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PREFACE

Signal processing theory plays an increasingly central role in the
development of modern telecommunication and information processing
systems, and has a wide range of applications in multimedia technology,
audio-visual signal processing, cellular mobile communication, adaptive
network management, radar systems, pattern analysis, medical signal
processing, financial data forecasting, decision making systems, etc. The
theory and application of signal processing is concerned with the
identification, modelling and utilisation of patterns and structures in a
signal process. The observation signals are often distorted, incomplete and
noisy. Hence, noise reduction and the removal of channel distortion is an
important part of a signal processing system. The aim of this book is to
provide a coherent and structured presentation of the theory and
applications of statistical signal processing and noise reduction methods.

This book is organised in 15 chapters.

Chapter 1 begins with an introduction to signal processing, and
provides a brief review of signal processing methodologies and
applications. The basic operations of sampling and quantisation are
reviewed in this chapter.

Chapter 2 provides an introduction to noise and distortion. Several
different types of noise, including thermal noise, shot noise, acoustic noise,
electromagnetic noise and channel distortions, are considered. The chapter
concludes with an introduction to the modelling of noise processes.

Chapter 3 provides an introduction to the theory and applications of
probability models and stochastic signal processing. The chapter begins
with an introduction to random signals, stochastic processes, probabilistic
models and statistical measures. The concepts of stationary, non-stationary
and ergodic processes are introduced in this chapter, and some important
classes of random processes, such as Gaussian, mixture Gaussian, Markov
chains and Poisson processes, are considered. The effects of transformation
of a signal on its statistical distribution are considered.

Chapter 4 is on Bayesian estimation and classification. In this chapter
the estimation problem is formulated within the general framework of
Bayesian inference. The chapter includes Bayesian theory, classical
estimators, the estimate—maximise method, the Cramér—Rao bound on the
minimum-—variance estimate, Bayesian classification, and the modelling of
the space of a random signal. This chapter provides a number of examples
on Bayesian estimation of signals observed in noise.



xviii Preface

Chapter 5 considers hidden Markov models (HMMs) for non-
stationary signals. The chapter begins with an introduction to the modelling
of non-stationary signals and then concentrates on the theory and
applications of hidden Markov models. The hidden Markov model is
introduced as a Bayesian model, and methods of training HMMs and using
them for decoding and classification are considered. The chapter also
includes the application of HMMs in noise reduction.

Chapter 6 considers Wiener Filters. The least square error filter is
formulated first through minimisation of the expectation of the squared
error function over the space of the error signal. Then a block-signal
formulation of Wiener filters and a vector space interpretation of Wiener
filters are considered. The frequency response of the Wiener filter is
derived through minimisation of mean square error in the frequency
domain. Some applications of the Wiener filter are considered, and a case
study of the Wiener filter for removal of additive noise provides useful
insight into the operation of the filter.

Chapter 7 considers adaptive filters. The chapter begins with the state-
space equation for Kalman filters. The optimal filter coefficients are
derived using the principle of orthogonality of the innovation signal. The
recursive least squared (RLS) filter, which is an exact sample-adaptive
implementation of the Wiener filter, is derived in this chapter. Then the
steepest—descent search method for the optimal filter is introduced. The
chapter concludes with a study of the LMS adaptive filters.

Chapter 8 considers linear prediction and sub-band linear prediction
models. Forward prediction, backward prediction and lattice predictors are
studied. This chapter introduces a modified predictor for the modelling of
the short—term and the pitch period correlation structures. A maximum a
posteriori (MAP) estimate of a predictor model that includes the prior
probability density function of the predictor is introduced. This chapter
concludes with the application of linear prediction in signal restoration.

Chapter 9 considers frequency analysis and power spectrum estimation.
The chapter begins with an introduction to the Fourier transform, and the
role of the power spectrum in identification of patterns and structures in a
signal process. The chapter considers non—parametric spectral estimation,
model-based spectral estimation, the maximum entropy method, and high—
resolution spectral estimation based on eigenanalysis.

Chapter 10 considers interpolation of a sequence of unknown samples.
This chapter begins with a study of the ideal interpolation of a band-limited
signal, a simple model for the effects of a number of missing samples, and
the factors that affect interpolation. Interpolators are divided into two



Preface Xix

categories: polynomial and statistical interpolators. A general form of
polynomial interpolation as well as its special forms (Lagrange, Newton,
Hermite and cubic spline interpolators) are considered. Statistical
interpolators in this chapter include maximum a posteriori interpolation,
least squared error interpolation based on an autoregressive model,
time—frequency interpolation, and interpolation through search of an
adaptive codebook for the best signal.

Chapter 11 considers spectral subtraction. A general form of spectral
subtraction is formulated and the processing distortions that result form
spectral subtraction are considered. The effects of processing-distortions on
the distribution of a signal are illustrated. The chapter considers methods
for removal of the distortions and also non-linear methods of spectral
subtraction. This chapter concludes with an implementation of spectral
subtraction for signal restoration.

Chapters 12 and 13 cover the modelling, detection and removal of
impulsive noise and transient noise pulses. In Chapter 12, impulsive noise
is modelled as a binary—state non-stationary process and several stochastic
models for impulsive noise are considered. For removal of impulsive noise,
median filters and a method based on a linear prediction model of the signal
process are considered. The materials in Chapter 13 closely follow Chapter
12. In Chapter 13, a template-based method, an HMM-based method and an
AR model-based method for removal of transient noise are considered.

Chapter 14 covers echo cancellation. The chapter begins with an
introduction to telephone line echoes, and considers line echo suppression
and adaptive line echo cancellation. Then the problem of acoustic echoes
and acoustic coupling between loudspeaker and microphone systems are
considered. The chapter concludes with a study of a sub-band echo
cancellation system

Chapter 15 is on blind deconvolution and channel equalisation. This
chapter begins with an introduction to channel distortion models and the
ideal channel equaliser. Then the Wiener equaliser, blind equalisation using
the channel input power spectrum, blind deconvolution based on linear
predictive models, Bayesian channel equalisation, and blind equalisation
for digital communication channels are considered. The chapter concludes
with equalisation of maximum phase channels using higher-order statistics.

Saeed Vaseghi
June 2000
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INTRODUCTION

1.1 Signals and Information

1.2 Signal Processing Methods

1.3 Applications of Digital Signal Processing
1.4 Sampling and Analog—to-Digital Conversion

ignal processing is concerned with the modelling, detection,

identification and utilisation of patterns and structures in a signal

process. Applications of signal processing methods include audio hi-
fi, digital TV and radio, cellular mobile phones, voice recognition, vision,
radar, sonar, geophysical exploration, medical electronics, and in general
any system that is concerned with the communication or processing of
information. Signal processing theory plays a central role in the
development of digital telecommunication and automation systems, and in
efficient and optimal transmission, reception and decoding of information.
Statistical signal processing theory provides the foundations for modelling
the distribution of random signals and the environments in which the signals
propagate. Statistical models are applied in signal processing, and in
decision-making systems, for extracting information from a signal that may
be noisy, distorted or incomplete. This chapter begins with a definition of
signals, and a brief introduction to various signal processing methodologies.
We consider several key applications of digital signal processing in adaptive
noise reduction, channel equalisation, pattern classification/recognition,
audio signal coding, signal detection, spatial processing for directional
reception of signals, Dolby noise reduction and radar. The chapter concludes
with an introduction to sampling and conversion of continuous-time signals
to digital signals.



2 Introduction

1.1 Signals and Information

A signal can be defined as the variation of a quantity by which information
is conveyed regarding the state, the characteristics, the composition, the
trajectory, the course of action or the intention of the signal source. A signal
is a means to convey information. The information conveyed in a signal may
be used by humans or machines for communication, forecasting, decision-
making, control, exploration etc. Figure 1.1 illustrates an information source
followed by a system for signalling the information, a communication
channel for propagation of the signal from the transmitter to the receiver,
and a signal processing unit at the receiver for extraction of the information
from the signal. In general, there is a mapping operation that maps the
information [(¢) to the signal x(z) that carries the information, this mapping
function may be denoted as 7T-] and expressed as

x()=T[1(1)] (1.1)

For example, in human speech communication, the voice-generating
mechanism provides a means for the talker to map each word into a distinct
acoustic speech signal that can propagate to the listener. To communicate a
word w, the talker generates an acoustic signal realisation of the word; this
acoustic signal x(t) may be contaminated by ambient noise and/or distorted
by a communication channel, or impaired by the speaking abnormalities of
the talker, and received as the noisy and distorted signal y(¢). In addition to
conveying the spoken word, the acoustic speech signal has the capacity to
convey information on the speaking characteristic, accent and the emotional
state of the talker. The listener extracts these information by processing the
signal y(1).

In the past few decades, the theory and applications of digital signal
processing have evolved to play a central role in the development of modern
telecommunication and information technology systems.

Signal processing methods are central to efficient communication, and to
the development of intelligent man/machine interfaces in such areas as

Noise

Information ¢ Noisy Signal &

source - . signal [ . . . Inf ti
Information to | Signal Digital Signal | Informatios
o—» signal mapping - Channel a Processor [

Figure 1.1 lllustration of a communication and signal processing system.
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speech and visual pattern recognition for multimedia systems. In general,
digital signal processing is concerned with two broad areas of information
theory:

(a) efficient and reliable coding, transmission, reception, storage and
representation of signals in communication systems, and

(b) the extraction of information from noisy signals for pattern
recognition, detection, forecasting, decision-making, signal
enhancement, control, automation etc.

In the next section we consider four broad approaches to signal processing
problems.

1.2 Signal Processing Methods

Signal processing methods have evolved in algorithmic complexity aiming
for optimal utilisation of the information in order to achieve the best
performance. In general the computational requirement of signal processing
methods increases, often exponentially, with the algorithmic complexity.
However, the implementation cost of advanced signal processing methods
has been offset and made affordable by the consistent trend in recent years
of a continuing increase in the performance, coupled with a simultaneous
decrease in the cost, of signal processing hardware.

Depending on the method used, digital signal processing algorithms can
be categorised into one or a combination of four broad categories. These are
non-parametric signal processing, model-based signal processing, Bayesian
statistical signal processing and neural networks. These methods are briefly
described in the following.

1.2.1 Non-parametric Signal Processing

Non-parametric methods, as the name implies, do not utilise a parametric
model of the signal generation or a model of the statistical distribution of the
signal. The signal is processed as a waveform or a sequence of digits.
Non-parametric methods are not specialised to any particular class of
signals, they are broadly applicable methods that can be applied to any
signal regardless of the characteristics or the source of the signal. The
drawback of these methods is that they do not utilise the distinct
characteristics of the signal process that may lead to substantial
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improvement in performance. Some examples of non-parametric methods
include digital filtering and transform-based signal processing methods such
as the Fourier analysis/synthesis relations and the discrete cosine transform.
Some non-parametric methods of power spectrum estimation, interpolation
and signal restoration are described in Chapters 9, 10 and 11.

1.2.2 Model-Based Signal Processing

Model-based signal processing methods utilise a parametric model of the
signal generation process. The parametric model normally describes the
predictable structures and the expected patterns in the signal process, and
can be used to forecast the future values of a signal from its past trajectory.
Model-based methods normally outperform non-parametric methods, since
they utilise more information in the form of a model of the signal process.
However, they can be sensitive to the deviations of a signal from the class of
signals characterised by the model. The most widely used parametric model
is the linear prediction model, described in Chapter 8. Linear prediction
models have facilitated the development of advanced signal processing
methods for a wide range of applications such as low-bit-rate speech coding
in cellular mobile telephony, digital video coding, high-resolution spectral
analysis, radar signal processing and speech recognition.

1.2.3 Bayesian Statistical Signal Processing

The fluctuations of a purely random signal, or the distribution of a class of
random signals in the signal space, cannot be modelled by a predictive
equation, but can be described in terms of the statistical average values, and
modelled by a probability distribution function in a multidimensional signal
space. For example, as described in Chapter 8, a linear prediction model
driven by a random signal can model the acoustic realisation of a spoken
word. However, the random input signal of the linear prediction model, or
the variations in the characteristics of different acoustic realisations of the
same word across the speaking population, can only be described in
statistical terms and in terms of probability functions. Bayesian inference
theory provides a generalised framework for statistical processing of random
signals, and for formulating and solving estimation and decision-making
problems. Chapter 4 describes the Bayesian inference methodology and the
estimation of random processes observed in noise.
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1.2.4 Neural Networks

Neural networks are combinations of relatively simple non-linear adaptive
processing units, arranged to have a structural resemblance to the
transmission and processing of signals in biological neurons. In a neural
network several layers of parallel processing elements are interconnected
with a hierarchically structured connection network. The connection weights
are trained to perform a signal processing function such as prediction or
classification. Neural networks are particularly useful in non-linear
partitioning of a signal space, in feature extraction and pattern recognition,
and in decision-making systems. In some hybrid pattern recognition systems
neural networks are used to complement Bayesian inference methods. Since
the main objective of this book is to provide a coherent presentation of the
theory and applications of statistical signal processing, neural networks are
not discussed in this book.

1.3 Applications of Digital Signal Processing

In recent years, the development and commercial availability of increasingly
powerful and affordable digital computers has been accompanied by the
development of advanced digital signal processing algorithms for a wide
variety of applications such as noise reduction, telecommunication, radar,
sonar, video and audio signal processing, pattern recognition, geophysics
explorations, data forecasting, and the processing of large databases for the
identification extraction and organisation of unknown underlying structures
and patterns. Figure 1.2 shows a broad categorisation of some DSP
applications. This section provides a review of several key applications of
digital signal processing methods.

1.3.1 Adaptive Noise Cancellation and Noise Reduction

In speech communication from a noisy acoustic environment such as a
moving car or train, or over a noisy telephone channel, the speech signal is
observed in an additive random noise. In signal measurement systems the
information-bearing signal is often contaminated by noise from its
surrounding environment. The noisy observation y(m) can be modelled as

y(m) = x(m) + n(m) (1.2)
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Figure 1.2 A classification of the applications of digital signal processing.

where x(m) and n(m) are the signal and the noise, and m is the discrete-
time index. In some situations, for example when using a mobile telephone
in a moving car, or when using a radio communication device in an aircraft
cockpit, it may be possible to measure and estimate the instantaneous
amplitude of the ambient noise using a directional microphone. The signal
x(m) may then be recovered by subtraction of an estimate of the noise from

the noisy signal.

Figure 1.3 shows a two-input adaptive noise cancellation system for
enhancement of noisy speech. In this system a directional microphone takes

Noisy signal

Y(m) = x(m) +n(m)

Noise
oan(m+T) - ]
Z Signal
bl — x(m)
Adaptation
\ algorithm

N
Noise estimate ()

Noise Estimation Filter

Figure 1.3 Configuration of a two-microphone adaptive noise canceller.
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as input the noisy signal x(m) +n(m), and a second directional microphone,
positioned some distance away, measures the noise an(m+ 7). The

attenuation factor o and the time delay 7 provide a rather over-simplified
model of the effects of propagation of the noise to different positions in the
space where the microphones are placed. The noise from the second
microphone is processed by an adaptive digital filter to make it equal to the
noise contaminating the speech signal, and then subtracted from the noisy
signal to cancel out the noise. The adaptive noise canceller is more effective
in cancelling out the low-frequency part of the noise, but generally suffers
from the non-stationary character of the signals, and from the over-
simplified assumption that a linear filter can model the diffusion and
propagation of the noise sound in the space.

In many applications, for example at the receiver of a
telecommunication system, there is no access to the instantaneous value of
the contaminating noise, and only the noisy signal is available. In such cases
the noise cannot be cancelled out, but it may be reduced, in an average
sense, using the statistics of the signal and the noise process. Figure 1.4
shows a bank of Wiener filters for reducing additive noise when only the

Noisy signal

y(m)=x(m)+n(m) Restored signal

FAN
¥(0) X(0) A
y(0) —m» E = x(0)
g <
= N e}
S| v X(1) & A
y(h) — £ = [ x(D)
2| ve X2
v —» 5 @) »ﬁ @ = | g 1(2)
= . P 3
gl . : 2 .
5 . : a :
Y(N-1) X(N-1) | 5 A
V(N-1) —» ;WNJ — E — x(N-1)

Signal and noise —gwy Yiener filter
power spectra estimator

Figure 1.4 A frequency—domain Wiener filter for reducing additive noise.
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noisy signal is available. The filter bank coefficients attenuate each noisy
signal frequency in inverse proportion to the signal-to—noise ratio at that
frequency. The Wiener filter bank coefficients, derived in Chapter 6, are
calculated from estimates of the power spectra of the signal and the noise
processes.

1.3.2 Blind Channel Equalisation

Channel equalisation is the recovery of a signal distorted in transmission
through a communication channel with a non-flat magnitude or a non-linear
phase response. When the channel response is unknown the process of
signal recovery is called blind equalisation. Blind equalisation has a wide
range of applications, for example in digital telecommunications for
removal of inter-symbol interference due to non-ideal channel and multi-
path propagation, in speech recognition for removal of the effects of the
microphones and the communication channels, in correction of distorted
images, analysis of seismic data, de-reverberation of acoustic gramophone
recordings etc.

In practice, blind equalisation is feasible only if some useful statistics of
the channel input are available. The success of a blind equalisation method
depends on how much is known about the characteristics of the input signal
and how useful this knowledge can be in the channel identification and
equalisation process. Figure 1.5 illustrates the configuration of a decision-
directed equaliser. This blind channel equaliser is composed of two distinct
sections: an adaptive equaliser that removes a large part of the channel
distortion, followed by a non-linear decision device for an improved
estimate of the channel input. The output of the decision device is the final

Channel noise
n(m)

- ‘ Decision device
x(m) Channel distortion y(m) Equaliser N )

o—» H() A~ | ( ) Hinv(f)

f / f
Adaptation
algorithm

Error signal

Blind decision-directed equaliser

Figure 1.5 Configuration of a decision-directed blind channel equaliser.
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estimate of the channel input, and it is used as the desired signal to direct
the equaliser adaptation process. Blind equalisation is covered in detail in
Chapter 15.

1.3.3 Signal Classification and Pattern Recognition

Signal classification is used in detection, pattern recognition and decision-
making systems. For example, a simple binary-state classifier can act as the
detector of the presence, or the absence, of a known waveform in noise. In
signal classification, the aim is to design a minimum-error system for
labelling a signal with one of a number of likely classes of signal.

To design a classifier; a set of models are trained for the classes of
signals that are of interest in the application. The simplest form that the
models can assume is a bank, or code book, of waveforms, each
representing the prototype for one class of signals. A more complete model
for each class of signals takes the form of a probability distribution function.
In the classification phase, a signal is labelled with the nearest or the most
likely class. For example, in communication of a binary bit stream over a
band-pass channel, the binary phase—shift keying (BPSK) scheme signals
the bit “1” using the waveform A.sinw_  and the bit “0” using —A_sinw, .
At the receiver, the decoder has the task of classifying and labelling the
received noisy signal as a “1” or a “0”. Figure 1.6 illustrates a correlation
receiver for a BPSK signalling scheme. The receiver has two correlators,
each programmed with one of the two symbols representing the binary

Decision
Correlator for symbol "1" device
Corel(1)| € S
Received noisy symbol ANV e
o— S S tH—»
Corel(0)| S O
L ‘ = =
=
Correlator for symbol "0"

Figure 1.6 A block diagram illustration of the classifier in a binary phase-shift keying
demodulation.
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Figure 1.7 Configuration of speech recognition system, f(Y194;) is the likelihood of
the model 9/ given an observation sequence Y.

states for the bit “1” and the bit “0”. The decoder correlates the unlabelled
input signal with each of the two candidate symbols and selects the
candidate that has a higher correlation with the input.

Figure 1.7 illustrates the use of a classifier in a limited—vocabulary,
isolated-word speech recognition system. Assume there are V words in the
vocabulary. For each word a model is trained, on many different examples
of the spoken word, to capture the average characteristics and the statistical
variations of the word. The classifier has access to a bank of V+1 models,
one for each word in the vocabulary and an additional model for the silence
periods. In the speech recognition phase, the task is to decode and label an
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acoustic speech feature sequence, representing an unlabelled spoken word,
as one of the V likely words or silence. For each candidate word the
classifier calculates a probability score and selects the word with the highest
score.

1.3.4 Linear Prediction Modelling of Speech

Linear predictive models are widely used in speech processing applications
such as low-bit-rate speech coding in cellular telephony, speech
enhancement and speech recognition. Speech is generated by inhaling air
into the lungs, and then exhaling it through the vibrating glottis cords and
the vocal tract. The random, noise-like, air flow from the lungs is spectrally
shaped and amplified by the vibrations of the glottal cords and the resonance
of the vocal tract. The effect of the vibrations of the glottal cords and the
vocal tract is to introduce a measure of correlation and predictability on the
random variations of the air from the lungs. Figure 1.8 illustrates a model
for speech production. The source models the lung and emits a random
excitation signal which is filtered, first by a pitch filter model of the glottal
cords and then by a model of the vocal tract.

The main source of correlation in speech is the vocal tract modelled by a
linear predictor. A linear predictor forecasts the amplitude of the signal at
time m, x(m), using a linear combination of P previous samples
[x(m—=1),-,x(m— P)] as

P
X(m)=Y a;x(m—k) (1.3)
k=1
where Xx(m) is the prediction of the signal x(m), and the vector

a’ =[ay,...,ap] 1is the coefficients vector of a predictor of order P. The

Pitch period

WM | Glottal (pitch) MW""W Vocal tract W

Random| g model - model —»
source | Excitation P(2) H(z) Speech

Figure 1.8 Linear predictive model of speech.



12 Introduction

(m) x(m)
>

o i

-1 -
x(m—P) x(m-2) x(m-1)

Figure 1.9 lllustration of a signal generated by an all-pole, linear prediction
model.

prediction error e(m), i.e. the difference between the actual sample x(m)
and its predicted value x(m), is defined as

P
e(m)= x(m) — z apx(m —k) (1.4)
k=1

The prediction error e(m) may also be interpreted as the random excitation
or the so-called innovation content of x(m). From Equation (1.4) a signal
generated by a linear predictor can be synthesised as

P
x(m) = 2 ax(m—k) + e(m) (1.5)
k=1

Equation (1.5) describes a speech synthesis model illustrated in Figure 1.9.

1.3.5 Digital Coding of Audio Signals

In digital audio, the memory required to record a signal, the bandwidth
required for signal transmission and the signal-to—quantisation—noise ratio
are all directly proportional to the number of bits per sample. The objective
in the design of a coder is to achieve high fidelity with as few bits per
sample as possible, at an affordable implementation cost. Audio signal
coding schemes utilise the statistical structures of the signal, and a model of
the signal generation, together with information on the psychoacoustics and
the masking effects of hearing. In general, there are two main categories of
audio coders: model-based coders, used for low-bit-rate speech coding in



Applications of Digital Signal Processing 13

Pitch and vocal-tract Synthesiser
coefficients coefficients
Scalar
Speech x(m > B e
OP_()» Model-based quantiser

Excitation e(m) Excitation address

speech analysis Voot
- ector >
N\/\MM quantiser

(a) Source coder
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Figure 1.10 Block diagram configuration of a model-based speech coder.

applications such as cellular telephony; and transform-based coders used in
high—quality coding of speech and digital hi-fi audio.

Figure 1.10 shows a simplified block diagram configuration of a speech
coder—synthesiser of the type used in digital cellular telephone. The speech
signal is modelled as the output of a filter excited by a random signal. The
random excitation models the air exhaled through the lung, and the filter
models the vibrations of the glottal cords and the vocal tract. At the
transmitter, speech is segmented into blocks of about 30 ms long during
which speech parameters can be assumed to be stationary. Each block of
speech samples is analysed to extract and transmit a set of excitation and
filter parameters that can be used to synthesis the speech. At the receiver, the
model parameters and the excitation are used to reconstruct the speech.

A transform-based coder is shown in Figure 1.11. The aim of
transformation is to convert the signal into a form where it lends itself to a
more convenient and useful interpretation and manipulation. In Figure 1.11
the input signal is transformed to the frequency domain using a filter bank,
or a discrete Fourier transform, or a discrete cosine transform. Three main
advantages of coding a signal in the frequency domain are:

(a) The frequency spectrum of a signal has a relatively well-defined
structure, for example most of the signal power is usually
concentrated in the lower regions of the spectrum.
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Figure 1.11 lllustration of a transform-based coder.

(b) A relatively low—amplitude frequency would be masked in the near
vicinity of a large—amplitude frequency and can therefore be
coarsely encoded without any audible degradation.

(¢c) The frequency samples are orthogonal and can be coded
independently with different precisions.

The number of bits assigned to each frequency of a signal is a variable
that reflects the contribution of that frequency to the reproduction of a
perceptually high quality signal. In an adaptive coder, the allocation of bits
to different frequencies is made to vary with the time variations of the
power spectrum of the signal.

1.3.6 Detection of Signals in Noise

In the detection of signals in noise, the aim is to determine if the observation
consists of noise alone, or if it contains a signal. The noisy observation
y(m) can be modelled as

y(m) = b(m)x(m) + n(m) (1.6)

where x(m) is the signal to be detected, n(m) is the noise and b(m) is a
binary-valued state indicator sequence such that b(m)=1 indicates the
presence of the signal x(m) and b(m) =0 indicates that the signal is absent.
If the signal x(m) has a known shape, then a correlator or a matched filter
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Yim)=x(m)+n(m) Matched filter 2(m) g(m)

Threshold
O—» _ ———p L »
h(m) = x(N — 1-m) comparator

Figure 1.12 Configuration of a matched filter followed by a threshold comparator for
detection of signals in noise.

can be used to detect the signal as shown in Figure 1.12. The impulse
response h(m) of the matched filter for detection of a signal x(m) is the
time-reversed version of x(m) given by

h(m)=x(N —1—m) 0<m<N-1 (1.7)

where N is the length of x(m) . The output of the matched filter is given by

N-1
2(m)="Y h(m—k)y(m) (1.8)

m=0

The matched filter output is compared with a threshold and a binary

decision is made as
n 1 if z(m) = threshold
b(m)= (1.9)

0 otherwise

where lg(m) is an estimate of the binary state indicator sequence b(m), and
it may be erroneous in particular if the signal-to—noise ratio is low. Tablel .1
lists four possible outcomes that together b(m) and its estimate l;(m) can
assume. The choice of the threshold level affects the sensitivity of the

b(m) b(m) Detector decision
0 0 Signal absent  Correct
0 1 Signal absent  (Missed)
1 0 Signal present  (False alarm)
1 1 Signal present  Correct

Table 1.1 Four possible outcomes in a signal detection problem.
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Figure 1.13 Sonar: detection of objects using the intensity and time delay of
reflected sound waves.

detector. The higher the threshold, the less the likelihood that noise would
be classified as signal, so the false alarm rate falls, but the probability of
misclassification of signal as noise increases. The risk in choosing a
threshold value 6 can be expressed as

R (Threshold = 0)=P; (0)+ Py, (0) (1.10)

alse Alarm

The choice of the threshold reflects a trade-off between the misclassification
rate Pyy;(0) and the false alarm rate Pgyee Ajarm(6)-

1.3.7 Directional Reception of Waves: Beam-forming

Beam-forming is the spatial processing of plane waves received by an array
of sensors such that the waves incident at a particular spatial angle are
passed through, whereas those arriving from other directions are attenuated.
Beam-forming is used in radar and sonar signal processing (Figure 1.13) to
steer the reception of signals towards a desired direction, and in speech
processing for reducing the effects of ambient noise.

To explain the process of beam-forming consider a uniform linear array
of sensors as illustrated in Figure 1.14. The term linear array implies that
the array of sensors is spatially arranged in a straight line and with equal
spacing d between the sensors. Consider a sinusoidal far—field plane wave
with a frequency F(y propagating towards the sensors at an incidence angle

of 0 as illustrated in Figure 1.14. The array of sensors samples the incoming
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wave as it propagates in space. The time delay for the wave to travel a

distance of d between two adjacent sensors is given by
(1.11)

3 dsin 9

(4

where c is the speed of propagation of the wave in the medium. The phase
(1.12)

difference corresponding to a delay of 7is given by
dsin 0

T
=2 —=2nF
¢ T o ¢

0

where T is the period of the sine wave. By inserting appropriate corrective

Array of filters

Array of sensors
0

Output

Figure 1.14 lllustration of a beam-former, for directional reception of signals
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time delays in the path of the samples at each sensor, and then averaging the
outputs of the sensors, the signals arriving from the direction 8 will be time-
aligned and coherently combined, whereas those arriving from other
directions will suffer cancellations and attenuations. Figure 1.14 illustrates a
beam-former as an array of digital filters arranged in space. The filter array
acts as a two—dimensional space—time signal processing system. The space
filtering allows the beam-former to be steered towards a desired direction,
for example towards the direction along which the incoming signal has the
maximum intensity. The phase of each filter controls the time delay, and can
be adjusted to coherently combine the signals. The magnitude frequency
response of each filter can be used to remove the out—of-band noise.

1.3.8 Dolby Noise Reduction

Dolby noise reduction systems work by boosting the energy and the signal
to noise ratio of the high—frequency spectrum of audio signals. The energy
of audio signals is mostly concentrated in the low—frequency part of the
spectrum (below 2 kHz). The higher frequencies that convey quality and
sensation have relatively low energy, and can be degraded even by a low
amount of noise. For example when a signal is recorded on a magnetic tape,
the tape “hiss” noise affects the quality of the recorded signal. On playback,
the higher—frequency part of an audio signal recorded on a tape have smaller
signal-to—noise ratio than the low—frequency parts. Therefore noise at high
frequencies is more audible and less masked by the signal energy. Dolby
noise reduction systems broadly work on the principle of emphasising and
boosting the low energy of the high—frequency signal components prior to
recording the signal. When a signal is recorded it is processed and encoded
using a combination of a pre-emphasis filter and dynamic range
compression. At playback, the signal is recovered using a decoder based on
a combination of a de-emphasis filter and a decompression circuit. The
encoder and decoder must be well matched and cancel out each other in
order to avoid processing distortion.

Dolby has developed a number of noise reduction systems designated
Dolby A, Dolby B and Dolby C. These differ mainly in the number of bands
and the pre-emphasis strategy that that they employ. Dolby A, developed for
professional use, divides the signal spectrum into four frequency bands:
band 1 is low-pass and covers 0 Hz to 80 Hz; band 2 is band-pass and covers
80 Hz to 3 kHz; band 3 is high-pass and covers above 3 kHz; and band 4 is
also high-pass and covers above 9 kHz. At the encoder the gain of each band
is adaptively adjusted to boost low—energy signal components. Dolby A
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Figure 1.15 lllustration of the pre-emphasis response of Dolby-C: upto 20 dB
boost is provided when the signal falls 45 dB below maximum recording level.

provides a maximum gain of 10 to 15 dB in each band if the signal level
falls 45 dB below the maximum recording level. The Dolby B and Dolby C
systems are designed for consumer audio systems, and use two bands
instead of the four bands used in Dolby A. Dolby B provides a boost of up
to 10 dB when the signal level is low (less than 45 dB than the maximum
reference) and Dolby C provides a boost of up to 20 dB as illustrated in
Figurel.15.

1.3.9 Radar Signal Processing: Doppler Frequency Shift

Figure 1.16 shows a simple diagram of a radar system that can be used to
estimate the range and speed of an object such as a moving car or a flying
aeroplane. A radar system consists of a transceiver (transmitter/receiver) that
generates and transmits sinusoidal pulses at microwave frequencies. The
signal travels with the speed of light and is reflected back from any object in
its path. The analysis of the received echo provides such information as
range, speed, and acceleration. The received signal has the form
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x(t)=A(t)cos{wy[t—=2r(t)/c]} (1.13)
where A(?), the time-varying amplitude of the reflected wave, depends on the
position and the characteristics of the target, r(¢) is the time-varying distance

of the object from the radar and c is the velocity of light. The time-varying
distance of the object can be expanded in a Taylor series as

3 . 1., 1..3

where r, is the distance, 7 is the velocity, 7 is the acceleration etc.
Approximating r(¢) with the first two terms of the Taylor series expansion

we have
r(t)=ry+it (1.15)
Substituting Equation (1.15) in Equation (1.13) yields
x(t)=A(t)cos[(wg — 27wy /c)t =2wyry / c] (1.16)
Note that the frequency of reflected wave is shifted by an amount
0, =2rwg/c (1.17)
This shift in frequency is known as the Doppler frequency. If the object is

moving towards the radar then the distance r(¢) is decreasing with time, 7is
negative, and an increase in the frequency is observed. Conversely if the

Logt-2r/el)

Figure 1.16 lllustration of a radar system.
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object is moving away from the radar then the distance r(¢) is increasing, ris
positive, and a decrease in the frequency is observed. Thus the frequency
analysis of the reflected signal can reveal information on the direction and
speed of the object. The distance r( is given by

ro =0.5T xc (1.18)

where T is the round-trip time for the signal to hit the object and arrive back
at the radar and c is the velocity of light.

1.4 Sampling and Analog-to-Digital Conversion

A digital signal is a sequence of real-valued or complex—valued numbers,
representing the fluctuations of an information bearing quantity with time,
space or some other variable. The basic elementary discrete-time signal is
the unit-sample signal &(m) defined as

1 m=0

S(m) = {0 0 (1.19)

where m is the discrete time index. A digital signal x(m) can be expressed as
the sum of a number of amplitude-scaled and time-shifted unit samples as

x(m) = ix(k)5(m —k) (1.20)
k=—c0

Figure 1.17 illustrates a discrete-time signal. Many random processes, such
as speech, music, radar and sonar generate signals that are continuous in

/ﬂ/rm\ >
W \l Discrete time
m

Figure 1.17 A discrete-time signal and its envelope of variation with time.
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Figure 1.18 Configuration of a digital signal processing system.

time and continuous in amplitude. Continuous signals are termed analog
because their fluctuations with time are analogous to the variations of the
signal source. For digital processing, analog signals are sampled, and each
sample is converted into an n-bit digit. The digitisation process should be
performed such that the original signal can be recovered from its digital
version with no loss of information, and with as high a fidelity as is required
in an application. Figure 1.18 illustrates a block diagram configuration of a
digital signal processor with an analog input. The low-pass filter removes
out—of-band signal frequencies above a pre-selected range. The sample—
and-hold (S/H) unit periodically samples the signal to convert the
continuous-time signal into a discrete-time signal.

The analog—to—digital converter (ADC) maps each continuous
amplitude sample into an n-bit digit. After processing, the digital output of
the processor can be converted back into an analog signal using a digital-to—
analog converter (DAC) and a low-pass filter as illustrated in Figure 1.18.

1.4.1 Time-Domain Sampling and Reconstruction of Analog
Signals

The conversion of an analog signal to a sequence of n-bit digits consists of
two basic steps of sampling and quantisation. The sampling process, when
performed with sufficiently high speed, can capture the fastest fluctuations
of the signal, and can be a loss-less operation in that the analog signal can be
recovered through interpolation of the sampled sequence as described in
Chapter 10. The quantisation of each sample into an n-bit digit, involves
some irrevocable error and possible loss of information. However, in
practice the quantisation error can be made negligible by using an
appropriately high number of bits as in a digital audio hi-fi. A sampled
signal can be modelled as the product of a continuous-time signal x(#) and a
periodic impulse train p(¢) as
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Xsampled (1) =x(t) p(t)

= 1.21
= ) x(1)6(t—mT,) (2h

m=—oo

where Ty is the sampling interval and the sampling function p(f) is defined
as

p(t) = i5(t—mTS) (1.22)

m=—co

The spectrum P(f) of the sampling function p(¢) is also a periodic impulse
train given by

P(f)= Y.0(f —kF,) (1.23)

k=—o0

where Fy=1/T is the sampling frequency. Since multiplication of two time-
domain signals is equivalent to the convolution of their frequency spectra
we have

X umpled (f) = FT1x(0).p(0] = X (f)* P(f)= Y, 8(f —kFy) (1.24)

k=—co

where the operator FT[.] denotes the Fourier transform. In Equation (1.24)
the convolution of a signal spectrum X(f) with each impulse 8(f —kF),

shifts X(f) and centres it on kF. Hence, as expressed in Equation (1.24),

the sampling of a signal x(t) results in a periodic repetition of its spectrum
X(f) centred on frequencies 0,xF;,£2F,.... When the sampling

frequency is higher than twice the maximum frequency content of the
signal, then the repetitions of the signal spectra are separated as shown in
Figure 1.19. In this case, the analog signal can be recovered by passing the
sampled signal through an analog low-pass filter with a cut-off frequency of
F,. If the sampling frequency is less than 2F, then the adjacent repetitions
of the spectrum overlap and the original spectrum cannot be recovered. The
distortion, due to an insufficiently high sampling rate, is irrevocable and is
known as aliasing. This observation is the basis of the Nyquist sampling
theorem which states: a band-limited continuous-time signal, with a highest
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Figure 1.19 Sample-and-Hold signal modelled as impulse-train sampling followed
by convolution with a rectangular pulse.

frequency content (bandwidth) of B Hz, can be recovered from its samples
provided that the sampling speed F;>2B samples per second.

In practice sampling is achieved using an electronic switch that allows a
capacitor to charge up or down to the level of the input voltage once every
T seconds as illustrated in Figure 1.20. The sample-and-hold signal can be
modelled as the output of a filter with a rectangular impulse response, and
with the impulse—train—-sampled signal as the input as illustrated in
Figurel.19.



Sampling and Analog-to-Digital Conversion 25

R>

x(f) R
O— 1+

— O x(mTy)

|
¢

Figure 1.20 A simplified sample-and-hold circuit diagram.

1.4.2 Quantisation

For digital signal processing, continuous-amplitude samples from the
sample-and-hold are quantised and mapped into n-bit binary digits. For
quantisation to n bits, the amplitude range of the signal is divided into 27
discrete levels, and each sample is quantised to the nearest quantisation
level, and then mapped to the binary code assigned to that level. Figure 1.21
illustrates the quantisation of a signal into 4 discrete levels. Quantisation is a
many-to-one mapping, in that all the values that fall within the continuum of
a quantisation band are mapped to the centre of the band. The mapping
between an analog sample x,(m) and its quantised value x(m) can be

expressed as
x(m)=Q[x, (m)] (1.25)

where Q[-] is the quantising function.
The performance of a quantiser is measured by signal-to—quantisation
noise ratio SQNR per bit. The quantisation noise is defined as

e(m)=x(m)—x,(m) (1.26)

Now consider an n-bit quantiser with an amplitude range of £V volts. The
quantisation step size is A=2V/2". Assuming that the quantisation noise is a
zero-mean uniform process with an amplitude range of +A/2 we can express
the noise power as
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A2 A2

1
£l [ feletm) e mde(m) = [y dem)
—412 ~A12 (1.27)
AZ V22—2n
2 3

where fr(e(m))=1/ A is the uniform probability density function of the
noise. Using Equation (1.27) he signal-to—quantisation noise ratio is given

by
2 P..
SONR (n)=10 log,, —f[xz(m)] =10 logo| — o2l
Ele“(m)] Ve2T3
V2 2n
Signal
=4.77T—o0 +6n
where P, is the mean signal power, and o is the ratio in decibels of the

peak signal power V2 to the mean signal power Pg,,.;. Therefore, from

signa
Equation (1.28) every additional bit in an analog to digital converter results

in 6 dB improvement in signal-to—quantisation noise ratio.
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Figure 1.21 Offset-binary scalar quantisation
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NOISE AND DISTORTION

2.1 Introduction 2.6 Thermal Noise

2.2 White Noise 2.7 Shot Noise

2.3 Coloured Noise 2.8 Electromagnetic Noise
2.4 Impulsive Noise 2.9 Channel Distortions
2.5 Transient Noise Pulses 2.10 Modelling Noise

oise can be defined as an unwanted signal that interferes with the

communication or measurement of another signal. A noise itself is a

signal that conveys information regarding the source of the noise.
For example, the noise from a car engine conveys information regarding the
state of the engine. The sources of noise are many, and vary from audio
frequency acoustic noise emanating from moving, vibrating or colliding
sources such as revolving machines, moving vehicles, computer fans,
keyboard clicks, wind, rain, etc. to radio-frequency electromagnetic noise
that can interfere with the transmission and reception of voice, image and
data over the radio-frequency spectrum. Signal distortion is the term often
used to describe a systematic undesirable change in a signal and refers to
changes in a signal due to the non—ideal characteristics of the transmission
channel, reverberations, echo and missing samples.

Noise and distortion are the main limiting factors in communication and
measurement systems. Therefore the modelling and removal of the effects of
noise and distortion have been at the core of the theory and practice of
communications and signal processing. Noise reduction and distortion
removal are important problems in applications such as cellular mobile
communication, speech recognition, image processing, medical signal
processing, radar, sonar, and in any application where the signals cannot be
isolated from noise and distortion. In this chapter, we study the
characteristics and modelling of several different forms of noise.



30 Noise and Distortion

2.1 Introduction

Noise may be defined as any unwanted signal that interferes with the
communication, measurement or processing of an information-bearing
signal. Noise is present in various degrees in almost all environments. For
example, in a digital cellular mobile telephone system, there may be several
variety of noise that could degrade the quality of communication, such as
acoustic background noise, thermal noise, electromagnetic radio-frequency
noise, co-channel interference, radio-channel distortion, echo and processing
noise. Noise can cause transmission errors and may even disrupt a
communication process; hence noise processing is an important part of
modern telecommunication and signal processing systems. The success of a
noise processing method depends on its ability to characterise and model the
noise process, and to use the noise characteristics advantageously to
differentiate the signal from the noise. Depending on its source, a noise can
be classified into a number of categories, indicating the broad physical
nature of the noise, as follows:

(a) Acoustic noise: emanates from moving, vibrating, or colliding
sources and is the most familiar type of noise present in various
degrees in everyday environments. Acoustic noise is generated by
such sources as moving cars, air-conditioners, computer fans, traffic,
people talking in the background, wind, rain, etc.

(b) Electromagnetic noise: present at all frequencies and in particular at
the radio frequencies. All electric devices, such as radio and
television transmitters and receivers, generate electromagnetic noise.

(c) Electrostatic noise: generated by the presence of a voltage with or
without current flow. Fluorescent lighting is one of the more
common sources of electrostatic noise.

(d) Channel distortions, echo, and fading: due to non-ideal
characteristics of communication channels. Radio channels, such as
those at microwave frequencies used by cellular mobile phone
operators, are particularly sensitive to the propagation characteristics
of the channel environment.

(e) Processing noise: the noise that results from the digital/analog
processing of signals, e.g. quantisation noise in digital coding of
speech or image signals, or lost data packets in digital data
communication systems.
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Depending on its frequency or time characteristics, a noise process can
be classified into one of several categories as follows:

(a) Narrowband noise: a noise process with a narrow bandwidth such as
a 50/60 Hz ‘hum’ from the electricity supply.

(b) White noise: purely random noise that has a flat power spectrum.
White noise theoretically contains all frequencies in equal intensity.

(c) Band-limited white noise: a noise with a flat spectrum and a limited
bandwidth that usually covers the limited spectrum of the device or
the signal of interest.

(d) Coloured noise: non-white noise or any wideband noise whose
spectrum has a non-flat shape; examples are pink noise, brown noise
and autoregressive noise.

(e) Impulsive noise: consists of short-duration pulses of random
amplitude and random duration.

(f) Transient noise pulses: consists of relatively long duration noise
pulses.

2.2 White Noise

White noise is defined as an uncorrelated noise process with equal power at
all frequencies (Figure 2.1). A noise that has the same power at all
frequencies in the range of +oo would necessarily need to have infinite
power, and is therefore only a theoretical concept. However a band-limited
noise process, with a flat spectrum covering the frequency range of a band-
limited communication system, is to all intents and purposes from the point
of view of the system a white noise process. For example, for an audio
system with a bandwidth of 10 kHz, any flat-spectrum audio noise with a
bandwidth greater than 10 kHz looks like a white noise.

) A L)

0 50 100 150 200 250 300 |

(a) (b) (c)
Figure 2.1 lllustration of (a) white noise, (b) its autocorrelation, and
(c) its power spectrum.
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The autocorrelation function of a continuous-time zero-mean white noise

process with a variance of o is a delta function given by
NN (T)=E[N(@)N(t+7)]=6°8(T) 2.1

The power spectrum of a white noise, obtained by taking the Fourier
transform of Equation (2.1), is given by

Py ()= [ray (De™*dt = 6 (2.2)

—o00

Equation (2.2) shows that a white noise has a constant power spectrum.

A pure white noise is a theoretical concept, since it would need to have
infinite power to cover an infinite range of frequencies. Furthermore, a
discrete-time signal by necessity has to be band-limited, with its highest
frequency less than half the sampling rate. A more practical concept is band-
limited white noise, defined as a noise with a flat spectrum in a limited
bandwidth. The spectrum of band-limited white noise with a bandwidth of B
Hz is given by

o2, IfI<B

0, otherwise

Pyn (f )={ (2.3)

Thus the total power of a band-limited white noise process is 2B . The
autocorrelation function of a discrete-time band-limited white noise process
is given by

5 sin(2nBT k)

rvy (T k)=2Bo
w (10 27BT, k

2.4)

where T is the sampling period. For convenience of notation 7 is usually
assumed to be unity. For the case when T, =1/2B, i.e. when the sampling rate
is equal to the Nyquist rate, Equation (2.4) becomes

B2 sin (7tk)

ray (Tk)=2 =2Bc 25 (k) (2.5)

In Equation (2.5) the autocorrelation function is a delta function.
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2.3 Coloured Noise

Although the concept of white noise provides a reasonably realistic and
mathematically convenient and useful approximation to some predominant
noise processes encountered in telecommunication systems, many other
noise processes are non-white. The term coloured noise refers to any
broadband noise with a non-white spectrum. For example most audio-
frequency noise, such as the noise from moving cars, noise from computer
fans, electric drill noise and people talking in the background, has a non-
white predominantly low-frequency spectrum. Also, a white noise passing
through a channel is “coloured” by the shape of the channel spectrum. Two
classic varieties of coloured noise are so-called pink noise and brown noise,
shown in Figures 2.2 and 2.3.
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Figure 2.2 (a) A pink noise signal and (b) its magnitude spectrum.
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Figure 2.3 (a) A brown noise signal and (b) its magnitude spectrum.
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2.4 Impulsive Noise

Impulsive noise consists of short-duration “on/off” noise pulses, caused by a
variety of sources, such as switching noise, adverse channel environment in
a communication system, drop-outs or surface degradation of audio
recordings, clicks from computer keyboards, etc. Figure 2.4(a) shows an
ideal impulse and its frequency spectrum. In communication systems, a real
impulsive-type noise has a duration that is normally more than one sample
long. For example, in the context of audio signals, short-duration, sharp
pulses, of up to 3 milliseconds (60 samples at a 20 kHz sampling rate) may
be considered as impulsive noise. Figures 2.4(b) and (c) illustrate two
examples of short-duration pulses and their respective spectra.

In a communication system, an impulsive noise originates at some point
in time and space, and then propagates through the channel to the receiver.
The received noise is time-dispersed and shaped by the channel, and can be
considered as the channel impulse response. In general, the characteristics of
a communication channel may be linear or non-linear, stationary or time
varying. Furthermore, many communication systems, in response to a large-
amplitude impulse, exhibit a non-linear characteristic.

A nil(m) =6 (m) ‘ Nil 6]
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Figure 2.4 Time and frequency sketches of: (a) an ideal impulse, (b) and (c) short-
duration pulses.
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Figure 2.5 lllustration of variations of the |mpulse response of a non-linear system
with the increasing amplitude of the impulse.

Figure 2.5 illustrates some examples of impulsive noise, typical of
those observed on an old gramophone recording. In this case, the
communication channel is the playback system, and may be assumed to be
time-invariant. The figure also shows some variations of the channel
characteristics with the amplitude of impulsive noise. For example, in
Figure 2.5(c) a large impulse excitation has generated a decaying transient
pulse. These variations may be attributed to the non-linear characteristics of
the playback mechanism.

2.5 Transient Noise Pulses

Transient noise pulses often consist of a relatively short sharp initial pulse
followed by decaying low-frequency oscillations as shown in Figure 2.6.
The initial pulse is usually due to some external or internal impulsive
interference, whereas the oscillations are often due to the resonance of the

n(m)

R L]JT i
\r S
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Figure 2.6 (a) A scratch pulse and music from a gramophone record. (b) The
averaged profile of a gramophone record scratch pulse.
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communication channel excited by the initial pulse, and may be considered
as the response of the channel to the initial pulse. In a telecommunication
system, a noise pulse originates at some point in time and space, and then
propagates through the channel to the receiver. The noise pulse is shaped
by the channel characteristics, and may be considered as the channel pulse
response. Thus we should be able to characterize the transient noise pulses
with a similar degree of consistency as in characterizing the channels
through which the pulses propagate.

As an illustration of the shape of a transient noise pulse, consider the
scratch pulses from a damaged gramophone record shown in Figures 2.6(a)
and (b). Scratch noise pulses are acoustic manifestations of the response of
the stylus and the associated electro-mechanical playback system to a sharp
physical discontinuity on the recording medium. Since scratches are
essentially the impulse response of the playback mechanism, it is expected
that for a given system, various scratch pulses exhibit a similar
characteristics. As shown in Figure 2.6(b), a typical scratch pulse waveform
often exhibits two distinct regions:

(a) the initial high-amplitude pulse response of the playback system to
the physical discontinuity on the record medium, followed by;

(b) decaying oscillations that cause additive distortion. The initial pulse
is relatively short and has a duration on the order of 1-5 ms, whereas
the oscillatory tail has a longer duration and may last up to 50 ms or
more.

Note in Figure 2.6(b) that the frequency of the decaying oscillations
decreases with time. This behaviour may be attributed to the non-linear
modes of response of the electro-mechanical playback system excited by the
physical scratch discontinuity. Observations of many scratch waveforms
from damaged gramophone records reveals that they have a well-defined
profile, and can be characterised by a relatively small number of typical
templates. Scratch pulse modelling and removal is considered in detain in
Chapter 13.

2.6 Thermal Noise

Thermal noise, also referred to as Johnson noise (after its discoverer J. B.
Johnson), is generated by the random movements of thermally energised
particles. The concept of thermal noise has its roots in thermodynamics and
is associated with the temperature-dependent random movements of free
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particles such as gas molecules in a container or electrons in a conductor.
Although these random particle movements average to zero, the fluctuations
about the average constitute the thermal noise. For example, the random
movements and collisions of gas molecules in a confined space produce
random fluctuations about the average pressure. As the temperature
increases, the kinetic energy of the molecules and the thermal noise
increase.

Similarly, an electrical conductor contains a very large number of free
electrons, together with ions that vibrate randomly about their equilibrium
positions and resist the movement of the electrons. The free movement of
electrons constitutes random spontaneous currents, or thermal noise, that
average to zero since in the absent of a voltage electrons move in all
different directions. As the temperature of a conductor, provided by its
surroundings, increases, the electrons move to higher-energy states and the
random current flow increases. For a metallic resistor, the mean square
value of the instantaneous voltage due to the thermal noise is given by

v2 = 4kTRB (2.6)

where k=1.38x10"* joules per degree Kelvin is the Boltzmann constant, 7 is
the absolute temperature in degrees Kelvin, R is the resistance in ohms and
B is the bandwidth. From Equation (2.6) and the preceding argument, a
metallic resistor sitting on a table can be considered as a generator of

thermal noise power, with a mean square voltage v’ and an internal
resistance R. From circuit theory, the maximum available power delivered
by a “thermal noise generator”, dissipated in a matched load of resistance R,
is given by

_ 2 2
% v
Py =i*R=[-™ | R=——=kTB (W 2.7
N ( 2R ) 4R (W) @D
where v 1s the root mean square voltage. The spectral density of thermal

noise is given by

P,(f)= kTT (W/Hz) (2.8)

From Equation (2.8), the thermal noise spectral density has a flat shape, i.e.
thermal noise is a white noise. Equation (2.8) holds well up to very high
radio frequencies of 10" Hz.
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2.7 Shot Noise

The term shot noise arose from the analysis of random variations in the
emission of electrons from the cathode of a vacuum tube. Discrete electron
particles in a current flow arrive at random times, and therefore there will be
fluctuations about the average particle flow. The fluctuations in the rate of
particle flow constitutes the shot noise. Other instances of shot noise are the
flow of photons in a laser beam, the flow and recombination of electrons and
holes in semiconductors, and the flow of photoelectrons emitted in
photodiodes. The concept of randomness of the rate of emission or arrival of
particles implies that shot noise can be modelled by a Poisson distribution.
When the average number of arrivals during the observing time is large, the
fluctuations will approach a Gaussian distribution. Note that whereas
thermal noise is due to “unforced” random movement of particles, shot noise
happens in a forced directional flow of particles.

Now consider an electric current as the flow of discrete electric charges.
If the charges act independently of each other the fluctuating current is given
by

Inoise(rms) = ( 2ely.B )" (2.9)

where e=1.6x10"""coulomb is the electron charge, and B is the
measurement bandwidth. For example, a “steady” current /4. of 1 amp in a
bandwidth 1 MHz has an rms fluctuation of 0.57 microamps. Equation (2.9)
assumes that the charge carriers making up the current act independently.
That is the case for charges crossing a barrier, as for example the current in a
junction diode, where the charges move by diffusion; but it is not true for
metallic conductors, where there are long-range correlations between charge
carriers.

2.8 Electromagnetic Noise

Virtually every electrical device that generates, consumes or transmits
power is a potential source of electromagnetic noise and interference for
other systems. In general, the higher the voltage or the current level, and the
closer the proximity of electrical circuits/devices, the greater will be the
induced noise. The common sources of electromagnetic noise are
transformers, radio and television transmitters, mobile phones, microwave
transmitters, ac power lines, motors and motor starters, generators, relays,
oscillators, fluorescent lamps, and electrical storms.
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Electrical noise from these sources can be categorized into two basic
types: electrostatic and magnetic. These two types of noise are
fundamentally different, and thus require different noise-shielding measures.
Unfortunately, most of the common noise sources listed above produce
combinations of the two noise types, which can complicate the noise
reduction problem.

Electrostatic fields are generated by the presence of voltage, with or
without current flow. Fluorescent lighting is one of the more common
sources of electrostatic noise. Magnetic fields are created either by the flow
of electric current or by the presence of permanent magnetism. Motors and
transformers are examples of the former, and the Earth's magnetic field is an
instance of the latter. In order for noise voltage to be developed in a
conductor, magnetic lines of flux must be cut by the conductor. Electric
generators function on this basic principle. In the presence of an alternating
field, such as that surrounding a 50/60 Hz power line, voltage will be
induced into any stationary conductor as the magnetic field expands and
collapses. Similarly, a conductor moving through the Earth's magnetic field
has a noise voltage generated in it as it cuts the lines of flux.

2.9 Channel Distortions

On propagating through a channel, signals are shaped and distorted by the
frequency response and the attenuating characteristics of the channel. There
are two main manifestations of channel distortions: magnitude distortion
and phase distortion. In addition, in radio communication, we have the

A Input Channel distortion Output
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Figure 2.7 lllustration of channel distortion: (a) the input signal spectrum, (b) the
channel frequency response, (c) the channel output.
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multi-path effect, in which the transmitted signal may take several different
routes to the receiver, with the effect that multiple versions of the signal
with different delay and attenuation arrive at the receiver. Channel
distortions can degrade or even severely disrupt a communication process,
and hence channel modelling and equalization are essential components of
modern digital communication systems. Channel equalization is particularly
important in modern cellular communication systems, since the variations of
channel characteristics and propagation attenuation in cellular radio systems
are far greater than those of the landline systems. Figure 2.7 illustrates the
frequency response of a channel with one invertible and two non-invertible
regions. In the non-invertible regions, the signal frequencies are heavily
attenuated and lost to the channel noise. In the invertible region, the signal is
distorted but recoverable. This example illustrates that the channel inverse
filter must be implemented with care in order to avoid undesirable results
such as noise amplification at frequencies with a low SNR. Channel
equalization is covered in detail in Chapter 15.

2.10 Modelling Noise

The objective of modelling is to characterise the structures and the patterns
in a signal or a noise process. To model a noise accurately, we need a
structure for modelling both the temporal and the spectral characteristics of
the noise. Accurate modelling of noise statistics is the key to high-quality
noisy signal classification and enhancement. Even the seemingly simple task
of signal/noise classification is crucially dependent on the availability of
good signal and noise models, and on the use of these models within a
Bayesian framework. Hidden Markov models described in Chapter 5 are
good structure for modelling signals or noise.

One of the most useful and indispensable tools for gaining insight into
the structure of a noise process is the use of Fourier transform for frequency

1
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Figure 2.8 lllustration of: (a) the time-waveform of a drill noise, and (b) the frequency
spectrum of the drill noise.
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Figure 2.9 Power spectra of car noise in (a) a BMW at 70 mph, and
(b) a Volvo at 70 mph.

analysis. Figure 2.8 illustrates the noise from an electric drill, which, as
expected, has a periodic structure. The spectrum of the drilling noise shown
in Figure 2.8(a) reveals that most of the noise energy is concentrated in the
lower-frequency part of the spectrum. In fact, it is true of most audio signals
and noise that they have a predominantly low-frequency spectrum.
However, it must be noted that the relatively lower-energy high-frequency
part of audio signals plays an important part in conveying sensation and
quality. Figures 2.9(a) and (b) show examples of the spectra of car noise
recorded from a BMW and a Volvo respectively. The noise in a car is
nonstationary, and varied, and may include the following sources:

(a)quasi-periodic noise from the car engine and the revolving mechanical
parts of the car;

(b)noise from the surface contact of wheels and the road surface;

(c)noise from the air flow into the car through the air ducts, windows,
sunroof, etc;

(d) noise from passing/overtaking vehicles.

The characteristic of car noise varies with the speed, the road surface
conditions, the weather, and the environment within the car.

The simplest method for noise modelling, often used in current practice,
is to estimate the noise statistics from the signal-inactive periods. In optimal
Bayesian signal processing methods, a set of probability models are trained
for the signal and the noise processes. The models are then used for the
decoding of the underlying states of the signal and noise, and for noisy
signal recognition and enhancement.
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2.10.1 Additive White Gaussian Noise Model (AWGN)

In communication theory, it is often assumed that the noise is a stationary
additive white Gaussian (AWGN) process. Although for some problems this
is a valid assumption and leads to mathematically convenient and useful
solutions, in practice the noise is often time-varying, correlated and non-
Gaussian. This is particularly true for impulsive-type noise and for acoustic
noise, which are non-stationary and non-Gaussian and hence cannot be
modelled using the AWGN assumption. Non-stationary and non-Gaussian
noise processes can be modelled by a Markovian chain of stationary sub-
processes as described briefly in the next section and in detail in Chapter 5.

2.10.2 Hidden Markov Model for Noise

Most noise processes are non-stationary; that is the statistical parameters of
the noise, such as its mean, variance and power spectrum, vary with time.
Nonstationary processes may be modelled using the hidden Markov models
(HMMs) described in detail in Chapter 5. An HMM is essentially a finite-
state Markov chain of stationary subprocesses. The implicit assumption in
using HMMs for noise is that the noise statistics can be modelled by a
Markovian chain of stationary subprocesses. Note that a stationary noise
process can be modelled by a single-state HMM. For a non-stationary noise,
a multistate HMM can model the time variations of the noise process with a
finite number of stationary states. For non-Gaussian noise, a mixture
Gaussian density model can be used to model the space of the noise within
each state. In general, the number of states per model and number of
mixtures per state required to accurately model a noise process depends on

Figure 2.10 (a) An impulsive noise sequence. (b) A binary-state model of impulsive
noise.
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the non-stationary character of the noise.

An example of a non-stationary noise is the impulsive noise of Figure
2.10(a). Figure 2.10(b) shows a two-state HMM of the impulsive noise
sequence: the state S, models the “impulse-off” periods between the

impulses, and state S, models an impulse. In those cases where each impulse
has a well-defined temporal structure, it may be beneficial to use a multi-
state HMM to model the pulse itself. HMMs are used in Chapter 11 for
modelling impulsive noise, and in Chapter 14 for channel equalisation.

Bibliography

BELL D.A. (1960) Electrical Noise and Physical Mechanism. Van Nostrand,
London.

BENNETT W.R. (1960) Electrical Noise. McGraw-Hill. NewYork.

DAvVENPORT W.B. and Roor W.L. (1958) An Introduction to the Theory of
Random Signals and Noise. McGraw-Hill, New York.

GopsiLL S.J. (1993) The Restoration of Degraded Audio Signals. Ph.D.
Thesis, Cambridge University.

SCHWARTZ M. (1990) Information Transmission, Modulation and Noise. 4"
Ed., McGraw-Hill, New York.

EPHRAIM Y. (1992) Statistical Model Based Speech Enhancement Systems.
Proc. IEEE 80, 10, pp. 1526-1555.

VAN-TREes H.L. (1971) Detection, Estimation and Modulation Theory.
Parts I, IT and III. Wiley, New York.



Advanced Digital Signal Processing and Noise Reduction, Second Edition.
Saeed V. Vaseghi

Copyright © 2000 John Wiley & SonsLtd

ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic)

N

The small probability of collision of the Earth and a comet can become very
great in adding over a long sequence of centuries. It is easy to picture the
effects of this impact on the Earth. The axis and the motion of rotation have
changed, the seas abandoning their old position...

Pierre-Simon Laplace

PROBABILITY MODELS

3.1 Random Signals and Stochastic Processes
3.2 Probabilistic Models

3.3 Stationary and Non-stationary Processes
3.4 Expected Values of a Process

3.5 Some Useful Classes of Random Processes
3.6 Transformation of a Random Process

3.7 Summary

robability models form the foundation of information theory.

Information itself is quantified in terms of the logarithm of

probability. Probability models are used to characterise and predict
the occurrence of random events in such diverse areas of applications as
predicting the number of telephone calls on a trunk line in a specified period
of the day, road traffic modelling, weather forecasting, financial data
modelling, predicting the effect of drugs given data from medical trials, etc.
In signal processing, probability models are used to describe the variations
of random signals in applications such as pattern recognition, signal coding
and signal estimation. This chapter begins with a study of the basic concepts
of random signals and stochastic processes and the models that are used for
the characterisation of random processes. Stochastic processes are classes of
signals whose fluctuations in time are partially or completely random, such
as speech, music, image, time-varying channels, noise and video. Stochastic
signals are completely described in terms of a probability model, but can
also be characterised with relatively simple statistics, such as the mean, the
correlation and the power spectrum. We study the concept of ergodic
stationary processes in which time averages obtained from a single
realisation of a process can be used instead of ensemble averages. We
consider some useful and widely used classes of random signals, and study
the effect of filtering or transformation of a signal on its probability
distribution.
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3.1 Random Signals and Stochastic Processes

Signals, in terms of one of their most fundamental characteristics, can be
classified into two broad categories: deterministic signals and random
signals. Random functions of time are often referred to as sfochastic signals.
In each class, a signal may be continuous or discrete in time, and may have
continuous-valued or discrete-valued amplitudes.

A deterministic signal can be defined as one that traverses a
predetermined trajectory in time and space. The exact fluctuations of a
deterministic signal can be completely described in terms of a function of
time, and the exact value of the signal at any time is predictable from the
functional description and the past history of the signal. For example, a sine
wave x(f) can be modelled, and accurately predicted either by a second-order
linear predictive model or by the more familiar equation x(¢)=A sin(2nft+¢).

Random signals have unpredictable fluctuations; hence it is not possible
to formulate an equation that can predict the exact future value of a random
signal from its past history. Most signals such as speech and noise are at
least in part random. The concept of randomness is closely associated with
the concepts of information and noise. Indeed, much of the work on the
processing of random signals is concerned with the extraction of
information from noisy observations. If a signal is to have a capacity to
convey information, it must have a degree of randomness: a predictable
signal conveys no information. Therefore the random part of a signal is
either the information content of the signal, or noise, or a mixture of both
information and noise. Although a random signal is not completely
predictable, it often exhibits a set of well-defined statistical characteristic
values such as the maximum, the minimum, the mean, the median, the
variance and the power spectrum. A random process is described in terms of
its statistics, and most completely in terms of a probability model from
which all its statistics can be calculated.

Example 3.1 Figure 3.1(a) shows a block diagram model of a
deterministic discrete-time signal. The model generates an output signal
x(m) from the P past samples as

x(m)=hy(x(m —1),x(m —2),...,x(m— P)) (3.1)

where the function #; may be a linear or a non-linear model. A functional
description of the model s; and the P initial sample values are all that is

required to predict the future values of the signal x(m). For example for a
sinusoidal signal generator (or oscillator) Equation (3.1) becomes
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Figure 3.1 lllustration of deterministic and stochastic signal models: (a) a
deterministic signal model, (b) a stochastic signal model.

x(m)=ax(m—-1)—x(m-2) (3.2)

where the choice of the parameter a=2cos(2nF, /F;) determines the
oscillation frequency F,, of the sinusoid, at a sampling frequency of Fi.
Figure 3.1(b) is a model for a stochastic random process given by

x(m)=h, (x(m—1),x(m = 2),...,x(m — P))+e(m) (3.3)

where the random input e(m) models the unpredictable part of the signal
x(m), and the function h, models the part of the signal that is correlated

with the past samples. For example, a narrowband, second-order
autoregressive process can be modelled as

x(m)y=a; x(m—1)+a, x(m—2)+e(m) (3.4)

where the choice of the parameters a; and a, will determine the centre
frequency and the bandwidth of the process.
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3.1.1 Stochastic Processes

The term “stochastic process” is broadly used to describe a random process
that generates sequential signals such as speech or noise. In signal
processing terminology, a stochastic process is a probability model of a class
of random signals, e.g. Gaussian process, Markov process, Poisson process,
etc. The classic example of a stochastic process is the so-called Brownian
motion of particles in a fluid. Particles in the space of a fluid move
randomly due to bombardment by fluid molecules. The random motion of
each particle is a single realisation of a stochastic process. The motion of all
particles in the fluid forms the collection or the space of different
realisations of the process.

In this chapter, we are mainly concerned with discrete-time random
processes that may occur naturally or may be obtained by sampling a
continuous-time band-limited random process. The term ‘“discrete-time
stochastic process” refers to a class of discrete-time random signals, X(m),
characterised by a probabilistic model. Each realisation of a discrete
stochastic process X(m) may be indexed in time and space as x(m,s),
where m is the discrete time index, and s is an integer variable that
designates a space index to each realisation of the process.

3.1.2 The Space or Ensemble of a Random Process

The collection of all realisations of a random process is known as the
ensemble, or the space, of the process. For an illustration, consider a random
noise process over a telecommunication network as shown in Figure 3.2.
The noise on each telephone line fluctuates randomly with time, and may be
denoted as n(m,s), where m is the discrete time index and s denotes the line
index. The collection of noise on different lines form the ensemble (or the
space) of the noise process denoted by N(m)={n(m,s)}, where n(m,s)
denotes a realisation of the noise process N(m) on the line s. The “true”
statistics of a random process are obtained from the averages taken over the
ensemble of many different realisations of the process. However, in many
practical cases, only one realisation of a process is available. In Section 3.4,
we consider the so-called ergodic processes in which time-averaged
statistics, from a single realisation of a process, may be used instead of the
ensemble-averaged statistics.

Notation The following notation is used in this chapter: X(m) denotes a
random process, the signal x(m,s) is a particular realisation of the process
X(m), the random signal x(m) is any realisation of X(m), and the collection
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n(m, s-1)

NV

Figure 3.2 lllustration of three realisations in the space of a random noise N(m).

of all realisations of X(m), denoted by {x(m,s)}, form the ensemble or the
space of the random process X(m).

3.2 Probabilistic Models

Probability models provide the most complete mathematical description of a
random process. For a fixed time instant m, the collection of sample
realisations of a random process {x(m,s)} is a random variable that takes on
various values across the space s of the process. The main difference
between a random variable and a random process is that the latter generates
a time series. Therefore, the probability models used for random variables
may also be applied to random processes. We start this section with the
definitions of the probability functions for a random variable.

The space of a random variable is the collection of all the values, or
outcomes, that the variable can assume. The space of a random variable can
be partitioned, according to some criteria, into a number of subspaces. A
subspace is a collection of signal values with a common attribute, such as a
cluster of closely spaced samples, or the collection of samples with their
amplitude within a given band of values. Each subspace is called an event,
and the probability of an event A, P(A), is the ratio of the number of
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Figure 3.3 A two-dimensional representation of the outcomes of two dice, and the
subspaces associated with the events corresponding to the sum of the dice being
greater than 8 or, less than or equal to 8.

observed outcomes from the space of A, N,, divided by the total number of
observations:

P(A)=—2 (3.5)

Allevents i

From Equation (3.5), it is evident that the sum of the probabilities of all
likely events in an experiment is unity.

Example 3.2 The space of two discrete numbers obtained as outcomes of
throwing a pair of dice is shown in Figure 3.3. This space can be partitioned
in different ways; for example, the two subspaces shown in Figure 3.3 are
associated with the pair of numbers that add up to less than or equal to 8,
and to greater than 8. In this example, assuming the dice are not loaded, all
numbers are equally likely, and the probability of each event is proportional
to the total number of outcomes in the space of the event.

3.2.1 Probability Mass Function (pmf)

For a discrete random variable X that can only assume discrete values from a
finite set of N numbers {x;, x,, ..., xy}, each outcome x; may be considered

as an event and assigned a probability of occurrence. The probability that a
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discrete-valued random variable X takes on a value of x;, P(X= x;), is called

the probability mass function (pmf). For two such random variables X and Y,
the probability of an outcome in which X takes on a value of x; and Y takes

on a value of Vs P(X=x; Y:yj), is called the joint probability mass function.

The joint pmf can be described in terms of the conditional and the marginal
probability mass functions as

Py y (x;, ¥ ;)= Pyix (v 1 x;) Py (X;)

(3.6)
=Pyy (X1 y )Py (y;)

where Py x(y;lx;) is the probability of the random variable Y taking on a
value of y; conditioned on X having taken a value of x;, and the so-called
marginal pmf of X is obtained as

M
PX (xi)zsz,y(xia)’j)
= 3.7)

M
zszw(xi' yi) Py (y;)
J=1

where M is the number of values, or outcomes, in the space of the discrete
random variable Y. From Equations (3.6) and (3.7), we have Bayes’ rule for
the conditional probability mass function, given by

Pyy (x;1y ;)= Pyx (v 1x;) Py (x;)

Py(y;)
Pyix (1 x;) Px (x;) (3.8)

M
ZPle(yﬂ x;) Py (x;)

i=1
3.2.2 Probability Density Function (pdf)
Now consider a continuous-valued random variable. A continuous-valued

variable can assume an infinite number of values, and hence, the probability
that it takes on a given value vanishes to zero. For a continuous-valued
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random variable X the cumulative distribution function (cdf) is defined as
the probability that the outcome is less than x as:

Fy(x) = Prob(X < x) 3.9)

where Prob(-) denotes probability. The probability that a random variable X
takes on a value within a band of A centred on x can be expressed as

iProb(x—A/ZS XSx+A/2)=§[Pr0b(XSx+A/Z)—Prob(XS x—A412)]

:i[FX (x4 A12)=Fy (x=4/2)]  (3.10)

As Atends to zero we obtain the probability density function (pdf) as

1
fx (X)ZKQ)Z[FX (x+4/2)=Fy (x—4/2)]

:BFX (x) (3.11)

dx

Since Fy (x) increases with x, the pdf of x, which is the rate of change of
Fx(x) with x, is a non-negative-valued function; i.e. fy(x) = 0. The integral
of the pdf of a random variable X in the range = o is unity:

j fy (0)dx=1 (3.12)

The conditional and marginal probability functions and the Bayes rule, of
Equations (3.6)—(3.8), also apply to probability density functions of
continuous-valued variables.

Now, the probability models for random variables can also be applied to
random processes. For a continuous-valued random process X(m), the
simplest probabilistic model is the univariate pdf fy,(x), which is the

probability density function that a sample from the random process X(m)
takes on a value of x. A bivariate pdf fyq,x(m+n) (X1, X2) describes the

probability that the samples of the process at time instants m and m-+n take
on the values x; and x, respectively. In general, an M-variate pdf
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I X)) X(my)---X (myy ) (K15 X254 ---, Xpy) describes the pdf of M samples of a

random process taking specific values at specific time instants. For an M-
variate pdf, we can write

J-fx(ml)n_x(mM)(xl,...,xM )dxM = fx(ml)__.x(mM_l)(xl,...,xM_l) (3.13)

—oo

and the sum of the pdfs of all possible realisations of a random process is
unity, i.e.

[} [}

[ Tty g sy Yl oty =1 (3.14)

—oo —00

The probability of a realisation of a random process at a specified time
instant may be conditioned on the value of the process at some other time
instant, and expressed in the form of a conditional probability density
function as

fX(n)IX(m) (xn |xm )fX(m) (X)
= 3.15
Ix myix ) (xm|xn) T () (3.15)

If the outcome of a random process at any time is independent of its
outcomes at other time instants, then the random process is uncorrelated.
For an uncorrelated process a multivariate pdf can be written in terms of the
products of univariate pdfs as

Tix amy-x (myy )\X(nl)-X(nN)](xm1 s Xy,

M
Ky oo Xny ):H fX(mi) (xmi )
i=1
(3.16)

Discrete-valued stochastic processes can only assume values from a finite
set of allowable numbers [x;, x,, ..., x,]. An example is the output of a
binary message coder that generates a sequence of 1s and Os. Discrete-time,
discrete-valued, stochastic processes are characterised by multivariate
probability mass functions (pmf) denoted as

Plaim)--xmy ] (KM= X (g )= ) (3.17)



Stationary and Non-Stationary Random Processes 53

The probability that a discrete random process X(m) takes on a value of xz,
at time instant m can be conditioned on the process taking on a value xj at
some other time instant n, and expressed in the form of a conditional pmf as

Py (mix (m) X% Py () (X))
PX(m)IX(n) (xm |xn )= (OIX () 2 7n ) =m (3.18)
PX (n) (xn )

and for a statistically independent process we have

M
B (my )+ X (myg )X ()X ()] (xm1 see Xy | Xy oo e Xny, ):HPX(m,-) (X (m;) =X, )
i=1

(3.19)

3.3 Stationary and Non-Stationary Random Processes

Although the amplitude of a signal x(m) fluctuates with time m, the
characteristics of the process that generates the signal may be time-invariant
(stationary) or time-varying (non-stationary). An example of a non-
stationary process is speech, whose loudness and spectral composition
changes continuously as the speaker generates various sounds. A process is
stationary if the parameters of the probability model of the process are time-
invariant; otherwise it is non-stationary (Figure 3.4). The stationarity
property implies that all the parameters, such as the mean, the variance, the
power spectral composition and the higher-order moments of the process,
are time-invariant. In practice, there are various degrees of stationarity: it
may be that one set of the statistics of a process is stationary, whereas
another set is time-varying. For example, a random process may have a
time-invariant mean, but a time-varying power.

