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Preface

Digital radios have undergone an astonishing evolution in the last century. Born as a set of simple and
power-hungry electrical and electromechanical devices for low data rate transmission of telegraph data
in the Marconi age, they have transformed, thanks to substantial advances in electronic technology,
into a set of small, reliable and sophisticated integrated devices supporting broadband multimedia
communications. This, however, would not have been possible unless significant progress had been
made in recent decades in the field of signal processing algorithms for baseband and passband signals.
In fact, the core of any modern digital radio consists of a set of algorithms running over programmable
electronic hardware. This book stems from the research and teaching activities of its co-authors in
the field of algorithmic techniques for wireless communications. A huge body of technical literature
has accumulated in the last four decades in this area, and an extensive coverage of all its important
aspects in a single textbook is impossible. For this reason, we have selected a few important topics
and, for ease of reading, organized them into two parts. Part I concerns digital modulation techniques,
characterization and modeling of wireless channels, channel estimation, and channel equalization met-
rics and algorithms. Part II focuses on channel coding, coded modulation, and combined equalization
and decoding. For each of these topics, we have tried to provide an advanced introduction, blending
basic principles with advanced concepts and techniques which play an important role at the forefront
of research in wireless communications. In addition, for each topic we have provided some historical
notes, so that the reader can analyze it in the right perspective, understanding both its roots and its
possible evolutionary paths.

From the outset our main goal has been to produce a textbook for beginning graduate and senior
students, who are expected to have some basic knowledge in the fields of Fourier transform techniques,
probability theory, random processes, sampling theory, linear filtering, vector spaces, matrix algebra
and linear transformations. Some information about more advanced concepts in these fields is provided
in the appendices of the book, which, for this reason, we believe to be self-contained.

This book can serve as a text in either one-semester or two-semester courses in digital communi-
cations and coding. A natural division is to cover Part I in the first semester and Part II in the second.
An alternative one-semester course can cover a portion of the material of Part I (Chapters 1–4 and 6)
and some basic material from Part II (Chapters 7–9).

The writing of this book has required a substantial commitment. We owe much to all those peo-
ple who volunteered to read parts of it, correct mistakes and provide suggestions for enriching its
technical content and improving its clarity of presentation. In particular, we are grateful to Francesco
Montorsi, Fabio Gianaroli, Tommaso Foggi, Amina Piemontese, Nicolò Mazzali, Andrea Modenini
and Alessandro Ugolini for their contributions. Our sincere thanks go also to the editorial staff of
Wiley and, in particular, to Mark Hammond, Sarah Hinton, Jennifer Beal, and Susan Barclay, who
have always supported us in the writing process.

We do hope that the uncountable hours devoted to this book will bear fruit in stimulating interest
in the study of modern techniques for wireless communications.
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1
Introduction

The history of wireless communications stretches back many centuries. Many of the earliest systems
were inherently line of sight (LOS) using such techniques as smoke signals, flashing lights and
semaphore. For example, in Napoleonic times, the French had an elaborate, essentially countrywide,
semaphore system, developed by Claude Chappe (1763–1805) and consisting of chains of relay sta-
tions [1, 2]. Possibly, the first non-LOS systems were the drum signaling techniques used by tribes in
Africa.

Guglielmo Marconi (1874–1937) first demonstrated modern wireless technology, also known as
radio, in 1895 [1, 3, 4]. The first such systems were in a sense digital since they used Morse code,
which had been invented by Samuel Finley Breese Morse (1791–1872) for use in telegraphy. Speech
communication, using analog modulation, followed only a few years later, and prior to the 1980s almost
all wireless systems used analog transmission techniques. However, the widespread deployment of
telephony based on pulse code modulation (PCM) and the development of digital satellite transmission
and microwave relay systems fostered the development of digital transmission techniques. These
systems are now being augmented and to a large extent supplanted for point-to-point communications
by terrestrial digital wireless systems coupled with high speed backbone networks implemented using
optical fiber. Satellite systems retain a very valuable niche in the area of wide area broadcasting to
which they are well suited. They also retain an application in some data transfer systems, where delay
is not of prime importance. Microwave relay systems are falling into disuse in many regions as they
are replaced by fiber links.

The development of modern terrestrial wireless systems has been driven in large measure by the
development of cellular radio systems [5, 6]. The cellular principle introduced the concept of frequency
reuse over large spatial domains. This leads to a very efficient use of the available radio spectrum
and allows for a very large number of simultaneous users of a given system. As a result the world
is today moving to an untethered mobile wireless communications environment based on cellular-like
system architectures.

AT&T deployed the first cellular system in Chicago in 1983 following several years of development.
It used an analog transmission format and was completely saturated by 1984, the developers having
grossly underestimated the public appetite for mobile phone services. Since then there has been an
almost explosive growth of cellular radio, and this continues today. In the early 1990s the first digital
cellular or second generation systems appeared. These provided increased capacity and performance
using digital transmission formats coupled with improved digital signal techniques and hardware
platforms. Today there are cellular systems based on both time division multiple access (TDMA) and
code division multiple access (CDMA).

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 Wireless Communications

The advent of digital cellular systems paved the way for mobile data services. There is now an
increasing demand for these and, as a result, third generation cellular systems are being deployed.
These provide for higher data rates and offer many new applications and services. In addition to
cellular systems, there are numerous other wireless systems being developed and deployed. Moreover,
there is now a convergence taking place to common transmission and networking environments for
voice, data and multimedia communications. Consequently, there is an increasing demand for higher
and higher data rates coupled with the requirement to make even more efficient use of the limited
available radio spectrum.

Today there are numerous distinct wireless systems in use. These modern systems, while distinct, all
use digital signaling formats and network architectures and there is a distinct trend toward convergence
to a small number of these coupled with the ability to interwork between different systems and
networks. Some of the systems that are currently deployed or being developed for deployment include
the following:

1. Cellular telephone systems. While these ignited the wireless revolution, they are still undergoing
development to improve their transmission rates and the range of applications to which they can
cater.

2. Cordless telephones. These initially were developed to provide tetherless connections within the
limited space of a single dwelling. However, with the development of CT-2 in North America
followed by that of DECT in Europe [5, 6], their space has enlarged and there are signs of their
convergence to the cellular telephone system.

3. Wireless local area networks (WLANs). These have seen a great deal of development in the past
few years. Standardization of signaling formats to the IEEE 802.11b, 802.11a and 802.11g formats
and their widespread use in unlicensed bands around 800 MHz, 2.4 GHz and 5 GHz has led to
an almost explosive growth in mobile computing. This has fostered the development of networks
of high data rate wireless access points (APs) interconnected by high speed backbone networks,
thereby leading essentially to a cellular network architecture. In addition to the IEEE standards-
based networks, there have been similar developments in Europe known as the Hiperlan I and II
standards.

4. Broadband wireless access networks. These are in large measure based on the IEEE 802.16 standard
[7] and are intended to provide high rate, wide area coverage similar to that of WLANs. These
systems are just now beginning to be deployed, and it appears that they may subsume some of the
functionality now provided by cellular networks.

5. Low-cost, low-power systems. Such systems, which include Bluetooth [8] and Zigbee [9], were
initially intended to provide relatively low data rates with limited range and in small-scale networks.
Bluetooth is primarily focused on so-called personal area networks (PANs) that support a very
limited number of devices requiring limited data rates. Zigbee was developed primarily for use in
sensor networks requiring low data rates with long-lived battery powered terminals.

6. Ultra wideband (UWB) systems. These are systems based at least initially on the concepts of
impulse radio (IR) [10] and are characterized by percentage bandwidths in excess of 20% of the
carrier frequency or by a bandwidth exceeding 500 MHz. Today there are two further basic system
approaches, one based on spread spectrum and the other on multiband orthogonal frequency division
multiplexing (OFDM). System deployment has only recently been licensed in North America and
many of their applications are uncertain at this stage. However, it does appear that they may
subsume many of the functions now provided by systems such as Bluetooth and Zigbee.

In addition to the system types mentioned above, there is today a trend toward cognitive or
“smart” radios as first described by J. Mitola [11, 12]. Cognitive radio may be loosely thought of
as overlay on a software-defined radio that causes a system to recognize its channel and interference
environment and then to automatically adjust its parameters. There are many possible approaches to
such systems and we will not make any attempt to categorize them here.
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Finally, there are undoubtedly many wireless systems and applications that have not been mentioned
here. Moreover, there are almost certainly others that have not yet been conceived. The world is moving
rapidly to an untethered communications environment and there will be many new applications of
both existing and new wireless systems appearing in the next few years.

This book is focused on the so-called physical layer of wireless communications systems. In partic-
ular, it is focused on techniques for mitigating the effects of the wireless channel including dispersion
due to multipath propagation that causes intersymbol interference (ISI), adjacent and co-channel
interference. It is also concerned with achieving high-rate, high-integrity communications in a power-
efficient manner. The overall focus is the development and analysis of transmission techniques and
algorithms for accomplishing this. The book considers both single-input single-output (SISO) sys-
tems and multiple-input multiple-output (MIMO) systems that utilize transmit and receiver diversity
to achieve high-capacity signaling coupled with high-integrity transmission.

In the remainder of this introductory chapter, we will first provide an overview of both SISO
and MIMO system architectures. We will then briefly describe the structure of the book and, finally,
provide some suggestions for further reading.

1.1 Structure of a Digital Communication System
The overall focus here is on the structure of a digital communication system operating over a wireless
channel. We will consider conventional systems, using a single antenna at the transmitter and, possibly,
diversity reception, and MIMO systems. One of the most powerful techniques available to improve
the performance and throughput of wireless transmission is that of diversity. In fact, diversity creates
multiple copies of the transmitted signal at the receiver. In principle, these copies are uncorrelated,
so that when one copy is deeply faded due to the wireless channel, the others are not. This allows
for significant improvement in both the error performance and throughput of wireless transmission
systems. The concept of diversity in receivers has been known for many years [13]; however, in
recent years there has been much work in developing techniques to achieve diversity at the transmitter
[14, 15] and to combine transmit and receive diversity through the use of space-time coding [16].

Systems that combine transmit and receive diversity are known as MIMO systems, which may in a
sense be considered as the most general system architecture. Such systems include space-time coded
systems [16] and the so-called Bell Labs Layered Space-Time (BLAST) [17] or spatial multiplexing
architectures. The latter have been shown to allow for major increases in the available channel capacity
[18] and a consequent increase in the efficiency of use of the available radio spectrum. Note that
capacity provides a theoretical upper limit on the throughput that can be achieved in a given channel.

SISO systems that contain no diversity are clearly the simplest in structure. Single-input multiple-
output (SIMO) systems encompass the classical architecture, providing diversity only at the receiver.
Multiple-input single-output (MISO) systems provide only transmit diversity usually through the
mechanism of space-time coding [16], which introduces both temporal and spatial correlation among
multiple transmitted signal streams in such a manner that a single receiver can decode the multiple
received signals and obtain the diversity effect introduced at the transmitter.

Generic system architectures are depicted for SIMO and MIMO systems in Figures 1.1 and 1.2,
respectively. In the following chapters of this book a number of algorithmic techniques implemented in
the various functional blocks forming the point-to-point wireless communication systems1 illustrated
in Figures 1.1 and 1.2 will be considered in detail. Here we confine ourselves to a more or less
qualitative description of their various functions.

Let us consider the functions performed by the various system blocks, referring first to Figure 1.1,
for simplicity. To begin, we consider the blocks over which a system designer does not usually

1 Note that both systems are characterized by a single information source and a single destination; multiuser systems
will not be investigated in the following.
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Figure 1.2 Block diagram of a space-time digital communication system.

have direct control, namely the message source and the message destination. The source generates
a sequence of discrete2 messages {mn} (where mn denotes the nth message in the sequence). In the
case where the source produces an analog signal, it is assumed that the source encoder accomplishes
analog-to-digital conversion, producing a data stream or discrete message sequence. The message
destination is relevant to the present discussion only because an appropriate fidelity criterion (i.e., a
quality index), describing system performance, is usually defined for a given source–destination pair.
Quality indexes commonly adopted to assess the performance of a digital communication system are
the bit error probability and the symbol error probability.

A wireless communication system designer does not usually have complete control over the com-
munication channel. With reference to Figures 1.1 and 1.2, this includes the propagation medium
(i.e., the physical space through which the electromagnetic signal radiated by the transmit antenna
travels), the final section of the transmitter (e.g., the transmit antenna and filtering/amplification stages
preceding it), and the initial section of the receiver (e.g., the receive antenna and low noise amplifier
and filter stages following it). In the present work, we will not focus on the details of the “channel”
subsystem. Instead, we will limit ourselves to a mathematical description of its input–output behavior.

2 This means that the message alphabet has a finite cardinality. Throughout the book, we will consider only discrete
sources whose alphabet has this property.
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As will be seen later, a wireless communication channel changes the shape of the transmitted signal,
introducing linear (and, eventually, nonlinear) distortions and adding random noise.

The distortions due to a wireless channel can cause substantial changes in the temporal and spectral
properties of transmitted signals. These often originate from the fact that electromagnetic waves do not
propagate from the transmit to the receive antenna along a direct path, but are reflected and scattered by
objects in the surrounding environment. As a result, receiver antennas collect multiple copies (echoes)
of the same transmitted signal. These have usually traveled along distinct paths, with different prop-
agation times, and generally arrive with different phases and amplitudes. As a result, in some spatial
locations, these copies can interfere destructively, canceling each other, so that the useful component
of the received signal fades. In other words, the presence of multiple paths generates the so-called
fading phenomenon, representing one of the most significant impairments encountered in wireless
system design. The oldest countermeasure to fading is known as diversity reception. This consists of
equipping digital receivers with multiple antennas, which, when adequately spaced, collect different
(i.e., distorted in different and, possibly, independent ways) replicas of the transmitted signal [19].

Any communication channel also adds random noise, which is generated by both external sources
(e.g., cosmic and atmospheric signals, and interference) and by the electronic devices in the receiver.
A brief discussion of its statistical properties will be provided later. At this point, we merely note
that it usually has a Gaussian distribution and a white or constant power spectral density over the
frequency bands of interest.

Let us summarize the functions of the other blocks of the transmitter (i.e., the source encoder), the
encryptor, the channel encoder and the modulator:

• The source encoder processes the source message stream to remove its natural redundancies. This
can result in appreciable reduction of the bit rate, sometimes achieved, however, at the price of an
information loss. Despite this, the original message stream can be recovered by the source decoder
at the receiver within some specified fidelity.

• The encryptor, if present, adds security coding to the data sequence generated by the source encoder.
This result is achieved by a coding algorithm turning the unciphered data (usually called plaintext)
into a new discrete sequence {un} (called ciphertext). The encryption algorithm involves a parameter,
called the key, knowledge of which at the receiver is essential to deciphering. One class of modern
and well-known ciphering techniques, known as public-key encryption, relies on a double key
mechanism, that is, on the use of a public key (potentially known to anyone) for enciphering and
on a private key (known, in principle, only to the message destination) for deciphering [20].

• The channel encoder introduces an error-correction capability, so that most (possibly all) of the
errors due to channel noise and distortion can be removed or corrected at the receiver. To achieve
this target, the channel encoder introduces memory and redundancy into the coded sequence. The
presence of redundancy is seen from the fact that, in a given time interval, the number of bits
generated by the channel encoder is larger than the number of the information bits processed by it.
Memory can be related to the fact that, generally speaking, each bit feeding the encoder influences
multiple bits at its output. As discussed in Part II of this book, the receiver exploits both these
properties to improve the reliability of its decisions.

• The modulator is fed by the symbol sequence {dn} (each symbol belongs to a multilevel alphabet)
and generates an analog signal s(t), which consists of the concatenation of waveforms belonging to
some finite alphabet of signals. In practice, this device represents the interface between the stream
of discrete data and the real communication medium. Therefore, it accomplishes multiple tasks
(including frequency up-conversion) and power amplification and can incorporate transducers (e.g.,
multiple transmit antennas).

Let us now consider some of the subsystems in the receiver, namely the demodulator, the channel
decoder, the decryptor and the source decoder. These units accomplish functions complementary to
those of the corresponding blocks in the transmitter.
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In general, the receiver has nR ≥ 1 antennas. The lth antenna (with l = 0, 1, . . . , nR − 1) feeds
the demodulator with the noisy radio-frequency (RF) signal:

rl(t) = zl(t) + nl(t), (1.1)

where zl(t) and nl(t) represent the useful signal component (i.e., the response to s(t) of the
communication channel including the transmitter and the transmit/receive antennas in the absence
of noise) and the random noise at the receive antenna terminals, respectively. The demodulator
processes the waveforms {rl(t)} of (1.1), to extract a set of synchronization parameters (such as the
phase and frequency of the carrier associated with zl(t), and timing information), and in many cases
an estimate of the communication channel response. Then it uses this information to perform signal
detection that generates a data sequence {xn}. This contains either hard or soft information about the
transmitted data. In the first case, if we focus on the data transmitted in the nth symbol interval, the
demodulator generates a hard estimate or decision d̂n on the value of the (coded) transmitted symbol
dn, whereas in the second case it produces information about the reliability (i.e., the likelihood) of
each value that dn can take.

The channel decoder exploits the information provided by the demodulator, to try to find the most
likely data sequence {ûn} that has generated the coded sequence {dn}. Note that the availability of
soft information allows the decoder to improve the quality of its decisions with respect to the case of
knowledge of hard information.

The task accomplished by the decryptor is the inverse to that of the encryptor. This task can be
carried out successfully if both the ciphering algorithm and its key are known.

The source decoder processes an estimate of the binary data generated by the source encoder to
generate a message in a proper format (the data sequence {m̂n} or the analog signal m̂(t) in Figure 1.1)
for the destination.

Finally, we note that the system of Figure 1.1 is characterized by a communication channel with a
single input (corresponding to a single transmit antenna) and multiple outputs, to be processed by a
receiver equipped with nR ≥ 1 antennas. For this reason, the communication system can be classified
as SIMO. In particular, if nR = 1, we have a SISO system.

The scheme illustrated in Figure 1.2 generalizes that of Figure 1.1, since it represents a system with
nT > 1 transmit antennas, resulting in a MIMO system. In such a system, the channel encoder, in
response to the discrete data sequence {un}, generates a sequence of vectors {dn}, each consisting of nT

different elements. For any n, the kth element dn[k] (with k = 0, 1, . . . , nT − 1) of dn is transmitted
by the modulator as the RF signal sk(t) radiated by the kth antenna. Therefore, the redundancy and
memory introduced by the encoder are spread over both time (as in the SIMO scenario described
above) and space using distinct transmit antennas (transmit diversity). This is commonly referred to
as space-time (ST) channel coding [16]. Generally speaking, each receive antenna observes a linear
combination of all nT transmitted signals. In fact, the noisy signal captured by the lth receive antenna
can be expressed as:

rl(t) =
nT −1∑

k=0

zkl (t) + nl(t), (1.2)

with l = 0, 1, . . . , nR − 1, where zkl (t) and nl(t) respectively represent the useful signal component
(the channel response between the kth transmit and the lth receive antennas to sk(t) in the absence of
noise) and the random noise collected by the antenna mentioned above. The demodulator processes
the signals {rl(t)} of (1.2) and generates a sequence of nT -dimensional vectors {xn}, whose elements
contain, as in the previous case, hard or soft information about the sequence {dn}.

Recent studies have shown that the use of the spatial dimension in digital transmissions can
substantially improve system robustness against channel fading and can allow an increase in the data
rate transmitted within a given bandwidth. This explains the substantial research efforts on MIMO
systems in the last decade [21, 22], to assess both their theoretical limits and to develop new digital
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transmission techniques for such systems. These studies have been followed by the development of
prototypes of MIMO systems and, more recently, by the design of application specific integrated
circuits (ASICs) for their low-cost implementation. This is illustrated by the so-called BLAST trans-
mission technique, developed at Bell Labs by Gerard J. Foschini in 1996 [17]. In a BLAST system
a data stream generated by a single source undergoes spatial multiplexing, that is, it is divided in nT

distinct substreams, each transmitted by a distinct antenna, using, however, the same time intervals
and bandwidth as all the other antennas. At the receive side an array consisting of nR antennas is used
to collect the multiple linear combinations of the transmitted signals. Each receive antenna captures
the superposition of all the nT transmitted signals as in equation (1.2). Note that in a rich scatter-
ing environment, different antennas, having distinct spatial locations, receive different replicas of the
same signal. This form of diversity allows the receiver to separate and detect, using sophisticated
signal processing algorithms, the nT transmitted signals, to reliably recover the overall transmitted
data stream.

To assess the technical feasibility of the theoretical results derived by Foschini, in 1998 Bell Labs
developed a BLAST prototype, having eight transmit antennas and 12 receive antennas. It clearly
showed the possibility of achieving transmit data rates 10 times faster than those offered by traditional
communication techniques in the same bandwidth [23]. On October 16, 2002, Lucent Technologies
announced that Bell Labs had developed the prototypes of two chips for the use of the BLAST
technology in mobile terminals and that the first lab tests had shown the possibility of transmitting at
a rate of 19.2 Mbits/s, eight times faster than existing techniques under the same conditions.

Technically important results in the development of systems equipped with antenna arrays have
also been obtained using the transmission technique known as MIMO-OFDM.3 In this case spatial
multiplexing is combined with frequency division multiplexing (FDM), so that spatial diversity is
jointly exploited with spectral or frequency diversity. The last form of diversity arises due to the fact
that, in a multipath channel, distinct spectral components of the transmitted signal undergo different
phase/amplitude changes. Again in the development of MIMO-OFDM systems the derivation of many
of theoretical results has been followed by the development of prototypes (e.g., see [24, 25, 26]) and,
later, by the implementation of ASICs for modern wireless communications systems (e.g., in local
area radio networks).

All this explains why today MIMO technology can be considered a mature technical solution for
the design of digital communication systems.

In the following chapters of this book we will first focus on communication techniques employed
in SISO and SIMO communication systems. We believe that a deep understanding of these techniques
provides a solid foundation for the study of MIMO systems; this point will be stressed throughout
the book, since various methodologies for the analysis and the design of MIMO systems will be
presented as extensions of similar results derived for conventional systems, equipped with a single
transmit antenna.

1.2 Plan of the Book
This book is divided into two parts. Part I concerns the wireless channel and the development of
algorithms to process signals transmitted using uncoded transmission techniques. Part II deals with
wireless systems that employ channel coding and develops algorithms to process signals that have been
encoded prior to transmission. The use of coded transmission opens up the possibility of developing
algorithms to jointly mitigate the distorting effect of the wireless channel and decode the information.

More specifically, in Part I, after describing the mathematical tools for both deterministic and
stochastic descriptions of wireless channels in Chapter 2, an overview of the most important digital
modulation techniques for radio communications is given in Chapter 3. In particular, we focus on both

3 The OFDM technique is analyzed in detail in Chapter 3.
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single carrier formats, such as passband pulse amplitude modulation and continuous phase modulation,
and multicarrier formats, namely, orthogonal frequency division multiplexing signaling. We illustrate,
for each class of signals, the structure of the modulated signals and their spectral properties. General
rules for optimal signal detection are summarized in Chapter 4, to provide an overview of available
techniques and of the analytical methods for estimating their performance. Detection over wireless
channels may require estimation of channel properties, and, in particular, the channel impulse response.
This is the subject of Chapter 5, which deals with both feedforward and iterative channel estimation
techniques. Chapters 4 and 5 provide the necessary tools for the design of channel equalization algo-
rithms, which are the subject of Chapter 6. There various algorithms are illustrated for the modulation
formats described in Chapter 3. In particular, algorithm classification is done first on the basis of the
modulation category (single carrier or multicarrier), and then on the basis of the available channel
state information (CSI). As far as the last point is concerned, we consider three distinct possibilities: a
receiver provided with perfect CSI knowledge; a receiver provided with statistical knowledge of CSI,
but not performing explicit channel estimation; and a receiver performing joint estimation of data and
CSI. Moreover, for single carrier modulations, equalization strategies operating in the time domain
and in the frequency domain are considered.

In Part II we first discuss some essential results about the capacity of wireless channels (Chapter 7),
showing the benefits of using multiple antennas at both transmitter and receiver. Then, in Chapter 8
an introduction to channel coding schemes and to coded modulations for wireless communication
techniques is provided. Classical coding schemes, such as linear block codes and convolutional codes,
are described in Chapter 9. For each class, we illustrate some well-known families of coding schemes
and some important decoding techniques. In addition, some classical concatenated coding schemes
are presented. Modern coding schemes, such as turbo codes and low-density parity check codes, are
considered in Chapter 10. Again, coding and decoding algorithms are discussed, and some performance
results are presented. The coding schemes and principles analyzed in Chapters 9 and 10 also provide
the tools for understanding the signal space codes analyzed in Chapter 11. In particular, in that
chapter we focus on trellis coded modulation (TCM), bit-interleaved coded modulation (BICM), and
modulation codes based on multilevel coding, and finally on space-time coding, for both frequency-
flat and frequency-selective fading channels. In a digital receiver equalization and decoding can be
accomplished in a noniterative or in an iterative fashion, the latter possibility usually being in mobile
scenarios. Some basic concepts from this modern research area are discussed in Chapter 12. Finally,
appendices summarize various mathematical results (on Fourier transforms, linear systems, random
variables and stochastic processes, etc.), that turn out to be extremely useful in both parts of the book.

1.3 Further Reading
A general introduction to digital communication techniques can be found in the textbooks [27–30].
Other introductory books, explicitly devoted to such techniques and to their applications in wireless
communications, are [5, 6, 31–34]. A general introduction to the topic of channel coding theory is
provided by the excellent book [35]. Channel coding schemes for wireless applications are investigated
in [36, 37]. A study of various space-time processing and coding techniques can be found in the books
[16, 38–40]. Books explicitly devoted to various algorithmic aspects of wireless communications
are [41–43].
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Wireless Channels

2.1 Introduction
In wireless communication systems the channel introduces random variations with time and/or
frequency in both the amplitude and phase of the transmitted signal. These phenomena are collectively
known as fading and dispersion [19, 44–46]. The study of fading, dispersive channels is the main
subject of this chapter.

Fading originates due to various causes. The most common is the presence of multiple propagation
paths, that is, the existence of a number of paths along which an electromagnetic signal propagates
from a transmitting antenna to the receiving one [19, 47, 48]. The presence of these multiple paths
is normally due to reflection, diffraction and scattering caused by objects in the propagation medium
and/or by its lack of homogeneity. Physical understanding of these phenomena requires study of the
basic mechanisms governing the propagation of electromagnetic waves in the presence of obstacles
with specific conductive or dielectric properties. This is outside the scope of this chapter: the reader can
refer to [34, Chapter 4] and [6, Chapter 4] for an introduction to these topics. Here, when we consider
the propagation medium, we will assume that the multipath propagation is due to the presence of a
set of scatterers, each reflecting and/or dispersing the energy of an impinging electromagnetic signal.

When a communication system operates over a time-dispersive channel (a channel affected by
multiple propagation paths), the distinct echoes of the transmitted signal captured by a receive antenna
have different amplitudes and phases. These differences in general depend on both frequency and time
and, if we neglect noise, the received signal consists of the linear combination of multiple echoes or
replicas of the transmitted signal modified, in spectral content, according to the time variability of
the medium.

Time variability manifests itself as time selectivity in the form of fluctuations in the intensity of
the received signal. This variability is usually due to relative motion between receiver and transmitter
and/or to environmental changes, producing changes in the characteristics of the various propagation
paths. To mathematically describe channel behavior over a realistic time scale, channel models char-
acterized by a set of fixed echo delays are commonly used and time variability is accounted for by
assuming the echo amplitudes and phases are time-varying. Such models, however, do not provide a
complete description of a channel, because of longer-term variations occurring in realistic propagation
scenarios, which can entail significant changes in the structure of the channel itself (e.g., in the number
of echoes and in their delays). These longer-term changes occur on time scales of minutes, tens of
minutes, or hours, and are often due to meteorological factors or to the sun. In some cases, they may
include daily, seasonal, or yearly phenomena or even the sunspot cycle.

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Fast changes in the intensity of the received signal (called short-term fading) are usually
distinguished from those associated with slow changes (called long-term fading). This choice arises
from an inaccurate, but useful, dichotomy regarding the time scale adopted in the observation of
a communication channel. Both types of fading manifest themselves as a time-continuous random
process, but they play different roles in wireless system design. The properties of short-term fading
influence the choice of modulation and coding schemes, and of the receiver type, since they affect
the structure of the received waveform and the presence of error correlation in data detection [49].
Long-term variations are also important, but they tend more to affect the availability of a wireless
channel and, consequently, the outage probability of the system [45, 47, 48]. In fact, acting on the
inner structure of a channel, they can cause the received signal to be significantly different from that
for which a system design has been optimized. In fact, in the presence of appreciable variations,
maintaining a minimum quality over the link, may require at the receiver a signal-to-noise ratio
(SNR) larger than that achievable using the maximum available transmit power.

In this chapter we will focus only on short-term fading. We will assume that it is due exclusively
to the presence of multiple, time-varying paths. We will not, however, forget that short-term fading
models always have to be considered as conditioned on the “instantaneous” values of those parameters
that are described by longer-term statistics. This needs to be kept in mind when we introduce the
concept of time stationarity to describe, from a statistical perspective, channel variability with time.
In fact, a channel affected by fading that is statistically stationary over time must be considered as a
local model, that is, as a model that provides a short-term description, since its statistics can change
appreciably over longer time intervals. Fortunately, it has been found that such locally stationary
models are suitable representations of the actual behavior of fading channels commonly encountered
in the study of wireless systems [19].

Let us now analyze the issues of spatial variability of a signal received over a fading channel. To
grasp the essential aspects of this problem, let us consider Figure 2.1, which illustrates typical behavior
(dotted curve) of the ratio (in decibels) between the received power PR and the transmitted power
PT as a function of the transmitter–receiver separation, d, normalized to wavelength λ. This clearly
illustrates the presence of rapid fluctuations in the received signal power. This is due to the presence
of multiple echoes, associated with distinct propagation paths. These may interfere constructively,
strengthening the received signal, or destructively, significantly attenuating it. Such effects, which are
due to the mutual interference of multiple echoes, can change appreciably if a receiver moves only
a fraction of a wavelength, since small variations in the path lengths may cause large changes in the
phases of the associated echoes. This explains why such variations in the intensity of the received
signal are usually called small-scale propagation effects. They in fact represent a manifestation of the
small-scale fading affecting the communication channel. Note from the curve representing the ratio
(PR/PT )dB versus d/λ, that another curve, showing the average behavior1 of (PR/PT )dB, can be
extracted and, in the present case, is represented by the continuous line of Figure 2.1. In the literature
this behavior is explained by introducing two phenomena characterizing wireless channels, known as
path loss (or propagation loss) and shadowing. Both effects are classified as large-scale propagation
effects and are considered as manifestations of so-called large-scale fading (or longer-term fading).
However, the causes of these two phenomena are quite different. On the one hand, path loss is due to
the spatial attenuation of the electromagnetic signal in the propagation medium and, analytically, is
characterized by a monotonously decreasing dependence on d; this is represented by the dot-dashed
curve shown in Figure 2.1. Shadowing, on the other hand, is caused by the presence of obstacles
interposed between transmitter and receiver and the resulting attenuation, expressed in decibels, is
represented by a slow random zero-mean fluctuation superimposed on the pass loss, as exemplified
by the continuous curve of Figure 2.1. Another macroscopic difference between these phenomena

1 In this case a spatial average is considered, since it is evaluated by processing multiple measurements extracted
in the neighborhood of the point at which the average itself is evaluated. The way significant data are extracted in
the estimation of the propagation loss from experimental measurements is analyzed, for instance, in [50 Sect. 2.2].
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Figure 2.1 Typical behavior (dotted curve) of the ratio, expressed in decibels, between the received
power PR and the transmitted power PT versus the transmitter–receiver distance d (normalized to
the link wavelength λ) in a wireless communication system operating over a fading channel. The
contributions due to path loss (dot-dashed curve) and to the joint effect of this loss and shadowing
(continuous line) are also shown.

concerns the diversity in spatial scales over which appreciable variations appear. It is not difficult to
show that significant changes in path loss occur due to a change of several wavelengths in d, whereas
appreciable fluctuations in shadowing are perceived when the change in d is comparable with the size
of the obstructing objects. In fact, typically, a significant change in path loss occurs when the variation
of d is of the order of 100–1000 m, whereas one in shadowing requires a variation of the order of
10–100 m outside buildings (outdoor scenarios) and less inside them (indoor scenarios).

Note that the introduction of the small–large scale dichotomy in describing the spatial variability
of fading is justified, analogously to what has been stated about time variability, by its technical
usefulness. In fact, large-scale fading determines the coverage area of a wireless transmission and,
hence the service availability in a given geographical region, whereas small-scale fading influences
more the selection of signaling techniques and receiver design [19, 47, 49, 51]. This can be fully
understood by observing that the number of multipath echoes, their time spread (due to different
electrical path lengths) and their intensities significantly affect the structure of the received signal.
Thus, in the following we will focus primarily on small-scale fading, providing only some brief
hints about the analytical description of large-scale fading. Before doing that, however, it is worth
pointing out that the mathematical description of these types of fading is substantially different. In
fact, a description of the attenuation of received power with respect to that transmitted is commonly
provided to describe the effects of large-scale fading. In contrast, in the analysis of small-scale fading,
a channel is usually modeled as a linear, time-varying filter, whose behavior is fully described by
proper functions, such as its impulse response and its frequency response, with particular statistical
properties. In addition, we must not forget that the small-scale description is always “local”, that is,
conditioned with respect to the “instantaneous” locations of the transmitter and the receiver. Also,
in most cases, appreciable variations in large-scale fading do not occur if the transmitter-receiver
locations do not change substantially.

In general, it is not easy to derive a single mathematical model that allows accurate assessment of
path loss in different propagation scenarios, because of the complexity of the propagation mechanisms.
In a specific environment an accurate assessment of this parameter can be obtained by resorting
to specific software packages implementing advanced mathematical methods or to a measurement
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campaign [52, 53]. These tools can be exploited when certain specifications must be precisely met in
system design, for example in the selection of the locations of base stations (BSs) in a cellular mobile
system operating within a geographic area over which coverage must be guaranteed [54]. A deeper
study of these problems is outside the scope of this book: the interested reader can refer to Section
2.4.1, where some well-known methods for path loss estimation are listed and some references are
provided. However, if the adequacy of specific design solutions must be assessed, simple models turn
out to be extremely useful. In these cases, if shadowing is neglected, the average2 received power
P̄R(d) in the far field region, for a given transmitted power PT and at a transmitter–receiver distance
d, can be assessed by evaluating the average path loss (or propagation loss) as:

L(d) � PT

P̄R(d)
(2.1)

or, in decibels, as:

L(d)dB � 10 log10L(d) = L(d0)dB + 10 n log10

(
d

d0

)
, (2.2)

where the parameters d0 and n are the so-called close-in reference distance and path loss exponent,
respectively. This does not include the random effects of shadowing, which can be accounted for by
adding a random term X to the right-hand side (RHS) of (2.2), so that the total power loss in decibels
is given by:

Lt(d)dB = L(d)dB + X. (2.3)

It is commonly assumed that X is a Gaussian3 random variable having zero mean and standard
deviation σX (both in decibels); the value of the latter parameter reflects the intensity of the variations
experienced in the average received power at a distance d, so that a smaller value of σX means that
more accurate predictions of the overall path loss can be made. The assumption of Gaussianity for X
implies that:

(a) at the receiver the power attenuation due to shadowing is log-normally distributed (log-normal
shadowing), since from (2.1) and (2.3) it is easily seen that:

P̄R(d) = PT

L(d)
10X/10; (2.4)

(b) the average power P̄R(d) expressed in decibels has a normal distribution with mean given by (2.2).

We also note that the values of the parameters n, d0 and σX in this path loss model depend on
the scenario. In this book we consider channel models that can be applied to the analysis of systems
operating in either outdoor or indoor scenarios [54].

Outdoor channel models are of great interest for cellular telephony systems. There the overall
coverage area is divided into cells or macrocells, each having a radius of 1–10 km and served by a
BS. The BS antennas are usually placed at a greater height than that of surrounding objects and radiate
a power of 1–10 W [56]. In distinct macrocells, substantially different propagation environments can
be encountered. This explains why, for instance, the Global System for Mobile (GSM) standard [57]

2 As already mentioned, local averaging is accomplished spatially, to cancel the fast fluctuations due to small-scale
fading.
3 An electromagnetic signal usually undergoes multiple reflections/refractions before being received. Each such
event introduces an attenuation, represented by a multiplicative coefficient. If all these coefficients are expressed
in decibels, the overall attenuation is given by their sum, which, by the central limit theorem [55], can be modeled
as a Gaussian random variable.
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has proposed three different channel models, known as rural area, hilly terrain and typical urban, for
system testing [58, pp. 17–19]. Note also that, in macrocellular environments, the LOS propagation
path is often absent and this makes the prediction of path loss extremely difficult. In the recent
past, the interest in new personal communication systems (PCSs) [59] has also fostered research on
electromagnetic propagation in urban microcells, each consisting of a small area, with a radius of a
few hundred meters. These exhibit channel properties that are substantially different than those of
macrocells. This is due to the fact that BS antennas in microcells are placed below the roof line of
surrounding buildings (typically at a height of 3–10 m) and BS powers are lower (0.1–1 W). For these
reasons, the cell is shaped by the buildings themselves and electromagnetic waves propagate along
shorter paths [56].

Indoor channel models are of interest, for instance, in the study of cordless telephony and WLANs
operating in buildings devoted to different uses (offices, depots, stores, etc.) [60–63]. In the litera-
ture dealing with the radio coverage inside buildings, two distinct situations are considered. In the
first, the transmitter is placed on the roof of a building different from that in which the receiver is
operating, whereas in the second the transmitter and receiver are placed in the same building. In
general, path loss prediction in indoor environments is not easier than in outdoor ones. For instance,
to predict the intensity of the electromagnetic field inside an office building, several factors must be
taken into account, including wall partitions (which may exhibit frequency-dependent behavior), the
presence of multiple floors (if the transmitter and the receiver are on different floors), furniture, metal-
lic pipes and ventilation ducts. In addition, the presence of multiple echoes, found in measurement
campaigns in indoor environments, makes the fluctuations in the intensity of the received signal fast
and, consequently, harder to predict in an indoor environment [64].

These considerations explain the large spread of parameter values adopted for the path loss model of
(2.2) and (2.4). First, we note that the reference distance d0 of (2.2) is associated with a circle in the far
field of the radiating antenna and its value is small with respect with the usual link length of a system.
Typical values of d0 are 1 m, 100 m and 1 km for indoor, microcellular outdoor and macrocellular
outdoor scenarios, respectively [56]. The use of the model of (2.2) also requires knowledge of both
the path loss L(d0)dB at the reference distance and the exponent n. The former can be acquired through
measurement or estimated assuming free space propagation4 at distance d0 [65], whereas the latter
deserves more attention. In fact, different estimates of n have been measured in various propagation
environments (e.g., see [52, 56, 60, 61, 65–73]). Typical ranges of n are summarized in Table 2.1 [5].
Note that these data have been extracted in different (indoor and outdoor) environments, using various
antenna heights and at carrier frequencies of 0.9 GHz or 1.9 GHz.5 It can be easily seen that, on the
one hand, indoor environments are characterized by a large spread of the parameter n, due to the many
factors influencing indoor propagation [72], and can on occasion be characterized by n < 2, because
of a possible waveguiding effect [60, 68]. On the other hand, in outdoor environments n can take on
values substantially larger than 2. Experimental data have also shown that, in a given environment, n
tends to become larger with frequency (e.g., see [62] for indoor scenarios), and depends heavily on
antenna heights (e.g., see [65, 75] for macrocellular and [73] for microcellular scenarios).

Finally, it is worth remembering that typical values of the shadowing parameter σX lie in the range
4–13 dB [5]. Moreover, in specific scenarios, n and σX can be easily extracted from experimental
data via linear regression techniques (see [5, 56, 65, 71–73, 76] and [77, p. 1441]).

In this chapter, we will not consider further the mathematical characterization of path loss, and will
concentrate, instead, on small-scale characterization. The chapter is organized as follows. Section 2.2
is devoted to the study of small-scale fading in SISO systems. This phenomenon is described first in
deterministic terms, representing a wireless channel as a linear time-varying filter whose input–output
behavior is described by proper system functions. This is followed by the statistical characterization
via autocorrelation functions. In this framework, the properties of wide-sense stationarity and of

4 A free space assumption means that n = 2 in (2.2) and σX = 0 in (2.4).
5 The path loss depends significantly on the transmit frequency (e.g., see [74]).
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Table 2.1 Typical values of the path loss exponent n in
various environments

Environment Range of n

Free space 2
Urban macrocells 3.7–6.5
Urban microcells 2.7–3.5
Office in a building (same floor) 1.6–3.5
Office in a building (different floors) 2–6
Warehouse 1.8–2.2
Factory 1.6–3.3
House 3

uncorrelated scattering, and some important statistics, such as the power delay profile and the
scattering function of a channel, are introduced.

The study of various problems in analysis and design of wireless communication systems requires
the availability of mathematical models describing short-term small-scale fading. Statistical modeling
of SISO channels is investigated in Section 2.2.3, where the emphasis is on reduced-complexity
models, that is, on those models in which randomness is described through a finite (and possibly small)
set of random parameters. Many of the results concerning SISO channels are then extended to the
case of MIMO channels in Section 2.3, where both matrix-based models and directional descriptions
are provided.

Finally, some historical notes and suggestions for further reading are provided in Sections 2.4 and
2.5, respectively.

2.2 Mathematical Description of SISO Wireless Channels
As mentioned in the Introduction, small-scale fading in a wireless channel can be described in a
mathematically rigorous fashion by modeling the channel as a linear time-variant system (LTVS).
In fact, this allows the adoption of the so-called system functions for representing its input–output
behavior, as discussed in Section 2.2.1. Their behavior, however, is unknown a priori, so that the
system functions must be modeled as random processes with specific statistical characterization, as
illustrated in Section 2.2.2.

2.2.1 Input–Output Characterization of a SISO Wireless Channel

2.2.1.1 General Case

The input–output behavior of any LTVS is fully described by its time-variant impulse response
(TVIR), defined as the system response to an impulse or Dirac delta function delayed by τ sec.
More specifically, the TVIR is defined as:

g(t, t − τ) = ϒRF [δ(t − τ)], (2.5)

where t represents time, τ represents delay (with respect to the reference instance t = 0) in the
application of the impulse to the system, and the operator ϒRF [·] describes the transformation accom-
plished by the LTVS. Note that the dependence of the system physical behavior on time is explicitly
indicated by the presence of t as the first variable in the argument of the TVIR. The dependence of
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the TVIR on the delay variable, τ , accounts for the time dispersion introduced by the channel, that
is, for the generation of the multiple echoes of the transmitted signal.

In our analysis the channel is fed by a real RF signal xRF (t), having a central frequency fc, and
results in the real RF response:

yRF (t) = ϒRF [xRF (t)]. (2.6)

It is not difficult to show that, given the TVIR of (2.5), yRF (t) in (2.6) can be expressed as [78]:

yRF (t) =
∫ +∞

−∞
xRF (t − τ) g(t, τ ) dτ. (2.7)

This lends itself to a simple interpretation. In fact, it means that the input signal is delayed and
multiplied by a differential scattering gain g(t, τ ) dτ ; this complex factor expresses the modulation
due to the scatterers introducing a delay in the interval (τ , τ + dτ). For this reason, the system
function g(t, τ ) is also called input delay-spread function [78].

To simplify the study of system functions, it is useful to adopt an equivalent low-pass representation
of the communication channel6 [79]. We then let x(t), y(t) and h(t, t − τ) denote the low-pass
equivalent signals (with respect to the reference frequency fc) of xRF (t), yRF (t) and g(t, t − τ)

respectively, that is, the complex signals such that:

xRF (t) = Re{x(t) exp (j2πfct)},
yRF (t) = Re{y(t) exp (j2πfct)},

and
g(t, t − τ) = 2Re{h(t, t − τ) exp (j2πfct)}, (2.8)

where h(t, τ ) is the so-called channel impulse response (CIR) or input delay spread function (since
it is the low-pass equivalent of g(t, τ ) in (2.5)).7 Then it can be shown that the RF input–output
relationship (2.7) is equivalent to:

y(t) =
∫ +∞

−∞
x(t − τ) h(t, τ ) dτ =

∫ +∞

−∞
x(τ) h(t, t − τ) dτ, (2.9)

relating the low-pass signals x(t), y(t) and h(t, τ ). Note that, as can be easily inferred from (2.9),
h(t, t − τ) can also be defined as the response of the low-pass equivalent channel to the impulsive
excitation δ(t − τ), that is:

h(t, t − τ) � ϒBB [δ(t − τ)], (2.10)

where ϒBB [·] is the low-pass equivalent of the transformation accomplished by the channel, that is, a
transformation such that y(t) = ϒBB [x(t)].

To grasp the physical meaning of (2.9), it is useful to approximate the first integral as a sum. This
can be done by discretizing the delay space in a uniform fashion and, in particular, generating the
sequence τi � i�τ , where i ∈ Z and �τ is the discretization step. Then (2.9) can be approximated as:

y(t) ∼=
+∞∑

i=−∞
x(t − τi) h(t, τi) �τ =

+∞∑
i=−∞

ai(t) x(t − τi), (2.11)

6 In the following pages we will always refer, unless explicitly stated otherwise, to the complex low-pass repre-
sentation of signals and systems.
7 The introduction of the factor 2 in (2.8) allows us to remove the factor of 1/2 that would otherwise appear in
the RHS of (2.9).
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Figure 2.2 Representation of (2.11) (TDL model of a communication channel).

where:
ai(t) � h(t, τi) �τ. (2.12)

The input–output relationship of (2.11) is summarized by the block diagram of Figure 2.2, representing
the communication channel as a tapped delay line (TDL). In Section 2.2.3 we will show that, under
certain assumptions, this model provides an exact description of a communication channel. In fact,
x(t) goes through a delay line, consisting of the serial concatenation of an infinite number of identical
cells (each introducing a delay of �τ sec). The ith delayed replica x(t − τi) of x(t) feeds the ith tap,
accomplishing a multiplication by the complex time-varying gain ai(t) (2.12). Then the tap outputs
are summed, generating an approximation to y(t) (2.9). In other words, the TDL model represents the
channel output signal as the superposition of an infinite number of echoes, each having time-varying
amplitude and phase.

The CIR is not the only system function that fully describes the input–output behavior of an LTVS.
An equivalent description is provided by the so-called time-variant transfer function (TVTF) defined
as [78]:

H(t, f ) � FCTτ→f [h(t, τ )] =
∫ +∞

−∞
h(t, τ ) exp (−j2πf τ) dτ, (2.13)

where FCTτ→f [·] denotes the Fourier continuous transform (FCT) evaluated with respect to the
variable τ and leading to an explicit dependence on the frequency variable f. From (2.13) the inverse
relationship:

h(t, τ ) = IFCTf →τ [H(t, f )] =
∫ +∞

−∞
H(t, f ) exp (j2πf τ) df (2.14)

is immediately inferred, where IFCT[·] denotes an inverse Fourier continuous transform (IFCT).
Substituting this in (2.9) produces, after some manipulation:

y(t) =
∫ +∞

−∞
X(f ) H(t, f ) exp (j2π ft) df , (2.15)

which expresses the input–output relationship in a new form, involving H(t, f ), and the FCT X(f )

of x(t).
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Establishing a relationship between the FCT:

Y (f ) � FCT[y(t)] =
∫ +∞

−∞
y(t) exp (−j2π ft) dt (2.16)

of the output y(t) of an LTVS and the FCT X(f ) of its input signal requires the introduction of a further
system function. In fact, substituting (2.15) in the RHS of (2.16) yields, after some manipulation:

Y (f ) =
∫ +∞

−∞
X(α) 	(f − α, α) dα, (2.17)

where

	(ν, f ) � FCTt→ν[H(t, f )] =
∫ +∞

−∞
H(t, f ) exp (−j2πνt) dt (2.18)

is the so-called output Doppler-spread function [78]. Note that 	(ν, f ) depends on two spectral
variables, namely the frequency f and the Doppler shift8 ν, and that equation (2.17) expresses the
output spectrum as a convolution between the input spectrum and 	(ν, f ) (2.18). A comparison of
(2.17) with (2.9) illustrates a deep structural analogy between these two input–output relationships,
referring, however, to different domains. In fact, the latter involves signals defined in the t and τ

domains, whereas the former functions are defined in the ν and f domains. This analogy is usually
stressed by stating that (2.17) is the dual of (2.9) and, in particular, that 	(ν, f ) is the dual function of
the CIR h(t, τ ) [80]. These considerations are important not only from a mathematical viewpoint, but
also from a physical one, since they allow us to understand the real significance of 	(ν, f ). In fact, this
function, by duality, could be introduced by evaluating the LTVS response, in the frequency domain,
to an impulsive input spectrum. In particular, if X(f ) = δ(f − f0) is selected (corresponding to the
time-domain choice x(t) = exp (j2πf0t)), where f0 is an arbitrary frequency, then (2.17) produces:

Y (f ) =
∫ +∞

α=−∞
δ(α − f0) 	(f − α, α) dα = 	(f − f0, f0). (2.19)

Then, defining the variable υ � f − f0 (representing the offset of f with respect to the excitation
frequency f0), the last equality can be rewritten as:

Y (f0 + υ) = 	(υ, f0), (2.20)

which proves that 	(ν, f ) fully expresses the spectral content of the response of an LTVS to a complex
exponential with frequency f0. Thus, unlike what happens with linear time-invariant systems, the
output signal contains spectral components characterized by υ �= 0, that is, by a frequency different
from that (f0) of the input signal, because of the Doppler effect affecting the communication channel.

Another important system function is the so-called delay-Doppler-spread function [78], which can
be defined as the FCT, in the t variable, of h(t, τ ), that is, as:

γ (ν, τ ) � FCTt→ν[h(t, τ )] =
∫ +∞

−∞
h(t, τ ) exp (−j2πνt) dt, (2.21)

for which the inverse relationship:

h(t, τ ) = IFCTν→t [γ (ν, τ )] =
∫ +∞

−∞
γ (ν, τ ) exp (j2πνt) dν (2.22)

8 Frequency shifts in the spectral components of the transmitted signal are due to time variations of the channel,
that is, to the so-called Doppler effect. These variations are parametrized in the variable t.
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Figure 2.3 Relationships among the four system functions defined in Section 2.2.1.

holds. The input–output relationship involving γ (ν, τ ) can be easily derived by substituting (2.22) in
(2.9). This leads to:

y(t) =
∫ +∞

τ=−∞

∫ +∞

ν=−∞
γ (ν, τ ) x(t − τ) exp (j2πνt) dν dτ, (2.23)

providing another interpretation of the generation mechanism of the channel output. In fact, it
represents the response y(t) as the superposition of an infinite number of replicas, each characterized
by specific values of the delay τ and of the spectral shift ν, and weighted by γ (ν, τ ) [78].

The relationships between different couples of the four system functions defined in this subsection
are summarized in Figure 2.3. The specific structure of these functions for an L-ray multipath channel
are illustrated in the following example:

Example 2.2.1 In the technical literature, a commonly adopted model for multipath fading channels
assumes that the channel response is characterized by L distinct echoes of the transmitted signal,
each described by a time-varying complex gain and a delay. The useful component of the baseband
received signal is then given by:

y(t) =
L−1∑
i=0

ai(t) x(t − τi), (2.24)

where ai(t) and τi represent the complex gain and the delay of the ith echo, respectively. It is usually
assumed that τ0 = 0 and that the other delays {τi , i = 1, 2, . . . , L − 1} are in ascending order of
value so that the maximum delay (i.e., τL−1) measures the extent of the time dispersion produced by
the communication channel. Moreover, the delay parameters {τi} are usually modeled as being time-
invariant (see Section 2.2.3) and their values are selected on the basis of the propagation scenario to
which the channel model (2.24) refers. The tap gains {ai(t), i = 0, 1, . . . , L − 1}, on the other hand,
are modeled as random processes characterized by a given mean and autocorrelation functions, as
shown in Section 2.2.2.
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From (2.24) it is easy to see that the corresponding CIR is:

h(t, τ ) =
L−1∑
i=0

ai(t) δ(τ − τi), (2.25)

that is, it consists of the superposition of L distinct Dirac delta pulses in the delay variable τ , each
weighted by a different time-varying gain. Applied to (2.25), the transformations summarized in
Figure 2.3 yield the system functions:

H(t, f ) =
L−1∑
i=0

ai(t) exp (−j2πf τi), (2.26)

	(ν, f ) =
L−1∑
i=0

Ai(ν) exp (−j2πf τi) (2.27)

and

γ (ν, τ ) =
L−1∑
i=0

Ai(ν) δ(τ − τi), (2.28)

where Ai(ν) = FCTt→ν[ai(t)].
�

The mathematical tools described in this chapter allow us to describe the behavior of any linear
wireless channel. In many specific communication systems, however, the properties of the transmitted
signal, in terms of bandwidth and/or duration, allow us to adopt a simpler representation of the channel,
as discussed in Sections 2.2.1.2 and 2.2.1.3.

2.2.1.2 Frequency-Selective Channels

Let us assume that the transmitted signal x(t) has a finite duration T0 and that, within an interval
of duration not exceeding T0, the communication medium does not exhibit any significant change in
its physical characteristics. In this case time variability can be neglected and we may represent the
channel as a linear and stationary system with a CIR h(τ). For instance, under these assumptions, the
L-ray model described in Example 2.2.1 may be characterized by the impulse response9 (see (2.25))

h(τ) =
L−1∑
i=0

ai δ(τ − τi), (2.29)

where the complex gains {ai} are time-invariant.
In this case only the effects of time dispersion can be perceived in the observation interval. Such

dispersion accounts for frequency selectivity, that is, for the fact that the channel frequency response
is not flat in the transmission bandwidth so that, generally speaking, distinct spectral components
of the transmitted signal are affected differently. We also note that in a communication channel the
effects of frequency selectivity are visible if the bandwidth Bx of x(t) is not significantly smaller that
the reciprocal of the maximum delay10 τm of the echoes of the transmitted signal.11 Otherwise, the
channel is not only static, but also frequency-flat.

9 A particular case of this model, corresponding to L = 2, was adopted by W. D. Rummler in 1979 [81] (see also
[48, 82]).
10 Note that τm = τL−1 for the communication channel described in Example 2.2.1.
11 We will reformulate this statement referring to the so-called coherence bandwidth of a communication channel
in Section 2.2.2.
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2.2.1.3 Time-Selective Channels

Let us now consider the dual case to that illustrated in Section 2.2.1.2. We now assume that the channel
variations are significant within the observation interval12 and that the reciprocal of the bandwidth Bx

of x(t) is significantly smaller than the time dispersive effect of the channel, so that, if τm denotes the
maximum delay as above, then:

Bx � 1/τm. (2.30)

Then, since h(t, τ ) = 0 for τ < 0 and τ > τm, (2.9) can be rewritten as:

y(t) =
∫ τm

0
x(t − τ) h(t, τ ) dτ. (2.31)

From (2.30) it is immediately seen that, in any time interval of duration τm, x(t) undergoes only small
changes, so that x(t − τ) ∼= x(t) for 0 ≤ τ ≤ τm. Then (2.31) can be approximated as:

y(t) = x(t) a(t), (2.32)

where

a(t) �
∫ τm

0
h(t, τ ) dτ. (2.33)

Let us again consider the channel model of Example 2.2.1, to understand when its input–output
relationship (2.24) becomes that of (2.32).

Example 2.2.2 If the delays {τi , i = 1, 2, . . . , L − 1} in the model of (2.24) are in ascending order
of value (and τ0 = 0), the maximum delay due to the channel τm is equal to τL−1. Therefore, if
Bx � 1/τL−1 (see (2.30)), the multiplicity of channel echoes collapses to a single echo characterized
by a null delay and a complex gain:

a(t) �
L−1∑
i=0

ai(t). (2.34)

The general result expressed by (2.32) and (2.33) and the specific one given by (2.34) show that,
if Bx is small enough, the effect of multiple echoes generated by the channels is perceived as that of
a single echo, whose complex gain results from the superposition of all the echo gains. Moreover, it
is not difficult to show that the CIR associated with the input–output relationship (2.32) is given by:

h(t, τ ) = δ(τ ) a(t), (2.35)

where a(t) is expressed by (2.33).
�

Equation (2.32) describes a time-selective or, equivalently, a frequency-dispersive communication
channel, since the time changes in the gain a(t) entails both time variations in the intensity of x(t)

and its spectral broadening. In the technical literature it is often stated that this type of channel is
frequency-flat, since all spectral components of the signal x(t) are subject to the same distortion.

Note that the origin of spectral broadening can be easily understood by observing that, generally
speaking, the scatterers of the propagation medium, even if they generate echoes with similar delays,
are characterized by different speeds, resulting in distinct Doppler shifts. This means that a sinusoidal
signal at frequency fc transmitted over a time-selective channel is transformed in the superposition

12 In the technical literature this condition can be formulated with reference to the Doppler bandwidth or to the
coherence time of the communication channel, as illustrated in Section 2.2.2.
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of a multiplicity of signals of the same type, characterized, however, by different frequencies, as
illustrated in the following example.

Example 2.2.3 In a time-selective fading channel, scatterers can be grouped by putting together all
those that produce similar Doppler shifts. Let us assume, for simplicity, that such shifts, occurring in a
limited time interval (ti , tf ), belong to the set {fD,i , i = 0, 1, . . . , LD − 1}, consisting of LD distinct
and fixed frequencies (in other words, in the given interval the set of relative speeds between the
mobile receiver and the scatterers undergoes negligible changes). Note that this scenario is the dual
of that represented by equation (2.29) for a frequency-selective channel characterized by L distinct
echoes. Then in the observation interval the fading distortion can be modeled as13:

a (t) �
LD−1∑
i=0

ai exp (j2πfD,i t), (2.36)

where ai is the complex gain associated with the set of scatterers producing a Doppler shift of
fD,i Hertz. If the RF signal x(t) = cos(2πfct) is transmitted over the given channel, where fc is
the frequency with respect to which the complex envelope (2.36) has been derived, the RF channel
response y (t) = Re{exp (j2πfct) a(t)} is given by:

y (t) =
LD−1∑
i=0

[bi cos(j2π(fc + fD,i)t) − ci sin(j2π(fc + fD,i)t)], (2.37)

where bi � Re{ai} and ci � Im{ai}. This shows that the received signal contains the frequencies
{fc + fD,i , i = 0, 1, . . . , LD − 1} and, consequently, illustrates the spreading of the signal spectrum
beyond that which was transmitted.

�

Finally, we note that, in the most general case, a wireless channel is selective (dispersive) both in
frequency (time) and in time (frequency). When this occurs, the channel is doubly-selective.

2.2.2 Statistical Characterization of a SISO Wireless Channel

In this subsection we consider the statistical characterization of wireless channels. In particular, after
some general considerations, an analysis of some autocorrelation functions for frequency-selective
channels and their duals (i.e., time-selective channels) is provided. This paves the way for a study of
the most general case – that of doubly-selective channels.

2.2.2.1 General Properties

As mentioned in the Introduction, all the system functions described in the foregoing should be
considered, for any wireless channel, as random processes. A complete characterization of a random
process usually requires knowledge of the distribution functions of arbitrary order. Such knowledge,
however, represents too ambitious an objective in any application. In practice, the statistical descrip-
tions of wireless channels considered in the technical literature usually provide data about the mean
value function and the autocorrelation function characterizing specific system functions. Autocorrela-
tion functions, which represent specific second-order statistics, provide important information. In fact,

13 We will reconsider this model in Section 2.2.3, where the problems of a proper selection of the Doppler shifts
{fD,i} and that of the characterization of the random variables {ai} in the model (2.36) are discussed.
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they allow us to determine the autocorrelation function of the channel response and, in particular, the
spectral properties of the received signal, as illustrated in Section 3.9. Here, therefore, most attention
is paid to the study of autocorrelation functions of the system functions introduced in Section 2.2.1.
A mean value function can be evaluated for each system function describing a communication chan-
nel (impulse response, frequency response, etc.). In what follows we focus, however, for the sake of
simplicity, on the mean function of a specific system function only – the TVIR g(t, τ ) (2.5) – and do
not consider the mean value functions for other possible system functions. We note that its mean:

gd(t, τ ) � E{g(t, τ )}, (2.38)

describes the so-called specular component of a communication channel, that is, the purely
deterministic component. This component can be fully characterized by resorting to all the other
system functions illustrated in Section 3.9. A statistical description is required, on the other hand,
primarily for the purely random component of the channel, which, in the TVIR case, is defined as:

gr(t, τ ) � g(t, τ ) − gd(t, τ ), (2.39)

which clearly has zero mean. This decomposition of g(t, τ ) is equivalent to representing a channel
as the parallel combination of two subsystems (one deterministic, the other one purely random), both
fed by the same signal x(t). Since the analysis here aims to provide an understanding of the statistical
characterization of wireless channels, it will be assumed in what follows, in the absence of explicit
indications, that gd(t, τ ) of (2.38) is null, so that all the system functions consist of a purely random
component only.

It is also important to note that, in principle, our study of specific channel statistics should refer to
some bandpass random processes. However, for an arbitrary RF or bandpass random process xRF (t),
it is straightforward to prove that its autocorrelation function RxRF

(t1, t2) � E{xRF (t1) xRF (t2)} can
be expressed as [78]:

RxRF
(t1, t2) =1

2
Re{E{x(t1) x∗(t2)} exp (j2πfc(t1 − t2))}

+ 1

2
Re{E{x(t1) x(t2)} exp (j2πfc(t1 + t2))}, (2.40)

where x(t) is the complex envelope of xRF (t) with respect to the reference frequency fc. The last
result can be rewritten as:

RxRF
(t1, t2) =1

2
Re{Rx(t1, t2) exp (j2πfc(t1 − t2))}

+ 1

2
Re{R̃x(t1, t2) exp (j2πfc(t1 + t2))}, (2.41)

where the autocorrelation functions Rx(t1, t2) � E{x(t1) x∗(t2)} and R̃x(t1, t2) � E{x(t1)x(t2)} refer
to x(t). In most applications we have that14 R̃x(t1, t2) = 0, so that only knowledge of Rx(t1, t2) is
required to determine RxRF

(t1, t2). In the following, we will always assume that this condition holds
for all RF system functions, so that the evaluation of Rx(t1, t2) only will be considered.

2.2.2.2 Frequency-Selective Channels

A time-dispersive channel is fully characterized by its frequency response H(f ) � FCT[h(t)], which
we assume to be a zero-mean random process (in the variable f) with correlation function:

RH (f1, f2) � E{H(f1) H ∗(f2)}. (2.42)

14 Note that this is a necessary condition for the wide-sense stationarity of xRF (t) (see (2.41)).
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Let us now focus on the structure of this function for the communication channel characterized by
the CIR (2.29).

Example 2.2.4 The frequency response associated with the impulse response (2.29) is given by:

H(f ) =
L−1∑
i=0

ai exp (−j2πf τi). (2.43)

In the literature the delays {τi , i = 0, 1, . . . , L − 1} are usually known, whereas the complex gains
{ai, i = 0, 1, . . . , L − 1} are random. Moreover, if H(f ) in (2.43) is purely random, these gains have
zero mean, so that the autocorrelation function of H(f ) is given by (see (2.42)):

RH (f1, f2) =
L−1∑
i=0

L−1∑
k=0

Ri,k exp [j2π(f2τk − f1τi)], (2.44)

where Ri,k � E{ai a∗
k } is the correlation between ai and ak . This shows that RH (f1, f2) depends on

f1 and f2 through their difference (f1 − f2) if and only if Ri,k = 0 for i �= k, that is, if and only if
the random variables ai and ak are uncorrelated. In fact, if this occurs, (2.44) simplifies to:

RH (f1, f2) = RH (f2 − f1) =
L−1∑
i=0

σ 2
i exp [j2πτi(f2 − f1)], (2.45)

where σ 2
i � Ri,i = E{|ai |2}, with i = 0, 1, . . . , L − 1. Note that:

(a) when (2.45) holds, the random process H(f ) is wide-sense stationary (WSS);
(b) for large L, if H(f ) is expressed, for a given f, as a linear combination of a large number of

random variables, it can be modeled as a Gaussian random process by virtue of the central limit
theorem [55];

(c) if the gains {ai, i = 0, 1, . . . , L − 1} are modeled as jointly Gaussian random variables, the prop-
erty of Gaussianity holds independently of the specific value of L, and zero correlation among
them is equivalent to statistical independence.

�

Generally speaking, if in a frequency-selective channel the gains associated with echoes
characterized by different delays are represented by uncorrelated random variables, the channel is
said to exhibit uncorrelated scattering (US) or simply said to be US. The previous example shows
that, if a purely random channel is US, then:

RH (f1, f2) = RH (f2 − f1). (2.46)

It can also easily be proved that the autocorrelation function Rh(τ1, τ2) � E{h(τ1) h∗(τ2)} of the
impulse response h(τ) of a US channel is given by:

Rh(τ1, τ2) = δ(τ1 − τ2) Ph(τ2), (2.47)

where

Ph(τ) � FCT[RH (f )] =
∫ +∞

−∞
RH (f ) exp (−j2πf τ) df (2.48)

is the so-called power delay profile (PDP)15 of the communication channel. This can be used, as an
alternative to (2.46), to define a US channel. The PDP function (2.48) provides important physical

15 This is called the delay power density spectrum by P. A. Bello [78, p. 372].
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information, since, being the FCT of an autocorrelation function in the variable f, it is in fact a temporal
power density. In other words, this is a dual situation [80] with respect to that of time selectivity and,
under this condition, the channel response exhibits the property of wide-sense stationarity in the
frequency domain. Moreover, Ph(τ) represents the average distribution of power associated with the
impulse response along the delay axis, so that it provides a clear indication of the intensity and the
type of temporal dispersion introduced by a communication channel. For instance, the PDP associated
with the autocorrelation (2.45) in Example 2.2.4 is given by:

Ph(τ) =
L−1∑
i=0

σ 2
i δ(τ − τi) (2.49)

and shows that the power associated with the CIR is concentrated around the echo delays {τi , i =
0, 1, . . . , L − 1}.

Some parameters can be extracted by different PDPs to compare channels with different properties
in terms of time dispersion. In particular, we mention the mean excess delay:

τm �
∫ +∞

−∞
τ ph(τ ) dτ, (2.50)

where

ph(τ) � Ph(τ)∫ +∞
−∞ Ph(τ) dτ

(2.51)

is a normalized version of Ph(τ), and the root mean square (rms) delay spread:

τds �
√∫ +∞

−∞
τ 2 ph(τ) dτ − τ 2

m. (2.52)

Note that τm and τds represent a “mean value” and a “standard deviation” if ph(τ) (2.51) is interpreted
as the probability density function (pdf) of the echo delay; this explains why τds measures the time
dispersion of the communication channel. Expressions for τds for some PDPs frequently used in the
technical literature (e.g., see [83–87]) are illustrated in the following example.

Example 2.2.5 The expressions for Ph(τ) and the associated RH (f ) for the uniform (U), Gaussian
(G), exponential (E), triangular (T) and truncated exponential (TE) PDPs are summarized in the first
two columns of Table 2.2. For each Ph(τ), (2.50) and (2.52) lead to the expression for τds listed in
the third column of the same table. For the TE case we have:

τds = τ0

1 − e−τM/τ0

√√√√1 −
[

2 +
(

τM

τ0

)2
]

e−τM/τ0 + e−2τM/τ0 . (2.53)

�

The parameter τds depends strongly on the specific propagation environment: some typical values
measured in indoor and outdoor scenarios can be found, for instance, in [6, p. 200].

Another important parameter characterizing a frequency-selective channel and related to τds is the
so-called coherence bandwidth Bc. This represents a statistical measure of the frequency interval over
which the channel can be deemed approximately flat. That is, this parameter indicates the width of the
spectral interval in which two sinusoids, having distinct frequencies, exhibit strong correlation in their
amplitudes. If, however, the spectral separation between these sinusoidal components exceeds Bc, the
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Table 2.2 Some relevant data for specific PDPs

PDP Ph(τ) RH (f ) τds

U
1

τ0

{u(τ ) − u(τ − τ0)} sinc(f τ0) e−jπf τ0
τ0√
12

T
1

τ0

(
1 − |τ |

τ0

)
rect

(
τ

2τ0

)
sinc2(f τ0)

τ0√
6

E
1

τ0

e−τ/τ0 u(τ )
1

1 + j2πf τ0

τ0

G
1

τ0

√
2π

e−τ2/2τ2
0 e−2(πf τ0)2

τ0

TE
e−τ/τ0

τ0(1 − e−τM /τ0 )
[u(τ ) − u(τ − τM)]

1 − e−τM /τ0−j2πf τM

(1 − e−τM /τ0 )(1 + j2πf τ0)
eq. (2.53)

channel effects on the two signals can be substantially different. If Bc is defined as the width of the
interval over which the normalized autocorrelation function of H(f ) does not take values smaller
than 0.9, it can be expressed approximately as [6, p. 200]:

Bc
∼= 1

50τds
. (2.54)

Generally speaking, an exact relationship between Bc and τds is not available, because the definition
of Bc is not unique. However, Bc depends inversely on τds , so that large fluctuations in the channel
frequency response should be expected in the presence of a large time dispersion.

2.2.2.3 Time-Selective Channels

This case is the dual of the previous one and requires the statistical characterization of the multiplicative
distortion a(t) (see (2.31)). Because a(t) is generated by the superposition of the complex gains
associated with a number of scatterers, it is usually modeled as a complex Gaussian process, whose
real and imaginary components, aR(t) and aI (t), are independent and identically distributed (iid). It
is also usually assumed that a(t) is WSS, so that its mean value ηa(t) � E{a(t)} is constant and its
autocorrelation function Ra(t, τ ) � E{a(t + τ) a(t)∗} depends only on τ . To illustrate the meaning
of the WSS assumption, we consider the following example, with reference to the model of Example
2.2.3.

Example 2.2.6 Equation (2.36) represents a(t), in a limited observation interval, as:

a(t) =
LD−1∑
i=0

ai exp (j2πfD,i t), (2.55)

assuming LD distinct Doppler shifts {fD,i , i = 0, 1, . . . , LD − 1} due to the channel. If, whatever
the duration of the observation interval, the LD complex gains {ai, i = 0, 1, . . . , LD − 1} are jointly
Gaussian and have zero mean, it is easy to prove that a(t) in (2.55) is a Gaussian random process with
ηa(t) = 0. Moreover, it can be shown, by analogy with the dual scenario described in Example 2.2.4,
that the autocorrelation function Ra(t, τ ) depends on τ if and only if all the couples (ai , ak), with
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i �= k, are uncorrelated. In this case, it is found that:

Ra(t, τ ) = Ra(τ) =
LD−1∑
i=0

σ 2
i exp (j2πfD,iτ ), (2.56)

where σ 2
i � E{|ai |2} (i = 0, 1, . . . , LD − 1).

�

The last result lends itself to a simple generalization, since it can be proved (see, for instance, [88,
pp. 69–70]) that a(t) is WSS (i.e., the channel is WSS) if and only if in the propagation medium
scatterers producing distinct Doppler shifts are uncorrelated. In the following we will always assume,
in the absence of explicit indications, that a(t) is a Gaussian and WSS random process, so that its full
statistical characterization is provided by its mean ηa(t) = A (usually A = 0) and its autocorrelation
function Ra(τ), with Pa � Ra(0).

Let us now focus on the first-order characterization of time-selective fading, through extracting the
Gaussian random variable a(t̄) = aR(t̄) + jaI (t̄) by sampling of a(t) at t = t̄ . We first analyze the
case with A = 0, and then that with A �= 0. If A = 0, independently of the choice of t̄ , the independent
Gaussian random variables, aR(t̄) and aI (t̄), are characterized by their joint pdf:

faR,aI
(x, y) = 1

2πσ 2
a

exp

[
−x2 + y2

2σ 2
a

]
, (2.57)

where σ 2
a = Pa/2 is the variance of aR(t̄) (or, equivalently, of aI (t̄)). Moreover, if a(t̄) is represented

in polar form with phase � � ∠a(t̄) ∈ [0, 2π) and amplitude R � |a(t̄)|, it is easy to prove that:

(a) � and R are statistically independent;
(b) the pdf of � is uniform over (0, 2π), whereas that of R is:

fR (r) = u(r)
r

σ 2
a

exp

(
− r2

2σ 2
a

)
, (2.58)

that is, R has a Rayleigh distribution [55, p. 200]. For this reason, the case A = 0 is usually
referred to as that of Rayleigh fading.

If we now assume that A �= 0, so that Pa = A2 + 2σ 2
a , it can be proved that the phase � of a(t̄)

is no longer uniform and statistically independent of the amplitude R (e.g., see [88, pp. 47–48]) and
that R is characterized by the Rice pdf16 [55]:

fR(r) = u(r)
r

σ 2
a

exp

(
− r2 + A2

2σ 2
a

)
I0

(
A r

σ 2
a

)
, (2.59)

where I0(·) is the modified Bessel function of the first kind and of zero order. In this case it is
commonly stated that the channel is affected by Rician fading. Note that the condition A �= 0 indicates
the presence of a specular (i.e., LOS) component, often present in satellite and terrestrial (typically
suburban and rural) scenarios, and that the relevance of the LOS component is described by the ratio
of the power of the deterministic (LOS) component to the average power of the random component
of a(t), that is, by the parameter:

K � A2

2σ 2
a

, (2.60)

16 Note that (2.59) becomes (2.58) if A = 0, since I0(0) = 1.
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Figure 2.4 Representation of the Rice pdf (2.59) for KdB = −∞, 6 and 0 dB.

usually expressed in decibels (KdB � 10 log10 K). Note that Rayleigh fading corresponds to K = 0,
whereas an additive white Gaussian noise channel (σ 2

a = 0) is obtained if K = +∞. The behavior
of fR(r) (2.59) is shown in Figure 2.4, where the cases KdB = −∞ dB (Rayleigh fading), 6 dB and
0 dB are considered.

Rician and Rayleigh models for the fading amplitude are commonly adopted in the technical
literature. However, various researchers have shown that, in some scenarios, better agreement between
theory and experimental results is obtained if the so-called Nakagami-m pdf is employed for the
statistical characterization of fading amplitude (see [88, p. 49] and [89–95]), that is, if (2.59) is
replaced by:

fR(r) = u(r)
2

	(m)

(
m

2σ 2
a

)m

r2m−1 exp

(
−mr2

2σ 2
a

)
, (2.61)

with m ≥ 1/2, where m is the order of the pdf and 	(m) is the gamma function (giving (m − 1)! for
m integer) [96]. It can be shown that:

(a) for m = 1, (2.61) reduces to (2.58) (corresponding to Rayleigh fading);
(b) when m increases, the Nakagami distribution changes its character from that of purely random

fading to that of fading with an LOS component, so that it can represent a valid alternative to the
Rice model (2.59);

(c) for large values of m, (2.61) can be approximated by a Gaussian pdf, similarly to what happens
with the Rice pdf (2.60) for large K.

In various problems accurate knowledge of the second-order statistical characterization of a(t) is
needed. In this chapter we focus only on some aspects of this problem, since only the autocorrelation
function (along with the corresponding power spectral density) of the fading distortion is taken into
consideration. Further information about second-order statistics can be found in the book [88]. How-
ever, before tackling this problem from a mathematical viewpoint, it is useful to analyze the effects
of the time-selective fading in the time and frequency domains. Time-domain effects can be easily
inferred from (2.32), since this shows that fading produces random amplitude and phase variations in
the useful component of the received signal, as seen for a specific scenario in the following example.

Example 2.2.7 Let us assume that time-selective fading is affecting a digital transmission with a
symbol interval Ts = 0.1 ms and that the maximum Doppler frequency is fD = 100 Hz (corresponding
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Figure 2.5 Time evolution of the fading amplitude r(t) for a sample function of time-selective
fading a(t).
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Figure 2.6 Time evolution of the fading phase θ(t) for a sample function of time-selective fading
a(t).

to a speed17 v = 30 m/s = 108 km/h of the mobile receiver if fc = 1 GHz), so that fDTs = 10−2. We
also assume that the fading second-order statistics are those characterized by the so-called Jakes model,
described in detail in Example 2.2.8. The amplitude r(t) and the phase θ(t) (in radians) of a sample
function of the random process18 a(t) are illustrated in Figures 2.5 and 2.6, respectively. These results
show that the received signal undergoes substantial fluctuations in amplitude and phase, and that, in
particular, during deep fades quick phase variations may occur.

�

The effects of time-selective fading in the frequency domain can be understood by analyzing the
channel response to the deterministic cosinusoidal signal xRF (t) = cos[2π(fc + F)t], whose complex
envelope is x(t) = exp (j2πFt) (here F denotes the signal frequency offset with respect to the

17 The relationship between fD and v is expressed by (2.64) in Example 2.2.8.
18 A MATLAB-based implementation of the algorithm developed in [97] for Jakes’ fading generation has been
used.
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reference frequency fc). It is easy to show that the complex envelope y(t) of the channel response
(see (2.32)) is a random process with autocorrelation function Ry(τ) = Ra(τ) exp (j2πFτ) and, con-
sequently, with power spectral density:

Sy(f ) � FCT[Ry(τ)] = Sa(f ) = |A|2 δ(f − F) + SD(f − F), (2.62)

where SD(f ), the power spectral density of the random component of a(t), is the so-called Doppler
power density spectrum19 or Doppler spectrum. This shows that, in the absence of an LOS component
(A = 0), the transmitted (impulsive) spectrum X(f ) = δ(f − F) leads to the received power spectral
density Sy(f ) = SD(f − F), having, generally speaking, a nonzero spectral width. In other words,
time-selective fading results in spectral broadening, whose intensity depends on the mobile receiver
speed, as illustrated in the following example.

Example 2.2.8 A model commonly adopted for time-selective fading is that derived by R. H. Clarke
in 1968 [98], under the assumptions of isotropic scattering (i.e., the incoming electromagnetic energy
is collected by the receive antenna uniformly in all directions) and of an isotropic receive antenna in
a two-dimensional propagation scenario. The model is characterized by the Doppler spectrum:

SD(ν) = σ 2
D

πBD

1√
1 − (ν/fD)2

[u(f − fD) − u(f + fD)], (2.63)

which is also known as Jakes’ spectrum, since W. C. Jakes paid substantial attention to it in his well-
known book [99]. Here σ 2

D = Pa and the Doppler bandwidth fD , representing the maximum Doppler
shift introduced by the communication channel, is given by:

fD = v

c
fc, (2.64)

where v is the mobile speed20 and c is the speed of light. The autocorrelation function associated with
SD(ν) (2.63) is given by:

RD(τ) � IFCT[SD(ν)] = σ 2
D J0(2πfD τ), (2.65)

where

J0(x) = 1

2π

∫ π

−π

exp (jx cos θ) dθ (2.66)

is the zero-order Bessel function of the first kind. Figure 2.7 illustrates the normalized Doppler
spectrum:

S̄D(ν) � BD

σ 2
D

SD(ν) (2.67)

as a function of the normalized frequency ν/fD , and Figure 2.8 the normalized autocorrelation:

R̄D(τ ) � RD(τ)

σ 2
D

(2.68)

as a function of the normalized time τfD . Note that the slow decrease of the autocorrelation function
in Figure 2.8 is due to the singularities in the Doppler spectrum (2.63).

19 The subscript D implies that this statistic characterizes, exactly like Ra(τ), the Doppler effect. For uniformity
of notation we will adopt the notation RD(τ) in place of Ra(τ) in the following.
20 The model is usually derived under the assumptions of a static transmit antenna, a static scattering environment
and a mobile receiver traveling at a speed v; see, for example, [88, pp. 61–65], where the model limits are also
discussed.
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Figure 2.7 Normalized Doppler spectrum S̄D(ν) (2.67) (associated with the Doppler spectrum
(2.63)) as a function of normalized frequency ν/fD .
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Figure 2.8 Normalized autocorrelation R̄D(τ ) (2.65) (associated with the autocorrelation function
(2.65)) as a function of normalized time τ fD .

The Jakes spectrum is commonly adopted in the analysis of wireless communications systems.
From a physical viewpoint it is realistic when modeling fading for a mobile terminal (MT) held by a
pedestrian. Its use for mobile communications is questionable if reception in a vehicle is considered.
In fact, the latter scenario is characterized by moving scatterers (e.g., other vehicles) that can produce
Doppler shifts even close to ±2fD , so that the Doppler spectrum can be substantially flatter than the
derived one.

�

Finally, by analogy with what has been done with the frequency-selective case, some significant
parameters can be extracted from SD(f ); in particular, given the mean Doppler shift:

νm � 1

Pa

∫ +∞

−∞
ν SD(ν) dν, (2.69)



Wireless Channels 33

the spectral width of SD(ν) is measured by the rms Doppler bandwidth:

νrms �
√

1

Pa

∫ +∞

−∞
(ν − νm)2 SD(ν) dν. (2.70)

To the latter two definitions the same considerations expressed for the mean excess delay (2.50) and
the rms delay (2.52), respectively, apply. Note also that the parameter νrms provides an indication of
the rate of change of a(t) and that, if SD(ν) is given by (2.63), it is found that νrms = BD/

√
2. In

place of νrms , the so-called coherence time Tc, expressing the duration of the time interval over which
a(t) remains approximately constant, can be provided. Obviously, the larger the value of νrms , the
shorter is Tc and, in particular, these two quantities can be related by the expression:

Tc = KT

νrms
, (2.71)

where KT is a positive constant. It is worth pointing out, however, that the degree of the distortion
introduced by time-selective fading is quite subjective, so that the definition of Tc is not unique and,
consequently, different values for KT can be adopted in distinct problems. For instance, the textbook
[88] suggests KT = (2π)−1 (this leads to Tc = (πBD

√
2)−1 with Jakes’s fading), whereas [6] proposes

the relationship:

Tc = 9

16πfD

, (2.72)

where fD is the maximum Doppler shift. The last result assumes that the coherence time is defined as
the maximum duration of the time interval over which the normalized autocorrelation RD(τ)/RD(0)

does not drop below 0.5.

2.2.2.4 Doubly-Selective Channels

In considering time-selective and frequency-selective channels we have primarily been concerned with
the channel multiplicative distortion a(t) and the frequency response H(f ), respectively, and both
system functions have been modeled as Gaussian random processes. It is not difficult to understand
that, in the doubly-selective case, the property of Gaussianity is preserved for H(t, f ), so that a full
statistical characterization of this system function is given by its mean value function:

Hd(t, f ) � E{H(t, f )} (2.73)

and by its autocorrelation function:

RH (t1, t2; f1, f2) � E{H(t1, f1) H ∗(t2, f2)}, (2.74)

called the time–frequency correlation function. In the following we focus only on the case of Rayleigh
fading, so that knowledge of the second statistic is sufficient for a complete statistical picture.

We now analyze the structure of RH (t1, t2; f1, f2) under the US and WSS hypotheses, and that
of the autocorrelation functions of h(t, τ ) and γ (ν, τ ) for the same cases. To begin, we note that
acquiring an accurate knowledge of RH (t1, t2; f1, f2) is not easy, because it depends on four distinct
variables, two in the time domain and two in the frequency domain. A substantial simplification in
the mathematical structure of this function is introduced, however, if the US and/or WSS properties
hold. In fact, if the channel is US (see (2.46)), then:

RH (t1, t2; f1, f2) = RH (t1, t2; f1 − f2); (2.75)
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whereas if the channel is WSS, then:

RH (t1, t2; f1, f2) = RH (t1 − t2; f1, f2). (2.76)

If, as usually assumed in the following, both (2.75) and (2.76) hold (i.e., the channel is WSS-US), the
dependence of RH (t1, t2; f1, f2) on its four variables becomes substantially simpler, since:

RH (t1, t2; f1, f2) = RH (t1 − t2; f1 − f2). (2.77)

In other words, if the channel is WSS-US and Rayleigh, H(t, f ) is fully characterized from a statistical
viewpoint by:

RH (t; f ) � E{H(t + t0, f + f0) H ∗(t0, f0)}, (2.78)

where both the frequency f0 and the instant t0 are arbitrary quantities.
Let us investigate now the consequences of the WSS-US assumption for the system functions h(t, τ )

and γ (ν, τ ). From (2.14) it is easy to see that the autocorrelation function of h(t, τ ) can generally be
expressed as:

Rh(t1, t2; τ1, τ2) � E{h(t1, τ1) h∗(t2, τ2)}

=
∫ +∞

f2=−∞

∫ +∞

f1=−∞
RH (t1, t2; f1, f2) exp (j2π(f1τ1 − f2τ2)) df 1df 2 . (2.79)

If the channel is US, substituting the variable f1 with f � f1 − f2 in the last integral of (2.79) leads,
after some manipulation, to:

Rh(t1, t2; τ1, τ2) = Ph(t1, t2; τ1) δ(τ1 − τ2), (2.80)

where

Ph(t1, t2; τ1) �
∫ +∞

−∞
RH (t1, t2; f ) exp (j2πf τ1) df . (2.81)

If, instead, the channel is WSS (i.e., (2.76) holds), from (2.79) it is easily inferred that:

Rh(t1, t2; τ1, τ2) = Rh(t1 − t2; τ1, τ2). (2.82)

Finally, if the channel is both WSS and US, we have that (see (2.80) and (2.82)):

Rh(t1, t2; τ1, τ2) = Ph(t1 − t2; τ1) δ(τ1 − τ2), (2.83)

where (see (2.81)):

Ph(t; τ) �
∫ +∞

−∞
RH (t; f ) exp (j2πf τ) df (2.84)

is the so-called delay cross-power spectral density. A detailed analysis of this function and a general
integral expression for it can be found in [100]. From this density, the channel PDP Ph(τ) can be
extracted as:

Ph(τ) = Ph(0; τ). (2.85)

Note that the last equality is often given as a definition of the channel PDP (see, for instance, [78, p.
372, eq. (78)]).
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Similarly, from (2.21) it can be easily seen that the autocorrelation function of γ (ν, τ ) is given by:

Rγ (ν1, ν2; τ1, τ2) � E{γ (ν1, τ1) γ ∗(ν2, τ2)}

=
∫ +∞

t2=−∞

∫ +∞

t1=−∞
Rh(t1, t2; τ1, τ2) exp (j2π(ν2t2 − ν1t1)) dt1dt2. (2.86)

If the channel is both US and WSS, substituting (2.83) in (2.86) and substituting the variable t1 with
t � t1 − t2 yields:

Rγ (ν1, ν2; τ1, τ2) = δ(τ1 − τ2) δ(ν1 − ν2)

∫ +∞

−∞
Ph(t; τ1) exp (−j2πν1t) dt . (2.87)

The last result shows that scatterers characterized by different delays (Doppler shifts) act in an uncor-
related fashion, since the channel is US (WSS). Finally, substituting (2.84) in (2.87) leads to:

Rγ (ν1, ν2; τ1, τ2) = δ(τ1 − τ2) δ(ν1 − ν2) S(ν1, τ1), (2.88)

where (see (2.84)):

S(ν, τ ) �
∫ +∞

t=−∞

∫ +∞

f =−∞
RH (t; f ) exp [j2π(f τ − νt)] df dt

= FCT
t→ν

[
IFCT
f →τ

[
RH (t; f )

]] = FCT
t→ν

[Ph(t; τ)] (2.89)

is the so-called delay-Doppler power density function or scattering function [101]. This function plays
a fundamental role in wireless communications and, therefore, deserves further comment. First, we
note that it can be related to RH (t; f ) as:

RH (t; f ) = IFCT
ν→t

[
FCT
τ→f

[S (ν, τ )]

]
(2.90)

and that it can be interpreted as a measure of the power scattered by the communication channel for
a given Doppler shift ν and a given delay τ . Therefore, the scattering function can be determined
theoretically or experimentally21 for various scenarios by exploiting the fact that its structure is related
to the distribution of the scatterers around a receiver, and, more precisely, that it represents the scatterer
density versus the path delay and the Doppler shift (i.e., the path length and the azimuth angle measured
with respect to the direction of motion, respectively, in a two-dimensional scenario). Moreover, from
these considerations it is easily seen that the PDP Ph(τ) and the Doppler spectrum SD(ν) can be
derived from S(ν, τ ) as:

Ph(τ) =
∫ +∞

−∞
S(ν, τ ) dν (2.91)

and

SD(ν) =
∫ +∞

−∞
S(ν, τ ) dτ, (2.92)

respectively. It is also worth pointing out that, to simplify analysis of wireless communication systems,
it is usually assumed that the scattering function can be factored as:

S(ν, τ ) = Ph(τ) SD(ν), (2.93)

21 Measured scattering functions are available, for instance, in [102] for an urban environment, and in [103, 104]
for a suburban environment.
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so that (see (2.90), (2.62) and (2.48)):

RH (t; f ) = IFCT
ν→t

[SD(ν)] FCT
τ→f

[Ph(τ)] = RD(t) RH (f ), (2.94)

where RD(t) � IFCT[SD(ν)] is the Doppler autocorrelation function. Moreover, substituting this result
in (2.84) gives:

Ph(t; τ) = RD(t) Ph(τ ). (2.95)

Note that adopting the separability assumption expressed by (2.93) is equivalent to assuming that the
shape of the Doppler spectrum is independent of the scatterer delay τ . In other words, if we refer to
the TDL model of Figure 2.2, equation (2.93) states that the time variability of all the channel taps is
characterized by the same Doppler spectrum, that is, the time-varying gain (see (2.12)):

ai(t) � h(t, τi) �τ (2.96)

of the ith echo has an average power proportional to Ph(τi) and an autocorrelation function proportional
to RD(t).

We conclude our study of doubly-selective fading with the problem of channel classification. In
this subsection it has been shown that the rms Doppler bandwidth νrms (2.93) and the rms delay
spread τds (2.52) quantify the spectral dispersion (time selectivity) and the time dispersion (frequency
selectivity), respectively, in a wireless communication channel. In digital transmission, however, the
absolute value of these parameters is not enough to assess the relevance of these dispersion/selection
phenomena, since their effects inevitably also depend on the characteristics of the transmitted signal
xRF (t) – or, more precisely, on its duration Tx and bandwidth Bx . For instance, as shown in Chapter 6,
a digital receiver, when detecting a block of transmitted data, processes the received signal over an
observation interval having a duration T0 close to Tx . Therefore, it should be expected that the average
error performance of a receiver designed under the assumption of a frequency-selective fading channel
(i.e., static over the observation interval) is not appreciably affected by the presence of time variability
if the product νrms Tx is small – substantially less than unity. This condition can also be rewritten as:

νrms Tx < cν, (2.97)

where cν is a dimensionless positive constant whose value should be selected on the basis of the specific
application. Based on the concept of duality, it is not difficult to understand that the average error
performance of a digital receiver designed under the assumption of a frequency-flat (i.e., time-selective)
fading channel is not substantially affected by the presence of time dispersion if:

Bx τds < cτ , (2.98)

where cτ is a dimensionless positive constant to which considerations similar to those expressed for
cν apply. The inequalities (2.97) and (2.98) inevitably lead to the first quadrant of the (Bx , Tx) plane
being partitioned into four regions (see Figure 2.9), in each of which the effects of frequency selectivity
and time selectivity appear jointly, singularly or not at all. Note that the hyperbola delimiting, at least
in part, three of the four regions derives from the fact that the bandwidth–duration product of an
arbitrary signal is lower-bounded [79].

2.2.3 Reduced-Complexity Statistical Models for SISO Channels

2.2.3.1 Statistical Channel Modeling

As shown in Chapter 4, various difficulties encountered in the design of algorithms for data detection
and the analysis of their performance can be often related to the structure of the useful signal available
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Figure 2.9 Schematic representation, in the bandwidth–duration plane (Bx , Tx) of the transmitted
signal, illustrating the effects of fading on wireless communication.

at the output of the communication channel. In fact, in the presence of multipath fading, this structure
can be substantially different from that of the transmitted signal. In many cases, these problems can
be simplified by resorting to reduced-dimensionality (or simply reduced) statistical channel models.
These models express randomness in time-continuous channel filtering as the effect of a finite number
of stochastic parameters and, consequently, can have a substantially simpler structure than that of the
actual channel. At the same time, however, they should have statistical properties similar to those of
the actual channel.

Generally speaking, from an analytical viewpoint, the problem of developing a channel model which
is statistically similar to a given WSS-US Rayleigh wireless communication channel with factorizable
scattering function (see (2.93)) can be formulated as follows. If a given multipath fading channel with
TVTF H(t, f ) is fed by a bandlimited signal x(t) with bandwidth B and FCT X(f ), its output signal
(see (2.15)):

y(t) =
∫ B

−B

X(f ) H(t, f ) exp (j2π ft) df (2.99)

is a zero-mean nonstationary Gaussian process having autocorrelation function:

Ry(t1, t2) �E{y(t1) y∗(t2)}

=
∫ B

f1=−B

∫ B

f2=−B

X(f1) X∗(f2) RH (f1 − f2, t1 − t2)

· exp [j2π(f1t1 − f2t2)] df 2df 1

=RD(t1 − t2)

∫ B

f1=−B

∫ B

f2=−B

X(f1) X∗(f2) RH (f1 − f2)

· exp [j2π(f1t1 − f2t2)] df2 df1. (2.100)

Then developing a reduced-dimensionality model means devising a stochastic process H̃ (t, f ) which
depends on a finite (possibly small) number of random parameters and such that the random signal:

ỹ(t) �
∫ B

−B

X(f ) H̃ (t, f ) exp (j2π ft) df (2.101)
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is statistically equivalent, within a given degree of accuracy, to y(t) of (2.99) for any x(t) in the set
of bandlimited functions with bandwidth B. Statistical equivalence requires H̃ (t, f ) to be a Gaussian
process with zero mean and autocorrelation:

RH̃ (t1, t2; f1, f2) � E{H̃ (t1, f1) H̃ ∗(t2, f2)}
= RH (t1 − t2, f1 − f2)

= RD(t1 − t2)RH (f1 − f2) (2.102)

for |f1|, |f2| ≤ B (see equation (2.100)). Generally speaking, the second condition can be fulfilled
by a reduced model only to a certain degree of accuracy.

In the following we focus on the problem of various channel representations that can be exploited
to devise reduced channel models. In particular, we focus on:22

(a) TDL models with equally spaced taps;
(b) Karhunen–Loève (KL) models;
(c) models based on polynomial representations of system functions;
(d) models based on the approximation of channel autocorrelation functions via Gaussian quadrature

rules (GQRs).

Before analyzing each class, it is useful to note that, generally speaking, channel models represent
system functions as a superposition of multiple different components, so that they provide a diversity
representation of the communication channel. In fact, each component in the system function results in
a different portion of the useful received signal. Then a digital receiver which is able to separate each
component from all the others can benefit from the implicit diversity provided by the multipath fading
channel, that is, from its capacity for generating multiple (and differently distorted) replicas of the
same transmitted signal. This viewpoint turns out to be useful in devising new detection algorithms,
based on specific channel models and fully exploiting the channel diversity, thereby improving system
performance appreciably.

2.2.3.2 Tapped Delay Line Model for Bandlimited Signals

This model belongs to the class of the so-called sampling models,23 first devised by T. Kailath in [105,
p. 20] and later extended by P. A. Bello in [78]. It is based on the assumption that the channel input
signal x(t) has a finite bandwidth B, so that the corresponding channel response y(t) depends on its
TVTF H(f, t) for f ∈ (−B, B) only (see (2.99)), that is, it depends on the function:

Ĥ (t, f ) � H(t, f )[u(f − B) − u(f + B)]. (2.103)

Let us define the function:

ĥ(t, τ ) � IFCTf →τ [Ĥ (t, f )] =
∫ B

−B

H(t, f ) exp (j2πf τ) df (2.104)

and note that ĥ(t, τ ), being rigorously bandlimited (if its dependence on τ is considered), can be
represented via the sampling theorem (e.g., see [106, p. 20]) as:

ĥ(t, τ ) =
+∞∑

n=−∞
ĥ
(
t,

n

2B

)
sinc

(
2B
(
τ − n

2B

))
, (2.105)

22 Other channel models are mentioned in Section 2.4, where a list of useful references on this topic is provided.
23 The terminology is due to the fact that they result from the application of the sampling theorem [79].
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so that (see (2.104)):

Ĥ (t, f ) � FCTτ→f [ĥ(t, τ )]

= 1

2B
[u(f − B) − u(f + B)]

+∞∑
n=−∞

ĥ
(
t,

n

2B

)
exp

(
−j2πn

f

2B

)
, (2.106)

since FCT [sinc(2Bt)] = (1/(2B)) [u(f − B) − u(f + B)]. Then, substituting (2.106) in the RHS of
(2.99) (in place of H(t, f )) yields, after some manipulation, the input–output relationship:

y(t) =
+∞∑

n=−∞
cn(t) x

(
t − n

2B

)
, (2.107)

where
cn(t) � 1

2B
ĥ
(
t,

n

2B

)
. (2.108)

Equations (2.107) and (2.108) express the so-called TDL model [106]. This certainly admits the
representation of Figure 2.2, provided that we set �τ � 1/(2B) and an(t) � cn(t), with cn(t) given
by (2.108). This result, however, unlike that expressed by (2.11), is rigorous and is suitable for
representing any linear wireless channel fed by a rigorously bandlimited signal. It is also important to
note that, generally speaking, the Gaussian random processes {cn(t)} are statically correlated. In fact,
if we exploit Parseval’s theorem [79], (2.108) can be rewritten (see also (2.104)) as:

cn(t) � 1

2B

∫ B

−B

H(t, f ) exp

(
j2πn

f

2B

)
df

= 1

2B

∫ ∞

−∞
[(u(f − B) − u(f + B))H(t, f )] exp

(
j2πf

n

2B

)
df

= [sinc(2Bτ) ⊗ h(t, τ )]τ=n/(2B)

=
∫ ∞

−∞
sinc(2Bα) h

(
t,

n

2B
− α

)
dα, (2.109)

so that the cross-correlation Rc
n,m(t, τ ) between cn(t) and cm(t), with m �= n, can be expressed as:

Rc
n,m(t, τ ) �E{cn(t + τ) c∗

m(t)}

=
∫ ∞

α=−∞

∫ ∞

β=−∞
Rh

(
t + τ, t; n

2B
− α,

m

2B
− β

)
· sinc(2Bα)sinc(2Bβ) dβ dα. (2.110)

If the channel is WSS-US (see (2.83)), we then have that:

Rh

(
t + τ, t; n

2B
− α,

m

2B
− β

)
= Ph

(
τ ; n

2B
− α

)
δ

(
n − m

2B
− α + β

)
, (2.111)

where Ph(t; τ) is defined by (2.84), so that (2.110) can easily be put in the form:

Rc
n,m(τ ) =

{[
sinc (2Bx) sinc

(
2B

(
x + m − n

2B

))]
⊗ Ph(τ ; x)

}
x=n/(2B)

. (2.112)

If the scattering function is separable (see (2.95)), the latter result can be rewritten as:

Rc
n,m(τ ) = Cm,n RD(τ), (2.113)
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Figure 2.10 Representation of fk(x) (2.115) for k = 1, 2 and 3.

where

Cm,n �
{[

sinc (2Bx) sinc

(
2B

(
x + m − n

2B

))]
⊗ Ph(x)

}
x=n/(2B)

.

(2.114)

In Figure 2.10 a representation of the function:

fk(x) � sinc(y)sinc(y + k) (2.115)

appearing in (2.112) is given for k � m − n = 1, 2 and 3.
From this figure and (2.112) it can be inferred that Cm,n in (2.114) (and, consequently, Rc

n,m(τ ) in
(2.112)) decreases as |m − n| increases, that is, the channel taps become less correlated as their distance
in the τ direction increases. We also note that setting m = n in (2.112) produces the autocorrelation
function of cn(t):

Rc
n(τ ) � E{cn(t + τ) c∗

n(t)} = {sinc2(2Bx) ⊗ Ph(τ ; x)}x=n/(2B), (2.116)

so that the corresponding Doppler power spectrum is given by:

Sc
n(ν) � FCT{Rc

n(τ )} = {sinc2(2Bx) ⊗ S(ν, τ )}x=n/(2B), (2.117)

where S(ν, τ ) is the channel scattering function. If S(ν, τ ) can be factored, we find (see (2.113))
that Rc

n(τ ) = Cn,n RD(τ) and Sc
n(ν) = Cn,n SD(f ), so that, as expected, all the channel taps have the

same Doppler spectrum (up to a constant).
Finally, it is important to point out that an exact representation of the output signal y(t) according

to (2.107) requires the use of a TDL model with an infinite number of taps. In the literature simplified
channel models based on a TDL with a finite number of statistically independent taps are often used.
These models can be derived from the rigorous model of (2.107) and (2.108) by restricting the range
of the index n in (2.107) to (0, 1, . . . , L − 1) (where L is an integer whose value is proportional
to the channel dispersion) and neglecting tap correlation. Such models, however, do not admit as
rigorous a theoretical justification as that derived above. It is also important to point out that, in these
cases, a reduced channel model can be devised by adopting a simplified representation of the channel
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tap gains {cn(t), n = 0, 1, . . . , L − 1} over a given time interval. This can be done, for instance, by
exploiting the GQR models described in Section 2.2.3.4. Independent tap gains are also assumed in
the so-called bin model [107, pp. 111–114], which also approximates a multipath channel having a
continuous PDP as a TDL with fixed, but unequally spaced, delays.

2.2.3.3 Karhunen–Loève Model

The TVTF H(t, f ) of a separable doubly-selective channel (i.e., of a channel whose scattering function
satisfies (2.93)) can also be expanded in a series of orthogonal functions {φi(f ), i = 1, 2, . . . } by
means of the so-called KL representation [55] applied in the frequency domain [108]. The ith basis
function φi(f ) is the ith solution (eigenfunction) of the homogeneous Fredholm integral equation:∫ B

−B

RH (f1 − f2) φi(f2) df2 = σ 2
i φi(f1) (2.118)

with eigenvalue σ 2
i . It can be shown [55] that the set {φi(f ), i = 0, 1, . . . } represents a complete

basis24 for L2(−B, B). Then H(t, f ) can be represented as:

H(t, f ) =
+∞∑
i=0

Hi(t)φi(f ), (2.119)

where the time-varying coefficients:

Hi(t) =
∫ B

−B

H(f, t) φ∗
i (f ) df , i = 0, 1, . . . , (2.120)

are complex WSS independent Gaussian processes having zero mean and autocorrelation RHi
(τ ) =

σ 2
i RD(τ). Truncating the expansion of (2.119) to nF terms yields the simplified-dimensionality

model [109]:

ĤnF
(t, f ) =

nF −1∑
i=0

Hi(t) φi(f ), (2.121)

which is zero-mean and Gaussian; however, it is not stationary in the variable f since, generally
speaking, its autocorrelation function:

R
ĤnF

(t; f1, f2) � E{ĤnF
(t + t0, f1)Ĥ

∗
nF

(t0, f2)} = RD(t)

nF −1∑
i=0

σ 2
i φi(f1) φi(f2) (2.122)

does not depend only on the frequency difference (f1 − f2). The KL representation is an efficient
representation of a stochastic process since only a small value nF is usually required in order to
produce an accurate representation of H(f ). Unfortunately, closed-form solutions of the integral
equation (2.118) exist only in a few cases. This obstacle can be overcome by means of numerical
integration techniques turning equation (2.118) into a classic eigenvalue problem solvable by means
of standard computer routines [85, 109]. A significant drawback of the KL model is its physical
interpretation, which is intuitively pleasant as a diversity representation of random channel [101], but
is partially obscured by the irregular and unpredictable behavior of the complex functions {φi(f )}.
Finally, we note that the KL expansion, even if usually employed in the frequency domain (e.g., see
[85, 108, 109]), can also be applied in the τ domain [86] or in the t domain [110].

24 The completeness property of a basis is defined in Appendix D.
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2.2.3.4 Power Series Models

In principle, any system function can be approximated by a polynomial function, in the time and/or
frequency domains, thereby obtaining a reduced-complexity channel model. As originally proposed
in the classic paper by P. A. Bello [78], polynomial approximations can be derived, for instance, by
applying the well-known Taylor series representation. The statistical accuracy achievable depends on
various factors, such as the order of the series approximation, the frequency/time size of the domain
over which the function is represented and the rate of change in time/frequency of the communication
channel. The use of this method in channel modeling can be easily exemplified by referring to the
case of time-selective Rayleigh fading. In fact, in this case, a power series representation of the
multiplicative distortion a(t) over a limited time interval (−T0/2, T0/2) is given by:

a(t) =
∞∑

n=0

ân

(
t

T0

)n

, (2.123)

where the nth coefficient ân is given by:

ân = T n
0

n!

dn a(t)

dtn

∣∣∣∣
t=0

. (2.124)

It is then easy to show that the stochastic parameters {ân, n = 0, 1, . . . } are correlated jointly Gaussian
random variables with zero mean and correlation25 [111, 112]:

Rn,m � E{ân â∗
m} = (−1)m T n+m

0

n! m!

dn+m RD(τ)

dτn+m
|τ=0. (2.125)

Then, in particular, if RD(τ) = J0(2πBDτ), we have that:

Rn,m = (−1)(n−m)/2 (n + m)!

n! m!

[(
n + m

2

)
!

]−2

(πBDT0)
n+m (2.126)

if n + m is even and Rn,m = 0 otherwise, so that Rn,n � E{|ân|2 } = (2n)! (πBDT0)
2n.

A reduced-complexity channel model can be derived from the representation (2.123) by truncating
the power series to nT terms. This produces an nt th-order reduced-state model:

ânt
(t) =

nt−1∑
n=0

ân

(
t

T0

)n

(2.127)

of the process a(t). This random process is nonstationary, has zero mean and autocorrelation function:

Rânt
(t1, t2) =

nt−1∑
n=0

nt−1∑
m=0

Rn,m

(
t1

T0

)n(
t2

T0

)m

(2.128)

and can be used in any TDL model to represent the tap gains over a limited observation interval.
Finally, we note that:

(a) specific cases of interest in the technical literature are those corresponding to nt = 0 (known as
slow fading [113]) and nt = 1 (known as linearly time-selective fading),

(b) in a computer simulation of a time-selective channel based on the model (2.127), the channel
parameters {ân, n = 0, 1, . . . } can be generated by a linear transformation of independent Gaussian
random variables [55].

Further details about polynomial models and their applications can be found in [78, 111, 112,
114–116].

25 Polynomial coefficients can be related to experimental data (e.g., see [48, pp. 36–37]).
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2.2.3.5 Statistical Channel Modeling via Approximations of Channel Autocorrelation
Functions

Reduced channel models can also be derived from numerically efficient approximations of channel
autocorrelation functions; this idea has been exploited, for instance, in the so-called GQR models,
proposed by E. Chiavaccini and G. M. Vitetta in [117] as a generalization of a channel representation
first proposed in [118] for time-selective fading only.

GQR models can be easily understood by referring to a frequency-selective Rayleigh fading channel
with Ph(τ) and autocorrelation function of its frequency response H(f ) (see (2.48)):

RH (f ) = FCT[Ph(τ)] =
∫ +∞

−∞
Ph(τ) exp (j2πf τ) dτ. (2.129)

If we assume that the minimum and maximum channel delay are τm and τM , respectively, and separate
the real and imaginary parts of the integrand function, (2.129) can be rewritten as:

RH (f ) =
∫ τM

τm

Ph(τ ) cos(2πf τ)dτ − j

∫ τM

τm

Ph(τ ) sin(2πf τ) dτ. (2.130)

Since Ph(τ) is a real and nonnegative function both integrals on the RHS of equation (2.130) can be
evaluated numerically by means of GQRs [119, 120] for any f ∈ (−2B, 2B), where B is the input
signal bandwidth.26 Applying the GQR technique to (2.130) results in:

RH (f ) �
nf −1∑
i=0

wi cos(2πf τi) − j

nf −1∑
i=0

wi sin(2πf τi) =
nf −1∑
i=0

wie
−j2πf τi � RH̃nf

(f ), (2.131)

where {τi , i = 0, 1, . . . , nf − 1} and {wi, i = 1, 2, . . . , nf } are respectively the nodes and weights
of the nf th-order Gaussian quadrature (GQ) formula for the weight function Ph(τ). Expression
(2.131) approximates RH (f ) as the sum of nf complex oscillations having positive amplitudes, null
phases, and characteristic “ frequencies” {τi} expressed by the GQR nodes. It is interesting to note
that the approximate autocorrelation RH̃nf

(f ) in (2.131) is a quasi-periodic signal since the ratios

{τi/τj , i < j} are not necessarily rational numbers. It can be proved [120] that RH̃nf
(f ) in (2.131)

converges locally to RH (f ) as nf → ∞ under conditions that are satisfied for all the PDPs of usual
interest in the technical literature, and, in particular, for the PDPs listed in Table 2.2.27

These considerations allow us to infer that the statistical behavior of H(f ) can be well approximated
by a stationary Gaussian process H̃nf

(f ) having zero mean and autocorrelation function RH̃nf
(f )

(2.131). Moreover, the autocorrelation structure suggests the WSS representation:

H̃nf −1(f ) =
nf −1∑
i=0

ai e−j2πf τi (2.132)

for H̃nf
(f ), where {ai, i = 0, 1, . . . , nf − 1} are independent Gaussian random variables having zero

mean and variances {E {|ai |2} = wi, i = 0, 1, . . . , nf − 1}. Taking the IFCT of (2.132) with respect
to the variable f produces the channel impulse response:

h̃nf
(τ ) =

nf −1∑
i=0

ai δ(τ − τi) . (2.133)

26 In equation (2.100) both f1 and f2 belong to the interval (−B, B) (x(t) is bandlimited to B Hertz) so that
(f1 − f2) ∈ (−2B, 2B).
27 In all these cases the evaluation of nodes and weights of GQRs can be carried out via numerically efficient
methods [119, 120].
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The channel model (2.133) lends itself to an immediate physical interpretation: in the bandwidth of
its input signal the channel behaves as a TDL with nonuniform spacing between successive taps. The
tap complex gains {ai} are random, whereas the tap delays {τi} are fixed for a given PDP and model
order nf and depend only on the PDP shape. It is also worth noting that:

(a) the stochastic process H̃nf
(f ) has been derived as a statistical approximation to H(f ) in the

frequency range (−B, B) only,
(b) in this frequency interval statistical equivalence between H(f ) and H̃nf

(f ) is achieved in the
limit as nf → ∞. Given nf , the accuracy of the model (2.133) can be related to that of the GQ
formula derived for the PDP Ph(τ) [117].

A dual approach can be followed to devise a reduced-complexity channel model for the multi-
plicative distortion a(t) affecting a Rayleigh time-selective fading channel characterized by a Doppler
spectrum SD(ν) and the associated autocorrelation RD(τ). This leads to the WSS representation
[117, 118]:

a(t) �
nt−1∑
k=0

ak exp (j2πνkt) (2.134)

over the finite time interval (−T0/2, T0/2), where {ak, k = 0, 1, . . . , nt − 1} are independent Gaussian
random variables having zero mean and variances {E [|ak|2] = qk, k = 0, 1, . . . , nt − 1}. In addition,
{qi} and {νi} are respectively the weights and the nodes of the nt th-order GQ formula for the numerical
evaluation of:

RD(τ) =
∫ +∞

−∞
SD(ν) exp (j2πντ) dν, (2.135)

relating RD(τ) to SD(ν). For instance, if RD(τ) = J0(2πBτ), then qi = 1/M and νi = BD cos(π(i +
0.5)/M) [117].

The results illustrated for frequency-selective and time-selective channels can be combined to derive
a simple model for the TVTF H(t, f ) of a separable doubly-selective channel. This model represents
the channel as a TDL characterized by nf distinct delays and in which the delay of each tap consists
of the superposition of nt distinct complex oscillations. Further details can be found in [117].

2.3 Mathematical Description and Modeling of MIMO
Wireless Channels

The description of SISO channels based on system functions and illustrated in Section 2.2.1 can be
extended to MIMO scenarios characterized by arrays of arbitrary sizes. In fact, a MIMO channel
can be thought of as a collection of SISO channels, each being associated with a distinct couple of
transmit–receive antennas. An alternative to this approach to MIMO channel characterization is based
on the concept of directionality [121, 122]. This leads to the definition of some new system functions
depending on the angle of arrival (AOA) and angle of departure (AOD) on the receive and transmit
sides, respectively. These functions, however, unlike those adopted in the first approach, describe
the properties of the propagation medium independently of the specific configurations of the antenna
arrays employed, but, given such configurations, allow the channel response to be determined for any
input–output couple in a MIMO system. In this section both approaches to channel description are
examined, and then the problem of channel statistical characterization is analyzed.
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2.3.1 Input–Output Characterization of a MIMO Wireless Channel

We now focus on a MIMO communication system having nR receive and nT transmit antennas (or an
nT × nR MIMO system for short), as illustrated in Figure 2.11. A full description of the input–output
behavior of the overall MIMO channel is provided by the CIR set {hi,j (t, τ ), i = 0, 1, . . . , nT −
1, j = 0, 1, . . . , nR − 1}, where hi,j (t, τ ) denotes the CIR between the ith transmit and jth receive
antenna. In fact, the complex envelope of the useful signal yj (t) collected at the output of the jth
receive antenna (with j = 0, 1, . . . , nR − 1) can be expressed as the superposition of the contributions
from all the transmit antennas, that is, as (see (2.9)):

yj (t) =
nT −1∑
k=0

∫ +∞

−∞
xk(t − τ) hk,j (t, τ ) dτ, (2.136)

where xk(t) is the complex envelope of the signal from the kth transmit antenna (with
k = 0, 1, . . . , nT − 1). This can be expressed in a more compact vector form as:

y(t) =
∫ +∞

−∞
H(t, τ ) x(t − τ) dτ, (2.137)

where x(t) � [x0(t), x1(t), . . . , xnT −1(t)]
T and y(t) � [y0(t), y1(t), . . . , ynR−1(t)]

T are the trans-
mitted and the received signal vectors, respectively, and H(t, τ ) is an nR × nT matrix collecting
all the elements of the CIR set and whose element on the jth row (with j = 0, 1, . . . , nR − 1) and
on the ith column (with i = 0, 1, . . . , nT − 1) is hi,j (t, τ ). The vector function H(t, τ ) provides a
full matrix description of a MIMO communication channel, similar to the CIR h(t, τ ) in a SISO
scenario.

TDL channel models, to which much attention has been already paid in the study of SISO links,
can also be used in the study of MIMO systems, as illustrated in the following example.

j
y (t)

Scattering Medium

Transmit Array Receive Array

0

i

nT – 1

hi,j (t, t)

nR – 1

x(t)

0

Figure 2.11 MIMO system characterized by nT transmit and nR receive antennas. The system
function hi,j (t, τ ) denotes the CIR between the ith transmit and jth receive antenna.
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Example 2.3.1 Let us assume that the scatterers in the propagation medium surrounding the antenna
arrays can be grouped into Lh distinct clusters such that scatterers belonging to the same cluster are
characterized by the same delay. Then the MIMO channel can be modeled as a vector TDL with Lh

taps and the CIR matrix H(t, τ ) can be put in the form28 (e.g., see [124]):

H (t, τ ) � [hi,j (t, τ )] =
Lh−1∑
l=0

Hl (t) δ(τ − τl), (2.138)

where Hl (t) = [hr
l,k(t)] (with l = 0, 1, . . . , Lh − 1) is an nR × nT matrix containing the complex

gains corresponding to the lth matrix tap, characterized by the delay τl . In particular, hr
k,l(t) is the

random complex gain associated with the lth echo or path between the kth transmit antenna (k =
0, 1, . . . , nT − 1) and the rth receive antenna (r = 0, 1, . . . , nR − 1). Substituting (2.138) in (2.137)
produces the input–output relationship:

y(t) =
Lh−1∑
l=0

Hl (t) x(t − τl), (2.139)

expressing the received signal vector as the superposition of the contributions coming from the Lh

distinct clusters.
�

As discussed below in the literature the case of frequency-flat fading is often considered for
simplicity. Then (2.139) becomes:

y(t) = H(t) x(t), (2.140)

which, if we deem the channel static over the observation interval, simplifies to:

y(t) = H x(t). (2.141)

Note that, generally speaking, H can be represented in terms of its singular value decomposition
(SVD) as H = U�V [125], where U and V are nR × nR and nT × nT unitary matrices, respectively,
and � is an nR × nT matrix having the singular values {λl, l = 0, 1, . . . , min(nT , nR) − 1} of H on
its main diagonal. This implies that H can be represented as [126]:

H =
min(nT ,nR)−1∑

l=0

λlulvl , (2.142)

where ul (vl) is the lth row (column) of U (V). Note that each dyad on the RHS of (2.142) can be
interpreted as an independent mode of communication, that is, a degree of freedom that the channel
offers. The relevance of the mode is proportional to the magnitude of the associated eigenvalue. This
representation of the channel can be very helpful in designing the correct processing to carry out at
the transmitter for optimal signaling and at the receiver for mode separation.

An alternative approach to the characterization of the communication channel in a MIMO scenario
is offered by a directional description of the propagation medium. Such a description represents an
extension of that developed for SISO time-variant channels, as it incorporates into the system functions
a dependence on the azimuth and the elevation angles of incidence (transmission) for the multipath
components captured (sent) by receive (transmit) antennas [122, 127–130]. Such parameters can be
gathered together in a vector � containing, in the most general case (i.e., in a double directional
description of the channel), the azimuth angle ϕR and the elevation angle θR at the receive side, and

28 Note that (2.138) provides a time-continuous model of a MIMO channel. A discrete-time TDL model can be
found, for instance, in [123].
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Single Directional
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h (t, t, jR)
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Figure 2.12 Directional description of a propagation scenario in which the transmit/receive arrays
of a MIMO communication system operate.

the corresponding angular parameters (ϕT and θT , respectively) for the transmit side, as illustrated in
Figure 2.12. For instance, following this approach, from the CIR h(t, τ ) the so-called time-variant
angle-resolved channel impulse response (TVARCIR) h(t, τ ; �) can be derived. This fully describes
the directional behavior of a channel.

From a physical point of view, the above transformation of system functions has a well-defined
meaning. In fact, as in the SISO case, the function h(t, τ ;�) still represents the response of a propa-
gation scenario, at time epoch t, to a Dirac delta function applied τ seconds earlier. Its measurement
assumes, however, that the impulsive signal is transmitted over the given channel only in the direction
identified by the couple (ϕT , θT ) and the corresponding response is extracted, at the receive side, col-
lecting only the electromagnetic signal coming from the direction of arrival (ϕR, θR). In other words,
the ideality of h(t, τ ; �) derives not only from being a response to an impulsive signal, but also from
the fact that its definition involves the use of a couple of transmit/receive antennas both having a
radiation pattern equal to a Dirac delta (i.e., an infinite gain).

From these considerations it is not difficult to infer that, as shown by Figure 2.12, double directional
system functions characterize multipath propagation scenarios only, without referring in any way to
the specific characteristics of the transmit/receive antennas. In particular, they do not take into account
the antenna radiation patterns and their mathematical structure is not influenced by the presence of
antenna arrays. For these reasons, on the one hand, a directional description of a communication
channel could be used, in principle, in the study of SISO systems, even if, in this case, it would prove
essentially trivial. On the other hand, the usefulness of the directional approach in the study of a
MIMO system is because all the components of the TVIR matrix H(t, τ ) = [hi,j (t, τ )], defined in the
previous subsection, can be univocally expressed through the single function h(t, τ ;�), provided that
the array geometry and the antenna gains are known for both sides of the wireless link [122, 130].
Even if this result leads to a substantial simplification in the description of the input–output behavior
of a MIMO channel, the use of directional functions opens a number of practical and theoretical
problems. This can be clearly seen if we refer again to the system function h(t, τ ; �). We note that
this function depends on six parameters in the double directional case, so that its measurement using
proper channel sounding equipment [121], on the one hand, and its overall statistical characterization,
on the other hand, are complicated problems.
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The only way to simplify the directional description is to reduce the number of angular parameters.
In the literature, for instance, directional models are often analyzed only in two-dimensional scenarios,
so that the dependence on the transmit/receive elevation angles can be dropped [122, 131]. A further
simplification is obtained if the directional description refers to only one end of the link (e.g., to the
receive side), so that h(t, τ ; �) simplifies to h(t, τ ; ϕR). In the following, for simplicity, we focus on
only the latter case, since its results lend themselves to intuitively useful interpretations, and we drop
the subscript R in the angular parameter to simplify the notation.

Before considering various directional system functions, it is important to point out that such
functions can also be formulated in a spatial, or aperture, domain, instead of referring to the above
angular domain [122]. The two domains, however, are closely related as the space and the angular
parameters are dual quantities, exactly like the delay τ and the frequency f (or the time t and the
Doppler frequency shift ν). The meaning of this duality relationship can be fully understood by
considering the physical phenomenon of interference involving the electromagnetic waves at the
receive side of a radio link. In fact, when electromagnetic waves coming from different directions
impinge on an antenna array, they combine constructively or destructively at distinct points of space,
so that a spread in the angular domain29 produces a spatial variation of the received field, that is, it
generates space-selective fading. It is not surprising that:

(a) the relationship connecting the angular domain to the spatial one (and vice versa) is a Fourier
transformation, involving the spatial coordinates on one side and some trigonometric functions of
the angular parameters on the other [131],

(b) by analogy with the cases of frequency and time selectivity, an rms angle spread ϕrms and a
coherence distance Dc, related by an inverse proportionality, can be defined to assess the relevance
of space selectivity (further details can be found, for instance, in [38, p. 17]).

For SISO channels the four system functions shown in Figure 2.3 have been defined. The
introduction of another couple of dual variables (one spatial x, the other angular ϕ) requires the
use of 4 · 2 = 8 system functions for the description of single directional channels. As in the SISO
case, the new system functions can be derived via Fourier transforms from the TVARCIR h(t, τ, ϕ),
as sketched in Figure 2.13, where Fx[·] (F−1

y [·]) represents a shorthand notation for a FCT (IFCT)
evaluated with respect to the variable x (y). Note that:

(a) all the system functions are cyclically related, as in the nondirectional case (see Figure 2.3)
(b) the spatial variable x, called the aperture, corresponds to the spatial dimension of the receive (or

transmit) array and can take on any real value
(c) in the two-dimensional and single-directional scenario we consider in the following, the angular

variable is defined as ϕ = sin φ, where φ is the arrival or departure azimuth30 (φ ∈ [−π/2, π/2])
and, consequently, in the evaluation of Fourier transforms, takes only values in the interval [−1, 1].

Let us now summarize these relationships. The TVARCIR h(t, τ, ϕ) can be transformed with respect
to each of the three variables on which it depends, so generating the time-variant angle-resolved
channel transfer function M(t, f, ϕ) � TCFτ→f [h(t, τ, ϕ)], the time- and aperture-variant channel
impulse response g(t, τ, x) � TCFϕ→x[h(t, τ, ϕ)] and the Doppler- and angle-resolved channel
impulse response s(ν, τ, ϕ) � TCFt→ν[h(t, τ, ϕ)]. From each of these functions, the other two
functions can be generated by computing another Fourier transform with respect to one of the

29 Here we refer to the AOAs of the multipath components, in this specific case. However, an angle spread at the
transmitter can also be defined, since it refers to the spread in AODs of the multipath reaching the receiver.
30 The azimuth variable φ covers only a half-plane, since in a linear array the interference due to an impinging
electromagnetic wave does not change if the wave is replaced by its specular image with respect to the array axis
[131].
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Figure 2.13 Representation of the relationships among the system functions adopted for the
directional description of a propagation scenario.

remaining variables. For instance, from M(t, f, ϕ) the Doppler- and angle-resolved channel
transfer function G(ν, f, ϕ) � TCFt→ν[M(t, f, ϕ)] and the time- and aperture-variant transfer
function T (t, f, x) � TCFϕ→x[M(t, f, ϕ)] can be derived. Similarly, from g(t, τ, x) the Doppler-
and aperture-resolved channel impulse response m(ν, τ, x) � TCFt→ν[g(t, τ, x)] and, again,
T (t, f, x) = TCFτ→f [g(t, τ, x)] are obtained. Note also the following:

(a) From s(υ, τ, ϕ) the functions m(ν, τ, x) and G(ν, f, ϕ) can also be computed as TCFϕ→x

[s(ν, τ, ϕ)] and TCFτ→f [s(ν, τ, ϕ)], respectively.
(b) From each of the functions m(ν, τ, x), G(ν, f, ϕ) and T (t, f, x) the Doppler- and

aperture-resolved transfer function can be derived as H(ν, f, x) � TCFτ→f [m(ν, τ, x)]
= TCFϕ→x[G(ν, f, ϕ)] = TCFt→ν[T (t, f, x)].

(c) Concatenating the previous definitions any system function different from h(t, τ, ϕ) can be com-
puted as a multidimensional Fourier transform of h(t, τ, ϕ) itself. In this regard, it is useful to note
that T (t, f, x) can be expressed as TCFϕ→x[TCFτ→f [h(t, τ, ϕ)]]. This shows that T (t, f, x),
representing an extension of H(t, f ) (2.13) to the aperture domain, can be defined as a two-
dimensional Fourier transform of h(t, τ, ϕ) with respect to ϕ and τ , that is, more explicitly, as
(e.g., see [131]):

T (t, f, x) =
∫ +∞

τ=−∞

∫ 1

ϕ=−1
h(t, τ, ϕ) exp

[
−j2π

(
f τ + ϕ

x

λ

)]
dτ dϕ, (2.143)

where λ is the carrier wavelength.

Generally speaking, from the double directional TVARCIR h(t, τ ;�) = h(t, τ, ϕT , τT , ϕR, τR), the
CIR matrix H(t, τ ) = [hi,j (t, τ )] of a MIMO channel can be derived if the transmit antenna gain31

gT (ϕT , τT ) and the receive antenna gain gR(ϕR, τR) are known. For instance, if we refer again to a
two-dimensional, single-directional scenario and consider, for simplicity, a SISO link, the CIR h(t, τ )

can be derived from h(t, τ, ϕR) and the receive antenna gain gR(ϕR) (if the directional description
refers to the receive side) as (e.g., see [121, p. 52]):

h(t, τ ) =
∫ π

−π

h(t, τ, ϕR)gR(ϕR)dϕR. (2.144)

31 Here it is assumed, for simplicity, that all the antennas in the transmit (and in the receive) array are identical.
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This result lends itself to a simple physical interpretation since it establishes that the CIR h(t, τ ) can
be seen as the superposition of multiple contributions, coming from different spatial directions and
weighted by the receive antenna gain.

Finally, we note that, unfortunately, a double directional TVARCIR cannot be derived from H(t, τ ),
since this matrix description encompasses the effects of transmit/receive antenna gains and does not
provide enough information for a full directional description of a propagation scenario.

2.3.2 Statistical Characterization of a MIMO Wireless Channel

In this subsection we analyze the problem of the statistical characterization of the communication
channel in a MIMO communication system. Both matrix and directional descriptions are considered.

2.3.2.1 Matrix Description

Generally speaking, the problem of the statistical characterization of the CIR matrix H(t, τ ) for an
nT × nR MIMO system is very complicated. In the literature this problem is often investigated for
a single-tap (i.e., time-selective) channel and, when considering a TDL model (2.138) with multiple
taps, it is usually assumed that the channel taps {Hl (t), l = 0, 1, . . . , Lh − 1} are Gaussian32 and
statistically independent, so that the analysis of channel correlation is limited to the statistical rela-
tionships between complex gains belonging to the same tap. This problem can be tackled more easily
if the channel is assumed static over the observation interval. As we will see, time variability can be
accounted for later. Then (2.138) becomes:

H(τ ) =
Lh−1∑
l=0

Hl δ(τ − τl), (2.145)

so that the tap gain Hl , for any l, is an nR × nT matrix of complex jointly Gaussian (correlated)
random variables. To analyze the correlation properties of Hl we follow the approach of [133, p. 1220,
column 2], by turning this matrix in an nR · nT -dimensional vector hl � vec{Hl}, generated from the
ordered concatenation of the columns of Hl . Then hl is a Gaussian vector and a complete statistical
characterization is provided by its average ηl � E{hl} and its covariance matrix:

Cl � E
{(

hl − ηl

)
(hl − ηl )

H
}
, (2.146)

where (·)H indicates conjugate transpose. In the following, we assume that the channel is affected by
Rayleigh fading (so that ηl = 0nRnT

, where 0N is the N-dimensional null column vector) and that all
the elements of hl have the same variance σ 2

l . Then, given the normalized correlation matrix:

�l � 1

σ 2
l

E
{
hlh

H
l

}
(2.147)

and its Cholesky factorization [125]:
�l = �

1/2
l (�

1/2
l ), (2.148)

the gain vector hl can be expressed as:

hl = σl�
1/2
l al , (2.149)

32 Gaussianity is a reasonable property if each group of scatterers consists of a large number of independent
elements [132].
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that is, as a linear transformation of a vector al consisting of nT nR complex, independent and
identically distributed Gaussian random variables, each having zero mean and unit variance. Note
that (2.149) holds if all the elements of hl have the same variance, that is, if the channel PDP is inde-
pendent on the selected transmit/receive antenna couple. The case of power imbalance in the channel
coefficient variances (i.e., in the branch power ratio) can be handled by applying the Cholesky factor-
ization to the nT nR × nT nR matrix �l resulting from the element-by-element product (i.e., Hadamard
product) of �l (2.156) and an nT nR × nT nR power shaping matrix Pl , collecting the standard devia-
tions of the complex gains hr

k,l (further details can be found in [133, p. 1220, column 2]). Then the

resulting matrix �
1/2
l replaces the term σl�

1/2
l in (2.149).

The use of (2.149) requires the evaluation of �l (2.147). This problem can be simplified if some
additional assumptions are made about the channel statistical properties. To clarify this, let us define
the nR × nR normalized spatial correlation matrix of the receive antennas:

RR,l � 1

σ 2
l

E
{
hl,khH

l,k

}
, (2.150)

where k is the transmit antenna index and hl,k is the kth column of Hl , and the nT × nT normalized
spatial correlation matrix of the transmit antennas:

RT ,l � 1

σ 2
l

E
{

hr
l

(
hr

l

)H}
, (2.151)

where r is the receive antenna index and hr
l is the vector resulting from the transposition of the

rth row of Hl . Note that it has been implicitly assumed in (2.150) that RR,l does not depend on k,
and in (2.151) that RT ,l does not depend on r. The meaning of this assumption can be explained as
follows. An nT × nR MIMO channel can be represented as the combination of nT (nR) SIMO (MISO)
channels, where each of these SIMO (MISO) channels is associated with a distinct transmit (receive)
antenna. Then stating that RR,l (RT ,l) is independent of the index k (r) is equivalent to stating the
statistical equivalence of such SIMO (MISO) channels. Moreover, we note that the elements (r1, r2)
of RR,l and (k1, k2) of RT ,l are given by:

(RR,l)r1,r2
= 1

σ 2
l

E
{
h

r1
k,l

(
h

r2
k,l

)∗} � ρR,l(r1, r2) (2.152)

and
(RT ,l)k1,k2

= 1

σ 2
l

E
{
hr

k1,l

(
hr

k2,l

)∗}
� ρT,l(k1, k2), (2.153)

respectively, where ρR,l(r1, r2) (ρT,l(k1, k2)) is the normalized spatial correlation coefficient between
the receive (transmit) antennas r1 (k1) and r2 (k2). If the receive (transmit) antennas behave in an
uncorrelated fashion, then RR,l = InR

(RT ,l = InT
), where IN is the N × N identity matrix. It is also

worth pointing out that, generally speaking, knowledge of the functions ρT,l(k1, k2) and ρR,l(r1, r2)

does not provide enough information for the evaluation of �l in (2.147), since this requires knowledge
of the correlations between the channels (r1, k1) and (r2, k2) associated with disjoint couples of
transmit–receive antennas (i.e., couples characterized by both r1 �= r2 and k1 �= k2). In other words,
what is really needed for a full statistical characterization is the knowledge of the normalized spatial
correlation:

ρl(r1, r2; k1, k2) � 1

σ 2
l

E
{
h

r1
k1,l

(
h

r2
k2,l

)∗}
, (2.154)

where r1 and r2 (k1 and k2) are the indexes of the transmit (receive) antennas. In the literature the
additional assumption that the transmit and receive arrays are “decoupled” is also often made, so that
the equality (e.g., see [133]):

ρl(r1, r2; k1, k2) = ρR,l(r1, r2) ρT,l(k1, k2) (2.155)
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holds, that is, the correlation between the fading of the distinct transmit–receive pairs is the product
of the corresponding receive correlation and transmit correlation. As shown below, this occurs if in
the propagation scenario the AOAs at the receive side are statistically independent of the AODs at
the transmit side33 for each cluster of scatterers.

If (2.155) holds, �l can be evaluated as:

�l = RT ,l ⊗ RR,l, (2.156)

where ⊗ denotes the Kronecker product operator (defined in Appendix C). The latter result explains the
name “Kronecker model”34 usually given to a statistical MIMO channel model with this property [123].

Let us now apply these results to the case of a 2 × 2 communication channel.

Example 2.3.2 If nT = nR = 2, the normalized spatial correlation matrices RR,l (2.150) and RT ,l

(2.151) take the form (see [133, p. 1220]):

RT ,l =
[

1 µl

µ∗
l 1

]
(2.157)

and

RR,l =
[

1 γl

γ ∗
l 1

]
, (2.158)

respectively, where µl = ρT,l(1, 2) = ρ∗
T ,l(2, 1), ρl = ρR,l(1, 2) = ρ∗

R,l(2, 1). Then, substituting
(2.157) and (2.158) in (2.156) yields the normalized correlation matrix:

�l =




1 γl µl µlγl

γ ∗
l 1 µlγ

∗
l µl

µ∗
l µ∗

l γl 1 γl

µ∗
l γ

∗
l µ∗

l γ ∗
l 1


 , (2.159)

whose Cholesky factorization produces the lower triangular matrix:

�
1/2
l =




1 0 0 0
γ ∗

l al 0 0
µ∗

l 0 bl 0
µ∗

l γ
∗
l µ∗

l al γ ∗
l bl cl


 , (2.160)

where al �
√

1 − |γl |2, bl �
√

1 − |µl |2 and cl �
√

1 + |µl |2|γl |2 − |µl |2 − |γl |2. Then the complex
gain vector hl = [h1

1,l , h
2
1,l , h

1
2,l , h

2
2,l]

T can be generated via the linear transformation defined by

(2.149), where �
1/2
l is expressed by (2.160) and al = [a1,l , a2,l , a3,l , a3,l]

T is a vector of complex
Gaussian random variables, each having zero mean and unit variance.

�

33 This is a reasonable hypothesis if the inter-antenna distances in each array are substantially shorter than the
inter-array distance.
34 In various papers (e.g., see [134, p. 1113], [135, p. 3598], [136, p. 92], [137, p. 821]) the generation of an
nR × nT channel matrix H is described in a formally different fashion, that is, as

H = 1

tr(RR)
R1/2

R G R1/2
T ,

where RR � E{H HH } and RT � E{(HH H)T } are the receive and transmit marginal correlation matrices, tr(X)

denotes the trace of a matrix X, and G is an nR × nT matrix consisting of iid complex Gaussian random variables,
each having zero mean and unit variance.
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If (2.155) holds, the evaluation of the coefficients ρR,l(r1, r2) (2.152) and ρT,l(k1, k2) (2.153) is
needed for the computation of �l via (2.156). Analytical expressions for these coefficients can be
evaluated for the two-dimensional propagation scenario represented in Figure 2.14. In this case it is
assumed that:

(a) the antennas of each array are uniformly spaced with inter-antenna spacings dT (at the transmit
side) and dR (at the receive side) along a line (i.e., uniform linear array are used), and are identical
and omnidirectional,

(b) the groups of scatterers are so far from the antenna arrays that the departure/arrival angles can be
considered constant along the arrays [138–140].

If the parametric channel model proposed in [138, 141] is adopted, the matrix Hl of (2.145) can
be expressed as:

Hl = βl aR(θR,l) aH
T (θT ,l), (2.161)

where θR,l , θT,l and βl are the AOA, the AOD and the complex fading path gain for the lth cluster,
respectively. In addition, the nR-dimensional vector aR(θR,l), called the receive array response vector
and expressing the array response to an electromagnetic wave impinging with an angle of arrival35

θR,l , and the nT -dimensional vector aT (θT ,l), called the transmit array response vector and expressing
the transmit array response corresponding to the departure angle θT,l , are given by:

aR(θR,l) = [1, exp (j2πdR sin θR,l/λ), . . . , exp (j2πdR(nR − 1) sin θR,l/λ)]T (2.162)

and

aT (θT ,l) = [1, exp (j2πdT sin θT,l/λ), . . . , exp (j2πdT (nT − 1) sin θT,l/λ)]T , (2.163)

0
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∆T,l

∆R,l
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qR,l

k nT –2 nT –1

nR –2 nR –1

Transmit Array

lth cluster

Receive Array

Figure 2.14 Two-dimensional propagation scenario in a MIMO communication system.

35 The vector aR(θR) can be interpreted as a spatial signature (across the receive antenna array) induced by a
planar wavefront arriving with an AOA θR and associated with a continuous wave at frequency fc . Generally
speaking, aR(θR) depends on the array geometry, the antenna gains and the AOA. The set of all array response
vectors {aR(θR), −π < θR ≤ π} is called array manifold and can be measured by moving a continuous wave
source in azimuth around the array.
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respectively. In addition, the parameter θR,l (θT,l) is usually modeled as a random variable with mean
θ̄R,l (θ̄T ,l) and standard deviation 2�R,l (2�T,l). Further, the path gain βl is commonly modeled as a
complex Gaussian random variable having zero mean, variance σ 2

l , and statistically independent real
and imaginary components.

Substituting (2.162) and (2.163) in (2.161) yields:

hr
l,k = βl exp (j2π(dRr sin θR,l − dT k sin θT,l)/λ), (2.164)

so that from (2.154) it easily seen that:

ρl(r1, r2; k1, k2) = 1

σ 2
l

E
{|βl |2

· exp
(
j (2π/λ) [dR(r1 − r2) sin θR,l + dT (k2 − k1) sin θT,l]

)}
. (2.165)

If we assume now that the random variables βl , θR,l e θT,l are mutually independent, (2.165) can be
easily put in the form (2.155), with:

ρR,l(r1, r2) � E
{
exp

[
j2πdR

(
r1 − r2

)
sin θR,l/λ

]}
(2.166)

and
ρT,l(k1, k2) � E

{
exp

[
j2πdT

(
k2 − k1

)
sin θT,l/λ

]}
. (2.167)

The evaluation of ρT,l(k1, k2) in (2.167) requires the pdf of θT,l , and the evaluation of ρR,l(r1, r2)

in (2.166) requires the pdf of θR,l . Analytical results36 are available in the technical literature for a
cosine raised to an even integer [143], uniform [144, 145], Gaussian [146], truncated Gaussian [147]
and Laplacian [148] pdfs. Series representations of the spatial correlation coefficients in the cases of
Laplacian and truncated Gaussian pdfs can be found in [149] and [150], respectively.

We note that the time variability of the channel can be easily accounted for in the model, if we
assume that the elements of Hl (t) (with l = 0, 1, . . . , Lh − 1) are all characterized by the same
Doppler power spectrum SD,l(f ). In fact, in this case, time variability can be easily incorporated in
(2.149) by rewriting it as:

hl (t) = σl�
1/2
l al (t), (2.168)

where the components of the nT nR-dimensional vector al (t) are mutually independent complex
Gaussian random processes, each characterized by a zero mean and by a Doppler power spectrum
SD,l(f ).

Finally, it is important to point out that the results described above suffer from various limitations.
For instance, the representation (2.149) of the tap vector hl is unable to account for the well-known
pinhole or keyhole phenomenon of channel degeneracy [135, 151–153]. In principle, this occurs when
the scattering regions surrounding the transmit and the receive array are separated by a screen with a
small hole in the middle, so that Hl can be modeled as the rank-one37 matrix:

Hl = σcs gR,lg
T
T ,l , (2.169)

where σcs is the scattering cross-section of the keyhole, and gR,l (gT ,l) is an nR (nT ) random column
vector containing the channel coefficients from the keyhole (transmit array) to the receive array
(keyhole). It is usually assumed that such vectors are statistically independent and each consist of iid
zero-mean complex Gaussian random variables, so that a double-Rayleigh distribution is found for the
amplitudes of the entries in Hl (e.g., see [154, p. 680]). From a physical viewpoint, the presence of

36 Some experimental results can be found, for instance, in [142].
37 In other words, the matrix Hl has only one nonnull singular value; see (2.142).
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the keyhole effect can be related to scenarios where, even if rich scattering around the transmitter and
receiver leads to low correlation of signals, other propagation effects, like waveguiding and diffraction,
entail a rank reduction of the matrix transfer function. Recently, its existence has been confirmed by
experimental results in [135]. A generalization of the Kronecker model, accounting for the keyhole
effect, has been presented in [153].

Another relevant shortcoming of the Kronecker model is due to the fact that it neglects the statistical
interdependence of both link ends, since it is derived under the assumption that correlation at the
transmitter and at the receiver can be modeled independently, so that the transmitter does not affect
the spatial properties of the received signal at all. However, this hypothesis is not reasonable in realistic
indoor MIMO channels [155]. Recently, a novel approach to statistical modeling that combines the
advantages of the “Kronecker model” with the so-called virtual channel representation of [140] has
been proposed to overcome this problem [136].

Other comments concern the tap representation expressed by (2.161). In fact, this model is not
flexible since every realization of Hl structured as (2.161) has rank 1. Generally speaking, channel
rank is related to the angular spread of path clusters [147]. In particular, if this spread decreases,
the correlation matrix �l loses rank, and, consequently (see (2.149)), the rank of Hl decreases [156].
MIMO channels models in which the rank of the matrix Hl is controlled by the fading correlation at
the antenna arrays have been proposed in [156] and [153].

Finally, we note that in this subsection our attention has been focused on the statistical character-
ization of the random matrix Hl through its covariance matrix. Other important statistical properties
of this matrix concern the distribution of the singular values of its decomposition (2.142) and that of
its squared norm ‖Hl‖2 = tr(HlH

H
l ) (see (C.2)). The singular values of Hl can easily be related to

the eigenvalues of HlH
H
l , which have a Wishart-type distribution [157, 158]. Details of the moment

generating, cumulative density and probability density functions of ‖Hl‖2
F can be found in [38, pp.

44–45] or [159].

2.3.2.2 Directional Models

The directional system functions defined in Section 2.3.1 are often modeled as Gaussian stochastic
processes. Here we also assume that they have zero mean (Rayleigh fading), so that a complete sta-
tistical characterization only requires knowledge of their autocorrelation functions. In the following
we consider some of these functions to formulate the properties of wide-sense stationarity and uncor-
related scattering (already defined for SISO channels in Section 2.2.2) in a directional scenario and
to define new statistical properties referring to spatial or angular characteristics of the propagation
scenario; further details of these properties can be found in [122, 130].

Wide-sense stationarity (WSS channel). If we refer to the Doppler- and angle-resolved channel
transfer function G(ν, f, ϕ), this property entails that:

RG(ν1, ν2; f1, f2; ϕ1, ϕ2) � E
[
G(ν1, f1, ϕ1)G

∗(ν2, f2, ϕ2)
]

= δ(ν2 − ν1)PG(ν1; f1, f2; ϕ1, ϕ2), (2.170)

since scatterers introducing different Doppler shifts are uncorrelated in a WSS channel.
Uncorrelated scattering (US channel). A US channel is characterized by the autocorrelation:

Rh(t1, t2; τ1, τ2; ϕ1, ϕ2) � E
[
h(t1, τ1, ϕ1) h∗(t2, τ2, ϕ2)

]
= δ(τ2 − τ1) Ph(t1, t2; τ1;ϕ1, ϕ2) (2.171)

of the TVARCIR; note that the last equality represents a simple extension of (2.80).
Wide-sense stationarity and uncorrelated scattering (WSS-US channel). If the latter two proper-

ties hold, the autocorrelation of the Doppler- and angle-resolved channel impulse response can be



56 Wireless Communications

expressed as:

Rs(ν1, ν2; τ1, τ2;ϕ1, ϕ2) � E
{
s(ν1, τ1, ϕ1) s∗(ν2, τ2, ϕ2)

}
= δ(τ2 − τ1) δ(ν2 − ν1) Ps(ν1; τ1; ϕ1, ϕ2), (2.172)

generalizing (2.88).
Uncorrelated paths (UP channel). This refers to the fact that signal components associated with dis-

tinct (departure or arrival) angles are uncorrelated; then the autocorrelation function of the TVARCIR
takes the form:

Rh(t1, t2; τ1, τ2; ϕ1, ϕ2) = δ(ϕ2 − ϕ1) Ph(t1, t2; τ1, τ2; ϕ1). (2.173)

It can be shown that a UP channel is stationary in space,38 that is, the autocorrelation function of
the channel response across space depends on a couple of space locations though their difference
vector only.

Wide-sense stationarity, uncorrelated scattering and uncorrelated paths (WSS-US-UP channel). In
this case echoes characterized by distinct Doppler shifts or delays or angles are uncorrelated, so that
(see (2.172)):

Rs(ν1, ν2; τ1, τ2;ϕ1, ϕ2) = δ(ν2 − ν1) δ(τ2 − τ1) δ(ϕ2 − ϕ1) Ps(ν1, τ1, ϕ1). (2.174)

Alternatively, we have:

Rh(t1, t2; τ1, τ2; ϕ1, ϕ2) = Ph(t2 − t1, τ1, ϕ1) δ(τ2 − τ1) δ(ϕ2 − ϕ1). (2.175)

Note that the first- and second-order statistics of a WSS-US-UP channel are invariant with respect to
translations in the time, frequency and aperture domains.

The functions Ph(�t, τ, ϕ) and Ps(ν, τ, ϕ) appearing in (2.175) and (2.174) are called the
delay-angle cross-power density and the directional scattering function (DSF), respectively. They
represent the extensions, to a directional scenario, of the delay cross-power density Ph(�t, τ )

(see (2.84)) and of the scattering function S(ν, τ ) (see (2.89)), respectively. Note that the DSF,
unlike the SF, provides statistical information about the angular dispersion of the transmitted
signal. Moreover, it can be shown that Ps(ν, τ, ϕ) is related to the autocorrelation function
RT (�t,�f, �x) � E{T ∗(t, f, x) T (t + �t, f + �f, x + �x)} of the time- and aperture-variant
transfer function T (t, f, x) via a triple Fourier integral. In particular, in a two-dimensional,
single-directional scenario, we have [131]:

RT (�t,�f, �x) =
∫ BD

ν=−BD

∫ τM

τ=τm

∫ 1

ϕ=−1
Ps(ν, τ, ϕ) exp

[
j2π

(
ν�t − �x

λ
ϕ − τ�f

)]
dν dτ dϕ.

(2.176)
This extends (2.90), relating RH (t; f ) to S(ν, τ ), to a directional scenario. Finally, we note that, if the
phenomena of time dispersion and angular dispersion are independent of that of frequency dispersion
(due to the relative motion between the transmitter and the receiver and/or the motion of the scatterers
in the propagation medium), the DSF Ps(ν, τ, ϕ) can be factored as:

Ps(ν, τ, ϕ) = SD(ν)Ph(τ, ϕ), (2.177)

where SD(ν) is the Doppler power spectrum and Ph(τ, ϕ) is the so-called angular delay power
spectrum (ADPS). Generally speaking, the above three dispersion phenomena are correlated (e.g., see
[127]) and therefore, the validity of (2.177) cannot usually be taken as a rigorous assumption, even

38 In the literature this is also referred to as a homogeneous channel (e.g., see [38, p. 23]). Note that, in practice,
a channel can be deemed homogeneous if spatial stationarity is observed over a multiple of several tens of its
coherence distance Dc .
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if turns out to be extremely useful in the development of reduced channel models [131]. Moreover,
it is worth noting that Ph(τ, ϕ) cannot usually be factored, since time and angular dispersions are
commonly correlated [129, 160, 161]. Despite this, various technical papers (e.g., see [129, 162])
propose factorizable models Ph(τ, ϕ) and provide a justification for the additional factorization in the
Doppler domain.

2.3.3 Reduced-Complexity Statistical Modeling of MIMO Channels

In principle, any doubly selective SISO channel model described in Section 2.2.3 can be extended to a
MIMO scenario if the channel statistics are independent of the specific transmit/receive antenna couple.
For instance, if the channel PDP has this property, a TDL model (see Example 2.3.1) can be easily
adopted for the MIMO CIR matrix H(t, τ ); in fact, under the above assumption, the characteristic
delays are the same for any transmit/receive antenna couple and can be selected on the basis of
experimental data acquired in specific communication scenarios, as in the so-called Stanford University
Interim channel models for fixed wireless access systems [163], or by adopting a rigorous mathematical
approach, such as the GQR-based technique of Section 2.2.3.5 [164] or the discretization techniques
illustrated in [123, 138, 141]. This explains why the technical literature about MIMO channel modeling
has mainly focused not on the problems of selecting a model structure, but on those of evaluating
the correlation properties of model parameters for multipath and for single-tap (i.e., narrowband time-
selective) fading channels, and of assessing the correlation impact on channel capacity (see Section
2.4.2 for further details).

Finally, we note that various directional channel models have been proposed; they have been
developed on the basis of the specific properties of various radio environments, such as those illustrated
in [165, 166], or by adopting a rigorous approach to the problem of approximating the autocorrelation
properties of directional system functions, like the GQR-based models derived in [131].

Further information about the available technical literature on statistical channel models for MIMO
channels can be found in Section 2.4.2.

2.4 Historical Notes
The study of wireless channels has a long history, dating back to the original development of long-
range radio communications and the pioneering work of Guglielmo Marconi [3]. Knowledge in this
area grew in the first half of the last century, but its rate of evolution increased after the Second World
War. Indeed, during the 1940s and particularly the 1950s the propagation of radio signals over fading
channels was intensively investigated and written about, even if not fully understood.39 The expertise
acquired in communications over the ionosphere using the high frequency (HF) band and troposphere
using the very high frequency (VHF) band allowed the use of such channels for long-distance data
transmission [13], specially for military applications, in the late 1950s and early 1960s. This in turn
fostered research to optimize data transmission over multipath fading channels so as to achieve reliable
communications. Preliminary results showed that the error performance achievable using traditional
signaling techniques was not satisfactory for data exchange between computer systems. A solution
to this problem was found in the mid-1960s, when the use of the first error-correcting schemes was
suggested for these applications.

The study of multipath fading channels received a further stimulus from the advent of mobile phone
systems in the 1970s. This motivated research to model both large-scale and small-scale fading for
various propagation scenarios and progressively larger bandwidths. The long-standing interest of the
scientific community in wireless channels explains the extent of the technical literature in this area. In

39 Accounts of the state of knowledge during those years can be found in [167, 168], which are both included
in [44].
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this section we will focus our attention on two specific parts of the literature, namely that proposing
large-scale fading models, and that dealing with the statistical modeling of small-scale fading. Both
indoor and outdoor scenarios will be considered, but our interest will be mainly in the modeling of the
multipath fading affecting terrestrial mobile communications. Ionospheric and tropospheric channels
will not be considered.

2.4.1 Large-Scale Fading Models

The problem of estimating path loss in wireless channels has received considerable attention in the past
two decades, since its solution allows the estimation of coverage areas in wireless cellular systems
[52, 54], and provides data for locating BSs correctly and for accurate frequency planning [64].
Various propagation models for path loss prediction have been proposed in the literature; they can
be classified as empirical models (also called statistical models) or theoretical models (often called
deterministic models). Hybrid models, resulting from the combination of the two classes, are also
available. Empirical models implicity incorporate various environmental factors and are characterized
by good computational efficiency; however, their accuracy depends on the degree of similarity between
the scenarios to which they are applied and those from which the experimental data for their derivation
have been acquired. Deterministic models, which are based on the principles of physics, can be
applied to any environment, but require substantial computational effort. In fact, good accuracy can
be achieved only by processing a large quantity of environmental data using complicated algorithms.
In the following, the available models for each class are listed for each of the following communication
scenarios: macrocells, microcells and indoor environments.

2.4.1.1 Macrocellular Scenarios

In such scenarios an LOS component is normally absent and this makes path loss prediction extremely
difficult. Historically, the first (and still famous) empirical model for path loss in macrocells was
proposed by Y. Okumura, E. Ohmori and K. Fukuda in 1968 [169], and was based on signal strength
measurements in radio links between BSs and MTs in Tokyo. The model, represented by a family
of curves, can be used in the frequency interval 150–1500 MHz and for a link length in the interval
1–100 km. A few years later, in 1977, another contribution to empirical modeling was provided by
K. Bullington, who generated a set of nomograms, which can be used to assess the received power in
a point-to-point link, taking into account both the presence of the earth surface and its curvature [170].
In addition, Bullington provided approximate methods to assess the variations in the received power
due to atmospheric conditions and to path obstructions introduced, for instance, by hills, buildings
and trees. A further significant step was made in 1980 by M. Hata, who extracted from the curves
provided in [169] an analytical expression for path loss [171] which can be applied to urban, suburban
and open areas. Hata’s expression can be used in the frequency interval 100–1500 MHz, and assumes
a link length of 1–20 km, a BS height of 30–200 m and a mobile antenna height in the range 1–10 m.

These first results were followed by intense research activity and various measurement campaigns
in the 1980s and in the 1990s, giving rise to various new models for specific scenarios, as discussed
in detail in [54, 64, 107]. Here, due to space limitations, we mention only some relevant models,
namely:

(a) the model developed by W. C. Y. Lee in 1982 whose parameters can be adjusted on the basis of
additional measurement results to adapt it to specific local environments [50],

(b) the models proposed by M. Ibrahim and J. Parsons in 1983 to assess the path loss in urban
scenarios in the frequency interval 150–450 MHz [172],

(c) the model derived in 1984 by F. Ikegami et al. to predict average field strength in urban streets
[173],
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(d) the model proposed by J. Walfisch and H. L. Bertoni in 1988 to describe propagation in urban
environments (more specifically, from a downtown area with tall buildings) [174] and its more
recent generalization proposed by H. K. Chung and H. L. Bertoni in 2002 [175],

(e) the model derived by V. Erceg et al. in 1999, using a set of experimental results acquired at
1.9 GHz by AT&T Wireless Services in 95 existing macrocells in several suburban areas of the
USA [65] (the novelty of this model lies in the fact that the two most important parameters in
the usual path loss formula (see (2.3)), the exponent n and the shadowing standard deviation σX ,
are both represented as Gaussian random variables, to model their changes from one macrocell to
another),

(f) the COST 231–Walfisch–Ikegami model extensively used by the designers of public mobile land
wireless networks in urban and suburban areas in which the building height is uniform [176],

(g) the models proposed by T. Kürner and A. Meier in 2002, which is useful in predicting radio
coverage in outdoor and outdoor-to-indoor scenarios (in the last case, the coverage area is inside
a building, but BSs are located outside it) at 1.8 GHz [177].

Finally, we note that other path loss models adopted by international institutions (e.g., the European
Broadcasting Union and International Telecommunications Union) and by private companies (e.g.,
Ericsson) are also available.

2.4.1.2 Microcellular Scenarios

Various path loss models can be found in the literature for microcells, exhibiting a different behavior
in signal propagation from that encountered in macrocells. In the following we mention some relevant
deterministic and statistical models.

An important deterministic model was proposed by P. Harley in 1989 [76] to describe the received
signal level in LOS conditions. According to this model, the path loss in decibels can be described by
a broken line, consisting of two parts. The first part describes the propagation loss for points whose
distance from a BS does not exceed a given breakpoint and its slope typically exhibits a path loss
exponent close to 2. The second part is characterized by a substantially steeper slope. An alternative
to an exact expression for the path loss is represented by the lower and upper bounds to this quantity
provided in [178]. Some experimental results and a comparison with the above-mentioned models
are illustrated in [66, 179]. A characterization similar to that of the LOS case can also be provided
in non-LOS cases, for urban and suburban areas with perpendicular streets [180]. It is of interest to
note that similar models can be derived, at least in the LOS case,40 by resorting to optical ray tracing
theory, under the assumption that reflected rays are dominant compared to diffracted ones. In this case
the simplest model available is the so-called two-ray model [73, 77, 178]. Other more complicated
models account for the presence of multiple reflected rays [180–182] and rays by corner diffraction.
The latter phenomenon is considered in the models based on the geometrical theory of diffraction
(GTD) [183], the uniform theory of diffraction (UTD) [184–188] and the Fresnel–Kirchhoff theory of
diffraction [189, 190].

2.4.1.3 Indoor Scenarios

Both statistical and theoretical models are available for indoor scenarios. The bandwidth of interest
in this case is 1.8–2 GHz, where most indoor communication systems operate. Statistical models are
usually based on the approach illustrated in Section 2.1 (e.g., see [56, 68, 69]) and are expressed by

40 The description of LOS scenarios is much more complicated. See, for instance, [76], which describes a prediction
methodology based on experimental results acquired in a measurement campaign along various streets in Manhattan
[181].
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equation (2.2). Theoretical models result from various tools, such as ray-tracing and finite-difference
time-domain (FDTD) techniques. Ray tracing methodologies evaluate the electromagnetic field at a
point as the superposition of the contributions associated with all the rays coming from a given
transmitter [191]. In the simplest models based on ray tracing only the free space path loss and
reflection mechanisms are accounted for. More accurate models also take into consideration diffraction,
diffuse scattering from walls and the transmission of electromagnetic waves through various materials.
The numerical results generated by ray tracing techniques are approximate, since an exact evaluation
of the intensity of the electromagnetic field can only be accomplished by solving Maxwell’s equations.
Despite this, accurate results are obtained when the observation point is many wavelengths away from
the closest scatterers, and all the scatterers are large with respect to wavelength and are smooth.
Even in this case, however, an accurate three-dimensional description of the area to be analyzed (and,
consequently, a substantial quantity of data) and great computational effort are needed. Today, various
software applications processing indoor or outdoor environmental data to generate signal intensity
via ray tracing are available. They allow accurate planning of wireless systems operating not only in
indoor environments [191–193], but also for outdoor scenarios [182, 187, 194–200].

In the FDTD method Maxwell’s equations are solved by approximating them with a set of finite-
difference equations, which are then solved on the nodes of a (regular or irregular) grid using iterative
methods. Like ray tracing, the FDTD approach entails a substantial computational burden (proportional
to the number of grid nodes and, consequently, to the size of the area being analyzed). The performance
achievable is similar to that offered by ray tracing algorithms, even if these are preferred when the
area to be analyzed is large.

Finally, we note that recently much attention has been paid to the assessment of the path loss in
indoor scenarios for UWB communications. Details can be found in [201–203].

2.4.2 Small-Scale Fading Models

Research on statistical channel models for mobile communications focused primarily on SISO channels
until the first half of the 1990s. Since then, the interest in space-time (ST) channel models accounting
for the directional properties of wireless channels has increased due to the strong interest in the use
of antenna arrays for enhancing capacity in digital communication systems. Today various classes of
statistical fading models, explicitly designed for theoretical analysis or for channel simulation, exist.
They can provide discrete-time or continuous-time representations of channel behavior. In addition,
their derivation can be based on standard mathematical techniques (such as representation techniques
for bandlimited deterministic signals or for stochastic processes with given second-order statistics) or
can rely on experimental data acquired in specific propagation scenarios. Generally speaking, small-
scale models provide parametric representations of continuous-time or discrete-time system functions
of communication channels. From a historical perspective, the first class of statistical models available
in the technical literature was aimed at representing the CIR or other channel system functions (e.g.,
the TVTF) as a linear combination of some deterministic continuous-time basis functions. In this
class of models, combination coefficients are random processes or random variables having joint
stochastic properties which ensure an approximate statistical equivalence of the model with the given
real channel. Various models of this type were already available in the 1960s and were described
in a unifying perspective41 by P. A. Bello in his classic 1963 paper [78]. Since then, their use in
communication system analysis and design has become widespread, and the number of available
models has progressively increased, since new methods have been proposed for the derivation of
function bases and for the representation of their random coefficients. In fact, bases of continuous-time
functions can be derived in a number of ways, for example:

41 The models described by Bello consist of two distinct classes, namely sampling models and power series
models. Both classes, however, belong to the family of so-called canonical models, since they offer a simplified
representation of linear time-varying channels in terms of canonical terms or building blocks.
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(a) by resorting to representation methods for bandlimited/time-limited system functions, as illustrated
by the equally-spaced TDL model proposed by T. Kailath in [105, p. 20], the canonical represen-
tation due to A. M. Sayeed and B. Aazhang [204, 205], and the so-called bin model of [107, pp.
111–114], [206],

(b) by exploiting the KL expansion [85, 86, 108, 110] or the GQR-based representation [117, 118],
of a random process with given correlation properties (see Section 2.2.3).

These techniques were originally employed in the derivation of SISO communication models;
however, in principle, they can be easily applied to the space-time characterization of wireless channels
(see Section 2.3.3) for the analysis of MIMO systems. This idea is exemplified by the ST canonical
signal representation of [207, 208] and the directional GQR models of [131] derived from their
nondirectional counterparts [117, 204, 205], respectively.

Most of the above models provide a continuous-time representation of doubly-selective fading.
Other specific continuous-time models have been explicitly developed for the case of frequency-flat
fading since the 1960s [209]. The best-known SISO model is that originally derived by R. H. Clarke
[98] in 1968 (usually known as the Clarke–Jakes model) and partially based on previous work by
J. F. Ossanna, Jr. [210] and E. N. Gilbert [211] on the interference of reflected and scattered electro-
magnetic waves in wireless communications. Clarke’s model was later generalized by T. Aulin in 1979
to the case where vertically polarized waves are not necessarily traveling horizontally in [212]. Note
also that one of the main assumptions in Clarke’s classic model is isotropic scattering – a uniform dis-
tribution for the AOA of multipath components at the mobile station. In the presence of nonisotropic
scattering, however, the correlation function and the Doppler spectrum of the fading distortion are
strongly affected, as illustrated, for instance, in [213], where a von Mises angular distribution is
assumed for the impinging waves.

A totally different approach to the modeling of frequency-flat fading in SISO communications is
that based on Markov models. Further details can be found in [214–219].

It is also important to point out that, in the last decade, various models have also been proposed for
the continuous-time representation of frequency-flat fading in SIMO and MIMO communication links.
The simplest model is that representing the communication channel as a set of nT × nR statistically
independent Rayleigh SISO channels [18, 220]. However, more refined modeling takes into account
the correlations between distinct transmit/receive antenna couples. In the literature focusing on the
latter problem substantial attention has been paid to the evaluation of the correlation between channel
coefficients associated with distinct transmit–receive antenna couples (e.g., see [133, 136, 143, 144,
146–150, 153, 221]), or to the evaluation of the spatial-temporal correlation function, since this
enables the study of the basic impact of a random multipath fading channel on the performance of
space-time systems based on the use of antenna arrays (e.g., [222–225]). A different approach is due
to A. M. Sayeed [140], who has proposed a virtual representation relating the matrix describing the
real channel to that describing a virtual channel. A key property of this representation is that the
elements of the virtual channel matrix can be assumed to have independent entries without much loss
of accuracy.

MIMO channel models for frequency-flat fading have been largely exploited for evaluating the
capacity benefits deriving from the use of antenna arrays (e.g., see [133, 134, 137, 145, 153, 220, 224,
226–229]). Analytical results can also be compared with measured data to establish if the model is
realistic in specific propagation environments (e.g., [133, 155, 227, 230]). Note that a refined MIMO
model should also account for the so-called pinhole or keyhole phenomenon [135, 151–153].

Some of the above multipath fading models have also inspired other statistical models, which have
been developed in attempts to fit measurement results in specific propagation scenarios. This class of
models is illustrated by two well-known SISO channel models: that devised by G. L. Turin et al. in
1972 [231] for the description of urban multipath propagation, and the well-known Saleh–Valenzuela
model proposed in 1987 for indoor scenarios [68]. Both are based on an unequally spaced TDL
description of a wireless channel. However, Turin’s model assumes that:
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(a) the tap delays form a modified Poisson sequence;
(b) the tap phases are uniformly distributed over (0, 2π ] and are statistically independent; and
(c) the tap strengths are log-normally distributed and, generally speaking, correlated.

In contrast, Saleh and Valenzuela’s model is based on the assumption that the multiple echoes arriving
at the receive antenna appear in clusters. In addition, the clusters and the echoes within each cluster
form Poisson arrival processes with different, but fixed, rates. It is also assumed that the echoes
have uniformly distributed phases and independent Rayleigh amplitudes with variances decaying
exponentially with cluster and echo delays. Modifications to Turin’s model were proposed by H. Suzuki
in 1977 to fit experimental data in urban environments [232].

All the above models provide efficient tools for a theoretical analysis of various effects of fading in
wireless communication systems. They also provide the tools for the derivation of discrete-time models.
These are useful for the derivation of signal processing algorithms employed in digital receivers (e.g.,
see [38, pp. 48–54] and the applications of the basis expansion technique proposed by G. B. Giannakis
and C. Tepedelenlioğlu in [233]) and for the efficient simulation of wireless channels.42 The first papers
devoted to the latter application proposed different solutions for the simulation of SISO channels43

[84, 236–238]; such models are based on various mathematical techniques that allow computationally
efficient generation of random channel processes with given statistical properties. In particular, the
model proposed by S. A. Fechtel in [236] applies a channel orthogonalization strategy to devise an
efficient linear bandlimited channel simulator. This provides a good approximation to the physical
channel dynamics and provides efficient representations for channels having quasi- or truly continuous
delay profiles. The techniques proposed by P. Hoeher in [84] and by K.-W. Yip and T. S. Ng in [237]
are based on the idea of approximating a WSS-US channel with given statistics via a Monte Carlo
approach. For instance, in Hoeher’s model44 the multipath fading channel is represented as a TDL
with N time-variant taps, each characterized by unit gain, but with random delays, phases and Doppler
shifts. In this case Gaussianity of system functions is achieved asymptotically (i.e., for N → +∞).
Finally, P. M. Crespo and J. Jiménez propose the use of a harmonic decomposition for approximating
the time-variant behavior of CIR in [238].

Various simulation models have also been developed for frequency-flat fading channels. The
approaches proposed can be classified into three families [240]. The first consists of simulating
fading as a sum of sinusoids (SOS); see [88, pp. 165–173] and [99, 206, 241–243]. This idea was
first proposed by W. C. Jakes45 [99], who did not take into consideration, however, the problem of
generating multiple uncorrelated fading waveforms. A solution to this problem was later proposed
by P. Dent et al. in [241]. It is also interesting to note that a representation of flat fading as a
superposition of fixed-frequency complex exponentials (having random amplitudes and phases) is
also provided by GQR-based models [117, 118]. The second method is based on a combined use
of filtering and inverse discrete Fourier transform (IDFT) processing and was originally illustrated
by J. I. Smith in [244]. This algorithm was modified by D. C. Young and N. C. Beaulieu in [245] to
reduce both its computational complexity and memory requirements. The third approach involves
filtering discrete-time white Gaussian noise using recursive or nonrecursive digital filters, which leads
to moving average (MA) [97], autoregressive (AR) [246–248], and autoregressive moving average
(ARMA) [248, 249] models of flat fading. A hybrid model, representing fading as a filtered version

42 Note that discrete-time (frequency-selective) TDL models have also been employed in the evaluation of channel
capacity of MIMO systems (e.g., see [141, 156, 234]).
43 In the past simulation models for SISO channel have also been formulated by referring to continuous-time
representations of channel system functions; see, for instance, the simulation model for urban radio propagation
proposed by H. Hashemi in 1979 [235] and based on the mathematical models developed by G. L. Turin and
H. Suzuki.
44 This model has recently been used for characterizing the aeronautical channel model by Haas [239].
45 An in-depth analysis of the Jakes SOS simulator can be found in [243].
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of two sinusoids in quadrature and whose amplitudes are AR processes, has recently been proposed
in [240].

Efficient tools for the simulation of directional and MIMO wireless channels are available [123,
250–252]. In particular, a discrete-time MIMO channel model, based on the Knoecker correlation
assumption and able to characterize triply-selective (i.e., selective in time, frequency and space)
Rayleigh fading channels, has been derived in [123] (an analysis of its statistical properties can
be found in [253]). A MIMO frequency-selective model based on a one-ring scattering46 geometry
has been derived in [251]. A flexibly configurable channel model for the simulation of mobile chan-
nels for communication systems exploiting channel directionality can be found in [250]. In [252] a
stochastic TDL model for small-scale fading with a Rice-distributed envelope and temporal, spatial
and spectral correlation is proposed and a channel simulator, achieving good accuracy at a reasonable
computational complexity, is presented.

Another class of channel models, conceptually different from all the above models, consists of the
so-called geometrically based stochastic models (GBSMs), that is, models whose random parameters
are related to the evolving geometry of the propagation scenario47 (i.e., the spatial distribution and
mobility of scatterers). GBSMs rely on the availability of the density function of the spatial scatterers,
which are usually placed in a two-dimensional region around a BS and/or an MT; such a region
can extend to infinity or can have a specific convex shape, such as a circle or disk around the MT,
or an ellipsis having the BS and the MT at its foci48 (e.g., see [129, 223, 254–258]). Given the
scatterer spatial density function, various spatial characteristics of the propagation scenario, such as
the joint time of arrival (TOA) and AOA, the marginal AOA, and marginal TOA pdfs of multipath
components, can be derived [259]. Therefore, this class of models is extremely useful in analyzing
communication systems employing antenna arrays combined with spatial processing techniques to
exploit spatial diversity and improve spectral efficiency [260]. Geometric models have been used to
model single-antenna systems and systems with multiple antennas at one end of the radio link. Specific
examples of these models can be found in [132, 143, 147, 148, 161, 222, 254, 258, 261–269]. Such
models are based on different assumptions about the location of scatterers, their spatial distribution
and apply to various propagation scenarios. Moreover, some of them, such as those proposed in [254,
258, 264], belong to the class of geometrically based single-bounce models (GBSBMs), since they
rely on the assumption that received signal components interact with only a single scatterer in the
channel.

GBSBMs for MIMO channels are also available in the technical literature. In particular, models
assuming local scattering at one end of a wireless link can be found in [127, 156, 221, 223, 225, 251],
while models based on scattering at both ends of a radio link are available in [127, 153, 165, 166, 224,
270]. It is also worth noting that the model proposed by A. F. Molisch in [127] can be classified as
a “hybrid” directional model since it combines a geometric approach with physical arguments about
relevant propagation effects.

GBSBMs can also be exploited to assess channel capacity when ST transmission techniques are
employed. Study of the correlation properties and of their impact on the capacity of some of the
above-mentioned GBSMs can be found in [134].

Finally, the following observations are of interest:

1. In the references mentioned above channel modeling often refers to the specific scenario of a fixed
BS communicating with an MT. The modeling techniques proposed, however, can also be applied

46 Geometrically based channel models are analyzed below.
47 This approach to the description of channel behavior dates back to the early 1970s, and was pioneered by Jakes
[99] and Lee [143].
48 An elliptical region is suitable for microcell and picocell environments, where both the BS and the MT are
surrounded by scatterers. On the other hand, an circular region is appropriate for macrocells, where the BS antenna
is located higher than the MT antennas and only the MT antennas are assumed to be surrounded by scatterers.
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or extended to the representation of mobile-to-mobile fading channels; further information on this
problem can be found in [271] (where a MIMO scenario is considered) and the references therein.

2. Modeling of small-scale fading in UWB systems has received considerable attention in recent
years, and recent results can be found in [201–203, 272].

3. The issue of cross-polarization in channel modeling and the use of the cross-polarized antennas
are of relevant interest in MIMO systems; see [38, Chapters 2 and 3] and [273] (and references
therein).

2.5 Further Reading
In this chapter a rich bibliography on the description and characterization of small- and large-scale
fading has been provided. For this reason we limit ourselves here to pointing out some specialist books
for further reading in this area. In particular, we mention [88] and [274], which offer an interesting
overview of the characteristics of SISO channels. The most significant information-theoretic and
communication aspects of SISO fading channels are analyzed in [275]. Some introductory material
about ST propagation and MIMO channels can be found in [21, 38, 276], while [277] is completely
devoted to ST wireless channels. In addition, there has been extensive work to develop models for
both SISO and MIMO channels based on measured data. Much of this work is summarized in [22,
56, 278]. There continues to be interest in the measurement and modeling of wireless channels, but at
present most work is focused on the adaptation of existing models to specific application scenarios.



3
Digital Modulation Techniques

3.1 Introduction
An information-carrying signal, before being transmitted in a communication system, usually
undergoes processing, which modifies its characteristics, to make it suitable to send over a given
channel. In particular, in digital wireless communications the message consists of a stream of binary
data, which is intrinsically a baseband discrete-time signal, whereas the communication channel, as
illustrated in Chapter 2, can always be modeled as a passband time-continuous system. Generally, the
transformation of the discrete-time message into a time-continuous signal, having spectral properties
suitable for transmission over a given communication channel, is accomplished through a process
known as modulation.

This chapter considers digital modulation techniques that are of importance to wireless
communications. In Section 3.2 a general mathematical model of a digital modulator is presented.
The representation of the generated waveforms via an orthonormal basis and estimation of their spectral
occupancy are discussed in Sections 3.3 and 3.4, respectively. Then a number of single-carrier (SC)
modulation techniques are analyzed. For each of them the modulation process involves a single local
oscillator, converting a baseband data signal into a radio frequency signal. In particular, in Sections 3.5
and 3.6 the mathematical structure of passband pulse amplitude modulation (PAM) signals and that
of continuous phase modulation (CPM) signals, respectively, are considered. Then, in Section 3.7, a
specific type of multicarrier (MC) signal, known as OFDM, is considered. In OFDM the information
content of the message is distributed over a multiplicity of narrowband channels, all exploited at the
same time (i.e., in a parallel fashion) and uniformly spaced in the frequency domain. In Section 3.8
we will also consider the design of multidimensional modulations based on sets of points, known as
lattices. In Section 3.9 we will analyze the impact of a wireless channel on the spectral properties of
digitally modulated signals. Finally, some suggestions for further reading are provided in Section 3.11.

3.2 General Structure of a Digital Modulator
A digital modulator is a device that converts a data sequence to an analog signal suitable for
transmission over a physical channel. Here, it is assumed that digital modulators are fed by a WSS
sequence {dn}, consisting of M-ary data symbols, from some alphabet Ad = {0, 1, . . . ,M − 1}. The
data are generated by an information source at a given signaling or symbol rate Rs = 1/Ts , where Ts

is the signaling or symbol interval. A modulator maps dn, at the instant tn = nTs , to a channel symbol
cn, from an M-ary complex alphabet Ac. Then, the modulator associates {cn} with a baseband signal
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s(t, c), which is then up-converted using a carrier at frequency fc, always assumed to be substantially
larger than Rs . This generates the RF signal:

sRF (t, c) = Re{ s(t, c) exp (j2πfct)}, (3.1)

where the vector c � [ . . . , c−1, c0, c1, . . . ], which is generally infinite-dimensional, represents the
sequence of channel symbols.

At first glance, expression (3.1), which always holds for SC signals, may look inapplicable to
MC signals, since, in principle, the generation of such signals requires the availability of a bank of
oscillators. However, as illustrated in Section 3.7, model (3.1) also holds for OFDM signals, since
then the baseband section of the transmitter generates the multiple subcarriers via a discrete Fourier
transform (DFT) algorithm.

The structure of the data signal s(t, c) can easily be understood if we model its generation using a
finite-state sequential machine (FSSM), whose inner state, for the modulation formats analyzed in what
follows, is always defined by a finite set of discrete parameters. However, as shown in the following
pages, it can be always represented by a single integer parameter; for this reason, the modulator state
�n at the beginning of the nth signaling interval can take one of Ns possible values, belonging to the
alphabet Ast = {0, 1, . . . , Ns − 1}. At the instant tn = nTs the modulator, on the basis of the present
channel symbol cn and the present state �n, generates the signal s(�n, cn; t − nTs), where s(�n, cn; t)

belongs to a signal alphabet As = {sk(t), k = 0, 1, . . . , Nw − 1}, consisting of Nw � M · Ns distinct
functions, all having finite energy. Generally speaking, each of these functions has an arbitrary duration
and takes on complex values.

The baseband signal s(t, c) is given by the superposition of the waveforms {s(�n, cn; t − nTs)},
generated during consecutive symbol intervals as:

s(t, c) =
+∞∑

n=−∞
s(�n, cn; t − nTs), (3.2)

which expresses the output equation of the FSSM. Note that complete knowledge of the modulator
behavior also requires knowledge of the state equation, that is, of the mathematical law:

�n+1 = f (�n, cn), (3.3)

expressing the next state �n+1 as a function of cn and �n. A more immediate representation of the
output and state equations is given by an oriented graph known as the state diagram of the FSSM. In
this diagram each possible state is symbolically represented by a node and each possible transition from
one state to another is indicated by an oriented branch connecting to the nodes associated with the pair
of states. Moreover, each branch is labeled by the value of dn producing the corresponding transition
and by the output signal generated by the modulator for this event. Unfortunately, the state diagram
does not readily lend itself to representing the FSSM time evolution resulting from the application
of a data sequence {dn} of arbitrary duration. This result can be achieved, however, if we describe
a FSSM behavior through its trellis diagram.1 This diagram shows, at each instant {tn = nTs}, the
set of possible values that the modulator present state can take. At the instant tn = nTs , M oriented
branches emanate from each possible present state �n. These represent the transitions to M (usually
distinct) next states {�n+1}. As in the state diagram, a branch emanating from �n, and associated
with a specific value of dn, is conventionally labeled by the couple dn/s(�n, cn; t).

1 Examples of state and trellis diagrams can be found in Section 3.6. Note also that for linear modulations the
state diagram is trivial as the modulation has no memory and all states are reachable at any of the time instants
{tn = nTs}.
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Let us now assume that the modulator has a single state (Ns = 1) and that, consequently, it can
select one of Nw = M possible waveforms at the beginning of each symbol interval. In this case the
signal s(�n, cn; t) depends on the present symbol cn only, so that (3.2) simplifies to:

s(t, c) =
+∞∑

n=−∞
s(cn; t − nTs). (3.4)

In addition, if all the signals of the set As have time support within the interval [0, Ts), the modulator
is memoryless [32], since, for any n, the signal generated in the nth symbol interval, [nTs ,(n + 1)Ts),
depends only on the present symbol cn.

It should also be noted that equations (3.1)–(3.4) describe the behavior of a digital modulator in
deterministic terms. In practice, as already stated above, the data sequence {dn} is random, so that
the state sequence {�n} is a discrete-time random process belonging, if the data {dn} are statistically
independent, to the class of so-called Markov chains [55, 279]; moreover, the signals sRF (t, c) (3.1)
and s(t, c) (3.2) (and (3.4)) are time-continuous stochastic processes.

When implementing a digital modulator whose behavior can be described as above, it is useful to
note that the RF transmitted signal sRF (t, c) (3.1) can be rewritten as:

sRF (t, c) = sI (t, c) cos(2πfct) − sQ(t, c) sin(2πfct), (3.5)

where its in-phase component:
sI (t, c) � Re {s(t, c)} (3.6)

and its quadrature component:
sQ(t, c) � Im {s(t, c)} (3.7)

are baseband signals (here Re {x} and Im {x} denote the real part and the imaginary part, respectively,
of the complex quantity x). Equation (3.5) suggests that a practical way to generate sRF (t, c) is to
up-convert sI (t, c) of (3.6) and sQ(t, c) of (3.7) separately and then to additively combine them. This
is known as the in-phase quadrature method of signal generation.

In the following sections the structure of the complex envelope s(t, c) (3.2) for various modulation
formats will be described in detail. Before dealing with this, however, it is important to note that, in
communication system design, the selection of a digital modulation is usually the result of a tradeoff
among different requirements. The main factors influencing this are: (a) the need for good spectral
efficiency, that is, minimal bandwidth occupancy for a given information transmission speed; (b) the
requirement for good energy efficiency, that is, acceptably low energy consumption to achieve a given
performance; and (c) reasonable implementation complexity, specially in mobile applications. Some
additional factors are considered in specific applications. One of these, for example, is the need to use,
because of the limited energy resources available for transmission, highly efficient (and, consequently,
nonlinear) power amplifiers. In this case the fluctuations of the envelope:

senv (t, c) � |s(t, c)| =
√

s2
I (t, c) + s2

Q(t, c) (3.8)

of the modulated signal sRF (t, c) (3.1) (or, equivalently, (3.5)) become relevant. In fact, a constant
envelope modulation (or, at least, a modulation with small fluctuations in its envelope) represents an
important factor in the above selection process.

To assess unambiguously the needs from each modulation format in terms of complexity, energy
expense and spectral occupancy, it is important to define some significant parameters, whose value
must be estimated in each case.

As far as the spectral occupancy is concerned, the problem of assessing the bandwidth B of
sRF (t, c) (3.1) is discussed in Section 3.4. Obviously, the bandwidth does not represent an absolute
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measure of the spectral efficiency of a system, since it must be compared with the transmission
speed of the information bits, that is, with the bit rate Rb. Moreover, because of the pulsed nature of
digital transmission, bandwidth is, strictly speaking, infinite. It is, then, necessary to establish suitable
measures of required bandwidth in terms of the percentage of the symbol or bit energy within a given
frequency interval.

To suitably define bandwidth, first note that the cardinality M of the alphabet Ad is usually an
integer power of 2 (i.e., M = 2m), so that the data {dn} input to the modulator must be put in one-
to-one correspondence with the set of all the possible vectors consisting of m binary digits. Then, the
bit interval Tb becomes2:

Tb � Ts

m
= Ts

log M
(3.9)

and, consequently, the bit rate Rb is given by:

Rb � 1

Tb

. (3.10)

Since Rs � 1/Ts , from (3.9) and (3.10) it is easy to see that:

Rb = mRs = Rs log M. (3.11)

In assessing the energy efficiency of a digital communication technique, a significant role is played
by the parameter Eb, representing the average energy consumption required for the transmission of a
single information bit. This parameter can be easily related to the average energy Es spent by a digital
modulator in a symbol interval to generate sRF (t, c). Since in each symbol interval m = log M bits
are transmitted, we have that3:

Eb = Es

m
= Es

log M
. (3.12)

Using these quantities, we will establish appropriate bandwidth measures in Section 3.4.

3.3 Representation of Digital Modulated Waveforms
on an Orthonormal Basis

The complexity of generating the complex envelope (3.2), or equivalently, the corresponding in-phase
and quadrature components (see (3.6) and (3.7)), depends on the signal alphabet As = {sk(t), k =
0, 1, . . . , Nw − 1}, to which s(�n, cn; t) belongs for any n. To understand the structure of this alphabet
and, possibly, to simplify the algorithm for its generation, it is useful to represent its elements in terms
of an orthonormal basis. This basis, denoted by Bs = {φl(t), l = 0, 1, . . . , N − 1} in what follows,
can be generated by resorting to the so-called Gram–Schmidt orthonormalization procedure (see
Section D.1.2) of the signal set As , that we assume to generate a subspace S of dimension N. Given
Bs , the signals sk(t), with k = 0, 1, . . . , Nw − 1, can be represented by the expansion (see (D.3)):

sk(t) =
N−1∑
l=0

sk,lφl(t), (3.13)

2 In this and all subsequent chapters logarithms are to base 2 unless explicitly stated otherwise.
3 As shown in the following pages, this equality holds for PAM and CPM signals, but does not apply directly to
OFDM signals.
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where, for the properties of orthonormal bases, the complex coefficient sk,l is given by the inner
product of sk(t) and φl(t) (see (D.9)), that is:

sk,l = (sk, φl) =
∫ tf

ti

sk(t)φ
∗
l (t) dt, (3.14)

with k = 0, 1, . . . , Nw − 1, where the interval (ti , tf ) is the time support of the signals belonging to
Bs . Then sk(t) can be represented by its image sk , that is, the vector:

sk � [sk,0, sk,1, . . . , sk,N−1]T , (3.15)

which describes a point in the so-called signal space, in this case, a complex set of signals in the
space C

N . We note that the complex coefficients sk,l , for k = 0, 1, . . . , N − 1, can be replaced by the
ordered pair (sR

k,l , sI
k,l), where sR

k,l � Re{sk,l} and sI
k,l � Im {sk,l}, and then sk(t) can be represented

by a vector belonging to R
2N . The set of points {si , i = 0, 1, . . . , Nw − 1} is known as the signal

constellation generated by the digital modulator.
An application of these concepts is given in the following example.

Example 3.3.1 Let us consider a memoryless digital modulator for which the kth waveform of the
M-ary alphabet As is:

sk(t) = 1√
Ts

exp

(
j

2πk

M

)
[u(t) − u(t − Ts)] (3.16)

for k = 0, 1, . . . ,M − 1, where:

u(t) =
{

1 for t ≥ 0

0 for t < 0
(3.17)

is the unit step function. The shape of the signals {sk(t)} (3.16) is illustrated in Figure 3.1 for the case
of a quaternary alphabet (M = 4).

Note that, whatever the value of M, the signal sk(t) (3.16) can be represented as:

sk(t) = skφ(t), (3.18)

Im{sk (t)}·√Ts

s2 (t)

s1 (t)

s0 (t)

s3 (t)

t /Ts
1

−1

−1

1

1

Re{sk (t)}·√Ts

Figure 3.1 Graphical representation of the complex signals {sk(t)} (3.16) in the case of a quater-
nary alphabet (M = 4).
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where

φ(t) � 1√
Ts

[u(t) − u(t − Ts)] =
{

1/
√

Ts for 0 ≤ t < Ts

0 elsewhere
(3.19)

is a unit energy signal and
sk � exp (j2πk/M). (3.20)

Equation (3.18) shows that φ(t) represents a basis, consisting of a single element, for the alphabet As ,
and that the image of sk(t) (3.16), with k = 0, 1, . . . , M − 1, is the complex number sk (3.20), or
equivalently, the real two-dimensional vector sk � [cos(2πk/M), sin(2πk/M)]. Therefore, the signal
constellation belongs to the space C and, as can be verified through its representation in the complex
plane, consists of M points placed along a circle having unit radius and center at the origin of the
reference plane.

The RF signal associated with the complex envelope sk(t) (3.16) is (see (3.1)):

sRF ,k(t) = Re{sk(t) exp (j2πfct)} = φ(t) cos

(
2πfct + 2πk

M

)
, (3.21)

with k = 0, 1, . . . , M − 1, and can be generated by a digital phase modulator, that is, by a device
introducing a phase shift that is a multiple of 2π/M radians on a cosinusoidal oscillation at frequency
fc. For this reason, the digital modulation characterized by the signals of (3.21) is known as4 M-ary
phase shift keying (M-PSK) [280]. We also note that, in this case, the modulator generates, starting
at t = nTs , for any n, one of the cosinusoidal signals {sRF ,k(t − nTs), k = 0, 1, . . . , M − 1} with no
consideration of the signal generated in the previous symbol interval. Therefore, generally speaking,
the modulated signal shows a sharp phase change, evidenced by the presence of a discontinuity of
the first type in its shape at the beginning of each symbol interval.

It is easy to show that, if fc � Rs , an orthonormal basis for the alphabet As,RF � {sRF ,k(t), k =
0, 1, . . . , M − 1} is given by the pair of functions:

φ0(t) �
√

2φ(t) cos(2πfct), (3.22)

φ1(t) � −
√

2φ(t) sin(2πfct), (3.23)

and that the signal constellation associated with the signal alphabet As,RF belongs to the two-
dimensional space R

2 and coincides with that associated with the alphabet As .
�

It is not difficult to understand that, if N < Nw , it is useful to generate the signals of As according
to (3.13) and that, if this occurs, the smaller the number of functions in Bs (i.e., the dimension N of
the subspace generated by the signals forming As), the more limited the modulator complexity. In
fact, if N is small, generating s(t, c) (3.2) requires the availability of only a small number of signals
in Bs .

The representation of As by means of an orthonormal basis is a very useful way to analyze modulator
complexity. It allows us to determine the minimum bandwidth occupancy for a modulated signal (see
Section 3.4), and to analyze the detection process of the signal (see Section 4.4).

3.4 Bandwidth of Digital Modulations
The signals generated by the digital modulators described in this chapter are wide-sense cyclostationary
(WSC) random processes with a period Tcs (see Appendix B), which is always a multiple of the
symbol interval Ts . Therefore, given the modulated signal sRF (t, c) (3.1), characterized by a random

4 Further details on this modulation format can be found in Section 3.5.2.
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symbol vector c (whose elements belong to an M-ary constellation), a carrier frequency fc and the
complex envelope s(t, c), its average power spectral density SRF (f ) is given by:

SRF (f ) = 1

4
[Ss(f + fc) + Ss(f − fc)], (3.24)

where Ss(f ) is the average power spectral density (PSD) of the complex envelope s(t, c). The latter
function is the FCT of the average autocorrelation function Rs(τ), that is:

Ss(f ) =
∫ +∞

−∞
Rs(τ) exp (−j2πf τ) dτ, (3.25)

with

Rs(τ) � 1

Tcs

∫ Tcs

0
Rs(t, τ ) dt (3.26)

and
Rs(t, τ ) � E{s(t + τ, c) s∗(t, c)}. (3.27)

Note that the only random quantities in (3.1) are the channel symbols {cn}, so that the statistical
average (denoted by the operator E{·}) required in the computation of Rs(t, τ ) according to (3.27)
involves only these.

The average power PRF of the RF signal sRF (t, c) (3.1) is given by:

PRF =
∫ +∞

−∞
SRF (f ) df , (3.28)

so that on substituting (3.24) into (3.28) it is found that:

PRF = Ps

2
, (3.29)

where

Ps =
∫ +∞

−∞
Ss(f ) df (3.30)

is the average power of the complex envelope s(t, c). The average energy Es , spent by the transmitter
in a symbol interval, is given by (see (3.29) and (3.30)):

Es � PRF Ts = PsTs

2
= Ts

2

∫ +∞

−∞
Ss(f ) df (3.31)

and, consequently, the average energy expended per bit Eb, within a bit interval Tb, is:

Eb = Es

log M
= Ts

2 log M

∫ +∞

−∞
Ss(f ) df , (3.32)

if (3.9) holds, that is, the constellation of channel symbols is M-ary and log M information bits are
transmitted in a symbol interval.5

Note that Ss(f ) (3.25) is usually expressed in Watt per Hertz, and has the dimensions of energy.
Thus, when a representation of this function is needed, it is often more useful to consider the normalized
power spectral density6:

Ss,n(f ) � Ss(f )

2Es

= Ss(f )

PsTs

, (3.33)

which is dimensionless.

5 As mentioned in the previous section, this assumption does not hold for an OFDM signal, because of the presence
of a cyclic prefix. In fact, in this case, Ts is related to Tb not by (3.9), but by (3.276).
6 Note that the quantity 2Es in (3.33) represents the average energy consumption per symbol interval in generating
s(t, c).
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In any practical application, the power spectrum of a digital signal is never strictly bandlimited,
but the majority of the transmitted power is almost always contained in a limited frequency interval,
centered on the carrier frequency fc. This suggests the possibility of defining a bandwidth quantifying,
according to a specific rule, the spectral occupancy of a signal whose RF spectral density SRF (f ) is
known. Various conventional definitions of bandwidth are available and the selection of a specific
definition is dictated by system design considerations. Definitions that are commonly used are: (1)
null-to-null bandwidth; (2) fractional power-containment bandwidth; (3) bounded power-containment
bandwidth; (4) equivalent noise bandwidth.

The first definition requires measuring the width of the main spectral lobe of SRF (f ); this can be
simply evaluated when the first two nulls around the carrier frequency delimit the main lobe. Usually
the majority of the transmitted power is contained within this interval.

The second definition refers to the frequency interval in which some fraction (1 − ε) of the trans-
mitted power is contained in the positive frequencies, where ε is a fixed and small positive quantity. In
other words, the fractional power containment bandwidth B1−ε is implicitly defined by the equality:

2
∫ fc+B1−ε/2

fc−B1−ε/2
SRF (f ) df � (1 − ε) PRF , (3.34)

where PRF is given by (3.28). This definition is often adopted in the analysis of wireless
communications systems, in which the overall available bandwidth is shared by multiple users
transmitting in adjacent subbands. Then, if the bandwidth assigned to each user is B1−ε , the fraction
εPRF of the power transmitted by a single user spills over adjacent channels, producing interference.

The bandwidth measured according to the third criterion (and henceforth denoted BBP ) represents
the frequency interval outside of which the spectral density SRF (f ) does not cross a reference threshold
that is set X decibels below the value taken on by SRF (f ) at the center of the bandwidth,7 that is, at
the frequency fc. Typical values of the attenuation X are 35 dB and 50 dB, although larger values can
be found in actual system specifications [281].

The bandwidth measured according to the last criterion, the equivalent noise bandwidth, provides
an indication of the spread or width of a spectrum, but no information about its side lobes. It is defined
as the parameter BN satisfying the equality:

2BN SRF (fc) � PRF , (3.35)

which states that, as shown in Figure 3.2, the overall area covered by two rectangular spectral shapes,
each having a base and height of lengths BN and SRF (fc), respectively, centered at the frequencies
±fc, is equal to the area covered by the spectral density SRF (f ) over the entire frequency axis, that
is, the overall transmitted power PRF . From (3.35) it can be seen that:

BN � PRF

2 SRF (fc)
, (3.36)

which can easily be reformulated with reference to the power spectrum of the complex envelope s(t, c).
In fact, if we note that PRF = Ps/2 (see (3.29)) and that, if fc � R, we have that (see (3.24)):

SRF (fc) = Ss(0)

4
, (3.37)

then equation (3.36) can be rewritten as:

BN = Ps

Ss(0)
(3.38)

7 This definition and the following one implicitly assume that SRF (f ) takes on its maximum value at the carrier
frequency fc . If this is not the case, the reference frequency must be changed.
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BN

SRF ( f )

SRF ( fc)

− fc  fc

BN

 f

Figure 3.2 Geometrical interpretation of equality (3.35). The parameter BN represents the equiv-
alent noise bandwidth of a digital signal characterized by the PSD SRF (f ), plotted on a linear
scale.

or, taking (3.33) into consideration, as:

BN = 1

TsSs,n(0)
= Rs

Ss,n(0)
, (3.39)

which lends itself to an immediate geometrical interpretation, similar to that illustrated in Figure 3.2,
referring to SRF (f ).

Other definitions and measures of the bandwidth of digital signals can be found in [281].
Given the spectral occupancy of a digital communication system, its spectral efficiency ηB can be

evaluated. This parameter is defined as the ratio between the transmitted bit rate and the RF bandwidth
occupancy:

ηB � Rb

B
. (3.40)

Although this ratio is, as a matter of fact, dimensionless, it is commonly expressed in bits per second per
Hertz. In practice, the value of ηB for a specific modulation format depends on the definition adopted
for B. In any comparison of digital modulations, spectral efficiencies should be always computed using
the same definition of bandwidth. It is also important to note that the spectral efficiency achieved
using various traditional transmission techniques in modern SISO and SIMO communication systems
ranges from about 1–5 bit/sec/Hz to about 10–12 bit/sec/Hz [23]. The smaller values are typical, for
instance, of cellular mobile systems, whereas the larger ones are usually found in microwave point-
to-point wireless links. Substantially larger spectral efficiencies can of course be attained by resorting
to MIMO communication techniques.8

The spectral occupancy of a digital modulation format can be related directly to the dimensionality
of the set of functions generated by the corresponding modulator. This result is based on the theory
developed by D. Slepian and H. O. Pollak that proved, in 1960, that a set of real low-pass signals,
rigorously bandlimited to B Hertz can be generated using a basis of functions {ψi(t), i = 0, 1, . . . }
which are orthogonal over both the time interval (−∞, +∞) and I0 � (−T0/2, T0/2), where T0 is
some fixed duration [282]. In the basis, however, only the first N functions, with:

N ≤ 2BT0, (3.41)

have their energy concentrated within the interval I0, whereas the remaining functions take on
significant values outside of this interval. This result can be exploited to derive an estimate of the
minimum spectral efficiency of a given modulation format. In fact, let us focus on the transmission

8 Spectral efficiencies of 20–40 bit/s/Hz have been attained in the prototypal BLAST system noted earlier.
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of a binary data stream at a bit rate Rb, via a digital modulator that can generate, in each symbol
interval, a signal belonging to the M-ary set of real functions As = {si(t), i = 0, 1, . . . , M − 1},
each having a bandwidth B. These functions generate a subspace S, also represented by the basis
Bs = {φi(t), i = 0, 1, . . . , D − 1}.

Intuitively, if we want the transmission accomplished by the digital modulator over P consecutive
symbol intervals not to produce mutual interference at the receiver, it is necessary that all the signals
generated by the time translations of Bs with a delay equal to iTs seconds (i = 0, 1, . . . , P − 1)
be mutually orthogonal. From a mathematical viewpoint this requires the generation of a set of PD

orthogonal functions which are bandlimited to B Hertz and whose energy is primarily concentrated
in an interval of duration PTs seconds. Then substituting for the parameters N and T0 with PD and
PTs , respectively, in (3.41) yields:

D ≤ 2BTs, (3.42)

from which it can be inferred that:
B ≥ D

2Ts

. (3.43)

If we now define the parameter:

Db = D

log M
, (3.44)

representing the number of dimensions employed for a transmitted bit, (3.43) can be rewritten as:

B ≥ DbRb

2
. (3.45)

This leads to the estimate of the minimum bandwidth:

Bmin = DbRb

2
(3.46)

required by a digital signal employing Db dimensions per bit and occurring at a rate Rb. This result,
even if not exact, is significant, as it shows the importance of using modulation formats characterized
by small values of Db when limited bandwidth occupancy is required. Finally, we note that equation
(3.45) can be used for both baseband and passband transmissions, but real signals must be always
considered in the evaluation9 of Db.

3.5 Passband PAM

3.5.1 Signal Model

A digital passband PAM modulator is characterized by the following properties: (a) it has a single
inner state, so that s(�n, cn; t − nTs) = s(cn; t − nTs) (see (3.2)) and Nw = M; (b) all the signals
belonging to its alphabet As = {sk(t), k = 0, 1, . . . , M − 1} are proportional to the same pulse shape
p(t); (c) the baseband signal s(cn; t − nTs) depends linearly on the channel symbol cn. Analytically
this results in:

s(�n, cn; t − nTs) = Kc cn p(t − nTs), (3.47)

where cn belongs to some alphabet Ac, consisting of M distinct complex numbers and called the
constellation; in addition, Kc is a real positive parameter depending on Eb, and on the alphabet of

9 If complex signals are used to estimate the required dimensionality, then the number of estimated dimensions
must be multiplied by 2.
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symbols and its cardinality. In the following we will always assume that the signal p(t), called the
modulator impulse response, is real and has unit energy.

Now consider the structure of s(t, c) (3.2). Substituting (3.47) into (3.2) gives:

s(t, c) = Kc

+∞∑
n=−∞

cn p(t − nTs). (3.48)

Then, if an and bn respectively denote the real and imaginary parts of cn, so that:

cn = an + jbn, (3.49)

the in-phase sI (t, c) (3.6) and quadrature sQ(t, c) (3.7) components of the transmitted signal can
respectively be expressed as:

sI (t, c) = Kc

+∞∑
n=−∞

an p(t − nTs) (3.50)

and

sQ(t, c) = Kc

+∞∑
n=−∞

bn p(t − nTs). (3.51)

Moreover, if ρn and ϕn represent the amplitude and phase of cn, that is:

cn = ρn exp(jϕn), (3.52)

the RF signal sRF (t, c) (3.1) can be expressed as (see (3.48)):

sRF (t, c) = Kc

+∞∑
n=−∞

p(t − nTs) ρn cos(2πfct + ϕn). (3.53)

The latter result shows that in a passband PAM signal, for any n, the pulse p(t − nTs) is multiplied
by a carrier, whose phase and amplitude are determined by the amplitude and phase, respectively, of
the symbol cn.

Finally, we note that, generally speaking, the envelope (see (3.8) and (3.50)–(3.51)):

senv (t, c) = Kc

√√√√[ +∞∑
n=−∞

an p
(
t − nTs

)]2

+
[ +∞∑

n=−∞
bn p

(
t − nTs

)]2

(3.54)

of the signal sRF (t, c) is not constant.
In practice, in order to limit the envelope fluctuations it can be very useful to insert a delay of Ts/2

seconds into the quadrature component sQ(t, c) (3.51), resulting in:

sQ(t, c) = Kc

+∞∑
n=−∞

bn p(t − nTs − Ts/2). (3.55)

This choice ensures that the peaks and nulls associated with the pulses {p(t − nTs)} of sI (t, c) (3.50)
do not occur at the same time instants as those of the pulses {p(t − Ts/2 − nTs)} of sQ(t, c) (3.55),
with a consequent reduction in the fluctuations of senv (t, c) (3.8). A digital modulation characterized
by the in-phase component (3.50) and by the quadrature component (3.55) is called offset PAM or
staggered PAM.
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3.5.2 Constellation Selection

Let us consider now some possible choices for the constellation Ac, under the assumption that its
cardinality takes on even values. The most common choices belong to three distinct classes. The
first class consists of all the constellations whose points are regularly placed along the circumference
of a circle, usually having unit radius. In the M-ary case, the constellation is the set Ac = {sl �
exp (j2πl/M), l = 0, 1, . . . ,M − 1} (see Figure 3.3(a)) and the resulting modulation is termed M-
PSK, because each channel symbol produces only a phase variation of the pulse associated with it,
leaving its amplitude unchanged.10 Note that if p(t) is a rectangular pulse lasting Ts seconds, that is:

p(t) = 1√
Ts

[u(t) − u(t − Ts)], (3.56)

and ρn = 1 for any n, the RF transmitted signal becomes:

sRF (t, c) = Kc√
Ts

+∞∑
n=−∞

cos(2πfct + ϕn) [u(t − nTs) − u(t − (n + 1)Ts)], (3.57)

which represents the modulated signal as a series of cosinusoidal pulses, each having duration Ts

seconds and amplitude Kc/
√

Ts . Therefore, in this case, the envelope senv (t, c) (3.54) is rigorously
constant.

The second class consists of all the constellations in which the points are aligned, equally spaced
and placed in symmetric couples with respect to the origin. In this case, if we assume that the distance
between adjacent points is equal to 2, the constellation is Ac = {±1, ±3, . . . ,±(M − 1)} = {sl =
(M − 1) − 2l, l = 0, 1, . . . , M − 1} (see Figure 3.3(b)). The corresponding modulation is known as

SM / 2−1

SM / 2+1 SM−1

S0

S1

S1 S1 SM / 2−1 SM / 2 SM−2 SM−1

SM / 2 2p /M

(a)

(b)
−(M −1) −(M −3) M −3 M −1−1 1

Figure 3.3 Representation of the constellations for an M-PSK signal (a) and an M-AM signal (b).

10 In this class of signals binary phase shift keying (BPSK) and quaternary phase shift keying (QPSK) refer to the
choices M = 2 and M = 4, respectively.
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M-ary amplitude modulation (M-AM) or M-ary amplitude shift keying (M-ASK), since, as is seen from
(3.53), each channel symbol produces an amplitude variation in the associated pulse, either leaving
its phase unchanged or modifying it by π .

Finally, the third class consists of all those constellations in which the points are placed at the
vertices of a lattice with square meshes and for each point there is another one placed symmetrically
with respect to the origin. If the constellation consists of M points, generally speaking, the modulation
is called M-ary amplitude modulation-phase modulation (M-AM-PM), since each channel symbol
produces a variation in both amplitude and phase of the carrier associated with its pulse, as evidenced
by (3.53). To this class of constellations belong two distinct subclasses, characterized by constellations
of different shapes.

The first subclass is known as M-ary quadrature amplitude modulation (M-QAM), and is charac-
terized by values of M equal to a power of 4. In this case, the symbols {an} and {bn} belong to the
same alphabet {±1, ±3, . . . ,±(

√
M − 1)}, so that the constellation has a square shape, as illustrated

in Figure 3.4(a) for M = 4, 16 and 64. It is not difficult to understand that an M-QAM modulation can
be generated by superimposing two independent

√
M-ASK signals (one associated with the sequence

{an}, the other with {bn}) and characterized by quadrature oscillations. Note also that, unlike ASK and
PSK, a QAM signal cannot be generated for any even value of M . This does not prevent, however,
the construction of other rectangular constellations containing an even number of points which is
not a power of 4. These constellations, which form the second subclass of interest, are called cross-
constellations, for their shape,11 as shown in Figure 3.4(b) for M = 32 and 128. With the help of this
figure, the reader can easily verify, in any specific case, the validity of the general rule for M ≥ 32,
that an M-cross-constellation can be generated by placing, in a regular fashion, 4 groups of points,
each consisting of M/8 elements, along the sides of an M/2-QAM constellation. The constellation
structure inevitably influences the generation mechanism of the modulated signal. In fact, a cross
signal, unlike QAM, cannot be represented as the combination of two independent ASK signals, since
the choice of an is related to that of bn, whatever the value of n. Therefore, despite the fact that both
an and bn can take on values belonging to the same alphabet {±1, ±3, . . . , ±(

√
M/2 + 1)}, not all

possible pairs of these values can occur.
We note that the choices indicated above for the M-ary constellations of passband PAM signals are

not optimal and exhaustive, since the constellation of PAM signals can be selected in different (and
better) ways. A deeper discussion on the problem of the constellation selection in a multidimensional
context is provided in Section 3.8.

When an M-ary constellation (with M = 2m) is employed in a PAM transmission, a one-to-one
correspondence (i.e., a mapping) rule associating each possible m-tuple of bits with a constellation
point has to be established. The selected rule plays an important role, since it influences the average
bit error performance, as will be discussed in Section 4.3. In most cases, a rule known as Gray coding
is adopted; it can be employed12 for any M and consists of assigning bits to the points of an M-ary
constellation in such a way that nearest neighbors are labeled by blocks of m bits differing in a single
bit only. This choice can be motivated by noting that a digital receiver, in case of a decision error, is
likely to decide in favor of a constellation point which, among the possible choices, is the closest to
the transmitted point in terms of Euclidean distance (see Section 4.3.3). When this occurs, a decision
error on a channel symbol entails only a single bit error if Gray coding is adopted, so that the average
bit error probability is actually lower than the average symbol error probability.

Another important issue related to the use of the constellations defined in this subsection is their
property of rotational invariance – the fact that, because of their symmetry, they remain unchanged
after a rotation of some specific angle values. For instance, an M-PSK constellation is invariant to

11 Note that much of the published literature refers to both square and cross-constellations as QAM.
12 Note that this can be done exactly only when M = 2q , where q is an integer. Otherwise, Gray coding is only
an approximation.
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M = 64

M = 128

M = 32

M = 16

M = 4

(a)

(b)

Figure 3.4 Representation of some possible constellations for QAM (a) and cross (b) signals.

rotations of any integer multiple of 2π/M radians, that is, it possesses an M-fold rotational symmetry.
This geometric property of the constellation implies that a receiver can recognize the pattern of the
transmitted signal points, but is unable to distinguish between the various symmetric phase orientations
of the signal set, that is, it cannot autonomously solve the so-called phase ambiguity problem (for
instance, an M-fold phase ambiguity is found in the M-PSK case). The following three different
solutions are available to solve this problem:

(a) transmitting a constant reference signal of some kind along with the PAM signal,
(b) transmitting a specific acquisition signal and/or inserting a synchronization sequence (known to

the receiver) in the data stream,
(c) employing the so-called differential encoding technique.

The latter solution offers the advantage that by properly encoding and decoding the signal points,
proper bit detection can be accomplished regardless of rotational phase ambiguities. To show this, let
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us focus on the M-PSK case, for which the encoding algorithm can be formulated as13:

cn = cn−1 exp

(
j

2π

M
dn

)
, (3.58)

which is equivalent to (see (3.52)):

ϕn − ϕn−1 = 2π

M
dn (3.59)

since ρn = ρn−1 = 1 for any n. Equation (3.59) shows that differential encoding maps the nth
information symbol dn into the phase change from the last transmitted symbol cn−1 to the following
one cn for any n. Then, at the receiver a decision d̂n about dn can be taken by computing the
difference (ϕ̂n − ϕ̂n−1) between the phase estimates ϕ̂n and ϕ̂n−1 of ϕn and ϕn−1, respectively, so
that the effect of the above-mentioned phase ambiguity is canceled (in other words, the dependence
of data decisions on the absolute phase of the carrier regenerated at the receiver is removed).

