
EURASIP Journal on Embedded Systems

Embedded Digital Signal
Processing Systems

Guest Editors: Jarmo Henrik Takala, Shuvra S. Bhattacharyya,
and Gang Qu

Embedded Digital Signal
Processing Systems

EURASIP Journal on Embedded Systems

Embedded Digital Signal
Processing Systems

Guest Editors: Jarmo Henrik Takala,
Shuvra S. Bhattacharyya, and Gang Qu

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in volume 2007 of “EURASIP Journal on Embedded Systems.” All articles are open access articles
distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Editor-in-Chief
Zoran Salcic, University of Auckland, New Zealand

Associate Editors
Sandro Bartolini, Italy
Neil Bergmann, Australia
Shuvra Bhattacharyya, USA
Ed Brinksma, The Netherlands
Paul Caspi, France
Liang-Gee Chen, Taiwan
Dietmar Dietrich, Austria
Stephen A. Edwards, USA
Alain Girault, France
Rajesh K Gupta, USA
Susumu Horiguchi, Japan

Thomas Kaiser, Germany
Bart Kienhuis, The Netherlands
Chong-Min Kyung, Korea
Miriam Leeser, USA
John McAllister, UK
Koji Nakano, Japan
Antonio Nunez, Spain
Sri Parameswaran, Australia
Zebo Peng, Sweden
Marco Platzner, Germany
Marc Pouzet, France

S. Ramesh, India
Partha Roop, New Zealand
Markus Rupp, Austria
Asim Smailagic, USA
Leonel Sousa, Portugal
Jarmo Henrik Takala, Finland
Jean-Pierre Talpin, France
Jürgen Teich, Germany
Dongsheng Wang, China

Contents

Embedded Digital Signal Processing Systems, Jarmo Takala, Shuvra S. Bhattacharyya, and Gang Qu
Volume 2007, Article ID 27517, 1 page

Observations on Power-Efficiency Trends in Mobile Communication Devices, Olli Silven and Kari Jyrkkä
Volume 2007, Article ID 56976, 10 pages

The Sandbridge SB3011 Platform, John Glossner, Daniel Iancu, Mayan Moudgill, Gary Nacer,
Sanjay Jinturkar, Stuart Stanley, and Michael Schulte
Volume 2007, Article ID 56467, 16 pages

A Shared Memory Module for Asynchronous Arrays of Processors, Michael J. Meeuwsen, Zhiyi Yu,
and Bevan M. Baas
Volume 2007, Article ID 86273, 13 pages

Implementing a WLAN Video Terminal Using UML and Fully Automated Design Flow, Petri Kukkala,
Mikko Setälä, Tero Arpinen, Erno Salminen, Marko Hännikäinen, and Timo D. Hämäläinen
Volume 2007, Article ID 85029, 15 pages

pn: A Tool for Improved Derivation of Process Networks, Sven Verdoolaege, Hristo Nikolov,
and Todor Stefanov
Volume 2007, Article ID 75947, 13 pages

A SystemC-Based Design Methodology for Digital Signal Processing Systems, Christian Haubelt,
Joachim Falk, Joachim Keinert, Thomas Schlichter, Martin Streubühr, Andreas Deyhle, Andreas Hadert,
and Jürgen Teich
Volume 2007, Article ID 47580, 22 pages

Priority-Based Heading One Detector in H.264/AVC Decoding, Ke Xu, Chiu-Sing Choy,
Cheong-Fat Chan, and Kong-Pang Pun
Volume 2007, Article ID 60834, 7 pages

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 27517, 1 page
doi:10.1155/2007/27517

Editorial
Embedded Digital Signal Processing Systems

Jarmo Takala,1 Shuvra S. Bhattacharyya,2 and Gang Qu2

1 Institute of Digital and Computer Systems, Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere, Finland
2 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

Received 6 March 2007; Accepted 6 March 2007

Copyright © 2007 Jarmo Takala et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With continuing progress in VLSI and ASIC technologies,
digital signal processing (DSP) algorithms have continued
to find great use in increasingly wide application areas. DSP
has gained popularity also in embedded systems although
these systems set challenging constraints for implementa-
tions. Embedded systems contain limited resources, thus em-
bedded DSP systems must balance tradeoffs between the re-
quirements on computational power and computational re-
sources. Energy efficiency has been important in battery-
powered devices, but nowadays also the limited heat dissi-
pation in small devices calls for low-power consumption.
Successful implementation of DSP applications in embedded
systems requires tailoring, which in turn sets challenges for
design methodologies.

For this special issue, we received 14 submissions and a
collection of seven papers was finally accepted. The special
issue is opened by “Observations on power-efficiency trends in
mobile communication devices,” where the authors O. Silvén
and K. Jyrkkä analyze the power consumption in the cur-
rent mobile communication devices. Several bottlenecks in
the current implementation style have been identified, thus
the paper provides a good motivation for the following pa-
pers.

In “The Sandbridge SB3011 platform,” the authors John
Glossner et al. describe a system-on-a-chip (SoC) multipro-
cessor targeted as a software-defined radio platform. The
platform provides solutions to the challenges in future mo-
bile devices given in the previous paper.

“A shared memory module for asynchronous arrays of pro-
cessors” authored by Michael J. Meeuwsen et al. considers also
chip multiprocessors. The presented shared memory module
can be used for interprocess communication or to increase
application performance by parallelizing computation.

In “Implementing a WLAN video terminal using UML
and fully automated design flow” by Petri Kukkala et al., an
automated design flow for multiprocessor SoC is presented.

The flow is based on UML descriptions and the authors
demonstrate their design flow with a design case.

Programming of chip multiprocessor platforms is con-
sidered in “pn: a tool for improved derivation of process net-
works” by Sven Verdoolaege et al. The paper discusses con-
version of sequential programs to process networks allowing
optimization of communication channels and buffers.

In “A SystemC-based design methodology for digital signal
processing systems,” the authors Christian Haubelt et al. de-
scribe a design flow for SoC designs containing automatic
design space exploration, performance evaluation, and auto-
matic platform-based system generation. The design flow is
based on SystemC descriptions and the presented tools can
automatically detect the underlying model of computation.

Application-specific implementations are often used
to speedup certain DSP tasks in embedded systems. In
“Priority-based heading one detector in H.264/AVC decoding,”
the authors Ke Xu et al. consider such implementations to
speed up video decoding applications. The authors present
a low-power decoder implementation for context-adaptive
variable length coding defined in H.264 standard.

Jarmo Takala
Shuvra S. Bhattacharyya

Gang Qu

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 56976, 10 pages
doi:10.1155/2007/56976

Research Article
Observations on Power-Efficiency Trends in
Mobile Communication Devices

Olli Silven1 and Kari Jyrkkä2

1 Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, 90014 Linnanmaa, Finland
2 Technology Platforms, Nokia Corporation, Elektroniikkatie 3, 90570 Oulu, Finland

Received 3 July 2006; Revised 19 December 2006; Accepted 11 January 2007

Recommended by Jarmo Henrik Takala

Computing solutions used in mobile communications equipment are similar to those in personal and mainframe computers.
The key differences between the implementations at chip level are the low leakage silicon technology and lower clock frequency
used in mobile devices. The hardware and software architectures, including the operating system principles, are strikingly similar,
although the mobile computing systems tend to rely more on hardware accelerators. As the performance expectations of mobile
devices are increasing towards the personal computer level and beyond, power efficiency is becoming a major bottleneck. So far,
the improvements of the silicon processes in mobile phones have been exploited by software designers to increase functionality
and to cut development time, while usage times, and energy efficiency, have been kept at levels that satisfy the customers. Here
we explain some of the observed developments and consider means of improving energy efficiency. We show that both processor
and software architectures have a big impact on power consumption. Properly targeted research is needed to find the means to
explicitly optimize system designs for energy efficiency, rather than maximize the nominal throughputs of the processor cores
used.

Copyright © 2007 O. Silven and K. Jyrkkä. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

During the brief history of GSM mobile phones, the line
widths of silicon technologies used for their implementa-
tion have decreased from 0.8 µm in the mid 1990s to around
0.13 µm in the early 21st century. In a typical phone, a basic
voice call is fully executed in the baseband signal processing
part, making it a very interesting reference point for compar-
isons as the application has not changed over the years, not
even in the voice call user interface. Nokia gives the “talk-
time” and “stand-by time” for its phones in the product spec-
ifications, measured according to [1] or an earlier similar
convention. This enables us to track the impacts of techno-
logical changes over time.

Table 1 documents the changes in the worst case talk-
times of high volume mobile phones released by Nokia be-
tween 1995 and 2003 [2], while Table 2 presents approxi-
mate characteristics of CMOS processes that have made great
strides during the same period [3–5]. We make an assump-
tion that the power consumption share of the RF power am-
plifier was around 50% in 1995. As the energy efficiency

of the silicon process has improved substantially from 1995
to 2003, the last phone in our table should have achieved
around an 8-hour talk-time with no RF energy efficiency im-
provements since 1995.

During the same period (1995–2003) the gate counts
of the DSP processor cores have increased significantly, but
their specified power consumptions have dropped by a fac-
tor of 10 [4] from 1 mW/MIPS to 0.1 mW/MIPS. The phys-
ical sizes of the DSP cores have not essentially changed. Ob-
viously, processor developments cannot explain why the en-
ergy efficiency of voice calls has not improved. On the mi-
crocontroller side, the energy efficiency of ARM7TMDI, for
example, has improved more than 30-fold between 0.35 and
0.13 µm CMOS processes [5].

In order to offer explanations, we need to briefly analyze
the underlying implementations. Figure 1 depicts stream-
lined block diagrams of baseband processing solutions of
three product generations of GSM mobile phones. The DSP
processor runs radio modem layer 1 [6] and the audio codec,
whereas the microcontroller (MCU) processes layers 2 and 3
of the radio functionality and takes care of the user interface.

2 EURASIP Journal on Embedded Systems

Table 1: Talk times of three mobile phones from the same manu-
facturer.

Year Phone model Talk time Stand by time Battery capacity

1995 2110 2 h 40 min 30 h 550 mAh

1998 6110 3 h 270 h 900 mAh

2003 6600 3 h 240 h 850 mAh

Table 2: Past and projected CMOS processes development.

Design rule (nm) Supply voltage (V)
Approximate normalized
power∗delay/gate

800 (1995) 5.0 45

500 (1998) 3.3 15

130 (2003) 1.5 1

60 (2010) 1 0.35

During voice calls, both the DSP and MCU are therefore ac-
tive, while the UI introduces an almost insignificant portion
of the load.

According to [7] the baseband signal processing ranks
second in power consumption after RF during a voice call,
and has a significant impact on energy efficiency. The base-
band signal processing implementation of 1995 was based on
the loop-type periodically scheduled software architecture of
Figure 2 that has almost no overhead. This solution was orig-
inally dictated by the performance limitations of the proces-
sor used. Hardware accelerators were used without interrupts
by relying on their deterministic latencies; this was an inher-
ently efficient and predictable approach. On the other hand,
highly skilled programmers, who understood the hardware
in detail, were needed. This approach had to be abandoned
after the complexity of DSP software grew due to the need
to support an increasing number of features and options and
the developer population became larger.

In 1998, the DSP and the microcontroller taking care
of the user interface were integrated on to the same chip,
and the DSP processors had become faster, eliminating some
hardware accelerators [8]. Speech quality was enhanced at
the cost of some additional processing on the DSP, while
middleware was introduced on the microcontroller side.

The implementation of 2003 employs a preemptive oper-
ating system in the microcontroller. Basic voice call process-
ing is still on a single DSP processor that now has a multilevel
memory system. In addition to the improved voice call func-
tionality, lots of other features are supported, including en-
hanced data rate for GSM evolution (EDGE), and the num-
ber of hardware accelerators increased due to higher data
rates. The accelerators were synchronized with DSP tasks via
interrupts. The software architecture used is ideal for large
development teams, but the new functionalities, although
idling during voice calls, cause some energy overhead.

The need for better software development processes has
increased with the growth in the number of features in the
phones. Consequently, the developers have endeavoured to
preserve the active usage times of the phones at a constant
level (around three hours) and turned the silicon level ad-
vances into software engineering benefits.

Table 3: An approximate power budget for a multimedia capable
mobile phone in 384 kbit/s video streaming mode.

System component
Energy consumption

(mW)

RF receiver and cellular modem 1200

Application processors
and memories

600

User interface (audio, display,
keyboard; with backlights)

1000

Mass memories 200

Total 3000

In the future, we expect to see advanced video capabili-
ties and high speed data communications in mobile phones.
These require more than one order of magnitude more com-
puting power than is available in recent products, so we have
to improve the energy efficiency, preferably at faster pace
than silicon advances.

2. CHARACTERISTIC MODERN MOBILE
COMPUTING TASKS

Mobile computing is about to enter an era of high data rate
applications that require the integration of wireless wide-
band data modems, video cameras, net browsers, and phones
into small packages with long battery powered operation
times. Even the small size of phones is a design constraint
as the sustained heat dissipation should be kept below 3 W
[9]. In practice, much more than the capabilities of current
laptop PCs is expected using around 5% of their energy and
space, and at a fraction of the price. Table 3 shows a possible
power budget for a multimedia phone [9]. Obviously, a 3.6 V
1000 mAh Lithium-ion battery provides only 1 hour of active
operation time.

To understand how the expectations could be met, we
briefly consider the characteristics of video encoding and
3GPP signal processing. These have been selected as repre-
sentatives of soft and hard real time applications, and of dif-
fering hardware/software partitioning challenges.

2.1. Video encoding

The computational cost of encoding a sequence of video im-
ages into a bitstream depends on the algorithms used in the
implementation and the coding standard. Table 4 illuminates
the approximate costs and processing requirements of cur-
rent common standards when applied to a sequence of 640-
by-480 pixel (VGA) images captured at 30 frames/s. The cost
of an expected “future standard” has been linearly extrapo-
lated based on those of the past.

If a software implementation on an SISD processor is
used, the operation and instructioncounts are roughly equal.
This means that encoding requires the fetching and decoding

O. Silven and K. Jyrkkä 3

RF

Display

Keyboard

External
memory

Mixed
signal

BB

SRAM DSP

LOGIC

SRAM MCU

1995

RO
M DSP

LOGIC

MCU

CacheBB ASIC

External
memory

1998
SRAM DSP

LOGIC Cache

MCU

CacheBB ASIC

External
memory

2003

Figure 1: Typical implementations of mobile phones from 1995 to 2003.

Read mode instructions from master

GMSK bit detection

Channel decoding

Speech decoding

Speech coding

GMSK modulation

8-PSK bit detection

Data channel decoding

Data channel coding

8-PSK modulation

Buffer full

Figure 2: Low overhead loop-type software architecture for GSM baseband.

Table 4: Encoding requirements for 30 frames/s VGA video.

Video standard Operations/pixel
Processing speed

(GOPS)

MPEG-4 (1998) 200–300 2-3

H.264-AVC (2003) 600–900 6–10

“Future” (2009-10) 2000–3000 20–30

of at least 200–300 times more instructions than pixel data.
This has obvious implications from energy efficiency point
of view, and can be used as a basis for comparing implemen-
tations on different programmable processor architectures.

Figure 3 illustrates the Mpixels/s per silicon area (mm2)
and power (W) efficiencies of SISD, VLIW, SIMD, and the
monolithic accelerator implementations of high image qual-
ity (> 34 dB PSNR) MPEG-4 VGA (advanced simple profile)
video encoders. The quality requirement has been set to be
relatively high so that the greediest motion estimation algo-
rithms (such as a three-step search) are not applicable, and
the search area was set to 48-by-48 pixels which fits into the
on-chip RAMs of each studied processor.

All the processors are commercial and have instruc-
tions set level support for video encoding to speed-up at
least summed absolute differences (SAD) calculations for 16-
by-16 pixel macro blocks. The software implementation for
the SISD is an original commercial one, while for VLIW
and SIMD the motion estimators of commercial MPEG-4

1

2

3

4

A
re

a
effi

ci
en

cy

100 200 300 400 500 600

Energy efficiency

Gab in power efficiency

A SIMD flavored mobile signal processor

A VLIW mediaprocessor
A mobile microprocessor

Mobile processor
with a monolithic

accelerator

Figure 3: Area (Mpixels/s/mm2) and energy efficiencies (Mpix-
els/s/W) of comparable MPEG-4 encoder implementations.

ASP codecs were replaced by iterative full search algorithms
[10, 11]. As some of the information on processors was ob-
tained under confidentiality agreements, we are unable to
name them in this paper. The monolithic hardware acceler-
ator is a commercially available MPEG-4 VGA IP block [12]
with an ARM926 core.

In the figure, the implementations have been normal-
ized to an expected low power 1 V 60 nm CMOS process.
The scaling rule assumes that power consumption is propor-
tional to the supply voltage squared and the design rule, while
the die size is proportional to the design rule squared. The
original processors were implemented with 0.18 and 0.13 µm
CMOS.

4 EURASIP Journal on Embedded Systems

Table 5: Relative instruction fetch rates and control unit sizes versus area and energy efficiencies.

Solution
Instruction
fetch/decode rate

Control unit size Area efficiency Energy efficiency

SISD Operation rate Relatively small Lowest Lowest

VLIW Operation rate Relatively small Average Average

SIMD
Less than
operation rate

Relatively small Highest Good

Monolithic
accelerator

Very low
(control code)

Very small Average Highest

We notice a substantial gap in energy efficiency between
the monolithic accelerator and the programmed approaches.
For instance, around 40 mW of power is needed for encoding
10 Mpixels/s using the SIMD extended processor, while the
monolithic accelerator requires only 16 mW. In reality, the
efficiency gap is even larger as the data points have been de-
termined using only a single task on each processor. In prac-
tice, the processors switch contexts between tasks and serve
hardware interrupts, reducing the hit rates of instruction and
data caches, and the branch prediction mechanism. This may
easily drop the actual processing throughput by half, and, re-
spectively, lowers the energy efficiency.

The sizes of the control units and instruction fetch rates
needed for video encoding appear to explain the data points
of the programmed solutions as indicated by Table 5. The
SISD and VLIW have the highest fetch rates, while the SIMD
has the lowest one, contributing to energy efficiency. The ex-
ecution units of the SIMD and VLIW occupy relatively larger
portions of the processor chips: this improves the silicon area
efficiency as the control part is overhead. The monolithic ac-
celerator is controlled via a finite state machine, and needs
processor services only once every frame, allowing the pro-
cessor to sleep during frames.

In this comparison, the silicon area efficiency of the hard-
ware accelerated solution appears to be reasonably good, as
around 5 mm2 of silicon is needed for achieving real-time en-
coding for VGA sequences. This is better than for the SISD
(9 mm2) and close to the SIMD (around 4 mm2). However,
the accelerator supports only one video standard, while sup-
port for another one requires another accelerator, making
hardware acceleration in this case the most inefficient ap-
proach in terms of silicon area and reproduction costs.

Consequently, it is worth considering whether the video
accelerator could be partitioned in a manner that would en-
able re-using its components in multiple coding standards.
The speed-up achieved from these finer grained approaches
needs to be weighted against the added overheads such as the
typical 300 clock cycle interrupt latency that can become sig-
nificant if, for example, an interrupt is generated for each 16-
by-16 pixel macroblock of the VGA sequence.

An interesting point for further comparisons is the
hibrid-SOC [13], that is, the creation of one research team.
It is a multicore architecture, based on three programmable
dedicated core processors (SIMD, VLIW, and SISD), in-
tended for video encoding and decoding, and other high
bandwidth applications. Based on the performance and im-

Table 6: 3GPP receiver requirements for different channel types.

Channel type Data rate
Processing speed

(GOPS)

Release 99 DCH channel 0.384 Mbps 1-2

Release 5 HSDPA channel 14.4 Mbps 35–40

“Future 3.9G” OFDM channel 100 Mbps 210–290

plementation data, it comes very close to the VLIW device
in Figure 2 when scaled to the 60 nm CMOS technology of
Table 2, and it could rank better if explicitly designed for low
power operation.

2.2. 3GPP baseband signal processing

Based on its timing requirements, the 3GPP baseband signal
processing chain is an archetypal hard real-time application
that is further complicated by the heavy computational re-
quirements shown in Table 6 for the receiver. The values in
the table have been determined for a solution using turbo
decoding and they do not include chip-level decoding and
symbol level combining that further increase the processing
needs.

The requirements of the high speed downlink packet
access (HSDPA) channel that is expected to be introduced
in mobile devices in the near future characterize current
acute implementation challenges. Interestingly, the opera-
tion counts per received bit for each channel are roughly in
the same magnitude range as with video encoding.

Figure 4 shows the organization of the 3GPP receiver
processing and illuminates the implementation issues. The
receiver data chain has time critical feedback loops imple-
mented in the software; for instance, the control channel HS-
SCCH is used to control what is received, and when, on the
HS-DSCH data channel. Another example is the power con-
trol information decoded from “release 99 DSCH” channel
that is used to regulate the transmitter power 1500 times
per second. Furthermore, the channel code rates, channel
codes, and interleaving schemes may change anytime, requir-
ing software control for reconfiguring the hardware blocks of
the receiver, although for clarity this is not indicated in the
diagram.

The computing power needs of 3GPP signal processing
have so far been satisfied only by hardware at an acceptable

O. Silven and K. Jyrkkä 5

Power control 1500 Hz HSDPA data channel control 1000 Hz Data processing
Software

Hardware
RF Finger

Finger

Finger

Finger

Finger

Finger

Spreading
and

modulation

Chip rate
(3.84 MHz)

Symbol rate
(15-960 kHz) Block rate (12.5-500 Hz)

Combiner

Combiner

Combiner

Rate dematcher

Deinterleaver rate
dematcher

Deinterleaver rate
dematcher

Encoding
and

interleaving

Viterbi
decoder

Turbo
decoder

Turbo
decoder

HSDPA control channel (HS-SCCH)

HSDPA data channel (HS-DSCH)

Release 99 data and control channel (DSCH)

Figure 4: Receiver for a 3GPP mobile terminal.

energy efficiency level. Software implementations for turbo
decoding that meet the speed requirement do exist; for in-
stance, in [14] the performance of analog devices’ Tiger-
SHARC DSP processor is demonstrated. However, it falls
short of the energy efficiency needed in phones and is more
suitable for base station use.

For energy efficiency, battery powered systems have to
rely on hardware, while the tight timings demand the em-
ployment of fine grained accelerators. A resulting large in-
terrupt load on the control processors is an undesired side
effect. Coarser grain hardware accelerators could reduce this
overhead, but this is an inflexible approach and riskier when
the channel specifications have not been completely frozen,
but the development of hardware must begin.

With reservations on the hard real-time features, the re-
sults of the above comparison on the relative efficiencies of
processor architectures for video encoding can be extended
to 3GPP receivers. Both tasks have high processing require-
ments and the grain size of the algorithms is not very differ-
ent, so they could benefit from similar solutions that improve
hardware reuse and energy efficiency. In principle, the pro-
cessor resources can be used more efficiently with the softer
real-time demands of video coding, but if fine grained accel-
eration is used instead of a monolithic solution, it becomes a
hard real-time task.

3. ANALYSIS OF THE OBSERVED DEVELOPMENT

Based on our understanding, there is no single action that
could improve the talk-times of mobile phones and usage
times of future applications. Rather there are multiple inter-
acting issues for which balanced solutions must be found. In
the following, we analyze some of the factors considered to
be essential.

3.1. Changes in voice call application

The voice codec in 1995 required around 50% of the opera-
tion count of the more recent codec that provides improved

voice quality. As a result, the computational cost of the ba-
sic GSM voice call may have even more than doubled [15].
This qualitative improvement has in part diluted the benefits
obtained through advances in semiconductor processes, and
is reflected by the talk-time data given for the different voice
codec by mobile terminal manufacturers. It is likely that the
computational costs of voice calls will increase even in the
future with advanced features.

3.2. The effect of preemptive real-time
operating systems

The dominating scheduling principle used in embedded sys-
tems is “rate monotonic analysis (RMA)” that assigns higher
static priorities for tasks that execute at higher rates. When
the number of tasks is large, utilizing the processor at most
up to 69% guarantees that all deadlines are met [16]. If more
processor resources are needed, then more advanced analysis
is needed to learn whether the scheduling meets the require-
ments.

In practice, both our video and 3GPP baseband exam-
ples are affected by this law. A video encoder, even when fully
implemented in software, is seldom the only task in the pro-
cessor, but shares its resources with a number of other tasks.
The 3GPP baseband processing chain consists of several si-
multaneous tasks due to time critical hardware/software in-
teractions.

With RMA, the processor utilization limit alone may de-
mand even 40% higher clock rates than was necessary with
the static cyclic scheduling used in early GSM phones in
which the clock could be controlled very flexibly. Now, due
to the scheduling overhead that has to be added to the task
durations, a 50% clock frequency increase is close to real-
ity.

We admit that this kind of comparison is not completely
fair. Static cyclic scheduling is no longer usable as it is un-
suitable for providing responses for sporadic events within
a short fixed time, as required by the newer features of the

6 EURASIP Journal on Embedded Systems

RISC with instruction set extension

Connectivity model of a simple RISC processor

ALU
and

memory

Source
oper. and
registers
and their

connectivity

Register
file

Added memory complexity

FU for ISE
Added complexity

to bybass logic

Pipeline stall due to resource conflict

Cycle

1 2 3 4

1

2

3

In
st

ru
ct

io
n

s

Fetch Decode Execute Write
back

Fetch
ISE

Decode
ISE

Execute
ISE

WB
ISE

Fetch Decode Pipeline stall Execute Write
back

Figure 5: Hardware acceleration via instruction set extension.

phones. The use of dynamic priorities and earliest-deadline-
first (EDF) or least-slack algorithm [17] would improve pro-
cessor utilization over RMA, although this would be at the
cost of slightly higher scheduling overheads that can be sig-
nificant if the number of tasks is large. Furthermore, embed-
ded software designers wish to avoid EDF scheduling, be-
cause variations in cache hit ratios complicate the estimation
of the proximity of deadlines.

3.3. The effect of context switches on cache and
processor performance

The instruction and data caches of modern processors im-
prove energy efficiency when they perform as intended.
However, when the number of tasks and the frequency of
context switches is high, the cache-hit rates may suffer. Ex-
periments [18] carried out using the MiBench [19] embed-
ded benchmark suite on an MIPS 4KE-type instruction set
architecture revealed that with a 16 kB 4-way set associative
instruction cache the hit-rate averaged around 78% immedi-
ately after context switches and 90% after 1000 instructions,
while 96% was reached after the execution of 10 000 instruc-
tions.

Depending on the access time differential between the
main memory and the cache, the performance impact can
be significant. If the processor operates at 150 MHz with a
50-nanosecond main memory and an 86% cache hit rate,
the execution time of a short task slice (say 2000 instruc-
tions) almost doubles. Worst of all, the execution time of the
same piece of code may fluctuate from activation to activa-
tion, causing scheduling and throughput complications, and
may ultimately force the system implementers to increase the
processor clock rate to ensure that the deadlines are met.

Depending on the implementations, both video encoder
and 3GPP baseband applications operate in an environment
that executes up to tens of thousands of interrupts and con-
text switches in a second. Although this facilitates the devel-
opment of systems with large teams, the approach may have
a significant negative impact on energy efficiency.

More than a decade ago (1991), Mogul and Borg [20]
made empirical measurements on the effects of context

switches on cache and system performance. After a par-
tial reproduction of their experiments on a modern proces-
sor, Sebek [21] comments “it is interesting that the cache
related preemption delay is almost the same,” although
the processors have became a magnitude faster. We may
make a similar observation about GSM phones and voice
calls: current implementations of the same application re-
quire more resources than in the past. This cycle needs to
be broken in future mobile terminals and their applica-
tions.

3.4. The effect of hardware/software interfacing

The designers of mobile phones aim to create common plat-
forms for product families. They define application pro-
gramming interfaces that remain the same, regardless of sys-
tem enhancements and changes in hardware/software parti-
tioning [8]. This has made middleware solutions attractive,
despite worries over the impact on performance. However,
the low level hardware accelerator/software interface is often
the most critical one.

Two approaches are available for interfacing hardware
accelerators to software. First, a hardware accelerator can
be integrated into the system as an extension to the in-
struction set, as illustrated with Figure 5. In order to make
sense, the latency of the extension should be in the same
range as the standard instructions, or, at most, within a
few instruction cycles, otherwise the interrupt response time
may suffer. Short latency often implies large gate count and
high bus bandwidth needs that reduce the economic via-
bility of the approach, making it a rare choice in mobile
phones.

Second, an accelerator may be used in a peripheral de-
vice that generates an interrupt after completing its task. This
principle is demonstrated in Figure 6, which also shows the
role of middleware in hiding details of the hardware. Note
that the legend in the picture is in the order of priority levels.

If the code in the middleware is not integrated into
the task, calls to middleware functions are likely to reduce
the cache hit rate. Furthermore, to avoid high interrupt
overheads, the execution time of the accelerators should

O. Silven and K. Jyrkkä 7

Priority level

Time

2

3

5

7 8 11

9
12

1064

1

OS kernel

Interrupt dispatcher

User interrupt handlers

User prioritized tasks

Hardware abstraction

Interrupt HW

Hardware accelerators

. . .

2, 8, 11 = run OS scheduler
7 = send OS message to high-priority task
3, 4 = find reason for hardware interrupt
5, 6 = interrupt service and acknowledge interrupt to HW
9, 10 = high-priority running due to interrupt
1, 12 = interrupted low-priority task

Figure 6: Controlling an accelerator interfaced as a peripheral device.

Table 7: Energy efficiencies and silicon areas of ARM processors.

Processor
Processor max. clock
frequency (MHz)

Silicon area (mm2)
Power consumption
(mW/MHz)

ARM9 (926EJ-S) 266 4.5 0.45

ARM10 (1022E) 325 6.9 0.6

ARM11 (1136J-S) 550 5.55 0.8

preferably be thousands of clock cycles. In practice, this ap-
proach is used even with rather short latency accelerators, as
long as it helps in achieving the total performance target. The
latencies from middleware, context switches, and interrupts
have obvious consequences for energy efficiency.

Against this background, it is logical that the monolithic
accelerator turned out to be the most energy efficient solu-
tion for video encoding in Figure 3. From the point of view,
the 3GPP baseband a key to energy efficient implementation
in a given hardware lies in pushing down the latency over-
heads.

It is rather interesting that anything in between 1-2 cycle
instruction set extensions and peripheral devices executing
thousands of cycles can result in grossly inefficient software.
If the interrupt latency in the operating system environment
is around 300 cycles and 50 000 interrupts are generated per
second, 10% of the 150 MHz processor resources are swal-
lowed by this overhead alone, and on top of this we have mid-
dleware costs. Clearly, we have insufficient expertise in this
bottleneck area that falls between hardware and software, ar-
chitectures and mechanisms, and systems and components.

3.5. The effect of processor hardware core solutions

Current DSP processor execution units are deeply pipelined
to increase instruction execution rates. In many cases, how-

ever, DSP processors are used as control processors and have
to handle large interrupt and context switch loads. The result
is a double penalty: the utilization of the pipeline decreases
and the control code is inefficient due to the long pipeline.
For instance, if a processor has a 10-level pipeline and 1/50 of
the instructions are unconditional branches, almost 20% of
the cycles are lost. Improvements offered by the branch pre-
diction capabilities are diluted by the interrupts and context
switches.

The relative sizes of control units of typical low power
DSP processors and microcontrollers have increased dur-
ing recent years due to deeper pipelining. However, when
executing control code, most of the processor is unused.
This situation is encountered with all fine grained hardware
accelerator-based implementations regardless of whether
they are video encoder or 3GPP baseband solutions. Obvi-
ously, rethinking the architectures and their roles in the sys-
tem implementations is necessary. To illustrate the impact
of increasing processor complexity on the energy efficiency,
Table 7 shows the characteristics of 32-bit ARM processors
implemented using a 130 nm CMOS process [5]. It is appar-
ent that the energy efficiencies of processor designs are in-
creasing, but this development has been masked by silicon
process developments. Over the past ten years the relative ef-
ficiency appears to have slipped approximately by a factor of
two.

8 EURASIP Journal on Embedded Systems

Table 8: Approximate efficiency degradations.

Degradation cause
Low
estimate

Probable
degradation

Computational cost of
voice call application

2 2.5

Operating system and
interrupt overheads

1.4 1.6

API and middleware
costs

1.2 1.5

Execution time jitter
provisioning

1.3 2

Processor
energy/instruction

1.8 2.5

Execution pipeline
overheads

1.2 1.5

Total (multiplied) 9.4 45

3.6. Summary of relative performance degradations

When the components of the above analysis are combined
as shown in Table 8, they result in a degradation factor of at
least around 9-10, but probably around 45. These are rela-
tive energy efficiency degradations and illustrate the traded-
off energy efficiency gains at the processing system level. The
probable numbers appear to be in line with the actual ob-
served development.

It is acknowledged in industry that approaches in sys-
tem development have been dictated by the needs of soft-
ware development that has been carried out using the tools
and methods available. Currently, the computing needs are
increasing rapidly, so a shift of focus to energy efficiency is re-
quired. Based on Figure 3, using suitable programmable pro-
cessor architectures can improve the energy efficiency signif-
icantly. However, in baseband signal processing the architec-
tures used already appear fairly optimal. Consequently, other
means need to be explored too.

4. DIRECTIONS FOR RESEARCH AND DEVELOPMENT

Looking back to the phone of 1995 in Table 1, we may con-
sider what should have been done to improve energy effi-
ciency at the same rate as silicon process improvement. Ob-
viously, due to the choices made by system developers, most
of the factors that degrade the relative energy efficiency are
software related. However, we do not demand changes in
software development processes or architectures that are in-
tended to facilitate human effort. So solutions should pri-
marily be sought from the software/hardware interfacing do-
main, including compilation, and hardware solutions that
enable the building of energy efficient software systems.

To reiterate, the early baseband software was effectively
multi-threaded, and even simultaneously multithreaded
with hardware accelerators executing parallel threads, with-
out interrupt overhead, as shown in Figure 7. In principle, a

suitable compiler could have replaced manual coding in cre-
ating the threads, as the hardware accelerators had determin-
istic latencies. However, interrupts were introduced and later
solutions employed additional means to hide the hardware
from the programmers.

Having witnessed the past choices, their motivations, and
outcomes, we need to ask whether compilers could be used to
hide hardware details instead of using APIs and middleware.
This approach could in many cases cut down the number of
interrupts, reduce the number of tasks and context switches,
and improve code locality— all improving processor utiliza-
tion and energy efficiency. Most importantly, hardware ac-
celerator aware compilation would bridge the software effi-
ciency gap between instruction set extensions and periph-
eral devices, making “medium latency” accelerators attrac-
tive. This would help in cutting the instruction fetch and de-
coding overheads.

The downside of a hardware aware compilation approach
is that the binary software may no longer be portable, but
this is not important for the baseband part. A bigger issue is
the paradigm change that the proposed approach represents.
Compilers have so far been developed for processor cores;
now they would be needed for complete embedded systems.
Whenever the platform changes, the compiler needs to be
upgraded, while currently the changes are concentrated on
the hardware abstraction functionality.

Hardware support for simultaneous fine grained mul-
tithreading is an obvious processor core feature that could
contribute to energy efficiency. This would help in reducing
the costs of scheduling.

Another option that could improve energy efficiency is
the employing of several small processor cores for control-
ling hardware accelerators, rather that a single powerful one.
This simplifies real-time system design and reduces the to-
tal penalty from interrupts, context switches, and execution
time jitter. To give a justification for this approach, we again
observe that the W/MHz figures for the 16-bit ARM7/TDMI
dropped by factor 35 between 0.35 and 0.13 µm CMOS pro-
cesses [5]. Advanced static scheduling and allocation tech-
niques [22] enable constructing efficient tools for this ap-
proach, making it very attractive.

5. SUMMARY

The energy efficiency of mobile phones has not improved at
the rate that might have been expected from the advances in
silicon processes, but it is obviously at a level that satisfies
most users. However, higher data rates and multimedia ap-
plications require significant improvements, and encourage
us to reconsider the ways software is designed, run, and in-
terfaced with hardware.

Significantly improved energy efficiency might be possi-
ble even without any changes to hardware by using software
solutions that reduce overheads and improve processor uti-
lization. Large savings can be expected from applying archi-
tectural approaches that reduce the volume of instructions
fetched and decoded. Obviously, compiler technology is the
key enabler for improvements.

O. Silven and K. Jyrkkä 9

Priority level User interrupt handlers

1 2 3 4 5 6 7

St
ar

t
H

W

R
ea

d

re
su

lt
s

St
ar

t
H

W

St
ar

t
H

W

R
ea

d

re
su

lt
s User prioritized tasks

Hardware abstraction

Time

Hardware thread 1

Hardware thread 2TX modulator HW

Viterbi
equalizer HW

Viterbi
decoder HW

1 = bit equalizer algorithm
2 = speech encoding part 1
3 = channel decoding part 1
4 = speech encoding part 2
5 = channel encoder
6 = channel decoder part 2
7 = speech decoder

Figure 7: The execution threads of an early GSM mobile phone.

ACKNOWLEDGMENTS

Numerous people have directly and indirectly contributed to
this paper. In particular, we wish to thank Dr. Lauri Pirtti-
aho for his observations, comments, questions, and exper-
tise, and Professor Yrjö Neuvo for advice, encouragement,
and long-time support, both from the Nokia Corporation.

REFERENCES

[1] GSM Association, “TW.09 Battery Life Measurement Tech-
nique,” 1998, http://www.gsmworld.com/documents/index.
shtml.

[2] Nokia, “Phone models,” http://www.nokia.com/.
[3] M. Anis, M. Allam, and M. Elmasry, “Impact of technology

scaling on CMOS logic styles,” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, vol. 49,
no. 8, pp. 577–588, 2002.

[4] G. Frantz, “Digital signal processor trends,” IEEE Micro,
vol. 20, no. 6, pp. 52–59, 2000.

[5] The ARM foundry program, 2004 and 2006, http://www.arm.
com/.

[6] 3GPP: TS 05.01, “Physical Layer on the Radio Path (Gen-
eral Description),” http://www.3gpp.org/ftp/Specs/html-info/
0501.htm.

[7] J. Doyle and B. Broach, “Small gains in power efficiency now,
bigger gains tomorrow,” EE Times, 2002.

[8] K. Jyrkkä, O. Silven, O. Ali-Yrkkö, R. Heidari, and H. Berg,
“Component-based development of DSP software for mobile
communication terminals,” Microprocessors and Microsystems,
vol. 26, no. 9-10, pp. 463–474, 2002.

[9] Y. Neuvo, “Cellular phones as embedded systems,” in Pro-
ceedings of IEEE International Solid-State Circuits Conference
(ISSCC ’04), vol. 1, pp. 32–37, San Francisco, Calif, USA,
February 2004.

[10] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel succes-
sive elimination algorithm for block matching motion estima-
tion,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp.
501–504, 2000.

[11] H.-S. Wang and R. M. Mersereau, “Fast algorithms for the es-
timation of motion vectors,” IEEE Transactions on Image Pro-
cessing, vol. 8, no. 3, pp. 435–438, 1999.

[12] 5250 VGA encoder, 2004, http://www.hantro.com/en/prod-
ucts/codecs/hardware/5250.html.

[13] S. Moch, M. Bereković, H. J. Stolberg, et al., “HIBRID-SOC:
a multi-core architecture for image and video applications,”
ACM SIGARCH Computer Architecture News, vol. 32, no. 3,
pp. 55–61, 2004.

[14] K. K. Loo, T. Alukaidey, and S. A. Jimaa, “High perfor-
mance parallelised 3GPP turbo decoder,” in Proceedings of
the 5th European Personal Mobile Communications Conference
(EPMCC ’03), Conf. Publ. no. 492, pp. 337–342, Glasgow, UK,
April 2003.

[15] R. Salami, C. Laflamme, B. Bessette, et al., “Description of
GSM enhanced full rate speech codec,” in Proceedings of the
IEEE International Conference on Communications (ICC ’97),
vol. 2, pp. 725–729, Montreal, Canada, June 1997.

[16] M. H. Klein, A Practitioner’s Handbook for Real-Time Analysis,
Kluwer, Boston, Mass, USA, 1993.

[17] M. Spuri and G. C. Buttazzo, “Efficient aperiodic service under
earliest deadline scheduling,” in Proceedings of Real-Time Sys-
tems Symposium, pp. 2–11, San Juan, Puerto Rico, USA, De-
cember 1994.

[18] J. Stärner and L. Asplund, “Measuring the cache interference
cost in preemptive real-time systems,” in Proceedings of the
ACM SIGPLAN Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES ’04), pp. 146–154, Washington,
DC, USA, June 2004.

[19] M. R. Gathaus, J. S. Ringenberg, D. Ernst, T. M. Austen, T.
Mudge, and R. B. Brown, “MiBench: a free, commercially rep-
resentative embedded benchmark suite,” in Proceedings of the
4th Annual IEEE International Workshop on Workload Charac-
terization (WWC-4 ’01), pp. 3–14, Austin, Tex, USA, Decem-
ber 2001.

[20] J. C. Mogul and A. Borg, “The effect of context switches on
cache performance,” in Proceedings of the 4th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’91), pp. 75–84, Santa
Clara, Calif, USA, April 1991.

10 EURASIP Journal on Embedded Systems

[21] F. Sebek, “Instruction cache memory issues in real-time sys-
tems,” Technology Licentiate thesis, Department of Computer
Science and Engineering, Mälardalen University, Västerås,
Sweden, 2002.

[22] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization, Marcel Dekker, New York,
NY, USA, 2000.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 56467, 16 pages
doi:10.1155/2007/56467

Research Article
The Sandbridge SB3011 Platform

John Glossner, Daniel Iancu, Mayan Moudgill, Gary Nacer, Sanjay Jinturkar,
Stuart Stanley, and Michael Schulte

Sandbridge Technologies, Inc., 1 North Lexington Avenue, White Plains, NY 10601, USA

Received 1 August 2006; Revised 18 January 2007; Accepted 20 February 2007

Recommended by Jarmo Henrik Takala

This paper describes the Sandbridge Sandblaster real-time software-defined radio platform. Specifically, we describe the SB3011
system-on-a-chip multiprocessor. We describe the software development system that enables real-time execution of communi-
cations and multimedia applications. We provide results for a number of interesting communications and multimedia systems
including UMTS, DVB-H, WiMAX, WiFi, and NTSC video decoding. Each processor core achieves 600 MHz at 0.9 V operation
while typically dissipating 75 mW in 90 nm technology. The entire chip typically dissipates less than 500 mW at 0.9 V.

Copyright © 2007 John Glossner et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Performance requirements for mobile wireless communica-
tion devices have expanded dramatically since their incep-
tion as mobile telephones. Recent carrier offerings with mul-
tiple communication systems and handover from cellular to
broadband suggest that some consumers are requesting con-
vergence devices with full data and voice integration. The
proliferation of cameras and Internet access in cell phones
also suggests a variety of computationally intense features
and applications such as web browsing, MP3 audio, and
MPEG4 video are needed. Moreover, consumers want these
wireless subscriber services to be accessible at all times any-
where in the world. Such complex functionality requires high
computing capability at low power consumption; adding
new features requires adding computing capacity.

The technologies necessary to realize true broadband
wireless handsets and systems presenting unique design chal-
lenges if extremely power efficient, yet high-performance,
broadband wireless terminals are to be realized. The design
tradeoffs and implementation options inherent in meeting
such demands highlight the extremely onerous requirements
for next generation baseband processors. Tremendous hard-
ware and software challenges exist to realize convergence de-
vices.

The increasing complexities of mobile terminals and a
desire to generate multiple versions with increasing features
for handsets have led to the consideration of a software-
defined radio- (SDR-) based approach in the wireless indus-

try. The previous generation of mobile terminals was primar-
ily designed for use in geographically restricted areas where
growth of the wireless industry was dependant upon signing
up new users. The penetration levels in European and Asian
countries are high and new revenue streams (from technolo-
gies such as 3G) have been slow to materialize for a variety
of complex reasons. True convergence of multimedia, cellu-
lar, location and connectivity technologies is expensive, time
consuming, and complex at all levels of development—not
only mobile terminals, but infrastructure as well. Moreover,
the standards themselves have failed to converge, which has
led to multiple market segments. In order to maintain mar-
ket share, a handset development company must use multi-
ple platforms each of which may be geographically specific
supporting multiple combinations of communications sys-
tems. This requires some handset companies to support mul-
tiple platforms and multiple hardware solutions from multi-
ple technology suppliers.

1.1. SDR-based approach

Building large parallel processing systems is a difficult task.
Programming them efficiently is even more challenging.
When nonassociative digital signal processing (DSP) arith-
metic is included, the challenge of automated software devel-
opment for a complex chip multiprocessor (CMP) system is
amplified.

Early software-defined radio (SDR) platforms were of-
ten built out of discrete processors and FPGAs that were

2 EURASIP Journal on Embedded Systems

integrated on a card. More recently a trend has been to inte-
grate multiple processors on a single chip creating SDR CMP
systems. The SDR Forum [1] defines five tiers of solutions.
Tier-0 is a traditional radio implementation in hardware.
Tier-1, software-controlled radio (SCR), implements the
control features for multiple hardware elements in software.
Tier-2, software-defined radio (SDR), implements modu-
lation and baseband processing in software but allows for
multiple frequency fixed function RF hardware. Tier-3, ideal
software radio (ISR), extends programmability through the
RF with analog conversion at the antenna. Tier-4, ultimate
software radio (USR), provides for fast (millisecond) transi-
tions between communications protocols in addition to dig-
ital processing capability.

The advantages of reconfigurable SDR solutions versus
hardware solutions are significant. First, reconfigurable so-
lutions are more flexible allowing multiple communication
protocols to dynamically execute on the same transistors
thereby reducing hardware costs. Specific functions such as
filters, modulation schemes, encoders/decoders can be re-
configured adaptively at run time. Second, several commu-
nication protocols can be efficiently stored in memory and
coexist or execute concurrently. This significantly reduces
the cost of the system for both the end user and the ser-
vice provider. Third, remote reconfiguration provides sim-
ple and inexpensive maintenance and feature upgrades. This
also allows service providers to differentiate products after
the product is deployed. Fourth, the development time of
new and existing communications protocols is significantly
reduced providing an accelerated time to market. Develop-
ment cycles are not limited by long and laborious hardware
design cycles. With SDR, new protocols are quickly added as
soon as the software is available for deployment. Fifth, SDR
provides an attractive method of dealing with new standards
releases while assuring backward compatibility with existing
standards.

SDR enabling technologies also have significant advan-
tages from the consumer perspective. First, mobile terminal
independence with the ability to “choose” desired feature sets
is provided. As an example, the same terminal may be ca-
pable of supporting a superset of features but the consumer
only pays for features that they are interested in using. Sec-
ond, global connectivity with the ability to roam across oper-
ators using different communications protocols can be pro-
vided. Third, future scalability and upgradeability provide
for longer handset lifetimes.

1.2. Processor background

In this section we define a number of terms and provide
background information on general purpose processors, dig-
ital signal processors, and some of the workload differences
between general purpose computers and real-time embed-
ded systems.

The architecture of a computer system is the minimal set
of properties that determine what programs will run and
what results they will produce [2]. It is the contract between
the programmer and the hardware. Every computer is an

interpreter of its machine language—that representation of
programs that resides in memory and is interpreted (exe-
cuted) directly by the (host) hardware.

The logical organization of a computer’s dataflow and
controls is called the implementation or microarchitecture.
The physical structure embodying the implementation is
called the realization. The architecture describes what hap-
pens while the implementation describes how it is made
to happen. Programs of the same architecture should run
unchanged on different implementations. An architectural
function is transparent if its implementation does not pro-
duce any architecturally visible side effects. An example of a
nontransparent function is the load delay slot made visible
due to pipeline effects. Generally, it is desirable to have trans-
parent implementations. Most DSP and VLIW implementa-
tions are not transparent and therefore the implementation
affects the architecture [3].

Execution predictability in DSP systems often precludes
the use of many general-purpose design techniques (e.g.,
speculation, branch prediction, data caches, etc.). Instead,
classical DSP architectures have developed a unique set of
performance-enhancing techniques that are optimized for
their intended market. These techniques are characterized by
hardware that supports efficient filtering, such as the ability
to sustain three memory accesses per cycle (one instruction,
one coefficient, and one data access). Sophisticated address-
ing modes such as bit-reversed and modulo addressing may
also be provided. Multiple address units operate in parallel
with the datapath to sustain the execution of the inner kernel.