N AP

Figure 3.4 Examples of a quasistationary and a non-stationary speech segment.
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Example 3.3 In this example, we consider the time-averaged values of the
mean and the power of: (a) a stationary signal Asinwt and (b) a transient

signal Ae~01,
The mean and power of the sinusoid are

1
Mean(Asin ) = ? J Asinotdt =0, constant (3.20)
T
) 1 ) A2
Power Asin or) =7 J A? sin? ot dt = constant (3.21)
T

Where T is the period of the sine wave. The mean and the power of the
transient signal are given by:

t+T
Mean(Ae™™) =% JAe_aT dr= AT (1-e )™ time-varying
o
t

(3.22)
t+T 2

Power( Ae=0) =— JAZ e~20T ]t _ A (1—e™20T)e~201,  time-varying
T 20T

t

(3.23)

In Equations (3.22) and (3.23), the signal mean and power are exponentially
decaying functions of the time variable z.

Example 3.4 Consider a non-stationary signal y(m) generated by a binary-
state random process described by the following equation:

y(m)=5(m)xy(m)+s(m)x; (m) (3.24)

where s(m) is a binary-valued state indicator variable and s5(m) denotes the
binary complement of s(m). From Equation (3.24), we have

y(m)={x°(m) it s(m)=0 (3.25)

xy(m) if s(m)=1
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Let p,, and P, denote the mean and the power of the signal xy(m), and
M, and P, the mean and the power of x;(m) respectively. The expectation
of y(m), given the state s(m), is obtained as

ELy(m)|s(m)]=5m)E[xo (m) ]+ s(m)E[x; (m)]

_ (3.26)
=S(m)pLy, + (ML,

In Equation (3.26), the mean of y(m) is expressed as a function of the state
of the process at time m. The power of y(m) is given by

£ [y2 (m)s(m) 5 (m)E[x3 (m) |+ samyE[x? m)]

B (3.27)
=5 (m)PxO + s(m)Px1

Although many signals are non-stationary, the concept of a stationary
process has played an important role in the development of signal
processing methods. Furthermore, even non-stationary signals such as
speech can often be considered as approximately stationary for a short
period of time. In signal processing theory, two classes of stationary
processes are defined: (a) strict-sense stationary processes and (b) wide-
sense stationary processes, which is a less strict form of stationarity, in that
it only requires that the first-order and second-order statistics of the process
should be time-invariant.

3.3.1 Strict-Sense Stationary Processes

A random process X(m) is stationary in a strict sense if all its distributions
and statistical parameters are time-invariant. Strict-sense stationarity implies
that the nth order distribution is translation-invariant for all n=1, 2,3, ... :

Prob[ x(m;)<xy,x(my)<x,,...,x(m, )<x,)] (3.28)
= Prob[x(m; +T)<x;,x(my +T)< X, ,...,.x(m, +T)<x,)] '

From Equation (3.28) the statistics of a strict-sense stationary process
including the mean, the correlation and the power spectrum, are time-
invariant; therefore we have

Tlx(m)]=pu, (3.29)
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Elx(m)x(m+k)]=r,, (k) (3.30)
and
EN X (f,m) P1=E[l X (f) 1*1=Pyyx (f) (3.31)

where 1, r(m) and Pyy(f) are the mean value, the autocorrelation and the

power spectrum of the signal x(m) respectively, and X(f,m) denotes the
frequency—time spectrum of x(m).

3.3.2 Wide-Sense Stationary Processes

The strict-sense stationarity condition requires that all statistics of the
process should be time-invariant. A less restrictive form of a stationary
process is so-called wide-sense stationarity. A process is said to be wide-
sense stationary if the mean and the autocorrelation functions of the process
are time invariant:

Tlx(m)]= i, (3.32)
Elx(m)x(m+k)]=r,, (k) (3.33)

From the definitions of strict-sense and wide-sense stationary processes, it is
clear that a strict-sense stationary process is also wide-sense stationary,
whereas the reverse is not necessarily true.

3.3.3 Non-Stationary Processes

A random process is non-stationary if its distributions or statistics vary with
time. Most stochastic processes such as video signals, audio signals,
financial data, meteorological data, biomedical signals, etc., are non-
stationary, because they are generated by systems whose environments and
parameters vary over time. For example, speech is a non-stationary process
generated by a time-varying articulatory system. The loudness and the
frequency composition of speech changes over time, and sometimes the
change can be quite abrupt. Time-varying processes may be modelled by a
combination of stationary random models as illustrated in Figure 3.5. In
Figure 3.5(a) a non-stationary process is modelled as the output of a time-
varying system whose parameters are controlled by a stationary process. In
Figure 3.5(b) a time-varying process is modelled by a chain of time-
invariant states, with each state having a different set of statistics or
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o »| Time-varying
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Figure 3.5 Two models for non-stationary processes: (a) a stationary process
drives the parameters of a continuously time-varying model; (b) a finite-state
model with each state having a different set of statistics.

probability distributions. Finite state statistical models for time-varying
processes are discussed in detail in Chapter 5.

3.4 Expected Values of a Random Process

Expected values of a process play a central role in the modelling and
processing of signals. Furthermore, the probability models of a random
process are usually expressed as functions of the expected values. For
example, a Gaussian pdf is defined as an exponential function of the mean
and the covariance of the process, and a Poisson pdf is defined in terms of
the mean of the process. In signal processing applications, we often have a
suitable statistical model of the process, e.g. a Gaussian pdf, and to complete
the model we need the values of the expected parameters. Furthermore in
many signal processing algorithms, such as spectral subtraction for noise
reduction described in Chapter 11, or linear prediction described in Chapter
8, what we essentially need is an estimate of the mean or the correlation
function of the process. The expected value of a function, A(X(m,), X(m,), ...,
X(my,)), of a random process X is defined as

oo

‘Z[h(X(ml),,X(mM ))] = J Ih(xl,,xM )fx(ml)X(mM)(xl,,xM)dxl d)CM

—oo —oo

(3.34)
The most important, and widely used, expected values are the mean value,
the correlation, the covariance, and the power spectrum.
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3.4.1 The Mean Value

The mean value of a process plays an important part in signal processing
and parameter estimation from noisy observations. For example, in Chapter
3 it is shown that the optimal linear estimate of a signal from a noisy
observation, is an interpolation between the mean value and the observed
value of the noisy signal. The mean value of a random vector [X(m,), ...,

X(my,)] is its average value across the ensemble of the process defined as

TIX (my)seeo Xy 1= [ o [ O X0 ) S X Oy ) (X1 g )y ==y

—oo —oo

(3.35)
3.4.2 Autocorrelation

The correlation function and its Fourier transform, the power spectral
density, are used in modelling and identification of patterns and structures in
a signal process. Correlators play a central role in signal processing and
telecommunication systems, including predictive coders, equalisers, digital
decoders, delay estimators, classifiers and signal restoration systems. The
autocorrelation function of a random process X(m), denoted by r,(m,m,), is

defined as
Tex (ml %) )= Z:[x(’/nl )x(mz )]

= _[ Jx(ml)x(mz )fx(ml),x(ml) (x(ml),x(mz))dx(ml) dx(m,)

—00 —o0

(3.36)
The autocorrelation function r,(m,m,) is a measure of the similarity, or the

mutual relation, of the outcomes of the process X at time instants m; and m,.
If the outcome of a random process at time m; bears no relation to that at
time m, then X(m,) and X(m,) are said to be independent or uncorrelated
and r,(m;,m,)=0. For a wide-sense stationary process, the autocorrelation
function is time-invariant and depends on the time difference m= m;—m,:

rxx(ml +7,m, +T) = xx(ml’mZ)zrxx(ml _m2)= xx(m) (3-37)
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The autocorrelation function of a real-valued wide-sense stationary process
is a symmetric function with the following properties:

Fo(=m) = 1y, (m) (3.38)
T (M) <1, (0) (3.39)

Note that for a zero-mean signal, r,,(0) is the signal power.

Example 3.5 Autocorrelation of the output of a linear time-invariant (LTI)
system. Let x(mm), y(m) and h(m) denote the input, the output and the impulse
response of a LTI system respectively. The input—output relation is given by

y(m)y= Iy x(m—k) (3.40)
k

The autocorrelation function of the output signal y(m) can be related to the
autocorrelation of the input signal x(m) by

Fyy (k) =E[y(m)y(m+k)]
=Zzhihjf[X(m—i)x(m+k - NI (3.41)
i

zzzhihjrxx(k+i_j)
i

When the input x(m) is an uncorrelated random signal with a unit variance,
Equation (3.41) becomes

Fyy ()= hily i (3.42)

3.4.3 Autocovariance

The autocovariance function c, (m,,m,) of a random process X(m) is measure

of the scatter, or the dispersion, of the random process about the mean value,
and is defined as

C oo (my,my) = E[(x(my) — p1,. (m) Yx(my) — . (m5))]

(3.43)
=r,(my,my)—u, (m)u,(ms,)
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where ,(m) is the mean of X(m). Note that for a zero-mean process the

autocorrelation and the autocovariance functions are identical. Note also that
¢ (my,my) is the variance of the process. For a stationary process the

autocovariance function of Equation (3.43) becomes

Cxx(ml’m2): Cxx(ml _mZ): rxx(ml _m2)_lu)% (344)

3.4.4 Power Spectral Density

The power spectral density (PSD) function, also called the power spectrum,
of a random process gives the spectrum of the distribution of the power
among the individual frequency contents of the process. The power
spectrum of a wide sense stationary process X(m) is defined, by the Wiener—
Khinchin theorem in Chapter 9, as the Fourier transform of the
autocorrelation function:

Pxx(f) =EIX(HX*(f)]

= Y (ke (349

m=—oo

where r,(m) and Pyy(f) are the autocorrelation and power spectrum of x(m)

respectively, and f is the frequency variable. For a real-valued stationary
process, the autocorrelation is symmetric, and the power spectrum may be
written as

Pyx (f) =1y (0) + inxx (m)cos(27fim) (3.46)

m=1

The power spectral density is a real-valued non-negative function, expressed
in units of watts per hertz. From Equation (3.45), the autocorrelation
sequence of a random process may be obtained as the inverse Fourier
transform of the power spectrum as

1/2

re(m)= [Py (f) el df (3.47)
-1/2

Note that the autocorrelation and the power spectrum represent the second
order statistics of a process in the time and frequency domains respectively.
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Faa(m) A Pxx(f)

m f

Figure 3.6 Autocorrelation and power spectrum of white noise.

Example 3.6 Power spectrum and autocorrelation of white noise
(Figure3.6). A noise process with uncorrelated independent samples is
called a white noise process. The autocorrelation of a stationary white noise
n(m) is defined as:

{ Noisepower k =0
Tan (k) = E[n(m)n(m + k)= (3.48)
0 k#0

Equation (3.48) is a mathematical statement of the definition of an
uncorrelated white noise process. The equivalent description in the
frequency domain is derived by taking the Fourier transform of r,,,(k):

Pyy (f) = i r. (k)e™?™* = 1 (0) =noise power (3.49)

k=—co

The power spectrum of a stationary white noise process is spread equally
across all time instances and across all frequency bins. White noise is one of
the most difficult types of noise to remove, because it does not have a
localised structure either in the time domain or in the frequency domain.

Example 3.7 Autocorrelation and power spectrum of impulsive noise.

Impulsive noise is a random, binary-state (“on/off”) sequence of impulses of
random amplitudes and random time of occurrence. In Chapter 12, a random
impulsive noise sequence n,(m) is modelled as an amplitude-modulated

random binary sequence as

n; (m)=n(m)b(m) (3.50)

where b(m) is a binary-state random sequence that indicates the presence or
the absence of an impulse, and n(m) is a random noise process. Assuming
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that impulsive noise is an uncorrelated process, the autocorrelation of
impulsive noise can be defined as a binary-state process as

T, (k,m)= E[n;(m)n; (m+k)]=0'5 o (k)b(m) (3.51)

where G,% is the noise variance. Note that in Equation (3.51), the

autocorrelation is expressed as a binary-state function that depends on the
on/off state of impulsive noise at time m. The power spectrum of an
impulsive noise sequence is obtained by taking the Fourier transform of the
autocorrelation function:

Pyy (f,m)=0 7 b(m) (3.52)

3.4.5 Joint Statistical Averages of Two Random Processes

In many signal processing problems, for example in processing the outputs
of an array of sensors, we deal with more than one random process. Joint
statistics and joint distributions are used to describe the statistical inter-
relationship between two or more random processes. For two discrete-time
random processes x(m) and y(m), the joint pdf is denoted by

FX )= X (myg )Y () () (K15 X1 5 V1o s YN (3.53)

When two random processes, X(m) and Y(m) are uncorrelated, the joint pdf
can be expressed as product of the pdfs of each process as

fX(m1)~--X(mM )Y (ny)-+Y (ny) (X150 X015 Vi Y ) (3.54)

= Fx tmp)--X (myy) K10 0% ) Sy () -¥ () (V13- 5V N )
3.4.6 Cross-Correlation and Cross-Covariance
The cross-correlation of two random process x(m) and y(m) is defined as

Ty (mymy)=E[x(m;)y(m;)]

= [ Jxm)y0m) £ (v my) (1), y(m)) de(omy) dy(my)

—00 —00

(3.55)
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For wide-sense stationary processes, the cross-correlation function
ry(mj,m,) depends only on the time difference m=m;—m:

rxy (ml TT,m, +T):rxy (ml’mZ):rxy (ml _m2):rxy (m) (356)

The cross-covariance function is defined as

Cxy (my,my)="E l(x(ml) — Uy (my ))(y(mz) —Hy (mz))J

(3.57)
=1y (my,my) = W, (mp) L, (my )

Note that for zero-mean processes, the cross-correlation and the cross-
covariance functions are identical. For a wide-sense stationary process the
cross-covariance function of Equation (3.57) becomes

Cyy (My,my) = (Mg —my)=ry, (Mp —my) =y, (3.58)

Example 3.8 Time-delay estimation. Consider two signals y;(m) and
¥,(m), each composed of an information bearing signal x(mm) and an additive
noise, given by

vy (m)=x(m)+n,(m) (3.59)
Yy (m)=Ax(m— D)+n,(m) (3.60)

where A is an amplitude factor and D is a time delay variable. The cross-
correlation of the signals y;(m) and y,(m) yields

A7, (m)

|-
|

D Correlation lag m
Figure 3.7 The peak of the cross-correlation of two delayed signals can be used to
estimate the time delay D.
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Py v, ()= ELy (m)y, (m+ )]
:Z{[x(m)+n1(m)][Ax(m—D+k)+n2 (m+k)]} (3.61)
=Ar, (k—D)+ Finy (k) + Ar)m1 (k—D)+ Foyny (k)

Assuming that the signal and noise are uncorrelated, we have
Ty, (k) = Ar,,(k— D). As shown in Figure 3.7, the cross-correlation

function has its maximum at the lag D.

3.4.7 Cross-Power Spectral Density and Coherence

The cross-power spectral density of two random processes X(m) and Y(m) is
defined as the Fourier transform of their cross-correlation function:

Pyy ()=E[X ()Y (f)]
> » (3.62)

Like the cross-correlation the cross-power spectral density of two processes
is a measure of the similarity, or coherence, of their power spectra. The
coherence, or spectral coherence, of two random processes is a normalised
form of the cross-power spectral density, defined as

Pyy (f)
JPxx (F)Pyy (f)

Cxy(f)= (3.63)

The coherence function is used in applications such as time-delay estimation
and signal-to-noise ratio measurements.

3.4.8 Ergodic Processes and Time-Averaged Statistics

In many signal processing problems, there is only a single realisation of a
random process from which its statistical parameters, such as the mean, the
correlation and the power spectrum can be estimated. In such cases, time-
averaged statistics, obtained from averages along the time dimension of a
single realisation of the process, are used instead of the “true” ensemble
averages obtained across the space of different realisations of the process.
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This section considers ergodic random processes for which time-averages
can be used instead of ensemble averages. A stationary stochastic process is
said to be ergodic if it exhibits the same statistical characteristics along the
time dimension of a single realisation as across the space (or ensemble) of
different realisations of the process. Over a very long time, a single
realisation of an ergodic process takes on all the values, the characteristics
and the configurations exhibited across the entire space of the process. For
an ergodic process {x(m,s)}, we have

statistical averages|[x(m, s)| =statistical averages|x(m,s)] (3.64)
along time m across space s

where the statistical averages[.] function refers to any statistical operation
such as the mean, the variance, the power spectrum, etc.

3.4.9 Mean-Ergodic Processes

The time-averaged estimate of the mean of a signal x(m) obtained from N
samples is given by

1 N-1
fix =ﬁm§ (m) (3.65)

A stationary process is said to be mean-ergodic if the time-averaged value of
an infinitely long realisation of the process is the same as the ensemble-
mean taken across the space of the process. Therefore, for a mean-ergodic
process, we have

N —co
lim var[{y ]=0 (3.67)
N —co

where [, is the “true” ensemble average of the process. Condition (3.67) is
also referred to as mean-ergodicity in the mean square error (or minimum
variance of error) sense. The time-averaged estimate of the mean of a signal,
obtained from a random realisation of the process, is itself a random
variable, with is own mean, variance and probability density function. If the
number of observation samples N is relatively large then, from the central
limit theorem the probability density function of the estimate [y is
Gaussian. The expectation of [iy is given by
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N-1
{ 2x<m>] Zf [x(m)]=— Z,Ux:.ux (3.68)
m=0

From Equation (3.68), the time-averaged estimate of the mean is unbiased.
The variance of [, is given by

Var[g 1=E[a2]1-E*4,]

(3.69)
[;ux ] - ‘ux
Now the term Z [12] in Equation (3.69) may be expressed as
) 1 Nl
Ela;]= f[[ﬁ x(m) ][ 2x<k> H
=0 (3.70)
1 & |ml
=— 1- (m)
N =Ztv
Substitution of Equation (3.70) in Equation (3.69) yields
1 |ml
Varilfil=— X (1——) e (M) =117
=D 3.71)
1 & |m
=— 1= e (m)
N ="y N

Therefore the condition for a process to be mean-ergodic, in the mean
square error sense, is

.1 |ml
lim — Y [1-— |, (m)=0 (3.72)
Noee N 2 Z(N-1) N

3.4.10 Correlation-Ergodic Processes

The time-averaged estimate of the autocorrelation of a random process,
estimated from N samples of a realisation of the process, is given by
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Fae (M) = 2x<k>x(k+m> (3.73)
k 0

A process is correlation-ergodic, in the mean square error sense, if

Al]im E[7, (m)]=r,(m) (3.74)
lim Var[f, (m)] = 0 (3.75)

where r (m) is the ensemble-averaged autocorrelation. Taking the
expectation of 7, (m) shows that it is an unbiased estimate, since

N-1 N-1
E[f e (m)] = E [i 3 x(k)x(k + m)]— L 2 [x(k)x(k +m)]=ry, (m)
N 2o NS
(3.76)
The variance of 7, (m) is given by
Var[ 7, (m)]=E [F g (m)]-r g (m) (3.77)
The term ‘E[r;, (m)] in Equation (3.77) may be expressed as
) | N=IN-d
Elfg (m)]=—5 >, > Elx(k)x(k +m)x(j)x(j +m)]
N7 2o ]—o
| NN
=y 2 Ef[z(k m)z(j,m)] (3.78)

where z(i,m)=x(i)x(i+m). Therefore the condition for correlation ergodicity
in the mean square error sense is given by

lim |~ /\f 1= KDY komy—r2 (my |=0 (3.79)
N N B

N—eo k=—N+l1
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3.5 Some Useful Classes of Random Processes

In this section, we consider some important classes of random processes
extensively used in signal processing applications for the modelling of
signals and noise.

3.5.1 Gaussian (Normal) Process

The Gaussian process, also called the normal process, is perhaps the most
widely applied of all probability models. Some advantages of Gaussian
probability models are the following:

(a) Gaussian pdfs can model the distribution of many processes
including some important classes of signals and noise.

(b) Non-Gaussian processes can be approximated by a weighted
combination (i.e. a mixture) of a number of Gaussian pdfs of
appropriate means and variances.

(c) Optimal estimation methods based on Gaussian models often result
in linear and mathematically tractable solutions.

(d) The sum of many independent random processes has a Gaussian
distribution. This is known as the central limit theorem.

A scalar Gaussian random variable is described by the following probability
density function:

1 (x—pt,)°
- _XTHRS 3.80
= s ‘”‘p{ 2 ] (50

X

where . and o2 are the mean and the variance of the random variable x.
The Gaussian process of Equation (3.80) is also denoted by A((x, i, 02).
The maximum of a Gaussian pdf occurs at the mean u , and is given by

1

Vo,

Fx ()= (3.81)
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Figure 3.8 Gaussian probability density and cumulative density functions.

From Equation (3.80), the Gaussian pdf of x decreases exponentially with
the increasing distance of x from the mean value u,. The distribution

function F(x) is given by
LT (= Hy)°
Fy(x)= —— | exp| ———"— |dy (3.82)
X v2ro, _'[o [ 2

20

Figure 3.8 shows the pdf and the cdf of a Gaussian model.

3.5.2 Multivariate Gaussian Process

Multivariate densities model vector-valued processes. Consider a P-variate
Gaussian vector process {x=[x(m), x(m,), . . ., x(mp_;)]T} with mean vector

M, and covariance matrix X, The multivariate Gaussian pdf of x is given
by

3 1 1 T vl
fX(x)_(27r)P/2|2 72 eXP[—E(x—.ux) Zxx(x—,ux)] (3.83)

xx|

where the mean vector U, is defined as
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Elx(mg)]
E[x(m;)]
x = . (3.84)
Elx(mp_y)]
and the covariance matrix X, is given by
Cxx (mO’mO) Cxx (mO’ml) e Cxx (mO’mP—l)
Exx — Cxx (m'l’mO) Cxx (n/fl’ml) Cxx (ml.’ mP—l) (3.85)
Cox(Mp_y,1mg)  Cyp(Mp_y,my) ... Cyp(mp_y,mp_y)

The Gaussian process of Equation (3.83) is also denoted by AC(x, W, 2,,). If
the elements of a vector process are uncorrelated then the covariance matrix
is a diagonal matrix with zeros in the off-diagonal elements. In this case the
multivariate pdf may be described as the product of the pdfs of the
individual elements of the vector:

1 2
) -~ I _IxOm) — g 17
fx (x =[x(mg),..., x(mp_;)] ) Ll \/%Gxi exp{ 26% }

(3.86)

Example 3.9 Conditional multivariate Gaussian probability density
function. Consider two vector realisations x(m) and y(m+k) from two
vector-valued correlated stationary Gaussian processes A (x, U,, ., ) and

Ny, Uy, Zyy). The joint probability density function of x(m) and y(m+k) is

a multivariate Gaussian density A ([x(m).y(m+k)], W ») 2 J,)), with mean
vector and covariance matrix given by

u

Hixy) = [ uy] (3.87)
Exx Exy

Sy = [ . =z, (3.88)
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The conditional density of x(m) given y(m+k) is given from Bayes’ rule as

_ fxy (x(m),y(m+k))
Fxjy (x(m) y(m+k))= ) (3.89)

It can be shown that the conditional density is also a multivariate Gaussian
with its mean vector and covariance matrix given by

B (x|yy= Elx(m)| y(m + k)] 5.90)
:ﬂx+2xy yy(y ﬂ) .

-1
E(x‘y) E nyzyyzyx (391)

3.5.3 Mixture Gaussian Process

Probability density functions of many processes, such as speech, are non-
Gaussian. A non-Gaussian pdf may be approximated by a weighted sum (i.e.
a mixture) of a number of Gaussian densities of appropriate mean vectors
and covariance matrices. An M-mixture Gaussian density is defined as

M
Fx(®) = 2P A sy D) (3.92)

i=1

Figure 3.9 A mixture Gaussian pdf.
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where N, (x, Uy, 2y,;) is a multivariate Gaussian density with mean vector
Uy, and covariance matrix X, ., and P; are the mixing coefficients. The
parameter P; is the prior probability of the ith mixture component, and is

given by
P = —/—— (3.93)

where p; is the number of observations associated with the mixture i. Figure

3.9 shows a non-Gaussian pdf modelled as a mixture of five Gaussian pdfs.
Algorithms developed for Gaussian processes can be extended to mixture
Gaussian densities.

3.5.4 A Binary-State Gaussian Process

Consider a random process x(m) with two statistical states: such that in the
state s the process has a Gaussian pdf with mean 1, o, and variance 02,

and in the state s; the process is also Gaussian with mean u, | and variance
0)26,1 (Figure 3.10). The state-dependent pdf of x(m) can be expressed as

—lxm)—p, 1P F, =01 (3.94)

1
Ixs (x(m)]s; )= mexp Yy
X0

A fx,s(x,s)

So S S

Figure 3.10 lllustration of a binary-state Gaussian process
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The joint probability distribution of the binary-valued state s; and the
continuous-valued signal x(m) can be expressed as

Ix s (x(m),s;) =[x|s (x(m)[s;) Ps (s;)
(3.95)

1 1
:W€Xp {_ 2 2 [x(m) —Hyi ] 2} PS (si)

X,i

where PS(Si) is the state probability. For a multistate process we have the

following probabilistic relations between the joint and marginal
probabilities:

Y fx.s(x(m),s;)= fy (x(m)) (3.96)
S
J‘fX’S(X(m),Si)dx:Ps(si) (397)
X
and
Y [ Frs(xm),s;)dx =1 (3.98)
S X

Note that in a multistate model, the statistical parameters of the process
switch between a number of different states, whereas in a single-state
mixture pdf, a weighted combination of a number of pdfs models the
process. In Chapter 5 on hidden Markov models we consider multistate
models with a mixture pdf per state.

3.5.5 Poisson Process

The Poisson process is a continuous-time, integer-valued counting process,
used for modelling the occurrence of a random event in various time
intervals. An important area of application of the Poisson process is in
queuing theory for the analysis and modelling of the distributions of demand
on a service facility such as a telephone network, a shared computer system,
a financial service, a petrol station, etc. Other applications of the Poisson
distribution include the counting of the number of particles emitted in
physics, the number of times that a component may fail in a system, and
modelling of radar clutter, shot noise and impulsive noise. Consider an
event-counting process X(f), in which the probability of occurrence of the
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event is governed by a rate function A(¢), such that the probability that an
event occurs in a small time interval Az is

Prob(l occurrencein the interval (7,1 + A1) = A(r) At (3.99)

Assuming that in the small interval Az, no more than one occurrence of the
event is possible, the probability of no occurrence of the event in a time
interval of Az is given by

Prob(0 occurrencein the interval(z,z + At))=1— A(t) At (3.100)

when the parameter A(¢) is independent of time, A(f)=A, and the process is
called a homogeneous Poisson process. Now, for a homogeneous Poisson
process, consider the probability of k occurrences of an event in a time

interval of r+At, denoted by P(k, (0, t+At)):

P(k,(0,¢ + A1) = P(k,(0,))P(0, (¢, + 40))+ P(k —1,00,0))P(L, (1,1 + At))
= P(k,(0,1))1— A4t) + P(k —1,00,1))Adt
(3.101)

Rearranging Equation (3.101), and letting Ar tend to zero, we obtain the
following linear differential equation:

APKD 3Pk, 1)+ APk ~1,1) (3.102)

where P(k,t)=P(k,(0, 1)). The solution of this differential equation is given
by

t
P(k,t)=Ae M jP(k —“1,0)eMdr (3.103)
0

Equation (3.103) can be solved recursively: starting with P(0,f)=e-* and
P(1,1)=At e, we obtain the Poisson density

(An* S

Plkn="""

(3.104)
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From Equation (3.104), it is easy to show that for a homogenous Poisson
process, the probability of k occurrences of an event in a time interval (¢, f,)

is given by
(At =101 2,

T (3.105)

Plk,(t;,t)] =

A Poisson counting process X(¢) is incremented by one every time the event
occurs. From Equation (3.104), the mean and variance of a Poisson counting
process X(7) are

E[X(1)]=At (3.106)
ryx (taty) = E[X (1) X (t2)] = A*t;1, +Amin(t, 1) (3.107)
Var[X ()] =E [X 2(l)] ~E2 [ X (=M (3.108)

Note that the variance of a Poisson process is equal to its mean value.

3.5.6 Shot Noise

Shot noise happens when there is randomness in a directional flow of
particles: as in the flow of electrons from the cathode to the anode of a
cathode ray tube, the flow of photons in a laser beam, the flow and
recombination of electrons and holes in semiconductors, and the flow of
photoelectrons emitted in photodiodes. Shot noise has the form of a random
pulse sequence. The pulse sequence can be modelled as the response of a
linear filter excited by a Poisson-distributed binary impulse input sequence
(Figure 3.11). Consider a Poisson-distributed binary-valued impulse process
x(t). Divide the time axis into uniform short intervals of Ar such that only
one occurrence of an impulse is possible within each time interval. Let
x(mAt) be “1” if an impulse is present in the interval mAr to (m+1)Atf, and
“0” otherwise. For x(mAr), we have

E[x(mdt)] = 1x P(x(mAt) =1) +Ox P(x(mAt) = 0) = Adt (3.109)
and
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Y

I J&*N\/\,

Figure 3.11 Shot noise is modelled as the output of a filter excited with a process.

1x P(x(mAt) =1)= Mt, m=n

1 P(x(mAt) = 1)x P(x(ndt) =1)= (Mt)?, m#n
(3.110)

Elx(mAt)x(nAt)] = {

A shot noise process y(m) is defined as the output of a linear system with an
impulse response Ah(?), excited by a Poisson-distributed binary impulse input

x(2):

y(t)= j x(D)h(t —1)dT
— (3.111)

= ix(mdt)h(t — mAt)
k=—oo

where the binary signal x(mAr) can assume a value of 0 or 1. In Equation
(3.111) it is assumed that the impulses happen at the beginning of each

interval. This assumption becomes more valid as Ar becomes smaller. The
expectation of y(¢) is obtained as

Ely(t)]= ZE x(mAt)|h(t —mAt)

k= (3.112)

= Y Mth(t —mdt)
k=—c0
and

ry (t1,12) = Ely(1) y(15)]

o o 3.113
= > Y E[x(mdr)x(ndt)|h(t; —ndt)h(ty —mAt) ( )

Mm=—oo p=—oo



Some Useful Classes of Random Processes 77

Using Equation (3.110), the autocorrelation of y(¢) can be obtained as

Fyy (ty512) = i (Adt)h(t, —mAt)h(t, —mAt)+ i i(),zlt)2 h(t; —mAt)h(t, —nAt)

m=—oo Mm=—oco f=—o0
n#m

(3.114)

3.5.7 Poisson—Gaussian Model for Clutters and Impulsive Noise

An impulsive noise process consists of a sequence of short-duration pulses
of random amplitude and random time of occurrence whose shape and
duration depends on the characteristics of the channel through which the
impulse propagates. A Poisson process can be used to model the random
time of occurrence of impulsive noise, and a Gaussian process can be used
to model the random amplitude of the impulses. Finally, the finite duration
character of real impulsive noise may be modelled by the impulse response
of linear filter. The Poisson—Gaussian impulsive noise model is given by

x(m)= i Ah(m—T,) (3.115)
k=—co

where h(m) is the response of a linear filter that models the shape of
impulsive noise, A, is a zero-mean Gaussian process of variance 02 and 7, is
a Poisson process. The output of a filter excited by a Poisson-distributed
sequence of Gaussian amplitude impulses can also be used to model clutters
in radar. Clutters are due to reflection of radar pulses from a multitude of
background surfaces and objects other than the radar target.

3.5.8 Markov Processes

A first-order discrete-time Markov process is defined as one in which the
state of the process at time m depends only on its state at time m—1 and is
independent of the process history before m—1. In probabilistic terms, a first-
order Markov process can be defined as

fx (x(m) =x,,| x(m=1) = x,,,_j ..., x(Mm=N) = x,,_n )

3.116
= fx (x(m)=x,,|x(m—1) = x,,_;) ( )
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Figure 3.12 A first order autoregressive (Markov) process.

The marginal density of a Markov process at time m can be obtained by
integrating the conditional density over all values of x(m—1):

fx (x(m)=x,,)= fo (x(m)=x,,|x(m—1) = x,, ) fx (x(m=1) = x,,, 1) dx,,
- (3.117)

A process in which the present state of the system depends on the past n
states may be described in terms of n first-order Markov processes and is

known as an nth order Markov process. The term “Markov process” usually
refers to a first order process.

Example 3.10 A simple example of a Markov process is a first-order auto-
regressive process (Figure 3.12) defined as

x(m)y=ax(m—1)+e(m) (3.118)

In Equation (3.118), x(m) depends on the previous value x(m—1) and the
input e(m). The conditional pdf of x(m) given the previous sample value can
be expressed as

fx (e(m)|x(m =1), ..., x(m = N)) = fy (x(m)|x(m—1))

3.119
=fg (e(m) = x(m) —ax(m —1)) ( )

where fr(e(m)) is the pdf of the input signal e(m). Assuming that input e(m)
is a zero-mean Gaussian process with variance 0'62, we have
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Figure 3.13 A Markov chain model of a four-state discrete-time Markov process.

fx (x(m)|x(m —=1)..., x(m = N)) = fx (x(m)|x(m —1))
= fg (x(m) —ax(m — 1))

exp —L(x(m) —ax(m—1))?

e

J_a
(3.120)

When the input to a Markov model is a Gaussian process the output is
known as a Gauss—Markov process.

3.5.9 Markov Chain Processes

A discrete-time Markov process x(m) with N allowable states may be
modelled by a Markov chain of N states (Figure 3.13). Each state can be
associated with one of the N values that x(m) may assume. In a Markov
chain, the Markovian property is modelled by a set of state transition
probabilities defined as
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a;;(m—1,m)=Prob(x(m) = jlx(m—1) =i) (3.121)

where a,(m,m-1) is the probability that at time m—1 the process is in the
state i and then at time m it moves to state j. In Equation (3.121), the
transition probability is expressed in a general time-dependent form. The
marginal probability that a Markov process is in the state j at time m, P;(m),

can be expressed as
N
Pim) = D,Pi(m—1)a;(m—1,m) (3.122)
i=1
A Markov chain is defined by the following set of parameters:

number of states N
state probability vector

p" (m)=[py(m),py(m),..., py (m)]
and the state transition matrix

ay(m—=1m) a,(m—-1m) ... apy(m—-1m)
a,(m—-1m) a,,(m—1m) --- a,y(m—1m
A(m—Lm)= 21( ' ) an( . ) . 2N(. )
ayy(m—1m) ay,(m—1m) ... ayy(m—1m)

Homogenous and Inhomogeneous Markov Chains

A Markov chain with time-invariant state transition probabilities is known
as a homogenous Markov chain. For a homogenous Markov process, the
probability of a transition from state i to state j of the process is independent
of the time of the transition m, as expressed in the following equation:

Prob(x(m) = j|x(m - =i)= a;(m—1,m)=a (3.123)

ij

Inhomgeneous Markov chains have time-dependent transition probabilities.
In most applications of Markov chains, homogenous models are used
because they usually provide an adequate model of the signal process, and
because homogenous Markov models are easier to train and use. Markov
models are considered in Chapter 5.
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x(m) O————m h[x(m)] — > y(m)

Figure 3.14 Transformation of a random process x(m) to an output process y(m).

3.6 Transformation of a Random Process

In this section we consider the effect of filtering or transformation of a
random process on its probability density function. Figure 3.14 shows a
generalised mapping operator A(-) that transforms a random input process X
into an output process Y. The input and output signals x(m) and y(m) are
realisations of the random processes X and Y respectively. If x(m) and y(m)
are both discrete-valued such that x(m) € {x,....xy} and y(m)e{y,..., vy}

then we have

Py (yimy=y;)= Y Py (x(m)=x;) (3.124)

x[—)yj

where the summation is taken over all values of x(m) that map to y(m)=y.
Now consider the transformation of a discrete-time, continuous-valued,
process. The probability that the output process Y has a value in the range

y(m)<Y<y(m)+Ay is

Prob[y(m)<Y < y(m)+ Ay]= j

oy (< <y(omys fx (x(m))dx(m) (3.125)

where the integration is taken over all the values of x(m) that yield an output
in the range y(m) to y(m)+Ay .
3.6.1 Monotonic Transformation of Random Processes

Now for a monotonic one-to-one transformation y(m)=h[x(m)] (e.g. as in
Figure 3.15) Equation (3.125) becomes

Prob(y(m)<Y < y(m)+ Ay)=Prob(x(m)< X < x(m)+ Ax)  (3.126)
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e
Ax X

Figure 3.15 An example of a monotonic one-to-one mapping.
or, in terms of the cumulative distribution functions

Fy (y(m) + 4y} Fy (y(m))=Fx (x(m) + 4x)— Fx (x(m)) (3.127)

Multiplication of the left-hand side of Equation (3.127) by Ay/Ay and the
right-hand side by Ax/Ax and re-arrangement of the terms yields

Fy (y(m) + 4y} Fy (y(m)) _ Ax Fy (x(m) + Ax)- Fy (x(m))
Ay Ay Ax

(3.128)

Now as the intervals Ax and Ay tend to zero, Equation (3.128) becomes

ox(m)
dy(m)

fr (v(m)) = [x (x(m)) (3.129)

where fy(y(m)) is the probability density function. In Equation (3.129),
substitution of x(m)=h"1(y(m)) yields

9 ™ (y(m))

h! .
o Fx (7 (v(m)) (3.130)

fy (y(m)) =‘

Equation (3.130) gives the pdf of the output signal in terms of the pdf of the
input signal and the transformation.
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. Sfx(0)

Figure 3.16 A log-normal distribution.

Example 3.11 Transformation of a Gaussian process to a log-normal
process. Log-normal pdfs are used for modelling positive-valued processes
such as power spectra. If a random variable x(m) has a Gaussian pdf as in
Equation (3.80) then the non-negative valued variable y(m)=exp(x(m)) has a
log-normal distribution (Figure 3.16) obtained using Equation (3.130) as

fr(y)= (3.131)

L o) [y —p, )’
V2r o, y(m) 202

X

Conversely, if the input y to a logarithmic function has a log-normal
distribution then the output x=In y is Gaussian. The mapping functions for
translating the mean and variance of a log-normal distribution to a normal
distribution can be derived as

o =lng, —%1n(1+a§ /u?) (3.132)

o2 =In(i+02/u?) (3.133)
(U,,02), and ( My ,O'%) are the mean and variance of x and y respectively.
The inverse mapping relations for the translation of mean and variances of

normal to log-normal variables are

1y, =exp(,+0; /2) (3.134)

o =p; exp(c)—1] (3.135)
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Figure 3.17 lllustration of a many to one transformation.

3.6.2 Many-to-One Mapping of Random Signals

Now consider the case when the transformation A(-) is a non-monotonic
function such as that shown in Figure 3.17. Assuming that the equation
y(m)=h[x(m)] has K roots, there are K different values of x(m) that map to
the same y(m). The probability that a realisation of the output process Y has
a value in the range y(m) to y(m)+Ay is given by

K
Prob(y(m) <Y < y(m)+ Ay)= ZPmb(xk (m)< X <x;,(m)+4x;) (3.136)
k=1

where xk is the kth root of y(m)=h(x(m)). Similar to the development in
Section 3.6.1, Equation (3.136) can be written as

By Om) + Ay)= By (00m) <5 Fox G () + 4% ) = Fo (s 0m)
Ay k

k=1 Axk

(3.137)
Equation (3.137) can be rearranged as

Fy (y(m)+ Ay)— Fy (Y(m))zi Axy Fy (x (m) + Ax; )= Fy (x;. (m))
Ay o Ay Ax;,
(3.138)
Now as the intervals Ax and Ay tend to zero Equation (3.138) becomes
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K
£y ) =3 |2 £ o))
il vm) (3.139)
. .
L (e m)

T G ()

where h'(x; (m)) = oh(x; (m))/dx; (m). Note that for a monotonic function,

K=1 and Equation (3.139) becomes the same as Equation (3.130). Equation
(3.139) can be expressed as

K
Fy )= (g ()™ fy G (m)) (3.140)

k=1

where J(x;(m)) = h'(x,(m)) is called the Jacobian of the transformation.
For a multi-variate transformation of a vector-valued process such as

y(m)=H(x(m)) (3.141)

the pdf of the output y(m) is given by

K
fy m)) =Y 1T e (m)| ™ fy (x4 (m)) (3.142)

k=1

where |J(x)l, the Jacobian of the transformation H(-), is the determinant of a
matrix of derivatives:

MMM
8)61 8)62 8xp
U(x)|=|_: ST (3.143)
dp dp  hp
8X1 8XZ 8XP
For a monotonic linear vector transformation such as
y=Hx (3.144)
the pdf of y becomes
Fr )=l fx () (3.145)

where |JI is the Jacobian of the transformation.
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Example 3.12 The input-output relation of a PX P linear transformation
matrix H is given by
y=Hx (3.146)

The Jacobian of the linear transformation H is |[H|. Assume that the input x
is a zero-mean Gaussian P-variate process with a covariance matrix of X

and a probability density function given by:

fx (x):(zn_)P/2|E

| S A—
7 exp[—ax Exxx:I (3.147)

xx|

From Equations (3.145)—(3.147), the pdf of the output y is given by

fy )=

I 1 T —1) -1
= expl——y H™ Z_ H 'y |H|

2

1""' (3.148)

_ | S
_(27r)P/2|2 72|h] eXp(_Ey Eyyy)
XX

where X =HX H T, Note that a linear transformation of a Gaussian

process yields another Gaussian process.

3.7 Summary

The theory of statistical processes is central to the development of signal
processing algorithms. We began this chapter with basic definitions of
deterministic signals, random signals and random processes. A random
process generates random signals, and the collection of all signals that can
be generated by a random process is the space of the process. Probabilistic
models and statistical measures, originally developed for random variables,
were extended to model random signals. Although random signals are
completely described in terms of probabilistic models, for many
applications it may be sufficient to characterise a process in terms of a set of
relatively simple statistics such as the mean, the autocorrelation function,
the covariance and the power spectrum. Much of the theory and application
of signal processing is concerned with the identification, extraction, and
utilisation of structures and patterns in a signal process. The correlation and



Bibliography 87

its Fourier transform the power spectrum are particularly important because
they can be used to identify the patterns in a stochastic process.

We considered the concepts of stationary, ergodic stationary and non-
stationary processes. The concept of a stationary process is central to the
theory of linear time-invariant systems, and furthermore even non-stationary
processes can be modelled with a chain of stationary subprocesses as
described in Chapter 5 on hidden Markov models. For signal processing
applications, a number of useful pdfs, including the Gaussian, the mixture
Gaussian, the Markov and the Poisson process, were considered. These pdf
models are extensively employed in the remainder of this book. Signal
processing normally involves the filtering or transformation of an input
signal to an output signal. We derived general expressions for the pdf of the
output of a system in terms of the pdf of the input. We also considered some
applications of stochastic processes for modelling random noise such as
white noise, clutters, shot noise and impulsive noise.
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BAYESIAN ESTIMATION

4.1 Bayesian Estimation Theory: Basic Definitions

4.2 Bayesian Estimation

4.3 The Estimate—-Maximise Method

4.4 Cramer—Rao Bound on the Minimum Estimator Variance
4.5 Design of Mixture Gaussian Models

4.6 Bayesian Classification

4.7 Modeling the Space of a Random Process

4.8 Summary

ayesian estimation is a framework for the formulation of statistical

inference problems. In the prediction or estimation of a random

process from a related observation signal, the Bayesian philosophy is
based on combining the evidence contained in the signal with prior
knowledge of the probability distribution of the process. Bayesian
methodology includes the classical estimators such as maximum a posteriori
(MAP), maximum-likelihood (ML), minimum mean square error (MMSE)
and minimum mean absolute value of error (MAVE) as special cases. The
hidden Markov model, widely used in statistical signal processing, is an
example of a Bayesian model. Bayesian inference is based on minimisation
of the so-called Bayes’ risk function, which includes a posterior model of
the unknown parameters given the observation and a cost-of-error function.
This chapter begins with an introduction to the basic concepts of estimation
theory, and considers the statistical measures that are used to quantify the
performance of an estimator. We study Bayesian estimation methods and
consider the effect of using a prior model on the mean and the variance of an
estimate. The estimate—maximise (EM) method for the estimation of a set of
unknown parameters from an incomplete observation is studied, and applied
to the mixture Gaussian modelling of the space of a continuous random
variable. This chapter concludes with an introduction to the Bayesian
classification of discrete or finite-state signals, and the K-means clustering
method.
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4.1 Bayesian Estimation Theory: Basic Definitions

Estimation theory is concerned with the determination of the best estimate
of an unknown parameter vector from an observation signal, or the recovery
of a clean signal degraded by noise and distortion. For example, given a
noisy sine wave, we may be interested in estimating its basic parameters
(i.e. amplitude, frequency and phase), or we may wish to recover the signal
itself. An estimator takes as the input a set of noisy or incomplete
observations, and, using a dynamic model (e.g. a linear predictive model)
and/or a probabilistic model (e.g. Gaussian model) of the process, estimates
the unknown parameters. The estimation accuracy depends on the available
information and on the efficiency of the estimator. In this chapter, the
Bayesian estimation of continuous-valued parameters is studied. The
modelling and classification of finite-state parameters is covered in the next
chapter.

Bayesian theory is a general inference framework. In the estimation or
prediction of the state of a process, the Bayesian method employs both the
evidence contained in the observation signal and the accumulated prior
probability of the process. Consider the estimation of the value of a random
parameter vector 6, given a related observation vector y. From Bayes’ rule
the posterior probability density function (pdf) of the parameter vector 6
giveny, fgy(01y), can be expressed as

|6 [7]
f@|y(9|y):fYI@(y ) e (@) @1
fy (y)

where for a given observation, fy(y) is a constant and has only a normalising
effect. Thus there are two variable terms in Equation (4.1): one term
fne!0) is the likelihood that the observation signal y was generated by the

parameter vector 6 and the second term is the prior probability of the
parameter vector having a value of 6. The relative influence of the
likelihood pdf fy,g(y|6) and the prior pdf fe(6) on the posterior pdf fgy(6ly)

depends on the shape of these function, i.e. on how relatively peaked each
pdf is. In general the more peaked a probability density function, the more it
will influence the outcome of the estimation process. Conversely, a uniform
pdf will have no influence.

The remainder of this chapter is concerned with different forms of Bayesian
estimation and its applications. First, in this section, some basic concepts of
estimation theory are introduced.



Basic Definitions 91

4.1.1 Dynamic and Probability Models in Estimation

Optimal estimation algorithms utilise dynamic and statistical models of the
observation signals. A dynamic predictive model captures the correlation
structure of a signal, and models the dependence of the present and future
values of the signal on its past trajectory and the input stimulus. A statistical
probability model characterises the random fluctuations of a signal in terms
of its statistics, such as the mean and the covariance, and most completely in
terms of a probability model. Conditional probability models, in addition to
modelling the random fluctuations of a signal, can also model the
dependence of the signal on its past values or on some other related process.

As an illustration consider the estimation of a P-dimensional parameter
vector 0=[86,,0,, ..., Op_;] from a noisy observation vector y=[y(0), y(1), ...,

y(N-1)] modelled as
y=h(0,x,e)+n 4.2)

where, as illustrated in Figure 4.1, the function A(-) with a random input e,
output x, and parameter vector 6, is a predictive model of the signal x, and n
is an additive random noise process. In Figure 4.1, the distributions of the
random noise n, the random input e and the parameter vector 8 are modelled
by probability density functions, fy(n), fg(e), and fg(0) respectively. The pdf
model most often used is the Gaussian model. Predictive and statistical
models of a process guide the estimator towards the set of values of the
unknown parameters that are most consistent with both the prior distribution
of the model parameters and the noisy observation. In general, the more
modelling information used in an estimation process, the better the results,
provided that the models are an accurate characterisation of the observation
and the parameter process.

Parameter process Noise process
fo(6) In(n)
0
Excitation process | € Predictive model
fE(e) d h@ (05 X, e)

Figure 4.1 A random process Y is described in terms of a predictive model h(-),
and statistical models 7g(-), fg(-) and fp(-).
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4.1.2 Parameter Space and Signal Space

Consider a random process with a parameter vector 6. For example, each
instance of 6 could be the parameter vector for a dynamic model of a speech
sound or a musical note. The parameter space of a process @ is the
collection of all the values that the parameter vector 8 can assume. The
parameters of a random process determine the “character” (i.e. the mean, the
variance, the power spectrum, etc.) of the signals generated by the process.
As the process parameters change, so do the characteristics of the signals
generated by the process. Each value of the parameter vector 0 of a process
has an associated signal space Y; this is the collection of all the signal
realisations of the process with the parameter value 6. For example,
consider a three-dimensional vector-valued Gaussian process with parameter
vector @ =[u, X'], where i is the mean vector and X'is the covariance matrix
of the Gaussian process. Figure. 4.2 illustrates three mean vectors in a three-
dimensional parameter space. Also shown is the signal space associated
with each parameter. As shown, the signal space of each parameter vector of
a Gaussian process contains an infinite number of points, centred on the
mean vector U, and with a spatial volume and orientation that are
determined by the covariance matrix X. For simplicity, the variances are not
shown in the parameter space, although they are evident in the shape of the
Gaussian signal clusters in the signal space.

A Signal space
Mapping | N(y,Hy,21)
.

A% Parameter space

Mappin, , ,2
appine N(y:Ha,22) # K3 . . Y4

Mapping - (Y, M3} Z3)

> -
> >
Hy Yy

Figure 4.2 lllustration of three points in the parameter space of a Gaussian process
and the associated signal spaces, for simplicity the variances are not shown in
parameter space.



Basic Definitions 93

4.1.3 Parameter Estimation and Signal Restoration

Parameter estimation and signal restoration are closely related problems.
The main difference is due to the rapid fluctuations of most signals in
comparison with the relatively slow variations of most parameters. For
example, speech sounds fluctuate at speeds of up to 20 kHz, whereas the
underlying vocal tract and pitch parameters vary at a relatively lower rate of
less than 100 Hz. This observation implies that normally more averaging
can be done in parameter estimation than in signal restoration.

As a simple example, consider a signal observed in a zero-mean random
noise process. Assume we wish to estimate (a) the average of the clean
signal and (b) the clean signal itself. As the observation length increases, the
estimate of the signal mean approaches the mean value of the clean signal,
whereas the estimate of the clean signal samples depends on the correlation
structure of the signal and the signal-to-noise ratio as well as on the
estimation method used.

As a further example, consider the interpolation of a sequence of lost
samples of a signal given N recorded samples, as illustrated in Figure 4.3.
Assume that an autoregressive (AR) process is used to model the signal as

y=X0+e+n 4.3)

where y is the observation signal, X is the signal matrix, 6 is the AR
parameter vector, e is the random input of the AR model and n is the
random noise. Using Equation (4.3), the signal restoration process involves

the estimation of both the model parameter vector @ and the random input e
for the lost samples. Assuming the parameter vector 0 is time-invariant, the

estimate of 6 can be averaged over the entire NV observation samples, and as
N becomes infinitely large, a consistent estimate should approach the true

I N\ I

samples ; ;
O > Signal estimator -
Input signal y (Interpolator) Restored signal x
A
0
Parameter
e . -
estimator

Figure 4.3 lllustration of signal restoration using a parametric model of the
signal process.
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parameter value. The difficulty in signal interpolation is that the underlying
excitation e of the signal x is purely random and, unlike 6, it cannot be
estimated through an averaging operation. In this chapter we are concerned
with the parameter estimation problem, although the same ideas also apply
to signal interpolation, which is considered in Chapter 11.

4.1.4 Performance Measures and Desirable Properties of
Estimators

In estimation of a parameter vector 6 from N observation samples y, a set of
performance measures is used to quantify and compare the characteristics of
different estimators. In general an estimate of a parameter vector is a
function of the observation vector y, the length of the observation N and the
process model M. This dependence may be expressed as

6 =f(y.N.M) (4.4)

Different parameter estimators produce different results depending on the
estimation method and utilisation of the observation and the influence of the
prior information. Due to randomness of the observations, even the same
estimator would produce different results with different observations from
the same process. Therefore an estimate is itself a random variable, it has a
mean and a variance, and it may be described by a probability density
function. However, for most cases, it is sufficient to characterise an
estimator in terms of the mean and the variance of the estimation error. The
most commonly used performance measures for an estimator are the
following:

(a) Expected value of estimate: E[é ]
(b) Bias of estimate: E[é —9]:Z[é 1-6
(c) Covariance of estimate: Cov[0]=E[(6 — E[6])©6 —E[6]) "]

Optimal estimators aim for zero bias and minimum estimation error
covariance. The desirable properties of an estimator can be listed as follows:

(a) Unbiased estimator: an estimator of 8 is unbiased if the expectation
of the estimate is equal to the true parameter value:

6] =6 (4.5)
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An estimator is asymptotically unbiased if for increasing length of
observations N we have

lim £[0]= 0 (4.6)

N —oo

(b) Efficient estimator: an unbiased estimator of @ is an efficient
estimator if it has the smallest covariance matrix compared with all
other unbiased estimates of @:

Cov[@gsticion ] < CoviO] (4.7)

where @ is any other estimate of 6.

(c) Consistent estimator: an estimator is consistent if the estimate
improves with the increasing length of the observation N, such that
the estimate converges probabilistically to the true value 8 as N
becomes infinitely large:

lim P16 —0 1> e}=0 (4.8)

N —c0
where € is arbitrary small.

Example 4.1 Consider the bias in the time-averaged estimates of the mean
Uy and the variance G% of N observation samples [y(0), ..., y(N-1)], of an

ergodic random process, given as

1 N

Ay =y Zy(m (4.9)
N-1

63 = om0, (4.10)

Zla, | X Ebml=n, (@.11)
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" @
Figure 4.4 lllustration of the decrease in the bias and variance of an asymptotically
unbiased estimate of the parameter 6 with increasing length of observation.

The expectation of the estimate of the variance can be expressed as

oiler| 55 vk Soew |
EI6yI=E|— y(m)—= 2, y(k)
Y N .o N S
2 2 2 1 2
=0y -0y +,0) 4.12)
_ 2 1 2
=0y _ﬁo-y

From Equation (4.12), the bias in the estimate of the variance is inversely
proportional to the signal length N, and vanishes as N tends to infinity;
hence the estimate is asymptotically unbiased. In general, the bias and the
variance of an estimate decrease with increasing number of observation
samples N and with improved modelling. Figure 4.4 illustrates the general
dependence of the distribution and the bias and the variance of an
asymptotically unbiased estimator on the number of observation samples N.

4.1.5 Prior and Posterior Spaces and Distributions

The prior space of a signal or a parameter vector is the collection of all
possible values that the signal or the parameter vector can assume. The
posterior signal or parameter space is the subspace of all the likely values
of a signal or a parameter consistent with both the prior information and the
evidence in the observation. Consider a random process with a parameter
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A 0.6

-

y

Figure 4.5 lllustration of joint distribution of signal y and parameter 6 and the
posterior distribution of 6 given y.

space @ observation space Y and a joint pdf fy g(y,6). From the Bayes’ rule

the posterior pdf of the parameter vector 6, given an observation vector y,
feiy(01y), can be expressed as

frie (¥0 )f@ )
fY (y)
_ frie (¥0)fe (6)
[ fr6 (¥0) o ©)d6
e

Jo 6]y)=
4.13)

where, for a given observation vector y, the pdf f,(y) is a constant and has
only a normalising effect. From Equation (4.13), the posterior pdf is

proportional to the product of the likelihood fy,g(y10) that the observation y

was generated by the parameter vector 6, and the prior pdf fg(6). The prior

pdf gives the unconditional parameter distribution averaged over the entire
observation space as

fo©)=] fy o(y.0)dy (4.14)
Y
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For most applications, it is relatively convenient to obtain the likelihood
function fy,g(¥16). The prior pdf influences the inference drawn from the
likelihood function by weighting it with fg(8). The influence of the prior
is particularly important for short-length and/or noisy observations, where
the confidence in the estimate is limited by the lack of a sufficiently long
observation and by the noise. The influence of the prior on the bias and the
variance of an estimate are considered in Section 4.4.1.

A prior knowledge of the signal distribution can be used to confine the
estimate to the prior signal space. The observation then guides the estimator
to focus on the posterior space: that is the subspace consistent with both the
prior and the observation. Figure 4.5 illustrates the joint pdf of a signal y(m)
and a parameter 6. The prior pdf of Ocanbe obtained by integrating
fne(y(m)18) with respect to y(m). As shown, an observation y(m) cuts a

posterior pdf fg(Oly(m)) through the joint distribution.

Example 4.2 A noisy signal vector of length N samples is modelled as
y(m)=x(m)+n(m) (4.15)

Assume that the signal x(m) is Gaussian with mean vector W, and covariance

matrix X,

and covariance matrix %,,. The signal and noise pdfs model the prior spaces
of the signal and the noise respectively. Given an observation vector y(m),
the underlying signal x(m) would have a likelihood distribution with a mean
vector of y(m) — |, and covariance matrix %, as shown in Figure 4.6.The
likelihood function is given by

and that the noise n(m) is also Gaussian with mean vector U,

(ym)x(m)=F  (y(m) =x(m))
_ 1
(zﬂ)Nu'E

fYIX

1 _
7 exp{—g[x(m) ~(y(m) = )] " Zpy [x(m) —(y(m)—u,,)]}

(4.16)

where the terms in the exponential function have been rearranged to
emphasize the illustration of the likelihood space in Figure 4.6. Hence the
posterior pdf can be expressed as
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A

Noisy signal space

A noisy

Signal prior observation

space
A

Noise prior Posterior space
space

Likelihood space

Figure 4.6 Sketch of a two-dimensional signal and noise spaces, and the
likelihood and posterior spaces of a noisy observation y.

f g (OWEM)S  (x(m))
gy )|y (m)) = 7, )
_ 1 1
£y m) en)V |z

Xexp(

1/2‘2 1/2

nn‘ xx‘

—%ﬂxmn—Uom—unHTELmen—uum—unH+umm—uxf2§(xmn—uxﬁ]

(4.17)

For a two-dimensional signal and noise process, the prior spaces of the
signal, the noise, and the noisy signal are illustrated in Figure 4.6. Also
illustrated are the likelihood and posterior spaces for a noisy observation
vector y. Note that the centre of the posterior space is obtained by
subtracting the noise mean vector from the noisy signal vector. The clean
signal is then somewhere within a subspace determined by the noise
variance.
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4.2 Bayesian Estimation

The Bayesian estimation of a parameter vector 6 is based on the
minimisation of a Bayesian risk function defined as an average cost-of-error
function:
R.(0) = E[C(6,0)]
=], €6,0)fy0 (5,6) dy d6 (4.18)

= [ [, C0.0)fow @1 fy () dy db

where the cost-of-error function C (é,e) allows the appropriate weighting of

the various outcomes to achieve desirable objective or subjective properties.
The cost function can be chosen to associate a high cost with outcomes that
are undesirable or disastrous. For a given observation vector y, fy(y) is a

constant and has no effect on the risk-minimisation process. Hence Equation
(4.18) may be written as a conditional risk function:

RO 1y)=[,C(6.6) oy (01y)db (4.19)

The Bayesian estimate obtained as the minimum-risk parameter vector is
given by

Bpayesan = argminK (@ 1y) = argmin | [ CO.0) foy @ 13)d0 | (4.20)
0 0
Using Bayes’ rule, Equation (4.20) can be written as

Bpayesian = arzmin | [ C(6.6) fro (y16)fo (©)d6 | (421)
0

Assuming that the risk function is differentiable, and has a well-defined
minimum, the Bayesian estimate can be obtained as

6Bayesian =argzero

IR (6 | d ¢ b
y = arggero[ % jo C6,8)fyie(y10)fg©) de]

(4.22)
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A for61y
C(6,9)

L

Ouiap 0
Figure 4.7 lllustration of the Bayesian cost function for the MAP estimate.

4.2.1 Maximum A Posteriori Estimation

The maximum a posteriori (MAP) estimate 6 map 1s obtained as the
parameter vector that maximises the posterior pdf fgy(801y). The MAP
estimate corresponds to a Bayesian estimate with a so-called uniform cost

function (in fact, as shown in Figure 4.7 the cost function is notch-shaped)
defined as

C@6,0)=1-5(,0) (4.23)

where 8(@,0) is the Kronecker delta function. Substitution of the cost
function in the Bayesian risk equation yields

Rap @ ly) = || [1-6(8,6)] for © 1y) d6

) 4.24)
=1-foy (0 1y)

From Equation (4.24), the minimum Bayesian risk estimate corresponds to
the parameter value where the posterior function attains a maximum. Hence
the MAP estimate of the parameter vector 6 is obtained from a minimisation

of the risk Equation (4.24) or equivalently maximisation of the posterior
function:

) =argmax f__ (Qly)
MAP o o

= .'clrg(I;laX[th9 (y|0)f@ (0)]

(4.25)
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4.2.2 Maximum-Likelihood Estimation

The maximum-likelihood (ML) estimate 6 a1 18 obtained as the parameter
vector that maximises the likelihood function fyg (y 10). The ML estimator

corresponds to a Bayesian estimator with a uniform cost function and a
uniform parameter prior pdf:

R @1y)=[[1-56,6)] fvo (¥ 0) fo ©)d6

. (4.26)
=const[1- fyg (¥ 10)]

where the prior function fg(@)=const. From a Bayesian point of view the
main difference between the ML and MAP estimators is that the ML
assumes that the prior pdf of @ is uniform. Note that a uniform prior, in
addition to modelling genuinely uniform pdfs, is also used when the
parameter prior pdf is unknown, or when the parameter is an unknown
constant.

From Equation (4.26), it is evident that minimisation of the risk
function is achieved by maximisation of the likelihood function:

Oy = argmax fyg (y16) (4.27)
6

In practice it is convenient to maximise the log-likelihood function instead
of the likelihood:
0, =argmax log fy, (Y 10) (4.28)
7]

The log-likelihood is usually chosen in practice because:

(a) the logarithm is a monotonic function, and hence the log-likelihood
has the same turning points as the likelihood function;

(b) the joint log-likelihood of a set of independent variables is the sum
of the log-likelihood of individual elements; and

(c) unlike the likelihood function, the log-likelihood has a dynamic
range that does not cause computational under-flow.

Example 4.3 ML Estimation of the mean and variance of a Gaussian
process Consider the problem of maximum likelihood estimation of the

mean vector i, and the covariance matrix X, of a P-dimensional
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Gaussian vector process from N observation vectors [y(0),y(1),....y(N —=1)].

Assuming the observation vectors are uncorrelated, the pdf of the
observation sequence is given by

N-1 1
fr(pO),-y(N-D)=]]

= 0(27r)P/2| wl

- exp { ~lyomy—p, I" 25 [yom- uy]}

(4.29)
and the log-likelihood equation is given by
N-1 1 _
Infy (y(©)...y(N=1)= 3, {—zln(zn) SlZy = bow-p, ] 2 [.Y(m)—ﬂy]}
m=0
(4.30)

Taking the derivative of the log-likelihood equation with respect to the
mean vector f, yields

IInfy (y(0),...y(N=1))

1
Lxlu, 25 yom]=0 @31
I,

=0

From Equation (4.31), we have

Zy(m) (4.32)
m—O

To obtain the ML estimate of the covariance matrix we take the derivative
of the log-likelihood equation with respect to E;yl:

ol 0),---,y(N -1 N-1
nfy (3©),y(N=1) 2{2 W [y<m> wy lyomy—p, I }—

-1
0x vy
(4.33)
From Equation (4.31), we have an estimate of the covariance matrix as
1 Nl
——Z[y(m> fiy y(m)—a,1" (4.34)

m—O



104 Bayesian Estimation

Example 4.4 ML and MAP Estimation of a Gaussian Random Parameter.
Consider the estimation of a P-dimensional random parameter vector 6 from
an N-dimensional observation vector y. Assume that the relation between
the signal vector y and the parameter vector 0 is described by a linear model
as

y=GO +e (4.35)

where e is a random excitation input signal. The pdf of the parameter vector
0 given an observation vector y can be described, using Bayes’ rule, as

1
Sy ()

f@lY(er): fY|@(y|9)f@(9) (4.36)

Assuming that the matrix G in Equation (4.35) is known, the likelihood of
the signal y given the parameter vector @ is the pdf of the random vector e:

fre(10)= fr(e=y-G0) (4.37)

Now assume the input e is a zero-mean, Gaussian-distributed, random
process with a diagonal covariance matrix, and the parameter vector 6 is
also a Gaussian process with mean of U, and covariance matrix X,
Therefore we have

1 1
frie(y18) =fg(e) =W6XP|}E()’ —GO)T (y —GB):| (4.38)

and

1 _
fo @)= exp[—g(e—ﬂo)Tzoé (9—.119)] 4.39)

(27[)P/2|290 |1/2

The ML estimate obtained from maximisation of the log-likelihood function
ln[fY|@ (yl 0)] with respect to O is given by

6,.(»)=G"6)'G"y (4.40)

To obtain the MAP estimate we first form the posterior distribution by
substituting Equations (4.38) and (4.39) in Equation (4.36)
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1 1 1

0ly)=
Jor @1y) fr () @QroH)N'? (27Z)P/2|260|1/2

e

Xexp[—2—(y GO (y- GO)——(@ I.tg) 2o (9 Ile)]

(4.41)
The MAP parameter estimate is obtained by differentiating the log-
likelihood function In fgy (8 | y) and setting the derivative to zero:

6unr (=676 + 0255 T 6Ty + 02 Zad o) @42

Note that as the covarlance of the Gaussian-distributed parameter increases,
or equivalently as 299 — 0, the Gaussian prior tends to a uniform prior and

the MAP solution Equation (4.42) tends to the ML solution given by
Equation (4.40). Conversely as the pdf of the parameter vector 8 becomes
peaked, i.e. as 299 - 0, the estimate tends towards Ug.

4.2.3 Minimum Mean Square Error Estimation

The Bayesian minimum mean square error (MMSE) estimate is obtained as
the parameter vector that minimises a mean square error cost function
(Figure 4.8) defined as

Romise 0 19)=E[(6 -0)* 1 y]

:.[ (é_e)zfen/ O01y)de (4.43)
6

In the following, it is shown that the Bayesian MMSE estimate is the
conditional mean of the posterior pdf. Assuming that the mean square error
risk function is differentiable and has a well-defined minimum, the MMSE
solution can be obtained by setting the gradient of the mean square error risk
function to zero:

OR vmise (é| y)

£ =20 fow 01y)d0-2[6 for ©1y)d6 (4.44)
26 : o
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C(6,9)

- >
O vimtse 0
Figure 4.8 lllustration of the mean square error cost function and estimate.

Since the first integral on the right hand-side of Equation (4.42) is equal to
1, we have

aRMMSE (é ly)
06

=26~ .0 foy (d01y) d6 (4.45)

The MMSE solution is obtained by setting Equation (4.45) to zero:

O sz (¥) = J.ef@n/ ©1y)do (4.46)
0

For cases where we do not have a pdf model of the parameter process, the
minimum mean square error (known as the least square error, LSE) estimate
is obtained through minimisation of a mean square error function

Ele2(0ly)]:
6, i =argmin E[e*(0 | y)] (4.47)
(7]

Th LSE estimation of Equation (4.47) does not use any prior knowledge of
the distribution of the signals and the parameters. This can be considered as
a strength of LSE in situations where the prior pdfs are unknown, but it can
also be considered as a weakness in cases where fairly accurate models of
the priors are available but not utilised.
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Example 4.5 Consider the MMSE estimation of a parameter vector 0
assuming a linear model of the observation y as

y=GO+e (4.48)

The LSE estimate is obtained as the parameter vector at which the gradient
of the mean squared error with respect to @ is zero:
deTe

20

:%(yTy—zeTGTwaGTGe) =0 (4.49)

0,5

From Equation (4.49) the LSE parameter estimate is given by
0.5 =[G'G1'G"y (4.50)
Note that for a Gaussian likelihood function, the LSE solution is the same as

the ML solution of Equation (4.40).

4.2.4 Minimum Mean Absolute Value of Error Estimation

The minimum mean absolute value of error (MAVE) estimate (Figure 4.9)
is obtained through minimisation of a Bayesian risk function defined as

Rpsave @ Y)=E[10-01y]=[16 -0 1 foy 0 1) dO 4.51)
0

In the following it is shown that the minimum mean absolute value estimate
is the median of the parameter process. Equation (4.51) can be re-expressed
as

Ronve @19)=" [6-61foy ©1y)d0+[S 106110y 01y)d6
(4.52)

Taking the derivative of the risk function with respect to 6 yields

OR yave (6 1y)
00

:Ji, Joy (01y)do —J: few (61y)do (4.53)
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A foy©@1y) C(6,0)

- >

Ovave 0

Figure 4.9 lllustration of mean absolute value of error cost function. Note that the
MAVE estimate coincides with the conditional median of the posterior function.

The minimum absolute value of error is obtained by setting Equation (4.53)
to zero:

ffAVE for (81y)do =I;MAVE fow (61y)do (4.54)

From Equation (4.54) we note the MAVE estimate is the median of the
posterior density.

4.2.5 Equivalence of the MAP, ML, MMSE and MAVE for
Gaussian Processes With Uniform Distributed Parameters

Example 4.4 shows that for a Gaussian-distributed process the LSE estimate
and the ML estimate are identical. Furthermore, Equation (4.42), for the
MAP estimate of a Gaussian-distributed parameter, shows that as the
parameter variance increases, or equivalently as the parameter prior pdf
tends to a uniform distribution, the MAP estimate tends to the ML and LSE
estimates. In general, for any symmetric distribution, centred round the
maximum, the mode, the mean and the median are identical. Hence, for a
process with a symmetric pdf, if the prior distribution of the parameter is
uniform then the MAP, the ML, the MMSE and the MAVE parameter
estimates are identical. Figure 4.10 illustrates a symmetric pdf, an
asymmetric pdf, and the relative positions of various estimates.
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Afm@()"@) A fre(y10)
|
[} |
| )
: :
MAP 1
ML ]
MMSE MAP )
MAVE ) !
' | MAVE
Il > ! i MMSE
mean, mode, P mode median mean 0
median

Figure 4.10 lllustration of a symmetric and an asymmetric pdf and their respective
mode, mean and median and the relations to MAP, MAVE and MMSE estimates.

4.2.6 The Influence of the Prior on Estimation Bias and Variance

The use of a prior pdf introduces a bias in the estimate towards the range of
parameter values with a relatively high prior pdf, and reduces the variance
of the estimate. To illustrate the effects of the prior pdf on the bias and the
variance of an estimate, we consider the following examples in which the
bias and the variance of the ML and the MAP estimates of the mean of a
process are compared.

Example 4.6 Consider the ML estimation of a random scalar parameter 6,
observed in a zero-mean additive white Gaussian noise (AWGN) n(m), and
expressed as

yim)= 0+ n(m), m=0,.., N-1 (4.55)

It is assumed that, for each realisation of the parameter 6, N observation
samples are available. Note that, since the noise is assumed to be a zero-
mean process, this problem is equivalent to estimation of the mean of the
process y(m). The likelihood of an observation vector y=[y(0), y(1), ...,
y(N-1)] and a parameter value of 1is given by

N-1
fre10)=]]fy (y(m)-6)

m=0

| N (4.56)
-— 2[y<m>—e]2}

1
=————exp
(2no,;)N'? { 26, o
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From Equation (4.56) the log-likelihood function is given by

N 5 1 N-1 5
Infyie (¥ |9)=—Eln(27r0'n)—2—2 2[)’(’")‘9] (4.57)

n m=0

The ML estimate of 6, obtained by setting the derivative of In fy,(¥16) to
zero, is given by

A 1 Nl
Oy =— D, y(m)=3 (4.58)
N m=0

where y denotes the time average of y(m). From Equation (4.56), we note
that the ML solution is an unbiased estimate

N-1
E[Oy 1= Z(% D' [6 +n(m)] ): 0 (4.59)

m=0

and the variance of the ML estimate is given by

. A ) 1 Nl 2 52
Varl0,, |=E[(6)y,, —0)"1=F (ﬁ 2 y(m)—O] = 7" (4.60)

m=0

Note that the variance of the ML estimate decreases with increasing length
of observation.

Example 4.7 Estimation of a uniformly-distributed parameter observed in
AWGN. Consider the effects of using a uniform parameter prior on the mean
and the variance of the estimate in Example 4.6. Assume that the prior for
the parameter 0 is given by

1 /(Omax - Omin ) 60

0 otherwise

- <0<0
fo (9):{ i max (4.61)

as illustrated in Figure 4.11. From Bayes’ rule, the posterior pdf is given by
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A frie(y16) A o® A for @1y)

Likelihood Prior Posterior

— P ———————

A |

- | * L >
0L [} Omin 0 max 0 Or1aP OrinisE 0
Figure 4.11 lllustration of the effects of a uniform prior.
1
oy O1y)= frio(¥10)fo(0)
Ty (»)
! ! Nz: [y(m) - 9 0 1in <0 <0«
fy ) @ro?HV B = min
0, otherwise
(4.62)
The MAP estimate is obtained by maximising the posterior pdf:
emin if éML (y) < emin
Opap (¥)=140u1(») if O min 2 Oprr (1) 20,0 (4.63)
emax if éML (y)> emax

Note that the MAP estimate is constrained to the range 6, to 6,,,,. This
constraint is desirable and moderates the estimates that, due to say low
signal-to-noise ratio, fall outside the range of possible values of 6. It is easy

to see that the variance of an estimate constrained to a range of 6,;, to 6.

is less than the variance of the ML estimate in which there is no constraint
on the range of the parameter estimate:

emax

Varl@yapl= [Oyap )" frio (310 dy <Varlfy I= [ By —0)° frio (10) dy

0 min e

(4.64)
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fi)IY(elJ’)fY(Y)

A fyo(y10) A fo©®
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Figure 4.12 lllustration of the posterior pdf as product of the likelihood and the prior.

Example 4.8 Estimation of a Gaussian-distributed parameter observed in
AWGN. In this example, we consider the effect of a Gaussian prior on the
mean and the variance of the MAP estimate. Assume that the parameter 0 is
Gaussian-distributed with a mean 41, and a variance 03 as

1 0—up)’
fo ()= Wexp[— ﬁ} (4.65)

0 205

From Bayes rule the posterior pdf is given as the product of the likelihood
and the prior pdfs as:

b

foay @ly)= frio(¥10)fe ()
Sy (»)
1 1 1 N-1 5 1 ,
- Y -0 -—@©-
fY (y) (277,'0"3)1\”2(27[0'92)1/2 eXp{ 0_3 r;)[y(m) ] 20_92 ( ,LLG) }

(4.66)
The maximum posterior solution is obtained by setting the derivative of the
log-posterior function, In fg,y(61y), with respect to 6 to zero:

é ( ) — _O-’_g y o+ _O-%/L (467)
marY) = e n Y T o+ a2 N 1 |
N-1
where y= ) y(m)/N .
m=0

Note that the MAP estimate is an interpolation between the ML estimate y
and the mean of the prior pdf (g, as shown in Figure 4.12. The expectation
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Figure 4.13 lllustration of the effect of increasing length of observation on the

variance an estimator.

of the MAP estimate is obtained by noting that the only random variable on
the right-hand side of Equation (4.67) is the term y, and that £[ y |=60

2 2
Og 0+ Gn/N

Elbyap( Y)] = I
MAP 692+6n2/N crg +c7,f/N 0

and the variance of the MAP estimate is given as

2 2
A o) _ c,/N
Var[eMAP(y)] = #xVar[y] = %
Oy +0,, /N 1+0, /Ncre

Substitution of Equation (4.58) in Equation (4.67) yields

Var[0,, ( ¥)]
1+ Var[6,; ( y)]/Gg

Var[0y,p( ¥)]1=

(4.68)

(4.69)

(4.70)

Note that as 05, the variance of the parameter 6, increases the influence of

the prior decreases, and the variance of the MAP estimate tends towards the

variance of the ML estimate.