The differential encoding technique can be used with a variety of symmetric signal sets to resolve
phase ambiguity, as shown in [283]. However, it has the following two drawbacks:

(a) The transmission of a block of N + 1 channel symbols {c0, c1, . . . , cN } is required to send N
information symbols {d0, d1, . . . , dN−1}, since the first symbol c0 is required to establish a phase
reference for the first datum d0.

(b) A (low) performance penalty relative to uncoded performance has to be paid, since a single error in
the sequence of phase estimates {ϕn} typically entails two consecutive incorrect phase differences,
that is, a couple of consecutive decision errors.

3.5.3 Data Block Transmission with Passband PAM Signals
for Frequency-Domain Equalization

When passband PAM transmission is to be used with frequency domain (FD) equalization (see
Section 6.2.2) in the receiver, the channel symbol stream, generated at a rate fs = 1/Ts , is divided into
nonoverlapping blocks, each of some length N. Let the vector c(l)

N � [c(l)
0 , c

(l)
1 , . . . , c

(l)
N−1]T denote the

lth block. After serial-to-parallel conversion, a cyclic prefix c(l)
p � [c(l)

N−Ncp
, c

(l)
N−Ncp+1, . . . , c

(l)
N−1]T

of length Ncp is appended to c(l)
N and this produces the cyclically extended block c̃(l)

NT
�

[(c(l)
p )T , (c(l)

N )T ]T = [c(l)
RN [n], n = −Ncp , −Ncp + 1, . . . , N − 1]T , where RN [· ] is the “modulo N

operator” defined by:
RN [n] = n −

⌊ n

N

⌋
N, (3.60)

�x� being the largest integer not exceeding the real variable x, and NT � Ncp + N . The cyclically
extended symbol sequence is input to the transmitter filter, which is characterized by an impulse
response p(t) having support [0, LpTs]. This produces the baseband transmitted signal:

s(t, c) =
+∞∑

l=−∞

N−1∑
n=−N1

c
(l)
RN [n] p(t − nTs − lNT Ts) (3.61)

which is transmitted over the channel. Let us assume that: (a) the CIR lasts Lh symbol intervals; (b) the
CIR is slowly time-varying and, in particular, undergoes negligible changes over each transmitted block

13 In the technical literature, differentially encoded M-ary PSK is usually referred to as M-DPSK when noncoherent
detection is employed.
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(quasi-static channel), so that, during the transmission of c̃(l)
NT

, it can be denoted by the time-invariant
impulse response h(l)(t); (c) the duration of the cyclic prefix is at least as long as the overall channel
memory (i.e., Lh + Lp ≤ N1); (d) p(t) is bandlimited to B = 1/Ts Hertz. Under these conditions it
can be proved [284] that the useful component of the baseband received signal r(t) is given by:

z(t) = 1√
NTs

N∑
k=−N

Pk H
(l)
k C

(l)
k exp

(
j

2πk

NTs

(t − lNT Ts)

)
(3.62)

for lNT Ts ≤ t < lNT Ts + NTs , where Pk � P(k/NTs)/
√

Ts , H
(l)
k � H(l)(k/NTs), P(f) and H(l)(f )

are the FCTs of p(t) and h(l)(t), respectively. In addition, C
(l)
k is the kth component of the vector

C(l)
N � [C(l)

0 , C
(l)
1 , . . . , C

(l)
N−1]T , representing the frequency-domain symbols, resulting from the DFT

of the data block c(l)
N , that is, C(l)

N � QN c(l)
N , where QN = [qn,k] is the N-point DFT matrix (k, n =

0, 1, . . . , N − 1) with qn,k = W kn
N /

√
N and WN � exp (−j2π/N). Thus, the useful portion of the

received signal can be seen, for each data block, as the superposition of 2N + 1 complex oscillations,
the kth of which is characterized by the complex gain Pk H

(l)
k and the frequency fk � k/(NTs). Note

that C
(l)
k = C

(l)
k+N for any k, so that, in principle, a given frequency-domain symbol can be associated

with two distinct oscillations.

3.5.4 Power Spectral Density of Linear Modulations

Let us now make the following assumptions on the complex envelope s(t, c) (3.48) of a passband
PAM signal:

1. The sequence {cn} is WSS with mean value ηc � E{cn} and autocorrelation function Rc[k] �
E{cn+k c∗

n}.
2. The channel symbols {cn} are identically distributed, that is, their probability function is independent

of n.

It is not difficult to prove that the mean value ηs(t) of s(t, c) (3.48) is given by:

ηs(t) � E{s(t, c)} = ηc Kc

+∞∑
k=−∞

p(t − kTs), (3.63)

so that, in principle, s(t, c) is not a WSS process unless ηc = 0 or:

+∞∑
k=−∞

p(t − kTs) (3.64)

is a constant signal. However, it can be shown that, generally speaking, s(t, c) is WSC with period
T0 = Ts and that its average autocorrelation function and average PSD are given by:

Rs(τ) = K2
c

Ts

+∞∑
l=−∞

Rc[l]
∫ +∞

−∞
p(α) p(α + τ − lTs) dα (3.65)

and

Ss(f ) = K2
c

Ts

S̄c(f )|P(f )|2, (3.66)

respectively, where

S̄c(f ) �
+∞∑

l=−∞
Rc[l] exp (−j2π lf Ts) (3.67)
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is the PSD of the symbol sequence {cn}. These results show that the power spectrum of the
transmitted signal depends on the spectral properties of the transmitter impulse response and on the
correlation properties of the channel symbol sequence.

In addition, if we assume that the sequence {cn} consists of zero mean, iid random variables, its
autocorrelation function becomes:

Rc[k] � E{cn+k c∗
n} = σ 2

c δ[k], (3.68)

where σ 2
c � E{|ck|2} is the variance of channel symbols. Under these assumptions it is not difficult to

show that the average power of s(t, c) is:

Ps = σ 2
c K2

c

Ts

, (3.69)

and that the average energy per symbol interval is given by:

Es = PRF Ts = 1

2
PsTs = 1

2
σ 2

c K2
c , (3.70)

so that:

Kc =
√

2Es

σ 2
c

. (3.71)

If we assume the constellation points to be equally likely, we have σ 2
c = 1, σ 2

c = (M2 − 1)/3 and
σ 2

c = 2(M − 1)/3 for M-PSK, M-ASK and M-QAM, respectively; then, it can be easily inferred from
(3.71) that:

Kc = √
2Es (3.72)

for M-PSK signaling:

Kc =
√

6Es

M2 − 1
(3.73)

for M-ASK signaling, and:

Kc =
√

3Es

M − 1
(3.74)

for M-QAM signaling. As an example, let us apply these results to a specific modulation format.

Example 3.5.1 Consider a BPSK signal having:

p(t) � 1√
Ts

[u(t) − u(t − Ts)], (3.75)

and whose symbols {cn} are zero mean, statistically independent, identically distributed
and belong to the alphabet {±1}. Then we have Kc = √

2Es (see (3.72)), S̄c(f ) = 1, and
P(f ) = √

Tssinc(f Ts) exp (−jπf Ts), so that the PSD of the complex envelope s(t, c) is (see
(3.66)):

Ss(f ) = 2Essinc2(f Ts) = 2Es

sin2(πf Ts)

(πf Ts)
2

, (3.76)

with the normalized version (see (3.33)):

Ss,n(f ) = sinc2(f Ts) = sin2(πf Ts)

(πf Ts)
2

. (3.77)
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Figure 3.5 Representation of the normalized PSD Ss,n(f ) (3.77) on a log or decibel scale.

The function Ss,n(f ) is represented in Figure 3.5 on a log or decibel scale. This shows that the PSD
contains a main lobe, occupying the frequency interval (−1/Ts , 1/Ts) (so that the RF null-to-null
bandwidth BNN is equal to 2/Ts = 2Rs) and an infinite number of side lobes decreasing at a rate of
6 dB per octave as |f | → +∞ due to the presence of 1/(f Ts)

2 in (3.76). It can be shown that 90%
of the energy or power in s(t, c) is contained in the main lobe. In addition, it is not difficult to verify
that the peaks of the first and the second side lobes are 13.5 and 17 dB, respectively, below the center
of the main lobe.

The plot of Figure 3.5 can be employed to compute the bounded power-containment bandwidth BBP
of the given signal for a given threshold level X with respect to the central frequency. For instance,
if X = 15 dB (see Figure 3.6) we have that BBP

∼= 3.27 Rs . Similarly, if X = 35 dB and X = 50 dB
are selected, it is found that BBP

∼= 35.12 Rs and BBP
∼= 201.04 Rs , respectively [281].

�

In the previous example, the PSD of the transmitted signal is not confined to a finite frequency
interval because p(t) has a limited duration, and consequently, unlimited bandwidth. If a rigorously
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Figure 3.6 Representation of the normalized PSD Ss,n(f ) (3.77) and of the threshold level cor-
responding to an attenuation of X = 15 dB with respect to the central frequency, necessary to
determine the bandwidth BBP of the BPSK signal of Example 3.5.1.
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bandlimited Ss(f ) is desired, the same property has to be shared by p(t) or, more appropriately, P(f).
A possible choice, in the class of bandlimited signals, is represented by the signals having an FCT
with the shape of a raised cosine with roll-off factor α. In this case, the pulse p(t) is given by:

p(t) � 1√
Eg

g(t), (3.78)

where

g(t) � sinc

(
t

Ts

)
cos(παt/Ts)

1 − (2αt/Ts)
2
, (3.79)

and
Eg = Ts

(
1 − α

4

)
(3.80)

is the energy of g(t), and α, known as the roll-off factor, is a real parameter belonging to the interval
[0, 1]. The spectrum of g(t) (3.79) is then given by:

G(f ) � FCT[g(t)]

=




Ts for 0 ≤ |f | ≤ f1−α

Ts
2

{
1 + cos

[
πTs
α

(|f | − f1−α

)]}
for f1−α < |f | ≤ f1+α

0 for |f | > f1+α

(3.81)

where

f1−α � 1 − α

2Ts

(3.82)

and

f1+α � 1 + α

2Ts

. (3.83)

If the pulse of (3.78) is selected, the bandwidth of the complex envelope s(t, c) of the transmitted
signal can be expressed as:

B = ε BN, (3.84)

where

BN � 1

2Ts

(3.85)

is the so-called Nyquist bandwidth and ε � 1 + α is the so-called excess bandwidth factor. Note that
the minimum bandwidth occupancy (BN in baseband signaling, 2BN at RF) is achieved for α = 0. In
this case (3.79) reduces to:

g(t) = sinc

(
t

Ts

)
(3.86)

and the spectrum (3.81) has a rectangular shape, since:

G(f ) = Ts [u(f − 1/(2Ts)) − u(f + 1/(2Ts))]. (3.87)

The signal g(t) (3.79) and its corresponding FCT G(f ) (3.81) are illustrated in Figures 3.7 and 3.8,
respectively, for α = 0, 0.5 and 1. Note that g(t) takes on null values, because of the factor sinc(t/Ts)

in (3.79), at all the instants which are multiples of Ts , excluding the origin, where, independently of
α, g(t) = 1. In other words, we have:

g(t)|t=kTs
= δ[k] (3.88)
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Figure 3.7 Representation of g(t) (3.79) for α = 0, 0.5 and 1.
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Figure 3.8 Representation of the pulse spectrum G(f ) (3.81) for α = 0, 0.5 and 1.

for any integer k. The signal g(t), being rigorously bandlimited for any α, always has infinite duration.
Therefore, in practical applications, causal and time-limited approximations of this signal are used.
These are generated by truncating the signal pulse, that is, limiting it to an interval which is symmetric
with respect to the origin, and translating it to make it causal. When this is accomplished, it is important
to remember that, as can easily be seen from Figure 3.7, the tails of g(t) become more and more
pronounced as the roll-off factor approaches 0. For this reason, if, independently of α, a given fraction
of the overall energy of p(t) (3.78) has to be captured, the truncation interval is inversely proportional
to α.

Another important pulse shape p(t), that is also strictly bandlimited and of unit energy, is given by:

p(t) = 4α

π
√

Ts

[
cos

(
(1 + α)πt

Ts

)
+ Ts

4αt
sin

(
(1 − α)πt

Ts

)]
1

1 − (4αt/Ts)
2
. (3.89)

The FCT of this pulse is the square root of a raised cosine spectrum with roll-off α, that is, it can be
expressed as:

P(f ) =
√

G(f ), (3.90)

where G(f ) is expressed by (3.81). The signal:

g(t) �
√

Ts p(t), (3.91)
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with p(t) given by (3.89), and the spectrum:

Q(f ) � P(f )√
Ts

, (3.92)

with P(f) given by (3.90), are illustrated in Figures 3.9 and 3.10, respectively, for α = 0, 0.5 and 1.
Finally, we note that g(t) (3.91), even if its shape is similar to that expressed by (3.79) (see Figure 3.7),
does not share at all the important properties of (3.88).

The results illustrated above for bandlimited signaling pulses can be exploited to develop some
interesting considerations, as illustrated in the following examples.

Example 3.5.2 In M-ary passband signaling, the minimum bandwidth occupancy at RF14 is B = 1/Ts .
Therefore, the maximum achievable spectral efficiency is (see (3.40)):

ηB = log M/Ts

1/Ts

= log M = m bit/sec/Hz, (3.93)
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Figure 3.9 Representation of the pulse g(t) (3.91) for α = 0, 0.5 and 1.
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Figure 3.10 Representation of Q(f ) (3.92) for α = 0, 0.5 and 1.

14 This is achieved when the spectrum of the transmitter impulse response p(t) is a raised cosine (or the root of a
raised cosine) with roll-off factor α = 0.
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which increases with M. Unfortunately, this result is achieved at the price of a reduction in energy
efficiency as M increases.

�

Example 3.5.3 Consider 64-QAM signaling. This modulation format exploits a signal space with
D = 2 dimensions to transmit one of M = 64 points in each symbol interval, so that (see (3.44)):

Db = D

log M
= 1

3
dimensions/bit. (3.94)

Then (3.46) implies that the minimum spectral occupancy at RF is:

Bmin = NbRb

2
= Rb

6
. (3.95)

To show that this result makes sense, let us select the signal p(t) given by (3.78) as a modulator
impulse response. This implies that the bandwidth B of the corresponding RF signal is given by
(see (3.84)):

B = 1 + α

2Ts

= Rb

6
(1 + α) ≥ Bmin, (3.96)

where α is the roll-off factor. In this case B takes on its minimum value (Bmin in (3.95)), when α = 0.
�

3.6 Continuous Phase Modulation

3.6.1 Signal Model

A CPM signal can be generated, in principle, by keying a voltage controlled oscillator (VCO), having
a free-running frequency of fc Hertz, with the baseband ASK signal:

x(t, c) =
+∞∑

k=−∞
ck p(t − kTs), (3.97)

characterized by the channel symbol sequence {ck} (collected in the vector c), the real pulse p(t),
called the modulator frequency response, and the symbol interval Ts . The VCO then generates the RF
signal:

sRF (t, c) =
√

2Es

Ts

cos(2πfct + φ(t, c)), (3.98)

where

φ(t, c) � 2πh

∫ t

−∞
x(τ, c) dτ, (3.99)

Es represents the average energy per symbol interval, fc is the carrier frequency and h is a real
positive parameter, characterizing the VCO behavior and known as the modulation index. The value
of h is usually selected to be a rational fraction and, in this case, h can be expressed as:

h = 2z

p
, (3.100)

where z and p are relatively prime integers.
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From (3.98) and (3.99) it is easy to see that: (a) the complex envelope of sRF (t, c) is given by:

s(t, c) =
√

2Es

Ts

exp (jφ(t, c)); (3.101)

(b) the envelope senv (t, c) (see (3.8)) is strictly constant; and (c) the average transmit power at RF is
PRF = Es/Ts , so that the average power Ps associated with s(t, c) (3.101) is:

Ps = 2PRF = 2Es

Ts

. (3.102)

Therefore, (3.98) and (3.101) can be rewritten, in more compact form, as:

sRF (t, c) = √
Ps cos(2πfct + φ(t, c)) (3.103)

and
s(t, c) = √

Ps exp (jφ(t, c)), (3.104)

respectively.
Before analyzing the mathematical structure of a CPM signal in detail, we make some observa-

tions. First, we note that the transformation of the ASK signal x(t, c), which can contain first-order
discontinuities, in the phase φ(t, c), involves integration. This turns x(t, c) into a (possibly piecewise)
continuous signal or phase response φ(t, c) and explains the terminology adopted for the wide class of
signals described by the relationships (3.98) and (3.99). It is also worth noting that, unlike PAM mod-
ulations, the dependence of sRF (t, c) (3.103), or equivalently of its complex envelope s(t, c) (3.104),
on the channel symbols {cn} is nonlinear.

In the following we make the following assumptions:

1. The channel symbols {ck} belong to the M-ary alphabet {±1, ±3, . . . , ±(M − 1)} and are generated
from the input information symbols {dk} according to the relationship:

ck = 2dk − (M − 1). (3.105)

2. The support of the frequency pulse p(t) is the interval [0, LTs], where the real positive parameter
L is the so-called correlation length.

3. The signal p(t) is characterized by an overall area equal to 1/2, that is:∫ LTs

0
p(t) dt = 1

2
. (3.106)

Let us rewrite the phase signal φ(t, c) in a different way, exploiting these assumptions. Substituting
(3.97) into (3.99) produces:

φ(t, c) = 2πh

+∞∑
k=−∞

ck

∫ t−kTs

−∞
p(τ) dτ. (3.107)

We now define the waveform:

q(t) �
∫ t

−∞
p(τ) dτ, (3.108)

called the modulator phase response, and note that, for the above properties of p(t), we have q(t) = 0
for t < 0 and q(t) = 1/2 for t ≥ LTs , as illustrated in the following example.
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Example 3.6.1 Frequent choices for p(t) are:

pL-REC(t) � 1

2LTs

rect

(
t − LTs/2

LTs

)
(3.109)

and

pL-RC(t) � 1

2LTs

[
1 − cos

(
2πt

LTs

)]
rect

(
t − LTs/2

LTs

)
. (3.110)

In the first case p(t) is a rectangular (REC) pulse having a duration equal to L symbol intervals, and in
the second it is a pulse with a raised cosine (RC) shape having the same duration. The corresponding
phase responses qL-REC(t) and qL-RC(t) are then obtained as:

qL-REC(t) �
∫ t

−∞
pL-REC(τ ) dτ = t

2LTs

(3.111)

and

qL-RC(t) �
∫ t

−∞
pL-RC(τ ) dτ = t

2LTs

− 1

4π
sin

(
2πt

LTs

)
, (3.112)

respectively, for 0 ≤ t < LTs . The pulses pL-REC(t) and qL-REC(t) are shown in Figure 3.11(a), while
pL-RC(t) and qL-RC(t) are illustrated in Figure 3.11(b). It is interesting to note that: (a) in the L-REC
case, pL-REC(t) (and, then, x(τ, c)) is a discontinuous signal, whereas qL-REC(t) (and, consequently,
φ(t, c)) is piecewise continuous; (b) in both cases the phase response changes over an interval of
duration LTs seconds, at the end of which it reaches the value 1/2.

�

If we now use definition (3.108), equation (3.107) can be rewritten as:

φ(t, c) = 2πh

+∞∑
k=−∞

ck q(t − kTs). (3.113)

pL–REC (t) qL–REC (t)

qL–RC (t)pL–RC (t)

1/2LTs

1/2

1/21/LTs

LTs t

t

LTs

LTs /2 LTs

t

LTs t

(a)

(b)

Figure 3.11 Representation of the frequency and phase responses for L-REC (a) and L-RC
(b) CPM signals.
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This shows that, at an arbitrary time instant t, the phase φ(t, c) is determined in general by the
superposition of an infinite number of replicas of q(t), each weighted by a channel symbol {ck}.
However, as shown by Example 3.6.1, the replicas {q(t − kTs)} do not have finite duration. In fact,
the kth term 2πhckq(t − kTs) starts to contribute to φ(t, c) at the instant t = kTs and never vanishes
as time evolves, since it reaches the constant value:

2πh · ck · 1

2
= πhck (3.114)

starting at the instant t = (k + L)Ts .
To acquire a deeper understanding of the structure of a CPM signal, let us now assume that

transmission starts at t = 0 (so that ck = 0 for k < 0) and focus on what happens in the nth
symbol interval, that is, in the time interval [nTs, (n + 1)Ts), with n ≥ 0. Then equation (3.113)
simplifies to:

φ(t, cn) = 2πh

n∑
k=0

ck q(t − kTs) (3.115)

with cn � [c0, c1, . . . , cn]T , since the future symbols {ck, k = n + 1, n + 2, . . . } do not provide any
contribution. The RF signal sRF (t, c) (3.103) then becomes:

sRF (t, cn) = √
Ps cos

(
2πfct + 2πh

n∑
k=0

ck q
(
t − kTs

))
. (3.116)

This shows that, given the carrier frequency fc, the complete structure of the the CPM signal sRF (t, c)
is defined by: (a) the modulation index h; (b) the cardinality M of the channel symbol alphabet; and
(c) the phase response q(t), or, equivalently, the frequency response p(t) of the digital modulator.

In the following, the impact of each of these parameters on the CPM characteristics will be assessed.
Our discussion of this problem starts from the analysis of the characteristics of p(t) and, in particular,
of its duration, that is, of its correlation length L. From previous considerations about q(t) it can be
easily seen that L represents the number of symbol intervals over which each symbol of the sequence
{ck} causes a time variation of the phase φ(t, cn) of (3.115) or, equivalently, determines a variation
in the instantaneous frequency of the VCO. In fact, as already discussed, for any k, in the interval
[kTs, (k + L)Ts] the symbol ck , induces a phase variation in sRF (t, cn) (3.116), with the final value of
this variation being πhck . This value persists for t > (k + L)Ts because of the properties of q(t) and
the structure of φ(t, c). For this reason, it is reasonable to partition the CPM signals into two large
classes. The first class consists of the so-called full-response modulations, that is, all the signals having
L = 1, whereas the second embraces the so-called partial-response modulations, all characterized by
L > 1. Let us now analyze in detail how the structure of φ(t, cn) (3.115) simplifies in these two cases.

3.6.2 Full-Response CPM

3.6.2.1 Phase Structure in a Full-Response CPM

Let us consider the expression (3.115) (in the time interval [nTs, (n + 1)Ts)) for φ(t, cn), under the
assumption that L = 1. In this case, only the present symbol cn produces a time-varying contribution
to φ(t, cn), since, for t ≥ nTs , all the past symbols, {ck, k = n − 1, n − 2, . . . }, yield a constant phase
shift. Then we have:

φ(t, cn) = θn + 2πhcn q(t − nTs), (3.117)

for nTs ≤ t < (n + 1)Ts , where:

θn � πh

n−1∑
k=0

ck (3.118)
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is the so-called phase state of the full-response modulator. The RF signal (3.116) can then be
written as:

sRF (t, cn) = √
Ps cos(2πfct + θn + 2πhcn q(t − nTs)) (3.119)

in the same time interval. Equation (3.117) shows that, in the nth signaling interval, the signal phase
depends on the pair (θn, cn), i.e. on the phase state θn (summarizing the cumulative phase history),
and on the present symbol cn. We also note that (3.118) can be rewritten as:

θn = θn−1 + πhcn−1 (3.120)

for n ≥ 1, assuming, for simplicity, θ0 = 0. This recursive expression represents the state equation of
the digital modulator, and, since phases differing by a multiple of 2π are physically indistinguishable,
can be rewritten as15:

θn = R2π [θn−1 + πhcn−1 ], (3.121)

where R2π [· ] is the “modulo 2π operator” defined by (see (3.60)):

R2π [θ] � θ −
⌊

θ

2π

⌋
2π. (3.122)

We also note that, if h is a rational number (see (3.100)), θn (3.118) can be put in the form:

θn =
(

2π

p

)
·
(

z

n−1∑
k=0

ck

)
, (3.123)

in which the second factor takes on integer values only. Therefore, the phase state is always a multiple
of 2π/p, and, if the phase values are restricted to [0, 2π), it can take on only the p distinct values of
the set:

� �
{

0,
2π

p
, 2

2π

p
, . . . , (p − 1)

2π

p

}
. (3.124)

This shows that the CPM modulator can be described as an FSSM with Ns = p states, its state being
expressed by θn. Its state and output equations are given by (3.121) and (3.119), respectively. In
addition, its time evolution can be represented by a p-state trellis diagram. Note that: (a) the trellis
structure depends on M and h, but is independent of the shape of p(t); (b) the state can also be
represented by the integer parameter:

xn � θn

p

2π
(3.125)

taking on values in the set {0, 1, . . . , p − 1}, so that (3.121) can be represented as:

xn = Rp[xn−1 + zcn−1], (3.126)

involving integer quantities only. If the present state of the FSSM in the nth symbol interval is
defined as:

�n � xn, (3.127)

then the signal s(�n, cn; t − nTs) of (3.2), for a full-response CPM signal (see (3.101), (3.117) and
(3.125)) is given by:

s(�n, cn; t − nTs) = √
Ps exp

[
j

(
2π

p
�n + 2πhcn q

(
t − nTs

))]
(3.128)

for nTs ≤ t < (n + 1)Ts .

15 The mod 2π reduction is applicable to all the expressions defining the phase of a sinusoidal oscillation, even if
not always indicated in an explicit fashion.
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Let us now analyze the trellis structure for a specific subclass of CPM full-response signals.

Example 3.6.2 The state diagram and state trellis of any binary full-response CPM modulation having
h = 1/2 are shown in Figure 3.12 (the signals labeling each state transition have been omitted for
simplicity). Note that: (a) for z = 1 and p = 4, we have Ns = 4 distinct states, corresponding to the
four phase states {0, π/2, π, 3π/2}; (b) in this case (3.123) becomes:

θn = R2π

[
π

2
·

n−1∑
k=0

ck

]
. (3.129)

Since the symbols {ck} are odd numbers, the sum in (3.129) takes on odd (even) values if n is odd
(even). For this reason, if θ0 = 0, then θn ∈ {0, π} ({π/2, 3π/2}) for even (odd) n, as exemplified by
Figure 3.12(b).

�

3.6.2.2 Some Specific Examples of Full-Response CPM

An important class of full-response signals consists of all 1-REC modulations, also known as
continuous-phase frequency shift keying (CPFSK) modulations. We then have q(t) = q1-REC(t) (see
(3.111)), so that (3.117) gives:

φ(t, cn) = θn + πhcn

t − nTs

Ts

(3.130)

for nTs ≤ t < (n + 1)Ts . Then the instantaneous frequency fn(t) of the CPM signal in the nth signaling
interval is given by:

fn(t) � fc + 1

2π

d

dt
φ(t, cn) = fc + h

2Ts

cn (3.131)

and, consequently, is constant and depends linearly on cn. For this reason, a 1-REC signal is a
frequency shift keying (FSK) signal with spacing between adjacent tones of h/Ts .

The best-known form of the CPFSK class is the so-called minimum shift keying (MSK),
characterized by M = 2 and h = 1/2 [285]. Thus, MSK is a binary continuous-phase FSK with
fn ∈ {fc ± 1/(4Ts)}, so that the tone spacing is equal to 1/(2Ts) = Rs/2. It can be proved that
this value is the minimum spacing ensuring, in a binary FSK, the use of a coherent receiver for
orthogonal signals.

3.6.2.3 Phase Tree and Phase Cylinder

A useful tool for understanding the structure of the phase φ(t, cn) (3.117) of a full-response CPM
signal is the so-called phase tree. This tree represents the possible trajectories of φ(t, cn) originating
from a common node for t = 0 (usually, corresponding to θ0 = 0) for all possible values of cn. In
this diagram, any trajectory, extending from t = 0 to t = nTs , is a continuous curve and is uniquely
determined by a sequence {ck, k = 0, 1, . . . , n − 1} of symbols. This symbol sequence causes φ(t, cn)

to evolve from the initial value θ0 = 0 to the final value θn = πh
∑n−1

k=0 ck (see (3.118)). The phase
trees for binary 1-REC and 1-RC signals are shown in Figure 3.13.

The phase tree cannot account for the identity of phase trajectories differing by multiples of 2π .
Actually, such trajectories, although appearing distinct in a planar representation, correspond to the
same signal sRF (t, cn) (3.119). For this reason, a more appropriate representation of phase trajectory
is the so-called phase cylinder, which is generated by wrapping the plane of the phase tree around
a cylinder in such a way that the straight lines corresponding to φ = 0 and φ = 2π coincide. The
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Figure 3.12 State diagram (a) and trellis diagram (b) for a full-response binary CPM with h = 1/2.

cylinder axis then indicates the direction of the evolution. From an analytical viewpoint, generating a
phase cylinder means producing a three-dimensional representation of the curves defined by zx(t, cn) �
sI (t, cn)/

√
Ps = cos[φ(t, cn)] and zy(t, cn) � sQ(t, cn)/

√
Ps = sin[φ(t, cn)] as time evolves, for any

possible cn. The phase cylinder associated with the tree of Figure 3.13(a) for the case h = 1/2
(corresponding to MSK) is illustrated in Figure 3.14.
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Figure 3.13 Phase trees for binary 1-REC (a) and 1-RC (b) signals.

3.6.3 Partial-Response CPM

3.6.3.1 Phase Structure in a Partial-Response CPM

Similarly to what we have done with full-response signals, we focus again on the expression for
φ(t, cn) in (3.115), in the nth signaling interval, nTs ≤ t < (n + 1)Ts , under the assumption that
L > 1. Within this interval, the time-varying part of φ(t, cn) depends not only on cn, but also on
the L − 1 previous symbols, that is, on the set {cn−(L−1), cn−(L−2), . . . , cn−1}, since each channel
symbol causes a phase variation over L consecutive symbol intervals. Then (3.115) can be written in
the form:

φ(t, cn) = θn + 2πh

n∑
k=n−(L−1)

ck q(t − kTs), (3.132)

where

θn � πh

n−L∑
k=0

ck (3.133)
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Figure 3.14 Representation of the MSK phase cylinder over eight consecutive symbol intervals.
All the phase trajectories originate from the initial point P.

is the phase state of the partial-response modulator. Thus, in the nth symbol interval, the signal
phase depends not only on (θn, cn), as in the full-response case, but also on the vector cn−1

n−(L−1) �
[cn−(L−1), cn−(L−2), . . . , cn−1]T of symbols, which defines the so-called correlative state of the CPM
modulator. This state can be represented as a nonnegative integer number σn. In fact, the bipolar
symbol cn can be represented by the unipolar symbol dn (see (3.105)), dn = (cn + M − 1)/2 belonging
to the M-ary alphabet {0, 1, . . . , M − 1}, so that, if we define:

σn � dn−(L−1) + dn−(L−2) · M + . . . + dn−1 · ML−2, (3.134)

then σn ∈ {0, 1, . . . ,ML−1 − 1}.
It is of interest to note the following:

1. Equation (3.132) can also be rewritten as:

φ(t, c) = θn + γ (t − nTs, σn, cn) (3.135)

for nTs ≤ t < (n + 1)Ts , where

γ (t − nTs, σn, cn) �
0∑

k=−(L−1)

cn+k q(t − kTs − nTs). (3.136)

2. As in the full-response case, equation (3.133) can be put in a recursive form given by:

θn = R2π [θn−1 + πhcn−L] (3.137)

for n ≥ L, or, equivalently, as:
xn = Rp[xn−1 + z cn−L], (3.138)

where xn � θn (p/2π) (see (3.125)).
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3. If h is a rational fraction (see (3.100)), (3.133) can be rewritten as:

θn = 2π

p
z

n−L∑
k=0

ck,

showing that θn can take only the p distinct values of the set � (3.124). Therefore, the FSSM
describing a partial-response modulator is characterized by a state defined by the ordered pair
(θn, σn), which can take on, in each signaling interval, one of Ns = p · ML−1 possible values. The
state equation of this FSSM consists of two parts, the first referring to the transition θn → θn+1
and expressed by (3.137), the second given by:

σn+1 = σn − dn−(L−1)

M
+ dn · ML−2 (3.139)

since the transformation of cn−1
n−(L−1) = [cn−(L−1), cn−(L−2), . . . , cn−1]T into cn

n−(L−2) = [cn−(L−2),

cn−(L−1), . . . , cn]T requires the removal of the first element in the vector cn−1
n−(L−1), a single step

leftward shift and the insertion of cn as last element.
4. If we refer to the baseband signal generated by the CPM modulator in the n-symbol interval (3.2),

the output equation of the FSSM can be expressed as (see (3.101) and (3.135)):

s(�n, cn; t − nTs) = √
Ps exp

[
j

(
2π

p
xn + γ

(
t − nTs, σn, cn

))]
, (3.140)

where the integer parameter:
�n � σn + xn · ML−1, (3.141)

whose values belong to the set {0, 1, . . . , Ns − 1}, represents the overall state of the FSSM.

Let us now focus on a specific partial-response format.

Example 3.6.3 The trellis diagram for binary CPM signaling with L = 3 and h = 1/2 is illustrated in
Figure 3.15. Note that, for p = 4, M = 2 and L = 3, the overall number of states is Ns = 4 · 22 = 16;
each state is defined by the triple (θn, cn−2, cn−1) (with θn ∈ {0, π/2, π , 3π/2}), admitting the integer
representation �n (3.141).

�

3.6.3.2 Gaussian FSK

An important class of partial-response CPM signals consists of the Gaussian-filtered FSK (GFSK)
signals. These are characterized by the frequency response:

pGFSK (t) � pCPFSK (t) ⊗ hG(t), (3.142)

where

pCPFSK (t) = 1

2Ts

[u(t) − u(t − Ts)] (3.143)

is the frequency response of CPFSK (corresponding to pL-REC(t) (3.109) with L = 1) and:

hG(t) = B

√
2π

ln 2
exp

(
−2π2

ln 2
B2t2

)
(3.144)
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Figure 3.15 Trellis diagram of binary CPM signaling with L = 3 and h = 1/2.

is the impulse response of a low-pass Gaussian filter having the frequency response:

HG(f ) = exp

[
− ln 2

2

(
f

B

)2
]

(3.145)

and 3-dB bandwidth B.
Substituting (3.143) and (3.144) into (3.142) leads to:

pGFSK (t) = 1

2Ts

[
Q

(
t − Ts

σ

)
− Q

(
t

σ

)]
, (3.146)

in terms of the Gaussian Q function Q(x) (see Appendix F), with σ �
√

ln 2/(2πB). Figure 3.16
shows the shape of pGFSK (t) for four distinct values of the normalized bandwidth BTs . Note that, on
the one hand, if BTs → +∞, pGFSK (t) approaches the rectangular pulse pCPFSK (t) (3.143). On the
other hand, for finite values of BTs , pGFSK (t) is a continuous function and has an infinite duration.
In practice, for a given value of BTs , it is possible to find a proper value of the parameter L such that
the interval centered over t = Ts/2 and having duration LTs contains most of the energy of pGFSK (t).
In other words, pGFSK (t) is always truncated16 in a symmetrical fashion with respect to its center, so
that finding a finite value of the correlation length L affects only negligibly the characteristics of the
transmitted signal.

16 This truncation must be always followed by a renormalization, so that the truncated pulse satisfies (3.106).
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Figure 3.16 Representation of the impulse response pGFSK (t) (3.142) for BTs = 0.1, 0.2, 0.3 and
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Table 3.1 Spectral occupancy of MSK and three distinct GMSK
formats

B1−ε/Rb 90% 99% 99.9% 99.99%

0.2 GMSK 0.52 0.79 0.99 1.22
0.25 GMSK 0.57 0.86 1.09 1.37
0.5 GMSK 0.69 1.04 1.33 2.08
MSK 0.78 1.20 2.76 6.00

Note that a reduction in the bandwidth B broadens pGFSK (t) and, consequently, reduces its rate of
change. This results in slower fluctuations in the time evolution of φ(t, cn) (3.115) and, consequently,
in a narrowing of the power spectrum of sRF (t, cn) (3.116). The penalty for this is, however, usually
an increase in receiver complexity.

A specific case of GFSK signals is the so-called Gaussian-filtered MSK (GMSK)17 [286], char-
acterized, like MSK, by a binary alphabet (M = 2) and modulation index h = 1/2. GMSK signals
exhibit good spectral efficiency. This property is shown by the numerical results listed in Table 3.1,
summarizing some values of the RF bandwidth B1−ε , normalized with respect to the bit rate Rb,
for MSK and for three GMSK formats (each corresponding to a specific value of the normalized
bandwidth BTs for the Gaussian filter). Note that, as ε decreases, the GMSK bandwidth increases
much more slowly than that of MSK. This is due to the fact that the rate of decrease of the spectral
side lobes in GMSK is appreciably larger than for MSK. Further numerical results about the spectral
occupancy of GMSK and MSK can be found in [286].

3.6.3.3 Phase Tree and Phase Cylinder

Even in the case of partial-response signals, the family of possible phase trajectories (see (3.115))
emerging from a common node at t = 0 in their planar representation leads, as in the full-response

17 GSMK signaling has been adopted, for its constant envelope and spectral compactness, in the GSM standard
[6, 57], defining the second generation of cellular phone systems. In the GSM system the normalized bandwidth
BTs of the Gaussian filter is set to 0.3 and the transmission speed to 270.833 kbit/sec.
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Figure 3.17 Phase tree for binary 3-RC CPM modulation.

case, to the so-called phase tree. This is shown in Figure 3.17, which depicts the phase tree18 for
binary 3-RC CPM. Note that, for a given correlation length L, two distinct phase trajectories splitting
from a common state �n at t = nTs , because of a different choice for the value of cn, cannot merge
before t = (n + L + 1)Ts . In other words, merging requires that at least L + 1 symbol intervals have
elapsed, since the time-varying contribution of cn lasts L symbol intervals.

As in the full-response case, a more appropriate representation of the phase trajectories is provided
by the so-called phase cylinder. This cylinder for a binary 3-RC CPM with h = 1/2 is shown in
Figure 3.18.

3.6.4 Multi-h CPM

As noted earlier, MSK [285] is a special case of CPFSK with modulation index h = 1/2. When
optimally detected, it has the same error rate performance as QPSK. In AWGN channels most of the
binary CPM formats discussed above have essentially the same performance under optimal detection.
Because of their inherent memory and trellis structure, the question then arises as to whether better
performance is possible. It was noted that the performance of MSK requires detection over two
bit intervals and that partial-response CPM formats require L + 1 intervals to achieve their best
performance. Early work by W. Osborne and M. Luntz [287] showed that observing CPFSK over n
bit intervals could lead to improved detection performance. They found that when using the optimal
modulation index of h = 0.715 an improvement in error performance of almost 2 dB can be achieved
by detecting each bit over an observation interval of 3–5 bit periods.

All of the CPMs have a trellis representation. The various full-response formats have trellises that
have a forced merge every two intervals. On the other hand, the various partial-response formats are
characterized by trellises that have forced merges only every L + 1 intervals, where L is the correlation
length. However, even when full advantage is taken of the trellis structure in their decoding, only

18 In the generation of each trajectory, the modulator has been initialized to the state �0 = 0, corresponding to the
choice θ0 = 0, c−1 = −1 and c−2 = −1.
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Figure 3.18 Phase cylinder for binary 3-RC CPM with h = 1/2. The representation is over eight
consecutive symbol intervals. Note that all the phase trajectories originate from P.

very modest performance gains are possible. This is discussed in some detail in [288]. In 1975 [289],
H. Miyakawa et al. described the cyclic use of a small set of modulation indexes {hi}Ki=1, where
K is an integer, to provide increased distance in the phase tree of CPFSK and thereby improve
error performance. Their scheme allowed for irrational values of the indexes, which required a tree
description with an ever expanding set of nodes or states and was, therefore, not of great practical
value. This problem was solved in [290], which proposed the use of a finite set of modulation
indexes, {h1, h2, . . . , hK }, but restricted to being rational fractions of the form li/p and subject to
the condition that:

K∑
i=1

hi = 1

p

K∑
i=1

li = 1. (3.147)

The resulting CPM formats are known as multi-h signaling schemes. Although not strictly necessary,
almost all such schemes further restrict the indexes to li/p < 1. This ensures a continuous average
power spectrum with no spectral lines [288] and a compact power spectrum having a main lobe of
approximately the same width as MSK.

From the above discussion, we may now write a multi-h CPM signal in the form:

sRF (t, cn) =
√

2Es

T
cos

(
2πfct + 2π

n∑
k=0

hk′ck q
(
t − kTs

))
(3.148)

for nTs ≤ t ≤ (n + 1)Ts , where the notation k′ implies k′ = RK [k] and thus a cyclic use of the
modulation indexes in the defined set. We may then write the phase function for a multi-h signal in
the nth signaling interval (i.e., for nTs ≤ t ≤ (n + 1)Ts) as:

φ(t, c) = 2π

n∑
k=0

hk′ckq(t − kTs) = 2π

p

n∑
k=0

lk′ckq(t − kTs) (3.149)
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using the same notation as in previous subsections. In the special case of 1-REC signaling, the phase
pulse q(t) takes the linear form given by (3.111) and may be written in the nth interval as:

q1-REC(t) = t − nTs

Ts

. (3.150)

We may then write the phase of the modulated signal in the form:

φ(t, c) = θn + πh
n
′ cn

t − nTs

Ts

= θn + π
ln′
p

cn

t − nTs

Ts

, (3.151)

where the phase state θn is given by:

θn = R2π

[
πln′
p

n−1∑
k=0

ck

]
(3.152)

and n′ = RK [n] represents the cyclic usage of the K modulation indexes.
It can be shown [288, 290] that the multi-h signaling format as defined above delays any forced

merging in either the state or the phase trellis by up to K + 1 signaling intervals, when the set of
modulation indexes satisfy condition (3.147). The multi-h signaling structure can in fact be regarded
as a form of coded modulation and it can be shown [290] that, provided that it is decoded optimally
(usually through the use of the so-called Viterbi algorithm [27]), a substantial coding gain (see Section
6.2.1.6) can be achieved compared to CPM formats using a single modulation index. For binary
formats, more than 3 dB of performance gain can be achieved using a set of K = 3 modulation
indexes compared to BPSK or MSK. Even higher gains can be achieved by using K > 3 indexes, but
the complexity of the decoder increases accordingly.

Finally, it is possible to extend the multi-h format to partial-response CPM [288]. However, this
has rarely been done due to the increased complexity of the resulting decoder. Full-response multi-
h modulation requires either p or 2p states, depending on whether

∑K
k=1 li is even or odd. When

a partial-response format is used, it can be shown that the resulting decoding algorithm requires
as many as 2pML−1 states, which even for M = 2 quickly becomes large. Moreover, the partial-
response format tends to cause a loss of coding gain, and as a result there has never been much
interest in partial-response multi-h modulation. The primary advantage of a partial-response format is
the resulting spectral compactness.

3.6.5 Alternative Representations of CPM Signals

The number of different signals generated by a CPM modulator in a single interval is proportional to
ML and, consequently, may be very large. This family of signals can be represented by an orthonormal
basis, as discussed in Section 3.3. The use of the Gram–Schmidt procedure (see Appendix D.1.2)
to obtain this basis was proposed in [291] (and adopted also in [292]), with the goal of selecting a
small number of orthonormal functions to represent the CPM signal space with good accuracy. Other
approaches to the problem of determining an efficient basis for signal representation are based on
sampling functions [293], Walsh functions [294], a set of sinusoids with regularly spaced frequencies
[291], and the principal components method [295].

A different approach involves representing a CPM signal as a superposition of multiple PAM
waveforms. The theoretical basis for representing any binary CPM waveform as a finite sum of PAM
signals, each characterized by a data-independent time-limited pulse, was laid by P. A. Laurent in 1986
in his seminal publication [296]. His result, known as Laurent’s decomposition of CPM signals, has
been extended to multilevel single-h CPM in [297] and to multilevel multi-h CPM in [298] (moreover,
the case of integer modulation indexes has been investigated in [299]). The Laurent decomposition
has two major drawbacks: (a) the PAM components of a CPM signal are generally not mutually
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independent; (b) when a small number of PAM components are used to approximate a CPM signal,
the approximation is not optimal in the minimum mean squared error (MMSE) sense. For this reason,
a different PAM representation based on an MMSE approach to approximating CPM signals has
been proposed in [300]. This leads to the generation of mutually independent components in the
PAM expansion, at the price, however, of having some pulses with infinite duration. More recently,
an alternative approach to PAM representation as been proposed in [301], where it is shown that
any CPM signal can be written as the superposition of 2L−1 data-dependent waveforms over each
symbol interval.

Signal generation in a CPM transmission can also be interpreted from a totally different perspective,
as described by B. E. Rimoldi in 1988 [302]. He showed that any single-h CPM modulator can be
decomposed into the cascade of a continuous phase encoder (CPE) and a memoryless modulator (MM)
both having important properties. The former is a time-invariant sequential circuit operating over a
specific algebra (usually the ring of integers modulo p, denoted Zp), whereas the latter maps, in a
time-invariant fashion, the CPE output to a finite set of waveforms.

We now focus on some essential results on CPM representations, namely the Laurent representation
for binary single-h CPM and on Rimoldi’s decomposition approach to CPM.

3.6.5.1 Laurent’s Representation of CPM Signals

Full-Response Signals
Let us consider again the expression (3.104) for a complex envelope of a CPM signal and, assuming
that binary full-response signaling is adopted (see (3.117)), rewrite it as:

s(t, c) = √
Psa0,n−1 exp [j2πhcn q(t − nTs)] (3.153)

in the time interval [nTs , (n + 1)Ts), where:

a0,n−1 � exp (jθn). (3.154)

Then if we define the function:

uT (t) =




1 for 0 < t < T

1/2 for t = 0 and t = T

0 elsewhere

(3.155)

representing a rectangular pulse of unit height and duration T seconds, then s(t, c) (3.153), over the
whole time interval, can be written in the form:

s(t, c) = √
Ps

+∞∑
k=−∞

a0,k−1 x(ck, t − kTs) uTs
(t − kTs), (3.156)

where
x(c, t) � exp [j2πhc q(t)] = cos[2πh q(t)] + jc sin[2πh q(t)], (3.157)

since c ∈ {±1} and sin(cz ) = c sin(z) for any z. Similarly, exp (jπhc) = cos(πh) + jc sin(πh) so
that, if sin(πh) = 0 (i.e., if h is not integer19), we have:

jc = exp (jπhc) − cos(πh)

sin(πh)
. (3.158)

19 For the case of integer h, see [297, 299].
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Substituting (3.158) into (3.157) yields, after some manipulation:

x(c, t) = exp (jπhc)
sin[2πhq(t)]

sin(πh)
+ sin{πh[1 − 2 q(t)]}

sin(πh)
. (3.159)

Then, substituting (3.159) in (3.156) yields s(t, c) in the form:

s(t, c) =√Ps

+∞∑
k=−∞

a0,k

sin[2πhq(t − kTs)]

sin(πh)
uTs

(t − kTs)

+√
Ps

+∞∑
k=−∞

a0,k−1
sin{πh[1 − 2 q(t − kTs)]}

sin(πh)
uTs

(t − kTs), (3.160)

since a0,k−1 exp (jπhck) = a0,k (see (3.154)). Finally, putting together the two sums on the RHS of
(3.160) yields:

s(t, c) = √
Ps

+∞∑
k=−∞

a0,k l0(t − kTs), (3.161)

where

l0(t) � sin[2πhq(t)]

sin(πh)
uTs

(t) + sin{πh[1 − 2 q(t − Ts)]}
sin(πh)

uTs
(t − Ts) (3.162)

is the Laurent function [297] of the binary full-response CPM signal. Equations (3.161) and (3.162)
define Laurent’s representation for binary full-response CPM. Note that this expresses CPM as a PAM
having an impulse response l0(t) of duration 2Ts seconds and characterized by the channel symbols
{a0,k}, which are also known as pseudosymbols. These symbols have unit amplitude and are generated
by the recursive expression:

a0,k = a0,k−1 exp (jπhck). (3.163)

For instance, if this representation is applied to MSK, (3.162) yields:

l0(t) = sin

(
πt

2Ts

)
u2Ts

(t), (3.164)

expressing a half cycle of a sinusoidal signal of frequency 1/(4Ts), whereas (3.163) gives:

a0,k = a0,k−1 exp
(
j

π

2
ck

)
, (3.165)

so that, if a0,k−1 is real (imaginary), then a0,k is imaginary (real). For this reason, the in-phase
component sI (t, c) and the quadrature component sQ(t, c) of an MSK signal consist of a series
of sinusoidal pulses, but there is a time offset of Ts seconds between them. Hence, MSK can be
represented as a form of offset QPSK characterized by a half-sinusoidal signaling pulse [285].

Partial-Response Signals
Laurent’s representation for binary partial-response signals generalizes the results above. In fact, it
can be proved that the complex envelope s(t, c) (3.101) of the transmitted signal can be expressed as:

s(t, c) = √
Ps

P−1∑
p=0

+∞∑
k=−∞

ap,k lp(t − kTs), (3.166)
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where P � 2L−1 is the number of constituent PAM signals, lp(t) and ap,k denote the Laurent function
and the kth pseudosymbol, respectively, characterizing the pth PAM signal, with p = 0, 1, . . . , P − 1.
Moreover, it is shown that:

lp(t) =
L−1∏
i=0

g(t + iTs + bp,iLTs), (3.167)

where

g(t) � sin[2πhq(t)]

sin(πh)
uLTs

(t) + sin{πh[1 − 2 q(t − LTs)]}
sin(πh)

uLTs
(t − LTs) (3.168)

is a pulse lasting for 2LTs seconds, and that the generation of the pseudosymbols is expressed by
P distinct relations. These require, for any integer value of the parameter p ∈ {0, 1, . . . , P − 1}, the
introduction of the binary coefficients {bp,i , i = 0, 1, . . . , L − 1}. A null value is always assigned
to bp,0, while bp,i (i = 1, 2, . . . , L − 1), is defined as the ith bit in the base-2 representation of p,
given by:

p =
L−1∑
i=1

bp,i 2i−1. (3.169)

Given the coefficients {bp,i}, the kth pseudosymbol ap,k of the pth PAM component of (3.166) may
be expressed as:

ap,k = exp

{
jθk + jπh

k∑
m=k−L+1

(
1 − bp,k−m

)
cm

}
(3.170)

with p = 0, 1, . . . , P − 1, thus establishing a nonlinear relationship between ap,k and the channel
symbols {cm, m = k − L + 1, k − L + 2, . . . , k} and the present phase state θk . The characteristic of
nonlinearity can be related, as with full-response signals, to the nonlinear dependence of CPM signals
on the data. It is also worth noting that the sequences {{ap,k}, p = 0, 1, . . . , P − 1} are statistically
dependent, since they all depend on the same channel symbols.

Finally, we note that the pulse lp(t) (3.167), with p = 0, 1, . . . , P − 1, is time-limited to [0, DpTs]
with:

Dp = min
i∈I

{L(2 − bp,i) − i}, (3.171)

where I = {0, 1, . . . , L − 1}, and that the power of the transmitted signal is generally concentrated
in its first PAM component, characterized by the pulse:

l0(t) =
L−1∏
i=0

g(t + iTs), (3.172)

which is the main function in Laurent’s representation [297]. An application of these principles is
given in the following example.

Example 3.6.4 If we apply these results to binary 3-RC signaling with h = 1/2, we have P = 4 and
the Laurent functions are given by:

l0(t) = g(t) g(t + Ts)g(t + 2Ts), (3.173)

l1(t) = g(t) g(t + 4Ts)g(t + 2Ts), (3.174)

l2(t) = g(t) g(t + Ts)g(t + 5Ts), (3.175)

l3(t) = g(t) g(t + 4Ts)g(t + 5Ts), (3.176)
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Figure 3.19 Representation of the Laurent pulses l0(t) (3.173) and l1(t) (3.174) for binary 3-RC
signaling with h = 1/2.

where g(t) is given by (3.168) with q(t) = q3-RC(t) (see (3.112)), and their durations, normalized
with respect to the symbol interval, are D0 = 4, D1 = 2 and D2 = D3 = 1, respectively. The signals
l0(t) and l1(t) are illustrated in Figure 3.19 (note that l2(t) and l3(t) are not shown since they have
negligible energy with respect to the other two pulses). These results show that, as usually happens,
most of the CPM power is captured by its first PAM component.

�

Applications
Generally speaking, alternative representations of the signal alphabet generated by a digital modulator
can be very useful for receiver design. This is particularly apparent for CPM formats, which suffer
from implementation complexity, since the number of modulated waveforms in each signaling interval
depends exponentially on the correlation length L. If a parsimonious representation of this set (i.e., a
representation consisting of a small alphabet of signals) is available, receiver design can be greatly
simplified. More specifically, if we refer to Laurent’s representation of CPM signals, this principle
has been applied to the development of simplified receivers for both AWGN channels [303, 304, 305]
and frequency- selective channels [284, 306]. Finally, it is worth remembering that a similar approach
to simplified detection has also been exploited by resorting to other parsimonious representations of
CPM signals, such as the Gram–Schmidt expansion [291, 292, 306].

3.6.5.2 Rimoldi’s Representation

In his seminal paper [302] Rimoldi proved that an M-ary CPM signal (3.103) characterized by a
modulation index of the form:

h = K

P
, (3.177)

where K and P are relatively prime positive integers, can be rewritten as:

sRF (t, c) = √
Ps cos(2πf1t + ψ̄(t, U)), (3.178)

where

f1 = fc − h

2Ts

(M − 1) (3.179)
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and ψ̄(t, U) are the new carrier frequency20 and information-carrying phase (called the physical tilted
phase), respectively, and U = {Uk} is the modified data sequence whose kth element is defined as:

Uk � ck + (M − 1)

2
∈ {0, 1, . . . , M − 1}. (3.180)

To analyze the structure of ψ̄(t, U) in detail, we focus on the nth signaling interval, that is, on the time
interval [nTs , (n + 1)Ts), and set t = nTs + τ , with 0 ≤ τ < Ts . Then the physical tilted or observable
phase ψ̄(t, U) can be expressed as [302]:

ψ̄(t, U) = ψ̄(nTs + τ, U)

= R2π

[
2πhRP

[
n−L∑
i=0

Ui

]
+ 4πh

L−1∑
i=0

Un−iq(τ + iTs) + W(τ)

]
, (3.181)

where RP [· ] is the modulo P operator (see (3.60)) and:

W(τ) � πh(M − 1)τ/Ts − 2πh(M − 1)

L−1∑
i=0

q(τ + iTs) + πh(L − 1)(M − 1) (3.182)

groups all the data-independent terms. From (3.181) it is easy to see that the signal generated in the
nth symbol interval depends on the data vector:

Xn � [Un, Un−1, . . . , Un−L+1, Vn], (3.183)

where

Vn � RP

[
n−L∑
i=0

Ui

]
∈ {0, 1, . . . , P − 1} (3.184)

expresses the overall contribution to the signal phase due to previous symbols at the symbol times
from 0 to n − L inclusive. For this reason, we can interpret the modulator for the CPM signal (3.178)
as the concatenation of a CPE fed by the data sequence {Uk} and producing Xn, with an MM,
generating the output signal on the basis of the input vector Xn. Note that: (a) the CPE state is defined
by the L-dimensional vector [Un−1, Un−2, . . . , Un−L+1, Vn], so that the number of possible states is
Ns = P · ML−1; (b) the task of the CPE is to update the MM input Xn using the next data digit Un+1
to generate the MM input Xn+1. The update of Vn can easily be accomplished in a recursive fashion,
since21:

Vn+1 = RP

[
n−L∑
i=0

Ui + Un−L+1

]

= RP

[
RP

[
n−L∑
i=0

Ui

]
+ Un−L+1

]

= RP [Vn + Un−L+1]. (3.185)

Equations (3.183) and (3.185) show that the CPE is a linear time-invariant sequential circuit, composed
of a modulo P adder and L delays. Moreover, a comparison of (3.100) with (3.177) shows that, if P is
even, the overall number of states of the CPE is half that characterizing the FSSM model derived in

20 The frequency shift with respect to fc compensates for the offset between the phase ψ̄(t, U) of the new
representation and the phase φ(t, cn) of the old one (3.103).
21 In the following equation we exploit the fact that Rx [y + z] = Rx [Rx [y] + z], for any positive x.
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Figure 3.20 Representation of the physical phase (a) and the physical tilted phase (b) for MSK
over four consecutive symbol intervals.

Section 3.6.3. This result can be related to the different structure of the phase trajectories characterizing
the signal models in these two cases. Such a difference is evidenced by Figure 3.20; part (a) shows
the modulo 2π representation of the phase tree, that is, a plot of the function:

φ̄(t, cn) � R2π [φ(t, cn)], (3.186)

called the physical phase, versus t for all the possible data vectors {cn}, for the MSK format22 over four
consecutive symbol intervals, while part (b) illustrates the MSK physical tilted phase over the same
interval. Note that the MSK physical phase is represented by a four-state23 time-varying trellis, whereas
a two-state time-invariant trellis describes the MSK physical tilted phase. A possible implementation
of the CPM modulator based on (3.178), (3.181), (3.183) and (3.185) is illustrated in Figure 3.21.

It is interesting to note that all time-dependent terms on the RHS of (3.181) depend only on the time
offset variable τ = t − nTs . This implies that the possible phase trajectories {ψ̄(nTs + τ, U)} in any
couple of consecutive symbol intervals will differ only by time translations after an initial transient
(which allows the time-independent, data-dependent term on the RHS of (3.181) to take on all its
possible values modulo 2π , provided that such values are the same in all the subsequent intervals).
In other words, the MM can be described as a time-invariant system.

Applications
Rimoldi’s representation has been shown to be a useful tool for the design of new trellis codes for
CPMs. This is due to the fact that, under some specific assumptions about the number of modulation
levels, the CPE can be interpreted as a linear convolutional encoder over the ring of integers modulo
P [307]. Therefore, the use of modulo-P convolutional encoders appear to be a natural choice for
the design of new trellis coding schemes for CPM; in fact, such encoders are structurally similar to

22 The MSK tree, in the absence of a modulo 2π reduction, is given by Figure 3.13(a), if we set h = 1/2.
23 This is in agreement with what was shown in Example 3.6.2.
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Figure 3.21 CPM transmitter decomposed into the concatenation of a CPE and an MM.

the CPE. Research work in this area for single antennas [308] and ST systems [309] has shown that,
with CPSFK signaling, this encoding approach can lead to a larger reduction in the overall number
of states than other approaches to the combination of other encoder and modulator pairs previously
considered, and, in many cases, to significant additional coding gain.

3.6.6 Data Block Transmission with CPM Signals for Frequency-Domain
Equalization

CPM signaling can be combined with FD equalization, even if the generation of cyclically-extended
blocks of data is based on an algorithm which is quite different from that described in Section 3.5.3
for passband PAM. The signal generation technique we describe has been proposed in [284] and is
summarized by the block diagram of Figure 3.22. In this diagram a binary data stream at rate Rb =
1/Tb bits per second feeds a symbol mapper, associating, in a one-to-one fashion, each group of m
bits with a channel symbol belonging to an M-ary ASK constellation � = {±1, ±3, . . . , ±(M − 1)},
with M = 2m. The channel symbol stream is divided into nonoverlapping blocks, each consisting
of two subblocks, the first of length N − Ncp − K and the second of length Ncp (the parameters K

and Ncp are defined later). Let the vector c(l)
fs � [(c(l)

f )T , (c(l)
s )T ]T denote the resulting lth block, with

c(l)
f � [c(l)

Ncp
, c

(l)
Ncp+1, . . . , c

(l)
N−K−1]T and c(l)

s � [c(l)
N , c

(l)
N+1, . . . , c

(l)
N+Ncp−1]T . This block is cyclically

extended by attaching a cyclic prefix c(l)
p � [c(l)

0 , c
(l)
1 , . . . , c

(l)
Ncp−1]T = c(l)

s to its beginning. Then a

vector c(l)
i � [c(l)

N−K, c
(l)
N−K+1, . . . , c

(l)
N−1]T of K channel symbols, all belonging to �, is generated

by the transmitter via a proper algorithm24 processing c(l)
fs and the symbols of the previous block

in order to ensure the exact cyclicity of the transmitted signal associated with the lth data block.
In other words, through a proper choice of c(l)

i , during the transmission of c(l)
s , the CPM modulator

generates a waveform identical to that produced when sending the prefix c(l)
p , without disrupting the

phase continuity of the transmitted signal at the beginning of c(l)
s . The vector c(l)

i is inserted in c(l)

24 Details are given below.
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Figure 3.22 Block diagram of the transmitter for a communication system employing CPM com-
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Figure 3.23 Structure of the lth transmitted data block in the system shown in Figure 3.22.

between c(l)
f and c(l)

s , producing the overall data block c(l) � [(c(l)
p )T , (c(l)

f )T , (c(l)
i )T , (c(l)

s )T ]T , lasting
NT � Ncp + N symbol intervals. The overall structure of c(l) is illustrated in detail in Figure 3.23.

In the following it is assumed that M = 2 for simplicity (i.e., binary modulation formats are
considered). This choice entails no loss of generality, since the proposed approach can immediately
be extended to higher-order alphabets using the Laurent representation for multilevel CPM of [297].

The data blocks {c(l)}, after parallel-to-series conversion, feed a continuous phase modulator gen-
erating the baseband signal s(t, c) (3.104),25 whose phase φ(t, c) (3.99) is given by:

φ(t, c) �
+∞∑

l=−∞
ϕ(l)(t − lNT Ts, c(l)), (3.187)

where (see (3.113)):

ϕ(l)(t, c(l)) = 2πh

NT −1∑
n=0

c(l)
n q(t − nTs) (3.188)

is the contribution of the lth data block c(l). Note that ϕ(l)(t, c(l)) (3.188) can be simplified as:

ϕ(l)(t, a(l)) = πh

n−L∑
i=0

a
(l)
i + 2πh

n∑
i=n−L+1

a
(l)
i q(t − iTs) (3.189)

25 Here the infinite-dimensional vector c denotes the ordered concatenation of the block sequence {c(l)}.
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with θ(l)
n � R2π [πh

∑n−L
i=0 a

(l)
i ] (see (3.133)) for nTs ≤ t < (n + 1)Ts , with L − 1 ≤ n ≤ NT − 1. This

shows that, for the lth block, the modulator phase ϕ(l)(t, a(l)) in the nth symbol interval is defined
by its overall state �(l)

n (see (3.141)), whose value is determined as the ordered pair (θ(l)
n , σ (l)

n ).
Here, σ (l)

n and θ(l)
n are the modulator correlative state (an integer representation of the symbol vector

(c
(l)
n−1, c

(l)
n−2, . . . , c

(l)
n−L+1), see (3.134)) and the phase state, respectively, in the nth symbol interval of

the lth data block
As stated above, it is important to ensure the property of cyclicity over each data block without

disrupting the phase continuity in the transmitted signal. We note that phase continuity between
consecutive data blocks is guaranteed if and only if, for any l, the last modulator state of block
l − 1 is equal to the first state of block l, that is, �

(l−1)
NT

= �
(l)
0 (see Figure 3.23), whereas the cyclicity

of ϕ(l)(t, a(l)) (with period NTs) over the time interval [lNT Ts , (l + 1)NT Ts] requires that �
(l)
0 = �

(l)
N .

These two constraints lead to the equality:

�
(l)
N = �

(l−1)
NT

, (3.190)

requiring us to force the modulator state at the instant n = N in the lth block to a value coming
from the previous block. The constraint (3.190) can be satisfied by properly adjusting the K channel
symbols of c(l)

i , as shown in the following. To begin, we note that (3.190) is equivalent to:

θ
(l)
N = θ

(l−1)
NT

(3.191)

and
c
(l)
N−k = c

(l−1)
NT −k, (3.192)

with k = 1, 2, . . . , L − 1. Equation (3.192) fixes the value of the last L − 1 symbols of c(l)
i . Then the

remaining K − L + 1 symbols {c(l)
N−K+k, k = 0, 1, . . . , K − L} of c(l)

i (provided that K ≥ L) should
be selected in such a way that (3.191) is satisfied. Since θ

(l)
N can be expressed as (see (3.137)):

θ
(l)
N = θ

(l)
N−K+(L−1) + πh

K−L∑
k=0

c
(l)
N−K+k, (3.193)

the constraint (3.191) can be reformulated as:

πh

K−L∑
k=0

c
(l)
N−K+k = ξl (3.194)

where ξl � θ
(l−1)
NT

− θ
(l)
N−K+(L−1). The phase state θ

(l)
N−K+(L−1) depends on the information data vector

[(c(l)
p )T , (c(l)

f )T ] (i.e., on the data preceding c(l)
i and belonging to the same block), on the phase state θ

(l)
0

at the beginning of the lth data block c(l) and on the last L − 1 symbols of the previous block, since:

θ
(l)
N−K+(L−1) = θ

(l)
0 + πh

L−2∑
k=0

c
(l−1)
NT −(L−1)+k + πh

N−K−1∑
k=0

c
(l)
k . (3.195)

Then, given all the state/symbol information about block l − 1, the remaining K − L + 1 unknown
symbols of c(l)

i should satisfy equation (3.194). We note that, if the unavoidable phase ambiguity
of 2π is taken into account, the phase state difference ξl in (3.194) can take on p equally spaced
values belonging to the interval [−((p − 1)/2)2π/p, (p/2)2π/p]. Since h = 2z/p (see (3.100)) and
c(l)
n ∈ {−1, +1}, it is not difficult to infer that at least one solution to (3.194) exists if z(K − L + 1) ≥

�p/2�, that is, K ≥ �p/2�/z + L − 1, where �x� � min{n ∈ Z|n ≥ x} denotes the so-called ceiling
function. Then, if this inequality is satisfied, a specific symbol pattern of length K − L + 1 satisfying
(3.194) can be stored in a read-only memory for each possible value of ξl at the transmitter.
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Exploiting Laurent’s decomposition for binary CPM signals (see equation (3.166)), s(t, c) can be
represented as the superposition of P linearly modulated digital signals as:

s(t, c) = √
Ps

+∞∑
l=−∞

P−1∑
p=0

NT −1∑
n=0

a(l)
p,n lp(t − nTs − lNT Ts), (3.196)

where P = 2L−1, lp(t) is the pth Laurent pulse and a(l)
p,n is the pth Laurent symbol (belonging to a

proper p-ary constellation �) in the nth interval of the lth data block. From [296] it can be shown that:

a(l)
p,n = exp


jπh

l−1∑
f =−∞

NT −1∑
m=0

c(f )
m +

n∑
m=0

c(l)
m −

L−1∑
k=0

c
(l)
n−kbp,k


 , (3.197)

for n = L − 1, L, . . . , NT − 1, and:

a(l)
p,n = exp


jπh

l−1∑
f =−∞

NT −1∑
m=0

c(f )
m +

n∑
m=0

c(l)
m −

n∑
k=0

c
(l)
n−kbp,k −

L−1∑
k=n+1

c
(l−1)
NT +n−kbp,k


 , (3.198)

for n = 0, 1, . . . , L − 2, where bp,k ∈ {0, 1} is the kth coefficient of the binary decomposition of the
index p, that is, p = ∑L−1

k=1 2k−1bp,k . The signal s(t, c) is transmitted, after RF conversion, over a
communication channel. As in the PAM case (see Section 3.5.3) we assume that: (a) the CIR lasts
Lh symbol intervals and undergoes negligible changes during each transmitted block (quasi-static
channel), so that, during the transmission of c(l), it can be written as h(l)(t); (b) the duration of
the cyclic prefix is not smaller than the overall channel memory (i.e., Lh + L ≤ Ncp ). Under these
hypotheses it can be proved that the useful component of the baseband received signal r(t), because
of its cyclic structure, can be expressed as [284]:

z(t) =
√

Ps

N

+∞∑
l=−∞

P−1∑
p=0

+∞∑
k=−∞

Lp,k H
(l)
k B

(l)
p,k exp

(
j

2πk(t − lNT Ts)

NTs

)
(3.199)

for t ∈ ⋃+∞
l=−∞[lNcpTs, lNT Ts), where H

(l)
k � H(l)(k/NTs), H(l)(f ) is the FCT of h(l)(t), Lp,k �

Lp(k/NTs)/Ts , Lp(f ) is the FCT of lp(t), and B
(l)
p,k is the kth element of the DFT of b(l)

p,N � [b(l)
p,Ncp

,

b
(l)
p,Ncp+1, . . . , b

(l)
p,NT −1]T , that is, of the vector B(l)

p,N � QN b(l)
p,N , where QN = [qn,k] is the N-point

DFT matrix (see Section 3.5.3). In other words, the useful portion of the received signal can be seen,
for each data block, as the sum of P contributions, the pth of which consists of the superposition of
infinite equally-spaced oscillations. Note that the kth oscillation in the pth contribution is characterized
by the complex gain Lp,k H

(l)
k and the frequency fk � k/(NTs) and that B

(l)
p,k = B

(l)
p,k+N for any k, so

that, in principle, a given frequency-domain symbol can be associated with two distinct oscillations.

3.6.7 Power Spectral Density of Continuous Phase Modulations

Unlike passband PAM signaling, no general closed-form expression exists for the power spectrum of
CPM signals. Despite this, T. Aulin and C.-E. Sundberg [288] have shown that, with CPM signaling,
the relationship (3.25) between its average autocorrelation function and the corresponding power
spectrum can be simplified in such a way that computation of the latter from the former can be
accomplished via standard techniques for numerical integration. In this subsection, we first sketch
the derivation of this general result. Then we provide some closed-form expressions referring to the
power spectrum of CPFSK signals. Finally, we provide some meaningful numerical results.
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3.6.7.1 A General Method for the Computation of the CPM Average Power Spectral Density

It is not difficult to prove that CPMs are wide-sense cyclostationary (WSC) signals with period
Tcs = Ts , so that the methodology illustrated in Section 3.4 can be adopted for the evaluation of their
average power spectral density. Before facing the problem of evaluating the average autocorrelation
function Rs(τ) of the CPM complex envelope s(t, c) (3.104) via equations (3.27) and (3.26), it is
important to note that, since Rs(τ) is Hermitian (i.e., Rs(−τ) = R∗

s (τ )), (3.25) can be rewritten as:

Ss(f ) = 2Re

{∫ +∞

0
Rs (τ) exp (−j2πf τ) dτ

}

= 2Re

{∫ LTs

0
Rs (τ) exp (−j2πf τ) dτ +

∫ +∞

LTs

Rs(τ ) exp (−j2πf τ) dτ

}
, (3.200)

so that the knowledge of Rs(τ) is needed only for τ ≥ 0. Hence, in the following, we focus on the
evaluation of Rs(τ) for nonnegative values of τ and, to simplify the analysis, we set:

τ = lTs + εTs, (3.201)

where l is a nonnegative integer and ε is a real number in the interval [0, 1). If we assume that the
sequence {ck} consists of iid symbols, each characterized by the probability:

Pn � Pr{ck = n}, (3.202)

for any n ∈ Ac � {±1, ±3, . . . ,±(M − 1)}, it is not difficult to prove that:

Rs(τ) = Ps

Ts

∫ Ts

0

l+1∏
k=−L+1

g(t − kTs, τ ) dt (3.203)

for τ ≥ 0, where:

g(t − kTs, τ ) � E{exp [j2πh ck d(t − kTs, τ )]}

=
M−1∑

n=−(M−1)
odd n

Pn exp [j2πh n d(t − kTs, τ )] (3.204)

and d(t − kTs, τ ) � q(t + τ − kTs) − q(t − kTs). In general, a closed-form solution to the integral
on the RHS of (3.203) does not exist. Numerical integration techniques can be exploited for the
evaluation of Rs(τ) via (3.203), but, unfortunately, the number of factors in the integrand function
in this expression becomes infinite as τ → ∞, since l → ∞ (see (3.201)). Note that this problem
cannot be neglected because of the need to compute the second integral in (3.200) in the evaluation
of Ss(f ); however, the problem can be circumvented as follows. It can be proved that, if τ ≥ LTs

(i.e., l ≥ L), then (3.203) can be simplified to:

Rs(τ) = Ps[ψc(jh)]l−Lf (ε), (3.205)

where

ψc(jh) � E{exp (jπhc)} =
M−1∑

n=−(M−1)
odd n

Pn exp (jπhn) (3.206)

is the characteristic function of the channel symbols, and:

f (ε) � 1

Ts

∫ Ts

0
l0(t)l1(t, ε)dt, (3.207)
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with

l0(t) �
0∏

k=1−L

M−1∑
n=−(M−1)

odd n

Pn exp

{
j2πh n

[
1

2
− q

(
t − kTs

)]}
(3.208)

and

l1(t, ε) �
1∏

k=−L+1

M−1∑
n=−(M−1)

odd n

Pn exp [j2πh n q(t + εTs − kTs)]. (3.209)

Note that in equation (3.205) the dependence on l is separated from that on ε, since these parameters
appear in distinct factors. This property can be exploited to rewrite the second integral on the RHS
of (3.200) as:∫ +∞

LTs

Rs(τ ) exp (−j2πf τ) dτ = 1

1 − ψc(jh) exp (−j2πf Ts)

·
∫ (L+1)Ts

LTs

Rs(τ ) exp (−j2πf τ) dτ (3.210)

if |ψc(jh)| (3.206) is strictly less than unity, that is, if h is not integer. Substituting (3.210) in (3.200)
yields the expression:

Ss(f ) =2 Re

{∫ LTs

0
Rs (τ) exp (−j2πf τ) dτ

+ 1

1 − ψc(jh) exp (−j2πf Ts)

∫ (L+1)Ts

LTs

Rs (τ ) exp (−j2πf τ) dτ

}
, (3.211)

which allows the evaluation of Ss(f ), for any noninteger h, via the computation of a couple of integrals,
both involving Rs(τ) in the form (3.203). In this procedure further simplifications can be introduced if
the symbols of the constellation Ac are all equally likely, that is, Pn = 1/M for n = 0, 1, . . . , M − 1
(see (3.202)). In fact, (3.206) and (3.204) simplify to:

ψc(jh) = 1

M

sin(πhM )

sin(πh)
(3.212)

and

g(t − kTs, τ ) = 1

M

sin[2πh M d(t − kTs, τ )]

sin[2πh d(t − kTs, τ )]
, (3.213)

respectively. Then, Rs(τ) (3.203) can be rewritten in the real form:

Rs(τ) = Ps

Ts

∫ Ts

0

l+1∏
k=−L+1

1

M

sin[2πh M (q(t + τ − kTs) − q(t − kTs))]

sin[2πh (q(t + τ − kTs) − q(t − kTs))]
dt, (3.214)

so that (3.211) can be simplified to:

Ss(f ) =2

{∫ LTs

0
Rs (τ) cos(2πf τ) dτ

+ 1 − ψc(jh) cos(2πf Ts)

1 + ψ2
c (jh) − 2ψc(jh) cos(2πf Ts)

∫ (L+1)Ts

LTs

Rs(τ ) cos(2πf τ) dτ

− ψc(jh) sin
(
2πf Ts

)
1 + ψ2

c (jh) − 2ψc(jh) cos(2πf Ts)

∫ (L+1)Ts

LTs

Rs(τ ) sin(2πf τ) dτ

}
, (3.215)
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involving real-valued functions only. If h is integer, we have |ψc(jh)| = 1, so that ψc(jh) =
exp (j2πv) with 0 ≤ v < 1. In this case, exploiting some mathematical results provided in
[310, 311], (3.200) can be obtained in the form:

Ss(f ) =2Re

{∫ LTs

0
Rs (τ) exp (−j2πf τ) dτ + 1

2

[
1 + 1

Ts

+∞∑
k=−∞

δ

(
f − v

Ts

− k

Ts

)

−j cot

(
πTs

(
f − v

Ts

))]∫ (L+1)Ts

LTs

Rs(τ ) exp (−j2πf τ) dτ

}
. (3.216)

This shows the presence of spectral lines at the frequencies {fn � (n + v)/Ts, n = . . . , −1, 0, 1, . . . }
and that these overlap with a continuous component of Ss(f ). The presence of these lines can be
related to the periodic behavior (with period Ts) of Rs(τ) for |τ | ≥ LTs [288].

Note that the numerical method described above for the evaluation of Ss(f ) may yield inaccurate
results (mainly because of the computer approximations in the evaluation of trigonometric func-
tions) when estimating low side lobes [288]. Alternative methods to exactly determine the asymptotic
behavior of the power spectrum are illustrated in [288, 312].

3.6.7.2 CPFSK Average Power Spectrum

Generally speaking, (3.215) does not lead, for a given phase responese q(t), to a closed-form
expression for Ss(f ). The only exception is represented by CPFSK signals, corresponding to a 1-REC
choice for q(t) (see Section 3.6.2). In fact, in this case, it is found that [288]:

Ss,n(f ) = 1

M

M∑
k=1

�2
k(f ) + 2

M2

M∑
k=1

M∑
n=1

�k,n(f ) �k(f ) �n(f ), (3.217)

where

�k(f ) �
sin
{
π
[
f Ts − 1

2 h (2k − 1 − M)
]}

π
[
f Ts − 1

2 h (2k − 1 − M)
] (3.218)

and

�k,n(f ) �
cos(2πf Ts − αk,n) − ψc(jh) cos αk,n

1 + ψ2
c (jh) − 2ψc(jh) cos(2πf Ts)

, (3.219)

with
αk,n � πh(k + n − 1 − M), (3.220)

and ψc(jh) is given by (3.212). Note that, with MSK (M = 2, h = 1/2), (3.217) yields:

Ss,n(f ) = 16

π2

[
cos

(
2πf Ts

)
1 − (4f Ts)

2

]2

. (3.221)

3.6.7.3 Numerical Results

The following considerations are helpful in understanding the qualitative behavior of CPM power
spectra. First, an increase in the modulation index h or in the alphabet cardinality M, given all the
other CPM parameters, produces an increase in the maximum frequency deviation with respect to the
carrier frequency fc, thereby broadening the spectrum of the RF signal. Second, given the frequency
response p(t) (or, equivalently, the phase response q(t)) the bandwidth of a CPM signal reduces as
L increases, since this entails slower variations in the data-carrying phase φ(t, c). Third, for a given
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L, bandwidth containment depends on the regularity of q(t). In particular, it can be proved that,
if q(t) has c continuous derivatives, the power spectral density Ss(f ) asymptotically decreases as
[312, 313, 280]:

Ss(f ) ∼ |f |−2(c+2). (3.222)

Some numerical results are shown in Figures 3.24–3.30, representing the normalized power spectral
density Ss,n(f ) (3.33), for various significant CPM formats. Note that Figures 3.24 and 3.25 were
generated via (3.217)–(3.220), whereas all the other results were obtained by employing (3.214) and
(3.215) and numerical integration techniques.

Figures 3.24–3.27 show Ss,n(f ) for binary and quaternary CPSK signals with different values of h.
These results provide evidence that CPFSK has a regular and compact spectrum for 0 < h < 1. When
h approaches unity, M peaks become visible; for h = 1, these become M spectral lines, deriving from
the double sum in (3.217). When h becomes larger than unity, the spectrum width increases further
and, for these reasons, selecting h < 1 is advisable for practical applications.

The impact of a change in L is demonstrated by Figures 3.28 and 3.29, showing Ss,n(f ) for
binary L-RC and L-REC signals, respectively, characterized by h = 1/2 and L = 1, 2 and 3. Note
that the 1-REC modulation format corresponds to MSK, and the 1-RC one to the so-called sinusoidal
frequency shift keying (SFSK) [314]. Comparing Figure 3.29 with Figure 3.28 shows that the selection
of an L-RC signal enables, all the other signal parameters being equal, better spectral compactness
to be achieved than its L-REC counterpart. This results could also have been foreseen using (3.222),
establishing that, asymptotically:

Ss(f ) ∼ |f |−4 (3.223)

for an L-REC signal, since c = 0, whereas:

Ss(f ) ∼ |f |−8 (3.224)

for an L-RC signal,since in this case c = 2.
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Figure 3.24 Normalized PSD Ss,n(f ) for binary CPFSK with h = 0.5, 0.75 and 0.95.
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Figure 3.25 Normalized PSD Ss,n(f ) for binary CPFSK with h = 1.05, 1.25 and 1.5.
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Figure 3.26 Normalized PSD Ss,n(f ) for quaternary CPFSK with h = 0.25, 0.5, 0.75 and 0.95.

Finally, Figure 3.30 shows Ss,n(f ) for the GMSK signals characterized by a normalized bandwidth
BTs (of the modulator Gaussian filter) equal to 0.1, 0.2 and 0.3. In this case, in the computation of the
power spectrum via (3.214) and (3.215), the duration of p(t) (3.146) has been truncated26 to L = 10,
5 and 4 symbol intervals for BTs = 0.1, 0.2 and 0.3, respectively, following the indications provided
by Figure 3.16.

26 The center of the truncation interval corresponds to t = Ts/2.
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Figure 3.27 Normalized PSD Ss,n(f ) for quaternary CPFSK with h = 1.05, 1.25 and 1.5.
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Figure 3.28 Normalized PSD Ss,n(f ) for binary L-RC with h = 0.5 and L = 1, 2 and 3.

3.7 OFDM

3.7.1 Introduction

In wireless systems, as discussed in Chapter 2, the communication channel can distort both the phase
and amplitude of the transmitted signal, appreciably modifying its shape. As illustrated in Chapter 6,
for single-carrier (SC) communication techniques, reliable reception could then require the use of
very complex detection algorithms. In principle, to simplify detection in these scenarios, frequency
division multiplexing (FDM) can be adopted. To understand the implications of this choice, consider
the channel to be static within the digital signaling time, but causing appreciable amplitude distortion
over the available frequency band, having central frequency fsc and bandwidth Bsc . In this case, any SC
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Figure 3.30 Normalized PSD Ss,n(f ) for GMSK with BTs = 0.1, 0.2 and 0.3.

modulation, whose spectrum occupies all the available bandwidth, undergoes appreciable distortion.
To circumvent this problem an FDM technique can be applied, which splits the available bandwidth
into Nmc subbands or subchannels. Let fmc,i denote the center frequency of the ith subchannel, with
i = 0, 1, . . . , Nmc − 1. If we assume that all these subintervals have the same width Bmc � Bsc/Nmc
and that Nmc is sufficiently large, the amplitude response of each subchannel is almost flat over its
bandwidth, as illustrated in Figure 3.31(a). This suggests splitting the data sequence {mn}, to be sent
within the overall bandwidth Bsc , into Nmc parallel streams {m(i)

n }, with i = 0, 1, . . . , Nmc − 1, and
transmitting {m(i)

n } over the ith subchannel. This can be accomplished using an SC modulation with
carrier frequency fmc,i and bandwidth Bmc , as illustrated in Figure 3.31(a). If this solution is adopted,
the resulting signal, consisting of the superposition of Nmc distinct signals generated in parallel, is a
multicarrier modulation (MCM).
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Figure 3.31 (a) Amplitude response |H(f )| in two adjacent subbands of an FDM wireless sys-
tem (subchannels i and i + 1 are considered). Power spectral density Smc(f ) of an MCM under the
assumptions of: (b) absence of spectral overlap among the signals associated with different subcar-
riers and of a guard band between adjacent subchannels; (c) absence of spectral overlap among the
signals associated with different subcarriers and presence of a guard band between adjacent sub-
channels; (d) presence of a partial spectral overlap among the signals associated with two adjacent
subchannels.

Under the above assumptions, all the spectral components of the signal transmitted within each
subchannel undergo approximately the same attenuation and phase shift, so that compensation for
these linear distortions, when detecting data, can be carried out using simple signal processing
techniques for each of the Nmc signals. Hence, the adoption of an MCM dramatically simplifies the
problem of data detection. This choice, however, suffers from some practical problems since both
generation and coherent demodulation of multicarrier signals require, in principle, the availability of
Nmc distinct oscillators at the transmitter and at the receiver, respectively. These generate Nmc distinct
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subcarriers with frequencies {fmc,i , i = 0, 1, . . . , Nmc − 1} and their use appreciably increases
modem complexity.

Furthermore, to achieve good error performance in MCM-based systems, it is not in general suffi-
cient to ensure that the linear distortions introduced by each subchannel are small. In fact, a further
cause of performance degradation is the so-called intercarrier interference (ICI), that is, the inter-
ference in each subchannel due to the adjacent subchannels. ICI removal can be accomplished by
avoiding any spectral overlap among signals transmitted over adjacent subchannels, as illustrated in
Figure 3.31(b); however, this solution has been discarded in the past since it requires the use of
passband filters having an extremely narrow transition band and, consequently, large cost/complexity.
Note also that the introduction of a sufficient guard bandwidth, as illustrated in Figure 3.31(c), entails
a significant loss in system spectral efficiency.

These considerations explain why, as discussed in Section 3.10, historically speaking, the first
relevant papers about MCM tackled the problem of devising signal sets consisting of Nmc distinct func-
tions and having partially overlapped spectra (see Figure 3.31(d)), but sharing an important property,
known as orthogonality. In fact, this property may allow the separation of signals associated with dis-
tinct subchannels without mutual interference, even in the absence of spectral separation. To understand
this point and analyze the design of MCM from a general perspective, let us formally describe the prob-
lem of parallel transmission of a data block consisting of N channel symbols, belonging to an M-ary
complex alphabet Ac and forming the vector27 cN = [c0, c1, . . . , cN−1]T , in the time interval (ti , tf ).
We assume that, in this interval, this block is transmitted by a digital modulator which, in baseband, can
generate the set of orthogonal complex functions Iψ � {ψk(t) � √

Eψ,k φk(t), k = 0, 1, . . . , N − 1},
such that: ∫ tf

ti

ψk(t) ψ∗
l (t) dt =

√
Eψ,k

√
Eψ,l

∫ tf

ti

φk(t) φ∗
l (t) dt = Eψ,k δkl , (3.225)

where Eψ,k is the energy of ψk(t) and φk(t) is a unit energy function or signal. We also assume that
the digital modulator generates an RF signal whose complex envelope is given by:

s(t, cN) �
N−1∑
k=0

ck ψk(t) =
N−1∑
k=0

ck

√
Eψ,k φk(t), (3.226)

that is, we assume that the modulator generates s(t, cN) as in (3.226) as a linear combination of the
functions of Iψ using the channel symbols {ck} as coefficients. To grasp the meaning of (3.226), it is
useful to consider that each of the functions {ψk(t)} can be associated with a different subchannel, as
in multicarrier systems. Note, however, that the orthogonality (3.225) is the only constraint on the set
Iψ and this does not entail, in principle, that distinct signals of Iψ are characterized by disjoint time
intervals and/or by nonoverlapping spectra. In fact, these time or spectral properties are sufficient but
not necessary conditions for orthogonality.

The mutual orthogonality of the different components of s(t, cN) in (3.226) represents a fundamental
property of parallel transmission. To understand its importance, let us assume that the functions {ψk(t)}
are all characterized by a bandwidth which is small with respect to the coherence bandwidth28 of the
channel, which then causes, to a good approximation, the same attenuation and phase shift in all the
spectral components of each of the signals of Iψ . Then, if we neglect the channel delay, a coherent
receiver,29 when s(t, cN) is transmitted, observes the noisy signal:

r(t) =
N−1∑
k=0

Hk ck ψk(t) + n(t), (3.227)

27 Note that the index on the elements belonging to this vector does not provide any time indication since their
transmission is accomplished in parallel.
28 The coherence bandwidth of a wireless communication channel is defined in Section 2.2.2.
29 A coherent receiver has an exact replica of the carrier oscillation associated with the useful component of the
received signal.
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where n(t) is AWGN, and Hk is a complex gain representing channel effects on ψk(t), k =
0, 1, . . . , N − 1. To obtain an estimate ĉN of cN from r(t), the receiver computes the scalar product:

Xk � (r, ψk) =
∫ tf

ti

r(t) ψ∗
k (t) dt (3.228)

for k = 0, 1, . . . , N − 1. Then substituting (3.226) in (3.228) and exploiting the mutual orthogonality
of the signals {ψk(t)} yields, for each k:

Xk = Eψ,k Hk ck + nψ,k, (3.229)

where

nψ,k � (n, ψk) =
∫ tf

ti

n(t) ψ∗
k (t) dt (3.230)

is a complex Gaussian random variable representing the channel noise contribution. Note that Xk

depends on ck and, as can easily be proved (e.g., see [315], Sect. 2.1), the noise random variables
{nψ,k, k = 0, 1, . . . , N − 1} are mutually independent. Therefore, if the receiver has exact knowledge
of the channel parameters30 {Hk}, it can make a decision ĉk on ck by processing Xk only. Hence, the
property of orthogonality leads to a conceptually simple detection strategy, operating subchannel-by-
subchannel, whose implementation is sketched in Figure 3.32. The receiver structure illustrated in this
diagram consists of N distinct, but structurally identical, subchannels. The kth branch compensates for
the linear distortions31 on the kth subchannel by computing (see (3.229)):

Xk/(Eψ,k Hk) = ck + nψ,k/Eψ,k Hk (3.231)

and then making a decision on ck .
If we assume that the communication channel modifies the shape of the transmitted waveforms

{ψk(t)}, thus generating a new signal set {χk(t), k = 0, 1, . . . , N − 1}, which does not consist of
orthogonal functions, the detection strategy shown in Figure 3.32 will inevitably suffer from ICI when

r (t)

y0
*(t)

y1
*(t)

y*
N−1(t)
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Figure 3.32 Block diagram of a baseband detector for parallel data transmission.

30 This knowledge is necessary for the cancelation of the channel distortion.
31 This approach to compensation for channel distortions is known as equalization in the frequency domain for
multicarrier signals (see Section 6.3).
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trying to separate the contribution of each subchannel. To generate a set of functions preserving the
property of orthogonality in parallel transmission over a static distorting channel, complex exponential
signals can be used. In fact, these signals share an important property: if they are applied to a linear
time-invariant system, it generates, after a transient, signals of the same type.

If the channel is nondistorting, the construction of a set Iψ , consisting of N complex orthogonal
functions, is extremely simple. In fact, if we define:

ψk(t) �
√

Eψ,k

NTs

exp [j2π(fk + fos )t] (3.232)

over the interval (ti , tf ) = (0, NTs), where Ts is the symbol interval, fk � k/NTs , with k = 0,

1, . . . , N − 1, and fos an arbitrary frequency offset, the orthogonality condition (3.225) is satisfied.
Note that: (a) the functions partially overlap in the frequency domain, since:

�k(f ) � FCT[ψk(t)] =
√

NTsEψ,k sinc[NTs(f − (fk + fos ))] (3.233)

extends over an unlimited interval; (b) this choice allows us to transmit the symbol vector cN =
[c0, c1, . . . , cN−1]T in an interval of finite duration (NTs seconds); (c) the frequency separation
between adjacent subcarriers is equal to the inverse of the transmission duration (i.e., 1/NTs Hertz);
(d) it is not difficult to prove that this separation represents the minimum separation to ensure the
orthogonality of the signals (3.232). Unfortunately, in a linearly distorting channel,32 the signal set
generated through the choice (3.232) for ψk(t) does not consist of orthogonal signals in the time
interval (0, NTs). This is due to the fact that the channel, when fed by ψk(t), goes through a transient
starting at t = 0, so that the signal observed in that interval does not look like a complex exponential
until the transient is over. To reestablish the orthogonality property in the useful component of the
received signal observed by the receiver in the interval (0, NTs), the following solution can be adopted,
provided that the communication channel has a memory of limited duration not exceeding some Lh

intervals and, in particular, that its impulse response h(t) extends only over the interval [0, LhTs].
We then feed the communication channel with the signal:

γk(t) �
√

Eγ,k

(N + Np)Ts

exp [j2π(fk + fos )t] (3.234)

extending over the new time interval (−NpTs,NTs), with Np ≥ Lh, in place of ψk(t) (3.232) (here,
Eγ,k is the energy of γk(t)). Note that γk(t) is a complex exponential with frequency fk , exactly like
ψk(t) (3.232), but it starts exciting the communication channel NpTs seconds before the beginning
of the interval (0, NTs). The insertion of an additional time interval (i.e., a time prefix) of duration
NpTs ≥ LhTs allows the channel to reach its steady-state condition before t = 0. In fact, the channel
response ρk(t) to the excitation γk(t) is then given by:

ρk(t) � γk(t) ⊗ h(t)

= H(fk + fos )

√
Ek

(N + Np)Ts

exp [j2π(fk + fos )t] (3.235)

for (Lh − Np)Ts ≤ t ≤ NTs , where H(fk + fos ) is the value of the channel frequency response
H(f ) � FCT[h(t)] at the frequency f = fk + fos . The signals {ρk(t)} form an orthogonal set as
in (3.235) if observed only over the time interval (0, NTs), and consequently the receiver structure of
Figure 3.32 can be used for their detection.

32 The propagation delay due to the channel is again neglected.
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These considerations lead to the conclusion that a parallel transmission technique based on the
signal set {γk(t)} (3.234) represents a valid solution for data communications over linearly distorting
wireless channels. The use of this set, however, requires the generation of multiple oscillations,
possibly without resorting to an oscillator bank. In the following subsection we show how this can be
accomplished by resorting to the DFT. The resulting digital modulation is known as OFDM.

3.7.2 OFDM Signal Model

We first derive some analytical results useful for understanding multicarrier signal generation via DFT
processing. Then we exploit these results to analyze the structure of an OFDM modulator.

3.7.2.1 Generation of a Multicarrier Signal via DFT Processing

To understand the technique for generating a multicarrier signal in an OFDM modulator, let us again
focus on the transmission of the complex symbol vector cN = [c0, c1, . . . , cN−1]T . Let us assume
for the analysis that: (a) this vector undergoes the one-to-one transformation33 g : C

N → C
N yielding

aN = [a0, a1, . . . , aN−1]T = g(cN); b) a periodic sequence {ak} is generated as:

ak = aRN [k] (3.236)

for any k /∈ {0, 1, . . . , N − 1}, that is, repeating aN with period N. Then the impulsive signal:

+∞∑
k=−∞

ak δ(t − kTs) =
+∞∑

k=−∞
aRN [k] δ(t − kTs) (3.237)

is generated from {ak} (here Ts is the symbol interval) and is applied to a filter with impulse response
p(t). This produces the signal:

s(t, cN) =
+∞∑

k=−∞
aRN [k] p(t − kTs), (3.238)

which is periodic with period T = NTs . Its Fourier series representation may be written as:

s(t, cN) =
+∞∑

m=−∞
Sm (cN) exp (j2πfmt), (3.239)

where fm � m/T = m/(NTs) is the mth harmonic frequency and the mth coefficient Sm is given by:

Sm (cN) � 1

T

∫ T

0
s(t, cN) exp (−j2πfmt) dt . (3.240)

It is not difficult to prove that:

Sm (cN) = 1√
NTs

Pm Am, (3.241)

where Pm � P(fm), P(f ) � FCT[p(t)] and:

Am � 1√
N

N−1∑
l=0

al exp

(
−j2π

m l

N

)
(3.242)

33 This ensures that the use of aN in place of cN in digital transmission does not entail any information loss.
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for any m. Then substituting (3.241) into (3.239) yields:

s(t, cN) = 1√
NTs

+∞∑
m=−∞

Pm Am exp (j2πmt/T ), (3.243)

which expresses the Fourier series representation of s(t, cN) of (3.238) in a compact form. Note that,
if we define the N-dimensional complex vector AN � [A0, A1, . . . , AN−1]T , then (3.242) can also be
expressed as:

AN = DFTN [aN ] = QN aN, (3.244)

and from (3.242) it is easy to show that {Am} is periodic with period N (i.e., Am+N = Am for any
m). Therefore, if the transformation g(·) is an Nth-order IDFT, that is, if:

aN = IDFTN [cN ] = QH
N cN, (3.245)

we have that:
AN = QN QH

N cN = cN, (3.246)

i.e., that:
Ak = cRN [k] (3.247)

for any k. Substituting the latter result in (3.243) yields:

s(t, cN) = 1√
NTs

+∞∑
m=−∞

Pm cRN [m] exp (j2πfmt). (3.248)

Equation (3.248) can be simplified by replacing the index m with the indexes (n,k), such that:

m = n + kN (3.249)

with n = 0, 1, . . . , N − 1 and k an arbitrary integer. In fact, after some manipulation, (3.248) can be
rewritten as:

s(t, cN) = 1√
NTs

N−1∑
n=0

cn gn(t), (3.250)

where

gn(t) �
+∞∑

k=−∞
Pn+kN exp (j2πfn+kN t). (3.251)

If we want the RHS of (3.250) to represent a multicarrier (MC) signal, the spectrum P(f) of p(t)

should be selected so that the signal gn(t) of (3.251) is proportional to a complex exponential at
frequency fn. A necessary condition for this is that p(t) is strictly bandlimited, since in (3.251), for
any n (with n = 0, 1, . . . , N − 1), only one of the coefficients {Pn+kN } must be different from 0. A
possible choice to achieve this result is to select P(f) as the square root of a raised cosine function
with roll-off factor α (see (3.81) and (3.90)). In evaluating the coefficients {Pn+kN } of (3.251), we
assume α = 0 and note that:

Pn+kN � P(fn+kN ) = P

(
n + kN

T

)
= P

(
fn + k

Ts

)
, (3.252)

so that, to determine the structure of gn(t) for a given n, we must sample the spectrum P(f) at
the frequencies {fn+kN }, changing the index k only. Following this procedure, it is not difficult to
show that, if fn = n/T falls in the flat region of P(f), that is, if 0 ≤ fn ≤ f1−α � (1 − α)/(2Ts) or,
equivalently, if:

0 ≤ n ≤ Nα (3.253)
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with

Nα �
⌊
N

1 − α

2

⌋
, (3.254)

then the only coefficient {Pn+kN } different from zero in the sum of (3.251) is that associated with
k = 0, as evidenced by Figure 3.33(a). Therefore, (3.251) simplifies to:

gn(t) = Pn exp (j2πfnt) = √
Ts exp (j2πfnt). (3.255)

If fn falls in the right-hand roll-off region of P(f), that is, if f1−α < fn < f1+α � (1 + α)/(2Ts) or,
equivalently, if:

Nα < n < N − Nα, (3.256)

then in the sum (3.251) there are two terms different from zero, those associated with the frequen-
cies fn (corresponding to k = 0) and fn−N = fn − 1/Ts (corresponding to k = −1), as shown by
Figure 3.33(b). Hence, in this case, (3.251) becomes:

gn(t) = Pn exp (j2πfnt) + Pn−N exp (j2πfn−N t), (3.257)

so that, in the interval defined by (3.256), gn(t) (3.251) is expressed by a superposition of two complex
exponentials having different frequencies. For this reason, the subcarriers associated with the values
of n delimited by (3.256) are suppressed (i.e., their contribution is removed), thus setting:

cn = 0 (3.258)

for all values of n satisfying (3.256). Finally, if fn falls in the interval [f1+α, 1/Ts), as illustrated by
Figure 3.33(c), that is, if:

N − Nα ≤ n ≤ N − 1, (3.259)

the only term different form 0 in the sum of (3.251) is that associated with the frequency fn−N

(corresponding to the choice k = −1) and, therefore:

gn(t) = Pn−N exp (j2πfn−N t) = √
Ts exp (j2πfn−N t). (3.260)

Taking (3.257) and (3.260) into account, and using the subcarrier suppression given by (3.258),
(3.250) can be rewritten as:

s(t, cN) = 1

Ts

√
N

√
Ts


 Nα∑

n=0

cn exp
(
j2πfnt

)+
N−1∑

n=N−Nα

cn exp (j2πfn−N t)




= 1√
NTs


 Nα∑

n=0

cn exp
(
j2πfnt

)+
−1∑

n=−Nα

cn+N exp (j2πfn t)


 (3.261)

or, since cn+N = cRN [n] for n = −Nα,−Nα + 1, . . . ,−1 and cn = cRN [n] for n = 0, 1, . . . , Na , in
the more compact form:

s(t, cN) = 1√
NTs

Nα∑
n=−Nα

cRN [n] exp (j2πfnt). (3.262)
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Figure 3.33 Evaluation of the spectral samples {Pn+kN } according to (3.252) for 0 ≤ n ≤ Nα (a),
for Nα < n < N − Nα (b), and for N − Nα ≤ n ≤ N − 1 (c).
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The latter expression reveals the MC structure of the generated signal s(t, cN). In fact, substituting
(3.262) into (3.1) yields the RF signal:

sRF (t, cN) = Re{s(t, cN) exp (j2πfct)}

= 1√
NTs

Nα∑
n=−Nα

{cR,RN [n] cos[2π(fc + fn)t] − cI,RN [n] sin[2π(fc + fn)t]} (3.263)

where cR,k = Re{ck} and cI,k = Im {ck}. Note that the number of useful subcarriers:

Nu � 2Nα + 1, (3.264)

is strictly less than the DFT order N, because of the suppression of Nsc � N − Nu subcarriers.34

These results lead to several observations. First, the result (3.262) has been derived from the model
(3.238) of s(t, cN), assuming a periodic sequence {ak} (generated according to (3.245)) and the pulse
shape of (3.89). If p(t) represents the impulse response of the OFDM transmitter, the signal s(t, cN)

of (3.262) is transmitted, in a baseband model of the communication system, over a wireless channel
having impulse response h(t). The channel output then feeds a receive filter with impulse response
g(t), and the useful component of the signal:

z(t, cN) � s(t, cN) ⊗ h(t) ⊗ g(t) (3.265)

at the output of the receive filter can immediately be expressed as:

z(t, cN) = 1√
NTs

Nα∑
n=−Nα

cRN [n] HRN [n] GRN [n] exp (j2πfnt), (3.266)

where Hm � H(fm), Gm � G(fm), H(f ) � FCT[h(t)] and G(f ) � FCT[g(t)], since, in practice, the
periodic sequence {ak} is feeding a filter with overall impulse response q(t) � p(t) ⊗ h(t) ⊗ g(t) (and
frequency response Q(f ) � FCT[q(t)] = P(f ) H(f ) G(f )). In particular, if G(f ) = P(f ), (3.266)
simplifies to:

z(t, cN) = 1√
N

Nα∑
n=−Nα

cRN [n] HRN [n] exp (j2πfnt), (3.267)

since G|n|N = √
Ts for |n| ≤ Nα . Comparing this result to (3.262) shows that z(t, cN) retains the

structure of a multicarrier signal and that the effect of the communication channel on the nth subcarrier
(for any n ∈ {−Nα, −Nα + 1, . . . , Nα}) is represented by the complex coefficient HRN [n], causing an
attenuation |HRN [n]| and a phase rotation ∠HRN [n].

Another important consideration is related to the fact that, if the signal generation mechanism
described above is used, the transmission of cN is accomplished by sending a signal s(t, cN) (3.262) of
unlimited duration. However, as illustrated in Section 3.7.1, the contribution from distinct subcarriers
can be separated at the receiver by exploiting their mutual orthogonality, if equality (3.267) holds on
a limited interval lasting NTs seconds (e.g., over the interval [0, NTs]). This result can be achieved as
follows. Let us assume that the impulse responses p(t), h(t) and g(t) have limited duration and that,
in particular, they extend over the intervals [0, LpTs], [0, LhTs] and [0, LgTs], so that the support of

34 Note that in (3.262) the subcarrier associated with the choice n = 0 is characterized by a frequency f0 = 0
(and, consequently, by a frequency fc at RF). In most applications this subcarrier is not used in order to avoid the
presence of a direct component in the demodulated signal. In this case, (3.264) is replaced by Nu � 2Nα .
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the overall impulse response q(t) is [0, LqTs], with Lq � Lp + Lh + Lg . Then if, in place of (3.238),
the time-limited signal:

s(t, cN) =
N−1∑

k=−Np

aRN [k] p(t − kTs) (3.268)

is generated, where Np is an integer such that Np ≥ Lq , the representation (3.267) of (3.265) still
holds over the interval [0, NTs], since the signal q(t − kTs) does not include any contributions for
k < −Np and k > N − 1. However, if Np < Lq , the orthogonality property is lost and this results in
interference at the demodulator, known as ICI.

Note that (3.268) shows that, in generating a multicarrier signal, the transmission of a data vector
aN is preceded by ap � [aRN [k], k = −Np, −Np + 1, . . . , −1], so that the overall transmitted vector,
having size NT � N + Np , is aNT

� [aT
p , aT

N ]T . It is easy to verify that if, as usually happens in
practice, Np is smaller than N, we then have ap = [aN−Np

, aN−Np+1, . . . , aN−1], that is, ap contains
an ordered replica of the last Np components aN , so that aNT

has a cyclic structure.35 For this
reason, ap is called cyclic prefix. The presence of this prefix is absolutely necessary for correct signal
generation and its length is proportional to the maximum expected channel memory.

Finally, it is important to point out that the hypothesis of finite duration of p(t) and g(t) is in
conflict with that of limited bandwidth. However, in practice, for any α, it is always possible to
consider a finite effective duration for these signals, that is, the length of the time interval containing
a significant (and fixed) fraction of the energy of the transmitted signal. Of course, a decrease in α

entails, on the one hand, an increase in the duration of p(t), with the consequent need for a longer
cyclic prefix, and, on the other hand, a narrowing of the roll-off region of P(f), with the consequent
increase of the number of useful subcarriers Nu. In fact, this parameter takes on a unit value for α = 1
and approaches N when α goes to 0 (see (3.254) and (3.264)).

3.7.2.2 Block Diagram of the OFDM Modulator

The analytical results illustrated above allow an immediate understanding of the algorithm for the
generation of an OFDM signal and this is summarized by Figure 3.34, illustrating the baseband
section of an OFDM modulator.

In this scheme, the data stream is applied to a symbol mapper, associating each block of log M

consecutive bits with a channel symbol belonging to an M-ary constellation Ac. Then, the channel
symbol stream is partitioned into blocks (using a serial-to-parallel converter), each of length Nu (see
(3.264)). A group of Nsc � N − Nu null symbols is inserted in each of these blocks, in the locations
assigned to the virtual subcarriers. The resulting lth block, consisting of N channel symbols (of which
only N − Nsc are information symbols), is represented by the vector:

c(l)
N � [c(l)

0 , c
(l)
1 , . . . , c

(l)
Nα

, 0, . . . , 0, c
(l)
N−Nα

, c
(l)
N−Nα+1, . . . , c

(l)
N−1]T , (3.269)

Data
In Symbol

Mapper S/P IDFT P/S p (t)
s(t,c)Virtual

Carrier
Insertion

Cyclic
Prefix

Insertion

Nu N N NT = N + Np

Kc

cN
(l) aN

(l) aNT
(l)

Figure 3.34 Block diagram of the baseband section of an OFDM modulator.

35 This follows from the fact that aNT
has been extracted by a periodic sequence {ak}.
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and this is known as a frequency-domain symbol or OFDM symbol. This vector undergoes an Nth-order
IDFT, accomplished via an inverse fast Fourier transform (IFFT) to produce the vector:

a(l)
N = [a(l)

0 , a
(l)
1 , . . . , a

(l)
N−1]T � QH

N c(l)
N , (3.270)

which is extended by appending a cyclic prefix of length Np . This generates the cyclically
extended block:

a(l)
NT

� [a(l)
−Np

, . . . , a
(l)
−1, a

(l)
0 , . . . , a

(l)
N−1]T , (3.271)

having overall length NT � Np + N , with ak = aRN [k] for k = −Np, −Np + 1, . . . , −1. After

parallel-to-series conversion, the sequence of symbols extracted from the symbol vector a(l)
NT

is
applied, at rate Rs = 1/Ts , to a transmission filter having impulse response p(t) (usually expressed
by (3.89)) with unit energy. Finally, the filter output is amplified by a factor Kc and sent to the
following transmitter stages for frequency up-conversion. Note that the baseband equivalent of the
OFDM signal can be expressed as:

s(t, c) =
+∞∑

l=−∞
s̃(t − tl; a(l)

NT
), (3.272)

where tl � lNT Ts , c denotes a vector resulting from the ordered concatenation of the vectors {c(l)
N }

and:

s̃(a(l)
NT

; t) � Kc

N−1∑
k=−Np

a
(l)
k p(t − kTs) (3.273)

represents the contribution of the lth OFDM symbol to the transmitted signal. Substituting (3.273) in
(3.272) yields the formula:

s(t, c) = Kc

+∞∑
l=−∞

N−1∑
k=−Np

a
(l)
k p(t − kTs − tl), (3.274)

whose structure resembles that of a PAM signal (see (3.48)). However, despite the similarities, there
are some fundamental differences between these modulation formats. First, the channel symbols of
PAM usually belong to a set of M points regularly placed in the complex plane, whereas the symbols
{a(l)

k } of an OFDM signal, being generated by an IDFT, do not share this property. In fact, generally
speaking, each of the symbols {a(l)

k } can take on more than M distinct values and these values are
spread in an irregular fashion in the complex plane. Secondly, a PAM signal is generated by a single-
state modulator, whereas, in principle, this property does not hold for the OFDM signal (3.274), since
the elements of a(l)

NT
, for any l, are statistically dependent, because of the presence of the cyclic prefix

and of their generation via an IDFT. Despite this, a comparison of (3.272) with (3.4) illustrates that an
OFDM modulator can still be represented as a single-state modulator if, in the signal model (3.4), the
channel symbols {cn} are replaced by the OFDM symbols {c(l)

N } and, similarly, the signaling interval
Ts by the corresponding interval NT Ts .

Note that, for a given l, in NT Ts seconds all the components of a(l)
NT

, as given by (3.271), and
consequently Nu log M information bits, are transmitted, so that we have:

Tb Nu log M = NT Ts, (3.275)

from which it can immediately be seen that:

Tb = NT

Nu log M
Ts = N + Np

(2Nα + 1) log M
Ts, (3.276)

establishing an explicit relationship between the symbol interval Ts and the bit interval Tb.
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Let us now assume that s(t, c) is transmitted over a wireless channel with impulse response h(t).
Following the same line of reasoning and making the same assumptions as in the previous subsection,
it is not difficult to prove that the useful component of the signal at the output of the receive filter is
given by:

z(t, c) = Kc√
N

Nα∑
n=−Nα

c
(l)
RN [n] HRN [n] exp [j2πfn(t − tl)], (3.277)

over the interval [tl − (Tcp − Tq), tl + NTs], where Tcp � NpTs and Tq are the duration of the cyclic
prefix and of the overall impulse response q(t), respectively. This representation holds, however, if
Tcp ≥ Tq , because this inequality ensures not only that the multicarrier representation (3.277) holds
for at least NTs seconds (i,e., ICI is avoided at the receiver), but also that in the same interval no
interblock interference (IBI) is found.

Finally, note that, for each OFDM symbol, s(t, c) in (3.272) can be represented as the superposition
of a number of complex oscillations, having different frequencies and phases. This structure entails
the presence, in the envelope senv (t, c) (3.8) of the modulated signal, of very large fluctuations, which
become more pronounced as the number of useful subcarriers Nu increases; this is shown in the
following example.

Example 3.7.1 Let us compare the complex envelope of an OFDM signal, having N = 256, Nu = 193
(α = 0.25), Lp = 20 and a QPSK constellation on each subcarrier, with those of QPSK and OQPSK
signaling, characterized by the same transmitter impulse response p(t). The I-Q diagrams for these
modulations, that is, the trajectories of s(t, c) in a complex plane, are represented in Figures 3.35, 3.36
and 3.37 for OFDM, QPSK and OQPSK, respectively. These diagrams show a substantial difference, in
terms of envelope fluctuations, between single-carrier and multicarrier signals; in addition, as already
mentioned in Section 3.5.1, the envelope of OQPSK undergoes even smaller amplitude changes than
that of QPSK.

The large changes in the OFDM envelope can be related to the PAM representation of the OFDM
signal of (3.274). In fact, from this point of view, this phenomenon is due to the large dispersion of
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Figure 3.35 Typical I-Q diagram for OFDM signaling.
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Figure 3.37 I-Q diagram for OQPSK signaling.

the components of the vectors a(l)
N in the complex plane, as illustrated by Figure 3.38, with reference

to the OFDM signal of Figure 3.35.
�

The relative magnitude of the amplitude fluctuations of an OFDM signal is expressed by the so-
called peak-to-average-power ratio (PAPR), defined as the ratio between the peak power and the
average power of the transmitted signal; the problem of the evaluation of this parameter is briefly
discussed in Section 3.7.4. Here we note that the large PAPR of OFDM signals affects both the
baseband and RF sections of an OFDM transmitter. In fact, in the former a digital signal processor
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Figure 3.38 Representation, on a complex plane, of the components of a realization of the random
vector a(l)

N for the OFDM signal whose complex envelope is shown in Figure 3.35.

using arithmetic of adequate precision is required, whereas in the latter a linear power amplifier is
needed. Various signal processing techniques have been proposed in the technical literature to minimize
the PAPR: an overview of various methods has been provided in [316].

3.7.3 Power Spectral Density of OFDM

In this subsection a closed-form expression for the power spectral density of an OFDM signal is
derived under the assumptions that the channel symbols {c(l)

n } are iid, and have zero mean (to avoid
the presence of spectral lines [28]) and variance σ 2

c � E{|c(l)
n |2}. To begin, we note that the structure of

the signal s(t, c) (3.274) is similar to that of a PAM signal, as already pointed out in Section 3.7.2.2.
From a statistical viewpoint, however, there is a fundamental difference between them, since the data
sequence {a(l)

k } feeding the transmitter filter in the OFDM case is not WSS, but WSC with period
NT � N + Np . This implies that s(t, c) (3.274) is also WSC with period Tcs = NT Ts . Note that the
cyclostationarity of the OFDM data sequence is not at all surprising, since, in an OFDM system, data
transmission is accomplished on a block-by-block basis and each block has a duration equal to NT .
For a PAM signal characterized by a WSC data sequence, it can be proved [28] that expression (3.66)
still holds, provided that S̄c(f ) denotes the average power spectrum of the data sequence {a(l)

k }, that
is, the Fourier transform of its average autocorrelation function. For this reason, the evaluation of the
power spectral density for an OFDM signal proceeds via the following steps: (a) evaluation of the
latter function; (b) evaluation of the former function via Fourier methods; (c) application of (3.66) to
the evaluation of the power spectral density of an OFDM signal.

3.7.3.1 Evaluation of the Average Autocorrelation Function of {a(l)

k
}

To begin, we note that the data sequence {a(l)
k } is characterized by the presence of two indexes,

namely (k, l), and this complicates the computation of its statistics. To circumvent this problem,
we define a new data sequence {bn}, derived from the ordered concatenation of the vectors
{a(l)

NT
}; more precisely, we establish a one-to-one correspondence between {a(l)

k } and {bn}, such
that the NT -dimensional vector [blNT

, blNT +1, . . . , blNT +NT −1]T coincides with the cyclic vector
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a(l)
NT

= [a(l)
−Np

, . . . , a
(l)
−1, a

(l)
0 , . . . , a

(l)
N−1]T . In other words, we then have:

bk+Np+lNT
� a

(l)
k = a

(l)
RN [k] (3.278)

for k = −Np, −Np + 1, . . . , N − 1 and any l. If we now define the autocorrelation function:

Rb[n, k] = E{bn+k b∗
n} (3.279)

of {bk}, it can easily be shown that Rb[n, k] is periodic, in the variable n, with period NT . Therefore,
its values need to be computed over only a single period, focusing, for instance, on the interval:

0 ≤ n ≤ NT − 1 = N + Np − 1 (3.280)

of the variable n, so that bn belongs to a(0)
NT

, and, in particular (see (3.278)):

bn = a
(0)
RN [n−Np ] (3.281)

for any n satisfying inequality (3.280). The index k in (3.279) can still take on an arbitrary value, but
two distinct cases can be identified in the evaluation of the statistical average of Rb[n, k]. In the first
case, k is such that the symbol bn+k /∈ a(0)

NT
, so that bn and bn+k belong to distinct (and statistically

independent) OFDM symbols; then (3.279) yields:

Rb[n, k] � E{bn+k b∗
n} = E{bn+k} · E{b∗

n } = 0, (3.282)

since {b(l)
k } is a zero mean sequence. In the second case, k is such bn+k ∈ a(0)

NT
, that is:

0 ≤ k + n ≤ NT − 1, (3.283)

so that the symbols bn and bn+k on the RHS of (3.279) belong to the same OFDM symbol. Note that:
(a) inequality (3.283) can be rewritten as:

−n ≤ k ≤ NT − 1 − n (3.284)

or, equivalently, as:
−k ≤ n ≤ NT − 1 − k; (3.285)

(b) in the n–k plane inequalities (3.280) and (3.284) delimit the shadowed region R of Figure 3.39;
(c) if (3.285) is satisfied, bn+k can be expressed as (see (3.281)):

bk+n = a
(0)
RN [k+n−Np ]. (3.286)

Then, in this case, substituting (3.281) and (3.286) in (3.279) yields, after some manipulation:

Rb[n, k] = σ 2
c

N

Nα∑
l=−Nα

exp

(
j

2π

N
lk

)
. (3.287)

Note that an explicit dependence on the variable n is missing in the RHS of (3.287); however, such
a dependence is implicit, since (3.287) holds only for pairs (n, k) belonging to the region R (contour
included), defined by (3.280) and (3.284).

Equations (3.282), (3.285), (3.287) and the periodicity of the autocorrelation Rb[n, k] in its variable
n can be summarized as:

Rb[n, k] = σ 2
c

N

Nα∑
l=−Nα

exp

(
j

2π

N
lk

)
(3.288)
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Figure 3.39 Representation of the region R defined by inequalities (3.280) and (3.284).

for −RNT
[n] ≤ k ≤ NT − 1 − RNT

[n], and Rb[n, k] = 0 elsewhere. In other words, generally
speaking, Rb[n, k] is equal to 0 outside of the region (in the n–k plane) generated by the repetition,
with period NT , of R in the direction of the n axis. In particular, this implies that Rb[n, k] = 0
for |k| ≥ NT (see Figure 3.39). Then the average autocorrelation function Rb[k] of {bk} can be
computed as:

Rb[k] � 1

NT

NT −1∑
n=0

Rb[n, k], (3.289)

for |k| ≤ NT − 1; it is equal to 0 for |k| ≥ NT . Substituting (3.287) into (3.289) and taking into
account the constraint (3.285) yields, after some manipulation:

Rb[k] = σ 2
c g[k]

Nα∑
l=−Nα

exp

(
j

2π

N
lk

)
, (3.290)

where

g[k] � 1

N

[
1 − |k|

NT

]
{u[k + NT ] − u[k − NT ]} (3.291)

and

u[k] �
{

1 for k ≥ 0

0 for k < 0
(3.292)

is the discrete-time unit step function.

3.7.3.2 Evaluation of the Average Power Spectral Density of {bk}
The average power spectral density S̄b(f ) of {bk} is the Fourier transform of the sequence Rb[n] in
(3.290). Since the Fourier transform of the sequence g[k] in (3.291) is:

Ḡ(f ) = 1

NNT

sin2(πNT f Ts)

sin2(πf Ts)
, (3.293)
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it is not difficult to prove that:

S̄b(f ) = σ 2
c

Nα∑
l=−Nα

Ḡ

(
f − l

NTs

)
= σ 2

c

NNT

Nα∑
l=−Nα

sin2(πNT (f − fl)Ts)

sin2(π(f − fl)Ts)
, (3.294)

where fl � l/(NTs) is the frequency of the lth subcarrier in the complex envelope of the OFDM signal.

3.7.3.3 Evaluation of the OFDM Average Power Spectrum

Finally, the average power spectral density of s(t, c) is given by:

Ss(f ) = 1

Ts

S̄b(f )|P(f )|2 = K2
c σ 2

c

NNT Ts

|P(f )|2
Nα∑

l=−Nα

sin2[πNT (f − fl)Ts]

sin2[π(f − fl)Ts]
. (3.295)

The average power Ps of s(t, c) can be evaluated by integrating Ss(f ) (3.295) over all frequencies.
This leads to the expression:

Ps =
∫ +∞

−∞
S(f ) df = K2

c σ 2
c

NTs

Nu. (3.296)

Then substituting (3.296) into (3.31) yields the average transmitted energy per symbol:

Es = PsTs

2
= K2

c σ 2
c

2

Nu

N
, (3.297)

from which it is easy to see that:

Kc =
√

2Es

σ 2
c

N

Nu

. (3.298)

The value of the parameter σc depends on the type and cardinality of the underlying constellation and
is given by (3.72), (3.73) and (3.74) for M-PSK, M-ASK and M-QAM signals, respectively.

The latter results can also be exploited to rewrite (3.295) in a slightly different fashion. In fact,
(3.298) implies that:

K2
c σ 2

c

NNT Ts

= 2Es

Ts

1

NT Nu

= Ps

1

NT Nu

, (3.299)

so that (3.295) can be put in the form:

Ss(f ) = Ps

NT

Nu

Nα∑
l=−Nα

Sl(f ), (3.300)

where

Sl(f ) � 1

N2
T

|P(f )|2 sin2[πNT (f − fl)Ts]

sin2[π(f − fl)Ts]
(3.301)

represents the contribution, normalized to PsNT /Nu, of the lth subcarrier to Ss(f ). The result expressed
by (3.300) and (3.301) shows that, in the OFDM spectrum, the contributions from distinct subcarriers
partially overlap and that the transmitted signal is rigorously bandlimited if p(t) has this property.

These results can be used, for instance, to evaluate the power spectrum of the OFDM signal
transmitted in an audio broadcasting system based on the so-called Digital Audio Broadcasting (DAB)
standard [317], as illustrated in the following example.
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Figure 3.40 Representation of the normalized power spectral density Ss,n(f ) for the TM II
of DAB.

Example 3.7.2 Figure 3.40 represents the normalized power spectrum Ss,n(f ) for the second
transmission mode (TM II) of DAB. The most significant parameters36 of the transmitted signal
are N = 512, α = 0.25 (Nu = 384 and Nα = Nu/2 = 192), Np = 126 (NT = Np + N = 638) and
Ts = 0.48828125 µs (the subcarrier spacing is 1/(NTs) = 4 kHz).

Note that, if a bandlimited spectrum is assumed for p(t), the theoretical bandwidth of the complex
envelope s(t, c) is:

Bs � 1 + α

2Ts

= 2.56 MHz. (3.302)

In any DAB TM II transmission, however, the real bandwidth is larger, since p(t) is truncated. The
DAB standard specifies a nominal transmitted signal bandwidth of Nu/Ts = 1.536 MHz, correspond-
ing to the difference between the maximum (fc + Nα/Ts) and minimum (fc − Nα/Ts) subcarrier
frequencies. This is in substantial agreement with the results of Figure 3.40, which show that Ss,n(f )

takes on small values for |f | ≥ 0.75 MHz.
�

3.7.4 The PAPR Problem in OFDM

As mentioned in Section 3.7.2.2, the magnitude of the envelope fluctuations in OFDM signals is
measured by the PAPR of the transmitted signal: the ratio of the average power PRF to the peak power
PP of the RF transmitted signal sRF (t, cN). In the literature this parameter is evaluated not for the
whole signal sRF (t, cN) generated by the signal modulator, but for its MC representation, working in
an interval of duration T = NTs seconds corresponding to the transmission of a single OFDM symbol.
In other words, it is assumed that the transmitted RF signal sRF (t, cN) is given by (3.263) and the
observation is restricted to [0, T ]. Moreover, it is assumed that the vector cN = [c0, c1, . . . , cN−1]T

consists of channel symbols that are not necessarily independent and that they belong to a constellation
of points that may not be equally likely.

36 In a DAB system the number Nu of subcarriers used is equal to 2Nα rather than 2Nα + 1 (see (3.264)), since
the central subcarrier is not used.
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The evaluation of the PAPR can be carried out as follows. To begin, we note that the average power
of the complex envelope s(t, cN) of the OFDM signal in the interval [0, T ] is given by:

Ps = 1

T

∫ T

0
E{|s(t, cN)|2} dt = E

{
1

T

∫ T

0

∣∣s(t, cN)
∣∣2 dt

}
, (3.303)

with s(t, cN) expressed by (3.262). Substituting (3.262) into (3.303) yields, after some algebra:

Ps = 1

T
E{|cNu

|2}, (3.304)

so that we obtain the average power as:

PRF = Ps

2
= 1

2T
E{|cNu

|2}. (3.305)

The RF peak power of sRF (t, cN) (3.263) can be expressed as:

PP = max
0≤t≤T , cNu∈�

[Re{s(t, cN) exp (j2πfct)}]2, (3.306)

where � is the alphabet consisting of all possible values of the vector cNu
, corresponding to the

Nu = 2Nα + 1 symbols transmitted using the useful subcarriers. Note also that, if we define the
variable:

ϑ � 2πt

T
(3.307)

and the parameter:
ς � fcT , (3.308)

the function to be maximized on the RHS of (3.306) can be rewritten as:

Re{s(t, cN) exp (j2πfct)} = 1√
T

Re




Nα∑
n=−Nα

cRN [n] exp
(
j2πfnt

)
exp (j2πfct)




= 1√
T

Re




Nα∑
n=−Nα

cRN [n] exp
[
jϑ (n + ς)

] , (3.309)

so that PP (3.306) can also be expressed as:

PP = 1

T
max

0≤ϑ≤2π, cNu∈�


Re




Nα∑
n=−Nα

cRN [n] exp
[
jϑ (n + ς)

]



2

. (3.310)

Finally, evaluating the ratio of (3.310) and (3.305) yields the PAPR expression:

PAPR(ς) = PP

PRF

= 2

E{|cNu
|2} max

0≤ϑ≤2π, cNu∈�


Re




Nα∑
n=−Nα

cRN [n] exp
[
jϑ (n + ς)

]



2

. (3.311)

Given ς , Nα and the alphabet �, the evaluation of the PAPR of (3.311) constitutes a formidable
problem. In fact, the maximum of (3.311) does not have a closed form. Moreover, it cannot be solved
numerically since it requires the peak of a time-continuous signal to be determined for each possible
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value of cNu
. To avoid these difficulties, in the literature it is often recommended to evaluate the

PAPR not for the time-continuous RF signal sRF (t, cN), but for its oversampled version, that is, for
the sequence generated by sampling sRF (t, cN) at a frequency L/Ts , where the oversampling vector
L is larger than one [316]. This approach is justified by the availability of various theoretical results,
establishing a relationship between the peak of a time-continuous signal and that of the corresponding
oversampled signal [318, 319]. It is worth noting that the peak of a sequence can be computed in a
computationally efficient fashion by evaluating, for each value of cNu

, the samples of the corresponding
sequence via an IFFT algorithm. This makes it possible to assess the efficacy of various techniques for
PAPR reduction proposed in the technical literature [316]. Finally, it should be noted that the validity
of this approach to the assessment of PAPR has recently been questioned, since it has been proved
that the reduction of the PAPR for a sample sequence does not necessarily entail a similar reduction
of the same parameter for the time-continuous signal from which the sequence has been extracted via
sampling [320].

3.8 Lattice-Based Multidimensional Modulations
In Section 3.3 it was shown how the representation, in terms of an orthonormal basis, of the signal
alphabet As , generated by a given digital modulator in baseband, leads to a new set, consisting of
Nw multidimensional points and known as a constellation. Most passband PAM constellations (see
Section 3.5.2) are characterized by a regular placement of their points, since regularity simplifies both
signal generation and detection. For this reason, generally speaking, most known signal constellations
are generated by extracting their points from a proper lattice, that is from a set of points placed in a
regular fashion in a multidimensional space. Note that the study of the possible signal constellations
inevitably leads to an examination of the problem of their optimality. An M-ary constellation can be
deemed optimal if, for a given error performance, it minimizes the average energy per information
bit required to achieve this target. If the communication channel introduces additive white Gaussian
noise (AWGN) only, the error performance of a digital receiver at large SNRs depends only on the
minimum distance between constellation points [321]. In addition, signal space theory shows that the
average energy expense decreases as the density of points around the origin increases. For this reason,
an M-ary constellation is optimal for AWGN channel signaling if it consists of a set of M points
that, for an assigned minimum distance among adjacent points, are placed in the densest possible
way around the origin. The design of optimal constellations leads to the well-known sphere-packing
problem [322, 323], whose solution leads to an algorithm that allows the placing of a set of equal
N-dimensional spheres according to the densest possible geometry.

The aim of this section is to provide the basics of lattice theory. The main algebraic and geometric
properties of lattices are outlined and some construction methods described. This material is necessary
for the later discussion of signal space codes in Chapter 11.

3.8.1 Lattices: Basic Definitions and Properties

A real lattice � is a discrete set of points λ belonging to a real Euclidean n-dimensional space R
n and

forming a group under the vector addition operator (see Appendix E). In principle, the vectors in a
lattice � span d ≤ n dimensions; however, all the lattices considered in this book are characterized by
d = n, that is, their vectors span exactly n dimensions. For this reason, in what follows we will call a
lattice of real n-tuples an n-dimensional real lattice. Generally speaking, the points of an n-dimensional
real lattice � are arranged in a regular fashion and are described by a set of d-dimensional linearly
independent row vectors {gl , l = 0, 1, . . . , n − 1}, called generators, such that:

� � {λ|λ = in G� = i0g0 + i1g1 + . . . + id−1gn−1}, (3.312)



138 Wireless Communications

g1

g0

g1

g0

l

l

FP
VR

(a) (b)

Figure 3.41 Two-dimensional lattices Z
2 and A2: illustration of generators {g0, g1}, sphere pack-

ing, fundamental parallelotopes (FPs) and Voronoi regions (VRs) of a lattice point λ.

where the n-dimensional row vector in � [i0, i1, . . . , in−1] belongs to Z
n (i.e., all its components

are integers) and G�, called the generator matrix, is an n × n matrix having gl as its lth row,
that is, G� � [gT

0 , gT
1 , . . . , gT

n−1]T . Equation (3.312) shows that � can be viewed as the image
of Z

n generated by the linear operator G�, or alternately, as a discrete additive subgroup of R
n.

These ideas are illustrated in Figure 3.41, showing the two-dimensional integer lattice Z
2 with basis

vectors g0 = {0, 1} and g1 = {1, 0} and the two-dimensional hexagonal lattice A2 with basis vectors
g0 = {1, 0} and g1 = {1/2,

√
3/2}, respectively.

An integer n-dimensional lattice is one whose coordinates, when scaled, are integer-valued. For
instance, Z

2 is an integer lattice, whereas A2 does not share this property.
The following operations can be carried out on an n-dimensional lattice �:

1. Scaling: a� denotes the lattice generated by multiplying all the points λ ∈ � by a real factor
a > 0. For instance, 2Z = {0, ±2, ±4, . . . }.

2. Rotation: O� is the lattice produced by an orthogonal transformation O, that is, it consists of all
the points λ′ = Oλ with λ ∈ �; for example, the lattice D2 = R2Z

2, where:

R2 =
[

1 1
1 −1

]
(3.313)

represents the so-called two-dimensional rotation operator37 [324], consists of all the integer pairs
whose coordinate sum is zero.

3. Cartesian product: �m represents the (m · n)-dimensional lattice defined as {(λ0, λ1, . . . , λm−1)

|λi ∈ � for i = 0, 1, . . . , M − 1}.

Lattices, being groups, share some fundamental algebraic properties, that can be summarized as
follows. First, from an n-dimensional lattice �, specific subsets of points, called sublattices, can be
extracted; a sublattice �′ of � is itself a lattice contained in �, that is, �′ is a subgroup of �.
Moreover, by elementary group theory (see Appendix E), �′ induces a factor group or quotient group
or partition, denoted �/�′, decomposing � into equivalence classes or cosets.38 The order |�/�′|
37 R2 produces a rotation by 45◦ and a scaling by

√
2. Note that (R2)

k
Z

2 is equal to 2k/2I2 for k even and to
2(k−1)/2R2Z

2 for k odd, where I2 is the 2 × 2 identity matrix.
38 Given the constant n-tuple a, the coset � + a of � is the set of all possible n-dimensional vectors of the form
λ + a, with λ ∈ �. In other words, � + a is a translate of � by a. Note that two distinct n-tuples are equivalent
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of this partition is the number of such equivalence classes. Each equivalence class is a coset of �′,
that is a translate �′ + c of �′, for some c ∈ �. We refer to c as a coset representative and the set
of all coset representatives for the partition is denoted by [�/�′]. It is easy to prove that any λ ∈ �

can be uniquely represented as λ = λ′ + c, with λ′ ∈ �′ and c ∈ [�/�′]. This means that the lattice
� can be represented as �′ + [�/�′]; this in fact defines the so-called coset decomposition of �. For
instance, it can be shown that the four-dimensional lattice D4 = {(λ0, λ1, λ2, λ3)|

∑3
i=0 λi = 0 mod 2}

is a sublattice of Z
4 and that the corresponding partition Z

4/D4 of Z
4 has order 2. If we choose

[�/�′] = {c0 = (0, 0, 0, 0), c1 = (1, 0, 0, 0)}, the coset decomposition of Z
4 is D4 + {c0, c1}.

A partition chain �/�′/�′′/ . . . is a sequence of lattices such that each element in the sequence
or chain is a sublattice of the previous element. For example, Z/2Z/4Z/ . . . is an infinite partition
chain. A partition chain defines a coset decomposition chain (or multi-term coset decomposition), that
is, a representation:

� = �′ + [�/�′]

= �
′ ′ + [�′/�

′ ′
] + [�/�′]

= . . . , (3.314)

of �. This means that each element of � may be expressed as an element of the final sublattice
in the partition chain, plus a coset representative of every other partition in the chain. For example,
Z/2Z/4Z/ . . . is a coset decomposition chain of the set of integers and leads to the standard binary
representation of integers [324].

Lattices, being collections of points in an n-dimensional space, also share some geometric properties.
A discussion of such properties requires the introduction of the concept of the distance d(λ1, λ2)

between two distinct lattice points λ1 and λ2; this is defined as:

d2(λ1, λ2) = ‖λ1 − λ2‖2,

where ||x|| is the Euclidean norm of a vector x (see Appendix D). For a given lattice �, the set of
squared distances of its points from the zero point (i.e., from the n-dimensional null vector 0n) can be
conventionally represented via an infinite series called the theta function39 (also called the theta series
or weight distribution) of the lattice (the theta functions for a number of important packings and the
tables of the first tens of function coefficients are available in [325]). The key geometric parameters of
a lattice � are: (a) the minimum squared distance between its points d2

min(�); (b) the kissing number
Kmin(�), representing the minimum number of nearest neighbors to any point of �; (c) the volume
V (�) of n-dimensional space per lattice point.

The quantities d2
min(�) and Kmin(�) lend themselves to a simple geometric interpretation if

we consider the sphere packing associated with �. This packing consists of an infinite set of
n-dimensional spheres, each having its center in a specific lattice point and radius r selected in such
a way that the spheres associated with adjacent lattice points touch each other without overlapping.
Then, we have that: (a) the minimum distance of a lattice (or sphere packing) dmin(�) represents the
smallest distance between sphere centers, and is equal to twice the sphere packing radius r; (b) the
kissing number Kmin(�) is the number of sphere centers at minimum distance from any other sphere
center, that is, it represents the number of spheres that “ touch” or “ kiss” any other sphere. Note that
an n-dimensional lattice � always describes an n-dimensional sphere packing; the converse is not
necessarily true, however, since a sphere packing may not contain the origin (i.e., the point λ = 0n,
where 0n is the n-dimensional null vector) and, if this occurs, the corresponding set of sphere centers
is not a subgroup of R

n.

modulo � if their difference belongs to �. Therefore, � + a can also be seen as the set of points equivalent to a
modulo �.
39 This is conceptually similar to the weight enumerator polynomial of block codes (see Section 9.1).



140 Wireless Communications

Each lattice is also characterized by two specific geometric regions, namely its fundamental region
and its Voronoi region (VR). The fundamental region or fundamental parallelotope of an n-dimensional
lattice � is the region defined as:

{xn|xn = rnG� = r0g0 + r1g1 + . . . + rn−1gN−1|0 ≤ r0, r1, . . . , rn−1 < 1}, (3.315)

where xn = [x0, x1, . . . , xn−1] and rn = [r0, r1, . . . , rn−1] are n-dimensional real row vectors. The
VR of a point λ ∈ � is the set of all real vectors xn ∈ R

n nearer to λ than to any other lattice point,
that is, the region defined as:

{xn||λ − xn| < |λ̄ − xn|, λ̄ ∈ �, λ̄ = λ}. (3.316)

It can be shown that a lattice � defined according to (3.312) is geometrically uniform. This means
that any translate � + λ of � by a lattice point λ coincides with � itself, � being a group. For this
reason, each point of � has the same number of neighbors at a given distance, and all the VRs are
congruent and form a tessellation of R

n.
The VRs, the fundamental parallelotopes and the sphere packings are illustrated for the lattice Z

2

in Figure 3.41(a) and for A2 in Figure 3.41(b).
It is also important to note that the parameter V (�) represents the volume40 of the VR of �, or,

equivalently, that of its fundamental parallelotope. The latter region, defined by (3.315), can be seen
as the image of the n-dimensional cube [0, 1)n (having unit volume) through the linear transformation
G�. The Jacobian of this transformation is det(G�) (where det(X) denotes the determinant of the
matrix X), and we have that41:

V (�) = det(G�). (3.317)

It can also be proved that, if �′ is a sublattice of � of order a, then42 V (�′) = aV (�). For instance,
the partition Z

4/D4 has order 2, so that V (D4) = 2V (Z4) = 2, since V (Zn) = 1 for any positive
integer n (the VR of Z

n is an n-dimensional cube with unit edge length).
Other meaningful geometric parameters for an n-dimensional lattice � are: (a) its Hermite parameter

(or nominal coding gain) [326]:

γc(�) � d2
min(�)

V (�)2/n
, (3.318)

which measures the normalized density of � (since V (�)2/n represents a normalization of the volume
V (�) to two dimensions); and (b) its density:

�(�) � rnVn

V (�)
, (3.319)

expressing the fraction of space R
n covered by the spheres of radius r (in the sphere packing of �),

since:

Vn = πn/2

�((n/2) + 1)
(3.320)

is the volume of an n-dimensional unit sphere [325], �(·) being the gamma function [96]. It is
not difficult to prove that the parameter γc(�) (3.318) is dimensionless, and is invariant to scaling,
orthogonal transformations and Cartesian products [324, p. 1128], that is:

γc(εO�m) � γc(�), (3.321)

where ε is a positive scaling factor, m is any positive integer and O is an n × n orthogonal matrix.

40 V (�) can also be interpreted as the reciprocal of the number of lattice points per unit volume.
41 This formula also expresses the so-called determinant of a lattice � (denoted det �) having d = n. If d < n,
we have that det � � det(G�GT

�)1/2 (e.g., see [325]).
42 This lemma is due to D. Forney (see [324, p. 1128]).
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Consider, for instance, the lattices Z
2 and A2 again. It is easy to show that Kmin(Z

2) = 4,
d2

min(Z
2) = V (Z2) = γc(�) = 1, �(Z2) = π/4 ∼= 0.7854 and that Kmin(A2) = 6, d2

min(A2) = 1,
V (A2) = √

3/2, γc(A2) = 2/
√

3 ∼= 1.155 (0.62 dB), �(A2) = π/
√

12 ∼= 0.9069. Note that the result
�(Z2) < �(A2) is confirmed by Figure 3.41, showing that the spheres in A2 are more closely
packed than those in Z

2.
A key problem in lattice theory is identifying the densest lattice or sphere packing in n dimensions.

Table 3.2 summarizes the densest known lattices for various dimensions not exceeding 24. Note the
following:

1. The n-dimensional lattice Dn is defined as {λn = (λ0, λ1, . . . , λn−1) ∈ Z
n|∑n−1

i=0 λi = 0 mod 2};
the specific case corresponding to n = 3 (i.e., D3) is also known as the face-centered cubic (FCC)
lattice and its generator matrix is (e.g., see [327, p. 277]):

GD3
=

2 0 0

1 0 1
0 1 1


 . (3.322)

2. The Gosset lattice E8 can be defined as (e.g., see [327, p. 276]):

E8 = 2D8 ∪ {2D8 + (1, 1, 1, 1, 1, 1, 1, 1)} (3.323)

and can be shown to be a sublattice of Z
8 with order 16, so that V (E8) = 16 V (Z8) = 16. The

values of other meaningful parameters are d2
min(E8) = 4 and, consequently, γc(E8) = 2 (3.01 dB);

its generator matrix is [325]:

GE8
= 1

2




2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 1 0 1 0
1 1 1 1 1 1 1 1




(3.324)

3. The Leech lattice43 �24 is characterized by V (�24) = 224 and d2
min(�24) = 16, so that γc(�24) = 4

(6.02 dB);
4. �16 represents the 16-dimensional lattice of the Barnes–Wall (BW) family.

As far as the last point is concerned, it is useful to point out that the BW lattices are an infinite
family of n-dimensional lattices. For n ≤ 16 they are the best known lattices (i.e., provide the densest
lattice packings); for larger n, even if they are not optimal, they represent a good compromise between
achievable performance and decoding complexity. It can be shown that, for any nonnegative integer m,
there exists an n-dimensional real BW lattice, with n = 2m+1, denoted by �(0, m) in what follows.44

Such a lattice is characterized by the following relevant parameters: kissing number [323]:

Kmin(�(0,m)) =
m+1∏
l=1

(2l + 2), (3.325)

43 A great deal has been written about this important lattice; a set of useful references can be found in [325].
44 Note that �(0, 1), �(0, 2) and �(0, 3) correspond to D4, E8 and �16, respectively, in Table 3.2.
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normalized volume V (�(0, m))2/n = 2m/2, squared minimum distance d2
min(�(0, m)) = 2m and,

consequently, nominal coding gain γc(�(0, m)) = 2m/2. Some details about the construction of the
BW lattices are provided in the following below.

Other higher-dimensional dense lattices are available in the technical literature; here we confine
ourselves to mentioning those devised by Coxeter and Todd [332], Quebbemann [333], Nebe [334],
and Elkies [323].

In applications the most useful class of lattices is undoubtedly that of the so-called binary lattices,
since they are natural extensions of binary block codes and in many cases they provide the best
performance [324, p. 1128], [335]. A real n-dimensional lattice � is a binary lattice if it is an integer
lattice (i.e., � ⊆ Z

n) having 2m
Z

n as a sublattice for some m; the least such m is called the 2-depth
of the lattice. Then, if � is binary with depth m, we have that Z

n/�/2m
Z

n is a partition chain. All
the known useful lattices have 2-depth equal to 1 or 2 and are known as mod-2 and mod-4 lattices,
respectively.

Dense lattices can be employed to design power-efficient constellations for digital signaling. Gen-
erally speaking, given an n-dimensional lattice �, a lattice constellation45 (or signal constellation) is
a finite subset of the lattice points and can be generated as [337]:

C(�,R) � (� + a) ∩ R, (3.326)

by selecting points belonging to the translate46 (� + a) of � and lying within a compact bounding
region R of n-dimensional space. There is no general agreement about the shape or size47 of R,
except for the fact that R is chosen to be large enough to enclose the desired number |C(�, R)| of
constellation points and is bounded by some limitation on the energy of codewords and/or the PAPR
[337, 339]. For instance, in the two-dimensional case power-efficient constellations can be extracted
from the hexagonal lattice48 A2, as shown in [338].

The region R of (3.326) is characterized by the following properties: (a) its volume:

V (R) �
∫
R

dx; (3.327)

Table 3.2 Densest known lattices in selected dimensions not exceeding 24

n Name Symbol �(·) Kmin(·) γc(·), dB Ref.

1 integer Z 1 2 0.0 [323]
2 hexagonal A2 π/(2

√
3) ∼= 0.907 6 0.5 [323]

3 diagonal D3 π/(3
√

2) ∼= 0.741 12 1.0 [323, 328]
4 Schläfli D4 π2/16 ∼= 0.617 24 1.5 [323]
8 Gosset E8 π4/384 ∼= 0.254 240 3.0 [329]
12 Barnes–Wall �16 π8/(8!24) ∼= 0.0147 4320 4.5 [325, 330]
24 Leech �24 π12/12! ∼= 0.00193 196560 6.0 [331]

45 The term lattice code is also used in the technical literature (e.g., see [336, 337]).
46 An n-dimensional lattice is constrained to have a point at 0n and the translation frees us from this constraint;
this is useful, for instance, for minimizing the average transmitted power.
47 If R is a convex region containing the origin, then the resulting lattice codes include the lattice codes discussed
by Forney et al. in [338, p. 636, Figure 6].
48 A. D. Wyner has proved that, in this case, if the constellation cardinality tends to infinity, the optimal constellation
is provided by the intersection of a circle (whose center is 02) with A2 (see [340, Appendix B]).
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(b) its average energy per dimension:

P(R) � 1

nV (R)

∫
R

|x|2dx, (3.328)

evaluated under the assumption of a uniform probability density function over R; and (c) the normal-
ized second moment of R:

G(R) � P(R)

V (R)2/n
. (3.329)

It can be proved that the parameter G(R) is invariant to scaling, orthogonal transformations and
Cartesian products, that is:

G(εORm) = G(R), (3.330)

where ε is a positive scaling factor, m is any positive integer and O is an n × n orthogonal matrix.
Let us now consider the specific example of an M-ASK constellation.

Example 3.8.1 The M-ASK constellation illustrated in Figure 3.3(b) is a one-dimensional lattice
constellation C(2Z, R) (see (3.326)) with � + a = 2Z + 1 and R = [−M,M]. It is easy to show that
R is characterized by V (R) = 2M , P(R) = M2/3 and G(R) = 1/12.

�

In the analysis of the error performance achievable with large49 constellations, some approxima-
tions are usually made. In particular, given a constellation C(�,R) (3.326), its size |C(�,R)| and
average power per dimension P(C(�,R)) (assuming a uniform discrete distribution over C(�,R))
are approximated as:

|C(�, R)| ∼= V (R)

V (�)
(3.331)

and
P(C(�,R)) ∼= P(R), (3.332)

respectively.50 In addition, the average number of nearest neighbors for the points of C(�, R) is
estimated as Kmin(�), that is, the kissing number of the lattice �. When assessing the performance
achievable by maximum likelihood detection (see Section 4.3.3) of a given lattice constellation on
AWGN channels, a union bound estimate (UBE) on the probability of symbol detection error is
usually considered (e.g., see Section 4.3.2, [29, Sect. 14.1.] and [337]). This bound shows that the
total coding gain γtot is given by the product (i.e., by the decibel sum) of the nominal coding gain51

γc(�) (see (3.318)), characterizing the lattice � from which the constellation is extracted, and the
so-called shaping gain γs(R), depending on the constellation bounding region R; the latter parameter
is defined as:

γs(R) � V (R)2/n

12P(R)
(3.333)

and can also be rewritten as (see (3.329)):

γs(R) = 1/12

G(R)
. (3.334)

49 This means that R is large relative to V (�).
50 Relations (3.331) and (3.332) express the so-called continuous approximation (see [337] and [29, Sect. 14.1.3.]).
51 This compares the minimum distance of � against a two-dimensional square lattice Z

2, representing a reference
lattice [29, Sect. 14.1].
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Note that γc(�) and γs(R), even if analytically they play similar roles in the UBE, have substantially
different meanings. The former measures the density increase provided by � with respect to the
baseline integer lattice Z (or, equivalently, Z

n), whereas the latter quantifies the decrease in average
energy due to the region R relative to an interval [−1, 1] (or, equivalently, to an n-dimensional cube
[−1, 1]n). The effective coding gain, however, is reduced by the error coefficient Kmin(�) appearing
as a multiplicative factor in the UBE. It is also worth pointing out that γc(�) and γs(R) show
different asymptotic behaviors. On the one hand, γs(R) is limited to the quantity πe/6 (i.e., 1.53 dB),
called the ultimate shaping gain, as n → ∞ [337]; on the other hand, the nominal coding gains of
dense n-dimensional lattices tend to become infinite as n → ∞. Despite this, effective coding gains
do not tend to infinity, because of the increase in the number of nearest neighbors with the lattice
dimensionality. These considerations are supported by the numerical results shown in Table 3.2.

Finally, we note that, with high-dimensional lattices, large coding gains can be achieved if the
signal constellations extracted from them are combined with channel coding schemes in a proper
fashion (e.g., see [338, 324]). The adoption of multidimensional signaling schemes is also encouraged
by the fact that usually for the densest lattices fast decoding algorithms (i.e., computationally efficient
methods for finding the closest lattice point to an arbitrary point) exist (e.g., see [339, 341, 342]).

3.8.2 Elementary Constructions of Lattices

We now introduce some elementary methods to construct lattices from block codes,52 which we then
apply to generate the so-called BW lattices.

The first construction method, known as construction A (first proposed in [343]; see also [323, 342])
relies on the fact that mod-2 binary lattices are essentially isomorphic to linear binary block codes.
In fact, it can be proved that a real n-dimensional lattice � is a mod-2 binary lattice if and only if it
is the set of all the integer n-tuples that are congruent modulo 2 to some codeword in a linear binary
(n, k) block code C, that is, if and only if � can be expressed as:

� = {λ ∈ Z
n|λ ≡ c mod 2 for some c ∈ C}. (3.335)

If this occurs, the volume V (�) is equal to 2n−k and the minimum squared distance of � is d2
min(�C) =

min(dH (C), 4), where dH (C) is the minimum Hamming distance (see (9.18)) of the block code C. The
latter result follows from the fact that 4 is the distance between any two lattice points corresponding
to the same codeword c and differing by 2 in one coordinate, whereas dH (C) is the distance between
two lattice points corresponding to two distinct codewords c and c

′
with Hamming distance dH (C) and

differing by 1 in the coordinates where c and c
′

differ. From (3.335) and (3.314), the representation:

� = 2Z
n + C (3.336)

of � by its coset decomposition then follows. This expresses the mod-2 lattice as the union of 2k

cosets of 2Z
n, each coset corresponding to a specific codeword c of C [324].

The mod-2 construction method can be generalized to generate lattices from nonbinary codes [342].
The new method, known as generalized construction A, can be summarized as follows. Let � be an
l-dimensional lattice and �′ denote a sublattice with the same dimensionality as �, so that the factor
group �/�′ is finite with order |�/�′| = q. Moreover, let G be a q-ary label group isomorphic to the
partition �/�′ according to the isomorphism ξ : G → �/�′. Then, we have that: (a) any element u
of G is equivalent to a coset representative δ ∈ [�/�′] with ξ : u → δ; (b) for any u ∈ G, �′ + ξ(u)

represents a coset of �′; (c) there exists an inverse mapping ξ−1 : δ → u from the elements of the

52 To understand this section some knowledge of the theory of linear block codes is required (see Section 9.1).
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coset �′ + δ to the element u. The new construction method defines an (l · n)-dimensional lattice �C
from an (n, k) group code53 C over G as:

�C �
⋃
c∈C

φ(c), (3.337)

where c � [c0, c1, . . . , cn−1] and:
φ(c) � (�′)n + ξ(c), (3.338)

with ξ(c) � [ξ(c0), ξ(c1), . . . , ξ(cn−1)]. Note that, by analogy with (3.336), (3.338) expresses the
lattice � as the union of |C| cosets of (�′)n, each coset being associated with a specific codeword c
of C [324]. It can be proved that the lattice �C (3.337) is characterized by:

V (�C) = V (�′)n

|C| (3.339)

and
dmin(�C) ≥ min{dmin(�

′), dH,C dmin(�)}, (3.340)

where |C| and dH,C are the cardinality and the minimum Hamming distance of the code C, respectively
[323]. Note that if we choose � = Z and �′ = 2Z, then q = 1 and �/�′ is isomorphic to the binary
group G = Z2 = {0, 1}. An (n, k) group code over Z2 is a binary linear (n, k) block code, so that,
letting ξ(0) = 0 and ξ(1) = 1, the generalized construction A reduces to construction A.

The generalized construction A can be further extended to encompass the case of a longer decompo-
sition chain: the resulting algorithm is known as generalized construction C54 and can be summarized
as follows. Let �0/�1/ . . . /�m denote a partition chain of l-dimensional lattices, where each par-
tition �k−1/�k is isomorphic to a group Gk , with k = 1, 2, . . . , m. Then, denote the mapping from
label group Gk to coset [�k−1/�k] as ξk : Gk → [�k−1/�k], with inverse ξ−1

k : [�k−1/�k] → Gk .
Now consider some sequence C1, C2, . . . , Cm of group codes, each of length n, over G1,G2, . . . ,Gm,
respectively. Then the (l · n)-dimensional lattice �C generated by the new method is given by:

�C �
⋃

c(1)∈C1,c(2)∈C2, ... ,c(m)∈Cm

φ(c(1), c(2), . . . , c(m)), (3.341)

where c(k) � [c(k)
0 , c

(k)
1 , . . . , c

(k)
n−1] and:

φ(c(1), c(2), . . . , c(m)) � (�m)n + ξ1(c
(1)) + . . . + ξm(c(m)), (3.342)

with ξk(c
(k)) � {ξk(c

(k)
0 ), ξk(c

(k)
1 ), . . . , ξk(c

(k)
n−1)}. It can be proved that �C in (3.341) is character-

ized by:

V (�C) = V (�m)n

m∏
k=1

|Ck|
(3.343)

and
dmin(�C) ≥ min{dmin(�m), dH,Cm

dmin(�m−1), . . . , dH,C1
dmin(�0)}, (3.344)

where dH,Ck
is the minimum Hamming distance of the code Ck , with k = 1, 2, . . . , m [323, 342].

This construction method can be applied to generate the BW family of lattices [330], as illustrated
in the following example.

53 Generally speaking, a group code (with codewords of length n) over a finite Abelian group G is a subgroup of
a direct product group Gn (see Section 9.1).
54 Forney and Vardy [342, p. 1995] generalize this construction further, calling it multilevel construction A, but in
keeping with [323] we use the name generalized construction C here.
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Example 3.8.2 BW lattices are closely related to the family of Reed–Muller (RM) binary block codes
[324, 335, 344]. In fact, to construct the BW lattice �(0, m) according to (3.341) and (3.342), the
code Ck (with k = 1, 2, . . . , m) is selected as the RM code RM(m − k, m) of length N = 2m and
minimum Hamming distance dH,Ck

= 2k (see [324, p. 1135] and Section 9.1.5.2). In addition, the lattice
�k � φkG is selected (with k = 1, 2, . . . , m) for generating the partition chain �0/�1/ . . . /�m.
Here G denotes the set of Gaussian integers, that is, the one-dimensional complex lattice associated
with the two-dimensional lattice Z

2, and φ � 1 + i denotes the prime of G having least norm (see
[324, pp. 1129–1130]). Note that: (a) the RM codes of a given length N are nested, in the sense that
RM(m, m)/RM(m − 1, m)/ . . . /RM(0, m) is a code partition chain; and (b) the complex set φG is a
sublattice of G of order 2 and corresponds to the real lattice R2Z

2, where R2 is the two-dimensional
rotation operator defined in (3.313).

Then, the lattice �(0, m), whose dimensionality in its real form is equal to n = l · N = 2N = 2m+1,
can be generated in complex form55 as in (3.341) and (3.342) with:

(�m)n = φmGN (3.345)

and
ξk(c

(k)) = φm−kc(k) (3.346)

with c(k) ∈ RM(m − k, m) and k = 1, 2, . . . , m [324, p. 1135].
A squaring construction method can also be used to generate the BW lattices in a recursive fashion,

as explained in detail in [335, pp. 1166–1170]. Other procedures are available for constructing the
family of the so-called principal sublattices (denoted {�(r,m)}, with m ≥ 0 and 0 ≤ r ≤ n) of the
BW lattices; details can be found in [324, 335].

�

3.9 Spectral Properties of a Digital Modulation at the Output
of a Wireless Channel

In this section the mathematical tools described in Section 3.4 and some results derived in Chapter 2
are applied to the analysis of the spectral properties of a digital modulation transmitted through
a doubly-selective wireless channel. This allows us to assess the effects of time selectivity in the
frequency domain and to establish a relationship between the average received energy per symbol
interval and the average energy transmitted in the same interval.

In our analysis it is assumed that: (a) the complex envelope s(t, c) of the transmitted signal depends
on a random vector c of channel symbols and is WSC with period Tcs ; and (b) the CIR h(t, τ ) is
statistically independent of s(t, c). Then, the useful component of the channel response to s(t, c) is
(see (2.9)):

z(t, c) �
∫ +∞

−∞
s(t − τ, c) h(t, τ ) dτ, (3.347)

so that the autocorrelation function of z(t, c) is given by:

Rz(t, τ ) � E{z(t + τ, c) z∗(t, c)}

=
∫ +∞

α=−∞

∫ +∞

β=−∞
Rs(t − β, τ + β − α) Rh(t + τ, t; α, β) dβ dα, (3.348)

55 Each complex component of a lattice point can be turned into a two-dimensional real vector, whose first and
second elements are the real and imaginary parts, respectively, of the component itself. For this reason, in this
case each N-dimensional complex lattice point is equivalent to an n-dimensional real point with n = 2N .
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where Rh(t1, t2; τ1, τ2) � E{h(t1, τ1) h∗(t2, τ2)} (see (2.79)) and Rs(t, τ ) represent the autocorrelation
function of the CIR and s(t, c), respectively. From (3.348) it can easily be inferred that, generally
speaking, Rz(t, τ ) is not periodic in the variable t, so that z(t, c) (3.347) is not even cyclostationary in
autocorrelation. However, if we assume that the channel is affected by Rayleigh fading and is WSS-US,
so that Rh(t1, t2; τ1, τ2) = Ph(t1 − t2; τ1) δ(τ1 − τ2) (see (2.83)), (3.348) can be easily simplified to:

Rz(t, τ ) =
∫ +∞

−∞
Rs(t − α, τ) Ph(τ ; α) dα. (3.349)

Note that on the RHS of this equality only the factor Rs(t − α, τ) shows a dependence on t. Since
s(t, c) is WSC, Rs(t, τ ) is periodic in the variable t with period Tcs , so that Rz(t, τ ) shares the same
property. This proves that,56 under the above assumptions,57 z(t, c) is WSC with period Tcs and its
average autocorrelation function is given by (see (3.26)):

Rz(τ) � 1

Tcs

∫ Tcs

0
Rz(t, τ ) dt

= 1

Tcs

∫ Tcs

t=0

∫ +∞

α=−∞
Rs(t − α, τ) Ph(τ ;α) dα dt . (3.350)

If on the RHS of the latter equation the integration order is reversed and we note that:

1

Tcs

∫ Tcs

t=0
Rs(t − α, τ) dt = Rs(τ) (3.351)

for any α, where Rs(τ) is the average autocorrelation function of s(t, c), it is found that:

Rz(τ) = Rs(τ)

∫ +∞

−∞
Ph(τ ;α) dα. (3.352)

Moreover, if we assume that Ph(τ ;α) is separable, that is, that Ph(τ ;α) = RD(τ) Ph(α) (see (2.95)),
where RD(τ) (with RD(0) = 1) is the Doppler autocorrelation function and Ph(τ) is the channel PDP,
(3.352) can be rewritten as:

Rz(τ) = Rs(τ) RD(τ)

∫ +∞

−∞
Ph(α) dα. (3.353)

This result shows that, if the channel PDP is normalized, that is, if:∫ +∞

−∞
Ph(α) dα = 1, (3.354)

then z(t, c) in (3.347) is characterized by the average autocorrelation function:

Rz(τ) = Rs(τ) RD(τ) (3.355)

and, consequently, by the average PSD:

Sz(f ) � FCT[Rz(τ)] = Ss(f ) ⊗ SD(f ) =
∫ +∞

−∞
Ss(α) SD(f − α) dα, (3.356)

56 Note that the Rayleigh fading assumption implies that the stochastic process z(t, c) (3.347) has zero mean.
57 The reader can verify that, if the channel is doubly-selective, the assumption of WSS channel alone, like that
of an US channel, is not sufficient to ensure that z(t, c) in (3.347) is WSC. However, if the channel is frequency
(time) selective only, the US (WSS) assumption is sufficient.
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where Ss(f ) is the average PSD of s(t, c) and SD(f ) � FCT[RD(τ)] is the Doppler power spectrum
(see Section 2.2.2.3). It is important to note that the convolution product in (3.356) accounts for the
spectral broadening, in the received signal, due to the Doppler effect in a wireless channel. In fact,
(3.356) proves that, if s(t, c) is rigorously bandlimited to B Hertz and the SD(f ) does not extend
beyond the Doppler bandwidth BD , the bandwidth of Sz(f ) is equal to B + BD Hertz. Note also that,
under the last assumption about SD(f ), (3.356) can be rewritten as:

Sz(f ) =
∫ f +BD

f −BD

Ss(α) SD(f − α) dα. (3.357)

Then if BD � B, so that Ss(f ) undergoes negligible variation in the integration interval of (3.357),
we have:

Sz(f ) ∼= Ss(f )

∫ +∞

−∞
SD(α) dα = Ss(f )RD(0) = Ss(f ), (3.358)

since
∫ +∞
−∞ SD(α) dα = RD(0) = 1. Integrating both sides of (3.358) produces:

Pz
∼= Ps, (3.359)

establishing that the average power of the useful received signal is essentially equal to the average
transmitted power. This implies that:

Ēs
∼= Es, (3.360)

where Ēs � PzTs is the average received energy58 per symbol interval, whereas Es represents the
average transmitted energy in the same interval. Note that the approximation of (3.359) and (3.360)
becomes more and more accurate as the Doppler bandwidth gets narrower, becoming an exact equality
when BD = 0.

The results derived above refer to a SISO wireless channel. Let us extend them to the case of a
MIMO communication system employing nT transmit and nR receive antennas. The complex enve-
lope of the useful signal captured by the kth receive antenna (with k = 0, 1, . . . , nT − 1) can be
expressed as:

zk(t, c) �
∫ +∞

−∞

nT −1∑
l=0

sl(t − τ, cl ) hl,k(t, τ ) dτ, (3.361)

where sl(t, cl ) and hl,k(t, τ ) are the signal sent by the lth transmit antenna and the CIR between
the lth input and the kth output, respectively. In what follows we assume that: (a) the stochastic
processes {sl(t, cl ), l = 0, 1, . . . , nT − 1} are all WSC59 with the same period Tcs ; (b) the nT × nR

SISO channels are WSS-US, mutually independent and affected by Rayleigh fading; and (c) each of
these channels has a separable scattering function and its PDP is normalized (see (3.354)). Then it is
not difficult to prove that zk(t, c), k = 0, 1, . . . , nR − 1, is WSC with period Tcs and that its average
autocorrelation function is given by:

Rzk
(τ ) =

nT −1∑
l=0

Rsl
(τ ) RDl,k

(τ ), (3.362)

58 Note that the evaluation of Ēs entails a statistical average not only with respect to c, as has been done with Es ,
but also with respect to all the random parameters of the CIR.
59 Note that no assumption is made here about their possible statistical correlations.
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where Rsl
(τ ) is the average autocorrelation function of sl(t, cl ) and RDl,k

(τ ) is the Doppler
autocorrelation function of the channel associated with the lth input and kth output. Therefore, the
average PSD of zk(t, c) is:

Rzk
(τ ) =

nT −1∑
l=0

Ssl
(f ) ⊗ SDl,k

(f ), (3.363)

where Ssl
(f ) is the average PSD of sl(t, c) and SDl,k

(f ) � FCT [RDl,k
(τ )] is characterized by

a Doppler bandwidth BDl,k
. As in the SISO scenario considered above, if BDl,k

� Bl with l =
0, 1, . . . , nT − 1, where Bl is the bandwidth of sl(t, cl ), the average power Pzk

of the overall useful
signal captured by the kth receive antenna can be approximated as:

Pzk
∼=

nT −1∑
l=0

Psl
, (3.364)

where Psl
is the average power of sl(t, c), with l = 0, 1, . . . , nT − 1. Note that the RHS of (3.364)

is actually independent of k because of the assumed statistical equivalence and mutual independence
of all nT × nR SISO channels. This entails that the average received energy per symbol interval and
per receive antenna Ēs is independent of the selected receive antenna and is given by:

Ēs
∼=

nT −1∑
l=0

Esl
, (3.365)

where Esl
represents the average energy radiated by the lth transmit antenna in the same interval.

In all the following chapters it will be assumed that, unless explicitly stated, the assumptions
required for the validity of (3.359) and (3.360) (and their generalizations (3.364) and (3.365)) are
satisfied.

3.10 Historical Notes
Substantial efforts have been devoted to the study of digital modulation techniques and their spectral
properties in the last 50 years. For this reason, a huge volume of technical literature on these topics is
available. In this section, we outline the evolution of the research activities concerning the development
of PAM, CPM and MC signals, including their spectral properties.

3.10.1 Passband PAM Signaling

Historically speaking, the first passband PAM techiques employed in wireless communication systems
were PSK modulations [345, 346], in the form given by (3.57). Their use since the latter half of
the 1950s was made possible by the use of oscillators capable of providing a stable reference for
the coherent detection of phase modulated signals [347]. In 1960, C. S. Cahn suggested considering,
as a natural extension of digital phase modulations, new modulations combining a multiplicity of
phases with a finite number of amplitudes to achieve a more efficient use of the transmitted power
with a larger number of bits per symbol [348]. The constellations proposed by Cahn consisted of
a set of points placed along concentric and equally populated circumferences in a two-dimensional
signal space. The work started by Cahn was soon extended by J. C. Hancock and R. W. Lucky, who
showed how the error performance could be improved by selecting only two distinct amplitudes for
channel symbols and placing more points on the inner circumference than on the outer one [349]. In
1962, C. Campopiano and B. G. Glazer proposed a new AM-PM format [350], said to be of Type
III, to distinguish it from Type I, as proposed by Cahn, and Type II, as described by Hancock and
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Lucky. The technique devised by Campopiano and Glazer, known today as QAM, was proposed as a
technically appealing solution with a simple implementation for medium to large signaling alphabets.
In the same year, Hancock and Lucky published another work [351], investigating the problems of
designing optimal AM-PM constellations and of comparing their performance with that provided by
amplitude and phase modulations. They proved that phase modulated signals were the optimal choice
in the presence of a low SNR and for small constellation sizes, and that AM-PM techniques were the
optimal choice for M ≥ 8 in the presence of a constraint on the average transmitted power, and for
M ≥ 16 in the presence of a constraint on the peak power.

After the publication of these papers, the problem of designing new AM-PM constellations was
neglected for several years. This was probably due to the difficulties encountered in the implementation
of AM-PM systems with the available technology and the absence of a need for data communications
with high spectral efficiency. In 1973, Simon and Smith published a paper that investigated hexag-
onal or honeycomb signal constellations [352]. This work clearly showed that such signal sets were
more energy-efficient than any previously found and that the hexagonal or honeycomb lattice in two
dimensions, known as A2, is the densest possible packing in two dimensions. In 1974, the problem of
devising new AM-PM formats was reconsidered by G. J. Foschini, R. D. Gitlin and S. B. Weinstein
[340], and by C. Thomas, M. Weidner and S. Durrani [353]. The former, using a search procedure
based on a gradient method, solved the problem of finding optimal two-dimensional constellations
with 4, 7, 8, 16 and 19 points, while the latter described 29 new constellations and compared their
performance. Their work verified heuristically the earlier work by Simon and Smith in that the best
constellations found were indeed essentially hexagonal. A year later, the so-called cross constella-
tions, which allowed transmission of an odd number of bits in each symbol interval, were proposed
by J. G. Smith [354].

As far as the implementation of AM-PM systems is concerned, we note that the first significant steps
date back to the second half of the 1970s. In 1976, K. Miyauchi, S. Seki and H. Ishio, researchers at
the Nippon Telegraph and Telephone Public Corporation (NTT), developed a prototype of a simplified
16-QAM system, which could operate at up to 400 Mbit/s [355]. Another prototype of a 16-QAM
modem (operating at 140 Mbit/s in the 10.7–11.7 MHz bandwidth), developed in France by the Centre
National d’Études des Télécommunications (CNET), was illustrated by P. Dupuis et al. in 1979 [356].
In the same year, the NTT researchers I. Horikawa, T. Murase and Y. Saito announced promising
results from experimentation with a 16-QAM modem [357], transmitting at 5 GHz, at a speed of
200 Mbit/s in a 40 MHz bandwidth. Note that, by 1979, almost 20 years had elapsed since the first
theoretical studies on the potentialities offered by AM-PM modulation techniques. In the following
years many more advanced prototypes of QAM systems were developed: an example of a 256-QAM
modem, developed for a high-capacity wireless link (400 Mbit/s) was described by Y. Saito and Y.
Nakamura in 1986 [358]. The above-mentioned prototypes were designed for microwave radio bridges
providing high-capacity links in LOS scenarios [359]. In the following years, QAM techniques were
adopted in commercial systems, and adopted for digital signaling over the public switched telephone
network (PSTN). In addition, the possibility of their use in satellite and mobile terrestrial systems was
widely investigated, as discussed in detail in [360]. In these scenarios, requiring the use of power-
efficient amplifiers [361], PSK or CPM signaling have usually been preferred to AM-PM techniques,
because of the larger envelope fluctuations of the latter with respect to the former.

It is also worth recalling the strong interest in staggered PAM signaling at the end of the 1960s
and at the beginning of 1970s. In that period significant attention was paid to OQPSK, considered
as a possible alterative to MSK (see Section 3.6.2) in transmissions over nonlinear and severely
bandlimited channels [362]. A description of the advantages deriving from the adoption of OQPSK
and some interesting bibliographic citations on this topic can be found in [363].
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3.10.2 CPM Signaling

Digital frequency modulation (FM) techniques, and in particular FSK, have received substantial
attention from the scientific community since the 1960s. This interest was motivated by the sim-
plicity both in the generation of FM signals, and in the available noncoherent detection methods, such
as those based on the use of a frequency discriminator [280]. For this reason, the adoption of these
techniques was suggested for those scenarios requiring the development of low-complexity appara-
tuses, but not putting severe constraints on the transmission bandwidth. In fact, FM techniques were
deemed spectrally inefficient and, consequently, intrinsically unsuitable for high-speed communica-
tions. In those years the generation mechanism for continuous-phase FM signals and the advantages
they were offering over their discontinuous-phase counterparts was also clear [280].

In the 1970s further results were achieved in the research into digital FM. Particular attention was
paid to MSK (patented by M. L. Doelz and E. H. Heald in 1961 [364]); for this modulation format,
R. de Buda described some schemes for its modulation and coherent detection in 1972 [365].60

This simplicity, together with its spectral compactness and constant envelope, justifies the substantial
interest in MSK in those years [285]. Among the applications of MSK, it is worth remembering the one
proposed in 1969, in the USA, by the Data Transmission Co. (Datran) for the development of national
network of microwave radio bridges, which used digital modems capable of transmitting up to 21.504
Mbit/s in a 30 MHz bandwidth assigned by FCC for this specific application. In this and other cases,
the adoption of MSK was preferred to the use of PSK [362] because of the common use of nonlinear
components in microwave communication equipment [366]. In the years following de Buda’s work,
research into digital FM concentrated, on the one hand, on coherent and noncoherent detection of
CPFSK signals [287] and the achievable performance [367], and, on the other hand, on modifications
of the MSK technique to derive new CPM formats [281, 368–370]. Such formats attempted to preserve
the structural simplicity of MSK signals, while offering improved spectral properties [371, 372]. In
this research area the following results deserve to be mentioned: the discovery by F. Amoroso of the
so-called SFSK61 in 1976 [281], and the development by F. de Jager and C. B. Dekker in 1978 of
tamed frequency modulation (TFM), that is, the discovery of a class of binary partial-response FM
signals having better spectral compactness than previously proposed formats, albeit with some loss in
error performance.

A complete theory of CPM signals was, however, developed only in the early 1980s. In 1981,
T. Aulin, C.-E. W. Sundberg and N. Rydbeck published two papers, one devoted to full-response
signaling [373], and the other to partial-response signaling [374]. These illustrated both a unified
theory of this class of digital modulations and a comparison, based on the tools provided by this theory,
among various existing modulation formats in terms of the achievable power/spectral efficiency.62 In
the same year, the NTT researchers K. Murota and K. Hirade proposed a new CPM format, known
as Gaussian filtered MSK (GMSK), which, on account of its significant spectral compactness, was to
be used in future mobile phone systems [286].

In the 1980s other significant research results on CPM were published. The following results deserve
to be mentioned: the PAM representation of CPMs devised by P. A. Laurent in 1986 [296] (see Section
3.6.5.1); and the representation, proposed by B. Rimoldi in 1988 [302], of a CPM modulator as a the
cascade of a continuous phase encoder with a memoryless modulator (see Section 3.6.5.2).

60 This format was called fast FSK (FFSK) by de Buda, since it allowed transmission at double the rate of (i.e., at
the same bit rate as) QPSK with rectangular pulse shaping (see (3.56)), with comparable spectral occupancy.
61 A binary full-response CPM format, that can be obtained from MSK by replacing its half sinusoidal pulse (see
(3.164)) with an impulse having the same duration, but a raised cosine shape.
62 A summary of the essential concepts and results can be found in [375].
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All the above-mentioned work refers to single-h CPMs. In 1975 the use of binary CPFSK schemes
with the cyclic use of multiple modulation indexes, that is, of multi-h CPFSK, was first proposed
by H. Miyakawa, H. Harashima and Y. Tanaka, as a way to achieve further coding gains in CPM
signaling [289]. This approach to modulation design was generalized later by J. B. Anderson, R. de
Buda and D. P. Taylor [290, 376]. An overview of the most important results achieved in multi-h
CPM signaling up to 1991 can be found in [377].

3.10.3 MCM Signaling

In the history of digital communication systems, the first example of a wireless MC system was the so-
called Kineplex [345, 378], built by Collins Radio Company (Burbank, California) in the 1950s using
SSB transmissions in HF.63 The Kineplex was followed by other MC systems for HF communications,
such as: the AN/GSC-10, also known as the Kathryn modem, developed by General Atronics Corpo-
ration (Philadelphia) [379–383],64 and the ANDEFT/SC-320, developed by the Electronics Division
of the General Dynamics Corporation (Rochester, NY) [384]. These systems, implementing the FDM
technique, employed a few tens of distinct phase modulated subcarriers and offered low data rates
(2400–4800 bit/s).

The first studies on the performance achievable using MC signaling over HF channels, such as
the analysis provided by P. A. Bello for the Kathryn modem [381], showed that ICI, concerning
adjacent subchannels, and ISI, affecting symbols transmitted over a given subchannel in consecutive
symbol intervals, were important obstacles to reliable communications. The ICI phenomenon could
have been removed by avoiding spectral overlaps among adjacent subchannels, but this possibility
was not taken into serious consideration, because it required the implementation of highly selective
(and costly) bandpass filters to minimize the required guard bandwidth between adjacent subchannels.
Thus, the first MC systems used a set of sinusoidal signals (called tones), having distinct frequencies
and limited duration, generated by an oscillator bank. These signals were not bandlimited and were
partially overlapped in the frequency domain, since each of them had a sinc function spectrum centered
on a subcarrier frequency (e.g., see [385, p. 618, para. VI.A]).

The first alternative to this approach, for implementing a parallel data transmission over a ban-
dlimited communication channel, was proposed by R. W. Chang in 1966 [386]. He devised a general
method for the synthesis of an orthogonal and rigorously bandlimited signal set. The proposed solu-
tion allowed complete cancelation of ICI and ISI interference in any receiver endowed with an exact
knowledge of the communication channel. A year later, B. R. Saltzberg, exploiting Chang’s results,
derived a new parallel communication scheme, in which the orthogonality between adjacent subchan-
nels was achieved using an offset QAM (O-QAM) [387]. A few years after the publication of the
work of Chang and Saltzberg, S. B. Weinstein and P. M. Ebert proved that, in an FDM system, both
modulation and demodulation can be accomplished using the DFT technique [388], implemented via
a fast Fourier transform (FFT) algorithm, combined with the use of a cyclic prefix. This removed the
need for oscillator banks in signal generation and coherent detection, making possible a full digital
implementation of the baseband sections of an MC modem. In addition, compensation for channel dis-
tortions was easily accomplished on a subcarrier-by-subcarrier basis, using FD equalization. In 1981,
ten years after the publication [388], B. Hirosaki [389] proved that even the MC system proposed by
Saltzberg, based on O-QAM signaling, lent itself to a DFT-based digital implementation, which was
computationally efficient, like the system proposed by Weinstein and Ebert.

From the 1980s onward, various results concerning MC transmission techniques and their imple-
mentation appeared in the technical literature. An overview of the main technical problems analyzed in

63 The HF band, occupying the 3–30 MHz spectrum, was usually used for long-distance radio communications
utilizing ionospheric reflection. This was the intended application of the Kineplex system.
64 The papers [381–383] (and [384] cited below) have been republished more recently in [44].
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the literature can be found in [385, 390–392]. More accurate information is provided in the textbooks
[315, 393, 394]. Here, we limit ourselves to mentioning the proposal of replacing the cyclic prefix
of OFDM by zero padding (ZP); this results in a new modulation format, called ZP-OFDM. In each
block of a ZP-OFDM transmission, zero symbols are appended to the complex symbols available at
the IDFT output. It can be shown that, if the number of zero symbols equals the cyclic prefix length,
no loss in spectral efficiency is incurred with respect to conventional OFDM. However, unlike con-
ventional OFDM, ZP-OFDM guarantees symbol recovery even in the presence of channel nulls in the
transmission bandwidth, provided that the channel has a finite impulse response (FIR). The penalty for
this is an increase in receiver complexity, since the DFT processing required by conventional OFDM
is replaced by FIR filtering. Further details on this transmission technique can be found in [392] and
the references cited therein.

The availability of various new signal processing techniques for an efficient implementation of MC
techniques has clearly favored the adoption of MC transmission techniques, such as OFDM and the
so-called discrete multitone (DMT) [395, 396], in modern communication systems. Finally, note that
a new phase of implementation of MC systems started at the beginning of the 1980s. Among the
available commercial products, the Trailblazer modem, made by Telebit Company (Silicon Valley,
California), is worth remembering. This was developed for parallel data transmission in the voice
band over PSTN at 9.6 kbit/s [397]. Its speed was surpassed, a few years after its appearance, by SC
QAM modems, which, however, used substantially more complicated signal processing techniques
[398]. Further details on the early development of OFDM can be found in [399].

3.10.4 Power Spectral Density of Digital Modulations

The technical literature on the spectral properties of the digital modulations analyzed in this chapter
is wide and mainly concerns CPM signals, for which the evaluation of the PSD is a complicated
mathematical problem.

Historically, the first important results about the PSD of digital modulations are summarized in the
classic textbook by W. R. Bennett and J. R. Davey [400], which gives an account of the progress
made until the first work on the PSD of PAM [401] and of binary phase continuous FSK [402–404].
Moreover, Bennett and Davey [400] propose two different methods for the evaluation of the PSD of
a digital modulation. The first, called the autocorrelation method, is the one we have adopted in this
chapter. The name assigned to this method derives from the fact that its use entails the evaluation of
an autocorrelation function, from which a PSD is obtained via Fourier methods. The second method is
known as the direct method, since it proceeds directly to computation of a power spectrum. In the 1960s
the direct method received more attention than the autocorrelation method. Among its applications,
we recall those of J. Salz in 1965, leading to the derivation of the PSD of multilevel continuous phase
FM [311], and of R. R. Anderson and J. Salz in 1963, leading to a general expression useful for
the computation, via a two-dimensional numerical integration, of the power spectrum of an arbitrary
FM signal [313, 371]. The latter result has been exploited for the computer-based evaluation of the
PSD of continuous phase FM signals for over a decade, despite its relatively large computational load
when estimating the PSD side lobes. To solve this problem, T. M. Baker in 1974 derived, starting
from the formula derived by Anderson and Salz, a simplified expression which accurately describes
the asymptotic behavior of the PSD for an arbitrary digital FM signal [313]. Further results appeared
in the 1970s on the PSD of CPM signals and mainly concern the spectral properties of MSK [362],
those of the signals deriving from its modifications and generalizations [281, 368, 369], and those of
new formats like TFM [370].

Further significant results concern the development of new methods for the computation of the
spectrum of CPM signals; most of the work in this area is cited in the bibliography of [375]. Here we
limit ourselves to mentioning the contributions provided by G. J. Garrison [372] and V. K. Pabhu and
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H. E. Rowe [405–407]. The latter researchers were the first to show the application of mathematical
tools originating in Markov chain theory to the evaluation of the PSD of digital FM.

Two crucial contributions to the development of new algorithms for the efficient computation of
the PSD of an arbitrary CPM were made in the 1980s by Aulin and Sundberg, who were the first
researchers to give a general mathematical description of CPM [373, 374]. The first contribution
is represented by the technique described in Section 3.6.7; its derivation was inspired by work by
L. J. Greenstein on a special type of phase modulated signals [408] and is based on the above-mentioned
autocorrelation method [288, 409]. The second contribution, illustrated in [312], is represented by a
computationally efficient algorithm for the accurate estimation of both the main lobe and the side
lobes of an arbitrary CPM. This method is extremely useful in the presence of large correlation
length L and/or large alphabet cardinality M, where other PSD estimation techniques require a long
computing time.

Finally, we note that, recently, the availability of new representations of CPMs, like those proposed
by Rimoldi [302] and Laurent [296], has provided new tools for deriving already known expressions
for their PSDs and new numerical methods for spectral estimation. The first possibility is exemplified
by [410], applying Rimoldi’s representation to the derivation of the PSD of a CPFSK with a rational
modulation index.

The technical literature on the spectral properties of OFDM is, unlike that on the CPM, decidedly
poor. Moreover, its is worth noting that, in the technical literature, the PSD of OFDM signaling
is always represented as the superposition of the PSDs associated with all the distinct subcarriers;
in addition, it is assumed that the PSD of each subcarrier is a sinc2(·) function centered on the
subcarrier frequency, as illustrated, for instance, in [385, para. VI.A, p. 618]. This representation is
approximate, since it does not follow from the technique actually employed in the generation of the
transmitted signal. Note that the approach to the PSD evaluation adopted in this book is based on the
cyclostationarity of the sequence feeding the transmit filter in an OFDM modulator and results from
the application of a general theoretical result illustrated, for instance, in [28, Sect. 2.1, pp. 59–63].

3.11 Further Reading
In the previous sections various bibliographic citations have been provided. It is useful to point out,
however, that the textbooks [288, 315, 394] can be used to delve into various of the topics discussed
here. In particular, the first book analyses both SC and MC modulations, the second is devoted
exclusively to OFDM, while the third is the only book exclusively devoted to CPM.

In this chapter the cyclostationary properties of digital modulations have been widely exploited.
Further information on these properties and their usefulness in the study of digital communication
systems can be found in the papers [411, 412] and in the book [413] edited by W. A. Gardner.

Finally, we note that our study of the spectral properties of digital modulations has focused on some
specific classes of digital modulations. An important topic, widely studied in the technical literature
but not analyzed in this book, is the evaluation of the PSD when the signal generation algorithm in
a digital modulator can be described by a Markov chain. The solution to this problem was derived
by R. C. Titsworth and L. R. Welch [414] and is illustrated in various classic textbooks, among them
[27, 28, 32, 327]. The reader can also refer to the classic paper by P. Galko and S. Pasupathy [415]
and the references cited therein.



4
Detection of Digital Signals over
Wireless Channels: Decision Rules
4.1 Introduction
Any digital receiver employs a specific detection strategy or algorithm for estimating the message
transmitted by a given source from a received set of information-bearing noisy data. This is extracted
from a single or multiple received waveforms by means of filtering and sampling operations, and is
processed by the detection algorithm to generate a set of real quantities, called detection metrics. Each
value of this metric is associated with a specific hypothesis about the transmitted message and is used
by the receiver to make decisions on the basis of a mapping rule, which maps values of the metric to
messages. In most instances, the hypothesis associated with the best (e.g., the minimum or maximum)
metric is selected.

This chapter is devoted to the study of the following two problems:

(a) how a finite set of data (i.e., a finite-dimensional vector) can be extracted from a continuous-time
received waveform for the purpose of accomplishing data detection,

(b) how detection metrics can be formulated for the digital modulation techniques described in
Chapter 3 in a fading multipath channel scenario.

Solving these problems requires full or partial knowledge of the properties of the communication
channel and the formulation of an optimality criterion for data detection in mathematical terms.
Modifying the criterion and/or our knowledge of the communication channel can lead to substantially
different detection strategies.

This chapter is organized as follows. Section 4.2 presents a general model of a wireless digital
communication system. This includes a description of a system that employs a finite set of analog
waveforms to send a message, belonging to a given finite alphabet, through a wireless communication
channel. In addition, some details are provided about how a received RF waveform is down-converted
to a lower frequency to simplify signal processing for data detection. Generally speaking, the evaluation
of detection strategies for a wireless communication system is not simple. Thus to tackle the problem,
a closely related communication system, having a similar structure, but in which analog waveforms
are replaced by vectors of finite size, is usually considered. This is the subject of Section 4.3, where
it is shown that if the optimality criterion in receiver design is that of minimizing average error
probability in detecting the transmitted message, an optimal detection strategy can be formulated and
a geometrical interpretation for it can be provided.

Wireless Communications: Algorithmic Techniques, First Edition.
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In particular, in our analysis we focus on the maximum a posteriori probability (MAP) and the
maximum likelihood (ML) detection strategies. These process a finite-dimensional vector of received
samples to generate a set of detection metrics, on the basis of which an optimal decision about
the transmitted message can be taken. However, the exploitation of these strategies in a real-world
digital receiver requires the extraction of a finite-dimensional vector of noisy data from the received
waveform. This problem is analyzed in Section 4.4, where it is tackled first from a general perspective.
Then the structure of this vector is illustrated for different modulation formats. In Section 4.5 the
mathematical tools developed in Section 4.3 are exploited to develop optimal decision metrics for the
following cases:

(a) CIR ideally known at the receiver;
(b) CIR known only statistically at the receiver;
(c) unknown CIR.

In particular, metrics for ML sequence detection (MLSD), MAP symbol detection (MAPSD), and
MAP bit detection (MAPBD) are derived. In addition, on the basis of these metrics, some general
performance bounds are derived.

Optimal data detection in the presence of channel uncertainty can be a formidable task in certain
scenarios. In some cases, ML performance can be approached by developing detection algorithms based
on iterative techniques, which try to approach the optimal solution in multiple steps. A significant
example of these techniques is offered by the expectation–maximization (EM) algorithm. This is the
subject of Section 4.6, where the algorithm and some related techniques are illustrated, and some
applications to data detection problems are analyzed.

Finally, some historical notes and suggestions for further reading are provided in Sections 4.7 and
4.8, respectively.

4.2 Wireless Digital Communication Systems: Modeling, Receiver
Architecture and Discretization of the Received Signal

In this section a general model of a wireless communication system is first developed. Then some
details about the receiver structure are provided, primarily dealing with the receiver front-end.

4.2.1 General Model of a Wireless Communication System

A general model for an uncoded SISO wireless digital communication system is illustrated in
Figure 4.1. A discrete information source generates a message m, belonging to the finite alphabet
Am = {mi, i = 0, 1, . . . , Nm − 1}, having cardinality Nm and whose ith element is characterized
by the a priori probability Pi � Pr{m = mi} (for i = 0, 1, . . . , Nm − 1). In general, each message
can be associated with one or more bits generated by a source and can be represented by one or
more channel symbols (see Section 3.2), as will become clearer in what follows. The source feeds
the digital modulator, which maps m into a finite-dimensional vector c of channel symbols (via
a one-to-one mapping) and then generates the complex baseband signal s(t, c). In doing so, the
modulator adopts the finite alphabet As = {si(t) = s(t, c(i)), i = 0, 1, . . . , Nm − 1}, having the same
cardinality as Am, where c(i) denotes the ith possible value of c. To simplify the notation, in what
follows we will always assume that the one-to-one correspondence:

s(t, c) = si(t) ⇔ m = mi, (4.1)

holds, namely, that the modulator-generated signal si(t) is in response to mi , with i = 0, 1, . . . ,

Nm − 1. Note that, unlike Chapter 3, here the dependence on mi is shown by the signal subscript
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Figure 4.1 General scheme of an uncoded wireless communication system.

instead of the sequence of channel symbols {ci}. Finally, the transmitter front-end up-converts the
complex baseband signal s(t, c) to create the real RF waveform sRF (t, c) which is transmitted over
the channel. The noisy channel output signal rRF (t) feeds a digital receiver, whose front-end filters
rRF (t) (to remove out-of-band noise and interference) and down-converts it (frequency-translates it to
baseband) to generate the complex baseband signal r(t) = rc(t) + jrs(t). The receiver then processes
r(t) (via filtering and sampling) to extract a finite-dimensional vector r and, finally, processes r to
extract an estimate ĉ of the transmitted symbols c, from which an estimate m̂ of m is inferred. Further
details on the first step are provided in the following subsection, and the problem of extracting r from
r(t) is discussed in Section 4.4.1.

4.2.2 Receiver Architectures

On the basis of the type of front-end processing employed, radio receivers can be classified into
two categories: direct-conversion (homodyne) and superheterodyne receivers. Their architectures are
illustrated in Figures 4.2 and 4.3, respectively. In a direct-conversion receiver [416] the received
RF signal rRF (t) undergoes filtering (to remove out-of-band noise and interference) and low-noise
amplification to reduce the overall noise figure. The RF filter output is sent to two mixers which are
also fed by two quadrature oscillations generated by a local oscillator locked to the carrier frequency
fc. The mixer outputs feed two distinct baseband filters that remove residual out-of-band noise and
interference, and to avoid aliasing which may originate from sampling their outputs. The outputs of
the baseband filters undergo analog-to-digital (A/D) conversion and further baseband processing to
extract the transmitted data.

Note further that the homodyne architecture does not require filtering at some intermediate frequency
(IF), and this simplifies system integration on a chip (since inductors and capacitors of large size are
not required). In addition, the use of direct conversion avoids the problem of rejecting the so-called
image frequency, so that the design requirements of the RF filtering can be relaxed. However, the
adoption of a homodyne architecture has some drawbacks, such as the presence of 1/f noise and
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Figure 4.3 Architecture of a superheterodyne receiver.

the presence of a direct current (DC) offset noise. The first problem originates from the fact that the
spectrum of the directly converted baseband signal overlaps with the 1/f noise of active devices. The
second is due to the self-down-conversion of leakage signals generated by the local oscillator. Such
signals reach the path of the converted useful signal without going through the mixers and may lead
to a DC component substantially stronger than the useful signal. When this occurs, saturation of A/D
converters or a reduction of their sensitivity may be encountered.

In a superheterodyne receiver [417] tighter filtering of the received signal rRF (t) is required in
the first stage of the receiver, since the image frequency has to be carefully suppressed. The RF
filter feeds a mixer which down-converts the input signal to an IF fIF using a local oscillator locked
to the frequency fLO = fc + fIF . The IF filter selects the desired signal (suppressing the spectrally
adjacent interfering signals) and amplifies it. The resulting output waveform is then down-converted
to baseband using two quadrature oscillations at fIF . Finally, as in the homodyne architecture, the
resulting baseband signals undergo analog-to-digital conversion and further baseband processing.

The superheterodyne architecture offers the advantage of selective IF filtering and amplification,
so that the A/D converters are fed with properly filtered and amplified signals. However, its imple-
mentation is more complicated than that of its homodyne counterpart. In addition, a proper tradeoff
between the complexity of the RF stage and that of the IF stage is required. In fact, if fIF is low,
the IF stage is more efficient (i.e., it exhibits a better selectivity for a given complexity), but a more
selective RF filter is required to reject the image frequency. In contrast, if the RF filtering is loose, a
large fIF is required and this makes the implementation of the IF stage more expensive and difficult.
In fact, the inductors and capacitors do not lend themselves to an efficient monolithic implementation,
so that silicon chips usually require various external components, with an increase of size and cost
and, generally speaking, a worsening of receiver error performance.
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4.3 Optimum Detection in a Vector Communication System

4.3.1 Description of a Vector Communication System

Let us initially assume that the complex envelope r(t) of the (filtered) received signal rRF (t) admits a
finite-dimensional vector representation r with no loss of useful information (see Section 4.2.1).1 Then,
the system of Figure 4.1 can be replaced by its vector counterpart shown in Figure 4.4, in which finite-
dimensional vectors take the place of time-continuous random processes. In particular, each signal
appearing in Figure 4.1 is replaced by a vector of proper size N (the problem of selecting a proper
value for this parameter is discussed in the following section). In the vector equivalent system the
transmitter generates, in response to a message m ∈ Am, the vector s � [s0, s1, . . . , sN−1]T , belonging
to the alphabet As = {si , i = 0, 1, . . . , Nm − 1}, with si � [si,0, si,1, . . . , si,N−1]T , according to the
correspondence (see (4.1)):

s = si ⇔ m = mi. (4.2)

The average energy per message spent by the transmitter in the transmission of a message is given
by:

Em =
Nm−1∑
i=0

Pi |si |2. (4.3)

Note that the closer to the origin are the points of the alphabet As, the smaller is this energy.
In what follows the problem of optimal detection for the vector system of Figure 4.4 is formulated

and solved. In other words, the aim is to develop algorithms that process r to take a decision m̂ on
m, so as to minimize the average message error probability:

Pe � Pr{m̂ �= m}. (4.4)

In tackling this problem we assume that the a priori probabilities {Pi, i = 0, 1, . . . , Nm − 1} and the
signal alphabet As are perfectly known to the receiver. Note that a rigorous derivation of optimal
detection strategies is a formidable problem for the system of Figure 4.1, but its counterpart for the
system of Figure 4.4 is substantially more tractable. In fact, the former problem involves analog
random processes, the latter only finite-dimensional random vectors.

In the rest of this section a general framework for the development of detection strategies is first
presented. Then, some optimal strategies are presented and their use discussed. Finally, some useful
theorems about optimal detection are presented.

4.3.2 Detection Strategies and Error Probabilities

The communication channel affects signal transmission and produces, in response to s, the received
vector r � [r0, r1, . . . , rN−1]T belonging to the observation space Dr. The mechanism according to

1 This is easily proved under quite general conditions for any bandlimited signal [321].
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which the channel acts on s cannot but be described in the language of statistics. In particular, the
statistical behavior of the channel is fully described by the set of conditional pdfs:

{fr(ρ|si ), i = 0, 1, . . . , Nm − 1}, (4.5)

since the pdf fr(ρ|si ) characterizes r given the transmitted vector s = si ∈ As, the ith possible trans-
mitted message. In this section we will assume that the receiver has ideal knowledge of the channel’s
statistical properties, that is, it knows perfectly all the pdfs of the set (4.5).

The receiver processes the vector r of noisy data by means of an appropriate strategy in order to
generate an estimate m̂ of the transmitted message m. Any decision (or detection) strategy, namely,
any procedure adopted by the receiver to generate m̂ on the basis of r, can be given a geometrical
interpretation. In fact, we can figure out that the receiver is endowed with a proper partition of Dr
that splits this space into Nm disjoint domains (or subsets) {Di, i = 0, 1, . . . , Nm − 1}, that cover it
without overlapping. Then, we may write:

Di ∩ Dj = ∅, (4.6)

if i �= j , and:
Nm−1⋃
i=0

Di = Dr. (4.7)

The meaning of expressions (4.6) and (4.7) can be easily understood by referring to Figure 4.5, which
illustrates the partitioning of Dr into Nm = 4 subsets of a two-dimensional observation space (assumed
of rectangular shape for simplicity). Note, moreover, that each of the subsets {Di} is not generally
required to be a connected set. Then, the receiver, after observing the value ρ taken by the random
vector r, establishes which of the domains {Di} the vector ρ belongs to and takes a decision according
to the criterion:

m̂ = mi ⇔ ρ ∈ Di; (4.8)

that is, the receiver selects mi , if and only if ρ belongs to Di ; for this reason Di is called ith decision
region.

This geometrical interpretation of a decision strategy turns the search for an optimal detection
strategy, whatever the reception problem, into the construction of an optimal partition of Dr, that is,
the search for optimal borders of the decision regions {Di}.

It is also important to note that the problem of identifying the decision regions for a digital receiver
is closely related to that of the computation of its probability of error, since, once these regions are

D3

Dr

D2

D1

D0

Figure 4.5 Partitioning of a two-dimensional rectangular observation space; Nm = 4 is assumed.
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fixed, the average probability of error Pe (4.4) of the given receiver is uniquely determined. In fact,
the theorem of total probability [55] allows us to express this performance index as [321]:

Pe =
Nm−1∑
i=0

Pi Pr{ε|mi}, (4.9)

where Pr{ε|mi} denotes the error probability conditioned on m = mi (i.e., on the transmission of the
mth message), or equivalently as:

Pe = 1 − Pc = 1 −
Nm−1∑
i=0

Pi Pr{C|mi}, (4.10)

where Pc and Pr{C|mi} denote the average probability of correct decision and the probability of correct
decision conditioned on m = mi , respectively. In general, the probability Pr{C|mi} can be expressed
as an integral over an N-dimensional domain; more specifically, it can be evaluated as:

Pr{C|mi} =
∫

Di

fr(ρ|si ) dρ, (4.11)

since the receiver decides correctly when mi is transmitted, if and only if ρ ∈ Di . Similarly, Pr{ε|mi}
can be expressed as:

Pr{ε|mi} =
∫

D̄i

fr(ρ|si ) dρ, (4.12)

where D̄i denotes the complement of Di with respect to Dr. Note that the choice of (4.9) or (4.10) in
the evaluation of Pe primarily depends on the difficulty encountered in evaluating the integrals (4.12)
and (4.11), respectively. The shape (and, consequently, the analytical description) of Di (see (4.11)) is
often substantially simpler than that of D̄i (see (4.12)) and this makes the evaluation of Pe via (4.10)
and (4.11), in place of (4.9) and (4.12), simpler.

Substituting (4.12) in (4.9) (or, equivalently, (4.11) in (4.10)) yields the expression:

Pe =
Nm−1∑
i=0

Pi

∫
D̄i

fr(ρ|si ) dρ = 1 −
Nm−1∑
i=0

Pi

∫
Di

fr(ρ|si ) dρ, (4.13)

which clearly shows the dependence of Pe on the partition {Di} of Dr. This result usually does not
lead to a closed-form expression for Pe for Nm > 2, since the integrals appearing in its RHS can
be evaluated only numerically. For this reason, lower and upper bounds on performance are often
derived. These bounds are often based on the fact that the error event ε|mi appearing on the RHS of
(4.9) can be expressed as [321]:

ε|mi =
Nm−1⋃
k=0
k �=i

εik , (4.14)

where εik denotes the event occurring when mi (i.e., si) is transmitted and the digital receiver selects
m̂ = mk (k �= i) on the basis of r. Note that εik refers to a binary decision problem, since it concerns
si and sk , and is not influenced by the number and choice of the other points of the alphabet As; for
this reason, the probability of this event, Pr{εik }, is usually called the pairwise error probability (PEP)
and can be often expressed in closed form using standard functions of probability theory. Given the
PEPs {Pr{εik }}, an upper bound on Pe can easily be evaluated. In fact, applying the inequality:

max
k

Pr{Ak} ≤ Pr

{⋃
k

Ak

}
≤
∑

k

Pr{Ak}, (4.15)
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which holds for any set of events {Ak} [55], to the RHS of the expression (see (4.14)):

Pr{ε|mi} = Pr




Nm−1⋃
k=0
k �=i

εik


 (4.16)

leads to:

max
k

k �=i

Pr{εik } ≤ Pr{ε|mi} ≤
Nm−1∑
k=0
k �=i

Pr{εik }. (4.17)

Then from (4.17) and (4.9) the bounds:

Nm−1∑
i=0

Pi max
k

k �=i

Pr{εik } ≤ Pe ≤
Nm−1∑
i=0

Nm−1∑
k=0
k �=i

Pr{εik } (4.18)

are easily inferred. The expression for the PEP Pr{εik } depends both on the transmitted vectors si and
sk , and on the channel model. The upper bound in (4.17) and (4.18) is known as the union bound and
is well described in [55, 321].

4.3.3 MAP and ML Detection Strategies

Now let us assume that the receiver knows:

(a) the a priori probabilities {Pi, i = 0, 1, . . . , Nm − 1};
(b) the conditional pdfs {fr(ρ|si ), i = 0, 1, . . . , Nm − 1};
(c) the alphabet As = {si , i = 0, 1, . . . , Nm − 1}.

It can then be proved that the optimal detection strategy is to select the message characterized by
the maximum a posteriori probability [321]. In other words, the optimal receiver selects m̂ = mk if
and only if:

Pr{m = mk|r = ρ} > Pr{m = mi |r = ρ} (4.19)

for i = 0, 1, . . . , Nm − 1 and i �= k, where Pr{m = mi |r = ρ} represents the a posteriori probability
of mi , that is, the probability of the event {m = mi}, when r = ρ. This criterion is known as the MAP
decision strategy and can be formulated in a more compact form as:

m̂MAP = arg max
m̃∈Am

Pr{m = m̃|r = ρ} (4.20)

to show that m̂MAP represents the solution of a maximization problem. Equation (4.20) shows that,
generally speaking, a receiver operating according to the MAP strategy needs to perform an exhaustive
search over a set of Nm hypotheses, since it evaluates all possible values of Pr{m = m̃|r = ρ} by trying
all possibilities (i.e., without excluding any possible message m̃∈ Am). For this reason, the test message
m̃ appearing in (4.20) is usually called a tentative message.

The action of a MAP receiver can also be interpreted in terms of decision regions. The reader can
easily verify that the kth decision region for this receiver is:

Dk = {ρ ∈ Dr|Pr{m = mk|r = ρ} = max
mi∈Am

Pr{m = mi |r = ρ}}, (4.21)

with k = 0, 1, . . . , Nm − 1.
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The MAP strategy of (4.20) can also be formulated in a different fashion, by taking advantage of
a mixed form of Bayes’ theorem [55], which allows us to express Pr{m = mi |r = ρ} as:

Pr{m = mi |r = ρ} = Pi

fr(ρ|si )

fr(ρ)
. (4.22)

In fact, since the pdf fr(ρ) does not depend on mi , the criterion (4.20) can be rewritten as:

m̂MAP = arg max
m̃∈Am

P̃ fr(ρ|s̃), (4.23)

where s̃ denotes the vector generated by the transmitter in response to the message m̃ ∈ Am (having
probability P̃ ). Taking into consideration the last formulation of the MAP strategy, expression (4.21)
can be rewritten for the kth decision region as:

Dk = {ρ ∈ Dr|Pk fr(ρ|sk) = max
i

Pi fr(ρ|si )}, (4.24)

with k = 0, 1, . . . , Nm − 1. This clearly shows that the decision regions for a MAP receiver depend
on the a priori probabilities {Pi}, on the statistical characterization of the channel (defined by the
set of conditional pdfs {fr(ρ|si )}) and on the selected alphabet As. In addition, it allows us to infer
that, generally speaking, the evaluation of the decision regions (i.e., of their borders) is a problem of
significant complexity.

If all the a priori probabilities {Pi} are equal, that is, if:

Pi = 1

Nm

(4.25)

for i = 0, 1, . . . , Nm − 1, (4.23) becomes:

m̂ML = arg max
m̃∈Am

fr(ρ|s̃), (4.26)

which describes the so-called ML detection, since fr(ρ|si ) represents a likelihood function2 of the
vector r given s = si . It is important to make the following observations:

1. If (4.25) holds, the strategy (4.26) is equivalent to (4.23). However, if this is not the case, the
MAP strategy yields a lower Pe than the ML strategy. Despite this, the ML strategy represents a
reasonable solution to the problem of optimal detection when the {Pi} are unknown to the receiver.

2. The solution of the MAP (4.23) and ML (4.26) problems does not change if the functions Pifr(ρ|si )

and fr(ρ|si ) to be maximized undergo a monotone increasing transformation (e.g., multiplication
by a constant, logarithmic transformation) in order to simplify the functional form of the decision
criterion.

3. The MAP and ML criteria lead to optimal performance. However, such strategies often cannot be
exploited in practical problems because their implementation is complex. This can be due to the
complicated structure of the decision metric (i.e., the likelihood functions (4.5)) or to the lack of
a computationally efficient algorithm to search for the maximum metric (see (4.23) and (4.26)).

Optimal detection strategies can be formulated in different (and equivalent) ways. To show this, let
us define the likelihood ratio (LR):

Li(ρ) � fr(ρ|si )

fr(ρ|s0)
(4.27)

2 Generally speaking, a likelihood function of a vector r, given a message m, is any function proportional to the
conditional pdf fr(ρ|m).
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of the message mi (with i = 1, 2, . . . , Nm − 1) with respect to the messages m0. The function Li(ρ)

is a likelihood function of r given mi and turns the value ρ taken on by r in a nonnegative real
number. Using the LRs defined by (4.27), the ML strategy can be reformulated as follows:

1. Given r = ρ, compute the likelihood ratio vector:

LNm
(ρ) � [L1(ρ), L2(ρ), . . . , LNm−1(ρ)]T (4.28)

of Nm − 1 LRs (4.27) with respect to s0.
2. The message m0 is selected by the receiver if all the elements of LNm

(ρ) are less than unity;
otherwise, the message mj such that:

Lj (ρ) = max
i

Li(ρ) (4.29)

with i ∈ {1, 2, . . . , Nm − 1} is selected.

Note that (4.27) and (4.28) define a nonlinear transformation from Dr to a space DL (to which the
(Nm − 1)-dimensional vector LNm

(ρ) belongs) called the space of likelihood ratios. This space can
be partitioned into decision regions like Dr. However, unlike Dr, the borders of the decision regions
of DL belong to hyperplanes independent of the mathematical structure of the pdfs {f (ρ|si )}. This is
illustrated by Figure 4.6, depicting the decision regions of DL for Nm = 2 and Nm = 3.

In some applications, the ML criterion can be simplified by using the natural logarithm of the
likelihood functions or likelihood ratios. For instance, in this scenario, the vector:

ZNm
(ρ) � [Z1(ρ), Z2(ρ), . . . , ZNm−1(ρ)], (4.30)

where:
Zi(ρ) � ln[Li(ρ)] (4.31)

with i = 1, 2, . . . , Nm − 1, can be used in place of LNm
(ρ) (4.28). The quantity Zi(ρ) is called the

log-likelihood ratio (LLR) of the message mi (with i = 1, 2, . . . , Nm − 1) with respect to the message
m0. Then the ML rule can be expressed as follows:

0
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Figure 4.6 Decision regions in the space DL for Nm = 2 (a) and Nm = 3 (b).
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1. Given r = ρ, ZNm
(ρ) is evaluated as in (4.30).

2. The message m0 is selected by the receiver if all the elements of ZNm
(ρ) are negative; otherwise

the decision mj is such that:
Zj (ρ) = max

i
Zi(ρ) (4.32)

with i ∈ {1, 2, . . . , Nm − 1}.

Let us now investigate the problem of optimal detection in a specific scenario.

Example 4.3.1 A digital communication system operating over an additive Gaussian noise (AGN)
channel is illustrated in Figure 4.7. In this case, the communication channel adds the Gaussian noise
vector n � [n0, n1, . . . , nN−1]T to the transmitted signal vector s, so that the received vector is:

r = s + n. (4.33)

The derivation of the MAP decision rule requires knowledge of the likelihood functions {fr(ρ|si )}
(4.5). It is easy to show that [321]:

fr(ρ|si ) = fn(ρ − si |si ) (4.34)

for i ∈ {0, 1, . . . , Nm − 1}, where fn(ν) denotes the joint pdf of the components of n. Here we assume
that n is statistically independent of the transmitted signal s, so that:

fr(ρ|si ) = fn(ρ − si ). (4.35)

The MAP decision rule (4.23) then becomes:

m̂ = arg max
m̃∈Am

P̃ fn(ρ − s̃). (4.36)

This strategy can be simplified further if we assume that elements of n are iid real Gaussian random
variables having zero mean and variance σ 2

n (note that in this case Dr coincides with R
N ), so that:

fn(ν) =
N−1∏
k=0

fn(νk), (4.37)

where ν � [ν0, ν1, . . . , νN−1]T and:

fn(ν) = 1√
2πσ 2

n

exp

(
− ν2

2σ 2
n

)
(4.38)
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Figure 4.7 Vector communication system characterized by an AGN channel.
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represents the pdf of each of the random variables {nk, k = 0, 1, . . . , Nm − 1}. In fact, substituting
(4.38) into (4.37) and (4.37) into (4.35) yields:

fr(ρ|si ) = 1

(2πσ 2
n )N/2

exp

(
−
∣∣ρ − si

∣∣2
2σ 2

n

)
. (4.39)

Then the detection metric of (4.36) can be expressed as:

P̃ fn(ρ − s̃) = P̃

(2πσ 2
n )N/2

exp

(
−
∣∣ρ − s̃

∣∣2
2σ 2

n

)
. (4.40)

The solution of the MAP problem (4.36) does not change if:

(a) the factor (2πσ 2
n )−N/2 is dropped in (4.40), since it is independent of s̃;

(b) we take the natural logarithm of the resulting expression;
(c) the result of the transformation in (b) is multiplied by the positive constant 2σ 2

n .