In classical DSP architectures, the execution pipelines
were visible to the programmer and necessarily shallow to
allow assembly language optimization. This programming
restriction encumbered implementations with tight timing
constraints for both arithmetic execution and memory ac-
cess. The key characteristic that separates modern DSP ar-
chitectures from classical DSP architectures is the focus on
compilability. Once the decision was made to focus the DSP
design on programmer productivity, other constraining de-
cisions could be relaxed. As a result, significantly longer
pipelines with multiple cycles to access memory and multi-
ple cycles to compute arithmetic operations could be utilized.
This has yielded higher clock frequencies and higher perfor-
mance DSPs.

In an attempt to exploit instruction level parallelism in-
herent in DSP applications, modern DSPs tend to use VLIW-
like execution packets. This is partly driven by real-time re-
quirements which require the worst-case execution time to
be minimized. This is in contrast with general purpose CPUs
which tend to minimize average execution times. With long
pipelines and multiple instruction issue, the difficulties of
attempting assembly language programming become appar-
ent. Controlling dependencies between upwards of 100 in-
flight instructions is not an easy task for a programmer. This
is exactly the area where a compiler excels.

One challenge of using some VLIW processors is large
program executables (code bloat) that result from inde-
pendently specifying every operation with a single instruc-
tion. As an example, a VLIW processor with a 32-bit basic

John Glossner et al. 3

instruction width may require 4 instructions, 128 bits, to
specify 4 operations. A vector encoding may compute many
more operations in as few as 21 bits (e.g., multiply two 4-
element vectors, saturate, accumulate, and saturate).

Another challenge of some VLIW implementations is
that they may have excessive register file write ports. Because
each instruction may specify a unique destination address
and all the instructions are independent, a separate port may
be provided for the target of each instruction. This can result
in high power dissipation, which is unacceptable for handset
applications.

To help overcome problems with code bloat and excessive
write ports, recent VLIW DSP architectures, such as OnDSP
[4], the embedded vector processor (EVP) [5], and the syn-
chronous transfer architecture (STA) [6], provide vector op-
erations, specialized instructions for multimedia and wireless
communications, and multiple register files.

A challenge of visible pipeline machines (e.g., most DSPs
and VLIW processors) is interrupt response latency. It is de-
sirable for computational datapaths to remain fully utilized.
Loading new data while simultaneously operating on current
data is required to maintain execution throughput. However,
visible memory pipeline effects in these highly parallel inner
loops (e.g., a load instruction followed by another load in-
struction) are not typically interruptible because the proces-
sor state cannot be restored. This requires programmers to
break apart loops so that worst-case timings and maximum
system latencies may be acceptable.

Signal processing applications often require both compu-
tations and control processing. Control processing is often
amenable to RISC-style architectures and is typically com-
piled directly from C code. Signal processing computations
are characterized by multiply-accumulate intensive functions
executed on fixed point vectors of moderate length. There-
fore, a DSP requires support for such fixed point saturating
computations. This has traditionally been implemented us-
ing one or more multiply accumulate (MAC) units. In ad-
dition, as the saturating arithmetic is nonassociative, paral-
lel operations on multiple data elements may result in dif-
ferent results from serial execution. This creates a challenge
for high-level language implementations that specify integer
modulo arithmetic. Therefore, most DSPs have been pro-
grammed using assembly language.

Multimedia adds additional requirements. A processor
which executes general purpose programs, signal processing
programs, and multimedia programs (which may also be
considered to be signal processing programs) is termed a
convergence processor. Video, in particular, requires high
performance to allow the display of movies in real-time. An
additional trend for multimedia applications is Java execu-
tion. Java provides a user-friendly interface, support for pro-
ductivity tools and games on the convergence device.

The problems associated with previous approaches req-
uire a new architecture to facilitate efficient convergence ap-
plications processing. Sandbridge Technologies has devel-
oped a new approach that reduces both hardware and soft-
ware design challenges inherent in real-time applications like

SDR and processing of streaming data in convergence ser-
vices.

In the subsequent sections, we describe the Sandbridge
SB3011 low-power platform, the architecture and implemen-
tation, the programming tools including an automatically
multithreading compiler, and SDR results.

2. THE SB3011 SDR PLATFORM

Motivated by the convergence of communications and mul-
timedia processing, the Sandbridge SB3011 was designed for
efficient software execution of physical layer, protocol stacks,
and multimedia applications. The Sandbridge SDR platform
is a Tier-2 implementation as defined by the SDR Forum.
Figure 1 shows the SB3011 implementation. It is intended
for handset markets. The main processing complex includes
four DSPs [7] each running at a minimum of 600 MHz at
0.9 V. The chip is fabricated in 90 nm technology. Each DSP
is capable of issuing multiple operations per cycle includ-
ing data parallel vector operations. The microarchitecture
of each DSP is 8-way multithreaded allowing the SB3011
to simultaneously execute up to 32 independent instruction
streams each of which may issue vector operations.

2.1. DSP complex

Each DSP has a level-1 (L1) 32 KB set-associative instruction
cache and an independent L1 64 KB data memory which is
not cached. In addition a noncached global level-2 (L2) 1 MB
memory is shared among all processors. The implementa-
tion guarantees no pipeline stalls for L1 memory accesses
(see Section 4). For external memory accesses or L2 accesses
only the thread that issued the load request stalls. All other
threads continue executing independent of which processor
issued the memory request.

The Sandblaster DSP is a true architecture in the sense
that from the programmer’s perspective each instruction
completes prior to the next instruction issuing—on a per
thread basis.

The processors are interconnected through a determinis-
tic and opportunistic unidirectional ring network. The in-
terconnection network typically runs at half the processor
speed. The ring is time-division multiplexed and each pro-
cessor may request a slot based on a proprietary algorithm.
Communications between processors is primarily through
shared memory.

The processor’s instruction set provides synchronization
primitives such as load locked and store conditional. Since all
data memory is noncached, there are no coherence issues.

2.2. ARM and ARM peripherals

In addition to the parallel multithreaded DSP complex, there
is an entire ARM complex with all the peripherals neces-
sary to implement input/output (I/O) devices in a smart
phone. The processor is an ARM926EJ-S running at up to
300 MHz. The ARM has 32 kB instruction and 32 kB data
cache memories. There is an additional 64 kB of scratch

4 EURASIP Journal on Embedded Systems

TAP
(JTAG
port)

Multimedia
card

interface

Smart
card

interface

Sync.

serial port

Keyboard

interface

UART/
IRDA

Audio
codec

interface

General-
purpose

I/O

Real-time
clock

Timers
(2)

Power
Managem.

Int. clks
...

10-50 MHz REF

Ext. clks REF1 REF2

Clock generation

DSP complex

Ins. & data mem.
(32 KB/64 KB)

Ins. & data mem.
Ins. & data mem.

Ins. & data mem.

DSP E
xt

.i
n

t.
L2

m
em

.
(2

56
K

B
)

L2
m

em
.

L2
m

em
.

L2
m

em
.

DSP ARM
bridge

Vector
interrupt
controller

ARM926EJ-S
processor

(32 K/32 K)

DMA
controller

AHB APB
bridge

Peripheral
device
control

AHB APB

DSP local peripherals

General
purpose

I/O

Serial
interfaces
(SPI, I2C)

Prog.
timers/

gens

PSD
interface

TDM
interface

Multiport
memory

controller

USB OTG
interface

LCD
interface

Camera
interface

Ehternet
interface

RF control

Timer I/O

TX data

RX data

Memory interface
(synchronous and

asynchronous)

Figure 1: Sandblaster SB3011 chip.

memory partitioned as 32 kB instruction and 32 kB data.
Sandbridge has ported Linux to this platform and the pro-
cessor functions as the user interface (UI or sometimes MMI)
for smart phone applications.

Using an AMBA advanced high-speed bus (AHB) and
advanced peripheral bus (APB), the system is able to sup-
port the processing of multiple concurrent data interfaces.
Attached to the APB is a multimedia card (MMC) and secure
digital card (SD Card) interface for connecting external Flash
storage. Keyboard and mouse interfaces are included along

with multiple UARTs and an IRDA interface. Audio and mi-
crophone PCM data is supported through an AC-97 interface
which connects directly to an external codec. A number of
other general peripherals are also supported on the APB in-
cluding a real-time clock and general purpose timers, which
are used to keep system time.

The AHB is used to move high-speed data such as mem-
ory requests and video into the chip for processing or out of
the chip for display or storage. A direct connection to an LCD
display is provided and can be accessed from either the ARM

John Glossner et al. 5

or DSP processors. Similarly, a high-speed camera interface
is provided to capture raw video data that may be encoded or
processed in the DSP or ARM processors.

The SB3011 includes a full USB 2.0 on-the-go (OTG) im-
plementation for seamless connection to printers, cameras,
storage, or other USB devices. An Ethernet interface is also
included on the chip for wired local area network (LAN) con-
nections.

2.3. External memory

External memory requests which both the ARM and DSPs
can initiate are routed through a multiport memory con-
troller attached to the AHB. The external memory can be
synchronous or asynchronous. Typical memories include
Flash, SDRAM, DRAM, and SRAM. The controller supports
multiple simultaneous requests whether generated through
direct memory access (DMA) devices (both for the ARM and
DSP) or by a direct address from the processors. External
memory requests are managed by an arbitration controller
which ensures priority and fairness for the bus transactions.
All external memory is mapped into a 32-bit global address
space and is shared among all processors.

Device processors are booted from external memory in
a two-step sequence: ARM followed by the DSPs. Once the
device is released from reset, the ARM processor begins ex-
ecution from one of the memory controller’s memory ports
(typically the port connected to Flash memory on the card).
The ARM then executes a device initialization routine, which
configures the necessary internal device peripherals and the
execution vectors for the DSPs. Once complete, the DSPs are
enabled and each processor begins executing the Sandbridge
Operating System (SBOS), which may be in Flash or other
memory.

2.4. DSP peripherals

In addition to the ARM peripherals, there are a number of
DSP specific peripherals primarily intended for moving data
to and from external radio frequency (RF) devices, time divi-
sion multiplexed (TDM) voice and data devices (e.g., T1/E1),
and other peripherals. These peripherals interface directly to
the DSPs’ L2 memory subsystem through the multiple par-
allel streaming data (PSD) or TDM interfaces. Four half-
duplex PSD interfaces are provided, each supporting up to
16-bit data samples. PSD data is latched or transmitted by
the device on both edges of its respective clock, thus realizing
two data streams per interface (typically I and Q streams to
and from an RF’s analog-front-end device). Four serial TDM
interfaces are provided, each of which capable of up to 1024
channels, for an aggregate 32 k samples per second through-
put. Support for synchronization of transmitted or received
data bursts is accomplished through the use of dedicated I/O
timers. When configured, these timers can be operated with
an external (system) clock source and are internally used to
gate the DMA transfers on the PSD interfaces. This feature
is important for slot-based communications systems such as
GSM.

A number of other interfaces are provided for general
purpose control of external components typically found in
smart phones. These include general purpose timers which
can be used as external clocks, SPI, and I2C buses which are
common in RF control logic, and general purpose I/O. The
SPI and I2C peripherals allow the DSPs to compute in soft-
ware functions such as automatic gain control (AGC) and
send the information seamlessly to the RF control interface.
The DSP computes the changed values and the SPI or I2C
bus delivers the information to the external chip(s).

2.5. Power management

To facilitate flexible system-level power management, the
Sandblaster SB3011 incorporates thirteen independent
power domains. Each processor core is isolated by a separate
domain thus 5 domains encapsulate the ARM plus 4 DSPs.
An additional domain is used for L2 memories. The other
power domains are used to isolate specific logic portions of
the chip.

Each domain is independently controllable by the Device
Power Management Unit (DPMU) which is itself isolated
within an independent power domain. The DPMU is a pro-
grammable peripheral that allows for the following options:
(1) the ability to place the device in power down where all
data and internal state is not maintained and (2) the ability
to place each processor independently in power down where
each core does not maintain state but the L2 memories are
back-biased and thus retain state.

In addition to the voltage control features, clock man-
agement is also included in two forms: (1) instruction-based
automatic clock enable/disable operation where the hard-
ware dynamically controls clocks to internal sub-blocks
when inactivity is detected and (2) operating System (OS)
or application-based clock enable/disable which can control
DSP cores, AHB peripherals, LCD, Camera, USB, Ethernet,
and APB peripherals.

While not a comprehensive list, some typical profiles of
low power configurations include the following. (1) Device
Deep Sleep where the all the SB3011 functional blocks are
powered off with the exception of the Device Power Man-
agement Unit. No state is retained in this mode. In this state
only the DPMU is powered since it is required to wake the
rest of the chip. (2) Processing Unit Deep Sleep Mode where
all the processor cores are shut down without state retention.
However, L2 memories and peripherals retain state and may
function. (3) Device Standby where all DSP cores and the
ARM processor clocks are disabled but full state is retained.

The subsequent sections discuss the Sandblaster DSP ar-
chitecture and programming tools that enable real-time im-
plementation of the parallel SDR system.

3. SANDBLASTER LOW-POWER ARCHITECTURE

3.1. Compound instructions

The Sandblaster architecture is a compound instruction set
architecture [7]. Historically, DSPs have used compound

6 EURASIP Journal on Embedded Systems

L0: lvu %vr0, %r3, 8

|| vmulreds

%ac0,%vr0,%vr0,%ac0

|| loop %lc0,L0

Figure 2: Compound instruction for sum of squares inner loop.

instruction set architectures to conserve instruction space
encoding bits. In contrast, some VLIW architectures contain
full orthogonality, but only encode a single operation per in-
struction field, such that a single VLIW is composed of mul-
tiple instruction fields. This has the disadvantage of requiring
many instruction bits to be fetched per cycle, as well as sig-
nificant write ports for register files. Both these effects con-
tribute heavily to power dissipation. Recent VLIW DSP ar-
chitectures, such as STA, overcome these limitations by pro-
viding complex operations, vector operations, and multiple
register files.

In the Sandblaster architecture, specific fields within the
instruction format may issue multiple suboperations includ-
ing data parallel vector operations. Most classical DSP in-
struction set architectures are compound but impose restric-
tions depending upon the particular operations selected. In
contrast, some VLIW ISAs allow complete orthogonality of
specification and then fill in any unused issue slots by insert-
ing no operation instructions (NOPs) either in hardware or
software.

3.2. Vector encoding

In addition to compound instructions, the Sandblaster ar-
chitecture also contains vector operations that perform mul-
tiple compound operations. As an example, Figure 2 shows
a single compound instruction with three compound oper-
ations. The first compound operation, lvu, loads the vector
register vr0 with four 16-bit elements and updates the ad-
dress pointer r3 to the next element. The vmulreds operation
reads four fixed point (fractional) 16-bit elements from vr0,
multiplies each element by itself, saturates each product, adds
all four saturated products plus an accumulator register, ac0,
with saturation after each addition, and stores the result back
in ac0. The vector architecture guarantees Global System for
Mobile communication (GSM) semantics (e.g., bit-exact re-
sults) even though the arithmetic performed is nonassocia-
tive [8]. The loop operation decrements the loop count reg-
ister lc0, compares it to zero, and branches to address L0 if
the result is not zero.

3.3. Simple instruction formats

Simple and orthogonal instruction formats are used for all
instructions. The type of operation is encoded to allow sim-
ple decoding and execution unit control. Multiple operation
fields are grouped within the same bit locations. All operand
fields within an operation are uniformly placed in the same

bit locations whether they are register-based or immediate
values. As in VLIW processors, this significantly simplifies
the decoding logic.

3.4. Low-power idle instructions

Architecturally, it is possible to turn off an entire processor.
All clocks may be disabled or the processor may idle with
clocks running. Each hardware thread unit may also be dis-
abled to minimize toggling of transistors in the processor.

3.5. Fully interlocked

Unlike some VLIW processors, our architecture is fully
interlocked and transparent. In addition to the benefit
of code compatibility, this ensures that many admissible
and application-dependent implementations may be derived
from the same basic architecture.

4. LOW-POWER MICROARCHITECTURE

4.1. Multithreading

Figure 3 shows the microarchitecture of the Sandblaster pro-
cessor. In a multithreaded processor, multiple threads of ex-
ecution operate simultaneously. An important point is that
multiple copies (e.g., banks and/or modules) of memory are
available for each thread to access. The Sandblaster architec-
ture supports multiple concurrent program execution by the
use of hardware thread units (called contexts). The architec-
ture supports up to eight concurrent hardware contexts. The
architecture also supports multiple operations being issued
from each context. The Sandblaster processor uses a new
form of multithreading called token triggered threading (T3)
[9].

With T3, all hardware contexts may be simultaneously
executing instructions, but only one context may issue an
instruction each cycle. This constraint is also imposed on
round-robin threading. What distinguishes T3 is that each
clock cycle, a token indicates the next context that is to be ex-
ecuted. Tokens may cause the order in which threads issue in-
structions to be sequential (e.g., round-robin), even/odd, or
based on other communications patterns. Figure 4 shows an
example of T3 instruction issue, in which an instruction first
issues from Thread 0, then Thread 3, then Thread 2, and so
forth. After eight cycles, the sequence repeats with Thread 0
issuing its next instruction. Compared to SMT, T3 has much
less hardware complexity and power dissipation, since the
method for selecting threads is simplified, only a single com-
pound instruction issues each clock cycle, and most depen-
dency checking and bypass hardware is not needed.

4.2. Decoupled logic and memory

As technology improves, processors are capable of execut-
ing at very fast cycle times. Current state-of-the-art 0.13 um
technologies can produce processors faster than 3 GHz. Un-
fortunately, current high-performance processors consume

John Glossner et al. 7

I-cache
32 KB

64 B lines
4 W (2-active)

L2 memory and
external interface

Bus/memory
interface

Data memory
64 KB

8-banks

Program flow
control unit

Integer/load-store
unit

SIMD vector unit

Figure 3: Multithreaded microarchitecture.

T0 T3 T2 T1 T6 T5 T4 T7

Figure 4: Token triggered threading, with even/odd sequencing.

significant power. If power-performance curves are consid-
ered for both memory and logic within a technology, there
is a region in which you get approximately linear increase in
power for linear increase in performance. Above a specific
threshold, there is an exponential increase in power for a lin-
ear increase in performance. Even more significant, memory
and logic do not have the same threshold.

For 0.13 um technology, the logic power-performance
curve may be in the linear range until approximately
600 MHz. Unfortunately, memory power-performance
curves are at best linear to about 300 MHz. This presents
a dilemma as to whether to optimize for performance or
power. Fortunately, multithreading alleviates the power-
performance trade-off. The Sandblaster implementation
of multithreading allows the processor cycle time to be
decoupled from the memory access time. This allows both
logic and memory to operate in the linear region, thereby
significantly reducing power dissipation. The decoupled
execution does not induce pipeline stalls due to the unique
pipeline design.

4.3. Caches

An instruction cache unit (ICU) stores instructions to be
fetched for each thread unit. A cache memory works on the
principle of locality. Locality can refer to spatial, temporal,
or sequential locality [2]. We use set associative caches to
alleviate multiple contexts evicting another context’s active
program. In our implementation, shown in Figure 5, there
are four directory entries (D0–D3) and banked storage en-
tries. A thread identifier register (not shown) is used to se-

Rld Data

Instruction

Bus/memory
interface

I-decode

EnablesRld Req

Hit/miss logic

Jump Q PC

AGEN

Address

D0D1D2D3

Figure 5: Cache memory design.

lect whether the cache line in the left or right bank will be
evicted. This effectively reduces the complexity of the cache
line selection logic. In a 4-way set associative cache, only one
additional least recently used (LRU) bit is needed to select
which of the two lines should be evicted. This method of us-
ing thread information and banked memory accesses signif-
icantly reduces the complexity of the cache logic. In our im-
plementation, a unique feature is the use of a read associativ-
ity of 4 and a write associativity of 2, which further reduces
the cache logic complexity.

8 EURASIP Journal on Embedded Systems

Ld/St Inst. Dec. RF read Agen. XFer Int. ext. Mem. 0 Mem. 1 Mem. 2 WB

ALU Inst. Dec. Wait RF read Exec. 1 Exec. 2 XFer WB — —

I Mul Inst. Dec. Wait RF read Exec. 1 Exec. 2 Exec. 3 XFer WB —

V Mul Inst. Dec. VRF read Mpy1 Mpy2 Add1 Add2 XFer VRF WB —

Figure 6: Processor pipeline.

4.4. Pipeline

The pipeline for one particular implementation of the Sand-
blaster DSP is shown in Figure 6. The execution pipelines
are different for various functions. The Load/Store (Ld/St)
pipeline is shown to have 9 stages. It is assumed that the in-
struction is already in the cache. The first stage decodes the
instruction (Inst. Dec.). This is followed by a read from the
general purpose register file. The next stage generates the ad-
dress to perform the Load or Store. Five cycles are used to
access data memory. Finally, the result for a Load instruc-
tion is written back (WB) to the referenced register file lo-
cation. Once an instruction from a particular context enters
the pipeline, it runs to completion. It is also guaranteed to
write back its result before the next instruction issuing from
the same thread tries to use the result.

Similarly, there are multiple (variable) stages for other ex-
ecution pipelines. The integer unit has three execute stages
for multiplication (I MUL) and two execute stages for addi-
tion (ALU). The vector unit has four execute stages, two for
multiplication and two for addition.

4.5. Interlock checking hardware

Most interlocked architectures require significant interlock
checking hardware and bypass logic for both correctness and
performance reasons. Multithreading mitigates this effect.
With the carefully designed pipeline shown in Figure 6, there
is only one interlock that must actually be checked for in
hardware, a long memory load or store. All other operations
are guaranteed to complete prior to the same thread issuing
a new instruction. This completely removes the power con-
suming interlock checks associated with most interlocked ar-
chitectures.

5. LOW-POWER LOGIC DESIGN

5.1. Single write-port register files

Having multithreading to cover the latency associated with
long pipeline implementations allows the use of single write-
port register files even though more than one write may oc-
cur within an instruction cycle. An important point is that
the write back stages are staggered. This allows a single write
port to be implemented but provides the same functionality
as multiple write ports [10].

An example is loading the integer register file while per-
forming an integer multiply. From the processor pipeline
shown in Figure 6, it is apparent that the reads and writes
from the register file are staggered in time. In addition, sep-
arate architected register spaces for vector, integer, and accu-
mulate operations enable reduced ports. A VLIW implemen-
tation of the instruction shown in Figure 2 may take many
write ports for sustained single cycle throughput. Compara-
tively, our solution requires at most a single combined R/W
port and an additional read port per register file.

5.2. Banked register files

Token triggered threading which follows a permutation of
even and odd thread issue policies along with the pipeline
implementation enables the use of banked register files. This
allows the register files to run at half the processor clock, but
never stall awaiting data.

5.3. Single-ported memories

The same characteristics that allow banked register file oper-
ation also enable the use of single ported L1 memories that
may also be banked and run at half the processor clock. Since
decoupled memories are highly desirable to reduce power,
this provides significant overall savings.

5.4. Minimal control signals

A combination of architectural and microarchitectural tech-
niques allows the processor to be implemented with very few
control signals. Since control signals often propagate to many
units, they become not only a source of bugs but also may
dissipate significant power.

5.5. Clock gating

Because the architecture is modular and the pipeline is deep,
there is time to compute which functional units will be ac-
tive for each instruction. If a functional unit is not active, the
clocks may be gated to that unit and suspend it on a unit-by-
unit basis. As an example, if there are no vector operations on
a given cycle, the vector unit is disabled. Even within a unit it
is possible to gate the clocks. For example, if a vector multi-
ply operation is executed but it does not need to be reduced,
the reduce unit within the vector unit is gated off.

John Glossner et al. 9

6. LOW-POWER CIRCUIT DESIGN

The average power consumption in a CMOS circuit can be
modeled as

Pavg = αCV 2
dd f + VddImean + VddIleak, (1)

where α is the average gate switching activity, C is the to-
tal capacitance seen by the gates’ outputs, Vdd is the supply
voltage, f is the circuit’s operating frequency, Imean is the av-
erage current drawn during input transition, and Ileak is the
average leakage current. The first term, αCV 2

dd f , which rep-
resents the dynamic switching power consumed by charg-
ing and discharging the capacitive load on the gates’ out-
puts, often dominates power consumption in high-speed mi-
croprocessors [11]. The second term, VddImean, which rep-
resents the average dynamic power due to short-circuit cur-
rent flowing when both the PMOS and NMOS transistors
conduct during input signal transitions, typically contributes
10% to 20% of the overall dynamic power [12]. This is also
a function of frequency but is simplified in this analysis.
The third term, VddIleak, represents the power consumed due
to leakage current and occurs even in devices that are not
switching. Consequently, for systems that are frequently in
standby mode, the leakage power may be a dominate fac-
tor in determining the overall battery life. Since the leakage
power increases exponentially with a linear decrease in device
threshold voltage, leakage power is also a concern in systems
that use power supply voltage scaling to reduce power.

6.1. Low-voltage operation

Since the dynamic switching power, αCV 2
dd f , is proportional

to the supply voltage squared, an effective technique for re-
ducing power consumption is to use a lower supply volt-
age. Unfortunately, however, decreasing the supply voltage
also decreases the maximum operating frequency. To achieve
high performance with a low-supply voltage, our arithmetic
circuits are heavily pipelined. For example, our multiply-
accumulate unit uses four pipeline stages. Our unique form
of multithreading helps mask long pipeline latencies, so that
high performance is achieved.

6.2. Minimum dimension transistors

Minimum dimension transistors help to further reduce
power consumption, since they reduce circuit capacitance
[13]. Throughout the processor, we use minimum dimension
transistors, unless other considerations preclude their use.
For example, transistors that are on critical delay paths often
need to have larger dimensions to reduce delay [14]. Larger
dimension transistors are also used to drive nodes with high
fan-out and to balance circuit delays.

6.3. Delay balancing

Gates with unbalanced input delays can experience glitches,
which increase dynamic switching power and dynamic short-
circuit power [15]. To reduce glitches, we balance gate input

delays in our circuits through a combination of gate-level de-
lay balancing techniques (i.e., designing the circuits so that
inputs to a particular gate go through roughly the same num-
ber of logic levels) and judicious transistor sizing. Glitches
are further reduced by having a relatively small number of
logic levels between pipeline registers.

6.4. Logic combining and input ordering

Dynamic and static power consumptions are also reduced by
utilizing a variety of specially designed complex logic cells.
Our circuits include efficient complex logic cells, such as 3-
input AndOrInvert (AOI), 3-input OrAndInvert (OAI), half
adder, and full adder cells. Providing a wide variety of com-
plex gates with different drive strengths, functionality, and
optionally inverted inputs gives circuit designers and synthe-
sis tools greater flexibility to optimize for power consump-
tion. Keeping nodes with a high probability of switching in-
side of complex gates and reordering the inputs to complex
gates can help further reduce power. In general, inputs that
are likely to be off are placed closer to gate output nodes,
while inputs that are likely to be on are placed closer to the
supply voltage [15].

7. SANDBLASTER SOFTWARE TOOLS

A simulator is an interpreter of a machine language where the
representation of programs resides in memory but is not di-
rectly executed by host hardware. Historically, three types of
architectural simulators have been identified. An interpreted
simulator consists of a program executing on a computer
where each machine language instruction is executed on a
model of a target architecture running on the host computer.
Because interpreted simulators tend to execute slowly, com-
piled simulators have been developed. A statically compiled
simulator first translates both the program and the architec-
ture model into the host computer’s machine language. A
dynamically compiled (or just-in-time) simulator either starts
execution as an interpreter, but judiciously chooses functions
that may be translated during execution into a directly exe-
cutable host program, or begins by translating at the start of
the host execution.

7.1. Interpreted execution

Instructions set simulators commonly used for application
code development are cycle-count accurate in nature. They
use an architecture description of the underlying processor
and provide close-to-accurate cycle counts, but typically do
not model external memories, peripherals, or asynchronous
interrupts. However, the information provided by them is
generally sufficient to develop the prototype application.

Figure 7 shows an interpreted simulation system. Exe-
cutable code is generated for a target platform. During the
execution phase, a software interpreter running on the host
interprets (simulates) the target platform executable. The
simulator models the target architecture, may mimic the im-
plementation pipeline, and has data structures to reflect the

10 EURASIP Journal on Embedded Systems

Exec. code
(target)

Compilation phase Execution phase

F
D

D
E

F
D

R
E

Figure 7: Interpreted simulation.

machine resources such as registers. The simulator contains a
main driver loop, which performs the fetch, decode, data read,
execute, and write back operations for each instruction in the
target executable code.

An interpreted simulator has performance limitations.
Actions such as instruction fetch, decode, and operand fetch
are repeated for every execution of the target instruction.
The instruction decode is implemented with a number of
conditional statements within the main driver loop of the
simulator. This adds significant simulation overhead because
all combinations of opcodes and operands must be distin-
guished. In addition, the execution of the target instruction
requires the update of several data structures that mimic the
target resources, such as registers, in the simulator.

7.2. Statically compiled simulation

Figure 8 shows a statically compiled simulation system. In
this technique, the simulator takes advantage of the any a pri-
ori knowledge of the target executable and performs some of
the activities at compile time instead of execution time. Us-
ing this approach, a simulation compiler generates host code
for instruction fetch, decode, and operand reads at compile
time. As an end product, it generates an application-specific
host binary in which only the execute phase of the target pro-
cessor is unresolved at compile time. This binary is expected
to execute faster, as repetitive actions have been taken care of
at compile time.

While this approach addresses some of the issues with in-
terpretive simulators, there are other limitations. First, the
simulation compilers typically generate C code, which is then
converted to object code using the standard compile → as-
semble → link path. Depending on the size of the generated
C code, the file I/O needed to scan and parse the program
could well reduce the benefits gained by taking the compiled
simulation approach. The approach is also limited by the id-
iosyncrasies of the host compiler such as the number of labels
allowed in a source file, size of switch statements and so forth.
Some of these could be addressed by directly generating ob-
ject code—however, the overhead of writing the application-
specific executable file to the disc and then rereading it dur-
ing the execution phase still exists. In addition, depending
on the underlying host, the application-specific executable
(which is visible to the user) may not be portable to another
host due to different libraries, instruction sets and so forth.

7.3. Dynamically compiled simulation

Figure 9 shows the dynamically compiled simulation ap-
proach. This is the approach used in the Sandbridge simu-
lator. In this approach, target instructions are translated into
equivalent host instructions (executable code) at the begin-
ning of execution time. The host instructions are then exe-
cuted at the end of the translation phase. This approach elim-
inates the overhead of repetitive target instruction fetch, de-
code, and operand read in the interpretive simulation model.
By directly generating host executable code, it eliminates the
overhead of the compile, assemble, and link path and the as-
sociated file I/O that is present in the compiled simulation
approach. This approach also ensures that the target exe-
cutable file remains portable, as it is the only executable file
visible to the user and the responsibility of converting it to
host binary has been transferred to the simulator.

7.4. Multithreaded programming model

Obtaining full utilization of parallel processor resources has
historically been a difficult challenge. Much of the pro-
gramming effort can be spent determining which processors
should receive data from other processors. Often execution
cycles may be wasted for data transfers. Statically scheduled
machines such as Very Long Instruction Word architectures
and visible pipeline machines with wide execution resources
complicate programming and may reduce programmer pro-
ductivity by requiring manual tracking of up to 100 in-flight
instruction dependencies. When nonassociative DSP arith-
metic is present, nearly all compilers are ineffective and the
resulting burden falls upon the assembly language program-
mer. A number of these issues have been discussed in [8].

A good programming model should adequately abstract
most of the programming complexity so that 20% of the ef-
fort may result in 80% of the platform utilization [16]. While
there are still some objections to a multithreaded program-
ming model [9], to-date it is widely adopted particularly with
the introduction of the Java programming language [17].

With hardware that is multithreaded with concurrent ex-
ecution and adopting a multithreaded software program-
ming model, it is possible for a kernel to be developed
that automatically schedules software threads onto hard-
ware threads. It should be noted that while the hardware
scheduling is fixed and uses a technique called token trig-
gered threading (T3) [18], the software is free to use any
scheduling policy desired.

The Sandblaster kernel has been designed to use the
POSIX pthreads open standard [19]. This provides cross
platform capability as the library is compilable across a num-
ber of systems including Unix, Linux, and Windows.

7.5. Compiler technology

There are many challenges faced when trying to develop
efficient compilers for parallel DSP technologies. At each
level of processor design, Sandbridge has endeavored to al-
leviate these issues through abstraction. First and foremost,

John Glossner et al. 11

Exec. code
(target)

C (host)

Fetch, decode, read done

Assem./link

Compilation phase Execution phase

Application-specific
executable on host

(visible to user)
Execute

the binary

E

E

Figure 8: Statically compiled simulation.

Exec. code
(target) Translate

Compilation phase Execution phase

Application-specific
executable on host

(visible to user)

Execute
the binary

E

E

Figure 9: Dynamically compiled simulation.

the Sandblaster processor is transparent in the architectural
sense. This proscribes that there are no visible implementa-
tion effects for the programmer or compiler to deal with [2].
This is in distinct contrast with VLIW designs where the im-
plementation strongly influences the architecture. A benefit
of a true architecture approach is that object code will exe-
cute unmodified (e.g., without any translation required) on
any Sandblaster compliant implementation.

The Sandblaster architecture uses a SIMD datapath to
implement vector operations. The compiler vectorizes C
code to exploit the data level parallelism inherent in signal
processing applications and then generates the appropriate
vector instructions. The compiler also handles the difficult
problem of outer loop vectorization

Within the architecture, there is direct support for par-
allel saturating arithmetic. Since saturating arithmetic is
nonassociative, out-of-order execution may produce differ-
ent bit results. In some wireless systems this is not permis-
sible [20]. By architecting parallel saturating arithmetic (i.e.,
vector multiply and accumulate with saturation), the com-
piler is able to generate code with the understanding that the

hardware will properly produce bit-exact results. The com-
piler algorithm used to accomplish this is described in [21].
Some hardware techniques to implement this are described
in [22].

Additionally, our compiler can also automatically gener-
ate threads. We use the same pthreads mechanism for thread
generation in the compiler as the programmer who specifies
them manually. For most signal processing loops, it is not a
problem to generate threads and the compiler will automati-
cally produce code for correct synchronization.

7.6. Tool chain generation

Figure 10 shows the Sandblaster tool chain generation. The
platform is programmed in a high-level language such as C,
C++, or Java. The program is then translated using an inter-
nally developed supercomputer class vectorizing parallelizing
compiler. The tools are driven by a parameterized resource
model of the architecture that may be programmatically
generated for a variety of implementations and organiza-
tions. The source input to the tools, called the Sandbridge

12 EURASIP Journal on Embedded Systems

C

C++

Java sb.o

Binary
translator

SaDL

x86
asm C

x86
asm

Sandblaster
compiler

Compiled
simulator

Dynamic
simulator

Figure 10: Tool chain generation.

architecture description language (SaDL), is a collection of
python source files that guide the generation and optimiza-
tion of the input program and simulator. The compiler is re-
targetable in the sense that it is able to handle multiple pos-
sible implementations specified in SaDL and produce an ob-
ject file for each implementation. The platform also supports
many standard libraries (e.g., libc, math, etc.) that may be
referenced by the C program. The compiler generates an ob-
ject file optimized for the Sandblaster architecture.

8. RESULTS

This section discusses the performance and power results for
the processor, the simulation and compilation performance
results, and finally full communications systems results.

8.1. Processor performance and power results

Figure 11 shows a picture of the SB3011 chip which was fab-
ricated in 90 nm TSMC technology. Highlighted are the 4
Sandblaster cores, the ARM9 core, and the L2 memories. Ini-
tial samples have performed at 600 MHz at 0.9 V.

Figure 12 shows power measurements made on the ini-
tial samples for a single Sandblaster core. As described
in Section 2.5, the power modes may be programmed.
Figure 12 shows power at some typical configurations. When
the entire device is in deep sleep it consumes less than 1 mi-
crowatt of power. As you bring each core out of deep sleep to
a standby state, there is a measured range of power dissipa-
tion which on the initial samples is less than 5 milliwatts with
complete state retention. The last section of Figure 12 depicts
the linear nature of programs executing. Depending on the
core activity, the power dissipation is linear with respect to
the workload. The linear nature depicted is the result of aver-
age utilization of threads. We have measured on hardware a
range of applications. WCDMA dissipates about 75 mW per

Figure 11: SB3011 device layout.

Device
deep
sleep

Per-core
deep
sleep

Device
standby

(all cores up)

Device
executing

75 mW/core
(typical app.)

5 mW/core
(typical)

< 1 μW

(typical)

Figure 12: Processor power results for a 600 MHz 0.9 V Sandblaster
device.

core (at 600 MHz 0.9 V). Other less demanding applications
such as GSM/GPRS dissipate less power.

8.2. Processor tools results

Figure 13 shows the results of various compilers on out-of-
the-box ETSI C code [20]. The y-axis shows the number of
MHz required to compute frames of speech in real-time. The
AMR code is completely unmodified and no special include
files are used. Without using any compiler techniques such as
intrinsics or special typedefs, the compiler is able to achieve
real-time operation on the baseband core at hand-coded as-
sembly language performance levels. Note that the program
is completely compiled from C language code. Since other
solutions are not able to automatically generate DSP opera-
tions, intrinsic libraries must be used. With intrinsic libraries
the results for most DSPs are near ours but they only apply to
the ETSI algorithms whereas the described compiler can be
applied to arbitrary C code.

John Glossner et al. 13

0
100
200
300
400
500
600
700

M
H

z

AMR encoder

SB TI C64x TI C62x SC140 SC140 Blackfin

10 193 199 308 590

DSPs

AMR encoder
(out-of-the-box C code)

Figure 13: Out-of-the-box AMR ETSI encoder C code results. (Re-
sults based on out-of-the-box C code. C64x IDE Version 2.0.0 com-
piled without intrinsics using -k -q -pm -op2 -o3 -d“WMOPS = 0”
-ml0 -mv6400 flags with results averaged over 425 frames of ETSI-
supplied test vectors. C62x IDE Version 2.0.0 compiled without in-
trinsics using -k -q -pm -op2 -o3 -d“WMOPS = 0” -ml0 -mv6200
flags with results averaged over 425 frames of ETSI-supplied test
vectors. Starcore SC140 IDE version Code Warrior for StarCore ver-
sion 1.5, relevant optimization flags (encoder only): scc -g -ge -be
-mb -sc -O3 –Og, other: no intrinsic used. Results based on execu-
tion of 5 frames. ADI Blackfin IDE Version 2.0 and Compiler ver-
sion 6.1.5 compiled without intrinsics using -O1 -ipa -DWMOPS =
0 –BLACKFIN with results averaged over 5 frames of ETSI-supplied
test vectors for the encoder only portion.)

Efficient compilation is just one aspect of software pro-
ductivity. Prior to having hardware, algorithm designers
should have access to fast simulation technology. Figure 14
shows the postcompilation simulation performance of the
same AMR encoder as Figure 13 for a number of DSP pro-
cessors. All programs were executed on the same 1 GHz lap-
top Pentium computer. The Sandbridge tools are capable
of simulating 24.6 million instructions per second. This is
more than two orders of magnitude faster than the nearest
DSP and allows real-time execution of GSM speech coding
on a Pentium simulation model. To further elaborate, while
some DSPs cannot even execute the out-of-the-box code in
real-time on their native processor, the Sandbridge simulator
achieves multiple real-time channels on a simulation model
of the processor. This was accomplished by using internal
compilation technology to accelerate the simulation.

8.3. Applications results

Figure 15 shows the results of a number of communica-
tions systems as a percentage utilization of a 4-core 600 MHz
SB3011 platform. Particularly, WiFi 802.11b, GPS, AM/FM
radio, Analog NTSC Video TV, Bluetooth, GSM/GPRS,
UMTS WCDMA, WiMax, CDMA, and DVB-H. A notable
point is that all these communications systems are written
in generic C code with no hardware acceleration required. It
is also notable that performance in terms of data rates and
concurrency in terms of applications can be dynamically ad-
justed based on the mix of tasks desired. For most of the sys-
tems, the values are measured on hardware from digitized RF
signals that have been converted in real-time. This includes

0.001

0.01

0.1

1

10

100

M
ill

io
n

s
of

in
st

ru
ct

io
n

s
p

er
se

co
n

d

ADI Blackfin (visual DSP)

SB

SC140 (metrowerks)

TI C62x (code composer)

TI C64x (code composer)

24.639

0.114

0.106

0.002

0.013

Simulation speed
(1 GHz laptop)

Figure 14: Simulation speed of ETSI AMR encoder.

0
10

20
30
40

50
60
70
80

90

100

SB
30

11
u

ti
liz

at
io

n
(%

)
4
×

60
0

M
H

z

80
2.

11
b

1/
2/

5.
5/

11
M

bp
s

G
P

S

A
M

/F
M

A
n

al
og

-T
V

S-
vi

de
o

B
lu

et
oo

th

G
P

R
S

cl
as

s
10
/1

4

W
C

D
M

A
64

k/
38

4
k/

2
M

W
iM

ax
2.

9
M

bp
s

C
D

M
A

14
4

kb
ps

/2
.4

M
bp

s

D
V

B
-H

2
k/

4
k/

8
k

(2
50

kb
ps

,1
.5

M
bp

s)

Figure 15: Communication systems results as a percentage of
SB3011 utilization (4 Cores at 600 MHz).

the design of RF cards based on industry standard compo-
nents. The only exceptions are Bluetooth and DVB-H. For
these systems the RF cards are still under development.

Figure 16 shows the results of various multimedia codecs.
Note that the total MHz scale is 7% of the entire 4-core ca-
pacity. Results for QCIF (176 × 144) at 15 frames per sec-
ond (fps) and CIF (360 × 288) at 30 fps images are shown
for the H.264 decoder. For the MPEG4 decoder, out-of-the-
box (OOB) and optimized (OPT) are shown for the Foreman
clip at 30 frames per second. Noticeably, out-of-the-box per-
formance is real-time and highly efficient. This is the result
of our highly optimizing compiler which can both vectorize
and parallelize standard C code. Also, MP3 decoding results
are shown at various bit rates. A key point is that all these
applications run using less than two threads and many in a
percentage of a single thread. Since there are 32 threads in the
SB3011 implementation, a single thread consumes 3.125% of
the available processor performance.

Figure 17 shows measurements while executing either
GPRS class 14 or WCDMA at a 384 kbps bit rate. Note that
both of these applications dissipate less power than the stated
average dissipation of 75 mW per core. The actual power

14 EURASIP Journal on Embedded Systems

0

1

2

3

4

5

6

7

SB
30

11
u

ti
liz

at
io

n
(%

)
4
×

60
0

M
H

z

Q
C

IF

C
IF

H.264 dec.

Q
C

IF

MPEG enc.
C

IF
O

O
B

C
IF

O
P

T
MPEG dec.

12
8

k/
19

2
k/

22
4

k
/2

56
k/

32
0

kb
ps

(4
4.

1
M

H
z

sa
m

pl
e

ra
te

)

MP3 dec.

H.264 Foreman QCIF at 15 fps at 60 kbps

H.264 Foreman CIF at 30 fps at 215 kbps

MPEG4 Foreman QCIF at 15 fps at 265 kbps out of box

MPEG4 Foreman CIF at 30 fps at 384 kbps out of box and optimize

Figure 16: Multimedia results as a percentage of SB3011 utilization
(4 cores at 600 MHz).

dissipation is highly dependent upon workload. As an ap-
proximation it may be possible to use the average utilization
of the processor complex multiplied by the average power.
However, in practice the actual results vary significantly by
application. The SB3010 measurements refer to an earlier
version of the chip that was predominantly synthesized. The
SB3011 is a semicustom design. The software-optimized col-
umn refers to the operating system’s ability to turn off cores
and threads that are unused. This can result in significant
power savings.

9. RELATED WORK

In this section we contrast and compare our approach for
both processors and tools with other known approaches. The
Sandbridge processor design provides important power and
performance characteristics while the tools provide the capa-
bility of rapidly designing SDR systems.

9.1. Processors

Other SDR platforms include the Signal Processing on De-
mand Architecture (SODA) [23], OnDSP [4], the Embed-
ded Vector Processor (EVP) [5], the Synchronous Transfer
Architecture (STA) [6], picoArray [24], XiSystem [25], and
the MS1 reconfigurable DSP (rDSP) core [26].

SODA is a programmable SDR platform that consists of
four processor cores. Each core contains scratchpad memo-
ries and asymmetric pipelines that support scalar, 32-wide
SIMD, and address generation operations. SODA is opti-
mized for 16-bit arithmetic and features several specialized
operations including saturating arithmetic, vector permute,
vector compare and select, and predicated negation opera-
tions.

OnDSP, EVP, and STA all are VLIW architectures with
support for multiple parallel scalar, vector, memory ac-
cess, and control operations. For example, OnDSP pro-
vides 8-element vector operations that can operate in par-
allel with scalar operations. With EVP, the maximum VLIW-
parallelism available is five vector operations, four scalar op-
erations, three address updates, and loop-control. All three
architectures feature dedicated instructions for wireless com-
munications algorithms, such as FFTs and Viterbi, Reed-
Solomon, and Turbo coding. STA utilizes a machine descrip-
tion file to facilitate the generation of different hardware and
simulation models for the processor.

picoArray is a tiled architecture in which hundreds of
heterogeneous processors are interconnected using a bus-
based array. Within the picoArray, processors are organized
in a two-dimensional grid, and communicate over a net-
work of 32-bit unidirectional buses and programmable bus
switches. Each programmable processor in the array sup-
ports 16-bit arithmetic, uses 3-way VLIW scheduling, and
has its own local memory. In addition to the programmable
processors, the picoArray includes specialized peripherals
and connects to hardware accelerators for performing FFTs,
cryptography, and Reed-Solomon and Viterbi coding.

XiSystem and the MS1 rDSP core combine programma-
ble processors with reconfigurable logic to implement wire-
less communication systems. XiSystem integrates a VLIW
processor, a multicontext reconfigurable gate array, and re-
configurable I/O modules in a SoC platform. The multi-
context reconfigurable gate array enables dynamic instruc-
tion set extensions for bit-level operations needed in many
DSP applications. The MS1 rDSP core contains a reconfig-
urable logic block, called the RC Array, a 32-bit RISC proces-
sor, called mRISC, a context memory, a data buffer, and an
I/O controller. The mRISC processor controls the RC array,
which performs general purpose operations, as well as word-
level and bit-level DSP functions.

Unlike other SDR platforms, the SB3011 platform pro-
vides a fully programmable solution in which all communi-
cations systems are written in generic C code with no hard-
ware acceleration or assembly language programming. It also
is the first SDR platform to combine explicit multithread-
ing, powerful compound instructions, vector operations, and
parallel saturating arithmetic in a low-power programmable
SoC multiprocessor.

Another important aspect of the SB3011 platform is the
technique it uses to support explicit multithreading. Previ-
ous techniques for explicit hardware multithreading includ-
ing interleaved multithreading (IMT), blocked multithread-
ing (BMT), and simultaneous multithreading (SMT) [27].
With IMT [28], also known as fine grain multithreading
or horizontal multithreading, only one thread can issue an
instruction each cycle, and threads issue instructions in a
predetermined order (e.g., round-robin). With BMT [29],
also known as coarse-grain multithreading or vertical multi-
threading, instructions are executed sequentially until a long-
latency event (e.g., a cache miss) occurs. The long-latency
event triggers a fast context switch to another thread. With
SMT [30], multiple instructions may be issued each cycle

John Glossner et al. 15

Core w/ L1 instances
32 KB I-cache
64 KB D mem.

GSM/GPRS class 14, 1 core WCDMA at 384 kbps, 1 of 3 cores
SB3010
(mW)

Measured

SB3010
(mW)

SW
optimized

150 85

SB3011
(mW)

45

SB3010
(mW)

Measured

171

SB3010
(mW)

SW
optimized

130

SB3011
(mW)

65
Core w/o L1 instances 142 77 40 160 117 58

Figure 17: Application power measurements.

from multiple threads. SMT combines techniques from pre-
vious multithreaded processors and dynamically scheduled
superscalar processors to exploit both instruction-level par-
allelism and thread-level parallelism.

