=C,B'+C,,

Cy = Elaq’] = E[(Bx + v)(Bx +v)’]
=BC,B’+C\,B’+BC,, +C,

% =[C:B’+Cy][BC,B’ +(BCy,) +BCy, +C, I 'q
C.=Cy —(C,B’+C)(BC,B' +(BCy) + BCyp + C,) (C,B' +Cyp Y
(i) If6=Bx+1v, C,=0,then
X=(C,B")[BC,B' +C,] g
C,=C,—(C,B’)(BC,B’'+C,) (C,B"Y
or
x=(B’C,”'B)"'B’'C,"'q
x=(C,"+B'C,B)"'B'C,'q
C,=(C,'+BC,'B)"
(iii) If in (ii), C, = e (no information on state), then
x=(B'C,"'B)'B'C,'q

C,=(B'C,'B)

(3.41)

(342)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Partitioned data sets
Let 0" be a set of measurements of dimension r and x” the estimate obtained
using @". Let ¢ = B'x + v" such that (C})™ exists, Cy, =Cl, =0; C,”' -0,
then

JACV — (B/VCDVBV)—l B/r(cvr )—1qr (349)

C.=(B"(C,/)"'B")" (3.50)
Suppose now that an additional set of data ¢* is taken:
q’=Bx+7v° (3.51)

provided C;, =0, Ci; =0, so that

Letr + s = m so that 0" = (0", &), B" = (B", B°)’ and v" = (v, v°)’

Cl' =E@",0™)

:Eﬁ;}[vw ﬂ

5(\7"1 — (B/m(cvm)—le)—1B/m(cvm)—1qm (352)

C"=(B"(C")"B")" (3.53)
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ol e ol ) e oo
“[(B B){o CJ [Bﬂ 5 B){o cs}

thus yielding
J’Em — (Brr(C;)—lBr + Bs’ (C;)—lBS)—l(Br’(Cvr )—1qr + Bs’cs) (354)
C"=[C/ Yy +BY(C,5) "B (3.55)

Kalman form
Given an estimate 17, old error matrix C,”, new data € = Bsx + v*, the new
estimate x" based on all the data is found by the sequence

k=C,B¥(C5+BC,/B")" (3.56)
" =R +k(g - BR) (3.57)
C"=C/ —kBC, (3.58)

Discrete dynamic linear system estimation
X =s(+1,0)x; +w;, s(i+1,i)is transformation matrix
E(w;)=0, Vi
Eww;")=0, Yi#] (3.59)
E(ww;")=0, Vi<j

W; = E(ww;")

Observation vector

a=Ax;+q;, A istransformation matrix

E(qiq")=0, Vi#j

E(gw;")=0, Vi,j (3.60)
E(gix/")=0, Yij

Qi =E(q;")
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Prediction

)A(,ZZ =S(p, mX, p=mn,5(,.)is the transformation matrix

p-1

C' = S(p,m)CS™ (p,n) + 2 S(p, k+DWiST(p,k+1), p>n>m
k=n
Filtering
X0,y = S(m+1,m)X}!
m = S(m+1,m)CLSTS(m+1, m) + Wy
K = ChriaAna(Qua + ApiaCrraAga) ™
Xt = X+ K@non = Anea XJion)
Cinit = Ciiar —KAynChia
Smoothing

X! = X0+ J[X0 - S(r+1,1)X]]
Cr'=Cl+]JIChy = Clal)”
J=C/S"(r+1,7)(CJ1)™"

Fa = S(r+ LGS (r+1,1)+ W,

Continuous dynamic linear system
Let

i(t) = Ax(t)+ Bu(t)

be the system equation and

y(t) = Cx(t)+ Do(t)

53

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.69)

(3.69)

(3.70)

3.71)

(3.72)

(3.73)
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be the observation equation. The estimate x(f) is restricted as a linear func-
tion of y(z), 0 < 7 < t; thus,

t

i = Ja ©)y(Ext (3.74)

0

The solution to Equation 3.72 is

x(t) = ©(£)x(0) + J-(I)(if)(I)‘1 (s)Bu(s)ds (3.75)

where @() is the transition matrix. From Equation 3.74

R(t+d) = j a(B)ylt)de

And from Equation (3.75),

x(t+4d)=o(t +d){x(0) + j

0

®7!(s)B(s )u(s )ds }

= CI)(t+d)d)‘1(t)d>(t){x(0)+J.<I)‘1(s )B(s u(s )ds + j ®7'(s)B(s )u(s )ds}

t+d

J' D(H)D (s )B(s )i(s )ds }

t

x(t+d) = D(t +d)<1>"1(t){x(t) +
Using the orthogonality principle,
E{lx(t+d) - x(t+d)y’(t)[}=0 for0<t<t
and recalling that
E {u(s )y’(t)} =0, s>t

Hence,

E{[@(t+a)® (t)x(t) - X (t+a)]y ()} =0, 0<t<t
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Thus,
X(t+d) = O(t+d)d ' (H)x(t),
if
u(t) = N, Q(®)),
and
o(t) = N(O, R(t))
given that

E{x(0)} = %o
E{[x(0) - Xo][x(0) - %o I'} = By

and R7I(¢) exist.

The Kalman filter consists of
Estimate:

X(t) = Ax(t)+ K(B)[y(t) - C(B)], 2(0)= %
Error covariance:
P(t) = AP(t)+ P(t)A’ + BQB’ — KRK’
Propagation:
P(0)=F,. For steady state ls(t) =0
Kalman gain matrix:
K(t)=P(T)C’'R-'(t) when E[u(tYv(t)]=0

and

K(t)=[P(T)G’ + BGIR-'(t) when E[u(t)’(t)] = G(H)d(t - t)

The fixed time smoothing algorithm x,; is as follows:

P(t|T)=(A+BQB'P"Y -BQB

with X(T |T)=x(t=T) and P(T | T) = P(t = T) as initial conditions.

55

(3.76)

(3.77)

(3.78)

(3.79)
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Continuous nonlinear estimation

The analysis of stochastic dynamic systems often leads to differential
equations of the form

() = f(t,x)+G(t, u(t), x,=c, 0<t<T<oo (3.80)

or in integral form
t t
() =c +j (s, x)ds +_[G(s, Ndw(s), 0<t<T <o (3.81)
0 0

where dw(t)/dt = u(f) and w(t) is the Wiener process; x(t) and f(t, s) are n-dimen-
sional, while G(t, x) is (n x m) matrix function and u(t) is m-dimensional
(Figure 3.7).

tO rule:

JG(t, o (t)=lim Y Gl x(t))w(tr) ~ w(t) (3.82)

For the partition ¢, < t; <t; -+ <t; <ty =+ ty =T and A = max,(t;,; — t;)

Stratonovich rule:
[t 2yt = 1im Z G (t"(t’;x“)) (@t —wlt)  (83)

Let the observation be of the form y(f) = z() + v(t) where z(t) = p(x(s), s < )
and v(t) are p-dimensional vectors.
It is further assumed that E[z(t)z'(f)] < « and E[z(t)v'(f)] = O for all t.
Doob (1958) obtained the estimator

R(t| T) = E[x(t) | y(s), to <5 <t] (3.84)

where t = 7 (filtering), t < 7 (smoothing), and ¢ > 7 (prediction).

Uy s<t
xto l Xy
-_— f(t, x(t)); Gt x(t) | —>

Figure 3.7 Functional configuration.
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x(f) = E[x(t) | y(s),to S s < t]

= [ xR yenixe .55

—oo

Let
P, = E[(x(t) = x () (x(t) = x(£))']

= J (x(t) =X (1) (x(t) = X (1)) B (x(t) | y(1))dx(t) (3.86)

Assume that

E{u(t)} = E{o(t)} = E{u(t)v’(t)} = 0
Efu(tw' ()} =Q:,  E{o(®)o(t)'} = R,

The Folker-Plank stochastic differential equations for the probability
density function P,:

L ) Lpracel 2127 :
5 = trace(ax {f(t,x)P,})+ 5 tmce{ax “: ax} {G(t, x)QG'(t, x)P, }]]

+ P (y = @(t, )R, (@(t, 1) - (1, 7)) (3:87)
Using Equation 3.87 in Equations 3.85 and 3.86:

d3(t) = f(t, x)dt+ E{(x— )®'(t, x) | (IR (y(t) - D(E, x))dt  (3.88)

AP, +dRd% = E{f(t, x)(x — &) | y(t)}dt

+E{(x=R)f/(t, x) | y(t))dt
+E{G(t, x)QG (¢, x) | y(t))dt

+E{(x = X)(x — x) [®(t, x) - D(t, %)IR, " (y(t) - a(t, x)) | y(£)}dt
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Extended Kalman filter
The extended Kalman filter results from application of the linear Kalman-
Bucy filter to a linearized nonlinear system, where the nonlinear system is
relinearized after each observation.

Let
Ft.2)= f0,3)- L= (3.89)
D(t,x) = D(t,x)— afp (x—x) (3.90)
ox
and

G(t, 0)QG(t, %) = G(t, ))QG'(t, %) +(x ~ ’A”{ ( a?z

) G(t, X)QG'(t, %) } (391)

Substituting the above Equation 3.91 into the previous Equation 3.88 we
obtain

dx . 0D _ _ A

= R+ R SR () -, ) (392)
AP of . ' S 1
&9 pypd -pC R :
it % t+ I % G(t, x)Q:G'(t, x) - P, % f % P (3.93)

which can now be solved with appropriate initial conditions
x |to = J,E'(t()) and Pt |to = P(to)
This is the extended Kalman Filter for nonlinear systems.

Partitional estimation
Lainiotis (1974) proposed the partition theorem, general continuous-data
Bayes’ rule for the posterior probability density.
Let

At o X(£)P.(x(t))
[ At Ix P e

P(x(t) |£,ty) = (3.94)



Chapter three:  Stochastic systems modeling 59

where

1 Ak | x(6) = exp .[fz'(s I, fo; x(£))R, y(s )ds

to
‘ 2

— 2 lits 15 toix(on | R, s (3.95)
to

2. lol o, ty; x() = Elli(o, x(0))| y(0); x(@))
3. P,(x(z)) is the a priori density of x(z)

The partitioned algorithm for filtering is given by
(0= [ HEP(O |1 )dx(e) (396)
and

P = J{Pt +[X(t) - X(OE (&) = X (O] P (x(t) | £, o)dx(t) | (397)

where P,(x(z)|t,t,) is given previously and both x(z) and P, are the
“anchored” or conditional mean-square error estimate and error-covariance
matrices, respectively.

The partitioned algorithm takes its name from the fact that if the obser-
vation interval is partitioned into several small subintervals, repeated use
of the filtering equations for each subinterval leads to effective and com-
putationally efficient algorithm for the general estimation problem.

Invariant imbedding
The invariant imbedding approach provides a sequential estimation
scheme which does not depend on a priori noise statistical assumptions.
The concept in invariant imbedding is to find the estimate x(z) of x(t) such
that the cost function

J= ;.([ {lvy - o, 200, + 150 - f¢ 20, fat (3.98)

is minimized, where W, and W, are weighing matrices that afford the
opportunity to place more emphasis on the most reliable measurements.
The Hamiltonian H is therefore
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H = W) - ®(E, 2 ) + ) WGt 1))

+LX(B(f(t, X () +G(t, X ()u(t)) (3.99)

For which the necessary conditions for a minimum are

A oH
H="-
=31
oH
1(t) = Nl
B=-7 (3.100)
oH
=0
u
which yield the filtering equations
dx
ar (3.101)

dp _of of’ 0’ 0D’ 9D 1
a7 = PP e +P[{a }(y(T) (T, %(T)))- = ai]mw

(3.102)

Stochastic approximations/innovations concept

Stochastic approximation is a scheme for successive approximation of a
sought quantity when the observation and the system dynamics involve
random errors. It is applicable to the statistical problem of (Barrett and
Lampard, 1955)

1. Finding the value of a parameter which causes an unknown noisy
regression function to take on some preassigned value

2. Finding the value of a parameter which minimizes an unknown
noisy regression function

Stochastic approximation has wide applications to system modeling, data
filtering, and data prediction. Itis known that a procedure which is optimal
in decision theoretic sense can be nonoptimal. Sometimes the algorithm
is too complex to implement, for example, in situations where the non-
linear effects cannot be accurately approximated by linearization or the



Chapter three:  Stochastic systems modeling 61

noise process is strictly non-Gaussian. A theoretical solution is obtained
by using the concepts of innovations and martingales. Subsequently, a
numerically feasible solution is achieved through stochastic approxima-
tion. The innovations approach separates the task of obtaining a more
tractable expression for the equation

X(¢| T)=E{x(t) | y(s), 0< s <t} (3.103)

into two parts:

1. The data process {y(t), 0 <t < T} is transformed through a causal and
causally invertible filter v(f) = y(f) — @(x(s), s < t) called the innova-
tions process with the same intensity as the observation process.

2. The optimal estimator is determined as a functional of the innova-
tions process.

The following algorithm has been used for several problems:

(i) Pickana; gain matrix function, such that for each element (@
j(af Yudt =c0, i=1 and J(af Yadt < oo (3.104)
0 0

(ii) Solve the suboptimal problem

‘ZT’;‘ = f(t,X)+aiG(t,x)(y(t) - D(t, %)) (3.105)

where it is assumed without any loss of generality with entries
(ai,az,..ay). The Ith component of equation (i) is

iz

~ = D+ Y algut, Dyt - i, )

k=1
(iii) Compute the innovations process
v'(t) = y(t) - D(t, X7) (3.106)

and check for its whiteness (within a prescribed tolerance level) by
computing the autocorrelation function as well as the power spectrum.
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(iv) If the result of the test conducted in step (iii) is positive, STOP.
ELSE, iterate on a;; thus,

a™(t)=a'(t)+g' (H) P (1)) (3.107)
where
a'(h=9g'(h
- {—f or — % or - b“:z} (3.108)
and
W(©'(t) = o'(t) - E{o' (£)} (3.109)

(v) Go to step (ii)

The optimal trajectories constitute a martingale process and the conver-
gence of the approximate algorithm depends on the assumption that the
innovation of the observations is a martingale process, thus the iterations
will converge.

Model control—Model reduction, model analysis
Introduction

One of the challenges in systems modeling and subsystem estimation is
the need to reduce large-scale systems to lower dimensions in order to
effectively control the models (Golub and Reinsch, 1970).

Consider an nth-order linear system S; defined by

Sy :x=Ax+Bu (3.110)

where
x is the n-dimensional state vector
Ais an (n x n) system matrix
u is a p-dimensional input vector

Let z be an m-vector (m < n) related to x by

z=Cx (3.111)
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In model reduction, it is desirable to find an mth-order system S,
described by

S,:z=Fz+Gu (3.112)

The (m x n) matrix C in Equation 3.111 is the aggregation matrix and
S, is the aggregated system or the reduced model. It is easy to show that
G = CD and that F must satisfy the matrix equation

FC=CA (3.113)

Equation 3.113 defines an over-specified system of equation for the
unknown matrix F, and hence F must be approximated. A multivariate
linear regression scheme is used to yield a “best” approximation for F in
the form

F=CACT(CCT)"! (3.114)

where T and —1 denote matrix transpose and matrix inverse, respectively.
The rank of C is assumed to be m. The result given by Equation 3.114
is interpreted as a linear, unbiased, minimum-variance estimate of F
and its form agrees with that given by Aoki (1968), following an ad hoc
procedure.

In addition, the covariance of F is found to be

con (vec 13) =s? [(CCT)’1 ® Im] (3.115)

and it is shown that this covariance matrix can be used for model reduc-
tion error assessment. In Equation 3.115, the Kronecker product ® and the
“vec” operator are defined as

P®Q=[F QI (3.116)

vec(P) =[P, B,,....]" (3.117)

where
P and Q are matrices of arbitrary dimensions
P, is the kth column of matrix P
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From the computational point of view, it is desirable to circumvent the
use of matrix inverses in Equations 3.114 and 3.115, particularly for systems
that are large aggregation matrices. In what follows, this is accomplished
through the use of matrix singular value decomposition (SVD) which has
found useful application in several linear least squares problems.

The SVD concept (Soong, 1977, Aoki, 1968) gives the Moore—Penrose
pseudo-inverse of C as

C' =VvAU' (3.118)

where U and V are unitary matrices whose columns are the eigenvectors
of matrices DD7, and DD, respectively, and

A — 0 s -1 (3119)

L nxn

where 6, > 6, > -+ > 0,, > 0, called singular values, are the nonnegative
square roots of the eigenvalues of DTD. A discussion of this decomposi-
tion and its properties can be found in Stewart (1973).

Now, Equation 3.113 gives

F=CAC" (3.120)
And, using SVD, we can write
F=CA (VAU") (3.121)

The matrix C can also be written in the form

D=UuyV" (3.122)
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where
., -
So 0
2: 0 s | (3123)
0
L 0_ nxXn
and we have
F=USV"AVAU" (3.124)

Compared with Equation 3.114, either Equation 3.121 or Equation 3.124
provides a more efficient method of computation for F due to elimination
of the matrix inverse.

Similarly, advantages are realized in the calculation of con(vecE).
Following the SVD scheme,

(DD")" =(D")'D*
= (UAVT)(VAU")
=(UAUT) (3.125)
Equation (3.115) now takes the form
con(vec F)= s [UAU" ®1,,] (3.126)

which is clearly of a simpler structure than Equation 3.115.

Modal approach for estimation in distributed parameter systems

We can expand this concept to those describable by distributed parameter
systems: based on a scheme, on eigenmode expansion, for the estimation
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of system responses in distributed parameter systems with nonlinear
sensors. The associated joint conditional probability distribution is real-
ized by using the partition theorem and Wiener functional expansions.
The system state and parameters are subsequently computed by obtain-
ing the innovation processes from the observations leading to structural
estimation.

A technique for optimal estimation of system parameters in a stochas-
tic environment with nonlinear sensors is hereby presented. It is based on
the eigenmode representation of generalized displacements and orthogo-
nal expansion of the conditional joint probability distribution. The algo-
rithm proposed in this chapter for realization of the innovations and
system state is the starting point in the search of nonlinear distributed-
parameter estimation techniques. A linear dynamical system is used to
illustrate the correspondence between the innovations process, the obser-
vations process, and the system response.

The proposed algorithm may be applied to several civil engineer-
ing and space structures, best described by the distributed parameter
equation

m(x)u;(x, )+ Bui(x,t) + Cu(x, t) = Fy(x,t) (3.127)
with the initial conditions
u(x,t))=u’ and wi(x,to)=u’

where
m(x) is the mass per unit length (assumed unity)
u(x, t) the vector of generalized displacements
B and C are in general spatial differential operators representing the
damping and restoring forces, respectively
Fy(x, t) is the external impressed forces (wind loads, earthquake excita-
tions, etc.)

Modal canonical representation

Let the displacement be expressed in terms of structural dominant mode
shapes {¢;(x)};N with associated frequencies {w;},V

u(, =Y wOEE); REH= Y ROE®)
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so that
u(x,t)=U"(t)D(x)
and (3.128)
Fy(x,t)= R (1) ®(x)
where
U:(ulluZI-"/uN)T/ FO:(F10/P20/-'-/FNO)T
and

®= (£, En)

Substituting Equation 3.128 to Equation 3.127 gives
U’ () ®(x)+BUT (1) D(x)+ CU" (1) P(x) = B, () D(x)
thus obtaining the ith mode amplitude equation
1i(H)+ 2xw; wi(t) +w 2w (t) = F° () (3.129)

where Cf;=w *f;and Bf; = 2xw f; with appropriate initial conditions.
Equation 3.129 can now be put in the state space form:

q(t)= Aq(t)+F (3.130)
such that
q = (‘11/ QZ)T

with

q1=Ui, (G2=1Ui

[ 0 1 J
A= )
Wit —2xw,
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and
F=(0,F)
The sensors are assumed to have the form
YO =2(t)+o(t); 2(t) = Hlg(s)s < 1] (3.131)
where

E{o(}=0; E{o(t)v"(s)} = R®)d(t-s);
E{z()}=0; [z()|sM<e forallt;

J.E{z(t)zT (t)} dt < oo; E{v(t)FT} =0 and his a functional of g(s).

0
It is further assumed that the forcing function F is additively (preferably

Gaussian) random.
The least squares estimate of g(t) is

4te) = E{qt)|y(s), 0<s <t} (3.132)

Assuming that the property of “causal equivalence” (Clark, 1969) holds,
the sensor equations may be transformed into a white Gaussian process
v(t), called the strict sense innovations process with a simpler structure so
that Equation 3.132 can now be put in the form

q(te) = J‘E{q(t)vT(s)\v(s ),0<s <sv(s)ds (3.133)
0

where v(t) = y(t) - 2(t|t), 0 < t < t and | is the Ito (1951) integral. A differen-
tial structure for Equation (3.133) is obtained as

G|t + AG (|t + K(t) o(t) (3134)
where

K(t)=E{4(t)o" ()|u(s), 0<s <t} (3.135)
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Conditional joint probability distribution functions are required to
obtain explicit solution to the stochastic differential Equation 3.134.

A method for the evaluation of the probability densities is obtained in
the form of a partition theorem (Lainiotis, 1971; Clark, 1969):

plglf) = Altlg) p(qo)

[ Pavaciog 6136
with ff= {y(t)}é and

A(tlq) =exp {[ fi‘(s, 7R (s)y(s)ds — %J.H h(s, DI gy ds } (3.137)

where

i(s,q) = E{ (s, 9)

£

and p(q,) is the a priori density function.

Equation 3.136 can be approximated by expanding the distributions
A(t]g) in a Volterra (Barrett and Lampard, 1955; Biglieri, 1973) power series
with functional terms

Altlg) =Y Aitlg) (3.138)
i=0

where
1% > i
Al(tlg) = 7‘[%... J it e t)] ot —t0) (3139)
it ) L

such that gi(...), i = 1,..., n are the integral kernels describing the system
and () is the innovations process. It has been assumed that in order to
satisfy the requirements of physical realizability, the kernels are zero for
any argument less than zero. The kernels can be identified in the follow-
ing manner:

1. First-order kernel: g,(f)
Let v(t) = Ad,(t) be an impulse of strength A so that

A(tlg) = Agi(H) + A2go(t 1)+ Aga(tt, t) +--- (3.140)
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and

dA(t|g)

i (3.141)

sih) =

A=0

. Second-order kernel: g, (¢, f)
Let P(f) = Ad,(t) + Bo,(t + 7) be two impulses at t and t + 7 of strength
A and B, respectively, where A and B are specified constants as the
preceding ones; then

A(tla)= Aqi(t)+Bgi(t+t)+ A’g (1) + 2ABg, (t,t+1t)

+Bg, (t+t, t+t)+- -

and the second-order kernel

1 d°A(t]g)

ft+t)="— 3.142
$a( ) 2 dAdB |40 ( )

Higher-order kernels can be computed in a similar manner.

The system state estimates can now be obtained as
it = 1)l + [ 1) Koo (3143)
tU
where

J(t[to) = exp {A(t —t)} (3.144)

is the transition/fundamental matrix; k(z) having been approximated
using the Equations 3.136 and 3.138.

As an example, take a hypothetical linear dynamical system, solved

in the following, using the Kalman filtering equations, to illustrate the
close correlation (in a non-statistical sense) between the observations pro-
cess, the innovations process, and the systems state. It has been assumed
that the distributed parameter system is reducible to a linear ordinary
differential equation system as follows:

System dynamics: X(t) = 0.5x(t)+u(t), x(0)=0

Observation process: y(t) = x(t) + v(t)
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8.00 —

0.00 —

Observations

~8.00 ' ' '
0.00 2.00 4.00

Time (x10%)

Figure 3.8 Observation process.

2.00 —

0.00 —

Innovations

~2.00 ' ' '
0.00 2.00 4.00

Time (x10?)

Figure 3.9 Innovations process.

Figure 3.8 represents the observation process, which is simply taken here
as the system response plus a white Gaussian noise. Figure 3.9 is the inno-
vations representation. Figure 3.10 is the innovations autocorrelation,
which indicates that the process is a white noise. Finally, Figure 3.11 shows
the system state x(¢).
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0.80 —

Innovations autocorr.

~0.80 ' ' '
0.00 2.00 4.00

Samples (x101)

Figure 3.10 Autocorrelation for innovations process.

4.00 —

System response

~4.00 | | | |
0.00 2.00 4.00

Time (x10%)

Figure 3.11 System response.

An approximation technique becomes imperative in the nonlinear
case since the innovations sequence generated is not a true innovations
process and hence a scheme for adaptive improvement has to be employed.

The modal approach for the decomposition of response estimates and
conditional probability distributions provides an innovative method for
the optimal estimation in some nonlinear distributed parameter systems.
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The generation and determination of the innovations for the general
(non-Gaussian) case is obtained through a stochastic approximation tech-
nique as is illustrated by an example given in this chapter. The method is
expected to provide a viable alternative to similar Markov diffusion prob-
lems since it is easier to understand and computationally more efficient.
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chapter four

Systems optimization techniques

Optimality conditions

Optimization encompasses such areas as the theory of ordinary maxima
and minima, calculus of variations, linear and nonlinear programming,
dynamic programming, maximum principles, discrete and continuous
games, and differential games of varying degrees of complexity.

In this chapter, the methodical development of the optimization
problem is examined in relation to applications in applied sciences
from classical techniques through stochastic approaches to contempo-
rary and recent methods of intelligent MetaHeuristic. Indeed, compu-
tational techniques have grown from classical techniques, which afford
closed-form solutions to approximation and search techniques and
more recently intelligent search techniques. Such intelligent heuristics
include tabu search, simulated annealing (SA), fuzzy systems, neural
networks, and genetic algorithms (GAs), among a myriad of evolving
modern computational intelligent techniques. Furthermore, important
applications of these heuristics to the evolution of self-organizing adap-
tive systems such as modern economic models, transportation, and
mobile robots do exist.

Central to all problems in optimization theory are the concepts of
payoff, controllers or players, system, and information sets. In order to
define a solution to an optimization problem, the concept of payoff must
be defined and the controllers must be identified. If there is only one per-
son on whose decision the outcome of some particular process depends
and the outcome can be described by a single quantity, then the meaning
of payoff (and hence solution to the optimization problem) and controller
or player is clear.

The simplest, of course, is the problem of parameter optimization,
which includes the classical theory of maxima and minima, linear and non-
linear programming. In parameter optimization, there is one (deterministic
or probabilistic) criterion, one controller, one complete information set and
the system state described by static equations and/or inequalities in the
form of linear or nonlinear algebraic or difference equations.

On the next rung of complexity are optimization problems of dynamic
systems where the state is defined by ordinary or partial differential
equations. These can be thought of as limiting cases of multistage (static)

75
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parameter optimization problems where the time increment between
steps tends to zero. In this class, developed extensively as optimal con-
trol, we encounter the classical calculus of variation problems and their
extension through various maximum and optimality principles, that is,
Pontryagin’s minimum principle and the dynamic programming princi-
ple. We are still concerned with one criterion, controller, and information
set but have added dimension in that the problem is dynamic and might
be deterministic or stochastic.

The next level would introduce two controllers (players) with a single
conflicting criterion. Here we encounter elementary or finite matrix game
theory where the controls and payoff are continuous functions. Each
player at this level has complete information regarding the payoff for each
strategy but may or may not have knowledge of his opponent’s strategy.
Such games are known as zero-sum games since the sum of the payoffs to
each player for each move is zero, what one player gains the other loses. If
the order in which the players act does not matter, that is, the minimum
and maximum of the payoff are equal (this minimax is called the value
of the game and is unique), the optimal strategies of the players are unaf-
fected by knowledge or lack of knowledge of each other’s strategy. A solu-
tion to this game involves the value and at least one optimal strategy for
each player.

Next, we can consider extensions to dynamical systems where the
state is governed by differential equations; we have one conflicting crite-
rion and two players, that is, zero-sum, two-player differential games. The
information available to each player might be complete or incomplete. In
cases with complete information, the finite game concept of a solution is
directly applicable. For the incomplete information case, it is reasonable
to expect mixed strategies to form the solution but not much is known of
solution methods or whether a solution always exists in the finite game
theoretic sense.

In the last group or uppermost rung of the hierarchy we identify a
class of optimization problems where the concept of a solution is far from
clear. To this class belong multiple criteria, n-person games with complete
or incomplete information, nonzero sum (either or both players may lose
or gain).

The goal of an optimization problem can be formulated as follows:
find the combination of parameters (independent variables) which
optimize a given quantity, possibly subject to some restrictions on the
allowed parameter ranges. The quantity to be optimized (maximized or
minimized) is termed the objective function, the parameters which may be
changed in the quest for the optimum are called control or decision variables,
and the restrictions on allowed parameter values are known as constraints.
A maximum of a function f is a minimum of —f. The general optimization
problem may be stated mathematically as
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Minimize f(X), X = (X1,X2,...Xn )" 4.1
subjectto C;(X) =0, i=1,2, .. m’
C(X)>0, i=m'+1,m'+2,..m

where
f(X) is the objective function
X is the column vector of the n independent variables
Ci(X) is the set of constraints

Constraint equations of the form C;(X) = 0 are termed equality constraints

and those of the form C(X) > 0 are inequality constraints. Taken together,

f(X) and C(X) are known as the problem functions (Tables 4.1 and 4.2).
The strict definition of the global optimum X* of f(X) is that

FXN < FY)VY eV(X), Y#X* .2

where V(X) is the set of feasible values of the control variables X. Obviously
for an unconstrained problem V(X) is infinitely large.

Table 4.1 Optimization Problem Classifications

Characteristics Property Classification

No. of decision variables One Univariate
More than one Multivariate

Types of decision variables ~Continuous real numbers Continuous
Integers Discrete

Both continuous real numbers ~ Mixed integer
and integers

Integers in permutation Combinatorial
Objective functions Linear functions of decision Linear
variables
Quadratic functions of decision  Quadratic
variables
Other nonlinear functions of Nonlinear
decision variables
Problem formulation Subject to constraints Constrained
Not subject to constraints Unconstrained
Decision variable Exact Deterministic
realization within the Subject to random variation Stochastic
optimization model Subject to fuzzy uncertainty Fuzzy
Subject to both random Fuzzy-stochastic

variation and fuzzy
uncertainty
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Table 4.2 Typical Applications

Field Problem Classification
Nuclear engineering In-core nuclear fuel Nonlinear
management Constrained
Multivariate
Combinatorial

Computational chemistry ~ Energy minimization for ~Nonlinear
3D structure prediction  Unconstrained

Multivariate
Continuous
Computational chemistry — Distance geometry Nonlinear
and biology Constrained
Multivariate
Continuous
A point Y* is a strong local minimum of f(X) if
F(YH< f(Y)VY e N(Y*,h)Y = Y* “4.3)

where (Y% 7) is defined as the set of feasible points contained in the
neighborhood of Y, that is, within some arbitrary small distance of Y. For
Y* to be a weak local minimum, only an equality needs to be satisfied:

FOY) < F(YVY e N(Y*h)Y # Y* @.4)

If £(X) is a smooth function with continuous first and second derivatives
for all feasible X, then a point X* is a stationary point of f(X) if

g(X*)=0 4.5)

where g(X) is the gradient of f (X). This first derivative vector f (X) has
components given by

of (X

ox, 4.6)

gi(X)=

The point X is also a strong local minimum of {(X) if the Hessian matrix
H(X), the symmetric matrix of second derivatives with components
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A Strong local
Weak local minimum

minimum

Global
minimum .\

X

Figure 4.1 Types of minima for unconstrained optimization problems.

Constraint

Strong local
minimum

Global <—]
minimum

X

Figure 4.2 Types of minima for constrained optimization problems.

is positive-definite at X* that is, if for a vector u,

u' H(X*u>0, Yu#0 4.8)

This condition is a generalization of convexity, or positive curvature
to higher dimensions. Figures 4.1 and 4.2 illustrate the different types
of stationary points for unconstrained and constrained univariate
functions.

As shown in Figure 4.3, the situation is slightly more complex for
constrained optimization problems. The presence of a constraint bound-
ary, in Figure 4.4, in the form of a simple bound on the permitted values
of the control variable can cause the global minimum to be an extreme
value, an extremum (i.e., an end point), rather than a true stationary point.
Some methods of treating constraints transform the optimization prob-
lem into an equivalent unconstrained one, with a different objective
function.
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Figure 4.3 Types of structure of local and global minimization algorithms.
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Figure 4.4 The descent structure of local minimization algorithms.
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Basic structure of local methods

A starting point is chosen; a direction of movement is prescribed according
to some algorithm, and a line search or trust region is performed to deter-
mine an appropriate next step. The process is repeated at the new point and
the algorithm continues until a local minimum is found. Schematically, a
model local minimizer method can be described as follows:

Algorithm 4.1 Basic Local Optimizer
Supply an initial guess X,

Fork=0,1,2, ... until convergence,

1. Test x, for convergence

2. Calculate a search direction p,

3. Determine an approximate step length 4, (or modified step s,)
4. Set X,y to Xy + A Py (OF X + 5)

Descent directions

It is reasonable to choose a search vector p that will be a descent direction;
that is, a direction leading to function value reduction. A descent direc-
tion P is defined as one along which the directional derivative is negative:

§X)'p<0 49)

when we write the approximation
f(X+1p)= f(X)+1g(X)"p (4.10)

we see that the negativity of the right-hand side guarantees that a lower
function value can be found along p for sufficiently small /.

Steepest descent

Steepest descent (SD) is one of the oldest and simplest methods. At each
iteration of SD, the search direction is taken as —g,, the negative gradient
of the objective function at x,. Recall that a descent direction p, satisfies
gi" pr <0.The simplest way to guarantee the negativity of this inner product
is to choose p, = —g,. This choice also minimizes the inner product —g;"p
for unit-length vectors and, thus, gives rise to the name steepest descent. SD is
simple to implement and requires modest storage, O(1). However, progress
toward a minimum may be very slow, especially near a solution.
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Conjugate gradient

The first iteration in conjugate gradient (CG) is the same as in SD, but
successive directions are constructed so that they form a set of mutually
conjugate vectors with respect to the (positive-definite) Hessian A of a
general convex quadratic function gA(X).

Algorithm 4.2
CG method to solve AX = -b

1. Setry = —(Ax, +b), dy =1,
2. Fork=0,1,2, ... until r is sufficiently small, compute
1e =1 n/dy" Ady
Xja1 = X + Lidk
Tes1 = T — Lidy
by = Tt et/ T

A1 = Y1 + s

Newton methods

All Newton methods are based on approximating the objective function
locally by a quadratic model and then minimizing that function approxi-
mately. The quadratic model of the objective function f at x, along p is
given by the expansion

fi+p)= f(x)+ 8’ p +% p"Hyp 4.11)

The minimization of the right-hand side is achieved when p is the minimum
of the quadratic function:

1
qHe(p)= &' p+ 5 p"Hip 4.12)

Alternatively, such a Newton direction P satisfies the linear system of n
simultaneous equations, known as the Newton equation:

Hyp = —g« 4.13)
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In the “classic” Newton method, the Newton direction is used to
update each previous iterate by the formula x; = x, + p,, until conver-
gence. For the 1D version of Newton’s method for solving a nonlinear
equation f(X) = 0:

xi ~fxi) (4.14)
£(xx)

Xk+1 =

The analogous iteration process for minimizing f(X) is

xi —£'(xx)
=" 4.15
Xk+1 00) ( )

Newton variants are constructed by combining various strategies for the
aforementioned individual components.

Algorithm 4.3 Modified Newton
Fork=0,1,2,..., until convergence, given X,

1. Test x, for convergence

2. Compute a descent direction p, so that ||H; p; + gl < nillgill,
where 7, controls the accuracy of the solution and some symmetric
matrix Hk may represent H,.

3. Compute a step length 4 so that for x;,, = x; + Ap;,

f(xk+]) < f(xk) +a lngp

7

‘gkﬂTpk‘ <b ‘ngPk

withO<a<p<1.
4. Set x;,, = x; + Ap,.

Newton variants are constructed by combining various strategies for the
individual components.

Stochastic central problems

An object that changes randomly both in time and space is said to be sto-
chastic. A basic characteristic of applied optimization problems treated
in engineering is the fact that the data for these problems, for example,
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parameters of the material (yield stress, allowable stresses, moment capac-
ities, specific gravity, etc.), external loadings, manufacturing errors, cost
factors, etc., are not known at the planning stage but have to be considered
to be random variables with a certain probability distribution; in addition,
there is always some uncertainty in the mathematical modeling of practi-
cal problems. Typical problems of this type are

e The limit (collapse) load analysis and the elastic or plastic design of
mechanical structures represented mathematically by means of
a. The equilibrium equation
b. Hooke’s law
¢. The member displacement equation

¢ Optimal trajectory planning of robots by off-line programming such
that the control strategy based on the optimal open-loop control,
causes only low online correction expenses. Here, the underlying
mechanical system is described by the kinematics and the dynamic
equation, and the optimal velocity profile and configuration vari-
ables are determined for fixed model parameters by a certain varia-
tion problem.

Since the (online) correction of a decision, for example, the decision on
the design of a mechanical structure or on the selection of a velocity
profile, after the realization/observation of the random data might be
highly expensive and time-consuming, the already known prior and
statistical information about the underlying probability mechanism
generating the random data should be taken into account already in the
planning phase. Hence, taking into account stochastic parameter varia-
tions already in the planning phase, for off-line programming, that is,
applying stochastic programming instead of ordinary mathematical
programming methods, the original optimization problem with random
data is replaced using appropriate decision criteria by a deterministic
substitute problem, for example,

¢ Using a chance constrained programming approach, the objective
function is replaced by its mean value, and the random constraints
are replaced by chance constraints.

e Evaluating the violation of the random constraints by means of
penalty functions, a weighted sum of the expectation of the pri-
mary objective function and the total expected penalty costs are
minimized subject to the remaining deterministic constraints, for
example, box constraints or the mean value of the objective func-
tion is minimized subject to constraints involving upper bounds
for the expected penalty cost arising from violations of the original
constraints.
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A main problem in the solution of these problems is the numerical compu-
tation and differentiation of risk functions.

Stochastic approximation

While some nonclassical optimization techniques are able to optimize
on discontinuous objective functions, they are unable to do so when
complexity of the data becomes very large. In this case, the complex-
ity of the system requires that the objective function be estimated.
Furthermore, the models that are used to estimate the objective function
may be stochastic due to the dynamic and random nature of the system
and processes.

The basic idea behind the stochastic approximation method is the gra-
dient descent method. Here the decision variable is varied in small incre-
ments and the impact of this variation (measured by the gradient) is used
to determine the direction of the next step. The magnitude of the step is
controlled to have larger steps when the perturbations in the system are
small and vice versa. Stochastic approximation algorithms based on vari-
ous techniques have been developed recently. They have been applied to
both continuous and discrete objective functions.

General stochastic control problem

The control of a random, dynamic system in some optimal fashion using
imperfect measurement data is the general problem. It also constitutes
a problem about which it is very difficult to obtain any meaningful
insights. Although feedback is used in order to compensate for unmod-
eled errors and inputs, most controllers are designed and analyzed in
a deterministic context. The control inputs for the system generally
must be based on imperfect observations of some of the variables which
describe the system. The control policy that is utilized must be based on
a priori knowledge of the system characteristics, on the time history of
the input variables.

The mathematical model of the system is described by a nonlinear
difference equation

xk+1:f(xk,Hk)+wk, k=0,1,...,N (416)

The noise w has been assumed to be additive primarily for reasons of con-
venience. The state x is n-dimensional and the input u is p-dimensional.
In general, a probabilistic model for the initial state x, and for the plant W,
is assumed to be known except for some unknown parameters. With rare
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exception these variables are regarded as having a Gaussian distribution
such that

Elx]=U,, Elw]=0, Vk 4.17)
E[(xo — Ho)(xo —Uo)] = My, E[xw," =0, Vk (4.18)
E[wew;" ] = Oxc 4.19)

Thus, the plant noise sequence is white and independent of the initial
state.

The measurement system is described by a nonlinear algebraic relation
to the state. The m-dimensional measurement vector is given by

zk=hk(xk)+vk, k=0,1,...,N (4:20)
The noise v is considered to be additive for reasons of convenience. It is

assumed to be a zero mean, white Gaussian sequence which is indepen-
dent of the initial state and the plant noise sequence.

E[v]=0, Vk @.21)
E[o,vi"]= Ridy, Vk 4.22)
E[vix,"]1=0, Vk @.23)
E[vyw;"]1=0, Vk,j @.24)

The aforementioned equations provide the mathematical description
of the system. It is this part of the complete system that represents the
physical system that must be controlled. The structure of the controller,
of course, depends on the exact form of the system model equations
(-, -) and h().

The behavior of the system is controlled through the input signal
u,, which is introduced at each sampling time t,. The manner in which
the controls are generated can be accomplished in a limitless number of
ways. Certainly, the controls are constrained by the objectives that are
defined for the control action and by the restrictions on the control and
state variables themselves. Generally, there will be more than one control
policy that satisfies the system constraints and achieves the prescribed
objectives. Then it is reasonable to attempt to select the control policy
from among all these admissible policies that is “best” according to some
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well-defined performance measure. Optimal stochastic control theory is
concerned with the determination of the best admissible control policy for
the given system.

The following performance index is assumed:

N-1
Jo=EY (i1, ) 4.25)
i=0

N-1
Notice that the summation EZ w;(xi41,1;) is a random variable.
i=0

Consequently, it is appropriate to consider its minimization; instead it is
mapped into a deterministic quantity by considering its expected value.

Intelligent heuristic models

There had been continuing vast advances in optimal solution techniques
for intelligent systems in the last two decades. The heuristic methods offer a
very viable approach; however, the design and implementation of problem-
specific heuristic can be a long and expensive process and the result is often
domain dependent and not flexible enough to deal with changes, which
may occur over time. Hence, considerable interest is focused on general
heuristic techniques that can be applied to a variety of different combinato-
rial problems. This has yielded some new generation of intelligent heuristic
techniques such as tabu search, simulated annealing, evolutionary algo-
rithms such as genetic algorithms (GAs) and neural networks, etc.