This leads to the decision metric:

2σ 2
n ln P̃ − |ρ − s̃|2, (4.41)

to be maximized by a MAP receiver. Reversing the sign of this metric yields the equivalent metric:

|ρ − s̃|2 − 2σ 2
n ln P̃ , (4.42)

which has to be minimized over the set of possible messages. Then the MAP and ML strategies can
be formulated as:

m̂MAP = min
m̃∈Am

{|ρ − s̃|2 − 2σ 2
n ln P̃ } (4.43)

and:
m̂ML = min

m̃∈Am

|ρ − s̃|2, (4.44)

respectively. Equation (4.44) shows that an ML receiver selects the message m̂ML associated with the
signal vector in the set {si , i = 0, 1, . . . , Nm − 1} having minimum Euclidean distance from ρ. This
strategy can be reformulated in terms of decision regions as follows: ρ ∈ Dk if and only if sk is,
among all the points of As, the one nearest to ρ.

�

In Example 4.3.1 the uncertainty of the receiver about the influence of the communication channel
on the transmitted signal is due exclusively to noise. In communications over fading dispersive wireless
channels, the uncertainty originates also from the lack of knowledge of a set of parameters describing
the distorting effect of the communication channel on the transmitted signal. Such parameters are
usually collected in a finite-dimensional vector, denoted h in what follows. Various assumptions can
be made about h: in particular, it can be modeled as a deterministic or random vector. In both cases, an
estimate ĥ of h can be evaluated prior to data detection. This is usually accomplished by transmitting a
message known to the receiver (e.g., a known data sequence for receiver training), so that the receiver
can learn the structure of the communication channel [418] (see also Chapter 5 for further details).

An alternative to this approach is joint data and channel estimation. In particular, if h is modeled
as a deterministic vector, joint ML estimation of data and channel is the solution of the problem (see
(4.26)):

(m̂ML, ĥML) = arg max
h̃∈Dh, m̃∈Am

fr(ρ|s̃, h̃), (4.45)

where Dh denotes the space of h. Note that knowledge of ĥML is unnecessary per se; in fact, our real
target is to estimate s only, so that ĥML should be considered as a byproduct of our data estimation
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process. In principle, problem (4.45) can be solved in two steps (e.g., see [419]). If, for a given s̃, an
explicit estimate ĥ(s̃) of h can be evaluated as (first step):

ĥ(s̃) = arg max
h̃∈Dh

fr(ρ|s̃, h̃), (4.46)

then (4.45) can be reformulated as (second step):

m̂ML = arg max
m̃∈Am

fr(ρ|s̃, ĥ(s̃)). (4.47)

In contrast, if h is modeled as a stochastic vector with known pdf fh(χ) and independent of s, in
principle fr(r|s̃) can be evaluated via multidimensional integration, that is, as:

fr(r|s̃) =
∫

fr(r|χ , s̃)fh(χ)dχ , (4.48)

so that ML data estimation can be accomplished by solving, once again, (4.26). Apparently, this
approach does not entail the evaluation of explicit channel estimates. In practice, however, the result-
ing likelihood function f (r|s̃) (4.48) can usually be put in a form showing that multiple implicit
channel estimates are evaluated, one for each hypothesis about the transmitted message. Further
details concerning this will be given in Section 4.5.3.

4.3.4 Diversity Reception and Some Useful Theorems about
Data Detection

As shown in Section 1.1 (see Figure 1.1), in a SIMO scenario the transmitted vector s is received over
nR distinct communication channels. In this case, if the the receive antennas are adequately spaced,
the receiver observes nR different essentially independent replicas of the transmitted signal. Even in
this case the problem of optimal diversity reception can be tackled by resorting to the tools developed
in the previous subsection. In fact, if ri � [ri,0, ri,1, . . . , ri,N−1]T , with i = 0, 1, . . . , nR − 1, denotes
the output of the ith channel, an overall received vector r can be generated by concatenating all the
channel outputs in an ordered fashion as:

r � [rT
0 , rT

1 , . . . , rT
nR−1]T . (4.49)

Given this r, the optimal (MAP) detection strategy for diversity reception is given by (4.23), as in the
single-channel case. For instance, with double diversity (nR = 2), the observed data are r0 = ρ0 and
r1 = ρ1, and (4.23) becomes:

max
mi∈Am

Pifr(ρ0, ρ1|si ) ⇒ m̂MAP . (4.50)

In certain circumstances a part of the noisy data generated by a channel can be ignored by the
receiver with no performance loss. To understand when this occurs, it is useful to factor the function
Pifr(ρ0, ρ1|si ) of (4.50), rewriting it as:

Pifr(ρ0, ρ1|si ) = Pifr0
(ρ0|si ) fr1

(ρ1|ρ0, si ). (4.51)

From this expression it can easily be seen that knowledge of r1 is irrelevant in (4.50) (i.e., r1 consists
of irrelevant data) if and only if r1, conditioned on {r0 = ρ0}, is independent of si , that is:

fr1
(ρ1|ρ0, si ) = fr1

(ρ1|ρ0). (4.52)
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Figure 4.8 Digital communication system useful in proving the theorem of reversibility.

In fact, in this case, the vector r1 can be ignored without affecting the optimality of the receiver, so
that the optimal strategy (4.50) becomes:

max
mi∈Am

Pifr0
(ρ0|si ) ⇒ m̂MAP , (4.53)

which involves r0 only. This result is known as the theorem of irrelevance [321].
Generally speaking, in a statistical decision problem, optimal detection can be achieved if and only

if a certain D-dimensional set of data:
z = g(r) (4.54)

is available, where g(·) describes a transformation of the N-dimensional observed noisy vector r (with
N ≥ D) . When this occurs, the vector z represents a set of sufficient statistics.

An important corollary of the theorem of irrelevance is the theorem of reversibility [321]. Before
illustrating this, let us consider a scenario in which the noisy vector r available at the output of a
communication channel undergoes a transformation, represented by the vector operator T[·], which
generates a new vector r̄ of noisy data. The transformation T[·] is reversible if an inverse transfor-
mation (conventionally represented by the operator T−1[·]) can be defined. Such a transformation,
when applied to r̄ , generates r. The theorem of reversibility states that, in a digital communication
system, the minimum average error probability achieved by an optimal receiver does not change if the
vector r, observed at the output of the communication channel, undergoes a reversible transformation
before being processed by an optimal detection strategy. To prove this result, let us consider the digital
communication system shown in Figure 4.8; here the vector r1, generated by the channel, undergoes
a reversible transformation T[·], generating r0. Then, we have that:

fr1
(ρ1|ρ0, si ) = fr1

(ρ1|ρ0), (4.55)

since the knowledge of the value ρ0, taken on by r0, uniquely identifies, independently of si , the
value ρ1 taken on by r1. Therefore, on the basis of the theorem of irrelevance (see (4.52)), it can be
stated that an optimal receiver endowed with knowledge of r = [rT

0 , rT
1 ]T can discard r1, since the

latter consists of irrelevant data only. In other words, knowledge of r0 is enough to take an optimal
decision concerning the transmitted message.

4.4 Mathematical Models for the Receiver Vector
In this section we focus on the general problem of extracting from a received noisy waveform r(t) a
finite-dimensional vector r to form the input to an optimal detection algorithm. Then we analyze in
detail the structure of r for PAM, CPM and OFDM signaling in various communication scenarios. In
doing so we always adopt baseband signal and system models, and ignore large-scale fading effects
and the presence of system nonlinearities. In addition, the availability of ideal timing at the receive
side is assumed.
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4.4.1 Extraction of a Set of Sufficient Statistics from the Received Signal

In both the receiver architectures illustrated in the previous section, a complex baseband signal
r(t) = rc(t) + jrs(t) is extracted from the received RF signal rRF (t). To process the continuous-
time waveform r(t) digitally for data estimation, we need to condense the useful information it carries
for data detection into a vector r (which we refer to as the observation vector). This condensation
should avoid any information loss, that is, r should represent a set of sufficient statistics for the esti-
mation of the transmitted data. Generally speaking, the method of processing of r(t) to generate r
depends on the channel properties and on the knowledge the receiver has about them. The simplest
scenario is that of AWGN. In this case, if the delay introduced by the transmitter, receiver and prop-
agation medium is neglected and the transmission of a finite-dimensional vector of channel symbols
cN = [c0, c1, . . . , cN−1]T is assumed (this vector represents the transmitted message to be estimated
at the receiver), r(t) can be expressed as:

r(t) = s(t, cN) + w(t) (4.56)

where (see (3.2)):

s(t, cN) =
N−1∑
n=0

s(�n, cn; t − nTs), (4.57)

and w(t) = wc(t) + jws(t) is a complex circularly symmetric Gaussian noise process having zero
mean and two-sided power spectral density 2N0 in the bandwidth of s(t, c) (its real part wc(t) and
imaginary part ws(t) are statistically independent Gaussian random processes, each having zero mean
and two-sided spectral density N0 in the same bandwidth) [32]. It is worth remembering that the
signal s(�n, cn; t) belongs to the alphabet As = {si(t), i = 0, 1, . . . , Nm − 1}, consisting of finite
energy and distinct functions. Then in this case a set of Nm · N sufficient statistics can be obtained
by sampling at baud rate (i.e., at the instants tn � nTs + t0, where t0 is a proper sampling offset and
n = 0, 1, . . . , N − 1) the outputs of a bank of Nm filters, each matched to a specific waveform of
As [32]. Generally speaking, for any complex signal s(t) having finite energy and time support (ti , tf ),
the linear invariant filter characterized by the impulse response:

hMF (t) � s∗(tf − t) = s∗(−(t − tf )) (4.58)

is matched to s(t). The generation of the impulse response hMF (t) of the matched filter (MF) for a
given s(t) is summarized in Figure 4.9 under the assumption that s(t) is real. Note that, if the filter
input is expressed by (4.56) with s(t) in place of s(t, cN), sampling the filter output at t = tf generates
the random variable R = Es + w, where Es is the energy of s(t) and w is a complex Gaussian random
variable having zero mean and variance σ 2

w = 2N0Es .
These concepts can be applied to the detection problem of (4.56) as follows. If the support of

the waveforms of As is the interval (0, T0), the optimal detector employs Nm filters, whose impulse
responses are given by:

h
(i)
MF (t) = s∗

i (−(t − T0)), (4.59)

with i = 0, 1, . . . , Nm − 1. All these filters are fed by the same noisy waveform, r(t) in (4.56), and
are sampled in parallel at the instants tn � T0 + nTs , with n = 0, 1, . . . , N − 1. Let:

r(i)
n = r(t) ⊗ h

(i)
MF (t)|t=tn

(4.60)

denote the sample taken at the output of the ith filter for t = tn. If we collect the N samples taken
over N consecutive symbol intervals at the ith filter output in the vector ri � [r(i)

0 , r
(i)
1 , . . . , r

(i)
N−1]T

(with i = 0, 1, . . . , Nm − 1), then the overall vector r of sufficient statistics can be generated by
concatenating the vectors {ri} in an ordered fashion as:

r = [rT
0 , rT

1 , . . . , rT
Nm

]T . (4.61)
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Figure 4.9 A time reversal (b) and a delay by tf seconds (c) are needed to generate hMF (t) (4.58)
from the signal s(t) (a).

Let us now apply these results to the modulation formats we analyzed in Chapter 3. On the one
hand, for passband PAM and OFDM signaling (see (3.47)–(3.48) and (3.274), respectively), we have
that Nm = 1, since the transmitted signal consists of multiple replicas, delayed by multiples of the
symbol interval Ts , of a real pulse p(t). If we assume that the support of p(t) is (0, Tp) (where Tp

is often substantially longer than Ts), then only one matched filter having impulse response:

hMF (t) = 1

Kc

p(−(t − Tp)) (4.62)

is needed to generate a vector r � [r0, r1, . . . , rN−1]T of sufficient statistics, with (see (4.60)):

rn = r(t) ⊗ p(−(t − Tp))|t=tn
(4.63)
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and tn � Tp + nTs . On the other hand, for CPM signaling, we have that:

(a) Nm = ML, since the number of complex waveforms is equal to the product of the number of
correlative states of the modulator and the number M of possible values of the actual symbol (the
phase state introduces a phase rotation only; see (3.140)), so that a bank of 4ML real filters is
needed [374] (2ML for rc(t), 2ML for rs(t)),

(b) Tp = Ts , so that the impulse response of each filter of the bank lasts Ts seconds.

The exponential dependence of Nm on the correlation length L can represent a significant problem
in the implementation of CPM receivers. This has motivated the search for reduced sets of functions
(i.e., bases of functions) that can represent with negligible error the time-varying part of the waveform
(3.140), i.e. the signal:

exp[jγ (t − nTs, σn, cn)] = cos(γ (t − nTs, σn, cn)) + j sin(γ (t − nTs, σn, cn)) (4.64)

for any σn and cn. Various technical solutions based on the use of sinusoidal signals with appropri-
ate frequencies [291], the Walsh functions [294, 420], time translates of the sinc(·) function [293],
Gram–Schmidt orthonormalization [292, 306] and the principal components method [295] have been
suggested to develop bases for the representation of (4.64). An alternative to this approach is Laurent’s
decomposition (see Section 3.6.5.1). The set of Laurent pulses forms a basis for the representation
of the modulated signal; this leads to a set of QP (2P − 1) matched filters, with Q = 2L−1 and
2P−1 < M ≤ 2P . The rank of this basis increases with M and L; however, it can be shown that most
of the signal energy is contained in few pulses, so that a reduced bank of matched filters can be
employed to generate r (e.g., see [284, 303–305]).

The problem of matched filtering in AWGN deserves further comment in order to clarify a few
important technical issues. To simplify our study we focus on the case of PAM signaling only, so that
the transmitted signal (4.57) becomes (see (3.48)):

s(t, cN) = Kc

N−1∑
n=0

cn p(t − nTs) (4.65)

and, in particular, we consider the specific scenario illustrated in the following example.

Example 4.4.1 Let us assume that p(t) is generated by truncating the pulse expressed by (3.89) (the
FCT of this pulse is the square root of a raised cosine spectrum with roll-off α; see (3.90) and (3.81))
truncated to the interval [−LpTs/2, LpTs/2] (with Lp integer) and delaying the resulting waveform
by LpTs/2 seconds (normalization is also required to ensure that the resulting pulse has unit energy).
For a given α, the value of Lp is selected large enough to capture most of the energy of the transmitted
pulse (3.89), so that the convolution of p(t) with itself generates, to a good approximation, the pulse
g(t − LpTs) (3.79) (whose FCT is a raised cosine spectrum with roll-off α; see (3.81)). Then, we
have that (see (3.88)):

p(t) ⊗ p(t) ∼= g(t − LpTs) (4.66)

and (see (4.62)):

hMF (t) = 1

Kc

p(−(t − LpTs)) = 1

Kc

p(t) (4.67)

since p(t) is symmetric around the instant LpTs/2, so that:

p(t) ⊗ p(t)|t=tk
= δ[k], (4.68)
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where tk � kTs + LpTs . From this result it is easily seen that sampling the output of the MF fed by
(4.56) (with s(t, cN) given by (4.65)) at tk produces:

rk = r(t) ⊗ hMF (t)|t=tk

∼=
N−1∑
n=0

cn g(tk − LpTs − nTs) + wk

=
N−1∑
n=0

cn δ[k − n] + wn

= ck + wk (4.69)

for k = 0, 1, . . . , N − 1, where:
wk = w(t) ⊗ hMF (t)|t=tk

(4.70)

is a Gaussian noise sample having zero mean and variance σ 2
n = 2N0/K

2
c . It is easy to show that the

autocorrelation function of the sequence {wk} is:

Rw[k] = σ 2
n δ[k], (4.71)

so that the noise samples at the MF output, being jointly Gaussian and uncorrelated, are statistically
independent. In other words, the noise sequence {wk} is white.3 These results lead to the conclusion
that, in this case, the sufficient statistics {rk, k = 0, 1, . . . , N − 1} share the following two very useful
properties:

1. The useful component of rk provides information about ck only and not about any of the other
transmitted symbols.

2. The noise sample wk affecting rk does not provide any information about the noise affecting all
the other signal samples {rk, k �= n}. For this reason, any decision ck should be based on rk only
(with k = 0, 1, . . . , N − 1).

Finally, from (4.69) it is easy to see that:

r = cN + w, (4.72)

where w � [w0, w1, . . . , wN−1]T , that is, r is structured as (4.33).
�

The favorable features of the sequence {rk, k = 0, 1, . . . , N − 1} generated by (4.69) are the con-
sequence of the specific choice of the p(t) selected and, in particular, of its property expressed by
(4.68), which we rewrite as:

+∞∫
−∞

p(τ)p(tk − τ)dτ =
+∞∫
−∞

p(τ)p(kTs − (τ − LpTs))dτ

=
+∞∫
−∞

p(τ)p(τ − kTs)dτ = δ[k]. (4.73)

This result states that the functions {p(t − kTs), k = . . . ,−1, 0, 1, . . . } form an orthonormal set and,
in particular, represent an orthonormal basis for the space of s(t, cN) in (4.65). In the literature, when
(4.73) holds, it is usually said that the pulse p(t) satisfies the first Nyquist criterion [421]. In PAM
transmission, the Nyquist criterion has two implications:

3 Note that the continuous-time noise process at the output of hMF (t) is not white.
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• If the output of the matched filter is sampled at the right (symbol-spaced) instants, each sample
depends on only one channel symbol.

• The noise samples are independent.

Unfortunately, in wireless communications the model (4.56) for r(t) is usually not valid since the
communication channel, acting as a filter, distorts s(t, cN). To understand the consequence of this
phenomenon, let us assume that the wireless channel can be considered static during the transmission
of s(t, cN) (4.65) and let hc(t) denote the CIR. Then the received signal can be written as:

r(t) = Kc

N−1∑
l=0

cn pTC (t − lTs) + w(t), (4.74)

where w(t) is AWGN (with the same statistical properties as the noise process of (4.56)) and the
impulse response:

pTC (t) � p(t) ⊗ hc(t) (4.75)

accounts for transmit and channel filtering. In this case, if pTC (t) is known to the receiver and its sup-
port is the interval [0, LTC Ts] (with LTC integer), the elements of the vector r � [r0, r1, . . . , rN−1]T

of sufficient statistics can be still generated by baud rate sampling of the output of a filter matched to
pTC (t) (4.75) (i.e., having impulse response given by hMF (t) = p∗

TC (−(t − LTC Ts))/Kc) and fed by
r(t) (4.74). Note, however, that the MF output sample rk is now given by:

rk = r(t) ⊗ hMF (t)|t=tk

= 1

Kc

r(t) ⊗ p∗
TC (−(t − LTC Ts))|t=tk

=
N−1∑
l=0

cl hk−l + nk (4.76)

where tk � kTs + LTC Ts , hk � h(tk) (with h0 = EpTC
, where EpTC

is the energy of pTC (t)):

h(t) � pTC (t) ⊗ p∗
TC (−(t − LTC Ts)) (4.77)

nk � n(tk) and n(t) � w(t) ⊗ hMF (t) is a complex Gaussian process having zero mean and autocor-
relation function:

Rn(τ) � σ 2
n pTC (τ ) ⊗ p∗

TC (−τ), (4.78)

where σ 2
n = 2N0/K

2
c . Equation (4.76) shows that rk depends not only on ck but also on other channel

symbols; the contribution of such symbols is expressed by:

Ik �
N−1∑
l=0
l �=k

cl hk−l , (4.79)

which represents the so-called ISI. Note also that, generally speaking, the support of h(t) (4.77) is the
interval [0, (Lh − 1)Ts] (with Lh = 2LTC + 1), so that hk = 0 for |k| > LTC . For this reason (4.79)
can be simplified as:

Ik =
min(k+LTC ,N−1)∑
l=max(0,k−LTC )

cl hk−l . (4.80)

This result shows that ISI is usually due to at most Lh − 1 transmitted symbols, that is, LTC past
symbols (generating postcursor ISI) and LTC future symbols (producing precursor ISI).

The signal model expressed in (4.76) also deserves some comments concerning the noise sequence
{nk}, which, generally speaking, is not white. In fact, its autocorrelation function is given by Rn[k] =
Rn(kTs) and is not impulsive, since the support of Rn(τ) (4.78) is the time interval [−LTC Ts ,
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LTC Ts] ⊃ [−Ts, Ts]. As will become clearer later, the lack of noise whiteness complicates the structure
of detection metrics. When the MF impulse response does not satisfy the first Nyquist criterion, the
property of noise whiteness can be restored using a so-called whitened matched filter (WMF) [422]
(also known as a sample-whitened matched filter [423]) as a receive filter. The impulse response
pWMF (t) of a WMF has the property that the set of functions {pWMF (t − kTs), k integer} is an
orthonormal basis for the signal space spanned by the functions {pTC (t − kTs), k integer} (character-
izing the useful component of the received signal (4.74)). Further information about the properties and
the existence of the WMF can be found in [422, 423]. An alternative to combining noise whitening
with matched filtering involves using a whitening digital filter processing the baud rate samples taken
at the MF output [424].

In principle, if the channel is time-varying (and characterized by the CIR, h(t, τ )) and, already
assumed previously, known to the receiver, considerations similar to those just described apply. It is
important to note, however, that, given the transmitted signal s(t, cN) (4.65), the received signal can
be now expressed as [425]:

r(t) = Kc

N−1∑
l=0

cn pTC (lTs, t − lTs) + w(t), (4.81)

where:

pTC (lTs, t − lTs) �
+∞∫
−∞

p(τ − lTs) h(t, t − τ) dτ (4.82)

is the channel response to the lth transmitted pulse p(t − lTs). Note that the notation employed for
pTC (lTs, t − lTs) demonstrates that each received pulse shape is potentially unique, that is, that the
channel response to each pulse changes from symbol to symbol. For this reason, extracting a set
of sufficient statistics from r(t) in (4.81) requires, in principle, N different matched filters, one for
each of the N distorted pulses, which is not feasible in practice. To simplify the problem of matched
filtering for wireless channels, parametric channel representations can be exploited [424, 426]. For
instance, if the bandwidth B of s(t, cN) (4.65) does not exceed 1/Ts and the channel memory is finite,
a Ts/2-spaced channel model with a finite number of taps can be employed (see Section 2.2.3). Then
the channel response to p(t − lTs) can be expressed as (see (2.107)):

pTC (lTs, t − lTs) =
Lh−1∑
n=0

hn(t) p

(
t − lTs − nTs

2

)
, (4.83)

where Lh denotes the number of active taps (i.e., the channel memory in symbol intervals) and hn(t)

is the time-varying gain of the nth tap. This result shows that, if the variations of the tap gains {hn(t)}
are slow relative to the duration of the transmit pulse shape p(t), a set of sufficient statistics can be
generated using a receive filter matched to p(t) followed by a sampler that operates at twice the baud
rate. In fact, it is not difficult to show that the response of a filter matched to pTC (lTs, t − lTs) can be
generated by linearly combining the Lh consecutive samples taken at the output of a filter matched
to p(t); however, the coefficients of this combination are the complex conjugates of the tap gains
{hn(t)}, assumed approximately constant over the support of pTC (lTs, t − lTs). In other words, this
solution can be implemented if the communication is slowly time-varying, so that the receiver is able
to estimate such gains in a reliable and timely fashion. When the channel variations become fast, the
exploitation of parametric representations is still possible, but the estimation of the parameters of the
channel model becomes more difficult. To show this, let us reconsider the model (4.83) and assume a
single tap (i.e., Lh = 1), so the communication channel is affected by time-selective fading only. To
represent the channel variations of the single tap gain h(t) over the duration of p(t) a linearly time-
selective fading model can be adopted [111, 427]. This means that the channel response to p(t − lTs)

can be approximated as (see Section 2.2.3.4):

pTC (t − lTs) = h
(0)
l p(t − lTs) + h

(1)
l g(t − lTs), (4.84)
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where:
g(t) � t

Ts

p(t), (4.85)

h
(0)
l � h(lTs) and h

(1)
l � Tsdh(t)/dt |t=lTs

. A set of sufficient statistics can then be generated by
sampling at baud rate and simultaneously the output of two receive filters, one matched to p(t),
the other one matched to g(t) (4.85); note, however, that, in general, accurate estimation of h

(1)
l is

substantially more difficult than h
(0)
l , since its average power is usually much smaller than that of h

(0)
l .

In principle, this approach can be generalized to an arbitrary number of channel taps. However, reliably
estimating the full set of channel parameters becomes a formidable task. For this reason, when the
channel variations of the channel are significant, a different approach to data detection is commonly
taken. At the receiver, the received signal is passed through a low-pass filter with bandwidth BLP large
enough to accommodate the bandwidth B of the complex envelope of the transmitted signal and the
effect of the Doppler spread due to the communication channels (this role can be played by the low-pass
filters that appear in Figures 4.2 and 4.3). Then a set of sufficient statistics can be generated by sam-
pling the filter output at a frequency fc ≥ 2BLP , so that any information loss is avoided (e.g., see [428,
429] for specific applications of this approach). It is reasonable to choose a sampling frequency that is
a multiple of the baud rate Rs , so that fc = nsRs , where the integer parameter ns denotes the number
of samples per channel symbol (further analytical details of this approach are provided for specific
signaling formats in the next subsection). However, this entails the development of optimal detection
algorithms that process more than one noisy sample per symbol – a potentially larger amount of data.

It is interesting to note that the latter approach can even be taken in all the previous scenarios to
overcome the problem of synthesizing specific analog MFs or WMFs, as shown in Figure 4.10, which
refers to the specific case of processing of r(t) (4.74) to generate the sequence {rk} (4.76). In this case
the complex envelope of the received signal r(t), after undergoing low-pass filtering with bandwidth
BLP , is sampled by an analog-to-digital converter (ADC) at a frequency fc = nsRs . Then the resulting
sequence {xn} of samples feeds a digital MF, whose finite impulse response hMF [n] is generated
by sampling with a period Tc � 1/fc the impulse response hMF (t) = p∗

TC (−(t − LTC Ts))/Kc of its
analog counterpart. In principle, the sequence {yn} available at the MF output should be decimated
by the factor ns , so that one sample per channel symbol is available for data detection. However, in
practice, decimation does not necessarily produce a data sequence representing a good approximation
to the sequence {rk}, because of the presence of an arbitrary sampling offset in the analog-to-digital
conversion. For this reason, the receiver needs an algorithm for timing synchronization that allows us
to estimate the sequence {tk � kTs + LTC Ts} of correct sampling instants (see (4.76)). If this timing
information is available, it can be used to compute an estimate of each element of the sequence {rk} by
interpolating a finite number of consecutive samples of {yn}; this leads to generating the interpolated
sequence {r̃k} consisting of baud rate samples.

Finally, it is interesting to analyze the problem of receive filtering in the case of a statistically
known channel, that is, when the CIR h(t, τ ) is random, but the CIR statistics (and not the CIR itself)

r (t) x (t) xn yn r~k
Low-Pass

Filter
ADC
( fc)

Timing
Signal

InterpolatorMF

Figure 4.10 Processing chain for extracting a set of sufficient statistics from r(t) (4.74) using a
digital MF.



176 Wireless Communications

are known to the receiver. Then, even if the channel is fed by a deterministic signal s(t), the useful
component of its output signal (see (2.9)):

y(t) =
+∞∫
−∞

s(t − τ) h(t, τ ) dτ (4.86)

is a random process. Let us assume that h(t, τ ) is a zero mean random process, so that y(t) is a zero
mean, generally nonstationary, complex stochastic process with covariance function (see (2.79)):

Cy(t; τ) = Ry(t; τ)

� E{y(t + τ) y∗(t)}

=
+∞∫

α=−∞
s(t + τ − α)

+∞∫
β=−∞

s∗(t − β) Rh(t + τ, t;α, β)dβdα. (4.87)

Note also that if the channel is WSS and US, (4.87) can be easily simplified as (see (2.83)):

Cy(t; τ) =
+∞∫

α=−∞
s(t + τ − α)s∗(t − α)Ph(τ ;α)dα, (4.88)

where the function Ph(τ ; α) is given by (2.84). If the covariance Ry(t; τ) in (4.87) is jointly continuous
in t and τ , then y(t) in (4.86) can be represented as an infinite linear combination of functions, that
is, it can be expanded as:

y(t) =
+∞∑
k=0

yi φi(t), (4.89)

where {yi} is a set of uncorrelated zero mean random variables, that is, such that E{yi y∗
j } = λi δi,j

and E{yi yj } = 0, and {φi(t)} is a set of orthonormal deterministic functions; this result is known
as the Karhunen–Loève theorem [430, Ch. 3]. The functions {φi(t)} and the constants {λi} are the
solutions of the homogeneous Fredholm integral equation:

+∞∫
−∞

Cy(t, τ ) φi(τ ) dτ = λiφi(t), (4.90)

which is an integral form of an eigenequation with a kernel Cy(t, τ ), where {φi(t)} and {λi} are the
normalized eigenfunctions and the associated eigenvalues, respectively. It can be shown that if the
kernel is Hermitian in its arguments (i.e., Cy(t, τ ) = C∗

y (τ, t)), then properties (P.1)–(P.5) in Section
D.2 hold. Then, if we focus on a WSS-US Gaussian channel and assume that the kernel Cy(t; τ)

(4.88) satisfies all the above-mentioned conditions, we can represent y(t) (4.86) as a superposition of
multiple waveforms, whose importance depends on the associated eigenvalues {λi} [86]. Note that, in
this case, the expansion coefficients {yi} are statistically independent random Gaussian variables and
that, if the kernel is nondegenerate, a finite number of eigenvalues are expected to be significant. This
suggests using the truncated expansion [108, 431]:

y(t) ∼=
Nλ−1∑
i=0

yi φi(t), (4.91)

where Nλ denotes the number of significant eigenvalues, i.e. those whose value is not below a
certain threshold. This result leads to the conclusion that, even if the deterministic waveform is
randomly distorted, the channel response can still be represented through the use of a proper finite-
dimensional basis, which, however, depends on the channel statistics. This suggests that, in principle,
optimal receiver structures extract a set of sufficient statistics using a bank of filters matched to the
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eigenfunctions {φi(t), i = 0, 1, . . . , Nλ} for any possible transmitted waveform s(t). Note, however,
that the functions of the filter bank need to be continuously adapted to the channel statistics (i.e., to
any change of Cy(t, τ )), so that in practice this approach can be implemented only if the sampled
version of the low-pass filtered received signal is considered. In fact, considering the equivalent
problem in a sampled system allows us to solve the integral equation (4.90) numerically, since it
turns into a standard eigenvalue/eigenvector problem (e.g., see [85, App.] and [86, App. I] for further
analytical details).

Further information about the use of the KL representation and its application to detection over flat
fading channels can be found in [110, 432, 433].

4.4.2 Received Vector for PAM Signaling

In this subsection, the structure of the received vector r is investigated for both SISO and MIMO
PAM signaling, when a finite-dimensional vector of channel symbols is transmitted. In the SISO case
we analyze in detail the following three scenarios:

(a) the slow time-selective fading channel;
(b) the frequency-selective channel;
(c) the doubly-selective channel.

However, for simplicity of description, in the MIMO case we consider only the first two scenarios.

4.4.2.1 Models for a SISO Scenario

In this case transmission of the channel symbol vector cN = [c0, c1, . . . , cN−1]T is assumed, so that,
generally speaking, the number of elements of r is a multiple of N.

Slow Time-Selective Fading
A time-selective channel is deemed slow fading or slowly varying if during a PAM transmission the
variations of the channel distortion a(t) (see (2.32)) can be assumed negligible over the duration of
the transmitted pulse p(t) (see the signal model (4.65)). In this case the transmit and receive filters are
usually selected so as to ensure ISI-free reception over an AWGN channel. For instance, the waveform
described in Example 4.4.1 can be employed; this leads directly to the model (see (4.69)):

rk = ak ck + wk (4.92)

with k = 0, 1, . . . , N − 1, for the received signal samples at the time instants tk � kTs + LpTs ; here,
ak � a(t)|t=tk

is the kth sample of the fading distortion, and the sequence {wk} consists of iid complex
Gaussian noise samples, each with zero mean and variance σ 2

n = 2N0/K
2
c . The received signal samples

can then be collected in the vector:

r = [r0, r1, . . . , rN−1]T = AcN + w, (4.93)

where w � [w0, w1, . . . , wN−1]T and A � diag(a0, a1, . . . , aN−1).
If the channel is fast fading, this model no longer holds, since the p(t) undergoes significant

distortion so that ISI at the matched filter output is found if the transmit and receive filters are chosen
as above. When this occurs, a possible strategy for mitigating ISI consists of employing a transmit
pulse p(t) satisfying the first Nyquist criterion (e.g., a pulse whose FCT is a raised cosine with roll-
off α; see (3.78) and (3.79)) and using a low-pass filter with bandwidth large enough not to modify
the shape of the distorted p(t) as a receive filter instead of a matched filter [434].

Finally, it is worth noting that an evaluation of the validity of the slow fading model (4.92) can be
found in [113].
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Frequency-Selective Fading
In Section 4.4.1 it was shown that, in the case of PAM signaling with transmit pulse shape p(t) over
a frequency-selective channel with CIR hc(t), the Ts-spaced samples taken at the output of a filter
matched to pTC (t) � p(t) ⊗ hc(t) and fed by the received signal can be written as (see (4.76), (4.79)
and (4.80)):

rk =
min(k+LTC ,N−1)∑
l=max(0,k−LTC )

cl hk−l + nk (4.94)

for k = 0, 1, . . . , N − 1, where LTC is the duration of pTC (t) in symbol intervals. Note that the
ISI appearing in this model includes an anticausal portion (precursor ISI), since the overall discrete-
time impulse response of the channel (i.e, the sequence {hk}) is in general noncausal, and the noise
sequence {nk} is not white. The anticausal portion of the ISI (precursor ISI) can be removed and
the noise sequence made white by inserting a whitening filter (WF) at the sampler output (analytical
details can be found in [29, Sects. 7.3, 9.4 and 10.1]). In fact, it can then be shown that:

• the equivalent discrete-time channel model at the WF output is causal and minimum phase (so that
the energy of the impulse response is maximally concentrated in the early samples),

• the filtered noise sequence is circularly symmetric, Gaussian and white, so that its elements are
independent random variables.

Then, if {rk} denotes the output of the WF (fed by the sampled MF output), it can be written as:

rk =
Lq−1∑
l=0

cl qk−l + nk, (4.95)

where the impulse response {qk} (of length Lq ) results from the convolution of {hk} (see 4.96) with
the impulse response of the WF and {nk} is an additive complex Gaussian noise sequence; note that
Lq = Lh = 2LTC − 1, as shown in [27, pp. 625–627].

Finally, note that, in the case of a frequency-selective channel, the received vector r =
[r0, r1, . . . , rN−1]T can be expressed as:

r = HcN + n, (4.96)

where H = [Hi,j ]T is an N × N CIR matrix whose elements are extracted from {hk} ({qk}) if we
refer to (4.94) ((4.95)) and n � [n0, n, . . . , nN−1]T is a Gaussian noise vector.

A different model for the received signal vector is obtained when passband PAM transmission is
employed with frequency-domain equalization (see Section 3.5.3) in the receiver. In this case, the
channel symbol stream is divided into nonoverlapping blocks (each of length N) and block-by-block
processing is accomplished at the receive side. In particular, under the assumptions in Section 3.5.3,
the baseband received signal corresponding to the lth data block is given by (see (3.62)):

y(t) = z(t) + w(t)

= 1√
NTs

N∑
k=−N

PkH
(l)
k C

(l)
k exp

(
j

2πk

NTs

(t − lNT Ts)

)
+ w(t), (4.97)

for lNT Ts ≤ t < lNT Ts + NTs , where Pk � P(k/NTs)/
√

Ts , H
(l)
k � H(l)(k/NTs), P(f ) and

H(l)(f ) are respectively the FCTs of the transmit pulse p(t) and the CIR h(l)(t) in the observation
interval considered, C

(l)
k is the kth component of the vector C(l)

N � [C(l)
0 , C

(l)
1 , . . . , C

(l)
N−1]T � QN c(l)

N

(resulting from the DFT of the lth data block c(l)
N ) and w(t) is a complex circularly symmetric

Gaussian noise process having zero mean and two-sided power spectral density 2N0. To avoid an
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information loss in discretizing y(t) in (4.97), the following procedure can be followed [435]: y(t)

is passed first through an ideal low-pass filter (with bandwidth 1/Ts and gain
√

Ts/2) producing
the bandlimited random process r(t), which then undergoes uniform sampling at a rate 2/Ts . In
particular, when detecting the symbol vector c(l)

N , r(t) is sampled at the epochs t
(l)
i � lNT Ts + iTs/2,

with i = 0, 1, . . . , 2N − 1 (the samples associated with the cyclic prefix are discarded). This yields
a 2N -dimensional vector r(l)

2N � [r(l)
0 , r

(l)
1 , . . . , r

(l)
2N−1]T , with:

r
(l)
i = r(t

(l)
i ) = 1√

2N

N∑
k=−N

PkH
(l)
k C

(l)
k W−ki

2N + n
(l)
i (4.98)

for i = 0, 1, . . . , 2N − 1. Here, WN � exp(−j2π/N) and the noise samples {n(l)
i � n(t

(l)
i )} are iid

random variables with zero mean and variance σ 2
n = 2N0. The vector r(l)

2N then feeds a 2N -point DFT,
producing the vector R(l)

2N � [R(l)
0 , R

(l)
1 , . . . , R

(l)
2N−1]T = Q2N r(l)

2N . Noting that C
(l)
k+N = C

(l)
k−N for any

k because of the periodicity of the DFT, it can be proved that:

R(l)
2N = D(l)C(l)

2N + V(l)
2N, (4.99)

where C(l)
2N � [(C(l)

N )T |(C(l)
N )T ]T , V(l)

2N � [V (l)
0 , V

(l)
1 , . . . , V

(l)
2N−1]T , D(l) � diag(D

(l)
k ) with

D
(l)
k = Pk H

(l)
k (Pk−2N H

(l)
k−2N ) for k = 0, 1, . . . , N (k = N + 1, N + 2, . . . , 2N − 1). It is useful

to note that the set of random variables {V (l)
k } is statistically equivalent to {n(l)

i }.

Doubly-Selective Fading
If the channel fading is fast, the received signal is expressed by (4.81):

r(t) = Kc

N−1∑
l=0

cn pTC (lTs, t − lTs) + w(t), (4.100)

with (see (4.82)):

pTC (lTs, t − lTs) �
+∞∫
−∞

p(τ − lTs) h(t, t − τ) dτ, (4.101)

where h(t, τ ) is the time-varying CIR. In this case, the receive filter is usually chosen to be an
ideal low-pass filter having gain equal to 1/Kc in its band and a bandwidth BLP large enough not
to distort the signal pTC (lTs, t − lTs). In addition, the low-pass filter output is sampled at a fre-
quency fc = nsRs ≥ 2BLP , that is, ns samples per channel interval (with ns > 1) are extracted from
the filtered received signal to avoid any information loss due to aliasing. Then, if the support of
pTC (t) is the interval [0, LTC Ts] (with LTC integer), the kth element of the the received vector
r � [r0, r1, . . . , rN ns−1]T of sufficient statistics is generated as:

rk � r(t) ⊗ gR(t)|t=tk
=

N−1∑
l=0

cl hk,l + nk (4.102)

with k = 0, 1, . . . , Nns − 1, where gR(t) is the impulse response of the above-mentioned ideal low-
pass filter, Tc � Ts/ns is the sampling period, tk � kTc + t0 is the kth sampling instant (t0 is a sampling
offset depending on LTC and on the delay introduced by the receive filter):

hk,l �
+∞∫

α=−∞


 +∞∫

τ=−∞
p
(
τ − lTs

)
h(α, α − τ) dτ


 gR(kTc − α)dα (4.103)

denotes the overall discrete-time CIR, nk � n(kTs) and n(t) � w(t) ⊗ gR(t) is a complex Gaussian
process having zero mean and autocorrelation function Rn(τ) = 2N0gR(τ) ⊗ g∗

R(−τ) (in practice, the
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power spectral density of n(t) is flat in the passband of the receive filter). Note that the discrete-time
model {hk,l} (4.103) takes into account the double selectivity of the communication channel and that
the indexes k and l refer to different time units, Tc and Ts , respectively. If p(t) and gR(t) have finite
duration and the channel time dispersion is limited in extent, (4.102) can be simplified to:

rk � r(t) ⊗ gR(t)|t=tk
=

max(�k/ns�+Lh,2,N−1)∑
l=min(0,�k/ns�−Lh,1)

cl hk,l + nk. (4.104)

This result shows that ISI is due to both the last Lh,1 symbols (postcursor ISI) and Lh,2 future symbols
(precursor ISI), so that the overall channel memory is Lh − 1 symbol intervals, with Lh � Lh,1 + Lh,2.

Note also that, on the one hand, if the channel is frequency-selective only (so that h(t, τ ) = h(τ)),
the expression for hk,l (4.103) can be rewritten as:

hk,l = p(t − lTs) ⊗ h(t) ⊗ gR(t)|t=kTc
= h̃k−lns

, (4.105)

where:
h̃k−lns

� h̃((k − lns)Tc) = h̃(kTc − lTs) (4.106)

with h̃(t) � p(t) ⊗ h(t) ⊗ gR(t), so that (4.102) becomes:

rk =
N−1∑
l=0

cl h̃k−lns
+ nk. (4.107)

On the other hand, if the channel is time-selective only (so that h(t, τ ) = a(t) δ(τ ); see (2.35)), the
model (4.102) for rk simplifies to:

rk = ck ak + nk, (4.108)

where ak � a(kTc). Finally, it is useful to note that in the doubly-selective case the received vector
r can be still put in the form (4.96), where, however, H = [Hi,j ]T is an Nns × N CIR matrix whose
elements are extracted from {hk,l} (4.103) and the Gaussian noise vector n � [n0, n, . . . , nN−1]T is
not necessarily white (it is easy to show that noise whiteness is achieved if BLP = nsRs/2).

4.4.2.2 Models for a MIMO Scenario

Models for a MIMO scenario can be seen as a simple generalization of their SISO counterparts.

Slow Time-Selective Fading
In the case of slow frequency-flat fading, the channel gains affecting the channel symbols transmitted
by nT antennas in the kth interval can be collected into the nR × nT matrix:

H[k] = [h(i,l)
k ], (4.109)

where h
i,l
k refers to the lth transmit and ith receive antennas. Then the corresponding received vector

rk � [r(0)
k , r

(1)
k , . . . , r

(nR−1)

k ]T , at the output of the nR receive antennas in the kth symbol interval,
can be expressed as:

rk = Hkck + nk, (4.110)

where ck � [c(0)
k , c

(1)
k , . . . , c

(nR−1)

k ]T , c
(l)
k is the kth symbol sent by the lth transmit antenna and

nk � [n(0)
k , n

(1)
k , . . . , n

(nR−1)

k ]T is the vector of noise samples. In this case, if the channel output is
observed for k = 0, 1, . . . , N − 1 (i.e., over N consecutive symbol intervals), the overall received
vector r is formed as the ordered concatenation of the vectors {rk, k = 0, 1, . . . , N − 1}.
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Frequency-Selective Fading
Consider now the case of a frequency-selective channel, assuming a TDL model with LhTs-spaced
taps for each of the nT · nR available SISO channels. Then, at discrete time k, the received samples at
the output of the nR receive antennas, collected into an nR-dimensional vector rk , can be expressed as:

rk =
Lh−1∑
l=0

H(l)ck−l + nk (4.111)

for k = 0, 1, . . . , N − 1, where cl � [c(0)
l , c

(1)
l , . . . , c

(nR−1)

l ]T is the nT -dimensional vector of mod-
ulation symbols transmitted in parallel by the nT transmit antennas, nk � [n(0)

k , n
(1)
k , . . . , n

(nR−1)

l ]T

is an nR-dimensional complex Gaussian noise vector having independent real and imaginary com-
ponents and collecting the noise samples at the nR receive antennas, H(l) � [h(l)

i,j ] is the nR × nT

matrix of the channel gains for the lth path (h(l)
i,j denotes the lth tap gain associated with the ith trans-

mit and jth receive antennas) and N is the length of the observation interval. Gathering the vectors
{rk, k = 0, 1, . . . , N − 1} into an nR × N matrix R � [r0, r1, . . . , rN−1] and assuming that cl = 0nT

for l ≤ 0, we may write:
R = HC + N, (4.112)

where N � [n0, n1, . . . , nN−1] gathers together the noise samples (as in the case of flat fading
channels):

H �
[
H0 H1 · · · HnT −1

]
(4.113)

with:

Hi �




h
(0)
i,0 h

(1)
i,0 · · · h

(Lh−1)

i,0

h
(0)
i,1 h

(0)
i,1 · · · h

(Lh−1)

i,1
...

... · · ·
...

h
(0)
i,nR−1 h

(0)
i,nR−1 · · · h

(Lh−1)

i,nR−1


 , (4.114)

is the nR × (nT Lh) equivalent channel matrix referring to the ith transmit antenna, and:

C �




C0
C1
...

CnT −1


 (4.115)

with:

Ci �




c
(i)
0 c

(i)
1 c

(i)
2 · · · · · · c

(i)
N−2 c

(i)
N−1

0 c
(i)
0 c

(i)
1 · · · · · · c

(i)
N−3 c

(i)
N−2

... 0 c
(i)
0 · · · · · ·

... c
(i)
N−3

...
... 0 · · · · · ·

...
...

...
...

... · · · · · · c
(i)
N−1−Lh

...

0 0 0 · · · · · · c
(i)
N−2−Lh

c
(i)
N−1−Lh




, (4.116)

is the nR × (nT Lh) equivalent matrix of channel symbols sent by the ith transmit antenna.

4.4.3 Received Vector for CPM Signaling

In the following the structure of the received vector r is analyzed for SISO and MIMO CPM signaling,
when a finite-dimensional vector of channel symbols is transmitted. For SISO we consider in detail
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both time-selective and frequency-selective fading. However, for MIMO we consider only the time-
selective case.

It is important to note that, generally speaking, if the so-called Laurent’s representation (see Section
3.6.5.1) is adopted, any CPM signal can be expressed as the superposition of a limited number of
PAM components. For this reason, in principle, the structure of the received vector for any CPM
signal can be easily derived by generalizing various results provided in Section 4.4.2. We comment
further on this approach and on the possible alternatives in this subsection.

4.4.3.1 Models for a SISO Scenario

Time-Selective Fading
If the channel is affected by slow time-selective fading (i.e., it exhibits negligible variations over each
symbol interval) and the finite channel symbol vector cN = [c0, c1, . . . , cN−1]T is transmitted, a set
of sufficient statistics can be extracted from the received signal by sampling at baud rate the outputs
of a bank of Nm = ML complex MFs, exactly as in the AWGN case (see Section 4.4.1). Then r can
be generated by concatenating N distinct Nm-dimensional vectors, so that its size is N · Nm (unless a
reduced set of functions is used in the implementation of the bank of MFs).

If the fading is fast, two alternatives are found in the technical literature. One is based on low-pass
filtering r(t) with bandwidth large enough not to modify the shape of the useful component of the
received signal and on sampling the filter output at a frequency fc = nsRs with ns > 1 (e.g., see [436]).
The second approach is based on representing the distorted useful signal via power series models. In
particular, the use of a linearly time-selective fading model is proposed in [437]. Unfortunately, the
second approach leads to doubling the size of the bank of matched filters.

Frequency-Selective Fading
Few papers deal with time-domain processing of CPM signals transmitted over frequency-selective
channels (or, quasi-static multipath fading channels), since equalization algorithms in the time domain
are characterized by large complexity. This is shown, for instance, in [438], where sufficient statistics
are extracted from the received signal via low-pass filtering (with bandwidth B under the assumption
that the CPM signal is strictly bandlimited to |f | ≤ B) and sampling at a rate large enough to avoid
any information loss (e.g., the use of Tc = Ts/4 is proposed for 1-RC and 2-RC formats). In this
case the concatenation of the continuous phase modulator and the frequency-selective channel can
be modeled as an FSSM, incorporating the memory of both subsystems. Such an FSSM can be
represented by a supertrellis, whose superstates account for the contributions from both the modulator
states and the channel ISI. A different signal model in the time domain can be developed if Laurent’s
decomposition is used for the transmitted signal and a Ts-spaced TDL model is employed for the
communication channel, as suggested in [439]. However, in this case, to reduce the computational
complexity of the equalization algorithm, the received signal, after low-pass filtering, is sampled
below the Nyquist rate, since one sample per symbol is taken, and, therefore, the received signal
samples do not form a set of sufficient statistics.

A simpler alternative to equalization in the time domain is a frequency-domain approach (e.g., see
[284, 306, 440–442]). This enables good error performance at reasonable complexity. Here, following
[284], we consider the CPM signal model illustrated in Section 3.6.6, which refers to the transmission
of an infinite number of data blocks, each containing NT channel symbols. Then, given the transmitted
signal model (3.196), it is assumed that the CIR h(t) extends over Lh symbol intervals and that the
duration Ncp of the cyclic prefix is not smaller than the overall channel memory (Lh + L), where L
denotes the correlation length of the transmitted CPM signal. Then the baseband signal y(t) at the
receiver input can be expressed as (see (3.199)):

y(t) =
√

2Es

NTs

+∞∑
l=−∞

P−1∑
p=0

+∞∑
k=−∞

Lp,kH
(l)
k B

(l)
p,k exp

(
j

2πk(t − lNT Ts)

NTs

)
+ w(t) (4.117)
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for t ∈ ⋃+∞
l=−∞[lNP Ts, lNT Ts), where Hk � H(k/NTs), H(f ) is the FCT of h(t), Lp,k �

Lp(k/NTs)/Ts , Lp(f ) is the FCT of the pth Laurent pulse lp(t), and B
(l)
p,k is the kth element of the

DFT of b(l)
p,N � [b(l)

p,Ncp
, b

(l)
p,Ncp+1, . . . , b

(l)
p,NT −1]T , that is, of the vector B(l)

p,N � QN b(l)
p,N (here b

(l)
i,n is

the ith Laurent symbol in the nth interval of the lth data block) and w(t) is complex AWGN with
two-sided spectral density 2N0.

If the useful signal component of y(t) in (4.117) is roughly bandlimited to B = 1/Ts Hertz (i.e.,
Li,k = 0 for |k| > N in (3.199) and (4.117)), the received signal r(t) can be passed through an ideal
low-pass filter, having bandwidth 1/Ts and gain

√
Ts/(2Es), without any information loss (this filter

aims to avoid aliasing effects and limit the input noise power). This results in a bandlimited random
process r(t), which can be sampled uniformly at a rate 2/Ts to generate a set of sufficient statistics.
In particular, when detecting the lth data block, r(t) is sampled at the instants t

(l)
i � NpTs + lNT Ts +

iTs/2, with i = 0, 1, . . . , 2N − 1 (the samples associated with the cyclic prefix are discarded). This
yields a 2N -dimensional vector r(l) � [r(l)

0 , r
(l)
1 , . . . , r

(l)
2N−1]T , with:

r
(l)
i � r(t

(l)
i ) = 1√

2N

P−1∑
p=0

N∑
k=−N

Lp,kH
(l)
k B

(l)
p,kW

−ki
2N + n

(l)
i (4.118)

and i = 0, 1, . . . , 2N − 1. Here, the noise samples {n(l)
i � n(t

(l)
i )} are iid complex random vari-

ables having zero mean and variance σ 2
n = 2N0/Es , and n(t) denotes the low-pass filter response

to the AWGN process w(t). If frequency-domain equalization is used, r(l) undergoes DFT process-
ing. In particular, in this case, the vector r(l) feeds a 2N -point DFT, yielding the vector R(l)

2N =
[Z(l)

0 , Z
(l)
1 , . . . , Z

(l)
2N−1]T � Q2N r(l). Noting that B

(l)
i,k+N = B

(l)
i,k−N for any k because of the periodicity

of the DFT, it can be shown that:

R(l)
2N = M(l)B(l)

2N + V(l)
2N, (4.119)

where B(l)
2N � [(B(l)

0,2N)T , (B(l)
1,2N)T , . . . , (B(l)

P−1,2N)T ]T , B(l)
i,2N � [(B(l)

i,N )T , (B(l)
i,N )T ]T , V(l)

2N �
[V (l)

0 , V
(l)
1 , . . . , V

(l)
2N−1]T , M(l) � [M(l)

0 , M(l)
1 , . . . , M(l)

P−1], M(l)
i � diag(M

(l)
i,k ) with M

(l)
i,k � Li,kH

(l)
k

(Li,k−2NH
(l)
k−2N ) for k = 0, 1, . . . , N (k = N + 1, N + 2, . . . , 2N − 1). It is useful to note that

the set of random variables {V (l)
k } is statistically equivalent to {n(l)

i }. Finally, we note that the
frequency-domain vector R(l)

2N can be processed by several different equalization algorithms, which
typically operate on a block-by-block basis and for each block neglect data decisions coming from
previous blocks.

The strategy proposed above for extracting a set of sufficient statistics is independent of the inner
structure of h(t) and requires sampling at a frequency 2/Ts . A conceptually similar approach is taken
in [441], where the use of Laurent’s decomposition and of the same sampling rate at the receive
side is proposed. If the channel can be modeled as a Ts-spaced TDL, a set of sufficient statistics
can be extracted using a bank of MFs (whose outputs are sampled once per symbol interval),
exactly as in the AWGN case, as shown in [306], where MF design is based on a Gram–Schmidt
(orthogonal) representation (exploiting a tilted-phase model [302]; see Section 3.6.5.2) or on
Laurent’s representation of CPM signals. Moreover, the use of low-pass filtering and a sampling rate
at 1/Ts is proposed in [439, 440, 442].

Finally, it is interesting to note that the problem of ML sequence detection of CPM signals over
doubly selective fading channels has been investigated in [438], where time-domain processing is
adopted, as already mentioned above.

4.4.3.2 Models for a MIMO Scenario

The intrinsic memory of CPM signals makes the description of the transmitted and received sig-
nals in an nT × nR MIMO system very complicated. In particular, if (θi,n, σi,n) denotes the state
of the modulator feeding the ith transmit antenna in the interval [nTs, (n + 1)Ts) (here θi,n and σi,n
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denote the phase state and the correlative state of a partial-response modulator characterized by a
correlation length L; see Section 3.6.3), the CPM transmitter of a MIMO communication system
can be modeled as an FSSM. The state (i.e., superstate) of the supertrellis representing this FSSM
results from the ordered concatenation of the pairs {(θi,n, σi,n), i = 0, 1, . . . , NT − 1} [443]. The
complexity of the representation for the useful component of the received signal depends on the
memory and on the rapidity of variation of the communication channel. Hitherto, the use of CPM
signals in MIMO communications has mainly been investigated for block-coded transmissions over
frequency-flat fading channels only [443–447]. To simplify the derivation of detection algorithms, in
this scenario the channel has been assumed static over the entire block, but changing from block to
block (quasi-static fading) [443–447] or static at least over each symbol interval [445]. If the fad-
ing is quasi-static, sufficient statistics can be extracted from the received signal using the techniques
adopted for the AWGN channel; for instance, the use of matched filtering based on the conventional
representation of CPM signals, on Laurent’s representation and on a reduced set of nonorthogonal
basis functions is proposed in [444, 447] and [445], respectively.

4.4.4 Received Vector for OFDM Signaling

Like any other multicarrier modulation, orthogonal frequency division multiplexing is a natural choice
for data communications over severely frequency-selective channels, but its use does not make any
sense for purely time-selective fading channels (where SC modulations should always be used). This
modulation format can be still used over doubly-selective channels, albeit at the price of significant
complexity increase in the receiver if the channel variations over the transmission time of each OFDM
symbol are not negligible. In the following, we consider both SISO and MIMO scenarios and discuss
the problem of extracting a set of decision statistics in the presence of frequency-selective and doubly-
selective fading. Ideal time synchronization is assumed throughout this subsection.

4.4.4.1 Models for a SISO scenario

Frequency-Selective Channel
In Section 3.7.2 it was shown that, for an OFDM signal transmitted over a frequency-selective channel
(whose impulse response is h(t)), the useful component of the signal at the output of the receive filter
(supposed to be identical to the transmit filter), can be expressed as (see (3.267)):

z(t, c) = 1√
N

Nα∑
n=−Nα

c
(l)
RN [n]HRN [n] exp[j2πfn(t − lNT Ts)] (4.120)

for t ∈ [lNT Ts, lNT Ts + NTs), where l is the index of the OFDM symbol, N is the IDFT order,
Nα � �N(1 − α)/2�, Hn � H(fn), H(f ) is the FCT of the CIR h(t), fn � n/NTs , NT � N + Np

and Np is the length of the cyclic prefix. Note that this signal conveys the lth frequency-domain data

block c(l)
N � [c(l)

0 , c
(l)
1 , . . . , c

(l)
Nα

, 0, . . . , 0, c
(l)
N−Nα

, c
(l)
N−Nα+1, . . . , c

(l)
N−1]T , containing Nu = 2Nα + 1

useful (i.e., information-bearing) channel symbols, and that this model holds if Np is not shorter than
the overall channel memory expressed in symbol intervals.

Front-end processing in an OFDM digital receiver is accomplished on a symbol-by-symbol basis,
as shown by the block diagram of Figure 4.11. In particular, during the reception of the lth OFDM
symbol, the received signal r(t) = z(t, c) + n(t) (n(t) being AGN) is sampled at the instants t

(l)
k �

lNT Ts + kTs , with k = −Np, −Np + 1, . . . , N − 1. This yields a set of NT samples with the kth
sample given by:

r(l)[k] � r(t
(l)
k ) = z(l)[k] + n(l)[k], (4.121)

with z(l)[k] � z(t
(l)
k , c) and n(l)[k] � n(t

(l)
k ). It is easy to show that the sequence {n(l)[k]} consists

of iid complex Gaussian variables, each having zero mean and variance σ 2
n = 2N0/K

2
c . The first Np

samples of the set {r(l)[k], k = −Np, −Np + 1, . . . , N − 1} are discarded since they are affected
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Figure 4.11 Front-end processing in an OFDM receiver.

by the IBI originating from the (l − 1)th block, whereas the remaining samples, associated with
k = 0, 1, . . . , N − 1, are collected in the vector:

r(l)
N � [r(l)[0], r(l)[1], . . . , r(l)[N − 1]]T . (4.122)

Note that discarding a portion of the available samples inevitably entails an information loss, making
intrinsically suboptimal any detection procedure for c(l)

N based on r(l)
N . At the same time, however, this

approach substantially simplifies the detection/equalization problem, as illustrated in Section 6.3.
To understand the signal processing chain illustrated in Figure 4.11, it is important to study in detail

the structure of the vector r(l)
N (4.122). To do this, let us rewrite the useful component z(l)[k] of r(l)[k]

(4.121) as (see (4.120)):

z(l)[k] =z(lNT Ts + kTs)

= 1√
N

Nα∑
n=−Nα

c
(l)
RN [n]HRN [n] exp

(
j

2πkn

N

)

= 1√
N

Nα∑
n=0

c
(l)
RN [n]HRN [n] exp

(
j

2πkn

N

)

+ 1√
N

−1∑
n=−Nα

c
(l)
RN [n]HRN [n] exp

(
j

2πkn

N

)
(4.123)

for k = 0, 1, . . . , N − 1. Since c
(l)
RN [n]HRN [n] = c

(l)
n+NHn+N for n = −Nα, −Nα + 1, . . . , −1 and

exp(j2πkn/N) = exp(j2πk(n + N)/N), the second term on the RHS can be rewritten as:

1√
N

−1∑
n=−Nα

c
(l)
RN [n]HRN [n] exp

(
j

2πkn

N

)
= 1√

N

−1∑
n=−Nα

c
(l)
n+NHn+N exp

(
j

2πk(n + N)

N

)

= 1√
N

N−1∑
n=N−Nα

c(l)
n Hn−N exp

(
j

2πkn

N

)
. (4.124)

Since c
(l)
RN [n]HRN [n] = c(l)

n Hn for n = 0, 1, . . . , Nα and c(l)
n = 0 for n = Nα + 1, Nα + 2, . . . , N −

Nα − 1 (whatever the value of l), from (4.123) it is easily seen that (4.124) can be put in the form:

z(l)[k] = 1√
N

Nα∑
n=0

c(l)
n Hn exp

(
j

2πkn

N

)
+ 1√

N

N−1∑
n=N−Nα

c(l)
n Hn exp

(
j

2πkn

N

)

= 1√
N

N−1∑
n=0

c(l)
n Hn exp

(
j

2πkn

N

)
. (4.125)
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Then, substituting (4.125) into (4.121) yields:

r(l)[k] = 1√
N

N−1∑
n=0

c(l)
n Hn exp

(
j

2πkn

N

)
+ n(l)[k] (4.126)

with k = 0, 1, . . . , N − 1, so that the vector r(l)
N in (4.122) can be written in the form:

r(l)
N = QH

N H c(l)
N + n(l)

N , (4.127)

where n(l)
N � [n(l)[0], n(l)[1], . . . , n(l)[N − 1]]T is a noise vector, H � diag(Hn) is a diagonal matrix

having the channel gains {Hn, n = 0, 1, . . . , N − 1} along its main diagonal and QN is the Nth-
order DFT matrix. The time-domain vector r(l)

N in (4.127) undergoes an Nth-order DFT yielding the
frequency-domain vector:

R(l)
N = [R(l)[0], R(l)[1], . . . , R(l)[N − 1]]T � QN r(l)

N

= QN QH
N H c(l)

N + QN w(l)
N = H c(l)

N + N(l)
N , (4.128)

where N(l)
N = [N(l)[0], N(l)[1], . . . , N(l)[N − 1]]T � QN w(l)

N is a noise vector statistically equiva-
lent to n(l)

N (so that its components are statistically independent). Note that the structure of R(l)
N is

substantially simpler than that of r(l)
N . In fact, from (4.128) it can be easily seen that:

R(l)[k] = Hkc
(l)
k + W

(l)
k (4.129)

for k = 0, 1, . . . , Nα and k = N − Nα, N − Nα + 1, . . . , N − 1, and:

R(l)[k] = W
(l)
k (4.130)

for k = Nα + 1, Nα + 2, . . . , N − Nα − 1. This shows that each of the frequency-domain samples
(4.129) depends only on a single channel symbol and that the noise affecting it is independent of
that disturbing all the other subcarriers, so that detection and equalization can be accomplished in a
subcarrier-by-subcarrier fashion.

Doubly-Selective Channel
If the channel varies during the transmission of each OFDM symbol, the signal, z(t, c), representing
the useful component of the signal at the output of the receive filter, can be put in a form similar to
(4.120). In fact, it is easy to show that:

z(t, c) = 1√
N

Nα∑
n=−Nα

c
(l)
RN [n]HRN [n](t) exp[j2πfn(t − lNT Ts)] (4.131)

for t ∈ [lNT Ts, lNT Ts + NTs), where HRN [n](t) denotes the TVTF H(t, f ) (see (2.13)) evaluated for
f = fn (the nth subcarrier frequency). Then, sampling the received signal r(t, c) = z(t, c) + w(t) at
the instants t

(l)
k � lNT Ts + kTs , with k = −Np , −Np + 1, . . . , N − 1, yields the set of samples of

{r(l)[k], k = −Np,−Np + 1, . . . , N − 1}. The structure of r(l)[k] is still described by (4.121), where,
however:

z(l)[k] � z(t
(l)
k , c) = 1√

N

Nα∑
n=−Nα

c
(l)
RN [n]HRN [n][l, k] exp

(
j

2πkn

N

)
, (4.132)
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with HRN [n][l, k] � HRN [n](lNT Ts + kTs). Discarding the first Np samples of the set {r(l) [k]} to
remove the IBI and following the same line of reasoning as for the frequency-selective channel case
leads to:

r(l)[k] = 1√
N

N−1∑
n=0

c(l)
n Hn[l, k] exp

(
j

2πkn

N

)
+ w(l)[k], (4.133)

with k = 0, 1, . . . , N − 1. This can be rewritten in the compact form:

r(l)[k] = qH
N,k H(l)

k c(l)
N + w(l)[k], (4.134)

where qN,k is the kth column of QN , H(l)
k � diag(Hn[l, k]) is a diagonal having the subchannel gains

{Hn[l, k], n = 0, 1, . . . , N − 1} sampled at the instant lNT Ts + kTs along its main diagonal and
c(l)
N is the lth frequency-domain data block. Note that (4.133) generalizes (4.126) but, despite this

similarity, now the received signal vector r(l)
N (4.122) cannot be put in the form (4.127); therefore,

the simple model (4.129)–(4.130) for the elements of R(l)
N � QN r(l)

N no longer holds. In fact, we
have that:

R(l)[k] = qT
N,k r(l)

N = 1√
N

N−1∑
p=0

exp

(
j

2πkp

N

)
r(l)[p] + N(l)[k] (4.135)

for k = 0, 1, . . . , Nα and k = N − Nα, N − Nα + 1, . . . , N − 1, where N(l)[k] is the kth element of
the noise vector N(l)

N defined after (4.128). Then substituting (4.134) into (4.135) yields:

R(l)[k] = 1√
N


N−1∑

p=0

exp

(
j

2πkp

N

)
qH

N,p H(l)
p


 c(l)

N + N(l)[k], (4.136)

which can be rewritten as:

R(l)[k] = H̃ (l)[k, k] c
(l)
k +

N−1∑
q=0
q �=k

H̃ (l)[k, q] c(l)
n + W

(l)
N [k], (4.137)

where:

H̃ (l)[k, q] = 1

N

N−1∑
p=0

exp

(
j

2π(k − q)p

N

)
Hq [l, p]. (4.138)

Note that:

H̃ (l)[k, k] = 1

N

N−1∑
p=0

Hk[l, p], (4.139)

so that the channel gain associated with c
(l)
k in (4.137) represents an average gain evaluated over the

entire observation interval.
Expression (4.137) shows that R(l)[k] depends on both the kth channel symbol c

(l)
k and, in principle,

on all the other subcarrier symbols; the latter contribution is known as ICI and is represented by the
second term on the RHS of (4.137). Finally, we note the following:

(a) ICI originating from time selectivity in OFDM transmissions produces similar effects as ISI
produced by the frequency selectivity of the communication channel in an SC transmission [391].

(b) The strongest contribution to the ICI affecting each subcarrier usually originates mainly from
neighboring subcarriers [448, 449].

(c) ICI models have been derived in [448] and [450–455] under the assumption that the communica-
tion channel is described by a linearly time-varying filter and by a TDL model with time-varying
tap gains, respectively.
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4.4.4.2 Models for a MIMO Scenario

MIMO models can be easily derived from their SISO counterparts, keeping in mind that ot the
receive side front-end processing is accomplished on an antenna-by-antenna basis (see Figure 4.11).
Then, if we consider an nT ×nR frequency-selective MIMO channel, the frequency-domain vector
R(l)

N [j ] = [R(l)
j [0], R(l)

j [1], . . . , R
(l)
j [N − 1]]T (see (4.128)) deriving from the signal captured by the

jth receive antenna (with j = 0, 1, . . . , nR − 1) derives from the superposition of the contributions
coming from the nT transmit antennas [391]. In particular, we have that:

R(l)
N [j ] =

nT −1∑
i=0

H[j, i] c(l)
N [i] + N(l)

N [j ], (4.140)

where c(l)
N [i] = [c(l)

i,0, c
(l)
i,1, . . . , c

(l)
i,Nα

, 0, . . . , 0, c
(l)
i,N−Nα

, c
(l)
i,N−Nα+1, . . . , c

(l)
i,N−1]T denotes the OFDM

symbol transmitted by the ith antenna (with i = 0, 1, . . . , nT − 1), H[j, i] = diag(Hn(i, j)) is an
N × N matrix collecting the channel gains between the ith transmit antenna and the jth receive
antenna (in particular, Hn(i, j) denotes the channel gain on the nth subcarrier frequency) and N(l)

N,j =
[N(l)

j [0], N(l)
j [1], . . . , N

(l)
j [N − 1]]T is the noise vector affecting the jth receive antenna and consisting

of iid complex Gaussian random variables.
An analysis of the ICI originating from time variations of the communication channel in a

MIMO OFDM system can be found in [456].

4.5 Decision Strategies in the Presence of Channel Parameters:
Optimal Metrics and Performance Bounds

4.5.1 Signal Model and Algorithm Classification

In general, the structure of the received vector r processed to generate an estimate ĉ of the transmitted
channel symbol vector c depends on the CIR and on a set of synchronization parameters that influence
the received signal (e.g., residual timing and/or frequency offsets). Here, the effect of synchronization
parameters is ignored for simplicity (i.e., ideal synchronization is assumed) and the problem of the
detection in the presence of a wireless communication channel characterized by a given CIR vector
h is investigated.

In developing detection algorithms in wireless communications different degrees of knowledge of
the CIR at the receiver can be assumed; in particular, detection algorithms can rely on exact (i.e.,
ideal) knowledge of the CIR or on only statistical knowledge of it, or have no information about the
CIR. Algorithms developed for a known CIR can be employed when a reasonably accurate estimate
of the communication channel is available; such an estimate can be acquired by adding a header of
known data to each transmitted block of information, so that CIR estimation may be made independent
of data detection. Detection algorithms designed under the assumption of a statistically known channel
are based on a statistical model of the wireless channel whose properties are known at the receive
side. In practice, these properties must be estimated and tracked using decision-directed procedures in
any time-varying scenario. Finally, algorithms for a completely unknown CIR involve joint estimation
of the data and the communication channel.

In what follows the above classes of algorithms are considered. For each class, we tackle the
problem of estimating the symbols of the vector cN � [c0, c1, . . . , cN−1]T , transmitted over a channel
characterized by a CIR vector h, from a vector of received samples r. The linear model [457]:

r = HcN + n (4.141)

is always assumed, where r � [r0, r1, . . . , rK−1]T , H � [Hl,m] is a K × N channel matrix
(whose structure depends on the specific channel and which is uniquely identified by h) and
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n � [n0, n1, . . . , nK−1]T is a noise vector consisting of zero mean complex Gaussian random
variables, whose real and imaginary parts are independent and have the same variance σ 2

n , and whose
statistical properties are completely described by its autocovariance matrix Rn. Note the following
observations:

(a) Model (4.141) is very general but, in principle, refers to the case of linear modulations (i.e., to
the case in which the transmitted signal exhibits a linear dependence on the channel symbols, as
in OFDM and PAM signaling).

(b) Despite this, the results developed for this model can easily be extended to the case of CPM
modulations if Laurent’s representation is used (see Section 3.6.5.1).

(c) A one-to-one mapping between the sequence of channel symbols and the transmitted information
bits is always assumed, so that it is unnecessary to consider the sequence of bits separately.

Different optimality criteria can be adopted in developing a detection strategy. In particular, if the
target is to minimize the decision error on the whole sequence (under the assumption of equally likely
sequences), an MLSD strategy may be applied. An alternative to this is to develop strategies for
minimizing the probability of error for each information bit or each channel symbol; this approach
leads to MAPBD and MAPSD algorithms, respectively. In what follows the three optimality criteria
are employed to derive of a set of optimal detection metrics for the received signal model (4.141).
Such metrics can be exploited both to devise optimal and suboptimal detection techniques, and to
derive bounds on the performance offered by such techniques.

4.5.2 Detection for Transmission over of a Known Channel

Here we develop optimal metrics under the assumption of a known H (i.e., deterministic h) in (4.141)
and then briefly discuss the problem of deriving performance bounds.

4.5.2.1 Metric for MLSD

Let us assume, for simplicity, that K = N in model (4.141), i.e. that one sample per channel symbol
is processed by the detection algorithm. To stress this, the received vector r (the noise vector n) is
denoted by rN (nN ) in what follows. Then the MLSD strategy can be formulated as (see (4.26)):

ĉN = arg max
c̃N

fr(ρN |c̃N, h), (4.142)

where c̃N and ĉN denote a trial or hypothesized sequence and the decided sequence, respectively,
and ρN � [ρ0, ρ1, . . . , ρN−1]T denotes a realization of rN . Since rN , conditioned on ĉN = c̃N and
the CIR, is complex multivariate Gaussian with mean E{rN |c̃N, h} = Hc̃N , the likelihood of rN is
given by:

fr(ρN |c̃N, h) = 1

det(2πRn)
exp

[
−1

2

(
ρN − Hc̃N

)H R−1
n (ρN − Hc̃N)

]
. (4.143)

Taking the logarithm of the RHS yields the sequence metric:

ln fr(ρN |c̃N, h) = − ln det(2πRn) − 1

2
(ρN − Hc̃N)H R−1

n (ρN − Hc̃N), (4.144)

which is equivalent to (4.143), so that a functionally identical, but computationally more attractive,
decision rule is:

ĉN = arg min
c̃N

(ρN − H ˜cN)H R−1
n (ρN − H c̃N), (4.145)

since data-independent terms and positive scalars may also be discarded under the arg max operator,
and a negative scalar affects the decision rule only insofar as the arg max operator is replaced by the
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arg min operator. Generally speaking, the noise vector nN consists of correlated random variables;
however, a white noise model (corresponding to Rn = 2σ 2

n IN ) is often assumed. When this occurs,
the decision rule (4.145) can be easily simplified to:

ĉN = arg min
c̃N

(ρN − Hc̃N)H (ρN − Hc̃N) = arg min
c̃N

|ρN − Hc̃N |2, (4.146)

which admits an interesting geometrical interpretation: each trial sequence c̃N can be represented by
the point Hc̃N in an N-dimensional signal space. Also the received samples rN define another such
point. Then the detected sequence is the point is closest in the Euclidean sense to that representing
the received samples [457].

A closely related geometrical interpretation can be formulated even in the case of colored noise.
To show this we note that the inverse noise autocovariance matrix R−1

n can be factored according to
the Cholesky decomposition as [125]:

R−1
n = LH L, (4.147)

where L is a lower triangular matrix with real entries on its main diagonal. It can easily be shown
that the linear and causal transformation4:

vN = LnN (4.148)

of the noise vector nN generates a vector vN consisting of uncorrelated jointly Gaussian (and, conse-
quently, independent) random variables, Thus the transformation represents a form of noise whitening.
Then substituting (4.147) in (4.145) yields:

ĉN = arg max
c̃N

|LρN − LHc̃N |2. (4.149)

This decision rule still involves choosing the symbol sequence whose point in multidimensional space
is closest in the Euclidean sense to some reference point; however, now each symbol sequence point,
LHc̃N , and the reference point, LρN , are transformed (rotated and scaled) versions of the original
points.

It is also interesting to note that the metric of (4.145) can be expanded and the data-independent
rH
N R−1

n rN term can be discarded. This yields an equivalent decision rule:

ĉN = arg max
c̃N

2Re{(Hc̃N)H R−1
n ρN } − (Hc̃N)H R−1

n (Hc̃N), (4.150)

so that, if the sampled noise is white, a functionally equivalent decision rule is:

ĉN = arg max
c̃N

2Re{c̃H
N HH ρN } − |Hc̃N |2. (4.151)

Some applications of these results are illustrated in the following example, where the MLSD of
PAM over a slow time-selective fading channel and the dual problem of MLSD of OFDM over a
frequency-selective channel are analyzed.

Example 4.5.1 The study of PAM signaling over a slow time-selective fading channel leads to the
model (see (4.92)):

rk = ak ck + wk (4.152)

with k = 0, 1, . . . , N − 1, for the received signal samples, where ak is the kth sample of the fading
distortion, and the sequence {wk} consists of iid complex Gaussian noise samples, each having mean
zero and variance 2N0/K

2
c . Then the received signal vector rN � [r0, r1, . . . , rN−1]T is described

4 The transformation is causal because L is lower triangular.
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by (4.141) with H = diag(ak) (note also that h � [a0, a1, . . . , aN−1]T ), so that the MLSD strategy
(4.146) can be simplified to:

ĉN = arg min
c̃N

N−1∑
k=0

|ρk − ak c̃k|2. (4.153)

Note that the decision metric is given by the sum over N symbol metrics, each depending on only a
single symbol. This leads to the conclusion that in this specific case the MLSD rule can be reformulated
as the symbol-by-symbol decision strategy:

ĉk = arg min
c̃k

|ρk − ak c̃k|2 (4.154)

for k = 0, 1, . . . , N − 1.
A similar mathematical result is found when considering the detection of OFDM transmitted over

a frequency-selective fading channel. Note, however, that the OFDM detection algorithms available
in the technical literature usually discard, for each OFDM symbol, a fraction of the samples of the
received signal (and, more specifically, the samples associated with the cyclic prefix) to remove IBI
(see Section 4.4.4). For this reason, none of these schemes is truly optimal. Despite this, optimal (i.e.,
ML) detection strategies can easily be developed for the vector of frequency-domain samples collected
for each transmitted OFDM symbol. In fact, the model (4.128) for the frequency-domain vector R(l)

N

has the same structure as the vector rN for flat fading channels. Thus, if the dependence on the block
index l is neglected for simplicity, the optimal detection strategy can then be expressed as:

ĉN = arg min
c̃N

|ρN − Hc̃N |2 = arg min
c̃N

N−1∑
n=0

|ρn − Hnc̃n|2. (4.155)

where ρN denotes a realization of RN . Then, if the subchannel gains {Hn, n = 0, 1, . . . , Nα, N −
Nα, N − Nα + 1, . . . , N − 1} are known, the optimal detection algorithm is given by:

ĉn = arg min
c̃n

|ρn − Hnc̃n|2 (4.156)

with n = 0, 1, . . . , Nα and n = N − Nα,N − Nα + 1, . . . , N − 1. In other words, the vector problem
of (4.155) can be decomposed into a set of Nu scalar problems.

�

The MLSD metrics described in Example 4.5.1 are structurally simple in that, in both cases con-
sidered, a sequence metric can be written as the sum of a set of symbol metrics. This does not occur,
however, in situations where:

(a) CPM modulation is used, because of the inner memory of the modulation [438].
(b) PAM is sent over a frequency-selective [422, 458] or a doubly-selective [425] fading channel,

since ISI is then unavoidable.
(c) OFDM is used over a doubly-selective channel, since time variations generate ICI (see Section

4.4.4.1).

In all these cases, even if the MLSD metric has an additive structure (see the RHS of (4.146) and
(4.149)), each term of the overall metric involves multiple channel symbols and different terms can
depend on nondisjoint subsets of elements of cN .

The results derived can easily be extended to a MIMO scenario, where, however, the adoption of
an MLSD approach entails significant computational complexity, so that approximate strategies are
usually employed (e.g., see [459, 460]).
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4.5.2.2 Bounds on the Error Performance of MLSD

Performance bounds for MLSD usually result from the application of the so-called union bound [422]
(see Section 4.3.2), as shown in what follows under the assumption that the decision strategy looks
for the maximum of a sequence metric �(c̃N) over the set Sc containing all possible trial vectors c̃N .
To begin, we note that if the symbol vector cN , consisting of M-ary complex symbols, is transmitted,
an incorrect sequence ĉN is deemed more likely than cN if �(ĉN) ≥ �(cN) or, equivalently, if
�(ĉN) − �(cN) ≥ 0 (this event, referring to a pair of distinct symbol sequences, is denoted ε(cN →
ĉN) in what follows). Note that, if the decision metric (see (4.146)):

�(cN) = (HcN)H rN + rH
N (HcN) − ||HcN ||2 (4.157)

is adopted and the error vector eN � ĉN − cN is defined, we have that:

�(cN, ĉN) � �(ĉN) − �(cN)

= �(cN + eN) − �(cN)

= cH
N HH H eN + eH

N HH H cN − eH
N HH rN − rH

N H eN . (4.158)

Since rN = HcN + nN (see (4.141)), expression (4.158) can be simplified to:

�(cN, ĉN) = −eH
N HH nN − nH

N HeN . (4.159)

The latter result clearly shows that the metric difference �(cN, ĉN) depends on the error vector eN ,
but it is independent of the transmitted sequence cN and, for this reason, can be denoted simply �(eN).
Then the probability:

Pr {ε(cN → ĉN)} � Pr {�(cN, ĉN) ≥ 0|cN } = Pr {�(eN) ≥ 0} (4.160)

of the event ε(cN → ĉN), know as the PEP in what follows, depends only on eN .
The probability that, given the transmitted vector cN , an incorrect message is selected by the ML

detector is then given by:

Pr {ε|cN } = Pr




⋃
ĉN ∈Sc
ĉN �=cN

{
�(cN, ĉN) ≥ 0|cN

}

 . (4.161)

Applying the union bound (see (4.17)) to the RHS of (4.161) leads to the upper bound:

Pr {ε|cN } ≤
∑

ĉN ∈Sc
ĉN �=cN

Pr {�(cN, ĉN) ≥ 0|cN }

=
∑

eN ∈�(cN )

Pr {�(eN) ≥ 0}, (4.162)

where �(cN) denotes the set of error vectors eN = ĉN − cN generated, for a given cN , by all possible
ĉN ∈ Sc with ĉN �= cN (note that �(cN) does not contain 0N ). The average error probability over the
entire vector cN (i.e., on the transmitted message) is then given by:

Pe = Pr {ĉN �= cN } =
∑

cN ∈Sc

Pr {cN } Pr {ε|cN }, (4.163)
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which can be upper-bounded as (see (4.162)):

Pe ≤
∑

cN ∈Sc

Pr {cN }
∑

eN ∈�(cN )
eN �=0N

Pr {�(eN) ≥ 0}. (4.164)

Let us now assume that Sc consists of equally likely vectors, so that Pr {cN } = 1/MN . Then (4.164)
simplifies to:

Pe ≤ 1

MN

∑
cN ∈Sc

∑
eN ∈�(cN )

Pr {�(eN) ≥ 0}. (4.165)

If Ne(eN) denotes the number of different ways in which a given error vector eN can be generated as
eN = ĉN − cN by making distinct choices for the pair (ĉN, cN), then (4.165) can be rewritten as:

Pe ≤
∑

eN ∈�

Ne(eN)

MN
Pr {�(eN) ≥ 0}, (4.166)

where � = ⋃
cN ∈Sc

�(cN) collects all the possible (and distinct) error vectors different from 0N . This
last result represents the desired union bound. We make the following observations on the bound:

(a) In any significant scenario, for large SNRs a small number of terms is expected to provide most
of the contribution to the RHS of (4.166).

(b) If the elements of cN are independent, N(eN) can be factored as:

Ne(eN) =
N−1∏
l=0

Ne(el), (4.167)

where Ne(el) (with l = 0, 1, . . . , N − 1) represents the number of different ways in which a given
error el can be generated as el = ĉl − cl making distinct choices for the couple (ĉl , cl).

(c) From (4.17) and (4.161) the lower bound:

Pr {ε|cN } ≥ max
ĉN ∈Sc
ĉN �=cN

Pr {�(cN, ĉN) ≥ 0|cN }

= max
eN ∈�(cN )

Pr {�(eN) ≥ 0} (4.168)

can also be easily derived.

Then if all possible transmitted symbol vectors are equally likely, the lower bound (see (4.163)):

Pe ≥ 1

MN

∑
c̃N ∈Sc

max
eN ∈�(cN )

Pr {�(eN) ≥ 0} (4.169)

is found. Finally, it is worth noting that, following a similar line of reasoning, the upper bound [429]:

Ps ≤ 1

N

∑
eN ∈�

N(eN)

MN
wH (eN) Pr {�(eN) ≥ 0} (4.170)

for the symbol error probability can easily be found and a similar expression also derived for the bit
error probability; here wH (x) denotes the Hamming weight of the vector x, that is, the overall number
of its elements different from zero. Further discussion of error performance bounds for MLSD of PAM
signals over frequency- and doubly-selective fading channels can be found in [422, 429, 461–464]
and in [425], respectively.
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4.5.2.3 Metric for MAP (Symbol and Bit) Detection

If ρN denotes the value of the observed vector rN , the MAPBD and MAPSD decision rules can be
expressed as:

b̂l = arg max
b̃l

Pr {bl = b̃l |rN = ρN, h} (4.171)

and:
ĉm = arg max

c̃m

Pr {cm = c̃m|rN = ρN, h}, (4.172)

respectively, if bl (cm) denotes the lth (mth) transmitted bit (channel symbol). Exploiting the theorem
of total probability [55], the metrics characterizing these strategies can easily be rewritten as:

Pr {bl = b̃l |rN = ρN, h} =
∑

c̃N →b̃i

Pr {c̃N |rN = ρN, h}

=
∑

c̃N →b̃i

fr(ρN |c̃N, h) Pr {cN = c̃N }
fr(ρN |h)

, (4.173)

and

Pr {cm = c̃m|rN = ρN, h} =
∑

c̃N →c̃m

Pr {c̃N |rN = ρN, h}

=
∑

c̃N →c̃m

fr(ρN |c̃N, h) Pr {cN = c̃N }
fr(ρN |h)

, (4.174)

respectively, where the summations are evaluated over all sequences c̃N which are consistent with
{bi = b̃i} or {cm = c̃m}, respectively. The conditional pdf fr(ρN |h) appearing in both (4.173) and
(4.174) can be expressed as:

fr(ρN |h) =
∑

c̃N ∈Sc

Pr {cN = c̃N }fr(ρN |c̃N, h), (4.175)

where Sc is the set of all possible trial vectors c̃N , and fr(ρN |h) can be interpreted as a scale factor
ensuring that the probabilities assigned to the possible values of each bit/symbol sum to unity. In many
cases this normalization may be omitted, and even if normalization is required, the unnormalized
bit/symbol probabilities are available so that normalization can proceed using them directly. Thus,
fr(ρN |h) and any other data-independent scale factor can be disregarded without penalty. Finally, it
is worth mentioning that the common probability factor fr(ρN |c̃N, h) in (4.173) and (4.174) is given
by (4.143) if the same linear model for the received signal model as in Section 4.5.2.1 is adopted.
From the foregoing it is evident that the metrics in (4.171) and (4.172) are not as intuitive as the
metrics used in MLSD, since they do not translate directly to distance.

4.5.2.4 Bounds on the Error Performance of MAPSD/MAPBD

The average symbol error rate (SER) Ps[l] achieved by the MAPSD strategy (4.172) in the detection
of the lth symbol cl of the vector cN can be written as:

Ps[l] =
∑
c̃l

∑
c̃−l

Pr

{(
max
c̄l �=c̃l

Pr
{
cl = c̄l |rN = ρN, h

}) ≥ Pr {cl = c̃l |rN = ρN, h}

|cl = c̃l , c−l = c̃−l

}
Pr{cl = c̃l , c−l = c̃−l} (4.176)
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where c−l � [c0, c1, . . . , cl−1, cl+1, . . . , cN−1]T is obtained from cN by removing the element cl ;
note that a similar expression may be arrived at for the average bit error rate (BER) of the lth bit bl

when the MAPBD strategy (4.171) is used. Expression (4.176) cannot easily be evaluated since the
decision metrics (namely, the probabilities Pr {cl = c̄l |rN = ρN, h} for any possible value of c̄l) are
complicated functions of correlated Gaussian random variables. Hence, error performance bounds for
MAPSD and MAPBD are of interest; in particular, a lower bound, known as the matched filter bound
(MFB), is often derived for the case in which ISI is absent in the elements of the received signal vector
rN . For instance, if PAM signaling is considered, the MFB is evaluated by assessing the symbol (or
bit) error probability of an optimal (i.e., MAP) detector for a single transmitted pulse (i.e., symbol),
that is, of a detector based on a filter matched to the pulse distorted by the communication channel.
Note, however, that unlike the error performance bounds illustrated above, which refer to a fixed
channel parameter vector h, MFBs are usually derived for channels with known statistical properties,
that is, their computation requires averaging the SER or BER with respect to the statistics of h.

To illustrate the MFB concept, let us assume the transmission of a single pulse (i.e., a single
channel symbol) over a frequency-selective Rayleigh fading channel characterized by a TVIR h(t, τ )

and a PDP Ph(τ). If the complex envelope of the transmitted signal is x(t) = c0 p(t) (where c0 is
the channel data symbol and p(t) is the transmitter impulse response), the received signal r(t) is
given by:

r(t) = c0 g(t) + n(t), (4.177)

where g(t) �
∫ +∞
−∞ p(t − τ) h(t, τ ) dτ and n(t) is complex AWGN with two-sided power spectral

density 2N0. The signal r(t) feeds a filter matched to g(t), that is, having impulse response hR(t) =
g∗(−t). The decision statistic r0 at the receiver filter output for MAP detection is then given by:

r0 � r(t) ⊗ hR(t)|t=0 = c0 Eg + w, (4.178)

where Eg is the energy of g(t) and the complex random variable w, conditioned on g(t), is Gaussian
with zero mean and variance σ 2

w = 2N0Eg . Given the model for the observed noisy datum, it is easy
to infer the MAP strategy from the results derived for the AGN channel in Example 4.3.1. Then the
MAP strategy looks for the minimum of the metric (see (4.42)):

|ρ0 − c̃ Eg|2 − 2σ 2
w ln Pc̃ , (4.179)

where ρ0 is the value taken by r0 and c̃ denotes the trial symbol (characterized by the a priori
probability Pc̃ ) which can take M distinct values, if an M-ary constellation is used. Generally speaking,
evaluating the error performance of the latter strategy leads to the MFB for PAM signaling. The MFB
can be put in a compact form if c0 belongs to a BPSK alphabet (i.e., {±1}) and if its two possible
levels are equally likely. In fact, when this occurs, the MAPSD strategy becomes the ML binary
decision strategy ĉ0 = sign(ρ0), where sign(x) denotes the sign of the real number x, so that, for a
given realization of h(t, τ ), the bit error probability5 is given by [465]:

Pb = Q

(√
R

2Eb

N0

)
, (4.180)

where Eb = Ep/2 is the transmitted energy per bit, Ep is the energy of p(t) and

R �
Eg

Ep

. (4.181)

5 Expression (4.180) also holds for 4-QAM transmission; in fact in this case the in-phase detector output is
considered.



196 Wireless Communications

Averaging Pb (4.180) with the respect to the channel statistics yields the MFB:

P̄b =
∫ +∞

0
fR(r) Q

(√
2Eb r

N0

)
dr, (4.182)

where fR(r) is the pdf of R (4.181).
Different numerical techniques have been proposed for the evaluation of the RHS of equation

(4.182) [85, 109, 465–475]. In particular, if the channel PDP is continuous, an approximate repre-
sentation of R (4.181) can be derived by means of the KL expansion [85, 109, 162, 473–476], the
sinc expansion [471] or GQR channel models [477]. It is important to note that, whatever channel
model is adopted, the MFB is not affected if the real channel is replaced by a statistically equivalent
representation. For instance, if we exploit an nf th-order GQR channel model (see Section 2.2.3.5),
the reduced-dimensionality statistical representation:

g̃(t) =
nf −1∑
i=0

ai p(t − τi) (4.183)

can be used for g(t). Here the parameters {ai, i = 0, 1, . . . , nf − 1} are independent Gaussian ran-
dom variables with zero mean and variances {E{|ai |2} = wi, i = 0, 1, . . . , nf − 1}, and {τi , i =
0, 1, . . . , nf − 1} and {wi, i = 0, 1, . . . , nf − 1} are respectively the nodes and weights of the nf th-
order Gaussian quadrature formula for the weight function Ph(τ). Replacing g(t) with g̃(t) in the
evaluation of R (4.181) yields the random variable6:

R̃ = aH Ma, (4.184)

which is statistically equivalent to R; here a = [a0, a1, . . . , anf −1]T is a zero mean complex Gaussian
vector with covariance matrix:

Ca � E{a aH } = diag{wl}, (4.185)

and M = [M(i, j)] is an nf × nf matrix with elements:

M(l1, l2) = 1

Ep

∫
p∗(t − τl1

) p(t − τl2
) dt, (4.186)

l1, l2 = 0, 1, . . . , nf − 1. Then, if {λ0, λ1, . . . , λnf −1} is the complete set of eigenvalues of the matrix

Ca M, the characteristic function ψR̃(ν) of R̃ is (see [85, eq. (16)]):

ψR̃(ν) =
I∑

i=1

µi∑
k=1

Aik

(1 − jνλi)
k
, (4.187)

where I is the number of distinct eigenvalues, µi is the multiplicity of the ith eigenvalue λi and {Aik }
are the coefficients of the partial fraction expansion of ψR̃(ν). Taking the IFCT of ψR̃(ν) yields the
pdf fR̃(r) of R̃ (see [85, eq. (18)]). Substituting fR̃(r) into (4.182) (in place of fR(r)) yields, after
some manipulation, the MFB:

P̄b = 1

2

I∑
i=1

µi∑
k=1

Aik

{
1 −

k−1∑
l=0

Cl

√
γ λi

(1 + γ λi)
2l+1

}
, (4.188)

where Cl � (2l − 1)!!/(2l)!! (C0 = 1) and γ = Eb/N0. Let us now apply these results in the following
example.

6 We note that, with R being the normalized energy of the overall channel impulse response, the decision variable
R̃ has a quadratic dependence on the channel gains {ai}.
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Example 4.5.2 We evaluate the MFB for a BPSK transmission over a uniform (U) or exponential
(E) PDP (the analytical expressions for Ph(τ) and of RH (f ) together with the corresponding formula
for delay spread τds are listed in Table 2.2 for such profiles). The following observations are worth
noting:

• The evaluation of the quadrature nodes and weights for the uniform and exponential PDP involves
the Legendre and the Hermite polynomials, respectively, and can be carried out by means of
numerically stable subroutines [119, 120].

• In generating GQR models the values of the parameter nf have been selected to ensure good
statistical accuracy in the channel representation (in practice, further improvement of this parameter
only negligibly affects the error rate results).

Moreover, in this example the modulator impulse response p(t) is the IFCT of a root-raised cosine
function with roll-off α = 0.35 and is truncated symmetrically to 20 symbol intervals. Figure 4.12
illustrates the MFB for τds/Ts = 0.1, 0.5 and 1. The BER curves with frequency-flat fading (σds = 0)
and for an AWGN channel are also shown for comparison. The substantial differences between the
uniform and the exponential power profile can be related to the long tails of the latter. These error
rate curves show that:

• the MFB depends significantly on the channel delay spread and negligibly on the power profile
shape for a given σds/Ts , as already observed in [85, 471],

• the BER performance of the MF receiver improves as τds/Ts grows larger, as the intrinsic diversity
provided by the multipath phenomenon increases [85].

�

In Example 4.5.2 a purely frequency-selective channel is considered. Further numerical results on
the MFB for doubly-selective fading channels can be found in [477]. MFBs have also been evaluated
for multicarrier signaling; see [449, 472, 478, 479] for further details.
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Figure 4.12 MFB versus τds/Ts for FS channels with uniform and exponential PDPs. The MFB
for frequency-flat (FF) fading and AWGN channels is also shown for comparison.
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4.5.3 Detection in the Presence of a Statistically Known Channel

The exploitation of the detection metrics derived in Section 4.5.2 requires the availability of an accurate
channel estimate at the receiver. To avoid the problem of explicit channel estimation in receiver design,
channel parameters can be averaged out in the derivation of optimal detection metrics. However, this
approach requires the CIR to be statistically known and the CIR pdf to be tractable. This explains why
the detectors belonging to this class have mainly been developed for complex Gaussian channels (i.e.,
under the assumption of Rayleigh or Rician fading). In any real-world receiver the channel statistics
need to be estimated, and this task may be more difficult than CIR estimation. Thus the implementation
of this class of detectors can be extremely complicated in many circumstances.

In this subsection decision metrics for ML and MAP detection strategies are derived and some
indications on the problem of estimating their error performance are provided.

4.5.3.1 Metric for MLSD

Here we derive the MLSD strategy for estimating the symbol vector cN = [c0, c1, . . . , cN−1]T from
the received signal vector rN � [r0, r1, . . . , rN−1]T . To account for averaging over the channel param-
eters, this strategy can be written as (see (4.26) and (4.48)):

ĉN = arg max
c̃N

fr(ρN |c̃N)

= arg max
c̃N

∫
fr(ρN |c̃N, χ) fh(χ) dχ

= arg max
c̃N

∫
fr,h(ρNχ |c̃N)

fh(χ |c̃N)
fh(χ) dχ (4.189)

where fh(χ) and ρN denote the joint pdf of the channel parameters and the value taken by rN ,
respectively. If a Gaussian model is adopted for h, the vector rN , given cN = c̃N , is also Gaussian
(see (4.141)) with mean vector:

ηr(c̃N) � E{rN |cN = c̃N } (4.190)

and covariance matrix:

Rr(c̃N) � E{(rN − ηr(c̃N))(rN − ηr(c̃N))H |cN = c̃N }. (4.191)

Then the decision rule of (4.189) can be put in the form:

ĉN = arg min
c̃N

�(c̃N), (4.192)

where:

�(c̃N) � − log f (rN |c̃N)

= 1

2
(rN − ηr(c̃N))H R−1

r (c̃N)(rN − ηr(c̃N)) + log det(2πRr(c̃N)) (4.193)

in a Rician channel and:

�(c̃N) = 1

2
rH
N R−1

r (c̃N)rN + log det(2πRr(c̃N)) (4.194)

in a Rayleigh fading channel. Note the following observations:

1. In equation (4.193) the first term of the metric is a quadratic form in the received vector rN ,
whereas the second term (referred to as the bias term in the technical literature [480]) does not
exhibit any dependence on rN .
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2. The meaning of the detection metrics in (4.193) and (4.194) is not intuitively obvious, nor is
it amenable to implementation in their present form. These considerations raise the problem of
deriving possible reformulations that clarify the meaning of such metrics and make the problem of
evaluating them easier.

We next tackle the latter problem, restricting our attention, however, to the case of Rayleigh fading
(i.e., to the metric (4.194)) which has been thoroughly studied in many papers (e.g., see [114, 428, 434,
436, 481–494]). Note, however, that the extension of our results to Rician fading is straightforward
[495] and arbitrary fading pdfs may be handled also (e.g., see [496–498]).

4.5.3.2 Interpretation of MLSD in terms of Estimation-Correlation

The earliest (and simplest) interpretation of the metrics (4.193) and (4.194) is due to T. Kailath [484,
499]. To illustrate this interpretation let us assume, as in Section 4.5.2, that K = N in model (4.141),
that is, that one sample per channel symbol is processed by the detection algorithm, so that the received
signal vector rN is given by:

rN = HcN + nN . (4.195)

We also assume that the channel is affected by Rayleigh fading, so that the elements of the channel
matrix H are zero mean correlated complex Gaussian variables. If we now define the vector:

zN(cN) � HcN, (4.196)

which represents the useful signal component of rN , the autocovariance matrix Rr of rN , given cN =
c̃N , becomes:

Rr(c̃N) = Rz(c̃N) + Rn, (4.197)

where Rz (c̃N) � E{zN zH
N |cN = c̃N } is the (data-dependent) autocovariance matrix and Rn is the noise

autocovariance matrix. Exploiting the matrix inversion lemma (C.10), the inverse of Rr(c̃N) (4.197)
can be rewritten as:

R−1
r (c̃N) = R−1

n − R−1
n [R−1

n + R−1
z (c̃N)]−1R−1

n . (4.198)

Substituting the RHS of this into the ML metric of (4.194) yields:

�(c̃N) = 1

2
rH
N [R−1

n − R−1
n [R−1

n + R−1
z (c̃N)]−1 R−1

n ]rN + log det(2πRr(c̃N). (4.199)

Then, if irrelevant (i.e., symbol independent) terms are dropped, the MLSD strategy (4.192) can be
put in the form:

ĉN = arg max
c̃N

{
1

2
rH
N R−1

n

[
R−1

n + R−1
z

(
c̃N

)]−1
R−1

n rN − log det(2πRr(c̃N))

}
. (4.200)

It can then be shown that the vector:

zMMSE (c̃N) � [R−1
n + R−1

z (c̃N)]−1 R−1
n rN (4.201)

represents the linear MMSE estimator of zN(c̃N) (4.196) from rN , given cN = c̃N [106, 484]. Then
substituting (4.201) into (4.200) leads to:

ĉN = arg max
c̃N

{
1

2
rH
N R−1

n zMMSE

(
c̃N

) − log det(2πRr(c̃N))

}
, (4.202)

which provides an important interpretation of the MLSD strategy. It shows that, if the channel noise
is white (i.e., Rn = 2σ 2

n IN ) and the bias term log det(2πRr(c̃)) can be neglected, the ML strategy
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aims to maximize the correlation between the received vector rN and a tentative MMSE estimate of
its useful signal component. For this reason the overall processing of the ML detector, when the CIR
is averaged out, is often termed estimation-correlation.

4.5.3.3 Interpretation of MLSD in terms of Innovations Processes

Another significant interpretation of the optimal strategy (4.192) with metric �(c̃N) (4.194) can be
developed by resorting to the concept of the innovation process [55]. To see this, we apply the Cholesky
decomposition [125] to the positive definite matrix Rr(c̃) of (4.197), so that it can be factored as:

Rr(c̃N) = UH (c̃N) U(c̃N). (4.203)

Here U(c̃N) is an N × N upper triangular matrix (whose diagonal elements are all positive). Its inverse
U−1(c̃N) is also an upper triangular matrix, which can be factored as:

U−1(c̃N) = PH (c̃N) S−1/2(c̃N), (4.204)

where P(c̃N) is an N × N lower triangular matrix with 1s on its main diagonal and S−1/2(c̃N) =
diag[1/

√
2sk(c̃N)] is a diagonal matrix containing the diagonal entries of U−1(c̃N). Therefore, the

inverse of Rr(c̃N) can be written in the form (see (4.203)):

R−1
r (c̃N) = U−1(c̃N) [U−1(c̃N)]H = PH (c̃N) S−1/2(c̃N) S−1/2(c̃N) P(c̃N). (4.205)

Then substituting (4.205) into (4.194) yields the expression:

�(c̃N) = 1

2
[S−1/2(c̃N) P(c̃N)rN ]H [S−1/2(c̃N) P(c̃N)rN ] + log det(S(c̃N)). (4.206)

Since P(c̃N) is structured as:

P(c̃N) =




1 0 0 · · · 0
−p1,1

(
c̃N

)
1 0 0

−p2,2(c̃N) −p2,1(c̃N) 1
. . .

...

...
. . .

. . . 0
−pN−1,N−1(c̃N) −pN−1,N−2(c̃N) · · · −pN−1,1(c̃N) 1




, (4.207)

the product of the (k + 1)th row of P(c̃N) with rN in (4.206) yields:

ek(c̃N) � rk −
k∑

m=1

pk,m(c̃N) rk−m, (4.208)

for k = 1, 2, . . . , N − 1 (note that the product of the first row of P(c̃N) with rN produces e0(c̃N) = r0),
so that �(c̃N) of (4.206) can be put in the form:

�(c̃N) =
N−1∑
k=0

∣∣∣∣∣ ek

(
c̃N

)
√

2 sk(c̃N)

∣∣∣∣∣
2

+ log(2π σk(c̃N))

=
N−1∑
k=0

∣∣∣∣∣∣∣∣∣
rk −

k∑
m=1

pk,m

(
c̃N

)
rk−m√

2 sk(c̃N)

∣∣∣∣∣∣∣∣∣

2

+ log (2π σk(c̃N)), (4.209)
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where p0,m(c̃N) = 0 for any m. To understand the meaning of the latter result, we rewrite the
probability expression for the ML decision rule (4.189) as:

ĉN = arg max
c̃N

fr(ρN |c̃N)

= arg max
c̃N

N−1∏
k=0

frk
(ρk|rk−1, c̃N)

= arg max
c̃N

�(c̃N), (4.210)

where frk
(ρk|rk−1, c̃N), with k = 1, 2, . . . , N − 1, denotes the probability of rk conditioned on

rk−1 � [r0, r1, . . . , rk−1]T and cN = c̃N , fr0
(ρ0|r−1, c̃N) = fr0

(ρ0) (r−1 is an empty vector) and
(see (4.193)):

�(c̃N) � − log f (rN |c̃N)

= − log
N−1∏
k=0

frk
(ρk|rk−1, c̃N)

= −
N−1∑
k=0

log frk
(ρk|rk−1, c̃N). (4.211)

At this point we note that the random variable rk , with k = 0, 1, . . . , N − 1, conditioned on the
transmitted sequence cN = c̃N and rk−1, is a complex Gaussian random variable with mean:

ηk(rk−1, c̃N) � E{rk|rk−1, c̃N } (4.212)

and variance 2σ 2
k (rk−1, c̃N) with:

σ 2
k (rk−1, c̃N) � 1

2
E{|rk − ηk(rk−1, c̃N)|2}, (4.213)

so that:

frk
(ρk|rk−1, c̃N) = 1

2πσ 2
k (rk−1, c̃N)

exp

[
−
∣∣rk − ηk(rk−1, c̃N)

∣∣2
2σ 2

k (rk−1, c̃N)

]
(4.214)

(note that η0(r−1, c̃N) = 0 and σ 2
0 (r−1, c̃N) = 2σ 2

n ). Then substituting (4.214) into (4.211) yields:

�(c̃) =
N−1∑
k=0

∣∣∣∣∣∣∣
rk − ηk(rk−1, c̃N)√

2 σ 2
k (rk−1, c̃N)

∣∣∣∣∣∣∣
2

+ log (2π σ 2
k (rk−1, c̃N)). (4.215)

Finally, by comparing (4.215) with (4.209), we match σ 2
k (rk−1, c̃N) with sk(c̃N) and ηk(rk−1, c̃N) with∑k

m=1 pk,m(c̃N) rk−m. This shows the following:

• The quantity ηk(rk−1, c̃N) represents a MMSE linear one-step prediction of rk given all past samples
rk−1, assuming a specific transmitted data sequence c̃N . In other words, it minimizes the mean square
error (MSE) E{|rk − p̃H

k (c̃N) rk−1|2} with respect to p̃k for a given c̃N , where pk(c̃N) � [pk,k(c̃N),
pk,k−1(c̃N), . . . , pk,1(c̃N)]T .

• The difference (see (4.208)):
ek(c̃N) = rk − ηk(rk−1, c̃N) (4.216)

with ηk(rk−1, c̃N) = −pT
k−1(c̃N) rk−1 can be interpreted as a prediction error.

• The prediction variance is given by 2σ 2
k (rk−1, c̃N).
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These results pave the way for the development of a new interpretation of the MLSD metrics
(4.215). In fact, it is not difficult to show that the elements of the sequence {ek(c̃N), k = 0, 1, . . . }
are uncorrelated with one another, so that the sequence {ik(c̃N), k = 0, 1, . . . }, where:

ik(c̃N) � ek(c̃N)√
2 σ 2

k (rk−1, c̃N)

= [−pT
k−1(c̃N), 1] rk√

2 sk(c̃N)
, (4.217)

is a scaled prediction error, represents a discrete-time innovations process [55] (here pk(c̃N) �
[pk,k(c̃N), pk,k−1(c̃N), . . . , pk,1(c̃N)]T ). Note that:

(a) the innovations vector iN(c̃N) � [i0(c̃N), i1(c̃N), . . . , iN−1(c̃N)]T can be generated as
S−1/2(c̃N) P(c̃N) rN (see (4.206)),

(b) because of the Gaussianity of rk conditioned on cN = c̃N , this vector consists of independent
complex Gaussian random variables all having unit variance, so that:

E {ik(c̃N) i∗l (c̃N)} = δkl . (4.218)

Moreover, it is not difficult to prove that:

E {rk i∗l (c̃N)} = 0, k < l, (4.219)

and:
E {rk i∗k (c̃N)} =

√
2 sk(c̃N) (4.220)

for any k, since rk can be written as:

rk =
√

2sk(c̃N)


 rk − ηk(rk−1, c̃N)√

2 sk

(
c̃N

) + ηk(rk−1, c̃N)√
2 sk(c̃N)




=
√

2sk(c̃N)


ik + ηk(rk−1, c̃N)√

2 sk

(
c̃N

)

 (4.221)

and ηk(rk−1, cN) is computed from rk−1 as ηk(rk−1, c̃N) = −pT
k−1(c̃N) rk−1. Therefore, from (4.217)

and (4.220), it follows that:√
2 sk(c̃N) E {rk i∗k (c̃N)} = E{rkrH

k }
[−pk

(
c̃N

)
1

]

= Rr,k(c̃N)

[−pk

(
c̃N

)
1

]

=
[

0k−1
2 sk

(
c̃N

)] , (4.222)

where Rr,k � E{rkrH
k }. By partitioning Rr,k as:

Rr,k =
[

Rr,k−1 Rr,k−1,k

RH
r,k−1,k E

{∣∣rk

∣∣2}
]

, (4.223)
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where the column vector Rr,k−1,k is defined as Rr,k−1,k � E{rk−1r
∗
k }, (4.222) can be rewritten as:

Rr,k−1pk(c̃N) = Rr,k−1,k (4.224)

and:
2 sk(c̃N) = E{|rk|2} − RH

r,k−1,kpk(c̃N). (4.225)

Equations (4.224) and (4.225) can be used to compute the vector of prediction coefficients pk(c̃N)

and the prediction error variance 2sk(c̃N), respectively, for all c̃N .
In summary, the first term in the metric (4.209) can be interpreted as the sum of squared normalized

prediction errors, each normalized by the expected squared prediction error, that is, as the sum of
samples of a discrete-time innovation process.

All the considerations illustrated here refer to the general case of signaling over a doubly-selective
fading channel. Generally speaking, the evaluation of the metrics according to (4.215) entails a
substantial computational burden, since the prediction coefficients need to be evaluated for k =
0, 1, . . . , N − 1 and for each possible trial sequence. However, some reduction in the complexity
is possible if PAM signaling over a slow time-selective fading channel is considered, as illustrated in
the following example.

Example 4.5.3 If we assume PAM signaling over a slowly varying time-selective fading and baud
rate sampling at the output of the matched filter of the receiver, the model (see (4.92)):

rk = ak ck + wk (4.226)

can be adopted for rk , with k = 0, 1, . . . , N − 1; here ak is the kth sample of the fading distortion,
and the sequence {wk} consists of iid complex Gaussian noise samples, each having zero mean and
variance 2N0/K

2
c . In this case the mean ηk(rk−1, c̃N) (4.212) can be expressed as [490, 500, 501]:

ηk(rk−1, c̃N) = ηk(rk−1, c̃k−1) = c̃k ã{k|rk−1, c̃k−1}, (4.227)

where ã{k|rk−1, c̃k−1} is the MMSE one-step prediction of the fading sample ak , based on rk−1
and assuming that the sequence c̃k−1 = [c̃0, c̃1, . . . , ck−1]T has been transmitted. Then the variance
σ 2

k (rk−1, c̃N) of (4.213) can be rewritten as:

σ 2
k (rk−1, c̃N) = σ 2

k (rk−1, c̃k−1) = 1

2
E{|rk − c̃k ã{k|rk−1, c̃N }|2|rk−1, c̃N }. (4.228)

It can be shown that, given the symbol vector c̃k−1, the prediction coefficients for the evaluation of
ã{k|rk−1, c̃k−1} depend on the modulus of the symbols forming c̃k−1, but not on their phase. For this
reason, if PSK signaling is adopted, such coefficients depend on the length of the symbol sequence,
but not on its elements. A further substantial simplification is achieved if a constant prediction length
ν is used, so that at time k only the last ν symbols (namely, ck−1, ck−2, . . . , ck−ν ) are involved in the
prediction process; in fact in this case the prediction coefficients do not need to be recomputed for
each trial sequence at each step [490, 500, 501]. Generally speaking, in frequency-flat channels the
evaluation of the fading prediction ã{k|rk−1, c̃k−1} and of the variance σ 2

k (rk−1, c̃k−1) can be accom-
plished by a time-varying Wiener filter [502, 503]. However, if the process {ak} can be characterized
by a Gauss–Markov model [217, 502], both quantities can be computed recursively by means of a
Kalman predictor [503] for a given trial sequence.

�

Considerations conceptually similar to those expressed in Example 4.5.3 can be developed for the
MLSD of CPM signals transmitted over fast frequency-flat fading channels [436].
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4.5.3.4 Bounds on the Error Performance of MLSD

The union bound (4.166) also applies to the MLSD strategies derived in the presence of a statistically
known channel [493, 495]. If a Rayleigh fading channel is considered, this requires computing the
PEP Pr {�(eN) ≥ 0} for any possible eN , where (see (4.159)):

�(eN) = −eH
N HH nN − nH

N H eN (4.229)

is a Gaussian quadratic form. In practice, the evaluation of this PEP can be accomplished as follows:

(a) Evaluate the characteristic function of �(eN).
(b) Transform this characteristic function into the associated pdf.
(c) Integrate over the error region (the interval (0, +∞) in this specific case).

For further analytical details, see [493, Sect. 3] and [495, Sect. 5].

4.5.3.5 Metrics for MAPSD/MAPBD

The MAPBD strategy can be formulated as:

b̂i = arg max
b̃i

Pr{b̃i |rN = ρN }. (4.230)

Applying Bayes’ theorem to the RHS gives:

b̂i = arg max
b̃i

Pr{b̃i}fr(ρN |b̃i )

fr(ρN)
, (4.231)

which, on discarding the factor fr(ρN) (since it is independent of the trial bit b̃i), yields:

b̂i = arg max
b̃i

Pr {b̃i} fr(ρN |b̃i )

= arg max
b̃i

Pr {b̃i}
∫

fr(ρN |b̃i , χ) fh(χ) dχ , (4.232)

by averaging the conditional pdf fr(ρN |b̃i ) over the channel statistics fh(χ). Similarly, the MAPSD
strategy can be expressed as:

ĉi = arg max
c̃i

Pr {c̃i}fr(ρN |c̃i )

= arg max
c̃i

Pr {c̃i}
∫

fr(ρN |c̃i , χ) fh(χ) dχ . (4.233)

Finally, we note that the strategies of (4.232) and (4.233) can be refined into:

b̂i = arg max
b̃i

Pr {b̃i}
∑

c̃N →b̃i

fr(ρN |c̃N)

= arg max
b̃i

Pr {b̃i}
∑

c̃N →b̃i

∫
fr(ρN |c̃N, χ) fh(χ) dχ (4.234)
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and

ĉi = arg max
c̃i

Pr {c̃i}
∑

c̃N →c̃i

fr(ρN |c̃N)

= arg max
c̃i

Pr {c̃i}
∑

c̃N →c̃i

∫
fr(ρN |c̃N , χ) fh(χ) dχ , (4.235)

respectively, where the summations are evaluated over all sequences, c̃N , which are consistent with
{bi = b̃i} or {cm = c̃m}, respectively, and (see 4.48):

fr(ρN |c̃N) =
∫

fr(ρN |c̃N, χ) fh(χ) dχ (4.236)

is computed as in (4.189).
Finally, it is interesting to note the following observations:

(a) An innovations-based formulation for the MAP metrics can be developed in the case of PAM
signaling over doubly-selective fading channels [504, Sect. 4]. This requires, however, a proper
trellis representation, which will be developed in Section 6.2.

(b) A genie-aided (lower) bound for the BER performance of MAPBD is derived in [504, Sect. 4]
(see Section 4.5.2.4 above).

4.5.4 Detection in the Presence of an Unknown Channel

Although it is useful to idealize the CIR as being known exactly (by invoking a friendly genie),
in practice the CIR (or some equivalent quantity) must be estimated, as well as any other unknown
parameters, such as the noise variance. These estimates are then used as if they were exact. In channels
with significant time variation and/or delay spread, CIR estimation becomes more difficult. Generally
speaking, a wireless channel can be classified on the basis of its spread factor:

SF � Tm BD, (4.237)

where Tm (BD) denotes the maximum time (frequency) spreading of an impulse (sine wave) transmitted
over the channel itself (note that Tm and BD respectively represent the memory and the Doppler
bandwidth characterizing the channel filter). In fact, the spread factor plays an essential role in defining
the measurability of a channel [505–508]. In particular, if SF < 1, the channel is underspread [101]
and, in principle, estimation of its impulse response is possible (by resorting, for instance, to pilot
tones or pilot symbols), although it becomes more critical as SF nears unity. In contrast, if SF > 1,
the channel is overspread and cannot be estimated. It is worth pointing out the following:

(a) This criterion was introduced by T. Kailath [505]. A more accurate criterion replaces the spread
factor with the area under the Doppler delay spread function [507].

(b) The spread factor can also be defined as SF � νrms τds , where νrms (τds ) is the rms Doppler
bandwidth (rms delay spread) defined by (2.70) (2.52), or in other related ways, adopting other
possible parameters providing estimates of the time and frequency dispersion introduced by a
communication channel. Of course, the unit value of the threshold in the inequality SF < 1
should be considered only as an order-of-magnitude value [507].

These considerations suggest that in certain scenarios channel estimation can play an important role
in the reliability of data communications and that channel estimation errors should be carefully taken
into account when seeking a realistic assessment of error performance. For instance, the reader may
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refer to [509–514] for an assessment of the impact of channel estimation of the error performance
provided by different detection algorithms over doubly-selective (frequency-flat) fading channels when
standard channel estimation algorithms are used.

In Section 4.5.2 MLSD strategies were derived under the assumption of a known channel. In
practice, the wireless channel is first estimated via one of the techniques which will be presented in
Chapter 5, and then the estimated CIR is exploited for data detection. This approach can be interpreted
as a means to reduce the complexity of the optimum MLSD strategy which is given by (see (4.45)):

ĉN = arg max
c̃N ,h̃

fr(ρN |c̃N, h̃). (4.238)

In practice the estimated sequence ĉN corresponds to the sequence maximizing the pdf fr(ρN |c̃N, h̃)

as a function of all the trial sequences {c̃N} and the corresponding CIR estimates {h(c̃N)}. However,
unlike the maximization over c̃N , which involves a finite number of trials, the maximization over
the trial CIRs h(c̃N) entails a search over a field having infinite dimensionality, which results in a
infeasible detection strategy. For these reasons, some technical papers argue that, strictly speaking, an
optimal data detection strategy cannot be defined when the channel is unknown.

Basically, the shortcut adopted throughout the technical literature consists of first estimating the
CIR given each trial sequence c̃N (the resulting estimate is denoted h̃(c̃N) in what follows) and then
exploiting it for data detection. Such a strategy can be expressed as (see (4.47)):

ĉN = arg max
c̃N

fr(ρN |c̃N, h(c̃N)). (4.239)

Assuming the same PAM signal model as in Section 4.5.2, from (4.145) the strategy:

ĉN = arg min
c̃N

[ρN − H(c̃N)c̃N ]H R−1
n [ρN − H(c̃N)c̃N ] (4.240)

can easily be inferred, where H(c̃N) denotes the channel matrix associated with the estimate h̃N(c̃).
If the noise samples belong to a white process, (4.240) simplifies to:

ĉN = arg min
c̃N

|ρN − H(c̃N)c̃N |2, (4.241)

whereas if the noise is colored, a whitening transformation can be used (see (4.148)), so that (4.240)
becomes:

ĉN = arg min
c̃N

|LρN − LH(c̃N)c̃N |2, (4.242)

where L is defined as in (4.147). Moreover, if equation (4.240) is expanded and the data-independent
term rH R−1

n r is discarded, then the two equivalent decision rules:

ĉN = arg max
c̃N

2Re{(H(c̃N)c̃N)H R−1
n ρN } − (H(c̃N)c̃N)H R−1

n (H(c̃N)c̃N) (4.243)

and
ĉN = arg max

c̃N
2Re{c̃H

N HH (c̃N) ρN } − |H(c̃N)c̃N |2 (4.244)

are obtained for correlated and uncorrelated noise samples, respectively. In practice, the exhaustive
search over all the trial sequences c̃N is infeasible when the transmitted sequence is long; for this
reason, recursive techniques have been developed to cope with MLSD in the presence of an unknown
channel (some of these algorithms will be discussed in Section 6.6). Generally speaking, such methods
are based on computing the metrics derived above only for some trial sequences c̃N . The trial sequences
minimizing the MLSD metrics are called survivors, since all the other trial sequences are discarded.
The resulting sequence detection approach is known as per-survivor processing (PSP) [426, 515],
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since first the channel is estimated assuming that the survivor sequence c̃N has been transmitted, and
then the channel estimate h(c̃N) is used to compute one of the metrics shown in this section. More
details on the PSP approach can be found in Section 5.1.4.

An alternative to joint estimation of channel and data is the EM technique, which allows the
development of iterative algorithms for data detection in the presence of a set of unknown parameters.
This technique, with some of its applications, is described in the next section.

4.6 Expectation–Maximization Techniques for Data Detection
A powerful tool for solving MLSD problems in the presence of unknown channel parameters is
provided by the class of EM techniques. In this section, we provide first a short description of the EM
and the Bayesian EM (BEM) algorithms and illustrate some simple applications in specific detection
problems. Then we briefly discuss the problem of convergence in EM techniques and mention some
variants of these algorithms.

4.6.1 The EM Algorithm

Let θ � [θ0, θ1, . . . , θLθ −1]T denote an Lθ -dimensional deterministic vector to be estimated from
an N-dimensional received vector rN � [r0, r1, . . . , rN−1]T of noisy data (with N ≥ Lθ ). The ML
estimate of θ is the solution of the problem (see (4.26)):

θML = arg max
θ̃

Lr(θ̃), (4.245)

where:
Lr(θ̃) � log fr(ρN |θ̃ ) (4.246)

is the log-likelihood function of rN given θ = θ̃ and ρN denotes the value taken by the random
vector rN . As already discussed in Section 4.3.2, solving the problem (4.245) in a direct fashion
requires a closed-form expression for Lr(θ̃) but, even if this expression is available, the search for its
maximum may entail an unacceptable computational burden. When this occurs, a feasible alternative
can be provided by the EM algorithm [516, 517]. The approach proceeds from the assumption that a
complete data vector gP = [g0, g1, . . . , gP−1]T (with P ≥ N ) is observed in place of the incomplete
data set rN . The vector gP is characterized by the following two properties:

• It is not observed directly but, if available, would ease the estimation of θ ;
• rN can be obtained from gP through a many-to-one mapping gP → rN(gP ).

In practice, in communication problems gP is always chosen as a superset of the incomplete data
[516], that is:

gP = [rT
N , iT ]T , (4.247)

where the so-called imputed data i are properly selected to simplify the ML estimation problem.7 In
particular, when θ consists of the transmitted channel symbols (i.e., θ = cN � [c0, c1, . . . , cN−1]T ), i
often consists of all the unwanted random parameters (CIR, synchronization parameters, etc.) affecting
the communication channel [516]. These choices lead to the development of hard detection algorithms
which often have an acceptable complexity and which are capable of incorporating the statistical
properties of the channel parameters.

7 In what follows the complete data vector gP will be always structured as in (4.247).



208 Wireless Communications

The use of the EM algorithm requires the evaluation of the so-called auxiliary function:

QEM (θ, θ̃) � Eg{Lg(θ)|rN = ρN, θ = θ̃}
= Ei{log fg(gP |θ)|rN = ρN, θ = θ̃}

=
∫

Si

log fg(ρN, i|θ) fi(i|ρN, θ̃) di, (4.248)

where EX{·} denotes the statistical average with respect to X and Si is the space of i. In practice,
the EM algorithm generates successive approximations {θ (k), k = 1, 2, . . . } of θML (4.245) in the
following two steps:

1. Expectation step. Evaluate QEM (θ , θ̃) (4.248) for θ̃ = θ
(k)
EM .

2. Maximization step. Given θ
(k)
EM , compute the next estimate θ

(k+1)
EM as:

θ
(k+1)
EM = arg max

θ
QEM (θ , θ

(k)
EM ), k = 0, 1, . . . . (4.249)

Of course, an initial estimate θ
(0)
EM of θ must be provided for algorithm startup. In digital communica-

tion problems, the evaluation of this estimate is usually accomplished by exploiting the information
provided by known (pilot) symbols [516]. It can be proved that, under mild conditions, the sequence
{θ (k)

EM } converges to the true ML estimate θML of (4.245), provided that the existence of local maxima
does not prevent it from doing so, as will be further discussed in Section 4.6.3.

To illustrate the EM approach to MLSD over a fading channel, let us focus on its application to
the detection of PSK signals transmitted over slow Rayleigh time-selective fading channels.

Example 4.6.1 If PSK signaling over a slowly varying time-selective fading and baud rate sampling
at the output of the matched filter of the receiver are assumed, the model (see (4.92)):

rk = ak ck + nk (4.250)

can be adopted for rk , with k = 0, 1, . . . , N − 1, so that the received vector rN can be put in the
form:

rN = diag(cN)aN + nN, (4.251)

where aN � [a0, a1, . . . , aN−1]T is the fading vector and nN � [n0, n1, . . . , nN−1]T is a random
vector of complex Gaussian variables all having zero mean and variance 2σ 2

n . Since (see (4.191)):

Rr(c̃N) � E{rN rH
N |cN = c̃N }

= diag(c̃N)Ra(diag(c̃N))H + 2σ 2
n IN

= diag(c̃N)[Ra + 2σ 2
n IN ](diag(c̃N))H , (4.252)

where:
Ra � E{aN aH

N } (4.253)

is the autocorrelation matrix of the fading vector aN and det(Rr(c̃N)) is independent of the trial
sequence c̃N , the MLSD strategy can be formulated as (see (4.194)):

ĉN = arg min
c̃N

(ρH diag(c̃N))(Ra + 2σ 2
n IN)−1(ρH diag(c̃N))H . (4.254)

In using this approach the following observations are in order:

(a) The strategy expressed by (4.254) requires a (computationally intensive) exhaustive search over
a set of MN trial symbol vectors.
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(b) An unambiguous (i.e., unique) estimate of the symbol vector cN based on (4.254) can be made
only if differential encoding is used at the transmitter (see Section 3.5.2) because of the M phase
ambiguities of an M-PSK constellation [518].

(c) The structure of the matrix Ra depends on the specific model adopted for the fading autocorrelation.

As far as the last point is concerned, we note, in particular, that, if Jakes’s model is adopted for
channel fading (see Example 2.2.8), the (i, j)th element of Ra is given by:

Ra(i, j) = J0(2π |i − j |BDTs), (4.255)

with i, j = 0, 1, . . . , N − 1, where J0(·) is the zero-order Bessel function and BD is the Doppler
bandwidth. To overcome drawback (a) the EM algorithm can be adopted, selecting i = aN and θ = cN

for the vector of input data and for the vector of the data to be estimated respectively, so that gP =
[rT

N , aT
N ]T (P = 2N in this case). Then the pdf fg(gP |cN) required in the evaluation of QEM (θ , θ̃)

(4.248) can be factored as:

fg(gP |cN) = fr,h(rN, aN |cN) = fr(rN |aN, cN)fa(aN), (4.256)

since aN is independent of cN . Here:

fr(rN |aN, cN) = 1

(2πσ 2
n )N

exp

[
−
∣∣rN − diag

(
cN

)
aN

∣∣2
2σ 2

n

]
(4.257)

and:

fa(aN) = 1

[πN det(Ra)]
exp[−aH

N R−1
a aN ]. (4.258)

Taking the logarithm of (4.256) yields (see (4.257) and (4.258)):

log fg(gP |cN) = log fr(rN |aN, cN) + log fa(aN)

= 1

σ 2
n

Re{rH
N diag(cN)aN } + K, (4.259)

where the term:

K � −N log (2πσ 2
n ) − log [πN det(Ra)] − [|rN |2 + |aN |2]

2σ 2
n

− aH
N R−1

a aN (4.260)

contains all the data-independent terms. Then substituting (4.259) into (4.248), dropping all the data-
independent terms and neglecting the factor 1/σ 2

n yields:

QEM (cN, c̃N) = Re{ρH
N diag(cN) E{aN |ρN, c̃N }}, (4.261)

where the conditional expectation E{aN |ρN, c̃N } = ∫
χ fa(χ |ρN, c̃N) dχ can be evaluated as [516,

eq. 24]:
E{aN |ρN, c̃N } = Ra(Ra + 2σ 2

n IN)−1(diag(c̃N))H ρN . (4.262)

Note the following observations:

(a) If the fading process is modeled as a Markov process, this conditional expectation can be generated
at each step of the EM iteration using a Kalman filter (see Section 5.1.3.2).

(b) The startup of the EM algorithm based on QEM (cN, c̃N) (4.261) requires an initial estimate of
the fading vector aN and uses it in (4.261) (in place of the factor E{aN |ρN, c̃N }) to produce, by
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maximization, the first hard estimate of cN . This sequence estimate is then used in (4.262) to
produce the next fading estimate, and so on, until convergence, which should be expected within
a few iterations.

�

An approach similar to that illustrated in Example 4.6.1 has been followed in [519], where a hard
detection algorithm for PAM signal over fast doubly-selective channels is developed. On the other
hand, a conceptually different approach is pursued in [520, 521], where the problems of detecting
PAM over a frequency-selective channel and GMSK signals over a doubly-selective channel (in
which channel variations can be represented by a linear model in the time variable), respectively, are
investigated. In both cases the choice {i = cN, θ = [hT , σ 2

n ]T } is proposed in place of {i = h, θ = cN }.
This leads to the development of a channel estimation algorithm which is blind, that is, unable to
incorporate the channel statistics. However, the estimates of the channel parameters are exploited in
trellis-based detection algorithms which can incorporate a priori information about channel symbols
and generate a hard estimate of the whole symbol sequence cN or the a posteriori probabilities (APPs)
of each symbol.

Interesting applications of EM to OFDM can be found in [522], where this technique is used for
multichannel estimation, in [523], where it is exploited, in combination with a recursive least squares
(RLS) algorithm (see Section 5.1.3.1), for channel estimation to improve performance of approximated
MAP detection, and in [524], where it is used to develop an ML detector for ST block-coded OFDM
transmission under the assumption that the channel fading processes remain constant over the duration
of each code word.

4.6.2 The Bayesian EM Algorithm

The unknown vector θ = [θ0, θ1, . . . , θLθ −1]T introduced in the previous subsection can also be
modeled as a random quantity, when its joint pdf f (θ) is available. Then the MAP estimate θMAP of
θ , given the observed data vector rN , can be evaluated as [525]:

θMAP = arg max
θ̃

Mr(θ̃), (4.263)

where Mr(θ̃) � log f (ρN, θ̃) and ρN denotes the value taken on by the random vector rN . Solving
(4.263) may be a formidable task for the reasons previously presented for the ML problem (4.245).
In principle, however, an improved estimate of θ can be made via the MAP approach since statistical
information about channel uncertainty is exploited.

Since there is a strong analogy between the ML problem (4.245) and the MAP problem (4.263), it
is not surprising that an expectation–maximization procedure, known as BEM [526, 527], for solving
the latter is available. The BEM algorithm goes through the same iterative procedure as the EM, but
with a different auxiliary function, namely, [526, 528]:

QBEM (θ , θ̃) = Eg{Mg(θ)|rN = ρN, θ = θ̃}
= Ei{log fg,θ (gP , θ)|rN = ρN, θ = θ̃}

=
∫

Si

log fr,i,θ (ρN, i, θ) fi(i|ρN, θ̃) di, (4.264)

where the vector gP of complete data is structured as in (4.247) and i denotes the vector of imputed
data. A clear relationship can be established between the BEM and the EM algorithm. In fact, factoring
the pdf fr,i,θ (ρN, i, θ) as:

fr,i,θ (ρN, i, θ) = fr,i,θ (rN, i|θ) fθ (θ) (4.265)
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and substituting (4.265) into (4.264) yields:

QBEM (θ , θ̃) = QEM (θ , θ̃) + I (θ), (4.266)

where:
I (θ) � log fθ (θ). (4.267)

Equation (4.266) shows that the difference between QBEM (θ , θ̃) (4.264) and QEM (θ , θ̃) (4.248) is
simply a bias term I (θ) favoring the most likely values of θ . Note that, if a priori information about θ

were unavailable and, consequently, a uniform pdf were selected for f (θ), the contribution from I (θ)

would become a constant in (4.266), and could then be neglected. Therefore, the BEM encompasses
the EM as a special case and, since the former benefits from the statistical information about θ , it is
expected to provide improved accuracy with respect to the latter. For the same reason, the BEM may
offer an increase in the speed of convergence and an improved robustness against the choice of the
initial conditions. The importance of the BEM technique can also be related, however, to the nature
of the detection algorithms it can produce. In fact, as already mentioned in the previous subsection,
in the problems concerning the detection of a symbol vector cN in the presence of an unknown vector
h of channel parameters, two different choices can be made for the imputed data i and the estimated
θ , namely, i = h and θ = cN and also i = cN and θ = h. In the first case hard estimates of the
transmitted data are produced by both the EM and the BEM algorithms; however, if BEM is employed
in place of EM, the data statistics are included in the detection algorithm, since I (θ) in (4.266) takes
the form:

I (θ) = I (cN) =
N−1∑
n=0

log Pr {cn}, (4.268)

where Pr {cn} denotes the a priori probability of cn. This leads to a soft-input hard-output (SiHo)
detection algorithm. On the other hand, using the second choice, application of EM results in a blind
channel estimation algorithm which can generate the data APPs as a by-product and incorporate a
priori information about channel symbols, whereas using the BEM technique allows the development
of a soft-in soft-out (SiSo) detection algorithm incorporating the channel statistical properties, as shown
in the following example.

Example 4.6.2 Let us reconsider the problem of PSK detection over a slowly varying time-selective
fading channel as in Example 4.6.1. In this case, we choose i = cN and θ = hN , so that the auxiliary
function (4.264) becomes:

QBEM (hN, h̃N) =
MN −1∑

l=0

log [fr,h(rN, hN |c(l)
N ) Pr {c(l)

N }] Pr {c(l)
N |rN, h̃N }, (4.269)

where c(l)
N = [c(l)

0 , c
(l)
1 , . . . , c

(l)
N−1] denotes the lth possible value of the symbol vector cN (with l =

0, 1, . . . , MN − 1) and is characterized by its a priori probability:

Pr {c(l)} =
N−1∏
n=0

Pr {c(l)
n }, (4.270)

where Pr{c(l)
n } denotes the a priori probability of the event {cn = c(l)

n }.
The conditional pdf fr,h(rN, hN |cN) of (4.269) can be factored as:

fr,h(rN, hN |cN) = fr(rN |hN, cN) fh(hN), (4.271)



212 Wireless Communications

where fr(rN |hN, cN) and fh(hN) are given by (4.257) and (4.258), respectively. Then substituting
(4.257) and (4.258) into (4.271), and (4.271) into (4.269) yields, after some manipulation [526]:

QBEM (hN, h̃N) = −
N−1∑
k=0

M−1∑
l=0

Pr {c(l)
k |rN, h̃N } |rk − hk c

(l)
k |2

2σ 2
− hH

N R−1
h hN . (4.272)

Note that, for any k, the M distinct APPs {Pr{c(l)
k |rN, h̃N }} of the kth channel symbol can be evalu-

ated as:

Pr {c(l)
k |rN, h̃N } = fr(rk|c(l)

k , h̃k) Pr {c(l)
k }

M−1∑
p=0

fr(rk|c(p)

k , h̃k) Pr {c(p)

k }
, (4.273)

where fr(rk|ck, hk) = (2πσ 2
n )−1 exp[−|rk − ck hk|2/(2σ 2

n )]. The kth iteration of the resulting estima-
tion algorithm consists of an expectation step, where QBEM (hN, h̃N) (4.272) is evaluated for h̃N = h(k)

N ,
and a maximization step, where the new channel estimate h(k+1)

N is derived as:

h(k+1)
N = arg max

h̃N

QBEM (hN, h̃N), k = 0, 1, . . . , (4.274)

and the symbol APPs {Pr{c(l)
k |rN, h̃N }, l = 0, 1, . . . ,M − 1; k = 0, 1, . . . , N − 1} are computed

using (4.273). The final iteration produces the channel estimate hBEM , which can be used to generate
the final estimates of the symbol APPs. These APPs can be processed so that decisions on the channel
symbols can be taken according to the MAP decision strategy [520]:

ĉk = arg max
l

Pr{c(l)
k |rN, hBEM } (4.275)

with k = 0, 1, . . . , N − 1 or can be delivered to soft decoding stages, as discussed in [526, 529], to
improve the error performance of a digital receiver (see also Section 12.3.5). Note that the MAP SiSo
detection algorithms for PSK signals over frequency-flat fading channels are available in the technical
literature [530–533], but they require a complicated (forward–backward) recursive procedure (see
Section 6.2.1.5 for details) that operates over a finite-state trellis (accounting for the correlation
between consecutive fading samples) and which involves the implicit evaluation of multiple per-state
estimates of the fading distortion in each symbol interval. Unlike these, the BEM procedure keeps in
memory only one estimate of each fading sample even if the evaluation of the final estimates requires
multiple iterations.

�

Finally, it is worth noting that BEM-based SiSo algorithms have also been developed for the
detection of:

(a) co-channel PAM signals over frequency-flat fading channels [534],
(b) a PAM signal over a frequency-selective channel [528],
(c) an orthogonal ST block coded PAM transmission over a frequency-flat fading channel [535],
(d) a CPM signal transmitted over a frequency-flat fading channel [529].

The EM approach has been also adopted for developing MAP SiSo detection of ST coded OFDM
signals in [536]. Note, however, that there the derivation of the strategy does not follow the rigorous
approach we propose.
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4.6.3 Initialization and Convergence of EM-Type Algorithms

It can be proved that, when the EM algorithm is used for the estimation of an Lθ -dimensional
deterministic vector θ from an N-dimensional received vector rN of noisy data (with N ≥ Lθ ), it
generates a sequence of estimates {θ (k)

EM , k = 1, 2, . . . } characterized by nondecreasing likelihood
values [537, 538], that is, such that:

Lr(θ
(k+1)
EM ) ≥ Lr(θ

(k)
EM ), (4.276)

where the log-likelihood function Lr(θ) is defined by (4.246). For a bounded sequence of likelihood
values {Lr(θ

(k)
EM )}, Lr(θ

(k)
EM ) converges monotonically to some value L(θ̄EM ), which in almost every

application is a stationary point, that is, is such that:

∇θLr(θ̃)|
θ̃=θ̄EM

= 0Lθ
, (4.277)

where ∇X denotes the gradient operator (involving a variable vector X). If the likelihood function
is unimodal in its domain and certain differentiability conditions are satisfied, any EM sequence
converges to the unique ML estimate, independently of the starting point θ

(0)
EM . Unfortunately, the

function Lr(θ̃) usually has several stationary points, so that convergence of the EM to local or global
maximizers depends on the choice of θ

(0)
EM .

The convergence rate of an EM algorithm is inversely related to the Fisher information of its
complete-data space [539]. Less informative complete data spaces lead to improved asymptotic con-
vergence rates, and can also lead to larger step sizes and greater likelihood increases in the early
iterations (see [540] and references therein). Further information about the convergence properties of
the EM algorithm can be found in [537, 538, 541, 542].

4.6.4 Other EM Techniques

In some practical applications, the maximization step (4.249) can be quite complicated, so that the
EM algorithm is not very attractive. In these cases, the expectation/conditional maximization (ECM)
algorithm can be used [543]. The ECM algorithm replaces the M-step of the EM algorithm by
a number of computationally simpler constant modulus (CM) steps. This usually leads to slower
convergence, with the advantage, however, of a smaller overall computational complexity. In addition,
the appealing convergence properties of the EM algorithm, such as its monotonic convergence (see
(4.276)), are preserved.

Generalizations of the ECM are also available in the technical literature; here we mention the expec-
tation/conditional maximization either (ECME) algorithm [544] and the alternating ECM (AECM)
algorithm [545]. On the one hand, in the ECME some CM-steps of the ECM, which maximize the
constrained expected complete-data log-likelihood function, are replaced with steps that maximize the
correspondingly constrained actual likelihood function. The ECME shares with both EM and ECM
their stable monotone convergence and basic simplicity of implementation. Moreover, the ECME can
offer a substantially faster convergence rate than either EM or ECM, measured using either the number
of iterations or the actual overall computational burden. On the other hand, in the AECM the speci-
fication of the complete data is allowed to change in each CM-step; this can lead to computationally
efficient solutions.

In the signal processing community a variant of the EM algorithm that has received considerable
attention is the so-called space-alternating generalized EM (SAGE) algorithm [540, 546]. At each
iteration, the SAGE algorithm updates only a subset of the components of the parameter vector θ ,
so that multiple (and less informative) complete data sets are used. This results in an improvement in
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convergence rate and in significant flexibility. Interesting signal processing applications of the SAGE
algorithm can be found in [547, 548], which deal with the problem of joint channel estimation, equal-
ization, and data detection for uplink OFDM systems in the presence of a fast doubly-selective channel.

4.7 Historical Notes
The problems of extracting optimal decision metrics from a set of noisy received data and of assessing
the error performance for detection strategies based on such metrics are analyzed in a vast technical
literature dealing with optimal detection over fading channels. For this reason, in this section we
restrict our attention to some key concepts and techniques which have been introduced in the previous
sections of this chapter and briefly illustrate their development.

A first essential concept in detection theory is that of matched filtering, since this is usually an
essential tool for extracting a set of sufficient statistics from a continuous-time noisy waveform. In
the radar literature the MF is often referred to as a North filter, after D. O. North, who first described
it in an RCA report published in 1943 [549]. The same filter was independently rediscovered in
1946 by J. H. Van Vleck and D. Middleton [550], who investigated the sensitivity of the detection
of signal pulses in the presence of noise and coined the term matched filter for the optimal filter.
The importance of matched filtering in optimal detection of a set of known waveforms transmitted
over AWGN channels soon became apparent in the communication theory community (e.g., see [106,
280, 321]). In particular, it was shown that the optimum linear receiving filter under various criteria
of goodness can be expressed as the cascade of a matched filter and a transversal filter (see [551]
and references therein). It is also worth mentioning that: the transversal filter is time-invariant if the
criterion is the minimization of the ensemble average of some quantity per symbol and the transmitted
symbol sequence is long enough so that end effects are not important [422]; and the transversal filter
can be used for whitening the noise samples in the output sequence of the matched filter, and this
results in a WMF [422, 423].

Matched filters are an essential component of both optimal one-shot detectors (e.g., of detectors
for a single pulse if PAM signaling is considered) and optimal sequence detectors. Optimal one-shot
detection may be of limited interest from a practical viewpoint, but the study of its error performance
allows limits to be established on the performance that can be achieved by optimal sequence detection
over multipath fading channels. In particular, as already illustrated in Section 4.5.2.4, the average error
probability of an optimum one-shot receiver instantaneously matched to the channel state and a given
signaling format represents the MFB and sets performance limits for any equalizer designed for that
signaling format transmitted over a channel with given statistical properties [467, 468, 471]. MFBs
for frequency-selective and doubly-selective Rayleigh channels have been derived in [85, 109, 162,
465–467, 469–472, 474–476, 478, 479, 552]. Closed-form expressions for these bounds are available
only for frequency-selective channels characterized by a finite number of paths (e.g., see [465, 466,
470, 475, 552]), whereas approximate error formulas have been derived for continuous PDPs (e.g., see
[85, 109, 471–474, 478]). The importance of matched filtering in optimal sequence detection has been
pointed out by D. G. Forney in [422] and by G. Ungerboeck in [458], who developed two different
solutions to MLSD (i.e., to maximum likelihood sequence estimation (MLSE)) for PAM signaling over
frequency-selective channels.

Another fundamental concept, closely related to the MF, in the evaluation of detection metrics over
fading channels is that of the estimator-correlator and is due to T. Kailath [484, 499]. Note that the
MF concept plays a fundamental role whenever the optimum receiver needs to cross-correlate the
noisy received waveform with a known set of N waveforms {si(t), i = 0, 1, . . . , N − 1} to extract
a set of sufficient statistics. In fact, in this case the cross-correlations can be evaluated by feeding a
bank of N filters matched to the signals {si(t)} and sampling the filter outputs at an appropriate instant.
If the channel is purely random and Gaussian, however, optimal reception requires cross-correlating
the received signal against a set of waveforms which are not known a priori, but are estimated from
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the received data; for this reason, the receiver can be described as an estimator-correlator receiver.
Note that the estimator correlator section of this receiver can also be regarded as a bank of adaptive
MFs, since each cross-correlation can be alternatively computed via an MF whose impulse response
is computed from the received data; further details can be found in [553].

All the concepts illustrated above find application in the study of MLSE over fading channels. Two
milestones in the field of MLSE over a known frequency-selective channel are represented by the papers
[422] (published in 1972) and [458] (published in 1974), which presented optimal sequence detection
algorithms exploiting the outputs of a WMF and an MF, respectively, and the Viterbi algorithm (VA)
for reducing the computational load of the search for the ML estimate of the transmitted sequence.
Their solutions were generalized to the case of the optimal detection of multiple co-channel signals
transmitted over frequency-selective channels by W. van Etten in 1976 [554]. Many years later, in
1995, G. E. Bottomley and S. Chennakeshu provided a unified development of both receivers, and
extended Ungerboeck’s receiver to the case of a time-varying known channel [424, 555] (the latter
problem is also investigated in [425]). In addition, Ungerboeck’s derivation of the MLSE receiver for
the purely frequency-selective channel was extended to the time-selective one in [556]. Note that the
MLSE metrics developed for known channels can also be used when an unknown channel is estimated
entirely via a pilot sequence (e.g., see [557, 558]) or combining training-based channel estimation with
tracking based on preliminary data decisions (e.g., see [511, 559–561]), and then the resulting CIR
estimate is used as if it were ideal.

The problem of MLSE over a statistically known channel looks much more complicated than its
counterpart referring to a known channel, since it is hard to put the estimator-correlator metrics (i.e., a
set of likelihood functions for Gaussian signals in Gaussian noise) in a form lending itself to a real-time
computation and allowing an efficient search for the optimal sequence estimate. As far as we know, the
first technically significant result in relation to this problem was devised in 1965 by F. C. Schweppe
[485], who employed finite-dimensional state variable models (i.e., Markov models) to derive new
expressions for the likelihood functions for Gaussian signals corrupted by AGN; unfortunately, his
work assumed only two distinct hypotheses only for the transmitted signal, namely signal present and
signal absent. The first receiver design for the MLSE of digital data transmission through a randomly
dispersive fading channel was developed by R. E. Morley, Jr. and D. L. Snyder in 1979 [562]. They
proved that the likelihood function for the possible information sequences can be evaluated through a
recursive expression if the channel has finite memory; this allows the VA to be used to search for the
optimal (i.e., ML) sequence estimate, as in the known channel case. These ideas paved the way for
future work. In the 1990s various approximate MLSD algorithms were developed for different types of
digital signals and fading channels, assuming that the channel fading can be described by AR or ARMA
models [428, 436]; this hypothesis makes a recursive formulation of ML metric possible, so that the
VA can be employed for an efficient evaluation of the sequence estimate. In particular, this approach
has been adopted by J. H. Lodge and M. J. Moher [436] for CPM detection over frequency-flat fading
channels, by Q. Dai and E. Shwedyk [428] for PAM detection over DS fading channels, by R. A. Iltis
for the detection of PAM signals over frequency-selective channels [563], and by G. M. Vitetta and
D. P. Taylor [111, 427, 490] and D. Makraris, P. T. Mathiopoulos and D. P. Bouras [501] for PAM
signals over frequency-flat fading channels. It can be shown that the solutions proposed in the latter
references share the following principle: in evaluating sequence metrics, multiple channel estimates
are evaluated, one for each survivor of the VA, so that joint data detection and channel estimation
are accomplished. For this reason, these and other related solutions (e.g., see [561, 564–568]) can
be related to the so-called principle of per-survivor processing [515, 569]. A further contribution in
this area was provided in 1996 by K. Chugg and A. Polydoros, who investigated the problem of the
front-end processing in MLSE for an unknown channels and the problem of recursive computation
of ML metrics, providing a receiver structure which may be interpreted as the theoretical foundation
for the technique of PSP [426, 512]. A different interpretation of MLSE algorithms for a statistically
known Rayleigh fading channel was proposed in 1995 by X. Yu and S. Pasupathy [492], who took
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an innovations-based approach.8 This has led to the development of a general and practical MLSE
technique that can be implemented by a bank of FIR time-invariant filters followed by a Viterbi
processor and is applicable to any practically modulated signal over either frequency-nonselective or
selective, fast or slowly fading channels; further work in this area can be found in [493, 572].

A completely different approach to MLSE over an unknown linear channel was described in 1994
by N. Seshadri, who proposed estimating the data and the channel simultaneously (i.e., jointly), so
that a startup sequence for estimating the channel impulse response is not required [419]; in other
words, blind sequence detection is accomplished. In principle a least squares (LS) channel estimate
is evaluated first for every possible transmitted data sequence; then computing the total squared error
between the received vector and the useful signal vector associated with each pair of data sequence and
the corresponding estimated channel provides a decision metric. The optimal decision is associated
with the pair giving the smallest metric. This simple but exhaustive search technique cannot be
implemented in practice because of the exponential growth in complexity with the length of the data
sequence. This raises the problem of deriving suboptimal strategies for joint channel estimation and
data detection. This problem and other aspects of ML joint channel estimation and data detection
have been tackled in [419, 573–577]. Conceptually different approaches to the problem of blind ML
detection have been adopted in [578], where a cluster-based sequence equalizer is proposed, and in
various technical papers proposing the joint use of the EM algorithm (for channel estimation) with
conventional optimal detectors (e.g., see [520, 521, 579, 580]). As already discussed in Section 4.6
and as originally pointed out in 1997 by C. N. Georghiades and J. C. Han in their seminal paper
[516], this is not the only way to exploit the EM algorithm for ML data detection. Further interesting
contributions on the application of the EM algorithm to MLSD in the presence of an unknown channel
can be found in [519, 581].

We conclude this section with the following worthwhile observations:

(a) The work on MLSE mentioned above mainly refers to SISO or SIMO channels; some interesting
results on the problem of MLSE over MIMO channels can be found in [460, 582, 583].

(b) Our historical notes have focused hitherto on MLSD. Here we limit ourselves to mentioning that
in 1966 MAPSD metrics were put in a form allowing efficient computation by R. W. Chang and
J. C. Hancock [584], who considered a frequency-selective channel; as in the MLSD case, MAP
metrics for a known channel can also be used if the channel is estimated via a pilot sequence
(e.g., see [558]). The problem of developing MAP metrics for a statistically known channel was
investigated many years later in [504, 530].

(c) A limited number of analytical tools are available for assessing the error performance of MLSE
algorithms; the interested reader can refer to [585] and to the papers cited at the end of Section
4.5.2.2 to gain some insight into this problem.

4.8 Further Reading
The reader interested in the problems of prefiltering an analog data signal and sampling it to extract
a set of sufficient statistics should consult the paper [586]. MLSD has been applied to research
areas which are not considered in this book. For instance, MLSD in multiuser scenarios have been
investigated in [587–590], whereas joint ST decoding and MLSD has been tackled in [583, 591, 592].
Finally, it is useful to mention that an analysis of the EM algorithm and its variations can be found
in [537].

8 Further information about the innovations approach to signal detection can be found in [570, 571].



5
Data-Aided Algorithms
for Channel Estimation

Various equalization algorithms described in Chapter 6 are derived under the assumption that ideal
CSI is available at the receiver. In practice, CSI can be acquired at the receiver using pilot-aided
transmission (PAT) techniques in combination with a proper channel estimation algorithm. This is
illustrated in Figure 5.1, which depicts a wireless communication system based on a PAT transceiver.
In this scheme a block c(d) of information-bearing (coded) symbols is time- or frequency-multiplexed
with a block c(p) of known (i.e., pilot) symbols. The resulting packet is transmitted over a multipath
communication channel using a specific modulation scheme. The pilot symbols and the adopted mul-
tiplexing scheme are known at the receiver, which can then exploit them to generate channel estimates
for receiver adaptation and optimal detection/decoding. For instance, in Figure 5.1 a parametric model
is assumed for the representation of the multipath channel and the task of the channel estimation algo-
rithm is to generate an estimate of a finite-dimensional vector h of channel parameters. The channel
estimator processes the pilot vector c(p) and the entire (or a part of the) observation vector y, to
produce a data-aided channel estimate, ĥ, which it delivers to the detector/decoder, thus generating an
estimate ĉ(d) of c(d). A practical detector/decoder may assume that the estimated channel parameters
are perfect. Of course this assumption is not strictly true, so that in practice mismatched reception is
used [593, 594].

It is important to note that all the available architectures for PAT transceivers represent a parametric
approach to channel estimation. In principle, a nonparametric approach can also be used for receiver
design in the presence of pilot symbols. In such a case, however, these symbols are treated as side
information and are used to tune the receiver directly (e.g., for training an adaptive equalizer), so
that an explicit channel estimator, such as that appearing in Figure 5.1, is no longer required. We
note also that both in the parametric and nonparametric approach pilot-based estimation/adaptation
can be followed by decision-aided estimation/adaptation. For instance, referring to the scenario of
Figure 5.1, a data-aided preliminary estimate ĥ is exploited to start the detection/decoding procedure,
and then the decoded data are used to refine this estimate. This approach is usually taken when
detection/decoding are accomplished in multiple passes to improve the quality of data decisions or
when the channel variations over the transmitted data packet are significant and, consequently, need
to be properly tracked to achieve acceptable error performance. PAT techniques have been widely
used in modern wireless communication systems (e.g., in the GSM system [57] and in digital video
broadcasting – terrestrial (DVB-T) [595]). This is because such techniques substantially simplify the
task of receiver design for unknown channels and because the periodic availability of pilot symbols
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Figure 5.1 Block diagram of a wireless communication system employing a PAT transceiver.
A parametric representation is assumed for the communication channel.

offers the possibility of link recovery from outages. However, the clever use of PAT requires a number
of problems to be solved. On the one hand, various parameters, such as the pilot symbol rate, the power
allocated to pilot symbols, and the locations of these pilots in the data stream, need to be carefully
selected in order to achieve the desired system performance with the minimum use of resources. On
the other hand, PAT should be devised in such a way that channel estimation algorithms of reasonable
complexity can be implemented so as to take fully advantage of the presence of training symbols.

This chapter is devoted to the study of PAT techniques and data-aided channel estimation algorithms.
In particular, various feedforward and recursive algorithms for channel estimation are considered in
Section 5.1, and performance limits on channel estimation are analyzed in Section 5.2. An overview
of PAT design and specific channel estimation algorithms for SC and MC communications is pro-
vided in Section 5.3. Then extensions of SISO/SIMO techniques to a MIMO scenario are discussed
in Section 5.4. Finally, some historical notes and suggestions for further reading are provided in
Sections 5.5 and 5.6, respectively.

5.1 Channel Estimation Techniques

5.1.1 Introduction

Generally speaking, when a parametric model is assumed to represent a communication channel
(see Section 2.2.3), the task of channel estimation is to estimate an Lh-dimensional vector h =
[h0, h1, . . . , hLh−1]T of channel parameters from an N-dimensional vector r = [r0, r1, . . . , rN−1]T

of noisy observations. Note that h may contain the tap gains of an FIR multipath fading channel
model or the coefficients of a polynomial model for one of its system functions.

The problem of estimating h from r can be tackled by resorting to various tools provided by
estimation theory [596, Chap. 4]. In particular, classical estimation or Bayesian estimation techniques
can be applied. In one approach using classical estimation, h is assumed to be deterministic, but
unknown. Then the pdf of r is parametrized by h, so that it is usually denoted1 by f (r; h) (the
semicolon means that a family of pdfs is generated by changing the value of the parameter vector).
Alternatively, in Bayesian estimation the channel parameter vector is viewed as a realization of a
random vector h and then the data are described by the joint pdf:

f (r, h) = f (r|h)f (h), (5.1)

where f (h) is the prior pdf (representing our knowledge of h before data observation) and f (r|h) is
a conditional pdf expressing our knowledge provided by the data r given h.

1 The alternative notation f (r|h) (denoting a conditional pdf) is often assumed in the technical literature, as if h
were random.



Data-Aided Algorithms for Channel Estimation 219

In the technical literature two different approaches to the identification of the unknown (and possibly
time-varying) transmission environment are proposed. One approach, known as recursive estimation,
is based on devising recursive-type adaptive filters and then sequentially processing the samples of r
as soon as they are available. These usually offer the relevant advantage of a limited complexity, but
suffer from an irreducible lag error (and thus exhibit limited robustness against faster time variations
and depend on final or tentative symbol decisions which may not be readily available or reliable,
especially in the presence of coding and interleaving). The other approach, known as feedforward
estimation, consists of simultaneously processing the components of the vector r, which collects noisy
samples depending on known training symbols (i.e., pilots) only.

In Sections 5.1.2 and 5.1.3 we discuss the main features of the two approaches and provide some
examples. Then in Section 5.1.4 we discuss the application of so-called principle of per-survivor
processing to the problem of decision-directed channel estimation.

5.1.2 Feedforward Estimation

5.1.2.1 Maximum Likelihood Estimation

In classical estimation we are interested in obtaining unbiased estimators of h (yielding on average the
true value of the unknown parameter vector) which, at the same time, achieve minimum variance. In
other words, we are interested in a minimum variance unbiased (MVU) estimator. Generally speaking,
the MVU estimator may not exist or, if it exists, cannot be found. An alternative to the MVU estimator
is the maximum likelihood estimator (MLE), which is defined as the value hML of h that maximizes
the likelihood function f (r; h). This estimator is shown to be asymptotically optimal, in that it exhibits
optimal behavior for N → ∞. In fact, it has the asymptotic properties of being unbiased, of achieving
the so-called Cramér–Rao bound (CRB)2 and of having a Gaussian distribution. When a closed-
form solution cannot be found for hML, a numerical approach based on a grid search or on an
iterative maximization of the likelihood function can be developed. These concepts are applied in the
following example.

Example 5.1.1 Let us assume that the dependence of the data vector r on the channel parameter
vector h can be expressed as:

r = Ah + w, (5.2)

where A is a known matrix of dimension N × Lh (with N > Lh) depending only on a set of pilot
symbols and w is a Gaussian complex noise vector belonging to CN (0N, Cw).3 In estimation theory
the expression (5.2) represents a linear model and A is referred to as the observation matrix (e.g.,
see [596, Chap. 4]). It can be shown that, if the rank of A is equal to Lh (i.e., A is of full rank), the
MVU estimator exists and is given by:

ĥ = (AH C−1
w A)−1AH C−1

w r. (5.3)

If the noise samples are uncorrelated, that is, Cw = σ 2
wIN (where σ 2

w is the variance of noise samples)
this simplifies to:

ĥ = (AH A)−1AH r. (5.4)

It can also be easily proved that the following hold:

(a) ĥ in (5.3) is a Gaussian random vector having mean h and covariance matrix Cĥ = (AH C−1
w A)−1.

2 This topic is further discussed in Section 5.2.
3 CN (ηx , Cx) denotes a complex Gaussian vector characterized by the mean vector ηx and covariance matrix Cx .
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(b) ĥ is efficient since it attains the minimum possible variance (the so-called CRB; see Section 5.2)
of the estimation error in the class of all possible unbiased estimators of h.

(c) The MLE coincides with the MUV estimator, that is, the MLE is optimal.

�

The result in equation (5.4) can be generalized, since if an efficient estimator exists, it is given by
the MLE.

5.1.2.2 Least Squares Estimation

A completely different philosophy is espoused in LS estimation. In this case no probabilistic
assumption is made about the data r and the signal component s = [s0, s1, . . . , sN−1]T of r is
generated by some deterministic model which, in turn, depends on the unknown vector h. The least
squares estimator (LSE) of h chooses the value hLS making s closest to r, i.e., minimizing the LS
error:

J (h̃) � |r − s(h̃)|2 =
N−1∑
l=0

|rl − sl |2 (5.5)

with respect to h̃, where h̃ denotes a hypothesized value for h and s(h̃) represents the value of s
associated with h̃. LSEs are usually developed when a precise statistical characterization of the data is
unknown or an optimal estimator cannot be found or is too complicated. Inevitably, their performance
depends on the properties of the corrupting noise and on modeling errors.

An LSE can easily be devised for the linear model of Example 5.1.1, as illustrated in the following
example.

Example 5.1.2 If for the data vector r the linear dependence:

s = Ah (5.6)

on h is assumed for its deterministic component s, the LS error (5.5) becomes:

J (h̃) = (r − Ah̃)H (r − Ah̃). (5.7)

Computing the gradient ∂J (h̃)/∂h̃ and setting it equal to zero yields the LSE [597]:

ĥ = (AH A)−1AH r, (5.8)

which coincides with (5.4). Note that the equations (AT A)ĥ = AT r that must be solved for the
evaluation of ĥ are called the normal equations.

�

This is an example of linear LS, in which the deterministic component of the noisy data exhibits
a linear dependence on the parameters to be estimated. An extension of the linear LS problem is the
so-called weighted LS, in which LS error (5.7) [597]:

JW (h̃) = |r − s(h̃)|2W � (r − Ah̃)H W(r − Ah̃) (5.9)

includes a positive definite N × N matrix W. This allows more emphasis to be given to the data
samples which are deemed to be more reliable. The reader can easily verify that the general form of
the weighted LSE is given by:

ĥ = (AH WA)−1AH Wr. (5.10)
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5.1.2.3 Minimum Mean Square Error and Maximum A Posteriori Estimation

If some prior knowledge about h is available, it is useful to incorporate it in our estimator as this
is expected to improve the estimation accuracy with respect to the classical approach. In Bayesian
estimation a well-known optimal estimator is defined to be the one that minimizes the MSE when
averaged over all the realizations of h and r – the so-called Bayesian MSE. This estimator, denoted
by ĥ, is given by the mean of the posterior pdf f (h|r):

ĥ = E{h|r} =
∫

hf (h|r) dh. (5.11)

It is important to note the following:

(a) The vector MMSE estimator minimizes the MSE for each component of the unknown parameter
vector h.

(b) The choice of the prior pdf f (h) is critical, since an incorrect statistical model for h can result in
poor estimation accuracy.

As a result, unless the prior pdf can be derived from the physical constraints of the problem, the
use of classical estimation methods is usually more appropriate. Let us now apply this approach to a
specific problem.

Example 5.1.3 Let us reconsider the linear model of (5.2), and assume now that h is a random vector
belonging to CN (ηh, Ch) and is statistically independent of the noise vector w (the resulting model
is known as a Bayesian linear model). Then it can be shown that the posterior pdf f (h|r) is Gaussian
with mean:

E{h|r} = ηh + ChAH (AChA
H + Cw)−1(r − Aηh). (5.12)

Note that, unlike the classical general linear model (see Example 5.1.1), A is not required to be full
rank to ensure the validity of equation (5.12), since the invertibility of (AChAT + Cw) is required.

�

An alternative Bayesian strategy is represented by MAP estimation. A vector MAP estimator is
defined as:

ĥ = arg max
h̃

f (h̃|r) = arg max
h̃

f (r|h̃)f (h̃). (5.13)

It can be shown that the MAP estimator is identical to the MMSE estimator if r and h are jointly
Gaussian [596].

Many estimation problems are characterized by a set of unknown parameters, where we are really
interested in only a subset. The remaining parameters are called nuisance parameters. If we assume
that the parameters are deterministic, as in the classical estimation approach, then we must jointly
estimate the nuisance parameters and the parameters of interest. In contrast, in the Bayesian approach,
it is possible to get rid of the nuisance parameters as follows. Let h and η denote the vector of
unknown parameters to be estimated and that of nuisance parameters, respectively. Then, given the
posterior pdf f (h, η|r), the posterior pdf of h only can be evaluated as:

f (h|r) =
∫

f (h, η|r) d η. (5.14)

Note that, by exploiting Bayes’ theorem, this pdf can also be evaluated as:

f (h|r) = f (r|h)f (h)∫
f (r|θ)f (θ) dθ

, (5.15)
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where:

f (r|h) =
∫

f (r|h, η)f (η|h) dη. (5.16)

If η is independent of h, the expression simplifies to:

f (r|h) =
∫

f (r|h, η)f (η) dη. (5.17)

In essence, we average out the nuisance parameters. Once we obtain f (h|r), the nuisance parameters
are no longer involved in the estimation problem and an MMSE estimator can be found by evaluating
the mean of this pdf (see (5.11)). Note, however, that the presence of the nuisance parameters will
affect the final estimator, since f (r|h) depends on f (η), as shown by (5.17). It is, however, interesting
to point out that the Bayesian approach does not suffer from the problems of classical estimators, in
which the nuisance parameters may invalidate an estimator.

5.1.3 Recursive Estimation

5.1.3.1 Recursive Least Squares and Least Mean Squares Estimation

In many signal processing applications noisy data are acquired as time progresses. We then have to
decide whether to wait for all the available data or to process it sequentially in time as it is received.
Note that, in principle, if an LS approach to estimation is adopted, it leads to a sequence of LSEs in
time. Then, whenever an additional datum is available, the LSE needs to be recomputed. Fortunately,
an alternative to this computationally intensive approach exists known as RLS. This allows the LSE
to be updated as new data arrives without solving the associated set of normal equations.

In describing the RLS algorithm we consider its application to the estimation of the CIR of a
frequency-selective communication channel. In particular, let h = [h0, h1, . . . , hLh−1]T represent the
tap gain vector of a transversal filter fed by the known data sequence {an}. Noise is added at the filter
output, resulting at each time point in the response:

rn = aT
n h + wn, (5.18)

where an � [an, an−1, . . . , an−Lh+1]T is a known signal vector and wn is white Gaussian noise
(WGN). The aim of the RLS algorithm is, upon arrival of the nth datum rn, to update the tap
gain vector h̃n � [h̃n,0, h̃n,1, . . . , h̃n,Lh−1]T of an adaptive transversal filter (see Figure 5.2), fed by
{an}, in such a way that the cost function:

J RLS
n �

n∑
l=0

λn−l |el |2 (5.19)

is minimized. Here λ is a positive constant close to (but less than) unity and:

en � rn − yn = rn −
n∑

l=n−Lh+1

al h̃n−l (5.20)

represents the so-called estimation error, since it is given by the difference between the observed
datum (or desired response) rn at time n and its estimate yn obtained at the output of the adaptive
filter at the same instant. Note that J RLS

n (5.19) can be derived from (5.9) by selecting a diagonal
matrix W and that λn−l is an exponential weighting or forgetting factor ensuring that less relevance
is given to data in the distant past; this affords the possibility of following the statistical variations of
the observable data when the adaptive filter operates in a nonstationary environment. The memory of
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Figure 5.2 Channel identification using an adaptive transversal filter. The same length (Lh) is
assumed for both h and h̃n.

this filter becomes longer as λ approaches unity; in particular, when λ equals unity, the cost function
(5.19) becomes that characterizing the ordinary LS method (see (5.5)) and the filter memory is infinite.

At time n the RLS algorithm computes an estimate h̃n of h (based on the received vector rn �
[r0, r1, . . . , rn]T ) and using the previous estimate h̃n−1 (based on rn−1) by adding a correction term
to h̃n−1. In particular, it uses the estimator update equation:

h̃n= h̃n−1 + Knα
∗
n, (5.21)

where:
αn � rn − h̃T

n−1an, (5.22)

and Kn is an Lh-dimensional vector know as the gain vector and given by:

Kn = λ−1Pn−1an

1 + λ−1aH
n Pn−1an

. (5.23)

Here Pn denotes an Lh × Lh matrix which can be computed via the recursive expression:

Pn = λ−1(ILh
− KnaH

n )Pn−1, (5.24)

known as the Riccati equation for the RLS algorithm. It can be shown that this matrix represents the
inverse of the data autocorrelation matrix:

Rn �
n∑

l=0

λn−lanaH
n . (5.25)

Note that:

(a) the evaluation of the a priori estimation error4 αn via (5.22) requires exciting the adaptive filter
with the signal input sequence (in other words, (5.22) describes the filtering operation of the
algorithm),

4 This error can be seen as a tentative value of en (see (5.20)), since it is computed before updating the tap-weight
vector.
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(b) (5.21) describes the updating of the tap-weight vector, that is, the adaptive operation of the
algorithm,

(c) (5.23) and (5.24) allow us to update the value of the gain vector, and
(d) this procedure does not require matrix inversions but must be initialized. Initialization can be

accomplished in different ways. A well-known possibility, known as soft constrained initialization,
involves selecting h̃−1 = 0Lh

and Pn−1 = αILh
with α large (to minimize the biasing due to the

selection of h̃−1).

The following observations are also worth noting:

1. The computational complexity of the standard RLS algorithm (5.21)–(5.24) is of the order of L2
h,

but fast RLS algorithms, whose complexity increases only linearly with Lh, are also available (e.g.,
see [503, Chaps. 16–18], [598, 599]).

2. The recursive update equation (5.24) has poor numerical properties and this has motivated the
search for alternative versions of the RLS algorithm with improved numerical stability [503],
which update the matrix Sn directly without computing the matrix Pn explicitly.

3. A channel estimator based on RLS can also be implemented as a lattice structure [598, 600]. This
is characterized by a convergence rate identical to that of the standard RLS algorithm and by a
computational complexity proportional to Lh, but with a larger proportionality constant compared
with fast RLS algorithms.

A substantially simpler alternative to RLS is the least mean square (LMS) algorithm [601]. This
algorithm is usually derived as an approximate solution to the problem of minimization of the MSE:

Jn(h̃) � E{|en|2} (5.26)

in the scenario described in Figure 5.2, under the assumption that the channel filter is fed by a zero-
mean WSS sequence {an} with known correlation. This is because in any practical application, the
evaluation of the optimal value ho of h̃ (i.e., that associated with the minimum Jmin of Jn(h̃) (5.26))
needs statistical information to be obtained and a set of linear equations (known as the Wiener–Hopf
equations) to be solved. To circumvent these two problems and to reduce the computational complexity,
the following two strategies are often adopted:

1. A classic method of optimization, known as the method of steepest descent, is applied to Jn(h̃) in
(5.26). This leads to the estimation of h in a recursive fashion, using the expression:

h̃n+1 = h̃n + 1

2
γ {−[∇Jn(h̃)]h̃=h̃n

}, (5.27)

where ∇Jn(h̃) denotes the gradient vector of Jn(h̃) and γ is a positive real-valued constant known
as the step size parameter (the factor 1/2 is used only for convenience). In practice, using the
present guess h̃n, a change in it is introduced in the opposite direction to that of the gradient
vector. It is reasonable that successive corrections to h̃ will cause the estimate to approach ho.

2. The instantaneous square error |en|2 is used in place of its mean value when evaluating ∇Jn(h̃)

for (5.27). This leads to:
h̃n+1 = h̃n + γ ena∗

n, (5.28)

which describes the coefficient update of the LMS procedure. This procedure, which is a member
of the family of stochastic gradient algorithms, requires an initial value h̃0 for the tap-weigh vector,
that is, an initial guess for the CIR vector; typically h̃0 is set equal to the null vector 0Lh

.
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A significant feature of the LMS algorithm is its simplicity, since it does not require any knowledge
of statistical information or any matrix inversion. For this reason, LMS is the standard against which
other adaptive filtering algorithms are benchmarked. One problem in using the LMS algorithm is the
selection of the step-size parameter5 γ , since this controls both the rate of adaptation and the stability
of the algorithm. Convergence in the mean (i.e., convergence of the mean of the weight-error vector
(h̃n − h̃0) to zero as n → ∞) is guaranteed if 0 < γ < 2/λmax, where λmax is the largest eigenvalue
of the correlation matrix Ra � E{anaH

n } of the tap-input vector in the TDL channel model. A large
value for γ , usually just below the upper limit, provides rapid convergence, but it also introduces
large fluctuations during steady-state operation. These represent a form of self-noise whose variance
increases with γ . Therefore, the choice of γ represents a tradeoff between rapid convergence and a
small self-noise variance during steady-state operation.

The LMS technique offers a simple alternative to the RLS algorithm, but provides slower conver-
gence, since there is only one parameter, namely γ , controlling its rate of adaptation. In particular,
it exhibits a poor convergence rate when the size of h is large (this problem can be mitigated by
incorporating a detection scheme that discriminates between the active and inactive taps within the
CIR [603]). Note, however, that in the presence of a nonstationary channel when iid data symbols
are assumed, the LMS and the RLS algorithms exhibit similar behavior in channel tracking [606].
Further information on the stationary and nonstationary learning characteristics of the LMS and RLS
algorithms can be found in [601, 607–615]. The use of RLS channel estimation in fast fading SISO
and MIMO scenarios is investigated in [616, 617] and [618], respectively.

Finally, we briefly consider decision-directed operation of the LMS/RLS algorithm. In this case
the symbols required for the evaluation of the error ek in (5.28) (or, equivalently, αk in (5.22) for the
RLS) are available with a decision delay d (introducing a delay in the estimation algorithm too). For
instance, in the LMS case, this leads to delayed LMS (DLMS), which is described by the delayed
coefficient update:

h̃n+1 = h̃n + γ ẽn−d â∗
n−d , (5.29)

where ân−d � [âk−d , âk−d−1, . . . , âk−d−(Lh−1)]
T is a vector of channel symbol decisions and ẽk−d is

generated as (see (5.20)):

ẽk−d = rk−d −
k−d∑

l=k−d−(Lh−1)

âl h̃n−l . (5.30)

The delay d influences both the convergence and the asymptotic performance of the LMS algorithm
[619]. In addition, in the presence of nonstationary channels, a channel predictor is needed in the
receiver structure if a CIR estimate for the present epoch is desired [511].

5.1.3.2 Kalman Estimation

Optimal Bayesian estimators are often difficult to determine in closed form and are too computationally
expensive to implement, since they usually require multidimensional integration and maximization.
If we constrain the estimator to be linear and retain the MMSE criterion, a sequential procedure can
be devised for linear MMSE (LMMSE) estimation. This procedure is similar to that illustrated above
for sequential LS estimation (details can be found in [596, Chap. 12]). If the noisy data sequence
to be processed belongs to a WSS random process, LMMSE estimation leads to the class of Wiener
filters. In practice, the process of forming an estimator as the time index n increases is seen as a
linear filtering operation with time-varying impulse response. The evaluation of this impulse response

5 The step size can be adjusted in a data-dependent manner (see [602, 603] and references therein). This leads to the
variable LMS (VLMS) [602, 604] or variable step-size LMS (VSS-LMS) algorithm [605], and to the normalized
LMS (NLMS) algorithm [603].
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involves solving a set of linear equations known as the Wiener–Hopf filtering equations. In principle,
these equations must be solved for each value of n. However, a computationally efficient recursive
procedure (the Levinson–Durbin algorithm) can be used. For large enough n it can be shown that the
filter becomes time-invariant, so that only a single solution is necessary. In this case, an analytical
solution may be found [503, Chapters 5 and 6].

Wiener filtering can be extended to accommodate nonstationary vector signals and noise, and the
resulting generalization is known as Kalman filtering. This estimation approach can be exploited for
the vector (Bayesian) linear model:

r[n] = A[n]h[n] + w[n], (5.31)

for n ≥ 0, where r[n] � [r(0)
n , r(1)

n , . . . , r(S−1)
n ]T is the S-dimensional complex vector of noisy data

observed at time n (and coming, for instance, from S distinct receive antennas), A[n] is a known
S × Lh matrix and w[n] � [w(0)

n , w(1)
n , . . . , w(S−1)

n ]T is an S-dimensional observation complex noise
sequence. It is assumed that:

(a) the Lh-dimensional signal vector h[n] = [h(0)
n , h

(1)
n , . . . , h

(Lh−1)
n ]T evolves in time according to

the Gauss–Markov model:
h[n] = Ph[n − 1] + Qu[n], (5.32)

for n ≥ 0, where P and Q are known matrices of sizes Lh × Lh and Lh × r , respectively, and
u[n] = [u(0)

n , u(1)
n , . . . , u(r−1)

n ]T ∈ CN (0r , Cu) for any n,
(b) the initial state vector h[−1] is independent of u[n] and belongs to CN (ηh, Ch), and
(c) the vectors {w[n]} are independent of each other and w[n] belongs to CN (0S, Cw[n]) (if the Cw[n]

did not depend on n, then w[n] would be a WGN vector).

Then the MMSE estimate, ĥ[n|n] = E{h[n]|r[0], r[1], . . . , r[n]} of h[n] based on {r[0],
r[1], . . . , r[n]}, can be evaluated by a vector Kalman filter (KF), whose behavior is described by the
following equations:

ĥ[n|n − 1] = Pĥ[n − 1|n − 1], (5.33)

M[n|n − 1] = PM[n − 1|n − 1]PH + QCuQH , (5.34)

K[n] = M[n|n − 1]AH [n](Cw[n] + A[n]M[n|n − 1]AH [n])−1, (5.35)

ĥ[n|n] = ĥ[n|n − 1] + K[n](r[n] − A[n]ĥ[n|n − 1]), (5.36)

M[n|n] = (I − K[n]A[n])M[n|n − 1]. (5.37)

These should be initialized by setting ĥ[−1|−1] = ηh and M[−1|−1] = Ch. Note that here ĥ[n|n − 1]
is a prediction of h[n]; M[n|n − 1] and M[n|n] (both Lh × Lh) are the so-called minimum prediction
MSE matrix and the minimum MSE matrix, respectively; and K[n] is the so-called Kalman gain
matrix. It is also worth noting that:

(a) the evaluation of K[n] requires computation of the inverse of an S × S matrix, and
(b) this formulation of the vector KF can be further generalized to include, for instance, the cases of

time-varying matrices P, Q and Cu and of colored observation noise.

The reader can refer to [503, Chap. 7] and [597, 620, 621] for further details on this topic.
The Kalman approach offers tracking superiority when compared with the standard RLS and LMS
algorithms – at the price, however, of increased complexity [612].
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5.1.4 The Principle of Per-Survivor Processing

When multiple data estimates are available, multiple channel estimates can be determined, one for
each data estimate. This conceptual approach to parameter estimation is known as the principle of
per-survivor processing [515, 569]. In this subsection this principle is illustrated in the context of
channel estimation.

In practical systems the channel impulse response hn � [hn,0, hn,1, . . . , hn,Lh−1]T at the nth symbol
interval6 is not known a priori and must be estimated to compute the equalizer metrics. A common
approach is based on data-aided parameter estimation techniques in which the aiding data sequence is
generated in a decision-directed mode from tentative low-delay decisions at the decoder output [458,
622, 623]. Let the tentative decision on the data symbol an at the epoch n be denoted by ãn−d̄−1,
where d̄ denotes its decoding delay. Based on the vector ãn−d̄ � [ãi , i = n − d̃ − 1, n − d̄ − 2, . . . ]T

and the received signal vector rn � [r0, r1, . . . , rn]T , a data-aided parameter estimator provides the
detector with an estimate h̃n of the unknown channel h[n] of the form:

h̃n = g(rn, ãn−d̄ ). (5.38)

Here g(·) denotes the functional dependence of the estimate h̃n on the received signal and on the
sequence of tentative decisions. Note that a decision delay is inherent in the estimate h̃n with respect
to the true parameter vector h[n].

An alternative to this approach is to apply per-survivor estimation [515, 569] of the unknown
channel response. Note that originally this strategy was developed for those cases in which the
Viterbi algorithm (VA) is used for data detection in the presence of parametric uncertainty about the
communication channel. At the end of each symbol interval the VA generates as many estimates of
the channel symbol sequence as the number of states of the trellis on which it operates (further details
on the VA can be found in Section 6.2.1.1). Each estimate is associated with a specific survivor path
in the trellis. Then, if ãn−1(�̃n) denotes the channel symbol sequence associated with the survivor
path at state �̃n, the per-survivor estimate h̃n(�̃n) of the unknown channel vector hn based on the
data-aided estimator g(·) in (5.38) and the channel symbols associated with the surviving path ending
in �̃n can be defined as:

h̃n(�̃n) = g(rn, ãn−1(�̃n)). (5.39)

This channel estimate is employed in the evaluation of the VA branch metrics for all the state
transitions emerging from state �n, as illustrated in Figure 5.3.

A heuristic justification of this approach can be given as follows. If ignorance of the CIR prevents
us from calculating a decision metric in a precise form, estimates of the CIR based on the multiple
data hypotheses (i.e., on the survivor paths) are evaluated. If a particular survivor represents the
correct choice of data, the corresponding estimate will be evaluated properly. At each detection step,
however, we do not know which survivor, if any, represents correct data decisions. Then we extend
each survivor using the channel estimates based on its associated data sequence, that is, on the best
data sequence available.

Different forms of the function g(·) can be adopted in practical applications as, for instance, those
characterizing the LMS or RLS techniques (see (5.21) and (5.28), respectively) can be employed, as
shown in [511, 512, 515, 564, 615, 624]. Further applications of PSP can be found in [116], where LS
estimation of the coefficients of a polynomial model of a flat fading process is employed for channel
prediction, and in [625], where Kalman prediction is used for the estimation of a flat fading channel
in a receiver for ST trellis codes.

6 This account can easily be generalized to the case in which fractionally-spaced sampling is used, so that hn refers
to the channel state at the nth sampling interval. Note also that throughout this section, we assume that the channel
has a finite impulse response duration of Lh samples or symbols as the case may be.
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Figure 5.3 Illustration of per-survivor channel estimation. A four-state trellis is considered.

5.2 Cramér–Rao Bounds for Data-Aided Channel Estimation
Estimation theory establishes bounds on the ultimate accuracy that can be achieved by parameter
estimation algorithms. In communication problems the most relevant class of such bounds are the
Cramér–Rao bounds, since these represent fundamental lower limits to the variance of any unbiased
parameter estimator [430, 596]. CRBs usually refer to an Lθ -dimensional vector θ of real parameters
that is to be estimated from a set of noisy observations consisting of the N-dimensional (real or
complex) vector r = [r0, r1, . . . , rN−1]T , and assume that some “regularity conditions” are satisfied
by the pdf f (r; θ) (i.e., f (r|θ)) for all θ . If θ is complex, a real vector θ (R) � [Re{θ}, Im{θ}]H
containing the real and imaginary parts of its components can be always associated with it (a CRB for
complex parameters applicable to any distribution and model of observations is derived in [626]). Then

the CRB of the covariance matrix C
θ̂

(R) = E{(θ̂ (R) − θ (R))(θ̂
(R) − θ (R))H } of any unbiased estimator

θ̂
(R)

of θ (R) can be formulated as:

C
θ̂

(R) − I−1(θ (R)) � 02Lθ ,2Lθ
, (5.40)

where the notation � 0 denotes that the matrix on the left-hand side (LHS) of (5.40) is positive
semidefinite and:

I(θ (R)) � E



[

∂ ln f (r; θ̃
(R)

)

∂ θ̃
(R)

][
∂ ln f (r; θ̃

(R)
)

∂ θ̃
(R)

]T
∣∣∣∣∣∣
θ̃

(R)=θ (R)


 (5.41)

is the Fisher information matrix (FIM) associated with θ (R) (the expectation in (5.41) is taken with
respect to the pdf f (r; θ (R))). Since in a positive semidefinite matrix the diagonal elements are
nonnegative, from (5.40) it is easily seen that:

var([θ (R)]i ) = [C
θ̂

(R) ]i,i ≥ [I−1(θ (R))]i,i , (5.42)

for i = 0, 1, . . . , 2Lθ − 1.
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In the technical literature CRBs often refer directly to the complex vector θ (instead of its real

counterpart θ̂
(R)

). Note that a complex FIM7:

Ic(θ) � E



[

∂ ln f (r; θ̃)

∂ θ̃
∗

][
∂ ln f (r; θ̃)

∂ θ̃
∗

]H
∣∣∣∣∣∣
θ̃=θ


 (5.43)

can also be defined for the associated unbiased estimator θ̂ of θ . However, since [627]:

I(θ (R)) = 2

[
Re

{
Iθθ

} −Im{Iθθ }
Im{Iθθ } Re{Iθθ }

]
+ 2

[
Re

{
Iθθ∗

} −Im{Iθθ∗ }
Im{Iθθ∗ } Re{Iθθ∗ }

]
, (5.44)

where:

Iθθ∗ = E



[

∂ ln f (r; θ̃)

∂ θ̃
∗

][
∂ ln f (r; θ̃)

∂ θ̃

]H
∣∣∣∣∣∣
θ̃=θ


 , (5.45)

the FIM I(θ (R)) of (5.41) is completely determined by Ic(θ) (5.43) only if Iθθ∗ (5.45) is a null matrix.
When this occurs, Iθθ can be considered as a complex FIM and the complex CRB:

C
θ̂

− I−1
c (θ) � 0, (5.46)

where C
θ̂

= E{(θ̂ − θ)(θ̂ − θ)H }, can be used in place of (5.40). When Iθθ∗ is not null, I−1
c (θ) still

represents a bound on C
θ̂

but is not as tight as the CRB (5.40). Note, however, that the assumption
Iθθ∗ = 0Lθ ,Lθ

is often made (e.g., see [627]), so that the complex bound (5.46) is evaluated for
simplicity.

An application of these results is shown in the following example.

Example 5.2.1 Let us consider the transmission of the symbol packet c = [cN+P−1, cN+P−2,

. . . , c0]T , containing N data symbols and P known (pilot) symbols (collected in the vectors
sd � [sd,0, sd,1, . . . , sd,N−1]T and sp � [sp,0, sp,1, . . . , sp,P−1]T respectively8) over a frequency-
selective channel characterized by the discrete-time CIR h = [h0, h1, . . . , hLh−1]T . We are interested
in estimating the CIR vector from the vector of noisy received data:

r � [rN+P−1, rN+P−2, . . . , rLh−1]T (5.47)

observed at the channel output, where:

rk =
Lh−1∑
l=0

hlck−l + nk (5.48)

and {nl} is a white complex circular Gaussian sequence with variance σ 2
n . Given (5.48), r (5.47) can

be expressed in matrix form as [628]:

r = T (h)c + n = H(c)h + n, (5.49)

7 Given a complex variable θ = θR + jθI , the complex derivative with respect to θ is defined as ∂/∂θ = (1/2) ·
(∂/∂θR − j∂/∂θI ), so that ∂/∂θ∗ = (1/2) · (∂/∂θR + j∂/∂θI ).
8 We use this notation only to emphasize that the vector c contains both data and pilot symbols. The remainder of
the example works only with c.
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where n = [nN+P−1, nN+P−2, . . . , nLh−1]T :

T (h) =




h0 . . . hLh−1

. . .
. . .

h0 . . . hLh−1


 (5.50)

is an (N + P − Lh + 1) × (N + P) Toeplitz matrix generated by h and:

H(c) =

cN+P−1 . . . cN+P−Lh

Hankel
cLh−1 . . . c0


 (5.51)

is an (N + P − Lh + 1) × (Lh) Hankel matrix associated with c. In the following we assume that the
data vector c, the channel vector h and the noise vector n are mutually independent.

Three different CIR estimation strategies can be envisaged in this scenario as follows:

(a) if N = 0 (i.e., pilot symbols only are transmitted, so that c = sp), data-aided channel estimation
is accomplished,

(b) if both N and P are different from zero, the estimation is semiblind [629], and
(c) if P = 0 (i.e., pilot symbols are absent, so that c = sd ), blind estimation is accomplished [630].

In this example we focus on the first case only (various results for the other two cases can be found
in [627, 631, 632] for a SIMO scenario). Here we analyze the complex CRB for θ = h. We have:

f (r; θ̃) = f (r; h̃) = 1

(πσ 2
n )N+P−Lh+1

exp

(
− 1

σ 2
n

∣∣∣r − H(sp)h̃
∣∣∣2) (5.52)

where H(sp) is the Hankel matrix associated with the sequence of P pilot symbols. Then it is easy to
show that [627, 628]:

Ic(θ) = Ic(h) = 1

σ 2
n

HH (sp)H(sp), (5.53)

so that (5.46) becomes:
Cĥ − σ 2

n [HH (sp)H(sp)]−1 � 0, (5.54)

where h̃ denotes any unbiased estimator of h. This shows that the CRB depends on the training
sequence and that, for a given training sequence energy, it is minimized when HH (c)H(c) is a
multiple of identity [627]. This provides a significant guideline for the design of training sequences
for good channel estimation. Further details on this topic can be found in [628], where a MIMO
scenario is also considered.

�

In some cases the set of unknown parameters on which r depends includes not only θ but
also a vector χ =[χ0, χ1, . . . , χU−1]T of additional parameters (e.g., synchronization parameters or
information-bearing symbols). When this occurs, it is useful to estimate, in principle, all the unknown
parameters, and a performance bound for this joint estimation task is still provided by the CRB, as
illustrated in the following example.

Example 5.2.2 Let us consider the semiblind estimation problem mentioned in Example 5.2.1. In this
scenario c incorporates an unknown information vector sd and a known pilot vector sp , so that we are
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interested in estimating both sd and h, that is, θ =[sH
d , hH ]H . In this case the complex FIM is given

by [628]:
Ic(θ) = 1

σ 2
n

[
HH

d (h) Hd(h) HH
d (h)H(c)

HH (c)Hd(h) HH (c)H(c)

]
, (5.55)

where Hd(h) is an (N + P − Lh + 1) × N matrix obtained from T (h) (5.50) by deleting the columns
corresponding to pilot symbols.

�

In many cases, however, for practical reasons, the more challenging goal of jointly estimating θ

and χ is overlooked. In other words, one concentrates on θ only and treats χ as a set of nuisance
parameters. In this case, χ is modeled as a random vector with a known pdf f (χ) that does not
depend on h. To compute the CRB for θ , we need f (r; θ), which, in principle, can be obtained from
the integral:

f (r; θ) =
∫

f (r|χ; θ)f (χ)dχ , (5.56)

where f (r|χ; θ), the conditional pdf of r given χ and θ is easily available, at least for AWGN
channels. This approach is adopted, for instance, in [627, Sect. 4], where in channel estimation the
transmitted symbols are modeled as Gaussian variables. However, in most cases of practical interest,
the computation of the FIM is impossible because the integration in (5.56) cannot be carried out
analytically. To overcome this problem, a different bound, known as the modified CRB (MCRB)9

[633] (or modified Cramér–Rao vector bound (MCRVB) when real vector estimation is considered
[634]), can be employed. This bound can also be put in the form of (5.41), provided that a modified
FIM (MFIM)10:

IM(θ (R)) = E




∂ ln f

(
r
∣∣∣χ; θ̃

(R)
)

∂ θ̃
(R)




∂2 ln f

(
r
∣∣∣χ; θ̃

(R)
)

∂ θ̃
(R)




T
∣∣∣∣∣∣∣
θ̃

(R)=θ (R)


 , (5.57)

is used in place of I(θ (R)) (the expectation is taken with respect to f (r, χ; θ̃
(R)

)). Similar to the
Cramér–Rao vector bound (CRVB), the diagonal elements of the inverse of the MFIM represent
lower bounds on the error variance in the estimation of the corresponding parameters (see (5.42)).
However, unlike the CRVB, the MCRVB can often be calculated with moderate effort. In fact, for the
Gaussian channel the pdf f (r|χ; θ̃

(R)
) in (5.57) is a well-known exponential function whose argument

is a quadratic form in the difference between the vector r and the useful signal component. Thus,

the logarithm of f (r|χ; θ̃
(R)

) equals this quadratic form and the expectation in (5.57) can be easily
evaluated. In computing MCRBs it is often assumed that no information is available about the nuisance
parameters (this corresponds to assuming uniform pdfs for such parameters). In this case the MCRVB
is looser than the true CRVB. However, in several practical situations the available information is not
so meagre and the possibility even exists that MCRVB and CRVB are either very close or coincident
[633, 634]. In addition, it can be proved that the high SNR asymptote of the CRB (i.e., the asymptotic
CRB, ACRB) pertaining to the estimation of a scalar parameter equals the associated MCRB when
the parameter is not coupled with the nuisance parameters [638].

Bounds on estimation accuracy can also be developed for the Bayesian estimators, which, how-
ever, are not constrained to be unbiased. In fact, the Bayesian estimators trade off bias for variance
in an attempt to reduce the overall MSE. Although in the Bayesian framework, the MMSE estimator

9 The modified bounds developed in [633, 634] can also be interpreted as the nonrandom version of the global
bound shown in [635, p. 1427]. They are also related to the modified CRB proposed by R. Miller and C. Chang
in [636]. A short discussion of these issues can be found in [637, Sec. III].
10 A complex MFIM for the complex parameter vector can also be defined in a similar way to the FIM (see (5.41)
and (5.43)).
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always exists, in general it is difficult to obtain it in a closed form and the calculation of its MSE is
cumbersome. It is then useful to establish lower bounds on the attainable MSE to which the perfor-
mance of the optimal estimator or any suboptimal estimators can be compared. Several lower bounds
on MSE for random parameter estimation have been proposed, among them the Battacharyya [639,
640], Bobrovsky–Zakai11 [642], Weiss–Weinstein [643], and Bayesian Cramér–Rao [430] bounds (a
unification of these bounds is presented in [644]). In particular, Van Trees [430] extends the classic
CRB (referring to nonrandom parameter estimation) to random parameter estimation. This bound is
referred to in what follows as the Bayesian Cramér–Rao bound (BCRB) for scalar estimation and
the Bayesian Cramér–Rao vector bound (BCRVB) for vector estimation. The FIM IB(θ (R)) and the
complex FIM I

B,θθ for the BCRVB of the real parameter vector θ (R) and the complex parameter
vector θ are given by [430]:

IB(θ (R)) = E




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




T
∣∣∣∣∣∣∣
θ̄

(R)=θ (R)


 (5.58)

and:
I
B,θθ = E



[

∂ ln f (r, θ̄)

∂ θ̄
∗

][
∂ ln f (r, θ̄)

∂ θ̄
∗

]H
∣∣∣∣∣∣
θ̄=θ


 , (5.59)

respectively. In both expressions the expectation is taken over r and θ (i.e., the joint pdf f (r, θ) is
used). Similarly, the complex FIM can be found [628]. Note that I

B,θ (R) can be rewritten as:

IB(θ (R)) = E


E




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




T
∣∣∣∣∣∣∣ θ̄

(R)



∣∣∣∣∣∣∣
θ̄

(R)=θ (R)


 , (5.60)

where the outer and inner expectations are over f
(
θ (R)

)
and f

(
r|θ (R)

)
, respectively. Since

f
(

r, θ̄
(R)

)
= f

(
θ̄

(R)
)

f
(

r|θ̄ (R)
)

, the inner expectation in (5.60) can be computed as:

E




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




∂ ln f

(
r, θ̄

(R)
)

∂ θ̄
(R)




T
∣∣∣∣∣∣∣ θ̄

(R)




= I
(
θ̄

(R)
)

+

∂ ln f

(
θ̄

(R)
)

∂ θ̄
(R)




∂ ln f

(
θ̄

(R)
)

∂ θ̄
(R)




T

, (5.61)

where I
(
θ̄

(R)
)

is the complex FIM (5.41) evaluated for a deterministic θ̄
(R)

. Then, IB

(
θ (R)

)
(5.60)

can be evaluated as:

IB(θ (R)) = E


I

(
θ (R)

) +

∂ ln f

(
θ̄

(R)
)

∂ θ̄
(R)




∂ ln f

(
θ̄

(R)
)

∂ θ̄
(R)




T
∣∣∣∣∣∣∣
θ̄

(R)=θ (R)


 , (5.62)

where the expectation is over f
(
θ (R)

)
. A similar expression, namely:

I
B,θθ = E


Ic (θ) +

[
∂ ln f (θ̄)

∂ θ̄
∗

][
∂ ln f (θ̄)

∂ θ̄
∗

]H
∣∣∣∣∣∣
θ̄=θ


 , (5.63)

11 This is the Bayesian version of the so-called Barankin bound [641], representing a realizable lower bound on
the MSE of any unbiased estimator of a (nonrandom) parameter vector.
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holds for the complex FIMs (the matrix Ic(θ) is the complex FIM (5.43) evaluated for a
deterministic θ ).

An efficient estimator that attains the Bayesian CRVB exists if the posterior pdf of h is Gaussian.
In this case, the MAP estimator is efficient and the MAP and the MMSE estimators are equivalent,
since the MMSE cannot have a larger error than MAP [643].

We now apply these results in the following example.

Example 5.2.3 Let us evaluate the semiblind estimation problem discussed in Example 5.2.2. Since
θ = [sH

d , hH ]H , some statistical properties of the independent vectors sd and h need to be fully defined.
Here, following [628], we assume that:

(a) the information symbols (i.e., the components of sd ) are iid random variables, have zero mean
and variance σ 2

d and are characterized by the pdf ps(·), and
(b) the channel taps (i.e., the components of h) are iid random variables and are characterized by the

pdf ph(·).

The complex FIM I
B,θθ (5.59) can then be easily evaluated using (5.63), where Ic (θ) is given by

(5.55). We then obtain:

E
{
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} = 1

σ 2
n

[
E
{
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d (h) Hd (h)
}

E
{
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d (h)H(c)
}

E
{
HH (c) Hd (h)

}
E
{
HH (c)H(c)

} ] , (5.64)

where the four expectations on the RHS need to be taken over both sd and h. It is easy to show that
E
{
HH

d (h)H(c)
}

and E
{
HH (c) Hd (h)

}
produce null contributions, so that:
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}
]

, (5.65)

where Rs � HH (c)H(c) is an autocorrelation matrix associated with the imput symbol matrix H(c).
In addition, we have that:
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where ps(s̄d) and ph(h̄) denote the pdfs of sd and h, respectively, and:
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. (5.67)

Substituting (5.65) and (5.66) into (5.63) yields the complex FIM:

I
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[ 1
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} + ρ2
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]
. (5.68)
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Note the following observations:

(a) Since this matrix is block diagonal, the BCRB for the symbols is decoupled from that of the
channel.

(b) The BCRB for the covariance matrix Cĥ = E{(ĥ − h)(ĥ − h)H } can be formulated as (see (5.46)):

Cĥ −
[

1

σ 2
n

E
{
Rs

} + ρ2
hILh

]−1

� 0Lh,Lh
. (5.69)

�

Following the same approach as that illustrated in Example 5.2.3, BCRBs have been derived for a
frequency-selective block fading MIMO channel in [645] for the following three cases:

i) time-multiplexed pilot and data symbols (in practice, a sequence of pilot symbols is transmitted
first and is followed by a sequence of data symbols),

ii) superimposed training (i.e., data symbols are transmitted simultaneously with pilot symbols; no
strict form of orthogonality between training and data is enforced), and

iii) precoded data.

In the last case, a subset of the data symbols is linearly precoded and is transmitted simultaneously
with pilot symbols. We note that the BCRB for semiblind estimation of a MIMO channel, under the
assumption of iid data symbols and orthogonal pilot sequences, is the same for a SIMO and an MIMO
channel, in that it does not depend on the number of transmit antennas [646]. Moreover, for large
data sequences the BCRB does not depend on the pilot design [645]. For this reason, the use of an
alternative Cramér-Rao lower bound, known as the stochastic CRB (in place of the BCRB), has been
proposed in [646] for performance evaluation.

Further results on BCRBs in the presence of data precoding can be found in [647], which is
concerned with developing the best strategy for precoding the symbols to train the receiver in a
MIMO communication system, when the so-called affine precoding [648] technique is used (see
Section 5.3.2.1). BCRBs have been derived for cases where the random parameters to be estimated
are either the fading channel coefficients (decoupled channel and symbol estimation) or the symbols
and channel coefficients together (joint channel/symbol estimation).

Following the same line of reasoning as for the CRB, modified CRBs can be derived even for
Bayesian estimators. Specific applications of this bound in MIMO communications are illustrated
in [649, 650, 651], referring to the estimation of a block flat fading channel, the estimation of
a frequency-selective block fading channel and the tracking of a time-varying MIMO Rayleigh
time-selective fading channel.

We conclude with the following observations:

1. The problem of assessing bounds on the accuracy of pilot-based estimation of a bandlimited
frequency-selective communication channel is tackled in [652], where some properties of optimal
waveforms for channel sounding and closed-form CRBs are derived.

2. CRBs for hybrid random and deterministic parameter estimation are presented in [653], deriving a
positive definite matrix which simultaneously provides bounds on the covariance of any unbiased
estimator of the nonrandom parameters and an estimator of the random parameters (see also [654,
Sect. II]).

3. CRBs referring to different classes of channel estimators have been derived for OFDM systems in
[455, 655–660] and for MIMO-OFDM in [660].
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4. When blind estimation is considered, the FIM referring to the joint estimation of data symbols
and channels is singular, since channel estimation is possible only up to a scale factor – that
is, the channel cannot be estimated unambiguously. To overcome this problem, the use of the
Moore–Penrose pseudoinverse of the FIM has been considered in [627]. An alternative is to
eliminate the ambiguity of blind channel estimation by putting parametric constraints on the set
of parameters to be estimated (these constraints are usually expressed in the form of functional
equality) and leads to a constrained CRB (CCRB)12 [630, 663, 664]. CCRBs for specific channel
estimation problems can also be found in [657, 665, 666].

5. CRBs and BCRBs for channel estimation of a MIMO frequency-selective channel in the presence
of a priori information about the transmitted data sequence have been developed in [667]. The
CRB for a MIMO frequency-selective channel is considered in [645, 668] (which also assumes the
presence of a carrier frequency offset (CFO)). The CRB for channel training in a MIMO system
using space-time orthogonal block codes over frequency-flat fading is evaluated in [669].

6. An efficient message-passing algorithm defined over factor graphs to compute the BCRB for gen-
eral estimation problems characterized by very large FIMs is developed in [670] (further details on
message-passing algorithms and factor graphs can be found in Sections 10.7.1 and 10.8, respec-
tively). It allows the evaluation of the diagonal elements of an FIM by local computations that
involve the inversion of matrices that are much smaller than the original FIM. Similar meth-
ods are developed in [671] for computing Cramér–Rao type bounds from marginal pdfs (usually
characterized by a dense FIM).

5.3 Data-Aided CIR Estimation Algorithms in PATs
The quality of the channel estimates in a wireless communication system employing PAT depends,
first of all, on the rate and the placement of pilot symbols. For a fixed pilot symbol rate and a given
channel model, the placement of pilot symbols can be optimized according to some specific criterion.
Then channel estimation algorithms exploiting the resulting pilot symbol pattern need to be devised,
to achieve a reasonable tradeoff between computational complexity and performance. Note that, from
this perspective, PAT design appears to be primarily a transmitter technique, although the receiver
characteristics need to be carefully taken into account to develop technically appealing solutions.

In this section we first tackle PAT design, illustrating a mathematical model for this problem and
introducing specific criteria for PAT optimization. Then we consider a signal processing perspective on
PAT and provide an overview of data-aided channel estimation algorithms for various PAT strategies
employed with SC and MC communications.

5.3.1 PAT Modeling and Optimization

In a SISO wireless communication system employing a SC modulation, time division multiplexing
is traditionally used to emplace pilot symbols. A generalization of this approach is obtained by
superimposing pilot symbols and data symbols (e.g., see [647, 648, 669, 672–676]). In the latter case,
if a packet of N symbols is sent over a wireless channel, generally speaking the lth transmitted symbol
can be modeled as:

cl =
√

P
(d)
l c

(d)
l +

√
P

(p)

l c
(p)

l (5.70)

with l = 0, 1, . . . , N − 1, where c
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(
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)
denotes the lth information (pilot) symbol. Here it is then
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12 Note that the constrained CRB expressions available in [661, 662] assume that the FIM is nonsingular, i.e. full
rank. This is not required by the constrained CRB developed in [663].
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)
. For the transmission of the given packet a PAT scheme is

defined by the N-dimensional pilot vector c(p) =
[
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. The problem of PAT
design can then be interpreted as one of power allocation under certain constraints [418]. In fact, any
wireless transmission is subject to power constraints, but such constraints can be imposed on PAT in
different ways. For instance, an average power constraint is given by:
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= Pfr , (5.71)

where Pfr is the average transmit power over the entire frame. Similarly, the per-symbol average
power constraint can be formulated as:

P
(d)
l + P

(p)

l = Ps, (5.72)

where Ps is the average transmit power per symbol. The following observations are in order:

(a) The latter constraint imposes a more stringent condition than the former.
(b) Both constraints refer to the overall transmit power, so that power allocation among data and

pilots is a fundamental factor to consider in PAT design.
(c) Model (5.70) with its constraints can easily be generalized to cases where frequency division

multiplexing (spatial multiplexing) is adopted for pilot symbols, since an MC modulation (an
antenna array) is employed.

Given a PAT model, it is important to optimize it for a wide range of channel conditions. Note
that in most of the literature, the design of PAT is based on intuition, practical experience, heuristic
analysis and simulation. For instance, it seems reasonable that:

• in the presence of fast fading, the larger the rate of pilot symbols, the better channel estimation and
tracking are, so that receiver robustness is enhanced, and

• in the presence of nonnegligible time dispersion, pilot symbols should be placed in clusters to avoid
interference from unknown data symbols.

At the theoretical level, however, the optimal design and multiplexing of pilot symbols is far from
trivial. Note that pilot symbols carry no information about the data, so that the time and power spent
on sending pilot symbols is time missed for transmitting information and power taken away from
data, respectively. A good starting point for optimizing PAT is to fix the percentage (in power or in the
number of channel uses) of pilot symbols and optimize the pilot symbol placement, that is, how training
symbols are multiplexed into a data stream. A specific application of this approach is considered in
the following example.

Example 5.3.1 Following Example 5.2.1, let us again consider the transmission of a data packet
consisting of N data symbols and P pilot symbols over a frequency-selective block fading channel of
order Lh. Generally speaking, pilot symbols can be grouped in clusters; then the resulting placement
can be described by P = [ld , lp], where ld = [ld,1, ld,2, . . . , ld,n+1] and lp = [lp,1, lp,2, . . . , lp,n] are
the data block length vector and the pilot cluster length vector respectively, and n denotes the overall
number of pilot blocks. The resulting symbol pattern is illustrated in Figure 5.4(a). Constraining the
total number of data and pilot symbols (i.e., the pilot symbol rate), we have

∑n+1
k=1 ld,k = N and∑n

k=1 lp,k = P . Moreover, for those placements starting with pilot symbols, ld,1 = 0, and for those
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Figure 5.4 (a) Data packet with multiple pilot clusters. (b) Edge and midamble positions of a
data packet.

ending with pilot symbols, ld,n+1 = 0. We can also define the edge and midamble positions for each
packet, as shown in Figure 5.4(b). Edge positions are defined as the first and last Lh − 1 positions in
a packet, whereas all the others within the [Lh, N + P − Lh + 1] interval are midamble positions.

For training-based channel estimation, only those parts of the observations influenced by pilot
symbols are processed. Therefore, if there is a pilot cluster of length less than Lh + 1, no pilot
symbols associated with this cluster can be exploited for channel estimation. This could lead to the
conclusion that all pilot symbols should be grouped into a single cluster. This intuition, however, is
not valid if all observations are to be used for channel estimation. Indeed, the use of multiple clusters
results in a simpler design of pilot symbols and better detection performance, as discussed in [628].

�

Different design constraints and objectives can be adopted by systems designers in PAT design. It is,
therefore, preferable that PAT schemes are optimal under different criteria, that is, maximize different
performance metrics. The following optimality criteria are usually considered in the literature:

1. Information-theoretic criteria. Information-theoretic metrics13 reveal tradeoffs among PAT designs.
From an information-theoretic perspective, a PAT scheme provides the receiver with side informa-
tion about an unknown channel, so that the most natural optimality criterion in designing PAT is
maximizing channel capacity in the presence of channel uncertainty [594, 677–680]. This requires
mutual information to be expressed as a function of PAT parameters and then to be maximized it
with respect to the PAT parameters and the channel input distribution (e.g., see [681, 682]). The
drawback of this approach is that mutual information often cannot be expressed in a simple form.
An alternative is to use other optimization criteria, namely:

(a) optimizing bounds on the achievable data rate [677, 679, 683] with respect to PAT parameters
(e.g., see [680, 684–691] for applications of this approach),

(b) minimizing the outage probability for a given transmission rate R, that is, maximizing the
probability that the rate R can be achieved reliably (e.g., see [692]),

(c) optimizing other meaningful parameters, like the channel reliability function, random coding
exponent, and cutoff rate [693], relating detection error probability with data rate and codeword
length and leading to a more analytically tractable framework (e.g., cutoff rate is used for
optimizing PAT design in [694–697]).

13 Some elements of information theory are illustrated in Chapter 7.
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2. Quality of channel estimates. For the receiver structure shown in Figure 5.1, one may be interested
in the PAT scheme minimizing the channel estimation error. From this viewpoint, a meaningful
parameter is the MSE of the estimator (e.g., see [681, 698, 699, 700, 701, 702]). Since it is desirable
that the design of optimal PAT does not depend on the specific algorithm used at the receiver, the
CRB is a natural choice as a figure of merit (see Section 5.2).