4.2.7 The Relative Importance of the Prior and the Observation

A fundamental issue in the Bayesian inference method is the relative
influence of the observation signal and the prior pdf on the outcome. The
importance of the observation depends on the confidence in the observation,
and the confidence in turn depends on the length of the observation and on
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the signal-to-noise ratio (SNR). In general, as the number of observation
samples and the SNR increase, the variance of the estimate and the influence
of the prior decrease. From Equation (4.67) for the estimation of a Gaussian
distributed parameter observed in AWGN, as the length of the observation N
increases, the importance of the prior decreases, and the MAP estimate tends
to the ML estimate:

2 2
. .oA - o) _ o,/N _ A
limit6 4 p (y) =limit| — 92 y+ 2”/2 g |=Y =0, (&71)
N—e Noe| 0g +c7,,/N (o +on/N

As illustrated in Figure 4.13, as the length of the observation N tends to infinity
then both the MAP and the ML estimates of the parameter should tend to its true
value 6.

Example 4.9 MAP estimation of a signal in additive noise. Consider the
estimation of a scalar-valued Gaussian signal x(m), observed in an additive
Gaussian white noise n(m), and modelled as

y(m)=x(m)+n(m) 4.72)

The posterior pdf of the signal x(m) is given by

Fxy (x(m)|y(m))= frix ((m)|x(m)) fx (x(m))

1
fy (y(m)) 4.73)

1
_m fn (y(m)—x(m))fy (x(m))

where fy (x(m))z?\[(x(m),,u N ,Gf) and fy (n(m))zf?\[(n(m),,un ,0'3) are the
Gaussian pdfs of the signal and noise respectively. Substitution of the signal
and noise pdfs in Equation (4.73) yields

_ )
fxy (x(m) 1 y(m))= _[y(m) x(m)—p,, ] }

1 1
fy y(m) 2ro, exp{ 20}

n

1 [xomy-p, T
o

(4.74)
This equation can be rewritten as
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Fxy (x(m)ly(m)) =

fY (y(m)) ZﬂG”O'x 25?2

L _oilym—x(m) -, +o; [x(m-p,
2050

n

(4.75)

To obtain the MAP estimate we set the derivative of the log-likelihood
function In fyy (x(m) | y(m)) with respect to x(m) to zero as

Iln fyyy (X(m) | Yom)l =262 (y(m) = x(m) = 1,,) +20 5 (x(m) = f1,.)

=0
ox(m) 20202
(4.76)
From Equation (4.76) the MAP signal estimate is given by
o2 o2
f(m)=— " [y(m) = p, 1+ 1, (4.77)
O-X + O-I’l X n

Note that the estimate x(m) is a weighted linear interpolation between the

unconditional mean of x(m), 1., and the observed value (y(m)—u ). At a very

2 2

poor SNR i.e. when o <<, we have X(m) = u . ; and, on the other hand,

for a noise-free signal o> =0and g, =0 and we have X(m) = y(m).

Example 4.10 MAP estimate of a Gaussian—-AR process observed in
AWGN. Consider a vector of N samples x from an autoregressive (AR)
process observed in an additive Gaussian noise, and modelled as

y=x+n 4.78)

From Chapter 8, a vector x from an AR process may be expressed as
e=Ax 4.79)
where A is a matrix of the AR model coefficients, and the vector e is the

input signal of the AR model. Assuming that the signal x is Gaussian, and
that the P initial samples x, are known, the pdf of the signal x is given by
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fx(x1xy)=fg(e)= LxTATAx] (4.80)

1
N/2 2
(27’[ o 62 ) [ 2Ge
where it is assumed that the input signal e of the AR model is a zero-mean

uncorrelated process with varianceof . The pdf of a zero-mean Gaussian

noise vector n, with covariance matrix ,,,,, is given by

_ 1 l T¢-1
Sy ()= (27r)N/2|E |1/2 exp(—an Z,mn) (4.81)
nn

From Bayes’ rule, the pdf of the signal given the noisy observation is

Sfrix (y|x)fx (x): 1
Sy (¥) Sy ()

fxiy(x1y) = In(y—x)fx(x) (4.82)

Substitution of the pdfs of the signal and noise in Equation (4.82) yields

T AT
P (x15)= 1 CXP{—;{(y—x)TZ,}l,(J’—xH)“42‘“}}

frnem)N o, °

e

(4.83)

The MAP estimate corresponds to the minimum of the argument of the
exponential function in Equation (4.83). Assuming that the argument of the
exponential function is differentiable, and has a well-defined minimum, we
can obtain the MAP estimate from

. _ TAT
Ryap (y)=arg zero{%[(y - Z (- x>+¥} } (4.84)

X 66’

The MAP estimate is

O

-1
A 1
Ryap(y) = (I +—22,mATA] y (4.85)

where I is the identity matrix.
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4.3 The Estimate—Maximise (EM) Method

The EM algorithm is an iterative likelihood maximisation method with
applications in blind deconvolution, model-based signal interpolation,
spectral estimation from noisy observations, estimation of a set of model
parameters from a training data set, etc. The EM is a framework for solving
problems where it is difficult to obtain a direct ML estimate either because
the data is incomplete or because the problem is difficult.

To define the term incomplete data, consider a signal x from a random

process X with an unknown parameter vector € and a pdf fy.g(x;6). The
notation fy.g(x,6) expresses the dependence of the pdf of X on the value of
the unknown parameter 6. The signal x is the so-called complete data and
the ML estimate of the parameter vector 6 may be obtained from fy.g(x; 6).

Now assume that the signal x goes through a many-to-one non-invertible
transformation (e.g. when a number of samples of the vector x are lost) and
is observed as y. The observation y is the so-called incomplete data.

Maximisation of the likelihood of the incomplete data, fy.g(y;6), with

respect to the parameter vector 6 is often a difficult task, whereas
maximisation of the likelihood of the complete data fy.g(x,6) is relatively

easy. Since the complete data is unavailable, the parameter estimate is
obtained through maximisation of the conditional expectation of the log-
likelihood of the complete data defined as

Elin fx.0 (x:0)]y]= [ fxiw.o (x|y:0)Infx o (x:0)dx (4.86)
X

In Equation (4.86), the computation of the term fyy.g(xly;6) requires an

estimate of the unknown parameter vector 6. For this reason, the expectation
of the likelihood function is maximised iteratively starting with an initial

estimate of 8, and updating the estimate as described in the following.

“Complete data” “Incomplete data”
Slgni}ig{ocess X Non-invertable —y>
——P .
transformation
parameter 6 fX;@(x;e) fy;@(y;e)

Figure 4.14 lllustration of transformation of complete data to incomplete data.
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EM Algorithm

Step 1: Initialisation Select an initial parameter estimate 6, and
fori =0, 1, ... until convergence:

Step 2: Expectation Compute

U0,0,)=E[In fy.,(x;0)1y:6,)

. 4.87
:fom(x|y;0,.)1nfx;9(x;9)dx (487)
X
Step 3: Maximisation Select
6,,,= argmaxU(6,6,) (4.88)
(7]

Step 4: Convergence test If not converged then go to Step 2.

4.3.1 Convergence of the EM Algorithm

In this section, it is shown that the EM algorithm converges to a maximum
of the likelihood of the incomplete data fy.g(y;60). The likelihood of the

complete data can be written as
fx,y;@ (x,y;0)=fX|Y;@ (x|y§9)fy;@ (y;0) (4.39)

where fy y.g(x.y;0) is the likelihood of x and y with 6 as a parameter. From
Equation (4.89), the log-likelihood of the incomplete data is obtained as

In fy;@ (y;0)=In fx,y;@ (x,y;0)—In fXIY;@ (xl y:0) (4.90)

Using an estimate @; of the parameter vector 6, and taking the expectation
of Equation (4.90) over the space of the complete signal x, we obtain

Infy.o(y:0)=U (8:6,)-V(8:6,) (4.91)

where for a given y, the expectation of In fy.o(y;6) is itself, and the function

ue; é ) is the conditional expectation of In fxy: ox.y;0):
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U(O,él):f[lan,Y;@ (x,y;0) Iy;él-)

A 4.92
:J.fXIY;@(xIy;0i)1an;@(x;0)dx ( )
X
The function V( 6, 6 ) is the conditional expectation of In fyy. g(xly; 6):
V(6.6,)= f[lnfxw;@ (xly:0)|y:6;]
(4.93)

= Ifxuf;@ (xly:0)In fyy g (x1y:0) dx
X

Now, from Equation (4.91), the log-likelihood of the incomplete data y with
parameter estimate éi at iteration i 1s

Infy.g(y:0,)=U(6;:6,)-V (6,6, (4.94)

It can be shown (see Dempster et al., 1977) that the function V satisfies the
inequality

V(0;,:6,) <V(6::6)) (4.95)

and in the maximisation step of EM we choose éi + such that

A A A A

U@6;,:6;) 2 U(0;:0,) (4.96)
From Equation (4.94) and the inequalities (4.95) and (4.96), it follows that
In fy.o(%:64;) > In fr.o(:6) (4.97)

Therefore at every iteration of the EM algorithm, the conditional likelihood
of the estimate increases until the estimate converges to a local maximum of
the log-likelihood function In fy.g(y;6).

The EM algorithm is applied to the solution of a number of problems in
this book. In Section 4.5, of this chapter the estimation of the parameters of
a mixture Gaussian model for the signal space of a recorded process is
formulated in an EM framework. In Chapter 5, the EM is used for estimation
of the parameters of a hidden Markov model.
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4.4 Cramer—Rao Bound on the Minimum Estimator Variance

An important measure of the performance of an estimator is the variance of
the estimate with the varying values of the observation signal y and the
parameter vector 6. The minimum estimation variance depends on the
distributions of the parameter vector @ and on the observation signal y. In
this section, we first consider the lower bound on the variance of the
estimates of a constant parameter, and then extend the results to random
parameters.

The Cramer-Rao lower bound on the variance of estimate of the ith
coefficient 6; of a parameter vector 0 is given as

2
(1 +89Bias ]
20,
E[[o'?lnfm@(yle)]z]
26,

An estimator that achieves the lower bound on the variance is called the
minimum variance, or the most efficient, estimator.

Var(6;(y)] 2 (4.98)

Proof The bias in the estimate 6;(y) of the ith coefficient of the parameter
vector 0, averaged over the observation space Y, is defined as

oo

10,5 - 0,1= [16,0) - 6,1 frieW16) dy = O, (4.99)

—o0

Differentiation of Equation (4.99) with respect to 6; yields

5]

| {[é,-(w—ei]

—oo

d fyie (¥10)
20,

J QBias

4.100
d0; ( )

—frie(y! 9)}dy=
For a probability density function we have

ij|@(y|9) dy=1 (4.101)

—oo
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Therefore Equation (4.100) can be written as

T4 d frie (¥16) 96..
16 0p00,17 770 010 4y _ 1, b

4.102
20, 26, (102

—00

Now, since the derivative of the integral of a pdf is zero, taking the
derivative of Equation (4.101) and multiplying the result by 6g;,, yields

79 frie(y10)
Om%f—i%ﬁf——@=0 (4.103)

—o00

Substituting d fyie (¥10)/96; = fyig(y10)dIn fyg (y16)/90; into
Equation (4.102), and using Equation (4.103), we obtain

T4 dln fyio (y16 P
J. [91 ()’)—QBiaS _ei] Y(;(‘; le@ (y |0)dy = ]+ Bias Bias

o i

(4.104)

Now squaring both sides of Equation (4.104), we obtain

A~ 81 fy|@ (y |9) 89 ias
( j [0 (¥) — Opiys _ei]8—9,fY|@ (y |9)d)’] ( 1+ —81;,- ]

—o0

(4.105)

For the left-hand side of Equation (4.105) application of the following
Schwartz inequality

(<] 2 [o<] (<]
[Jf(y)g(y)dx] < JUromPdex [(g(n)dy  @4.106)

yields
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2
7 (s Infye (¥16)
{ ] ([@-(y)—egias—e,-]fy‘(@z(y|e>)(”+f;(@2<yle>)dy} <

—oo

(s = (91 (y16) ¥
{[ [ (6 (3)-pi0s = 6,1 frip (y16) )y )H | (““(;Ley) leQ(yIO)dy}

—oo —oo

(4.107)
From Equations (4.105) and (4.107), we have

A dInfyg(y16) 2 5 ¥
Var[0: E > 1+—2 4.108
ar[6; (y)]x ( EYY >[ + T) ] ( )

1

The Cramer—-Rao inequality (4.98) results directly from the inequality
(4.108).

4.4.1 Cramer—-Rao Bound for Random Parameters

For random parameters the Cramer—Rao bound may be obtained using the
same procedure as above, with the difference that in Equation (4.98) instead
of the likelihood fy,g(y16) we use the joint pdf fy g(¥,0), and we also use the
logarithmic relation

Infy 6.0 _ Iinfr(r10) IInfo(6)

4.109
20, 26 26 (69
The Cramer—Rao bound for random parameters is obtained as
2
[ 1 8eBias )
. 00.
Var[6; (y)] 2 ! (4.110)

Z[(alnfw(y 19) )2 +(8lnf@ @) ]2]

where the second term in the denominator of Equation (4.110) describes the
effect of the prior pdf of 8. As expected the use of the prior, fg(6), can result
in a decrease in the variance of the estimate. An alternative form of the
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minimum bound on estimation variance can be obtained by using the
likelihood relation

2 2
zhw] }:_z[& lan’@(y’e)} @111

90, 967

2
( 1+ 8eBials ]
26,

- a21an|@(yI9)+a21nf@<6>

as

Var[6; (y)] 2 —

4.112)

4.4.2 Cramer—Rao Bound for a Vector Parameter

For real-valued P-dimensional vector parameters, the Cramer—Rao bound
for the covariance matrix of an unbiased estimator of @is given by

Cov[8]=J'(6) (4.113)

where J is the Px P Fisher information matrix, with elements given by

3% Infy g(».0)
JO)].=—E : 4.114
®)]; [ 9,36, (4.114)
The lower bound on the variance of the ith element of the vector 0 is given

by

N 4 1

var@) 2 77 )], = (4.115)
. d Infy g(y.0)
967

where (J-1(0);,) is the ith diagonal element of the inverse of the Fisher
matrix.
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o

)

Figure 4.15 lllustration of probabilistic modelling of a two-dimensional signal
space with a mixture of five bivariate Gaussian densities.

4.5 Design of Mixture Gaussian Models

A practical method for the modelling of the probability density function of
an arbitrary signal space is to fit (or “tile”) the space with a mixture of a
number of Gaussian probability density functions. Figure 4.15 illustrates the
modelling of a two-dimensional signal space with a number of circular and
elliptically shaped Gaussian processes. Note that the Gaussian densities can
be overlapping, with the result that in an area of overlap, a data point can be
associated with different probabilities to different components of the
Gaussian mixture.

A main advantage of the use of a mixture Gaussian model is that it
results in mathematically tractable signal processing solutions. A mixture
Gaussian pdf model for a process X is defined as

K
fx ()= PG (x50 ,Z3) (4.116)
k=1

where a(; (x;U;, X;) denotes the kth component of the mixture Gaussian
pdf, with mean vector W, and covariance matrix ;. The parameter P, is the
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prior probability of the kth mixture, and it can be interpreted as the expected
fraction of the number of vectors from the process X associated with the kth
mixture.

In general, there are an infinite number of different K-mixture Gaussian
densities that can be used to “tile up” a signal space. Hence the modelling of
a signal space with a K-mixture pdf space can be regarded as a many-to-one
mapping, and the expectation-maximisation (EM) method can be applied for
the estimation of the parameters of the Gaussian pdf models.

4.5.1 The EM Algorithm for Estimation of Mixture Gaussian
Densities

The EM algorithm, discussed in Section 4.4, is an iterative maximum-
likelihood (ML) estimation method, and can be employed to calculate the
parameters of a K-mixture Gaussian pdf model for a given data set. To
apply the EM method we first need to define the so-called complete and
incomplete data sets. As usual the observation vectors [y(m) m=0, ..., N-1]
form the incomplete data. The complete data may be viewed as the
observation vectors with a label attached to each vector y(m) to indicate the
component of the mixture Gaussian model that generated the vector. Note
that if each signal vector y(m) had a mixture component label attached, then
the computation of the mean vector and the covariance matrix of each
component of the mixture would be a relatively simple exercise. Therefore
the complete and incomplete data can be defined as follows:

The incomplete data y(m), m=0,...,N —1
The complete data x(m)z[y(m),k]:yk (m), m=0,...,.N-1Lke(l,...,K)

The probability of the complete data is the probability that an observation
vector y(m) has a label k associating it with the kth component of the mixture
density. The main step in application of the EM method is to define the
expectation of the complete data, given the observations and a current
estimate of the parameter vector, as

U(©,6,)=El[In fy x.0 (y(m),k;0)1y(m);6;]

N1 K fy ko (0(m),k)16)) @117
) ’ ~——In fy k. (y(m).k;0)
"E)kga Ty (y(m)10;) Y.k:0Y
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where ©={0,=[P,, W;, %], k=1,..., K}, are the parameters of the Gaussian

mixture as in Equation (4.116). Now the joint pdf of y(m) and the kth
Gaussian component of the mixture density can be written as

Ty xl@ (y(m), k|éi )= P, fx (y(m)‘éki )

A (4.118)
= P, Ny (y(m);/lki 2, )

where A (y(m); ﬂk,fk) is a Gaussian density with mean vector y; and
covariance matrix X, :

1
ANk (.Y(m);.uk; Zk) XP(__Z (y(m) —/.Lk)TZk‘l(y(m)—/.Lk))

4.119)

1
= ¢
@z "
The pdf of y(m) as a mixture of K Gaussian densities is given by

= zﬁkiNk()’(m);ﬂki ,ZAki)

k=1

Frio y(mff; )=2(

(4.120)

Substitution of the Gaussian densities of Equation (4.118) and Equation
(4.120) in Equation (4.117) yields

A mfy, 2)
L & G P ()i Z0)]

. N-1 K
U[(u,Z,P),([:l,»,Ei,P) 2 2
m=0 k=1

N-l

>

(ﬁkig\[k(y(m);ﬁki: EAki) i)kig\[k(y(m);ﬁki: EAki)
m=0 k=1

2 A 1 i T
N(J’(m)|@,-) nEe N(y(m)|@,-) DA (Vi s B k)]

4.121)

Equation (4.121) is maximised with respect to the parameter P, using the
constrained optimisation method. This involves subtracting the constant
term XP;=1 from the right hand side of Equation (4.121) and then setting
the derivative of this equation with respect to P, to zero, this yields
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13’9 = argmax U[U, 2, P),(/:li» f"i’ pi)]
Py

+1

SN COR S (4.122)

1 N
NZ o NGmI6)

The parameters W and %, that maximise the function U are obtained, by

setting the derivative of the function with respect to these parameters to
zero:

Ijki+] = arg'umax UI(ﬂ,E, P):(a[i'i’ z'i’[,ii)]
k

N-1 ﬁkiNk(y(m);ﬁki»Skl-) m)
| m
0 N (y(m)|6;) R
NSt B N (y(my iy, S
= N(ym)6)

m=

and

A

Zk~ :argzmaX U[(u,Z,P)’(Ill,ZA‘l’IA)l)]

i+1 f
N RGO m iy, Z )

= N (y(m)|©;)
N-1 i)ki Nk(y(m);.ﬁki’ ﬁk,')

m2=0 A (v(m)|e;)

(y(m)—ﬂkl. )(y(m)—ﬂkl.)T

(4.124)
Equations (4.122)—(4.124) are the estimates of the parameters of a mixture
Gaussian pdf model. These equations can be used in further iterations of the
EM method until the parameter estimates converge.

4.6 Bayesian Classification

Classification is the processing and labelling of an observation sequence
{y(m)} with one of M classes of signals {C;; k=1, ..., M} that could have

generated the observation. Classifiers are present in all modern digital
communication systems and in applications such as the decoding of
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>
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Figure 4.16 — lllustration of the overlap of the distribution of two classes of signals.

discrete-valued symbols in digital communication receivers, speech
compression, video compression, speech recognition, image recognition,
character recognition, signal/noise classification and detectors. For example,
in an M-symbol digital communication system, the channel output signal is
classified as one of the M signalling symbols; in speech recognition,
segments of speech signals are labelled with one of about 40 elementary
phonemes sounds; and in speech or video compression, a segment of speech
samples or a block of image pixels are quantised and labelled with one of a
number of prototype signal vectors in a codebook. In the design of a
classifier, the aim is to reduce the classification error given the constraints
on the signal-to-noise ratio, the bandwidth and the computational resources.
Classification errors are due to overlap of the distributions of different
classes of signals. This is illustrated in Figure 4.16 for a binary classification
problem with two Gaussian distributed signal classes C; and C,. In the

shaded region, where the signal distributions overlap, a sample x could
belong to either of the two classes. The shaded area gives a measure of the
classification error. The obvious solution suggested by Figure 4.16 for
reducing the classification error is to reduce the overlap of the distributions.
The overlap can be reduced in two ways: (a) by increasing the distance
between the mean values of different classes, and (b) by reducing the
variance of each class. In telecommunication systems the overlap between
the signal classes is reduced using a combination of several methods
including increasing the signal-to-noise ratio, increasing the distance
between signal patterns by adding redundant error control coding bits, and
signal shaping and post-filtering operations. In pattern recognition, where it
is not possible to control the signal generation process (as in speech and
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image recognition), the choice of the pattern features and models affects the
classification error. The design of an efficient classification for pattern
recognition depends on a number of factors, which can be listed as follows:

(1) Extraction and transformation of a set of discriminative features from
the signal that can aid the classification process. The features need to
adequately characterise each class and emphasise the difference
between various classes.

(2) Statistical modelling of the observation features for each class. For
Bayesian classification, a posterior probability model for each class
should be obtained.

(3) Labelling of an unlabelled signal with one of the N classes.

4.6.1 Binary Classification

The simplest form of classification is the labelling of an observation with
one of two classes of signals. Figures 4.17(a) and 4.17(b) illustrate two
examples of a simple binary classification problem in a two-dimensional
signal space. In each case, the observation is the result of a random mapping
(e.g. signal plus noise) from the binary source to the continuous observation
space. In Figure 4.17(a), the binary sources and the observation space
associated with each source are well separated, and it is possible to make an
error-free classification of each observation. In Figure 4.17(b) there is less
distance between the mean of the sources, and the observation signals have a
greater spread. This results in some overlap of the signal spaces and
classification error can occur. In binary classification, a signal x is labelled
with the class that scores the higher a posterior probability:

G
Peix (Cilx) 2 Peix (o)) (4.125)

G
Using Bayes’ rule Equation (4.125) can be rewritten as

G
Pc(cl)fx\c(x|cl) 2 Pc(cz)fx\c(x|cz) (4.126)

G

Letting Pc(Cy)=P; and P-(C,)=P,, Equation (4.126) is often written in
terms of a likelihood ratio test as
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A 51 Discrete source space Ay | Noisy observation space

(a) %2

— —
S
(b) 2 Ya

Figure 4.17 lllustration of binary classification: (a) the source and observation spaces
are well separated, (b) the observation spaces overlap.

fxjc(*[Cy) g Py

(4.127)
fx|c(*[C) c<2 B

Taking the likelihood ratio yields the following discriminant function:

Cl
P
h(x) =1nfy|c (x|C;)—1nfyc (*|C,) z 1n?2 (4.128)

1
G

Now assume that the signal in each class has a Gaussian distribution with a
probability distribution function given by

1 1 _ .
fxc(xlci)=mexp[—5<x—uifzi l(x—ui)], =12 (4.129)
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From Equations (4.128) and (4.129), the discriminant function Ah(x)
becomes

fol
P
h(x)———(x ,u1) 21 (x— I.l1)+ (x - /.lz) 22 (x - u2)+1n| 2| >1
= < A
C2
(4.130)

Example 4.10 For two Gaussian-distributed classes of scalar-valued
signals with distributions given by .‘7\[()6(111),#1,02 ) and N(x(m),uz,az),
and equal class probability P;=P,=0.5, the discrimination function of
Equation (4.130) becomes

_ 2 2 G
hmy) = H2 7L gy ¢ LE2 TR (4.131)
2 o c.

Hence the rule for signal classification becomes

C]
x(m) S Lz“z (4.132)
CZ

The signal is labelled with class C; if x(m)<(u; +M,)/2and as class C,
otherwise.

4.6.2 Classification Error

Classification errors are due to the overlap of the distributions of different
classes of signals. This is illustrated in Figure 4.16 for the binary
classification of a scalar-valued signal and in Figure 4.17 for the binary
classification of a two-dimensional signal. In each figure the overlapped
area gives a measure of classification error. The obvious solution for
reducing the classification error is to reduce the overlap of the distributions.
This may be achieved by increasing the distance between the mean values of
various classes or by reducing the variance of each class. In the binary
classification of a scalar-valued variable x, the probability of classification
error is given by
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P(Error|x)= P(C;)P(x >Thrsh|xe C;)+P(C,)P(x >Thrshlxe C,) (4.133)

For two Gaussian-distributed classes of scalar-valued signals with pdfs
N (x(m),py,07) and N(x(m),11,,03), Equation (4.133) becomes

T 1 (x—m)?
P(Error|x)=P(C;) I Nors expl — ——— " |dx
Thrsh 2r 0y 261

(4.134)

Thrsh 2
LPC) | J%G [_ (x=H15) ]dx
2

—oo

where the parameter Thrsh is the classification threshold.

4.6.3 Bayesian Classification of Discrete-Valued Parameters

Let the set @={6;, i =1, ..., M} denote the values that a discrete P-
dimensional parameter vector 6 can assume. In general, the observation
space Y associated with a discrete parameter space ®@ may be a discrete-
valued or a continuous-valued space. Assuming that the observation space is
continuous, the pdf of the parameter vector 6; given observation vector y ,
may be expressed, using Bayes’ rule, as

frie(y10;,)Fg (6;)
Poy (6,1y) = ~1O 2710 (4.135)

fy ()

For the case when the observation space Y is discrete-valued, the probability
density functions are replaced by the appropriate probability mass functions.
The Bayesian risk in selecting the parameter vector 6; given the observation
y is defined as

M
R(6;1y)=),C®;10,)Poy ;1) (4.136)
J=1

where C(6;16) is the cost of selecting the parameter 6; when the true
parameter is 6. The Bayesian classification Equation (4.136) can be
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employed to obtain the maximum a posteriori, the maximum likelihood and
the minimum mean square error classifiers.

4.6.4 Maximum A Posteriori Classification

MAP classification corresponds to Bayesian classification with a uniform
cost function defined as

C6;10;,)=1-5(6,.6,) (4.137)

where &(-) is the delta function. Substitution of this cost function in the
Bayesian risk function yields

M
0;1ly)=> [1-06(0,,0,)] Py, (6|
R,MAP(l y) %[ (l j)] @ly( J y) (4138)

Note that the MAP risk in selecting 6; is the classification error probability;
that is the sum of the probabilities of all other candidates. From Equation
(4.138) minimisation of the MAP risk function is achieved by maximisation
of the posterior pmf:

éMAP(y) = arg max Fgy (0; | y)
0;

= argmax Py (0;) fyie (¥ 16,)
6;

(4.139)

4.6.5 Maximum-Likelihood (ML) Classification

The ML classification corresponds to Bayesian classification when the
parameter @ has a uniform prior pmf and the cost function is also uniform:

Ry, (6; 1) 2[1 56,6, )fm( y18; P (6))
J=1 (4.140)

1
) frie(¥10;)Pg
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where Pg is the uniform pmf of 6. Minimisation of the ML risk function
(4.140) is equivalent to maximisation of the likelihood fy,g(¥!6;)

6, (y)=argmax fy,g (y16;) (4.141)

L

4.6.6 Minimum Mean Square Error Classification

The Bayesian minimum mean square error classification results from
minimisation of the following risk function:

M
2
KMMSE(ei ly) = 2|9, _9j| P@IY (ej ly) (4.142)
j=1

For the case when Pg,y(0 jI y) is not available, the MMSE classifier is
given by
6 se (¥) = arg min |; —9(y)|2 (4.143)
0

1

where 6(y) is an estimate based on the observation y.

4.6.7 Bayesian Classification of Finite State Processes

In this section, the classification problem is formulated within the
framework of a finite state random process. A finite state process is
composed of a probabilistic chain of a number of different random
processes. Finite state processes are used for modelling non-stationary
signals such as speech, image, background acoustic noise, and impulsive
noise as discussed in Chapter 5.

Consider a process with a set of M states denoted as S={sy, s, . . ., Sy},
where each state has some distinct statistical property. In its simplest form, a
state is just a single vector, and the finite state process is equivalent to a
discrete-valued random process with M outcomes. In this case the Bayesian
state estimation is identical to the Bayesian classification of a signal into
one of M discrete-valued vectors. More generally, a state generates
continuous-valued, or discrete-valued vectors from a pdf, or a pmf,
associated with the state. Figure 4.18 illustrates an M-state process, where
the output of the ith state is expressed as
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x(m) =1 0;,e(m)), i=1,.., M (4.144)

where in each state the signal x(m) is modelled as the output of a state-
dependent function h;(-) with parameter 6; input e(m) and an input pdf
fei(e(m)). The prior probability of each state is given by

M
P (s;))=EIN(s; )]/ 5[21 N(s; )] (4.145)
=

where ‘E[N(s;)] is the expected number of observation from state s;. The pdf

of the output of a finite state process is a weighted combination of the pdf of
each state and is given by

M
fx (xm)=> Ps(s) fxis (x1s;) (4.146)
i=1

In Figure 4.18, the noisy observation y(m) is the sum of the process output
x(m) and an additive noise n(m). From Bayes’ rule, the posterior probability
of the state s; given the observation y(m) can be expressed as

x=h(0e)
e € f2(e)

x="hpy(6 e
e € fu(e)

x=h;(6e)
e c fi(e)

n
Noise —»?
Yy

Figure 4.18 lllustration of a random process generated by a finite state system.
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P (
Pyy (si]y(m)) =~ Fris }su)Ps (50 (4.147)
ZfYIS(y(m)| )PS(S

j=l1

In MAP classification, the state with the maximum posterior probability is
selected as

Syap (y(m))=argmax Pgy (s;| y(m)) (4.148)

S;

The Bayesian state classifier assigns a misclassification cost function
C(s;ls;) to the action of selecting the state s; when the true state is s;. The risk

function for the Bayesian classification is given by

M
R (s;lym) =Y C(s; Is ;) Psy (s ly(m)) (4.149)

j=1

4.6.8 Bayesian Estimation of the Most Likely State Sequence

Consider the estimation of the most likely state sequence

S =[8558; 508, of a finite state process, given a sequence of T

observation vectors Y =[y,,y;,...,yr_ |. A state sequence s, of length 7, is
itself a random integer-valued vector process with N7 possible values. From
the Bayes rule, the posterior pmf of a state sequence s, given an observation
sequence Y, can be expressed as

fY|S (yO""’yT—l |si0’“"sir—l )PS (Sio,...,sir )

Py (Si8i 1 Yoo 7o) = 0y Yr) -
y (Yoo Y71

(4.150)

where Pg(s) 1s the pmf of the state sequence s, and for a given observation
sequence, the denominator fy(yy,...,y7_;) is a constant. The Bayesian risk
in selecting a state sequence s; is expressed as
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Figure 4.19 A three state Markov Process.

NT
R(Si|Y)=ZC(Si |Sj)PS|Y(Sj|J’) (4.151)
=

For a statistically independent process, the state of the process at any time is
independent of the previous states, and hence the conditional probability of
a state sequence can be written as

T-1
Py (S-S5 |[Vor s Y7 = [ fris (yk|sik )P (s;,) (4.152)
k=0

where s;; denotes state s; at time instant k. A particular case of a finite state
process is the Markov chain where the state transition is governed by a
Markovian process such that the probability of the state i at time m depends
on the state of the process at time m-1. The conditional pmf of a Markov
state sequence can be expressed as

T-1
Poy (5 -58; 1 Yowes yr-D) =] T @i i Fsw (i, 1y) (4.153)
k=0

where a;

state s, Finite state random processes and computationally efficient

is the probability that the process moves from state s; ~ to

methods of state sequence estimation are described in detail in Chapter 5.
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4.7 Modelling the Space of a Random Process

In this section, we consider the training of statistical models for a database
of P-dimensional vectors of a random process. The vectors in the database
can be visualised as forming a number of clusters or regions in a P-
dimensional space. The statistical modelling method consists of two steps:
(a) the partitioning of the database into a number of regions, or clusters, and
(b) the estimation of the parameters of a statistical model for each cluster. A
simple method for modelling the space of a random signal is to use a set of
prototype vectors that represent the centroids of the signal space. This
method effectively quantises the space of a random process into a relatively
small number of typical vectors, and is known as vector quantisation (VQ).
In the following, we first consider a VQ model of a random process, and
then extend this model to a pdf model, based on a mixture of Gaussian
densities.

4.7.1 Vector Quantisation of a Random Process

In vector quantisation, the space of a random vector process X is partitioned
into K clusters or regions [X, X5, ...,Xg], and each cluster X; is represented

by a cluster centroid ¢;. The set of centroid vectors [cy, €3, ...,cx] form a VQ
code book model of the process X. The VQ code book can then be used to
classify an unlabelled vector x with the nearest centroid. The codebook is
searched to find the centroid vector with the minimum distance from x, then
x is labelled with the index of the minimum distance centroid as

Label(x)=argmind(x,c;) (4.154)

where d(x, c¢;) is a measure of distance between the vectors x and c;. The
most commonly used distance measure is the mean squared distance.

4.7.2 Design of a Vector Quantiser: K-Means Clustering

The K-means algorithm, illustrated in Figure 4.20, is an iterative method for
the design of a VQ codebook. Each iteration consists of two basic steps : (a)
Partition the training signal space into K regions or clusters and (b) compute
the centroid of each region. The steps in K-Means method are as follows:
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Select initial centroids and
form cluster partitions

A A

Update cluster centroids

|-
|

.
|

Update cluster partitions A Update cluster centroids

| .
> »

Figure 4.18 lllustration of the K-means clustering method.

Step 1: Initialisation Use a suitable method to choose a set of K initial
centroids [¢;]. Form=1, 2, ...

Step 2: Classification Classify the training vectors {x} into K clusters {[x],
[x>], ... [xk]} using the so-called nearest-neighbour rule Equation
(4.154).

Step 3: Centroid computation Use the vectors [x;] associated with the ith
cluster to compute an updated cluster centroid c¢;, and calculate the
cluster distortion defined as

N;
D, (m)=—]$ S dx, ()i (m)) (4.155)
=

where it is assumed that a set of N; vectors [x;(j) j=0, ..., N;] are
associated with cluster i. The total distortion is given by

K
D(m)=> D;(m) (4.156)
i=1
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Step 4: Convergence test:
if
D(m—1) — D(m) = Threshold stop,
else
goto Step 2.

A vector quantiser models the regions, or the clusters, of the signal space
with a set of cluster centroids. A more complete description of the signal
space can be achieved by modelling each cluster with a Gaussian density as
described in the next chapter.

4.8 Summary

This chapter began with an introduction to the basic concepts in estimation
theory; such as the signal space and the parameter space, the prior and
posterior spaces, and the statistical measures that are used to quantify the
performance of an estimator. The Bayesian inference method, with its
ability to include as much information as is available, provides a general
framework for statistical signal processing problems. The minimum mean
square error, the maximum-likelihood, the maximum a posteriori, and the
minimum absolute value of error methods were derived from the Bayesian
formulation. Further examples of the applications of Bayesian type models
in this book include the hidden Markov models for non-stationary processes
studied in Chapter 5, and blind equalisation of distorted signals studied in
Chapter 15.

We considered a number of examples of the estimation of a signal
observed in noise, and derived the expressions for the effects of using prior
pdfs on the mean and the variance of the estimates. The choice of the prior
pdf is an important consideration in Bayesian estimation. Many processes,
for example speech or the response of a telecommunication channel, are not
uniformly distributed in space, but are constrained to a particular region of
signal or parameter space. The use of a prior pdf can guide the estimator to
focus on the posterior space that is the subspace consistent with both the
likelihood and the prior pdfs. The choice of the prior, depending on how
well it fits the process, can have a significant influence on the solutions.

The iterative estimate-maximise method, studied in Section 4.3,
provides a practical framework for solving many statistical signal
processing problems, such as the modelling of a signal space with a mixture
Gaussian densities, and the training of hidden Markov models in Chapter 5.
In Section 4.4 the Cramer—Rao lower bound on the variance of an estimator
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was derived, and it was shown that the use of a prior pdf can reduce the
minimum estimator variance.

Finally we considered the modelling of a data space with a mixture
Gaussian process, and used the EM method to derive a solution for the
parameters of the mixture Gaussian model.
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HIDDEN MARKOV MODELS

5.1 Statistical Models for Non-Stationary Processes

5.2 Hidden Markov Models

5.3 Training Hidden Markov Models

5.4 Decoding of Signals Using Hidden Markov Models

5.5 HMM-Based Estimation of Signals in Noise

5.6 Signal and Noise Model Combination and Decomposition
5.7 HMM-Based Wiener Filters

5.8 Summary

idden Markov models (HMMs) are used for the statistical modelling

of non-stationary signal processes such as speech signals, image

sequences and time-varying noise. An HMM models the time
variations (and/or the space variations) of the statistics of a random process
with a Markovian chain of state-dependent stationary subprocesses. An
HMM is essentially a Bayesian finite state process, with a Markovian prior
for modelling the transitions between the states, and a set of state probability
density functions for modelling the random variations of the signal process
within each state. This chapter begins with a brief introduction to
continuous and finite state non-stationary models, before concentrating on
the theory and applications of hidden Markov models. We study the various
HMM structures, the Baum—Welch method for the maximum-likelihood
training of the parameters of an HMM, and the use of HMMs and the
Viterbi decoding algorithm for the classification and decoding of an
unlabelled observation signal sequence. Finally, applications of the HMMs
for the enhancement of noisy signals are considered.
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Figure 5.1 lllustration of a two-layered model of a non-stationary process.

5.1 Statistical Models for Non-Stationary Processes

A non-stationary process can be defined as one whose statistical parameters
vary over time. Most “naturally generated” signals, such as audio signals,
image signals, biomedical signals and seismic signals, are non-stationary, in
that the parameters of the systems that generate the signals, and the
environments in which the signals propagate, change with time.

A non-stationary process can be modelled as a double-layered
stochastic process, with a hidden process that controls the time variations of
the statistics of an observable process, as illustrated in Figure 5.1. In
general, non-stationary processes can be classified into one of two broad
categories:

(a) Continuously variable state processes.
(b) Finite state processes.

A continuously variable state process is defined as one whose underlying
statistics vary continuously with time. Examples of this class of random
processes are audio signals such as speech and music, whose power and
spectral composition vary continuously with time. A finite state process is
one whose statistical characteristics can switch between a finite number of
stationary or non-stationary states. For example, impulsive noise is a binary-
state process. Continuously variable processes can be approximated by an
appropriate finite state process.

Figure 5.2(a) illustrates a non-stationary first-order autoregressive (AR)
process. This process is modelled as the combination of a hidden stationary
AR model of the signal parameters, and an observable time-varying AR
model of the signal. The hidden model controls the time variations of the
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Figure 5.2 (a) A continuously variable state AR process. (b) A binary-state AR
process.

parameters of the non-stationary AR model. For this model, the observation
signal equation and the parameter state equation can be expressed as

x(m) = a(m)x(m —1)+e(m) Observation equation (5.1)
a(m)=PBa(m —1)+&(m) Hidden state equation (5.2)

where a(m) is the time-varying coefficient of the observable AR process and
B is the coefficient of the hidden state-control process.

A simple example of a finite state non-stationary model is the binary-
state autoregressive process illustrated in Figure 5.2(b), where at each time
instant a random switch selects one of the two AR models for connection to
the output terminal. For this model, the output signal x(m) can be expressed
as

x(m) =5 (m)xq (m)+s(m)x, (m) (5.3)

where the binary switch s(m) selects the state of the process at time m, and
§(m) denotes the Boolean complement of s(m).
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Figure 5.3 (a) lllustration of a two-layered random process. (b) An HMM model of
the process in (a).

5.2 Hidden Markov Models

A hidden Markov model (HMM) is a double-layered finite state process,
with a hidden Markovian process that controls the selection of the states of
an observable process. As a simple illustration of a binary-state Markovian
process, consider Figure 5.3, which shows two containers of different
mixtures of black and white balls. The probability of the black and the white
balls in each container, denoted as Py and Py, respectively, are as shown

above Figure 5.3. Assume that at successive time intervals a hidden
selection process selects one of the two containers to release a ball. The
balls released are replaced so that the mixture density of the black and the
white balls in each container remains unaffected. Each container can be
considered as an underlying state of the output process. Now for an example
assume that the hidden container-selection process is governed by the
following rule: at any time, if the output from the currently selected
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container is a white ball then the same container is selected to output the
next ball, otherwise the other container is selected. This is an example of a
Markovian process because the next state of the process depends on the
current state as shown in the binary state model of Figure 5.3(b). Note that
in this example the observable outcome does not unambiguously indicate
the underlying hidden state, because both states are capable of releasing
black and white balls.

In general, a hidden Markov model has N sates, with each state trained
to model a distinct segment of a signal process. A hidden Markov model can
be used to model a time-varying random process as a probabilistic
Markovian chain of N stationary, or quasi-stationary, elementary sub-
processes. A general form of a three-state HMM is shown in Figure 5.4.
This structure is known as an ergodic HMM. In the context of an HMM, the
term “ergodic” implies that there are no structural constraints for connecting
any state to any other state.

A more constrained form of an HMM is the left-right model of Figure
5.5, so-called because the allowed state transitions are those from a left state
to a right state and the self-loop transitions. The left-right constraint is
useful for the characterisation of temporal or sequential structures of
stochastic signals such as speech and musical signals, because time may be
visualised as having a direction from left to right.

Figure 5.4 A three-state ergodic HMM structure.
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Figure 5.5 A 5-state left—right HMM speech model.

5.2.1 A Physical Interpretation of Hidden Markov Models

For a physical interpretation of the use of HMMs in modelling a signal
process, consider the illustration of Figure 5.5 which shows a left-right
HMM of a spoken letter “C”, phonetically transcribed as ‘s-iy’, together
with a plot of the speech signal waveform for “C”. In general, there are two
main types of variation in speech and other stochastic signals: variations in
the spectral composition, and variations in the time-scale or the articulation
rate. In a hidden Markov model, these variations are modelled by the state
observation and the state transition probabilities. A useful way of
interpreting and using HMMs is to consider each state of an HMM as a
model of a segment of a stochastic process. For example, in Figure 5.5, state
S1 models the first segment of the spoken letter “C”, state S, models the
second segment, and so on. Each state must have a mechanism to
accommodate the random variations in different realisations of the segments
that it models. The state transition probabilities provide a mechanism for
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connection of various states, and for the modelling the variations in the
duration and time-scales of the signals in each state. For example if a
segment of a speech utterance is elongated, owing, say, to slow articulation,
then this can be accommodated by more self-loop transitions into the state
that models the segment. Conversely, if a segment of a word is omitted,
owing, say, to fast speaking, then the skip-next-state connection
accommodates that situation. The state observation pdfs model the
probability distributions of the spectral composition of the signal segments
associated with each state.

5.2.2 Hidden Markov Model as a Bayesian Model

A hidden Markov model M is a Bayesian structure with a Markovian state
transition probability and a state observation likelihood that can be either a
discrete pmf or a continuous pdf. The posterior pmf of a state sequence s of
a model M, given an observation sequence X, can be expressed using Bayes’
rule as the product of a state prior pmf and an observation likelihood
function:

1
PSIX,M(S|X’M)—m siar (8| f x15,00 (X |5, M) (5.4)

where the observation sequence X is modelled by a probability density
function Pgy 4(sIX,M).

The posterior probability that an observation signal sequence X was
generated by the model 9/ is summed over all likely state sequences, and

may also be weighted by the model prior Py, (M) :

=——— Py (M) Y, Pgiof(s|M) fxi5.00(X]s, ) (5.5)
N

Model prior § State prior Observation likelihood

The Markovian state transition prior can be used to model the time
variations and the sequential dependence of most non-stationary processes.
However, for many applications, such as speech recognition, the state
observation likelihood has far more influence on the posterior probability
than the state transition prior.
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5.2.3 Parameters of a Hidden Markov Model
A hidden Markov model has the following parameters:

Number of states N. This is usually set to the total number of distinct, or
elementary, stochastic events in a signal process. For example, in
modelling a binary-state process such as impulsive noise, N is set to 2,
and in isolated-word speech modelling N is set between 5 to 10.

State transition-probability matrix A={a;;, iyj=1, ... N}. This provides a
Markovian connection network between the states, and models the
variations in the duration of the signals associated with each state. For
a left-right HMM (see Figure 5.5), a;=0 for i>j, and hence the

transition matrix A is upper-triangular.

State observation vectors {1, Wi, ..., Uipg» i=1, ..., N}. For each state a set
of M prototype vectors model the centroids of the signal space
associated with each state.

State observation vector probability model. This can be either a discrete
model composed of the M prototype vectors and their associated
probability mass function (pmf) P={P;(-); i=1, ..., N, j=1, ... M}, or it
may be a continuous (usually Gaussian) pdf model F={f;(-); i=1, ...,
N,j=1, .., M}.

Initial state probability vector =[x, my, ..., 7Ty].
5.2.4 State Observation Models

Depending on whether a signal process is discrete-valued or continuous-
valued, the state observation model for the process can be either a discrete-
valued probability mass function (pmf), or a continuous-valued probability
density function (pdf). The discrete models can also be used for the
modelling of the space of a continuous-valued process quantised into a
number of discrete points. First, consider a discrete state observation density
model. Assume that associated with the ith state of an HMM there are M
discrete centroid vectors [;1, ..., Wiyl with a pmf [P;, ..., Pjy]. These
centroid vectors and their probabilities are normally obtained through
clustering of a set of training signals associated with each state.
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Figure 5.6 Modelling a random signal space using (a) a discrete-valued pmf
and (b) a continuous-valued mixture Gaussian density.

For the modelling of a continuous-valued process, the signal space
associated with each state is partitioned into a number of clusters as in
Figure 5.6. If the signals within each cluster are modelled by a uniform
distribution then each cluster is described by the centroid vector and the
cluster probability, and the state observation model consists of M cluster
centroids and the associated pmf { U, Pi; i=1, ..., N, k=1, ..., M}. In effect,
this results in a discrete state observation HMM for a continuous-valued
process. Figure 5.6(a) shows a partitioning, and quantisation, of a signal
space into a number of centroids.

Now if each cluster of the state observation space is modelled by a
continuous pdf, such as a Gaussian pdf, then a continuous density HMM
results. The most widely used state observation pdf for an HMM is the
mixture Gaussian density defined as

M
Fxjs (xls =)= P ACe, e Zir ) (5.6)
k=l

where A(x,i;,2 ;) is a Gaussian density with mean vector i and

covariance matrix X, and Pj is a mixture weighting factor for the kth
Gaussian pdf of the state i. Note that P is the prior probability of the kth
mode of the mixture pdf for the state i. Figure 5.6(b) shows the space of a
mixture Gaussian model of an observation signal space. A 5-mode mixture
Gaussian pdf is shown in Figure 5.7.
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Figure 5.7 A mixture Gaussian probability density function.

5.2.5 State Transition Probabilities

The first-order Markovian property of an HMM entails that the transition
probability to any state s(¢) at time ¢ depends only on the state of the process
at time 71, s(z—1), and is independent of the previous states of the HMM.
This can be expressed as

Prob(s(t)= jls(t=1)=i,s(t =2)=k,...,s(t=N)=1)

=Prob(s(t) = jls(t =1)=i)=a,; (5.7)
where s(7) denotes the state of HMM at time ¢. The transition probabilities
provide a probabilistic mechanism for connecting the states of an HMM,
and for modelling the variations in the duration of the signals associated
with each state. The probability of occupancy of a state i for d consecutive
time units, P;(d), can be expressed in terms of the state self-loop transition
probabilities a;; as

P(d)=al ' (1-a;) (5.8)

From Equation (5.8), using the geometric series conversion formula, the
mean occupancy duration for each state of an HMM can be derived as

Mean occupancy of statei = 2 dP (d)= L (5.9)

J=0 1—-a

il
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Figure 5.8 (a) A 4-state left—right HMM, and (b) its state—time trellis diagram.

5.2.6 State-Time Trellis Diagram

A state—time trellis diagram shows the HMM states together with all the
different paths that can be taken through various states as time unfolds.
Figure 5.8(a) and 5.8(b) illustrate a 4-state HMM and its state—time
diagram. Since the number of states and the state parameters of an HMM are
time-invariant, a state-time diagram is a repetitive and regular trellis
structure. Note that in Figure 5.8 for a left-right HMM the state—time trellis
has to diverge from the first state and converge into the last state. In general,
there are many different state sequences that start from the initial state and
end in the final state. Each state sequence has a prior probability that can be
obtained by multiplication of the state transition probabilities of the
sequence. For example, the probability of the state sequence
s =8,,5,,5,,5,,55,55,8,1 is P(s)=m,a,,a,,a2:073a33a34. Since each state has
a different set of prototype observation vectors, different state sequences
model different observation sequences. In general an N-state HMM can
reproduce N7 different realisations of the random process that it is trained to
model.
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5.3 Training Hidden Markov Models

The first step in training the parameters of an HMM is to collect a training
database of a sufficiently large number of different examples of the random
process to be modelled. Assume that the examples in a training database
consist of L vector-valued sequences [X]=[Xy; k=0, ..., L-1], with each
sequence X=[x(?); =0, ..., T}—1] having a variable number of T} vectors.
The objective is to train the parameters of an HMM to model the statistics of
the signals in the training data set. In a probabilistic sense, the fitness of a
model is measured by the posterior probability P, (MX) of the model M

given the training data X. The training process aims to maximise the
posterior probability of the model M and the training data [X], expressed

using Bayes’ rule as

Pygx (M X )=———= [xiar(X|M)Pyr (M) (5.10)

fx(X)

where the denominator fx(X) on the right-hand side of Equation (5.10) has
only a normalising effect and P44 M) is the prior probability of the model M.
For a given training data set [X] and a given model ¢, maximising Equation
(5.10) is equivalent to maximising the likelihood function Py ,(XIM). The

likelihood of an observation vector sequence X given a model M can be
expressed as

Fxae (X |M)= Zf)ns ar (X |5, M) Pyay (s[0) (5.11)

where fys 4(X(0)ls(2),M), the pdf of the signal sequence X along the state
sequence S =[5(0),s(1)....,.s(T —=1)] of the model 9, is given by

Fxis ac(X[s, M) = fxis (x(0)s(0))fx1s (x(D]s(1))-+- fx15 (x(T = D|s(T ~1))
(5.12)
where s(7), the state at time ¢, can be one of N states, and fy,s(X(?)ls(?)), a

shorthand for fyg 4 X(0)ls(£),M), is the pdf of x(z) given the state s(¢) of the
model M. The Markovian probability of the state sequence s is given by

P (8] M) = 70 50y 0)5 (1) Es(1)52) " Cs(T—2)s(T—1) (5.13)
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Substituting Equations (5.12) and (5.13) in Equation (5.11) yields

FxiocX 1M)= Fxis a0 (X 18, M)Pya (s 1)
= 70 Fxis (O] s0)) a1y Fxis (ED]s(D)) -+ agr_aysr-1y fxis (T =D)|s(T =1))

(5.14)

where the summation is taken over all state sequences s. In the training
process, the transition probabilities and the parameters of the observation
pdfs are estimated to maximise the model likelihood of Equation (5.14).
Direct maximisation of Equation (5.14) with respect to the model
parameters is a non-trivial task. Furthermore, for an observation sequence of
length T vectors, the computational load of Equation (5.14) is O(NT). This is
an impractically large load, even for such modest values as N=6 and T=30.
However, the repetitive structure of the trellis state—time diagram of an
HMM implies that there is a large amount of repeated computation in
Equation (5.14) that can be avoided in an efficient implementation. In the
next section we consider the forward-backward method of model likelihood
calculation, and then proceed to describe an iterative maximum-likelihood
model optimisation method.

5.3.1 Forward—-Backward Probability Computation

An efficient recursive algorithm for the computation of the likelihood
function fy4(XIM) is the forward—backward algorithm. The forward—

backward computation method exploits the highly regular and repetitive
structure of the state—time trellis diagram of Figure 5.8.

In this method, a forward probability variable oy(i) is defined as the
joint probability of the partial observation sequence X=[x(0), x(1), ..., x(?)]
and the state i at time ¢, of the model M:

o, (D=fx siar(x(0), x(1), ..., x(2), s(2) =i |M) (5.15)

The forward probability variable oy(i) of Equation (5.15) can be expressed
in a recursive form in terms of the forward probabilities at time -1, oy_1(i):
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Figure 5.9 A network for computation of forward probabilities for a left-right HMM.

0, () = fx_siar(x(0), x (D), ..., x (1), (1) = ™)

N
=1 Y fx 510 (@), x(D, .., x (@ =D, 5 -1 = jM)a; }/XIS,M(x(t)|S(t):i,M)

Jj=1

- Z(at—l(j)aji)fXIS,M(x(t)|s(t) =i, %)

N
j=1

(5.16)

Figure 5.9 illustrates, a network for computation of the forward probabilities
for the 4-state left-right HMM of Figure 5.8. The likelihood of an
observation sequence X=[x(0), x(1), ..., x(7-1)] given a model M can be
expressed in terms of the forward probabilities as

N
Fxiar @), x(Dscc, x@=DM) =Y Fx 5100 (x(0), x(1),..., x(T = 1), s(T ~1) = i)

i=1

N
=Y o7 (i)
i=1
(5.17)
Similar to the definition of the forward probability concept, a backward

probability is defined as the probability of the state i at time ¢ followed by
the partial observation sequence [x(t+1), x(t+2), ..., x(T-1)] as
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B, ()= fX,S\M(S(t) =ix(t+1),x(+2),...,x(T = 1)|M)

N
= ay fx i (5 +1) = jx (e +2),x( +3),...,x(T ~1))
i (5.18)

X fxis (x(z+Ds(t +1) = j,|M)

N
= ;i B () xi8,00(x @ +D]st +1) = j,|21)
j=1

In the next section, forward and backward probabilities are used to develop
a method for the training of HMM parameters.

5.3.2 Baum—-Welch Model Re-Estimation

The HMM training problem is the estimation of the model parameters
M=(m, A, F) for a given data set. These parameters are the initial state
probabilities 7, the state transition probability matrix A and the continuous
(or discrete) density state observation pdfs. The HMM parameters are
estimated from a set of training examples {X=[x(0), ..., x(T-1)]}, with the
objective of maximising fy,(XIM), the likelihood of the model and the

training data. The Baum—Welch method of training HMMs is an iterative
likelihood maximisation method based on the forward—backward
probabilities defined in the preceding section. The Baum—Welch method is
an instance of the EM algorithm described in Chapter 4. For an HMM 9,

the posterior probability of a transition at time ¢ from state i to state j of the
model 94 given an observation sequence X, can be expressed as

V.G ) = Py g (s0) =i, 5t +1) = j|1 X, 1)

 foxm 5O =050 +1) = j,X|71)
) Fre(X[91) (5-19)

_a(a, FrsaE@HD|s@+1) = j, 2B, ())

Zam )

where f, xir(s(t) =i,5(t +1) = j,X[M) is the joint pdf of the states s(t) and



158 Hidden Markov Models

s(t+1) and the observation sequence X, and fxis (x(t +D|s(t +1) =i) is the

state observation pdf for the state i. Note that for a discrete observation
density HMM the state observation pdf in Equation (5.19) is replaced with

the discrete state observation pmf Pys (x(t+D|s(t+1)=i) The posterior
probability of state i at time ¢ given the model M and the observation X is

¥, () :PSIX,M(S(t) = i|X’M)

_ fs,xw(s(t) =1,X M)
C faw(X[9) (520)
_a,)B,0)

2.054())

Now the state transition probability a;; can be interpreted as

_expected number of transitions from state i to state j

ajj . , 5.21
v expected number of transitions from state ( )

From Equations (5.19)—(5.21), the state transition probability can be re-
estimated as the ratio

ij =

T-2
PNACY)
t=0

) (5.22)
7 (D)

Note that for an observation sequence [x(0), ..., x(7-1)] of length T, the last
transition occurs at time 7-2 as indicated in the upper limits of the
summations in Equation (5.22). The initial-state probabilities are estimated
as

7T, =y,(0) (5.23)



Training Hidden Markov Models 159

5.3.3 Training HMMs with Discrete Density Observation Models

In a discrete density HMM, the observation signal space for each state is
modelled by a set of discrete symbols or vectors. Assume that a set of M
vectors [W;1, Ui, ---, Mip7) model the space of the signal associated with the ith
state. These vectors may be obtained from a clustering process as the
centroids of the clusters of the training signals associated with each state.
The objective in training discrete density HMMs is to compute the state
transition probabilities and the state observation probabilities. The forward—
backward equations for discrete density HMMs are the same as those for
continuous density HMMs, derived in the previous sections, with the
difference that the probability density functions such as fy s (x(?)|s(t) = i)

are substituted with probability mass functions Py (x(t)|s(r) =i) defined

as
Py s (x(1)|s(t) = i)=Px 5 (QLx(1)]s(t) = i) (5.24)

where the function Q[x(f)] quantises the observation vector x(f) to the
nearest discrete vector in the set [;i,Uli, ..., Wip]. For discrete density

HMMs, the probability of a state vector U;; can be defined as the ratio of the
number of occurrences of U;; (or vectors quantised to W ) in the state i,
divided by the total number of occurrences of all other vectors in the state i:

expected number of times in state i and observing f;,

Py (B = ——
ATk expected number of times in state i

T-1
2.7 () (5.25)

_tex()-l,

ToT-l
PRAQ
=0

In Equation (5.25) the summation in the numerator is taken over those time
instants ¢ where the kth symbol u;; is observed in the state .

For statistically reliable results, an HMM must be trained on a large
data set X consisting of a sufficient number of independent realisations of
the process to be modelled. Assume that the training data set consists of L
realisations X=[X(0), X(1), ..., X(L-1)], where X(k)=[x(0), x(1), ..., x(T}—
1)]. The re-estimation formula can be averaged over the entire data set as
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1
i ZZ Yo () (5.26)

l\)

L-1T;— p
DI AN
A 1=0 1=0
4= T 12 (5.27)
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._;

1=0 1=0
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-1 Tl
PN AO
=0 tex(t)>Uy

P == 77 (5.28)

PIORAO)

=0 t=0

The parameter estimates of Equations (5.26)—(5.28) can be used in further
iterations of the estimation process until the model converges.

5.3.4 HMMs with Continuous Density Observation Models

In continuous density HMMs, continuous probability density functions
(pdfs) are used to model the space of the observation signals associated with
each state. Baum et al. generalised the parameter re-estimation method to
HMMs with concave continuous pdfs such a Gaussian pdf. A continuous P-
variate Gaussian pdf for the state i of an HMM can be defined as

1

1

Fyps (@] s(t) = i) = i exp{lx(t) - I Z7 x () - ;1|

(5.29)

where U; and %; are the mean vector and the covariance matrix associated

with the state i. The re-estimation formula for the mean vector of the state
Gaussian pdf can be derived as
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O
:Ll'i - T 1 (530)

Similarly, the covariance matrix is estimated as
T-1 T
D7 (D(x (@) — [ Yx(1) — ;)
Z == — (5.31)

z 7, (@)
t=0

The proof that the Baum-Welch re-estimation algorithm leads to
maximisation of the likelihood function fy,4(X|%) can be found in Baum.

5.3.5 HMMs with Mixture Gaussian pdfs
The modelling of the space of a signal process with a mixture of Gaussian
pdfs is considered in Section 4.5. In HMMs with mixture Gaussian pdf state

models, the signal space associated with the ith state is modelled with a
mixtures of M Gaussian densities as

Fxis (x@)|s(t) =i)= 2 AN (1), i - Zit) (5.32)

k=1

where Pj is the prior probability of the kth component of the mixture. The
posterior probability of state i at time ¢ and state j at time #+1 of the model
M, given an observation sequence X=[x(0), ..., x(7-1)], can be expressed as

Y, (i, j)=Psix of(s(t) =i, st +1) = j1 X ,91)

M
o (Dag| 3 PuN (e 141015, Z 3 ) Braa ()
_ k=1

N
Y o)
i=1

(5.33)
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and the posterior probability of state i at time ¢ given the model M and the
observation X is given by

Y, ()= PSIX,M(S(t): i|X, M)
_ o, ()Bi (D)

= (5.34)
>or ()
J=1

Now we define the joint posterior probability of the state i and the kth
Gaussian mixture component pdf model of the state i at time ¢ as

C,(i,k) = Py gy a(s(t) =i,m(t) = k| X, M)

N
~1(Dajib 1) Hig» Zig By (@
:%a, 1(Da i PN (e (), i, Zi By (D) 535)

N
> o ()
j=l

where m(?) is the Gaussian mixture component at time ¢. Equations (5.33) to
(5.35) are used to derive the re-estimation formula for the mixture
coefficients, the mean vectors and the covariance matrices of the state
mixture Gaussian pdfs as

__expected number of timesin state i and observing mixture k

ol

k expected number of times in state i

T-1
D& (k) (5.36)
_ =0

T-1
D7)
t=0

and

T-1
> & (i k)x(r)

— =0

Hix = T-1
PRARI!
=0

(5.37)
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Similarly the covariance matrix is estimated as

T-1 T

28 le(r) = oy M (0) — i ]

Iy == — (5.38)
Y (k)
t=0

5.4 Decoding of Signals Using Hidden Markov Models

Hidden Markov models are used in applications such as speech recognition,
image recognition and signal restoration, and for the decoding of the
underlying states of a signal. For example, in speech recognition, HMMs are
trained to model the statistical variations of the acoustic realisations of the
words in a vocabulary of say size V words. In the word recognition phase,
an utterance is classified and labelled with the most likely of the V+1
candidate HMMs (including an HMM for silence) as illustrated in Figure
5.10. In Chapter 12 on the modelling and detection of impulsive noise, a
binary—state HMM is used to model the impulsive noise process.

Consider the decoding of an unlabelled sequence of T signal vectors
X=[x(0), x(1), ..., X(T-1)] given a set of V candidate HMMs [4 ,..., My].
The probability score for the observation vector sequence X and the model
M, can be calculated as the likelihood:

Fxiae(X|9 )= zﬂs(O)fX\S (xO)[s(0))ay(gys(1)fx)s DM+ ayr_2)5r-1) fx|s R(T =1)s(T = 1)
(5.39)

where the likelihood of the observation sequence X is summed over all
possible state sequences of the model M. Equation (5.39) can be efficiently
calculated using the forward—backward method described in Section 5.3.1.
The observation sequence X is labelled with the HMM that scores the
highest likelihood as

Label(X )= argmax(fyn (X|94)), k=1, .. V1 (5.40)
k

In decoding applications often the likelihood of an observation sequence X
and a model %M, is obtained along the single most likely state sequence of
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Figure 5.10 lllustration of the use of HMMs in speech recognition.

model M, instead of being summed over all sequences, so Equation (5.40)
becomes

Label(X )= arg max[max fX,S\M(X’S|5Mk ):| (5.41)
k S

In Section 5.5, on the use of HMMs for noise reduction, the most likely state
sequence is used to obtain the maximum-likelihood estimate of the
underlying statistics of the signal process.
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Figure 5.11 A network illustration of the Viterbi algorithm.

5.4.1 Viterbi Decoding Algorithm

In this section, we consider the decoding of a signal to obtain the maximum
a posterior (MAP) estimate of the underlying state sequence. The MAP state
sequence sMAP of a model M given an observation signal sequence X=[x(0),

..., X(T-1)] 1is obtained as

sMAP — arg max fx s|ac(X 5|M)
s

:argmaX(fX\S,M(X|S’M)PS\M(S|M)) 642

The MAP state sequence estimate is used in such applications as the
calculation of a similarity score between a signal sequence X and an HMM
M, segmentation of a non-stationary signal into a number of distinct quasi-
stationary segments, and implementation of state-based Wiener filters for
restoration of noisy signals as described in the next section.

For an N-state HMM and an observation sequence of length T, there are
altogether N7 state sequences. Even for moderate values of N and T say
(N=6 and T=30), an exhaustive search of the state—time trellis for the best
state sequence is a computationally prohibitive exercise. The Viterbi
algorithm is an efficient method for the estimation of the most likely state
sequence of an HMM. In a state—time trellis diagram, such as Figure 5.8, the
number of paths diverging from each state of a trellis can grow
exponentially by a factor of N at successive time instants. The Viterbi
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method prunes the trellis by selecting the most likely path to each state. At
each time instant ¢, for each state i, the algorithm selects the most probable
path to state i and prunes out the less likely branches. This procedure
ensures that at any time instant, only a single path survives into each state of
the trellis.

For each time instant 7 and for each state i, the algorithm keeps a record
of the state j from which the maximum-likelihood path branched into i, and
also records the cumulative probability of the most likely path into state i at
time ¢. The Viterbi algorithm is given on the next page, and Figure 5.11
gives a network illustration of the algorithm.

Viterbi Algorithm

0, (i) records the cumulative probability of the best path to state i at time 7.

v, (i) records the best state sequence to state i at time 7.

Step 1: Initialisation, at time =0, for states i=1, ..., N
0, ()=r, f,(x(0))
v, (H)=0

Step 2: Recursive calculation of the ML state sequences and their
probabilities
Fortimer =1, ..., T-1
Forstatesi=1, ..., N
0, (i)zmj'flx[5z_1 (faji1f; (x())

y, (D=argmax[8,_;(j)a ;]
J

Step 3: Termination, retrieve the most likely final state

SMAP (T _ 1) =arg max [5T—1 (l)]

Prob,,, =max[67_; (i)]

Step 4: Backtracking through the most likely state sequence:
Fort=7-2,...,0

sMAP = [SMAP (r+ 1)]
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The backtracking routine retrieves the most likely state sequence of the
model M. Note that the variable Prob which is the probability of the
observation sequence X=[x(0), ..., x(7-1)] and the most likely state
sequence of the model MM, can be used as the probability score for the model

max?

M and the observation X. For example, in speech recognition, for each
candidate word model the probability of the observation and the most likely
state sequence is calculated, and then the observation is labelled with the
word that achieves the highest probability score.

5.5 HMM-Based Estimation of Signals in Noise

In this section, and the following two sections, we consider the use of
HMMs for estimation of a signal x(¢) observed in an additive noise n(f), and
modelled as

y()=x(t)+n(t) (5.43)

From Bayes’ rule, the posterior pdf of the signal x(r) given the noisy
observation y(z) is defined as

frix @) x (@) fx (x(2))
Sy (y(@®)

fy( @ ))fN (YO —x(®)fx (x@)

Fxy (x(@0|y@®)=
(5.44)

For a given observation, fy(y(¢)) is a constant, and the maximum a posteriori
(MAP) estimate is obtained as

M4 (n=argmax fiy (y()) - x(1)) fx (x(1)) (5.45)
x(t)

The computation of the posterior pdf, Equation (5.44), or the MAP estimate
Equation (5.45), requires the pdf models of the signal and the noise
processes. Stationary, continuous-valued, processes are often modelled by a
Gaussian or a mixture Gaussian pdf that is equivalent to a single-state
HMM. For a non-stationary process an N-state HMM can model the time-
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varying pdf of the process as a Markovian chain of N stationary Gaussian
subprocesses. Now assume that we have an N;-state HMM 9/ for the signal,

and another N,-state HMM n for the noise. For signal estimation, we need
estimates of the underlying state sequences of the signal and the noise

. T .
processes. For an observation sequence of length T, there are N possible

signal state sequences and N ,{ possible noise state sequences that could
have generated the noisy signal. Since it is assumed that the signal and noise
are uncorrelated, each signal state may be observed in any noisy state;
therefore the number of noisy signal states is on the order of N ST x N Z .

Given an observation sequence Y=[y(0), y(1), ..., y(T-1)], the most
probable state sequences of the signal and the noise HMMs maybe
expressed as

MAP
Ssignal = arg max( max fY (Y S signal »S noise | M.n )) (5.46)
S signal $ noise
and
MAP
S noise —arg Max| max fY (Y ’ssignal ’Snoise| 57\/[,17) (5-47)
S hoise S signal

Given the state sequence estimates for the signal and the noise models, the
MAP estimation Equation (5.45) becomes

MAP Syg/;{:l’M)) (5.48)

S%ﬁi’n)fx\s,m(x(f)

(n=argmax(fys , (y() ~ x(0)

Implementation of Equations (5.46)—(5.48) is computationally prohibitive.
In Sections 5.6 and 5.7, we consider some practical methods for the
estimation of signal in noise.

Example Assume a signal, modelled by a binary-state HMM, is observed

in an additive stationary Gaussian noise. Let the noisy observation be
modelled as

y(@)=5()xq ()+s(1)x (H)+n(r) (5.49)

where s(¢) is a hidden binary-state process such that: s(z) = 0 indicates that
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the signal is from the state Sy with a Gaussian pdf of N(x(t),,uxo Zoxy )
and s(7) =1 indicates that the signal is from the state S with a Gaussian pdf
of Q\C(x(t),,uxl ’Exlxl ). Assume that a stationary Gaussian process
AN (n(t),u,,%,, ) equivalent to a single-state HMM, can model the noise.

Using the Viterbi algorithm the maximum a posteriori (MAP) state
sequence of the signal model can be estimated as

MAP
§ signal =arg max [f v1s,ar (Y |8, M)Pgq, (|2 )] (5.50)
N

For a Gaussian-distributed signal and additive Gaussian noise, the
observation pdf of the noisy signal is also Gaussian. Hence, the state
observation pdfs of the signal model can be modified to account for the
additive noise as

Frisy D ®O]50)= N (Mg, + ) (Zrpxy +Zu))  (5.51)
and
Fris, G@OLs)=N(y O (ty, + 1) (Zr e, +Z0))  (5.52)

where  A((y(t),u,X) denotes a Gaussian pdf with mean vector u and

covariance matrix 2. The MAP signal estimate, given a state sequence
estimate sMAP_ is obtained from

M2 (e )zarg max [ fyig o (2 (0]s ™7 20)fy (y () - x(0)]  (5.53)

Substitution of the Gaussian pdf of the signal from the most likely state
sequence, and the pdf of noise, in Equation (5.53) results in the following
MAP estimate:

~ -1 —1
xMAP(t): (Exx,s(t)"'znn) Exx,s(t)(y(t)_:u'n)"' (Zxx,s(t) +Znn) Znn :u'x,s(t)
(5.54)

where p, () and X, ) are the mean vector and covariance matrix of the

signal x(7) obtained from the most likely state sequence [s(7)].
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Figure 5.12 Outline configuration of HMM-based noisy speech recognition and

enhancement.

5.6 Signal and Noise Model Combination and Decomposition

For Bayesian estimation of a signal observed in additive noise, we need to
have an estimate of the underlying statistical state sequences of the signal
and the noise processes. Figure 5.12 illustrates the outline of an HMM-
based noisy speech recognition and enhancement system. The system
performs the following functions:

(1) combination of the speech and noise HMMs to form the noisy
speech HMMs;

(2) estimation of the best combined noisy speech model given the
current noisy speech input;

(3) state decomposition, i.e. the separation of speech and noise states
given noisy speech states;

(4) state-based Wiener filtering using the estimates of speech and noise
states.

5.6.1 Hidden Markov Model Combination

The performance of HMMs trained on clean signals deteriorates rapidly in
the presence of noise, since noise causes a mismatch between the clean
HMMs and the noisy signals. The noise-induced mismatch can be reduced:
either by filtering the noise from the signal (for example using the Wiener
filtering and the spectral subtraction methods described in Chapters 6 and
11) or by combining the noise and the signal models to model the noisy
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signal. The model combination method was developed by Gales and Young.
In this method HMMs of speech are combined with an HMM of noise to
form HMMs of noisy speech signals. In the power-spectral domain, the
mean vector and the covariance matrix of the noisy speech can be
approximated by adding the mean vectors and the covariance matrices of
speech and noise models:

Ky =y + 8Ly (5.55)
%= t8 (5.56)

Model combination also requires an estimate of the current signal-to-noise
ratio for calculation of the scaling factor g in Equations (5.55) and (5.56). In
cases such as speech recognition, where the models are trained on cepstral
features, the model parameters are first transformed from cepstral features
into power spectral features before using the additive linear combination
Equations (5.55) and (5.56). Figure 5.13 illustrates the combination of a 4-
state left-right HMM of a speech signal with a 2-state ergodic HMM of
noise. Assuming that speech and noise are independent processes, each
speech state must be combined with every possible noise state to give the
noisy speech model. It is assumed that the noise process only affects the
mean vectors and the covariance matrices of the speech model; hence the
transition probabilities of the speech model are not modified.

5.6.2 Decomposition of State Sequences of Signal and Noise

The HMM-based state decomposition problem can be stated as follows:
given a noisy signal and the HMMs of the signal and the noise processes,
estimate the underlying states of the signal and the noise.

HMM state decomposition can be obtained using the following method:

(a) Given the noisy signal and a set of combined signal and noise
models, estimate the maximum-likelihood (ML) combined noisy
HMM for the noisy signal.

(b) Obtain the ML state sequence of from the ML combined model.

(c) Extract the signal and noise states from the ML state sequence of the
ML combined noisy signal model.

The ML state sequences provide the probability density functions for the
signal and noise processes. The ML estimates of the speech and noise pdfs
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Figure 5.13 Outline configuration of HMM-based noisy speech recognition and
enhancement. Sjis a combination of the state / of speech with the state j of noise.

may then be used in Equation (5.45) to obtain a MAP estimate of the speech
signal. Alternatively the mean spectral vectors of the speech and noise from
the ML state sequences can be used to program a state-dependent Wiener
filter as described in the next section.