Heuristics

Heuristics are the knowledge used to make good judgments, or strategies,
tricks or “rules of thumb” used to simplify the solution of problems. They
include “trial and error” (experience-based) knowledge and intelligent
guesses/procedures for domain-specific problem solving. They are particu-
larly suitable for ill-defined or poorly posed problems and, poor models such
as when there are incomplete data. Heuristics play an important role in such
strategies because of the exponential nature of most problems. They help to
reduce the number of alternatives from an exponential number to polyno-
mial number and, thereby obtain a solution in tolerable amount of time.

Intelligent systems

Intelligence is the ability to acquire, understand, and apply knowledge or
the ability to exercise thought or reasons. It also embodies knowledge
and feats both conscious and unconscious, which animate beings have
acquired through study and experience. (Artificial) Intelligent systems
are thus machines and coded programs aimed at mimicking such feat
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and knowledge. Systems have been designed to perform many types of
intelligent task. These can be physical systems like robots or mathematical
computational systems such as scheduling systems which solve diverse
tasks, systems used in planning complex strategies for military and for
business, in medical diseases diagnosis and control, and so on.

Algorithm 4.4 General Search Paradigm
The general search algorithm (4.5) is of the following form:

General search

Objective is to maximize f(x), x € U
X, Y, Z: multiset of solutions c U
Initialize (X);

While not finish (X) do

Begin

Y: = select (X)
Z: = create (Y)
X: = merge(X, Y, Z)

End

where
Xis the initial pool of one or more potential solutions to the problem.
Since X may contain multiple copies of some solutions, it is more
appropriately called a multiset
Y is a selection from X
Z is created from Y

When a new solution is created either initially or by using the operator “cre-
ate,” the function value, f(x), is applied to determine the value of the solution.
X is reconstructed from the penultimate pool of X, Y, and Z by the operator
“merge.” The process is repeated until the pool, X, is deemed satisfactory.

Integrated heuristics

Modern approaches to local search have incorporated varying degrees
of intelligibility. The contribution of intelligent search techniques should
not be solely viewed in terms of improved performance alone as the tra-
ditional systems engineers or analysts expect (even though very much
desirable). The trust of the contribution of intelligent search techniques
should be in terms of improved intelligibility, flexibility, and transpar-
ency of these emerging computational techniques. A synergy between
intelligibility and performance is normally of utmost importance in
assessing the efficiency of an intelligent heuristic.
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Algorithm 4.5 Tabu Search

Tabu search is one successful variant of the neighborhood search paradigm
designed to avoid the problem of becoming trapped in a local optimum.
The tabu search paradigm (4.5) is as follows:

Tabu search
Objective is to maximize f(x), x € U

X, Z: multiset of solutions c U

Tabu set of rules of type U = {true, false}
Initialize (X);

Initialize (Tabu); {very often to @}

While not finish (X) do

Begin

Z: = create (X, Tabu)
Tabu = update(Tabu)
X: = merge(X, Z)

End

The difficulty in tabu search is in constructing the set of rules. Considerable
expertise and experimentation is required to construct the rules and to
ensure its dynamic nature is correctly controlled. If the expertise is avail-
able, the resulting search can be efficient. Aspiration criteria are often
included to help the tabu search in not being too restrictive. These crite-
ria are rules, which say that certain moves are to be preferred over others.
Some form of expert rules may also serve as tabu search rules. Each rule
may have an associated weight, negative if tabu and positive if an aspira-
tion. The combined set of rules thus associates a weight to each neighbor.
A large positive weight suggests it is a desirable move while a large negative
weight suggests it can be discounted. Tabu search has found applications to
real-world problems such as packing and scheduling problems (flow shop
problems, employee scheduling problem, machine scheduling, etc.); travel-
ing salesman; vehicle routing, and telecommunications.

Algorithm 4.6 Simulated Annealing

SA exploits an analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure (the annealing pro-
cess) and the search for a minimum in a more general system.

SA (Figure 4.5) is essentially a local search technique in which a
move to an inferior solution is allowed with a probability that decreases
as the process progresses, according to some Boltzmann-type distribu-
tion. The inspiration for SA approach is the law of thermodynamics
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Figure 4.5 The structure of the simulated annealing algorithm.

which states that at temperature t, the probability of an increase in
energy of magnitude, §E, is given by

P(dE) = exp(_liE) (4.26)

where k is the physical constant known as the Boltzmann constant. The
equation is applicable to a system that is cooling until it converges to a
“frozen” state. The system is perturbed from current state and the result-
ing energy change SE is calculated. If the energy has decreased, the sys-
tem moves to the new state, otherwise the new state is only accepted with
the probability given earlier. The cycle can be repeated for a number of
iterations at each temperature and subsequently reduced and the number
of cycles repeated for the new lower temperature. This whole process is
repeated until the system freezes to its steady state.

We can associate the potential solutions of an optimization problem
with the system states; the cost of a solution corresponds to the concept
of energy and moving to any neighbor corresponds to a change of state.
A simple version of the SA paradigm (4.6) is of the following form:
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Simulated annealing

X = x, where X, is some initial solution
temp = temp, where temp, is some initial temperature
while not finish f(X) do
Fori=1ton
Begin
Randomly select x/, a neighbor of x
Improvement = f(x') — f(x)
If improvement > 0 then x = x’
Else
Begin
Generate x € Q[0,1];
If x < exp(Amprovement/temp) then x = x’
End {else}
End {for}
t = reduced (t)
End {while}

A myriad of practical applications of SA include graph coloring, packing
and scheduling problems, traveling salesman, vehicle routing, and qua-
dratic assignment problems.

Genetic algorithms

GAs are search techniques based on an abstracted model of Darwinian
evolution. Fixed-length strings represent solutions over some alphabet.
Each such string is thought of as a “chromosome.” The value of the solu-
tion then represents “fitness” of the chromosome. The concept of “sur-
vival of the fittest” is then used to allow better solutions to combine to
produce offspring. The GA paradigm follows closely the same search con-
cept exploited in tabu search and SA. The paradigm is as follows:

Algorithm 4.7 Genetic Algorithm
Objective is to maximize f(x), x € U

X, Y, Z: multiset of solutions c U
Initialize (X);

While not finish (X) do

Begin

Y: = select (X)

Z: = create (Y)

X: = merge(X, Y, Z)

End
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Here the operators select, create, and merge correspond to the operators
select, reproduction, crossover. The iteration loop of a basic GA hence
looks like

Procedure GA

Begin
Generate initial population, P(0); t = 0;
Evaluate chromosomes in P(0);

Repeat
t=t+71
Select P(t) from P(t — 1);
Recombine chromosomes in P(t) using genetic operators;
Evaluate chromosomes in P(t);
Until termination condition is satisfied;
End

In natural evolution each species searches for beneficial adaptations in an
ever-changing environment. As species evolve these new attributes are
encoded in the chromosomes of individual members. This information
does change by random mutation, but the real driving force behind evo-
lutionary development is the combination and exchange of chromosomal
material during breeding.

GAs differ from traditional optimization algorithms in four important
respects:

¢ They work using an encoding of the control variables rather than the
variables themselves.

* They search from one population to another rather than from indi-
vidual to individual.

* They use only objective function information, not derivatives.

¢ They use probabilistic, not deterministic transition rules.

Genetic algorithm operators
GAs (see Figure 4.6) are rather known as evolutionary rather than genetic
algorithms.

Mutation: Bit-wise change in strings at randomly selected points.

Examples

Crossover: This is a generic operator applied to two randomly selected
parent solutions in the mating pool to generate two offspring solu-
tions. Crossover operation is not performed on all pairs of parent solu-
tions selected from the mating pool. Crossover is performed according
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Figure 4.6 The basic structure of a genetic algorithm.

to a probability, p (usually p = 0.6). If GA decides by this probability
not to perform crossover on a pair of parent solutions they are simply
copied to the new population. If crossover is to take place, then one
or two random splicing points are chosen in a string. The two strings
are spliced and the spliced regions are mixed together to create two
(potentially) new strings. These child strings are then placed in the
new generation.

For example, using strings 10010111 and 00101010, suppose the GA
chooses at random to perform crossover at point 5:

10010111 (rossover 10010010
—_—

00101]010 00101111

parent strings child strings (after crossover)

The new stringsare 10010010
00101111
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For two crossover points at points 2 and 6, the crossing looks like

10010111 101010 11
crossover 3
00| 101010 00J]J0101 | 10
parent strings child strings (after crossover)
The new strings are 10101011
00010110

Mutation: Selection and crossover alone can obviously generate a stagger-
ing amount of differing strings. However, depending on the initial popu-
lation chosen, there may not be enough variety of strings to ensure GA
sees the entire problem space in the event of which, GA may find itself
converging on strings that are not close to the optimum it seeks due to a
bad initial population. Some of these problems may be overcome by intro-
ducing a mutation operator into the GA. The GA has a mutation probabil-
ity, m, which dictates the frequency at which mutation occurs. Mutation
can be performed either during selection or crossover (though crossover is
more usual). For each string GA checks if it should perform a mutation. If
it should, it randomly changes the element value to a new one. In a binary
string, 1s are changed to Ols and Os to 1s. For example, given the string
10101111, if the GA determines to mutate this string at point 3 the 1 in that
position is changed to 0, that is,

10101111 mutate 10001111

The mutation probability is kept as low as possible (usually about 0.01)
as high mutation rate will destroy fit strings and degenerate the GA into
a random walk, with all the associated problems. GA has been applied
successfully to a wide variety of systems. We can only highlight a small
subset of the myriad of applications including packing and scheduling,
design of engineering systems, robots, and transport systems.

For a number of reasons, MetaHeuristic optimization techniques
differ from classical search and optimization methods.

1. MetaHeuristic optimization techniques work with a coding of deci-
sion variables, a matter which is very uncommon in classical meth-
ods. Coding discretizes the search spaces and allows MetaHeuristic
optimization techniques to be applied to both discrete and dis-
continuous problems. MetaHeuristic optimization techniques also
exploit coding similarities to make faster and parallel searches.
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2. Since no gradient information is used in MetaHeuristic optimi-
zation techniques, they can also be applied to non-differentiable
functions. This makes MetaHeuristic optimization techniques
robust in the sense that they can be applied to a wide variety of
problems.

3. Unlike many classical optimization methods, MetaHeuristic optimi-
zation techniques like GA work with a population of points. This
increases the possibility of obtaining the global optimal solution
even in ill-behaved problems.

4. MetaHeuristic optimization techniques use probabilistic tran-
sition rules, instead of fixed rules. For example, in early GA
iterations, this randomness in GA operators makes the search
unbiased toward any particular region in the search space and
has an effect not making a hasty wrong decision. The use of sto-
chastic transition rules also increases the chance of recovering
from a mistake.

5. MetaHeuristic optimization techniques uses only payoff infor-
mation to guide them through the problem space. Many search
techniques need a variety of information to guide them. Hill
climbing methods require derivatives, for example. The only
information a MetaHeuristic needs is some measure of fitness
about a point in the space (sometimes known as objective func-
tion value). Once the MetaHeuristic knows the current measure
of “goodness” about a point, it can use this to continue searching
for the optimum.

6. MetaHeuristic optimization techniques allows procedure-based
function declaration. Most classical search methods do not permit
such declarations. Thus, where procedures of optimization need to
be declared MetaHeuristic optimization techniques proves a better
optimization tool.

The coding of decision variables in MetaHeuristic optimization tech-
niques also make it proficient in solving optimization problems involving
equality and inequality constraints.

Applications of heuristics to intelligent systems

Some of these techniques have been successfully applied to model and
simulate some intelligent systems. These include application of GAs to
bimodal transport scheduling problem (Ibidapo-Obe and Ogunwolu,
2001). In this application, GAs are applied using a bi-level programming
approach to obtain transit schedules for a bimodal transfer station in an
urban transit network with multiple dispatching stations. The arrival
rates of passengers are captured as fuzzy numbers in order to confer
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intelligibility in the system. The model results in comparably better
schedules with better levels of service (LOS) in the transit network (in
terms of total waiting and transfer times for passengers) than is obtained
otherwise.

Another application is on an intelligent path planner for autonomous
mobile robots (Asaolu, 2002). For this robotic motion planner, a real-time
optimal path planner was developed for autonomous mobile robots navi-
gation. MetaHeuristic optimization techniques were used to guide the
robot within a workspace with both static and roving obstacles. With the
introduction of arbitrarily moving obstacles, the dynamic obstacle avoid-
ance problem was recast into a dynamic graph search. The instantaneous
graph is made of the connected edges of the rectangles boxing the ellipses
swept out by the robot, goal, and moving obstacles. This was easily trans-
versed in an optimal fashion.

We are presently also looking at the problems of machine transla-
tion as another application of intelligent MetaHeuristic optimization
techniques.

High-performance optimization programming

Future developments in the field of optimization will undoubt-
edly be influenced by recent interest and rapid developments in new
technologies—powerful vector and parallel machines. Indeed, their
exploitation for algorithm design and solution of “grand challenge” appli-
cations is expected to bring new advances in many fields, such as com-
putational chemistry and computational fluid dynamics. Supercomputers
can provide speedup over traditional architectures by optimizing both
scalar and vector computations. This can be accomplished by pipelin-
ing data as well as offering special hardware instructions for calculat-
ing intrinsic functions (e.g., (exp(x), Jx), arithmetic, and array operations.
In addition, parallel computers can execute several operations concur-
rently. Communication among processors is crucial for efficient algorithm
design so that the full parallel apparatus is exploited. These issues will
only increase in significance as massively parallel networks enter into
regular use. In general, one of the first steps in optimizing codes for these
architectures is implementation of standard basic linear algebra subrou-
tines (BLAS). These routines—continuously being improved, expanded,
and adapted optimally to more machines—perform operations such as
dot products (xy) and vector manipulations (ax +), as well as matrix/vector
and matrix/matrix operations.

Specific strategies for optimization algorithms have been quite recent
and are not yet unified. For parallel computers, natural improvements
may involve the following ideas:
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1. Performing multiple minimization procedures concurrently from
different starting points

2. Evaluating function and derivatives concurrently at different points
(e.g., for a finite-difference approximation of gradient or Hessian or
for an improved line search)

3. Performing matrix operations or decompositions in parallel for spe-
cial structured systems (e.g., Cholesky factorizations of block-band
preconditioned)

With increased computer storage and speed, the feasible methods for
solution of very large (e.g., O(10°) or more variable) nonlinear optimiza-
tion problems arising in important applications (macromolecular struc-
ture, meteorology, economics) will undoubtedly expand considerably and
make possible solution of larger and far more complex problems in all
fields of science and engineering.
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chapter five

Statistical control techniques

Statistical process control

Statistical process control (SPC) means controlling a process statistically.
It is the use of statistical techniques to analyze a process in order to moni-
tor, control, and improve it. The objective is to have a stable, consistent
process that produces the fewest defects possible. SPC originated from
the efforts of the early quality control researchers. The techniques of SPC
are based on basic statistical concepts normally used for statistical quality
control. In a manufacturing environment, it is known that not all prod-
ucts are made exactly alike. There are always some inherent variations in
units of the same product. The variation in the characteristics of a product
provides the basis for using SPC for quality improvement; with the help of
statistical approaches, individual items can be studied and general infer-
ences can be drawn about the process or batches of products from the pro-
cess. Since 100% inspection is difficult or impractical in many processes,
SPC provides a mechanism to generalize concerning process perfor-
mance. SPC uses samples generated consecutively over time. The samples
should be representative of the general process. SPC can be accomplished
through the following steps:

e Control charts (X-chart, R-chart)
® Process capability analysis (nested design, Cp, Cp,)
® Process control (factorial design, response surface)

Control charts

Two of the most commonly used control charts in industry are the X-bar
charts and the range charts (R-charts). The type of chart to be used nor-
mally depends on the kind of data collected. Data collected can be of two
types: variable data and attribute data. The success of quality improve-
ment depends on two major factors:

1. The quality of data available
2. The effectiveness of the techniques used for analyzing the data

99
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Types of data for control charts

Variable data
The control charts for variable data are listed as follows:

Control charts for individual data elements (X)
Moving-range chart (MR-chart)

Average chart (X-chart)

Range chart (R-chart)

Median chart

Standard deviation chart (o-chart)

Cumulative sum chart (CUSUM)

Exponentially weighted moving average (EWMA)

Attribute data
The control charts for attribute data are listed as follows:

e Proportion or fraction defective chart (p-chart) (subgroup sample
size can vary)

Percent defective chart (100p-chart) (subgroup sample size can vary)
Number defective chart (np-chart) (subgroup sample size is constant)
Number defective (c-chart) (subgroup sample size = 1)

Defective per inspection unit (u-chart) (subgroup sample size can
vary)

The statistical theory useful to generate control limits is the same for all
aforementioned charts with the exception of EWMA and CUSUM.

X-bar and range charts

The R-chart is a time plot useful in monitoring short-term process varia-
tions, while the X-bar chart monitors the longer-term variations where the
likelihood of special causes is greater over time. Both charts have control
lines called upper and lower control limits, as well as the central lines. The
central line and control limits are calculated from the process measure-
ments. They are not specification limits or a percentage of the specifica-
tions, or some other arbitrary lines based on experience. Therefore, they
represent what the process is capable of doing when only common cause
variation exists. If only common cause variation exists, then the data will
continue to fall in a random fashion within the control limits. In this case,
we say the process is in a state of statistical control. However, if a special
cause acts on the process, one or more data points will be outside the con-
trol limits, so the process is not in a state of statistical control.
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Data collection strategies

One strategy for data collection requires that about 20-25 subgroups be col-
lected, which should adequately show the location and spread of a distribu-
tion in a state of statistical control. If it happens that due to sampling costs, or
other sampling reasons associated with the process, we are unable to have
20-25 subgroups, we can still use the available samples that we have to gen-
erate the trial control limits and update these limits as more samples are
made available, because these limits will normally be wider than normal
control limits and will therefore be less sensitive to changes in the process.
Another approach is to use run charts to monitor the process until such time
as 20-25 subgroups are made available. Then, control charts can be applied
with control limits included on the charts. Other data collection strategies
should consider the subgroup sample size, as well as the sampling frequency.

Subgroup sample size

The subgroup samples of size 1 should be taken as n consecutive readings
from the process and not random samples. This is necessary in order to
have an accurate estimate of the process common cause variation. Each sub-
group should be selected from some small period of time or small region
of space or product in order to assure homogeneous conditions within the
subgroup. This is necessary because the variation within the subgroup is
used in generating the control limits. The subgroup sample size n can be
between four or five samples. This is a good size that balances the pros and
cons of using large or small sample size for a control chart as provided in
the following.

Advantages of using small subgroup sample size

e Estimates of process standard deviation based on the range are as
good and accurate as the estimates obtained from using the standard
deviation equation which is a complex hand calculation method.

e The probability of introducing special cause variations within a sub-
group is very small.

e R-chart calculation is simple and easier to compute by hand on the
shop floor by operators.

Advantages of using large subgroup sample size

e The central limit theorem supports the fact that the process average
will be more normally distributed with larger sample size.

e If the process is stable, the larger the subgroup size the better the
estimates of process variability.

e A control chart based on larger subgroup sample size will be more
sensitive to process changes.
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The choice of a proper subgroup is very critical to the usefulness of any
control chart. The following paragraphs explain the importance of sub-
group characteristics:

e If we fail to incorporate all common cause variations within our sub-
groups, the process variation will be underestimated, leading to very
tight control limits. Then the process will appear to go out of control
too frequently even when there is no existence of a special cause.

¢ If we incorporate special causes within our subgroups, then we will
fail to detect special causes as frequently as expected.

Frequency of sampling

The problem of determining how frequently one should sample depends
on several factors. These factors include, but are not limited to the
following:

o Cost of collecting and testing samples: The greater the cost of taking and
testing samples, the less frequently we should sample.

e Changes in process conditions: The larger the frequency of changes
to the process, the larger the sampling frequency. For example, if
process conditions tend to change every 15min, then sample every
15min. If conditions change every 2h, then sample every 2h.

e Importance of quality characteristics: The more important the quality
characteristic being charted is to the customer, the more frequently
the characteristic will need to be sampled.

® Process control and capability: The more history of process control and
capability, the less frequently the process needs to be sampled.

Stable process

A process is said to be in a state of statistical control if the distribution
of measurement data from the process has the same shape, location, and
spread over time. In other words, a process is stable when the effects of all
special causes have been removed from a process, so that the remaining
variability is only due to common causes. Figure 5.1 shows an example of
a stable distribution.

Out-of-control patterns

A process is said to be unstable (not in a state of statistical control) if it
changes from time to time because of a shifting average, or shifting vari-
ability, or a combination of shifting averages and variation. Figures 5.2
through 5.4 show examples of distributions from unstable processes.
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Figure 5.2 Unstable process average.
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Figure 5.3 Unstable process variation.
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No prediction
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Figure 5.4 Unstable process average and variation.

Calculation of control limits

e Range (R)
This is the difference between the highest and lowest observations:

R= Xhighest — Xiowest

e Center lines

Calculate X and R
2K
m
R= 2R
m
where,

X is the overall process average
Ris the average range

m is the total number of subgroups
n is within subgroup sample size

e Control limits based on R-chart

UCLR = D4R
LCLy = DsR



Chapter five:  Statistical control techniques 105
¢ Estimate of process variation

s =

S| =

e Control limits based on X-chart
Calculate the upper and lower control limits for the process average:

UCL = X + AR
LCL =X -A,R

Table 5.1 shows the values of d,, A,, D,, and D, for different values
of n. Where n is within the subgroup sample size. These constants
are used for developing variable control charts.

Plotting control charts for range and average charts

* Plot the R-chart first.

e If R-chart is in control, then plot X-bar chart.

e If R-chart is not in control, identify and eliminate special causes,
then delete points that are due to special causes, and recompute the
control limits for the range chart. If process is in control, then plot
X-bar chart.

e Check to see if X-bar chart is in control, if not search for special
causes and eliminate them permanently.

® Remember to perform the eight trend tests.

Table 5.1 Table of Constants
for Variables Control Charts

n d, A, D, D,
2 1.128 1.880 0 3.267
3  1.693 1.023 0 2.575
4 2.059 0.729 0 2.282
5 2326 0.577 0 2.115
6 0534 0.483 0 2.004
7 2704 0.419 0076  1.924
8 2847 0.373 0.136  1.864
9 2970 0.337 0.184 1816

10  3.078 0.308 0223 1.777

11 3.173 0.285 0.256  1.744

12 3.258 0.266 0284 1716
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Plotting control charts for moving range
and individual control charts

¢ Plot the MR-chart first.

e If MR-chart is in control, then plot the individual chart (X).

e If MR-chart is not in control, identify and eliminate special causes,
then delete special causes points, and recompute the control limits
for the MR-chart. If MR-chart is in control, then plot the individual
chart.

¢ Check to see if individual chart is in control, if not search for special
causes from out-of-control points.

e Perform the eight trend tests.

Case example: Plotting of control chart

An industrial engineer in a manufacturing company was trying to study
a machining process for producing a smooth surface on a torque con-
verter clutch. The quality characteristic of interest is the surface smooth-
ness of the clutch. The engineer then collected four clutches every hour
for 30h and recorded the smoothness measurements in micro inches.
Acceptable values of smoothness lies between 0 (perfectly smooth) and 45
micro inches. The data collected by the engineer are provided in Table 5.2.
Histograms of the individual and average measurements are presented in
Figure 5.5.

The two histograms in Figure 5.5 show that the hourly smoothness
average ranges from 27 to 32 micro inches, much narrower than the histo-
gram of hourly individual smoothness which ranges from 24 to 37 micro
inches. This is due to the fact that averages have less variability than indi-
vidual measurements. Therefore, whenever we plot subgroup averages on
an X-bar chart, there will always exist some individual measurements that
will plot outside the control limits of an X-bar chart. The dot plots of the
surface smoothness for individual and average measurements are shown
in Figure 5.6.

The descriptive statistics for individual smoothness are presented in
the following;:

N MEAN MEDIAN TRMEAN STDEV  SEMEAN
120 29.367 29.00 29.287 2.822 0.258
MIN MAX Q1 Q3

24.00 37.00 28.00 31.00
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Table 5.2 Data for Control Chart Example

Smoothness (micro inches)

Subgroup
no. I II III' IV Average Range
1 34 33 24 28 29.75 10
2 33 33 33 29 32.00 4
3 32 31 25 28 29.00 7
4 33 28 27 36 31.00 9
5 26 34 29 29 29.50 8
6 30 31 32 28 30.25 4
7 25 30 27 29 27.75 5
8 32 28 32 29 30.25 4
9 29 29 28 28 28.50 1
10 31 31 27 29 29.50 4
11 27 36 28 29 30.00 9
12 28 27 31 31 29.25 4
13 29 31 32 29 30.25 3
14 30 31 31 34 31.50 4
15 30 33 28 31 30.50 5
16 27 28 30 29 28.50 3
17 28 30 33 26 29.25 7
18 31 32 28 26 29.25 6
19 28 28 37 27 30.00 10
20 30 29 34 26 29.75 8
21 28 32 30 24 28.50 8
22 29 28 28 29 28.50 1
23 27 35 30 30 30.50 8
24 31 27 28 29 28.75 4
25 32 3 26 35 32.25 10
26 27 31 28 29 28.75 4
27 27 29 24 28 27.00 5
28 28 25 26 28 26.75 3
29 25 25 32 27 27.25 7
30 31 25 24 28 27.00 7
Total 881.00 172
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Figure 5.5 Histograms of individual measurements and averages for clutch
smoothness.

Individual values
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Figure 5.6 Dotplots of individual measurements and averages for clutch
smoothness.
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The descriptive statistics for average smoothness are presented in the

following:
N MEAN MEDIAN TRMEAN STDEV SEMEAN
30 29.367 29.375 29.246 1.409 0.257
MIN MAX Q1 Q3
26.75 3225 28.50 30.25
Calculations
1. Natural limit of the process = X + 3s (based on empirical rule).

s = estimated standard deviation of all individual samples
Standard deviation (special and common), s = 2.822
Process average, X =29.367

Natural process limit = 29.367 + 3(2.822) = 29.367 + 8.466
The natural limit of the process is between 20.90 and 37.83

. Inherent (common cause) process variability, 6= R/d,

R from the R-chart = 5.83

d, (for n = 4) from Table 5.1 = 2.059

6=R/d,=5.83/2.059 = 2.83

Thus, the total process variation, s, is about the same as the inherent
process variability. This is because the process is in control. If the
process is out of control, the total standard deviation of all the num-
bers will be larger than R/dz.

. Control limits for the range chart

Obtain constants D,, D, from Table 5.1 for n = 4.
D,=0

D,=2.282

R=172/30=5.73

UCL =D,* R=2.282(5.73) = 16.16

LCL = D;* R=0(5.73) = 0.0

. Control limits for the averages

Obtain constants A, from Table 8.1 for n = 4.

A, =0.729

UCL = X + A,(R) = 29.367 + 0.729(5.73) = 33.54
LCL = X — Ay(R) = 29.367 — 0.729(5.73) = 25.19

. Natural limit of the process = X + 3(R)/d, = 29.367 + 3(2.83) = 29.367 + 8.49

The natural limit of the process is between 20.88 and 37.86, which is
slightly different from + 3 s calculated earlier based on the empirical
rule. This is due to the fact that R/, is used rather than the stan-
dard deviation of all the values. Again, if the process is out of con-
trol, the standard deviation of all the values will be greater than R/d,.
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The correct procedure is always to use R/d, from a process that is in
statistical control.
6. Comparison with specification

Since the specifications for the clutch surface smoothness are
between 0 (perfectly smooth) and 45 micro inches, and the natural
limit of the process is between 20.88 and 37.86, then the process is
capable of producing within the spec limits. Figure 5.7 presents the
R-chart and X-bar chart for clutch smoothness.

For this case example, the industrial engineer examined the aforemen-
tioned charts and concluded that the process is in a state of statistical control.

Process improvement opportunities
The industrial engineer realizes that if the smoothness of the clutch
can be held below 15 micro inches, then the clutch performance can be

R-chart of clutch smoothness

UCL=13.42

6 - R=5.88

Subgroup range

0 LCL=0

1 4 7 10 13 16 19 22 25 28
Subgroup number

X-bar chart of clutch smoothness

34 1
33 A
32 A
31 A
30 A =

29 | X=29.342
28 A
27 A
26 A
25 A LCL =25.057

UCL =33.626

Subgroup mean

1 4 7 10 13 16 19 22 25 28
Subgroup number

Figure 5.7 R and X-bar charts for clutch smoothness.
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significantly improved. In this situation, the engineer can select key
control factors to study in a two-level factorial or fractional factorial
design.

Trend analysis

After a process is recognized to be out of control, zone control charting
technique is a logical approach to searching for the sources of the varia-
tion problems. The following eight tests can be performed using MINITAB
software or other statistical software tools. For this approach, the chart is
divided into three zones. Zone A is between +30, zone B is between +2¢,
and zone C is between +lo.

Test 1
Pattern: One or more points falling outside the control limits on either
side of the average. This is shown in Figure 5.8.

Problem source: A sporadic change in the process due to special causes
such as

¢ Equipment breakdown

¢ New operator

¢ Drastic change in raw material quality

¢ Change in method, machine, or process setting

Check: Go back and look at what might have been done differently
before the out-of-control point signals.

Test 2
Pattern: A run of nine points on one side of the average (Figure 5.9).

Problem source: This may be due to a small change in the level of process
average. This change may be permanent at the new level.

Check: Go back to the beginning of the run and determine what was
done differently at that time or prior to that time.

/N o
gl A/ N A B

g2 [\ Y NN < -
X v "% * C
\ :
A

\ LCL

Time

Figure 5.8 Test 1 for trend analysis.
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Figure 5.10 Test 3 for trend analysis.

Test 3
Pattern: A trend of six points in a row either increasing or decreasing as
shown in Figure 5.10.

Problem source: This may be due to the following:

¢ Gradual tool wear

* Change in characteristic such as gradual deterioration in the mix-
ing or concentration of a chemical

® Deterioration of plating or etching solution in electronics or
chemical industries

Check: Go back to the beginning of the run and search for the source of
the run.

The three tests mentioned earlier are useful in providing good con-
trol of a process. However, in addition to the three tests, some advanced
tests for detecting out-of-control patterns can also be used. These tests are
based on the zone control chart.

Test 4
Pattern: Fourteen points in a row alternating up and down within or
outside the control limits as shown in Figure 5.11.

Problem source: This can be due to sampling variation from two dif-
ferent sources such as sampling systematically from high and low
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Figure 5.12 Test 5 for trend analysis.

temperatures, or lots with two different averages. This pattern can also
occur if adjustment is being made all the time (over control).

Check: Look for cycles in the process, such as humidity or temperature
cycles, or operator over control of process.

Test 5
Pattern: Two out of three points in a row on one side of the average in
zone A or beyond. An example of this is presented in Figure 5.12.

Problem source: This can be due to a large, dramatic shift in the process
level. This test sometimes provides early warning, particularly if the
special cause is not as sporadic as in the case of Test 1.

Check: Go back one or more points in time and determine what might
have caused the large shift in the level of the process.

Test 6
Pattern: Four out of five points in a row on one side of the average in
zone B or beyond, as depicted in Figure 5.13.

Problem source: This may be due to a moderate shift in the process.
Check: Go back three or four points in time.

Test 7
Pattern: Fifteen points in a row on either side of the average in zone C
as shown in Figure 5.14.
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Figure 5.14 Test 7 for trend analysis.

Problem source: This is due to the following:

¢ Unnatural small fluctuations or absence of points near the control
limits

¢ At first glance may appear to be a good situation, but this is not a
good control

¢ Incorrect selection of subgroups. May be sampling from various sub-
populations and combining them into a single subgroup for charting

¢ Incorrect calculation of control limits

Check: Look very close to the beginning of the pattern.

Test 8
Pattern: Eight points in a row on both sides of the center line with none
in zone C. An example is shown in Figure 5.15.

Problem source: No sufficient resolution on the measurement system.

Check: Look at the R-chart and see if it is in control.

Process capability analysis

The capability of a process is the spread which contains almost all val-
ues of the process distribution. It is very important to note that capabil-
ity is defined in terms of a distribution. Therefore, capability can only be
defined for a process that is stable (has distribution) with common cause
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Figure 5.16 Process capability distribution.

variation (inherent variability). It cannot be defined for an out-of-control
process (it has no distribution) with variation special to specific causes
(total variability). Figure 5.16 shows a process capability distribution.

Capable process

A process is capable (C, 2 1) if its natural tolerance lies within the engi-
neering tolerance or specifications. The measure of process capability of a
stable process is 66, where 6 is the inherent process variability estimated
from the process. A minimum value of C, = 1.33 is generally used for an
ongoing process. This ensures a very low reject rate of 0.007% and, there-
fore, is an effective strategy for prevention of nonconforming items. C, is
defined mathematically as

_USL-LSL
~6s
_ allowable process spread

o

actual process spread
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where

USL is the upper specification limit

LSL is the lower specification limit

C, measures the effect of the inherent variability only. The analyst
should use R-bar/d, to estimate 6 from an R-chart that is in a state
of statistical control, where R-bar is the average of the subgroup
ranges, and d, can be obtained for different subgroup sizes n from
Table 5.1

We do not have to verify control before performing a capability study.
We can perform the study and then verify control after the study with the
use of control charts. If the process is in control during the study, then
our estimates of capabilities are correct and valid. However, if the process
was not in control, we would have gained useful information, as well as
proper insights as to the corrective actions to pursue.

Capability index

Process centering can be assessed when a two-sided specification is avail-
able. If the capability index (C,,) is equal to or greater than 1.33, then the
process may be adequately centered. C;, can also be employed when there
is only one-sided specification. For a two-sided specification, it can be
mathematically defined as

Cpx = Minimum { UsL-X X- LSL}

38 ' 3s

where X is the overall process average.

However, for a one-sided specification, the actual Cpk obtained is
reported. This can be used to determine the percentage of observations
out of specification. The overall long-term objective is to make C, and C,,
as large as possible by continuously improving or reducing process vari-
ability, 6 every time so that a greater percentage of the product is near the
target value for the key quality characteristic of interest. The ideal is to
center the process with zero variability.

If a process is centered but not capable, one or several courses of
action may be necessary. One of the actions may be that of integrating
designed experiment to gain additional knowledge on the process and in
designing control strategies. If excessive variability is demonstrated, one
may conduct a nested design with the objective of estimating the various
sources of variability. These sources of variability can then be evaluated
to determine what strategies to take in order to reduce or permanently
eliminate them. Another action may be that of changing the specifications
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Nominal
Lower spec target Upper spec
limit limit
I I
-3(STD) Mean +3(STD)

Process variation

Figure 5.17 A process that is centered and capable.

or continuing production and then sorting the items. Three characteristics
of a process can be observed with respect to capability:

1. The process may be centered and capable.
2. The process may be capable but not centered.
3. The process may be centered but not capable.

Figures 5.17 through 5.19 present the alternate characteristics.

Process capability example

1. Determine if the process is capable for the clutch smoothness data in
Table 5.2. The engineer has determined that the process is in a state
of statistical control. The specification limits are 0 (perfectly smooth)

Lower spec
limit

Upper spec
limit

-3(STD) Mean +3(STD)

Product characteristic
variation

Figure 5.18 A process that is capable but not centered.
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Lower spec Upper spec
limit limit
Process
capability ~
Defects

Nominal value

Figure 5.19 A process that is centered but not capable.

and 45 micro inches. The inherent process variability as determined
from the control chart is

The capability of this process to produce within the specifications
can be determined as

_USL-LSL _ 45-0

C, e
6s 6(2.83)

= 2.650.

The capability of the process, C, = 2.65 > 1.0, indicating that the pro-
cess is capable of producing clutches that will meet the specifications
of between 0 and 45. The process average is 29.367.

2. Determine if the process can be adequately centered. C,, = minimum
[C,and C ] can be used to determine if a process can be centered.

_USL-X _45-29367 o,
38 3(2.83)

Cu

_ X-LSL _29.367-0

C =222 =3.46
38 3(2.83)

Therefore, the C,, for this process is 1.84. Since C,,, = 1.84 is greater
than 1.33, the process can be adequately centered.



Chapter five:  Statistical control techniques 119

Applications of process capability indices:

Communication: C, and C, have been used in industry to establish
a dimensionless common language useful for assessing the perfor-
mance of production processes. Engineering, quality, manufactur-
ing, etc, can communicate and understand processes with high
capabilities.

Continuous improvement: The indices can be used to monitor con-
tinuous improvement by observing the changes in the distribution
of process capabilities. For example, if there were 20% of processes
with capabilities between 1 and 1.67 in a month, and some of these
improved to between 1.33 and 2.0 the next month, then this is an
indication that improvement has occurred.

Audits: There are so many various kinds of audits in use today to
assess the performance of quality systems. A comparison of in-
process capabilities with capabilities determined from audits can
help establish problem areas.

Prioritization of improvement: A complete printout of all processes
with unacceptable C, or C,, values can be extremely powerful in
establishing the priority for process improvements.

Prevention of nonconforming product: For process qualification, it is
reasonable to establish a benchmark capability of C,, = 1.33 which
will make nonconforming products unlikely in most cases.

Potential abuse of C, and C,;:

Problems and drawbacks: C,, can increase without process improve-
ment, though repeated testing reduces test variability.

The wider the specifications, the larger the Cp or Cpk, but the action
does not improve the process.
People tend to focus on number rather than on process.
Process control: People tend to determine process capability before
statistical control has been established. Most people are not aware
that capability determination is based on process common cause
variation and what can be expected in the future. The presence of
special causes of variation makes prediction impossible and C,,
unclear.
Nonnormality: Some processes result in nonnormal distribution for
some characteristics. Since capability indices are very sensitive to
departures from normality, data transformation may be used to
achieve approximate normality.
Computation: Most computer packages do not use R/d, to calculate o.
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Time series analysis and process estimation

SPC has found widespread application in industry for monitoring and
controlling manufacturing processes as well as for implementing qual-
ity and process improvement activities. The traditional Shewhart control
charts have been extensively used for this purpose. The fundamental
assumption in the typical application of Shewhart control charts is that
the sequence of process observations is independent and uncorrelated.
This assumption has been found to be reasonable in parts manufactur-
ing industries. However, it is often not true in chemical and process
industries where process data are enormous and correlated since many
kinds of sensors and in-process gauges are being used with automated
machines.

The presence of autocorrelation in the data can have a major impact
on the expected average run lengths (ARL) performance of control
charts, causing a dramatic increase in the frequency of false alarms, and
the control limits of the CUSUM procedure would have to be adjusted
(see Johnson and Bagshaw, 1974). In this type of situations, Alwan and
Roberts (1989), Montgomery and Mastrangelo (1991), as well as other
authors, have recommended fitting a time series model to track the level
of the process and then using a standard control chart on the residu-
als to detect unusually large shocks to the process. Montgomery and
Mastrangelo (1991) also presented an alternative approach based on a
straightforward application of the EWMA statistics due to the practi-
cal implementation drawback of the method proposed by Alwan and
Roberts (1989).

Correlated observations

Correlated observations such as those experienced by continuous process
industries (petroleum, chemical, mineral processing, pulp and paper, etc.)
as well as management data such as sales, profits, and so on can be moni-
tored and controlled by fitting an appropriate time series model to the
observations and then applying control charts to the stream of residuals
from this model (Ermer 1979, 1980; Alwan and Roberts, 1989; Montgomery
and Friedman, 1989; Yourstone and Montgomery, 1989; Montgomery and
Mastrangelo, 1991). The general time series model employed is the autore-
gressive integrated moving average (ARIMA) model (Box and Jenkins,
1976). This model can be represented as

£,(B)(1 -B)*Y, = q(B) a,
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where
¢,(B) is an autoregressive polynomial of order p
0(B) is a moving average polynomial of order q
d is the dth difference of the series
B is the backward shift operator
a, is a sequence of normally and independently distributed random
“shocks” with mean zero and constant variance o,?

£(B)=(1-£B—£,B—.............. - £,B7)

q,(B)=(1-aB —pBi - -qyB?)

An extensive application of this general ARIMA model can be found in
the paper by Ayeni and Pilat (1992). If Y, is the predicted value obtained
from an appropriately identified and fitted ARIMA model, then the resid-
uals given by

a =Y, _?t

will behave like independent and identically distributed random vari-
ables (Box and Jenkins, 1976). Therefore, control charts can then be applied
to the set of residuals. If a shift occurs in the process average, the identi-
fied model will no longer be applicable, and this effect will be detected on
the control charts applied to the residuals.

As an illustration of this approach, consider Figure 5.20, which pres-
ents 150 observations collected during a study of the moisture content of
a raw material. The measurements are fiber weight scan averages. Each
scan takes about 25s.

Figure 5.20 shows a control chart for individuals with control limits
based on a process standard deviation estimated from a moving range
control chart. This chart shows many out-of-control signals.

Time series analysis example

MINITAB software can be used to analyze time series data. For the data in
Figure 5.20, the autocorrelation and partial autocorrelation functions can
be obtained as shown in Figure 5.21. The autocorrelation function of the
150 weights is shown before differencing. The inability of the autocorrelation
function to die out rapidly shows that fiber weights are highly autocorrelated
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Figure 5.20 Time series plot of fiber weight data.
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Figure 5.21 Autocorrelation function for time series data.

and differencing of the data will be necessary. After differencing with degree
of differencing d = 1, the autocorrelation function dies out rapidly atlag q =1,
indicating a moving average process IMA (1). This is shown in Figure 5.22.
The partial autocorrelation function (Figure 5.23) shows some exponential
decay confirming that a moving average model can represent the weight data.
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Autocorrelation function for fiber weight d =1
(with 5% significance limits for the autocorrelations)
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Figure 5.22 Autocorrelation function after d = 1 differencing.

Partial autocorrelation function for fiber weight d = 1
(with 5% significance limits for the partial autocorrelations)
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Figure 5.23 Partial autocorrelation function.

Estimation of parameters using an integrated moving average (IMA)
of order 1 yields a coefficient estimate of 0.8125. Since the observations are
highly autocorrelated, we need to be very suspicious about the out-of-
control signals. We are not sure if they are actually due to special causes or
if they are false alarms induced by the autocorrelation structure of the data.
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A detailed examination of the sample autocorrelation and partial autocor-
relation functions shows that the data in Figure 6.14 can be identified as an
ARIMA (0,1,1), which can be represented as

Y =Y —qiae +ay
Thus, using all the available data, the fitted model is
Yt = Yt—l - 0.8125 g1 + Ay

The residuals from the model show that they are random (uncor-
related) indicating that the ARIMA (0,1,1) model is an adequate fit. The
individual control chart shows that the process is in control and that the
out-of-control signals observed previously were false alarms induced by
the autocorrelation structure of the data.