3. Quality of data estimates. If the target of our PAT design is optimizing detection performance, BER
or SER can be taken as a performance metric. However, these are usually difficult to characterize
precisely for most fading channels (e.g., see [703] for time division multiplexed training over a
Rayleigh flat fading channel and [704] for a BPSK transmission over a Rice fading channel).
A more tractable approach is to use BER bounds (e.g., Bhattacharyya and random coding bounds
[693]) as the figure of merit. Further alternatives are offered by the error exponent function (which
measures the decay rate of the error probability [705]) and by interpreting symbol detection as a
form of parameter estimation, so that the MSE at the detector input can be taken as the metric for
optimization (this approach is commonly taken in the design of channel equalization algorithms).

Other than optimal symbol placement, another fundamental issue in PAT design is the amount of
training needed in a wireless transmission. Intuitively, a tradeoff between having more training for
better estimation and more channel uses for higher rates should be expected. Relevant contributions
to clarifying this issue have been provided by [685, 706] in a MIMO scenario.

5.3.2 A Signal Processing Perspective on PAT Techniques

We now briefly describe various signal processing techniques developed for estimating the
communication channel using both SC and MC PATs. Before delving into the study of this topic, it
is important to point out that in practical communications systems, slow and fast fading channels are
usually treated in different ways. In fact, for the first class of channels, a block fading model is often
adopted, that is, channel variations are deemed negligible over the duration of each data packet. For
this reason, training data are usually inserted at the beginning of each data burst (preamble-based
training) and the data-aided channel estimate extracted from the preamble is used for detecting all
information symbols contained in the same packet. In contrast, for the second class of channels
training symbols are usually interspersed (in time or in frequency) in the data stream and the resulting
technique is usually called pilot symbol assisted modulation (PSAM).

5.3.2.1 Channel Estimation in SC PATs

Time-selective channels
Channel estimation in time-selective fading is closely related to carrier phase synchronization
[487, 488, 707] and can easily be accomplished by transmitting a pilot tone at a convenient frequency
in the data spectrum (or just outside the data spectrum). This provides the receiver with an explicit
amplitude and phase reference for detection (e.g., [708–714]). This approach is typified by the
so-called transparent tone-in-band (TTIB) [709, 714] and the tone calibration technique [712, 715].
Although these are general solutions, they require relatively complex signal processing and result in
an increased PAPR.

An alternative to tone-based strategies is the embedding of a pilot sequence in the transmitted
data sequence for training the channel estimator. This inevitably requires frame synchronization at
the receiver [716]. Two major training techniques for wireless channels are time division multiplexed
training and superimposed training. In the former strategy, pilot and information symbols are time
division multiplexed and a known training pattern is usually transmitted in a periodic fashion. This
approach, based on the use of regular periodic placements [675, 698], is exemplified by PSAM
[717, 718]. In a PSAM-based system the transmitter periodically inserts known symbols



Data-Aided Algorithms for Channel Estimation 239

Data
symbol

sequence

TDM
MUX

Channel
Compensation

Decision
Device

Channel
Estimator

Delay
Line

TDM
MUX

Pilot
sequence

Modulator

RF Output

Data
Out

Matched
Filter

Output

(a)

(b)

Figure 5.5 PSAM transmitter (a) and receiver (b) structures.

(see Figure 5.5(a)), from which the receiver derives its amplitude and phase reference (see Figure
5.5(b)). Note that the received samples associated with information symbols are delayed to be in
step with the generated channel estimates. In this scheme the fading distortion at the information
symbols is estimated by interpolating the fading distortion assessed at pilot symbols (e.g., using
low-order interpolations to reduce the number of computations or MMSE interpolation; see [698,
703, 718–720]). Like pilot tone modulation, PSAM suppresses the error floor and enables multilevel
modulation. However, it entails no change to the transmitted pulse shape or PAPR, and simplifies
processing at the transmitter and receiver.

The first contributions dealing with PSAM were based on simulation [717, 718] and did not provide
a performance analysis. A sound analytical basis for PSAM was provided in [721]. Further results on
the optimization of regular periodic placements and, in particular, of PSAM can be found in [675,
682, 687, 697, 698, 703, 704, 715, 720, 722].

The use of superimposed training was originally proposed in [672, 723, 724]. A more general form
of superimposed training, called affine precoding (which can be viewed as a general framework in
which preamble-based training, PSAM schemes or superimposed training can be treated as special
cases), has recently attracted attention [648, 669, 673–676]. It is expected that:

• despite the additional complexity introduced by the mixing of pilot and data symbols, some perfor-
mance gain over the conventional (e.g., PSAM) techniques can be realized, and

• the constant presence of pilot symbols in the data stream can somehow improve the tracking
capability of the receiver for time-varying channels.

Actually, for a transmission over time-selective SISO channels, it has been shown that superimposed
training performs better than time division multiplexed schemes at low SNR and for relatively fast
time-varying channels [675].

Further significant work on pilot-aided estimation of flat fading channels concerns:

(a) the use of KF [675, 725] or an extended KF [707];
(b) pilot symbol encoding rules for CPM signaling [726];
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(c) the use of data-bearing symbols to improve the phase-tracking capability of PSAM [514, 727,
728];

(d) channel estimation algorithms in turbo-coded PAT [719, 729].

Frequency-selective channels
The design of optimal pilot sequences for training-based estimation of a frequency-selective channel
is an old problem and has been investigated in various papers (e.g., see [730–738]). This concerns
the problem of generating codes of arbitrary length with zero periodic correlation except for the peak
at zero shift.

The problem of optimal placement of pilot symbols in a data stream has been investigated in
[627–629, 673, 678, 686, 690, 692, 698].

Channel estimation employing a training sequence is usually accomplished using a correlation
method or an LS method. The former method is extremely simple, since it is based on correlating
a portion of the training sequence with shifted versions of the received signal [733, 739] (e.g., this
approach is adopted in the GSM [560, 740]). The LS approach [731, 740] offers the relevant advantage
of requiring half guard symbols to obtain the same approximate processing gain. In fact it needs a
precursor of length equal to the channel memory duration (Lh − 1), whereas the correlation method
requires a precursor and postcursor of the same length (in practice, the minimum sequence length is
2Lh − 3). Even though a matrix inverse is involved in the LS procedure, it is a function only of the
known training sequence and a precomputed inverse of the matrix can be stored (for some special
training sequences, an inverse matrix is not even required). An application of the LS approach to the
GSM system can be found, for instance, in [741]. A further alternative to the above two estimators
is MMSE estimation [742]; however, this requires the availability of statistical information about the
channel fading.

Further significant contributions on PAT over frequency-selective channels concern:

• the analysis of PSAM schemes [743];
• the use of superimposed training sequences for channel estimation [676, 744, 745];
• the use of LS estimation of the CIR in the presence of co-channel interference (CCI) [746].

Doubly-selective channels
High data rate wireless links in mobile communications suffer from time- and frequency-selective
propagation effects. Under this scenario fading channels are challenging to mitigate, but once acquired,
they offer joint multipath-Doppler diversity gains [205, 747]. The quality of channel acquisition and
tracking has a major impact on the overall system performance, especially in the presence of fast
fading [748]. This motivates the substantial efforts devoted to reliable estimation of doubly-selective
channels.

Digital communication systems operating over doubly-selective channels often employ a signaling
format in which transmitted data are organized in blocks, each preceded by a known training sequence.
When processing each block, a CIR snapshot is generated, exploiting the associated training sequence
(usually this estimate relies on the assumption of negligible channel variations over the training
sequence) to start up an equalization algorithm. Then channel variations can be tracked in a decision-
directed fashion using a recursive type of adaptive filter. Unfortunately, this approach suffers from
an irreducible lag error leading to limited robustness against faster channel variation. For this reason,
feedforward estimation is often preferred to recursive estimation. When this occurs, multiple CIR
estimates evaluated over adjacent training sequences are interpolated to generate a channel estimate
over the data blocks. This eliminates the risk of error propagation when estimating the CIR in a
decision-directed mode.

The design of optimal training schemes over doubly-selective channels is more complicated than
the similar problems tackled in scenarios exhibiting only frequency or time selectivity. In the literature
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the use of PSAM has been investigated [690, 749, 750]. The number and placement of pilots affect not
only the quality of CSI acquisition but also the transmission rate. Within the general class of doubly-
selective channels, PSAM optimization for special channel models has been investigated in [688,
736, 749–751]. Optimization of power and the placement of pilot clusters time division multiplexed
with the data has been analyzed in [702], where it has been assumed that pilot clusters consist of
zero-padded pilot symbols in order to decouple MMSE channel estimation from data detection. The
use of pilot tones and pilot symbols for channels affected by fast fading and a large delay spread is
discussed in [556].

For a given training scheme, the structure and complexity of the channel estimator strongly depends
on the underlying channel model adopted for its design and on the degree of knowledge we need to
acquire about its statistical properties. For instance, one of key issues is the representation of the time
evolution of the channel taps; this can be modeled by resorting to AR models [750, 752–754], complex
exponential models [750, 755–758], or truncated power series models [114, 616, 617, 759–761]. Note
that, if the model is refined enough to account for the dynamics of the fading channel over an entire
data block, in principle adaptive channel tracking can be avoided, as shown in [761], where channel
estimation for enhanced data rate for GSM evolution (EDGE) is investigated. However, the more
refined the channel model is, the larger the number of parameters that need to be estimated. For
instance, if an explicit parametrization by time-varying amplitudes and delays is adopted, estimation
of a large number of parameters may be required (e.g., see [756, 762, 763] for a single antenna
and [764] for multiple antennas). In this context another complicated issue is that of estimating the
statistics of a channel with random taps and fitting appropriate models [750, 752, 754, 765].

As already stated above, the first class of channel estimators consists of recursive channel estimators.
These were first developed for HF modems [759, 766]. They are based on recursive adaptive filters and
exhibit limited robustness in the presence of fast channel variations because of their intrinsic irreducible
lag error. Despite this, they have also been proposed for channel tracking in TDMA mobile radio. In
this field, the use of Kalman filtering [750, 758, 767–769], extended Kalman filtering [770], delayed
LMS estimation14 [511, 560, 616, 617], linear LS with variable forgetting factor [760], recursive ML
estimation [765], RLS [616, 617, 758, 771], and conditionally coupled recursive estimation (based on
combining an augmented-state adaptive KF with an RLS for estimating the AR parameters of the chan-
nel taps) [752, 753] has been studied. In addition, a recursive technique based on the EM algorithm15

was proposed in [772, 773]. Finally, the use of LMS, RLS, Kalman and other estimation techniques
in PSP-based channel tracking was investigated in [114, 424, 515, 559, 564, 617, 624, 774–776].

The second class of estimators consists of feedforward channel estimators, which, like recursive
estimators, have been proposed for rapidly varying channels in HF communications in [749] (where
Wiener filtering between training sequences is investigated) and in TDMA radio (e.g., see [777–779]).
In the latter case CIR estimation is accomplished through the use of a training sequence inserted in
each TDMA slot (e.g., an LS algorithm can be used). Then, since LMS and RLS are unable to track
the randomly changing CIR in the presence of fast fading (due to their sensitivity to error propagation
in the decision-directed mode) during data blocks, CIR over such blocks is computed by interpolating
the snapshot channel estimates available at the end of each training interval.

Finally, we mention the following significant contributions to the estimation of doubly selective
channels:

(a) the development of noncoherent LMS and RLS algorithms for channel identification (to be
employed in noncoherent sequence estimation of M-ary differential PSK over ISI channels) [780],
and

(b) the study of MMSE estimation of the CIRs of multiple co-channel users in TDMA systems and
the design of training sequences for this scenario [781].

14 Work in this field was inspired by [458].
15 The EM algorithm is described in Section 4.6.1.
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Figure 5.6 Arrangement of training data in an OFDM transmission: (a) comb-type arrangement;
(b) scattered arrangement.

5.3.2.2 Channel Estimation in MC PATs

Coherent detection of OFDM transmission requires estimation of the channel frequency response (i.e.,
the complex gain affecting each subcarrier) over time to compensate for channel distortion after the
demodulation of subcarriers [782]. For this purpose, the channel needs to be probed simultaneously
in both the time and frequency domains, that is, using a two-dimensional grid of pilot symbols which
satisfies the two-dimensional sampling theorem [751, 783]. Note that increasing the number of spectral
symbols to mitigate spectral aliasing reduces the efficiency of data transmission. However, for a given
rate of pilot symbols the performance can be improved by selecting a proper arrangement of pilot sym-
bols, that is, a proper shape for the pilot symbol grid [783]. Two well-known arrangements of pilot data
are illustrated in Figure 5.6. The first, the comb-type arrangement [784, 785], is characterized by pilot
data periodically placed along the frequency direction (Df denotes the period of the pilot sequence) and
continually transmitted on a fixed subset of subcarrier frequencies. The second, scattered arrangement,
is characterized by pilot symbols placed according to a doubly-periodic pattern with period in time of
Dt and period in frequency of Df [751]. Both continual and scattered pilot symbols can be transmitted
at the same power level as data symbols or at a boosted power level. Of course, other arrangements are
possible, such as hexagonal placement [786] (which offers the best coverage in the time–frequency
plane) or a hopping pilot pattern [787]. The use of superimposed pilots (pilot symbols added linearly
to the modulated data symbol at a fraction of the total transmit power) is also possible [788].

An optimized placement of training symbols has been shown to enhance overall system performance
from both an information- and estimation-theoretic perspective. Optimization of the location, number,
and power of pilot symbols has been investigated in depth under different criteria of optimality and
assuming different types of channel estimators (e.g., see [659, 673, 686, 690, 786, 789–796]).

Channel estimators are currently divided into two classes: parametric estimators and nonparametric
estimators. Parametric channel estimation commonly employs a deterministic channel model, which is
based on a finite number of delay paths, and estimates the gain and delay of each path. Nonparametric
channel estimation makes few assumptions concerning the channel and involves techniques that exploit
the estimate of the frequency response at pilot subcarriers to generate the estimates of channel gain
at each data subcarrier using an interpolation algorithm.

The parametric approach to channel estimation is motivated by the fact that in a specific wireless
scenario (such as macro-cellular wireless), the channel length is limited to a few samples. For this
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reason, it seems more appropriate to estimate the channel in the time domain because there are fewer
parameters in the impulse response than in the frequency response. Given the limited amount of training
data that can be sent to estimate the time-varying channel, limiting the number of parameters to be
estimated is expected to improve the accuracy of the estimation [789]. In parametric estimators IFFT
processing is usually employed to get an estimate of the time-domain CIR which is then appropriately
processed and transformed back to the frequency domain by FFT. In doing this it is important to
capture the energy of the most significant taps and discard nonsignificant channel taps to improve
channel estimation performance [797].

Various techniques for time-domain channel estimation can be found in the literature [656, 686, 787,
794, 797–803]. Here, we limit discussion to summarizing some of the most significant results in this
area. First, we mention [798], where the MMSE estimator for the complex tap gains of the observed
channel is introduced. It performs well and substantially outperforms the LS estimator – at the price,
however, of large computational complexity. To reduce the computational complexity of the MMSE
approach low-rank estimators are suggested. The performance of these estimators is affected by the
presence of non-sample-spaced channels and even suffers from error floors for high SNRs. The channel
estimation algorithm proposed in [799] performs well in sparse multipath fading channels, but suffers
the problem of slow convergence in multipath delay estimation in relatively slow fading channels,
and even suffers from errors in multipath delay estimation when many propagation paths exist in
the channel. The observations in [798, 799] have inspired the work of [802], where a CIR model
characterized by fractional tap delay spacing relative to the sampling interval is adopted in developing
MMSE and LS estimators. This eliminates the problem of multipath delay estimation and reduces
the signal subspace dimension of the channel correlation matrix. For this reason, full-rank estimators
using pilot subcarriers can be adopted, which improves the channel estimation performance. In [787]
an LS algorithm for pilot-aided estimation of sparse channels is developed. The proposed algorithm
uses a generalized Akaike information criterion to estimate the channel length and tap positions. This
effectively reduces the signal space of the LS estimator, and hence improves estimation performance
with respect to the conventional LS approach of [798].

Finally, it is worth mentioning that most parametric channel estimators are derived under the
assumption of a static channel; however, CIR estimation techniques for time-varying channels are
also available [659, 795, 801].

Various nonparametric methods for channel estimation have been devised (e.g., see [784, 804–806]).
The nonparametric approach to channel estimation in OFDM systems consists of two steps. In the
first step LS estimates of the channel gains over the pilot subcarriers are obtained by simply back-
rotating the received signal in accordance with knowledge of the pilot symbols. This is equivalent
to accomplishing two-dimensional sampling of a noisy version of the WSS-US process represented
by the mobile radio channel. In the second step the LS estimates are interpolated/smoothed over the
entire frequency–time grid;16 this can be accomplished directly in the frequency domain or by using
IFFT/FFT processing.

In the first case, interpolation can be done using a proper two-dimensional or separable filter [751,
804, 808, 809]. Unfortunately, the design of the optimal (MMSE) interpolator requires knowledge of
the two-dimensional correlation function of the channel [751] – both its power delay profile and its
Doppler spectrum. Since this information is not easily available at the receiver, the design problem
becomes that of finding the most robust estimator with respect to a mismatch in the channel correlation
[810]. Simpler alternatives consist of using simple suboptimal (e.g., linear) one-dimensional interpola-
tors/filters in the frequency domain [791, 792, 805, 811–813], efficient two-dimensional interpolators
[814], two-dimensional regression polynomials for LS fitting over blocks of the time–frequency plane
[815, 816] and nonlinear interpolators implemented as one- and two-dimensional radial basis function
(RBF) networks trained by pilot symbols [817].

16 An intermediate preinterpolation step can be added between the LS estimation over the pilot subcarriers and the
interpolation [807].
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In the second case, interpolation of channel estimates at pilot locations is accomplished via DFT to
achieve low complexity [783, 818]. The channel gains acquired over pilot subcarriers and over con-
secutive OFDM symbols (i.e., over a specific two-dimensional pilot grid) undergo a two-dimensional
FFT, followed by low-pass (time-domain) filtering that takes advantage of time-domain correlation.
The filter output feeds a two-dimensional IFFT, which generates the interpolated channel estimates at
unknown data locations. This approach can be used not only to develop an MMSE interpolator (or
an MMSE channel estimator, if pilot symbols only are transmitted [810, 819, 820]), which requires,
however, knowledge of the channel statistics, but also to design a robust interpolator insensitive to
channel statistics, as shown in [783]. A related solution (employing one-dimensional signal processing
in the frequency domain) is presented in [810], where a generalized Hanning window is first applied
to the channel frequency response observation vector to mitigate spectral leakage (originating from
the fact that channel multipath time delays may be sample-spaced) and then an IFFT is performed
to transform the windowed frequency response into the time domain. The effective channel impulse
response is then modified by an MMSE weighting function. After that, an FFT is performed to trans-
form the result back into the frequency domain, and the windowing effect is finally removed to obtain
the channel estimation output.

Finally, we mention the following relevant contributions to the field of channel estimation for
OFDM:

(a) the development of decision-directed channel predictors for generating up-to-date CSI even without
regular transmission of pilot symbols in an OFDM transmission [821], and

(b) the design of channel estimation algorithms for OFDMA systems operating over time-varying
channels in the absence of evenly spaced pilots [822].

5.4 Extensions to MIMO Channels
In SISO wireless systems pilot symbols are traditionally time- or frequency-multiplexed with the data
symbols or signals. The use of an antenna array in MIMO systems extends the multiplexing to the
spatial dimension, adding a further dimension in the PAT optimization problem. In addition, it may
substantially increase the complexity of data-aided channel estimation algorithms. In the following
we sketch some of the research done in this area, considering first SC and then MC systems.

5.4.1 Channel Estimation in SC MIMO PATs

Optimization of training signals in MIMO single-carrier systems has been addressed in various papers
[645, 647, 669, 681, 685, 691, 699, 823–825]. From these papers, however, a simple set of guidelines
for training design in MIMO systems cannot easily be inferred because of the heterogeneity of the
modeling assumptions about the channel and the MIMO transmission scheme and of the optimality
criteria. Despite this, it is useful to note the following:

1. References [669, 681, 685, 823, 824, 826] focus on PAT optimization in the presence of frequency-
flat fading channels, whereas [645, 647, 691, 699, 825] consider multiple-antenna transmission
over quasi-static frequency-selective channels. Optimal pilot signaling for timeslot-based MMSE
estimation of space-, time- and frequency-selective fading MIMO channels is derived in [827].

2. References [669, 823] focus on general training strategies that allow the superposition of pilot
and data symbols; training design in a MIMO system using affine precoding as the transmission
strategy is investigated in [647].

A number of solutions has been proposed for data-aided channel estimation and tracking over
frequency-flat fading channels, for example, Kalman filtering [651, 828, 829], ML estimation [830],
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multiple variable regression estimation [831], LS estimation [832–835], MMSE estimation [649, 824,
832, 836] and EM-based estimation [837].

Various channel estimation strategies are also available for frequency-selective block fading channels
(i.e., for channels whose random channel taps remain constant for some data packets and change to
independent values for the next ones); for instance, MMSE estimation is investigated in [645, 650,
691, 838], whereas LS estimation is adopted in [839].

Finally, a few contributions are available about channel estimation and tracking of time-varying
frequency-selective MIMO channels. In particular, Kalman filtering is employed in [840] for channel
tracking, whereas timeslot-based MMSE channel estimation for SC block transmission is investigated
in [827].

5.4.2 Channel Estimation in MC MIMO PATs

A limited number of papers are available dealing with optimal design of PAT for MIMO-OFDM
systems [456, 701, 841–845].

Parametric methods for channel estimation in the presence of multiple transmit antennas have been
proposed in [456, 522, 524, 842, 846–852]. The most important results in this area are summarized
here. LS and MMSE estimation techniques are computationally heavy, since they require matrix
inversion, and this has motivated the search for reduced-complexity channel estimation algorithms
which avoid the inversion (e.g., see [522, 524, 842]). Innovative estimation techniques have been
developed in [845, 850, 852, 853], even if with different targets. In fact, in [852] an improved LS
algorithm, which exploits the noise correlation in order to reduce the variance of the LS estimation
error (by estimating and suppressing the noise in signal subspace), is devised. This algorithm is robust
to the number of antennas on the transmit and receive sides and achieves performance very close to
that of the MMSE estimator. A completely different target is adopted in [850], where a technique
optimizing the MSE performance of MIMO channel estimation in the presence of spatial correlation is
developed. This approach is motivated by a desire to find the ultimate channel estimation structure and
its performance limits so as to be able to benchmark simpler suboptimal channel estimators, although
this causes an unavoidable increase in the estimator computational complexity. In this case a two-step
channel estimator solution is derived and analyzed. In the first step the channel time delays and spatial
signature are estimated using an ML approach, while in the second step MMSE channel estimation
based on joint spatio-temporal filtering is adopted. In [845, 853] an angle-domain approximated MMSE
(AMMSE) channel estimation technique is developed. These have much lower complexity than the
two-dimensional LMMSE technique and perform better than the conventional LS technique.

Nonparametric methods are considered in [854]. In particular, [849, 855] propose low-rank MMSE
channel estimators.

Finally, it is worth mentioning that:

• parametric channel estimators for superimposed training have been devised in [856], and
• in most of the above mentioned papers block fading is assumed, that is, channel variations in

data-aided estimation are neglected. Very few papers take into consideration channel variations in
estimator design (e.g., see [851, 856]).

5.5 Historical Notes
Since the 1960s there has been increasing interest in investigating the problem of detecting signals
that emerge from channels described by parametric models with unknown parameters (e.g., see [106,
Chap. 6], [857, 858], and references therein). This has led to the study of so-called adaptive systems,
defined as systems that extract knowledge of the channel from a test signal or from an information-
bearing signal available at the channel output and exploit such knowledge in processing received data.
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One of the proposed approaches to the problem of adaptive reception of signals has resulted in the
class of transmitted reference systems [858]. In these systems a pilot tone is transmitted along with
the message waveform with the aim of providing the receiver with a signal which is independent of
the message waveform. In the 1980s a number of papers appeared describing techniques that seek to
reduce the effects of multipath fading at the receiver of a mobile-satellite link through the use of a pilot-
based calibration process. Such pilot-aided modulation techniques have appeared under various titles
such as feedforward signal regeneration (FFSR) [708], feedforward automatic gain control (FFAGC)
[859], TTIB [709], and tone calibration technique (TCT) [712]. The basic concept underlying all these
techniques is to transmit a pilot at a convenient frequency in the data spectrum and then extract this
pilot at the receiver with the channel impairments intact. If the fading impairments on the pilot and the
data are the same, then the extracted pilot, after suitable processing, can be used as a coherent reference
in a synchronous data detector to remove the fading phase component and to normalize the fading
amplitude component. From a practical implementation viewpoint, satisfying the latter assumption
requires locating the pilot at a frequency in the vicinity of the data signal. All of the above-mentioned
pilot-aided techniques, particularly the original version of TCT, assume a double-sided data spectrum
with a pilot located in the center. The advantage of this spectral arrangement is that the pilot is not
sensitive to small frequency shifts since it is right in the center of the channel where the amplitude
and phase characteristics are most stable. The disadvantage of this arrangement, however, is that it is
very bandwidth inefficient, as are most double-sideband modulation schemes. In fact, from a spectral
standpoint the existing TCT system closely resembles a full AM system where the data sidebands are
symmetrical around the carrier. Furthermore, to “make room” for the pilot in the presence of Doppler
shift, the equivalent low-pass data sidebands must be shaped so as to have zero response in the
neighborhood of dc, or else be placed on a subcarrier. An alternative possibility which is much more
bandwidth efficient than TCT is a dual-pilot tone calibrated technique (DPTCT) that symmetrically
locates a pair of pilots outside the data spectrum near the band edges of the channel [711].

A more practical alternative to the transmission of a pilot tone is to transmit a pilot sequence
embedded in the transmitted data sequence; this concept, known as PSAM, was first proposed by
M. L. Moher and J. H. Lodge in 1989 for coherent detection of trellis-coded modulation over Rician
flat fading channels [717]. The performance and optimization of PSAM have been investigated in
depth for SISO systems.

Since the beginning of the 1990s considerable attention has been paid to the problem of investigating
channel acquisition and tracking for TDMA (narrowband) digital cellular radio; in that scenario,
traditional (e.g., linear and decision feedback) equalizers cannot meet performance specifications. For
this reason, an ML receiver is required [860], which, in turn, requires a high-quality channel estimate
for satisfactory performance, leading to interest in analyzing the capability of traditional adaptive
algorithms for channel tracking (e.g., see [610, 768]) and in devising innovative algorithms (e.g., see
[114, 511, 515, 564, 567, 624, 769, 774, 776, 861]). The use of feedforward channel estimators based
on the interpolation of channel estimates has been also considered (e.g., see [778]).

Since the latter half of the 1990s there has been substantial interest in the use of OFDM for mobile
wireless channels [862, 863], partly motivated by the upcoming DVB and DAB standards in Europe.
This led to investigations of the problem of feedforward (e.g., see [742, 751, 804, 808, 811]) and
recursive (e.g., see [864]) channel estimation based on pilot symbols in a two-dimensional scenario.
It soon became apparent, however, that in wireless OFDM transmission it is more appropriate to
estimate the channel in the time domain because there are fewer parameters in the impulse response
than in the frequency response [789, 798]. In addition, in the presence of time selectivity it could be
better to accomplish both detection and channel estimation in the time domain [800], so that the error
floor originating from appreciable ICI in the frequency domain is lowered.

Research on channel estimation for systems employing transmit diversity and space-time coding
started at the end of the 1990s for both SC [706] and OFDM systems [846]. This preliminary work
has been followed by a flurry of papers about channel estimation for different MIMO channel models
and ST communications techniques.
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5.6 Further Reading
The organization of this chapter is partly inspired by [418], which offers an introduction to PAT
techniques for wireless communications. An overview of channel estimation techniques for OFDM
systems can be found in [793].

Channel estimation represents a significant research area in the field of wireless communications.
In this concluding section we mention some of the relevant research topics in this area which have
not been considered in the previous sections of this chapter.

An alternative to data-aided estimation is given by blind and semiblind channel estimation. Relative
to training-based schemes, semiblind and blind schemes typically require longer data records and entail
higher complexity [865, 866]. Various techniques are available for SC SISO (e.g., see [233, 260, 521,
567, 867–900]), SC MIMO (e.g., see [579, 901–911]), MC SISO (e.g., see [912–928]) and MC
MIMO (e.g., see [655, 929–938]).

An important research topic in the area of channel estimation is channel prediction. This is par-
ticularly useful for bridging the gap between the channel estimates and the current channel state in
schemes that employ adaptive modulation or power control (e.g, see [828, 840, 939, 940]). Here we
limit ourselves to mentioning that the problem of predicting SISO channels has been explored in [755,
939, 941–945], SIMO channels in [946], and MIMO in [829, 947–950].

In principle, CSI can be estimated jointly with synchronization parameters (e.g., the CFO) to improve
estimation accuracy and reduce acquisition time. Various papers propose algorithms for joint estimation
and synchronization; e.g., see [563, 707, 951–953] for SC SISO, [668, 700, 828, 954–956] for SC
MIMO, [957–964] for MC SISO and [965, 966] for MC MIMO.

Data-aided channel estimators may require knowledge of various parameters of fading channels.
In the literature various papers investigate the problem of estimating various parameters of fading
models, e.g. Nakagami channel parameters [967], length of a SISO multipath channel [968], param-
eters of composite gamma-normal fading [969], maximum Doppler frequency [970], the K factor in
Rician fading channels [971], SNR estimation in flat fading channels [972], statistical parameters of
a multipath mobile channel [973], and channel order estimation for SIMO channels [974].

In recent years SC communication techniques employing a cyclic prefix or a unique word to simplify
the equalization task have received considerable attention. When these techniques are adopted, specific
algorithms for pilot insertion and for channel estimation in the frequency domain should be used [442,
738, 975–978]. Note that in this area limited attention has hitherto been paid to the use of superimposed
pilot signals [442].

Finally, we mention that in the last decade some estimation techniques for sparse channels have
been developed [787, 979–981].



6
Detection of Digital Signals over
Wireless Channels: Channel
Equalization Algorithms

6.1 Introduction
One of the fundamental tasks of a digital receiver is channel equalization, namely, the compensation
of channel-induced distortion with the aim of improving link performance. In practice, this task is
accomplished by a channel equalization algorithm, whose structure and complexity depend on both
the degree of knowledge of the communication channel (which needs to be implicitly or explicitly
estimated) and the optimality criterion employed by the algorithm. This chapter focuses entirely on
the study of different classes of channel equalization algorithms, and its logical organization is parallel,
at least in part, to that of Section 4.5, being related, first of all, to the way the CIR is treated (i.e., as
a known vector, as a vector to be averaged over if its statistical properties are known, or as a vector
to be estimated if it is completely unknown).

We first focus, in Sections 6.2 and 6.3, on channel equalization in the presence of an ideally known
CIR, referring to SC and MC modulations, respectively. In Section 6.2, after developing (optimal)
MLSD, MAPSD and MAPBD equalizers for SC modulations, various suboptimal strategies, such
as reduced-complexity sequence detection, linear equalization and decision feedback equalization, are
derived. In addition, both time-domain and frequency-domain approaches are analyzed. Section 6.3, on
the other hand, investigates the problem of optimal channel equalization for a static frequency-selective
channel and that of ICI cancelation over a time-varying multipath fading channel. The problem of
channel equalization for a statistically known CIR is tackled in Sections 6.4 and 6.5 for SC and
MC modulations, respectively. Particular attention is paid here to receivers based on the concept of
innovations, that is, exploiting innovations-based metrics. Equalization in the presence of a completely
unknown CIR is studied in Sections 6.6 and 6.7 for SC and MC modulations, respectively. In the
latter case, an important role is played by algorithms based on the principle of per-survivor processing
(PSP) – see Section 5.1. Various extensions of the SISO equalization techniques investigated to a
MIMO scenario are summarized in Sections 6.8. Finally, some historical notes and suggestions for
further reading are provided in Sections 6.9 and 6.10, respectively.

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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6.2 Channel Equalization of Single-Carrier
Modulations: Known CIR

In this section the problem of channel equalization for SC modulations is addressed, considering
both the class of equalization algorithms operating in the time domain (TD) and that of classifying
the equalization algorithms operating in the frequency domain (FD). For each case, first optimal (in
the ML or MAP sense) equalization techniques are developed, and then suboptimal strategies are
proposed.

6.2.1 Channel Equalization in the Time Domain

A well-known approach to mitigating ISI in SC digital communication systems is to compensate for
channel distortions via channel equalization in the TD at the receive side. Historically, time-domain
equalizers (TDEs) were developed for ISI mitigation in narrowband wireline channels and adopted in
international Consultative Committee for International Telegraphy and Telephony (CCITT) standards
for dialup modems. TDEs can also be employed, in principle, in broadband wireless communications;
however, the number of operations per signaling interval grows exponentially (if an optimal equal-
ization strategy is adopted) or linearly (if a suboptimal filter-based strategy is adopted) with the ISI
span (i.e., with the channel memory), or, equivalently, with the data rates, as will become clearer in
what follows.

6.2.1.1 MLSD Based on the Viterbi Algorithm

Here we first focus on the problem of MLSD of PAM signals transmitted over a known frequency-
selective channel. Then we comment on how to extend the techniques to the case of a time-varying
channel and to CPM signaling.

As already discussed in Section 4.4.1, if the M-ary PAM signal:
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(
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)
(6.1)

is transmitted over a static multipath channel characterized by the known CIR hc(t), the complex
envelope of the received signal can be written as:

r (t) = z
(
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) + w (t) , (6.2)
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is the useful component of the received signal, w(t) is AWGN1 with two-sided spectral density 2N0,
and the impulse response pTC (t) � p(t) ⊗ hc(t) accounts for both transmit and channel filtering
(its support is limited to the interval [0, LTC Ts]). In this case, the elements of the vector rN �
[r0, r1, . . . , rN−1]T of sufficient statistics can be generated by baud rate sampling the output of the
filter having impulse response:

hMF (t) = 1

Kc

p∗
TC

(− (
t − LTC Ts

))
(6.4)

1 Actually, some form of bandlimiting in the receiver front-end (using a bandwidth much larger than the useful
signal bandwidth) needs to be assumed in the derivation of the metric, so that the integrals involved are well
defined.
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and fed by r(t) (see Section 4.4.1), that is:

rk = r (t) ⊗ hMF (t)
∣∣
t=tk

(6.5)

with tk � kTs + LTC Ts and k = 0, 1, . . . , N − 1. This fundamental result emerges from the theory of
ML detection developed for continuous-time waveforms; in fact, such a theory establishes that, given
the noisy signal r(t) of (6.2), the ML strategy can be expressed as [458]:
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is a log-likelihood function for the received signal r(t) observed over the time interval (ti , tf ) ((ti ,
tf ) = (−∞, +∞) can be assumed in this case), given cN = c̃N . Substituting z

(
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)
from (6.3) into

(6.7) yields, after some manipulation:
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where
hk � h

(
tk
)

(6.9)

and
h (t) � pTC (t) ⊗ hMF (t) . (6.10)

Expression (6.8) for the log-likelihood function �
(
c̃N

)
clearly shows that:

(a) the set of random quantities {rk, k = 0, 1, . . . , N − 1} (i.e., the random vector rN ) is all that
needs to be extracted from r(t) in (6.2) for optimal detection, that is, it forms a set of sufficient
statistics, as already stated above,

(b) the structure of the metric (6.8) is similar to that of the metric (4.150) derived for a conceptually
similar detection problem, but in a discrete-time scenario, and

(c) the metric (6.8) exhibits quadratic dependence on the trial vector c̃N in its first component and
linear dependence in its second component.

As far as the last point is concerned, it is important to note that, generally speaking, the quadratic
dependence of �

(
c̃N

)
on c̃N implies that the problem does not lend itself to a computationally simple

solution (6.6), since an exhaustive search over the complete set of data sequences is required. However,
under certain assumptions, a computationally efficient technique for the search of the optimal symbol
vector can be developed. To see this, let us rewrite the first term on the RHS of (6.8) as:
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γk,n , (6.11)

where
γk,n � c̃k c̃∗

n hk−n , (6.12)

with k, n = 0, 1, . . . , N − 1, representing the element located on the kth row and the nth col-
umn of the N × N complex matrix ϒ . Note that this matrix is Hermitian since γ ∗

k,n = c̃∗
k c̃n h∗

k−n =
c̃∗
k c̃n hn−k = γn,k (see (6.9), (6.10) and (6.12)) and therefore, if the contributions coming from the
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main diagonal, from the terms below it and from those above it are separated, the double sum (6.11)
can be rewritten as:
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since
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k,n (i.e., the sum of the elements above the main diagonal is
the complex conjugate of the sum of the elements below it). Then substituting (6.12) into (6.13) and
(6.13) into (6.8) yields:

�
(
c̃N

) = h0

N−1∑
k=0

∣∣c̃k

∣∣2 + 2 Re

{
N−1∑
k=1

k−1∑
n=0

c̃k c̃∗
n hk−n

}
− 2 Re

{
N−1∑
k=0

rk c̃∗
k

}

= h0

N−1∑
k=0

∣∣c̃k

∣∣2 + 2
N−1∑
k=1

Re

{
c̃k

k−1∑
n=0

c̃∗
n hk−n

}
− 2 Re

{
N−1∑
k=0

rk c̃∗
k

}
. (6.14)

The latter expression may also be rewritten as:

�
(
c̃N

) =
[
h0

∣∣c̃0

∣∣2 − 2 Re
{
r0 c̃∗

0

}]

+
N−1∑
k=1

{
h0

∣∣c̃k

∣∣2 + 2 Re

[
c̃k

k−1∑
n=0

c̃∗
n hk−n

]
− 2 Re

[
rk c̃∗

k

]}
(6.15)

or, in a more compact form, as:

�
(
c̃N

) =
N−1∑
k=0

λk

(
c̃k, c̃k

)
, (6.16)

where c̃k � [c̃0, c̃1, . . . , c̃k−1]T (c̃0 denotes an empty vector):

λ0

(
c̃0, c̃0

) = λ0

(
c̃0

)
� h0

∣∣c̃0

∣∣2 − 2 Re
{
r0 c̃∗

0

}
(6.17)

and

λk

(
c̃k, c̃k

)
� h0

∣∣c̃k

∣∣2 + 2 Re

[
c̃k

k−1∑
n=0

c̃∗
n hk−n

]
− 2 Re

[
rk c̃∗

k

]
(6.18)

for k = 1, 2, . . . , N − 1. The structure of the metric �
(
c̃N

)
can be further simplified since the support

of h(t) in (6.10) does not exceed the interval [−LTC Ts , LTC Ts], so that hk = 0 for |k| ≥ Lh with
Lh ≤ LTC + 1. Then the metric λk

(
c̃k, c̃k

)
may be rewritten as:

λk

(
c̃k, c̃k

) = λk

(
�̃k, c̃k

)

= h0

∣∣c̃k

∣∣2 + 2 Re


c̃k

k−1∑
n=max(0,k−Lh+1)

c̃∗
n hk−n


 − 2 Re

[
rk c̃∗

k

]
, (6.19)

where �̃k denotes an integer parameter uniquely identified by the ordered collection of the trial channel
symbols {c̃n, n = k − Lh + 1, k − Lh + 2, . . . , k − 1} and representing the so-called channel state.
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In practice, this parameter, which represents the overall channel memory, can be defined as:

�̃k � b̃k−Lh+1 + b̃k−Lh+2M + . . . + b̃k−1M
Lh−2, (6.20)

for any k, where b̃k is a nonnegative integer representation of the complex symbol c̃k (in particular,
we assume that b̃k belongs to the M-ary alphabet {0, 1, . . . , M − 1} and that b̃k = 0 for k < 0). Then
the optimal metric (6.16) can be put in the compact form:

�
(
c̃N

) =
N−1∑
k=0

λk(�̃k, c̃k), (6.21)

thereby expressing �
(
c̃N

)
as a summation of partial metrics {λk(�̃k, c̃k)}. In addition, since λk(�̃k, c̃k)

can be denoted λk(�̃k, �̃k+1), with �̃k+1 uniquely identified by the pair (�̃k, c̃k), (6.21) can also be
rewritten as:

�
(
c̃N

) =
N−1∑
k=0

λk(�̃k, �̃k+1). (6.22)

Then �
(
c̃N

)
can be recursively computed for any trial sequence c̃N by evaluating the expression:

�
(
c̃k+1

) = �
(
c̃k

) + λk(�̃k, �̃k+1) (6.23)

for k = 0, 1, . . . , N − 1, with �
(
c̃0

) = 0. Expression (6.23) is the key to solving (6.6) in a
computationally efficient fashion by resorting to the so-called Viterbi algorithm (VA), which is a
recursive algorithm for determining the optimal state sequence of a discrete-time Markov process
observed in memoryless noise [982]. The VA operates over a trellis, characterized by Ns = MLh−1

states. The trellis structure is illustrated in Figure 6.1 for the case of M = 2 and Lh = 3. In general,
in the kth interval each trellis state represents one of the Ns possible values that �̃k can take and
is connected via M branches to M distinct next states �̃k+1. Moreover, the branch connecting �̃k

and �̃k+1 is labeled by the trial symbol c̃k and by the quantity λ(�̃k, �̃k+1), known as the branch

∆~ k+1

∆~ k
l(∆~ k,∆~ k+1)

c~k

k–2 k–1 k+1 timek

Figure 6.1 Four-state trellis involved in the ML detection of a PAM signal transmitted over a
frequency-selective channel (M = 2 and Lh = 3 are assumed).
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∆~ k
(0)

∆~ k
(1) l(∆~ k

(1),∆~ k+1)

l(∆~ k
(0),∆~ k+1)

∆~ k+1

k–2 k–1 k+1 timek

Figure 6.2 Time evolution of the VA operating over the four-state trellis shown in Figure 6.1.

metric. In this context, each trial sequence c̃N is in one-to-one correspondence with a sequence of
states {�̃k, k = 1, . . . , N} in the trellis diagram, that is, with a distinct path in the trellis. Thus,
looking for the optimal sequence decision is equivalent to searching for the minimum distance path
in the trellis. The VA accomplishes this task recursively through the following steps at the end of
each symbol interval (see Figure 6.2):

(a) maintaining one survivor path per state �̃k in the kth symbol interval,
(b) extending these paths one step along all the M branches (each labeled by a distinct value of c̃k)

emanating from it, and
(c) pruning these back by retaining only the path with the smallest2 metric �

(
c̃k+1

)
from each state

�̃k+1.

In the kth symbol interval, then, the VA keeps track of only one path (the so-called survivor) leading to
each state �̃k . Such a path, denoted by �(�̃k) in what follows, consists of the sequence of consecutive
states belonging to the path and is characterized by an accumulated metric, denoted �(�̃k) in what
follows (rather than �(c̃k)) to make its meaning clear.

The VA procedure can be summarized by the following steps (n denotes the time variable):

1. Set:
k = 0, �

(
�̃0

)
=
(
�̃0

)
, �

(
�̃0

)
= 0 (6.24)

to initialize the algorithm.
2. Repeat steps 3–7 until n = N − 1.
3. Extend path metrics in accordance with (6.23), that is:

�
(
�̃n+1

)
= �

(
�̃n

)
+ λ

(
�̃n, �̃n+1

)
(6.25)

for all the allowed state transitions �̃n → �̃n+1.

2 When a metric has to be maximized, the VA should be supplied with the negative metric instead.
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4. For each destination state �̃n+1, find the best (minimum metric) incoming or survivor path over
all the previous states:

�̄n = arg min
�̃n

�
(
�̃n+1

)
. (6.26)

5. Update and store survivor paths as:

�
(
�̃n+1

)
=
(
�
(
�̄n

)
, �̃n+1

)
. (6.27)

6. Store the new survivor metrics as:

�
(
�̃n+1

)
= �

(
�̄n

) + λ
(
�̄n, �̃n+1

)
. (6.28)

7. Set n = n + 1 (increment time counter).
8. Detect the ML decision for the symbol sequence as that associated with the survivor path �(�̃n+1)

with minimum metric �(�̃n+1) (termination).

It is worth noting the following:

(a) Branch metrics evaluated for state transitions inconsistent with a priori known (e.g., training or
pilot) symbols are set to a large value (virtually infinite).

(b) ML decisions are not available until time n = N − 1. In practice, however, there is little degrada-
tion in making symbol-by-symbol decisions after a decision delay DVA (whose value is typically
5–7 times Lh) by tracing back from the survivor with the instantaneously best metric.

The latter approach to decision-making can be related to the fact that all the Ns survivors available
at time n often coincide up to some time n − d , that is, d symbol intervals earlier. When this occurs,
it is usually said that survivors have merged at depth d; moreover, an optimal decision can be made
on all the symbols or states up to time n − d , without waiting for additional information, so that the
length of the survivors stored in the VA memory can be truncated to d intervals. Unfortunately, the
parameter d is random, since path merge is a statistical phenomenon, which may not occur at all
in a given observation interval. These considerations suggest that the value selected for DVA should
achieve a good tradeoff between error performance and computational/memory requirements. In fact,
DVA should be large enough to ensure near optimal performance, while being as small as possible to
limit the size of the VA memory and the processing required for refreshing it.

A block diagram of an ML sequence detector based on the strategy developed above is shown
in Figure 6.3. Such a strategy was proposed by G. Ungerboeck in 1974 [458]. An alternative (but
mathematically equivalent [424]) solution was developed two years earlier by D. G. Forney [422]. It
requires the use of a noise whitening after the matched filter (i.e., the use of a WMF; see Section
4.4.1). Note that, generally speaking, the sample rk (6.5) at the MF output is structured as3:

rk =
Lh−1∑

l=−Lh+1

cl hk−l + nk, (6.29)

BMC VA

Sample

r (t)
hMF (t)

tk

rk {lk (∆
~

k, ∆~ k+1)} ĉk–DVA

Figure 6.3 Block diagram of an ML sequence detector based on the Ungerboeck’s strategy.

3 Further details on this model can be found in Section 4.4.1.
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where nk � n(tk) and n(t) � w(t) ⊗ hMF (t) is a complex Gaussian process having mean zero and
autocorrelation function (see (6.5) and (6.10)):

Rn(τ) � 2N0 hMF (τ ) ⊗ h∗
MF (−τ) = 2N0

Kc

h
(
τ + LTC Ts

)
. (6.30)

This result implies that the autocorrelation Rn[k] of the zero mean random sequence {nk} is given by:

Rn [k] = Rn(kTs) = 2N0

Kc

h
(
kTs + LTC Ts

) = σ 2
n Kc hk, (6.31)

with σ 2
n � 2N0/K

2
c , so that {nk} is not white (note also that Rn [0] = 2h0N0/Kc = σ 2

n EpTC
, EpTC

being the energy of pTC (t), and that {hk} is a Hermitian sequence, i.e. hl = h∗
−l for any l). Whitening

{nk} by a proper filter leads to a more elegant structure of the log-likelihood metric (which becomes
a Euclidean distance metric involving the sequence of received signal samples at the WMF), but
introduces the additional complexity of implementing a WMF. In this case the model (see
equation (4.95)):

rk =
Lq−1∑
l=0

ck−l ql + nk (6.32)

for the kth received signal sample (with k = 0, 1, . . . , N − 1) replaces that expressed by (6.29); here,
the impulse response

{
qk

}
results from the convolution of {hk} with the impulse response of the WF

(Lq denotes the number of its nonnull samples and is equal to Lh; see Section 4.4.2) and
{
nk

}
is a

complex AWGN sequence, whose samples have variance σ 2
n . It is not difficult to show that, given the

set {rk, k = 0, 1, . . . , N − 1} of sufficient statistics, the MLSD metric can be expressed as:

	
(
c̃N

) =
N−1∑
k=0

ξk(�̃k, �̃k+1), (6.33)

where

ξk(�̃k, �̃k+1) �

∣∣∣∣∣∣rk −
Lq−1∑
l=0

ck−l ql

∣∣∣∣∣∣
2

(6.34)

is the branch metric associated with the transition �̃k → �̃k+1 and the channel state �̃k is an integer
representation of the ordered collection of the trial channel symbols {c̃n, n = k − Lq + 1, k − Lq +
2, . . . , k − 1} (so that the overall number of trellis states is Ns = MLq−1). Further details on this
approach can be found in [422, 426] as well as in [424], where a unifying perspective is provided for
the MLSD strategies proposed by Ungerboeck and Forney.

Finally, it is important to point out that the above-mentioned MLSD strategies have been devel-
oped for PAM signaling over frequency-selective, time-invariant channels; however, in principle, a
conceptually similar approach can be adopted to develop MLSD strategies for PAM signaling over
frequency-flat, fast fading channels [556], or for doubly-selective channels, as shown in [424, 425,
495]. Moreover, VA-based MLSD strategies can also be devised for CPM signals; in this case, how-
ever, the VA trellis is actually a supertrellis, whose superstates accounts for both ISI due to dispersive
channel and the memory characterizing the phase modulation [438] of the CPM signal.

6.2.1.2 Constrained MLSD and Reduced-Complexity Sequence Detection

The complexity of the VA (or, as shown later in this section, of the forward–backward algorithm) is
proportional to the total number of trellis states, which depends exponentially on the overall channel
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memory (this parameter is denoted Lh or Lq in Section 6.2.1.1). Therefore, for typical wideband
channels, MLSD becomes extremely complicated [983]. Various schemes to reduce the complexity of
MLSD have been proposed; these usually involve searching only part of the trellis or simplifying the
trellis, as explained below.

Simplifying the Trellis
The sample sequence {hk} (6.9) has a peak near its middle, referred to as the cursor; the samples
preceding and following it are called precursors and postcursors, respectively, and typically their
energy tails away. If the energy in the extreme tails of the precursors and/or postcursors is small, their
contribution can be neglected without significant penalty. This leads to truncated memory detection
or truncated sequence detection (e.g., see [984–987]).

It is also noteworthy that the reliability of decisions within the survivor paths {�(�̃k)} available in
the kth symbol interval increases with delay but that, as already explained in the previous subsection,
there is usually no significant increase in reliability beyond delays of about 5–7 times Lh. In addition,
it is fair to say that reliable decisions may be available much sooner, even at delays of less than Lh as
long as most of the energy of the received pulse has been accounted for in the branch metrics of the
VA. These considerations lead to the development of delayed decision feedback sequence detection
(DDFSD) [988] and reduced-state sequence detection (RSSD) [989, 990].

In DDFSD a reduced-state trellis is constructed by merging together (i.e., fusing) states which share
the same “older” symbols. In other words, the VA state �̃k is then defined as (see (6.20)):

�̃RS
k � b̃k−LRS +1 + b̃k−LRS +2M + . . . + b̃k−1M

LRS −2, (6.35)

where LRS < Lh. This definition leads again to a trellis (having a reduced number of states) to which
the VA is then applied. The crucial difference between DDFSD and truncated sequence detection
is that in DDFSD the full branch metric of (6.19) is retained. However, for each state �̃k and state
transition labeled by the channel symbol c̃k, the required symbols are obtained partly from the DDFSD
state �̃RS

k and partly from the corresponding survivor path �(�̃RS
k ). This method is an application of

the decision feedback concept [768, 983, 985, 988, 991]. As a first approximation, the value of the
parameter LRS can be selected so as to cover the precursors and the cursor, with decision feedback
being used for the postcursors.

RSSD can be considered as an elegant (but minor) extension of DDFSD. Instead of adopting a
trellis which accounts for the precursors and exploiting the survivor history for the postcursors, set
partitioning principles [992] (see Section 11.2) are applied to reduce the number of hypothesized
symbols. Further results of this approach can be found in [989, 993–995]. In particular, we note that
the ST extension of RSSD, as proposed in [989] for the SISO equalization problem, has been extended
to a MIMO scenario in [996].

An alternative approach to reducing the number of trellis states is by the use of adaptive prefiltering
at the receiver to shorten the duration of the overall impulse response [997]. In practice, this can be
achieved using a linear equalizer (LE) (e.g., see [623, 998]) or a decision feedback equalizer (DFE)
(e.g., see [999–1001]). Then, the prefiltered signal undergoes MLSD based on the VA. Unfortunately,
prefiltering colors the additive noise at the receiver input, so that error performance gets worse if
noise correlation is ignored [457]. In addition, the use of a DFE prefilter introduces the problem of
error propagation. Error performance can be improved by adopting a hybrid structure which delivers
the soft outputs generated by MLSD to a DFE [768, 1000, 1002]. However, generally speaking, the
performance attained using these prefiltering strategies has not been compelling.

Searching Part of the Trellis
In the MLSD procedure, survivor sequences characterized by accumulated metrics that are much
worse than that associated with the best current survivor sequence are unlikely to contribute to the
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ML path in the trellis in the future. This consideration suggests that MLSD computational complexity
could be reduced by searching the trellis in a more intelligent fashion. Based on this principle, there
are various trellis-based detection algorithms which carry out a simplified search and still achieve
excellent performance [1003]. A complete description of these is beyond the scope of this book, and
here we limit ourselves to providing a brief description of the so-called M-algorithm [1004]. Instead
of preserving MLh−1 survivors at the end of each symbol period like the VA, the M-algorithm keeps
a fixed number Ms of such survivors, with 0 < Ms ≤ MLh−1. In the next symbol period, each of
the Ms survivors is extended along the M branches radiating from its ending state. If more than one
extended survivor enters the same next state, all but the best one are pruned, as in the VA. Then the
survivors, whose number does not exceed M · Ms , are sorted by metric, and further pruned, so that
only the best Ms of them are retained. This procedure is repeated in each symbol period [1005].

In principle, reduced-search techniques can be combined with state reduction by fusion limiting
the search to a subset of fused states. This approach, which is motivated by the fact that in data
communications over fading channels the SNR at the receive side is time-variant, has led to the
development of the so-called adaptive state allocation (ASA) algorithm for MLSD [1006]. In this
algorithm, the number of states is reduced by fusion when the channel is out of a fade and the number
of states is increased by diffusion when the channel goes to fade. In addition, at each stage, only the
more likely correct states are chosen for extension to the next stage.

It is also worth noting that the VA-based MLSD technique illustrated in the previous subsection
represents a form of unconstrained strategy, since no constraint is set in exploring the trellis represent-
ing the channel memory. In contrast, the M-algorithm represents an example of a constrained strategy.
Generally speaking, constrained MLSD strategies are based on the following approach. First, the set
of Ns trellis states is partitioned into C disjoint sets (nonuniform partitions can also be adopted). In
the detection procedure B survivors are kept in memory for each set and the best sequence of sets
is identified. Then, within the “winning” set the path associated with the best metric is found and,
finally, an estimate of the symbol sequence is inferred from this path. This class of strategies is denoted
SA(C, B) in [1007, 1008], where SA means search algorithm. It is worth pointing out the following:

(a) The algorithms of this class are known as breadth-first, since they view at once all the branches
that they will ever view at that depth.

(b) Viterbi-based MLSD illustrated in Section 6.2.1.1 and the above-mentioned M-algorithm can be
denoted SA

(
1, Ns

)
, and SA

(
1, Ms

)
, respectively (another example of breadth-first trellis decoding

algorithm can be found in [1009]). In addition, the family of algorithms SA(1, C) encompasses
DDFSD and RSSD.

(c) Alternatives to the breadth-first approach are the depth-first (a single path is pursued contin-
ually until its metric exceeds a threshold) and the metric-first approaches (the path with the
instantaneously best metric is always pursued). This is often known as the sequential approach.

Various references investigate equalization performance when simplified search algorithms are used.
For instance, the reader can refer to [1010–1015], which give applications of the M-algorithm, and
to [1016], which considers the exploitation of the so-called Fano algorithm that was developed for
the sequential decoding of convolutional codes.

In the following we focus on the SA(1, 1) class which is of technical relevance due to its modest
computational complexity. Such a class is formed by decision feedback equalization algorithms.

6.2.1.3 Decision Feedback Equalization in the Time Domain

In a DFE a single survivor (i.e., a single state) is retained at the end of each symbol period and is
exploited in detecting the next symbol. In other words, the trellis consists of one state with M branches,
each returning to the same state. The DFE has played a significant role in communications due to
its nice balance of complexity and performance (e.g., see [1017–1020]). For this reason we analyze
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it as a separate structure. In particular, in our study we first focus on the problem of equalizing a
received vector r in the presence of a known frequency-selective channel. This problem is tackled
by developing decision feedback algorithms that can process the entire block of received data and
which can be adopted if the block size is not overly long. Then a different approach is developed for
the case of long r, under the two scenarios of a known frequency-selective channel and an unknown
time-varying, frequency-selective channel.

To begin, we derive a block DFE for a PAM signal transmitted over a known frequency-selective
channel [1021], under the assumptions that:

• the symbol vector cN � [c0, c1, . . . , cN−1]T is transmitted;
• the received vector r �

[
r0, r1, . . . , rN−1

]T
is generated by taking one sample per symbol at the

output of a filter matched to the impulse response pTC (t) which accounts for transmit and channel
filtering and whose support is the interval [0, LTC Ts] (as assumed in Section 6.2.1.1).

The kth received signal sample may then be written as (see (6.29)):

rk =
Lh−1∑

l=−Lh+1

ck−l hl + nk, (6.36)

for k = 0, 1, . . . , N − 1, with ck = 0 for k < 0 and k > N − 1, if it is assumed that hk = 0 for
|k| ≥ Lh with Lh ≤ LTC + 1. Note that the sequence hl has the property of Hermitian symmetry (i.e.,
hl = h∗

−l for any l) and the complex Gaussian noise sequence {nk} is not white, since (see (6.31)):

Rn[l] = σ 2
n Kc hl, (6.37)

where σ 2
n � 2N0/K

2
c . Then, if N > Lh − 1, the received signal vector can be written as:

r = HcN + n, (6.38)

where H = [hi,j ] is an N × N CIR matrix with hi,j = hi−j for |i − j | < Lh and hi,j = 0 elsewhere,
and n � [n0, n1, . . . , nN−1]T is a zero mean complex Gaussian vector with covariance matrix:

Rn � E
{
n nH

} = σ 2
n H. (6.39)

Since H is a (Toeplitz) Hermitian and positive definite matrix (hk is generated by sampling an auto-
correlation function) it can be factored as:

H = LH D2 L (6.40)

using the Cholesky decomposition (see (C.13)), where L = [li,j ] is an N × N lower triangular matrix
with 1s along its main diagonal, and D = diag

(
χi

)
, with i = 0, 1, . . . , N − 1, is an N × N diagonal

matrix with positive real elements. Note from (6.40) that the factorization:

H−1 = PH D−2 P, (6.41)

can easily be shown for H−1, where:
P � (LH )−1 (6.42)

is also a lower triangular matrix with 1s along its main diagonal. Then the inverse of the noise
covariance matrix Rn (6.40) can be expressed as:

R−1
n = 1

σ 2
n

PH D−2 P. (6.43)
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It is also worth noting that the nonzero elements of the mth row of P can be shown to be the
tap weights of a forward prediction error filter of order m for a discrete-time stochastic sequence
characterized by a covariance matrix H [503, 1022]. If such a filter is fed by the noise sequence {nk}
its output represents a prediction error, whose variance is proportional to χ2

m. Note also that, generally
speaking, χm+1 ≥ χm for any m, so that the prediction accuracy does not get worse as the predictor
length increases.

Given the factorization (6.41) a linear reversible transformation, represented by the matrix:

TW = (
LH D

)−1 = D−1P, (6.44)

can be used to transform the vector r (6.38) into the statistically equivalent vector
X � [X0, X1, . . . , XN−1]T , which is evaluated as:

X � TW r = D−1P
(

LH D2 L cN + n
) = D L cN + N, (6.45)

where N � D−1P n is a noise vector having covariance matrix (see (6.39) and (6.40)):

RN � E
{
N NH

} = D−1P Rn PH D−1 = σ 2
n IN, (6.46)

that is, it is a white Gaussian noise vector. This proves that the transformation defined in (6.45)
accomplishes noise whitening. Note also that the kth element of X (6.45) is given by:

X0 = χ0 c0 + N0, (6.47)

for k = 0, and by:

Xk = χk


ck +

k−1∑
p=0

lk,p cp


 + Nk, (6.48)

for k = 1, 2, . . . , N − 1, so that, generally speaking, Xk depends on ck and the past symbols only.
Given the above results, we now consider the development of algorithms for decision feedback

equalization. Two criteria can be adopted in this case, namely a zero forcing (ZF) criterion and an
MMSE criterion. If the ZF approach is used, the objective of the equalization algorithm is to completely
remove the effects of ISI by exploiting past decisions on the transmitted data symbols while ignoring
the presence of noise. This result can be easily achieved by processing the vector X (6.45), since Xk

depends on the channel symbol ck and on a set of past symbols. In fact, an estimate ĉ0 of c0 can be
extracted from X0/χ0. Now, assuming that ĉ0 = c0, the influence of this symbol can be removed in
X1 by computing the difference X1/χ1 − l1,0ĉ0, which is processed to generate an estimate ĉ1 of c1.
Then both estimates ĉ0 and ĉ1 are employed to cancel ISI in X2, from which an estimate ĉ2 of c2 is
obtained and so on. This technique for ISI removal can be described more compactly as subtracting
the vector BZF ĉN from FZF r, where:

FZF � D−1TW = D−2P (6.49)

describes linear feedforward filtering and:

BZF � L − IN (6.50)

is an N × N matrix having all the elements along its main diagonal and above it equal to zero and
describing the mechanism of decision feedback. Note, however, that the evaluation of the elements of
the difference FZF r − BZF ĉN = D−1X − BZF ĉN cannot be accomplished in a parallel fashion, since
the computation of the kth element of such a difference (with k > 1) requires knowledge of the symbol
estimates {ĉl , l = 0, 1, . . . , k − 1}. This is shown in Figure 6.4, a block diagram of a DFE based on
the ZF criterion (ZF-DFE). Note that, in equalization jargon, the matrices FZF (6.49) and BZF (6.50)
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Figure 6.4 Structural diagram of a block ZF-DFE.

describe the linear time-varying filtering applied to the received signal samples (feedforward filtering)
and the detected symbols (feedback filtering), respectively.

As already stated, the presence of noise is neglected in the design of a ZF-DFE. This may lead to the
effects of noise being magnified when the equalizer tries to compensate for the frequency selectivity of
the communication channel. This phenomenon, known as noise enhancement, can substantially affect
error performance and, in particular, can cause error propagation. In fact, any data decision is fed
back to remove the associated contribution to ISI but, if wrong, makes such a contribution stronger
and can lead to further data decision errors.

The reduction in ISI can be balanced with noise enhancement by adopting an MMSE approach
to DFE design. The resulting equalizer always performs as well as, or better than, its ZF counterpart
and has a similar implementation complexity. The design of an MMSE-DFE requires looking for the
filters that minimize the MSE:

εMMSE � E
{∣∣Z − cN

∣∣2} , (6.51)

where
Z � F r − B ĉN (6.52)

results from processing r through forward filtering and decision-based ISI cancelation (described by F
and B, respectively) and averaging is accomplished with respect to both channel symbols and noise.
In other words, we need to solve the optimization problem:

min
F,B

εMMSE → FMMSE , BMMSE , (6.53)

where FMMSE and BMMSE denote the optimal values of F and B, respectively; note that BMMSE is
required to have all the elements along its main diagonal and above it equal to zero, as in the ZF
case. The derivation of the expressions for FMMSE and BMMSE that minimize εMSE (6.51) is based on
the so-called orthogonality principle [503, 1021]. This states that MMSE minimization requires the
error signal � � [δ0, δ1, . . . , δN−1]T :

� � Z − cN, (6.54)

to be orthogonal to the data vector r (6.38):

E
{
� rH

} = 0N, (6.55)
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where 0N denotes the N × N null matrix. Substituting (6.52) into (6.54) and (6.54) into (6.55) and
assuming that the correct decisions are used to remove ISI (i.e., ĉN = cN ) yields, after some manip-
ulation:

F
(
σ 2

c HHH + σ 2
n IN

) − σ 2
c

(
B + IN

)
HH = 0N, (6.56)

where σ 2
c denotes the mean square value of the channel symbols. It is easy to see that:

F = B̄ HH �−1, (6.57)

where
B̄ � B + IN, (6.58)

and

� � HHH + σ 2
n

σ 2
c

IN (6.59)

is an N × N Hermitian matrix. Note that the optimal choice B̄MMSE for B̄ should have all the elements
of its main diagonal equal to one to ensure that all the diagonal elements of B are zero. Substituting
(6.57) into (6.52) and (6.52) into (6.54) leads to:

� = B̄ HH �−1 r − B̄ cN = B̄ V, (6.60)

where
V � HH �−1 r − cN (6.61)

is a zero mean N-dimensional vector. From (6.60) it can be seen that, in order to minimize the mean
square error E{|δl |2} for l = 0, 1, . . . , N − 1, � should be the nonstationary innovation of V (6.61),
that is, the linear transformation described by B̄ should decorrelate the elements of � [503, 1021]. It
is easy to show that the covariance matrix of � (6.60) can be expressed as:

R� � E
{
� �H

} = B̄ RVB̄H , (6.62)

where the covariance RV � E{V VH } of V is given by:

RV = σ 2
c

[
IN − HH �−1H

]
. (6.63)

Applying the Cholesky decomposition to RV yields the factorization:

RV = MH Q2 M, (6.64)

where M = [mi,j ] is an N × N lower triangular matrix with all the elements along its main diagonal
equal to one and Q = [Qi,j ] is an N × N diagonal matrix with positive real elements Qi,i = ξi , with
i = 0, 1, . . . , N − 1. Then substituting (6.64) in (6.62) yields:

R� = B̄ MH Q2 M B̄H , (6.65)

which shows that the optimal choice for B̄ is given by:

B̄MMSE = (
MH

)−1
, (6.66)

since it diagonalizes R�, is an N × N lower triangular matrix and all the elements along its main
diagonal are equal to one. Then the optimal feedback matrix can be evaluated as (see (6.58)):

BMMSE = B̄MMSE − IN = (
MH

)−1 − IN, (6.67)
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which is an N × N lower triangular matrix with all the elements along its main diagonal equal to
zero, as required. Moreover, substituting (6.66) into (6.58) yields:

FMMSE = (
MH

)−1
HH �−1, (6.68)

which expresses the optimal feedforward matrix. It can be shown that the MMSE-DFE becomes
equivalent to the ZF-DFE for vanishing noise (i.e., for σ 2

n → 0). Further information on the design
and performance of an MMSE-DFE for block transmissions can be found in [1021, 1023, 1024].

The decision feedback algorithm for channel equalization developed above is based on the use
of two linear discrete-time symbol-spaced filters. Note, however, that both the coefficients and the
memory of such filters are time-varying. This approach makes sense if the length N of the received
vector r is not too large. When this does not occur, discrete-time filters with a fixed memory (i.e.,
a fixed number of taps) need to be employed for both feedforward and feedback processing. This
approach leads to the conventional symbol-spaced finite-length DFE, whose block diagram is given
in Figure 6.5. This equalizer includes:

(a) an Lf -tap symbol-spaced feedforward filter (FFF) having complex impulse response

fn � [f (0)
n , f

(1)
n , . . . , f

(Lf −1)
n ]T in the nth symbol interval,

(b) an Ld -tap symbol-spaced feedback filter (FBF) having complex impulse response
dn � [d (0)

n , d
(1)
n , . . . , d

(Ld−1)
n ]T in the nth symbol interval, and

(c) a decision device (typically, a threshold device) generating an estimate of each transmitted channel
symbol with a delay � (this parameter is usually known as the decision delay or lag).

Note that, generally speaking, the lengths of the FFF and of the FBF are proportional to the CIR
length; however, no general mathematical rule relating these quantities can be found in the literature
[1025].

The DFE shown in Figure 6.5 operates as follows. In the kth symbol interval the FFF processes
the received vector:

rk �
[
rk−Lf +1, rk−Lf +2, . . . , rk

]T

(6.69)

to partially compensate for the channel distortion. In particular, it mitigates the ISI coming from the
symbols preceding ck−� (i.e., precursor ISI) and influencing the vector rk (6.69). Then, the FBF output
is subtracted from the FFF output, in order to cancel a significant portion of postcursor ISI, so that
the decision device input:

Ik = fTk rk − dT
k ĉk (6.70)

rk Ik ĉk–∆
FFF

−

Decision
Device

FBF

Figure 6.5 Block diagram of a symbol-spaced finite-length DFE (conventional form).



264 Wireless Communications

is generated in the kth symbol interval, where:

ĉk =
[
ĉk−�−Ld

, ĉk+1−�−Ld
, . . . , ĉk−�−1

]T

(6.71)

denotes the past decision vector ĉn processed by the FBF (note that ĉl = 0 for l < 0 and l > N − 1).
If model (6.36) is again adopted for the kth receive sample rk , the vector rk (6.69) can be put in the
form:

rk = H ck + nk, (6.72)

where ck � [ck−Lf −Lh+2, ck−Lf −Lh+3, . . . , ck, . . . , ck+Lh−1]T , nk � [nk−Lf +1, nk−Lf +2, . . . , nk]T

and H = [hi,j ] is a proper Lf × (2Lh + Lf − 2) CIR matrix. Then, if correct decision feedback is
assumed, the optimal choice (fMMSE ,k , dMMSE ,k , �MMSE ), in the MMSE sense, for the parameter vector(
fk, dk, �

)
is the solution of the optimization problem:

(fMMSE ,k, dMMSE ,k, �MMSE ) = arg min
f̃k,d̃k,�̃

εMMSE , (6.73)

where

εMMSE � E

{∣∣∣ck−�̃ − f̃Tk rk + d̃T
k ĉk

∣∣∣2} (6.74)

denotes the MSE and, as in (6.51), the expectation is evaluated over the random data and channel
noise (but is conditioned on the channel matrix H) and correct decision feedback is assumed. In
addition, �̃ satisfies the constraint 0 ≤ �̃ ≤ Lh + Lf − 2, since on the basis of the vector rk (6.69) a
decision should be taken on ck or on the past symbols influencing the vector itself. Unfortunately, a
closed-form solution is not available for the problem (6.73) (unlike the conceptually related problem
(6.53)) because of the presence of the additional parameter �. However, for a fixed �, a solution for
the optimal fk and dk can be found by applying the orthogonality principle and, in addition, such a
solution is time-invariant for Lh + Lf − 2 ≤ k ≤ N − Lh. For this reason, a reasonable strategy is
simply to preselect � as:

� ≈ Lh + Lf − 2

2
, (6.75)

so that closed-form expressions for the FFF and FBF taps can be exploited. Further details on the
optimization, performance and computation of a finite-length MMSE-DFE for SISO systems can be
found in [1026–1030].

However, if the channel is time-varying, the design of an optimal DFE becomes substantially more
complicated. In fact, as already stated in Section 4.4.2, matched filtering cannot be employed and
an ideal low-pass filter with a bandwidth large enough so as to not distort the useful component
of the received signal is usually selected as a receive filter. Moreover, the low-pass filter output is
sampled at a frequency fc = nsRs , with ns > 1, and this results in model (4.104) (to be adopted
in place of (6.36)). Consequently, since ns > 1 samples per channel interval are extracted from the
filtered received signal, in order to avoid information loss a fractionally spaced filter (characterized
by a tap spacing Tc � Ts/ns and whose output is decimated by a factor ns) has to be adopted for
the FFF of a DFE [1020]. The resulting system requires an algorithm for the automatic synthesis of
its filters. This algorithm relies on the transmission, during a training period, of a known signal (in
practice, on blocks of training symbols, which are interspersed with the data transmission blocks to
periodically train the equalizer). A synchronized version of this signal is generated in the receiver
to acquire information about the channel characteristics through the evaluation of the samples of
an error signal. The signal can be processed by an LMS or RLS algorithm (see Section 5.1.3) to
adjust the equalizer coefficients so that the sum of the squared error samples is minimized. After
the training period the filters can be adapted to the changing channel characteristics by employing
decision-directed tracking, i.e. by exploiting the detected channel symbols. The architecture of the
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Figure 6.6 Block diagram of an adaptive DFE.

adaptive DFE based on these principles is shown in Figure 6.6 (the error sequence and the received
data sequence acquired at frequency fc are denoted by {ek} and {rl}, respectively). Generally speaking,
the compensation capability of this equalizer can be improved by allowing time-reversal operation
[1031–1033]. In practice, this is accomplished by storing each block of received signal samples in a
buffer and reversing the sequential order of these signal samples in time prior to equalization, so that
the equivalent CIR as seen by the equalizer is a time-reverse of the actual CIR. Therefore, selective
time-reversal operation allows a DFE with a small number of forward filter taps to perform equally
well for both minimum-phase and maximum-phase channel characteristics.

The DFE structure of Figure 6.6 works well if the channel does not vary too quickly but may suffer
from error propagation in the decision-directed mode. An alternative to this approach is to identify the
channel parameters first and then use these parameters for calculating the equalizer coefficients (e.g.,
see [778, 1034]). For instance, in [778] the time-varying CIR is estimated by interpolating a set of
CIR values obtained through periodic training at adjacent data frames within a given timeslot. Then
interpolated channel estimates are employed to adapt the DFE. This adaptive strategy has the disad-
vantages of increased processing delay and reduction of system throughput (since frequent training
block are needed), but it does offer the advantage of improved immunity to decision errors.

There are no closed-form solutions or easily computable tight bounds on the BER of MMSE-DFEs,
due to the non-Gaussian nature of the residual ISI and the possibility of erroneous decisions being fed
back through the FBF. Certain analytical techniques accounting for error propagation (e.g., see [1017,
1035–1039]) or ignoring it (e.g., see [1040–1043]) can be found in the literature. The performance
degradation due to imperfect adaptation is assessed in [510, 767].

The simplest performance measure is the DFE MSE:

MSE � E
{∣∣ek

∣∣2} , (6.76)

where the error sample:
ek � Ik − ck−� (6.77)
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is evaluated under the assumption of correct decisions (Ik is given by (6.70)). This assumption, which is
repeatedly invoked in the literature on decision feedback, is a strong one. In fact, as already mentioned
for block decision feedback equalization, at low SNRs, noise may cause a “primary” error, which is
fed back into the FBF. Then, instead of canceling ISI, the FBF can actually enhance it, which in turn
increases the likelihood of subsequent, “secondary” errors. This error propagation phenomenon may
be severe in wideband channels since the FBF may be hundreds of symbols long (see [1044–1049]
for further details). The error propagation problem can be mitigated by developing soft decision
versions of equalization structures. In their basic form, such structures, rather than utilizing a hard
decision quantizer to generate the feedback data, employ a (monotonic) soft decision device [1050].
Then, outside the feedback loop, the soft decisions are converted into finite-set constrained decisions
by means of a standard hard quantizer, which provides the equalizer output. Since the signal fed
back is not restricted to belong to a finite set, it may provide information about the reliability of
detected symbols. Possible choices of decision devices, which have been utilized to enhance DFEs,
include hyperbolic tangent functions [1051, 1052], cubic nonlinearities [1053], and piecewise linear
(saturation-type) functions [1054] (the latter have also been adopted in decoding problems [1055,
1056]). In alternative developments of soft decision structures, reliability measures of decisions can
be employed directly in order to allow the decisions already made to be changed a posteriori in the
feedback path. For instance, in [1057], uncertainty effects are accounted for in a DFE configuration by
inspecting the input to the quantizer. If the input lies near a decision boundary, then the neighbor of
the output of the quantizer is used in a parallel DFE loop. After a decision delay, the output of the DFE
loop with lower accumulated error is chosen as correct. A different approach is described in [1002],
where the DFE quantizer is replaced by a sequence detector based on the VA. In this case, rather
than deploying symbol-by-symbol feedback, sequences are fed back; such sequences are provided by
the VA and can be changed after output decisions are made. A somewhat related equalizer has also
been proposed in [1058], where a Bayesian detector combined with soft decisions is deployed. Other
related work can be found in [1059], where a fractionally spaced equalizer combining a hyperbolic
tangent decision device with a Kalman filter is presented.

A substantially different approach to avoiding the error propagation problem involves transferring
the feedback part of a DFE to the transmitter, provided that a feedback channel is available to
communicate CSI to the transmitter itself. This approach leads to a nonlinear pre-equalization technique
known as Tomlinson–Harashima precoding (THP), since it was proposed by M. Tomlinson [1060] and
by H. Harashima and H. Miyakawa [1061].

There are a number of structural modifications/extensions to the classical fractionally spaced DFE
presented above. Here we limit attention to:

(a) the modified DFE structure of [983] for precanceling postcursors without requiring training of the
feedback filter (only the feedforward filter taps need to be trained);

(b) the skeptical multistep detector proposed in [1062] and embedding DFEs and the multistep detec-
tors in a broader framework;

(c) the bidirectional DFE, where equalization is performed both on the received signal and on its
time-reversed version [1031, 1063, 1064];

(d) the tree equalizers developed in [1065];
(e) the so-called predictor form of the DFE [1019];
(f) the decision feedback equalizer (DFE) scheme for M-ary differentially encoded PSK (DPSK)

signals developed in [1066].

The latter structure is illustrated in Figure 6.7 and is based on the idea that linear prediction can
be exploited to reduce the power of the error sequence (due to noise and ISI) at the forward filter
output; for this reason a prediction filter is used in the feedback section of the equalizer. It can be
shown that, so long as the length of the forward filter in the conventional and prediction-based DFE
structures is unconstrained, the two structures remain equivalent even when the length of the feedback
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Figure 6.7 Predictor form of a DFE.

(or prediction) filter is finite. Note, however, that, although the forward filter in the conventional DFE
depends on the length of the feedback filter, the forward filter in the predictor form is independent of the
prediction coefficients. Further details on the predictor form and its comparison with the conventional
form can be found in [1019, 1020, 1067].

DFEs can also be employed to equalize other signal formats such as CPM, where ISI is due in part to
the memory in the modulation or demodulation scheme rather than a dispersive channel [1068–1070].

In wideband communications over multipath channels with large delay spread, CIRs can span
hundreds of symbols and exhibit sparse behavior (i.e., many nearly zero taps). In addition, a strong
precursor component (corresponding to one or more strong paths which are shorter than the main path)
may exist. In this case modified decision feedback equalization structures, exploiting channel sparse-
ness by simple tap allocation, such as those proposed in [1071–1073], can be employed. Unlike the
conventional DFE, these structures (known as sparse equalizers) yield large reductions in complexity
while maintaining performance comparable to the conventional DFE.

6.2.1.4 Linear Equalization in the Time Domain

If feedback filtering is removed from a DFE, a linear equalizer (LE) is obtained. Consequently,
an LE is a linear, usually transversal, filter followed by a simple decision device (i.e., a nearest-
neighbor quantizer). Like DFEs, LEs are also classified on the basis of their design criterion: in most
applications, the ZF and the MMSE criteria are usually considered.

Here, as in our study of decision feedback equalization, we first tackle the problem of ZF and
MMSE block equalization of a received vector r, assuming a known frequency-selective channel and
the same received signal model as that adopted for block decision feedback equalization (see (6.38)
and (6.39)). Then we consider the case of long r, under the assumptions of frequency-selective known
channel and an unknown time-varying channel.

An MMSE block LE can be derived by applying the orthogonality criterion in the form (6.55),
where, however, the expression:

Z � F r (6.78)

is used in place of (6.55) in the evaluation of the error vector � (6.54), since feedback filtering is
missing (in other words, B = 0N ). This leads easily to the expression:

FMMSE = HH �−1 (6.79)

for the optimal choice of the feedforward matrix F, where � is given by (6.59). Note that, if σ 2
n → 0,

then � → HHH , so that FMMSE → H−1 , which expresses the feedforward matrix in the absence of
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channel noise. Then the optimal value of the matrix F under the ZF criterion is given by:

FZF = H−1 . (6.80)

The ZF method neglects the presence of channel noise and minimizes the ISI contribution within the
equalizer time span. This is undesirable since wideband wireless channels are characterized by multiple
deep notches in frequency. In inverting these, a ZF-LE inevitably causes undue noise amplification
and a degraded BER. For this reason MMSE is a better design criterion, where the combination of
noise and ISI is minimized. This is evidenced by the following example, where the performance of
linear equalization and decision feedback equalization is compared with that offered by MLSD in a
specific scenario.

Example 6.2.1 Let us now compare the error rate performance provided by different equalization
algorithms in an uncoded QPSK transmission (characterized by a block length N = 128) over a
frequency-selective channel. Adopting the Proakis’ channel model described in [27, p. 631], we have
that h = [h0, h1, h2] and Lh = 3 in (6.36). Moreover, each channel tap is independently Rayleigh
distributed with statistical powers E{|h0|2} = 0.407, E{|h1|2} = 0.815, E{|h2|2} = 0.407, so that
E{|h|2} = ∑Lh−1

l=0 E{|hl |2} = 1, that is, the channel has average unitary power. Figure 6.8 shows the
BER offered by a block ZF-LE (see (6.80)), an MMSE-LE (see (6.79)), an MMSE-DFE (see (6.67)
and (6.68)) and MLSD (a VA operating over a MLh−1 = 64-state trellis has been employed); the
MFB is also shown for comparison. These results show that: (a) MLSD can get very close to the
MFB; (b) the ZF-LE is significantly outperformed by its MMSE counterpart; (c) a significant energy
gap exists between MLSD and the MMSE-DFE (however, the improvement in error performance is
achieved at the price of a significant additional complexity); (d) BER curves referring to different
equalization may be characterized by different slopes (e.g., compare the MMSE-DFE BER with that
of the MMSE-LE), that is, by different diversity gains (see Section 6.2.1.6).
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Figure 6.8 BER performance of various equalization algorithms for an uncoded QPSK transmis-
sion over a frequency-selective fading channel. The MFB is also shown for comparison.
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Further details on the performance gap between different types of block LEs, and between LEs and
block DFEs, can be found in [1021]. The BER performance achieved by block linear equalization in
SC block transmissions using zero-padding or cyclic prefix is investigated in [1074].

As in the DFE case, block linear equalization can be adopted if the block size is not too large, but
otherwise a time-invariant linear filter should be adopted. If the channel is frequency-selective and
known, matched filtering and symbol-rate sampling is optimal. In this case, the problem of deriving
an expression for the optimal taps for an LE filter can be formulated in a similar fashion to the DFE
(in other words, (6.69)–(6.74) can be exploited again under the assumption that dn = 0Ld

). However,
as in the DFE case, a closed-form expression for the optimal filter taps cannot be derived because of
the tap dependence on the value selected for the lag � (an exhaustive search approach is needed to
determine the optimal delay [1075]). In contrast, if the channel is unknown and/or time-varying, an
adaptive filter is required [860, 1076]; in addition, fractionally spaced taps should be used [1020, 1025,
1077, 1078]. A fractionally spaced linear equalizer can be implemented as a baseband (as we did in
the previous subsection for the DFE) or as a passband equalizer. Examples of the latter approach can
be found in [1079, 1080], where the so-called phase-splitting fractionally spaced equalizer is analyzed.

As already stated, an LE can be interpreted as a simplification of a DFE. Then, given a certain
communication channel, it is important to establish if an LE is outperformed in terms of MSE by a
DFE counterpart characterized by the same overall number of coefficients. Unfortunately, there is no
well-defined indication for this problem. This is due to the fact that the performance of each type of
equalizer is influenced by the sampling phase (if symbol-spaced FFFs are used), the characteristics
of the communication channels, the number of coefficients and the position of the main tap of the
equalizer itself. However, generally speaking, an LE is unable to compensate for amplitude distortion
as much as its DFE counterparts. In addition, the DFE performance is less sensitive to the sampling
phase [1081]. These results can be motivated as follows. The coefficients of an LE are selected to
force the combined channel and equalizer impulse response to approximate a unit pulse. On the other
hand, the combined channel and FFF impulse response of a DFE may have nonzero samples following
the main pulse, that is, the feedforward section of a DFE does need to approximate the inverse of the
channel characteristics and results in a reduction of noise enhancement and of sensitivity to sampler
phase. It is also worth mentioning that an LE, unlike a DFE, does not suffer from error propagation;
however, as already mentioned, this phenomenon is not catastrophic. Despite its disadvantages, linear
equalization has attracted much interest for its simplicity. In fact, on frequency-selective channels
linear equalization enjoys significantly reduced complexity compared with MLSD; note that, generally
speaking, the cost of performance degradation can be in the form of a loss of the inherent frequency
diversity order or reduced coding gain. It has recently been shown that the MMSE symbol-by-symbol
linear equalizer incurs no diversity loss compared to MLSD [1082]; in fact, for a channel with
memory equal to Lh − 1, both strategies achieve the full diversity order of Lh. However, the ZF
symbol-by-symbol linear equalizer always achieves a diversity order of one.

As for the DFE, various extensions to the basic LE structure are available [1065, 1083–1085].
In particular, [1083] proposes a fractionally spaced equalizer based on a parametric model of the
communication channel, while the use of a tree-structured piecewise linear filter as an adaptive equal-
izer is proposed in [1065]. Finally, the exploitation of linear equalization in noncoherent receivers is
investigated in [1084, 1085].

6.2.1.5 MAPSD/MAPBD

When the MAP criterion replaces the ML criterion, the MAP forward–backward algorithm (FBA)
replaces the VA [982]. The FBA operates on the same trellis as the VA, but it efficiently calculates the
MAP bit or symbol probabilities, instead of looking for the ML sequence. Unlike the VA, the FBA
requires all the received samples to be available before it can be run. For this reason, when a short
decision delay is required, a near-optimal, forward-only (fixed-lag) MAP strategy can be adopted,
which we call the fixed-lag algorithm (FLA). However, in principle, both MAP algorithms work with
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likelihoods rather than log-likelihoods, so that the computation of their branch metrics is significantly
more expensive than that of the VA (it requires multiplications and additions instead of the additions
and minimization characterizing the VA).

In what follows the derivations of the FBA and the fixed-lag MAPSD are sketched (further details
on the FBA can be found in Section 9.2.4, where the same algorithm4 is derived for MAP decoding of
convolutional codes) and some comments on the advantages and disadvantages they offer with respect
to VA-based MLSD are given. We consider an M-ary PAM signaling communication system operating
over a time-invariant, frequency- selective fading channel and assume that the detection algorithm
processes the baud rate received signal samples taken at the output of a WMF; in other words, model
(6.32) is adopted for the kth received signal sample. In addition, it is assumed that Lq < N and that
the transmitted channel symbols {ck, k = 0, 1, . . . , N − 1} forming the transmitted symbol vector
cN � [c0, c1, . . . , cN−1]T are statistically independent.

The Forward–backward Algorithm
The FBA evaluates the probabilities:

Pr
{
cl = c̃|r, q

}
, l = 0, 1, . . . , N − 1, (6.81)

for any possible trial symbol c̃ transmitted in the mth signaling interval, where r =
[r0, r1, . . . , rN − 1]T and q � [q0, q1, . . . , qLq−1]T denote the received signal vector and
the CIR vector, respectively. In the FBA the evaluation of these probabilities relies on:

(a) the adoption of an MLq−1-state trellis structurally identical to that of a VA accomplishing MLSD
and operating over the same communication channel (see Section 6.2.1.1);

(b) the evaluation of the same intermediate quantities, known as state transition probabilities.

Given the trellis states �l and �l+1 in the lth and (l + 1)th symbol interval, respectively, the
corresponding state transition probability is given by:

Pr
{
�l = �̃l,�l+1 = �̃l+1|r, q

}
(6.82)

for any possible pair (�̃l, �̃l+1) of trial states referring to two consecutive signaling intervals. Note
that this probability is zero if the states �̃l and �̃l+1 are not connected. The probability (6.82) can be
evaluated as:

Pr
{
�l = �̃l,�l+1 = �̃l+1 |r, q

}
=

∑
c̃N ∈S

(
�̃l ,�̃l+1

) Pr
{
cN = c̃N |r, q

}
∑

c̃N ∈Sc
Pr
{
cN = c̃N |r, q

} , (6.83)

where c̃N denotes a trial value of cN , Sc denotes the set {c̃N } consisting all the possible trial vectors and
S(�̃l, �̃l+1) is that subset of Sc which consists of all the possible trial symbol vectors which traverse
the trellis branch connecting the state �̃l to �̃l+1. By Bayes’ theorem the probabilities {Pr{cN =
c̃N |r, q}} appearing in the RHS of (6.83) can be expressed as:

Pr
{
cN = c̃N |r, q

} = fr

(
r
∣∣c̃N, q

)
Pr
{
cN = c̃N

}
fr (r |q )

. (6.84)

The terms Pr{cN = c̃N } and fr(r|c̃N, q) in this formula can be factored as:

Pr
{
cN = c̃N

} =
N−1∏
k=0

Pr
{
ck = c̃k

}
(6.85)

4 In the field of channel coding this algorithm is also known as Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm.
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and

fr

(
r
∣∣c̃N, q

) =
N−1∏
k=0

fr

(
rk|c̃N, q

) =
N−1∏
k=0

fr

(
rk |c̃k, �̃k, q

)
, (6.86)

respectively, since:

(a) the transmitted channel symbols are independent; and
(b) the signal sample rk received in the kth symbol interval depends on the kth symbol ck and on the

previous (Lq − 1) symbols (see (6.32)), that is on the trellis state �k , which is uniquely identified
by the ordered collection of the channel symbols {cn, n = k − Lq + 1, k − Lq, . . . , k − 1}.

Note also that:

fr

(
rk |c̃k, �̃k, q

)
= 1

πσ 2
n

exp


− 1

σ 2
n

∣∣∣∣∣∣rk −
Lq−1∑
m=0

c̃k−m qm

∣∣∣∣∣∣
2

 . (6.87)

Then the product fr

(
r
∣∣c̃N, q

)
Pr
{
cN = c̃N

}
on the RHS of (6.84) can be expressed as (see

(6.85)–(6.87)):

Pr
{
cN = c̃N |r, q

} =
N−1∏
k=0

fr

(
rk |c̃k, �̃k, q

) N−1∏
k=0

Pr
{
ck = c̃k

}

=
N−1∏
k=0

fr

(
rk |c̃k, �̃k, q

)
Pr
{
ck = c̃k

}

= 1(
πσ 2

n

)N
N−1∏
k=0

γk

(
�̃k, �̃k+1

)
, (6.88)

where

γk

(
�̃k, �̃k+1

)
�
(
πσ 2

n

)
fr

(
rk |c̃k, �̃k, q

)
Pr
{
ck = c̃k

}

= exp


− 1

σ 2
n

∣∣∣∣∣∣rk −
Lq∑

m=0

c̃k−m qm

∣∣∣∣∣∣
2

Pr

{
ck = c̃k

}
(6.89)

is a weight depending on Lq consecutive channel symbols (i.e., on a state transition) only. Then
substituting (6.88) into (6.83) yields:

Pr
{
�l = �̃l,�l+1 = �̃l+1 |r, q

}
=

∑
c̃N ∈S

(
�̃l ,�̃l+1

) N−1∏
k=0

γk

(
�̃k, �̃k+1

)
∑

c̃N ∈Sc

N−1∏
k=0

γk

(
�̃k, �̃k+1

) . (6.90)

This result shows that the evaluation of the state transition probability Pr{�l = �̃l,�l+1 = �̃l+1|r, q}
requires the computation of (a) the sum of the products of the weights associated with all the paths
containing the branch exiting �̃l and entering �̃l+1 (see the numerator), and (b) the sum of the products
of the weights associated with all the paths in the trellis (see the denominator). A computationally
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efficient method to solve this problem can be developed as follows (e.g., see [533]). Let us define the
quantities αm(�̃m) and βm(�̃m) through the recursive formulas:

αm

(
�̃m

)
=

∑
�̃m−1

αm−1

(
�̃m−1

)
· γm

(
�̃m−1, �̃m

)
(6.91)

with m = 1, 2, . . . , N − 1, and

βm

(
�̃m

)
=

∑
�̃m+1

βm+1

(
�̃m+1

)
· γm

(
�̃m, �̃m+1

)
(6.92)

with m = N − 2, N − 3, . . . , 0, respectively, and assume that {α0(�̃0)} and {βN−1(�̃N−1)} are known
initial conditions for any possible �̃0 and �̃N−1. The quantity αm(�̃m) expresses the sum of the
products of the weights {γk(�̃k−1, �̃k)} along all paths originating from all the possible past initial
states {�̃0} and terminating in �̃m in the mth signaling interval. Similarly, βm(�̃m) represents the sum
of the products of the weights {γk(�̃k, �̃k+1)} along all paths ending in all possible future terminal
states {�̃N−1} and originating from �̃m in the mth signaling interval. Then the numerator of (6.90)
can be evaluated as:

∑
c̃N ∈S

(
�̃l ,�̃l+1

)
N−1∏
k=0

γk

(
�̃k, �̃k+1

)
= αl

(
�̃l

)
· γl

(
�̃l, �̃l+1

)
· βl+1

(
�̃l+1

)

� σl

(
�̃l, �̃l+1

)
, (6.93)

while its denominator is given by:

∑
c̃N ∈Sc

N−1∏
k=0

γk

(
�̃k, �̃k+1

)
=

∑
�̃l ,�̃l+1

σl

(
�̃l, �̃l+1

)
, (6.94)

so that:

Pr
{
�l = �̃l, �l+1 = �̃l+1 |r, q

}
=

σl

(
�̃l, �̃l+1

)
∑

�̃l ,�̃l+1
σl

(
�̃l, �̃l+1

) . (6.95)

This result shows that what is needed for the evaluation of the state transition probabilities are the
quantities {σl(�̃l, �̃l+1)}, computed according to (6.93). This, in turn, requires a forward recursion
and a backward recursion (expressed by (6.91) and (6.92), respectively) involving all the trellis states
in each signaling interval; note that both recursions over all the trellis only need to be performed once.

Signal demodulation requires the probability Pr{cl = c̃|r, q} (see (6.81)) to be evaluated for any
possible value of the channel symbol c̃ (or bit b̃ if a binary constellation is considered). This probability
can be calculated by summing the state transition probabilities (6.95) corresponding to all the branches
associated with the symbol c̃ (or bit b̃). Then, if we define the set S

(
c̃l

)
of all state transitions

(�̃l, �̃l+1) such that the channel symbol labeling the corresponding branch is c̃l , Pr{cl = c̃|r, q} can
be evaluated as:

Pr
{
cl = c̃|r, q

} =
∑

(
�̃l ,�̃l+1

)
∈S(c̃l)

Pr
{
�l = �̃l, �l+1 = �̃l+1 |r, q

}

=
∑(

�̃l ,�̃l+1

)
∈S(c̃l)

σl

(
�̃l, �̃l+1

)
∑

�̃l ,�̃l+1
σl

(
�̃l, �̃l+1

) . (6.96)
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Finally, the FBA can be summarized in the following steps:

1. Evaluate the conditional probabilities {γk(�̃k, �̃k+1)} for all the trellis branches using (6.89).
2. Initialize the forward recursion, setting m = 1 and α0(�̃0) = 1 for any �̃0.
3. Repeat steps 4 and 5 until m = N .
4. Compute the forward path probabilities {αm(�̃m)} using (6.91) and store them.
5. Set m = m + 1.
6. Initialize the backward recursion, setting m = N − 2 and βN−1(�̃N−1) = 1 for any �̃N−1.
7. Repeat steps 8 and 9 until m = 0.
8. Compute the backward path probabilities {βm(�̃m)} using (6.92) and store them.
9. Set m = m − 1.

10. For each trellis branch compute the quantity σl(�̃l, �̃l+1) using (6.93).
11. Evaluate the a posteriori symbol probabilities {Pr{cl = c̃|r, q}} using (6.96).

A suboptimal alternative to the FBA is provided by the MAP-FLA illustrated next.

The Fixed-lag Algorithm
The FBA is suited to short burst transmission because its delay and storage requirements become
unacceptable as the data sequence length increases. In contrast, the MAP detector based on the
FLA makes decisions at a fixed lag of Df l symbols from the current received sample and requires a
fixed amount of memory [1086]. The FLA represents a computationally efficient solution to the MAP
detection problem:

ĉl = arg max
c̃l

Pr
{
cl = c̃l |r

l+Df l
0 , q

}
, (6.97)

where r
Df l +m

0 � [r0, r1, . . . , rDf l +m]T (in what follows the notation xb
a is used to denote the vector

[xa, xa+1, . . . , xb]T ). To derive such an algorithm, we begin by noting that the probability Pr{cl =
c̃l |r

l+Df l
0 , q} in (6.97) can be written as:

Pr
{
cl = c̃l

∣∣∣rl+Df l
0 , q

}
=

∑
c̃l−1
0 , c̃

l+Lf l
l+1

Pr
{

c
l+Df l
0 = c̃

l+Df l
0

∣∣∣rl+Df l
0 , q

}
. (6.98)

Applying Bayes’ rule, the probability Pr
{

c
l+Lf l
0 = c̃

l+Df l
0 |rl+Df l

0 , q
}

of (6.98) can be expressed as:

Pr
{

c
l+Df l
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l+Df l
0
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0 , q
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0 , q

)
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r
l+Df l
0 |q

) Pr
{

c
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l+Df l
0

}
, (6.99)

where

Pr
{

c
l+Df l
0 = c̃

l+Df l
0

}
=

l+Df l∏
m=0

Pr
{
cm = c̃m

}
(6.100)

is the a priori probability of the symbol vector c̃
l+Df l
0 and the conditional pdf fr

(
r
l+Df l
0 |q

)
can be

evaluated as:
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(
r
l+Df l
0 |q

)
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0
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(
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l+Df l
0
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)
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0

}
. (6.101)
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Then substituting (6.101) into (6.99) produces:

Pr
{
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l+Lf l
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l+Lf l
0

∣∣∣rl+Lf l
0 , q

}

=
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so that Pr
{
cl = c̃l |r

l+Df l
0 , q

}
can be rewritten as (see (6.98)):
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We note the following observations:

1. In equation (6.103) the probability Pr
{

c
l+Df l
0 = c̃

l+Df l
0

}
does not necessarily take on the same

value for all possible trial sequences
{

c̃
l+Df l
0

}
, because of the possible presence of training or

pilot symbols inserted in the transmitted stream of channel symbols to solve the phase ambiguity
problem for the signal constellation at the receiver.

2. The quantities
{
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l+Df l
0 |c̃l+Df l

0 , q) Pr
{

c
l+Df l
0 = c̃
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0

}}
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statistics for taking a MAP decision on cl .

The evaluation of such statistics can be accomplished by means of a recursive procedure [1086].
In fact, if it is assumed that these quantities are available at the previous step (i.e., that the set of
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, (6.104)

since the components of r
l+Df l
0 , conditioned on the transmitted data sequence c̃

l+Df l
0 , are independent

random variables, because the noise samples affecting them are statistically independent. Let us now
assume that the algorithm lag Df l is larger than the channel memory, that is, that5:

Df l ≥ Lq − 1. (6.105)

5 If the channel memory is longer than the decision delay, this recursive procedure can still be applied with slight
modifications. In this case decision feedback may be required to reduce the computational complexity of the
algorithm [1086].



Detection of Digital Signals: Channel Equalization 275

Then, the conditional pdf fr

(
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appearing in the RHS of (6.104) can be
simplified as:
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since the received sample rl+Df l
depends on the symbol vector c̃

l+Df l
l (i.e., on (Df l + 1) symbols)

at most. Therefore, on the basis of (6.106), (6.104) can be rewritten as:
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, (6.107)

so that, iterating, the factorization:
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(6.108)

can easily be inferred. This result proves that the sufficient statistics {fr(r
l+Df l
0 |c̃l+Df l

0 , q) Pr{cl+Df l
0 =

c̃
l+Df l
0 }} in (6.103) can be evaluated via a recursive procedure, which can be interpreted as a forward

recursion accomplished over an M
Df l -state trellis (when processing the sample rk+Df l

, the state is

identified by the vector c̃
k+Df l −1
k ). Note the following:

(a) A trial trellis state �̃k in the kth interval (during which the sample rk+Df l
is processed) is uniquely

identified by c̃
k+Df l −1
k , that is, by the ordered collection of the trial channel symbols {c̃l , l =

k, k + 1, . . . , k + Df l − 1}.
(b) In the above-mentioned procedure the metric associated with the state transition (�̃l, �̃l+1) is

given by (see (6.108)):

γl(�̃l, �̃l+1) = fr(rl+Df l
|c̃l+Df l −1

l , c̃l+Df l
, q ) Pr{cl+Df l

= c̃l+Df l
}. (6.109)

(c) This forward recursion is the same as the forward recursion in the FBA, but is now accomplished
over a trellis with an enlarged number of states when inequality (6.105) holds.

The algorithm derived above was originally proposed in [1086, 1087]. Its main drawback is its
memory and computational requirements, which grow exponentially with the lag Df l (in practice,
a decision delay equal to 5Lq is usually sufficient). This has motivated the investigation of other
constrained delay MAP algorithms. Two significant alternatives to the MAP-FLA of [1086] have
been devised in [1088], where the so-called optimum soft output algorithm (OSA) and soft output
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algorithm (SSA) are derived. In particular, the OSA is an improved version of the MAP-FLA of
[1086] in the sense that it generates optimum soft outputs via only a forward recursion, but the
number of quantities to be stored and recursively updated increases linearly, rather than exponentially,
with the decision delay. In contrast, suboptimum performance is offered by the SSA, which, however,
offers the following advantages compared to the OSA and other MAPSD algorithms: (a) knowledge
of the noise variance σ 2

n is not required; (b) computations are in the logarithmic domain and, as
in the VA, the main operation is add–compare–select. As the degradation of the SSA from the
optimum performance is negligible and the computational burden is much lower than those of the
MAP algorithms, the SSA is a very practical soft output detection algorithm.

Further results on MAP forward-only detection algorithms can be found in [1089–1096]. In par-
ticular, [1091, 1093, 1094] investigate Bayesian decision feedback estimation (BDFE), which results
from employing decision feedback recursively in fixed-lag MAP symbol detection. BDFE schemes
interpolate between ordinary decision feedback equalization and MAP estimation in both performance
and complexity [1093].

Comparison of MLSD and MAP Detection Algorithms
We now compare the advantages offered by the VA-based MLSD, the MAP-FLA and the MAP-
FBA. To begin, we note that each of these three algorithms can be employed for the detection of
data sequences in the presence of ISI. Among these algorithms, however, the VA offers the smallest
computational complexity and this makes it the most appealing choice in both uncoded and coded
communication systems that do not require the availability of soft output information at the equalizer
output. In contrast, the MAP equalization algorithms illustrated above have the following significant
disadvantages: (a) they require knowledge of the noise variance in the evaluation of their metrics (see
(6.89) and (6.106)); (b) they have large memory and computation requirements.

In particular, as already stated above, the two MAP algorithms that we have considered accomplish
computations in the probability, instead of the logarithm domain, and consequently require a large num-
ber of multiplications and exponentiations. In addition, the following specific observations are in order:

1. The MAP-FBA performs two recursions and, consequently, operates in a block mode. In practice,
it memorizes all the received signal samples of each block and then processes it, so that its
memory requirements grow linearly with the sequence length N. Consequently, it is suitable for
processing short data sequences. Note also that, if the data sequence to be estimated by the MAP-
FBA is long, the CIR cannot be usually assumed constant over the block duration. This requires
combining channel tracking with soft detection, further increasing the receiver complexity (more
details on this topic can be found in Section 5.1.3). In fact, standard decision aided algorithms
for channel estimation (see Chapter 5) cannot be employed in this case as reliable data decisions
are available only at the end of both recursions.

2. The MAP-FLA requires only a forward recursion, so that it can operate in a continuous mode. In
this case, adaptivity to channel variations can be more easily embedded in the detection algorithm
because of the short and fixed decision delay (see Section 6.2.1.5 for further details). Both the
memory and computational requirements, however, grow exponentially with the decision delay
so that this parameter should be kept to a minimum. For this reason, the FBA may have smaller
computational requirements than the FLA [1088].

The most relevant features of the three algorithms considered are summarized in Table 6.1; here N is
the sequence length, and Lf l and DVA are the decision delay for the MAP-FLA and VA, respectively.
Usually, the inequality:

Lq ≤ DVA
Df l

≤ N (6.110)

holds.
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Table 6.1 Main features of the VA-based MLSD, the MAP-FBA and the MAP-FLA

Features MAP-FBA MAP-FLA MLSD (VA)

Minimization symbol error symbol error sequence error
Decision type soft soft hard
A priori information noise variance noise variance –
Recursion requirement forward and backward forward forward
Memory requirement ∝ N · MLq ∝ MDf l ∝ DVA · MLq

Computation requirement ∝ N · MLq ∝ N · MDf l ∝ N · MLq

Despite their significant computational complexity, significant research efforts have been devoted
to the study and development of MAPSD algorithms in recent years. This interest is due to the fact
that digital receivers may require MAP algorithms for efficient decoding and/or equalization (see
Chapters 10 and 12); in fact, this class of algorithms is able to incoporate a priori (soft) probabilistic
information about bits/symbols and to generate new a posteriori (soft) probabilistic information about
them; in other words, MAPSD algorithms can be employed as SiSo detection/decoding in a number of
applications. Particular attention has been devoted to the MAP-FBA (i.e., BCJR), for which various
approximations and modifications have also been developed to reduce its complexity. The various
strategies proposed for complexity reduction can be divided in two different classes, the first inspired
by RSSD, the second by reduced-search algorithms operating over a full trellis (Section 6.2.1.2). The
first class includes, for instance, the so-called reduced-state BCJR (RS-BCJR) algorithm developed
in [1097]; in this case assuming that only a part of the information corresponding to the full state
is embedded in a properly defined reduced state, the missing information is recovered by decision
feedback, in a way similar to RSSD. The RS-BCJR algorithm is particularly efficient on minimum-
phase channels or, more generally, when the first channel taps are much larger in magnitude than the
others. A significant example of the second class is the so-called M-BCJR algorithm [1098], in which
the forward recursion (6.91) on {αm−1(�̃m−1)} that produces {αm(�̃m)} is performed using only the
M largest components of {αm−1(�̃m−1)} (the rest are declared dead and set to 0). In principle, the
same scheme can be applied with the backward recursion, but since the quantities {σl(�̃l, �̃l+1)}
are products of the {αl(�̃l) and {βl+1(�̃l+1)} components, it is simpler just to execute the backward
recursion on the region of the trellis where the forward elements are alive. The performance gap
between the (optimal) MAP-FBA and its reduced-complexity counterparts is considerably influenced
by the CIR properties and may be significant, as evidenced by the following example.

Example 6.2.2 Let us consider an uncoded transmission over a mixed-phase communication channel
characterized by the CIR q � [1, 1, 1, 1, 1]T (so that Lq = 5). The modulation selected is a QPSK
with Gray mapping, thus M = 4 and the number of states in the complete trellis is Ns = 45 = 1024. In
Figure 6.9 the BER performance achieved by the MAP-FBA is compared with that offered by the RS-
BCJR operating over a 64-state trellis and of an M-BCJR algorithm using only the 16 most significant
elements of the set {αm−1(�̃m−1)} in the forward recursion (6.91). These results show that M-BCJR
offers an error performance very close to that of the MAP-FBA, while the performance of the RS-
BCJR algorithm is quite inferior (in this case it is found that the RS-BCJR does not converge to that of
the full-complexity algorithm even when keeping 64 elements in the forward recursion). Note that the
M-BCJR algorithm is particularly efficient since we are considering an uncoded transmission; further
results show that the error performance worsens when this algorithm is employed in coded systems
[1099], since it does not ensure high-quality soft outputs. Finally, a better performance/complexity
tradeoff than the RS-BCJR and M-BCJR is offered by other algorithms available in the technical
literature (e.g., see [1099]).

�
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Figure 6.9 BER performance of various detection algorithms for an uncoded QPSK transmission.

An alternative to MAP-FBA and its reduced-complexity versions is a modified version of the VA,
generating probabilistic (i.e., soft) information about transmitted data and known as the soft output VA
(SOVA) [1100]. The reader can refer to Section 9.2.4 for further details on soft output trellis-based
detection/decoding algorithms.

6.2.1.6 MLSD Over Slow Frequency-Flat Fading

The optimal detection strategies described above mainly refer to PAM signaling over a known
frequency-selective channel. In contrast, in this subsection we focus on the optimal detection of PAM
signals over a known slow frequency-flat fading channel. We assume that model (4.108) holds for
the received signal samples and, for generality, that the receiver is equipped with an antenna array,
so that nR faded replicas {r(l)(t), l = 0, 1, . . . , nR − 1} of transmitted signal are available for data
detection [13, 19]. Then the kth sample at the matched filter output of the lth branch of the receiver
can be expressed as:

r
(l)
k = α

(l)
k ck + n

(l)
k , (6.111)

with l = 0, 1, . . . , nR − 1; here, α
(l)
k represents the fading distortion over the lth branch in the kth

symbol interval, ck is the kth transmitted symbol and n
(l)
k is a complex Gaussian noise sample with

variance σ 2
n,l . Under these assumptions, the ML decision rule for the transmitted symbol vector cN �

[c0, c1, . . . , cN−1]T is given by (see (4.26) and Section 4.3.4):

ĉN = arg max
c̃N

fr

(
ρ0, ρ1, . . . , ρnR−1|c̃N, α0, α1, . . . , αnR−1

)
, (6.112)

where ρl � [ρ(l)
0 , ρ

(l)
1 , . . . , ρ

(l)
N−1]T denotes the value taken on by the vector rl � [r(l)

0 , r
(l)
1 , . . . ,

r
(l)
N−1]T (with l = 0, 1, . . . , nR − 1), αl � [α(l)

0 , α
(l)
1 , . . . , α

(l)
N−1]T (with l = 0, 1, . . . , nR − 1)

and r is the N · nR-dimensional vector resulting from the ordered concatenation of the vectors
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{rl , l = 0, 1, . . . , nR − 1}. If the noise processes {{n(l)
k }, l = 0, 1, . . . , nR} are assumed mutually

independent, the decision rule (6.112) turns into:

ĉN = arg max
c̃N

nR−1∏
k=0

frk

(
ρk|c̃N, αk

)
(6.113)

or, equivalently, into (see (4.145)):

ĉN = arg min
c̃N

nR−1∑
k=0

(
ρk − Hk c̃N

)H R−1
n (l)

(
ρk − Hk c̃N

)
, (6.114)

where Rn (l) is the noise covariance matrix for the lth branch and Hl is a diagonal matrix with the
elements of αl along its main diagonal (with l = 0, 1, . . . , nR − 1). If the noise samples on each
diversity branch are independent, that is, Rn (l) = σ 2

n (l) IN , the decision rule (6.114) becomes:

ĉN = arg min
c̃N

nR−1∑
k=0

1

σ 2
n,l

∣∣ρk − Hk c̃N

∣∣2 (6.115)

or, equivalently:

ĉk = arg min
c̃k

nR−1∑
l=0

1

σ 2
n,l

∣∣∣ρ(l)
k − α

(l)
k c̃k

∣∣∣2 (6.116)

with k = 0, 1, . . . , N − 1. Dropping irrelevant terms in (6.116) yields:

ĉk = arg min
c̃k

nR−1∑
l=0

1

σ 2
n,l

[∣∣∣α(l)
k

∣∣∣2 ∣∣c̃k

∣∣2 − 2 Re
(
ρ

(l)
k α

(l)∗
k c̃∗

k

)]
, (6.117)

with k = 0, 1, . . . , N − 1. If the transmitted symbol belongs to a PSK constellation, the strategy
(6.117) can also be rewritten as:

ĉk = arg max
c̃k

Re
[
Zk c̃∗

k

]
, (6.118)

with k = 0, 1, . . . , N − 1, where:

Zk �
nR−1∑
l=0

g
(l)
k ρ

(l)
k (6.119)

and

g
(l)
k � α

(l)∗
k

σ 2
n,l

. (6.120)

The algorithm (6.118) linearly combines (with coefficients (6.120)) all the MF outputs in the kth
symbol interval to take an optimal decision on ck , as illustrated in Figure 6.10. It is worth noting the
following:

1. Multiplying the sample ρ
(l)
k by α

(l)∗
k removes the channel phase distortion from the received

signal. Therefore, the detection algorithm based on (6.118)–(6.120) can be interpreted as a form
of coherent detection.

2. In the evaluation of the sufficient statistic Zk (6.119) a larger weight is given to less noisy channels.

Concerning the last point it can be proved [13] that the choice of the coefficients expressed by
(6.120), among all those possible, maximizes the SNR at the decision device input. For this reason
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Figure 6.10 Block diagram of a coherent detector based on MRC or EGC.

equations (6.118)–(6.120) express the so-called maximal ratio combining (MRC) detection strategy
[13, 1101]. The use of the MRC requires knowledge of both the channel gains {α(l)

k } and the noise
statistics {σ 2

n,l}. If the latter quantities are unknown, the choice:

g
(l)
k � α

(l)∗
k (6.121)

can be made instead of (6.120); this leads to the so-called equal gain combining (EGC) strategy, which
is suboptimal.

The coherent combining of the signals coming from multiple antennas results in an increase of
the average SNR available at the receiver; such an increase is proportional to nR and represents the
so-called array gain [38]. However, the enhancement deriving from the adoption of receive diversity
can be fully appreciated by considering asymptotic error performance in fading channels. In fact,
generally speaking, at high SNRs the average SER Pe of an uncoded (or coded) data communication
system operating over a fading channel can be approximated in various scenarios as (see [1102] and
references therein):

Pe ≈ (
Gc · γ̄

)−Gd , (6.122)

where Gc and Gd are the coding gain and diversity gain (or diversity order), and γ̄ denotes the average
SNR. Formula (6.121) shows that the diversity gain Gd plays a fundamental role since it determines
the slope of the SER curve versus γ̄ on a log-log scale for vanishing noise (high SNR). In contrast,
Gc, if expressed in decibels, determines the horizontal shift of the BEP curve in SNR with respect to
the benchmark SER curve associated with Pe ≈ (γ̄ )−Gd . Formula (6.122) applies, for instance, when
EGC or MRC are exploited in the case of PAM signaling over Rayleigh fading; in this case it can
be shown that both combining strategies are characterized by the same diversity gain Gd = nR , but
offer different coding gains.

An alternative to ECG and MRC is the so-called selection combining, in which the branch signal
with the largest instantaneous SNR is selected for demodulation, so that the output SNR is equal to
that of the best incoming signal. This strategy can be generalized to combine n of nR branches with
the largest amplitudes (multiple order selection combining). The reader can refer to [1103], which
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evaluates and compares the error performance offered by the above-mentioned methods of diversity
combining for a Rayleigh-faded channel, [13], which gives an accurate analysis in terms of SNR for
MRC and ECG; [598], which derives probability formulas for FSK and PSK signals with MRC and
ECG; and [31, 1104], which present a unified approach to evaluating the error performance of digital
communication systems with diversity for both coherent and noncoherent detection.

Finally, it is important to mention that all the combining strategies mentioned above exploit the
explicit diversity provided by independently fading replicas of the same transmitted signal. Such
replicas can be acquired by resorting to different mechanisms, including space diversity (spaced
antennas), frequency diversity (transmission of the same signal in different bandwidths), angle (of
arrival) diversity, polarization diversity, time diversity (signal repetition). Note, however, that a fading
channel can be interpreted itself as a source of implicit diversity [101] to be related to both the
phenomena of time dispersion [425, 466, 1105, 1106] and time variation of the channel [1107]. In
particular, exploiting the time diversity on time-selective fading channels can provide a substantial
performance improvement [111, 112].

6.2.2 Channel Equalization in the Frequency Domain

Frequency-domain equalizers (FDEs) provide a low-complexity approach to ISI mitigation in SC
communications. Systems employing FD equalization are closely related to OFDM systems. In fact, in
both cases digital transmission is carried out blockwise and relies on DFT/IDFT operations. Therefore,
SC systems employing FDEs enjoy a similar complexity advantage to OFDM systems without the
stringent requirements of highly-accurate frequency synchronization and linear power amplification
as in OFDM. In addition, recent results indicate that SC systems with FD equalization can exhibit
performance similar to or better than coded OFDM systems in some scenarios [1108]. It is also well
known that: (a) FDEs usually require a substantially lower computational complexity than their TD
counterparts, in both filter synthesis and data processing; (b) FD equalization can outperform TD
equalization for a given computational complexity (see, for instance, [1109]) – in other words, a FDE
requires fewer taps with respect to a TDE in order to achieve a given error performance. This can
be related to the fact that in a block data transmission based on a PAM format and incorporating a
cyclic prefix (CP) of proper duration in each block (see Section 3.5.3), the resulting channel matrix
characterizing the received signal model is square circulant; in other words, if we refer to model
(4.96) for the received vector r = [

r0, r1, . . . , rN−1

]T
:

r = H cN + n, (6.123)

the N × N CIR matrix H = [hi,j ] is characterized by the fact that hi,j = hi−j . Consequently, this
matrix can be decomposed as [396]:

H = QH
N DQN, (6.124)

where D = diag(Dk) is a diagonal N × N matrix and:

Dk =
Lh−1∑
l=0

hl exp

(−j2πkn

N

)
(6.125)

is the kth coefficient of the CIR DFT with k = 0, 1, . . . , N − 1 (Lh denotes the CIR duration). Then,
evaluating an N-point DFT of r generates the FD vector:

R � QN r = QN H cN + QN n

= QN QH
N DQN cN + QN n

= DCN + W, (6.126)
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where W � QN n is a complex Gaussian noise vector statistically equivalent to n and CN � QN cN

is the FD representation of the symbol vector cN . Note that the effect of the channel distortion in
R (6.126) is represented by the diagonal matrix D; this suggests that, if D (i.e., the CIR) is known,
frequency selectivity can be easily compensated for in the FD; then, an estimate of cN can be generated,
getting back to the TD via an IDFT. These principles are exploited in the rest of this subsection to
derive linear and decision feedback equalization strategies which process two samples per channel
symbol.

6.2.2.1 Linear Equalization in the Frequency Domain

Similarly to TD equalizers, FD equalizers can process one or more samples per channel symbol. Unlike
[1110, 1111], which consider an LE in the FD (FD-LE) processing one sample per channel symbol,
here, following [435], we derive an algorithm for MMSE linear equalization in the FD processing
two samples per channel symbol, starting from the signal model developed in Section 4.4.2 for the
case of frequency-selective fading. In particular, we start our derivation by considering the vector
R(l)

2N � [R(l)
0 , R

(l)
1 , . . . , R

(l)
2N−1]T generated by a 2N -point DFT receiver in the lth block interval; such

a vector can be expressed as (see (4.99)):

R(l)
2N = D(l) C(l)

2N + V(l)
N , (6.127)

where C(l)
2N � [(C(l)

N )T |(C(l)
N )T ]T , C(l)

N � [C(l)
0 , C

(l)
1 , . . . , C

(l)
N−1]T � QN c(l)

N is the vector resulting
from the DFT of the lth data block c(l)

N , V(l)
N � [V (l)

0 , V
(l)
1 , . . . , V

(l)
2N−1]T is a vector of indepen-

dent Gaussian noise samples (each having mean zero and variance σ 2
n = 2N0), D(l) � diag(D

(l)
k )

with D
(l)
k = Pk H

(l)
k (Pk−2N H

(l)
k−2N ) for k = 0, 1, . . . , N (k = N + 1, N + 2, . . . , 2N − 1), Pk �

P(k/NTs)/
√

Ts , H
(l)
k � H(l)

(
k/NTs

)
, and P(f ) and H(l) (f ) are the FCTs of the transmit pulse

p(t) and the CIR h(l)(t) in the observation interval considered.
The FD-LE processing can be summarized as follows (see Figure 6.11(a)). The received vector

R(l)
2N (6.127) is filtered by an N × 2N forward matrix D(l)

LE combining the elements of R(l)
2N to produce

R2N
(l )

DLE
(l )

XN
(l ) xN

(l)

R2N
(l ) TN

(l ) tN
(l)

c^N
(l )
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(l )
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Figure 6.11 Block diagram of an FD-LE (a) and an FD-DFE (b).
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an N-dimensional vector X(l)
N which feeds an N-point IDFT block. The N samples at the IDFT output

are collected in a vector x(l)
N ; after parallel-to-serial conversion, this is applied to a decision (thresh-

old) device operating on a symbol-by-symbol basis and producing the hard decision vector ĉ(l)
N . The

derivation of the optimal matrix D(l)
LE in the MMSE sense can be accomplished as follows. First of

all, let us define the error (in the following the block index l is dropped for simplicity):

δLE � xN − cN (6.128)

in the TD, and the corresponding error:

�LE � QN δLE = XN − CN (6.129)

in the FD, where XN � QN xN . The optimal DLE minimizes the MSE:

MSE � E
{
δH

LE δLE

} = E
{
�H

LE �LE

}
. (6.130)

As in the TD case, minimization of the MSE results from the application of the orthogonality principle
[503, 1021]; this leads to

E
{
�LE RH

2N

} = 0N,2N, (6.131)

where 0N×2N is an N × 2N null matrix. Substituting (6.127) and (6.129) into (6.131) leads easily to:

DLE = JDH K, (6.132)

where
J �

[
IN

∣∣IN

]
, (6.133)

K �
[

DJH JDH + σ 2
n

σ 2
c

I2N

]−1

(6.134)

and σ 2
c denotes the variance of the channel symbols {c(l)

n } (modeled as zero mean iid random variables).
Finally, we note that DLE can be rewritten as DLE = [DLE ,0|DLE ,1], where DLE ,m = diag(DLE

m,k) and
DLE

m,k � D∗
k+mN [|Dk|2 + |Dk+N |2 + σ 2

n /σ 2
c ]−1 with k = 0, 1, . . . , N − 1 and m = 0, 1. This leads to

the following conclusions: (a) filtering in the proposed FD-LE can be interpreted as a generalization
of that employed in an FD-LE operating at symbol rate sampling [1110, 1111]; (b) the forward filter
(6.127) coherently combines pairs of components of the vector R(l)

2N (6.127) spaced at N locations,
since Xk = D

(LE )
0,k Rk + D

(LE )
1,k Rk+N , with k = 0, 1, . . . , N − 1.

The LE derivation illustrated above for PAM signaling can be extended to the case of CPM signaling,
if (a) cyclically-extended blocks of data are properly generated (a detailed description of the structure
of the data block is provided in Section 3.6.6) and (b) Laurent’s decomposition (see Section 3.6.5.1)
with a finite number (P) of components can be adopted for an accurate representation of the selected
CPM signal. This is due to the fact that, in this case, filtering the baseband received signal r(t)

with a proper low-pass filter (the useful component z(t) of this signal is expressed by (3.199)) and
sampling the filter output uniformly at a rate 2/Ts results in a 2N -dimensional received signal vector
Z(l) (when receiving the lth data block), which exhibits a linear dependence of the DFTs of P distinct
N dimensional blocks of Laurent symbols. The reader can refer to [284] for further mathematical
details. Finally, we mention that an FD linear equalization algorithm has been also derived in [306],
but, unlike [284], employs a bank of matched filters combined with baud-rate sampling and noise
whitening.
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6.2.2.2 Decision Feedback Equalization in the Frequency Domain

The block diagram of a DFE operating in the FD (FD-DFE) is shown in Figure 6.11(b). In the DFE
structure we develop forward filtering is accomplished in the FD (through the N × 2N forward matrix
D(l)

DFE ), as in the FD-LE, whereas feedback filtering is carried out in the TD (i.e., a hybrid equalization
strategy is adopted), through a time-varying FIR filter (represented by the N × N feedback matrix
B(l)

DFE ) characterized by a uniform tap spacing and fed by symbol decisions [435]. As shown in Figure
6.11(b), the received vector R(l)

2N (6.127) is filtered by D(l)
DFE (producing the N-dimensional vector T(l)

N )
and converted to the TD by an IDFT. This results in the N-dimensional vector t(l)N , which, after the
contribution coming from the decision feedback is subtracted, is processed for data decision. Let us
now derive the expressions for the optimal (in the MMSE sense) matrices D(l)

DFE and B(l)
DFE under the

assumption that the correct data symbols are processed by the latter matrix (we drop the block index
l for simplicity). We start by noting that (see Figure 6.11(b) and (6.127)):

tN � QH
N TN = QH

N DDFE R2N = QH
N DDFE D C2N + QH

N DDFE VN . (6.135)

This vector is combined with the feedback vector sN � (BDFE − IN)cN (where BDFE is a lower
triangular matrix with 1s along its main diagonal); the result feeds a threshold decision device. Then
the error vector δDFE in the TD is given by (see (6.128)):

δDFE � tN − sN − cN = tN − (BDFE − IN)cN − cN = tN − BDFE cN (6.136)

and, consequently, the error vector �DFE in the FD becomes (see (6.129)):

�DFE � QN δDFE = TN − QN BDFE cN, (6.137)

where TN = QN tN . We now take BDFE as a fixed matrix and apply the orthogonality principle (6.131)
to compute DDFE . This results in:

DDFE = Q BDFE QH J DH K, (6.138)

where J and K are expressed by (6.133) and (6.134), respectively. Then substituting (6.138) into
(6.136) and evaluating the autocorrelation matrix RδDFE

� E{δDFE δH
DFE } leads to:

RδDFE
= σ 2

n

N
BDFE QH

N G QN BH
DFE , (6.139)

where G = diag(Gk), with Gk � [|Dk|2 + |Dk+N |2 + (σ 2
n /σ 2

c )]−1 and k = 0, 1, . . . , N − 1. The
MSE associated with the FD-DFE (see (6.130)) is given by the trace of RδDFE

, that is:

MSEFD−DFE = σ 2
n

N

N−1∑
s=0

N−1∑
l=0

Gl

N−1∑
m=0

BDFE
s,m exp

(
j

2πml

N

) N−1∑
n=0

(
BDFE

s,n

)∗
exp

(
−j

2πnl

N

)
, (6.140)

where BDFE
s,n is the element on the sth row and the nth column of BDFE , with s, n = 0, 1, . . . , N − 1.

The gradient method [503] can now be applied to (6.140) in order to evaluate the BDFE matrix
minimizing the MSE. This leads to the conclusion that, if the vector BDFE

i = [BDFE
i,0 , . . . , BDFE

i,i−1, 1,
0, . . . , 0] denotes the ith row of BDFE (with i = 1, 2, . . . , N − 1), the optimal choice for BDFE ,i is
the solution of the linear system:

V(i)
[(

BDFE
i

)T ]B = −v(i) (6.141)

of i equations in i unknowns. Here [·]B denotes the backward rearrangement operation [503], V(i) =
[V (i)

r,c ] is an i × i Hermitian Toeplitz matrix with V (i)
r,c �

∑N−1
l=0 GlW

(c−r)l
N (r, c = 1, 2, . . . , i), WN �

exp (−j2π/N), v(i) � [v1, v2, . . . , vi ]
T is an i-dimensional column vector consisting of a subset of
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elements of the matrix V(i), vr �
∑N−1

l=0 GlW
−rl
N , with r = 1, 2, . . . , i. It is important to note that

linear systems with the same mathematical structure as (6.141) can be found in linear prediction theory
[503]. This observation has some important practical and conceptual implications. In fact, it can be
easily inferred that:

(a) the linear system (6.141) can be efficiently solved by means of the well-known iterative
Levinson–Durbin algorithm [1112], characterized by reduced computational complexity and
small memory requirements (only i2 + O(i) complex multiplies and 2i memory locations are
needed to compute BDFE ,i , for i = 2, 3, . . . , N),

(b) optimal FIR filtering via {BDFE ,i} in FD-DF equalization can be interpreted as a form of linear
prediction, through which the feedback filter tries to reproduce the residual ISI at the output of the
forward filter – this is not surprising, in a sense, as similar conceptual results can also be found
in TD equalization theory [29].

The last point suggests that the evaluation of the set of linear systems (6.141), with i = 2, 3, . . . , N ,
can be stopped for i = f < N , if increasing the predictor length to f + 1 results in a reduction
of the normalized prediction error below a given threshold6. This provides a further substan-
tial reduction of the computational load as [BDFE

i,i−f , . . . , BDFE
i,i ] = [BDFE

f −1,0, . . . , BDFE
f −1,f ] with

i = f, f + 1, . . . , N − 1 and all the other elements of BDFE ,i are equal to zero.
The FD-DFE is substantially more complicated than the LE, and this is largely due to the triangular

structure of BDFE ; in particular, note that the most computationally intensive task required by it is the
matrix product on the RHS of (6.138), leading to a cubic dependence on N. However, an FD-DFE
can significantly outperform an FD-LE, as evidenced by the following example.

Example 6.2.3 In this example we consider an uncoded communication system designed to operate
at 6 Mbit/s; in particular, we assume that: (a) the symbol interval is Ts = 0.333 µs; (b) a QPSK
constellation is used (i.e., M = 4); (c) the transmitter impulse response p(t) is the IFCT of a root-
raised cosine function with roll-off α = 0.4 and is truncated to Lp = 30 symbol intervals; (d) the SNR
is defined as Eb/N0, where Eb is the average received energy per information bit; (e) the channel PDP
is a truncated exponential with average delay τav = 5 µs and maximum delay τmax = 20 µs (so that
Lh = 60); (f) the CIR changes in an independent fashion from block to block and is perfectly known at
the receive side; (g) the DFT order is N = 1024; (h) the length of the cyclic prefix is Ncp = 90, so that
the IBI is completely avoided. Figure 6.12 compares the BER7 of the FD-LE and FD-DFE described
above and processing two received signal samples per symbol with their counterparts operating at
symbol rate sampling (SRS). The MFB for the given channel and modulation format (see Section
4.5.2.4) is also given for comparison. These results indicate that doubling the sampling rate provides
substantial energy gains (not less than 6 dB) with both linear and decision feedback equalizers for a
BER less than 10−3. We also note that the change in the slope of the BER curve with the SRS DFE
at about 15 dB is due to ill-conditioning problems encountered in the matrix inversion needed for
solving a linear system of the same type as (6.141); similar problems have not been encountered with
the DFE processing two samples per symbol interval in the same SNR interval. Moreover, simulation
results show that the FD-DFE usually employs short FIR filters for ISI cancelation at the input of
the decision device. In particular, we found in the scenario considered that the average number of
feedback taps is equal to 24, independently of Eb/N0, as it is mainly related to the channel power
delay profile.

�

6 This stopping criterion is suggested in [1112, p. 574, eq. (89)]. Other criteria, however, can also be found in the
literature.
7 Simulation results are indicated by labels, and continuous lines are drawn to show the performance trend.
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Figure 6.12 BER performance of FD-LEs and FD-DFEs. Symbol rate and fractional rate sampling
are considered. The MFB is also given for comparison.

Algorithms for hybrid decision feedback equalization have also been developed in [1108,
1113–1115]. Note, however, that only symbol rate processing of the received signal is considered in
[1113], and this entails a substantial performance loss if matched filtering is not used in the receiver
front-end, as evidenced in Example 6.2.3 (see also [435, 1116]). In contrast, the use of fractional
sampling is investigated in [1108, 1114]; in this case, however, nonuniform tap spacing in the
feedback filter is considered and adaptive algorithms for the equalizer synthesis are proposed, even
if explicit expressions for the optimal filters of a multisampling DFE are provided. Further relevant
work in this area concerns: (a) the development of bidirectional decision feedback equalization
algorithms implementing the feedforward filter in the FD and adapting the feedback filter the channel
variations within one block in [1115]; (b) the use of iterative DFEs in which both the feedforward
and feedback filters operate in the FD [1117, 1118]; (c) the diversity order that can be achieved by
frequency-domain equalization [1119–1122]. An excellent overview of most of the decision feedback
equalization algorithms operating in the FD can be found in [1109, 1118].

Most of the work on DFEs operating in the FD refer to PAM signals; note, however, that the
mathematical approach illustrated above and other strategies described in the literature can be extended
to the case of CPM signaling, if Laurent’s representation is adopted, as already mentioned. In particular,
the approach set out above has been adopted to derive a hybrid DFE for CPMs in [284]. It is important
to point out that, in this case, decision feedback should not only mitigate the (inter-symbol) interference
affecting each of the P Laurent components, but also cancel the inter-component interference. In
addition, a VA has to be employed for reliable data detection, so that symbol pre-decisions need to
be made available for feedback processing.

6.3 Channel Equalization of Multicarrier Modulations: Known CIR
In this section we address the problem of channel equalization of MCMs (and, in particular, of OFDM)
in the presence of a known communication channel. In particular, we first focus on the problem of
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optimal detection over a (known) purely frequency-selective channel whose memory is shorter than the
length of the CP of the transmitted signal. In this case, simple block-by-block equalization algorithms
can be devised, because no IBI and ICI are found when detecting each OFDM symbol, provided
that accurate timing and frequency synchronization are accomplished at the receiver. In contrast, if
the channel is time-varying and/or its memory exceeds the CP length more complicated algorithms
compensating for the presence of ICI and/or IBI, respectively, need to be devised, as illustrated in
Sections 6.3.2 and 6.3.3.

6.3.1 Optimal Detection in the Absence of IBI and ICI

In Section 4.4.4.1 it is proved that the vector:

r(l)
N = QH

N H c(l)
N + n(l)

N (6.142)

is acquired by an OFDM coherent receiver endowed with ideal timing synchronization (see
(4.127)) when detecting the OFDM symbol c(l)

N � [c(l)
0 , c

(l)
1 , . . . , c

(l)
Nα

, 0, . . . , 0, c
(l)
N−Nα

,

c
(l)
N−Nα+1, . . . , c

(l)
N−1]T . Here, n(l)

N � [n(l)[0], n(l)[1], . . . , n(l)[N − 1]]T is complex AGN and
H � diag(Hn) is a diagonal matrix having the channel gains {Hn, n = 0, 1, . . . , N − 1} along its
main diagonal. The time-domain vector r(l)

N (4.127) undergoes an Nth-order DFT producing the FD
vector (see (4.128)):

R(l)
N = [

R(l)[0], R(l)[1], . . . , R(l)[N − 1]
]T � QN r(l)

N = H c(l)
N + W(l)

N , (6.143)

where W(l)
N = [W(l)[0], W(l)[1], . . . , W(l)[N − 1]]T is statistically equivalent to n(l)

N . Note that
(6.143) is equivalent to (see (4.129) and (4.130)):

R(l)[k] = Hkc
(l)
k + W

(l)
k (6.144)

for k = 0, 1, . . . , Nα and k = N − Nα , N − Nα + 1, . . . , N − 1, and

R(l)[k] = W
(l)
k (6.145)

for k = Nα + 1, Nα + 2, . . . , N − Nα − 1, so that each useful FD sample depends only on a single
channel symbol and is corrupted by a noise which is independent of that affecting all the other
subcarriers.

In this case, since the matrix H is known and n(l)
N is an AGN vector, the MLSD strategy based on

r(l)
N (6.142) can be formulated as (see (4.146)):

ĉ(l)
N = arg min

c̃(l)
N

∣∣∣r(l)
N − QH

N H c̃(l)
N

∣∣∣2. (6.146)

This strategy can be simplified observing that the linear transformation C
N → C

N represented by the
FFT matrix QN is an isometry (this is due to the fact that QN is unitary), so that |QN x|2 = |x|2 for
any x ∈ C

N . Then, the decision metric of (6.146) can be rewritten as:∣∣∣r(l)
N − QH

N H c̃(l)
N

∣∣∣2 =
∣∣∣QN

(
r(l)
N − QH

N H c̃(l)
N

)∣∣∣2
=
∣∣∣QN r(l)

N − H c̃(l)
N

∣∣∣2
=
∣∣∣R(l)

N − H c̃(l)
N

∣∣∣2, (6.147)
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so that the strategy can be put in the form:

ĉ(l)
N = arg min

c̃(l)
N

∣∣∣R(l)
N − H c̃(l)

N

∣∣∣2. (6.148)

Note that the equivalence between (6.146) and (6.148) can also be proved by invoking the theorem
of reversibility (see Section 4.3.4), since QN describes a reversible transformation C

N → C
N .

Since the metric of (6.148) can be put in the form:

∣∣∣r(l)
N − QH

N H c̃(l)
N

∣∣∣2 =
Nα∑
k=0

∣∣∣R(l)[k] − Hk c̃
(l)
k

∣∣∣2 +
N−1∑

k=N−Nα

∣∣∣R(l)[k] − Hk c̃
(l)
k

∣∣∣2, (6.149)

an ML decision on c(l)
N can be generated by solving:

ĉ
(l)
k = arg min

c̃∈Ac

∣∣R(l)[k] − Hk c̃
∣∣2 (6.150)

for k = 0, 1, . . . , Nα and k = N − Nα, N − Nα + 1, . . . , N − 1, that is, taking Nα + 1 independent
decisions, one for each useful subcarrier (see (3.264)). Here Ac denotes the constellation of channel
symbols. Note that this result implies also that the average error rate performance of a coherent OFDM
receiver is obtained by averaging the error rate performances referring to 2Nα + 1 distinct subcarriers.
Consequently, such an average performance is dominated by the deeply-faded subcarriers (i.e., by
those subcarriers characterized by a small |Hk|), on which most of the symbol errors concentrate.

As far as the MAPSD strategy is concerned, we note that:

Pr
{
c
(l)
k = c̃|r(l)

N , h
}

= Pr
{
c
(l)
k = c̃|R(l)

N , H
}

= Pr
{
c
(l)
k = c̃|R(l)[k], H

}
(6.151)

for k = 0, 1, . . . , N − 1 and for any possible trial symbol c̃ transmitted over the kth subcarrier; this
is due to the fact that R(l)

N (the channel gain matrix H) provides the same information as r(l)
N (the CIR

vector h) and the set {R(l)[p], p 
= k} does not provide any information about c
(l)
k .

Finally, it is worth mentioning that a conceptually different strategy than symbol detection can be
devised applying the principles illustrated for linear equalization in the TD (see Section 6.2.1.4). This
means the vector R(l)

N (6.143) undergoes linear equalization, that is, a linear transformation described
by an N × N complex matrix F; then, the equalizer output feeds a decision device (i.e., a threshold
detector) which takes symbol decisions on a subcarrier-by-subcarrier basis. Let:

Z(l)
N = [

Z(l)[0], Z(l)[1], . . . , Z(l)[N − 1]
]T � F R(l)

N (6.152)

denote the output of the linear equalizer; the matrix F can be selected so as to minimize the MSE:

εMMSE � E

{∣∣∣Z − c(l)
N

∣∣∣2} ; (6.153)

this requires solving the optimization problem:

min
F

εMMSE → FMMSE . (6.154)

Following the same approach as in Section 6.2.1.4, it can easily be shown that:

FMMSE = HH

(
HHH + σ 2

n

σ 2
c

IN

)−1

= diag
(
FMMSE ,k

)
, (6.155)
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where

FMMSE ,k = H ∗
k∣∣Hk

∣∣2 + σ 2
n /σ 2

c

(6.156)

for k = 0, 1, . . . , Nα and k = N − Nα, N − Nα + 1, . . . , N − 1, and FMMSE ,k = 0 elsewhere. This
entails that (see (6.152)):

Z(l)[k] = FMMSE ,k R(l)[k] = H ∗
k∣∣Hk

∣∣2 + σ 2
n /σ 2

c

R(l)[k] (6.157)

for k = 0, 1, . . . , Nα and k = N − Nα, N − Nα + 1, . . . , N − 1, so that one-tap equalization is
accomplished. Finally, note that setting σ 2

n = 0 in (6.155) and (6.157) yields:

FZF = H−1 (6.158)

and
Z(l)[k] = 1

Hk

R(l)[k] = c
(l)
k + 1

Hk

W
(l)
k , (6.159)

respectively; these describe the so-called ZF equalization. Expression (6.159) shows that the presence
of a small channel gain on a subcarrier produces noise enhancement.

6.3.2 ICI Cancelation Techniques for Time-Varying Channels

As shown in Section 4.4.4.1, the presence of time variations in the communication channel affects the
subcarrier orthogonality of an OFDM signal, so that the simple model (4.121) for R(l)[k] is replaced
by (see (4.137)):

R(l) [k] = H̃ (l) [k, k] c
(l)
k +

N−1∑
q=0
q 
=k

H̃ (l)
[
k, q

]
c(l)
q + W

(l)
N [k] , (6.160)

where (see (4.138)):

H̃ (l)[k, q] = 1

N

N−1∑
p=0

exp

(
j

2π(k − q)p

N

)
Hq [l, p] (6.161)

and Hq [l, p] denotes the channel gain referring to the qth subcarrier and the pth sampling epoch for

the lth OFDM symbol. Then the vector R(l)
N = [R(l)

0 , R
(l)
1 , . . . , R

(l)
N−1] can be expressed in a form

similar to (6.143), since it can put in the form:

R(l)
N = H(l)c(l)

N + W(l)
N , (6.162)

where, however, H(l) = [H(l)[k, q]] is a (nondiagonal) N × N complex matrix describing the time-
varying behavior of the communication channel, whose effects, generally speaking, change every
OFDM symbol. Note also that the ICI term:

IC I (l) [k] =
N−1∑
q=0
q 
=k

H̃ (l)
[
k, q

]
c(l)
q (6.163)



290 Wireless Communications

4

6
8

0.001

2

4

6
8

0.01

2

4

6
8

0.1

B
E

R

302520151050
Es / N0 (dB)

BD NTs = 10−2

BD NTs = 5 10−2

BD NTs = 10−1

BD NTs = 0

Figure 6.13 Average BER of a conventional OFDM detector for BDNT = 0, 10−2, 5 · 10−2

and 10−1.

affecting R(l) [k] (6.160) becomes more relevant as Doppler rate of the communication channel
increases and may entail a substantial performance degradation [448, 449, 452], as illustrated in
the following example.

Example 6.3.1 In this example we consider an OFDM communication system characterized by the
following parameter values [1123]: N = 1024, Nα = 409, M = 4 (corresponding to a QPSK) and
Ts = 0.167 µs. In addition we assume that: (a) the PDP of the multipath channel is a truncated
exponential with maximum delay τmax = 20 µs and average delay τav = 5 µs (see Section 2.2.2.2);
(b) the Jakes model is adopted for the channel tap gains (see Example 2.2.8). Figure 6.13 illustrates the
BER performance of a coherent receiver which perfectly knows the values taken on by the subchannel
gains at the center of each OFDM symbol, but neglects their time variations in the observation interval
(Es denotes the average energy received for each OFDM symbol); the normalized Doppler rates
BD NTs = 0 (slow fading), 10−2, 5 · 10−2 and 10−1 are considered in this case. Note that in this
figure simulation results are denoted by marks, and continuous lines represent the approximated BER
evaluated by means of the theoretical method developed in [448]. Such a method is based on: (a) the
adoption of a linear model (see Section 2.2.3.4) to describe the variations of the TVTF H (t, f ) over
each OFDM symbol; (b) modeling the ICI term IC I (l) [k] (6.163) as a zero mean complex Gaussian
random variable, that is, as additional Gaussian noise (this approximation can be deemed accurate if
the number of useful subchannels

(
2Na + 1

)
is large, as in this case). These numerical results show

that the presence of ICI can entail a substantial degradation and, in particular, can result in a visible
error floor. This is also evidenced by Figure 6.14, which shows the error floor versus BD NTs , which
varies in the range [10−3, 1]; as in the previous case, numerical results are denoted by marks, while
the continuous line represents a set of theoretical results generated resorting to the method of [448].

�

In a coherent receiver, the effects of ICI can be mitigated by resorting to error-correction coding,
or to a specific equalization algorithm which can compensate for it, or to a combination of the
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two [1124]; in the latter case iterative schemes exploiting hard or soft information generated by
the channel decoder to improve ICI compensation in multiple passes can be used (e.g., see [1125,
1126]). Various algorithms for equalizing the OFDM signal, while at the same time mitigating ICI,
have been proposed in the technical literature, and they require a different degree of knowledge
of the communication channel. They can be divided into: (a) algorithms for ICI self-cancelation,
(b) semiblind equalization algorithms, and (c) ICI cancelation-based equalization algorithms.

ICI self-cancelation techniques are based on adopting a proper transmission format, since they
require each channel symbol to be transmitted over a group of adjacent subcarriers [1127, 1128] or
the TD transmitted signal to be periodically extended so that diversity is added in the OFDM symbols
[1129]. In this case, good BER performance can be achieved at a low computational complexity;
note, in particular, that only the knowledge of the average channel gains over each OFDM symbol is
required for equalization. However, the price to be paid is a reduction in the bandwidth efficiency.

The reduction in bandwidth efficiency is avoided if semiblind equalization methods are exploited
[1130, 1131]. These methods are based on assuming a specific mathematical structure for the ICI matrix
and using specific diagonalization algorithms (such as the joint multiple matrix diagonalization algo-
rithm [1130] and the approximate diagonalization of eigenmatrices algorithm [1131]) for ICI cance-
lation. Accurate channel estimation is not required in this case, since the CSI information provided
by pilot symbols is used to determine the phase and permutation ambiguities induced by the adopted
blind separation scheme.

If an accurate knowledge of the time-varying communication channel is available, ICI cancelation-
based equalization algorithms can be used [449, 451, 1124–1126, 1132–1139]. Generally speaking,
these algorithms rely on the fact that the structure of the FD received signal model (6.160) is similar
to that of the time-domain ISI model encountered in the study of SC modulations (in particular, see
(6.29)); this entails that the design techniques for TD equalizers illustrated in Section 6.2 can also be
applied to ICI compensation, provided that the channel coefficients {H(l)[k, q]} are known. As far as
channel estimation is concerned, it is usually assumed that the CIR varies in a linear fashion during a
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block period, so that the channel can be estimated by means of linear interpolation techniques (e.g., see
[800, 1132, 1140]). This model of time variations can be deemed accurate if the normalized Doppler
bandwidth BDNTs does not exceed about 0.1 (see Example 6.3.1); when this does not occur, more
refined polynomial models are needed [1126, 1133, 1134]. In most of the equalization techniques
available in the technical literature ICI cancelation is achieved via linear ZF equalization [800, 1141,
1142], linear MMSE equalization [449, 451, 453, 1124, 1132–1134, 1138, 1143, 1144], or decision
feedback equalization [449, 1126, 1133, 1137]. However, optimal strategies, such as MLSD [530],
MLSD preceded by ICI whitening [1139], and MAPSD based on the FBA [530, 1144] are also
available. Further related work can be found in [1135], where an equalization technique consisting of
two stages (a set of prefilters and a set of ICI cancelation filters) has been proposed, and in [1145],
where a novel adaptive breadth-first search procedure is used for sequence detection, in [1136], where a
time-varying FIR time-domain equalizer is employed to restore the orthogonality between subcarriers,
and hence to eliminate both ICI and IBI, in [1146], where a pre-equalizer operating on subblocks
of the received OFDM block is used to mitigate ICI, and in [547], where the SAGE technique (see
Section 4.6.4) is exploited to develop a channel equalization operating over a doubly-selective channel
and detecting consecutively the components of each OFDM symbol.

6.3.3 Equalization Strategies for IBI Compensation

When the CIR length exceeds the duration of the cyclic prefix two different approaches can be
adopted to mitigate the effects of IBI. The first approach is based on the use of an adaptive TD
equalizer (often called pre-equalizer in this scenario) able to shorten the overall CIR to the CP length
(e.g., see [998, 1147–1157]) and has been already mentioned in Section 6.2.1.2 as a tool to reduce the
number of trellis states in MLSD. An alternative to this approach is represented by various equalization
techniques in the FD which can compensate for the effects of a short CP. For instance, linear ZF
and MMSE equalization algorithms have been proposed in [1158–1160]. In [1161–1164], instead,
decision feedback and and cyclic reconstruction techniques are employed.

Finally, it is worth mentioning that various theoretical results about the nature of IBI can be found
in [1165, 1166].

6.4 Channel Equalization of Single Carrier Modulations:
Statistically Known CIR

As illustrated in Section 4.5.3, if the channel statistics are known, different formulations are possible
for optimal metrics. In this section we focus on equalization algorithms operating in the TD. In
particular, we first analyze MLSD and MAPSD/MAPBD strategies; then we consider different classes
of optimal and suboptimal equalization algorithms developed for frequency-flat fading channels and
benefiting from the knowledge of statistical information about the communication channel.

6.4.1 MLSD

Whatever the formulation, in principle, the MLSD strategy for PAM signaling requires the evaluation
of the optimal metric (4.193) for all MN possible data sequences and the selection of the data
sequence having minimum metric (see (4.192)). This raises the problem of developing reduced-
complexity alternatives to this brute-force strategy. Generally speaking, the computational complexity
can be mitigated by dividing the symbol vector cN = [c0, c1, . . . , cN−1]T to be detected into short
blocks, all having the same length and characterized by some overlap at the block edges. If the
block length is small, there is a relatively small number of trial subsequences, so that the metrics for
each of them may feasibly be calculated. After detecting the subsequence with best metric in the kth
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block, the symbols overlapping into the (k + 1)th block are treated as exactly known when such a
block is processed. An example of this sliding block approach to reduced-complexity MLSD can be
found in [1167], where the importance of using fractionally spaced samples is also evidenced.

Other alternatives to reduced-complexity MLSD are usually based on reformulating the optimal
metric in such a way that the search for the best sequence can be accomplished via the VA. ML
sequence detectors based on this approach are usually based on the innovation-based formulation of
the optimal metric illustrated in Section 4.5.3.3. According to this formulation, the MLSD metric is
expressed as (see (4.215)):

�(c̃N) =
N−1∑
k=0

∣∣∣∣∣∣∣
rk − ηk(rk−1, c̃N)√

2 σ 2
k (rk−1, c̃N)

∣∣∣∣∣∣∣
2

+ log
(
2π σ 2

k (rk−1, c̃N)
)
, (6.164)

where ηk(rk−1, c̃N) � E{rk|rk−1, c̃N } (see (4.212)) and σ 2
k (rk−1, c̃N) � E{|rk − ηk(rk−1, c̃N)|2}/2.

Note that MLSD is represented by the decision strategy (see (4.192)):

ĉN = arg min
c̃N

�(c̃N), (6.165)

so that, generally speaking, a search over a set of MN trial sequences must be accomplished. This
operation can be diagrammatically represented as looking for the path with minimum metric in a
trellis having number of states exponentially increasing with time, as illustrated in Figure 6.15(a). Let
us now suppose that the pdfs {frk

(ρk|rk−1, c̃N)} in (4.211) depend only on a finite history of the data,
that is:

frk

(
ρk

∣∣ rk−1, c̃N

) = frk

(
ρk

∣∣ rk−1, c̃k
k−Lm

)
(6.166)

for a proper value of the parameter Lm (called the channel memory) with k = 1, 2, . . . , N − 1 and:

c̃k
k−Lm

�
[
c̃k−Lm

, c̃k−Lm+1, . . . , c̃k

]T
. (6.167)

Then the trellis of Figure 6.15(a) folds into the MLm -state trellis of Figure 6.15(b) and, as with an ISI
channel, the search for the optimal path in the trellis can be carried out by means of the VA [562].
The equality (6.166) is known as the folding condition [1168, 1169] and can easily be shown to be
equivalent to the equalities:

ηk

(
rk−1, c̃N

) = ηk

(
rk−1, c̃k

k−Lm

)
(6.168)

and
σ 2

k

(
rk−1, c̃N

) = σ 2
k

(
rk−1, c̃k

k−Lm

)
(6.169)

for k = 1, 2, . . . , N − 1.
In the technical literature it is claimed that, with frequency-flat fading, folding occurs if one of the

following conditions holds: (a) the sequence:

xk � ak + nk (6.170)

of fading plus noise samples is an AR process of finite order Lm [436, 490, 492, 1070]; (b) the fading
channel has finite coherence time, that is, the autocovariance function Ca (τ) of the fading distortion
a(t) has finite support, so that:

Ca

(
kTs

) = 0 (6.171)

for |k| > Lm [562]. With doubly-selective fading channels [428, 492, 493, 562], finite time dispersion
is required together with one of the previous assumptions for all the taps in the delay line model of the
channel [492, 562], or, alternatively, an ARMA model of the CIR vector [428]. For instance, in [492]
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Figure 6.15 Trellis (a) and folded trellis (b) for MLSD in a binary (M = 2) signaling over a
channel characterized by a memory Lm = 2.

it is shown that, if the memory associated with the channel time variations is Lmα symbol intervals
and the channel delay spread is Lds symbol intervals, a trellis with MLm states is required with:

Lm = Lds + Lmα − 1. (6.172)

In [1168], however, it is proved that the folding condition is never met for our model of a doubly-
selective (or, in particular, frequency-flat) channel and, consequently, all the equalizers mentioned
above are examples of forced folding. In other words, they are a suboptimal approximation to the
optimal estimator-correlator receiver structure (see Section 4.5.3.2). Further details on this topic can
be found in [987, 1169], where the problem of trellis-based detection over channels with infinite
memory and the related issue of memory truncation (leading to finite-memory detection) are analyzed
in depth.
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With finite memory channels the relevant quantities {ηk(rk−1, c̃k
k−Lm

)} (6.168) (and, in some
instances, {σ 2

k (rk−1, c̃k
k−Lm

)} (6.169)) can be evaluated by means of finite-length estimation filters,
that is, time-invariant Wiener predictors (e.g., see [436, 492, 562]) or Kalman filters (e.g., see [428,
707, 725, 1170]).

Innovation-based receivers provide good error performance in fast fading at the price of an appre-
ciable complexity. In practice, a significant complexity saving can be achieved by reducing the number
of symbols comprising each trellis state from Lm to Q, for an appropriate choice of Q (e.g., see [490]);
in fact, when predicting the fading process with Lm-tap optimal filters, the survivor path symbols can
be used in place of the missing state symbols.

Let us now focus on a specific application of these concepts, considering the specific case of PSK
or CPM signaling over a slow frequency-flat fading.

Example 6.4.1 In the cases of PSK or CPM transmission over a slow flat fading channel the
contribution of the quantities {σ 2

k (rk−1, c̃k
k−Lm

)} is usually neglected in (6.164) (e.g., see [434, 436,
490]), so that the optimal metric turns into:

�(c̃) =
N−1∑
k=0

∣∣rk − ηk

(
rk−1, c̃k

k−Lm

)∣∣2. (6.173)

Following Example 4.5.3, the conditional mean ηk(rk−1, c̃k
k−Lm

) in (6.173) can be expressed as:

ηk

(
rk−1, c̃k

k−Lm

) = c̃k ã
(

k| rk−1, c̃k−1
k−Lm

)
, (6.174)

where ã(k|rk−1, c̃k−1
k−Lm

) is the MMSE one-step prediction of the fading sample ak , based on rk−1 and
on the assumption that the sequence c̃k−1

k−Lm
has been transmitted. It is worth mentioning that in [436,

490] ηk(rk−1, c̃k
k−Lm

) is evaluated as:

ηk

(
rk−1, c̃k

k−Lm

) = c̃k

La∑
l=1

pk rk−l c̃∗
k−l , (6.175)

where {pk, k = 1, 2, . . . , La} denote the coefficients of the MMSE one-step linear predictor (with
La ≤ Lm taps) for the sequence {xk} (6.170). This shows that the MLSD receiver based on the metric
(6.173) and the VA implicitly evaluates multiple channel estimates – as many channel estimates (or
carrier references) as the number of trellis states.8 Each fading estimate is evaluated conditioned on
the channel symbols corresponding to a survivor path in the trellis. This can be interpreted as a form
of PSP [569] (see Section 5.1.4).

An MLSD detector based on the metric (6.173) and on the use of (6.175) can provide good error
performance if the fading is slow. This is exemplified by Figure 6.16, which refers to the detection of
a QPSK format (corresponding to M = 4) over a Rayleigh fading channel. In this case it is assumed
that: (a) the fading process is generated by filtering two independent real Gaussian processes with
two identical third-order Butterworth filters, and the Doppler bandwidth BD is given by the 3-dB
bandwidth of the filters (BD normalized to the symbol rate 1/Ts provides an indication of the fading
rate); (b) each trellis state comprises two channel symbols (i.e., Q = 2), so that the VA operates over
an MQ = 16 state trellis; (c) an estimate of the channel memory is Lm = 10, but the number of taps
used for the predictor is La = 10, 10, 5 and 3 for BDTs = 10−3, 10−2, 5 · 10−2 and 10−1, respectively,
since a further increase of La does not provide any visible improvement; (d) after each subsequence
of nine information symbols, a pilot symbol (whose location is perfectly known at the receive side)

8 In an uncoded transmission, an unambiguous phase reference can be computed only if the transmitted signal
contains known features, such as a training sequence, pilot symbols or a pilot tone.
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Figure 6.16 Simulated BER curves of a QPSK 16-state innovation-based detector and of a receiver
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is found in the transmitted data, so that the the receiver can acquire an absolute phase reference;
(e) the coefficients of the prediction filters were computed for each SNR by means of the recursive
Durbin (or Levinson) procedure [502]; (f) the detection delay introduced by the VA is DVA = 30
symbol intervals; (g) in all cases the energy loss due to pilot symbols was taken into account in SNR
calculations. Note also that in the same figure a BER curve referring to coherent demodulation of PSK
signals with an ideal knowledge of the ideal CSI at the receive side is given for comparison. These
results show that, if the fading is slow (BDTs ≤ 10−2), a performance degradation of less than 2 dB in
SNR for BER = 10−4 is found when the error curves of the VA-based detector are compared to that
of the receiver with ideal CSI. An error floor is clearly visible for BDTs = 10−1 only and, as shown
by other simulations, it is irreducible, that is, it cannot be removed or appreciably lowered even if half
of the transmitter power is used for the pilot sequence [1171]. If the fading is slow, sampling faster
than 1/Ts provides negligible gains with respect to baud-rate sampling [490]. On the other hand, a
large performance gain may be found for a larger fading bandwidth.

�

Generally speaking, an innovation-based ML sequence detector can be interpreted as an adaptive
detector embedding a form of PSP for channel estimation (and, in particular, for channel prediction).
Following this approach, VA-based algorithms can be heuristically derived; this approach can be
found, for instance, in [111, 116, 427, 434, 437, 1172]. Finally, we mention that VA-based MLSD
for a linearly modulated signal transmitted with a pilot tone (exploited to remove the constellation’s
phase ambiguity and to provide a stable amplitude reference for QAM constellations) and distorted
by a doubly-selective Rayleigh fading channel is investigated in [1173].
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MLSD algorithms for a statistically known channel can also be derived by employing the EM
algorithm or modifications of it, as already illustrated in Section 4.6.1. In this case, the vector of
input data includes all the unknown (random) channel parameters, whereas the vector of the data to
be estimated coincides with that of the transmitted channel symbols. Further details on this can be
found in [519, 773]. In particular, in [773] the so-called generalized maximum likelihood sequence
detection and estimation is developed by applying EM to the problem of detecting a data sequence and
estimating the unknown channel parameters. This allows us to develop new strategies for data detection
in the presence of a stochastic CIR with known parameters and to provide a new interpretation to
PSP-based MLSD techniques. Finally, in [519], after assuming a statically known discrete-time FIR
model for a time-varying ISI channel, marginalization over the model parameters is accomplished
to derive EM-based MLSD algorithms. In addition, the performance of the resulting algorithms is
compared with that offered by MLSD in the presence of a known channel and PSP-based MLSD.

6.4.1.1 MAPSD/MAPBD

MAP symbol/bit detectors for statistically known channels can be developed by resorting to an
innovation-based approach or to the BEM technique (see Section 4.6.2). As far as the former approach
is concerned, here, following [1174], we focus on its application to PAM signaling over slow flat fad-
ing, for simplicity, assuming baud-rate sampling at the receive side. In the case considered, the Df l -lag
symbol-by-symbol MAP strategy can be expressed as (see (6.97)):

ĉl = arg max
c̃l

Pr
{
cl = c̃l |r

l+Df l
0

}
, (6.176)

where the conditional probability Pr{cl = c̃l |r
l+Df l
0 } can be evaluated as:

Pr
{

cl = c̃l

∣∣ r
l+Df l
0

}
=

∑
c̃
l+1+Df l
l+1 , c̃l−1

0

fr

(
r
l+Df l
0 |c̃l+Df l

0

)
Pr
{

c
l+Df l
0 = c̃

l+Df l
0

}
∑

c̃
l+1+Df l
0

fr

(
r
l+Df l
0 |c̃l+Df l

0

)
Pr
{

c
l+Df l
0 = c̃

l+Df l
0

} . (6.177)

The quantities {fr(r
l+Df l
0 |c̃l+Df l

0 ) Pr{cl+Df l
0 = c̃

l+Df l
0 }} in (6.177) represent a set of M

l+Df l suffi-
cient statistics for making a MAP decision on cl with lag Df l . In principle, the computation of
such statistics can be carried out recursively, similarly to what has been done in the case of known
channel (see Section 6.2.1.5). In fact, if we assume that the same quantities at the previous step,

{fr(r
l−1+Df l
0 |c̃l−1+Df l

0 ) Pr{c̃l−1+Df l
0 }}, are known and that the sample rl+Df l

has been observed, we
can also express:

fr

(
r
l+Df l
0 |c̃l+Df l

0

)
Pr
{

c
l+Df l
0 = c̃

l+Df l
0

}
= fr

(
r
l−1+Df l
0 , rl+Df l

|c̃l−1+Df l
0 , c̃l+Df l

)
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{

c
l−1+Df l
0 = c̃

l−1+Df l
0 , cl+Df l
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}
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|rl−1+Df l
0 , c̃

l−1+Df l
0 , c̃l+Df l

)
fr

{
r
l−1+Df l
0 |cl−1+Df l

0 = c̃
l−1+Df l
0 , cl+Df l

= c̃l+Df l

}
· Pr

{
c
l−1+Df l
0 = c̃

l−1+Df l
0

}
Pr
{
cl+Df l

= c̃l+Df l

}
= Pr

{
cl+Df l

= c̃l+Df l

}
fr

(
rl+Df l

|rl−1+Df l
0 , c̃

l+Df l
0

)
·
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(
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)
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{

c
l−1+Df l
0 = c̃

l−1+Df l
0

}]
(6.178)
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as the components of r
l−1+Df l
0 , conditioned on the transmitted data sequence, are independent random

variables and do not depend on cl+Df l
. Expression (6.178) provides the desired recursive formula

because the quantity in square brackets gives the sufficient statistics from the previous update. Note
also that the innovation-based representation (see Section 4.5.3.3):

fr

(
rl+Df l

|rl−1+Df l
0 , c̃

l+Df l
0

)
= 1

2πσ 2
(
l + Df l |r, c̃

) exp


−

∣∣∣rk − η(l + Df l |r, c̃)
∣∣∣2

σ 2(l + Df l |r, c̃)


 (6.179)

can be adopted for the conditional pdf fr(rl+Df l
|rl−1+Df l

0 , c̃
l+Df l
0 ), where:

η
(
l + Df l |r, c̃

)
� E

{
rl+Df l

|rl−1+Df l
0 , c̃

l+Df l
0

}
(6.180)

and

σ 2
(
l + Df l |r, c̃

)
� 1

2
E

{∣∣∣rl+Df l
− η

(
l + Df l |r, c̃

)∣∣∣2 ∣∣∣rl−1+Df l
0 , c̃

l+Df l
0

}
. (6.181)

Here the conditional mean η
(
l + Df l |r, c̃

)
(6.180) can be evaluated as [1174]:

η
(
l + Df l |r, c̃

)
= a

(
l − 1 + Df l ; c̃

l+Df l
0

) (
c̃
l−1+Df l
0

)T

, (6.182)

where a(l − 1 + Df l ; c̃
l+Df l
0 ) is a vector of conditional forward prediction coefficients and 2σ 2(l +

Df l |r, c̃) is the corresponding error prediction variance. In other words, the conditional mean η(l +
Df l |r, c̃) is the output of a length (l − 1 + Df l ) linear prediction filter. Note that: (a) generally

speaking, the coefficients of this prediction filter depend on the trial sequence c̃
l+Df l
0 ; (b) predicting

rl+Df l
by η(l + Df l |r, c̃) is loosely equivalent to estimating the channel in a per-survivor fashion.

This shows, once again, that MAP algorithms with CIR averaged over can be related to adaptive MAP
ones.

The recursive equation (6.178) provides a simple method for updating the decision statistics. How-
ever, at time (l + Df l ), it produces M new statistics for each one of those generated in the previous
symbol interval. For this reason, the MAP-FLA derived above is characterized by a computational
complexity increasing as (l + Df l ) · M

l+Df l with time; this represents a substantial difference com-
pared to the MAP-FLA for ISI channels derived in Section 6.2.1.5 and requiring a fixed number of
computations per symbol. This substantial difference can be related to the fact that the channel memory
is fixed in a static ISI channel, but, in principle, is infinite with time-varying channels. Then, in the

latter case, the quantity fr(rl+Df l
|rl−1+Df l

0 , c̃
l+Df l
0 ) in (6.178) should be evaluated for any possible

trial sequence c̃
l+Df l
0 , that is, for any possible path in the state trellis of Figure 6.15(a). As discussed

above, a rigorous simplification of the algorithm is possible if the so-called folding condition applies.
In practice, as already illustrated for MLSD, folding can be forced [1174, 1175] so only a fixed num-
ber of received samples are processed in each symbol interval by the FLA and decision feedback is
exploited. The complexity of the resulting algorithms is still large, but can be further reduced resorting
to thresholding techniques. These allow unlikely paths to be discarded, so that a significant reduction
of the average computational load can be achieved.

The MAP-FLA strategies were developed in [1174, 1175] for frequency-flat fading channels, but
can be extended to doubly-selective fading channels; analytical details on this extension can be found
in [504, 1094, 1176].

The approach illustrated for the development of a MAP-FLA can also be applied to design MAP
FBAs [531–532]. An interesting example of this approach is given, in particular, in [533], which
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develops MAP detection algorithms for CPM and PSK signals transmitted over frequency-flat fading
channels. In this case trellis folding is forced under the assumption that the fading plus noise process{
xk

}
(6.170) can be accurately approximated by an AR model of order Lm, so that the resulting MAP

algorithm operates a forward and a backward recursion over an MLm -state trellis. The evaluation
of the state transition probabilities (needed for the evaluation of the symbol APPs) involves a form
of per-state channel estimation based on linear predictors of order Lm. The same approach has also
been adopted in [1177], where MAP detection of an MSK signal in the presence of an antenna
array at the receive side is considered (correlated diversity links are assumed). Extensions of this
approach to doubly-selective channels are also possible, but a vary large computational complexity
should be expected. Further results in this area can be found in [987, 1169, 1178], where some general
considerations on MAP symbol detection algorithms in the presence of a channel with infinite memory
are provided and the implications of finite-memory conditions are analyzed in depth, in [1179], where
the problem of developing SiSo algorithms in the presence of a parametric uncertainty is investigated,
and in [1180], where techniques for factor graphs (FGs) (see Section 10.8) are applied to develop a
MAPSD algorithm for DPSK signals transmitted over a Rayleigh frequency-flat fading channel.

Finally, it is important to mention that a conceptually different approach to MAP symbol detection
is offered by the BEM technique illustrated in Section 4.6.2. In this case, the vector of data to be
estimated includes all the unknown (random) channel parameters, whereas the vector of imputed data
coincides with that of transmitted channel symbols; a specific application to PSK signaling over a
slow frequency-flat fading channel can be found in Example 4.6.2 (see also [526] for further details
and [529] for the case of CPM signaling). Applications of this approach to frequency-selective and
doubly-selective channels can be found in [528] and [1181], respectively.

6.4.2 Other Equalization Strategies with Frequency-Flat Fading

Estimating the channel statistics is often a feasible task in a data transmission over frequency-flat
fading channels. For this reason, various equalization techniques exploiting the knowledge of the
channel statistics has been developed for this case; in the following we briefly illustrate two classes of
such techniques, namely block equalization techniques and decision feedback equalization techniques.
Finally, we focus on optimal one-shot detectors, which process the signal received over one or two
consecutive symbol intervals to generate symbol-by-symbol decisions.

6.4.2.1 Block Equalization Techniques

In detecting a long data sequence, the sequence of received samples can be partitioned into a sequence
of blocks of length N; then each block can be processed via block ML detection algorithm. Block
detectors can be roughly divided into two classes: multiple-symbol ML detectors (e.g., see [518,
1182–1185]); and ML detectors employing the EM algorithm (e.g., see [1186–1188]).

Multiple-symbol ML detectors were proposed in [518] for block detection of differentially encoded
M-PSK sequences transmitted over Rayleigh fading channels. This work has shown that ML block
detection can be interpreted as a multiple-symbol differential detector (MSDD) [1183] and that an
appreciable reduction of the error floor in fast fading can be achieved with respect to a conventional
differential receiver. The main drawbacks with respect to a conventional differential receiver are: (a) a
complexity increase since MN ML metrics (one for each possible data sequence c̃N ) must be computed
and compared; and (b) the receiver must estimate the second-order channel statistics. Multiple-symbol
differential detection algorithms have also been investigated in [501, 1182, 1184, 1185, 1189, 1190]. In
particular, it is worth mentioning that: (a) in [501, 1189] an interesting interpretation of the ML block
detection algorithm for QAM signals is provided and the error performance of suboptimal algorithms
in the presence of coding and diversity is investigated; (b) an MSDD employing the so-called sphere
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Figure 6.17 Block diagram of a decision feedback receiver.

decoding (SD) strategy9 for reducing the computational complexity of the ML search is proposed
in [1190].

The EM algorithm was proposed in [1186, 1188] as a solution to the problem of ML estimation of
linearly modulated data sequences. Its application leads to a two-step iterative procedure embedding
a Kalman filter for channel estimation: further analytical details can be found in Section 4.6.1 and, in
particular, in Example 4.6.1, where a specific application to PSK signaling over a slow frequency-flat
fading channel is illustrated.

6.4.2.2 Decision Feedback Equalization Techniques

The class of suboptimal decision feedback equalization algorithms plays a significant role, since
it offers an interesting complexity–performance tradeoff (e.g., see [487, 488, 514, 707, 725, 1174,
1194–1197, 1197–1201]). Such algorithms are based on the idea that in order to detect the kth channel
symbol ck coherently, an estimate of the fading distortion sample ak is required. If the data decisions
on previous symbols are reliable, they can be used to remove the modulation from the corresponding
received signal samples and to estimate ak via standard prediction techniques. A general scheme for
these equalizers is illustrated in Figure 6.17. Note that: (a) a Wiener predictor [487, 488, 514, 1197],
a Kalman filter [725, 1195, 1196] or an extended Kalman filter [707] can be employed for predicting
the fading distortion; (b) a periodic refresh of the algorithm memory with a string of known symbols
is needed to prevent a runaway phenomenon [488] (i.e., a loss of channel tracking) and to solve phase
ambiguity, unless differential detection is used [1197, 1199–1201].

The error performance of a decision feedback receiver can be improved, at the price of an increase
in detection latency, by adopting a two-stage architecture (e.g., see [513, 1198]). In this case the first
stage is a decision feedback receiver and delivers its data decisions to the second stage; this, in turn,
generates an improved channel estimate by means of an optimal smoother. Finally, this estimate is
used to produce new (more reliable) data decisions.

6.4.2.3 ML One-Shot Detectors

When the observation interval is limited to one or two symbol intervals, averaging over CIR
produces simple ML detectors which accomplish sequence detection on a symbol-by-symbol basis.

9 SD is an algorithm for solving integer least-squares problems; it is due to U. Fincke and M. Pohst [1191]
and was first proposed in the context of the closest point searches in lattices (further details can be found in
[1192, 1193] and the references therein).
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Strictly speaking, these are not equalizers since they do not estimate the channel. However, they are
widely used in wireless transmission as they allow detection of a signal in the absence of an explicit
channel estimate and offer the advantage of simplicity. Classic examples resulting from this approach
are the well-known differential detector (DD) for M-ary DPSK and the matched filter and envelope
detector (MFED) for energy detection of FSK signals [13]. Both structures are optimal under the
assumption of slow fading, that is, that fading distortion does not change appreciably over the
observation interval. An analysis of the error performance of DDs and MFEDs on fading channels
can be found in [427, 1202–1208] and [112, 1202, 1209–1211], respectively. This shows that DDs
and MFEDs suffer from a SNR loss with respect to coherent detection and their error performance
exhibits an error floor in the presence of fast fading [1202, 1212]. Improved DDs and MFEDs have
been derived in [427, 489, 1195, 1196] and [112], respectively. They exploit a couple of receive
filters [112, 427] or multiple received samples per symbol10 [489, 1195, 1196] in order to exploit
the implicit time diversity of the channel [101]. This results in a low error floor in fast fading at the
price, however, of acquiring a more refined knowledge of the channel noise and fading statistics.

Other noncoherent detectors are available for CPM signals and comprise differential detectors and
discriminators. An analysis of their error performance is provided in [1184, 1214–1216] for differential
receivers, and in [1068, 1217–1220] for discriminators.

6.5 Channel Equalization of Multicarrier Modulations:
Statistically Known CIR

If the communication channel is purely frequency-selective, the case of OFDM detection in the
presence of a statistically known channel can easily be related to that of PAM signaling over a slow
frequency-flat fading channel analyzed in Section 6.4 [1123] (in other words, the former case is the
FD dual of the latter). In fact, equation (4.121) shows that, at the output of the DFT stage of an
OFDM receiver, the channel symbol sequence associated with the lth OFDM symbol is affected both
by multiplicative distortion and by AGN, exactly as occurs with the samples at the output of the MF in
a conventional PAM receiver, operating over a slow time-selective fading channel (see (4.108)). In the
case at hand, the multiplicative distortion is given by the samples of the multipath channel frequency
response, which can be modeled as a Gaussian stochastic process, just like the time-selective distortion
affecting a narrowband PAM transmission (note that in the former case the autocorrelation function
RH (f ) of the channel frequency response H(f ) plays exactly the same role as the autocorrelation
function RD(τ) of the fading distortion a(t) referring to the latter case). This suggests that the
techniques developed for TD data detection in time-selective fading can be directly applied to our
sequence obtained by selecting the useful components of R(l)

N (6.143) (i.e., the (2Nα + 1) associated
with the useful subcarriers). For instance, if the channel symbols belong to a PSK constellation, they
can be differentially encoded at the transmitter and differentially detected at the receiver. This system
is very simple to implement and exhibits good behavior if the phase difference between adjacent
samples of R(l)

N is small. However, in principle, all the detection algorithms mentioned in the previous
section for SC detection over frequency-flat fading can be employed. It is also important to point out
that this topic has not been widely investigated in the technical literature. Here we confine ourselves
to mentioning that the problem of ML detection of OFDM symbols in the presence of known statistics
for a frequency-flat fading channel has been investigated in [928, 1221], where the use of V-BLAST
and the SD algorithm (see Section 11.5.1.7 and [1193, 1222], respectively) has been proposed to
limit the complexity of the search for the ML symbol estimate (the resulting techniques are classified
as semiblind detectors); the proposed approach has been extended to the case of a doubly-selective
channel in [1223].

10 Some theoretical considerations on multisample processing in optimal detection can be found in [1213].
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6.6 Joint Channel and Data Estimation: Single-Carrier Modulations
If both the channel and its statistics are unknown at the receiver, algorithms that jointly estimate the
data and the channel can be employed. In the technical literature this type of algorithm is usually called
semiblind, since, even if channel estimation is performed, proper initialization with the aid of pilot
symbols is required. In this section, we focus on three different classes of equalization techniques, the
first two developed for MLSD, the third for MAPSD. Finally, we analyze the problem of accomplishing
channel estimation on the basis of a known reference signal before detection under the assumption of
a purely time-selective communication channel.

6.6.1 Adaptive MLSD

The MLSD techniques discussed in Section 6.2.1.1 have been developed under the assumption of
a known CIR. Optimal MLSD when CSI is unavailable requires detection to be performed jointly
with channel estimation. Regardless of the specific channel model and modulation format, it is usu-
ally claimed that the exact solution of the MLSD problem in the absence of CIR knowledge has
complexity that is exponential with respect to the channel memory length [577]. Note that, from this
perspective, slower channel dynamics are expected to lead to a higher complexity exponent. This has
motivated substantial research efforts toward the development of various suboptimal strategies which
continuously adapt an ML-based equalization algorithm to the changing channel conditions estimated
via a decision-aided channel estimator. Such strategies form the class of adaptive MLSD algorithms.
The philosophy of this class is described by Figure 6.18, which illustrates how in a digital receiver
a single data-aided channel estimator11 can be combined with an MLSD algorithm developed for a
known CIR in a natural fashion. In practice, the transmitted symbol sequence is detected using the
estimated CIR so that the coefficients {hk} ({ql}) in (6.19) ((6.34)) are replaced by their estimates {ĥk}
({q̂l}). Note, however, that this estimate may be exploited in more than the evaluation of the branch
metrics. In fact, when an MF is used as a front-end, in principle it should be updated too [458].
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Figure 6.18 Block diagram of an adaptive MLSD receiver. A channel predictor may be inserted
to mitigate the lag effects due to channel estimation with tentative decisions.

11 More details on this can be found in Chapter 5.
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In practical applications the channel data transmission normally starts with a training sequence to
initialize the channel estimator. Then, during the transmission of information data, the receiver is
switched to a decision-directed mode and the CIR estimate is updated on the basis of the detected
sequence provided by MLSD [458, 622]. In doing so, tentative decisions {c̆k−d} coming from the
VA survivor characterized by the best decision metric [559] are usually fed back to the channel
estimator with a certain delay d [559, 560, 1016, 1224]. Note that, as already mentioned in Section
6.2.1.1, the decision delay DVA introduced by the VA is of the order of 5–7 times the channel memory,
so that, if d = DVA is selected (i.e., c̆k−d = ĉk−DVA

, where ĉk−DVA
denotes the final decision taken by

the VA on the transmitted symbol ck−DVA
), the channel estimator is supplied with outdated information,

and the resulting estimate suffers from a lag error [559, 564]. For time-varying channels, this must be
traded off against the accuracy of tentative decisions, so that the tentative decision delay d is usually
selected to be appreciably shorter than DVA [622]. Note that an important role in determining error
performance of an adaptive MLSD receiver is played by both the decision lag, and the acquisition
speed of the channel estimation algorithm [768]. For channel tracking, the low-complexity LMS
algorithm is usually favored in both adaptive MLSD and adaptive PSP MLSD [458, 512, 564, 622,
1016] (see also the next subsection). This is due to the fact that, as mentioned in Section 5.1.3.1, if
the input data correlation is low, the tracking ability of the LMS and RLS algorithms are similar.
The quality of the CIR estimate can also be improved by predicting it [511, 768, 1225], namely, by
inserting a channel predictor at the channel estimator output, as shown in Figure 6.18. Note, however,
that, even when employing prediction, an error floor occurs during fast fading [511]. For this reason,
adaptive MLSD is suited only to slowly fading channels.

A conceptually different approach to adaptive MLSD is proposed in [558], where a basis expansion
model [233] is used to model a time-varying channel over the observation interval and a data-aided
estimate of the model coefficients is exploited to start the MLSD algorithm. Then data decisions are
used to refine the estimates of model coefficients, and these steps are iterated until the maximum
number of iterations is reached or until convergence.

For a comparison of adaptive MLSD with other equalization strategies the reader can refer, for
instance, to [860, 1023, 1226, 1227]. Note also that in PSP-based MLSD the Fano algorithm is an
alternative to the VA in the presence of trellis-encoded data, as illustrated in [1016].

6.6.2 PSP MLSD

The tentative decision delay d characterizing adaptive MLSD may be unsatisfactory for time-varying
channels and, to avoid this, PSP may be applied in channel tracking (e.g., see [111, 419, 426, 434,
437, 490, 512, 559, 563, 564, 1228, 1229]). This means that a channel estimator is associated with
each survivor in a trellis-based algorithm for MLSD and the corresponding CIR estimate updated with
no lag using the survivor symbols. Then, the branch metric (6.34) for the VA takes the form:

ξk(�̃k, �̃k+1) �

∣∣∣∣∣∣rk −
Lq−1∑
l=0

c̃k−l ql

(
�̃k

)∣∣∣∣∣∣
2

, (6.183)

where {ql(�̃k), l = 0, 1, . . . , Lq − 1} denotes the CIR estimate associated with the state �̃k at the
kth decoding step. A generic block diagram for a PSP-based MLSD receiver is shown in Figure 6.19.

Adaptive PSP MLSD is motivated by the inadequacy of adaptive MLSD in time-varying chan-
nels, but it is never truly optimal with time-varying channels [426, 512, 1168]. The LMS [419, 426,
512, 515, 564, 1229] or RLS [774] algorithms can be employed for tracking a doubly selective
channel, but the LMS approach is usually preferred, as noted above. However, error floors can
still occur even with relatively slow fading. The RLS algorithm performance in fast fading can
be appreciably improved by explicitly modeling the time variation of the channel taps via additional
parameters, as illustrated in [616, 617]. An alternative to the LMS and RLS techniques is developed in
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Figure 6.19 Block diagram of a PSP-based MLSD receiver.

[428], where, after proposing the adoption of an ARMA model for the CIR, a bank of KFs is employed
for channel tracking. Unfortunately the complexity of the resulting PSP-KF receiver structure can
be prohibitive, especially for long CIRs, due to the filtering complexity. Simplified KF-based PSP
schemes are developed in [566, 774, 1229]. In particular, in [774], complexity reduction is achieved by
means of a prediction-feedback mechanism exploiting the parallel structure, which characterizes the
ARMA model when certain model parameters are neglected. The resulting reduced-complexity KF-
based receiver provides significant performance improvement over a PSP receiver with RLS channel
estimation and only a moderate degradation with respect to the PSP-KF. In [566], various alternative
implementation methods are considered for measurement and time update equations of a KF and
parallel structures for joint Viterbi data detection and channel estimation are developed.

The performance of PSP-based algorithms for MLSD improves as the quality of the channel esti-
mate gets better. With frequency-flat fading accurate channel prediction can be obtained with PSK
and CPM signals by resorting to the polynomial channel models illustrated in [111, 437, 1230]. In
particular, in [111, 437] a linearly time-varying model is adopted for a time-selective channel model
(see Section 2.2.3.4), so that the implicit time diversity provided by the communication channel can
be extracted by two “matched” filters (for a linearly modulated signal) [111] or two filter banks [437]
(for CPM signals). The matched filter outputs provide accurate information about the fading process
and can be combined to produce improved per-survivor channel predictions.

At receiver startup PSP-based MLSD can estimate the channel in a blind fashion, provided, however,
that some pilot symbols are available to resolve the phase ambiguity of the adopted constellation. In
particular fast startup in frequency-flat fading is provided by the blind algorithms proposed in [111,
437]. Some results on the blind acquisition properties of PSP MLSD with frequency-selective channels
can be found in [575].

It is also important to mention that:

(a) array processing can be incorporated in PSP-based MLSD [1231];
(b) generalized PSP algorithms, retaining multiple (instead of one) survivors per state, have been

developed (e.g., see [419]);
(c) strategies for reducing the number of channel estimators in a PSP-based detector can be adopted

to achieve a good performance–complexity tradeoff [569];
(d) per-branch processing (PBP) algorithms for adaptive MLSD have been proposed in [563, 566,

773]. PBP can be considered as a generalized form of PSP, since it involves computing one
channel estimate for each branch of the VA trellis when generating the branch metrics.
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Finally, we note that the theory of adaptive PSP and PBP MLSD has been analyzed in a framework
based on the EM algorithm in [773]. In this context a generalized maximum likelihood sequence
detection and estimation technique has been derived following the EM approach and it has been
shown that per-survivor and per-branch processing methods emerge naturally from this technique.
Some related work on MLSD based on the EM can be found in [580, 1232]. In particular, in [580] a
blind ML equalization method is proposed for frequency-selective fast fading Rician channels. This
method employs the so-called expectation maximization Viterbi algorithm (EMVA) for blind channel
estimation and signal detection. In practice, the VA is used to execute the E step of an EM iteration,
whereas channel estimation is accomplished in the M step. The EMVA is shown to achieve an error
rate performance close to that of MLSD endowed with the true parameters for the given channel
model. A conceptually related approach is followed in [1232], which, however, investigates the use
of various basis expansions of a time-varying communication channel to simplify its estimation.

6.6.3 Adaptive MAPBD/MAPSD

As shown in Section 6.2.1.5, two types of MAP algorithms have been developed for practical
applications. One, called MAP-FBA, performs forward and backward recursions, whereas the other,
denoted MAP-FLA, accomplishes only a forward recursion. In time-varying environments the channel
parameters are initially estimated by means of a training sequence and afterwards can be adaptively
tracked by exploiting the decisions from the detection algorithm. Unfortunately, a MAP-FBA cannot
deliver reliable decisions to the channel estimator until both its forward and backward recursions have
been completed. It can therefore be stated that a MAP-FBA is not suitable for time-variant channels
when a single channel estimator, fed by tentative decisions, is employed in the receiver structure
[1088]. However, a MAP-FLA can be exploited to develop adaptive MAP detection algorithms, as
shown in [1233–1235]. Such algorithms recursively generate reliable hard decisions and employ a
single Kalman-type channel estimator, as illustrated in Figure 6.20. This estimator is not fed by tenta-
tive data decisions, but by APPs of the states of the ISI channel (a training sequence is also used for
receiver startup). Simulation results demonstrate that the use of soft statistics in channel estimators
improves their channel tracking capabilities and that the proposed algorithms outperform conventional
adaptive MLSDs on time-varying channels (the problem of channel estimation relying on soft infor-
mation will be briefly addressed again in Section 12.3.5 in the context of iterative equalization). This
approach can also be applied to sparse channels in such a way that the receiver complexity does not
depend on the overall memory of the channel, but on how few nonzero taps it has [1234].

Channel tracking performance and, consequently, error performance can be improved using multiple
KF-based channel estimators, as illustrated in [1236, 1237]. In this case, if we refer to the channel
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model (6.32), a parallel bank of MLq conditional channel estimates, each corresponding to a different
subsequence of length Lq , is updated using a forward MAP strategy. Although the number of channel
estimates required for blind MAPSD is M times larger than that needed in blind PSP MLSD, superior
performance is achieved by the former algorithms in the presence of fast fading. If the symbol timing
is unknown [1238], the latter approach can still be employed by including an additional ISI term in the
receiver memory to account for this uncertainty. This leads to an MLq+1-state MAPSD algorithm employ-
ing a bank of extended KFs (EKFs) and jointly estimating the channel coefficients and the symbol timing.
A known preamble sequence is transmitted to estimate the channel statistics via an auxiliary EKF at the
receive side; then, at the end of the training phase, the auxiliary filter is employed to properly initialize both
the parallel filter bank of EKFs and the MAP subsequence metrics. During the transmission of information
symbols, the MAP detection algorithm takes symbol-by-symbol decisions, whereas the fading channel is
tracked by the filter bank. As suggested in [1236, 1237], different strategies can be employed to lower the
complexity of the KF-based MAPSD algorithm, such as thresholding, the use of LMS filtering in place of
Kalman filtering or channel memory truncation combined with decision feedback.

It is also mentioning that a MAP detector employing a bank of matched stochastic nonlinear filters
for generating multiple estimates of a frequency-flat fading channel has been developed in [1239]. In
the proposed receiver the MAP decision processor is driven by the filters’ innovations processes.

As discussed in Section 6.2.1.5, computational savings in MAP forward only detection can be
achieved adopting the OSA or the SSA [1088]. This approach to complexity reduction has been fol-
lowed in [1240], where conventional adaptive and PSP extensions of the above-mentioned algorithms
are illustrated and compared with the performance attained using a PSP MLSD as a first stage in a
receiver for an interleaved coded system operating over a doubly-selective channel. One of the most
significant results is that PSP SSA has computational complexity comparable to that of PSP MLSD,
but offers superior performance.

All the algorithms described above belong to the class of MAP-FLAs. Nonetheless MAP-FBAs can
be employed on time-varying communication channels (e.g., see [530, 558, 1181, 1241]). In particular,
the channel estimation process can be embedded in both the forward and backward recursions, in a
way that can be related to a PSP-based receiver, as shown in [530], where a fractionally-spaced MAP
equalizer for a doubly-selective fading channels is developed. The FBA operates on an expanded state
trellis and accomplishes per-state joint MMSE channel estimation and soft data detection. Alterna-
tively, in [558], a basis expansion model [233] is adopted to model a time-varying channel over the
observation interval, so that the problem of channel estimation is turned into one of estimating the
model coefficients. The estimate of the model coefficients of the time-varying channel is exploited
to run a standard MAP-FBA equalizer, whose output can be employed to generate a more refined
channel estimate. In other words, joint channel estimation and equalization is accomplished in an
iterative manner and the iterations are performed until the maximum number of iterations is reached
or until convergence. A conceptually different approach is followed in [1181], where the EM and
the BEM algorithms are employed to develop soft decision-directed channel estimators which can be
coupled with a MAP-FBA for channel equalization.

6.6.4 Equalization Strategies Employing Reference-Based Channel
Estimators with Frequency-Flat Fading

As already discussed in Section 6.2.1.6, the use of coherent detection with MRC or ECG on slow
frequency-flat fading channels requires knowledge of the fading distortion within each symbol interval.
In practice, coherent detection is possible if a reference (or sounding) signal is transmitted with the
information-bearing signal. In particular, a coherent reference can be made available to the receiver
by transmitting a time-continuous sounding signal such as a pilot tone (e.g., see [709–713, 715,
1242–1245]) or, as illustrated in Section 5.3, by sending a sequence of known symbols (i.e., a pilot
sequence) interspersed with the data symbols. Note that, in this scenario, a phase-locked loop (PLL)



Detection of Digital Signals: Channel Equalization 307

cannot be employed to generate an accurate phase reference since this technique is unable to track
the rapid phase changes characterizing channel fading [1246].

Various pilot tone techniques have been proposed; here we note the following approaches:

(a) Yokoyama [710] describes a technique which consists of sending a continuous wave sounding
signal together with a data BPSK signal orthogonal in phase to the sounding signal itself.

(b) In the TTIB technique [713] the baseband spectrum is split into two segments. The segment in
the upper frequency band is translated up in frequency by an amount equal to the “notch” width
and a reference pilot tone is added at the center of the resulting notch.

(c) The TCT [712] creates a spectral null in the data signal by means of a proper encoding technique
and inserts a pilot tone in the null.

(d) In the DPTCT [711] two pilots are symmetrically located outside the actual data spectrum but
near the band edges. This technique provides better bandwidth efficiency than TCT, at the price
of increased sensitivity of the pilots to frequency shifts.

Robust and simple receiver structures can usually be implemented when pilot-tone techniques
are employed. In most cases, the pilot tone can be recovered from the received signal using rel-
atively simple circuitry and the error floor level can be substantially reduced. However, this is
achieved at the price of wasting a fraction of the transmitted power to transmit the required reference
signals.

Simpler transmitter and receiver processing is achieved by PSAM. In PSAM transmission, the
transmitter periodically sends known symbols, from which the receiver derives its amplitude and
phase reference. The PSAM transmitter and receiver schemes are shown in Figure 6.21 together with
the transmitted data format. Here, the data symbol rate is equal to Rs = (K − 1)/(KTs), with 1/KTs

being the pilot symbol rate (this rate should be at least 2BD,max, where BD,max is the largest value of
the Doppler bandwidth BD). Like pilot-tone modulation, PSAM suppresses the error floor and offers
the further advantage of enabling multilevel modulation without requiring a change in transmitted
pulse shape or of the PAPR. A comparison of PSAM with TTIB [1245] has shown that the former
technique offers substantially better energy efficiency than the latter for any practical power amplifier.

Finally, we note that reference-based techniques for coherent detection were originally developed
for linearly modulated signals, but it has been also shown that they can be employed with CPM signals
[726] as well.

6.7 Joint Channel and Data Estimation: Multicarrier Modulations
If the OFDM symbol is transmitted over a doubly-selective fading channel, the received signal vector
R(l)

N in the lth symbol interval can be put in the form (6.162). It is not difficult to show that, in
principle, the ML joint channel and data estimates (Ĥ(l), ĉ(l)

N ) for this interval may be evaluated as:

(
Ĥ(l), ĉ(l)

N

)
= arg min

H̃,c̃N

∣∣∣R(l)
N − H̃ c̃N

∣∣∣2, (6.184)

where H̃ = [H̃ [k, q]] is an N × N complex matrix and c̃N = [c̃0, c̃1, . . . , c̃N−1]T is an N-dimensional
vector of channel symbols, all belonging to an M-ary alphabet Ac. This requires solving a complex
LS problem for Ĥ (since Ĥ

[
k, q

] ∈ C for k, q = 0, 1, . . . , N − 1) and an integer LS problem for
c̃N . Note that, despite the formal simplicity of this problem, the computational effort required to solve
it directly for reasonably large values of N is huge. For this reason, various suboptimal estimation
strategies have been developed. These usually tackle the problem of channel estimation first and then
exploit the resulting channel estimate for detection. Channel estimation procedures necessarily rely
on the availability of pilot symbols, that is, on the presence of known channel symbols defined over
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Figure 6.21 Structural block diagram of a PSAM transmitter (a) and receiver (c); location of the
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a set of predefined subcarriers; however, such symbols are exploited for estimating the channel gains
in the class of pilot-based equalization techniques, whereas their use is limited to solving the phase
ambiguity problem for the constellation of channel symbols in semiblind equalization techniques.
Some details on these two classes of techniques are provided in this section.

6.7.1 Pilot-Based Equalization Techniques

Pilot-based techniques are usually based on the idea that the received signal samples at the DFT
output can be processed to acquire CSI referring to the pilot subcarriers. Then the CSI referring to all
the other subcarriers is assessed by employing a proper estimation technique. The channel estimation
technique depends on the selected estimation criterion and on the model used to describe the channel
state during the transmission of each OFDM symbol. In fact, in certain scenarios the channel can be
deemed static over each OFDM symbol, even if the changes from symbol to symbol should not be
ignored. In contrast, in other cases, Doppler effects are not negligible, so that channel modeling should
explicitly account for them.

Some pilot-based equalization techniques assume a static channel over each OFDM symbol
[1247–1252], even if the channel state can evolve from symbol to symbol. In particular, in [1247] an
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iterative channel estimation and equalization procedure is proposed. In each step an ML estimate of
the CIR vector h is generated on the basis of the available channel symbols (i.e., the pilot symbols at
the beginning of the first iteration, the whole symbol vector in all other iterations). This estimate is
then used to evaluate an ML estimate of the data symbols. The procedure stops when two successive
CIR estimates are sufficiently close to each other. An iterative procedure is also developed in [1248],
where, however, the presence of a residual CFO is also taken in account. In this case, joint estimation
of the CIR and CFO is alternated with soft ICI and IBI cancelation. In [1249] an AR model with
known parameters is used to represent the channel variations from symbol to symbol and a decision
feedback mechanism is combined with Kalman filtering to predict the communication channel in a
MAP receiver. In [1250] an OFDM transmission with a low density of pilot carriers is considered.
The proposed algorithm for channel estimation and equalization operates over a group of consecutive
OFDM symbols and assumes a polynomial representation for the subcarrier gains in time and
frequency. It considers some data symbols within the group as “pseudo-pilots” and, for each possible
pattern of pseudosymbols, it estimates the coefficients of the above polynomial representation via an
LS fitting procedure; then it generates a data sequence estimate and corresponding metric. Finally,
it chooses the pattern of pseudo-pilots characterized by the minimum metric and decides in favor of
the data sequence associated with it. In [1251, 1252] a state-space model is adopted for describing
the changes in the CIR vector from each OFDM symbol to the next (in particular, a random walk
model is selected in [1251]) and the BEM technique (see Section 4.6.2) is applied to develop a
MAP channel estimator, thus generating soft estimates of the channel symbols as a by-product. Note
that the techniques proposed in [1251] and [1252] involve an RLS algorithm and Kalman filtering,
respectively.

If the communication channel over each OFDM symbol cannot be deemed static, different tech-
niques for channel estimation and equalization can be devised. Note that such techniques usually rely
on specific parametric channel models which account for channel changes.

In particular, if the channel variations over each OFDM symbol, even if not negligible, are relatively
slow (i.e., moderate Doppler spreads can be assumed), a linearly time-varying model (see Section 2.2.3)
can be employed for modeling the variations of the CIR taps over a few consecutive OFDM symbols
[451, 1135, 1140]. This allows simpler representations for the received vector R(l)

N (6.162) to be
developed which, in turn, allow the problem of channel estimation and ICI mitigation to be simplified.
This approach is exemplified by [1140], where iterative ICI mitigation techniques exploiting the
cyclic prefix of each OFDM symbol or consecutive OFDM symbols for estimating channel slopes
are described. Related work can be found in [451, 1135], which exploit channel estimates evaluated
over consecutive pilot symbols and linear interpolation to estimate the CIR over the OFDM symbols
carrying information data and employ an FDE (a LE and parallel interference cancelation equalizer,
respectively) both for compensating the multiplicative distortion affecting each subcarrier and for
canceling ICI.

When a linearly time-varying model is not accurate enough to capture the real behavior of the
communication channel, more refined channel models must be adopted, such as power series models
[1126, 1133], polynomial models [803, 1253] and basis expansion models [558]. In particular, a finite
power series expansion for the TVTF of a statistically known channel is employed in [1133]. This
model is used to estimate the channel (via a simplified ML estimator) over training OFDM symbols
and demodulated OFDM symbols and for predicting the channel via polynomial extrapolation. As
far as channel equalization is concerned, a linear MMSE FDE and a numerically efficient DFE are
developed. A Taylor series expansion in the t variable only for the CIR h(t, τ ) is employed in
[1126], where an iterative ICI cancelation and channel estimation scheme is developed. In practice,
the proposed receiver architecture combines an iterative DFE with a multistage channel estimator in
an overall iterative scheme.

Polynomial models are used to represent the variations of the CIR taps over multiple consecu-
tive OFDM symbols in [803]. LS estimates of polynomial coefficients are generated that exploit the
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information provided by pilot subcarriers. Then the estimated CSI is employed in the data detection
procedure, which combines interference suppression over successive subcarriers with one-tap fre-
quency equalization and involves a group of consecutive OFDM symbols. The performance of this
algorithm for channel estimation and equalization can be enhanced by iterating it (channel estima-
tion and ICI mitigation are performed at each iteration). In [1253] a very fast fading environment is
considered, so that polynomial models are applied to represent the CIR tap gains within each OFDM
symbol. In addition, an AR model is adopted to describe the dynamics of the polynomial coefficients.
For this reason, Kalman filtering is employed to adaptively track such coefficients and the estimated
CSI is used in a detection procedure based on the so-called QR decomposition (see equation (C.14))
of the channel matrix. Similarly to [803], channel estimation and data detection can be iterated to
improve the error performance.

Basis expansion models are used in [558] to represent the CIR variations over a single OFDM
symbol. In this case an LS or MMSE initial channel estimate is obtained with the aid of pilot symbols.
Then equalization in the FD in the presence of ICI is accomplished by resorting to VA-based MLSD
or to a MAP-FBA. The detected symbols are then used to re-estimate the channel, so that the quality
of channel estimation and data detection can be improved through iteration.

Unlike the work cited above, in [453, 800, 1138] no specific model for the time-varying CIR is
assumed in the derivation of channel estimation and equalization algorithms. In particular, in [800]
an MMSE technique is used for estimating the CIR relying on pilot symbols and then the channel
estimate is exploited for MF detection, LS detection and MMSE with successive detection (which
detects the channel symbols one by one, rather than all simultaneously). In [1138] the presence of
both IBI and ICI (due to the presence of a short cyclic prefix and to the time variation of the channel)
is considered. An LS strategy for pilot-aided channel estimation combined with linear interpolation is
adopted for channel estimation in the TD. Then equalization is divided in two steps. First, the received
signal samples go through a FIR TDE which shortens the overall CIR so that the IBI and ICI effects
due to an insufficient length of the cyclic prefix are minimized. Finally, the filtered signal is processed
in the FD using a FIR MMSE FDE with a few taps per subcarrier to eliminate the ICI due to channel
variations. In [453] a linear pilot-aided MMSE estimator is used for estimating the ICI coefficients;
then, these coefficients are exploited by an FDE with multiple taps for mitigating ICI.

All the techniques illustrated above process the OFDM received signal block by block (i.e., symbol
by symbol). A conceptually different approach is illustrated in [1146], where a system with very large
OFDM block sizes is considered. In this case each OFDM symbol is partitioned into subblocks (so
that the channel can be considered time-invariant over each of them) and an FD pre-equalization is
accomplished on each subblock to mitigate channel variations (i.e., to reduce ISI); this is followed
by conventional single-tap equalization per subcarrier (see Section 6.3.1). In this case conventional
channel estimation schemes based on pilot subcarriers can be employed, since the knowledge of the
CIR over each subblock is required to adjust the pre-equalizer. For this reason, a periodic pseudonoise
sequence is superimposed on the OFDM for channel estimation.

Finally, we note that:

(a) some related work on sequence detection of specific MC schemes over doubly-selective fading
channels can be found in [1145];

(b) the problem of OFDM detection in the presence of channel estimation errors is tackled in [1254]
by exploiting the theory of variational inference.

6.7.2 Semiblind Equalization Techniques

A limited number of references is available in the technical literature concerning semiblind equalization
for OFDM signals [1123, 1130, 1131, 1255–1258]. In particular, a trellis-based detector with PSP is
proposed in [1123] for blind symbol detection; in this case a few pilot symbols are inserted in each
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OFDM symbol, since they are exploited to ensure a fast startup and a proper trellis termination. In
[1255] a two-dimensional regression surface is employed to model the channel gains in frequency and
time, and this model is then exploited to formulate the ML data estimation problem. Unfortunately,
the minimization of the ML metric requires an exhaustive search over a large set of data and this
is computationally inefficient. As a result, the joint detection and channel estimation problem is
divided into two stages. In the first stage, it is solved for some selected subchannels or timeslots (i.e.,
OFDM symbols), thereby generating data estimates which are are exploited in the second stage as
pilot symbols in determining the other symbols. However, there is still the problem of minimizing
a specific detection metric, that is, solving an optimization problem. After pointing out the analogy
between this problem and an integer programming problem and translating the last problem into a
tree-searching problem, an efficient tree search algorithm, based on the principle of branch-and-bound,
is developed.

Semiblind linear equalization techniques operating in the FD over a group of consecutive OFDM
symbols are derived in [1130, 1131]. Note that these techniques are based on the joint multiple
diagonalization algorithm [1130] and on the joint approximate diagonalization of eigenmatrices algo-
rithm [1131].

In [1256, 1257] the EM algorithm is employed to develop iterative data estimators in the presence
of an unknown doubly-selective channel. More precisely, in [1256] a technique for estimating both
data and CFO is developed under the assumption of a time-varying TDL model for the channel, while
[1257] concentrates on the problem of data estimation only and assumes linear variations of each
channel tap over an OFDM symbol.

Finally, in [1258] a scheme for iterative blind channel estimation is proposed. When an OFDM
symbol is received, primary symbol estimates are generated by a decision algorithm based on a
constrained linear MMSE criterion. These estimates are then employed in a conventional MMSE
channel estimator, providing CSI to conventional detection techniques. Even if this scheme is classified
as blind, it needs a pilot symbol to train the channel estimator at startup.

6.8 Extensions to the MIMO Systems
Substantial research efforts have been made in the last decade to extend the equalization techniques
developed for SISO and SIMO wireless communications to a MIMO scenario. One of the main
problems encountered in the development of MIMO equalization techniques is the large computational
complexity. This is due to the fact that, in an nT × nR MIMO communication system, the signal
captured by each of the nR receive antennas involves the superposition of nT transmitted signals,
so that any equalization algorithm employed at its receiver has to cope not only with the ISI and/or
the time variations of the communication channel affecting all the transmitted signals, but also with
CCI. In addition, in a MIMO scenario ST coding schemes are commonly used (see Chapter 11), and
equalization and decoding tasks are often combined in a single algorithm matched to such schemes.
In this section a brief overview of MIMO equalization techniques is provided for both SC and OFDM
signaling.

6.8.1 Equalization Techniques for Single-Carrier MIMO Communications

When data transmission is over a frequency-selective MIMO channel that is known to the receiver and
has finite memory, the optimal sequence detection strategy is a multichannel MLSD procedure based
on the VA [554, 1259]; however, the computational complexity of this procedure makes its practical
implementation infeasible (similar comments apply to MAPSD for the same scenario). This motivates
the search for suboptimal linear or nonlinear equalization techniques in the time or frequency domain.

Linear equalization in the TD has been investigated in [1260–1262]. In particular, a new and
different perspective for the understanding and analysis of MIMO linear equalization is provided in
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[1261], where the equalization problem is considered as a special case of an estimation problem and
the H∞ approach to estimation is proposed as an alternative method for channel equalization. It is
also worth making the following observations:

(a) As in the SISO case, LEs can be used for CIR shortening (see Section 6.2.1.2). This problem is
tackled, for instance, in [1260], where optimal finite-length delay-optimized MIMO equalizers are
derived, in [1263], where the issue of joint transmitter–receiver filter design for shortening MIMO
ISI channels is addressed, in [1264], where realizable MMSE channel shorteners consisting of a
prewhitening filter followed by an FIR postfilter are designed, and in [1265], where optimization
is performed from an information-theoretic perspective.

(b) If the communication channel is also known to the transmitter, linear processing at the receive
side can be combined in an optimal fashion with some form of signal preprocessing (namely,
pre-equalization or precoding) at the transmit side. Precoding can potentially modify the structure
of the overall MIMO communication channel (e.g., converting a MIMO channel with memory into
a set of parallel flat fading subchannels) and/or greatly reducing signal processing at the receiver.
The reader can refer to [1266–1268] and references therein for further details on this topic.

An alternative to linear equalization in the time domain is decision feedback equalization operating
in the same domain. Various contributions to the optimization, performance and computation of a
finite-length MMSE-DFE for MIMO communication systems can be found in [38, 1259, 1262, 1269,
1270]. Other results can be found in the literature on DFE design and, in particular, on structural
modifications/extensions to a standard DFE structure. Here we limit ourselves to mentioning the
following:

(a) As for linear equalization, the design problem for optimal MIMO DFEs can be approached from
an estimation point of view by adopting an H∞ perspective [1271].

(b) In wideband communications over long sparse channels, modified decision feedback equalization
structures, exploiting the channel properties by simple tap allocation, can be developed [1262].

(c) MIMO DFEs can also be adopted in layered receiver structures for spatial multiplexing systems
(see Section 1.1 and Chapter 11) operating over broadband wireless channels. In particular, lay-
ered space-time receivers for a broadband vertical BLAST (V-BLAST) system [1272] have been
devised in [1273]. In the proposed receivers, the nT equal-rate independently encoded data streams
(each radiated by a distinct transmit antenna) are successively detected in an ordered manner (on
the basis of their strength, since stronger streams are more resilient to CCI) by employing a MIMO-
DFE. Moreover, each stream is detected with the entire CCI contribution from every previously
detected stream already canceled (i.e., serial interference cancelation (SIC) is used).

It is important to note that, as in the SISO case, equalizer design for MIMO systems is often based
on the assumption that CSI is known precisely to the receiver. Accurate CSI estimation is often a
critical task in MIMO communications. This has motivated the development of design methodologies
ensuring that MIMO equalizers can extract symbols at the receiver robustly and effectively from a
noisy channel subject to model uncertainties [1271, 1274, 1275].

An alternative to MIMO decision feedback equalization is the use of THP (see Section 6.2.3), that
is, nonlinear prefiltering at the transmit side to avoid error propagation phenomena; for further details
on THP for MIMO systems, see [1276, 1277].

For sufficiently high SNRs, DFEs achieve better error performance than LEs, but are substantially
outperformed by MLSD, whose implementation complexity is usually prohibitive. However, it has
been shown that MLSD performance can be approached at the price of a computational complexity
comparable to the standard ST DFE algorithms by resorting to the SD algorithm [1278]. Other quasi-
optimal equalization algorithms can also be found in the literature. For instance, a simplified fixed lag
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(SiSo) MAPSD strategy based on a trellis representation of MIMO signals and soft decision feedback
has been proposed in [1279] for V-BLAST.

As in the SISO case, TD equalization algorithms developed under the assumption of a frequency-
selective communication channel known to the receiver can be easily combined with pilot-aided
channel estimation (see Chapter 5) when the channel exhibits negligible changes over each transmitted
data packet. In contrast, if the time variation of the channel within a packet is significant, channel
tracking is needed for the equalization to be effective. This approach is adopted, for instance, in [840],
where channel taps are tracked by a KF aided by staggered decisions from a finite-length MMSE-DFE.