5.7 HMM-Based Wiener Filters

The least mean square error Wiener filter is derived in Chapter 6. For a
stationary signal x(m), observed in an additive noise n(m), the Wiener filter
equations in the time and the frequency domains are derived as :

W= (Rxx + Rnn )_lrxx (5.55)

and

Pey (f)
Pey (f)+ Py (f)

W(f)= (5.56)
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Figure 5.14 lllustrations of HMMs with state-dependent Wiener filters.

where R,,, ry and Pxx(f) denote the autocorrelation matrix, the
autocorrelation vector and the power-spectral functions respectively. The
implementation of the Wiener filter, Equation (5.56), requires the signal and
the noise power spectra. The power-spectral variables may be obtained from
the ML states of the HMMs trained to model the power spectra of the signal
and the noise. Figure 5.14 illustrates an implementation of HMM-based
state-dependent Wiener filters. To implement the state-dependent Wiener
filter, we need an estimate of the state sequences for the signal and the
noise. In practice, for signals such as speech there are a number of HMMs;
one HMM per word, phoneme, or any other elementary unit of the signal. In
such cases it is necessary to classify the signal, so that the state-based
Wiener filters are derived from the most likely HMM. Furthermore the noise
process can also be modelled by an HMM. Assuming that there are V
HMMs {M;, ..., My} for the signal process, and one HMM for the noise, the

state-based Wiener filter can be implemented as follows:
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Step 1: Combine the signal and noise models to form the noisy signal
models.

Step 2: Given the noisy signal, and the set of combined noisy signal
models, obtain the ML combined noisy signal model.

Step 3: From the ML combined model, obtain the ML state sequence of
speech and noise.

Step 4: Use the ML estimate of the power spectra of the signal and the
noise to program the Wiener filter Equation (5.56).

Step 5: Use the state-dependent Wiener filters to filter the signal.

5.7.1 Modelling Noise Characteristics

The implicit assumption in using an HMM for noise is that noise statistics
can be modelled by a Markovian chain of N different stationary processes.
A stationary noise process can be modelled by a single-state HMM. For a
non-stationary noise, a multi-state HMM can model the time variations of
the noise process with a finite number of quasi-stationary states. In general,
the number of states required to accurately model the noise depends on the
non-stationary character of the noise.

An example of a non-stationary noise process is the impulsive noise of
Figure 5.15. Figure 5.16 shows a two-state HMM of the impulsive noise
sequence where the state Sy models the “off” periods between the impulses
and the state S| models an impulse. In cases where each impulse has a well-
defined temporal structure, it may be beneficial to use a multistate HMM to
model the pulse itself. HMMs are used in Chapter 12 for modelling
impulsive noise, and in Chapter 15 for channel equalisation.

5.8 Summary

HMMs provide a powerful method for the modelling of non-stationary
processes such as speech, noise and time-varying channels. An HMM is a
Bayesian finite-state process, with a Markovian state prior, and a state
likelihood function that can be either a discrete density model or a
continuous Gaussian pdf model. The Markovian prior models the time
evolution of a non-stationary process with a chain of stationary sub-
processes. The state observation likelihood models the space of the process
within each state of the HMM.
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Figure 5.15 Impulsive noise.

Figure 5.16 A binary-state model of an impulsive noise process.

In Section 5.3, we studied the Baum—Welch method for the training of
the parameters of an HMM to model a given data set, and derived the
forward—backward method for efficient calculation of the likelihood of an
HMM given an observation signal. In Section 5.4, we considered the use of
HMMs in signal classification and in the decoding of the underlying state
sequence of a signal. The Viterbi algorithm is a computationally efficient
method for estimation of the most likely sequence of an HMM. Given an
unlabelled observation signal, the decoding of the underlying state sequence
and the labelling of the observation with one of number of candidate HMMs
are accomplished using the Viterbi method. In Section 5.5, we considered
the use of HMMs for MAP estimation of a signal observed in noise, and
considered the use of HMMs in implementation of state-based Wiener filter
sequence.
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WIENER FILTERS

6.1 Wiener Filters: Least Square Error Estimation

6.2 Block-Data Formulation of the Wiener Filter

6.3 Interpretation of Wiener Filters as Projection in Vector Space
6.4 Analysis of the Least Mean Square Error Signal

6.5 Formulation of Wiener Filters in the Frequency Domain

6.6 Some Applications of Wiener Filters

6.7 The Choice of Wiener Filter Order

6.8 Summary

iener theory, formulated by Norbert Wiener, forms the

foundation of data-dependent linear least square error filters.

Wiener filters play a central role in a wide range of applications
such as linear prediction, echo cancellation, signal restoration, channel
equalisation and system identification. The coefficients of a Wiener filter
are calculated to minimise the average squared distance between the filter
output and a desired signal. In its basic form, the Wiener theory assumes
that the signals are stationary processes. However, if the filter coefficients
are periodically recalculated for every block of N signal samples then the
filter adapts itself to the average characteristics of the signals within the
blocks and becomes block-adaptive. A block-adaptive (or segment
adaptive) filter can be used for signals such as speech and image that may
be considered almost stationary over a relatively small block of samples. In
this chapter, we study Wiener filter theory, and consider alternative
methods of formulation of the Wiener filter problem. We consider the
application of Wiener filters in channel equalisation, time-delay estimation
and additive noise reduction. A case study of the frequency response of a
Wiener filter, for additive noise reduction, provides useful insight into the
operation of the filter. We also deal with some implementation issues of
Wiener filters.
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6.1 Wiener Filters: Least Square Error Estimation

Wiener formulated the continuous-time, least mean square error, estimation
problem in his classic work on interpolation, extrapolation and smoothing
of time series (Wiener 1949). The extension of the Wiener theory from
continuous time to discrete time is simple, and of more practical use for
implementation on digital signal processors. A Wiener filter can be an
infinite-duration impulse response (IIR) filter or a finite-duration impulse
response (FIR) filter. In general, the formulation of an IIR Wiener filter
results in a set of non-linear equations, whereas the formulation of an FIR
Wiener filter results in a set of linear equations and has a closed-form
solution. In this chapter, we consider FIR Wiener filters, since they are
relatively simple to compute, inherently stable and more practical. The main
drawback of FIR filters compared with IIR filters is that they may need a
large number of coefficients to approximate a desired response.

Figure 6.1 illustrates a Wiener filter represented by the coefficient vector w.
The filter takes as the input a signal y(m), and produces an output signal
X(m), where x(m) is the least mean square error estimate of a desired or

target signal x(m). The filter input—output relation is given by

pP-1
f(m)= 3 wey(m—k)
k=0 (6.1)

where m is the discrete-time index, yT=[y(m), y(m-1), ..., y(m—P-1)] is the
filter input signal, and the parameter vector wT=[w,, w, ..., wp_] is the
Wiener filter coefficient vector. In Equation (6.1), the filtering operation is
expressed in two alternative and equivalent forms of a convolutional sum
and an inner vector product. The Wiener filter error signal, e(m) is defined
as the difference between the desired signal x(m) and the filter output signal
x(m):
e(m)=x(m)—x(m)

=x(m)—wTy 6.2)

In Equation (6.2), for a given input signal y(m) and a desired signal x(m),
the filter error e(m) depends on the filter coefficient vector w.
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Input y(m) 4 y(m-1) y(m=2) ] y(m-P-1)
O —1 - z
-1
w=R r 1—
yy xy
FIR Wiener Filter
NG J
Desired signal
x(m) v/\
x(m)

Figure 6.1 lllustration of a Wiener filter structure.

To explore the relation between the filter coefficient vector w and the
error signal e(m) we expand Equation (6.2) for N samples of the signals
x(m) and y(m):

e(0) x(0) yO) oy oy .. ya-pP) ) w
e x(1) y() y(0) YD ye=pP) || ow
e [=| x» |[-| y@ y() yoy ... ya3-p) || wy
e(N -1) X(N -1 Y(N-1) Y(N-2) Y(N-3) ... y(N-P) |{wp
(6.3)

In a compact vector notation this matrix equation may be written as
e=x-Yw (6.4)

where e is the error vector, x is the desired signal vector, Y is the input
signal matrix and Yw =X is the Wiener filter output signal vector. It is
assumed that the P initial input signal samples [y(-1), . . ., y(-P-1)] are
either known or set to zero.

In Equation (6.3), if the number of signal samples is equal to the
number of filter coefficients N=P, then we have a square matrix equation,
and there is a unique filter solution w, with a zero estimation error e=0, such
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that x=Yw=x. If N < P then the number of signal samples N is
insufficient to obtain a unique solution for the filter coefficients, in this case
there are an infinite number of solutions with zero estimation error, and the
matrix equation is said to be underdetermined. In practice, the number of
signal samples is much larger than the filter length N>P; in this case, the
matrix equation is said to be overdetermined and has a unique solution,
usually with a non-zero error. When N>P, the filter coefficients are
calculated to minimise an average error cost function, such as the average

absolute value of error ‘E [le(m)l], or the mean square error ‘E [e2(m)], where

E [.] is the expectation operator. The choice of the error function affects the
optimality and the computational complexity of the solution.

In Wiener theory, the objective criterion is the least mean square error
(LSE) between the filter output and the desired signal. The least square
error criterion is optimal for Gaussian distributed signals. As shown in the
followings, for FIR filters the LSE criterion leads to a linear and closed-
form solution. The Wiener filter coefficients are obtained by minimising an
average squared error function ZEle 2(m)]  with respect to the filter

coefficient vector w. From Equation (6.2), the mean square estimation error
is given by

Ele* (m)]=E[(x(m)—wT y)?]

=Ex” (m)]=2w  ELyx(m)l+w  Elyy " Iw 6.5)

=1 (0)=2w"r, +w R, w

where Ry,=F [y(m)y'(m)] is the autocorrelation matrix of the input signal

and ry,=F [x(m)y(m)] is the cross-correlation vector of the input and the
desired signals. An expanded form of Equation (6.5) can be obtained as

P-1 P-1 P-1
Ele® (m)]=r, (0)-2) Wiy ()4 Y we D wiry (k=) (6.6)
k=0 k=0 =0

where ry,(k) and ry(k) are the elements of the autocorrelation matrix Ry,
and the cross-correlation vector ry, respectively. From Equation (6.5), the

mean square error for an FIR filter is a quadratic function of the filter
coefficient vector w and has a single minimum point. For example, for a
filter with only two coefficients (wg, wy), the mean square error function is a
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Figure 6.2 Mean square error surface for a two-tap FIR filter.

bowl-shaped surface, with a single minimum point, as illustrated in Figure
6.2. The least mean square error point corresponds to the minimum error
power. At this optimal operating point the mean square error surface has
zero gradient. From Equation (6.5), the gradient of the mean square error
function with respect to the filter coefficient vector is given by

%ﬂez(m)]=—2£[x<m)y(m>]+2wT£[y(m)yT (m)]

(6.7)
T
=—2r,+2w R,
where the gradient vector is defined as
o [a o 3 o 1 68)
8w 8WO’8W1’8W2’“"8WP_1 )

The minimum mean square error Wiener filter is obtained by setting
Equation (6.7) to zero:

R, w=r, (6.9)
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or, equivalently,
w =R, T, (6.10)

In an expanded form, the Wiener filter solution Equation (6.10) can be
written as

-1
wo Tyy (0) Fyy (D Py e Ty (P=1D) Tyx (0)
wi Tyy (M) Tyy (0) Ty (D e Ty (P=2) Ty (D
wyr [F] Ty @ Iy @ Iy ... T (P-3) Fyx (2)
Wp_| ryy(P—l) ryy(P—2) I’yy(P—3) ryy(()) ryx(P_l)
(6.11)

From Equation (6.11), the calculation of the Wiener filter coefficients
requires the autocorrelation matrix of the input signal and the cross-
correlation vector of the input and the desired signals.

In statistical signal processing theory, the correlation values of a
random process are obtained as the averages taken across the ensemble of
different realisations of the process as described in Chapter 3. However in
many practical situations there are only one or two finite-duration
realisations of the signals x(m) and y(m). In such cases, assuming the signals
are correlation-ergodic, we can use time averages instead of ensemble
averages. For a signal record of length N samples, the time-averaged
correlation values are computed as

N-1
()= 3, ¥(m) (o +) (6.12)
m=0

Note from Equation (6.11) that the autocorrelation matrix Ry, has a highly
regular Toeplitz structure. A Toeplitz matrix has constant elements along
the left—right diagonals of the matrix. Furthermore, the correlation matrix is
also symmetric about the main diagonal elements. There are a number of
efficient methods for solving the linear matrix Equation (6.11), including
the Cholesky decomposition, the singular value decomposition and the QR
decomposition methods.
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6.2 Block-Data Formulation of the Wiener Filter

In this section we consider an alternative formulation of a Wiener filter for a
block of N samples of the input signal [y(0), y(1), ..., y(N-1)] and the
desired signal [x(0), x(1), ..., x(N-1)]. The set of N linear equations
describing the Wiener filter input/output relation can be written in matrix
form as

2(0) YO D y(2) .. y2-P)  yA-P) \( wo
&) YO y0  yED .. ¥3=P)  y2-P) | w
3 || @ yh O . yE=P) yG=P) || w
AN-2) | [y(N=2) y(N=3) y(N-4) ... YN-P) yWN-1-P) | wp_,
AN-1) {y(N=1) y(N-2) y(N=3) .. YN+1-P) y(N-P) | wp,
(6.13)

Equation (6.13) can be rewritten in compact matrix notation as
x=Yw (6.14)

The Wiener filter error is the difference between the desired signal and the

filter output defined as
e=x—-%Xx

1
=x—-Yw (6.15)

The energy of the error vector, that is the sum of the squared elements of
the error vector, is given by the inner vector product as

eTez(x—Yw)T(x—Yw)

=xTx—x"Yw—w Y Tx+w Yy Tyw (6.16)

The gradient of the squared error function with respect to the Wiener filter
coefficients is obtained by differentiating Equation (6.16):

dele

w

=-2xY+2wiyy (6.17)
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The Wiener filter coefficients are obtained by setting the gradient of the
squared error function of Equation (6.17) to zero, this yields

(V7Y )w=yTx (6.18)
or

w={TY) 'y (6.19)

Note that the matrix YTY is a time-averaged estimate of the autocorrelation
matrix of the filter input signal Ry, and that the vector YTx is a time-
averaged estimate of r,, the cross-correlation vector of the input and the
desired signals. Theoretically, the Wiener filter is obtained from
minimisation of the squared error across the ensemble of different
realisations of a process as described in the previous section. For a
correlation-ergodic process, as the signal length N approaches infinity the
block-data Wiener filter of Equation (6.19) approaches the Wiener filter of

Equation (6.10):

. 1 -
lim [w=(YTYT YTx]:Ry;rxy (6.20)

N —co

Since the least square error method described in this section requires a
block of N samples of the input and the desired signals, it is also referred to
as the block least square (BLS) error estimation method. The block
estimation method is appropriate for processing of signals that can be
considered as time-invariant over the duration of the block.

6.2.1 QR Decomposition of the Least Square Error Equation
An efficient and robust method for solving the least square error Equation

(6.19) is the QR decomposition (QRD) method. In this method, the N x P
signal matrix Y is decomposed into the product of an N X N orthonormal

matrix Q and a Px P upper-triangular matrix K as

(R
QY_[OJ 6.21)
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where 0 is the (N — P) X P null matrix, QTQ= QQT =1, and the upper-
triangular matrix %&_ is of the form

oo o1 To2 Toz ..o Top-
0 ny "y nz o nipg
R = 0 0 1y 3y ... nKpy
O O 0 r33 e 7"313_1 (622)
O O 0 O rp_lp_l

Substitution of Equation (6.21) in Equation (6.18) yields

RY or(R) _(RY
Hofipife o

From Equation (6.23) we have

(‘Jg}v:Qx (6.24)

From Equation (6.24) we have
Rw=x, (6.25)

where the vector x on the right hand side of Equation (6.25) is composed

of the first P elements of the product Ox. Since the matrix & is upper-
triangular, the coefficients of the least square error filter can be obtained
easily through a process of back substitution from Equation (6.25), starting
with the coefficient wp_j=x,(P—1)/rp_jp_;.

The main computational steps in the QR decomposition are the
determination of the orthonormal matrix 0 and of the upper triangular
matrix &, The decomposition of a matrix into QR matrices can be achieved

using a number of methods, including the Gram-Schmidt orthogonalisation
method, the Householder method and the Givens rotation method.
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Figure 6.3 The least square error projection of a desired signal vector x onto a
plane containing the input signal vectors y; and y, is the perpendicular projection

of x shown as the shaded vector.

6.3 Interpretation of Wiener Filters as Projection in Vector Space

In this section, we consider an alternative formulation of Wiener filters
where the least square error estimate is visualized as the perpendicular
minimum distance projection of the desired signal vector onto the vector
space of the input signal. A vector space is the collection of an infinite
number of vectors that can be obtained from linear combinations of a
number of independent vectors.

In order to develop a vector space interpretation of the least square
error estimation problem, we rewrite the matrix Equation (6.11) and express
the filter output vector x as a linear weighted combination of the column
vectors of the input signal matrix as
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x(0) y(0) y(=D y(1=P)

x(1) y(d) y(0) y(2-P)

x(:2) ~ y(:2) o, yfl) bt W y(3 - P)
X(N-2) y(N=2) y(N =3) Y(N—=1-P)
X(N-1) y(N =1) (N =2) y(N =P)

(6.26)
In compact notation, Equation (6.26) may be written as
X=woyo+wWi Y+ - +Wp¥p (6.27)

In Equation (6.27) the signal estimate X is a linear combination of P basis
vectors [y, ¥y, - - - Yp_1], and hence it can be said that the estimate X is in

the vector subspace formed by the input signal vectors [y, ¥y, . . ., Yp_1]-
In general, the P N-dimensional input signal vectors [y, ¥y, . . ., Yp_1]

in Equation (6.27) define the basis vectors for a subspace in an N-
dimensional signal space. If P, the number of basis vectors, is equal to N,
the vector dimension, then the subspace defined by the input signal vectors
encompasses the entire N-dimensional signal space and includes the desired
signal vector x. In this case, the signal estimate X=x and the estimation
error is zero. However, in practice, N>P, and the signal space defined by
the P input signal vectors of Equation (6.27) is only a subspace of the N-
dimensional signal space. In this case, the estimation error is zero only if
the desired signal x happens to be in the subspace of the input signal,
otherwise the best estimate of x is the perpendicular projection of the vector
x onto the vector space of the input signal [y, y;, . . ., Yp_1]., as explained in

the following example.

Example 6.1 Figure 6.3 illustrates a vector space interpretation of a
simple least square error estimation problem, where yT=[y(2), y(1), y(0), y(—
1)] is the input signal, xT=[x(2), x(1), x(0)] is the desired signal and
wT=[wq, wi] is the filter coefficient vector. As in Equation (6.26), the filter
output can be written as
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x(2) y(2) y@)
1) [=we| y@ [+ w | y(0) (6.28)
x(0) y(0) y(=1)

In Equation (6.28), the input signal vectors le =[y(2), y(1), y(0)] and

yg =[y(1), ¥(0), y(—=1)] are 3-dimensional vectors. The subspace defined by
the linear combinations of the two input vectors [y, ¥»2] is a 2-dimensional
plane in a 3-dimensional signal space. The filter output is a linear
combination of y; and y,, and hence it is confined to the plane containing
these two vectors. The least square error estimate of x is the orthogonal
projection of x on the plane of [y}, y,] as shown by the shaded vector x. If
the desired vector happens to be in the plane defined by the vectors y; and
y> then the estimation error will be zero, otherwise the estimation error will
be the perpendicular distance of x from the plane containing y; and y,.

6.4 Analysis of the Least Mean Square Error Signal

The optimality criterion in the formulation of the Wiener filter is the least
mean square distance between the filter output and the desired signal. In
this section, the variance of the filter error signal is analysed. Substituting
the Wiener equation Ry,w=ry, in Equation (6.5) gives the least mean square
error:

Ele® (m)] =1, (0)—w 1y,

(6.29)

=7y (0)-w R,,w

Jyy

Now, for zero-mean signals, it is easy to show that in Equation (6.29) the
term wTRyyw is the variance of the Wiener filter output x(m) :

c?=E[#*(m)]=w'R

oW (6.30)
Therefore Equation (6.29) may be written as

0.=0;-0} (6.31)
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where O ,% =Zl[x2 (m)],o %zfl[fcz (m)] and o 62 :fl[e2 (m)] are the variances
of the desired signal, the filter estimate of the desired signal and the error

signal respectively. In general, the filter input y(m) is composed of a signal
component x.(m) and a random noise n(m):

y(m)=x.(m)+n(m) (6.32)

where the signal x.(m) is the part of the observation that is correlated with
the desired signal x(m), and it is this part of the input signal that may be
transformable through a Wiener filter to the desired signal. Using Equation
(6.32) the Wiener filter error may be decomposed into two distinct
components:

P
e(m) = x(m)— Y w y(m—k)
k=0

» , (6.33)
:[x(m)— Zwkxc(m—k)]—z:wkn(m—k)
k=0 k=0
or
e(m)=e,(m)+e, (m) (6.34)

where e,(m) is the difference between the desired signal x(m) and the output
of the filter in response to the input signal component x.(m), i.e.

P-1
e (m)=x(m)= Y wpx.(m—k) (6.35)
k=0

and e,(m) is the error in the output due to the presence of noise n(m) in the
input signal:
P-1
e, (m)z—Ewk n(m—k) (6.36)
k=0

The variance of filter error can be rewritten as

0, =0, +0, (6.37)
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Note that in Equation (6.34), e,(m) is that part of the signal that cannot be

recovered by the Wiener filter, and represents distortion in the signal
output, and e,(m) is that part of the noise that cannot be blocked by the

Wiener filter. Ideally, e (m)=0 and e,(m)=0, but this ideal situation is
possible only if the following conditions are satisfied:

(a) The spectra of the signal and the noise are separable by a linear
filter.
(b) The signal component of the input, that is x.(m), is linearly

transformable to x(m).
(c) The filter length P is sufficiently large. The issue of signal and noise
separability is addressed in Section 6.6.

6.5 Formulation of Wiener Filters in the Frequency Domain

In the frequency domain, the Wiener filter output X(f) is the product of the
input signal Y(f) and the filter frequency response W(f):

X()=W(HY(f) (6.38)

The estimation error signal E(f) is defined as the difference between the
desired signal X(f) and the filter output X(f),

E(H)=X(f)-X(f)

6.39
=X(H=WHY () (©-39)

and the mean square error at a frequency fis given by
2 o
el |=elxon-womrey kowornl g

where Z[-] is the expectation function, and the symbol * denotes the

complex conjugate. Note from Parseval’s theorem that the mean square
error in time and frequency domains are related by
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1/2

N-1
Yt m= [[EHdf (6.41)

m=0 -1/2

To obtain the least mean square error filter we set the complex derivative of
Equation (6.40) with respect to filter W(f) to zero

JENEf)I]

=2W (f)Pyy (f)=2Pxy (f)=0 (6.42)
W (f)

where Pyy(N=FE[Y(HY* (/)] and Pxy(N=FE[X()Y (/)] are the power spectrum

of Y(f), and the cross-power spectrum of Y(f) and X(f) respectively. From

Equation (6.42), the least mean square error Wiener filter in the frequency

domain is given as

Pxy (f)

W =
v Pyy (f)

(6.43)

Alternatively, the frequency-domain Wiener filter Equation (6.43) can be
obtained from the Fourier transform of the time-domain Wiener Equation
(6.9):

P-1 . .
D D wiryy (m=k)e /M =3y (m)e (6.44)

m k=0 m

From the Wiener—Khinchine relation, the correlation and power-spectral
functions are Fourier transform pairs. Using this relation, and the Fourier
transform property that convolution in time is equivalent to multiplication
in frequency, it is easy to show that the Wiener filter is given by Equation
(6.43).

6.6 Some Applications of Wiener Filters
In this section, we consider some applications of the Wiener filter in

reducing broadband additive noise, in time-alignment of signals in multi-
channel or multisensor systems, and in channel equalisation.
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Figure 6.4 Variation of the gain of Wiener filter frequency response with SNR.

6.6.1 Wiener Filter for Additive Noise Reduction

Consider a signal x(m) observed in a broadband additive noise n(m)., and

model as
y(m) = x(m) + n(m) (6.45)

Assuming that the signal and the noise are uncorrelated, it follows that the
autocorrelation matrix of the noisy signal is the sum of the autocorrelation
matrix of the signal x(m) and the noise n(m):

Ry, = Ry + Ry, (6.46)
and we can also write
Py = I (6.47)

where Ry, Ry, and Ry, are the autocorrelation matrices of the noisy signal,
the noise-free signal and the noise respectively, and r,, is the cross-

correlation vector of the noisy signal and the noise-free signal. Substitution
of Equations (6.46) and (6.47) in the Wiener filter, Equation (6.10), yields

W =R+ Ry ) Ty (6.48)

Equation (6.48) is the optimal linear filter for the removal of additive noise.
In the following, a study of the frequency response of the Wiener filter
provides useful insight into the operation of the Wiener filter. In the
frequency domain, the noisy signal Y(f) is given by
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Figure 6.5 lllustration of the variation of Wiener frequency response with signal
spectrum for additive white noise. The Wiener filter response broadly follows the
signal spectrum.

Y()=X()+N(f) (6.49)

where X(f) and N(f) are the signal and noise spectra. For a signal observed
in additive random noise, the frequency-domain Wiener filter is obtained as

Py (f)

W =
) Py (f)+ Py (f)

(6.50)

where Pxx(f) and Pyy(f) are the signal and noise power spectra. Dividing

the numerator and the denominator of Equation (6.50) by the noise power
spectra Pyn(f) and substituting the variable SNR(f)=Pxx(f)/Pyn(f) yields

_ SNR(f)
W(f)_—SNR(f)+1 (6.51)

where SNR is a signal-to-noise ratio measure. Note that the variable, SNR(f)
is expressed in terms of the power-spectral ratio, and not in the more usual
terms of log power ratio. Therefore SNR(f)=0 corresponds to — oo dB.

From Equation (6.51), the following interpretation of the Wiener filter
frequency response W(f) in terms of the signal-to-noise ratio can be
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Figure 6.6 lllustration of separability: (a) The signal and noise spectra do not
overlap, and the signal can be recovered by a low-pass filter; (b) the signal and
noise spectra overlap, and the noise can be reduced but not completely removed.

deduced. For additive noise, the Wiener filter frequency response is a real
positive number in the range O<S W (f) <1. Now consider the two limiting

cases of (a) a noise-free signal SNR(f) =1 and (b) an extremely noisy
signal SNR(f)=0. At very high SNR, W ( f)=1, and the filter applies little or

no attenuation to the noise-free frequency component. At the other extreme,
when SNR(/)=0, W()=0. Therefore, for additive noise, the Wiener filter
attenuates each frequency component in proportion to an estimate of the
signal to noise ratio. Figure 6.4 shows the variation of the Wiener filter
response W(f), with the signal-to-noise ratio SNR(f).

An alternative illustration of the variations of the Wiener filter
frequency response with SNR(f) is shown in Figure 6.5. It illustrates the
similarity between the Wiener filter frequency response and the signal
spectrum for the case of an additive white noise disturbance. Note that at a
spectral peak of the signal spectrum, where the SNR(f) is relatively high, the
Wiener filter frequency response is also high, and the filter applies little
attenuation. At a signal trough, the signal-to-noise ratio is low, and so is the
Wiener filter response. Hence, for additive white noise, the Wiener filter
response broadly follows the signal spectrum.

6.6.2 Wiener Filter and the Separability of Signal and Noise
A signal is completely recoverable from noise if the spectra of the signal

and the noise do not overlap. An example of a noisy signal with separable
signal and noise spectra is shown in Figure 6.6(a). In this case, the signal
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and the noise occupy different parts of the frequency spectrum, and can be
separated with a low-pass, or a high-pass, filter. Figure 6.6(b) illustrates a
more common example of a signal and noise process with overlapping
spectra. For this case, it is not possible to completely separate the signal
from the noise. However, the effects of the noise can be reduced by using a
Wiener filter that attenuates each noisy signal frequency in proportion to an
estimate of the signal-to-noise ratio as described by Equation (6.51).

6.6.3 The Square-Root Wiener Filter

In the frequency domain, the Wiener filter output X (f) is the product of the
input frequency X(f) and the filter response W(f) as expressed in Equation
(6.38). Taking the expectation of the squared magnitude of both sides of
Equation (6.38) yields the power spectrum of the filtered signal as

ENX ()P = WP ENY(f)1P]

(6.52)
=W Py ()
Substitution of W(f) from Equation (6.43) in Equation (6.52) yields
; Py (f)
ENX(f)1P)=XL0 6.53
=0 (053

Now, for a signal observed in an uncorrelated additive noise we have

Pyy (f)=Pxx (f)+Pyy (f) (6.54)
and
Pyy (f)=Pxx (f) (6.55)

Substitution of Equations (6.54) and (6.55) in Equation (6.53) yields

s PR
A= )+ P (D) (6:56)

Now, in Equation (6.38) if instead of the Wiener filter, the square root of
the Wiener filter magnitude frequency response is used, the result is
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X(H=wH"2rn) (6.57)

and the power spectrum of the signal, filtered by the square-root Wiener
filter, is given by

Pxy(f)

E0X(HP1=w O [ Ey ()] =
10X P1=[wen2F v s

Pyy (f)=Pxy(f) (6.58)

Now, for uncorrelated signal and noise Equation (6.58) becomes

El X (f) 1 1=Pyy (f) (6.59)

Thus, for additive noise the power spectrum of the output of the square-root
Wiener filter is the same as the power spectrum of the desired signal.

6.6.4 Wiener Channel Equaliser

Communication channel distortions may be modelled by a combination of a
linear filter and an additive random noise source as shown in Figure 6.7.
The input/output signals of a linear time invariant channel can be modelled
as
P-1
y(m)= hy x(m—k)+n(m) (6.60)
k=0

where x(m) and y(m) are the transmitted and received signals, [/h;] is the

impulse response of a linear filter model of the channel, and n(m) models
the channel noise. In the frequency domain Equation (6.60) becomes

Y(f)=X(HH(f)+N(f) (6.61)

where X(f), Y(f), H(f) and N(f) are the signal, noisy signal, channel and noise
spectra respectively. To remove the channel distortions, the receiver is
followed by an equaliser. The equaliser input is the distorted channel
output, and the desired signal is the channel input. Using Equation (6.43) it
is easy to show that the Wiener equaliser in the frequency domain is given

by
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noise n(m)

Distortion Equaliser A
x(m) H{ ym) | g ) x(m)
O———» f Z : — I\Q : -

f f

Figure 6.7 lllustration of a channel model followed by an equaliser.

W(f)e— Pxx (DH ()

- ) (6.62)
Py (FH ()" + Py (f)

where it is assumed that the channel noise and the signal are uncorrelated.
In the absence of channel noise, Pyn(f)=0, and the Wiener filter is simply
the inverse of the channel filter model W(f)=H-!(f). The equalisation
problem is treated in detail in Chapter 15.

6.6.5 Time-Alignment of Signals in Multichannel/Multisensor
Systems

In multichannel/multisensor signal processing there are a number of noisy
and distorted versions of a signal x(m), and the objective is to use all the
observations in estimating x(m), as illustrated in Figure 6.8, where the phase
and frequency characteristics of each channel is modelled by a linear filter.
As a simple example, consider the problem of time-alignment of two noisy
records of a signal given as

y1 (m)=x(m)+n; (m) (6.63)
Yo (m)=Ax(m— D)+n,(m) (6.64)

where y;(m) and y,(m) are the noisy observations from channels 1 and 2,
ni(m) and ny(m) are uncorrelated noise in each channel, D is the time delay
of arrival of the two signals, and A is an amplitude scaling factor. Now
assume that y(m) is used as the input to a Wiener filter and that, in the
absence of the signal x(m), y»(m) is used as the “desired” signal. The error
signal is given by
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nj(m) A
x(m) yi(m) X(m)
—®»  hy(m) wi(m) +—p
n(m) N
x(m) y2(m) x(m)
— f2(m) — wa(m)
nK(m) A
x(m) yk(m) x(m)
———»  hx(m) +—> wg(m) [—®=

Figure 6.8 lllustration of a multichannel system where Wiener filters are used to
time-align the signals from different channels.

P-1
e(m)=y,(m)— Y wiy, (m)
k=0

P-1 P-1
= [Ax(m -D)- Zka(m) ]+(2wknl (m) ]+ n,(m)

k=0 k=0

(6.65)

The Wiener filter strives to minimise the terms shown inside the square
brackets in Equation (6.65). Using the Wiener filter Equation (6.10), we
have

w=R r
Yiy1 y1y2
( v (6.66)
=(Ryx +R, ,, ) Ary (D)

where 1y (D)=F [x(PD)x(m)]. The frequency-domain equivalent of
Equation (6.65) can be derived as

P o
Pyx (f)+ Py (f)

W(f)= (6.67)

Note that in the absence of noise, the Wiener filter becomes a pure phase (or
a pure delay) filter with a flat magnitude response.
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° »| Noise spectrum
estimator

Figure 6.9 Configuration of a system for estimation of frequency Wiener filter.

6.6.6 Implementation of Wiener Filters

The implementation of a Wiener filter for additive noise reduction, using
Equations (6.48)-(6.50), requires the autocorrelation functions, or
equivalently the power spectra, of the signal and noise. The noise power
spectrum can be obtained from the signal-inactive, noise-only, periods. The
assumption is that the noise is quasi-stationary, and that its power spectra
remains relatively stationary between the update periods. This is a
reasonable assumption for many noisy environments such as the noise
inside a car emanating from the engine, aircraft noise, office noise from
computer machines, etc. The main practical problem in the implementation
of a Wiener filter is that the desired signal is often observed in noise, and
that the autocorrelation or power spectra of the desired signal are not readily
available. Figure 6.9 illustrates the block-diagram configuration of a system
for implementation of a Wiener filter for additive noise reduction. An
estimate of the desired signal power spectra is obtained by subtracting an
estimate of the noise spectra from that of the noisy signal. A filter bank
implementation of the Wiener filter is shown in Figure 6.10, where the
incoming signal is divided into N bands of frequencies. A first-order
integrator, placed at the output of each band-pass filter, gives an estimate of
the power spectra of the noisy signal. The power spectrum of the original
signal is obtained by subtracting an estimate of the noise power spectrum
from the noisy signal. In a Bayesian implementation of the Wiener filter,
prior models of speech and noise, such as hidden Markov models, are used
to obtain the power spectra of speech and noise required for calculation of
the filter coefficients.
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Y(f1)
—| BPF(fi) —@
X2(f1)
Y2 (fl) Xz(f ) W@ = Y2(f1)
1 1
© -
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@ Nz(fl) X(m)
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|| BPE(fv) ><
X2(fN
.2 W) =
——| Y2(fN)

Y2(fN) 2(fN)
® odl

N2 (fiv)

Figure 6.10 A filter-bank implementation of a Wiener filter.

6.7 The Choice of Wiener Filter Order
The choice of Wiener filter order affects:

(a) the ability of the filter to remove distortions and reduce the noise;

(b) the computational complexity of the filter; and

(c) the numerical stability of the of the Wiener solution, Equation
(6.10).

The choice of the filter length also depends on the application and the
method of implementation of the Wiener filter. For example, in a filter-bank
implementation of the Wiener filter for additive noise reduction, the number
of filter coefficients is equal to the number of filter banks, and typically the
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number of filter banks is between 16 to 64. On the other hand for many
applications, a direct implementation of the time-domain Wiener filter
requires a larger filter length say between 64 and 256 taps.

A reduction in the required length of a time-domain Wiener filter can
be achieved by dividing the time domain signal into N sub-band signals.
Each sub-band signal can then be decimated by a factor of N. The
decimation results in a reduction, by a factor of N, in the required length of
each sub-band Wiener filter. In Chapter 14, a subband echo canceller is
described.

6.8 Summary

A Wiener filter is formulated to map an input signal to an output that is as
close to a desired signal as possible. This chapter began with the derivation
of the least square error Wiener filter. In Section 6.2, we derived the block-
data least square error Wiener filter for applications where only finite-
length realisations of the input and the desired signals are available. In such
cases, the filter is obtained by minimising a time-averaged squared error
function. In Section 6.3, we considered a vector space interpretation of the
Wiener filters as the perpendicular projection of the desired signal onto the
space of the input signal.

In Section 6.4, the least mean square error signal was analysed. The
mean square error is zero only if the input signal is related to the desired
signal through a linear and invertible filter. For most cases, owing to noise
and/or nonlinear distortions of the input signal, the minimum mean square
error would be non-zero. In Section 6.5, we derived the Wiener filter in the
frequency domain, and considered the issue of separability of signal and
noise using a linear filter. Finally in Section 6.6, we considered some
applications of Wiener filters in noise reduction, time-delay estimation and
channel equalisation.
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ADAPTIVE FILTERS

7.1 State-Space Kalman Filters

7.2 Sample-Adaptive Filters

7.3 Recursive Least Square (RLS) Adaptive Filters
7.4 The Steepest-Descent Method

7.5 The LMS Filter

7.6 Summary

daptive filters are used for non-stationary signals and

environments, or in applications where a sample-by-sample

adaptation of a process or a low processing delay is required.
Applications of adaptive filters include multichannel noise reduction,
radar/sonar signal processing, channel equalization for cellular mobile
phones, echo cancellation, and low delay speech coding. This chapter
begins with a study of the state-space Kalman filter. In Kalman theory a
state equation models the dynamics of the signal generation process, and an
observation equation models the channel distortion and additive noise.
Then we consider recursive least square (RLS) error adaptive filters. The
RLS filter is a sample-adaptive formulation of the Wiener filter, and for
stationary signals should converge to the same solution as the Wiener filter.
In least square error filtering, an alternative to using a Wiener-type closed-
form solution is an iterative gradient-based search for the optimal filter
coefficients. The steepest-descent search is a gradient-based method for
searching the least square error performance curve for the minimum error
filter coefficients. We study the steepest-descent method, and then consider
the computationally inexpensive LMS gradient search method.
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7.1 State-Space Kalman Filters

The Kalman filter is a recursive least square error method for estimation of
a signal distorted in transmission through a channel and observed in noise.
Kalman filters can be used with time-varying as well as time-invariant
processes. Kalman filter theory is based on a state-space approach in which
a state equation models the dynamics of the signal process and an
observation equation models the noisy observation signal. For a signal x(m)
and noisy observation y(m), the state equation model and the observation
model are defined as

x(m)=@(m,m—-1)x(m—1)+e(m) (7.1)

y(m)=H (m)x(m)+n(m) (7.2)
where

x(m) 1is the P-dimensional signal, or the state parameter, vector at time m,

d(m, m—1) is a PX P dimensional state transition matrix that relates the
states of the process at times m—1 and m,

e(m) is the P-dimensional uncorrelated input excitation vector of the state
equation,

2ee(m) is the PX P covariance matrix of e(m),

y(m) 1is the M-dimensional noisy and distorted observation vector,

H(m) isthe M x P channel distortion matrix,

n(m) is the M-dimensional additive noise process,

2un(m)isthe M XM covariance matrix of n(m).

The Kalman filter can be derived as a recursive minimum mean square
error predictor of a signal x(m), given an observation signal y(m). The filter
derivation assumes that the state transition matrix @(m, m—1), the channel
distortion matrix H(m), the covariance matrix X,.(m) of the state equation

input and the covariance matrix %,,(m) of the additive noise are given.

In this chapter, we use the notation y(m|m—i) to denote a prediction of
y(m) based on the observation samples up to the time m—i. Now assume that
y(mm—1) is the least square error prediction of y(m) based on the

observations [y(0), ..., y(m—1)]. Define a so-called innovation, or prediction
error signal as

y(m)=y(m)—y(mm-1) (7.3)
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n (m)

e(m) x(m) y (m)
+ —» Hm)

@ (mm-1) (= 2"

Figure 7.1 lllustration of signal and observation models in Kalman filter theory.

The innovation signal vector v(m) contains all that is unpredictable from the
past observations, including both the noise and the unpredictable part of the
signal. For an optimal linear least mean square error estimate, the
innovation signal must be uncorrelated and orthogonal to the past
observation vectors; hence we have

ElmyTm-0ko, k>0 (7.4)
and

EpmpToko,  mzk (7.5)

The concept of innovations is central to the derivation of the Kalman filter.
The least square error criterion is satisfied if the estimation error is
orthogonal to the past samples. In the following derivation of the Kalman
filter, the orthogonality condition of Equation (7.4) is used as the starting
point to derive an optimal linear filter whose innovations are orthogonal to
the past observations.
Substituting the observation Equation (7.2) in Equation (7.3) and using
the relation
F(m 1 m—1D=E[y(m)|x(m|m —1)]
=H (m)x(mm—1) (7.6)
yields
v(m)=H (m)x(m) +n(m) — H (m) x(m|m —1)

=H (m)x(m) + n(m) (7.7)

where X(m) is the signal prediction error vector defined as

¥(m)=x(m)— x(mjm—1) (7.8)
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From Equation (7.7) the covariance matrix of the innovation signal is given
by
2, (m) = Ep(mp" (m)]
(7.9)
= H(m) Zz (m)H " (m)+ X, (m)

where X (m) is the covariance matrix of the prediction error x(m). Let
£(m +1lm) denote the least square error prediction of the signal x(m+1).
Now, the prediction of x(m+1), based on the samples available up to the
time m, can be expressed recursively as a linear combination of the
prediction based on the samples available up to the time m—1 and the
innovation signal at time m as

X(m+1m)=x(m+1m—1)+ K (m)v(m) (7.10)

where the PX M matrix K(m) is the Kalman gain matrix. Now, from
Equation (7.1), we have

x(m+1m-1)=@(m+1,m)x(mm—1) (7.11)

Substituting Equation (7.11) in (7.10) gives a recursive prediction equation
as

x(m+1m)=D(m+1,m)x(mm—1)+ K (m)v(m) (7.12)

To obtain a recursive relation for the computation and update of the
Kalman gain matrix, we multiply both sides of Equation (7.12) by vT(m)
and take the expectation of the results to yield

z[;e(m+1|m)vT (m)]z f[@(m+1,m))?:(m|m—l)vT (m)]+ K(m)f[v(m)vT (m)]

(7.13)

Owing to the required orthogonality of the innovation sequence and the past
samples, we have

Z[)?:(m|m - 1)vT(m)]:0 (7.14)

Hence, from Equations (7.13) and (7.14), the Kalman gain matrix is given
by

K(m):z[;e(m+1|m)vT (m)]E,,_vl (m) (7.15)
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The first term on the right-hand side of Equation (7.15) can be expressed as

‘Z[J?(m + 1|m)vT (m)]z‘Z[(x(m +1)-X(m+ 1|m))vT(m)]
=Elx(m+1pT(m)]
= Z[(@(m +1,m)x(m)y+e(m+1))(y(m)—F (mm — 1))T]
= E[[@(m + 1, m)(& (mlm 1)+ E ol — D) (H ) (rlm 1)+ n(m))" |
=@ (m+1,myE| (mlm ~ )& (il —~ DJH T (m)

(7.16)
In developing the successive lines of Equation (7.16), we have used the
following relations:

E[Fm+11mp T (m)]=0 (7.17)
Z[e(m+l)(y(m)—j7(mlm—l))T ]:0 (7.18)
x(m)=x(mlm—1)+x(mlm—1) (7.19)

Elx(mIm-1)x(mm-1)]=0 (7.20)

and we have also used the assumption that the signal and the noise are
uncorrelated. Substitution of Equations (7.9) and (7.16) in Equation (7.15)
yields the following equation for the Kalman gain matrix:

-1
K (n)=® -+ 1,m)Z e ()" () [Hm) Zge o)HT om) + Zp )] (51
where X..(m) is the covariance matrix of the signal prediction error
X(mlm —1). To derive a recursive relation for X ;. (m), we consider

¥(mm—1)=x(m)— % (mm-1) (7.22)

Substitution of Equation (7.1) and (7.12) in Equation (7.22) and
rearrangement of the terms yields

F(mlim—=1)=[®(m,m-1)x(m-1)+e(m)]-[®(m,m-1)2(m—1|m—-2)+ K (m-1)v(m-1)]
=@(m,m-DX(m-1)+e(m)-K(m-1DH(m-1D)X(m—-1)+ K(m-1)n(m-1)
=[@m,m-1)—Km-DHm-D]x(m—-1)+e(m)+ K (m-n(m-1)

(7.23)
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From Equation (7.23) we can derive the following recursive relation for the
variance of the signal prediction error

2z (m)=L(m)X & (m— DLY (m) + 2, ,(m+Km-1)x,, (m- DKT(m-1)
(7.24)
where the PXx P matrix L(m) is defined as
L(m)=[®(m,m—1)-K(m-DH (m-1)] (7.25)
Kalman Filtering Algorithm
Input: observation vectors {y(m)}
Output: state or signal vectors { X(m) }
Initial conditions:
2:(0)=061I (7.26)
(0-1D=0 (7.27)
Form=0,1, ...
Innovation signal:
v(m)=y(m)—H(m)x(mlm —1) (7.28)

Kalman gain:

K(m)=®(m +1,m)E gz (m)H T (m)|[H (m)E o )y H T (m) + £, ()|

(7.29)
Prediction update:
x(m+1m)= ®@(m +1,m)x(mlm —1)+ K(m)v(m) (7.30)
Prediction error correlation matrix update:
Lim+1)=[P(m+1,m)— K(m)H(m)] (7.31)

2ez(m+1)=L(m+1)X & (m)L(m+ DT+ 2 e(m+1)+K(m)X,,(m)K(m)

(7.32)
Example 7.1 Consider the Kalman filtering of a first-order AR process
x(m) observed in an additive white Gaussian noise n(m). Assume that the
signal generation and the observation equations are given as

x(m)=a(m)x(m — 1)+ e(m) (7.33)
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y(m)=x(m)+n(m) (7.34)

Let Gg(m) and G,%(m) denote the variances of the excitation signal e(m)

and the noise n(m) respectively. Substituting @(m+1,m)=a(m) and H(m)=1
in the Kalman filter equations yields the following Kalman filter algorithm:

Initial conditions:

c2(0)=4§ (7.35)
X0-1=0 (7.36)
Form=0,1, ...
Kalman gain:
+1)o2
k(=241 DOT () (737)
oi(m)+0,(m)
Innovation signal:
v(m)=y(m)—x(mIm-1) (7.38)
Prediction signal update:
X(m+ Ilm)=a(m+ Dx(mlm—1)+k(m)v(m) (7.39)

Prediction error update:
o2(m+1) = [a(m+1) —k(m)]*> 62(m) + 62(m + 1)+ k2 (m) c2(m) (7.40)

where 62(m)is the variance of the prediction error signal.

Example 7.2 Recursive estimation of a constant signal observed in noise.
Consider the estimation of a constant signal observed in a random noise.
The state and observation equations for this problem are given by

x(m)=x(m—-1)=x (7.41)
y(m)=x+n(m) (7.42)

Note that @(m,m—1)=1, state excitation e(m)=0 and H(m)=1. Using the
Kalman algorithm, we have the following recursive solutions:

Initial Conditions:
02(0)=0 (7.43)
x(0-1)=0 (7.44)
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Form=0,1, ...
Kalman gain:
2
k(m)y=— O (m)2 (7.45)
oz (m)+0,(m)
Innovation signal:
v(m)= y(m)=X(ml m—1) (7.46)
Prediction signal update:
X(m+1Im=x(m|m—1)+k(m)v(m) (7.47)
Prediction error update:
o2(m+1)=[1 - k(m)F o2 (m)+ k> (m)c2 (m) (7.48)

7.2 Sample-Adaptive Filters

Sample adaptive filters, namely the RLS, the steepest descent and the LMS,
are recursive formulations of the least square error Wiener filter. Sample-
adaptive filters have a number of advantages over the block-adaptive filters
of Chapter 6, including lower processing delay and better tracking of non-
stationary signals. These are essential characteristics in applications such as
echo cancellation, adaptive delay estimation, low-delay predictive coding,
noise cancellation, radar, and channel equalisation in mobile telephony,
where low delay and fast tracking of time-varying processes and
environments are important objectives.

Figure 7.2 illustrates the configuration of a least square error adaptive
filter. At each sampling time, an adaptation algorithm adjusts the filter
coefficients to minimise the difference between the filter output and a
desired, or target, signal. An adaptive filter starts at some initial state, and
then the filter coefficients are periodically updated, usually on a sample-by-
sample basis, to minimise the difference between the filter output and a
desired or target signal. The adaptation formula has the general recursive
form:

next parameter estimate = previous parameter estimate + update(error)
where the update term is a function of the error signal. In adaptive filtering a

number of decisions has to be made concerning the filter model and the
adaptation algorithm:
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(a) Filter type: This can be a finite impulse response (FIR) filter, or an
infinite impulse response (IIR) filter. In this chapter we only consider
FIR filters, since they have good stability and convergence properties
and for this reason are the type most often used in practice.

(b) Filter order: Often the correct number of filter taps is unknown. The
filter order is either set using a priori knowledge of the input and the
desired signals, or it may be obtained by monitoring the changes in the
error signal as a function of the increasing filter order.

(c) Adaptation algorithm: The two most widely used adaptation algorithms
are the recursive least square (RLS) error and the least mean square
error (LMS) methods. The factors that influence the choice of the
adaptation algorithm are the computational complexity, the speed of
convergence to optimal operating condition, the minimum error at
convergence, the numerical stability and the robustness of the algorithm
to initial parameter states.

7.3 Recursive Least Square (RLS) Adaptive Filters

The recursive least square error (RLS) filter is a sample-adaptive, time-
update, version of the Wiener filter studied in Chapter 6. For stationary
signals, the RLS filter converges to the same optimal filter coefficients as
the Wiener filter. For non-stationary signals, the RLS filter tracks the time
variations of the process. The RLS filter has a relatively fast rate of
convergence to the optimal filter coefficients. This is useful in applications
such as speech enhancement, channel equalization, echo cancellation and
radar where the filter should be able to track relatively fast changes in the
signal process.

In the recursive least square algorithm, the adaptation starts with some
initial filter state, and successive samples of the input signals are used to
adapt the filter coefficients. Figure 7.2 illustrates the configuration of an
adaptive filter where y(m), x(m) and w(m)=[wo(m), wi(m), ..., wp_1(m)]
denote the filter input, the desired signal and the filter coefficient vector
respectively. The filter output can be expressed as

2(m) =w T (m)y(m) (7.49)
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“Desired” or “target ”
signal x(m)
O

Input y(m)
O—

e(m)

Adaptation
algorithm J ( )

Transversal filter T

© Xm)

Figure 7.2 lllustration of the configuration of an adaptive filter.

where X(m) is an estimate of the desired signal x(/m). The filter error signal
is defined as
e(m) =x(m)—x(m)

—x(m)—wT (m)y(m) (7.50)

The adaptation process is based on the minimization of the mean square
error criterion defined as

z[ez(mn:z{ [x(m)—w%m)y(mﬂ

=E[x* (m)]-2w T (m)E [y(m)x(m)]+w T (m)E[y(m)y " (m)] w(m)
=1, (0)=2w " (m)ry, (m)+w " (m)R ,, (m)w (m)

(7.51)
The Wiener filter is obtained by minimising the mean square error with
respect to the filter coefficients. For stationary signals, the result of this
minimisation is given in Chapter 6, Equation (6.10), as

w=Rr, (7.52)
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where Ry, is the autocorrelation matrix of the input signal and ry, is the
cross-correlation vector of the input and the target signals. In the following,
we formulate a recursive, time-update, adaptive formulation of Equation
(7.52). From Section 6.2, for a block of N sample vectors, the correlation
matrix can be written as

N-1
Ry, =Y 'Y =) y(my" (m) (7.53)
m=0
where y(m)=[y(m), ..., y(m—P)]T. Now, the sum of vector product in

Equation (7.53) can be expressed in recursive fashion as
T
Ry, (m) = Ry (m—=1)+ y(m)y™ (m) (7.54)

To introduce adaptability to the time variations of the signal statistics, the
autocorrelation estimate in Equation (7.54) can be windowed by an
exponentially decaying window:

Ry, (m)= ARy, (m=1)+ y(m)y™ (m) (7.55)

where A is the so-called adaptation, or forgetting factor, and is in the range
0>A>1. Similarly, the cross-correlation vector is given by

N-1
rye = D, y(m)x(m) (7.56)
m=0
The sum of products in Equation (7.56) can be calculated in recursive form

as
Tyx (m) =ryx(m—1) + y(m)x(m) (7.57)

Again this equation can be made adaptive using an exponentially decaying
forgetting factor A:

r,,(m)=Ar, (m—1)+y(m)x(m) (7.58)

For a recursive solution of the least square error Equation (7.58), we need to
obtain a recursive time-update formula for the inverse matrix in the form
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R, (m)=R;, (m—1) + Update(m) (7.59)

A recursive relation for the matrix inversion is obtained using the following
lemma.

The Matrix Inversion Lemma Let A and B be two positive-definite
P X P matrices related by

A=B"'+cp7'cT (7.60)

where D is a positive-definite N X N matrix and C is a PX N matrix. The
matrix inversion lemma states that the inverse of the matrix A can be
expressed as

1
A" =B-Bc(D+CTBC) C"B (7.61)

This lemma can be proved by multiplying Equation (7.60) and Equation
(7.61). The left and right hand sides of the results of multiplication are the
identity matrix. The matrix inversion lemma can be used to obtain a
recursive implementation for the inverse of the correlation matrix Ry‘yl(m).

Let

R, (m)=A (7.62)
1p-1 _

R,,(m—1)=B (7.63)

ym)=C (7.64)

D = identity matrix (7.65)

Substituting Equations (7.62) and (7.63) in Equation (7.61), we obtain

ARy (m=1y(m)y" (m)R;; (m—1)
Ay T (m)R Sy (m—1)y(m)

(M =R (m=1)— (7.66)

Now define the variables @(m) and k(m) as

@, (m)=R;} (m) (7.67)
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and
AR, (m=1)y(m)
k() = »
o 427y T (m)Ry m—1)y(m) (7.68)
or
A'®,, (m—1)y(m)
k (m) > (7.69)

LAy @y, (m— ) y(m)

Using Equations (7.67) and (7.69), the recursive equation (7.66) for
computing the inverse matrix can be written as

@, (m)= 2" @, (m—1) = A" k(m)y" (m)®,, (m—1) (7.70)
From Equations (7.69) and (7.70), we have

k(m) =[27'@ , m—1) = 27 e (m)y T ()@, (m = 1)y (m)

(7.71)
=@, (m)y(m)

Now Equations (7.70) and (7.71) are used in the following to derive the
RLS adaptation algorithm.

Recursive Time-update of Filter Coefficients The least square error
filter coefficients are

w(m) =R (m) r, (m) a7
=@, (m)ry, (m)

Substituting the recursive form of the correlation vector in Equation (7.72)
yields

w(m)= @, (m)[Ary, (m—1) +y(m)x(m)]

(7.73)
=A@, (m)r g (m—1)+ @y, (m)y(m)x(m)
Now substitution of the recursive form of the matrix @yy(m) from Equation

(7.70) and k(m)=®(m)y(m) from Equation (7.71) in the right-hand side of
Equation (7.73) yields
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w(m)=A7 @, (m—1)= A ke (m)y T ()@ (m—1)| Ar e (m—1)+k (m) x(m)

(7.74)
or
w(m)=@,, (m—1ry, (m—1) —k(m)y" (m)®@y, (m—=Dry, (m—1) +k(m)x(m)
(7.75)
Substitution of w(m—1)=®(m—1)ry,(m-1) in Equation (7.75) yields
w(m)=w(m—1) k()| x(m) = y " (myw(m - 1] (7.76)
This equation can be rewritten in the following form
w(m)=w(m —1)—k(m)e(m) (7.77)

Equation (7.77) is a recursive time-update implementation of the least
square error Wiener filter.

RLS Adaptation Algorithm

Input signals: y(m) and x(m)
Initial values: @, (m)= ol
w(0)=wy
Form=1,2, ...
Filter gain vector:
A'®y, (m=1)y(m)

k =
" HA YT (my®,, (m—1)y(m) (7.78)
Error signal equation:
e(m)=x(m)—w" (m—1)y(m) (7.79)
Filter coefficients:
w(m)=w(m —1)—k(m)e(m) (7.80)

Inverse correlation matrix update:

@, (m)= A~ @, (m—1) = A~ U (m)yT (m) @, (m ~1) (7.81)



The Steepest-Descent Method 219

£ [e*(m)]

Woptimal w(i) w(i-1) w(i-2) w

>

Figure 7.3 lllustration of gradient search of the mean square error surface for the
minimum error point.

7.4 The Steepest-Descent Method

The mean square error surface with respect to the coefficients of an FIR
filter, is a quadratic bowl-shaped curve, with a single global minimum that
corresponds to the LSE filter coefficients. Figure 7.3 illustrates the mean
square error curve for a single coefficient filter. This figure also illustrates
the steepest-descent search for the minimum mean square error coefficient.
The search is based on taking a number of successive downward steps in
the direction of negative gradient of the error surface. Starting with a set of
initial values, the filter coefficients are successively updated in the
downward direction, until the minimum point, at which the gradient is zero,

is reached. The steepest-descent adaptation method can be expressed as
9 Ele* (m)]

wm+l)=wm)+U|—————

(m+1) =w(m) u[ 9 wim) (7.82)

where (1 is the adaptation step size. From Equation (5.7), the gradient of the
mean square error function is given by
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Jd Ele*(m)]
—8w(m) =—2r, +2R, ,w(m) (7.83)

Substituting Equation (7.83) in Equation (7.82) yields
w(m+D)=w(m)+ [ry,— Ry, w(m)] (7.84)

where the factor of 2 in Equation (7.83) has been absorbed in the adaptation
step size u. Let w, denote the optimal LSE filter coefficient vector, we
define a filter coefficients error vector w(m) as

w(im)=w(m)—w, (7.85)

For a stationary process, the optimal LSE filter w, is obtained from the
Wiener filter, Equation (5.10), as

w,=R,r,. (7.86)

Subtracting w,, from both sides of Equation (7.84), and then substituting
R, w, for r, ,and using Equation (7.85) yields

W (m+1)=[I-pR ,, |% (m) (7.87)

It is desirable that the filter error vector w(m) vanishes as rapidly as

possible. The parameter i, the adaptation step size, controls the stability
and the rate of convergence of the adaptive filter. Too large a value for i
causes instability; too small a value gives a low convergence rate. The
stability of the parameter estimation method depends on the choice of the
adaptation parameter i and the autocorrelation matrix. From Equation
(7.87), a recursive equation for the error in each individual filter coefficient
can be obtained as follows. The correlation matrix can be expressed in
terms of the matrices of eigenvectors and eigenvalues as

R, =04Q" (7.88)
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%) Vi (m+1)

7 e—

Figure 7.4 A feedback model of the variation of coefficient error with time.

where Q is an orthonormal matrix of the eigenvectors of Ryy, and A is a

diagonal matrix with its diagonal elements corresponding to the
eigenvalues of R,. Substituting Ry, from Equation (7.88) in Equation

(7.87) yields
W(m+1)=[1-nQAQT |%(m) (7.89)

Multiplying both sides of Equation (7.89) by QT and using the relation
0TQ=007T=I yields

QW (m+1)=[1-uA1Q "W (m) (7.90)
Let
v(m)=Q"w(m) (7.91)
Then
vim+1)=[I- uAlv(m) (7.92)

As A and I are both diagonal matrices, Equation (7.92) can be expressed in
terms of the equations for the individual elements of the error vector v(m)
as

v (m+1) =[1-pk, Jvy (m) (7.93)

where A is the kth eigenvalue of the autocorrelation matrix of the filter
input y(m). Figure 7.4 is a feedback network model of the time variations of
the error vector. From Equation (7.93), the condition for the stability of the
adaptation process and the decay of the coefficient error vector is

—1<1—pd,<l1 (7.94)
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Let A

max
y(m) then, from Equation (7.94) the limits on u for stable adaptation are
given by

denote the maximum eigenvalue of the autocorrelation matrix of

O<u< (7.95)

max

Convergence Rate The convergence rate of the filter coefficients
depends on the choice of the adaptation step size u, where O<u<1/A,,.
When the eigenvalues of the correlation matrix are unevenly spread, the
filter coefficients converge at different speeds: the smaller the kth
eigenvalue the slower the speed of convergence of the kth coefficients. The
filter coefficients with maximum and minimum eigenvalues, A, and A,

converge according to the following equations:
V max (m+1) =(1_ulmax )vmax (m) (796)
V min (M +1) :(1—vam )Vmin (m) (7.97)

The ratio of the maximum to the minimum eigenvalue of a correlation
matrix is called the eigenvalue spread of the correlation matrix:

. )' max
eigenvaluespread=——-

min

(7.98)

Note that the spread in the speed of convergence of filter coefficients is
proportional to the spread in eigenvalue of the autocorrelation matrix of the
input signal.

7.5 The LMS Filter

The steepest-descent method employs the gradient of the averaged squared
error to search for the least square error filter coefficients. A
computationally simpler version of the gradient search method is the least
mean square (LMS) filter, in which the gradient of the mean square error is
substituted with the gradient of the instantaneous squared error function.
The LMS adaptation method is defined as
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Figure 7.5 lllustration of LMS adaptation of a filter coefficient.
w(m+1)=w(m)+ 9e” (m)
m =w(m -
where the error signal e(m) is given by
e(m)=x(m)~w " (m)x(m) (7.100)
The instantaneous gradient of the squared error can be re-expressed as
de? b)
D 0 ey (m) y(m)
ow(m) ow(m)
== 2y(m)x(m)~w" (m)y(m) (7.101)
=—2y(m)e(m)

Substituting Equation (7.101) into the recursion update equation of the filter
parameters, Equation (7.99) yields the LMS adaptation equation:

w(m+1)=w(m)+ U [y(m)e(m)] (7.102)

It can seen that the filter update equation is very simple. The LMS filter is
widely used in adaptive filter applications such as adaptive equalisation,
echo cancellation etc. The main advantage of the LMS algorithm is its
simplicity both in terms of the memory requirement and the computational
complexity which is O(P), where P is the filter length.
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Leaky LMS Algorithm The stability and the adaptability of the recursive
LMS adaptation Equation (7.86) can improved by introducing a so-called
leakage factor ¢ as

w(m+1)=ow(m)+u[y(m)e(m)] (7.103)

Note that the feedback equation for the time update of the filter coefficients
is essentially a recursive (infinite impulse response) system with input
uy(m)e(m) and its poles at . When the parameter a<1, the effect is to
introduce more stability and accelerate the filter adaptation to the changes
in input signal characteristics.

Steady-State Error: The optimal least mean square error (LSE), E

min’ is
achieved when the filter coefficients approach the optimum value defined

by the block least square error equation w :R;ylryx derived in Chapter 6.

The steepest-decent method employs the average gradient of the error
surface for incremental updates of the filter coefficients towards the optimal
value. Hence, when the filter coefficients reach the minimum point of the
mean square error curve, the averaged gradient is zero and will remain zero
so long as the error surface is stationary. In contrast, examination of the
LMS equation shows that for applications in which the LSE is non-zero
such as noise reduction, the incremental update term ue(m)y(m) would
remain non-zero even when the optimal point is reached. Thus at the
convergence, the LMS filter will randomly vary about the LSE point, with
the result that the LSE for the LMS will be in excess of the LSE for Wiener
or steepest-descent methods. Note that at, or near, convergence, a gradual
decrease in u would decrease the excess LSE at the expense of some loss of
adaptability to changes in the signal characteristics.

7.6 Summary

This chapter began with an introduction to Kalman filter theory. The
Kalman filter was derived using the orthogonality principle: for the optimal
filter, the innovation sequence must be an uncorrelated process and
orthogonal to the past observations. Note that the same principle can also
be used to derive the Wiener filter coefficients. Although, like the Wiener
filter, the derivation of the Kalman filter is based on the least squared error
criterion, the Kalman filter differs from the Wiener filter in two respects.
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First, the Kalman filter can be applied to non-stationary processes, and
second, the Kalman theory employs a model of the signal generation
process in the form of the state equation. This is an important advantage in
the sense that the Kalman filter can be used to explicitly model the
dynamics of the signal process.

For many practical applications such as echo cancellation, channel
equalisation, adaptive noise cancellation, time-delay estimation, etc., the
RLS and LMS filters provide a suitable alternative to the Kalman filter. The
RLS filter is a recursive implementation of the Wiener filter, and, for
stationary processes, it should converge to the same solution as the Wiener
filter. The main advantage of the LMS filter is the relative simplicity of the
algorithm. However, for signals with a large spectral dynamic range, or
equivalently a large eigenvalue spread, the LMS has an uneven and slow
rate of convergence. If, in addition to having a large eigenvalue spread a
signal is also non-stationary (e.g. speech and audio signals) then the LMS
can be an unsuitable adaptation method, and the RLS method, with its
better convergence rate and less sensitivity to the eigenvalue spread,
becomes a more attractive alternative.

Bibliography

ALEXANDER S.T. (1986) Adaptive Signal Processing: Theory and
Applications. Springer-Verlag, New York.

BELLANGER M.G. (1988) Adaptive Filters and Signal Analysis. Marcel-
Dekker, New York.

BErRSHAD N.J. (1986) Analysis of the Normalised LMS Algorithm with
Gaussian Inputs. IEEE Trans. Acoustics Speech and Signal Processing,
ASSP-34, pp. 793-807.

BERSHAD N.J. and Qu L.Z. (1989) On the Probability Density Function of
the LMS Adaptive Filter Weights. IEEE Trans. Acoustics Speech and
Signal Processing, ASSP-37, pp. 43-57.

Ciorr1 JM. and KamAtH T. (1984) Fast Recursive Least Squares
Transversal Filters for Adaptive Filtering. IEEE Trans. Acoustics
Speech and Signal Processing, ASSP-32, pp. 304-337.

CLASSEN T.A. and MECKLANBRAUKER W.F., (1985) Adaptive Techniques
for Signal Processing in Communications. IEEE Communications, 23,
pp- 8-19.

CowaN C.F. and GranT P.M. (1985) Adaptive Filters. Prentice-Hall,
Englewood Cliffs, NJ.



226 Adaptive Filters

EwEeDA E. and MaccHI O. (1985) Tracking Error Bounds of Adaptive Non-
sationary Filtering. Automatica, 21, pp. 293-302.

GABOR D., WiLBY W. P. and Woobcock R. (1960) A Universal Non-linear
Filter, Predictor and Simulator which Optimises Itself by a Learning
Process. IEE Proc. 108, pp. 422-38.

GaBRIEL W.F. (1976) Adaptive Arrays: An Introduction. Proc. IEEE, 64,
pp. 239-272.

HAYKIN S.(1991) Adaptive Filter Theory. Prentice Hall, Englewood Cliffs,
NJ.

HonNig M.L. and MESSERSCHMITT D.G. (1984) Adaptive Filters: Structures,
Algorithms and Applications. Kluwer Boston, Hingham, MA.

KAILATH T. (1970) The Innovations Approach to Detection and Estimation
Theory, Proc. IEEE, 58, pp. 680-965.

KAaLMAN R.E. (1960) A New Approach to Linear Filtering and Prediction
Problems. Trans. of the ASME, Series D, Journal of Basic Engineering,
82, pp. 34-45.

KaLmaN R.E. and Bucy R.S. (1961) New Results in Linear Filtering and
Prediction Theory. Trans. ASME J. Basic Eng., 83, pp. 95-108.

Wiprow B. (1990) 30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Back Propagation. Proc. IEEE, Special Issue on Neural
Networks I, 78.

WiDroOw B. and STERNS S.D. (1985) Adaptive Signal Processing. Prentice
Hall, Englewood Cliffs, NJ.

WILKINSON J.H. (1965) The Algebraic Eigenvalue Problem, Oxford
University Press, Oxford.

ZADEH L.A. and DESOER C.A. (1963) Linear System Theory: The State-
Space Approach. McGraw-Hill, New York.



Advanced Digital Signal Processing and Noise Reduction, Second Edition.
Saeed V. Vaseghi

Copyright © 2000 John Wiley & SonsLtd

ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic)

u(m) e(m)
© b G
MRS

LINEAR PREDICTION MODELS

8.1 Linear Prediction Coding

8.2 Forward, Backward and Lattice Predictors

8.3 Short-term and Long-Term Linear Predictors

8.4 MAP Estimation of Predictor Coefficients

8.5 Sub-Band Linear Prediction

8.6 Signal Restoration Using Linear Prediction Models
8.7 Summary

inear prediction modelling is used in a diverse area of applications,

such as data forecasting, speech coding, video coding, speech

recognition, model-based  spectral  analysis, = model-based
interpolation, signal restoration, and impulse/step event detection. In the
statistical literature, linear prediction models are often referred to as
autoregressive (AR) processes. In this chapter, we introduce the theory of
linear prediction modelling and consider efficient methods for the
computation of predictor coefficients. We study the forward, backward and
lattice predictors, and consider various methods for the formulation and
calculation of predictor coefficients, including the least square error and
maximum a posteriori methods. For the modelling of signals with a quasi-
periodic structure, such as voiced speech, an extended linear predictor that
simultaneously utilizes the short and long-term correlation structures is
introduced. We study sub-band linear predictors that are particularly useful
for sub-band processing of noisy signals. Finally, the application of linear
prediction in enhancement of noisy speech is considered. Further
applications of linear prediction models in this book are in Chapter 11 on
the interpolation of a sequence of lost samples, and in Chapters 12 and 13
on the detection and removal of impulsive noise and transient noise pulses.
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Figure 8.1 The concentration or spread of power in frequency indicates the
predictable or random character of a signal: (a) a predictable signal;
(b) a random signal.

8.1 Linear Prediction Coding

The success with which a signal can be predicted from its past samples
depends on the autocorrelation function, or equivalently the bandwidth and
the power spectrum, of the signal. As illustrated in Figure 8.1, in the time
domain, a predictable signal has a smooth and correlated fluctuation, and in
the frequency domain, the energy of a predictable signal is concentrated in
narrow band/s of frequencies. In contrast, the energy of an unpredictable
signal, such as a white noise, is spread over a wide band of frequencies.

For a signal to have a capacity to convey information it must have a
degree of randomness. Most signals, such as speech, music and video
signals, are partially predictable and partially random. These signals can be
modelled as the output of a filter excited by an uncorrelated input. The
random input models the unpredictable part of the signal, whereas the filter
models the predictable structure of the signal. The aim of linear prediction is
to model the mechanism that introduces the correlation in a signal.

Linear prediction models are extensively used in speech processing, in
low bit-rate speech coders, speech enhancement and speech recognition.
Speech is generated by inhaling air and then exhaling it through the glottis
and the vocal tract. The noise-like air, from the lung, is modulated and
shaped by the vibrations of the glottal cords and the resonance of the vocal
tract. Figure 8.2 illustrates a source-filter model of speech. The source
models the lung, and emits a random input excitation signal which is filtered
by a pitch filter.
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Pitch period
NI Glottal (pitch) MM\"MN Vocal tract MJ\/J\{.-\
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source Excitation P(z) H(z) Speech

Figure 8.2 A source—filter model of speech production.

The pitch filter models the vibrations of the glottal cords, and generates a
sequence of quasi-periodic excitation pulses for voiced sounds as shown in
Figure 8.2. The pitch filter model is also termed the “long-term predictor”
since it models the correlation of each sample with the samples a pitch
period away. The main source of correlation and power in speech is the
vocal tract. The vocal tract is modelled by a linear predictor model, which is
also termed the “short-term predictor”, because it models the correlation of
each sample with the few preceding samples. In this section, we study the
short-term linear prediction model. In Section 8.3, the predictor model is
extended to include long-term pitch period correlations.

A linear predictor model forecasts the amplitude of a signal at time m,
x(m), using a linearly weighted combination of P past samples [x(m—1),
x(m=2), ..., x(m—P)] as

P
Rm)=) apx(m—k) 8.1)

k=1

where the integer variable m is the discrete time index, Xx(m) is the
prediction of x(m), and a; are the predictor coefficients. A block-diagram
implementation of the predictor of Equation (8.1) is illustrated in Figure 8.3.

The prediction error e(m), defined as the difference between the actual
sample value x(m) and its predicted value x(m), is given by

e(m) = x(m) — x(m)

P
= x(m) — 2 apx(m —k) (8.2)

k=1
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Figure 8.3 Block-diagram illustration of a linear predictor.

For information-bearing signals, the prediction error e(m) may be regarded
as the information, or the innovation, content of the sample x(m). From
Equation (8.2) a signal generated, or modelled, by a linear predictor can be
described by the following feedback equation

P
x(m) = Zakx(m— k) + e(m) (8.3)
k=1

Figure 8.4 illustrates a linear predictor model of a signal x(). In this model,
the random input excitation (i.e. the prediction error) is e(m)=Gu(m), where
u(m) is a zero-mean, unit-variance random signal, and G, a gain term, is the
square root of the variance of e(m):

G=(E[e2my)) " (8.4)

u(m) e(m) x(m)
>

— - -1
] o :

x(m—P) x(m=2) x(m-1)

Figure 8.4 lllustration of a signal generated by a linear predictive model.
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Figure 8.5 The pole—zero position and frequency response of a linear predictor.
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where Z[-] is an averaging, or expectation, operator. Taking the z-transform

of Equation (8.3) shows that the linear prediction model is an all-pole digital
filter with z-transfer function

_X(2) _ G
U@ | 2 (8.5)

I—Zak *
k=1

H(2)

In general, a linear predictor of order P has P/2 complex pole pairs, and can
model up to P/2 resonance of the signal spectrum as illustrated in Figure 8.5.
Spectral analysis using linear prediction models is discussed in Chapter 9.

8.1.1 Least Mean Square Error Predictor

The “best” predictor coefficients are normally obtained by minimising a
mean square error criterion defined as

p 2
f[e2 (m)]=E [[x(m)—z a;x(m—k) ) ]

k=1
. P ) P P ) o
=E[x”(m)] ZZakf[x(m)x(m k)]+Zak2ajZ[x(m k)x(m— j)]
k=1 k=l j=1

=r. (0)-2rla+a"R, .a
(8.6)
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where R,, =ZF[xxT] is the autocorrelation matrix of the input vector
xT=[x(m-1), x(m=2), . . ., x(m—P)], ree=FE[x(m)x] is the autocorrelation
vector and aT=[a;, a,, . . ., ap] is the predictor coefficient vector. From

Equation (8.6), the gradient of the mean square prediction error with respect
to the predictor coefficient vector a is given by

ai Ele*(m)]=—2r) +2a"R_, (8.7)
a

where the gradient vector is defined as

9 (a2 9 J Y 58)
da |da; da, " dap '

The least mean square error solution, obtained by setting Equation (8.7) to
zero, is given by
R . .a=r (8.9)

XX XX
From Equation (8.9) the predictor coefficient vector is given by
a=Ry 7 (8.10)

Equation (8.10) may also be written in an expanded form as

a Fix (0) P (D) Tex (2) v Iy (P=1) -1 Tex (D
a T (D) Ty (0) T (D) o Ty (P=2) Ve (2)
az F| 1, Ve (D Ty (0) T (P=3) iy 3) (8.11)
ap Fow(P=1) T (P=2) Fy(P=3) o+ I (0) Ve (P)

An alternative formulation of the least square error problem is as follows.
For a signal block of N samples [x(0), ..., x(N—1)], we can write a set of N
linear prediction error equations as
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€(0) X(0) x(=1) x(=2) x(=3) ... x(—P) a,

el x(1) x(0) x(=1) x(=2) ... x(1-P) a,

e |=| x2 || x x(0) x(-1) ... x(2-P) as

e(N -1 X(N - 1) X(N-2) x(N-3) x(N-4) ... x(N-P-1) | ap
(8.12)

where x'= [x(=1), ..., x(—=P)] is the initial vector. In a compact vector/matrix
notation Equation (8.12) can be written as

e=x — Xa (8.13)

Using Equation (8.13), the sum of squared prediction errors over a block of
N samples can be expressed as

eTe=x"x-2x"Xa-a" X" Xa (8.14)

The least squared error predictor is obtained by setting the derivative of
Equation (8.14) with respect to the parameter vector a to zero:

deTe

da

=2xTX-aTXTX=0 (8.15)

From Equation (8.15), the least square error predictor is given by

a=(x"x)"(x"x) (8.16)

A comparison of Equations (8.11) and (8.16) shows that in Equation (8.16)
the autocorrelation matrix and vector of Equation (8.11) are replaced by the
time-averaged estimates as

N-1
P (M) = %Z x(k)x(k —m) (8.17)
k=0

Equations (8.11) and ( 8.16) may be solved efficiently by utilising the
regular Toeplitz structure of the correlation matrix R,. In a Toeplitz matrix,
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all the elements on a left-right diagonal are equal. The correlation matrix is
also cross-diagonal symmetric. Note that altogether there are only P+1
unique elements [7,,(0), (1), . . ., rw(P)] in the correlation matrix and the
cross-correlation vector. An efficient method for solution of Equation (8.10)
is the Levinson—Durbin algorithm, introduced in Section 8.2.2.