As discussed in Section 4, The SB3011 features a new
form of interleaved multithreading, known as token trig-
gered threading (T3). Unlike previous IMT implementations,
the T3 implementation on the SB3011 features compound
instructions, SIMD vector operations, and greater flexibil-
ity in scheduling threads. Compared to BMT, T3 provides
greater concurrency since instructions from multiple threads
are executing in parallel each cycle. Compared to SMT, T3

has much less hardware complexity and power dissipation,
since the method for selecting threads is simplified, only a
single compound instruction issues each clock cycle, and de-
pendency checking and bypass hardware are not needed. The
SB3011 platform combines T3 with chip multiprocessing to
provide up to 32 simultaneously executing hardware threads.

9.2. Tools

In this section, we compare our solution to other high-
performance tools solutions. Automatic DSP simulation gen-
eration from a C++-based class library was discussed in [31].
Automatic generation of both compiled and interpretive sim-
ulators was discussed in [32]. Compiled simulation for pro-
grammable DSP architectures to increase simulation perfor-
mance was introduced in [33]. This was extended to cycle
accurate models of pipelined processors in [34]. A general
purpose MIPS simulator was discussed in [35]. The ability
to dynamically translate snippets of target code to host code
at execution time was used in Shade [36]. However, unlike
Shade, our approach generates code for the entire applica-
tion, is targeted towards compound instruction set architec-
tures, and is capable of maintaining bit exact semantics of
DSP algorithms. A similar approach to ours is described in
[37].

10. SUMMARY

Sandbridge Technologies has introduced a completely new
and scalable design methodology for implementing multi-
ple communications systems on a single SDR chip. Using
a unique multithreaded architecture specifically designed to
reduce power consumption, efficient broadband communi-
cations operations are executed on a programmable plat-

form. The instruction execution in the described architecture
is completely interlocked providing software compatibility
among all processors. Because of the interlocked execution,
interrupt latency is very short. An interrupt may occur on
any instruction boundary including loads and stores; this is
critical for real-time systems.

The processor is combined with a highly optimizing vec-
torizing compiler with the ability to automatically analyze
programs and generate DSP instructions. The compiler also
automatically parallelizes and multithreads programs. This
obviates the need for assembly language programming and
significantly accelerates time-to-market for streaming multi-
mode multimedia convergence systems.

REFERENCES

[1] http://www.sdrforum.org/.
[2] G. Blaauw and F. Brooks Jr., Computer Architecture: Concepts

and Evolution, Addison-Wesley, Reading, Mass, USA, 1997.
[3] B. Case, “Philips hopes to displace DSPs with VLIW,” Micro-

processor Report, vol. 8, no. 16, pp. 12–15, 1997.
[4] J. Kneip, M. Weiss, W. Drescher, et al., “Single chip pro-

grammable baseband ASSP for 5 GHz wireless LAN applica-
tions,” IEICE Transactions on Electronics, vol. E85-C, no. 2, pp.
359–367, 2002.

[5] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss, “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2005, no. 16, pp. 2613–2625, 2005.

[6] J. P. Robelly, G. Cichon, H. Seidel, and G. Fettweis, “A HW/SW
design methodology for embedded SIMD vector signal pro-
cessors,” International Journal of Embedded Systems, vol. 1,
no. 11, pp. 2–10, 2005.

[7] J. Glossner, T. Raja, E. Hokenek, and M. Moudgill, “A multi-
threaded processor architecture for SDR,” The Proceedings of
the Korean Institute of Communication Sciences, vol. 19, no. 11,
pp. 70–84, 2002.

[8] J. Glossner, M. Schulte, M. Moudgill, et al., “Sandblaster low-
power multithreaded SDR baseband processor,” in Proceed-
ings of the 3rd Workshop on Applications Specific Processors
(WASP ’04), pp. 53–58, Stockholm, Sweden, September 2004.

[9] E. A. Lee, “The problem with threads,” Computer, vol. 39,
no. 5, pp. 33–42, 2006.

[10] J. Glossner, K. Chirca, M. Schulte, et al., “Sandblaster low
power DSP,” in Proceedings of the IEEE Custom Integrated Cir-
cuits Conference (CICC ’04), pp. 575–581, Orlando, Fla, USA,
October 2004.

[11] B. Moyer, “Low-power design for embedded processors,” Pro-
ceedings of the IEEE, vol. 89, no. 11, pp. 1576–1587, 2001.

16 EURASIP Journal on Embedded Systems

[12] T. Mudge, “Power: a first-class architectural design constraint,”
Computer, vol. 34, no. 4, pp. 52–58, 2001.

[13] A. Wroblewski, O. Schumacher, C. V. Schimpfle, and J. A.
Nossek, “Minimizing gate capacitances with transistor sizing,”
in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’01), vol. 4, pp. 186–189, Sydney, NSW,
Australia, May 2001.

[14] M. Borah, R. M. Owens, and M. J. Irwin, “Transistor sizing for
minimizing power consumption of CMOS circuits under de-
lay constraint,” in Proceedings of the International Symposium
on Low Power Electronics and Design, pp. 167–172, Dana Point,
Calif, USA, April 1995.

[15] S. Kim, J. Kim, and S.-Y. Hwang, “New path balancing algo-
rithm for glitch power reduction,” IEE Proceedings: Circuits,
Devices and Systems, vol. 148, no. 3, pp. 151–156, 2001.

[16] R. Goering, “Platform-based design: a choice, not a panacea,”
EE Times, 2002, http://www.eetimes.com/story/OEG2002091-
1S0061.

[17] O. Silvén and K. Jyrkkä, “Observations on power-efficiency
trends in mobile communication devices,” in Proceedings of
the 5th International Workshop on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS ’05),
vol. 3553 of Lecture Notes in Computer Science, pp. 142–151,
Samos, Greece, July 2005.

[18] M. Schulte, J. Glossner, S. Mamidi, M. Moudgill, and S.
Vassiliadis, “A low-power multithreaded processor for base-
band communication systems,” in Embedded Processor Design
Challenges: Systems, Architectures, Modeling, and Simulation,
vol. 3133 of Lecture Notes in Computer Science, pp. 393–402,
Springer, New York, NY, USA, 2004.

[19] B. Nichols, D. Buttlar, and J. Farrell, Pthreads Programming: A
POSIX Standard for Better Multiprocessing, O’Reilly Nutshell
Series, O’Reilly Media, Sebastopol, Calif, USA, 1996.

[20] K. Jarvinen, J. Vainio, P. Kapanen, et al., “GSM enhanced full
rate speech codec,” in Proceedings of IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP ’97),
vol. 2, pp. 771–774, Munich, Germany, April 1997.

[21] V. Kotlyar and M. Moudgill, “Detecting overflow detection,”
in Proceedings of the 2nd IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and Systems Synthesis
(CODES+ISSS ’04), pp. 36–41, Stockholm, Sweden, Septem-
ber 2004.

[22] P. I. Balzola, M. Schulte, J. Ruan, J. Glossner, and E. Ho-
kenek, “Design alternatives for parallel saturating multi-
operand adders,” in Proceedings of IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors
(ICCD ’01), pp. 172–177, Austin, Tex, USA, September 2001.

[23] Y. Lin, H. Lee, M. Woh, et al., “SODA: a low-power architec-
ture for software radio,” in Proceedings of the 33rd International
Symposium on Computer Architecture (ISCA ’06), pp. 89–100,
Boston, Mass, USA, June 2006.

[24] A. Lodi, A. Cappelli, M. Bocchi, et al., “XiSystem: a XiRisc-
based SoC with reconfigurable IO module,” IEEE Journal of
Solid-State Circuits, vol. 41, no. 1, pp. 85–96, 2006.

[25] A. Duller, G. Panesar, and D. Towner, “Parallel processing -
the picoChip way!,” in Communicating Process Architectures
(CPA ’03), pp. 125–138, Enschede, The Netherlands, Septem-
ber 2003.

[26] B. Mohebbi, E. C. Filho, R. Maestre, M. Davies, and F. J.
Kurdahi, “A case study of mapping a software-defined ra-
dio (SDR) application on a reconfigurable DSP core,” in Pro-
ceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pp. 103–
108, Newport Beach, Calif, USA, October 2003.

[27] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with
explicit multithreading,” ACM Computing Surveys, vol. 35,
no. 1, pp. 29–63, 2003.

[28] B. J. Smith, “The architecture of HEP,” in Parallel MIMD Com-
putation: HEP Supercomputer and Its Applications, J. S. Kowa-
lik, Ed., pp. 41–55, MIT Press, Cambridge, Mass, USA, 1985.

[29] T. E. Mankovic, V. Popescu, and H. Sullivan, “CHoPP princi-
ples of operations,” in Proceedings of the 2nd International Su-
percomputer Conference, pp. 2–10, Mannheim, Germany, May
1987.

[30] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: maximizing on-chip parallelism,” in Proceed-
ings of the 22nd Annual International Symposium on Computer
Architecture (ISCA ’95), pp. 392–403, Santa Margherita Ligure,
Italy, June 1995.

[31] D. Parson, P. Beatty, J. Glossner, and B. Schlieder, “A frame-
work for simulating heterogeneous virtual processors,” in Pro-
ceedings of the 32nd Annual Simulation Symposium, pp. 58–67,
San Diego, Calif, USA, April 1999.

[32] R. Leupers, J. Elste, and B. Landwehr, “Generation of inter-
pretive and compiled instruction set simulators,” in Proceed-
ings of the Asia and South Pacific Design Automation Conference
(ASP-DAC ’99), vol. 1, pp. 339–342, Wanchai, Hong Kong,
January 1999.

[33] V. Zivojnovic, S. Tjiang, and H. Meyr, “Compiled simula-
tion of programmable DSP architectures,” in Proceedings of the
IEEE Workshop on VLSI Signal Processing, pp. 187–196, Osaka,
Japan, October 1995.

[34] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISA—
machine description language for cycle-accurate models of
programmable DSP architectures,” in Proceedings of the 36th
Annual Design Automation Conference (DAC ’99), pp. 933–
938, New Orleans, La, USA, June 1999.

[35] J. Zhu and D. D. Gajski, “An ultra-fast instruction set simula-
tor,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 10, no. 3, pp. 363–373, 2002.

[36] R. Cmelik and D. Keppel, “Shade: a fast instruction-set sim-
ulator for execution profiling,” Tech. Rep. UWCSE 93-06-06,
University of Washington, Washington, DC, USA, 1993.

[37] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann, “Design innovations for embedded processors:
a universal technique for fast and flexible instruction-set ar-
chitecture simulation,” in Proceedings of the 39th Design Au-
tomation Conference (DAC ’02), pp. 22–27, ACM Press, New
Orleans, La, USA, June 2002.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 86273, 13 pages
doi:10.1155/2007/86273

Research Article
A Shared Memory Module for Asynchronous
Arrays of Processors

Michael J. Meeuwsen, Zhiyi Yu, and Bevan M. Baas

Department of Electrical and Computer Engineering, University of California, Davis, CA 95616-5294, USA

Received 1 August 2006; Revised 20 December 2006; Accepted 1 March 2007

Recommended by Gang Qu

A shared memory module connecting multiple independently clocked processors is presented. The memory module itself is in-
dependently clocked, supports hardware address generation, mutual exclusion, and multiple addressing modes. The architecture
supports independent address generation and data generation/consumption by different processors which increases efficiency and
simplifies programming for many embedded and DSP tasks. Simultaneous access by different processors is arbitrated using a
least-recently-serviced priority scheme. Simulations show high throughputs over a variety of memory loads. A standard cell im-
plementation shares an 8 K-word SRAM among four processors, and can support a 64 K-word SRAM with no additional changes.
It cycles at 555 MHz and occupies 1.2 mm2 in 0.18 µm CMOS.

Copyright © 2007 Michael J. Meeuwsen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The memory subsystem is a key element of any compu-
tational machine. The memory retains system state, stores
data for computation, and holds machine instructions for
execution. In many modern systems, memory bandwidth is
the primary limiter of system performance, despite complex
memory hierarchies and hardware driven prefetch mecha-
nisms.

Coping with the intrinsic gap between processor perfor-
mance and memory performance has been a focus of re-
search since the beginning of the study of computer archi-
tecture [1]. The fundamental problem is the infeasibility of
building a memory that is both large and fast. Designers are
forced to reduce the sizes of memories for speed, or pro-
cessors must pay long latencies to access high capacity stor-
age. As memory densities continue to grow, memory perfor-
mance has improved only slightly; processor performance,
on the other hand, has shown exponential improvements
over the years. Processor performance has increased by 55
percent each year, while memory performance increases by
only 7 percent [2]. The primary solution to the memory gap
has been the implementation of multilevel memory hierar-
chies.

In the embedded and signal processing domains, de-
signers may use existing knowledge of system workloads to
optimize the memory system. Typically, these systems have

smaller memory requirements than general purpose com-
puting loads, which makes alternative architectures attrac-
tive.

This work explores the design of a memory subsystem
for a recently introduced class of multiprocessors that are
composed of a large number of synchronous processors
clocked asynchronously with respect to each other. Because
the processors are numerous, they likely have fewer resources
per processor, including instruction and data memory. Each
processor operates independently without a global address
space. To efficiently support applications with large work-
ing sets, processors must be provided with higher capacity
memory storage. The Asynchronous Array of simple Processors
(AsAP) [3] is an example of this class of chip multiprocessors.

To maintain design simplicity, scalability, and compu-
tational density, a traditional memory hierarchy is avoided.
In addition, the low locality in tasks such as those found
in many embedded and DSP applications, makes the cache
solution unattractive for these workloads. Instead, directly-
addressable software-managed memories are explored. This
allows the programmer to efficiently manage the memory hi-
erarchy explicitly.

The main requirements for the memory system are the
following:

(1) the system must provide high throughput access to
high capacity random access memory,

2 EURASIP Journal on Embedded Systems

(2) the memory must be accessible from multiple asyn-
chronous clock domains,

(3) the design must easily scale to support arbitrarily large
memories, and

(4) the impact on processing elements should be mini-
mized.

The remainder of this work is organized as follows. In
Section 2, the current state of the art in memory systems is
reviewed. Section 3 provides an overview of an example pro-
cessor array without shared memories. Section 4 explores the
design space for memory modules. Section 5 describes the
design of a buffered memory module, which has been im-
plemented using a standard cell flow. Section 6 discusses the
performance and power of the design, based on high level
synthesis results and simulation. Finally, the paper concludes
with Section 7.

2. BACKGROUND

2.1. Memory system architectures

Although researchers have not been able to stop the growth
of the processor/memory gap, they have developed a num-
ber of architectural alternatives to increase system perfor-
mance despite the limitations of the available memory. These
solutions range from traditional memory hierarchies to in-
telligent memory systems. Each solution attempts to reduce
the impact of poor memory performance by storing the data
needed for computation in a way that is easily accessible to
the processor.

2.1.1. Traditional memory hierarchies

The primary solution to the processor/memory gap has been
to introduce a local cache memory, exploiting spatial and
temporal locality evident in most software programs. Caches
are small fast memories that provide the processor with a lo-
cal copy of a small portion of main memory. Caches are man-
aged by hardware to ensure that the processor always sees a
consistent view of main memory.

The primary advantage of the traditional cache scheme is
ease of programming. Because caches are managed by hard-
ware, programs address a single large address space. Move-
ment of data from main memory to cache is handled by hard-
ware and is transparent to software.

The primary drawback of the cache solution is its high
overhead. Cache memories typically occupy a significant
portion of chip area and consume considerable power. Cache
memories do not add functionality to the system—all stor-
age provided is redundant, and identical data must be stored
elsewhere in the system, such as in main memory or on disk.

2.1.2. Alternative memory architectures

Scratch Pad Memories are a cache alternative not uncom-
monly found in embedded systems [4]. A scratch-pad mem-
ory is an on-chip SRAM with a similar size and access time as
an L1 (level 1) cache. Scratch pad memories are unlike caches

Osc.

(a)

Single
processor

(b)

Figure 1: Block diagram and chip micrograph of the AsAP chip
multiprocessor.

in that they are uniquely mapped to a fixed portion of the
system’s address space. Scratch-pad memory may be used in
parallel with a cache or alone [5]. Banakar et al. report a typ-
ical power savings of 40 percent when scratch-pad memories
are used instead of caches [4].

Others have explored alternatives to traditional memory
hierarchies. These include architectures such as Intelligent
RAM (IRAM) [6] and Smart Memories [7].

3. AN EXAMPLE TARGET ARCHITECTURE: AsAP

An example target architecture for this work is a chip mul-
tiprocessor called an Asynchronous Array of simple Proces-
sors (AsAP) [3, 8, 9]. An AsAP system consists of a two-
dimensional array of homogeneous processing elements as
shown in Figure 1. Each element is a simple CPU, which con-
tains its own computation resources and executes its own
locally stored program. Each processing element has a lo-
cal clock source and operates asynchronously with respect to
the rest of the array. The Globally Asynchronous Locally Syn-
chronous (GALS) [10] nature of the array alleviates the need
to distribute a high speed clock across a large chip. The ho-
mogeneity of the processing elements makes the system easy
to scale as additional tiles can be added to the array with little
effort.

Interprocessor communication within the array occurs
through dual-clock FIFOs [11] on processor boundaries.
These FIFOs provide the required synchronization, as well
as data buffers for rate matching between processors. The in-
terconnection of processors is reconfigurable.

Applications are mapped to AsAP by partitioning com-
putation into many small tasks. Each task is statically mapped
onto a small number of processing elements. For example, an
IEEE 802.11a baseband transmitter has been implemented
on a 22-processor array [9], and a JPEG encoder has been
implemented on a 9-processor array.

AsAP processors are characterized by their very small
memory resources. Small memories minimize power and
area while increasing the computational density of the ar-
ray. No memory hierarchy exists, and memory is managed
entirely by software. Additionally, there is no global address
space, and all interprocessor communication must occur
through the processors’ input FIFOs.

Michael J. Meeuwsen et al. 3

Each processor tile contains memory for 64 32-bit in-
structions and 128 16-bit words. With only 128 words of
randomly-accessible storage in each processor, the AsAP ar-
chitecture is currently limited to applications with small
working sets.

4. DESIGN SPACE EXPLORATION

A wide variety of design possibilities exist for adding larger
amounts of memory to architectures like AsAP. This section
describes the design space and design selection based on es-
timated performance and flexibility.

In exploring the design space, parameters can be catego-
rized into three roughly orthogonal groups.

(1) Physical design parameters, such as memory capacity
and module distribution have little impact on the de-
sign of the memory module itself, but do determine
how the module is integrated into the processing ar-
ray.

(2) Processor interface parameters, such as clock source
and buffering have the largest impact on the module
design.

(3) Reconfigurability parameters allow design complexity
to be traded off for additional flexibility.

4.1. Key memory parameters

4.1.1. Capacity

Capacity is the amount of storage included in each mem-
ory module. Memory capacity is driven by application re-
quirements as well as area and performance targets. The
lower bound on memory capacity is given by the memory re-
quirements of targeted applications while die area and mem-
ory performance limit the maximum amount of memory.
Higher capacity RAMs occupy more die area, decreasing the
total computational density of the array. Larger RAMs also
limit the bandwidth of the memory core.

It is desirable to implement the smallest possible memory
required for the targeted applications. These requirements,
however, may not be available at design time. Furthermore,
over-constraining the memory capacity limits the flexibility
of the array as new applications emerge. Hence, the scala-
bility of the memory module design is important, allowing
the memory size to be chosen late in the design cycle and
changed for future designs with little effort.

4.1.2. Density

Memory module density refers to the number of memory
modules integrated into an array of a particular size, and is
determined by the size of the array, available die area, and
application requirements. Typically, the number of memory
modules integrated into an array is determined by the space
available for such modules; however, application level con-
straints may also influence this design parameter. Assuming a
fixed memory capacity per module, additional modules may
be added to meet minimum memory capacity requirements.

Also, some performance increase can be expected by parti-
tioning an application’s data among multiple memory mod-
ules due to the increased memory bandwidth provided by
each module. This approach to increasing performance is not
always practical and does not help if the application does not
saturate the memory interface. It also requires a high degree
of parallelism among data as communication among mem-
ory modules may not be practical.

4.1.3. Distribution

The distribution of memory modules within the array can
take many forms. In general, two topological approaches can
be used. The first approach leaves the processor array in-
tact and adds memory modules in rows or columns as al-
lowed by available area resources. Processors in the array
maintain connectivity to their nearest neighbors, as if the
memory modules were not present. The second approach re-
places processors with memory modules, so that each pro-
cessor neighboring a memory module loses connectivity to
one processor. These strategies are illustrated in Figure 2.

4.1.4. Clock source

Because the targeted arrays are GALS systems, the clock
source for the memory module becomes a key design pa-
rameter. In general, three distinct possibilities exist. First, the
memory module can derive its clock from the clock of a par-
ticular processor. The memory would then be synchronous
with respect to this processor. Second, the memory can gen-
erate its own unique clock. The memory would be asyn-
chronous to all processors in the array. Finally, the memory
could be completely asynchronous, so that no clock would be
required. This solution severely limits the implementation of
the memory module, as most RAMs provided in standard
cell libraries are synchronous.

4.1.5. Address source

The address source for a memory module has a large impact
on application mapping and performance. To meet the ran-
dom access requirement, processors must be allowed to sup-
ply arbitrary addresses to memory. (1) The obvious solution
uses the processor producing or consuming the memory data
as the address source. The small size of the targeted proces-
sors, however, makes another solution attractive. (2) The ad-
dress and data streams for a memory access can also be par-
titioned among multiple processors. A single processor can
potentially be used to provide memory addresses, while other
processors act as data sources and data sinks. This scheme
provides a potential performance increase for applications
with complex addressing needs because the data processing
and address generation can occur in parallel. (3) A third pos-
sible address source is hardware address generators, which
typically speed up memory accesses significantly, but must
be built into hardware. To avoid unnecessary use of power
and die area, only the most commonly used access patterns
should be included in hardware.

4 EURASIP Journal on Embedded Systems

Memory
Processor

(a)

Memory
Processor

(b)

Memory
Processor

(c)

Figure 2: Various topologies for distribution of memories in a processor array. Processor connectivity is maintained when (a) memories are
added to the edge of the array, or (b) the array is split to make room for a row of memories. Processor connectivity is lost when (c) processor
tiles are replaced by memory tiles.

4.1.6. Buffering

The implementation of buffers for accesses to the memory
module provides another design parameter. Buffers may be
used between a processor and a memory module for latency
hiding, synchronization, or rate matching. Without some
level of buffering, processors are tightly coupled to the mem-
ory interface, and prefetching of data is difficult.

4.1.7. Sharing

The potentially large number of processors in a processing
array makes the sharing of memories among processors at-
tractive. In this context, shared memory serves two distinct
purposes. First, as in more traditional computing, shared
memory can serve as a communication medium among si-
multaneous program threads. Also, in our context, sharing a
memory among multiple processors can enable higher uti-
lization of available memory bandwidth in cases where a sin-
gle thread is unable to saturate the memory bus. In either
case, synchronization mechanisms are required to guarantee
mutual exclusion when memory is shared.

4.1.8. Inter-parameter dependencies

There are strong dependencies among the four parameters
described in the preceding four subsections (clock source,
address source, buffering, and sharing). Selecting a value
for one of the parameters limits the feasible values of the
other parameters. This results in the existence of two distinct
archetype designs for the processor interface. Other design
options tend to be hybrids of these two models and often
have features that limit usefulness.

Type I: bufferless memory

The first design can be derived by forcing a bufferless imple-
mentation. Without buffers, there is no way to synchronize
across clock boundaries, so the memory module must be

synchronous to the interfacing processor. Because processors
are asynchronous to one another, sharing the memory is no
longer feasible, and using an alternate processor as an ad-
dress source is not possible. The resulting design is a mem-
ory module that couples tightly to a single processor. Because
there is no buffering, memory accesses are either tightly in-
tegrated into the processor’s pipeline or carefully timed to
avoid overwriting data.

Type II: buffered memory

The second design is, in some respects, the dual of the first.
We can arrive at this design by requiring that the memories
be shareable. Because processors exist in different clock do-
mains, dual-clock FIFOs must be used to synchronize across
clock boundaries. To avoid tying the memory clock speed
to an arbitrary processor (which would defeat the funda-
mental purpose of GALS clocking—namely, to allow inde-
pendent frequency adjustment of blocks), the memory mod-
ule should supply its own clock. An independent processor
could easily be used as an address source with the appro-
priate hardware in place. This design effectively isolates the
memory module from the rest of the array, has few depen-
dencies on the implementation of the processors, and does
not impact the performance of any processors not accessing
the memory.

4.2. Degree of configurability

The degree of configurability included in the memory-
processor interconnect, as well as in the memory module it-
self can be varied independently of the memory module de-
sign. To some degree, the level of configurability required in
the interconnect is a function of the number of processors in
the array, and their distances from the memory module. For
small arrays, hardwired connections to the memory module
may make sense. For large arrays with relatively few mem-
ory modules, additional configurability is desirable to avoid
limiting the system’s flexibility.

Michael J. Meeuwsen et al. 5

The configurability of the memory module itself allows
trade offs in performance, power, and area for flexibility. Ex-
amples of configurability at the module level cover a broad
range and are specific to the module’s design. Some exam-
ples of configurable parameters are the address source used
for memory accesses and the direction of synchronization FI-
FOs in a locally clocked design.

4.3. Design selection

The remainder of this work describes a buffered memory so-
lution. This design was chosen based on the flexibility in ad-
dressing modes and the ability to share the memory among
multiple processors. These provide a potential performance
increase by allowing redistribution of the address generation
workload, and by exploiting parallelism across large datasets.
The relative area overhead impact of the additional logic can
be reduced if the RAM core used in the memory module has
a high capacity and thus the FIFO buffers become a small
fraction of the total module area. The performance impact
of additional memory latency can potentially be reduced or
eliminated by appropriate software task partitioning or tech-
niques such as data prefetching.

5. FIFO-BUFFERED MEMORY DESIGN

This section describes the design and implementation of a
FIFO-buffered memory module suitable for sharing among
independently-clocked interfaces (typically processors). The
memory module has its own local clock source, and com-
municates with external blocks via dual clock FIFOs. As de-
scribed in Section 4.3, this design was selected based on its
flexibility in addressing modes and the potential speedup for
applications with a high degree of parallelism across large
datasets.

5.1. Overview

The prototype described in this section allows up to four ex-
ternal blocks to access the RAM array. The design supports
a memory size up to 64 K 16-bit words with no additional
modifications.

Processors access the memory module via input ports
and output ports. Input ports encapsulate the required logic
to process incoming requests and utilize a dual-clock FIFO to
reliably cross clock domains. Each input port can assume dif-
ferent modes, changing the method of memory access. The
memory module returns data to the external block via an
output port, which also interfaces via a dual-clock FIFO.

A number of additional features are integrated into the
memory module to increase usability. These include multiple
port modes, address generators, and mutual exclusion (mu-
tex) primitives. A block diagram of the FIFO-buffered mem-
ory is shown in Figure 3. This diagram shows the high-level
interaction of the input and output ports, address genera-
tors, mutexes, and SRAM core. The theory of operation for
this module is described in Section 5.2. The programming
interface to the memory module is described in Section 5.3.

5.2. Theory of operation

The operation of the FIFO-buffered memory module is
based on the execution of requests. External blocks issue re-
quests to the memory module by writing 16-bit command
tokens to the input port. The requests instruct the memory
module to carry out particular tasks, such as memory writes
or port configuration. Additional information on the types
of requests and their formats is provided in Section 5.3. In-
coming requests are buffered in a FIFO queue until they can
be issued. While requests issued into a single port execute
in FIFO order, requests from multiple processors are issued
concurrently. Arbitration among conflicting requests occurs
before allowing requests to execute.

In general, the execution of a request occurs as follows.
When a request reaches the head of its queue it is decoded
and its data dependencies are checked. Each request type has
a different set of requirements. A memory read request, for
example, requires adequate room in the destination port’s
FIFO for the result of the read; a memory write, on the
other hand, must wait until valid data is available for writ-
ing. When all such dependencies are satisfied, the request is
issued. If the request requires exclusive access to a shared re-
source, it requests access to the resource and waits for ac-
knowledgment prior to execution. The request blocks until
access to the resource is granted. If the request does not ac-
cess any shared resources, it executes in the cycle after issue.
Each port can potentially issue one request per cycle, assum-
ing that requests are available and their requirements are met.

The implemented memory module supports all three ad-
dress sources detailed in Section 4.1.5. These are (1) one pro-
cessor providing addresses and data, (2) two processors with
one providing addresses and the other handling data, and (3)
hardware address generators. All three support bursts of 255
memory reads or writes with a single request. These three
modes provide high efficiency in implementing common ac-
cess patterns without preventing less common patterns from
being used.

Because the memory resources of the FIFO-buffered
memory are typically shared among multiple processors, the
need for interprocess synchronization is anticipated. To this
end, the memory module includes four mutex primitives in
hardware. Each mutex implements an atomic single-bit test
and set operation, allowing easy implementation of simple
locks. More complex mutual exclusion constructs may be
built on top of these primitives using the module’s memory
resources.

5.3. Processor interface

External blocks communicate with the memory module via
dedicated memory ports. Each of these ports may be con-
figured to connect to one input FIFO and one output FIFO
in the memory module. These connections are independent,
and which of the connections are established depends on the
size of the processor array, the degree of reconfigurability im-
plemented, and the specific application being mapped.

An external block accesses the memory module by writ-
ing 16-bit words to one of the memory module’s input

6 EURASIP Journal on Embedded Systems

br
st

ld
,b

rs
t

da
ta

,b
rs

t
en

,b
rs

t
ad

dr
,b

rs
t

do
n

e

Input port

Input port

Input port

Input port

Address
generator

Address
generator

rdy, ack, priority

addr, data, rden, wren

addr, data, rden, wren

addr, data, rden, wren

addr, data, rden, wren

req, rel
grant, priority

cfg wren, addr, data

Priority

arbitration

Mutex

Mutex

Mutex

Mutex

SR
A

M

Output

FIFO

Output

FIFO

Output

FIFO

Output

FIFO

Figure 3: FIFO-buffered memory block diagram. Arrows show the direction of signal flow for the major blocks in the design. Multiplexers
allow control of various resources to be switched among input ports. The gray bars approximate the pipeline stages in the design.

FIFOs. In general, these words are called tokens. One or more
tokens make up a request. A request instructs the memory
module to perform an action and consists of a command to-
ken, and possibly one or more data tokens. The requests is-
sued by a particular processor are always executed in FIFO
order. Concurrent requests from multiple processors may be
executed in any order. If a request results in data being read
from memory, this data is written to the appropriate output
FIFO where it can be accessed by the appropriate block.

5.3.1. Request types

The FIFO-buffered memory supports eight different request
types. Each request type utilizes different resources within
the memory module. In addition, some requests are block-
ing, meaning that they must wait for certain conditions to be
satisfied before they complete. To maintain FIFO ordering of
requests, subsequent requests cannot proceed until a block-
ing request completes.

(1)-(2) Memory read and write requests cause a single
word memory access. The request blocks until the access is
completed. (3)-(4) Configuration requests enable setup of
module ports and address generators. (5)-(6) Burst read and
write requests are used to issue up to 255 contiguous mem-
ory operations using an address generator. (7)-(8) Mutex re-
quest and release commands are used to control exclusive
use of a mutual exclusion primitive—which can be used for

synchronization among input ports or in the implementa-
tion of more complex mutual exclusion constructs.

5.3.2. Input port modes

Each input port in the FIFO-buffered memory module can
operate in one of three modes. These modes affect how in-
coming memory and burst requests are serviced. Mode infor-
mation is set in the port configuration registers using a port
configuration request. These registers are unique to each in-
put port, and can only be accessed by the port that contains
them.

Address-data mode is the most fundamental input port
mode. In this mode, an input port performs memory reads
and writes independently. The destination for memory reads
is programmable, and is typically chosen so that the output
port and input port connect to the same external block, but
this is not strictly required.

A memory write is performed by first issuing a memory
write request containing the write address. This request must
be immediately followed by a data token containing the data
to be written to memory. In the case of a burst write, the
burst request must be immediately followed by the appropri-
ate number of data tokens. Figure 4(a) illustrates how writes
occur in address-data mode.

A memory read is performed by first issuing a memory
read request, which contains the read address. The value read

Michael J. Meeuwsen et al. 7

Processor

Memory module
Input token stream Address-data mode

... D
at

a
D

at
a

B
u

rs
t

w
ri

te
re

q.

D
at

a
W

ri
te

re
q.

D
at

a
W

ri
te

re
q. Write req.

Data

To memory

(a)

Processor 0

Processor 1

Memory module
Input token stream Address-only mode

...
...

B
u

rs
t

w
ri

te
re

q.

W
ri

te
re

q.

W
ri

te
re

q.

...

W
ri

te
re

q.
W

ri
te

re
q.

Input token stream Data-only mode

D
at

a

D
at

a

D
at

a ... D
at

a

D
at

a

D
at

a
D

at
a

Write req.

Data

To memory

(b)

Figure 4: Memory writes in (a) address-data and (b) address-only mode. (a) In address-data mode, each port provides both addresses and
data. Memory writes occur independently, and access to the memory is time-multiplexed. Two tokens must be read from the same input
stream to complete a write. (b) In address-only mode, write addresses are supplied by one port, and data are supplied by another. Memory
writes are coupled, so there is no need to time-multiplex the memory among ports. One token must be read from each input stream to
complete a write.

from memory is then written to the specified output FIFO.
The same destination is used for burst reads.

In address-only mode, an input port is paired with an in-
put port in data-only mode to perform memory writes. This
allows the tasks of address generation and data generation to
be partitioned onto separate external blocks.

In address-only mode, a memory write is performed by
issuing a memory write request containing the write address.
In contrast to operation in address-data mode, however, this
request is not followed by a data token. Instead, the next valid
data token from the input port specified by a programmable
configuration register is written to memory. Synchronization
between input ports is accomplished by maintaining FIFO
order of incoming tokens. It is the programmer’s responsi-
bility to ensure that there is a one to one correspondence be-
tween write requests in the address-only port and data to-
kens in the data-only port. Figure 4(b) illustrates how writes
occur.

An input port in data-only mode acts as a slave to the
address-only input port to which it provides data. All request
types, with the exception of port configuration requests, are
ignored when the input port is in data-only mode. Instead all
incoming tokens are treated as data tokens. The programmer
must ensure that at any one time, at most one input port is
configured to use a data-only port as a data source.

As previously mentioned, the presented memory module
design directly supports memory arrays up to 64 K words.
This is due solely to a 16-bit interface in the AsAP processor,
and therefore a 16-bit memory address in a straightforward
implementation. The supported address space can clearly be
increased by techniques such as widening the interface bus or
implementing a paging scheme.

Another dimension of memory module scaling is to con-
sider connecting more than four processors to a module.
This type of scaling begins to incur significant performance
penalties (in tasks such as port arbitration) as the number of
ports scales much beyond four. Instead, the presented mem-
ory module is much more amenable to replication through-
out an array of processors—providing high throughput to a
small number of local processors while presenting no barri-
ers to the joining of multiple memories through software or
interconnect reconfiguration, albeit with a potential increase
in programming complexity depending on the specific appli-
cation.

6. IMPLEMENTATION RESULTS

The FIFO-buffered memory module described in Section 5
has been described in Verilog and synthesized with a 0.18 µm
CMOS standard cell library. A standard cell implementation

8 EURASIP Journal on Embedded Systems

Figure 5: Layout of a 8192-word × 16-bit 0.18 µm CMOS standard
cell FIFO-buffered memory module implementation. The large
SRAM is at the top of the layout and the eight 32-word FIFO mem-
ories are visible in the lower region.

has been completed and is shown in Figure 5. The design is
fully functional in simulation.

Speed, power, and area results were estimated from high-
level synthesis. In addition, the design’s performance was an-
alyzed with RTL level simulation. This section discusses these
results.

6.1. Performance results

System performance was the primary metric motivating the
memory module design. Two types of performance are con-
sidered. First, the system’s peak performance, as dictated by
the maximum clock frequency, peak throughput, and latency
is calculated. A more meaningful result, however, is the per-
formance of actual programs accessing the memory. Both of
these metrics are discussed in the following subsections.

6.1.1. Peak performance

The peak performance of the memory module is a func-
tion of the maximum clock frequency, and the theoretical
throughput of the design. The FIFO-buffered memory mod-
ule is capable of issuing one memory access every cycle, as-
suming that requests are available and their data dependen-
cies are met. In address-data mode, memory writes require
a minimum of two cycles to issue, but this penalty can be
avoided by using address generators or the address-only port
mode, or by interleaving memory requests from multiple
ports. If adequate processing resources exist to supply the
memory module with requests, the peak memory through-
put is one word access per cycle. Synthesis results report a
maximum clock frequency of 555 MHz. At this clock speed,
the memory’s peak throughput is 8.8 Gbps with 16-bit words.

The worst case memory latency is for the memory read
request. There are contributions to this latency in each of the
system’s clock domains. In the external block’s clock domain,
the latency includes one FIFO write latency, one FIFO read

latency, and the additional latency introduced by the mem-
ory port. In the memory’s clock domain, the latency includes
one FIFO read latency, the memory module latency, and one
FIFO write latency.

The minimum latency of the memory module is given
by the number of pipe stages between the input and output
ports. The presented implementation has four pipe stages.
The number of stages may be increased to add address de-
coding stages for larger memories.

The latency of FIFO reads and writes is dependent on the
number of pipe stages used to synchronize data across the
clock boundary between the read side and the write side. In
AsAP’s FIFO design, the number of synchronization stages is
configurable at runtime. When a typical value of three stages
is used, the total FIFO latency is four cycles per side. When
the minimum number of stages is used, the latency is reduced
to three cycles per side. A latency of four cycles is assumed in
this work.

The latency of the memory port depends on the num-
ber of stages introduced between the processor and the mem-
ory to account for wire delays. The minimum latency of the
memory port is two cycles. This latency could be decreased
by integrating the memory port more tightly with the pro-
cessor core datapath. This approach hinders the use of a
prefetch buffer to manage an arbitrary latency from proces-
sor to memory, and is only practical if the latency can be con-
strained to a single cycle.

Summing the latency contributions from each clock do-
main, the total latency of a memory read is,

Lproc = LFIFO-wr + LFIFO-rd + Lmem-port,

Lmem = LFIFO-rd + Lmem-module + LFIFO-wr,

Ltotal = Lmem + Lproc.

(1)

For the presented design and typical configurations, the la-
tency is 10 processor cycles and 13 memory cycles. If the
blocks are clocked at the same frequency, this is a minimum
latency of 23 cycles. Additional latency may be introduced by
processor stalls, memory access conflicts, or data dependen-
cies. The latency is slightly higher than typical L2 cache laten-
cies, which are on the order of 15 cycles [2], due to the com-
munication overhead introduced by the FIFOs. This high la-
tency can be overcome by issuing multiple requests in a sin-
gle block. Because requests are pipelined, the latency penalty
occurs only once per block.

6.1.2. Actual performance

To better characterize the design’s performance, the memory
module was exercised with two generic and variable work-
loads: a single-element workload and a block workload. The
number of instructions in both test kernels is varied to sim-
ulate the effect of varying computation loads for each appli-
cation. Figure 6 gives pseudocode for the two workloads.

The single-element workload performs a copy of a 1024-
element array and contains three phases. First, a burst write

Michael J. Meeuwsen et al. 9

Write initial array

⎡
⎢⎢⎢⎣

for i = 0 : 1023
mem wr(a + i) // wr command
wr data = input // wr data
next i
for i = 0 : 1023
mem rd(a + i) // rd command
mem wr(b + i) // wr command

NOPs models
additional
computation load

⎡
⎢⎣

NOP
· · ·
NOP
temp = rd data // rd data
wr data = temp // wr data
next i

Read result

⎡
⎢⎢⎢⎣

for i = 0 : 1023
mem rd(b + i) // rd command
output = rd data // rd data
next i

(a) Single element workload

for i = 0 : 1023

NOPs models
additional address
computation load

⎡
⎢⎣

NOP
· · ·
NOP

mem wr(a + i) // wr command

NOPs models
additional data
computation load

⎡
⎢⎣

NOP
· · ·
NOP

wr data = input // wr data
next i

NOPs models
additional address
computation load

⎡
⎢⎣

NOP
· · ·
NOP

mem rd(a + i) // rd command

NOPs models
additional data
computation load

⎡
⎢⎣

NOP
· · ·
NOP

output = rd data // rd data
next i

(b) Block workload

Figure 6: Two workloads executed on external processors are used for performance characterization. Pseudo-code for the two workloads is
shown for processors in address-data mode. In each workload, the computational load per memory transaction is simulated and varied by
adjusting the number of NOPs in the main kernel. The block workload is also tested in address-only/data-only mode (not shown here) where
the code that generates memory requests, and the code that reads and writes data is partitioned appropriately. mem rd() and mem wr() are
read and write commands being issued with the specified address. rd data reads data from the processor’s memory port, and wr data writes
data to the processor’s memory port.

is used to load the source array into the processor. Second,
the array is copied element by element, moving one element
per loop iteration. Finally, the resulting array is read out with
a burst read. The number of instructions in the copy kernel is
varied to simulate various computational loads. The single-
element kernel is very sensitive to memory read latency be-
cause each memory read must complete before another can
be issued. To better test throughput rather than latency, the
block test is used. This workload first writes 1024 memory
words, and then reads them back.

In addition, three coding approaches are compared. The
first uses a single processor executing a single read or write
per loop iteration. The second uses burst requests to per-
form memory accesses. The third approach partitions the
task among two processors in address-only and data-only
modes. One processor issues request addresses, while the
other manages data flow. Again, the number of instructions
in each kernel is varied to simulate various computational
loads.

Figure 7 shows the performance results for the single-
element workload running on a single processor at different
clock speeds. For small workloads, the performance is domi-
nated by the memory latency. This occurs because each itera-
tion of the loop must wait for a memory read to complete be-
fore continuing. A more efficient coding of the kernel could

overcome this latency using loop unrolling techniques. This
may not always be practical, however, due to limited code and
data storage. The bend in each curve occurs at the location
where the memory latency is matched to the computational
workload. Beyond this point, the performance scales with
the complexity of computation. The processor’s clock speed
has the expected effect on performance. At high frequen-
cies, the performance is still limited by memory latency, but
larger workloads are required before the computation time
overcomes the read latency. The latency decreases slightly at
higher processor frequencies because the component of the
latency in the processor’s clock domain is reduced. The slope
of the high-workload portion of the curve is reduced because
the relative impact of each additional instruction is less at
higher frequencies.

For highly parallel workloads, the easiest way to im-
prove performance is to distribute the task among multi-
ple processors. Figure 8 shows the result of distributing the
single-element workload across one, two, and four proces-
sors. In this case, the 1024 copy operations are divided evenly
among all of the processors. When mapped across multiple
processors, one processor performs the initial array write,
and one processor performs the final array read. The re-
mainder of the computation is distributed uniformly among
the processors. Mutexes are used to ensure synchronization

10 EURASIP Journal on Embedded Systems

706050403020100

Additional computation load

0

1

2

3

4

5

6

7

8

9
×104

E
xe

cu
ti

on
ti

m
e

(m
em

or
y

cy
cl

es
)

4
2
1.3333

1
Ideal

Figure 7: Effect of computational load and clock speed on perfor-
mance. The figure shows the execution time of the single-element
workload for a single processor clocked at 1, 1.33, 2, and 4 times
the memory speed. The dotted line represents the theoretical maxi-
mum performance for the workload operating on a single processor
clocked at the same speed as the memory.

between the initialization, copy, and read-out phases of
execution.

When the single-element workload is shared among pro-
cessors, the application’s performance is increased at the cost
of additional area and power consumed by the additional
processors. For small computation loads, the effective read
latency is reduced. Although each read still has the same la-
tency, the reads from each processor are issued concurrently.
Hence, the total latency suffered scales inversely with the
number of processors used. For loads where latency is dom-
inated by computation cost, the impact of the computation
is reduced, because multiple iterations of the application ker-
nel run concurrently on the various processors. Note that the
point where computation load begins to dominate latency is
constant, regardless of the number of processors used. The
relative latency depends only on the relative clock speeds of
the processors and memories, and not on the distribution of
computation.

Figure 9 shows the performance of the three addressing
schemes for the block workload when the processors and
memory are clocked at the same frequency. For small work-
loads, the address-data mode solution is dominated by read
latency and write workload. Because writes are unaffected
by latency, the computation load has an immediate effect.
For large workloads, the execution time is dominated by the
computation load of both reads and writes. To illustrate the
appropriateness of the synthetic workloads, three key algo-
rithms (1024-tap FIR filter, 512-point complex FFT, and a

706050403020100

Additional computation load (processor cycles)

0

1

2

3

4

5

6

7

8

9
×104

E
xe

cu
ti

on
ti

m
e

(m
em

or
y

cy
cl

es
)

1 processor
2 processors
4 processors

Figure 8: Effect of number of processors on performance. The fig-
ure shows the execution time of the single-element workload for 1,
2, and 4 processors clocked at the same frequency as the memory.
The execution time for each case includes some fixed overhead to
initialize and read the source and destination arrays. Multiple pro-
cessor cases have additional overhead for synchronization among
processors.

viterbi decoder) are modeled and shown on the plot. While
these applications are not required to be written conforming
to the synthetic workloads, the versions shown here are very
reasonable implementations.

The address generator and address-only/data-only solu-
tions decouple the generation of memory read requests from
the receipt of read data. This allows requests to be issued far
in advance, so the read latency has little effect. There is also a
slight performance increase because the number of instruc-
tions in each kernel is reduced.

The address generator solution outperforms the single
cycle approach, and does not require the allocation of ad-
ditional processors. This is the preferred solution for block
accesses that can be mapped to the address generation hard-
ware. For access patterns not supported by the address gen-
erators, similar performance can be obtained by generating
the addresses with a processor in address-only mode. This re-
quires the allocation of an additional processor, which does
incur an additional cost.

Address only mode allows arbitrary address generation
capability at the cost of an additional processor. This method
eases implementation of latency-insensitive burst reads with-
out requiring partitioning of the data computation. This
method is limited by the balance of the address and data
computation loads. If the address and data processors run
at the same speed, whichever task carries the highest compu-
tation load dominates the system performance. This can be
seen in Figure 10.

Michael J. Meeuwsen et al. 11

6050403020100

Computation load

0

5

10

15
×104

E
xe

cu
ti

on
ti

m
e

(m
em

or
y

cy
cl

es
)

One addr-data proc., for pseudo app.
One proc. with addr generator, for pseudo app.
Two addr-only/data-only procs., for pseudo app.
One addr-data proc., for real apps
Two addr-only/data-only procs., for real apps

Viterbi decoder
(one trellis with 512 ACS calc.)

512-pt complex FFT (one stage)

1024-tap FIR

Figure 9: Effect of address mode on block performance. The figure
shows the execution time of the block workload for a single proces-
sor in address-data mode, a single processor utilizing address gener-
ator hardware, and two processors, one in address-only mode and
one in data-only mode. Both the address generator and address-
only mode solutions outperform the address-data mode solution
if the work load is dominated by the memory latency. Note that
the address generator and address-only performances are roughly
equal. Three real applications are shown to validate the synthetic
workloads.

Partitioning an application among multiple processors in
address-data mode typically outperforms a mapping using
the same number of processors in address-only or data-only
mode. This occurs because the number of iterations of the
application kernel required per processor is reduced. This
reduces the application’s sensitivity to computation loads.
Address-only mode is most useful when address computa-
tion and data computation are of similar complexities, when
code space limitations prevent the two tasks from sharing the
same processor, or when the application lacks adequate data
parallelism to distribute the computation otherwise.

Figure 11 compares the performance of the block work-
load when computation is distributed across two processors.
A mapping with two address-data mode processors outper-
forms address-only and data-only partitioning in most cases.
If address and data computation loads are mismatched, the
greater load dominates the execution time for the address-
only/data-only mapping. When the address and data compu-
tation loads are similar, the performance gap for the address-
only mode mapping is small. Furthermore, for very small
computation loads, the address-only mode mapping outper-
forms the address-data mode mapping because each loop it-
eration contains fewer instructions.