Exponentially weighted moving average

The time series modeling approach illustrated in the preceding example is
difficult to implement in the SPC environment. One major problem is the
time that will be required to develop an ARIMA model for each quality
characteristic of interest when applying control charts to several variables.
Alwan (1990) extensively covered several issues regarding implementation
of time series approach to SPC application. Several authors, Box, Jenkins,
and MacGregor (1974), Hunter (1986), and, most recently, Montgomery and
Mastrangelo (1991) have proposed the use of EWMA control chart as a pos-
sible compromise or an approximation to the general ARIMA model. The
EWMA was first suggested by Roberts (1959) and can be represented as

Zt :aXt+(1_a) Zt*l

where
0 <a<1and X, is the observation at time t
Z,is the EWMA at time t
a is the smoothing constant

The value of Z, is either a target or a process average. The advantages of
EWMA are listed as follows:

Applicable in certain situations where data are autocorrelated.
Useful in approximating other members of the ARIMA family.
Data need not be independent as in Shewhart charts.

Applicable to processes whose means drift over time.

Can serve as a compromise between the Shewhart and the CUSUM
charts.
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Figure 5.24 Shewhart chart for film quality example.

e EWMA uses all data in descending weights so that the most recent
data are given more weight.

® Very sensitive to small shifts in the process average.

e Provides the ability to make adjustments due toits predictive capability.

Following are examples of Shewhart (Figure 5.24), EWMA (Figure
5.25), and CUSUM (Figure 5.26) charts for the data in Table 5.3. If
possible one can plot all the three charts together for proper protec-
tion against both large and small process shifts. Figure 5.25 contains
a linear regression model (R? = 92.28%) fitted to the EWMA values.
Figure 5.26 also contains an exponential regression fit (R?= 67.93%) for
the CUSUM values. The results show a shift in the process level at sam-
ple number 10.

Cumulative sum chart

The CUSUM chart procedure was developed by Page (1954) and Bernard
(1959) as a sequential likelihood ratio test for testing the hypothesis that
the process average is equal to the target value. CUSUM uses the same
assumption of independence as in the Shewhart chart. The procedure
requires that we plot the following sum of deviations from target:

2(Y; — Target)
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Figure 5.25 EWMA chart for film quality example.
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Figure 5.26 CUSUM chart for film quality example.

Any change in the process average from target will show up as a

change in the slope of the CUSUM chart. This procedure has the ability
to detect smaller changes in the process average more rapidly than the
Shewhart chart. However, CUSUM charts are not as sensitive as Shewhart
charts in detecting cycles, spikes, and trends. For these reasons, it is a
good practice to use CUSUM in addition to Shewhart charts. The CUSUM
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Table 5.3 Data for Plotting EWMA and CUSUM Charts

Time X-=film quality EWMAa=02 X-9.888 CUSUM
1 5.5 9.01 —4.388 —4.388
2 8.5 8.91 -1.388 -5.776
3 4.2 7.97 -5.688 —-11.464
4 8.9 8.15 -0.988 -12.452
5 6.2 7.76 -3.688 -16.140
6 7.5 7.71 -2.388 -18.528
7 5.8 7.33 —4.088 —-22.616
8 9.3 7.72 -0.588 —-23.204
9 49 7.16 —4.988 -28.192

10 8.1 7.35 -1.788 —-29.980

11 11.9 8.26 2.012 —27.968

12 9.5 8.51 —-0.388 —-28.356

13 12.3 9.26 2412 —25.944

14 11.9 9.79 2.012 —23.932

15 12.4 10.31 2.512 -21.420

16 10.3 10.31 0.412 -21.008

17 11.1 10.47 1.212 -19.796

18 12.3 10.83 2412 -17.384

19 10.8 10.83 0.912 -16.472

20 13.9 11.44 4.012 -12.460

21 11.9 11.53 2.012 -10.448

22 11.3 11.49 1.412 -9.036

23 15 12.19 5.112 -3.924

24 12.4 12.23 2.512 -1.412

25 11.3 12.05 1.412 0.000

chart in Figure 5.26 is based on a target of 9.88. The plot shows that a shift

occurs in the process average after subgroup number 10.

Engineering feedback control

Case history: A process engineer was monitoring a production operation
in a non-feedback control mode during normal production in order to
observe the natural variance of the process. The following observations
were what the engineer experienced:

e Using the feedback system, the process initially centered around the

target weight of 21.5¢.

e Thenby taking off the feedback controller at the target weight of 21.5g,
the weights displayed immediately varied slowly around the target
weights of 21.5g. Figure 5.27 shows a time series plot of the weights.
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Figure 5.27 Fiber weight study.

* After a few minutes, the range had significantly increased with most
of the weights falling outside the upper specification limit (USL = 23.5).
All the observed packages at this time were rejected.

¢ The production group at this time had no choice other than to mini-
mize cost. They, therefore, discontinued the non-feedback approach
and the feedback system was installed again.

* The feedback system again brought the process back in control
immediately after being installed.

The aforementioned situation often occurs in continuous process indus-
tries for processes which mix, react, and/or separate materials continu-
ously. Chemical, pulp and paper, and petroleum refinery are a few of the
continuous process industries. In these industries the automatic process
control (APC) methods have dominated. The assumption behind the engi-
neering process control approach is that the process is always being dis-
turbed by causes that cannot be completely eliminated. In this situation,
the process average level is not stable, but drifting continuously over time
due to a myriad of causes such as wood variations in pulp and paper mak-
ing, equipment aging, ambient temperature, quality of raw materials, and
so on. Under this assumption, the logical approach has been to devise a
control algorithm to be used to continuously respond to all deviations from
target by compensating for the disturbances with some other variables.
These continuous processes are a significant part of American industry and
present unique challenges to controlling and improving product quality.
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An excellent example of a feedback control problem was presented by
Box, Hunter, and Hunter (1978, pp. 598-602). In the example, they consid-
ered a polymer process that was colored by adding dye at the inlet of a con-
tinuous reactor. At the outlet, the color index y was checked every 15min
and if it deviated from the target value of T = 9, the rate of the addition of
dye X at the inlet could be increased or decreased. In their approach, they
used a time series model to develop a controller or optimal control equa-
tion so that the deviations e, from the target have the smallest standard
deviation.

SPC versus APC

SPC and APC have been instrumental in quality improvement efforts in
industry. Several papers have appeared in the literature, independently,
on SPC and APC, but most recently, several techniques on integrating
both methods have been published (MacGregor, 1987; Tucker et al. 1989;
Box and Kramer, 1990; Palm, 1990). While the tactical approaches taken
by these authors somewhat differ, several key practical considerations
were presented. Some of the authors fully discussed some misconcep-
tions concerning both methods as well as a full explanation of each
approach.

Statistical process control
¢ Originates from manufacturing parts industry.
¢ Signals significant process changes from past performance.
The philosophy is to minimize variability by finding and removing
disturbances.
Analyzes and controls infrequent or off-line measurements.
Improves procedures, methods, and equipment.
Monitors long-term performance.
Expensive measurements and control actions.
Low serial correlation.
Monitoring may be done manually or by computer.
The approach is to take action only when monitoring detects
changes.
¢ Reflects Deming philosophy.

Automatic process control

¢ Originates from continuous process industry.

¢ Deals with how to adjust process to meet targets.

* The philosophy is to minimize variability by adjusting process to
compensate the impact of disturbances which cannot be removed
economically.

* Analyzes and controls high-speed on-line measurements.
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Accomplishes complex control strategies.

Monitors short-term performance.

Cheap measurements and control actions.

High serial correlation.

Adjustment is typically computer-based.

The approach is to continually perform specified adjustments.
Performs multivariate control and optimization.

Deviates from Deming philosophy.

Criticisms of SPC and APC

There have been some aspects of controversy that sometimes arise
between SPC and APC. This controversy has been fully discussed in
the literature. Interested readers should refer to Box and Kramer (1990),
MacGregor (1987), and Palm (1990).

SPC practitioners have sometimes criticized APC for the following:

* Overcompensating disturbances
e Compensating disturbances rather than removing them
¢ Concealing information rather than removing them

APC practitioners have in turn argued that Shewhart control charts are

e Inefficient for regulating a process
e Inefficient in coping well with fast system dynamics
e Misleading if sensing correlations over time

Overcompensation, disturbance removal,
and information concealing

Box and Kramer (1990) and MacGregor (1991) demonstrated that in the
presence of a drifting process average, by actively implementing an
active optimal control strategy, a feedback scheme can provide signifi-
cant reduction in variability. In addition, Box and Kramer (1990) provided
a couple of examples where some disturbances cannot be removed. For
example, a temperature variation in Minnesota from winter to summer
may be too extreme for some people. In this case, people who cannot
withstand this severe change may either relocate to Louisiana or Florida.
However, if they decide to stay in Minnesota, they will have to compen-
sate for the cold weather by using a furnace controlled by a thermostat
supplying appropriate feedback control. Although automatic control
conceals the nature of compensated disturbances, Box and Kramer
(1990) and MacGregor and Harris (1990) also pointed out that this need
not happen.
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One can have the best of both worlds, if one uses SPC charts to monitor
the control system. Provided the dynamics of the system are known, they
show how the exact compensation can be computed and the original dis-
turbance reconstructed. These qualities can then be displayed on charts
and be subjected to routine examinations from the standpoint of general-
ized concept of common and special causes, where common causes are
associated with the modeled process changeable only by management
action, and special causes are associated with temporary deviations from
the modeled process, as indicated by outliers. In this way, one can simul-
taneously minimize variability by active process control and at the same
time have the ability to detect and eliminate special-cause disturbances.

Integration of SPC and APC

It is important to note that there are several approaches one can take for
quality and process controls. Which approach or class of approaches one
can take depends on the problem at hand and how realistic the assump-
tions are for the real problem under study. In deciding between SPC and
APC, it is always important to distinguish between variations that can
be eliminated at the source and those that cannot be eliminated at all. As
can be seen from the preceding discussions, both SPC and APC seek to
reduce variation, promoting process understanding as well as facilitating
process improvement. For these reasons, majority of the aforementioned
authors have proposed the integration of both SPC and APC whenever
possible. Tucker, Faltin, Weil, and Doganaksoy (1989) provided an excel-
lent concept of integrating both SPC and APC. Their concept is known as
the algorithmic statistical process control (ASPC). The concept of ASPC
is presented in Figure 5.28 while Figure 5.29 presents the flowchart for
implementing ASPC.

Systems approach to process adjustment

In many continuous process industries and, in particular, chemical and
petrochemical industries, materials are produced in batches. One major
goalin these industries is to reduce batch-to-batch variability thatis very
prevalent. For this reason, adjustments are often made to the already
produced batches so as to provide a more uniform incoming material
on batch-to-batch basis for the next process step. In this industry it is
common to have material produced in one part of a process become
the incoming material for the next process step. It is also common that
the incoming material from the first process step will be adjusted in
order to provide a more uniform material on a batch-to-batch basis for
the next process step. Over time, this adjustment becomes an inherent
part of the process. Caffrey (1990) demonstrated that when a reasonable
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Figure 5.28 Concept of ASPC.

adjustment strategy is made to a process, say process A, very little benefit
may be realized by another process, say process B, which is the next
process step. But by considering the process as a whole, a more optimal
strategy can be employed. The goal here is to view the whole process in
an integrated manner.

ARIMA modeling of process data

Let us consider the single-input-single-output system shown in Figure 5.30.

Assume the output Y is sampled at discrete equi-spaced intervals of
time, and its value at time t is represented by Y,.

In Figure 5.30, N, represents the total effect on the output Y of all
disturbances occurring anywhere in the system. If the disturbance is
not compensated for, it would cause the output Y to drift away from
target. The input variable at time t, u, can be manipulated to affect
changes in the output, Y. The general model that can be used to rep-
resent the process dynamics and the stochastic disturbances relies
mainly on discrete transfer function models for the process and dis-
crete ARIMA time series models for the disturbances. This model (Box
and Jenkins, 1976) can be represented as



Chapter five:  Statistical control techniques 133

Traditional SPC ASPC approach

Process data A — — Process data ”:—"

-

Adjust process |
SPC chart using control rule
Out of control SPC chart
signal

-

\J; J/ Out of control

No Yes signal

T

Search for root
causes

]

No Yes

Search for root
causes

Make
process change

Make process change
and/or ——
update control rule

Figure 5.29 Flowchart for implementing ASPC.
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Figure 5.30 Input-output process for ARIMA example.
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The first term is a transfer function model of the process relating
the dynamic effect of u, to the output Y, and it is referred to as a dis-
crete transfer model of order (r,s,b), while the second term represents the
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independent effect of all disturbances occurring in the system on the out-
put Y, and referred to as a discrete ARIMA model of order (p,d,q). B is the
backward shift operator, BY, = Y, ;; b is the whole periods of process delay.
The components §(B) and w(B) are polynomials of order r and s, respec-
tively, in the operator B. This can be represented as

d(B)=1-&B-d,B* - —d4,B

w(B) = wy —w,B—w,B* —---—w,B*

Generally, if no manipulations were made in the input variable, u,, the
ARIMA model for the disturbance, N,, would represent the behavior of
the process output, Y,. This can be represented as

__uB
®(B)(1-B)'

t

where
®(B)=(1-®,B-®,B*—---—P,B")
is an autoregressive polynomial of order p,

u(B)=(1-wB-u,B*—--—u,B’)

is a moving average polynomial of order g, (1 — B) is the backward differ-
ence operator of order d, and a, is a sequence of independent normally dis-
tributed random shocks with mean zero and constant variance, ¢,2. When
d =1, N, gives rise to nonstationary disturbances in which the process
average level is free to drift from time to time, while for d = 2, one obtains
disturbances in which both the level and trend or slope of the disturbance
drift over time.

Model identification and estimation

Detailed description of model identification and estimation procedures
are fully covered in Box and Jenkins (1976) as well as MacGregor (1989)
and, therefore, will not be covered in this book. MINITAB can be used
for the identification and estimation for the ARIMA part of the combined
model as described previously. SAS program can be used for the identifi-
cation and estimation of both the transfer function and the ARIMA part
of the model.
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Minimum variance control

The main idea of optimal stochastic control theory is that, given a model
as described previously whose combined process dynamic and distur-
bance model of the system has been identified, one can design a control-
ler which will optimize some specified performance index involving the
output and input variables. One case according to MacGregor (1989) is the
minimum variance control (MVC). For this case, the controller is designed
to compensate for the disturbances, N,, in such a way that the variance
of the difference between the output and target is minimized. Although
several disturbance models can be considered from N,, one simple case
is the IMA model since it arises frequently in SPC. This model can be
represented as

(1-B)Y; = (1-uB)a,

The MVC for this disturbance model (Figure 5.31) is given by MacGregor
(1989) as

_1 (-u
g (1-uB)

(Y =)

Uy =

Process dynamics with disturbance

For the case where process dynamics are important, usually in the con-
tinuous process industries, we consider a simple case first-order process:

Wy (1 - U.B)
Y, = Ut t
(1-dB) (1-B)
~ +| D
Y, 1_o | P 1 u, Y,
O — Process
+ \/ 1-Bv g + N\
Prediction Model

inverse
filter

Model ()

gB

Figure 5.31 Minimum variance controller model.
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The MVC is given by

_(1-u) (1-dB)
- wy (1-B)

t t

The specific situations for which stochastic control theory is extremely
well suited are when

e Drifting stochastic disturbances are the main disturbances in the
system for which control is needed.

e There is significant sampling or measurement noise.

® The process exhibits a time delay or dead time between the manipu-
lated input and the output.

Process modeling and estimation for oil and gas production data

The oil industry has used decline curve analysis with limited success in
estimating crude oil reserves and in predicting future behavior of oil and
gas wells. This chapter, therefore, explores the possibility of using the
ARIMA technique in forecasting and estimating crude oil reserves. The
authors compare this approach with the traditional decline method using
real oil production data from 12 oil wells in South Louisiana. The Box and
Jenkins (1976) methodology is used to develop forecast functions for the
12 wells under study. These forecast functions are used to predict future
oil productions. The forecast values generated are then used to deter-
mine the remaining crude oil reserves for each well. The accuracy of the
forecasts relative to the actual values for both ARIMA and decline curve
methods is determined by various statistical error analyses. The condi-
tions, under which one method gives better results than the other, are
fully investigated. In almost all the cases considered, the ARIMA method
is found to perform better than the decline curve method.

Introduction
The decline curve analysis technique has been extensively used in indus-
try to predict future oil and gas productions and to estimate crude oil
reserves. These predictions are used as the basis for economic analysis to
support exploration, development, unit equity, facility expansion, prop-
erty sales or purchase, and loan securement; it is also used to determine
if a secondary recovery project is to be carried out. The three common
decline models are exponential, hyperbolic, and harmonic. These mod-
els are described in the section “Decline curve method.” One problem
with these models is that the graphical approach sometimes produces
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large errors when extrapolated for a useful length of time. Furthermore,
decline curve method is only applicable to depletion-type reservoirs,
producing at capacity and cannot be used where the rate of production
is constant or nearly constant with time. This will be true when the res-
ervoir is under proration or where it has a large gas cap or an active
water drive.

In this paper, the ARIMA technique is proposed because, in addition
to being a good forecasting tool, this study also shows that it is appli-
cable to situations where decline curve has failed, such as in water-drive
reservoirs.

Time series approach—Box and Jenkins methodology

For many years, smoothing techniques have been the only method com-
monly used in forecasting time series. Then, in 1976, Box and Jenkins
presented a method of identifying, fitting, and diagnosing the fit of a
time series model with wide flexibility. Box and Jenkins also presented
the details of forecasting with the fitted model. The techniques pre-
sented have become known collectively as the Box-Jenkins method. The
method consists of four stages: (1) identification of the ARIMA model to
be fitted, (2) estimation of the parameters of the ARIMA model, (3) diag-
nosis of the fitted model to assure its applicability, and (4) forecasting
with the fitted model. These four steps are used to evaluate each of the
12 data sets under study. The ARIMA results obtained are provided in
Tables 5.5 and 5.6.

The ARIMA model
In building our forecasting model to determine oil production reserves,

we consider the general Box and Jenkins (1976) ARIMA model of order
(p.d,9). This model can be represented as

£.(B)1- B)! Q. =u, +q(B) a (6.1

where

£,(B)= (1-£B-£,B—.............. -£,BP)

a(B)= 1-aB-aB’ —.........c.. —q,BY)
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where
Q, is the oil production at time ¢
d is the degree of differencing
B denotes the backward shift operator, defined by B'Q, =0, 7
a, is the unobservable random disturbance which may be due to res-
ervoir energy

The a,’s are assumed to be uncorrelated with zero means and constant
variances s,. ®(B) is the stationary autoregressive operator whose roots
®(B) =0 lie outside the unit circle and 0(B) is the moving average operator,
which is assumed to be invertible; that is, the roots of 6(B) = 0 lie outside
the unit circle (Box and Jenkins, 1976).

The general model in Equation 5.1 provides a range of models—stable
or unstable—which can adequately be used to model oil production data
from different types of reservoirs. The requirements of stationarity and
invertibility apply independently and, in general, the operators ®(B) and
0(B) will not be of the same order. The inclusion of the constant 8, will per-
mit automatic allowance for a deterministic polynomial trend, of degree 4
when 6, is not equal to zero. Our approach, therefore, to crude oil reserve
estimation will be first to identify an adequate forecasting model for each
production data set under study using the Box and Jenkins (1976) approach.
Once an appropriate model has been identified for each well, parameter
estimation, diagnostic checking, optimal forecasting, and reserves estima-
tion procedures follow immediately.

Methodology

This section covers the practical aspects of the method used in this
chapter. Monthly oil production data were collected from 12 different oil
wells from onshore production reports in South Louisiana. Each produc-
tion data set is from one well. Six of the production series are suitable
for decline curve analysis method, whereas the remaining six production
series were obtained from water-drive reservoirs. The aim here is that,
in addition to investigating ARIMA technique for decline data, we are
also going to investigate the possibility of using ARIMA method for the
case where decline curve method has failed or performed poorly, such as
in water-drive reservoirs. The available data sets are made up of at least
60 months of production series. In order to test the accuracy of the fore-
casts, the original series are shortened by at least 10 months. The sum
of these 10 or more months is used as an estimate of actual remaining
reserves for model comparison purposes only. Using statistical errors
analysis, the actual production values are compared with the forecasts
obtained from ARIMA and decline methods for those 10 or more months.
The results obtained are provided in Tables 5.4 through 5.7.
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Table 5.4 Parameter Estimates for Decline Curve Method
Decline Decline rate Initial Decline
Well model per month, D decline, Q; exponent, m
Iberia Exponential 0.01047 2,643.30 —
Yentzen Exponential 0.02404 403.87 —
Brock Exponential 0.00999 1,583.00 —
Linga Exponential 0.01487 3,476.00 —
Merg Hyperbolic 0.07587 13,032.00 0.75
Davie Exponential 0.04275 3,505.20 —
WDI Exponential 0.05156 4,178.40 —
WD2 Hyperbolic 0.01938 599.12 0.20
WD3 — — — —
WD4 Exponential 0.0064 1,125.50 —
WD5 Exponential 0.03182 3,639.60 —
WD6 — — — —
Table 5.5 Decline Data: Parameter Estimates and Chi-square
Table for ARIMA Method
Sample ARIMA(p,d,q) Parameter Standard
Well size model estimated error Df XD
Iberia 80 Log Q, ®,=013 06288 11 14.268
(60) 1,1,1) 0,=033 0.5976
0,=3.63 0.50400
Yentzen 80 Log Q, @, =098 0.0496 12 6.43
(60) (1,0,1) 0, =0.88 0.1169
0, = 0.094 0.2574
Brock 70 (1,0,0) o, =0.96 0.0262 11 10.53
50
Linga 80 (1,0,0) o, =0.95 0.0272 14 15.96
(60)
Merg 80 (0,1,1) 0, =0.46 0.1088 14 10.13
(60)
Davie 74 Log Q, o, =0.39 0.4385 11 7.544
(60) (1,1,1) 0,=0.07 0.4366
0, = 0.08 0.0519

Decline curve method
The decline curve technique consists of testing each individual series for
exponential, specific hyperbolic or harmonic fit. The decline equations
used to perform these tests are according to Arps (1945) and are given as

follows:
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Table 5.6 Water-Drive Data
Sample ARIMA(p,d,q) Parameter Standard

Well size model estimated error Df XD
WD1 60 log Q, @, =-041 0.1385 10 8.231
(50) 2,1,0) 0,=-035  0.1384
WD2 60 log Q, @, =0.98 0.0023 11 14.892
(50) (1,0,0)
WD3 60 0,0,1) 0,=-050 01222 10  4.239
(50)
WD4 60 log Q, o, =0.19 0.1456 9 7.206
(50) 1,1,1) 0, = 0.96 0.0297
0,=-0.01 0.0034
WD5 60 log Q, @, =0.75 0.3898 9 5.411
(50) 1,0,1) 0, = 0.60 0.4627
0,=1.38 2.8853
WD6 60 0,1,1) 0, = 0.07 0.0953 11 11.483
(50)

Table 5.7 ARIMA versus Decline Curve for Comparison of Reserve Estimates

Sample Decline ARIMA Remaining reserves

Well size function model Actual Decline  ARIMA

Iberia 80 Exponential log Q, 22,319 25,451 23,194
(60) (1,1,1)

Yentzen 80 Exponential log Q; 3,112 1,1516 2,331
(60) (1,0,1)

Brock 70 Exponential (1,0,0) 13.523 17,147 12,134
(50)

Linga 80 Exponential log Q, 28,613 23,590 28,380
(60) (1,0,0)

Merg 80 Hyperbolic 0,1,1) 54,558 30,832 61,869
(60) m =0.75

Davie 74 Exponential  log Q, 539 2,701 634
(60) (1,1,1)

Exponential decline:
q(t) = q:exp(-Dt) (5.2)
Hyperbolic decline:

q(t) = :(1+mDt)™" (5.3)
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Harmonic decline:

N
q(t) = (1+ D) (5.4)

where
q(t) is the production rate at time ¢
g;is the initial production at time f = 0
D is the decline rate
t is the time of production
m is the decline exponent

For decline curve analysis, the shortened series are tested using the
most appropriate of the three decline models mentioned earlier. To deter-
mine the most appropriate decline model, we select the model that pro-
vides the lowest point error, or one that has a cumulative ratio error close
to one. An adequate model has a point error close to zero or a cumulative
ratio close to 1.0. The point error is calculated as

_ 2
Point error = {M} (5.5)
n-1
Cumulative error = Quotual_ (5.6)
Qpredicted

where
q, is the predicted production rates
g, is the actual production rates
Q is the cumulative production

The predicted production rates and the cumulative productions are
obtained for each set of production series using exponential, hyperbolic,
and harmonic decline models. These computations are done using decline
curve analysis software program made by the Logic Group, Austin, Texas
(The Logic Group, 1(1987)). From these three models, we select one that has
the lowest point error or cumulative ratio close to one. Once an appropri-
ate model is determined for the series, the parameters associated with the
model are estimated using decline curve software program. The results
obtained for each well are provided earlier in Table 5.7. The estimated
parameters are then incorporated into the decline curve equation to pro-
vide a realistic forecast function (Ayeni, 1989). The forecast values gener-
ated are used to determine the remaining reserve. This remaining reserve
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is compared with the remaining reserve obtained from the ARIMA
method as well as to the actual remaining reserve. The remaining reserve
is the sum of all the forecast values. The actual remaining reserve is the
sum of all known monthly production data not used in modeling. For
example, for a 60 month production data, the first 50 month data can be
used for modeling, and the remaining 10 months can be added together as
the actual remaining reserve for model comparison purposes only. These
comparisons are provided in Tables 5.4 and 5.5.

Statistical error analysis

The statistical error analysis is used to check the performance, as well as
the accuracy, of the ARIMA and decline methods. The accuracy of the
forecasts relative to the actual values is determined by various statistical
methods. The criteria used in this study are average relative error, average
absolute error, forecast root mean square error (FRMSE), and minimum/
maximum absolute error.

Awverage relative error

This is defined as the relative deviation of the forecast values from the
actual values and is given by

1
E, = [nfj 2 E, G.7)

where n; is the sample size of the forecast values, and

E; = doctual ~ Qforecest 59

qactual

The lower the value of E, the more equally distributed are the errors
between positive and negative values.

Awverage absolute relative error
This can be defined as

E, = [1]25 59
ng

and represents the relative absolute deviation of forecast values from
actual production values.
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Forecast root mean square error
This is a measure of dispersion and is expressed as

SESI

A smaller value of FRMSE indicates a better degree of fit. A model that has
a perfect fit has an FRMSE of zero.

Minimum and maximum absolute relative error
After the absolute error for each data point is calculated, both the mini-
mum and maximum values are scanned for the range of errors.

Enin = min|E;| (5.11)
and

Enmax = max|E;

, fori=1,2,.. ,nf (5.12)

The accuracy of the forecasts can be determined by examining the maxi-
mum absolute relative error. The lower the value of maximum absolute
relative error, the higher the accuracy of the forecast.

Cumulative ratio error
The cumulative ratio error is the ratio of actual cumulative production
and forecast cumulative production. It is defined as

Qactual
Ep =" 513
© Qforecast ( )

For simplicity in interpretation, Equation 5.13 can be inverted if the forecast
cumulative is less than the actual cumulative production. This will force the
range of E, between 0 and 1. The closer the value of Ej to 1, therefore, the
closer the cumulative forecast to the cumulative actual values. This is good in
our case, because the remaining reserve is calculated by adding all the fore-
cast values together. The result obtained is equal to the cumulative forecast.

ARIMA data analysis

In this section, we shall discuss the method used in analyzing each of the
production series under ARIMA method. The specific aim here is to obtain
some idea of the values of order p, d, g needed in the general ARIMA model.
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The Time Machine software program developed by Research Services,
Utah (Research Services, 1986), is used for all our ARIMA procedures. This
software is user friendly, and has the capability of modeling time series
data using ARIMA (p, d, q) models. It provides information about the auto-
correlation, partial autocorrelation, forecast values, residual plot, diagnos-
tic checking, as well as parameter estimation for ARIMA (p, d, ) models.

Model identification for series WD1
In analyzing each oil production series, a plot of 4(t) versus t is obtained. This
plot is very valuable, because qualitative features such as trend, seasonality,
or discontinuities will usually be visible if present in the data. On examina-
tion of this plot for series WD in Figure 5.32, two facts are apparent:

1. The mean of the series is not stationary because it shows a down-
ward trend.

2. The variability in the series is not constant (nonstationary) over the
60 month period.

The presence of trends in the data resulted in the lack of stationary in the
mean. This is also confirmed by the large values of the autocorrelation
function in Figure 5.33. The fact that the autocorrelation function fails to
die out rapidly is a strong indication that the series is nonstationary, that
is, the degree of difference d is not zero. Time series analysis requires,
however, that the series be stationary, and in particular that the vari-
ance of the series be constant over time. This lack of stationary, caused
by the trends, indicates that some degree of differencing is required.
These trends are removed by differencing the observed series. Figure 5.34

3600

2700 —

1800 —

Qil production (barrels)

900 —

0 [ [ [
0
15 30 45 60

Series: WDI
eries Time (months)

Figure 5.32 Plot of oil production versus time for series WDI.
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Figure 5.33 Autocorrelation and partial autocorrelation functions for series WD,
when d = 0.
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Figure 5.34 Plot of the differenced series (d = 1) with time.
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shows a plot of the differenced series for series WD1 with degree of dif-
ference, d = 1. From this graph, it is clear that the mean of the series is
constant or nearly constant with time. It seems, therefore, that a single
difference of degree might have resolved the problem of nonstationarity
in the mean. The variability, however, is still not constant over the entire
time period. The relative instability of the variance with some outliers in
this case shows we will probably need to transform the data. For all cases
considered, where transformations are necessary, the log transformations
are used. The complete removal of the trends is determined by evaluat-
ing the theoretical autocorrelation function of the transformed series in
Figure 5.35. An examination of the theoretical autocorrelations and partial
autocorrelations for the log transformed of series WD1 when d = 1, shows
no sign of large autocorrelations after lag k = 1 or large partial autocor-
relations after lag k = 2. This is an indication that the trends have been
successfully removed. Inasmuch as the partial autocorrelation for the first
two lags, k = 2 are nonzero, an autoregressive model of order p = 2 can be
used to represent WD1 series. In addition, inasmuch as only the autocor-
relation at lag k = 1 is nonzero, a moving average model of order q = 1
can be used to model WD1 series. This finally formed a mixed ARIMA
model. The model, therefore, identified for WDI is a mixed ARIMA model
of order (2, 1, 1) with logarithm transformation of the original series.

Series: WD1.log.DIFF1

Autocorrelations
1.0

-1.0

Partial autocorrelations
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Figure 5.35 Plot of autocorrelation and partial autocorrelation functions for log
transformed (d = 1), with lag k.
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Figure 5.36 Residual autocorrelation plot.

The residual autocorrelation plot for this model is provided in Figure
5.36. This plot shows that the identified model is adequate for WDI series,
because there are no large values of residual autocorrelation. The theoreti-
cal autocorrelation can be calculated using

T (5.14)

Co
where

N-K
6= 2 (Q-0NQu-Q)
t=1 (5.15)

suchthatKS%, k=0,1,2,...,K and é:zl\(]gf

Model identification for series Brock

In this stage, we further describe the procedures used to obtain a tentative
identification of the ARIMA model using series Brock as another example;
we also show how the identified model is fitted to the data; and finally,
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Figure 5.37 Plot of oil production versus time for series Brock.
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Figure 5.38 Plot of autocorrelation and partial autocorrelation functions for series
Brock, (d = 2), with Lag k.

we test the fitted model for adequacy. In our analysis, we again make use
of two important graphs in our identification process: (1) a simple graph
of the data versus time (Figure 5.37), and (2) plots of autocorrelations and
partial autocorrelations (Figure 5.38). The partial autocorrelations can be
computed as follows:

A A A

Dp1,j = Dy _¢P+1,P+1&)Wﬁ'+1 (5.16)
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and

14 o

@yt pi1 = = . j=12,..,p (5.17)

An examination of the patterns in the autocorrelations and partial auto-
correlations of Figure 5.38 for series Brock with degree of differencing
(d = 0), reveals that the autocorrelations provide rapid exponential decay
from the first lag, while the partial autocorrelation rapidly dies out at
lag k = 1. By decaying, we mean the autocorrelations are relatively large
(exceeding 2 — ¢ limits) at the early lags, but diminish consistently to
small values that are statistically indistinguishable from zero (Figure 5.38).
This shows that the model identified is an ARIMA of order (1,0,0). The
main horizontal line extending across the entire graph represents zero.
This is an important reference point, since each autocorrelation and par-
tial autocorrelation must lie between -1 and +1. Vertical bars, extend-
ing above the zero line or below the zero line, represent the individual
autocorrelations and partial autocorrelations. The two horizontal dashes
that appear with each vertical bar, one above zero and the other below,
represent two standard deviations above and below zero.

When interpreting the autocorrelation and partial autocorrelation
plots, we look for bars that extend beyond the horizontal dashes. If they
exceed two standard deviations, we consider them to be statistically dif-
ferent from zero. Theoretically, this is only true for large samples, but
there should be no problem since each set of series contains at least 50
observations.

Estimation and diagnostic checking

After the identification stage, we perform parameter estimation. These
parameters are estimated using Time Machine software program specifi-
cally designed for ARIMA model building. Then, each model is checked
for model adequacy using the diagnostic command of the software. For
each model, a residual analysis test was performed. An equation that can
be used to represent the residual is given as

4, =q '®(B)g; (5.18)

Figures 5.36 and 5.39 show the residual autocorrelations and partial auto-
correlations plots for series WD1 and Brock, respectively. In both figures,
it is evident that the residuals are within the 2 — ¢ limit, showing that the
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Figure 5.39 Plot of residual autocorrelation and partial autocorrelation functions
for series Brock, (d = 2), with Lag k.

models obtained for series WD1 and Brock are adequate. Similar residual
analysis test is carried out for each of the remaining models until ade-
quacy is achieved.

For each identified model, the chi-square test is also performed. The
program gives a computed Ljung-Box chi-square result. This result is
compared with the value obtained from the chi-square table at a level
of significance (a = 0.05) and the corresponding degrees of freedom. The
computed Ljung-Box chi-square statistics obtained are provided in Tables
5.2 and 5.3. Each model is found to be adequate at (@ = 0.05).

Then the forecast values are generated using ARIMA forecast com-
mand of the time Machine software program. These forecast values are
used to determine the remaining reserves by summing all the forecast
values. Figure 540 shows a plot of the actual and the forecast values
obtained for series Brock under ARIMA and decline methods.

Comparison of results

A statistical error analysis technique is used to compare the two methods
under consideration. The comparison is done by computing the average
relative error, average absolute relative error, FRMSE, minimum and max-
imum absolute relative errors, as well as cumulative error. These compu-
tations are for each of the 12 wells using both ARIMA and decline curve
methods.
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Figure 5.40 Plot of actual and forecast values (for series Brock) with time, under
ARIMA and decline methods.

A comparison of the remaining reserves is provided in Tables 5.4 and
5.5.In all the cases considered, this result shows that ARIMA method pro-
vides better reserve estimates than decline curve method. This is because
reserve estimates obtained under ARIMA method are more accurate than
those obtained under decline curve method. For this reason, ARIMA
technique should be considered as a good candidate for crude oil reserve
estimation. It is interesting to note that the water-drive data for WD3 and
WD6 did not pass through our numerical check for decline curve analysis
for all values of decline exponent m used (Tables 5.8 through 5.10). This
may be due to the fact that decline curve method rarely works with data
obtained from active water-drive reservoirs.

Tables 5.6 and 5.7 represent the comparison of errors of the forecast
values, relative to the actual values for each of the 12 oil wells. The fore-
cast for this study achieved the lowest errors for the ARIMA method for
the cases considered, with the highest cumulative error accuracy of 0.987,
maximum FRMSE of 1.36 and minimum forecast root mean square error
of 0.053. The decline curve method has the highest cumulative error accu-
racy of 0.877, maximum FRMSE of 8.270 and minimum FRMSE of 0.431.
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Table 5.8 ARIMA versus Decline Curve for Water-Drive Data

Sample Decline ARIMA Remaining reserves

Well size function model  Actual Decline ARIMA

WD1 60 Exponential log Q, 3,686 2,225 3,574
(50) (2,1,0)

WD2 60 Hyperbolic  log Q, 787 2,053 980
(50) m=0.2 (1,0,0)

WD3 60 — 0,1,1) 12,685 — 11,800
(50)

WD4 60 Exponential 0,1,1) 5,460 7,122 7,047
(50)

WD5 60 Exponential  log Q, 13,609 5,710 12,984
(50) (1,0,1)

WD6 60 — 0,1,1) 22,669 — 23,625
(50)

Table 5.9 Statistical Error Analysis for Decline Data

Statistical errors
Well Method E, FRMSE E,. E.. Q

Iberia ARIMA 0.0355 0.179 1.120 3.196 0.0083 0.987
Decline  -0.5198 0.582 1.281 3.520 0.0077 0.877
Yentzen ARIMA 0.0401  0.354 0.622 1.442  0.0388 0.700
Decline 0.3124  0.588 0.661 1.023  0.1942 0.487
Brock ARIMA 0.0581  0.129 0.184 0.351 0.0020 0.897
Decline  -0.3997  0.400 0.562 1.260 0.0663 0.789
Linga ARIMA  -0.1469  0.338 0.627 1.670 0.0804 0.966
Decline 0.0533  0.359 0.507 1.201  0.0111  0.858
Marg ARIMA  -0.2070  0.225 0.365 0.786 0.0045 0.882
Decline 04113 0411 0.451 0.553 0.1963 0.565
Davie ARIMA  -0.5650  0.659 1.366 3.000 0.0370 0.553
Decline  -5.7110 5.711 8.270 16.600 2.6920 0.221

Therefore, for this case, as well as for well-to-well comparison of statisti-
cal errors for both methods, ARIMA performs better than decline curve
method.

The preceding analyses show that a time series approach using
ARIMA method is applicable for estimating crude oil reserves. Using var-
ious statistical error analysis tools, the ARIMA method provides better
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Table 5.10 Statistical Error Analysis for Water-Drive Data

Statistical errors

Well Method E, E, FRMSE E,. E,. Q

WD1 ARIMA 0.0151 0.107 0.162 0.261 0.2670 0.970
Decline  0.3746 0.375 0.431 0.604 0.1605 0.604
WD2 ARIMA 02701 0.288 0.494 1.229 0.0313 0.803
Decline  1.8570 1.857 2.100 2.690 0.6096 0.383
WD3 ARIMA 0.0627 0.063 0.080 0.097 0.0050 0.930
Decline — — — — — —
WD4 ARIMA 03774 0.415 0.527 0.774 0.0688 0.775
Decline  0.3934 0.427 0.427 0.799 0.0594 0.767
WD5 ARIMA 0.0422 0.102 0.125 0.176  0.0205 0.954
Decline  0.5802 0.580 0.616 0.609 0.5048 0.420
WD6 ARIMA  0.0437 0.056 0.630 0.090 0.0198 0.960
Decline — — — — — —

a

reserve estimates than decline curve method. ARIMA is also applicable
where decline curve fails, such as in water-drive reservoirs.

The ARIMA method can be extended to a multi-well system, where
data are collected from more than one well in the same area. This exten-
sion can make use of the multivariate version of the ARIMA method as
presented by Lepak and Considine (1989).
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chapter six

Design of experiment techniques

This chapter presents additional statistical tools for quality and process
improvement. These additional tools can be used to reduce variability and
optimize manufacturing processes. Topics covered in this chapter include
factorial designs, response surface methodology, central composite designs,
and response surface optimization. The chapter is designed for practitioners
who need more specialized tools for improving manufacturing processes.

Factorial designs

A factorial experiment is an experiment designed to study the effects of
two or more factors, each of which is applied at two or more levels. In a
balanced classical factorial experiment, all combinations of all the levels
of the factors are tested. In this chapter, we consider only two-level facto-
rial designs. In a 2k factorial design, 2 represents the number of levels and
k represents the number of factors.

A factorial experiment can be used to study how a response vari-
able is influenced by certain factors. It can be used to assess the effect of
changing one factor independent of other factors. The premise of factorial
experiments is that an observed response may be due to a multitude of
factors. Since a dependent variable interacts with its environment, it is
important to assess the simultaneous effects of more than one factor on
the dependent variable. The following example shows a case where one
response variable is influenced by two independent factors. Each factor is
to be studied at three different levels:

Response variable: Epoxy strength
Factor 1: Temperature (75° 80°, 85°)
Factor 2: Chemical concentration (high, medium, low)

Advantages of factorial experiment
A factorial experiment has several advantages:

Efficiency

* More robust compared to traditional single-factor experiments.

¢ In one-factor study, it may be difficult to identify which one factor
should be studied.

* More flexibility.

155
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Information content

® More information can be derived from factorial experiments com-
pared to single-factor experiments.

Validity of results

e Inclusion of multiple factors increases the validity of results.
* Results can identify direction for further experiments.

Factor

This is an independent variable or condition that is likely to affect the
response or quality characteristic of interest. A factor may be a continu-
ous variable such as oven temperature, RPM, pump pressure, Webspeed,
etc, or may be discrete (qualitative) variable such as catalyst type (A or B),
valve (on or off), material type (A or B), cooling step (wet or dry), etc.
Temperature, pressure, RPM, etc., are factors that can be controlled and
measured. Therefore, they can be regarded as controllable and measur-
able factors. However, factors such as percent moisture going into an oven
and ambient humidity are measurable but uncontrollable. These factors
are known as covariates. Other factors which are uncontrollable and
immeasurable are useful in defining experimental error.

Levels

These are the settings of various factors in a factorial experiment such
as high and low values of temperature, pressure, etc. For example, if the
range of temperature to be studied is between 120°F and 180°F, then the
low level can be set at 120°F and high level set at 180°F.