An alternative to equalization of frequency-selective channels in the TD is equalization in the FD.
As in the SISO case (see Section 6.2.2), both linear and nonlinear equalization strategies in the FD
can be found in the literature. In particular, FD linear equalization schemes have been proposed in
[1280, 1281]. Moreover, the problem of the design of an MMSE LE in the presence of multiple
unknown CFOs is tackled in [1282]. However, as expected, better error performance can be achieved
by resorting to decision feedback schemes, for which different options can be found in the technical
literature [1283–1293]. In particular, a hybrid time–frequency-domain DFE has been developed in
[1283], where a group of TD feedback filters is used to eliminate part of the postcursor ISI and
CCI. Layered spatial frequency-domain equalization structures for V-BLAST (inspired by the layered
spatial time-domain equalization developed in [1273]) have been illustrated in [1284, 1285], where
a hybrid DFE is employed at each stage and the multiple data streams are detected following a lay-
ered approach (in other words, SIC is accomplished). The multiple stages of such SIC-based schemes
tend to accentuate the effect of error propagation when only imperfect or estimated CSI is available
[1284]. An alternative to this is presented in [1287], where parallel interference cancelation (PIC)
in conjunction with a hybrid DFE is considered. The proposed receiver consists of multiple paral-
lel branches, one corresponding to each data stream, and each branch performs FD-based PIC and
equalization in multiple stages. A parallel-branch FD receiver architecture has been also developed in
[1294]. It consists of parallel linear preprocessors to suppress CCI, followed by a hybrid equalizer,
and integrates channel parameter estimation. Both the preprocessors and the forward filter of the DFE
are implemented in the FD, whereas the backward filter of the DFE is implemented in the TD. Lay-
ered spatial frequency-domain equalization can also be combined with iterative processing, as shown
in [1286, 1288], where some ideas on iterative block decision feedback equalization developed in
[1295] have been followed. An iterative technique is also proposed in [1289], based on the use of a
soft interference-cancelation MMSE equalization algorithm. Further decision feedback schemes have
been developed in [1290–1293]. In particular, FD equalization with decision feedback processing for
time-reversal ST block-coded systems has been proposed in [1290]. In [1291, 1292], a linear FDE is
combined with a TD noise predictor and with successive interference cancelation to derive two new
equalization algorithms that achieve a better performance–complexity tradeoff than the conventional
FDEs with decision feedback processing. FD equalization can also be combined with the THP tech-
nique to avoid error propagation. This is shown in [1293], where two new MIMO FDEs based on the
MMSE criterion are designed.

As in the case of TD equalization, FD equalization for a known channel can easily be combined
with pilot-aided schemes for channel estimation (e.g., see [1282, 1296]).

Finally, it is important to mention that many technical papers in the field of MIMO wireless com-
munications deal with the problem of equalization of ST coded signals transmitted over a narrowband
wireless channel, which can be modeled as a purely time-selective fading channel. As in the SISO
case, for this scenario different assumptions can be made about the channel knowledge at the receiver
(in practice, the channel can be known, statistically unknown or has to be estimated jointly with the
transmitted data).

In the case of known channel, various quasi-ML detection strategies (e.g,. see [1297–1299] propos-
ing the application of SD and [1300] solving the ML detection problem via a semidefinite relaxation)
and soft MIMO detectors (e.g., see [1301] and references therein) have been derived. A simpler
alternative is offered by linear and decision feedback receivers (e.g., see [1302–1304] and references
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therein). For a statistically known channel, the use of PSP detection algorithms (see Section 6.4.1),
decision feedback receivers (see Section 6.4.2.2) and multiple symbol differential detectors has been
investigated for differential ST modulations over Rayleigh fading channels (e.g., see [1190, 1201,
1305–1317]). For the case of joint channel and data estimation, PSP-based algorithms (see Section
6.6.2) have been devised (e.g., see [1318, 1319], where algorithms for the approximate ML detection
of ST trellis and block codes, respectively, are derived).

6.8.2 Equalization Techniques for MIMO-OFDM Communications

As one of the most promising wireless techniques, MIMO-OFDM can significantly improve the quality
of wireless transmission links. Generally speaking, since the complexity of ML detection of MIMO-
OFDM grows exponentially with the number of co-channel signals, there has recently been interest in
developing low-complexity detection algorithms. In particular, various suboptimum algorithms have
been developed for the case of a frequency-selective MIMO channel known to the receiver. Here we
mention:

1. Detection algorithms based on the application of QR decomposition (QRD). In this case the QRD
is applied to the antenna outputs after the FFT operation on each of OFDM subcarriers. The
ML decision rule based on the QRD can be implemented as a full tree search whose complexity
grows exponentially with the number of transmit antennas and the size of the symbol constella-
tion. A limited tree search can be accomplished via the M-algorithm (see Section 6.2.1.2). The
combination of QRD with the M-algorithm results in the so-called QRD-M algorithm [1320].
Some modifications of this (e.g., see [1321–1323]) and other detection algorithms employing
interpolation-based QRD techniques [1324] have also been proposed.

2. Detection algorithms based on soft interference cancelation. As in the SISO case, reduced-
complexity detectors based on soft interference cancelation can be developed when equalization
is combined with SiSo decoding of channel codes; this approach is exemplified in [1325], where
two soft interference cancelation MMSE receivers are derived.

Other work in this area is concerned with the combination of OFDM with spatial multiplexing and
the development of equalization techniques for specific coding schemes. When spatial multiplexing is
adopted in multicarrier transmission, a standard BLAST architecture alternating interference suppres-
sion, detection and interference cancelation can be employed (e.g., see [1326, 1327]); however, various
alternatives, requiring lower complexity, are also available (e.g., see [1320, 1328, 1329]). Examples
of equalization algorithms for specific coding schemes can be found, for instance, in [1330, 1331]. In
particular, in [1330] new orthogonal space-time block codes (OSTBCs) achieving full diversity and
admitting fast ML decoding over frequency-selective fading channels are developed, while in [1331]
a pre-DFT allowing the reduction of the number of input signals to a space-time-frequency decoder
is developed.

Another related area of research is the development of equalization algorithms for precoded MIMO-
OFDM systems. Various results can be found in the literature – see [1332–1342] for further details.

The presence of a time-varying channel raises the problem of ICI mitigation. In MIMO-OFDM
communications, ICI effects can be reduced by modifying the signaling format [1343, 1344] or adopt-
ing proper space-frequency (SF) codes [1345]. An alternative is to use ICI cancelation algorithms at
the receiver (e.g., see [456, 1346–1348]).

When the channel is unknown and a pilot sequence is transmitted, joint channel estimation and
equalization can be accomplished. As in the SISO case, various pilot based and semiblind techniques
are available. The reader can refer to [522, 524, 655, 851, 1320, 1349–1356] for the first and second
class of algorithms, respectively.
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Finally, it is worth noting that noncoherent (and, in particular, differential) detection techniques
have also been considered for MIMO-OFDM, since they do not require channel estimation (e.g., see
[1360–1363]).

6.9 Historical Notes
In this section a historical perspective on research results achieved in the field of channel equalization
is provided. Because of the vastness of the research literature in this field, we focus attention on only
that portion of it whose technical contents are closely related to the topics that have been analyzed in
this chapter. Some additional details about the development of channel equalization up to the 1980s
can be found in [1020, 1364].

The birth of channel equalization should not be related to the discovery of wireless data communi-
cations (i.e., in practice, wireless telegraphy), but to the need to compensate for channel distortions in
telegraph communications over cables. In fact, in the second half of the nineteenth century the oper-
ators of the first transatlantic telegraph cables noted that Morse code symbols had to be transmitted
very slowly to be fully understood at the other end, because of the time dispersion introduced by the
distributed capacity of the communication channel. However, initial solutions for mitigating the effects
of this dispersion were based on the choice of proper signal shaping or on the adoption of inductive
loading in communication cables. Note that the latter technique made long-distance telephony possi-
ble. In the the first half of the twentieth century various results paved the way for the development
of channel equalization techniques. A significant first achievement was the development of design
methods for the synthesis of linear filters based on lumped elements [1365]. In fact, linear filters
could be designed and adjusted to equalize the linear distortions affecting telephone circuits. Another
significant achievement came in the seminal work of Harry Nyquist [1366, 1367], who derived a
criterion ensuring zero ISI in a pulse transmission and showed that ISI-free baseband data transmis-
sion at symbol rates above twice the channel bandwidth is impossible. However, modern equalization
theory started to develop in second half of the twentieth century. Among the first important contri-
butions in this field we mention that of D. Tufts in 1965, who developed the analytical framework
for optimum ZF and MMSE equalization for a channel with AWGN and a given frequency response
[1368]. In particular, Tufts tackled the problem of splitting linear equalization between transmitter
and receiver, thereby deriving expressions for jointly optimum frequency responses. In addition, he
showed that an optimum linear equalizer could be realized as the cascade of an MF, a symbol rate
sampler and a transversal filter, with taps spaced at symbol intervals. However, his work and other
contributions to this field dating back to the 1960s was mainly of theoretical relevance. In that period
the interest in practical applications of channel equalization techniques was stimulated by the need
to increase data rates in voiceband telephone services. In 1963 R. Lucky, a Bell Labs researcher,
devised an iterative “steepest descent” technique to train the tap coefficients of a transversal filter
equalizer in such a way that peak ISI for any given channel was minimized before the start of actual
data transmission [1369]. His equalizer represented an implementation of the so-called ZF criterion.
Later, Lucky devised an iterative algorithm, which used data decisions and the differences between
them and the equalizer’s outputs to adjust (i.e., to adapt) the equalizer during actual data transmission
[1370]. Unfortunately, these iterative algorithms did not take the presence of noise into account. The
maximization of the equalizer’s output SNR (where “noise” included residual ISI) was proposed by
D. Coll and D. George in 1965 [1371]. It should also be noted that the birth of adaptive equalization
is also related to the discovery of the LMS algorithm (see Section 5.1.3), which was introduced by
B. Widrow and M. Hoff in 1960 [1372].

These achievements in adaptive equalization theory and practice were available at an important
moment for the data communications industry in North America. At that time, the main commercial
telecommunications system was the voiceband telephone network. However, the need for data shar-
ing between remote locations was becoming more and more important. In 1968, the FCC allowed
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customer-owned equipment to be connected directly to the AT&T telephone network. This ruling
opened up a new commercial market, since it made it possible to sell modems for data communi-
cations over the public phone network. The demand for higher data rates and better reliability soon
became apparent. However, the bandwidth and noise characteristics of long-distance voiceband tele-
phone channels intrinsically limit voiceband modems to data rates not exceeding a few tens of kilobits
per second. In addition, these rates can only be achieved by employing relatively sophisticated tech-
niques for modulation, coding, adaptive equalization, synchronization, and filtering (e.g., see [338,
1373]). These, in turn, require significant digital signal processing capabilities. All this explains why
various advances in communication theory and signal processing for communication applications were
stimulated by the need to develop competitive voiceband modems and a number of technical devel-
opments originated not only from academia but also from the research labs of various companies
(e.g., Bell, Codex Corporation, IBM and NEC). From a commercial viewpoint it is worth noting that
voiceband modems achieving data rates of 4.8 kb/s and 9.6 kb/s and equipped with adaptive equalizers
started to appear in the late 1960s. These usually employed vestigial sideband modulation (VSB)
or single sideband modulation (SSB) and baseband adaptive equalization. In the 1970s these were
replaced by high-speed modems based on QAM or combined amplitude modulation-phase modulation
(AM-PM), since these were more robust to typical channel impairments. From a theoretical viewpoint,
various important achievements of the 1970s can be related to research on communication techniques
for voiceband modems. In particular, we mention the following:

1. Bandpass equalization. Linear equalization can be done on bandpass modulated signals, in place
of their baseband version, as originally pointed out by R. D. Gitlin, E. Y. Ho, and J. E. Mazo
(all from Bell Labs) [1374]. Additional work by H. Kobayashi [1375] and D. D. Falconer [1376]
showed that adaptive passband equalization can be combined with carrier recovery to minimize
the delay in estimating and removing the effects of phase jitter.

2. Fractionally spaced equalization. The performance benefits deriving from the use of fractional
spaced taps were analyzed first by L. Guidoux [1377] and G. Ungerboeck [1077] (who, however,
acknowledged the existence of previous work on this topic, citing [1377–1379]).

3. Decision feedback equalization. The architecture of the decision feedback equalizer shown in
Figure 6.5 was first described by M. E. Austin in 1967. The early history of this equalizer is
summarized in a landmark paper by R. Price [1380]. This nonlinear technique plays a fundamental
role over highly dispersive channels (like long cables and twisted copper pairs) where linear
equalizers exihibit poor performance. An adaptation mechanism of the forward and feedback
filters of DFEs conceptually similar to that of linear equalizers can be easily derived [1381].

4. Tomlinson–Harashima precoding. To avoid the error propagation problem that affects decision
feedback equalization, symbol feedback can be moved from the receiver to the transmitter. This
approach was proposed by M. Tomlinson [1060] and independently by H. Harashima and H.
Miyakawa [1061]. The so-called Tomlinson–Harashima precoding uses the feedback filter tap
coefficients in an inverse filter configuration at the transmitter, together with modulo arithmetic
(a simple introduction to this technique can be found in [1373]).

5. Maximum likelihood sequence detection. A solution to the ML detection problem for PAM signal-
ing over a frequency-selective channel with AWGN was proposed by David Forney in 1972 [422]
(see Section 6.2.1.1) and was based on the use of a WMF and a VA. An alternative solution, based
on the use of an MF at the receiver input, was developed by G. Ungerboeck [458]. MLSD provides
close to optimum performance on highly dispersive channels, but, may require a huge complexity
in the VA. This has motivated the search for pragmatic approaches to reducing the complexity of
the VA, such as drastically limiting the number of its channel states and replacing the WMF with
an adaptive filter able to shorten the overall impulse response (see Section 6.2.1.2). In addition,
the complexity and error propagation issues of MLSD and DFE, respectively, stimulated research
on other nonlinear equalization techniques that would be effective for mitigating ISI on highly
dispersive channels (e.g., see [1382]).
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6. Equalization techniques for nonlinear channels. One of the impairments affecting data
transmissions over old voiceband telephone channels was the presence of nonlinearities; this
resulted in nonlinear ISI at the input of equalization algorithms. Pioneering work in this field was
done by D. D. Falconer [1383], who applied the Volterra series technique for the representation
of channel nonlinearity to the design of an adaptive nonlinear receiver. His results showed that
nonlinear decision feedback equalization can significantly reduce the error rate for a variety
of channel characteristics. However, his method suffers from large equalization and adaptation
complexity; this led to the development of alternative strategies for the cancelation of nonlinear
ISI (e.g., see [1384]). Fortunately, the nonlinearity problem for voiceband telephone channels
tended to disappear with the upgrading of the phone network. Recently, some of the nonlinearity
cancelation approaches have been applied to the problem of mitigating the effects of power
amplifier nonlinearities in digital wireless systems (e.g., see [1385, 1386]).

7. Fast algorithms for equalizer adaptation. One of the requirements of equalizers for voiceband
modems was fast startup, that is, the capability of adjusting their taps to the communication
channel based on a short training sequence. The convergence interval of the LMS algorithm, in
terms of symbol intervals, is not short, being of the order of 10 or more times the number of
equalizer taps [1387, 1388], and tends to get larger in the presence of a high time dispersion.
A faster alternative was proposed by D. Godard, who developed an equalizer adaptation technique
based on Kalman filtering [1389] and equivalent, in practice, to an RLS algorithm (see Section
5.1.3). The convergence time of the RLS algorithm is of the order of twice the number of equalizer
taps, independent of the nature of the channel frequency response; however, this advantage is
achieved at the cost of appreciably greater complexity. This motivated the study of alternative
solutions for the fast startup of equalizers. Here we mention the so-called fast Kalman or fast RLS
algorithm for the adaptation of decision feedback equalizers [599, 1390] (whose complexity is
greater than that of the LMS algorithm, but increases only linearly with the number of equalizer tap
coefficients), the development of lattice-structured equalizers [600, 1391, 1392] and the discovery
of cyclic equalization independently by G. D. Forney, Jr. [1393] and by K. H. Mueller and D. A.
Spaulding (both from Bell Labs) [1394].

8. Blind algorithms for equalizer adaptation. One of the challenging problem in equalization theory
is the development of blind adaptation algorithms, which properly adjust the taps of an equalizer
without requiring explicit training symbols, so that the transmission overhead can be substantially
lowered [275]. Pioneering work in this field has been done by Y. Sato [1395] and D. Godard
who developed the so-called constant modulus (CM) algorithm [1396]. This algorithm has the
following significant features: it is a relatively simple modification of the LMS algorithm, does
not require training symbols or receiver decisions, and applies to a variety of modulation types
(a comprehensive review of its properties can be found in [1397]). However, the convergence
rate of the CM and other blind adaptation algorithms is much lower than for their data-aided
counterparts.

9. Interference suppression. In principle, an equalization algorithm can mitigate not only ISI but
also the synchronous CCI coming from a interfering transmission on the same communication
channel and at the same data symbol rate. In fact, in this case, both the ISI and CCI contributions
to received signal samples are characterized by the same mathematical structure. These ideas
have found applications in the development of algorithms for echo cancelation over phone lines,
crosstalk suppression in multipair cables and CCI cancelation in wireless systems (e.g., see [746,
1398, 1399]). Preliminary work in the area was done by D. A. Shnidman [1400], who developed
a generalized version of the Nyquist criterion for the combination of ISI and CCI and generalized
work by Tufts [1368] on equalizer optimization, and by A. R. Kaye, D. A. George [1401] and
W. Van Etten [554] on optimum receivers for multiplex PAM signals in a multichannel scenario.

10. Frequency-domain equalization. From the 1960s to the 1990s research and development efforts
in the the field of channel equalization focused mainly on the discovery and implementation of
algorithms operating in the TD. However, in that period the data rate over wired, wireless and
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other transmission media continued to grow, so that the impact of time dispersion originating
from communication channels became more and more important in receiver design. In fact, com-
pensating for a larger dispersion required an increasing number of taps in equalization algorithms,
resulting in a heavier computational load per symbol. As illustrated in Section 6.2.2, equalization
in the frequency domain provides a way of reducing the growth rate of such complexity with data
rate. From a historical perspective, this approach to channel equalization was made possible by
an important discovery by S. Weinstein, P. Ebert, and J. Salz (all from Bell Labs) in 1969. These
researchers proved that the FFT could significantly reduce the complexity involved in FD filtering
of blocks of signal samples [388, 1402]. Other significant contributions to the development of
equalization algorithms in the FD are due to: T. Walzman and M. Schwartz, who in 1973 devel-
oped MMSE adaptive equalizers based on projection methods for blocks of serially transmitted
data symbols interspersed with sequences of zeros [1403, 1404]; E. Ferrara [1405], who in 1980
derived a (fast) FD implementation of the LMS adaptive transversal filter; and G. Clark, S. Mitra
and S. Parker [1406], who in 1981 illustrated overlap-save and overlap-add implementations of
FIR block adaptive filtering in the FD.

Wired transmission channels are usually characterized by very slow time changes, due to variations
in environmental parameters (e.g., temperature). On the other hand, as illustrated in Chapter 2, wire-
less channels typically experience relatively rapid variations. The ability of an adaptive equalization
algorithm to track and compensate for a time-varying channel depends on how rapid the time variation
is relative to the data symbol rate and on how many equalizer tap coefficients are being adapted. In
fact, the larger the number of tap coefficients, the slower the changes that an equalizer can adapt to
and track. A rough indication of adaptation ability is given by the product BDTsNc, where Nc denotes
the number of tap coefficients and BD is the Doppler bandwidth. If this product does not exceed
about 10−2, channel variations can be considered slow and a relatively simple adaptation algorithm is
probably adequate; otherwise, more refined signal processing techniques are needed.

Despite the substantial difference between the classes of wired and wireless channels, the bulk of
knowledge acquired in the field of equalization techniques for voiceband telephone channels proved to
be fundamental in the subsequent development of equalization techniques for radio channels. Research
on the application of known equalization techniques to wireless communications started in the 1970s;
in particular, we mention the contribution made by P. Monsen, who investigated the use of decision
feedback equalization on fading channels [471, 1018, 1044]. This followed work that was mainly
motivated by the need to compensate for channel distortion in HF communications over ionospheric
channels and in troposcatter communications [45, 1407]. In particular, in the 1980s the use of adaptive
equalization techniques on rapidly fading HF channels was investigated in depth (e.g., see [1227, 1392,
1408–1411]) and it was shown that, for such channels, nonlinear equalization techniques, such as DFE
or MLSD, are usually required to ensure proper adaptation to quick channel variations. However, by the
end of the 1980s research activities on equalization techniques began to concentrate on TDMA digital
cellular systems. In fact, such systems require adaptive equalization at the demodulator to combat the
ISI resulting from the time-variant multipath propagation of the signal through the communication
channel. Adaptive equalization techniques developed in the previous two decades for high-speed,
single-carrier serial transmission over telephone and radio channels could certainly also be applied to
digital transmission over mobile radio channels in the VHF band. However, the TDMA signal structure
and the rapidly varying fading imposed some stringent conditions on the design of such techniques.
This is discussed in detail in [860], where a survey of adaptive linear and nonlinear equalization
techniques that can be employed in a narrowband TDMA system is provided. In addition, it is shown
that both MLSD (Ungerboeck’s form, to avoid the implementation of a WMF) and DFE are viable
equalization methods for mobile radio (see also [1224]). Note, however, that reliable operation in the
presence of severe channel conditions typically requires accurate tracking of channel changes [510] and
an adaptation of the equalization algorithm over each burst of a TDMA frame [560]. In this scenario
appreciable benefits in terms of error performance can be achieved by adopting a PSP approach to
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channel estimation, that is, by embedding channel estimation in MLSD (see Section 6.6.2) in order
to improve the tracking capability of the receiver; however, a number of more advanced channel
estimation/equalization techniques, such as bidirectional decision feedback equalization [1032], MAP
symbol detection combined with Kalman filtering for channel estimation (e.g., see [1233, 1238]),
iterative channel estimation and equalization [1412], and channel estimation and tracking based on
soft estimation of channel states [861], have been proposed in the literature.

At the beginning of the 2000s a substantial portion of the research activities in the field of channel
equalization has focused on the following topics:

1. Equalization techniques for SIMO OFDM systems in the presence of ICI and/or IBI - The interest
in this topic is due to the growing importance of OFDM in broadband communications over fixed
and mobile radio channels (see Sections 6.3, 6.5 and 6.7).

2. Equalization techniques in the FD for SC systems. The attention paid to SC modulations combined
with FD channel equalization is due to the fact that these represent an appealing alternative to
OFDM in broadband communications (see Section 6.2.2).

3. Equalization techniques for MIMO SC and OFDM systems. Many efforts have been made to
extend SISO/SIMO equalization techniques to a MIMO scenario (see Section 6.8).

Another recent and interesting research area concerns the use of factor graphs (see Section 10.8)
for the development of soft output equalization techniques. The reader can refer to [577, 1178, 1413,
1414] for further details on this topic.

6.10 Further Reading
Various tutorials and overviews of different classes of equalization techniques can be found in the
technical literature. Here, we mention [1020], which provides a detailed analysis of adaptive equal-
ization techniques up to 1985; [860], which provides a survey of adaptive equalization for TDMA
digital mobile radio; [275, 1415], which consider equalization techniques for fading dispersive chan-
nels including both time and frequency selectivity; [1027, 1416] on decision feedback equalization
with the MMSE criterion; and [1417] on equalization techniques in the FD. An interesting tutorial
on the use of adaptive linear equalization digital signaling over slowly time-varying, bandlimited
channels is provided by [1076]. A technical overview of equalization developments up to the 1960s
can be found in the well-known book by R. W. Lucky and J. Salz and E. J. Weldon [280]. Other
reference books for equalization techniques for SISO communication systems are [29, 1418, 1419].
An introduction to channel equalization for MIMO systems can be found in [21, 38].
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Elements of Information Theory

7.1 Introduction
In this chapter we seek to put many of the results of other chapters into context by examining the
capacity limits imposed on wireless systems by the constructs of information theory. These limits are
imposed by the underlying tenets of information theory as originally developed by Claude Shannon
[1420, 1421]. He formulated the concept of channel capacity, which has been shown to provide a
fundamental limit on the maximum data rate that can be transmitted over a channel with asymptotically
small probability of error. In practice, he established that for any transmission rate Rb bits/s less than
the capacity of C bits/s, there exists a code that allows essentially error-free transmission. This result
applies with some variation to any channel. However, the main drawback of Shannon’s discovery is
that it essentially provides an existence proof, but does not provide techniques for the construction
of codes to achieve C. Moreover, his original work dealt with additive noise channels only, both
discrete and continuous, and for many years provided the benchmark against which all systems were
measured. With the development of modern wireless systems, it has become necessary to take the
time-varying and fading wireless channel environment into account in evaluating channel capacity.
As already discussed in Chapter 2, almost all wireless channels exhibit fading behavior to a greater
or lesser degree. This fading has an enormous impact on the performance of wireless systems and
must be taken into account in evaluating the performance limits of wireless transmission systems.
Thus, in this chapter we briefly discuss the evaluation of channel capacity in some fading dispersive
environments of wireless communications systems.

This chapter is organized as follows. Some standard results on the capacity of SISO communication
channels are provided in Section 7.2. The issue of channel capacity for MIMO channels is investigated
in Section 7.3, where frequency-flat fading is assumed for simplicity. Finally, some brief historical
notes and recommendations for further reading are provided in Sections 7.4 and 7.5, respectively.

7.2 Capacity for Discrete Sources and Channels
We start by developing expressions for channel capacity of two classical channel models, namely
the discrete memoryless channel (DMC) and the bandlimited AWGN channel. Both these models are
used in capacity considerations for more complex situations. In particular, the DMC and the resulting
capacity expression serves as a basis for the design of codes, whereas the AWGN channel and its
capacity provide the basis for describing both the ergodic capacity and the outage capacity of more

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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complex wireless channels. In this section, we briefly consider channel models and then develop the
corresponding capacity expressions.

7.2.1 The Discrete Memoryless Channel

The DMC is a channel model particularly suited to considering coding. In a system sense, it may
be regarded as the channel between the output of the encoder at the transmitter and the input to the
corresponding decoder at the receiver. Its mathematical description can be found in many papers and
texts (e.g., see [327, 1422]) and is summarized below. A DMC is characterized by the following two
properties:

• The alphabets of its input and output are discrete.
• It does not have memory, that is, it acts on each of its input data independently of all other data.

In practice, any channel input X (i.e., the output from a channel encoder) belongs to a q-ary alphabet
AX = {x0, x1, . . . , xq−1} and, similarly, any channel output Y (i.e., the input to the decoder, following
modulation, transmission and demodulation) belongs to a Q-ary alphabet AY = {y0, y1, . . . , yQ−1}.
Note also that, in all cases of interest, Q ≥ q, usually q is a power of 2 and, generally speaking the
input and output alphabets do not have to be identical.

Let us now formulate the property of absence of memory in mathematical terms. For this purpose,
let us assume that, in N consecutive uses of the communication channel, the random data vector:

XN � [X0, X1, . . . , XN−1]T , (7.1)

characterized by the probability mass function pXN
(iN) � Pr{XN = iN }, is transmitted, where:

iN � [i0, i1, . . . , iN−1]T (7.2)

and each element of iN belongs to the alphabet, AX . In response to Xt (with t = 0, 1, . . . , N − 1)
the channel generates the random response vector Yt , belonging to some alphabet, AY , so that the
overall channel response to XN is represented by the vector:

YN � [Y0, Y1, . . . , YN−1]T (7.3)

characterized by the probability mass function pYN
( jN) � Pr{YN = jN }, where:

jN � [j0, j1, · · · , jN−1]T (7.4)

and each element of jN belongs to AY . Then the discrete channel is memoryless if and only if YN ,
given XN , consists of N independent random variables or, equivalently, if and only if the conditional
joint probability mass function pYN |XN

(jN |iN) of YN given XN can be factored as:

pYN |XN
(jN |iN) =

N−1∏
t=0

pYt |Xt
(jt |it ). (7.5)

Then the overall characteristics of a DMC can be described by a set of qQ conditional or transition
probabilities:

P(yi |xj ) � Pr{Y = yi |X = xj }, (7.6)

with j = 0, 1, . . . , q − 1 and i = 0, 1, . . . , Q − 1.
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7.2.2 The Continuous-Output Channel

We now extend the channel concepts developed above to model the case of a channel having discrete
inputs and continuous outputs. We then briefly consider a memoryless waveform channel, where the
inputs and outputs are bandlimited waveforms.

7.2.2.1 The Discrete-Input Case

Here we consider the case where the channel input is discrete and described by the q-ary alphabet X as
above; however, we now consider the channel output to be continuous. This can be described as above
by letting the number of possible channel outputs, Q, approach infinity (Q → ∞), implying that the
channel output, Y, can take any value on the real line, −∞ < Y < ∞. From this we can then define
a discrete-input, continuous-output channel that is described by the conditional or transition pdf:

fY |X(y|xk), (7.7)

with k = 0, 1, . . . , q − 1. An important example of such a channel is the discrete-input additive
white Gaussian noise channel, which is characterized by the input–output relationship:

Y = X + N, (7.8)

where N is a zero-mean Gaussian random variable with variance σ 2
n . It is then straightforward to see

that the probability (7.7) is given by:

fY |X(y|xk) = 1√
2πσn

exp

[−(y − xk)
2

2σ 2
n

]
. (7.9)

Then, for any given sequence of channel inputs {Xi, i = 0, 1, . . . , N − 1}, we obtain an output
sequence of the form:

Yi = Xi + Ni, (7.10)

with i = 0, 1, . . . , N − 1, where Ni is a zero mean Gaussian random variable with variance σ 2
n . The

memoryless property of this channel is expressed by the factorization:

fYN |XN
(yN |iN) =

N−1∏
t=0

fYt |Xt
(yt |Xt = it ) (7.11)

of the joint conditional pdf fYN |XN
(yN |iN), where yN � [y0, y1, . . . , yN−1]T and iN is defined

in (7.2).

7.2.2.2 The Waveform Channel

Both the channels considered above include all the functions of modulation, transmission and
demodulation. We can easily separate the modulator and demodulator functions from the actual
channel. We consider a model where the channel inputs and outputs are baseband waveforms, and
denote by X(t) and Y(t) the channel input and output waveforms, respectively. In addition, we
assume that the channel has bandwidth B Hertz. It is assumed to have an ideal frequency response,
H(f ) = 1, over this bandwidth and that its output is corrupted by AWGN with two-sided power
spectral density equal to N0/2 Watts per Hertz. Then, assuming that X(t) is also bandlimited to
B Hertz and its support is the time interval (ti , tf ), we have:

Y (t) = X(t) + N(t), (7.12)
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where N(t) is a bandlimited Gaussian noise process. Then following [321] (see also Section D.2), we
may write the waveforms of (7.12) as the orthogonal function expansions:

Y (t) =
+∞∑
l=0

Ylϕl(t), (7.13)

X(t) =
+∞∑
l=0

Xlϕl(t), (7.14)

and

N(t) =
+∞∑
l=0

Nlϕl(t). (7.15)

Here the elementary signals {ϕl(t), l = 0, 1, . . . } form a complete orthonormal set over (ti , tf ) (so

that
∫ tf
ti

ϕi(t)ϕj (t)dt = δij , where δij is the Kronecker delta function) and the coefficients in the above

expansions are defined as Xl �
∫ tf
ti

X(t)ϕl(t)dt , Yl �
∫ tf
ti

Y (t)ϕl(t)dt and Nl �
∫ tf
ti

N(t)ϕl(t)dt for
any l. Note that:

Yl = Xl + Nl (7.16)

for any l and that, since the functions {ϕi(t)} are orthonormal, then random variables {Nl, l =
0, 1, . . . } are uncorrelated and, being jointly Gaussian, are also independent. In addition, they have
mean zero and variance σ 2

n = N0/2.
The foregoing allows us to characterize the AWGN waveform channel. We simply use the coeffi-

cients from the expansions (7.13)–(7.15). From (7.16), we may write:

fYl |Xl
(y|x) = 1√

2πσn

exp

[
− (y − x)2

2σ 2
n

]
(7.17)

for n = 0, 1, . . . , and the random variables {Nl, l = 0, 1, . . . } are mutually independent so that:

fYN |XN
(yN |xN) =

N−1∏
l=0

fYl |Xl
(yl |xl), (7.18)

where YN � [y0, y1, . . . , yN−1]T and XN � [x0, x1, . . . , xN−1]T , for any value of N. This procedure
allows us to reduce the waveform channel to a discrete-time form, equivalent to that described by
equation (7.11). Similar results are found if the sample sequence (7.16) is generated not via an
orthonormal basis, but by uniformly sampling Y(t) at a rate equal to 2W Hertz; in this case, if
T � tf − ti denotes the duration of the observation interval, N = 2WT independent samples are
generated, so that the channel is completely described by (7.17) and (7.18).

Finally, it is worth mentioning that both the DMC channel model and the waveform channel model
are used in determining channel capacity. The choice of which to use depends on the aim of the
analysis being undertaken. In considering only coding effects, the DMC, described by (7.5) and (7.6),
is normally employed; however, if the effect of the signal modulation is to be considered, then the
Gaussian channel model described by (7.17) and (7.18) is usually adopted [321, 1422].

7.2.3 Channel Capacity

We now develop a calculation of channel capacity for the DMC and waveform channel models
considered above. The calculations, although relatively simple, provide results that are widely used in
developing capacity expressions for the more complex wireless channels considered in the remainder
of this chapter.
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7.2.3.1 The Discrete Memoryless Channel

We start by considering the DMC described by (7.5) and (7.6). We assume initially that only the
q-ary symbol Xi is transmitted and that the Q-ary symbol Yj is received. Then, the conditional mutual
information I (xi; Y = yj ) provided about the transmission event {X = xi} by the reception event
{Y = yj } is given by [327, 1422]:

I (xi; Y = yj ) = log
P(yj |xi)

P (yj )
, (7.19)

where

P(yi) � Pr{Y = yi} =
q−1∑
k=0

P(xk)P (yi |xk), (7.20)

P(xk) � Pr{X = xk} and P(yj |xi) is defined by (7.6). Then the average mutual information provided
by Y about X is given by the average of (7.19) over both the transmitted and received alphabets,
that is:

I (X; Y ) =
q−1∑
j=0

Q−1∑
i=0

P(xj , yi) log
P(yi |xj )

P (yi)

=
q−1∑
j=0

Q−1∑
i=0

P(xj )P (yi |xj ) log
P(yi |xj )

P (yi)
, (7.21)

where P(xj , yi) � Pr{X = xi, Y = yi}. Note that the transition probabilities {P(yi |xk)} are determined
by the characteristics of the channel, whereas the input probabilities P(xk) are controlled by the
transmitter or discrete channel encoder (in other words, by the system designer).

The channel capacity is then found as the maximum of the average mutual information I (X; Y )

over the set of transmission probabilities {P(xj )}, so that the capacity of the DMC can be expressed as:

C = max
{P(xj )}

I (X; Y )

= max
{P(xj )}

q−1∑
j=0

Q−1∑
i=0

P(xj )P (yi |xj ) log
P(yi |xj )

P (yi)
. (7.22)

In this expression, when the logarithm is taken to base 2, the units of C are bits per channel use or
symbol, whereas, when a q-ary symbol is transmitted every Ts seconds, then the units of C/Ts are bits
per second.

Let us now apply the results developed above to the specific case of a q-ary symmetric channel.

Example 7.2.1 We wish to find the capacity of a DMC having q inputs and q outputs, and characterized
by the transition probabilities:

P(yi |xj ) =
{

1 − p
p

q−1

i = j = 0, 1, . . . , q

i �= j.
(7.23)

The overall probability of error for this channel is p, but there are q − 1 possible (and equally likely)
incorrect output symbols for each input symbol. Substituting these probabilities into (7.22) and carrying
out the resulting maximization yields the expression:

C = log q + p log(q − 1) − H(p) bits/channel use (7.24)
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Figure 7.1 Schematic representation of BSC with error probability p.

for the capacity of the q-ary symmetric channel, where H(p) = −p log p − (1 − p) log(1 − p) is
the so-called binary entropy function [327, 1423]. A special case of this channel occurs when q = 2.
We then obtain the binary symmetric channel (BSC) having the capacity:

C = 1 − H(p) bits/channel use. (7.25)

The BSC has been widely used in the design of error control codes and is often represented schemat-
ically as shown in Figure 7.1.

�

7.2.3.2 The Discrete-Input, Continuous-Output Channel

We next consider the discrete-time additive Gaussian noise channel, namely, a channel with q-ary
discrete inputs but continuous outputs as described by (7.10) and (7.11). It is then straightforward to
write the capacity of this channel in bits per channel use as:

C = max
P(xi )

q−1∑
i=0

∫ ∞

−∞
fY |X(y|xi)P (xi) log

fY |X(y|xi)

fY (y)
dy, (7.26)

where the channel output pdf fY (y) is given by:

fY (y) =
q−1∑
k=0

fY |X(y|xk)P (xk). (7.27)

We note that the expression for the capacity of this channel is merely a generalization of that for the
DMC as defined in equation (7.22) to allow for continuous channel outputs.

7.2.3.3 The Bandlimited Waveform Channel

Finally, we consider the capacity of a bandlimited waveform channel perturbed by AWGN. A link
between this case and the previous ones can be established using the coefficients {Xi}, {Yi} and {Ni}
of the series expansions of (7.13)–(7.15), which in effect reduce the problem to a discrete form. To do
this, we form the vectors of coefficients XN = [X0, X1, . . . , XN−1]T and YN = [Y0, Y1, . . . , YN−1]T ,
where N = 2WT and Yi = Xi + Ni (see (7.16)). We may then write the average mutual information
between these vectors as [321, 1422]:

I (XN ; YN) =
∫

XN

∫
YN

fYN |XN
(yN |xN) fXN

(xN) log
fYN |XN

(yN |xN)

fYN
(yN)

dxN dyN . (7.28)
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Then, since the components of XN are independent and those of YN , given XN = xN , are also
independent, we may rewrite this in the form:

I (XN ; YN) =
N−1∑
i=0

∫ ∞

xi=−∞

∫ ∞

yi=−∞
fYi |Xi

(yi |xi) fXi
(xi) log

fYi |Xi
(yi |xi)

fYi
(yi)

dyidxi

=
N−1∑
i=0

I (Xi; Yi), (7.29)

where I (Xi; Yi) denotes the average mutual information shared between Xi and Yi :

fYi |Xi
(yi |xi) = 1√

2πσ 2
n

exp

[
− (yi − xi)

2

2σ 2
n

]
(7.30)

and σ 2
n = N0/2. The channel capacity is the maximum of (7.29) over the input or source probabilities

{fXi
(xi)} and is obtained when the source symbols {Xi} are statistically independent Gaussian random

variables with mean zero and variance σ 2
x [321, 1422], so that their pdf is:

fXi
(x) = 1√

2πσx

exp

[
− x2

2σ 2
x

]
. (7.31)

It then easily follows from (7.28) that the maximum mutual information between the vectors XN and
YN is given by:

max
{fXi

(xi )}
I (XN ; YN) = 1

2
N log

(
1 + σ 2

x

σ 2
n

)
= WT log

(
1 + σ 2

x

σ 2
n

)
bits. (7.32)

Now let us constrain the average power Pav in the original transmit process X(t), so that we may
write:

Pav = 1

T

∫ tf

ti

E{x2(t)}dt = 1

T

N−1∑
i=0

E{X2
i } = N σ 2

x

T
. (7.33)

We may then write the variance σ 2
x as:

σ 2
x = T Pav

N
= Pav

2W
. (7.34)

Then substituting this result in (7.32) and dividing the result by T yields the capacity of the bandlimited
additive Gaussian noise channel as:

C = W log

(
1 + Pav

WN0

)
bits/s. (7.35)

This is the basic equation for the capacity of a bandlimited AWGN channel, where the bandwidth is
W Hertz and the average transmit power has been constrained. In the parlance of modern wireless
communications, this, as we shall see, is a special case of the so-called ergodic channel capacity.
It was originally derived by Shannon [1421] and rederived in [321], where the concept of sphere
hardening is employed. The present summary largely follows the treatment in [1422]. It is important
to note that channel capacity increases logarithmically with average transmit power. We also note
that it increases with bandwidth, W: essentially linearly at low SNR and more slowly at high SNR.
For fixed Pav, it can easily be shown that as W → ∞, the Gaussian channel capacity approaches an
asymptotic value given by:

C∞ = Pav

N0 ln 2
bits/s. (7.36)
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This limit is approached by coded OFDM transmission as the number of carriers becomes very
large [1424].

The capacity as given in (7.35) can be shown to be a special case of a more general expression
[1418]. Consider a data transmission (with fixed average power Pav) over a deterministic frequency-
selective channel having the frequency response H(f) and affected by additive Gaussian noise with
two-sided noise spectral density N(f). It can be shown that the capacity of this channel is given by
[1418]:

C = 1

2

∫ +∞

−∞
max

[
0, log

(
θ

|H (f )|2
N(f )

)]
df bits/s, (7.37)

where the parameter θ satisfies the constraint:

Pav =
∫ +∞

−∞
max

[
0, θ − N (f )

|H(f )|2
]

df . (7.38)

These results show that channel capacity is attained when the transmitted energy is placed in the
frequency bands where channel noise and channel attenuation are lower; in practice, the optimal
distribution of the transmitted signal energy as a function of frequency is found using the so-called
water-pouring (or water-filling) technique [280, 1418]. Finally, we note that:

• when the channel has unity gain over the bandwidth W and zero response elsewhere, the capacity
as expressed in (7.37) reduces to the well-known expression (7.35), and

• the phase characteristic of the channel is immaterial to the capacity of the channel.

7.3 Capacity of MIMO Fading Channels

7.3.1 Frequency-Flat Fading Channel

We now turn our attention to the case of wireless channels. Wireless channels are characterized to a
large extent by the fact that they are, in general, time-varying. In addition, they may also be frequency-
selective and therefore exhibit a time-varying frequency response, as described in detail in Chapter 2.
For present purposes, we develop a vector-based model more suited to developing expressions for
channel capacity. Moreover, since much of the rest of the book deals with systems that can achieve
transmit and/or receive diversity, we focus directly on the MIMO case, from which we can show that
the SISO channel capacity as discussed above arises as a special case.

In what follows, we first briefly describe a vector channel model which describes the input–output
behavior of a MIMO channel. We then go on to consider various examples of capacity calculation.
These depend to a great extent on what channel knowledge is assumed at the transmit and receive
ends of the MIMO link.

7.3.1.1 MIMO Channel Model

We consider here a single point-to-point MIMO transmission link having nT transmit antennas and
nR receive antennas, using PAM signaling and affected by frequency-flat fading.1 Under the above
assumptions the baseband signal vector r � [r0, r1, . . . , rnR−1]T received in a specific symbol interval
can be represented as (see Section 2.3.1):

r = Hx + n, (7.39)

1 When this is not the case, the work of [1425] and others can be followed to obtain a matrix formulation for the
channel similar to that illustrated below; however, then any calculation of channel capacity becomes much more
complicated and in many instances remains an open research problem.
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where x � [x0, x1, . . . , xnT −1]T is a vector of transmitted symbols, n � [n0, n1, . . . , nnR−1]T is
additive Gaussian noise and H = [hi,j ] is an nR × nT channel matrix (here hi,j denotes the channel
response or fading coefficient of the flat fading channel between the jth transmit antenna and the
ith receive antenna, with i = 0, 1, . . . , nR − 1 and j = 0, 1, . . . , nT − 1). In our analysis of MIMO
channel capacity the following assumptions are made about the statistical properties of model (7.39):

1. Transmitted signals are subject to an average power constraint, so that their optimum distribution
is Gaussian [321, 1420, 1421]. We thus treat the elements of x as independent, zero-mean Gaussian
random variables with covariance matrix:

Rx = E{x xH }, (7.40)

so that constraining the total average transmit power to P for any number of transmit antennas is
equivalent to setting:

tr(Rx) = P (7.41)

where tr(·) denotes the trace of a matrix. If, as is often the case (see later examples), the channel is
unknown at the transmitter, we also assume that the signals transmitted by each of the nT antennas
have equal average power given by P/nT . Moreover, since signals from distinct transmit antennas
are independent, the covariance matrix of the transmitted signal vectors can be put in the simple
form:

Rx = P

nT

InT
. (7.42)

2. The elements of H are subject to a normalization constraint ensuring that each of the nR receive
antennas observes the total transmit power. This assumption means that signal gain variations due to
propagation (including such effects as antenna gain and shadowing) are included and substantially
simplifies calculations [16, 18, 226]. If the channel gains are fixed and deterministic, this constraint
can be expressed as:

nT −1∑
j=0

|hi,j |2 = nT , (7.43)

for i = 0, 1, . . . , nR − 1, whereas, in the more general case of Rayleigh fading (where the elements
of H are random variables) the LHS of the latter equation is replaced with its expected or average
value.

3. The noise vector n is independent of x, and is temporally and spatially white with covariance
matrix:

Rn � E{n nH } = σ 2
n InR

, (7.44)

which implicitly assumes the same average noise power, denoted by σ 2
n , in each of the nR receiver

branches.

Under these assumptions, the covariance matrix of the (zero-mean) received signal vector r (7.39)
is given by:

Rr � E{r rH } = H Rx HH + σ 2InR
. (7.45)

Since the signal power at each of the nR receive antennas is assumed to be equal to P (i.e., to the
total transmit power), the received SNR as can be expressed as:

γ = P

σ 2
n

, (7.46)

which is independent of the number of transmit antennas.
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7.3.2 MIMO Channel Capacity

In deriving expressions for channel capacity in the wireless context, we must take different constraints
into account depending on the state of knowledge of the channel at the transmitter and/or the receiver.
In each case, system capacity is defined as the maximum possible transmission rate such that the
probability of error can be made arbitrarily small. Here we focus primarily on the MIMO channel
model described in the previous subsection and develop capacity expressions in different scenarios,
each referring to a specific set of constraints on the knowledge at the transmitter and receiver about
CSI. Such expressions illustrate the potentially very high spectral efficiency of MIMO channels, and
some of them reduce to the Gaussian channel results derived earlier.

7.3.2.1 Channel Unknown at the Transmitter

The first scenario we analyze is characterized by a channel matrix H unknown to the transmitter, but
perfectly known at the receiver [16, 18, 38, 226]. Evaluating channel capacity in this case requires
use of the SVD theorem (see equation (C.11)) to the nR × nT channel matrix H. This yields the
factorization:

H = U D V, (7.47)

where U (V) is an nR × nR (nT × nT ) unitary matrix and D is an nR × nT diagonal matrix, whose
diagonal elements, representing the singular values of H, are nonnegative. It can be proved that
the singular values {σi, i = 0, 1, . . . , nR − 1} are the nonnegative square roots of the eigenvalues
{λi, i = 0, 1, . . . , nR − 1} of the nR × nR matrix H HH . Note that an eigenvalue λl satisfies the
equality:

H HH yl = λl yl , (7.48)

with l = 0, 1, . . . , nR − 1, where the nR × 1 vector yl �= 0nR
is the eigenvector associated with it. In

addition, it can be proved that the columns of U (V) are the eigenvectors of H HH (HH H).
Substituting (7.47) into (7.39) now yields:

r = UDVH x + n, (7.49)

so that, if the invertible transformations:

r′ = UH r, (7.50)

x′ = VH x (7.51)

and
n′ = UH n (7.52)

are defined, from (7.49) the equivalent representation:

r′ = Dx′ + n′ (7.53)

is easily inferred for the received signal vector. This result can be further simplified by noting that the
number r of nonzero eigenvalues of HHH is equal to the rank of H, so that r ≤ m = min(nR, nT ).
Then (7.53) is equivalent to:

r ′
i = σi x ′

i + n′
i , (7.54)

for i = 0, 1, . . . , r − 1, and:
r ′
i = n′

i , (7.55)

for i = r, r + 1, . . . , nR − 1. The result shows that:
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(a) only the first r components of r′ depend on the transmitted signal components;
(b) the received signal can be reduced to r independent components;
(c) the MIMO channel can be modeled as the parallel of r uncoupled subchannels, each associated

with a singular value of H.

The singular values correspond to the subchannel amplitude gains, and the eigenvalues of HHH

represent the channel power gains. From this it is easily inferred that, when nT > nR (nR > nT ), there
will be at most nR (nT ) nonzero amplitude gains in (7.53) and that the set of eigenvalues {λi}, known
as the eigenvalue spectrum, provides a MIMO channel representation that is useful in evaluating the
best transmission paths. Note also that from (7.50)–(7.52) the autocorrelation matrices:

Rr′ � E{r′r′H } = UH RrU, (7.56)

Rx′ � E{x′x′H } = VH RxV (7.57)

and
Rn′ � E{n′n′H } = UH RnU, (7.58)

of r′, x′ and n′ respectively, can easily be derived. Since U and V are unitary, it is easy to prove
that tr(Rr′) = tr(Rr), tr(Rx′) = tr(Rx) and tr(Rn′) = tr(Rn), so that the covariance matrices of the
transformed signals of (7.50)–(7.52) have the same sum of diagonal elements and therefore the same
powers as the original signal components.

Equation (7.54) describes a MIMO system in which the subchannels are uncoupled such that the
overall capacity is the sum of their capacities. Then, making use of the power constraints of equations
(7.41) and (7.42), namely, that the transmit power from each antenna is P/nT , we may estimate the
system capacity as (see Section 7.2.3.3):

C = W

r−1∑
i=0

log

(
1 +

Pri

σ 2
n

)
, (7.59)

where W is the common subchannel bandwidth and Pri
is the received signal power in the ith sub-

channel, with i = 0, 1, . . . , r − 1. From (7.54) it can easily be inferred that:

Pri
= σ 2

i P

nT

= λiP

nT

, (7.60)

so that the MIMO channel capacity (7.59) can be put in the form:

C = W

r−1∑
i=0

log

(
1 + λiP

nT σ 2
n

)
= W log

r−1∏
i=0

(
1 + λiP

nT σ 2
n

)
. (7.61)

We note that in the case of a SISO channel, where nT = nR = r = 1, these expressions reduce to
the well-known Gaussian channel capacity as expressed by (7.35). While expressions (7.59) and
(7.60) are complete for a MIMO channel that is exactly known at the receiver and unknown at the
transmitter, they provide no insight into the impact of channel behavior on capacity. To see this we
need to relate the above expressions more directly to the channel matrix H. This can easily be done
if m � min(nR, nT ) = r [16]. In fact in this case (7.48) can be put in the form:

(λlIm − M)yl = 0m, (7.62)

where

M =
{

HHH , if nR < nT ,

HH H, if nR ≥ nT ,
(7.63)
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is the so-called Wishart matrix. Note that λl is an eigenvalue of M if and only if the matrix (λIm − M)

is singular: i.e.,
det(λlIm − M) = 0, (7.64)

so that the singular values of the channel matrix H are then found as the roots of the latter equation.
It is then straightforward to show that:

m−1∏
i=0

(
1 + λi P

nT σ 2
n

)
= det

(
Im + P

nT σ 2
n

M
)

. (7.65)

Then the MIMO channel capacity (7.61) can be rewritten as:

C = W log det

(
Im + P

nT σ 2
n

M
)

. (7.66)

Since the nonzero eigenvalues of HHH and HH H are identical, the capacities of the channels specified
by H and HH are identical. This means that MIMO channel capacity is reciprocal, that is, it is the same
regardless of which side of the channel is the transmitter, provided of course that the corresponding
receiver has exact channel knowledge. Finally, we note that if the channel coefficients are random
variables, as in many fading scenarios, the mean or ergodic channel capacity is found by averaging
C in (7.66) over all possible realizations of H. We will deal with this in more detail later.

7.3.2.2 Channel Known to the Transmitter

When the channel is known at the transmitter, advantage can be taken of this to increase the available
capacity as expressed by (7.66). This is accomplished by employing the water-filling rule [226], which
can be seen to be an extension of the standard water-filling approach for SISO channels. In practice,
it can then be shown (e.g., see [16, 38]) that the optimal transmit power to be allocated to the ith
subchannel is given by:

Pi =
(

µ − σ 2
n

λi

)+
, (7.67)

with i = 0, 1, . . . , r − 1, where (x)+ stands for max(x, 0), r is the rank of the channel matrix H,
and the parameter µ is determined in such a way that the sum of the powers assigned to all the
subchannels equals the overall transmit power P:

r−1∑
i=0

Pi = P. (7.68)

Then from the received signal model of (7.54) it is easily inferred that the received signal power in
the ith subchannel is given by:

Pr,i = (λi µ − σ 2
n )+ (7.69)

for i = 0, 1, . . . , r − 1, so that the capacity expression of (7.59) can be put in the form:

C = W

r−1∑
i=0

log

[
1 + 1

σ 2
n

(λi µ − σ 2
n )+

]
. (7.70)

It can be shown that, for any underlying MIMO channel H, the capacity as given by (7.70) is at least
as large as that given by (7.66), which refers to the case of channel unknown to the transmitter.
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7.3.3 Random Channel

We now turn our attention to the more realistic and more usual case where the entries of the channel
matrix are random. In particular, in the following we assume that:

(a) CSI is available to the receiver only;
(b) the antenna spacings are sufficiently large that the entries of the channel matrix are spatially

uncorrelated;
(c) the entries of the channel matrix H are zero-mean complex Gaussian random variables;
(d) the real and imaginary components of each entry are independent zero-mean Gaussian random

variables, each having variance 1/2.

Assumption (d) ensures that the average power gain of each subchannel is unity (i.e., E{|hi,j |2} = 1
for any i and j), so that the average received SNR is the same as in an additive noise channel. In
addition, each entry of the MIMO channel matrix is characterized by a uniformly distributed phase
and a Rayleigh distributed magnitude, so that the pdf of the random variable Yi,j = |hi,j | is given
by [55]:

fY (y) = y

σ 2
h

exp

(
− y2

2σ 2
h

)
u(y) (7.71)

with σ 2
h = 1/2. Note that similar assumptions are made in most MIMO channel work (e.g., see [5,

16, 18, 40, 226]).
In order now to evaluate channel capacity, we must consider what is known about the channel at

both transmitter and receiver. In all wireless communications, the channel is time-varying and it is
important to know the time scale of this variation. In wireless system design our knowledge of CSI
can range from perfect knowledge at both transmitter and receiver to knowing the channel’s statistical
distribution at either transmitter or receiver or both, to the worst case of no channel knowledge at
either transmitter or receiver.

In many instances, the calculation of channel capacity remains an open and difficult problem. Here,
in order to provide some feeling for the problem and guidance that is useful in considering a broad
spectrum of system design and evaluation problems, we consider the following two cases:

1. The channel matrix H is random and its entries change rapidly on a time scale that is short in
comparison to the duration of the whole data transmission. The time scale in question ranges from
a single symbol to a block of some number of symbols. The resulting channel is referred to as a
fast or block fading channel.

2. The channel matrix H has random entries but, once chosen, remains constant over a prolonged
period. This period ranges from the duration of a long data frame to the duration of the entire
transmission process. The resulting channel model is referred to as a slow or quasi-static fading
model.

These two scenarios lead to different approaches to characterizing capacity and to somewhat different
conclusions. We will consider the two separately, although it must be remembered that there is no
hard-and-fast rule for separating them; the choice is more or less arbitrary.

7.3.3.1 Ergodic Capacity

Here we consider transmission under a fast or block fading channel model. The main implication
of this is that over the duration of transmission, we can expect the channel to pass through all
possible states. This allows us to define an expected or ergodic channel capacity as the average or
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expected channel capacity of all possible channel states. If a single antenna link (i.e., nT = nR = 1) is
assumed, the channel is characterized by a single random gain or fading coefficient h. The coefficient
|h|2 = h2

R + h2
I is then a chi-square random variable (denoted X in the following) with two degrees

of freedom; in addition, if hR and hI (denoting the real part and the imaginary part of h, respectively)
are assumed to be zero-mean statistically independent Gaussian random variables, each with variance
σ 2

h = 1/2, the pdf of X is:

fX(x) = 1

2σ 2
h

exp

(
− x

2σ 2
h

)
u(x) = exp (−x) u (x). (7.72)

Then, from (7.59) (with r = 1), the expression:

C = W E

{
log

(
1 + X

P

σ 2
n

)}
(7.73)

for the average or ergodic capacity of a single-link fast fading channel is easily inferred, where the
expectation is evaluated with respect to X. To extend this approach to a MIMO channel characterized
by the channel matrix H, we exploit the approach developed in Section 7.3.2.1, based on the application
of the SVD decomposition to H. This leads to an equivalent channel consisting of r ≤ min(nT , nR)

parallel, decoupled subchannels, where r is the rank of H, so that the ergodic capacity of the MIMO
channel can be evaluated as (see the first row of (7.61)):

C = W E

{
r−1∑
i=0

log

(
1 + λi

P

σ 2
n nT

)}
, (7.74)

where the expectation is evaluated with respect to the set of random eigenvalues {λi}. An alternative
formula for the ergodic capacity can be developed by resorting to (7.66); this allows us to express
it as:

C = W E

{
log det

[(
Ir + P

σ 2
n nT

M
)]}

, (7.75)

where M is the (random) Wishart matrix defined in (7.63) and the expectation is evaluated with respect
to it. While the capacity is readily calculated for nT = nR = 1 (see (7.61)), the calculation of (7.74)
and (7.75) becomes very complicated for larger values of these parameters. A solution to this problem
is developed in [226] and employs the Laguerre polynomials to express the ergodic capacity, under a
power constraint P, in the form:

C = W

∫ ∞

0
log

(
1 + P

σ 2
n nT

λ

) m−1∑
k=0

k!

(k + n + m)!
[Ln−m

k (λ)]2λn−m exp (−λ) dλ, (7.76)

where m = min(nT , nR), n = max(nT , nR) and:

Ln−m
k (x) � 1

k!
exp (x) xn−m dk

dxk
[exp (−x) xn−m+k] (7.77)

is the associated Laguerre polynomial of order k.
Finally, it is worth noting that, if the MIMO channel is spatially white (i.e., all the elements of H

are iid Gaussian random variables) and nT = nR = n, the ergodic capacity tends to increase linearly
with n as n → ∞, and if the SNR is doubled an increase in capacity of about n bps/Hz is obtained
[16, 38]. This results shows the potential benefits of MIMO systems with respect to SISO systems for
which a 1 bps/Hz gain in capacity is provided by a 3 dB increase in SNR.
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7.3.3.2 Outage Capacity

When the channel is very slowly varying or when it is modeled as constant over the length of one or
more data frames, a duration that may last for many thousands of symbols, but changing randomly
at the end of each block, we need to consider the concept of outage capacity. It is very likely that
there will be time intervals (or blocks) during which it is impossible to achieve a low error probability
regardless of the signaling rate. Under such circumstances the channel will be considered to be in
outage. As a result, we need to consider channel capacity when there is a nonzero probability Pout
that the channel is in outage, and therefore, unusable in the sense that the desired data rate cannot be
achieved with arbitrarily low error rate. In fact, under such conditions, channel capacity becomes a
random variable and may take on arbitrarily small values with nonzero probability, so that arbitrarily
low probability of error cannot be achieved regardless of the codes that are chosen [16, 40]. To illustrate
this concept, let us focus again on the case of a single antenna link (i.e., nT = nR = 1) affected by
Rayleigh fading and assume a Doppler bandwidth equal to zero. Then the channel capacity can be
expressed as (see (7.35)):

C = W log(1 + X · SNR) bits/s, (7.78)

where SNR � Pav/(WN0) is the signal-to-noise ratio and X is exponentially distributed (its pdf is
given by (7.72)). Then, for a given channel capacity R (expressed in nats per unit bandwidth), the
outage probability Pout can be evaluated as [275]:

Pout = Pr {C/W ≤ R}
= Pr {ln(1 + X · SNR) ≤ R}
= 1 − exp [−(exp (R) − 1)/SNR]. (7.79)

This result shows that Pout = 0 is achieved for R = 0 only and this eliminates the possibility of any
reliable communication in Shannon’s sense.

For arbitrary values of nT and nR simple expressions for Pout cannot be derived. In such cases,
the complementary cumulative distribution function (ccdf) of channel capacity is usually estimated
via computer simulation. The ccdf specifies the probability, Pc, that a specified channel capacity is
achievable. Then the outage capacity probability, Pout , which specifies the probability of not achieving
a given channel capacity, is computed as Pout = 1 − Pc (e.g., see [16, 38]).

7.4 Historical Notes
The concept of channel capacity stems from the classic works of Claude Shannon [1420, 1421],
who, however, focused solely on additive noise channels. The evaluation of the channel capacity of
wireless channels did not receive much attention until the 1980s and has become an active research
areas only since the 1990s. More specifically, preliminary work on the evaluation of the capacity of
SISO wireless channels was done in [220, 1426, 1427] (see also [1428]). In particular, the importance
of evaluating channel capacity when multiple antennas are employed at the transmit side was first
addressed by J. Winters in [220].

Generally speaking, the evaluation of channel capacity in SISO wireless communications is a
complicated problem, since ISI and channel variability over time should be considered in a single-user
scenario; this task becomes much harder if the typical multiuser scenario of mobile communications
is considered [1429, 1430]. Various results on the effects of time-invariant ISI on capacity for single-
user systems can be found in [1431, 1432]; this problem has been also investigated for multiple-user
systems [1433–1435]. The time variation of wireless channels is much more difficult to model. A
commonly taken approach is to consider the ISI as constant and known for certain durations and
thus decompose the channel into time blocks [1436, 1437, 1438]. Another approach is based on the
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adoption of Markov models for communications channels [677, 1439–1446]. Finally, the assumption
of independent fading affecting successive symbols can be made [1447]. Note also that time variations
cause uncertainty about the channel at the receiver, and this uncertainty affects capacity [683].

The investigation of capacity of MIMO channels started towards the end of the 1990s when key
theoretical papers by G. J. Foschini and M. J. Gans [18] (see also [1448]) and E. Telatar [226]
were published. These papers quantify the extremely high spectral efficiency that can be achieved in
MIMO channels. An example of this is the BLAST system developed at Bell Laboratories [17], which
achieved experimentally a spectral efficiency of 42 bits/s/Hz.

7.5 Further Reading
There are many papers dealing with various aspects of capacity. Much of the work dealing with
wireless channel capacity is best summarized in a few papers and in various books. A good introduction
to the concept of capacity in wireless communications is provided by the paper [275]. The topic of
capacity in MIMO communications is addressed in the papers [1449, 21]. Finally, various analytical
details on the evaluation of MIMO capacity can be found in the books by B. Vucetic and J. Yuan
[16], by E. Biglieri et al. [40] and by A. Paulraj et al. [38].



8
An Introduction to Channel
Coding Techniques

In this chapter a brief introduction to channel coding techniques is provided. After summarizing
some basic principles concerning code properties and design in Section 8.1, a description of standard
interleaving schemes is provided in Section 8.2. A classification of channel coding and coded mod-
ulation schemes is provided in Sections 8.3 and 8.4, respectively. The organization of the following
chapters on channel coding and coded modulation schemes is discussed in Section 8.5. Finally, some
notes about the birth of coding techniques and a few suggestions for further reading are provided in
Sections 8.6 and 8.7, respectively.

8.1 Basic Principles
As already mentioned in Section 1.1, a channel coding technique is a procedure or algorithm that
induces the properties of memory and redundancy onto a data sequence. A receiver can then benefit
from the presence of these properties in the demodulated data stream when attempting to detect and
correct the errors introduced by the communication channel. In practice, in response to an input bit
sequence conveying information, coding algorithms produce an output sequence, consisting of a single
or multiple consecutive codewords. These form the input to a modulator, if a communication system
equipped with a single transmit antenna is considered (see Figure 1.1), or a to bank of nT distinct
modulators, if an antenna array is employed at the transmitter (see Figure 1.2). Note also that each
modulator can generate an SC or an MC signal. As a result, memory and redundancy can potentially
be spread along different dimensions, namely space, time and frequency. In particular, if single carrier
modulations are exploited for transmission, only the time dimension is used as nT = 1, whereas both
space and time dimensions are used when nT > 1 (in other words, ST coding is used). On the other
hand, in the case of MC transmission, the frequency dimension is always exploited; the other two
dimensions, namely time and space, are used when codewords extend over multiple consecutive MCM
(e.g., OFDM) symbols and a bank of MCM modulators is used, respectively. The last is usually known
as space-time-frequency coding [1450].

As will be discussed in Section 8.3, coding algorithms can be grouped into different classes on the
basis of various macroscopic properties of their structure, and in each class families of coding schemes
with technically appealing features can be identified. For each family, the fundamental problem to be
tackled in code design is that of code optimization. This means that, if a certain complexity is assumed
for the encoding algorithm of a given family and a constraint is put on overall complexity of the
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(optimal) decoding strategy, the inner structure of the algorithm itself needs to be optimized according
to a certain criterion. Whatever the application of channel coding, the aim of code optimization
is to maximize the error-correction power of the technique itself. Note, however, that the result of
this procedure is strongly influenced by the nature of the communication channel. In the first two
decades of coding history, much attention was paid to the power-limited AWGN channel, where
optimal code design aims at maximizing the coding gain (and, in particular, the asymptotic coding
gain, which is achieved for a bit error probability tending to zero at the decoder output), that is,
the energy saving provided by a coded transmission with respect to its uncoded counterpart, without
taking into consideration any bandwidth expansion due to code redundancy. Since the beginning of
the 1980s research efforts in code design have been progressively shifting towards coding schemes for
bandlimited AWGN channels, in which code redundancy is absorbed in an increase in the number of
points of the signal constellation for the adopted modulation scheme to avoid bandwidth expansion.
Note that, in this case, a further degree of freedom is introduced in code design (which should still
aim to maximize the coding gain) in that the mapping rule between the bits generated by the selected
coding technique and the expanded signal constellation has to be optimized. In other words, solving
the code design problem requires jointly optimizing the inner structure of the channel encoder and the
constellation mapping. This leads naturally to the concept of coded modulation, according to which
coding and modulation are seen as a single entity.

The first coded modulation schemes were devised for SC bandlimited transmissions over SISO
AWGN channels (e.g., see [992]); in the 1980s, however, specific optimization criteria for coded
modulations over bandlimited fading channels were also developed, starting with the case of frequency-
flat fading (e.g., see [1451] and references therein). It is important to note that the impact of a wireless
communication channel on data transmission is usually very different from that of the classic AWGN
channel. In fact, on AWGN channels error patterns appearing in the demodulated data sequence are
completely random, whereas in fading channels errors they tend to occur in bunches, or bursts; for
this reason, fading channels belong to the class of bursty channels. Unfortunately, most of the error-
correcting codes developed in the early decades of channel coding history (such as block codes) are
random error-correcting codes. Such codes can correct some maximum number of symbol errors,
independently of the placement of these errors. Since an error burst can entail several errors in a
small number of received codewords and leave many other codewords uncorrupted, the strong error-
correction capability required by the codewords affected by an error burst would be wasted for most
of the remaining codewords. In other words, random error-correcting codes are intrinsically unsuitable
for use on bursty fading channels. Other coding schemes, like convolutional codes, can correct an
arbitrarily large numbers of well-spaced errors, but may be also unable to handle short error bursts.
This motivates the search for coding schemes specifically designed for fading channels. It is worth
noting that, in principle, in wireless transmission, random error-correcting codes can be still used if
the codewords undergo interleaving before transmission. An interleaver is a device that mixes up
or scrambles the symbols from different codewords at the transmitter, so that symbols belonging to
the same codeword are well separated during data transmission. At the receiver, the demodulated
data are put in the right order by a deinterleaver, so that codewords are correctly reconstructed.
This process breaks up error bursts, spreading them over multiple codewords. In other words, the
interleaver–deinterleaver pair randomizes the channel, making it more similar to an AWGN channel,
so that various error-correcting codes originally devised for the correction of random errors can be
effectively applied. However, the availability of this tool for mitigating the effects of channel fading
does not provide a natural solution to the problem of optimal code design for fading channels. In fact,
code design is expected to be inevitably affected by the real nature of the communication channel
and by the knowledge that the decoder has acquired about it. Generally speaking, the channel model
turns out to have a considerable impact on the choice of the preferred combination of coding and
modulation schemes. If the channel model is uncertain, or not stable enough in time to develop a
coded modulation closely matched to it, then the best design approach may be to develop a robust
solution, that is, a solution providing adequate but suboptimum performance on a wide variety of
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channel models. Another relevant factor in code design for fading channels is the maximum allowable
decoding delay. Various extremely powerful codes published in the literature suffer from substantial
decoding delay, so that their application may be useful for data transmission, but not for real-time
speech. In real-time speech transmission, which imposes a strict decoding delay constraint, channel
variations with time may be rather slow with respect to the maximum allowed delay. In this case, the
channel may be modeled as a block fading channel, in which the fading is nearly constant for a number
of symbol intervals. On such a channel, a single codeword may be transmitted after being split into
several blocks (through a proper interleaving process), so that some degree of diversity is achieved.

8.2 Interleaving
An interleaver is a device that modifies the order of its input sequence in a deterministic manner.
Its use at the transmit side of a data communication system requires the adoption of a companion
device (i.e., a deinterleaver) at the receiver, which applies the inverse permutation to the received
signal or data in order to restore the original ordering. The typical usage of external interleaving and
deinterleaving in a wireless data communication system is illustrated in Figure 8.1.

Interleavers can act in a periodic fashion or in a pseudorandom fashion. The permutation accom-
plished by periodic interleavers is a cyclic function of time. Periodic interleavers include block
interleavers and convolutional interleavers.

An (M, N ) block interleaver consists of an N × M matrix, which is filled column by column by
a coded data sequence. This sequence is permuted by reading out the matrix content row by row
for transmission. The associated deinterleaver also consists of an N × M matrix, which, however, is
written row by row and read column by column at the receiver. The end-to-end interleaver delay is
2N · M symbols, excluding any channel or processing delay. An (M, N) block interleaver ensures that:

(a) any burst of errors of length le ≤ rM (with r > 1) generated by the communication channel
results in bursts of no more than �r� errors separated by no less than N − �r� positions at the
deinterleaver output (so that for r = 1 single errors separated by at least N positions are found),

(b) a periodic sequence of single errors spaced by M symbols yields a single burst of N errors at the
deinterleaver output.

These features suggest the following guidelines for dimensioning a block interleaver:

• M should not be smaller than the maximum expected burst length;
• N should be carefully selected on the basis of the adopted channel coding scheme.

As far as the last point is concerned, note that the effects of the channel memory at the deinterleaver
output depend on N, in the sense that the larger N, the more decorrelated are the effects of the channel
fading on the sequence feeding the channel decoder. Hence, in principle, N should be larger than the
decoding span. This means that, as will become clear later, for block codes N should be larger than
the codeword length, whereas for the convolutional codes N should exceed the decoding or decision
delay. This ensures that for block codes any error burst of length le ≤ M can produce at most a single
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Figure 8.1 System block diagram illustrating the use of interleaving and deinterleaving in a
wireless data communication system.
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error in any codeword, and with convolutional codes in the same scenario at most a single error will
be encountered in the processing window of the decoding algorithm. Note that the use of a block
interleaver introduces a further synchronization problem in a data communication system since, if the
beginning of each interleaved block is not known, deinterleaving cannot be carried out correctly.

Convolutional periodic interleavers were developed by J. Ramsey [1452] and D. J. Forney [1453].
Here we focus on the structure proposed in [1453] and illustrated in Figure 8.2. Its operation can
be summarized as follows. The coded symbols feeding the interleaver are shifted sequentially into
a bank of M registers, characterized by increasing lengths (from top to bottom); each register is fed
and read through a pair of commutators which operate synchronously. In practice, any time a new
coded symbol is ready at the interleaver input, a commutator switches to the input of a new register.
Then the new symbol is shifted in and simultaneously the oldest (i.e., rightmost) symbol in the same
register is shifted out and sent over the communication channel. The deinterleaver operates in the same
fashion, but the lengths of its shift registers are reversed, increasing from bottom to top. Note that for
correct operation, the commutators at the deinterleaver need to be mutually synchronized and with the
corresponding pair at the interleaver, so that correct symbol ordering is restored by the deinterleaver.
Then, if the parameter N = M · P (P integer) is defined, the interleaver of Figure 8.2 can be referred
to as an (M, N ) convolutional interleaver; in addition, it can be shown that its properties are quite
similar to that of an (M, N) block interleaver. In particular, we have that:

(a) any burst of errors of length le < M generated by the communication channel results in single
errors (separated by at least N symbols) at the deinterleaver output (this is due to the fact that,
if two symbols are separated by less than N symbols at the interleaver input, their minimum
separation at the interleaver output is M symbols),

(b) a periodic pattern of single errors spaced by N + 1 symbols generates a burst of M symbols at
the deinterleaver output.

It is interesting to point out that an (M, N) convolutional interleaver offers some advantages over
its (M, N) block counterpart:

• It halves the overall end-to-end delay ((M − 1)N symbols versus 2N · M for the latter) and memory
requirements ((M − 1)N/2 symbols for both the interleaver and the deinterleaver versus N · M

symbols for the same components of the latter).
• It simplifies the synchronization problem, as its degree of ambiguity at the receiver is M, making

it N times smaller than the latter.

An alternative to periodic interleavers is offered by pseudorandom interleavers. A pseudorandom
interleaver is a block interleaver that permutes a block of L channel symbols in a pseudorandom
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Figure 8.2 Block diagram of a convolutional interleaver–deinterleaver pair.
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fashion. This technique provides a high degree of robustness to variability in the parameters of an
error burst at the cost of an increased complexity with respect to block or convolutional interleavers
of the same size. The implementation of this type of interleaver requires an algorithm for generating
a pseudorandom sequence of integers from 0 to L − 1. The first simple solution to this problem was
proposed by I. Richer in 1978 [1454] and is based on the use of the so-called linear congruential
sequences. More recently, considerable attention has been paid to the problem of the design of pseu-
dorandom interleavers, since they are a basic component of a class of powerful channel codes, known
as turbo codes. Further details on this are provided in Chapter 10.

8.3 Taxonomy of Channel Codes
Channel coding techniques can be classified on the basis of the structure of their encoding functions,
that is, by the manner in which they map their input information sequences (the message) to a
codeword. If this approach is adopted, channel codes can be divided into the large families of block
codes and trellis codes, as illustrated in Figure 8.3. On the one hand, the encoder of a block code
operates on a block-by-block basis, that is, it maps a symbol vector of fixed length to a finite-
dimensional codeword; for this reason, a block code can be simply modeled as a dictionary, providing
a codeword for each possible message that it may contain. On the other hand, the encoder of a trellis
code can map a sequence of arbitrary length to an arbitrarily long codeword and can be modeled as
an FSSM, characterized by a finite-state trellis.

Block codes can be further classified into linear and nonlinear block codes. Linear (nonlinear) block
codes are described by a linear (nonlinear) mapping, defined over a specific algebraic system, from
messages to codewords. In practice, with linear block codes encoding a message means computing
a product between a fixed size matrix, characterizing the coding function, and the symbol vector
representing the message. The simplicity of encoding and the availability of a computationally efficient
encoding algorithm has motivated intense research activity in the field of linear block codes, whereas
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Trellis Codes
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Figure 8.3 Taxonomy of classical channel coding techniques.
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much less attention has been paid to the development of nonlinear block codes. We also note that the
class of linear block codes includes the important families of cyclic codes, whose algebraic structure
allows further simplifications in encoding and decoding, and low-density parity check (LDPC) codes,
which are extremely powerful and can be decoded via computationally efficient decoding algorithms
(note that some LDPC codes have a cyclic structure).

Similarly, trellis codes can be further classified as linear trellis codes and nonlinear trellis codes.
Linear trellis codes are typified as convolutional codes, since encoding can be interpreted as a filtering
of the message sequence, that is, a convolution between the message sequence and a (matrix) impulse
response characterizing the selected channel code. Linear convolutional codes, as a subclass of more
general trellis codes, have received considerably more attention than their nonlinear counterparts,
even if, unlike block codes, the linear–nonlinear option does not have a significant impact on the
complexity of optimal decoding.

The encoders of the above-mentioned channel codes can be connected (i.e., concatenated in the
coding theory jargon), to generate new coding schemes. Note that the constituent encoders of a
concatenated scheme do not necessarily belong to the same family of channel codes, so that hybrid
schemes can be constructed (e.g., a linear block encoder can be concatenated with a convolutional
encoder [1455]). As will become clearer below, concatenated codes often combine an excellent error-
correcting capability with the possibility of a computationally efficient decoding procedure due to the
concatenation of the decoding algorithms for the constituent codes.

A different classification of channel codes is based on dividing them into the classes of algebraic
codes and probabilistic codes. Usually, algebraic coding theory is mainly concerned with linear block
codes, which are characterized by an elegant algebraic structure. Such a structure allows the design
of powerful coding schemes and efficient decoding algorithms that exploit results concerning the
algebra of finite fields. On the other hand, probabilistic coding theory is more concerned with the
problem of finding classes of codes that optimize average performance as a function of coding and
decoding complexity. Classical examples of probabilistic codes include convolutional codes and some
concatenated codes. Finally, we mention that probabilistic decoders typically process soft (reliability)
information.

8.4 Taxonomy of Coded Modulations
As already mentioned in Section 8.1, modulation and channel coding must be designed jointly if the
aim is to maximize the spectral efficiency at a certain SNR. Jointly optimized coding and modulation
schemes form the class of coded modulation schemes (or signal space codes). Coded modulations
were developed first for SC modulations and can be classified according to the logical scheme shown
in Figure 8.4.

Most of the coded modulation schemes of Figure 8.4 are based on the key concept of set partitioning,
which is a simple way of generating a finite sequence of partitions of a symbol constellation [992,
1456] (see Chapter 11 for further details). However, any coded modulation scheme is characterized
not only by a signal constellation and the way it is set-partitioned, but also by the way in which the
mapping is implemented and by a channel coding scheme. In a trellis-coded modulation (TCM) the
channel code adopted is a trellis code; linear trellis (or convolutional) codes are usually preferred,
even if nonlinear trellis codes have also been adopted to satisfy specific design requirements (e.g.,
rotational invariance, which is immunity to the phase ambiguities of the adopted constellation in the
decoding process [1457–1461]). In a block-coded modulation (BCM), on the other hand, a multilevel
code is usually adopted [1462, 1463]. In this case the channel code is defined by the combination of
multiple error-correcting codes (usually called constituent codes), so that the coded bits are generated
by multiple encoders which operate in parallel and are fed by different groups of information bits. An
alternative to TCM and BCM is bit-interleaved coded modulation (BICM), for which the channel code
is a convolutional code, but, unlike TCM schemes, it is followed by log (M) distinct bit interleavers,
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Figure 8.4 Taxonomy of coded modulations for single-carrier transmissions.

if an M-ary constellation is adopted [1464]; this approach yields better coding gain over a Rayleigh
channel than its TCM counterpart characterized by the same complexity.

The channel code of any of the above-mentioned coded modulations can be concatenated with other
channel codes [1465], resulting in a concatenated coded modulation (CCM). In addition, trellis-coded,
block-coded and concatenated coded modulation schemes can be developed for MC modulations,
if the frequency dimension is available, and/or for a multiple-antenna transmission, if an antenna
array is available at the transmit side. Coded modulation schemes devised for digital transmission via
multiple antennas are known as ST codes if an SC modulation is assumed, SF codes if an MC (in
practice, OFDM) modulation is used and codewords extend over a single OFDM symbol interval,
and space-time-frequency (STF) codes if data are transmitted via multiple OFDM modulators over
multiple OFDM symbol intervals. The first family of ST codes proposed in the technical literature is
that of space-time block codes (STBCs); each STBC consists of a collection of equal size matrices,
each of which specify the channel symbols to be transmitted simultaneously by distinct antennas over
the same number of intervals. STBCs can be decoded via simple linear processing at the receiver and
provide diversity gain (i.e., they produce an increase in the slope of BER curves), but provide no or
minimal coding gain. A real coding gain (in addition to a diversity gain) is provided by space-time
trellis codes (STTCs). Since the encoder of an STTC can be modeled as an FSSM, the encoding
procedure can be represented by a proper trellis, whose state transitions are labeled by the group of
channel symbols to be radiated simultaneously by the transmit array. The improvement in coding gain
with respect to STBCs is achieved at the price of a substantially larger decoding complexity. Coding
performance can be further improved by concatenating STBCs or STTCs with other coding schemes,
such as convolutional codes or cyclic (block) codes (e.g., see [1465–1467] and references therein).

Initial research on ST coding was conducted on frequency-flat fading channels. In the presence of a
frequency-selective channel the ST decoder has to be combined with a channel equalizer at the receive
side and this makes the adoption of ST codes a challenging problem [1466, 1468]. A solution to this
is offered by OFDM which converts a frequency-selective channel into a set of parallel independent
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frequency-flat channels, for which SF codes and STF codes, inspired by ST coding schemes, can be
developed (e.g., see [21, 1466, 1467]).

A different approach to channel coding is used when a layered space-time (LST) architecture
(also known as spatial multiplexing) is used for data communications in a MIMO system [21]. In
this case, streams of independent data can be transmitted over different antennas to maximize data
rate, and successive one-dimensional (in the space domain) processing steps are accomplished on
multidimensional signals at the receive side for data detection. Various LST architectures can be
found in the technical literature, and each requires specific forms of channel coding [21].

8.5 Organization of the Following Chapters
The following four chapters focus on the study of channel coding and coded modulations, and on the
problem of combined channel equalization and decoding of channel codes. Chapter 9 is devoted to the
study of traditional coding schemes, like block codes, convolutional codes and classical coding schemes
resulting from parallel and serial concatenation of such codes. In Chapter 10, modern concatenated
coding schemes and LDPC codes are analyzed, and the problem of code analysis and decoding from a
graph theory perspective is briefly discussed. Chapter 11 focuses on coded modulation for the single-
input and multiple-input channel cases. More specifically, TCM, BICM and modulation codes based
on multilevel coding are illustrated for single-antenna transmissions, while various forms of ST and
SF coding are analyzed for MIMO communications. Finally, the problem of how channel equalization
algorithms, channel estimation techniques and decoding of channel codes can be combined to improve
link performance at an acceptable computational cost is analyzed in Chapter 12.

8.6 Historical Notes
In this section some relevant information concerning the birth of channel coding and coded modulation
schemes mentioned above is provided. More specific historical details are provided in later chapters.

The first nontrivial channel codes to appear in the technical literature were a couple of binary block
codes devised by R. Hamming [1469] in 1950 and M. Golay [1470] in 1949. Another significant
example of early binary block codes is represented by the so-called RM codes, which were proposed
by D. Muller in 1954 [1471] and then reintroduced by I. Reed [1472], who proposed an efficient
decoding algorithm. Cyclic (block) codes were first investigated by E. Prange in 1957 [1473], and
from the 1960s became a fundamental topic of research in the field of channel coding techniques. In
this area a milestone is the invention of Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon
(RS) codes in three independent papers in 1959 and 1960 [1474–1476].

Convolutional codes were invented by P. Elias in 1955 [1477], and a computationally efficient and
asymptotically optimal decoding algorithm for them was proposed by A. Viterbi in 1967 [1478] (and
became known as the VA). LDPC codes were proposed by R. Gallager in 1962 [1479], but his work
was largely forgotten for more than 30 years, because of their large implementation complexity.

In 1966 D. Forney proposed the idea of serial concatenation for the development of long and
powerful codes. These result from cascading shorter and simpler constituent codes which can be easily
encoded and decoded [1455]. Another form of concatenation, who became known later as parallel
concatenation, had actually been proposed earlier by P. Elias [1480] who had invented product codes
by combining known block codes. The real importance of parallel concatenation in the development
of powerful coding schemes became apparent much later, in 1993, when the so-called turbo codes,
which offer impressive error performance at the price of a reasonable decoding complexity, were
proposed by C. Berrou, A. Glavieux and P. Thitimajshima [1481].

Milestones in the development of coding for bandwidth-limited channels (i.e., of coded modula-
tions), are G. Ungerboeck’s invention of TCM in the 1970s, but not published until 1982 [992], and
the development of multilevel coding by H. Imai and S. Hirakawa in 1977 [1462].
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STTCs were proposed by V. Tarokh, N. Seshadri and R. Calderbank in 1998 [14]. A few months
later, S. M. Alamouti [15] invented a low-complexity STBC. Alamouti’s invention motivated Tarokh
et al. [1482, 1483] to generalize Alamouti’s scheme to an arbitrary number of transmitter antennas.
These early results were followed by a flurry of research in this field.

8.7 Further Reading
An excellent introduction to coding theory and its history is provided by [1484]. Reference books
about channel coding techniques and their history are [35, 1485], which, however, mainly focus
on AWGN channels. The design of coding techniques for wireless channels is specifically tackled
in [37]. An interesting overview of coded modulations for frequency-flat fading channels is provided
by [1451], where design rules for TCM and BCM (based on multilevel coding) are illustrated and the
performance of some coded modulation schemes is analyzed. Finally, various introductory material
about ST coding for wireless communication can be found in [21, 1465–1468]. A good overview is
presented by the book [38].



9
Classical Coding Schemes

This chapter briefly describes the essential aspects of traditional coding schemes – in particular, block
and convolutional codes. It is a prerequisite for the in-depth understanding of the modern coding
schemes and signal space codes considered in Chapters 10 and 11, respectively.
The chapter is organized as follows. In Section 9.1 the main properties of linear block codes are
summarized. Then, some specific classes of codes (including cyclic codes, single parity check codes,
Reed–Muller codes and repetition codes) are considered. The remainder of the section presents an
overview of soft and algebraic decoding techniques for block codes and an assessment of their achiev-
able performance. In Section 9.2 the main features of linear trellis codes, namely convolutional codes,
are described. Then the problem of their efficient decoding is investigated from a wide perspective,
including ML, MAP and sequential decoding strategies. Considerable attention is paid to ML decoding,
for which the problem of assessing error performance is also analyzed.

Section 9.3 deals with the final topic of this chapter, the classical coding schemes resulting from
parallel and serial concatenation of block and convolutional coding schemes.

Finally, some historical notes and suggestions for further reading are provided in Sections 9.4 and
9.5, respectively.

9.1 Block Codes

9.1.1 Introduction

In this section we focus on block codes defined on finite fields.1 In general, block encoding of infor-
mation messages can be represented as shown in Figure 9.1. There, an information source generates
a sequence of symbols, each belonging to GF(q), with q = pl (p is prime and l is a positive integer).
The sequence is partitioned into blocks, called messages, each of length k. The encoder converts each
input message2:

u �
[
u0, u1, . . . , uk−1

]
, (9.1)

in accordance with one-to-one mapping, to a vector, called a codeword:

x �
[
x0, x1, . . . , xn−1

]
, (9.2)

1 An introduction to finite field theory is provided in Appendix E.
2 In this chapter, unless stated otherwise, row vectors are used.

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 9.1 Block encoding of a data stream emanating from an arbitrary information source.

whose n elements, with n ≥ k, also belong to GF(q). The set of qk distinct codewords generated by
the same number of distinct messages forms a block code.

The mathematical description of the block encoding algorithm is simple if the code has the property
of linearity (as described below). Then the resulting block code is linear. In the remaining part of this
section we focus exclusively on linear block codes defined over finite fields.

9.1.2 Structure of Linear Codes over GF(q)

A linear (n, k) block code over GF(q) is a set C of qk codewords of block length n defined according
to the linear transformation of the input message given by:

x = u G, (9.3)

where G is a k × n matrix, called the generator matrix, with elements belonging to GF(q). Note that
for linear block codes the GF(q) sum of any two codewords in C is also a codeword in C, so that
C is a closed set under GF(q) addition. The block code described by (9.3) is characterized by the
parameter:

R � k

n
(9.4)

called the code rate. It measures the fraction of the codeword containing data.
If gl denotes the lth row of G (with l = 0, 1, . . . , k − 1), (9.3) can be rewritten as:

x =
k−1∑
l=0

ul gl . (9.5)

The transformation (9.3) between messages and codewords is one-to-one if and only if the vectors
{g0, g1, . . . , gk−1} are linearly independent, i.e the rank of G is equal to k. This ensures that C consists
of qk distinct codewords. In this case, from a vector space3 perspective, we see that the code C is a
k-dimensional subspace of the vector space S consisting of all the possible vectors of length n over
GF(q) and that the vectors {g0, g1, . . . , gk−1} form a basis of C. Note that, since the selection of
a basis for a given subspace is not unique, the same codeword set C can be generated using many
different generator matrices. However, these equivalent codes follow different correspondence rules
between the messages and the set of codewords.

If G is structured as:
G = [Ik Pk,n−k

]
, (9.6)

3 The definition of a vector space over a field can be found in Appendix E.
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where Ik is the k × k identity matrix and Pk,n−k is a k × (n − k) matrix, x can be expressed as:

x =
[
u, xp

]
, (9.7)

that is, the concatenation of the message u with the (n − k)-dimensional vector:

xp �
[
xk, xk+1, . . . , xn−1

] = u Pk,n−k (9.8)

containing the so-called parity check symbols. If (9.6) holds, then G is said to be in systematic form
and the transformation of (9.3) then describes systematic encoding.

It is not difficult to prove that any linear code C can be transformed into systematic form producing
another code Cs whose generator matrix is structured as in (9.6) and whose performance, in terms of
average error probability for the transmitted messages, is equivalent to that of C if the codewords are
transmitted over a memoryless channel (e.g., see [1486, pp. 79–80] for further details).

Other properties of linear block codes can be inferred from the general results of vector space
theory. Since an (n, k) linear block code C represents a k-dimensional subspace of S, it also uniquely
identifies a distinct (n − k)-dimensional subspace, called the null space and denoted by C+. The
subspace C+ consists of the n-dimensional vectors w on GF(q) which are orthogonal to all elements
in C, that is, such that:

x wT = 0 (9.9)

for any x ∈ C and w ∈ C+. By analogy with (9.3), the set of vectors w ∈ C+ can be represented via
the linear transformation:

w = v H, (9.10)

where v �
[
v0, v1, . . . , vn−k−1

]
is an (n − k)-dimensional vector on GF(q), and H is an (n − k) × n

matrix with rank n − k whose rows form a basis for C+.
Substituting (9.10) into (9.9) leads easily to:

x HT = 0n−k, (9.11)

where 0n−k is the null vector of size n − k. Note that the matrix equation (9.11) can be interpreted as
a system of n − k linear equations whose unknowns are the n elements x. These equations are known
as the parity check equations of the block code C.

Substituting (9.3) into (9.11) leads to:

G HT = 0k,n−k, (9.12)

where 0k,n−k is the null matrix of size k × (n − k). This result lends itself to the simple interpretation
that all the rows of G, representing vectors of C, are orthogonal to all the rows of H, which, similarly,
are vectors of C+. Note that, given the generator matrix G of a code C, the choice of a matrix H
satisfying (9.12) is not unique. However, if G is in systematic form (see (9.6)), the specific choice:

H = [−PT
k,n−k In−k

]
(9.13)

certainly satisfies (9.12) and is usually used.
Finally, it is important to point out that, given a vector space S, defining a subspace C+ that is

orthogonal to a subspace C is completely equivalent to defining C. For this reason, a linear block code
C can also be defined as the set of vectors forming the null space of the linear transformation defined
by a matrix H T , of size n × (n − k) and rank n − k, that is, the set of vectors x satisfying (9.11).4

Moreover, the matrix H can be interpreted as the generator matrix (see (9.10)) of an (n, n − k) linear

4 This result is also known as the parity check theorem [1485].
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block code C+. The codes C and C+ are called dual codes and are usually quite different. However, if
they are equivalent, they are called self-dual codes. A sufficient condition for self duality is n − k = k,
that is, k = n/2, so that both codes have rate R = 1/2.

As illustrated in the following pages, knowledge of the structure of a block code can be used to
acquire important information about the structure of its dual. The ideas illustrated above are applied
in the following two examples.

Example 9.1.1 The well-known (7, 4) Hamming linear block code over GF(2) is usually characterized
by the generator matrix:

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 0 1
1 1 1
1 1 0
0 1 1


 , (9.14)

which, having the structure of (9.6), describes a systematic code. Therefore, from (9.13) the parity
check matrix is given by:

H =

1 1 1 0

0 1 1 1
1 1 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


 . (9.15)

This matrix also represents the generator matrix of the (7, 3) (binary) dual code. It should be noted
that the dual code in this instance is a so-called binary m-sequence often known as a pseudorandom
binary sequence. Such sequences are widely used in spread spectrum and code division multiple access
(CDMA) wireless systems.

�

Example 9.1.2 An (n, 1) repetition code over GF(q) is a linear block code characterized by the
generator matrix:

G = [1 1 . . . 1
]
, (9.16)

structured as in (9.6). Then, using (9.13), the parity check matrix:

H = [h In−1

]
(9.17)

is found, where h � [q − 1, q − 1, . . . , q − 1]T is an (n − 1)-dimensional column vector with all its
elements equal to q − 1, and In−1 is an (n − 1) × (n − 1) identity matrix. Note that H generates an
(n, n − 1) linear systematic code which adds a single parity check symbol to a message consisting of
n − 1 information symbols.

�

9.1.3 Properties of Linear Block Codes

Given an (n, k) linear block code C over GF(q), the Hamming distance dH (xl , xi ) between two distinct
codewords xl = [xl,0, xl,1, . . . , xl,n−1] and xi = [xi,0, xi,1, . . . , xi,n−1] is defined as the number of
locations in which they differ; it can be computed as:

dH

(
xl , xi

) = wH

(
xl − xi

)
, (9.18)

where wH (x), the Hamming weight of a vector x, represents the number of nonzero elements of x. For
a linear code C, the sum of any two codewords is also a codeword in C. Therefore, xl,i � xl − xi is
also a codeword in C. If we fix xl �= 0n as a reference codeword and let xi vary over C, taking all the
(qk − 1) possible values excluding xl , then xl,i generates all the nonnull codewords of C. This proves
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that the set consisting of all the Hamming distances between distinct codewords coincides with the set
of weights of the codewords x �= 0n. It also proves that, when evaluating this set of distances, the
final result is invariant with respect to the selected reference codeword. These results are extremely
important because:

(a) the set of distances between the codewords of C can be evaluated by computing the weights of
its (qk − 1) nonzero codewords (x �= 0n),

(b) if the channel behavior is independent of the transmitted codeword,5 the evaluation of the average
error probability performance of a decoding algorithm for C does not require a statistical average
over C – it can be assessed assuming that a specific codeword (e.g., x = 0n) has been transmitted.

The weight spectrum of C is the set of all possible values of the weight wH (x) for all x ∈ C
and is measured by the multiplicity or number, Aw , of codewords associated with each weight, w.
This spectrum can be summarized in a table or as a polynomial, known as the weight enumerator
polynomial and defined as:

A (z) =
n∑

w=0

Aw zw. (9.19)

Note that A0 = 1 (since 0n is the only codeword with null weight) and Aw = 0 for 0 < w < dH,min,
where dH,min denotes the minimum Hamming distance between distinct codewords. Let us now evaluate
A (z) for the binary code defined in Example 9.1.1.

Example 9.1.3 The (7, 4) Hamming code of Example 9.1.1 consists of 24 codewords; it is easy to
show, via an exhaustive search, that one codeword has a null weight, seven have weight 3, seven
have weight 4, and one has weight 7, so that:

A (z) = 1 + 7z3 + 7z4 + z7 (9.20)

and dH,min = 3.
�

Generally speaking, the evaluation of A (z) involves assessing the weights of all possible linear
combinations of the rows of the generator matrix G (see (9.5)). This entails a computational effort
that increases exponentially with k. Fortunately, for several important classes of code an analytical
expression for the associated weight enumerator polynomial is available (e.g., see the classes of
Hamming codes and RS codes analyzed below). In other cases, the evaluation of the weight spectrum
of an (n, k) code C can be simplified by exploiting knowledge of the spectrum of its (n, n − k) dual
code C+. In fact, the latter uniquely identifies the former, as shown by F. J. MacWilliams [1487], who
proved the validity of the identity [327, p. 418]:

n−p∑
l=0

Bl Cn−l
p = qn−k−p

n∑
w=0

Aw Cn−w
n−p , (9.21)

which holds for p = n, n − 1, . . . , 0, where Aw (Bw) denotes the number of codewords of C (C+)
having weight w and Cb

a denotes the number of combinations of b elements taken a at a time. In
the binary case (i.e., if q = 2) this identity is usually formulated, for weight enumerator polynomials
A(z) of C and B(z) of C+, as [1485, 1488]:

B(z) = 2−k(1 + z)nA

(
1 − z

1 + z

)
(9.22)

5 When this occurs, the channel is said to be uniform from the input (UFI).
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or [1488]:

A(z) = 2k−n(1 + z)nB

(
1 − z

1 + z

)
. (9.23)

MacWilliams’s identity (9.21) is extremely useful when C is large in size, but its dual is sufficiently
small that the weight of all its codewords can be computed via direct enumeration.

The most significant parameter that can be acquired from the weight spectrum of C is undoubtedly
dH,min, the minimum distance between distinct codewords. We now describe how this parameter relates
to the parity check matrix H of C. To this end, let us rewrite (9.11) as:

n−1∑
l=0

xl hT
l = 0n−k, (9.24)

where hl (hT
l ) is the lth column (row) of H (HT ). This states that, if the columns of H are combined

linearly, using the elements of any x ∈ C as coefficients, the result is the null vector 0n−k . Therefore,
since dH,min is the minimum weight of the n-dimensional nonzero codewords x ∈ C satisfying (9.24), it
can be inferred that dH,min may be expressed as the minimum number of linearly independent columns
of H. Conversely, it can easily be proved that, if all possible sets of d − 1 or fewer distinct columns
of H are linearly independent,6 then dH,min is not smaller than d (e.g., see [35, pp. 77–78]).

The parameter dH,min provides an indication of the error detection and correction capabilities of
a linear block code. To understand this, we consider the transmission of the kth codeword xk of C
over a q-ary memoryless7 and symmetric uniform channel.8 First, let us analyze the problem of the
correction of errors introduced by the channel. In this case, the channel output vector y is given by:

y = xk � e, (9.25)

where � denotes the element-by-element sum of vectors over GF(q) and e is the error vector, whose
elements also belong to GF(q). It can be shown that, given the model (9.25), the ML decoder selects
the codeword xH whose Hamming distance dH

(
xH , x

)
is minimum in the set of possible codewords

x of C (e.g., see [35, pp. 10–13]). In practice, this can be accomplished as follows. From y in (9.25)
the (n − k)-dimensional syndrome vector is calculated as:

s � yH T . (9.26)

This vector is null if and only if y is a codeword. Therefore, if s �= 0n−k , there are one or more incorrect
symbols in y. However, if s = 0n−k , the absence of transmission errors cannot be guaranteed. In fact,
if e �= 0n−k is a codeword, y is also a codeword, even if it is different from xk . This means that there
are as many undetectable errors as there are nonnull codewords (i.e., qk − 1). It is also important to
note that the syndrome s depends only on the error vector e and not on the transmitted codeword,
since:

s = (xk � e
)

H T = xk H T � e H T = e H T (9.27)

and xkHT = 0n−k for any codeword (see (9.11)). Equality (9.27) can be interpreted as a system of
(n − k) linear equations over GF(q) in n unknowns, each representing an element of e. Unfortunately,
this system admits qk distinct solutions, since there are qk different error vectors producing the same
syndrome. This is due to (9.27) giving the same value of s for any of the qk possible values of xk .

6 This means all possible combinations of d − 1 or fewer distinct columns of H produce a nonzero column vector.
7 A communication channel is memoryless if its effects on distinct elements of the same codeword are statistically
independent. In data communications over fading channels this condition holds in the presence of ideal interleaving.
8 In a q-ary symmetric uniform channel, if the probability of correct reception of an input symbol is 1 − p, the
probability that any incorrect symbol (belonging to the set of q − 1 possible wrong symbols) is received is
p/(q − 1).
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Table 9.1 Standard array

e0 = x0 = 0n x1 · · · xi · · · xqk−1

e1 e1 � x1 · · · e1 � xi · · · e1 � xqk−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

el el � x1 · · · el � xi · · · el � xqk−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

eqn−k−1 eqn−k−1 � x1 · · · eqn−k−1 � xi · · · eqn−k−1 � xqk−1

However, these solutions are not equally likely with respect to the ML decoder. In fact, it can be
proved that, under the assumptions made above, the ML estimate ê of e, given the syndrome s, is that
(or one of those) having minimal weight.

In principle, if the number of existing syndromes, qn−k , is not large, (9.27) can be computed for any
possible vector e. The results can be collected in a matrix, called the standard array of C, containing
in each row all the error vectors producing the same syndrome. For any syndrome, there are qk distinct
error vectors generating it, therefore this matrix consists of qn−k rows and qk columns. The structure
of the standard array is shown in Table 9.1. In the construction of the standard array the following
two rules are followed:

1. The first row contains all possible codewords, that is, all the n-dimensional vectors producing the
syndrome s = 0n−k . In addition, the first element of this row is the null codeword 0n.

2. The first element of each row has, among all the others in the same row, minimal weight (this
element is not necessarily unique).

It is not difficult to prove that the construction of the standard array is equivalent to partitioning the
set of codewords of C into a family of cosets. Each coset consists of all the elements in a single row
of the standard array. In addition, the first element of each row is called the coset leader and, having
minimal weight, represents the error vector selected by the ML decoder on the basis of the available
syndrome. For this reason, error correction can be implemented as a procedure based on looking up
a table listing, where the table gives the coset leader for every value of s. Generally speaking, this
table requires qn−k memory locations, each containing n symbols of GF(q). However, if the code is
systematic, only k symbols (those corresponding to the information symbols) need to be memorized
for each possible syndrome. The decoder, after evaluating s, reads in its memory the associated coset
leader eCL(s) and produces the ML estimate:

xH = y � (−eCL(s)) (9.28)

of the transmitted codeword. The only error vectors or patterns correctable by this algorithm are
those represented by the coset leaders. If the decoder makes a wrong correction, then it may even
increase the overall number of incorrect symbols. Note that this decoding procedure is impractical for
large size codes. More efficient decoding procedures will be described in Section 9.1.6 for specific
classes of codes.

A deeper insight into the ML algebraic decoding procedure can be gained from Figure 9.2. For
simplicity the space of y is shown in two dimensions. In particular, in this geometrical representation,
all possible codewords of C are indicated by distinct dots. Each dot is surrounded by a shaded region
denoting the guaranteed error-correction zone for the corresponding codeword. In this specific case,
this zone is a circle with the associated codeword at its center and integer radius t. Referring to this
figure, we can state that an ML decoder certainly selects the codeword xH = xk if y lies within the
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dH,min

xl

xm

x = xk

y

t

Figure 9.2 Guaranteed error-correction zones for an ML decoder of a block code C.

guaranteed error-correction zone of xk , that is, if the overall number of incorrect elements of y does
not exceed t. If y falls in the space external to the correction zone for all xk , it is still possible, but
not guaranteed, that a given xk is the codeword of C closest to y. If there is not a unique codeword
having minimum distance from y, then the decoder makes an arbitrary choice among multiple (at least
two) equally likely hypotheses. In addition, from our geometrical representation it is not difficult to
infer that the maximum number of errors whose correction is guaranteed is:

t �
⌊

dH,min − 1

2

⌋
. (9.29)

If the number of incorrect elements exceeds t, it is still possible that the decoder finds the correct
value of e, but it may select an incorrect estimate ê of e.

The decoder can simultaneously correct t errors (9.29) and detect [1489]:

ed �
⌈

dH,min − 1

2

⌉
(9.30)

errors. This means a set of syndromes exists for all e of weight ed or less, where ed > t . However,
more than one error sequence of weight ed > t can have the same syndrome. This is why error
sequences with weight ed > t can only be detected and not corrected. Some error sequences of weight
ed > t may have unique syndromes, in which case these specific error sequences can be corrected.

If the receiver is not interested in error correction, but only in the detection of their presence, the
decoder can be fooled only when, because of an overall number of errors exceeding dH,min − 1, the
transmitted codeword xk is transformed into another codeword. Therefore, the maximum number of
errors whose detection is guaranteed is ed � dH,min − 1. Of course, if the overall number of errors is
larger than ed , their detection is still possible, but uncertain.

So far we have assumed the validity of the model (9.25) for the channel output. However, a receiver
can be designed to declare a symbol erased9 when it is received unreliably. In this case the correction

9 Erased symbols are treated as lost – the decoder treats them as if they were never transmitted.
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of t1 errors can be guaranteed in the presence of es erasures, provided that 2t1 + es ≤ dH,min − 1 (e.g.,
see [35, p. 81]).

These considerations, even if illustrated for the specific case of transmission over a q-ary uniform
memoryless channel, show the importance of finding, in the family of (n, k) linear codes over GF(q),
those schemes maximizing dH,min.

9.1.4 Cyclic Codes

In this subsection, a specific and well-known class of linear block codes, known as cyclic codes, is
defined. The essential features of these codes and various encoding algorithms for them are analyzed.
Several specific examples of famous cyclic codes are also illustrated.

9.1.4.1 Code Structure

A cyclic code is a linear block code with the property that a cyclic shift of each codeword is
still a codeword. As shown in what follows, this property appreciably simplifies encoding and
decoding, making them attractive for practical applications, particularly when long codewords
are created.

To simplify the mathematical description of the properties of a cyclic code and of its encod-
ing/decoding a polynomial representation of its codewords is adopted. In particular, given an (n, k)

cyclic code C over GF (q), any codeword x � [x0, x1, . . . , xn−1] can be represented by the polyno-
mial10:

x (D) � x0 + x1D
1 + . . . + xn−1D

n−1 (9.31)

in the formal variable D and with degree not exceeding n − 1. A cyclic shift of x by an arbitrary number
j of locations produces another codeword x(j). It is easy to show that its polynomial representation is
given by:

x(j) (D) = Dj x (D) mod Dn − 1, (9.32)

the remainder of the division of Dj x (D) by (Dn − 1).
The polynomial representation is extremely useful in describing the inner structure of the family

of codewords forming C. To show this, we introduce the generator polynomial g (D), representing, in
the family of code polynomials x (D) �= 0, the monic polynomial of minimum degree. This polynomial
is unique and can be expressed as:

g (D) = g0 + g1D
1 + . . . + gr−1D

r−1 + Dr, (9.33)

where r ≤ n − 1 denotes its degree. It can be shown that, given g (D), a polynomial x (D)

(over GF (q)) of degree not exceeding n − 1 represents a codeword if and only if (e.g., see
[35, p. 139]):

x (D) = u (D) g (D) , (9.34)

where u (D) is a polynomial of degree not larger than n − 1 − r . This means that a cyclic code is fully
defined by its generator polynomial g (D). This polynomial, however, cannot be selected arbitrarily
in the set of polynomials over GF (q) of degree r. In fact, it can be proved that g (D) generates an
(n, k) cyclic code if and only if (e.g., see [35, pp. 138–139]):

10 This representation should not be confused with that for the elements of an extension field GF (q) (with q = pm).
In fact, in the latter case the degree of the polynomials does not exceed m − 1 and polynomial coefficients belong
to the ground field GF (p).
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(a) it is a factor of Dn − 1 over GF(q), that is:

Dn − 1 = g (D) h (D) , (9.35)

where h (D) is also a polynomial over GF (q), and
(b) its degree is r = n − k.

From (9.35) it is easy to see that the n − k roots {αj , j = 0, 1, . . . , n − k − 1} of g (D) are nth roots
of unity, such that αn

j = 1. The knowledge of these roots allows one to fully describe g (D) and,
consequently, the associated code C.

As illustrated in Section 9.1.2, any (n, k) linear block code over GF(q) can be described by a
generator matrix G. It is not difficult to show that, if this code is cyclic with a generator polynomial
g (D), a possible nonsystematic generator matrix is:

G =




g
g(1)

. . .

g(k−1)


 =




g0 g1 . . . . . . . . . gn−k 0 . . . . . . 0
0 g0 g1 . . . . . . . . . gn−k 0 . . . . . .

0 0 g0 g1 . . . . . . . . . gn−k 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 g0 g1 . . . . . . gn−k 0
0 . . . . . . . . . 0 g0 g1 . . . . . . gn−k




, (9.36)

where g � [g0, g1, . . . , gn−k−1, gn−k, 0, . . . , 0] (with gn−k = 1) is the codeword represented by
g (D), associated with the message u(d) = 1.

Let us now focus on the construction of some cyclic binary block codes.

Example 9.1.4 Let us generate all the binary (q = 2) cyclic codes of length n = 7. Their generator
polynomials can be derived from the factorization (see (9.35)):

D7 − 1 = (1 + D)
(
1 + D + D3) (1 + D2 + D3) (9.37)

containing only irreducible polynomials over GF (2). Then possible generator polynomials of different
degrees are:

g1 (D) = (1 + D + D3) (1 + D2 + D3)
= 1 + D + D2 + D3 + D4 + D5 + D6, (9.38)

g3 (D) = (1 + D)
(
1 + D2 + D3) = 1 + D + D2 + D4, (9.39)

g4 (D) = 1 + D + D3, (9.40)

g6 (D) = 1 + D, (9.41)

for message lengths k = 1, 3, 4, 6, respectively. Note that cyclic codes with k = 5 or 2 do not exist,
since generator polynomials of degrees 2 or 5, respectively, cannot be constructed using distinct factors
of (9.37). In the construction of a generator polynomial of degrees 4 (see (9.39)) and 3 (see (9.40))
the selection of the degree 3 term from the factorization (9.37) is not unique since D7 − 1 has two
factors of degree 3.

�

Clearly, the factorization of Dn − 1 can contain multiple irreducible terms of the same degree. For
this reason, the generator polynomial g(D) for a cyclic code (n, k) is not necessarily unique. Note
that different choices for g(D) can lead to codes with different dH,min and, consequently, substantially
different error performance.
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9.1.4.2 Dual Code and Parity Check Polynomial

As already shown in Section 9.1.2, an (n, k) linear block code C over GF(q) can also be described
by a parity check matrix H. If C is cyclic, H can easily be derived from the parity check polynomial
(see (9.35)) as:

h (D) � Dn − 1

g (D)
, (9.42)

of degree k. In fact, it can be shown that (e.g., see [327, p. 446]):

H =




hk hk−1 . . . h0 0 . . . . . . . . . 0
0 hk hk−1 . . . h0 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . hk hk−1 . . . . . . h0 0
0 0 . . . . . . hk hk−1 . . . . . . h0


 . (9.43)

The parity check matrix (9.43) can be interpreted as the generator matrix of the dual C+ of the
code C generated by G (9.36). Note, however, that despite the structural similarity between H (9.43)
and G (9.36), their relationships with the associated polynomials h (D) and g (D), respectively, are
somewhat different. In fact, in each row of G the coefficients of g (D) appear in a natural order (i.e.,
in increasing powers of D), whereas in the rows H the coefficients of h (D) follow the inverse order.
This means the generator polynomial of C+ is not h (D) (9.42) but, up to a scale factor, the reciprocal
polynomial:

h̃ (D) � hk + hk−1D + . . . + h0D
k =

k∑
l=0

hk−l Dl. (9.44)

Note that h̃ (D) is not necessarily monic and as a result the generator polynomial of C+ is h−1
0 h̃ (D).

Example 9.1.5 Let us again consider the (7, k) binary cyclic codes derived in Example 9.1.4. It is not
difficult to prove that g1 (D) (9.38) and g6 (D) (9.41) describe dual codes. In fact, the parity check
polynomial h1 (D) associated with g1 (D) is:

h1 (D) = g6 (D) = 1 + D (9.45)

and coincides with its reciprocal polynomial h̃1 (D) generated according to (9.44). Similarly, the cyclic
code described by g3 (D) (9.39) is the dual of that described by g4 (D) (9.40). Moreover, the parity
check polynomial h3 (D) associated with g3 (D) is:

h3 (D) = 1 + D + D3. (9.46)

Reversing the order of the coefficients of h3 (D) produces the reciprocal polynomial:

h̃3 (D) = 1 + D2 + D3. (9.47)

�

9.1.4.3 Encoding Algorithms

Encoding can be implemented as in (9.34), evaluating the product of the generator polynomial g (D)

and the message polynomial u(D). This operation can be done via a digital transversal filter structure
as shown in Figure 9.3. This filter contains n − k + 1 multipliers over GF(q) (indicated by the symbol
�), n − k adders over GF(q) (indicated by the symbol �) and a delay line consisting of n − k registers,
each producing a single clock interval delay. In practice, the filter evaluates the convolution between
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gn–k

R R R R
u0, u1,...,uk–1

x0, x1,...,xn–1

gn–k–1 gn–k–2 g1 g0

Figure 9.3 Nonsystematic encoder for an (n, k) cyclic code C over GF(q).

the input sequence {uk−1, uk−2, . . . , u0, 0, 0, . . . } and the impulse response {gn−k , gn−k−1, . . . , g0},
to generate the response {xn−1, xn−2, . . . , x0}. Note that: (a) the elements of the input sequence (of the
output sequence) will be applied to (generated by) the filter in reverse order; (b) the filter is initially
cleared and after the first k clock intervals is fed by a null sequence.

The codeword x generated by the scheme illustrated in Figure 9.3 is inevitably in nonsystematic
form. An alternative to this solution is a systematic encoding algorithm which can be derived as
follows. Dividing the polynomial:

Dn−ku (D) = Dn−k

k−1∑
l=0

ulD
l =

n−1∑
l=n−k

ul−(n−k)D
l, (9.48)

which has the same information content as u(D), by g (D) yields:

Dn−ku (D)

g (D)
= a (D) + p (D)

g (D)
,

Dn−ku (D) = a (D) g (D) + p (D) , (9.49)

where a (D) denotes the quotient and:

p (D) =
n−k−1∑

l=0

plD
l �
[
Dn−ku (D)

]
mod g (D) (9.50)

is the remainder. We then define:

x (D) � Dn−ku (D) − p (D) (9.51)

and note that, thanks to (9.49), x (D) can also be expressed as:

x (D) = a (D) g (D) . (9.52)

Then the polynomial x (D) (9.51) represents a codeword of C, since it contains g (D) as a factor.
Moreover, from (9.48), (9.50) and (9.51) it is easy to see that:

x (D) =
n−1∑

l=n−k

ul−(n−k)D
l +

n−k−1∑
l=0

(−pl)D
l. (9.53)

This means that the k coefficients of the terms with the largest degrees in x (D) are given by
the information symbols, whereas the remaining n − k coefficients {−pl, l = 0, 1, . . . , n − k − 1}
represent the parity symbols of x (D). This shows that, given the message polynomial u (D), the
corresponding codeword x (D) in systematic form can be generated by resorting to (9.50) and (9.51).
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A
T2
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–gn–k = −1g0 g1 g2 gn–k–1
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–xk,–xk+1,...,–xn−1,u0,u1,...,uk−1

u0,u1,...,uk−1

Figure 9.4 Systematic encoder for an (n, k) cyclic code C over GF(q).

In practice, this requires the availability of a logic circuit evaluating the division of the polynomials
Dn−ku (D) and g (D), and generating the remainder p (D) (9.50). A suitable circuit is illustrated in
Figure 9.4, based on a general polynomial divider scheme (e.g., see [35, pp. 146–149] and [327, pp.
450–452] for further details). It operates as follows. At the start of the encoding procedure the switch
T1 is closed, the switch T2 is turned to A and all the registers are cleared. In the first k clock intervals
the sequence {uk−1, uk−2, . . . , u0} feeds both the divider and the output since the code is systematic.
At the end of this interval, the coefficients (actually, their opposites) of the remainder polynomial
p (D) are available in the cells of the delay line. Therefore, the feedback in the divider is disabled to
stop the division procedure by opening the switch T1. Then T2 is turned to B, so that the content of
the delay line can be read sequentially in n − k consecutive clock intervals.

Finally, we note that the schemes of Figures 9.3 and 9.4 can be substantially simplified when q = 2,
since there is then no difference between the sum and difference operations over GF(2) and a product
by 1 (0) corresponds to the presence (absence) of a connection along the register.

9.1.4.4 Hamming Codes over GF(q)

The binary (7, 4) code described in Example 9.1.1 belongs to the class of so-called Hamming codes
over GF(q). Their main feature is that they have minimum Hamming distance dH,min = 3, so that error
patterns with a single error can always be corrected by an ML decoder. The correction of multiple
errors is not guaranteed.

The correction of all possible single errors via ML algebraic decoding of an (n, k) Hamming code
C requires the set of coset leaders of C to have a well-defined structure: it consists of the vector 0n

and all possible n-dimensional vectors over GF(q) each having a single nonnull element. Generally
speaking, if a code has a standard array containing all the error patterns of t or fewer errors and
no others as coset leaders, it is called a perfect code. Thus, Hamming codes form a class of single-
error-correcting perfect codes. Note that perfect codes are rare. In fact, besides the Hamming codes,
the only other nontrivial scheme having the property of perfection is the (23, 12) Golay code [1470]
described below.

The size of the family of cosets of an (n, k) Hamming code C is n(q − 1), since in each coset
we have a single nonnull element that can be placed in n different locations and can take on
q − 1 distinct values. Therefore, since in any (n, k) code over GF(q) we have qn−k syndromes, the
equality:

1 + n(q − 1) = qn−k (9.54)
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must hold. Rearranging this equality, we have:

n = qn−k − 1

q − 1
=

n−k−1∑
l=0

ql, (9.55)

so that, given the number n − k ≥ 2 of parity check symbols, the codeword length n of a Hamming
code is uniquely determined by (9.55).

The parity check matrix H can be generated via a simple construction rule; this consists of selecting
for the n columns of H all the nonnull (n − k)-dimensional vectors over GF(q) having unity as the
first nonnull element (the reader can verify that exactly n (9.55) distinct (n − k)-dimensional vectors
with this property exist). In fact, if all the rows of HT are different, the error patterns associated
with a single error (and that corresponding to the absence of errors) will generate distinct syndromes
according to (9.27).

The above-mentioned construction procedure is applied to a specific design in the following
example.

Example 9.1.6 If q = 4 and n − k = 2, (9.55) yields n = 15/3 = 5, so that a (5, 3) code is generated.
Following the construction rule proposed above, the parity check matrix:

H =
[

1 1 1 1 0
1 α α2 0 1

]
(9.56)

can easily be generated, where α is a primitive element of GF(4). Note that the columns of H have
not been ordered in a natural fashion. In fact, H has been put in the form (9.13), from which the
generator matrix can be immediately inferred (see (9.6)).

�

Generally speaking, the parity check matrix of an (n, k) Hamming code can be put in the form:

H = [Qn−k,k In−k

]
, (9.57)

where Qn−k,k consists of k columns, each represented by an (n − k)-tuple of weight 2 or more.
The Hamming codes can also be put in cyclic form (e.g., see [327, p. 462]); in fact, they can be

described as a specific subclass of the BCH codes described later. In addition, in the binary case
(q = 2) it can be shown that the generator polynomial is a primitive polynomial p(D) of degree
n − k, so that the parity check matrix for the resulting code has the structure of (9.57). It is also
worth mentioning that no two columns of Qn−k,k are alike and each column has at least two nonnull
elements (e.g., see [35, pp. 162–163] for a proof in the binary case).

The weight spectrum of an (n, k) Hamming code over GF(q) is known and is given by [327, p.
428]:

A (z) = 1

n (q − 1) + 1

[[
1 + (q − 1) z

]n
+n (q − 1)

[
1 + (q − 1) z

](n−1)/q
(1 − z)(n(q−1)+1)/q

]
. (9.58)

Finally, it is important to note that the dual code of an (n, k) cyclic Hamming code with generator
polynomial p (D) is an (n, n − k) maximal-length block code, described by the generator polynomial:

g (D) = Dn − 1

p (D)
(9.59)

and characterized, in the binary case, by a minimum Hamming distance dH,min = 2n−k−1. The reader
can refer to [35, pp. 290–292] for an analysis of the essential properties of this class of codes.
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9.1.4.5 BCH Codes

Generally speaking, in the design of a new cyclic coding scheme the achievable minimum Hamming
distance dH,min is unknown a priori. This parameter is usually estimated once the generator polynomial
is available. Exceptions to this rule are cyclic Hamming codes (which always have dH,min = 3) and
the class of codes designed by R. C. Bose, D. K. Ray-Chaudhuri and A. Hocquenghem, known as
BCH codes. In the latter case, a lower bound on dH,min is available before design. This important
result is achieved by setting a family of specific constraints on the generator polynomial g(D), which
is still required to satisfy the factorization (9.35). These constraints are expressed by the so-called
BCH bound theorem (a proof can be found in [35, Sect. 6.1] and [327, pp. 460–462]). To develop
this fundamental result, let us assume that GF(ql) (called the locator field), with positive integer l,
is the smallest extension field of GF(q) (called the symbol field) containing an element11 β of order
n. Then the BCH bound theorem states that, if the generator polynomial g(D) of a cyclic code C
is the minimum degree monic polynomial over GF(q) having the (δ − 1) consecutive powers {βb,
βb+1, . . . , βb+δ−2} of β as its roots (i.e., g(βb) = g(βb+1) = . . . = g(βb+δ−2) = 0), where b and
δ ≥ 1 are integer parameters, then C is a BCH code having minimum distance:

dH,min ≥ δ. (9.60)

In the literature this inequality is known as the BCH bound, and the parameter δ is usually called the
design distance of C.

Let us exploit this result to develop a design procedure for a BCH code over GF(q), with a
codeword length n ≥ 3 and able to correct up to t errors. First, we need to find an element β of order
n in a field GF(ql), selecting the minimum possible value l. Then (δ − 1) = 2t consecutive powers of
β (with 3 ≤ δ ≤ n) are selected, starting from βb. Finally, the generator g(D) is generated as [1488]:

g (D) = LCM
{
mβb (D) , mβb+1 (D) , . . . , mβb+2t−1 (D)

}
, (9.61)

where LCM denotes the least common multiple operator and mβb+k (D) is the minimal polynomial
of βb+k (with k = 0, 1, . . . , 2t − 1). In other words, g (D) in (9.61) is the monic polynomial of
minimum degree for which each of the polynomials {mβb+j (D) , j = 0, 1, . . . , 2t − 1} is a divisor.
It is important to point out the following:

1. Since β is an element of order n in the field GF(ql), all its distinct powers {βj , j = 0, 1, . . . , n −
1} are roots of the equation Dn − 1 = 0, so that each of the polynomials {mβj (D) , j ≥ 0} divides
Dn − 1.

2. The (δ − 1) minimal polynomials of (9.61) are not necessarily distinct.
3. The minimum distance dH,min of a BCH code generated according to the above procedure can

be larger than δ. In this case an ML decoder can correct more than t = �(δ − 1)/2� errors.
Unfortunately, however, standard algorithms for algebraic decoding of BCH codes are suboptimal
and do not allow us to exploit this possibility.

The first point ensures that g (D) (9.61) satisfies (9.35); this is a necessary and sufficient condition
for the code generated by g (D) to be cyclic. From the second point it is easily inferred that, given that
all the polynomials in the set {mβb+j (D) , j = 0, 1, . . . , 2t − 1} are irreducible over GF(q), evalu-
ating g (D) according to (9.61) is equivalent to computing the product of all the distinct polynomials
of this set.

Moreover, we note that constructing g (D) according to (9.61) does not provide any information
about the message length k, which depends, for a given n, on the degree (n − k) of g (D). Generally

11 It is worth remembering that, as illustrated in Appendix E, the order n of an element β of GF(ql) is always a
divisor of ql − 1. In the case of BCH codes, β is usually a primitive element of GF(ql), so that n = ql − 1.
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speaking, such a degree does not exceed l(δ − 1), since the degree of the minimal polynomial of any
element of GF(ql) is not larger than l (e.g., see [1485, pp. 54–55]) and the LCM in (9.61) does not
involve more than δ − 1 distinct factors. As a result, the inequality:

n − k ≤ l(δ − 1), (9.62)

which limits the overall number (n − k) of parity check symbols, holds for any BCH code.
In (9.61) it is commonly assumed that b = 1, that is, the element β is the first root of g(D). In this

case, what results is a narrow-sense BCH code. In addition, if β is selected as a primitive element α

of GF(ql), so that
n = ql − 1, (9.63)

the BCH code is primitive, whereas, when this does not occur, the code is nonprimitive. In what
follows we will mainly focus on primitive narrow-sense codes. Then, in the binary case (q = 2), α is
a primitive element of the field GF(2l ) and (9.61) becomes12

g(D) = LCM[mα1(D),mα2(D), . . . , mα2t (D)]. (9.64)

Note that if β ∈ GF(2l ) is a root of a polynomial p(D) of degree m with coefficients from GF(2) and
irreducible in this field, then β2, β22

, . . . , β2m−1
are all the roots of the polynomial itself (e.g., see

[1490, p. 102] for a proof). Therefore, in (9.61) the terms associated with the even powers of α can
be removed as they are already represented by those associated with the odd powers; this yields:

g(D) = LCM[mα1(D),mα3(D), . . . , mα2t−1(D)]. (9.65)

In this case no more than �(δ − 1)/2� distinct factors are used in the generation of g(D). Therefore,
inequality (9.62) can be replaced by the tighter bound:

n − k ≤ l

⌈
δ − 1

2

⌉
. (9.66)

A list of the generator polynomials for all binary, narrow-sense, primitive BCH codes of lengths 7
through 255 can be found in [1485, Appendix E].

Finally, it is worth pointing out that:

(a) the weight distributions are known only for some BCH codes, such as all single-, double- and
triple-error-correcting primitive binary BCH codes,

(b) the weight enumerator polynomial for a single-error-correcting primitive binary (n, k) BCH code
is the same as for an (n, k) binary Hamming code [1485].

The constructions of some specific BCH codes are illustrated in the following examples.

Example 9.1.7 Let us consider the design of binary narrow-sense primitive BCH codes characterized
by l = 4, so that n = 24 − 1 = 15 and α in (9.65) is a primitive element of the field GF(24) = GF(16).
The minimal polynomial of an arbitrary element β in GF(2l ) can be expressed as [35, p. 50]:

mβ(D) =
r−1∏
i=0

(D + β2i
), (9.67)

where r is the smallest integer such that β2r = β and {β2i
, i = 0, 1, . . . , r − 1} is the cyclotomic

coset to which β belongs in GF(2l ). Let us illustrate the use of this formula to evaluate one of the
minimal polynomials appearing in (9.65), namely mα3(D). If β = α3, (9.65) yields

mα3(D) = (D + α3)(D + α6)(D + α12)(D + α9) = D4 + D3 + D2 + D + 1, (9.68)

12 A table of minimal polynomials of elements in GF(2l ) is given in [1485].
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Table 9.2 Cyclotomic cosets and minimal
polynomials of GF(16)

Cyclotomic cosets Minimal polynomials

C0 = {0} D
C1 = {1} D + 1
C2 = {α, α2, α4, α8} D4 + D + 1
C3 = {α3, α6, α9, α12} D4 + D3 + D2 + D + 1
C4 = {α5, α10} D2 + D + 1
C5 = {α7, α11, α13, α14} D4 + D3 + 1

since the cyclotomic coset of β is:

β = α3, β2 = α6, β4 = α12, β8 = α9, β16 = α3 = β, (9.69)

so that r = 4. The other cyclotomic cosets of GF(16) and the associated minimal polynomials are
listed in Table 9.2. These results can be exploited to generate some specific generator polynomials
using (9.65). For instance, if t = 1, from (9.65) it is easy to see that

g(D) = mα(D) = D4 + D + 1 (9.70)

and n − k = 4, so that a (15, 11) code (with dH,min = 3) is found. Similarly, if t = 2, (9.65) yields:

g(D) = LCM[mα(D),mα3 (D)]

= mα(D) mα3(D)

= (D4 + D + 1)(D4 + D3 + D2 + D + 1)

= D8 + D7 + D6 + D4 + 1, (9.71)

so that n − k = 8, that is, a (15, 7) code (with dH,min = 5) is generated.
�

Example 9.1.8 Let us now analyze the construction of a length-15 narrow-sense primitive BCH code
on the symbol field GF(4), so that the extension (locator) field to be considered for the primitive
element α is GF(42) = GF(16) (since 42 − 1 = 15). If β denotes a primitive element of GF(4), this
finite field can be represented as GF(4) = {0, 1, β, β2}. Then the irreducible polynomial f (D) = D2 +
D + β over GF(4) can be used to generate GF(16): the corresponding polynomial representations of
the elements of this field are given in Table 9.3. Note that GF(4), being a subfield of GF(16), can
also be represented as {0, 1, α5, α10}.

The elements of GF(16) can be partitioned into cyclotomic cosets. These cosets and the associated
minimal polynomials are listed in Table 9.4.

Some specific generator polynomials can be now constructed by exploiting (9.64). For instance, in
the case of single error correction (t = 1), (9.64) yields:

g(D) = LCM[mα(D),mα2(D)]

= mα(D)mα2(D)

= (D2 + D + β
)
(D2 + D + β2)

= D4 + D + 1, (9.72)

so that n − k = 4, that is, a (15, 11) code is found.
�
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Table 9.3 Polynomial
representation of the elements of
GF(16) (where β is a primitive
element of GF(4))

Exponential
representation

Polynomial
representation

0 0
1 1
α D
α2 D + β

α3 β2D + β

α4 D + 1
α5 β

α6 βD

α7 βD + β2

α8 D + β2

α9 βD + β

α10 β2

α11 β2D

α12 β2D + 1
α13 βD + 1
α14 β2D + β2

Table 9.4 Cyclotomic cosets and minimal polynomials
of GF(16)

Cyclotomic cosets Minimal polynomials

C0 = {0} D
C1 = {1} D + 1
C2 = {α, α4} D2 + D + β = mα(D)

C3 = {α2, α8} D2 + D + β2 = mα2 (D)

C4 = {α3, α12} D2 + β2D + 1
C5 = {α5} D + β

C6 = {α6, α9} D2 + βD + 1
C7 = {α7, α13} D2 + βD + β

C8 = {α10} D + β2

C9 = {α11, α14} D2 + β2D + β2

9.1.4.6 Reed–Solomon Codes

RS codes are a class of codes consisting of primitive BCH codes for which l = 1; in other words, the
roots of the generator polynomial g(D) of a RS code belong to the symbol field GF (q). Therefore,
from (9.63) it is easy to see that the codeword length is:

n = q − 1. (9.73)

The construction of an RS code requires knowledge of a primitive element α of GF (q) and computing
the minimal polynomials {mαb+j (D) , j = 0, 1, . . . , 2t − 1} associated with 2t consecutive powers
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of α. Since m = 1, all such polynomials have degree 1, that is, can be expressed as:

mαb+j (D) = D − αb+j (9.74)

for j = 0, 1, . . . , 2t − 1. Substituting this result into (9.61) (with β = α) produces the generator
polynomial:

g (D) = LCM
{
mαb (D) , mαb+1 (D) , . . . , mαb+2t−1 (D)

} =
2t−1∏
j=0

(
D − αb+j

)
(9.75)

with degree exactly equal to 2t = δ − 1. Therefore, an RS code has:

n − k = 2t = δ − 1 (9.76)

parity check symbols. In principle their design is extremely simple, as illustrated by the following
example.

Example 9.1.9 We now design primitive RS codes over GF(16). The exponential and polynomial
representations of the elements of GF(16) are given in Table 9.5. For t = 1 the generator polynomial
is:

g(D) = (D − α)(D − α2) = D2 + α5D + α3, (9.77)

giving a (15, 13) code with dH,min = 3. For t = 2 the generator polynomial is:

g(D) = (D − α)(D − α2)(D − α3)(D − α4) = D4 + α13D3 + α6D2 + α3D + α10, (9.78)

giving a (15, 11) code with dH,min = 5.
�

Table 9.5 Polynomial representation of
the elements of GF(16)

Exponential
representation

Polynomial
representation

0 0
1 1
α D
α2 D2

α3 D3

α4 D + 1
α5 D2 + 1
α6 D3 + D2

α7 D3 + D + 1
α8 D2 + 1
α9 D2 + D + 1
α10 D2 + D + 1
α11 D3 + D2 + D

α12 D3 + D2 + D + 1
α13 D3 + D2 + 1
α14 D3 + 1
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Since RS codes are BCH codes, the inequality (see (9.60)):

dH,min ≥ δ = 2t + 1 (9.79)

always holds. Using (9.76), this can be rewritten as:

dH,min ≥ n − k + 1. (9.80)

For an arbitrary (n, k) linear block code over GF (q) the Singleton bound (e.g., see [1491]):

dH,min ≤ n − k + 1 (9.81)

holds. Thus, comparing (9.80) with (9.81) leads to the equality:

dH,min = n − k + 1, (9.82)

which holds for arbitrary RS codes. This means that the minimum Hamming distance between pairs
of codewords achieves the singleton bound. For this reason, RS codes are maximal distance separable
(MDS).

Note that, in the construction of RS codes, n is uniquely identified by the size q of its symbol field,
whereas k can be arbitrarily selected, provided that it does not exceed n − 1. The choice of b in (9.75)
is arbitrary, since it does not affect dmin or k. This represents a significant difference with respect to
the class of BCH codes, for which a change in the value of b can modify both the size (i.e., k) and
the dH,min of the resulting code.

Any k information positions in the code can be used as the information positions. This allows
the weight distribution polynomial of an (n, k) MDS code (and hence an RS code), with minimum
distance dH,min and defined over GF (q), to be written as:

A(z) = 1 + AdH,min
zdH,min + AdH,min+1z

dH,min+1 + · · · + Anz
n, (9.83)

where (see [1485, p. 189]):

Aw = (q − 1) Cn
w

w−dH,min∑
l=0

(−1)lCw−1
l qw−l−dH,min (9.84)

with w = n − k + 1, n − k + 2, . . . , n. In particular, formula (9.84) shows that the number of code-
words having weight dH,min is given by:

AdH,min
= Cn

k−1 (q − 1) . (9.85)

An extended RS code can be created by adding an overall parity check symbol. This increases the
length and minimum distance by one, so the code is still MDS. Moreover, it can be proved that
the dual of an (n, k) RS code is an (n, n − k) RS code, whereas in general this does not occur for
the larger class of BCH codes (e.g., see [1485, p. 188]).

RS codes are usually exploited in binary data transmissions for the correction of error bursts. In
this case each of the k symbols represents c = log q binary information digits and the (n, k) RS code
C over GF (q) is seen as an (n · c, k · c) code over GF (2). Note that C, even if it is MDS over GF (q),
generally does not preserve this property over GF (2). Despite this, it lends itself to the correction
of error bursts. In fact, the errors introduced over multiple consecutive bits are seen by a decoder as
errors over adjacent symbols of the received codewords. It is not difficult to show that, if C can correct
up to t symbol errors in its codewords, then it can certainly correct a packet of [c(t − 1) + c − 1]
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consecutive incorrect bits. This is true regardless of the location of the packet with respect to the
beginning of the codeword symbols. It is also true for a set of short error bursts whose overall length
does not exceed the same threshold [327, p. 465].

RS codes have been used in many applications such as compact discs and space exploration (e.g.,
see [1485, pp. 428–435]). Some information about a commonly used RS code is provided in the
following example.

Example 9.1.10 Let us focus on RS coding on GF
(
28) = GF (256). In this case the codeword length

is n = 256 − 1 = 255 and each of the symbols forming a codeword can be seen as a packet of 8 bits,
that is, as a byte. If we select dH,min = 33 as a design constraint (so that the correction of t = 16 errors
is guaranteed), from (9.82) it can be seen that the number of information symbols in each codeword
is k = 223, so that the fractional redundancy in each codeword is (n − k)/n = 32/255. Despite this
small value, the RS code can correct a large number of errors. The generator polynomial for this RS
code has degree 32 and is given by [1492]:

g(D) = (D − α)(D − α2) · · · (D − α32). (9.86)

Its use in practical applications requires the implementation of arithmetic on GF (256). Despite this
apparent difficulty, efficient decoding architectures are available [1492]. This has made the VLSI
implementation of powerful RS codes feasible.

�

9.1.4.7 Golay Codes

In 1949 Golay published a short paper in which the binary (7, 4) code was extended to a general
class of p-ary codes of length (pn − 1)/(p − 1), where p is a prime [1470]. In the same paper Golay
described two new specific codes, one a binary triple-error-correcting code and the other a ternary
double-error-correcting code, both of which are perfect. The binary scheme is a (23, 12) linear block
code with dH,min = 7 [1485, p. 139]. It can be represented as a cyclic code with generator polynomial:

g1(D) = 1 + D2 + D4 + D5 + D6 + D10 + D11 (9.87)

or
g2(D) = 1 + D + D5 + D6 + D7 + D9 + D11. (9.88)

Note that both generators are factors of D23 + 1, since this polynomial can be factored as D23 + 1 =
(1 + D)g1(D)g2(D). The binary Golay code can be extended by adding an overall parity check bit
[35]. This produces a (24, 12) code (with dH,min = 8), which is not, however, a perfect code. Several
efficient decoding algorithms for the Golay codes have been developed [35].

9.1.5 Other Relevant Linear Block Codes

9.1.5.1 Single Parity Check Codes and Repetition Codes

Single parity check (SPC) codes are one of the simplest types of block codes available. In fact, they
are (n, k = n − 1) linear block codes (with dH,min = 2), that is, they have a single parity bit. For
even parity, the parity bit equals the sum of all the information bits modulo 2. For odd parity the
complement of this sum is used. The dual code to a SPC code is the (n, k = 1) repetition code with
dH,min = n, that is, a code simply transmitting the input bit n times. This provides a very simple but
powerful code, with very low rate.
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9.1.5.2 Reed–Muller Codes

The so-called RM codes were first described by D. E. Muller in 1953 using a “Boolean net function”
language [1493]. One year later I. Reed published a paper showing that Muller’s codes could be
represented as multinomials over GF (2) [1472]. The resulting RM codes represented an important
step beyond the Hamming and Golay codes, since they offered a flexible solution to the problem of
correcting multiple errors per codeword.

Here a short description (based on [1485, pp. 150–153]) of RM codes is provided. We begin by
considering the so-called first-order codes, denoted R(1,M). The top row of their generator matrix is
the vector of length 2M consisting entirely of 1s. The rest of the generator matrix consists of columns
containing all 2M binary vectors of length M, as shown in the following example for a specific case.

Example 9.1.11 The generator matrix of R(1, 4), the first-order RM code corresponding to M = 4, is:

G =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


 . (9.89)

This represents a (16, 5) binary linear block code having dH,min = 23 = 8.
�

Generally speaking, this construction procedure generates a (2M,M + 1) binary linear block having
dH,min = 2M−1.

We now consider the construction of the order-r binary RM code R(r,M). In this case the con-
struction of the generator matrix requires knowledge of some basic results about Boolean functions. A
Boolean function in M variables f (v1, v2, . . . , vM) is a mapping from the vector space consisting of
all possible binary M-tuples (v1, v2, . . . , vM) into the set of binary numbers {0, 1}. Such a function
can be fully described by a truth table, that is, a matrix with (M + 1) rows. The first M rows form
a M × 2M matrix whose columns are all the possible 2M binary M-tuples, whereas the last row
contains the binary value assigned to each of the binary M-tuples by the function. For instance the
Boolean function f (v1, v2, v3) = v1 + v2 + v3 is represented by the truth table shown in Table 9.6.

Note that, if we remove the last row, the columns of this table form an ordered radix-2 representation
of the integers {0, 1, 2, . . . , 2M − 1}. We adopt this convention in the following, so that each Boolean
function f is uniquely represented by a binary vector f collecting, in an ordered fashion, the 2M binary
elements of the last row in the truth table. Since f is a binary vector of length 2M, there exist 22M

distinct Boolean functions. Under coordinate-by-coordinate binary addition of the representing vectors,
these form a vector space over GF (2).

To construct R(r,M), we consider the set S of all Boolean functions f (v1, v2, . . . , vM) depending
on M distinct variables and that can be represented by a single monomial term. Then S consists
of the Boolean function 1 and the products of all combinations of one or more variables in the set

Table 9.6 Truth table for a Boolean function

v3 0 0 0 0 1 1 1 1
v2 0 0 1 1 0 0 1 1
v1 0 1 0 1 0 1 0 1

f 0 1 1 0 1 0 0 1
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{v1, v2, . . . , vM}. The Boolean functions in S are linearly independent, so that the vectors representing
them are also independent. For this reason, there is a unique Boolean function f described by a vector:

f = a01 + a1v1 + . . . + aMvM + a12v1v2 + . . . + a12 ...Mv1v2 · · · vM, (9.90)

where vivj · · · vk denotes the binary 2M-dimensional row vector associated with the monomial

vivj · · · vk . Since there are 22M vectors of the form (9.90), the Boolean functions in S constitute a
basis for the vector space of the Boolean functions in M variables.

Given these results, the RM code R(r,M), of order r and length 2M, consists of the vectors f
associated with all Boolean functions f represented by polynomials in M variables and whose degree
does not exceed r. Generally speaking, such polynomials can be generated by a basis consisting of
all the monomial functions of degree r or less. The number of elements in this basis set, for a given
r and M, is given by:

k = 1 +
(M

1

)
+
(M

2

)
+ · · · +

(M
r

)
(9.91)

and is also the dimension of R(r,M). It can be proved that the minimum Hamming distance for
R(r,M) is dH,min = 2M−r (e.g., see [1485, p. 153]).

Let us now apply these concepts in the following example.

Example 9.1.12 We focus here on the construction of R(2, 4), that is, on the second-order RM code
of length 16. The generation of the codewords requires the vector representation associated with the
monomials: {

1, v1, v2, v3, v4, v1v2, v1v3, v1v4, v2v3, v2v4, v3v4

}
(9.92)

involving no more than four variables and whose degree does not exceed 2. The binary vectors
associated with these monomials are listed in Table 9.7, providing a matrix that can be used as a
generator matrix for R(2, 4). Note that the R(2, 4) RM code is a (16, 11) binary block code with
dH,min = 4.

�

9.1.6 Decoding Techniques for Block Codes

9.1.6.1 Introduction

Here various hard (algebraic) and soft decoding algorithms for linear block codes are illustrated;
our analysis, however, is far from being exhaustive and, in particular, is limited to those algorithms

Table 9.7 Basis vectors for the RM code of Example 9.1.12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

v4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
v3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
v2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
v1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

v3 · v4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
v2 · v4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
v1 · v4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
v2 · v3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
v1 · v3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
v1 · v2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
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considered pertinent to wireless communication systems. Hard decoding algorithms are fed by hard
decisions on the received signal and do not process any reliability information contained in the
received signal. In contrast, soft decoding algorithms process the soft received signal and can achieve
better performance at the cost of increased complexity (this is an important issue for codes with
large values of min(k, n − k)).

9.1.6.2 Soft Decision Decoding of Block Codes

Brute force ML decoding of an error-correction code over GF(q) requires consideration of all its qk

codewords, or qn−k codewords if decoding is done using the dual code, and this is often prohibitively
complex. An alternative (suboptimal) approach is to adopt a list decoding algorithm, where the list
consists of a subset of all possible codewords. There are many different list decoding algorithms
available, with different performance–complexity tradeoffs; here we focus on:

• the generalized minimum distance (GMD) decoding algorithm [1494],
• the three variants of the Chase decoding algorithm [1495], and
• the order-i reprocessing decoding algorithm [1496, 1497].

For more information on these and other list decoding algorithms, see [35, Ch. 10] and [1491, Ch. 7].
We will only consider list decoding of binary linear block codes here. However, this approach can
also be used to decode nonbinary codes; for instance, RS codes can be list-decoded using the so-called
Guruswami–Sudan algorithm [1498].

Comparisons between the Chase and GMD decoding algorithms can be found in [35, 1491, 1499],
where both analytical and simulation results for Hamming codes, RM codes and BCH codes are
illustrated. From these results it is easily inferred that, on the one hand, Chase algorithm 3 outperforms
GMD for the same decoding complexity and number of nearest neighbors [1499]. On the other hand,
Chase algorithms 1 and 2 perform better than Chase algorithm 3 for the same number of nearest
neighbors, but require a higher decoding complexity (with Chase algorithm 1 performing the best
and having the highest complexity). Due to the high complexity of Chase algorithm 1 this is not
commonly used. Chase algorithm 2 is considered to offer the best compromise between complexity
and performance and, as a result, has been used extensively in the literature [35, Ch. 10].

Generalized Minimum Distance Decoding
GMD decoding was first proposed by D. G. Forney in 1966 [1494]. Our description of this decoding
technique closely follows that given in [1494, 1500]; further information can be found in [35, 1491,
1499, 1501].

To employ GMD, the received symbols are first ordered in terms of reliability, on the basis of the
absolute value of the received magnitude. The decoder makes use of up to �(dH,min + 1)/2� decoding
trials, each exploiting an error and erasure decoder (a specific algorithm for error and erasure decoding
is described below), which can handle es erasures and t1 errors, provided that t1 + es ≤ dH,min − 1.
Each decoding trial decodes the received signal with some of the least reliable symbols erased. If
dH,min is even, then the (1, 3, . . . , dH,min − 3, dH,min − 1) least reliable symbols are erased. If dH,min
is odd, then the (0, 2, . . . , dH,min − 3, dH,min − 1) least reliable symbols are erased. This results in
up to �(dH,min + 1)/2� possible codewords. Finally, the best codeword is selected in accordance with
a given metric, such as the minimum Euclidean distance or the maximum inner product [1500].

Modified GMD decoding is derived from GMD decoding by adding an extra trial which erases
the dH,min least reliable symbols [1500]. More specifically, first the dH,min least reliable symbols are
erased and hard decisions are made on the remaining n − dH,min symbols. Then the parity check
equations for the erased symbols are computed.
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Chase Decoding
In 1954 a simple strategy for decoding the so-called Wagner code13 was developed by R. A. Silverman
and M. Balser [1502]. This strategy outputs the hard decision on the received signal if the parity check
is correct. Otherwise, the least reliable bit is changed [1502]. This concept can be extended to codes
with more than a single parity bit, allowing multiple bits to be altered. The Chase decoding algorithms
can be seen as such an extension, but can also be viewed as a generalization of GMD decoding.

The Chase decoding algorithms belong to the class of bounded distance decoding algorithms [1495],
since they look for possible codewords within a certain decoding sphere. Chase developed three
suboptimal algorithms that consider different subsets of all possible codewords and provide a range
of tradeoffs between performance and complexity (determined by the overall number of considered
codewords). They all include the following steps [35, 1495]:

1. Make a hard decision on the coded bits within the received signal.
2. Generate a list of error patterns.
3. For each error pattern, add it to the hard decision on the received signal to form a test sequence.
4. Decode each test sequence using an algebraic decoder for error correction only in order to generate

a list of possible codewords.
5. Use a soft decision metric to choose the most likely transmitted codeword in the list. Note that the

squared Euclidean distance between the received signal and the modulated codeword is often used
as a metric.

Each of the three algorithms uses different subsets of all possible error patterns (or codewords), as
described next [35, 1495]. Algorithm 1 is the most complex of the three, as it considers the largest
set of error patterns (and, hence, possible codewords). In this case the set of error patterns consists of

all possible combinations of �dH,min/2� 1s over all n positions in the code, providing

(
n

�dH,min/2�
)

or fewer candidate codewords.
Algorithm 2 reduces the number of error patterns considered. More specifically, the error patterns

selected consist of the set of sequences containing any combination of 1s in the i = �dH,min/2� least
reliable received positions; this gives 2�dH,min/2� test sequences. This decoding strategy is the most
commonly used Chase algorithm [35]. It is also worth mentioning that this algorithm is exploited
in [1503], but i ≥ �dH,min/2� least reliable positions are considered (optimality is achieved if i = n,
where n is the codeword length).

Algorithm 3 considers �dH,min/2 + 1� error patterns; such patterns contain 1s in the i
least reliable positions, where, if dH,min is even, i = 0, 1, 3, . . . , dH,min − 1 and, if it is odd,
i = 0, 2, 4, . . . , dH,min − 1. Note that Chase algorithm 3 is similar to GMD decoding. However, the
former employs a complement operation and decoding for error correction only, whereas the latter
uses erasures combined with an error and erasure decoder [35, p. 408].

The Chase algorithms can be applied to any block code with a binary decoding algorithm and have
the potential to double the error-correcting capability of the code itself [1495]. Note also that Chase
algorithm 2 has been applied in [1503] to decode extended BCH codes.

Generalized Chase algorithms have been proposed in [1504, 1505]. In particular, a technique for
the reduction of the test patterns, based on their Hamming weights, is described in [1504], whereas
decoding strategies, based on the Chase algorithms and requiring a t∗-error-correcting binary decoder
with t∗ ≤ t �

⌊
(dH,min − 1)/2

⌋
(see (9.29)), are developed in [1505]. Modified generalized Chase

algorithms are also discussed in [1505], including the so-called Hackett decoding algorithm [1506].
These algorithms can be used to decode extended binary linear block codes, which have an overall
parity check appended to each codeword.

13 In the Wagner code, a codeword consists of a sequence of n − 1 message digits and an additional digit used as
a parity check; in other words, such a code is an SPC.
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Table 9.8 Table of codewords for the binary code of Example 9.1.3

u x w(x) u x w(x)

0000 0000000 0 1000 1101000 3
0001 1010001 3 1001 0111001 4
0010 1110010 4 1010 0011010 3
0011 0100011 3 1011 1001011 4
0100 0110100 3 1100 1011100 4
0101 1100101 4 1101 0001101 3
0110 1000110 3 1110 0101110 4
0111 0010111 4 1111 1111111 7

Let us now focus on a specific application of the Chase decoding algorithm 2.

Example 9.1.13 Let us consider the (7, 4) single-error-correcting (Hamming) code of Example 9.1.1;
if we adopt the generator matrix:

G =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


 , (9.93)

it is straightforward to generate Table 9.8, listing all the available codewords.
Let us now assume that the codeword x = [0, 0, 0, 0, 0, 0, 0] is transmitted using BPSK as s(x) =

[−1, −1, −1, −1, −1, −1, −1] (the correspondence rule s : {0, 1} → {−1, 1} is used) and that the
received vector is r = [−0.9, −0.8, 0.1, 0.3, −0.2, −0.8, −0.7]; this results in the hard decision vector
y = [0, 0, 1, 1, 0, 0, 0]. In this case hard algebraic decoding of y yields x̂ = [0, 0, 1, 1, 0, 1, 0], which
is incorrect. Can list decoding help? Chase algorithm 2 requires us to consider error patterns with all
possible combinations of 1s in the:

i =
⌊

dH,min

2

⌋
= 1 (9.94)

least reliable positions (LRPs). We begin decoding by finding the i LRPs in r and computing the
information shown in Table 9.9.
Then, Chase algorithm 2 selects x̂ = [0, 0, 0, 0, 0, 0, 0], which is the correct codeword. Note that:
(a) the list decoding algorithm has used the reliability information in the received signal to correct
2 errors, even though this is a single-error-correcting code (i.e., t = 1); (b) Chase algorithm 2 cannot
always correct more than t errors, since this depends on the code and the reliability of the received
symbols.

�

Soft Order-i Reprocessing Decoding
The following description of order-i reprocessing is based on [1507], where now i is a user-defined
constant; further information can be found in [35, 1496, 1497].

The first step in the decoding procedure involves ordering the elements of the received signal vector,
r, in terms of decreasing reliability. The k most reliable independent positions (MRIPs) form the so-
called most reliable basis (MRB); the corresponding bits are indexed as 1, 2, . . . , k. This ordering
leads to consideration of a systematic reordered code C̃, which is equivalent to the transmitted code
C; note that generating C̃ can be quite complex for large min(n − k, k).
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Table 9.9 Table of error and test patterns, estimated codewords and
decoding metric for the binary Hamming code of Example 9.1.13

Error pattern Test pattern x̂ |r − s(x̂)|2

0000000 0011000 0011010 5.32
0010000 0001000 0000000 3.72

Then a hard decision is taken on the k MRIPs, the resulting bits are encoded using C̃ to produce an
initial codeword x0 and the decoding cost is computed. For instance, the Euclidean distance between
s(x0) and the reordered received signal can be used to measure the cost, where, as before, s(0) = −1
and s(1) = 1.

In the next step of the decoding procedure, x0 is reprocessed as follows:

1. For j = 0, 1, . . . , i, add each error pattern of weight j to the k MRIPs of x0 to generate a
set of length k test sequences. Encode each test sequence using C̃. This produces a total of

1 +
(

k

1

)
+ . . . +

(
k

i

)
candidate codewords.

2. Calculate the decoding cost for each candidate codeword.
3. The decoder outputs the candidate codeword with the best metric (i.e., that associated with the

lowest cost).

When a candidate codeword has a better decoding metric, a given optimality criterion is tested. If
it is satisfied, the decoder stops. A negligible performance loss compared to ML decoding should be
expected if i ≥ �dH,min/4� [1507].

It is worth pointing out that order-i reprocessing is quite different from the Chase and GMD
decoding algorithms mentioned above since:

(a) test sequences have length k, not n;
(b) test sequences are encoded, not decoded (note that encoding is computationally simpler than

decoding);
(c) a systematic reordered code C̃ needs to be generated.

It is also important to note that even a small value of i can result in a large number of test sequences.
However, this number is typically very small in comparison to the total number of possible codewords,
2k . Nonetheless, order-i reprocessing is more complicated than any of the Chase algorithms.

9.1.6.3 Algebraic Decoding Techniques for Cyclic Codes

We now focus on various hard decoding algorithms for BCH and RS codes, since these classes
of codes are the most relevant in wireless communications, particularly when algebraic decoding is
considered. In our analysis only TD algorithms are considered due to space limitations; the reader
can refer to [1508] for an introduction to FD (i.e., DFT-based) decoding of cyclic codes. In our
analysis, we consider first the problem of decoding binary BCH codes and analyze Peterson’s method
[1509] and Berlekamp’s algorithm [1510]. The, we discuss the generalizations of these techniques
for use with nonbinary codes, namely the Peterson–Gorenstein–Zierler algorithm [1511] and the
Berlekamp–Massey algorithm [1512]. Finally, we describe erasure and error decoding based on the
Berlekamp–Massey algorithm.
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Decoding of Binary BCH Codes: Syndromes and Error Locators
We begin with the problem of hard algebraic decoding for a binary primitive BCH code C with
t-error-correction capability. Any codeword x(D) has the same roots as the generator polynomial (see
(9.34)), namely the 2t consecutive powers of the primitive element, α, of an extension field, GF(2m).
Then, we have that:

x
(
αl
) = 0 (9.95)

with l = b, b + 1, . . . , b + 2t − 1. The hard received polynomial can be written as:

y (D) = x (D) + e (D) =
n−1∑
p=0

ypDp, (9.96)

where e(D) is the polynomial representation of the received error vector (see (9.25)). Given this
y (D), the lth syndrome can be computed as [1485, 1488]:

Sl = y
(
αl
) =

n−1∑
p=0

yl

(
αl
)p

(9.97)

with l = 1, 2, . . . , 2t , if we assume a narrow-sense code (i.e., b = 1) for simplicity. Since every
codeword produces a syndrome equal to zero (see (9.95)), (9.97) can be rewritten as:

Sl = e
(
αl
) =

n−1∑
p=0

el

(
αl
)p

. (9.98)

Let us now assume that the received vector y (see (9.25)) contains v errors in positions i1, i2, . . . , iv
(i.e., eil

= 1 for l = 1, 2, . . . , v). Then, the lth syndrome (9.97) can be written as:

Sl =
v∑

p=1

eip

(
αl
)ip =

v∑
p=1

(
αl
)ip =

v∑
p=1

Xl
p, (9.99)

with l = 1, 2, . . . , 2t where Xp � αip (with p = 1, 2, . . . , v) represents the so-called pth error loca-
tor. Equation (9.99), which has a power-sum symmetric structure, establishes a relationship between
the set of syndromes {Sl} and the set of error locators {Xp}. In principle, if the syndromes are com-
puted from the received word as in (9.97), the error locators can be evaluated by solving the system of
nonlinear algebraic equations (9.99); then, from the set {Xp, p = 1, 2, . . . , v} the error locations can
be derived, making error correction possible. However, solving the system (9.99) in a direct fashion is
not easy, and a different approach should be devised. In 1960 W. Peterson proved that the syndrome
equations (9.99) can be translated into a set of linear equations, which are much easier to solve [1509].
This requires defining the so-called error locator polynomial:

� (D) �
v∏

i=1

(
1 + XiD

) =
v∑

p=0

�pDp, (9.100)

whose roots are the inverses of the error locators {Xp}. Note that the coefficients {�p} of �(D) can
be easily expressed in terms of the error locators involved. In fact, from (9.100) it is easily inferred
that:

�0 = 1,

�1 =
v∑

i=1

Xi,
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�2 =
∑
i<p

XiXp,

�3 =
∑

i<p<q

XiXpXq, (9.101)

...

�v =
v∏

i=1

Xi.

These equalities are known as elementary symmetric functions of the error locators; the functions and
the power-sum symmetric functions of (9.99) are related by the so-called Newton’s identities, which
can be expressed as:

S1 + �1 = 0,

S2 + �1S1 + 2�2 = 0,

S3 + �1S2 + �2S1 + 3�3 = 0,

...

Sv + �1Sv−1 + . . . + �v−1S1 + v�v = 0 (9.102)

Sv+1 + �1Sv + . . . + �v−1S2 + �vS1 = 0

...

S2t + �1S2t−1 + . . . + �vS2t−v = 0.

These identities are linear in the v unknown coefficients {�p, p = 1, 2, . . . , v} of the error locator
polynomial �(D). In addition, since we are working over GF(2m) (a field of characteristic 2) they
can be substantially simplified. In fact we have that: (a) l�p = �p (l�p = 0) if l is odd (even);
(b) S2p = S2

p for any p, that is, even-indexed syndromes are the squares of earlier-indexed syndromes
(a proof of this statement can be found, for instance, in [1485, p. 206]). From the latter property it is
easily inferred that some of the 2t identities (9.101) are redundant, so that they can be neglected in
the evaluation of the coefficients {�p, p = 1, 2, . . . , v}. In particular, if we assume that v = t errors
have occurred, the set (9.102) can be reduced to:

S1 + �1 = 0,

S3 + �1S2 + �2S1 + �3 = 0, (9.103)

...

S2t−1 + �1S2t−2 + . . . + �tSt−1 = 0,

a system of t equations in t unknowns. In what follows two distinct methods for solving (9.103)
are illustrated; the first method was devised by Peterson [1509], the second by Berlekamp [1510]. It
is important to note that Peterson’s method should be adopted for binary codes correcting a small
number of errors (say, t no greater than 6 or 7), since its computational complexity increases with
the square of the number of corrected errors. The complexity of Berlekamp’s algorithm, on the other
hand, increases only linearly; for this reason it can be used when a large error-correction level t is
required.
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Decoding of Binary BCH Codes: Peterson’s Direct Method
The system of linear equations (9.103) can be put in the matrix form [1485, p. 206]:

A(0)
S �(0) = B(0), (9.104)

where �(0) � [�1, �2, . . . , �t ]
T , B(0) � [−S1, −S3, . . . , −S2t−1]T and:

A(0)
S =




1 0 0 0 · · · 0 0
S2 S1 1 0 · · · 0 0
S4 S3 S2 S1 · · · 0 0
S6 S5 S4 S3 · · · 0 0
...

...
...

...
. . .

...
...

S2t−4 S2t−5 S2t−6 S2t−7 · · · St−2 St−3
S2t−2 S2t−3 S2t−4 S2t−5 · · · St St−1




. (9.105)

The system (9.104) has a unique solution if and only if A(0)
S is nonsingular, that is, det

(
A(0)

S

)
�= 0.

Peterson proved that this occurs if there are t or t − 1 errors in the received vector y [1509]. If this
is the case, solving the system (9.104) yields the coefficient vector �(0). Then the error locations are
extracted from the roots of the error locator polynomial � (D) (9.100); such roots can be evaluated
by means of a systematic procedure for locating the root of a polynomial over GF(2m), such as
the so-called Chien search [1513]. In contrast, if A(0)

S is singular, the number of equations forming
the system (9.104) needs to be reduced; in particular, �(0)and B(0) are shortened to �(1) � [�1,
�2, . . . , �t−2]T and B(1) � [−S1, −S3, . . . ,−S2t−5]T , respectively, and the matrix A(1)

S is extracted

from A(0)
S by removing its last two rows and two rightmost columns. Then, if det

(
A(1)

S

)
�= 0, the

system A(1)
S �(1) = B(1) is solved, otherwise the matrix extraction and vector shortening procedures

just described are repeated k times until a nonsingular matrix A(k)
S is obtained. This procedure may

lead to the correct error locator polynomial. However, two other possibilities can be envisaged: (a)
if y is within Hamming distance t of an incorrect codeword, a wrong estimate of x will be produced
(unfortunately this error event is undetectable); (b) if y is not within Hamming distance t of any
codeword, the resulting polynomial � (D) may have repeated roots or roots that do not lie in the
extension field GF(2m) of α. In case (b) a decoding failure is declared.

The decoding procedure outlined above is summarized by the flow diagram in Figure 9.5.
Finally, it is worth mentioning that, if t is small, simple expressions can be easily derived from

(9.104) for the coefficients of � (D). In particular, for single- and double-error-correcting codes, we
have that:

�1 = S1, (9.106)

�2 = S3 + S3
1

S1
, (9.107)

whereas, for a triple-error-correcting code, it is found that:

�1 = S1, (9.108)

�2 = S2
1S3 + S5

S3
1 + S3

, (9.109)

�3 = S3
1 + S3 + S1�2. (9.110)

For instance, if t = 3 and the received sequence contains a single error (i.e., v = 1), then (9.109) and
(9.110) yield �2 = �3 = 0 and the error position is indicated by �1. If v = 2 errors were received,
then (9.110) gives �3 = 0 and the error locator polynomial has degree 2.
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Figure 9.5 Flow diagram of Peterson’s direct method for decoding binary BCH codes.

Let us now apply Peterson’s method to decode the received vector for a specific BCH code.

Example 9.1.14 We consider the (15, 7) double-error-correcting binary BCH code over GF(24) with
dH,min = 5 and generator polynomial g(D) = D8 + D7 + D6 + D4 + 1. Given the message u(D) =
1 + D2 + D3, we compute the corresponding systematic codeword x(D) in accordance with (9.50)
and (9.51). Then, since:

Dn−ku(D)

g(D)
= D8u(D)

g(D)
= (D3 + D) + D5 + D3 + D

D8 + D7 + D6 + D4 + 1
, (9.111)
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we have that:
x(D) = D + D3 + D5 + D8 + D10 + D11. (9.112)

If the error polynomial is e(D) = D4 + D8, the received polynomial is given by:

y(D) = D + D3 + D4 + D5 + D10 + D11. (9.113)

Given y(D), Peterson’s method for error correction goes through the following steps:

1. The syndromes S1 = y(α) = α5 and S3 = y(α3) = α8 are computed.
2. The error locator coefficients �1 = S1 = α5 and �2 = (S3 + S3

1 )/S1 = α12 are evaluated (see
(9.106) and (9.107)).

3. The roots of the error locator polynomial:

�(D) = �2D
2 + �1D + 1 = α12D2 + α5D + 1 (9.114)

are evaluated, testing the powers {αl, l = 0, 1, . . . , 14} of α. It is found that �(α7) = �(α11) = 0
and that all the other powers of α give �(D) �= 0; then the only error locators are X1 = α8 and
X2 = α4.

4. Given the estimated the error polynomial ê(D) = D4 + D8, the estimated codeword polynomial
is:

x̂(D) = y(D) + ê(D) = D + D3 + D5 + D8 + D10 + D11 = x(D), (9.115)

as expected.

�

Decoding of Binary BCH Codes: Berlekamp’s Algorithm
We now illustrate Berlekamp’s algorithm for decoding binary BCH codes without proofs; further
details can be found in [1510]. To begin, the infinite-degree syndrome polynomial:

S (D) � S1D + S2D
2 + . . . + S2tD

2t + S2t+1D
2t+1 + . . . (9.116)

and the error magnitude polynomial:

� (D) � [1 + S (D)]� (D)

= 1 + (S1 + �1

)
D + (S2 + S1�1 + �2

)
D2 + (S3 + S2�1 + S1�2 + �3

)
D3 + . . .

= 1 + �1D + �2D
2 + . . . , (9.117)

are defined. Here �(D) =∑v
p=0 �pDp is the error locator polynomial (see (9.100)) and v is the

number of errors. We note that, in order to satisfy Newton’s identities (9.103), the odd-indexed
coefficients of �(D) (9.117) must be zero. Since we know only the first 2t coefficients of S (D)

(9.116) (see (9.98)), the decoding problem becomes that of finding a polynomial �(D) whose degree
does not exceed t and that satisfies the equality:

[1 + S (D)]� (D) = (1 + �2D
2 + �4D

4 + . . . + �2tD
2t ) mod D2t+1. (9.118)

Berlekamp’s algorithm computes such a polynomial in stages, starting from a polyomial �(0)(D) = 1
of degree 0 and then iteratively computing the polynomials {�(2k)(D), k = 1, 2, . . . , 2t}, which
have increasing degree and satisfy:

[1 + S (D)]�(2k) (D) � (1 + �2D
2 + �4D

4 + . . . + �2kD
2k) mod D2t+1. (9.119)

The last polynomial generated, �(2t)(D), is a solution for all t of the identities (9.103).
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Berlekamp’s algorithm consists of the following steps [1485, pp. 211–213]:

1. Compute the syndromes {Sl, l = 1, 2, . . . , 2t} and set k = 0, �(0)(D) = 1 and T (0) = 1 (initial-
ization).

2. Compute the product �(2k)(D)[1 + S(D)]; let �(2k)denote the coefficient for D2k+1 in the resulting
polynomial.

3. Compute �(2k+2)(D) = �(2k)(D) + �2k[D · T (2k)(D)], where T (D) is a correction polynomial.
4. Compute:

T (2k+2) (D) �
{

D2T (2k) (D) , if�(2k) = 0 or deg
[
�(2k) (D)

]
> k,

D�(2k)(D)

�(2k) , if�(2k) �= 0 or deg
[
�(2k) (D)

] ≤ k,
(9.120)

where deg[P(D)] denotes the degree of an arbitrary polynomial P(D).
5. Set k = k + 1. If k < t , then go to step 2.
6. Locate all the roots of �(D) = �(2t)(D), that is, the values of D. If the roots are distinct and in

GF(2m), correct the corresponding locations in the received vector and stop. Otherwise, declare a
decoding failure and stop.

Let us now apply Berlekamp’s algorithm to the same problem of decoding illustrated in Example
9.1.14.

Example 9.1.15 We consider again the decoding problem for a binary (15, 7) BCH code with
generator polynomial g(D) = D8 + D7 + D6 + D4 + 1. The message polynomial u(D) = 1 + D2 +
D3 and the error polynomial e(D) = D4 + D8 are the same as those considered in Example 9.1.14.
Therefore, the received polynomial is y(D) = D + D3 + D4 + D5 + D10 + D11.

Decoding starts with the evaluation of 2t = 4 syndromes: S1 = y(α) = α5, S2 = y(α2) = α10,
S3 = y(α3) = α8 and S4 = y(α4) = α5. Therefore the syndrome polynomial is:

S (D) = α5D + α10D2 + α8D3 + α5D4. (9.121)

Given this polynomial, Berlekamp’s algorithm goes through the following steps:

1. k = 0, �(0)(D) = 1, T (0) = 1.
2. �(0)(D)[1 + S(D)] = 1 + α5D + α10D2 + α8D3 + α5D4, �(0) = α5.
3. �(2)(D) = �(0)(D) + �(0)[DT (0)(D)] = 1 + α5D.
4. T (2)(D) = D�(0)(D)/�(0) = D/α5 = α10D (recall that α15 = 1), since �(0) �= 0 and

deg[�(0)(D)] = 0.
5. k = k + 1 = 1.

2. �(2)(D)[1 + S(D)] = (1 + α5D)(1 + α5D + α10D2 + α8D3 + α5D4); then the coefficient of
D3 is �(2) = α8 + α15 = α2.

3. �(4)(D) = �(2)(D) + �(2)[DT (2)(D)] = 1 + α5D + α12D2.
4. T (4)(D) = D�(2)(D)/�(2) = D(1 + α5D)/α2 = α13D + α3D2, since �(2) �= 0,

deg [�(2)(D)] = 1 = k.

Finally, we must locate the roots of �(D) = �(2t)(D) = 1 + α5D + α12D2 over GF(24). It is
found that the only roots over this field are α7 and α11. Therefore, the error locators are X1 = α8 and
X2 = α4, so that the estimated error polynomial and codeword are given by:

ê (D) = D4 + D8 (9.122)

and
x̂ (D) = y (D) + ê (D) = D + D3 + D5 + D8 + D10 + D11 = x (D) , (9.123)

respectively.
�
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Decoding of Nonbinary BCH Codes: Berlekamp–Massey Algorithm
The decoding strategies illustrated above have been generalized for use in the nonbinary case. In
particular, Peterson’s method was generalized by D. Gorenstein and N. Zierler in 1961 [1511] (the
resulting strategy is known as the Peterson–Gorenstein–Zierler algorithm). However, once again the
generalization of Berlekamp’s algorithm offers a substantially more efficient alternative with nonbinary
BCH codes when a large number of errors need to be corrected. For this reason we concentrate here
on the final decoding technique, which is called the Berlekamp–Massey algorithm because Massey
provided an interpretation based on the use of Massey’s linear feedback shift registers (LFSRs) [1512].
This algorithm is illustrated without proofs; further details can be found in [1485, 1510, 1514, 1515].

The Berlekamp–Massey algorithm processes the syndromes to extract both the locations and the
magnitudes of the errors. As in the binary case, the lth syndrome for a narrow-sense BCH code is
given by:

Sl � y
(
αl
) = e

(
αl
) =

v∑
k=1

eik
Xl

k (9.124)

with l = 1, 2, . . . , 2t , where Xk � αik is the error locator for the kth of v errors, eik
is the kth

error magnitude and ik is the index for the kth error; note, however, that, unlike the binary case, the
syndrome equations (9.124) are not power-symmetric functions. The decoding procedure involves the
following:

1. The error locator polynomial:

� (D) �
v∏

p=0

(
1 − XpD

)
=

v∑
p=0

�pDp, (9.125)

whose zeros are the inverses of the error locators. It is easy to prove (e.g., see [1485, pp. 214–215])
that the coefficients {�p, p = 1, 2, . . . , v} of this polynomial and the syndromes (9.124) are
related by Newton’s identity in the form:

�vSl−v + �v−1Sl−v+1 + . . . + �1Sl−1 + �0Sl = 0, (9.126)

for any l ≥ 1. Since �0 = 1 (see (9.125)), (9.126) can also be rewritten as:

(−�v

)
Sl−v + (−�v−1

)
Sl−v+1 + . . . + (−�1

)
Sl−1 = Sl. (9.127)

2. The infinite-degree syndrome polynomial S(D), defined as in (9.116). Note that substituting (9.124)
into (9.116) yields, after some manipulation:

S (D) =
v∑

k=1

eik

(
XkD

1 − XkD

)
. (9.128)

3. The error magnitude polynomial �(D) defined as in (9.117). If we substitute (9.125) and (9.128)
into (9.117), �(D) can be put in the form:

� (D) =
[

1 +
v∑

k=1

eik

(
XkD

1 − XkD

)] v∏
p=0

(
1 − XpD

)

= � (D) +
v∑

k=1


eik

XkD

v∏
p �=k

(
1 − XpD

) (9.129)
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Figure 9.6 LFSR interpretation of equation (9.127).

Note that, since we know only the first 2t coefficients of S (D), (9.117) needs to be reduced to:

[1 + S (D)]� (D) = �(D) mod D2t+1, (9.130)

This expression is known as key equation for BCH/RS decoding and relates the known syndromes
to the error locator and error magnitude polynomials.

Decoding consists of two parts: first the error locator polynomial � (D) (9.125) is evaluated and
its roots are computed, so that the errors are located (this part is known as the Berlekamp–Massey
algorithm); then the magnitude of the errors is evaluated by resorting to the so-called Forney algorithm
[1516], which exploits the error locators and the polynomials � (D) and �(D). More specifically,
in the first part the coefficients {�p, p = 1, 2, . . . , v} of � (D) need to be computed from the
syndromes {Sl, l = 1, 2, . . . , 2t}. It is worth pointing out that the equality (9.127) relating these two
sets of parameters can be interpreted through the use of the LFSR model shown in Figure 9.6. In fact,
given this model, the problem of finding � (D) can be reformulated as that of finding the minimal-
length LFSR, which has the syndromes {Sl, l = 1, 2, . . . , 2t} as its first 2t outputs; this is due to the
fact that the tap gains of this LSFR are the opposite of the coefficients {�p, p = 1, 2, . . . , v}. In
practice, � (D) is computed via a recursive procedure, involving a set of connection polynomials; the
kth connection polynomial is defined as:

�(k)(D) � �
(k)
k Dk + �

(k)
k−1D

k−1 + . . . + �
(k)
1 D + 1 (9.131)

and specifies the tap gains of an LFSR of length k. The Berlekamp–Massey algorithm starts by
evaluating a polynomial �(1)(D), such that the first output of the associated LFSR is S1. Then the
second output of this LFSR is compared with S2; if they do not have the same value, the discrepancy
between them is used to generate a modified connection polynomial �(2)(D), otherwise the third output
element is generated and compared with S3. This process continues until a connection polynomial
whose LFSR is able to generate the 2t syndromes is found. Massey proved that if v ≤ t , the final
connection polynomial produced by the Berlekamp–Massey algorithm correctly specifies the error
locator polynomial [1512].

The decoding procedure uses a correction polynomial denoted T (D), a discrepancy term denoted
�(k), an LFSR of length L and an index k, and consists of the following steps [1485, p. 219]:

1. Compute the syndromes {Sl, l = 1, 2, . . . , 2t} from y(D) (see (9.124)).
2. Set k = 0, �(0)(D) = 1, L = 0 and T (D) = D (initialization).
3. Set k = k + 1 and compute the kth discrepancy:

�(k) � Sk −
L∑

i=1

�
(k−1)
i Sk−i . (9.132)
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4. If �(k) = 0, then set �(k)(D) = �(k−1)(D) and go to step 8.
5. Compute:

�(k) (D) = �(k−1) (D) − �(k)T (D) . (9.133)

6. If 2L ≥ k, then go to step 8.
7. Set L = k − L and compute:

T (D) = �(k−1) (D)

�(k)
. (9.134)

8. Set T (D) = D · T (D).
9. If k < 2t , then go to step 3.

10. Set �(D) = �(2t)(D). Find the roots of �(D) and their inverses (i.e., the error locators {Xk}).
If the roots are not distinct or are not in GF(2m), declare a decoding failure (this means that
deg [�(D)] �= L) and stop.

11. Find the error magnitudes of the v errors using Forney’s algorithm, that is:

eik
= −Xk �(X−1

k )

�
′
(X−1

k )
= �(X−1

k )∏
j �=k

(1 − XjX
−1
k )

, (9.135)

with k = 1, 2, . . . , v, where �(D) is given by the RHS of (9.129) and �
′
(D) is the formal

derivative14 of �(D).
12. Correct the received polynomial generating the codeword estimate:

x̂(D) = y(D) + e(D), (9.136)

where e(D) �
∑v

k=1 eik
Dik , and stop.

Let us now apply this algorithm to the decoding of a specific nonbinary BCH code.

Example 9.1.16 We now consider the t = 2-error-correcting (15, 11) RS code (with dH,min
= 5) over GF(16) with generator polynomial g(D) = D4 + α13D3 + α6D2 + α3D + α10.
If the message polynomial is u(D) = α2D9 + α7D2, the corresponding codeword polyno-
mial is x(D) = α13 + α8D + α11D2 + α2D3 + α7D6 + α2D13. If we assume that the error
polynomial is e(D) = α8D5 + α3D13, then the received polynomial is y(D) = α13 + α8D +
α11D2 + α2D3 + α8D5 + α7D6 + α6D13. Decoding starts by computing the syndromes S1 = α12,
S2 = 1, S3 = α9 and S4 = α9. This gives the syndrome polynomial:

S(D) = α12D + D2 + α9D3 + α9D4. (9.137)

Then decoding goes through the following steps:

2. k = 0, �(0)(D) = 1, L = 0, T (D) = D.
3. k = 1, �(1) = S1 = α12.

4–5. �(1)(D) = �(0)(D) − �(1)T (D) = 1 − α12D.
6–7. L = 1, T (D) = �(0)(D)

�(1) = 1
α12 = α3.

8. T (D) = α3D.

3. k = 2, �(2) = S2 − �
(1)
1 S1 = 1 + α12α12 = α7.

14 Given the polynomial f (D) = f0 + f1D + f2D
2 + . . . + fnD

n over the ground field GF(q), its formal deriva-

tive is given by f
′
(D) = f1 + 2f2D + . . . + nfnD

n−1. Note that when q = 2m, there are no odd-power terms in

f
′
(D), since their coefficients are equal to zero [1514].
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4–5. �(2)(D) = �(1)(D) − �(2)T (D) = 1 − α3D.
6–8. T (D) = α3D2.

3. k = 3, �(3) = S3 − �
(2)
1 S2 = α9 + α3 = α.

4–5. �(3)(D) = �(2)(D) − �(3)T (D) = 1 − α3D − α4D2.

6–7. L = 2, T (D) = �(2)(D)

�(3) = 1−α3D
α

= α14 − α2D

8. T (D) = α14D − α2D2.

3. k = 4, �(4) = S4 −
2∑

i=1
�

(3)
i S4−i = α9 + α3α9 + α4 = α5.

5. �(4)(D) = �(3)(D) − �(4)T (D) = 1 − α7D − α3D2.

8. T (D) = α14D2 − α2D3.

Therefore, the resulting error locator polynomial is:

�(D) = 1 − α7D − α3D2. (9.138)

By substituting D = 1, α, α2, . . . , α14 into �(D), we find that the roots of �(D) are X−1
1 = α2 and

X−1
2 = α10, so that the error locators are X1 = α13 and X2 = α5.
To find the error magnitudes we compute the polynomial (see (9.130)):

�(D) = �(D)[1 + S(D)] mod D2t+1

= 1 + α2D + α9D2. (9.139)

Then the magnitudes of the first and second errors are given by (see (9.135)):

ei1
= �(X−1

1 )

(1 − X2X
−1
1 )

= α3 (9.140)

and

ei2
= �(X−1

2 )

(1 − X1X
−1
2 )

= α8, (9.141)

respectively, so that the estimated error polynomial is:

ê(D) = α8D5 + α3D13. (9.142)

This leads to the estimated codeword (see (9.136)):

x̂(D) = y(D) + ê(D)

= α13 + α8D + α11D2 + α2D3 + α7D6 + α2D13 = x(D), (9.143)

so that error correction has been carried out successfully.
�

Decoding of Nonbinary BCH Codes: Errors and Erasure Decoding
The Berlekamp–Massey algorithm just described can be extended to decode BCH/RS codes in the
presence of erased symbols, whose locations are known a priori. In what follows we assume the
presence of v errors with unknown indexes i1, i2, . . . , iv and of es erasures with known indexes
j1, . . . , jes

, so that the lth syndrome for a narrow sense code is given by [1485]:

Sl = y
(
αl
) =

v∑
k=1

eik
Xl

k +
es∑

k=1

fjk
Y l

k (9.144)
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with l = 1, 2, . . . , 2t , where y(D) is the received polynomial, {Xk = αik , k = 1, 2, . . . , v} are the
error locators and {Yk = αjk , k = 1, 2, . . . , es} are the erasure locators. Note that, in this case, es

erasures and t1 errors can be simultaneously corrected if 2t1 + es ≤ 2t .
The decoding procedure involves the following [1485]:

1. The erasure locator polynomial:

� (D) �
es∏

l=1

(
1 − YlD

)
. (9.145)

2. The error and erasure polynomial:

�(D) � �(D)�(D), (9.146)

where �(D) is the error locator polynomial (9.100).
3. The syndrome polynomial:

S (D) �
2t∑

l=1

SlD
l. (9.147)

4. The modified syndrome polynomial:

	(D) � (� (D) [1 + S (D)] − 1) mod D2t+1 (9.148)

and the key equation:
� (D) [1 + 	(D)]) = �(D) mod D2t+1, (9.149)

where �(D) is the error magnitude polynomial. Note that the key equation can be solved by
resorting to the Berlekamp–Massey algorithm.

The overall decoding algorithm goes through the following steps:

1. Using the known erasure information, compute the erasure locator polynomial �(D) (9.145).
2. Set the received sequence equal to zero in the erasure positions, so that the polynomial y ′(D) is

obtained for the modified received signal. Then compute the syndrome polynomial S(D) (9.147),
using the syndromes {Sl = y ′ (αl

)
, l = 1, 2, . . . , 2t}.

3. Compute the modified syndrome polynomial 	 (D) (9.148).
4. Apply the Berlekamp–Massey algorithm to find the polynomial �(D) for the LFSR generating

the modified syndrome coefficients {	k, k = 1, 2, . . . , 2t} of 	(D).
5. Find the roots of �(D) to find the error locations.
6. Determine the error and erasure magnitudes by exploiting Forney’s algorithm. Then, given � (D)

(9.146), the error magnitude and erasure magnitude values are:

eik
= −Xk�(X−1

k )

�
′
(X−1

k )
(9.150)

and

fjk
= −Yk�(Y−1

k )

�
′
(Y−1

k )
, (9.151)

respectively, where �
′
(D) is the formal derivative of �(D). Then compute the erasure polyno-

mial:

f (D) =
es∑

k=1

fjk
Yk (9.152)



Classical Coding Schemes 387

and the error polynomial:

e(D) =
v∑

k=1

eik
Xk. (9.153)

7. Correct the modified received polynomial, y ′(D), to generate the estimated codeword:

x̂(D) = y ′(D) + e(D) + f (D) (9.154)

and stop.

Let us now apply this decoding procedure to the specific problem illustrated in the following
example.

Example 9.1.17 Let us again consider the RS code described in Example 9.1.16. We assume that: (a)
u(D) = α2D9 + α7D2, so that the codeword x(D) = α13 + α8D + α11D2 + α2D3 + α7D6 + α2D13

is transmitted; (b) e(D) = α10D + α8D5 + α3D13, so that the received polynomial is y(D) =
α13 + αD + α11D2 + α2D3 + α8D5 + α7D6 + α6D13; (c) there are two erasures, characterized by the
locators Y1 = α5 and Y2 = α13. We start decoding by setting the received signal to zero in the
corresponding positions. This gives the modified received signal:

y ′(D) = α13 + αD + α11D2 + α2D3 + α7D6. (9.155)

Then we compute the erasure locator polynomial (see (9.145)):

�(D) =
2∏

l=1

(1 − YlD) = (1 − α5D)(1 − α13D) = 1 + α7D + α3D2 (9.156)

and the syndromes:
S1 = α12, S2 = α, S3 = α4, S4 = α4, (9.157)

using the modified received signal y ′(D). Then the syndrome polynomial and the modified syndrome
polynomial are (see (9.147) and (9.148)):

S(D) = α12D + αD2 + α4D3 + α4D4 (9.158)

and

	(D) = (�(D)[1 + S(D)] − 1) mod D2t+1

= [(1 + α7D + α3D2)(1 + α12D + αD2 + α4D3 + α4D4) − 1] mod D5

= α2D + α14D2 + α10D3 + α11D4, (9.159)

respectively. The Berlekamp–Massey algorithm is now used to find the error locator polynomial �(D)

satisfying the key equation (9.149) for 	(D); this leads easily to �(D) = 1 + αD. We now determine
the magnitude of the errors and erasures. We compute the error and erasure polynomial (see (9.146)):

�(D) = �(D)�(D)

= (1 + αD)(1 + α7D + α3D2)

= 1 + α14D + α13D2 + α4D3, (9.160)
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with derivative �
′
(D) = α14 + α4D2, and the error magnitude polynomial (see (9.149)):

�(D) = �(D)[1 + 	(D)] mod D5

= (1 + αD)(1 + α2D + α14D2 + α10D3 + α11D4) mod D5

= 1 + α5D + D2 + α5D3. (9.161)

Then for X1 = α (X−1
1 = α14) we have that (see (9.150)):

ei1
= −α�(α14)

�
′
(α14)

= −α10, (9.162)

so that the error polynomial is:
e(D) = ei1

X1 = α10D. (9.163)

Similarly, for Y1 = α5 (Y−1
1 = α10) and Y2 = α13 (Y−1

2 = α2) we have that (see (9.151)):

fj1
= −α5�(α10)

�
′
(α10)

= 0 (9.164)

and

fj2
= −α13�(α2)

�
′
(α2)

= −α2, (9.165)

respectively, so that the erasure polynomial is:

f (D) = fj1
Y1 + fj2

Y2 = α2D13. (9.166)

These results lead to the estimated codeword (see (9.154)):

x̂(D) = y ′(D) + e(D) + f (D)

= α13 + αD + α11D2 + α2D3 + α7D6 + α10D + α2D13

= α13 + α8D + α11D2 + α2D3 + α7D6 + α2D13 = x(D), (9.167)

as required.
�

9.1.7 Error Performance

We now provide a sketch of some essential results concerning the error performance characterizing an
algebraic decoder which may be operating in any one of three distinct modes, namely error detection,
complete decoding and incomplete decoding. In the first mode the decoder does nothing but error
detection, whereas in the second mode it produces the best estimate of the transmitted codeword
using the computed syndrome. The third mode is a hybrid in which the decoder tries to correct only
some error patterns, and detects the presence of errors in all the other cases. To simplify our analysis
we focus primarily on a communication scenario in which the codeword symbol and channel symbols
alphabets are both binary15 (i.e., q = 2) and the communication channel is memoryless and symmetric
(i.e., a BSC model is adopted). Note that:

(a) in a digital transmission over a fading channel, the hypothesis of absence of memory can be
deemed reasonable only if an interleaver of sufficient depth is used,

15 An analysis for nonbinary codes can be found in [1485, p. 245–251].
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(b) deep fades can result in erased symbols, so that the decoder can be required to operate in the
presence of both errors and erasures.

Space limitations prevent us from addressing issue (b); the reader is referred to [1485, p. 251-259]
for further information.

9.1.7.1 Error Detection

In this mode the decoder computes the syndrome s in accordance with (9.26) and, if s �= 0n−k , declares
a detection error. This decision is wrong only if the error vector e is a codeword different from 0n,
so that even the observed vector y = x + e (9.25) is a codeword distinct from x. In this mode of
operation a significant performance index of the decoder is the probability of undetected word error
PUE , defined for any (n, k) code C over GF(q) as:

PUE � Pr
{
e = x̄ ∈ C, x̄ �= 0n

}
. (9.168)

If q = 2 and a memoryless BSC model is adopted, the Aw distinct error vectors characterized by the
same Hamming weight w have the same probability of occurrence:

Pw = (1 − p)n−wpw, (9.169)

where p is the probability of symbol error, i.e. the transition or crossover probability of the BSC.
Then, taking into account all the realizations of e, PUE can be expressed as:

PUE =
n∑

w=dH,min

Aw Pw =
n∑

w=dH,min

Aw (1 − p)n−wpw. (9.170)

If the distance spectrum of C is unknown (but dH,min is given), an upper bound on PUE can be derived

by noting that Aw never exceeds the binomial coefficient

(
n

w

)
. Then it can easily be seen that:

PUE ≤
n∑

w=dH,min

(
n

w

)
(1 − p)n−wpw. (9.171)

This bound may be not be very tight, but offers the significant advantage of not requiring any knowl-
edge of the weight distribution of C.

9.1.7.2 Complete Decoding

In this mode the decoder always generates an estimate of the transmitted codeword on the basis of
the computed syndrome s. Therefore, a significant performance index of the decoding algorithm is
the probability of correct decision PCD. This quantity can be expressed, for the ML decoder of any
(n, k) code C over GF(q), as:

PCD � Pr
{
e ∈ CCL

}
, (9.172)

where e is the error vector (see (9.25)) and CCL is the set of coset leaders. In fact, the decoding
algorithm makes a correct decision if and only if e is a coset leader. Given PCD , the probability of
incorrect decoding PID can be evaluated as:

PID = 1 − PCD .
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The evaluation of PCD by (9.172) requires knowledge of the set CCL, and this becomes complicated
for large codes (e.g., see [1485, p. 224] for further details). For this reason, an upper bound on PID
is often evaluated, which takes into account all the error patterns which are not guaranteed to be
correctable, that is, whose weight exceeds t �

⌊
(dH,min − 1)/2

⌋
(see (9.29)). This leads to:

PID ≤
n∑

l=t+1

(
n

l

)
pl (1 − p)n−l . (9.173)

Note that this equation becomes an equality only when C is perfect.

9.1.7.3 Incomplete Decoding

This operation mode can be considered as a hybrid of the first two. In fact, the decoder makes an
attempt at error correction only when, on the basis of the observed syndrome, it deems that t1 ≤ t

errors have been inserted, where the parameter t, defined by (9.29), represents the maximum number
of errors whose correction is guaranteed by the given (n, k) code C over GF(q). In all other cases,
the decoder declares the presence of errors. The adoption of this strategy corresponds to dividing the
standard array in two parts, the first including the error patterns for which error correction is attempted,
the second those for which only error detection is performed.

In this mode the decoding procedure can end in three distinct ways, corresponding to three mutually
exclusive possibilities for the received vector y (9.25), as illustrated in Figure 9.7. In the first case
y falls in the guaranteed error-correction zone for the transmitted codeword xk (see Figure 9.7(a))
and decoding is correct. In the second case y belongs to the interstitial zone, the region external to
all the guaranteed error-correction zones of the codewords of C (see Figure 9.7(b)), and the decoder
only declares the presence of errors, avoiding any attempt at correction. Finally, in the third case y
falls in the guaranteed error-correction zone of a codeword different from the transmitted one (see
Figure 9.7(c)) and the decoder takes a wrong decision. If PCD , PDE and PID denote the probabilities
associated with these three events, then:

PCD + PDE + PID = 1. (9.174)

Note that, if we refer to the cosets of the standard array of C, it can be stated that, generally speaking,
PID represents the probability that the true error pattern is associated with a coset for which error
correction is attempted, but is not a coset leader. Similarly, PDE denotes the probability that the true
error pattern is associated with a coset for which the decoder accomplishes error detection only.

Incomplete decoding is usually recommended when dH,min is even. In this case the decoder corrects
up to t1 = t < dH,min/2 errors and detects the presence of dH,min/2 errors (this value is certainly
smaller than the maximum guaranteed). For instance, if dH,min = 6, the decoder can correct up to
2 errors and detect the presence of 3 errors.

Finally, we note that, generally speaking, many algebraic decoding procedures are intrinsically
incomplete, since they try to find a unique codeword, provided that it exists, in the set of all codewords
whose Hamming distance from y does not exceeds the threshold t. When they fail, they stop declaring
the presence of codeword errors.

9.2 Convolutional Codes

9.2.1 Introduction

This section is devoted to the analysis of trellis codes and, more specifically, of a well-known subclass,
the convolutional codes over finite fields. The structure of a trellis code is shown in Figure 9.8.
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Figure 9.7 Three mutually exclusive events in the space of codewords of a linear block code C:
(a) correct decoding; (b) error detection; (c) incorrect decoding.

In particular, Figure 9.8(a) illustrates the use of a trellis encoder in a communication system. An
information source generates a sequence of symbols, each belonging to GF(q), with q = pm. This
sequence in partitioned into blocks, each of length k, feeding a trellis encoder and the symbols of the
lth block form the vector:

ul �
[
u

(0)
l , u

(1)
l , . . . , u

(k−1)
l

]
. (9.175)
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Figure 9.8 Trellis encoder: (a) use in a digital communication system; (b) block diagram.

Figure 9.8(b) shows the block diagram of the encoder for an (n, k) trellis code over GF(q) having a
rate:

R � k

n
(9.176)

with k < n. The encoder has k inputs and contains a delay line consisting of m vector registers, where
m is the so-called memory order. Each register consists of k distinct memory cells, each having a
single input and a single output and able to hold a single symbol of GF(q). The delay line generates
the vectors {ul−1, ul−2, . . . , ul−m}, which are applied, together with ul (9.175), to a deterministic
memoryless subsystem which maps the above vectors into the n-dimensional vector:

xl �
[
x

(0)
l , x

(1)
l , . . . , x

(n−1)
l

]
(9.177)

over GF(q). Note that the presence of a delay line in Figure 9.8(b) introduces memory to the encoding
process. Since this delay line has a finite length, and all its vector registers can take on qk only
distinct values, a trellis encoder can be modeled as an FSSM, for which the number of states cannot
exceed qmk (i.e., the number of possible distinct values of the vector [ul−1, ul−2, . . . , ul−m], which
consists of mk elements of GF(q)). Moreover, as shown below, the time evolution of the encoder can
be represented using a trellis diagram.

If we let the encoder start from a known state (zeroing, for instance, the content of all its
registers at the starting epoch l = 0) and feed it for N consecutive clock intervals, the message
u � [u0, u1, . . . , uN−1] is mapped to the codeword x � [x0, x1, . . . , xN−1]. Therefore, in this case,
unlike block codes, the codeword length is not uniquely identified by the encoder structure, but
increases linearly with the message length.
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ul ul−1

G0 G1 Gm

ul−2

xl

ul−m

Mapping

Figure 9.9 Block diagram of a convolutional encoder over GF(q).

If linear mapping is used in the block diagram of Figure 9.8(b), the trellis encoder is usually called
a convolutional encoder (Figure 9.9). In the new scheme, {G0, G1, . . . , Gm} are k × n matrices. The
subsystem labeled by Gp generates, in response to ul−p , the n-dimensional vector ul−pGp , with
p = 0, 1, . . . , m. Each adder,16 indicated by the symbol �, accomplishes a vector sum over GF(q)

of its pair of inputs, each consisting of an n-dimensional vector. Therefore, in this case xl (9.177) is
given by:

xl = ulG0 + ul−1G1 + . . . + ul−mGm =
m∑

p=0

ul−pGp, (9.178)

where all operations are carried out over GF(q).
It is worth noting that:

(a) the input–output relationship (9.178) expresses the encoder output as a convolution sum
between the input sequence {up} and the matrix sequence {G0, G1, . . . , Gm} of finite length
(this explains the name for this class of codes),

(b) this result derives from the fact that the block diagram of Figure 9.9 represents an FIR with
impulse response {G0, G1, . . . , Gm}, and

(c) equation (9.178) generalizes (9.3), since the latter is obtained from the former by setting m = 0.

In this section the essential properties of convolutional codes are described and encoding/decoding
algorithms for this class of error-correction schemes are analyzed. In Section 9.2.2 the fundamental
characteristics of convolutional encoders are illustrated. In particular, the input–output behavior of
convolutional encoders is described by resorting both to an analytical approach and graphical tools,
namely state diagrams and trellis diagrams. Then the free distance of a convolutional encoder is
introduced as a significant parameter in the search for optimal codes, and its evaluation via a proper
transfer function is discussed. In Sections 9.2.3-9.2.4 the problem of decoding is investigated. In
particular, the ML and MAP decoding algorithms for binary convolutional codes are discussed in
detail. Some essential information is also provided about sequential decoding strategies. Then bounds
on the error performance achievable via ML decoding are derived in Section 9.2.6.

16 In Figure 9.9 all the adders are minimal, that is, they sum two operands only; however, in the literature, multiple
adders, involving an arbitrary number of operands, are common.
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9.2.2 Properties of Convolutional Codes

In this subsection some of the relevant properties of convolutional codes are introduced, referring first
to their most important subclass, that of binary schemes. Then, some brief comments about nonbinary
convolutional codes are provided.

9.2.2.1 Binary Convolutional Codes

Our analysis of the properties of binary convolutional codes starts from the input–output relationship
(9.178). If the notation:

Gp =




g
(0)
0,p g

(1)
0,p . . . g

(n−1)
0,p

g
(0)
1,p g

(1)
1,p . . . g

(n−1)
1,p

. . . . . . . . . . . .

g
(0)
k−1,p g

(1)
k−1,p . . . g

(n−1)
k−1,p


 (9.179)

is adopted (with p = 0, 1, . . . , m), from (9.178) it is easy to see that:

xl =
m∑

p=0

k−1∑
i=0

u
(i)
l−pri,p, (9.180)

where rt,p � [g(0)
t,p, g

(1)
t,p, . . . , g

(n−1)
t,p ] denotes the tth row of Gp (with t = 0, 1, . . . , k − 1). From

(9.180) it is easily shown that the jth component of xl (with j = 0, 1, . . . , n − 1) is given by:

x
(j)

l =
m∑

p=0

k−1∑
i=0

u
(i)
l−pg

(j)

i,p , (9.181)

which represents the input–output relationship of a MISO FIR filter with k inputs. It is easy to
prove that the impulse response associated with the jth output and ith input (i.e., that evaluated
under the assumption that all the other (k − 1) input lines are fed by null sequences) consists, in
general, of (m + 1) samples different from 0, and these can be collected in the (m + 1)-dimensional
binary vector:

g(j)

i =
[
g

(j)

i,0 , g
(j)

i,1 , . . . , g
(j)

i,m

]
(9.182)

for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , n − 1. Note that these vectors can be generated
by extracting from each matrix of the sequence {G0, G1, . . . , Gm} the (i, j)th ele-
ment, as illustrated in Figure 9.10. Conversely, given the set of k · n impulse responses
{g(j)

i , i = 0, 1, . . . , k − 1, j = 0, 1, . . . , n − 1}, called code generators, the matrices
{Gp, p = 0, 1, . . . , m} can be easily generated. It is also important to point out that in the
technical literature the binary vector (9.182) is commonly represented in octal form; in other words,
it is partitioned into triples of consecutive bits (starting from the left) and each triple is represented
as an integer number between 0 and 7.

Reversing the summation order in (9.181) yields the equality:

x
(j)

l =
k−1∑
i=0

m∑
p=0

u
(i)
l−p g

(j)

i,p , (9.183)

whose meaning can be explained by referring to the comments above. In fact, the inner sum∑m
p=0 u

(i)
l−p g

(j)

i,p represents, in the lth clock interval, the contribution to the jth output line (with
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( j) gi,m
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gi

( j) = [gi,0 , gi,1 ,..., gi,m ]
( j) ( j) ( j)

Figure 9.10 The relationship between the sample vector g(j)

i and the matrix set {G0, G1, . . . , Gm}.

j = 0, 1, . . . , n − 1) coming from the ith input line (with i = 0, 1, . . . , k − 1); then summing the k
contributions from all the distinct input lines (i.e., summing over the index i) yields (9.183).

Let us now analyze the input–output description of a specific binary encoder.

Example 9.2.1 Let us focus on a binary convolutional encoder with a single input (k = 1), n = 2
outputs (so that R = 1/2), a memory order m = 2 and the matrices:

G0 = [1 1
]
, G1 = [1 0

]
, G2 = [1 1

]
. (9.184)

Substituting these matrices in (9.178) yields the vector expression (ul is used in place of u
(0)
l for

simplicity): [
x

(0)
l , x

(1)
l

]
= [ul + ul−1 + ul−2, ul + ul−2

]
, (9.185)

which is equivalent to the two scalar equations x
(0)
l = ul + ul−1 + ul−2 and x

(1)
l = ul + ul−2, evaluated

over GF(2). Their implementation results in the block diagram of Figure 9.11. This encoder can also
be fully characterized by its generators g(0)

0 and g(1)
0 . From (9.184) it is easily seen (Figure 9.10) that

g(0)
0 = [1, 1, 1] and g(1)

0 = [1, 0, 1] (or [78] and [58], respectively, in octal form).
�

ul

xl
(0)

xl
(1)

R R

Figure 9.11 Block diagram of the encoder in Example 9.2.1.
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The structure of the vector g(j)

i (9.182) deserves some comment. It may happen that g
(j)

i,p = 0 for

any j (i.e., output line) when p > mi (with mi < m), that is, that g(j)

i is structured as:

g(j)

i =
[
g

(j)

i,0 , g
(j)

i,1 , . . . , g
(j)

i,mi
, 0, 0, . . . , 0

]
(9.186)

for j = 0, 1, . . . , n − 1. If this does happen, the ith (scalar) delay line of the encoder (i.e., that
associated with the input variable) u

(i)
l is actually required to have length mi , since the variables

{u(i)
l−p, p > mi} do not influence the output vector xl (see (9.180)). This means that the delay lines

associated with distinct elements of the input vector in Figure 9.9 can have different lengths. For this
reason, the encoder memory m is usually defined as:

m � max
i∈S

mi, (9.187)

where S represents the set {0, 1, . . . , k − 1}. Note that if the k input lines are ordered (without loss
of generality) such that m0 ≤ m1 ≤ . . . ≤ mk−1, then (9.187) simplifies to m = mk−1.

Another significant parameter of a convolutional encoder is its constraint length K, defined as:

K � n(m + 1). (9.188)

Since each input symbol of the encoder contributes to the computation of xl (9.177) according to
(9.178) for no more than (m + 1) consecutive clock intervals, K represents the maximum number of
consecutive symbols {x(j)

l } over which the influence of any information symbol (bit, in the binary
case) extends. For instance, K = 6 for the encoder of Example 9.2.1.

By analogy with what has been already done in the study of block codes, a polynomial representation
can also be adopted to describe the input–output behavior of a convolutional encoder starting at l = 0
with all registers set to zero. If we define the polynomials:

ui (D) �
+∞∑
l=0

u
(i)
l Dl, (9.189)

xj (D) �
+∞∑
l=0

x
(j)

l Dl (9.190)

to represent the ith input sequence and jth output sequence, respectively, and the generator polynomial
(or transfer function):

gi,j (D) �
m∑

p=0

g
(j)

i,pDp, (9.191)

associated with the ith input and jth output couple, from equation (9.183) it can be inferred that:

xj (D) =
k−1∑
i=0

ui (D) gi,j (D) . (9.192)

Then, given the vectors x (D) � [x0 (D) , x1 (D) , . . . , xn−1 (D)], u (D) � [u0 (D) , u1 (D) , . . . ,

uk−1 (D)] and the k × n generator polynomial matrix17 G (D) with gi,j (D) in its ith row and jth
column, the polynomial representation of (9.178) is given by:

x (D) = u (D) G (D) . (9.193)

17 The reader can easily prove that mi (see (9.186)) and m (9.187) can also be evaluated as max[degj gi,j (D)]
and max[degi,j gi,j (D)], respectively.
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Note that, by analogy with what has been stated concerning linear block codes (see the sentence
following eq. (9.5)), the elementary condition for a code to be useful is that the rank of G (D) is equal
to k. Another matrix related to G (D) is the parity check polynomial matrix H (D). This is defined as
any (n − k) × n matrix of polynomials satisfying the equality:

G (D) HT (D) = 0k,n−k. (9.194)

Let us now apply these concepts to the encoder defined in Example 9.2.1.

Example 9.2.2 The generator polynomial matrix associated with the matrices (9.184) is:

G (D) = [1 + D + D2 1 + D2] . (9.195)

Let H(D) = [H0(D),H1(D)] denote a parity check polynomial matrix for the given code. Substituting
this expression and (9.195) into (9.194) yields:

H0(D)
[
1 + D + D2]+ H1(D)

[
1 + D2] = 0. (9.196)

Then a simple choice for H(D) is the vector [1 + D2, 1 + D + D2].
�

The generator polynomial matrix G (D) of an (n, k) binary convolutional code C is a powerful
tool for analyzing the mechanism of codeword generation. To understand this, it is important to note
that the same code (i.e., the same set of codewords) can be generated by more than one encoder. In
fact, each encoder defines a specific mapping between an information polynomial vector u (D) and a
codeword vector x (D), but changing the mapping can still result in the same set of codewords. To
put it another way, multiple options are available for the matrix of G (D). To prove this statement,
we note that (9.193) can be rewritten as:

x (D) = u (D) Q (D) Q−1 (D) G (D) , (9.197)

where Q (D) is a nonsingular k × k matrix. Then, if we define u (D) � u (D) Q (D) and G (D) �
Q−1 (D) G (D), equation (9.197) can be rewritten as x (D) = u (D) G (D). Since u (D) still represents
the set of all possible input sequences, it can be easily shown that the encoders characterized by G (D)

and G (D) are equivalent. This does not mean, however, that they have the same complexity. For this
reason, whatever the code C, it is important to look for a generator polynomial matrix with certain
useful properties:

(a) it should describe minimal encoders [1517], that is, encoders with the minimum number of trellis
states (or, equivalently, of memory elements in the encoder, as will become clear later);

(b) it should be realizable;
(c) it should avoid catastrophicity.

As far as requirement (b) is concerned, it is worth remembering that a realizable option for the
matrix G (D) is such that its elements form a set of realizable rational functions {gi,j (D)}. This
means that each gi,j (D) is expressed by the ratio of two relatively prime polynomials, gi,j (D) =
pi,j (D)/qi,j (D), with qi,j (0) = 1 (in other words, qi,j (D) is delay-free). In fact, when this occurs,
that is, if:

gi,j (D) =
∑m

l=0 blD
l

1 +∑m
l=1 alD

l
, (9.198)
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x (D)

bm bm−1

am−1
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y (D)

a1am
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Figure 9.12 Implementation of the transfer function (9.198) via its observer canonical form. Sums
and products are evaluated over GF(q).

then gi,j (D) can be implemented according to the observer canonical form (an alternative
implementation, called the controller canonical form, can also be used, as shown in [35, pp.
479–481]) ensuring minimum complexity, the form of which is illustrated in Figure 9.12.

The property of catastrophicity refers to the fact that some polynomial generator matrices may
map an infinite-weight input sequence u (D) to a finite-weight output sequence x (D). In this case the
presence of a finite number of errors in the decoded codeword can have a catastrophic effect on the
quality of the estimate of the information data sequence. That is, it can result in an infinite number
of errors in such an estimate. The property of catastrophicity cannot be related to the code C, but to
the specific structure of its encoder, that is, to the form of its mathematical description G (D). To
understand this, it is useful to note that if G (D) is structured as:

G (D) = [Ik Pk,n−k (D)
]
, (9.199)

where Pk,n−k (D) is a k × (n − k) matrix with rational entries, it describes a systematic encoder, such
that:

x
(i)
l = u

(i)
l (9.200)

for i = 0, 1, . . . , k − 1. Relevant properties of systematic generator polynomial matrices are as fol-
lows:

1. They describe minimal encoders (see [1517, Theorem 10]).
2. No inverting circuit is needed to recover the information sequence from the codeword. Each

nonsystematic encoder with transfer function matrix G (D) requires the availability of a specific
inverting logic to recover u(D), that is, the existence of a matrix G−1 (D) such that:

G (D) G−1 (D) = IkD
l, (9.201)

for some l ≥ 0. When this equality holds, u(D) can be recovered, with a delay of l clock intervals,
by multiplying x (D) by G−1 (D) (see (9.193)). For an (n, 1) code, it can be shown that a transfer
function matrix G (D) admits a feedforward inverse18 G−1 (D) of delay l if and only if [1518]:

GCD
[
g0,0 (D) , g0,1 (D) , . . . , g0,n−1 (D)

] = Dl, (9.202)

18 Techniques for the construction of the feedforward inverse G−1 (D) can be found in [1517, 1518].
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Figure 9.13 Systematic convolutional encoder based on the transfer function matrix (9.204).

for some l ≥ 0, where GCD[·] denotes the greatest common divisor. For an (n, k) code with

k > 1, this existence condition can be reformulated. Let �i(D), with i = 1, 2, . . . ,

(
n

k

)
, be the

determinants of the

(
n

k

)
distinct k × k submatrices which can be extracted from G (D). Then a

feedforward inverse G−1 (D) of delay l exists if and only if [1518]:

GCD

[
�i (D) , i = 1, 2, . . . ,

(
n

k

)]
= Dl, (9.203)

for some l ≥ 0. J. L. Massey and M. K. Sain showed that (9.202) and (9.203) are necessary
and sufficient conditions for a code to be noncatastrophic [1518]. In other words, an encoder is
noncatastrophic if and only if it admits a feedforward inverse.

Let us now apply these concepts in the following example.

Example 9.2.3 Let us reconsider the rate-1/2 binary convolutional code of Example 9.2.1, which
can be generated using the transfer function matrix (9.195). An equivalent transfer function matrix in
systematic form can be easily generated by multiplying G (D) by Q−1 (D) = 1/(1 + D + D2). This
yields:

G (D) � Q−1 (D) G (D) =
[

1
1 + D2

1 + D + D2

]
. (9.204)

The corresponding implementation, based on the structure of Figure 9.12, is illustrated in Figure 9.13.
Note that, in this case, the number of memory elements in the encoder structure is identical to that
for the equivalent nonsystematic structure of Figure 9.11.

�

9.2.2.2 Nonbinary Convolutional Codes

Most of the results illustrated above for binary coding can be extended to convolutional coding over
GF(q). In fact, our developments are mainly based on the input–output relationship (9.178), which
does not depend on the specific value of q. Note also that, if q is a power of 2 (i.e., q = 2n), coded
q-ary sequences can certainly be seen as the output of a rate-k/n binary convolutional encoder. This
approach, however, does not lend itself to solving the problem of code optimization (see Section
9.2.2.4). This problem must be tackled directly over GF(q), that is, by considering a GF(q) algebra
in codeword generation, as illustrated in Figure 9.9.
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Specific classes of convolutional codes over GF(q) are proposed, for instance, in [1519, 1520]
for a specific application, orthogonal signaling coupled with noncoherent demodulation; in particular,
[1519] introduces the so-called class of dual-k codes, while [1520] investigates the problem of code
optimization, deriving new optimum 4-ary, 8-ary and 16-ary codes with different rates.