50403020100

Address computation load (processor cycles)

0

2

4

6

8

10

12

14

16

18
×104

E
xe

cu
ti

on
ti

m
e

(m
em

or
y

cy
cl

es
)

Single processor, data computation = 20
Data computation = 0
Data computation = 20
Data computation = 40

Figure 10: Effect of address load on address-only mode perfor-
mance. The figure shows the execution time of the block workload
for a single processor in address-data mode, and two processors,
one in address-only mode and one in data-only mode. The address
calculation workload is varied for each case. Each curve represents
a fixed data computation workload. The memory module and pro-
cessors share the same clock frequency.

6.2. Area and power tradeoffs

As with most digital IC designs, area and power are closely
related to performance. Generally, performance can be in-
creased at the expense of area and power by using faster de-
vices or by adding parallel hardware. Although the perfor-
mance of the FIFO-buffered memory module was the first
design priority, the power and area results are acceptable.
The results discussed are for high-level synthesis of the Ver-
ilog model. Some increase is expected during back-end flows.
Dynamic power consumption was estimated using activity
factors captured during RTL simulation.

6.2.1. Area results

The results of the synthesis flow provide a reasonable esti-
mate of the design’s area. The design contains 9713 cells, in-
cluding hard macros for the SRAM core and FIFO memo-
ries. With an 8 K-word SRAM, the cell area of the synthesized
design is 1.28 mm2. This is roughly equivalent to two and a
half AsAP processors. The area after back-end placement and
routing is 1.65 mm2.

The area of the FIFO buffered memory module is domi-
nated by the SRAM core, which occupies 68.2% of the mod-
ule’s cell area. This implies a 32.8% area overhead to imple-
ment the FIFO-buffered design, rather than a simpler SRAM

12 EURASIP Journal on Embedded Systems

50454035302520151050

Address computation load (processor cycles)

0

2

4

6

8

10

12
×104

E
xe

cu
ti

on
ti

m
e

(m
em

or
y

cy
cl

es
)

Address-data, data computation load = 0
Address-data, data computation load = 20
Address-only, data computation load = 0
Address-only, data computation load = 20

Figure 11: Equal area comparison of address modes. The figure
shows the execution time of the block workload for two parallel pro-
cessors in address-data mode, and two processors, one in address-
only mode and one in data-only mode. The address calculation
workload is varied for each case. Each curve represents a fixed data
computation workload. The memory module and processors share
the same clock frequency.

interface. This overhead is similar to that reported by Mai
et al. for a Smart Memories system with the same mem-
ory capacity [12]. The distribution of area among the ma-
jor blocks of the design is shown in Figure 12. The presented
implementation has an SRAM of 8 K words, but the synthe-
sized source design, however, is capable of addressing up to
64 K words. Conservatively assuming the memory size scales
linearly, a 64 K-word memory would occupy 94.5% of the
module’s area. This implies an overhead of only 5.5%, which
is easily justified by the performance increase provided by the
shared memory.

6.2.2. Power results

In general, accurate power estimation is difficult without
physical design details. A reasonable estimate of the design’s
power consumption can be taken from high level synthe-
sis results and library information. The main limitation of
power estimation at this level is obtaining accurate switching
activity for the nodes in the design. Switching activity was
recorded for the execution of a four processor application
that computes cj = aj + 2bj for 1024 points. This applica-
tion exercises most of the design’s functionality.

Power Compiler reports the relative power of each sub-
module as shown in Figure 13. Absolute power estimates
from the tool are believed to be less accurate so we present
the relative numbers only. Of the total power consumption,

Other (5%)
Address gen. (2%)

Input port (5%)

Output FIFOs (10%)

Input FIFOs (10%)

SRAM (68%)

Figure 12: Area distribution among submodules. The relative cell
area of each group of submodules is shown. The SRAM used in this
design is 8 K words. The SRAM consumes 68% of the area; the four
input FIFOs occupy 10%; the four output FIFOs occupy 10%. The
“other” category includes modules not shown such as configura-
tion, mutex, arbiter, and clock oscillator.

Other (4%)
Address gen. (6%)

Input port (23%)

Output FIFO (14%)

SRAM (14%)

Input FIFO (39%)

Figure 13: Relative power consumption neglecting clock power of
submodules. The power is dominated by the input FIFOs (39%)
and input ports (23%) as these are the most active blocks in the
design. The dynamic power of the SRAM cell is relatively low, but
matches well with the datasheet value.

57.1 nW is attributed to cell leakage power. The breakdown
for leakage power is shown in Figure 14.

7. CONCLUSION

The design of an asynchronously sharable FIFO-buffered
memory module has been described. The module allows a
high capacity SRAM to be shared among independently-
clocked blocks (such as processors). The memory module
shares its memory resources with up to four blocks/process-
ors. This allows the memory to be used for interprocess com-
munication or to increase application performance by par-
allelizing computation. The addition of addressing modes

Michael J. Meeuwsen et al. 13

Other (1%)

Output FIFO (42%)

SRAM (14%)
Input FIFO (43%)

Figure 14: Relative leakage power of submodules. As expected, the
leakage power is dominated by the memory cells. The eight FIFOs
(85%) and the SRAM core (14%) consume nearly all of the mod-
ule’s leakage power.

and hardware address generators increases the system’s flexi-
bility when mapping many applications. The FIFO-buffered
memory module was described in Verilog, and synthesized
with a 0.18 µm CMOS standard cell library. A design with
an 8 K-word SRAM has a maximum operating frequency of
555 MHz, and occupies 1.2 mm2 based on high-level synthe-
sis results. The memory module can service one memory
access each cycle, leading to a peak memory bandwidth of
8.8 Gbps.

ACKNOWLEDGMENTS

The authors thank E. Work, T. Mohsenin, R. Krishnamurthy,
M. Anders, S. Mathew, and other VCL members; and grate-
fully acknowledge support from Intel, UC MICRO, NSF
Grant no. 0430090, and a UCD Faculty Research Grant.

REFERENCES

[1] A. W. Burks, H. H. Goldstine, and J. von Neumann, “Prelimi-
nary discussion of the logical design of an electronic comput-
ing instrument,” in Collected Works of John von Neumann, A.
H. Taub, Ed., vol. 5, pp. 34–79, The Macmillan, New York, NY,
USA, 1963.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture,
A Quantitative Approach, chapter Memory Hierarchy Design,
Morgan Kaufmann, San Francisco, Calif, USA, 3rd edition,
2003.

[3] Z. Yu, M. J. Meeuwsen, R. Apperson, et al., “An asynchronous
array of simple processors for DSP applications,” in IEEE Inter-
national Solid-State Circuits Conference (ISSCC ’06), pp. 428–
429, San Francisco, Calif, USA, February 2006.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory: a design alternative for cache
on-chip memory inembedded systems,” in Proceedings of the
10th International Symposium on Hardware/Software Codesign
(CODES ’02), pp. 73–78, Estes Park, Colo, USA, May 2002.

[5] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-
chip memory: the data partitioning problem in embedded

processor-based systems,” ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 5, no. 3, pp. 682–704, 2000.

[6] D. Patterson, T. Anderson, N. Cardwell, et al., “A case for in-
telligent RAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, 1997.

[7] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. A.
Horowitz, “Smart memories: a modular reconfigurable archi-
tecture,” in Proceedings of the 27th Annual International Sym-
posium on Computer Architecture (ISCA ’00), pp. 161–171,
Vancouver, BC, Canada, June 2000.

[8] B. M. Baas, “A parallel programmable energy-efficient archi-
tecture for computationally-intensive DSP systems,” in Pro-
ceedings of the 37th Asilomar Conference on Signals, Systems and
Computers (ACSSC ’03), vol. 2, pp. 2185–2192, Pacific Grove,
Calif, USA, November 2003.

[9] M. J. Meeuwsen, O. Sattari, and B. M. Baas, “A full-rate soft-
ware implementation of an IEEE 802.11a compliant digital
baseband transmitter,” in Proceedings of IEEE Workshop on Sig-
nal Processing Systems (SIPS ’04), pp. 124–129, Austin, Tex,
USA, October 2004.

[10] D. M. Chapiro, Globally-asynchronous locally-synchronous sys-
tems, Ph.D. thesis, Stanford University, Stanford, Calif, USA,
October 1994.

[11] R. W. Apperson, “A dual-clock FIFO for the reliable transfer
of high-throughput data between unrelated clock domains,”
M.S. thesis, University of California, Davis, Davis, Calif, USA,
2004.

[12] K. Mai, R. Ho, E. Alon, et al., “Architecture and circuit tech-
niques for a 1.1-GHz 16-kb reconfigurable memory in 0.18-
µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1,
pp. 261–275, 2005.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 85029, 15 pages
doi:10.1155/2007/85029

Research Article
Implementing a WLAN Video Terminal Using UML and
Fully Automated Design Flow

Petri Kukkala,1 Mikko Setälä,2 Tero Arpinen,2 Erno Salminen,2

Marko Hännikäinen,2 and Timo D. Hämäläinen2

1 Nokia Technology Platforms, Visiokatu 6, 33720 Tampere, Finland
2 Institute of Digital and Computer Systems, Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere, Finland

Received 28 July 2006; Revised 12 December 2006; Accepted 10 January 2007

Recommended by Gang Qu

This case study presents UML-based design and implementation of a wireless video terminal on a multiprocessor system-on-
chip (SoC). The terminal comprises video encoder and WLAN communications subsystems. In this paper, we present the UML
models used in designing the functionality of the subsystems as well as the architecture of the terminal hardware. We use the Koski
design flow and tools for fully automated implementation of the terminal on FPGA. Measurements were performed to evaluate the
performance of the FPGA implementation. Currently, fully software encoder achieves the frame rate of 3.0 fps with three 50 MHz
processors, which is one half of a reference C implementation. Thus, using UML and design automation reduces the performance,
but we argue that this is highly accepted as we gain significant improvement in design efficiency and flexibility. The experiments
with the UML-based design flow proved its suitability and competence in designing complex embedded multimedia terminals.

Copyright © 2007 Petri Kukkala et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Modern embedded systems have an increasing complexity
as they introduce various multimedia and communication
functionalities. Novel design methods enable efficient system
design with rapid path to prototyping for feasibility analysis
and performance evaluation, and final implementation.

High-abstraction level design languages have been intro-
duced as a solution for the problem. Unified modeling lan-
guage (UML) is converging to a general design language that
can be understood by system designers as well as softare and
hardware engineers [1]. UML is encouraging the develop-
ment of model-based design methodologies, such as model
driven architecture (MDA) [2, 3] that aims at “portability,
interoperability, and reusability through architectural sepa-
ration of concerns” as stated in [4].

Refining the high-abstraction level models towards a
physical implementation requires design automation tools
due to the vast design space. This means high investments
and research effort in tool development to fully exploit new
modeling methodologies. High degree of design automa-
tion also requires flexible hardware and software platforms
to support automated synthesis and configuration. Hence,

versatile hardware/software libraries and run-time environ-
ments are needed.

Configurability usually complicates the library develop-
ment and induces various overheads (execution time, mem-
ory usage) compared to manually optimized application-
specific solutions. However, we argue that automation is
needed to handle the complexity and to allow fast time-to-
market, and we have to pay the price. Naturally, the trade-off
between high performance and fast development time must
be defined case by case.

To meet these design challenges in practice, we have
to define a practical design methodology for the domain of
embedded real-time systems. To exploit the design method-
ology, we have to map the concepts of the methodology
to the constructs of a high-abstraction level language. Fur-
ther, we have to develop design tools and platforms (or
adapt existing ones) that support the methodology and lan-
guage.

In this paper, we present an extensive case study for the
implementation of a wireless video terminal using a UML 2.0-
based design methodology and fully automated design flow.
The paper introduces UML modeling, tools, and platforms to
implement a whole complex embedded terminal with several

2 EURASIP Journal on Embedded Systems

subsystems. This is a novel approach to exploit UML in the
implementation of such a complex design.

The implemented terminal comprises video encoder and
wireless local area network (WLAN) communications sub-
ystems, which are modeled in UML. Also, the hardware ar-
chitecture and the distributed execution of application are
modeled in UML. Using these models and Koski design flow
[5] the terminal is implemented as a multiprocessor system-
on-chip (SoC) on a single FPGA.

The paper is organized as follows. Section 2 presents the
related work. The Koski design flow is presented in Section 3.
Section 4 presents the utilized hardware and software plat-
forms. The wireless video terminal and related UML models
are presented in Section 5. The implementation details and
performance measurements are presented in Section 6. Fi-
nally, Section 7 concludes the paper.

2. RELATED WORK

Since object management group (OMG) adopted the UML
standard in 1997, it has been widely used in the software in-
dustry. Currently, the latest adopted release is known as UML
2.0 [6]. A number of extension proposals (called proiles) have
been presented for the domain of real-time and embedded
systems design.

The implementation of the wireless video terminal is car-
ried out using the UML-based Koski design flow [5]. UML is
used to design both the functionality of the subsystems and
the underlying hardware architecture. UML 2.0 was chosen
as a design language based on three main reasons. First, pre-
vious experiences have shown that UML suits well the imple-
mentation of communication protocols and wireless termi-
nals [7, 8]. Second, UML 2.0 and design tools provide formal
action semantics and code generation, which enable rapid
prototyping. Third, UML is an object-oriented language, and
supports modular design approach that is an important as-
pect of reusable and flexible design.

This section presents briefly the main related work con-
sidering UML modeling in embedded systems design, and
the parallel, and distributed execution of applications.

2.1. UML modeling with embedded systems

The UML profiles for the domain of real-time and embed-
ded systems design can be roughly divided into three cate-
gories: system and platform design, performance modeling,
and behavioral design. Next, the main related proposals are
presented.

The embedded UML [9] is a UML profile proposal suit-
able for embedded real-time system specification, design,
and verification. It represents a synthesis of concepts in
hardare/software codesign. It presents extensions that define
functional encapsulation and composition, communication
specification, and mapping for performance evaluation.

A UML platform profile is proposed in [10], which
presents a graphical language for the specification. It in-
cludes domain-specific classifiers and relationships to model
the structure and behavior of embedded systems. The profile

introduces new building blocks to represent platform re-
sources and services, and presents proper UML diagrams and
notations to model platforms in different abstraction levels.

The UML profile for schedulability, performance, and time
(or UML-SPT) is standardized by OMG [11]. The profile
defines notations for building models of real-time systems
with relevant quality of service (QoS) parameters. The pro-
file supports the interoperability of modeling and analysis
tools. However, it does not specify a full methodology, and
the proile is considered to be very complex to utilize.

The UML-RT profile [12] defines execution semantics to
capture behavior for simulation and synthesis. The profile
presents capsules to represent system components, the inter-
nal behavior of which is designed with state machines. The
capabilities to model architecture and performance are very
limited in UML-RT, and thus, it should be considered com-
plementary to the real-time UML profile. HASoC [13] is a
design methodology that is based on UML-RT. It proposes
also additional models of computation for the design of in-
ternal behavior.

In [14], Pllana and Fahringer present a set of building
blocks to model concepts of message passing and shared
memory. The proposed building blocks are parameterized to
exploit time constructs in modeling. Further, they present an
approach to map activity diagrams to process topologies.

OMG has recently introduced specifications for SoC
and systems design domains. The UML profile for SoC [15]
presents syntax for modeling modules and channels, the fun-
damental elements of SoC design. Further, the profile enables
describing the behavior of a SoC using protocols and syn-
chronicity semantics. The OMG systems modeling language
(SysML) [16], and related UML profile for systems engineer-
ing, presents a new general-purpose modeling language for
systems engineering. SysML uses a subset of UML, and its
objective is to improve analysis capabilities.

These proposed UML profiles contain several features for
utilizing UML in embedded and real-time domains. How-
ever, they are particularly targeted to single distinct aspects of
design, and they miss the completeness for combining appli-
cation and platform in an implementation-oriented fashion.
It seems that many research activities have spent years and
years for specifying astonishingly complex profiles that have
only minor (reported) practical use.

2.2. Parallelism and distributed execution

Studies in microprocessor design have shown that a multi-
processor architecture consisting of several simple CPUs can
outperform a single CPU using the same area [17] if the ap-
plication has a large degree of parallelism. For the communi-
cations subsystem, Kaiserswerth has analyzed parallelism in
communication protocols [18], stating that they are suitable
for distributed execution, since they can be parallelized effi-
ciently and also allow for pipelined execution.

Several parallel solutions have been developed to reduce
the high computational complexity of video encoding [19].
Temporal parallelism [20, 21] exploits the independency be-
tween subsequent video frames. Consequently, the frame

Petri Kukkala et al. 3

prediction is problematic because it limits the available paral-
lelism. Furthermore, the induced latency may be intolerable
in real-time systems. For functional parallelism [22–24], dif-
ferent functions are pipelined and executed in parallel on dif-
ferent processing units. This method is very straightforward
and can efficiently exploit application-specific hardware ac-
celerators. However, it may have limited scalability. In data
parallelism [25, 26] video frames are divided into uniform
spatial regions that are encoded in parallel. A typical ap-
proach is to use horizontal slice structures for this.

A common approach for simplifying the design of dis-
tributed systems is to utilize middleware, such as the common
object request broker architecture (CORBA) [27], to abstract
the underlying hardware for the application. OMG has also
specified a UML profile for CORBA, which allows the presen-
tation of CORBA semantics in UML [28]. However, the gen-
eral middleware implementations are too complex for em-
bedded systems. Thus, several lighter middleware approaches
have been developed especially for real-time embedded sys-
tems [29–31]. However, Rintaluoma et al. [32] state that the
overhead caused by the software layering and middleware
have significant influence on performance in embedded mul-
timedia applications.

In [33], Born et al. have presented a method for the
design and development of distributed applications using
UML. It uses automatic code generation to create code skele-
tons for component implementations on a middleware plat-
form. Still, direct executable code generation from UML
models, or modeling of hardware in UML, is not utilized.

2.3. Our approach

In this work, we use TUT-profile [34] that is a UML profile
especially targeted to improve design efficiency and flexibil-
ity in the implementation and rapid prototyping of embed-
ded real-time systems. The profile introduces a set of UML
stereotypes which categorize and parameterize model con-
structs to enable extensive design automation both in analy-
sis and implementation.

This work uses TUT-profile and the related design
methodology in the design of parallel applications. The
developed platforms and run-time environment seamlessly
support functional parallelism and distributed execution of
applications modeled in UML. The cost we have to pay for
this is the overhead in execution time and increased memory
usage. We argue that these drawbacks are highly accepted as
we gain significant improvement in design efficiency.

The improved design efficiency comes from the clear
modeling constructs and reduced amount of “low-level”
coding, high-degree of design automation, easy model mod-
ifications and rapid prototyping, and improved design man-
agement and reuse. Unfortunately, these benefits in design
efficiency are extremely hard to quantify, in contrast to the
measurable overheads, but we will discuss our experiences in
the design process.

None of the listed works provide fully automated de-
sign tools and practical, complex case studies on the deploy-
ment of the methods. To our best knowledge, the case study

presented in this paper is the most complex design case that
utilizes UML-based design automation for automated paral-
lelization and distribution in this scale.

3. UML MODELING WITH KOSKI

In Koski, the whole design flow is governed by UML models
designed according to a well-defined UML profile for em-
bedded system design, called TUT-profile [34, 35]. The pro-
file introduces a set of UML stereotypes which categorize and
parameterize model elements to improve design automation
both in analysis and implementation. The TUT-profile di-
vides UML modeling into the design of application, architec-
ture, and mapping models.

The application model is independent of hardware ar-
chitecture and defines both the functionality and structure
of an application. In a complex terminal with several sub-
systems, each subsystem can be described in a separate ap-
plication model. In the TUT-profile, application process is
an elementary unit of execution, which is implemented as
an asynchronously communicating extended finite state ma-
chine (EFSM) using UML statecharts with action semantics
[36, 37]. Further, existing library functions, for example DSP
functions written in C, can be called inside the statecharts to
enable efficient reuse.

The architecture model is independent of the applica-
tion, and instantiates the required set of hardware compo-
nents according to the needs of the current design. Hardware
components are selected from a platform library that con-
tains available processing elements as well as on-chip com-
munication networks and interfaces for external (off-chip)
devices. Processing elements are either general-purpose pro-
cessors or dedicated hardware accelerators. The UML models
of the components are abstract parameterized models, and
do not describe the functionality.

The mapping model defines the mapping of an applica-
tion to an architecture, that is, how application processes are
executed on the instantiated processing elements. The map-
ping is performed in two stages. First, application processes
are grouped into process groups. Second, the process groups
are mapped to an architecture. Grouping can be performed
according to different criteria, such as workload distribu-
tion and communication activity between groups. It should
be noted that the mapping model is not compulsory. Koski
tools perform the mapping automatically, but the designer
can also control the mapping manually using the mapping
model.

TUT-profile is further discussed below, in the implemen-
tation of the wireless video terminal.

3.1. Design flow and tools

Koski enables a fully automated implementation for a mul-
tiprocessor SoC on FPGA according to the UML models.
A simplified view is presented in Figure 1. Koski comprises
commercial design tools and self-made tools [38, 39] as pre-
sented in Table 1. A detailed description of the flow is given
in [5].

4 EURASIP Journal on Embedded Systems

Modeling in UML with TUT-profile

UML models
Application model Mapping model Architecture model

UML models

Function
library

Run-time
library

Code generation
Architecture

configuration

Hardware
synthesis

Platform
library

C codes Software build
RTL models

Wireless video terminal
on multiprocessor SoC on FPGA

Figure 1: UML-based design flow for the implementation of the wireless video terminal.

Table 1: Categorization of the components and tools used in Koski.

Category Self-made components/tools Off-the-shelf components/tools

Application
TUTMAC UML model

Video encoder UML model

Design methodology and tools

TUT-profile Tau G2 UML 2.0 tool

Application distribution tool Quartus II 5.1

Architecture configuration tool Nios II GCC toolset

Koski GUI

Execution monitor

Software platform
IPC support functions eCos RTOS

HIBI API State machine scheduler

Hardware accelerator device drivers

Hardware platform

HIBI communication architecture Nios II softcore CPU

Nios-HIBI DMA FPGA development board

Hardware accelerators Intersil WLAN radio transceiver

Extension card for WLAN radio OmniVision on-board camera module

Extension card for on-board camera

Based on the application and mapping models, Koski
generates code from UML statecharts, includes library func-
tions and a run-time library, and finally builds distributed
software implementing desired applications and subsystems
on a given architecture. Based on the architecture model,
Koski configures the library-based platform using the archi-
tecture configuration tool [38], and synthesizes the hardware
for a multiprocessor SoC on FPGA.

4. EXECUTION PLATFORM

This section presents the execution platform including both
the multiprocessor SoC platform and the software platform
for the application distribution.

4.1. Hardware platform

The wireless video terminal is implemented on an Altera
FPGA development board. The development board com-
prises Altera Stratix II EP2S60 FPGA, external memories
(1 MB SRAM, 32 MB SDR SDRAM, 16 MB flash), and exter-
nal interfaces (Ethernet and RS-232). Further, we have added

extension cards for a WLAN radio and on-board camera on
the development board. The WLAN radio is Intersil MAC-
less 2.4 GHz WLAN radio transceiver, which is compatible
with the 802.11b physical layer, but does not implement the
medium access control (MAC) layer. The on-board camera
is OmniVision OV7670FSL camera and lens module, which
features a single-chip VGA camera and image processor. The
camera has a maximum frame rate of 30 fps in VGA and sup-
ports image sizes from VGA resolution down to 40× 30 pix-
els. A photo of the board with the radio and camera cards is
presented in Figure 2. The development board is connected
to PC via Ethernet (for transferring data) and serial cable (for
debug, diagnostics, and configuration).

The multiprocessor SoC platform is implemented on
FPGA. The platform contains up to five Nios II processors;
four processors for application execution, and one for debug-
ging purposes and interfacing Ethernet with TCP/IP stack.
With a larger FPGA device, such as Stratix II EP2S180, up
to 15 processors can be used. Further, the platform con-
tains dedicated hardware modules, such as hardware accel-
erators and interfaces to external devices [38]. These coarse-
grain intellectual property (IP) blocks are connected using

Petri Kukkala et al. 5

Intersil HW1151-EVAL
MACless 2.4 GHz WLAN radio Development board with

Altera Stratix II FPGA

OmniVision OV7670FSL
on-board camera and lens module

Figure 2: FPGA development board with the extension cards for WLAN radio and on-board camera.

Application

Software
platform

Hardware
platform

Application process
(UML state machine)

Thread 1
[activated]

Thread 2
[inactive]

Thread 3
[activated]

Thread 1
[inactive]

Thread 2
[activated]

Thread 3
[inactive]

State
machine
scheduler

State
machine
scheduler

State
machine
scheduler

State
machine
scheduler

State
machine
scheduler

State
machine
scheduler

Signal queue Signal queue

Signal passing
functions

IPC support

Library
functions

RTOS API

Device drivers
HIBI API

eCos kernel

Signal passing
functions

IPC support

Library
functions

Device drivers
eCos kernel

HIBI API

RTOS API

Nios II CPU (1)
HIBI wrapper

Nios II CPU (2)
HIBI wrapper

Figure 3: Structure of the software platform on hardware.

the heterogeneous IP block interconnection (HIBI) on-chip
communication architecture [40]. Each processor module is
self-contained, and contains a Nios II processor core, direct
memory access (DMA) controller, timer units, instruction
cache, and local data memory.

4.2. Software platform

The software platform enables the distributed execution of
applications. It comprises the library functions and the run-
time environment. The software platform on hardware is
presented in Figure 3.

The library functions include various DSP and data pro-
cessing functions (DCT, error checking, encryption) that
can be used in the UML application models. In addition
to the software-implemented algorithms, the library com-

prises software drivers to access their hardware accelerators
and other hardware components, for example the radio in-
terface.

The run-time environment consists of a real-time op-
erating system (RTOS) application programming interface
(API), interprocessor communication (IPC) support, state
machine scheduler, and queues for signal passing between
application processes. RTOS API implements thread creation
and synchronization services through a standard interface.
Consequently, different operating systems can be used on dif-
ferent CPUs. Currently, all CPUs run a local copy of eCos
RTOS [41].

Distributed execution requires that information about
the process mapping is included in the generated software.
An application distributor tool parses this information au-
tomatically from the UML mapping model and creates the

6 EURASIP Journal on Embedded Systems

corresponding software codes. The codes include a mapping
table that defines on which processing element each process
group is to be executed.

4.2.1. Scheduling of application processes

When an RTOS is used, processes in the same process group
of TUT-profile are executed in the same thread. The pri-
ority of the groups (threads) can be specified in the map-
ping model, and processes with real-time requirements can
be placed in higher priority threads. The execution of pro-
cesses within a thread is scheduled by an internal state ma-
chine scheduler. This schedule is nonpreemptive, meaning
that state transitions cannot be interrupted by other transi-
tions. The state machine scheduler is a library component,
automatically generated by the UML tools.

Currently, the same generated program code is used for
all CPUs in the system, which enables each CPU to execute all
processes of the application. When a CPU starts execution,
it checks the mapping table to decide which process groups
(threads) it should activate; the rest of groups remains inac-
tive on the particular CPU, as shown in Figure 3.

4.2.2. Signal passing for application processes

The internal (within a process group) and external (between
process groups) signal passings are handled by signal passing
functions. They take care that the signal is transmitted to the
correct target process—regardless of the CPU the receiver is
executed on and transparently to the application. The signal
passing functions need services to transfer the UML signals
between different processes. The IPC support provides ser-
vices by negotiating the data transfers over the communica-
tion architecture and handling possible data fragmentation.
On the lower layer, it uses the services of HIBI API to carry
out the data transfers.

The signal passing at run-time is performed using two
signal queues: one for signals passed inside the same thread
and the other for signals from other threads. Processes within
a thread share a common signal queue (included in state ma-
chine scheduler in Figure 3). When a signal is received, it is
placed to the corresponding queue. When the state machine
scheduler detects that a signal is sent to a process residing
on a different CPU, the signal passing functions transmit the
signal to the signal queue on the receiving CPU.

4.2.3. Dynamic mapping

The context of a UML process (state machine) is completely
defined by its current state and the internal variables. Since
all CPUs use the same generated program code, it is possi-
ble to remap processes between processing elements at run
time without copying the application codes. Hence, the op-
eration involves transferring only the process contexts and
signals between CPUs, and updating the mapping tables.

Fast dynamic remapping is beneficial, for example, in
power management, and in capacity management for appli-

cations executed in parallel on the same resources. During
low load conditions, all processes can be migrated to sin-
gle CPU and shut-down the rest. The processing power can
be easily increased again when application load needs. An-
other benefit is the possibility to explore different mappings
with real-time execution. This offers either speedup or accu-
racy gains compared to simulation-based or analytical explo-
ration. The needed monitoring and diagnostic functionality
are automatically included with Koski tools.

An initial version for automated remapping at run time
according to workload is being evaluated. The current im-
plementation observes the processor and workload statistics,
and remaps the application processes to the minimum set of
active processors. The implementation and results are dis-
cussed in detail in [42].

The dynamic mapping can be exploited also manually at
run time using the execution monitor presented in Figure 4.
The monitor shows the processors implemented on FPGA,
application processes executed on the processors, and the
utilization of each processor. A user can “drag-and-drop”
processes from one processor to another to exploit dynamic
mapping. In addition to the processor utilization, the mon-
itor can show also other statistics, such as memory usage
and bus utilization. Furthermore, application-specific diag-
nostic data can be shown, for example user data throughput
in WLAN.

5. WIRELESS VIDEO TERMINAL

The wireless video terminal integrates two complementary
subsystems: video encoder and WLAN communications sub-
systems. An overview of the wireless terminal is presented in
Figure 5. In this section we present the subsystems and their
UML application models, the hardware architecture and its
UML architecture model, and finally, the mapping of subsys-
tems to the architecture, and the corresponding UML map-
ping model.

The basic functionality of the terminal is as follows. The
terminal receives raw image frames from PC over an Ether-
net connection in IP packets, or from a camera directly con-
nected to the terminal. The TCP/IP stack unwraps the raw
frame data from the IP packets. The raw frame data is for-
warded to the video encoder subsystem that produces the
encoded bit stream. The encoded bit stream is forwarded to
the communication subsystem that wraps the bit stream in
WLAN packets and sends them over wireless link to a re-
ceiver.

The composite structure of the whole terminal is pre-
sented in Figure 6. This comprises the two subsystems and
instantiates processes for bit stream packaging, managing
TUTMAC, and accessing the external radio. The bit stream
packaging wraps the encoded bit stream into user packets
of TUTMAC. Class MngUser acts as a management instance
that configures the TUTMAC protocol, that is, it defines the
terminal type (base station or portable terminal), local sta-
tion ID, and MAC address. Radio accesses the radio by con-
figuring it and initiating data transmissions and receptions.

Petri Kukkala et al. 7

Figure 4: User interface of the execution monitor enables “drag-and-drop style” dynamic mapping.

TCP/IP stack Video encoder
subsystem

Wireless communications
subsystem

Ethernet
interface

Camera
interface

Radio interface

Wireless video terminal

Raw images
from PC

(IP packets)

Raw images
from camera

Encoded
bit-stream

over WLAN

Figure 5: Overview of the wireless video terminal.

5.1. Video encoder subsystem

The video encoder subsystem implements an H.263 encoder
in a function-parallel manner. Each function is implemented
as a single UML process with well-defined interfaces.

As TUT-profile natively supports function parallelism,
each process can be freely mapped to any (general-purpose)
processing element even at run time. Further, the processes
communicate using signals via their interfaces, and they have
no shared (global) data.

The composite structure of the H.263 encoder UML
model is presented in Figure 7. The application model for
the encoder contains four processes. Preprocessing takes in
frames of raw images and divides them into macroblocks.
Discrete cosine transformation (DCT) transforms a mac-
roblock into a set of spatial frequency coefficients. Quantiza-
tion quantizes the coefficients. Macroblock coding (MBCod-
ing) does entropy coding for macroblocks, and produces an
encoded bit stream.

The functionality of the processes is obtained by reusing
the C codes from a reference H.263 intraframe encoder. The
control structure of the encoder was reimplemented using

UML statecharts, but the algorithms (DCT, quantization,
coding) were reused as such. Thus, we were able to reuse over
90% of the reference C codes. The C codes for the algorithm
implementations were added to the function library.

First stage in the modeling of the encoder was defining
appropriate interfaces for the processes. For this, we defined
data types in UML for frames, macroblocks, and bit stream,
as presented in Figure 8(a). We chose to use C type of ar-
rays (CArray) and pointers (CPtr) to store and access data,
because in this way full compatibility with the existing algo-
rithm implementations was achieved.

The control structures for the encoder were implemented
using UML statecharts. Figure 8(b) presents the statechart
implementation for the preprocessing. As mentioned before,
the main task of the preprocessing is to divide frames into
macroblocks. Further, the presented statechart implements
flow control for the processing of created macroblocks. The
flow control takes care that sufficient amount of macroblocks
(five macroblocks in this case) is pipelined to the other en-
coder processes. This enables function-parallel processing as
there are enough macroblocks in the pipeline. Also, this con-
trols the size of signal queues as there are not too many

8 EURASIP Journal on Embedded Systems

pIn

<<Application>>
enc : H263::Encoder

pIn pOut

<<ApplicationProcess>>
bs : BitstreamPackaging

pIn pOut

<<Application>>
mac : Tutmac::TUTMAC

pMngUser

pUser pPhy

<<ApplicationProcess>>
MngUser : MngUser

pTutmac

<<ApplicationProcess>>
Radio : Radio

pTutmac

Figure 6: Top-level composite structure of the wireless video terminal.

pIn

<<ApplicationProcess>>
pp : Preprocessing[1]/1

pFrameIn pMBOut

pMBControl
<<ApplicationProcess>>

dct : DCT[1]/1

pMBIn pMBOut

<<ApplicationProcess>>
q : Quantization[1]/1

pMBIn pMBOut

pMBControl
<<ApplicationProcess>>
code : MBCoding[1]/1

pMBIn pBitStreamOut pOut

Figure 7: Composite structure of the video encoder.

macroblocks buffered within the processes, which increases
dynamic memory usage.

5.2. WLAN communications subsystem

The WLAN communications subsystem implements a pro-
prietary WLAN MAC protocol, called TUTMAC. It utilizes
dynamic reservation time division multiple access (TDMA)
to share the wireless medium [43]. TUTMAC solved the
problems of scalability, QoS, and security present in stan-
dard WLANs. The wireless network has a centrally controlled
topology, where one base station controls and manages mul-
tiple portable terminals. Several configurations have been de-
veloped for different purposes and platforms. Here we con-
sider one configuration of the TUTMAC protocol.

The protocol contains data processing functions for
cyclic redundancy check (CRC), encryption, and fragmen-
tation. CRC is performed for headers with CRC-8 algorithm,
and for payload data with CRC-32 algorithm. The encryp-
tion is performed for payload data using an advanced en-
cryption system (AES) algorithm. The AES algorithm en-
crypts payload data in 128-bit blocks, and uses an encryption
key of the same size. The fragmentation divides large user
packets into several MAC frames. Further, processed frames
are stored in a frame buffer. The TDMA scheduler picks the
stored frames and transmits them in reserved time slots. The
data processing is performed for every packet sent and re-
ceived by a terminal. When the data throughput increases
and packet interval decreases, several packets are pipelined
and simultaneously processed by different protocol func-
tions.

The TDMA scheduling has to maintain accurate frame
synchronization. Tight real-time constraints are addressed
and prioritized processing is needed to guarantee enough
performance (throughput, latency) and accuracy (TDMA
scheduling) for the protocol processing. Thus, the perfor-
mance and parallel processing of protocol functions become
significant issues. Depending on the implementation, the al-
gorithms may also need hardware acceleration to meet the

delay bounds for data [39]. However, in this case we consider
a full software implementation, because we want to empha-
size the distributed software execution.

The top-level class composition of the TUTMAC pro-
tocol is presented in Figure 9(a). The top-level class (TUT-
MAC) introduces two processes and four classes with fur-
ther composite structure, each introducing a number of pro-
cesses, as presented in the hierarchical composite structure
in Figure 9(b). Altogether, the application model of TUT-
MAC introduces 24 processes (state machines). The proto-
col functionality is fully defined in UML, and the target ex-
ecutables are obtained with automatic code generation. The
implementation of the TUTMAC protocol using UML is de-
scribed in detail in [7, 8].

5.3. Hardware architecture

The available components of the used platform are presented
in a class diagram in Figure 10(a). The available compo-
nents include different versions of Nios II (fast, standard
economy [44], I/O with Ethernet), hardware accelerators
(CRC32, AES), WLAN radio interface, and HIBI for on-chip
communications. Each component is modeled as a class with
an appropriate stereotype containing tagged values that pa-
rameterize the components (type, frequency). All processing
elements have local memories and, hence, no memories are
shown in the figure.

The architecture model for the wireless video terminal
is presented in Figure 10(b). The architecture instantiates a
set of components introduced by the platform. Further, it
defines the communication architecture which, in this case,
comprises one HIBI segment interconnecting the instanti-
ated components.

5.4. Mapping of subsystems

As presented above, the subsystems of the terminal are mod-
eled as two distinct applications. Further, these are integrated

Petri Kukkala et al. 9

<<interface>>
iFrame

<<interface>>
iMB

signal Frame (frame: FrameData) signal MB (cbp: sint32, data: MBData)

<<interface>>
iBitStream

<<interface>>
iFlowControl

signal BitStream (bitcount: uint16, bitstream: BitStreamData) signal MBEncoded()

// Frame data types
syntype FrameData = CArray<uint8, 38016>;
syntype FramePtr = CPtr<uint8>;
// Macroblock types
syntype MBData = CArray<sint16, 448>;
syntype MBPtr = CPtr<sint16>;
// Bitstream types
syntype BitStreamData = CArray<uint8, 4096>;
syntype BitStreamPtr = CPtr<uint8>;

MBType

+cbp:sint32
+data:MBPtr

(a)

∗(Idle) Idle

Frame Frame(framedata) MBEncoded()

send mb

flowControl−−;

xMB = 0;
yMB = 0;

flowControl++;

mb.data = cast<MBPtr >(mbdata);
frameptr = cast<FramePtr >(framedata);
memoryLoadMB (yMB, xMB, frameptr, mb);

flow control
H

MB(0, mbdata)
via pOut

flowControl > 0 xMB++;

true false
xMB < COLUMNS

send mb Wait mb ack true else

FrameData framedata;
MBType mb = new MBType ();
MBData mbdata;
FramePtr frameptr;
sint32 xMB;
sint32 yMB;
int i;
int j;

Integer flowControl = 5;

const Integer ROWS = 9;
const Integer COLUMNS = 11;

Wait mb ack

MBEncoded()

flowControl++;

send mb flow control

xMB = 0;
yMB++;

yMB < ROWS

true else

Idle

(b)

Figure 8: Detailed views of the encoder implementation in UML: (a) interfaces and data types of the video encoder, and (b) statechart
implementation for the preprocessing.

together in a top-level application model that gathers the all
functional components of the terminal.

Altogether, the terminal comprises 29 processes that are
mapped to an architecture. One possible mapping model

is presented in Figures 11(a) and 11(b). Each process
is grouped to one of the eight process groups, each of
which mapped to a processing element. Note that the pre-
sented mapping illustrates also the mapping of processes to

10 EURASIP Journal on Embedded Systems

<<Application>>
Tutmac Protocol

ui dp ss rca mng rmng1 1

UserInterface DataProcessing ServiceSupport RadioChannelAccess
<<ApplicationComponent>>

Management

<<ApplicationComponent>>

RadioManagement

(a)

Composite structure diagram Diagram1 pUser
Class UserInterface

pUser<<ApplicationProcess>>
msduRec: MSDUReception[1]/1

pFlowControl pData pMng

pUser
<<ApplicationProcess>>

msduDel:MSDUDelivery[1]/1
pData pMng

pFlowControl pData pMng

Composite structure diagram Diagram1

pFlowControl

Class ServiceSupport
pData pMng

pIn
<<ApplicationProcess>>
addcrc: AddCRC32[1]/1

pOut

pFlowControl pUpData pMng
<<ApplicationProcess>>

fb: FrameBuffer[1]/1
pChannelAccess pDownData

pOut
<<ApplicationProcess>>

checkcrc: CheckCRC32[1]/1
pIn

pChannelAccess

Composite structure diagram Diagram1 Class RadioChannellAccess
pData pRMng

RMngPort
<<ApplicationProcess>>

scheduler: Scheduler[1]/1

DataPort

DataPort

RadioPort

RMngPort SchedulerPort
<<ApplicationProcess>>
ri: RadioInterface[1]/1

PhyPort CRCPort

pPhy

<<ApplicationProcess>>
crc8: CRC8[1]/1

RadioPort

Composite structure diagram Diagram1 Class TUTMAC

pUser pMngUser

pUser

ui: UserInterface
pMng

pFlowControl pData

pMngUser

pUI <<ApplicationProcess>>
mng: Management[1]/1

pSS pRMng

pDataUp

dp: DataProcessing

pDataDown

pFlowControl pData

ss: ServiceSupport pMng

pChannelAccess

pData

rca: RadioChannelAccess

pPhy pRMng

pPhy

pMng
<<ApplicationProcess>>

rmng: RadioManagement[1]/1
pChannelAccess pPhy

Composite structure diagram Diagram1 Class DataProcessingpDataUp

pIn

pIn

pIn

pIn

pIn

pOut

pOut

pOut

pOut

pOut

<<ApplicationProcess>>
addIntegrity: AddIntegrity[1]/1

<<ApplicationProcess>>
encrypt: Encrypt[1]/1

<<ApplicationProcess>>
frag: Fragmentation[1]/1

<<ApplicationProcess>>
uu2mu: UserUnit2MACUnit[1]/1

<<ApplicationProcess>>
dup: Duplicator[1]/1

<<ApplicationProcess>>
checkIntegrity: CheckIntegrity[1]/1

<<ApplicationProcess>>
decrypt: Decrypt[1]/1

<<ApplicationProcess>>
defrag: Defragmentation[1]/1

<<ApplicationProcess>>
mu2uu: MACUnit2UserUnit[1]/1

<<ApplicationProcess>>
duphand: DuplicateHandling[1]/1

pIn

pIn

pIn

pIn

pIn

pOut

pOut

pOut

pOut

pOut

pDataDown

(b)

Figure 9: Hierarchical implementation of the TUTMAC protocol: (a) top-level class composition, and (b) hierarchical composite structure.

Table 2: Static memory requirements for a single CPU.

Software component Code (bytes) Code (%) Data (bytes) Data (%) Total (bytes) Total (%)

Generated code 28 810 20.52 56 376 43.59 85 186 31.58

Library functions 31 514 22.45 49 668 38.40 81 182 30.10

State machine scheduler 16 128 11.49 3 252 2.51 19 380 7.18

Signal passing functions 4 020 2.86 4 0.00 4 024 1.49

HIBI API 2 824 2.01 4 208 3.25 7 032 2.61

IPC support 2 204 1.57 449 0.35 2 653 0.98

Device drivers 1 348 0.96 84 0.06 1 432 0.53

eCos 53 556 38.14 15 299 11.83 68 855 25.53

Total software 140 404 100.00 129 340 100.00 269 744 100.00

Petri Kukkala et al. 11

<<PlatformComponent>>

Nios II f

<<PlatformComponent>>

Nios II s

<<PlatformComponent>>

Nios II e

<<PlatformComponent>>

Nios II io

�� �� �� ��
<<PlatformComponent>>
Type = “general purpose processor”
Frequency = 50

<<PlatformComponent>>
Type = “general purpose processor”
Frequency = 50

<<PlatformComponent>>
Type = “general purpose processor”
Frequency = 50

<<PlatformComponent>>
Frequency = 50
Type = “general purpose processor”

<<PlatformComponent>>

Intersil WLAN radio

<<PlatformComponent>>

CRC32

<<PlatformComponent>>

AES

<<PlatformComponent>>

HIBISegment

�� �� �� ��
<<PlatformComponent>>
Type = “communication interface”
Frequency = 25

<<PlatformComponent>>
Type = “hardware accelerator”
Frequency = 50

<<PlatformComponent>>
Type = “hardware accelerator”
Frequency = 50

<<PlatformComponent>>
Type = “communication interface”
Frequency = 50

(a)

<<ProcessingElement>>
CPU1 : Nios II f

<<ProcessingElement>>
CPU2 : Nios II f

<<ProcessingElement>>
CPU3 : Nios II f

<<ProcessingElement>>
CPU4 : Nios II f

<<ProcessingElement>>
IO cpu : Nios II io

<<ProcessingElement>>
CRC : CRC32

<<ProcessingElement>>
AES : AES

<<ProcessingElement>>
RadioInterface : Intersil WLAN radio

<<HIBISegment>>
Segment1 : HIBISegment

HIBI port HIBI port HIBI port HIBI port HIBI port HIBI port HIBI port

HIBI port
Port1

(b)

Figure 10: Platform components are (a) modeled as UML classes and parameterized using appropriate stereotypes, and (b) instantiated in
the architecture model.

Table 3: Average processing times of the TUTMAC components for
a single frame.

Component Processing time (ms) Processing time (%) Note

msduRec 3.63 13.13 —

addIntegrity 0.94 3.38 —

encrypt 14.56 52.61 —

frag 0.66 2.39 —

uu2mu 4.10 14.80 (1)

addcrc 2.17 7.85 (1)

fb 0.64 2.30 (1)

ri 0.78 2.81 (1)

crc8 0.20 0.72 (1)

Total 27.68 100.00 —

(1) Processing time is for 2 WLAN packets (data is fragmented).

hardware accelerator, although in this case study we use full
software implementation to concentrate the distributed exe-
cution of software.

6. MEASUREMENTS

This section presents the implementation details and perfor-
mance measurements of the wireless video terminal.

Table 4: Average processing times of the video encoder components
for a single frame.

Component Processing time (ms) Processing time (%)

Preprocessing 17.83 9.31

DCT 46.93 24.51

Quantization 68.05 35.55

MBCoding 57.86 30.23

BitstreamPackaging 0.77 0.40

Total 191.43 100.00

6.1. Implementation details

The required amount of memory for each software compo-
nent is presented in Table 2. All CPUs functionally have iden-
tical software images that differ in memory and process map-
pings only. Creating unique code images for each CPU was
not considered at this stage of research. However, it is a viable
option, especially, when the dynamic run-time remapping is
not needed. In addition to the static memory needs, the ap-
plications require 140–150 kB of dynamic memory. The dy-
namic memory consumption is distributed among CPUs ac-
cording to processes mapping.

The size of the hardware architecture (five Nios II CPUs,
HIBI, radio interface, AES, CRC-32) is 20 495 adaptive logic

12 EURASIP Journal on Embedded Systems

<<ApplicationProcess>>

Preprocessing

<<ApplicationProcess>>

DCT

<<ApplicationProcess>>

Quantization

<<ApplicationProcess>>

MBCoding

<<ApplicationProcess>>

BitstreamPackaging

<<ApplicationProcess>>

msduRec

<<ApplicationProcess>>

frag

<<ApplicationProcess>>

uu2mu

<<ApplicationProcess>>

dup

<<ApplicationProcess>>
mng

<<ApplicationProcess>>

MngUser

<<ApplicationProcess>>

addcrc

<<ApplicationProcess>>

checkcrc

<<ApplicationProcess>>

addIntegrity

<<ApplicationProcess>>

checkIntegrity

<<ApplicationProcess>>

fb

<<ApplicationProcess>>

ri

<<ApplicationProcess>>

scheduler

<<ApplicationProcess>>

CRC8

<<ApplicationProcess>>

duphand

<<ApplicationProcess>>

mu2uu

<<ApplicationProcess>>

defrag

<<ApplicationProcess>>

msduDel

<<ApplicationProcess>>
rmng

<<ApplicationProcess>>

Radio

<<ApplicationProcess>>
encrypt

<<ApplicationProcess>>

decrypt

<<ProcessGroup>>

Group CPU1 : Group

<<ProcessGroup>>

Group CPU3 : Group

<<ProcessGroup>>

Group CRC : Group

<<ProcessGroup>>

Group CPU2 : Group

<<ProcessGroup>>

Group CPU4 : Group

<<ProcessGroup>>

Group IO cpu : Group

<<ProcessGroup>>

Group RadioInterface : Group

<<ProcessGroup>>

Group AES : Group

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

<<ProcessGrouping>>

(a)

<<ProcessGroup>>

Group CPU1 : Group

<<ProcessGroup>>

Group CPU2 : Group

<<ProcessGroup>>

Group CPU3 : Group

<<ProcessGroup>>

Group CPU4 : Group

<<ProcessGroup>>

Group CRC : Group

<<ProcessGroup>>

Group AES : Group

<<ProcessGroup>>

Group RadioInterface : Group

<<ProcessGroup>>

Group IO cpu : Group

<<ProcessingElement>>

CPU1

<<ProcessingElement>>

CPU2

<<ProcessingElement>>

CPU3

<<ProcessingElement>>

CPU4

<<ProcessingElement>>

CRC

<<ProcessingElement>>

AES

<<ProcessingElement>>

RadioInterface

<<ProcessingElement>>

IO cpu

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

<<GroupMapping>>

(b)

Figure 11: Mapping models: (a) grouping of processes to the process groups, and (b) mapping of process groups to the architecture.

modules (ALM), which takes 84% of the total capacity on the
used Stratix II FPGA. Further, the hardware (FIFO modules,
configuration bits) takes 760 kb (29%) of the FPGA on-chip
memory. The operating frequency was set to 50 MHz in all
measurements.