Response

Response is the measurement obtained when an experiment is run at each
level of the factors under study. Responses may be continuous (quantita-
tive) variables such as adhesion, percent yield, smoothness, etc., or dis-
crete (qualitative) variables such as good or bad tastes, corrosion or no
corrosion, etc. Rating scales can be used for qualitative variables as can be
seen later in this chapter.

The basic layout of a factorial design is presented in Figure 6.1 for a
two-factor experiment. Factor A has a levels. Factor B has b levels. There
are n replicates for each cell. Each cell in the layout is referred to as a treat-
ment which represents a specific combination of factor levels.

There are a total of N = abn observations in the layout. Factorial designs
are referred to as 2, 3, and so on. In a 2f design, there are f factors, each hav-
ing two levels. In a 3 design, there are f factors, each having three levels.

There are three possible models for a factorial experiment depending
on how the factor levels are chosen.
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Factor A levels
Factor B (sums, averages, etc.) Row
levels i=1 i=2 e i=a summary
j=1 Y111 ay
Y112 a
J1in
j=2 Yijk
j=3
j=b @,
Column
summary | P B2 .y Ba

Figure 6.1 Layout of data collection for a two-factor factorial design.

Fixed model
In this model, all the levels of the factors in the experiment are fixed.

Random model
In this model, the levels of the factors in the experiment are chosen at random.

Mixed model
In this model, the levels of some of the factors in the experiment are fixed
while the levels of some of the factors are fixed.

The statistical model for the factorial experiment in Figure 6.1 is
presented as follows:

Y,']‘k =m-+ Ai + B] + (AB)U + ek(q)

where

i=12,..,a

i=12,..b

k=1,2,..,n

A, is the effect of the ith level of factor A

B, is the effect of the jth level of factor B

(AB); is the effect of the interaction between A, and B,

Y is the observation for the kth replicate of the Ai and Bj combination

& 1S the random error associated with each unique combination of
Ajand B,

u is the population mean

The error terms are assumed to be independent and identically dis-
tributed normal variates with mean of zero and variance ¢,
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Experimental run

A run is when each control factor is set or fixed at a specific level and the
experiment is run at those levels for the factors under study. For example,
if an experimenter selects a pressure of 20 psi, a temperature of 150°F and
a valve that is open, then this combination will represent a run.

One-variable-at-a-time experimentation

A one-variable-at-a-time experiment can be demonstrated by considering,
say, three factors A, B, and C. Let us say initially, each factor is set at their
low levels. This means that A is at low, B is at low, and C is at low. When
this level is run, the response y is 45. Now to determine the effect of fac-
tor A, the level of A is changed from low to high, and factors B and C still
remained at low. Under this condition, the response value y is, say, 20.

The change in the response value from 45 when all the three factors
were set at their low levels to 20 when only factor A was changed from
low to its high level can only be due to the effect of factor A and/or experi-
mental error. Similarly, the investigator can determine the effect of factor
B by setting A at low, B at high, and C still at low, and obtains a response
value at this new level, say, 39. The investigator can now compare this
39-45 obtained for the control (run #1) to determine the effect of factor B.
The setup can be described as shown in Figure 6.2. This is what is known
as one-variable-at-a-time experiment.

When experimenting with more than one factor, the one-variable-at-
a-time experimental approach is inefficient and can provide misleading
results. This type of experimentation has several serious problems. Some
of these problems are

e The effect of each factor is known at only one chosen level of each of
the other factors.

* The effect of each factor is separated in time from the effect of other
factors. Unknown extraneous factors which vary with time may,
therefore, influence or bias the real effect of any factor under study.

Factors Response
Run | A B C Y
1 |-1 -1 -1 (control) 45
2 1 -1 -1 20
3 ]-1 1 -1 39
\ 4 ' -1 -1 1 52 /

Figure 6.2 Design setup for one-variable-at-a-time experiment.
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Let us now consider a larger picture of a one-variable-at-a-time experiment.
The objective of this experiment is to minimize MAG, an undesirable tar-
like by-product. The investigator considered two variables, temperature
and concentration, and studied the effects of these two variables on the
response MAG. By setting all factors constant including the temperature
and allowing the concentration to vary between 10% and 90%, the result
(Figure 6.3) shows that MAG is minimum at about 28% concentration.
Then the investigator held the concentration constant at 28% and
held all other variables constant as well, but varied temperature between
20°F and 120°F. The result (Figure 6.4) shows that MAG is minimized at a

100

90%
80

60

MAG

40

C=28%

20 \

o 10 % 100
Concentration (%)

Figure 6.3 Effect of concentration on MAG.
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Figure 6.4 Effect of temperature on MAG.



160 Industrial control systems

120
100
80

60

Temperature (°F)

40

20

Concentration (%)

Figure 6.5 Contour plot of MAG with respect to temperature and concentration.

temperature of 76°F. From this result one can conclude that the minimum
MAG we can obtain is 20 at a temperature of 76°F and concentration of 28%.

Figure 6.5 shows a contour plot of temperature and concentration with
MAG values plotted within the experimental region. As can be seen, a mini-
mum MAG value of 5 can be achieved at a region of 80% concentration and
40°F temperature. This example, therefore, demonstrates how a one-variable-
at-a-time approach can fail to estimate the effects between two or more fac-
tors because the effect of temperature depends on the levels of concentration
in this example. This effect between factors is known as interaction, and one-
variable-at-a-time experimental approach lacks the capability of detecting it.

Factorial experiment is superior to one-variable-at-a-time experiment
because of the following reasons:

e It allows the study of effects of several factors in the same set of
experiment.

e It provides the ability to test for the effect of each factor at all levels
of the other factors and determine if this effect changes as the other
factors change.

e Itis capable of providing not only estimates of the effects separately
(main effects) but also the joint effects of two or more factors (inter-
action effects).

¢ It provides a complete picture of what is happening over the entire
experimental region than one variable at a time.
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A good factorial experiment should incorporate basic experimental con-
cepts such as randomization, replication, and orthogonality, as well as
the iterative nature of experimentation such as conjecture, design, and
analysis.

Randomization

Randomization in a design means running the order of experiment in
a random (nonsystematic) fashion. This eliminates or balances out the
effects of undesirable systematic variation.

Replication

Replication is the running of the same set of conditions more than once. It
is very important that for a true replication to occur, and be distinguished
from duplication, one should run the actual set of the condition to be
replicated first, record the response, then change at least one or more of
the levels, run the experiment at the new levels, and record the response,
then come back and run the actual set of the replication again. By run-
ning replicate conditions back to back, one would be unable to account
for variations that occur due to changes in raw material, operators, etc.
In the analysis of the experimental results, it is also important to have an
estimate of experimental error (random error) so as to have a meaningful
yardstick for determining if estimated effects are real or due to common
causes of variability only. Replication runs can be used to provide the esti-
mate of the experimental error.

Orthogonality

Orthogonality in a design implies that the estimates of the main
effects and interactions are uncorrelated with each other. Designs
having this property insure that if a systematic change occurs cor-
responding to any one of the effects, the change will be associated to
that effect alone.

Experimenting with two factors: 22 design

Conjecture

A process engineer wants to investigate the effects of two elements, nickel
and gold, on the ductility of a new product. The ranges for these variables
are as follows:

Nickel (%)  Gold (%)

Low (-) 10 5
High (+) 20 10
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Table 6.1 Design Matrix for 2 x 2 Study of Ductility

. Coded units Uncoded units
Design
point Nickel Gold Strength Nickel Gold Strength
1 -1 -1 52 10 5 52
2 1 -1 58 20 5 58
3 -1 1 75 10 10 75
4 1 1 64 20 10 64

The hypotheses that we will be testing are

H, = Effects are equal to zero (no effects exist)
H, = Effects are not equal to zero

Design
The design matrix in standard order together with response values for a 22
design is presented in Table 6.1.

The design point should not be confused with run order. The design
point should always be randomized to obtain the run order. The geometry
of the design is presented in Figure 6.6.

Analysis
Estimation of effects: To calculate an effect, we use the following equations:

~

Y= response average

Effect estimate = ?High - lA/Low

Cube plot (data means) for strength

10

Gold

10 Nickel 20

Figure 6.6 Design points geometry for ductility study.
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L

IL

1L

To estimate the effect of nickel

58+64 52+75
2

Effect of nickel =

= l?H - {/L
=61.0-63.5
=-25

To estimate the effect of gold

75+64 52+58
2

Effect of nickel =

=69.5-55
=145

Interpretation

When the amount of nickel is changed from 10% to 20%, the effect
on average is a reduction of 2.5 units on the breaking strength, while
changing the amount of gold from 5% to 10% increases the breaking
strength on average by 14.5 units.

Interaction

The interaction effect is the extent to which the effect of a factor
depends on the level of another factor.

To estimate the interaction effect between nickel and gold obtain the
interaction column by multiplying the nickel column with gold column
as in Table 6.2.

64+52 58+75
2

Effect of nickel x gold interaction =

=58.0-66.5
=-85

Table 6.2 Interactions Table for Nickel and Gold Effects

Coded units
Design point Nickel Gold Nickel* Gold Strength
1 -1 -1 1 52
2 1 -1 -1 58
3 -1 1 -1 75
4 1 1 1 64
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Interpretation
By simultaneously changing the amount of nickel and gold, the net
effect on average is a reduction of 8.5 units on the breaking strength.

Replication

In order to determine if the aforementioned effects are real or statis-
tically significant, we must have a good estimate of the experimental
error. The investigator, therefore, fully replicated the aforementioned
design, obtaining a total of eight runs as shown in Table 6.3.

With the new additional data, one can obtain a refined estimate of

effect for each factor under study as

Effect of nickel x gold interaction =

64+66+58+54 75+71+52+49

Effect of nickel =
4 4
=60.5-61.75
=-25
Effect of gold = 64+66+74+71 58+54+52+49
4 4
=69.0-53.25

=15.75

64+66+52+49 75+71+58+54
4 4

=57.75-64.5

=—6.75

The interaction plot for the example is presented in Figure 6.7.

Table 6.3 Replication of Nickel and Gold Design

Coded units Response

Design point Nickel Gold Nickel* Gold Replicate strength

1 -1 -1 1 52 49
2 1 -1 -1 58 54
3 -1 1 -1 75 71
4 1 1 1 64 66
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Interaction plot (data means) for strength
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Figure 6.7 Interaction plot for example.

The final model in terms of uncoded factors is

Strength = 9.0+1.9 x Nickel +7.2 x Gold - 0.27 x Nickel x Gold

The final model in terms of coded factors is
Strength = 61.125-0.625 x Nickel +7.875 x Gold — 3.375 x Nickel x Gold

Estimate of the experimental error

The aforementioned estimates of the main effects and the interaction are
subject to errors. Therefore, by running replicates of the experiment we
will be able to estimate the experimental error, and this will provide us
the opportunity to interpret the effect estimates in light of the error.

If we assume that the errors made in taking the observations are inde-
pendent of one another, then we can estimate the experimental error by
calculating the variances of the replicate observations within each design
point. Table 6.4 shows the results obtained.

If we assume that the variance is homogeneous throughout the
experimental region, then we can pool the aforementioned variances. The
pooled variance can be calculated as

U187 + VaS5 4+ + Sk
U1+0y+---+ 70

2 —
S pooled —
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Table 6.4 Variance of Replicate Observations

Design

point Strength  Variance (s?) v=d.f
1 52 49 45 1

2 58 54 8 1

3 75 71 8 1

4 64 66 2 1

Therefore,

2 _ (A58 +1)8+(12
pooled T+1+1+1

225
4

=5.625

Therefore, the pooled variance is equal to 5.625 with v = 4 degrees of
freedom. This pooled variance will be used to construct the confidence
intervals about the estimates of effects.

Confidence intervals for the effects

The 95% confidence intervals associated with an effect can be repre-
sented as

Effect * tvl0.025ﬂ232/n

where n = total number of observations in each average: n =4, v = 4.
From the t-table,

ty,0005 = t5,0005 =2.776

s* = s’ pooled = 5.625
The 95% confidence intervals for the error are

+2.776,2% (5.625)/4 = +4.655
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I. The confidence intervals for the effect of nickel:
The 95% confidence intervals for the true main effect of nickel are

Effect £ 4.655=-125+4.655 or (-5.905 to 3.405)

II. The confidence intervals for the effect of gold:
The 95% confidence intervals for the true main effect of gold are

Effect +4.655=15.75£4.655 or (11.095 to 20.405)

III. The confidence intervals for the interaction effect:
The 95% confidence intervals for the interaction effect of nickel and
gold are

Effect£4.655=—-6.75£4.655 or (-11.405to—2.095)

From the aforementioned analysis, we can conclude that the main effect
of gold is statistically significant at « = 0.05. In addition, the interaction
between nickel and gold is statistically significant at o = 0.05. This is
because their confidence intervals do not contain zero. However, the main
effect of nickel is not statistically significant at & = 0.05 because its confi-
dence intervals contain zero.

Interpretation

Increasing the amount of gold from 5% to 10%, increases the breaking
strength by 15.75 units. The practical significance of these 15.75 units
needs to be considered further. If this is of practical significance, another
experiment on % gold in a different range with some center points may
be considered. This new experiment should explore the new range of the
% gold at different levels of the % nickel since a significant interaction
exists between nickel and gold.

Factorial design for three factors

Conjecture

We wish to study the effects of Webspeed, Voltage, and Webgap on sur-
face roughness of a plating material. It is required that the experiment be
capable of estimating all main effects as well as all interactions. Our main
objective is to minimize roughness.
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Design

A two-level 22 full factorial design with some center-point replicates will
allow us to investigate the three main effects, three two-factor interac-
tions, and one three-factor interaction. The center points will serve two
purposes:

e To enable us to test for curvature effect
¢ To obtain experimental errors if replicated

Due to the limited resources, a full 23 design with four center points
will be considered. These four center points will give us 3 degrees
of freedom for our estimate of experimental error. For all practical
purposes, 3 degrees of freedom should be considered minimum for
error degrees of freedom. The conditions for the factors are shown in
Table 6.5.

The design matrix in standard order is presented in Figure 6.8.

The aforementioned design is randomized and run. This design is
represented geometrically as a cube shown in Figure 6.9.

Table 6.5 Factor Conditions
for Plating Study

Low Center High
(=) (0) (+)

Webspeed 20 30 40
Voltage 20 25 30
Webgap 10 20 30

Speed (S) Voltage (V) Gap(G) SxV SxG VxG SxVxG Roughness
1. -1 -1 -1 1 1 1 -1 30
2. 1 -1 -1 -1 -1 1 1 19
3. -1 1 -1 -1 1 -1 1 37
4, 1 1 -1 1 -1 -1 -1 19
5. -1 -1 1 1 -1 -1 1 21
6. 1 -1 1 -1 1 -1 -1 18
7. -1 1 1 -1 -1 1 -1 34
8. 1 1 1 1 1 1 20
9. 0 0 0 0 0 0 0 24
10. 0 0 0 0 0 0 0 22
11. 0 0 0 0 0 0 0 23
12. 0 0 0 0 0 0 0 21

Figure 6.8 Design matrix for plating study.
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Cube plot (data means) for roughness
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Figure 6.9 Cube plot for plating example.

Analysis
The results obtained for the example are provided in Table 6.6. The analy-
sis of variance (ANOVA) table is shown in Tables 6.7 through 6.8.

The final equation in terms of coded variables is as follows:

Roughness =24.750 - 5.750 x A +2.750 x B—1.500x C-2.250 x A x B
+1.500x AXxC+1.000xBxC—-0500x AxBxC

Table 6.6 Experimental Results for Plating Example Part (a)

Standardized

Variable Coefficient effect Sum of squares
Overall average 24.00 — —

A -5.75 -11.50 264.50

B 2.75 5.50 60.50

C -1.50 -3.00 18.00

AB -2.25 —4.50 40.50

AC 1.50 3.00 18.00

BC 1.00 2.00 8.00
ABC -0.50 -1.00 2.00

Center point -2.25 — 13.50
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Table 6.7 ANOVA Result for Plating Example Part (b)

Sum of Mean
Source squares df Square value FProb>F
Model 411.50 7 58.79 35.27 0.0070
Curvature 13.50 1 13.50 8.100 0.0653
Residual 5.00 3 1.67
Pure error 5.00 3 1.67
Corr total 430.00 11

Root MSE = 1.291

R-squared = 0.9880
Adjusted R-squared = 0.9600
C.V.=538

Table 6.8 Experimental Results for Plating Example Part (c)

Coefficient t for HO

Variable estimate df Standard error coefficient=0 Prob > |t|
Intercept 24.750 1 0.456

A -5.750 1 0.456 -12.60 0.0011
B 2.750 1 0.456 6.025 0.0092
C -1.500 1 0.456 -3.286 0.0462
AB -2.250 1 0.456 -4.930 0.0160
AC 1.500 1 0.456 3.286 0.0462
BC 1.000 1 0.456 2.191 0.1162
ABC -0.500 1 0.456 -1.095 0.3534
Center point -2.250 1 0.791 —2.846 0.0653

Final equation in terms of uncoded variables:

Roughness = 31.500 — 0.250 x Webspeed +0.900 x Voltage —1.850
x Webgap —0.025 x Webspeed x Voltage + 0.040 x Webspeed
x Webgap +0.050 x Voltage x Webgap —0.001 x Webspeed

x Voltage x Webgap

Complete analysis of the example indicates that high Webspeed, low voltage,
and high webgap can be used to minimize surface roughness.
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Fractional factorial experiments

For many practical situations, it may be impossible to collect all the obser-
vations required by a full factorial experiment. In such cases, fractional
factorial experiments are used. In a fractional factorial experiment, only a
fraction of the treatment replicates are run. The advantages of fractional
factorial experiments include the following:

* Lower cost of experimentation
* Reduced time for experimentation
e Efficiency of analysis

When the number of factors, k, is greater than 5 (k > 5), then the number
of runs required for a full factorial experiment will be impractical for
most industrial applications. However, in some industries, such as semi-
conductor industry, where computer simulations are used in the design
phase of certain products, the number of runs will be of little concern.
Whereas, in most other industries, such as chemical, petrochemical, pro-
cess, paper and pulp as well as parts industries, where a large number
of factors must be examined, it will often be very desirable to reduce the
number of runs in an experiment by taking a fraction of the full 2* facto-
rial design.
In a 2% fractional factorial design there are

* Two levels of each factor under consideration

k number of factors to be studied

2kp that can be estimated including the overall mean
2P minimum number of experimental runs

p number of independent generators

2P number of words in defining relations (including I)

The requirement is that 25p > k

p = degree of fractionation

p =1 (half fraction)

p = 2 (quarter fraction)

2P = number of distinct conditions in the cube portion of a design

For example, a one-half of a 2% factorial design is referred to as 23!
fractional factorial design.

The disadvantages of fractional designs involve loss of one or more of
the interaction effects that can be studied in a full factorial design. Also,
the design of a fractional factorial experiment can be complicated since it
may be difficult to select the treatment combinations to be used.
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Fractional factorial designs are denoted as follows:

1/2 fractional design: one-half of complete factorial experiment
1/4 fractional design: one-fourth of complete factorial experiment
1/8 fractional design: one-eighth of complete factorial experiment

A 2% factorial design

Conjecture

We want to investigate all combinations of two levels of each of four fac-
tors, A, B, C, and D, and obtain estimates of all effects including all inter-
actions. We may wish to include some center points or replicate points to
obtain estimate of the experimental error.

Design
The design can be set up as shown in Figure 6.10.

The analysis of the aforementioned design will provide uncorrelated
and independent estimates of the following:

¢ The overall average of the response

e The main effects due to each factor, A, B, C, D

e The estimates of 6 two-factor interaction effects, AB, AC, AD, BC, BD, CD
e The estimates of 4 three-factor interaction effects, ABC, ABD, ACD, BCD
e The estimate of one four-factor interaction effect, ABCD

Full factorial designs can be generated for any number of factors, k. However,
it should be noted that the number of runs needed for a full factorial design
increases rapidly with increasing values of k as shown in Figure 6.10.

Conjecture
An investigator wishes to investigate the effects of four factors (k = 4)
using only eight runs.

Design
A 2*! fractional factorial design of eight runs can be set up as illustrated
in the following procedure:

L. Set up a full 23 design of eight runs as shown in Figure 6.11.
II. Assign the fourth factor D to the highest order interaction as shown
in Figure 6.12.

D = ABC
D = ABC is known as generator

III. Generate the + and — column for D by multiplying columns A, B, and
C together to obtain the layout in Figure 6.12. Note that the levels of
factor D are the products of the levels of factors A, B, and C.
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Design
pointg A B C D AB ACAD BC BD CD ABC ABD ACD BCD ABCD
1 - - - - + + t + - - = - +
2 + - - - - - - + + + + - -
3 -+ - - - 4+ t - - + + + - + -
4 + - - + - - - - + - - + + +
5 - - + - + - + - - - -+ + -
6 + - + - - + - - + - - + - + +
7 - + - - - +t - - - + o+ - +
8 + + - + o+ - + = - + - - - -
9 - - - + 4+ + - * - - - + o+ -
10 + - - 4+ - -+ + - - + - - +
11 - -+ - + - - + - + -+ - +
12 + -+ + - * - - - + - - -
13 - - + + + - - - - + + + - - +
14 + - 4+ 4+ -+ ot - - + - -+ - -
15 - + + - = - + - - - -
16 + + + + o+ * + + + + +
Number of Number of
Factors k Experimental Runs
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16364
15 32768

Figure 6.10 Design setup for 24 factorial design.
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Figure 6.11 Setup of full 2% design.

Designpoint A B C D=ABC
1 - - _

0 N O Ul W
|
|

+ 4+ o+ o+

Figure 6.12 Layout for design points.

IV. Obtain the defining relation (I) by multiplying both sides of the

generator by D as
D xD=ABCxD

I= ABCD (A resolution IV design)

The defining relation will be used to determine the resolution of a
design and to generate the confounding patterns of the effects.

Design resolution

The resolution of a design is the number of letters in the smallest
word of the defining relation. For example, in the aforementioned
design, the defining relation I = ABCD has one word, which is ABCD,
and the number of letters is equal to 4, hence a resolution IV design.
In aresolution IV design, the main effects are confounded with three-
factor and higher-order interactions, and two-factor interactions are
confounded with each other and higher-order interactions. Similarly,
a resolution III design has the main effects confounded with two-
factor and higher-order interactions. A 252 design of 8 runs is of reso-
lution ITI. An extremely useful design is a 25 design of resolution V.
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This design is used to investigate five factors in only 16 runs and
has the power to estimate the main effects clear of any other factors
and the two-factor interactions clear of any other factors as well if
three-factor and higher-order interactions are assumed to be negli-
gible. Additional information on design resolution can be found in
Box et al. (1978), Ayeni (1991), as well as in many other experimental
design books and papers.

The defining relation (I) is the column of +1. Any factor multiplied
by itself gives I. For example,

AxA=1I, BxB=I, ABxAB=AABB=II=],
ABCxABC=AABBCC=1II=1

Other operators which are not equal to I are
AxAB=B=1IB=B, ABxBCE=AICE=ACE

V. Use the defining relation I = ABCD to generate the effects or con-
founding patterns as follows:
1. To obtain the confounding patterns for main effect A, multiply
both sides of the defining relation by A as

AxI=AxABCD=BCD

Therefore, A = BCD. This means that when we estimate the effect
of factor A, we are not only estimating the effect of A but also
the effect of the three-factor interaction BCD. This is known as
confounding,.

Confounding occurs when the effects of two or more factors
cannot be separated. In the aforementioned example, we are really
estimating the sum of two effects A + BCD.

2. Similarly, to obtain any two-factor interaction, say, BC, multiply
both sides of defining relation by BC as

BC xI=BC x ABCD = AD

Therefore, BC = AD, that is, the effects of BC and AD are con-
founded with each other. Thus, estimating the effect of BC implies
that we are really estimating the sum of BC + AD.

The complete confounding patterns are shown in Figure 6.13.
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Confounding
Effect 2?{/1 patterns
A A + BCD
B B+ ACD
C C+ ABD
D D + ABC
AB AB + CD
AC AC+BD
BC BC+ AD

Figure 6.13 Confounding patterns for factorial design example.

From the aforementioned main effects, we can see that when we
believe we are estimating the main effects, we are actually estimating
the sum of the main effects and the three-factor interactions. However,
since three-factor interactions and higher-order interactions are generally
assumed to be negligible or nonexistence, we can obtain estimates of all
the main effects clear of all other effects. Although, all the two-factor inter-
actions are confounded with each other, this is the price we pay in run-
ning 8 rather than 16 experiments. Unless certain two-factor interactions
are known not to exist, it will be necessary to run another half-fraction if
each two-factor effect is to be estimated clear of all other effects. Interested
readers should refer to Hicks (1982) for further details on factorial designs
and fractional factorial designs.

Saturated designs

Saturated designs are designs that can be used to investigate n — 1 factors in
n number of runs. For example, one can study the effects of 15 factors using
only 16 runs. In fact, it is also possible to investigate the effects of 31 fac-
tors using 32 runs. These designs are extremely useful in screening applica-
tions as well as in situations where main effects are believed to dominate
over two-factor and higher-order interactions. All saturated designs are of
resolution II. This means that the main effects are confounded with two-
factor and higher-order interactions. It is, therefore, extremely important to
initially screen for factors that are critical to the response of interest, since
only a few of these factors exist, and later conduct a more thorough investi-
gation of those factors identified through a full factorial design or a central
composite design. Examples of saturated designs are shown in Figure 6.14.

Example of a saturated design

A 27 fractional factorial design can be used to investigate k = 7 factors
with only eight runs. For this design, the number of fractions is p = 4.
In any saturated design, all possible interactions are used up in building
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Number of factors Number of runs Type of design
3 4 231
7 8 274
15 16 215-11
31 32 231-26
63 64 263-57

Figure 6.14 Examples of saturated designs.

Designpoint A B C
1 - - -

W NN s W
I+
|
|

+ o+ o+ o+

Figure 6.15 Design setup for a full 2° design.

the generators. Since p = 4 in a 2”* design, there will be a total of four genera-
tors. The design setup is provided in Figure 6.15.

1. Procedure Step I: Set up a full 23 design of 8 runs (see Figure 6.15).
2. Procedure Step II: Assign the remaining four variables (D, E, E, G) to
all the interactions to obtain the four generators.

D=AB E=AC F=BC and G=ABC (these are the generators)

3. Procedure Step III: Generate the + and — columns for the generators
as shown in Figure 6.16.

4. Procedure Step IV: Generate the defining relation (I) as presented in
the following. Notice that the smallest word has three letters, hence
a resolution III design.

I=ABD = ACE = BCF = ABCG = BCDE = ACDF
= CDG = ABEF = BEG = AFG = DEF = ADEG
= BDFG = CEFG = ABCDEFG
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Design
point A B C D=AB E=AC F=BC G=ABC
1 - - - + + + -
2 + - = - -
3 -+ - - + -
4 + o+ - + - - -
5 - -+ + - - +
6 + -+ - + - -
7 - + - -
8 + + + + +

Figure 6.16 Generation of +/— columns for a 274 saturated design.

Confounding
Effects 2?{14 patterns
A A +BD + CE + FG
B B+ AD + CF + EG
C C + AE + BF + DG
AB AB+D +CG +EF
AC AC+E+BG+DF
BC BC + F+AG + DE
ABC CD+BE+AF+G

Figure 6.17 Confounding patterns for saturated design.

5. Procedure Step V: The confounding patterns can be generated as
before by multiplying the factors on both sides of the defining rela-
tions. The confounding patterns are provided (Figure 6.17) after
three-factor and higher-order interactions have been deleted.

Response surface methodology

Response surface methodology involves an analysis of the prediction
equation or response surface fitted to a set of experimental data. Response
surface strategies can be classified into two categories. These are single-
phase and double-phase strategies.

Single-phase strategy

This strategy requires running a full factorial design plus center points
and star points to fit a second-order response surface. This is shown
graphically in Figure 6.18.

Double-phase strategy

This strategy requires initial running of a full factorial design with some
center points. Analyze the data by fitting a first-order model, then test
for lack of fit, and use the center points to test for the effects of curvature.
If there is a significant lack of fit or if the quadratic effect is significant, or
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Figure 6.18 Single-phase response surface strategy.
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Figure 6.19 Double-phase response surface strategy.

both, then proceed further by running a second design which includes
the star points and additional center points. Then analyze the data from
the two designs together. A double-phase response surface strategy is
depicted in Figure 6.19.

The selection of which design phase to consider depends on several
factors which are discussed as follows:

e The major goal of the experiment. If the major goal of the experiment is
to optimize the process and one is considering only two to three fac-
tors to study with no other problems as listed in the following, then
one can proceed straight with a single-phase strategy.

e The cost of running the experiment. If the cost of running the experi-
ment is a major concern and one is required to minimize cost as much
as possible, then select a double-phase strategy. Fitting a first-order
model first and further determining through a curvature test that a
second-order model is not necessary will not only save you a sub-
stantial amount of money but at the same time save you a fairly large
amount of experimental time.
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o The number of variables to be studied. If the number of variables to be
studied is greater than five, then select a double-phase strategy and
run a fractional factorial of resolution IV or better first.

o The time required to complete the project. If longer time is required to
complete each run in the experiment, then you may select a double-
phase strategy. You will save a lot of time if it is determined that a
second-degree model is not necessary.

e Type of control variables under study. If all the control variables are
qualitative variables, then select double-phase strategy. You only
need to run a full or fractional factorial design with some replicates.
No star points or center points are possible for this case.

e Prior knowledge of the experimenter. If the experimenter (through prior
experiment or any other means) knew in advance that within the
range of study, the first-order model would be adequate, then select
a double phase.

® Maximum number of runs possible. If there is a limitation on the num-
ber of runs possible, then consider double-phase strategy.

Response surface example

A process engineer has just completed a 2%2 screening design where he
studied 6 factors on mineral penetration of a fiber. The response of inter-
est is the fiber thickness. The screening experiment identified three key
factors, Webspeed, % solids, and Fiberweight. The engineer decided to
determine the optimum operating conditions of these critical factors that
can be used to achieve a minimum thickness of 0.40.

Objective
To determine control handles that will achieve a target thickness of 0.40
or better.

Design

A three-factor central composite design as shown below is selected. The
ranges of interest to be studied are shown in Table 6.9. The resulting design
and the response are presented in Table 6.10. Table 6.11 shows the ANOVA
results for thickness in a three-factor study.

Table 6.9 Three-Factor Central Composite Design

Factors -1.633 -1 0 1 1.633
Webspeed 43.67 50 60 70 76.33
%Solids 36.83 40 45 50 53.16

Fiberweight 16.83 20 25 30 33.16
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0/0 F.
Obs.  Run Webspeed Solids weight Thickness Design
no order Block X1 X2 X3 (response) ID
1 6 1 50.000 40.000  20.000 0.320 1
2 1 1 70.000 40.000  30.000 0.336 2
3 5 1 50.000 50.000  30.000 0.361 3
4 3 1 70.000 50.000  20.000 0.399 4
5 2 1 60.000 45.000  25.000 0.404 5
6 4 1 60.000 45.000  25.000 0.380 6
7 8 2 50.000 40.000  30.000 0.321 7
8 12 2 70.000 40.000  20.000 0.356 8
9 9 2 50.000 50.000  20.000 0.350 9
10 11 2 70.000 50.000  30.000 0.404 10
11 10 2 60.000 45.000  25.000 0.353 11
12 7 2 60.000 45.000  25.000 0.375 12
13 14 3 43.670 45.000  25.000 0.353 13
14 16 3 76.330 45.000  25.000 0.373 14
15 19 3 60.000 36.835  25.000 0.342 15
16 13 3 60.000 53.165  25.000 0.441 16
17 17 3 60.000 45.000 16.835 0.361 17
18 15 3 60.000 45.000 33.165 0.348 18
19 18 3 60.000 45.000  25.000 0.378 19
20 20 3 60.000 45.000  25.000 0.374 20
Analysis

Analysis of the data in Table 6.10 yields the following results:

e Estimated effects for thickness for a three-factor study

Average =0.3776
A:X1 =0.0264
B:X2 =0.0514
C:X3 =-0.0036
AB =0.0102
AC =-0.0068
BC =0.0088
AA =-0.0166
BB =0.0048
CC =-0.0230
Block1  =0.001400
Block2  =-0.012166
Block3  =0.010666

e Standard error estimated from total error with 8 d.f. (t = 2.30665)
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Table 6.11 ANOVA for Thickness for Three-Factor Study

Independent Coefficient Standard  tfor HO

variable estimate df error Coeff.=0 Prob > [t|
Intercept 0.3776 1 0.0066 57.6000

Block 1 0.0007

Block 2 -0.0061

Block 3 0.0053

A: Webspeed 0.0132 1 0.0044 2.9930 0.0173
B: % Solids 0.0257 1 0.0044 5.8380 0.0004
C: Fiberweight -0.0018 1 0.0044 -0.4128 0.6906
AA —-0.0083 1 0.0044 -1.8850 0.0962
BB 0.0024 1 0.0044 0.5315 0.6095
CcC -0.0115 1 0.0044 —-2.6050 0.0314
AB 0.0051 1 0.0057 0.9017 0.3935
AC —0.0034 1 0.0057 —-0.5938 0.5690
BC 0.0044 1 0.0057 0.7698 0.4635
Total error 0.00207 8

Total (corr.) 0.01682 19

R-squared = 0.8737
R-squared (adj. for d.f.) = 0.7316

* Regression coefficients for thickness for a three-factor response sur-

face study

Constant =0.3776
Block 1 =0.0007
Block 2 =-0.0061
Block 3 =0.0053
A: Webspeed =0.0132
B: % solids =0.0257
C: Fiberweight = -0.0018
AA =-0.0083
BB =0.0024
CC =-0.0115
AB =0.0051
AC =-0.0034
BC =0.0044

Figure 6.20 shows the Pareto chart for the response (thickness).
The chart indicates the relative contributions of the effects from the
three-factor interactions. Figure 6.21 shows the response surface with
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Figure 6.20 Pareto chart for response surface analysis.
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Figure 6.21 Response surface with respect to X2 and X3.

respect to factor X2 and factor X3. Figure 6.22 shows the response sur-
face with respect to X1 and X3. Figure 6.23 shows the contour surface
with respect to X1 and X2. Figure 6.24 shows the contour surface with
respect to X1 and X3. Figure 6.25 shows the response surface with
respect to X1 and X2.
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Figure 6.22 Response surface with respect to X1 and X3.
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Figure 6.23 Contour surface with respect to X1 and X2.
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Figure 6.24 Contour surface with respect to X1 and X3.
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Figure 6.25 Response surface with respect to X1 and X2.
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The final equation in terms of actual factors is

Thickness = 0.0509 + 0.008396 (Webspeed)—0.01385(% Solids)
+0.01886 (Fiberweight) — 0.0000833(Webspeed2)
+0.00009404 (%Solid”2) —0.000461(Fiberweight”2)
+0.0001025(Webspeed x %Solids) —0.0000675(Webspeed
x Fiberweight)+0.000175(%Solids x Fiberweight).

Central composite designs

I. Two-factors central composite design—design orthogonally blocked
and rotatable. An example of this is shown in Table 6.12.
II. Two-factors central composite design—factorial portion replicated and
design orthogonally blocked and nearly rotatable as shown in Table 6.13.
III. Three-factors central composite design—orthogonally blocked and
nearly rotatable as seen in the layout in Table 6.14.
IV. Four-factors central composite design—orthogonally blocked and
rotatable as shown in Table 6.15. Figure 6.26 illustrates the graphical
composition of a three-factor central composite design.

Response surface optimization

Controlling processes to target and minimize variation have been impor-
tant issues in recent years in most industrial organizations (Ayeni, 1994).
Well-designed experiments can significantly impact product and process
quality. This section of the book focuses on some practical issues commonly
associated with moving web processes as well as those useful in reducing

Table 6.12 Two-Factor Central
Composite Design

Run A B

1 -1 -1

2 1 -1

3 -1 1

4 1 1 Block 1

5 0 0

6 0 0

7 -1.414 0

8 1.414 0

9 0 1414 Biock 2
10 1.414

[
N =
o O O
o
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Table 6.13 Central Composite
Design with Three Blocks

Run A B
1 -1 -1
2 1 -1
3 -1 1 Block 1
4 1 1
5 0
6 0 0
7 -1 -1
8 1 -1
9 -1 1 Block 2
10 1 1
11 0 0
12 0 0
13 -1.633 0
14 1.633 0
15 0 -1.633
16 0 1.633  Block 3
17 0 0
18 0 0
19 0 0
20 0 0

variability during industrial experimentation. The fundamental principle of
model building using two-level factorial and fractional factorial designs will
be covered. The practice of adding center points as well as “axial” points
for detection of model curvature is explored. Some examples of industrial
experiments are presented, including applications involving response sur-
face designs for moving web-type processes with machine direction (MD)
and cross-direction (CD), such as paper and plastic film productions. The
problems and opportunities provided by simultaneously studying disper-
sion effects and location effects with the objective of achieving mean on target
with minimum variance are investigated with real-life examples. A numeri-
cal illustration with the use of contours is produced as a mechanism for pro-
cess improvement. Multiple response optimization methods are presented
as an approach to finding the common region for process optimization.

Applications for moving web processes

Factorial designs have been extensively used in industry over the last sev-
eral years primarily because of their ability to efficiently provide valuable
information about main effects as well as their interactions. In addition,
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Table 6.14 Layout for Three-Factor Central
Composite Design

Run A B C
1 -1 -1 1
2 1 -1 -1
3 -1 1 -1 Block 1
4 1 1 1
5 0 0
6 0 0 0
7 -1 -1 -1
8 1 -1 1
9 -1 1 1 Block 2
10 1 1 -1
11 0 0 0
12 0 0 0
13 -1.633 0 0
14 1.633 0 0
15 0 -1.633 0
16 0 1.633 0
17 0 0 -1.633 Block 3
18 0 0 1.633
19 0 0 0
20 0 0 0

factorial designs often provide the basic foundation for response surface
methodology (RSM) and mixture (formulation) experiments. Response
surface method is a statistical technique useful for building and exploring
the relationship between a response variable, y, and a set of independent
factors, x, which can be represented as

y=f(x,b)+e

where
x is a vector of factor settings
f is a vector of parameters including main effects and interactions
¢ is a vector of random errors which are assumed to be independent
with zero mean and common variance s?

One is usually interested in optimizing f(x,f) over some appropriate
design region. This method only approximates the true response surface
with a convenient mathematical function. Therefore, for most practical
situations, if an appropriate design region has been chosen, a quadratic
function will usually approximate the true response surface quite well.
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Table 6.15 Layout for Four-Factor Central
Composite Design

Run A B C D

1 1 1 -1 1
2 1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 1 -1
5 -1 -1 1 -1 Block 1
6 1 -1 1 1
7 -1 1 1
8 -1 -1 -1 1
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 1 1 -1 -1
13 1 -1 1 -1
14 -1 1 -1 1
15 -1 -1 -1 -1
16 -1 -1 1 1
17 1 -1 -1 1 Block 2
18 -1 1 1 -1
19 1 1 1 1
20 0 0 0
21 0 0 0 0
22 0 0 0 0
23 -2 0 0 0
24 2 0 0 0
25 0 -2 0 0
26 0 2 0 0
27 0 0 -2 0
28 0 0 2 0 Block 3
29 0 0 0 -2
30 0 0 0 0
31 0 0 0 0
32 0 0 0 0
33 0 0 0 0

In industry today, engineers have experienced increasing needs to
develop experimental strategies that will achieve target for a quality charac-
teristic of interest while simultaneously minimizing the variance. The clas-
sical experimental designs described earlier have been found lacking in this
area because they tend to focus solely on the mean of the quality characteristic
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Figure 6.26 Graphical representation of central composite design.

of interest. In today’s competitive manufacturing environment, engineers
must be more ambitious in finding conditions where variability around the
target is as small as possible in addition to meeting the target condition.
Taguchi and Wu (1985) and Taguchi (1986) have presented the need
for considering the mean and variance of quality characteristic of interest.
Unfortunately, Taguchi’s statistical approach to this problem has drawn
much criticism in the literature (Box 1985). For this reason, Vining and Myers
(1990) developed a dual response approach for which one can achieve the pri-
mary goal of the Taguchi philosophy. This enables us to obtain a target condi-
tion on the mean while minimizing the variance, within a response surface
methodology framework. The example used by Vining and Myers (1990) was
taken from the Box et al. (1978) book. Therefore, this chapter attempts to apply
this dual response approach to real-life practical examples and problems.

Dual response approach

Vining and Myers (1990) used the dual response problem formulation
developed by Myers and Carter (1973). In their development, the investi-
gator is assumed to be seeking to optimize two responses. We shall let y,,
represent the response of primary interest, and y, represent the response
of secondary interest. They further assumed that these responses might
be modeled by the following equations:

k k k
Yp=b,+ 2 bix; +z biix? +z 2 bjxix; +e
i=1 i=1

i<j

k k k
Ys=9got ngxi +z gix} +Z Zgijxixj t+e,
i=1 i=1

i<j
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where the f; and the y, represent the unknown coefficients, and ¢, and &,
are the random errors.

The practical significance of this approach is to optimize the pri-
mary response subject to an appropriate constraint on the value of the
secondary response. The decision as to which response to make as the
primary response depends solely on the ultimate goal of the experiment,
by considering Taguchi’s three situations:

1. “Target value is best,” which means keeping mean at a specified
target value, while minimizing variance. This requires that the
variance be the primary response.

2. “The larger the better” means making the mean as large as possible
while controlling variance.

3. “The smaller the better” means making the mean as small as possible,
while controlling the variance. These last two require the mean to be
the primary response.

Case study of application to moving webs

In this application, a process capability experiment was performed on a long
run of coated webs. This study provided the magnitude of variation arising
from both down-web and cross-web effects. The sampled down-web posi-
tions were 50 yards apart in every roll, while the sampled cross-web positions
were at the left, center, and right sides of the webs. These sampling points
were selected for convenience. They were believed to be as representative of
the process as any other position which could have been selected. There were
several other possible cross-web positions that could have been selected. The
process capability study showed that the major source of variability was due
to cross-web positions. Therefore, reducing cross-web variability could lead
to sizable impact on reducing total variation.