Finally, it is worth remembering that since the 1990s theoretical research in this area has been
concerned with the study of convolutional codes over rings and groups. The basic algebraic structure
theory of convolutional codes over groups, rings and fields is discussed in [1521] (see also references
therein).

9.2.2.3 State Diagrams and Trellises

From Figure 9.9 it is easy to see that in the lth symbol interval, the output xl (9.177) depends on the
input vector ul (9.175) and on the contents of a delay line; such contents represent the present state
of the encoder, modeled as an FSSM. To formalize this description, we define the vector:

u(i)
l �

[
u

(i)
l−1, u

(i)
l−2, . . . , u

(i)
l−mi

]
(9.205)

for i = 0, 1, . . . , k − 1, containing all the symbols held in the ith delay line and processed in the
computation of xl in accordance with (9.178). Then the encoder state in the lth symbol interval can be
defined by the ordered concatenation of the vectors {u(i)

l , i = 0, 1, . . . , k − 1}, that is, by the vector:

ul �
[
u(0)

l , u(1)
l , . . . , u(k−1)

l

]
, (9.206)

whose number of elements:
mtot �

k−1∑
i=0

mi (9.207)

represents the overall memory of the encoder. Then the overall number of distinct states of the encoder
is given by:

ns � qmtot . (9.208)

Note that, since each element of ul (9.206) belongs to GF(q), the present state is also defined by the
integer parameter:

σl �
k−1∑
i=0

qsi

mi∑
p=1

u
(i)
l−p qp−1 (9.209)

with s0 = 0 and si �
∑i−1

q=0 mq for i = 0, 1, . . . , k − 1. Given σl in (9.209), the encoder behavior is
also completely described by its state update equation:

σl+1 = f
(
σl, ul

)
, (9.210)

expressing the next state σl+1 as a function of the present state σl and the present input ul , and its
output equation:

xl = g
(
σl, ul

)
. (9.211)

The integer-valued function f (·, ·) and the vector-valued function g (·, ·) (yielding an n-dimensional
vector whose elements belong to GF(q)) depend on the specific structure of the encoder, as shown in
the following example.

Example 9.2.4 The convolutional encoder defined in Example 9.2.1 can be modeled as a four-state
sequential machine, since its inner state is defined by the vector ul �

[
ul−1, ul−2

]
(see (9.206)), or,

equivalently, by the integer parameter (see (9.209)):

σl � ul−1 + 2ul−2. (9.212)
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Figure 9.14 State diagram of the convolutional encoder in Example 9.2.5. Each transition is
labeled by ul/x

(0)
l x

(1)
l .

Then the state update equation can be expressed as:

σl+1 = ul + 2ul−1 = ul + 2
(
σl mod 2

)
, (9.213)

since ul−1 = mod
(
σl, 2
)

(see (9.212)), whereas the output equation, expressed by (9.185), can be put
in the form:[

x
(0)
l , x

(1)
l

]
= [ul + (σl mod 2

)+ (σl − (σl mod 2
))

/2, ul + (σl − (σl mod 2
))

/2
]
, (9.214)

since ul−2 = (σl − ul−1

)
/2 (see (9.212)).

�

A description of the behavior of a convolutional encoder, which can be used as an alternative to
(9.210) and (9.211), is based on the use of its state diagram. Such a diagram is a directed graph with
the following properties:

(a) each state is represented by a circle;
(b) circles are connected by oriented branches representing state transitions.

In other words, each branch describes a specific state transition σl → σl+1, where σl+1 can even
coincide with σl ; in addition, the branch is labeled by both the specific value of ul producing that
transition and by the value taken on by xl . These concepts are illustrated for a specific case in the
following example.

Example 9.2.5 The state diagram of the four-state convolutional encoder of Examples 9.2.1 and 9.2.2
can easily be derived from (9.213) and (9.214) and is illustrated in Figure 9.14. Each transition is
labeled by the present input bit and output bit pair using the notation ul/x

(0)
l x

(1)
l .

�
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Figure 9.15 Trellis diagram associated with the state diagram of Figure 9.14.

The state diagram of an FSSM cannot show its time evolution, as already illustrated in Chapter 3.
This is better described instead by the FSSM trellis diagram.

Example 9.2.6 The trellis diagram following from the state diagram of Figure 9.14 is shown in
Figure 9.15. Note that the initial state of the encoder is σ0 = 0 and that each state transition is labeled
by the same information as the state diagram. Given the trellis diagram and the initial state σ0, the
FSSM evolution associated with a specific input data sequence is represented by a unique trajectory in
the diagram itself; all the trajectories originate from σ0 = 0 and develop in the direction of increasing
time.

�

9.2.2.4 Distance Spectrum and Free Distance

In Section 9.2.2 no explicit constraint was put on the k × n matrices {Gp} (9.179) or, equivalently,

on the selection of the generators {g(j)

i } (9.186). In this subsection, we focus on the problem of
the optimal selection of these matrices (or vectors) in the class Cq(n, k, mtot ), consisting of all the
(n, k) convolutional codes over GF(q) having a fixed overall memory mtot (9.207). Solving this
problem requires the definition of an optimality criterion to establish whether a code belonging to
Cq(n, k, mtot ) is better than another code in the same class. As illustrated in Section 9.2.3, if our aim is
to minimize the codeword error probability with ML decoding over various communication channels,
it is required, first of all, that the selected code maximizes, among all the possibilities offered in
Cq(n, k, mtot ), the minimum Hamming distance between each possible pair of distinct codewords. To
understand the implications of this result, let us now formalize the evaluation of the distance between
the pair of codewords x(i) � [x(i)

0 , x(i)
1 , . . . , x(i)

N−1] and x(j) � [x(j)

0 , x(j)

1 , . . . , x(j)

N−1], associated with
the messages u(i) � [u(i)

0 , u(i)
1 , . . . , u(i)

N−1] and u(j) � [u(j)

0 , u(j)

1 , . . . , u(j)

N−1], respectively, of equal
length (since they both extend over N clock intervals of the encoder). In the generation of each of the
codewords it is also assumed that the encoder initial state is σ0 = 0 and that in the first clock interval
the trajectories associated with the codewords in the trellis diagram of the encoder are distinct; the
latter assumption guarantees the diversity of the codewords generated and can be formulated as u(i)

0 �=
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u(j)

0 . The Hamming distance between x(i) and x(j) is given by:

dH

(
x(i), x(j)

) =
N−1∑
l=0

dH

(
x(i)

l , x(j)

l

)
(9.215)

and, since dH (x(i)
l , x(j)

l ) = wH (x(i)
l − x(j)

l ), can also be expressed as:

dH

(
x(i), x(j)

) =
N−1∑
l=0

wH

(
x(i)

l − x(j)

l

)
. (9.216)

Note that, for the linearity of the code, the vector:

x(i,j) =
[
x(i,j)

0 , x(i,j)

1 , . . . , x(i,j)

N−1

]
� x(i) − x(j)

=
[
x(i)

0 − x(j)

0 , x(i)
1 − x(j)

1 , . . . , x(i)
N−1 − x(j)

N−1

]
(9.217)

represents the codeword generated by the encoder (initialized in the state σ0 = 0) in response to the
message:

u(i,j) =
[
u(i,j)

0 , u(i,j)

1 , . . . , u(i,j)

N−1

]
� u(i) − u(j)

=
[
u(i)

0 − u(j)

0 , u(i)
1 − u(j)

1 , . . . , u(i)
N−1 − u(j)

N−1

]
(9.218)

characterized by u(i,j)

0 = u(i)
0 − u(j)

0 �= 0k . Therefore, (9.216) can also be rewritten as:

dH

(
x(i), x(j)

) =
N−1∑
l=0

wH

(
x(i,j)

l

)
= wH

(
x(i,j)
)
. (9.219)

This proves that, whatever the convolutional encoder, the search for the minimum Hamming distance
between all possible pairs of distinct codewords of duration N can be accomplished by computing the
weight for all the codewords that can be generated over N consecutive clock intervals, starting from
the initial state σ0 = 0 and under the condition that the encoder input vector u0 at the beginning of
the first clock interval is different from 0k . Therefore, the minimum distance can be expressed as:

dc (N) � min
ũ,ũ0 �=0k

wH (x̃) = min
ũ,ũ0 �=0k

N−1∑
l=0

wH

(
x̃l

)
, (9.220)

where x̃ � [x̃0, x̃1, . . . , x̃N−1] is the codeword associated with the trial message ũ � [ũ0, ũ1,

. . . , ũN−1] starting from σ0 = 0. The function dc (N) is known as the column distance and
can be interpreted as the minimum distance, computed over N clock intervals, between the
reference codeword x(0) = [x(0)

0 = 0n, x(0)
1 = 0n, . . . , x(0)

N−1 = 0n] generated in response to the vector
u(0) � [u(0)

0 = 0k, u(0)
1 = 0k, . . . , u(0)

N−1 = 0k] (consisting of null vectors only) and any possible
codeword x(i) � [x(i)

0 , x(i)
1 , . . . , x(i)

N−1] generated by a message u(i) � [u(i)
0 , u(i)

1 , . . . , u(i)
N−1] with

u(i)
0 �= 0k . Therefore, if we refer to the trellis diagram of the encoder (e.g., see Figure 9.15), dc (N)

in (9.220) is the minimum distance between a reference trajectory, represented by the horizontal
path originating from σ0 = 0 and consisting of N consecutive branches, and any other trajectory
originating from the same initial state and having the same length, but separating from the reference
path in the first clock interval.



404 Wireless Communications

dc (N )

0 1 2 3 4 N

dfree

Figure 9.16 Typical behavior of the column distance dc (N) (9.220) of a convolutional code.

From (9.220) it can easily be inferred that dc (N) is a nondecreasing function of N, as seen from
Figure 9.16. Its asymptotic value as N → ∞:

dfree � lim
N→∞

dc (N) , (9.221)

is called free distance of the code.
Except for pathological cases, the free distance of a convolutional code is the weight of a codeword

associated with a path that, after separating at the instant l = 0 from the reference trajectory x(0)

associated with a null message u(0), subsequently merges with it again. This holds, for instance, for
the four-state binary convolutional code considered above, as shown in the following example.

Example 9.2.7 As shown in the following pages, dfree = 5 for the four-state convolutional code whose
trellis diagram is given in Figure 9.15; the path which this distance is associated with is marked by
the dashed line in Figure 9.17.

�

The parameter dfree expresses the minimum diversity between the possible codewords of arbitrary
length and, consequently, is fundamental in the design and selection of a convolutional code. Apart
from the simplest cases, like that illustrated in Example 9.2.7, in which dfree can be easily be evaluated
by considering the possible paths in the trellis diagram, the computation of dfree must be accomplished
via specific mathematical techniques. In particular, tools provided by graph theory can be exploited,
as illustrated in the following example.

Example 9.2.8 To evaluate dfree for the binary four-state code characterized by the trellis diagram
of Figure 9.15 (see Example 9.2.6) the following procedure can be used. To begin, we note that
solving this problem requires considering all possible paths (i.e., trial paths) originating from the state
σ0 = 0, separating immediately (i.e., in the first clock interval) from the reference path characterized
by ul = 0k for any l ≥ 0, and that, after an arbitrary number of clock intervals, merge in the above
mentioned reference path. For each possible trial path the distance from the reference is given by its
overall weight, expressed by the sum of the weights of the output vectors {xl , l = 0, 1, . . . } associated
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Figure 9.17 The path (dashed line) whose distance from the reference path (continuous line) is
dfree = 5 in the trellis diagram of Figure 9.15.

with the path branches until the merge point. The minimum overall weight of all possible trial paths
is dfree . To accomplish an exhaustive search over the set of all the trial paths and evaluate their
overall weights, a new directed graph, derived from the state diagram of Figure 9.14, can be used. In
particular, such a graph can be obtained from the state diagram by:

(a) removing the state transition σl = 0 → σl+1 = 0 and duplicating the null state; and
(b) substituting the label of each state transition σl = p → σl+1 = q with the power Dsp,q of the

variable D, where sp,q represents the weight of the vector (x
(0)
l , x

(1)
l ) associated with that transition.

This turns the graph of Figure 9.14 into that of Figure 9.18. In the new graph all the trial paths
to be considered in our search emerge from the null state on the left and end in that on the right.
In addition, the weight of the codeword associated with a specific path is given by the sum of the
exponents of the powers of D associated with all the branches forming the path itself, that is, by the
exponent of the product of such powers. Then, if a path having overall weight w is represented by
Dw , two distinct paths, having weights w1 and w2, can be jointly represented by a single polynomial

0 1

1

2

3

0

D2 D2

D

D

D

D

Figure 9.18 Modified graph associated with the state diagram of Figure 9.14.
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Figure 9.19 Reduction rules for the computation of the transfer function of a directed graph.

in the D variable, namely by the sum Dw1 + Dw2 . Following this line of reasoning, we can infer
that, for the given code, the set of all the possible weights (associated with all the distinct codewords
of interest) with their multiplicity can be summarized in a single polynomial of infinite degree in the
variable D. Such a polynomial is known as the transfer function of the code and can be computed
in different ways. One way involves the progressive reduction of the given graph to a simple graph
with a single edge. This can be done by repeated application of the four elementary rules illustrated in
Figure 9.19, where f (D), g(D) and h(D) denote arbitrary functions in the variable D. In our specific
example this leads to a single-edge graph labeled by the function:

T (D) = D5

1 − 2D
, (9.222)

which is the transfer function of our code. Evaluating the polynomial division on the RHS of (9.222)
yields the infinite-degree polynomial:

T (D) = D5 + 2D6 + 4D7 + . . . =
+∞∑
d=5

2d−5Dd, (9.223)

which gives the set of weights of the code; in fact, it shows the existence of a single path with weight
5, two paths with weight 6, and so on. This confirms, in particular, the validity of the result dfree = 5,
already given in Example 9.2.7.

�
The particular result expressed by (9.223) can be easily generalized. In fact, it is not difficult to

show that the transfer function of a binary convolutional code can be expressed as:

T (D) =
∞∑

d=dfree

n (d) Dd, (9.224)
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Figure 9.20 Graph for the evaluation of the transfer function of the binary code whose state
diagram is shown in Figure 9.14.

where n (d) denotes the overall number of paths having weight d. Note that the minimum exponent
of the powers of D in (9.224) is equal to dfree .

Alternative techniques for the evaluation of the transfer function are also available, as shown in
the following example.

Example 9.2.9 The graph of Figure 9.18 can be modified by assigning to each of its states a sort of
electrical potential as illustrated in Figure 9.20. In particular, the input potential Vin is assigned to
the null state on the left, while the output potential Vout is assigned to that on the right. The resulting
diagram is now interpreted as a representation of the existing relationships among node potentials;
this leads to the potential of each node being expressed as the sum of different contributions, each
associated with a branch directed toward that node. In particular, in our specific case, the node
equations:

V1 = D2Vin + V2, (9.225)

V2 = DV1 + DV3, (9.226)

V3 = DV1 + DV3, (9.227)

Vout = D2V2 (9.228)

can be written for all the nodes; note that no equation has been written for the node labeled by Vin ,
since no branch enters this node. From the system of equations (9.225)–(9.228) the ratio Vout/Vin can
be found using standard mathematical techniques. The reader can verify that this ratio corresponds to
the code transfer function expressed by (9.222).

�

The technique described in the previous example can be easily generalized to the evaluation of the
transfer function of any binary convolutional code.

Let us now reconsider the specific problem mentioned above of optimal selection of a code in
Cq(n, k, mtot ). If the optimality criterion is the maximization of dfree , then an exhaustive computer

search over Cq(n, k, mtot ) is required to identify the optimal choice19 for the matrices {Gp} (9.179) or,

equivalently, for the generators {g(j)

i } (9.186). Tables of the generators of good binary convolutional
codes can be found, for instance, in [35, Sect. 12.3].

19 This choice is not necessarily unique, since, in principle, multiple codes having the same dfree could be found.
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Figure 9.21 Overall block diagram of a wireless communication system employing convolutional
encoding.

9.2.3 Maximum Likelihood Decoding of Convolutional Codes

In the foregoing our attention has been focused on the main properties of convolutional codes. We now
consider the problem of decoding a convolutional code, referring to the binary case for simplicity.
Whatever the wireless communication scenario, the problem of ML decoding of a binary convolutional
code can be understood by referring to the block diagram of Figure 9.21.

A binary convolutional encoder, with rate R = k/n and starting from a known state, is fed for N con-
secutive clock intervals by a binary message u � [u0, u1, . . . , uN−1], generating the binary codeword
x � [x0, x1, . . . , xN−1]. Then this codeword is mapped to a symbol vector c � [c0, c1, . . . , cP−1],
consisting of P complex symbols, each belonging to an M-ary complex signal constellation. Note that
in the simplest case the constellation is binary (M = 2), so that P = nN ; when this occurs the simple
mapping rule c = 1 − 2b can be used to associate the encoded bit b with a BPSK symbol. Otherwise
nN is a multiple of P, since each of the nN bits is transmitted only once20 via c. Symbol interleav-
ing can also be used to break up error bursts at the receiver. The wireless communication channel

20 Further details on mapping multiple bits to M symbols can be found in Section 11.2, where TCM is described.
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introduces uncertainty due to both additive noise and fading. If a reduced-dimensionality model is
adopted to parametrize the last impairment, a mathematical description of fading is provided by a
parameter vector h of finite size. The channel output is given by the vector r � [r0, r1, . . . , rQ−1],
structured as:

r = z (c, h) + n, (9.229)

where Q = osP , os is the oversampling factor (i.e., the number of samples per symbol interval
extracted from the received signal), z (c, h) � [z0 (c, h), z1 (c, h) , . . . , zQ−1 (c, h)] is the useful com-
ponent of the received signal (i.e., the portion of r depending on the symbol vector c and the channel
parameter vector h) and n � [n0, n1, . . . , nQ−1] is additive noise. In the following we assume that n
consists of iid complex Gaussian random variables, each having mean zero, variance σ 2

n and iid real
and imaginary parts.

The ML decoding strategy depends on the degree of knowlege about the channel state information
available at the receiver. In the following description we assume, for simplicity, that the CSI is ideally
known to the receiver, so that h is available to the decoding algorithm. Then the ML decoding strategy
can be expressed as the search for the maximum of the likelihood function f (r | u, h ) over the set C
of all the possible codewords:

uML = arg max
ũ∈C

f
(
r
∣∣ u = ũ, h

)
(9.230)

where f
(
r
∣∣ u = ũ, h

)
is the joint pdf of r conditioned on the channel parameter h and on the

hypothesized message ũ, and uML is the ML estimate of u. The pdf f
(
r
∣∣ u = ũ, h

)
can be evaluated

as follows. Since u is given (i.e., u = ũ), all the components of r are mutually independent (see
(9.230)), because of the independence of the noise samples {nl}. Then we may write:

f
(
r
∣∣ u = ũ, h

) =
Q−1∏
l=0

f
(
rl

∣∣ u = ũ, h
)
, (9.231)

where

f
(
rl

∣∣ u = ũ, h
) = 1√

πσ 2
n

exp

[
−
∣∣rl − zl (c̃, h)

∣∣2
σ 2

n

]
(9.232)

for l = 0, 1, . . . , Q − 1, and c̃ represents the symbol vector associated with ũ. Substituting (9.231)
into (9.232) yields:

f
(
r
∣∣ u = ũ, h

) = 1(
πσ 2

n

)Q/2 exp

[
−
∣∣r − z (c̃, h)

∣∣2
σ 2

n

]
(9.233)

with: ∣∣r − z (c̃)
∣∣2 =

Q−1∑
l=0

∣∣rl − zl (c̃, h)
∣∣2. (9.234)

As will become clearer, from the standpoint of simplifying the decoding process it is useful that the
total metric (also known as the path metric) for a sequence of symbols is the sum of multiple partial
metrics, each associated with a given channel input–output symbol pair. Let us now analyze when this
result is achieved and its consequences. Taking the natural logarithm of the likelihood function (9.233)
and dropping all terms independent of the trial symbol vector c̃ produces the equivalent metric:

m(r, c̃, h) = ∣∣r − z (c̃, h)
∣∣2 =

Q−1∑
l=0

∣∣rl − zl (c̃, h)
∣∣2, (9.235)
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which has an additive structure. Note that, in principle, the sample zl (c̃, h) depends on the complete
vector c̃; however, substantial simplification is achieved when zl (c̃, h) depends on c̃l only. For instance,
this occurs with PAM signaling over a slow time-selective fading channel or, dually, with OFDM
signaling over a purely frequency-selective channel. In both cases:

zl (c̃, h) = c̃lhl, (9.236)

where hl denotes the fading distortion affecting the transmitted signal in the lth symbol interval (over
the lth subcarrier) in a PAM (OFDM) transmission. Note also that, in the cases mentioned above,
usually Q = P (i.e., os = 1), since one sample per channel symbol is taken at the MF output of a
PAM receiver (see Section 4.4.2.1) and one sample per useful subcarrier is available at the FFT output
of an OFDM receiver (see Section 4.4.4.1). Then, under the above assumptions, the metric (9.235)
can be simplified as:

m(r, c̃, h) =
P−1∑
l=0

∣∣rl − c̃lhl

∣∣2, (9.237)

so that the ML estimation problem (9.230) can be reformulated as:

uML = arg min
ũ∈C

P−1∑
l=0

∣∣rl − c̃lhl

∣∣2. (9.238)

This represents an example of so-called soft decoding, since the search for the optimal estimate of the
transmitted message involves a set of real metrics.

An alternative solution to soft decoding is illustrated in Figure 9.22. In this case the decoder is
preceded by a detector, endowed with knowledge of the CSI and usually producing a hard estimate
y = [y0, y1, . . . , yN−1] of the codeword x. This estimate is sent to the decoder which searches the
set of all the possible messages u, for the one closest, in terms of Hamming distance, to y. In other
words, the decoding strategy solves:

û = arg min
ũ∈C

dH (y, ũ) (9.239)

or, equivalently:

û = arg min
ũ∈C

N−1∑
l=0

dH

(
yl , ũl

)
. (9.240)

This solution is an example of hard decoding, since message estimation involves a set of integer
metrics. Of course, the use of hard decoding involves an energy loss with respect to its soft counterpart
(e.g., see [1522] which refers to a specific application involving a R = 3/4 binary convolutional code
over a Rician fading channel with KdB = 9).

Information
Sink Decoder Detector

CSI

û y r

Figure 9.22 Symbol detection followed by hard decoding of a convolutional code.
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In both cases considered above, the metric has an additive structure (see (9.238) and (9.240)). For
this reason, the search for the optimal message estimate û can be carried out via a computationally
efficient algorithm, namely the VA. The VA is a recursive algorithm for determining the optimal state
sequence of a discrete-time Markov process observed in memoryless noise [982] and is an efficient
tool for many communications problems.

The VA operates on the state trellis which has been defined above for a convolutional code. Let us
assume, for simplicity, that the n bits associated with each state transition in the trellis of the given
convolutional code are mapped to a single symbol (belonging to a constellation of 2n points) and
consider the case of soft decoding with the metric (9.237). Then, the lth term in the sum on the RHS
of (9.237) is associated with a state transition

(
σ̃l → σ̃l+1

)
, that in the lth symbol interval is labeled

by the trial symbol c̃l ; such a term represents the branch metric:

λ
(
σ̃l → σ̃l+1

)
�
∣∣rl − c̃lhl

∣∣2 (9.241)

characterizing that transition (see Figure 9.23). Given this definition, the overall metric (9.237)
associated with a given path in the code trellis is given by the sum of the branch metrics label-
ing the state transitions (i.e., branches) whose concatenation forms the path itself. The VA’s task is
to find the sequence of branches through the trellis with smallest cumulative or path metric (i.e., the
shortest path).

The VA accomplishes this task by (see Figure 9.24):

(a) maintaining one survivor path per state σ̃l in the lth symbol interval;
(b) extending these paths one step along all the M branches (labeled by c̃l) emanating from them;
(c) pruning these back by retaining only the path with the smallest21 overall metric in each state σ̃l+1

(this consists of the sum of the branch metrics labeling the transitions associated with the state
transitions forming the path).

In the lth symbol interval, then, the VA keeps track of only one path (the so-called survivor) leading
to each state σ̃l . Such a path, denoted by 

(
σ̃l

)
in what follows, is the sequence of consecutive states

belonging to the path and is characterized by an accumulated or path metric �
(
σ̃l

)
.

s~l+1

s~l l(s~l → s~l+1)

l −2 l −1 l +1 timel

c~l

Figure 9.23 State trellis of a convolutional code with mapping (M = 2n and ns = 4 are assumed).

21 When a metric has to be maximized, the VA should be supplied with the negative metric instead.
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Figure 9.24 Time evolution of the VA. One of the two paths leading to σ̃l+1 is selected on the
basis of its accumulated metric.

In summary, the VA procedure consists of the following steps (l denotes the time variable):

1. Set:
l = 0, 

(
σ̃0

) = (σ̃0

)
, �
(
σ̃0

) = 0 (9.242)

to initialize the algorithm.
2. Repeat steps 3–7 until l = N .
3. Extend path metrics in accordance with:

�
(
σ̃l+1

) = �
(
σ̃l

)+ λ
(
σ̃l → σ̃l+1

)
(9.243)

for all allowed state transitions σ̃l → σ̃l+1.
4. For each destination state σ̃l+1 find the best (minimum-metric) incoming path from all possible

previous states:
σ̄l = arg min

σ̃l

�
(
σ̃l+1

)
. (9.244)

5. Update and store survivor paths (path histories) as:


(
σ̃l+1

) = ( (σ̄l

)
, σ̃l+1

)
. (9.245)

6. Store the new survivor metrics as:

�
(
σ̃l+1

) = �
(
σ̄l

)+ λ
(
σ̄l → σ̃l+1

)
. (9.246)

7. Set l = l + 1 (increment time counter).
8. Detect the ML decision for the symbol sequence as that associated with the survivor path 

(
σ̃N

)
with minimum metric �

(
σ̃N

)
(termination).

It is worth noting the following observations:

(a) The most significant part of the decoding procedure is that accomplished in steps 3–5, commonly
referred to as add–compare–select in the technical literature.
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(b) Branch metrics evaluated for state transitions inconsistent with known (i.e., training or pilot)
symbols are set to a large value (virtually infinite).

(c) In principle, decisions are not available until time l = N . In practice, however, there is little
degradation in making decisions after a decision delay of a few times the contraint length of the
code by tracing back from the survivor with instantaneously the best metric.

9.2.4 MAP Decoding of Convolutional Codes

An alternative to the ML decoding strategy based on the VA and described in Section 9.2.3 is MAP
decoding based on the so-called BCJR algorithm22 [1523], also known as the forward–backward
algorithm. The latter name derives from the fact that, as shown below, this algorithm computes the
MAP bit or symbol probabilities using a two-pass recursive procedure operating on the same trellis as
the VA, combining processing results produced in the forward direction with those generated in the
backward direction. We now describe this algorithm with reference to the scenario considered in
Section 9.2.3 and summarized by Figure 9.21. Conceptually our approach follows that outlined in
[533], where the case of a statistically known time-selective channel is analyzed.

The FBA computes the probabilities:

Pr
{
cl = ĉ|r, h

}
(9.247)

for any possible trial symbol ĉ transmitted in the lth signaling interval, with l = 0, 1, . . . , N − 1. In
what follows it is assumed that the convolutional encoder has ns states and that the cardinality of the
symbol constellation is M = 2n, so that a single channel symbol is associated with a state transition
in the trellis diagram of the convolutional code and P = N . Moreover, it is useful to keep in mind
that:

(a) each node in the trellis has M output branches, with a branch corresponding to each of the M
channel symbols,

(b) the initial state σ0 and the final state σN of the encoder are known to the decoder, and
(c) the quantities evaluated by the FBA are associated with nodes, states and transitions in the trellis.

The evaluation of the probabilities (9.247) requires the computation of intermediate quantities,
known as state transition probabilities. Given the state transition σ̂l → σ̂l+1 between the trellis states
σ̂l and σ̂l+1 in the lth and (l + 1)th symbol intervals, respectively, the corresponding state transition
probability is denoted by:

Pr
{
σ̂l , σ̂l+1 | r, h

}
(9.248)

and equals zero if the states σ̂l and σ̂l+1 are not connected. If the states are connected, this quantity
can be evaluated as:

Pr
{
σ̂l , σ̂l+1 |r, h

} =
∑

�̃∈Sl(σ̂l ,σ̂l+1)
Pr
{
�̃ | r, h

}
∑

�̃∈S Pr
{
�̃ | r, h

} , (9.249)

where S � {�̃} denotes the set of all the possible paths (i.e., sequences of encoder states) for the given
convolutional code and Sl(σ̂l , σ̂l+1) is its subset consisting of all possible paths which traverse the
trellis branch connecting states σ̂l and σ̂l+1 (see Figure 9.25).

22 This algorithm is similar in concept to the method proposed by R. W. Chang and J. C. Hancock for MAP
detection in the presence of ISI [584] (see Section 6.2.1.5).
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(
σ̂l , σ̂l+1

)
consisting of all the paths traversing the trellis branch between

the states σ̂l and σ̂l+1. In this case M = 2 (i.e., a binary constellation) and ns = 4 are assumed.

It is useful to note that the probabilities {Pr{�̃|r, h}} of (9.249) can be expressed via Bayes’
theorem as:

Pr
{
�̃ | r, h

}
=

f
(

r
∣∣∣ �̃, h

)
Pr
{
�̃
}

f (r | h )
. (9.250)

Then substituting (9.250) into (9.249) yields:

Pr
{
σ̃l , σ̃l+1|r, h

} =
∑

�̃∈Sl(σ̃l ,σ̃l+1)
f
(

r
∣∣∣ �̃, h

)
Pr
{
�̃
}

∑
�̃∈S f

(
r
∣∣∣ �̃, h

)
Pr
{
�̃
} . (9.251)

The quantities f (r| �̃, h) and Pr{�̃} can be evaluated as follows. The path �̃ has a one-to-one
correspondence with a coded symbol sequence c̃ or, equivalently, with the input information sequence
ũ that has generated it (note that the initial state of the encoder is fixed). Then we may write:

Pr
{
�̃
}

= Pr
{
ũ
} =

N−1∏
k=0

Pr
{
ũk

}
, (9.252)

since independent input symbols are assumed, and:

f
(

r
∣∣∣ �̃, h

)
= f
(
r
∣∣ũ, h
) =

N−1∏
k=0

f
(
rk

∣∣rk−1, ũ, h
)
, (9.253)

where rk−1 � [r0, r1, . . . , rk−1]. If we assume, as in the previous subsection, PAM signaling over
a slow time-selective fading channel or, dually, OFDM signaling over a purely frequency-selective
channel (see (9.233)–(9.236)), the sample rk , given ũ, is independent of rk−1. Moreover, it depends
on the channel gain hk and on the symbol ck , that is, on the symbol vector ũk � [ũ0, ũ1, . . . , ũk],
instead of the complete vector ũ, so that (9.253) can be rewritten as:

f
(

r
∣∣∣ �̃, h

)
=

N−1∏
k=0

f
(
rk

∣∣ũk, hk

)
, (9.254)
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where

f
(
rk

∣∣ũk, hk

) = 1

πσ 2
n

exp

[
−
∣∣rk − c̃khk

∣∣2
σ 2

n

]
(9.255)

and the coded symbol c̃k is generated by the encoder in the kth interval in response to ũk . As a result,
the product f (r| �̃, h) Pr{�̃} in (9.251) can be expressed as:

f
(

r
∣∣∣ �̃, h

)
Pr
{
�̃
}

=
N−1∏
k=0

f
(
rk

∣∣ũk, hk

)
Pr
{
ũk

}
. (9.256)

Note also that the vector ũk uniquely identifies a state transition σ̃k → σ̃k+1, which, in turn, identifies
the channel symbol c̃k . To see this, (9.256) can be rewritten as:

f
(

r
∣∣∣ �̃, h

)
Pr
{
�̃
}

=
N−1∏
k=0

γk

(
σ̃k, σ̃k+1

)
, (9.257)

where
γk

(
σ̃k, σ̃k+1

)
� Pr

{
ũk

}
Wk

(
σ̃k, σ̃k+1

)
(9.258)

is a weight function depending on the trellis branch connecting states σ̃k and σ̃k+1 and:

Wk

(
σ̃k, σ̃k+1

)
� f
(
rk

∣∣ũk, hk

)
. (9.259)

Finally, substituting (9.257) into (9.251) produces:

Pr
{
σ̂l , σ̂l+1 | r, h

} =

∑
�̃∈Sl(σ̂l , σ̂l+1)

N−1∏
k=0

γk

(
σ̃k, σ̃k+1

)
∑

�̃∈S

N−1∏
k=0

γk

(
σ̃k, σ̃k+1

) . (9.260)

Then the evaluation of the state transition probabilities requires the computation of:

(a) the sum of the products of the weights associated with all the paths containing the branch leaving
σ̃k and entering σ̃k+1 (see the numerator),

(b) the sum of the products of the weights associated with all the admissible paths in the trellis (see
the denominator).

A computationally efficient method to solve this problem is as follows [533]. Let us define the
quantities

{
αk

(
σ̃k

)}
and
{
βk

(
σ̃k

)}
through the recursive formula:

αk

(
σ̃k

) =
∑
σ̃k

αk−1

(
σ̃k−1

) · γk

(
σ̃k−1, σ̃k

)
(9.261)

with k = 1, 2, . . . , N , and:

βk

(
σ̃k

) =
∑
σ̃k+1

βk+1

(
σ̃k+1

) · γk

(
σ̃k, σ̃k+1

)
(9.262)

with k = N − 1, N − 2, . . . , 0, respectively. Here it is assumed that
{
α0

(
σ̃0

)}
and
{
βN

(
σ̃N

)}
are

known initial and end conditions, respectively. The quantity αk

(
σ̃k

)
expresses the sum of the products

of the weights along all paths originating from all the possible past initial states
{
σ̃0

}
and terminating

in σ̃k in the kth signaling interval. Similarly, βk

(
σ̃k

)
is the sum of the products of the weights along
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all paths ending in the terminal states
{
σ̃N

}
and originating from σ̃k in the kth signaling interval. Then

the numerator of (9.260) can be expressed as:

χl

(
σ̂l , σ̂l+1

)
�

∑
�̃∈Sl(σ̂l , σ̂l+1)

N−1∏
k=0

γk

(
σ̃k, σ̃k+1

)

= αl

(
σ̂l

) · γl

(
σ̂l , σ̂l+1

) · βl+1

(
σ̂l+1

)
, (9.263)

and its denominator is obtained as:

∑
�̃∈S

N−1∏
k=0

γk

(
σ̃k, σ̃k+1

) =
∑

σ̂l ,σ̂l+1

χl

(
σ̂l , σ̂l+1

)
, (9.264)

so that:

Pr
{
σ̂l , σ̂l+1 | r, h

} = χl

(
σ̂l , σ̂l+1

)
∑

σ̂l ,σ̂l+1

χl

(
σ̂l , σ̂l+1

) . (9.265)

This result shows that all that is needed for the evaluation of the state transition probabilities are
the quantities

{
χl

(
σ̂l , σ̂l+1

)}
, computed as in (9.263). This, in turn, requires a forward (9.261) and a

backward recursion (9.262) involving all the trellis states in each signaling interval, as illustrated in
Figure 9.26. It is worth noting that both recursions over all the trellis only need to be performed once.

For demodulation/decoding purposes the quantity of interest23 is the APP Pr{ĉl | r, h} for any
possible value of the channel symbol ĉl . This probability can be calculated by summing all the state
transition probabilities (9.265) that correspond to branches associated with the symbol c̃l . In other
words, if we define the set S

(
ĉl

)
of all state transitions

(
σ̃l , σ̃l+1

)
such that the channel symbol

labeling the corresponding branch is ĉl , Pr{ĉl | r, h} can be evaluated as:

Pr
{
ĉl | r, h

} =
∑

(σ̃l ,σ̃l+1)∈S(ĉl)

Pr
{
σ̃l , σ̃l+1 | r, h

} =
∑

(σ̃l ,σ̃l+1)∈S(ĉl)
χl

(
σ̃l , σ̃l+1

)
∑

(σ̃l ,σ̃l+1)
χl

(
σ̃l , σ̃l+1

) . (9.266)

Then the FBA can be summarized as follows:

1. Evaluate the quantities
{
γk

(
σ̃k, σ̃k+1

)}
for all the trellis branches using (9.255) (see (9.259) and

(9.258)).
2. Initialize the forward recursion setting:

k = 1, α0

(
σ0

) = 1. (9.267)

3. Repeat steps 4 and 5 until k = N .
4. Compute and store the forward path probabilities

{
αk

(
σ̃k

)}
using (9.261).

5. Set k = k + 1.
6. Initialize the backward recursion setting:

k = N − 1, βN

(
σN

) = 1. (9.268)

7. Repeat steps 8 and 9 until k = 0.
8. Compute and store the backward path probabilities

{
βk

(
σ̃k

)}
using (9.262).

9. Set k = k − 1.
10. For each trellis branch compute the quantity χl

(
σ̂l , σ̂l+1

)
using (9.263).

11. Evaluate the APPs {Pr{ĉl | r, h}} by means of (9.266).

23 Similar considerations apply if we refer to a specific input bit, instead of the output channel symbol.
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Figure 9.26 (a) Application of the FBA to a two-state trellis (M = 2 is assumed). The quantities{
αk

(
σ̃k

)}
and
{
βk

(
σ̃k

)}
are computed recursively in (b) the forward and (c) the backward recursion,

using the branch probabilities
{
γk

(
σ̃k, σ̃k+1

)}
. (d) Finally, the quantities

{
χl

(
σ̂l , σ̂l+1

)}
are evaluated

using (9.263).
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Note that this algorithm processes the soft input information about the information data (i.e., the
probabilities Pr{ũk} in (9.258)) and generates the soft output information represented by a collection
of APPs {Pr{ĉl | r, h}}. For this reason, it is an example of a SiSo decoding procedure.

The FBA is best suited to short burst transmission, because otherwise its delay and storage require-
ments are excessive. These problems are avoided if the so-called MAP-FLAs [1086] are adopted. In
fact, such algorithms can generate the symbol APPs at a fixed lag from the current received samples,
using a single forward pass only. Two optimum (i.e., minimum symbol error probability under a fixed
delay constraint) algorithms of this type are available; the newer one, called OSA [1088], has a smaller
computational complexity than the older [1086, 1087], since the number of quantities to be stored and
recursively updated increases linearly, rather than exponentially, with the decision delay.

Suboptimum FLAs are derived in [1088, 1524]. In particular, the so-called SSA proposed in [1088]
does not require knowledge of the noise variance and accomplishes computations in the logarithmic
domain. For this reason the add–compare–select procedure described in Section 9.2.3 is the main
operation, as when using the VA. Note also that both the MAP-FBA and the above-mentioned MAP-
FLAs were first proposed for detection of uncoded signaling on ISI channels. A comparison of these
algorithms with the VA in this scenario can be found in [1088].

In the last decade substantial efforts have been made to simplify the BCJR algorithm. This poses
serious technical difficulties because of numerical representation problems in the evaluation of prob-
abilities, and the large number of operations (additions and multiplications) required overall. Both
problems can be mitigated by carrying out MAP processing in a logarithmic domain for the evaluation
of the quantities

{
αl

(
σ̂l

)
, γl

(
σ̂l , σ̂l+1

)
, βl+1

(
σ̂l+1

)}
in (9.263) (so that the computation of exponen-

tials, like that appearing in (9.255), is avoided) and by adopting the so-called maximum logarithmic
MAP (Max-Log-MAP) approximation [1524–1527]:

ln
(
eδ1 + eδ2 + . . . + eδn

) ≈ max
i

δi (9.269)

for the multidimensional function on the LHS. This approximation leads to degradation in the quality
of the soft output, that is, of the APPs

{
Pr{ĉl | r, h}}, with respect to the FBA. This can be avoided,

at the price of some increase in complexity, by using the so-called log-MAP algorithm, which still
operates in a logarithmic domain, but which exploits the exact expressions [1524–1526]:

ln
(
eδ1 + eδ2

) = max
(
δ1, δ2

)+ fc

(∣∣δ2 − δ1

∣∣) , (9.270)

where fc (·) is a proper correction function (exhibiting a one-dimensional dependence and that can be
approximated by a precomputed table), and:

ln
(
eδ1 + eδ2 + . . . + eδn

) = max
(
ln �, δn

)+ fc

(∣∣ln � − δn

∣∣) (9.271)

with � =∑n−1
i=0 eδi , to achieve, at least in principle, an exact computation of the LHS of (9.269) via

a recursive procedure.
The overall complexity of the BCJR is also proportional to the number of trellis states. Complexity

reduction can be achieved by adopting procedures for simplified trellis search in the BCJR passes.
The MAP algorithms characterized by this feature can be roughly divided into two classes. Those in
the first class are inspired by the technique of RSSD24 for state reduction and are based on the fact
that the forward and backward recursions of the BCJR algorithm reduce to the VA when the above
Max-Log approximation is adopted. Examples of this approach are the RS-BCJR algorithm of [1097]
and the generalized reduced-state algorithms proposed in [1529]. The algorithms in the second class
perform a reduced search on the original full-complexity trellis, instead of a full search on a reduced-
state trellis; this class includes the M-BCJR algorithm [1098] and the related algorithms of [1099,

24 These techniques were originally proposed to reduce the complexity of the VA [988, 989, 1528] in equalization
and trellis decoding.
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1530–1533]. Among the reduced-complexity algorithms that do not belong to these two classes, we
mention the algorithm described in [1534] and that proposed in [1413]. The former is based on a
confidence criterion used to detect reliable symbols early in the decoding process, while the latter has
been explicitly developed for the particular case of sparse ISI channels.

A different approach to MAP decoding of convolutional codes is represented by the so-called
SOVA proposed in [1535] (and later modified in [1525, 1536]) as an alternative to MAP-FBAs. The
SOVA operates on the same trellis as the VA described in Section 9.2.3 and, consequently, can be
implemented by simply complementing the VA. However, the SOVA, unlike the VA, is able to generate
soft (i.e., reliability) information for the bits it decodes. A detailed description of this algorithm in
the trace-back mode can be found in [1100, pp. 435–437]. More recently, it has been proved that the
SOVA can be modified in a simple way so that it becomes equivalent to the Max-Log MAP decoding
algorithm [1527]. This means that the latter technique can be implemented in a Viterbi-like manner.

9.2.5 Sequential Decoding of Convolutional Codes

In Sections 9.2.3 and 9.2.4 we have described two approaches to the decoding of convolutional codes.
In the first case, the decoding process is ML and optimum in a sequence or codeword sense and is
implemented through the VA [982, 1478]. In the second case, the decoding process is optimum in
a MAP probability sense and may be implemented using the so-called forward–backward algorithm
(FBA), otherwise known as the BCJR algorithm [1523]. Unfortunately, both algorithms have expo-
nentially increasing complexity as the constraint length of the code increases. This limits their use
to the decoding of short constraint length codes that by definition have a small number of states. In
the case of the VA, decoding more than about 256 state codes becomes too complex to be practical,
whereas when the BCJR algorithm is used, the limit tends to be lower.25

An alternative approach, which allows for the decoding of long constraint length convolutional
codes, is to use sequential decoding algorithms. Sequential decoding actually pre-dates both ML and
MAP decoding and was first introduced by J. M. Wozencraft [1537]. However, this early work did
not directly result in practical decoding algorithms. This was left to the later work of R. Fano [1538],
who developed a practical and easily implementable algorithm now known as the Fano algorithm.
Somewhat later, K. S. Zigangirov [1539] and F. Jelinek [1540] independently discovered a somewhat
more elegant algorithm that has come to be known as the stack algorithm.

The sequential algorithms are tree-based decoding algorithms. The code trellis described previously
in Section 9.2.3 makes use of the remerging properties of the trellis to conduct a parallel search of all
possible code sequences or paths through the trellis. However, the trellis can be expanded to a tree
form that does not make use of the remerges and results in an expanding structure with a number of
possible paths that grows exponentially with the length of the code sequence. The sequential decoding
algorithms search the tree by extending only one path at a time through the tree.26 In all cases the
algorithms have the ability to quickly recognize when they are following an incorrect path through the
tree. They then retrace their steps to the last instant when decoding was proceeding correctly and then
start decoding along an alternative path through the code tree. This leads to a requirement to decode
variable-length code paths in the tree. Before describing the overall process in detail, we consider the
development of an appropriate metric for the decoding of variable-length paths or code sequences. For
the purposes of the current chapter, we will restrict attention to the decoding of binary convolutional
codes, although the process can obviously be extended to nonbinary situations.27

25 As an aside, the BCJR algorithm is used in the decoding of turbo codes and it is no coincidence that the
component codes of most useful turbo codes have 16 or fewer states.
26 Such algorithms are also referred to as depth-first algorithms.
27 Such an extension is described in the context of TCM by C. Schlegel [326].
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Let x
(j)

i be the ith bit28 of the jth transmitted block and let y
(j)

i be the corresponding received bit.29

We also define R as the rate of the convolutional code in use, where we note that in most sequential
decoding applications R = 1/n. Fano [1538] heuristically suggested that the bit or symbol metric
should have the form:

M(y
(j)

i |x̃(j)

i ) = log2

[
Pr{y(j)

i |x̃(j)

i }
Pr{y(j)

i }

]
− R, (9.272)

where x̃
(j)

i denotes a trial value for x
(j)

i . In all sequential decoding algorithms, partial path metrics
must be computed. This results in the generation of a bias term which is a function of the partial path
length. Based on the bit metric of (9.272), it is straightforward to show that the partial path metric
for l tree branches is given by [1485]:

M(l)(y|x̃) =
l−1∑
i=0

n−1∑
j=0

M(y
(j)

i |x̃(j)

i )

=
l−1∑
i=0

n−1∑
j=0

{
log2

[
Pr{y(j)

i |x̃(j)

i }
Pr{y(j)

i }

]
− R

}

=
l−1∑
i=0

n−1∑
j=0

log2 Pr{y(j)

i |x̃(j)

i } +

 l−1∑

i=0

n−1∑
j=0

log2
1

Pr{y(j)

i }
− nlR


 . (9.273)

The term in the large brackets on the third line of this equation is the bias term and is clearly function
of the path length. Moreover, it is easily seen that this metric has the additive form:

M(l+1)(y|x̃) = M(l)(y|x̃) +
n−1∑
j=0

M(y
(j)

l |x̃(j)

l ). (9.274)

Provided that R ≤ 1 and P {y(j)

i } ≤ 1/2, the bias term can be shown [1485] to be positive. Moreover,
for the classical binary symmetric channel, the metric of (9.273) reduces to the form:

M(l)(y|x̃) =
l−1∑
i=0

n−1∑
j=0

log2 Pr{y(j)

i |x̃(j)

i } + nl(1 − R), (9.275)

which is a linear function of the path length [1485]. Although Fano’s original choice of the metric
was heuristic, Massey [1541] later showed that it always causes a sequential decoder to extend the
most likely path based on the information available to the decoder at the current time. Thus, most of
the time it is a good choice. The exceptions arise when the decoding algorithm extends an incorrect
path and has to retrace its steps.

9.2.5.1 The Fano Algorithm

The Fano algorithm was first described in detail by R. Fano in [1538]; however, the present description
more directly follows from [1485].

28 Throughout this subsection, we work in terms of bits or, equivalently, BPSK modulation. It is straightforward
to extend the concepts and implementations to the nonbinary case.
29 In principle, even in the binary transmission case, y

(j)

i may represent either a hard decision on the received bit
or a soft estimate assuming that a soft input decoding algorithm is being employed.
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The algorithm moves through the code tree as dictated by the partial path metric of (9.273) and by
a threshold T, which varies during the decoding process. The algorithm is described by the following
steps, assuming that decoding starts at the root node of the code tree:

1. (Initialization) Set the threshold T = 0. Set the threshold increment � (this remains constant
throughout the decoding process). Set the partial path metric M(0) = 0.

2. At the lth (l = 0, 1, 2, . . . ) decoding step, compute the path metric M(l+1)(y|x̃) using (9.274) and
(9.274) for the next node forward in the tree. Note that there are normally two (or more) branches
emanating from each node, one corresponding to each possible input block of n bits, and either
(any one) can be picked.

3. Is M(l+1)(y|x̃) ≥ T ? If so, move to the forward node.30 Is this the decoder’s first visit to the node?
If so, increase the threshold by �, subject to the constraint that the metric remains above the new
threshold value, T + �; the decoder then moves to the next forward node in the tree and performs
step 2 of the algorithm. If it is not the decoder’s first visit to the node, no threshold tightening is
performed; the decoder then moves the next forward node of the tree and repeats step 2 for the
next node forward.

4. If M(l+1)(y|x̃) < T , then is M(l)(y|x̃) ≥ T ? If so, the decoder backs up to position l and performs
step 2 for one of the alternative forward paths from that position.

5. If M(l)(y|x̃) < T , reduce the threshold to T = T − � and the decoder performs step 2 for the
next forward node (l + 1) by extending an alternative path from that node.31

The threshold step size � determines the number of node computations performed for a given
received codeword or frame. Its setting determines a tradeoff between the decoder’s processing rate
and the output error rate. It has been observed [35, 1485] that, to eventually select the ML path, T
must be lower than the metric for this path. However, if T becomes too low due to a too large value
of �, several alternative paths may become acceptable. The decoder may then accept an incorrect
path, resulting in output bit errors. For this reason, the choice of � represents a design tradeoff and
its value must in general be determined by simulation.

The Fano algorithm is simple to implement and requires minimal storage. As a result, it has been
the algorithm of choice in sequential decoding implementations [1542]. However, it suffers from the
drawback that it can visit a given tree node multiple times with different settings of the threshold. Under
severe channel conditions, this can lead to excessive computation and indeed overload conditions. This
problem can be alleviated to some extent through the use of the so-called stack algorithm [1539, 1540].
This algorithm never visits any tree node more than once and always extends the path with the best
metric. We now briefly describe it.

9.2.5.2 The Stack Algorithm

The stack algorithm performs a somewhat more efficient sequential search of the code tree, but at the
expense of significantly expanded storage. It operates as follows:

1. (Initialization) Define an empty stack S and deposit the empty partial code sequence at the top
with its metric M(0)(y|x̃) = 0.

30 If this new node corresponds to the end of the code block (including any bits or symbols required to flush the
encoder), decoding is complete and decoding stops.
31 This occurs when the threshold is too high for the number of errors in the received word. Also the reduction
in T ensures that no node is ever visited twice at the same threshold level. This avoids the occurrence of infinite
loops in the decoding algorithm [1485].
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2. At the lth decoding step (l = 0, 1, 2, . . . ), extend the node corresponding to the top entry or path
of S by calculating the partial path metric M(l+1)(y|x̃) for all possible extensions32 of this path
using (9.274).

3. Place these new entries into the stack and reorder the stack, so that the path with the best metric
is at the top.

4. If the top entry of S is a path to a leaf of the tree, then decoding is complete and the top entry in
the stack is the estimate of the transmitted bit sequence.

Note that in the stack algorithm the retracing operation associated with the Fano algorithm is
replaced by the reordering operation, but leads to the same effect, in essence backing up and trying
alternative paths through the code tree. There are two major problems associated with the stack
algorithm:

1. In noisy channel conditions, the received samples will be unreliable and result in many paths
having similar metrics. These all have to be stored in the stack and possibly further explored. This
can lead to very large storage requirements.

2. Under noisy conditions, the stack becomes very large and the reordering operation becomes very
complex.

To avoid the latter problem, a metric quantization scheme can be employed in which all metrics
having values within a given quantization range are put into the same so-called “bucket” with no
attempt made to sort them. Thus at each decoding instant, the current path is inserted at the top of
the appropriate bucket. This is the so-called stack-bucket algorithm [1540]. It always extends the top
path of the best bucket. It avoids stack reordering, but may not always extend the best path through
the tree, which leads to a small degradation in performance.

Under moderate channel conditions, both the Fano and the stack algorithms provide essentially ML
performance. However, under severe noise conditions, they tend to suffer from computational overload
and can lose entire data frames. This is because the probability distribution of the number of com-
putations per decoded bit follows a Pareto distribution, which at low SNRs has infinite moments,
and the average number of computations can increase without limit. This is described in detail
in [35, 1485].

9.2.6 Error Performance of ML Decoding of Convolutional Codes

In this subsection a general method for the evaluation of performance, in terms of node error probability
and bit error probability, is described for the ML decoding strategies described above.33 As shown
below, these performance indexes cannot be evaluated exactly, because of the nonlinear behavior of
the VA and thus only performance upper bounds are derived. In our derivations the following initial
assumptions are made:

(a) The transmitted codeword x � [x0, x1, . . . , xN−1] is generated by an ns-state binary convolutional
encoder (with rate R = k/n), starting from the initial state σ0 = 0, in response to the message
u � [u0, u1, . . . , uN−1] consisting of null symbols.

(b) The last m vector components {uN−l , l = 1, 2, . . . , m} of u (where m denotes the encoder memory
(9.187)) are all known to the decoder. This assumption entails that the decoder knows not only
the initial state (σ0 = 0), but also the final state reached by the encoder (σN = 0). Therefore, at

32 Note that for a rate-1/n code there will be only two possible extensions, and for a rate-k/n code there will
be 2k .
33 This method, however, can be easily adapted to any VA-based decoding strategy.
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0 l0 l1l0+1 l1 − 1 N − 1 N l1

Correct path C0

Decided (i.e., more likely) path

Figure 9.27 The correct path (dashed line) and the decided (i.e., more likely) path (continuous
line) in the trellis of a decoder for an eight-state convolutional code. The occurrence of an error
event starting (ending) at l0 (l1) is shown.

the end of the decoding procedure, it selects, from the ns available survivor paths, the one ending
in the state σN = 0, without making any comparison among their metrics.

Under these assumptions, in the trellis diagram of the given code the correct path is represented
by the unique horizontal path C0 emerging from the state σ0 = 0 and ending in the state σN = 0, as
illustrated in Figure 9.27. At the end of its processing, any ML decoder for the given code selects,
from all the possible paths originating from σ0 = 0 and ending in σN = 0, the one it deems most
likely. This path can differ from the correct one, as shown in Figure 9.27, where the decided path
separates from the correct one at the instant l0 and merges again with it at the later instant l1. When
this occurs, it is usually stated that an error event occurs at state (or node) σl0

= 0, and that this event
starts (ends) at the instant l0 (l1). Note that the presence of an error event in the decoding procedure
can entail the presence of a burst of incorrect bits in the estimated bits.

The probability that, during decoding, an error event occurs starting at a given instant l0 is called
the node error probability and denoted Pn[l0]. Generally speaking, it depends on l0. As shown in what
follows, the study of this probability provides all the conceptual tools needed to compute an upper
bound on the bit error probability Pb. For this reason, first we tackle the problem of estimating Pn[l0],
then that of estimating Pb. To do this, consider Figure 9.28, showing some potentially more likely
paths {Ci[l0], i = 1, 2, 3, . . . } (each associated with a distinct codeword) diverging from the correct
path C0 at l0 and merging again with it after an finite number of bit or symbol intervals. Generally
speaking, the number of error events that can start at l0 is limited (since, for any l0 between 0 and
N − 1, the instant li at which the event associated with Ci [l0] ends cannot exceed N, i.e. the final
epoch of the decoding procedure) and depends on l0.

If εi[l0] denotes the error event associated with the wrong path Ci[l0] (i = 1, 2, 3, . . . ), then:

ε[l0] =
⋃
i

εi[l0] (9.276)

represents the error event occurring when a node error of arbitrary length occurs at l0, so that the
node error probability Pn[l0] at l0 is given by:

Pn[l0] � Pr
{
ε[l0]
} = Pr

{⋃
i

εi [l0]

}
. (9.277)
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0 1 l0 N−1 N l

Correct path C0
Potentially more likely paths emerging from sl0 = 0

C3 [l0]

C2 [l0]

C1 [l0]

C0

Figure 9.28 The correct path (dotted path) and other more likely paths (continuous lines) sepa-
rating from it at l0.

It is important to note that the events {εi[l0], i = 1, 2, . . . } are not mutually exclusive, since, as shown
in Figure 9.28, incorrect paths can overlap in some clock intervals. This makes an exact evaluation
of Pn[l0] according to (9.277) infeasible. Despite this, applying the well-known union bound (4.17)
to (9.277) yields the upper bound:

Pn[l0] <
∑

i

Pr
{
εi[l0]

}
. (9.278)

The use of this expression requires (a) the probabilities {Pr
{
εi [l0]

}
, i = 1, 2, . . . } to be evaluated and

(b) all the possible incorrect paths associated with the events {εi[l0], i = 1, 2, . . . } to be identified.
Problem (a) will be discussed later. Here we limit ourselves to observing that the error εi [l0] refers to a
binary decision problem, involving the pair of paths Co and Ci [l0] only. For this reason, the probability
Pr
{
εi [l0]

}
is often called the pairwise error probability.34 As far as problem (b) is concerned, we

note that, since (9.278) represents an upper bound on Pn[l0], the intrinsic nature of this result remains
unchanged if in the sum appearing on its RHS the contributions coming from all the possible paths that
would merge in the reference (horizontal path) after an arbitrary number of bit intervals are added, as
if the length N of the transmitted codeword was infinite. This turns (9.278) into the new inequality:

Pn <

+∞∑
i=1

Pr
{
εi

}
, (9.279)

which includes in its RHS the contributions of all the incorrect paths separating from the reference
path C0 at the same instant, but remerging with it after an interval of arbitrary duration. Note that in
(9.279) the parameter l0 no longer explicitly appears, since, whatever its specific value, the evaluation
of the RHS of (9.279) always involves the same set of incorrect paths. Moreover, even if (9.279)
inevitably provides a looser result than (9.278), its evaluation is much simpler, as will become clearer
later.

34 In the decoding of trellis-based codes, this is also referred to as the probability of first error or the probability
of an error event.
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Let us now consider the problem of evaluating the average number of incorrect bits n̄(l0) generated
by an error event starting at l0. Generally speaking, this parameter is given by35:

n̄(l0) �
+∞∑
t=1

tPn,t [l0], (9.280)

where Pn,t [l0] denotes the probability that an error event starting at l0 generates exactly t information
bit errors in the estimated data sequence. Following the same line of reasoning as for deriving (9.279)
from (9.277), the upper bound (independent of l0):

Pn,t <

+∞∑
i=1

Pr
{
εt,i

}
(9.281)

on Pn,t [l0] can be easily derived. Here, the error event εt,i is associated, like εi in (9.279), with a binary
decision problem, since it refers to the selection of a path Ct,i[l0] (in place of C0) separating from
C0 at a given instant l0, and remerging with C0 after an arbitrary number of bit or symbol intervals,
but introducing exactly t incorrect information bits into the decoded data sequence. Therefore, the set
{εt,i} represents a subset of the events {εi} considered in (9.279) and the probability Pr

{
εt,i

}
is also

a PEP. Substituting (9.281) into (9.280) yields:

n̄ <

+∞∑
t=1

+∞∑
i=1

t Pr
{
εt,i

}
, (9.282)

where the dependence on l0 has been omitted for the reasons mentioned above.
The average number of incorrect information bits is an important parameter in the evaluation of

the bit error probability Pb. In fact, in each bit or symbol interval of the decoding procedure the noisy
data associated with k distinct information bits are received, the associated branch metrics for VA
processing are computed and the available survivors are updated. As the updating is done a new error
event can start; if this is the case, the average number of incorrect information bits that can appear
in the same clock interval is upper-bounded by the average number of incorrect information bits n̄

generated by the entire error event which, generally speaking, lasts for more than one interval. Then
Pb is upper-bounded by the ratio between the RHS of (9.282) and k, that is:

Pb <
1

k

+∞∑
t=1

+∞∑
i=1

t Pr
{
εt,i

}
. (9.283)

It is important to note that this result has been derived by concentrating on what can occur in a
single symbol interval of the decoding algorithm, as if in any interval a new error event could begin,
independently of other error events that occurred in previous intervals or can potentially appear in
future intervals. In other words, the correlation among multiple error events potentially occurring
in the same decoding procedure has been completely ignored. This pessimistic assumption greatly
simplifies the evaluation of an upper bound to Pb, but inevitably reduces its accuracy.

The use of the bounds (9.279) for Pn and (9.283) for Pb requires knowledge of the PEPs Pr
{
εi

}
and

Pr
{
εt,i

}
, respectively. These probabilities depend on the selected modulation format, on the channel

model and on the metric employed for the decoding procedure. Before discussing the problem of their
evaluation in some specific cases, it is useful to make the following general observations:

35 Note that if N is finite, the number of errors t is upper-bounded, since error events cannot have an arbitrary
length. Therefore, Pn,t [l0] becomes null when t exceeds a certain threshold, depending on l0.
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1. The quantity Pr
{
εi

}
represents the probability that the decoder selects the incorrect path Ci[l0]

instead of the correct one C0 (see Figure 9.28), that is, the probability that the increment in the
accumulated metric of the VA between l0 and the merging instant li along Ci[l0] is lower than
that occurring along C0 in the same time interval.36 Similarly for the probability Pr

{
εt,i

}
, which

refers to the case of an error event producing exactly t incorrect information bits.
2. In some specific scenarios, the derivation of closed-form expressions for the upper bound to Pn

(9.279) involves the use of the transfer function T (D) (9.224). This is not surprising, since this
function provides information about the number of paths having a specific Hamming distance
from the reference path C0 of Figure 9.28. Similarly, when the upper bound to Pb (9.283) is
evaluated, knowledge of the number of paths characterized by both a certain Hamming distance
dH from C0 and a certain number n of incorrect information bits is required. Unfortunately, this
information is not provided by T (D).

The latter point raises the issue of deriving a more general form of the transfer function. The new
form should enumerate the paths separating from the horizontal reference path, merging with it after
an arbitrary number of intervals and having specific characteristics in terms of the number of both
unit information bits (i.e., incorrect information bits) and unit coded bits (i.e., Hamming distance).
This function, known as the extended transfer function and denoted by T (D, I), can be evaluated
by extending the techniques illustrated for the computation of T (D) in a simple fashion. In fact,
after drawing the modified state transition diagram of the given convolutional code (see Example
9.2.5, and, in particular, Figure 9.18), the label Dwp,q I vp,q is associated with any state transition
σl = p → σl+1 = q, where D and I are two distinct formal variables, wp,q represents the weight of
the n-dimensional output vector generated by the encoder for the given transition, and vp,q denotes
the weight of the k-dimensional vector of information bits feeding the encoder input. Given the new
graph, the same techniques illustrated in connection with T (D) can be exploited to find T (D, I).
This procedure is illustrated in the following example for the same four-state code considered in
Example 9.2.5.

Example 9.2.10 The modified graph for the evaluation of the extended transfer function of the four-
state code of Example 9.2.5 is a simple extension of that of Figure 9.18 and is illustrated in Figure 9.29.

D I

D I

D2I D2D

I

D

0 01

3

2

Figure 9.29 Modified graph for the evaluation of the modified transfer function T (D, I) for the
four-state convolutional code characterized by the state diagram of Figure 9.14.

36 Note that Ci [l0] and C0 coincide up to l0, so that the accumulated metrics associated with these paths are initially
the same.
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The reader can verify that simplifying the graph as in Example 9.2.8 leads to the function:

T (D, I) = D5I

1 − 2DI
. (9.284)

Evaluating the division on the RHS yields the series:

T (D, I) = D5I + 2D6I 2 + 4D7I 3 + . . . =
+∞∑
d=5

2d−5DdId−4. (9.285)

This result reveals, for instance, the presence of a single path having distance 5 and a single incorrect
information bit, and of two paths having distance 6 and 2 incorrect information bits.

�

Note that, generally speaking, the extended transfer function of a binary convolutional code is given
by:

T (D, I) =
+∞∑
t=1

+∞∑
d=dfree

n (d, t)DdI t , (9.286)

where n(d, t) is the number of events in the set {εt,i} introducing exactly t incorrect information bits
and whose associated paths have a Hamming distance d from the reference path C0. The function
T (D, I) is a direct extension of T (D) and can be easily derived from it. In fact, we have:

T (D) = T (D, I)|I=1 (9.287)

and, in addition:

n (d) =
+∞∑
t=1

n (d, t) . (9.288)

We now discuss the application of these analytical tools to a specific communication scenario,
characterized by the following relevant features:

1. BPSK signaling is employed. This means that the binary codeword x � [x0, x1, . . . ] is mapped
into the symbol vector c � [c0, c1, . . . ], where cl = [c(0)

l , c
(1)
l , . . . , c

(n−1)
l ], c

(p)

l = 1 − 2x
(p)

l (so
that c

(p)

l ∈ {±1}), with l = 0, 1, . . . and p = 0, 1, . . . , n − 1.
2. The channel is affected by slow frequency-flat Rayleigh fading and the receiver processes the

ISI-free sample vector r � [r0, r1, . . . ], where rl = [r(0)
l , r

(1)
l , . . . , r

(n−1)
l ]:

r
(p)

l = a
(p)

l c
(p)

l + n
(p)

l (9.289)

and a
(p)

l and n
(p)

l are the fading distortion and noise affecting c
(p)

l (l = 0, 1, . . . and p =
0, 1, . . . , n − 1). Note that a

(p)

l is a complex Gaussian variable having zero mean and unit vari-
ance, and that the sequence of noise samples {n(p)

l } consists of iid complex Gaussian random
variables, all with mean zero and variance 1/(Ēs/N0) = 1/(RĒb/N0).

3. Bit level interleaving is used at the output of the convolutional encoder and its depth is large
enough to ensure the statistical independence of all the fading samples {a(p)

l }.
4. The receiver is endowed with ideal CSI, that is, it knows perfectly the fading gains {a(p)

l }; for
this reason coherent detection strategies can be adopted.
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In this scenario two different approaches to decoding the convolutional code can be envisaged. In
the first a hard decision x̂

(p)

l is taken on x
(p)

l processing r
(p)

l only, after compensating for the channel
distortion a

(p)

l . Then the VA is fed by the codeword estimate y � [y0, y1, . . . ] and operates according
to a hard decoding strategy. In the second case, the VA is fed by the soft data vector r and by the
CSI vector a � [a0, a1, . . . ], with al = [a(0)

l , a
(1)
l , . . . , a

(n−1)
l ] and l = 0, 1, . . . , and adopts a soft

input decoding strategy. These two situations are now analyzed in detail.

Hard Decoding
In this case the communication channel can be modeled as a BSC with transition probability (see
[1422, p. 774]):

p = 1

2


1 −

√√√√√ R
Ēb
N0

1 + R
Ēb
N0


 . (9.290)

Moreover, it can be proved (e.g., see [1485, pp. 304–310]) that:

Pr
{
εi

}
< BdH,i , (9.291)

where dH,i is the Hamming distance between the codeword associated with the reference path C0 and
that with the incorrect path Ci , and:

B �
√

4p (1 − p) (9.292)

is the so-called Bhattacharyya parameter. The behavior of B for 0 ≤ p ≤ 1 is illustrated in Figure 9.30,
which shows that, for p < 1/2, B is always smaller than unity. When this occurs, the bound on Pr

{
εi

}
expressed by the RHS of (9.291) reduces as dH,i gets larger. This suggests that, at large SNRs, the more
likely error events are those associated with the paths closer to C0 (i.e., having minimum Hamming
distance from it). Note also that, since (1 − p) ≤ 1, B satisfies the inequality:

B ≤ 2
√

p, (9.293)

which becomes an equality for p = 0 only; this bound represents an accurate estimate of B if p is
small, as seen in Figure 9.30.
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0.0
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p
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2p1/2

Figure 9.30 The Bhattacharyya parameter B (9.292) and its upper bound (9.293) versus the
transition probability p of the BSC.
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Then substituting (9.291) into (9.279) yields the bound:

Pn <

+∞∑
i=1

BdH,i , (9.294)

which can easily be rewritten as:

Pn <

+∞∑
d=dfree

n (d) Bd, (9.295)

by grouping, in the set {Ci, i = 1, 2, . . . }, all paths having the same Hamming distance from C0.
Finally, taking into account (9.224), (9.295) can be expressed more compactly as:

Pn < T (D)|D=B. (9.296)

A similar line of reasoning can be followed to evaluate the bound (9.283) on Pb. It is not difficult
to prove that the sum

∑+∞
i=1 t Pr

{
εt,i

}
is upper-bounded by:

+∞∑
d=dfree

tn (d, t) Bd, (9.297)

so that:

Pb <
1

k

+∞∑
t=1

+∞∑
d=dfree

tn (d, t) Bd . (9.298)

From (9.286) it is easily inferred that:

∂

∂I
T (D, I) =

+∞∑
t=1

+∞∑
d=dfree

tn (d, t)DdI t−1, (9.299)

so that:
∂

∂I
T (D, I)

∣∣∣∣
I=1

=
+∞∑
t=1

+∞∑
d=dfree

tn (d, t) Dd. (9.300)

Then from (9.298) it can be seen that:

Pb <
1

k

∂

∂I
T (D, I)

∣∣∣∣
I=1, D=B

. (9.301)

It is interesting to note that, for large SNRs, p (9.290) can be approximated as 1/(2RĒb/N0), so that

B �
√

2/(RĒb/N0) (see (9.293)). This result and (9.298) suggest that, for large SNRs, Pb decreases

inversely with the dfree/2th power of Ēb/N0. In other words, dfree/2 represents the achievable diversity
order provided by hard decoding of a binary convolutional code assuming a frequency-flat fading
channel and ideal interleaving.

Let us now apply the analytical results derived above to a specific coding scheme.

Example 9.2.11 The transfer function of the four-state binary convolutional code described by the
state diagram of Figure 9.14 is given by (9.222). Then the bound (9.296) becomes:

Pn <
B5

1 − 2B
. (9.302)
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The extended transfer function for the same code is given by (9.284), so that:

∂

∂I
T (D, I) = D5

(1 − 2DI )2 . (9.303)

Substituting (9.303) into (9.301) yields the bound:

Pb <
B5

(1 − 2B)2 . (9.304)

�

Soft Decoding
In this case the probability Pr

{
εi

}
of (9.279) is given by:

Pr
{
εi

} = Ea


Q



√

R
Ēb

N0

∣∣A (c − c(i)
)∣∣

√
2




 , (9.305)

since it refers to a binary decision problem, in which the Euclidean distance between the useful signal
component of r associated with C0 and that referring to Ci is

∣∣A (c − c(i)
)∣∣, where A = diag(a) is the

diagonal matrix of the fading gains and c(i) is the BPSK symbol vector associated with Ci . It is easy
to prove that: ∣∣A (c − c(i)

)∣∣2 = 4
∑

(l,p)∈�

∣∣∣a(p)

l

∣∣∣2, (9.306)

� being the set of values for the indexes (l, p) where the two vectors c and c(i) differ. Since the number
of differences between c and c(i) is equal to dH (c, c(i)), the sum

∑
(l,p)∈�|a(p)

l |2 is a central chi-square
random variable with 2dH (c, c(i)) degrees of freedom. Let χ2

2dH (c,c(i))
denote such a variable, so that

the probability in (9.305) can be put in the form:

Pr
{
εi

} = E
χ2

2dH


Q



√

R
2Ēb

N0
χ2

2dH (c,c(i))




 , (9.307)

showing its dependence on Ēb/N0 and on dH (c,c(i)) only (here E
χ2

2dH

(·) is a shorthand notation

to indicate a statistical average with respect to the random variable χ2
2dH (c,c(i))

). Then, following the
same line of reasoning as adopted for hard decoding, the bound (9.279) on Pn can be rewritten as:

Pn <

+∞∑
d=dfree

n (d) E
χ2

2d


Q



√

R
2Ēb

N0
χ2

2d




 . (9.308)

Similarly, the bound (9.283) on Pb can be put in the form:

Pb <
1

k

+∞∑
t=1

+∞∑
d=dfree

t n (d, t) E
χ2

2d


Q



√

R
2Ēb

N0
χ2

2d




 . (9.309)

Both these bounds require the evaluation of the same statistical average over χ2
2dH (c,c(i))

. Exploiting
the analytical results available in [1422, pp. 780–781], it can be shown that:

E
χ2

2d


Q



√

R
2Ēb

N0
χ2

2d




 =

[
1

2
(1 − µ)

]d d−1∑
k=0

(
d − 1 + k

k

)[
1

2
(1 + µ)

]k
, (9.310)
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where

µ �

√√√√√ R
Ēb
N0

1 + R
Ēb
N0

. (9.311)

It is interesting to note that, if RĒb/N0 � 1 (i.e., the SNR is large), (1 + µ) /2 � 1 and (1 − µ) /2 �
1/(4RĒb/N0) in (9.310). Then, since:

d−1∑
k=0

(
d − 1 + k

k

)
=
(

2d − 1

d

)
, (9.312)

(9.310) can be simplified as:

E
χ2

2d


Q



√

R
2Ēb

N0
χ2

2d




 �

(
2d − 1

d

) 1

4R
Ēb
N0




d

. (9.313)

This result and (9.309) together show that, for large SNRs, the bit error rate decreases inversely with
the dfree th power of Ēb/N0, so that the achievable diversity order provided by soft decoding is given
by dfree .

Let us now consider some error performance results for a specific coding scheme.

Example 9.2.12 Some BER results referring to the hard and soft decoding of the four-state code of
Example 9.2.5 are illustrated in Figure 9.31. AWGN and uncorrelated flat fading channels are consid-
ered and the upper bound on hard decoding performance based on (9.304) is shown for comparison.
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Figure 9.31 BER performance versus the average received SNR per bit (Eb/N0) for hard and
soft decoding of the four-state convolutional code of Example 9.2.5. The upper bound (UB) based
on (9.304) is also shown for comparison.
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Note that for the flat fading case the parameter p of (9.292) is given by (9.290), whereas for an AWGN
channel:

p = 1

2
Q

(√
R

2Eb

N0

)
. (9.314)

These results demonstrate that:

(a) the SNR gap between hard and soft decoding, which is about 2 dB for an AWGN channel, becomes
substantially larger in the presence of fading,

(b) the upper bound (9.304) becomes tighter as SNR increases in the presence of AWGN, but exhibits
a different behavior in the presence of fading,

(c) in the presence of flat fading the BER curves for hard and soft decoding exhibit different slopes,
since the achievable diversity order of the latter is twice that of the former,

(d) the performance gap between the two hard decoding curves is very large, and becomes substantially
smaller when soft decoding is used.

�

9.3 Classical Concatenated Coding
Powerful error-correcting coding schemes can be constructed by combining or concatenating two or
more component (convolutional or block) channel codes. This approach, introduced by G. D. Forney
in 1966 [1455], offers the significant advantage of achieving a large minimum Hamming distance
with limited decoding complexity. In fact, decoding is usually accomplished in a suboptimal fashion
by combining the decoding algorithms of the component codes. In this section, a short introduction
to code concatenation and a description of some classical concatenated coding schemes are provided.
The study of modern concatenated coding schemes is deferred to Chapter 10.

9.3.1 Parallel Concatenation: Product Codes

In a parallel concatenated coding scheme, multiple component codes are fed by the same input bits,
albeit possibly in a different order. Then, generally speaking, the resulting overall codeword derives
from the combination of parts of the codewords generated by the encoding algorithms of the component
codes. This class of codes is exemplified by the so-called product codes (PCs), which we analyze in a
two-dimensional context. A two-dimensional PC is generated by concatenating an (n1, k1) block code
C1 with a second (n2, k2) block code C2, both defined on the same field GF(q) and having minimum
Hamming distance d1 and d2, respectively. The encoding algorithm operates as follows (see Figure
9.32). First a k1k2 symbol message in stored in a matrix with k2 rows and k1 columns. Then each
row is encoded according to C1, so that a matrix of k2 rows and n1 columns is generated. To each of
these columns we next apply the encoding algorithm of C2. This produces a two-dimensional array
of size n1n2, representing the codeword of a two-dimensional code C with parity constraints on rows
and columns and having overall rate R = (k1k2)/(n1n2) = R1R2.

Note the following observations:

1. The resulting product codeword consists of four different sections: one containing the message
section, one of row parity check symbols, one of column parity check symbols and one of parity
on parity (PoP) symbols, as illustrated in Figure 9.32.

2. A two-dimensional code C can be seen as an example of parallel concatenation, since the codeword
generation mechanism involves two distinct encoding algorithms, fed by the same input bits, even
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if in a different order. Thus, PCs have inherent block interleaving between the encoders due to the
encoding of rows and then columns (or columns and then rows). This “interleaver” can be seen
as a rows-in-columns-out block interleaver (π ). Therefore, the encoder structure of a PC, when
PoP bits are transmitted, can be represented as shown in Figure 9.33.

3. Encoding of C retains the same complexity as that of the constituent codes.
4. The minimum Hamming distance of C is dH,min = d1d2.

As far as decoding and achievable performance are concerned, it is important to note that the
guaranteed error-correction capability of C is given by (see (9.29)):

t =
⌊

d1d2 − 1

2

⌋
(9.315)

if ML decoding is employed. In practice, however, decoding is usually accomplished in a suboptimal
fashion by resorting to a simple two-step procedure, which benefits from the availability of efficient
algorithms for the decoding of the constituent codes. In fact, row decoding is first done to remove at
least a fraction of the incorrect a bits (of course, incorrect decoding is possible). Then the columns
are decoded, as shown in the following example.

Example 9.3.1 Let us consider a PC constructed using the same block code for both row and column
encoding, namely the well-known (7, 4) Hamming linear block code over GF(2), described in Example

k2
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n2 – k2
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Codeword
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Codeword
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Figure 9.32 Two-dimensional product code with component codes C1 and C2.
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Figure 9.33 Encoder structure of a two-dimensional product code when the PoP symbols are
transmitted.
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9.1.1. Let us assume that the all-zero codeword has been transmitted and that the error pattern:

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

(9.316)

has been received. If we decode the rows first, then all seven errors can be corrected since there is only
one error per row, and the constituent codes are single error-correcting codes (with minimum Hamming
distance d1 = d2 = 3). Note, however, that the given PC has minimum distance dH,min = 3 × 3 = 9,
so that only the correction of the error patterns of weight 4 or less is guaranteed, provided that
ML decoding is employed. Despite this, our two-step decoding procedure can correct some specific
patterns containing significantly more errors as shown above.

�

Generally speaking, the two-step decoding procedure mentioned above is unable to correct all the
error patterns with t or fewer errors in the array. A more refined procedure based on multiple decoding
steps and exchange of soft information between them is illustrated in Section 10.5, where the PC is
treated as a form of turbo code.

Finally, it is important to point out that product codes can also be designed in a multidimensional
context. If the PoP bits are transmitted, a D-dimensional PC has rate R =∏D

l=1 Rl and minimum
Hamming distance dH,min =∏D

l=1 dl , where Rl and dl are the code rate and minimum Hamming
distance, respectively, of the lth component code.

The concept of parallel concatenation forms the basis for the so-called turbo codes, considered in
Chapter 10.

9.3.2 Serial Concatenation: Outer RS Code

In a serially concatenated coding scheme the component codes are arranged in a pipeline, as illustrated
in Figure 9.34, referring to one-level concatenation for simplicity. As for PCs, serial concatenation can
be seen as a tool for generating long codes while keeping the complexity of decoding at an acceptable
level. However, unlike parallel concatenation, the component codes of a serially concatenated scheme
are usually defined over different fields. This choice can be easily motivated by referring to Figure
9.34, where the data sequence feeds an (no, ko) encoder, called an outer encoder, generating no-
dimensional vectors (i.e., codewords) over GF(qki ). In this scheme each symbol in a codeword of the
outer code is represented as a ki -tuple of elements over GF(q); these ki-tuples, after interleaving (π ),
feed an (ni, ki) encoder, called an inner encoder, whose symbols are compatible with the modulator
and the channel. Decoding of these concatenated codes proceeds from the inside out. In other words,
any inner codeword is decoded in an independent fashion and each ki-tuple is sent to a deinterleaver
(π−1), at the output of which no-dimensional vectors over GF(qki ) are assembled. Finally, the outer
decoder processes these vectors, attempting to correct all the errors which have not been removed by
the inner decoder. Note that error bursts appearing at the output of the inner decoder are potentially
broken up by the deinterleaver. Despite this, multiple errors can appear in the long noki -dimensional
vectors over GF(q) processed by the outer decoder. For this reason, a powerful low-rate code (e.g.,
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Figure 9.34 Serially concatenated coding and decoding.

a convolutional code with large constraint length) is usually selected for the inner code, whereas
the outer code is normally a high-rate RS code, which lends itself to the correction of long error
bursts. This approach was adopted, for instance, in the coding standard adopted by NASA/ESA in
1987 for deep-space missions [1543] and in the ETSI DVB-T standard [595]. The use of TCM was
proposed for inner coding by R. H. Deng and D. J. Costello in [1544, 1545]. In addition, the problem
of the design and decoding of the serial concatenation of interleaved block and convolutional codes
was investigated in a unifying perspective by S. Benedetto et al. [1546]. This topic will be further
discussed in Chapter 10.

9.4 Historical Notes
The birth of channel coding and forward error correction coding dates back to the publication of
Shannon’s seminal work [1420, 1421] in 1948. Shannon proved that, on a noisy channel, if a long
code having a rate smaller than the channel capacity is selected in a random fashion, then there exists
a decoder such that, with high probability, the resulting communication scheme will achieve highly
reliable transmission, that is, a low probability of decoding error. However, Shannon did not give
any indication as to how such coding/decoding schemes could be devised. Solving this problem has
been the goal of intense research efforts in the last half century, during which various practical coding
schemes approaching channel capacity on well-understood channels have been devised. In this section
a brief history of traditional channel coding schemes is given. We begin with algebraic coding, which
dominated the first two decades of research; then we consider a different line of development, referring
to probabilistic coding, which encompasses convolutional codes, product codes and concatenated
codes. For each area only the most important results are cited. Additional information can be found
in [1465, 1547].

9.4.1 Algebraic Coding

Algebraic coding schemes were the main topic of research in the first decades of channel coding
history, as shown by the content of the various important textbooks on coding [1490, 1510,
1548–1551], mainly referring to linear block codes over finite fields. The first significant results
in this area concerned binary coding schemes devised for a power-limited AWGN channel. In
particular, the first nontrivial code to appear in the literature was the well-known (7, 4, 3) binary
code, developed by R. Hamming and mentioned by Shannon in his original paper [1420, 1421]. This
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code belongs to an infinite class of single-error-correcting binary linear codes devised by the same
researcher [1469] and illustrated in Section 9.1.4.4. Unfortunately, the real coding gain offered by
these schemes does not exceed about 3 dB, even with ML soft decoding. Shortly after the appearance
of Shannon’s paper, M. Golay published a half-page paper [1470] describing the perfect binary
linear (23, 12) triple-error-correcting code (having dH,min = 7) described in Section 9.1.4.7. In 1954
D. Muller proposed a new class of error-correcting codes [1471], to which shortly thereafter I. Reed
added an efficient decoding algorithm based on a simple majority-logic decoding rule [1472]; for
this reason this class of codes is known as Reed–Muller (RM) codes (see Section 9.1.5.2). RM
codes form an infinite class of codes with flexible parameters that encompasses several important
subclasses, such as SPC codes (see Section 9.1.5.1), extended Hamming codes, biorthogonal codes
and self-dual codes. For this reason, they represented an important advance over the Hamming and
Golay codes, whose parameters are much more restrictive.

The first decoding algorithms were all based on hard decision rules. A fundamental step in this
area was the introduction of soft decision decoding, that is, decoding strategies that take into account
the reliability of received channel outputs. The first strategy of this type was the Wagner decoding
algorithm described in [1502] and attributed to C. A. Wagner. This is an optimum strategy (in the
sense of attaining the minimum Euclidean distance) for the special class of (n, n − 1) SPC codes with
dH,min = 2 and is substantially simpler than exhaustive minimum-distance decoding.

In the 1960s further important steps were made in the development of new algebraic block codes.
At that time there was strong interest in designing codes with a guaranteed minimum distance dH,min
and whose algebraic structure offered the possibility of efficient error-correction algorithms. Research
efforts led to the development of the class of cyclic codes which, thanks to their nice algebraic
structure, admitted simple encoding and decoding procedures based on the use of cyclic shift registers
(see Section 9.1.4).

Cyclic codes were first investigated by E. Prange in 1957 [1473] and became the primary focus
of research after the publication of W. Peterson’s pioneering text in 1961 [1490]. The first important
results in this research area were the following:

1. The discovery of BCH and of RS codes in three independent papers in 1959 and 1960 [1474–1476]
(see also [1552]); the cyclic structure of these codes was recognized by Peterson in 1960 [1509].

2. The work of D. Gorenstein and N. Zierler [1511], who in 1961 devised an efficient decoding
procedure, in the spirit of that proposed by Peterson in the coded case [1509], for an obvious gen-
eralization over GF(qki ) of binary Bose–Chaudhuri codes. This procedure is commonly referred
to as the Peterson–Gorenstein–Zierler algorithm.

Binary BCH codes include a large class of t-error-correcting cyclic codes and are the most important
class of binary algebraic block codes. Despite this, they have not found many practical applications,
except as cyclic redundancy check codes for error detection in automatic repeat request strategies. In
contrast, nonbinary RS codes have proved to be highly useful in practice (although not necessarily in
cyclic form) and, as shown in Section 9.1.4.6, are optimum in the sense of achieving the so-called
Singleton bound. A fundamental property of RS and BCH codes is the availability of efficient algebraic
decoding algorithms on a finite-field arithmetic. The development of such algorithms was one of the
most active research areas of the 1960s. Significant contributions to this research area were made by
Berlekamp, Peterson and Massey [1509, 1510, 1512, 1553, 1554]. In particular, Peterson developed
an error-correction algorithm with complexity on the order of d3

H,min [1509], whereas Berlekamp
proposed an error-correction algorithm with complexity of order d2

H,min [1510, 1554]. This became
the standard for the next decade and is known as the Berlekamp–Massey algorithm, since it was
interpreted by Massey [1512] as a strategy for finding the shortest linear feedback shift register that
can generate a certain sequence. It was shown later that these algorithms could be extended to correct
both erasures and errors [1516] and even to exploit soft information [1494, 1495]. More recently,
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other algorithms for soft decoding of RS codes have been proposed by M.-S. Oh and P. Sweeney
[1555, 1556] and D. Burgess et al. [1557] (other trellis-based algorithms are mentioned below).

After the appearance of RS and BCH codes, significant research efforts were devoted to construct-
ing other coding schemes offering good properties in terms of coding and decoding complexity and,
at the same time, a large dH,min, and, from a theoretical point of view, to possibly developing asymp-
totically good codes, whose parameters achieved the so-called Varshamov–Gilbert lower bound. Here
we confine ourselves to mentioning two relevant contributions. The first is the development of a novel
class of nonbinary codes, based on the ancient theory of residue number systems [1558, 1559], and
was introduced in 1966 [1560]. This class includes the so-called redundant residue number system
(RRNS) codes, which are maximum–minimum distance block codes, exhibiting similar distance prop-
erties to RS codes. R. W. Watson and C. W. Hastings [1560] as well as H. Krishna et al. [1561, 1562]
exploited the properties of the RRNS for detecting or correcting a single error and also for detecting
multiple errors. Recently, the soft decoding of RRNS codes has been proposed by T. H. Liew et al.
in [1563] (see also [1564]). The second important contribution is the development of a new class
of block codes based on algebraic geometry (AG), that is, on algebraic curves over finite fields, by
V. D. Goppa in the late 1970s [1565, 1566]. In 1982 M. A. Tsfasman, S. G. Vlăduţ, and T. Zink
[1567], using modular curves, proved how asymptotically good AG codes could be constructed over
nonbinary fields GF(q) of size q ≥ 49. AG codes are usually much longer than RS codes and, even if
efficient decoding algorithms exist [1568], they have not yet been adopted for practical applications.
A survey of this field is available in [1569].

In 1997 M. Sudan [1570] introduced a list decoding algorithm37 based on polynomial interpolation
for decoding beyond the guaranteed error-correction distance of RS and related codes. Although in
principle there may be multiple codewords within such an expanded distance, with high probability
only one will be found. In 1999 V. Guruswami and M. Sudan [1498] derived an improved version of
this algorithm, which can be generalized to solve the list decoding problem for other algebraic codes,
and in 2003 R. Koetter and A. Vardy extended it to process soft decisions [1572]. Other significant
approaches to soft decision decoding algorithms were also developed in the same period; here we limit
ourselves to mentioning the ordered statistics approach proposed by M. P. C. Fossorier and S. Lin
[1496, 1497].

A different approach to decoding of block codes has been suggested by the possibility of rep-
resenting a block code by a time-varying trellis diagram. This idea was first presented by L. R.
Bahl, J. Cocke, F. Jelinek and J. Raviv in their well-known paper [1523], published in 1974; these
researchers, after describing an optimal decoding algorithm for linear codes, illustrated a method for
representing the words of an arbitrary linear block code by the path labels in a trellis. In 1978 J. K,
Wolf [1573] proved that soft decision ML decoding of any (n, k) linear block code over GF(q) can
be accomplished using the VA on a trellis with no more that qn−k states. For the next ten years, there
was relatively little work in this area. In 1988 D. J. Forney, in an appendix to a paper on coset codes
[335], described what he called “ the trellis diagram of a code”. This stimulated research interest on
trellis representations of block codes, which became an active research area during the 1990s. Some
of the most relevant contributions to this area have been offered by:

(a) D. J. Muder [1574], who proved that, among all trellises representing a given block code, the
Forney trellis minimized the number of vertices at each depth,

(b) F. R. Kschischang and V. Sorokine [1575], who developed many of the properties of the important
“trellis-oriented” generator matrices for the first time, and

(c) B. Honary, G. S. Markarian, P. G. Farrell et al., S. Lin and T. Kasami et al. [1576–1582], who
proposed various methods for reducing decoding complexity.

There have been many other significant contributions to this subject: excellent surveys of the main
results achieved in this field are offered by [1583, 1584].

37 List decoding was an unpublished invention of P. Elias [1571].
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9.4.2 Probabilistic Coding

Whereas the aim of algebraic coding theory is to devise specific (n, k) codes defined over finite fields
and maximizing the minimum Hamming distance dH,min between any pair of codewords, probabilistic
coding is more oriented to developing classes of codes that offer optimal average performance for a
given coding and decoding complexity. Classical coding schemes belonging to the latter class include
convolutional codes, product codes, concatenated codes, trellis-coded modulation, and block coding
schemes based on a trellis representation. This point of view on coding is emphasized by various
well-known textbooks (e.g., see [35, 321, 705, 1542, 1585, 1586]). Probabilistic decoders usually
process soft (reliability) information available at their inputs (and originating from channel outputs)
and generated at intermediate stages of the decoding process.

From a historical perspective, the first relevant example of probabilistic coding is represented by the
class of convolutional codes, first proposed by P. Elias in his seminal paper of 1955 [1477] (reprinted
in [1587–1589]). Elias showed that convolutional codes were simpler to encode than general linear
codes and had the same average performance as randomly chosen codes. It is worth noting that
R. Gallager’s doctoral thesis on LDPC codes, supervised by Elias, was also motivated by the problem
of finding a class of randomlike codes which offered quasi-optimal performance and could be decoded
near capacity with a feasible complexity [1590]. Elias and Gallager’s codes, seemingly so different,
can be represented as codes on graphs (see Chapter 10). From this perspective, a straight line of
development can be identified from Elias’s invention to modern capacity-approaching codes. This
development, however, took more than half a century.

Various important results were derived in the area of probabilistic coding in the 1960s and 1970s.
Shortly after Elias’s paper, J. M. Wozencraft recognized that the tree structure of convolutional codes
offers the possibility of using a sequential search algorithm for decoding [1537]. Sequential decoding
was investigated in depth in the 1960s. In this research area we mention the following results:

(a) the development of the fast, storage-free Fano sequential decoding algorithm [1538],
(b) the proof that the rate of a sequential decoding system is bounded by the computational cutoff

rate [1591], and
(c) the discovery of threshold decoding for convolutional codes by Massey [1592]. Burst-error-

correcting variants of threshold decoding developed by Massey and Gallager proved to be quite
suitable for practical error correction [1453].

The year 1967 saw the introduction of an asymptotically optimal decoding algorithm for
convolutional codes, the Viterbi algorithm [982, 1478, 1593]. It soon became apparent that relatively
short convolutional codes decoded by the VA were potentially quite practical [1594, 1595]. In the
following years the Linkabit Corporation, founded by Viterbi, I. Jacobs and L. Kleinrock, in 1968 as
a consulting company, built a prototype 64-state VA decoder, capable of running at 2 Mb/s [1596].
During the 1970s, through the leadership of Linkabit and the Jet Propulsion Laboratory, the VA
became part of the NASA standard for deep-space communication. Around 1975, Linkabit developed
a relatively inexpensive, flexible and fast VA chip. The VA soon began to be incorporated into many
other communications applications and became a more attractive alternative to sequential decoders.

Part of the attraction of convolutional codes is the inherent capability of their decoding algorithms,
like the VA, to use soft decisions without any essential increase in complexity. However, the VA does
not result, in principle, in the minimum possible BER, even if it performs close to it. An alternative
approach to soft decoding is to exploit algorithms that can compute (exactly or approximately) the
APP of each transmitted bit being a zero or a one, given the APPs of each received symbol. This
approach to decoding of error-correcting codes was first adopted by Gallager for LDPC codes [1590].
At about the same time, Massey [1592] developed an APP version of threshold decoding. However, the
adoption of the APP approach to trellis-based decoding of convolutional codes is due to Bahl, Cocke,
Jelinek and Raviv, who proposed the so-called BCJR algorithm in 1974 [1523]. This algorithm is a
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SiSo algorithm and is optimum in terms of bit error probability, but is substantially more complicated
than the VA, which offers similar error performance. For this reason, it began to attract substantial
interest only with the advent of turbo codes in 1993, since the BCJR was proposed as a key element
in their iterative decoding procedure [1481, 1597] (see Chapter 10). Since 1993, a large body of
work has been carried out in the area with the aim of reducing the complexity of SiSo decoding.
Practical reduced-complexity decoders are, for instance, the the Max-Log-MAP algorithm proposed
by W. Koch, A. Baier and J. Erfanian et al. [1524, 1598], the Log-MAP algorithm suggested by
P. Robertson et al. [1525], and the SOVA algorithm investigated by J. Hagenauer and P. Hoeher
[1535, 1599].

Other historically important results in the field of probabilistic coding concern product codes and
concatenated codes. The former were discovered by Elias before he invented convolutional codes
[1480] (see Section 9.3.1); he also proved that an arbitrarily low error probability could be achieved
at a nonzero code rate using a repeated product of extended Hamming codes. Forney introduced the
new class of concatenated codes in 1966 [1455]. In particular, he proposed to construct new binary
linear block codes by serially cascading two linear block codes, namely an outer nonbinary RS code
over a finite field GF(q) and an inner binary code. The overall result was a long, powerful code
with a simple, suboptimum decoder able to correct many combinations of burst and random errors.
Forney showed that with a proper choice of the constituent codes, concatenated coding schemes could
operate at any code rate up to the Shannon limit, with exponentially decreasing error probability, but
requiring only polynomial decoding complexity. Concatenation can also be applied to convolutional
codes. In fact, the most common concatenated code used in practice is that developed in the 1970s
as a NASA standard (already mentioned in Section 9.3.2); it consists of an inner rate-1/2, 64-state
convolutional code and an outer (255, 223) RS code over GF(256), separated by a symbol interleaver.
In the late 1980s a more complex concatenated coding scheme with iterative decoding was proposed
by E. Paaske [1600] and independently by O. Collins [1601], to improve the performance of the NASA
concatenated coding standard. Instead of a single outer RS code, Paaske and Collins proposed to use
several outer RS codes of different rates. After one round of decoding, the outputs of the strongest
(lowest rate) RS decoders may be deemed to be reliable and thus may be fed back to the inner (Viterbi)
convolutional decoder as known bits for another round of decoding. This use of iterative decoding
with a concatenated code can be seen as a precursor of turbo codes [1602].

9.5 Further Reading
This chapter has provided a summary of some essential results in classic coding theory. The reader
interested in further investigating these topics should refer to the well-known book by S. Lin and
D. J. Costello [35], which provides an exhaustive analysis of block and convolutional coding theory.
Finally, it is important to point out that various historical papers mentioned in the previous section
can be found in [1603].
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Modern Coding Schemes

10.1 Introduction
In the first 50 years in the history of coding theory many attempts were made by well-known theorists to
develop codes capable of approaching the Shannon limit with an underlying well-defined mathematical
structure to simplify decoding and with a randomlike codeword distribution to enhance the code
strength. As illustrated in the previous chapter, various well-structured error-correcting codes were
discovered by many researchers, including R. W. Hamming, P. Elias, I. Reed, G. Solomon, R. C. Bose,
D. K. Ray-Chaudhuri, A. A. Hocquenghem, R. Gallager, E. R. Berlekamp and A. J. Viterbi. However,
despite the invention of these coding schemes, significantly narrowing the energy gap with channel
capacity would not have been possible without the discovery of the concept of code concatenation (see
D. Forney’s book [1455] published in 1966). As already illustrated in Section 9.3, Forney proposed
to cascade (i.e., to serially concatenate) two relatively simple codes to generate an overall code (i.e.,
a concatenated code), offering large coding gains and with a decoding complexity that increases only
algebraically with block size. This approach is illustrated by the cascade of an (outer) algebraic code,
typically a Reed–Solomon code, with an (inner) binary convolutional code, as already discussed in
Section 9.3.2. In this case, the recommended decoding procedure typically consists of an inner soft
decoding based on the VA followed by an algebraic algorithm for hard decision decoding of the outer
code. Many years later, a substantially different approach to the problem of code concatenation and
the decoding of concatenated codes was proposed by C. Berrou, A. Glavieux and P. Thitimajshima
in 1993 [1481], who devised a new concatenated coding scheme, known as a turbo code, and a
new efficient iterative soft decoding strategy based on a modified version of the BCJR algorithm
[1523] and which approaches ML performance of the overall code. These technical solutions resulted
from a pragmatic construction and were partly based on the previous work and, in particular, on
the intuitions of G. Battail, J. Hagenauer, and P. Hoeher, who, in the late 1980s, had shown the
importance of probabilistic processing in digital communication receivers [1535, 1604, 1605]. It is
worth noting, however, that other researchers, including Elias, Gallager [1479], and M. Tanner [1606],
had already devised coding and decoding techniques whose general principles are closely related to
those of turbo codes. Since 1993, the properties of turbo codes have been extensively investigated
and have stimulated research activities on other randomlike coding schemes that lend themselves to
iterative soft decoding. The most famous example of this class of schemes is represented by LDPC
schemes, first introduced by Gallager in his Ph.D. dissertation [1590] and rediscovered [1607–1609]
as a category of codes approaching the Shannon capacity limit for AWGN channels with practical
decoding complexity. This is due to the fact that iterative soft decoding of LDPC codes is based on the
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so-called sum-product algorithm (SPA) [1610], which is simpler than the BCJR algorithm performed
on a trellis. The “turbo principle”, initially developed for iterative decoding of a specific class of
codes, has been also applied in areas other than error-correction coding, such as multiuser detection
and equalization [1611].

This chapter is focused on the study of modern concatenated coding schemes and is organized as
follows. Concatenated convolutional and block coding architectures are illustrated in Sections 10.2
and 10.3, respectively, whereas other concatenated coding schemes are described in Section 10.4.
Decoding strategies based on the turbo principle applied to this class of codes are derived in Section
10.5. The properties of LDPC codes and iterative decoding procedures for this class of codes are
illustrated in Sections 10.6 and 10.7, respectively. Section 10.8 analyzes the problem of code analysis
and decoding from a graph theory perspective. The history of modern coding schemes is outlined in
Section 10.9. Finally, some suggestions for further reading are provided in Section 10.10.

10.2 Concatenated Convolutional Codes
Convolutional encoders can be concatenated in different ways. In this section we focus on the
architecture of their concatenation in parallel concatenated convolutional codes (PCCCs) (also called
turbo codes), serial concatenated convolutional codes (SCCCs) and hybrid concatenated convolutional
codes (HCCCs).

10.2.1 Parallel Concatenated Coding Schemes

The typical structure of a turbo encoder is illustrated in Figure 10.1. It consists of: two identical
binary recursive systematic convolutional (RSC) encoders each of rate 1/2 and each with ν memory
elements (i.e., 2ν states); and a pseudorandom N-bit interleaver denoted by π in the figure. The first
component (RSC) encoder generates the parity sequence {c1, l , l = 0, 1, . . . , N − 1} in response to
its input sequence {ul, l = 0, 1, . . . , N − 1}, consisting of k information bits plus ν termination bits
(so that N = k + ν), forcing the encoder to return to its initial state (e.g., the 0 state); this means
a tail-biting mechanism is used for trellis termination of the given encoder (further details can be
found in [37, pp. 183–184] and [1612]) or, equivalently, that a circular RSC is used [1605]. The
second constituent (RSC) encoder is fed by a permuted version1 {up,l, l = 0, 1, . . . , N − 1} of {ul}
and generates the parity sequence {c2,l , l = 0, 1, . . . , N − 1}. An optional puncturing mechanism can
be included in the scheme to modify, when needed, the overall code rate by discarding a part of the
parity sequences {c1,l} and {c2,l} [1613, 1614]. In the absence of puncturing the transmitted codeword
{xn} simply consists of the concatenation of the sequences {ul}, {c1,l} and {c2,l}, so that the codewords
have length n = 3N and the resulting code rate is R = k/n = (N − ν)/(3N) ∼= 1/3 for large N.

The following comments are in order concerning the architecture depicted in Figure 10.1, and
should be carefully kept in mind when employing it:

1. Long codewords should be generated to approach the Shannon limit. In particular, simulation results
suggest that the information block length N (and, consequently, the interleaver size) should be
chosen to be several thousand bits long. For instance, data blocks of length N = 65 536 and a 256 ×
256 interleaver were adopted in generating the first available results on code performance [1481].

2. Equal RSC encoders with a small number of states (e.g., 16 states) are commonly used as constituent
codes to achieve excellent performance at moderate BERs [1615, 1616]. Alternatives to this choice
include the use of asymmetric RSC constituent codes [1617] and block codes (see the next section).
The most important parameter in the selection of an RSC code is its effective free distance df,eff ,

1 Note that this encoder may or may not be terminated [1605]. This does not have a significant effect on error
performance for long codewords.
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Figure 10.1 Typical PCCC encoder structure.

defined as the minimum weight of the code sequences generated by all possible input sequences of
weight 2 [1615]; tables showing the best encoders for various rates are available in [1618, 1619].

3. Puncturing can also be adopted for the information sequence {ul, l = 0, 1, . . . , N − 1} to generate
partially systematic or nonsystematic turbo codes [1620].

4. The size of the pseudorandom interleaver plays a fundamental role, since it influences the min-
imum Hamming distance of the overall turbo code (see Section 10.5.4) and, consequently, the
achievable performance gain [1616, 1621]. Thus, it should be considered as a constituent compo-
nent of the overall concatenated code. Despite the strong interdependency between the RSC codes
adopted and the interleaver in determining the error performance of a turbo code, their joint design
is too ambitious a target. This explains why a decoupled procedure has been proposed; in this
case convolutional codes are selected first and then interleaving is tailored to their characteristics
[1546, 1621]. Note also that conventional block interleavers, which rearrange the bits in some
systematic fashion, do not yield good error performance, except for relatively short block lengths
[1622]. In addition, the interleaver does not change the weight of the permuted sequence {up,l}
with respect to that of {ul}.

5. This turbo coding scheme is linear since its constituent codes are linear, and the interleaver is linear
since it can be represented by a permutation matrix. Note, however, that the interleaver, being a
constituent part of the overall encoder, leads to a trellis representation of this coding scheme with
a huge number of states (the overall code trellis is commonly called a hypertrellis). This explains
why classic trellis-based ML or MAP decoding algorithms cannot be exploited in this case and
clever suboptimal strategies need to be devised.

6. The scheme of Figure 10.1 can easily be generalized by concatenating in a parallel fashion Ne RSC
encoders, of which (Ne − 1) are fed by the input sequence according to different random rules. This
leads to the concept of multiple parallel concatenated code (MPCC) [1605, 1623–1625], offering
improved minimum Hamming distance compared to single parallel concatenation. However, upper
bounds on this parameter show that these codes cannot be asymptotically good, since they are
not characterized by a minimum distance growing linearly with block length [1626]. Despite this,
excellent performance can be achieved with only two encodings, that is, with the classic scheme
of Figure 10.1.

Further details on the design criteria to be adopted with PCCCs can be found in [1615, 1616].
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The genesis of the architecture of Figure 10.1, originally proposed in [1481], is discussed in detail
in [1605]. Its motivations, from an encoding perspective, can be summarized as follows. Berrou
and Glavieux were looking for a symmetric concatenation scheme and this concern led to parallel
concatenation, in which, unlike in its serial counterpart, component codes play similar roles. Among
the possible component codes, convolutional codes were selected due to the availability of SiSo
decoding algorithms (namely, the BCJR algorithm), which could be combined in accordance with a
feedback architecture. The selection of a recursive systematic structure for the convolutional encoders
was suggested, in part, by the important theoretical results developed by Forney in this research area
and, in particular, in the paper [1517], showing that the encoder of a convolutional code can take a
nonrecursive nonsystematic or a recursive systematic form (see Section 9.2). Turbo encoders are based
on the second form, which, unlike the first, incorporates a pseudorandom scrambler and, from this
perspective, satisfies the need to develop randomlike coding schemes to approach channel capacity
[1625], as concluded by Shannon theory. In particular, nonrecursive encoders produce finite-length
codewords in response to input sequences of weight 1 (unlike their recursive counterparts that produce
infinite-length codewords). In Section 10.5.4 we will show that this property plays a fundamental role
in achieving the excellent performance offered by turbo codes.

10.2.2 Serially Concatenated Coding Schemes

Using the same ingredients as PCCCs, namely convolutional encoders and interleavers, SCCCs can
easily be developed. The general structure proposed in [1546] for the encoder for an SCCC is illustrated
in Figure 10.2(a). In this case, an outer convolutional encoder (CE) with rate Ro = k/p feeds a
pseudorandom interleaver (π , with a length N that is a multiple of p). Its output is sent an inner CE
with rate Ri = p/n. This generates an SCCC with rate Rs = k/n. RSC codes can be used in this case
too, as shown in Figure 10.2(b), describing the serial concatenation of two CEs with Ri = Ro = 1/2.
The overall code rate Rs = 1/4 can be increased by resorting to a proper puncturing mechanism
[1614]. Important design guidelines for SCCCs are developed in [1546], where it is shown that: first,
it is essential to select an RSC encoder for the inner encoder, since this always yields an interleaver
gain (defined as the factor by which the bit error probability is decreased with the interleaver length
at a given SNR); and second, good outer RSC codes maximize the effective free distance of the inner
encoder di

f,eff (defined, as above, as the minimum weight of the codewords of the inner code generated
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Ri = p /n

SCCC, Rs = k /n
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Figure 10.2 (a) General encoder structure of an SCCC scheme and (b) a specific implementation
based on the use of two punctured RSCs.
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Figure 10.3 General encoder structure of a coding scheme based on hybrid concatenation.

by input sequences of weight 2). Finally, to obtain compatibly with the desired rate Rs , an outer code
with a large (and, possibly, odd) value of the free distance do

eff should be selected.
The scheme of Figure 10.2(a) was extended in [1627], where double serially concatenated codes

were introduced. In this case, the encoder consists of three cascaded encoders, linked by two inter-
leavers of different lengths. This concept can be further generalized, leading to multiple serially
concatenated codes (MSCCs). Such codes, unlike MPCCs, can be asymptotically good in terms of
minimum Hamming distance, as has been shown in [1628] in the specific case of the so-called repeat
and accumulate (RA) coding (see Section 10.4). However, the performance of feasible (i.e., iterative)
decoding strategies degrades with the number of constituent codes, and this makes coding schemes
with more than three serially concatenated component codes impractical [1629].

Generally speaking, SCCCs offer a larger interleaving gain (i.e., a faster decrease in the bit error
probability with interleaver length) than their parallel concatenated counterparts. Further details are
provided in Section 10.5.4, where the achievable error performance is discussed.

10.2.3 Hybrid Concatenated Coding Schemes

The concept of code concatenation can be further generalized. In principle, various code networks,
consisting of Q codes connected through Q − 1 interleavers according to a specific topology, can
be devised, as proposed in [1630]. A code network can be considered as a unique code with huge
ML decoding complexity. Hence, as shown in Section 10.5, practical decoding techniques employ a
distributed approach, based on the use of a multiplicity of connected modules mutually exchanging
information.

An example of a code network is the so-called hybrid concatenation based on the topology of
Figure 10.3(a) [1631]. This case is characterized by Q = 3, that is, it is based on the use of a parallel
code, an outer code and an inner code (their encoders are denoted by Ep , Eo and Ei , respectively)
linked by two interleavers (π1 and π2). A specific hybrid scheme, based on the concatenation of three
convolutional codes and called an HCCC, is described in [1632, 1633], where it is shown that, to
maximize the interleaving gain of this coding scheme, the following types of component codes should
be used: first, RSC codes should be used for both the inner and the parallel codes; and second, a
recursive or nonrecursive convolutional code with large free distance do

free should be used for the
outer code.

Hybrid concatenated codes offer more degrees of freedom in code design and the opportunity to
combine the advantages of parallel and serially concatenated coding systems. In particular, hybrid
schemes whose minimum distance increases linearly with block lengths can be devised [1629].

10.3 Concatenated Block Codes
Concatenated schemes employing block codes as constituent codes were proposed much earlier (e.g.,
see [1455, 1480]) than their counterparts based on convolutional codes and illustrated in the previous
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section. However, after the appearance of turbo codes it soon became clear that their decoding
philosophy and some of the tools for the analysis of their performance could be also adopted for
the parallel and serial concatenation of linear block codes, as illustrated below.

The parallel concatenation of two or more systematic linear block codes leads to two-dimensional
or higher-dimensional product codes, respectively (see Section 9.3.1). A product code can be thought
of as a concatenated coding scheme with block interleaving between the inputs of the coding stages.
Note that the first algorithms proposed for this class of codes were not ML and gave rather poor
results because they relied on hard input, hard output decoders [1634, 1635]. The exploitation of the
turbo decoding philosophy for product codes was first proposed by J. Lodge, R. Young, P. Hoeher and
J. Hagenauer [1636] (see also [1100]) and led to a substantial improvement of the error performance
at a complexity appreciably lower than that of ML decoding; the combination of turbo decoding
with a product code is usually called a block turbo code (BTC) [1637] or turbo product code (TPC)
[1638]. BTCs are commonly based on classic linear block codes, namely Hamming codes [1100,
1639], extended Hamming codes [1636, 1638–1640], BCH codes [1637, 1503], extended BCH codes
[1641], RS codes [1642] and SPCs [1643–1645]. Conventional two-dimensional product codes offer
good error protection, but contain excessive redundancy. This is due the fact that the horizontal code
C1 (see Figure 9.32) provides the vertical code C2 with information on many error patterns exceeding
the error-correction capability of C2. However, code construction procedures for redundancy reduction
can be devised, as illustrated in [1646]. Finally, it is worth mentioning the following:

1. Two-dimensional binary product codes can be exploited as a basis for the construction of efficient
nonbinary concatenated coding schemes with a simple decoding procedure, as shown, for instance,
in [1647].

2. Analytical tools for the evaluation of the error performance of turbo codes can also be applied to
the parallel concatenation of block codes [1616], so that design criteria for the latter can be derived.

In the last decade less attention has been paid to the problem of designing specific schemes based
on the serial concatenation of block codes. The only significant advance in this area is represented
by the work by S. Bendetto et al. [1546], who have derived upper bounds to the average performance
offered by ML decoding over an AWGN channel of serially concatenated block and convolutional
coding schemes. Such bounds are exploited to derive some design guidelines for the inner and the
outer encoder in order to maximize the interleaver gain and the asymptotic slope of the error proba-
bility curves. This does not mean, however, that interest in serial concatenation has disappeared. In
fact, several coding schemes of this type have been proposed in recent years, as illustrated in the
following section.

10.4 Other Modern Concatenated Coding Schemes
After the discovery of turbo codes in 1993 and of analytical tools for their analysis [1616, 1615,
1630], it soon became apparent that novel concatenated coding schemes, characterized by multiple
codes connected through interleavers according to a specific topology and exhibiting a “turbo-like”
behavior, could be devised [1648, 1649]. Some of these schemes are described below.

10.4.1 Repeat and Accumulate Codes

The encoder structure of an RA encoder is illustrated in Figure 10.4. An information block u (usually
binary) of length N is repeated n times and permuted by an interleaver of length nN. Then the
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Figure 10.4 Encoder for an (nN , N) RA code. The numbers below the input–output lines indicate
the size of the corresponding binary vectors.

interleaver output is encoded by a rate-1 accumulator, operating according to the input–output rela-
tionship xl = xl−1 + zl evaluated over GF(2). The accumulator can be seen as a truncated rate-1
two-state convolutional encoder with transfer function g(D) = 1/(1 + D) or as a rate-1 binary block
code whose input–output relationship is x = zG, where G is an nN × nN matrix with 1s on and above
its main diagonal and 0s elsewhere. This structure was first proposed in [1648], where it was shown
that ML decoding of RA schemes can achieve excellent performance and, in particular, an arbitrarily
low word error probability for sufficiently low rates and any fixed SNR greater than a threshold as
the block length goes to infinity (i.e., as N → ∞).

The significant results achieved for RA codes show that powerful error-correcting codes may be
constructed from extremely simple components. Following this approach other coding schemes have
been proposed. Here we mention the following schemes:

1. The serial concatenation of an arbitrary binary linear outer code of rate R < 1 with multiple identical
rate-1 binary linear inner codes [1650]. A specific example is the class of so-called convolutional
accumulate-m (CAm) codes, having a terminated convolutional code as outer code and a cascade
of m interleaved “accumulate” inner codes.

2. The product accumulate (PA) codes, each resulting form the serial concatenation of a specific SPC-
based product code with an interleaved rate-1 inner code (i.e., an accumulator, as in RA codes)
[1651]. These codes exhibit a remarkably good error performance at high rates (R > 0.7) when
properly decoded (via an iterative message-passing algorithm).

3. The serial concatenation of extended Hamming codes with a binary accumulator [1652]. This class
of codes can also achieve near Shannon limit performance for very high rate coding if iterative
decoding is used.

It is important to note that the binary accumulator adopted in all the above-mentioned coding
schemes can also be seen as a differential encoder. This consideration has led to the study of serially
concatenated schemes in which an outer encoder is connected to a differentially encoded digital
modulator through an interleaver; such schemes are discussed in the next subsection.

10.4.2 Serial Concatenation of Coding Schemes and Differential
Modulations

The serial concatenation of an interleaved convolutional code with a differential modulation (e.g., a
differentially encoded PSK or a CPM) has been proposed in various papers [531, 1653, 1654]. This
work was motivated by the fact that differential modulations can be noncoherently detected (this is
a substantial advantage in the presence of excessive phase noise and/or when the communication
system is operating at low SNRs) and that iterative decoding schemes explicitly developed for serially
concatenated codes can be adopted for these schemes. The results shown in the above-mentioned
references provide evidence that ML decoding of the proposed schemes offers substantially better
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performance than that offered by the stand-alone outer convolutional code, even on an AWGN channel
[1653, 1654] or a phase-noisy AWGN channel [1655]. Since the differential decoder has a trellis
structure, the performance of ML decoding can be approached using an iterative solution based on
soft output decoding algorithms devised for turbo codes if the channel is AWGN [1654]; however,
if the channel is affected by fading, a specific APP demodulation algorithm must be developed. For
instance, in [531] an APP multiple-symbol differential demodulator is developed for a differentially
encoded PSK modulation transmitted over a time-selective fading channel.

Further research work in this area has mainly been concerned with the study of interleaved block
codes serially concatenated with differential modulators [1656–1658]; in particular, [1656] provides
design guidelines to develop good LDPC codes for differential modulators, while [1657] investigates
the use of differential parity check (DPC) codes concatenated with differential PSK. Finally, the use of
a convolutional encoder concatenated with the cascade of two interleaved differential encoders (i.e.,
with a couple of interleaved accumulate codes) is investigated in [1659].

10.5 Iterative Decoding Techniques for Concatenated Codes
In this section the application of the so-called turbo principle to the decoding of concatenated codes is
discussed. The principle is introduced in Section 10.5.1, where the key concept of extrinsic information
and its exploitation in the iterative decoding of a parallel concatenated scheme based on a specific
SPC code are analyzed. This preliminary discussion illustrates the need to devise SiSo algorithms
for the component codes of concatenated schemes. Different types of these algorithms are illustrated
in Section 10.5.2, and some of their applications are considered in Section 10.5.3. Finally, some
indications of the performance bounds available for turbo codes and other concatenated schemes are
provided in Section 10.5.4.

10.5.1 The Turbo Principle

The iterative (i.e., turbo) decoding strategy proposed by Berrou et al. in 1993 for the PCCCs [1481]
originated from the intuition that the feedback concept, which plays a fundamental role in electronics,
could also be exploited for the decoding of compound (concatenated) codes [1605]. In fact, such a
strategy is based on a feedback decoding scheme, in which the decoders for the component codes
operate alternately and exchange soft information between consecutive decoding stages with the aim
of iteratively refining their data estimates. Therefore, in principle, the overall decoding architecture
for a given concatenated coding scheme includes as many decoders as the component encoders of the
scheme itself. These decoders are interconnected to exchange soft (feedback) information and each
of them accomplishes as many decoding passes as the number of iterations. In practice, however,
iterative decoding can be implemented by resorting to a modular pipelined architecture, in which
each module first carries out a single decoding stage for all the component codes and then sends the
generated soft information to the next module. Therefore, in this scheme each module implements a
set of SiSo algorithms for decoding all the component codes.

In designing turbo decoding, one of the crucial problems to be solved was understanding the type
of information to be exchanged between interacting decoders, since feedback systems can exhibit an
unstable behavior; in other words, cascading multiple decoding stages can result in a sort of positive
feedback amplifier. The issue of stability was solved by introducing the notion of extrinsic information,
whose meaning is explained through the following example, that analyzes the evaluation of the APPs
of the information bits for a simple channel coding scheme.

Example 10.5.1 Let us consider a (3,2) SPC code, that is, a code adding a single parity bit to the
message u = [u0, u1], so that the elements of the resulting codeword x = [x0, x1, x2] are given by
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x0 = u0, x1 = u1 and:
x2 = u0 � u1, (10.1)

where � denotes the sum over GF(2). If x is transmitted over a slow time-selective fading channel
using BPSK, the receiver observes, at its matched filter output, the vector y = [y0, y1, y2], with:

yi = hi(2xi − 1) + ni (10.2)

and i = 0, 1, 2. Here, the noise samples {ni} are iid complex random Gaussian variables, each with
zero mean, variance2 σ 2

n and iid real and imaginary parts. In addition, hi denotes the fading distortion
(assumed known at the receiver in what follows) affecting the transmitted signal in the ith symbol
interval, with i = 0, 1, 2. Let us now analyze the problem of devising a SiSo decoding procedure that
processes y and generates the bit APPs:

Pr{uk = b|y, h} = Pr{xk = b|y, h} (10.3)

for b = 0, 1 and k = 0, 1, or, alternatively, the so-called log-likelihood ratios:

L(uk|y, h) � ln
Pr{xk = 1|y, h}
Pr{xk = 0|y, h} (10.4)

for k = 0, 1. To simplify the derivation of such a procedure, we focus on the evaluation of the LLR
(10.4) for the bit x0:

L(u0|y, h) = ln
Pr{x0 = 1|y0, y1, y2, h}
Pr{x0 = 0|y0, y1, y2, h} . (10.5)

It is worth noting that all the elements of y are useful in estimating x0, even if y0 depends directly
on x0 only. In fact, since (see (10.1)):

x0 = x1 � x2, (10.6)

y1 and y2 also provide, if jointly processed, useful information about x0. Since:

Pr{x0 = 1|y, h}
Pr{x0 = 0|y, h} = Pr{x0 = 1}

Pr{x0 = 0}
f (y|x0 = 1, h)

f (y|x0 = 0, h)
(10.7)

from Bayes’ theorem, L(u0|y, h) (10.5) can be expressed as:

L(u0|y, h) = L(u0) + ln
f (y|x0 = 1, h)

f (y|x0 = 0, h)
(10.8)

where

L(ui) � ln
Pr{ui = 1}
Pr{ui = 0} (10.9)

represents the LLR associated with the a priori information available about ui (the a priori LLR). The
LLR expression (10.8) can be further modified to put it in a more meaningful form. This requires
some manipulation of the second term on the RHS. If we note that:

f (y|x0 = b, h) =
1∑

l=0

Pr{x1 = l} f (y|x0 = b, x1 = l, h) (10.10)

2 In practice, σ 2
n = 2N0/Ēs if the channel noise variable is complex and σ 2

n = N0/Ēs if we retain only the real or
the imaginary part of noise.
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and

f (y|x0 = b, x1 = l, h) = f (y0|x0 = b, h0) f (y1|x1 = l, h1) f (y2|x2 = b ⊕ l, h2), (10.11)

it is not difficult to show that:

ln
f (y|x0 = 1, h)

f (y|x0 = 0, h)
= Lc(y0) + Le(u0), (10.12)

where

Lc(yi) � ln
f (yi |xi = 1, hi)

f (yi |xi = 0, hi)
(10.13)

and

Le(u0) � ln

1∑
l=0

Pr{x1 = l}f (y1|x1 = l, h1) f (y2|x2 = 1 ⊕ l, h2)

1∑
l=0

Pr{x1 = l}f (y1|x1 = l, h1) f (y2|x2 = l, h2)

. (10.14)

The last two expressions show that the quantities Lc(y0) and Le(u0) of (10.12) represent the
contributions to (10.8) acquired through the noisy datum y0 generated by the channel3 in response to
x0 (i.e., u0) and through the data pair {y1, y2} thanks to the parity check equation (10.6). Therefore,
Lc(y0) is usually called the channel LLR, while Le(u0) is called the extrinsic LLR, as it is not
intrinsically influenced by u0. Finally, substituting (10.12) into (10.8) yields the equality:

L(u0|y, h) = L(u0) + Lc(y0) + Le(u0). (10.15)

Moreover, from (10.13) it is easily inferred that, for the given channel model (see (10.2)):

Lc(yi) = 4 Re{yih
∗
i }

σ 2
n

. (10.16)

The relationship (10.15) reveals the real structure of the data APPs, each consisting of three distinct
contributions. Note that the first two of them, namely both L(u0) (see (10.9)) and Lc(y0) (see (10.16))
are available before decoding, that is, before computing the bit APPs; this means that the only additional
information generated by a MAP decoding procedure that evaluates the data LLRs {L(uk|y, h)} (10.4)
is represented by the extrinsic LLRs {Le(uk)}. In other words, referring to (10.15), it can be stated that
Le(u0) represents the improvement in our knowledge concerning the value of the bit u0 acquired from
decoding. These considerations suggest exploiting the extrinsic information about the information bits
(such as u0 and u1) as a priori values in an iterative (turbo) decoding strategy for a concatenated
coding scheme using the above-mentioned SPC code as a component code. This is further discussed
in Example 10.5, where a specific product code is considered.

Finally it is important to note that, since:

Pr{xk = 1}
Pr{xk = 0} = exp [L(xk)] (10.17)

and
f (yk|xk = 1, hk)

f (yk|xk = 0, hk)
= exp [Lc(yk)], (10.18)

the LLR Le(u0) (10.12) can easily be put in the form:

Le(u0) = exp [Lc(y2)] + exp [L(x1)] exp [Lc(y1)]

1 + exp [L(x1)] exp [Lc(y1)] exp [Lc(y2)]
. (10.19)

3 Note that this term is not influenced by the presence of channel coding.



Modern Coding Schemes 451

Then, if we define the commutative operator ♦ through the relationship:

L1 ♦ L2 � ln
exp (L1) + exp (L2)

1 + exp (L1 + L2)
(10.20)

involving the pair of LLRs L1 and L2, (10.19) can be rewritten as (see also (10.6)):

Le(u0) = Le(x1 � x2) = Lc(y2)♦[Lc(y1) + L(x1)]. (10.21)

Finally, we note that (10.20) can approximated as (e.g., see [1100], p. 430, eq. (12)):

L1♦L1 ≈ (−1) sgn [L1] sgn [L2] min (|L1|, |L2|), (10.22)

which lends itself to a simple implementation and, in particular, does not require the computation of
exponentials.

�

Generally speaking a SiSo decoder, such as that illustrated in the previous example, can be
represented by the block diagram of Figure 10.5. This decoder processes the a priori LLRs {L(ui)} for
all the information bits (not the parity bits) and the channel LLRs {Lc(yi)} for all the coded bits (see
the following example) and generates the extrinsic values {Le(ui)} and the data LLRs {L(ui |y, h)}
for all the information bits.

The availability of SiSo decoding algorithms allows us to adopt a turbo approach to the decoding of
concatenated codes, as illustrated in the following example for a specific two-dimensional product code.

Example 10.5.2 Let us now use the (3,2) SPC code of Example 10.5.1 to generate the rate-1/2 two-
dimensional product code whose structure is illustrated in Figure 10.6 (note that the PoP bit is missing
in the code matrix). In this case the binary message u = [u0, u1, u2, u3] is encoded into the codeword
x = [x0, x1, x2, x3, x12, x34, x13, x24] with xi = ui for i = 1, 2, 3, 4 and:

x12 = x1 � x2, x34 = x3 � x4,

x13 = x1 � x3, x24 = x2 � x4. (10.23)

Input log-likelihood
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SiSo
Decoder
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h

Output log-likelihood
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{L (ui)}
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{Le(ui)}

{L (uiy, h)}

Figure 10.5 SiSo decoder structure.
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x13 x24

x13 = x1 x3

x12 = x1 x2

x34 = x3 x4

x24 = x2 x4

Figure 10.6 Two-dimensional product code of Example 10.5.

If we adopt the same channel model as in Example 10.5.1, the receiver observes:

y � [y1, y2, y3, y4, y12, y34, y13, y24] (10.24)

where
yi = hi(2xi − 1) + ni (10.25)

with i = 1, 2, 3, 4, and:
yij = hij (2xij − 1) + nij (10.26)

with (i, j) ∈ {(1, 2), (3, 4), (1, 3), (2, 4)}. Here, {ni, nij } and {hi, hij } denote the usual noise and fading
variables, respectively.

APP decoding of this code requires the evaluation of the LLRs:

L(uk|y, h) = L(xk|y, h) � ln
Pr{xk = 1|y, h}
Pr{xk = 0|y, h} (10.27)

with k = 0, 1, 2, 3. In principle, the probabilities {Pr{xk = b|y}, k = 0, 1} of (10.27) can be com-
puted as:

Pr{xk = b|y, h} =
∑
x̃∈Cb

Pr{x = x̃} Pr{xk = b|y, x = x̃, h}, (10.28)

where Cb represents the subset4 consisting of all the codewords for which xk = b, with b = 0, 1
and Pr{x = x̃} = 1/16 under the assumption of equally likely codewords. For this code, both C0 and
C1 consist of eight codewords and this makes the computation of the probability Pr{xk = b|y, h}
through (10.28) feasible. However, for product codes of practical interest the use of (10.28) entails an
unacceptable computational burden. This motivates the search for novel algorithms able to efficiently
estimate the LLRs (10.27). In what follows we show an iterative (turbo) procedure for this specific
application. Its extension to a general two-dimensional product code is discussed in Section 10.5.3.
This procedure is based on the availability of the SiSo decoding procedure illustrated in Example
10.5.1 and on its exploitation for alternately decoding (with an exchange of soft information) the

4 The subsets C0 and C1 form a partition of the codeword set.
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two component codes of the given scheme. In the proposed scheme, each decoding stage consists
of a horizontal decoding step followed by a vertical decoding step. In any horizontal decoding step
the extrinsic information of the information bits {xi, i = 1, 2, 3, 4} is evaluated by exploiting the
constraints expressed by the horizontal parity check equations (see Figure 10.6) and (apart from
the first iteration) the extrinsic information coming from the last vertical step. Similarly, in any vertical
decoding step the extrinsic information of the information bits {xi, i = 1, 2, 3, 4} is computed using
the extrinsic information coming from the horizontal step just completed in the same decoding stage
and the constraints expressed by the vertical parity check equations (see Figure 10.6). The decoding
procedure can be summarized as follows:

1. Initialization. The a priori LLRs {L(xi), i = 1, 2, 3, 4} are computed according to (10.8) (in
particular, if Pr{ui = 0} = Pr{ui = 1} = 1/2, we have L(xi) = 0); in addition, the channel LLRs
{Lc(xi), Lc(xij )} are evaluated for all possible values of i and (i, j), processing {yi, yij } according
to (10.16).

2. First horizontal step. The horizontal extrinsic information {L(1)
e,o(xi)} of all the information bits {xi}

is evaluated as (see (10.21)):

L(1)
e,o(x1) = Lc(y12) ♦ [Lc(y2) + L(x2)], (10.29)

L(1)
e,o(x2) = Lc(y12) ♦ [Lc(y1) + L(x1)], (10.30)

L(1)
e,o(x3) = Lc(y34) ♦ [Lc(y4) + L(x4)] (10.31)

and
L(1)

e,o(x4) = Lc(y34) ♦ [Lc(y3) + L(x3)]. (10.32)

3. First vertical step. The vertical extrinsic information {L(1)
e,v(xi)} is computed using {L(1)

e,o(xi)} in
(10.29)–(10.32) in place of {L(xi)} as a priori information. Then we have:

L(1)
e,v(x1) = Lc(y13) ♦ [Lc(y3) + L(1)

e,o(x3)], (10.33)

L(1)
e,v(x2) = Lc(y24) ♦ [Lc(y4) + L(1)

e,o(x4)], (10.34)

L(1)
e,v(x3) = Lc(y13) ♦ [Lc(y1) + L(1)

e,o(x1)] (10.35)

and
L(1)

e,v(x4) = Lc(y24) ♦ [Lc(y2) + L(1)
e,o(x2)]. (10.36)

At the end of this step, the first decoding stage is over. Now an estimate:

L̃(1)(uk) = L̃(1)(xk) = Lc(yk) + L(1)
e,o(xk) + L(1)

e,v(xk) (10.37)

of the LLR L(uk|y, h) (10.27), with k = 1, 2, 3, 4, is available. This relationship follows from (10.15)
and from the fact that L(1)

e,o(xi) is the last a priori LLR used in the decoding procedure, whereas L(1)
e,v(xi)

represents the last extrinsic LLR generated for xi . Therefore, given L̃(1)(uk) (10.37) a decision:

ûk =
{

1 if L̃(1)
(
uk

)
> 0

0 otherwise
(10.38)

can be taken. However, generally speaking, the quality of the data estimates can be improved by
resorting to multiple decoding stages (i.e., iterations). The lth stage consists of steps 4 and 5 described
below. After K > 1 iterations the decoding procedure stops; then a final estimate of the data APPs
can be generated and data decisions can be taken, as explained below (step 6).
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4. lth horizontal step (l ≥ 2). Compute {L(l)
e,o(xi)} according to (10.33)–(10.36), but using {L(l−1)

e,v (xi)}
as the a priori LLRs.

5. lth vertical step (l ≥ 2). Compute {L(l)
e,v(xi)} according to (10.33)–(10.36), using {L(l)

e,o(xi)} as the
a priori LLRs.

6. Termination. At the end of the Kth iteration the LLR (see (10.37)):

L̃(K)(uk) = L̃(K)(xk) = Lc(yk) + L(K)
e,o (xk) + L(K)

e,v (xk) (10.39)

is generated for k = 1, 2, 3, 4, and data decisions are taken according to (10.38) (with L̃(K)(uk) in
place of L̃(1)(uk)).

Finally, it is important to note that the benefit provided by each additional decoding stage is expected
to reduce as the number of accomplished iterations increases. This is due to the fact that the extrinsic
information generated by the decoding procedure described above becomes more and more correlated
as K gets larger. This is confirmed by Figure 10.7, illustrating the BER performance offered by ML
decoding5 and by the turbo decoding procedure for K = 1 in the presence of (a) Rayleigh fading
channel (with ideal interleaving) and (b) an AWGN channel; the error performance achievable at the
decoder input (i.e., without exploiting the parity check bits) is also shown for comparison. Note, in
particular, that in this case a negligible energy gain is provided by increasing K beyond 1, since the
first decoding stage approaches ML decoding performance closely.

�

The turbo approach to decoding illustrated in Example 10.5 was first applied to convolutional
codes concatenated in a parallel fashion, that is, to the so-called turbo codes [1481]. Note, however,

10−7
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20151050
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1 it.
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Figure 10.7 BER versus average Eb/N0 for the (single stage) iterative decoding of the (3,2) SPC
code described in Example 10.5. The error performance at the decoder input and that provided by
ML decoding (MLD) are also shown for comparison. Both AWGN and frequency-flat (FF) fading
channels are considered.

5 This is equivalent to that of MAP decoding under the assumption of equally likely codewords.
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that strictly speaking there is nothing “turbo” in such codes, since only their decoding uses a sort
of “turbo” feedback. It is also important to point out that this decoding method for concatenated
schemes was later recognized as a specific application of the turbo principle [1611]. In fact, the same
conceptual approach can be successfully applied to various detection/decoding problems concerning,
for instance, serial concatenation of coding schemes [1546], channel equalization [1660] and multiuser
detection [1661].

10.5.2 SiSo Decoding Algorithms

In this subsection some standard SiSo decoding algorithms for convolutional and block codes are
analyzed. In particular, we focus first on the modified BCJR algorithm for binary systematic convo-
lutional codes. Then we provide an overview of SiSo decoding algorithms for block codes.

10.5.2.1 MAP Decoding of Binary RSC Codes

The structure of the MAP decoding algorithm for convolutional codes and its derivation have already
been analyzed in Section 9.2.4. Here we revisit these topics from a different perspective with the aim of
showing how the extrinsic information can be generated by a MAP decoder in the case of a binary RSC
code (see [1100, pp. 435–437] and [1614]). In particular, we focus on MAP decoding of a code having
rate 1/n, ns states and whose output bits are transmitted using BPSK modulation; the encoder response
to its lth input bit ul is the binary n-dimensional vector xl � [x(0)

l , x
(1)
l , . . . , x

(n−1)
l ] (with x

(0)
l = ul),

which is mapped into the BPSK symbol vector cl � [c(0)
l , c

(1)
l , . . . , c

(n−1)
l ], with c

(p)

l = 2x
(p)

l − 1
(p = 0, 1, . . . , n − 1). ISI free transmission of the information bit vector u � [u0, u1, . . . , uN−1]
over a frequency-flat fading channel is assumed, so that the BCJR algorithm processes the received

signal vector y � [y0, y1, . . . , yN−1], with yl � [y(0)
l , y

(1)
l , . . . , y

(n−1)
l ] and y

(p)

l = c
(p)

l h
(p)

l + n
(p)

l ,
where h

(p)

l and n
(p)

l denote the channel distortion and the noise, respectively, affecting the symbol c
(p)

l .
Statistical independence between fading (noise) samples, and between noise and fading is assumed,
so that the communication channel fed by c � [c0, c1, . . . , cN−1] and generating y is memoryless.
Moreover, the noise samples {ni} are iid complex random Gaussian variables, each with zero mean,
variance σ 2

n = 2N0/Ēs and iid real and imaginary parts. The goal of a MAP decoding algorithm is to
generate the conditioned LLR:

L(ul |y, h) = ln
Pr{ul = 1|y, h}
Pr{ul = 0|y, h} (10.40)

for l = 0, 1, . . . , N − 1, where h is the fading vector containing all the channel gains {h(p)

l }. This
LLR can be expressed as:

L(ul |y, h) = ln

∑
(σ̃l , σ̃l+1)∈C1

Pr{σ̃l , σ̃l+1| y, h}
∑

(σ̃l , σ̃l+1)∈C0

Pr{σ̃l , σ̃l+1| y, h} , (10.41)

where Cb (with b = 0, 1) denotes the set of all the possible paths (i.e., sequences of encoder states)
which traverse the trellis branch connecting the states σ̃l and σ̃l+1 and labeled by the input bit
ũl = ul = b. Applying Bayes’ theorem, the probability Pr{σ̃l , σ̃l+1| y, h} appearing in (10.41) can be
expressed as:

Pr{σ̃l , σ̃l+1| y, h} = f (y|σ̃l , σ̃l+1, h)

f (y|h)
Pr{σ̃l , σ̃l+1}, (10.42)
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so that the LLR of (10.41) can also be computed as:

L(ul |y, h) = ln

∑
(σ̃l , σ̃l+1)∈C1

f (y|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1}∑
(σ̃l , σ̃l+1)∈C0

f (y|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1}
. (10.43)

An efficient procedure for the computation of the product f (y|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1} appearing in
formula 10.43 can be derived as follows. If the vector y is represented as the ordered concatenation
of y0:l−1, yl and yl+1:N−1, where yl1:l2

� [yl1
, yl1+1, . . . , yl2

], then the product can be expressed as:

f (y|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1} =f (y0:l−1, yl , yl+1:N−1|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1}
=f (y0:l−1|yl , yl+1:N−1, σ̃l , σ̃l+1, h)f (yl |yl+1:N−1, σ̃l , σ̃l+1, h)

· f (yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l} Pr{σ̃l}
=f (y0:l−1|σ̃l , h)f (yl |σ̃l , σ̃l+1, h) (10.44)

· f (yl+1:N−1| σ̃l+1, h) Pr{σ̃l+1|σ̃l} Pr{σ̃l}.

If we now assume that ul = b and that all the trellis states are equally likely (so that Pr{σ̃l} = 1/ns),
then we note that Pr{σ̃l+1|σ̃l} = Pr{ũl = b} = Pr{ul = b} and can define:

αl−1(σ̃l) � f (y0:l−1|σ̃l , h), (10.45)

βl(σ̃l+1) � f (yl+1:N−1| σ̃l+1, h), (10.46)

γl(σ̃l , σ̃l+1) � f (yl |σ̃l , σ̃l+1, h) Pr{ul = b}, (10.47)

so that (10.44) can be written in the form:

f (y|σ̃l , σ̃l+1, h) Pr{σ̃l , σ̃l+1} = 1

ns

αl−1(σ̃l)γl(σ̃l , σ̃l+1)βl(σ̃l+1). (10.48)

Substituting 10.48 into (10.43) gives:

L(ul |y, h) = ln

∑
(σ̃l , σ̃l+1)∈C1

αl−1(σ̃l)γl(σ̃l , σ̃l+1)βl(σ̃l+1)∑
(σ̃l , σ̃l+1)∈C0

αl−1(σ̃l)γl(σ̃l , σ̃l+1)βl(σ̃l+1)
. (10.49)

This shows that evaluation of the LLR for the bit ul requires knowlege of the quantities {γl(σ̃l , σ̃l+1)},
{αl−1(σ̃l)} and {βl(σ̃l+1)}. Note, however, that the quantities {γl(σ̃l , σ̃l+1)} depend on yl only, whereas
{αl−1(σ̃l)} ({βl(σ̃l+1)}) depend on all the past (future) received samples, that is, on the vector y0:l−1
(yl+1:N−1). Fortunately, {αl−1(σ̃l)} and {βl(σ̃l+1)} can be computed recursively, since:

αl(σ̃l+1) � f (y0:l |σ̃l+1, h)

= f (y0:l−1, yl |σ̃l+1, h)

=
∑
σ̃l

f (y0:l−1, yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}

=
∑
σ̃l

f (y0:l−1|σ̃l , σ̃l+1, yl , h)f (yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}
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=
∑
σ̃l

f (y0:l−1|σ̃l , h)f (yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}

=
∑
σ̃l

αl−1(σ̃l)γl(σ̃l , σ̃l+1) (10.50)

and

βl−1(σ̃l) � f (yl:N−1| σ̃l , h)

= f (yl+1:N−1, yl |σ̃l , h)

=
∑
σ̃l+1

f (yl+1:N−1, yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}

=
∑
σ̃l+1

f (yl+1:N−1|σ̃l , σ̃l+1, h)f (yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}

=
∑
σ̃l+1

f (yl+1:N−1|σ̃l+1, h)f (yl |σ̃l , σ̃l+1, h) Pr{σ̃l+1|σ̃l}

=
∑
σ̃l+1

βl(σ̃l+1)γl(σ̃l , σ̃l+1). (10.51)

It is worth pointing out that (10.50) and (10.51) are structurally equivalent to (9.261) and (9.262),
respectively. Therefore, in principle, the computation of the LLR (10.40) can be carried out using the
recursive procedure of the FBA (see Section 9.2.4 for further details). In the present case, however,
we are interested in specifying an algorithm that can process a priori information and the received
signal samples to generate the data extrinsic information. This goal can be achieved as follows. From
the definition (see (10.9)):

L(ul) � ln
Pr{ul = 1}
Pr{ul = 0} (10.52)

it is easily seen that:
Pr{ul = b} = Al exp [bL(ul)] (10.53)

where Al � 1/[1 + exp [L(ul)]] is independent of b. Similarly, the conditional pdf f (yl |σ̃l , σ̃l+1, h)

appearing in the definition (10.47) of γl(σ̃l , σ̃l+1) can easily be put in the form:

f (yl |σ̃l , σ̃l+1, h) = Bl exp


1

2

n−1∑
p=0

Lc

(
y

(p)

l

)
c̃
(p)

l




= Bl exp


1

2
Lc

(
y

(0)
l

)
(2b − 1) + 1

2

n−1∑
p=1

Lc(y
(p)

l )c̃
(p)

l


 , (10.54)

where Bl is independent of b. Here c̃
(p)

l = 2x̃
(p)

l − 1, x̃l � [x̃(0)
l , x̃

(1)
l , . . . , x̃

(n−1)
l ] is the output vector

generated by the encoder in state σ̃l and fed by ũl = b, and (see (10.16)):

Lc(y
(p)

l ) � 4 Re{y(p)

l (h
(p)

l )∗}
σ 2

n

. (10.55)

with p = 0, 1, . . . , n − 1. Then, substituting (10.53) and (10.54) into (10.47) yields:

γl(σ̃l , σ̃l+1) = AlBl exp

(
bL

(
ul

) + 1

2
Lc(y

(0)
l )(2b − 1)

)
γ

(e)
l (σ̃l , σ̃l+1), (10.56)
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where

γ
(e)
l (σ̃l , σ̃l+1) � exp


1

2

n−1∑
p=1

Lc

(
y

(p)

l

)
c̃
(p)

l


 . (10.57)

Finally, substituting (10.56) into (10.49) and taking the logarithm leads to the result:

L(ul |y, h) = L(ul) + Lc(y
(0)
l ) + Le(ul), (10.58)

where

Le(ul) = ln

∑
(σ̃l , σ̃l+1)∈C1

αl−1(σ̃l)γ
(e)
l (σ̃l , σ̃l+1)βl(σ̃l+1)∑

(σ̃l , σ̃l+1)∈C0

αl−1(σ̃l)γ
(e)
l (σ̃l , σ̃l+1)βl(σ̃l+1)

. (10.59)

Note that (10.58) has the same structure as (10.15), but the algorithm for the generation of the extrinsic
information Le(ul) is substantially different from that derived with the product code of Example 10.5.2,
as seen from a comparison of (10.59) with (10.14). In particular, Le(ul) (10.14) can be computed via
a forward–backward procedure similar to that illustrated in Section 9.2.4.

Finally, it is worth mentioning the following:

1. The MAP algorithm derived above is often called the modified BCJR algorithm in the literature.
2. To simplify its implementation, a log-MAP rule is usually adopted (see Section 9.2.4).
3. An alternative is the SOVA, mentioned at the end of Section 9.2.4, which offers the relevant

advantage of substantially smaller complexity than the MAP decoder (even if implemented in Log-
MAP form). A detailed derivation of this algorithm can be found in [1100, pp. 435–437], where
its application to the decoding of systematic RSC codes is explicitly discussed.

10.5.2.2 MAP Decoding of Block Codes

The success of turbo codes inspired the invention of turbo product codes (or block turbo codes)
[1503], which are simply product codes decoded using iterative MAP decoding. As illustrated in
Section 9.3.1, product codes usually consist of two component systematic block codes separated by
a block (row–column) interleaver. It is well known that the codewords of a linear binary (n, k) block
code C can be represented as paths through a trellis of depth n with at most 2n−k states [1662, 1523,
1573] (this topic is further discussed in Section 10.8, where a trellis representation for a specific
binary block code is provided; see Example 10.8.2). As a consequence, MAP decoding algorithms
structurally similar to those illustrated in Section 10.5.2.1 can be developed for systematic linear block
codes. Details can be found in [1100, pp. 437–440] and references therein. Most block codes do not
have a compact trellis, so that this approach to SiSo decoding can turn out to be prohibitively complex.
It is also worth noting that data APPs of code C can evaluated using the codewords of its dual code
C+ [1663, 1662]. For this reason, if C+ has fewer codewords than C, then decoding complexity can
be reduced [1100].

A completely different approach to SiSo decoding for turbo product codes is offered by list decoding
techniques (see Section 9.1.6.2). In using these techniques a subset of all possible codewords is
searched and a list of possible (test) codewords together with their Euclidean distances from the
received signal is stored. The other steps of the decoding procedure depend on the specific approach. In
particular, the available approaches can roughly be divided into two groups. In the decoding algorithms
of the first group, test codewords are decoded (e.g., Chase-based decoding can be employed [1503]),
while in those belonging to the second group test sequences are encoded (e.g., order-i reprocessing
can be adopted [1507]). Both types of algorithm try to generate a list of the “most likely” transmitted
codewords. Typically an ordered list is stored by the decoding algorithm, with ordering being from
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most to least likely. Let x̂ � [x̂0, x̂1, . . . , x̂n−1] denote the most likely codeword in the list. This list
is used to estimate the LLR:

L(xl |y, h) = ln
Pr{xl = 1|y, h}
Pr{xl = 0|y, h} , (10.60)

for l = 0, 1, . . . , n − 1, where x = [x0, x1, . . . , xn−1] is the transmitted codeword and h is the
associated CSI (see Section 10.5.1). Then a search is performed to find a competing codeword
b(l) = [b(l)

0 , b
(l)
1 , . . . , b

(l)
n−1] for each position (i.e., for l = 0, 1, . . . , n − 1) in the codeword. The

competing codeword for position l is characterized by b
(l)
l 	= x̂l . Using Bayes’ theorem, the LLR of

(10.60) can be rewritten as:

L(xl |y, h) = ln
Pr{xl = 1|y, h}
Pr{xl = 0|y, h} = ln

∑
x|xl=1

f (y|x, h)∑
x|xl=0

f (y|x, h)
(10.61)

with l = 0, 1, . . . , N − 1. Then, if the max-log MAP approximation [1525] is exploited, expression
10.61 can be simplified as follows::

L(xl |y, h) 
 ln
maxx|xl=1f (y|x, h)

maxx|xl=0f (y|x, h)

= ln

(
max

x|xl=1
f (y|x, h)

)
− ln

(
max

x|xl=0
f (y|x, h)

)


 (2x̂l − 1)
[
ln

(
f
{
y
∣∣x̂, h

}) − ln
(
f
(
y
∣∣b(l), h

))]
= (2x̂l − 1) ln

f (y|x̂, h)

f (y|b(l), h)
. (10.62)

Equations for the AWGN channel are easily found by removing h from (10.62). The extrinsic
information for xl (with l = 0, 1, . . . , k − 1) can now be calculated by subtracting the soft input
for the lth position from the soft output for the lth position computed using (10.62). The list decoder
searches only a small subspace of the entire codeword space. As a result, a competing codeword
may not be contained in the list for some positions. There have been various approaches suggested
for estimating the extrinsic information for these positions. For instance, in [1503], preset (iteration-
dependent) values are used (denoted β) and the extrinsic information for the lth position is evaluated
as (2x̂l − 1)β. The values for β can be changed for each iteration (usually they increase with each
iteration up to unity). An alternative is to use adaptive approaches [1664–1666]. Assuming a suffi-
ciently large list is used, the decision in position l is reasonably reliable if no competing codeword
is found. The reader can refer to [1638–1641, 1667–1669] and references therein for more detailed
knowledge of this recent research area. Alternative approaches to MAP decoding of block codes
include tree search (sequential) decoding [1670, 1671] and decoding on graphs (belief propagation)
[1672]. Finally, we note that most of the work on turbo decoding of product codes has been developed
for AWGN channels. Codes over fading channels typically require significantly larger list sizes [1673]
and little substantive work has been published.

10.5.3 Applications

In this subsection we illustrate the application of the modified BJCR algorithm (described in Section
10.5.2.1) to the decoding of turbo codes. Then we discuss the use of SiSo decoders for block codes
in Section 10.5.2.2, where their use in the turbo decoding of product codes is analyzed.
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10.5.3.1 Decoding of Turbo Codes

We now discuss the application of the SiSo decoding algorithm described in Section 10.5.2.1 to the
decoding of the turbo code resulting from the parallel concatenation of two component rate-1/2 RSC
encoders shown in Figure 10.8; puncturing is not used in this case, so that the overall rate is R = 1/3.

The decoder structure, presented in Figure 10.9, includes a block generating the channel LLRs (on
the basis of the noise variance σ 2

n , the vector of channel gains h and all received signal samples,
see (10.55)), two MAP SiSo decoders (each tailored to one of the two RSC component codes), two
interleavers (π ), two deinterleavers (π−1) and a hard decision device (represented as a threshold
device). Moreover, each SiSo decoder has three inputs (each associated with a distinct term on the
RHS of (10.58)) and a single output. Extrinsic information is extracted by subtracting channel and a
priori LLRs from this output.
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RSC encoder #1

RSC encoder #2

Figure 10.8 Turbo or PCCC scheme with rate R = 1/3.
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Figure 10.9 Turbo decoder for the PCCC scheme of Figure 10.8.
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The overall decoder is fed by the sequence of vectors {yl � [y(0)
l , y

(1)
l , y

(2)
l ]} generated by a

memoryless channel in response to {xl � [x(0)
l = ul, x

(1)
l , x

(2)
l ]}. Note, however, that the component

decoders are not fed by the channel LLRs of all the received samples. In fact, the channel LLRs of the
received samples {y(0)

l } and {y(1)
l } (forming the vectors y(0) and y(1), respectively) are sent to decoder

#1, whereas the channel LLRs associated with the interleaved samples {y(0)
l } (denoted by {y(0)

l,I } and

forming the vector y(0)
I ) and {y(2)

l } (forming the vector y(2)) are input to decoder #2. Decoding is
accomplished iteratively according to the following procedure.

In the first iteration (corresponding to k = 1) decoder #1 generates the data LLRs
{L(1)(ul |y(0), y(1), h)} for each transmitted information bit ul (note that in this iteration all
the extrinsic LLRs {L(0)

e,dec2(ul)} are equal to zero, since no a priori information is available about the
transmitted bits); in practice, this requires the evaluation of (10.49) by a SiSo decoding algorithm
operating on the state trellis for the RSC encoder #1. Subtracting the channel LLRs {L(1)

c (y
(0)
l )} from

the corresponding {L(1)(ul |y(0), y(1), h)} produces the extrinsic LLRs {L(1)
e,dec1(ul)} (see (10.58)).

The extrinsic information generated by the first decoder needs to be reordered (i.e., interleaved),
since encoder #2 is fed by the interleaved sequence {ul,I } in place of {ul} (see Figure 10.9). The
interleaved sequence {L(1)

e,dec1(ul,I )} is exploited by decoder #2 as a priori information6 (i.e., its
contribution corresponds to the first term on the RHS of (10.58)). Then, decoder #2 generates the data
LLRs {L(1)(ul,R|y(0)

I , y2, h)} for each transmitted information bit ul,I . This requires the evaluation of
(10.49) by means of an FBA operating on the state trellis of the RSC encoder #2. The data LLRs
{L(1)(ul,I |y(0)

I , y2, h)} can be exploited to generate (after deinterleaving) the hard decisions {ûl} on
the transmitted sequence or to produce the extrinsic information {L(1)

e,dec2(ul,I )} about the interleaved

sequence {ul,I }. In the latter case the LLRs {L(0)
c (y

(0)
l,I )} and {L(1)

e,dec2(ul,I )} need to be subtracted

from {L(1)(ul,I |y(0)
I , y2, h)}. Then, {L(1)

e,dec2(ul,I )} is deinterleaved to generate {L(1)
e,dec2(ul)}, which

can be used as a priori information to start the next iteration (associated with k = 2 in Figure 10.9).
It is important to note that the processing in turbo decoding proceeds in a blockwise fashion, since

data are passed from one decoder to the other only when soft information about all the information
bits is available. Thus, various buffering stages are needed in the implementation of the turbo decoder
shown in Figure 10.9. Most of these stages have not been explicitly indicated in order to make the
block diagram easy to read. In fact, the only buffer appearing in the figure has been included to
show where data generation in each iteration ends and processing in the next iteration begins. Note
that this decoding procedure is primarily based on the analytical result expressed by (10.58), which
assumes independence among the three terms appearing in its RHS. This assumption no longer holds
in the iterations following the first, since the extrinsic information exchanged becomes increasingly
correlated. Therefore, it should be expected that the energy gain provided by the decoding procedure
decreases as the number of decoding iterations increases.

The typical behavior of the turbo decoder structure described above is illustrated in the following
example, which refers to a specific PCCC.

Example 10.5.3 Let us now assume that both the constituent encoders of the PCCC of Figure 10.8
are rate-1/2 convolutional encoders with memory m = 4, and transfer function (see Section 9.2.2):

Ḡ(D) = [
1 p(D)/q(D)

]
, (10.63)

where the forward and feedback generators p(D) and q(D) are represented by 17 and 31 in octal
form, respectively [1675]. In addition, a diagonal interleaver [1597] of size 65 536 is employed in
the encoder and the coded bits are mapped into BPSK symbols and transmitted over an AWGN
channel. The modified BCJR in its log-MAP form is used for SiSo decoding of each constituent code.

6 In the literature two methods for processing extrinsic information exist; a unified interpretation of these methods
can be found in [1674].



462 Wireless Communications

10−5

10−4

10−3

10−2

10−1

100

B
E

R

3.53.02.52.01.51.00.50.0

Eb /N0

1 it.

2

3

6

18

BPSK

Figure 10.10 BER versus Eb/N0 for the iterative decoding of the PCCC described in
Example 10.9. The error performance of uncoded BPSK is also shown for comparison.

Moreover, to avoid instability problems at very low SNRs, the extrinsic information generated by
the second decoder (and fed back to first) has been normalized as suggested in [1597, p. 1270, 2nd
column]. The resulting error performance for 1, 2, 3, 6 and 18 iterations is shown in Figure 10.10.
These results illustrate some important features of the BER performance of turbo codes:

1. For very low SNRs the BER remains high, since the iterative decoder is unable to correct the large
number of errors (i.e., the decoding procedure does not converge).

2. At low SNRs, above a certain threshold, the BER curve exhibits the so-called ‘waterfall’ behavior,
leading to excellent performance with only a few iterations.

�

These results can be generalized. In fact, generally speaking, the error rate performance offered by
the iterative decoding of concatenated codes with interleavers and, in particular, of turbo codes, exhibits
the behavior sketched in Figure 10.11 for an AWGN channel. This figure allows us to identify three
different regions of the Eb/N0 axis. The first is the so-called nonconvergence region, characterized
by a large (almost constant) error probability and negligible iterative BER reduction. As the SNR
per bit increases above a certain point, known as the convergence abscissa, the slope of the BER
curve changes abruptly. In the new region, called the waterfall region (or turbo cliff region), the error
probability drops quickly, in the manner of a waterfall. The waterfall region is followed by the third
region, known as the error floor region, which is characterized by a significant decrease in the slope
of the BER curve. This last means that any further performance improvement can require significant
additional energy expense. Motivations for this behavior of the BER performance will be provided
in Section 10.5.4, where the problem of analyzing the error performance analytically and devising
bounds will be briefly discussed.
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Figure 10.11 Qualitative behavior of the error performance provided by iterative decoding of a
concatenated code with interleaving.

This discussion of the achievable performance with iterative decoding raises a number of technical
issues of both practical and theoretical interest. Here we only consider briefly the following two
problems:

• the need for a stopping criterion for the iterative decoding procedure described above;
• the understanding of the convergence and stability properties of such a procedure.

The first problem admits a naive solution which involves selecting a fixed value for the number of
iterations. This approach is not usually efficient, since the correct codeword could be found after the
first few iterations. Alternatives are offered by stopping criteria based on cross-entropy minimization
(e.g., see [1100, pp. 433–434]) or by the use of a carefully selected outer error detection code. In the
latter case a parity check is made at the end of each iteration and no further iteration is performed
when the absence of errors is detected.

As far as the second problem is concerned, it is important to point out that an iterative decoder
can be modeled as a nonlinear dynamical feedback system, in which extrinsic information messages
are passed from one constituent decoder to the other (a geometrical interpretation of turbo decoding
dynamics is provided in [1676]). Due to the intrinsic complexity of the problem only approximate
solutions can be developed. In particular, it is commonly assumed the interleaver is ideal (i.e., it is
random and its size goes to infinity), so that the extrinsic information can be modeled as a set of iid
random variables, all characterized by a Gaussian pdf [1674, 1677, 1678]. Given this model, various
methods can be used to analyze the convergence of the turbo decoder. Possibly the most famous is
that of density evolution (DE), which aims to assess how the pdf of the extrinsic information evolves
from iteration to iteration. This method was originally proposed by T. Richardson and R. Urbanke
[1679] for the study of the decoding of LDPC codes but, generally speaking, allows one to analyze
the asymptotic (i.e., as block size goes to infinity) behavior of iterative decoding procedures and, in
particular, to compute their Eb/N0 thresholds [1680, 1681]. An alternative to this approach has been
developed by H. El Gamal et al. [1678] and is based on representing the action of each constituent
decoder (in any turbo decoding scheme) as enhancing the SNR of the extrinsic information. Thus the
knowledge of the SNR input–output relation for the extrinsic information of the constituent decoders
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allows us to establish whether the turbo decoder will converge at any SNR. Recently, this method has
been generalized by J. W. Lee and R. E. Blahut to analyze the convergence and BER performance of
finite-length block codes. Such a generalization is based on the so-called SNR transfer characteristic
band chart of the extrinsic information [1682]. Another approach conceptually related to that proposed
in [1678] was developed by S. Ten Brink, who proposed a graphical method to represent the flow of
extrinsic information in turbo decoding as a decoding trajectory in the so-called extrinsic information
transfer (EXIT) chart [1683]. In fact, even in this case the behavior of a turbo decoder is predicted
from input–output relationships referring solely to its constituent decoders. In particular, each decoder
is described by its extrinsic information transfer characteristic, relating the mutual information of its
extrinsic output to the mutual information for its a priori knowledge and to the Eb/N0 value.

The above methods are useful not only for understanding the problem of convergence, but also for
code design. In the literature two different approaches have been proposed. One (already mentioned in
Section 10.2.1) is purely analytical and is based on the assumption of a purely random interleaver in
the encoding scheme [1615]. In this case, after designing the constituent encoders, code performance
can be improved by resorting to a cut-and-trial approach to interleaver design. The second method
requires the separate simulation of the behavior of each constituent encoder, and is based on the above-
mentioned techniques based on DE or the EXIT charts. Generally speaking, the two approaches
to code design provide some common criteria, but lead to slightly different coding schemes with
nonoverlapping error performance. Typically, the codes devised through the second technique, when
compared with the codes designed using the first, show a lower value of the converging abscissa and
a faster convergence of iterative decoding, but reach the error floor more quickly.

Finally, it is worth noting that the turbo decoding approach illustrated above for a turbo coding
scheme can be extended to the more general case of decoding network codes. The reader can refer
to [1630], where the problem of designing SiSo decoding modules and their use in this scenario is
widely discussed.

10.5.3.2 Decoding of Product Codes

In this subsection, we briefly describe a turbo decoder architecture for a binary two-dimensional
product code C consisting of the concatenation of an (n1, k1) block code C1 with a second (n2, k2)

block code C2 into a product code structure, with both codes defined on the same field, say GF(2).
For this code the decoding procedure can be implemented as a cascade of elementary turbo decoders
of the type illustrated in Figure 10.12 (the lth decoding stage is considered, with l = 1, 2, . . . , 2K ,
where K denotes the overall number of horizontal and vertical decoding steps). The first stage of
the turbo decoder processes the n1 × n2 matrix R(1) = R collecting the block of received signal
samples (We(1) = 0n1,n2

and the value of the parameter α(1) = 0) to accomplish soft decoding of the
rows (columns) of C via a specific SiSo decoding algorithm for C1 (C2) (see Section 10.5.2.2). Note
that, if Chase decoding is employed, a predefined weight β(1) is assigned to the reliability of those
components of the soft decision vector for which there is no competing codeword in the spanned
space of codewords (see Section 10.5.2.2). Then the n1 × n2 extrinsic information matrix We(1) is
generated by subtracting the soft input from the soft output and is delivered to the second decoding
stage. The second stage decodes the columns (or rows) of C using the matrix [1503]:

R (2) = R (1) + α(2)We(1) (10.64)

in place of R, where α(2) is a scaling factor that accounts for the fact that the standard deviation of
the samples in the matrices R(2) and We(1) are usually different. In fact, the standard deviation of the
extrinsic information is expected to be large during the first few decoding iterations and to decrease
in successive iterations. The scaling factor reduces the effect of the extrinsic information in the soft
decoder in the first few decoding steps when the BER is relatively high, so that stability is improved.
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Figure 10.12 Block diagram of the lth elementary block turbo decoder.

The value of the scaling factor α(l) can be preset for each iteration [1503] or evaluated adaptively
[1666]. This decoding architecture was originally proposed in [1503] for AWGN channels. In principle,
a similar conceptual approach to turbo decoding can be developed for use in fading channels, provided
that the SiSo module of each decoding stage is provided with CSI. Note, however, that most previous
work in this area refers only to the AWGN channel and little work has been done for the fading
environment.

10.5.4 Performance Bounds

An exact analysis of the BER performance of concatenated coding schemes is too ambitious a target.
For this reason, performance bounds are usually developed. In this subsection we illustrate some
analytical tools that are commonly exploited to develop such bounds, discussing their applications
to turbo codes. In particular, we first apply these tools to explain the properties of the BER curve
illustrated in Figure 10.11. Then we discuss the problem of the “average performance” provided by
turbo codes.

To understand the origins of the essential features of the BER curve shown in Figure 10.11, let us
refer, for simplicity, to a specific code, the binary turbo coding scheme illustrated in Figure 10.8. In
our analysis the following assumptions are made about the input sequence {ul}:

(a) it is of length N, where N is the interleaver size;
(b) it is an all-zero sequence.

Assumption (b) is motivated by the fact that the coding scheme is linear, since its constituent codes
are linear and the interleaver, which is a permutation matrix, is also linear. Then, the all-zero codeword
can be taken as a reference for evaluating the error performance, so that the overall number of possible
incorrect (nonnull) codewords is 2N − 1. Given these assumptions, the BER performance of an ML
soft decoder for the given turbo code in the presence of an AWGN channel can be upper-bounded,
using a union bound approach, as [1684]:

Pb ≤
2N −1∑
k=1

wk

N
Q

(√
2R

Eb

N0
dH,k

)
, (10.65)

where R is the rate of the turbo code, wk is the Hamming weight (or information weight) of the
kth possible input sequence (different from the all zero sequence), and dH,k is the overall Hamming
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weight of the resulting codeword. Grouping the RHS of inequality (10.65) into terms associated with
codewords that have the same Hamming weight yields:

Pb ≤
N/R∑

d=dTC
free

Wd

N
Q

(√
2R

Eb

N0
d

)
=

N/R∑
d=dTC

free

Ndw̃d

N
Q

(√
2R

Eb

N0
d

)
, (10.66)

where dTC
free is the free distance of the turbo code, Wd is the total information weight of the input

sequences producing the set of codewords of weight d, Nd is the total number or multiplicity of such
codewords, and:

w̃d � Wd

Nd

(10.67)

is the average information weight per codeword. It should be expected that for moderate and high
SNRs the free distance term is the dominant one in the RHS of (10.66), so that the asymptotic
performance of ML turbo decoding can be approximated as [1684]:

Pb ≈
N

dTC
free

w̃
dTC

free

N
Q

(√
2R

Eb

N0
dTC

free

)
, (10.68)

where N
dTC

free
is the multiplicity of the free distance codewords and w̃

dTC
free

is the average information

weight of the information sequences producing them. The last result expresses the so-called free-
distance asymptote of a turbo code and, in practice, describes the error floor region of the turbo code.
This result leads to the following important conclusions:

• The error floor behavior of a turbo code is dictated by its minimum distance.
• Turbo codes have a relatively small free distance, as evidenced by their relatively flat free distance

asymptote.

The asymptotic expression (10.68) also suggests that the error floor can be modified by adopting
one of the following two options:

1. Increasing the interleaver size N without changing dTC
free and w̃

dTC
free

. This lowers the asymptote, but

does not change its slope. Note that in this case the BER curve reaches its floor at higher SNRs,
so that lower BERs are achieved even in the waterfall region. The phenomenon of BER decrease
with the block size 1/N (see (10.66)) is known as interleaving gain [1615, 1616].

2. Increasing dTC
free leaving N fixed. This requires changing the structure of constituent codes and

modifies the slope of the asymptote.

As stated above, these comments primarily refer to the error performance characterizing turbo
coding at moderate to large SNRs. The understanding of the error performance of turbo codes at
low SNRs requires the analysis of the structure of their distance spectra resulting from the use of
pseudorandom interleavers [1684]. In practice, in conventional coding schemes (such as convolutional
coding), the distance spectrum is spectrally dense, that is, the path multiplicity Nd (and, consequently,
the overall weight Wd ) increases quickly as d gets large. For this reason, at low SNRs the contribution
from the codewords having weight d exceeding the free distance of the code can be appreciably larger
than the contribution of the free distance term, which becomes dominant only at large SNRs. On the
other hand, the distance spectrum of turbo codes is sparse or spectrally thin, that is, Nd increases
slowly with d, so that the free distance asymptote dominates error performance even for low values
of Eb/N0. Further details on this particular feature of distance spectra can be found in [1684].
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The considerations illustrated above (and largely based on (10.66)) allow an interpretation of
Figure 10.11. However, the application of (10.66) to the assessment of the BER performance of a
specific turbo coding scheme (or to another concatenated coding scheme) appears to be a formidable
task for large N. To make the problem of performance estimation tractable, error bounds referring to
a “randomly interleaved” turbo coding scheme, that is, to a scheme incorporating an average over all
the possible pseudorandom interleavers, have been derived [1616]. To be more precise, such bounds
are developed starting from the so-called input-redundancy weight enumerating function (IRWEF) for
a systematic (n, k) code C. This function is defined as:

AC(W,Z) �
∑
w

∑
l

Aw,lW
wZl, (10.69)

where Aw,l denotes the number of codewords generated by input information words of weight w and
whose parity check bits have weight l (so that the overall Hamming weight of the resulting codeword
is w + l). The function AC(W,Z) can be written in the form:

AC(W,Z) �
∑
w

WwAC
w(Z), (10.70)

where
AC

w(Z) �
∑

l

Aw,lZ
l (10.71)

is the conditional weight enumerating function of the parity check bits associated with the input
messages of weight w. The IRWEF can be used to upper-bound the BER for ML soft decoding of C
over an AWGN channel as [1616]:

Pb ≤ W

k

∂AC (W,Z)

∂W

∣∣∣∣
W=Z=exp(−RcEb/N0)

, (10.72)

where Rc � k/n. Then, to apply this result to the case of a code Cp resulting from the concatenation
of two constituent codes, the knowledge of ACp (W,Z) is needed. Note that the computation of this
function from the IRWEFs of the constituent codes is a very complicated task, since the redundant bits
generated by the second encoder (i.e., by the encoder fed by the interleaved sequence of information
bits) depend not only on the weight of the input message, but also on how the bits have been permuted
by the interleaver. In principle, the only solution to the problem is an exhaustive enumeration of all the
possible cases. Unfortunately, this is not feasible when the interleaver size is large. For this reason,
the idea of averaging over the set of possible interleavers is introduced, defining the concept of a
uniform interleaver. A uniform interleaver of length N is defined as a probabilistic device mapping

any information word of weight w into all its distinct

(
N

k

)
permutations with equal probability

1/

(
N

k

)
. If this interleaving model is adopted for a parallel concatenated code, it can be shown that

the IRWEF ACp (W,Z) can be evaluated from the conditional weight enumerating functions of the
two constituent codes. In addition, it can be proved that the resulting upper bound coincides with the
average upper bound that can be obtained by considering the whole class of deterministic interleavers.
For this reason, for each SNR the performance obtained with a uniform interleaver can be achieved
using at least one specific deterministic interleaver.

It should be expected that, because of their intrinsic nature, upper bounds derived under the assump-
tion of uniform interleaving do not provide accurate indications of the performance provided by specific
deterministic interleavers. Such bounds, however, provide some important guidelines for code design
[1615]. In particular, it can be shown that, for an “average turbo code”, as N approaches infinity, dTC

free
is associated with codewords generated by information messages of weight w = 2. This explains why
dTC

free is usually maximized by choosing constituent encoders that have the largest output weight for
information messages of weight w = 2.
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Finally, it is worth noting the following:

1. Similar tools can be exploited to develop an upper bound on the average ML error probability of
serially concatenated block and convolutional coding schemes [1546].

2. In our discussion, we have always referred to ML decoding even if, in practice, decoding of turbo
codes and other concatenated schemes is accomplished in a suboptimum fashion. It should be
expected, however, that the performance of iterative decoding methods gets close to being ML.

3. The interleaver plays a twofold role in determining the error performance of turbo codes [1631].
From the encoder perspective, it increases the Hamming weight of codewords. For instance, in
the encoder illustrated in Figure 10.8, the interleaver applies to the lower encoder a permuted
version of the message feeding the upper one. Therefore, it is unlikely that weak (i.e., low weight)
upper codewords will be associated with weak lower codewords. From the decoder perspective,
interleaving decorrelates feedback information in iterative decoding, so improving its behavior.

10.6 Low-Density Parity Check Codes
In this section LDPC codes are analyzed. After providing a definition of these codes through the
fundamental properties of their parity check matrices in Section 10.6.1, a tool for their graphical
representation is described in Section 10.6.2 and some relevant results about their weight spectrum
are mentioned in Section 10.6.3. The problem of generating good LDPC codes is then addressed in
Section 10.6.4, where an overview of available design techniques is presented. Finally, the problems
of efficient encoding are investigated in Section 10.6.5. Section 10.7 deals with decoding.

10.6.1 Definition and Classification

LDPC codes are linear block codes whose parity check matrices are sparse in the sense that they
have a low density of nonnull elements. LDPC codes can be defined over any field GF(q), but in the
following we will mainly focus on binary codes for simplicity.

Binary LDPC codes can be divided into the subclasses of regular and irregular codes. An (n, k)
regular code is characterized by the property: the n columns and the m = n − k rows of its parity
check matrix H have the same weights, denoted wc and wr , respectively, with wc � m and wr � n.
Such a parity check matrix H is said to be (wc,wr )-regular and the code C specified by its null space
is called a (wc, wr )-regular LDPC code.

Since the overall number of 1s on the columns is equal to that on the rows, we have that nwc =
mwr = (n − k)wr ; from this equality it is easily inferred that the code rate R can be expressed as:

R = 1 − wc

wr

. (10.73)

Note that the last result holds only if H is full rank as otherwise R = (n − rank(H))/n, where rank(A)

denotes the rank of the matrix A.
If the number of 1s on the columns (or on the rows) of H changes from column to column (from

row to row), the code defined by the sparse parity check matrix H is irregular.

10.6.2 Graphic Representation of LDPC Codes via Tanner Graphs

Any (n, k) binary linear block code C, characterized by a parity check matrix H, can be described by
an undirected graph, called a Tanner graph, since its use was first proposed by R. M. Tanner [1606].
The Tanner graph G of C consists of a set V of (2n − k) vertices (or nodes) and a set E of edges
connecting the vertices. The graph G of C is bipartite, since V is divided into two disjoint subsets Vb
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and Vc, containing n bit nodes and n − k check nodes, respectively. Each edge can then connect only
two nodes not belonging to the same subset.

The Tanner graph G is generated according to the following rules:

1. The ith symbol xi of the codeword x is associated with the ith bit node (with i = 0, 1, . . . , n − 1)
and represented by the ith circle in the graph.

2. The jth check equation (denoted by the symbol cj ) is identified with the jth check node (with
j = 0, 1, . . . , n − k − 1) and represented by the jth square in the graph.

3. Edges connect variables nodes to check nodes; in particular, the jth check node is connected to
the ith variable node by an edge if an only if the element Hji (representing the so-called adjacency
matrix of G) of H is equal to 1.

The process is illustrated in Figure 10.13. The degree of a node is the number of edges incident on
it. In an undirected graph, a series of successive edges forming a continuous path passing from one
vertex to another is called a chain, with the length of the chain being given by the overall number of
edges forming it. Two distinct nodes of G have distance d ≤ ∞ if the minimum length of the paths
connecting them is equal to d. A chain of nodes where the initial and the terminal nodes are the same
and which does not include the same edge more than once is a cycle. A cycle is characterized by its
length, expressing the overall number of its edges. Note that in a bipartite graph having at least two
nodes, its cycles are of even length. The length of the shortest cycle of G represents the girth g of the
graph. An application of the graph construction rules and of the concepts defined above is illustrated
in the following example.

Example 10.6.1 The relation between the parity check matrix:

H =

1 1 1 0 1 0 0

0 1 1 1 0 1 0
1 1 0 1 0 0 1


 (10.74)

of the (7,4) binary Hamming code (see Example 9.1.1) and its Tanner graph is illustrated in
Figure 10.14. Note that the node associated with x1 is connected to all the available check nodes,
since the second column of H consists of 1s only; it is the only node having degree 3. Secondly, the
bold solid lines indicate the presence of a cycle in the graph. It can be shown that this is the shortest
cycle in the graph, so that the girth7 g is equal to 4.

�

Generally speaking, it can be shown that a cycle with length 4 is associated with the presence of
four 1s at the vertices of a rectangle in H, as illustrated in Figure 10.15(a). Similarly, a cycle with

H =

i

j xi

cj

1

Variable
node

Check
node

Edge

Figure 10.13 The correspondence rule between the 1s in the parity check matrix of C and the
edges of the associated Tanner graph G.

7 In a bipartite graph having at least two nodes, all its cycles are of even length.
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Figure 10.14 Tanner graph associated with the parity check matrix (10.74). The presence of a
specific cycle of length 4 is shown by bold solid lines.
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Figure 10.15 Cycle of (a) length 4 and (b) length 6 in the Tanner graph of a binary linear block
code having parity check matrix H.

length 6 appears when six 1s are placed according to the specific pattern illustrated in Figure 10.15(b).
It is worth noting that in almost all constructions of LDPC codes, binary or nonbinary, an additional
structural property is imposed on H that no two rows (or two columns) have more than one position
where they both have nonzero components. This property is a constraint on the rows and columns of
H and is referred to as the row–column constraint; it ensures that the Tanner graph of the LDPC code
C representing the null space of H has a girth of at least 6 [35, 1685].
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Each variable (check) node in the Tanner graph of a (wc, wr )-regular LDPC code has degree
wc (wr ). Then, since the overall number of edges emerging from the check nodes is equal to that
associated with the variable nodes, we have that nwc = mwr , as already pointed out in the previous
subsection. The degree of a variable (or check) node in the graph of an irregular LDPC codes can
change from node to node. In the literature, to specify the distribution of the node degrees in a Tanner
graph of an irregular code, the degree distribution polynomials:

λ(x) �
dv∑

d=1

λd xd−1 (10.75)

and

ρ(x) �
dc∑

d=1

ρd xd−1 (10.76)

are usually defined for the variable and the check nodes, respectively [1686]. Here, λd (ρd ) denotes the
fraction of edges connected to degree-d variable (check) nodes and dv (dc) represents the maximum
degree of variable (check) nodes.

The importance of the Tanner graph G of an LDPC C is primarily related to its decoding, which can
be accomplished efficiently via the so-called SPA. In fact, as shown in Section 10.6.4, this algorithm
(and other related techniques) can be interpreted as an iterative procedure for message passing (MP)
between variable and check nodes of G. In decoding algorithms based on the MP philosophy, a
fundamental role is played by the cycles of G. In particular, it is important to note that, on the one
hand, the absence of cycles in G ensures a natural termination of the SPA in a finite number of steps and
optimal performance (i.e., the minimization of the symbol error probability) [1610, 1687]. However,
codes having cycle-free Tanner graphs offer poor BER performance, since they are characterized by
dH,min = 2 at code rates R > 1/2 and by error floors occurring at unacceptably high values of SNR
[1688]. On the other hand, the presence of cycles in G leads to suboptimal performance of the SPA
[1610, 1687], since this produces a loss of independence in the extrinsic information exchanged among
graph nodes in successive iterations of the SPA (see Section 10.7), so preventing convergence to the
optimal decoding result [1688, 1689]. This explains the importance of avoiding short cycles in code
design, that is, of having a large girth g. The relevance of a large g is also motivated by a lower bound
on the minimum distance dH,min of individual LDPC codes [1606]; in fact, such a bound increases
with the girth g. To avoid short cycles, the parity check matrix H should be sufficiently sparse and,
consequently, the codeword length n must be large enough.

10.6.3 Minimum Distance and Weight Spectrum

Most of the published results on the weight spectrum and, in particular, on the minimum distance of
LDPC codes refer to the average properties of code ensembles. The initial work in this area was done
by Gallager [1479, 1590], who first derived the average weight distribution and its growth rate for
regular LDPC ensembles. In particular, he derived a lower bound on the typical minimum distance
dH,min and proved that this parameter grows only logarithmically with n for wc = 2, and linearly for
wc ≥ 3. Later, these results were extended to modified regular LDPC code ensembles by S. Litsyn
and V. Shevelev [1690]. For irregular LDPC codes, the average weight distribution and its growth
rate have been investigated by Litsyn and Shevelev [1691], D. Burshtein and G. Miller [1692] and by
C. Di et al. [1693]. In particular, in [1693] it is shown that the growth rate of the minimum distance of
LDPC codes depends only on the degree distribution pair (see (10.75) and (10.76)), and that capacity-
achieving sequences of known standard (unstructured) LDPC codes under iterative decoding over the
binary erasure channel (BEC) have sublinearly growing minimum distance with block length.

The importance of the average distance spectrum of various random ensembles of LDPC codes is
motivated by the fact that its exponential growth rate can be translated to upper bounds on the average
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ensemble error probability, under ML decoding, and even to an upper bound on the error probability
of a typical code drawn at random from the ensemble (e.g., see [1479, 1693]). Using concentration
results on the weight distribution, lower bounds on the error rate of a random code in the ensemble of
regular LDPC codes can also be derived [1694]. Combining these results with known lower bounds on
the error exponent, confidence intervals on the error exponent, under ML decoding, can be obtained.

10.6.4 LDPC Code Design Approaches

Given four positive integers m, n, wc, wr such that nwc = mwr , designing a binary (n, n − m) regular
LDPC code means constructing an m × n parity check matrix H having uniform column weight
wc, uniform row weight wr and some specific additional property (e.g., satisfying the row–column
constraint). The first design method for this class of codes was developed by Gallager, who proposed
the use of the structured parity check matrix [1479, 1590]:

H �




H1
H2
...

Hwc


 , (10.77)

where Hl (with l = 1, 2, . . . , wc) is a µ × µwr submatrix with row weight wr and column weight
1, and µ and wr are integers greater than unity. In addition, the submatrices {Hl} of (10.77) have the
following structure:

• the ith row of H1 contains all wr of its 1s in columns from (i − 1)wr + 1 to iwr , with i =
1, 2, . . . , µ,

• all the other submatrices {Hl , l = 2, 3, . . . , wc} are generated by row permutations of H1.

This construction leads to a µwc × µwr matrix H (10.77) having row (column) weight exactly wr

(wc), but does not guarantee the absence of cycles of length 4, so that computer-based optimization is
required to remove them. Gallager proved that the ensemble of these codes offers excellent distance
properties if wc ≥ 3 and wr > wc [1479, 1590].

About thirty years later R. M. Tanner proposed a recursive method for constructing long error-
correcting codes from one or more short error-correcting codes (called subcodes) and a bipartite
graph [1606]. This approach generalized the construction of product codes and the decoding schemes
originally presented by Elias for his product codes and those of Gallager’s LDPC codes.

A completely different approach to LDPC code design was adopted by D. J. C. MacKay, who has
provided algorithms for semirandomly generating sparse parity check matrices [1695, p. 413] and has
archived on a web page [1696] a large number of LDPC codes that he has designed. One of the main
drawbacks of the so-generated codes is that they lack sufficient structure to achieve low-complexity
encoding. In fact, encoding is accomplished by putting H in the form (9.13), via Gauss–Jordan
elimination, so that the associated generator matrix G can be put into systematic form (9.6). Note,
however, that the matrix Pk,n−k in (9.6) is usually far from sparse, so that for large n the encoding
complexity is appreciable.

MacKay’s work has been followed by a flurry of papers on LPDC code design. The methods
proposed for LPDC code construction can be classified in different ways. A rough classification
separates methods for constructing randomlike codes, like those generated by MacKay, from those
generating structured codes [1697]. A completely different perspective is adopted if design techniques
are divided into three major categories: graph-theoretic, geometric and experimental. The graph-
theoretic approach is by far the most popular and involves exploiting random bipartite graphs, specific
graphs, or constrained paths of connected graphs for code construction, (e.g., see [1608, 1679, 1686,
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1697–1705]). The geometric approach aims to construct regular LDPC codes based on the lines and
hyperplanes of geometries over finite fields, such as Euclidean and projective geometries (e.g., see
[1685, 1706]). The aim of the experimental approach is the generation of LDPC codes based on
combinatoric designs (e.g., see [1707–1709]).

It is also worth noting that distinct code design techniques can target different criteria, such as
efficient encoding/decoding, low error floor and large girth. Satisfying these requirements can put
serious constraints on the structure of the parity check matrix. For instance, encoding complexity
can be substantially reduced if the code is cyclic or quasi-cyclic (QC), that is, if it is invariant
under a cyclic shift of p positions, with p = 1 and 1 < p < n, respectively (the smallest such p is
called the index of the code). In fact, these classes of codes offer the relevant advantage of efficient
encoding via linear feedback shift registers based on their generator or characterization polynomials
[1710]. Further, by exploiting the close relationship between QC codes and convolutional codes, a
convolutional representation can be derived from a QC block code (see [1711] and references therein).
Note, however, that the requirement of quasi-cyclicity requires H to be an array of sparse circulants.8

We also note that most of the code designs published in the literature are binary and only limited
results are available for nonbinary codes. In this regard, we should not forget that nonbinary codes
over a Galois field GF(q) offer important advantages, since the equivalent binary weight of their
parity check matrices is increased with respect to their binary counterparts, whereas the number of
short cycles may remain low. In his seminal work Gallager considered arbitrary-alphabet LDPC codes
using modulo-q arithmetic [1590]. Nonbinary LDPC codes based on GF(q) arithmetic were analyzed
much later by M. C. Davey and MacKay [1712] in the context of codes for binary-input channels.
The design of nonbinary LDPC codes has been of increasing interest in recent years (e.g., see [1713,
1714, 1715, 1716, 1717, 1718, 1719]).

Finally, we mention that a limited amount of work has been done on LDPC code design for fading
channels. Code design for a specific class of fading channels (i.e., periodic fading channels) has been
investigated in [1720].

In the the remainder of this subsection we mention some of the most relevant design criteria and
provide the reader with a set of useful references for further reading.

10.6.4.1 Finite-Geometry Codes

The first method for constructing finite-geometry LDPC codes was proposed by Y. Kou, S. Lin and
M. P. C. Fossorier in 2001 [1685]. Such a method is based on lines and points of finite geometries,
namely Euclidean and projective geometries over finite fields. These codes are characterized by the
following relevant properties:

• they are cyclic or QC;
• they have relatively good minimum distances;
• their Tanner graphs do not contain cycles of length 4;
• they can be decoded with various other decoding methods, ranging from low to high decoding

complexity and from reasonably good error performance to very good error performance.

For all these reasons, they offer a wide range of tradeoffs among decoding complexity, decoding speed
and error performance.

8 A circulant is a square matrix in which each row is the cyclic shift (one place to the right) of the row above
it, and the first row is the cyclic shift of the last row. In a circulant, each column is a downward cyclic shift of
the column on its left, and the first column is the downward cyclic shift of the last column. The row and column
weights of a circulant are equal. For a circulant, the set of columns (reading from the top down) is the same as
the set of rows (reading from right to left).
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The discovery of finite-geometry LDPC codes has had two significant implications. First, it implies
that algebraic construction is a viable method for constructing codes approaching the Shannon limit, in
addition to random construction, so that the investigation of other algebraic or combinatoric methods
for constructing good LDPC codes has been encouraged. Second, that algebraically constructed LDPC
codes in general possess structural properties that may simplify hardware implementation of encoding
and decoding.

The seminal work [1685] was followed by a number of papers dealing with new construction
techniques for finite-geometry codes. The reader can refer to [1706, 1716, 1721–1726] to deepen his
knowledge in this active research area.

10.6.4.2 Combinatorial LDPC Codes

The problem of LDPC design can be tackled by resorting to the so-called combinatorial designs.
A combinatorial design is an arrangement of a set of v points into b subsets, called blocks, which
satisfy certain regularity conditions. A design is regular if the number of points in each block and the
number of blocks which contain each point are the same for each point and block in the design (these
numbers are denoted γ and ρ, respectively). The covalency λxy of the points x and y is the number
of blocks that contain both of them. A design is balanced if λxy is a constant for all x and y (then
the covalency of the design can simply be denoted λ). A regular balanced design is often designated
a (v, b, ρ, γ, λ)-design. Every design can be described by a b × v incidence matrix I, whose ith row
represents the block Pj of the design and the jth column the point Pj according to the rule:

Ii,j �
{

1 if Pj ∈ Bi

0 otherwise
(10.78)

with i = 1, 2, . . . , b and j = 1, 2, . . . , v. For a regular design the number of 1s in I is v · ρ = b · λ.
The incidence matrix of a combinatorial design, or its transpose, can be used as the parity check
matrix of a binary LDPC code to give favorable properties to the code. In particular, the transpose of
the incidence matrix of a (v, b, ρ, γ, λ)-design will produce a v × b parity check matrix H having v
parity check equations, block length n = b, row weight ρ and column weight γ . Choosing a design
with λ = 0 or 1 guarantees the absence of 4-cycles in the code (i.e., the girth is at least 6). Note that,
as in the case of random constructions of parity check matrices, the parity check matrices generated
in this way are not necessarily full rank, in which case the number of message bits in the code is
n − rank(H).

MacKay and Davey were the first to use balanced incomplete block designs (BIBDs),9 in particular
Steiner triple systems (or (v, b, ρ, 3, 1)-designs) to develop LDPC codes [1727]. S. J. Johnson and
S. R. Weller extended the class of LDPC codes that can be systematically generated by presenting a
construction method for regular LDPC codes based on combinatorial designs known as Kirkman triple
systems [1728]. This work has been followed by many papers about the combinatorial construction
of regular low-density parity check codes based on BIBDs (e.g., see [1709, 1708, 1729–1731]).

10.6.4.3 Array Codes and Other Codes Based on Algebraic Methods

Various algebraic methods have also been exploited to design LPDC codes. First, it is important to
mention the work of J. L. Fan [1732], who showed that the so-called array codes [1733], having
sparse parity check matrices, can be viewed as LDPC codes and, consequently, can be decoded via
MP algorithms. Later E. Eleftheriou and S. Ölçer developed a class of modified array codes [1734],
characterized by an upper triangular parity check matrix H and thus allowing an encoding complexity

9 Note that Euclidean and projective geometries are subclasses of BIBDs.
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linear in the block length. Modified array codes are available for both low and high rates, and offer
very low error rate floors; however, because of the specific structure of H, only selected code rates
and lengths are available.

In more recent years, various algebraic methods for constructing LDPC codes have been pro-
posed [1715, 1717–1719, 1721, 1735–1740]. Most of these codes share the QC property, which can
potentially facilitate efficient encoder implementation.

10.6.4.4 Protograph-Based LDPC Codes

A small Tanner graph, known as a protograph or projected graph, can be used to construct a structured
LDPC using the following procedure [1741, 1742]:

1. The protograph is replicated N times; this means that each edge is replicated into a bundle of N
edges, now connecting N variable nodes to N check nodes.

2. The copies of the protograph are interconnected by unplugging their edges from their check node
sockets, permuting them, and reconnecting them. This process is repeated for each bundle of N
edges, or edge type.

Note that the resulting derived (or lifted) graph is N times as large as its protograph, but inherits
many of the protograph’s properties. It has the same code rate (except possibly for coincidental
redundancies due to the selected permutations) and the same distribution of variable and check node
degrees. Moreover, neighborhoods are preserved. For this reason, the resulting LDPC code can be
designed by applying standard analysis techniques, such as density evolution, to the protograph.

In constructing protograph-based LDPC codes structured permutations, such as cyclic shift permu-
tations (or circulants) or randomlike permutations generated by computer search with an optimization
criterion can be adopted. Both techniques aim to maximize the girth of the resulting graph. Protograph
design criteria and methods are analyzed in detail in [1741].

It is worth noting that RA, irregular repeat-accumulate (IRA) [1743] and accumulate-repeat-
accumulate (ARA) codes [1744] (see Section 10.4.1) with suitable definition of interleavers have
simple protograph representations.

Protographs have been exploited to design generalized LDPC [1606] codes with a QC structure
and low error floors in [1745]. A parity check matrix construction based on Vandermonde-like block
matrices in the context of protograph LDPC arrangements is illustrated in [1746].

10.6.4.5 Progressive Edge Growth

Brute force search is a straightforward method for designing a parity check matrix H. However, for

an m × n parity check matrix H with uniform column weight wc, there are

(
m

wc

)n

possible choices

and this makes an exhaustive search computationally infeasible for values of n of practical interest.
Moreover, a large number of choices are actually isomorphic to each other, that is, lead to identical
LDPC codes. This raises the problem of devising more efficient search methods for good LDPC
codes. J. Campello, D. S. Modha and S. Rajagopalan developed a heuristic method called “bit-filling”
to search for LDPC codes with large girth [1747, 1748]. The computational complexity of bit-filling is
polynomial in m (specifically, O(kmaxm

3), where kmax is the maximum degree of any check node) and
this makes its implementation feasible. Unfortunately, the matrix generated by bit-filling has uniform
column weight, but nonuniform row weight, so that the resulting LDPC codes are not regular; in
addition, there is no guarantee that codes with the largest possible girth g are constructed for a given
n. Another heuristic algorithm, illustrated in [1749], searches for good LDPC codes based on the
average of the girth distribution of the code. The complexity of this algorithm is shown in [1749] to
be O(n2) and thus it is suitable for designing short (10 000 bits or shorter) codes.
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An alternative search technique for constructing bipartite graphs with good girth properties is the
so-called progressive edge growth (PEG) technique [1750]. This algorithm is based on the principle
of optimizing the placement of a new edge connecting a particular symbol node to a check node
on the graph such that the largest possible local girth is achieved. In this way, the underlying graph
grows in an edge-by-edge manner, optimizing each local girth, and is thus referred to as a PEG
Tanner graph. In [1750] upper and lower bounds on the girth and a lower bound on the minimum
distance have been derived in terms of parameters of the underlying PEG Tanner graph. In addition,
it has been shown that the PEG algorithm is a simple, flexible and powerful algorithm for generating
good regular and irregular LDPC codes (of short and moderate block lengths) offering a significant
improvement compared with randomly constructed codes. Moreover, with only a slight modification,
the PEG algorithm can be used to generate linear time encodable LDPC codes. More recently, some
improvements in the PEG algorithm which greatly improve the girth properties of the resulting graphs
have been proposed in [1751].

10.6.4.6 Irregular LDPC Codes

The design of irregular codes deserves specific comment. T. J. Richardson et al. [1686] and Luby
et al. [1752] were the first to investigate the problem of identifying ensembles of irregular codes
characterized by optimal degree distribution polynomials λ(x) (10.75) and ρ(x) (10.76) (see also
[1701]). In this case the property of optimality refers to the fact that, assuming MP decoding, a typical
code in the ensemble is capable of reliable data communication in worse channel conditions than are
the codes outside the ensemble. The worst channel condition is identified by the so-called decoding
threshold, which can be evaluated, for a given pair (λ(x), ρ(x)) by means of the DE technique. This
technique allows the analysis of the evolution of the pdfs of the messages exchanged by the decoding
algorithm in a Tanner graph [1701]. In particular, given the initial pdf of the LLR messages, the pdf
of LLR messages at any iteration can be computed under the assumption that n → ∞ (i.e., of a very
long code). As a result, one can test whether, for a given channel condition, the decoder converges
to zero error probability or not. This approach certainly leads to powerful codes, which are close to
the capacity limits for very large n; however, degree distribution polynomials which are optimal for
very long codes will no longer have this property for codes of short and medium length, which can
exhibit a high error-rate floor.

DE also suffers from other limitations. It requires intensive computations and/or a long search to
find a good degree sequence, since the optimization problem is not convex [1679]. Furthermore, it
does not provide any insight into the design process, and is intractable for some of the codes defined on
graphs. An alternative tool for studying the convergence behavior of iterative decoders is to use EXIT
charts (e.g., see [1683, 1678]). Although this method is not as accurate as density evolution, its lower
computational complexity and its reasonably good accuracy make it attractive. EXIT charts provide a
one-dimensional analysis, allowing one to visualize the convergence behavior of the decoder, and can
reduce the irregular code optimization to a linear program [1753]. Thus this tool is both faster and
provides more insight than DE-based approaches. In addition, this approach is applicable to many of
the codes defined on graphs associated with iterative decoders. Various approaches to one-dimensional
analysis and design of LDPC codes have appeared in the technical literature (e.g., see [1753–1756]).
The analyses of [1753–1755] are based on the observation that the pdf of the decoder’s LLR messages
is approximately Gaussian. This approximation is quite accurate for messages sent from variable nodes,
but less so for messages sent from check nodes. A significantly more accurate one-dimensional analysis
for LDPC codes has been proposed in [1756], where a Gaussian distribution is assumed only for the
channel messages and the messages from variable nodes, whereas the “true” pdf of the messages sent
from check nodes is employed.

In the last few years the construction of finite-length irregular LDPC codes with low error floors
(i.e., providing good performance in the region of high SNR) has been an active area of research.
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Substantial attention has been paid to the performance provided by iterative decoding of finite-length
codes over the AWGN channel and the BEC. The interest in the BEC is due to the fact that:

• good codes for this type of channel are good for the AWGN channel as well [1757];
• the decoder behavior over the BEC (AWGN) is governed by a small number of likely error events

related to certain topological structures of the LDPC code, called stopping sets (or trapping sets)
[1758–1760]. In particular the performance of LDPC codes in the error floor region is governed
by a small number of likely error events due to the presence of small stopping sets.

The design of techniques optimizing ensembles of irregular LDPC codes with respect to the size
of their minimum stopping sets (i.e., to their stopping distance [1761]) remains an open problem.
Note that finding the stopping distance of an LDPC code graph is a nondeterministic polynomial-
time (NP) hard problem [1762]. Despite this, powerful heuristic design algorithms based on various
metrics, such as the extrinsic message degree [1763], the approximate cycle extrinsic message degree
(ACE) [1763], a generalization of the ACE [1764] and the ACE spectrum [1765] are available. These
algorithms yield codes characterized by error floors substantially lower than those of random codes
with very small degradation in capacity-approaching capability. A different method for improving the
performance of LDPC codes in the error floor region is proposed in [1760]; it consists of a procedure
for edge swapping in a Tanner graph in such a way that the most dominant trapping sets are broken.

Other interesting research results concerning the construction of irregular LDPC codes can be found
in [938, 1709]. In particular, in [1709] a general systematic method to achieve an irregular LDPC
code, with a given degree distribution pair, by splitting columns and rows of a regular code (which
can be generated in a pseudorandom fashion) is proposed. It represents a useful alternative to random
generation of irregular codes and enables exploitation of the structural properties of a regular code in
efficiently storing the resultant irregular code. The construction approach described in [938] is based
on the observation that the performance of an LDPC code depends on both the structure of its Tanner
graph and its minimum distance (or low-weight profile). In fact, an LDPC code with a good minimum
distance may not outperform another one with worse minimum distance but better graph structure,
because the BPA decoding algorithm is suboptimal and graph-dependent [1610]. For this reason, LDPC
construction is accomplished by taking both weight distribution and graph property into account. In
particular, low-weight codewords consisting of degree-2 bit nodes and at most two degree-3 bit nodes
are eliminated. The design adopted is based on the QC extension of [1766], proposed to design RA
codes with good minimum distance. The resulting irregular codes have good weight distribution in
that few undetected errors and low error floors are observed.

Finally, we mention the analysis of [1767], which refers to an LDPC code ensemble characterized
by a certain profile (i.e., row and column weight distribution) and by parity check matrices having
approximately lower triangular structure with some prespecified gap (see Section 10.6.5). It is shown
that, for any gap value, the asymptotic performance of the new ensemble is the same as the performance
of the standard ensemble. Hence, by choosing the gap sufficiently small we can guarantee linear
encoding complexity and the same asymptotic performance as the standard ensemble.

10.6.5 Efficient Algorithms for LDPC Encoding

An LDPC code C is specified by a sparse parity check matrix H. Except in special cases (such as RA
and IRA codes), the generator matrix G of C is dense, and hence encoding complexity is quadratic in
the codeword length. In a landmark paper, Richardson and Urbanke demonstrated that by using back-
substitution, for most LDPC codes, encoders with complexity growing almost linearly in block length
can be built [1768]. In particular, their work starts from the observation that encoding complexity
could be substantially simplified by forcing the parity check matrix H to have lower triangular form.
This restriction ensures a linear-time encoding complexity but, generally speaking, results in some
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loss of performance. To avoid this loss, they proposed exploiting only the sparseness of H to bring
this matrix, performing row and column permutations only, into approximately lower triangular form:

Ĥ =
[

A B T
C D E

]
, (10.79)

where the matrices A, B, T, C, D and E are all sparse and have sizes (m − g) × (n − m), (m − g) × g,
(m − g) × (m − g), g × (n − m), g × g and g × (m − g), respectively, and the integer parameter g
is the so-called gap. In addition, T is a lower triangular matrix with 1s along its main diagonal.
Then, if the codeword is represented as x = [s, p1, p2], where s denotes its systematic part, while the
concatenation of p1 and p2 denotes its parity part (the size of p1 is g, while that of p2 is (m − g)), it
can be shown that the complexities required by the evaluation of p1 and p2 are O(n + g2) and O(n),
respectively. Therefore, this can substantially reduce the overall encoding complexity, provided that H
is carefully preprocessed to generate a matrix Ĥ (10.79) with a gap g as small as possible. If n is large,
there is no hope of finding the optimal permutation (i.e., that minimizing g); however, some greedy
algorithms to triangulate H are available [1768]. While a remarkable result, this did not actually solve
the encoding puzzle, since, even if Ĥ (10.79) is sparse, it is unstructured (i.e., largely disorganized).
Therefore, storing such a matrix in the encoder can turn out to be a significant burden, especially in
certain applications (e.g., in the deep-space environment (10.79)). In addition, the encoding algorithm
is essentially serial, and this limits the speed at which encoders can run.

These considerations motivate the search for structured parity check matrices, resulting in dense
but highly structured generator matrices. Encoders based on this consist of a set of shift registers, and
are both fast and fairly simple, as already mentioned in the foregoing.

Finally, it is worth mentioning that structured parity check matrices have been adopted in the DVB-
S2 and DVB-T2 standards [1769, 1770]. In fact, in both standards lower triangular matrices have been
selected; more specifically, H is restricted to have the form [A(n−k)×k B(n−k)×(n−k)], where the matrix
B(n−k)×(n−k) has a “staircase” lower triangular structure (see [1769, Appendix A, p. 64]) and A(n−k)×k

is a sparse matrix satisfying certain restrictions (various details on the resulting Tanner graph can be
found in [1771]). This specific structure of H allows systematic encoding with linear complexity with
respect to the block length.

10.7 Decoding Techniques for LDPC Codes
In this section we consider the decoding of LDPC codes. First, a general framework for understanding
decoding algorithms based on MP decoding is provided in Section 10.7.1. Then, in Section 10.7.2
we analyze the SPA, also known as the belief propagation algorithm (BPA), and its best-known
simplification, known as the min-sum algorithm (MSA) [1677]. Finally, we provide an overview of
various practical and theoretical issues concerning MP algorithms in Section 10.7.3.

10.7.1 Introduction to Decoding via Message Passing Algorithms

MP decoding algorithms operate on the Tanner graphs of LDPC codes in an iterative fashion,
accomplishing a continuous exchange of information between adjacent nodes. In the following we
describe the philosophy of MP for an (n, k) linear binary block code C described by a parity check
matrix H and provide notation and definitions useful in the description of MP algorithms for this code.

Each iteration in an MP-based decoding algorithm consists of two distinct steps. In the first step
the variable node xi (with i = 0, 1, . . . , n − 1) sends a message to any adjacent check node. This
message represents a (hard or soft) estimate of the code symbol that the variable node represents. In
the second step the exchange of information occurs in the opposite direction, that is, the check node
cj (j = 0, 1, . . . , n − k − 1) sends to any adjacent variable node a (hard or soft) estimate of the code
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symbol the variable node represents. This estimate is generated by exploiting both the information
coming from the adjacent variable nodes and the constraint expressed by the parity check equation cj .
Note that in each iteration message generation obeys the following basic rule: all the messages sent
by a variable node xi (check node cj ) of the graph along a specific edge connecting it to an arbitrary
adjacent check node cl (variable node xt ) do not depend on any message received by xi (cj ) along the
same edge. This rule originates simply from the requirement that the messages produced by any source
node and sent to a specific destination node are generated by processing only the extrinsic information
collected by the source itself. Another general rule of MP algorithms is that all the (hard or soft) data
coming directly from the communication channel are made available to variable nodes only. These
employ the information coming from the communication channel in the computation of the messages
to be delivered to check nodes. Note that this information is only available at the variable nodes at
the beginning of the first iteration and can also be exploited by such nodes in the following iterations.

The aim of the MP decoding techniques is good (possibly approaching optimal) error performance
through a repetitive and computational efficient iterative procedure. It should be expected that the
quality of the data estimates generated by a MP decoder improves with iteration. Actually, after a
certain number of iterations, the improvements contributed by additional iterations will be negligible,
so that decoding can be stopped and an estimate x̂ of the transmitted codeword x can be produced. It
is worth pointing out, however, that the vector x̂ is generated by collecting, in an ordered fashion, all
the “local” estimates of codeword symbols generated by variable nodes and for this reason, x̂ does
not necessarily belong to the alphabet of the possible codewords of C.

We now introduce a general notation for describing MP decoding algorithms:

1. Let yi denote the (hard or soft) datum generated by the communication channel, assumed
memoryless, in response to the transmitted symbol xi , with i = 0, 1, . . . , n − 1.

2. Let m(l)
cj →xi

(m(l)
xi→cj

) denote the message10 sent by the parity check node cj (variable node xi) to
the variable node xi (check node cj ) in the lth iteration, with j = 0, 1, . . . , n − k − 1;

3. We define the set:
Rj � {p : 0 ≤ p ≤ n − 1, hjp = 1} (10.80)

which consists of the values of the row index identifying all the 1s in the jth column of HT (see
Figure 10.16), and the set:

Rj \i � {p : 0 ≤ p ≤ n − 1, hjp = 1}\{i} (10.81)

consisting of Rj with i removed.

In practice, the subset of the bits of x = [x0, x1, . . . , xn−1] appearing in the jth parity check matrix
can be expressed as {xp, p ∈ Rj }.

Similarly to (10.80) and (10.81), the sets:

Ci � {q : 0 ≤ q ≤ n − k − 1, hqi = 1} (10.82)

and
Ci \j � {q : 0 ≤ q ≤ n − k − 1, hqi = 1}\{j} (10.83)

are defined by considering the ith row of HT (again see Figure 10.16). Note that the set of all the
parity check equations in which the bit xi appears is simply specified by {cq, q ∈ Ci}.

10 Generally speaking, messages are functions; however, in our analysis, messages can be simply modeled as
real-valued vectors.
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Figure 10.16 Construction of the sets Rj (10.80) and Ci (10.82) from HT .

Given these definitions, a simple analytical representation can be given for the generation of the
messages m(l)

cj →xi
and m(l)

xi→cj
. In fact, since m(l)

cj →xi
depends on the messages m(l)

xp→cj
coming from

the nodes {xp} adjacent to cj , but different from xi (i.e., from the nodes {xp, p ∈ Rj \i}), we have:

m(l)
cj →xi

= �
(l)
C

(
m(l)

xp→cj

∣∣∣ p ∈ Rj \i
)

, (10.84)

where �
(l)
C (·) is a proper function depending on a number of vector variables {m(l)

xp→cj
} equal to the

degree of cj minus one and, generally speaking, on the iteration index l. Similarly, m(l)
xi→cj

depends

on yi and on the messages m(l−1)
cp→xi

, with {cp, p ∈ Ci \j}, generated in the previous iteration, so that it
can be expressed as:

m(l)
xi→cj

= �
(l)
V

(
yi, m(l−1)

cq→xi

∣∣ q ∈ Ci \j
)

, (10.85)

where �
(l)
V (·) is a proper function depending on a number of vector variables {m(l−1)

cq→xi
} equal to the

degree of xi minus one and depending, as in the previous case, on the iteration index l. Note that in
the first iteration (i.e., for l = 0) the expression:

m(0)
xi→cj

= �
(0)
V (yi) (10.86)

should be adopted in place of (10.85), since yi only is available to the node xi at the startup of any
MP-based procedure.
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10.7.2 SPA and MSA

In his seminal work [1479, 1590] Gallager tackled the problem of developing probabilistic algorithms
able to iteratively estimate the probability:

Pr{xi = 1| y, Si} (10.87)

with i = 0, 1, . . . , n − 1 and b = 0, 1, given the received vector y = [y0, y1, . . . , yn−1], or, equiva-
lently, the APP ratio:

Pr{xi = 0| y, Si}
Pr{xi = 1| y, Si}

. (10.88)

Here Si denotes the event occurring if and only if all the parity check constraints on xi (i.e., all
the parity check equations {cq, q ∈ Ci \j}) are satisfied by the transmitted digits. To evaluate (10.88),
Gallager exploited the following lemma, which is easily proved by induction.

Lemma 10.7.1 Given the vector a = [a0, a1, . . . , am−1] consisting of m independent binary
digits with:

pl � Pr{al = 1} (10.89)

for l = 0, 1, . . . , m − 1, the probability that a contains an even and an odd number of 1s is given by:

1

2
+ 1

2

m−1∏
l=0

(1 − 2pl), (10.90)

and
1

2
− 1

2

m−1∏
l=0

(1 − 2pl), (10.91)

respectively.