6.2. Performance measurements

Table 3 presents the average processing times of the TUT-
MAC components when transmitting a single encoded video
frame. The size of the encoded bit stream per frame was

Petri Kukkala et al. 13

Table 5: Video encoder frame rates and TUTMAC transmission delay with different mappings.

Mapping Frame rate (fps) Transmission delay (ms) Note

Whole terminal on a single CPU 1.70 54.10 (1)

Video encoder on 1 CPU, TUTMAC on 1 CPU 2.10 27.70 —

Video encoder on 2 CPUs, TUTMAC on 1 CPU 2.40 27.70 —

Video encoder on 3 CPUs, TUTMAC on 1 CPU 3.00 27.70 —

Video encoder on 4 CPUs, TUTMAC on 1 CPU 2.80 28.00 (1)

(1) One CPU is shared.

1800 B in average. The maximum WLAN packet size is
1550 B, which means that each encoded frame was frag-
mented into two WLAN packets. The total processing time
(27.68 ms) in this case results in a theoretical maximum
throughput of 500 kbps, which is very adequate to transmit
the encoded bit stream.

The processing times for the encoder components are
given in Table 4. DCT, quantization, and macroblock coding
handle frames in macroblocks. The presented values are total
times for a single frame (11× 9 macroblocks). The total pro-
cessing time (191.43 ms) results in a theoretical maximum
frame rate of 5.2 fps on a single CPU (no parallelization).
The reference C implementation of the encoder (on which
the UML implementation is based) achieved the frame rate
of 4.5 fps on the same hardware.

The presented times include only computing, but not
communication between processes. The run time overheads
of interprocess communication are currently being evaluated
and optimized. AES and CRC that constitute over 60% of
the frame processing time could also be executed on hard-
ware accelerator. DCT and motion estimation accelerators
for video encoding are currently being integrated.

The frame rate of the video encoder and the transmission
delay of TUTMAC were measured with different mappings.
According to the results presented above, we decided to con-
centrate on the distribution of the video encoder, because
it requires more computing effort. Further, TUTMAC is as-
sumed to operate well on a single CPU as the data through-
put is rather low (only few dozen kbps).

The frame rates and transmission delays with different
mappings are shown in Table 5. In the first case, the whole
terminal was mapped to a single CPU. In the second case,
the video encoder and the TUTMAC protocol were executed
on separate CPUs. In the third and fourth cases, the video en-
coder was distributed into two and three CPUs, respectively,
while the TUTMAC protocol was executed on one CPU. Fi-
nally, in the fifth case, the video encoder was executed on
both four CPUs and TUTMAC shared one of the four CPUs.
As mentioned before, remapping does not require hardware
synthesis, or even software compilation.

The measurements revealed that the distributed execu-
tion of the video encoder improves the frame rate, and at the
most ,the frame rate is 3.0 fps on three CPUs. In the fifth case,
the sharing of one CPU increases the workload on that CPU,
which prevents further improvements in frame rate.

The communication overhead between CPUs is the main
reason of the fact that the improvements are lower than in

an ideal case. However, we argue that the achieved results
in performance are very good as the used design method-
ology and tools improve the design efficiency significantly. It
should also be noted that the video encoder is not processor
optimized but is based on fully portable models.

7. CONCLUSIONS

This paper presented the implementation of a wireless video
terminal using UML-based design flow. The terminal com-
prises a function parallel H.263 video encoder and WLAN
subsystem for wireless communications. The whole termi-
nal, including the application and platform, was modeled in
UML, and full design automation was used to the physical
implementation.

The main objective of this work was to study the feasibil-
ity of the used design methodology and tools to implement
a multimedia terminal comprising various subsystems, each
comprises several functional components. This objective was
fulfilled with very pleasant results as the design flow tools
enable extensive design automation in implementation from
high-abstraction level models to a complete multiprocessor
SoC on FPGA. The experiments with the UML-based design
flow proved its suitability and competence in designing also
complex embedded multimedia terminals.

The performance of the video encoding was quite sat-
isfactory as we achieved 3.0 fps without any optimizations
in architecture and communications. Slightly better perfor-
mance can be achieved using reference C implementation of
the encoder. The reduced performance is the cost of using
UML and design automation, but is highly accepted as we
gain significant improvement in design efficiency.

Capability to rapid prototyping and easy modifications
to the applications is one of the major improvements in the
design process as the fully automated design flow signifi-
cantly reduces the amount of “low-level” coding. Further,
the clear constructs in modeling, due to the well-defined and
practical profile, enable rather easy integration of complex
subsystems, as shown in this case study.

The future work with the design methodology includes
enhanced support for nonfunctional constraints and more
detailed hardware modeling. In addition, IPC functions and
memory architecture will be optimized to allow more effi-
cient parallelization. The encoder could be implemented in
data or temporal parallel fashion to enhance the scalabil-
ity and performance. Further, the application development
will include the implementation of the full H.263/MPEG-4

14 EURASIP Journal on Embedded Systems

encoder, that is, adding the motion estimation functionality
to enable encoding the interframes also.

REFERENCES

[1] L. Lavagno, G. Martin, and B. Selic, Eds., UML for Real: Design
of Embedded Real-Time Systems, Kluwer Academic, New York,
NY, USA, 2003.

[2] R. Soley, “Model Driven Architecture,” November 2000, Ob-
ject Management Group (OMG), white paper.

[3] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg,
“Model-driven development using UML 2.0: promises and
pitfalls,” Computer, vol. 39, no. 2, pp. 59–66, 2006.

[4] Object Management Group (OMG), “MDA Guide (Version
1.0.1),” June 2003.

[5] T. Kangas, P. Kukkala, H. Orsila, et al., “UML-based multi-
processor SoC design framework,” ACM Transactions on Em-
bedded Computing Systems, vol. 5, no. 2, pp. 281–320, 2006.

[6] Object Management Group (OMG), “Unified Modeling Lan-
guage (UML) Superstructure Specification (Version 2.0),” Au-
gust 2005.

[7] P. Kukkala, V. Helminen, M. Hännikäinen, and T. D.
Hämäläinen, “UML 2.0 implementation of an embedded
WLAN protocol,” in Proceedings of the 15th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC ’04), vol. 2, pp. 1158–1162, Barcelona, Spain,
September 2004.

[8] P. Kukkala, M. Hännikäinen, and T. D. Hämäläinen, “De-
sign and implementation of a WLAN terminal using UML 2.0
based design flow,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, vol. 3553 of Lecture Notes in
Computer Science, pp. 404–413, Springer, New York, NY, USA,
2005.

[9] G. Martin, L. Lavagno, and J. Louis-Guerin, “Embedded UML:
a merger of real-time UML and co-design,” in Proceedings of
the 9th International Workshop Hardware/Software Codesign,
pp. 23–28, Copenhagen, Denmark, April 2001.

[10] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vincentelli, and J. Rabaey, “UML and platform-based design,”
in UML for Real: Design of Embedded Real-Time Systems, pp.
107–126, Kluwer Academic, Norwell, Mass, USA, 2003.

[11] Object Management Group (OMG), “UML Profile for
Schedulability, Performance, and Time Specification (Version
1.1),” January 2005.

[12] B. Selic, “Using UML for modeling complex real-time sys-
tems,” in Proceedings of Languages, Compilers, and Tools for
Embedded Systems (LCTES ’98), vol. 1474 of Lecture Notes in
Computer Science, pp. 250–260, Montreal, Canada, June 1998.

[13] P. Green, M. Edwards, and S. Essa, “HASoC - towards a new
method for system-on-a-chip development,” Design Automa-
tion for Embedded Systems, vol. 6, no. 4, pp. 333–353, 2002.

[14] S. Pllana and T. Fahringer, “On customizing the UML for
modeling performance-oriented applications,” in Proceedings
of the 5th International Conference on the Unified Modeling
Language, vol. 2460 of Lecture Notes in Computer Science, pp.
259–274, Springer, Dresden, Germany, September-October
2002.

[15] Object Management Group (OMG), “UML Profile for System
on a Chip (SoC) Specification (Version 1.0),” June 2006.

[16] Object Management Group (OMG), “OMG Systems Model-
ing Language (SysML) Specification,” June 2006.

[17] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.
Chang, “The case for a single-chip multiprocessor,” in Proceed-

ings of the 7th International Symposium on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS ’96), pp. 2–11, Cambridge, Mass, USA, October 1996.

[18] M. Kaiserswerth, “The parallel protocol engine,” IEEE/ACM
Transactions on Networking, vol. 1, no. 6, pp. 650–663, 1993.

[19] I. Ahmad, Y. He, and M. L. Liou, “Video compression with
parallel processing,” Parallel Computing, vol. 28, no. 7-8, pp.
1039–1078, 2002.

[20] I. Agi and R. Jagannathan, “A portable fault-tolerant paral-
lel software MPEG-1 encoder,” Multimedia Tools and Applica-
tions, vol. 2, no. 3, pp. 183–197, 1996.

[21] J. Nang and J. Kim, “Effective parallelizing scheme of MPEG-1
video encoding on ethernet-connected workstations,” in Pro-
ceedings of the Conference on Advances in Parallel and Dis-
tributed Computing, pp. 4–11, Shanghai, China, March 1997.

[22] M. J. Garrido, C. Sanz, M. Jiménez, and J. M. Menasses, “An
FPGA implementation of a flexible architecture for H.263
video coding,” IEEE Transactions on Consumer Electronics,
vol. 48, no. 4, pp. 1056–1066, 2002.

[23] O. Cantineau and J.-D. Legat, “Efficient parallelisation of an
MPEG-2 codec on a TMS320C80 video processor,” in Proceed-
ings of the International Conference on Image Processing (ICIP
’98), vol. 3, pp. 977–980, Chicago, Ill, USA, October 1998.

[24] S. Bhattacharjee, S. Das, D. Saha, D. R. Chowdhury, and P. P.
Chaudhuri, “A parallel architecture for video compression,” in
Proceedings of the 10th IEEE International Conference on VLSI
Design, pp. 247–252, Hyderabad, India, January 1997.

[25] S. M. Akramullah, I. Ahmad, and M. L. Liou, “Performance
of software-based MPEG-2 video encoder on parallel and dis-
tributed systems,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 7, no. 4, pp. 687–695, 1997.

[26] N. H. C. Yung and K.-K. Leung, “Spatial and temporal data
parallelization of the H.261 video coding algorithm,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 1, pp. 91–104, 2001.

[27] Object Management Group (OMG), “The Common Object
Request Broker Specification (Version 3.0),” March 2004.

[28] Object Management Group (OMG), “UML Profile for
CORBA Specification (Version 1.0),” April 2002.

[29] D. C. Schmidt and F. Kuhns, “An overview of the real-time
CORBA specification,” Computer, vol. 33, no. 6, pp. 56–63,
2000.

[30] U. Brinkschulte, T. Ungerer, A. Bechina, et al., “A microkernel
middleware architecture for distributed embedded real-time
systems,” in Proceedings of the 20th IEEE Symposium on Re-
liable Distributed Systems (SRDS ’01), pp. 218–226, New Or-
leans, La, USA, October 2001.

[31] C. Gill, V. Subrarnonian, J. Parsons, et al., “ORB middleware
evolution for networked embedded systems,” in Proceedings of
the 8th International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS ’03), pp. 169–176, Guadalajara,
Mexico, January 2003.

[32] T. Rintaluoma, O. Silven, and J. Raekallio, “Interface overheads
in embedded multimedia software,” in Proceedings of the 6th
International Workshop on Architectures, Modeling, and Simu-
lation (SAMOS ’06), vol. 4017 of Lecture Notes in Computer
Science, pp. 5–14, Springer, Samos, Greece, July 2006.

[33] M. Born, E. Holz, and O. Kath, “A method for the design
and development of distributed applications using UML,”
in Proceedings of the 37th International Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS-
PACIFIC ’00), pp. 253–264, Sydney, Australia, November
2000.

Petri Kukkala et al. 15

[34] P. Kukkala, J. Riihimäki, M. Hännikäinen, T. D. Hämäläinen,
and K. Kronlöf, “UML 2.0 profile for embedded system de-
sign,” in Proceedings of Design, Automation and Test in Europe
(DATE ’05), vol. 2, pp. 710–715, Munich, Germany, March
2005.

[35] P. Kukkala, M. Hännikäinen, and T. D. Hämäläinen, “Perfor-
mance modeling and reporting for the UML 2.0 design of em-
bedded systems,” in Proceedings of International Symposium
on System-on-Chip (SoC ’05), pp. 50–53, Tampere, Finland,
November 2005.

[36] M. Björkander, “Graphical programming using UML and
SDL,” Computer, vol. 33, no. 12, pp. 30–35, 2000.

[37] S. Gnesi, D. Latella, and M. Massink, “Modular semantics for
a UML statechart diagrams kernel and its extension to multi-
charts and branching time model-checking,” Journal of Logic
and Algebraic Programming, vol. 51, no. 1, pp. 43–75, 2002.

[38] T. Arpinen, P. Kukkala, E. Salminen, M. Hännikäinen, and T.
D. Hämäläinen, “Configurable multiprocessor platform with
RTOS for distributed execution of UML 2.0 designed applica-
tions,” in Proceedings of Design, Automation and Test in Europe
(DATE ’06), vol. 1, pp. 1–6, Munich, Germany, March 2006.

[39] M. Setälä, P. Kukkala, T. Arpinen, M. Hännikäinen, and T. D.
Hämäläinen, “Automated distribution of UML 2.0 designed
applications to a configurable multiprocessor platform,” in
Proceedings of the 6th International Workshop on Architectures,
Modeling, and Simulation (SAMOS ’06), vol. 4017 of Lecture
Notes in Computer Science, pp. 27–38, Springer, 2006.

[40] E. Salminen, T. Kangas, T. D. Hämäläinen, J. Riihimäki, V.
Lahtinen, and K. Kuusilinna, “HIBI communication network
for system-on-chip,” Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, vol. 43, no. 2-3, pp.
185–205, 2006.

[41] A. Massa, Embedded Software Development with eCos,
Prentice-Hall Professional Technical Reference, New York, NY,
USA, 2002.

[42] P. Kukkala, T. Arpinen, M. Setälä, M. Hännikäinen, and T. D.
Hämäläinen, “Dynamic power management for UML mod-
eled applications on multiprocessor SoC,” in Proceedings of the
IS&T/SPIE 19th Annual Symposium on Electronic Imaging, San
Jose, Calif, USA, January-February 2007.

[43] M. Hännikäinen, T. Lavikko, P. Kukkala, and T. D.
Hämäläinen, “TUTWLAN - QoS supporting wireless net-
work,” Telecommunication Systems, vol. 23, no. 3-4, pp. 297–
333, 2003.

[44] Altera, “Nios II Processor Reference Handbook (Version 6.0),”
May 2006.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 75947, 13 pages
doi:10.1155/2007/75947

Research Article
pn: A Tool for Improved Derivation of Process Networks

Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

Received 30 June 2006; Revised 12 December 2006; Accepted 10 January 2007

Recommended by Shuvra Bhattacharyya

Current emerging embedded System-on-Chip platforms are increasingly becoming multiprocessor architectures. System designers
experience significant difficulties in programming these platforms. The applications are typically specified as sequential programs
that do not reveal the available parallelism in an application, thereby hindering the efficient mapping of an application onto a
parallel multiprocessor platform. In this paper, we present our compiler techniques for facilitating the migration from a sequential
application specification to a parallel application specification using the process network model of computation. Our work is in-
spired by a previous research project called Compaan. With our techniques we address optimization issues such as the generation
of process networks with simplified topology and communication without sacrificing the process networks’ performance. More-
over, we describe a technique for compile-time memory requirement estimation which we consider as an important contribution
of this paper. We demonstrate the usefulness of our techniques on several examples.

Copyright © 2007 Sven Verdoolaege et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION AND MOTIVATION

The complexity of embedded multimedia and signal pro-
cessing applications has reached a point where the perfor-
mance requirements of these applications can no longer be
supported by embedded system platforms based on a single
processor. Therefore, modern embedded System-on-Chip
platforms have to be multiprocessor architectures. In recent
years, a lot of attention has been paid to building such mul-
tiprocessor platforms. Fortunately, advances in chip technol-
ogy facilitate this activity. However, less attention has been
paid to compiler techniques for efficient programming of
multiprocessor platforms, that is, the efficient mapping of
applications onto these platforms is becoming a key issue.
Today, system designers experience significant difficulties in
programming multiprocessor platforms because the way an
application is specified by an application developer does not
match the way multiprocessor platforms operate. The appli-
cations are typically specified as sequential programs using
imperative programming languages such as C/C++ or Mat-
lab. Specifying an application as a sequential program is rela-
tively easy and convenient for application developers, but the
sequential nature of such a specification does not reveal the
available parallelism in an application. This fact makes the
efficient mapping of an application onto a parallel multipro-

cessor platform very difficult. By contrast, if an application
is specified using a parallel model of computation (MoC),
then the mapping can be done in a systematic and transpar-
ent way using a disciplined approach [1]. However, specify-
ing an application using a parallel MoC is difficult, not well
understood by application developers, and a time consuming
and error prone process. That is why application developers
still prefer to specify an application as a sequential program,
which is well understood, even though such a specification is
not suitable for mapping an application onto a parallel mul-
tiprocessor platform.

This gap between a sequential program and a parallel
model of computation motivates us to investigate and de-
velop compiler techniques that facilitate the migration from
a sequential application specification to a parallel applica-
tion specification. These compiler techniques depend on the
parallel model of computation used for parallel application
specification. Although many parallel models of computa-
tion exist [2, 3], in this paper we consider the process net-
work model of computation [4] because its operational se-
mantics are simple, yet general enough to conveniently spec-
ify stream-oriented data processing that fits nicely with the
application domain we are interested in—multimedia and
signal processing applications. Moreover, for this application
domain, many researchers [5–14] have already indicated that

2 EURASIP Journal on Embedded Systems

process networks are very suitable for systematic and efficient
mapping onto multiprocessor platforms.

In this paper, we present our compiler techniques for de-
riving process network specifications for applications speci-
fied as static affine nested loop programs (SANLPs), thereby
bridging the gap mentioned above in a particular way.
SANLPs are important in scientific, matrix computation and
multimedia and adaptive signal processing applications. Our
work is inspired by previous research on Compaan [15–17].
The techniques presented in this paper and implemented in
the pn tool of our isa tool set can be seen as a significant
improvement of the techniques developed in the Compaan
project in the following sense. The Compaan project has
identified the fundamental problems that have to be solved
in order to derive process networks systematically and auto-
matically and has proposed and implemented basic solutions
to these problems. However, many optimization issues that
improve the quality of the derived process networks have not
been fully addressed in Compaan. Our techniques try to ad-
dress optimization issues in four main aspects.

Given an application specified as an SANLP,

(1) derive (if possible) process networks (PN) with fewer
communication channels between different processes
compared to Compaan-derived PNs without sacrificing
the PN performance;

(2) derive (if possible) process networks (PN) with fewer pro-
cesses compared to Compaan-derived PNs without sacri-
ficing the PN performance;

(3) replace (if possible) reordering communication channels
with simple FIFO channels without sacrificing the PN
performance;

(4) determine the size of the communication FIFO channels
at compile time. The problem of deriving efficient FIFO
sizes has not been addressed by Compaan. Our tech-
niques for computing FIFO sizes constitute a starting
point to overcome this problem.

2. RELATED WORK

The work in [11] presents a methodology and techniques
implemented in a tool called ESPAM for automated mul-
tiprocessor system design, programming, and implementa-
tion. The ESPAM design flow starts with three input spec-
ifications at the system level of abstraction, namely a plat-
form specification, a mapping specification, and an applica-
tion specification. ESPAM requires the application specifica-
tion to be a process network. Our compiler techniques pre-
sented in this paper are primarily intended to be used as a
font-end tool for ESPAM. (Kahn) process networks are also
supported by the Ptolemy II framework [3] and the YAPI en-
vironment [5] for concurrent modeling and design of appli-
cations and systems. In many cases, manually specifying an
application as a process network is a very time consuming
and error prone process. Using our techniques as a front-end
to these tools can significantly speedup the modeling effort
when process networks are used and avoid modeling errors
because our techniques guarantee a correct-by-construction
generation of process networks.

Process networks have been used to model applications
and to explore the mapping of these applications onto multi-
processor architectures [6, 9, 12, 14]. The application mod-
eling is performed manually starting from sequential C code
and a significant amount of time (a few weeks) is spent by
the designers on correctly transforming the sequential C code
into process networks. This activity slows down the design
space exploration process. The work presented in this paper
gives a solution for fast automatic derivation of process net-
works from sequential C code that will contribute to faster
design space exploration.

The relation of our analysis to Compaan will be high-
lighted throughout the text. As to memory size requirements,
much research has been devoted to optimal reuse of memory
for arrays. For an overview and a general technique, we refer
to [18]. These techniques are complementary to our research
on FIFO sizes and can be used on the reordering channels
and optionally on the data communication inside a node.
Also related is the concept of reuse distances [19]. In particu-
lar, our FIFO sizes are a special case of the “reuse distance per
statement” of [20]. For more advanced forms of copy propa-
gation, we refer to [21].

The rest of this paper is organized as follows. In Section 3,
we first introduce some concepts that we will need through-
out this paper. We explain how to derive and optimize pro-
cess networks in Section 4 and how to compute FIFO sizes
in Section 5. Detailed examples are given in Section 6, with
a further comparison to Compaan-generated networks in
Section 7. In Section 8, we conclude the paper.

3. PRELIMINARIES

In this section, we introduce the process network model, dis-
cuss static affine nested loop programs (SANLPs) and our in-
ternal representation, and introduce our main analysis tools.

3.1. The process network model

As the name suggests, a process network consists of a set
of processes, also called nodes, that communicate with each
other through channels. Each process has a fixed internal
schedule, but there is no (a priori) global schedule that dic-
tates the relative order of execution of the different processes.
Rather, the relative execution order is solely determined by
the channels through which the processes communicate. In
particular, a process will block if it needs data from a chan-
nel that is not available yet. Similarly, a process will block if it
tries to write to a “full” channel.

In the special case of a Kahn process network (KPN),
the communication channels are unbounded FIFOs that can
only block on a read. In the more general case, data can be
written to a channel in an order that is different from the
order in which the data is read. Such channels are called re-
ordering channels. Furthermore, the FIFO channels have ad-
ditional properties such as their size and the ability to be im-
plemented as a shift register. Since both reads and writes may
block, it is important to ensure the FIFOs are large enough
to avoid deadlocks. Note that determining suitable channel

Sven Verdoolaege et al. 3

sizes may not be possible in general, but it is possible for pro-
cess networks derived from SANLPs as defined in Section 3.2.
Our networks can be used as input for tools that expect Kahn
process networks by ignoring the additional properties of
FIFO channels and by changing the order in which a pro-
cess reads from a reordering channel to match the order of
the writes and storing the data that is not needed yet in an
internal memory block.

3.2. Limitations on the input and
internal representation

The SANLPs are programs or program fragments that can
be represented in the well-known polytope model [22]. That
is, an SANLP consists of a set of statements, each possibly
enclosed in loops and/or guarded by conditions. The loops
need not be perfectly nested. All lower and upper bounds of
the loops as well as all expressions in conditions and array
accesses can contain enclosing loop iterators and parameters
as well as modulo and integer divisions, but no products of
these elements. Such expressions are called quasi-affine. The
parameters are symbolic constants, that is, their values may
not change during the execution of the program fragment.
These restrictions allow a compact representation of the pro-
gram through sets and relations of integer vectors defined by
linear (in)equalities, existential quantification, and the union
operation. More technically, our (parametric) “integer sets”
and “integer relations” are (disjoint) unions of projections of
the integer points in (parametric) polytopes.

In particular, the set of iterator vectors for which a state-
ment is executed is an integer set called the iteration domain.
The linear inequalities of this set correspond to the lower and
upper bounds of the loops enclosing the statement. For ex-
ample, the iteration domain of statement S1 in Figure 1 is
{i | 0 ≤ i ≤ N − 1}. The elements in these sets are ordered
according to the order in which the iterations of the loop nest
are executed, assuming the loops are normalized to have step
+1. This order is called the lexicographical order and will be
denoted by ≺. A vector a ∈ Zn is said to be lexicographi-
cally (strictly) smaller than b ∈ Zn if for the first position i in
which a and b differ, we have ai < bi, or, equivalently,

a ≺ b ≡
n∨

i=1

(
ai < bi ∧

i−1∧

j=1

aj = bj

)
. (1)

The iteration domains will form the basis of the descrip-
tion of the nodes in our process network, as each node will
correspond to a particular statement. The channels are deter-
mined by the array (or scalar) accesses in the corresponding
statements. All accesses that appear on the left-hand side of
an assignment or in an address-of (&) expression are con-
sidered to be write accesses. All other accesses are considered
to be read accesses. Each of these accesses is represented by
an access relation, relating each iteration of the statement to
the array element accessed by the iteration, that is, {(i, a) ∈
I ×A | a = Li + m}, where I is the iteration domain, A is the
array space, and Li + m is the affine access function.

The use of access relations allows us to impose addi-
tional constraints on the iterations where the access occurs.

for (i = 0; i < N; ++i)

S1: b[i] = f(i > 0 ? a[i-1] : a[i], a[i],

i < N-1 ? a[i+1] : a[i]);

for (i = 0; i < N; ++i) {

if (i > 0)

tmp = b[i-1];

else

tmp = b[i];

S2: c[i] = g(b[i], tmp);

}

Figure 1: Use of temporary variables to express border behavior.

This is useful for expressing the effect of the ternary oper-
ator (?:) in C, or, equivalently, the use of temporary scalar
variables. These frequently occur in multimedia applications
where one or more kernels uniformly manipulate a stream
of data such as an image, but behave slightly differently at
the borders. An example of both ways of expressing border
behavior is shown in Figure 1 on a 1D data stream. The sec-
ond read access through b in line 9, after elimination of the
temporary variable tmp, can be represented as

R={(i, a) | a = i− 1∧ 1 ≤ i ≤ N − 1
}∪ {(i, a) | a = i = 0

}
.

(2)

To eliminate such temporary variables, we first identify the
statements that simply copy data to a temporary variable,
perform a dataflow analysis (as explained in Section 4.1) on
those temporary variables in a first pass and combine the
resulting constraints with the access relation from the copy
statement. A straightforward transformation of code such
as that of Figure 1 would introduce extra nodes that sim-
ply copy the data from the appropriate channel to the input
channel of the core node. Not only does this result in a net-
work with more nodes than needed, it also reduces the op-
portunity for reducing internode communication.

3.3. Analysis tools: lexicographical
minimization and counting

Our main analysis tool is parametric integer programming
[23], which computes the lexicographically smallest (or
largest) element of a parametric integer set. The result is a
subdivision of the parameter space with for each cell of this
subdivision a description of the corresponding unique mini-
mal element as an affine combination of the parameters and
possibly some additional existentially quantified variables.
This result can be described as a union of parametric integer
sets, where each set in the union contains a single point, or al-
ternatively as a relation, or indeed a function, between (some
of) the parameters and the corresponding lexicographical
minimum. The existentially quantified variables that may ap-
pear will always be uniquely quantified, that is, the existential
quantifier ∃ is actually a uniqueness quantifier ∃!. Parametric
integer programming (PIP) can be used to project out some
of the variables in a set. We simply compute the lexicograph-
ical minimum of these variables, treating all other variables

4 EURASIP Journal on Embedded Systems

as additional parameters, and then discard the description of
the minimal element.

The barvinok library [24] efficiently computes the
number of integer points in a parametric polytope. We can
use it to compute the number of points in a parametric
set provided that the existentially quantified variables are
uniquely quantified, which can be ensured by first using PIP
if needed. The result of the computation is a compact repre-
sentation of a function from the parameters to the nonnega-
tive integers, the number of elements in the set for the corre-
sponding parameter values. In particular, the result is a piece-
wise quasipolynomial in the parameters. The bernstein li-
brary [25] can be used to compute an upper bound on a
piecewise polynomial over a parametric polytope.

4. DERIVATION OF PROCESS NETWORKS

This section explains the conversion of SANLPs to process
networks. We first derive the channels using a modified
dataflow analysis in Section 4.1 and then we show how to de-
termine channel types in Section 4.2 and discuss some opti-
mizations on self-loop channels in Section 4.3.

4.1. Dataflow analysis

To compute the channels between the nodes, we basically
need to perform array dataflow analysis [26]. That is, for
each execution of a read operation of a given data element
in a statement, we need to find the source of the data, that
is, the corresponding write operation that wrote the data el-
ement. However, to reduce communication between differ-
ent nodes and in contrast to standard dataflow analysis, we
will also consider all previous read operations from the same
statement as possible sources of the data.

The problem to be solved is then: given a read from an
array element, what was the last write to or read (from that
statement) from that array element? The last iteration of a
statement satisfying some constraints can be obtained using
PIP, where we compute the lexicographical maximum of the
write (or read) source operations in terms of the iterators of
the “sink” read operation. Since there may be multiple state-
ments that are potential sources of the data and since we also
need to express that the source operation is executed before
the read (which is not a linear constraint, but rather a dis-
junction of n linear constraints (1), where n is the shared
nesting level), we actually need to perform a number of PIP
invocations. For details, we refer to [26], keeping in mind
that we consider a larger set of possible sources.

For example, the first read access in statement S2 of the
code in Figure 1 reads data written by statement S1, which
results in a channel from node “S1” to node “S2.” In partic-
ular, data flows from iteration iw of statement S1 to iteration
ir = iw of statement S2. This information is captured by the
integer relation

DS1→S2 =
{(
iw, ir

) | ir = iw ∧ 0 ≤ ir ≤ N − 1
}
. (3)

For the second read access in statement S2, as described by
(2), the data has already been read by the same statement

after it was written. This results in a self-loop from S2 to itself
described as

DS2→S2 =
{(
iw, ir

) | iw = ir − 1∧ 1 ≤ ir ≤ N − 1
}

∪ {(
iw, ir

) | iw = ir = 0
}
.

(4)

In general, we obtain pairs of write/read and read oper-
ations such that some data flows from the write/read opera-
tion to the (other) read operation. These pairs correspond to
the channels in our process network. For each of these pairs,
we further obtain a union of integer relations

m⋃

j=1

Dj
(

iw, ir
) ⊂ Zn1 × Zn2 , (5)

with n1 and n2 the number of loops enclosing the write and
read operation respectively, that connect the specific itera-
tions of the write/read and read operations such that the first
is the source of the second. As such, each iteration of a given
read operation is uniquely paired off to some write or read
operation iteration. Finally, channels that result from differ-
ent read accesses from the same statement to data written by
the same write access are combined into a single channel if
this combination does not introduce reordering, a character-
istic explained in the next section.

4.2. Determining channel types

In general, the channels we derived in the previous section
may not be FIFOs. That is, data may be written to the channel
in an order that is different from the order in which data is
read. We therefore need to check whether such reordering
occurs. This check can again be formulated as a (set of) PIP
problem(s). Reordering occurs if and only if there exist two
pairs of write and read iterations, (w1, r1), (w2, r2) ∈ Zn1 ×
Zn2 , such that the order of the write operations is different
from the order of the read operations, that is, w1 � w2 and
r1 ≺ r2, or equivalently

w1 −w2 � 0, r1 ≺ r2. (6)

Given a union of integer relations describing the channel (5),
then for any pair of relations in this union, (Dj1 ,Dj2), we
therefore need to solve n2 PIP problems

lexmax
{(

t,
(

w1, r1
)
,
(

w2, r2
)
, p
) |

(
w1, r1

) ∈ Dj1 ∧
(

w2, r2
) ∈ Dj2

∧ t = w1 −w2 ∧ r1 ≺ r2
}

,

(7)

where r1 ≺ r2 should be expanded according to (1) to ob-
tain the n2 problems. If any of these problems has a solution
and if it is lexicographically positive or unbounded (in the
first n1 positions), then reordering occurs. Note that we do
not compute the maximum of t = w1 − w2 in terms of the
parameters p, but rather the maximum over all values of the
parameters. If reordering occurs for any value of the param-
eters, then we simply consider the channel to be reordering.
Equation (7) therefore actually represents a nonparametric

Sven Verdoolaege et al. 5

for (i = 0; i < N; ++i)

a[i] = A(i);

for (j = 0; j < N; ++j)

b[j] = B(j);

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

c[i][j] = a[i] * b[j];

Figure 2: Outer product source code.

integer programming problem. The large majority of these
problems will be trivially unsatisfiable.

The reordering test of this section is a variation of the re-
ordering test of [17], where it is formulated as n1 × n2 PIP
problems for a channel described by a single integer rela-
tion. A further difference is that the authors of [17] perform
a more standard dataflow analysis and therefore also need to
consider a second characteristic called multiplicity. Multiplic-
ity occurs when the same data is read more than once from
the same channel. Since we also consider previous reads from
the same node as potential sources in our dataflow analysis,
the channels we derive will never have multiplicity, but rather
will be split into two channels, one corresponding to the first
read and one self-loop channel propagating the value to sub-
sequent reads.

Removing multiplicity not only reduces the communica-
tion between different nodes, it can also remove some arti-
ficial reorderings. A typical example of this situation is the
outer product of two vectors, shown in Figure 2. Figure 3
shows the result of standard dataflow analysis. The left part
of the figure shows the three nodes and two channels; the
right part shows the data flow between the individual iter-
ations of the nodes. The iterations are executed top-down,
left-to-right. The channel between a and c is described by
the relation

Da→c =
{(
ia, ic, jc

) | 0 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1∧ ia = ic
} (8)

and would be classified as nonreordering, since the data ele-
ments are read (albeit multiple times) in the order in which
they are produced. The channel between b and c, on the
other hand, is described by the relation

Db→c =
{(

jb, ic, jc
) | 0 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1∧ jb = jc
} (9)

and would be classified as reordering, with the further com-
plication that the same data element needs to be sent over the
channel multiple times. By simply letting node c only read a
data element from these channels the first time it needs the
data and from a newly introduced self-loop channel all other
times, we obtain the network shown in Figure 4. In this net-
work, all channels, including the new self-loop channels, are
FIFOs. For example, the channel with dependence relation

a c

b

a

b •
•
•
•
•
•

• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 3: Outer product dependence graph with multiplicity.

a c

b

a

b
a

b

• • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Figure 4: Outer product dependence graph without multiplicity.

Db→c (9) is split into a channel with relation

D′b→c =
{(

jb, ic, jc
) | ic = 0∧ 0 ≤ jc ≤ N − 1∧ jb = jc

}

(10)

and a self-loop channel with relation

Dc→c =
{(
i′c, j′c, ic, jc

) | 1 ≤ ic ≤ N − 1

∧ 0 ≤ jc ≤ N − 1

∧ j′c = jc ∧ i′c = ic − 1
}
.

(11)

4.3. Self-loops

When removing multiplicity from channels, our dataflow
analysis introduces extra self-loop channels. Some of these
channels can be further optimized. A simple, but important
case is that where the channels hold at most one data ele-
ment throughout the execution of the program. Such chan-
nels can be replaced by a single register. This situation occurs
when for every pair of write and read iterations (w2, r2), there
is no other read iteration r1 reading from the same channel
in between. In other words, the situation does not occur if
and only if there exist two pairs of write and read iterations,
(w1, r1) and (w2, r2), such that w2 ≺ r1 ≺ r2, or equivalently
r1 − w2 � 0 and r1 ≺ r2. Notice the similarity between this
condition and the reordering condition (6). The PIP prob-
lems that need to be solved to determine this condition are
therefore nearly identical to the problems (7), namely.,

lexmax
{(

t,
(

w1, r1
)
,
(

w2, r2
)
, p
) |

(
w1, r1

) ∈ Dj1 ∧
(

w2, r2
) ∈ Dj2

∧ t = r1 −w2 ∧ r1 ≺ r2
}

,

(12)

where again (Dj1 ,Dj2) is a pair of relations in the union de-
scribing the channel and where r1 ≺ r2 should be expanded
according to (1).

6 EURASIP Journal on Embedded Systems

If such a channel has the additional property that the sin-
gle value it contains is always propagated to the next itera-
tion of the node (a condition that can again be checked using
PIP), then we remove the channel completely and attach the
register to the input argument of the function and call the
FIFO(s) that read the value for the first time “sticky FIFOs.”
This is a special case of the optimization applied to in-order
channels with multiplicity of [17] that allows for slightly
more efficient implementations due to the extra property.

Another special case occurs when the number of itera-
tions of the node between a write to the self-loop channel
and the corresponding read is a constant, which we can de-
termine by simply counting the number of intermediate it-
erations (symbolically) and checking whether the result is a
constant function. In this case, we can replace the FIFO by a
shift register, which can be implemented more efficiently in
hardware. Note, however, that there may be a trade-off since
the size of the channel as a shift register (i.e., the constant
function above) may be larger than the size of the channel
as a FIFO. On the other hand, the FIFO size may be more
difficult to determine (see Section 5.2).

5. COMPUTING CHANNEL SIZES

In this section, we explain how we compute the buffer sizes
for the FIFOs in our networks at compile-time. This com-
putation may not be feasible for process networks in gen-
eral, but we are dealing here with the easier case of networks
generated from static affine nested loop programs. We first
consider self-loops, with a special case in Section 5.1, and
the general case in Section 5.2. In Section 5.3, we then ex-
plain how to reduce the general case of FIFOs to self-loops
by scheduling the network.

5.1. Uniform self-dependences on
rectangular domains

An important special case occurs when the channel is repre-
sented by a single integer relation that in turn represents a
uniform dependence over a rectangular domain. A depen-
dence is called uniform if the difference between the read
and write iteration vectors is a (possibly parametric) con-
stant over the whole relation. We call such a dependence a
uniform dependence over a rectangular domain if the set of
iterations reading from the channel form a rectangular do-
main. (Note that due to the dependence being uniform, also
the write iterations will form a rectangular domain in this
case.) For example, the relation Dc→c (11) from Section 4.2
is a uniform dependence over a rectangular domain since
the difference between the read and write iteration vectors
is (ic, jc)− (i′c, j′c) = (1, 0) and since the projection onto the
read iterations is the rectangle 1 ≤ ic ≤ N − 1 ∧ 0 ≤ jc ≤
N − 1.

The required buffer size is easily calculated in these cases
since in each (overlapping) iteration of any of the loops in the
loop nest, the number of data elements produced is exactly
the same as the number of elements consumed. The channel
will therefore never contain more data elements than right

before the first data element is read, or equivalently, right af-
ter the last data element is written. To compute the buffer
size, we therefore simply need to take the first read itera-
tion and count the number of write iterations that are lexico-
graphically smaller than this read iteration using barvinok.
In the example, the first read operation occurs at iteration
(1,0) and so we need to compute

#
(
S∩ {(i′c, j′c

) | i′c < 1
})

+ #
(
S∩ {(i′c, j′c

) | i′c=1∧ j′c < 0
})

,
(13)

with S the set of write iterations

S = {(i′c, j′c
) | 0 ≤ i′c ≤ N − 2∧ 0 ≤ j′c ≤ N − 1

}
. (14)

The result of this computation is N + 0 = N .

5.2. General self-loop FIFOs

An easy approximation can be obtained by computing the
number of array elements in the original program that are
written to the channel. That is, we can intersect the domain
of write iterations with the access relation and project onto
the array space. The resulting (union of) sets can be enumer-
ated symbolically using barvinok. The result may however
be a large overestimate of the actual buffer size requirements.

The actual amount of data in a channel at any given iter-
ation can be computed fairly easily. We simply compute the
number of read iterations that are executed before a given
read operation and subtract the resulting expression from
the number of write iterations that are executed before the
given read operation. This computation can again be per-
formed entirely symbolically and the result is a piecewise
(quasi-)polynomial in the read iterators and the parameters.
The required buffer size is the maximum of this expression
over all read iterations.

For sufficiently regular problems, we can compute the
above maximum symbolically by performing some simpli-
fications and identifying some special cases. In the general
case, we can apply Bernstein expansion [25] to obtain a para-
metric upper bound on the expression. For nonparametric
problems, however, it is usually easier to simulate the com-
munication channel. That is, we use CLooG [27] to gener-
ate code that increments a counter for each iteration writ-
ing to the channel and decrements the counter for each read
iteration. The maximum value attained by this counter is
recorded and reflects the channel size.

5.3. Nonself-loop FIFOs

Computing the sizes of self-loop channels is relatively easy
because the order of execution within a node of the network
is fixed. However, the relative order of iterations from differ-
ent nodes is not known a priori since this order is determined
at run-time. Computing minimal deadlock-free buffer sizes
is a nontrivial global optimization problem. This problem
becomes easier if we first compute a deadlock-free schedule
and then compute the buffer sizes for each channel individu-
ally. Note that this schedule is only computed for the purpose

Sven Verdoolaege et al. 7

for (j=0; j < Nrw; j++)

for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=1; j < Nrw-1; j++)

for (i=1; i < Ncl-1; i++)

Sbl[j][i] = Sobel(a[j-1][i-1], a[j][i-1], a[j+1][i-1],

a[j-1][i], a[j][i], a[j+1][i],

a[j-1][i+1], a[j][i+1], a[j+1][i+1]);

Figure 5: Source code of a Sobel edge detection example.

of computing the buffer sizes and is discarded afterward. The
schedule we compute may not be optimal and the resulting
buffer sizes may not be valid for the optimal schedule. Our
computations do ensure, however, that a valid schedule ex-
ists for the computed buffer sizes.

The schedule is computed using a greedy approach. This
approach may not work for process networks in general, but
it does work for any network derived from an SANLP. The
basic idea is to place all iteration domains in a common it-
eration space at an offset that is computed by the schedul-
ing algorithm. As in the individual iteration spaces, the ex-
ecution order in this common iteration space is the lexico-
graphical order. By fixing the offsets of the iteration domain
in the common space, we have therefore fixed the relative
order between any pair of iterations from any pair of iter-
ation domains. The algorithm starts by computing for any
pair of connected nodes, the minimal dependence distance
vector, a distance vector being the difference between a read
operation and the corresponding write operation. Then the
nodes are greedily combined, ensuring that all minimal dis-
tance vectors are (lexicographically) positive. The end result
is a schedule that ensures that every data element is written
before it is read. For more information on this algorithm,
we refer to [28], where it is applied to perform loop fu-
sion on SANLPs. Note that unlike the case of loop fusion,
we can ignore antidependences here, unless we want to use
the declared size of an array as an estimate for the buffer
size of the corresponding channels. (Antidependences are
ordering constraints between reads and subsequent writes
that ensure an array element is not overwritten before it is
read.)

After the scheduling, we may consider all channels to be
self-loops of the common iteration space and we can apply
the techniques from the previous sections with the follow-
ing qualifications. We will not be able to compute the abso-
lute minimum buffer sizes, but at best the minimum buffer
sizes for the computed schedule. We cannot use the declared
size of an array as an estimate for the channel size, unless we
have taken into account antidependences. An estimate that
remains valid is the number of write iterations.

We have tacitly assumed above that all iteration domains
have the same dimension. If this is not the case, then we first
need to assign a dimension of the common (bigger) itera-

tion space to each of the dimensions of the iteration domains
of lower dimension. For example, the single iterator of the
first loop of the program in Figure 2 would correspond to the
outer loop of the 2D common iteration space, whereas the
single iterator of the second loop would correspond to the
inner loop, as shown in Figure 3. We currently use a greedy
heuristic to match these dimensions, starting from domains
with higher dimensions and matching dimensions that are
related through one or more dependence relations. During
this matching we also, again greedily, take care of any scal-
ing that may need to be performed to align the iteration do-
mains. Although our heuristics seem to perform relatively
well on our examples, it is clear that we need a more gen-
eral approach such as the linear transformation algorithm of
[29].

6. WORKED-OUT EXAMPLES

In this section, we show the results of applying our op-
timization techniques to two image processing algorithms.
The generated process networks (PN) enjoy a reduction in
the amount of data transferred between nodes and reduced
memory requirements, resulting in a better performance,
that is, a reduced execution time. The first algorithm is the
Sobel operator, which estimates the gradient of a 2D im-
age. This algorithm is used for edge detection in the pre-
processing stage of computer vision systems. The second al-
gorithm is a forward discrete wavelet transform (DWT). The
wavelet transform is a function for multiscale analysis and
has been used for compact signal and image representations
in denoising, compression, and feature detection processing
problems for about twenty years.

6.1. Sobel edge detection

The Sobel edge detection algorithm is described by the source
code in Figure 5. To estimate the gradient of an image, the al-
gorithm performs a convolution between the image and a 3×
3 convolution mask. The mask is slid over the image, manip-
ulating a square of 9 pixels at a time, that is, each time 9 image
pixels are read and 1 value is produced. The value represents
the approximated gradient in the center of the processed im-
age area. Applying the regular dataflow analysis on this ex-
ample using Compaan results in the process network (PN)

8 EURASIP Journal on Embedded Systems

ReadImage

1 2 3 255 256 257 509 510 511

Sobel

Figure 6: Compaan generated process network for the Sobel exam-
ple.

depicted in Figure 6. It contains 2 nodes (representing the
ReadImage and Sobel functions) and 9 channels (repre-
senting the arguments of the Sobel function). Each channel
is marked with a number showing the buffer size it requires.
These numbers were obtained by running a simulation pro-
cessing an image of 256 × 256 pixels (Nrw=Ncl=256). The
ReadImage node reads the input image from memory pixel
by pixel and sends it to the Sobel node through the 9 chan-
nels. Since the 9 pixel values are read in parallel, the execu-
tions of the Sobel node can start after reading 2 lines and 3
pixels from memory.

After detecting self reuse through read accesses from the
same statement as described in Section 4.1, we obtain the PN
in Figure 7. Again, the numbers next to each channel specify
the buffer sizes of the channels. We calculated them at com-
pile time using the techniques described in Section 5. The
number of channels between the nodes is reduced from 9 to
3 while several self-loops are introduced. Reducing the com-
munication load between nodes is an important issue since
it influences the overall performance of the final implemen-
tation. Each data element transferred between two nodes in-
troduces a communication overhead which depends on the
architecture of the system executing the PN. For example, if
a PN is mapped onto a multiprocessor system with a shared
bus architecture, then the 9 pixel values are transferred se-
quentially through the shared bus, even though in the PN
model they are specified as 9 (parallel) channels (Figure 6).
In this example it is clear that the PN in Figure 7 will only
suffer a third of the communication overhead because it con-
tains 3 times fewer channels between the nodes. The self-
loops are implemented using the local processor memory
and they do not use the communication resources of the sys-
tem. Moreover, most of the self-loops require only 1 regis-
ter which makes their implementations simpler than the im-
plementation of a communication channel (FIFO). This also
holds for PNs implemented as dedicated hardware. A single-
register self-loop is much cheaper to implement in terms of
HW resources than a FIFO channel. Another important issue
(in both SW and HW systems) is the memory requirement.
For the PN in Figure 6 the total amount of memory required
is 2304 locations, while the PN in Figure 7 requires only 1033
(for a 256× 256 image). This shows that the detection of self
reuse reduces the memory requirements by a factor of more
than 2.