In order to control mineral penetration, eight factors were identified
for the study. In addition to controlling the mineral penetration to some
target, we were also interested in controlling the variability in the mineral
penetration due to cross-web effect. Therefore, a 284 fractional factorial
design of 16 runs was set up to screen all the eight factors believed to be
potentially critical to controlling mineral penetration in the web process.
There were no replicates or center points run at this stage in order to mini-
mize the cost and time of running the experiment. Each condition of the
experiment was run at each of the three cross-web positions, left, center,
and right sides of the web. The order of the experiment was completely
randomized and the experiment was run in a random order. The design
matrix and the results obtained are provided in Table 6.16.

The analysis of the screening experiment was performed using half-
normal plot in Figure 6.27. The result shows that factors G and H are
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Half normal plot of the effects
(response is mean penetration, alpha =0.05)
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Figure 6.27 Half normal plot for moving webs application.

statistically significant to control the mean mineral penetration. Similarly,
factor B is significant to controlling the variability, although the half-normal
plot for the standard deviation is not provided in order to minimize space.
These three factors were considered for the next phase of the experimentation.

Case application of central composite design

A three-factor central composite design (Figure 6.26) is a member of the
most popular class of designs used for estimating the coefficients in the
second-order model. This design consists of eight vertices of a 3D cube.
The values of the coded factors in this factorial portion of the design
are (B, G, H) = (+1, +1, +1). In addition, this design consists of six vertices
(+1.63, 0, 0), (0,+1.63,0), (0, 0, +1.63) of a 3D octahedron or star and six cen-
ter points. If properly set up, a central composite design has the ability
to possess the constant variance property of a rotatable design or may be
an orthogonal design, thereby allowing an independent assessment of
the three factors under study. For the illustrative study, a second-order
response surface experiment was conducted for the three factors B, G,
and H, previously declared statistically significant from the aforemen-
tioned screening experiment. The design setup is provided in Table 6.17.
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Analysis of variance

195

Tables 6.18 and 6.19 provide the corresponding ANOVA results. For the
mean mineral penetration, factors G, H, H?, and G x H interaction are
statistically significant. The lack of fit (LOF) is not statistically significant
(p = 0.511). Consequently, a second-order model is fitted. The resulting
response surface curve for mean penetration is provided in Figure 6.28.

Table 6.18 Analysis of Variance for Mean Mineral Penetration

Response surface regression: Mean versus block, B, G, H
The analysis was done using coded units.

Estimated regression coefficients for mean

Term Coeff. SE Coeff.
Constant 22.9601 1.2575
Block 1 2.7460 1.2412
Block 2 -2.8590 1.2412
B -1.2379 0.8444
G 5.6428 0.8444
H 10.8954 1.0902
B*B 0.6572 0.8485
G*G —-0.0865 0.8485
H*H 2.5572 0.8485
B*G 2.6375 1.0902
B*H —-0.4708 1.0902
G*H 3.5125 1.0902

S=23.08342 PRESS =563.711
R-5q =96.11% R-Sq(pred) = 71.19%

Analysis of variance for mean

Source DF Seq SS
Blocks 2 238.96
Regression 9 1641.34
Linear 3 1394.66
Square 3 90.56
Interaction 3 156.13
Residual error 8 76.06
Lack of fit 5 48.72
Pure error 3 27.34
Total 19 1956.36

T
18.259
2.212
-2.303
-1.466
6.682
.994
0.775
-0.102
3.014
2419
-0.432
3.222

P
0.000
0.058
0.050
0.181
0.000
0.000
0.461
0.921
0.017
0.042
0.677
0.012

R-Sq(adj) = 90.77%

Adj SS
56.69
1641.34
1394.66
90.56
156.13
76.06
48.72
27.34

Adj MS
28.343
182.372
464.887
30.186
52.042
9.507
9.743
9.114

F
2.98
19.18
48.900
3.17
5.47

1.07

P
0.108
0.000

.000
0.085
0.024

0.511

The fitted response surface for the mean of the mineral penetration is obtained

as

Average penetration = 22.96 — 1.24 x B + 5.64 x G + 10.89 x H + 0.66 x B?
-009xG2+256 xH2+264xBxG-047 xBxH

+351xGxH
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Table 6.19 Analysis of Variance for Standard Deviation Mineral Penetration

Response surface regression: STD versus block, B, G, H
The analysis was done using coded units.
Estimated regression coefficients for STD

Term Coeff. SE Coeff. T P

Constant 7.77642 1.4288 5.443 0.001
Block 1 1.04467 1.4103 0.741 0.480
Block 2 -0.13647 1.4103 -0.097 0.925
B —0.95405 0.9595 -0.994 0.349
G —0.54150 0.9595 —0.564 0.588
H 1.77350 1.2387 1.432 0.190
B*B 0.04737 0.9641 0.049 0.962
G*G —0.65651 0.9641 —-0.681 0.515
H*H -0.47278 0.9641 -0.490 0.637
B*G 0.67672 1.2387 0.546 0.600
B*H -2.17992 1.2387 -1.760 0.116
G*H —-0.51550 1.2387 -0.416 0.688

S=3.50362 PRESS =492.447
R-5q =52.01% R-Sq(pred) =0.00% R-Sq(adj) = 0.00%
Analysis of variance for STD
Source DF Seq SS AdjSS AdjMS F P

Blocks 2 13.110 11.419 5.710 047 0.644
Regression 9 93.315 93.315 10.368 0.84 0.600
Linear 3 41.209 41.209 13.736 1.12  0.397
Square 3 8.300 8.300 2.767 0.23 0.876
Interaction 3 43.806 43.806 14.602 1.19 0.373
Residual error 8 98.203 98.203 12.275

Lack of fit 5 44.537 44537 8.907 0.50 0.769
Pure error 3 53.666 53.666 17.889

Total 19 204.628

The fitted response surface for the standard deviation is obtained as
Std. Dev =7.78 —0.95 x B - 0.54 x G + 1.77 x H + 0.05 x B2 - 0.66 x G2
-047 xH?2+0.68xBxG-218xBxH-052xGxH

The standard deviation is modeled rather than the commonly used
log s? because there are three cross-web positions (m = 3) under study.
The theory for log s? transformation requires moderate to large amount of
replication (m > 10). For small m, we prefer to model the standard devia-
tion, which is the square root transformation. In addition, using the stan-
dard deviation will make it easier for engineers to correctly interpret the
results from the model. In general, one would expect the true order of
the variance model to be lower than the order of the model of the mean.
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Response surface contour plot for the
mean mineral penetration
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Figure 6.28 Response surface plot for the mean mineral penetration.

However, since we run a design appropriate for a full second-order model,
we would fit a second order for the standard deviation. The response sur-
face curve obtained for standard deviation is provided in Figure 6.29 for
the situation when factor B is set at the center. In this case, the minimum
variability occurs when factor G is at its highest level and factor H is at the
lowest level.

Response surface optimization

The goal of this experiment is to find the conditions which minimize the
cross-web variability while achieving a specification range of 15-20 for
the mean mineral penetration. This, therefore, suggests using the stan-
dard deviation as the primary response and the mean as the secondary
response. We constrain our variability between 0 and 5 for our optimi-
zation search. The result obtained is provided in Figure 6.30. The opti-
mum operating windows are clearly provided in Figures 6.30 through
6.32. These results suggest that when B is operating at the center level,
factors H should be set at its lowest level and factor G should be set at its
highest level. Similarly, when factor B is set at low, then factor H should
be set at its lowest level, while factor G should be at its lowest or center
level. Response surface optimization plots are provided for the average
and standard deviation.
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Response surface contour plot for the standard deviation
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Figure 6.29 Response surface plot for mineral penetration standard deviation.

Response surface optimization for mean
and STD when B=0

1.5 A
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----20
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----5

Hold Values
B 0

Figure 6.30 Factor B is at center level while both G and H are varied.
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Response surface optimization for mean
and STD when B=-1

Mean

15
---- 20
STD

----5

Hold Values
B -1

Figure 6.31 Factor B is set at low level while both factors G and H are varied.

Response surface optimization for mean
and STD when B=+1

Mean

15
---- 120
STD

----5

Hold Values
B 1

Figure 6.32 Factor B is set at high level while factors G and H are varied.
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This study has significant impact on the way we control cross-web
variability. Several optima (Figures 6.30 through 6.32) operating condi-
tions with similar desirable properties are available to engineers for
controlling the cross-web variability as well as achieving the mineral
penetration target. In addition, the advantage of being able to plot the
desirability surfaces for both mean and standard deviation to deter-
mine their sensitivities to small changes in the levels of the control fac-
tors is significant for future control of cross-web variability. This dual
response optimization approach is applicable to multiple responses
as well, and it is consistent with the positive aspects of the Taguchi
contributions.
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chapter seven

Risk analysis and estimation
techniques

The problem considered in this chapter is that of estimating the nature of
the size distribution of petroleum reservoirs and their values.

The method used consists of a Bayesian technique for parameter esti-
mation. A sampling procedure based on minimizing the mean square
error (MSE) of the posterior Bayesian estimator is developed using the
beta density function to model the prior distribution. This Bayesian
approach provides several typical representative distributions which
are broad enough in scope, to provide a satisfactory economic analy-
sis. These distributions reflect general patterns of similar regions, and
include dry holes, as well as several representative class sizes of discover-
ies, and of course the probabilities associated with each of these classes.
Mathematical expressions are provided for the probability estimates for
the three-category case, as well as for the general case of k samples. This
Bayesian method permits a more detailed economic analysis than is pos-
sible by the use of binomial distribution, where wells are simply classified
as good or bad.

Bayesian estimation procedure

This section addresses Bayesian estimation procedure for petroleum dis-
coveries of an exploratory well. Early exploratory efforts in a newly recog-
nized geologic area provide an ideal application for the binomial probability
distribution. In using the binomial, no consideration is given to how big or
how small a discovery might prove to be. It is taken to be either good or bad,
acceptable or unacceptable, dry or producer, with classification restricted to
one or the other of two groups. However, if an exploratory well is grouped
into three general classes: (Ayeni, B. J. and Ayeni, F. O,, 1993): (1) y; = 0, zero
reserves for a dry well; (2) discovery y, barrels of reserves; and (3) discovery
of y, barrels of reserves, where y, and y; are barrels of reserves discovered
for two different groups of nondry wells. The probabilities p;, i = 1, 2, 3 of
a well discovering y; barrels of reserves are not known and in most cases
are assumed. In this chapter, however, we will estimate these probabilities
for the three-category case, as well as for the general case of k-category.

201
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In addition, we will also provide a procedure for estimating the probabili-
ties of discovering various total reserves. For the three-category case, the
binomial distribution is not adequate, because the population of interest is
divided into more than two categories. Therefore, a multi-nominal distribu-
tion will be considered for this extended case. The parameter estimation
procedure will be based on Bayesian methodology. The sampling proce-
dure will be based on minimizing the MSE of the posterior Bayesian esti-
mator using the beta density function to model the prior distribution (Pore
and Dennis, 1980). The estimated probabilities are then used in estimating
total reserves.

Formulation of the oil and gas discovery problem

Let us consider a certain region, where an oil company has grouped the
possible outcomes of an exploratory well into three general classes:

1. Discovery of y, = 0 barrels of reserves (a dry well).

2. Discovery of y, barrels of reserves (a nondry well).

3. Discovery of y; barrels of reserves (a nondry well), and p;, i = 1,2, 3
are the corresponding probabilities of having x; number of wells
discovering y; barrels of reserves. Let us further represent the fol-
lowing: x; = number of wells labeled as discovering 1y, = 0 barrels
of reserves (dry well); x, = number of wells labeled as discovering y,
barrels of reserves; x; = number of wells labeled as discovering y; bar-
rels of reserves; p; = probability of a well discovering y, = 0 barrels of
reserves; p, = probability of a well discovering y, barrels of reserves;
and p; = probability of a well discovering y; barrels of reserves. For
this case, p; + p, + ps = 1, and the conditional distribution of x;, x,, and
x; is given in the next section.

Computational procedure

The Bayesian procedure considered focuses on the Bayesian technique for
the parameter estimation and a sampling procedure based on minimiz-
ing the MSE of the posterior Bayesian estimator (Pore and Dennis, 1980).
From the previous section, the conditional distribution of x,, x,, and x; can
be represented as

(x1+x2+x3)! x1 X3

f(x1, %2, %5 | p1,p2,p3) = PP ps

.X1!XZ!X3!

= Al pE(l—pi—pa)* (71)
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where p; €(0,1),x, €(0,1,2,...), and

_ (X1+XZ+X3)!

Ao
x1!x2!x3!

This is a multi-nominal model which is a generalization of the bino-
mial model. If we assume a prior distribution of the form

al,,a2,,a3 _

8(p1,p2,p3) = Bopi' p3°p3° = Bopi'p3* (1= p1 —p2)as, (7.2)

where ay,a5,a; >-1; p1 €[0,1], p, €[0,1-p;] and

_ F[a1+a2+a3+3]
F[al +1] r[az +1] F[a3 +1]

0

Then, since data are available in discrete form, the posterior condi-
tional probability can be represented as

g(Pl/pZ/P3)f(x1/x2/x3 |P1/p2/p3) (73)

w! P2, X1,%X2,X3)=
(pl p2 p3| 1742 3) Zg(p1,p2,p3)f(x1,x2,x3|p1,P2/P3)

and, for the continuous case, we have

W(pr, pa, ps %1, X2, %3) = 8(pr, P2, p3) f(x1,%2,%3 | p1, P2, P3) (74)

p(x1, X2, %3)
where
1 1-p2
P(xl,xz,x3)=J‘ J. S(Pl,Pz,P3)f(x1,x2,x3 |P1,P2,P3)dP1dP2
0 0
1 1-p2
=A0BOJ J p5a1+x1)p§az+x2)(1_pl_pz)(a3+X3)dpldp2
0 0
AB)T'[x1+a1+1|T"|x,+a,+1|TMx3+az+1
P(x1, %2, %3) = obo [ 1 1 ] [ 2 2 ] [ 3 3 ] (75)

F[x1+x2+x3+a1+a2+a3+3]
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Then, to estimate the probabilities, P;, i = 1, 2, 3 of a well discovering y;

barrels of reserves, we have
pi = E[Pi |x1,x2,x3]

which implies that

11
ﬁ1=_[
0

plw(pl , P2, P3| X1, %2, X3)dpidpa

C"—hs

Plg(pllerp3) f %2, %3 | pr, P2, p3)dpadp:

‘S)
Il
o'—.»—n
O'—‘rs

p(x1,x2,X3)
A x1+a1+1
P x1+x2+x3+a1+a2+a3+3
Similarly,
}A?z = E[Pz |x1,x2,x3]
A x2+a2+1
x1+x2+x3+a1+a2+a3+3
A x3+a3+1
ps x1+x2+x3+a1+a2+a3+3
Q=zxi}/i
EQ =) Wi(P|X)Q
The k-category case

(7.6)

(7.7)

(7.8)

79)

(710)

The k-category case is a generalization of the three-category case. Pore
and Dennis (1980) obtained their k-category pixel expression using
Bayesian estimation procedure. Their result is, therefore, extended here to
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multi-category reservoir systems. Then, the probabilities (P;),i=1,2,3, ..., k
of a well discovering y; barrels of reserves can be written as

A~ xita;+l

Pi= S (xra+1) (7.11)

Discussion of results

Table 7.1 is the result obtained by McCray (1975) for various values of x;,
x, and x; which can appear in a sample. Each line in the table represents
one possible sample, and the probability of that particular sample is cal-
culated using Equation 7.1. McCray (1975) assumed p, = 0.5, p, = 0.3, and
ps; = 0.2 and their corresponding reserves are, respectively, y; = 0, y, = 15,
and y; = 60.

Based on the assumed probabilities, the Bayesian approach with
a; =0, a, = 0, and a; = 0 provides the total reserves (Q), as well as the
expected reserves that correspond to each sample as presented in columns
11 and 12 of Table 71. The results from this table are exactly the same
as those obtained by McCray (1975) based on the assumed probabilities.
The total expected reserve in this case is 49.5 MM barrels. However, since
different sampling arrangements should result in different probabilities,
the probabilities, p,, p,, and p; can, therefore, be estimated from the given
samples X, X,, and x; using Equations 7.6 through 7.8 rather than assum-
ing these probabilities. These estimates are based on various values of as
associated with the prior distribution. For the special case of a; = a, = a; =0,
the estimated probabilities, as well as the expected reserves, is provided
in Table 72. These probabilities, which are functions of the sampling
arrangements (x,, X,, X3), provide reserve estimates that do not correspond
to McCray’s (1975) results. Figure 7.1 shows a histogram plot of the prob-
abilities for the reserve levels.

The total expected reserve in this case is 75 MM barrels. This is only
due to the fact that the probabilities used by McCray in Table 7.1 are
based on assumed probabilities. Table 7.7 is arranged according to the
total reserves of each individual sample of three wells for the case of
assumed probabilities as well as when probabilities are estimated from
the sample. This allows the calculation of the cumulative probability
so that it can be interpreted as a probability of not less than certain
amounts of discovered crude oil reserves. These results are plotted in
Figure 7.1, where one starts with 100% probability of at least 0 (zero) bar-
rels discovered, progresses stepwise to 69.5% chance of discovering at
least 45MM barrels, 40% chance of discovering at least 90 MM barrels,
and 11.35% chance of discovering at least 180 MM barrels of crude oil
reserves. For other values of a (Tables 7.2 through 7.6), different values
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Figure 7.1 Histogram of probabilities versus reserves.

of the expected reserves can be generated. Table 7.7 shows the probabili-
ties arranged by reserve levels. Table 7.8 contains total expected reserves
for various combinations of a values. This result shows that the total
expected reserves can vary from a low of 40 MM barrels to a high of
124 MM barrels of reserves.

This approach allows the estimation of the probability of a well dis-
covering certain barrels of reserves from the sample rather than assum-
ing this probability. The results show that the total expected reserve is
49 MM barrels when the probabilities are assumed. However, when the
probabilities are estimated from a Bayesian standpoint, the total expected
reserves can vary (with different levels of @) from a low of 40 MM bar-
rels of reserves to as high as 124 MM barrels of reserves. This Bayesian
approach provides several typical representative distributions which are
broad enough in scope, to provide a satisfactory economic analysis. These
distributions reflect general patterns of similar regions, and include dry
holes, as well as several representative class sizes of discoveries, and of
course the probabilities associated with each of these classes. In addition,
this method permits a more detailed economic analysis than is possible
by the use of binomial distribution, where wells are simply classified as
good or bad.
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Table 7.7 Tabulation of Probabilities from Three Exploratory Wells

Risk analysis and estimation techniques

Probability of Probability of
Reserves  FromTable atleastthese FromTable atleast these
(MM bbl) 7.1 w(p|x) reserves 7.2 w(plx) reserves

0 0.125 1.00 0.11348 1.0000
15 0.225 0.875 0.09574 0.8865
30 0.135 0.650 0.09574 0.7908
45 0.027 0.515 0.11348 0.6950
60 0.150 0.488 0.09574 0.5815
75 0.180 0.338 0.08511 0.4858
90 0.054 0.158 0.09574 0.4007
120 0.060 0.104 0.09574 0.3049
135 0.036 0.044 0.09574 0.2092
180 0.008 0.008 0.11348 0.1135

Table 7.8 Total Expected Reserves
for Various Combinations

of Alpha Values
Total expected
a, a, a, reserves
0.0 0.0 0.0 49.50
0.5 0.0 0.0 61.89
0.0 0.5 0.0 69.76
0.0 0.0 0.5 93.36
0.5 0.5 0.0 59.42
0.0 0.5 0.5 86.13
0.5 0.5 0.5 75.00
1.0 0.0 0.0 52.42
0.0 1.0 0.0 65.97
0.0 0.0 1.0 106.62
1.0 1.0 0.0 50.75
0.0 1.0 1.0 92.30
2.0 0.0 0.0 40.00
0.0 2.0 0.0 60.98
0.0 0.0 2.0 124.06
2.0 2.0 2.0 75.00
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Figure 7.2 Oil production versus time.

Parameter estimation for hyperbolic decline curve

The problem of estimating the nonlinear parameters associated with the
hyperbolic decline curve equation is presented in this chapter. Estimation
equations are developed to estimate these nonlinear parameters. The condi-
tion under which the results can be used to predict future oil productions
is examined using actual field data. An approximate linear term is obtained
from the nonlinear hyperbolic equation through Taylor’s series expan-
sion, and the optimum parameter values are determined by employing the
method of least squares through an iterative process. The estimated parame-
ters are incorporated into the original hyperbolic decline equation to provide
realistic forecast function. This method does not require any straight-line
extrapolation, shifting, correcting, and/or adjusting scales in order to esti-
mate future oil and gas predictions. The method has been successfully
applied to actual oil production data from a West Cameron Block 33 Field in
South Louisiana. The results obtained are provided in Figure 7.2.

Robustness of decline curves

Over the years, the decline curve technique has been extensively used by
the oil industry to evaluate future oil and gas predictions, Arps (1945),
Gentry (1972), Slider (1968), Fetkovitch (1980). These predictions are used
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as the basis for economic analysis to support development, property sale
or purchase, industrial loan provisions, and also to determine if a sec-
ondary recovery project should be carried out. The graphical solution
of the hyperbolic equation is through the use of a log-log paper which
sometimes provides a straight line that can be extrapolated for a useful
length of time to predict future oil and gas productions. This technique,
however, sometimes failed to produce the straight line needed for extrap-
olation for some oil and gas wells. Furthermore, the graphical method
usually involves some manipulation of data, such as shifting, correcting,
and/or adjusting scales, which eventually introduce bias into the actual
data. In order to avoid the foregoing graphical problems and to accurately
predict future performance of a producing well, a nonlinear least-squares
technique is considered. This method does not require any straight-line
extrapolation for future predictions.

Mathematical analysis

The general hyperbolic decline equation for oil production rate (g) as a
function of time (f), Arps (1945), can be represented as

q(t) = qo(1+ mDyt) /" (712)

O<m<1

where
q(t) is oil production at time ¢
g, is initial oil product
D, is initial decline
m is decline exponent

Also, the cumulative oil production at time t, Q(f), Arps (1945), can be
written as

_ o ﬂi_
Q) = Y [(1 +mDyt) 1} (713)

By combining Equations 71 and 7.2 and performing some algebraic
manipulations, see Arps (1945), it can be shown that

qt)" ™" = g0 " + (m=1)Dogo "Q(t) (714)
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Equation 7.14 shows that the oil production at time ¢ is a nonlinear func-
tion of its cumulative oil production. By rewriting Equation 7.14 in terms
of cumulative oil production, we have

m

_ qo 1-m qo
Q== 10 s (715)

Statistical analysis

For any given oil well, lease or property, the oil production at any time ¢
can be observed. The observed production values are always available at
discrete equi-spaced time intervals; this will, therefore, make Equation
715 not be satisfied exactly, due to the continuity assumption used in
deriving Equation 7.12; hence, it will only define the cumulative produc-
tion (Q,) plus the residuals (g;) as follows (Ayeni, B. J., 1989):

m

_ qo 1-m Yo
Q= mp, T u-1p, 716)

The general assumption for ¢, (Draper and Smith 1981) is that the residuals
are assumed to be statistically independent and normally distributed with
mean zero and constant variance, o2, that is, the expected value of ¢, denoted
by Ele,] = 0, and variance of ¢, Var(e)) = 02 This normality assumption can
be checked after the model has been fitted using a residual analysis test or
histogram. If this assumption fails due to lack of fit, it may be that there
is an outlier or an extreme value in the original data. Then, for this situa-
tion, the actual data can first be transformed to stabilize the variability in
the data and then use the transformed data in the equations developed in
this chapter. The most common transformation method is the log transfor-
mation. Other useful transformation techniques are reciprocal, square root,
and inverse square root transformations. For more information about outli-
ers and how to handle them, interested readers should see Box et al. (1978).
Now let

_ o
aj=——
(1-m)D,
(717)
a, = 7170
(1-m)Dy

and
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By substituting Equation 7.7 into Equation 7.6, we obtain
Q=ai+ay*’ +e (718)

A close examination of Equation 7.18 shows that it is completely nonlinear
in parameters. This is because Equation 718 is nonlinear in a3, which is
controlled by the exponent m, just as m controls a; and a,; therefore, both
a, and a, depend on a;.

Parameter estimation

In order to estimate the parameters in Equation 7.18, we chose to minimize
the sum of squares of the residuals given as

SS(a)= Z(Qt —a;—ay™ )2 (7.19)

Since the model is nonlinear in @, the normal equations will be nonlinear.
Also, since a; and a, depend on «a;, an iterative technique will be used to
solve the normal equations.

Optimization technique

Let us rewrite Equation 7.18 as
Q= fg.a)te (7.20)
where
flq,a)=a;+ag™

Let ayy, @y, a3, be the initial values for the parameters a;, @, and as,
respectively. If we carry out a Taylor series expansion of f(g,, a) about the
point ay, where a, = (ayy, @y, @3), and truncate the expansion, we can say
that, approximately, when « is close to a,,

3

f@,2)= f(qt,ao>+2{ii<qna)} (@1 -a) (721)

i=1 =ag
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If we set

fto = f(q:,20)

0
b =a;—ay

(7.22)
Z_tO — |:d,f(qt/a):|
i dal _
a=ag
we can see that Equation 7.10 is approximately
3
Q =f+ 2 bZL  +e (7.23)
i=1
3
Q-f0=) blZ+e (724)
i=1

which is of linear form. Therefore, we can now estimate the parameters
b’,i=1,2,3 by applying the linear least-squares theory with the assump-
tions that E[¢,] = 0 and var (¢,) = 6* (Draper and Smith 1981). This is achieved
by minimizing the sum of squares of the residual in Equation 7.17.

If we write

[Of(q1,2) Of(q1,2) Of(qu,@) |

aal aaz E)as

Zo=| ' ' (7.25)

of (qu,2) Of(gu,a) If(qu,a)

da; da, das
_Ql—flo_
by
b=|b}| and Qy=| - . =Q—f0
b3
Q= fi ]
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then, the estimate by = (b, b{,bY) is given by
b =(Zy'Z)"2(Q- f°) (7.26)

The vector /50 will, therefore, minimize the sum of squares SS(a) of the
residual with respect to b} fori=1,2,3 where

n 3 2
$8@)= Y |Q - f@@,a0- D biZi| and bl=ai-ay, (727)
t=1 i=1

Iterative procedure

Let b =a;; —aj, thena;,i=1,2,3 can be thought of as the revised best
estimates of a. We can now place the values a;;, the revised estimates in the
same roles as were played in the foregoing by a;,, and to through exactly
the same procedure as already described, but replacing all zero subscripts
by ones. This will lead to another set of revised estimates, a;, and so on. In
vector form, extending the previous notation, we can write

am=0+(2 7)) 2/ Q- f)) (7.28)
where
Z; =2
! :(flllfzfl_._,fn])f

al = (a1]/a2],a3])’

The foregoing iterative process is continued until the solution converges,
that is, until in successive iterations, J, | + 1, such that

{a“_af} <d fori=1,2,3 (7.29)
aj

where § is some prespecified amount, for example, 0.0001. Also at each stage
of the iterative procedure, S5(a)) can be evaluated to check if a reduction in
its value has actually been achieved. For rapid convergence, if SS(a;,,) is
greater than SS(a)), the vector §in Equation 7.17 can be amended by having
it. But if SS(ay,,) is less than SS(a)), we can double the vector f;. This halving
and/or doubling process is continued until three points between aj, a;,, are
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found, which include between them a local minimum of SS(@). A quadratic
interpolation can be used to locate the minimum and the iterative cycle
begins again. Figure 7.4 shows a plot of residuals versus normal scores.
After convergence, the optimum parameters estimated can be used to
determine the estimates 1, ,, D,, as follows: From Equation 7.7, we have

A . (7.30)
D, =-1 4, <0
ajas
a,;>0

where a,, @,, a; are optimum parameters estimated with the minimum
residual sum of squares. We can now incorporate Equation 7.20 into
Equation 7.1 to give the optimum forecast function that can be used to
generate future oil production forecast, as follows:

A(t) = Go(1+ fiteD) ™/ (7.31)
qt)=q

This technique has been applied to actual oil field data from a West
Cameron Block 33 Field in South Louisiana. The results obtained are
provided in Figure 7.2. The method described in this chapter can prob-
ably be improved if the Taylor’s series expansion is carried out further;
however, this problem is not explored in this chapter.

Residual analysis test

A simple residual analysis test is carried out in this section to check the
normality assumption used in the development of the estimating equa-
tions. A plot of the residuals versus the normal scores shows that the
residual is random (Figure 7.3). This is because there is an approximately
linear relationship with a correlation coefficient of » = 0.90 between the
residual and the normal score. In addition, a plot of the histograms of the
residual shows that the residual is normally distributed with the mean
centered around zero (Figure 74). These tests substantiate the normality
assumption used to define the residual in the earlier section.

This section has presented a technique for estimating parameters
associated with the hyperbolic decline curve equation. The method
used provides optimum parameter values with minimum residual sum
of squares. The estimated parameters eventually produce the optimum
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forecast function when incorporated into the original hyperbolic decline
equation. This forecast function can be used to generate accurate forecast
values needed for estimating future reserves.

Simplified solution to the vector equation

Let a = (ay, ayy a3)" be the initial guess. Then, by using Equation 7.23, set

the following:

0 3
ft =ajt+ang”’

0
by =a;—ay

0
b, =as—ay

0
b3 =az—as

0
Z,

0
Z,

0
Zs,

_Jf(q,2)

aa1

_ af(%/a)

aaz

_9f(q,a)

aa3

0
=——(ar1tay™)
a;

a=ag

— qta30

a=ag

In
= ane®” " (In g)

a=ag

ng = a206a3 11’1 q,

where t =1, 2,..., n observations. Therefore, the n x 1 matrix Q — £° can be

expressed as

Q-f

Q aio+axngr®

Q.

N (7.32)

Qn_ _am +a20q230_
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Therefore, the n x 3 matrix Z, can be written as

1 qla 30
1 q; 30

1 q; 30

Then, the estimate f, is given by

t=1

n

;(Q,
>

t=1

n
ao E

t=1

=
n

1
n
E : 2 2
ayo CItaSU In q: ao Qtaw 111%
L t=1 t=1

asp
—ajp —axf: )
a3

—ajp —azof%a”)'ﬂh

(Qt —aj— azoﬂtaso ) 57?30 ‘In qr

320‘71a30 In T

azoqé‘” In q2

as
axgs” In g, |

n
an E 3™ In g,
t=1

n
axn ) gi**-Ing,

t=1
n

a3 Y (4 Ing)

t=1
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(7.33)

-1

(7.34)
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Since @;,; = @; + f3; from Equation 7.28, and by using Equation 7.34, we have

- a1

n
n zqtas(]) (])zq??’ In q
— \ asl) 20,0/ () 2a30)
aj=aj+ th Zq ajs th In g,
t=1
M) M) 2330(7) 2\() - 2a4) 2
azOZq ay th Ing, (az) Z(qt % In qt)
t=1

t=1

n

Y (e
Z(Qt —agj) _a;])EIt ’ )

t=1

Z(Q _al_ay) a*”)qus“) (7.35)

aéj)Z(Qf_a ) (]) a3 )D/]aa Mn 0
L t=1

X

Equation 7.35 is very easy to program and can be used for the iterative
process. The process continues until the solution converges, that is, until
successive iterations, j, j + 1, such that

al_a 0

o <d i=1,2,3, (7.36)

where 6 is some prespecified small number.

Integrating neural networks and statistics
for process control

This section explores the opportunities available using a neural network
(NN) back-propagation technique to model process data. The effects of
using different transfer functions (linear, sigmoid, hyperbolic tangent, etc.)
as well as multiple hidden nodes are extensively explored for monitoring
and controlling manufacturing processes. We emphasize some practical
issues useful in developing process control strategies for process optimi-
zation. Some actual examples from industrial experiments are presented.
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These examples are based on statistically designed experiments employ-
ing two-level factorial and fractional factorial designs, as well as a central
composite response surface design. Experiments from a large system con-
sisting of more than 50 independent variables are also considered in the
study. The results obtained from the various NN architectures are com-
pared with those obtained from the statistical linear regression method.
Strengths and weaknesses of each method are identified. The condi-
tions under which one method performs better than the other are fully
explored. We also investigate the circumstances under which the NN and
regression approaches can be integrated with the objective of maximizing
the benefits from both methods.

Fundamentals of neural network

An NN is a system that is modeled after the human brain and arranged
in patterns similar to biological neural nets. The unit analogous to the
biological neuron is referred to as a “processing element” (PE). A PE has
many input paths representing individual neurons. These artificial neu-
rons receive and sum information from other neurons or external inputs,
perform a transformation on the inputs and then pass on the transformed
information to other neurons or external outputs. The output path of a
processing element can be connected to input paths of other processing
elements through connection weights which correspond to the strength
of neural connections. The information passed from neuron to neuron can
be thought of as a way to activate a response from certain neurons based
on the information received.

The most important characteristic of NNs is that they can learn to
simulate any behavior and can be used to generate the action necessary to
produce a given response. Learning is the process of adapting or modify-
ing the connection weights in response to stimuli being presented at the
input buffer and optionally at the output buffer. Back-propagation net-
work is the most common form of NN. This network has an input layer
and at least one hidden layer. There is no theoretical limit on the number
of hidden layers but typically there will be one or two. Each layer is fully
connected to the succeeding layer.

The input function

The simplest input function is a simple weighted input:

n
I= E w;X;
i=1
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A back-propagation element transfers its inputs as
Xj = f (I )/

where f is traditionally the sigmoid function but can be any differentiable
function.

Transfer functions

(@) Linear transfer function

fl2)=2
(b) Hyperbolic tangent
e*—e’"
f@)= e
(c) Sigmoid transfer function
1
f@)= 1+e~*

Statistics and neural networks predictions

Tables 79 through 7.11 provide the actual as well as the predicted values of
the statistical regression method with NNs for various transfer functions.
These results are based respectively on experiments specifically designed
for a 23 replicated factorial design with center points; a 2° central compos-
ite design with center points; as well as a 23 fractional factorial design.
Plots of the various NN methods are shown in Figures 7.5 through 7.10.
Figures 711 through 7.13 provide the graphical comparisons of the various
methods.

Statistical error analysis

Statistical error analysis is used to compare the performance, as well as
the accuracy, of the statistical regression and NN methods (Ayeni and
Pilat, 1992). The accuracy of the predicted values relative to the actual is
determined by various statistical methods. The criteria used in this study
are average relative error (ARE), forecast root mean square error (FRMSE),
minimum error as well as maximum error. The average relative error is the
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Table 7.9 Prediction Comparisons for a 2° Full Factorial Design

Statistics Linear Hyperbolic Sigmoid
Actual prediction prediction tangent prediction
5.4083 5.8087 6.4648 5.9992 6.1625
13.263 13.484 13.4754 13.4031 13.5137
16.921 16.5432 16.572 16.4019 16.3156
24.57 242212 23.5832 24.1862 23.8225
17.094 17.2289 16.7375 17.1906 16.7648
24.272 23.8769 23.7487 23.7327 13.7379
26.667 27.026 26.8453 26.9531 27.1393
32.787 33.1473 33.8565 33.3524 33.3696
19.268 20.167 20.1603 20.2921 20.5331
21.322 20.167 20.1603 20.2921 20.5331
6.1463 5.8087 6.4642 5.9992 6.1625
13.643 13.484 13.4754 13.4031 13.5137
16.103 16.5432 16.572 16.4019 16.3156
23.81 24.2212 23.5832 24.1862 23.8225
17.301 17.2289 16.7375 17.1906 16.7648
23.419 23.8769 23.7487 23.7327 23.7379
27.322 27.026 26.8453 26.9531 27.1393
33.445 33.1473 33.8565 33.3524 33.3696
20.661 20.167 20.1603 20.2921 20.5331
19.92 20.167 20.1603 20.2921 20.5331

relative deviation of the predicted values from the actual. The lower the
average relative error, the more equally distributed is the error between
positive and negative values. The FRMSE is a measure of the dispersion.
A smaller value of FRMSE indicates a better degree of fit.

Tables 7.12 through 7.15 show the results obtained from the error anal-
ysis. The results show that statistical linear regression performs better in
some cases while the hyperbolic tangent transfer function of the NN per-
forms better than any other transfer function.

Integration of statistics and neural networks

In process control, experiments are frequently performed primarily to
measure the effects of one or more variables on a response. From these
effects, one needs to determine significant variables that can be used to
develop control strategies. However, most NNs’ approaches do not pro-
vide information about variables that are significant to the response of
interest. In addition, the coefficients or weights obtained from NN are dif-
ficult to interpret (Ayeni et al., 1993; Ayeni and Koval, 1995).
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Table 7.10 Prediction Comparisons for a 2° Central
Composite Design

Statistics Linear Hyperbolic ~ Sigmoid
Actual prediction prediction tangent prediction
34.2 37.51 30.5013 34.4385 33.4627
12.2 11.25 16.1799 11.0012 11.4857
19.2 14.95 17.7643 19.3777 14.2051
13.85 13.84 3.44269 13.1522 11.9871
42.2 42.71 32.2846 42.1012 40.786
9.8 14.91 17.9633 10.0964 13.2724
12.5 14.3 19.5477 13.1515 14.8784
14.1 11.65 5.2263 12.8587 12.4026
31 30.55 29.3209 30.7354 31.2331
8.3 1.42 6.4067 8.0917 9.7927
41.6 31.01 28.0534 41.1906 36.6313
13.1 16.35 7.6742 13.6192 13.9306
9 11.7 16.9721 10.2448 12.4473
13.2 12.99 17.8638 13.1686 13.0293
18.2 12.99 17.8638 13.1686 13.0293
10.4 12.99 17.8638 13.1686 13.0293
17.3 12.99 17.8638 13.1686 13.0293
8.6 12.99 17.8638 13.1686 13.0293
12.7 12.99 17.8638 13.1686 13.0293
11.6 12.99 17.8638 13.1686 13.0293

Also, most NN packages are lacking in providing response surface
curves needed for process optimization. In this section, we explore the
opportunities available in performing Yates” analysis on NN-trained data.
The results obtained are compared with the Yates” analysis of the actual
data as well as the Yates” analysis from the predicted values of the statisti-
cal regression method. The approach used here can be used in identify-
ing significant variables as well as generating response surface curves for
process optimization.

Figures 7.5 through 79 show the main effects plots from the 2° cen-
tral composite experiment with the actual data, statistical predictions, as
well as plots of NN predictions for various NN transfer functions. These
effects were obtained using Yates” algorithm. They are the average effects
for factor A at five levels (-2, -1, 0, 1, 2), factor B at five levels (-2, -1, 0, 1,
2), and factor C at three levels (-1, -1, 1). Factors A and B are quantitative fac-
tors while factor C is a qualitative factor. The results obtained show that
NN method provides similar results as compared to actual Yates” anal-
ysis as well as the results obtained under statistical regression method.
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Table 7.11 Prediction Comparisons for a 254 Fractional Factorial Design

Statistics Neural Linear Hyperbolic ~ Sigmoid
Actual prediction networklinear prediction tangent prediction
2.67 2.67 3.63503 2.66989 2.685 2.73969
217 2.17 2.33152 2.16992 2.155 2.11396
1.33 1.33 2.32557 1.3301 1.39 1.71533
1.17 1.17 1.30798 1.71004 1.163 1.18535
4.83 4.86 5.05969 4.82995 4.817 4.80184
2.83 2.83 3.75591 2.82991 2.853 2.90004
5.83 5.83 6.08295 5.83005 5.822 5.83877
4 4 5.06537 4.00005 4.038 4.27219
217 2.17 -0.1753 2.17012 2.172 1.8063
2.17 2.17 4.36818 2.16999 2.174 2.14609
3.5 3.5 4.20293 3.50008 3.466 3.41812
3.33 3.33 3.0058 3.32992 3.33 3.32857
6.67 6.67 6.02276 6.66999 6.666 6.66445
9.67 9.67 7.56678 9.67015 9.664 9.42287
4.67 4.67 4.38513 4.66992 4.67 4.67029
2.5 2.5 3.18801 2.50012 2.449 2.39139

42 A

Actual

34 response

Actual

Figure 7.5 Actual effects using Yates” algorithm.

These results indicate that the Yates” analysis can be used on NN-trained
data to determine the effects of variables as well as identifying statistically
significant factors. Figures for interaction plots as well as for other designs
provide similar results, but are not provided here due to limited space.

It is recommended that whenever it is necessary to obtain informa-
tion on significant effects as well as generating response surface curves,
Yates” algorithm can be performed on NNs-trained data. This integration
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Statistics prediction

Statistics

Figure 7.6 Predicted effects using Yates” algorithm: statistics prediction.

Sigmoid prediction

Figure 7.7 Predicted effects using Yates” algorithm: sigmoid prediction function
of neural networks.

Hyperbolic tangent prediction

Tangent

Figure 7.8 Predicted effects using Yates’ algorithm: hyperbolic tangent function
of neural networks.
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Neural net linear prediction

Linear

Figure 7.9 Predicted effects using Yates’ algorithm: linear prediction neural
networks.

Full factorial design
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J Hyperbolic tangent
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—=— Actual ratio

Sigmoid prediction

Design points

Figure 7.10 Graphical comparison of neural networks and statistical method for
a three-factor factorial design.

Central composite design
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—<— Hyperbolic tangent
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Figure 7.11 Graphical comparison of neural networks and statistical method for
a three-factor central composite design.
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Figure 7.12 Graphical comparison of neural networks and statistical method for
284 fractional factorial design.