8.1.2 The Inverse Filter: Spectral Whitening

The all-pole linear predictor model, in Figure 8.4, shapes the spectrum of
the input signal by transforming an uncorrelated excitation signal u(m) to a
correlated output signal x(m). In the frequency domain the input—output
relation of the all-pole filter of Figure 8.6 is given by

GU(f)_  E(f)

X(f)=
A(f) l_iak i

(8.18)

where X(f), E(f) and U(f) are the spectra of x(m), e(m) and u(m) respectively,
G is the input gain factor, and A(f) is the frequency response of the inverse
predictor. As the excitation signal e(m) is assumed to have a flat spectrum, it
follows that the shape of the signal spectrum X(f) is due to the frequency
response 1/A(f) of the all-pole predictor model. The inverse linear predictor,

Input x(m) x(m—1) x(m=2) x(m—P)

T

e(m)
(UMW

Figure 8.6 lllustration of the inverse (or whitening) filter.
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as the name implies, transforms a correlated signal x(m) back to an
uncorrelated flat-spectrum signal e(m). The inverse filter, also known as the
prediction error filter, is an all-zero finite impulse response filter defined as

e(m)=x(m)—x(m)

P
=x(m)—2akx(m—k) (8.19)

k=1

:(aiIlV )T x
where the inverse filter (@"V)T =[1, —qa;, . . ., —ap]=[1, —a], and xT=[x(m), ...,

x(m—P)]. The z-transfer function of the inverse predictor model is given by

P
AD) =1 - Y * (8.20)
k=1

A linear predictor model is an all-pole filter, where the poles model the
resonance of the signal spectrum. The inverse of an all-pole filter is an all-
zero filter, with the zeros situated at the same positions in the pole-zero plot
as the poles of the all-pole filter, as illustrated in Figure 8.7. Consequently,
the zeros of the inverse filter introduce anti-resonances that cancel out the
resonances of the poles of the predictor. The inverse filter has the effect of
flattening the spectrum of the input signal, and is also known as a spectral
whitening, or decorrelation, filter.

A

A Pole X o Inverse filter A(f)
Zero O Z ¢

o)
- &
0
S
® B =
5

> = Predictor 1/A(f)
® ® ® o0
=

-

f

Figure 8.7 lllustration of the pole-zero diagram, and the frequency responses of an
all-pole predictor and its all-zero inverse filter.
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8.1.3 The Prediction Error Signal
The prediction error signal is in general composed of three components:

(a) the input signal, also called the excitation signal;
(b) the errors due to the modelling inaccuracies;
(c) the noise.

The mean square prediction error becomes zero only if the following
three conditions are satisfied: (a) the signal is deterministic, (b) the signal is
correctly modelled by a predictor of order P, and (c) the signal is noise-free.
For example, a mixture of P/2 sine waves can be modelled by a predictor of
order P, with zero prediction error. However, in practice, the prediction
error is nonzero because information bearing signals are random, often only
approximately modelled by a linear system, and usually observed in noise.
The least mean square prediction error, obtained from substitution of
Equation (8.9) in Equation (8.6), is

P
EP) =Z[e? (m)]=r (0)= Y agry, (k) (8.21)
k=1

where E() denotes the prediction error for a predictor of order P. The
prediction error decreases, initially rapidly and then slowly, with increasing
predictor order up to the correct model order. For the correct model order,
the signal e(m) is an uncorrelated zero-mean random process with an
autocorrelation function defined as

2 2 e
Ele(m)e(m - k>]={°'e =GT ifm=k (822)
0 if m#k

where o7 is the variance of e(m).

8.2 Forward, Backward and Lattice Predictors

The forward predictor model of Equation (8.1) predicts a sample x(m) from
a linear combination of P past samples x(m—1), x(m-2), . . .,.x(m—P).
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Forward prediction

x(m — P) to x(m — 1) are used to predict x(m)

/’\G/’\ \/'A“ g
«

x(m) to x(m—P+1) are used to predict x(m—P)
Backward prediction

Figure 8.8 lllustration of forward and backward predictors.

Similarly, as shown in Figure 8.8, we can define a backward predictor, that

predicts a sample x(m—P) from P future samples x(m—P+1), . . ., x(m) as
P
Rm—P)=) c; x(m—k+1) (8.23)
k=1

The backward prediction error is defined as the difference between the
actual sample and its predicted value:

b(m)=x(m— P)—x(m— P)
(8.24)

P
=x(m—P)—chx(m—k+l)
k=1

From Equation (8.24), a signal generated by a backward predictor is given

by

P
x(m—P)= c;x(m—k+1)+b(m) (8.25)
k=1

The coefficients of the least square error backward predictor, obtained in a
similar method to that of the forward predictor in Section 8.1.1, are given by
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Vi (0) e (D) Fa (@ o T (P=D Y ¢ Fyx (P)

Fie (D T (0) P oo T (P=2) | ¢ Foe(P=1)

T (2) T (D o0 oo T (P=3) || ¢3 [F| re(P-2) (8.26)
Fa(P=1) T (P=2) Iy (P=3) ... 1,0 \cp Foe (D

Note that the main difference between Equations (8.26) and (8.11) is that the
correlation vector on the right-hand side of the backward predictor, Equation
(8.26) 1is upside-down compared with the forward predictor, Equation
(8.11). Since the correlation matrix is Toeplitz and symmetric, Equation
(8.11) for the forward predictor may be rearranged and rewritten in the
following form:

Py (0) () I oo T (P=DY ap Fex (P)
Py (D) Ty (0) P e T (P=2) || ap Py (P=1)
) () P o T (P=3) [ap_y |F| re(P-2)

Foe(P=1) T (P=2) F(P=3) ... Iy (0) a, Py (D)

(8.27)

A comparison of Equations (8.27) and (8.26) shows that the coefficients of
the backward predictor are the time-reversed versions of those of the
forward predictor

C ap
€2 dp-1

c=|c; |=|ap_, |Fa® (8.28)
Cp a,

where the vector aB is the reversed version of the vector a. The relation
between the backward and forward predictors is employed in the Levinson—
Durbin algorithm to derive an efficient method for calculation of the
predictor coefficients as described in Section 8.2.2.
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8.2.1 Augmented Equations for Forward and Backward
Predictors

The inverse forward predictor coefficient vector is [1, —ay, ..., —ap]=[1, —aT].
Equations (8.11) and (8.21) may be combined to yield a matrix equation for
the inverse forward predictor coefficients:

r©0) re Y 1) (EP
r. R, \-a 0 (8.29)
Equation (8.29) is called the augmented forward predictor equation.

Similarly, for the inverse backward predictor, we can define an augmented
backward predictor equation as

R, r2 \-d® 0
BT r(0) 1 B E® (8.30)

where o = [ro (D, (P)] and r2T =[r, (P).....r,.(D]. Note that the

superscript BT denotes backward and transposed. The augmented forward

and backward matrix Equations (8.29) and (8.30) are used to derive an
order-update solution for the linear predictor coefficients as follows.

8.2.2 Levinson—Durbin Recursive Solution

The Levinson—Durbin algorithm is a recursive order-update method for
calculation of linear predictor coefficients. A forward-prediction error filter
of order i can be described in terms of the forward and backward prediction
error filters of order i—1 as

1 1 0
—a® | | =4l _ gD

: : il (8.31)
ot | |-al ||

— al-(i) 0 1
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or in a more compact vector notation as

: 1 0
— (i1 (i-1)B
(_a(i)]_ ma k| —at (8.32)
0 1

where k; is called the reflection coefficient. The proof of Equation (8.32) and
the derivation of the value of the reflection coefficient for &; follows shortly.

Similarly, a backward prediction error filter of order i is described in terms
of the forward and backward prediction error filters of order i—1 as

0 1

()B
—a _| —q@ DB [ | ZgGD
( 1 ] ¢ i~ (8.33)

1 0

To prove the order-update Equation (8.32) (or alternatively Equation
(8.33)), we multiply both sides of the equation by the (i+1)X(i+1)

augmented matrix Rg:l) and use the equality

i B )T
R;(ci;l):( RJ(Uz r,f;) ]:[rxx(o) r)gx) ] (8.34)

re®l e @) | ry) R
to obtain
@) (i)B 1 (@) (B ! T 0
R, Fxx ( .): R, Fxx —aY |+ k. re(0) 1y _a(i—l)B
. . ; ) .
SETY EPY N L) Il el ) [
(8.35)

where in Equation (8.34) and Equation (8.35) rT =[r (1),--.r,, ()], and

I‘&)BT =[ry (@),--,r (D] is the reversed version of I';QT. Matrix—vector

multiplication of both sides of Equation (8.35) and the use of Equations
(8.29) and (8.30) yields
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" E(i—l) A(l—l)
E* ) | oG- (i-1)

[00') )_ Otk O (8.36)
A(l—l) E(l—l)

where

AT 1 _qD] 08
XX

i1 (8.37)
=ro (D)= a\ Vrg i —k)
k=1

If Equation (8.36) is true, it follows that Equation (8.32) must also be true.
The conditions for Equation (8.36) to be true are

ED =g g, 40D (8.38)
and
O=A(i‘1)+kiE(i‘1) (8.39)
From (8.39),
D
i __E(,-_l) (8.40)

Substitution of AG-D from Equation (8.40) into Equation (8.38) yields
EV =E"(1-k})
1

=E(O)1L[(1—k]2) (8.41)
j=1

Note that it can be shown that A® is the cross-correlation of the forward and
backward prediction errors:

A(i_l) :f[b(i_l) (m—])e(i_l) (m)] (8.42)

The parameter AG-D is known as the partial correlation.
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Durbin’s algorithm

Equations (8.43)—(8.48) are solved recursively for i=1, . . ., P. The Durbin
algorithm starts with a predictor of order zero for which E©=r,_(0). The
algorithm then computes the coefficients of a predictor of order i, using the
coefficients of a predictor of order i—1. In the process of solving for the
coefficients of a predictor of order P, the solutions for the predictor
coefficients of all orders less than P are also obtained:

E”=r,(0) (8.43)
Fori=1, .., P
. i1
A = (i)=Y a e (i~ k) (8.44)
k=1
A(i—l)
= (8.45)
alV =k; (8.46)
a\"=a\"—k;al") 1< j<i—1 (8.47)
ED=1-k?E®D (8.48)

8.2.3 Lattice Predictors

The lattice structure, shown in Figure 8.9, is a cascade connection of similar
units, with each unit specified by a single parameter k;, known as the
reflection coefficient. A major attraction of a lattice structure is its modular
form and the relative ease with which the model order can be extended. A
further advantage is that, for a stable model, the magnitude of k; is bounded
by unity (lk; I<1), and therefore it is relatively easy to check a lattice
structure for stability. The lattice structure is derived from the forward and
backward prediction errors as follows. An order-update recursive equation
can be obtained for the forward prediction error by multiplying both sides of
Equation (8.32) by the input vector [x(m), x(m—1), . .., x(m—i)]:

eD(my = " V(m) — k; bV (m-1) (8.49)
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Similarly, we can obtain an order-update recursive equation for the
backward prediction error by multiplying both sides of Equation (8.33) by
the input vector [x(m—i), x(m—i+1), ..., x(m)] as

b (m)=b"" (m—1)—k,e" " (m) (8.50)

Equations (8.49) and (8.50) are interrelated and may be implemented by a
lattice network as shown in Figure 8.8. Minimisation of the squared forward
prediction error of Equation (8.49) over N samples yields

N-1 | )
> DbV (m-1)

—_m=0
ki= NSl
P
m=0 (8.51)
e(m)
o ¥ o (1) X
- + EI‘— . - 4+ E|<_
b](m) bo(m)
(a)
ep_y(m) ep(nm)
o_
x(m)
by(m) : b,(m) bp_(m) bp(m)
(b)

Figure 8.9 Configuration of (a) a lattice predictor and (b) the inverse lattice
predictor.
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Note that a similar relation for k; can be obtained through minimisation of
the squared backward prediction error of Equation (8.50) over N samples.
The reflection coefficients are also known as the normalised partial
correlation (PARCOR) coefficients.

8.2.4 Alternative Formulations of Least Square Error Prediction

The methods described above for derivation of the predictor coefficients are
based on minimisation of either the forward or the backward prediction
error. In this section, we consider alternative methods based on the
minimisation of the sum of the forward and backward prediction errors.

Burg's Method Burg’s method is based on minimisation of the sum of the
forward and backward squared prediction errors. The squared error function
is defined as

£D = SO ] + [0 o] (8.52)
m=0

Substitution of Equations (8.49) and (8.50) in Equation (8.52) yields

0 _& [(i—l) (i-1) ]2 (i-1) (i-1) ]2
Eﬂ):z "V (m)—k, bV (m=1) |+ bV (m = 1)—k; e (m)

m=0

(8.53)

Minimisation of E](é,) with respect to the reflection coefficients k; yields

N-1 )
23 eV myp " (m-1)
_ m=0
ki = N-1

v {[e(i—l) (m)]Z N [b(i—l) (m— 1)]2 }

m=0

(8.54)



Forward, Backward and Lattice Predictors

245

Simultaneous Minimisation of the Backward and Forward
Prediction Errors From Equation (8.28) we have that the backward
predictor coefficient vector is the reversed version of the forward predictor
coefficient vector. Hence a predictor of order P can be obtained through
simultaneous minimisation of the sum of the squared backward and forward
prediction errors defined by the following equation:

N-1

E%j) = Z{[e"’) (m)]2+[b“°> (m)]z}

m=0

N-1 P 2 P )
=2 [x(m)—zakx(m—k)] +|:x(m—P)—2akx(m—P+k):|
m=0 k=1 k=1
= (x—Xa)T(x—Xa)+(xB —XBa)T (xB _XBa)

(8.55)

where X and x are the signal matrix and vector defined by Equations (8.12)
and (8.13), and similarly XB and xB are the signal matrix and vector for the
backward predictor. Using an approach similar to that used in derivation of
Equation (8.16), the minimisation of the mean squared error function of
Equation (8.54) yields

a=(XTX + XBTXB) (X Tx+ XBTxB) (8.56)

Note that for an ergodic signal as the signal length N increases Equation
(8.56) converges to the so-called normal Equation (8.10).

8.2.5 Predictor Model Order Selection

One procedure for the determination of the correct model order is to
increment the model order, and monitor the differential change in the error
power, until the change levels off. The incremental change in error power
with the increasing model order from i—1 to i is defined as

&) _ (-1 ()
AE\‘V=FE —-EY (857)
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Figure 8.10 lllustration of the decrease in the normalised mean squared
prediction error with the increasing predictor length for a speech signal.

Figure 8.10 illustrates the decrease in the normalised mean square prediction
error with the increasing predictor length for a speech signal. The order P
beyond which the decrease in the error power AE®) becomes less than a
threshold is taken as the model order.

In linear prediction two coefficients are required for modelling each
spectral peak of the signal spectrum. For example, the modelling of a signal
with K dominant resonances in the spectrum needs P=2K coefficients.
Hence a procedure for model selection is to examine the power spectrum of
the signal process, and to set the model order to twice the number of
significant spectral peaks in the spectrum.

When the model order is less than the correct order, the signal is under-
modelled. In this case the prediction error is not well decorrelated and will
be more than the optimal minimum. A further consequence of under-
modelling is a decrease in the spectral resolution of the model: adjacent
spectral peaks of the signal could be merged and appear as a single spectral
peak when the model order is too small. When the model order is larger than
the correct order, the signal is over-modelled. An over-modelled problem
can result in an ill-conditioned matrix equation, unreliable numerical
solutions and the appearance of spurious spectral peaks in the model.
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8.3 Short-Term and Long-Term Predictors

For quasi-periodic signals, such as voiced speech, there are two types of
correlation structures that can be utilised for a more accurate prediction,
these are:

(a) the short-term correlation, which is the correlation of each sample
with the P immediate past samples: x(m—1), . . ., x(m—P);

(b) the long-term correlation, which is the correlation of a sample x(m)
with say 2Q+1 similar samples a pitch period T away: x(m-T+Q), . . .,
x(m=T-Q).

Figure 8.11 is an illustration of the short-term relation of a sample with the
P immediate past samples and its long-term relation with the samples a
pitch period away. The short-term correlation of a signal may be modelled
by the linear prediction Equation (8.3). The remaining correlation, in the
prediction error signal e(m), is called the long-term correlation. The long-
term correlation in the prediction error signal may be modelled by a pitch
predictor defined as

0
emy= Y pre(m—T k) (8.58)
k=0

\/A-'

1
1
i
I
I -———

20+1 samples a P past samples

pitch period away

Figure 8.11 lllustration of the short-term relation of a sample with the P immediate
past samples and the long-term relation with the samples a pitch period away.
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where p, are the coefficients of a long-term predictor of order 2Q0+1. The

pitch period T can be obtained from the autocorrelation function of x(m) or
that of e(m): it is the first non-zero time lag where the autocorrelation
function attains a maximum. Assuming that the long-term correlation is
correctly modelled, the prediction error of the long-term filter is a
completely random signal with a white spectrum, and is given by

e(m)=e(m)—e(m)
(8.59)

Y
=e(m)— Epk e(m—T —k)
k=-0Q

Minimisation of E[e2(m)] results in the following solution for the pitch
predictor:

P-o Tx (0) T (D T (2) e T, 20 ) 1 P (T = Q)
P-o+ P (D Ty (0) T (D cee T 20-1) P (T =0 +1)
; =l T (2) T (D) ¥y (0) cee T (20-2) :
Po-1 : : : : FoeT+0-1)
Po Ny (20) T 20-1D T, (20-2) ... Vi (0) P (T +0)
(8.60)

An alternative to the separate, cascade, modelling of the short- and long-
term correlations is to combine the short- and long-term predictors into a
single model described as

P 0
x(m)= Zakx(m—k) + Zpkx(m—k—T)+8(m) (8.61)
k=1 k==Q
short term prediction long term prediction

In Equation (8.61), each sample is expressed as a linear combination of P
immediate past samples and 2Q+1 samples a pitch period away.
Minimisation of ZE[e2(m)] results in the following solution for the pitch
predictor:
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a r(0) r(1) r(p-1) r(T+0-1) (T +0) . H(T-0-1) r(1)

a, r(1) r(0) r(p-2) r(r+0-2) r(r+0-1) o H(T+0-2) r(2)

as r(2) r(1) r(p-3) r(T+0-3) r(r+0-2) ... r(rT+0-3) r(3)

ap |=| r(p-1) r(p=2) .. r(0) r(T+Q-P) r(T+0-pP+1) ... r(T+Q-rP) r(pP)
)22 r(r+o-1) r(r+0-2) ... r(T+0-°r) r(0) r(1) r(20) r(T +Q)

P-0+1 r(r+0) r(T+0-1) ... r(T+Q0-P+1) r(1) r(0) e r(20-1) r(r+0-1)
Pio rr-o-1) r(r-¢-2) -+ r(T-0-pP) r(20) r(2¢-1) r(0) (T -0)
(8.62)

In Equation (8.62), for simplicity the subscript xx of r.,(k) has been omitted.
In Chapter 10, the predictor model of Equation (8.61) is used for
interpolation of a sequence of missing samples.

8.4 MAP Estimation of Predictor Coefficients

The posterior probability density function of a predictor coefficient vector a,
given a signal x and the initial samples x;, can be expressed, using Bayes’

rule, as
Fxiax, (xlax))fax, (@lxy)

fX|X, (x |x1)

faix x, (@lx.xp)= (8.63)

In Equation (8.63), the pdfs are conditioned on P initial signal samples
x=[x(=P), x(-P+1), ..., x(-1)]. Note that for a given set of samples [x, x{],

f XIX, (xlx;) is a constant, and it is reasonable to assume that

faix,(@lx)=f4(a).
8.4.1 Probability Density Function of Predictor Output

The pdf fx|a x,(xla,x)) of the signal x, given the predictor coefficient vector a
and the initial samples xy, is equal to the pdf of the input signal e:

fxiax, (xla.x;)=fg(x—Xa) (8.64)

where the input signal vector is given by
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e=—Xa (8.65)

and [y (e) is the pdf of e. Equation (8.64) can be expanded as

€(0) X(0) x(=1) x(=2) x(=3) ... x(—P) a,

e(l) x(1) x(0) x(=1) x(=2) ... x(1-P) a,

e [E| x2 |- xo x(0) x(-) ... x(2-P) as

e(N -1 X(N 1) X(N-2) x(N-3) x(N-4) ... x(N-P-1) |ap
(8.66)

Assuming that the input excitation signal e(m) is a zero-mean, uncorrelated,

Gaussian process with a variance of & 62 , the likelihood function in Equation
(8.64) becomes

fxux, (xlax;)=fp(x—Xa)

3 1 1 T (8.67)
—exp| —(x-Xi ~Xi
(27[62 )N/Z exp(zc2 (x—Xa) (x a))

e e

An alternative form of Equation (8.67) can be obtained by rewriting
Equation (8.66) in the following form:

e ) (~ap .. —ay —a; 1 0 0 0 0 0 xp
€1 0 —dp ) —a 1 0 0 0 0 X_p+1
e |_ 0 0 =-ap ... -a -q 1 0 0 O] x_pin
€y 0 0 0 —dp —a, —a 1 0 0 X_p43

eN_l 0 0 0 0 0 _aP —Clz —Cll 1 ‘xN—l

(8.68)

In a compact notation Equation (8.68) can be written as

e =Ax (8.69)
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Using Equation (8.69), and assuming that the excitation signal e(m) is a zero
mean, uncorrelated process with variance Gf , the likelihood function of
Equation (8.67) can be written as

fxiax, (x

B 1 1 T.T
a,xl )——2 N2 exp{——z > X A Ax] (870)
(271766 ) O,

8.4.2 Using the Prior pdf of the Predictor Coefficients

The prior pdf of the predictor coefficient vector is assumed to have a
Gaussian distribution with a mean vector U, and a covariance matrix 2,:

1
)22 4|

fala)= - eXp[—%(a—ua ) Zoala— )] (8.71)

Substituting Equations (8.67) and (8.71) in Equation (8.63), the posterior
pdf of the predictor coefficient vector fax x, (@!¥,x1) can be expressed as

1 1

fXIXl (x IxI) (27T)(N+P)/ZG£V|Eaa |1/2

x exp{—%{%(x—Xa)T(x—XaH(a—ua ) Eadla -, )”

e

fAIX,X, (alx,xl):

(8.72)
The maximum a posteriori estimate is obtained by maximising the log-
likelihood function:

1

= (x—Xa)" (x~Xa)+(a— ) Zoq (a— b, )}=0

(8.73)

J P
a[lnfmx,x, (@l xx; )]:5[

This yields

QM (2, XTX +021) E, X xt02(E XTX+02) p,  (874)
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Note that as the Gaussian prior tends to a uniform prior, the determinant
covariance matrix %, of the Gaussian prior increases, and the MAP solution
tends to the least square error solution:

a“=(x"x)" (x"x) (8.75)

Similarly as the observation length N increases the signal matrix XTX
becomes more significant than %, and again the MAP solution tends to a

least squared error solution.

8.5 Sub-Band Linear Prediction Model

In a Pth order linear prediction model, the P predictor coefficients model the
signal spectrum over its full spectral bandwidth. The distribution of the LP
parameters (or equivalently the poles of the LP model) over the signal
bandwidth depends on the signal correlation and spectral structure.
Generally, the parameters redistribute themselves over the spectrum to
minimize the mean square prediction error criterion. An alternative to a
conventional LP model is to divide the input signal into a number of sub-
bands and to model the signal within each sub-band with a linear prediction
model as shown in Figure 8.12. The advantages of using a sub-band LP
model are as follows:

(1) Sub-band linear prediction allows the designer to allocate a specific
number of model parameters to a given sub-band. Different numbers
of parameters can be allocated to different bands.

(2) The solution of a full-band linear predictor equation, i.e. Equation
(8.10) or (8.16), requires the inversion of a relatively large
correlation matrix, whereas the solution of the sub-band LP models
require the inversion of a number of relatively small correlation
matrices with better numerical stability properties. For example, a
predictor of order 18 requires the inversion of an 18x18 matrix,
whereas three sub-band predictors of order 6 require the inversion of
three 6x6 matrices.

(3) Sub-band linear prediction is useful for applications such as noise
reduction where a sub-band approach can offer more flexibility and
better performance.
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In sub-band linear prediction, the signal x(m) is passed through a bank of N
band-pass filters, and is split into N sub-band signals x;(m), k=1, ...,N. The

kth sub-band signal is modelled using a low-order linear prediction model as

By

xp (M=) a; (i)x; (m—i)+g e (m) (8.76)
i=1

where [, g;] are the coefficients and the gain of the predictor model for the
kth sub-band. The choice of the model order P, depends on the width of the

sub-band and on the signal correlation structure within each sub-band. The
power spectrum of the input excitation of an ideal LP model for the kth sub-
band signal can be expressed as

1 start en
PEE(f,k):{ Thstars << Jiena (8.77)

0 otherwise

where fi ;. frena are the start and end frequencies of the kh sub-band

signal. The autocorrelation function of the excitation function in each sub-
band is a sinc function given by

r,,(m) =B sinc [m(Bk _fko)/2] (8.78)

Down LPC LPC
> sampler P model

parameters

Down LPC
—» sampler —» model [P

Input signal
o—

Down LPC
sampler +—» model P

Down LPC
— sampler —» model —P

yaie

—p

Figure 8.12 Configuration of a sub-band linear prediction model.
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where B, and fj, are the bandwidth and the centre frequency of the kth sub-
band respectively. To ensure that each sub-band LP parameters only model
the signal within that sub-band, the sub-band signals are down-sampled as
shown in Figure 8.12.

8.6 Signal Restoration Using Linear Prediction Models

Linear prediction models are extensively used in speech and audio signal
restoration. For a noisy signal, linear prediction analysis models the
combined spectra of the signal and the noise processes. For example, the
frequency spectrum of a linear prediction model of speech, observed in
additive white noise, would be flatter than the spectrum of the noise-free
speech, owing to the influence of the flat spectrum of white noise. In this
section we consider the estimation of the coefficients of a predictor model
from noisy observations, and the use of linear prediction models in signal
restoration. The noisy signal y(m) is modelled as

y(m) = x(m) +n(m)

P
:Zakx(’W—k)wL e(m)+n(m) (8.79)

k=1

where the signal x(m) is modelled by a linear prediction model with
coefficients a; and random input e(m), and it is assumed that the noise n(m)

is additive. The least square error predictor model of the noisy signal y(m) is
given by

Ryd=r,, (8.80)

where Ry, and ryy, are the autocorrelation matrix and vector of the noisy
signal y(m). For an additive noise model, Equation (8.80) can be written as

(Rxx +Rnn)(a+£i):(rxx +rnn) (881)
where @ is the error in the predictor coefficients vector due to the noise. A

simple method for removing the effects of noise is to subtract an estimate of
the autocorrelation of the noise from that of the noisy signal. The drawback
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of this approach is that, owing to random variations of noise, correlation
subtraction can cause numerical instability in Equation (8.80) and result in
spurious solutions. In the following, we formulate the p.d.f. of the noisy
signal and describe an iterative signal-restoration/parameter-estimation
procedure developed by Lee and Oppenheim.

From Bayes’ rule, the MAP estimate of the predictor coefficient vector
a, given an observation signal vector y=[y(0), y(1), ..., y(N-1)], and the
initial samples vector xj is

friax,la.x))fy x (ax;)

fY,XI (y.x1)

fav x, @l yx;)= (8.82)

Now consider the variance of the signal y in the argument of the term
Srax, (yla,x,) in Equation (8.82). The innovation of y(m) can be defined

as

P
e(m)=y(m)= Y a; y(m—k)
k= (8.83)

P
=e(m)+n(m)— Eakn(m —k)
k=1

The variance of y(m), given the previous P samples and the coefficient
vector a, is the variance of the innovation signal &(m), given by

P
Var[y(m)|y(m=1).....y(m-P)al=0Z +62+0, -0, > a; (8.84)
k=1

where 62 and o2 are the variance of the excitation signal and the noise

respectively. From Equation (8.84), the variance of y(m) is a function of the
coefficient vector a. Consequently, maximisation of fyy x (vla.x) with

respect to the vector a is a non-linear and non-trivial exercise.

Lim and Oppenheim proposed the following iterative process in which
an estimate @ of the predictor coefficient vector is used to make an estimate
X of the signal vector, and the signal estimatex is then used to improve the
estimate of the parameter vector @, and the process is iterated until
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convergence. The posterior pdf of the noise-free signal x given the noisy
signal y and an estimate of the parameter vector @ is given by

Fya.xO0la,x) fyu(xld)
ld,y) = : ~ 8.85
riay(id.y) fria(yld) (6:58)

Consider the likelihood term fy|4 x(yld,x ). Since the noise is additive, we
have

friax (yla.x)=fy(y-x)
(8.86)

I 1
= N,ZeXp[—z 2(y—x)T(y—x)}
(27Z'Gn) 0,

Assuming that the input of the predictor model is a zero-mean Gaussian

process with variance o2, the pdf of the signal x given an estimate of the
predictor coefficient vector a is

A 1 1
friax (x| a)Z—N,zeXP(— —2€Te]
ro?)

20,
(8.87)
T,T}
=—exp|———=x A Ax]
N/2 2
(27'[662) [ Zo-e

where e = Ax as in Equation (8.69). Substitution of Equations (8.86) and
(8.87) in Equation (8.85) yields

R 1 1 1 1 A oA
Fxay (x1d.y)= - —exp| ~— (3= %) (y—x)—x A Ax
friay1é) 2o ,0,) 2 2

n e

(8.88)

In Equation (8.88), for a given signal y and coefficient vector a , fyja(yla) is
a constant. From Equation (8.88), the ML signal estimate is obtained by
maximising the log-likelihood function as
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d . d 1 AT A 1
a(lnfxm,y (x |a,J’))_§(——2xTATAx— ~(y-0)"(y —x)):()

20, 20,

(8.89)
which gives

A A —1
fzof(a,fATA +o§1) y (8.90)

The signal estimate of Equation (8.90) can be used to obtain an updated
estimate of the predictor parameter. Assuming that the signal is a zero mean
Gaussian process, the estimate of the predictor parameter vector a is given
by

NP N
aH)=(&T2)(%7%) (8.91)
Equations (8.90) and (8.91) form the basis for an iterative signal
restoration/parameter estimation method.
8.6.1 Frequency-Domain Signal Restoration Using Prediction
Models
The following algorithm is a frequency-domain implementation of the linear

prediction model-based restoration of a signal observed in additive white
noise.

Initialisation: Set the initial signal estimate to noisy signal o=y,
For iterations i =0, 1, ...

Step 1 Estimate the predictor parameter vector &, :
A a 5To YT
ai(xi):(XiTXiT (XiTxi) (8.92)

Step 2 Calculate an estimate of the model gain G using the Parseval's
theorem:
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N-1 "

1 - .

I =2y’ (m-NG, (8.93)
1=0 |1 zakl —jng‘k/N m=0

where 4 ; are the coefficient estimates at iteration i, and N G2 is the
energy of white noise over N samples.

Step 3 Calculate an estimate of the power spectrum of speech model:

R G?
Pyx ()= > 5 (8.94)
-3 e
k=1

Step 4 Calculate the Wiener filter frequency response:

W(f) Py,x,(f)
i == = 8.95
Prx (NP, (f) (859

where Py y (f) = 02 is an estimate of the noise power spectrum.

Step 5 Filter the magnitude spectrum of the noisy speech as
Xia (WY () (8.96)

Restore the time domain signal X;,; by combining X i+1(f) with the
phase of noisy signal and the complex signal to time domain.

Step 6 Goto step 1 and repeat until convergence, or for a specified number
of iterations.

Figure 8.13 illustrates a block diagram configuration of a Wiener filter using
a linear prediction estimate of the signal spectrum. Figure 8.14 illustrates the
result of an iterative restoration of the spectrum of a noisy speech signal.
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y(m)=x(m)+n(m) Linear prediction

d analysis B

1.

» Wiener filter
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Py (f)

activity

detector _I_’
|-

v
=>
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y

Noise estimator

Figure 8.13 lterative signal restoration based on linear prediction model of speech.

Original noise-free Origninal noisy
Restored : 2 Iterations Restored : 4 Iterations

Figure 8.14 lllustration of restoration of a noisy signal with iterative linear prediction
based method.

8.6.2 Implementation of Sub-Band Linear Prediction Wiener
Filters

Assuming that the noise is additive, the noisy signal in each sub-band is
modelled as

Y (m) = x; (m) + ny (m) (8.97)

The Wiener filter in the frequency domain can be expressed in terms of the
power spectra, or in terms of LP model frequency responses, of the signal
and noise process as
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Py 1 (f)
Py ()

_ g%(,k |AY,k(f)|2
Axx D] &ia

W, (f)=
(8.98)

where Py (f) and Py,(f) are the power spectra of the clean signal and the

noisy signal for the kth subband respectively. From Equation (8.98) the
square-root Wiener filter is given by

8x .k |AY,k (f)|

wl2 ey =
) Axc(F) gva

(8.99)

The linear prediction Wiener filter of Equation (8.99) can be implemented in
the time domain with a cascade of a linear predictor of the clean signal,
followed by an inverse predictor filter of the noisy signal as expressed by
the following relations (see Figure 8.15):

P
2 m)=Y ay )z (m—i)+‘z—xyk (m) (8.100)
i=1 Y
P
R (m)=) ay ()z) (m—1i) (8.101)
i=0

where X, (m)is the restored estimate of x;(m) the clean speech signal and
7i(m) is an intermediate signal.

Noisy

signal 1 Restored
Ax(f) AY(f) signal
H 8x /gy P —> ~ z . . —>
& (m)=Y, ay ()z, (m—i)+ y,(m) £0m = ay Oz (m=)
i=1 i=0

Figure 8.15 A cascade implementation of the LP squared-root Wiener filter.
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8.7 Summary

Linear prediction models are used in a wide range of signal processing
applications from low-bit-rate speech coding to model-based spectral
analysis. We began this chapter with an introduction to linear prediction
theory, and considered different methods of formulation of the prediction
problem and derivations of the predictor coefficients. The main attraction of
the linear prediction method is the closed-form solution of the predictor
coefficients, and the availability of a number of efficient and relatively
robust methods for solving the prediction equation such as the Levinson—
Durbin method. In Section 8.2, we considered the forward, backward and
lattice predictors. Although the direct-form implementation of the linear
predictor is the most convenient method, for many applications, such as
transmission of the predictor coefficients in speech coding, it is
advantageous to use the lattice form of the predictor. This is because the
lattice form can be conveniently checked for stability, and furthermore a
perturbation of the parameter of any section of the lattice structure has a
limited and more localised effect. In Section 8.3, we considered a modified
form of linear prediction that models the short-term and long-term
correlations of the signal. This method can be used for the modelling of
signals with a quasi-periodic structure such as voiced speech. In Section 8.4,
we considered MAP estimation and the use of a prior pdf for derivation of
the predictor coefficients. In Section 8.5, the sub-band linear prediction
method was formulated. Finally in Section 8.6, a linear prediction model
was applied to the restoration of a signal observed in additive noise.
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POWER SPECTRUM AND CORRELATION

9.1 Power Spectrum and Correlation

9.2 Fourier Series: Representation of Periodic Signals

9.3 Fourier Transform: Representation of Aperiodic Signals

9.4 Non-Parametric Power Spectral Estimation

9.5 Model-Based Power Spectral Estimation

9.6 High Resolution Spectral Estimation Based on Subspace Eigen-Analysis
9.7 Summary

he power spectrum reveals the existence, or the absence, of repetitive

patterns and correlation structures in a signal process. These

structural patterns are important in a wide range of applications such
as data forecasting, signal coding, signal detection, radar, pattern
recognition, and decision-making systems. The most common method of
spectral estimation is based on the fast Fourier transform (FFT). For many
applications, FFT-based methods produce sufficiently good results.
However, more advanced methods of spectral estimation can offer better
frequency resolution, and less variance. This chapter begins with an
introduction to the Fourier series and transform and the basic principles of
spectral estimation. The classical methods for power spectrum estimation
are based on periodograms. Various methods of averaging periodograms,
and their effects on the variance of spectral estimates, are considered. We
then study the maximum entropy and the model-based spectral estimation
methods. We also consider several high-resolution spectral estimation
methods, based on eigen-analysis, for the estimation of sinusoids observed
in additive white noise.
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9.1 Power Spectrum and Correlation

The power spectrum of a signal gives the distribution of the signal power
among various frequencies. The power spectrum is the Fourier transform of
the correlation function, and reveals information on the correlation structure
of the signal. The strength of the Fourier transform in signal analysis and
pattern recognition is its ability to reveal spectral structures that may be used
to characterise a signal. This is illustrated in Figure 9.1 for the two extreme
cases of a sine wave and a purely random signal. For a periodic signal, the
power is concentrated in extremely narrow bands of frequencies, indicating
the existence of structure and the predictable character of the signal. In the
case of a pure sine wave as shown in Figure 9.1(a) the signal power is
concentrated in one frequency. For a purely random signal as shown in
Figure 9.1(b) the signal power is spread equally in the frequency domain,
indicating the lack of structure in the signal.

In general, the more correlated or predictable a signal, the more
concentrated its power spectrum, and conversely the more random or
unpredictable a signal, the more spread its power spectrum. Therefore the
power spectrum of a signal can be used to deduce the existence of repetitive
structures or correlated patterns in the signal process. Such information is
crucial in detection, decision making and estimation problems, and in
systems analysis.

Aﬂﬂ Py(H

(@)
(1) A Pxx()

’
f
(b)
Figure 9.1 The concentration/spread of power in frequency indicates the

correlated or random character of a signal: (a) a predictable signal, (b) a
random signal.
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Figure 9.2 Fourier basis functions: (a) real and imaginary parts of a complex
sinusoid, (b) vector representation of a complex exponential.

9.2 Fourier Series: Representation of Periodic Signals

The following three sinusoidal functions form the basis functions for the
Fourier analysis:

X; (1) =coswt 9.1)
X, (1) =sinwyt 9.2)
jot 9.3)

X3(f) =cosmyt + jsinwyt = e

Figure 9.2(a) shows the cosine and the sine components of the complex
exponential (cisoidal) signal of Equation (9.3), and Figure 9.2(b) shows a
vector representation of the complex exponential in a complex plane with
real (Re) and imaginary (Im) dimensions. The Fourier basis functions are
periodic with an angular frequency of @, (rad/s) and a period of

Ty=2n/wy=1/F, where F, is the frequency (Hz). The following properties

make the sinusoids the ideal choice as the elementary building block basis
functions for signal analysis and synthesis:

(i) Orthogonality: two sinusoidal functions of different frequencies
have the following orthogonal property:
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Jsin((olt) sin(w,t)dt = % Jcos(a)l +w,)dt + % Jcos(a)l -,)dt=0

) —oo —oo

9.4)

For harmonically related sinusoids, the integration can be taken
over one period. Similar equations can be derived for the product of
cosines, or sine and cosine, of different frequencies. Orthogonality
implies that the sinusoidal basis functions are independent and can
be processed independently. For example, in a graphic equaliser,
we can change the relative amplitudes of one set of frequencies,
such as the bass, without affecting other frequencies, and in sub-
band coding different frequency bands are coded independently and
allocated different numbers of bits.

(i1) Sinusoidal functions are infinitely differentiable. This is important,
as most signal analysis, synthesis and manipulation methods
require the signals to be differentiable.

(111) Sine and cosine signals of the same frequency have only a phase
difference of m/2 or equivalently a relative time delay of a quarter
of one period i.e. T/4.

Associated with the complex exponential function e/® is a set of
harmonically related complex exponentials of the form

R N
[1,e5/00 ot2000 2300 (9.5)

The set of exponential signals in Equation (9.5) are periodic with a
fundamental frequency wy=2n/T=2nF, where T, is the period and F, is the

fundamental frequency. These signals form the set of basis functions for the
Fourier analysis. Any linear combination of these signals of the form

Y cpe kot (9.6)
k=—c0

is also periodic with a period T,. Conversely any periodic signal x(f) can be
synthesised from a linear combination of harmonically related exponentials.
The Fourier series representation of a periodic signal is given by the
following synthesis and analysis equations:
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x(t)= Eckej K@k =... —10]l... (synthesis equation) (9.7)
k=—co
To/2 .
Cr=—— _[X(f)e_]kwot dt k=...-101,... (analysis equation) (9.8)
0 _1,/2

The complex-valued coefficient ¢, conveys the amplitude (a measure of the

strength) and the phase of the frequency content of the signal at k@, (Hz).
Note from Equation (9.8) that the coefficient ¢, may be interpreted as a

measure of the correlation of the signal x(t) and the complex exponential
—jk(l)ol
e :

9.3 Fourier Transform: Representation of Aperiodic Signals

The Fourier series representation of periodic signals consist of harmonically
related spectral lines spaced at integer multiples of the fundamental
frequency. The Fourier representation of aperiodic signals can be developed
by regarding an aperiodic signal as a special case of a periodic signal with
an infinite period. If the period of a signal is infinite then the signal does not
repeat itself, and is aperiodic.

Now consider the discrete spectra of a periodic signal with a period of
T, as shown in Figure 9.3(a). As the period 7}, is increased, the fundamental

frequency Fy=1/T,, decreases, and successive spectral lines become more

closely spaced. In the limit as the period tends to infinity (i.e. as the signal
becomes aperiodic), the discrete spectral lines merge and form a continuous
spectrum. Therefore the Fourier equations for an aperiodic signal (known as
the Fourier transform) must reflect the fact that the frequency spectrum of an
aperiodic signal is continuous. Hence, to obtain the Fourier transform
relation, the discrete-frequency variables and operations in the Fourier series
Equations (9.7) and (9.8) should be replaced by their continuous-frequency
counterparts. That is, the discrete summation sign X should be replaced by

the continuous summation integral J, the discrete harmonics of the
fundamental frequency kF, should be replaced by the continuous frequency
variable f, and the discrete frequency spectrum c; should be replaced by a
continuous frequency spectrum say X (f).
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Figure 9.3 (a) A periodic pulse train and its line spectrum. (b) A single pulse from
the periodic train in (a) with an imagined “off” duration of infinity; its spectrum is
the envelope of the spectrum of the periodic signal in (a).

The Fourier synthesis and analysis equations for aperiodic signals, the so-
called Fourier transform pair, are given by

X0y = [X(fre*df (9.9)

X(f)= Ix(t)e"jz’mdt (9.10)
Note from Equation (9.10), that X (f)may be interpreted as a measure of

the correlation of the signal x(t) and the complex sinusoid ¢’ 27t
The condition for existence and computability of the Fourier transform
integral of a signal x(7) is that the signal must have finite energy:

j lx(0)]* di <oo 9.11)

—oo
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Figure 9.4 lllustration of the DFT as a parallel-input, parallel-output processor.

9.3.1 Discrete Fourier Transform (DFT)

For a finite-duration, discrete-time signal x(m) of length N samples, the
discrete Fourier transform (DFT) is defined as N uniformly spaced spectral
samples

N-1 ‘
X (k)= Y x(mye 7Nk g0 N1 (9.12)

m=0

(see Figure9.4). The inverse discrete Fourier transform (IDFT) is given by

| N .
x(m) = NZX(k)e“z”’N’m" . m=0,..., N-1 (9.13)
k=0

From Equation (9.13), the direct calculation of the Fourier transform
requires N(N—1) multiplications and a similar number of additions.
Algorithms that reduce the computational complexity of the discrete Fourier

transform are known as fast Fourier transforms (FFT) methods. FFT

—j2w/N

methods utilise the periodic and symmetric properties of e to avoid

redundant calculations.
9.3.2 Time/Frequency Resolutions, The Uncertainty Principle
Signals such as speech, music or image are composed of non-stationary (i.e.

time-varying and/or space-varying) events. For example, speech is
composed of a string of short-duration sounds called phonemes, and an
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image is composed of various objects. When using the DFT, it is desirable
to have high enough time and space resolution in order to obtain the spectral
characteristics of each individual elementary event or object in the input
signal. However, there is a fundamental trade-off between the length, i.e. the
time or space resolution, of the input signal and the frequency resolution of
the output spectrum. The DFT takes as the input a window of N uniformly
spaced time-domain samples [x(0), x(1), ..., x(N—1)] of duration AT=N.T|,

and outputs N spectral samples [X(0), X(1), ..., X(N-1)] spaced uniformly
between zero Hz and the sampling frequency F=1/T, Hz. Hence the

frequency resolution of the DFT spectrum Af, i.e. the space between
successive frequency samples, is given by

F
T L (9.14)
AT NT, N

Note that the frequency resolution Af and the time resolution AT are
inversely proportional in that they cannot both be simultanously increased;

in fact, ATAf=1. This is known as the uncertainty principle.
9.3.3 Energy-Spectral Density and Power-Spectral Density

Energy, or power, spectrum analysis is concerned with the distribution of
the signal energy or power in the frequency domain. For a deterministic
discrete-time signal, the energy-spectral density is defined as

2

i x(m)e_j 2nfm

m=—oco

X ()| = 9.15)

The energy spectrum of x() may be expressed as the Fourier transform of
the autocorrelation function of x(m):

XN =XHX"(f)

= 2 Fix (m)e_jzﬂfm

m=—oo

(9.16)

where the variable r (m) 1is the autocorrelation function of x(m). The
Fourier transform exists only for finite-energy signals. An important



Fourier Transform: Representation of Aperiodic Signals 271

theoretical class of signals is that of stationary stochastic signals, which, as a
consequence of the stationarity condition, are infinitely long and have
infinite energy, and therefore do not possess a Fourier transform. For
stochastic signals, the quantity of interest is the power-spectral density,
defined as the Fourier transform of the autocorrelation function:

Pyx (f)= 3 1 (m)e 727" (9.17)
m=—co
where the autocorrelation function r,,(m) is defined as

Fy (m) = E[x(m)x(m+ k)] (9.18)

In practice, the autocorrelation function is estimated from a signal record of
length N samples as

1 N—lml-1

Pae(m)=——— kgox(k)x(mm), k=0, .., N-1  (9.19)

In Equation (9.19), as the correlation lag m approaches the record length N,
the estimate of 7, (m) is obtained from the average of fewer samples and
has a higher variance. A triangular window may be used to “down-weight”
the correlation estimates for larger values of lag m. The triangular window
has the form

| m |

l———o, ImI<N -1
w(m)=

(9.20)
0, otherwise

Multiplication of Equation (9.19) by the window of Equation (9.20) yields

N—-lml-1
o (m)=— D x(k)x(k +m) 9.21)
k=0

The expectation of the windowed correlation estimate 7 (m) is given by
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1 N—lml-1
Elr., (m)]:w Y E [x(k)x(k + m)]
=0

|m| (9.22)
= (1 - W]rxx (m)

In Jenkins and Watts, it is shown that the variance of 7 (m) is given by
A [
Varlfy (ml= - 3 [2 )+ o, (k= myr, (ke +m) 9.23)
k=—o0

From Equations (9.22) and (9.23), ;:xx (m) is an asymptotically unbiased and
consistent estimate.

9.4 Non-Parametric Power Spectrum Estimation

The classic method for estimation of the power spectral density of an N-
sample record is the periodogram introduced by Sir Arthur Schuster in 1899.
The periodogram is defined as

2

R 1 |- 5
Pex (N)=— Y x(mye /2"
m=0 (9.24)
_1 2
= X

The power-spectral density function, or power spectrum for short, defined in
Equation (9.24), is the basis of non-parametric methods of spectral
estimation. Owing to the finite length and the random nature of most
signals, the spectra obtained from different records of a signal vary
randomly about an average spectrum. A number of methods have been
developed to reduce the variance of the periodogram.

9.4.1 The Mean and Variance of Periodograms

The mean of the periodogram is obtained by taking the expectation of
Equation (9.24):
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o (P [x
El Pxx (f)]=ﬁZ |X(f)|

BRLE O N- _
=—£[2x(m)e_fznfm Zx(n)eﬂ”f”} (9.25)

N m=0 n=0

N-1
= 2 piﬁkmmﬁm

m=—(N-1)

As the number of signal samples N increases, we have

Jlim E[Pyy ()= 3 o (me 7" = Pyy () (9.26)

m=—oo

For a Gaussian random sequence, the variance of the periodogram can be
obtained as

A o sin 27N Y
Var[ Pyy (f)]=Pxx (f)|:1+(—Nsin 27%] :| (9.27)

As the length of a signal record N increases, the expectation of the
periodogram converges to the power spectrum Pyy (f) and the variance of

13XX (f) converges to P;%X (/). Hence the periodogram is an unbiased but

not a consistent estimate. The periodograms can be calculated from a DFT
of the signal x(m), or from a DFT of the autocorrelation estimates 7, (m) . In
addition, the signal from which the periodogram, or the autocorrelation
samples, are obtained can be segmented into overlapping blocks to result in
a larger number of periodograms, which can then be averaged. These
methods and their effects on the variance of periodograms are considered in
the following.

9.4.2 Averaging Periodograms (Bartlett Method)

In this method, several periodograms, from different segments of a signal,
are averaged in order to reduce the variance of the periodogram. The Bartlett
periodogram is obtained as the average of K periodograms as
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n 1
PE ()= EZ PO () (9.28)

i=1

where 13)((2 (f) is the periodogram of the ith segment of the signal. The
expectation of the Bartlett periodogram ﬁ;?x (f) is given by

E[PE, (F)]=EIPL) (f)]

N : | | i 27fm

= (1— } (m)e™’ (9.29)
m=—(N-1)
1/2 .

_ 1 sint(f —v)N

B J. XX()|: sinz(f — :|dv

—1/2

where (sin /N /sin iif )2 / N is the frequency response of the triangular
window 1-Iml/N. From Equation (9.29), the Bartlett periodogram is

asymptotically unbiased. The variance of 13}(9)( (f) is 1/K of the variance of
the periodogram, and is given by

. 2
varlPE, ()] KPXX(f>[ (S“;i’ZZH 9.30)

9.4.3 Welch Method: Averaging Periodograms from Overlapped
and Windowed Segments

In this method, a signal x(m), of length M samples, is divided into K
overlapping segments of length N, and each segment is windowed prior to
computing the periodogram. The ith segment is defined as

x;(m) = x(m+iD), m=0,...,N-1,i=0,...K-1 (9.31)

where D is the overlap. For half-overlap D=N/2, while D=N corresponds to
no overlap. For the ith windowed segment, the periodogram is given by
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2

PY) (f )l No 2 2w(m>x (m)e /™" (9.32)

where w(m) is the window function and U is the power in the window

function, given by
1 Nl
U=— > w(m) (9.33)
N m=0

The spectrum of a finite-length signal typically exhibits side-lobes due to
discontinuities at the endpoints. The window function w(m) alleviates the
discontinuities and reduces the spread of the spectral energy into the side-
lobes of the spectrum. The Welch power spectrum is the average of K
periodograms obtained from overlapped and windowed segments of a
signal:

lKl

Py (f)= . — PO () (9.34)

=0

Using Equations (9.32) and (9.34), the expectation of }A’)‘?;( (f) can be
obtained as

[Py (NI=E[PE ()]
1 N-1N-1

2 ZW(”)W(m)E[x (m)x; (n)le —j2nf (n—m)
NUn 0o
1

| N=IN- )
NU Z ZW(H)W(m)r (n m)e~ J2nf (n—m)

1/2
= [P )W = f)dv
-1/2
(9.35)

where
2

W)= Zw<m>e j2nm

NU (9.36)

and the variance of the Welch estimate is given by
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L 1 K=Kl [ @ A (i) ] Ay 2
VarlPx (/1= S Yl s onl-Ept ol 0
i=0 j=0

Welch has shown that for the case when there is no overlap, D=N,

Var[Pyy (f)]_ Pix (f)
Var[ Pyy (f)]— XX 9.38
XX X, K, (9.38)

and for half-overlap, D=N/2 ,

Var PV, <f>]=8%P§X )] 9.39)
2

9.4.4 Blackman-Tukey Method

In this method, an estimate of a signal power spectrum is obtained from the
Fourier transform of the windowed estimate of the autocorrelation function
as

P (f)= 2w(m> L (m)e™2m (9.40)
m=—(N-1)

For a signal of N samples, the number of samples available for estimation of
the autocorrelation value at the lag m, 7, (m), decrease as m approaches N.

Therefore, for large m, the variance of the autocorrelation estimate
increases, and the estimate becomes less reliable. The window w(m) has the
effect of down-weighting the high variance coefficients at and around the
end—points. The mean of the Blackman—Tukey power spectrum estimate is

N~ ‘
[P (= Y Elfy (m)lwim)e /7" (9.41)
m=—(N-1)

Now El[7,, (m)]=r, (m)wg(m), where wg(m) is the Bartlett, or triangular,
window. Equation (9.41) may be written as
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N-1 )
EIPH (Ol= Y. ry(myw,(mye /2" (9.42)
m=—(N-1)

where w.(m)=wg(m)w(m). The right-hand side of Equation (9.42) can be

written in terms of the Fourier transform of the autocorrelation and the

window functions as
1/2

E[PE (/) _[Pxx(V)W (f =v)dv (9.43)
-1/2

where W,(f) is the Fourier transform of w.(m). The variance of the
Blackman-Tukey estimate is given by

Var[ Py (f)l= NPXX (f) (9.44)

where U is the energy of the window w.(m).

9.4.5 Power Spectrum Estimation from Autocorrelation of
Overlapped Segments

In the Blackman—Tukey method, in calculating a correlation sequence of
length N from a signal record of length N, progressively fewer samples are
admitted in estimation of 7, (m) as the lag m approaches the signal length
N. Hence the variance of r,, (m) increases with the lag m. This problem can
be solved by using a signal of length 2N samples for calculation of N
correlation values. In a generalisation of this method, the signal record x(m),
of length M samples, is divided into a number K of overlapping segments of
length 2N. The ith segment is defined as

x;(m) = x(m+iD), m=0,1,... 2N-1 (9.45)
i=01,...,K-1
where D is the overlap. For each segment of length 2N, the correlation
function in the range of 0=m =N 1is given by

. RS
Foo(m) = E Zx,-(k)xl-(k +m), m=0,1,...,N-1 (9.46)
k=0
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In Equation (9.46), the estimate of each correlation value is obtained as the
averaged sum of N products.

9.5 Model-Based Power Spectrum Estimation

In non-parametric power spectrum estimation, the autocorrelation function
is assumed to be zero for lags |m|= N, beyond which no estimates are
available. In parametric or model-based methods, a model of the signal
process is used to extrapolate the autocorrelation function beyond the range
|mI< N for which data is available. Model-based spectral estimators have a
better resolution than the periodograms, mainly because they do not assume
that the correlation sequence is zero-valued for the range of lags for which
no measurements are available.

In linear model-based spectral estimation, it is assumed that the signal
x(m) can be modelled as the output of a linear time-invariant system excited
with a random, flat-spectrum, excitation. The assumption that the input has
a flat spectrum implies that the power spectrum of the model output is
shaped entirely by the frequency response of the model. The input—output
relation of a generalised discrete linear time-invariant model is given by

P 0
x(m)zZakx(m—kHZbke(m—k) (9.47)
k=1 k=0

where x(m) is the model output, e(m) is the input, and the a; and by are the
parameters of the model. Equation (9.47) is known as an auto-regressive-
moving-average (ARMA) model. The system function H(z) of the discrete
linear time-invariant model of Equation (9.47) is given by

0
Yoz

B _ &
A(2) L

l—z ay Z_k
k=1

H(z) (9.48)

where 1/A(z) and B(z) are the autoregressive and moving-average parts of
H(z) respectively. The power spectrum of the signal x(m) is given as the
product of the power spectrum of the input signal and the squared
magnitude frequency response of the model:
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Pyx (/)=Pgg (HIH () (9.49)

where H(f) is the frequency response of the model and Pgg(f) is the input

power spectrum. Assuming that the input is a white noise process with unit
variance, i.e. Pgg(f)=1, Equation (9.49) becomes

Py (H)=H()] (9.50)

Thus the power spectrum of the model output is the squared magnitude of
the frequency response of the model. An important aspect of model-based
spectral estimation is the choice of the model. The model may be an auto
regressive (all-pole), a moving-average (all-zero) or an ARMA (pole-zero)
model.

9.5.1 Maximum-Entropy Spectral Estimation

The power spectrum of a stationary signal is defined as the Fourier
transform of the autocorrelation sequence:

Pxx(f)= ii’xx(m)e‘jz’?fm (9.51)

n=—oo

Equation (9.51) requires the autocorrelation r,,(m) for the lag m in the range
t oo . In practice, an estimate of the autocorrelation ry,(m) is available only
for the values of m in a finite range of say +P. In general, there are an
infinite number of different correlation sequences that have the same values
in the range |mI< P | as the measured values. The particular estimate used
in the non-parametric methods assumes the correlation values are zero for
the lags beyond +P, for which no estimates are available. This arbitrary
assumption results in spectral leakage and loss of frequency resolution. The
maximum-entropy estimate is based on the principle that the estimate of the
autocorrelation sequence must correspond to the most random signal whose
correlation values in the range | m|< P coincide with the measured values.
The maximum-entropy principle is appealing because it assumes no more
structure in the correlation sequence than that indicated by the measured
data. The randomness or entropy of a signal is defined as
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1/2

H[Pyy ()= [InPyy (f) df 9.52)

-1/2

To obtain the maximum-entropy correlation estimate, we differentiate
Equation (9.53) with respect to the unknown values of the correlation
coefficients, and set the derivative to zero:

IH[Pyx ()] _'F 9InPyy ()

d 1y, (m) iy 9T (m)

df =0 forlml>P (9.53)

Now, from Equation (9.17), the derivative of the power spectrum with
respect to the autocorrelation values is given by

aPXX(f) _ _—j2nfm
T = (9.54)

From Equation (9.51), for the derivative of the logarithm of the power
spectrum, we have

dln Pyy (f)

_ p-l —j2nfm
7 (m) Pxx (f)e (9.55)

Substitution of Equation (9.55) in Equation (9.53) gives

1/2
| Pex (He™ ™™ df =0 for Iml > P (9.56)
—1/2

Assuming that Pygy(f) is integrable, it may be associated with an
autocorrelation sequence c(m) as

Pex (f)= ic(m)e‘ﬂ"f’” (9.57)
where __oo
1/2 '
cim=" [ Pyx (e df (9.58)

-1/2
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From Equations (9.56) and (9.58), we have c(m)=0 for Im| > P. Hence, from
Equation (9.57), the inverse of the maximum-entropy power spectrum may
be obtained from the Fourier transform of a finite-length autocorrelation
sequence as

P
PR (f) = D c(m)e-r2mm (9.59)

m=—P
and the maximum-entropy power spectrum is given by

. 1
PEE(f)=— (9.60)

ZC(m)e_jZ”fm

m=—P

Since the denominator polynomial in Equation (9.60) is symmetric, it
follows that for every zero of this polynomial situated at a radius r, there is a
zero at radius 1/r. Hence this symmetric polynomial can be factorised and
expressed as

P
c(m)z™ = %A(Z)A(z_l) 9.61)
P (e

m=—

where 1/02 is a gain term, and A(z) is a polynomial of order P defined as

P

A(R)=l4az”" +++a,z” (9.62)

From Equations (9.60) and (9.61), the maximum-entropy power spectrum

may be expressed as

62

PME ¢ 07
xx () ADACD

(9.63)

Equation (9.63) shows that the maximum-entropy power spectrum estimate
is the power spectrum of an autoregressive (AR) model. Equation (9.63)
was obtained by maximising the entropy of the power spectrum with respect
to the unknown autocorrelation values. The known values of the
autocorrelation function can be used to obtain the coefficients of the AR
model of Equation (9.63), as discussed in the next section.
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9.5.2 Autoregressive Power Spectrum Estimation

In the preceding section, it was shown that the maximum-entropy spectrum
is equivalent to the spectrum of an autoregressive model of the signal. An
autoregressive, or linear prediction model, described in detail in Chapter 8,
is defined as

P
x(m)= Y apx(m—k)+e(m) (9.64)
k=1

where e(m) is a random signal of variance 2. The power spectrum of an
autoregressive process is given by

2

o,

AR
Pyx (f)= B 2 (9.65)
I—Zake_jzm(k
k=1

An AR model extrapolates the correlation sequence beyond the range for
which estimates are available. The relation between the autocorrelation
values and the AR model parameters is obtained by multiplying both sides
of Equation (9.64) by x(m-j) and taking the expectation:

P
Elx(m)x(m—j)] = Zakf[x(m —k)x(m— j)I + Ele(m)x(m— j)I (9.66)
k=1

Now for the optimal model coefficients the random input e(m) is orthogonal
to the past samples, and Equation (9.66) becomes

P
P (D)= D a1 (=K, j=1,2,... (9.67)
k=1

Given P+1 correlation values, Equation (9.67) can be solved to obtain the
AR coefficients a;. Equation (9.67) can also be used to extrapolate the
correlation sequence. The methods of solving the AR model coefficients are
discussed in Chapter 8.
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9.5.3 Moving-Average Power Spectrum Estimation

A moving-average model is also known as an all-zero or a finite impulse
response (FIR) filter. A signal x(mm), modelled as a moving-average process,
is described as

0
x(m)=Y bye(m—k) (9.68)
k=0

where e(m) is a zero-mean random input and Q is the model order. The
cross-correlation of the input and output of a moving average process is
given by

Fee (M) ="E[x(j)e(j—m)]

Q
:@[zbke(j—k)e(j—m):|2662bm (9.69)
k=0

and the autocorrelation function of a moving average process is

O—Iml
2
2 bb. . Iml<Q
re(m)={"¢ ,é) K (9.70)
0, Im1>0

From Equation (9.70), the power spectrum obtained from the Fourier
transform of the autocorrelation sequence is the same as the power spectrum
of a moving average model of the signal. Hence the power spectrum of a
moving-average process may be obtained directly from the Fourier
transform of the autocorrelation function as

Q .
PYA =N o (m)emi2mm 9.71)
m—0

Note that the moving-average spectral estimation is identical to the
Blackman—-Tukey method of estimating periodograms from the
autocorrelation sequence.
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9.5.4 Autoregressive Moving-Average Power Spectrum
Estimation

The ARMA, or pole-zero, model is described by Equation (9.47). The
relationship between the ARMA parameters and the autocorrelation
sequence can be obtained by multiplying both sides of Equation (9.47) by
x(m—j) and taking the expectation:

P
ro(j) = —Zaerx(j—k)+§,bere(j—k) (9.72)

k=1 k=0

The moving-average part of Equation (9.72) influences the autocorrelation
values only up to the lag of Q. Hence, for the autoregressive part of
Equation (9.72), we have

P
roc(m) == D apro(m—k) for m>Q (9.73)
k=1

Hence Equation (9.73) can be used to obtain the coefficients ag, which may
then be substituted in Equation (9.72) for solving the coefficients by. Once
the coefficients of an ARMA model are identified, the spectral estimate is
given by

2
0
zbke—jzﬂfk
ARMA 2 | k=0
Pyx " (f)=0, B 5 (9.74)
1+Zake_j2”fk
k=1

where 662 is the variance of the input of the ARMA model. In general, the

poles model the resonances of the signal spectrum, whereas the zeros model
the anti-resonances of the spectrum.

9.6 High-Resolution Spectral Estimation Based on Subspace
Eigen-Analysis

The eigen-based methods considered in this section are primarily used for
estimation of the parameters of sinusoidal signals observed in an additive
white noise. Eigen-analysis is used for partitioning the eigenvectors and the
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eigenvalues of the autocorrelation matrix of a noisy signal into two
subspaces:

(a) the signal subspace composed of the principle eigenvectors
associated with the largest eigenvalues;
(b) the noise subspace represented by the smallest eigenvalues.

The decomposition of a noisy signal into a signal subspace and a noise
subspace forms the basis of the eigen-analysis methods considered in this
section.

9.6.1 Pisarenko Harmonic Decomposition

A real-valued sine wave can be modelled by a second-order autoregressive
(AR) model, with its poles on the unit circle at the angular frequency of the
sinusoid as shown in Figure 9.5. The AR model for a sinusoid of frequency
F; at a sampling rate of F is given by

x(m)=2cos(2nF; / F; ) x(m—1)—x(m —2)+Ad(m —1t) (9.75)

where Ad&(m—ty) is the initial impulse for a sine wave of amplitude A. In

general, a signal composed of P real sinusoids can be modelled by an AR
model of order 2P as

2P
x(m)zZakx(m—k)+A5(m—t0) (9.76)
k=1

A XD

Fy f

Figure 9.5 A second order all pole model of a sinusoidal signal.
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The transfer function of the AR model is given by

A A
H(z)=——F; = . . (9.77)
1_2akz—k H(l_e—jZﬂFkZ—l)(l_e"'jzﬂFkZ—l)
k=1 k=1

.. o + j2nF,
where the angular positions of the poles on the unit circle, e’ G

correspond to the angular frequencies of the sinusoids. For P real sinusoids
observed in an additive white noise, we can write

y(m) = x(m) + n(m)

2P
= Zakx(m — k) + n(m) (9.78)
k=1
Substituting [y(m—k)-n(m—k)] for x(m—k) in Equation (9.73) yields
2P 2P
y(m) —zaky(m -k)= n(m)—Zakn(m—k) (9.79)
k=1 k=1

From Equation (9.79), the noisy sinusoidal signal y(m) can be modelled by
an ARMA process in which the AR and the MA sections are identical, and
the input is the noise process. Equation (9.79) can also be expressed in a
vector notation as

yTa=n"a (9.80)

where yT=[y(m), . . ., y(m-2P)], aT=[1, a;, . . ., arp] and nT=[n(m), . . .,
n(m-2P)]. To obtain the parameter vector @, we multiply both sides of
Equation (9.80) by the vector y and take the expectation:

ElyyT1a=E[yn" la (9.81)

or
R,a=R,a (9.82)

where E[yyT]=R yy » and ElynT]=R yn can be written as
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R, =Fl(x+m)n"]

9.83
=Enn" =R, =01 ©83)

where G,% is the noise variance. Using Equation (9.83), Equation (9.82)
becomes

R,a=0,a (9.84)

Equation (9.84) is in the form of an eigenequation. If the dimension of the
matrix Ry, 1is greater than 2P X2P then the largest 2P eigenvalues are

associated with the eigenvectors of the noisy sinusoids and the minimum
eigenvalue corresponds to the noise variance ¢>. The parameter vector a is
obtained as the eigenvector of Ry, with its first element unity and associated
with the minimum eigenvalue. From the AR parameter vector a, we can
obtain the frequencies of the sinusoids by first calculating the roots of the
polynomial

lta;z7 +a, 272+ +a, 2722 +az72PH + 272 =0 (9.85)

Note that for sinusoids, the AR parameters form a symmetric polynomial;
that is ax=a,p_;. The frequencies Fj of the sinusoids can be obtained from

the roots z; of Equation (9.85) using the relation

% :ejZan

(9.86)

The powers of the sinusoids are calculated as follows. For P sinusoids
observed in additive white noise, the autocorrelation function is given by

P
ryy (k)= P,cos2knF; +0,; (k) (9.87)
i=1

where P, = A,-2 /2 is the power of the sinusoid A; sin(27F;), and white noise
affects only the correlation at lag zero ry,(0). Hence Equation (9.87) for the
correlation lags k=1, .. ., P can be written as
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cos2nF,  cos2nF, ... cos2nFp \( B Fyy (1)

cosdnF,  cos4nF, ... cos4nF Py | | ry ()
. . . R | B = e (9.88)

cos2PmF; cos2PnF, ... cos2PmFp |\ Pp | | 7y (P)

Given an estimate of the frequencies F; from Equations (9.85) and (86), and
an estimate of the autocorrelation function ?yy (k), Equation (9.88) can be
solved to obtain the powers of the sinusoids P;. The noise variance can then
be obtained from Equation (9.87) as

P
o2 = ry,(0)— D P, (9.89)
i=1
9.6.2 Multiple Signal Classification (MUSIC) Spectral Estimation

The MUSIC algorithm is an eigen-based subspace decomposition method
for estimation of the frequencies of complex sinusoids observed in additive
white noise. Consider a signal y(m) modelled as

P .
y(m)=Y Ap e IET0 () (9.90)
k=1
An N-sample vector y=[y(m), . . ., y(m+N-1)] of the noisy signal can be
written as
y=x+n
=Sa+n ©91)

where the signal vector x=Sa is defined as

X(m) e]271:Flm eJZﬁ'Fzm o e]277:FPm Aleﬂm])l
X(m + 1) ej27rFl(m+l) ej277:F2(m+1) N ej27rFP(m+1) A2ej27r¢2
X(m+ N -1 ej2n:F1(m+N—l) ej2n:F2(m+N—1) o ej2n:FP(m+N—1) APejZn:q)P

(9.92)
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The matrix § and the vector a are defined on the right-hand side of Equation
(9.92). The autocorrelation matrix of the noisy signal y can be written as the
sum of the autocorrelation matrices of the signal x and the noise as

Ryy :Rxx +Rnn

9.93
=SPSH +621 099
where Ry,=SPSH and R,,,=0,21 are the autocorrelation matrices of the

signal and noise processes, the exponent H denotes the Hermitian transpose,
and the diagonal matrix P defines the power of the sinusoids as

P=aa" =diag[P,.P;,....Pp] (9.94)
where P, =A? is the power of the complex sinusoid e 2™ The
correlation matrix of the signal can also be expressed in the form

4 H
R, =) Pisisi (9.95)
k=1

i2TCF,
’ef k’.

H_ 2n(N-1)F, . . .
where §; =1 +-,e2MNVDET Now consider an eigen-decomposition

of the N X N correlation matrix R,

N

_ H

R, =Y hvivi
=1

4 H
= Z;Lkvkvk
k=1

(9.96)

where A; and v, are the eigenvalues and eigenvectors of the matrix R,
respectively. We have also used the fact that the autocorrelation matrix Ry,
of P complex sinusoids has only P non-zero eigenvalues, Ap,1=Apyo, ...,
An=0. Since the sum of the cross-products of the eigenvectors forms an

identity matrix we can also express the diagonal autocorrelation matrix of
the noise in terms of the eigenvectors of Ry, as
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N
R,,=0.1=0.> vy} (9.97)
k=1

The correlation matrix of the noisy signal may be expressed in terms of its
eigenvectors and the associated eigenvalues of the noisy signal as

R

w=2 vt +o ZVkvk

k=1

(7\,]( + GZ}kVIIC_I +62 ZVkvk
k=P+1

(9.98)

M~ [

k

Il
—_

From Equation (9.98), the eigenvectors and the eigenvalues of the
correlation matrix of the noisy signal can be partitioned into two disjoint
subsets (see Figure 9.6). The set of eigenvectors {vy, . . ., vp}, associated
with the P largest eigenvalues span the signal subspace and are called the
principal eigenvectors. The signal vectors s; can be expressed as linear
combinations of the principal eigenvectors. The second subset of
eigenvectors {vp,, . . ., vy} span the noise subspace and have ¢ as their

eigenvalues. Since the signal and noise eigenvectors are orthogonal, it
follows that the signal subspace and the noise subspace are orthogonal.
Hence the sinusoidal signal vectors s; which are in the signal subspace, are

orthogonal to the noise subspace, and we have

A Eigenvalues
2
A+ 0,
2
A+ O,
),3'*‘ O-,%
2
Ap+ O
2
Apy1=Apr2=Api3= An=0;,
. l >
\ y \ y .
- . Noise ei 1 index
Principal eigenvalues oise eigenvalues

Figure 9.6 Decomposition of the eigenvalues of a noisy signal into the principal
eigenvalues and the noise eigenvalues.
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N-1 ‘
sH(fwe= Y veme 727" =0  i=1...,P k=P+L..,N (999
m=0
Equation (9.99) implies that the frequencies of the P sinusoids can be

obtained by solving for the zeros of the following polynomial function of
the frequency variable f:

N
> sT(fwy (9.100)

k=P+1

In the MUSIC algorithm, the power spectrum estimate is defined as

N 2
Pex (= D" (Fwy] (9.101)
k=P+1
where s(f) = [1, &2%, . . ., &2®N-1)f] is the complex sinusoidal vector, and
{vps1, . . . ,vy} are the eigenvectors in the noise subspace. From Equations

(9.102) and (9.96) we have that
Py (fi) =0, i=1,.., P (9.102)

Since Pxx(f) has its zeros at the frequencies of the sinusoids, it follows that
the reciprocal of Pxx(f) has its poles at these frequencies. The MUSIC
spectrum is defined as

1 1
Py (f)= = (9.103)
i‘sH( el STV Vs
k=P+1
where V=[vp,, . .. ,vy] is the matrix of eigenvectors of the noise subspace.