In principle, the three remaining channels between the
two nodes could be combined into a single channel, but, due

ReadImage

7 Ncl−2 Ncl−2

1 1 1 1 1 1 1 1 1 1 Ncl−4 1 1 Ncl−4 1 1Sobel

Figure 7: The generated process network for the Sobel example us-
ing the self reuse technique.

to boundary conditions, the order in which data would be
read from this channel is different from the order in which
it is written and we would therefore have a reordering chan-
nel (see Section 4.2). Since the implementation of a reorder-
ing channel is much more expensive than that of a FIFO
channel, we do not want to introduce such reordering. The
reason we still have 9 channels (7 of which are combined
into a single channel) after reuse detection is that each ac-
cess reads at least some data for the first time. We can change
this behavior by extending the loops with a few iterations,
while still only reading the same data as in the original pro-
gram. All data will then be read for the first time by access
a[j+1][i+1] only, resulting in a single FIFO between the
two nodes. To ensure that we only read the required data,
some of the extra iterations of the accesses do not read any
data. We can (manually) effectuate this change in C by using
(implicit) temporary variables and, depending on the index
expressions, reading from “noise,” as shown in Figure 8. By
using the simple copy propagation technique of Section 3.2,
these modifications do not increase the number of nodes in
the PN.

The generated optimized PN shown in Figure 9 con-
tains only one (FIFO) channel between the ReadImage and
Sobel nodes. All other communications are through self-
loops. Thus, the communication between the nodes is re-
duced 9 times compared to the initial PN (Figure 6). The to-
tal memory requirements for a 256 × 256 image have been
reduced by a factor of almost 4.5 to 519 locations. Note that
the results of the extra iterations of the Sobel node, which
partly operate on “noise,” are discarded and so the final be-
havior of the algorithm remains unaltered. However, with the
reduced number of communication channels and overhead,
the final (real) implementation of the optimized PN will have
a better performance.

6.2. Discrete wavelet transform

In the discrete wavelet transform (DWT) the input image is
decomposed into different decomposition levels. These de-
composition levels contain a number of subbands, which
consist of coefficients that describe the horizontal and ver-
tical spatial frequency characteristics of the original image.
The DWT requires the signal to be extended periodically.
This periodic symmetric extension is used to ensure that
for the filtering operations that take place at both bound-
aries of the signal, one signal sample exists and spatially

Sven Verdoolaege et al. 9

#define A(j,i) (j>=0 && i>=0 && i<Ncl ? a[j][i] : noise)

#define S(j,i) (j>=1 && i>=1 && i<Ncl-1 ? Sbl[j][i] : noise)

for (j=0; j < Nrw; j++)

for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=-1; j < Nrw-1; j++)

for (i=-1; i < Ncl+1; i++)

S(j,i) = Sobel(A(j-1, i-1), A(j, i-1), A(j+1, i-1),

A(j-1, i), A(j, i), A(j+1, i),

A(j-1, i+1), A(j, i+1), A(j+1, i+1));

Figure 8: Modified source code of the Sobel edge detection example.

ReadImage

1

Sobel 1 1 1 1 1 1 Ncl Ncl

Figure 9: The generated PN for the modified Sobel edge detection
example.

corresponds to each coefficient of the filter mask. The
number of additional samples required at the boundaries of
the signal is therefore filter-length dependent.

The C program realizing one level of a 2D forward DWT
is presented in Figure 10. In this example, we use a lifting
scheme of a reversible transformation with 5/3 filter [30]. In
this case the image has to be extended with one pixel at the
boundaries. All the boundary conditions are described by the
conditions in code lines 8, 11, 17, 20, 26, and 29.

First, a 1D DWT is applied in the vertical direction (lines
7 to 13). Two intermediate variables are produced (low- and
high-pass filtered images subsampled by 2—lines 9 and 12).
They are further processed by a 1D DWT applied in the hori-
zontal direction and thus producing (again subsampled by 2)
a four subbands decomposition: HL (line 18), LL (line 21),
HH (line 27), and LH (line 30). The process network gen-
erated by using the regular dataflow analysis (and Compaan
tool) is depicted in Figure 11. The PN contains 23 nodes, half
of them just copying pixels at the boundaries of the image.
Channel sizes are estimated by running a simulation again
processing an image 256 × 256 pixels. Although most of the
channels have size 1, they cannot be implemented by a simple
register since they connect nodes and additional logic (FIFO
like) is required for synchronization. Obviously, the gener-
ated PN has considerable initial overhead.

The optimization goals for this example are to remove
the Copy nodes and to reduce the communication between
the nodes as much as possible. We achieve these goals by
applying our techniques. The optimized process network is
shown in Figure 12. The simple copy propagation technique
reduces the number of the nodes from 23 to 11 and the de-
tection of self reuse technique reduces the communication
between the nodes from 40 to 15 channels introducing 8
self-loop channels. There is only one channel connecting two
nodes of the PN in Figure 12, except for the channels between
the ReadImage and high filt vert nodes. In this case, we
detect that a combined channel would be reordering. As we
mentioned in the previous example, we prefer not to intro-
duce reordering and therefore generate more (FIFO) chan-
nels. As a result, the number of channels emanating from the
ReadImage has been reduced by only one compared to the
initial PN (Figure 11). The buffer sizes are calculated at com-
pile time using our techniques described in Section 5 and the
correctness of the process network is tested using the YAPI
environment [5]. Note that in this example applying the opti-
mization techniques has little effect on the memory require-
ments: the number of memory locations required for an im-
age of 256×256 pixels is 2585 compared to 2603 for the initial
DWT PN. However, the topology of the optimized PN has
been simplified significantly allowing an efficient HW and/or
SW implementation.

7. COMPARISON TO COMPAAN AND
COMPAAN-LIKE NETWORKS

Table 1 compares the number of channels in Compaan-
like networks to the number of channels in our networks.
The Compaan-like networks were generated by using stan-
dard dataflow analysis instead of also considering reads as
sources and by turning off the copy propagation of tempo-
rary scalars and the combination of channels reading from
the same write access. The table shows a decomposition of
the channels into different types. In-Order (IO) and Out-
of-Order (OO) refer to FIFOs and reordering channels, re-
spectively, and the M-suffix refers to multiplicity, which does
not occur in our networks. Each column is further split into

10 EURASIP Journal on Embedded Systems

Table 1: Comparison to channel numbers of Compaan-like networks.

Algorithm name

Compaan-like networks Our networks

IO IOM OO OOM IO OO

sl + ed sl + ed sl + ed sl + ed 1r + sl + ed sl + ed

LU-Factor 3 + 13 1 + 7 0 + 3 0 + 1 2 + 5 + 16 0 + 3

QR-Decomp 4 + 8 0 + 0 0 + 0 0 + 0 1 + 3 + 8 0 + 0

SVD 4 + 41 0 + 4 0 + 18 0 + 0 8 + 0 + 34 0 + 16

Faddeev 3 + 20 0 + 3 0 + 1 0 + 0 4 + 2 + 19 0 + 1

Gauss-Elim. 2 + 5 0 + 0 0 + 1 1 + 2 0 + 6 + 6 0 + 1

Motion Est. 27 + 66 0 + 0 0 + 0 0 + 0 0 + 54 + 66 0 + 0

M-JPEG 9 + 21 0 + 17 0 + 0 0 + 0 18 + 0 + 38 0 + 0

for (i = 0; i < 2*Nrw; i++)

for (j = 0; j < 2*Ncl; j++)

a[i][j] = ReadImage();

5 for (i = 0; i < Nrw; i++) {

// 1D DWT in vertical direction with subsampling

for (j = 0; j < 2*Ncl; j++) {

tmpLine = (i==Nrw-1) ? a[2*i][j] : a[2*i+2][j];

Hf[j] = high_flt_vert(a[2*i][j], a[2*i+1][j], tmpLine);

10

tmp = (i==0) ? Hf[j] : oldHf[j];

low_flt_vert(tmp, a[2*i][j], Hf[j], &oldHf[j], &Lf[j]);

}

15 // 1D DWT in horizontal direction with subsampling ---------

for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl-1) ? Lf[2*j] : Lf[2*j+2];

HL[i][j] = high_flt_hor(Lf[2*j], Lf[2*j+1], tmp);

20 tmp = (j==0) ? HL[i][j] : HL[i][j-1];

LL[i][j] = low_flt_hor(tmp, Lf[2*j], HL[i][j]);

}

// 1D DWT in horizontal direction with subsampling ---------

25 for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl-1) ? Hf[2*j] : Hf[2*j+2];

HH[i][j] = high_flt_hor(Hf[2*j], Hf[2*j+1], tmp);

tmp = (j == 0) ? HH[i][j] : HH[i][j-1];

30 LH[i][j] = low_flt_hor(tmp, Hf[2*j], HH[i][j]);

}

}

// The Outputs --

for (i = 0; i < Nrw; i++)

35 for (j = 0; j < Ncl; j++) {

Sink(LL[i][j]);

Sink(HL[i][j]);

Sink(LH[i][j]);

Sink(HH[i][j]);

40 }

Figure 10: Source code of a discrete wavelet transform example.

Sven Verdoolaege et al. 11

ReadImage

high flt vert

image: 1

copy

image: 512

image: 512image: 513

tmpLine: 1 tmpLine: 1

copy

image: 513
Hf: 1 Hf: 1

Hf: 1 copy copy Hf: 2

tmp: 1 tmp: 1

Hf: 2

Hf: 1

Hf: 1 copy

tmp: 1

high flt hor

HH: 1 copy Sink copy

HH: 1 HH: 1 HH: 1

tmp: 1 tmp: 2

low flt hor

LH: 1

Sink

low flt vert

Lf: 1 tmp: 512 oldHf: 1 Lf: 1

copy copy copy Lf: 2 Lf: 1

tmp: 1 tmp: 1

high flt horLf: 2

HL: 1 HL: 1 HL: 1

HL: 1 Sink copy copy

tmp: 1 tmp: 2

low flt hor

LL: 1

Sink

Figure 11: 2D-DWT process network with copy nodes.

self-loops+edges, or single-register+self-loops+edges for our
FIFOs.

Note that our numbers on Compaan-like networks dif-
fer from those on Compaan networks reported in [17]. Due
to a difference in internal representation, some of our chan-
nels are split into several Compaan-channels. In Compaan,
these channels are recombined, with possibly further combi-
nations, at a later stage. From the table, we can conclude that
our techniques have split all OOM channels in examples LU-
Factor and Gauss-Elim. into pairs of FIFOs. In general, we
also have fewer channels between different nodes at the ex-
pense of more self-loops, which are a lot more efficient. For
example, for SVD, the number of edges is reduced from 63
to 50, while for LU-Factor we have a reduction from 24 to 19
and for Faddeev from 24 to 20. Finally, we are able to identify
(in examples LU-Factor, QR-Decomp, SVD, Faddeev, and M-
JPEG) that many of these self-loops are “single-register” FI-
FOs, where “register” should be interpreted as “token,” which
may be a whole table in the case of M-JPEG.

As to the time needed to derive the networks, Compaan
itself takes 2.3 to 28.1 seconds on the examples in Table 1,

while our tool takes 2.5 to 46.4 seconds. Most of the latter
time is spent in the computation of the FIFO sizes, which
Compaan does not compute.

8. CONCLUSIONS AND DISCUSSION

In this paper, we have improved upon the state-of-the-art
conversion of sequential programs to process networks in
several ways. We have shown that we can reduce the number
of reordering channels as well as the total number of channels
between different nodes by extending the standard dataflow
analysis to detect reuse within a node. This effect is enhanced
by first removing the (artificial) copy nodes introduced by
Compaan through simple copy propagation. Our modified
dataflow analysis leads to a removal of all reordering chan-
nels with multiplicity that appear in our examples and a re-
duction of the communication volume by up to a factor 9 in
the extreme case. We have further shown how to compute the
FIFO sizes exactly for self-loops in nonparametric programs
and approximately for other channels and self-loops in para-
metric programs.

12 EURASIP Journal on Embedded Systems

ReadImage

high flt vert

image: 2∗Ncl image: 2∗Ncl image: 1

image: 2∗Ncl image: 2∗Ncl+1

Hf: 3 Hf: 1

high flt hor Hf: 1 Hf: 1 Hf: 2 low flt vert oldHf: 2∗Ncl

HH: 1 HH: 1

Sink low flt hor HH: 1

LH: 1

Sink

Lf: 3

Lf: 2 high flt hor Lf: 1 Lf: 1

HL: 1 HL: 1

low flt hor HL: 1 Sink

LL: 1

Sink

Figure 12: Optimized 2D-DWT process network.

ACKNOWLEDGMENTS

This research is partly supported by PROGRESS, the Em-
bedded Systems and Software Research Program of the
Dutch Technology Foundation STW—Project ARTEMISIA
(LES.6389). We also thank Bart Kienhuis for his help and for
the discussions on some of the topics in this paper.

REFERENCES

[1] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory
allocation,” IEEE Transactions on Computers, vol. 54, pp. 1242–
1257, 2005.

[2] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for
comparing models of computation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, 1998.

[3] J. Davis, R. Galicia, M. Goel, et al., “PtolemyII: heterogeneous
concurrent modeling and design in java,” Tech. Rep. UCB/ERL
M99/40, University of California, Berkeley, Calif, USA, 1999.

[4] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Proceedings of the IFIP Congress, pp. 471–475,
North-Holland, Stockholm, Sweden, August 1974.

[5] E. A. de Kock, G. Essink, W. J. M. Smits, et al., “YAPI: appli-
cation modeling for signal processing systems,” in Proceedings
of the 37th Design Automation Conference (DAC ’00), pp. 402–
405, Los Angeles, Calif, USA, June 2000.

[6] E. A. de Kock, “Multiprocessor mapping of process networks:
a JPEG decoding case study,” in Proceedings of the 15th Inter-
national Symposium on System Synthesis (ISSS ’02), pp. 68–73,
Kyoto, Japan, October 2002.

[7] B. K. Dwivedi, A. Kumar, and M. Balakrishnan, “Automatic
synthesis of system on chip multiprocessor architectures for

process networks,” in Proceedings of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and
Systems Synthesis, (CODES+ISSS ’04), pp. 60–65, IEEE Com-
puter Society, Stockholm, Sweden, September 2004.

[8] K. Goossens, J. Dielissen, J. van Meerbergen, et al., “Guaran-
teeing the quality of services in networks on chip,” in Networks
on Chip, pp. 61–82, Kluwer Academic Publishers, Hingham,
Mass, USA, 2003.

[9] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere,
“System level design with SPADE: an M-JPEG case study,” in
Proceedings of the International Conference on Computer-Aided
Design (ICCAD ’01), pp. 31–38, San Jose, Calif, USA, Novem-
ber 2001.

[10] A. Nieuwland, J. Kang, O. P. Gangwal, et al., C-HEAP: A Het-
erogeneous Multi-Processor Architecture Template and Scalable
and Flexible Protocol for the Design of Embedded Signal Pro-
cessing Systems, Kluwer Academic Publishers, Norwell, Mass,
USA, 2002.

[11] H. Nikolov, T. Stefanov, and E. Deprettere, “Multi-pro-
cessor system design with ESPAM,” in Proceedings of the 4th
IEEE/ACM/IFIP International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS ’06), pp.
211–216, Seoul, Korea, October 2006.

[12] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic ap-
proach to exploring embedded system architectures at mul-
tiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–112, 2006.

[13] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. De-
prettere, “System design using Kahn process networks: the
Compaan/Laura approach,” in Proceedings of Conference De-
sign, Automation and Test in Europe (DATE ’04), vol. 1, pp.
340–345, Paris, France, February 2004.

[14] P. van der Wolf, P. Lieverse, M. Goel, D. La Hei, and K. Vis-
sers, “MPEG-2 decoder case study as a driver for a system level

Sven Verdoolaege et al. 13

design methodology,” in Proceedings of the 7th International
Workshop on Hardware/Software Codesign (CODES ’99), pp.
33–37, Rome, Italy, May 1999.

[15] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: de-
riving process networks from matlab for embedded signal pro-
cessing architectures,” in Proceedings of the 8th International
Workshop Hardware/Software Codesign (CODES ’00), pp. 13–
17, ACM Press, San Diego, Calif, USA, May 2000.

[16] E. Rijpkema, E. F. Deprettere, and B. Kienhuis, “Deriving pro-
cess networks from nested loop algorithms,” Parallel Processing
Letters, vol. 10, no. 2, pp. 165–176, 2000.

[17] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine
nested-loop programs to process networks,” in Proceedings of
International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES ’04), pp. 220–229, Wash-
ington, DC, USA, September 2004.

[18] A. Darte, R. Schreiber, and G. Villard, “Lattice-based mem-
ory allocation,” in Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES ’03), pp. 298–308, ACM Press, San Jose, Calif, USA,
October-November 2003.

[19] K. Beyls and E. H. D’Hollander, “Generating cache hints for
improved program efficiency,” Journal of Systems Architecture,
vol. 51, no. 4, pp. 223–250, 2005.

[20] T. Vander Aa, M. Jayapala, F. Barat, H. Corporaal, F. Catthoor,
and G. Deconinck, “A high-level memory energy estimator
based on reuse distance,” in Proceedings of the 3rd Workshop
on Optimizations for DSP and Embedded Systems (ODES ’05),
San Jose, Calif, USA, March 2005.

[21] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal,
and F. Catthoor, “Advanced copy propagation for arrays,” in
Proceedings of the ACM SIGPLAN Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’03), U.
Kremer, Ed., pp. 24–33, ACM Press, San Diego, Calif, USA,
June 2003.

[22] P. Feautrier, “Automatic parallelization in the polytope
model,” in The Data Parallel Programming Model, vol. 1132 of
Lecture Notes in Computer Science, pp. 79–103, Springer, Lon-
don, UK, 1996.

[23] P. Feautrier, “Parametric integer programming,” Opera-
tionnelle/Operations Research, vol. 22, no. 3, pp. 243–268,
1988.

[24] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M.
Bruynooghe, “Analytical computation of Ehrhart polynomi-
als: enabling more compiler analyses and optimizations,” in
Proceedings of the International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems (CASES ’04),
pp. 248–258, Washington, DC, USA, September 2004.

[25] P. Clauss, F. J. Fernández, D. Gabervetsky, and S. Ver-
doolaege, “Symbolic polynomial maximization over con-
vex sets and its application to memory requirement es-
timation,” ICPS Research Reports 06–04, Université Louis
Pasteur, Strasbourg, France, 2006, http://icps.u-strasbg.fr/
upload/icps-2006-173.pdf.

[26] P. Feautrier, “Dataflow analysis of array and scalar references,”
International Journal of Parallel Programming, vol. 20, no. 1,
pp. 23–53, 1991.

[27] C. Bastoul, “Code generation in the polyhedral model is easier
than you think,” in Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT ’04), pp. 7–16, IEEE Computer Society, Antibes Juan-
les-Pins, France, September 2004.

[28] S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor,
“Multi-dimensional incremental loop fusion for data local-
ity,” in Proceedings of the 14th IEEE International Confer-
ence on Application-Specific Systems, Architectures, and Proces-
sors (ASAP ’03), D. Martin, Ed., pp. 17–27, The Hague, The
Netherlands, June 2003.

[29] S. Verdoolaege, K. Danckaert, F. Catthoor, M. Bruynooghe,
and G. Janssens, “An access regularity criterion and regu-
larity improvement heuristics for data transfer optimization
by global loop transformations,” in Proceedings of the 1st
Workshop on Optimization for DSP and Embedded Systems
(ODES ’03), San Francisco, Calif, USA, March 2003.

[30] I. Daubechies and W. Sweldens, “Factoring wavelet transforms
into lifting steps,” Journal of Fourier Analysis and Applications,
vol. 4, no. 3, pp. 247–269, 1998.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 47580, 22 pages
doi:10.1155/2007/47580

Research Article
A SystemC-Based Design Methodology for
Digital Signal Processing Systems

Christian Haubelt, Joachim Falk, Joachim Keinert, Thomas Schlichter, Martin Streubühr, Andreas Deyhle,
Andreas Hadert, and Jürgen Teich

Hardware-Software-Co-Design, Department of Copmuter Sciences, Friedrich-Alexander-University of Erlangen-Nuremberg,
91054 Erlangen, Germany

Received 7 July 2006; Revised 14 December 2006; Accepted 10 January 2007

Recommended by Shuvra Bhattacharyya

Digital signal processing algorithms are of big importance in many embedded systems. Due to complexity reasons and due to the
restrictions imposed on the implementations, new design methodologies are needed. In this paper, we present a SystemC-based
solution supporting automatic design space exploration, automatic performance evaluation, as well as automatic system generation
for mixed hardware/software solutions mapped onto FPGA-based platforms. Our proposed hardware/software codesign approach
is based on a SystemC-based library called SysteMoC that permits the expression of different models of computation well known
in the domain of digital signal processing. It combines the advantages of executability and analyzability of many important models
of computation that can be expressed in SysteMoC. We will use the example of an MPEG-4 decoder throughout this paper to
introduce our novel methodology. Results from a five-dimensional design space exploration and from automatically mapping
parts of the MPEG-4 decoder onto a Xilinx FPGA platform will demonstrate the effectiveness of our approach.

Copyright © 2007 Christian Haubelt et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Digital signal processing algorithms, as for example real-time
image enhancement, scene interpretation, or audio and vi-
deo coding, have gained enormous popularity in embedded
system design. They encompass a large variety of different
algorithms, starting from simple linear filtering up to en-
tropy encoding or scene interpretation based on neuronal
networks. Their implementation, however, is very laborious
and time consuming, because many different and often con-
flicting criteria must be met, as for example high throughput
and low power consumption. Due to this rising complexity of
these digital signal processing applications, there is demand
for new design automation tools at a high level of abstraction.

Many design methodologies are proposed in the litera-
ture for exploring the design space of implementations of
digital signal processing algorithms (cf. [1, 2]), but none of
them is able to fully automate the design process. In this pa-
per, we will close this gap by proposing a novel approach
based on SystemC [3–5], a C++ class library, and state-of-
the-art design methodologies. The proposed approach per-
mits the design of digital signal processing applications with

minimal designer interaction. The major advantage with re-
spect to existing approaches is the combination of executabil-
ity of the specification, exploration of implementation alter-
natives, and the usability of formal analysis techniques for
restricted models of computation. This is achieved through
restricting SystemC such that we are able to automatically
detect the underlying model of computation (MoC) [6]. Our
design methodology comprises the automatic design space ex-
ploration using state-of-the-art multiobjective evolutionary
algorithms, the performance evaluation by automatically gen-
erating efficient simulation models, and automatic platform-
based system generation. The overall design flow as proposed
in this paper is shown in Figure 1 and is currently imple-
mented in the framework SystemCoDesigner.

Starting with an executable specification written in Sys-
temC, the designer can specify the target architecture tem-
plate as well as the mapping constraints of the SystemC
modules. In order to automate the design process, the Sys-
temC application has to be written in a synthesizable sub-
set of SystemC, called SysteMoC [7], and the target architec-
ture template must be built from components supported by
our component library. The components in the component

2 EURASIP Journal on Embedded Systems

Application Mapping
constraints

Architecture
template SpecifiesSpecifies

Se
lec

ts

Multiobjective
optimization

Performance
evaluation

Component
libraryCommunication

library Implementation

System
generation

Selects

Figure 1: SystemCoDesigner design flow: for a given executable
specification written in SystemC, the designer has to specify the ar-
chitecture template as well as mapping constraints. The design space
exploration is performed automatically using multiobjective evolu-
tionary algorithms and is guided by an automatic simulation-based
performance evaluation. Finally, any selected implementation can
be automatically mapped efficiently onto an FPGA-based platform.

library are either written by hand using a hardware descrip-
tion language or can be taken from third party vendors. In
this work, we will use IP cores especially provided by Xilinx.
Furthermore, it is also possible to synthesize SysteMoC ac-
tors to RTL Verilog or VHDL using high-level synthesis tools
as Mentor CatapultC [8] or Forte Cynthesizer [9]. However,
there are limitations imposed on the actors given by these
tools. As this is beyond the scope of this paper, we will omit
discussing these issues here.

With this specification, the SystemCoDesigner design
process is automated as much as possible. Inside SystemCo-
Designer, a multiobjective evolutionary optimization (MO-
EA) strategy is used in order to perform design space ex-
ploration. The exploration is guided by a simulation-based
performance evaluation. Using SysteMoC as a specification
language for the application, the generation of the simula-
tion model inside the exploration can be automated. Then,
the designer can carry out the decision making and select a
design point for implementation. Finally, the platform-based
implementation is generated automatically.

The remainder of this paper is dedicated to the different
issues arising during our proposed design flow. Section 3 dis-
cusses the input format based on SystemC called SysteMoC.
SysteMoC is a library based on SystemC that allows to de-
scribe and simulate communicating actors. The particular-
ity of this library for actor-based design is to separate actor
functionality and communication behavior. In particular, the
separation of actor firing rules and communication behavior

is achieved by an explicit finite state machine model associ-
ated with each actor. This finite state machine permits the
identification of the underlying model of computation of the
SystemC application and, hence, if possible, allows to ana-
lyze the specification with formal techniques for properties
such as boundedness of memory, (periodic) schedulability,
deadlocks, and so forth.

Section 4 presents the model and the tasks performed
during design space exploration. As the SysteMoC descrip-
tion only models the specified behavior of our system, we
need additional information in order to perform system-level
synthesis. Following the Y-chart approach [10, 11], a formal
model of architecture (MoA) must be specified by the de-
signer as well as mapping constraints for the actors in the
SysteMoC description. With this formal model the system-
level synthesis task is twofold: (1) determine the allocation
of resources from the architecture template and (2) deter-
mine a binding of SystemC modules (actors) onto the al-
located resources. During design space exploration, many
implementations are constructed by the system-level explo-
ration tool SystemCoDesigner. Each resulting implementa-
tion must be evaluated regarding different properties such
as area, power consumption, performance, and so forth.
Especially the performance evaluation, that is, latency and
throughput, is critical in the context of digital signal process-
ing applications. In our proposed methodology, we will use,
beside others, a simulation-based approach. We will show
how SysteMoC might help to automatically generate efficient
simulation models during exploration.

In Section 5 our approach to automatic platform-based
system synthesis will be presented targeting in our exam-
ples a Xilinx Virtex-II Pro FPGA-based platform. The key
idea is to generate a platform, perform software synthesis, and
provide efficient communication channels for the implemen-
tation. The results obtained by the synthesis will be com-
pared to the simulation models generated during a five-
dimensional design space exploration in Section 6. We will
use the example of an MPEG-4 decoder throughout this pa-
per to present our methodology.

2. RELATED WORK

In this section, we discuss some tools which are available
for the design and synthesis of digital signal processing al-
gorithms onto mixed and possibly multicore system-on-a-
chip (SoC). Sesame (simulation of embedded system archi-
tectures for multilevel exploration) [12] is a tool for perfor-
mance evaluation and exploration of heterogeneous archi-
tectures for the multimedia application domain. The appli-
cations are given by Kahn process networks modeled with a
C++ class library. The architecture is modeled by architec-
ture building blocks taken from a library. Using a SystemC-
based simulator at transaction level, performance evaluation
can be done for a given application. In order to cosimulate
the application and the architecture, a trace-driven simula-
tion approach technique is chosen. Sesame is developed in
the context of the Artemis project (architectures and meth-
ods for embedded media systems) [13].

Christian Haubelt et al. 3

The MILAN (model-based integrated simulation) frame-
work is a design space exploration tool that works at dif-
ferent levels of abstraction [14]. Following the Y-chart ap-
proach [11], MILAN uses hierarchical dataflow graphs in-
cluding function alternatives. The architecture template can
be defined at different levels of detail. The hierarchical design
space exploration starts at the system level and uses rough
estimation and symbolic methods based on ordered binary
decision diagrams to prune the search space. After reducing
the search space, a more fine grained estimation is performed
for the remaining designs, reducing the search space even
more. At the end, at most ten designs are evaluated by cycle-
accurate trace-driven simulation. MILAN needs user inter-
action to perform decision making during exploration.

In [15], Kianzad and Bhattacharyya propose a framework
called CHARMED (cosynthesis of hardware-software mul-
timode embedded systems) for the automatic design space
exploration for periodic multimode embedded systems. The
input specification is given by several task graphs where each
task graph is associated to one of M modes. Moreover, a pe-
riod for each task graph is given. Associated with the ver-
tices and edges in each task graph, there are attributes like
memory requirement and worst case execution time. Two
kinds of resources are distinguished, processing elements and
communication resources. Kianzad and Bhattacharyya use
an approach based on SPEA2 [16] with constraint domi-
nance, a similar optimization strategy as implemented by our
SystemCoDesigner.

Balarin et al. [17] propose Metropolis, a design space ex-
ploration framework which integrates tools for simulation,
verification, and synthesis. Metropolis is an infrastructure to
help designers to cope with the difficulties in large system
designs by allowing the modeling on different levels of de-
tail and supporting refinement. The applications are mod-
eled by a metamodel consisting of sequential processes com-
municating via the so-called media. A medium has variables
and functions where the variables are only allowed to be
changed by the functions. From the application model a se-
quence of event vectors is extracted representing a partial
execution order. Nondeterminism is allowed in application
modeling. The architecture again is modeled by the meta-
model, where media are resources and processes represent-
ing services (a collection of functions). Deriving the sequence
of event vectors results in a nondeterministic execution or-
der of all functions. The mapping is performed by intersect-
ing both event sequences. Scheduling decisions on shared
resources are resolved by the so-called quantity managers
which annotate the events. That way, quantity managers
can also be used to associate other properties with events,
like power consumption. In contrast to SystemCoDesigner,
Metropolis is not concerned with automatic design space
exploration. It supports refinement and abstraction, thus
allowing top-down and bottom-up methodologies with a
meet in the middle approach. As Metropolis is a frame-
work based on a metamodel implementing the Y-chart ap-
proach, many system-level design methodologies, includ-
ing SystemCoDesigner, may be represented in Metropo-
lis.

Finally, some approaches exist to map digital signal pro-
cessing algorithms automatically to an FPGA platform. Com-
paan/Laura [18] automatically converts a Matlab loop pro-
gram into a KPN network. This process network can be
transformed into a hardware/software system by instan-
tiating IP cores and connecting them with FIFOs. Spe-
cial software routines take care of the hardware/software
communication.

Whereas [18] uses a computer system together with a
PCI FPGA board for implementation, [19] automates the
generation of a SoC (system on chip). For this purpose, the
user has to provide a platform specification enumerating
the available microprocessors and communication infras-
tructure. Furthermore, a mapping has to be provided speci-
fying which process of the KPN graph is executed on which
processor unit. This information allows the ESPAM tool to
assemble a complete system including different communica-
tion modules as buses and point-to-point communication.
The Xilinx EDK tool is used for final bitstream generation.

Whereas both Compaan/Laura/ESPAM and System-
CoDesigner want to simplify and accelerate the design
of complex hardware/software systems, there are signifi-
cant differences. First of all, Compaan/Laura/ESPAM uses
Matlab loop programs as input specification, whereas
SystemCoDesigner bases on SystemC allowing for both sim-
ulation and automatic hardware generation using behav-
ioral compilers. Furthermore, our specification language
SysteMoC is not restricted to KPN, but allows to represent
different models of computation.

ESPAM provides a flexible platform using generic com-
munication modules like buses, cross-bars, point-to-point
communication, and a generic communication controller.
SystemCoDesigner currently restricts to extended FIFO com-
munication allowing out-of-order reads and writes.

Additionally our approach tightly includes automatic de-
sign space exploration, estimating the achievable system per-
formance. Starting from an architecture template, a subset of
resources is selected in order to obtain an efficient implemen-
tation. Such a design point can be automatically translated
into a system on chip.

Another very interesting approach based on UML is pre-
sented in [20]. It is called Koski and as SystemCoDesigner,
it is dedicated to the automatic SoC design. Koski fol-
lows the Y-chart approach. The input specification is given
as Kahn process networks modeled in UML. The Kahn
processes are modeled using Statecharts. The target archi-
tecture consists of the application software, the platform-
dependent and platform-independent software, and synthe-
sizable communication and processing resources. Moreover,
special functions for application distribution are included,
that is, interprocess communication for multiprocessor sys-
tems. During design space exploration, Koski uses simu-
lation for performance evaluation. Also, Koski has many
similarities with SystemCoDesigner, there are major dif-
ferences. In comparison to SystemCoDesigner, Koski has
the following advantages. It supports a network communi-
cation which is more platform-independent than the Sys-
temCoDesigner approach. It is also somehow more flexible

4 EURASIP Journal on Embedded Systems

by supporting a real-time operating System (RTOS) on
the CPU. However, there are many advantages when us-
ing SystemCoDesigner. (1) SystemCoDesigner permits the
specification directly in SystemC and automatically extracts
the underlying model of computation. (2) The architec-
ture specification in SystemCoDesigner is not limited to a
shared communication medium, it also allows for optimized
point-to-point communication. The main advantage of the
SystemCoDesigner is its multiobjective design space explo-
ration which allows for optimizing several objectives simul-
taneously.

The Ptolemy II project [21] was started in 1996 by the
University of California, Berkeley. Ptolemy II is a software
infrastructure for modeling, analysis, and simulation of em-
bedded systems. The focus of the project is on the integration
of different models of computation by the so-called hierar-
chical heterogeneity. Currently, supported MoCs are contin-
uous time, discrete event, synchronous dataflow, FSM, con-
current sequential processes, and process networks. By cou-
pling different MoCs, the designer has the ability to model,
analyze, or simulate heterogeneous systems. However, as dif-
ferent actors in Ptolemy II are written in JAVA, it is lim-
ited in its usability of the specification for generating ef-
ficient hardware/software implementations including hard-
ware and communication synthesis for SoC platforms. More-
over, Ptolemy II does not support automatic design space ex-
ploration.

The Signal Processing Worksystem (SPW) from Cadence
Design Systems, Inc., is dedicated to the modeling and anal-
ysis of signal processing algorithms [22]. The underlying
model is based on static and dynamic dataflow models. A
hierarchical composition of the actors is supported. The ac-
tors themselves can be specified by several different models
like SystemC, Matlab, C/C++, Verilog, VHDL, or the design
library from SPW. The main focus of the design flow is on
simulation and manual refinement. No explicit mapping be-
tween application and architecture is supported.

CoCentric System Studio is based on languages like
C/C++, SystemC, VHDL, Verilog, and so forth, [23]. It al-
lows for algorithmic and architecture modeling. In System
Studio, algorithms might be arbitrarily nested dataflow mod-
els and FSMs [24]. But in contrast to Ptolemy II, CoCentric
allows hierarchical as well as parallel combinations, what re-
duces the analysis capability. Analysis is only supported for
pure dataflow models (deadlock detection, consistency) and
pure FSMs (causality). The architectural model is based on
the transaction-level model of SystemC and permits the in-
clusion of other RTL models as well as algorithmic System
Studio models and models from Matlab. No explicit map-
ping between application and architecture is given. The im-
plementation style is determined by the actual encoding a de-
signer chooses for a module.

Beside the modeling and design space exploration as-
pects, there are several approaches to efficiently represent
MoCs in SystemC. The facilities for implementing MoCs
in SystemC have been extended by Herrera et al. [25] who
have implemented a custom library of channel types like ren-
dezvous on top of the SystemC discrete event simulation ker-

nel. But no constraints have imposed how these new chan-
nel types are used by an actor. Consequently, no information
about the communication behavior of an actor can be auto-
matically extracted from the executable specification. Imple-
menting these channels on top of the SystemC discrete event
simulation kernel curtails the performance of such an imple-
mentation. To overcome these drawbacks, Patel and Shukla
[26–28] have extended SystemC itself with different simu-
lation kernels for communicating sequential processes (CSP),
continuous time (CT), dataflow process networks (PN) dy-
namic as well as static (SDF), and finite state machine (FSM)
MoCs to improve the simulation efficiency of their approach.

3. EXPRESSING DIFFERENT MoCs IN SYSTEMC

In this section, we will introduce our library-based approach
to actor-based design called SysteMoC [7] which is used for
modeling the behavior and as synthesizable subset of Sys-
temC in our SystemCoDesigner design flow. Instead of a
monolithic approach for representing an executable specifi-
cation as done using many design languages, SysteMoC sup-
ports an actor-oriented design [29, 30] for many dataflow
models of computation (MoCs). These models have been ap-
plied successfully in the design of digital signal processing al-
gorithms. In this approach, we consider timing and function-
ality to be orthogonal. Therefore, our design must be mod-
eled in an untimed dataflow MoC. The timing of the design
is derived in the design space exploration phase from map-
ping of the actors to selected resources. Note that the timing
given by that mapping in general affects the execution order
of actors. In Section 4, we present a mechanism to evaluate
the performance of our application with respect to a candi-
date architecture.

On the other hand, industrial design flows often rely on
executable specifications, which have been encoded in design
languages which allow unstructured communication. In or-
der to combine both approaches, we propose the SysteMoC
library which permits writing an executable specification in
SystemC while separating the actor functionality from the
communication behavior. That way, we are able to identify
different MoCs modeled in SysteMoC. This enables us to
represent different algorithms ranging from simple static
operations modeled by homogeneous synchronous dataflow
(HSDF) [31] up to complex, data-dependent algorithms as
run-length entropy encoding modeled as Kahn process net-
works (KPN) [32]. In this paper, an MPEG-4 decoder [33]
will be used to explain our system design methodology which
encompasses both algorithm types and can hence only be
modeled by heterogeneous models of computation.

3.1. Actor-oriented model of an MPEG-4 decoder

In actor-oriented design, actors are objects which execute
concurrently and can only communicate with each other via
channels instead of method calls as known in object-oriented
design. Actor-oriented designs are often represented by bi-
partite graphs consisting of channels c ∈ C and actors a ∈ A,
which are connected via point-to-point connections from an

Christian Haubelt et al. 5

a1|FileSrc
o1 c1

i1
a2|Parser

o1 c2
i1

a3|Recon

Output port o1

o2 o2 o1

Channel c7 c6 c3 c4

i3 o2 i2 i2 i1

a6|FileSnk
i1

c8
o1

a5|MComp
i1

c5
o1

a4|IDCT2D

Input port i1Actor instance a5 of actor type “MComp”

Figure 2: The network graph of an MPEG-4 decoder. Actors are
shown as boxes whereas channels are drawn as circles.

actor output port o to a channel and from a channel to an
actor input port i. In the following, we call such representa-
tions network graphs. These network graphs can be extracted
directly from the executable SysteMoC specification.

Figure 2 shows the network graph of our MPEG-4 de-
coder. MPEG-4 [33] is a very complex object-oriented stan-
dard for compression of digital videos. It not only encom-
passes the encoding of the multimedia content, but also the
transport over different networks including quality of ser-
vice aspects as well as user interaction. For the sake of clar-
ity, our decoder implementation restricts to the decompres-
sion of a basic video bit-stream which is already locally avail-
able. Hence, no transmission issues must be taken into ac-
count. Consequently, our bit-stream is read from a file by the
FileSrc actor a1, where a1 ∈ A identifies an actor from the
set of all actors A.

The Parser actor a2 analyzes the provided bit-stream
and extracts the video data including motion compensation
vectors and quantized zig-zag encoded image blocks. The lat-
ter ones are forwarded to the reconstruction actor a3 which
establishes the original 8 × 8 blocks by performing an in-
verse zig-zag scanning and a dequantization operation. From
these data blocks the two-dimensional inverse cosine trans-
form actor a4 generates the motion-compensated difference
blocks. They are processed by the motion compensation ac-
tor a5 in order to obtain the original image frame by taking
into account the motion compensation vectors provided by
the Parser actor. The resulting image is finally stored to an
output file by the FileSnk actor a6. In the following, we will
formally present the SysteMoC modeling concepts in detail.

3.2. SysteMoC concepts

The network graph is the usual representation of an actor-
oriented design. It consists of actors and channels, as seen in
Figure 2. More formally, we can derive the following defini-
tion.

Definition 1 (network graph). A network graph is a directed
bipartite graph gn = (A,C,P,E) containing a set of ac-
tors A, a set of channels C, a channel parameter function
P : C → N∞ × V∗ which associates with each channel c ∈ C
its buffer size n ∈ N∞ = {1, 2, 3, . . . ,∞}, and also a pos-
sibly nonempty sequence v ∈ V∗ of initial tokens, where

Functionality a.F

a|Scale
fscale

i1(1)&o1(1) / fscale ActionActivation pattern
t1

i1 sstart
o1

Input port a.I = {i1} Output port a.O = {o1}
Firing FSM a.R of actor instance a

Figure 3: Visual representation of the Scale actor as used in the
IDCT2D network graph displayed in Figure 4. The Scale actor is
composed of input ports and output ports, its functionality, and the
firing FSM determining the communication behavior of the actor.

V∗ denotes the set of all possible finite sequences of tokens
v ∈ V [6]. Additionally, the network graph consists of di-
rected edges e ∈ E ⊆ (C × A.I) ∪ (A.O × C) between actor
output ports o ∈ A.O and channels as well as channels and
actor input ports i ∈ A.I . These edges are further constraints
such that each channel can only represent a point-to-point
connection, that is, exactly one edge is connected to each ac-
tor port and the in-degree and out-degree of each channel in
the graph are exactly one.

Actors are used to model the functionality. An actor a is
only permitted to communicate with other actors via its ac-
tor ports a.P .1 Other forms of interactor communication are
forbidden. In this sense, a network graph is a specialization of
the framework concept introduced in [29], which can express
an arbitrary connection topology and a set of initial states.
Therefore, the corresponding set of framework states Σ is
given by the product set of all possible sequences of all chan-
nels of the network graph and the single initial state is derived
from the channel parameter function P. Furthermore, due to
the point-to-point constraint of a network graph, two frame-
work actions λ1, λ2 referenced in different framework actors
are constrained to only modify parts of the framework state
corresponding to different network graph channels.

Our actors are composed from actions supplying the ac-
tor with its data transformation functionality and a firing
FSM encoding, the communication behavior of the actor, as
illustrated in Figure 3. Accordingly, the state of an actor is
also divided into the functionality state only modified by the
actions and the firing state only modified by the firing FSM.
As actions do not depend on or modify the framework state

1 We use the “.”-operator, for example, a.P , for denoting member access,
for example, P , of tuples whose members have been explicitly named in
their definition, for example, a ∈ A from Definition 2. Moreover, this
member access operator has a trivial pointwise extension to sets of tuples,
for example, A.P = ⋃a∈A a.P , which is also used throughout this paper.

6 EURASIP Journal on Embedded Systems

their execution corresponds to a sequence of internal transi-
tions as defined in [29].

Thus, we can define an actor as follows.

Definition 2 (actor). An actor is a tuple a = (P , F , R) con-
taining a set of actor ports P = I ∪ O partitioned into actor
input ports I and actor output ports O, the actor functionality
F and the firing finite state machine (FSM) R.

The notion of the firing FSM is similar to the concepts
introduced in FunState [34] where FSMs locally control the
activation of transitions in a Petri Net. In SysteMoC, we have
extended FunState by allowing guards to check for available
space in output channels before a transition can be executed.
The states of the firing FSM are called firing states, directed
edges between these firing states are called firing transitions,
or transitions for short. The transitions are guarded by acti-
vation patterns k = kin ∧ kout ∧ kfunc consisting of (i) predi-
cates kin on the number of available tokens on the input ports
called input patterns, for example, i(1) denotes a predicate
that tests the availability of at least one token on the actor
input port i, (ii) predicates kout on the number of free places
on the output ports called output patterns, for example, o(1)
checks if the number of free places of an output is at least
one, and (iii) more general predicates kfunc called function-
ality conditions depending on the functionality state, defined
below, or the token values on the input ports. Additionally,
the transitions are annotated with actions defining the ac-
tor functionality which are executed when the transitions are
taken. Therefore, a transition corresponds to a precise reac-
tion as defined in [29], where an input/output pattern cor-
responds to an I/O transition in the framework model. And
an activation pattern is always a responsible trigger, as actions
correspond to a sequence of internal transitions, which are
independent from the framework state.

More formally, we derive the following two definitions.

Definition 3 (firing FSM). The firing FSM of an actor a ∈ A
is a tuple a.R = (T ,Qfiring, q0firing) containing a finite set of
firing transitions T , a finite set of firing states Qfiring, and an
initial firing state q0firing ∈ Qfiring.

Definition 4 (transition). A firing transition is a tuple t =
(qfiring, k, faction, q′firing) ∈ T containing the current firing state
qfiring ∈ Qfiring, an activation pattern k = kin ∧ kout ∧ kfunc,
the associated action faction ∈ a.F , and the next firing state
q′firing ∈ Qfiring. The activation pattern k is a Boolean func-
tion which determines if transition t can be taken (true) or
not (false).

The actor functionality F is a set of methods of an ac-
tor partitioned into actions used for data transformation and
guards used in functionality conditions of the activation pat-
tern, as well as the internal variables of the actor, and their
initial values. The values of the internal variables of an actor
are called its functionality state qfunc ∈ Qfunc and their initial
values are called the initial functionality state q0func. Actions
and guards are partitioned according to two fundamental

differences between them: (i) a guard just returns a Boolean
value instead of computing values of tokens for output ports,
and (ii) a guard must be side-effect free in the sense that it
must not be able to change the functionality state. These con-
cepts can be represented more formally by the following def-
inition.

Definition 5 (functionality). The actor functionality of an ac-
tor a ∈ A is a tuple a.F = (F,Qfunc, q0func) containing a set
of functions F = Faction ∪ Fguard partitioned into actions and
guards, a set of functionality states Qfunc (possibly infinite),
and an initial functionality state q0func ∈ Qfunc.

Example 1. To illustrate these definitions, we give the formal
representation of the actor a shown in Figure 3. As can be
seen the actor has two ports, P = {i1, o1}, which are par-
titioned into its set of input ports, I = {i1}, and its set of
output ports, O = {o1}. Furthermore, the actor contains ex-
actly one method F .Faction = { fscale}, which is the action
fscale : V × Qfunc → V × Qfunc for generating token v ∈ V
containing scaled IDCT values for the output port o1 from
values received on the input port i1. Due to the lack of any in-
ternal variables, as seen in Example 2, the set of functionality
states Qfunc = {q0func} contains only the initial functionality
state q0func encoding the scale factor of the actor.

The execution of SysteMoC actors can be divided into
three phases. (i) Checking for enabled transitions t ∈ T in
the firing FSM R. (ii) Selecting and executing one enabled
transition t ∈ T which executes the associated actor func-
tionality. (iii) Consuming tokens on the input ports a.I and
producing tokens on the output ports a.O as indicated by the
associated input and output patterns t.kin and t.kout.

3.3. Writing actors in SysteMoC

In the following, we describe the SystemC representation of
actors as defined previously. SysteMoC is a C++ class library
based on SystemC which provides base classes for actors and
network graphs as well as operators for declaring firing FSMs
for these actors. In SysteMoC, each actor is represented as
an instance of an actor class, which is derived from the C++
base class smoc actor, for example, as seen in Example 2,
which describes the SysteMoC implementation of the Scale
actor already shown in Figure 3. An actor can be subdivided
into three parts: (i) actor input ports and output ports, (ii) ac-
tor functionality, and (iii) actor communication behavior en-
coded explicitly by the firing FSM.

Example 2. SysteMoC code for the Scale actor being part of
the MPEG-4 decoder specification.

00 class Scale: public smoc_actor {
01 public:
02 // Input port declaration
03 smoc_port_in<int> i1;
04 // Output port declaration
05 smoc_port_out<int> o1;
06 private:

Christian Haubelt et al. 7

07 // Actor parameters
08 const int G, OS;
09
10 // functionality
11 void scale() { o1[0] = OS
12 + (G * i1[0]); }
13
14 // Declaration of firing FSM states
15 smoc_firing_state start;
16 public:
17 // The actor constructor is responsible
18 // for declaring the firing FSM and
19 // initializing the actor
20 Scale(sc_module_name name, int G, int OS)
21 : smoc_actor(name, start),
22 G(G), OS(OS) {
23 // start state consists of
24 // a single self loop
25 start =
26 // input pattern requires at least
27 // one token in the FIFO connected
28 // to input port i1
29 (i1.getAvailableTokens() >= 1) >>
30 // output pattern requires at least
31 // space for one token in the FIFO
32 // connected to output port o1
33 (o1.getAvailableSpace() >= 1) >>
34 // has action Scale::scale and
35 // next state start
36 CALL(Scale::scale) >>
37 start;
38 }
39 };

As known from SystemC, we use port declarations as
shown in lines 2-5 to declare the input and output ports a.P
for the actor to communicate with its environment. Note that
the usage of sc fifo in and sc fifo out ports as pro-
vided by the SystemC library would not allow the separation
of actor functionality and communication behavior as these
ports allow the actor functionality to consume tokens or pro-
duce tokens, for example, by calling read or write methods
on these ports, respectively. For this reason, the SysteMoC
library provides its own input and output port declarations
smoc port in and smoc port out. These ports can only be
used by the actor functionality to peek token values already
available or to produce tokens for the actual communication
step. The token production and consumption is thus exclu-
sively controlled by the local firing FSM a.R of the actor.