Table 7.12 Central Composite Design: Statistical Error

Comparison of Methods
Linear Neural Neural Net
regression net Neural hyperbolic
Parameter statistics sigmoid net linear tangent
Average relative error —0.04972  -0.048602 -0.145163 —0.02388
(ARE)
Forecast root mean 0.23451 0.224877 0.53887 0.17005
square error (FRMSE)
Minimum error —-0.52140 —-0.51500 -1.0770 —-0.53120
Maximum error 0.28630 0.284100 0.74500 0.27650

Table 7.13 A 2° Factorial Design: Statistical Error Comparison of Methods

Linear Neural Neural net
regression net Neural  hyperbolic
Parameter statistics sigmoid  netlinear tangent
Average relative error -0.00125  -0.006015 -0.00812  -0.00371
(ARE)
Forecast root mean 0.03059 0.040799 0.053185 0.033937
square error (FRMSE)
Minimum error —-0.07403 —0.139450 -0.19520  -0.10926
Maximum error 0.05493 0.037000 0.054500 0.048300

of neural nets and statistical methods would enable engineers and statisti-

cians to obtain additional information from NNs approach.

Figures 710 through 7.12 provide the graphical comparisons of the
various methods (Ayeni, 1995). The number of hidden nodes used for each
NN approach was equal to the number of input variables. For example, in
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Table 7.14 A 2% Fractional Factorial Design: Statistical Error

Comparison of Methods
Linear Neural Neural net
regression net Neural  hyperbolic
Parameter statistics sigmoid  netlinear tangent DNNA
Average relative 0.0000 -0.007478  —0.0337 -0.000007  —0.0014
error (ARE)
Forecast root 0.0000 0.090165 0.39863 0.000035  -0.01377
mean square
error (FRMSE)
Minimum error 0.0000 -0.289700  -0.7485 -0.000080  -0.04520
Maximum error 0.0000 0.167300 1.08100 0.000040 0.02037

Table 7.15 Statistical Error Comparison of Methods for 50 Factors Large System

Linear Neural Neural net
regression net Neural  hyperbolic
Parameter statistics sigmoid  netlinear tangent DNNA
Average relative ~ —0.01421 0.001216  0.93529 0.017745  -0.019631
error (ARE)
Forecast root 0.13756 0.128879  0.93739 0.101538 0.139777
Mean square
error (FRMSE)
Minimum error -1.23053  -1.14555  0.84756 -0.847010  -1.105730
Maximum error 0.41139 0.424750  0.97797 0.355280 0.454540

a three-factor experiment, we used three hidden nodes. Similarly, for the
eight-factor fractional factorial experiment, we used eight hidden nodes.
We found that too many hidden nodes can cause overtraining which
might lead to predictions that look great. However, predictions on a new
data set are generally bad.

The aforementioned examples confirm that NN approach does work
if carefully applied. The results obtained under different types of orthog-
onally designed experiments show that the statistical linear regression
method provides as good results as NNs. Except for the linear transfer
function of the NN that failed in the situation where the quadratic effect is
significant, the results of other transfer functions compare favorably with
the linear statistical method. The results obtained for the large experiment
with 50 factors are consistent with those of smaller factors. The tabulated
results for different transfer functions are not provided due to limited man-
uscript space. NNs-trained data can be integrated with statistical methods
to obtain additional information about model adequacy, significant factors,
as well as generating response surface curves for process optimization.
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chapter eight

Mathematical modeling
and control of
multi-constrained projects

The premise of this chapter is the development of a generic project schedul-
ing tool that incorporates (1) resource characteristics, such as preferences,
time-effective capabilities, costs, and availability of project resources, and
(2) performance interdependencies among different resource groups, and
proceeds to map the most adequate resource units to each newly sched-
uled project activity. The chapter is based on the work of Milatovic and
Badiru (2004). The principal challenge in this generic model development
is to make it applicable to realistic project environments, which often
involve multifunctional resources, whose capabilities or other character-
istics may cross activities, as well as within a single activity relative to spe-
cific interactions among resources themselves. The scope of this research
challenge further increases when the actual duration, cost, and successful
completion of a project activity is assumed as resource driven and depen-
dent on the choice of particular resource units assigned to it.

The proposed methodology dynamically executes two alternative
procedures: the activity scheduler and resource mapper. The activity scheduler
prioritizes and schedules activities based on their attributes, and may also
attempt to centralize selected resource loading graphs based on activity
resource requirements. The resource mapper considers resource characteris-
tics, incorporates interdependencies among resource groups or types, and
maps the available resource units to newly scheduled activities according
to a project manager’s prespecified mapping (objective) function.

Introduction

Project resources, generally limited in quantity, are the most important
constraints in scheduling of activities. In cases when resources have pre-
specified assignments and responsibilities toward one or more activities,
their allocation is concurrently performed with the scheduling of applica-
ble activities. In other cases, an activity may only require a certain number
of (generic) resource units of particular type(s), which are assigned after

237
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the scheduling of the particular activity. These two approaches coarsely
represent the dominant paradigms in project scheduling. The objective of
this research is to propose a new strategy that will shift these paradigms
to facilitate a more refined guidance for allocation and assignment of proj-
ect resources. In other words, there is a need for tools which will provide
for more effective resource tracking, control, interaction, and, most impor-
tantly, resource-activity mapping.

The main assumption in the methodology of this chapter is that proj-
ect environments often involve multi-capable resource units with dif-
ferent characteristics. This is especially the case in knowledge-intensive
settings and industries, which are predominantly staffed with highly
trained personnel. The specific characteristics considered were resource
preferences, time-effective capabilities, costs, and availability. Each
resource unit’s characteristics may further vary across project activities,
but also within a single activity relative to interaction among resource
units. Finally, resource preferences, cost, and time-effective capabilities
may also independently vary with time due to additional factors, such
as learning, forgetting, weather, type of work, etc. Therefore, although
we do not exclude a possibility that an activity duration is independent
of resources assigned to it, in this research, we assume that it is those
resource units assigned to a particular activity that determine how long it
will take for the activity to be completed.

The scheduling strategy as earlier illustrated promotes a more bal-
anced and integrated activity-resource mapping approach. Mapping the
most qualified resources to each project activity, and thus preserving the
values of resource, is achieved by proper consideration or resource time-
effective capabilities and costs. By considering resource preferences and
availability, which may be entered in either crisp or fuzzy form, the model
enables consideration of personnel’s voice and its influence on a project
schedule and quality. Furthermore, resource interactive dependencies
may also be evaluated for each of the characteristics and their effects
incorporated into resource-activity mapping. Finally, by allowing flexible
and dynamic modifications of scheduling objectives, the model permits
managers or analysts to incorporate some of their tacit knowledge and
discretionary input into project schedules.

Literature review

Literature presents extensive work on scheduling projects by accounting
for worker (resource) preferences, qualifications, and skills, as decisive
factors to their allocation. Yet, a recent survey of some 400 top contrac-
tors in construction showed that 96.2% of them still use basic Critical
Path Method (CPM) for project scheduling (Mattila and Abraham, 1998).
Roberts (1992) argued that information sources for project planners and
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schedulers are increasingly nonhuman, and stressed that planners must
keep computerized tools for project management and scheduling in line
and perspective with human resources used by projects. In other words,
the author warns that too much technicalities may prompt and mislead
the managers into ignoring human aspects of management.

Franz and Miller (1993) considered a problem of scheduling medical
residents to rotations, and approached it as a large-scale multi-period staff
assignment problem. The objective of the problem was to maximize resi-
dents” schedule preferences while meeting hospital’s training goals and
contractual commitments for staffing assistance.

Gray et al. (1993) discussed the development of an expert system to
schedule nurses according to their scheduling preferences. Assuming
consistency in nurses’ preferences, an expert system was proposed and
implemented to produce feasible schedules considering nurses’ prefer-
ences, but also accounting for overtime needs, desirable staffing levels,
patient acuity, etc. A similar problem was also addressed by Yura (1994),
where the objective was to satisfy worker’s preferences for time off as well
as overtime, but under due-date constraints.

Campbell (1999) further considered allocation of cross-trained
resources in multi-departmental service environment. Employers gener-
ally value more resource units with various skills and capabilities for per-
forming greater number of jobs. It is in those cases when managers face
challenges of allocating these workers such that the utility of their assign-
ment to a department is maximized. The results of experiments showed
that the benefits of cross-training utilization may be significant. In most
cases only a small degree of cross-training captured the most benefits,
and tests also showed that beyond a certain amount, the additional cross-
training adds little additional benefits.

Finally, many companies face problems of continuous reassignment
of people in order to facilitate new projects (Cooprider, 1999). Cooprider
suggests a seven-step procedure to help companies consider a wide spec-
trum of parameters when distributing people within particular projects
or disciplines.

Badiru (1993) proposed Critical Resource Diagramming (CRD), which is
a simple extension to traditional CPM graphs. In other words, criticalities
in project activities may also be reflected on resources. Different resource
types or units may vary in skills, supply, or be very expensive. This dis-
crimination in resource importance should be accounted for when carry-
ing out their allocation in scheduling activities.

Unlike activity networks, the CRDs use nodes to represent each
resource units. Also, unlike activities, a resource unit may appear more
than once in a CRD network, specifying all different tasks for which a
particular unit is assigned to. Similar to CPM, the same backward and
forward computations may be performed to CRDs.
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Methodology

The methodology of this chapter represents an analytical extension of
CRDs discussed in Chapter 7. As previously mentioned, the design con-
siderations of the proposed model consist of two distinct procedures:
activity scheduling and resource mapping. At each decision instance dur-
ing a scheduling process, the activity scheduler prioritizes and schedules
some or all candidate activities, and then the resource mapper iteratively
assigns the most adequate resource units to each of the newly scheduled
activities.

Representation of resource interdependencies
and multifunctionality

This study is primarily focused on renewable resources. In addition,
resources are not necessarily categorized into types or groups accord-
ing to their similarities (i.e., into personnel, equipment, space, etc.), but
more according to the hierarchy of their interdependencies. In other
words, we assume that time-effective capabilities, preferences, or even
cost of any particular resource unit assigned to work on an activity may
be dependent on other resource units also assigned to work on the same
activity. Some or all of these other resource units may, in similar fash-
ion, be also dependent on a third group of resources, and so on. Based
on the assumptions mentioned earlier, we model competency of proj-
ect resources in terms of following four resource characteristics: time-
effective capabilities, preferences, cost, and availability. Time-effective
capability of a resource unit with respect to a particular activity is the
amount of time the unit needs to complete its own task if assigned to
that particular activity. Preferences are relative numerical weights that
indicate personnel’s degree of desire to be assigned to an activity, or
manager’s perception on assigning certain units to particular activities.
Similarly, each resource unit may have different costs associated with
it, relative to which activities it gets assigned to. Finally, not all resource
units may be available to some or all activities at all times during project
execution. Thus, the times during which a particular unit is available to
some or all activities are also incorporated into the mapping methodol-
ogy. Each of the characteristics described may vary across different proj-
ect activities. In addition, some or all of these characteristics (especially
time-effective capabilities and preferences) may also vary within a par-
ticular activity relative to resource interaction with other resources that
are also assigned to work on the same activity.

Those resources whose performance is totally independent of their
interaction with other units are grouped together and referred to as the
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type or group “one” and allocated first to scheduled activities. Resource
units whose performance or competency is affected by their interaction
with the type or group “one” units are grouped into type or group “two”
and assigned (mapped) next. Resource units whose competency or per-
formance is a function of type “two” or both types “one” and “two” are
grouped into type “three” and allocated to scheduled activities after the
units of the first two types have been assigned to them.

A project manager may consider one, more than one, or all of the four
characteristics when performing activity-resource mapping. For example, a
manager may wish to keep project costs as low as possible, while at the same
time attempting to use resources with the best time-effective capabilities, con-
sider their availability, and even incorporate their voice (in case of humans)
or his/her own perception (in cases of human or nonhuman resources) in the
form of preferences. This objective may be represented as follows:

U = ft % pl* (1)

(See Appendix A for a detailed notation.)

Mapping units of all resource types according to the same mapping func-
tion may often be impractical and unrealistic. Cost issues may be of greater
importance in mapping some, while inferior to time-effective capabilities
of other resource types. To accommodate the need for a resource-specific
mapping function as mapping objective, we formulated the mapping
function as additive utility function (Keeney and Raiffa, 1993). In such
a case, each of its components pertains to a particular resource type and
is multiplied by a Kronecker’s delta function (Bracewell, 1978). Kronecker’s
delta then detects resource type whose units are currently being mapped
and filters out all mapping function components, except the one that per-
tains to the currently mapped resource type.

As an example, consider again a case where all resource types would
be mapped according to their time-effective capabilities, except in the case
of resource types “two” and “three” where costs would also be of consid-
eration, and in the case of type “five,” resource preferences and availabili-
ties would be considered:

U = f)+ folel™)-d(,2)+ fo(el)-a(, 3)+ fs(pl*,al (k) - 4(j, 5)

The aforementioned example illustrates a case where mapping of resource
units is performed according to filtered portions of a manager’s objec-
tive (mapping) function, which may in turn be dynamically adaptive
and varying with project scheduling time. As previously indicated, some
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resource characteristics may be of greater importance to a manager in the
early scheduling stages of a project rather than in the later stages. Such a
mapping function may be modeled as follows:

U = ot pl al )+ Y f el pl al k) witio i )

seT

where

f is the component of the mapping function that is common to all
resource types

f. is the component of the mapping function that pertains to a specific
project scheduling interval

tio, tin are specific time interval during which resource mapping must
be performed according to a unique function

T is the set of earlier-defined time intervals for a particular project

w(tio, thr, t.) is the window function with a value of one if ¢, falls
within the interval [t{o, t}y;), and zero otherwise

Finally, it is also possible to map different resource types according to
different objectives and at different times simultaneously, by simply com-
bining the two concepts mentioned earlier. For example, assume again that
a manager forms his objective in the early stage of the project based on
resources’ temporal capabilities, costs, and preferences. Then at a later stage,
the manager wishes to drop the costs and preferences and consider only
resource capabilities, with the exception of resource type “three” whose
costs should still remain in consideration for mapping. An example of a
mapping function that would account for this scenario may be as follows:

Uk = f(c*, pl*,t7%)-w(0,30,t.) + ( FEFY+ F(el*)-a(, 3))- w(30,90,t,)

Modeling of resource characteristics

For resource units whose performance on a particular activity is inde-
pendent of their interaction with other units, that is, for the drivers, t,f *is
defined as the time, ¢, it takes kth unit of resource type j to complete its
own task or process when working on activity i. Thus, different resource
units, if multi-capable, can be expected to perform differently on different
activities. Each dependent unit, on the other hand, instead of ¥, generally
has a set of interdependency functions associated with it.

In this research we consider two types of interactive dependencies
among resources, which, due to their simplicity, are expected to be the most
commonly used ones: additive and percentual. Additive interaction between
a dependent and each of its driver resource unit indicates the amount of time
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that the dependent will need to complete its own task if assigned to work
in conjunction with a particular driver. This is in addition to the time the
driver itself needs to spend working on the same activity:

(T/%). = (2 +E4)- oo

where

<jp, kp> € Di*, where Di* is a set of driver units (each defined by an
indexed pair <jp, kp>) for a particular resource unit <j, k>

(T/*). is the zth interactive time-effective dependency of kth unit of
type j on its driver <jp,kp>, z = 1,..., size(Di*). The actual number of
these dependencies will depend on a manager’s knowledge and
familiarity with his/her resources

t/* is the time needed in addition to t/*” for kth dependent unit of type
j to complete its task on activity i if it interacts with its driver unit

ko

" is the binary (zero-one) variable indicating mapping status of the
driver unit <jp, kp>. It equals one if the unit <jp, k> is assigned to
activity 7, and zero if the unit <jj,, k> has been assigned to activity 7.
Therefore, each (T/*), will have a nonzero value only if ¥ is also
nonzero (i.e, if the driver resource unit <jj, kp> has been previously
assigned to activity i)

The percentual interactive dependency is similarly defined as
(T/%). = 7 L+ %)y

where £/*% is the percentage of time by which />
the unit k of type j interacts with its driver <jp, k>.

Modeling cost characteristics follows a similar logic used for repre-
sentation of temporal capabilities and interdependencies. In place of ",
we now define a variable c/*, which represents the cost (say, in dollars)
of kth unit of resource type j if it gets assigned to work on activity 7. This
value of ¢/* may be invariant regardless of a unit’s interaction with other
resources, or it may vary relative to interaction among resources, and thus,
implying cost interdependencies, which need to be evaluated before any
mapping is performed (provided that the cost considerations are, indeed,
a part of a manager’s utility or objective for mapping).

In cases when a cost of a resource unit for an activity varies depend-
ing on its interaction with units of other (lower indexed) types, we define
cost dependencies as

will be prolonged if

(CFz=cl* yPr
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where

y/*? is a binary variable indicating the status of the particular driver

_ resource unit < jj, k>, as defined in the previous section

&* is the interactive cost of kth unit of type j on its driver < jp, k>, with
respect to activity i

(C/*)z is the zth evaluated interactive cost dependency of kth unit of
type j on its driver <jp kp> z = 1, ..., size(D''*). The values of each
(C,J’k)Z equals E,f * when y{D’kD equals one, and zero otherwise. The
actual number of these interactive cost dependencies will again
depend on a manager’s knowledge and information about avail-

able resources

Given a set of cost dependencies, we compute the overall ¢/ *as asum
of all evaluated (C/*)zs as follows:

[P

¢* =) (€M,
z=1

In many instances, due to political, environmental, safety, or community
standards, aesthetics, or other similar nonmonetary reasons, pure mon-
etary factors may not necessarily prevail in decision making. It is those
other nonmonetary factors that we wish to capture by introducing prefer-
ences in resource mapping to newly scheduled activities. The actual rep-
resentation of preferences is almost identical to those of the costs:

(P2 =pl* -yl

where p/* is an interactive preference of kth unit of type j on its driver
< jp kp>, with respect to activity i. (P/*)z is zth evaluated interactive pref-
erence dependency of kth unit of type j, with respect to activity i. Finally,
again identically to modeling costs, p/* is computed as

>

Pt =) (B,

z=1

Having certain number of resource units of each type available for a project
does not necessarily imply that all of the units are available all the time for
the project or any of its activities in particular. Due to transportation, con-
tracts, learning, weather conditions, logistics, or other factors, some units
may only have time preferences for when they are available to start working
on a project activity or the project as a whole. Others may have strict time
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intervals during which they are allowed to start working on a particular
activity or the project as a whole. This latter, strictly constrained availability
may be easily accommodated by the previously considered window func-
tion, w(t, o, ty, to).

In many cases, especially for humans, resources may have a desired
or “ideal” time when to start their work or be available in general. This
flexible availability can simply be represented by fuzzifying the specified
desired times using the following function:

1

al*t)=———
(t) T+a(t, —t/")"

where

t/" is the desired time for kth unit of resource type j to start its task on
activity i. This desirability may either represent the voice of project
personnel (as in the case of preferences), or manager’s perception

“on resource’s readiness and availability to take on a given task

a!”*(t.) is the fuzzy membership function indicating a degree of desir-
ability of <j, k>th unit to start working on activity i, at the decision
instance ¢,

a is the parameter that adjusts for the width of the membership
function

b is the parameter that defines the extent of start time flexibility

Resource mapper

At each scheduling time instance, t,, available resource units are mapped
to newly scheduled activities. This is accomplished by solving | number of
zero-one linear integer problems (i.e., one for each resource type), where
the coefficients of the decision vector correspond to evaluated mapping
function for each unit of the currently mapped resource type:

R;
max z 2U£’k-yi’k forj=1,...,]

heQ(t;) k=1

where

’k . . . . .
Vi is the binary variable of the decision vector
Q(t) is the set of newly scheduled activities at decision instance ¢,

Ay!*resulting in a value of one would mean that kth unit of resource type
jis mapped to ith (i € Q(f,)) newly scheduled activity at t,. The aforementioned
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objective in each of | number of problems is subjected to four types of con-
straints, as illustrated in the following;:

1. The first type of constraints ensures that each newly scheduled activ-
ity receives its required number of units of each project resource type:

zy{’k=r{ forieQ(t,) forj=1,...,]

2. The second type of constraints prevents mapping of any resource
units to more than one activity at the same time at £;:

Zy{’kél fork=1,...,R; forj=1,...,]
)

i€ Q(te

3. The third type of constraints prevents mapping of those resource
units that are currently in use by activities in progress at time £.:

Rj

Zu{;’k-y{"k:O forieQ(t.) forj=1,...,]

k=1

4. The fourth type of constraints ensures that the variables in the deci-
sion vector y/* take on binary values:

ik _
y/*=0orl fork=1,..,R,

ieQt,), forj=1,...,]
Therefore, in the first of the total of | runs at each decision instance ¢,
available units of resource type “one” compete (based on their character-
istics and prespecified mapping function) for their assignments to newly
scheduled activities. In the second run, resources of type “two” compete
for their assignments. Some of their characteristics, however, may vary
depending on the “winners” from the first run. Thus, the information
from the first run is used to refine the mapping of type or group “two”
resources. Furthermore, the information from either or both of the first
two runs is then used in tuning the coefficients of the objective function
for the third run when resources of type “three” are mapped.

Due to the nature of linear programming, zeros in the coefficients
of the objective do not imply that corresponding variables in the solu-
tion will also take the value of zero. In our case, that would mean that
although we flagged off a resource unit as unavailable, the solution may
still map it to an activity. Thus, we need to strictly enforce the interval (un)
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availability by adding information into constraints. Thus, we perturbed
the third mapping constraint which was previously set to prohibit map-
ping of resource units at time ¢, which are in use by activities in progress
at that time. The constraint was originally defined as

Rj

Zu{;k~y{’k:0 forieQ(t,) forj=1,...,]

k=1

To now further prevent mapping of resource units whose a/*(t.) equals
zero at t, we modify the aforementioned constraint as follows:

Rj

N (uf+(1-af t)) yi* =0 forieQt) forj=1,...]

k=1

This modified constraint now not only filters out those resource units that
are engaged in activities in progress at ., but also those units which were
flagged as unavailable at f. due to any other reasons.

Activity scheduler

Traditionally, a project manager estimates duration of each project activity
first, and then assigns resources to it. In this study, although we do not exclude
a possibility that an activity duration is independent of resources assigned
to it, we assume that it is those resource units and their skills or competen-
cies assigned to a particular activity that determine how long it will take for
the activity to be completed. Normally, more capable and qualified resource
units are likely to complete their tasks faster, and vice versa. Thus, activity
duration in this research is considered a resource-driven activity attribute.

At each decision instance f. (in resource-constrained non-preemptive
scheduling as investigated in this study), activities whose predecessors
have been completed enter the set of qualifying activities, Q(t,). In cases of
resource conflicts we often have to prioritize activities in order to decide
which ones to schedule. In this methodology we prioritize activities based
on two (possibly conflicting) objectives:

1. Basic activity attributes, such as the current amount of depleted slack, num-
ber of successors, and initially estimated optimistic activity duration, d;

2. Degree of manager’s desire to centralize (or balance) the loading of one
or more preselected project resource types

Amount of Depleted Slack, S{t), is defined in this research as a measure of
how much total slack of an activity from unconstrained CPM computations
hasbeen depleted each time the activity is delayed in resource-constrained
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scheduling due to lack of available resource units. The larger the S(t,) of
an activity, the more it has been delayed from its unconstrained schedule,
and the greater probability that it will delay the entire project.

Before resource-constrained scheduling of activities (as well as
resource mapping which is performed concurrently) starts, we perform a
single run of CPM computations to determine initial unconstrained Latest
Finish Time, LFT, of each activity. Then, as the resource-constrained activ-
ity scheduling starts, at each decision instance f, we calculate Sit.) for
each candidate activity (from the set Q(f,)) as follows:

tc+d1‘ _ tc+d,'

Si(t.) = =
(k) LFT, LST;+d,

ie Q(t.)

Si(t,), as a function of time, is always a positive real number. The value of
its magnitude is interpreted as follows:

* When Si(t) < 1, the activity i still has some slack remaining and it
may be safely delayed.

* When S(t,) = 1, the activity i has depleted all of its resource-uncon-
strained slack and any further delay to it will delay its completion as
initially computed by conventional unconstrained CPM.

* When S(t,) > 1, the activity i has exceeded its slack and its completion
will be delayed beyond its unconstrained CPM duration.

Once calculated at each f,, the current amount of depleted, St.), is then used
in combination with the other two activity attributes for assessing activ-
ity priority for scheduling. (These additional attributes are the number of
activity successors, as well as its initially estimated duration d;) The number
of successors is an important determinant in prioritizing, because if an
activity with many successors is delayed, chances are that any of its suc-
cessors will also be delayed, thus eventually prolonging the entire project
itself. Therefore, the prioritizing weight, w), pertaining to basic activity
attributes is computed as follows:

Vi d;
ZU,p = Si(tc) : [ maX(Vi) ] ' ( maX(di) ]
where

w! is the activity prioritizing weight that pertains to basic activity
attributes

¢; is the number of successors activities of current candidate activity 7

max(g;) is the maximum number of activity successors in project network

max(d,) is the maximum of the most optimistic activity durations in a
project network
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The second objective that may influence activity prioritizing is a man-
ager’s desire for a somewhat centralized (i.e., balanced) resource loading
graph for one or more resource groups or types. This is generally desir-
able in cases when a manager does not wish to commit all of the available
project funds or resources at the very beginning of the project (Dreger,
1992), or to avoid frequent hiring and firing of project resources (Badiru
and Simin Pulat, 1995).

In this research, we attempt to balance (centralize) loading of pre-
specified resources by scheduling those activities whose resource
requirements will minimize the increase in loading graph’s stair step
size of the early project stages, and then minimize the decrease in the
step size in the later stages. A completely balanced resource loading
graph contains no depression regions, as defined by Konstantinidis
(1998), that is, it is a nondecreasing graph up to a certain point at which
it becomes nonincreasing.

The activity prioritizing weight that pertains to attempting to central-
ize resource loading is computed in this research as follows:

where
w; is the prioritizing weight that incorporates activity resource
_requirements
r/ is the number of resource type j units required by activity i
R; is the total number of resource type j units required for the project

Notice that w! and w; are weights of possibly conflicting objectives in
prioritization of candidate activities for scheduling.

To further limit the range of w; between zero and one, we scale it as
follows:

r
r w;

w; = TS
max(w;)

With the two weights w! and w; defined and computed, we further use
them as the coefficients of activity scheduling objective function:

max Zwi”-xi +W 2(1—60?'361')

i€Q(t) i€Q(t)



250 Industrial control systems

where
x; is the binary variable whose value becomes one if a candidate activity
i€ Q(t,) is scheduled at f,, and zero if the activity i is not scheduled at f,
W is the decision maker’s supplied weight that conveys the impor-
tance of resource centralization (balancing) in project schedule

Notice that W is a parameter that allows a manager to further control
the influence of w!. Large values of W will place greater emphasis on the
importance of resource balancing. However, to again localize the effect
of W to the early stages of a project, we dynamically decrease its value at
each subsequent decision instance, t. according to the following formula:

Z::l di - ZiEH(tc) di
1
2 i=1 di

Wiew = Wou

where
1

d; is the sum of all the most optimistic activity durations (as

i=
determined by conventional resource-unconstrained CPM compu-
tations) for all activities in project network

H(t) is the set of activities that have been so far scheduled by the time ¢,

Figure 8.1 shows a Gantt chart and resource loading graphs of sample
project with seven activities and two resource types. The bottom plot in
the figure is the Gantt chart, the middle plot is the resource loading for
resource type one, and the top plot is the resource loading for resource
type two. Clearly, neither of the two resource types is balanced. The same
project has been rerun using the aforementioned reasoning, and shown in
Figure 8.2. Notice that the loading of resource type two is now fully bal-
anced. The loading of resource type one still contains depression regions,
but to a considerably lesser extent than in Figure 8.1.

With the two weights w! and w] defined and computed, we further
use them as the coefficients of activity scheduling objective function:

max wa-xi +W Z(l_w;'xi)
)

i€Q(te) ieQ(tc

where
x;is the binary variable whose value becomes one if a candidate activity
i€ Q(t)is scheduled at t,, and zero if the activity i is not scheduled at £,
W is the decision maker’s supplied weight that conveys the impor-
tance of resource centralization (balancing) in project schedule



Chapter eight:  Mathematical modeling and control 251

Project completion: t=11.36
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Figure 8.1 Gantt chart and resource loading graphs.

Large values of W will place greater emphasis on the importance of
resource balancing. However, to again localize the effect of W to the early
stages of a project, we dynamically decrease its value at each subsequent
decision instance, ¢, according to the following formula:

2;1 di - ziel—[(tc)di
T
DI

Wnew = Wnld

where
I
.1 d; is the sum of all the most optimistic activity durations (as
determined by conventional resource-unconstrained CPM compu-
tations) for all activities in project network
H(t) is the set of activities that have been so far scheduled by the time t,
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Project completion: t=11.17
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Figure 8.2 Rerun of Gantt chart and resource loading graphs.

Previously, it was proposed that one way of balancing resource loading
was to keep minimizing the increase in the stair step size of the load-
ing graph in the early project stages, and then minimize the decrease
in the step size in the later stages. The problem with this reasoning is
that a continuous increase in the loading graph in early stages may
eventually lead to scheduling infeasibility due to limiting constraints
in resource availability. Therefore, an intelligent mechanism is needed
that will detect the point when resource constraints become binding and
force the scheduling to proceed in a way that will start the decrease in
resource loading, as shown in Figure 8.1. In other words, we need to
formulate a linear programming model whose constraints will drive the
increase in resource stair step—shaped loading function up to a point
when limits in resource availability are reached. At that point, the model
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must adjust the objective function and modify (relax) the constraints, in
order to start minimizing the stair step decrease of resource loading.

To ensure this, the constraints are formulated such that at each deci-
sion instance t, maximal number of candidate activities are scheduled,
while satisfying activity precedence relations, preventing the excess of
resource limitations, and most importantly, flag off the moment when
resource limitations are reached. To facilitate a computer implementation
and prevent the strategy from crashing, we introduce an auxiliary zero—
one variable, ¥, in this study referred to as the peak flag. The value of x
in the decision vector is zero as long as current constraints are capable of
producing a feasible solution. Once that is impossible, all variables in the
decision vector must be forced to zero, except x, which will then take a
value of one and indicate that the peak of resource loading is reached. At
that moment, the constraints that force the increase in resource loading
are relaxed (eliminated).

The peak flag is appended to the previous objective function as follows:

max Zwlp-xi +W 2(1—w,—r-xi) —bx

ieQ(tc) ieQ(tc)

where b is the arbitrary large positive number (in computer implementa-
I

tion of this study, b was takenas b = 2 d;).

=1

There are two types of constraints associated with the aforementioned
objective of scheduling project activities. The first type simply serves to
prevent scheduling of activities, which would overuse available resource
units:

Zrij-xi+ Rj—Zr,-j x< R]-—Zrij , j=1..]

ieQ(tc) ieG(tc) ieG(tc)

where
x;is the candidate activity qualified to be scheduled at ¢,
G(t,) is the set of activities that are in progress at time £,

(Rj _2 r,-’) is the difference between the total available units
ieG(tc)

of resource type j (denoted as R) and the number of units of the
same resource type being currently consumed by the activities in
progress during the scheduling instant ¢,

The second type of constraints serves to force the gradual increase in
the stair step resource loading graphs. In other words, at each scheduling
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instant ¢, this group of constraints will attempt to force the model to
schedule those candidate activities whose total resource requirements are
greater than or equal to the total requirements of the activities that have
just finished at t,. The constraints are formulated as follows:

Zr,fx,-+ Zrij X2 Zr/ , j€D

ieQ(tc) ieF(tc) ieF(tc)

where
F(t) is the set of activities that have been just completed at ¢,
D is the set of manager’s preselected resource types whose loading
graphs are to be centralized (i.e., balanced)

(2 r/ j is the total resource type j requirements by all activities
ieF(t)
that have been completed at the decision instance ¢,

Finally, to ensure an integer zero—one solution, we impose the last
type of constraints as follows:

x; = 0or1, for ieQ(t,)

As previously discussed, once x becomes unity, we adjust the objective
function and modify the constraints that will, from that point on, allow
a decrease in resource loading graph(s). Objective function for activity
scheduling is modified such that the product w; - x; is not being subtracted
from one any more, while the second type of constraints is eliminated
completely:

min —Z wi-x; |- W 2 wy - x;
) )

ieQ(te ieQ(te

subject to

Zrij-xis Rj—Zr,f , j=1...]

ieQ(tc) ieG(tc)

x;=0orl

Since the second type of constraints is eliminated, resource loading
function is now allowed to decrease. The first type of constraints still
remains in place to prevent any overuse of available resources.
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Model implementation and graphical illustrations

The model as described previously has been implemented in a software
prototype Project Resource Mapper (PROMAP), with its code, input format,
and sample outputs illustrated in the appendices. The output consists of
five types of charts. The more traditional ones include project Gantt chart
(Figure 8.3), and resource loading graphs (Figure 8.4) for all resource groups
or types involved in a project. More specific graphs include resource-activity
mapping grids (Figure 8.5), resource utilization (Figure 8.6) and resource cost
(Figure 8.7) bar charts. Based on the imported resource characteristics,
their interdependencies, and the form of the objective, the resource-activity
mapping grid provides a decision support in terms of which units of each
specified resource group should be assigned to which particular project
activity. Therefore, the resource-activity grids are, in effect, the main contri-
butions of this study. Unit utilization charts track the resource assignments
and provide a relative resource usage of each unit relative to the total proj-
ect duration. The bottom (darker shaded) bars indicate the total time it

Project completion: t=89.3
20 T v T v T v v T

Activities

Time

Figure 8.3 Project completion at time 89.3.
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takes each unit to complete all of its own project tasks. The upper (lighted
shaded) bars indicate the total additional time a unit may be locked in
or engaged in an activity by waiting for other units to finish their tasks.
In other words, the upper bars indicate the total possible resource idle
time during which it cannot be reassigned to other activities because it is
blocked waiting for other units to finish their own portions of work. This
information is very useful in non-preemptive scheduling as assumed in
this study, as well as in contract employment of resources. Resource cost
charts compare total project resource expenditures for each resource unit.

The model developed in this chapter represents an initial step toward
a more comprehensive resource-activity integration in project scheduling
and management. It provides for both, effective activity scheduling based
on dynamically updated activity attributes, as well as intelligent iterative
mapping of resources to each activity based on resource characteristics
and preselected shape of project manager’s objectives. The model con-
sists of two complementary procedures: an activity scheduler and resource
mapper. The procedures are alternatively being executed throughout the
scheduling process at each newly detected decision instance, such that
the final output is capable of providing decision support and recommen-
dations with respect to both, scheduling project activities and resource
assignments. This approach allows human, social, as well as technical
resources to interact and be utilized in value creating ways, while facili-
tating effective resource tracking and job distribution control.

Notations
i Project activity i, such thati=1,..., L
Number of activities in project network.
t Decision instance, that is, time moment at which one or more activ-

ities qualify to be scheduled since their predecessor activities have
been completed.

PR(i))  Set of predecessor activities of activity i.

Q(t)  Set of activities qualifying to be scheduled at ¢, i.e, Q(t,) =
{i| PR(i) = O}

j Resource typej,j=1,..., ]

] Number of resource types involved in the project.

R; Number of units of resource type j available for the project.

<jk>  Notation for kth unit of type ;.

r g] Number of resource units type j required by activity i.
ul* Abinary variable with a value of one if kth unit of type j is engaged

in one of the project activities that are in progress at the decision
instance f,, and zero otherwise. All ut:k’s are initially set to zero.

L Time-effective executive capability of kth unit of resource type j
if assigned to work on activity i.
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pi* Preference of kth unit of resource type j to work on activity i.
cl* Estimated cost of kth unit of resource type j if assigned to work on
activity i.

al*(t) Desired start time or interval availability of kth unit of type j to
work on activity 7 at the decision instance ¢.. In many cases this
parameter is invariant across activities, and the subscript i may
often be dropped.
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chapter nine

Online support vector regression
with varying parameters
for time-dependent data*

Support vector regression (SVR) is a machine-learning technique that
continues to receive interest in several domains including manufacturing,
engineering, and medicine (Vapnik, 1998). In order to extend its application
to problems in which data sets arrive constantly and in which batch process-
ing of the data sets is infeasible or expensive, an accurate online support
vector regression (AOSVR) technique was proposed. The AOSVR technique
efficiently updates a trained SVR function whenever a sample is added to or
removed from the training set without retraining the entire training data.
However, the AOSVR technique assumes that the new samples and the
training samples are of the same characteristics; hence, the same value of
SVR parameters is used for training and prediction. This assumption is not
applicable to data samples that are inherently noisy and nonstationary such
as sensor data. As a result, we propose AOSVR with varying parameters
(AOSVR-VP) that uses varying SVR parameters rather than fixed SVR param-
eters and hence accounts for the variability that may exist in the samples. To
accomplish this objective, we also propose a generalized weight function to
automatically update the weights of SVR parameters in online monitoring
applications. The proposed function allows for lower and upper bounds for
SVR parameters. We tested our proposed approach and compared results
with the conventional AOSVR approach using two benchmark time series
data and sensor data from a nuclear power plant. The results show that
using varying SVR parameters is more applicable to time-dependent data.

Introduction

The advances in the various automatic data acquisition and sensor sys-
tems continue to create tremendous opportunities for collecting valuable
process and operational data for several enterprises including automobile

* Adapted and reprinted from Omitaomu, O. A., Jeong, M. K,, and Badiru, A. B,, Online
support vector regression with varying parameters for time-dependent data, IEEE
Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 41 (1), 191-197,
January 2011. © 2011 IEEE.
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manufacturing, semiconductor manufacturing, nuclear power plants,
and transportation. These technologies have also made it possible to infer
the operating conditions of critical system parameters using data from
correlated sensors. This approach is called inferential sensing. Inferential
sensing is the prediction of a system variable through the use of correlated
system variables. Most online monitoring systems produce inferred val-
ues that are used to determine the status of critical system variable. The
values can also be used to monitor drift or other failures in the system,
thereby reducing unexpected system breakdown. Several approaches
have been used for inferential sensing including regularization methods
(Hines et al., 2000) and support vector regression (Omitaomu et al., 2007).
However, these methods assume that the training data are collected in a
single batch. Therefore, each time a new sample is added to the training
set, a new model is obtained by retraining the entire training data. This
approach could be very expensive for online monitoring applications.

Several online monitoring applications require decisions to be made
within minutes of an anticipated problem. For example, in the electric grid
application in which synchrophasors such as phasor measurement units
(PMUgs) are used for monitoring the conditions of the transmission lines
and in which data samples are collected every 1/20th of a second (Bank
et al,, 2009), decisions may be required within few minutes of an impend-
ing problem. In other applications such as nuclear power plants, decisions
may be required within several minutes—for example, 30 min (Hines et al.,
2000). In both examples, the idea of retraining the entire training set every
time new samples are added is not appropriate. The AOSVR technique
(Ma et al., 2003) is a better alternative to SVR because it uses incremental
algorithm that efficiently and accurately updates the SVR parameters each
time a new sample is added to the training set without retraining from
scratch. However, the AOSVR technique assumes that the distribution of
the samples is constant over time. This assumption is not valid for sen-
sor data that are inherently noisy and nonstationary. The nonstationary
characteristic implies that the distribution of the data changes over time,
which leads to gradual changes in the dependency between the input and
output variables. Thus, this feature should be taken into consideration by
the prediction technique. Our solution, then, is to find a way to incorpo-
rate the time-dependent characteristic of the new samples into the AOSVR
technique.

Fundamentally, the performance of AOSVR, like SVR, depends on
three training parameters (kernel, C, and ¢). However, for any particular
type of kernel, the values of C and ¢ are what affect the performance of
the final model. A small value of C underfits the training data points and
a large value of C overfits the training data points. In addition, the number
of support vectors—a subset of training data points used for prediction—
is related to the tube size defined by the value of . A large ¢ reduces
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the number of converged support vectors, thus causing the solution to
be very sparse. Several approaches for computing SVR parameters have
been proposed (Cherkassky and Mulier, 1998; Smola et al., 1998; Mattera
and Haykin, 1999; Scholkopf et al., 1999; Kwok, 2001; Cao and Tay, 2003;
Cherkassky and Ma, 2004). One approach that has been found effective
is using resampling methods. The resampling methods (Cherkassky and
Mulier, 1998; Scholkopf et al., 1999) show good performance for tuning
SVR parameters in off-line applications. However, for online applications,
resampling methods could become computationally expensive, and may
not be appropriate for problems in which both the SVR coefficients and
parameters are updated periodically (Scholkopf et al., 1999). Our approach
is to update, in an automated manner, the respective value of C and ¢,
as new samples are added to the training set. Therefore, in this chapter,
we present procedures for integrating varying weights into the AOSVR
algorithm. To achieve this objective and enhance the performance of
AOSVR, we present a weight function for updating SVR parameters for
online regression problems. In addition, we present a generalized accu-
rate online support vector regression algorithm (AOSVR-VP) that uses
fixed or varying regression parameters.

The outline of the chapter is as follows. In “Modified Gompertz weight
function for varying SVR parameters” section, we introduce a weight func-
tion for updating SVR parameters and discuss the general behaviors of this
function. We present a modification of the AOSVR algorithm called the
AOSVR-VP algorithm in “Accurate online SVR with varying parameters”
section. In “Experimental results” section, we demonstrate the perfor-
mance of the AOSVR-VP algorithm using two benchmark time series data
and nuclear power plant data. We provide some conclusions about this
study in “Conclusion” section.

Modified Gompertz weight function
for varying SVR parameters

For online predictions, one approach for selecting C and ¢ will be to
vary their values with respect to the relative importance of the training
samples. In some applications such as equipment maintenance, recent data
points may provide more quality information about the condition of the
system than past data points especially when sensors are used to moni-
tor the condition of the system. Process condition information increases
monotonically over time starting possibly from a zero or near-zero level.
Therefore, recent data about a possible failure or the deteriorating condi-
tion of a system should be given more weight in predicting failures than
distant data points. In line with this idea, Cao and Tay (2003) proposed
ascending regularization constant and descending tube for batch SVR
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applications in financial data. To extend their idea of using varying SVR
parameters to AOSVR, we propose a simple online weight function for
updating SVR parameters.