To exploit this lemma, let us apply Bayes’ theorem to (10.88), rewriting it as:

Pr{xi = 0| y, Si}
Pr{xi = 1| y, Si}

= 1 − Pi

Pi

Pr{Si | y, xi = 0}
Pr{Si | y, xi = 1} , (10.92)

where
Pi � Pr{ xi = 1| y}. (10.93)

To evaluate the probability Pr{Si |y, xi = 0} it is useful to note that, if xi = 0, all the parity checks
on bit xi (i.e., {cq, q ∈ Ci}) are satisfied if and only if, for each of them, an even number of the other
involved bits (i.e., {xq, q ∈ Rq \i}) takes value unity. Therefore, from (10.90), it is easily inferred that:

Pr{Si | y, xi = 0} =
∏
q∈Ci

1

2


1 +

∏
l∈Rq \i

(1 − 2Pl)


 . (10.94)
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Similarly, the probability Pr{Si |y, xi = 1} can be evaluated as (see (10.91)):

Pr{Si | y, xi = 1} =
∏
q∈Ci

1

2


1 −

∏
l∈Rq \i

(1 − 2Pl)


 . (10.95)

Then substituting (10.94) and (10.95) into (10.92) yields:

Pr{xi = 0| y, Si}
Pr{xi = 1| y, Si}

= 1 − Pi

Pi

∏
q∈Ci


1 + ∏

l∈Rq \i
(1 − 2Pl)




∏
q∈Ci


1 − ∏

l∈Rq \i
(1 − 2Pl)




, (10.96)

which, in principle, allows an exact computation of the APP ratio (10.88), provided that the
probabilities {Pi, i = 0, 1, . . . , n − 1} (10.93) are available. This approach, however, is overly
complicated in computational terms and this motivates the search for alternative (and computationally
simpler) approaches to estimate the bit APPs. An excellent alternative is the BPA. Like all the other
MP-based decoding techniques, the BPA is an iterative technique, in which each iteration consists of
two distinct steps: a transmission of information from variable nodes to check nodes, followed by a
transmission in the opposite direction, as illustrated in Figure 10.17 for the lth iteration.

yi xi

xi

cp,p ∈Ci \ j

xq ,q ∈Rj \ i

ci

ci

Variable
nodes

Check
nodes

{mcp→xi
 (b)}(l-1)

{mcj →xi
 (b)}(l )

{mxq →cj
 (b)}(l )

{mxi→cj
 (b)}(l)

(a)

(b)

Figure 10.17 Transmission, in the lth BP iteration, of (a) the messages {µ(l)
xi→cj

(b), b = 0, 1}
from the variable node xi to the check node cj and (b) the messages {µ(l)

cj →xi
(b), b = 0, 1} in the

opposite direction.



Modern Coding Schemes 483

To derive the BPA, consider first the message processing at check nodes. In particular, we focus
on the check node cj , which needs to evaluate the message m(l)

cj →xi
� [µ(l)

cj →xi
(0), µ(l)

cj →xi
(1)] to the

adjacent node xi ; we assume that µ(l)
cj →xi

(b) represents an estimate of the probability that the jth parity
check is satisfied, provided that xi = b, with b = 0, 1. Note that, if the node cj knew the probabilities
{Pp, p ∈ Rj \i}, it could evaluate the message µcj →xi

(0), independently of the iteration index l, as
(see (10.94)):

µcj →xi
(0) = 1

2
+ 1

2

∏
p∈Rj \i

(1 − 2Pp), (10.97)

since, if xi = 0, jth parity check equation is satisfied when an even number of the bits {xp, p ∈ Rj \i}
are equal to 1. Similarly, µcj →xi

(1) could be computed as (see (10.95)):

µcj →xi
(1) = 1

2
− 1

2

∏
p∈Rj \i

(1 − 2Pp). (10.98)

Then, if (10.97) and (10.98) held, (10.96) could be rewritten as:

Pr{xi = 0| y, Si}
Pr{xi = 1| y, Si}

= 1 − Pi

Pi

∏
q∈Ci

µcq→xi
(0)∏

q∈Ci

µcq→xi
(1)

, (10.99)

so that the APP ratio (10.88) could be computed by exploiting the messages {µcq→xi
(0), q ∈ Ci}

and {µcq→xi
(1), q ∈ Ci} traveling along all the edges connected to the node xi . Unfortunately, the

node cj does not know the probabilities {Pp, p ∈ Rj \i} and can exploit only the knowledge of the
messages {µ(l)

xp→cj
(b), p ∈ Rj \i}, sent by its adjacent variables nodes different from xi . As will become

clearer below, such messages represent an estimate of {Pp, p ∈ Rj \i}; then, if we assume that they
are mutually independent, usable expressions of the messages {µ(l)

cj →xi
(1), b = 0, 1} can easily be

obtained by replacing Pp with µ(l)
xp→cj

(b) in (10.97) and (10.98); this produces:

µ(l)
cj →xi

(0) � 1

2
+ 1

2

∏
p∈Rj \i

(1 − 2µ(l)
xp→cj

(1)) (10.100)

and
µ(l)

cj →xi
(1) � 1

2
− 1

2

∏
p∈Rj \i

(1 − 2µ(l)
xp→cj

(1)), (10.101)

respectively (these two expressions can also be condensed into a single vector equation, as originally
suggested by (10.84)).

Let us now focus on message processing at the variable nodes. The node xi , through the message
µ(l)

xi→cj
(b), provides its adjacent node cj with an estimate of the probability that xi = b, with b = 0, 1

(these probabilities are collected in the vector m(l)
xi→cj

� [µ(l)
xi→cj

(0), µ(l)
xi→cj

(1)]). To compute such
an estimate, the node xi process first the channel datum yi to generate the probability:

pi � Pr{xi = 1| yi}, (10.102)

and second the messages {µ(l−1)
cq→xi

(b), q ∈ Ci \j} generated in the previous iteration and originating
from all the adjacent check nodes different from cj . Briefly, the message µ(l)

xi→cj
(b) is evaluated as:

µ(l)
xi→cj

(b) � Pr{xi = b|pi, µ
(l−1)
cq→xi

(b) with q ∈ Ci \j} (10.103)
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with b = 0, 1 and l > 0. If we assume that all the messages collected by xi are mutually independent,
it is easy to show that (see (10.103)):

µ(l)
xi→cj

(0) = (1 − pi)
∏

q∈Ci \j

µ(l−1)
cq→xi

(0) (10.104)

and that:
µ(l)

xi→cj
(1) = pi

∏
q∈Ci \j

µ(l−1)
cq→xi

(1). (10.105)

It is important to point out that at the beginning of the first iteration (corresponding to l = 0), the
node xi knows pi (10.102) only, so that (10.104) and (10.105) are replaced by:

µ(0)
xi→cj

(0) = 1 − pi (10.106)

and
µ(0)

xi→cj
(1) = pi, (10.107)

respectively (in agreement with (10.86)).
Equations (10.100), (10.101), (10.104) and (10.105), together with the initial conditions (10.106)

and (10.107), fully define the BPA. At the end of the lth iteration (with l > 0) the node xi (with
i = 0, 1, . . . , n − 1) can evaluate the quantities:

Q
(l)
i (0) = Ki(1 − pi)

∏
q∈Ci

µ(l)
cq→xi

(0) (10.108)

and
Q

(l)
i (1) = Kipi

∏
q∈Ci

µ(l)
cq→xi

(1), (10.109)

where Ki is a real parameter ensuring normalization (i.e., that Q
(l)
i (0) + Q

(l)
i (1) = 1); as is easily

inferred from (10.99), Q
(l)
i (0) and Q

(l)
i (1) provide an estimate of the probabilities Pr{xi = 0| y, Si}

and Pr{xi = 1| y, Si}, respectively. Therefore, an estimate x̂(l) = [x̂0(l), x̂1(l), . . . , x̂n−1(l)] of the
transmitted codeword x = [x0, x1, . . . , xn−1] can be generated using the simple decision rule:

x̂i (l) =
{

1 if Q
(l)
i (1) ≥ 1/2

0 otherwise
(10.110)

for i = 0, 1, . . . , n − 1. Given x̂(l), the product x̂(l) HT is evaluated to establish if x̂(l) is a codeword
or not. If the parity check is satisfied, the decoding procedure stops. Otherwise, an additional iteration
is carried out (provided that the overall number of iterations does not exceed a given threshold) to
generate a new codeword estimate x̂(l + 1); obviously, if the BPA is unable to generate a codeword
in a limited number of iterations, a decoding failure is declared.

Finally, it is important to make the following observations:

1. The probability pi (10.102) depends on yi only, and not on the entire vector y, like Pi (10.93); in
addition, it is easy to prove that, for BPSK transmission:

pi = 1

1 + exp (4 Re{yih
∗
i }/σ 2

n )
, (10.111)

if the same channel model as in Section 10.5.2.1 is adopted.
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2. If the Tanner graph associated with H is cycle-free, the probabilities µ(l)
xi→cj

(0) (10.104) and

µ(l)
xi→cj

(1) (10.105) converge to the APPs Pr{xi = 0| y, Si} and Pr{xi = 1| y, Si}, respectively,
when l → ∞, so that the BPA is asymptotically optimal [1479]. As already mentioned in Section
10.6.2, in the presence of cycles the hypothesis of statistical independence of the messages collected
by any node is no longer true after a certain number of iterations. Then, as the iterations proceed,
the exchanged messages become more and more correlated, so that an exceedingly large number
of iterations is of no use.

3. The BPA can be exploited, in principle, for the decoding of any linear binary block code, but
becomes really advantageous for LDPC codes because the degrees of variable and check nodes
are low; in fact, this property entails that the overall number of products involved in the message
equations (10.100), (10.101), (10.104) and (10.105) and in the evaluation of the data APPs according
to (10.108) and (10.109) is not exceedingly large.

To avoid numerical instability problems in the implementation of the BPA, this strategy needs to
be reformulated in the logarithmic domain. To this aim, we define the log APP ratios (see (10.100),
(10.101), (10.102), (10.104), (10.105), (10.108) and (10.109)):

L(xi) � ln
Pr{xi = 0| yi}
Pr{xi = 1| yi}

= ln
1 − pi

pi

, (10.112)

L(µ(l)
cj →xi

) � ln
µ(l)

cj →xi
(0)

µ
(l)
cj →xi

(1)
, (10.113)

L(µ(l)
xi→cj

) � ln
µ(l)

xi→cj
(0)

µ
(l)
xi→cj

(1)
(10.114)

and

L(Q
(l)
i ) � ln

Q
(l)
i (0)

Q
(l)
i (1)

. (10.115)

Then, based on (10.112), the initial conditions (10.106) and (10.107) can be expressed as:

L(µ(0)
xi→cj

) = L(xi) = ln
1 − pi

pi

(10.116)

or, thanks to (10.111), as:

L(µ(0)
xi→cj

) = ln
1 + exp(2yi/σ

2
n )

1 + exp(−2yi/σ
2
n )

= 4 Re{yih
∗
i }

σ 2
n

. (10.117)

The message sent from xi to cj for l > 0 can be put in logarithmic form as follows. Evaluating the
ratio between (10.104) and (10.105) yields:

µ(l)
xi→cj

(0)

µ
(l)
xi→cj

(1)
= 1 − pi

pi

∏
q∈Ci \j

µ(l−1)
cq→xi

(0)

µ
(l−1)
cq→xi

(1)
. (10.118)

Then taking the logarithm of both sides and exploiting (10.112)–(10.114) leads to the expression:

L(µ(l)
xi→cj

) = L(xi) +
∑

q∈Ci \j

L(µ(l−1)
cq→xi

). (10.119)
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Putting the messages generated by check nodes in logarithmic form is more complicated. To this end,
we rewrite (10.100) and (10.101) as:

2µ(l)
cj →xi

(0) = 1 +
∏

p∈Rj \i

(
1 − 2µ(l)

xp→cj
(1)

)
(10.120)

and

1 − 2µ(l)
cj →xi

(1) =
∏

p∈Rj \i

(
1 − 2µ(l)

xp→cj
(1)

)
, (10.121)

respectively, and exploit the identity tanh
[ 1

2 ln
(
q0/q1

)] = q0 − q1 = 1 − 2q1 holding for any pair of
real positive numbers q0 and q1 such that q0 + q1 = 1. From this identity and (10.113) and (10.114)
it is easily inferred that:

1 − 2µ(l)
cj →xi

(1) = tanh

[
1

2
L

(
µ(l)

cj →xi

)]
(10.122)

and

1 − 2µ(l)
cj →xi

(1) = tanh

[
1

2
L

(
µ(l)

cj →xi

)]
. (10.123)

Then substituting (10.122) into the LHS of (10.121) yields:

tanh

[
1

2
L

(
µ(l)

cj →xi

)]
=

∏
p∈Rj \i

[
1 − 2µ(l)

xp→cj
(1)

]
, (10.124)

which can be rewritten as (see (10.123)):

tanh

[
1

2
L

(
µ(l)

cj →xi

)]
=

∏
p∈Rj \i

tanh

[
1

2
L

(
µ(l)

xp→cj

)]
(10.125)

or, equivalently, as:

L(µ(l)
cj →xi

) = 2 tanh −1




∏
p∈Rj \i

tanh

[
1

2
L(µ(l)

xp→cj
)

]
 . (10.126)

Equation (10.126) expresses the check node message L(µ(l)
cj →xi

) as a function of the messages

{L(µ(l)
xp→cj

), p ∈ Rj \i} collected by cj by all the nodes {xp} adjacent to it and different from xi .
The main drawback of (10.126) is that it requires the evaluation of multiple products. To overcome
this problem, the following solution can be adopted. Because the hyperbolic tangent is an odd function,
we have tanh (x) = sgn (x) tanh (|x|) for any real x, so that L(µ(l)

xi→cj
) can be expressed as:

L(µ(l)
xi→cj

) = αij βij , (10.127)

where αij � sgn [L(µ(l)
xi→cj

)] and βij � |L(µ(l)
xi→cj

)|. Then, if (10.125) is rewritten as:

tanh

[
1

2
L

(
µ(l)

cj →xi

)]
=

∏
p∈Rj \i

αpj

∏
p∈Rj \i

tanh

(
1

2
βpj

)
, (10.128)
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the logarithmic message L(µ(l)
cj →xi

) can be put in the form:

L(µ(l)
cj →xi

) =


 ∏

p∈Rj \i

αpj


 2 tanh−1︷ ︸︸ ︷

ln−1 ln

∏
p∈Rj \i

tanh

(
1

2
βpj

)

=


 ∏

p∈Rj \i

αpj


 2 tanh−1 ln−1

∑
p∈Rj \i

ln tanh

(
1

2
βpj

)
. (10.129)

Let us now define the function:

f (x) � − ln tanh

(
1

2
x

)
= ln

exp (x) + 1

exp (x) − 1
(10.130)

(whose behavior is illustrated in Figure 10.18) and note that:

f −1(x) = 2 tanh−1ln−1(x) = f (x) (10.131)

for any real x > 0, since f (f (x)) = ln[exp (f (x)) + 1]/[exp (f (x)) − 1] = x. Then, by exploiting
(10.130) and (10.131), (10.129) can be put in the form:

L(µ(l)
cj →xi

) =


 ∏

p∈Rj \i

αpj


 f


 ∑

p∈Rj \i

f
(
βpj

) , (10.132)

which contains a multiple sum (in place of a multiple product) and expresses the mathematical law
for the computation of the message sent by cj to xi . Another favorable feature of this expression is
that f(x) (10.130) has a regular shape, so that it can be implemented using a lookup table.

To complete the description of the logarithmic BPA, the ratio between (10.108) and (10.109) is
evaluated, yielding:

Q
(l)
i (0)

Q
(l)
i (1)

= 1 − Pi

Pi

∏
q∈Ci

µ(l−1)
cq→xi

(0)

µ
(l−1)
cq→xi

(1)
, (10.133)
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x)

543210
x

Figure 10.18 The function f (x) (10.130).
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from which it is easily seen that (see (10.112)–(10.115)):

L(Q
(l)
i ) = L(xi) +

∑
q∈Ci

L
(
µ(l−1)

cq→xi

)
. (10.134)

Moreover, the decision rule (10.90) can be expressed as:

x̂i (l) =
{

1 if L
(
Q

(l)
i

)
≤ 0

0 otherwise
(10.135)

for i = 0, 1, . . . , n − 1.
The derivation of the logarithmic BPA illustrated above is rigorous, so that theoretically the per-

formance of this algorithm is equivalent to that of the original BPA. In practice, however, in the
implementations of BPA based on fixed-point hardware, quantization effects must be carefully taken
into consideration. In fact, it has been shown that the direct implementation of the original form of
BPA is sensitive to quantization effects and that using likelihood ratios can substantially reduce the
required number of quantization levels [1772]. In any implementation of the BPA another critical issue
is the procedure, expressed by (10.132), for the generation of the messages by check nodes. This has
motivated the search for approximate and simpler procedures for this task. In the following we derive
two such procedures, namely the MSA [1677, 1773–1775] and the normalized MSA (NMSA) [1776].
The derivation of the MSA is based on the behavior of f(x) (10.130), illustrated in Figure 10.18; in
fact from this figure it can easily be inferred that the quantity:

f


 ∑

p∈Rj \i

f
(
βpj

) (10.136)

of (10.132) is mainly influenced by the maximum value of the terms in the sum
∑

p∈Rj \if (βpj ), that
is, by the minimum of the quantities {βpj , p ∈ Rj \i}. For this reason (10.136) can be approximated as:

f
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p∈Rj \i

f
(
βpj
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 f


f


min βpj

p∈Rj \i




 , (10.137)

so that (see (10.131)):

f
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p∈Rj \i

f
(
βpj

) 
 min βpj

p∈Rj \i
. (10.138)

If this approximation is adopted, (10.129) becomes:

L(µ(l)
cj →xi

) =


 ∏

p∈Rj \i

αpj


 min βpj

p∈Rj \i
(10.139)

or, equivalently:

L(µ(l)
cj →xi

) =
∏

p∈Rj \i

sgn
[
L

(
µ(l)

xp→cj

)]
min

p∈Rj \i

∣∣∣L (
µ(l)

xp→cj

)∣∣∣ , (10.140)

which describes the expression for the evaluation of the check node messages in the MSA [1677,
1774, 1777]. Note that this represents the only difference between the logarithmic BPA and the MSA.
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It is also important to point out that, on the one hand, the BPA requires knowledge of the noise
variance σ 2

n , since this parameter is needed in the evaluation of (10.111). On the other hand, in the MSA
the dependence of the log APP ratios on σ 2

n is removed without changing the nature of the algorithm.
In particular, this result is achieved by replacing L(xi) (10.112) with L̄(xi) � σ 2

n L(xi)/4 in the
initialization (10.117), so that L(µ(0)

xi→cj
) (10.117) becomes L̄(µ(0)

xi→cj
) = Re{yih

∗
i }. Then, (10.140),

(10.119) and (10.134) are replaced by:

L̄(µ(l)
cj →xi

) =
∏

p∈Rj \i

sgn [L̄(µ(l)
xp→cj

)] min
p∈Rj \i

|L̄(µ(l)
xp→cj

)|, (10.141)

L̄(µ(l)
xi→cj

) = L̄(xi) +
∑

q∈Ci \j

L̄(µ(l−1)
cq→xi

) (10.142)

and
L̄(Q

(l)
i ) = L̄(xi) +

∑
q∈Ci

L̄(µ(l−1)
cq→xi

), (10.143)

respectively. Similarly, in the decision criterion (10.135) L(Q
(l)
i ) is replaced by L̄(Q

(l)
i ).

The check node message (10.140) can be slightly modified to improve the MSA error performance;
in fact, in [1776] it is proved that in the MSA (10.140) generates a message L(µ(l)

cj →xi
) having the

same sign as (10.132), but a larger absolute value. For this reason, in [1776] (10.132) is replaced with:

L(µ(l)
cj →xi

) = 1

α

∏
p∈Rj \i

sgn [L(µ(l)
xp→cj

)] min
p∈Rj \i

|L(µ(l)
xp→cj

)|, (10.144)

where α is a real normalisation factor greater than unity [1776], and this last result characterizes
NMSA.

The error performance provided by the three different decoding algorithms derived in the foregoing
is compared in following example for a specific LDPC code.

Example 10.7.1 We have considered a binary (3,6)-regular LDPC code characterized by n = 504
and R = 1/2 [1773]. Its parity check matrix has been generated in a random fashion, removing any
possible double edges and cycles of order 4. Then H has been brought to a lower triangular form using
the Greedy A algorithm of [1768] to ease the encoding procedure. Decoding has been accomplished
using the BPA (in the logarithmic domain), the MSA and the NMSA (with α = 1.4 in (10.144)); the
maximum number of iterations has been set to 200, 200 and 50, respectively (a further increase in this
parameter does not provide any appreciable improvement in the three cases). The BER performance
provided by these decoding techniques is shown in Figure 10.19. Note that the energy gap between
the BPA and the MSA is a fraction of a decibel and that this is substantially filled by the NMSA.

�

Generally speaking, the MSA offers an error performance a few tenths of a decibel inferior to
that of BPA. In addition, its performance can also be improved by resorting to various modifications,
illustrated in the following subvsection, where a brief overview of the literature on soft decoding
techniques is provided.

10.7.3 Technical Issues on LDPC Decoding via MP

In this subsection an overview of various technical issues analyzed in the literature on LPDC decoding
techniques is provided. In particular, we focus on soft decoding algorithms, hard decoding algorithms,
decoding over channels with memory and performance bounds.
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Figure 10.19 BER versus Eb/N0 for the iterative decoding (via BP, MSA and NMSA) of the
regular LDPC code described in Example 10.5.3.

10.7.3.1 Soft Decoding Algorithms

The significant complexity of the BPA has motivated the search for simpler soft decoding strategies for
LDPC codes. The first two simplified versions of the BPA were proposed by Fossorier et al. in 1999
[1773]. Both operate in the log-likelihood domain, are implemented with real additions only, do not
require any knowledge of the channel characteristics, yield a good performance–complexity tradeoff
and can be efficiently implemented in software as well as in hardware, with possibly quantized received
values. It is important to note that one of the two algorithms (called the uniformly most powerful BPA
(UMP-BPA)) proposed in [1773] is equivalent to the max-product algorithm (MPA) of [1774] and
to the Max-Log-MAP algorithm presented in [1775]; today all these are better known as the MSA
[1677]. Although, generally speaking, MSA decoding yields error performance a few tenths of a decibel
inferior to that of BPA (e.g., see Example 10.7.2), it is much simpler to implement, and does not require
an estimate of the noise power for decoding for an AWGN channel. Moreover, its implementation is
more robust against quantization error, compared with a similar implementation for the BPA [1778].

Other reduced-complexity decoding algorithms, also operating entirely in the log-likelihood domain,
have been presented and analyzed in [1776–1784]. We summarize the main results described in these
references. In [1777] minimal modifications to the MSA (leading to significant performance gains) are
proposed. A decoding algorithm bridging the gap in performance between the optimal SPA and the
UMP-BPA of [1773] is illustrated in [1779]. In this algorithm the computationally expensive check
node updates of the SPA are simplified by using a difference metric approach on a two-state trellis and
by employing the so-called dual-max approximation. Moreover, the dual-max approximation is further
improved by using a correction factor that allows the performance to approach that offered by the SPA.
In [1780] efficient serial and parallel implementations of the SPA are investigated and new reduced-
complexity derivatives, requiring simple comparators and adders, are developed. A deep analysis of
the UMP-BPA is provided in [1776], where it is explained why the performance of this algorithm is
not close to that of the BPA. In particular, it is shown that the degradation of the UMP-BPA is due to
the inaccuracy of the soft values delivered by check nodes from the first iteration. Then it is proposed
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to improve the accuracy of these soft values by scaling (i.e., normalization). This leads to NMSA
described above (finite quantization effects are evaluated in [1785]). It is worth pointing out that
the use of scaling (in particular, damping) of soft information for improving decoding performance
has been also analyzed in [1786, 1787], where the DE technique with a Gaussian approximation
is applied to the MSA to analyze the scaling gain. The threshold values are calculated for various
scaling factors, and the scaling factor showing the highest threshold in noise level is determined as
optimal. In [1782] a memory-efficient variation of the BPA is proposed and analyzed. The proposed
algorithm performs almost as well as the SPA in terms of BER. It is based on splitting the code
graph in a semirandom fashion into two subgraphs (i.e., the LDPC code into two subcodes) and
decoding the resulting subcodes in a turbo fashion, instead of applying the MP algorithm to the
entire graph. This can be considered an example of layered decoding (see [1788] and references
therein). In [1783] a complexity reduction in the BPA is achieved by calculating a linear function
for updating the check nodes in each iteration; the parameters of this function are optimized by DE.
Simulation results show that there is nearly no loss in the performance by using this approximation
compared to the exact calculation of the BPA, even for very large block lengths. Another improved
algorithm, based on the BPA and called the offset BP-based algorithm (also known as offset MSA
[1789]) is described in [1781]. It aims to improve the accuracy of the extrinsic messages delivered
by the check nodes by reducing the reliability values by a positive constant. An improvement to
the offset MSA is described in [1789], where a more efficient adjustment for check node update
computation is proposed and the resulting algorithm achieves a noticeable performance gain with only
a modest increase in computation complexity. Several of the leading approaches for decoding LDPC
codes are compared in [1784] from both algorithmic and structural points of view. In particular,
their performance and implementation complexity are evaluated. Numerical results indicate that in
iterative decoding, accurate representations of the LLR-BPA algorithm do not always lead to the best
performance if the underlying graph representation contains many short cycles. In fact, simplified
reduced-complexity decoding schemes sometimes can outperform the BPA decoding algorithm. The
effects of clipping and quantization on the performance of the MSA for the decoding of LDPC codes
at short and intermediate block lengths are studied in [1778]. It is shown that:

• in many cases, only four quantization bits suffice to obtain close to ideal performance over a wide
range of SNRs,

• although quantization usually degrades performance, clipping can provide improvement, and in
many cases, the overall effect is such that only four bit quantization results in near or even better
than ideal performance over a wide range of SNRs.

Moreover, modifications to the MSA that improve the performance by a few tenths of a decibel with
only a small increase in decoding complexity are proposed. It is shown that, when optimized, the
resulting modified quantized MSA performs very close to, and in some cases even slightly better than,
the ideal BPA at observed error rates in the presence of code cycles.

Most of the papers cited above refer to soft decoding of binary LDPC codes. The iterative decoding
via SPA of nonbinary LDPC codes was first investigated by Davey and Mackay in [1712]. A more
effective decoding strategy for the q-ary LDPC codes is the FFT-based q-ary SPA [1727, 1790, 1791].

The behavior of soft decoding algorithms (and, in particular, the problem of evaluating the decoding
thresholds) can be analyzed by resorting to the DE technique. In particular, the DE has been employed
for the analysis of:

• the MSA in [1777] (where a comparison between the MSA and the BPA is made) and [1775, 1781];
• the BPA in [1679, 1652, 1753, 1792];
• the scaling gain of the NMSA in [1786, 1787];
• the NMSA and the offset MSA in [1781, 1785];
• various soft decoding algorithms in [1784].
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Finally, we note the following:

1. The gap between iterative decoding and optimal (i.e., ML) decoding for any fixed-code structure
can sometimes be significant [1793] due not only to the suboptimal nature of iterative decoding,
but also to the suboptimal graph structure of the code which may contain short loops.

2. To bridge the performance gap between ML decoding and BPA decoding, Fossorier proposed
combining reliability-based decoding [1496] (namely, order statistic decoding, OSD) with BPA
decoding [1794] (see also [1795]). In practice, at each iteration the soft data generated by the
BPA are used as reliability values to perform reduced-complexity soft decision decoding of the
LDPC code considered. An improvement to this decoding approach is illustrated in [1796], where
a more reliable method to reconstruct ordered information sequence in terms of the accumulated
LLR transitions of variable nodes is proposed. This results in substantial performance gains with
only a modest increase in computational complexity.

3. Practical probabilistic algorithms for efficient ML decoding of binary LDPC codes over the BEC
channel have been proposed in [1797].

4. The passing of messages in the BPA follows the so-called flooding schedule [1687], since in each
iteration, all variable nodes and subsequently all check nodes pass new messages to their neighbors.
For a cycle-free Tanner graph, this results in optimal APP decoding. The cycles in the Tanner graphs
of LDPC codes make SPA decoding no longer optimal and this leads to a performance loss, which
can be more severe for short LDPC codes. Some performance improvement can be obtained,
however, by changing the message schedule. For instance, a probabilistic schedule, tailored to the
Tanner graph of an LDPC code, is illustrated in [1798]. The proposed schedule updates the outgoing
messages of a variable node with an average frequency proportional to the length of the shortest
cycle passing through it and can achieve significant performance improvement upon the flooding
schedule, with a similar or even lower complexity.

10.7.3.2 Hard Decoding Algorithms

A substantially simpler alternative to soft decoding are hard decoding algorithms, such as the so-called
Gallager A [1799] and bit-flipping algorithms [1479].

Gallager A is the simplest decoding algorithm based on the MP philosophy and allows as messages
only elements of the set {±1}, denoting the sign of a bit. More specifically, the message going out of
each check node along an edge is simply the product of all incoming messages excluding the incoming
message along the edge itself. The message sent by a variable node along an edge emerging from it
is equal to the received (hard) message unless all incoming messages (ignoring the incoming message
along the given edge) agree, in which case this message is forwarded. Although this simple decoding
algorithm cannot achieve similar performance to the BPA, it is nevertheless of interest because of
its extremely low complexity. For this algorithm, the evaluation of the threshold and of the optimal
degree distributions for a large range of rates is illustrated in [1799].

Gallager suggested an iterative hard decoding algorithm, known as bit-flipping, as a simpler alter-
native to his soft decoding algorithm for LDPC codes. The proposed algorithm flips in sequence each
variable bit that has more unsatisfied parity check bits compared to its satisfied ones. An analysis of
the error-correction capability of this algorithm for regular LDPC code ensembles can be found in
[1800] and references therein.

10.7.3.3 Error Performance

Two important technical issues are usually analyzed when investigating the error-correcting
performance provided by practical algorithms for iterative decoding of LDPC codes, namely the error
floor and the decoding threshold. Note that such performance can be close to Shannon limits for codes
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with suitably large block lengths. However, a substantial limitation to the use of finite-length LDPC
codes is the presence of an error floor in the low frame error rate (FER) region, that is, of significant
flattening in the curve relating the SNR to the FER. The error floor is commonly attributed to the subop-
timality of the iterative decoding algorithms on graph with cycles. However, recent work on this topic
has shown that the main cause of the error floor of structured LDPC codes are the (fully) absorbing sets,
that is, certain combinatorial objects associated with codes and defined independently of the decoding
scheme adopted or the channel noise model. In practice, the performance of an iterative decoding algo-
rithm in the low-FER region is mainly determined by the number and structure of the smallest (fully)
absorbing sets (unlike ML decoders whose performance is governed by the minimum-distance code-
words). The reader can refer to [1801] (and references therein) for an interesting analysis of this topic.

For the BSC and various regular ensembles of graphs, Gallager numerically determined the largest
crossover probability such that, under the assumption of independent messages, the expected number
of messages in error converges to zero as the number of iterations grows to infinity [1590]. In [1679]
it is proved that this number, known as the threshold, determines the asymptotic (in the codeword
length) behavior of the ensemble of codes: roughly speaking, for a code chosen randomly from the
ensemble, with high probability, decoding will be successful if transmission takes place below the
threshold, and the error probability will stay above a fixed constant if transmission takes place above
it. This threshold can easily be determined numerically, but it is nevertheless pleasing and potentially
insightful to derive analytical expressions (e.g., see [1799] referring to a BSC channel and decoding
via the Gallager A algorithm).

Further interesting results on the performance analysis of LDPC codes can be found in [1802, 1803].
In particular, in [1802] it is conjectured that the performance of a code from a given LDPC ensemble
does not depend appreciably on the particular memoryless channel, but only on the mutual information
between the input and the output of the channel. This conjecture originates from a performance analysis
of LDPC codes based on simple EXIT charts and is supported by simulation results referring to various
LDPC codes and several memoryless channels. In addition, it confirms an early remark in [1686],
where it was observed that LDPC codes optimized for the AWGN channel show good performance
for other memoryless channels, such as the BSC and BEC, and generalizes the results in [1720]. In
[1803] the behavior of iteratively decoded LDPC codes over the BEC in the so-called waterfall region
is analyzed and it is shown that the performance curves in this region follow a simple scaling law.
The scaling law, together with the error floor expressions developed previously, can be used for a fast
finite-length optimization.

Finally, it is worth remembering that various asymptotic results (i.e., applicable to very long codes)
have been derived to assess the performance provided by ensembles of LDPC codes. These include
results on the performance under ML decoding [1694, 1695, 1804], average ensemble distance spectra
[1590, 1690, 1692, 1693, 1805], stopping set distributions [1692, 1693, 1759, 1805] and thresholds for
iterative decoding. However, an accurate finite-length analysis of LDPC codes under BPA decoding
is currently available only for the BEC [1758]. This is due to the simplicity of the channel model and
the graph-based iterative decoder which lends itself to a more detailed analysis. For the BEC scenario
lower and upper bounds on the error exponent of typical codes in LDPC code ensembles are derived
in [1692] and [1694, 1806], respectively.

10.7.3.4 LDPC Decoding over Channels with Memory

In the technical literature there are many recent papers on detection and decoding of LDPC codes over
channels with memory (e.g., see [1807] and references therein). A general theoretical framework to
solve the problem of joint decoding and estimation, in the presence of unknown channel parameters, has
been derived by A. P. Worthen and W. E. Stark [1808]. The approach is Bayesian, that is, the channel
parameters are modeled as stochastic processes with known statistics, and the use of factor graphs11

11 Factor graphs are defined in Section 10.8.
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that include both code constraints and channel statistics is advocated in a very general setting. The SPA
is then used to implement the MAP symbol detection strategy. However, since the channel parameters,
which are continuous random variables, are explicitly represented in the graph, the application of the
SPA becomes impractical. To solve this problem, the method of canonical distributions is proposed.
Further work on this topic can be found in [1807], where using a factorization of the joint APP of the
information symbols, a FG representing both the code constraints and the channel model is derived.
In this FG, however, the channel parameters are not explicitly represented since they are a priori
averaged out. The application of the SPA to this FG leads to an iterative scheme for joint detection
and decoding. Note, however, that this factorization is exact only in the case of channels with finite
memory (e.g., a channel with known ISI) and is approximate for channels with infinite memory.

10.7.3.5 Decoder Implementation

In designing an LDPC MP decoder a serial, a fully parallel or partially parallel architecture can be
adopted. The first option is characterized by simple hardware, but offers low throughput. In contrast, a
fully parallel architecture can provide high throughput at the cost of complex hardware. The partially
parallel architecture is a tradeoff between throughput and complexity and, for this reason, is of interest
to many practical applications. The reader can refer to [1740] and references therein for further
information on this topic.

10.8 Codes on Graphs
The field of codes on graphs has been developed to provide a general conceptual foundation for
modern capacity-approaching coding schemes and their iterative decoding algorithms. The beginning
of this field dates back to the introduction of bipartite graphs for modeling LDPC codes by Tanner
[1606] (see Section 10.6.2). Tanner graphs were later extended to include state variables as well as
symbol variables by N. Wiberg in his seminal thesis [1677, 1809].

Generally speaking, graphs can be very useful to model systems (i.e., collections of interacting
variables). To show this, let us briefly introduce a “behavioral” approach to system modeling [1810]
and apply it to channel coding. In particular, let us consider a system fully described by the collection
{x0, x1, . . . , xn−1} of n variables with configuration space S = A0 × A1 × . . . × An−1, where Ai

denotes the alphabet of xi , with i = 0, 1, . . . , n − 1. Note that this collection of variables cannot
take on any arbitrary value (i.e., configuration) in S. The subset B of S consisting of all the valid
configurations for the given system represents the so-called behavior in S.

Behavioral modeling can be readily adopted for channel coding [1610]. For instance, any linear (n, k)
block code C over GF(q) can be represented as a behavior in S, with Ai = GF(q), i = 0, 1, . . . , n − 1.
In this case, as shown below, a possible choice for the set of interacting variables is represented by
the n codeword symbols, so that any valid configuration corresponds to a specific codeword of C.
However, before providing further details about behavioral modeling of linear block codes, it is useful
to introduce the characteristic (or set membership indicator) function of a behavior B, defined as:

χB(x0, x1, . . . , xn−1) = [(x0, x1, . . . , xn−1) ∈ B], (10.145)

where the function:

[P] �
{

1 if P is true

0 otherwise
(10.146)

indicates the truth of a predicate P . Generally speaking, the characteristic function χB fully defines
the membership of a configuration in a behavior B and, consequently, can also be exploited to define
the set of codewords of a block coding scheme. It is useful to note that in linear block coding the
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membership of a specific n-dimensional vector over GF(q) of the codeword set of an (n, k) block code
C over GF(q) can be verified through n − k parity checks. In the language of behavioral modeling,
this statement can be reformulated to state that the validity of a particular configuration for a behavior
B is assessed by applying a series of n − k tests, each involving some subset of the system variables.
Obviously, a given configuration is deemed valid if and only if it passes all the tests. Therefore, the
predicate (x0, x1, . . . , xn−1) ∈ B appearing on the RHS of (10.145) can be expressed as a logical
conjunction of a series of n − k “simpler” predicates:

χB(x0, x1, . . . , xn−1) = [P0 ∧ P1 ∧ . . . ∧ Pn−k−1], (10.147)

where ∧ denotes the logical conjunction and the predicate Pl is true if and only if the lth parity check
equation of C is satisfied (with l = 0, 1, . . . , n − k − 1). This allows us to factor χB as:

χB(x0, x1, . . . , xn−1) = [P0][P1] . . . [Pn−k−1], (10.148)

namely as a product of characteristic functions, each indicating whether a particular subset of the code
symbols satisfies a specific check equation, that is, is a valid configuration of some “local” behavior.

An equivalent description of the product of functions appearing on the RHS of (10.148) is provided
by its FG representation, a bipartite graph expressing the structure of the given factorization. Generally
speaking, a FG provides a graphical representation of a function f (·) characterized by the following
properties:

• it depends on a set of N variables {x0, x1, . . . , xN−1}, each taking values on a specific alpahabet;
• it can be factored into a product of a local functions, each depending on a subset of

{x0, x1, . . . , xn−1}, that is:

f (x0, x1, . . . , xN−1) =
∏
l∈Sl

fl(Xl ), (10.149)

where Sl is a discrete index set, Xl denotes a subset of {x0, x1, . . . , xN−1} and fl(Xl ) is a function
depending on Xl only.

The FG associated with (10.149) consists of a set of nodes and of a set of unoriented edges
connecting variable nodes to function nodes. In particular, the FG contains a variable node for each
variable xl (with l = 0, 1, . . . , N − 1) and a factor node for each local function fl(Xl ). In addition, a
variable node xp is connected by an edge to a function node fq(Xq) if and only if xp is contained in
Xq (i.e., fl(·) depends on xp). We now illustrate these concepts through an example of their application
to a specific binary block code.

Example 10.8.1 Let C denote the (7,4) Hamming linear block code over GF(2) described in Example
9.1.1 (see also Example 10.6.1). This code consists of the set of all binary 7-tuples satisfying the
parity check x HT = 03 (see (9.11)), with H given by (9.15). This matrix constraint can be rewritten
more explicitly as:

x0 + x1 + x2 + x4 = 0,

x1 + x2 + x3 + x5 = 0,

x0 + x1 + x3 + x6 = 0. (10.150)

where sums are evaluated over GF(2). Then to establish if a binary 7-tuple belongs to C (i.e., if a
given configuration is valid) we need to check whether each of the last three equations is satisfied.



496 Wireless Communications

For this reason, the characteristic function for C can be put in the form (see (10.145), (10.147) and
(10.148)):

χB(x0, x1, . . . , xn−1) =[(x0, x1, . . . , x6) ∈ C]

=[x0 + x1 + x2 + x4 = 0][x1 + x2 + x3 + x5 = 0]

· [x0 + x1 + x3 + x6 = 0]. (10.151)

The product on the RHS can be represented through a FG. If a square is used to represent each of
the parity checks (i.e., the factors) and a circle to denote each of the variables, the resulting graph is
equivalent to that shown in Figure 10.14, the Tanner graph of C.

�

The latter result lends itself to an simple generalization. Generally speaking, if in the behavioral
modeling of a block code C the role of system variables is played by codeword symbols, the FG
representing the factorization of the associated characteristic function is equivalent to the Tanner
graph of C. Note that in all these cases behavioral models are described by nonhidden (i.e., visible)
variables. Such models are compact (in terms of the overall number of variables) and are useful for
checking whether a given codeword is in C or not, but are not so good for generating codewords.
To overcome the latter problem, behavioral models with hidden (sometimes called auxiliary, latent,
or state) variables should be adopted. When this occurs, the set of codeword symbols (collected
in an n-dimensional vector x) is complemented with a set of ns state variables {s0, s1, . . . , sns−1},
also belonging to GF(q) and forming the ns-dimensional vector s. In addition, the symbol and state
variables are required to satisfy a set of linear homogeneous equations over GF(q), called the constraint
equations. Then in this new scenario the full behavior B consists of all the combinations (x, s) (also
called trajectories) satisfying all the constraint equations, and the code C (representing a visible
behavior) is the projection of B onto its first n components (the dimension of C coincides with that
of B if and only if codewords associated with distinct trajectories are different).

Graphs can be employed for code description even in the presence of state variables, as originally
proposed by Wiberg et al. [1677, 1809] (for this reason, graphs including state variables may be
called Wiberg-type graphs). Then, in addition to symbol variables, which are external, observable, and
determined a priori, the graph includes state variables which are internal and unobservable. Note that,
in particular, any FG for B is considered to be also a FG for C.

An important class of graphical models with hidden variables is constituted by the so-called trellis
representations [1583]; generally speaking, a trellis is directed graph with a cycle-free chain structure.
A trellis for a block code C is an edge-labeled directed graph with separate root and goal vertices.
In this trellis each sequence of edges forming a directed path from the root vertex to the goal vertex
identifies codeword in C and each codeword in C is represented by at least one such path. A further
relevant property of the trellis is that all paths from the root to any given vertex v consist of the same
number of edges, that is, have the same fixed length d (this parameter is called the depth of v); in
particular, the root vertex has depth 0, where the goal vertex has depth n. The set of depth d vertices
forms the domain of the state variable sd , with d = 0, 1, . . . , n (so that ns = n + 1).

All these concepts are applied again to the (7,4) Hamming code in the following example.

Example 10.8.2 The (7,4) Hamming linear block code of Example 10.8.1 consists of the set of all
binary 7-tuples generated as x = u G (see (9.3)), with G given by (9.14) and this matrix expression
can be rewritten as:

x − u G = 07,
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which can be interpreted as the set of seven constraint equations:

x0 + u0 = 0,

x1 + u1 = 0,

x2 + u2 = 0,

x3 + u3 = 0,

x4 + u0 + u1 + u2 = 0, (10.152)

x5 + u1 + u2 + u3 = 0,

x6 + u0 + u1 + u3 = 0,

to be satisfied by the seven codeword symbols forming x and by the state variables forming the 4-tuple
x. This behavioral representation is less compact (in terms of the overall number of variables) than
that described in Example 10.8.1, but is certainly more useful for encoding information. A bipartite
graph (i.e., a Tanner graph or FG) representing this behavioral model is shown in Figure 10.20; here
state (symbol) variables are represented by empty (filled) circles and constraints by squares. It is easy
to verify that this graph contains cycles.

The same code is also represented by the trellis diagram in Figure 10.21(a). The reader can easily
check that this cycle-free graph represents the 16 codewords of the Hamming code originating from
the root vertex (i.e., the leftmost node), developing to the right and ending in the goal vertex (i.e., in
the rightmost node), and the codeword symbols are represented by edge labels. This graph involves the
binary code symbols {x0, x1, . . . , x6} and seven (i.e., hidden) state variables {s0, s1, . . . , s7}, each

u0

u1

u2

u3

x0

x1

x2

x3

x4

x5

x6

Figure 10.20 Tanner graph representing a behavioral model of the Hamming code described in
Example 10.8.2.
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Figure 10.21 (a) Trellis and (b) the associated Wiberg-type graph for the block code of
Example 10.8.2.

associated with a group of vertices having the same depth. Moreover the graph consists of seven
sections, the ith section (denoted Ti , with i = 1, 2, . . . , 7) being that part of the graph encompassing
all the vertices at depth i − 1 and i and the edges connecting them, that is, expressing a “local”
constraint about the possible combinations of the variables of the triple (si−1, xi , si) only. Note that
such combinations generate a linear block code. For instance, the second section of the trellis is
associated with a local code that consists of the four binary linear combinations of (0, 1, 01) and
(1, 0, 10), that is, with a binary (4, 2) block code. These considerations suggest that we can express
the characteristic function χH (·) for this behavioral model as:

χH (x0, x1, . . . , x6, s0, s1, . . . , s7) =
6∏

i=1

χi(si−1, xi , si), (10.153)

where χi(si−1, xi , si) � [(si−1, xi , si) ∈ Ti] is the characterstic function referring to the ith section of
the trellis and describing a local behavior. The factorization on the RHS of (10.153) leads to the
Wiberg-type FG shown in Figure 10.21(b). Note that:

(a) states are represented by double circles;
(b) for each state the number of grouped parallel edges emerging from it is equal to the number of

bits representing the state variable;
(c) the endmost states s0 and s7 are constrained always to be zero, so that, as a matter of fact, they

are 0-bit variables or constants (this is shown by a connection to the FG with a dotted line; in
principle, this connection could be omitted and this would turn the local code to which they are
now connected into a (2,1) code).

�
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Various considerations expressed in Example 10.8.2 for a specific block code can easily be gen-
eralized. A trellis T for any (n, k) block code C over GF(q) can be divided into n sections {Ti, i =
1, 2, . . . , n}, such that:

• the ith trellis section Ti is the subgraph of the trellis consisting of the vertices at depths i − 1 and
i, and of the set of edges connecting them,

• the set of edge labels in Ti forms the domain of the (visible) variable xi ,
• the section Ti defines a “local behavior” and, in particular, describes the local constraints on the

possible combinations of the triple {si−1, si , xi}.

The configuration of the behavior B described by T is defined by the variables {x0, x1, . . . , xn−1}
and {s0, s1, . . . , sn}. Such a configuration is valid if and only if it satisfies the local constraints imposed
by each of the trellis sections. For this reason the characteristic function for B can be represented as
the product of n factors, where the ith factor is associated on the ith trellis section and depends on
the variables {si−1, xi , si} only. This inevitably leads to a cycle-free FG. Since every code admits a
trellis representation, it can be represented by a cycle-free FG. Unfortunately, it often turns out that
the state-space sizes can easily become too large to be practical. For instance, turbo codes may well
have (Wiberg-type) FG representations of reasonable complexity, but necessarily with cycles, whereas
the trellis representations of turbo codes are characterized by huge state spaces.

Another tool for graphical modeling of code realizations has been proposed by D. Forney [1811],
who focused on the study of normal realizations of codes, that is, Wyberg-type realizations12 (real-
izations involving symbol, states and a set of local constraints) in which the degree of a state variable
(i.e., the number of constraints in which it is involved) and that of the symbol variable are restricted
to two and one, respectively (note that these constraints are always satisfied, for instance, by trellis
realizations). More specifically, Forney introduced a novel graphical model, called a normal graph
(also called a Forney graph) for Wyberg-type realizations. In this model the constraints, the state
variables and the symbol variables of FGs are represented by vertices, ordinary edges and leaf edges
(i.e., half edges) connected to the corresponding constraint vertices, respectively. The simple rules
for converting a FG with symbols and states into a normal graph are summarized in Figure 10.22(a).
When applied to the simple FG of Figure 10.22(b), they lead to the normal graph of Figure 10.22(c).
This result demonstrates that:

(a) this conversion does not cause a change in graph topology or complexity;
(b) in the normal graph state nodes are replaced by repetition constraints, which constrain all incident

state edges to be equal, whereas symbol nodes are replaced by repetition constraints and symbol
half-edges;

(c) the normal graph, unlike the FG, is not bipartite since it contains only one kind of vertex;
(d) despite the edges of a FG need not be labeled, an edge of a normal graph is labeled by the state

or symbol variable it represents (labels have been omitted in Figure 10.22(c) for simplicity);
(e) despite a FG is an ordinary graph, a normal graph is a graph with leaves.

Forney has also proved that the use of normal graphs allows one to draw a clean separation of
functions between the elements of the graphs and the elements of the SPA. In fact, all computations
are accomplished at vertices, whereas state edges and symbol (half) edges are used for internal
communication (message passing) and external communication (input/output), respectively.

The development of a graphical approach to modeling codes has provided new insights into all
known capacity-approaching codes and a wide variety of MP algorithms used not only in coding
but also in computer science and signal processing. First, it has provided a unifying framework for

12 These are called generalized state realizations by Forney.
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Figure 10.22 (a) Conversion rules for symbol and state variables; (b) example of a FG;
(c) example of the associated normal graph.

the understanding of LDPC codes, turbo codes and most practically decodable capacity-approaching
coding schemes (e.g., RA codes). All these can be interpreted as codes on graphs. One of the most
significant results following from the unification of various coding scheme is the well-known theorem,
known as the cut-set bound, whose meaning can be explained as follows (mathematical details can
be found in [1809, 1811]). A cut set of a connected graph is a minimal set of edges whose removal
partitions the graph into two disconnected subgraphs. In a normal graph, a cut set χ consists of a
set of ordinary (state) edges, and the symbol variables, constraint codes and the states not belonging
to χ are partitioned by the cut set into two disjoint subsets connected only by the states in χ . The
states in the cut set can be regarded as a single superstate variable �χ ; the cut-set bound provides
a lower bound on the size of the alphabet of �χ . In particular, this theorem implies that cycle-free
graphs cannot have state spaces significantly smaller than those of conventional trellises; therefore,
substantial reductions in complexity can be found only in graphs with cycles, such as the graphs of
turbo and LDPC codes. From this perspective turbo codes, LDPC codes, and RA codes can all be
seen as codes whose graphs are made up of simple codes with linear-complexity graph realizations,
connected by a large pseudorandom interleaver.

Graphical modeling of codes has also lead to significant conceptual contributions to the under-
standing of decoding algorithms. The first significant results in this area of research were derived
by Wiberg, who provided an accurate characterization of the MSA and SPA, and showed that they
perform essentially the same procedure except for the substitution of min for sum and sum for product.
He also proved that they perform exact ML and APP decoding, respectively, on cycle-free graphs
and that, in particular, they reduce to the Viterbi and BCJR algorithms, respectively, when the code
graph is a trellis. This result strongly motivated the heuristic extension of iterative decoding based
on the SPA to graphs with cycles. In particular, the turbo and LDPC decoding algorithms may be
interpreted as instances of this decoding approach applied to their respective graphs. Note that these
graphs inevitably contain cycles, but the probability of short cycles is low, and consequently itera-
tive decoding based on the SPA works well. Conceptual results on decoding over graphs have been
exploited in various related fields. For instance, the belief propagation and belief revision algorithms
of Pearl [1812] (employed for statistical inference on Bayesian networks) and the forward–backward
(Baum–Welch) algorithm [1813] (exploited for the detection of hidden Markov models in signal pro-
cessing) have been shown to be special cases of the SPA operating on specific graphs. The reader can
refer to [1610, 1687, 1689, 1814, 1815] for further information on this interesting area of research.
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10.9 Historical Notes
Some historical information has been already provided in the previous sections of this chapter. In
this section we outline the overall evolution of various modern coding schemes, in order to try
to illustrate their mutual relationships. Further historical information on this topic can be found in
[1465, 1547].

The introduction of turbo codes constitutes a fundamental event in the history of modern cod-
ing schemes. This occurred at the 1993 IEEE International Conference on Communications (ICC) in
Geneva, where C. Berrou, A. Glavieux and P. Thitimajshima [1481] showed that the parallel concate-
nation of convolutional codes could achieve near-Shannon-limit performance while requiring a quite
reasonable decoding complexity. The genesis of turbo codes, however, is related to the development
of some fundamental theoretical concepts in the past. It was well known to the scientific community
that linear codes were as good as general codes and that devising randomlike codes (in the sense that
the distance distribution of a typical codeword from all other codewords should approach that of a
random code) was the key to getting close to channel capacity. These principles were already clear
in Gallager’s monograph on LDPC codes [1590] and in the work of G. Battail (e.g., see [1816]).
Another important principle known to the inventors of turbo codes was the possibility of exploiting
soft decisions (i.e., reliability information) not only as input to a decoder, but also in the inner process-
ing of an iterative decoder. For instance, this principle had already been put into practice by Gallager
when he developed APP decoding for LDPC codes, showing that the use of soft decision information
in iterative decoding was useful even on a hard decision channel. However, the idea of employing
SiSo decoding in a concatenated coding scheme was originally proposed by Battail [1817] and by
Hagenauer and Hoeher in [1535] in the second half of the 1980s; in fact, they proposed the SiSo
version of the VA (namely, the SOVA, see Section 10.5.2.1). A few years later, Hoeher and Lodge
extended their ideas by proposing to connect distinct SiSo APP decoders operating in an iterative
fashion [1818]. It is also worth noting that:

• at the conference in which Berrou et al. introduced turbo codes and first used the term extrinsic
information (see Section 10.5.1), a paper by Lodge et al. [1636] also included the idea of extrinsic
information,

• by that time the benefits of retaining soft values in digital receivers had been fully appreciated (e.g.,
see [1819]).

Actually, the invention of turbo codes began when A. Glavieux suggested that his colleague
C. Berrou, a professor of VLSI circuit design, consider the implementation of the SOVA decoder
in silicon. When studying the principles at the basis of SOVA decoding, Berrou was struck by Hage-
nauer’s observation that a SiSo decoder is a kind of SNR amplifier. He understood that the SNR
could have been improved by repeated decoding, using some sort of iterative feedback. This led to
the development of the turbo principle presented at the 1993 ICC. In the following years various
researchers confirmed the astonishing performance results provided by turbo coding and the so-called
turbo revolution began. Various properties of turbo coding were soon understood. In particular, it was
shown that the use of an interleaver of length N effectively reduces the number of low-weight code-
words by a factor of N [1616, 1684], and that the turbo codes have relatively poor minimum distance.
In fact this parameter grows only logarithmically with N [1820], so that the ensemble of turbo codes is
not asymptotically good. The poor minimum distance leads to a flattening of the performance curve of
turbo codes, that is, to an error floor. It was shown that this error floor problem can be mitigated (but
not completely avoided) using serial concatenation instead of parallel concatenation [1546, 1821],
designing structured interleavers to improve the minimum distance [1822, 1823], or using multi-
ple interleavers to eliminate low-weight codewords [1824, 1825] (the issue of interleaver design for
turbo codes has also been investigated in [1826–1831]). Since 1993, various research efforts have
also been devoted to reducing the associated decoder complexity, in particular, the Max-Log-MAP
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algorithm proposed by W. Koch and A. Baier [1598], as well as by J. Erfanian et al. [1524], the Log-
MAP algorithm suggested by P. Robertson et al. [1525], and the above-mentioned SOVA algorithm
[1535, 1599] have been considered.

During the mid-1990s, Hagenauer et al. [1100] and R. M. Pyndiah [1503] extended the turbo
concept to parallel concatenated block codes as well. In 1997 H. Nickl et al. [1832] showed that
Shannon’s limit can be approached within 0.27 dB by employing a simple turbo Hamming code.

LDPC codes were first proposed in 1960 by Gallager in his doctoral thesis [1479, 1590], but
did not receive significant attention for about 35 years [1833]. Shortly after the appearance of turbo
codes, codes similar to Gallager’s LDPC codes were discovered independently by D. J. C. MacKay
[1607, 1834, 1835] and D. A. Spielman [1608, 1609, 1836, 1837]. In particular, MacKay showed
that a moderate-length LDPC code could attain near-Shannon-limit performance, whereas Spielman
used LDPC codes based on expander graphs to devise codes with linear-time encoding and decoding
algorithms and proved that, in theory, as the codeword length n → ∞, they could approach the
Shannon limit. These results spurred research on LDPC codes, which are currently seen as competitors
to turbo codes. It is important to mention that in 1995, N. Wiberg proved in his doctoral thesis [1677,
1809] that both of these classes of codes could be understood as instances of codes on sparse graphs,
and that their decoding algorithms could be understood as instances of a general iterative APP decoding
algorithm called the SPA. Wiberg also discovered that many of his results had previously been found by
R. M. Tanner [1606] in a largely forgotten 1981 paper. In fact, Tanner had generalized LDPC codes
and provided a graphical tool (today known as a Tanner graph) for their representation. Wiberg’s
rediscovery of Tanner’s work opened up a new area of research into codes on graphs (see Section
10.8). In particular, the following findings deserve to be mentioned:

1. The results of Spielman were quickly applied by N. Alon and M. Luby [1838] to the Internet
problem of reconstructing large files in the presence of packet erasures.

2. The discovery of the superiority of irregular LDPC codes. Luby et al. [1699, 1752] found that by
using irregular graphs and optimizing the degree sequences, they could approach the capacity of
the BEC (e.g., a rate-1/2 LDPC code capable of correcting almost half of erasures is described in
[1839]). More recently, it has been shown [1840] that on any erasure channel, binary or nonbinary,
it is possible to design LDPC codes that can approach capacity arbitrarily closely, in the limit as
n → ∞. T. J. Richardson and R. L. Urbanke et al. [1679, 1686] used the DE technique to design
long irregular LDPC codes that for all practical purposes achieve the Shannon limit on binary
AWGN channels. Moreover, using this approach, Chung et al. [1701] designed several rate-1/2
codes for the AWGN channel, including one whose theoretical threshold approached the Shannon
limit to within a small fraction of a decibel.

3. The discovery of algebraic structures for turbo codes. These may be preferable to a pseudoran-
dom structure for implementation and may allow control over important code parameters such as
minimum distance, as well as graph-theoretic variables such as expansion and girth (see Section
10.6.4).

Another related class of codes is that of RA codes (see Section 10.4.1), proposed in 1998 by
D. Divsalar and R. J. McEliece et al. [1648] as simple turbo-like codes for which one could prove
coding theorems. The performance of RA codes turned out to be remarkably good and certainly better
than that of the best coding schemes known prior to turbo codes. Other authors have proposed equally
simple codes with similar or even better performance, such as ARA codes [1744] and concatenated tree
codes [1841] (see also [1842]). All these results have shown that simple codes can be interconnected
by large pseudorandom interleavers in various ways and decoded via the SPA so as to yield near-
Shannon-limit performance.

Other modern coding schemes, which have not been described in this chapter, are represented
by fountain codes or rateless codes. These are designed for channels without feedback and whose
statistics are not known a priori (e.g., Internet packet channels where the probability of packet erasure
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is unknown). These schemes are based on the principle that the transmitter encodes a finite-length
message into a potentially infinite stream of encoded symbols; the receiver then accumulates received
symbols (possibly noisy) until it finds that it has enough for successful decoding. The first codes of
this class were the so-called Luby transform (LT) codes [1843]. These were extended to the Raptor
codes [1844, 1845], characterized by the concatenation of an inner LT code with an outer fixed-length,
high-rate LDPC code.

Even though the introduction of turbo codes dates back to less than 20 years ago, these codes
and the related class of LDPC codes have already had a significant impact in practice. In particular,
almost all digital communication and storage system standards that involve coding are being upgraded
to include these new capacity-approaching techniques.

10.10 Further Reading
An brief overview of iterative decoding principles is provided by the tutorial paper [1846]. A detailed
introduction to turbo coding is provided by the book [1847], while the book [1586] is devoted mainly
to LDPC coding. Finally, the reader can refer to the books [1815, 1848] for a deeper analysis of the
problem of coding on graphs.



11
Signal Space Codes

11.1 Introduction
Hitherto we have mainly focused on binary error-correcting coding. In this chapter we focus on
combined coding and modulation. This leads us to look at signal space codes or coded modulations. We
will focus on a subset of the available techniques. In particular, we look at the original TCMs, BICMs,
multilevel codes (MLCs), and space-time codes (STCs). In general, the key difference between the
design of error control codes and signal space codes is that binary error-correcting codes are typically
designed to maximize the minimum Hamming distance between codewords, while signal space codes
are generally designed to maximize other distance measures between modulated codewords.

This chapter is organized as follows. The following three sections analyse coded modulation
schemes for SIMO communication systems. In particular, trellis coding schemes that exploit expanded
signal sets and bit interleaving are described in Sections 11.2 and 11.3, respectively, whereas Section
11.4 is focused on the study of modulation codes based on multilevel coding. The remainder of the
chapter investigates space-time coding. In particular, various classes of STCs, including STBCs, OST-
BCs, STTCs, layered STCs and unitary STCs, are analysed in Section 11.5. Most of our results refer
to SC systems; however, in the last part of Section 11.5, STCs for MIMO OFDM are considered.
Finally, some historical information and suggestions for further reading are provided in Section 11.6
and 11.7, respectively.

11.2 Trellis Coding with Expanded Signal Sets
Error-correcting codes as described in Chapters 8 and 9 are able to improve the system performance by
adding extra bits (redundancy) to the transmitted symbol sequence. Hence, they allow us to increase
noise immunity at the expense of a bandwidth increase equal to the reciprocal of the code rate. Such
an increase can be avoided by enlarging the signal set, that is, by employing a higher-order modulation
scheme to compensate for the redundancy introduced by the code.

As an example, let us consider an uncoded QPSK transmission. Each QPSK symbol is transmitted
every Ts seconds and carries two information bits. If we want to improve the system performance,
we may encode the information bits through a rate-2/3 binary code. Each QPSK symbol will now
carry 4/3 information bits and, hence, to match the information rate of the source, the symbol interval
should be reduced to 2Ts/3, thus expanding the bandwidth by a factor of 3/2. This bandwidth increase
can be avoided by employing an 8-PSK constellation instead of the original QPSK. In this case,
however, coding and modulation must be designed jointly while the receiver, instead of performing
demodulation and decoding in two separate steps, must combine the two operations into one.

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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TCM is thus a technique based on the combination of coding and modulation to increase efficiency
in bandwidth-limited environments. It was originally described in the seminal work of G. Ungerboeck
and I. Csajka [1077] and clearly formalized by Ungerboeck in 1982 [992] with reference to the AWGN
channel. Before going into details of the design of TCMs for time-selective fading channels, we will
therefore briefly review the main concepts with reference to the AWGN channel.

11.2.1 Code Construction

11.2.1.1 TCMs over the AWGN Channel

For the AWGN channel, asymptotic performance is not governed by the free Hamming distance
of the binary code, but by the free Euclidean distance between transmitted signal sequences. The
principle of set partitioning is particularly useful. It involves partitioning the signal constellation Ac

of cardinality M = 2m into subsets with increasing minimum Euclidean distance. Figure 11.1 illustrates
this concept for an 8-PSK constellation Ac and carrying the partitioning to the limit where each subset
Di , i = 0, 1, . . . , 7, contains a single point; generally speaking, this is not necessary since the level
of partitioning depends on the code design.

The encoding/modulation process is illustrated in Figure 11.2. At the encoder input, k input infor-
mation bits, arriving at a discrete-time instant, are separated in two groups. The first k1 bits are encoded
through a rate-k1/n1 binary encoder. The remaining k2 = k − k1 bits are left uncoded. Therefore the
overall encoder has rate k/(n1 + k2) and, of course, the same number of states of the constituent
binary encoder. The n1 encoded bits are used to select, according to an appropriate criterion, one of
2n1 subsets, whereas the k2 uncoded bits are used to select one of 2k2 points within a subset. Thus, the
level of partitioning must be such that we have 2n1 subsets with 2k2 points each. The rationale for this
approach is simply explained. Since the points within a subset are at the maximum possible distance,
the information that needs to be protected more effectively is that associated with the subset, not that
related to the position of the point within a subset. The k2 bits left uncoded give parallel transitions
on the trellis diagram of the overall encoder. This is not a problem on the AWGN channel, as will
become clearer later.

Convolutional linear (or, more generally, nonlinear) trellis codes are used as binary encoders in
the scheme of Figure 11.2 since, in these cases, the VA can be employed to perform soft input
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Figure 11.1 Set partitioning of an 8-PSK constellation.
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Figure 11.3 Trellis diagrams of the binary encoder and of the overall encoder.

decoding. In the original Ungerboeck approach, the binary encoder is also a rate-k1/(k1 + 1) encoder
and the code design is performed on the basis of three famous heuristic rules [992] that reflect the
above-mentioned ideas. They are illustrated in the following example, which compares an uncoded
QPSK with a four-state trellis-coded 8-PSK modulation.

Example 11.2.1 Let us consider a trellis-coded 8-PSK modulation built according to Figure 11.2.
In this scheme we have k = 2 and we choose k1 = k2 = 1. The binary encoder has rate 1/2 and we
assume that it has four states. The trellis state is thus defined through a shift register accumulating two
previous input bits. Moreover, we have n1 + k2 = 3 and, in fact, three bits are required to uniquely
identify a symbol of the 8-PSK modulation. The trellis diagram of the binary encoder is clearly that in
Figure 11.3(a), whereas that of the overall encoder is shown in Figure 11.3(b); note that the presence
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of k2 = 1 uncoded bit produces, in fact, the appearance of parallel transitions. The overall encoder
will be completely defined once each trellis branch is assigned to an 8-PSK output symbol (i.e., to a
subset Di). In [992], this assignment is performed in accordance with to the following heuristic rules:

1. All signal points should occur with the same frequency.
2. Parallel transitions, when present, must be assigned to signal points belonging to the same subset,

in such a way that they are separated by the maximum Euclidean distance.
3. Transitions originating from or merging into the same state are assigned to subsets that belong to

the same subset but of lower order.

Rule 1 guarantees that the trellis code has a regular structure. Rule 2 formalizes the concept that
uncoded bits select the point within a subset. Rule 3 states the way in which coded bits selects the
subset. These three rules guarantee that the free Euclidean distance of this code is that associated
with parallel transitions. One of the possible equivalent assignments according to these rules is that
illustrated in Figure 11.3(b).1 According to rule 3, transitions originating from or merging into the
same state are assigned to points of subsets C0 or C2 belonging to the same subset B0, or to points
of subsets C1 or C3, belonging to the same subset B1.

To assess the coding gain of this scheme, we compare it with an uncoded QPSK. The comparison
is fair since both schemes carry two bits every Ts seconds and employ the same bandwidth. The
uncoded QPSK scheme employs points of subsets B0 or B1 equivalently, whose distance, assuming
that they lie on the unit circle, is dQPSK = √

2. In our coded scheme, the minimum distance is that
associated with parallel transitions and, hence, with points of subsets Ci , thus dp = 2. In fact, rule 3
ensures that all other pairs of sequences will have a larger distance. If we consider, as an example,
the sequences associated with the paths shown in Figure 11.4, the corresponding distance is:

d =
√

(D0 − D2)
2 + (D0 − D1)

2 + (D0 − D2)
2 � 2.14 > dp. (11.1)

The asymptotic gain with respect to the uncoded QPSK is thus:

20 log10

dp

dQPSK
� 3 dB. (11.2)

A larger asymptotic gain (3.6 dB) can be obtained by using an eight-state binary encoder. In this case,
however, parallel transitions must be avoided since, otherwise, the minimum distance would remain
that associated with them and thus no gain would be obtained with respect to the four-state code.

�

An alternative method for the design of TCMs was developed by A. R. Calderbank and N. J. A.
Sloane [1849] and D. G. Forney [324]. An extension of TCMs, which is relevant to our purposes,
is represented by multidimensional TCMs and multiple TCMs where each trellis branch is associated
with more than one symbol transmitted sequentially on the channel. For a comprehensive treatment
of TCMs, the reader can refer to [36].

1 A simplified representation of the code is that in Figure 11.3(a). In this case, parallel transitions are omitted
for simplicity and each branch is associated with a subset Ci . Since these subsets have two points, the reader is
implicitly informed that each branch consists of a pair of parallel branches.
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Figure 11.4 Paths on the code trellis.
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Figure 11.5 Possible transmission scheme adopting a coded modulation over a fading channel.

11.2.1.2 TCMs over (Known) Frequency-Flat Fading Channels

Let us consider Figure 11.5 as a possible TCM transmission scheme for a time-selective fading
channel. The TCM encoder is modeled as the cascade of a binary encoder (of rate k/m in the figure)
plus a modulator (or mapper) that univocally associates the m-tuple (c

(1)
� , c

(2)
� , . . . , c

(m)
� ) with an

M-ary symbol c� of the complex signal constellation, where M = 2m. Information bits are denoted
as (u

(1)
� , u

(2)
� , . . . , u

(k)
� ). With respect to the case of a transmission over the AWGN channel, coded

symbols are interleaved before transmission (the interleaver is denoted by � in the figure). This
interleaver, useless on the AWGN channel, is very important on a channel with correlated fading as
it separates adjacent received samples affected by a deep fade, and aids the decoder.

Let {c̄�} denote the sequence of coded symbols after interleaving, and let us make the following
assumptions:

• One sample per symbol is sufficient for optimal decoding; we will denote by {r̄�} the received
sample sequence and by {r�} the corresponding deinterleaved sequence. The model for the �th
received signal sample r̄� is (see (4.92)):

r̄� = h̄�c̄� + n̄� (11.3)

with � = 1, 2, . . . , N , where h̄ = {h̄�}N�=1 is a discrete-time complex Gaussian process with
autocorrelation function Rh̄(i) = E{h̄�+i h̄

∗
�}, {n̄�} is a complex discrete-time white Gaussian noise

process with independent real and imaginary components, each with variance σ 2
n /2, and N is the

codeword length.
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• The channel is characterized by the conditional pdf fr̄(ρ̄|c̄, h̄) and by the joint a priori pdf fh̄(λ̄).
With the above assumptions we have that:

fr̄(ρ̄|c̄, h̄) =
N∏

�=1

fr̄�
(ρ̄�|c̄�, h̄�) =

N∏
�=1

1

πσ 2
n

exp

{
− 1

σ 2
n

∣∣ρ̄� − h̄�c̄�

∣∣2} . (11.4)

We will assume that the channel amplitude has a Rician distribution (see Section 4.4.2.1). Defining
a� � |h�|, this random variable has the following pdf (normalized to a unit mean-square value):

fa(x) = 2x(1 + K) exp{−K − x2(1 + K)} I0(2x
√

K(1 + K)) u(x), (11.5)

where I0(x) is the zeroth-order modified Bessel function of the first kind and K a parameter
representing the ratio of the power in LOS plus specular components to that in the diffuse component
(see (2.60)). Note that the case of no fading corresponds to a Rician channel with K approaching
infinity, whereas a Rayleigh channel is a limiting case of a Rician channel when K approaches zero.

• The receiver perfectly knows the channel, that is, it is equipped with an ideal estimator of the gains
{h̄�} (the case of a receiver which operates under the knowledge of the channel statistics has been
described in Section 6.4).

• The interleaver is ideal. The fading samples, correlated before the deinterleaver, become independent
after it. According to the notation for code symbols and received samples, we denote by h = {h�}N�=1
the sequence of fading gains after deinterleaving. Similarly to (11.4), we have:

fr(ρ|c, h) =
N∏

�=1

fr�
(ρ�|c�, h�) =

N∏
�=1

1

πσ 2
n

exp

{
− 1

σ 2
n

∣∣ρ� − h�c�

∣∣2} . (11.6)

Under these assumptions, let us compute the PEP, which represents the probability that the decoder
chooses the sequence ĉ �= c when the sequence c is transmitted and ĉ and c are the only two possible
decoding outcomes. From (11.6) it follows that an ML decoder that perfectly knows the fading gains
will operate on a code trellis with metric to be maximized equal to:

�(c̃) = ln fr(ρ|c̃, h) =
N−1∑
�=0

ln fr�
(ρ�|c̃�, h�) . (11.7)

It can thus employ the VA with the branch metrics:

λ� = ln fr�
(ρl |c̃�, h�) ∝ −|ρ� − h�c̃�|2 . (11.8)

where c̃� denotes the channel symbol labeling a state transition in the �th symbol interval. Let us now
consider two codewords (i.e., sequences of coded channel symbols) c and ĉ stemming from the same
state and merging after a given number of trellis steps. Thus, given a particular channel realization,
the PEP for this couple of codewords can be written as2:

Pr{�(ĉ) > �(c)|c, h} = Q

(
d(c, ĉ)√

2σ 2
n

)

≤ 1

2
exp

{
−d2(c, ĉ)

4σ 2
n

}

= 1

2
exp

{
− 1

4σ 2
n

∑
�∈I

|h�|2|ĉ� − c�|2
}

= 1

2

∏
�∈I

exp

{
− 1

4σ 2
n

a2
� |ĉ� − c�|2

}
, (11.9)

2 Inequality (F.15) has been used. Tighter upper bounds could be derived as described in [1850, 1851].
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where d(c, ĉ) is the distance between the transmitted vector c and the erroneous vector ĉ, �(c) and
�(ĉ) are the corresponding metrics, and the set I contains all the values of � such that |ĉ� − c�| �= 0. By
using (11.5) and the independence of the random variables {a�}, the average of the channel realization
is easily computed to obtain the average PEP as:

Pr{�(ĉ) > �(c)|c} = Eh{Pr{�(ĉ) > �(c)|c, h}, (11.10)

which, for simplicity, will be denoted by Pr{c → ĉ}3:

Pr{c → ĉ} ≤ 1

2

∏
�∈I

∫ +∞

x�=0
exp

{
− 1

4σ 2
n

x2
� |ĉ� − c�|2

}
fa(x�) dx�

= 1

2

∏
�∈I

1 + K

1 + K + 1
4σ2

n
|ĉ� − c�|2

exp


−

K

4σ2
n
|ĉ� − c�|2

1 + K + 1
4σ2

n
|ĉ� − c�|2


 . (11.11)

If the symbols {c�} are normalized to a unit mean-square value (i.e., σ 2
c = 1), we have that σ 2

n =
N0/Ēs , where Ēs denotes the average received energy per channel symbol energy. Then equation
(11.11) can be rewritten as:

Pr{c → ĉ} ≤ 1

2

∏
�∈I

1 + K

1 + K + Ēs
4N0

|ĉ� − c�|2
exp


−

KĒs
4N0

|ĉ� − c�|2

1 + K + Ēs
4N0

|ĉ� − c�|2


 (11.12)

or, equivalently, as:

Pr{c → ĉ} ≤ 1

2
exp

{
− Ēs

4N0
d̄2(c, ĉ)

}
, (11.13)

where we have defined:
d̄2(c, ĉ) �

∑
�∈I

[d2
1,�(c�, ĉ�) + d2

2,�(c�, ĉ�)] (11.14)

with

d2
1,�(c�, ĉ�) � K|ĉ� − c�|2

1 + K + Ēs
4N0

|ĉ� − c�|2
(11.15)

and

d2
2,�(c�, ĉ�) � 4N0

Ēs

ln


1 + K + Ēs

4N0
|ĉ� − c�|2

1 + K


 . (11.16)

When K → ∞ (AWGN channel), we have:

d2
1,�(c�, ĉ�) = |ĉ� − c�|2 (11.17)

and
d2

2,�(c�, ĉ�) = 0, (11.18)

so that in this case d̄2(c, ĉ) becomes the squared Euclidean distance between the two sequences c and
ĉ. For K = 0 (Rayleigh channel):

d2
1,�(c�, ĉ�) = 0 (11.19)

3 The following equality has been also exploited:

∫ ∞

0

x

σ 2
e
− b2+x2

2σ2 I0

(
bx

σ 2

)
dx = 1 .



512 Wireless Communications

and

d2
2,�(c�, ĉ�) = 4N0

Ēs

ln

(
1 + Ēs

4N0
|ĉ� − c�|2

)
. (11.20)

Then the PEP is:

Pr{c → ĉ} ≤ 1

2

∏
�∈I

1
Ēs

4N0
|ĉ� − c�|2 + 1

, (11.21)

which asymptotically (for high SNR values) becomes:

Pr{c → ĉ} � 1

2

(
Ēs

4N0

)−|I |(∏
�∈I

|ĉ� − c�|2
)−1

, (11.22)

where |I | denotes the cardinality of the set I. If we represent this pairwise error probability as a
function of the SNR Ēs/N0, the larger the value of |I | the larger the rate of its decrease (the slope of
the curve in a log-log plot). In addition, the higher the term

∏
�∈I |ĉ� − c�|2, the lower the asymptotic

PEP. The cardinality of the set I is the Hamming distance of the error event being considered. Hence,
on a Rayleigh fading channel, in order to improve the performance it is not the minimum Euclidean
distance that plays an important role but rather the code’s minimum Hamming distance (the code
diversity). As a secondary merit criterion, we should try to maximize the term

∏
�∈I |ĉ� − c�|2 on error

events with minimum Hamming distance. This term, usually called the coding gain, does not depend
on the SNR and displaces the error probability curve instead of changing its slope. Codes designed
for the AWGN channel are thus suboptimal for the Rayleigh fading channel. On the latter channel,
when a conventional trellis code (i.e., with one symbol per trellis branch) is designed, it is important
to avoid parallel transitions since, in this case, the code diversity assumes the minimum value (one)
and the asymptotic performance will improve only linearly with the SNR. In case of a Rician fading
channel, the picture is only slightly different since the asymptotic PEP (11.12) becomes:

Pr{c → ĉ} � 1

2

∏
�∈I

(1 + K) exp(−K)

Ēs
4N0

|ĉ� − c�|2
= 1

2

(
Ēs exp(K)

4N0(1 + K)

)−|I |(∏
�∈I

|ĉ� − c�|2
)−1

. (11.23)

Hence, the main factors determining performance are still the code diversity and the term
∏

�∈I |ĉ� −
c�|2 on error events with minimum Hamming distance. The basic code design principles over fading
channels with ideal interleaving are thus the following:

Code diversity criterion. The minimum code diversity |I | must be maximized.

Coding gain criterion. In order to obtain the maximum possible coding advantage, the coding gain∏
�∈I |ĉ� − c�|2 over error events having minimum diversity should be maximized.

Several authors investigated the problem of the design of codes for fading channels. We will now
focus on a particular design procedure for constructing trellis codes with optimal performance on
the Rician/Rayleigh fading channel [1852]. Although this procedure applies to both conventional and
multiple trellis codes, we will focus on the latter since their potential can be fully exploited on this
channel. In fact, when multiple trellis codes are employed, we can again design a trellis diagram with
parallel paths and still have an asymptotic performance that decreases faster than linear with the SNR.
As an example, by using a multiple trellis code with L symbols associated with each trellis branch, it
is possible to have a code diversity of L and also to design the code in such a way that the minimum
value of the term

∏
�∈I |ĉ� − c�|2 on error events with minimum Hamming distance is maximized.

This is made possible by a specific set partitioning procedure, obviously different from that described
in Section 11.2.1.1, which will now be illustrated for the case of L = 2 and an M-PSK constellation.



Signal Space Codes 513

Let Ac denote the original M-PSK constellation and Ac ⊗ Ac the twofold Cartesian product of
Ac with itself. Hence, each element of Ac ⊗ Ac is a pair of symbols belonging to the original
constellation Ac. In the following, we will identify the PSK channel symbol exp(2πi/M) (with
i = 0, 1, . . . , M − 1) through integer i. At the first partition level, Ac ⊗ Ac is partitioned into M
sets defined by the ordered Cartesian product Ac ⊗ Bi (with i = 0, 1, . . . , M − 1), whose pth ele-
ment (with p = 0, 1, . . . , M − 1) is the ordered pair (p, RM [pq + i]) (here q ≤ M is a proper odd
integer). As an example, for M = 8 and q = 3, we obtain the following subsets:

Ac ⊗ B0 =




0 0
1 3
2 6
3 1
4 4
5 7
6 2
7 5




, Ac ⊗ B1 =




0 1
1 4
2 7
3 2
4 5
5 0
6 3
7 6




,

Ac ⊗ B2 =




0 2
1 5
2 0
3 3
4 6
5 1
6 4
7 7




, Ac ⊗ B3 =




0 3
1 6
2 1
3 4
4 7
5 2
6 5
7 0




,

Ac ⊗ B4 =




0 4
1 7
2 2
3 5
4 0
5 3
6 6
7 1




, Ac ⊗ B5 =




0 5
1 0
2 3
3 6
4 1
5 4
6 7
7 2




,

Ac ⊗ B6 =




0 6
1 1
2 4
3 7
4 2
5 5
6 0
7 3




, Ac ⊗ B7 =




0 7
1 2
2 5
3 0
4 3
5 6
6 1
7 4




.

As can be observed, within any of the M partitions, each pair differs from all other pairs in both
elements. Hence, when the pairs of a partition are employed to label parallel transitions of a multiple
trellis code, a code diversity of L = 2 is obtained.

The parameter q is a key point in this partition method. In choosing it, the aim is to maximize
the minimum value of the term

∏
�∈I |ĉ� − c�|2 on parallel transitions. Before going into detail, we

observe that the set Bi+1 is simply a cyclic shift of set Bi . Thus, since the term
∏

�∈I |ĉ� − c�|2 is
simply the product of the squared Euclidean distances between the corresponding symbols in the pair,
the adopted set partitioning guarantees that the intra-distance structure of each partition Ac ⊗ Bi is
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the same. Hence, it is sufficient to study the intra-distance structure of the so-called generating set
Ac ⊗ B0. In other words, let us consider the pairs (p, RM [pq + i]) and (l, RM [lq + i]) of the set
Ac ⊗ Bi . The product of the squared distances between these two pairs is:

∣∣∣∣exp
(
j2π

p

M

)
− exp

(
j2π

l

M

)∣∣∣∣
2∣∣∣∣exp

(
j2π

pq + i

M

)
− exp

(
j2π

lq + i

M

)∣∣∣∣
2

=
∣∣∣∣1 − exp

(
j2π

l − p

M

)∣∣∣∣
2∣∣∣∣1 − exp

(
j2π

(l − p)q

M

)∣∣∣∣
2

=16 sin2
(

π
l − p

M

)
sin2

(
πq

l − p

M

)
(11.24)

and, as mentioned, is independent of i. The value q∗ of q that maximizes the minimum value of the
product of these square distances is then:

q∗ = arg max
q odd

{
min
p>0

[
16 sin2

(
π

p

M

)
sin2

(
πq

p

M

)]}
. (11.25)

It can easily be proven that M − q∗ is also a valid solution. Table 11.1 reports the optimal values of
q for different values of M.

The next step in this set-partitioning procedure is to partition each of the M sets Ac ⊗ Bi into two
sets C0 ⊗ Di0 and C1 ⊗ Di1, where the first set contains the even elements and the second set the
odd elements of Ac ⊗ Bi . In the case of the example above, we obtain the following subsets:

C0 ⊗ D00 =




0 0
2 6
4 4
6 2


 , C1 ⊗ D01 =




1 3
3 1
5 7
7 5


 ,

C0 ⊗ D10 =




0 1
2 7
4 5
6 3


 , C1 ⊗ D11 =




1 4
3 2
5 0
7 6


 ,

C0 ⊗ D20 =




0 2
2 0
4 6
6 4


 , C1 ⊗ D21 =




1 5
3 3
5 1
7 7


 ,

Table 11.1 Optimal values of q
for different values of M

M q*

2 1
4 1
8 3

16 7
32 7,9
64 19,27
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C0 ⊗ D30 =




0 3
2 1
4 7
6 5


 , C1 ⊗ D31 =




1 6
3 4
5 2
7 0


 ,

C0 ⊗ D40 =




0 4
2 2
4 0
6 6


 , C1 ⊗ D41 =




1 7
3 5
5 3
7 1


 ,

C0 ⊗ D50 =




0 5
2 3
4 1
6 7


 , C1 ⊗ D51 =




1 0
3 6
5 4
7 2


 ,

C0 ⊗ D60 =




0 6
2 4
4 2
6 0


 , C1 ⊗ D61 =




1 1
3 7
5 5
7 3


 ,

C0 ⊗ D70 =




0 7
2 5
4 3
6 1


 , C1 ⊗ D71 =




1 2
3 0
5 6
7 4


 .

Obviously, within each of these new sets, each pair is still distinct from all other pairs in both
positions. However, it is in general no longer true that the minimum value of the term

∏
�∈I |ĉ� − c�|2

is maximized within each set unless in the previous step we used the value q∗ corresponding to M/2
instead of M. Hence, the choice of q∗ depends on the target partition level.

The third and subsequent steps are identical in construction to the second step: we need to partition
each set in the present level into two sets containing the alternate rows, with the set of the previous
levels obtained by using a value of q∗ computed as in (11.25) with M successively replaced by M/4,
M/8, and so on.

This procedure can easily be generalized to the case of L being a multiple of 2. As an example, in
the case of L = 4 the sets belonging to the first partition level will be the M2 sets Ac ⊗ Bi ⊗ Ac ⊗ Bp ,
with i, p = 0, 1, . . . , M − 1.

When the number of sets required to satisfy the trellis is less than the number of sets generated
on a particular partition level, only those having largest inter-set distance must be chosen, as in the
examples below. Let us now discuss, through a couple of practical examples, how to employ these
sets in code construction. The examples deal with two- and four-state rate-4/6 multiple (L = 2) trellis
coded 8-PSK modulations, respectively.

Example 11.2.2 Let us consider a two-state, rate-4/6 multiple TCM using 8-PSK as the output
constellation. Since L = 2, two 8-PSK symbols (hence, six bits) are transmitted every four input
information bits. Then the encoder trellis has 24 = 16 branches leaving each state. Since there are
only two states, each transition between states has eight parallel paths. The encoder trellis is shown in
Figure 11.6. For the properties of the set partition method just described, if we associate pairs from
sets Ac ⊗ Bi with parallel transitions, we are sure that a code diversity of 2 is obtained on them. In
addition, it can be shown that the minimum value of the term

∏
�∈I |ĉ� − c�|2 on parallel transitions

is 2.
Let us now consider longer error events. Since it can be shown that this code is linear, without

loss of generality we assume that the all-zero path is the correct one and consider an error event of
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Ac ⊗ B2

Ac ⊗ B4

Ac ⊗ B0
Ac ⊗ B0

Ac ⊗ B4

Ac ⊗ B6

k k + 1 k + 2 n

Figure 11.6 Trellis diagram for the two-state, rate-4/6 multiple TCM of Example 11.2.2.

length 2 such as that shown in Figure 11.6. The four paths of length 2 that differ by a minimum
of two symbols from the correct one are those corresponding to coded symbols [0 2 0 4], [0 2 4 0],
[2 0 0 4], and [2 0 4 0]. It can easily be shown that for these the value of the term

∏
�∈I |ĉ� − c�|2 is

8, hence larger than that related to parallel transitions that lead the asymptotic behavior of the code.
In this code construction, we used sets Ac ⊗ Bi , i = 0, 2, 4, 6. Equivalently, sets Ac ⊗ Bi , i =

1, 3, 5, 7, could have been employed.
�

Example 11.2.3 Let us now consider a four-state, rate-4/6 multiple TCM using 8-PSK as its output
constellation. As before, since L = 2, two 8-PSK symbols (hence six bits) are transmitted every four
input information bits. The encoder trellis thus has 24 = 16 branches leaving each state. Since there
are now four states, and assuming a completely connected encoder trellis, each transition between
states has four parallel paths. The encoder trellis is shown in Figure 11.7. For the properties of the

s1 s1 s1

s5

s2

s6

s7

s1

s4

s1

s8
s7

k + 1 k + 2 k + 3 nk

s3

s5

s4

s5

s8

s2

s3

s6

Figure 11.7 Trellis diagram for the four-state, rate-4/6 multiple TCM of Example 11.2.3.
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set partition method just described, if we associate pairs from the sets C0 ⊗ Di0 and C1 ⊗ Di1 with
parallel transition, we are sure that a code diversity of 2 is obtained on them. In addition, it can be
shown that the minimum value of the term

∏
�∈I |ĉ� − c�|2 on parallel transitions is 4, provided that

the sets C0 ⊗ Di0 and C1 ⊗ Di1 are obtained through the procedure described above but with q = 1,
which is the optimal value for M/2 = 4. Even in this case, not all the sets C0 ⊗ Di0 and C1 ⊗ Di1
are required, since only the following eight sets, for simplicity denoted by Si in the figure, can be
used:

S1 =




0 0
2 2
4 4
6 6


 , S2 =




1 5
3 7
5 1
7 3


 ,

S3 =




0 4
2 6
4 0
6 2


 , S4 =




1 1
3 3
5 5
7 7


 ,

S5 =




0 2
2 4
4 6
6 0


 , S6 =




1 7
3 1
5 3
7 5


 ,

S7 =




0 6
2 0
4 2
6 4


 , S8 =




1 3
3 5
5 7
7 1


 .

Every other error event consisting of two or more branches has a Hamming distance greater than 2
regardless of which path is chosen as the correct path. Thus, the dominant term on the asymptotic
symbol or bit error probability expressions corresponds again to parallel paths.

�

11.2.2 Decoding Algorithms

Before addressing the case of a fading channel, we will first consider a TCM scheme on the AWGN
channel, assuming a linear modulation with a shaping pulse satisfying the Nyquist condition for the
absence of ISI. In this case, the optimal receiver jointly performs detection and decoding through
a search on the trellis diagram of the overall encoder using the VA. In the �th symbol interval
we denote the generic state of the overall encoder by σ̃�, the k-tuple of the encoder input bits by
ũ� = (u

(1)
� , . . . , u

(k)
� ), and the code symbol, the successive state, and the branch metric associated to

the trellis transition emerging from from state σ̃� and driven by ũ� by c�(ũ�, σ̃�), σ̃�+1(ũ�, σ̃�) and
λ�(ũ�, σ̃�), respectively. The branch metric associated with the above-mentioned transistion is:

λ�(ũ�, σ̃�) = |ρ� − c�(ũ�, σ̃�)|2, (11.26)

where ρ� is the value taken on by the received sample r�. Equivalently, we could work on the trellis
state of the binary encoder which can differ from that of the overall encoder for the presence of
possible parallel transitions, provided that, as a branch metric, we employ:

λ�(ũ�, σ̃�) = min
c̃∈C(ũ�,σ̃�)

|ρ� − c̃|2, (11.27)
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where C(ũ�, σ̃�) denotes the subset whose points are associated with the parallel transitions originating
from σ̃� and ending in the state σ�+1(ũ�, σ̃�). In other words, the decision on parallel transitions is
taken symbol by symbol.

We now consider the case of a transmission over a frequency-flat fading channel. The scheme of
Figure 11.5 relies, as already mentioned, on the assumption that an ideal channel estimator is available.
Under this hypothesis, an optimal decoder can be conceived, using the deinterleaved samples r� and
working on the trellis of the overall encoder with branch metrics:

λ�(ũ�, σ̃�) = |ρl − h�c�(ũ�, σ̃�)|2 (11.28)

or on the trellis of the binary encoder with branch metrics:

λ�(ũ�, σ̃�) = min
c̃∈C(ũ�,σ̃�)

|ρ� − h�c̃|2. (11.29)

In practical conditions, due to the presence of the interleaver, the optimal decoder is difficult to
implement. Assuming that knowledge of channel statistics is available at the receiver, a SiSo detection
algorithm based on linear prediction (see Section 6.4) can be used and the relevant extrinsic information
(in the logarithmic domain):

ln
Pr{c̄� = c̃|ρ̄}
Pr{c̄� = c̃} = ln Pr{c̄� = c̃|ρ̄} − ln Pr{c̄� = c̃} ∝ ln fr̄(ρ̄|c̄� = c̃) (11.30)

deinterleaved and employed as input of the decoder, as in decoding schemes for serially concatenated
convolutional codes. In this case, the turbo principle [1611] can be advocated and, by using a soft
output decoder, a few iterations between detector and decoder performed.

11.2.3 Error Performance

Upper bounds on symbol and bit error probabilities can be computed through the union bound
technique described in Section 4.3.2, by using the expression for the PEP of the considered error
events given in (11.12), under the hypothesis that an ideal channel estimator is available. The asymp-
totic expressions can be obtained, as usual, by considering only those error events associated with the
largest asymptotic PEPs.

It is of interest to consider the effect of the interleaver and deinterleaver in the scheme of Figure 11.5.
In their absence, the assumption that the fading is independent from one sample to the next one is
no longer valid. When the fading amplitude is sufficiently slow as to be constant at a value a over
the duration of an error event of minimum distance (quasi-static fading assumption), the BEP can be
asymptotically approximated by (see Section 9.2.6):

Pb(ρ) � CEa


Q


a dfree

√
Ēs

2N0




 � C

2
Ea

{
exp

(
−a2d2

free
Ēs

4N0

)}
, (11.31)

where C is an appropriate constant and dfree is the minimum Euclidean distance of the code. Performing
the average over the Rician probability density function (11.5), one obtains the average BEP:

Pb � C

2

1 + K

1 + K + d2
free

Ēs
4N0

exp


−K

d2
free

Ēs
4N0

1 + K + d2
free

Ēs
4N0


 , (11.32)

which can be expressed, for large values of Ēs/N0, as:

Pb � 2C
1 + K

d2
free

Ēs
N0

exp(−K). (11.33)
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Hence, in the absence of the interleaver and deinterleaver, independently of the employed trellis code,
the code diversity is equal to 1.4

Under these conditions, improvements can be obtained by resorting to receive diversity. Assuming
nR receive antennas, the corresponding received samples can be expressed, in vector notation, as:

ri = hic + ni (11.34)

with i = 1, 2, . . . , nR , where ri is a row vector collecting the samples received by antenna i, hi the
corresponding channel gain (and ai � |hi | its amplitude), and ni the vector of noise samples collected
by antenna i, assumed independent of each other and independent of noise samples related to other
antennas. We also assume that channel gains {hi} are independent of each other and perfectly known
at the receiver. The ML detection strategy is:

ĉ = arg max
c̃

fr(ρ1, ρ2, . . . , ρnR
|c̃, h1, h2, . . . , hnR

)

= arg min
c̃

nR∑
i=1

|ρi − hi c̃|2

= arg max
c̃

nR∑
i=1

{
Re

[
h∗

i ρi c̃
H
] − |hi |2

2
|c̃|2

}

= arg max
c̃

Re

[∑nR
i=1 h∗

i ρi∑nR
i=1 |hi |2

c̃H

]
− |c̃|2

2

= arg min
c̃

|ρ̄ − c̃|2, (11.35)

where r is the vector resulting from the ordered concatenation of the vectors {ri , i = 1, 2, . . . , nR}
and ρ̄ denotes the value taken by the random vector:

r̄ �
∑nR

i=1 h∗
i ri∑nR

i=1 |hi |2
= c +

∑nR
i=1 h∗

i ni∑nR
i=1 |hi |2

. (11.36)

The latter expression can be considered as the definition of an equivalent channel whose noise variance
is σ 2

n /
∑nR

i=1 |hi |2 = σ 2
n /

∑nR
i=1 a2

i instead of σ 2
n . Therefore, we have that:

Pb(a1, a2, . . . , anR
) � CEa1,a2, ... ,anR
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(11.37)

and

Pb � C

2


 1 + K

1 + K + d2
free

Ēs
4N0




nR

exp


−

nRKd2
free

Ēs
4N0

1 + K + d2
free

Ēs
4N0


 . (11.38)

4 It should be noticed that, for quasi-static channels, the union bound is loose [1853]. We will see later how to
solve this problem.
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The latter result asymptotically becomes:

Pb � C

2
(1 + K)nR

[
d2

free
Ēs

4N0

]−nR

. (11.39)

The rate of decrease is thus proportional to the number of receive antennas. Space diversity can thus
be employed instead of time diversity. We will see later that transmit antenna diversity can also be
exploited through the adoption of properly designed STCs.

11.3 Bit-Interleaved Coded Modulation
Beginning with the introduction of TCM, it was generally accepted that coding and modulation must
be designed jointly. The same paradigm was adopted on fading channels, although, in this case, the
free Euclidean distance no longer plays a predominant role. Instead, as described in the previous
sections, the code diversity is the main code parameter to be maximized.

A first deviation from this paradigm is represented by BICM. This technique, originally proposed
by E. Zehavi [1464] in 1992, was further developed and analyzed by G. Caire, G. Taricco and
E. Biglieri [1854] in 1998. According to this technique, coded modulations with a very good perfor-
mance over frequency-flat fading channels can be built by using off-the-shelf binary codes that are
optimal in the sense of the free Hamming distance, and thus available in standard textbooks.

11.3.1 Code Construction

A system employing BICM is shown in Figure 11.8. The presence at the transmitter of parallel-to-
serial (P/S) and serial-to-parallel (S/P) converters makes clear that the interleaver operates at the bit
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Figure 11.8 Transmission scheme employing BICM.
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level. After interleaving, groups of m coded bits are mapped into M-ary (with M = 2m) symbols {c̄�}
belonging to a complex constellation Ac. In other words, by comparing the schemes in Figures 11.5
and 11.8 one may observe that, at the transmitter side, the only difference is that now coded bits
instead of coded symbols are interleaved.

The idea behind BICM is very simple. If we consider two codewords of the binary code having
Hamming distance N, and thus that differ for N bits, after the interleaver they will likely belong to the
labels of N different coded symbols. Hence, with high probability, the corresponding M-ary codewords
still have Hamming distance N. The use of a binary code optimal in the sense of free Hamming distance
(and of a proper interleaver), thus ensures that the code diversity is maximized. These codes have
been known since the early 1960s and thus an ad hoc code design is not necessary. Obviously, the
coded schemes obtained are not optimal since no attempt is made to maximize the minimum value
of the term

∏
�∈I |ĉ� − c�|2 over the set of codewords with minimum Hamming distance. However,

since the code diversity is by far the most important parameter, these codes are expected to provide
a very good performance and to be practically optimal.

11.3.2 Decoding Algorithms

The presence of the interleaver between encoder and mapper generates a new encoder with a much
larger memory. Hence, the optimal decoder is not feasible, even under the assumption of perfect
knowledge of the channel. We can thus resort to the suboptimal receiver shown in Figure 11.8. In this
scheme, for each coded bit a demodulator computes the soft outputs corresponding to each coded bit
that are then employed by the binary decoder. The turbo principle can be advocated and, by using a
soft output decoder, a few (optional) iterations between detector and decoder are performed.

To go into details, assume that, after the interleaver, bit c
(i)
� becomes the jth bit of the label of

symbol c̄p . We will thus write lab(j)(c̄p) = c
(i)
� . The logarithm of the extrinsic information of coded

bit c
(i)
� will be:

ln fr̄(ρ̄|c(i)
� = b) = ln

∑
c̄p∈Ac

fr̄(ρ̄|c̄p) Pr{c̄p|lab(j)(c̄p) = b}, (11.40)

with b = 0, 1, where:

Pr{c̄p|lab(j)(c̄p) = b} =
{

1
2m−1 if lab(j)(c̄p) = b,

0 otherwise.
(11.41)

Considering the constellation Ac and the assigned mapping, let us denote by A
(j)

b the partition of
the original constellation Ac obtained when the jth bit of the mapping is set to b. For the 8-PSK
constellation with Gray mapping shown in Figure 11.9(a), partition A

(1)
0 is shown in Figure 11.9(b)

and A
(1)
1 in Figure 11.9(c). Hence:

ln fr̄(ρ̄|c(i)
� = b) = ln

1

2m−1

∑
c̄p∈A

(j)
b

fr̄(ρ̄|c̄p) ∝ ln
∑

c̄p∈A
(j)
b

fr̄(ρ̄|c̄p), (11.42)

with b = 0, 1.
The extrinsic information is then permuted and employed by the binary decoder. As already

mentioned, optional iterations can be performed according to the turbo principle; this results in the
so-called BICM with iterative decoding (BICM-ID), proposed by X. Li and J. A. Ritcey [1855].

When the channel statistics are known at the receiver, a SiSo detection algorithm based on linear
prediction (see Section 6.4.1.1) can be used to compute the extrinsic information on coded symbols
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fr̄(ρ̄|c̄p). In the simpler case of a receiver that perfectly knows the channel, that is, is equipped with

an ideal estimator of the gains {h̄�}, the extrinsic information of coded bit c
(i)
� can be computed using:

ln fr̄(ρ̄|c(i)
� = b, h̄) ∝ ln

∑
c̄p∈A

(j)
b

fr̄(ρ̄|c̄p, h̄), (11.43)

with b = 0, 1, where:

fr̄(ρ̄|c̄p, h̄) ∝ fr̄p
(ρ̄p|c̄p, h̄p) ∝ exp

{
− 1

σ 2
n

| ρ̄p − h̄pc̄p|2
}

. (11.44)

In this case, considering approximation (9.269) (reproduced here for the reader’s convenience):

ln [eσ1 + eσ2 + · · · + eσm ] � max(σ1, σ2, . . . , σm), (11.45)

we have:

ln fr̄(ρ̄|c(i)
� = b, h̄)∝


− max

c̄p∈A
(j)
b

[
−
∣∣∣ρ̄p − h̄pc̄p

∣∣∣2]

 = min

c̄p∈A
(j)
b

|ρ̄p − h̄pc̄p|2 (11.46)

with b = 0, 1.
The mapping rule employed has a significant influence on system performance. When iterative

decoding is not employed, the Gray mapping usually gives the best performance [1854]. In the case
of BICM-ID, other mapping rules can provide a performance improvement when increasing the number
of iterations, whereas this improvement is usually very limited with Gray mapping [1855].

11.3.3 Error Performance

Before giving some hints as to the error performance of BICM, at least when iterative decoding is
not employed, we introduce the equivalent parallel channel model for BICM in the case of ideal
interleaving. This model is shown in Figure 11.10 and consists of a set of m parallel independent
and memoryless binary input channels connected to the encoder output by a random switch, which
models ideal interleaving. Each channel corresponds to a position in the label of the symbols of Ac.
For every coded bit c

(i)
� , the switch selects randomly and independently of other selections a position

index j (with j = 1, 2, . . . , m) and transmits c
(i)
� on the jth channel. The detector, which knows the

sequence of switch positions, computes the bit metrics {ln fr̄(ρ̄|c(i)
� = b)} in (11.42) that are used to

compute the branch metrics of the code trellis over which the decoder operates. This model is the
basis for the computation of the capacity of BICM with ideal interleaving. These results show that
for 8-PSK and 16-QAM schemes, in the range of practical interest, the capacity loss of BICM with
respect to the optimum approach is negligible if and only if Gray mapping is used [1854].
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Figure 11.10 Equivalent parallel channel model for BICM in the case of ideal interleaving.

Turning now to error performance, let us assume that the binary code employed in the BICM
scheme of Figure 11.8 is linear, so that it admits a (possibly time-varying, as in the case of block
codes) trellis representation (see Section 10.8), and consider two codewords c and ĉ of this binary
code stemming from the same state and merging after a given number of trellis steps. Our aim is
to compute the PEP Pr{c → ĉ} which, however, may depend on the pair (c, ĉ) rather than on their
difference. This is because the binary-input channels of the BICM equivalent parallel channel model
in Figure 11.10 may be nonsymmetric, depending on the mapping and the signal constellation Ac. In
[1854] a symmetrization procedure is thus described which leaves the performance unmodified. After
symmetrization, the PEP will depend not only on the channel and the type of detection, but also on
the Hamming distance dH between c and ĉ, the employed mapping µ and the signal constellation Ac:

Pr{c → ĉ} = g(dH , µ, Ac) . (11.47)

The usual linear bound on the bit error probability of binary codes can be computed as:

Pb ≤ 1

k

∞∑
dH =1

wI (dH )g(dH , µ, Ac) (11.48)

in the case of a convolutional code of rate k/n, and:

Pb ≤ 1

k

n∑
dH =1

wI (dH )g(dH , µ, Ac) (11.49)

in the case of an (n, k) block code, where wI (dH ) is the input weight of error events having Hamming
distance dH . In the original paper by E. Zehavi [1464], a Chernoff bound on the PEP was derived
in closed form for 8-PSK with Gray mapping and a receiver with perfect knowledge of the channel.
It cannot, however, be extended to other mappings or signal constellations. A more general and very
accurate upper bound is derived in [1854], based on the Bhattacharyya bound [693]. This bound can
be expressed as:

g(dH , µ, Ac) ≤ BdH , (11.50)

where

B � 1

m

m∑
i=1

Eb,r̄,h̄



√√√√fr̄(ρ̄|c(i)

� = 1 − b, h̄)

fr̄(ρ̄|c(i)
� = b, h̄)


 (11.51)



524 Wireless Communications

corresponds to the case of perfect knowledge of the channel and:

B � 1

m

m∑
i=1

Eb,r̄



√√√√fr̄(ρ̄|c(i)

� = 1 − b)

fr̄(ρ̄|c(i)
� = b)


 (11.52)

to the case of knowledge of the channel statistics only. Nevertheless, it cannot be computed in closed
form but requires a numerical evaluation much faster than simulations and allowing the computation
of Pb for very high SNRs, usually beyond the reach of simulations. For a fading channel perfectly
known to the receiver and Gray mapping, the PEP can be bounded, for sufficiently large SNR, as:

g(dH , µ, Ac) ≤
[

8N0(K + 1) exp(−K)

d2
3

]dH

, (11.53)

where

d2
3 �


 1

m2m

m∑
j=1

1∑
b=0

∑
x∈A

(j)
b

1

|x − z|2




−1

(11.54)

and z is the single nearest neighbor of x in A
(j)

1−b.

11.4 Modulation Codes Based on Multilevel Coding
TCM has shown that coded modulation can provide systems with good spectral efficiency and
performance by partitioning the constellation. A subset of the constellation points is chosen by the
encoded bits from a convolutional code (providing a coded level). Then the constellation point to be
transmitted is chosen from that subset by uncoded bits (providing an uncoded level).5 However, we
can extend TCM to more than two levels, where each level may or may not use an error control code
(e.g., block or convolutional). This is called multilevel coding. It was first introduced in [1462] and
then generalized in [1463, 1856]. A comprehensive survey of MLCs for AWGN channels, using vari-
ous design criteria, can be found in [1857]. Multilevel coding allows a complex code to be created by
using a hierarchy of simpler component codes. Spectral efficiency is achieved by using an expanded
constellation and partitioning as in TCM.

11.4.1 Code Construction for AWGN Channels

An L-level MLC consists of L independent component codes, as shown in Figure 11.11. A block
of k binary source data symbols u(j ) = [u(j )

1 , u(j )
2 , . . . , u(j )

k ] is partitioned into L data blocks
{u(j )

p , p = 1, 2, . . . , L}, with u(j )
p = [u(j )

p,1, u(j )
p,2, . . . , u(j )

p,kp
] and

∑L
p=1 kp = k . The data block

u(j )
p (with p = 1, 2, . . . , L) is fed into the pth level encoder generating the binary word e(j )

p =
[e(j )

p,1, e(j )
p,2, . . . , e(j )

p,mp ] of the pth component code Cp (with
∑L

p=1 mp = m). The symbols of the

codewords {e(j )
p , p = 1, 2, . . . , L} form a single binary label e(j ) = [e(j )

1 , e(j )
2 , . . . , e(j )

m ], which is
mapped to the signal point cj . The rate of this coding scheme is R = k/m and is equal to the sum
of the individual code rates if equal code lengths at all levels are assumed. Virtually any code can be
used as a component code [1856], including concatenated codes. The level-1 code selects a subset of
constellation points for later levels from which to choose the transmitted point. Each level reduces
the subset of constellation points being considered until the Lth level’s output chooses a single point
for transmission. The component code on each level effectively operates on a different constellation.
This has been formalized using lattice partitions to produce coset codes in [324, 335]. The way the
encoded outputs are mapped to constellation points is called partitioning.

5 This assumes a TCM code using uncoded bits.
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Figure 11.11 L-level encoder.

The partitioning procedure starts with a constellation Ac of M points (assuming an M-ary constel-
lation, with M = 2m). This constellation is partitioned into 2m1 equally sized sets of M1 points on the
first level using m1 encoded bits from the level-1 encoder. The procedure continues on subsequent
levels, except that each level operates on the subset of constellation points chosen by previous levels.
The jth level partitions the set of Mj−1 points chosen by previous levels into 2mj equally sized sets
of Mj points using mj encoded bits from the level-j component encoder. Different numbers of bits
can be used to choose the partitions on different levels [1463, 1856], or symbols over GF(q) (or Zq )
could be used. The partitioning continues until there is only one constellation point in each set.

A variety of different partitioning strategies have been proposed, including increasing Euclidean
distance on each level, decreasing Euclidean distance on each level, unequal error protection or equal
Euclidean distance on each level [992, 1857–1862]. The most commonly used partitioning scheme
for MLCs is Ungerboeck set partitioning (as described for TCM in Section 11.2.1.1), which designs
for maximum intra-subset distance [1863] and results in increasing Euclidean distance on each level.

An example of Ungerboeck set partitioning is given in Figure 11.12 for 16-QAM, L = 4 and m1 =
m2 = m3 = m4 = 1. The minimum squared Euclidean distance of the MLC with binary partitions is
bounded by [1857]:

d2
E,min ≥ min(d1δ

2
0, d2δ

2
1, . . . , dLδ2

L−1), (11.55)

where δ2
i (i = 0, 1, . . . , L − 1) is the Euclidean distance between points on level i and dl (l =

1, . . . , L) is the minimum Hamming distance of the level-l component code. Ungerboeck set parti-
tioning requires the most powerful code to be used on the first level. The first level has the worst
squared Euclidean distance properties before coding (the smallest minimum squared Euclidean dis-
tance between constellation points and on average the most constellation points at this distance for a
given point), which is why it requires the most powerful code.

An example of block partitioning is shown in Figure 11.13 for 16-QAM, L = 4 and m1 = m2 =
m3 = m4 = 1. Clearly, there are other ways the partitions could have been chosen. The goal is to
minimize the intra-subset variance [1857]. This results in all levels having the same intra-subset
distance, meaning that:

δ0 = δ1 = δ2 = δ3. (11.56)

Researchers have also proposed using hybrid or mixed partitioning strategies, where set partitioning
is used on some levels and block partitioning on the others [1857].
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Figure 11.12 Ungerboeck set partitioning of 16-QAM for an L = 4 level MLC with m1 = m2 =
m3 = m4 = 1. The bit labeling level i is given by ei . The level-4 partition results in a single point
being chosen. If e4 = 0 the point on the left of the vertical axis is chosen, otherwise e4 = 1 and a
point to the right is chosen.

Figure 11.13 Block partitioning of 16-QAM for an L = 4 level MLC with m1 = m2 = m3 =
m4 = 1. The bit labeling level i is given by ei . The level-4 partition results in a single point being
chosen. If e4 = 0 the upper point is chosen, otherwise e4 = 1 and the lower point is chosen.

11.4.1.1 Design Criteria

A variety of design criteria have been proposed for MLCs based on distance [1462, 1463, 1856, 1857,
1864], capacity (and rate) [1857, 1862, 1865–1868], cutoff rate [1857] and the coding exponent [1857].
A summary of these approaches is given in [1857]. Here we focus on two widely used approaches,
namely the balanced distance rule and the capacity rule.

At high SNR, performance is dominated by the level with minimum squared Euclidean distance.
The original design criterion was the balanced distance decoding rule [1462]. It chooses component
codes so that the minimum squared Euclidean distance on each level is equal, resulting in:

d1δ
2
0 = d2δ

2
1 = . . . = dLδ2

L−1. (11.57)

The balanced distance design rule tends to overestimate the rate used on the first level [1857]. It may,
however, be suitable when short component codes are used [1857].
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We can define equivalent channels for each level of the MLC conditioned on knowing the previous
levels’ encoded data [1857]. The capacity of these equivalent channels, known as equivalent capacity,
can be used to select the component code rates to be used on each level. In fact, it can be proved that
the capacity C of a constellation Ac of M signal elements is the sum of the capacities {C(Ai)} of the
equivalent individual channels at all coding levels of a multilevel coding scheme, based on a binary
regular set partitioning tree Ac [1866], that is6:

C =
L∑

i=1

C(Ai). (11.58)

The capacity design rule states that the rate of the level-i component code Ri should be chosen to
equal the equivalent capacity of level i in order achieve capacity C [1857]. The capacity rule gives a
better estimate of the optimum rate for each level of the MLC (compared to the balanced distance rule)
when the code length is not short [1857]. Multilevel coding with multistage decoding (described later)
approaches capacity if the rate of each component code is chosen to equal the equivalent capacity of
that level [1857].

For cases of finite codeword length the coding exponent rule can be used [1857]. The coding
exponent rule tends to the same result as the capacity rule for long codes and tends to the results of
the balanced distance rule for short codes. It works for restricted code lengths/delays. For short codes,
minimum Euclidean distance dominates performance [1857]. The coding exponent rule for MLCs can
be stated as follows: for a maximum tolerable word error rate pw , the rates

{
Ri, i = 1, . . . , L

}
at

the individual coding levels should be chosen according to the corresponding isoquants of the coding
exponents Ei(Ri). Interested readers are directed to [1857] and the references therein.

The design of specific MLCs is analyzed in the following two examples.

Example 11.4.1 Let us consider a basic multilevel encoder design for set partitioning, 16-QAM and
L = 4 binary partitions (meaning m1 = m2 = m3 = m4 = 1). The set partitioning of the 16-QAM
constellation is shown in Figure 11.12. We can see that δ1 = √

2δ0, δ2 = 2δ0 and δ3 = 2δ1 = 2
√

2δ0.
Using (11.55), the minimum squared a Euclidean distance is given by:

d2
E,min = min(d1, 2d2, 4d3, 8d4)δ

2
0 . (11.59)

Any component code may be used. Here, we will look at using length n = 64 extended BCH codes
due to the range of rates offered. As performance is dominated by the level with the worst dis-
tance properties, we will use the balanced distance design rule. This can be achieved by using the
(n, k1, d1) = (64, 24, 16) code on level 1, a (64, 45, 8) code on level 2, a (64, 57, 4) code on level 3
and a (64, 63, 2) SPC code on level L = 4, where ki is the number of information bits in the level-i
codeword. This results in d2

E,min = 16δ2
0 on each level. The overall code rate is 0.738 and the block

length is N = 64 symbols.
�

Example 11.4.2 Alternatively, we could design an L = 3 level MLC using a four-way partition on
level 1 and then two-way (binary) partitions on levels 2 and 3, as shown in Figure 11.14. Now three
component codes are used. At level 1 we split the constellation into four subsets (each of four points)
using bits (e1, 1, e1, 2). In this case the minimum squared Euclidean distance is given by:

d2
E,min = min(d1, 4d2, 8d3)δ

2
0 . (11.60)

An overall rate-0.77 code with d2
E,min = 16δ2

0 and block length N = 64 can be achieved by using a
(128, 78, 16) code on level 1, a (64, 57, 4) code on level 2 and a (64, 63, 2) SPC code on level L = 3.

�
6 Note that changing the partitioning strategy modifies the equivalent capacities, but not the overall capacity
in (11.58).
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Figure 11.14 Ungerboeck set partitioning of 16-QAM for an L = 3 level MLC with m1 = 4,
m2 = 2 and m3 = 2. The jth bit in the level-i label is given by ei , j (j is excluded if only one bit is
used on level i). The level-3 partition results in a single point being chosen. If e3 = 0 the point on
the left of the vertical axis is chosen, otherwise e3 = 1 and a point to the right is chosen.

11.4.2 Multistage Decoder

MLCs are usually decoded in a sequential manner using a multistage decoder (MSD), as shown in
Figure 11.15. This is used since decoding the overall MLC can be prohibitively complex. The MSD
decodes the levels of the MLC in the same order as they are encoded. First the level-1 code is decoded
to choose a subset of points for the level-2 code to choose from, and this pattern continues on all
subsequent levels.

Each level’s decoder passes a hard decision on its part of the overall constellation point label to
subsequent levels. This has the effect of choosing a subset of constellation points for the next level’s
decoder to consider. If there are errors in a level’s decision, these are passed to subsequent levels,
causing error propagation. Often it is enough to just use soft decision decoding on the first level and
hard decision decoding on other levels. Performance gains can be made by passing soft decisions and
by iterating at the cost of decoding complexity [1869]. Now we define the soft input to level i. For
simplicity let us assume binary partitions on each level. We denote the kth received symbol by rk and
the jth encoded bit from the level-i component code by ei,j . Now we can write the LLR of the jth bit
on level i as:

L
(
e
(k)
i,j

)
= log


Pr

{
e
(k)
i,j = 1

∣∣∣rk, e(k)
1 , e(k)

2 , . . . , e(k)
i−1

}
Pr
{
e
(k)
i,j = 0

∣∣∣rk, e(k)
1 , e(k)

2 , . . . , e(k)
i−1

}

 (11.61)

with i = 2, 3, . . . , L and j = 1, 2, . . . , mi.
The use of multistage decoding is illustrated in the following example for a specific MLC.

Example 11.4.3 We now give an example of multilevel encoding and multistage decoding for the
MLC shown in Figure 11.11 and the partitioning design in Figure 11.14. The “constellation mapping”
block in Figure 11.11 is performed in a similar way to the partitioning, but only one subset of constel-
lation points is retained at each level. Consider the L = 3 level MLC of Figure 11.14. First m1 = 2
encoded bits from level 1, (e11, e12) = (0, 1), are used to choose a subset of M1 = 4 constellation
points. Then m2 = 1 encoded bit from level 2, e2 = 0, is used to choose a subset of M2 = 2 con-
stellation points. Finally, m3 = 1 encoded bit from level 3, e3 = 1, is used to choose the transmitted
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Figure 11.15 L-level MSD, where {û(j)
p , p = 1, 2, . . . , L} are the hard decisions from all levels.

constellation point. The transmitted constellation point is labeled by (e1, 1, e1, 2, e2, e3) = (0,1,0,1) as
shown in Figure 11.14.

Now consider decoding the received signal point, rk , shown in Figure 11.14. The decoding process
is performed in a similar way to encoding. The level-1 decoder considers the entire (M = 16)-
QAM constellation. Then m1 = 2 decoded bits (including parity bits) from the level-1 decoder,
(ê1, 1, ê1, 2) = (1,0), are used to choose a subset of M1 = 4 constellation points. The level-2 decoder
operates as if this subset of M1 constellation points is the entire constellation. The m2 = 1 decoded
bit from the level-2 decoder, ê2 = 1, is used to choose a subset of M2 = 2 constellation points
for the level-3 decoder. The level-3 decoder operates as if this subset of M2 = 2 constellation
points is the entire constellation. Finally, m3 = 1 decoded bit from the level-3 decoder, ê3 = 0,
is used to choose the decoded constellation point. The transmitted constellation point is labeled
by (e1, 1, e1, 2, e2, e3) = (0, 1, 0, 1), as shown in Figure 11.14, but the decoded constellation point is
labeled by (ê1, 1, ê1, 2, ê2, ê3) = (1,0,1,0). Although the decoded constellation point is at the minimum
Euclidean distance, δ0, from the transmitted constellation point, ck , it at the maximum Hamming
distance away from it, which means all decoded bits are incorrect. The error on level 1 resulted in
the actual transmitted constellation point being excluded from the subsets of points considered on
later levels and so later levels were decoded in error. This effect is called error propagation. This
highlights the importance of a strong code and advanced decoding (such as soft input decoding) on
lower levels.

�

11.4.3 Error Performance

Performance analysis and union bounds have been developed for several different multilevel coded
modulation systems [1868, 1870–1873]. The analysis tends to be specific to the MLC (partitioning,
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modulation and error control codes) and decoding strategy used (suboptimal metrics, maximum
likelihood decoding, soft decision decoding and multistage decoding). The error probability of spe-
cific MLCs using PSK is calculated in [1872, 1873]. The error probability of an MLC using QAM, a
suboptimal metric and multistage decoding is calculated in [1870].

11.4.4 Multilevel Codes for Rayleigh Flat Fading Channels

Research on MLCs during the 1970s and 1980s was focused on AWGN channels, (e.g., see [1462,
1463, 1856]). As a result, most of the encoder and decoder structures, partitioning strategies and
even design rules were developed for MLCs on AWGN channels. However, during the 1990s interest
spread to their use in Rayleigh flat fading channels (e.g. [1874–1878]). Most of the AWGN design
work extends directly into Rayleigh fading channels and so is not repeated here.

We focus on coherent communications with ideal CSI available at the receiver. The research in
this area can loosely be split into block-based MLCs [1876] and trellis-based MLCs [1874, 1875],
where the component codes are block or convolutional codes, respectively. The work can also be
split between equal and unequal [1878] error protection codes. This shows the flexibility of the MLC
structure. We now briefly describe the error performance and design criteria proposed in [1876],
which work was specific to the Rayleigh fading channel rather than being an application of AWGN
techniques in fading as in [1879].

11.4.4.1 Error Performance

In [1876] a multilevel block code is developed for Rayleigh flat fading channels and 8-PSK modulation.
We denote the transmitted binary codeword vector on level i by e(i) and the corresponding erroneous
decoded sequence by ê(i). The resulting transmitted sequence of constellation points is denoted by
c and the corresponding erroneous decoded sequence by ĉ. Assuming component codes with small
minimum Hamming distance (≤ 4), the overall PEP can be written as [1876]:

Pr{c → ĉ} ≤
L∑

i=1

Pr{e(i) → ê(i)}

=
L∑

i=1


1 −


1 − 1

2

(
8dH (e(i), ê(i))σ 2

n

δ2
i

)dH (e(i),ê(i))



 , (11.62)

where σ 2
n is the variance of the complex AWGN. For simplicity, we have assumed that all component

codes have the same length. In the case of component codes with larger minimum Hamming distance
(> 4) the PEP can be written as [1876]:

Pr{c → ĉ} ≤
L∑

i=1

Pr{e(i) → ê(i)}

=
L∑

i=1


1 −


1 − 1

2

√
1 + σ2

h
δ2
i

4σ2
n

exp

(
−1

2

µ2
hd

2
E(e(i), ê(i))

4σ 2
n + σ 2

h δ2
i

)dH (e(i),ê(i))




 , (11.63)

where µh is the mean of the envelope of the channel fading and σ 2
h is its variance. Note that the

fading envelope is normalized to unit power.
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11.4.4.2 Design Criteria

Based on (11.63), for large minimum Hamming distance codes L. Zhang and B. Vucetic [1876]
recommended first maximizing the minimum squared Euclidean distance and then minimizing the
number of codewords at that distance. In contrast, in the case of small minimum Hamming distance
codes, based on (11.63), they recommended first maximizing the minimum Hamming distance, then
maximizing the minimum product distance when there are multiple codes with the same minimum
Hamming distance, and finally minimizing the number of codewords at the minimum Hamming
distance. For the MLC design presented in [1876] the minimum product distance was defined as the
smallest product of the corresponding nonzero squared Euclidean distances between the path pairs
with the minimum Hamming distance.

Alternatively, the MLC design criteria for the AWGN channel can be applied. For example, the
capacity rule has been used in Rayleigh flat fading channels [1879]. The only difference is that the
equivalent capacities are derived for Rayleigh fading.

11.5 Space-Time Coding
We now consider systems with multiple antennas at both transmitter and receiver and codes designed
for these applications. The use of multiple receive antennas to provide diversity has been known for
many decades. Only recently the use of multiple transmit antennas has attracted interest. The number of
antennas at the transmitter and receiver (nT and nR) depends on the application. For cellular systems,
the base station is typically equipped with several antennas while the mobile terminal can have only
one or two antennas. Hence, in the uplink we have nR > nT , while in the downlink nT > nR . On the
other hand, in WLAN applications most nodes will have a similar number of antennas.

Multiple antennas can be used to increase data rates through spatial multiplexing or to improve
performance through diversity. This is a fundamental tradeoff in multiple-antenna systems [14, 1880,
1881] and will be considered in detail later. Multiplexing is obtained by exploiting the MIMO channel
to obtain independent signaling paths that can be used to increase the spectral efficiency [17, 18, 220,
226]. This spectral efficiency increase often relies on an accurate knowledge of the channel at the
receiver, and sometimes at the transmitter as well, and is obtained at the price of an increase in the
receiver processing (in addition to the cost of deploying multiple antennas). Diversity is obtained by
exploiting the independent fading gains that affect the signal and that can be averaged out to increase
the reliability of the receiver decisions.

We have seen that the adoption of a properly designed coded transmission provides time diversity
over fading channels. Time diversity, however, is not available in systems with limited mobility, such
as indoor WLANs or wireless local loops. In this case, in fact, the channel is quasi-static, meaning
that the channel variations are very slow compared with the duration of one codeword. We have
already mentioned that, in this case, receive antenna diversity can be employed. STCs are particularly
important in such scenarios both to exploit transmit antenna diversity and/or the potential increase of
the system spectral efficiency related to MIMO channels.

11.5.1 ST Coding for Frequency-Flat Fading Channels

11.5.1.1 System Model for Frequency-Flat MIMO Channels and Some Results on Channel
Capacity

At discrete time �, the received samples at the output of the nR receive antennas are collected into an
nR × 1 vector r� that can be expressed as (see also Section 4.4.2.2):

r� = √
γ H�c� + n�, (11.64)
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with � = 1, 2, . . . , N , where c� is the nT × 1 vector containing the modulated symbols transmitted
in parallel by the nT transmit antennas, n� is an nR × 1 complex Gaussian noise vector having
independent real and imaginary components and representing the thermal noise samples at the nR

receive antennas, H� is the nR × nT matrix of the channel gains, its (i, j)th element hi,j [�] representing
the gain from transmit antenna j to receive antenna i at discrete time �, and γ is an appropriate real
coefficient.

The matrix H� will be assumed random with zero-mean iid Gaussian entries having independent
real and imaginary components. Equivalently, we can say that each entry of H� has uniformly dis-
tributed phase and Rayleigh-distributed magnitude. This choice models a Rayleigh fading environment
with sufficient separation among the receive and transmit antennas that the channel gains for each
transmit–receive antenna pair are independent. This assumption becomes questionable when nT and/or
nR increase. In fact, it relies on a separation of the transmit and/or receive antennas by some multiple
of the wavelength, which cannot be obtained when a large number of antennas is packed into a finite
volume. Although the results for MIMO channel capacity that will be briefly summarized here have
been obtained under the assumption of a Rayleigh fading environment, the results for code design
criteria can easily be generalized to the case of channel gains having Rician-distributed magnitude.
When considering the design of STCs, we will also assume that transmitted symbols belong to the
M-ary complex constellation Ac, with unit average energy, and that the noise vector and the channel
matrix are such that E{n�nH

� } = InR
(uncorrelated noise components on different antennas and with

unit variance) and 1
nT nR

trace(E{H�HH
� }) = 1, that is, the elements of H� also have unit variance.

Under these assumptions, γ has the meaning of average SNR per transmit antenna (or per transmitted
symbol), γ = Ēs/N0, and the average received SNR per receive antenna is given by nT γ .

An STC with block length N is a set C of nT × N complex matrices (codewords). Codeword matri-
ces C = [c1, . . . , cN ] are transmitted by columns, in N consecutive channel uses. The STC spectral
efficiency is given by η = 1

N
log2|C| bits per channel use. By definition, the average information bit

energy over noise power spectral density ratio is given by Ēb/N0 = γ nT /η.
Equation (11.64) describes the general model for a time-selective MIMO channel. When N is much

larger than the channel coherence time, each codeword sees a large number of channel realizations.
We can assume that {H�} is an ergodic random process and the channel is consequently ergodic. In
scenarios characterized by limited mobility, the channel can be assumed to be slow or quasi-static,
that is, each codeword sees only one channel realization. In other words, H� = H, � = 1, 2, . . . , N .
In this case, this fading model is nonergodic. A different model for time-varying fading channels was
introduced by Marzetta and Hochwald in [1882]. They considered a block fading channel constant for
L consecutive channel uses and independent from block to block, modeling, as an example, a system
with quasi-static fading and frequency hopping every L channel uses. This case will be referred to as
a block fading channel.

Different assumptions can be made about the knowledge of the channel gain matrix at the transmitter
and receiver. For a quasi-static channel, it is generally assumed that H is perfectly known at the receiver
since the channel gains can be obtained fairly easily by sending a pilot sequence for channel estimation
(see [38, Section 3.9] or [1883, Section 10.1]). In contrast, the assumption of perfect knowledge of the
channel matrix at the transmitter holds only if a delay-free, error-free feedback link from receiver to
transmitter exists, allowing the receiver to send back the estimated channel gains, or if time division
duplexing is used, where each end can estimate the channel from the incoming signal in the reverse
direction. In contrast, on a block fading channel, the assumption adopted in [1882] is the absence of
knowledge of the channel gains at both transmitter and receiver.

The case of perfect knowledge of the channel gains at both transmitter and receiver is of scant
interest in this section on STCs since, in this case, through simple transmit precoding and receive
filtering, the MIMO channel can be decomposed into a set of parallel and independent SISO channels.
Consider for example, the quasi-static channel and the SVD of matrix H (see (C.11)):

H = U�VH , (11.65)
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where the nR × nR matrix U and the nT × nT matrix V are unitary matrices and � is an nR × nT

diagonal matrix containing the singular values7 {σi} of H. We can assume that the input vector c� is
obtained from a vector c̃� through the linear transformation c� = VH c̃�. At the receiver, the vector
r� is still linearly transformed giving the vector r̃� � UH r�. Thus, the following equivalent channel
results:

r̃� � UH r� = UH (
√

γ Hc� + n�)

= UH (
√

γ U�VH c� + n�)

= √
γ�c̃� + ñ�, (11.66)

where ñ� � UH n� is statistically equivalent to n�, U being a unitary matrix. We thus have a set of
RH parallel independent channels, each corresponding to a nonzero singular value of H for which
classical results apply [705]. In particular, the optimal capacity-achieving power distribution can be
obtained through water-filling.8 Since these parallel channels do not interfere with each other, the
optimal demodulator complexity is linear in RH. Moreover, when independent data are sent over
the parallel channels, the MIMO channel can support RH times the data rate of a SISO system.
A multiplexing gain of RH is thus obtained, although the performance over each channel depends
on the corresponding gain σi . Hence, for this reason, in what follows we will consider the more
interesting case of knowledge of the channel gains at the receiver only.

The case where each channel use, that is, each transmission of one symbol from each of the nT

transmit antennas, corresponds to an independent realization of H�, was studied in [226]. Even if the
channel realization is not known at the transmitter, it can be proved [226] that, in the asymptotic
limit of a large number of transmit and receive antennas, the average capacity of a MIMO channel
still grows linearly with ξ = min(nT , nR), as long as the channel can be accurately estimated at the
receiver. Moreover, this linear growth of capacity with ξ is observed even for a small number of
antennas [1885]. Similarly, for large values of the SNR, capacity also grows linearly with ξ .9 In
particular, it grows as ξ log γ . In other words, even in the absence of knowledge of the channel at
the transmitter, we can say that multiple antennas increase the capacity by a factor ξ as in the case of
independent parallel channels. This explains why ξ is often called the number of degrees of freedom
generated by the MIMO channel.

In the case of a quasi-static fading channel, when H is chosen randomly at the beginning of the
transmission and remains fixed for all channel uses, average capacity has no meaning (is strictly zero),
as the channel is nonergodic [275]. In this case, as discussed in Chapter 7, outage probability, defined
as the probability that the transmission rate exceeds the mutual information of the channel, must be
evaluated. The maximum rate that can be supported by the channel with a given outage probability
is the outage capacity. As in the case of ergodic channels, for a given outage probability, the outage
capacity increases linearly with ξ .

Finally, in the case of a block fading channel with a coherence time of L symbols and in the absence
of knowledge of the channel at both transmitter and receiver [1882, 1886], when L ≥ γ + nR , at high
SNR values the capacity (in bits per channel use) can be approximated as:

C � ξ

(
1 − ξ

L

)
log2 γ .

Hence, for L → ∞ the capacity of the noncoherent MIMO channel approaches that of the
coherent channel. However, when L < γ + nR the capacity increases as ς

(
1 − ς

L

)
log2 γ , where

7 The number of singular values is RH = rank(H) ≤ min(nT , nR). The case of RH = min(nT , nR) is often referred
to as a rich scattering environment.
8 When the channel is time-varying, water-filling across time should be used as well [1884].
9 It must be noted, however, that at very low SNRs, transmit antennas are not beneficial since capacity only scales
with the number of receive antennas independently of the number of transmit antennas [226].
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ς = min(nT , nR, �L/2). As a consequence, it is not convenient to have more than �L/2 transmit
antennas, although, when fading is correlated, additional transmit antennas do increase capacity
[1445].

11.5.1.2 ST Codeword Design Criteria for Slow Fading Channels

We now consider the case of a slow or quasi-static fading channel where H is random but constant
over N � max{nT , nR} channel uses, and we assume that the receiver knows H perfectly, while the
transmitter has no knowledge of H. Having collected the codewords into appropriate matrices {C},
we can similarly organize the corresponding received samples and noise samples into two nR × N

matrices R and N, respectively, whose �th columns are composed of the nR received samples and
noise samples at time �. Hence, we may write:

R = √
γ HC + N . (11.67)

Under these assumptions, a maximum likelihood decoder will operate following the decision rule:

Ĉ = arg max
C̃

fR(�|H, C̃), (11.68)

where fR(�|H, C) is clearly a Gaussian joint probability density function and � denotes the value
taken on by R. Hence:

Ĉ = arg min
C̃

N∑
�=1

|�� − √
γ Hc̃�|2 = arg min

C̃
|� − √

γ HC̃)|2, (11.69)

where | · | denotes the Frobenius norm of a matrix (see (C.1)). Hence, given a particular channel
realization, the PEP Pr{C → Ĉ|H} can be computed as (see (F.15)):

Pr{C → Ĉ|2H} = Q

(√
γ

2
|√γ H(Ĉ − C)|2

)

≤ 1

2
exp

{
−γ

4
|H(Ĉ − C)|2

}
. (11.70)

If hi (with i = 1, 2, . . . , nR) denotes the ith row of matrix H and the matrix A � (Ĉ − C)(Ĉ − C)H

is defined, we may write:

|H(Ĉ − C)|2 = tr[H(Ĉ − C)(Ĉ − C)H HH ] =
nR∑
i=1

hiAhH
i . (11.71)

Since A is a nonnegative definite Hermitian matrix, it can be diagonalized using a unitary matrix
U as A = U�UH (see (C.7)), where � is a diagonal matrix whose elements are the (nonnegative)
eigenvalues λi, i = 1, 2, . . . , nT of A. Then we have:

|H(Ĉ − C)|2 =
nR∑
i=1

hiU�UH hH
i . (11.72)

Moreover, since the components of hi are independent complex Gaussian random variables and
matrix U is unitary, hi and pi � hiU are statistically equivalent. Hence, the elements of pi are still
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independent complex Gaussian random variables with the same mean and variance as the elements of
hi . In addition, if pi,j denotes the jth element of pi , (11.72) can be rewritten as:

|H(Ĉ − C)|2 =
nR∑
i=1

nT∑
j=1

λj |pi,j |2. (11.73)

Let ν = rank(A) ≤ nT denote the number of nonzero eigenvalues of A (assuming N ≥ nT , i.e.,
codewords of length greater than or equal to the number of transmit antennas). Assuming that the
eigenvalues of A are ordered in such a way that λi ≥ λi+1, we may write:

|H(Ĉ − C)|2 =
nR∑
i=1

ν∑
j=1

λj |pi,j |2 (11.74)

and

Pr{C → Ĉ|H} ≤ 1

2
exp


−γ

4

nR∑
i=1

ν∑
j=1

λj |pi,j |2



= 1

2

nR∏
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ν∏
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exp
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4
λja

2
i,j

}
(11.75)

having defined the random variable ai,j � |pi,j | whose probability density function is (see (2.58)):

fa(x) = 2x exp(−x2) u (x). (11.76)

Proceeding as in Section 11.2.1.2, we may thus compute the average PEP10:

Pr{C → Ĉ} = EH{Pr{C → Ĉ|H}}

≤ 1

2
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4
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−nR

, (11.77)

which asymptotically (as γ → ∞) becomes:

Pr{C → Ĉ} � 1

2


 ν∏

j=1

λj




−nR(γ

4

)−νnR = 1

2


 ν∏

j=1

λj




−nR(
Ēs

4N0

)−νnR

. (11.78)

This expression can be exploited to develop upper bounds on the symbol or bit error probability
(e.g., the union bound technique described in Section 4.3.2 can be used to derive these results); this
leads to the conclusion that the total diversity order (the slope of the symbol or bit error probability
curve in a log-log plot) of the coded system is νminnR (where νmin is the minimum value of ν). As a

10 The extension to the case of a Rician fading channel is straightforward. See Section 11.2.1.2 for details.
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secondary merit criterion, we should try to maximize the term
∏ν

j=1 λj on error events with minimum
diversity. Using terminology already employed for TCM over fading channels, we will call this coding
gain. It displaces the error probability curve instead of changing its slope. Since ν = rank(A) and∏ν

j=1 λj = det(A), the basic code design principles for STCs over slow frequency-flat Rayleigh fading
channels are as follows [14]:

Rank criterion. The maximum diversity of nT nR is achieved by ensuring that the matrix11:

A = (Ĉ − C)(Ĉ − C)H

is full-rank for all the pairs of distinct codewords Ĉ and C. Otherwise, if the minimum rank of A
among all codeword pairs is νmin ≤ nT a diversity order νminnR is achieved.

Determinant criterion. In order to obtain the maximum possible coding advantage, the minimum
determinant of matrices A having minimum rank should be maximized.

These design principles, also known as Tarokh–Seshadri–Calderbank criteria, are based on the
asymptotic receiver performance. Let us consider (11.77) – in particular, the term in square brackets.
Considering that

∑ν
j=1 λj = tr(A), it can be expressed as:

ν∏
j=1

(
1 + γ

4
λj

)
= 1 + γ

4

ν∑
j=1

λj + . . . +
(γ

4

)ν
ν∏

j=1

λj

= 1 + γ

4
tr(A) + . . . +

(γ

4

)ν

det(A), (11.79)

stating that for low values of γ (γ � 1), the PEP is governed essentially by tr(A) instead of by
det(A). Note that:

tr(A) = tr[(Ĉ − C)(Ĉ − C)H ] = |Ĉ − C|2 (11.80)

is the squared Euclidean distance between C and Ĉ. This is somehow expected since for low SNRs
the performance is governed by the additive noise rather than the fading. Thus, the error probability
curve changes its behavior from a waterfall shape (for small values of γ ) to a linear shape (for high
values of γ ) where the performance is governed by the above-mentioned rank–determinant design
principles.

For large values of νnR , say νminnR ≥ 4, this linear behavior is observed for error probability
values so small that a code design based on the asymptotic behavior is highly suboptimal for the error
probability values of interest [16, 1887]. For these values, the PEP can be obtained by examining the
asymptotic behavior for νnR → ∞. Let us return to (11.74) and consider that, for the law of large
numbers,12:

|H(Ĉ − C)|2 → nR

ν∑
j=1

λj = nR tr(A) = nR|Ĉ − C|2 . (11.81)

Hence:

Pr{C → Ĉ} ≤ 1

2
exp

{
−γ nR|Ĉ − C|2

4

}
. (11.82)

11 Note that A and Ĉ − C have the same rank. Hence, this criterion could be equivalently expressed with reference
to matrix Ĉ − C.
12 Other design criteria are discussed in [828, 1888].
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The following alternative code design principle thus results:

Euclidean distance criterion. When the matrix:

A = (Ĉ − C)(Ĉ − C)H

has rank at least 4 for all pairs of distinct codewords Ĉ and C, the minimum trace of matrices A,
which is the minimum squared Euclidean distance between Ĉ and C, should be maximized.

In practice, when νnR ≥ 4, an optimum code for AWGN channels, whose codewords are properly
formatted in nT × N matrices, can be adopted.

11.5.1.3 ST Codeword Design Criteria for Fast Fading Channels

Let us now consider the case of a fast frequency-flat fading channel. Under the assumption that the
receiver perfectly knows the sequence of channel matrices {H�}, the decision rule becomes:

Ĉ = arg min
C̃

N∑
�=1

|ρ� − √
γ H�c̃�|2 (11.83)

and the PEP, given the channel realization, is then:

Pr{C → Ĉ|{H�}} = Q

(√
γ

2

N∑
�=1

|H�(ĉ� − c�)|
)

≤ 1

2
exp

{
−γ

4

N∑
�=1

|H�(ĉ� − c�)|2
}

, (11.84)

where we may write:
|H�(ĉ� − c�)|2 = tr[H�(ĉ� − c�)(ĉ� − c�)

H HH
� ] . (11.85)

Let us now consider the matrix (ĉ� − c�)(ĉ� − c�)
H . Since it is a nonnegative definite Hermitian

matrix, it can be diagonalized using a unitary matrix U�, (ĉ� − c�)(ĉ� − c�)
H = U���UH

� , where ��

is a diagonal matrix whose elements are the nonnegative eigenvalues of (ĉ� − c�)(ĉ� − c�)
H . However,

given that (ĉ� − c�)(ĉ� − c�)
H is of rank 1, only one nonzero eigenvalue results. Let us denote this

eigenvalue by λ1,� and the corresponding eigenvector by u1,�. Using the property that the sum of the
eigenvalues is equal to the trace of the matrix, we have that:

λ1,� = tr[(ĉ� − c�)(ĉ� − c�)
H ] = |ĉ� − c�|2 . (11.86)

Hence:
|H�(ĉ� − c�)|2 = tr[p1,�λ1,�pH

1,�] = |ĉ� − c�|2|p1,�|2, (11.87)

having defined p1,� � H�u1,�, and:

Pr{C → Ĉ|{H�}} ≤1

2
exp

{
−γ

4

N∑
�=1

|ĉ� − c�|2|p1,�|2
}

=1

2

N∏
�=1

exp
{
−γ

4
|ĉ� − c�|2|p1,�|2

}

=1

2

∏
�∈I

exp
{
−γ

4
|ĉ� − c�|2|p1,�|2

}
, (11.88)
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where, as in Section 11.2.1.2, we denote by I the set of all 1 ≤ � ≤ N such that |ĉ� − c�| �= 0. Since
u1,� is an eigenvector, p1,� is statistically equivalent to one column of H�, that is, its components are
independent complex Gaussian random variables with zero mean and unit variance.

Let us now assume that the channel coefficients {H�} are independent of each other (fast fading
or ideal channel interleaving). To compute the average PEP we will consider the cases of small and
large values of |I |nR . In the former case, the average PEP is easily obtained as:

Pr{C → Ĉ} ≤1

2

∏
�∈I

(
1 + γ

4
|ĉ� − c�|2

)−nR
, (11.89)

which asymptotically (i.e., for high SNRs) becomes:

Pr{C → Ĉ} � 1

2

(γ

4

)−|I |nR

(∏
�∈I

|ĉ� − c�|2
)−nR

. (11.90)

Hence, the basic code design principles over fast frequency-flat fading channels are as follows:

Code diversity criterion. The minimum diversity |I | between all pairs of distinct codewords must
be maximized.

Coding gain criterion. In order to obtain the maximum possible coding advantage, the coding gain∏
�∈I |ĉ� − c�|2 over error events having minimum diversity should be maximized.

For large values of |I |nR , the average PEP can be obtained by examining the asymptotic behavior
for |I |nR → ∞. From (11.87) and the law of large numbers:

|H�(ĉ� − c�)|2 → |ĉ� − c�|2nR (11.91)

and

Pr{C → Ĉ} ≤ 1

2
exp

{
−γ

4
nR

∑
�∈I

|ĉ� − c�|2
}

. (11.92)

The following alternative code design principle thus results:

Euclidean distance criterion. For large values of the product between the number of receive antennas
nR and the minimum diversity |I | between all pairs of distinct codewords, the minimum Euclidean
distance: √∑

�∈I

|ĉ� − c�|2

between all pairs of distinct codewords should be maximized.

11.5.1.4 First Naive Scheme: Delay Diversity

One of the first ST codes proposed for quasi-static fading channels is the delay diversity scheme
[1889]. This scheme employs a rate-1/nT repetition code where each symbol is transmitted from a
different antenna after being delayed. In other words, assuming, for example, nT = 2, this scheme
transmits the same information from both antennas simultaneously but with a delay of one symbol.
The codewords are thus of the form:

C =
[
c1 c2 c3 . . .

0 c1 c2 . . .

]
. (11.93)
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Although not optimized in the sense of the determinant criterion, it is easy to verify that for all the
pairs of distinct codewords, the matrix Ĉ − C always has rank nT . Hence, the maximum diversity
of nT nR is obtained. This is also intuitive since each symbol traverses nT nR paths. This maximum
diversity is obtained at the cost of having a rate of only one symbol per channel use. In practice, this
scheme transforms the frequency-flat channel into a channel with intersymbol interference (and hence
a frequency-selective channel). Optimal decoding may be performed by using the VA or through the
suboptimal reduced-complexity schemes described in Section 11.5.1.7.

11.5.1.5 Space-Time Block Codes

These codes were introduced to provide transmit diversity for quasi-static frequency-flat fading chan-
nels. When employed with multiple receive antennas, receive diversity is also obtained in addition
to transmit diversity. The first STBC was that proposed by S. M. Alamouti [15] for the case of two
transmit antennas. Before describing it in detail, let us consider the case of an uncoded system with
receive diversity only (nT = 1) shown in Figure 11.16. This system will be employed for a comparison
with the systems described later.

From (11.64), the channel model becomes:

r� = √
γ h�c� + n�, (11.94)

with � = 1, 2, . . . , N , since the channel matrix is now a vector h� of nR components. The optimal
detection strategy, under the assumption of perfect knowledge of the channel coefficients, can easily be
derived (see also Section 11.2.3 for the case of a coded transmission). Since the system is memoryless
(uncoded system and perfect channel knowledge), we have:

ĉ� = arg min
c̃�

|ρ� − √
γ h�c̃�|2

= arg min
c̃�

|hH
� ρ� − √

γ |h�|2c̃�|2

= arg max
c̃�

{
Re[hH

� ρ�c̃
∗
� ] −

√
γ

2
|h�|2|c̃�|2

}
. (11.95)

This expression show that the optimal decision rule linearly combines the received samples of different
antennas after co-phasing and weighting them with their respective channel gains. Samples from

c
Transmitter Receiver

1h1[ ]

hj[ ]

hnR
[  ]

nR

ĉj

Figure 11.16 System with receive diversity.
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antennas experiencing better channel gains (and thus higher SNRs) are emphasized more than others,
and this is intuitive since they are more reliable. This detection strategy is commonly known as MRC
detection (see Section 6.2.1.6).

It is easy to verify that it is the same optimal strategy found for the equivalent SISO channel:

ř� = hH
� r� = √

γ |h�|2c� + ň� (11.96)

where, given the channel gains, the noise term ň� is still Gaussian with variance |h�|2. Under the
hypothesis that the components of h� are iid Gaussian random variables with zero mean and unit vari-
ance (Rayleigh fading environment), the random variable α� � γ |h�|2, representing the instantaneous
SNR, is chi-square distributed with 2nR degrees of freedom [55], so that its pdf is given by:

fα(x) = xnR−1

γ nR (nR − 1)!
exp

(
− x

γ

)
u (x) . (11.97)

The average symbol error probability can thus easily be computed. From the equivalent channel model
(11.96), considering, as an example, BPSK modulation whose bit error probability for a given value
of the instantaneous SNR is Q(

√
2α), we obtain the average bit error probability:

Pb =
∫ ∞

−∞
Q(

√
2x) fα(x) dx . (11.98)

A closed-form expression for this probability exists and may be written as [1422, p. 781]:

Pb =
[

1

2

(
1 −

√
γ

1 + γ

)]nR
nR−1∑
m=0

(
nR − 1 + m

m

)[
1

2

(
1 +

√
γ

1 + γ

)]m

. (11.99)

A simpler upper bound can be found by using the fact that Q(
√

2α) ≤ 1
2 exp(−α) (see (F.15)):

Pb ≤ 1

2

∫ ∞

−∞
exp(−x)fα(x) dx = 1

2

1

(1 + γ )nR
, (11.100)

which for γ → ∞ gives:

Pb � 1

2

1

γ nR
. (11.101)

This clearly shows that a diversity order of nR is achieved.
The motivation behind the Alamouti scheme is thus as follows. In a cellular system, the base

station can easily be equipped with multiple antennas with sufficient separation among them. Hence,
the technique just described can be conveniently adopted in the uplink. In contrast, since at the mobile
terminal it is difficult to place multiple antennas, receive diversity can hardly be employed. The aim
of the scheme proposed by Alamouti is thus to obtain transmit diversity when there are two transmit
antennas.

STBCs are a generalization of the Alamouti scheme to the case of nT > 2. Although they provide
full diversity, there is no coding advantage provided by STBCs.13 However, optimal decoding can be
performed efficiently through a simple linear processing of the samples at the output of the receive
antennas.

13 To achieve an additional coding gain, one should concatenate an outer code with an inner STBC [1890–1892].
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Figure 11.17 Alamouti scheme with nT = 2 and nR = 1.

The Alamouti scheme
Let us consider now the case of a channel with nT = 2 transmit antennas and nR = 1 receive antenna
shown in Figure 11.17. The codewords have length N = 2 and the channel, perfectly known at the
receiver, is assumed to remain the same over two consecutive time intervals (quasi-static fading over
N = 2 symbol intervals). In the two considered symbol intervals considered, it will be described by
the row vector:

H � [h1,1, h1,2] . (11.102)

The codeword matrices are of the form:

C =
[
c1 −c∗

2
c2 c∗

1

]
(11.103)

meaning that, during the first interval, symbol c1 is transmitted from the first antenna and symbol
c2 from the second antenna whereas, during the second interval, symbol −c∗

2 is transmitted from the
first antenna and symbol c∗

1 from the second antenna. A rate of one symbol per channel use is thus
achieved. The corresponding received samples in the two intervals are:

r[1] = √
γ (h1,1c1 + h1,2c2) + n[1],

r[2] = √
γ (−h1,1c

∗
2 + h1,2c

∗
1) + n[2] , (11.104)

where n[1] and n[2] are independent AGN samples (each having zero mean and unit variance). Then,
if we consider the vector ř � [r[1], r[2]∗]T , it can be expressed as:

ř = √
γ Ȟ

[
c1
c2

]
+ ň, (11.105)

where

Ȟ �
[
h1,1 h1,2
h∗

1,2 −h∗
1,1

]
(11.106)

and ň � [n[1], n[2]∗]T is statistically equivalent to the vector [n[1], n[2]]T. An alternative set of
sufficient statistics is represented by the vector:

r̃ = [r̃[1], r̃[2]]T � ȞH ř, (11.107)

since it can be obtained through a linear transformation of the vector ř. It is easy to verify that
ȞH Ȟ = (|h1,1|2 + |h1,2|2)I2, so that, denoting ñ = [ñ[1], ñ[2]]T � ȞH ň, we have:

r̃[1] = h∗
1,1r[1] + h1,2r[2]∗ = √

γ (|h1,1|2 + |h1,2|2)c1 + ñ[1],

r̃[2] = h1,2r[1] − h1,1r[2]∗ = √
γ (|h1,1|2 + |h1,2|2)c2 + ñ[2] . (11.108)
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As mentioned, the channel is assumed perfectly known at the receiver and, given the channel coef-
ficients, ñ is still a Gaussian vector with uncorrelated (since ȞH Ȟ = (|h1,1|2 + |h1,2|2)I2) and thus
independent components having zero mean and variance (|h1,1|2 + |h1,2|2). Decisions on the symbols
c1 and c2 can thus be obtained by adopting the symbol-by-symbol rules:

ĉ1 = arg min
c̃1

|r̃[1] − √
γ (|h1,1|2 + |h1,2|2)c̃1|,

ĉ2 = arg min
c̃2

|r̃[2] − √
γ (|h1,1|2 + |h1,2|2)c̃2| . (11.109)

In other words, after proper linear combining of the received samples, detection of the symbols c1
and c2 can be decoupled. For this reason, the Alamouti scheme is called an orthogonal design.

This scheme can be generalized to the case of multiple receive antennas. We denote two consecutive
samples at the output of the ith antenna by ri[1] and ri[2] (with i = 1, 2, . . . , nR). We follow the
same steps as for nR = 1. Then, after linear combining and normalization, we have the samples:

r̃i[1] = h∗
i,1ri[1] + hi,2ri[2]∗ = √

γ (|hi,1|2 + |hi,2|2)c1 + ñi[1] (11.110)

and
r̃i[2] = hi,2ri[1] − hi,1ri[2]∗ = √

γ (|hi,1|2 + |hi,2|2)c2 + ñi [2], (11.111)

where ñi[1] and ñi[2] are independent AGN samples having variance (|hi,1|2 + |hi,2|2). Optimal
decisions on the symbols c1 and c2 can thus be obtained through MRC. Straightforward manipulations
lead to:

ĉ1 = arg max
c̃1

fr̃[1](ρ̃1[1], ρ̃2[1], . . . , ρ̃nR
[1]|c̃1, h1,1, h1,2, h2,1, h2,2, . . . , hnR,1, hnR,2)

= arg max
c̃1

nR∏
i=1

fr̃i [1](ρ̃i[1]|c̃1, hi,1, hi,2)

= arg min
c̃1

∣∣∣∣∣
nR∑
i=1

[
ρ̃i[1] − √

γ c̃1(|hi,1|2 + |hi,2|2)
]∣∣∣∣∣

2

(11.112)

and

ĉ2 = arg max
c̃2

fr̃[2](ρ̃1[2], ρ̃2[2], . . . , ρ̃nR
[2]|c̃2, h1,1, h1,2, h2,1, h2,2, . . . , hnR,1, hnR,2)

= arg max
c̃2

nR∏
i=1

fr̃i [2](ρ̃i[2]|c̃2, hi,1, hi,2)

= arg min
c̃2

∣∣∣∣∣
nR∑
i=1

[
ρ̃i[2] − √

γ c̃2(|hi,1|2 + |hi,2|2)
]∣∣∣∣∣

2

(11.113)

where r̃[�] � [r̃1[�], r̃2[�], . . . , r̃nR
[�]]T (with � = 1, 2). Again, the decisions are decoupled.

Performance analysis of this scheme is quite simple. From (11.112) and (11.113), it is clear that a
decision on symbol c�, � = 1, 2, is obtained from the equivalent SISO channel:

r̃[�] =
nR∑
i=1

r̃i[�] = √
γ c�

nR∑
i=1

(|hi,1|2 + |hi,2|2) + ñ[�], (11.114)

having defined ñ[�] �
∑nR

i=1 ñi[�]. Given the channel gains, samples {ñ[�]} are jointly Gaussian,
independent and have variance

∑nR
i=1(|hi,1|2 + |hi,2|2). Comparing (11.114) with (11.96), it is thus
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clear that the Alamouti scheme with nT = 2 transmit antennas and nR receive antennas is perfectly
equivalent to a scheme with nT = 1 transmit antenna and 2nR receive antennas and using MRC,
provided that the same value of γ is employed, that is, provided that the same power per transmit
antenna is spent (meaning that for an equal overall transmitted power, the performance of the Alamouti
scheme exhibits a degradation of 3 dB). It is thus also clear that the Alamouti scheme achieves full
diversity (diversity 2nR). This can easily be verified by considering two distinct codewords:

C =
[
c1 −c∗

2
c2 c∗

1

]
, Ĉ =

[
ĉ1 −ĉ∗

2
ĉ2 ĉ∗

1

]
(11.115)

and computing the matrix:

A = (Ĉ − C)(Ĉ − C)H =
[|ĉ1 − c1|2 + |ĉ2 − c2|2 0

0 |ĉ1 − c1|2 + |ĉ2 − c2|2
]

, (11.116)

which clearly has full diversity provided that Ĉ �= C.

Orthogonal STBCs
The Alamouti scheme was designed for nT = 2 transmit antennas. OSTBCs [1482, 1483] extend it to
the case nT > 2.

In the general case of nT transmit antennas, in order to design a code with a rate of 1 symbol per
channel use and full diversity, we need to design a set of nT × nT (square) matrices, with elements
from the employed constellation, whose rows are orthogonal to each other. This latter property, in
fact, will ensure that an optimal receiver can be designed based on a linear processing plus symbol-
by-symbol detection. Unfortunately, it is not always possible to find such an orthogonal design. For
real constellations (e.g., M-PAM), it exists for nT = 2, 4, 8 only. As an example, for nT = 4, the
corresponding orthogonal design is that using codeword matrices of the form:

C =




c1 −c2 −c3 −c4
c2 c1 c4 −c3
c3 −c4 c1 c2
c4 c3 −c2 c1


 . (11.117)

It is easy to prove, as was done for the Alamouti code, that it achieves full diversity. It also has a
rate of 1 symbol per channel use since four symbols are transmitted in four timeslots.

On the other hand, for complex constellations, there exists a unique full-rate and full-diversity
orthogonal design for nT = 2 (that proposed by Alamouti). It is, however, possible to find many other
orthogonal designs by removing some of the mentioned constraints. For instance, for nT = 4, the code
with codewords:

C =




c1 −c2 −c3 −c4 c∗
1 −c∗

2 −c∗
3 −c∗

4
c2 c1 c4 −c3 c∗

2 c∗
1 c∗

4 −c∗
3

c3 −c4 c1 c2 c∗
3 −c∗

4 c∗
1 c∗

2
c4 c3 −c2 c1 c∗

4 c∗
3 −c∗

2 c∗
1


 (11.118)

achieves full diversity (as can easily be proved by computing matrix A = (Ĉ − C)(Ĉ − C)H ), but has
a rate of 1/2 symbol per channel use since four symbols are transmitted in eight timeslots.

A mathematical framework to describe the general class of linear orthogonal designs is provided
in [1893]. The nT × N matrices {C} describing an orthogonal STBC and used to transmit K symbols
(thus achieving a rate of K/N symbols per channel use) can be expressed in the form:

C =
K∑

k=1

(ckAk + c∗
kBk), (11.119)
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where Ak and Bk are appropriate nT × N matrices. That is, all elements of C are linear combinations
of the symbols {ck}Kk=1 being transmitted and/or their conjugates. As an example, the Alamouti code
can be described by using this framework with nT = N = K = 2 and:

A1 =
[

1 0
0 0

]
, A2 =

[
0 0
1 0

]
, B1 =

[
0 0
0 1

]
, B2 =

[
0 −1
0 0

]
. (11.120)

Clearly, the matrices {C} must satisfy the property that their rows are orthogonal, that is, CCH is
a diagonal matrix with strictly positive elements. More precisely, the condition:

CCH =
K∑

k=1

Dk|ck|2 (11.121)

must hold, where Dk is a diagonal matrix with strictly positive elements. As demonstrated in [1893],
this can be expressed equivalently as the following equalities in terms of matrices {Ak} and {Bk}:

AkAH
m + BkBH

m = δk,mDk, (11.122)

AkBH
m + BkAH

m = 0, (11.123)

where δk,m is the Kronecker delta. In the case of the Alamouti code, property (11.121) and conditions
(11.122) and (11.123) can easily be verified.

This framework is very useful to describe the decoding algorithm. The samples {ri[�],
� = 1, 2, . . . , N} received by antenna i can be collected in a row vector:

ri � [ri[1], ri[2], . . . , ri[N ]] (11.124)

which can be expressed as:
ri = √

γ hiC + ni , (11.125)

where hi is the ith row of the channel matrix H (supposed known at the receiver and constant for N
consecutive samples) and ni is a row vector of the noise samples at the output of antenna i. In other
words, hi is a row vector of the channel gains from all transmit antennas to receive antenna i. The
detection strategy can be written in the form:

Ĉ = arg min
C̃

nR∑
i=1

|ri − √
γ hiC̃|2

= arg min
C̃

nR∑
i=1

[ri − √
γ hiC̃][ri − √

γ hiC̃]H

= arg min
C̃

nR∑
i=1

[γ hiC̃C̃H hH
i − 2

√
γ Re (riC̃

H hH
i )] . (11.126)

Taking into account (11.119) and (11.121), we obtain:

Ĉ = arg min
C̃

nR∑
i=1

K∑
k=1

[γ hiDkhH
i |c̃k|2 − 2

√
γ Re(riA

H
k hH

i c̃∗
k + riB

H
k hH

i c̃k)]

= arg min
C̃

nR∑
i=1

K∑
k=1

[γ hiDkhH
i |c̃k|2 − 2

√
γ Re(riA

H
k hH

i c̃∗
k + hiBkrH

i c̃∗
k )] . (11.127)
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It is thus clear that decisions on symbols {ck}Kk=1 can be decoupled in the following symbol-by-symbol
rules:

ĉk = arg min
c̃k

nR∑
i=1

[γ hiDkhH
i |c̃k|2 − 2

√
γ Re(riA

H
k hH

i c̃∗
k + hiBkrH

i c̃∗
k )]

= arg min
c̃k

|r̃k − √
γ ξ 2

k c̃k|2 (11.128)

with k = 1, 2 . . . , K , having defined:

r̃k �
nR∑
i=1

(riA
H
k hH

i + hiBkrH
i ) (11.129)

and

ξ 2
k �

nR∑
i=1

hiDkhH
i . (11.130)

This detection strategy is that corresponding to an equivalent SISO channel. In fact, substituting
(11.125) into (11.129), and using (11.119), (11.122), and (11.123), we obtain:

r̃k =
nR∑
i=1

(riA
H
k hH

i + hiBkrH
i )

=
nR∑
i=1

[(
√

γ hiC + ni )A
H
k hH

i + hiBk(
√

γ hiC + ni )
H ]

= √
γ ck

nR∑
i=1

[hiDkhH
i ] +

nR∑
i=1

[niA
H
k hH

i + hiBknH
i ]

= √
γ ckξ

2
k + ñk, (11.131)

having defined:

ñk �
nR∑
i=1

[niA
H
k hH

i + hiBknH
i ], (11.132)

whose variance is ξ 2
k , given hi and taking into account that the noise samples at the output of antenna

i are uncorrelated and have unit variance. Hence, the detection strategy (11.128) can be considered as
derived from the equivalent SISO channel model (11.131) and the performance analysis carried out
accordingly as for the Alamouti scheme, easily verifying that these schemes achieve full diversity.
This can also be verified by considering two distinct codewords:

C =
K∑

k=1

(ckAk + c∗
kBk) (11.133)

and

Ĉ =
K∑

k=1

(ĉkAk + ĉ∗
kBk), (11.134)

and verifying that the matrix (Ĉ − C)(Ĉ − C)H = ∑K
k=1 |ĉk − ck|2Dk has full rank, provided that

Ĉ �= C.
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Quasi-orthogonal STBCs
As mentioned, for complex constellations, the only orthogonal design is that proposed by Alamouti for
nT = 2. It provides full diversity and transmission rate of 1 symbol per channel use. STBCs with rate
of 1 symbol per channel use can be obtained, as proposed in [1894], by using Alamouti’s orthogonal
design as a building block (or another orthogonal design in the case of real constellations), but clearly
giving up the orthogonality of the resulting STC and only providing partial diversity.

To illustrate the main ideas behind this “quasi-orthogonal” design, let us consider how to design
an STBC for nT = 4 by properly employing two Alamouti codewords, one denoted by C12 for
transmitting symbols c1 and c2:

C12 =
[
c1 −c∗

2
c2 c∗

1

]
(11.135)

and a second denoted by C34 for transmitting symbols c3 and c4:

C34 =
[
c3 −c∗

4
c4 c∗

3

]
. (11.136)

The resulting codeword will be obtained through an orthogonal design involving the two matrices:

C =
[

C12 −C∗
34

C34 C∗
12

]
=




c1 −c∗
2 −c∗

3 c4
c2 c∗

1 −c∗
4 −c3

c3 −c∗
4 c∗

1 −c2
c4 c∗

3 c∗
2 c1


 . (11.137)

It is easy to prove that this code does not achieve full diversity (it achieves diversity 2nR when nR

receive antennas are employed). Although not all its rows are orthogonal, we can observe that the
first and fourth columns are orthogonal to the second and third. Hence, through appropriate linear
processing it is possible to decouple the decisions on symbols c1 and c4 from those on symbols c2
and c3. The decisions on symbols c1 and c4 and those on c2 and c3 must be performed jointly, thus
increasing the receiver complexity with respect to that of orthogonal STCs.

Linear dispersion codes
The mathematical framework (11.119) employed to describe linear orthogonal designs can be used
to describe the quasi-orthogonal STBCs as well as another class of STCs called linear dispersion
codes. These codes have rate greater than one symbol per channel use since for them we can have
K > N . Obviously, this time, constraints (11.122) and (11.123) no longer hold and optimal decoding
becomes prohibitive. Suboptimal decoding techniques, such as those mentioned in Section 11.5.1.7,
can be adopted. Regarding the code design (or, in other words, the design of matrices Ak and Bk), in
[1895] a technique is proposed aimed at maximizing the mutual information between the input and
the output of the channel.

11.5.1.6 Space-Time Trellis Codes

Another important class of codes are the STTCs originally proposed in [14]. They are the natural
extension of TCMs to MIMO channels – the only difference is that each trellis branch is labeled
with a vector of nT symbols that are transmitted in parallel by the nT transmit antennas. More
precisely, they are multiple TCMs whose trellis branch is associated with nT symbols belonging to
a given M-ary constellation that are transmitted in parallel over the nT transmit antennas instead of
sequentially. Memory is thus introduced with the aim of obtaining a coding advantage in addition to
a code diversity at the price of increased decoding complexity.

In general, the code will have ns states. A rate of η bits per channel use is obtained when a trellis
with 2η branches departing from each state is employed. We already discussed the different design
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criteria of the ST codewords. STTCs are designed accordingly. In the case of quasi-static fading, for
STTCs for nT = 2, two simple design rules allow us to obtain full diversity, in accordance with the
rank criterion:

• Rule 1. Transitions departing from the same state differ in the second symbol only.
• Rule 2. Transitions merging at the same state differ in the first symbol only.

In fact, by following these rules, the error matrix assumes the form (for all (Ĉ, C)):

Ĉ − C =
[· · · 0 · · · β · · ·
· · · α · · · 0 · · ·

]
(11.138)

with α and β nonzero complex numbers. Thus, every such error matrix has full rank and the
STC achieves full diversity. The maximization of the minimum determinant of matrices A = (Ĉ −
C)(Ĉ − C)H having minimum rank is a harder task. The code design is therefore performed through
a computer search [14]14 or through algebraic techniques [1888, 1899]. In particular, in [1888] for
the class of binary and quaternary trellis codes over Z2 and Z4 mapped onto BPSK and QPSK,
respectively, a condition on the underlying algebraic codes referred to as the binary-rank criterion is
shown to imply the rank diversity of the resulting STC and it is used to construct STCs with full rank
diversity (i.e., with ν = nT ). The binary-rank criterion is much easier to check than the rank diversity
and yields some explicit general algebraic constructions.

For quasi-static channels, two examples of good STTCs using the QPSK modulation, with a rate
of 2 bits per channel use, nT = 2, and ns = 4, 8, are provided in Figure 11.18. Other examples

Input symbol:

Branch labels

Input symbol:

Branch labels

0 1 2 3

00 01 02 03

0 1 2 3

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

22 23 20 21

32 33 30 31

02 03 00 01

12 13 10 11

10 11 12 13

20 21 22 23

30 31 32 33

(a)

(b)

Figure 11.18 Trellis diagrams of two ST trellis codes with (a) ns = 4 and (b) ns = 8 states. The
QPSK symbol exp(2πi/4) (with i = 0, 1, 2, 3) is specified through integer i.

14 In [1896], an algebraic representation of STTCs using PSK modulations is provided, with the aim of simplifying
the search for good codes. With the same aim, some analytical tools are provided in [1897, 1898] along with new
good codes.
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can be found in [14, 1888, 1897–1899]. We would also like to mention the new class of STTCs
in [1900–1902] which systematically combine set partitioning and a superset of OSTBCs codes to
provide full diversity and improved coding gain over earlier STTC constructions.

The optimal detector is based on the VA working on the code trellis. Since the number of trellis
branches departing from the same state is 2η, the larger the rate η, the higher the receiver complexity.
Similarly, the larger the number of transmit antennas, the higher the receiver complexity. Hence, for
transmissions requiring very high spectral efficiency and/or a large number of transmit antennas, other
codes are more appropriate (such as layered ST codes described below).

An upper bound on the error probability can be computed through the union bound technique.
However, as mentioned for quasi-static channels, this bound turns out to be loose, especially when
the number of antennas is limited. The reason is simple. In the union bound computation, the same
contribution is accounted for many times. This does not represent a problem for the AWGN channel
since, in this case, the PEP terms decay exponentially and only a few dominant terms exist. On the
quasi-static frequency-flat fading channel, however, when the available diversity is limited, PEP terms
decay very slowly and, as a consequence, the number of dominant terms is not limited.

A possible solution is represented by the technique described in [1853] for convolutional codes,
and applied in [1903] to STTCs. The idea is very simple. Let us assume that we are interested in
the computation of an upper bound on the BEP P

(U)
b (the same considerations hold for the symbol

error probability or the frame error probability). Up to now, the starting point was the computation
of the PEP given a channel realization H. This was then averaged over the channel realizations and
employed in the union bound for the computation of an upper bound on the bit error probability.
However, we can apply the union bound to compute an upper bound on the BEP given the channel
realization P

(U)
b (H), upper-bound it as unity if it exceeds unity, and then perform the average over

the channel realizations:
P

(U)
b = EH{min[1, Pb(H)]}. (11.139)

In other words, we are changing the order of the average and the summation (that for the union bound
computation) and, when the channel coefficients are so small that the PEP terms become close to one
producing an union bound given H having a value larger than unity, we trivially upper-bound it as
unity, and then average over the channel statistics. The average cannot be now computed in closed
form, but Monte Carlo averaging must be used.

11.5.1.7 Layered STCs

BLAST architectures
ST block and trellis codes can achieve full diversity (diversity nT nR) on quasi-static frequency-flat
channels, thus representing an effective way to combat the effects of fading. However, their application
is limited to transmissions with a small rate η. In fact, STBCs achieve a rate of at most log2 M bits
per channel use (where M is the cardinality of the modulation constellation), whereas the complexity
of STTCs limits their adoption to applications where a very limited number of bits per channel use is
required. It could thus be useful to trade diversity against rate for those wireless applications requiring
high data rates. LST architectures, originally proposed by Foschini [17], have been developed for such
a purpose and to handle a large number of antennas with limited complexity.

The first and most effective proposed LST architecture is the diagonal BLAST (D-BLAST) scheme.
We will concentrate mainly on this architecture, describing the encoding procedure and a few subop-
timal low-complexity decoding algorithms. We will also mention horizontal BLAST (H-BLAST) and
vertical BLAST (V-BLAST), along with alternative LST architectures such as multilayered ST codes
[1904], threaded ST codes [1905], and wrapped ST codes [1906].

In a BLAST architecture, multiple independent coded streams are distributed throughout the trans-
mission resource array in so-called layers. Since the complexity of the optimal decoder is impractical,
the aim is to design the layering architecture and the associated signal processing so that the receiver
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Figure 11.19 D-BLAST encoder.

can efficiently separate the individual layers and decode each of them effectively. In other words,
low-complexity suboptimal decoding schemes based on individual decoding of the component codes
and mitigation of the mutual interference among component codewords can be adopted.

The block diagram of a D-BLAST encoder is shown in Figure 11.19 [17]. The information bit
stream is demultiplexed into L parallel substreams. Each substream is independently encoded and the
code bits are mapped onto M-ary symbols belonging to a constellation Ac. The resulting L codewords
are collected in the row vectors {c(i)}Li=1, of length N ′ = nT d symbols. These row vectors are then
broken into nT small subblocks of d symbols each. We will denote by c(i)

j the row vector representing
the jth subblock of codeword c(i). These subblocks are cyclically assigned by the spatial interleaver to
all transmit antennas in such a way that the codewords share a balanced presence over all nT antennas
and none of the individual substreams is hostage to the worst of the nT paths. In the case of nT = 4, the
transmitted nT × N codeword matrices, with N = d(L + nT − 1), thus have the following structure:

C =




c(1)
1 c(2)

1 c(3)
1 c(4)

1 c(5)
1 . . . . . . . . . . . .

0 c(1)
2 c(2)

2 c(3)
2 c(4)

2 c(5)
2 . . . . . . . . .

0 0 c(1)
3 c(2)

3 c(3)
3 c(4)

3 c(5)
3 . . . . . .

0 0 0 c(1)
4 c(2)

4 c(3)
4 c(4)

4 c(5)
4 . . .


 , (11.140)

where the entries below the first diagonal layer are zeros. Symbols belonging to layer i are placed in
the entries:

{cn,k+(i+n−2)d | k = 1, 2, . . . , d, n = 1, 2, . . . , nT }

of matrix C.
Decoding is accomplished through a multiuser detection strategy based on a combination of can-

celation and suppression. Since each diagonal layer constitutes a complete codeword, decoding is
performed layer by layer, starting from the first diagonal. The receiver generates a soft decision statis-
tic for each symbol in this diagonal by suppressing the interference from the upper diagonals. This can
be obtained by projecting the received signal onto the null space of the upper interference. These soft
statistics are then used by the corresponding channel decoder to decode the first codeword. The decoder
output is then fed back to cancel the first diagonal contribution in the interference while decoding the
next diagonal and so on. This is the so-called ZF suppression strategy that requires nR ≥ nT .

In detail, the receiver is obtained as a linear front-end followed by decision feedback interference
cancelation [17, 1905–1907]. Matrix H is first factores using the so-called QR decomposition [1908]
(see (C.14)), that is:

H = QB, (11.141)
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where Q is an nR × nT matrix with orthonormal columns (i.e., QH Q = InT
) and B is an nT × nT upper

triangular matrix whose diagonal elements (when H is nonsingular, which occurs with probability 1
in the case of the Rayleigh channel) are all positive. From the nR × N matrix R of received samples
in (11.67), the linear front-end, defined by the nT × nR complex matrix QH , yields the alternative
sufficient statistic given by the matrix:

V � QH R = √
γ QH HC + QH N = √

γ BC + Ñ, (11.142)

where Ñ � QH N. Let us now consider the (n, �)th element of V. Since the matrix B has an upper
triangular structure, such an element can be expressed as:

vn,� =√
γ

nT∑
k=n

bn,kck,� + ñn,�

=√
γ bn,ncn,� + √

γ

nT∑
k=n+1

bn,kck,� + ñn,�, (11.143)

where we have assumed that cn,� is the symbol we wish to detect. As one can observe, the interference
of symbols {ck,�}n−1

k=1 has been removed. The remaining symbols belong to lower layers. Hence, the
samples:

vn,k+(n−1)d , k = 1, 2, . . . , d, n = 1, 2, . . . , nT , (11.144)

can be used to decode the first layer since no interference from other layers is present. Once this layer
has been decoded, the corresponding information bits at the decoder output are encoded again and can
thus be subtracted when decoding the second layer. The process will continue layer by layer, using
the samples:

v̂n,k+(i+n−2)d = vn,k+(i+n−2)d − √
γ

nT∑
k=n+1

bn,k ĉk,k+(i+n−2)d (11.145)

(k = 1, 2, . . . , d, n = 1, 2, . . . , nT ), where {ĉk,�} are the decisions on code symbols already taken for
the previous layers, to decode layer i. Hence, the decisions needed in (11.145) are provided by earlier
decoded codewords (layers). Samples v̂n,k+(i+n−2)d in (11.145) can be expressed as (see (11.143)):

v̂n,k+(i+n−2)d =√
γ bn,ncn,k+(i+n−2)d

+ √
γ

nT∑
k=n+1

bn,k(ck,k+(i+n−2)d − ĉk,k+(i+n−2)d ) + ñn,k+(i+n−2)d , (11.146)

showing that, when previously decoded codewords are all correct, detection is interference-free.
As mentioned, the ZF suppression strategy requires nR ≥ nT . This requirement can be relaxed, and

also a better performance obtained in the same conditions, by using MMSE filtering [1905, 1906].
The linear front-end is defined, in this case, by an nT × nR complex matrix FH which produces the
alternative sufficient statistic V � FH R whose �th column is:

v� = FH r� . (11.147)

We know that the vector r� can be expressed as (see (11.64)):

r� = √
γ Hc� + n� = √

γ

nT∑
k=1

hkck,� + n�, (11.148)
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where hk is the kth column of H. Hence, we have that:

v� = FH r� = FH (
√

γ Hc� + n�) = √
γ Gc� + ñ� = √

γ

nT∑
k=1

gkck,� + ñ�, (11.149)

having defined ñ� � FH n� and G � FH H, while gk = FH hk is the kth column of G. Once the layer i
has been detected, the corresponding symbols can be canceled. Let us assume that symbols of layers
up to i to be canceled correspond, at discrete time �, to symbols {ck,�}nT

k=n+1. Hence, after cancelation
we have the vector:

v̂� = v� − √
γ

nT∑
k=n+1

gk ĉk,� = FH

(
r� − √

γ

nT∑
k=n+1

hk ĉk,�

)
= FH r̂�, (11.150)

having defined:

r̂� � r� − √
γ

nT∑
k=n+1

hk ĉk,�. (11.151)

The vectors r̂� and v̂� can be expressed, under the assumption of correct decisions, as:

r̂� = √
γ

n∑
k=1

hkck,� + n� (11.152)

and

v̂� = √
γ

n∑
k=1

gkck,� + ñ�, (11.153)

respectively. The (n, �)th element of the nT × N matrix V̂ � (v̂1, v̂2, . . . , v̂N) can be expressed as:

v̂n,� = fHn r̂�, (11.154)

where fn is the nth column of F. Since vn,� is employed as a soft statistic associated with symbol cn,�,
column fn is selected as that minimizing the MSE E{|fHn r̂� − cn,�|2}, which under the assumption of
correct decisions (i.e., under the assumption that (11.152) holds) can easily be computed in closed
form as [430, 596]:

fn = √
γ

(
InR

+ γ

n∑
k=1

hkhH
k

)−1

hn . (11.155)

Notice that, this time, the interference of the upper layers is not removed through filtering, but the
joint effect of interference and noise is minimized according to the MMSE criterion. Decoding is
accomplished as for the ZF strategy by decoding a layer and canceling it before decoding the next
layer.

Other LST architectures have been conceived with the aim of improving performance or reducing the
overall receiver complexity. H-BLAST has a structure very similar to D-BLAST, the only difference
being the absence of the spatial interleaver. Its encoder is shown in Figure 11.20. As one can observe,
in this scheme the number of layers is equal to the number of transmit antennas nT . In other words,
each layer is exclusively associated with a transmit antenna.

Decoding can be again accomplished layer by layer. In the case of the ZF strategy, after the linear
front-end, the nT th layer is decoded first by using samples:

vnT ,� = √
γ bnT ,nT

cnT ,� + ñnT ,� (11.156)
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Figure 11.20 H-BLAST encoder.

of matrix V in (11.142) and, in general, the jth layer by using samples:

v̂j,� = vj,� − √
γ

nT∑
k=j+1

bj,k ĉk,�

= √
γ bj,j cj,� + √

γ

nT∑
k=j+1

bj,k(ck,� − ĉk,�) + ñj,� . (11.157)

It may be noticed that different layers are decoded with different reliability. In particular, the last
detected layer has the highest reliability since, for it, the contribution of all other layers has been
canceled. A way to overcome this problem is to sort the received sequences starting detection from
that with the highest power. This corresponds to sorting the columns of H by their squared norms.
In the case of MMSE filtering, detection proceeds as mentioned in the case of D-BLAST, the only
difference being the different allocation of codewords in matrix C. In this case as well, the received
sequences can be properly sorted.

Finally, in V-BLAST the different layers are not encoded. This simplifies the receiver structure,
but makes cancelation less reliable. This scheme can be concatenated with an outer channel encoder,
possibly through an interleaver. In this case, iterative detection and decoding can be performed based
on the turbo principle (see Chapter 12).

Multilayered ST architecture
BLAST architectures allow the achievement of a spectral efficiency up to η = RcnT log2 M bits per
channel use, where Rc is the rate of the encoders employed. However, there is no attempt to maximize
the code diversity. Other layered architectures allow spectral efficiency to be traded for diversity in
an attempt to improve the system performance with respect to the BLAST architecture and the data
rate with respect to ST block and trellis codes. As an example, the multilayered ST architecture
[1904] is a hybrid approach using both ST channel codes and layered processing. Transmit antennas
are partitioned into small groups and independent ST block or trellis codes are employed for each
group. The corresponding codewords are then organized into layers and decoded using the techniques
previously described, appropriately modified in order to perform group interference cancelation.

Threaded ST codes
Threaded STCs (TSTCs) [1905] exhibit superior performance with respect to the scheme in [1904].
In fact, multilayered ST codes have a performance which is 6–9 dB from the outage capacity at 10%
frame error rate [1904] whereas the threaded architecture closes the gap to less than 3 dB from the
outage capacity with the same frame length, error rate and receiver complexity.
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The layered and multilayered architectures described up to now were inspired by the signal pro-
cessing techniques employed at the receiver. For example, in the D-BLAST approach, each layer
is constrained to occupy a diagonal in the ST transmission resources array, due to the interference
cancelation/suppression technique adopted at the receiver. In [1905] the concept of the ST layer was
generalized independently of the signal processing adopted at the receiver. The design of algebraic
STCs and iterative signal processing techniques that optimize the performance of threaded ST coded
systems are then considered accordingly.

A thread is a layer that efficiently exploits the diversity available in the system. It extends over
the full spatial dimension nT and the full temporal dimension N with the property that all spatial
interference experienced by the layer comes from outside the layer. An example of threaded layering
is provided in Figure 11.21 for nT = 4. As one can observe, the number of layers is equal to the
number of transmit antennas. Each codeword, coming from a properly designed component code, is
fully interleaved and then assigned to a unique layer. The design of the component codes is described
in [1905]. In particular, a condition is given that allows us to obtain an ST code achieving diversity
νnR . The spectral efficiency of the resulting STC is η = Rc(nT − ν + 1)log2 M bits per channel use,
where Rc is the rate of the component code and M is the cardinality of the constellation employed.
Therefore, this scheme offers a tradeoff between diversity and rate; in particular, we note that, when
ν = 1, this scheme is equivalent to BLAST, whereas, when ν = nT , it becomes equivalent to ST
trellis or block codes.

Detection of TSTCs is accomplished in accordance with the scheme in Figure 11.22. In fact, with
the transmitted codewords interleaved, the optimal detector has an unmanageable complexity, and
a suboptimal detection/decoding architecture based on the turbo principle [1611] is the only viable
option. In the figure, �i denotes the interleaver for the ith layer. We could use the optimal SiSo MIMO
detector, whose complexity is, however, exponential in the number of transmit antennas nT . Several
suboptimal detectors can also be found in the literature, from those whose complexity is polynomial in
nT and based on SD [1192, 1297, 1909–1911] to those whose complexity is quadratic in nT [1912]
and based on MMSE interference cancelation algorithms, originally proposed for CDMA systems
[1913, 1914], and those whose complexity is linear in nT [1915] and based on FGs and the SPA
[1610].15 The SiSo MIMO detector produces soft information on the symbols of the nT transmitted
codewords which is then deinterleaved and passed to the corresponding SiSo decoders. These latter
decoders are matched to the individual component encoders adopted at the transmitter and can work
according to any suitable SiSo algorithm, depending on the type of code employed. The nT outer
SiSo decoders produce their own soft information which is fed back to the SiSo MIMO detector in
accordance with the turbo principle.

nT

N

Figure 11.21 Threaded layering (each pattern represents a thread) for nT = 4 and N = 20.

15 All these suboptimal detection algorithms can be employed for other layered architectures.
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Wrapped ST codes
The final layering scheme we describe is constituted by wrapped STCs (WSTCs) [1906], which
represent a significant improvement with respect to D-BLAST. In this scheme, the codewords have
length N ′ = nT d . For given nT , a large delay d is thus needed in order to have long codewords.
If interleaving delay is an issue, the D-BLAST scheme is forced to work with a short component
code block length N ′. This might pose a serious problem for using trellis codes with a large number
of states. In fact, the code memory might not be negligible with respect to N ′, thus yielding a
nonnegligible rate loss due to trellis termination. In addition, in the case of block component codes,
powerful codes cannot be used. WSTCs are a solution that retains the simplicity of decision feedback
interference mitigation while allowing for arbitrarily long component codewords and small interleaving
delay. In these schemes, a single encoder is employed. The corresponding codeword of length N ′ is
diagonally interleaved, through an ST formatter, in order to form the nT × N codeword matrix C,
with N = N ′/nT + (nT − 1)d . The codeword matrix C is filled by wrapping the codeword c around
the matrix diagonals (hence the name of this layering scheme), as illustrated by Figure 11.23. We can
write:

C = F(c), (11.158)

where the formatter F is defined such that the element cn,� of the codeword matrix C is related to
the element ck of the codeword c by:

cn,� =
{

ckn,�
if 1 ≤ kn,� ≤ N ′

0 otherwise
(11.159)

for 1 ≤ n ≤ nT and 1 ≤ � ≤ N , where:

kn,� = [� − 1 − (n − 1)d]nT + n . (11.160)

In this way, the interleaving delay d becomes a free parameter, independent of the component codeword
block length N ′. As a limiting case, the interleaving delay may be also d = 0, that is, a vertical
interleaver may be used. For consistency with the case d > 0, where code symbols with lower index
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Figure 11.23 Wrapped ST codeword for nT = 4, d = 2, and N ′ = 72. The entries in the array
indicate the index of the symbols in the component codeword.

take the lower positions in each column of the codeword matrix C (see Figure 11.23), the ST formatter
for d = 0 is defined by replacing (11.160) by:

kn,� = (� − 1)nT + nT − n + 1 . (11.161)

When the component encoder is a trellis code of rate b/nT , the corresponding WSTC with d = 0
coincides with a standard STTC. For d > 0, the corresponding WSTC can be seen as the concatenation
of a trellis code with delay diversity. Because of the lower and upper triangles of zero symbols in the
codeword matrix in Figure 11.23, there is an inherent rate loss of (nT − 1)d/N . This is negligible if
N � nT d . Moreover, if the transmission of a long sequence of codewords is envisaged, the codeword
matrices can be concatenated in order to fill the leading and trailing triangles of zeros, so that no rate
loss is incurred.

The wrapped ST architecture has been designed such that when the component codewords are
produced by a trellis encoder, decoding can be implemented efficiently by ZF or MMSE decision
feedback interference mitigation coupled with Viterbi decoding, through the use of PSP [515]. Let us
consider, as an example, the use of the ZF suppression strategy. The extension to the case of MMSE
filtering is straightforward, since only the linear filter needs to be modified. The decoder works on the
trellis of the component code and takes as observable the sequence of samples:

zk = vn,� − √
γ

nT∑
m=n+1

bn,mĉm,� , (11.162)

with k = 1, 2, . . . , N ′, where vn,� is the (n, �) element of matrix V � QH R (or of matrix V � FH R in
the case of MMSE filtering), bn,� is the (n, �)th element of matrix B given in (11.141), and 1 ≤ n ≤ nT

and 1 ≤ � ≤ N are the unique integers for which kn,� = k. From the index mapping (11.160) (or
(11.161) for d = 0), we see that the elements cm,�, for m = n + 1, . . . , nT , correspond to either
zeros (for which no decision is needed) or to symbols of the codeword with index k

′ ≤ k − nT d + 1
(k

′ ≤ k − 1 for d = 0). These decisions are found in the survivor history of the Viterbi decoder, in
accordance with standard PSP [515].

A major advantage of WSTCs is that off-the-shelf component codes can be employed, thus avoiding
an ad hoc code search. A sensible criterion for the design of the component code is, in fact, the
maximization of the code block diversity δ, defined by:

δ � min
c,ĉ:ĉ�=c

|{j ∈ {1, . . . , nT } | wj �= 0}| (11.163)
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with k = 1, 2, . . . , N ′, where wj is the squared Euclidean weight defined as:

wj �
N∑

n=1

|ĉj,n − cj,n|2. (11.164)

Thus the aim is to maximize the minimum number of nonzero rows in the matrix difference Ĉ − C =
F(ĉ) − F(c) for each pair of distinct codeword matrices Ĉ − C, which is strictly related to the rank
diversity of a WSTC. The block diversity criterion has been investigated in [1853, 1916, 1917] for
the design of trellis codes for cyclic interleaving and/or periodic puncturing, and codes optimized in
this sense are thus available. The relationship between the rank diversity ν of a WSTC and the block
diversity of its component code is [1906]:

ν ≤ δ ≤ 1 +
⌊
nT

(
1 − Rc

log2 M

)⌋
, (11.165)

where Rc is the rate of the component code and M is the cardinality of the employed constellation
Ac. Moreover, there exist values of d for which ν = δ [1906]. Since it is known from [14] that for
any STC with spectral efficiency η = nT Rc the rank diversity satisfies the inequality:

ν ≤ 1 +
⌊
nT

(
1 − Rc

log2 M

)⌋
, (11.166)

which is the same upper bound on block diversity given in (11.165), we conclude that the wrapping
construction incurs no loss of optimality in terms of rank diversity (for an appropriate choice of the
delay d). As a matter of fact, while it is difficult to construct codes with rank diversity equal to the
upper bound (11.166), it is very easy to find trellis codes for which the upper bound (11.165) on δ is
met with equality, for several coding rates and values of nT . Examples of these codes are tabulated in
[1916, 1917]. Therefore, the wrapping construction is a powerful tool to construct STCs with optimal
rank diversity.

In [1906], a comparison between WSTCs and TSTCs is provided. For a given state complexity of
the underlying component code, one iteration of the TSTC decoder corresponds to (roughly) the same
complexity of the whole WSTC decoder. It is shown in [1906] that the WSTC scheme yields a clear
performance advantage over TSTC with one iteration (for the same decoder complexity). The case of
more decoding iterations is considered in [1905], giving a (quite limited) performance advantage with
respect to WSTCs whose decoding algorithm is not designed to be iterative.

11.5.1.8 Multiplexing–Diversity Tradeoff

As mentioned, there are two types of gain that a MIMO system can provide: diversity and multiplexing.
We focus our attention on the quasi-static Rayleigh fading channel, with CSI available at the receiver
only. The diversity gain D is mathematically defined as the negative asymptotic slope of the error rate
curve as a function of the SNR on a log-log scale:

D � lim
γ→∞ − log Pe(γ )

log γ
, (11.167)

where Pe(γ ) is the average error probability of the system, while the multiplexing gain r is defined
as the asymptotic ratio between the data rate of a specific MIMO scheme and the logarithm of the
SNR (which is a measure of the capacity increase) [1880]; in other words, we have:

r � lim
γ→∞

R(γ )

log γ
, (11.168)

where R(γ ) is the data rate in bits per second per hertz.
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The maximum diversity gain that a MIMO system can achieve is given, as is now clear, by nT nR .
This is achieved by some of the schemes previously described. As for the multiplexing gain, it cannot
exceed the number of degrees of freedom provided by the MIMO channel, which is min(nT , nR). It
is also clear that, in order to have a nonzero multiplexing gain, the scheme considered cannot have a
constant data rate but must provide a data rate that increases with the SNR. This can be achieved, for
example, by increasing the constellation size with the SNR.

It has been demonstrated in [1880] that it is not possible to achieve both full diversity and full
multiplexing gains. For each r the optimal diversity gain Do(r) is the maximum diversity gain that
can be achieved by any scheme. It is shown in [1880] that, if the fading coherence time is greater or
equal to nT + nR − 1, then:

Do(r) = (nT − r)(nR − r) , (11.169)

with 0 ≤ r ≤ min(nT , nR). Hence, when the diversity gain is nT nR , the multiplexing gain is
zero, whereas when r = min(nT , nR) the diversity gain is zero. For practical schemes, the
diversity–multiplexing tradeoff function lies below the curve (11.169) and can be used to compare
different schemes and to interpret their behavior, as shown in the examples that follow. As an
example, for the Alamouti scheme, the diversity–multiplexing tradeoff function is [1880]:

D(r) = max(2nR(1 − r), 0),

which reaches the upper bound (11.169) for r = 0 only. On the other hand, it can be shown that
BLAST schemes favor the multiplexing gain [1880].

11.5.1.9 Concatenated Codes for MIMO Channels

Channel coding and space-time coding can be combined to achieve further performance improvements.
For a fast fading channel, that is, when the channel coherence time is relatively short and time
interleaving is employed, the adoption of an outer channel encoder can provide time diversity in
addition to antenna diversity. On the other hand, for a quasi-static fading channel, an outer channel
encoder can only provide a coding gain.

Various concatenated schemes can be found in the literature and the following review cannot claim
to be exhaustive. In [1918, 1919] an outer channel encoder is serially concatenated with an OSTBC.
This scheme gives the best performance–complexity tradeoff among other concatenation schemes
when the outer code is a convolutional code or a turbo code [1465].

Two schemes have been proposed in [1920]. In the first, an outer turbo encoder of rate m/mnT

provides at its output nT sequences of bits that are independently interleaved, mapped on an M-ary
constellation (with M = 2m) and the resulting symbols are then transmitted in parallel on the nT

transmit antennas. The same scheme is also described in [1921] for BPSK. The resulting STC is
not guaranteed to be of full diversity, although when the interleavers are selected randomly, a full-
diversity code is obtained with high probability. In the second proposed scheme, each output branch
of an STTC is interleaved and coded by the same recursive convolutional code of rate 1 (the latter
condition to ensure full rate). A similar scheme is also described in [1922].

In [1923], the so-called turbo ST coded modulation for nT = 2 transmit antennas was proposed. It
consists of two systematic and recursive STCs which are parallel concatenated through an interleaver
that operates symbolwise. The systematic output of one STTC is connected to the first antenna. Parity
symbols are punctured and transmitted over the second antenna after the output symbols of the second
encoder are deinterleaved. This scheme has full rate and simulation results show that it also provides
full diversity.

In [1924], the outputs of a turbo code are bit-interleaved, mapped to QPSK symbols and transmitted
using multiple antennas. Full rate is achieved but the code is not guaranteed to achieve full space
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diversity. However, this is a very flexible scheme. Essentially, any traditional code for single antenna
systems can be employed.

In [1925], STTCs are first modified to be recursive. Then two encoder structures are proposed.
The serially concatenated encoder employs a convolutional code as outer code and recursive STTC as
inner code. The parallel concatenated case, in contrast, is a self-concatenated [1926] recursive STTC.
These codes guarantee full space diversity but full rate cannot be achieved.

In [1927], a full-rate ST turbo trellis code, referred to as an assembled space-time turbo trellis code,
is proposed. For this scheme, input information binary sequences are first encoded using a classical
turbo code. The component codes are rate-1/2 convolutional codes and their output bits are split into
four parallel streams, each of them modulated by a QPSK modulator. The modulated symbols are
assembled by a predefined linear function rather than punctured as in standard schemes.

Coded LST codes have also been considered. For example, a turbo-coded layered ST coding scheme
with iterative decoding where coding is applied across the different layers has been proposed in [1928],
whereas in [1929] LST coding based on LDPC codes has been investigated.

Finally, we mention the development of construction methods for multidimensional space-time
multilevel codes in [1930]. The proposed space-time multilevel encoding schemes involve a multidi-
mensional partitioning of a 2nT -dimensional signaling space; such a partitioning spans all nT transmit
antennas and can be designed to reduce the complexity of detection/decoding. An ST multistage
decoder can be adopted for the proposed space-time multilevel codes in order to significantly reduce
the complexity of soft decision decoding compared to a single level approach.

11.5.1.10 Unitary and Differential STCs

Up to now, we have assumed perfect knowledge of the channel at the receiver. This condition can
be achieved, when the channel coherence time is long enough, through the use of pilot symbols
periodically inserted to help the receiver to obtain a sufficiently accurate channel estimate. When the
channel changes frequently, absence of knowledge of the channel at both transmitter and receiver
must be assumed and one may resort to noncoherent detection. In this case, appropriate STCs need
to be employed. In what follows, we will discuss unitary and differential STCs.

Unitary STCs
Before going into details, we derive the metric for the case of noncoherent detection assuming the
block fading channel model with coherence time of L symbol intervals.

Gathering L received vectors into an nR × L matrix R, we may write:

R = √
γ HC + N, (11.170)

where H is the nR × nT channel matrix, and the nT × L matrix C contains the transmitted symbols
and the nR × L matrix N the noise samples during L symbol intervals. The samples {ri[�], � =
1, 2, . . . , L} received by the ith antenna can be collected in the row vector:

ri � [ri[1], ri[2], . . . , ri[L]], (11.171)

which can be expressed as:
ri = √

γ hiC + ni , (11.172)

where hi is the ith row of the channel matrix H and ni is a row vector containing the noise samples
at the output of the ith antenna. The rows ri are independent of each other. Hence, we may write:

fR(�|C) =
nR∏
i=1

fri
(ρi |C), (11.173)
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where � and ρi denote the values taken on by R and ri , respectively. Given C, the random variables
in ri are jointly Gaussian with mean zero and covariance matrix:

� � E{rT
i r∗

i }
= E{(√γ CT hT

i + nT
i )(

√
γ hiC + ni )

∗}
= IL + γ CT C∗, (11.174)

so that:

fR(�|C) =
nR∏
i=1

exp{−ρ∗
i �

−1ρT
i }

πLdet(�)

= 1

πLnR (det(�))nR
exp

{
−

nR∑
i=1

ρ∗
i �

−1ρT
i

}

= exp{−tr(�∗�−1�T )}
πLnR (det(�))nR

. (11.175)

For the block fading channel with coherence time of L symbols, in [1931] it is proved that,
asymptotically, capacity is achieved when:

C = V�, (11.176)

where � is an isotropically distributed16 nT × L matrix whose rows are orthonormal (hence �∗�T =
InT

) and V is an independent nT × nT real nonnegative diagonal matrix. When L � nT , or when
L > nT and the SNR is very high, capacity can be achieved by selecting:

C =
√

L� . (11.177)

For this reason, the unitary STCs proposed in [1931] have a codebook composed of codewords
(11.177), with � belonging to a set of 2ηL elements, where η is the spectral efficiency in bits per
channel use. Since H is unknown at the receiver, the ML decoder will operate according to the decision
rule:

�̂ = arg max
�̃

fR(�|�̃) = arg max
�̃

exp{−tr(�∗�̃
−1

�T )}
(det(�̃))nR

, (11.178)

where �̃ � IL + γL�̃
T
�̃

∗
. Using the fact that �̃

∗
�̃

T = InT
and the properties (C.15), (C.16) and the

matrix inversion lemma (see (C.10)), we have:

det�̃ = det(IL + γL�̃
T
�̃

∗
) = det(InT

+ γL�̃
∗
�̃

T
) = (γL + 1)nT (11.179)

and

tr(θ∗�̃
−1

θT ) = tr[�∗(IL + γL�̃
T
�̃

∗
)−1�T ]

= tr

[
�∗

(
IL − γL

1 + γL
�̃

T
�̃

∗
)

�T

]

= tr[�∗�T ] − tr

[
γL

1 + γL
�∗�̃

T
�̃

∗
�T

]
(11.180)

16 An nT × L isotropically distributed random matrix is a matrix whose pdf remains unchanged when it is right-
multiplied by any deterministic nT × nT unitary matrix. This matrix is the nT × L counterpart of a complex scalar
having unit magnitude and uniformly distributed phase.
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from which we obtain:

�̂ = arg max
�̃

{tr[�∗�̃
T
�̃

∗
�T ]} = arg max

�̃
{tr[��̃

H
�̃�H ]} . (11.181)

An upper bound on the PEP can be found in [1931]. As a result, we can write:

Pr{� → �̂} ≤ 1

2

nT∏
i=1


 1

1 + (γL)2(1−µ2
i
)

4(1+γL)




nR

, (11.182)

where µi ≤ 1 (with i = 1, 2, . . . , nT ) is the ith singular value of the nT × nT correlation matrix

�̂
∗
�̂

T
. Equation (11.182) can be used to design the set of matrices {�} to be used. An algorithm for

the construction of this set is provided in [1931]. From (11.182), it also appears that the maximum
diversity can be nT nR as in the case where H is known at the receiver. This maximum diversity can
be obtained when all singular values µi are strictly lower than unity.

Differential STCs
A different approach is pursued in [1932],17 based on differential ST coding and differential ST
detection, generalizing for MIMO systems the differential encoding and differential detection used in
single-antenna systems.

Let S be a group of L × L unitary matrices. A matrix S ∈ S is such that SH S = SSH = IL. In
addition, since S is a group, IL, the multiplicative identity, belongs to S, the multiplication of two
matrices in S is a matrix in S, and the inverse of each element of S also belongs to S. Let C0 be an
nT × L matrix such that C0CH

0 = InT
and having the property that the matrix C0S has all its elements

belonging to a given alphabet Ac, for all S ∈ S. The set:

C = {C0S|S ∈ S} (11.183)

represents the set of transmitted codewords. A matrix C ∈ C is clearly such that CCH = C0SSH CH
0 =

C0CH
0 = InT

. In the case of a block fading channel with coherence time 2L, the matrix C0 is transmit-
ted in the first L symbol intervals, while C0S, with S ∈ S, is transmitted in the successive L symbol
intervals. The resulting ST code has spectral efficiency η = 1

2L
log2 |S| bits per channel use. When the

channel changes continuously but can be considered approximately constant over 2L symbol intervals,
the following nT × L matrices are transmitted over NL symbol intervals:

C� =
{

C0 � = 0

C�−1S� � = 1, 2, . . . , N − 1.
(11.184)

In this case, the spectral efficiency is η = 1
L

N−1
N

log2 |S| bits per channel use.
As far as decoding is concerned, in the case of the block fading channel with coherence time 2L,

optimal decoding will be accomplished based on the observation of 2L symbol intervals. In the case of
a channel that changes continuously, by collecting blocks of L received vectors into nR × L matrices
{R�}, we may write:

R� = √
γ H�C� + N�, (11.185)

where H� is the nR × nT channel matrix corresponding to the �th block and the nR × L matrix N�

contains the noise samples during the L symbol intervals of the �th block. In this case, optimal decoding
must be accomplished based on the observation of the whole sequence {R�}. However, in order to

17 A similar scheme has been proposed in [1933], while an alternative scheme for the case of two transmit antennas
has been proposed in [1934].
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reduce the receiver complexity, as in the case of differential decoding for single-antenna systems,
decoding of S� is accomplished by looking at pairs of overlapping blocks of L symbol intervals at a
time, that is, R� and R�−1. To show this, let us define the nR × 2L matrix:

R′
� � [R�−1, R�] . (11.186)

If we assume that H� = H�−1 and define C′
� � [C�−1, C�] and N′

� � [N�−1, N�], we express R′
�

(11.186) as:
R′

� = √
γ H�C′

� + N′
� (11.187)

Since matrices C� are such that C�CH
� = InT

, we also have C′
�C

′H
� = 2InT

. Hence, when accomplish-
ing detection based on a couple of blocks of L symbol intervals we may adopt the detection strategy
(11.181) that now becomes:

Ŝ� = arg max
S̃�

{tr[R′
�C̃H

� C̃�R̃H
� ]} (11.188)

Under the additional assumption that L = nT (this is certainly possible since we are not considering a
block fading channel but a channel that changes continuously) we have C�CH

� = CH
� C� = InT

. Hence,
(11.188) becomes:

Ŝ� = arg max
S̃�

{tr[R′
�C̃

′H
� C̃′

�R
′H
� ]}

= arg max
S̃�

{tr[R�−1RH
�−1 + R�−1C̃H

�−1C̃�RH
� + R�C̃H

� C̃�−1RH
�−1 + R�RH

� ]}

= arg max
S̃�

Re{tr[R�−1S̃�RH
� ]}. (11.189)

Performance analysis can be carried out in a way similar to the case of unitary STCs since both are
based on unitary matrices and the same metric. Details can be found in [1932] along with the design
criteria and the optimal codes for two transmit antennas.

Iterative schemes
The schemes described above can be concatenated with an outer channel code to improve performance.
For example, the concatenation of turbo codes and unitary STCs with iterative decoding at the receiver
was considered in [1935], while the concatenation of differential STCs and an outer code through an
interleaver was investigated in [1936, 1937]. In the latter case, given that a differential ST code is a
recursive code, when iteratively decoded this serial concatenation provides an interleaver gain.

11.5.2 ST Coding for Frequency-Selective Fading Channels

Up to now, we have concentrated on flat fading channels. However, in wideband wireless systems,
when the symbol period becomes smaller than the channel delay spread, the transmitted signal sees
a frequency-selective channel. An overview of the main results on STCs for these channels will be
provided here with reference to the case of quasi-static channels.

11.5.2.1 System Model for Frequency-Selective MIMO Fading Channels

In what follows we assume the MIMO TDL channel model with Lh Ts-spaced taps described in Section
4.4.2.2. Therefore, the received signal samples referring to a codeword of length N are collected in
an nR × N matrix R, whose structure is fully described by (4.112)–(4.116). In addition, we assume
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a Rayleigh fading channel, so that each entry of the lth tap matrix H(l) (see (4.111)) is modeled as
a zero-mean complex Gaussian random variable. Different channel taps are usually assumed to be
independent and the average channel gains for different paths are determined from the PDP of the
wireless channel.

For an nR × N matrix R = [r1, . . . , rN ] of received signal samples and assuming that c� = 0nT

for � ≤ 0, we may write:
R = √

γ HC + N, (11.190)

where the nR × N matrix N � [n1, . . . , nN ] collects the noise samples (as in the case of a flat fading
channel):

H = [
H1 H2 · · · HnT

]
(11.191)

with

Hi =




h
(0)
1,i h

(1)
1,i · · · h

(Lh−1)

1,i

h
(0)
2,i h

(1)
2,i · · · h

(Lh−1)

2,i

...
... · · ·

...

h
(0)
nR,i h

(1)
2,i · · · h

(Lh−1)

nR,i


 (11.192)

is the nR × nT Lh equivalent channel matrix, while the nT Lh × N equivalent matrix of the transmitted
symbols C takes the form:

C =




C1
C2
...

CnT


 , (11.193)

with

Ci =




ci,1 ci,2 ci,3 · · · · · · ci,N−1 ci,N

0 ci,1 ci,2 · · · · · · ci,N−2 ci,N−1
... 0 ci,1 · · · · · ·

... ci,N−2
...

... 0 · · · · · ·
...

...

...
...

... · · · · · · ci,N−Lh

...

0 0 0 · · · · · · ci,N−Lh−1 ci,N−Lh




. (11.194)

related to the symbols transmitted by antenna i.

11.5.2.2 Design Criterion

The channel model (11.190) states that our frequency-selective MIMO fading channel is equivalent
to a frequency-flat fading channel having LhnT transmit antennas. Looking at (11.194), then for each
antenna, we have another Lh − 1 virtual antennas transmitting a delayed version of the same symbols
(as in the delay-diversity scheme described in Section 11.5.1.4). Assuming that the matrix H has
independent coefficients, by an appropriate design of the STC a diversity order of LhnT nR can be
achieved. This is not surprising since the multipath propagation provides another form of diversity.
The following criterion can thus be stated:

Design criterion. The maximum diversity of nT nRLh is achieved by ensuring that the matrix A =
(Ĉ − C)(Ĉ − C)H is of full rank for all pairs of distinct codewords Ĉ and C. Otherwise, if the
minimum rank of A among all codeword pairs is νmin ≤ nT Lh, a diversity order νminnR is achieved.
In order to obtain the maximum possible coding advantage, the minimum determinant of matrices
A having minimum rank should be maximized.
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11.5.2.3 STCs for SC Systems

A code achieving full diversity can be designed by extending the same idea of the delay-diversity
scheme described in Section 11.5.1.4. In fact, if we look at the rows of Ci in (11.194), they already are
a delayed version of the first row. Hence, it is sufficient to transmit, from antenna i, a delayed version
of the symbols transmitted by the first antenna, with a delay of Lh(i − 1) symbols. The resulting
equivalent codeword matrix Ci will be:

Ci =




c1 c2 c3 · · · cLh
· · · cN−1 cN

0 c1 c2 · · · cLh−1 · · · cN−2 cN−1
...

... c1 · · · cLh−2 · · ·
...

...

...
...

... · · ·
... · · · cN−Lh

...

0 0 0 · · · c1 · · · cN−Lh−1 cN−Lh




(11.195)

and matrix A will have full rank.
Although, in principle, STBCs could be designed for frequency-selective fading channels, the main

advantage of these codes (i.e., the simple linear processing) will be lost due to the presence of ISI.
STTCs, layered architectures, and concatenated schemes can also be extended to frequency-selective
channels. For example, STTCs employing BPSK and QPSK modulations are described in [1938]. The
optimal decoder will operate, in this case, on the equivalent trellis that takes into account both the
code and the channel trellis (i.e., on a supertrellis). As far as concatenated schemes are concerned, it
must be taken into account that the channel introduces memory. Hence, it can be employed in place
of an inner encoder and concatenated with an outer encoder through an interleaver.

As in the case of SISO channels, optimal detection has an exponential complexity in the channel
memory Lh. Therefore, taking into account that the complexity is exponential in the number of transmit
antennas also, optimal detection is practically infeasible. Reduced-complexity detection schemes are
thus required, such as linear or decision feedback equalization schemes [27], RSSD [777, 989, 990,
1528], or other schemes based on FGs (e.g., see [1413, 1915]).

11.5.2.4 STCs for MIMO-OFDM

ST codes for SC systems may require the use of sophisticated detection techniques at the receiver. An
alternative approach can be the use of OFDM, already described in Chapter 3. In this case, according to
Figure 11.24, independent IDFTs are applied to the symbols to be transmitted by each antenna. After a
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Figure 11.24 MIMO-OFDM system.
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CP is appended to each sequence, they are transmitted on a frequency-selective MIMO channel. Each
of the nR receive antennas will receive the superposition of all nT transmitted signals. This composite
signal undergoes DFT and cyclic prefix removal. The resulting signals are then jointly demodulated
and decoded. As shown in Chapter 4, MIMO-OFDM allows perfect removal of the ISI (under the
assumption of quasi-static fading and perfect frequency synchronization) although the interference
from different transmit antennas must, obviously, be taken into account.