The functions f ∈ F of the actor functionality a.F and
its functionality state qfunc ∈ Qfunc are represented by the
class methods as shown in line 11 and by class member
variables (line 8), respectively. The firing FSM is constructed
in the constructor of the actor class, as seen exemplarily
for a single transition in lines 25–37. For each transition
t ∈ R.T , the number of required input tokens, the quantity
of produced output tokens, and the called function of the
actor functionality are indicated by the help of the methods

getAvailableTokens(), getAvailableSpace(), and
CALL(), respectively. Moreover, the source and sink state of
the firing FSM are defined by the C++-operators = and >>.
For a more detailed description of the firing FSM syntax, see
[7].

3.4. Application modeling using SysteMoC

In the following, we will give an introduction to different
MoCs well known in the domain of digital signal process-
ing and their representation in SysteMoC by presenting the
MPEG-4 application in more detail. As explained earlier in
this section, MPEG-4 is a good example of today’s com-
plex signal processing applications. They can no longer be
modeled at a granularity level sufficiently detailed for de-
sign space exploration by restrictive MoCs like synchronous
dataflow (SDF) [35]. However, as restrictive MoCs offer bet-
ter analysis opportunities they should not be discarded for
subsystems which do not need more expressiveness. In our
SysteMoC approach, all actors are described by a uniform
modeling language in such a way that for a considered group
of actors it can be checked whether they fit into a given re-
stricted MoC. In the following, these principles are shown
exemplarily for (i) synchronous dataflow (SDF), (ii) cyclo-
static dataflow (CSDF) [36], and (iii) Kahn process networks
(KPN) [32].

Synchronous dataflow (SDF) actors produce and con-
sume upon each invocation a static and constant amount
of tokens. Hence, their external behavior can be determined
statically at compile time. In other words, for a group of
SDF actors, it is possible to generate a static schedule at
compile time, avoiding the overhead of dynamic schedul-
ing [31, 37, 38]. For homogeneous synchronous dataflow, an
even more restricted MoC where each actor consumes and
produces exactly one token per invocation and input (out-
put), it is even possible to efficiently compute a rate-optimal
buffer allocation [39].

The classification of SysteMoC actors is performed by
comparing the firing FSM of an actor with different FSM
templates, for example, single state with self loop corre-
sponding to the SDF domain or circular connected states cor-
responding to the CSDF domain. Due to the SysteMoC syn-
tax discussed above, this information can be automatically
derived from the C++ actor specification by simply extract-
ing the firing FSM specified in the actor.

More formally, we can derive the following condition:
given an actor a = (P , F , R), the actor can be classified as
belonging to the SDF domain if each transition has the same
input pattern and output pattern, that is, for all t1, t2 ∈R.T :
t1.kin ≡ t2.kin ∧ t1.kout ≡ t2.kout.

Our MPEG-4 decoder implementation contains various
such actors. Figure 3 represents the firing FSM of a scaler ac-
tor which is a simple SDF actor. For each invocation, it reads
a frequency coefficient and multiplies it with a constant gain
factor in order to adapt its range.

Cyclo-static dataflow (CSDF) actors are an extension of
SDF actors because their token consumption and produc-
tion do not need to be constant but can vary cyclically. For
this purpose, their execution is divided into a fixed number

8 EURASIP Journal on Embedded Systems

Sr
c

8
×

8
+

m
ax

va
lu

e

o2

o1
i1

To
R

ow
s

o 1
–8

i 1
–8

ID
C

T
-1

D
1

o 1
–8

i 1
–8

Tr
an

sp
os

e

o 1
–8

i 1
–8

ID
C

T
-1

D
2

o 1
–8

i 1
–8

C
lip

i9

o 1
–8

i 1
–8

To
B

lo
ck o1 i1

Si
n

k
8
×

8

IDCT2D for 8× 8 blocks

Scale1

Scale2

Fly1

Fly2

AddSub1

Fly3

AddSub2

AddSub3

AddSub4

AddSub5

AddSub6

AddSub7

AddSub8 AddSub9

AddSub10

Figure 4: The displayed network graph is the hierarchical refinement of the IDCT2D actor a4 from Figure 2. It implements a two-dimensional
inverse cosine transformation (IDCT) on 8×8 blocks of pixels. As can be seen in the figure, the two-dimensional inverse cosine transforma-
tion is composed of two one-dimensional inverse cosine transformations IDCT-1D1 and IDCT-1D2.

of phases which are repeated periodically. In each phase, a
constant number of tokens is written to or read from each ac-
tor port. Similar to SDF graphs, a static schedule can be gen-
erated at compile time [40]. Although many CSDF graphs
can be translated to SDF graphs by accumulating the to-
ken consumption and production rates for each actor over
all phases, their direct implementation leads mostly to less
memory consumption [40].

In our MPEG-4 decoder, the inverse discrete cosine
transformation (IDCT), as shown in Figure 4, is a candi-
date for static scheduling. However, due to the CSDF actor
Transpose it cannot be classified as an SDF subsystem. But
the contained one-dimensional IDCT is an example of an
SDF subsystem, only consisting of actors which satisfy the
previously given constraints. An example of such an actor is
shown in Figure 3.

An example of a CSDF actor in our MPEG-4 applica-
tion is the Transpose actor shown in Figure 4 which swaps
rows and columns of the 8 × 8 block of pixels. To expose
more parallelism, this actor operates on rows of 8 pixels re-
ceived in parallel on its 8 input ports i1–8, instead of whole
8 × 8 blocks, forcing the actor to be a CSDF actor with 8
phases for each of the 8 rows of a 8 × 8 block. Note that
the CSDF actor Transpose is represented in SysteMoC by
a firing FSM which contains exactly as many circularly con-
nected firing states as the CSDF actor has execution phases.
However, more complex firing FSMs can also exhibit CSDF
semantic, for example, due to redundant states in the fir-
ing FSM or transitions with the same input and output pat-
terns, the same source and destination firing state but dif-
ferent functionality conditions and actions. Therefore, CSDF
actor classification should be performed on a transformed

firing FSM, derived by discarding the action and functional-
ity conditions from the transitions and performing FSM min-
imization.

More formally, we can derive the following condition:
given an actor a = (P , F , R), the actor can be classi-
fied as belonging to the CSDF domain if exactly one tran-
sition is leaving and entering each firing state, that is, for all
q ∈R.Qfiring : |{t ∈ R.T | t.qfiring = q}| = 1∧ |{t ∈ R.T |
t.q′firing = q}| = 1, and each state of the firing FSM is reach-
able from the initial state.

Kahn process networks (KPN) can also be modeled in
SysteMoC by the use of more general functionality condi-
tions in the activation patterns of the transitions. This al-
lows to represent data-dependent operations, for example, as
needed by the bit-stream parsing as well as the decoding of
the variable length codes in the Parser actor. This is exem-
plarily shown for some transitions of the firing FSM in the
Parser actor of the MPEG-4 decoder in order to demon-
strate the syntax for using guards in the firing FSM of an
actor. The actions cannot determine presence or absence of
tokens, or consume or produce tokens on input or output
channels. Therefore, the blocking reads of the KPN networks
are represented by the blocking behavior of the firing FSM
until at least one transition leaving the current firing state
is enabled. The behavior of Kahn process networks must be
independent from the scheduling strategy. But the schedul-
ing strategy can only influence the behavior of an actor if
there is a choice to execute one of the enabled transitions
leaving the current state. Therefore, it is possible to deter-
mine if an actor a satisfies the KPN requirement by check-
ing for the sufficient condition that all functionality con-
ditions on all transitions leaving a firing state are mutually

Christian Haubelt et al. 9

exclusive, that is, for all t1, t2 ∈ a.R.T , t1.qfiring = t2.qfiring :
for all qfunc ∈ a.F .Qfunc : t1.kfunc(qfunc) ⇒ ¬t2.kfunc(qfunc) ∧
t2.kfunc(qfunc) ⇒ ¬t1.kfunc(qfunc). This guarantees a determin-
istic behavior of the Kahn process network provided that all
actions are also deterministic.

Example 3. Simplified SysteMoC code of the firing FSM ana-
lyzing the header of an individual video frame in the MPEG-
4 bit-stream.

00 class Parser: public smoc actor {
01 public:

02 // Input port receiving MPEG-4 bit-stream

03 smoc port in<int> bits;

04 ...

05 private:

06 // functionality ...

07 // Declaration of guards

08 bool guard vop start() const

09 /∗ code here ∗/
10 bool guard vop done () const

11 /∗ code here ∗/
12 ...

13 // Declaration of firing FSM states
14 smoc firing state vol, ..., vop2,
15 vop3, ..., stuck;
16 public:
17 Parser(sc module name name)
18 : smoc actor(name, vol) {
19 ...
20 vop2 = ((bits.getAvailableTokens() >=
21 VOP START CODE LENGTH) &&
22 GUARD(&Parser::guard vop done)) >>
23 CALL(Parser::action vop done) >>
24 vol
25 | ((bits.getAvailableTokens() >=
26 VOP START CODE LENGTH) &&
27 GUARD(&Parser::guard vop start)) >>
28 CALL(Parser::action vop start) >>
29 vop3
30 | ((bits.getAvailableTokens() >=
31 VOP START CODE LENGTH) &&
32 !GUARD(&Parser::guard vop done) &&
33 !GUARD(&Parser::guard vop start)) >>
34 CALL(Parser::action vop other) >>
35 stuck;
36 ... // More state declarations
37 }
38 };

The data-dependent behavior of the firing FSM is im-
plemented by the guards declared in lines 8-11. These func-
tions can access the values of the input ports without
consuming them or performing any other modifications of
the functionality state. The GUARD()-method evaluates these
guards during determination whether the transition is en-
abled or not.

4. AUTOMATIC DESIGN SPACE EXPLORATION FOR
DIGITAL SIGNAL PROCESSING SYSTEMS

Given an executable signal processing network specification
written in SysteMoC, we can perform an automatic design
space exploration (DSE). For this purpose, we need ad-
ditional information, that is, a formal model for the ar-
chitecture template as well as mapping constraints for the
actors of the SysteMoC application. All these information
are captured in a formal model to allow automatic DSE.
The task of DSE is to find the best implementations ful-
filling the requirements demanded by the formal model.
As DSE is often confronted with the simultaneous opti-
mization of many conflicting objectives, there is in gen-
eral more than a single optimal solution. In fact, the re-
sult of the DSE is the so-called Pareto-optimal set of solu-
tions [41], or at least an approximation of this set. Beside
the task of covering the search space in order to guaran-
tee good solutions, we have to consider the task of evalu-
ating a single design point. In the design of FPGA imple-
mentations, the different objectives to minimize are, namely,
the number of required look-up tables (LUTs), block RAMs
(BRAMs), and flip-flops (FFs). These can be evaluated by
analytic methods. However, in order to obtain good per-
formance numbers for other especially important objec-
tives such as latency and throughput, we will propose a
simulation-based approach. In the following, we will present
the formal model for the exploration, the automatic DSE us-
ing multiobjective evolutionary algorithms (MOEAs), as well
as the concepts of our simulation-based performance evalu-
ation.

4.1. Design space exploration using MOEAs

For the automatic design space exploration, we provide a
formal underpinning. In the following, we will introduce
the so-called specification graph [42]. This model strictly
separates behavior and system structure: the problem graph
models the behavior of the digital signal processing al-
gorithm. This graph is derived from the network graph,
as defined in Section 3, by discarding all information in-
side the actors as described later on. The architecture tem-
plate is modeled by the so-called architecture graph. Finally,
the mapping edges associate actors of the problem graph
with resources in the architecture graph by a “can be im-
plemented by” relation. In the following, we will formal-
ize this model by using the definitions given in [42] in
order to define the task of design space exploration for-
mally.

The application is modeled by the so-called prob-
lem graph gp = (Vp,Ep). Vertices v ∈ Vp model ac-
tors whereas edges e ∈ Ep ⊆ Vp × Vp represent data de-
pendencies between actors. Figure 5 shows a part of the
problem graph corresponding to the hierarchical refine-
ment of the IDCT2D actor a4 from Figure 2. This prob-
lem graph is derived from the network graph by a one-
to-one correspondence between network graph actors and
channels to problem graph vertices while abstracting from

10 EURASIP Journal on Embedded Systems

Problem graph

Fly1

Fly2

AddSub3

AddSub4

AddSub7

AddSub8

F2

F1

AS4

AS3

mB1

AS8

AS7

OPB

Architecture graph

Figure 5: Partial specification graph for the IDCT-1D actor as
shown in Figure 4. The upper part is a part of the problem graph
of the IDCT-1D. The lower part shows the architecture graph con-
sisting of several dedicated resources {F1, F2, AS3, AS4, AS7, AS8} as
well as a MicroBlaze CPU-core {mB1} and an OPB (open peripheral
bus [43]). The dashed lines denote the mapping edges.

actor ports, but keeping the connection topology, that is,
∃ f :gp.Vp→gn.A∪ gn.C, f is a bijection : for all v1, v2 ∈
gp.Vp : (v1, v2) ∈ gp.Ep ⇔ (f (v1) ∈ gn.C ⇒ ∃p ∈ f (v2).I :
(f (v1), p)∈gn.E)∨(f (v2)∈gn.C⇒∃p∈ f (v1).O : (p, f (v2))∈
gn.E).

The architecture template including functional resources,
buses, and memories is also modeled by a directed graph
termed architecture graph ga = (Va,Ea). Vertices v ∈ Va

model functional resources (RISC processor, coprocessors,
or ASIC) and communication resources (shared buses or
point-to-point connections). Note that in our approach, we
assume that the resources are selected from our component
library as shown in Figure 1. These components can be either
written by hand in a hardware description language or can be
synthesized with the help of high-level synthesis tools such
as Mentor CatapultC [8] or Forte Cynthesizer [9]. This is a
prerequisite for the later automatic system generation as dis-
cussed in Section 5. An edge e ∈ Ea in the architecture graph
ga models a directed link between two resources. All the re-
sources are viewed as potentially allocatable components.

In order to perform an automatic DSE, we need informa-
tion about the hardware resources that might by allocated.
Hence, we annotate these properties to the vertices in the ar-
chitecture graph ga. Typical properties are the occupied area
by a hardware module or the static power dissipation of a
hardware module.

Example 4. For FPGA-based platforms, such as built on
Xilinx FPGAs, typical resources are MicroBlaze CPU, open
peripheral buses (OPB), fast simplex links (FSLs), or user
specified modules representing implementations of actors in
the problem graph. In the context of platform-based FPGA

designs, we will consider the number of resources a hard-
ware module is assigned to, that is, for instance, the number
of required look-up tables (LUTs), the number of required
block RAMs (BRAMs), and the number of required flip-flops
(FFs).

Next, it is shown how user-defined mapping constraints
representing possible bindings of actors onto resources can
be specified in a graph-based model.

Definition 6 (specification graph [42]). A specification graph
gs(Vs,Es) consists of a problem graph gp(Vp,Ep), an architec-
ture graph ga(Va,Ea), and a set of mapping edges Em. In par-
ticular,Vs = Vp∪Va, Es = Ep∪Ea∪Em, where Em ⊆ Vp×Va.

Mapping edges relate the vertices of the problem graph to
vertices of the architecture graph. The edges represent user-
defined mapping constraints in the form of the relation “can
be implemented by.” Again, we annotate the properties of a
particular mapping to an associated mapping edge. Proper-
ties of interest are dynamic power dissipation when execut-
ing an actor on the associated resource or the worst case ex-
ecution time (WCET) of the actor when implemented on a
CPU-core. In order to be more precise in the evaluation, we
will consider the properties associated with the actions of an
actor, that is, we annotate for each action the WCET to each
mapping edge. Hence, our approach will perform an actor-
accurate binding using an action-accurate performance evalu-
ation, as discussed next.

Example 5. Figure 5 shows an example of a specification
graph. The problem graph shown in the upper part is a sub-
graph of the IDCT-1D problem graph from Figure 4. The ar-
chitecture graph consists of several dedicated resources con-
nected by FIFO channels as well as a MicroBlaze CPU-core
and an on-chip bus called OPB (open peripheral bus [43]).
The channels between the MicroBlaze and the dedicated re-
sources are FSLs. The dashed edges between the two graphs
are the additional mapping edges Em that describe the possi-
ble mappings. For example, all actors can be executed on the
MicroBlaze CPU-core. For the sake of clarity, we omitted the
mapping edges for the channels in this example. Moreover,
we do not show the costs associated with the vertices in ga

and the mapping edges to maintain clarity of the figure.

In the above way, the model of a specification graph al-
lows a flexible expression of the expert knowledge about use-
ful architectures and mappings. The goal of design space ex-
ploration is to find optimal solutions which satisfy the spec-
ification given by the specification graph. Such a solution is
called a feasible implementation of the specified system. Due
to the multiobjective nature of this optimization problem,
there is in general more than a single optimal solution.

System synthesis

Before discussing automatic design space exploration in de-
tail, we briefly discuss the notion of a feasible implementation
(cf. [42]). An implementation ψ = (α,β), being the result of

Christian Haubelt et al. 11

a system synthesis, consists of two parts: (1) the allocation α
that indicates which elements of the architecture graph are
used in the implementation and (2) the binding β, that is,
the set of mapping edges which define the binding of ver-
tices in the problem graph to resources of the architecture
graph. The task of system synthesis is to determine optimal
implementations. To identify the feasible region of the de-
sign space, it is necessary to determine the set of feasible al-
locations and feasible bindings. A feasible binding guarantees
that communications demanded by the actors in the problem
graph can be established in the allocated architecture. This
property makes the resulting optimization problem hard to
be solved. A feasible allocation is an allocation α that allows at
least one feasible binding β.

Example 6. Consider the case that the allocation of vertices
in Figure 5 is given as α = {mB1, OPB, AS3, AS4}. A feasible
binding can be given by β = {(Fly1, mB1), (Fly2, mB1),
(AddSub3,AS3), (AddSub4,AS4), (AddSub7, mB1), (AddSub8,
mB1)}. All channels in the problem graph are mapped onto
the OPB.

Given the implementation ψ, some properties of ψ can
be calculated. This can be done analytically or simulation-
based.

The optimization problem

Beside the problem of determining a single feasible solu-
tion, it is also important to identify the set of optimal so-
lutions. This is done during automatic design space explo-
ration (DSE). The task of automatic DSE can be formulated
as a multiobjective combinatorial optimization problem.

Definition 7 (automatic design space exploration). The
task of automatic design space exploration is the following
multiobjective optimization problem (see, e.g., [44]) where
without loss of generality, only minimization problems are
assumed here:

minimize f (x),

subject to :

x represents a feasible implementation ψ,

ci(x) ≤ 0, ∀i ∈ {1, . . . , q},

(1)

where x = (x1, x2, . . . , xm) ∈ X is the decision vector, X is
the decision space, f (x) = (f1(x), f2(x), . . . , fn(x)) ∈ Y is the
objective function, and Y is the objective space.

Here, x is an encoding called decision vector represent-
ing an implementation ψ. Moreover, there are q constraints
ci(x), i = 1, . . . , q, imposed on x defining the set of feasible
implementations. The objective function f is n-dimensional,
that is, n objectives are optimized simultaneously. For exam-
ple, in embedded system design it is required that the mon-
etary cost and the power dissipation of an implementation
are minimized simultaneously. Often, objectives in embed-
ded system design are conflicting [45].

Only those design points x ∈ X that represent a feasible
implementation ψ and that satisfy all constraints ci are in the
set of feasible solutions, or for short in the feasible set called
Xf = {x | ψ(x) being feasible∧ c(x) ≤ 0} ⊆ X .

A decision vector x ∈ Xf is said to be nondominated re-
garding a set A ⊆ Xf if and only if �a ∈ A : a � x with a � x
if and only if for all i : fi(a) ≤ fi(x).2 A decision vector x is
said to be Pareto optimal if and only if x is nondominated
regarding Xf. The set of all Pareto-optimal solutions is called
the Pareto-optimal set, or the Pareto set for short.

We solve this challenging multiobjective combinatorial
optimization problem by using the state-of-the-art MOEAs
[46]. For this purpose, we use sophisticated decoding of the
individuals as well as integrated symbolic techniques to im-
prove the search speed [2, 42, 47–49]. Beside the task of cov-
ering the design space using MOEAs, it is important to eval-
uate each design point. As many of the considered objectives
can be calculated analytically (e.g., FPGA-specific objectives
such as total number of LUTs, FFs, BRAMs), we need in gen-
eral more time-consuming methods to evaluate other objec-
tives. In the following, we will introduce our approach to a
simulation-based performance evaluation in order to assess
an implementation by means of latency and throughput.

4.2. Simulation-based performance evaluation

Many system-level design approaches rely on application
modeling using static dataflow models of computation for
signal processing systems. Popular dataflow models are SDF
and CSDF or HSDF. Those models of computation allow
for static scheduling [31] in order to assess the latency and
throughput of a digital signal processing system. On the
other hand, the modeling restrictions often prohibit the rep-
resentation of complex real-world applications, especially if
data-dependent control flow or data-dependent actor acti-
vation is required. As our approach is not limited to static
dataflow models, we are able to model more flexible and
complex systems. However, this implies that the performance
evaluation in general is not any longer possible through static
scheduling approaches.

As synthesizing a hardware prototype for each de-
sign point is also too expensive and too time-consuming,
a methodology for analyzing the system performance is
needed. Generally, there exist two options to assess the per-
formance of a design point: (1) by simulation and (2) by ana-
lytical methods. Simulation-based approaches permit a more
detailed performance evaluation than formal analyses as the
behavior and the timing can interfere as is the case when
using nondeterministic merge actors. However, simulation-
based approaches reveal only the performance for certain
stimuli. In this paper, we focus on a simulation-based per-
formance evaluation and we will show how to generate effi-
cient SystemC simulation models for each design point dur-
ing DSE automatically.

Our performance evaluation concept is as follows: during
design space exploration, we assess the performance of each

2 Without loss of generality, only minimization problems are considered.

12 EURASIP Journal on Embedded Systems

feasible implementation with respect to a given set of stimuli.
For this purpose, we also model the architecture in SystemC
by means of the so-called virtual processing components [50]:
for each activated vertex in the architecture graph, we create
such a virtual processing component. These components are
called virtual as they are not able to perform any computa-
tion but are only used to simulate the delays of actions from
actors mapped onto these components. Thus, our simulation
approach is called virtual processing components.

In order to simulate the timing of the given SysteMoC ap-
plication, the actors are mapped onto the virtual processing
components according to the binding β. This is established
by augmenting the end of all actions f ∈ a.F .Faction of each
actor a ∈ gn.A with the so-called compute function calls. In
the simulation, these function calls will block an actor un-
til the corresponding virtual processing components signal
the end of the computation. Note that this end time gener-
ally depends on (i) the WCET of an action, (ii) other actors
bound onto the same virtual processing component, as well
as (iii) the stimuli used for simulation. In order to simulate
effects of resource contention and resolve resource conflicts,
a scheduling strategy is associated with each virtual process-
ing component. The scheduling strategy might be either pre-
emptive or nonpreemptive, like first come first served, round
robin, priority based [51].

Beside modeling WCETs of each action, we are able to
model functional pipelining in our simulation approach.
This is established by distinction of WCET and the so-called
data introduction interval (DII). In this case, resource con-
tention is only considered during the DII. The difference be-
tween WCET and DII is an additional delay for the produc-
tion of output tokens of a computation and does not occupy
any resources.

Example 7. Figure 6 shows an example for modeling pre-
emptive scheduling. Two actors, AddSub7 and AddSub8, per-
form compute function calls on the instantiated MicroB-
laze processor mB1. We assume in this example that the
MicroBlaze applied a priority-based scheduling strategy for
scheduling all actor action execution requests that are bound
to the MicroBlaze processor. We also assume that the actor
AddSub7 has a higher priority than the actor AddSub8. Thus,
the execution of the action faddsub of the AddSub7 actor pre-
empts the execution of the action f ′addsub of the AddSub8 ac-
tor. Our VPC framework provides the necessary interface be-
tween virtual processing components and schedulers: the vir-
tual processing component notifies the scheduler about each
compute function call while the scheduler replies with its
scheduling decision.

The performance evaluation is performed by a combined
simulation, that is, we simulate the functionality and the
timing in one single simulation model. As a result of the
SystemC-based simulation, we get traces logged during the
simulation, showing the activation of actions, the start times,
as well as the end times. These traces are used to assess the
performance of an implementation by means of average la-
tency and average throughput. In general, this approach leads

Functional model

AddSub7 AddSub8

Architecture mapping

MicroBlaze mB1 Priority scheduler

compute

(f
′

addsub) ready

compute
(faddsub) ready

blockreturn

blockreturn

SysteMoC SystemC/XML

Figure 6: Example of modeling preemptive scheduling within the
concept of virtual processing components [50]: two actor actions
compete for the same virtual processing component by compute

function calls. An associated scheduler resolves the conflict by se-
lecting the action to be executed.

to very precise simulation results according to the level of ab-
straction, that is, action accuracy.

Compared to other approaches, we support a detailed
performance evaluation of heterogeneous multiprocessor ar-
chitectures supporting arbitrary preemptive and nonpre-
emptive scheduling strategies, while needing almost no
source code modifications. The approach given in [52, 53]
allows for modeling of real-time scheduling strategies by
introducing a real-time operating system (RTOS) module
based on SystemC. Therefore, each atomic operation, for ex-
ample, any code line, is augmented by an await() func-
tion call within all software tasks. Each of those function
calls enforces a scheduling decision, also known as cooper-
ative scheduling. On top of those predetermined breaking
points, the RTOS module emulates a preemptive schedul-
ing policy for software tasks running on the same RTOS
module. Another approach found in [54] motivates the so-
called virtual processing units (VPU) for representing pro-
cessors. Each VPU supports only a priority-based schedul-
ing strategy. Software processes are modeled as timed com-
munication extended finite state machines (tCEFSM). Each
state transition of a tCEFSM represents an atomic opera-
tion and consumes a fixed amount of processor cycles. The
modeling of time is the main limitation of this approach, be-
cause each transition of a tCEFSM requires the same number
of processor cycles. Our VPC framework overcomes those
limitations by combining (i) action-accurate, (ii) resource-
accurate, and (iii) contention- and scheduling-accurate tim-
ing simulation.

In the Sesame framework [12] a virtual processor is used
to map an event trace to a SystemC-based transaction level
architecture simulation. For this purpose, the application

Christian Haubelt et al. 13

code given as a Kahn process network is annotated with
read, write, and execute statements. While executing the Kahn
application, traces of application events are generated and
passed to the virtual processor. Computational events (exe-
cute) are dispatched directly by the virtual processor which
simulates the timing and communication events (read, write)
are passed to a transaction level SystemC-based architecture
simulator. As the scheduling of an event trace in a virtual pro-
cessor does not affect the application, the Sesame framework
does not support modeling of time-dependent application
behavior. In our VPC framework, application and architec-
ture are simulated in the same simulation-time domain and
thus the blocking of a compute function call allows for sim-
ulation of time-dependent behavior. Further on, we do not
explicitly distinguish between communication and compu-
tational execution, instead both types of execution use the
compute function call for timing simulation. This abstract
modeling of computation and communication delays results
in a fast performance evaluation, but does not reveal the de-
tails of a transaction level simulation.

One important aspect of our design flow is that we can
generate these efficient simulation models automatically.
This is due to our SysteMoC library.3 As we have to control
the three phases in the simulation as discussed in Section 3.2,
we can introduce the compute function calls directly at the
end of phase (ii), that is, no additional modifications of the
source code are necessary when using SysteMoC.

In summary, the advantages of virtual processing com-
ponents are (i) a clear separation between model of compu-
tation and model of architecture, (ii) a flexible mapping of
the application to the architecture, (iii) a high level of ab-
straction, and (iv) the combination of functional simulation
together with performance simulation.

While performing design space exploration, there is a
need for a rapid performance evaluation of different alloca-
tions α and bindings β. Thus, the VPC framework was de-
signed for a fast simulation model generation. Figure 7 gives
an overview of the implemented concepts. Figure 7(a) shows
the implementation ψ = (α,β) as a result of the automatic
design space exploration. In Figure 7(b), the automatically
generated VPC simulation model is shown. The so-called
Director is responsible for instantiating the virtual process-
ing components according to a given allocation α. Moreover,
the binding β is performed by the Director, in mapping each
SysteMoC actor compute function call to the bound virtual
processing components.

Before running the simulation, the Director is config-
ured with the necessary information, that is, implementation
which should be evaluated. Finally, the Director manages the
mapping parameters, that is, WCETs and DII of the actions
in order to control the simulation times. The configuration
is performed through an .xml-file omitting unnecessary re-
compilations of the simulation model for each design point
and, thus, allowing for a fast performance evaluation of large
populations of implementations.

3 VPC can also be used together with plain SystemC modules.

Problem graph

Fly1

Fly2

AddSub3

AddSub4

AddSub7

AddSub8

F2

F1 AS3

mB1

Architecture graph

(a)

SysteMoC network graph

Fly1

Fly2

AddSub3

AddSub4

AddSub7

AddSub8

F2

F2

C1 mB1

Virtual processing components

Actor

Component

compute

Director

(b)

Figure 7: Approach to (i) action-accurate, (ii) resource-accurate,
and (iii) contention- and scheduling-accurate simulation-based
performance evaluation. (a) An example of one implementation as
result of the automatic DSE, and (b) the corresponding VPC sim-
ulation model. The Director constructs the virtual processing com-
ponents according to the allocation α. Additionally, the Director im-
plements the binding of SysteMoC actors onto the virtual process-
ing components according to a specific binding β.

5. AUTOMATIC SYSTEM GENERATION

The result of the automatic design space exploration is a set
of nondominated solutions. From these solutions, the de-
signer can select one implementation according to additional
requirements or preferences. This process is known as deci-
sion making in multiobjective optimization.

14 EURASIP Journal on Embedded Systems

In this section, we show how to automatically generate
a hardware/software implementation for FPGA-based SoC
platforms according to the selected allocation and binding.
For this purpose, three tasks must be performed: (1) gen-
erate the allocated hardware modules, (2) generate the nec-
essary software for each allocated processor core including
action code, communication code, and finally scheduling
code, and (3) insert the communication resources establish-
ing software/software, hardware/hardware, as well as hard-
ware/software communication. In the following, we will in-
troduce our solution to these three tasks. Moreover, the effi-
ciency of our provided communication resources will be dis-
cussed in this section.

5.1. Generating the architecture

Each implementation ψ = (α,β) produced by the automatic
DSE and selected by the designer is used as input to our au-
tomatic system generator for FPGA-based SoC platforms. In
our following case study, we specify the system generation
flow for Xilinx FPGA platforms only. Figure 8 shows the gen-
eral flow for Xilinx platforms. The architecture generation is
threefold: first, the system generator automatically generates
the MicroBlaze subsystems, that is, for each allocated CPU
resource, a MicroBlaze subsystem is instantiated. Second, the
system generator automatically inserts the allocated IP cores.
Finally, the system generator automatically inserts the com-
munication resources. The result of this architecture gener-
ation is a hardware description file (.mhs-file) in case of the
Xilinx EDK (embedded development Kit [55]) toolchain. In
the following, we discuss some details of the architecture gen-
eration process.

According to these three above-mentioned steps, the re-
sources in the architecture graph can be classified to be of
type MicroBlaze, IP core, or Channel. In order to allow a hard-
ware synthesis of this architecture, the vertices in the archi-
tecture graph contain additional information, as, for exam-
ple, the memory sizes of the MicroBlazes or the names and
versions of VHDL descriptions representing the IP cores.

Beside the information stored in the architecture graph,
information of the SysteMoC application must be considered
during the architecture generation as well. A vertex in the
problem graph is either of type Actor or of type Fifo. Consider
the Fly1 actor and communication vertices between actors
shown in Figure 8, respectively. A vertex of type Actor con-
tains information about the order and values of constructor
parameters belonging to the corresponding SysteMoC actor.
A vertex of type Fifo contains information about the depth
and the data type of the communication channel used in the
SysteMoC application. If a SysteMoC actor is bound onto a
dedicated IP core, the VHDL/Verilog source files of the IP
core must be stored in the component library (see Figure 8).
For each vertex of type Actor, the mapping of SysteMoC con-
structor parameters to corresponding VHDL/Verilog gener-
ics is stored in an actor information file to avoid, for example,
name conflicts. Moreover, the mapping of SysteMoC ports to
VHDL ports has to be taken into account as they do not have
to be necessarily the same.

As the system generator traverses the architecture graph,
it starts for each vertex in the architecture graph of type Mi-
croBlaze or IP core the corresponding subsynthesizer which
produces an entry in the EDK architecture file. The vertices
which are mapped onto a MicroBlaze are determined and
registered for the automatic software generation, as discussed
in the next section.

After instantiating the MicroBlaze cores and the IP
cores, the final step is to insert the communication re-
sources. These communication resources are taken from
our platform-specific communication library (see Figure 8).
We will discuss this communication library in more de-
tail in Section 5.3. For now, we only give a brief introduc-
tion. The software/software communication of SysteMoC
actors is done through special SysteMoC software FIFOs
by exchanging data within the MicroBlaze by reads and
writes to local memory buffers. For hardware/hardware
communication, that is, communication between IP cores,
we insert the special so-called SysteMoC FIFO which al-
lows, for example, nondestructive reads. It will be dis-
cussed in more detail in Section 5.3. The hardware/software
communication is mapped on special SysteMoC hard-
ware/software FIFOs. These FIFOs are connected to instan-
tiated fast simplex link (FSL) ports of a MicroBlaze core.
Thus, outgoing and incoming communication of actors run-
ning on a MicroBlaze use the corresponding implemen-
tation which transfers data via the FSL ports of MicroB-
laze cores. In case of transmitting data from an IP core
to a MicroBlaze, the so-called smoc2fsl-bridge transfers data
from the IP core to the corresponding FSL port. The op-
posite communication direction instantiates an fsl2smoc-
bridge.

After generating the architecture and running our soft-
ware synthesis tool for SysteMoC actors mapped onto each
MicroBlaze, as discussed next, several Xilinx implementation
tools are started which produce the platform specific bit file
by using several Xilinx synthesis tools including mb-gcc, map,
par, bitgen, data2mem, and so on. Finally, the bit file can be
loaded on the FPGA platform and the application can be run.

5.2. Generating the software

In case multiple actors are mapped onto one CPU-core, we
generate the so-called self-schedules, that is, each actor is
tested round robin if it has a fireable action. For this purpose,
each SysteMoC actor is translated into a C++ class. The actor
functionality F is copied to the new C++ class, that is, mem-
ber variables and functions. Actor ports P are replaced by
pointers to the SysteMoC software FIFOs. Finally, for the fir-
ing FSM R, a special method called fire is generated. Thus,
the fire method checks the activation of the actor and per-
forms if possible an activated state transition.

To finalize the software generation, instances of each ac-
tors corresponding C++ class as well as instances of required
SysteMoC software FIFOs are created in a top-level file. In
our default implementation, the main function of each CPU-
core consists of a while(true) loop which tries to execute
each actor in a round robin discipline (self-scheduling).

Christian Haubelt et al. 15

Actor information Fly1:
SysteMoC parameters⇐⇒ VHDL generics
SysteMoC portnumber⇐⇒ VHDL portnumber

SystemCoDesigner

Problem graph

Fly1

Fly2

AddSub3

AddSub4

AddSub7

AddSub8

F2

F1 AS3

mB1

Architecture graph

System generator

MicroBlaze
subsynthesizer

IP core
subsynthesizer

Channel
subsynthesizer

MicroBlaze code
generator

Target information XILINX implementation tools
Component library

Communication libraryBit file

Figure 8: Automatic system generation: starting with the selected implementation within the automatic DSE, the system generator automat-
ically generates the MicroBlaze subsystems, inserts the allocated IP cores, and finally connects these functional resources by communication
resources. The bit file for configuring the FPGA is automatically generated by an additional software synthesis step and by using the Xilinx
design tools, that is, the embedded development kit (EDK) [55] toolchain.

The proposed software generation shows similarities to
the software generations discussed in [56, 57]. However,
in future work our approach has the potential to replace
the above self-scheduling strategy by more sophisticated
dynamic scheduling strategies or even optimized static or
quasi-static schedules by analyzing the firing FSMs.

In future work we can additionally modify the software
generation for DSPs to replace the actor functionality F with
an optimized function provided by DSP vendors, similar as
described in [58].

5.3. SysteMoC communication resources

In this section, we introduce our communication library
which is used during system generation. The library sup-
ports software/software, hardware/hardware, as well as hard-

ware/software communication. All these different kinds of
communication provide the same interface as shown in
Table 1. This is a quite intuitive interface definition that is
similar to interfaces used in other works, like, for example,
[59]. In the following, we call each communication resource
which implements our interface a SysteMoC FIFO.

The SysteMoC FIFO communication resource provides
three different services. They store data, transport data, and
synchronize the actors via availability of tokens, respectively,
buffer space. The implementation of this communication re-
source is not limited to be a simple FIFO, it may, for exam-
ple, consist of two hardware modules that communicate over
a bus. In this case, one of the modules would implement the
read interface, the other one the write interface.

To be able to store data in the SysteMoC FIFO, it has
to contain a buffer. Depending on the implementation, this

16 EURASIP Journal on Embedded Systems

Table 1: SysteMoC FIFO interface.

Operation Behavior

rd tokens()
Returns how many tokens can be read from
the SysteMoC-FIFO (available tokens).

wr tokens()
Returns how many tokens can be written
into the SysteMoC-FIFO (free tokens).

read(offset)
Reads a token from a given offset relative to
the first available token. The read token is
not removed from the SysteMoC-FIFO.

write(offset, value)
Writes a token to a given offset relative to
the first free token. The written token is not
made available.

rd commit(count)
Removes count tokens from the SysteMoC-
FIFO.

wr commit(count) Makes count tokens available for reading.

buffer may also be distributed over different modules. Of
course, it would be possible to optimize the buffer sizes for
a given application. However, this is currently not supported
in SystemCoDesigner. The network graph given by the user
contains buffer sizes.

As can be seen from Table 1, a SysteMoC FIFO is more
complex than a simple FIFO. This is due to the fact that sim-
ple FIFOs do not support nonconsuming read operations for
guard functions and that SysteMoC FIFOs must be able to
commit more than one read or written token.

For actors that are implemented in software, our com-
munication library supports an efficient software implemen-
tation of the described interface. These SysteMoC software
FIFOs are based on shared memory and thus allow actors to
use a low-overhead communication. For hardware/hardware
communication, there is an implementation for Xilinx FP-
GAs in our communication library. This SysteMoC hard-
ware FIFO uses embedded Block RAM (BRAM) and allows
to write and read tokens concurrently every clock cycle. Due
to the more complex operations of the SysteMoC hardware
FIFO, they are larger than simple native FIFOs created with,
for example, CORE Generator for Xilinx FPGAs.

For a comparison, we synthesized different 32 bit wide
SysteMoC hardware FIFOs as well as FIFOs generated by Xil-
inx’s CORE generator for an Xilinx XC2VP30 FPGA. The
CORE generator FIFOs are created using the synchronous
FIFO v5.0 generator without any optional ports and using
BRAM. Figure 9 shows the number of occupied flip-flops
(FFs) and 4-input look-up tables (LUTs) for FIFOs of differ-
ent depths. The number of used Block RAMs only depends
on the depth and the width of the FIFOs and thus does not
vary between SysteMoC and CORE Generator FIFOs.

As Figure 9 shows, the maximum overhead for 4096 to-
kens depth FIFOs is just 12 FFs and 33 4-input LUTs. Com-
pared to the required 8 BRAMs, this is a very small overhead.
Even the maximum clock rates for these FIFOs are very sim-
ilar and with more than 200 MHz about 4 times higher than
typically required.

The last kind of communication resources is the Syste-
MoC hardware/software FIFOs. Our communication library

4 5 6 7 8 9 10 11 12

Depth (log)

10

15

20

25

30

35

40

45

50

Fl
ip

-fl
op

s

CORE Generator-FIFO
SysteMoC-FIFO

(a)

4 5 6 7 8 9 10 11 12

Depth (log)

30

40

50

60

70

80

90

100

110

4-
in

pu
t

LU
Ts

CORE Generator-FIFO
SysteMoC-FIFO

(b)

Figure 9: Comparison of (a) flip-flops (FF) and (b) 4-input look-
up tables (LUTs) for SysteMoC hardware FIFOs and simple native
FIFOs generated by Xilinx’s CORE Generator.

supports two different types called smoc2fsl-bridge and
fsl2smoc-bridge. As the name suggests, the communication is
done via fast simplex links (FSLs). In order to provide the
SysteMoC FIFO interface as shown in Table 1 to the software,
there is a software driver with some local memory to imple-
ment this interface and access the FSL ports of the MicroB-
lazes. The smoc2fsl-bridge and fsl2smoc-bridge are required
adapters to connect hardware SysteMoC FIFOs to FSL ports.
Therefore, the smoc2fsl-bridge reads values from a connected
SysteMoC FIFO and writes them to the FSL port. On the
other side, the fsl2smoc-bridge allows to transfer data from
a FSL port to a hardware SysteMoC FIFO.

Christian Haubelt et al. 17

6. RESULTS

In this section, we demonstrate first results of our design flow
by applying it to the two-dimensional inverse discrete co-
sine transform (IDCT2D) being part of the MPEG-4 decoder
model. Principally, this encompasses the following tasks. (i)
Estimation of the attributes, like number of flip-flops or ex-
ecution delays required for the automatic design space ex-
ploration (DSE). (ii) Generation of the specification graph
and performing the automatic DSE. (iii) Selection of design
points due to the designer’s preferences and their automatic
translation into a hardware/software system with the meth-
ods described in Section 5. In the following, we will present
these issues as implemented in SystemCoDesigner in more
detail using the IDCT2D example. Moreover, we will analyze
the accuracy between design parameters estimated by our
simulation model and the implementation as a first step to-
wards an optimized design flow. By restricting to the IDCT2D

with its data independent behavior, comparison between the
VPC estimates and the measured values of the real imple-
mentations can be performed particularly well. This allows
to clearly show the benefits of our approach as well as to an-
alyze the reasons for observed differences.

6.1. Determination of the actor attributes

As described in Section 4, automatic design space explo-
ration (DSE) selects implementation alternatives based on
different objectives as, for example, the number of hardware
resources or achieved throughput and latency. These objec-
tives are calculated based on the information available for a
single actor action or hardware module. For the hardware
modules, we have taken into account the number of flip-
flops (FFs), look-up tables (LUTs), and block RAM (BRAM).
As our design methodology allows for parameterized hard-
ware IP cores, and as the concrete parameter values influ-
ence the required hardware resources, the latter ones are de-
termined by generating an implementation where each actor
is mapped to the corresponding hardware IP core. A synthe-
sis run with a tool like Xilinx XST then delivers the required
values.

Furthermore, we have derived the execution time for
each actor action if implemented as hardware module.
Whereas the hardware resource attributes differ with the ac-
tor parameters, the execution times stay constant for our ap-
plication and can hence be predetermined once for each IP
core by VHDL code analysis. Additionally, the software exe-
cution time is determined for each action of each SysteMoC
actor through processing it by our software synthesis tool
(see Section 5.2) and execution on the MicroBlaze proces-
sor, stimulated by a test pattern. The corresponding execu-
tion times can then be measured using an instruction set sim-
ulator, a hardware profiler, or a simulation with, for example,
Modelsim [8].

6.2. Performing automatic design space exploration

To start the design space exploration we need to construct a
specification graph for our IDCT2D example which consists of

Table 2: Results of a design space exploration running for 14 hours
and 18 minutes using a Linux workstation with a 1800 MHz AMD
Athlon XP Processor and 1 GB of RAM.

Parameter Value

Population archive 500

Parents 75

Children 75

Generations 300

Individuals overall 23 000

Nondominated individuals 1 002

Exploration time 14 h 18 min

Overall simulation time 3 h 18 min

Simulation time 0.52 s/individual

about 45 actors and about 90 FIFOs. Starting from the prob-
lem graph, an architecture template is constructed, such that
a hardware-only solution is possible. In other words, each
actor can be mapped to a corresponding dedicated hard-
ware module. For the FIFOs, we allow two implementation
alternatives, namely, block RAM (BRAM) based and look-
up table (LUT) based. Hence, we force the automatic design
space exploration to find the best implementation for each
FIFO. Intuitively, large FIFOs should make use of BRAMs as
otherwise too many LUTs are required. Small FIFOs on the
other hand can be synthesized using LUTs, as the number of
BRAMs available in an FPGA is restricted.

To this hardware-only architecture graph, a variable
number of MicroBlaze processors are added, so that each ac-
tor can also be executed in software. In this paper, we have
used a fixed configuration for the MicroBlaze softcore pro-
cessor including 128 kB of BRAM for the software. Finally,
the mapping of the problem graph to this architecture graph
is determined in order to obtain the specification graph. The
latter one is annotated with the objective attributes deter-
mined as described above and serves as input to the auto-
matic DSE.

In our experiments, we explore a five-dimensional design
space where throughput is maximized, while latency, number
of look-up tables (LUTs), number of flip-flops (FFs), as well
as the sum of BRAM and multiplier resources are minimized
simultaneously. The BRAM and the multiplier resources are
combined to one objective, as they cannot be allocated inde-
pendently in Xilinx Virtex-II Pro devices. In general, a pair
of one multiplier and one BRAM conflict each other by us-
ing the same communication resources in a Xilinx Virtex-II
Pro device. For some special cases a combined usage of the
BRAM-multiplier pair is possible. This could be taken into
account by our design space exploration through inclusion
of BRAM access width. However, for reasons of clarity this is
not considered furthermore in this paper.

Table 2 gives the results of a single run of the design space
exploration of the IDCT2D. The exploration has been stopped
after 300 generations which corresponds to 14 hours, and 18

18 EURASIP Journal on Embedded Systems

Table 3: Comparison of the results obtained by estimation during exploration and after system synthesis. The last table line shows the values
obtained for an optimized two-dimensional IDCT module generated by the Xilinx CORE Generator, working on 8× 8 blocks.

SW-actors LUT FF BRAM/MUL Throughput (Blocks/s) Latency (μs/Block)

0
12 436 7 875 85 155 763.23 22.71 Estimation

11 464 7 774 85 155 763.23 22.27 Synthesis

8.5% 1.3% 0% 0% 2.0% rel. error

24
8 633 4 377 85 75.02 65 505.50 Estimation

7 971 4 220 85 70.84 71 058.87 Synthesis

8.3% 3.7% 0% 5.9% 7.8% rel. error

40
3 498 2 345 70 45.62 143 849.00 Estimation

3 152 2 175 70 24.26 265 427.68 Synthesis

11.0% 7.8% 0% 88.1% 45.8% rel. error

44
2 166 1 281 67 41.71 157 931.00 Estimation

1 791 1 122 67 22.84 281 616.43 Synthesis

23.0% 14.2% 0% 82.6% 43.9% rel. error

All
1 949 1 083 67 41.27 159 547.00 Estimation

1 603 899 67 22.70 283 619.82 Synthesis

21.6% 20.5% 0% 81.8% 43.7% rel. error

0 2 651 3 333 1 781 250.00 1.86 CORE Generator

minutes.4 This exploration run was made on a typical Linux
workstation with a single 1800 MHz AMD Athlon XP Pro-
cessor and a memory size of 1 GB. Main part of the time
was used for simulation and subsequent throughput and la-
tency calculation for each design point using SysteMoC and
the VPC framework. More precisely, the accumulated wall-
clock time for all individuals is about 3 hours and the ac-
cumulated time needed to calculate the performance num-
bers is about 6 hours, leading to average wall-clock time of
0.52 seconds and 0.95 seconds, respectively. The set of stim-
uli used in simulation consists of 10 blocks with size of 8× 8
pixels. In summary, the exploration produced 23 000 design
points over 300 populations, having 500 individuals and 75
children in each population.5 At the end of the design space
exploration, we counted 1,002 non-dominated individuals.
Two salient Pareto-optimal solutions are the hardware-only
solution and the software-only solution. The hardware-only
implementation obtains the best performance with a la-
tency of 22.71 μs/Block and a throughput of one block each
6.42 μs, more than 155.76 Blocks/ms. The software-only so-
lution needs the minimum number of 67 BRAMs and multi-
pliers, the minimum number of 1 083 flip-flops, and the min-
imum number of 1 949 look-up tables.