One of the popular classical asymmetric functions is the Gompertz
function. It is a double exponential function that has wide applications
in several areas including engineering, natural sciences, and statistics.
However, the standard form of Gompertz function is not flexible in set-
ting lower and upper bounds on weights. For time-dependent data, it is
reasonable to have a fixed lower and upper bounds, so that the weight
varies between these extremes. Therefore, we present Modified Gompertz
Weight Function (MGWF) equations as a weight function for SVR param-
eters. The MGWF equation for adaptive regularization constant (C) is
defined as

C: = Coin + Conon (exp(—exp(—gx(i—mc)))) ©.1)

and the MGWF function for adaptive accuracy parameter (¢,) is defined as

€ = €nin + €max (exp (—exp (g x(i— mc)))) 9.2)

where i = 1,..., m, m is the number of training samples, m, is the chang-
ing point, C,,;, and ¢,,;, are the desired lower bound for the regulariza-
tion constant and the accuracy parameter, respectively, C,,., and ¢,
are the desired upper bound for the regularization constant and the
accuracy parameter, respectively, and g is a constant that controls the cur-
vature (slope) of the function; that is, it represents the factor for the
relative importance of the samples. The essence of the lower bound is
to avoid underestimation (underfitting) and the upper bound avoids
overestimation (overfitting) of the parameters. The value of g could
range from zero to infinity depending on applications but we consider
only four special cases in this chapter. The four cases considered are
summarized as follows and their pictorial representations are shown
in Figure 9.1a and b.

1. Constant weight: When g =0, C; = C;, + C../e and €, = €, + €., /e
That is, a fixed value is used for all data points.

2. Linear weight: When g = 0.005, the value of C; is a linearly
increasing relationship and the value of ¢; is a linearly decreasing
relationship.

3. Sigmoidal weight: When g = 0.03, the weight function follows a
sigmoidal pattern.
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Figure 9.1 The pictorial representations of MGWF with different values of g.

4. Two distinct weights: When g = 5,

Cmin/ l < me €min 1 €max/ 1 < m.
C = . and = :
Cmin + Cmax; 12 me €min 12 me

The plots in Figure 9.1 show that the MGWEF profile is asymmetric around
the midpoint (m,) of the total training set. For the plots in Figure 9.1, the
Chin and C,,,, are set to 5.0 and 60.0, respectively, and ¢,,,;,, and ¢,,,, are set
to 0.01 and 0.45, respectively, for m = 300 and m, = 150.

Based on some experiments, if the recent samples provide more
important information than past samples, ¢ must be greater than
zero (g > 0). Otherwise, ¢ must be less than zero (¢ < 0); these cases
are not considered in this chapter. In this chapter, the lower and the
upper bounds are set using the approach proposed by Cherkassky and
Ma (2004), which is a data-dependent approach and found to be robust
to outliers.
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Accurate online SVR with varying parameters

In order to use the weight function proposed in “Modified Gompertz
weight function for varying SVR parameters” section for computing
adaptive regularization constant and adaptive accuracy parameter, we
propose online SVRAOSVR-VP. This is achieved by modifying both the
empirical error (risk), which is measured by the e-insensitive loss func-
tion, and the constraints of the AOSVR formulation, which will lead to
a new set of KKT conditions. Therefore, the regularized constant adopts
adaptive regularization constant C; and every training sample uses adap-
tive accuracy parameter (different tube size) ¢, The modified algorithm
will compute the SVR parameters, (C; and ¢)), as explained in “Modified
Gompertz weight function for varying SVR parameters” section; while it
avoids retraining of the training set.

Given a set of data points (xy, y1), Xy, ¥2), .-, (X,,s ¥,,) for online learning,
where x; € X C R", y; € Y C R, m is the total number of training samples, a
linear regression function can be stated as

f(x)=wTd(x;)+b 9.3)

in a feature space F, where w is a vector in F and ®(x;) maps the input x
to a vector in F. Assuming an e-insensitive loss function (Cherkassky and
Mulier, 1998), the w and b in Equation 9.3 are obtained by solving an opti-
mization problem:

minimize %WTW + Z‘ G (x? + x{)
Yi—-w'oKx)-b<e+x 94
subject to: (W ®(x;)+b-y; <e+x
X, X 20

where
€,(>0) is the maximum deviation allowed during each training step
C(>0) is the associated penalty for excess deviation during each train-
ing step

The slack variables, x and x;, correspond to the size of this excess devia-
tion for positive and negative deviations, respectively. The first term of
Equation 9.4, w'w, is the regularized term; thus, it controls the function
m
capacity. The second term (2

i=1

(x,-+ +x; )j is the empirical error measured

by the e-insensitive loss function.
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The Lagrange formulation of the dual becomes

1 N + - + - N + -
LD=2;(a,» ~ai)(a] —a,->+;a<a,- +a7)

=) yiai-an)- Y (@al+dia))
i=1 i=1
m m

+Y [u@l-C+ur@i-C)]+bY @i-an) 95

i=1 i=1

the KKT conditions for AOSVR-VP are

p .

aa?’ :;K(x"'xf)(af —aj)+e-yi+b=0

oL N .

aal; =—;K(xi,xj)(a,- —aj)+e+y;—b=0 9.6)
aLD ~ m . N

ab—Z(ai —a,»)—O

Using the following definitions (Ma et al., 2003),
Qij = (I)(xi)Tq)(x]-) = K(Xi,x]')
g =aj—aj 9.7)

g-a-aj
h(x;) = f(xi)-yi = ZQU%‘ —yi+b
j=1

where h(x;)) is the error of the target value for vector i. The KKT conditions
in Equation 9.6 can be rewritten as

Ao _hx)re=yi =0
aai
O - () +e =y =-y +26=0 ©8)

3 m
é;):;qi:()
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wherey ®is the adaptive margin function and can be described as thresh-
old for error on both sides of the adaptive e-tube. Modifying the approach
by Ma et al. (2003), these KKT conditions lead to five new conditions for
AOSVR-VP:

2e,<yi —yi <0, g =-C icE
yi=2e-yi=0 -Ci<q;<0 ieS
O<yi<2¢—>0<y;i<2e, gq=0 ieR 9.9)
yi=0->y;=2e, 0<q <C;, €S
yi<0-yi>2e, =G, ieE*

These conditions can be used to classify the training set into three subsets
defined as follows:

The E set: Error support vectors: E = {i | = Ci}

The S set: Margin support vectors: S = {i‘O <Jai| < CZ} (9.10)

The R set: Remaining samples: R = {i a4 = 0}

Based on these conditions, we modify the AOSVR algorithm appropri-
ately and incorporate the algorithms for computing adaptive SVR param-
eters for the online training as described in “Modified Gompertz weight
function for varying SVR parameters” section. We follow the same
approach proposed in Ma et al. (2003) for initializing and updating the
algorithm.

Experimental results

In this section, we apply the proposed AOSVR-VP to two benchmark
time series data and feed-water flow rate data. For the implementations,
we used a typical online time series prediction scenario as presented
by Tashman (2000) and used a prediction horizon of one time step. The
procedure used is, consider given a time series {x(f), t = 1, 2,...} and
prediction origin O, time from which the prediction is generated, we
construct a set of training samples, A, 5, from the segment of time series
{xt),t=1,..,0}as

Aoy ={X(®),y(t)t=B,...,0-1}
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where X(t) = [x(t), ..., x(t = B + 1)]", y(t) = x(t + 1), and B is the embedding
dimension of the training set A, 5, which in this chapter is taken to be five.
We train the predictor P(A, p; X) from the training set A, . Then, predict
x(O + 1) using X(O + 1) = P(A, i X(O)). When x(O + 1) becomes available,
we update the prediction origin; that is, O = O + 1 and repeat the proce-
dure. As the origin increases, the training set keeps growing and this can
become very expensive. However, online predictions take advantage of
the fact that the training set is augmented one sample at a time and continues
to update and improve the model as more data arrive.

Application to time series data

We also implement the AOSVR-VP algorithm based on the pro-
posed weight function for time series predictions. The performance of
AOSVR-VP is compared to the existing AOSVR using two benchmark
time series data: Mackey-Glass equation with 7z = 17 (Mackey and Glass,
1977) and the Santa Fe Institute Competition time series A (Weigend and
Gershenfeld, 1994). The Mackey—Glass equation (mg17) data has 1500 data
points; whereas the Santa Fe Institute Competition time series A (SFIC)
data has 1000 data points. Both data sets are shown in Figure 9.2. The
measures of prediction performance are the mean squared error (MSE)
and the mean absolute error (MAE).

Tables 9.1 and 9.2 summarize the results (test error) of the experiments
for mgl7 and SFIC data, respectively. In this experiment, we set the value
of Cpin = 5.0, Cpay = 60.0, £, = 0.01, £, = 045, and use a Gaussian radial
basis function (RBF) kernel, exp(—p|x; —x;|*), with p = 1 based on our
experience in implementing the SVR technique. We also implemented the
algorithm for the four cases of weight patterns described in “Modified
Gompertz weight function for varying SVR parameters” section. The
g values for these cases are 0.0 for constant weight, 0.005 for linear weight,
0.3 for sigmoidal weight, and 5.0 for two distinct weights. The plots of the
original and predicted data for two benchmark data are shown in Figures
9.3 and 94, respectively.

As shownin Tables 9.1 and 9.2, AOSVR-VP performs better than AOSVR
for both data sets, which confirms that using varying parameters capture
more of the properties of the data than using fixed parameters. The plots
in Figures 9.3 and 94 further confirm this statement. The error between
AOSVR and AOSVR-VP is more obvious in Figure 9.4 than in Figure 9.3 as
evidenced from Tables 9.1 and 9.2 respectively. One insight from this experi-
ment is that both methods yield comparative results for more stationary
data such as the mg17 data set. However, for non-stationary data set such as
the SFIC data, the AOSVR-VP yields better results. Furthermore, there is no
significant difference in results when g is set to 0.3 or 0.5.

max min max



270 Industrial control systems

Scaled mgl7 data
1 T

1||I| n’r ] '\| :..-‘x “
H, "NWM |I"Ul” ]” ’L
sl

@ O 500 1000
Scaled SFIC data

| —"

(b) Data points

0.5

o

-0.

(92}

-1
1000

Figure 9.2 The scaled data for the benchmark time series data.

Table 9.1 Performance Comparison for
AOSVR-VP and AOSVR for the Mackey—Glass

Equation Data
Technique g value MSE (MAE)
AOSVR 0.0 0.0121 (0.0959)
AOSVR-VP 0.005 0.0011 (0.0294)
0.3 4.65E-05 (0.0058)
5.0 4.63E-05 (0.0058)

Table 9.2 Performance Comparison for
AOSVR-VP and AOSVR for the Santa Fe
Institute Competition Time Series A Data

Technique g value MSE (MAE)

AOSVR 0.0 0.0164 (0.0985)

AQOSVR-VP 0.005 0.0149 (0.0937)
0.3 0.0037 (0.0186)
5.0 0.0037 (0.0186)
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Figure 9.3 A visual comparison between our proposed AOSVR-VP (left) and
AOSVR (right) for the Mackey—Glass time series data. The AOSVR-VP technique
uses MGWF with g = 0.3. For both approaches, only the first 75 data points are
used for training.
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Figure 9.4 A visual comparison of our proposed AOSVR-VP (left) and AOSVR
(right) for the Santa Fe Institute time series data. The AOSVR-VP technique uses
MGWF with g = 0.3. For both approaches, only the first 50 data points are used
for training.

Application to feed-water flow rate data

In a nuclear power plant, the accurate prediction of an important variable,
such as feed-water flow rate, can reduce periodic monitoring. Such predic-
tion can be used to assess sensor performance, thereby reducing mainte-
nance costs and increasing reliability of the instrument. Feed-water flow
rate directly estimates the thermal power of a reactor. Nuclear power plants
use venturi meters to measure feed-water flow rate. These meters are sen-
sitive to measurement degradation due to corrosion products in the feed
water (Gribok et al., 2000). Therefore, measurement error due to feed-water
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fouling results in feed-water flow rate overestimation. As a result, the ther-
mal power of the reactor is also overestimated and the reactor must be
adjusted to stay within regulatory limits, which is an unnecessary action
and involves unnecessary costs.

To overcome this problem, several online inferential sensing sys-
tems have been developed to infer the “true” feed-water flow rate
(Kavaklioglu and Upadhyaya, 1994; Gross et al., 1997, Gribok et al,,
1999, 2000; Hines et al., 2000). Inferential sensing is the use of correlated
variables for prediction. Inferential measurement is different from con-
ventional prediction where a parameter value is estimated at time ¢, ;,
based on information about other parameters at time t,. In inferential
measurements, a parameter is estimated at time ¢, based on informa-
tion about other parameter also at time t,. A detailed description of this
problem is available in Gribok et al. (1999, 2000).

Inferential sensing is an ill-posed problem and SVR has been found
useful for ill-posed problems. For online monitoring of a nuclear power
plant, the application of the AOSVR-VP approach can further enhance pre-
diction accuracy of inferential sensing problems. To infer the feed-water
flow rate, 24 variables were selected as predictors based on engineering
judgment and on their high correlation with the measured feed-water
flow rate (Gribok et al., 1999). The plots of the first 12 predictors are shown
in Figure 9.5. We limited the plots to the first 12 predictors due to space
constraint. The measured flow rate is shown in Figure 9.6. The difference
between the estimated (inferred) flow rate and the measured flow rate is
called drift and the mean of the drift is used to quantify the prediction
performance.

The objective in this application is to determine if we can estimate
the feed-water flow rate at any point in the power cycle. In other words,
is it possible to predict recent data points based on training data points
collected in the past? To answer this question, we used the first 100
data samples from the 24 predictors to train the model and predict
the flow rate from 8001 to 8700 data points (700 data points) shown in
Figure 9.7.

For this implementation, we set C;, = 2.0, C,,, = 20.0, €.,;, = 0.01,
€max = 045, and use the RBF kernel with p = 1. We implemented the
algorithm for the four cases of weight patterns described in “Modified
Gompertz weight function for varying SVR parameters” section. The
g values for these cases are 0.0 for constant weight, 0.005 for linear
weight, 0.3 for sigmoidal weight, and 5.0 for two distinct weights. The
results of the experiment are shown in Table 9.3.

The results show that AOSVR-VP performs better than AOSVR
for these data. The plots of the measured and predicted feed-water
flow rate are shown in Figure 9.8. We observe significant difference
in prediction performance between AOSVR and AOSVR-VP; this is
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Figure 9.5 Plots of the raw data for the first 12 predictors.
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Figure 9.6 A plot of the raw data for the measured flow rate.
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Figure 9.7 The testing data for the AOSVR-VP model.

Table 9.3 Drift Performance for the
Feed-Water Flow Rate Data

Technique  gvalue Mean drift (klb/h)

AOSVR 0.0 67.7703
AQOSVR-VP 0.005 28.3342
0.3 4.0732
5.0 4.0713

shown visually in Figure 9.8. Both sigmoidal weight and two distinct
weights models achieve the smallest mean drift; using linear weight
also achieves smaller mean drift than AOSVR but its value is on the
high side, which indicates that the linear weight is not very useful for
this application.

Based on this major difference in performance, we decided to repeat
the experiment using the same first 100 samples for training but predict-
ing the data point from 101 to 8700. The results are shown in Figure 99.
The mean drift using AOSVR-VP is 8.9634klb/h, while the mean drift for
the AOSVR is 27.2027 klb/h.

One insight from these results is that, due to its performance, it may
be difficult to use the AOSVR technique for prediction at any point in
the power cycle, which was our objective. Another insight is that, com-
pared to the AOSVR-VP technique, it takes the AOSVR technique longer
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Figure 9.8 A visual comparison of the measured and predicted feed-water flow
rate using AOSVR-VP and AOSVR techniques. The AOSVR-VP technique uses
MGWEF with ¢ = 5.0.

time (or more data samples) before it starts to predict more accurately
(i.e., before it becomes more stable). Looking at Figure 9.9, we can say that
AOSVR starts accurate prediction around data point 7000; whereas the
AOSVR-VP technique starts accurate prediction around data point 4300.
It must be noted that both techniques are implemented in an online
mode. The difference in implementation is whether they respectively use
constant or varying values for the SVR parameters.
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Figure 9.9 A visual comparison of the measured and predicted feed-water flow
rate using AOSVR-VP and AOSVR techniques. The AOSVR-VP technique uses

MGWF with g = 0.005.

Conclusion

We have proposed and implemented a weight function, MGWF, for
updating SVR parameters in online regression applications. Based on
the experimental results, the weight function is suitable for integrating
the properties of time series data into online SVR predictions. We also
presented accurate online AOSVR-VP, based on the proposed weight
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function. We compared the performance of the proposed procedure with
conventional AOSVR based on two benchmark time series data and a
nuclear power plant data for feed-water flow rate prediction. As demon-
strated in the experiments, AOSVR-VP predicts better than AOSVR in all
cases in which the data sets are nonstationary. The AOSVR-VP is a gener-
alized procedure that can be used for both fixed and varying properties
as demonstrated with the experiments.
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Quadratic equation

ax*+bx+c=0

Solution

_ —b++b*—4ac

2a

X

If b* — 4ac < 0, the roots are complex.
If b2 — 4ac > 0, the roots are real.
If b* — 4ac = 0, the roots are real and repeated.

Derivation of the solution
Dividing both sides of equation by “a,” (a # 0)

b ¢
X*+-x+-=0
a a

Note: If a = 0, the solution to ax®>+bx+c=01is x = —%.

Rewrite the equation as

279
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b \/b2—4ac Jb? —4ac

x+—==x ==
2a 4q° 2a
b b? —4dac
Xx=——
2a 4q*
e —b++/b*—4ac
2a

Owverall mean

¥ = Tllfl +7’12E2 +1’13E3 +"'+1’lkfk _ an
n+n,+nz+---+n zn
Chebyshev’s theorem
1-1/k?
Permutations

A permutation of m elements from a set of n elements is any arrangement,
without repetition, of the m elements. The total number of all the possible
permutations of n distinct objects taken m times is

P(n,m)= (rzfi'm)'

Example
Find the number of ways a president, vice-president, secretary, and a
treasurer can be chosen from a committee of eight members.

Solution

| |
" _pggy- 8 87654321

- - - =1680
—m)! (8—4)! 4321

P(n,m)= n

There are 1680 ways of choosing the four officials from the committee of
eight members.
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Combinations
The number of combination of n distinct elements taken is given by

n!

C(n,m)= (n=m)

m!(n—m)!’

Example
How many poker hands of 5 cards can be dealt from a standard deck of
52 cards?

Solution
Note: The order in which the five cards are dealt is not important.
n! 52! 52!
Cn,m)y=———-=C(52,5)= =
)= =yt~ )= 515251 = 51471
_ 52.51.50.49.48 — 2 598,963
54321
Failure
n—s
g=l-p=—+
n
Probability

P(X < x) = F(x) = J Fl)dx

Expected value

m=) ()

Variance

- 2 (x-m)’f(x) or s’= J' (x —m)® f (x)dx

Binomial distribution
f@)="ep 1-p""
Poisson distribution

fo)= (np)e
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Mean of a binomial distribution

Variance
s*=npg
where g =1 — p and is the probability of obtaining x failures in the n trials.

Normal distribution

Cumulative distribution function

X —(x-m)

F(x)=P(XSx)=S\/1$J.e 2%y

Population mean

Standard error of the mean

t-Distribution

where
X is the sample mean
u is the population mean
s is the sample standard deviation

Chi-squared distribution

n-1s* _ , _ (n-1)s?
2a/2 S s S 21-a/2

C C
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Definition of set and notation

A set is a collection of object called elements. In mathematics, we write a
set by putting its elements between the curly brackets { }.

Set A containing numbers 3, 4, and 5 is written
A=1{3,4,5}

. Empty set: A set with no elements is called an empty set and it is
denoted by

{}=0

. Subset: Sometimes every element of one set also belongs to another
set:

A=1{3,4,5) and B=1{1,2,3,4,5,6,7},

A set A is a subset of a set B because every element of set A is also an
element of set B, and it is written as

AU B

. Set equality: The sets A and B are equal if and only if they have
exactly the same elements, and the equality is written as

A=B

. Set union: The union of a set A and set B is the set of all elements that
belong to either A or B or both, and is written as

Aubz{x‘xeA or xeBor both}

Set terms and symbols

—_—

COXERINAM

set braces

is an element of

is not an element of
is a subset of

is not a subset of
complement of set A
set intersection

set union

—

~
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Operations on sets

If A, B, and C are arbitrary subsets of universal set U, then the following
rules govern the operations on sets:

1. Commutative law for union
AUB=BUA
2. Commutative law for intersection
ANnB=BnNnA
3. Associative law for union

AuBuUC)=(AuB)uC

4. Associative law for intersection

ANn(BNC)=(AnB)NnC

5. Distributive law for union

AUBNC)=(AuB)N(AULC)

6. Distributive law for intersection

ANBNC)=(AnB)U(ANC(C)

De Morgan’s laws
(AUB) =A'nB (A1)
(AnBY =A'UB (A.2)

The complement of the union of two sets is equal to the intersection of
their complements. The complement of the intersection of two sets is
equal to the union of their complements.

Counting the elements is a set
The number of the elements in a finite set is determined by simply counting
the elements in the set.

If A and B are disjoint sets, then

n(AuB)=n(A)+n(B)
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In general, A and B need not to be disjoint, so
n(AvuB)=n(A)+n(B)-n(AnB)

where n is the number of the elements in a set.

Permutations

A permutation of m elements from a set of n elements is any arrangement,
without repetition, of the m elements. The total number of all the possible
permutations of n distinct objects taken m times is
n!
P(n/m):il (7’127’1’1)
(n—m)!

Example
Find the number of ways a president, vice-president, secretary, and a trea-
surer can be chosen from a committee of eight members.

Solution

! !
P(n, m) = n! = P(8,4) 8! 87654321

= = =1680
(n—m)! (8—4)! 4321

There are 1680 ways of choosing the four officials from the committee of
eight members.

Combinations

The number of combination of n distinct elements taken is given by

C(n,m)=m| ! , (nzm)

I(n—m)!

Example
How many poker hands of five cards can be dealt from a standard deck
of 52 cards?

Solution
Note: The order in which the five cards are dealt is not important.

n! 521 521
, = =C 52,5 = =
Clmm)= 1= C020)= 515051 7 B1az

(n—m)
_ 52.51.50.49.48
5.4.3.2.1

=2,598,963
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Probability terminology

A number of specialized terms are used in the study of probability.

* Experiment: An experiment is an activity or occurrence with an
observable result.

* Outcome: The result of the experiment.

e Sample point: An outcome of an experiment.

e Event: An event is a set of outcomes (a subset of the sample space) to
which a probability is assigned.

Basic probability principles

Consider a random sampling process in which all the outcomes solely
depend on chance, that is, each outcome is equally likely to happen. If S is
a uniform sample space and the collection of desired outcomes is E, the
probability of the desired outcomes is

_E)

P(E) e

where
n(E) is the number of favorable outcomes in E
n(S) is the number of possible outcomes in S

Since E is a subset of S,

0<n(E)<n(S)

the probability of the desired outcome is

0<P(E)<1

Random wvariable

A random variable is a rule that assigns a number to each outcome of a
chance experiment.

Example

1. A coin is tossed six times. The random variable X is the number of
tails that are noted. X can only take the values 1, 2,..., 6, so X is a dis-
crete random variable.

2. A light bulb is burned until it burns out. The random variable Y is
its lifetime in hours. Y can take any positive real value, so Y is a con-
tinuous random variable.
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Mean value x or expected value
The mean value or expected value of a random variable indicates its
average or central value. It is a useful summary value of the variable’s
distribution.

1. If random variable X is a discrete mean value,

n
X =x1p1+Xopy +ee et Xy Py = lepl
i=1

where p; are probability densities.
2. If X is a continuous random variable with probability density func-
tion f(x), then the expected value of X is

+oo

m=EX)= J xf (x)dx

—oo

where f(x) are probability densities.

Series expansions

a. Expansions of common functions

1.1 1
e=1+—+—+—+--

1 2t 3!

2 3

X x° x
er=l+x+—+—+--
2t 3!

2 3
a*=1+xlna+ (xIna) + (xIna) 4o

! 3!

4 6 8
PRI S SO AN

21 31 4!

In = (e=D)= (=1 + L (x=1)' =, 0<x<2
x=1 1(x=1Y 1(x-1Y 1
Inx = += += te, x>
X 20 x 30 «x 2

x-1 1({x=1Y) 1(x-1Y
Inx=2 +— +—= +---|, x>0
x+1 3{x+1 5\ x+1
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2 3 4
]n(]-}-x):x_xi_:,.xi_xi_y..., ‘X‘Sl
2 3 4

3 5
In(a+x)=Ina+2 X +l X +l d e,
2a+x 3\ 2a+x 5\ 2a+x

>0, —a<x<+4oo

1+x 1 1 1
In =2 + 5+ =+, x>0
X 2x+1 3(2x+1)° 52x+1)

X X

cosx=1-—+——-"—+
21 41 6!

x° 20 17x7 | 62x° , P
tanx=x+—+—+ + +-,
3 15 315 2835 4

5 x7
,7,7_'_“_, X <1
6 7

I N¢S)

x3
et
5

N =
NN
N | =

3
-1 X
S x=x+z+

1, 1

tan’1x=x—§x3+gx -1+, x7<1

p 1 i_i x2>]_

tanlx==—— 5 s+,
2 x 3x° bx

3 5 7

sinhx:x+x—+7+7+...
3! 5! 7!

2 4 6
X X X

coshx=1+"+"-+"+---
21 4! 6!
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¥ 2x° 1747

tanhx=x-"—+"—
3 15 315
3 . 5 - 7
nhixoy 1X 1820 1352,
3 245 246 7

. - - . —, x>1
2x* 2.4 4x* 2.4.6 6x°

sinh*1x=1n2x+%.i_1-3 1,135 1
cosh’llenzx_l.%_ﬁ L_ﬁ L_
2 2x* 2.4 4x* 246 6x°
3.5 .7

_ ¥ X x
tanhlx:x+?+—+—+m, x?<1

7

b. Binomial theorem

(a+x)"=a"+na""x+ anu_ D groay2 M1 =1(n=2) 13)'(11 ~2)

xa" 33+, x?<a?

7

c. Taylor series expansion: A function f(x) may be expanded about x = a

if the function is continuous, and its derivatives exist and are finite
atx =a.

0= @+ @0 Vs 0 O

(x—a)""

e fa)

+R,
d. Maclaurin series expansion: The Maclaurin series expansion is a
special case of the Taylor series expansion for a = 0.
= FO+ FO 5+ £ O+ O +r 00 4R,
1! 2! 3! (n=1)!

e. Arithmetic progression: The sum to n terms of the arithmetic
progression

S=a+(@+d)+@+2d)+---+[a+(n-1)d]
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is (in terms of the last number /)
n
S=—(a+l!
S@+h

where !l =a + (n — 1)d.
f. Geometric progression: The sum of the geometric progression to n
terms is

_ 1-r"
S=a+ar+ar*+---+ar"! =a( .
-7

g. Sterling’s formula for factorials

1’l! ~ zpnn+1/2€—;1

Mathematical signs and symbols

+ (¥) plus or minus (minus or plus)
divided by, ratio sign
proportional sign

less than

not less than

greater than

not greater than

approximately equals, congruent
similar to

equivalent to

not equal to

approaches, is approximately equal to

PHIS ROA YV RCA

e varies as

00 Infinity

Therefore

Vv square root

I cube root

A nth root

Z Angle

1 perpendicular to

[ parallel to

| x| numerical value of x

,_.
)
aQ
e}
1
—
)
99
<

common logarithm or Briggsian logarithm
log, or In natural logarithm or hyperbolic logarithm or Napierian
logarithm
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e
a0

’

a

al/

sin

cos

tan

ctn or cot

sec

csc

vers

covers

exsec

sin!

sinh

cosh

tanh

sinh!

ftx) or ¢(x)

Ax

)y

dx

dy/dx or y’

d*y/dx? or y”

dmy/dx"

dy/ox

o"y/ox"
"y

oxdy

base (2.718) of natural system of logarithms
an angle a degrees

a prime, an angle a minutes

a double prime, an angle a seconds, a second
Sine

Cosine

Tangent

Cotangent

Secant

Cosecant

versed sine

coversed sine

Exsecant

anti sine or angle whose sine is

hyperbolic sine

hyperbolic cosine

hyperbolic tangent

anti hyperbolic sine or angle whose hyperbolic sine is
function of x

increment of x

summation of

differential of x

derivative of y with respect to x

second derivative of y with respect to x

nth derivative of y with respect to x

partial derivative of y with respect to x

nth partial derivative of y with respect to x

nth partial derivative with respect to x and y
integral of

integral between the limits a and b

first derivative of y with respect to time
second derivative of y with respect to time
the “Laplacian”

> 9° 9
[axz dy*> Ix’ J
sign of a variation
sign of integration around a closed path

291



292 Appendix: Mathematical and engineering formulae

Greek alphabet
Alpha =A,a=A,a
Beta =B,f=B,b
Gamma =I,y=G,g
Delta =A,6=D,d
Epsilon =E,e=E, e
Zeta =7,{=7,z
Eta =H,n=E,e
Theta =0,0="Th, th
Iota =L:=11i
Kappa =K k=K k
Lambda =A,1=L,1
Mu =M, u=M,m
Nu =N,v=N,n
Xi =5E=X,x
Omicron =0,0=0, 0
Pi =1L, z=Pp
Rho =Pp=Rr
Sigma =X, =5,s
Tau =T, z=T,t
Upsilon =T,v=U,u
Phi =®, ¢ =Ph, ph
Chi =X, x=Ch, ch
Psi =¥, y=DPs, ps
Omega =Q,0=0,0
Algebra

Laws of algebraic operations

a. Commutative law:a +b=b +a,ab =ba
b. Associative law: a + (b + ¢) = (a + b) + ¢, a(bc) = (ab)c
c. Distributive law: c(a + b) = ca + cb

Special products and factors

(x+y) =x"+2xy+y>
(x—y)*=x"-2xy+y’
(x+y)’ =x>+3x%y+3xy* +1°

(x-y)’ =2 -3x%y +3xy* - y°
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(x+y)* =x* +4x°y +6x°y* + dxy® +
(x—y)* =x* -4’y +6x°y* — 4wy’ +y*
(x+y)’ =x° +5x*y +10x°y* +10x°y> + 5xy* + y°
(x—y)’ =x° =5x*y +10x°y* = 10x%y> + 5xy* - y°
(x+1y)° =x°+6x°y +15x*y* +20x°y° + 15x°y* + 6xy° + y°
(x—1y)° =x° —6x°y +15x*y* —20x°y> +15x°y* —6x1° + y°
The results mentioned earlier are special cases of the binomial formula.
=yt =(x-y)(x+y)
=y’ =(x-y)(x* +xy +y?)
¥4y’ =@+ -2y +y)
2oyt = (o)) +y)
-y’ =(x—-y)+ Py + Py xy’ +yt)
4y’ =(x+y)(x -y + 27y —xy’ +yt)
x°—y® =(x—y)(x+y)( +xy +y*)(x* —xy +y*)
iyt +yt = (P ay ) -y +y7)
x* 4yt = (7 + 2xy + 2y7) (2% = 2xy +2y7)

Some generalization of the above are given by the following results where
n is a positive integer:

x2n+1 _y2n+1 — (x _y)(x2n + x2n—1y + x2n—2y2 Foet yzﬂ)

= (x—y)(x2 —2xy cos 2531 +y2)(x2 —2xy cos 2:31 +y2)

2np
| x?-2x + Zj
( YOS oni1 Y
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x2n+1 2n+1 2n 2n-1 2n-2_,2

ty =(x+y)(x —x¥ Y+ xMy —~~+y2”)

2p 2 2 4p 2
=(x+ 2+2 + +2 +
(x y)(x xyCOSZn 1 y)(x xyCOSZn 1 y
2np
el xt42 +1?
(x xyc032 1 y)

xZn n-2 n-3.2 n-3,,2

—y2”=(x—y)(x+y)( o e TR S VAR )( oy Py + xSy —)
:(x—y)(x+y)(x2—2xycosp+y2)(x2—2xyC052p+y2)
n n

~--(x2—2xycos(n_nl)p+y2j

3p
x2ﬂ+ 2”:(x2+2x COSL"' Zj(x2+2x COs + zj
y yeos > +y yeos D +y

--~(x2+2xycos(2nz_1)p+y2)

n

Powers and roots

a*xa’ =a""  "=1[ifa=0]  (ab")=a"b"
ey R (”jx _a
a’ a* b b*

1
(") =a" ax = Yfab = a¥b.

-
xy[o _ i_ YE_%
o =a ~ o o=

Proportion

Ifﬂ_ﬁ thena+b ctd
d’ b 4
a—b:c—d a—b:c—d
b d a+b c+d
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Sum of arithmetic progression to n terms

a+(a+d)+@+2d)+---+(a+n-1)d)
=na+%n(n—1)d=g(a+l),

last term in series=1=a + (n — 1)d

Sum of geometric progression to n terms

o a(l=r"
Sp=a+ar+ar’+---+ar"t = (1 )
—r

lim8, =al(l-r) (-1<r<1)

Arithmetic mean of n quantities A

m+a+---+a
A= 1 2 n
n

Geometric mean of n quantities G
G= (ll1ﬂ2 cee Cln)l/n
(e >0,k=1,2,...,n)

Harmonic mean of n quantities H

1 1(1 1 1
=T S e
H nla a a,

(e >0,k=1,2,...,n)

n L/t
M(t) = [izai ]
k=1

M(t)=0(t <0, some a; zero)

Generalized mean

lim M(t)=max. (ai,a,,...,4,) =max.a
t—oo

lim M(t)=min. (ay,a,,...,4,)=min.a
f—>—oo

295
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lim M(t) = G
M) =A
M(-1)=H

Solution of quadratic equations

Givenazz+bz+c=0

b, 1 5
=—| — |£—¢q2, g=b*—-4ac,
a2 [Za) 207 1 “
Z1+2,=-b/a, ziz,=c/a
If g > 0, two real roots

g =0, two equal roots
g < 0, pair of complex conjugate roots

Solution of cubic equations

Given z2 + 4,22 + a,z + a, = 0, let

1= 3M7 g%
1 1
== —3ay)-—a3
r 6(ﬂ1ﬂ2 o) o7 az

If g% + 2 > 0, one real root and a pair of complex conjugate roots
g* +r*=0, all roots real and at least two are equal
g® +r2 <0, all roots real (irreducible case)

Let

_ -
si=|r+(q° +17%)?

N

N

1
s, =|r—(q° +1r°)?
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then

a
z1=(8 +52)—§2

i3

1
Zz=—§(51+52)—§+7(51 $2)

1 a i3
= —— —+ _
23 2 (51452 3 2 (51—52)

If z,, z,, z5 are the roots of the cubic equation
Z1+2z2y+2z23=—0a
Z1Zy + 2123 + ZpZ3 = (4

212723 = dy

Trigonometric solution of the cubic equation

The form x% + ax + b = 0 with ab # 0 can always be solved by transforming
it to the trigonometric identity

4cos’q—3cosq—cos(3q)=0
Let x = m cos 6, then
x* +ax+b=m’cos’q+amcosq+b=4cos’q—3cosq—cos(3q) =0

Hence,

4 _i: —cos(3q)
m? am b

from which follows that

m=2 ,_ﬂ/ cos(3q) = 3b
3 am

b
Any solution 6, which satisfies cos(3q) = s—m will also have the solutions

2p 4p
+—= and q+—
il 3 and q 3
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The roots of the cubic x3 + ax + b =0 are

a
2 {_f
3C05q1
/ 2p
2 - -
cos (q 3 j
2 /——cos )

Given z* + a,z% + 4,22 + a,z + a, = 0, find the real root u; of the cubic
equation

u® —ayu® +(mas —4ag)u—(ai + agas —4apa,) =0

and determine the four roots of the quadric as solutions of the two quadratic

equations
1 1
2 2 2 2
as as U U
H=F| —+w-a, | n+—F||=| —a| =0
n’ 2 ?( 4 1 2] 2 $|:[ 2) 0:|

If all roots of the cubic equation are real, use the value of 1; which gives
real coefficients in the quadratic equation and select signs so that if

2t a2 v a2z +ay = 2P+ piz+ ) (2R + Pz + )
then

Pr1+pP2=a3, Pip2ti+q2=02, P12+ P21 =01, Gig2 =4do

If z,, z,, 5, z4 are the roots,
E z; =—a;, E 2422 = —

E Zth =y, 21272324 =y

Partial fractions

This section applies only to rational algebraic fractions with numerator of
lower degree than the denominator. Improper fractions can be reduced to
proper fractions by long division.
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Every fraction may be expressed as the sum of component frac-
tions whose denominators are factors of the denominator of the original
fraction.

Let N(x) = numerator, a polynomial of the form

N(x) = 119 + mx + 1x% + -+ myx’

Non-repeated linear factors

Nkx) A +l—"(x)

(x—a)G(x) x—a G(x)

SH
Gx) Jea

F(x) determined by methods discussed in the following sections.

Repeated linear factors

M:ﬁ_F Al Foet Am_l + F(x)
x"G(x) x™  x™! x  G(x)

N(x) = 11, + 11X + 1x% + 13x° +--
F(x)=fo+f1x+f2x2+"',
G(x) = go + g1 +gox* +--

AO:@ AFLAO&

4

8o 8o

A, = 13 —Aogz —A1g1
Qo

General terms

fo =m— A
m* =14 fi = 1y — Ao

f1 =Njn —Aogm
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fo =Ny —Aogz _Algl
m=24 f1 =n3—Aogs —A1g>

f1 =MNjy2 —[A0g1+2 +A181 +1]

fo =ng —Aog3 —Algz —Azg1
m=3 f1 =n3 —A0g4 —A1g3 —Azgz

fi= Njy3 —[Aogj+3 +Aigjn+ Azgj+1]

m=1

any m: fi =nys — E Aigmej1
i=0

N(x) _ A() " A1 I Am—l " F(X)
(x-a)"G(x) (x—a)" (x-a)"" (x—a) G(x)
N'(y)

Change to form by substitution of x = y + a. Resolve into partial

T’lG’
fractions in terms of y as described earlier. Then express in terms of x by
substitution y = x —a.

Repeated linear factors
Alternative method of determining coefficients:

N(x) _ A o Ax Aua | F(x)
(x—a)"G(x) (x—a)" (x—a)"™* x—a G(x)

wetfl)
k! G | .

where D¥ is the differentiating operator, and the derivative of zero order
is defined as

D% =u.

Factors of higher degree
Factors of higher degree have the corresponding numerators indicated:

N(x) __ axta F(x)
(P +hx+h))G(x) x*+hx+hy  G(x)
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N(x) mx+a bix+by N F(x)

2 2 =2 2t
(x“+Mmx+hy) G(x) (x"+hx+hy)” (x"+hx+hy) G(x)

N(x) X taxtag F(x) otc
(P +hox? +x+ho)G(x) x> +hox*+hx+hy Gx)

301

Problems of this type are determined first by solving for the coefficients
due to linear factors as shown earlier, and then determining the remain-

ing coefficients by the general methods given in the following.

Geometry

Mensuration formulas are used for measuring angles and distances in

geometry. Examples are presented as follows.

Triangles

Let K = area, r = radius of the inscribed circle, R = radius of circumscribed

circle.
Right triangle
A+B=C=90°

¢’ =a’ +b* (Pythagorean relations)

a=./(c+b)(c-D)

K=—ab
ab
= , =—C
a+b+c 2
2 2
h=@, m=b—, n="
c c c
Equilateral triangle
A=B=C=60°
15
K:Za\/g
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General triangle

Let s= %(a +b+c), h. = length of altitude on side ¢, ¢, = length of bisector

of angle C, m_ = length of median to side c.

A+B+C=180°

c*=a*+b*-2abcosC (law of cosines)
K= lhcc = 1absinC
2 2

_ c?sin Asin B
2sinC

_abc

=rs=——
4R

= Js(s—a)(s—b)(s—c) (Heron's formula)

. A . B C absinC C
r=csin—sin—sec— = =(s—c)tan—
2 2 2 2s 2
=\/(s—a)(s—b)(s—c) =5=4Rsir1ésir1ﬁsing
s s 2 2 2
c abc _abc

R=———= =—
2sinC 4\/s(s—a)(s—b)(s—c) 4K

h, :asinB:bsinA:%

Menelaus’ theorem
A necessary and sufficient condition for points D, E, F on the respective
side lines BC, CA, AB of a triangle ABC to be collinear is that

BD-CE-AF=-DC-EA-FB,

where all segments in the formula are directed segments.
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Ceva’s theorem

A necessary and sufficient condition for AD, BE, CF, where D, E, F are
points on the respective side lines BC, CA, AB of a triangle ABC, to be
concurrent is that

BD-CE-AF =+DC-EA-FB,

where all segments in the formula are directed segments.

Quadrilaterals
Let K = area, p and q are diagonals.

Rectangle
A=B=C=D=90°

K=ab, p=+a*+b*

Parallelogram

A=C, B=D, A+B=180°
K=bh=absin A =absinB

h=asinA=asinB

p=\Ja* +b* ~2abcos A

g= \/az +b*—2abcosB = \/az +b*+2abcos A
Rhombus

p2+q2=4u2
1
K==
21"7
Trapezoid
1
=—(a+b
m 2(a )

K:%(a+b)h:mh
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General quadrilateral

Lets-——;(a+b+c+d).
K——1 sin
qu q

= i(b2 +d*—a® —c*)tang

_ i\/4p2q2 WP rd - —)

(Bretschneider’s formula)

) \/(S —a)(s—b)(s—c)(s—d)—abed cos® ( A;B j

Theorem
The diagonals of a quadrilateral with consecutive sides a, b, ¢, d are per-
pendicular if and only if a% + c? = b + d2.

Regular polygon of n sides each of length b

Area= Lo cot® = Lop? cos(p/n)

4 sin(p/n)

Perimeter = nb

Circle of radius r

Area =pr?

Perimeter = 2pr
Regular polygon of n sides inscribed in a circle of radius r

Area = %nrz sinz—p = %nrz sin 360

o

Perimeter = 2nr sinB =2nrsin

n n

Regqular polygon of n sides circumscribing a circle of radius r

o

1
Area = nr’ tan £ = nr? tan

o

. 1
Perimeter = 2nr tanB = 2nr tan
n n
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Cyclic quadrilateral
Let R = radius of the circumscribed circle.