Pyusic(f) 1s sharply peaked at the frequencies of the sinusoidal components

of the signal, and hence the frequencies of its peaks are taken as the MUSIC
estimates.
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9.6.3 Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT)

The ESPIRIT algorithm is an eigen-decomposition approach for estimating
the frequencies of a number of complex sinusoids observed in additive white
noise. Consider a signal y(m) composed of P complex-valued sinusoids and
additive white noise:

P |
Y(m)=Y Ape ™ CHM) 1 n(m) (9.104)
k=1

The ESPIRIT algorithm exploits the deterministic relation between
sinusoidal component of the signal vector y(m)=[y(m), . . ., y(m+N-1]T and
that of the time-shifted vector y(m+1)=[y(m+1), . . ., y(m+N)]T. The signal
component of the noisy vector y(m) may be expressed as

x(m)=Sa (9.105)

where S is the complex sinusoidal matrix and a is the vector containing the
amplitude and phase of the sinusoids as in Equations (9.91) and (9.92). A

j2rFm

complex sinusoid e can be time-shifted by one sample through

multiplication by a phase term e’ 27 Hence the time-shifted sinusoidal

signal vector x(m+1) may be obtained from x(m) by phase-shifting each
complex sinusoidal component of x(m) as

x(m+1)=SPa (9.106)
where @ is a Px P phase matrix defined as
@ =diag[e/>™1 /P2 ... oI2P (9.107)

The diagonal elements of @ are the relative phases between the adjacent
samples of the sinusoids. The matrix @ is a unitary matrix and is known as
a rotation matrix since it relates the time-shifted vectors x(m) and x(m+1).
The autocorrelation matrix of the noisy signal vector y(m) can be written as

R =SPSH+021 (9.108)

y(m)y(m)
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where the matrix P is diagonal, and its diagonal elements are the powers of
the complex sinusoids P=diag[A12 , ...,A,%] =aa'™ . The cross-covariance
matrix of the vectors y(m) and y(m+1) is

Ry (myy(m+1) =Spotst + Ry myn(me1) (9.109)

where the autocovariance matrices Ry ,ym+1) and Ry npnin+1) are defined as

Tyy (D Fyy(2) Ty (3) ... Iy (N)
Ty (0) Fyy (D Fy(@ o Py (N=D)
Ryimyymeny =| Ty ® Tyy (0) Fyy@M .o Ty (N=2) | (9.110)
Fyy(N=2) Ty (N=3) Ty (N=4) ... Ty(D)
and
0 0 0 O
62 0 0 0
2
Rymynimery =| 0 0 0 0 (9.111)
0 0 - ¢62 0

N

The correlation matrix of the signal vector x(m) can be estimated as
R (imyx(m) :Ry(m)y(m)_Rn(m)n(m) = SPSH (9.112)

and the cross-correlation matrix of the signal vector x(m) with its time-
shifted version x(m+1) is obtained as

R myx(me1) =Ryomyyomet)y = Bumynimer) = SPoHgH (9.113)

Subtraction of a fraction /1,-=€_j 7 of Equation (9.113) from Equation

(9.112) yields

Ry omyxom —MRyomyx(meny = SPA-L; @7 )SH (9.114)
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From Equations (9.107) and (9.114), the frequencies of the sinusoids can be
estimated as the roots of Equation (9.114).

9.7 Summary

Power spectrum estimation is perhaps the most widely used method of
signal analysis. The main objective of any transformation is to express a
signal in a form that lends itself to more convenient analysis and
manipulation. The power spectrum is related to the correlation function
through the Fourier transform. The power spectrum reveals the repetitive
and correlated patterns of a signal, which are important in detection,
estimation, data forecasting and decision-making systems. We began this
chapter with Section 9.1 on basic definitions of the Fourier series/transform,
energy spectrum and power spectrum. In Section 9.2, we considered non-
parametric DFT-based methods of spectral analysis. These methods do not
offer the high resolution of parametric and eigen-based methods. However,
they are attractive in that they are computationally less expensive than
model-based methods and are relatively robust. In Section 9.3, we
considered the maximum-entropy and the model-based spectral estimation
methods. These methods can extrapolate the correlation values beyond the
range for which data is available, and hence can offer higher resolution and
less side-lobes. In Section 9.4, we considered the eigen-based spectral
estimation of noisy signals. These methods decompose the eigen variables
of the noisy signal into a signal subspace and a noise subspace. The
orthogonality of the signal and noise subspaces is used to estimate the signal
and noise parameters. In the next chapter, we use DFT-based spectral
estimation for restoration of signals observed in noise.
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10.1 Introduction

10.2 Polynomial Interpolation
10.3 Model-Based Interpolation
10.4 Summary

nterpolation is the estimation of the unknown, or the lost, samples of a

signal using a weighted average of a number of known samples at the

neighbourhood points. Interpolators are used in various forms in most
signal processing and decision making systems. Applications of
interpolators include conversion of a discrete-time signal to a continuous-
time signal, sampling rate conversion in multirate communication systems,
low-bit-rate speech coding, up-sampling of a signal for improved graphical
representation, and restoration of a sequence of samples irrevocably
distorted by transmission errors, impulsive noise, dropouts, etc. This
chapter begins with a study of the basic concept of ideal interpolation of a
band-limited signal, a simple model for the effects of a number of missing
samples, and the factors that affect the interpolation process. The classical
approach to interpolation is to construct a polynomial that passes through
the known samples. In Section 10.2, a general form of polynomial
interpolation and its special forms, Lagrange, Newton, Hermite and cubic
spline interpolators, are considered. Optimal interpolators utilise predictive
and statistical models of the signal process. In Section 10.3, a number of
model-based interpolation methods are considered. These methods include
maximum a posteriori interpolation, and least square error interpolation
based on an autoregressive model. Finally, we consider time—frequency
interpolation, and interpolation through searching an adaptive signal
codebook for the best-matching signal.
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10.1 Introduction

The objective of interpolation is to obtain a high-fidelity reconstruction of
the unknown or the missing samples of a signal. The emphasis in this
chapter is on the interpolation of a sequence of lost samples. However, first
in this section, the theory of ideal interpolation of a band-limited signal is
introduced, and its applications in conversion of a discrete-time signal to a
continuous-time signal and in conversion of the sampling rate of a digital
signal are considered. Then a simple distortion model is used to gain insight
on the effects of a sequence of lost samples and on the methods of recovery
of the lost samples. The factors that affect interpolation error are also
considered in this section.

10.1.1 Interpolation of a Sampled Signal

A common application of interpolation is the reconstruction of a
continuous-time signal x(#) from a discrete-time signal x(m). The condition
for the recovery of a continuous-time signal from its samples is given by the
Nyquist sampling theorem. The Nyquist theorem states that a band-limited
signal, with a highest frequency content of F,. (Hz), can be reconstructed
from its samples if the sampling speed is greater than 2F, samples per
second. Consider a band-limited continuous-time signal x(¢), sampled at a
rate of Fy samples per second. The discrete-time signal x(m) may be
expressed as the following product:

x(®) sinc(mf,t)
x(t)
Time | l | /’—\
! | B VAR AV >

time

time

© (;d.ow .patlss filltetr )
inc interpolator
% j X(f)
Frequency
VAN \NVANR

time

A

I .

—F2 0 F2 o freq -FJ/20FJ2  freq -FJ20 FJ2 freq

Figure 10.1 Reconstruction of a continuous-time signal from its samples. In
frequency domain interpolation is equivalent to low-pass filtering.
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Original signal Zero inserted signal Interpolated signal
,'l. M'l - L ‘ | ‘ . e Il.llll”.”H.‘H.ll.,l,
time . .

time time

Figure 10.2 lllustration of up-sampling by a factor of 3 using a two-stage process
of zero-insertion and digital low-pass filtering.

x(m)=x(t) p()= imw(t—st) (10.1)

m=—oo

where p(1)=2X8(t-mTj) is the sampling function and Ty=1/F; is the sampling
interval. Taking the Fourier transform of Equation (10.1), it can be shown
that the spectrum of the sampled signal is given by

X (H)=X(fYP(NH)= D X(f +kfy) (10.2)

k=—co

where X(f) and P(f) are the spectra of the signal x(f) and the sampling
function p(f) respectively, and * denotes the convolution operation.
Equation (10.2), illustrated in Figure 10.1, states that the spectrum of a
sampled signal is composed of the original base-band spectrum X(f) and the
repetitions or images of X(f) spaced uniformly at frequency intervals of
F¢=1/T;. When the sampling frequency is above the Nyquist rate, the base-
band spectrum X(f) is not overlapped by its images X(fxkF), and the
original signal can be recovered by a low-pass filter as shown in Figure
10.1. Hence the ideal interpolator of a band-limited discrete-time signal is
an ideal low-pass filter with a sinc impulse response. The recovery of a
continuous-time signal through sinc interpolation can be expressed as

x(t)= ix(m)Tsfc sinc [7f. (t — mT)] (10.3)

m=—co

In practice, the sampling rate F; should be sufficiently greater than 2F,, say
2.5F., in order to accommodate the transition bandwidth of the
interpolating low-pass filter.
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10.1.2 Digital Interpolation by a Factor of /

Applications of digital interpolators include sampling rate conversion in
multirate communication systems and up-sampling for improved graphical
representation. To change a sampling rate by a factor of V=I/D (where I and
D are integers), the signal is first interpolated by a factor of 7, and then the
interpolated signal is decimated by a factor of D.

Consider a band-limited discrete-time signal x(m) with a base-band
spectrum X(f) as shown in Figure 10.2. The sampling rate can be increased
by a factor of I through interpolation of /-1 samples between every two
samples of x(m). In the following it is shown that digital interpolation by a
factor of I can be achieved through a two-stage process of (a) insertion of /-
1 zeros in between every two samples and (b) low-pass filtering of the zero-
inserted signal by a filter with a cutoff frequency of F/2I, where Fj is the
sampling rate. Consider the zero-inserted signal x,(m) obtained by inserting

I-1 zeros between every two samples of x(m) and expressed as

x(ﬁ), m=0,x1%+21....
x, (m)= I (10.4)

0, otherwise

The spectrum of the zero-inserted signal is related to the spectrum of the
original discrete-time signal by

X.(f)= 3 x. (mye 2

m=—oo

= ix(m)e_ﬂafml (10.5)

Mm=—co

=X(.f)

Equation (10.5) states that the spectrum of the zero-inserted signal X,(f) is a
frequency-scaled version of the spectrum of the original signal X(f). Figure
10.2 shows that the base-band spectrum of the zero-inserted signal is
composed of [ repetitions of the based band spectrum of the original signal.
The interpolation of the zero-inserted signal is therefore equivalent to
filtering out the repetitions of X(f) in the base band of X,(f), as illustrated in
Figure 10.2. Note that to maintain the real-time duration of the signal the



Introduction 301

sampling rate of the interpolated signal x,(m) needs to be increased by a
factor of 1.

10.1.3 Interpolation of a Sequence of Lost Samples

In this section, we introduce the problem of interpolation of a sequence of
M missing samples of a signal given a number of samples on both side of
the gap, as illustrated in Figure 10.3. Perfect interpolation is only possible if
the missing samples are redundant, in the sense that they carry no more
information than that conveyed by the known neighbouring samples. This
will be the case if the signal is a perfectly predictable signal such as a sine
wave, or in the case of a band-limited random signal if the sampling rate is
greater than M times the Nyquist rate. However, in many practical cases,
the signal is a realisation of a random process, and the sampling rate is only
marginally above the Nyquist rate. In such cases, the lost samples cannot be
perfectly recovered, and some interpolation error is inevitable.

A simple distortion model for a signal y(m) with M missing samples,
illustrated in Figure 10.3, is given by

y(m)=x(m)d (m)

10.6
=x(m) [~ r(m)] (100
where the distortion operator d(m) is defined as
d(m)=1-r(m) (10.7)

and r(m) is a rectangular pulse of duration M samples starting at the
sampling time k:

y(m)
|IH | 0 11 1 T

.

x(m) d(m)

Figure 10.3 lllustration of a distortion model for a signal with a sequence of
missing samples.
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I, k<m<k+M —1
r(m)= (10.8)

0, otherwise

In the frequency domain, Equation (10.6) becomes

Y(f)=X(f)*D(f)
=X(/)*[6(f)—R(f)] (10.9)
=X(f)=X(f)*R(f)

where D(f) is the spectrum of the distortion d(m), &) is the Kronecker delta
function, and R(f), the frequency spectrum of the rectangular pulse r(m), is
given by
R(f)=e 2 tkr -2 S0 ) (10.10)
sin(7f )
In general, the distortion d(m) i1s a non-invertible, many-to-one
transformation, and perfect interpolation with zero error is not possible.
However, as discussed in Section 10.3, the interpolation error can be
minimised through optimal utilisation of the signal models and the
information contained in the neighbouring samples.

Example 10.1 Interpolation of missing samples of a sinusoidal signal.
Consider a cosine waveform of amplitude A and frequency Fy with M

missing samples, modelled as

y(m)=x(m)d(m)
= A(cos 27tf ym)[1 - r(m)b] (10.11)

where r(m) is the rectangular pulse defined in Equation (10.7). In the
frequency domain, the distorted signal can be expressed as

Y(£)=Z[0(f = f)+0(f + f)FIS(S)-R()]

(10.12)
[6(f = f)+6(f + f)—R(f = f)—R(f + f,)]

NN YN

where R(f) is the spectrum of the pulse r(m) as in Equation (10.9).
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From Equation (10.12), it is evident that, for a cosine signal of
frequency Fj, the distortion in the frequency domain due to the missing
samples is manifested in the appearance of sinc functions centred at + Fj,
The distortion can be removed by filtering the signal with a very narrow
band-pass filter. Note that for a cosine signal, perfect restoration is possible
only because the signal has infinitely narrow bandwidth, or equivalently
because the signal is completely predictable. In fact, for this example, the
distortion can also be removed using a linear prediction model, which, for a
cosine signal, can be regarded as a data-adaptive narrow band-pass filter.

10.1.4 The Factors That Affect Interpolation Accuracy

The interpolation accuracy is affected by a number of factors, the most
important of which are as follows:

(a) The predictability, or correlation structure of the signal: as the
correlation of successive samples increases, the predictability of a
sample from the neighbouring samples increases. In general,
interpolation improves with the increasing correlation structure, or
equivalently the decreasing bandwidth, of a signal.

(b) The sampling rate: as the sampling rate increases, adjacent samples
become more correlated, the redundant information increases, and
interpolation improves.

(c) Non-stationary characteristics of the signal: for time-varying signals
the available samples some distance in time away from the missing
samples may not be relevant because the signal characteristics may
have completely changed. This 1is particularly important in
interpolation of a large sequence of samples.

(d) The length of the missing samples: in general, interpolation quality
decreases with increasing length of the missing samples.

(e) Finally, interpolation depends on the optimal use of the data and the
efficiency of the interpolator.

The classical approach to interpolation is to construct a polynomial
interpolator function that passes through the known samples. We continue
this chapter with a study of the general form of polynomial interpolation,
and consider Lagrange, Newton, Hermite and cubic spline interpolators.
Polynomial interpolators are not optimal or well suited to make efficient use
of a relatively large number of known samples, or to interpolate a relatively
large segment of missing samples.
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In Section 10.3, we study several statistical digital signal processing
methods for interpolation of a sequence of missing samples. These include
model-based methods, which are well suited for interpolation of small to
medium sized gaps of missing samples. We also consider frequency—time
interpolation methods, and interpolation through waveform substitution,
which have the ability to replace relatively large gaps of missing samples.

10.2 Polynomial Interpolation

The classical approach to interpolation is to construct a polynomial
interpolator that passes through the known samples. Polynomial
interpolators may be formulated in various forms, such as power series,
Lagrange interpolation and Newton interpolation. These various forms are
mathematically equivalent and can be transformed from one into another.
Suppose the data consists of N+1 samples {x(t,), x(t)), ..., x(#y)}, where

x(t,) denotes the amplitude of the signal x(#) at time ¢,. The polynomial of
order N that passes through the N+1 known samples is unique (Figure 10.4)
and may be written in power series form as

2O)=py () =ay+ayt+ayt* +ayt® +-+ayt” (10.13)

where P,(f) is a polynomial of order N, and the a; are the polynomial
coefficients. From Equation (10.13), and a set of N+1 known samples, a

A x(p)

P(1)=x(t)

— >
t

h h , §

Figure 10.4 lllustration of an Interpolation curve through a number of samples.
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system of N+1 linear equations with N+1 unknown coefficients can be
formulated as

X(to): ao +a1t0+a2t§ +Cl3t3 +---+ aNt(Z)V

X(tl): ao +a1t1+a2t12+a3t13++aNt1N

(10.14)
X(tN):ao"l‘altN +a2t1%]+a3t13v++aNt%
From Equation (10.14). the polynomial coefficients are given by
-1
ag\ (1 1, 5 15 ... t x(ty)
ag | |1 i g x(t)
a — 2 3 N (t )
2 1 t2 lz tz tz X 2 (1015)
ay | \1 1y th ty .. N x(ty)

The matrix in Equation (10.15) is called a Vandermonde matrix. For a large
number of samples, N, the Vandermonde matrix becomes large and ill-
conditioned. An ill-conditioned matrix is sensitive to small computational
errors, such as quantisation errors, and can easily produce inaccurate results.
There are alternative methods of implementation of the polynomial
interpolator that are simpler to program and/or better structured, such as
Lagrange and Newton methods. However, it must be noted that these
variants of the polynomial interpolation also become ill-conditioned for a
large number of samples, N.

10.2.1 Lagrange Polynomial Interpolation

To introduce the Lagrange interpolation, consider a line interpolator passing
through two points x(zy) and x(1):

x(t)—x(ty)
I =l

line slope

x(t)=p(t)=x(ty)+ (1—t¢) (10.16)
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4 X@ t—t,

x(t))

lt()

Y

Figure 10.5 The Lagrange line interpolator passing through x(t;) and x(t),

described in terms of the combination of two lines: one passing through
(x(%), t1) and the other through (x(t1), fy )-

The line Equation (10.16) may be rearranged and expressed as

-t -t

1 1

x(t)) (10.17)

0 0

Equation (10.17) is in the form of a Lagrange polynomial. Note that the
Lagrange form of a line interpolator is composed of the weighted
combination of two lines, as illustrated in Figure 10.5.

In general, the Lagrange polynomial, of order N, passing through N+1
samples {x(#y), x(t), ... x(ty)} is given by the polynomial equation

Py (1)=Lo (1)x(1g) + Ly (1)x (1) ++--+ Ly (1)x(t ) (10.18)

where each Lagrange coefficient Ly(z) is itself a polynomial of degree N
given by

L(0)= (t—ty)---(t—t, ) (t—t;) - (t—ty) _lN—[ t—t,

(t;=tg) ;=i )@ —ti) -t —tN) o Li—ln
n#i

(10.19)

Note that the ith Lagrange polynomial coefficient L;(r) becomes unity at the
ith known sample point (i.e. Li(t;)=1), and zero at every other known sample
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(i.e. L(t)=0, i# j). Therefore Pn(t,)=L(t;)x(t;)=x(t;), and the polynomial
passes through the known data points as required.

The main drawbacks of the Lagrange interpolation method are as
follows:

(a) The computational complexity is large.
(b) The coefficients of a polynomial of order N cannot be used in the
calculations of the coefficients of a higher order polynomial.

(c) The evaluation of the interpolation error is difficult.

The Newton polynomial, introduced in the next section, overcomes some of
these difficulties.

10.2.2 Newton Polynomial Interpolation

Newton polynomials have a recursive structure, such that a polynomial of
order N can be constructed by extension of a polynomial of order N-1 as
follows:

Po(H)=a, (d.c. value)

p1(t)= ag+a(t—ty)

= po (D) +a,(t—1y) (ramp)
Py()=ag +ay(t—ty) +a, ([t —ty)([—1;)
N S
(quadratic)
= (1) +a,(t—ty)(t—=1))
Dy()=ag+a (t—ty)+a,(t—ty)(t —1)) +az(t —ty)t —t))(t —1,)
(cubic)
= Do (1) +az(t—ty)(t—1)(t—1,)
(10.20)

and in general the recursive, order update, form of a Newton polynomial
can be formulated as

PnO=py_(O+ay (@ —tg)t—t)—- ([t —ty_) (10.21)
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For a sequence of N+1 samples {x(f,), x(t;), ... x(ty)}, the polynomial
coefficients are obtained using the constraint py (¢;)=x(¢;) as follows: To
solve for the coefficient ag, equate the polynomial Equation (10.21) at =t
to x(tp):

P (tg)= po(ty)=x(ty)=qa, (10.22)

To solve for the coefficient aj, the first-order polynomial p () is evaluated
at r=1y:

p1(t)=x(t))=ay+a (t; —ty)=x(ty)+a,(t; —1() (10.23)
from which
t)—x(t
alzw (10.24)
11—y

Note that the coefficient a; is the slope of the line passing through the
points [x(ty), x(t;)]. To solve for the coefficient a, the second-order
polynomial p,(t) is evaluated at 1=t:

Pa(ty)=x(ty)=ag+a,(ty —ty)+a, (t, —19)(t, —1;) (10.25)

Substituting ag and a; from Equations (10.22) and (10.24) in Equation
(10.25) we obtain

0 = [x(r2 )—x(t)  x(1 )—X(to)] /(t2 — 1) (10.26)

=1 i)

Each term in the square brackets of Equation (10.26) is a slope term, and
the coefficient a, is the slope of the slope. To formulate a solution for the
higher-order coefficients, we need to introduce the concept of divided
differences. Each of the two ratios in the square brackets of Equation
(10.26) is a so-called “divided difference”. The divided difference between
two points #; and #;_; is defined as

) — x(t.
dy (i t; )=w (10.27)
i~ il



Polynomial Interpolation 309

The divided difference between two points may be interpreted as the
average difference or the slope of the line passing through the two points.
The second-order divided difference (i.e. the divided difference of the
divided difference) over three points #;_» , t;_; and ¢; is given by

dy(t;_y,t;)—d (5,1 1)

dy(tip,1;)= (10.28)
L =1,
and the third-order divided difference is
do(t:n,t:)—dy(t; 2,1
dS(ti—3’ti): 2(1—2 l) 2(1 3509 1) (1029)

li—li3

and so on. In general the jth order divided difference can be formulated in
terms of the divided differences of order j—1, in an order-update equation
given as

(g t)=d (8ot )

i-jli)=

d;(t

(10.30)

Note that a; :dl(t(),tl), a, :dz(to,tz) and aj :d3(t(),t3), and in
general the Newton polynomial coefficients are obtained from the divided
differences using the relation

A main advantage of the Newton polynomial is its computational
efficiency, in that a polynomial of order N-1 can be easily extended to a
higher-order polynomial of order N. This is a useful property in the
selection of the best polynomial order for a given set of data.

10.2.3 Hermite Polynomial Interpolation

Hermite polynomials are formulated to fit not only to the signal samples,
but also to the derivatives of the signal as well. Suppose the data consists of
N+1 samples and assume that all the derivatives up to the Mt order
derivative are available. Let the data set, i.e. the signal samples and the

derivatives, be denoted as [x(t;),x(t;),x"(t;),....x™)(t,),i =0,...,N1. There
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are altogether K=(N+1)(M+1) data points and a polynomial of order K—1
can be fitted to the data as

p(0) = ag+ayt+ayt> +ayt> +--+ag 1571 (10.32)

To obtain the polynomial coefficients, we substitute the given samples in
the polynomial and its M derivatives as

pt;) = x()
p'ey = X()

() x"(t;) (10.33)

pM@y = M@,  i=0],..N

In all, there are K=(M+1)(N+1) equations in (10.33), and these can be used
to calculate the coefficients of the polynomial Equation (10.32). In theory,
the constraint that the polynomial must also fit the derivatives should result
in a better interpolating polynomial that passes through the sampled points
and is also consistent with the known underlying dynamics (i.e. the
derivatives) of the curve. However, even for moderate values of N and M,
the size of Equation (10.33) becomes too large for most practical purposes.

10.2.4 Cubic Spline Interpolation

A polynomial interpolator of order N is constrained to pass through N+1
known samples, and can have N-1 maxima and minima. In general, the
interpolation error increases rapidly with the increasing polynomial order,
as the interpolating curve has to wiggle through the N+1 samples. When a
large number of samples are to be fitted with a smooth curve, it may be
better to divide the signal into a number of smaller intervals, and to fit a low
order interpolating polynomial to each small interval. Care must be taken to
ensure that the polynomial curves are continuous at the endpoints of each
interval. In cubic spline interpolation, a cubic polynomial is fitted to each
interval between two samples. A cubic polynomial has the form

p(t)=ay+a, t+a,t*+ayt° (10.34)
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Figure 10.6 lllustration of cubic spline interpolation.

A cubic polynomial has four coefficients, and needs four conditions for the
determination of a unique set of coefficients. For each interval, two
conditions are set by the samples at the endpoints of the interval. Two
further conditions are met by the constraints that the first derivatives of the
polynomial should be continuous across each of the two endpoints.
Consider an interval ¢; <t<t;,; of length T;=t;,—t; as shown in Figure 10.6.

Using a local coordinate 7=t-t; , the cubic polynomial becomes

3

p(T)=ay+a,T+a,T>+asT (10.35)
At =0, we obtain the first coefficient a( as
ag=p(T=0)=x(t;) (10.36)
The second derivative of p(7) is given by
p"(T)=2a, +6a;T (10.37)

Evaluation of the second derivative at 7=0 (i.e. t=t;) gives the coefficient a,
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_pla=0)_p!

10.38
> > ( )

a

Similarly, evaluating the second derivative at the point #;, (i.e. 7=T;) yields
the fourth coefficient

P;’+l _P;
ay=—— 10.39
3 6T ( )
Now to obtain the coefficient a;, we evaluate p(7) at 7=T;:
p( =Ty)=ag+a,T;+a,T;* +ay T =x(t;,) (10.40)

and substitute ag, a; and az from Equations (10.36), (10.38) and (10.39) in
(10.40) to obtain

x(t,1)—x(¢; T o+2p7
= (l+1) (l)_pl+1 plTi

10.41
1 T p ( )
The cubic polynomial can now be written as
t ) —x(t: 7 4+2n7 4 7 _p?
p(0)=x(t; )+ X(1i)=x(1;)  pin+2p T e+ Pig2  P=Pics 10 4
T, 6 6T,

To determine the coefficients of the polynomial in Equation (10.42), we
need the second derivatives and P,:l. These are obtained from the
constraint that the first derivatives of the curves at the endpoints of each
interval must be continuous. From Equation (10.42), the first derivatives of
p(7) evaluated at the endpoints #; and #;, | are

7 ’ Tvl ” ” 1
p; =p(T =0)=—g[pi+1 +2p; ]+;[x(t,-+1)—x(t,~)] (10.43)

1

, , T v oy 1
pin=p( =T,~)=g[2p,~+1 +p; ]+;[x(t,~+1)—x(t,-)] (10.44)

1
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Similarly, for the preceding interval, t,_;<t<t;, the first derivative of the
cubic spline curve evaluated at 7=¢; is given by

T' ” ” 1
A L2p/+pi b Lxta)=xtt;p)] (10.45)
i—1

pi=p'(t=t;)=

For continuity of the first derivative at #;, p; at the end of the interval (¢;_
,t;) must be equal to the p; at the start of the interval (¢; ,#;;1). Equating the

right-hand sides of Equations (10.43) and (10.45) and repeating this
exercise yields

Ty pia 2T +T)pi+T; pina =6|:T_ x(t;y) _[T_ + F)x(ti ) +Fx(ti+1 )]

i-1 i-1 i i

i=12...,N-1 (10.46)

In Equation (10.46), there are N—1 equations in N+1 unknowns p;. For a
unique solution we need to specify the second derivatives at the points 7
and zy. This can be done in two ways: (a) setting the second derivatives at
the endpoints 7y and 7y (i.e. p; and pY ), to zero, or (b) extrapolating the

derivatives from the inside data.

10.3 Model-Based Interpolation

The statistical signal processing approach to interpolation of a sequence of
lost samples is based on the utilisation of a predictive and/or a probabilistic
model of the signal. In this section, we study the maximum a posteriori
interpolation, an autoregressive model-based interpolation, a frequency—
time interpolation method, and interpolation through searching a signal
record for the best replacement.

Figures 10.7 and 10.8 illustrate the problem of interpolation of a sequence
of lost samples. It is assumed that we have a signal record of N samples,
and that within this record a segment of M samples, starting at time &,
xy={x(k), x(k+1), ..., x(k+M-1)} are missing. The objective is to make an
optimal estimate of the missing segment xy, using the remaining N—k
samples xi, and a model of the signal process. An N-sample signal vector
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estimator

Figure 10.7 lllustration of a model-based iterative signal interpolation system.

t———— X, Pty PE—— Xy —>

AL N 29 9 .
V V YRIRASE -

4——p Mmissing —
samples
P samples before P P samples after

Figure 10.8 A signal with M missing samples and N—M known samples. On each
side of the missing segment, P samples are used to interpolate the segment.

x, composed of M unknown samples and N-M known samples, can be
written as

X=| Xy |= 0 + | Xuk =KxKn+UxUk (1047)
xKI’l2 xK}’Zz 0

where the vector Xy, =[Xgn; ¥kn2]T is composed of the known samples, and
the vector xyy; 1s composed of the unknown samples, as illustrated in Figure

10.8. The matrices K and U in Equation (10.47) are rearrangement matrices
that assemble the vector x from xy,, and xy,.
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10.3.1 Maximum A Posteriori Interpolation

The posterior pdf of an unknown signal segment xyy; given a number of
neighbouring samples xg,, can be expressed using Bayes’ rule as

)= fx (Xkn-Xuk)
fx(xKn)
_ fX(x:KxKn+UxUk)

fX (xKn)

fx (eyx |xKn
(10.48)

In Equation (10.48), for a given sequence of samples xy,, fx(xg,) 1s a

constant. Therefore the estimate that maximises the posterior pdf, i.e. the
MAP estimate, is given by

2op” =argmax fy (Kxg, +Ux ) (10.49)

XUk

Example 10.2 MAP interpolation of a Gaussian signal. Assume that an
observation signal x=Kx, +Uxyy, from a zero-mean Gaussian process, is

composed of a sequence of M missing samples xy; and N-M known

neighbouring samples as in Equation (10.47). The pdf of the signal x is
given by

1 o
fx ()= — exp(——xTExix) (10.50)

N/2
(27m) 772 | 2
where 2, is the covariance matrix of the Gaussian vector process X.

Substitution of Equation (10.50) in Equation (10.48) yields the conditional
pdf of the unknown signal x;, given a number of samples xy:

1 1 «
fX (xKn) (27[)1\7/2|2xx|1/2

fx (xUk|xKn):

I (10.51)
exp[— E(KxKn +U xy, )TZ:;:x1 (KxKn +U xy, ))
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A x(1)
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Figure 10.9 lllustration of MAP interpolation of a segment of 20 samples.

The MAP signal estimate, obtained by setting the derivative of the log-
likelihood function In fy(xlxy,) of Equation (10.51) with respect to xy to

zero, is given by
_ Tyl Yy Tyl
xuy=—-U 2,U) U X _ Kxg, (10.52)

An example of MAP interpolation is shown in Figure 10.9.

10.3.2 Least Square Error Autoregressive Interpolation

In this section, we describe interpolation based on an autoregressive (AR)
model of the signal process. The term “autoregressive model” is an
alternative terminology for the linear predictive models considered in
Chapter 7. In this section, the terms “linear predictive model” and
“autoregressive model” are used interchangeably. The AR interpolation
algorithm is a two-stage process: in the first stage, the AR model
coefficients are estimated from the incomplete signal, and in the second
stage the estimates of the model coefficients are used to interpolate the
missing samples. For high-quality interpolation, the estimation algorithm
should utilise all the correlation structures of the signal process, including
periodic or pitch period structures. In Section 10.3.4, the AR interpolation
method is extended to include pitch—period correlations.
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10.3.3 Interpolation Based on a Short-Term Prediction Model

An autoregressive (AR), or linear predictive, signal x(m) is described as

P
x(m) =Zak x(m—k)+e(m) (10.53)
k=1

where x(m) is the AR signal, a; are the model coefficients and e(m) is a zero
mean excitation signal. The excitation may be a random signal, a quasi-
periodic impulse train, or a mixture of the two. The AR coefficients, ay,
model the correlation structure or equivalently the spectral patterns of the
signal.

Assume that we have a signal record of N samples and that within this
record a segment of M samples, starting from the sample k, x={x(k), ...,

x(k+M-1)} are missing. The objective is to estimate the missing samples
Xy, using the remaining N-k samples and an AR model of the signal.

Figure 10.8 illustrates the interpolation problem. For this signal record of N
samples, the AR equation (10.53) can be expanded to form the following
matrix equation:

e(pP) X(P) X(P—1) X(P-2) X(0)
e(P+1) X(P+1) X(P) X(P-1) x(1)
ek -1) Xk -1) X(k -2) X(k -3) X(k-P-1)
e(k) Xyg (k) X(k—-1) X(k-2) X(k - P)
a
ek +1) Xyg(k+1) Xy (k) X(k—1) e X(k-P1) !
a
ek +2) | xwk+2) Xk (k+1) Xy (k) e X(k=P+2) ?
. - . - . . . a,
e(k+M +P-2) X(k+M +P-2) X(k+M+P-3) X(k+M+P-2) ... Xyg(k+M-2) ’
a
ek+M+P-1) Xk+M+P-1) Xk+M+P-2) Xtk+M~+P-1) ... xUk(k+M—1) P
ek+M +P) X(k+M + P) X(k+M+P-1) X(k+M + P) X(k+M)
ek+M +P+1) X(k+M +P+1) X(k+M +P) Xtk+M+P+1) ... X(k+M +1)
e(N -1) X(N —1) X(N -2) X(N -3) X(N-P-1)
(10.54)

where the subscript Uk denotes the unknown samples. Equation (10.54) can
be rewritten in compact vector notation as
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e(xyy.a)=x—Xa (10.55)

where the error vector e(xyy, @) is expressed as a function of the unknown

samples and the unknown model coefficient vector. In this section, the
optimality criteriobbn for the estimation of the model coefficient vector a
and the missing samples xy; is the minimum mean square error given by

the inner vector product
eTe(xy.a)=x"x+ta" X" Xa-2a" X" x (10.56)

The squared error function in Equation (10.56) involves nonlinear unknown
terms of fourth order, aTXTXa, and cubic order, aTXTx. The least square
error formulation, obtained by differentiating eTe(x;, ,a), with respect to the

Vectors a or Xy, results in a set of nonlinear equations of cubic order whose

solution is non-trivial. A suboptimal, but practical and mathematically
tractable, approach is to solve for the missing samples and the unknown
model coefficients in two separate stages. This is an instance of the general
estimate-and-maximise (EM) algorithm, and is similar to the linear-
predictive model-based restoration considered in Section 6.7. In the first
stage of the solution, Equation (10.54) is linearised by either assuming that
the missing samples have zero values or discarding the set of equations in
(10.54), between the two dashed lines, that involve the unknown signal
samples. The linearised equations are used to solve for the AR model
coefficient vector a by forming the equation

ﬁ:(XIFEn XKn)_l(XIznxKn) (10'57)

where the vector is an estimate of the model coefficients, obtained from the
available signal samples.

The second stage of the solution involves the estimation of the
unknown signal samples xy;. For an AR model of order P, and an unknown
signal segment of length M, there are 2M+P nonlinear equations in (10.54)
that involve the unknown samples; these are
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e(k)
ek +1)
ek +2)

ek+M+P-2)

e(k+M+P-1

Xy (k)
Xy k +1)
Xy (k +2)

X(k+M+P-2)

Xtk+M+P-1)

X(k=1)
Xk ()
Xyk (k +1)

Xyk(k+ M+ P-3)

Xyk(k+ M+ P-2)

X(k=2)
X(k—1)

Xy (k)

Xyk(k+ M+ P—-4)

Xyk(k+ M+ P-3)
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X(k - p) q,
X(k=p+1) a,
X(k—p+2) a,

xukk+M=-2) || ap,

xgrk+M -1 )\ a,

(10.58)

The estimate of the predictor coefficient vector , obtained from the first
stage of the solution, is substituted in Equation (10.58) so that the only
remaining unknowns in (10.58) are the missing signal samples. Equation

(10.58) may be partitioned

following form:

e(k) 1 0
e(k+1) -a 1
e(k+2) -a, —aq
e(k+3) —a; —a,
e(k+4) 4 T4
ek+P-) [ |-a, -ap,
e(k+ P) 0 —a,
e(k+P+1) 0 0

e(k+M +P—-2) 0 0
e(k+M+P-1) 0 0
—ap —dp, —ap, !
0 —ap T dp, )
0 0 —ap —-a,
0o 0 0 —a,
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

S OO

[=XER

0 0
0 0
1 0
-q 1
—a, -q
Ap_y ap_s
Ap_y Ap_p
—ap Apy
0 0
0 0
0
0
0
0
0
1
—
—a,
—a,
—dp,

S OO

—_o0 O

-a,
—a,

~Aapy

and rearranged in vector notation in the

0

0

8 Xuk 6

0 Xy k+1)

0 Xy (k +2) +

0 Xyk (k +3)

0

: Xy (k+M = 1)

ap_

—a,

0 0 X(k - P)
0 0 Xk - P+1)
0 0 Xk =P +2)
(‘) 0 Xk - 1)
0 0 0
0 0 :
0 0 X(k + M)
1 0 x(k +M+1)

—a, 0 x(k +ME2)
: 0 :

—a, ., — x(k+m+pP-1
(10.59)

In Equation (10.59), the unknown and known samples are rearranged and
grouped into two separate vectors. In a compact vector—matrix notation,
Equation (10.58) can be written in the form

e=Axy+Ayxg,

(10.60)
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where e is the error vector, A; is the first coefficient matrix, xyy, is the
unknown signal vector being estimated, A, is the second coefficient matrix
and the vector xy,, consists of the known samples in the signal matrix and
vectors of Equation (10.58). The total squared error is given by

T
e'e=(Ajxy,+ Arx,) (Ajxyy+Arxgy) (10.61)

The least square AR (LSAR) interpolation is obtained by minimisation of
the squared error function with respect to the unknown signal samples xy :

dele

XUk

=2A[ A xy, +24 Ay x, =0 (10.62)

From Equation (10.62) we have
~ LSAR T« Y(,T
FEAR—_(aT A, ) (AT A, )y, (10.63)

The solution in Equation (10.62) gives the J?[LJiAR vector which is the least

square error estimate of the unknown data vector.

10.3.4 Interpolation Based on Long-Term and Short-term
Correlations

For the best results, a model-based interpolation algorithm should utilise all
the correlation structures of the signal process, including any periodic
structures. For example, the main correlation structures in a voiced speech
signal are the short-term correlation due to the resonance of the vocal tract
and the long-term correlation due to the quasi-periodic excitation pulses of
the glottal cords. For voiced speech, interpolation based on the short-term
correlation does not perform well if the missing samples coincide with an
underlying quasi-periodic excitation pulse. In this section, the AR
interpolation is extended to include both long-term and short-term
correlations. For most audio signals, the short-term correlation of each
sample with the immediately preceding samples decays exponentially with
time, and can be usually modelled with an AR model of order 10-20. In
order to include the pitch periodicities in the AR model of Equation (10.53),
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\/\\/d\f;

P past samples

20+1 samples a
pitch period away

Figure 10.10 A quasiperiodic waveform. The sample marked “ ? ” is predicted using
P immediate past samples and 2Q+1 samples a pitch period away.

the model order must be greater than the pitch period. For speech signals,
the pitch period is normally in the range 4-20 milliseconds, equivalent to
40-200 samples at a sampling rate of 10 kHz. Implementation of an AR
model of this order is not practical owing to stability problems and
computational complexity.

A more practical AR model that includes the effects of the long-term
correlations is illustrated in Figure 10.10. This modified AR model may be
expressed by the following equation:

P 0
x(m)=Y apx(m—k) + Y, ppx(m=T —k)+e(m) (10.64)
k=1 k=-Q

The AR model of Equation (10.64) is composed of a short-term predictor
2ay, x(m-k) that models the contribution of the P immediate past samples,

and a long-term predictor Xp; x(m—T-k) that models the contribution of
20+1 samples a pitch period away. The parameter 7 is the pitch period; it
can be estimated from the autocorrelation function of x(m) as the time
difference between the peak of the autocorrelation, which is at the
correlation lag zero, and the second largest peak, which should happen a
pitch period away from the lag zero.

The AR model of Equation (10.64) is specified by the parameter vector
c=lay, ..., ap, P - pQ] and the pitch period 7. Note that in Figure 10.10
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- Xy — X ——— Xy ——=

M missing
- +— samples - -
20+1 P samples P samples 20+1
samples before after samples

Figure 10.11 A signal with M missing samples. P immediate samples each side of
the gap and 2Q+1 samples a pitch period away are used for interpolation.

the sample marked “?” coincides with the onset of an excitation pulse. This
sample is not well predictable from the P past samples, because they do not
include a pulse event. The sample is more predictable from the 2Q+1
samples a pitch period away, since they include the effects of a similar
excitation pulse. The predictor coefficients are estimated (see Chapter 7)
using the so-called normal equations:

c=R.'r_ (10.65)

where Ry, is the autocorrelation matrix of signal x and ryy is the correlation
vector. In expanded form, Equation (10.65) can be written as

a r(0) r(1) r(p-1) r(r+0-1) (T + Q) oorT-0-1)Y r(1)
a, r(1) r(0) r(p-2) r(rT+0-2) r(r+o-1 ... r(T+0-2) r(2)
as r(2) r(1) r(p-3) r(T +0-3) r(r+0-2) ... r(T+Q-3) r(3)
ap = r(p-1) r(p—=2) ... r(0) r(r+0-pP) r(T+Q-P+1) ... r(T+Q0-P) r(pr)
P r(r+o-1) r(rT+0-2) ... rT+Q-P) r(0) r(1) r(20) (T + Q)
P-0+1 r(r+Q) r(r+o-1) ... rT+Q-P+1) r(1) r(0) . r(20-1) r(T+0-1)
Pio r(r-0-1) r(t-0-2) ... r(T-¢-pP) r(20) r(20-1) r(0) (T -0)

(10.66)
The modified AR model can be used for interpolation in the same way as
the conventional AR model described in the previous section. Again, it is
assumed that within a data window of N speech samples, a segment of M
samples commencing from the sample point k, xy={x(k), x(k+1), ...,
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x(k+M-1)} is missing. Figure 10.11 illustrates the interpolation problem.
The missing samples are estimated using P samples in the immediate
vicinity and 2Q+1 samples a pitch period away on each side of the missing
signal. For the signal record of N samples, the modified AR equation
(10.64) can be written in matrix form as

el +0) X(T + Q) XT+0-1 XT+0-P) X(20) X(0)
erT+Q0+1) XT+Q+1) X(T + Q) e XT+Q-P+1D) X220 +1) x(1)
ek —1) X(k—1) X(k —2) Xtk—-P-1) Xtk -T+Q-1) Xk-T-0-1 a;
e || Xk CMk-n e xk-P) xe-T+Q) xk-T-0 a
ek +1) Xyg (k+1) Xyk (k) Xk =P +1) Xk-T+Q0+1) Xk-T-0+1) az
ek +2) _ Xyg (k+2) Xy (k+1) Xk —P+2) Xk-T+Q0+2) Xk-T-0+2) :
. - . - . . . . aP
ek +M +P-2) X(k+M + P -2) X(k+M+P=3) -+ Xygk+M-2) X(k+M+P-T+Q-2) == Xk+M+P-T-0-2) || p_o
ek+M +P—1) X(k+M +P—1) Xtk +M +P=2) - Xygtk+M—1) Xk+M+P-T+Q-1) -+ Xk+M+P-T-0Q-1) :
Cek M) Xk M Py Xk+M+P-1) - Xk+M)  Xk+M+P-T+0) - Xhk+M+P-T-0) |(Pso
ek+M+P+1) Xtk +M +P+1) X(k+M + P) Xk +M +1) Xk+M+P-T+Q+1) -+ Xk+M+P-T-0+1)
eN - 1) X(N = 1) X(N -2) e X(N-P-1) X(N-T+Q-1) X(N-T-0Q-1)
(10.67)

where the subscript Uk denotes the unknown samples. In compact matrix
notation, this set of equation can be written in the form

e(xy .c)=x+Xc (10.68)
As in Section 10.3.2, the interpolation problem is solved in two stages:

(a) In the first stage, the known samples on both sides of the missing
signal are used to estimate the AR coefficient vector c.

(b) In the second stage, the AR coefficient estimates are substituted in
Equation (10.68) so that the only unknowns are the data samples.

The solution follows the same steps as those described in Section 10.3.2.

10.3.5 LSAR Interpolation Error

In this section, we discuss the effects of the signal characteristics, the model
parameters and the number of unknown samples on the interpolation error.
The interpolation error v(m), defined as the difference between the original
sample x(m) and the interpolated sample X(m), is given by
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v(m) = x(m) — x(m) (10.69)

A common measure of signal distortion is the mean square error distance

defined as

M-1
D(c,M)zﬁZ{ Y [x(k +m)—-5(k + m)]z} (10.70)

m=0

where £ is the beginning of an M-samples long segment of missing signal,
and ‘E [.] is the expectation operator. In Equation (10.70), the average
distortion D is expressed as a function of the number of the unknown
samples M, and also the model coefficient vector c¢. In general, the quality
of interpolation depends on the following factors:

(a) The signal correlation structure. For deterministic signals such as
sine waves, the theoretical interpolation error is zero. However
information-bearing signals have a degree of randomness that makes
perfect interpolation with zero error an impossible objective.

(b) The length of the missing segment. The amount of information lost,
and hence the interpolation error, increase with the number of
missing samples. Within a sequence of missing samples the error is
usually largest for the samples in the middle of the gap. The
interpolation Equation (10.63) becomes increasingly ill-conditioned
as the length of the missing samples increases.

(c) The nature of the excitation underlying the missing samples. The
LSAR interpolation cannot account for any random excitation
underlying the missing samples. In particular, the interpolation
quality suffers when the missing samples coincide with the onset of
an excitation pulse. In general, the least square error criterion causes
the interpolator to underestimate the energy of the underlying
excitation signal. The inclusion of long-term prediction and the use
of quasi-periodic structure of signals improves the ability of the
interpolator to restore the missing samples.

(d) AR model order and the method used for estimation of the AR
coefficients. The interpolation error depends on the AR model order.
Usually a model order of 2-3 times the length of missing data
sequence achieves good result.



Model-Based Interpolation

325

2500

2000

1500

1000 -

500 g

-500

-1000

-1500

-2000 [

-2500
0

2500

2000

1500

1000

500

0 H

-500

-1000

-1500

-2000

2500 : . : . :
0 50 100 150 200 250 300 350 400

(b)

Figure 10.12 (a) A section of speech
showing interpolation of 60 samples
starting from the sample point 100 (b)
Interpolation using short and long-term
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shown by the light shaded line.
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showing interpolation of 50 samples
starting from the sample point 175 (b)
Interpolation using short and long-term
correlations. Interpolated samples are
shown by the light shaded line.

The interpolation error also depends on how well the AR parameters
can be estimated from the incomplete data. In Equation (10.54), in the first
stage of the solution, where the AR coefficients are estimated, two different
approaches may be employed to linearise the system of equations. In the
first approach all equations, between the dashed lines, that involve
nonlinear terms are discarded. This approach has the advantage that no
assumption is made about the missing samples. In fact, from a signal-
ensemble point of view, the effect of discarding some equations is
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equivalent to that of having a smaller signal record. In the second method,
starting from an initial estimate of the unknown vector (such as xy;=0),

Equation (10.54) is solved to obtain the AR parameters. The AR
coefficients are then used in the second stage of the algorithm to estimate
the unknown samples. These estimates may be improved in further
iterations of the algorithm. The algorithm usually converges after one or
two iterations.

Figures 10.12 and 10.13 show the results of application of the least
square error AR interpolation method to speech signals. The interpolated
speech segments were chosen to coincide with the onset of an excitation
pulse. In these experimental cases the original signals are available for
comparison. Each signal was interpolated by the AR model of Equation
(10.53) and also by the extended AR model of Equation (10.64). The length
of the conventional linear predictor model was set to 20. The modified
linear AR model of Equation (10.64) has a prediction order of (20,7); that
is, the short-term predictor has 20 coefficients and the long-term predictor
has 7 coefficients. The figures clearly demonstrate that the modified AR
model that includes the long-term as well as the short-term correlation
structures outperforms the conventional AR model.

10.3.6 Interpolation in Frequency-Time Domain

Time-domain, AR model-based interpolation methods are effective for the
interpolation of a relatively short length of samples (say less than 100
samples at a 20 kHz sampling rate), but suffer severe performance
degradations when used for interpolation of large sequence of samples. This
is partly due to the numerical problems associated with the inversion of a
large matrix, involved in the time-domain interpolation of a large number of
samples, Equation (10.58).

Spectral-time representation provides a useful form for the interpolation of
a large gap of missing samples. For example, through discrete Fourier
transformation (DFT) and spectral-time representation of a signal, the
problem of interpolation of a gap of N samples in the time domain can be
converted into the problem of interpolation of a gap of one sample, along
the time, in each of N discrete frequency bins, as explained next.

Spectral-Time Representation with STFT

A relatively simple and practical method for spectral-time representation of
a signal is the short-time Fourier transform (STFT) method. To construct a
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Figure 10.15 Spectral-time representation of a signal with a missing gap.

two-dimensional STFT from a one-dimensional function of time x(m), the
input signal is segmented into overlapping blocks of N samples, as
illustrated in Figure 10.14. Each block is windowed, prior to discrete
Fourier transformation, to reduce the spectral leakage due to the effects of
discontinuities at the edges of the block. The frequency spectrum of the mth
signal block is given by the discrete Fourier transform as

N-1 _jzlik
X (k,m)=Y wi)x(m(N-D)+i)e "N | k=0,.,N-1 (10.71)
i=0

where X(k,m) is a spectral-time representation with time index m and
frequency index k, N is the number of samples in each block, and D is the
block overlap. In STFT, it is assumed that the signal frequency composition
is time-invariant within the duration of each block, but it may vary across
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Figure 10.16 Configuration of a digital oscillator.

the blocks. In general, the kth spectral component of a signal has a time-
varying character, i.e. it is “born”, evolves for some time, disappears, and
then reappears with a different intensity and a different characteristics.
Figure 10.15 illustrates a spectralhtime signal with a missing block of
samples. The aim of interpolation is to fill in the signal gap such that, at the
beginning and at the end of the gap, the continuity of both the magnitude
and the phase of each frequency component of the signal is maintained. For
most time-varying signals (such as speech), a low-order polynomial
interpolator of the magnitude and the phase of the DFT components of the
signal, making use of the few adjacent blocks on either side of the gap,
would produce satisfactory results.

10.3.7 Interpolation Using Adaptive Code Books

In the LSAR interpolation method, described in Section 10.3.2, the signals
are modelled as the output of an AR model excited by a random input.
Given enough samples, the AR coefficients can be estimated with
reasonable accuracy. However, the instantaneous values of the random
excitation during the periods when the signal is missing cannot be
recovered. This leads to a consistent underestimation of the amplitude and
the energy of the interpolated samples. One solution to this problem is to
use a zero-input signal model. Zero-input models are feedback oscillator
systems that produce an output signal without requiring an input.

The general form of the equation describing a digital nonlinear
oscillator can be expressed as

x(m)=g ; (x(m=1),x(m=2),..., x(m—P)) (10.72)

The mapping function g«-) may be a parametric or a non-parametric
mapping. The model in Equation (10.72) can be considered as a nonlinear
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predictor, and the subscript f denotes forward prediction based on the past
samples.

A parametric model of a nonlinear oscillator can be formulated using a
Volterra filter model. However, in this section, we consider a non-
parametric method for its ease of formulation and stable characteristics.
Kubin and Kleijin (1994) have described a non-parametric oscillator based
on a codebook model of the signal process.

In this method, each entry in the code book has P+1 samples where the
(P+1)th sample is intended as an output. Given P input samples x=[x(m—1),
..., X(m—P)], the codebook output is the (P+1)th sample of the vector in the
codebook whose first P samples have a minimum distance from the input
signal x. For a signal record of length N samples, a codebook of size N-P
vectors can be constructed by dividing the signal into overlapping segments
of P+1 samples with the successive segments having an overlap of P
samples. Similarly a backward oscillator can be expressed as

x, (m)=g, (x(m+1),x(m+2), - ,x(m+ P)) (10.73)

As in the case of a forward oscillator, the backward oscillator can be
designed using a non-parametric method based on an adaptive codebook of
the signal process. In this case each entry in the code book has P+1 samples
where the first sample is intended as an output sample. Given P input
samples x=[x(m), ..., x(m+P-1)] the codebook output is the first sample of
the code book vector whose next P samples have a minimum distance from
the input signal x.

For interpolation of M missing samples, the ouputs of the forward and
backward nonlinear oscillators may be combined as

M—-1-
fc(k+m):($)ﬁf (k+m)+(Mm_1 }?,, (k+m)  (10.74)

M -1

where it is assumed that the missing samples start at k.

10.3.8 Interpolation Through Signal Substitution

Audio signals often have a time-varying but quasi-periodic repetitive
structure. Therefore most acoustic events in a signal record reoccur with
some variations. This observation forms the basis for interpolation through
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pattern matching, where a missing segment of a signal is substituted by the
best match from a signal record. Consider a relatively long signal record of
N samples, with a gap of M missing samples at its centre. A section of the
signal with the gap in the middle can be used to search for the best-match
segment in the record. The missing samples are then substituted by the
corresponding section of the best-match signal. This interpolation method is
particularly useful when the length of the missing signal segment is large.
For a given class of signals, we may be able to construct a library of
patterns for use in waveform substitution, Bogner (1989).

10.4 Summary

Interpolators, in their various forms, are used in most signal processing
applications. The obvious example is the estimation of a sequence of
missing samples. However, the use of an interpolator covers a much wider
range of applications, from low-bit-rate speech coding to pattern
recognition and decision making systems. We started this chapter with a
study of the ideal interpolation of a band-limited signal, and its applications
in digital-to-analog conversion and in multirate signal processing. In this
chapter, various interpolation methods were categorised and studied in two
different sections: one on polynomial interpolation, which is the more
traditional numerical computing approach, and the other on statistical
interpolation, which is the digital signal processing approach.

The general form of the polynomial interpolator was formulated and its
special forms, Lagrange, Newton, Hermite and cubic spline interpolators
were considered. The polynomial methods are not equipped to make
optimal use of the predictive and statistical structures of the signal, and are
impractical for interpolation of a relatively large number of samples. A
number of useful statistical interpolators were studied. These include
maximum a posteriori interpolation, least square error AR interpolation,
frequency-time interpolation, and an adaptive code book interpolator.
Model-based interpolation method based on an autoregressive model is
satisfactory for most audio applications so long as the length of the missing
samples is not to large. For interpolation of a relatively large number of
samples the time—frequency interpolation method and the adaptive code
book method are more suitable.
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SPECTRAL SUBTRACTION

11.1 Spectral Subtraction

11.2 Processing Distortions

11.3 Non-Linear Spectral Subtraction

11.4 Implementation of Spectral Subtraction
11.5 Summary

pectral subtraction is a method for restoration of the power spectrum

or the magnitude spectrum of a signal observed in additive noise,

through subtraction of an estimate of the average noise spectrum from
the noisy signal spectrum. The noise spectrum is usually estimated, and
updated, from the periods when the signal is absent and only the noise is
present. The assumption is that the noise is a stationary or a slowly varying
process, and that the noise spectrum does not change significantly in-
between the update periods. For restoration of time-domain signals, an
estimate of the instantaneous magnitude spectrum is combined with the
phase of the noisy signal, and then transformed via an inverse discrete
Fourier transform to the time domain. In terms of computational
complexity, spectral subtraction is relatively inexpensive. However, owing
to random variations of noise, spectral subtraction can result in negative
estimates of the short-time magnitude or power spectrum. The magnitude
and power spectrum are non-negative variables, and any negative estimates
of these variables should be mapped into non-negative values. This non-
linear rectification process distorts the distribution of the restored signal.
The processing distortion becomes more noticeable as the signal-to-noise
ratio decreases. In this chapter, we study spectral subtraction, and the
different methods of reducing and removing the processing distortions.
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11.1 Spectral Subtraction

In applications where, in addition to the noisy signal, the noise is accessible
on a separate channel, it may be possible to retrieve the signal by subtracting
an estimate of the noise from the noisy signal. For example, the adaptive
noise canceller of Section 1.3.1 takes as the inputs the noise and the noisy
signal, and outputs an estimate of the clean signal. However, in many
applications, such as at the receiver of a noisy communication channel, the
only signal that is available is the noisy signal. In these situations, it is not
possible to cancel out the random noise, but it may be possible to reduce the
average effects of the noise on the signal spectrum. The effect of additive
noise on the magnitude spectrum of a signal is to increase the mean and the
variance of the spectrum as illustrated in Figure 11.1. The increase in the
variance of the signal spectrum results from the random fluctuations of the
noise, and cannot be cancelled out. The increase in the mean of the signal
spectrum can be removed by subtraction of an estimate of the mean of the
noise spectrum from the noisy signal spectrum. The noisy signal model in
the time domain is given by

y(m)=x(m)+n(m) (11.1)
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Figure 11.1 lllustrations of the effect of noise on a signal in the time and the
frequency domains.
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where y(m), x(m) and n(m) are the signal, the additive noise and the noisy
signal respectively, and m is the discrete time index. In the frequency
domain, the noisy signal model of Equation (11.1) is expressed as

Y(f)=X(f)+N(f) (11.2)

where Y(f), X(f) and N(f) are the Fourier transforms of the noisy signal y(m),
the original signal x(m) and the noise n(m) respectively, and f is the
frequency variable. In spectral subtraction, the incoming signal x(m) is
buffered and divided into segments of N samples length. Each segment is
windowed, using a Hanning or a Hamming window, and then transformed
via discrete Fourier transform (DFT) to N spectral samples. The windows
alleviate the effects of the discontinuities at the endpoints of each segment.
The windowed signal is given by

yw(m) = wim)y(m)
= w(m)[x(m)+ n(m)] (11.3)

= x,,(m)+n,,(m)
The windowing operation can be expressed in the frequency domain as

Y, (H=W()*Y(f) (11.4)
=X, (/))+N,,(f) '

where the operator * denotes convolution. Throughout this chapter, it is
assumed that the signals are windowed, and hence for simplicity we drop
the use of the subscript w for windowed signals.

Figure 11.2 illustrates a block diagram configuration of the spectral
subtraction method. A more detailed implementation is described in Section
11.4. The equation describing spectral subtraction may be expressed as

K| AP -alN (11.5)

where | X (f) ” is an estimate of the original signal spectrum! X (f) > and

IN(Cf) P is the time-averaged noise spectra. It is assumed that the noise is a

wide-sense stationary random process. For magnitude spectral subtraction,
the exponent h=1, and for power spectral subtraction, b=2. The parameter o
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Figure 11.2 A block diagram illustration of spectral subtraction.

in Equation (11.5) controls the amount of noise subtracted from the noisy
signal. For full noise subtraction, =1 and for over-subtraction o>1. The
time-averaged noise spectrum is obtained from the periods when the signal
is absent and only the noise is present as

- K-1
IN(f)Ib=%z IN; (f)1° (11.6)
i=0

In Equation (11.6), IN{(f)l is the spectrum of the ith noise frame, and it is
assumed that there are K frames in a noise-only period, where K is a
variable. Alternatively, the averaged noise spectrum can be obtained as the
output of a first order digital low-pass filter as

IN; ()P =pIN (HIP+=p)IN; ()1 (11.7)

where the low-pass filter coefficient p is typically set between 0.85 and
0.99. For restoration of a time-domain signal, the magnitude spectrum

estimate | X ( f) | is combined with the phase of the noisy signal, and then

transformed into the time domain via the inverse discrete Fourier transform
as

N-=1 21

: NG

Rmy= Y 1X(k)le’ Ve (11.8)
k=0

where 6y(k) is the phase of the noisy signal frequency Y(k). The signal
restoration equation (11.8) is based on the assumption that the audible noise
is mainly due to the distortion of the magnitude spectrum, and that the phase
distortion is largely inaudible. Evaluations of the perceptual effects of
simulated phase distortions validate this assumption.
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Owing to the variations of the noise spectrum, spectral subtraction may
result in negative estimates of the power or the magnitude spectrum. This
outcome is more probable as the signal-to-noise ratio (SNR) decreases. To
avoid negative magnitude estimates the spectral subtraction output is post-
processed using a mapping function 77-] of the form

1 X (f)I if1X(HI>BIY ()]

(11.9)
il Y(f)I] otherwise

T[I)?(f)l]={

For example, we may chose a rule such that if the estimate
1 X(f)1>0.011Y(f)] (in magnitude spectrum 0.01 is equivalent to —40 dB)
then I)A(( f) should be set to some function of the noisy signal fn[Y(f)]. In its

simplest form, fn[Y(f)]=noise floor, where the noise floor is a positive
constant. An alternative choice is fn[IY(H)]=8 Y(f)l. In this case,

X ()1 i1 X(F)ISBIY ()]

11.10
BIY(f)l  otherwise ( )

T[IX(f)I]={

Spectral subtraction may be implemented in the power or the magnitude
spectral domains. The two methods are similar, although theoretically they
result in somewhat different expected performance.

11.1.1 Power Spectrum Subtraction

The power spectrum subtraction, or squared-magnitude spectrum
subtraction, is defined by the following equation:

I X(fF)I2=1Y ()12 =IN(f)I? (11.11)

where it is assumed that ¢, the subtraction factor in Equation (11.5), is
unity. We denote the power spectrum by Z[| X (f)1?], the time-averaged

power spectrum by |X (f )|2 and the instantaneous power spectrum by

|X(f )|2. By expanding the instantaneous power spectrum of the noisy
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2 , and grouping the appropriate terms, Equation (11.11) may be

signal |Y(f)
rewritten as

X (P X ()2 +(|N(f>|2 CINHP? )+ X (HINHAXFINT ()

Cross products

Noise variations

(11.12)

Taking the expectations of both sides of Equation (11.12), and assuming
that the signal and the noise are uncorrelated ergodic processes, we have

[ X (f)1P1=E[ X () 1?] (11.13)

From Equation (11.13), the average of the estimate of the instantaneous
power spectrum converges to the power spectrum of the noise-free signal.
However, it must be noted that for non-stationary signals, such as speech,
the objective is to recover the instantaneous or the short-time spectrum, and
only a relatively small amount of averaging can be applied. Too much
averaging will smear and obscure the temporal evolution of the spectral
events. Note that in deriving Equation (11.13), we have not considered non-
linear rectification of the negative estimates of the squared magnitude
spectrum.

11.1.2 Magnitude Spectrum Subtraction

The magnitude spectrum subtraction is defined as

1 X()I=IY(F)I=IN(F)I (11.14)

where |N (f )| is the time-averaged magnitude spectrum of the noise.

Taking the expectation of Equation (11.14), we have

E0 X (HN=E0Y(FIN-EIN(f)I]
=E[l X (f)+N(HOHI-EIN()I (11.15)
~E[1 X ()]
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For signal restoration the magnitude estimate is combined with the phase of
the noisy signal and then transformed into the time domain using Equation
(11.8).

11.1.3 Spectral Subtraction Filter: Relation to Wiener Filters

The spectral subtraction equation can be expressed as the product of the
noisy signal spectrum and the frequency response of a spectral subtraction
filter as

| X(FHP=Y(FIP=IN(F)I?

(11.16)
=H()IY(f)I?

where H(f), the frequency response of the spectral subtraction filter, is
defined as

IN(f)I?
H(f)=1—%
(f)— (11.17)
Y (HPAN)P
Y ()12

The spectral subtraction filter H(f) is a zero-phase filter, with its magnitude
response in the range 0>H(f)=1. The filter acts as a SNR-dependent

attenuator. The attenuation at each frequency increases with the decreasing
SNR, and conversely decreases with the increasing SNR.

The least mean square error linear filter for noise removal is the Wiener
filter covered in chapter 6. Implementation of a Wiener filter requires the
power spectra (or equivalently the correlation functions) of the signal and
the noise process, as discussed in Chapter 6. Spectral subtraction is used as a
substitute for the Wiener filter when the signal power spectrum is not
available. In this section, we discuss the close relation between the Wiener
filter and spectral subtraction. For restoration of a signal observed in
uncorrelated additive noise, the equation describing the frequency response
of the Wiener filter was derived in Chapter 6 as

2 2
Wiy H DO I=EING) 2 (iL1s)

ENY(f)1%]
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A comparison of W(f) and H(f), from Equations (11.18) and (11.17), shows
that the Wiener filter is based on the ensemble-average spectra of the signal
and the noise, whereas the spectral subtraction filter uses the instantaneous
spectra of the noisy signal and the time-averaged spectra of the noise. In
spectral subtraction, we only have access to a single realisation of the
process. However, assuming that the signal and noise are wide-sense
stationary ergodic processes, we may replace the instantaneous noisy signal

spectrum | Y (f) |2 in the spectral subtraction equation (11.18) with the time-

averaged spectrum | Y(f)|% , to obtain

2 2
H(f):”/(f)li(f)I (11.19)

1Y (f)1?

For an ergodic process, as the length of the time over which the signals are
averaged increases, the time-averaged spectrum approaches the ensemble-
averaged spectrum, and in the limit, the spectral subtraction filter of
Equation (11.19) approaches the Wiener filter equation (11.18). In practice,
many signals, such as speech and music, are non-stationary, and only a
limited degree of beneficial time-averaging of the spectral parameters can be
expected.

11.2 Processing Distortions

The main problem in spectral subtraction is the non-linear processing
distortions caused by the random variations of the noise spectrum. From
Equation (11.12) and the constraint that the magnitude spectrum must have
a non-negative value, we may identify three sources of distortions of the
instantaneous estimate of the magnitude or power spectrum as:

(a) the variations of the instantaneous noise power spectrum about the
mean;

(b) the signal and noise cross-product terms;

(c) the non-linear mapping of the spectral estimates that fall below a
threshold.

The same sources of distortions appear in both the magnitude and the power
spectrum subtraction methods. Of the three sources of distortions listed



Processing Distortions 341
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Figure 11.3 lllustration of distortions that may result from spectral subtraction.

f

above, the dominant distortion is often due to the non-linear mapping of the
negative, or small-valued, spectral estimates. This distortion produces a
metallic sounding noise, known as “musical tone noise” due to their narrow-
band spectrum and the tin-like sound. The success of spectral subtraction
depends on the ability of the algorithm to reduce the noise variations and to
remove the processing distortions. In its worst, and not uncommon, case the
residual noise can have the following two forms:

(a) a sharp trough or peak in the signal spectra;
(b) isolated narrow bands of frequencies.

In the vicinity of a high amplitude signal frequency, the noise-induced
trough or peak is often masked, and made inaudible, by the high signal
energy. The main cause of audible degradations is the isolated frequency
components also known as musical tones or musical noise illustrated in
Figure 11.3. The musical noise is characterised as short-lived narrow bands
of frequencies surrounded by relatively low-level frequency components. In
audio signal restoration, the distortion caused by spectral subtraction can
result in a significant deterioration of the signal quality. This is particularly
true at low signal-to-noise ratios. The effects of a bad implementation of
subtraction algorithm can result in a signal that is of a lower perceived
quality, and lower information content, than the original noisy signal.
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Figure 11.4 lllustration of the distorting effect of spectral subtraction on the space of
the magnitude spectrum of a signal.

11.2.1 Effect of Spectral Subtraction on Signal Distribution

Figure 11.4 is an illustration of the distorting effect of spectral subtraction
on the distribution of the magnitude spectrum of a signal. In this figure, we
have considered the simple case where the spectrum of a signal is divided
into two parts; a low-frequency band f; and a high-frequency band f;. Each
point in Figure 11.4 is a plot of the high-frequency spectrum versus the low-
frequency spectrum, in a two-dimensional signal space. Figure 11.4(a)
shows an assumed distribution of the spectral samples of a signal in the two-
dimensional magnitude—frequency space. The effect of the random noise,
shown in Figure 11.4(b), is an increase in the mean and the variance of the
spectrum, by an amount that depends on the mean and the variance of the
magnitude spectrum of the noise. The increase in the variance constitutes an
irrevocable distortion. The increase in the mean of the magnitude spectrum
can be removed through spectral subtraction. Figure 11.4(c) illustrates the
distorting effect of spectral subtraction on the distribution of the signal
spectrum. As shown, owing to the noise-induced increase in the variance of
the signal spectrum, after subtraction of the average noise spectrum, a
proportion of the signal population, particularly those with a low SNR,
become negative and have to be mapped to non-negative values. As shown
this process distorts the distribution of the low-SNR part of the signal
spectrum.
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11.2.2 Reducing the Noise Variance

The distortions that result from spectral subtraction are due to the variations
of the noise spectrum. In Section 9.2 we considered the methods of reducing
the variance of the estimate of a power spectrum. For a white noise process
with variance G,%, it can be shown that the variance of the DFT spectrum of

the noise N(f) is given by
Var[I N(f) 1?1 =Pgy (f)=0 (11.20)

and the variance of the running average of K independent spectral
components 18

1 k=1 21, 1
Var{fgwi(f)l ]~EPNN(f)~Ean (11.21)

From Equation (11.21), the noise variations can be reduced by time-
averaging of the noisy signal frequency components. The fundamental
limitation is that the averaging process, in addition to reducing the noise
variance, also has the undesirable effect of smearing and blurring the time
variations of the signal spectrum. Therefore an averaging process should
reflect a compromise between the conflicting requirements of reducing the
noise variance and of retaining the time resolution of the non-stationary
spectral events. This is important because time resolution plays an important
part in both the quality and the intelligibility of audio signals.

In spectral subtraction, the noisy signal y(m) is segmented into blocks
of N samples. Each signal block is then transformed via a DFT into a block
of N spectral samples Y(f). Successive blocks of spectral samples form a
two-dimensional frequency—time matrix denoted by Y(f,7) where the variable
t is the segment index and denotes the time dimension. The signal Y(f,7) can
be considered as a band-pass channel f that contains a time-varying signal
X(f,t) plus a random noise component N(f,f). One method for reducing the
noise variations is to low-pass filter the magnitude spectrum at each
frequency. A simple recursive first-order digital low-pass filter is given by

1Y p (f ) =pl Y p (fot=D) 1+ A=p)I Y (f,0)] (11.22)

where the subscript LP denotes the output of the low-pass filter, and the
smoothing coefficient p controls the bandwidth and the time constant of the
low-pass filter.
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Figure 11.5 lllustration of a method for identification and filtering of “musical noise”.

11.2.3 Filtering Out the Processing Distortions

Audio signals, such as speech and music, are composed of sequences of
non-stationary acoustic events. The acoustic events are “born”, have a
varying lifetime, disappear, and then reappear with a different intensity and
spectral composition. The time—varying nature of audio signals plays an
important role in conveying information, sensation and quality. The musical
tone noise, introduced as an undesirable by-product of spectral subtraction,
is also time-varying. However, there are significant differences between the
characteristics of most audio signals and so-called musical noise. The
characteristic differences may be used to identify and remove some of the
more annoying distortions. Identification of musical noise may be achieved
by examining the variations of the signal in the time and frequency domains.
The main characteristics of musical noise are that it tends to be relatively
short-lived random isolated bursts of narrow band signals, with relatively
small amplitudes.

Using a DFT block size of 128 samples, at a sampling rate of 20 kHz,
experiments indicate that the great majority of musical noise tends to last no
more than three frames, whereas genuine signal frequencies have a
considerably longer duration. This observation was used as the basis of an
effective “musical noise” suppression system. Figure 11.5 demonstrates a
method for the identification of musical noise. Each DFT channel is
examined to identify short-lived frequency events. If a frequency component
has a duration shorter than a pre-selected time window, and an amplitude
smaller than a threshold, and is not masked by signal components in the
adjacent frequency bins, then it is classified as distortion and deleted.
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11.3 Non-Linear Spectral Subtraction

The use of spectral subtraction in its basic form of Equation (11.5) may
cause deterioration in the quality and the information content of a signal.
For example, in audio signal restoration, the musical noise can cause
degradation in the perceived quality of the signal, and in speech recognition
the basic spectral subtraction can result in deterioration of the recognition
accuracy. In the literature, there are a number of variants of spectral
subtraction that aim to provide consistent performance improvement across
a range of SNRs. These methods differ in their approach to estimation of the
noise spectrum, in their method of averaging the noisy signal spectrum, and
in their post processing method for the removal of processing distortions.
Non-linear spectral subtraction methods are heuristic methods that utilise
estimates of the local SNR, and the observation that at a low SNR over-
subtraction can produce improved results. For an explanation of the
improvement that can result from over-subtraction, consider the following
expression of the basic spectral subtraction equation:

I X(HHI=IY(fI=INC)]
= I X(HI+INCHI-INCHI (11.23)
=IX () 1+Vy (f)

where V(f) is the zero-mean random component of the noise spectrum. If
Vn(f) is well above the signal X(f) then the signal may be considered as lost
to noise. In this case, over-subtraction, followed by non-linear processing of
the negative estimates, results in a higher overall attenuation of the noise.
This argument explains why subtracting more than the noise average can
sometimes produce better results. The non-linear variants of spectral
subtraction may be described by the following equation:

| X () I=Y () 1=a(SNR(F))N ()1, (11.24)
where Q(SNR(f)) is an SNR-dependent subtraction factor and | N(f )1y,

is a non-linear estimate of the noise spectrum. The spectral estimate is
further processed to avoid negative estimates as
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X () if IX()I>IBY(f)I

(11.25)
| BY (f) otherwise

IX(f)I={

One form of an SNR-dependent subtraction factor for Equation (11.24) is
given by
sd(IN(f)1)

o(SNR(f))=1+
IN(Cf)I

(11.26)

where the function sd(IN(f)l is the standard deviation of the noise at
frequency f. For white noise, sd(IN(f)|=0,,, where 0',3 is the noise variance.
Substitution of Equation (11.26) in Equation (11.24) yields

sd(IN(/)I1)

IX(f)IzIY(f)I—[H NP

]W (11.27)

In Equation (11.27) the subtraction factor depends on the mean and the
variance of the noise. Note that the amount over-subtracted is the standard
deviation of the noise. This heuristic formula is appealing because at one
extreme for deterministic noise with a zero variance, such as a sine wave,
0(SNR(f))=1, and at the other extreme for white noise Q(SNR(f))=2. In
application of spectral subtraction to speech recognition, it is found that the
best subtraction factor is usually between 1 and 2.

In the non-linear spectral subtraction method of Lockwood and Boudy,
the spectral subtraction filter is obtained from

Y ()P ANHIZ,
1Y (f)I?

H(f)=

(11.28)

Lockwood and Boudy suggested the following function as a non-linear
estimator of the noise spectrum:

overM frames

IN(f)IzNdeﬁ( max (IN(f)Iz),SNR(f),IN(f)IZ] (11.29)
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Figure 11.6 lllustration of the effects of non-linear spectral subtraction.

The estimate of the noise spectrum is a function of the maximum value of
noise spectrum over M frames, and the signal-to-noise ratio. One form for
the non-linear function @-) is given by the following equation:

max (|N(f)|2)
_ OverM frames (11.30)

2
? over%a%émes(lN(f)l )’SNR(f) B 1+’J/SNR(f)

where 7 is a design parameter. From Equation (11.30) as the SNR decreases
the output of the non-linear estimator @-) approaches max(IN(f)?), and as
the SNR increases it approaches zero. For over-subtraction, the noise
estimate is forced to be an over-estimation by using the following limiting

function:

IN(f)1? <@ max (IN(f)IZ),SNR(f),IN(f)Iz <3IN(f)I?

overM frames

(11.31)
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Figure 11.7 Block diagram configuration of a spectral subtraction system.
PSP = post spectral subtraction processing.