6.3. Automatic system generation

To demonstrate our system design methodology, we have se-
lected 5 design points generated by the design space explo-
ration, which are automatically implemented by our system
generator tool.

4 Each generation corresponds to a population of several individuals where
each individual represents a hardware/software solution of the IDCT2D

example.
5 The initial population started with 500 random generated individuals.

Table 3 shows both the values determined by the ex-
ploration tool (estimation), as well as those measured for
the implementation (synthesis). Considering the hardware
resources, the estimations obtained during exploration are
quite close to the results obtained for the synthesized FPGA
circuit. The variations can be explained by post synthesis op-
timizations as, for example, by register duplication or re-
moval, by trimming of unused logic paths, and so forth,
which cannot be taken into account by our exploration tool.
Furthermore, the size of the MicroBlaze varies with its con-
figuration, as, for example, the number of FSL links. As we
have assumed the worst case of 16 used FSL ports per Mi-
croBlaze, this effect can be particularly well seen for the
software-only solution, where the influence of the missing
FSL links is clearly visible.

Concerning throughput and latency, we have to distin-
guish two cases: pure hardware implementations and designs
including a processor softcore. In the first case, there is a quite
good match between the expected values obtained by simu-
lation and the measured ones for the concrete hardware im-
plementation. Consequently, our approach for characteriz-
ing each hardware module individually as an input for our
actor-based VPC simulation shows to be worthwhile. The
observed differences between the measured values and the
estimations performed by the VPC framework can be ex-
plained by the early communication behavior of several IP
cores as explained in Section 6.3.1.

For solutions including software, the differences are more
pronounced. This is due to the fact that our simulation is
only an approximation of the implementation. In partic-
ular, we have identified the following sources for the ob-
served differences: (i) communication processes encompass-
ing more than one hardware resource, (ii) the scheduling
overhead caused by software execution, (iii) the execution or-
der caused by different scheduling policies, and (iv) variable

Christian Haubelt et al. 19

Table 4: Overall overhead for the implementations shown in Table 3. The overhead due to scheduling decisions is given explicitly.

SW-actors Overhead Throughput (Blocks/s) Latency (μs/Block)

Overall Sched. Cor. simulation Cor. error Cor. simulation Cor. error

24 6.9% 0.9% 69.84 1.4% 70 360.36 1.0%

40 43.7% 39.9% 25.68 5.9% 255 504.44 3.7%

44 41.3% 40.2% 24.48 7.2% 269 047.70 4.5%

All 41.0% 41.0% 24.36 7.3% 270 267.58 4.7%

guard and action execution times caused by conditional code
statements.

In the following sections, we will shortly review each of
the above-mentioned points explaining the discrepancy be-
tween the VPC values for throughput and latency and the
results of our measurements.

Finally, Section 6.3.5 is dedicated to the comparison of
the optimized CORE Generator module and the implemen-
tations obtained by our automatic approach.

6.3.1. Early communication of hardware IP cores

The differences occurring for the latency values of the
hardware-only solution can be mainly explained by the com-
munication behavior of the IP cores. According to SysteMoC
semantics, communication takes only place after having ex-
ecuted the corresponding action. In other words, the con-
sumed tokens are only removed from the input FIFOs after
the actor action has been terminated. The equivalent holds
for the produced tokens.

For hardware modules, this behavior is not very com-
mon. Especially the input tokens are removed from the input
FIFOs rather than at the beginning of the action. Hence, this
can lead to earlier firing times of the corresponding source
actor in hardware than supposed by the VPC simulation.
Furthermore, some of the IP cores pass the generated val-
ues to the output FIFOs’ some clock cycles before the end
of the actor action. Examples are, for instance, the actors
block2row and transpose. Consequently, the correspond-
ing sink actor can also fire earlier. In the general case, this be-
havior can lead to variations in both throughput and latency
between the estimation performed by the VPC framework
and the measured value.

6.3.2. Multiresource communication

For the hardware/software systems, parts of the differences
observed between the VPC simulation and the real imple-
mentation can be attributed to the communication processes
between IP cores and the MicroBlaze. As our SysteMoC FI-
FOs allow for access to values addressed by an offset (see
Section 5.3), it is not possible to directly use the FSL inter-
face provided by the MicroBlaze processor. Instead, a soft-
ware layer has to be added. Hence, a communication between
both a MicroBlaze and an IP core activates the hardware itself
as well as the MicroBlaze. In order to represent this behavior
correctly in our VPC framework, a communication process
between a hardware and a software actor must be mapped

to several resources (multihop communication). As the cur-
rent version of our SystemCoDesigner does not provide this
feature, the hardware/software communication can only be
mapped to the hardware FIFO. Consequently, the time which
the MicroBlaze spends for the communication is not cor-
rectly taken into account and the estimations for throughput
and latency performed by the VPC framework are too opti-
mistic.

6.3.3. Scheduling overhead

A second major reason for the discrepancy between the VPC
estimations and the real implementations is situated in the
scheduling overhead. The latter one is the time required
for determination of the next actor which can be executed.
Whereas in our simulation performed during automatic de-
sign space exploration, this decision can be performed in
zero time (simulated time), this is not true any more for im-
plementations running on a MicroBlaze processor. This is
because the test whether an actor can be fired requires the
verification of all conditions for the next possible transitions
of the firing state machine. This results in one or more func-
tion calls.

In order to assess the overhead which is not taken
into account by our VPC simulation, we evaluated it for
each example implementation given in Table 3 by hand.
For the software-only solutions, this overhead exactly cor-
responds to the scheduling decisions, whereas for the hard-
ware/software realizations it encompasses both schedule de-
cisions and communication overhead on the MicroBlaze
processor (Section 6.3.2).

The corresponding results are shown in Table 4. It clearly
shows that most of the differences between the VPC sim-
ulation and measured results are caused by the neglected
overhead. However, inclusion of this time overhead is un-
fortunately not easy to perform, because the scheduling al-
gorithms used for simulation and for the MicroBlaze imple-
mentation differ at least in the order by which the activa-
tion patterns of the actors are evaluated. Furthermore, due
to the abbreviated conditional execution realized in modern
compilers, the verification of the transition predicate can take
variable time. Consequently, the exact value of the overhead
depends on the concrete implementation and cannot be cal-
culated by some means as clearly shown by Table 4.

For our IDCT2D example, this overhead is particularly
pronounced, because the model has a very fine granularity.
Hence, the neglected times for scheduling and communi-
cation do not differ substantially from the action execution

20 EURASIP Journal on Embedded Systems

times. A possible solution to this problem is to deter-
mine a quasi-static schedule [60], whereas many decisions
as possible are done during compile time. Consequently,
the scheduling overhead would decrease. Furthermore, this
would improve the implementation efficiency. Also, in a
system-level implementation of the IDCT2D as part of the
MPEG-4 decoder, one could draw the conclusion from the
scheduling overhead that the level of granularity for actors
that are explored and mapped should be increased.

6.3.4. Execution order

As shown in Table 4, most of the differences occurring be-
tween estimated and measured values are caused by the
scheduling and communication overhead. The staying dif-
ference, typically less than 10%, is due to the different actor
execution order, because it influences both initialization and
termination of the system.

Taking, for instance, the software-only implementation,
then at the beginning all FIFOs are empty. Consequently, the
workload of the processor is relatively small. Hence, the first
8 × 8 block can be processed with a high priority, leading to
a small latency. As however the scheduler will start to process
a new block before the previous one is finished, the system
load in terms of number of simultaneously active blocks will
increase until the FIFOs are saturated. In other words, differ-
ent blocks have to share the CPU, hence latency will increase.
On the other hand, when the source stops to process blocks,
the system workload gets smaller, leading to smaller latency.

These variations in latency depend on the time, when the
scheduler starts to process the next block. Consequently, as
our VPC simulation and the implementation use different
actor invocation order, also the measured performance value
can differ. This can be avoided by using a simulation where
the CPU only processes one block per time. Hence, the la-
tency of one block is not affected by the arrival of further
blocks.

A similar observation can be made for throughput. The
latter one meets its final value only after the system is com-
pletely saturated, because it is influenced by the increasing
and decreasing block latencies caused at the system startup
and termination phase, respectively.

By taking this effects into account, we have been able to
further reduce the differences between the VPC estimations
and the measured values to 1%-2%.

6.3.5. Comparison with optimized core generator module

Efficient implementation of the inverse discrete cosine trans-
form is very challenging and extensively treated in literature
(i.e., [61–64]). In order to compare our automatically built
implementations with such optimized realizations, Table 3
includes a Xilinx CORE Generator Module performing a
two-dimensional cosine transform. It is optimized to Xilinx
FPGAs and is hence a good reference for comparison.

Due to the various possible optimizations for efficient
implementations of an IDCT2D, it can be expected that au-

tomatically generated solutions have difficulties to reach the
same efficiency. This is clearly confirmed by Table 3. Even the
hardware-only solution is far slower than the Xilinx CORE
Generator module.

This can be explained by several reasons. First of all, our
current IP library is not already optimized for area and speed,
as the major intention of this paper lies in the illustration of
our overall system design flow instead of coping with details
of IDCT implementation. As a consequence, the IP cores are
not pipelined and their communication handshaking is re-
alized in a safe, but slow way. Furthermore, for the sake of
simplicity we have abstained from extensive logic optimiza-
tion in order to reduce chip area.

As a second major reason, we have identified the schedul-
ing overhead. Due to the self-timed communication of the
different modules on a very low level (i.e., a clip actor just
performs a simple minimum determination), a very large
overhead occurs due to required FIFOs and communication
state machines, reducing system throughput and increasing
chip area. This is particularly true, when a MicroBlaze is in-
stantiated slowing down the whole chain. Due to the sim-
ple actions, the communication and schedule overhead play
an important role. In order to solve this problem, we cur-
rently investigate on quasi-static scheduling and actor clus-
tering for more efficient data transport. This, however, is not
in the scope of this paper.

7. CONCLUSIONS

In this paper, we have presented a first prototype of
SystemCoDesigner, which implements a seamless automatic
design flow for digital signal processing systems to FPGA-
based SoC platforms. The key advantage of our proposed
hardware/software codesign approach is the combination of
executable specifications written in SystemC with formal
methods. For this purpose, SysteMoC, a SystemC library for
actor-based design, is proposed which allows the identifica-
tion of the underlying model of computation. The proposed
design flow includes application modeling in SysteMoC, au-
tomatic design space exploration (DSE) using simulation-
based performance evaluation, as well as automatic system
generation for FPGA-based platforms. We have shown the
applicability of our proposed design flow by presenting first
results from applying SystemCoDesigner to the design of
a two-dimensional inverse discrete cosine transformation
(IDCT2D). The results have shown that (i) we are able to au-
tomatically optimize and correctly synthesize digital signal
processing applications written in SystemC and (ii) our per-
formance evaluation during DSE produces good estimations
for the hardware synthesis and less-accurate estimations for
the software synthesis.

In future work we will add support for different FPGA
platforms and extend our component and communication
libraries. Especially, we will focus on the support for non-
FIFO communication using on-chip buses. Moreover, we
will strengthen our design flow by incorporating formal
analysis methods, automatic code transformations, as well as
verification support.

Christian Haubelt et al. 21

REFERENCES

[1] M. Gries, “Methods for evaluating and covering the design
space during early design development,” Integration, the VLSI
Journal, vol. 38, no. 2, pp. 131–183, 2004.

[2] C. Haubelt, Automatic model-based design space exploration
for embedded systems—a system level approach, Ph.D. thesis,
University of Erlangen-Nuremberg, Erlangen, Germany, July
2005.

[3] OSCI, “Functional Specification for SystemC 2.0,” Open Sys-
temC Initiative, 2002, http://www.systemc.org/.

[4] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC, Kluwer Academic, Norwell, Mass, USA, 2002.

[5] IEEE, IEEE Standard SystemC Language Reference Manual
(IEEE Std 1666-2005), March 2006.

[6] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for
comparing models of computation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, 1998.

[7] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and
simulation of model-based designs in SystemC,” in Proceed-
ings of the International Forum on Specification & Design Lan-
guages (FDL ’06), pp. 129–134, Darmstadt, Germany, Septem-
ber 2006.

[8] http://www.mentor.com/.
[9] http://www.forteds.com/.

[10] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf,
“An approach for quantitative analysis of application-specific
dataflow architectures,” in Proceedings of the IEEE Interna-
tional Conference on Application-Specific Systems, Architectures
and Processors (ASAP ’97), pp. 338–349, Zurich, Switzerland,
July 1997.

[11] A. C. J. Kienhuis, Design space exploration of stream-based
dataflow architectures—methods and tools, Ph.D. thesis, Delft
University of Technology, Delft, The Netherlands, January
1999.

[12] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic ap-
proach to exploring embedded system architectures at mul-
tiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–112, 2006.

[13] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf,
and E. F. Deprettere, “Exploring embedded-systems architec-
tures with artemis,” Computer, vol. 34, no. 11, pp. 57–63, 2001.

[14] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid
design space exploration of heterogeneous embedded systems
using symbolic search and multi-granular simulation,” in Pro-
ceedings of the Joint Conference on Languages, Compilers and
Tools for Embedded Systems: Software and Compilers for Em-
bedded Systems, pp. 18–27, Berlin, Germany, June 2002.

[15] V. Kianzad and S. S. Bhattacharyya, “CHARMED: a multi-
objective co-synthesis framework for multi-mode embedded
systems,” in Proceedings of the 15th IEEE International Confer-
ence on Application-Specific Systems, Architectures and Proces-
sors (ASAP ’04), pp. 28–40, Galveston, Tex, USA, September
2004.

[16] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the
strength pareto evolutionary algorithm for multiobjective op-
timization,” in Evolutionary Methods for Design, Optimization
and Control, pp. 19–26, Barcelona, Spain, 2002.

[17] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. Sangiovanni-Vincentelli, “Metropolis: an integrated
electronic system design environment,” Computer, vol. 36,
no. 4, pp. 45–52, 2003.

[18] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. De-
prettere, “System design using Khan process networks: the
Compaan/Laura approach,” in Proceedings of Design, Automa-
tion and Test in Europe (DATE ’04), vol. 1, pp. 340–345, Paris,
France, February 2004.

[19] H. Nikolov, T. Stefanov, and E. Deprettere, “Multi-processor
system design with ESPAM,” in Proceedings of the 4th Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’06), pp. 211–216, Seoul, Korea, Oc-
tober 2006.

[20] T. Kangas, P. Kukkala, H. Orsila, et al., “UML-based multipro-
cessor SoC design framework,” ACM Transactions on Embed-
ded Computing Systems, vol. 5, no. 2, pp. 281–320, 2006.

[21] J. Eker, J. W. Janneck, E. A. Lee, et al., “Taming heterogeneity -
the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 127–144, 2003.

[22] Cadence, “Incisive-SPW,” Cadence Design Systems, 2003,
http://www.cadence.com/.

[23] Synopsys, “System Studio—Data Sheet,” 2003, http://www.
synopsys.com/.

[24] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and
simulation of embedded systems in El Greco,” in Proceedings of
the 8th International Workshop on Hardware/Software Codesign
(CODES ’00), pp. 142–146, San Diego, Calif, USA, May 2000.

[25] F. Herrera, P. Sánchez, and E. Villar, “Modeling of CSP, KPN
and SR systems with SystemC,” in Languages for System Speci-
fication: Selected Contributions on UML, SystemC, System Ver-
ilog, Mixed-Signal Systems, and Property Specifications from
FDL ’03, pp. 133–148, Kluwer Academic, Norwell, Mass, USA,
2004.

[26] H. D. Patel and S. K. Shukla, “Towards a heterogeneous
simulation kernel for system-level models: a SystemC ker-
nel for synchronous data flow models,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 8, pp. 1261–1271, 2005.

[27] H. D. Patel and S. K. Shukla, “Towards a heterogeneous simu-
lation kernel for system level models: a SystemC kernel for syn-
chronous data flow models,” in Proceedings of the 14th ACM
Great Lakes Symposium on VLSI (GLSVLSI ’04), pp. 248–253,
Boston, Mass, USA, April 2004.

[28] H. D. Patel and S. K. Shukla, SystemC Kernel Extensions for
Heterogenous System Modeling, Kluwer Academic, Norwell,
Mass, USA, 2004.

[29] J. Liu, J. Eker, J. W. Janneck, X. Liu, and E. A. Lee, “Actor-
oriented control system design: a responsible framework per-
spective,” IEEE Transactions on Control Systems Technology,
vol. 12, no. 2, pp. 250–262, 2004.

[30] G. Agha, “Abstracting interaction patterns: a programming
paradigm for open distribute systems,” in Formal Methods for
Open Object-based Distributed Systems, E. Najm and J.-B. Ste-
fani, Eds., pp. 135–153, Chapman & Hall, London, UK, 1997.

[31] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-
chronous data flow programs for digital signal processing,”
IEEE Transactions on Computers, vol. 36, no. 1, pp. 24–35,
1987.

[32] G. Kahn, “The semantics of simple language for parallel pro-
gramming,” in Proceedings of IFIP Congress, pp. 471–475,
Stockholm, Sweden, August 1974.

[33] JTC 1/SC 29; ISO, “ISO/IEC 14496: Coding of Audio-Visual
Objects,” Moving Picture Expert Group.

[34] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and
J. Teich, “FunState—an internal design representation for

22 EURASIP Journal on Embedded Systems

codesign,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 4, pp. 524–544, 2001.

[35] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[36] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cyclo-static dataflow,” IEEE Transactions on Signal Processing,
vol. 44, no. 2, pp. 397–408, 1996.

[37] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Syn-
thesis from Dataflow Graphs, Kluwer Academic, Norwell, Mass,
USA, 1996.

[38] C.-J. Hsu, S. Ramasubbu, M.-Y. Ko, J. L. Pino, and S. S.
Bhattacharvva, “Efficient simulation of critical synchronous
dataflow graphs,” in Proceedings of 43rd ACM/IEEE Design Au-
tomation Conference (DAC ’06), pp. 893–898, San Francisco,
Calif, USA, July 2006.

[39] Q. Ning and G. R. Gao, “A novel framework of register alloca-
tion for software pipelining,” in Conference Record of the 20th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 29–42, Charleston, SC, USA, Jan-
uary 1993.

[40] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparison of syn-
chronous and cyclo-static dataflow,” in Proceedings of the 29th
Asilomar Conference on Signals, Systems, and Computers, vol. 1,
pp. 204–210, Pacific Grove, Calif, USA, October-November
1995.

[41] V. Pareto, Cours d’ Économie Politique, vol. 1, F. Rouge & Cie,
Lausanne, Switzerland, 1896.

[42] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis us-
ing evolutionary algorithms,” Design Automation for Embed-
ded Systems, vol. 3, no. 1, pp. 23–58, 1998.

[43] IBM, “On-Chip Peripheral Bus—Architecture Specifications,”
April 2001, Version 2.1.

[44] E. Zitzler, Evolutionary algorithms for multiobjective optimiza-
tion: methods and applications, Ph.D. thesis, Eidgenössische
Technische Hochschule Zurich, Zurich, Switzerland, Novem-
ber 1999.

[45] M. Eisenring, L. Thiele, and E. Zitzler, “Conflicting criteria in
embedded system design,” IEEE Design and Test of Computers,
vol. 17, no. 2, pp. 51–59, 2000.

[46] K. Deb, Multi-Objective Optimization Using Evolutionary Al-
gorithms, John Wiley & Sons, New York, NY, USA, 2001.

[47] T. Schlichter, C. Haubelt, and J. Teich, “Improving EA-based
design space exploration by utilizing symbolic feasibility tests,”
in Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO ’05), H.-G. Beyer and U.-M. O’Reilly, Eds.,
pp. 1945–1952, Washington, DC, USA, June 2005.

[48] T. Schlichter, M. Lukasiewycz, C. Haubelt, and J. Teich, “Im-
proving system level design space exploration by incorporat-
ing SAT-solvers into multi-objective evolutionary algorithms,”
in Proceedings of IEEE Computer Society Annual Symposium
on Emerging VLSI Technologies and Architectures, pp. 309–314,
Klarlsruhe, Germany, March 2006.

[49] C. Haubelt, T. Schlichter, and J. Teich, “Improving automatic
design space exploration by integrating symbolic techniques
into multi-objective evolutionary algorithms,” International
Journal of Computational Intelligence Research, vol. 2, no. 3, pp.
239–254, 2006.

[50] M. Streubühr, J. Falk, C. Haubelt, J. Teich, R. Dorsch, and T.
Schlipf, “Task-accurate performance modeling in SystemC for
real-time multi-processor architectures,” in Proceedings of De-
sign, Automation and Test in Europe (DATE ’06), vol. 1, pp.
480–481, Munich, Germany, March 2006.

[51] G. C. Buttazzo, Hard Real-Time Computing Systems, Kluwer
Academic, Norwell, Mass, USA, 2002.

[52] P. Hastono, S. Klaus, and S. A. Huss, “Real-time operating sys-
tem services for realistic SystemC simulation models of em-
bedded systems,” in Proceedings of the International Forum on
Specification & Design Languages (FDL ’04), pp. 380–391, Lille,
France, September 2004.

[53] P. Hastrono, S. Klaus, and S. A. Huss, “An integrated SystemC
framework for real-time scheduling. Assessments on system
level,” in Proceedings of the 25th IEEE International Real-Time
Systems Symposium (RTSS ’04), pp. 8–11, Lisbon, Portugal,
December 2004.

[54] T. Kempf, M. Doerper, R. Leupers, et al., “A modular simula-
tion framework for spatial and temporal task mapping onto
multi-processor SoC platforms,” in Proceedings of Design, Au-
tomation and Test in Europe (DATE ’05), vol. 2, pp. 876–881,
Munich, Germany, March 2005.

[55] XILINX, Embedded System Tools Reference Manual—
Embedded Development Kit EDK 8.1ia, October 2005.

[56] S. Klaus, S. A. Huss, and T. Trautmann, “Automatic genera-
tion of scheduled SystemC models of embedded systems from
extended task graphs,” in System Specification & Design Lan-
guages - Best of FDL ’02, E. Villar and J. P. Mermet, Eds., pp.
207–217, Kluwer Academic, Norwell, Mass, USA, 2003.

[57] B. Niemann, F. Mayer, F. Javier, R. Rubio, and M. Speitel, “Re-
fining a high level SystemC model,” in SystemC: Methodologies
and Applications, W. Müller, W. Rosenstiel, and J. Ruf, Eds.,
pp. 65–95, Kluwer Academic, Norwell, Mass, USA, 2003.

[58] C.-J. Hsu, M.-Y. Ko, and S. S. Bhattacharyya, “Software syn-
thesis from the dataflow interchange format,” in Proceedings of
the International Workshop on Software and Compilers for Em-
bedded Systems, pp. 37–49, Dallas, Tex, USA, September 2005.

[59] P. Lieverse, P. van der Wolf, and E. Deprettere, “A trace
transformation technique for communication refinement,”
in Proceedings of the 9th International Symposium on Hard-
ware/Software Codesign (CODES ’01), pp. 134–139, Copen-
hagen, Denmark, April 2001.

[60] K. Strehl, Symbolic methods applied to formal verification
and synthesis in embedded systems design, Ph.D. thesis, Swiss
Federal Institute of Technology Zurich, Zurich, Switzerland,
February 2000.

[61] K. Z. Bukhari, G. K. Kuzmanov, and S. Vassiliadis, “DCT and
IDCT implementations on different FPGA technologies,” in
Proceedings of the 13th Annual Workshop on Circuits, Systems
and Signal Processing (ProRISC ’02), pp. 232–235, Veldhoven,
The Netherlands, November 2002.

[62] C. Loeffer, A. Ligtenberg, and G. S. Moschytz, “Practical fast
1-D DCT algorithms with 11 multiplications,” in Proceedings
of IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP ’89), vol. 2, pp. 988–991, Glasgow, UK,
May 1989.

[63] J. Liang and T. D. Tran, “Fast multiplierless approximation of
the DCT with the lifting scheme,” in Applications of Digital Im-
age Processing XXIII, vol. 4115 of Proceedings of SPIE, pp. 384–
395, San Diego, Calif, USA, July 2000.

[64] A. C. Hung and T. H.-Y. Meng, “A comparison of fast in-
verse discrete cosine transform algorithms,” Multimedia Sys-
tems, vol. 2, no. 5, pp. 204–217, 1994.

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 60834, 7 pages
doi:10.1155/2007/60834

Research Article
Priority-Based Heading One Detector in H.264/AVC Decoding

Ke Xu, Chiu-Sing Choy, Cheong-Fat Chan, and Kong-Pang Pun

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Received 11 July 2006; Accepted 31 January 2007

Recommended by Jarmo Henrik Takala

A novel priority-based heading one detector for Exp-Golomb/CAVLC decoding of H.264/AVC is presented. It exploits the statis-
tical distribution of input encoded codewords and adopts a nonuniform partition decoding scheme for the detector. Compared
with a conventional design without power optimization, the power consumption can be reduced by more than 3 times while the
performance is maintained and the design hardware cost does not increase. The proposed detector has successfully been verified
and implemented in a complete H.264/AVC decoding system.

Copyright © 2007 Ke Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The Moving Picture Experts Group and the Video Cod-
ing Experts Group (MPEG and VCEG) have jointly devel-
oped a new video coding standard named as H.264/AVC [1].
Compared with previous coding standards like MPEG-2 or
H.263, it achieves nearly the same video quality (by means
of PSNR and subjective testing) while requiring 60% or less
of the bit rate [2]. This substantial improvement comes at
a price of extraordinarily huge computational complexity
and formidable memory access, which in turn incur greater
power consumption.

On the other hand, CMOS technology has now entered
the “power-limited scaling regime,” where power consump-
tion moves from being one of many design metrics to be
number one design metric. The H.264/AVC processing de-
mands much greater power than MPEG-2 or H.263 due
to increased complexity. Therefore, its power consumption
should be carefully managed to meet power budget, espe-
cially for applications on portable devices. Although power
dissipation can be substantially reduced through technology
scaling, where designers switch to a smaller geometry to im-
plement the same circuit, power reduction through proper
design techniques is more flexible and extensive, especially
where geometry scaling is not applicable.

H.264/AVC standard defines a hybrid block-based video
codec, which is in general similar to early coding stan-
dards, but the important changes occur in the details of
each functional block with many new coding techniques.
One of these techniques occurs in entropy coding, where

two methods, Exp-Golomb for syntax elements above the
slice layer and CAVLC (context-adaptive variable-length cod-
ing) for quantized transform coefficients, are supported in
the baseline profile [3]. During the decoding process, all the
Exp-Golomb coded syntax elements require the identifica-
tion of the position of the first appeared “1” inside each code-
word. For CAVLC decoding, some parameters like TotalCo-
eff, level prefix, and total zeros tables [1] also need to iden-
tify this first “1” before lookup table operation happens.

Conventional detectors usually are not aware of power
consumption. One such example is described in [4] which
splits the 16-bit input into 4 parts (4-bit vectors), each of
which detects whether there is a “1” among the four input
bits. Then these results will determine which part should be
further tested. Although the method works well, it is not a
power-efficient technique since it treats all the 16 input bits
with equal importance. The power consumption bears no re-
lationship with the occurrence of any codewords; no matter
how likely they will occur.

General low-power design techniques have been devel-
oped for many years. Besides these general methods, video
decoding presents a unique power optimization opportu-
nity due to temporal, spatial, and statistical redundancies
in digital video data. In this paper, we mainly utilize sta-
tistical redundancy during video decoding. A data-driven
priority-based heading one detector is proposed, which de-
tects the heading “1” in a bitstream that is organized in 16-bit
units. The key idea of our proposal is to exploit the statistical
characteristics of the heading one position among the vari-
ous codewords. A nonuniform decoding scheme is designed

2 EURASIP Journal on Embedded Systems

Input bitstream buffer

Variable length Fixed length

Heading one
detector

Le
n

gt
h

fe
ed

ba
ck

Exp-Golomb
decoder

CAVLC
decoder

Fixed-length
decoder

Parameter
generation

Control signal
generation

Reconstruction data path

Figure 1: Decoder system architecture.

accordingly. By selectively disabling some subblocks, the de-
tector consumes much less power without noticeable perfor-
mance degradation and even smaller design area.

2. BACKGROUND

In this section, we firstly give a brief introduction of the
whole decoder architecture. Then we discuss the structure of
Exp-Golomb code and CAVLC code which requires heading
one detection. At last, we evaluate the related research works
in literature.

2.1. H.264/AVC decoding

A simplified system architecture of the whole decoder is il-
lustrated in Figure 1. According to input codeword type,
the heading one detector is invoked when current codeword
is Exp-Golomb coded or a certain part of CAVLC code-
words. Based on the output of the heading one detector, Exp-
Golomb codes are mapped from bitstream form to signed,
unsigned, or truncated syntax element values, while CAVLC
codes are indexed for several lookup Tables (LUT). There
is a length feedback signal from the heading one detector,
CAVLC decoder, and fixed-length decoder to the input bit-
stream buffer. The signal indicates how many bits are con-
sumed for decoding current codeword. According to de-
coded codewords, related parameters and control signals are
generated to orchestrate the following reconstruction data
path.

2.2. Heading one detection

Figure 2 depicts a normal input to the heading one detector,
where the detector needs to search among the 16 bits to find

Heading one position = 3rd, bit2

0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1

Bit0 Bit15

Figure 2: Heading one position.

Table 1: Exp-Golomb codewords.

Code num Codeword
0 1
1 010
2 011
3 00100
4 00101
5 00110
6 00111
7 0001000
8 0001001
· · · ︸︷︷︸

[M zeros][

︸︷︷︸

1][INFO]

the first appeared “1.” Here we assume the input bitstream
is encoded from left to right. This example indicates that the
heading one position lies at third place (bit2). Although there
are several “1’s” at some other positions like bit4, bit5, and so
forth, they are not heading ones.

Exp-Golomb codes

Exponential Golomb codes (see [5]) are variable-length
codes with simple and regular structure as depicted in
Table 1. One does not need to store the conversion table for
the purpose of decoding, since the correspondence between
symbols and codes is mathematically defined. The leading M
zeros, as well as the middle “1,” are treated as “prefix” of the
codeword, while INFO, which is equal in length to the M
zeros, is called “suffix” [6]. In Table 1, the first code num
“0” does not contain any leading zero or trailing INFO.
Code nums “1” and “2” have a single-bit leading zero and
corresponding single-bit INFO field, code nums 3∼6 have a
two-bit leading zeros and INFO field, and so on. Theoreti-
cally the codeword table can be infinitely extended according
to the coding rule described. The length of each Exp-Golomb
codeword is (2M+ 1) bits long and each codeword can be in-
ferred by the following equation [6]:

M = floor
(

log2

[

code num + 1
])

,

INFO = code num + 1− 2M ,
(1)

where floor (x) is a function finding the largest integer which
is less than or equal to x.

In H.264/AVC standard, there are three types of Exp-
Golomb coding: unsigned, signed, and truncated. They
all follow the same coding rule and are only different in
whether an additional “code num to syntax value” mapping
is needed.

Ke Xu et al. 3

Coeff token
LUT

270 entries

Heading one
detector

Coeff token
decoding

TotalCoeff
and

trailingOnes
16

Run before
decoding

Total zeros
decoding

16 16

To
ta

l
ze

ro
s

Le
ve

l
pr

efi
x

Level
decoding

CAVLC
decoding

T1
decoding

Heading
one detector

Heading
one detector

Total zeros
LUT

135 entries

Level prefix
LUT

16 entries

Figure 3: CAVLC decoding flow.

Table 2: Codeword table for level prefix.

level prefix Bit string

0 1

1 01

2 001

3 0001

4 0000 1

5 0000 01

6 0000 001

7 0000 0001

· · · · · ·

CAVLC

A more efficient algorithm for transmitting the quantized
transform coefficients is proposed in [3]. In this method,
VLC tables for various syntax elements are selected depend-
ing on already transmitted syntax elements. To decode the in-
dexes for some of these VLC tables, a heading one detector is
indispensable. The CAVLC decoding step is briefly described
in Figure 3.

The CAVLC decoding can be partitioned into five steps
and three of them require heading one detection.

Table 3: Total zeros table for 4×4 blocks with TotalCoeff (co-
eff token) 1 to 3.

Total zeros TotalCoeff (coeff token)

1 2 3

0 1 111 0101

1 011 110 111

2 010 101 110

3 0011 100 101

4 0010 011 0100

5 0001 1 0101 0011

6 0001 0 0100 100

7 0000 11 0011 011

.

Table 2 shows one VLC table [1] in CAVLC codes
which maps input bit stream to “level prefix.” The value of
level prefix is directly determined by the position of the first
appeared “1.” Table 3 shows another VLC example where
finding the heading one position is sufficient for the whole
syntax element to be extracted.

Since most of the syntax elements are coded either as
Exp-Golomb codes or CAVLC codes, heading one detector
is used extensively in H.264/AVC decoding.

2.3. Related works

Although there are some designs in literature dealing with
Exp-Golomb or CAVLC decoding [4, 7–9], few of them men-
tioned how heading one detection was realized. The only ref-
erence design is found in [4]. It proposed a detector that
evenly splits the input into four subwords. From each sub-
word, the presence of “1” is detected. Then these results will
determine which subword should be further tested, as shown
in Figure 4. Priority encoder0’s output indicates the position
of “1” in the subword, while priority encoder1’s output in-
dicates which subword has the heading one. In fact, this is a
two-level encoder and cannot run in parallel. Encoder1 se-
lects a subword based on priority where part [3 : 0] has the
highest priority and part [15 : 12] has the lowest priority. Ac-
cording to encoder1’s indication, encoder0 chooses one cor-
rect subword among the four and encodes the heading “1”
in the chosen subword as the final heading one position. No
matter where the heading one is, four subword decoders and
two priority encoders are active all the time.

3. PROPOSED ARCHITECTURE

In this section, we firstly explore the heading one statistics in
entropy coding. Based on the observation, a priority-based
heading one detector is then proposed.

3.1. Characteristic of entropy coding

As aforementioned, design in [4] proposed a “first 1 detec-
tor” based on a uniform input bit-vector partition. That is an
effective scheme but no power optimization was considered.

4 EURASIP Journal on Embedded Systems

[15 : 12] [11 : 8] [7 : 4] [3 : 0]

Mux

4

Priority
encoder0

Priority
encoder1

2 4

4

Figure 4: Evenly partitioned detector in [4].

Since both Exp-Golomb and CAVLC codings are entropy
coding methods, they have the same important characteris-
tic like all other entropy coding schemes: shorter codewords
are assigned to symbols that occur with higher probabil-
ity, whereas longer codewords are assigned to symbols with
less frequent occurrences. In an H.264/AVC bitstream, the
longest code is 16 bits including the heading “1.” However,
the average length of such kind of codes is not (16 + 1)/2 =
8.5, but much smaller.

3.2. SystemC modeling

In order to study the entire bitstream parsing process where
entropy decoding is included, we developed a high-level sys-
temC model, emulating the control and communication of
real video decoding. Its output is compared with JM9.4 soft-
ware [10] to verify correct function. The systemC model has
internal counters to count the total number of Exp-Golomb
codes and CAVLC codes which require heading one detec-
tion. It also has individual counters for the number of these
codes under different heading one positions. Five popular
test videos, named as container, foreman, akiyo, news and
carphone, with QCIF 300 frame sequences at 30 fps are used.
They are encoded by JM software with quantization param-
eters set to 22, 25, 28, 32, and 36, respectively. The statistical
profile of heading one’s positions was hence obtained from
simulation with these input bitstreams.

The average codeword lengths are found as in Table 4
(note that if a “1” is in the first bit, this corresponds to po-
sition = 0 and so on). The intraframe and interframe have
slightly different heading one statistical position percentage
since usually the intraframe has more residual information

Table 4: Statistic result of heading one position (nearly 0 means
that percentage is less than 0.01%).

Position
Whole input
bitstream

Intracoded
frame

Intercoded
frame

0 55.36% 51.37% 56.61%

1 24.15% 24.36% 24.08%

2 11.16% 10.70% 11.31%

3 5.49% 6.21% 5.26%

4 2.17% 3.69% 1.72%

5 0.88% 1.6% 0.65%

6 0.41% 0.91% 0.25%

7 0.16% 0.4% 0.08%

8 0.08% 0.25% 0.03%

9 0.06% 0.24% 0.01%

10 0.04% 0.15% Nearly 0

11 0.01% 0.06% Nearly 0

12 Nearly 0 0.04% Nearly 0

13 Nearly 0 0.03% Nearly 0

14 Nearly 0 Nearly 0 Nearly 0

15 Nearly 0 Nearly 0 Nearly 0

Average 0.81 1.12 0.74

and needs more CAVLC decoding effort. For example, in-
side interframe, positions equal to or above 10 begin to have
nearly zero (less than 0.01%) codes distribution, whereas for
intra frame, this boundary is pushed to a high position which
indicates that only positions 14 and 15 have nearly zero codes
distribution. However, both intra- and interframes-share the
same tendency that the higher the position is, the less oppor-
tunity that a heading one is found.

Be aware that the statistical positions stated in Table 2 are
not a simple average of the values in the intra- and the inter-
frame columns. This is because intra- and interframes have
different total numbers of Exp-Golomb/CAVLC codes in dif-
ferent test video sequences. For example, in akiyo video se-
quence of 300 frames, 24% of codes need heading one detec-
tion are extracted from intraframes and 76% are extracted
from interframes, while in foreman video sequence, 30% of
these codes are extracted from intraframes and 70% are from
inter frames. In addition, distributions of heading one po-
sitions (position = 0, 1, 2, . . .) in a single video sequence
vary from one bitstream to another. These nonuniform code-
words distributions lead to the nonlinear relationship of total
average positions for intra- and interframes. In addition, po-
sitions of interframes tend to have a larger weight than those
of intraframes in all the video sequences tested, for there are
more intercoded frames than intra-coded ones.

According to Table 4, the heading one in a codeword is lo-
cated on average in a position indicated in Figure 5. We con-
clude that the average heading one position for the whole se-
quence/intraframe/interframe is 0.81/1.12/0.74, respectively,
which are much smaller than the simple average of 8.5. Of
course, positions naturally are whole numbers, fractional
values are the artifacts of averaging.

Ke Xu et al. 5

0.74: average position of interframe
0.81: average position of whole sequence
1.12: average position of intraframe

Bit0 Bit1 Bit2 Bit3 · · · Bit15

Figure 5: Average heading one position.

Input bitstream [0 : 15]

Heading one
detector enable

100%
active

0 1
Dec2 Enable

En.

20%
active

2 3 4 5

Dec4 Enable
1%

active
6 7 8 9 10 1112 13 14 15

Dec10

4
2

1

Priority encoder

4
Data signals
Control signals

Figure 6: Proposed heading one detector.

3.3. Proposed architecture

From the above analysis, we conclude that the position of
heading one most likely lies around the second input bit
(position = 1). The first two positions (position0 + posi-
tion1) account for almost 80% of all cases and the first six
positions (position0 + · · · + position5) account for nearly
99%. Thus we propose a priority-based nonuniform parti-
tion heading one detector where the input 16 bits are divided
into 3 unequal subdetectors and each subdetector can be se-
lectively enabled and disabled. Figure 6 shows the proposed
scheme.

In our design, input bitstream from bitstream buffer is
controlled by an “enable” signal. If current codeword needs
heading one detection, the whole 16 bits are enabled and
passed to the heading one detector, else the detector is dis-
abled to reduce unnecessary switching. The entire detector
is partitioned into three parts, each of which handles a dif-
ferent chunk of input bits with varying priority. Dec2, which
has the highest priority, processes the first two input bits and
is active all the time to detect whether there is a “1” and its
corresponding likely position (only first bit position or sec-
ond bit position here). If a “1” is found in dec2, which signals
a successful identification of the heading “1” in a codeword,
the position information is passed to the final priority en-
coder to generate a heading one position. At the same time,
the lower-priority dec4 and the lowest-priority dec10 are dis-
abled to save power. Conversely, there is a 20% possibility
that dec2 will fail to find a “1” and dec4 will be enabled there-

after. More rarely, both dec2 and dec4 cannot find a heading
one and dec10 will then be active but having only 1% pos-
sibility. The outputs of dec2, dec4, and dec10 are selectively
encoded as heading one position of whole 16-bit input by a
priority encoder.

Design in [4] divides 16-bits input evenly into 4 identi-
cal subwords. Each subword decoder detects whether there
is a “1” inside and their outputs are then sent to two prior-
ity encoders. No matter whether the “1” found in each sub-
word is a heading “1,” all four subword decoders, as well as
the priority encoders, are active all the time. However, if the
first decoder which looks at bits [3 : 0] finds a “1,” no mat-
ter what the outcome of the other three decoders is, one can
conclude that the first “1” is in bits [3 : 0]. The work done
by the other three decoders is of no consequence and only a
waste of power.

4. DESIGN ANALYSIS

In this section, we mainly discuss and compare the power
consumption of [4] and the proposed design. We also discuss
the speed and area overheads.

4.1. Theoretical analysis

Strictly speaking, power consumption constitutes of dynamic
power and static power. Since the target process is a relatively
standard CMOS 130 nm technology and the circuit is small
enough, the static power only contributes a very small por-
tion of the whole power consumption. Therefore, we can as-
sume that the detector’s entire power is proportional to dy-
namic power to facilitate our calculation. Average power dis-
sipation for decoding each heading one position can be mod-
eled as suggested in [11]

Eavg =
N
∑

i=1

PiEi, (2)

where Pi is the probability that heading position = i will oc-
cur, Ei is the energy required to detect such a position, and
N is the total number of possible positions where N = 16 for
H.264/AVC codes.

Since dynamic power consumption is almost linear to the
complexity of these decoding units, without loss of general-
ity, one can assume the power consumed by dec2 is 2 units,
dec4 is 4 units, and dec10 is 10 units. In [4], all the four de-
coders are identical and consume 4 units of power all the
time.

Estimated power consumption for the detector in [4] is:

Eavg =
4
∑

i=1

PiEi = 4× 100%× 4 units = 16 units. (3)

In our scheme, three decoders are active sequentially and
their activation rate is proportional to the heading one dis-
tribution shown in Table 4.

6 EURASIP Journal on Embedded Systems

Table 5: Layout power analysis.

Power consumption at 20 MHz
real-time QCIF/30 fps

Frame type
Implementation
of [3]

Our
proposal

Power
reduction

Intra frame 13.45 µW 3.99 µW 3.38 times

Inter frame 2.35 µW 0.733 µW 3.21 times

Table 6: Physical implementation.

Technology UMC 130 nm

Metal layer 6 metals, 2 thick

Supply voltage 1.08 v

Max. frequency 200 MHz

Estimated power consumption for our schemeis

Eavg =
3
∑

i=1

PiEi

= 100%× 2 units + 20%× 4 units + 1%× 10 units

= 2.9 units.
(4)

The percentages in the above equation reflect the activity rate
of each submodule dec2 (for position 0∼1), dec4 (for posi-
tion 2∼5), and dec10 (for other positions), respectively. The
overhead-like power consumed by muxes is negligible. The
relative power saving for our scheme is about 5.5 times while
the throughput is nearly the same.

4.2. Implementation analysis

Since there is no power consumption figures reported in [4],
to have a fair comparison, we built a “heading 1 detector” ac-
cording to [4] with the same process technology used for our
scheme. Both of the detectors are integrated into H.264/AVC
decoding system, where there is a switch to control which one
is currently active. The decoding system is simulated by Mod-
elSim. The Verilog RTL codes are then synthesized by design
compiler and are placed and routed by Astro. Parasitic in-
formation is extracted by Star-RCXT and postsimulation is
processed in VCS. Based on the layout database and individ-
ual activity rate obtained from post-sim, postlayout power
analysis results can be obtained from PrimePower, shown in
Table 5. The key implementation parameters of our scheme
are listed in Table 6. Considering that the heading one de-
tector has the highest switching activity in entropy decoding,
the power reduction contributable by such a detector is sub-
stantial.

According to Tables 5 and 6, one can conclude that our
design not only consumes less power, but is capable of per-
forming real-time decoding. The circuit size is even a little bit
smaller than the design in [4]. Although a larger dec10 is in-
troduced, two priority encoders found in [4] are reduced to

one which leads to slight area reduction. The only penalty is
a small throughput degradation if the heading one happened
to be at a higher position like 6, 7, and so forth, because dec2,
dec4, and dec10 will need to be triggered in sequence to ob-
tain the final result. Even at this extreme case, the proposed
design can achieve a maximum frequency of 200 MHz, which
is substantially faster than other building blocks in the whole
H.264/AVC decoding system.

The advantage of our design is drawn from exploiting the
high probability of “heading one” lying in the first few bits
of a codeword. By using a nonuniform decoding structure, a
lot of power is saved because one does not need to search all
bits. The same technique can also be applied to other entropy
decodings such as that in MPEG-2. Although the codeword
structure is not identical as in H.264/AVC, short codewords
inherently occur more frequently. Proposed technique can
then be employed according to the specific statistical profile
found from high-level modeling.

5. CONCLUSION

A priority-based, data-driven power-efficient heading one
detector has been proposed. The opportunity to reduce
power is identified at architectural level through systemC
modeling. Appropriate circuit implementation is then cho-
sen. It exploits the statistical codeword distribution of an
entropy-coded bitstream, and a novel power-saving decod-
ing scheme is subsequently devised. Compared with conven-
tional detectors, the proposed design achieves more than 3
times power reduction while maintaining area and speed per-
formance. It does not utilize any special techniques such as
clock gating or voltage scaling, and thus makes it readily em-
ployable in other circumstances when different technologies
may be used. Since power consumption in ICs is a critical is-
sue in recent years, this paper suggests an effective method to
reduce power by exploiting statistical characteristics.

ACKNOWLEDGMENT

The work reported is supported by a Hong Kong SAR Gov-
ernment Research Direct Grant no. 2050322.

REFERENCES

[1] J. V. Team, “Advanced video coding for generic audiovisual
services,” ITU-T Recommendation H.264 and ISO/IEC 14496-
10 AVC, May 2003.

[2] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sulli-
van, “Rate-constrained coder control and comparison of video
coding standards,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 688–703, 2003.

[3] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, 2003.

[4] W. Di, G. Wen, H. Mingzeng, and J. Zhenzhou, “An Exp-
Golomb encoder and decoder architecture for JVT/AVS,” in
Proceedings of the 5th International Conference on ASIC, vol. 2,
pp. 910–913, Beijing, China, October 2003.

Ke Xu et al. 7

[5] S. W. Golomb, “Run-length encoding,” IEEE Transactions on
Information Theory, vol. 12, no. 3, pp. 399–401, 1966.

[6] I. E. G. Richardson, H.264 and MPEG-4 Video Compression,
John Willey & Sons, New York, NY, USA, 2003.

[7] Joint Video Team (JVT) reference software JM9.4, http://
iphome.hhi.de/suehring/tml/download/.

[8] T.-C. Wang, H.-C. Fang, W.-M. Chao, H.-H. Chen, and L.-G.
Chen, “An UVLC encoder architecture for H.26L,” in Proceed-
ings of IEEE International Symposium on Circuits and Systems
(ISCAS ’02), vol. 2, pp. 308–311, Phoenix, Ariz, USA, May
2002.

[9] S. H. Cho, T. Xanthopoulos, and A. P. Chandrakasan, “A low
power variable length decoder for MPEG-2 based on nonuni-
form fine-grain table partitioning,” IEEE Transactions on VLSI
Systems, vol. 7, no. 2, pp. 249–257, 1999.

[10] I. Amer, W. Badawy, and G. Jullien, “Towards MPEG-4 part
10 system on chip: a VLSI prototype for context-based adap-
tive variable length coding (CAVLC),” in Proceedings of IEEE
Workshop on Signal Processing Systems (SIPS ’04), pp. 275–279,
Austin, Tex, USA, October 2004.

[11] H.-Y. Lin, Y.-H. Lu, B.-D. Liu, and J.-F. Yang, “Low power de-
sign of H.264 CAVLC decoder,” in Proceedings of IEEE Inter-
national Symposium on Circuits and Systems (ISCAS ’06), pp.
2689–2692, Island of Kos, Greece, May 2006.