A+C=B+D=180°

K=(s—a)(s-b)(s—c)(s—d) = Jlac + bd)(ﬂi; be)(ab +cd)

_ [(ac +bd)(ab + cd)
P ad +bc

_ [(ac +bd)(ad + bc)
1 ab+cd

R= 1 |(ac+bd)(ad + bc)(ab +cd)
"2\ (s—a)(s—=b)(s—c)(s—d)
sin 2K
4= ac+bd

Prolemy’s theorem
A convex quadrilateral with consecutive sides a, b, ¢, d and diagonals
p and q is cyclic if and only if ac + bd = pg.

Cyclic-inscriptable quadrilateral

Let r be the radius of the inscribed circle.

R is the radius of the circumscribed circle.

m is the distance between the centers of the inscribed and the circum-
scribed circles.

A+C=B+D=180°

a+c=b+d
K =+/abcd
1 1 1

+ =
(R-m)*  (R+m)*> +?

Jabcd

S

_1 (ac+bd)(ad + bc)(ab + cd)

R
2 abed
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Sector of circle of radius r
1, .
Area = > rq [q in rad]

Arclengths=rq

Radius of circle inscribed in a triangle of sides a, b, c

. J8(8-a)(8-b)(8—-c)
8

1 o
where s = 5 (a+b+c) = semiperimeter.

Radius of circle circumscribing a triangle of sides a, b, c

abc

R= 4/38-a)8-b)8—c)

where s = %(a +b+c) = semiperimeter.
Segment of circle of radius r
Area of shaded part = %rz(q —sinq)

Ellipse of semi-major axis a and semi-minor axis b
Area =pab

p/2

Perimeter = 4a J- J1-k*sin*qdg

0

=2p /%(az +b*) [approximately]

where k =+ a? -b?/a.

Segment of a parabola

Area = gab
8

2 2 2
Arc length ABC = %m + bln[4a+ d)+16u]

8a b
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Planar areas by approximation

Divide the planar area K into n strips by equidistant parallel chords of
lengths v, y1, Y. .., v, (Where y, and/or y, may be zero), and let h denote
the common distance between the chords.

Then, approximately,

Trapezoidal rule

1 1
K=hl= e Yy =1,
(2y0+y1+y2+ +y 1+2}/j

Durand’s rule

K=h 4 +1—1 +Yot+ys+e+ +E +i
10 Yo 10]/1 Yot Y3 Yn-2 10 Yna 10]/n
Simpson’s rule (n even)
1
K= gh(yo +4y1 +2y, +4ys + 2y -+ 2y, 0 +4Y 1+ Yy)
Weddle’s rule (n = 6)

3
K:Eh(y0+5y1+y2+6y3 +y4+5y5+y6)

Solids bounded by planes
In the following: S = lateral surface, T = total surface, V = volume.

Cube
Let a = length of each edge

T=6a%, diagonal of face = av/2

V=a®, diagonal of cube = a/3

Rectangular parallelepiped (or box)
Let a, b, ¢, be the lengths of its edges.

T =2(ab+bc+ca), V =abc

diagonal =+/a* +b* +¢*
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Prism
S = (perimeter of right section) x (lateral edge)
V = (area of right section) x (lateral edge)

= (area of base) x (altitude)

Truncated triangular prism

V = (area of right section) x %(sum of the three lateral edges)

Pyramid
S of regular pyramid = % (perimeter of base) x (slant height)

V= % (area of base) x (altitude)

Frustum of pyramid
Let B, = area of lower base, B, = area of upper base, h = altitude.

S of regular figure = % (sum of perimeters of base) x (slant height)

V:%h(B1+B2+\/ﬁ)

Prismatoid

A prismatoid is a polyhedron having for bases two polygons in parallel
planes, and for lateral faces triangles or trapezoids with one side lying in
one base, and the opposite vertex or side lying in the other base, of the
polyhedron. Let B, = area of lower base, M = area of midsection, B, = area
of upper base, I = altitude.

V= %h(Bl +4M+B,) (the prismoidal formula)

Note: Since cubes, rectangular parallelepipeds, prisms, pyramids, and
frustums of pyramids are all examples of prismatoids, the formula for
the volume of a prismatoid subsumes most of the aforementioned volume
formulae.

Regular polyhedra

Let

v = number of vertices
e = number of edges
f=number of faces

a = each dihedral angle
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a = length of each edge

r = radius of the inscribed sphere

R = radius of the circumscribed sphere

A = area of each face
T = total area
V = volume

v—e+f=2

T=fA

VzlrfA =er
3 3

309

Name Nature of surface T 1%
Tetrahedron 4 equilateral triangles ~ 1.732054>  0.117854°
Hexahedron (cube) 6 squares 6.000004>  1.000004°
Octahedron 8 equilateral triangles ~ 3.464104>  0.47140a°
Dodecahedron 12 regular pentagons ~ 20.64573a>  7.663124°
Icosahedron 20 equilateral triangles ~ 8.660254>  2.1816942
Name v e f a a r
Tetrahedron 4 6 4 70°32" 1.633R  0.333R
Hexahedron 8 12 6 90° 1.155R  0.577R
Octahedron 6 12 8 190°28 1.414R 0.577R
Dodecahedron 20 30 12 116°34" 0.714R 0.795R
Icosahedron 12 30 20 138°11” 1.051R 0.795R
Name A R \%
1 1 1 1
Tetrahedron —a*\J3 —a+/6 —a\/6 —a®\J2
s 12" 4" V2
1 1
Hexahedron 42 > a ~aJ3 a’
(cube) z
Octahedron %02\/5 %a\/g %a\/f FEND)

Dodecahedron %az\/ 25+10+/5

Icosahedron % 23

%a\/ZSO +11045 %a(\/ﬁ+\/§) %a3(15+7\/§)

1 1 5
Ea\/42+18\/§ Za\/10+ 25 E113(3 +5)
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Sphere of radius r

Volume = %pr?’

Surface area = 4xr?

Right circular cylinder of radius r and height h

Volume = nr2h

Lateral surface area = 2zrh
Circular cylinder of radius r and slant height {

Volume = zr? h = zr? { sin 6
Lateral surface area = p{

Cylinder of cross-sectional area A and slant height {

Volume = Ah = Al sin 0

Lateral surface area = pl

Right circular cone of radius v and height h
1 >
Volume = gpr h

Lateral surface area =prr?+h? =prl

Spherical cap of radius r and height h
Volume (shaded in figure) = %ph2(3r —h)

Surface area = 2arh

Frustum of right circular cone of radii a, b, and height h

Volume = %ph(a2 +ab+b?%)

Lateral surface area = p(a+b)\/h* + (b —a)*

=p(a+Db)l
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Zone and segment of two bases

S=2pRh=pDh
1 2 2 2
V:gph(?)a +3b"+h")

Lune
S =2R3@, 0 in rad

Spherical sector
2 1
V="pR*="pD*
3PN T 6P

Spherical triangle and polygon
Let A, B, C be the angles, in radians, of the triangle; let @ = sum of angles,
in radians, of a spherical polygon on n sides.

S=(A+B+C-p)R?

S=[a-(n-2)p]R?

Spheroids

Ellipsoid
Let a, b, c be the lengths of the semi-axes.

4
V = —pabc
3P

Oblate spheroid

An oblate spheroid is formed by the rotation of an ellipse about its
minor axis. Let a and b be the major and minor semi-axes, respec-
tively, and e the eccentricity, of the revolving ellipse.

b? 1+ e
S=2pa*+p—log,——
pa pe 8 1-€

4
V = Zpa’b
3p
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Prolate spheroid

A prolate spheroid is formed by the rotation of an ellipse about its
major axis. Let a and b be the major and minor semi-axes, respec-
tively, and e the eccentricity, of the revolving ellipse.

S =2ph*+2p a—bsin‘1 €
€

3
V = Zpab?
4p

Circular torus

A circular torus is formed by the rotation of a circle about an axis in the
plane of the circle and not cutting the circle. Let r be the radius of the revolv-
ing circle and let R be the distance of its center from the axis of rotation.

S=4p°Rr
V =2p°Rr?

Formulas from plane analytic geometry
Distance d between two points

Pl(xl,yl) and Pz(xzryz)

d= \/(xz —x1)’ + (12— 1)
Slope m of line joining two points

Pi(x1,y1) and Pi(xp,Y2)

Yo—1

m=""—"—=tanq
Xy — X1

Equation of line joining two points
Pi(x1,y1) and Py(x2,12)
Y=Y _Y2—h

=m Or -y =mx—Xx
X=X Xy —Xq y y ( l)

y=mx+b

XoY1 —X1Y2

where b =y, —mx; =
X — X1

is the intercept on the y axis, that is, the

y intercept.
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Equation of line in terms of x intercept a # 0 and y intercept b # 0

X
—+==1
a

SRS

Normal form for equation of line

xcosa +ysina =p

where
p is the perpendicular distance from origin O to line
a is the angle of inclination of perpendicular with positive x axis

General equation of line

Ax+By+C=0
Distance from point (x,, y,) to line Ax + By + C=0

Ax1 + Byl +C
+VA*+B?
where the sign is chosen so that the distance is nonnegative.
Angle y between two lines having slopes m, and m,

"y — 1y

tany =
1+ nnip

Lines are parallel or coincident if and only if m1; = m,.
Lines are perpendicular if and only if m, = =1/m,.

Avrea of triangle with verticles
At (xy, Y1), (2 ¥2), (X3, Y3)

1 X1 N
Area = iE X2 Y2
X3 Y3

1
=% E(xlyz + Y1X3 + Ys3Xo — YaX3 — Y1Xo2 — X1Y3)

where the sign is chosen so that the area is nonnegative.

If the area is zero the points all lie on a line.
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Transformation of coordinates involving pure translation

x=x"+x X =x4+xo
or

y=y'+yo Y'=y+yo

where
x, y are old coordinates [i.e., coordinates relative to xy system]
(¢, y") are new coordinates [relative to x’ system]
(x yo) are the coordinates of the new origin O’ relative to the old xy
coordinate system

Transformation of coordinates involving pure rotation

{x:x’cosa—y’sina {x’:xcosa +ysina
or

y=x"sina +y’cosa Yy’ =ycosa —xsina

where the origins of the old [xy] and new [xy’] coordinate systems are the

same but the x” axis makes an angle @ with the positive x axis.

Transformation of coordinates involving translation and rotation

{xz x’cosa —y’sina +x,

y =x"sina +y’cosa + ¥,

x' =(x—xp)cosa +(y —yo)sina
or

Yy =y —yo)cosa —(x—xg)sina

where the new origin O’ of x%’ coordinate system has coordinates (x,, 1)
relative to the old xy coordinate system and the x” axis makes an angle a
with the positive x axis.

Polar coordinates (r, 6)
A point P can be located by rectangular coordinates (x, i) or polar coordi-
nates (, 6). The transformation between these coordinates is

{xzrcosq r=yx*+y’

~ or
y=rsing g=tan"'(y/x)
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Plane curves

(P +y?) =ax’y

r =asingcos’q
Catenary, hyperbolic cosine

a _ x
y= E(em +e)=nacosh=
a

Cardioid
(P +y*—ax)* =a* (x> +y°)

r =a(cosq+1)
or

r=a(cosq—1)

[PPA=AP =a]
Circle

x> +y’=a’
r=a

Cassinian curves
X’ +y* =2ax
r =2acosq
x*+y?=ax+by
r=acosq+bsing

Cotangent curve
y=cotx

Cubical parabola

y=ax’, a>0

1
r* = “sec’qtang, a>0
a

315



316 Appendix: Mathematical and engineering formulae

Cosecant curve

y=cscx
Cosine curve
Y =cosx
Ellipse
x*/a* +y*/b* =1
x=acosf
y=bsinf
Gamma function
I(n)= J‘x"’le”‘dx (n>0)
0
I'(n+1
I'(n)= g O>n=#-1,-2,-3,...)
n
Hyperbolic functions
i X _ —X 2
sinhx = € cschx=———
2 e*—e
et —e” 2
coshx = cschx=———
2 e —e
et —e™ e'+e™”
tanhx = cothx =
ef+e’" er—e’"
Inverse cosine curve
Y =arccos x
Inverse sine curve
Yy =arcsin x
Inverse tangent curve
y =arctanx

Logarithmic curve

y=log,x
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Parabola
y=x
Cubical parabola
y=x
Tangent curve
y=tanx
Ellipsoid
2 2 2
L + L + i = 1
a- b” ¢
Elliptic cone
x2 yZ ZZ
St ——=0
a b oc
Elliptic cylinder
x2 2
Hyperboloid of one sheet
x2 yZ ZZ
R A |
PR
Elliptic paraboloid
2 2
;C— + Z—z =cz
Hyperboloid of two sheets
ZZ 2 2
!
Hyperbolic paraboloid
xZ 2
Pl
Sphere

317
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Distance d between two points

P(x1,¥1,z1) and  Py(x2,Y2,22)

d= \/(xz —x) +(y2 —]/1)2 +(z2—21)

Equations of line joining Py(xy, yy, z,) and P,(x,, y,, z,) in standard form

X—X1 _ Y- _ Z—Z
Xo—=X1 Yo—Y1 Z2—Z

or

X=X1 _Y—WY1 _ Z—Zx
/ m n

Equations of line joining P(xy, vy, z;) and Py(x,, Y,, z,) in parametric form
x=x1+lt, y=y+mt, z=z+nt
Angle ¢ between two lines with direction cosines l,, m,, n, and l,, m,, n,
cos £ = i1, + mym, + myn,
General equation of a plane
Ax+By+Cz+D=0

where A, B, C, D are constants.
Equation of plane passing through points

(xl/yllzl)/ (x2/]/2122)/ (x3/]/3r23)

X=X Y-} z-z
Xo—=X1 Yo—Y1 Z20—2Z1 =0
Xz3—X1 Ys—VY1 Z3—2Z

or

YVo—Y1 Z2—2Z Zy—2Z1 X2—Xp

(x=x1)+ (y-m)

Ys—UY1 23— 23—21 X3—Xp

Xo—=X1 Ya2— U1
(z—21)=0

X3—X1 Ys—U1
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Equation of plane in intercept form

E_,.Z.,.E:l
a b ¢

where g, b, ¢ are the intercepts on the x, y, z axes, respectively.
Equations of line through (x,, v, z,) and perpendicular to plane

Ax+By+Cz+D=0

X=Xy =y—yo =Z—Z0
A B C

or x=xo+At, y=yo+Bt, z=z,+Ct

Distance from point (x, y, z) to plane Ax + By + D =0

AxO +By0 +CZO +D
+JA2+ B>+

where the sign is chosen so that the distance is nonnegative.
Normal form for equation of plane

xcosa +ycosb+zcosg=p

where
p is the perpendicular distance from O to plane at P
a, p, y are angles between OP and positive x, y, z axes

Transformation of coordinates involving pure translation
x=x"+x X' =x+x
y=y'+yo or ¥ =y+yo
z=27'+z Z=z+z

where (x, y, z) are old coordinates [i.e, coordinates relative to xyz system)], (x/,
Y, z') are new coordinates [relative to (x’, i/, ) system and (x,, y,, z,) are the
coordinates of the new origin O’ relative to the old xyz coordinate system.

Transformation of coordinates involving pure rotation
x=Lx'+Ly +1Z X' =Lx+my+mz
y=mx +myy +msz’ or <y =hx+myy+nsz

z=mx +ny +n3z’ Z = lLx+myy +nsz
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where the origins of the xyz and x, i/, z’ systems are the same and [,, m,, n;;
L,, m,, ny; I5, my, ny are the direction cosines of the x’, y, z” axes relative to
the x, y, z axes respectively.

Transformation of coordinates involving translation and rotation

x=hx"+bLy + 1z + x
Y =mx +my’ +mzz’ + Y
z=mx +my’ +mz’ + 2z

or

x" = hL(x—x0)+m(y —yo)+m(z—z)
Y = L(x—x0)+my(y —yo) +12(z - 2)

z" = l3(x — x0)+ m3(y — o)+ 13(z — 2p)

where the origin O’ of the xy’z” system has coordinates (x,, v,, z,) relative
to the xyz system and [,, m,, ny; I,, m,, n,; l;, m,, ny are the direction cosines
of the x"’z” axes relative to the x, y, z axes respectively.

Cylindrical coordinates (r, 6, z)
A point P can be located by cylindrical coordinates (7, 6, z) as well as rectan-
gular coordinates (x, y, z). The transformation between these coordinates is

_ 2 2
X =rcosq r=yxty

y=rsing or {g=tan"'(y/x)

zZ=2Z zZ=2Z

Spherical coordinates (r, 0, ¢)
A point P can be located by cylindrical coordinates (7, 6, ¢) as well as rectan-
gular coordinates (x, , z). The transformation between these coordinates is

_ 2 2 2
x=rcosqcosf F=E\XTty t+z

y=rsingsinf or <f=tan"'(y/x)

Z=7rcosq q=cos’1(z/ x2+y2+22)
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Equation of sphere in rectangular coordinates
(x=20)* +(y = y0)* +(z—2)* = R?

where the sphere has cent (x,, v, z,) and radius R.
Equation of sphere in cylindrical coordinates

r? —2ryrcos(q—qo)+ 1§ +(z—20)* = R?

where the sphere has center (ry, 6, z,) in cylindrical coordinates and
radius R.
If the center is at the origin, the equation is

r’+z° =R’
Equation of sphere in spherical coordinates
r* + 13 — 2ryr sing singg cos(f — £o) = R?

where the sphere has center (r,, 6, ¢,) in spherical coordinates and
radius R.
If the center is at the origin, the equation is

r=R
Logarithmic identities

Ln(ziz,)=Lnz,; +Lnz,.

In(z1z,) =Inz; +1Inz, (—p <argz +argz, <p)

z
Ln—lanzl —Lnz,
23

lnﬂ: Inz; —Inz, (-p<argz —argz, <p)
23

Lnz"=nlnz (ninteger)
Inz" =nlnz (ninteger, p <nargz<p)
Special values
In1=0

In0=—oc0
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In(-1) =pi
In(xi) =+ lpi
2

In e = 1, e is the real number such that
=
t
1

e= 1im(1+1) =2.7182818284...

n—o0 n

Logarithms to general base

log,z=1Inz/Ina

log,z= log, 2
log, a
1
log, b=
°8 log, a
log.z=1Inz

logipz=Inz/In10 =logy elnz = (43429 44819...)Inz
Inz =In10log;o z=(2.30258 50929...)logy, z

(loge x =Inx, called natural, Napierian, or hyperbolic logarithms;]

logyox, called common or Briggs logarithms.
Series expansions

1n(1+z):z—lzz+lz3—~-- (jz/l<1and z = -1)
2 3

2 3
Inz= z-1 +1 z-1 +l z-1 +- SKZZ1
z 2( z 3\ z 2
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lnz:(z—l)—%(z—l)z—k%(z—l)?’—-~- (z-1<1,z#0)

z— 1 z-1Y
Inz=2 Kz-l—l}r3(z+1) (z+1J +1 (Rz=>0,z#0)
( j (i 3i 5— ) (\z\zl,z;til)

z YV 1 z Y
In(z+a) lna+2 += +--
2a+z 2a+z 5\2a+z

(@>0,Rz=2-a=z)

Limiting values

limx®Inx=0 (a constant, Ra >0)

xX—>c0

lin(} x*Inx=0 (a constant, Ra >0)
x—

lim [ —In m] =g (Euler’s constant) =.5772156649...
k

Inequalities

L<1r1(1+x)<x (x>-1,x#0)
1+x
x
x<-In(l-x)<—— (x<1,x#0)
1+x

In(1-x)|< %x (0< x <.5828)

Inx<x-1 (x>0)

1/n

Inx <n(x/"-1) for any positive n (x > 0)

In(1-z)|<-In(1-|z) (l2/<1)
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Continued fractions

(z in the plane cut from —1 to — o)

(1+z] 2z z* 47% 97°
In| —|=

1-z) 1-3-5-7-

Polynomial approximations

\/_Sx<\/—

logix=at +ast’ +e(x), t=(x-1)/(x+1)

e(x)| < 6x107
4 =.86304 a=.36415

\/_Sx<\/_

logio x = mt +ast® +ast’ +ast” + agt’ +e(x)

t=(x=-1)/(x+1)

e(x) <107

=.86859 1718
a3 =.28933 5524
as =.17752 2071
a; =.09437 6476
a9 =.19133 7714

0<x<1

In(1+ x) = a1x + apx” + asx° + a,x* + asx° + e(x)
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\e(x)\ <1x10°
a; =.99949 556
a, =.49190 896
az =.28947 478
ay =.13606 275
as =.03215 845
0<x<1
In(1+x) = a1x + 2, + asx® + ayx* + asx® + agx® + a;x” + agx® + e(x)
e(x) <3x107°
a; =.99999 64239
a, =—.49987 41238
az =.33179 90258
ay =—.24073 38084
as =.16765 40711
as =—.09532 93897
a; =.03608 84937

ag =—.00645 35442

Exponential function series expansion

z _ _1+£é+i+... ( = +')
e —eXpZ— 1121 Y zZ=X ly

Fundamental properties

Ln(expz)=z+2kpi (k any integer)

In(expz) = Z(—p < (J.)z Sp)
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exp(Inz) =exp(Lnz) =z

d
4, SPz=expz

Definition of general powers
If N=a®, thenz=log, N
a* =exp(zlna)
Ifa= \a\exp(iarg a) (-p<arga<p)

—varga

aZ

= ‘a‘x e
arg(a®) = yIn|a|+ xarga
Lna® =zlna for one of the values of Ln a*

Ina* =xIna (areal and positive)

Z X

e =e
arg(e’) =y
azlazz — azl +22

a’b* = (ab)* (-p <arga+argb<p)

Logarithmic and exponential functions
Periodic property

z+2pki _ _z

e e* (k any integer)

X

e <L (x<1)
1-x

1 —e)<x (x>-1)
1-x

r<(e-1)<—— (x<1)
1-x

X

1+x > el (x>-1)
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n

ex>1+x—' (n>0,x>0)
n!

Y
e*>[1+x] > % (x>0,y>0)
Yy e

e < 1—% (0 < x <1.5936)

1
Vidh
4

=1 <2l ©<zl<D)

e —1‘ <dl-1< 2] e (all 2)

1
€2a arctan— 2a 112 +1 az +4 112 +9

2=1+
z—a+ 3z+ bz+ 7z+

Polynomial approximations

0<x<In2=.693...
e =1+ mx +ax* +e(x)

e(x) <3x107°

4 =—-.9664
a, =.3536
0<x<In2

e =1+ mx+ ax? + ;x> + aux* + e(x)

e(x) <£3x107°

a4 =—99986 84
a, = .49829 26
a; =—.15953 32
a, =.02936 41

0<x<In2

327
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e =1+ mx + ax® + a3 + ayx* + asx° + agx® + a,x” + e(x)

le(x)|<2x107"

a; =—.99999 99995

a, =.49999 99206

a3 =—.16666 53019

a, =.04165 73475

as =—.00830 13598

as =.00132 98820

a; =-.00014 13161

0<x<1
10" = (1+ ayx + aox” + asx® + agx*)* + e(x)
e(x) <7x10™*
a; =1.14991 96
a, =.67743 23
az =.20800 30
a, =.12680 89
0<x<1
10 = (14 ayx + a,x? + a3x° + aux* + asx® + agx® + a,x”)* + e(x)
e(x) <5x107°
a; =1.15129 277603
a, =.66273 088429

a; =.25439 357484
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as =.07295 173666
as =.01742 111988
ae =.00255 491796
a; =.00093 264267

Surface area of cylinder = 2zrh + 271>
Volume of cylinder = zr* h

Surface area of a cone = 712 + 7rs
pr’h

3

Volume of a cone =

Volume of a pyramid = %h

(B = area of base)
Slopes

Equation of a straight line: y — i, = m(x — x,)

where m = slope _nse
run
_AY _ya-y

Ax X, —x
or
y=mx+b
where m = slope, b = y-intercept.
Trigonometric ratios

sin
tanqg = !

cosq
sin’q+cos’q=1
1+ tan’q = sec’q
1+ cot’q = csc’q
2 s 2
Ccos“q—sin“qg = cos2q

sin45° = i

5

329
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1
cos45’ = =
2

tan45° =1

sin(A + B) =sin Acos B+cos A sinB
sin(A — B) =sin Acos B—cos AsinB
cos(A — B) = cos Acos B—sin Asin B

cos(A—B)=cos AcosB+sin AsinB

tan(A +B) = tan A +tanB
l1-tan AtanB
tan(A—B) = tan A—tanB
1+tan AtanB

sing = X(opposite /hypotenuse) =1/cscq
r

cosq = i(adjacent/ hypotenuse) =1/secq
r

tanqg = X(opposite /adjacent) = 1/cotg
X

3

sin 30° =% sin 60° = —

2
cos 30° = N3 cos 60° = 1
2 2
tan 30° = 1 tan 60° = /3
V3

Sine law

a b c

sinA sinB sinC
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Cosine law
a> =b*+c* —2bccos A
b*>=a*+c*—2accos B
¢ =a’+b*—2abcosC
g=1rad

2p rad = 360°

Algebra
Expanding

a(b+c)=ab+ac
(a+b)* =a”+2ab+b?
(a—b)*=a’-2ab+b’
(@a+b)(c+d)=ac+ad+bc+bd
(a+b)’ =a’+3a’h+3ab” +b°
(a—b)’ =a’-3a’h+3ab*-b’
Factoring
a’-b*=(a+b)a—-b)
a’+2ab+b* = (a+b)’
a’+b’ =(a+b)a’—ab+b?)
a’b—ab=ab(a+1)(a-1)
a’—2ab+b* =(a—b)

a’-b’ =(a-b)a’+ab+b?)
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Roots of quadratic
The solution for a quadratic equation ax? + bx + ¢ =0

_ —b++/b*—4ac

x
2a
Law of exponents
ar .aS — aT+S
a’a P
aT
a’ _
s -4
a
(aV)S — arS
(ab)" =a'b"
a) a
- = b * 0
T
a’=1(a#0)

Logarithms

Example
Log(xy)=Logx + Logy Log[x ] =Logx-Logy
Yy

Logx" =rLogx
Logx =n <> x=10" (Common log) p =~ 3.14159265
log,x=n < x=a" (Log to the basea) e~2.71828183

Lnx=n < x=e" (Natural log)
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Six simple machines for materials handling

Material handling design and implementation constitute one of the basic
functions in the practice of industrial engineering. Calculations related to
the six simple machines are useful for assessing mechanical advantage for
material handing purposes. The mechanical advantage is the ratio of the
force of resistance to the force of effort:

Ma=®
Fe

where
MA is the mechanical advantage
Fy is the force of resistance (N)
Fp is the force of effort (N)

Machine 1: The lever
A lever consists of a rigid bar that is free to turn on a pivot, which is called
a fulcrum

The law of simple machines as applied to levers is

FR'LR :FE'LE

Machine 2: Wheel and axle
A wheel and axle consist of a large wheel attached to an axle so that both
turn together:

Fo-mg-=F 1

where
Fy is the force of resistance (N)
F; is the force of effort (N)
1g is the radius of resistance wheel (m)
re is the radius of effort wheel (m)

The mechanical advantage is

3
MAwheel andaxle =~

R

Machine 3: The pulley

If a pulley is fastened to a fixed object, it is called a fixed pulley. If the pul-
ley is fastened to the resistance to be moved, it is called a moveable
pulley. When one continuous cord is used, the ratio reduces according to
the number of strands holding the resistance in the pulley system.
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The effort force equals the tension in each supporting stand. The
mechanical advantage of the pulley is given by formula

MA ulle :i:ﬂ:n
pulley FE T

where
T is the tension in each supporting strand
N is the number of strands holding the resistance
Fg is the force of resistance (N)
F is the force of effort (N)

Machine 4: The inclined plane
Aninclined plane is a surface set at an angle from the horizontal and used
to raise objects that are too heavy to lift vertically.

The mechanical advantage of an inclined plane is

R 1
MAindined plane = FE = z
where
Fg is the force of resistance (N)
R; is the force of effort (N)
1is the length of plane (m)
h is the height of plane (m)

Machine 5: The wedge
The wedge is a modification of the inclined plane. The mechanical advan-
tage of a wedge can be found by dividing the length of either slope by the
thickness of the longer end.

As with the inclined plane, the mechanical advantage gained by using
a wedge requires a corresponding increase in distance.

The mechanical advantage is

MA=S
T

where
MA is the mechanical advantage
s is the length of either slope (m)
T is the thickness of the longer end (m)
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Machine 6: The screw
A screw is an inclined plane wrapped around a circle. From the law of
machines,

FR'I’ZZFE'UE

However, for advancing a screw with a screwdriver, the mechanical
advantage is

MASCI‘EW = F7R = &
FE h

where
Fy is the force of resistance (N)
F; is the effort force (N)
h is the pitch of screw
U is the circumference of the handle of the screw

Mechanics: Kinematics

Scalars and vectors
The mathematical quantities that are used to describe the motion of
objects can be divided into two categories: scalars and vectors.

a. Scalars: Scalars are quantities that can be fully described by a magni-
tude alone.

b. Vectors: Vectors are quantities that can be fully described by both a
magnitude and direction.

Distance and displacement

a. Distance: Distance is a scalar quantity that refers to how far an object
has gone during its motions.

b. Displacement: Displacement is the change in position of the object. It
is a vector that includes the magnitude as a distance, such as 5 miles,
and a direction, such as north.

Acceleration
Acceleration is the change in velocity per unit of time. Acceleration is a
vector quality.

Speed and velocity

a. Speed: The distance traveled per unit of time is called the speed, for
example, 35 mph. Speed is a scalar quantity.

b. Velocity: The quantity that combines both the speed of an object and
its direction of motion is called velocity. Velocity is a vector quantity.
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Frequency
Frequency is the number of complete vibrations per unit time in simple
harmonic or sinusoidal motion.

Period
Period is the time required for one full cycle. It is the reciprocal of the
frequency.

Angular displacement
Angular displacement is the rotational angle through which any point on
a rotating body moves.

Angular velocity
Angular velocity is the ratio of angular displacement to time.

Angular acceleration
Angular acceleration is the ratio of angular velocity with respect
to time.

Rotational speed
Rotational speed is the number of revolutions (a revolution is one com-
plete rotation of a body) per unit of time.

Uniform linear motion
A path is a straight time. The total distance traveled corresponds with the
rectangular area in the diagram v — t.

a. Distance:
S=Vt
b. Speed:
v=2
t
where

s is the distance (m)
v is the speed (m/s)
t is the time (s)

Uniform accelerated linear motion

1. If yy > 0; a > 0, then
a. Distance:

2
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b. Speed:
n=ny+at

where
s is the distance (m)
v is the speed (m/s)
t is the time (s)
1y is the initial speed (m/s)
a is the acceleration (m/s?)

2. If vy, =0;a >0, then
a. Distance:

The shaded areas in diagram v — t represent the distance s traveled
during the time period t.

b. Speed:
n=a-t
where
s is the distance (m)
v is the speed (m/s)

v, is the initial speed (m/s)
a is the acceleration (m/s?)

Rotational motion
Rotational motion occurs when the body itself is spinning. The path is a
circle about the axis.

1. Distance:
s=1j
2. Velocity:
n=Iw
3. Tangential acceleration:
a, =r-a
4. Centripetal acceleration:
2
a,=wir="0
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where
j is the angle determined by s and r (rad)
o is the angular velocity (s™)
a is the angular acceleration (1/s?)
a, is the tangential acceleration (1/s%)
a, is the centripetal acceleration (1/s?)

Distance s, velocity v, and tangential acceleration a, are proportional to
radius r.

Uniform rotation and a fixed axis
@, = constant; a =0,

a. Angle of rotations:

b. Angular velocity:

where
¢ is the angle of rotation (rad)
o is the angular velocity (s7)
a is the angular acceleration (1/s?)
o, is the initial angular speed (s7)

The shade area in the diagram w — t represents the angle of rotation ¢ = 2zn
covered during time period t.

Uniform accelerated rotation about a fixed axis

1. lf wy>0; a> 0, then
a. Angle of rotation:

.1 1
=—(Wotw)=wot+_at
J 2( 0+w) oty

b. Angular velocity:

W =Wy +at=\/w02+2aj
wo=w—aft=w’—-2aj
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¢. Angular acceleration:

d. Time:

2. If w, = 0; a = constant, then
a. Angle of rotations:

b. Angular velocity:

a2V _2) W
£ 27

d. Time:
po (A _w _23
a a w

Simple harmonic motion

Simple harmonic motion occurs when an object moves repeatedly over
the same path in equal time intervals.
The maximum deflection from the position of restis called “amplitude.”
A mass on a spring is an example of an object in simple harmonic
motion. The motion is sinusoidal in time and demonstrates a single
frequency.

a. Displacement:

s=Asin(w -t+Jg)

b. Velocity:

n= Aw cosw -+ Jg)
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c. Angular acceleration:

a=—Aaw’sin(w -t +3j,)

where
s is the displacement
A is the amplitude
¢, is the angular position at time t =0
@ is the angular position at time t
T is the period

Pendulum
A pendulum consists of an object suspended so that it swings freely back
where

and forth about a pivot.
T=2p \/T
8
T is the period (s)

Iis the length of pendulum (m)
g =9.81 (m/s? or 32.2 (ft/s?)

a. Period:

Free fall
A free-falling object is an object that is falling due to the sole influence of
gravity.

a. Initial speed:

ng=0
b. Distance:
po_8 __m__n®
2 2 29
c. Speed:
n=+gt=—-——= @
d. Time:
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Vertical project

a. Initial speed:

ng >0, (upwards); ny <0, (downwards)

b. Distance:
t? t 2
h= nOt_L = (nO +1’1)*,‘ hmax = nL
2 2g

c. Time:
. ng-n _ 2h _— ng
g joly) +n
where

v is the velocity (m/s)
h is the distance (m)
g is the acceleration due to gravity (m/s?)

Angled projections

Upwards (a <0); downwards (a <0)

a. Distance:
s=ny-tcosa
b. Altitude:
: -t .5
h=ngtsina — AL stana —%7
2 2n,y° cosa
e - ny’sin’a
2g
c. Velocity:
n=Jng’ —2gh = \Jng® + ¢** — 2gnet sina
d. Time:
ngsina 2n,sina
thmax = ; tsl =

4 4

341

(11.1)
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Horizontal projection: (a = 0)

a. Distance:
f2h
S = not =Ny [—
8
b. Altitude:
h= st
2

c. Trajectory velocity:

n=, Ing + g2t2
where

v, is the initial velocity (m/s)

v is the trajectory velocity (m/s)
s is the distance (m)

h is the height (m)

Sliding motion on an inclined plane

1. If excluding friction (4 = 0), then
a. Velocity:

b. Distance:

c. Acceleration:

a=gsina

2. If including friction (u > 0), then
a. Velocity:

b. Distance:
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c. Accelerations:

at’ _nt _n
2 2a

where
u is the coefficient of sliding friction
g is the acceleration due to gravity
g =981 (m/s?
1, is the initial velocity (m/s)
v is the trajectory velocity (m/s)
s is the distance (m)
a is the acceleration (m/s?)
a is the inclined angle

Rolling motion on an inclined plane

1. If excluding friction (f = 0), then

a. Velocity:
n=at= § =+/2as
t
b. Acceleration:
2
a= %sma

c. Distance:

d. Tilting angle:

r? +k*

tana =my [E

2. If including friction (f > 0), then
a. Distance:

b. Velocity:
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c. Accelerations:

,sina —(f/r)cosa
a=gr R
I“+k

d. Tilting angle:

r2+k*—fr
k2

tal’la-min =" tal’la-max =my
r

The value of k can be the calculated by the following formulas:

Ball Solid cylinder  Pipe with low wall thickness
kzzzif’z kzzﬁ k2:ri2+r02zr2
5 2 2
where

s is the distance (m)

v is the velocity (m/s)

a is the acceleration (m/s?)

a is the tilting angle (°)

f is the lever arm of rolling resistance (m)
k is the radius of gyration (m)

U, is the coefficient of static friction

g is the acceleration due to gravity (m/s?)

Mechanics: Dynamics

Newton'’s first law of motion

Newton’s first law is called the Law of Inertia. An object that is in motion
continues in motion with the same velocity at constant speed and in a
straight line, and an object at rest continues at rest unless an unbalanced
(outside) force acts upon it.

Newton'’s second law
The second law of motion is called the Law of Accelerations. The
total force acting on an object equals the mass of the object times its

acceleration.
In equation form, this law is

F=ma

where
F is the total force (N)
m is the mass (kg)
a is the acceleration (m/s?)
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Newton’s third law
The third law of motion, called the Law of Action and Reaction, can be
stated as follows:

For every force applied by object A to object B (action), there is a force
exerted by object B on object A (the reaction) which has the same magni-
tude but is opposite in direction.

In equation form this law is

where
Fj is the force of action (N)
F, is the force of reaction (N)

Momentum of force
The momentum can be defined as mass in motion. Momentum is a vector
quantity; in other words, the direction is important:

p=mn

Impulse of force
The impulse of a force is equal to the change in momentum that the force
causes in an object:

I=Ft

where
p is the momentum (N s)
m is the mass of object (kg)
v is the velocity of object (m/s)
Iis the impulse of force (N s)
F is the force (N)
t is the time (s)

Law of conservation of momentum
One of the most powerful laws in physics is the law of momentum conser-
vation, which can be stated as follows:

In the absence of external forces, the total momentum of the system
is constant.

If two objects of mass m, and mass m,, having velocity v, and v,, col-
lide and then separate with velocity v; and v, the equation for the conser-
vation of momentum is

mn, + mony = MmNy + Mony
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Friction

Friction is a force that always acts parallel to the surface in contact and

opposite to the direction of motion. Starting friction is greater than mov-

ing friction. Friction increases as the force between the surfaces increases.
The characteristics of friction can be described by the following

equation:

Ff=an

where
Fis the frictional force (N)
F, is the normal force (N)
u is the coefficient of friction (u = tan a)

General law of gravity
Gravity is a force that attracts bodies of matter toward each other. Gravity
is the attraction between any two objects that have mass.
The general formula for gravity is
mam
F=r24T8

rZ

where
m,, my are the mass of objects A and B (kg)
F is the magnitude of attractive force between objects A and B (N)
r is the distance between object A and B (m)
I' is the gravitational constant (N m?/kg?)
I'=6.67 x 10'' N m?/kg?

Gravitational force
The force of gravity is given by the equation
Rim
FE=¢g——5
T8 Ry
On the earth surface, h = 0; so
Fs =mg

where
F is the force of gravity (N)
R, is the radius of the Earth (R, = 6.37 x 10° m)
m is the mass (kg)
g is the acceleration due to gravity (m/s?
g =981 (m/s?) or g = 32.2 (ft/s?)
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The acceleration of a falling body is independent of the mass of
the object.
The weight F,, on an object is actually the force of gravity on that object:

E,=mg

Centrifugal force

Centrifugal force is the apparent force drawing a rotating body away
from the center of rotation, and it is caused by the inertia of the body.
Centrifugal force can be calculated by the formula:

mn?

F.= = mw ’r

r

Centripetal force

Centripetal force is defined as the force acting on a body in curvilinear

motion that is directed toward the center of curvature or axis of rotation.
Centripetal force is equal in magnitude to centrifugal force but in the

opposite direction.

where
F, is the centrifugal force (N)
F,, is the centripetal force (N)
m is the mass of the body (kg)
v is the velocity of the body (m/s)
r is the radius of curvature of the path of the body (m)
w is the angular velocity (s7)

Torque

Torque is the ability of a force to cause a body to rotate about a par-
ticular axis. Torque can have either a clockwise or a counterclockwise
direction. To distinguish between the two possible directions of rota-
tion, we adopt the convention that a counterclockwise torque is positive
and that a clockwise torque is negative. One way to quantify a torque is

T=F-I

where
T is the torque (N m or 1b ft)
F is the applied force (N or 1b)
1 is the length of torque arm (m or ft)
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Work
Work is the product of a force in the direction of the motion and the
displacement.

a. Work done by a constant force:
W=F-s=F-s-cosa

where
W is the work (N m =7J)
Fs is the component of force along the direction of movement (N)
s is the distance the system is displaced (m)

b. Work done by a variable force: If the force is not constant along the
path of the object, we need to calculate the force over very tiny inter-
vals and then add them up. This is exactly what the integration over
differential small intervals of a line can accomplish:

sf sf
W= JE(S)-ds = JP(S)Cosa -ds

where

F,(s) is the component of the force function along the direction
of movement (N)

F(s) is the function of the magnitude of the force vector along
the displacement curve (N)

s; is the initial location of the body (m)

s;is the final location of the body (m)

a is the angle between the displacement and the force

Energy

Energy is defined as the ability to do work. The quantitative rela-
tionship between work and mechanical energy is expressed by the
equation:

TME; + W, = TME;

where
TME, is the initial amount of total mechanical energy (J)
W,,, is the work done by external forces (J)
TME; s the final amount of total mechanical energy (J)
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There are two kinds of mechanical energy: kinetic and potential.

a. Kinetic energy: Kinetic energy is the energy of motion. The follow-
ing equation is used to represent the kinetic energy of an object:

Ek = 1 mn2
2
where
m is the mass of moving object (kg)
v is the velocity of moving object (m/s)

b. Potential energy: Potential energy is the stored energy of a body
and is due to its internal characteristics or its position. Gravitational
potential energy is defined by the formula

Ey=m-g-h

where

E,, is the gravitational potential energy ()
m is the mass of object (kg)
h is the height above reference level (m)

g is the acceleration due to gravity (m/s?)

Conservation of energy
In any isolated system, energy can be transformed from one kind to
another, but the total amount of energy is constant (conserved):

E=E;+E, +E, +---=constant

Conservation of mechanical energy is given by

E; +E, = constant

Power

Power is the rate at which work is done, or the rate at which energy is
transformed from one form to another. Mathematically, it is computed
using the following equation:

pW
t
where
P is the power (W)
W is the work (J)
t is the time (s)
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The standard metric unit of power is the watt (W). As is implied by
the equation for power, a unit of power is equivalent to a unit of work
divided by a unit of time. Thus, a watt is equivalent to Joule/second (J/s).
Since the expression for work is

W=F-s,
the expression for power can be rewritten as
P=F:n

where
s is the displacement (m)
v is the speed (m/s)
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