The maximum attenuation of the spectral subtraction filter is limited to
H(f)>=p, where usually the lower bound $>0.01. Figure 11.6 illustrates

the effects of non-linear spectral subtraction and smoothing in restoration of
the spectrum of a speech signal.

11.4 Implementation of Spectral Subtraction

Figure 11.7 is a block diagram illustration of a spectral subtraction system.
It includes the following subsystems:

(a) a silence detector for detection of the periods of signal inactivity;
the noise spectra is updated during these periods;

(b) a discrete Fourier transformer (DFT) for transforming the time
domain signal to the frequency domain; the DFT is followed by a
magnitude operator;

(c) alowpass filter (LPF) for reducing the noise variance; the purpose
of the LPF is to reduce the processing distortions due to noise
variations;

(d) a post-processor for removing the processing distortions introduced
by spectral subtraction.;

(e) an inverse discrete Fourier transform (IDFT) for transforming the
processed signal to the time domain.

(f) an attenuator vy for attenuation of the noise during silent periods.
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The DFT-based spectral subtraction is a block processing algorithm. The
incoming audio signal is buffered and divided into overlapping blocks of N
samples as shown in Figure 11.7. Each block is Hanning (or Hamming)
windowed, and then transformed via a DFT to the frequency domain. After
spectral subtraction, the magnitude spectrum is combined with the phase of
the noisy signal, and transformed back to the time domain. Each signal
block is then overlapped and added to the preceding and succeeding blocks
to form the final output.

The choice of the block length for spectral analysis is a compromise
between the conflicting requirements of the time resolution and the spectral
resolution. Typically a block length of 5-50 milliseconds is used. At a
sampling rate of say 20 kHz, this translates to a value for N in the range of
100-1000 samples. The frequency resolution of the spectrum is directly
proportional to the number of samples, N. A larger value of N produces a
better estimate of the spectrum. This is particularly true for the lower part of
the frequency spectrum, since low-frequency components vary slowly with
the time, and require a larger window for a stable estimate. The conflicting
requirement is that, owing to the non-stationary nature of audio signals, the
window length should not be too large, so that short-duration events are not
obscured.

The main function of the window and the overlap operations (Figure
11.8) is to alleviate discontinuities at the endpoints of each output block.
Although there are a number of useful windows with different
frequency/time characteristics, in most implementations of the spectral
subtraction, a Hanning window is used. In removing distortions introduced
by spectral subtraction, the post-processor algorithm makes use of such
information as the correlation of each frequency channel from one block to
the next, and the durations of the signal events and the distortions. The

; )
A,M,

Figure 11.8 lllustration of the window and overlap process in spectral subtraction.
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Figure 11.9 (a) A noisy signal. (b) Restored signal after spectral subtraction.
(c) Noise estimate obtained by subtracting (b) from (a).

correlation of the signal spectral components, along the time dimension, can
be partially controlled by the choice of the window length and the overlap.
The correlation of spectral components along the time domain increases
with decreasing window length and increasing overlap. However, increasing
the overlap can also increase the correlation of noise frequencies along the
time dimension.
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Figure 11.10 The effect of spectral subtraction in improving speech recognition
(for a spoken digit data base) in the presence of helicopter noise.

11.4.1 Application to Speech Restoration and Recognition

In speech restoration, the objective is to estimate the instantaneous signal
spectrum X(f). The restored magnitude spectrum is combined with the phase
of the noisy signal to form the restored speech signal. In contrast, speech
recognition systems are more concerned with the restoration of the envelope
of the short-time spectrum than the detailed structure of the spectrum.
Averaged values, such as the envelope of a spectrum, can often be estimated
with more accuracy than the instantaneous values. However, in speech
recognition, as in signal restoration, the processing distortion due to the
negative spectral estimates can cause substantial deterioration in
performance. A careful implementation of spectral subtraction can result in
a significant improvement in the recognition performance.

Figure 11.9 illustrates the effects of spectral subtraction in restoring a
section of a speech signal contaminated with white noise. Figure 11.10
illustrates the improvement that can be obtained from application of spectral
subtraction to recognition of noisy speech contaminated by a helicopter
noise. The recognition results were obtained for a hidden Markov model-
based spoken digit recognition.
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11.5 Summary

This chapter began with an introduction to spectral subtraction and its
relation to Wiener filters. The main attraction of spectral subtraction is its
relative simplicity, in that it only requires an estimate of the noise power
spectrum. However, this can also be viewed as a fundamental limitation in
that spectral subtraction does not utilise the statistics and the distributions of
the signal process. The main problem in spectral subtraction is the presence
of processing distortions caused by the random variations of the noise. The
estimates of the magnitude and power spectral variables, that owing to noise
variations, are negative, have to be mapped into non-negative values. In
Section 11.2, we considered the processing distortions, and illustrated the
effects of rectification of negative estimates on the distribution of the signal
spectrum. In Section 11.3, a number of non-linear variants of the spectral
subtraction method were considered. In signal restoration and in
applications of spectral subtraction to speech recognition it is found that
over-subtraction, which is subtracting more than the average noise value,
can lead to improved results; if a frequency component is immersed in noise
then over-subtraction can cause further attenuation of the noise. A formula
is proposed in which the over-subtraction factor is made dependent on the
noise variance. As mentioned earlier, the fundamental problem with spectral
subtraction is that it employs relatively too little prior information, and for
this reason it is outperformed by Wiener filters and Bayesian statistical
restoration methods.
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IMPULSIVE NOISE

12.1 Impulsive Noise

12.2 Statistical Models for Impulsive Noise

12.3 Median Filters

12.4 Impulsive Noise Removal Using Linear Prediction Models
12.5 Robust Parameter Estimation

12.6 Restoration of Archived Gramophone Records

12.7 Summary

mpulsive noise consists of relatively short duration “on/off” noise

pulses, caused by a variety of sources, such as switching noise, adverse

channel environments in a communication system, dropouts or surface
degradation of audio recordings, clicks from computer keyboards, etc. An
impulsive noise filter can be used for enhancing the quality and
intelligibility of noisy signals, and for achieving robustness in pattern
recognition and adaptive control systems. This chapter begins with a study
of the frequency/time characteristics of impulsive noise, and then proceeds
to consider several methods for statistical modelling of an impulsive noise
process. The classical method for removal of impulsive noise is the median
filter. However, the median filter often results in some signal degradation.
For optimal performance, an impulsive noise removal system should utilise
(a) the distinct features of the noise and the signal in the time and/or
frequency domains, (b) the statistics of the signal and the noise processes,
and (c) a model of the physiology of the signal and noise generation. We
describe a model-based system that detects each impulsive noise, and then
proceeds to replace the samples obliterated by an impulse. We also consider
some methods for introducing robustness to impulsive noise in parameter
estimation.
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12.1 Impulsive Noise

Impulsive Noise

In this section, first the mathematical concepts of an analog and a digital
impulse are introduced, and then the various forms of real impulsive noise

in communication systems are considered.

The mathematical concept of an analog impulse is illustrated in Figure
12.1. Consider the unit-area pulse p(f) shown in Figure 12.1(a). As the pulse
width A tends to zero, the pulse tends to an impulse. The impulse function
shown in Figure 12.1(b) is defined as a pulse with an infinitesimal time

width as
1/ 4,

0. [|>4/2

r| <A/2
§(t) = limit p(t) =
A—-0

The integral of the impulse function is given by
T5(z) dt:Axl =1
7 A
The Fourier transform of the impulse function is obtained as

A(f) = jé(z)e‘ﬂ’?”’dt:eo =1

—oo

(12.1)

(12.2)

(12.3)

where f is the frequency variable. The impulse function is used as a test
function to obtain the impulse response of a system. This is because as

AP &1) A AP
1/A
AsA—»0
> , > >
—> 44— 1 t f
(a) (b) (c)

Figure 12.1 (a) A unit-area pulse, (b) The pulse becomes an impulse as 4 — 0,

(c) The spectrum of the impulse function.
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shown in Figure 12.1(c), an impulse is a spectrally rich signal containing all
frequencies in equal amounts.

A digital impulse 0(m), shown Figure 12.2(a), is defined as a signal
with an “on” duration of one sample, and is expressed as:

§(m)= 1, m=0
"0, m=0 (12.4)

where the variable m designates the discrete-time index. Using the Fourier
transform relation, the frequency spectrum of a digital impulse is given by

A(f)= ié(m)e—ﬂ’mzl.o, — oo< f<oo (12.5)

m=—oco

In communication systems, real impulsive-type noise has a duration that is
normally more than one sample long. For example, in the context of audio
signals, short-duration, sharp pulses, of up to 3 milliseconds (60 samples at
a 20 kHz sampling rate) may be considered as impulsive-type noise. Figures

12.1(b) and 12.1(c) illustrate two examples of short-duration pulses and
their respective spectra.

A n;,(m) =0 (m) A N, ()
T o
(@) > >
n f
A Milrm) AN2OO
/\ p=4 \
(b) . -
m A
A nx(m) A N5 ()
[\ = /
©
.
V m f

Figure 12.2 Time and frequency sketches of (a) an ideal impulse, and (b) and (c)
short-duration pulses.
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Figure 12.3 lllustration of variations of the impulse response of a non-linear
system with increasing amplitude of the impulse.

In a communication system, an impulsive noise originates at some
point in time and space, and then propagates through the channel to the
receiver. The received noise is shaped by the channel, and can be
considered as the channel impulse response. In general, the characteristics
of a communication channel may be linear or non-linear, stationary or time
varying. Furthermore, many communication systems, in response to a
large-amplitude impulse, exhibit a nonlinear characteristic.

Figure 12.3 illustrates some examples of impulsive noise, typical of
those observed on an old gramophone recording. In this case, the
communication channel is the playback system, and may be assumed time-
invariant. The figure also shows some variations of the channel
characteristics with the amplitude of impulsive noise. These variations may
be attributed to the non-linear characteristics of the playback mechanism.

An important consideration in the development of a noise
processing system is the choice of an appropriate domain (time or the
frequency) for signal representation. The choice should depend on the
specific objective of the system. In signal restoration, the objective is to
separate the noise from the signal, and the representation domain must be
the one that emphasises the distinguishing features of the signal and the
noise. Impulsive noise is normally more distinct and detectable in the time
domain than in the frequency domain, and it is appropriate to use time-
domain signal processing for noise detection and removal. In signal
classification and parameter estimation, the objective may be to compensate
for the average effects of the noise over a number of samples, and in some
cases, it may be more appropriate to process the impulsive noise in the
frequency domain where the effect of noise is a change in the mean of the
power spectrum of the signal.
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12.1.1 Autocorrelation and Power Spectrum of Impulsive Noise

Impulsive noise is a non-stationary, binary-state sequence of impulses with
random amplitudes and random positions of occurrence. The non-stationary
nature of impulsive noise can be seen by considering the power spectrum of
a noise process with a few impulses per second: when the noise is absent
the process has zero power, and when an impulse is present the noise power
is the power of the impulse. Therefore the power spectrum and hence the
autocorrelation of an impulsive noise is a binary state, time-varying process.
An impulsive noise sequence can be modelled as an amplitude-modulated
binary-state sequence, and expressed as

n; (m)=n(m)b(m) (12.6)

where b(m) is a binary-state random sequence of ones and zeros, and n(m)
is a random noise process. Assuming that impulsive noise is an uncorrelated
random process, the autocorrelation of impulsive noise may be defined as a
binary-state process:

r.n (k;m)= Eln; (m)n; (m + k)]=0 2 8 (k)b(m) (12.7)

where (k) is the Kronecker delta function. Since it is assumed that the
noise is an uncorrelated process, the autocorrelation is zero for k #0,
therefore Equation (12.7) may be written as

r,, (0,m)=02b(m) (12.8)

Note that for a zero-mean noise process, r,,(0,m) is the time-varying
binary-state noise power. The power spectrum of an impulsive noise
sequence is obtained, by taking the Fourier transform of the autocorrelation
function Equation (12.8), as

Py y, (fm)=0 b(m) (12.9)

In Equation (12.8) and (12.9) the autocorrelation and power spectrum are
expressed as binary state functions that depend on the “on/off” state of
impulsive noise at time m.
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12.2 Statistical Models for Impulsive Noise

In this section, we study a number of statistical models for the
characterisation of an impulsive noise process. An impulsive noise
sequence n;(m) consists of short duration pulses of a random amplitude,
duration, and time of occurrence, and may be modelled as the output of a
filter excited by an amplitude-modulated random binary sequence as

P-1
n;(m)=> hn(m—k)b(m—k) (12.10)
k=0

Figure 12.4 illustrates the impulsive noise model of Equation (12.10). In
Equation (12.10) b(m) is a binary-valued random sequence model of the
time of occurrence of impulsive noise, n(m) is a continuous-valued random
process model of impulse amplitude, and Ah(m) is the impulse response of a
filter that models the duration and shape of each impulse. Two important
statistical processes for modelling impulsive noise as an amplitude-
modulated binary sequence are the Bernoulli-Gaussian process and the
Poisson—Gaussian process, which are discussed next.

12.2.1 Bernoulli-Gaussian Model of Impulsive Noise

In a Bernoulli-Gaussian model of an impulsive noise process, the random
time of occurrence of the impulses is modelled by a binary Bernoulli
process b(m) and the amplitude of the impulses is modelled by a Gaussian

Amplitude modulated
Binary sequence b(m) binary sequence
n(m) b(m)
J_l_l—l_ | | Impulsive noise

I I sequence ny(m)

\ h(m) | ﬂ
Amplitude modulating / :

sequence n(m)

Impulse shaping
filter

Figure 12.4 lllustration of an impulsive noise model as the output of a filter
excited by an amplitude-modulated binary sequence.
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process n(m). A Bernoulli process b(m) is a binary-valued process that takes
a value of “1” with a probability of & and a value of “0” with a probability
of 1—co. The probability mass function of a Bernoulli process is given by

a for b(m)=l1
PB(b(m)):{l—a for b(m)=0. (121D

A Bernoulli process has a mean
iy = =lpom)]=e 1212

and a variance
o)) = f[(b(m)—ub)z] =o(l-a) (12.13)

A zero-mean Gaussian pdf model of the random amplitudes of impulsive
noise is given by

1 2
f (n(m))= Tono eXp[— nz((;n;) } (12.14)

where G,% is the variance of the noise amplitude. In a Bernoulli-Gaussian
model the probability density function of an impulsive noise n;(m) is given
by

B0 (n; (m) )=(1 — )8 (n; (m) J+ar fy (n; (m)) (12.15)

where O (ni (m)) is the Kronecker delta function. Note that the function
39 (n,(m)) is a mixture of a discrete probability mass function 0 (n.(m))

and a continuous probability density function f (n,(m)).

An alternative model for impulsive noise is a binary-state Gaussian
process (Section 2.5.4), with a low-variance state modelling the absence of
impulses and a relatively high-variance state modelling the amplitude of
impulsive noise.
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12.2.2 Poisson—-Gaussian Model of Impulsive Noise

In a Poisson—Gaussian model the probability of occurrence of an impulsive
noise event is modelled by a Poisson process, and the distribution of the
random amplitude of impulsive noise is modelled by a Gaussian process.
The Poisson process, described in Chapter 2, is a random event-counting
process. In a Poisson model, the probability of occurrence of k impulsive
noise in a time interval of 7' is given by

AT
Pk, )=, k') e (12.16)
where A is a rate function with the following properties:
Prob(one impulse in a small time interval A¢)=AA¢
(12.17)

Prob(zero impulse in a small time interval A¢)=1-A4¢

It is assumed that no more than one impulsive noise can occur in a time
interval Az. In a Poisson—Gaussian model, the pdf of an impulsive noise
n;i(m) in a small time interval of At is given by

ey m))= (1=240) 8 (n; (m) + 241 fy (n; (m)) (12.18)

where f (1, (m)) is the Gaussian pdf of Equation (12.14).

12.2.3 A Binary-State Model of Impulsive Noise

An impulsive noise process may be modelled by a binary-state model as
shown in Figure 12.4. In this binary model, the state S, corresponds to the
“off” condition when impulsive noise is absent; in this state, the model
emits zero-valued samples. The state S; corresponds to the “on” condition;
in this state the model emits short-duration pulses of random amplitude and
duration. The probability of a transition from state S; to state S; is denoted
by a;. In its simplest form, as shown in Figure 12.5, the model is
memoryless, and the probability of a transition to state S; is independent of
the current state of the model. In this case, the probability that at time 7+1
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Figure 12.6 A 3-state model of impulsive noise and the decaying oscillations
that often follow the impulses.

the signal is in the state S is independent of the state at time #, and is given
by
Plst+1) = Sos) = So) = Pls+1) = So|st) = 5, )=1-00 (12,19

where s; denotes the state at time 7. Likewise, the probability that at time
t+1 the model is in state Sy is given by

Plst+1)=8)|s()=8, )=Plst+ D) =S)[s() =5, )=« (12.20)

In a more general form of the binary-state model, a Markovian state-
transition can model the dependencies in the noise process. The model then
becomes a 2-state hidden Markov model considered in Chapter 5.

In one of its simplest forms, the state §; emits samples from a zero-mean
Gaussian random process. The impulsive noise model in state S; can be
configured to accommodate a variety of impulsive noise of different shapes,
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durations and pdfs. A practical method for modelling a variety of impulsive
noise is to use a code book of M prototype impulsive noises, and their
associated probabilities [(n;1, pi1), (np , pi)s ., (Miy » Pim)], Where p;
denotes the probability of impulsive noise of the type n;. The impulsive
noise code book may be designed by classification of a large number of
“training” impulsive noises into a relatively small number of clusters. For
each cluster, the average impulsive noise is chosen as the representative of
the cluster. The number of impulses in the cluster of type j divided by the
total number of impulses in all clusters gives p;, the probability of an
impulse of type j.

Figure 12.6 shows a three-state model of the impulsive noise and the
decaying oscillations that might follow the noise. In this model, the state S
models the absence of impulsive noise, the state S| models the impulsive
noise and the state S, models any oscillations that may follow a noise pulse.

12.2.4 Signal to Impulsive Noise Ratio

For impulsive noise the average signal to impulsive noise ratio, averaged
over an entire noise sequence including the time instances when the
impulses are absent, depends on two parameters: (a) the average power of
each impulsive noise, and (b) the rate of occurrence of impulsive noise. Let
Pimpuise denote the average power of each impulse, and Pgigna the signal
power. We may define a “local” time-varying signal to impulsive noise
ratio as

SINR(m)— Psignal (m)
_— (12.21)

Pimpulse b(m)

The average signal to impulsive noise ratio, assuming that the parameter
o is the fraction of signal samples contaminated by impulsive noise, can be
defined as

P.
SINR=—_gml (12.22)

o P impulse

Note that from Equation (12.22), for a given signal power, there are many
pair of values of & and Pyypyise that can yield the same average SINR.
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Figure 12.7 Input and output of a median filter. Note that in addition to suppressing
the impulsive outlier, the filter also distorts some genuine signal components.

12.3 Median Filters

The classical approach to removal of impulsive noise is the median filter.
The median of a set of samples {x(m)} is a member of the set xyeq(m) such
that; half the population of the set are larger than xpyeq(m) and half are
smaller than xpeq(m). Hence the median of a set of samples is obtained by
sorting the samples in the ascending or descending order, and then selecting
the mid-value. In median filtering, a window of predetermined length slides
sequentially over the signal, and the mid-sample within the window is
replaced by the median of all the samples that are inside the window, as
illustrated in Figure 12.7.

The output x(m) of a median filter with input y(m) and a median
window of length 2K+1 samples is given by

X(m) =Y meq (M)

=median[y(m—K),...,y(m), ..., y(m+ K)] (12.23)

The median of a set of numbers is a non-linear statistics of the set, with
the useful property that it is insensitive to the presence of a sample with an
unusually large value, a so-called outlier, in the set. In contrast, the mean,
and in particular the variance, of a set of numbers are sensitive to the
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presence of impulsive-type noise. An important property of median filters,
particularly useful in image processing, is that they preserves edges or
stepwise discontinuities in the signal. Median filters can be used for
removing impulses in an image without smearing the edge information; this
is of significant importance in image processing. However, experiments
with median filters, for removal of impulsive noise from audio signals,
demonstrate that median filters are unable to produce high-quality audio
restoration. The median filters cannot deal with “real” impulsive noise,
which are often more than one or two samples long. Furthermore, median
filters introduce a great deal of processing distortion by modifying genuine
signal samples that are mistaken for impulsive noise. The performance of
median filters may be improved by employing an adaptive threshold, so that
a sample is replaced by the median only if the difference between the
sample and the median is above the threshold:

-~ {y<m> i 1) = Yimeq (m)] < k O(m) 1o

Y med (M) otherwise

where 6(m) is an adaptive threshold that may be related to a robust estimate
of the average of |y(m)— Ymeqa (m)|, and k is a tuning parameter. Median

filters are not optimal, because they do not make efficient use of prior
knowledge of the physiology of signal generation, or a model of the signal
and noise statistical distributions. In the following section we describe a
autoregressive model-based impulsive removal system, capable of
producing high-quality audio restoration.

12.4 Impulsive Noise Removal Using Linear Prediction Models

In this section, we study a model-based impulsive noise removal system.
Impulsive disturbances usually contaminate a relatively small fraction o of
the total samples. Since a large fraction, 1—¢, of samples remain unaffected
by impulsive noise, it is advantageous to locate individual noise pulses, and
correct only those samples that are distorted. This strategy avoids the
unnecessary processing and compromise in the quality of the relatively
large fraction of samples that are not disturbed by impulsive noise. The
impulsive noise removal system shown in Figure 12.8 consists of two
subsystems: a detector and an interpolator. The detector locates the position
of each noise pulse, and the interpolator replaces the distorted samples
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Figure 12.8 Configuration of an impulsive noise removal system incorporating a
detector and interpolator subsystems.

using the samples on both sides of the impulsive noise. The detector is
composed of a linear prediction analysis system, a matched filter and a
threshold detector. The output of the detector is a binary switch and controls
the interpolator. A detector output of “0” signals the absence of impulsive
noise and the interpolator is bypassed. A detector output of “1” signals the
presence of impulsive noise, and the interpolator is activated to replace the
samples obliterated by noise.

12.4.1 Impulsive Noise Detection

A simple method for detection of impulsive noise is to employ an amplitude
threshold, and classify those samples with an amplitude above the threshold
as noise. This method works fairly well for relatively large-amplitude
impulses, but fails when the noise amplitude falls below the signal.
Detection can be improved by utilising the characteristic differences
between the impulsive noise and the signal. An impulsive noise, or a short-
duration pulse, introduces uncharacteristic discontinuity in a correlated
signal. The discontinuity becomes more detectable when the signal is
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differentiated. The differentiation (or, for digital signals, the differencing)
operation is equivalent to decorrelation or spectral whitening. In this
section, we describe a model-based decorrelation method for improving
impulsive noise detectability. The correlation structure of the signal is
modelled by a linear predictor, and the process of decorrelation is achieved
by inverse filtering. Linear prediction and inverse filtering are covered in
Chapter 8. Figure 12.9 shows a model for a noisy signal. The noise-free
signal x(m) is described by a linear prediction model as

P
x(m)y=Y ay x(m—k)+e(m) (12.25)
k=1

where a=[a;, ay, ...,ap]T is the coefficient vector of a linear predictor of
order P, and the excitation e(m) is either a noise-like signal or a mixture of a
random noise and a quasi-periodic train of pulses as illustrated in Figure
12.9. The impulsive noise detector is based on the observation that linear
predictors are a good model of the correlated signals but not the
uncorrelated binary-state impulsive-type noise. Transforming the noisy
signal y(m) to the excitation signal of the predictor has the following
effects:

(a) The scale of the signal amplitude is reduced to almost that of the
original excitation signal, whereas the scale of the noise amplitude
remains unchanged or increases.

(b) The signal is decorrelated, whereas the impulsive noise is smeared
and transformed to a scaled version of the impulse response of the
inverse filter.

Excitation n; (m)=n(m)b(m)

. . H selection
White noise '\. Noisy speech

Speech
Periodic impulse] ° Linear prediction
train Aﬁ filter

oy, S Y=y )
’J Coefficients

“Hidden” model
control

Mixture

Figure 12.9 Noisy speech model. The signal is modelled by a linear predictor.
Impulsive noise is modelled as an amplitude-modulated binary-state process.
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Both effects improve noise delectability. Speech or music is composed of
random excitations spectrally shaped and amplified by the resonances of
vocal tract or the musical instruments. The excitation is more random than
the speech, and often has a much smaller amplitude range. The
improvement in noise pulse detectability obtained by inverse filtering can
be substantial and depends on the time-varying correlation structure of the
signal. Note that this method effectively reduces the impulsive noise
detection to the problem of separation of outliers from a random noise
excitation signal using some optimal thresholding device.

12.4.2 Analysis of Improvement in Noise Detectability

In the following, the improvement in noise detectability that results from
inverse filtering is analysed. Using Equation (12.25), we can rewrite a noisy
signal model as

y(m) = x(m)+n;(m)

P
= Zak x(m—k)+e(m)+n;(m) (12.26)

k=1

where y(m), x(m) and n;(m) are the noisy signal, the signal and the noise

respectively. Using an estimate a of the predictor coefficient vector a, the
noisy signal y(m) can be inverse-filtered and transformed to the noisy
excitation signal v(m) as

P
v(m)=y(m)=Y & y(m—k)

k=l (12.27)

P
= x(m) +n(m)— Y (@ — @ [ x(m—k)+m(m—k)]
k=1

where a, is the error in the estimate of the predictor coefficient. Using
Equation (12.25) Equation (12.27) can be rewritten in the following form:

P P
v(m)=e(m) +n,(m)+ Y @ x(m—k) — Y, an(m—k) (12.28)
k=1 k=1
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From Equation (12.28) there are essentially three terms that contribute to
the noise in the excitation sequence:

(a) the impulsive disturbance n;(m) which is usually the dominant term;
(b) the effect of the past P noise samples, smeared to the present time by
the action of the inverse filtering, 2 &kni (m-k);

(c) the increase in the variance of the excitation signal, caused by the
error in the parameter vector estimate, and expressed by the term

E&kx(m —k).

The improvement resulting from the inverse filter can be formulated as
follows. The impulsive noise to signal ratio for the noisy signal is given by

impulsive noise power E[nl-2 (m)]
signal power E[x%(m)]

(12.29)

where ‘E[-] is the expectation operator. Note that in impulsive noise

detection, the signal of interest is the impulsive noise to be detected from
the accompanying signal. Assuming that the dominant noise term in the
noisy excitation signal v(m) is the impulse n;(m), the impulsive noise to

excitation signal ratio is given by

impulsive noise power E[n? (m)]

excitation power Ele2 (m)] (12.30)

The overall gain in impulsive noise to signal ratio is obtained, by dividing
Equations (12.29) and (12.30), as

E[x? (m)]

= gain

Ele2 (m)] g (12.31)
This simple analysis demonstrates that the improvement in impulsive noise
detectability depends on the power amplification characteristics, due to
resonances, of the linear predictor model. For speech signals, the scale of
the amplitude of the noiseless speech excitation is on the order of 10-! to
10+ of that of the speech itself; therefore substantial improvement in
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impulsive noise detectability can be expected through inverse filtering of
the noisy speech signals.

Figure 12.10 illustrates the effect of inverse filtering in improving the
detectability of impulsive noise. The inverse filtering has the effect that the
signal x(m) is transformed to an uncorrelated excitation signal e(m),
whereas the impulsive noise is smeared to a scaled version of the inverse
filter impulse response [l, -a;, ..,-ap], as indicated by the term

z Ezkni(m — k) in Equation (12.28). Assuming that the excitation is a white

noise Gaussian signal, a filter matched to the inverse filter coefficients may
enhance the delectability of the smeared impulsive noise from the excitation
signal.

. __L“L“L"L_L‘L‘L_LH L ddrsrorcbh >
(©) :

Figure 12.10 lllustration of the effects of inverse filtering on detectability of Impulsive

noise: (a) Impulsive noise contaminated speech with 5% impulse contamination at an

average SINR of 10dB, (b) Speech excitation of impulse-contaminated speech, and
(c) Speech excitation of impulse-free speech.
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12.4.3 Two-Sided Predictor for Impulsive Noise Detection

In the previous section, it was shown that impulsive noise detectability can
be improved by decorrelating the speech signal. The process of
decorrelation can be taken further by the use of a two-sided linear
prediction model. The two-sided linear prediction of a sample x(m) is based
on the P past samples and the P future samples, and is defined by the
equation

P P
x(m):Zakx(m—k)+2ak+Px(m+k)+e(m) (12.32)
k=1 k=1

where q, are the two-sided predictor coefficients and e(m) is the excitation

signal. All the analysis used for the case of one-sided linear predictor can be
extended to the two-sided model. However, the variance of the excitation
input of a two-sided model is less than that of the one-sided predictor
because in Equation (12.32) the correlations of each sample with the future,
as well as the past, samples are modeled. Although Equation (12.32) is a
non-causal filter, its inverse, required in the detection subsystem, is causal.
The use of a two-sided predictor can result in further improvement in noise
detectability.

12.4.4 Interpolation of Discarded Samples

Samples irrevocably distorted by an impulsive noise are discarded and the
gap thus left is interpolated. For interpolation imperfections to remain
inaudible a high-fidelity interpolator is required. A number of interpolators
for replacement of a sequence of missing samples are introduced in Chapter
10. The least square autoregressive (LSAR) interpolation algorithm of
Section 10.3.2 produces high-quality results for a relatively small number
of missing samples left by an impulsive noise. The LSAR interpolation
method is a two-stage process. In the first stage, the available samples on
both sides of the noise pulse are used to estimate the parameters of a linear
prediction model of the signal. In the second stage, the estimated model
parameters, and the samples on both sides of the gap are used to interpolate
the missing samples. The use of this interpolator in replacement of audio
signals distorted by impulsive noise has produced high-quality results.
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12.5 Robust Parameter Estimation

In Figure 12.8, the threshold used for detection of impulsive noise from the
excitation signal is derived from a nonlinear robust estimate of the
excitation power. In this section, we consider robust estimation of a
parameter, such as the signal power, in the presence of impulsive noise.

A robust estimator is one that is not over-sensitive to deviations of the
input signal from the assumed distribution. In a robust estimator, an input
sample with unusually large amplitude has only a limited effect on the
estimation results. Most signal processing algorithms developed for
adaptive filtering, speech recognition, speech coding, etc. are based on the
assumption that the signal and the noise are Gaussian-distributed, and
employ a mean square distance measure as the optimality criterion. The
mean square error criterion is sensitive to non-Gaussian events such as
impulsive noise. A large impulsive noise in a signal can substantially

Cost function Influence function
Ee2(m)] IHeAm)]
20

Mean squared error

i > >

0 /‘ (7]
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A%
Mean absolute value —
o
6 0

A E[D(e(m))]

i Mean |squared! A 2EH®(eim)
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Absolute value | | Absolute value
| | > >
0 0
A E[¥(em)] § 2L em)
a6
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6 0

Figure 12.11 lllustration of a number of cost of error functions and the
corresponding influence functions.
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overshadow the influence of noise-free samples.

Figure 12.11 illustrates the variations of several cost of error functions
with a parameter 6. Figure 12.11(a) shows a least square error cost function
and its influence function. The influence function is the derivative of the
cost function, and, as the name implies, it has a direct influence on the
estimation results. It can be seen from the influence function of Figure
12.11(a) that an unbounded sample has an unbounded influence on the
estimation results.

A method for introducing robustness is to use a non-linear function and
limit the influence of any one sample on the overall estimation results. The
absolute value of error is a robust cost function, as shown by the influence
function in Figure 12.11(b). One disadvantage of this function is that it is
not continuous at the origin. A further drawback is that it does not allow for
the fact that, in practice, a large proportion of the samples are not
contaminated with impulsive noise, and may well be modelled with
Gaussian densities.

Many processes may be regarded as Gaussian for the sample values
that cluster about the mean. For such processes, it is desirable to have an
influence function that limits the influence of outliers and at the same time
is linear and optimal for the large number of relatively small-amplitude
samples that may be regarded as Gaussian-distributed. One such function is
Huber's function, defined as

ez(m) if |e(m)|$k

[e(m)]=
Vielm k|e(m)| otherwise (12.33)

Huber's function, shown in Figure 12.11(c), is a hybrid of the least mean
square and the absolute value of error functions. Tukeys bi-weight function,
which is a redescending robust objective function, is defined as

(I1-e2mP}f6  if [e(m)|<1

1/6 otherwise

Wle(m)]= (12.34)

As shown in Figure 12.11(d), the influence function is linear for small
signal values but introduces attenuation as the signal value exceeds some
threshold. The threshold may be obtained from a robust median estimate of
the signal power.
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Figure 12.12 (a) A noisy audio signal from a 78 rpm record, (b) Noisy excitation
signal, (c) Matched filter output, (d) Restored signal.

12.6 Restoration of Archived Gramophone Records

This Section describes the application of the impulsive noise removal
system of Figure 12.8 to the restoration of archived audio records. As the
bandwidth of archived recordings is limited to 7-8 kHz, a low-pass, anti-
aliasing filter with a cutoff frequency of 8 kHz is used to remove the out of
band noise. Playedback signals were sampled at a rate of 20 kHz, and
digitised to 16 bits. Figure 12.12(a) shows a 25 ms segment of noisy music
and song from an old 78 rpm gramophone record. The impulsive
interferences are due to faults in the record stamping process, granularities
of the record material or physical damage. This signal is modelled by a
predictor of order 20. The excitation signal obtained from the inverse filter
and the matched filter output are shown in Figures 12.12(b) and (c)
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respectively. Close examination of these figures show that some of the
ambiguities between the noise pulses and the genuine signal excitation
pulses are resolved after matched filtering.

The amplitude threshold for detection of impulsive noise from the
excitation signal is adapted on a block basis, and is set to koez, where 662 18

a robust estimate of the excitation power. The robust estimate is obtained by
passing the noisy excitation signal through a soft nonlinearity that rejects
outliers. The scalar k is a tuning parameter; the choice of k reflects a trade-
off between the hit rate and the false-alarm rate of the detector. As k
decreases, smaller noise pulses are detected but the false detection rate also
increases. When an impulse is detected, a few samples are discarded and
replaced by the LSAR interpolation algorithm described in Chapter 10.
Figure 12.12(d) shows the signal with the impulses removed. The impulsive
noise removal system of Figure 12.8 was successfully applied to restoration
of numerous examples of archived gramophone records. The system is also
effective in suppressing impulsive noise in examples of noisy telephone
conversations.

12.7 Summary

The classic linear time-invariant theory on which many signal processing
methods are based is not suitable for dealing with the non-stationary
impulsive noise problem. In this chapter, we considered impulsive noise as
a random on/off process and studied several stochastic models for impulsive
noise, including the Bernoulli-Gaussian model, the Poisson—Gaussian and
the hidden Markov model (HMM). The HMM provides a particularly
interesting framework, because the theory of HMM studied in Chapter 5 is
well developed, and also because the state sequence of an HMM of noise
can be used to provide an estimate of the presence or the absence of the
noise. By definition, an impulsive noise is a short and sharp event
uncharacteristic of the signal that it contaminates. In general, differencing
operation enhance the detectibility of impulsive noise. Based on this
observation, in Section 12.4, we considered an algorithm based on a linear
prediction model of the signal for detection of impulsive noise.

In the next Chapter we expand the materials we considered in this chapter
for the modelling, detection, and removal of transient noise pulses.
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TRANSIENT NOISE PULSES

13.1 Transient Noise Waveforms

13.2 Transient Noise Pulse Models

13.3 Detection of Noise Pulses

13.4 Removal of Noise Pulse Distortions
13.5 Summary

ransient noise pulses differ from the short-duration impulsive noise

studied in the previous chapter, in that they have a longer duration

and a relatively higher proportion of low-frequency energy content,
and usually occur less frequently than impulsive noise. The sources of
transient noise pulses are varied, and may be electromagnetic, acoustic or
due to physical defects in the recording medium. Examples of transient
noise pulses include switching noise in telephony, noise pulses due to
adverse radio transmission environments, noise pulses due to on/off
switching of nearby electric devices, scratches and defects on damaged
records, click sounds from a computer keyboard, etc. The noise pulse
removal methods considered in this chapter are based on the observation
that transient noise pulses can be regarded as the response of the
communication channel, or the playback system, to an impulse. In this
chapter, we study the characteristics of transient noise pulses and consider
a template-based method, a linear predictive model and a hidden Markov
model for the modelling and removal of transient noise pulses. The subject
of this chapter closely follows that of Chapter 12 on impulsive noise.
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13.1 Transient Noise Waveforms

Transient noise pulses often consist of a relatively short sharp initial pulse
followed by decaying low-frequency oscillations as shown in Figure 13.1.
The initial pulse is usually due to some external or internal impulsive
interference, whereas the oscillations are often due to the resonance of the
communication channel excited by the initial pulse, and may be considered
as the response of the channel to the initial pulse. In a telecommunication
system, a noise pulse originates at some point in time and space, and then
propagates through the channel to the receiver. The noise pulse is shaped
by the channel characteristics, and may be considered as the channel pulse
response. Thus we expect to be able to characterize the transient noise
pulses with a similar degree of consistency to that of characterizing the
channels through which the pulses propagate.

As an illustration of the distribution of a transient noise pulse in time
and frequency, consider the scratch pulses from a damaged gramophone
record shown in Figures 13.1 and 13.2. Scratch noise pulses are acoustic
manifestations of the response of the stylus and the associated electro-
mechanical playback system to a sharp physical discontinuity on the
recording medium. Since scratches are essentially the impulse response of
the playback mechanism, it is expected that for a given system, various
scratch pulses exhibit a similar characteristics. As shown in Figure 13.1, a
typical scratch waveform often exhibits two distinct regions:

(a) the initial high-amplitude pulse response of the playback system to
the physical discontinuity on the record medium; this is followed by
(b) decaying oscillations that cause additive distortion.

The initial pulse is relatively short and has a duration on the order of 1-5
ms, whereas the oscillatory tail has a longer duration and may last up to 50
ms. Note in Figure 13.1 that the frequency of the decaying oscillations
decreases with time. This behaviour may be attributed to the nonlinear
modes of response of the electro-mechanical playback system excited by the
physical scratch discontinuity. Observations of many scratch waveforms
from damaged gramophone records reveal that they have a well-defined
profile, and can be characterised by a relatively small number of typical
templates.
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An(m)

N ~
\/

3

Figure 13.1 The profile of a transient noise pulse from a scratched gramophone
record.

Figure 13.2 An example of (a) the time-domain waveform and (b) the spectrogram
of transient noise scratch pulses in a damaged gramophone record.
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A similar argument can be used to describe the transient noise pulses in
other systems as the response of the system to an impulsive noise. Figure
13.2(a) (b) show the time-domain waveform and the spectrogram of a
section of music and song with scratch-type noise. Note that as the scratch
defect on the record was radial, the scratch pulses occure periodically with a
period of 78 pulses per scratch per minute. As can be seen, there were in fact
two scratches on the record.

The observation that transient noise pulses exhibit certain distinct,
definable and consistent characteristics can be used for the modelling
detection and removal of transient noise pulses.

13.2 Transient Noise Pulse Models

To a first approximation, a transient noise pulse n(m) can be modelled as
the impulse response of a linear time-invariant filter model of the channel
as

n(m)=Y" hy A8 (m—k)=Ah,, (13.1)
k

where A is the amplitude of the driving impulse and /; is the channel

impulse response. A burst of overlapping, or closely spaced, noise pulses
can be modelled as the response of a channel to a sequence of impulses as

n(m)=Y" thAjé((m—Tj)—k):ZAjhm_Tj (13.2)
k ; 7

J

where it is assumed that the jth transient pulse is due to an impulse of
amplitude A; at time 7. In practice, a noise model should be able to deal
with the statistical variations of a variety of noise and channel types. In this
section, we consider three methods for modelling the temporal, spectral
and durational characteristics of a transient noise pulse process:

(a) a template-based model;
(b) a linear-predictive model;
(¢) a hidden Markov model.
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13.2.1 Noise Pulse Templates

A widely used method for modelling the space of a random process is to
model the process as a collection of signal clusters, and to design a code
book of templates containing the “centroids” of the clusters. The centroids
represent various typical forms of the process. To obtain the centroids, the
signal space is partitioned into a number of regions or clusters, and the
“centre” of the space within each cluster is taken as a centroid of the signal
process.

Similarly, a code book of transient noise pulses can be designed by
collecting a large number of training examples of the noise, and then using
a clustering technique to group, or partition, the noise database into a
number of clusters of noise pulses. The centre of each cluster is taken as a
centroid of the noise space. Clustering techniques can be used to obtain a
number of prototype templates for the characterisation of a set of transient
noise pulses. The clustering of a noise process is based on a set of noise
features that best characterise the noise. Features derived from the
magnitude spectrum are commonly used for the characterisation of many
random processes. For transient noise pulses, the most important features
are the pulse shape, the temporal-spectral characteristics of the pulse, the
pulse duration and the pulse energy profile. Figure 13.3 shows a number of
typical noise pulses. The design of a code book of signal templates is
described in Chapter 4.

n(m)
n(m)

m m

n(m) n(m)
(/\ N\
-V

Figure 13.3 A number of prototype transient pulses.

v
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13.2.2 Autoregressive Model of Transient Noise Pulses

Model-based methods have the advantage over template-based methods
that overlapped noise pulses can be modelled as the response of the model
to a number of closely spaced impulsive inputs. In this section, we consider
an autoregressive (AR) model of transient noise pulses. The AR model for
a single noise pulse n(m) can be described as

P
n(m)=Y c;n(m—k)+A(m) (13.3)
k=1

where ¢; are the AR model coefficients, and the excitation is an impulse

function &(m) of amplitude A. A number of closely spaced and overlapping
transient noise pulses can be modelled as the response of the AR model to
a sequence of impulses:

P M
n(m):ZCkn(m—k)+2Aj5(m—Tj) (13.4)
k=1 j

where it is assumed that 7} is the start of the j!h pulse in a burst of M
excitation pulses.

An improved AR model for transient noise, proposed by Godsill, is
driven by a two-state excitation: in the state S, the excitation is a zero-

mean Gaussian process of small variance G(%, and in the state Sy, the
excitation is a zero-mean Gaussian process of relatively larger variance
of>>03. In the state Sy a short-duration, and relatively large-amplitude,
excitation generates a linear model of the transient noise pulse. In the state
So the model generates a low-amplitude excitation that partially models the
inaccuracies of approximating a transient noise pulse by a linear predictive
model. The binary-state excitation signal can be expressed as

e, (m)=|o,b(m) + o yb (m)|u(m) (13.5)

where u(m) is an uncorrelated zero-mean unit-variance Gaussian process,
and b(m) indicates the state of the excitation signal: b(m)=1 indicates that
the excitation has a variance of o, and b(m)=0 (or its binary complement
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b(m)=1) indicates the excitation has a smaller variance of & 3 . The time-
varying variance of e,(m) can be expressed as

o, (m)=07b(m)+0qb(m) (13.6)

Assuming that the excitation pattern b(m) is given, and that the excitation
amplitude is Gaussian, the pdf of an N-sample long noise pulse n is given
by

1 L 1,7 -1
fN(n)=(2 NI 1,26Xp(—5n C Ae,,e,,C") (13.7)
7[ enen

where C is a matrix of coefficients of the AR model of the noise (as

described in Section 8.4), and Aenen is the diagonal covariance matrix of
the input to the noise model. The diagonal elements of A e e, ArC given by

Equation (13.6).

€n

13.2.3 Hidden Markov Model of a Noise Pulse Process

A hidden Markov model (HMM), described in Chapter 5, is a finite state
statistical model for non-stationary random processes such as speech or
transient noise pulses. In general, we may identify three distinct states for a
transient noise pulse process:

(a) the periods during which there are no noise pulses;
(b) the initial, and often short and sharp, pulse of a transient noise;
(c) the decaying oscillatory tail of a transient pulse.

Figure 13.4 illustrates a three-state HMM of transient noise pulses. The
state So models the periods when the noise pulses are absent. In this state,

the noise process may be zero-valued. This state can also be used to model
a different noise process such as a white noise process. The state S; models
the relatively sharp pulse that forms the initial part of many transient noise
pulses. The state S, models the decaying oscillatory part of a noise pulse
that usually follows the initial pulse of a transient noise. A code book of
waveforms in states S| and S, can model a variety of different noise pulses.
Note that in the HMM model of Figure 13.4, the self-loop transition
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Figure 13.4 A three-state model of a transient noise pulse process.

provides a mechanism for the modelling of the variations in the duration of
each noise pulse segment. The skip-state transitions provide a mechanism
for the modelling of those noise pulses that do not exhibit either the initial
non-linear pulse or the decaying oscillatory part.

A hidden Markov model of noise can be employed for both the
detection and the removal of transient noise pulses. As described in Section
13.3.3, the maximum-likelihood state-sequence of the noise HMM
provides an estimate of the state of the noise at each time instant. The
estimates of the states of the signal and the noise can be used for the
implementation of an optimal state-dependent signal restoration algorithm.

13.3 Detection of Noise Pulses

For the detection of a pulse process n(m) observed in an additive signal
x(m), the signal and the pulse can be modelled as

y(m)=b(m)n(m)+ x(m) (13.8)

where b(m) is a binary “indicator” process that signals the presence or
absence of a noise pulse. Using the model of Equation (13.8), the detection
of a noise pulse process can be considered as the estimation of the
underlying binary-state noise-indicator process b(m). In this section, we
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consider three different methods for detection of transient noise pulses,
using the noise template model within a matched filter, the linear predictive
model of noise, and the hidden Markov model described in Section 13.2.

13.3.1 Matched Filter for Noise Pulse Detection

The inner product of two signal vectors provides a measure of the
similarity of the signals. Since filtering is basically an inner product
operation, it follows that the output of a filter should provide a measure of
similarity of the filter input and the filter impulse response. The classical
method for detection of a signal is to use a filter whose impulse response is
matched to the shape of the signal to be detected. The derivation of a
matched filter for the detection of a pulse n(m) is based on maximisation of
the amplitude of the filter output when the input contains the pulse n(m).
The matched filter for the detection of a pulse n(m) observed in a
“background” signal x(m) is defined as

N (f)

H =K
) Pyx (f)

(13.9)

where Pxx(f) is the power spectrum of x(m) and N*(f) is the complex
conjugate of the spectrum of the noise pulse. When the ‘“background”

signal process x(m) is a zero mean uncorrelated signal with variance © )2”

the matched filter for detection of the transient noise pulse n(m) becomes

K«
H(f)=—N (f) (13.10)

X

The impulse response of the matched filter corresponding to Equation
(13.10) is given by
h(m)=Cn(—m) (13.11)

where the scaling factor C is given by C = K/ o2 . Let z(m) denote the

output of the matched filter. In response to an input noise pulse, the filter
output is given by the convolution relation

z(m)=Cn(—m)* n(m) (13.12)
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where the asterisk * denotes convolution. In the frequency domain
Equation (13.12) becomes

Z(f)=NHH(f)=CIN(f)| (13.13)

The matched filter output z(m) is passed through a non-linearity and a
decision is made on the presence or the absence of a noise pulse as

(13.14)

bomedt 1 |2(m)| = threshold
0 otherwise

In Equation (13.14), when the matched filter output exceeds a threshold,
the detector flags the presence of the signal at the input. Figure 13.5 shows
a noise pulse detector composed of a bank of M different matched filters.
The detector signals the presence or the absence of a noise pulse. If a pulse
is present then additional information provide the type of the pulse, the
maximum cross-correlation of the input and the noise pulse template, and a
time delay that can be used to align the input noise and the noise template.
This information can be used for subtraction of the noise pulse from the
noisy signal as described in Section 13.4.1.

Pulse type 1

Pulse

> > » present/absent
Noise pulse > Pulse
+ signal . type
) Pulse

> correlation

Pulse
» delay

Maximum correlation detector

Pulse type M
——» —

Figure 13.5 A bank of matched filters for detection of transient noise pulses.
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13.3.2 Noise Detection Based on Inverse Filtering

The initial part of a transient noise pulse is often a relatively short and
sharp impulsive-type event, which can be used as a distinctive feature for
the detection of the noise pulses. The detectibility of a sharp noise pulse
n(m), observed in a correlated “background” signal y(m), can often be
improved by using a differencing operation, which has the effect of
enhancing the relative amplitude of the impulsive-type noise. The
differencing operation can be accomplished by an inverse linear predictor
model of the background signal y(m). An alternative interpretation is that
the inverse filtering is equivalent to a spectral whitening operation: it
affects the energy of the signal spectrum whereas the theoretically flat
spectrum of the impulsive noise is largely unaffected. The use of an inverse
linear predictor for the detection of an impulsive-type event was considered
in detail in Section 12.4. Note that the inverse filtering operation reduces
the detection problem to that of detecting a pulse in additive white noise.

13.3.3 Noise Detection Based on HMM

In the three-state hidden Markov model of a transient noise pulse process,
described in Section 13.2.3, the states Sy, S1 and S7 correspond to the

noise-absent state, the initial noise pulse state, and the decaying oscillatory
noise state respectively. As described in Chapter 5, an HMM, denoted by
M, is defined by a set of Markovian state transition probabilities and
Gaussian state observation pdfs. The statistical parameters of the HMM of
a noise pulse process can be obtained from a sufficiently large number of
training examples of the process.

Given an observation vector y=[y(0), y(1), ..., ¥(N-1)], the maximum
likelihood state sequence s=[s(0), s(1), ..., s(N-1)], of the HMM M is

obtained as

S yp=argmax fyg (y s, M) (13.15)

s

where, for a hidden Markov model, the likelihood of an observation
sequence fys(yls,A) can be expressed as
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Fiis (90), Y (D)., YN = D]s(0),5(D)....5(N = 1))

=150y fs(0) (V00 51y sty D)+ @ w2y s vty vty VN =D))
(13.16)

where 7 is the initial state probability, a,; ;) is the probability of a
transition from state s(i) to state s(j), and f S(l-)(y(i)) is the state observation
pdf for the state s(i). The maximum-likelihood state sequence sy, , derived

using the Viterbi algorithm, is an estimate of the underlying states of the
noise pulse process, and can be used as a detector of the presence or
absence of a noise pulse.

13.4 Removal of Noise Pulse Distortions

In this section, we consider two methods for the removal of transient noise
pulses: (a) an adaptive noise subtraction method and (b) an autoregressive
(AR) model-based restoration method. The noise removal methods assume
that a detector signals the presence or the absence of a noise pulse, and
provides additional information on the timing and the underlying the states
of the noise pulse

13.4.1 Adaptive Subtraction of Noise Pulses

The transient noise removal system shown in Figure 13.6 is composed of a
matched filter for detection of noise pulses, a linear adaptive noise
subtractor for cancellation of the linear transitory part of a noise pulse, and
an interpolator for the replacement of samples irrevocably distorted by the
initial part of each pulse. Let x(m), n(m) and y(m) denote the signal, the
noise pulse and the noisy signal respectively; the noisy signal model is

y(m)=x(m)+b(m) n(m) (13.17)

where the binary indicator sequence b(m) indicates the presence or the
absence of a noise pulse. Assume that each noise pulse n(m) can be
modelled as the amplitude-scaled and time-shifted version of the noise
pulse template 72(m) so that
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Signal + noise pulse Signal estimate

y(m) = x(m) + n(m) x(m)
2 >@—> Interpolator -

A
1 : Noise pulse present
Matched filter 0 : Noise pulse absent
detector X
Tsy
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Noise pulse ¢ Tyy

template

@——p» Delay

Figure 13.6 Transient noise pulse removal system.

n(m)=wn(m— D) (13.18)

where w is an amplitude scalar and the integer D denotes the relative delay
(time shift) between the noise pulse template and the detected noise. From
Equations (13.17) and (13.18) the noisy signal can be modelled:

y(m)=x(m)+wn(m— D) (13.19)

From Equation (13.19) an estimate of the signal x(m) can be obtained by
subtracting an estimate of the noise pulse from that of the noisy signal:

X(m)=y(m)-wn(m— D) (13.20)

where the time delay D required for time-alignment of the noisy signal
y(m) and the noise template 72(m) is obtained from the cross-correlation
function CCF as

D=arg max[CCF (y(m), i(m - k))] (13.21)
k

When a noise pulse is detected, the time lag corresponding to the
maximum of the cross-correlation function is used to delay and time-align
the noise pulse template with the noise pulse. The template energy is
adaptively matched to that of the noise pulse by an adaptive scaling
coefficient w. The scaled and time-aligned noise template is subtracted
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Figure 13.7 (a) A signal from an old gramophone record with a scratch noise
pulse. (b) The restored signal.

from the noisy signal to remove linear additive distortions. The adaptive
scaling coefficient w is estimated as follows. The correlation of the noisy
signal y(m) with the delayed noise pulse template 7(m— D) gives

Y y(m(m—D)=Y [x(m)+wit(m— D)}ii(m— D)
"m0 = o (13.22)
=Y x(m)(m— D)+w) 7i(m—D)n(m— D)

where N is the pulse template length. Since the signal x(m) and the noise

n(m) are uncorrelated, the term X x(m)7(m— D) on the right hand side of
Equation (13.22) is small, and we have
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z x(m)yn(m— D)

w= 2” (m—-D) (13.23)

Note when a false detection of a noise pulse occurs, the cross-correlation
term and hence the adaptation coefficient w could be small. This will keep
the signal distortion resulting from false detections to a minimum.

Samples that are irrevocably distorted by the initial scratch pulse are
discarded and replaced by one of the signal interpolators introduced in
Chapter 10. When there is no noise pulse, the coefficient w is zero, the
interpolator is bypassed and the input signal is passed through unmodified.
Figure 13.7(b) shows the result of processing the noisy signal of Figure
13.7(a). The linear oscillatory noise is completely removed by the adaptive
subtraction method. For this signal 80 samples irrevocably distorted by the
initial scratch pulse were discarded and interpolated.

13.4.2 AR-based Restoration of Signals Distorted by Noise
Pulses

A model-based approach to noise detection/removal provides a more
compact method for characterisation of transient noise pulses, and has the
advantage that closely spaced pulses can be modelled as the response of the
model to a number of closely spaced input impulses. The signal x(m) is
modelled as the output of an AR model of order P, as

R
x(m)=Y ax(m—k)+e(m) (13.24)
k=1

Assuming that e(m) is a zero-mean uncorrelated Gaussian process with
variance o2, the pdf of a vector x of N successive signal samples of an

autoregressive process with parameter vector a is given by

1 1
fx (x)=mexp [——xTA Ax) (13.25)

262
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where the elements of the matrix A are composed of the coefficients a; of

the linear predictor model as described in Section 8.4. In Equation (13.25),
it is assumed that the P; initial samples are known. The AR model for a

single noise pulse waveform n(m) can be written as

)
n(m)=Y" c;n(m—k)+As(m) (13.26)
k=1

where ¢, are the model coefficients, P, is the model order, and the

excitation is a assumed to be an impulse of amplitude A. A number of
closely spaced and overlapping noise pulses can be modelled as

Py M
n(m)=Y an(m—k)+Y A;5(m-T;) (13.27)
k=1 J

where it is assumed that T is the start of the kth excitation pulse in a burst

of M pulses. A linear predictor model proposed by Godsill is driven by a
binary-state excitation. The excitation waveform has two states: in state
“0”, the excitation is a zero-mean Gaussian process of variance 0'8, and in

state “1”, the excitation is a zero-mean Gaussian process of variance
of>>03. In state “1”, the model generates a short-duration large

amplitude excitation that largely models the transient pulse. In state “07,
the model generates a low excitation that partially models the inaccuracies
of approximating a nonlinear system by an AR model. The composite
excitation signal can be written as

e, (m)=|b(m)o | +b (m)o u(m) (13.28)

where u(m) is an uncorrelated zero-mean Gaussian process of unit variance,
b(m) is a binary sequence that indicates the state of the excitation, and

b(m) is the binary complement of b(m). When b(m)=1 the excitation

. . o . . 2
variance 1is 012 and when b(m)=0, the excitation variance is O . The
binary-state variance of e,(m) can be expressed as

. (m)=b(m)o} +b(m)a; (13.29)
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Assuming that the excitation pattern b=[b(m)] is given, the pdf of an N
sample noise pulse x is

1 1 -
e e,

where the elements of the matrix C are composed of the coefficients ¢ of

the linear predictor model as described in Section 8.4. The posterior pdf of
the signal x given the noisy observation y, fxy(xly),can be expressed, using

Bayes’ rule, as

1
fy(y)

1
= fy(y)fN(y_x)fX(x)

fxiy(xly)= Srixlx)fx(x)

(13.31)

For a given observation fy(y) is a constant. Substitution of Equations
(13.30) and (13.25) in Equation (13.31) yields

1

1
fxw (x|y)=

Sy () @no,)N 1/2

Aenen

(13.32)

1 - 1
xexp| —=(y=x)'CTA, Cy—x)- —5x"ATAx
2 n-n 20_6

The MAP solution obtained by maximisation of the log posterior function
with respect to the undistorted signal x is given by

A - 1 -
xMAP:(ATA/ng,cTAenLnCT C'A,, Cy (13.33)

n



Summary 395

13.5 Summary

In this chapter, we considered the modelling, detection and removal of
transient noise pulses. Transient noise pulses are non-stationary events
similar to impulsive noise, but usually occur less frequently and have a
longer duration than impulsive noise. An important observation in the
modelling of transient noise is that the noise can be regarded as the impulse
response of a communication channel, and hence may be modelled by one
of a number of statistical methods used in the of modelling communication
channels. In Section 13.2, we considered several transient noise pulse
models including a template-based method, an AR model-based method
and a hidden Markov model. In Sections 13.2 and 13.3, these models were
applied to the detection and removal of noise pulses.
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ECHO CANCELLATION

14.1 Introduction: Acoustic and Hybrid Echoes
14.2 Telephone Line Hybrid Echo

14.3 Hybrid Echo Suppression

14.4 Adaptive Echo Cancellation

14.5 Acoustic Echo

14.6 Sub-band Acoustic Echo Cancellation
14.7 Summary

cho is the repetition of a waveform due to reflection from points

where the characteristics of the medium through which the wave

propagates changes. Echo is usefully employed in sonar and radar for
detection and exploration purposes. In telecommunication, echo can degrade
the quality of service, and echo cancellation is an important part of
communication systems. The development of echo reduction began in the
late 1950s, and continues today as new integrated landline and wireless
cellular networks put additional requirement on the performance of echo
cancellers. There are two types of echo in communication systems: acoustic
echo and telephone line hybrid echo. Acoustic echo results from a feedback
path set up between the speaker and the microphone in a mobile phone,
hands-free phone, teleconference or hearing aid system. Acoustic echo may
be reflected from a multitude of different surfaces, such as walls, ceilings
and floors, and travels through different paths. Telephone line echoes result
from an impedance mismatch at telephone exchange hybrids where the
subscriber's 2-wire line is connected to a 4-wire line. The perceptual effects
of an echo depend on the time delay between the incident and reflected
waves, the strength of the reflected waves, and the number of paths through
which the waves are reflected. Telephone line echoes, and acoustic feedback
echoes in teleconference and hearing aid systems, are undesirable and
annoying and can be disruptive. In this chapter we study some methods for
removing line echo from telephone and data telecommunication systems,
and acoustic feedback echoes from microphone—loudspeaker systems.
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14.1 Introduction: Acoustic and Hybrid Echoes

Echo can severely affect the quality and intelligibility of voice conversation
in a telephone system. The perceived effect of an echo depends on its
amplitude and time delay. In general, echoes with an appreciable amplitude
and a delay of more than 1 ms are noticeable. Provided the round-trip delay
is on the order of a few milliseconds, echo gives a telephone call a sense of
“liveliness”. However, echoes become increasingly annoying and
objectionable with the increasing round-trip delay and amplitude in
particular for delays of more than 20 ms. Hence echo cancellation is an
important aspect of the design of modern telecommunication systems such
as conventional wireline telephones, hands-free phones, cellular mobile
(wireless) phones, or teleconference systems. There are two types of echo in
a telephone system (Figure 14.1):

(a) acoustic echo due to acoustic coupling between the speaker and
the microphone in hands-free phones, mobile phones and
teleconference systems;

(b) electrical line echo due to mismatch at the hybrid circuit
connecting a 2-wire subscriber line to a 4-wire truck line in the
public switched telephone network.

In the early days of expansion of telephone networks, the cost of
running a 4-wire line from the local exchange to subscribers’ premises was
considered uneconomical. Hence, at the exchange the 4-wire truck lines are
converted to 2-wire subscribers local lines using a 2/4-wire hybrid bridge
circuit. At the receiver due to any imbalance between the 4/2-wire bridge
circuit, some of the signal energy of the 4-wire circuit is bounced back

|

Echo cancellers

Hybrid echo Acoustic echo

——

Mobile switching

«——
centre

Figure 14.1 lllustration of echo in a mobile to land line system.
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towards the transmitter, constituting an echo signal. If the echo is more than
a few milliseconds long then it becomes noticeable, and can be annoying
and disruptive.

In digital mobile phone systems, the voice signals are processed at two
points in the network: first voice signals are digitised, compressed and
coded within the mobile handset, and then processed at the radio frequency
interface of the network. The total delay introduced by the various stages of
digital signal processing range from 80 ms to 100 ms, resulting in a total
round-trip delay of 160-200 ms for any echo. A delay of this magnitude will
make any appreciable echo disruptive to the communication process. Owing
to the inherent processing delay in digital mobile communication systems, it
is essential and mandatory to employ echo cancellers in mobile phone
switching centres.

14.2 Telephone Line Hybrid Echo

Hybrid echo is the main source of echo generated from the public-switched
telephone network (PSTN). Echoes on a telephone line are due to the
reflection of signals at the points of impedance mismatch on the connecting
circuits. Conventionally, telephones in a given geographical area are
connected to an exchange by a 2-wire twisted line, called the subscriber's
lineline, which serves to receive and transmit signals. In a conventional
system a local call is set up by establishing a direct connection, at the
telephone exchange, between two subscribers’ loops. For a local call, there
is usually no noticeable echo either because there is not a significant
impedance mismatch on the connecting 2-wire local lines or because the

Echo of B Hybrid B

1
Hybrid A | 1
1

Echo of A

Speaker A < Speaker B

Figure 14.2 lllustration of a telephone call set up by connection of 2-wire
subscriber's via hybrids to 4-wire lines at the exchange.
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Figure 14.3 A 2-wire to 4-wire hybrid circuit.

distances are relatively small and the resulting low-delay echoes are
perceived as a slight amplification and “livening” effect. For long-distance
communication between two exchanges, it is necessary to use repeaters to
amplify the speech signals; therefore a separate 2-wire telephone line is
required for each direction of transmission.

To establish a long-distance call, at each end, a 2-wire subscriber's line
must be connected to a 4-wire line at the exchange, as illustrated in Figure
14.2. The device that connects the 2-wire subscriber's loop to the 4-wire line
is called a hybrid, and is shown in Figure 14.3. As shown the hybrid is
basically a three-port bridge circuit. If the hybrid bridge were perfectly
balanced then there would be no reflection or echo. However, each hybrid
circuit serves a number of subscribers’ lines. The subscribers' lines do not
all have the same length and impedance characteristics; therefore it is not
possible to achieve perfect balance for all subscribers at the hybrids. When
the bridge is not perfectly balanced, some of the signal energy on the
receiving 4-wire lines becomes coupled back onto itself and produces an
echo. Echo is often measured in terms of the echo return loss (ERL); the
higher the echo return loss the lower will be the echo. Telephone line echoes
are undesirable, and become annoying when the echo amplitude is relatively
high and the echo delay is long. For example when a long-distance call is
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made via a satellite the round-trip echo delay can be as long as 600 ms, and
echoes can become disruptive. Also, as already mentioned, there are
appreciable delays of up to 200 ms inherent in digital mobile phones, which
make any echo quite noticeable. For this reason the employment of echo
cancellers in mobile switching centres is mandatory.

14.3 Hybrid Echo Suppression

The development of echo reduction began in the late 1950s with the advent
of echo suppression systems. Echo suppressors were first employed to
manage the echo generated primarily in satellite circuits. An echo suppresser
(Figure 14.4) is primarily a switch that lets the speech signal through during
the speech-active periods and attenuates the line echo during the speech-
inactive periods. A line echo suppresser is controlled by a speech/echo
detection device. The echo detector monitors the signal levels on the
incoming and outgoing lines, and decides if the signal on a line from, say,
speaker B to speaker A is the speech from the speaker B to the speaker A, or
the echo of speaker A. If the echo detector decides that the signal is an echo
then the signal is heavily attenuated. There is a similar echo suppression unit
from speaker A to speaker B. The performance of an echo suppresser
depends on the accuracy of the echo/speech classification subsystem. Echo
of speech often has a smaller amplitude level than the speech signal, but

Echo/speech
classifier >

- o /VC - Speaker B

Echo suppressor

Figure 14.4 Block diagram illustration of an echo suppression system.
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otherwise it has mainly the same spectral characteristics and statistics as
those of the speech. Therefore the only basis for discrimination of speech
from echo is the signal level. As a result, the speech/echo classifier may
wrongly classify and let through high-level echoes as speech, or attenuate
low-level speech as echo. For terrestrial circuits, echo suppressers have been
well designed, with an acceptable level of false decisions and a good
performance. The performance of an echo suppresser depends on the time
delay of the echo. In general, echo suppressers perform well when the
round-trip delay of the echo is less than 100 ms. For a conversation routed
via a geostationary satellite the round-trip delay may be as much as 600 ms.
Such long delays can change the pattern of conversation and result in a
significant increase in speech/echo classification errors. When the delay is
long, echo suppressers fail to perform satisfactorily, and this results in
choppy first syllables and artificial volume adjustment. A system that is
effective with both short and long time delays is the adaptive echo canceller
introduced next.

14.4 Adaptive Echo Cancellation

Echo cancellation was developed in the early 1960s by AT&T Bell Labs and
later by COMSAT TeleSystems. The first echo cancellation systems were
experimentally implemented across satellite communication networks to
demonstrate network performance for long-distance calls.

Figure 14.5 illustrates the operation of an adaptive line echo canceller. The
speech signal on the line from speaker A to speaker B is input to the 4/2
wire hybrid B and to the echo canceller. The echo canceller monitors the
signal on line from B to A and attempts to model and synthesis a replica of
the echo of speaker A. This replica is used to subtract and cancel out the
echo of speaker A on the line from B to A. The echo canceller is basically
an adaptive linear filter. The coefficients of the filter are adapted so that the
energy of the signal on the line is minimised. The echo canceller can be an
infinite impulse response (IIR) or a finite impulse response (FIR) filter. The
main advantage of an IIR filter is that a long-delay echo can be synthesised
by a relatively small number of filter coefficients. In practice, echo
cancellers are based on FIR filters. This is mainly due to the practical
difficulties associated with the adaptation and stable operation of adaptive
IIR filters.
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Figure 14.5 Block diagram illustration of an adaptive echo cancellation system.

Assuming that the signal on the line from speaker B to speaker A,
yg(m), is composed of the speech of speaker B, xp(m), plus the echo of

echo

speaker A, x3 " (m), we have

y g (m) = xg (m) + x5 (m) (14.1)
In practice, speech and echo signals are not simultaneously present on a
phone line. This, as pointed out shortly, can be used to simplify the
adaptation process. Assuming that the echo synthesiser is an FIR filter, the
filter output estimate of the echo signal can be expressed as

£5E00 (m) = ZWk(m)xA(m k) (14.2)
k=0

where wy(m) are the time-varying coefficients of an adaptive FIR filter and

AeCho (m) is an estimate of the echo of speaker A on the line from speaker B

to speaker A. The residual echo signal, or the error signal, after echo
subtraction is given by

e(m) = y 5 (m) — 25 (m)

- (14.3)
= xp (m) + x5 (m) = Y, wy (m) x4 (m— k)
k=0
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Figure 14.6 lllustration of an echo canceller using an adaptive FIR filter and
incorporation a echo/speech classifier.

For those time instants when speaker A is talking, and speaker B is listening
and silent, and only echo is present from line B to A, we have

e(m) = kvgcho (m) = XZChO (m) — )%ZChO (m)
= (14.4)
= x5 (m) = Y wy (m) x4 (m — k)
k=0
~echo

where X, (m) is the residual echo. An echo canceller using an adaptive

FIR filter is illustrated in Figure 14.6. The magnitude of the residual echo
depends on the ability of the echo canceller to synthesise a replica of the
echo, and this in turn depends on the adaptation algorithm discussed next.

14.4.1 Echo Canceller Adaptation Methods

The echo canceller coefficients wy(m) are adapted to minimise the energy of
the echo signal on a telephone line, say from speaker B to speaker A.
Assuming that the speech signals x4(m) and xg(m) are uncorrelated, the

energy on the telephone line from B to A is minimised when the echo

canceller output £5°(m) is equal to the echo x5 (m) on the line. The

echo canceller coefficients may be adapted using one of the variants of the
recursive least square error (RLS) or the least mean squared error (LMS)
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adaptation methods. One of the most widely used algorithms for adaptation
of the coefficients of an echo canceller is the normalised least mean square
error (NLMS) method. The time-update equation describing the adaptation
of the filter coefficient vector is

w(m)=w(m—1)+ eT(m) x , (m) (14.5)
x(m)A xA(m)
where xs(m)=[xs(m), ..., xa(m—P)] and w(m)=[wo(m), ..., wp 1(m)] are the

input signal vector and the coefficient vector of the echo canceller, and e(m)
is the difference between the signal on the echo line and the output of the

echo synthesiser. Note that the normalising quantity x(m)} x ,(m) is the

energy of the input speech to the adaptive filter. The scalar u is the
adaptation step size, and controls the speed of convergence, the steady-state
error and the stability of the adaptation process.

14.4.2 Convergence of Line Echo Canceller

For satisfactory performance, the echo canceller should have a fast
convergence rate, so that it can adequately track changes in the telephone
line and the signal characteristics. The convergence of an echo canceller is
affected by the following factors:

(a) Non-stationary characteristics of telephone line and speech. The echo
characteristics depend on the impedance mismatch between the
subscribers loop and the hybrids. Any changes in the connecting paths
affect the echo characteristics and the convergence process. Also as
explained in Chapter 7, the non-stationary character and the eigenvalue
spread of the input speech signal of an LMS adaptive filter affect the
convergence rates of the filter coefficients.

(b) Simultaneous conversation. In a telephone conversation, usually the
talkers do not speak simultaneously, and hence speech and echo are
seldom present on a line at the same time. This observation simplifies the
echo cancellation problem and substantially aids the correct functioning
of adaptive echo cancellers. Problems arise during the periods when both
speakers talk at the same time. This is because speech and its echo have
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similar characteristics and occupy basically the same bandwidth. When
the reference signal contains both echo and speech, the adaptation
process can lose track, and the echo cancellation process can attempt to
cancel out and distort the speech signal. One method of avoiding this
problem is to use a speech activity detector, and freeze the adaptation
process during periods when speech and echo are simultaneously present
on a line, as shown in Figure 14.6. In this system, the effect of a
speech/echo misclassification is that the echo may not be optimally
cancelled out. This is more acceptable than is the case in echo
suppressors, where the effect of a misclassification is the suppression and
loss of a part of the speech.

(¢) The adaptation algorithm. Most echo cancellers use variants of the LMS
adaptation algorithm. The attractions of the LMS are its relatively low
memory and computational requirements and its ease of implementation
and monitoring. The main drawback of LMS is that it can be sensitive to
the eigenvalue spread of the input signal and is not particularly fast in its
convergence rate. However, in practice, LMS adaptation has produced
effective line echo cancellation systems. The recursive least square (RLS)
error methods have a faster convergence rate and a better minimum mean
square error performance. With the increasing availability of low-cost
high-speed dedicated DSP processors, implementation of higher-
performance and computationally intensive echo cancellers based on
RLS are now feasible.

14.4.3 Echo Cancellation for Digital Data Transmission

Echo cancellation becomes more complex with the increasing integration of
wireline telephone systems and mobile cellular systems, and the use of
digital transmission methods such as asynchronous transfer mode (ATM)
for integrated transmission of data, image and voice. For example, in ATM
based systems, the voice transmission delay varies depending on the route
taken by the cells that carry the voice signals. This variable delay added to
the delay inherent in digital voice coding complicates the echo cancellation
process.

The 2-wire subscriber telephone lines that were originally intended to
carry relatively low-bandwidth voice signals are now used to provide
telephone users with high-speed digital data links and digital services such
as video-on-demand and internet services using digital transmission



406 Echo Cancellation

w Transmitter |<—

v."7 AN |
B Echo A> - - < Echo A
cancellar === B canceller

7 - -
near-end! [,
_ echo : !
, —
1

+ -

+
e H—O = O [

far-end echo

Figure 14.7 Echo cancellation in digital modems using 2-wire subscriber's loop.

methods such as the asynchronous digital subscriber line (ADSL).
Traditionally, the bandwidth of the subscribers line is limited by low-pass
filters at the core network to 3.4 kHz. Within this bandwidth, voice-band
modems can provide data rates of around 30 kilobits per second (kbps).
However the copper wire itself has a much higher usable bandwidth
extending into megahertz regions, although attenuation and interference
increase with both the frequency and the length of the wire. Using advanced
signal processing and modulation schemes methods such as ADSL can
achieve a 10 megabits per second data rate over 240 MHz bandwidth of
subscriber’s twisted wire line.

Figure 14.7 shows a system for providing a full-duplex digital service
over a 2-wire subscriber’s loop. To provide simultaneous transmission of
data in both directions within the same bandwidth over the subscriber’s line,
echo cancellation is needed. The echoes on a line consist of the near-end
echo which loops back at the first or the near hybrid, and the far-end echo
which is the signal that loops back at a hybrid some distance away. The
main purpose of the echo canceller is to cancel the near-end echo. Since the
digital signal coming from a far-end may be attenuated by 40-50 dB, the
near echo on a high speed data transmission line can be as much as 40-50
dB above the desired signal level. For reliable data communication the echo
canceller must provide 50-60 dB attenuation of the echo signal so that the
signal power remains at 10 dB above the echo.

14.5 Acoustic Echo

Acoustic echo results from a feedback path set up between the speaker and
the microphone in a mobile phone, hands-free phone, teleconference or
hearing aid system. Acoustic echo is usually reflected from a multitude of
different surfaces, such as walls, ceilings and floors, and travels through
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different paths. If the time delay is not too long then the acoustic echo may
be perceived as a soft reverberation, and may add to the artistic quality of
the sound. Concert halls and church halls with desirable reverberation
characteristics can enhance the quality of a musical performance. However,
acoustic echo is a well-known problem with hands-free telephones,
teleconference systems, public address systems, mobile phones, and hearing
aids, and is due to acoustic feedback coupling of sound waves between the
loudspeakers and microphones. Acoustic echo can result from a
combination of direct acoustic coupling and multipath effect where the
sound wave is reflected from various surfaces and then picked up by the
microphone. In its worst case, acoustic feedback can result in howling if a
significant proportion of the sound energy transmitted by the loudspeaker is
received back at the microphone and circulated in the feedback loop. The
overall round gain of an acoustic feedback loop depends on the frequency
responses of the electrical and the acoustic signal paths. The undesirable
effects of the electrical sections on the acoustic feedback can be reduced by
designing systems that have a flat frequency response. The main problem is
in the acoustic feedback path and the reverberating characteristics of the
room. If the microphone—speaker-room system is excited at a frequency
whose loop gain is greater than unity then the signal is amplified each time
it circulates round the loop, and feedback howling results. In practice, the
howling is limited by the non-linearity of the electronic system.

There are a number of methods for removing acoustic feedback. One
method for alleviating the effects of acoustic feedback and the room
reverberations is to place a frequency shifter (or a phase shifter) in the
electrical path of the feedback loop. Each time a signal travels round the
feedback loop it is shifted by a few hertz before being re-transmitted by the
loudspeaker. This method has some effect in reducing the howling but it is
not effective for removal of the overall echo of the acoustic feedback.
Another approach is to reduce the feedback loop-gain at those frequencies
where the acoustic feedback energy is concentrated. This may be achieved
by using adaptive notch filters to reduce the system gain at frequencies
where acoustic oscillations occur. The drawback of this method is that in
addition to reducing the feedback the notch filters also result in distortion of
the desired signal frequencies.

The most effective method of acoustic feedback removal is the use of
an adaptive feedback cancellation system. Figure 14.8 illustrates a model of
an acoustic feedback environment, comprising a microphone, a loudspeaker
and the reverberating space of a room. The z-transfer function of a linear
model of the acoustic feedback environment may be expressed as
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Figure 14.8 Configuration of a feedback model for a microphone—loudspeaker—
room system.

G(2)

") = s oam

(14.6)

where G(z) is the z-transfer function model for the microphone—loudspeaker
system and A(z) is the z-transfer function model of reverberations and multi-
path reflections of a room environment. Assuming that the microphone—
loudspeaker combination has a flat frequency response with a gain of G,
Equation (14.6) can be simplified to

G
H(z)=—— :
ey e

Note that in Equation (14.6), owing to the reverberating character of the
room, the acoustic feedback path A(z) is itself a feedback system. The
reverberating characteristics of the acoustic environment may be modelled
by an all-pole linear predictive model, or alternatively a relatively long FIR
model.

The equivalent time-domain input/output relation for the linear filter
model of Equation (14.7) is given by the following difference equation:

P-1
ym)=G Zak(m)y(m—k) + Gx(m) (14.8)
k=0
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where a(m) are the coefficients of an all-pole linear feedback model of the
reverberating room environment, G 1is the microphone—loudspeaker
amplitude gain factor, and x(m) and y(m) are the time domain input and
output signals of the microphone—loudspeaker system.

Figure 14.9 is an illustration of an acoustic feedback cancellation
system. In an acoustic feedback environment, the total input signal to the
microphone is given as the sum of any new input to the microphone x()
plus the unwanted acoustic feedback signal ym):

y(m)=x(m)+y ¢ (m) (14.9)

The most successful acoustic feedback control systems are based on
adaptive estimation and cancellation of the feedback signal. As in a line
echo canceller, an adaptive acoustic feedback canceller attempts to
synthesise a replica of the acoustic feedback at its output as

P=1
$ym) = X a(m)y(m—k) (14.10)
k=0
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The filter coefficients are adapted to minimise the energy of an error signal
defined as

e(m) = x(m)+ys(m)— )Aif (m) (14.11)

The adaptation criterion is usually the minimum mean square error criterion
and the adaptation algorithm is a variant of the LMS or the RLS method.
The problem of acoustic echo cancellation is more complex than line echo
cancellation for a number of reasons. First, acoustic echo is usually much
longer (up to a second) than terrestrial telephone line echoes. In fact, the
delay of an acoustic echo is similar to or more than a line echo routed via a
geostationary satellite system.

The large delay of an acoustic echo path implies that impractically large
filters on the order of a few thousand coefficients may be required. The
stable and speedy adaptation of filters of such length presents a difficult
problem. Secondly, the characteristics of an acoustic echo path is more non-
stationary compared with that of a telephone line echo. For example, the
opening or closing of a door, or people moving in or out of a room, can
suddenly change the acoustic character of a conference room. Thirdly,
acoustic echoes are due to signals reflected back from a multitude of
different paths, off the walls, the floor, the ceiling, the windows etc. Finally,
the propagation and diffusion characteristics of the acoustic space of a room
is a non-linear process, and is not well approximated by a lumped FIR (or
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IIR) linear filter. In comparison, it is more reasonable to model the
characteristics of a telephone line echo with a linear filter. In any case, for
acoustic echo cancellation, the filter must have a large impulse response and
should be able to quickly track fast changes in echo path characteristics.

An important application of acoustic feedback cancellation is in hearing
aid systems. A hearing aid system can be modelled as a feedback system as
shown in Figure 14.10. The maximum usable gain of a hearing aid system is
limited by the acoustic feedback between the microphone and the speaker.
Figure 14.10 illustrates the configuration of a feedback canceller in a
hearing aid system. The acoustic feedback synthesiser has the same input as
the acoustic feedback path. An adaptation algorithm adjusts the coefficients
of the synthesiser to cancel out the feedback signals picked up by the
microphone, before the microphone output is fed into the speaker.

14.6 Sub-Band Acoustic Echo Cancellation

In addition to the complex and varying nature of room acoustics, there are
two main problems in acoustic echo cancellation. First, the echo delay is
relatively long, and therefore the FIR echo synthesiser must have a large
number of coefficients, say 2000 or more. Secondly, the long impulse
response of the FIR filter and the large eigenvalue spread of the speech
signals result in a slow, and uneven, rate of convergence of the adaptation
process.

A sub-band-based echo canceller alleviates the problems associated
with the required filter length and the speed of convergence. The sub-band-
based system is shown in Figure 14.11. The sub-band analyser splits the
input signal into N sub-bands. Assuming that the sub-bands have equal
bandwidth, each sub-band occupies only 1/N of the baseband frequency, and
can therefore be decimated (down sampled) without loss of information. For
simplicity, assume that all sub-bands are down-sampled by the same factor
R. The main advantages of a sub-band echo canceller are a reduction in filter
length and a gain in the speed of convergence as explained below:

(a) Reduction in filter length. Assuming that the impulse response of
each sub-band filter has the same duration as the impulse response of
the full band FIR filter, the length of the FIR filter for each down-
sampled sub-band is 1/R of the full band filter.

(b) Reduction in computational complexity. The computational
complexity of an LMS-type adaptive filter depends directly on the
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Figure 14.11 Configuration of a sub-band acoustic echo cancellation system.

product of the filter length and the sampling rate. As for each sub-
band, the number of samples per second and the filter length
decrease with 1/R, it follows that the computational complexity of
each sub-band filter is 1/R? of that of the full band filter. Hence the
overall gain in computational complexity of a sub-band system is
RZ%/N of the full band system.

(c) Speed of convergence. The speed of convergence depends on both

the filter length and the eigenvalue spread of the signal. The speed of
convergence increases with the decrease in the length of the FIR
filter for each sub-band. A more important factor affecting the
convergence of adaptive filter is the eigenvalue spread of the
autocorrelation matrix of the input signal. As the spectrum of a
signal becomes flatter, the spread of its eigenvalues decreases, and
the speed of convergence of the adaptive filter increases. In general,
the signal within each sub-band is expected to have a flatter
spectrum than the full band signal. This aids the speed of
convergence. However, it must be noted that the attenuation of sub-
band filters at the edges of the spectrum of each band creates some
very small eigenvalues.
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14.7 Summary

Telephone line echo and acoustic feedback echo affect the functioning of
telecommunication and teleconferencing systems. In general, line echo
cancellation, is a relatively less complex problem than acoustic echo
cancellation because acoustic cancellers need to model the more complex
environment of the space of a room.

We began this chapter with a study of the telephone line echoes arising
from the mismatch at the 2/4-wire hybrid bridge. In Section 14.2, line echo
suppression and adaptive line echo cancellation were considered. For
adaptation of an echo canceller, the LMS or the RLS adaptation methods
can be used. The RLS methods provides a faster convergence rate and better
overall performance at the cost of higher computational complexity.

In Section 14.3, we considered the acoustic coupling between a
loudspeaker and a microphone system. Acoustic feedback echo can result in
howling, and can disrupt the performance of teleconference, hands-free
telephones, and hearing aid systems. The main problems in implementation
of acoustic echo cancellation systems are the requirement for a large filter to
model the relatively long echo, and the adaptation problems associated with
the eigenvalue spread of the signal. The sub-band echo canceller introduced
in Section 14.4 alleviates these problems.
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CHANNEL EQUALIZATION AND
BLIND DECONVOLUTION

15.1 Introduction

15.2 Blind-Deconvolution Using Channel Input Power Spectrum
15.3 Equalization Based on Linear Prediction Models

15.4 Bayesian Blind Deconvolution and Equalization

15.5 Blind Equalization for Digital Communication Channels
15.6 Equalization Based on Higher-Order Statistics

15.7 Summary

lind deconvolution is the process of unravelling two unknown

signals that have been convolved. An important application of blind

deconvolution is in blind equalization for restoration of a signal
distorted in transmission through a communication channel. Blind
equalization has a wide range of applications, for example in digital
telecommunications for removal of intersymbol interference, in speech
recognition for removal of the effects of microphones and channels, in
deblurring of distorted images, in dereverberation of acoustic recordings, in
seismic data analysis, etc.

In practice, blind equalization is only feasible if some useful statistics
of the channel input, and perhaps also of the channel itself, are available.
The success of a blind equalization method depends on how much is known
about the statistics of the channel input, and how useful this knowledge is in
the channel identification and equalization process. This chapter begins with
an introduction to the basic ideas of deconvolution and channel equalization.
We study blind equalization based on the channel input power spectrum,
equalization through separation of the input signal and channel response
models, Bayesian equalization, nonlinear adaptive equalization for digital
communication channels, and equalization of maximum-phase channels
using higher-order statistics.
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15.1 Introduction

In this chapter we consider the recovery of a signal distorted, in
transmission through a channel, by a convolutional process and observed in
additive noise. The process of recovery of a signal convolved with the
impulse response of a communication channel, or a recording medium, is
known as deconvolution or equalization. Figure 15.1 illustrates a typical
model for a distorted and noisy signal, followed by an equalizer. Let x(m),
n(m) and y(m) denote the channel input, the channel noise and the observed
channel output respectively. The channel input/output relation can be
expressed as

y(m)=h{x(m)]+n(m) (15.1)

where the function A[-] is the channel distortion. In general, the channel
response may be time-varying and non-linear. In this chapter, it is assumed
that the effects of a channel can be modelled using a stationary, or a slowly
time-varying, linear transversal filter. For a linear transversal filter model of
the channel, Equation (15.1) becomes

y(m):i h, (m)x(m — k)+n(m) (15.2)

where hy(m) are the coefficients of a Pth order linear FIR filter model of the
channel. For a time-invariant channel model, A (m)=h.
In the frequency domain, Equation (15.2) becomes

Y(f)=X(HH()+N(S) (15.3)
Noise n(m)
) Distortion S 4 Equaliser )/c\(m)
o A »@—»H@t: -
f f

Figure 15.1 lllustration of a channel distortion model followed by an equalizer.
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where Y(f), X(f), H(f) and N(f) are the frequency spectra of the channel
output, the channel input, the channel response and the additive noise

respectively. Ignoring the noise term and taking the logarithm of Equation
(15.3) yields

Y (f)|=In|X ()] +In[H (f)] (15.4)

From Equation (15.4), in the log-frequency domain the effect of channel
distortion is the addition of a “tilt” term InlH(f)| to the signal spectrum.

15.1.1 The Ideal Inverse Channel Filter

The ideal inverse-channel filter, or the ideal equalizer, recovers the original
input from the channel output signal. In the frequency domain, the ideal
inverse channel filter can be expressed as

H(f)H™ (f)=1 (15.5)

In Equation (15.5) H V(£ is used to denote the inverse channel filter. For
the ideal equalizer we have H™ (f)=H'(f), or, expressed in the log-

frequency domain InH " (fy=—InH(f). The general form of Equation
(15.5) is given by the z-transform relation

H(z)H™ (2)=7"" (15.6)

for some value of the delay N that makes the channel inversion process
causal. Taking the inverse Fourier transform of Equation (15.5), we have the
following convolutional relation between the impulse responses of the

channel {/4;} and the ideal inverse channel response { h;icnv }:

S b =5(i) (15.7)
k

where &(i) is the Kronecker delta function. Assuming the channel output is
noise-free and the channel is invertible, the ideal inverse channel filter can
be used to reproduce the channel input signal with zero error, as follows.
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The inverse filter output x(m), with the distorted signal y(m) as the input, is
given as

2m)=Y ™ y(m—k)
k
zzh,invzhjx(m—k—j) (15.8)
k j

=Y x(m- i)Zh;;"Vhl._k
i k

The last line of Equation (15.8) is derived by a change of variables i=k+j in
the second line and rearrangement of the terms. For the ideal inverse
channel filter, substitution of Equation (15.7) in Equation (15.8) yields

5c(m)=25(i)x(m —i)=x(m) (15.9)

which is the desired result. In practice, it is not advisable to implement
H™(f) simply as H~'(f) because, in general, a channel response may be non-
invertible. Even for invertible channels, a straightforward implementation of
the inverse channel filter H-!(f) can cause problems. For example, at
frequencies where H(f) is small, its inverse H!(f) is large, and this can lead
to noise amplification if the signal-to-noise ratio is low.

15.1.2 Equalization Error, Convolutional Noise

The equalization error signal, also called the convolutional noise, is defined
as the difference between the channel equalizer output and the desired
signal:

v(m)=x(m)—x(m)
P-1
A 15.1
= x(m)= 3™ yom k) (110
k=0
where ﬁ;icnv is an estimate of the inverse channel filter. Assuming that there

is an ideal equalizer /" that can recover the channel input signal x(m) from
the channel output y(m), we have
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P-1
x(m)=Y I y(m—k) (15.11)
k=0

Substitution of Equation (15.11) in Equation (15.10) yields

P-1 Pl
vim)= Y B y(m—k)=Y ™ y(m—k)
k k=0
1

(15.12)

=0

P_ ~

2™ y(m=k)
k=0

where iy =h;" —h;" . The equalization error signal v(m) may be viewed

as the output of an error filter ;" in response to the input y(m—k), hence

the name “convolutional noise” for v(m). When the equalization process is
proceeding well, such that x(m) is a good estimate of the channel input
x(m), then the convolutional noise is relatively small and decorrelated and
can be modelled as a zero mean Gaussian random process.

15.1.3 Blind Equalization

The equalization problem is relatively simple when the channel response is
known and invertible, and when the channel output is not noisy. However,
in most practical cases, the channel response is unknown, time-varying,
non-linear, and may also be non-invertible. Furthermore, the channel output
is often observed in additive noise.

Digital communication systems provide equalizer-training periods,
during which a training pseudo-noise (PN) sequence, also available at the
receiver, is transmitted. A synchronised version of the PN sequence is
generated at the receiver, where the channel input and output signals are
used for the identification of the channel equalizer as illustrated in Figure
15.2(a). The obvious drawback of using training periods for channel
equalization is that power, time and bandwidth are consumed for the
equalization process.
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(b) Blind deconvolution

Figure 15.2 A comparative illustration of (a) a conventional equalizer with
access to channel input and output, and (b) a blind equalizer.

It is preferable to have a “blind” equalization scheme that can operate
without access to the channel input, as illustrated in Figure 15.2(b).
Furthermore, in some applications, such as the restoration of acoustic
recordings, or blurred images, all that is available is the distorted signal and
the only restoration method applicable is blind equalization.

Blind equalization is feasible only if some statistical knowledge of the
channel input, and perhaps that of the channel, is available. Blind
equalization involves two stages of channel identification, and
deconvolution of the input signal and the channel response, as follows:

(a) Channel identification. The general form of a channel estimator can be
expressed as

h=y (y, M,,M,) (15.13)
where v is the channel estimator, the vector h is an estimate of the

channel response, y is the channel output, and M, and My, are statistical
models of the channel input and the channel response respectively.
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Channel identification methods rely on utilisation of a knowledge of the
following characteristics of the input signal and the channel:

(1)The distribution of the channel input signal: for example, in
decision-directed channel equalization, described in Section
15.5, the knowledge that the input is a binary signal is used in
a binary decision device to estimate the channel input and to
“direct” the equalizer adaptation process.

(ii) the relative durations of the channel input and the channel
impulse response: the duration of a channel impulse response
is usually orders of magnitude smaller than that of the channel
input. This observation is used in Section 15.3.1 to estimate a
stationary channel from the long-time averages of the channel
output.

(iii) The stationary, or time-varying characteristics of the input
signal process and the channel: in Section 15.3.1, a method is
described for the recovery of a non-stationary signal convolved
with the impulse response of a stationary channel.

(b) Channel equalization. Assuming that the channel is invertible, the
channel input signal x(m) can be recovered using an inverse channel
filter as

P-1
2m)=Y ™ y(m—k) (15.14)
k=0

In the frequency domain, Equation (15.14) becomes

X(H=H™ (HHY(f) (15.15)

In practice, perfect recovery of the channel input may not be possible,
either because the channel is non-invertible or because the output is
observed in noise. A channel is non-invertible if:

(i) The channel transfer function is maximum-phase: the transfer
function of a maximum-phase channel has zeros outside the
unit circle, and hence the inverse channel has unstable poles.
Maximum-phase channels are considered in the following
section.
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(i1) The channel transfer function maps many inputs to the same

output: in these situations, a stable closed-form equation for
the inverse channel does not exist, and instead an iterative
deconvolution method is used. Figure 15.3 illustrates the
frequency response of a channel that has one invertible and
two non-invertible regions. In the non-invertible regions, the
signal frequencies are heavily attenuated and lost to channel
noise. In the invertible region, the signal is distorted but
recoverable. This example illustrates that the inverse filter
must be implemented with care in order to avoid undesirable
results such as noise amplification at frequencies with low
SNR.

15.1.4 Minimum- and Maximum-Phase Channels

For stability, all the poles of the transfer function of a channel must lie
inside the unit circle. If all the zeros of the transfer function are also inside
the unit circle then the channel is said to be a minimum-phase channel. If
some of the zeros are outside the unit circle then the channel is said to be a
maximum-phase channel. The inverse of a minimum-phase channel has all
its poles inside the unit circle, and is therefore stable. The inverse of a
maximum-phase channel has some of its poles outside the unit circle;
therefore it has an exponentially growing impulse response and is unstable.
However, a stable approximation of the inverse of a maximum-phase

Input Channel distortion Output

A "y A Y()=X(DH()
Non- . Non-
invertible Invertible inyertible

- -

Channel

noise /

S f f

Figure 15.3 lllustration of the invertible and noninvertible regions of a channel.
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o

Figure 15.4 lllustration of the zero diagram and impulse response of fourth order
maximum-phase and minimum-phase FIR filters.

channel may be obtained by truncating the impulse response of the inverse
filter. Figure 15.3 illustrates examples of maximum-phase and minimum-
phase fourth-order FIR filters.

When both the channel input and output signals are available, in the
correct synchrony, it is possible to estimate the channel magnitude and
phase response using the conventional least square error criterion. In blind
deconvolution, there is no access to the exact instantaneous value or the
timing of the channel input signal. The only information available is the
channel output and some statistics of the channel input. The second order
statistics of a signal (i.e. the correlation or the power spectrum) do not
include the phase information; hence it is not possible to estimate the
channel phase from the second-order statistics. Furthermore, the channel
phase cannot be recovered if the input signal is Gaussian, because a
Gaussian process of known mean is entirely specified by the autocovariance
matrix, and autocovariance matrices do not include any phase information.
For estimation of the phase of a channel, we can either use a non-linear
estimate of the desired signal to direct the adaptation of a channel equalizer

as in Section 15.5, or we can use the higher-order statistics as in Section
15.6.
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15.1.5 Wiener Equalizer

In this section, we consider the least squared error Wiener equalization.
Note that, in its conventional form, Wiener equalization is not a form of
blind equalization, because the implementation of a Wiener equalizer
requires the cross-correlation of the channel input and output signals, which
are not available in a blind equalization application. The Wiener filter
estimate of the channel input signal is given by

Pl
Rm)=> ™ y(m—k) (15.16)
k=0

where 7" is an FIR Wiener filter estimate of the inverse channel impulse
response. The equalization error signal v(m) is defined as

Pl
v(m)=x(m)— Y I y(m—k) (15.17)
k=0

The Wiener equalizer with input y(m) and desired output x(m) is obtained
from Equation (6.10) in Chapter 6 as

™ =Ry (15.18)

where Ry, is the PX P autocorrelation matrix of the channel output, and r,y
is the P-dimensional cross-correlation vector of the channel input and output
signals. A more expressive form of Equation (15.18) can be obtained by
writing the noisy channel output signal in vector equation form as

y=Hx+n (4.19)

where y is an N-sample channel output vector, x is an N+P-sample channel
input vector including the P initial samples, H is an NX(N+P) channel
distortion matrix whose elements are composed of the coefficients of the
channel filter, and n is a noise vector. The autocorrelation matrix of the
channel output can be obtained from Equation (15.19) as

T T
R,, =Elyy"1= HR H" +R,, (15.20)
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where E [-] is the expectation operator. The cross-correlation vector r,, of
the channel input and output signals becomes

r,=Elxyl=Hr, (15.21)

Substitution of Equation (15.20) and (15.21) in (15.18) yields the Wiener
equalizer as

A~ —1
R =(HRxxHT +R,m) Hr,, (15.22)

The derivation of the Wiener equalizer in the frequency domain is as
follows. The Fourier transform of the equalizer output is given by

X(H=H™ (HHY(f) (15.23)

where Y(f), the channel output and am (f) is the frequency response of the
Wiener equalizer. The error signal V(¥) is defined as

V(H=X()-X(f)

. (15.24)
=X(f)-H™(HHY(f)

As in Section 6.5 minimisation of the expectation of the squared magnitude
of V(f) results in the frequency Wiener equalizer given by

Pxy (f)
Pyy (f)

_ Pyx ()H (f) (15.25)
Pxx (NH + Py (f)

™ (f) =

where Pxx(f) is the channel input power spectrum, Pyy(f) is the noise power
spectrum, Pxy(f) is the cross-power spectrum of the channel input and

output signals, and H(f) is the frequency response of the channel. Note that
in the absence of noise, Pyn(f)=0 and the Wiener inverse filter becomes

H™ (f)=H"'(f).
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15.2 Blind Equalization Using Channel Input Power Spectrum

One of the early papers on blind deconvolution was by Stockham et al.
(1975) on dereverberation of old acoustic recordings. Acoustic recorders, as
illustrated in Figure 15.5, had a bandwidth of about 200 Hz to 4 kHz.
However, the limited bandwidth, or even the additive noise or scratch noise
pulses, are not considered as the major causes of distortions of acoustic
recordings. The main distortion on acoustic recordings is due to
reverberations of the recording horn instrument. An acoustic recording can
be modelled as the convolution of the input audio signal x(m) and the
impulse response of a linear filter model of the recording instrument {/;}, as

in Equation (15.2), reproduced here for convenience
P-1
y(m)= 3 hyx(m—k)+n(m) (15.26)
k=0
or in the frequency domain as

Y(H)=X(HH(f)+N(f) (15.27)

where H(f) is the frequency response of a linear time-invariant model of the
acoustic recording instrument, and N(f) is an additive noise. Multiplying

Figure 15.5 lllustration of the early acoustic recording process on a wax disc.
Acoustic recordings were made by focusing the sound energy, through a horn
via a sound box, diaphragm and stylus mechanism, onto a wax disc. The
sound was distorted by reverberations of the horn.
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both sides of Equation (15.27) with their complex conjugates, and taking the
expectation, we obtain

EY (Y (OI=E[XHH)+NO)NXOHF)+N(H)] (15.28)

Assuming the signal X(f) and the noise N(f) are uncorrelated Equation
(15.28) becomes

Pyy (f)=Pyx (NH) +Pyy (f) (15.29)

where Pyy(f), Pxx(f) and Pyy(f) are the power spectra of the distorted signal,
the original signal and the noise respectively. From Equation (15.29) an
estimate of the spectrum of the channel response can be obtained as

|H(f)|2 _ Py (f)=Pyn () (15.30)

Pyx (f)

In practice, Equation (15.30) is implemented using time-averaged estimates
of the of the power spectra.

15.2.1 Homomorphic Equalization

In homomorphic equalization, the convolutional distortion is transformed,
first into a multiplicative distortion through a Fourier transform of the
distorted signal, and then into an additive distortion by taking the logarithm
of the spectrum of the distorted signal. A further inverse Fourier transform
operation converts the log-frequency variables into cepstral variables as
illustrated in Figure 15.6. Through homomorphic transformation
convolution becomes addition, and equalization becomes subtraction.

Ignoring the additive noise term and transforming both sides of
Equation (15.27) into log-spectral variables yields

InY(f)=InX(f)+InH(f) (15.31)

Note that in the log-frequency domain, the effect of channel distortion is the
addition of a tilt to the spectrum of the channel input. Taking the
expectation of Equation (15.31) yields
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X(HH(f) In IX(HI+InlX(H)]
y(m)=x(m)*h(m) . ) Xc(m)+he(m)
. . Fourier > nl .| > Inverse Fourier >

transform transform

Homomorphic analysis

Figure 15.6 lllustration of homomorphic analysis in deconvolution.

EllnY(H]=EnX(f)]+InH(f) (15.32)

In Equation (15.32), it is assumed that the channel is time-invariant; hence
EllnH(f)I=InH(f). Using the relation Inz=InlzH+jZLz, the term

Elln X (f)] can be expressed as
Elln X (HI=ElInl X (f) 1+ JE[LX (f)] (15.33)

The first term on the right-hand side of Equation (15.33), E[lnl X (f)1], is
non-zero, and represents the frequency distribution of the signal power in
decibels, whereas the second term E[ZLX(f)] is the expectation of the
phase, and can be assumed to be zero. From Equation (15.32), the log-
frequency spectrum of the channel can be estimated as

InH(f)=E[InY(f)]-Elln X (f)] (15.34)

In practice, when only a single record of a signal is available, the signal is
divided into a number of segments, and the average signal spectrum is
obtained over time across the segments. Assuming that the length of each
segment is long compared with the duration of the channel impulse
response, we can write an approximate convolutional relation for the ith
signal segment as

y; (m)=x; (m)*h; (m) (15.35)

The segments are windowed, using a Hamming or a Hanning window, to
reduce the spectral leakage due to end effects at the edges of the segment.
Taking the complex logarithm of the Fourier transform of Equation (15.35)
yields

InY,(f)=InX,(f) + In H,(f) (15.36)
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Taking the time averages over N segments of the distorted signal record
yields
1 Nl

5 nYi(f)— 21nX(f)+—21nH(f) (15.37)
i=0 lO

Estimation of the channel response from Equation (15.37) requires the
average log spectrum of the undistorted signal X(f). In Stockham's method
for restoration of acoustic records, the expectation of the signal spectrum is
obtained from a modern recording of the same musical material as that of
the acoustic recording. From Equation (15.37), the estimate of the logarithm
of the channel is given by

. 1 N-1 1 N-1 o
lnH(f)=N21nY,-(f)—N21nX,- (f) (15.38)
i=0 i=0

where X?(f) is the spectrum of a modern recording. The equalizer can then
be defined as

lnHan(f):{_lnH(f), 2OOHZSfS 4000 Hz

—-40dB, otherwise (15.39)

In Equation (15.39), the inverse acoustic channel is implemented in the
range between 200 and 4000 Hz, where the channel is assumed to be
invertible. Outside this range, the signal is dominated by noise, and the
inverse filter is designed to attenuate the noisy signal.

15.2.2 Homomorphic Equalization Using a Bank of High-Pass
Filters
In the log-frequency domain, channel distortion may be eliminated using a

bank of high-pass filters. Consider a time sequence of log-spectra of the
output of a channel described as

InY, (f)=InX, (f/)+In H,(f) (15.40)

where Y/(f) and X,(f) are the channel input and output derived from a Fourier
transform of the #th signal segment. From Equation (15.40), the effect of a
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time-invariant channel is to add a constant term In H(f) to each frequency
component of the channel input X,(f), and the overall result is a time-
invariant tilt of the log-frequency spectrum of the original signal. This
observation suggests the use of a bank of narrowband high-pass notch filters
for the removal of the additive distortion term InH(f). A simple first-order
recursive digital filter with its notch at zero frequency is given by

InX,(f)=aln X, (f)+InY,(f)~InY,_ (f) (15.41)

where the parameter « controls the bandwidth of the notch at zero
frequency. Note that the filter bank also removes any dc component of the
signal In X(f); for some applications, such as speech recognition, this is
acceptable.

15.3 Equalization Based on Linear Prediction Models

Linear prediction models, described in Chapter 8, are routinely used in
applications such as seismic signal analysis and speech processing, for the
modelling and identification of a minimum-phase channel. Linear prediction
theory is based on two basic assumptions: that the channel is minimum-
phase and that the channel input is a random signal. Standard linear
prediction analysis can be viewed as a blind deconvolution method, because
both the channel response and the channel input are unknown, and the only
information is the channel output and the assumption that the channel input
is random and hence has a flat power spectrum. In this section, we consider
blind deconvolution using linear predictive models for the channel and its
input. The channel input signal is modelled as

X(2)=E(2)A(2) (15.42)

where X(z) is the z-transform of the channel input signal, A(z) is the z-
transfer function of a linear predictive model of the channel input and E(z) is
the z-transform of a random excitation signal. Similarly, the channel output
can be modelled by a linear predictive model H(z) with input X(z) and
output Y(z) as

Y(2)=X(2)H(z) (15.43)
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Figure 15.7 illustrates a cascade linear prediction model for a channel input
process X(z) and a channel response H(z). The channel output can be
expressed as

Y(2)=E(2)A(2)H (2)
_E()D(2) (15.44)

where

D(2)=A)H(2) (15.43)

The z-transfer function of the linear prediction models of the channel input
signal and the channel can be expanded as

Gl

A(z)= PGI =— (15.46)
1-Yaz" J[d-a.z™)
H(z)= QGZ = G, (15.47)

)
=Y b2 JJa-Biz™)

where {a;, 0} and {by, B} are the coefficients and the poles of the linear

prediction models for the channel input signal and the channel respectively.
Substitution of Equations (15.46) and (15.47) in Equation (15.45) yields the
combined input-channel model as

G G
D(@)=—5 = %0 (15.48)

=Y dz* Jla-7ez™
k=1 k=1

The total number of poles of the combined model for the input signal and
the channel is the sum of the poles of the input signal model and the channel
model.
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e(m)

Channel input y(m)
O—1» signal model Xm) ) Channel model -
A(z) H(z)

D(z) = A(z) H(z)

Figure 15.7 A distorted signal modelled as cascade of a signal model and a
channel model.

15.3.1 Blind Equalization Through Model Factorisation

A model-based approach to blind equalization is to factorise the channel
output model D(z)=A(z)H(z) into a channel input signal model A(z) and a
channel model H(z). If the channel input model A(z) and the channel model
H(z) are non-factorable then the only factors of D(z) are A(z) and H(z).
However, z-transfer functions are factorable into the roots, the so-called
poles and zeros, of the models. One approach to model-based deconvolution
is to factorize the model for the convolved signal into its poles and zeros,
and classify the poles and zeros as either belonging to the signal or
belonging to the channel.

Spencer and Rayner (1990) developed a method for blind deconvolution
through factorization of linear prediction models, based on the assumption
that the channel is stationary with time-invariant poles whereas the input
signal is non-stationary with time-varying poles. As an application, they
considered the restoration of old acoustic recordings where a time-varying
audio signal is distorted by the time-invariant frequency response of the
recording equipment. For a simple example, consider the case when the
signal and the channel are each modelled by a second-order linear predictive
model. Let the time-varying second-order linear predictive model for the
channel input signal x(m) be

x(m)=a;(m)x(m—1)+a, (m)x(m—2)+G; (m)e(m) (15.49)

where aj(m) and ap(m) are the time-varying coefficients of the linear
predictor model, G(m) is the input gain factor and e(m) is a zero-mean, unit
variance, random signal. Now let o (m) and op(m) denote the time-varying
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poles of the predictor model of Equation (15.49); these poles are the roots of
the polynomial

1-a, (m)z_1 —ay (m)z_2= [1 — z_lal (m)][l - z_locz (m)]=0 (15.50)

Similarly, assume that the channel can be modelled by a second-order
stationary linear predictive model as

y(m)=hy y(m —1y+hy y(m —2)+G,x(m) (15.51)

where h; and hj are the time-invariant predictor coefficients and G is the
channel gain. Let 8; and 3, denote the poles of the channel model; these are
the roots of the polynomial

1=z =z 2=(1- 7' B - 271 B,)=0 (15.52)

The combined cascade of the two second-order models of Equations (15.49)
and (15.51) can be written as a fourth-order linear predictive model with
input e(m) and output y(m):

y(m)=d; (m)y(m—1)+dy (m) y(m—2)+d3 (m) y(m—3)+d, (m) y(m—4)+ Ge(m)

(15.53)
where the combined gain G=GG,. The poles of the fourth order predictor
model of Equation (15.53) are the roots of the following polynomial:

1—d,(m)z " =dy(m)z > —d3(m)z > —d (m)z ™ =

== emi- e omi- 2B, Ji- 2B, ]=0 (15.54)

In Equation (15.54) the poles of the fourth order predictor are (m) , 0p(m),
Bi and 3, . The above argument on factorisation of the poles of time-varying
and stationary models can be generalised to a signal model of order P and a
channel model of order Q.

In Spencer and Rayner, the separation of the stationary poles of the
channel from the time-varying poles of the channel input is achieved
through a clustering process. The signal record is divided into N segments
and each segment is modelled by an all-pole model of order P+Q where P
and Q are the assumed model orders for the channel input and the channel
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respectively. In all, there are N(P+Q) values which are clustered to form
P+Q clusters. Even if both the signal and the channel were stationary, the
poles extracted from different segments would have variations due to the
random character of the signals from which the poles are extracted.
Assuming that the variances of the estimates of the stationary poles are
small compared with the variations of the time-varying poles, it is expected
that, for each stationary pole of the channel, the N values extracted from N
segments will form an N-point cluster of a relatively small variance. These
clusters can be identified and the centre of each cluster taken as a pole of the
channel model This method assumes that the poles of the time-varying
signal are well separated in space from the poles of the time-invariant
signal.

15.4 Bayesian Blind Deconvolution and Equalization

The Bayesian inference method, described in Chapter 4, provides a general
framework for inclusion of statistical models of the channel input and the
channel response. In this section we consider the Bayesian equalization
method, and study the case where the channel input is modelled by a set of
hidden Markov models. The Bayesian risk for a channel estimate ks
defined as

R(h1y)= [ [ChI) fx py (. h]y) dxdh

HX
1

T ()

(15.55)

[CUu) fyig (51h)f g ()b
H

where C(h, h) is the cost of estimating the channel & as h,f x my (X.hly) is
the joint posterior density of the channel A and the channel input x,
fyig lk) is the observation likelihood, and fg(h) is the prior pdf of the
channel. The Bayesian estimate is obtained by minimisation of the risk

function R.(1y). There are a variety of Bayesian-type solutions depending

on the choice of the cost function and the prior knowledge, as described in
Chapter 4.

In this section, it is assumed that the convolutional channel distortion is
transformed into an additive distortion through transformation of the
channel output into log-spectral or cepstral variables. Ignoring the channel
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noise, the relation between the cepstra of the channel input and output
signals is given by

y(m)=x(m)+h (15.56)

where the cepstral vectors x(m), y(m) and h are the channel input, the
channel output and the channel respectively.

15.4.1 Conditional Mean Channel Estimation

A commonly used cost function in the Bayesian risk of Equation (15.55) is

the mean square error C(h —h)=lh—h1* which results in the conditional
mean (CM) estimate defined as

M = [hfyy (k1 y)dh (15.57)
H

The posterior density of the channel input signal may be conditioned on an
estimate of the channel vector £ and expressed as fxyy g (x |y h). The
conditional mean of the channel input signal given the channel output y and

an estimate of the channel % is

M =[x y,ﬁ]

:_[foIY,H (x1y,h) dx (15.58)
X

Equations (15.57) and (15.58) suggest a two-stage iterative method for
channel estimation and the recovery of the channel input signal.

15.4.2 Maximum-Likelihood Channel Estimation
The ML channel estimate is equivalent to the case when the Bayes cost

function and the channel prior are uniform. Assuming that the channel input
signal has a Gaussian distribution with mean vector U, and covariance
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matrix 2y, the likelihood of a sequence of N P-dimensional channel output
vectors {y(m)} given a channel input vector k is

N-1

Frig 3O),....y(N=D|k)= ] fx (y(m)—h)
m=0

N-—

._

exp{lyom)—h—p, 1" E 5 yom)—h—p, 1}

xx|

(15.59)

To obtain the ML estimate of the channel h, the derivative of the log
likelihood function In fy(ylh) with respect to h is set to zero to yield

A

N—
hML = Z (y(m) — ) (15.60)

1
N A

15.4.3 Maximum A Posteriori Channel Estimation

The MAP estimate, like the ML estimate, is equivalent to a Bayesian
estimator with a uniform cost function. However, the MAP estimate
includes the prior pdf of the channel. The prior pdf can be used to confine
the channel estimate within a desired subspace of the parameter space.
Assuming that the channel input vectors are statistically independent, the
posterior pdf of the channel given the observation sequence Y={y(0), ...,
yWN-1)} is

N-1
Fay (y(0),..., y(N -1))= —fYIH (y(m)|h)f g (h)
=0 fy( (m))
- (15.61)
) y PR B)fy (h
ST ( ) fx (y(m)—h)fy (h)

Assuming that the channel input x(m) is Gaussian, fx(x(m))=AN(x, Wy, Zxx),
with mean vector W, and covariance matrix X,,, and that the channel A is
also Gaussian, fg(h)=N(h, Up, 2pn), with mean vector Wy and covariance
matrix 2, the logarithm of the posterior pdf is
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lan|Y(h|y(O) LY(N=1))=- Zlnf(y(m)) NPln(27t)——ln(|Zxx||Zhh|)
m=0

v {[y(m) R T Z 2y om) —h = 1+ (= ) " S (- )}
m= 0
(15.62)
The MAP channel estimate, obtained by setting the derivative of the log
posterior function In fyy(hly) to zero, is

~ -1 — -1
R = (8 e + 2 Zp 5~ e + Z) ety (15.63)

where

y= N y(m) (15.64)

n:

is the time-averaged estimate of the mean of observation vector. Note that
for a Gaussian process the MAP and conditional mean estimates are
identical.

15.4.4 Channel Equalization Based on Hidden Markov Models

This section considers blind deconvolution in applications where the
statistics of the channel input are modelled by a set of hidden Markov
models. An application of this method, illustrated in Figure 15.8, is in
recognition of speech distorted by a communication channel or a
microphone. A hidden Markov model (HMM) is a finite-state Bayesian
model, with a Markovian state prior and a Gaussian observation likelihood
(see chapter 5). An N-state HMM can be used to model a non-stationary
process, such as speech, as a chain of N stationary states connected by a set
of Markovian state transitions. The likelihood of an HMM 4 and a
sequence of N P-dimensional channel input vectors X=[x(0), ..., x(N-1)] can
be expressed in terms of the state transition and the observation pdfs of 9
as

Fxiar (X |Mi):2fXIM,S (X 1 M;,8)Pgiar(s | M;) (15.65)
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HMMs of the channel input

ar 22 aNN
%?m ?% g) M,
n

. x Channel Y Bayesian |
ay a2 aNN h Estimator
S
v

Figure 15.8 lllustration of a channel with the input modelled by a set of HMMs.

where fxiars (X 19;,8) is the likelihood that the sequence X=[x(0), ...,
x(N-1)] was generated by the state sequence s=[s(0), ..., s(N-1)] of the
model 3, and Py, (S 1M, ) is the Markovian prior pmf of the state sequence

s. The Markovian prior entails that the probability of a transition to the state
i at time m depends only on the state at time m—1 and is independent of the
previous states. The transition probability of a Markov process is defined as

a,; =P(s(m) = jls(m—1)=i) (15.66)

where g;; is the probability of making a transition from state i to state j. The

HMM state observation probability is often modelled by a multivariate
Gaussian pdf as

1
P2
eIz,

1 _
Fxors (X 1M, 5) = 12 eXP{—E[x _I'l’x,s]TEx;,s[x _.ux,s]}
N

(15.67)

where U, and 2, ; are the mean vector and the covariance matrix of the
Gaussian observation pdf of the HMM state s of the model 2.

The HMM-based channel equalization problem can be stated as
follows: Given a sequence of N P-dimensional channel output vectors
Y=[y(0), ..., y(N-1)], and the prior knowledge that the channel input
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sequence is drawn from a set of V HMMs M={4M; i=1, ..., V}, estimate the
channel response and the channel input.

The joint posterior pdf of an input word 9 and the channel vector h
can be expressed as

Facay (M, h1Y) = Py y (MY ) frgy (R1Y) (15.68)

Simultaneous joint estimation of the channel vector k and classification of
the unknown input word 94; is a non-trivial exercise. The problem is usually
approached iteratively by making an estimate of the channel response, and
then using this estimate to obtain the channel input as follows. From Bayes’
rule, the posterior pdf of the channel k& conditioned on the assumption that
the input model is #; and given the observation sequence Y can be

expressed as

1

hiM, )Y )=————
T (A=

Fyoen (Y|5M,-,h)fmm(h | ;) (15.69)

The likelihood of the observation sequence, given the channel and the input
word model, can be expressed as

Sy XY 1M h) = fxi0(Y —h1M;) (15.70)

where it is assumed that the channel output is transformed into cepstral
variables so that the channel distortion is additive. For a given input model
M;, and state sequence s=[s(0), s(1), ..., s(N-1)], the pdf of a sequence of N

independent observation vectors Y=[y(0), y(1), ..., y(N-1)] is

N-1
Sy sac Vhs.a0) = [ fxism 0 (m)—h1s(m),a4;)
m=0
N-1 1

- 1 L
B m:()(zn')w2 | X ) |l/2 exp{_i[y(m)—h—’ux’s(m)]rzxx’s(m) [y(m)_h_,ux,s(m) ]}

xx,s(m

(15.71)

Taking the derivative of the log-likelihood of Equation (15.71) with respect
to the channel vector & yields a maximum likelihood channel estimate as
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~ N=L oy -1
hML(Y’S) = z (kgtozx_xl,s(k)) Z:;xl,s(rrz) (y(m)_.ux,s(m)) (1572)

m=0

Note that when all the state observation covariance matrices are identical the
channel estimate becomes

) | Nl
R 9= 3 (0m = B ) (15.73)

m=0

The ML estimate of Equation (15.73) is based on the ML state sequence s of
M. In the following section we consider the conditional mean estimate over

all state sequences of a model.

15.4.5 MAP Channel Estimate Based on HMMs

The conditional pdf of a channel h averaged over all HMMs can be

expressed as
v

Fay M= Fay sach

i=l s

Y, 8, M; )Ps g (S|9M) Pay (M) (15.74)

where P, (M) is the prior pmf of the input words. Given a sequence of N

P-dimensional observation vectors Y=[y(0), ..., y(N—1)], the posterior pdf of
the channel & along a state sequence s of an HMM 9; is defined as

R
K@)

1 1

" (Y),Eo(zn)f’\z

Frim sp®lY s,94) = Ty s,00(Y |h.8,9) fg ()

1 T -1
1/2 1/2 exp {_ E[y(m) —h- #x,s(m)] Exx,s(m) [y(m) -h- ux,s(m) ]}

| Z

xx,s(m)‘
x exp[—é(h—uhfz;;i(h—uh )]
(15.75)

where it is assumed that each state of the HMM has a Gaussian distribution
with mean vector Uy s, and covariance matrix 2yy ), and that the channel

h is also Gaussian-distributed, with mean vector Yy and covariance matrix
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2nn. The MAP estimate along state s, on the left-hand side of Equation
(15.75), can be obtained as

N-1

P s5a0)= 3 [ 5(E00 + Z)] Exd o by )
Y,s,M;) z 1;0 xx,s(k) T “hh xx s(m) (m) —py ,s(m)
m=0 """

N -1 Y
+|:k§)(2xx,s(k) + 2y )] Zn M

(15.76)

The MAP estimate of the channel over all state sequences of all HMMs can
be obtained as

Vv
h(¥)=3, D, h"™ (¥ 5,90) Pan (5194 Pay (94) (15.77)
i=1 S

15.4.6 Implementations of HMM-Based Deconvolution

In this section, we consider three implementation methods for HMM-based
channel equalization.

Method I: Use of the Statistical Averages Taken Over All HMIMs

A simple approach to blind equalization, similar to that proposed by
Stockham, is to use as the channel input statistics the average of the mean
vectors and the covariance matrices, taken over all the states of all the
HMMs as

Zzﬂm jo T ZZZM j (15.78)

3,111 étljl

where p,, ; and X, . are the mean and the covariance of the jt state of the

i’ HMM, V and N, denote the number of models and number of states per

model respectively. The maximum likelihood estimate of the channel, hML,
is defined as
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h ML =(y-1,) (15.79)

where y is the time-averaged channel output. The estimate of the channel
input is

$(m) = y(m)— hML (15.80)

Using the averages over all states and models, the MAP channel estimate

becomes
N-1

hMAP(Y ) = D (Zat Z)  Zh ) =)+ (B + Zpn)” i M

m=0

(15.81)

Method II: Hypothesised-Input HMM Equalization

In this method, for each candidate HMM in the input vocabulary, a channel
estimate is obtained and then used to equalise the channel output, prior to
the computation of a likelihood score for the HMM. Thus a channel estimate

h,, is based on the hypothesis that the input word is w. It is expected that a
better channel estimate is obtained from the correctly hypothesised HMM,
and a poorer estimate from an incorrectly hypothesised HMM. The
hypothesised-input HMM algorithm is as follows (Figure 15.9):

For i =1 to number of words V {
step 1 Using each HMM, #;, make an estimate of the channel, I;i ,

A

step 2 Using the channel estimate, h;, estimate the channel input
E(m)=y(m) ~h;
step 3 Compute a probability score for model 94, given the estimate

[x(m)]. }

Select the channel estimate associated with the most probable word.

Figure 15.10 shows the ML channel estimates of two channels using
unweighted average and hypothesised-input methods.
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y ;x +h Channel
estimate/M;

Probability P(M;ly)
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N
X . =y—hi

1

Figure 15.9 Hypothesised channel estimation procedure.
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Figure 15.10 lllustration of actual and estimated channel response for
two channels.

Method lll: Decision-Directed Equalization

Blind adaptive equalizers are often composed of two distinct sections: an
adaptive linear equalizer followed by a non-linear estimator to improve the
equalizer output. The output of the non-linear estimator is the final estimate
of the channel input, and is used as the desired signal fo direct the equalizer
adaptation. The use of the output of the non-linear estimator as the desired
signal assumes that the linear equalization filter removes a large part of the
channel distortion, thereby enabling the non-linear estimator to produce an
accurate estimate of the channel input. A method of ensuring that the
equalizer locks into, and cancels a large part of the channel distortion is to
use a startup, equalizer training period during which a known signal is
transmitted.
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/
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y(m) Equalisation filter | 2(m)=x(m)+v(m) - HMM x(m»)
h classifier/estimator
/ —;%;
LMS adaptation e(m) error signal
. et
algorithm

Figure 15.11 A decision-directed equalizer.

Figure 15.11 illustrates a blind equalizer incorporating an adaptive linear
filter followed by a hidden Markov model classifier/estimator. The HMM
classifies the output of the filter as one of a number of likely signals and
provides an enhanced output, which is also used for adaptation of the linear
filter. The output of the equalizer z(m) is expressed as the sum of the input
to the channel x(m) and a so-called convolutional noise term v(m) as

z(m)=x(m)+v(m) (15.82)
The HMM may incorporate state-based Wiener filters for suppression of the
convolutional noise v(m) as described in Section 5.5. Assuming that the

LMS adaptation method is employed, the adaptation of the equalizer
coefficient vector is governed by the following recursive equation:

A (m)=h" (m — 1)+ pe(m) y(m) (15.83)

where 2™ (m) is an estimate of the optimal inverse channel filter, i is an
adaptation step size and the error signal e(m) is defined as

e(m)=%"" (m)—z(m) (15.84)

where ™" (m) is the output of the HMM-based estimator and is used as
the correct estimate of the desired signal to direct the adaptation process.
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15.5 Blind Equalization for Digital Communication Channels

High speed transmission of digital data over analog channels, such as
telephone lines or a radio channels, requires adaptive equalization to reduce
decoding errors caused by channel distortions. In telephone lines, the
channel distortions are due to the non-ideal magnitude response and the
nonlinear phase response of the lines. In radio channel environments, the
distortions are due to non-ideal channel response as well as the effects of
multipath propagation of the radio waves via a multitude of different routes
with different attenuations and delays. In general, the main types of
distortions suffered by transmitted symbols are amplitude distortion, time
dispersion and fading. Of these, time dispersion is perhaps the most
important, and has received a great deal of attention. Time dispersion has
the effect of smearing and elongating the duration of each symbol. In high
speed communication systems, where the data symbols closely follow each
other, time dispersion results in an overlap of successive symbols, an effect
known as intersymbol interference (ISI), illustrated in Figure 15.12.

In a digital communication system, the transmitter modem takes N bits
of binary data at a time, and encodes them into one of 2V analog symbols for
transmission, at the signalling rate, over an analog channel. At the receiver
the analog signal is sampled and decoded into the required digital format.
Most digital modems are based on multilevel phase-shift keying, or
combined amplitude and phase shift keying schemes. In this section we
consider multi-level pulse amplitude modulation (M-ary PAM) as a
convenient scheme for the study of adaptive channel equalization.

Assume that at the transmitter modem, the kth set of N binary digits is
mapped into a pulse of duration 7 seconds and an amplitude a(k). Thus the
modulator output signal, which is the input to the communication channel,
is given as

x(t)= a(k)r(t—KT) (15.85)
k

Transmitted waveform Received waveform

time time
Figure 15.12 lllustration of intersymbol interference in a binary pulse amplitude
modulation system.
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where r(f) is a pulse of duration 7y and with an amplitude a(k) that can
assume one of M=2N distinct levels. Assuming that the channel is linear, the
channel output can be modelled as the convolution of the input signal and
channel response:

y(t)= jh(r)x(z —1)dT (15.86)

—oo

where h(f) is the channel impulse response. The sampled version of the
channel output is given by the following discrete-time equation:

y(m)=Y" by x(m—k) (15.87)
k

To remove the channel distortion, the sampled channel output y(m) is passed

to an equalizer with an impulse response /" . The equalizer output z(m) is
given as

2(my=Y ™ y(m—k)
k

A 15.88
F 3

where Equation (15.87) is used to obtain the second line of Equation
(15.88). The ideal equalizer output is z(m)=x(m—D)=a(m-D) for some delay
D that depends on the channel response and the length of the equalizer.
From Equation (15.88), the channel distortion would be cancelled if

he =h, *hi™ =8 (m — D) (15.89)

where K¢ is the combined impulse response of the cascade of the channel

and the equalizer. A particular form of channel equalizer, for the elimination
of ISI, is the Nyquist zero-forcing filter, where the impulse response of the
combined channel and equalizer is defined as

I, k=0

0. k=0 (15.90)

he (KT, + D) :{
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Note that in Equation (15.90), at the sampling instants the channel distortion
is cancelled, and hence there is no ISI at the sampling instants. A function
that satisfies Equation (15.90) is the sinc function h¢(¢)=sin(nft)/nfst, where
fs=1/T;. Zero-forcing methods are sensitive to deviations of A¢(f) from the
requirement of Equation (15.90), and also to jitters in the synchronisation
and the sampling process.

15.5.1 LMS Blind Equalization

In this section, we consider the more general form of the LMS-based
adaptive equalizer followed by a nonlinear estimator. In a conventional
sample-adaptive filter, the filter coefficients are adjusted to minimise the
mean squared distance between the filter output and the desired signal. In
blind equalization, the desired signal (which is the channel input) is not
available. The use of an adaptive filter for blind equalization, requires an
internally generated desired signal as illustrated in Figure 15.13. Digital
blind equalizers are composed of two distinct sections: an adaptive equalizer
that removes a large part of the channel distortion, followed by a non-linear
estimator for an improved estimate of the channel input. The output of the
non-linear estimator is the final estimate of the channel input, and is used as
the desired signal to direct the equalizer adaptation. A method of ensuring
that the equalizer removes a large part of the channel distortion is to use a
start-up, equalizer training, period during which a known signal is
transmitted.

Assuming that the LMS adaptation method is employed, the adaptation
of the equalizer coefficient vector is governed by the following recursive
equation:

ﬁinv(m):ﬁinV (m_1)+'ue(m)y(m) (1591)

where "™ (m) is an estimate of the optimal inverse channel filter h™  the
scalar u is the adaptation step size, and the error signal e(m) is defined as

e(m)

Y(z(m)) — z(m)

R(m) — 2(m) (15.92)

where x(m)= w(z(m)) is a non-linear estimate of the channel input. For
example, in a binary communication system with an input alphabet {+a} we
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/

N
y(m) Equalisation filter | 2(m)=x(m)+v(m) Decision device x(m»)

hin M-level quantiser

7 .

. e(m) error signal
LMS adaptation <

algorithm

Figure 15.13 Configuration of an adaptive channel equalizer with an estimate of
the channel input used as an “internally” generated desired signal

can use a signum non-linearity such that x(m) = a.sgn(z(m)) where the
function sgn(-) gives the sign of the argument. In the following, we use a
Bayesian framework to formulate the nonlinear estimator y().

Assuming that the channel input is an uncorrelated process and the
equalizer removes a large part of the channel distortion, the equalizer output
can be expressed as the sum of the desired signal (the channel input) plus an
uncorrelated additive noise term:

Am) = x(m) +v(m) (15.93)

where v(m) is the so-called convolutional noise defined as

v(m)=x(m)= 3 h™ y(m—k)
k

. N 15.94
ZZ(h}(nv — ™ )y(m—k) ( )
k

In the following, we assume that the non-linear estimates of the channel
input are correct, and hence the error signals e(m) and v(m) are identical.
Owing to the averaging effect of the channel and the equalizer, each sample
of convolutional noise is affected by many samples of the input process.
From the central limit theorem, the convolutional noise e(m) can be
modelled by a zero-mean Gaussian process as
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1 2
fE(e(m)):\/2_7rG eXp[—e (n;)] (15.95)

20,

where 0'62, the noise variance, can be estimated using the recursive time-
update equation

o2 (m)=pc2(m—1) +(1— p)e?(m) (15.96)

where p < 1 is the adaptation factor. The Bayesian estimate of the channel
input given the equalizer output can be expressed in a general form as

i(m)=argmin [ C(x(m), £(m)) 1z (x(m) 1 2(m)) dx(m)
m) x (15.97)

where C(x(m),%(m)) is a cost function and fxz(x(m)lz(m)) is the posterior
pdf of the channel input signal. The choice of the cost function determines
the type of the estimator as described in Chapter 4. Using a uniform cost
function in Equation (15.97) yields the maximum a posteriori (MAP)
estimate

£MAP (m) =arg max fy, (x(m) | 2(m))
x(m)
=argmax fr (z(m) — x(m))Py (x(m)) (15.98)
x(m)

Now, as an example consider an M-ary pulse amplitude modulation system,
and let {a; i=1, ..., M} denote the set of M pulse amplitudes with a

probability mass function

M
Py (x(m))=> P,6(x(m)—a;) (15.99)

i=1

The pdf of the equalizer output z(m) can be expressed as the mixture pdf

M
f7(zm)=Y P, fg(x(m)—a;) (15.100)

i=1
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The posterior density of the channel input is

Py7 (x(m) = a,-lz(m))zéf,g (z(m)—a;)Px (x(m)=a;)  (15.101)
f7(z(m))

and the MAP estimate is obtained from

MAP (m) = arg max(f (z(m) — a; )Py (x(m) = a;)) (15.102)

4
Note that the classification of the continuous-valued equalizer output z(m)
into one of M discrete channel input symbols is basically a non-linear
process. Substitution of the zero-mean Gaussian model for the convolutional
noise e(m) in Equation (102) yields

2
FMAP (1) =arg max |:PX (x(m) = a; )exp {— MH (15.103)

a; 20 62

Note that when the symbols are equiprobable, the MAP estimate reduces to
a simple threshold decision device. Figure 15.13 shows a channel equalizer
followed by an M-level quantiser. In this system, the output of the equalizer
filter is passed to an M-ary decision circuit. The decision device, which is
essentially an M-level quantiser, classifies the channel output into one of M
valid symbols. The output of the decision device is taken as an internally
generated desired signal to direct the equalizer adaptation.

15.5.2 Equalization of a Binary Digital Channel
Consider a binary PAM communication system with an input symbol

alphabet {ag, a;} and symbol probabilities P(ay )=Py and P(a;)=P1=1-Py.
The pmf of the amplitude of the channel input signal can be expressed as

P(x(m))=PRyd (x(m) — a, J+ B (x(m) - a,) (15.104)

Assume that at the output of the linear adaptive equalizer in Figure 15.13,
the convolutional noise v(m) is a zero-mean Gaussian process with variance
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GVZ. Therefore the pdf of the equalizer output z(m)=x(m)+v(m) is a mixture
of two Gaussian pdfs and can be described as

__B lzm=-ap)* |, A [em—q,]’
J2(&lm)= Varo, exp{ 202 +x/%cv =P 202

(15.105)

The MAP estimate of the channel input signal is

g ” Py [z(m)—ao]2 < Py [z(m)—al]2
expy — expy —
X(m)= 0 V2ro, ’ 202 V2ro, b 2062

v

a, otherwise
(15.106)

For the case when the channel alphabet consists of ay=—a, a;=a and Py=P,

the MAP estimator is identical to the signum function sgn(x(m)), and the
error signal is given by

e(m) = z(m) — sgn(z(m))a (15.107)

Figure 15.14 shows the error signal as a function of z(m). An undesirable
property of a hard non-linearity, such as the sgn(-) function, is that it
produces a large error signal at those instances when z(m) is around zero,

2a 0 2a z(m)

=0

Figure 15.14 Comparison of the error functions produced by the hard non-linearity
of a sign function Equation (15.107) and the soft non-linearity of Equation
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and a decision based on the sign of z(m) is most likely to be incorrect.

A large error signal based on an incorrect decision would have an
unsettling effect on the convergence of the adaptive equalizer. It is desirable
to have an error function that produces small error signals when z(m) is
around zero. Nowlan and Hinton proposed a soft non-linearity of the
following form

2
eZuz(m)/G _ 1

e(m)=z(m)— (15.108)

2az(m)/ o a
ea«, m o +1

The error e(m) is small when the magnitude of z(m) is small and large when
magnitude of z(m) is large.

15.6 Equalization Based on Higher-Order Statistics

The second-order statistics of a random process, namely the autocorrelation
or its Fourier transform the power spectrum, are central to the development
the linear estimation theory, and form the basis of most statistical signal
processing methods such as Wiener filters and linear predictive models. An
attraction of the correlation function is that a Gaussian process, of a known
mean vector, can be completely described in terms of the covariance matrix,
and many random processes can be well characterised by Gaussian or
mixture Gaussian models. A shortcoming of second-order statistics is that
they do not include the phase characteristics of the process. Therefore, given
the channel output, it is not possible to estimate the channel phase from the
second-order statistics. Furthermore, as a Gaussian process of known mean
depends entirely on the autocovariance function, it follows that blind
deconvolution, based on a Gaussian model of the channel input, cannot
estimate the channel phase.

Higher-order statistics, and the probability models based on them, can
model both the magnitude and the phase characteristics of a random process.
In this section, we consider blind deconvolution based on higher-order
statistics and their Fourier transforms known as the higher-order spectra.
The prime motivation in using the higher-order statistics is their ability to
model the phase characteristics. Further motivations are the potential of the
higher order statistics to model channel non-linearities, and to estimate a
non-Gaussian signal in a high level of Gaussian noise.
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15.6.1 Higher-Order Moments, Cumulants and Spectra

The kth order moment of a random variable X is defined as
my, = E[x*]
k
ek 2 Px (@) (15.109)
dw*

w=0

where @x(w) is the characteristic function of the random variable X defined
as
@ x (w)="Elexp(jx)] (15.110)

From Equations (15.109) and (15.110), the first moment of X is m;=%F][x],

the second moment of X is m,=%[x2], and so on. The joint kth order moment
(k=kq+k>) of two random variables X; and X is defined as

2119 2®y y, (@, 0,)

ky K -k +k
Elx' x5 1=(=)" " ook dwk?
w, ' dw
)

(15.111)

|w1 =, =0

and in general the joint kth order moment of N random variables is defined
as

my, = Zl[xlkl xgz ...xNkN]

( ' D@, ... 04)] (15.112)
8wf18w§2 ~~-o’?a)§,N |

=(=))

W =Wy =---=WpN =0
where k=kj+ky+... + ky and the joint characteristic function is
(W, 0, ,...05)=Elexp(jo,x; + 0y x, +--+Oyxy)]  (15.113)

Now the higher-order moments can be applied for characterization of
discrete-time random processes. The kth order moment of a random process
x(m) is defined as

M (T1,Ta, T )=E[x(m), x(m+ T )X(M+T,)--x(m+7T,_;)] (15.114)



Equalisation Based on Higher-Order Statistics 455

Note that the second-order moment ‘E[x(m)x(m+7)] is the autocorrelation
function.

Cumulants

Cumulants are similar to moments; the difference is that the moments of a
random process are derived from the characteristic function @x(w), whereas

the cumulant generating function Cx(w) is defined as the logarithm of the
characteristic function as

Cx (0)=In® yx (w)=In E[exp(jwx)] (15.115)

Using a Taylor series expansion of the term ‘E [exp(jawx)] in Equation
(15.115) the cumulant generating function can be expanded as

Cx(w)= ln(1+m1(Jw)+ (jw)* Mk (Jw) TP (Jw) +- ] (15.116)

where m=E [x*] is the kth moment of the random variable x. The kth order
cumulant of a random variable is defined as

k
=D % (15.117)
w=0
From Equations (15.116) and (15.117), we have
¢ =m (15.118)
O (15.119)
Cy=my—3m, my + 2mi (15.120)

and so on. The general form of the kth order (k=k;+ko+ ‘- + ky) joint
cumulant generating function is
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k+-+ky

— _'kl+"'+kN 8 lnq)X((l)l,"',wN)
Cryeky = D) PN (15.121)
1 N wl :wz :...:a)N =0
The cumulants of a zero mean random process x(m) are given as
¢, =E[x(k)]=m,=0 (mean) (15.122)
¢, (k) =Ex(m)x(m + k)] = E[x(m)]*
=m, (k)—m)%zmx (k) (covariance)  (15.123)

ey (ki ky) =m, (ki ky)—m [m, (k) +m, (ky)+m, (ky —k;)]+2(m, )3
:mx (kl,kz)
(skewness)  (15.124)

Cy (ky ko ky)=m, (ky ky k3)=m, (ky)m, (ks —kjy)

and so on. Note that my(ky, ko, ..., ky)=FElx(m)x(m+k)), x(m+ky), ...,
x(m+ky)]. The general formulation of the k' order cumulant of a random
process x(m) (Rosenblatt) is defined as

¢, (ky ko nkyy=m (ky koo ki, )=mC (ky kg k) (15.126)
for n=3,4,..

G . .
where m (ky,k, ...k, ) is the kth order moment of a Gaussian process

having the same mean and autocorrelation as the random process x(m).
From Equation (15.126), it follows that for a Gaussian process, the
cumulants of order greater than 2 are identically zero.

Higher-Order Spectra

The kth order spectrum of a signal x(m) is defined as the (k—1)-dimensional
Fourier transform of the kth order cumulant sequence as
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1 oo oo . N
Cx (@,...00_1)= P 2 ECx(Tl""’Tk—l)e J(oT+ 0 Tr)
Qr)" " = 1=

(15.127)

For the case k=2, the second-order spectrum is the power spectrum given as

Cy (a)):i Y e (m)e " (15.128)

T=—00

The bi-spectrum is defined as

1 oo oo .
Cx (0,0,)= ) >N e (1,1, )e T/ OmOm) (15.129)
‘Clz—oofzz—oo

and the tri-spectrum is

oo

Cx (0,0,.,03)= 1 > Zcx(rl,1'2,13)e_j(“’171+“’272+“’3f3) (15.130)

3
(277:) T|=—00 Tp=—00 T3=—00

Since the term ¢/ is periodic with a period of 2m, it follows that higher
order spectra are periodic in each @ with a period of 2.

15.6.2 Higher-Order Spectra of Linear Time-Invariant Systems
Consider a linear time-invariant system with an impulse response sequence

{hi}, input signal x(m) and output signal y(m). The relation between the kth-
order cumulant spectra of the input and output signals is given by

Cy (ool,...,ook_l):H(a)l)~~-H(cok_1)H*(a)1 + 401 )Cx (O ,....0,_1)
(15.131)

where H(w) is the frequency response of the linear system {h;}. The
magnitude of the kth-order spectrum of the output signal is given as
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Cy (@y....00)|=[H (@))|-+[H (@ | [H (@ +++ @] |Cx (0., 04 )|
(15.132)
and the phase of the kth-order spectrum is

D, (w,,....0,_)=P,(@0)+-+0, (0, )P, (@ ++0, )+P, (@,.....0,_,)
(15.133)

15.6.3 Blind Equalization Based on Higher-Order Cepstra

In this section, we consider blind equalization of a maximum-phase channel,
based on higher order cepstra. Assume that the channel can be modelled by
an all-zero filter, and that its z-transfer function H(z) can be expressed as the
product of a maximum-phase polynomial factor and a minimum-phase
factor as

H(2)=GH i, (2)H o (2 )27 (15.134)
P
Hpn (=[] 0-z7™), |ol<1 (15.135)
i=1
Py
Hopo H=[] - Bi2). |Bil<1 (15.136)
i=1

where G is a gain factor, Hp,;,(z) is @ minimum-phase polynomial with all its
zeros inside the unit circle, Hyax(z7!) is a maximum-phase polynomial with
all its zeros outside the unit circle, and z2 inserts D unit delays in order to
make Equation (15.134) causal. The complex cepstrum of H(z) is defined as

h.(m)=Z"'(InH (z)) (15.137)

where Z-! denotes the inverse z-transform. At z=€/®, the z-transform is the
discrete Fourier transform (DFT), and the cepstrum of a signal is obtained
by taking the inverse DFT of the logarithm of the signal spectrum. In the
following we consider cepstra based on the power spectrum and the higher-
order spectra, and show that the higher-order cepstra have the ability to
retain maximum-phase information. Assuming that the channel input x(m) is
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a zero-mean uncorrelated process with variance o2, the power spectrum of
the channel output can be expressed as

2
P, (a)):j—;H(w)H* (@) (15.138)

The cepstrum of the power spectrum of y(m) is defined as

y.(m)=IDFT(In Py (®))
=IDFT(in(62G? /27 )+ In H 0 (@) + H e (~0) +In H 'y () + H ooy (—) )
(15.139)
where IDFT is the inverse discrete Fourier transform. Substituting

Equations (15.135) and (15.36) in (15.139), the cepstrum can be expressed
as

ln(Gzof /2717) m=0
ye(m)= —(A(’"’ +B(’")) m,  m>0 (15.140)
(A" + B Y, meo

where A and B are defined as

il

A=Y o (15.141)
i=l
Py

B"=Y " (15.142)
i=1

Note from Equation (15.140) that the along the index m, the maximum-
phase information B and the minimum-phase information A overlap
and cannot be separated.

Bi-Cepstrum

The bi-cepstrum of a signal is defined as the inverse Fourier transform of
the logarithm of the bi-spectrum:

Y. (my,my)=IDFT,[logCy (0, ,®,)] (15.143)
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where IDFT,[.] denotes the two-dimensional inverse discrete Fourier
transform. The relationship between the bi-spectra of the input and output of
a linear system is

Cy (0y,0,)=H (o)) H(w,)H " (0, +0,)Cx (0;,0,) (15.144)

Assuming that the input x(m) of the linear time-invariant system {/;} is an

uncorrelated non-Gaussian process, the bi-spectrum of the output can be
written as

(3)~3

C (0,0 ):x—Hmin(w )Hmax(_w )Hmin(w )Hmax(_w )
TR a2 : : ? 2 (15.145)

% *
XH pin (01 + 02)H 15 (-0 — )

where 7’;3)/ (2)? is the third-order cumulant of the uncorrelated random

input process x(m). Taking the logarithm of Equation (15.145) yields
lnCy (w;,w5)=Inl A *InH ;, (@))+InH ,, (o) +InH ; (0,)+HnH ,, (—05)
INH win (@) + @ )+InH y (—00) — @)

(15.146)

where A=J/)(53)G3/ (2)* . The bi-cepstrum is obtained through the inverse

Discrete Fourier transform of Equation (15.146) as

(1n|A|, my =m, =
— A [ m; >0,m, =0
—AMD) o my > 0,my =0
Ve (my,my)= B <O =0
B [my,  my <0,m; =0 (15.147)
—B(mz)/mz, my =ny >0
A(_mz)/mz, m; =my<0
| 0, otherwise
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Note from Equation (15.147) that the maximum-phase information B and
the minimum-phase information A are separated and appear in different
regions of the bi-cepstrum indices m; and my.

The higher-order cepstral coefficients can be obtained either from the
IDFT of higher-order spectra as in Equation (15.147) or using parametric
methods as follows. In general, the cepstral and cumulant coefficients can be
related by a convolutional equation. Pan and Nikias (1988) have shown that
the recursive relation between the bi-cepstrum coefficients and the third-
order cumulants of a random process is

yC (ml’m2)*l_ m] cy (m]’mz )J:_ mlcy (m19m2) (15148)

Substituting Equation (15.147) in Equation (15.148) yields

Y Ae, (my —i,my) —c, (m; +i,m, +D)+B[c, (m —i,m, —i)—c, (m +i,m,)]
i=1

=—mc, (ml ,1my)

(15.149)

The truncation of the infinite summation in Equation (15.149) provides an
approximate equation as

P .
> AD[c (my —i,my) —c, (my +i,my +1)]
= (15.150)

o
+ 3 BOc (my —i,my —i)—c,(m; +i,my)|=—myc, (my,m,)
i=1

Equation (15.150) can be used to solve for the cepstral parameters A and
B(m),

Tri-Cepstrum

The tri-cepstrum of a signal y(m) is defined as the inverse Fourier transform
of the tri-spectrum:
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where IDFT5[-] denotes the three-dimensional inverse discrete Fourier

transform. The tri-spectra of the input and output of the linear system are
related by

Cy (w;,0,,03)=H(w;)H (0, )H (w5 )H* (0, +w, +05)Cy (0,0, ,05)
(15.152)

Assuming that the channel input x(m) is uncorrelated, Equation (15.152)
becomes

B4
X

Cr (@0,00)=" 0 H(opH (0))H(03)H (01 +0, +03)  (15.153)

where 7Y / (27)* is the fourth-order cumulant of the input signal. Taking

the logarithm of the tri-spectrum gives

DG4
InCy (@, 0,,w5)= ("2 3 +InH ;. (@0 )+InH . (—o))+HnH o (0))+InH | (—0,)
T

+InH  (03)+HnH . (—03) +InH o (0 + 0y +©3)+HnH (0 — 0, —03)

(15.154)
From Equations (15.151) and (15.154), we have
[ InA, my =my, =mz=0
—A(ml)/ml, m; >0,my, =my=0
A [y my > 0,m =my=0
—A(m3)/m3, my >0,m; =my=0
BC™ [m, my <0,my =my=0
Ye(my,my,ms) =4
B [m,, m, <0,m; =my=0
B [m,, my < 0,m; =m,=0 (15.155)
—B(MZ)/mz, my =my=ms;>0
A [ my =my=mz<0
0 otherwise
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where A=Y, WgH / (2m)* . Note from Equation (15.155) that the maximum-

phase information B and the minimum-phase information A(m are
separated and appear in different regions of the tri-cepstrum indices mj, m;

and mj.
Calculation of Equalizer Coefficients from the Tri-cepstrum

Assuming that the channel z-transfer function can be described by Equation
(15.134), the inverse channel can be written as

inv 1 1 1nV inv -1
H - = H
NTE Hoin (O H (27 Homin () o (25) - (15.156)

where it is assumed that the channel gain G is unity. In the time domain
Equation (15.156) becomes

R (m)=h™ (m)*h™ (m) (15.157)

Pan and Nikias (1988) describe an iterative algorithm for estimation of the
truncated impulse response of the maximum-phase and the minimum-phase

factors of the inverse channel transfer function. Let h;;};] (i,m), h;‘;’x (i,m)
denote the estimates of the mth coefficients of the maximum-phase and
minimum-phase parts of the inverse channel at the it iteration . The Pan and
Nikias algorithm is the following:

(a) Initialisation

hinY (1,0)=hin, (i,0)=1 (15.158)

(b) Calculation of the minimum-phase polynomial

A (im) = — ZA“‘ Dpiny im—k+1)  i=1,..,P; (15.159)
k2

(c) Calculation of the maximum-phase polynomial

hin (lm)— ZB“ DR (im—k+1)  i=-1,..,~P> (15.160)

k m+1
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The maximum-phase and minimum-phase components of the inverse
channel response are combined in Equation (15.157) to give the inverse
channel equalizer.

15.7 Summary

In this chapter, we considered a number of different approaches to channel
equalization. The chapter began with an introduction to models for channel
distortions, the definition of an ideal channel equalizer, and the problems
that arise in channel equalization due to noise and possible non-invertibility
of the channel. In some problems, such as speech recognition or restoration
of distorted audio signals, we are mainly interested in restoring the
magnitude spectrum of the signal, and phase restoration is not a primary
objective. In other applications, such as digital telecommunication the
restoration of both the amplitude and the timing of the transmitted symbols
are of interest, and hence we need to equalise for both the magnitude and the
phase distortions.

In Section 15.1, we considered the least square error Wiener
equalizer. The Wiener equalizer can only be used if we have access to the
channel input or the cross-correlation of the channel input and output
signals.

For cases where a training signal cannot be employed to identify the
channel response, the channel input is recovered through a blind
equalization method. Blind equalization is feasible only if some statistics of
the channel input signal are available. In Section 15.2, we considered blind
equalization using the power spectrum of the input signal. This method was
introduced by Stockham for restoration of the magnitude spectrum of
distorted acoustic recordings. In Section 15.3, we considered a blind
deconvolution method based on the factorisation of a linear predictive
model of the convolved signals.

Bayesian inference provides a framework for inclusion of the statistics
of the channel input and perhaps also those of the channel environment. In
Section 15.4, we considered Bayesian equalization methods, and studied the
case where the channel input is modelled by a set of hidden Markov models.
Section 15.5 introduced channel equalization methods for removal of
intersymbol interference in digital telecommunication systems, and finally
in Section 15.6, we considered the use of higher-order spectra for
equalization of non-minimum-phase channels.
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