In principle, MIMO signaling schemes developed for SC transmissions over frequency-flat fading
channels can easily be employed with OFDM by simply performing operations on a subcarrier-by-
subcarrier basis, that is, by reinterpreting time as frequency (e.g., see [1939–1941]); this approach is
illustrated below in two different applications. First, let us consider the use of the ST Alamouti code
illustrated in Section 11.5.1.5 in a MIMO-OFDM system having nT = 2 transmit antennas. In this
case full spatial diversity can be achieved if the ST Alamouti code is employed in a dual fashion,
that is, coding is accomplished over frequency rather than over time. This means that, in transmitting
a codeword in a given OFDM symbol interval, each antenna will send a pair of channel symbols
employing the same pair of adjacent subcarriers. Then, the receiver can detect the transmitted symbols
from the signal received on the two tones using the Alamouti detection technique (see (11.109)),
provided that the channel frequency response is approximately constant over at least two consecutive
tones. This allows us to achieve the full spatial diversity gain 2nR . This approach can be generalized to
systems equipped with more than nT = 2 transmit antennas by using other OSTBCs. Note, however,
that in this case simple detection algorithms can be employed if the channel remains constant over
at least nT consecutive subcarriers. Another important application is represented by the use of spatial
multiplexing schemes on a subcarrier-by-subcarrier basis. As in SC systems, this maximization of
spatial rate by transmitting independent data streams over distinct antennas [156] allows us to use
receiver architectures developed for SC modulations over frequency-flat fading.

Note that none of the transmission techniques considered above is able to capture the frequency
diversity made available by the communication channel. In fact, extracting full spatial and frequency
diversity requires data to be spread along both the dimensions of frequency and space. This raises
the problem of devising SF codes or, more generally, STF codes for MIMO-OFDM. These represent
strategies for mapping channel symbols to antennas and subcarriers (and time if codewords extend
over multiple OFDM symbol intervals) in an appropriate way so that both spatial and frequency
diversity can be extracted. In particular, SF coding consists of coding across antennas and OFDM
subchannels [1940]. Design criteria to devise full-diversity SF codes have been derived in [1942,
1943], where full diversity is achieved at the price of a substantial loss in bandwidth efficiency, and
[1944], where a systematic procedure for developing full-diversity SF block codes (SFBCs) with rate
less than unity has been proposed. A design technique for full-diversity SFBCs with unit rate has
recently been proposed for any number of transmit antennas and arbitrary power delay profiles in
[1945]. To obtain a unit rate, the information symbol vector is first coded via an algebraic rotation
matrix; then the resulting vector is split and spread over different antennas and OFDM subchannels.
The rotation matrix is designed in such a way that signal space diversity can be captured by a rotation
of the signal constellation [1909]. Recently, a systematic procedure for developing high rate SFBCs
has been proposed in [1946]. This allows us to achieve rate nT and full diversity in MIMO-OFDM
systems for any number of transmit antennas. However, since a zero-padding matrix has to be used
when the IDFT order N is not an integer multiple of nT Lh, rate nT cannot always be guaranteed.
STBCs that can always achieve rate nT and full diversity for any number of transmit antennas and any
arbitrary channel power delay profiles have been developed in [1947]. In this case code construction is
based on the layering concept, used in the design of TSTC [1948]; each component code is assigned
to a “thread” and interleaved over space and frequency. The significant computational complexity of
the ML decoding procedure for this class of codes can be reduced by resorting to simplified decoding
strategies based on SD.

Most of the work on SF code design assumes a quasi-static model for fading channels, so that
the channel can be considered constant over each codeword. Note that if the channel changes over
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consecutive OFDM symbols are not negligible, coding across multiple OFDM symbols can also
capture time diversity, which contributes, together with frequency diversity and space diversity, to
the maximum achievable diversity [1949]. Despite this consideration, various STF codes have been
proposed for exploiting multipath diversity in MIMO-OFDM systems in the presence of quasi-static
fading (e.g., see [1450, 1949–1951]). Recently, a systematic procedure for the design of high-rate
STF codes has been proposed for time-varying MIMO frequency-selective fading channels in [1947].
In this case the algebraic coded symbols are spread across different OFDM subchannels, transmit
antennas, and OFDM symbol intervals, so that the developed STF codes can achieve rate nT and full
diversity nT nRnbLh, where nb is the number of independent fading blocks included in each codeword.

Finally, it is important to note that SF or STF codes for MIMO-OFDM can be concatenated with
powerful error-correction codes (e.g., iteratively decodable codes). For instance, the use of LDPC
codes has been proposed in [536].

11.6 Historical Notes
Massey formally suggested in [1952] that coding and modulation should have been combined in a
single entity to improve performance. TCM was then invented by Ungerboeck and first described in
a conference paper in 1976. At the same time, Imai and Hirakawa proposed their recipe to combine
coding and modulation [1462], subsequently perfected by U. Wachsmann, R. F. H. Fischer, and J. B.
Huber [1857]. Imai’s idea of multilevel coding is to protect each address bit of the signal point by an
individual binary code. Originally, multilevel coding was proposed for one-dimensional signaling. The
individual codes were chosen in such a way that the minimum distance of the Euclidean space code was
maximized. At the receiver side, each code is decoded individually starting from the lowest level and
taking into account decisions of prior decoding stages. This procedure is called multistage decoding.
In contrast to Ungerboeck’s trellis coded modulation, the multilevel coding approach provides flexible
transmission rates, because it decouples the dimensionality of the signal constellation from the code
rate. Additionally, any code (e.g., block codes, convolutional codes, or concatenated codes) can be
used as component code.

After its invention, TCM experienced a sudden transition from theory to practice. Only two years
after Ungerboeck’s landmark paper [992], a first generation of private-line modems transmitting at a
speed of 14.4 kb/s were available. The development of TCM schemes for fading channels was one of
the hottest research topics in the next few years (e.g., see [1852]); for further details, the reader can
refer to [36]. This investigation culminated in the invention of BICM, originally suggested by Zehavi
[1464] in 1992 and then further developed and analyzed by Caire, Taricco, and Biglieri [1854] in
1998. According to this technique, coded modulations with a very good performance over flat fading
channels can be built by using off-the-shelf binary codes that are optimal in the sense of free Hamming
distance, and thus available in standard textbooks. As a matter of fact, most of today’s systems feature
BICM, making it the de facto general coding technique for waveform channels.

The initial excitement about MIMO was sparked by the pioneering work of J. H. Winters [220], G. J.
Foschini [17], Foschini and M. J. Gans [18] and E. Telatar [226], predicting the huge capacity increase
possible due to the adoption of multiple antennas at both transmitter and receiver. Following on from
these seminal papers, a lot of work has been devoted to STCs for both frequency-flat and frequency-
selective fading channels. The first practical coding scheme achieving full diversity was delay diversity
proposed in [1889]. Driven by the desire to support high data rates for a wide range of bearer services,
V. Tarokh et al. proposed space-time trellis coding [14] in 1998 by jointly designing the channel
coding, modulation, transmit diversity, and the optional receiver diversity scheme. The performance
criteria for designing STTCs were derived in [14] under the assumption that the channel experiences
slow frequency-flat fading. These advances were then also extended to fast fading channels. STTCs
perform extremely well at the cost of relatively high complexity. In addressing the issue of decoding
complexity, Alamouti [15] came up with a remarkable scheme for transmission using two transmit
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antennas. He also introduced a simple decoding algorithm, which can be generalized to an arbitrary
number of receiver antennas. This motivated Tarokh et al. [1482, 1483] to generalize Alamouti’s
scheme to an arbitrary number of transmit antennas, leading to the concept of STBCs.

BLAST architectures [17] developed by Foschini at Lucent Technologies’ Bell Laboratories (now
Alcatel-Lucent Bell Labs) use spatial multiplexing to increase the data rate and do not necessarily
provide transmit diversity. In other words, multiple antennas at both transmitter and receiver are used
to exploit the many different paths between transmitter and receiver in a highly scattering wireless
environment. Hence, by careful allocation of the data to be sent by the transmit antennas, multiple data
streams can be transmitted simultaneously within a single frequency band. Other layered architectures
were proposed later [1904–1907].

The best use of multiple transmit antennas depends on the amount of CSI available to the
encoder and decoder. In the case of quasi-static fading, the channel can be estimated through the
use of known pilot symbols and coherent detection can be employed [685]. In other cases, such an
estimation of the channel is not available at the receiver or the channel changes rapidly such that the
channel estimation is not useful. Then a noncoherent or differential detection needs to be employed
[1931–1934, 1936, 1953].

Finally, in [156, 1938] the first studies of MIMO broadband fading channels, and in particular the
impact of frequency selectivity on capacity and on receiver structures, considering single-carrier and
multicarrier transmissions, are described.

11.7 Further Reading
In this chapter, we have discussed the main ideas behind combined modulation and coding for fading
channels considering both SISO and MIMO channels. Many excellent books are available to help the
reader study this subject in depth. As far as TCM is concerned, the main reference is [36]. Most of
the coding techniques for fading channels are described in [37], including STCs. A comprehensive
treatment of BICM can be found in [1954]. Various excellent books on STCs are available; among
them, we mention [16, 38–40, 1883, 1955, 1956]. Finally, introductory material on signal space coding
for MIMO-OFDM can be found in [21, 1326, 1957].



12
Combined Equalization
and Decoding

12.1 Introduction
As already discussed in Chapter 6, digital receivers operating over a multipath fading channel usually
employ an equalization algorithm to mitigate ISI effects. Equalization is followed by channel decoding,
the aim of which is to recover the transmitted data from the equalized symbols. For complexity reasons,
equalization and decoding have historically been considered separate tasks, their interaction having
been limited to the delivery of hard or soft decisions from the first to the second. Unfortunately, as will
become clearer later, optimal detection of coded data transmitted over fading channels requires joint
decoding and equalization; in addition, a substantial performance gap between the overly complicated
optimal strategy and the above-mentioned suboptimal approaches can be found in most scenarios.

More recently, the problem of joint channel equalization and decoding has been reconsidered from a
different perspective, interpreting an ISI channel as a rate-1 channel encoder and, consequently, mod-
eling the cascade of a channel encoder with such a channel as a serially concatenated coding scheme,
for which iterative decoding techniques based on the so-called turbo principle (see Section 10.5.1)
can be developed. In particular, in 1995 these considerations led C. Douillard et al. [1958] to devise a
novel iterative strategy combining a SiSo equalizer (in practice, a MAP detector) with a SiSo decoder,
which exchange soft (extrinsic) information to improve the reliability of decoded data. The resulting
technical solution has been called turbo detection and shown to be a feasible approach to jointly
addressing the equalization and decoding tasks, provided that the delay spread of the communication
channel and the cardinality of the constellation for the adopted digital modulation are small. Two
years later A. Glavieux, C. Laot and J. Labat proposed replacing the MAP equalizer of [1958] with
an ISI canceler in order to reduce the overall computational complexity of the turbo detector [1959];
the resulting receiver is known as a turbo equalizer. As a result, the performance gap between an
optimal joint equalization and decoding structure and that achievable through systems characterized
by manageable complexity has been narrowed in a manner similar to that of near-Shannon-limit
communications using turbo codes, as shown in Chapter 10.

This chapter introduces the reader to the problem of joint equalization and decoding and is orga-
nized as follows. In Section 12.2 noniterative optimal and suboptimal techniques for equalization
and decoding are investigated. The development of iterative techniques (i.e., of turbo equalization
algorithms) is investigated in Section 12.3, where both known and unknown channels are consid-
ered. In Sections 12.2 and 12.3 a SISO communication scenario is assumed. The exploitation of
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turbo equalization algorithms in MIMO communications is discussed in Section 12.4. Finally, some
notes about the history of turbo equalization techniques and some suggestions for further reading are
provided in Sections 12.5 and 12.6, respectively.

12.2 Noniterative Techniques
In what follows we focus primarily on a wireless system whose transmitter and channel are described
by the block diagram illustrated in Figure 12.1. Here a binary encoder, with rate R = k/n, is fed for K
consecutive clock intervals by a binary message u � [u0, u1, . . . , uK−1]T , consisting of K indepen-
dent and uniformly distributed random bits to generate the binary codeword v � [v0, v1, . . . , vN−1]T ,
with N = K/R. This codeword undergoes bit interleaving which yields the new codeword x �
[x0, x1, . . . , xN−1]T . This is mapped to a symbol vector c � [c0, c1, . . . , cP−1]T , consisting of P com-
plex symbols, each belonging to an M-ary complex signal constellation Ac = {c(b), b = 0, 1, . . . ,M −
1}, with M = 2m, where m denotes the number of coded bits per channel symbol. Note that in the
simplest case the constellation is binary (M = 2), so that P = N . In this case, the simple mapping
rule c = 1 − 2x can be used to map the encoded bit x to a BPSK symbol c. Otherwise P = N/m

(i.e., N is a multiple of P) since each of the N bits is transmitted only once via c and, in particular,
the group xl � [xlm , xlm+1, . . . , xlm+m−1]T of m adjacent bits (with l = 0, 1, . . . , P − 1) is mapped
to the channel symbol cl on the basis of a specific mapping rule (Gray mapping or other optimized
rules can be adopted; e.g., see [1960, 1961]).

PAM signaling1 and a static ISI channel, characterized by the CIR h � [h0, h1, . . . , hLh−1]T vector
(with Lh < P ) and known to the receiver, are assumed here, so that the received vector can be put in
the form (see (4.96)):

r � [r0, r1, . . . , rP−1]T = Hc + n, (12.1)

where

H =




h0 0 . . . . . . 0
h1 h0 0 . . . . . . 0
h2 h1 h0 0 . . . 0
...

. . .
. . .

. . .
. . . 0

hLh−1 . . . . . .
. . .

. . .
. . .

...

0 hLh−1 . . . h1 h0 0
...

... hLh−1 hLh−2 h0 0
0 . . . 0 hLh−1 . . . h1 h0




(12.2)

is a P × P lower triangular channel matrix and n � [n0, n1, . . . , nP−1]T is an additive noise vector.
In the following we assume that n consists of iid complex random Gaussian variables, each with
zero mean, variance σ 2

n and iid real and imaginary parts.
Given the model (12.1) for the noisy observed signal vector, if the optimization criterion in receiver

design is the minimization of the bit error probability (BEP) and the channel matrix H is known, the
optimal decoding strategy for the system configuration illustrated in Figure 12.1 can be expressed as:

ul = arg max
ũl∈GF(2)

Pr{ul = ũl |ρ, h} (12.3)

1 Our discussion of noniterative techniques is limited to linear modulation formats for simplicity. Iterative equal-
ization of CPM formats will be addressed in Section 12.3.4.2.
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Figure 12.1 Configuration of the transmitter and communication channel assumed in the study
of turbo equalization techniques.

for l = 0, 1, . . . , K − 1, where ρ denotes the value taken on by the random received vector r.
Computing the APP Pr{ul = ũl |ρ, h} inevitably requires marginalizing over ul in the sequence-based
a posteriori probability Pr{u = ũ|ρ, h}, since:

Pr{ul = ũl |ρ, h} =
∑

ũ:ul=ũl

Pr{u = ũ|ρ, h}. (12.4)

Note also that, from Bayes’ theorem:

Pr{u = ũ|ρ, h} = fr(ρ|u = ũ, h) Pr{u = ũ}/fr(ρ|h), (12.5)

where the probability Pr{u = ũ} can be factored as Pr{u = ũ} = ∏K−1
t=0 Pr{ut = ũt }. Then the APP

Pr{ul = ũl |ρ, h} of (12.4) can be rewritten as:

Pr{ul = ũl |ρ, h} = 1

fr(ρ|h)

∑
ũ:ul=ũl

fr(ρ|u = ũ, h)

K−1∏
t=0

Pr{ut = ũt }. (12.6)

As in the study of turbo decoding, the optimal detection strategy can be formulated in terms of the
LLR as:

L(ul |ρ, h) � ln
Pr{ul = 1|ρ, h}
Pr{ul = 0|ρ, h} (12.7)

to be evaluated for l = 0, 1, . . . , K − 1 in place of the APPs generated by (12.4). Substituting (12.4)
into this expression leads, after some manipulation, to:

L(ul |ρ, h) = L(ul) + Le(ul |ρ, h), (12.8)

where

L(ui) � ln
Pr{ui = 1}
Pr{ui = 0} (12.9)

represents the a priori LLR and:

Le(ul |ρ, h) =
∑

ũ:ul=1fr(ρ|u = ũ, h)
∏K−1

t=0,t �=l Pr{ut = ũt }∑
ũ:ul=0fr(ρ|u = ũ, h)

∏K−1
t=0,t �=l Pr{ut = ũt }

(12.10)

can be called extrinsic information or extrinsic LLR [1962]. In practice the latter term represents the
information about ul provided by both r and Pr{ut = ũt } for all t �= l, and plays a fundamental role
in turbo equalization (note, however, that unlike the extrinsic LLR in (10.15), Le(ul |ρ, h) includes
the contribution from the entire vector r).

Unfortunately, the BEP-optimal strategy (12.3) is computationally infeasible since its complexity
is of order O(2K). This motivates the search for other strategies entailing a substantially smaller
computational burden. A standard approach involves splitting the detection problem for coded data
over an ISI channel into two subproblems, namely equalization (detection) and decoding, as illustrated
in Figure 12.2.
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Figure 12.2 Receiver structure for separate equalization and decoding.

When this (suboptimal) approach is taken, the equalizer produces a hard estimate ĉ of the symbol
vector c, from which an estimate x̂ of the codeword x is extracted through a simple demapping
algorithm. The estimate x̂ undergoes deinterleaving, which yields v̂ which is then input to a hard
decoding algorithm. Finally, decoding yields an estimate û of the binary message u. A more refined,
but conceptually related, approach involves adopting a soft output algorithm for channel equal-
ization and a soft input algorithm for decoding; in this case, the first algorithm generates a soft
information vector s(c) � [s(c0)

T , s(c1)
T , . . . , s(cP−1)

T ]T in place of the hard estimate ĉ, where
s(cl) � [s0(cl), s1(cl), . . . , sM−1(cl)]

T represents a soft (i.e., probabilistic) information vector about
the lth channel symbol, with l = 0, 1, . . . , P − 1 (of course, if a binary constellation is used, s(cl)

becomes a scalar quantity, since soft information can be condensed in a single LLR about cl).
The next step for the receiver is to compute a soft information vector (i.e., an LLR vector) s(x) �
[s(x0), s(x1), . . . , s(xN−1)]

T on the reliability of codeword elements x via an appropriate soft demap-
ping algorithm [1963, 1964]. This vector is deinterleaved to s(v) � [s(v0), s(v1), . . . , s(vN−1)]

T ,
which feeds the decoding algorithm which provides an estimate of each transmitted data bit. Note that
the BEP-optimal decoding strategy, given the soft information vector s(v), can be expressed as:

ul = arg max
ũl∈GF(2)

Pr{ul = ũl |s(v)}, (12.11)

with l = 0, 1, . . . , K − 1. If a trellis coding scheme is employed, the APP appearing in (12.11) can
be computed via the BCJR algorithm (i.e., the FBA; see Section 9.2.4). This algorithm can also be
adopted for a block code if a (time-varying) trellis diagram is developed for its representation (see
Section 9.4). Note also that the FBA can be adopted to solve the first subproblem as well (i.e., soft
output channel equalization) if both the cardinality M and the channel memory Lh are small, so that
the state trellis representing the communication channel contains a sufficiently small number of states.
When this does not occur, other solutions are needed. In particular, as will be discussed in more detail
in Section 12.3.3, linear filter-based approaches are an interesting alternative to soft output MAP
equalization, since they require simple operations on the received symbols, which can be described
with matrix operations on the received sequence directly. In particular, given the received signal model
(12.1), an MMSE (soft) estimate c̆ of the symbol vector c can be generated as (see Sections 6.2.1.3
and 6.2.1.4):

c̆ = HH (σ 2
n IP + HHH )−1r, (12.12)

if we assume that the elements of the channel symbol vector c are independent and uniformly
distributed. Generally speaking, the symbol estimates (i.e., the elements of c̆) do not belong to the
constellation Ac. As a result, if a hard decision ĉ is required, this can be generated by mapping each
of the elements of c̆ to that symbol of Ac at closest (Euclidean) distance. However, if probabilistic
information about c is required, a different approach can be pursued. In particular, it can be assumed
that the elements of the estimation error e � c̆ − c are Gaussian distributed [1913], that is, el � c̆l − cl

belongs to N (E{el}, var{el}) for l = 0, 1, . . . , P − 1, where var{X} denotes the variance of the ran-
dom variable X. Since e is an MMSE estimation error, its mean vector and autocovariance matrix are
given by E{e} = 0P and:

Ce = IP − HH (σ 2
n IP + HHH )−1H, (12.13)
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respectively, so that E{el} = 0 and var{el} = [Ce]l,l . If fel
(·) denotes the pdf of el , a soft information

M-dimensional vector s(cl) on cl can be generated by sampling fel
(·) at the M possible values

{el[b] � c̆l − c(b), b = 0, 1, . . . , M − 1}, that is, as:

sb(cl) = Bl · fel
(c̆l − c(b)) (12.14)

for l = 0, 1, . . . , P − 1, where Bl is a normalization constant ensuring that
∑M−1

b=0 sb(cl) = 1. Note
that:

(a) this strategy to compute soft information from a filter output can be applied to other filter-based
equalization algorithms as well,

(b) for complexity reasons, in a practical implementation of this filter-based approach only a small
(sliding) window of the received data is processed in place of the complete vector r, as discussed
in Section 12.3.3.2.

Since the decoder in Figure 12.2 requires soft information about the coded bits, the next step in
the receiver is to extract the soft information vector s(x) from s(c).

The mapping from probabilities to probabilities is commonly referred to as soft demapping. If a
binary constellation Ac = {c(0) = −1, c(1) = 1} and the mapping strategy c = 1 − 2x between channel
symbols and interleaved coded bits are used, the demapping operation is simple, since Pr{xl = 0} =
Pr{cl = 1} = Pr{cl = c(1)} and Pr{xl = 1} = Pr{cl = −1} = Pr{cl = c(0)}, so that the LLR about xl

can be evaluated as (see (12.7)):

s(xl) � ln
s1(cl)

s0(cl)
. (12.15)

If the constellation is not binary, soft demapping depends on the rule adopted in mapping coded bits to
channel symbols at the transmitter. Finally, after deinterleaving s(x) to s(v), the decoder can evaluate
the estimates of the transmitted data bits on the basis of the strategy (12.11).

12.3 Algorithms for Combined Equalization and Decoding
This section studies turbo equalization algorithms. After providing an introduction to the key concepts
of turbo equalization theory and describing the general structure of a turbo equalizer in Section 12.3.1,
an interpretation of turbo equalization in terms of factor graphs is provided in Section 12.3.2. Then,
some strategies for suboptimal SiSo equalization and for accomplishing turbo equalization in the FD
are illustrated in Sections 12.3.3 and 12.3.4, respectively. Finally, the problem of turbo equalization
in the presence of an unknown channel is briefly discussed in Section 12.3.5.

12.3.1 Introduction

As discussed in the previous section, the implementation of the optimal strategy for joint equalization
and decoding is infeasible for a general code and interleaver, so that suboptimal solutions are needed.
In a receiver structure for separate equalization and decoding, such as that illustrated in Figure 12.2,
the soft information flow is unidirectional, from equalization to decoding. The study of turbo codes,
however, has clearly shown that soft information should not flow in a single direction and that it
can substantially enhance decoding performance if properly processed. In particular, turbo decoding
principles can be applied if SiSo modules are used for equalization and decoding, since, once the
decoding algorithm processes the soft information delivered from a soft output equalizer, it can, in
turn, generate its own soft information referring to the relative likelihood of each of the transmitted
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bits. Let us now analyze how this can be accomplished. To begin, we note that, in principle, given
the reliability vector s(v) defined in the previous section, the decoder can evaluate the LLR:

LD(vl |s(v)) � ln
Pr{vl = 1|s(v)}
Pr{vl = 0|s(v)} (12.16)

for the bit vl , with l = 0, 1, . . . , N − 1, and thereby generate a new reliability vector s̄D(v) �
[s̄D(v0), s̄D(v1), . . . , s̄D(vN−1)]

T with s̄D(vl) � LD(vl |s(v)). In general, s̄D(v) is more reliable than
s(v), thanks to the redundancy exploited in the decoding process (in other words, the LLR values in
s̄D(v) provide a better indication about the two possible values, 0 and 1, than those of s(v)). After
interleaving s̄D(v) to s̄(x) and accomplishing soft mapping of the LLR vector s̄(x) to the soft informa-
tion vector s̄(c) � [s̄(c0)

T , s̄(c1)
T , . . . , s̄(cP−1)

T ]T (collecting probabilistic data about each channel
symbol as in the previous section), the new vector can be exploited to restart the equalizer, which is
now endowed with new symbol probabilities. This closes the loop, since the latter step produces new
soft information about the transmitted symbol c and this information can be passed to the decoder,
after appropriate demapping and deinterleaving. The iterative procedure just described can be repeated
until the decisions about the transmitted data produced by the decoder do not change further, that is,
the transient is over. If this strategy is adopted, BER performance results show that the quality of data
decisions does indeed improve with each iteration, but not significantly. In contrast, the improvement
can be appreciable if we modify the way soft information to be exchanged between the two SiSo
modules is generated. In particular, if we refer to the LLRs generated by the SiSo decoding module
about coded bits, the quantity LD(vl |s(v)) of (12.16) has to be replaced by:

LD,e(vl |sl (v)) � ln
Pr{vl = 1|sl (v)}
Pr{vl = 0|sl (v)} , (12.17)

where sl (v) � [s(v0), s(v1), . . . , s(vl−1), s(vl+1), . . . , s(vN−1)]
T is obtained from s(v) by removing

s(vl). In other words, the LLR LD,e(vl |sl (v)) is evaluated ignoring the soft datum s(vl) available at
the beginning of the decoding process (this choice can be motivated by resorting to FG theory, as
discussed in the following subsection). As an alterative, LD,e(vl |sl (v)) can be computed as [1660]:

LD,e(vl |sl (v)) = LD(vl |s(v)) − s(vl), (12.18)

that is, by analogy with turbo decoding, removing from the soft output LD(vl |s(v)) the a
priori LLR s(vl) available at the start of the decoding process. In the jargon of turbo codes,
the new LLR LD,e(vl |sl (v)) (12.18) represents a form of extrinsic information. The resulting
LLR vector s̄e(v) � [s̄e(v0), s̄e(v1), . . . , s̄e(vN−1)]

T with s̄e(vl) � LD,e(vl |sl (v)) can be pro-
cessed (i.e., interleaved and soft-mapped) to generate the extrinsic information vector sD(c) �
[sD(c0)

T , sD(c1)
T , . . . , sD(cP−1)

T ]T about the channel symbols; this is delivered to the SiSo
equalizer, which should operate on the same principle. In other words, it is expected to gen-
erate an extrinsic information vector sE,e(c) � [sE,e(c0)

T , sE,e(c1)
T , . . . , sE,e(cP−1)

T ]T (where
sE,e(cl) � [sE,e,0(cl), sE,e,1(cl), . . . , sE,e,M−1(cl)]

T is the probabilistic information vector for the
lth channel symbol of the given constellation) on the basis of the following principle: sE,e(cl) is
evaluated by processing the received data r and sD(c) except for sD(cl), l = 0, 1, . . . , P − 1. Note
also that, if a binary constellation is used, sE,e(cl) can be denoted sE,e(cl) if this represents the LLR
referring to cl (similar considerations also hold for sD(cl)), so that, by analogy with (12.18), sE,e(cl)

can be computed as [1660]:

sE,e(cl) = LE(cl |r, sD(c)) − sD(cl), (12.19)

where LE(cl |r, sD(c)) denotes the LLR evaluated by the SiSo equalizer, given the observed data vector
r and the entire soft vector sD(c). It is worth pointing out that, if a multilevel constellation is used,
LLR vectors can also be used in the procedure described above, as discussed in Section 4.3.3. The new
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soft information vector sE,e(c) undergoes demapping and deinterleaving, so that a new vector of soft
data is made available to the SiSo decoding module and a new decoding procedure can be started. The
closed loop strategy described above is embodied by the block diagram of the turbo equalizer (TE)
shown in Figure 12.3, which refers to the case of a binary constellation. The TE structure includes
a SiSo equalizer (tailored to a specific channel model), a SiSo decoder (tailored to adopted channel
code), an interleaver (π ), a deinterleaver (π−1), one soft mapping device, one soft demapping device
and a hard decision device (represented as a threshold device in the figure for simplicity) to be used
at the end of the last iteration. Moreover, each SiSo module has two inputs (one associated with
noisy data, the other one with a priori information) and a single output, and extrinsic information is
extracted by subtracting a priori LLRs from this output. Similarly to the decoding of turbo codes, a
pipelined architecture for the receiver can also be implemented, as illustrated in [1965]. In this case
the turbo equalizer consists of the cascade of as many (equal) stages (or modules) as the number of
iterations to be carried out, and each stage includes the same subsystems as Figure 12.3 plus a delay
line for the received signal samples.

In principle, the TE procedure has to be repeated until convergence. The speed of this process is
influenced by various factors, such as the selected SiSo equalization algorithm and the cardinality M
of the constellation (e.g., see [1962]). In practice, various BER performance results available in the
technical literature show that the energy gap between a system employing turbo equalization and its

SiSo
Equalizer

−

−

SiSo
Decoder

Soft
Demapping

Soft
Mapping

E,es(k) (c)

r

s(u) u
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Figure 12.3 Block diagram of a turbo equalizer for the case of a BPSK constellation. Note that
the observation input of the SiSo decoder is grounded to indicate that the algorithm operates on
the basis of a priori values only and that this figure refers to the start of the kth iteration.
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counterpart operating in the absence of ISI substantially reduces after the first two iterations (e.g.,
see [1660, 1962]). This is confirmed by the numerical results in the following example for a specific
system.

Example 12.3.1 Let us again consider the transmitter and channel configuration shown in Figure 12.1
and assume that:

(a) the message consists of K = 2048 bits;
(b) a BPSK modulation is employed;
(c) a rate-1/2, 32-state convolutional code having generators [238] and [358] in octal form and a

binary constellation (M = 2) are used (so that the codeword length is N = 4096 bits);
(d) random interleaving is adopted;
(e) the CIR is real and represented by the vector h = [0.407, 0.815, 0.407]T [1965].

Some BER results referring to this case are shown in Figure 12.4, which compares the performance
offered by MAP decoding (accomplished via the BCJR algorithm) in the absence of ISI (no ISI curve)
with that achieved by a turbo equalizer (characterized by the architecture of Figure 12.3 and employing
the BCJR algorithm for SiSo equalization and for SiSo decoding) with various numbers of iterations.

Note that the curve referring to the first iteration actually shows the error performance achieved at
the end of the channel decoding step in the first iteration, that is, that provided by separate equalization
and decoding. These results illustrate:
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10−3
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E
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543210
Eb / N0 (dB)

1 iteration
2 iterations
3 iterations
4 iterations
no ISI

Figure 12.4 BER performance provided by decoding in the absence of ISI and by turbo equaliza-
tion with a different number of iterations. The adopted coding and modulation schemes and channel
model are given in Example 12.3.1.
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• the existence of a significant gap (which, in many scenarios, is found to be greater than 3 dB
[1962]) between the performance achievable in the absence of ISI and that provided by separate
equalization and decoding,

• the possibility of getting very close to the performance in the absence of ISI via turbo equalization
for reasonably small SNRs.

The latter result is achieved at the price of significant complexity (an assessment of the computational
complexity of turbo equalizers for different coding schemes can be found in [1962, 1966]), which grows
linearly with the number of iterations and exponentially with the code/channel memory.

�

Generally speaking, to limit the computational burden of turbo equalization, it is fundamental to:

(a) keep the overall number of iterations as low as possible;
(b) develop reduced-complexity SiSo modules for equalization and decoding.

Fortunately, to minimize the number of iterations carried out by a turbo equalizer various termination
criteria can be adopted, exactly as in the decoding of turbo codes [1967]. Moreover, various reduced-
complexity SiSo modules can be found in the literature, as already mentioned in Section 12.2 and
discussed in more detail in Section 12.3.3.

12.3.2 Turbo Equalization from a FG Perspective

The system model shown in Figure 12.1, referring to a coded data transmission over an ISI channel,
can also be represented via different graphical models and, in particular, via FG descriptions (an
introduction to FGs can be found in Section 10.8). As shown in what follows, such descriptions are
a useful tool to provide insight into existing equalization and decoding techniques and to develop
new iterative and noniterative solutions. In fact, several algorithms, which differ in the messages
communicated along the FG edges (and, consequently, for their complexity), can be developed from
a specific FG.

Our brief investigation starts from the optimal decision strategy (12.3) for which the cost function
Pr{ul = ũl |ρ, h} to be optimized over the set of possible trial messages can be written as (see (12.4)):

Pr{ul = ŭl |ρ, h} =
∑

ũ:ũl=ŭl

Pr{u = ũ|ρ, h}, (12.20)

with (see (12.6)):

Pr{u = ũ|ρ, h} ∝ fr(ρ|u = ũ, h)

K−1∏
t=0

Pr{ut = ũt }, (12.21)

so that:

Pr{ul = ŭl |ρ, h} ∝ Pr{ut = ŭl}
∑

ũ:ũl=ŭl

fr(ρ|u = ũ, h)

K−1∏
t=0,t �=l

Pr{ut = ũt }. (12.22)

Equation (12.20) shows that the optimal decision strategy requires marginalization of the probability
mass function (i.e., of the global function) Pr{u = ũ|ρ, h}, which, if irrelevant factors are dropped,
can be represented via the factorization on the RHS of (12.21). In turn, such a factorization can be
represented via the FG illustrated in Figure 12.5(a), where the square boxes (function nodes) denote
the relevant factors of Pr{u = ũ|ρ, h}, the circles (variable nodes) denote the data {ul} and the edges
specify the dependencies between variables and factors.
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Figure 12.5 (a) Factor graph associated with coded transmission over an ISI channel; (b) marginal-
ization of ul in the global function appearing on the RHS of (12.22) via MP.

Given this FG, the marginalization required by (12.20) can be accomplished via a specific step-by-
step procedure operating over the graph itself and known as message passing (MP). In general, if the
variables appearing in the graph are discrete and their values belong to an alphabet V of cardinality
Mν , MP consists of the following simple rules:

1. Each function node sums the product of the incoming messages and the node function over all
variables adjacent to the function node except the one the message is sent to.

2. Each variable node either transmits the value 1/Mν if it is a leaf of the graph, or multiplies all
its incoming messages, except the one coming from the function node the message is sent to, and
transmits the result.

These rules are summarized in Figure 12.6 and can easily be generalized to the case of continuous
variables (since the sums are replaced by integrals and the message 1/Mν coming from a variable node
by a uniform pdf over the domain V of the variable itself). On the basis of these rules the calculation
of Pr{ul = ũl |ρ, h} via MP can be represented with a flow of messages towards the node associated
with ul in the factor graph of Pr{u = ũ|ρ, h}, as illustrated in Figure 12.5(b). It is worth pointing out
that, in this case, the exploitation of MP provides a step-by-step procedure for evaluating (12.20) and
a nice interpretation of it as a flow of messages in a proper graph. Such a procedure yields the exact
result (i.e., the desired marginalization), since the graph representing the global function expressed by
the RHS of (12.21) is of tree type, that is, it does not contain cycles. In fact, as already discussed in the
study of modern coding schemes and, in particular of LDPC codes (see Section 10.6), the application
of MP to a graph containing cycles does not produce the correct result, whatever the schedule adopted
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Figure 12.6 Update rules for MP on an FG. The constants γ , κ and δ are selected in such a way
that m(u) is a probability mass function (or a pdf in the case of a continuous variable).

in generating and exchanging messages in the graph. Instead, the cycles indicate that the result may
differ depending on how the message update is scheduled, how long the messages are allowed to
circulate and how the messages produced in the variable nodes being part of cycles are initialized, as
already discussed in Section 10.6.

Another important issue related to the MP procedure shown in Figure 12.5(b) is its computational
complexity, which, unfortunately, is proportional to K · 2K−1, since it needs to be repeated for each
of the K variable nodes (i.e., information bits) and the number of operations to be accomplished at
the lower function node is proportional to 2K−1. Generally speaking, achieving better computational
efficiency requires manipulating the global function to be represented via an FG. In particular, the
following specific strategies can be adopted:

• Factorization. This involves factoring a global function of many variables into terms depending on
as few variables as possible. This means that the underlying graph contains function nodes with
small degree.2

• Introduction of state (internal) variables. This involves augmenting a global function with new
(i.e., state) variables such that a suitable factorization becomes possible. This approach inevitably
complicates the structure of the global function and increases the number of variables to be summed
over in marginalization; despite this, it may yield a substantial overall increase in the efficiency
of MP.

Applying the above two strategies to our optimal detection problem requires a different factorization
of the conditional pdf fr(ρ|u = ũ, h) appearing in (12.21). With this aim the vectors of state vari-
ables x � [x0, x1, . . . , xN−1]T (binary interleaved codeword) and c � [c0, c1, . . . , cP−1]T (channel
symbol vector) are introduced, taking into account that fr(ρ|u = ũ, h) can be obtained from the
marginalization of fr,x,c(ρ, x̃, c̃|u = ũ, h). The latter pdf can be factored as:

fr,x,c(ρ, x̃, c̃|u = ũ, h) = fr(ρ|c = c̃, h) Pr{c = c̃|x = x̃} Pr{x = x̃|u = ũ}, (12.23)

2 As already stated in Section 10.6.2, the degree of a node in a graph represents the number of edges connected
to it.
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so that the new global function is obtained replacing fr(ρ|u = ũ, h) with fr,x,c(ρ, x̃, c̃|u = ũ, h) in
(12.21) to produce:

g(ũ, x̃, c̃) =fr(ρ|c = c̃, h)

P−1∏
t=0

Pr{ct = c̃t |xt = x̃t }

· Pr{v = ṽ|u = ũ}
K−1∏
t=0

Pr{ut = ũt }, (12.24)

since

• Pr{x = x̃|u = ũ} = Pr{v = ṽ|u = ũ} (there is a one-to-one mapping between a binary codeword v
and its interleaved counterpart x), and

• the probability mass function Pr{c = c̃|x = x̃} can be factored as:

Pr{c = c̃|x = x̃} =
P−1∏
t=0

Pr{ct = c̃t |xt = x̃t }, (12.25)

since ct is selected on the basis of xt only.

Note also that Pr{v = ṽ|u = ũ} can take on the values 0 or 1 depending on whether ṽ is a valid
codeword (i.e., it is generated by encoding ũ) or not, respectively. The FG associated with the global
function g(ũ, x̃, c̃) (12.24) is illustrated in Figure 12.7, where m = 2 (i.e., a quaternary constellation)
is assumed for simplicity.

Unfortunately, this graph contains, unlike that shown in Figure 12.5, multiple cycles, so that the
application of MP to it leads to approximate and iterative solutions, for which different rules can
be adopted in message scheduling. In particular, if a specific message schedule is adopted, the turbo
equalization strategy described in Section 12.3.1 is found. More specifically, this schedule consists
of generating the output messages for each edge connected to the node fr(ρ|c, h) (detection) in the
P nodes {Pr{c = ct |x = x̃t }} (demapping), and finally in the node Pr{v|u} (decoding) and vice versa
when the next iteration starts. Note that the message update in the node Pr{v|u} can entail substantial
computational effort, since its degree is equal to N + K , which is potentially a very large quantity.
This suggests that a suitable factorization of this probability mass function can lead to a local FG, to
which MP can be applied. This occurs, for instance, when LDPC coding is adopted and MP algorithms
are employed for decoding.

Let us now focus on the factor fr(ρ|c, h) of g(ũ, x̃, c̃) (12.24) and consider the local graph for it;
such a graph is shown in Figure 12.8, and performing MP over it corresponds to the detection part
of the receiver. In fact, the M distinct incoming messages {m(ct = c̃t )} traveling through the variable
node ct (with t = 0, 1, . . . , P − 1) represent the probability mass function of the channel symbol, that
is, they can be considered as the a priori probabilities that ct takes on each of the M possible values of
the complex signal constellation C. Such probabilities are usually set to the same values 1/M for any
value of t when the node function associated with fr(ρ|c, h) computes the outgoing messages for the
first time. The equation for evaluating the outgoing message m(ct = c(b)) (with b = 0, 1, . . . , M − 1)
results from the application of the update rule shown in Figure 12.6(d) and leads to the expression:

m(ct = c(b)) = δ
∑

c̃:c̃t=c(b)

P−1∏
t=0
t �=l

m(ct = c̃t ), (12.26)

which generates the extrinsic APP needed for turbo equalization. In other words, MP on the local
graph of Figure 12.8 leads to APP detection. Unfortunately, the complexity of this strategy for APP
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detection is proportional to P · MP−1, so that, in practice, it is huge for any reasonable value of P.
Finally, it is important to note that all the results illustrated in this subsection have been derived under
the assumption of a known CIR vector h. Formally, our results can easily be extended to the case
of a statistically known channel. In fact, in this case, the only change in the FG of Figure 12.7 is
that fr(ρ|c, h) is replaced by fr(ρ|c). This latter pdf, however, may be hard to compute, depending
on the statistical description of the channel model. Further information on this problem and on the
applications of FGs to turbo equalization can be found in [1968–1970], as well as in in [1971] (where
a MIMO scenario is considered).

12.3.3 Reduced-Complexity Techniques for SiSo Equalization

In the literature various alternatives to the FBA for SiSo equalization can be found. In this subsection
we provide details on a couple of these alternatives, namely soft ISI cancelation and SiSo equalization
based on linear MMSE filtering. Some other strategies are then briefly mentioned.

12.3.3.1 Soft ISI Cancelation

This solution was proposed by C. Laot et al. [1965] (see also [1972]) and is based on the following
ideas. In a digital transmission complete cancelation of ISI can be achieved when the transmitted data
are known a priori at the receive side. Of course, this never occurs in the presence of information
data; however, in a turbo receiver a reliable estimate of these data is potentially available at the end
of the first step for equalization and channel decoding. In practice, this algorithm resembles a DFE,
since it generates its lth output as:

yl = PT
l rl − QT

l c̄l , (12.27)

where rl � [rl+L1
, . . . , rl , . . . , rl−L1

]T contains 2L1 + 1 consecutive samples of the received
signal vector r � [r0, r1, . . . , rP−1]T , c̄l represents the estimated mean value of the channel symbol
vector cl � [cl+L2

, . . . , cl, . . . , cl−L2
]T (which contains 2L2 + 1 consecutive elements of the

transmitted symbol vector c � [c0, c1, . . . , cP−1]T ), Pl � [p−L1
[l], . . . , p0[l], . . . , pL1

[l]]T and
Qn � [q−L2

[l], . . . , q−1[l], 0, q1[l], . . . , qL2
[l]]T represent the coefficients of the feedforward and

feedback filter, respectively, and L1 and L2 are integer parameters whose value is not smaller
than Lh. The algorithm inevitably requires proper initialization of the filters. If the communication
channel is time-invariant, this can be accomplished at receiver startup via transmission of a pilot
sequence combined with a standard stochastic gradient LMS algorithm for data-aided estimation (see
Section 5.1.3.1). This entails that the recursive equations:

Pl+1 = Pl − µ r∗
n(y − cl), (12.28)

Ql+1 = Ql − µ c∗
l (y − cl), (12.29)

are used, where µ is a step size. Once the training phase is over, the transmitted symbol cl and the
vector cl are replaced by their estimated counterparts ĉl and c̄l , respectively. In all the iterations the
update equations (12.28) and (12.29) should be used for the turbo equalizer. If the communication
channel is time-variant, the adoption of the RLS algorithm combined with the periodic transmission
of a training sequence is suggested to accomplish CIR estimation; then the equalizer coefficients can
be evaluated from the estimated CIR. Finally, note that the evaluation of the vector c̄l is accomplished
on the basis of the coded data LLRs provided by the channel decoder in the last iteration. Further
detail on the implementation of this algorithm can be found in [1965].

This approach is much simpler that the standard FBA. Simulation results have shown that on some
specific frequency-selective channels considered in [1965] and for a 4-QAM constellation only three
iterations and an Eb/N0 greater than 3 dB are necessary for the performance of a coded ISI-free
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Gaussian channel to be reached. Thus, for a sufficiently large SNR, the TE improves its global
performance at each iteration and reaches the theoretical bound, provided that a sufficient number of
iterations is accomplished. In fact, it is only when the estimated data feeding the proposed algorithm
reaches a sufficiently low BER threshold that the cancelation of a large portion of the ISI becomes
really possible. This BER threshold depends on the first iteration performance, which is mainly a
function of the transversal equalizer performance and channel coding gain, and increases with the
size of the signal constellation. On other specific channels (and with the same modulation format),
however, the TE does not reach the ISI-free bound. This phenomenon originates from the fact that
the errors introduced at the input of the feedback filter of the ISI canceler generate a sort of impulsive
noise at the output of the canceler itself. This strongly affects the channel decoder and decreases the
channel coding gain. This occurs for highly frequency-selective channels and can be mitigated by
increasing the interleaver size.

12.3.3.2 SiSo Equalization Based on Linear MMSE Estimation

Here we discuss how the linear MMSE estimator described in Section 12.2 can be exploited to
develop a SiSo equalizer of reasonable complexity. Note that (12.12) generates an estimate of the
entire channel symbol vector c, but entails significant computational complexity, since it involves a
matrix inversion (complexity O(P 3)) and linear processing of the vector r (complexity O(P 2)). To
reduce the computational burden, a linear MMSE estimator operating in a sliding window fashion
and, in particular, processing Lr consecutive received samples has been proposed in [1973, 1974].3 In
practice, a (soft) MMSE estimate c̆l of the channel symbol cl (with l = 0, 1, . . . , P − 1) is generated
by linearly processing the vector:

rl � [rl−L1
, rl−L1+1, . . . , rl+L2

]T = Hlcl + nl , (12.30)

where Hl is a proper Lr × (Lr + Lh) submatrix of H (12.2), cl � [cl−L1−Lh
, cl−L1−Lh+1, . . . , cl+L2

]T

is an (Lr + Lh)-dimensional vector of channel symbols, nl � [nl−L1
, nl−L1+1, . . . , nl+L2

]T is an Lr -
dimensional noise vector, and L1 and L2 are nonnegative integer parameters (note that Lr = L1 +
L2 + 1). Note that the signal model (12.30) holds for l = L1 + Lh, L1 + Lh + 1, . . . , P − L2 − 1
only and, in that interval, Hl always has the same structure (and, consequently, does not change
unless the communication channel is time-varying); however, for simplicity, in what follows we
assume that Hl also has the same structure for the remaining values of the time index l. It can be
shown that, if the mean and variance of all the channel symbols:

ηc,l � E{cl} =
M−1∑
t=0

c(t) Pr{cl = c(t)} (12.31)

and

σ 2
c,l � E{|cl − ηc,l |2} =

M−1∑
t=0

|c(t) − ηc,l |2 Pr{cl = c(t)}, (12.32)

respectively, are known a priori for l = 0, 1, . . . , P − 1, the linear MMSE estimate of c̆l , given rl

(12.29), can be evaluated as [1962]:

c̆l = ηc,l + σ 2
c,l hH

c [l] �−1[l] (rl − Hlηc[l]), (12.33)

3 This approach was inspired by previous work on the same problem [1975–1977] or conceptually related problems
[1913].
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where hc[l] is the (L1 + Lh)th column of Hl :

�[l] � σ 2
n ILr

+ HlDc[l] HH
l , (12.34)

Dc[l] � diag(σ 2
c,l−Lh−L1

, σ 2
c,l−Lh−L1+1, . . . , σ 2

c,l+L2
), (12.35)

and
ηc[l] � [ηc,l−Lh−L1

, ηc,l−Lh−L1+1, . . . , ηc,l+L2
]T . (12.36)

Note that ηc,l and σ 2
c,l are set to 0 and σ 2

c (where σ 2
c denotes the mean-square value of the symbols

of the constellation Ac) at the start of turbo equalization. At the end of the first iteration, the extrinsic
information vector se(cl) � [se,0(cl), se,1(cl), . . . , se,M−1(cl)]

T is available for the channel symbol
cl , with l = 0, 1, . . . , P − 1 (see the previous subsection). In principle, this probabilistic information
can be used to compute new values for ηc,l and σ 2

c,l on the basis of (12.31) and (12.32), respectively.
Note, however, that to generate new extrinsic information about cl , c̆l must be evaluated under the
assumption that no additional a priori information is available about cl , that is, that cl has zero mean
and a variance σ 2

c . This means that the expression:

c̆l = σ 2
c hH

c [l] [σ 2
n ILr

+ HlDc[l]HH
l + (σ 2

c − σ 2
c,l )hc[l]hH

c [l]]−1(rl − Hlηc[l] + ηc,lhc[l])−1 (12.37)

needs to be used in place of (12.33) to generate a new soft estimate of cl . The resulting estimation
error el � c̆l − cl can be modeled as a Gaussian random variable having zero mean and a variance
σ 2

c,l which can be evaluated on the basis of (12.37). This model can be exploited, as discussed in the
previous section, to generate new extrinsic information about the channel symbols. Further analytical
details on this algorithm can be found in [1962], where its application to a binary constellation is
discussed and suboptimal versions are proposed to simplify the overall computational complexity.

Computer simulations have shown that, when a binary constellation is used, a turbo equalizer
employing this algorithm achieves a BER performance almost identical to that of a turbo equalizer
employing the FBA for SiSo equalization, even if the former may require a larger number of iterations
than the latter. However, the gap between these two different solutions increases with multilevel
constellations mainly due to the fact that the Gaussian assumption made on the estimation error is no
more accurate.

Further significant work on SiSo linear MMSE equalization can be found in [1961, 1978] and
[1979]. In particular, in [1961] some analytical results on the asymptotic BER performance of the
low-complexity MMSE SiSo equalizer of [1973] are derived (under the assumptions that BICM is
used at the transmitter and the communication channel is purely frequency-selective) and the TE
process convergence behavior is assessed via the EXIT chart technique [1683]. Such results show the
fundamental role played by the constellation mapping in BICM. Further analytical tools have been
derived in [1978] for coded BPSK transmission over a frequency-selective fading channel. In partic-
ular, two methods to assess the soft information evolution characteristics of a SiSO linear equalizer
(i.e., the ISI canceler described earlier or the MMSE equalizer analyzed here) are developed and their
application to the design of turbo equalization systems without reliance on extensive simulation is
illustrated. These predictive methods provide insight into the iterative behavior of linear turbo equal-
izers with substantial reduction in numerical complexity. Finally, in [1979] the use of adaptive coding
for multilevel BICM (ML-BICM) combined with MMSE turbo equalization is investigated. With the
aid of the knowledge about EXIT characteristics at the receiver, the code parameters such as code
rates and/or generator polynomials are adaptively selected independently in each ML-BICM layer.

12.3.3.3 Other techniques

To reduce the complexity of SiSo equalization other alternatives can also be found in the literature.
Here we mention:
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(a) the suboptimal delayed decision feedback sequence estimator (DDFSE) proposed in [1980] for
EDGE,

(b) the RBF-based equalizer illustrated in [1981] that represents a nonlinear equalization scheme based
on formulating the channel equalization procedure as a classification problem,

(c) the technique illustrated in [1982], which combines a (low-complexity) soft output sequential
algorithm for data sequence estimation with likelihood post-processing technique proposed in
[1983] to generate soft outputs associated with the symbols of estimated sequence,

(d) various reduced-complexity BCJR algorithms, which limit the exploration of the paths of the trellis
describing the channel memory to the most promising ones [1099],

(e) the algorithms developed in [1413, 1970] resulting from the application of FGs and SPA to ISI
channels,

(f) the constrained-delay APP detector with decision feedback developed in [1096] and conceptually
related to that of the finite or sliding-window BCJR algorithms [1984],

(g) the low-complexity soft output detector based on heuristic search methods developed in [1985].

12.3.4 Turbo Equalization in the FD

Various turbo equalization algorithms operating in the FD have been proposed as potentially lower-
complexity alternatives to their TD counterparts. In the following some strategies for PAM and CPM
signals are described.

12.3.4.1 PAM Signals

The simplest class of turbo equalizers in the frequency domain employs linear estimation techniques
[435, 1962, 1986, 1987]. The structure of a linear TE in the frequency domain (FD-TLE) is illustrated
in Figure 12.9(a). In its kth iteration, the equalizer processes the FD received vector R(l), associated
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with the lth transmitted data block and generated by DFT processing4 of the vector r(l). This, in turn,
is produced by uniformly sampling the received signal and discarding the samples associated with the
cyclic prefix. This vector is premultiplied by a forward matrix DTLE [k], whose task is to accomplish
soft ISI cancelation. This produces G(l)[k] � DTLE [k]R(l) feeding an IDFT. The IDFT output vector
g(l)[k] is processed to extract soft (e.g., extrinsic) information about the interleaved coded bits (i.e.,
about the data block x(l), consisting of N · m coded bits, where m denotes the number of bits per
channel symbol). Deinterleaving such soft information generates the vector L(l)

E [k], which is applied
to a SiSo channel decoder to produce an estimate û(l)[k] of the transmitted information bits (i.e., of
the data block u(l), consisting of N · m · R information bits, where R is the rate of the adopted channel
code) and the soft (e.g., extrinsic) information vector L(l)

v [k] about the vector v̂(l)[k] of transmitted
coded bits associated with û(l)[k]. The vector L(l)

v [k] feeds an interleaver, whose output is processed to
generate the soft information vector L(l)

D [k] about the transmitted channel symbols. Finally, the vector
L(l)

D [k] is exploited to properly update the forward matrix (i.e., to compute DTLE [k + 1]) employed at
the beginning of the next iteration. Note that, even if an MMSE approach is adopted in deriving the
forward matrix DTLE [k] [435, 1986, 1987], different options have been considered in the selection of
the soft information to be passed in the FD-TLE loop. For instance, extrinsic information is usually sent
from the FD equalizer to the SiSo decoder and vice versa (e.g., see [1113, 1114, 1962]); however, in
[435] a different conceptual approach is adopted, since the data APPs are exploited in a direct fashion
in order to modify the forward filtering matrix.

An alternative to the FD-TLE is the decision feedback TE in the frequency domain (FD-TDFE);
different architectures are available in the technical literature for this case (e.g., see [435, 1113, 1114,
1988]). We briefly analyze the FD-TDFE developed in [435], whose structure is illustrated in Figure
12.9(b). In this case forward filtering is accomplished in the FD, as in the FD-TLE, whereas feedback
filtering is carried out in the TD through a time-varying FIR filter with uniform tap spacing. As in
the FD-TLE case, an MMSE approach can be adopted to derive a computationally efficient solution
for evaluating the forward matrix DTDFE [k] and the feedback matrix BTDFE [k] to be employed in the
kth iteration, provided that correct data feedback is assumed. Related FD-TDFE structures have been
analyzed in [1113, 1114, 1988, 1989]. However, in [1113], unlike [435], decision feedback in the TD
is used and only symbol-rate processing of the received signal is considered (this entails a substantial
performance loss if matched filtering is not used in the receiver front-end). Decision feedback in the
TD is also adopted in [1114], where the effects due to fractional sampling of the received signal are
also investigated; however, nonuniform tap spacing in the feedback filter is considered, and adaptive
algorithms for the equalizer synthesis are proposed, despite the fact that explicit expressions for the
optimal filters of a multisampling DFE are provided. Finally, we note that the solutions developed in
[435, 1113, 1114] assume ideal knowledge of the channel in the evaluation of the equalizer coefficients.
The problem of incorporating channel estimation and synchronization (to compensate for the effect of
frequency offset and phase noise generated by local oscillator instabilities) in the turbo equalization
process is analyzed in [1988] (where an LS strategy is employed for this task) and [1989], respectively.
Note also that in [1989] decision feedback is accomplished in the FD, but, unlike [435], before
feedforward filtering.

12.3.4.2 CPM Signals

In principle, FD turbo equalization strategies for PAM signals can be extended to encompass CPM
signals, if such signals are represented as the superposition of a finite number of PAM waveforms
via Laurent’s linear decomposition (see Section 3.6.5.1). This approach is adopted in [284], where a
TLE is developed under the assumption that a CPM signal can be represented as the superposition

4 The DFT order is equal to N as baud rate sampling is used at the receive side and 2N if the sampling rate is
doubled to avoid information loss, as suggested in Section 4.4.2. In the latter case the structure of R(l) is described
by (4.99).
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of a finite number (P) of linearly modulated digital signals. In this case, in its kth iteration the
FD received vector R(l) (available, as in the PAM case, after front-end filtering, sampling, remov-
ing the cyclic prefix and DFT processing) undergoes forward filtering, which generates P distinct
N-dimensional vectors, each of which feeds a distinct Nth-order IDFT. The IDFT outputs are serial-
ized into a data stream and are applied to a CPM SiSo detector. The latter processes the soft estimates
of the Laurent symbols produced by linear equalization and generates soft (e.g., extrinsic) information
about each transmitted coded bit. The deinterleaved soft information is applied to a SiSo channel
decoder producing soft information about the information bits. Such information, after interleaving, is
fed back to a soft mapping algorithm generating soft information about the Laurent symbols. This is
exploited to compute the forward matrix employed in the next iteration, following the same concep-
tual approach proposed in [435] for PAM signals and summarized in Figure 12.9(a). Unfortunately,
simulation results have shown that this approach does not work as efficiently as its counterpart for
PAM signals. The poor error performance can be related to the fact that the algorithm computing soft
information about Laurent symbols can produce long error bursts. This is due to the inherent memory
of CPM, clearly shown by the structure of the Laurent pseudosymbols (see (3.170)). In fact, such a
structure implies that incorrect soft information on a given bit produces a long burst of incorrect soft
information on a number of consecutive Laurent symbols in the above-mentioned algorithm. Error
burst length can be substantially reduced by passing soft information directly from the CPM SiSo
detector to the soft mapping computer for the Laurent symbols (details can be found in [284]). The
disadvantages of the FD turbo equalizer proposed in [284] are overcome by [440], which proposes
the adoption of a doubly-iterative joint CPM equalization and demodulation strategy similar to that in
[439], so as to achieve better error performance with lower computational complexity compared to the
methods in [284, 439]. Unlike [284], the FD turbo equalization strategy developed in [440] is based on
representing the CPM modulator as the cascade of a CPE with an MM (see Section 3.6.5.2). In the kth
iteration of the proposed receiver structure the FD received vector R(l) feeds an equalization algorithm
accomplishing MMSE soft interference cancelation and whose output is exploited by a probability
mapper to generate a vector of probabilities referring to all the possible waveforms generated by the
CPE trellis in each symbol interval. Such probabilities are processed by a SiSo CPM demodulator
operating over the (time-invariant) CPE trellis and implemented as the log-domain APP algorithm.
The demodulator generates extrinsic information on both the coded bits in the form of LLRs and the
tilted-phase CPM signals. The information about coded bits is exchanged by the SiSo CPM demod-
ulator with a SiSo decoder for the channel code employed. In principle, this step involves multiple
(back-end) iterations, through which the reliability of the soft information produced by the SiSo CPM
demodulator is enhanced. At the end of this back-end procedure, the SiSo CPM demodulator generates
an estimate of the mean value of the CPM signal samples. These samples feed a DFT block, whose
output is used for adjusting the MMSE soft interference cancelation algorithm at the beginning of the
(k + 1)th iteration. Note that, since the CPM signal probabilities are not computed from the coded bit
probabilities, the error bursts mentioned in [284], which are due to the modulation memory, are not
encountered. This results in a significant performance improvement. Moreover, the strategy of [440]
is computationally less complicated than that of [284], since it does not require any matrix inversion.
In addition, faster convergence in BER is attained, because the number of equalization iterations is
decreased by performing several demodulation/decoding iterations during each equalization iteration
to improve the equalizer a priori information.

12.3.5 Turbo Equalization in the Presence of an Unknown Channel

In most of the literature on turbo equalization the channel is assumed to be known and time-invariant
(i.e., it is purely frequency-selective). When the channel is unknown, a training sequence can be
transmitted for estimating it. However, if the fading rate is not small enough, tracking of the channel
may be required between consecutive training sequences to avoid a substantial performance loss.
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As discussed in Chapters 5 and 6, channel estimation can be performed jointly with equalization or
using a separate data/decision aided channel estimation algorithm. Examples of the first approach
are:

(a) the SiSo detection algorithms developed in [530, 533, 1179, 1990], which, being trellis-based,
may entail substantial computational complexity,

(b) the adaptive SiSO equalizers based on nonlinear KFs of [1991, 1992], which jointly optimize the
estimates for channel parameters and data symbols in each iteration with the assistance of a priori
information for the data symbols supplied by the SiSo decoder.

The complexity of these solutions does not grow exponentially with the modulation constellation size
and is usually lower than that of many MAP equalizers accomplishing joint channel estimation and
data detection. However, computation can be substantially reduced if the second approach is adopted,
that is, if channel estimation and equalization are kept as separate tasks. In this case the quality
of the channel estimates can be improved over the iterations if the estimation algorithm is fed by
information generated by the channel decoder. In fact, in this case, pilot-aided channel estimation
based on a standard algorithm (e.g., an iterative CIR estimation technique) can be used before starting
the first iteration of the turbo equalizer. Subsequently, at the start of the next iteration, in addition to
using the training sequence for reestimating the CIR, estimates of the bits/symbols derived from the
SiSo decoder output can be employed to feed the channel estimator (whose parameters, e.g., its step
size, can be adjusted), so that the CIR estimates are refined and improved after each iteration. This
CIR estimation process can be repeated for each turbo equalization iteration. Note that the information
feeding the channel estimation algorithm can be represented by hard decisions or soft information on
the code bits or on the coded channel symbols, leading to hard or soft iterative channel estimation,
respectively. Algorithms for hard iterative channel estimation have been proposed in [719, 1412,
1993–1996]. Soft iterative channel estimation has been developed in [719, 741, 1966, 1994, 1997,
1998], for the case in which channel estimates remain constant over an entire block of data, and in
[1999–2002] for the case in which the channel estimate varies from symbol to symbol. In particular,
the last class of algorithms proposes to extend standard recursive (i.e., LMS, RLS and Kalman)
algorithms to exploit soft feedback. The use of the EM algorithm for soft iterative channel estimation
is also possible, as shown in [2003, 2004].

All the above-mentioned work refers to turbo equalization in the TD. Iterative channel estimation
can also be employed in FD equalization, as shown, for instance, in [1988], where a soft iterative LS
channel estimator is adopted.

Graphical models for coded data transmission can also be developed even in the case of unknown
channels. As in the case of known channels, this allows us to derive interpretations of existing
algorithms for joint/separate detection and estimation, and to develop new strategies. A detailed
analysis of the problem of graphical modeling for a coded data transmission can be found in [1968].

Finally, it is worth mentioning that some related work in this field can also be found in [1235,
2005], where soft input channel estimation exploiting soft symbols fed back from an equalizer (rather
than from a decoder) is investigated.

12.4 Extension to MIMO
In MIMO environments coded modulation techniques (such as ST block/trellis codes and ST-BICM)
and modern powerful channel coding techniques (such as LPDC codes and turbo codes) should always
be combined with iterative processing strategies if their potential is to be fully exploited [1928, 2006].
However, employing a MAP detector for turbo processing in a MIMO scenario entails a computational
complexity that is exponential in the product of the number of transmit antennas nT and the number
m of bits per constellation point [2007]. Its high complexity, which is due to the fact that the MAP
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detector performs an exhaustive search over the entire set of possible transmitted symbol vectors,
makes its application infeasible in practical MIMO systems, even for moderate nT and/or m. This
explains why in the last decade substantial research efforts have been devoted to overcoming this
problem. Most of the proposed solutions can be considered as extensions of the techniques developed
for SiSo equalization for SISO channels. Here we mention the following specific solutions in the TD:

• the equalization algorithms, based on reduced-complexity Jacobian radial basis function equaliza-
tion [2008], proposed in [2009, 2010],

• finite-impulse-response prefiltering, concentrating the energy of the MIMO channel in a small
number of adjacent taps (so that a shortened channel is seen by the SiSo equalizer), developed in
[2011],

• SiSo linear MMSE equalizers developed in [2012] (extending previous work on iterative equalization
[1977] and iterative multiuser detection for CDMA systems [1913]), [2013] (extending the approach
of [1973] to fractionally spaced equalization for ST bit-interleaved coded multilevel modulation
over frequency-selective MIMO fading channels), [2014] (extending the algorithm of [2015] for
multilevel modulations to the MIMO case), [2016, 2017] (based on separating time equalization for
ISI cancelation from space equalization for mitigating multiantenna interference) and [2018],

• soft equalization algorithms based on sequential Monte Carlo sampling techniques for Bayesian
inference as derived in [2019],

• adaptive iterative (turbo) DFE illustrated in [2020], which adjusts its filters directly on the basis of
soft decisions and received data to minimize an LS cost function (adaptive reduced-rank estimation
methods, based on the multistage Wiener filter, are also proposed),

• trellis-based algorithms accomplishing a reduced-complexity search (by truncating the channel
memory length [839], introducing a branch selection algorithm that is separate from the path metric
computation [2021], or retaining only a fixed number of best survivors at each trellis interval and
discarding all the other survivors [1015]) or based on specific trellis representations (as in [2022],
which extends [2023] to a MIMO scenario).

Note the following observations:

(a) Most of the literature on turbo processing over MIMO channels focuses on purely frequency-
selective fading channels. Iterative (turbo) equalization and decoding of interleaved ST codes over
time-variant MIMO ISI channels was first investigated in [2024], where a MAP equalizer is derived
and its performance is evaluated for the EDGE air interface when deploying ST bit-interleaved
convolutional codes.

(b) MIMO turbo equalization ensures promising error rate performance at low overhead but may sub-
stantially increase receiver latency; however, parallelism techniques can be adopted at algorithmic
level to increase speed [2025].

As in the SiSo case, an alternative to TD equalizers is offered by their FD counterparts; SiSo
equalization algorithms in the FD for MIMO frequency-selective channels have been proposed in
[2026–2032]. In particular, MMSE turbo equalization techniques are developed in [2026, 2027]
(extending the turbo equalization algorithm of [1986] to the MIMO case and adopting the sliding
window approach of [2016]), [2028] (whose solution is based on probabilistic data association filter-
ing), [2029] (whose solution can be considered as an extension of the noniterative scheme of [2033,
2034]), [2032] and [2030]. FD-MMSE turbo equalization is combined with SVD-based precoding for
SC transmission over frequency-selective MIMO channels in [2031], where the problem of optimizing
the transmit power allocation over the FD channel eigenmodes subject to maintaining a target BER
of the turbo equalizer is solved.

Finally, we mention that soft iterative channel estimation techniques (see Section 12.3.5) have also
been proposed for MIMO systems (e.g., see [839, 2012, 2017, 2019, 2030, 2031, 2035]).
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12.5 Historical Notes
As stated in Section 12.1, the idea of combining a SiSo equalizer with a SiSo decoder for achieving
close to optimal performance through an appropriate iterative procedure (known as turbo detection) is
due to C. Douillard et al. [1958], published in 1995. This approach was proposed for ISI channels and
convolutionally encoded transmission, but its usefulness in the presence of frequency-flat fading chan-
nels [533, 719, 2036] and other coding schemes (e.g., see [1966, 2003, 2037]) soon became apparent.
The initial work by Douillard was followed by a flurry of research activity, mainly investigating new
algorithms to be employed in turbo equalizers operating in the presence of different channel models
and assessing the performance benefits deriving from turbo equalization in the presence of different
modulation and coding schemes. In this section we focus on some of the relevant results achieved in
the short history of turbo equalization and mention some relevant work.

12.5.1 Reduced-Complexity SiSo Equalization

One of the main problems associated with the strategy developed in [1958] is the complexity of the
SiSo module used for equalization. This makes the proposed strategy suitable for digital modulations
with poor spectral efficiency and channels exhibiting low delay spread (e.g., for the GSM system
[2038]). For this reason, one of the relevant technical issues on which research in the field of turbo
equalization has concentrated on in the last decade is the development of reduced-complexity SiSo
equalization algorithms. In particular, various SiSo strategies based on MMSE linear filtering [1973,
1974, 1976, 1977, 1979, 2015, 2039–2045], constrained minimum variance filter design [2046], the
DFE concept (in particular, the concept of soft interference cancelation) [1965, 1975, 2047–2054] and
the use of reduced-complexity/modified BCJR algorithms [1099, 1532, 2055] have been developed
and applied to different coding schemes. Other reduced-complexity SiSo equalization techniques are
based on:

• the use of a broadband beamformer to shorten the observed CIR [2056, 2057];
• adapting a RBF-based equalizer to utilize the a priori information provided by a channel decoder

[1981, 2008, 2009];
• the exploitation of FGs and MP [1413];
• constrained-delay APP detection with decision feedback [1096];
• local search algorithms [1985].

12.5.2 Error Performance and Convergence Speed
in Turbo Equalization

Most of what has been said in the literature on achievable error performance and its dependence on
the number of iterations accomplished in a TE is based on computer-generated numerical results,
which require a long processing time. This has raised the problem of developing analytical tools for
analyzing error performance and convergence of turbo equalization algorithms. Some tools have been
derived (e.g., see [1961, 1978, 1979, 2018, 2058]) that exploit the conceptual similarity between turbo
equalization and iterative decoding of concatenated codes. In particular, the convergence behavior of
turbo equalization has been analyzed [1961] using EXIT charts [1683] under the assumptions that
BICM is used at the transmitter, a low-complexity MMSE SiSo equalizer [1973] is employed at the
receiver and the communication channel is purely frequency-selective. In addition, [1961] provides
an expression of the asymptotic BER performance, emphasizing the fundamental role played by the
constellation mapping. Further analytical methods for the prediction of the BER performance can
be found in [1978] (for coded BPSK transmission over a frequency-selective fading channel) and
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[2058] (where turbo FD equalization is considered). Convergence analysis via EXIT functions is
also investigated in [1978, 1979] (referring to adaptive coding for ML-BICM with MMSE turbo
equalization), [2018] (extending the work of [1979] to a MIMO scenario), and [2058]. Finally, we
mention [2059], where the outage performance of soft cancelation FD MMSE turbo equalization in
a serially concatenated coded modulation scheme over frequency-selective Rayleigh fading channels
with exponential delay-power profile is analyzed and the convergence behavior of this iterative three-
stage system is evaluated with the aid of correlation charts.

12.5.3 SiSo Equalization Algorithms in the Frequency Domain

The first SiSo strategy for FD turbo equalization of PAM signals over ISI channels was proposed
by M. Tüchler and J. Hagenauer in 2000 [1986] (see also [1962, 1987]), where a linear technique
is devised. Decision feedback TEs for PAM signals have been proposed later in [1113, 1114]. FD
algorithms for MIMO systems have been investigated since 2004 (e.g., see [2026–2032]).

12.5.4 Use of Precoding

The performance of a TE system can be significantly improved by the use of a precoder [1962, 2060].
This improved performance is due to the recursive nature of the inner code, consisting of the serial
concatenation of a given precoder with an ISI channel, which results in an interleaving gain. A number
of precoding schemes have been presented in the literature, even if the focus is on partial-response
channels (in practice, on magnetic recording channels). The use of precoders usually results in a
degraded (improved) performance at low (large) SNRs [2061]. Simulation results have also provided
evidence of a tradeoff between the performance at the turbo cliff and error floor region and shown that
“weight-two” and “multiweight” precoders are suited for TE systems which desire an error floor at low
SNRs and high SNRs, respectively [2060]. Low-complexity precoded schemes have been proposed
in [2062]. Various results on the convergence of turbo equalization in the presence of precoding can
be found in [2063, 2064].

12.5.5 Turbo Equalization and Factor Graphs

The use of FGs for presenting iterative receiver algorithms in a unifying perspective and the adoption
of canonical distributions for handling continuous variables in MP algorithms was proposed by A. P.
Worthen and W. E. Stark in 2001 [1808]. Pioneering work in the application of FGs is due to
M. Tüchler et al. [1968].

12.5.6 Turbo Equalization for MIMO Systems

Preliminary work in this area dates back to the end of the 1990s. In particular, we mention the work
by G. Bauch and A. F. Naguib [2007], who first investigated the problem of turbo equalization of
ST coded (and, in particular, of trellis-coded) systems over frequency-selective channels. The main
efforts in this area have been devoted to cutting the complexity of SiSo equalization by adopting
new equalization strategies [2009], prefilters for channel shortening [2011], SiSo algorithms based on
MMSE filtering [2013, 2016, 2018], adaptive reduced-rank DFEs [2020], prefiltering combined with
M-BCJR [2065], algorithms performing a reduced-complexity search on a state trellis [839, 2021] or
operating over a different (but equivalent) trellis representation characterized by a larger state space
[2022]. Other attempts are concerned with the use of FD equalization techniques (e.g., see [2027]).
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12.5.7 Related Techniques

Finally, it is worth mentioning that, in the field of combined equalization and decoding, various
techniques, typically exploiting decision feedback but that cannot be included in the family of turbo
equalizers, can be found in the literature (e.g., see [2066–2073]).

Other research work closely related to that which we have analyzed concerns the development
of turbo equalization techniques for mitigating ICI in an OFDM system operating in the presence
of a time-varying channel or nonlinear distortions; the reader can refer to [1144, 2074] and [2075],
respectively, where solutions to these problems are developed.

12.6 Further Reading
A good introduction to turbo equalization is offered by [1660]. A detailed description of
various SiSo equalization algorithms for turbo equalization and an in-depth discussion of the
complexity–performance tradeoff are available in [1962]. An analysis of graphical models for coded
data transmissions over ISI channels can be found in [1968]. Another paper that is recommended
reading is [1178], which provides an overview of trellis-based algorithms for iterative detection over
channels with memory.
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Fourier Transforms
In this appendix some standard formulas pertaining to the Fourier analysis of a complex time-
continuous signal x(t) and a complex discrete-time signal (i.e., a sequence x[n]) are listed.

1. Fourier series (FS). If the time-continuous signal x(t) is periodic with period T (i.e., x(t) =
x(t + T ) for any t), its FS in complex exponential form is given by:

x(t) =
+∞∑

k=−∞
Xk exp

(
j

2πkt

T

)
, (A.1)

where the kth coefficient Xk is defined by:

Xk � 1

T

∫ T/2

−T/2
x(t) exp

(
−j

2πkt

T

)
dt . (A.2)

2. Fourier continuous transform (FCT). If the time-continuous signal x(t) is aperiodic, its FCT is
evaluated as:

X(f ) � FCT[x(t)] =
∫ +∞

−∞
x(t) exp (−j2π ft) dt . (A.3)

Given X(f ), x(t) can then be expressed as:

x(t) = IFCT[X(f )] =
∫ +∞

−∞
X(f ) exp (j2π ft) df . (A.4)

3. Discrete Fourier transform (DFT). If the sequence x[n] is periodic with period N, its DFT repre-
sentation is given by:

x[n] = 1√
N

N−1∑
k=0

X̄k exp

(
j

2πkn

N

)
, (A.5)

where the kth coefficient X̄k is evaluated as:

X̄k � 1√
N

N−1∑
n=0

x[n] exp

(
−j

2πnk

N

)
(A.6)

with k = 0, 1, . . . , N − 1. Note that the last two expressions are equivalent to:

X̄N = DFTN [xN ] = QN xN (A.7)
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and
xN = IDFTN [X̄N ] = QH

N X̄N, (A.8)

respectively, where X̄N � [X̄0, X̄1, . . . , X̄N−1]T , xN � [x[0], x[1], . . . , x[N − 1]]T, DFTN [x]
(IDFTN [y]) denotes the Nth-order DFT (IDFT) of an N-dimensional vector x (y), QN = [qi,k] is
an N × N matrix with:

qi,k � 1√
N

exp

(
−j2π

i k

N

)
, (A.9)

and i, k = 0, 1, . . . , N − 1. It can be proved that QN is a unitary matrix, so that its inverse is
given by QH

N . From this property it can easily be seen that (A.7) implies (A.8), and vice versa.

4. Fourier transform of a sequence (FTS). The FTS of an aperiodic sequence x[n] is defined as:

X̄(f ) � FTS[x[n]] =
+∞∑

n=−∞
x[n] exp (−j2πnfT ), (A.10)

where T is a reference time interval. Given X̄(f ), x[n] can be expressed as:

x[n] = IFTS[X̄(f )] = T

∫ 1/(2T )

−1/(2T )

X̄(f ) exp (j2πnfT ) df , (A.11)

Finally, it is worth mentioning that, given a sequence x[n] sampling a time-continuous signal x(t)

with period T:
x[n] = x(t)|t=nT = x(nT ), (A.12)

its FTS X̄(f ) can be expressed as:

X̄(f ) = 1

T

+∞∑
n=−∞

X
(
f − n

T

)
, (A.13)

where X(f ) is the FCT of x(t).
Further information on Fourier transforms and their properties can be found in [2076].
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Power Spectral Density
of Random Processes

B.1 Power Spectral Density of a Wide-Sense Stationary
Random Process

A mathematical description of the average spectral content of a continuous-time random process X(t)

(or a discrete-time random process {Xn}) is provided by its power spectral density (PSD). This function
can be defined for some families of random process and, in particular, for wide-sense stationary (WSS)
processes. A continuous-time random process X(t) is WSS if its mean function:

ηX(t) � E{X(t)} (B.1)

is constant (i.e., ηX(t) = ηX) and its autocorrelation function (ACF):

RX(t, τ ) � E{X(t + τ) X∗(t)} (B.2)

depends on the lag or delay τ only, that is:

RX(t, τ ) = RX(τ). (B.3)

Similarly, a discrete-time random process {Xn} is WSS if its mean function ηX[n] � E{Xn} and its
ACF RX[n, k] � E{Xn+k X∗

n} are such that:

ηX[n] = ηX (B.4)

and
RX[n, k] = RX[k], (B.5)

respectively. The PSD1 SX(f ) of a WSS process X(t) can be evaluated as:

SX(f ) = FCT[RX(τ)] =
∫ +∞

−∞
RX(τ) exp(−j2πf τ) dτ, (B.6)

1 Two-sided spectral densities are always considered in this appendix and in the rest of this book.
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that is, as the continuous Fourier transform of its autocorrelation function RX(τ). Similarly, given
a WSS random sequence {Xn}, its PSD S̄X(f ) can be evaluated as the Fourier transform of its
autocorrelation sequence RX[k], that is, as:

S̄X(f ) � FTS[RX[n]] =
+∞∑

k=−∞
RX[k] exp(−j2πkfT ), (B.7)

where the parameter T represents a reference time interval (e.g., the symbol interval when a random
sequence of channel symbols generated by a digital modulator is considered). The results (B.6) and
(B.7), relating the PSD of a WSS random process to its ACF, are usually known in the literature as
the Wiener–Khintchine theorem [400].

Note that the average power PX(t) � E{|X(t)|2} (PX[n] � E{|Xn|2}) of a WSS process X(t) ({Xn})
is constant. In fact, the statistical power PX of a continuous-time WSS process X(t) is given by:

E{|X(t)|2} = RX(0) (B.8)

and can be evaluated by integrating its PSD SX(f ) over all frequencies:

PX =
∫ +∞

−∞
SX(f ) df . (B.9)

Similar considerations apply to the average power PX of a WSS random sequence {Xn}, since PX[n] �
E{|Xn|2} = RX[0] = PX and:

PX = T

∫ 1/(2T )

−1/(2T )

S̄X(f ) df . (B.10)

B.2 Power Spectral Density of a Wide-Sense Cyclostationary
Random Process

As mentioned in Sections 3.5–3.7, the digital modulation formats described in Chapter 3 cannot be
modeled as WSS random processes. However, they all belong to another important family of random
processes, that of wide-sense cyclostationary (WSC) processes. A continuous-time random signal
X(t) is WSC with period T0 if its mean function ηX(t) (B.1) and its ACF RX(t, τ ) (B.2) satisfy the
equalities2:

ηX(t + T0) = ηX(t) (B.11)

and
RX(t + T0, τ ) = RX(t, τ ), (B.12)

respectively, for any t (in other words, they are periodic functions, with period T0, in the variable t).
Note that, in this case, the statistical power:

PX(t) � E{|X(t)|2 } = RX(t, 0) (B.13)

is also periodic with period T0, so that it is reasonable to define the average power PX of X(t) as:

PX � 1

T0

∫ T0

0
PX(t) dt = 1

T0

∫ T0

0
RX(t, 0) dt . (B.14)

2 As already illustrated for WSS random processes, similar expressions can be also given to describe the property
of wide-sense cyclostationarity for a random sequence.
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By analogy with what has been shown for WSS random processes (see (B.9)), the average power P̄X

(B.14) of a WSC process X(t) can be expressed as the integral, over the whole frequency interval, of
a proper PSD, which can be evaluated by resorting to the following procedure [55, 79]. First, given
RX(t, τ ), the average ACF RX(τ) of X(t) is evaluated by averaging RX(t, τ ) over a period (with
respect to the variable t), that is:

R̄X(τ ) � 1

T0

∫ T0

0
RX(t, τ ) dt . (B.15)

Then the average PSD S̄X(f ) of X(t) is computed as the FCT of RX(τ) (B.15), that is, as:

S̄X(f ) =
∫ +∞

−∞
R̄X(τ ) exp(−j2πf τ) dτ. (B.16)

Substituting S̄X(f ) in (B.9) (in place of SX(f )) yields PX (B.14).
Finally, it is worth mentioning that the average PSD S̄X(f ) (B.16) has the same physical meaning

as its counterpart evaluated for a WSS process (see (B.6)); in other words, both functions describe
the average spectral content of the sample functions of a random process.

B.3 Power Spectral Density of a Bandpass Random Process
In wireless communications the random signal sRF (t) generated by a digital modulator is bandpass
and is characterized by a carrier frequency fc. Such a signal can be expressed as:

sRF (t) = Re{s(t) exp(j2πfct)} = s(t) exp(j2πfct) + s∗(t) exp(−j2πfct)

2
, (B.17)

where s(t) denotes its complex envelope evaluated with respect to fc. In addition, we have that
s(t) = sI (t) + jsQ(t), where sI (t) and sQ(t) denote the in-phase and quadrature components of
sRF (t), respectively. In Chapter 3 it is shown that, for all the digital modulation formats of practical
interest, s(t) is a WSC random process, whose spectral content is described by its average PSD Ss(f ).
In the following we derive a formula relating Ss(f ) to the average PSD SRF (f ) of sRF (t) (B.9), which
is characterized by its ACF:

RRF (t, τ ) � E{sRF (t + τ) s∗
RF (t)}. (B.18)

To begin our derivation, we substitute the RHS of (B.17) into (B.18). This yields the expression:

RRF (t, τ ) =1

4
{E{s(t + τ) s∗(t) } exp(j2πfcτ)

+ E{s(t + τ) s(t) } exp(j2πfc(2t + τ))

+ E{s∗(t + τ) s∗(t) } exp(−j2πfc(2t + τ))

+ E{s∗(t + τ) s(t)} exp(−j2πfcτ) }. (B.19)

Let us now make the following assumptions:

1. The random signals sI (t) and sQ(t) are characterized by the same average ACF.
2. The cross-correlation between sI (t) and sQ(t) is the opposite of that between sQ(t) and sI (t)::

RIQ (t, τ ) � E{sI (t + τ) sQ(t)}
= −RQI (t, τ ) � −E{sQ(t + τ) sI (t)}. (B.20)
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If (B.20) holds, it is not difficult to prove that:

E{s(t + τ) s(t)} = E{s∗(t + τ) s∗(t)} = 0, (B.21)

so that (B.19) simplifies to the form:

RRF (t, τ ) = 1

4
Rs(t, τ ) exp(j2πfcτ) + 1

4
R∗

s (t, τ ) exp(−j2πfcτ). (B.22)

Then substituting (B.22) into the RHS of the definition:

RRF (τ ) � 1

T0

∫ T0

0
RRF (t, τ ) dt (B.23)

of the average ACF of sRF (t) (B.17), where T0 denotes the period of cyclostationarity, gives:

RRF (τ ) = 1

4
Rs(τ) exp(j2πfcτ) + 1

4
R∗

s (τ ) exp(−j2πfcτ), (B.24)

where

Rs(τ) � 1

T0

∫ T0

0
Rs(t, τ ) dt (B.25)

denotes the average ACF of s(t) and Rs(t, τ ) � E{s(t + τ) s∗(t)}. Finally, computing the FCT of
both sides of (B.24) yields:

SRF (f ) = 1

4
[Ss(f + fc) + Ss(f − fc)], (B.26)

which relates the average PSD of sRF (t) to that of s(t).
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Matrix Theory

In this appendix some essential definitions and theorems of matrix theory are provided. Further details
about matrix theory and computation can be found in [125, 1908, 2077].
Norm of a matrix. Throughout this book the so-called Frobenius norm is used when evaluating the
norm of a real or complex matrix. This norm is defined as:

|A| �

√√√√
m∑

l=1

n∑
p=1

|ai,j |2 (C.1)

for any m × n complex matrix A = [ai,j ]. Note that |A| can be evaluated as:

|A| =
√

tr (AAH ), (C.2)

where tr(X) denotes the trace of a square matrix X.
Kronecker product. Given the m × n matrix A and the p × q matrix B, the Kronecker product of

A and B is defined as:

A ⊗ B �




a11B · · · a1nB
...

. . .
...

am1B · · · amn B


 . (C.3)

Note that such a product generates an mp × nq matrix.
Properties of the eigenvectors and the eigenvalues of a square matrix. If M is an n × n (square)

matrix, a nonzero vector v is an eigenvector of M if there is a scalar λ such that:

Mv = λv, (C.4)

The scalar λ is said to be the eigenvalue of M associated with v. The eigenvalues of M are precisely
the solutions λ to the equation:

det (M − λIn) = 0, (C.5)

which is called the characteristic equation of M (here det (X) denotes the determinant of a square
matrix X). The n solutions to this equation are the eigenvalues {λ1, λ2, . . . , λn} of the matrix M.
Note the following observations:
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(a) If the matrix M has real entries, the coefficients of the characteristic equation are all real, but its
roots are not necessarily real.

(b) The eigenvalues of M are not necessarily distinct, since the algebraic multiplicity of each root of
the characteristic equation may be larger than unity.

(c) Each eigenvalue is characterized by a geometric multiplicity, which is defined as the dimension
of the associated eigenspace, that is, the number of linearly independent eigenvectors having that
eigenvalue.

(d) The eigenvectors associated with different eigenvalues are linearly independent.

The algebraic multiplicity and the geometric multiplicity of a given eigenvalue may or may not be
equal, but certainly latter quantity does not exceed the former, so that the sum of the geometric multi-
plicities (i.e., the overall number of linearly independent eigenvectors) may be smaller than n. Let us
now assume that the eigenvectors {v1, v2, . . . , vn} (associated with the eigenvalues {λ1, λ2, . . . , λn})
form a basis. Then M can be factored as:

M = V � V−1, (C.6)

where V is the n × n matrix whose lth column is the basis eigenvector vl of M (with l = 1, 2, . . . , n)
and � = [�l,k] is the diagonal matrix whose diagonal elements are the corresponding eigenvalues
(i.e., �k,k = λk); this result is known as the spectral theorem. If M is Hermitian, all its eigenvalues
are real and V is a unitary matrix, so that (C.6 ) can be rewritten as:

M = V � VH . (C.7)

Finally, it is worth noting that, given the n × n matrix M and its eigenvalues {λ0, λ1, . . . , λn−1}, the
following properties hold:

det (M) =
n−1∏
l=0

λl (C.8)

and

tr (M) =
n−1∑
l=0

λl. (C.9)

It is also important to mention that every eigenvalue λ of a unitary matrix M has absolute value
|λ| = 1.

Matrix inversion lemma. This lemma also known as the Sherman–Morrison–Woodbury formula,
states that:

(A + U C V)−1 = A−1 − A−1U [C−1 + V A−1U]−1V A, (C.10)

where A, U, C and V are n × n, n × k, k × k and k × n matrices, respectively.
Singular value decomposition theorem. Consider an m × n complex matrix M. Then there exists a

factorization of the form:
M = U �VH , (C.11)

where U is an m × m unitary matrix, � is an m × n diagonal matrix having nonnegative real numbers
on its main diagonal, and V is an n × n unitary matrix (XH denotes the conjugate transpose of X).
Such a factorization is called the singular value decomposition (SVD) of M. The diagonal entries �l,l

of � are known as the singular values of M. The m columns of U and the n columns of V are called
the left singular vectors and the right singular vectors of M, respectively. It can be proved that:

• the left singular vectors of M are eigenvectors of MMH ;
• the right singular vectors of M are eigenvectors of MH M;
• the nonzero singular values of M are the square roots of the nonzero eigenvalues of MH M or MMH .
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The singular values of M are usually ordered in such a way that their value decreases along the
main diagonal. When this occurs, the diagonal matrix � is uniquely determined by M, but this does
not hold for the matrices U and V.

Some additional properties can be given for the SVD if M is an m × m real square matrix having
positive determinant. In fact, in this case U, V, and � are m × m matrices of real numbers; in addition,
� can be regarded as a scaling matrix, and U and VH can be viewed as rotation matrices. Then, the
factorization (C.11 ) can be interpreted as the cascade of three geometrical transformations, namely a
rotation, a scaling, and another rotation.

Cholesky decomposition. A Hermitian and positive definite matrix M can be decomposed as:

M = L LH , (C.12)

where L is a lower triangular matrix with strictly positive diagonal entries. This factorization is known
as the Cholesky decomposition. Note that the factorization can also be expressed in the alternative
form:

M = P D PH , (C.13)

where P is a lower triangular matrix with unit diagonal entries and D is a diagonal matrix.
The Cholesky decomposition is unique, that is, there exists only one lower triangular matrix L with

strictly positive diagonal entries such that the factorization (C.12) holds. The converse also holds: if
a matrix M can be expressed as L LH for some invertible lower triangular L, then M is Hermitian
and positive definite.

The Cholesky factorization can be extended to the case of a positive semidefinite and Hermitian
matrix M by dropping the requirement that L have strictly positive diagonal entries. However, generally
speaking, Cholesky factorizations for positive semidefinite matrices are not unique. Finally, we note
that, if M is a symmetric and positive definite matrix with real entries, L is also a real matrix.

QR decomposition (also called QR factorization). Any real n × n (square) matrix M may be decom-
posed as:

M = Q R, (C.14)

where Q is an orthogonal matrix (i.e., its columns are orthogonal unit vectors, meaning that QQT =
In) and R is an upper triangular matrix (also called a right triangular matrix). This result can be
generalized to a complex square matrix M. In this case Q is a unitary matrix. If M is invertible, the
factorization (C.14) is unique if the diagonal elements of R are required to be positive.

Other useful properties. It can be proved that:

det (In + AT B) = det (Im + B AT ) = det (Im + A BT ), (C.15)

where both A and B are m × n matrices, and that:

tr (UV) = tr (V U), (C.16)

where both U and V are n × n matrices.
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Signal Spaces

In this appendix the problem of the representation of deterministic and random signals based on their
expansion in a series of orthonormal functions is summarized. The mathematical tools so developed
allow us to establish a one-to-one correspondence between a signal space and a proper real or complex
vector space. Therefore, their use is the key to turning problems concerning the analysis of analog
signals into equivalent vector problems, leading to a simpler analysis and interpretation.
As in Appendix E, in the following we provide a set of relevant definitions and basic results without
proof; the reader can refer to [321] and [430, Ch. 3] for further details.

D.1 Representation of Deterministic Signals

D.1.1 Basic Definitions

The waveforms appearing in most communications systems can be modeled as real or complex signals
having finite energy and defined over a limited time interval. For this reason, in what follows, we
consider the signal set L2(ti , tf ) consisting of all the complex functions having support (ti , tf ) and
finite energy. In other words, the complex waveform x(t), defined over the interval (ti , tf ), belongs
to L2(ti , tf ) if and only if its energy:

Ex �
∫ tf

ti

|x(t)|2 dt (D.1)

takes on a finite value. It can be easily proved that this set of functions, together with the usual
operations of addition (+) between a pair of functions and multiplication (·) between a complex
number (scalar) and a function, forms a vector space over the field C of complex numbers (see
Section E.3).

Let us assume that a nonempty subset S is extracted from L2(ti , tf ). If S is also a vector space
(with the same operations as L2(ti , tf )), it is said that S is a subspace of L2(ti , tf ). It can be proved
that a nonempty subset S of L2(ti , tf ) is a subspace if and only if it is closed with respect to the
above addition and multiplication operations.

A subspace of L2(ti , tf ) can easily be generated from a set of elements of this space. In fact,
given the set Ix = {xi(t), i = 0, 1, . . . , N − 1}, containing N distinct functions of L2(ti , tf ), the set
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S consisting of all possible linear combinations:

N−1∑
i=0

ai xi(t), (D.2)

where {ai, i = 0, 1, . . . , N − 1} are N scalars, being closed with respect to the above-mentioned
operations, is a subspace of L2(ti , tf ). Note that it may occur that the functions of Ix are linearly
dependent (see Section E.3). If this does not happen, they are linearly independent and form a basis
of S. In this case, the value of N gives the dimension of S. It can be proved that, given a basis
B = {φi(t), i = 0, 1, . . . , N − 1} of a subspace S, the representation:

x(t) =
N−1∑
i=0

xi φi(t) (D.3)

of any function x(t) in S, where {xi, i = 0, 1, . . . , N − 1} is a set of N scalars, is unique. This
allows us to establish a one-to-one correspondence between the waveforms and vectors an obtain the
N scalars which appear in the RHS of the last expression, as discussed in the following subsection.

In the space L2(ti , tf ) the inner product:

(x, y) �
∫ tf

ti

x(t) y∗(t) dt (D.4)

can be defined for any pair of its signals x(t) and y(t). If (x, y) = 0, then x(t) and y(t) are said to
be orthogonal. For any signal x(t) in L2(ti , tf ), its norm can be evaluated as:

|x| �
√

(x, x). (D.5)

Note that, since (x, x) = Ex , the norm of x(t) can also be computed as the square root of its energy
(i.e., |x| = √

Ex). In addition, if |x| is positive, x(t) can be normalized by dividing it by its norm,
that is, by generating the new signal x(t)/|x| which has unit energy.

The distance between the signals x(t) and y(t) in L2(ti , tf ) is defined as:

dxy � |x − y| =
√∫ tf

ti

|x(t) − y(t)|2 dt =
√

Ex−y, (D.6)

where Ex−y denotes the energy of the difference signal x(t) − y(t). If dxy = 0, the signals x(t)

and y(t) coincide almost everywhere. Generally speaking, the parameter dxy can be represented as a
measure of the diversity degree between the signals x(t) and y(t).

D.1.2 Representation of Deterministic Signals via Orthonormal Bases

As mentioned in the previous subsection, the representation of the waveforms of a subspace S of
L2(ti , tf ) using its basis B = {φi(t), i = 0, 1, . . . , N − 1} (see (D.3)) allows us to establish a one-to-
one correspondence between the elements of S and the points of a subspace Sc of the vector space C

N ,
which is usually called a signal space and consists of all the possible N-tuples of complex numbers.1

In fact, given B, any x(t) in S can be represented by one and only one vector:

x = [x0, x1, . . . , xN−1]T , (D.7)

1 If real scalars and signals are considered (in place of their complex counterparts), the signal space becomes R
N ,

the set of all the possible ordered real n-tuples.
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according to (D.3). The vector x is called an image of x(t), and its components represent the
coordinates of x(t). Conversely, one and only one function is associated with each vector x of Sc

according to (D.3). It is easy to show that, given a basis B, linear operations accomplished over the
functions of S translate into linear operations on their images. For instance, given x1(t) and x2(t) in
S and the scalars α and β, the image of linear combination αx1(t) + βx2(t) is αx1 + βx2, where x1
and x2 denote the images of x1(t) and x2(t), respectively.

Given a basis B = {φi(t), i = 0, 1, . . . , N − 1}, generally speaking, the evaluation of the image x
of a signal x(t) in S is not easy. However, this problem can easily be solved if B is an orthonormal
basis, that is, if all its elements have unit norm and are mutually orthogonal; the latter condition is
concisely represented by the expression:

(φi, φj ) = δi,j , (D.8)

with i, j = 0, 1, . . . , N − 1. In fact, given an orthonormal basis B of a subspace S, the ith element
xi of x can be evaluated as:

xi = (x, φi) =
∫ tf

ti

x(t) φ∗
i (t) dt (D.9)

for i = 0, 1, . . . , N − 1. Then, substituting (D.9) into (D.3) yields:

x(t) =
N−1∑
i=0

(x, φi) φi(t), (D.10)

which expresses the function x(t) in S as a superposition of N projections, the ith of which is given
by the signal:

xi(t) = (x, φi) φi(t) (D.11)

with i = 0, 1, . . . , N − 1.
It is easy to prove that, given an orthonormal basis B = {φi(t), i = 0, 1, . . . , N − 1} for a subspace

S, the one-to-one mapping between the functions of S and the associated subspace Sc of C
N preserves

the scalar product, and, consequently, the norm and the distance. In other words, we have that:

(x, y) = x · y � xT y∗ =
N−1∑
i=0

xi y∗
i (D.12)

for any two signals x(t) and y(t) in S, where x · y denotes the scalar product between their images.
Then, given definition (D.5), from (D.12) it is easy to see that:

‖x‖ = √
x · x. (D.13)

Since:

√
x · x = |x| �

√
xT x∗ =

√√√√N−1∑
i=0

|xi |2, (D.14)

where |x| denotes the norm of an arbitrary vector x ∈ C
N , (D.13) can be rewritten as:

‖x‖ = |x|, (D.15)

which simply states that norm is preserved. Note also that the last result is equivalent to (see (D.5)):

‖x‖2 = Ex = |x|2, (D.16)
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which states that the energy Ex of a signal x(t) ∈ S is equal to the square of the norm of its image
x. Similarly, it can be proved that the distance dxy between the functions x(t) and y(t), both in S, is
preserved, that is:

dxy � ‖x − y‖ = |x − y|. (D.17)

These results illustrate the importance of finding an orthonormal basis of a subspace S generated
by the set of N signals {xi(t), i = 0, 1, . . . , N − 1}. Generally speaking, this problem can be solved
applying to the signal set the so-called Gram–Schmidt orthogonalization procedure. The first step is
to generate the first element φ0(t) of an orthonormal basis B by normalizing the first waveform x0(t):

φ0(t) � x0(t)

‖x0‖
. (D.18)

Note that x0(t) = ‖x0‖φ0(t), so that x0(t) can simply be generated by scaling φ0(t), that is, as a linear
combination of an element of B.

The second element φ1(t) of B is evaluated by generating first the auxiliary function:

η1(t) � x1(t) − p10(t), (D.19)

where p10(t) � (x1, φ0)φ0(t) denotes the projection of x1(t) along φ0(t). If ‖η1‖ = 0, η1(t) can be
discarded. However, if ‖η1‖ �= 0, φ1(t) can be generated by normalizing η1(t):

φ1(t) � η1(t)

‖η1‖
. (D.20)

It can easily be shown that φ1(t) is orthogonal to φ0(t); in addition, it follows from (D.19) and
(D.20) that:

x1(t) = (x1, φ0) φ0(t) + ‖η1‖φ1(t), (D.21)

so that x1(t) can be expressed as a linear combination of φ0(t) and φ1(t), that is, of the functions
of B.

The evaluation of all the other functions of B proceeds as follows. The functions {xi(t), i =
0, 1, . . . , N − 1} are processed in an ordered fashion. In particular, when xk(t) is processed, the
orthonormal functions {φi(t), i = 0, 1, . . . , q} of B, with q ≤ k − 1, will already have been evaluated.
Then the auxiliary function:

ηk(t) � xk(t) −
q∑

i=0

(xk, φi) φi(t) (D.22)

is evaluated by subtracting from xk(t) the contributions of all its projections according to the orthonor-
mal functions already computed. If ||ηk|| = 0, xk(t) is a linear combination of {φi(t), i = 0, 1, . . . , q}
and can be discarded. However, if ||ηk|| �= 0, a new waveform of B is evaluated as:

φq+1(t) � ηk(t)

‖ηk‖
. (D.23)

The signal φq+1(t) has unit norm and is orthogonal to all the functions {φi(t), i = 0, 1, . . . , q}, so that
the enlarged set {φi(t), i = 0, 1, . . . , q + 1} consists of orthonormal functions. Finally, from (D.22)
and (D.23) it is easy to see that:

xk(t) = ‖ηk‖φq+1(t) +
q∑

i=0

(xk, φi) φi(t). (D.24)

The last result expresses xk(t) as a linear combination of the functions {φi(t), i = 0, 1, . . . , q + 1}.
Applying the procedure described above until k = N − 1 generates all the functions B. Finally, we
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note that, generally speaking, B consists of Q ≤ N waveforms and that the equality Q = N holds if
and only if none of the auxiliary functions {ηi(t), i = 0, 1, . . . , N − 1} (with η0(t) = φ0(t)) has null
norm. This occurs if and only if the signals {xi(t), i = 0, 1, . . . , N − 1} are linearly independent.

Let us now assume that an orthonormal basis B = {φi(t), i = 0, 1, . . . , N − 1} is available for the
subspace S of L2(ti , tf ). If an arbitrary function x(t) is selected in L2(ti , tf ), it cannot usually be
represented using the elements of B. In fact, if x(t) ∈ S, the exact representation:

x(t) =
N−1∑
i=0

(x, φi) φi(t). (D.25)

can be given for this signal (see (D.11)). In contrast, if x(t) /∈ S, the equality (D.25) does not hold.
However, in this case a signal x̃N (t) ∈ S approximating x(t) with a certain accuracy can be evaluated.
In particular, the so-called projection theorem establishes the following:

1. The waveform:

x̃N (t) �
N−1∑
i=0

(x, φi) φi(t), (D.26)

expressing the projection of x(t) on S, is the function of S exhibiting the minimum distance
from x(t).

2. The error signal:
eN(t) � x(t) − x̃N (t) (D.27)

is orthogonal to any function of S and its energy is given by:

‖eN‖2 = ‖x‖2 − ‖x̃N‖2. (D.28)

Note that substituting (D.26) into (D.28) yields:

‖eN‖2 = ‖x‖2 −
N−1∑
i=0

|(x, φi)|2. (D.29)

Now let the number N of orthogonal functions of B increase, so that the dimensionality of S increases.
Equality (D.29) shows that, as N gets larger, the energy of the error signal eN(t) (D.27) diminishes,
that is, the approximation x̃N (t) of x(t) becomes more accurate. This raises the following question: if
N → +∞, that is, if B consists of an infinity of functions, does the energy ‖eN‖2 of eN(t) tend to zero
for any x(t) ∈ L2(ti , tf )? Generally speaking, the answer to this question is negative – in other words,
the fact that B consists of an infinite number of functions is not sufficient to ensure that the equality:

lim
N→+∞

‖eN‖2 = lim
N→+∞

∥∥∥∥∥x (t) −
N−1∑
i=0

(x, φi) φi(t)

∥∥∥∥∥
2

= 0 (D.30)

holds for any x(t) ∈ L2(ti , tf ). However, if this occurs, B is said to be a complete orthonormal basis.
Note that, if B is complete, (D.30) can also be expressed as:

x(t) =
+∞∑
i=0

(x, φi) φi(t), (D.31)

which needs to be interpreted carefully. This result states only that the series appearing on the RHS of
(D.31) converges to x(t) in quadratic mean, as stated by (D.30). However, this convergence does not
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entail the pointwise convergence (or the uniform convergence) of such a series to x(t) in any instant
of interval (ti , tf ).

A complete basis for a specific signal space is defined in the following example.

Example D.1.1 A complete orthonormal basis for L2(0, T ), where T denotes the (arbitrary) duration
of the observation interval, is the so-called Fourier basis, which consists of the waveforms {φl(t), l =
0, ±1, ±2, . . . }, with:

φl(t) � 1√
T

exp

(
j

2π lt

T

)
. (D.32)

This basis can be used to represent the signals of L2(ti , tf ), provided that both ti and tf take on
finite values. In fact, any finite interval (ti , tf ) can be always transformed, through shift and scaling
operations, into the interval (0, T ), where T is a positive quantity.

�

It can be shown that, given a complete basis B = {φi(t), i = 0, 1, . . . } of L2(ti , tf ) and the com-
ponents {xi, i = 0, 1, . . . } and {yi, i = 0, 1, . . . } of the infinite-dimensional images of the arbitrary
signals x(t) and y(t) (both belonging to L2(ti , tf )), respectively, the following equalities hold:

‖x‖2 =
+∞∑
i=0

‖xi‖2, (D.33)

:

‖x − y‖2 =
+∞∑
i=0

‖xi − yi‖2 (D.34)

and:

(x, y) =
+∞∑
i=0

xi y∗
i . (D.35)

These results generalize (D.12), (D.16) and (D.17), respectively, which were derived for a finite-
dimensional subspace S.

D.2 Representation of Random Signals via Orthonormal Bases
The notion of expanding a deterministic function into a series of orthogonal functions can be extended
to stochastic signals, as illustrated below. Let us consider a zero-mean, generally nonstationary, com-
plex stochastic process X(t), with a covariance function CX(t, τ ) Hermitian in t and τ . Generally
speaking, we are interested in a series expansion of the form:

X(t) = l.i.m.
N→+∞

N∑
i=0

Xi φi(t), (D.36)

over the interval (ti , tf ), where {φi(t), i = 0, 1, . . . , N − 1} are N deterministic orthonormal func-
tions, {Xi, i = 0, 1, . . . , N − 1} are zero-mean random variables and l.i.m. stands for limit in the
mean, so that the equality in (D.36) has to be interpreted in the sense:

lim
N→+∞

E




∣∣∣∣∣X (t) −
N∑

i=0

Xi φi(t)

∣∣∣∣∣
2

 = 0. (D.37)



Appendix D 607

We have not yet put any constraint on the functions {φi(t)}. The choice of these signals inevitably
influences the higher-order statistics of the expansion coefficients {xi}. Generally speaking, it is
convenient to have such coefficients statistically uncorrelated, that is:

E{Xi Xj } = λi δi,j (D.38)

for some unknown set of constants. It can be proved that the functions {φi(t)} and the corresponding
constants {λi} that produce this condition are given by the Karhunen–Loève (KL) theorem [430,
Ch. 3]. This theorem states that the signals {φi(t)} and the associated constants {λi} are the solutions
of the homogeneous Fredholm integral equation:∫ +∞

−∞
CX(t, τ ) φi(τ ) dτ = λiφi(t). (D.39)

This is an integral form of an eigenequation, with a kernel CX(t, τ ), where {φi(t)} are the normalized
eigenfunctions and {λi} are the corresponding eigenvalues. From the theory of integral equations it
can be shown that, if the kernel CX(t, τ ) is Hermitian in its arguments, that is:

CX(t, τ ) = C∗
X(τ, t), (D.40)

then the following properties hold:

(P.1) The eigenvalues are real.

(P.2) The eigenfunctions associated with distinct eigenvalues are orthogonal.

(P.3) If the kernel is square integrable, that is, if:∫ tf

t=ti

∫ tf

τ=ti

|Cx(t, τ )|2dτ dt < ∞, (D.41)

then each eigenvalue λi �= 0 has a finite number of associated orthogonal eigenfunctions.

(P.4) If the kernel is positive definite, its eigenfunctions form a complete orthonormal set.

(P.5) If the kernel is nonnegative definite, it can be expanded as:

CX(t, τ ) =
+∞∑
i=0

λi φi(t) φ∗
i (τ ), (D.42)

a result known as Mercer’s theorem.

As far as the last point is concerned, it is worth noting that a random process with a nondegenerate
kernel will have an infinite number of eigenvalues and will theoretically require the infinite expansion
of (D.42). However, in many cases of practical interest, the spectrum of eigenvalues will remain
significant for a finite number of eigenvalues, before decaying away to zero. Therefore, only a finite
number need be considered as significant for a given machine accuracy.

Finally, we note that a zero-mean WSS process X(t), characterized by the covariance function
CX(τ), will have the above-mentioned properties when it is expanded in terms of its eigenfunctions.
In this case, each eigenvalue will correspond to the energy of the process contained in the associated
eigenfunction. If X(t) is Gaussian as well, the expansion coefficients {Xi} will also be statistically
independent random variables.
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Groups, Finite Fields
and Vector Spaces

In this appendix some relevant concepts of algebraic structures are summarized. In particular, we
first provide the axiomatic definition of a group and illustrate some basic concepts and results of
group theory. Then we illustrate the basics of field theory and analyze some mathematical tools for
accomplishing computations over fields. Finally, the concept of vector space is introduced.

In the following, we summarize a number of results useful for the understanding of the material
illustrated in Part II of this book, but do not provide proofs; these can be found in a number of books
on coding theory (e.g., see [35, 1549]).

E.1 Groups
Consider an algebraic structure G consisting of a set of elements for which a dyadic operation is
defined; this operation is usually called addition or multiplication and in the following is denoted
by the symbols � and �, respectively, if it does not involve ordinary numbers (for which the usual
symbols + and · are used). The structure G is a group if it satisfies the following four axioms.

Axiom G.1 (closure). For all a, b in G, the result of the operation a � b (or a � b) is also in G.
Axiom G.2 (associative law). For any triple (a, b, c) of elements of G the equality

(a � b) � c = a � (b � c) (E.1)

or
(a � b) � c = a � (b � c) (E.2)

holds, if the operation defined over G is an addition or a multiplication, respectively.
Axiom G.3 (identity element). There exists an identity element in G, denoted 0 (1) for the addition

(multiplication) operator, such that:
a � 0 = 0 � a = a (E.3)

and
a � 1 = 1 � a = a (E.4)

for any a in G.

Wireless Communications: Algorithmic Techniques, First Edition.
Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, Philippa A. Martin.
 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Axiom G.4 (inverse element). There exists an inverse element e in G, such that for every element
a in G, the equality:

a � e = e � a = 0 (E.5)

or
a � e = e � a = 1 (E.6)

holds, if the operation defined over G is an addition or a multiplication, respectively. Note that in the
first (second) case e is usually denoted by −a (by a−1) and is called the opposite (reciprocal) of a.

Given these axioms it can easily be proved that: the identity element and the inverse of any element
a in G are unique; and the inverse of the product a � b can be evaluated as:

(a � b)−1 = b−1 � a−1. (E.7)

If the operator defined over G is commutative (i.e., a � b = b � a or a � b = b � a for any a, b

in G), then G is a commutative or Abelian group. A group can consist of an arbitrary number of
elements; the smallest group consists of a single element (i.e., the identity element defined in axiom
G.3).

A subset H of the elements G is a subgroup if its satisfies the same axioms as G. Note that in order
to verify that H is really a subgroup of G, it is sufficient to check its closure (axiom G.1) and the
existence of an inverse for all its elements (axiom G.4). If both conditions are satisfied, the identity
element must necessarily belong to H (axiom G.3) and the associative property (axiom G.2) must
hold for all its elements, exactly as for all the elements of G.

Let us now consider a group G whose elements are denoted by {gn, n = 0, 1, . . . } and over
which the addition operation � is defined; and a subgroup H of G consisting of the n distinct
elements {h0, h1, . . . , hn−1}, with h0 = 0.1 Furthermore, let us generate a matrix S = [si,j ] (containing
n columns) using the following algorithm:

1. The first row of S consists of all the ordered elements of H (i.e., s0,j = hj , with j = 0, 1, . . . ,

n − 1).
2. The first element gr1

of the second row of S is an element of G not appearing in the first row
and any other element of the same row is generated by adding gr1

(taken as first operand) to the
corresponding element of the same row, that is:

s1,j = gr1
� hj , (E.8)

with j = 1, 2, . . . , n − 1.
3. The procedure illustrated for the first row is repeated for all the other rows of S, selecting as first

element of the kth row an element grk
in G which has not appeared in the previous rows, until all

the elements of G are included in S.

The matrix S is structured as:

S =




h0 = 0 h1 . . . hn−1
gr1

� h0 gr1
� h1 . . . gr1

� hn−1

. . . . . . . . . . . .

grk
� h0 grk

� h1 . . . grk
� hn−1




1 The multiplication operation can be used in place of the addition operation; in this case, however, h0 = 1 (in
other words, h0 is always the identity element).
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for the case in which G consists of a finite number of elements. The set consisting of all the elements
of a single row of S represents a left coset2 of G and the first element of each coset is called a
coset leader.

It can be proved that any element of a group G belongs to one, and only one, of the cosets associated
with a subgroup H. Moreover, if the order OG of G is defined as the number of its elements and the
index IG|H of G over the subgroup H is defined as the number of its elements with respect to H itself,
then the equality:

OG = IG|H · OH (E.9)

holds.

E.2 Fields

E.2.1 Axiomatic Definition of a Field and Finite Fields

Let us now consider an algebraic structure F consisting of a set of elements for which two dyadic
operations, namely an addition (�) and a multiplication (�) are defined. The structure F is a field if
it satisfies the following seven axioms.

Axiom F.1 (commutativity). F is a commutative group with respect to addition.
Axiom F.2 (closure). For any pair (a, b) of elements in F, a � b is in F.
Axiom F.3 (associative law). For any triple (a, b, c) of elements in F, the equality

(a � b) � c = a � (b � c) (E.10)

holds.
Axiom F.4 (identity element). F contains an element, called the multiplicative identity and denoted

by 1, such that:
a � 1 = 1 � a = a (E.11)

for any a in F.
Axiom F.5 (inverse element). F contains, for any element a �= 0, a multiplicative inverse (or recip-

rocal) denoted by a−1, such that a � a−1 = a−1 � a = 1.
Axiom F.6 (commutative law). For any pair (a, b) of elements in F, the equality a � b = b � a

holds.
Axiom F.7 (distributive law). For any triple (a, b, c) of elements in F, the distributive law:

a � (b � c) = a � b � a � c (E.12)

holds.
Note that axioms F.2–F.6, which refer uniquely to the properties of multiplication,3 are not enough

to state that F is a commutative group not only with respect to addition (as stated by axiom F.1), but
also with respect to multiplication. In fact, a multiplicative inverse for the additive identity 0 does not
exist, so that axiom G.4 of Section E.1 is not satisfied.

A field F can consist of either an infinite or finite set of elements. In the latter case, F is a finite
field or Galois field and is usually denoted by GF(q), where q is its number of elements. Note that
the minimum number of elements of a Galois field F is two and that, in this case, F consists of the
additive identity 0 and of the multiplicative identity 1 (in other words, GF(2) = {0, 1}) and that the
addition and the multiplication must necessarily be carried out according to the rules summarized in

2 If the order of the operands in (E.8) is reversed, a right coset is generated; of course, if G is Abelian, there is no
difference between a right coset and its left counterpart.
3 Only axiom F.7 expresses a joint property of addition and multiplication.
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Table E.1 Table of
addition for GF(2)

� 0 1

0 0 1
1 1 0

Table E.2 Table of
multiplication for GF(2)

� 0 1

0 0 0
1 0 1

Tables E.1 and E.2, respectively. Note that GF(2) is the field used in most digital electronics and the
addition and multiplication are implemented using an exclusive-or gate and and gate, respectively.

It can be proved that, for any prime number q, a finite field GF(q) consisting of exactly q elements
exists. In this case, the elements of GF(q) can be represented by the integers {0, 1, . . . , q − 1}, and
addition and multiplication can be evaluated as:

a � b = Rq [a + b] (E.13)

and
a � b = Rq [a · b], (E.14)

respectively, for any a, b in GF(q) (as already mentioned in Section E.1, the symbols + and · denote
addition and the multiplication, respectively, for ordinary numbers). A field GF(q) containing a prime
number q of elements is called a prime field. However, if q is not prime, a finite field containing
exactly q elements does not exist. More specifically, the existence of a finite field GF(q) can be
proved if q is the power of a prime number p, that is, if q = pm, where m is a integer not smaller
than unity.4 If m is larger than unity, GF(q) represents an extension field; however, unlike the case of
prime fields, if the set of integers {0, 1, . . . , q − 1} is used to represent its elements, then addition and
multiplication over it cannot be defined by (E.13) and (E.14), since the field axioms are not satisfied.
In fact, in this case, defining addition and multiplication properly requires the use of a polynomial
representation of the field elements, as illustrated in the following subsection.

E.2.2 Polynomials and Extension Fields

We now describe the most relevant properties of the polynomials defined over a field F. Then we
show how, given a proper polynomial representation for a set of q = pm elements, the operations of
addition and multiplication can be defined in a such way as to construct a finite field GF(q).

E.2.2.1 Fundamental properties of polynomials over a field

Generally speaking, given a field F (and denoting addition and multiplication over it by the symbols
� and �, respectively), a set of single-variable polynomials, whose coefficients belong to F (called

4 In the following, the parameter p will always denote a prime number; in real-world applications p = 2 is usually
selected, so that GF(q) = GF(2m).
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a ground field), can be constructed. In fact, if D denotes such a single variable, a polynomial x(D)

over the field F takes the form:

x(D) = x0 + x1D + . . . + xnD
n, (E.15)

where the coefficients {xi, i = 0, 1, . . . , n − 1} belong entirely to F. We now summarize some basic
definitions and fundamental results of the mathematical theory of polynomials. To begin, we note the
following:

• If the coefficient xn in (E.15) is not equal to zero, the parameter n, representing the exponent of
the largest power of D, is the so-called degree of x(D).

• If xn is equal to unity, x(D) is a monic polynomial.

The operations of addition (+) and multiplication (·) between polynomials can easily be carried out
if the tables of addition (�) and multiplication (�) defined over F are given. Note that, in general,
the degree of the sum of two polynomials is equal to the maximum degree of the operands, whereas
the degree of the product of two polynomials is equal to the sum of the degree of the operands.

If three polynomials x(D), y(D) and z(D) over F satisfy the equality:

z(D) = x(D) · y(D), (E.16)

it is said that z(D) is divisible by x(D), or that x(D) divides z(D), or that x(D) is a factor of z(D).
A polynomial x(D) of degree n which is not divisible by any nonnull polynomial defined over the
same field and of degree larger than 0 and smaller than n is irreducible.

The largest common divisor of two polynomials is the monic polynomial of largest degree dividing
both polynomials; the two polynomials are relatively prime if their largest common divisor is equal
to unity.

A nonnull polynomial of degree 0 is an element of F and, consequently, has a multiplicative inverse;
however, no polynomial of degree larger than zero shares this property.

For any two polynomials x(D) and d(D) (with d(D) �= 0), there exist a unique couple of polyno-
mials q(D) (called the quotient) and r(D) (called the remainder) such that:

x(D) = d(D) · q(D) + r(D) (E.17)

and the degree of r(D) is smaller than than of the divisor d(D). This result is known as the Euclid
division algorithm. If d(D) is monic and its degree is equal to unity, that is:

d(D) = D − a, (E.18)

then (E.17) becomes:
x(D) = (D − a) · q(D) + r, (E.19)

where the remainder r, having null degree, belongs to F. Setting D = a in (E.19) yields:

r = x(a) (E.20)

This result is known as the remainder theorem and has some implications. In fact, if x(a) = 0, that
is, if a is a root (or zero) of x(D), the last result implies that r = 0, so that d(D) in (E.18) is a
factor of x(D) (this result is known as the factor theorem). Therefore, for any distinct root of x(D),
there exists a corresponding factor of degree 1. Since the degree of a product of polynomials is equal
to the sum of the degree of its factors, the degree of x(D) is not smaller than the number of its
distinct roots. It is also worth mentioning that the fundamental theorem of algebra, which establishes
the existence of n distinct roots for a polynomial x(D) of degree n, holds whatever the field F of its
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coefficients. Obviously, the roots of x(D) do not necessarily belong to F , but can belong to another
field originating from its extension. This is exemplified by those polynomials having real coefficients
but whose roots belong to the (extension field) of complex numbers.

Finally, it is important to point out that, if a polynomial x(D) is irreducible, not all its roots
belong to F. However, the inverse implication does not hold. In other words, if not all the roots of
a polynomial x(D) belong to F, it is still possible that it can be factored as x(D) = y(D) · z(D),
where the polynomials y(D) and z(D) have all their coefficients belonging to F, but not all their roots
belonging to that field.

E.2.2.2 Polynomial Representation of an Extension Field

Let us now consider the problem of how to define the operations of addition and multiplication over a
set of q = pm elements (for a prime number p and a positive integer m) in such a way that an extension
field GF(q) is generated. This problem can be solved by representing each element of the set not by
an integer, but by a polynomial of degree m − 1 over the field GF(p). Note that the overall number of
polynomials of this type which can potentially be generated is pm, that is, the cardinality of the given
set, so that a one-to-one correspondence between the elements of the set and the above-mentioned
polynomials can be established. Then the addition and multiplication of two arbitrary elements of the
set can be defined for their polynomial representations, which are denoted by a(D) = ∑m−1

k=0 ak Dk

and b(D) = ∑m−1
k=0 bk Dk . In fact, addition of the two elements is given by the element represented

by the polynomial:

c(D) = a(D) + b(D) =
m−1∑
k=0

ck Dk, (E.21)

where
ck � ak � bk = Rq [ak + bk], (E.22)

and � denotes addition over the (prime) fields GF(p) of the polynomial coefficients (see (E.13)).
In other words, the sum of the two set elements is represented by the polynomial generated by the
sum (denoted by the symbol +) of a(D) and b(D); note that c(D) has the same degree as a(D) and
b(D). Defining multiplication between the same elements is more involved, since, in general, the usual
product between the two polynomials a(D) and b(D), each of degree m − 1, generates a polynomial
of degree 2(m − 1), which is too large to represent a set element. For this reason, multiplication
(denoted � in the following to differentiate it from the usual product, · , between polynomials) is
defined by:

c(D) = a(D) � b(D) � Rf (D)[a(D) · b(D)], (E.23)

where f (D) is an irreducible polynomial over GF(p) of degree m. Note that the R·[·] operator in
(E.23) entails a reduction of the maximum degree of the resulting polynomial to m − 1 and its use
recalls that of (E.14) for a prime field. It can be proved that the set of polynomials of degree m − 1
over the field GF(p), with the two operations of addition and multiplication defined by (E.21)–(E.23),
form a Galois field, whose additive (multiplicative) identity is given by x(D) = 0 (x(D) = 1).

Let us apply now the results illustrated above to construct the extension field GF(23) = GF(8).

Example E.2.1 The field GF(23) consists of eight distinct elements; each of them can be represented
by an integer between 0 and 7 (integer representation), by a polynomial having binary coefficients
and degree not larger than m − 1 = 2 (polynomial representation, PR) or by a triple of bits (binary
representation, BR), as shown in Table E.3.

In evaluating the product of (representing the elements of GF(23)) according to (E.23), the irre-
ducible GF(2) polynomial:

f (D) = 1 + D + D3 (E.24)
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Table E.3 Polynomial, integer and
binary representations of the elements of
GF(8)

Polynomial Integer Binary

0 0 000
1 1 001
D 2 010

D + 1 3 011
D2 4 100

D2 + 1 5 101
D2 + D 6 110

D2 + D + 1 7 111

Table E.4 Addition table for GF(8)

� 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table E.5 Multiplication table for GF(8)

� 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

of degree m = 3 can be used. The tables of addition and multiplication associated with the choice
(E.24) are given in Tables E.4 and E.5, respectively.

�

The existence of finite fields with q = pm elements, for any prime number p and positive integer
m, is guaranteed by the fact that there exists at least one irreducible polynomial of degree m over
GF(p). Note that the use of different irreducible polynomials characterized by the same degree and
defined over the same field leads to the generation of isomorphic fields, differing only in the way
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elements are labeled (in other words, a one-to-one correspondence transforming one field in the other
one can be found). In practice, this means that a unique field GF(q), with q = pm, exists.

E.2.3 Other Definitions and Properties

In this subsection some important definitions and results about finite fields are briefly illustrated.

E.2.3.1 Subfields

A field GF(q) may contain a subset of r elements satisfying the field axioms. Such a subset is called
subfield. It can be proved that a field of size q = pm contains a subfield of size r = ps if and only if
s divides m. For this reason, a field GF(pm) always contains the ground field GF(p) (whose elements
are represented by zero-degree polynomials).

E.2.3.2 Characteristic of a Field

Let us consider the multiplicative identity, 1, of the field GF(q) and generate the sequence:

s[n] �
n∑

k=1

1 (E.25)

adding n times this element5, with n = 1, 2, . . . . The smallest value of n for which s[n] takes on
a null value is called the characteristic of the field GF(q). It is easy to show that, if q = p (i.e., a
prime field is considered), then the field characteristic is equal to p, because of the definition (E.13)
of addition for field elements. Furthermore, if q = pm, the characteristic of the field is still equal
to p because summing two polynomials entails adding their corresponding coefficients over GF(p)

(see (E.22)).

E.2.3.3 Order of a Field Element

Let us consider a nonnull element β of GF(q) and generate the sequence:

β1, β2, β3, . . . (E.26)

consisting of consecutive powers of β. Since the given field contains a finite number of elements, such
a sequence is necessarily periodic. Its period n represents the order of β. Note that n is the smallest
value of the positive integer l ensuring that:

βl+1 = β. (E.27)

From the last result it is easily inferred that:

βn = 1, (E.28)

so that β is an n-ary root of unity.
Note also that, since GF(q) contains q − 1 nonnull elements, the largest value of the order of its

elements is equal to q − 1. In number theory it is also shown that the order of each element of GF(q)

is always a divisor of q − 1. For this reason, if q − 1 is prime, the possible orders of the elements of
GF(q) are 1 (order of the multiplicative identity) and q − 1 only.

5 Note that the addition is that of the ground field.
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E.2.3.4 Primitive Element of a Field

It can be proved that a field GF(q), with q = pm, contains at least one element of order q − 1, that is,
an element α whose sequence {α1, α2, . . . , αq−1 = 1 = α0} of consecutive powers contains all the
nonnull elements of the given field. Such an element is called a primitive element. Note that if q − 1
is prime, then all the elements of GF(q), different from 0 and 1, are primitive.

Since each element β ∈ GF(q) can be expressed as a power of α, that is:

β = αk, (E.29)

where k is an integer of proper value, β can be represented by k, which can be interpreted as the
logarithm of β to base α (by convention, the logarithm of 0 is −∞). If this representation is adopted,
multiplication and division6 between the elements β (E.29) and γ = αs can be represented by summing
and subtracting their logarithmic representations, respectively, exactly as in the case of real numbers.
It should be kept in mind, however, that, since αq−1 = 1, both addition and subtraction of exponents
must be evaluated modulo q − 1, that is:

β � γ = αR(q−1)[k+s] (E.30)

and

β � γ −1 = αR(q−1)[k−s], (E.31)

respectively.

E.2.3.5 Primitive Polynomials

An important subset of the irreducible polynomials over a field GF(p) is that consisting of primitive
polynomials. A primitive polynomial over GF(p) of degree m (with m ≥ 2) is a polynomial whose
m roots are all primitive elements of GF(q), with q = pm. A list of primitive polynomials {pm(D)}
over GF(2) of degrees m = 2, 3, . . . , 8, is given in Table E.6. These polynomials can be used in
evaluating the multiplication between polynomials according to (E.23) (where a primitive polynomial
f (D) is needed), thus allowing finite fields of size 2m (i.e., 8, 16, . . . , 256) to be generated. Field
construction involving primitive polynomials is further discussed in the following example.

Table E.6 Primitive polynomials
of degree m over GF(2)

m pm(D)

2 1 + D + D2

3 1 + D + D3

4 1 + D + D4

5 1 + D2 + D5

6 1 + D + D6

7 1 + D3 + D7

8 1 + D2 + D3 + D4 + D8

6 The division of β by γ has to be evaluated as the product of β and the multiplicative inverse of γ .
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Example E.2.2 Let us now construct the field GF(24) = GF(16), following a different approach7 than
adopted in Example E.2.1 for GF(8). To begin, let us assume that the first two elements of the field
are the additive identity (0) and the multiplicative identity (1), and that the the third element, α, is a
root of the binary polynomial of degree m = 4 given in Table E.6:

f (D) = D4 + D + 1. (E.32)

Since α is a primitive element, all the other elements of GF(16) can be expressed as consecutive
powers8 of α, as illustrated in the first column of Table E.7. Note also that each element of the given
field can be represented by a polynomial over GF(2) of degree not larger than m − 1 = 3. To show
this, let us assume that α, α2 and α3 are represented by D, D2 and D3, respectively. To derive the
polynomial representation of the next element (α4), let us adopt the following line of reasoning. Since
α is a root (E.32), we have that:

α4 + α + 1 = 0, (E.33)

so that:
α4 = α + 1. (E.34)

The last result provides a representation of the field element as a linear combination of powers of α.
This representation, known as the basis representation, can be derived for all the other field elements
and, generally speaking, involves powers of α having degree not larger than m − 1 = 3. For instance,
since α5 = α4 · α, from (E.34) it is easily inferred that:

α5 = (α + 1) · α = α2 + α. (E.35)

Table E.7 Different representations for the elements of
GF(16)

αj LoR PR BR

0 = α−∞ −∞ 0 0000
1 = α0 0 1 0001
α1 1 D 0010
α2 2 D2 0100
α3 3 D3 1000
α4 4 D + 1 0011
α5 5 D2 + D 0110
α6 6 D3 + D2 1100
α7 7 D3 + D + 1 1011
α8 8 D2 + 1 0101
α9 9 D3 + D 1010
α10 10 D2 + D + 1 0111
α11 11 D3 + D2 + D 1110
α12 12 D3 + D2 + D + 1 1111
α13 13 D3 + D2 + 1 1101
α14 14 D3 + 1 1001

7 Note that in this case the field construction technique of Example E.2.1 for GF(8) can also be adopted. In addition,
it can be shown that, if in evaluating polynomial multiplication according to (E.23) the polynomial f (D) (E.32)
is selected, that technique leads exactly to the same results for GF(16) as those developed below using a different
approach.
8 Note that the last element is αq−2 = α14, since αq−1 = α15 = 1.
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It is also important to point out that, on the basis of the results (E.34) and (E.35), the polynomial
representations D + 1 and D2 + 2 can be adopted for the field elements α4 and α5, respectively. If this
approach is adopted for all the other consecutive powers of α, the PR of all the elements of GF(16)

is found. Such a representation is provided by the third column of Table E.7, which also shows, for
each element of that field, its logarithmic representation (LoR) and BR. Note that the BR of a field
element can be easily derived from its PR, reading the coefficients of the associated polynomial in an
ordered fashion. The reader can verify that:

• the possible orders of the nonnull elements of GF(16) are 1, 3, 5 and 15;
• GF(16) contains eight primitive elements (including α).

�

It can be shown that the basis representation mentioned in Example E.2.2 can be applied to any
field GF(q), with q = pm. In fact, any element β of this field can be expressed as a linear combination
of the powers {α0, α1, . . . , αm−1}:

β =
m−1∑
k=0

βk αk, (E.36)

where βk ∈ GF(p), with k = 0, 1, . . . , m − 1.

E.2.3.6 Minimal Polynomials and Cyclotomic Cosets

The minimal polynomial mγ (D) of an element γ ∈ GF(q) (with q = pm) is a monic polynomial of
minimum degree over GF(p) having γ as a root, that is, such that:

mγ (D)|D=γ = 0. (E.37)

It can be shown that, for any element γ , the degree of its minimal polynomial mγ (D) is not larger
than m. The structure of mγ (D) can be easily understood if the following property, referring to an
arbitrary polynomial f (D) over GF(p), is taken into account: given the element δ ∈ GF(q) (with
q = pm), if δr (where r is an integer) is a root of f (D), then δrp, δrp2

, δrp3
, . . . are also roots

of the same polynomial. This implies that the minimal polynomials over GF(p) of the elements
γ, γ p, γ p2

, . . . , belonging to GF(q), are all the same. The field elements characterized by the same
minimal polynomial are called conjugate elements; the set of conjugate elements sharing the same
minimal polynomial form a cyclotomic coset. The following properties can also be proved:

(a) The set of elements of GF(q) can be divided into disjoint cyclotomic cosets, which consequently
form a partition of GF(q).

(b) The minimal polynomial of an element γ ∈ GF(q) can be expressed as:

mγ (D) =
∏
k∈Sγ

(D − αk), (E.38)

where α is a primitive element of GF(q) and Sγ denotes the set of exponents of α needed
to generate the cyclotomic coset of γ . Note that the multiplication (E.38) consists of ordinary
polynomial multiplications, unlike the multiplication defined in (E.23).

An application of these concepts to a specific field is illustrated in the following example.

Example E.2.3 Let us again consider the field GF(16) of Example E.2.2. It is easy to show that each
of the subsets {0}, {α, α2, α4, α8}, {α3, α6, α9, α12}, {α5, α10}, {α7, α11, α13, α14}, {α0 = 1} forms a
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Table E.8 Minimal polynomials of GF(16)

Exponents of α for elements Minimal polynomial
of each cyclotomic coset

−∞ D
0 D + 1

1, 2, 4, 8 D4 + D + 1
3, 6, 9, 12 D4 + D3 + D2 + D + 1

5, 10 D2 + D + 1
7, 11, 13, 14 D4 + D3 + 1

cyclotomic coset and that all of them form a partition of GF(16). The minimal polynomial associated
with each coset can easily be derived by applying (E.38); for instance, the minimal polynomial of
γ = α7 is given by:

mγ (D) = (D − α7) · (D − α11) · (D − α13) · (D − α14), (E.39)

which, after some manipulation, can be expressed as:

mγ (D) = D4 + D3 + 1, (E.40)

which is a polynomial over the prime field GF(2). The expressions for the minimal polynomials for
all the elements of GF(16) are provided in Table E.8.

�

Example E.2.3 shows that the minimal polynomials associated with distinct cosets may have dif-
ferent degrees. This is due to the fact that the number of conjugate elements can change from coset to
coset. Finally, note that the cyclotomic cosets of a finite field can be constructed independently of the
irreducible polynomial f (D) selected in the definition (E.23) of multiplication between field elements.

E.2.4 Computation Techniques for Finite Fields

Let us now analyze the problem of how addition and multiplication over GF(q), with q = pm, can be
implemented. Let us assume that p = 2 (i.e., q = 2m) since this occurs in most applications. Different
options are available in this case, each characterized by specific requirements in terms of memory and
computational complexity.

The first option is represented by the so-called lookup table technique and should be considered if
q is not too large. In this case each of the operands is represented by a string of m bits and the table
representing each of the two operations is implemented by means of a digital memory addressed by 2m

bits (m bits per operand) and providing m output bits. An alternative approach to the use of a digital
memory is represented by the implementation of the two tables by means of logical circuits. These
two approaches become too costly if the field size is large. In particular, if q is large, computations
should be done by resorting to digital circuits that implement operations between polynomials over
the ground field (i.e., over GF(q) in the case considered). If this approach is adopted, addition can be
easily performed, since it requires m sums between corresponding binary coefficients (see (E.21) and
(E.22)), that is, m exclusive ORs. Multiplication is much more complicated but can be handled using
a basis representation for each operand (see (E.36)). For instance, to evaluate the multiplication of the
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elements δ and ρ of GF(2m) their representations:

δ =
m−1∑
k=0

δk αk (E.41)

and

ρ =
m−1∑
k=0

ρk αk (E.42)

can be substituted in (E.23); this leads, after some manipulation, to m boolean expressions relating the
2m binary coefficients {δk, ρk, k = 0, 1, . . . , m − 1} to the m output bits. In practice, such expressions
can be easily implemented using gate-array technology. The multiplication of δ and ρ of GF(2m) can
also be implemented by representing them as powers of a primitive element α of GF(2m), δ = αd and
ρ = αr , respectively, and exploiting (E.30). This leads to the expression:

δ � ρ = α
R(2m−1)[d+r]

, (E.43)

whose implementation requires:

(a) extracting, by means of a logarithm operation, the exponents d and r, associated with elements δ

and ρ, respectively (each exponent is represented by m bits at the multiplier input),
(b) evaluating the addition R(2m−1)[d + r] (this operation generates m bits),
(c) computing an anti-logarithm operation generating the binary representation (m bits) for the element

α
R(2m−1)[d+r].

Finally, note that a lookup table technique can be adopted to evaluate the logarithm and anti-
logarithm operations.

Let us now apply one of the computation techniques illustrated above to a specific finite field.

Example E.2.4 Let us focus on the problem of evaluating the multiplication of the elements δ and ρ

of the group GF(8), generated in Example E.2.1 (the irreducible polynomial f (D) = 1 + D + D3 has
been used in defining the multiplication according to (E.23)). Given a primitive element α of GF(8),
δ and ρ can be represented using the basis {α0 = 1, α, α2}, that is, as (see (E.41) and (E.42)):

δ = δ0 + δ1 α + δ2 α2 (E.44)

and
ρ = ρ0 + ρ1 α + ρ2 α2 , (E.45)

respectively, where all the parameters {δk, k = 1, 2, 3} and {ρk, k = 1, 2, 3} are binary. Keeping in
mind that α3 = α + 1 and α4 = α2 + α, it is easy to show that evaluating the multiplication between
the representations (E.44) and (E.45) yields:

γ � δ � ρ = γ0 + γ1 α + γ2 α2, (E.46)

where

γ0 = δ0 · ρ0 + δ0 · ρ2 + δ2 · ρ0, (E.47)

γ1 = δ0 · ρ1 + δ1 · ρ0 + δ0 · ρ2 + δ2 · ρ0 + δ2 · ρ2, (E.48)

γ2 = δ0 · ρ2 + δ2 · ρ0 + δ1 · ρ1 + δ2 · ρ2. (E.49)
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Figure E.1 Multiplier for GF(8).

The block diagram of a multiplier based on (E.47)–(E.49) is shown Figure E.1(a) (note that the
addition and multiplication operations appearing in the RHS of (E.47)–(E.49) are evaluated in GF(2)).
An alternative scheme based on (E.43) is represented in Figure E.1(b).

�

We conclude that implementing the operations defined over GF(q) is not at all difficult and is
usually simpler than accomplishing the same task over the field of integers. For instance, since GF(q)

contains a finite numbers of elements, overflow problems do not exist.

E.3 Vector Spaces
Let us consider a field F (where addition and multiplication between its elements are denoted by
the symbols � and �, respectively) and algebraic structure V consisting of a set of elements over
which an addition operation (denoted by +) is defined. Moreover, let us assume that a multiplication
operation (denoted by ·) between an element of V and F is also defined. The structure V is a vector
space over the field F if it satisfies the following five axioms.

Axiom V.1. V is a commutative group under addition.
Axiom V.2. For each element a ∈ F and9 v ∈ V , a · v belongs to V.

9 In the following the elements of V are always represented by bold letters, to avoid confusing them with those
of F.



Appendix E 623

Axiom V.3 (distributive laws). For any pair u, v ∈ V , and any pair a, b ∈ F , the equalities:

a · (u + v) = a · u + a · v (E.50)

and
(a � b) · v = a · v + b · v (E.51)

hold.
Axiom V.4 (associative law). For any v ∈ V , and any pair a, b ∈ F , the equality:

(a � b) · v = a · (b · v) (E.52)

holds.
Axiom V.5. If the symbol 1 denotes the multiplicative identity of F, for any v ∈ V the equality:

1 · v = v (E.53)

holds.
The elements of a vector space V are called vectors, whereas the elements of F are called scalars.

The operation + defined over V is called vector addition, whereas the operation ·, turning a scalar of
F and a vector of V in another vector of V, is called scalar multiplication (or scalar product). The
additive identity of V is conventionally represented by the vector 0.

An important vector space playing a fundamental role in coding theory is defined in the following
example.

Example E.3.1 Let us consider the set Vn consisting of all the n-dimensional row vectors whose
elements belong to the field GF(q), with q = pm (p is a prime number, m is a nonnegative integer)
and assume that F = GF(q). Since there are q choices for each element of Vn, this set consists of
qn distinct vectors. For any a = [a0, a1, . . . , an−1] and b = [b0, b1, . . . , bn−1] in Vn, addition (+) is
defined as:

a + b � [a0 � b0, a1 � b1, . . . , an−1 � bn−1], (E.54)

where � denotes addition over F (i.e., over GF(q)). Next, we define scalar multiplication (·) of any
a = [a0, a1, . . . , an−1] in Vn by any element α from F as:

α · b � [α � b0, α � b1, . . . , α � bn−1], (E.55)

where � denotes multiplication over F. It is easy to show that, given these definitions, the set Vn

forms a vector space over F.
�

It may happen that a subset S of a vector space V over a field F is also a vector space over the
same field; such a subset is a subspace of V. Subspaces of V can be easily generated by following the
same procedure. Let us consider k vectors {v0, v1, . . . , vk−1} in V and k scalars {α0, α1, . . . , αk−1}
from F. The sum:

α0 · v0 + α1 · v1 + . . . + αk−1 · vk−1 =
k−1∑
l=0

αl · vl (E.56)

represents a linear combination of the given k vectors. It can be shown that the set of all possible
linear combinations of such vectors forms a subspace of V. The set of k vectors {v0, v1, . . . , vk−1} is
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linearly dependent if and only if there exist k scalars {α0, α1, . . . , αk−1} from F, not all equal to 0,
such that:

k−1∑
l=0

αl · vl = 0. (E.57)

Otherwise the set of vectors is said to be linearly independent.
A set of k vectors {v0, v1, . . . , vk−1} is said to span a vector space V if any vector in V can be

expressed as a linear combination of the vectors of the given set. If such a set is linearly independent,
it is called a basis of the vector space V and the number k of its elements is called the dimension of V.
It can be proved that the number of vectors contained in any basis of a vector space V is the same.

Given a vector space V over a field F, another dyadic operation, called the inner product (or dot
product) and denoted by ◦, can be defined for any pair of vectors in V. Such a product generates a
scalar and possesses the following properties:

u ◦ v = v ◦ u, (E.58)

u ◦ (v + w) = u ◦ v � u ◦ w, (E.59)

(α · u) ◦ v = α � (u ◦ v), (E.60)

where u, v and w represent arbitrary vectors in V and α is any scalar from F. A specific definition
of the scalar product is provided in the following example.

Example E.3.2 Let us consider the vector space Vn over the field F = GF(q) defined in Example
E.3.1. For any a = [a0, a1, . . . , an−1] and b = [b0, b1, . . . , bn−1] in Vn the inner product can be
defined as:

a ◦ b � a0 � b0 � a1 � b1 � . . . � an−1 � bn−1. (E.61)

Note that the RHS of this expression generates an element of F.
�

If the inner product u ◦ v is equal to 0, u and v are said to be orthogonal to each other. Let S be
an n-dimensional subspace of V and let SO be the set of vectors in V such that, for any u ∈ S and
v ∈ SO , we have that u ◦ v = 0. It can be proved that SO is also a subspace of V. This subspace is
called the null (or dual) space of S and, reciprocally, S is the dual space of SO . In addition, it can
been shown that, if the dimension of V is equal to k, the dimension of SO is k − n.
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Error Function and
Related Functions

The pdf of a Gaussian or normal random variable X is given by:

fX(x) = 1√
2πσ 2

X

exp

[
−

(
x − ηX

)2

2σ 2
X

]
, (F.1)

where σ 2
X and ηX denote the variance and mean of X, respectively. We may write X ∈ N (ηX, σ 2

X),
where N (ηX, σ 2

X) denotes the set of Gaussian random variables having the same mean value and
variance as X. A random variable N ∈ N (0, 1) is called a standard normal variable and its pdf is
given by:

fN(n) = 1√
2π

exp

(
−n2

2

)
. (F.2)

It is easy to prove that any X ∈ N (ηX, σ 2
X) can be expressed as a linear transformation of a standard

normal variable N ; in particular, we have that:

X = σX N + ηX, (F.3)

so that:

fX(x) = 1

σX

fN

(
x − ηX

σX

)
. (F.4)

Unfortunately, a closed-form expression for the distribution function FX(x) of X ∈ N (ηX, σ 2
X) does

not exist. However, FX(x) can be expressed as:

FX(x) = �

(
x − ηX

σX

)
, (F.5)

where

�(x) � 1√
2π

∫ x

−∞
exp

(
n2

2

)
dn (F.6)
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denotes the distribution function of a standard normal variable, or as:

FX(x) = 1 − Q

(
x − ηX

σX

)
, (F.7)

where

Q(x) � 1 − �(x) =
∫ +∞

x

exp

(
−n2

2

)
dn. (F.8)

Then the probability that X takes on values in the interval [a, b] can be evaluated as:

Pr{a ≤ X ≤ b} = �

(
b − ηX

σX

)
− �

(
a − ηX

σX

)

= Q

(
a − ηX

σX

)
− Q

(
b − ηX

σX

)
. (F.9)

The latter result illustrates the importance of estimating the function �(·) or, equivalently, Q(·). Note,
however, that, other related functions, such as the error function:

erf (x) � 2√
π

∫ x

0
exp (−θ2) dθ (F.10)

or the complementary error function:

erfc (x) � 1 − erf(x) = 2√
π

∫ ∞

x

exp (−θ2) dθ, (F.11)

can be used in place of �(·) in (F.6) and Q(·) in (F.8) for the evaluation of the RHS of (F.9). In fact,
it is easy to show that:

�(x) = 1

2
+ 1

2
erf

(
x√
2

)
(F.12)
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Figure F.1 The functions �(x), erf(x), erfc(x) and Q(x).
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and

Q(x) = 1

2
erfc

(
x√
2

)
. (F.13)

Figure F.1 shows the behavior of the functions �(x), erf(x), erfc(x) and Q(x); note that erf(x) exhibits
antisymmetric behavior around the origin.

Various numerical methods have been developed for the efficient evaluation of the error and Q(·)
functions (e.g., see [1850, 2078–2081]). These functions are tabulated and are often available as
built-in functions in mathematical software. In addition, various bounds have been derived for erfc(x)

(or, equivalently, for Q(·)). Here, we mention the exponential-type bound [321]:

erfc(x) ≤ exp (−x2), (F.14)

which holds for x ≥ 0. This is equivalent to (see (F.13)):

Q(x) ≤ 1

2
exp

(
−x2

2

)
, (F.15)

which also holds for x ≥ 0. Other useful bounds on the Q(·) function can be found in [1850, 1851,
2082]. Finally, it is worth mentioning that the bounds proposed in [1851, 2082] are based on the
formula:

Q(x) = 1

π

∫ π/2

0
exp

(
− x2

2sin2 (θ)

)
dθ, (F.16)

which is known as the Craig form or representation of the Q(·) function itself [2083].
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1434. S. Verdú, “Multiple-access channels with memory with and without frame synchronism”, IEEE Trans.
Inform. Theory , vol. 35, pp. 605–619, May 1989.

1435. , “The capacity region of the symbol-asynchronous Gaussian multiple-access channel”, IEEE Trans.
Inform. Theory , vol. 35, pp. 733–751, July 1989.

1436. R. J. McEliece and W. E. Stark, “Channels with block interference”, IEEE Trans. Inform. Theory , vol. 30,
pp. 44–53, Jan. 1994.

1437. S. N. Diggavi, “Analysis of multicarrier transmission in time-varying channels”, in Proc. IEEE Int. Conf.
Commun. (ICC ’97), Montreal, June 1997, pp. 1191–1195.

1438. R. Knopp and P. A. Humblet, “Multiple-accessing over frequency-selective fading channels”, in Proc.
6th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (PIMRC 1995), Toronto, 27–29
Sep. 1995, pp. 1326–1330.

1439. M. Mushkin and I. Bar-David, “Capacity and coding for the Gilbert-Elliot channel”, IEEE Trans. Inform.
Theory , vol. 35, pp. 1277–1290, Nov. 1989.

1440. I. Csiszár and P. Narayan, “The capacity of the arbitrary varying channel”, IEEE Trans. Inform. Theory ,
vol. 37, no. 1, pp. 18–26, Jan. 1991.

1441. A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information, and coding for finite-state Markov
channels”, IEEE Trans. Inform. Theory , vol. 42, no. 3, pp. 868–886, May 1996.

1442. , “Capacity of fading channels with channel side information”, IEEE Trans. Inform. Theory , vol. 43,
pp. 1986–1992, Nov. 1997.

1443. M. Effros and A. Goldsmith, “Capacity definitions and coding strategies for general channels with
receiver side information”, in Proc. 1998 IEEE Int. Symp. Inform. Theory, Cambridge, MA, 16–21 Aug.
1998, p. 39.

1444. M.-S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under different adaptive
transmission and diversity-combining techniques”, IEEE Trans. Veh. tech ., vol. 48, no. 4, pp. 1165–1181,
July 1999.

1445. S. A. Jafar and A. Goldsmith, “Multiple-antenna capacity in correlated Rayleigh fading with channel
covariance information”, IEEE Trans. Wireless Commun ., vol. 4, no. 3, pp. 990–997, May 2005.

1446. T. Holliday, A. Goldsmith, and P. Glynn, “Capacity of finite state channels based on Lyapunov exponents
of random matrices”, IEEE Trans. Inform. Theory , vol. 52, no. 8, pp. 3509–3532, Aug. 2006.

1447. I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The capacity of discrete-time memoryless Rayleigh-
fading channels”, IEEE Trans. Inform. Theory , vol. 47, no. 4, pp. 1290–1301, May 2001.

1448. P. F. Driessen and G. J. Foschini, “On the capacity formula for multiple input-multiple output wireless
channels: a geometric interpretation”, IEEE Trans. Commun ., vol. 47, no. 2, pp. 173–176, Feb. 1999.

1449. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels”, IEEE J.
Sel. Areas Commun ., vol. 21, no. 5, pp. 684–702, June 2003.

1450. A. F. Molisch, M. Z. Win, and J. H. Winters, “Space-time-frequency (STF) coding for MIMO-OFDM
systems”, IEEE Commun. Lett ., vol. 6, no. 9, pp. 370–372, Feb. 2002.

1451. C.-E. W. Sundberg and N. Seshadri, “Coded modulation for fading channels: An overview”, European
Trans. Telecommun ., vol. 4, pp. 309–324, May–June 1993.

1452. J. Ramsey, “Realization of optimum interleavers”, IEEE Trans. Inform. Theory , vol. 16, no. 3,
pp. 338–345, May 1970.

1453. D. G. Forney, Jr., “Burst-correcting codes for the classic bursty channel”, IEEE Trans. Commun. Technol .,
vol. 19, no. 5, pp. 772–781, Oct. 1971.



References 687

1454. I. Richer, “A simple interleaver for use with Viterbi decoding”, IEEE Trans. Commun ., vol. 26, no. 3,
pp. 338–345, Mar. 1978.

1455. D. G. Forney, Jr., Concatenated Codes . Cambridge, MA: MIT Press, 1966.
1456. G. Ungerboeck, “Trellis-coded modulation with redundant signal sets – Part 1: Introduction”, IEEE

Commun. Mag ., vol. 25, no. 2, pp. 5–11, Feb. 1987.
1457. L.-F. Wei, “Rotationally invariant convolutional channel coding with expanded signal space – Part I:

180◦”, IEEE J. Select. Areas Commun ., vol. 2, no. 5, pp. 659–671, Sep. 1984.
1458. , “Rotationally invariant convolutional channel coding with expanded signal space – Part II: Non-

linear codes”, IEEE J. Select. Areas Commun ., vol. 2, no. 5, pp. 672–686, Sep. 1984.
1459. , “Trellis-coded modulation with multidimensional constellations”, IEEE Trans. Inform. Theory ,

vol. 33, no. 4, pp. 483–501, July 1987.
1460. , “Rotationally invariant trellis-coded modulations with multidimensional m-PSK”, IEEE J. Sel.

Areas Commmun ., vol. 7, no. 9, pp. 1281–1295, Dec. 1989.
1461. G. M. Vitetta, “Some new rotationally invariant TCM schemes for multidimensional m-PSK”, IEE Proc.

Commun ., vol. 141, no. 3, pp. 143–150, June 1994.
1462. H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting codes”, IEEE Trans.

Inform. Theory , vol. 23, no. 3, pp. 371–377, May 1977.
1463. A. R. Calderbank, “Multilevel codes and multistage decoding”, IEEE Trans. Commun ., vol. 37, no. 3,

pp. 222–229, Mar. 1989.
1464. E. Zehavi, “8-PSK trellis codes for a Rayleigh channel”, IEEE Trans. Commun ., vol. 40, no. 5,

pp. 873–884, May 1992.
1465. T. H. Liew and L. Hanzo, “Space-time codes and concatenated channel codes for wireless communica-

tions”, IEEE Proc., vol. 90, no. 2, pp. 187–219, Feb. 2002.
1466. A. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing data rate over wireless channels”, IEEE Sig.

Process. Mag ., vol. 17, no. 3, pp. 77–92, May 2000.
1467. A. Slaney and Y. Sun, “Space-time coding for wireless communications: an overview”, IEE Proc.

Commun ., vol. 153, no. 4, pp. 509–518, Aug. 2006.
1468. D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of

MIMO space-time coded wireless systems”, IEEE J. Sel. Areas Commun ., vol. 21, no. 3, pp. 281–302,
Dec. 2002.

1469. R. W. Hamming, “Error correcting and error detecting codes”, Bell Syst. Tech. J ., vol. 29, pp. 147–160,
Apr. 1950.

1470. M. J. E. Golay, “Notes on digital coding”, Proc. IRE , vol. 37, p. 657, 1949.
1471. D. E. Muller, “Application of Boolean algebra to switching circuit design and to error detection”, IRE

Trans. Electron. Comp., vol. 3, pp. 6–12, Sep. 1954.
1472. I. Reed, “A class of multiple-error-correcting codes and the decoding scheme”, IEEE Trans. Inform.

Theory , vol. 4, no. 4, pp. 38–49, Sep. 1954.
1473. E. Prange, Cyclic error-correcting codes in two symbols, Tech. Note AFCRC-TN-57-103 , Air Force

Cambridge Res. Center, Cambridge, MA, Sep. 1957.
1474. A. Hocquenghem, “Codes correcteurs d’erreurs”, Chiffres , vol. 2, no. 5, pp. 147–156, Sep. 1971.
1475. R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error-correcting binary group codes”, Inform.

Control , vol. 3, no. 1, pp. 68–79, Mar. 1960.
1476. I. Reed and G. Solomon, “Polynomial codes over certain finite fields”, J. Soc. Ind. Appl. Math ., vol. 8,

no. 2, pp. 300–304, June 1960.
1477. P. Elias, “Coding for noisy channels (part 4)”, in IRE Nat. Conv. Rec., Mar. 1955, pp. 37–46.
1478. A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm”,

IEEE Trans. Inform. Theory , vol. 13, no. 4, pp. 260–269, Apr. 1967.
1479. R. G. Gallager, “Low-density parity-check codes”, IRE Trans. Info. Theory , vol. 8, no. 1, pp. 21–28,

Jan. 1962.
1480. P. Elias, “Error-free coding”, IRE Trans. Inform. Theory , vol. 4, no. 4, pp. 29–37, Sep. 1954.
1481. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding:

Turbo codes”, in Proc. IEEE Int. Conf. Commun. (ICC ’93), Geneva, May 1993, pp. 1064–1070.
1482. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs”,

IEEE Trans. Inform. Theory , vol. 45, no. 5, pp. 1456–1467, July 1999.
1483. , “Space-time block coding for wireless communications: Performance results”, IEEE J. Sel. Areas

Commun ., vol. 17, no. 3, pp. 451–460, Mar. 1999.



688 References

1484. D. J. Costello and D. G. Forney, Jr., “Channel coding: The road to channel capacity”, IEEE Proc.,
vol. 95, no. 6, pp. 1150–1177, June 2007.

1485. S. B. Wicker, Error Control Systems for Digital Commmunication and Storage. Upper Saddle River, NJ:
Prentice Hall, 1995.

1486. I. S. Reed and X. Chen, Error Control Coding for Data Networks . Norwell, MA: Kluwer Academic,
1999.

1487. F. J. MacWilliams, “A theorem of the distribution of weights in a systematic code”, Bell Syst. Tech. J .,
vol. 42, pp. 79–94, 1965.

1488. A. M. Michelson and A. H. Levesque, Error-Control Techniques for Digital Communication . New York:
John Wiley & Sons, Inc., 1985.

1489. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes . Amsterdam: Elsevier
Science, 1996.

1490. W. W. Peterson, Error-Correcting Codes . Cambridge, MA: MIT Press, 1961.
1491. M. Bossert, Channel Coding for Telecommunications . Chichester: John Wiley & Sons, Ltd, 1999.
1492. S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications . Piscataway, NJ: IEEE

Press, 1994.
1493. D. E. Muller, Metric Properties of Boolean Algebra and Their Application to Switching Circuits, Report

No. 46 , Digital Computer Laboratory, Univ. of Illinois, Apr. 1953.
1494. D. G. Forney, Jr., “Generalized minimum distance decoding”, IEEE Trans. Inform. Theory , vol. 12, no.

2, pp. 125–131, Apr. 1966.
1495. D. Chase, “A class of algorithms for decoding block codes with channel measurement information”,

IEEE Trans. Inform. Theory , vol. 18, no. 1, pp. 170–182, Jan. 1972.
1496. M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics”,

IEEE Trans. Inform. Theory , vol. 41, no. 5, pp. 1379–1396, Sep. 1995.
1497. , “Computationally efficient soft-decision decoding of linear block codes based on ordered statis-

tics”, IEEE Trans. Inform. Theory , vol. 42, no. 5, pp. 738–750, May 1996.
1498. V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes”,

IEEE Trans. Inform. Theory , vol. 45, no. 6, pp. 1757–1767, Sep. 1999.
1499. E. Fishler, O. Amrani, and Y. Be’ery, “Geometrical and performance analysis of GMD and Chase

decoding algorithms”, IEEE Trans. Inform. Theory , vol. 45, no. 5, pp. 1406–1422, July 1999.
1500. B.-Z. Shen, K. K. Tzeng, and C. Wang, “A bounded-distance decoding algorithm for binary linear block

codes achieving the minimum effective error coefficient”, IEEE Trans. Inform. Theory , vol. 42, no. 6,
pp. 1987–1991, Nov. 1996.

1501. O. Amrani and Y. Be’ery, “Bounded-distance decoding: Algorithms, decision regions, and pseudo nearest
neighbors”, IEEE Trans. Inform. Theory , vol. 44, no. 7, pp. 3072–3082, Nov. 1998.

1502. R. A. Silverman and M. Balser, “Coding for constant-data-rate systems”, IRE Trans. Inform. Theory ,
vol. 4, no. 4, pp. 50–63, Sep. 1954.

1503. R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes”, IEEE Trans. Commun .,
vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

1504. S. Fragiacomo, C. Matrakidis, and J. O’Reilly, “Novel near maximum likelihood soft decision decoding
algorithm for linear block codes”, IEE Proc. Commun ., vol. 146, no. 5, pp. 265–270, Oct. 1999.

1505. N. N. Tendolkar and C. R. P. Hartmann, “Generalization of Chase algorithms for soft decision decoding
of binary linear codes”, IEEE Trans. Inform. Theory , vol. 30, no. 5, pp. 714–721, Sep. 1984.

1506. C. M. Hackett, “An efficient algorithm for soft-decision decoding of the (24,12) extended Golay code”,
IEEE Trans. Commun ., vol. 29, no. 6, pp. 909–911, June 1981.

1507. M. P. C. Fossorier and S. Lin, “Soft-input soft-output decoding of linear block codes based on ordered
statistics”, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’98), vol. 5, Aveiro, Portugal, 8–12
Nov. 1998, pp. 2828–2833.

1508. R. E. Blahut, Algebraic Methods for Signal Processing and Communications Coding . New York:
Springer-Verlag, 1992.

1509. W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri-Hocquenghem codes”,
IRE Trans. Inform. Theory , vol. 6, no. 4, pp. 459–470, Sep. 1960.

1510. E. R. Berlekamp, Algebraic Coding Theory . New York: McGraw-Hill, 1968.
1511. D. Gorenstein and N. Zierler, “A class of cyclic linear error-correcting codes in pm symbols”, J. Soc.

Ind. Appl. Math ., vol. 9, pp. 207–214, June 1961.



References 689

1512. J. L. Massey, “Shift-register synthesis and BCH decoding”, IEEE Trans. Inform. Theory , vol. 15, no. 1,
pp. 122–127, Jan. 1969.

1513. R. Chien, “Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes”, IEEE Trans. Inform.
Theory , vol. 10, no. 4, pp. 357–363, Oct. 1964.

1514. S. S. Shah, S. Yaqub, and F. Suleman, “Self-correcting codes conquer noise – Part 2: Reed-Solomon
codecs”, EDN Mag ., 15 Mar. 2001.

1515. I. Shakeel, “Soft-decision decoding of Reed-Solomon-based signal space codes”, Master’s thesis, Uni-
versity of Canterbury, Christchurch, New Zealand, Feb. 2001.

1516. D. G. Forney, Jr., “On decoding BCH codes”, IEEE Trans. Inform. Theory , vol. 11, no. 10, pp. 549–557,
Oct. 1965.

1517. G. Forney, Jr., “Convolutional codes I: Algebraic structure”, IEEE Trans. Inform. Theory , vol. 16, no.
6, pp. 720–738, Mar. 1970.

1518. J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits”, IEEE Trans. Comput ., vol. 17, no.
4, pp. 330–337, Dec. 1968.

1519. A. Viterbi, “Orthogonal tree codes for communication in the presence of white Gaussian noise”, IEEE
Trans. Commun. Technol ., vol. 15, no. 2, pp. 238–242, Apr. 1967.

1520. W. E. Ryan and S. G. Wilson, “Two classes of convolutional codes over GF(q) for q-ary orthogonal
signaling”, IEEE Trans. Commun ., vol. 39, no. 1, pp. 30–40, Jan. 1991.

1521. H.-A. Loeliger and T. Mittelholzer, “Convolutional codes over groups”, IEEE Trans. Inform. Theory ,
vol. 42, no. 6, pp. 1660–1686, Nov. 1996.

1522. M. Rahnema and Y. Antia, “Optimum soft decision decoding with channel state information in the
presence of fading”, IEEE Commun. Mag ., vol. 41, no. 4, pp. 110–111, July 1997.

1523. L. R. Bahl, J. Cocke, F. Jelineck, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol
error rate”, IEEE Trans. Inform. Theory , vol. 20, no. 2, pp. 284–287, Mar. 1974.

1524. J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with parallel structures
for ISI channels”, IEEE Trans. Commun ., vol. 42, no. 6, pp. 1661–1671, Feb./Mar./Apr. 1994.

1525. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding
algorithms operating in the log domain”, in Proc. IEEE Int. Conf. Commun. (ICC ’95), vol. 2, Seattle,
June 1995, pp. 1009–1013.

1526. P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a posteriori algorithms
suitable for turbo-decoding”, European Trans. Telecommun ., vol. 8, no. 2, pp. 119–125, Mar./Apr. 1997.

1527. M. P. C. Fossorier, F. Burkert, L. Shu, and J. Hagenauer, “On the equivalence between SOVA and
Max-Log-MAP decodings”, IEEE Commun. Lett ., vol. 2, pp. 137–139, May 1998.

1528. P. R. Chevillat and E. Eleftheriou, “Decoding of trellis-encoded signals in the presence of intersymbol
interference and noise”, IEEE Trans. Commun ., vol. 37, no. 7, pp. 669–676, July 1989.

1529. P. Thiennviboon, G. Ferrari, and K. M. Chugg, “Generalized trellis-based reduced-state soft-input/soft-
output algorithms”, in Proc. IEEE Int. Conf. Commun. (ICC 2002), New York, Apr. 2002, pp. 1667–1671.

1530. C. Fragouli, N. Seshadri, and W. Turin, On the reduced trellis equalization using the M-BCJR algorithm,
Tech. Rep. TR 99.15.1, Florham Park, NJ, Nov. 1999.

1531. D. Bokolamulla, A. Hansson, and T. Aulin, “Low-complexity iterative detection based on bi-directional
trellis search”, in Proc. 2003 IEEE Int. Symp. Inform. Theory (ISIT 2003), Yokohama, 29 June-4 July
2003, p. 396.

1532. M. Sikora and D. J. Costello, Jr., “A new SISO algorithm with application to turbo equalization”, in
Proc. 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), Adelaide, 4–9 Sep. 2005, pp. 2031–2035.

1533. C. M. Vithanage, C. Andrieu, and R. J. Piechocki, “Novel reduced-state BCJR algorithms”, IEEE Trans.
Commun ., vol. 55, no. 6, pp. 1144–1152, June 2007.

1534. B. Frey and F. Kschischang, “Early detection and trellis splicing: Reduced complexity iterative decoding”,
IEEE J. Sel. Areas Commun ., vol. 16, no. 2, pp. 153–159, Feb. 1998.

1535. J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications”, in
Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’93), Dallas, Nov. 1989, pp. 47.1.1–47.1.7.

1536. L. Papke and P. Robertson, “Improved decoding with the SOVA in a parallel concatenated (turbo-code)
scheme”, in Proc. IEEE Int. Conf. Commun. (ICC ’96), vol. 1, Dallas, June 1996, pp. 102–106.

1537. J. M. Wozencraft and B. Reiffen, Sequential Decoding . Cambridge, MA: MIT Press, 1965.
1538. R. Fano, “A heuristic discussion of probabilistic decoding”, IEEE Trans. Inform. Theory , vol. 9, no. 2,

pp. 64–74, Jan. 1963.



690 References

1539. K. S. Zigangirov, “Some sequential decoding procedures”, Prob. Pederachi Inform ., vol. 2, pp. 13–25,
1966.

1540. F. Jelinek, “A fast sequential decoding algorithm using a stack”, IBM J. Res. and Dev ., vol. 13,
pp. 675–685, 1969.

1541. J. L. Massey, “Variable-length codes and the Fano metric”, IEEE Trans. Inform. Theory , vol. 18, no. 1,
pp. 196–198, Jan. 1972.

1542. G. C. Clark, Jr., and J. B. Cain, Error-Correction Coding for Digital Communications . New York: Plenum
Press, 1981.

1543. E. C. Posner, L. L. Rauch, and B. D. Madsen, “Voyager mission telecommunication firsts”, IEEE
Commun. Mag ., vol. 28, no. 9, pp. 22–27, Sep. 1990.

1544. R. H. Deng and D. J. Costello, Jr., “High rate concatenated coding systems using bandwidth efficient
trellis inner codes”, IEEE Trans. Commun ., vol. 37, no. 5, pp. 420–427, May 1989.

1545. , “High rate concatenated coding systems using multidimensional bandwidth-efficient trellis inner
codes”, IEEE Trans. Commun ., vol. 37, no. 10, pp. 1091–1096, Oct. 1989.

1546. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of interleaved codes:
Performance analysis, design, and iterative decoding”, IEEE Trans. Inform. Theory , vol. 44, no. 3,
pp. 909–926, May 1998.

1547. D. J. Costello, Jr., and D. G. Forney, Jr., “Channel coding: The road to channel capacity”, IEEE Proc.,
vol. 95, no. 6, pp. 1150–1177, June 2007.

1548. S. Lin, An Introduction to Error Correcting Codes . Englewood Cliffs, NJ: Prentice Hall, 1970.
1549. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes . Cambridge, MA: MIT. Press, 1972.
1550. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes . New York: Elsevier,

1977.
1551. R. E. Blahut, Theory and Practice of Error Correcting Codes , 2nd edn Reading, MA: Addison-Wesley,

1983.
1552. R. C. Bose and D. K. Ray-Chaudhuri, “Further results on error correcting binary group codes”, Inform.

Control , vol. 3, no. 3, pp. 279–290, Sep. 1960.
1553. J. L. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes”, IEEE Trans. Inform.

Theory , vol. 11, no. 4, pp. 580–585, Oct. 1965.
1554. E. R. Berlekamp, “On decoding binary Bose-Chaudhuri-Hocquenghem codes”, IEEE Trans. Inform.

Theory , vol. 11, no. 4, pp. 577–579, Oct. 1965.
1555. M.-S. Oh and P. Sweeney, “Bit-level soft-decision sequential decoding for Reed Solomon codes”, in

Proc. Workshop on Coding and Cryptography (WCC ’99), Paris, Jan. 1999, pp. 111–120.
1556. M. Oh and P. Sweeney, “Low complexity soft-decision sequential decoding using hybrid permutation

for RS codes”, in Proc. Seventh IMA Conf. Cryptography and Coding, Cirencester, UK, Dec. 1999,
pp. 177–181.

1557. D. Burgess, S. Wesemeyer, and P. Sweeney, “Soft-decision decoding algorithms for RS codes”, in Proc.
Seventh IMA Conf. Cryptography and Coding, Cirencester, UK, Dec. 1999, pp. 177–181.

1558. N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer Technology . New York:
McGraw-Hill, 1967.

1559. F. Taylor, “Residue arithmetic: A tutorial with examples”, IEEE Comput. Mag ., vol. 17, no. 5, pp. 50–62,
May 1984.

1560. R. W. Watson and C. W. Hastings, “Self-checked computation using residue arithmetic”, IEEE Proc.,
vol. 54, no. 12, pp. 1920–1931, Mar. 1966.

1561. H. Krishna, K. Lin, and J. Sun, “A coding theory approach to error control in redundant residue number
systems – Part I: Theory and single error correction”, IEEE Trans. Circuits Syst. II , vol. 39, no. 1,
pp. 8–17, Jan. 1992.

1562. J. Sun and H. Krishna, “A coding theory approach to error control in redundant residue number
systems – Part II: Multiple error detection and correction”, IEEE Trans. Circuits Syst. II , vol. 39, no. 1,
pp. 18–34, Jan. 1992.

1563. T. H. Liew, L.-L. Yang, and L. Hanzo, “Soft-decision redundant residue number system based error
correction coding”, in Proc. IEEE 50th Veh. Technol. Conf. (VTC 1999 – Fall), vol. 5, Amsterdam, Sep.
1999, pp. 2546–2550.

1564. , “Systematic redundant residue number system codes: Analytical upper bound and iterative
decoding performance over AWGN and Rayleigh channels”, IEEE Trans. Commun ., vol. 54, no. 6,
pp. 1006–1016, June 2006.



References 691

1565. V. D. Goppa, “Codes associated with divisors”, Probl. Inform. Transm ., vol. 13, pp. 22–27, 1977.
1566. , “Codes on algebraic curves”, Sov. Math. Dokl ., vol. 24, pp. 170–172, 1981.
1567. M. A. Tsfasman, S. G. Vladut, and T. Zink, “Modular codes, Shimura curves and Goppa codes better

than the Varshamov-Gilbert bound”, Math. Nachr ., vol. 109, pp. 21–28, Apr. 1982.
1568. T. Hoholdt and R. Pellikaan, “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform.

Theory , vol. 41, no. 6, pp. 1589–1614, Nov. 1995.
1569. I. Blake, C. Heegard, T. Høholdt, and V. Wei, “Algebraic-geometry codes”, IEEE Trans. Inform. Theory ,

vol. 44, no. 6, pp. 2596–2618, Oct. 1998.
1570. M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction bound”, J. Complexity , vol. 13,

no. 1, pp. 180–193, Mar. 1997.
1571. P. Elias, “Error-correcting codes for list decoding”, IEEE Trans. Inform. Theory , vol. 37, no. 1, pp. 5–12,

Jan. 1991.
1572. R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes”, IEEE Trans.

Inform. Theory , vol. 49, no. 11, pp. 2809–2825, Nov. 2003.
1573. J. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trellis”, IEEE Trans.

Inform. Theory , vol. 24, no. 1, pp. 76–80, Jan. 1978.
1574. D. J. Muder, “Minimal trellises for block codes”, IEEE Trans. Inform. Theory , vol. 34, no. 5,

pp. 1049–1053, Sep. 1988.
1575. F. R. Kschischang and V. Sorokine, “On the trellis structure of block codes”, IEEE Trans. Inform.

Theory , vol. 41, no. 6, pp. 1924–1937, Nov. 1995.
1576. B. Honary and G. S. Markarian, “Low-complexity trellis decoding of Hamming codes”, Electron. Lett .,

vol. 29, no. 12, pp. 1114–1116, June 10 1993.
1577. B. Honary, G. S. Markarian, and M. Darnell, “Low-complexity trellis decoding of linear block codes”,

IEE Proc. Commun ., vol. 142, no. 4, pp. 201–209, Aug. 1995.
1578. B. Honary and G. Markarian, Trellis Decoding of Block Codes . Norwell, MA: Kluwer, 1997.
1579. H. Manoukian and B. Honary, “BCJR trellis construction for binary linear block codes”, IEE Proc.

Commun ., vol. 144, no. 6, pp. 367–371, Dec. 1997.
1580. S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellises and Trellis-Based Decoding Algorithms for

Linear Block Codes . Norwell, MA: Kluwer, 1998.
1581. T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On complexity of trellis structure of linear block codes”,

IEEE Trans. Inform. Theory , vol. 39, no. 3, pp. 1057–1937, May 1993.
1582. , “On the optimum bit orders with respects to the state complexity of trellis diagrams for binary

linear codes”, IEEE Trans. Inform. Theory , vol. 39, no. 1, pp. 242–245, Jan. 1993.
1583. A. Vardy, “Trellis structure of codes”, in Handbook of Coding Theory , V. Pless and W. C. Huffman,

(eds.) Amsterdam: Elsevier, 1998.
1584. R. J. McEliece, “On the BCJR trellis for linear block codes”, IEEE Trans. Inform. Theory , vol. 42,

pp. 1072–1092, July 1996.
1585. R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding . Piscataway, NJ: IEEE

Press, 1999.
1586. T. Richardson and R. Urbanke, Modern Coding Theory . Newy York: Cambridge University Press, 2008.
1587. P. Elias, “Coding for noisy channels”, in Key Papers in the Development of Information Theory , D.

Slepian, (ed.) New York: IEEE Press, 1973.
1588. , “Coding for noisy channels”, in Key Papers in the Development of Coding Theory , E. R.

Berlekamp, (ed.) New York: IEEE Press, 1974.
1589. , “Coding for noisy channels”, in The Electron and the Bit , J. V. Guttag, (ed.) Cambridge, MA:

EECS Dept., MIT, 2005.
1590. R. G. Gallager, Low-Density Parity-Check Codes . Cambridge, MA: MIT Press, 1963.
1591. I. M. Jacobs and E. R. Berlekamp, “A lower bound to the distribution of computation for sequential

decoding”, IEEE Trans. Inform. Theory , vol. 13, no. 9, pp. 167–174, Sep. 1967.
1592. J. L. Massey, Threshold Decoding . Cambridge, MA: MIT Press, 1963.
1593. J. K. Omura, “On the Viterbi decoding algorithm”, IEEE Trans. Inform. Theory , vol. 15, no. 1,

pp. 177–179, Jan. 1969.
1594. J. A. Heller, “Short constraint length convolutional codes”, in Jet Prop. Lab., Space Prog. Summary

37-54, vol. III, 1968, pp. 171–177.
1595. , “Improved performance of short constraint length convolutional codes”, in Jet Prop. Lab., Space

Prog. Summary 37-56, vol. III, 1969, pp. 83–84.



692 References

1596. J. A. Heller and I. M. Jacobs, “Viterbi decoding for satellite and space communication”, IEEE Trans.
Commun. Technol ., vol. 19, no. 5, pp. 835–848, Oct. 1971.

1597. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes”, IEEE
Trans. Commun ., vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

1598. W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data distributed by time-varying
inter-symbol interference”, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’93), Geneva, Dec.
1993, pp. 1679–1684.

1599. J. Hagenauer, “Source-controlled channel decoding”, IEEE Trans. Commun ., vol. 43, no. 9,
pp. 2449–2457, Sep. 1995.

1600. E. Paaske, “Improved decoding for a concatenated coding system recommended by CCSDS”, IEEE
Trans. Commun ., vol. 38, no. 8, pp. 1138–1144, Aug. 1990.

1601. O. Collins and M. Hizlan, “Determinate-state convolutional codes”, IEEE Trans. Commun ., vol. 41, no.
12, pp. 1785–1794, Dec. 1993.

1602. J. Hagenauer, E. Offer, and L. Papke, “Matching Viterbi decoders and Reed-Solomon decoders in
concatenated systems”, in Reed-Solomon Codes and Their Applications , S. B. Wicker and V. K. Bhargava,
(eds.) Piscataway, NJ: IEEE Press, 1994, pp. 242–271.

1603. E. R. Berlekamp (ed.), Key Papers in the Development of Coding Theory . New York: IEEE Press, 1974.
1604. G. Battail, “Coding for the Gaussian channel: the promise of weighted-output decoding”, Int. J. Sat.

Commun ., vol. 7, pp. 183–192, 1989.
1605. C. Berrou, “The ten-year-old turbo codes are entering into service”, IEEE Commun. Mag , vol. 41, no.

8, pp. 110–116, Aug. 2003.
1606. R. M. Tanner, “A recursive approach to low complexity codes”, IEEE Trans. Inform. Theory , vol. 27,

no. 9, pp. 533–547, Sep. 1981.
1607. D. J. C. MacKay and R. M. Neal, “Good error-correcting codes on very sparse matrices”, in Proc. 5th

IMA Conf. Cryptography Coding , C. Boyd, (ed.), vol. 3, Berlin, 1995, pp. 100–111.
1608. M. Sipser and D. A. Spielman, “Expander codes”, in Proc. 35th Symp. Found. Comp. Sci., 1994,

pp. 566–576.
1609. , “Expander codes”, IEEE Trans. Inform. Theory , vol. 42, no. 11, pp. 1710–1722, Nov. 1996.
1610. F. R. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm”, IEEE

Trans. Inform. Theory , vol. 41, no. 2, pp. 498–519, Feb. 2001.
1611. J. Hagenauer, “The turbo principle: Tutorial introduction & state of the art”, in Proc. Int. Symp. Turbo

Codes & Related Topics, Brest, France, Sep. 1997, pp. 1–11.
1612. H. H. Ma and J. K. Wolf, “On tail biting convolutional codes”, IEEE Trans. Commun ., vol. 34, no. 2,

pp. 104–111, Feb. 1986.
1613. O. Acikel and W. Ryan, “Punctured turbo-codes for BPSK/QPSK channels”, IEEE Trans. Commun .,

vol. 47, no. 9, pp. 1315–1323, Sep. 1999.
1614. W. E. Ryan, “Concatenated convolutional codes and iterative decoding”, in Wiley Encyclopedia of

Telecommunications , J. G. Proakis, (ed.) New York: John Wiley & Sons, Inc., 1994.
1615. S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes”, IEEE Trans.

Commun ., vol. 44, no. 5, pp. 591–600, May 1996.
1616. , “Unveiling turbo codes: Some results on parallel concatenated coding schemes”, IEEE Trans.

Inform. Theory , vol. 42, no. 2, pp. 409–428, Mar. 1996.
1617. O. Y. Takeshita, O. M. Collins, P. C. Massey, and D. J. Costello, Jr., “A note on asymmetric turbo-codes”,

IEEE Commun. Lett ., vol. 3, no. 3, pp. 69–71, Mar. 1999.
1618. S. Benedetto, R. Garello, and G. Montorsi, “A search for good convolutional codes to be used in the

construction of turbo codes”, IEEE Trans. Commun ., vol. 46, no. 9, pp. 1101–1105, Sep. 1998.
1619. F. Daneshgaran, M. Laddomada, and M. Mondin, “High-rate recursive convolutional codes for concate-

nated channel codes”, IEEE Trans. Commun ., vol. 52, no. 11, pp. 1846–1850, Nov. 2004.
1620. P. C. Massey and D. J. Costello, Jr., “Turbo codes with recursive nonsystematic quick-look-in constituent

codes”, in Proc. IEEE Int. Symp. Inform. Theory, Cairns, Australia, 24–29 June 2001, p. 141.
1621. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel, “Designing good permutations
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1986. M. Tüchler and J. Hagenauer, “‘Turbo equalization’ using frequency domain equalizers”, in Proc. Allerton
Conf., Monticello, IL, 2000.

1987. , “Linear time and frequency domain turbo equalization”, in Proc. IEEE 53rd Veh. Technol. Conf.,
vol. 2, Rhodes, Greece, May 2001, pp. 1449–1453.

1988. B. Ng, C.-T. Lam, and D. Falconer, “Turbo frequency domain equalization for single-carrier broadband
wireless systems”, IEEE Trans. Wireless Commun ., vol. 6, no. 2, pp. 759–767, Feb. 2007.

1989. M. Sabbaghian and D. Falconer, “Joint turbo frequency domain equalization and carrier synchronization”,
IEEE Trans. Wireless Commun ., vol. 7, no. 1, pp. 204–212, Jan. 2008.

1990. J. Garcia-Frias and J. D. Villasenor, “Combined turbo detection and decoding for unknown ISI channels”,
IEEE Trans. Commun ., vol. 51, no. 1, pp. 79–85, Jan. 2003.

1991. X. Li and T. F. Wong, “Turbo equalization with nonlinear Kalman filtering for time-varying frequency-
selective fading channels”, IEEE Trans. Wireless Commun ., vol. 6, no. 2, pp. 691–700, Feb. 2007.

1992. H. Kim and J. K. Tugnait, “Turbo equalization for doubly-selective fading channels using nonlin-
ear Kalman filtering and basis expansion models”, IEEE Trans. Wireless Commun ., vol. 9, no. 6,
pp. 2076–2087, June 2010.

1993. A. O. Berthet, B. S. Unal, and R. Visoz, “Iterative decoding of convolutionally encoded signals over
multipath Rayleigh fading channels”, IEEE J. Sel. Areas Commun ., vol. 19, no. 9, Sep. 2001.

1994. M. Sandell, C. Luschi, P. Strauch, and R. Yan, “Iterative channel estimation using soft decision feedback”,
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’98), vol. 6, Aveiro, Portugal, 8–12 Nov. 1998,
pp. 3728–3733.

1995. S. Tantikovit, A. U. H. Sheikh, and M. Z. Wang, “Code-aided adaptive equalizer for mobile communi-
cation systems”, IEE Electron. Lett ., vol. 34, no. 12, pp. 1638–1640, Aug. 1998.

1996. M. F. Flanagan and A. D. Fagan, “Iterative channel estimation, equalization, and decoding for pilot-
symbol assisted modulation over frequency selective fast fading channels”, IEEE Trans. Veh. Tech .,
vol. 56, no. 4, pp. 1661–1670, July 2007.

1997. C. H. Wong, B. L. Yeap, and L. Hanzo, “Wideband burst-by-burst adaptive modulation with turbo
equalization and iterative channel estimation”, in Proc. 51st IEEE Veh. Technol. Conf. 2000, vol. 3,
Tokyo, 15–18 May 2000, pp. 2044–2048.

1998. B. L. Yeap, C. H. Wong, and L. Hanzo, “Reduced complexity in-phase/quadrature-phase M-QAM turbo
equalization using iterative channel estimation”, IEEE Trans. Wireless Commun ., vol. 2, no. 1, pp. 2–10,
Jan. 2003.

1999. S. Song, A. C. Singer, and K.-M. Sung, “Soft input channel estimation for turbo equalization”, IEEE
Trans. Sig. Process ., vol. 52, no. 10, pp. 2885–2894, Oct. 2004.



708 References
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adaptive MLSD algorithms, 302
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adaptive transversal filter, 222
additive noise channels, 323
additive white Gaussian noise, 137
adjacency matrix, 469
affine precoding, 234, 239
Alamouti, 539
algebraic codes, 344
angular delay power spectrum, 56
angular spread, 55
aperture, 48
application specific integrated circuit, 7
array codes, 474
array gain, 280
assembled space-time turbo trellis code, 558
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average energy per message, 159
average information weight per codeword, 466
average message error probability, 159
average mutual information, 327–8
average number of nearest neighbors, 143
average path loss, 14
average power, 594
average power constraint, 331
average probability of error, 161
average PSD, 595
average received energy per symbol

interval, 148
average received energy per symbol interval

and per receive antenna, 149

back-substitution, 477
backward rearrangement, 284
backward recursion, 272
balanced distance rule, 526
bandwidth, 72
Barankin bound, 232
Barnes–Wall family, 141
basis, 602, 624
basis representation, 618–9
Battacharyya, 232
Bayesian Cramér–Rao, 232
Bayesian estimation, 218
Bayesian linear model, 221
BCH bound, 363
behavioral modeling, 494
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Bell Labs Layered Space-Time, 3, 548
Berlekamp’s algorithm, 375
Berlekamp–Massey algorithm, 375, 382
Bhattacharyya parameter, 428
bias term, 420
bidirectional decision feedback equalization,

286, 319
bidirectional DFE, 266
bin model, 41
binary entropy function, 328
binary lattices, 142
binary phase shift keying, 76
binary-rank criterion, 547
bipartite, 468
bit interval, 68
bit rate, 68
bit-flipping algorithm, 492
blind, 230
blind channel estimation, 235, 247
block-based MLC, 530
block codes, 144, 343, 349–50
block diversity, 555
block diversity criterion, 556
block fading channel, 335
block interleavers, 341
block partitioning, 525
block turbo codes, 458
Bluetooth, 2
Bobrovsky–Zakai, 232
Boolean functions, 370
bounded distance decoding algorithms, 373
bounded power-containment bandwidth, 72
branch-and-bound, 311
branch metric, 253, 411
branch power ratio, 51
breadth-first, 258
bursty channels, 340

canonical distributions, 494, 589
capacity rule, 526
Cartesian product, 138
ceiling function, 109
cellular radio systems, 1
chain, 469
chain length, 469
channel capacity, 323, 327
channel decoder, 6

channel encoder, 5
channel equalization, 249
channel estimation, 218
channel impulse response, 17
channel LLR, 450
channel memory, 253, 293
channel prediction, 247
channel predictor, 225, 303
channel reliability function, 237
channel state, 252
channel symbol, 65
Chappe, Claude, 1
characteristic equation, 597
characteristic function, 111, 494
characteristic of the field, 616
Chase decoding algorithm, 372
Chien search, 378
Cholesky decomposition, 50, 190, 200, 599
circulant, 281, 473
circular RSC encoder, 442
classical estimation, 218
close-in reference distance, 14
code concatenation, 441
code diversity, 512, 519–20
code diversity criterion, 512, 538
code division multiple access, 1
code generators, 394
code networks, 445
code optimization, 339
code rate, 350
coded modulation, 340, 344, 505
codes on graphs, 494
codeword, 339, 349
coding exponent rule, 527
coding gain, 280, 508, 512, 536
coding gain criterion, 512, 538
coefficient update, 224
coherence bandwidth, 26, 119
coherence distance, 48
coherence time, 33
coherent detection, 279
coherent receiver, 119
coherent receiver for orthogonal signals, 91
column distance, 403
comb-type arrangement, 242
combinatorial design, 474
communication channel, 4
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commutative group, 610
complementary error function, 626
complete basis, 41
complete data, 210
complete data vector, 207
complete decoding, 388
complete orthonormal basis, 605
complete orthonormal set, 326
complex FIM, 229
concatenated codes, 344, 439, 557
conditional forward prediction

coefficients, 298
conditional mutual information, 327
configuration space, 494
conjugate elements, 619
connection polynomials, 383
constellation, 74, 137
constituent encoder, 344
constrained MLSD, 258
constraint equations, 496
constraint length, 396
continuous approximation, 143
controller canonical form, 398
convergence abscissa, 462
convolution sum, 393
convolutional codes, 344, 438
convolutional encoder, 393
convolutional interleavers, 341
convolutional periodic interleavers, 342
convolutional trellis codes, 506
correction polynomial, 381, 383
correlation length, 87
correlation method, 240
correlative state, 94
coset, 139, 355
coset codes, 524
coset decomposition, 139
coset decomposition chain, 139
coset leader, 355, 611
coset representative, 139
coverage area, 13
Craig form, 627
cross-constellations, 77
cross-polarization, 64
cut-set bound, 500
cutoff rate, 237, 438
cycle, 469

cyclic codes, 344, 357, 436
cyclic equalization, 317
cycle-free Tanner graph, 471
cycle length, 469
cyclic prefix, 71, 127
cyclic shift, 357
cyclotomic coset, 619

data-aided, 230
data-aided channel estimate, 217
decision-aided estimation/adaptation, 217
decision delay, 255, 263
decision feedback, 257
decision feedback equalization, 258, 284, 312
decision metric, 163
decision region, 160
decision strategy, 160
decoding threshold, 476
decryptor, 6
degree distribution polynomials, 471
degree of a node, 469
deinterleaver, 340–41
delay-angle cross-power density, 56
delay cross-power spectral density, 34
delay diversity, 538
delay-Doppler power density function, 35
delay-Doppler-spread function, 19
delay power density spectrum, 25
delayed coefficient update, 225
demodulator, 6
depth-first, 258, 419
design distance, 363
desired response, 222
detection metrics, 155
detection strategy, 155, 160
determinant criterion, 536
diagonal BLAST, 548
differential detectors, 301
differential encoder, 447
differential encoding, 78
differential STCs, 558
digital modulator, 65
digital phase modulator, 70
dimension, 624
direct conversion, 157
directional description, 46
directional scattering function, 56
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discrepancy term, 383
discrete-input additive white Gaussian noise

channel, 325
discrete memoryless channel, 324
discrete-time unit step function, 133
discriminators, 301
distance, 469
distortions, 5
diversity, 3, 531, 556
diversity gain, 280
diversity order, 280
diversity reception, 5
diversity representation, 38
Doppler- and angle-resolved channel impulse

response, 48, 55
Doppler- and angle-resolved channel transfer

function, 49, 55
Doppler- and aperture-resolved channel impulse

response, 49
Doppler- and aperture-resolved transfer

function, 49
Doppler autocorrelation function, 147
Doppler bandwidth, 31
Doppler effect, 19
Doppler power density spectrum, 31, 148
dot product, 624
double directional, 46
doubly-selective, 23, 33
dual codes, 352
dual-k codes, 400
dual space, 624

edges, 468
effective coding gain, 144
effective free distance, 442
eigenvalue spectrum, 333
eigenvalues, 597
eigenvectors, 597
elementary symmetric functions, 377
encoder memory, 396
encryptor, 5
energy, 601
energy efficiency, 67
enlarged number of states, 275
envelope, 67
equal error protection codes, 530
equivalence classes, 138

equivalent capacity, 527
equivalent noise bandwidth, 72
equivalent parallel channel model, 522
erasure and error decoding, 375
erasure locator polynomial, 386
erasure locators, 386
erasure polynomial, 386
ergodic channel capacity, 329, 334–5
error and erasure decoder, 372
error and erasure polynomial, 386
error detection, 388
error event, 423
error exponent function, 238
error floor, 492
error floor region, 462, 466
error function, 626
error locator, 376, 382, 386
error locator polynomial, 376, 380, 382
error magnitude, 382
error magnitude polynomial, 380, 382, 386
error polynomial, 387
error propagation, 261, 529
estimation-correlation, 200
estimation error, 222
estimation theory, 218
estimator-correlator, 214
estimator update equation, 223
Euclid division algorithm, 613
Euclidean distance criterion, 537–8
Euclidean distance metric, 256
excess bandwidth, 83
explicit diversity, 281
exponential weighting, 222
extended transfer function, 426
extension field, 612
extrinsic information, 448, 518, 569, 572
extrinsic LLR, 450, 569

face-centered cubic, 141
factor, 613
factor graph, 299
factor group, 138
factor node, 495
factor theorem, 613
fading, 5, 11
Fano algorithm, 258, 419–20
Fano sequential decoding algorithm, 438
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fast decoding algorithms, 144
fast fading channel, 335
fast Kalman, 317
fast RLS, 224
fast RLS algorithm, 317
feedback filtering, 261
feedback matrix, 284
feedforward channel estimator, 241
feedforward estimation, 219
feedforward filtering, 261
feedforward inverse, 398
FG representation, 495
fidelity criterion, 4
field, 611
finite-difference time domain, 60
finite field, 611
finite-geometry LDPC codes, 473
first Nyquist criterion, 172
first-order codes, 370
Fisher information matrix, 228
fixed lag, 269
fixed wireless access, 57
flooding schedule, 492
folding condition, 293, 298
forced folding, 294
forgetting factor, 222
formal derivative, 384
Forney algorithm, 383
Forney graph, 499
forward matrix, 284
forward prediction error filter, 260
forward-only, 269
forward recursion, 272, 275
fountain codes, 502
Fourier basis, 606
fractional power-containment bandwidth, 72
Fredholm integral equation, 41
free distance, 404, 466
free-distance asymptote, 466
frequency division multiplexing, 7
frequency-domain symbol, 128
frequency-flat, 21
frequency selectivity, 21
Fresnel–Kirchhoff theory of diffraction, 59
Frobenius norm, 597
full behavior B, 496
full diversity, 543

full-response modulations, 89
fundamental parallelotope, 140
fundamental region, 140
fundamental theorem of algebra, 613

gain vector, 223
Gallager A, 492
Galois field, 611
gamma function, 140
gap, 478
Gauss–Markov model, 226
Gaussian integers, 146
Gaussian pdf, 625
Gaussian Quadrature, 43
generalized Chase algorithms, 373
generalized construction A, 144
generalized construction C, 145
generating set, 514
generator matrix, 138, 350
generator polynomial, 357, 396
generator polynomial matrix, 396
generators, 137
geometric multiplicity, 598
geometrical theory of diffraction, 59
geometrically based single-bounce model, 63
geometrically based stochastic model, 63
geometrically uniform, 140
girth, 469
Gosset lattice, 141
Gram–Schmidt orthonormalization procedure,

68, 604
Gray coding, 77
Gray mapping, 522
ground field, 613
group, 137, 609
group code, 145
group index, 611
group order, 611
guaranteed error-correction capability, 433
guaranteed error-correction zone, 355
Guruswami–Sudan algorithm, 372

Hackett decoding algorithm, 373
Hamming distance, 352
Hamming weight, 193, 352
hard decoding, 372, 410
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hard iterative channel estimation, 586
Hermite parameter, 140
Hermitian matrix, 598
hexagonal lattice, 138
hexagonal placement, 242
hidden variables, 496
higher-dimensional product codes, 446
homodyne, 157
homogeneous Fredholm integral equation, 176
hopping pilot pattern, 242
horizontal BLAST, 548
hybrid concatenation, 445
hybrid decision feedback equalization, 286
hybrid partitioning strategies, 525
hypertrellis, 443

I-Q diagram, 129
ICI cancelation-based equalization algorithm,

291
ICI self-cancelation, 291
image, 603
image frequency, 157
implicit diversity, 38, 281
implicit time diversity, 301
imputed data, 207, 210
in-phase component, 67
incidence matrix, 474
incomplete data set, 207
incomplete decoding, 388
indoor scenarios, 13
inner encoder, 434
inner product, 602, 624
innovation-based formulation of the optimal

metric, 293
innovation process, 200
input delay-spread function, 17
integer n-dimensional lattice, 138
integer lattice, 138
inter-set distance, 515
interblock interference, 129
interleaved block codes, 448
interleaver, 340, 341
interleaving gain, 466, 589
intermediate frequency, 157
intra-subset distance, 525
intra-subset variance, 525
inverse fast Fourier transform, 128

irreducible polynomial, 613
irregular codes, 468
irrelevant data, 167
isometry, 287
isomorphic fields, 615
isotropic scattering, 61
isotropically distributed, 559
iterative decision feedback equalizer, 286

Jacobian radial basis function equalization, 587
Jakes spectrum, 31
joint approximate diagonalization of

eigenmatrices algorithm, 311
joint multiple diagonalization algorithm, 311

Kalman filtering, 226
Kalman gain matrix, 226
Karhunen–Loève model, 41
Karhunen–Loève theorem, 176, 607
key equation, 383, 386
keyhole, 54, 61
Kirkman triple systems, 474
kissing number, 139, 143
Kronecker product, 52, 597

label group, 144
lag, 263
lag error, 219, 303
Laguerre polynomials, 336
large-scale fading, 12
large-scale propagation effects, 12
lattice constellation, 142
lattice partitions, 524
lattice structure, 224
lattice-structured equalizers, 317
Laurent function, 102–3
Laurent’s decomposition, 100, 171
Leech lattice, 141
left coset, 611
left singular vectors, 598
Levinson–Durbin algorithm, 226, 285
likelihood function, 163
linear block codes, 343
linear congruential sequences, 343
linear equalization, 288
linear LS, 220
linear model, 219
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linear prediction, 266, 285
linear time-variant system, 16
linear trellis codes, 506
linearly dependent, 602, 624
linearly independent, 602, 624
linearly time-selective fading, 42, 174
linearly time-varying model, 309
list decoding, 372, 458
list decoding algorithm, 437
locator field, 363
log-likelihood function, 251
long-term fading, 12
low-density parity check, 344
low-pass Gaussian filter, 96
lower triangular form, 477

M-algorithm, 258
mapping, 77
Marconi, Guglielmo, 1
Markov chains, 67
Markov models, 61, 338
matched filter, 169
matched filtering, 214
Matrix inversion lemma, 598
maximum a posteriori probability, 162
maximum allowable decoding

delay, 341
maximum-length block code, 362
mean excess delay, 33
memory order, 392
Mercer’s theorem, 607
message destination, 4
message source, 4
method of steepest descent, 224
metric, 275
metric-first, 258
MIMO channel capacity, 532
minimal encoders, 397
minimal polynomial, 363, 619
minimum distance, 139
minimum Euclidean distance, 166
minimum MSE matrix, 226
minimum prediction MSE matrix, 226
minimum variance, 219
mismatched reception, 217
mixed partitioning strategies, 525
MMSE one-step linear prediction, 201, 295

modified array codes, 474
modified BCJR algorithm, 458
modified generalized Chase algorithms, 373
modified GMD, 372
modified syndrome polynomial, 386
modulation, 65
modulation index, 86
modulator, 5
modulator frequency response, 86
modulator impulse response, 75
modulator phase response, 87
monic polynomial, 613
Monte Carlo, 62
Moore–Penrose pseudoinverse, 235
Morse, Samuel Finley Breese, 1
moving average, 62
multi-term coset decomposition, 139
multichannel MLSD, 311
multidimensional space-time multilevel codes,

558
multidimensional TCMs, 508
multi-h signaling schemes, 99
multilayered ST codes, 548
multilevel code, 344, 505
multilevel coding, 524
multilevel construction A, 145
multiple order selection combining, 280
multiple-input single-output, 3
multiple TCMs, 508
multiplexing gain, 533, 556
multistage decoder, 528
mutual information, 237

Nakagami-m pdf, 29
narrow sense, 364
n-dimensional lattice density, 140
network codes, 464
Newton’s identities, 377
node error probability, 423
noise enhancement, 261
noise whitening, 190, 255, 260
nominal coding gain, 140, 143
noncoherent detection, 315
nonconvergence region, 462
nonlinear block codes, 343
nonlinearities, 317
nonparametric estimators, 242
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nonprimitive, 364
nonstationary innovation, 262
nonsystematic form, 360
norm, 597, 602–3
normal equations, 220
normal graph, 499
normal pdf, 625
normal realizations of codes, 499
normalized autocorrelation, 31
normalized correlation matrix, 50
normalized Doppler spectrum, 31
normalized power spectral density, 71
normalized second moment, 143
normalized spatial correlation, 51
normalized spatial correlation coefficient, 51
normalized spatial correlation matrix of the

receive antennas, 51
normalized spatial correlation matrix of the

transmit antennas, 51
North filter, 214
nuisance parameters, 221
null space, 351, 624
null-to-null bandwidth, 72
Nyquist bandwidth, 83

observation matrix, 219
observation space, 159
observation vector, 169
observer canonical form, 398
offset BP-based algorithm, 491
offset PAM, 75
offset QPSK, 102
one-tap equalization, 289
optical ray tracing theory, 59
optimal decoder, 518
optimal detection, 159
optimal detection strategy, 162
optimality criterion, 155
order-i reprocessing decoding algorithm, 372
order of a field element, 616
orthogonal, 602, 624
orthogonal design, 542
orthogonality, 119
orthogonality principle, 261, 283–4
orthonormal basis, 68, 172, 603
outage capacity, 337, 533
outage probability, 237, 533

outer encoder, 434
output Doppler-spread function, 19
output equation, 66, 400
overall memory, 400
overspread, 205

pairwise error probability, 424
parallel concatenation, 346
parallel transmission, 119
parametric estimators, 242
parity check equations, 351
parity check polynomial, 359
parity check polynomial matrix, 397
parity check symbols, 351
partial-response modulations, 89
partition, 138
partition chain, 139
partition order, 138
path gain, 54
path loss, 12
path loss exponent, 14
path metric, 411
peak-to-average-power ratio, 130
PEG Tanner graph, 476
perfect code, 361
periodic interleaver, 341
Peterson–Gorenstein–Zierler algorithm, 375,

382
Peterson’s method, 375
phase ambiguity, 78
phase cylinder, 91, 98
phase shift, 70
phase-splitting fractionally spaced equalizer,

269
phase state, 90, 94
phase tree, 91, 98
physical phase, 106
physical tilted phase, 105–6
pilot-based calibration process, 246
pilot tone, 246
pilot vector, 236
pinhole, 54, 61
polynomial divider, 361
polynomial representation, 357, 396
postcursor ISI, 173, 180
postcursors, 257
power allocation vector, 236
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power delay profile, 25
power shaping matrix, 51
power spectral density, 593
pre-equalization, 312
preamble-based training, 238
precoded MIMO-OFDM, 314
precoder, 589
precoding, 312
precursor ISI, 173, 180
precursors, 257
prediction error, 201
predictor form, 266
prime field, 612
primitive, 364
primitive element, 617
primitive polynomials, 617
principal components, 100
principal components method, 171
principal sublattices, 146
probabilistic codes, 344
probabilistic schedule, 492
probability of an error event, 424
probability of first error, 424
product codes, 346, 439
projected graph, 475
projection theorem, 605
projections, 603
propagation loss, 12, 14
protograph, 475
pseudorandom binary sequence, 352
pseudorandom interleaver, 341–2
pseudosymbol, 102–3

QR decomposition, 599
QR factorization, 599
quadrature component, 67
quasi-static channel, 80
quasi-static fading channel, 335
quaternary phase shift keying, 76
quotient group, 138

radio frequency, 6
raised cosine, 83
raised cosine pulse, 88
random coding exponent, 237
random error-correcting codes, 340
random noise, 5

rank criterion, 536
Raptor codes, 503
rateless codes, 502
ray-tracing, 60
Rayleigh fading, 28
real lattice, 137
receive array response vector, 53
receive diversity, 519
reciprocal polynomial, 359
rectangular pulse, 88
recursive channel estimator, 241
recursive estimation, 219
reduced dimensionality, 37
redundancy, 339
regular codes, 468
regular periodic placements, 238
reliability-based decoding, 492
reliability measures, 266
remainder theorem, 613
repetition code, 352, 369
reversible transformation, 168
Riccati equation, 223
rich scattering environment, 7
Rician fading, 28
right coset, 611
right singular vectors, 598
rms angle spread, 48
rms Doppler bandwidth, 33
roll-off, 83
rotation operator, 138
rotational invariance, 77, 344

sample-whitened matched filter, 174
sampling models, 38
sampling theorem, 38
scattered arrangement, 242
scattering function, 35
selection combining, 280
self-dual codes, 352
semiblind, 230, 233
semiblind channel estimation, 247
semiblind detectors, 301
semiblind equalization methods, 291
sequence of states, 254
sequential Monte Carlo, 587
serial concatenation, 346
serially concatenated coding scheme, 434
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set membership indicator, 494
set partitioning, 344, 506, 524
set partitioning principles, 257
shadowing, 12
shaping gain, 143
Sherman–Morrison–Woodbury formula, 598
short-term fading, 12
signal constellation, 142
signal space, 602
signal space codes, 344, 505
signaling interval, 65
signaling rate, 65
simplified search, 258
simplified trellis search, 418
single-error-correcting perfect codes, 361
single-input multiple-output, 3
Singleton bound, 368
singular value decomposition theorem, 598
singular values, 598
skeptical multistep detector, 266
slow fading, 177
slow fading channel, 335
small-scale fading, 12
soft constrained initialization, 224
soft decision, 266
soft decision device, 266
soft decoding, 372, 410
soft demapping, 570–571
soft input channel estimation, 586
soft interference cancelation, 588
soft interference-cancelation MMSE

equalization, 313
soft iterative channel estimation, 586
soft output decoder, 518
soft statistics, 305
source decoder, 6
source encoder, 5
space diversity, 520
space-frequency block code, 564
space-selective fading, 48
space-time, 6
space-time canonical signal representation, 61
space-time codes, 505
space-time-frequency coding, 339
sparse channels, 305
sparse equalizers, 267
spatial domain, 48

spatial multiplexing, 3, 312, 531
spectral efficiency, 67, 73
spectral lines, 113
spectral occupancy, 67
spectral theorem, 598
specular component, 24
sphere packing, 137, 139
spread factor, 205
square root of a raised cosine spectrum, 84
squaring construction, 146
stack algorithm, 419, 421
stack-bucket algorithm, 422
staggered PAM, 75
standard array, 355
standard binary representation, 139
standard normal variable, 625
standard RLS, 224
Stanford University Interim, 57
state diagram, 66, 401
state equation, 66, 90
state transition probabilities, 270, 413
state update equation, 400
statistical channel models, 37
statistically known channel, 175
Steiner triple systems, 474
step size, 224
stochastic CRB, 234
stochastic gradient algorithms, 224
stopping criterion, 463
stopping distance, 477
stopping sets, 477
subgroup, 610
sublattices, 138
subspace, 601, 623
sufficient statistics, 168, 250–251, 274
sum of sinusoids, 62
superheterodyne, 157
superimposed training, 234, 238
superstate, 182, 184
supertrellis, 182, 184, 256, 563
survivor, 254, 411
symbol field, 363
symbol interval, 65
symbol rate, 65
symbol-spaced finite-length, 263
symmetric channel, 327
syndrome polynomial, 380, 382, 386
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syndrome vector, 354
system functions, 16
systematic encoder, 398
systematic encoding, 351, 360
systematic form, 351

tail-biting, 442
Tanner graph, 468
Tarokh–Seshadri–Calderbank criteria,

536
tentative low-delay decisions, 227
termination criteria, 575
theorem of irrelevance, 168
theorem of reversibility, 168, 288
theorem of total probability, 161, 194
theta function, 139
theta series, 139
threaded ST codes, 548, 552
threshold decoding, 438
time dispersion, 21
time diversity, 531
time division multiple access, 1
time division multiplexed training, 238
time prefix, 121
time- and aperture-variant channel impulse

response, 48
time- and aperture-variant transfer function, 49,

56
time-dispersive, 11
time-multiplexed pilot, 234
time-variant angle-resolved channel impulse

response, 47
time-variant angle-resolved channel transfer

function, 48
time-variant impulse response, 16
time–frequency correlation function, 33
Tomlinson–Harashima precoding, 316
tone calibration technique, 238
total coding gain, 143
total information weight, 466
training-based channel estimation, 237
transfer function, 396, 406
transition pdf, 325
transition probabilities, 324
transmit antenna diversity, 520
transmit array response vector, 53
transmit diversity, 6

transmit precoding, 532
transmitted reference systems, 246
trapping sets, 477
tree equalizers, 266
trellis, 253
trellis-based algorithms, 587
trellis-based MLC, 530
trellis codes, 343, 390
trellis diagram, 66, 90, 392, 402
trellis representation, 496, 523
truncated memory detection, 257
truncated sequence detection, 257
truth table, 370
turbo cliff region, 462
turbo codes, 346
turbo detection, 567
turbo equalizer, 567
turbo principle, 448, 455
turbo product codes, 458
two-dimensional product codes, 446
two-ray model, 59

ultimate shaping gain, 144
ultra wideband, 2
unbiased estimator, 219
uncorrelated paths, 56
uncorrelated scattering, 25, 55
underspread, 205
unequal error protection codes, 530
Ungerboeck set partitioning, 525
uniform interleaver, 467
uniform linear array, 53
uniform theory of diffraction, 59
union bound, 162, 424
unit step function, 69
unitary STCs, 558

variable node, 495
Varshamov–Gilbert lower bound, 437
vector Kalman filter, 226
vector MAP estimator, 221
vector space, 601, 622
vertical BLAST, 548
vertices, 468
virtual antennas, 562
virtual channel, 61
virtual channel representation, 55
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virtual representation, 61
visible variables, 496

Wagner code, 373
Wagner decoding, 436
water-filling rule, 334
water-filling technique, 330, 533
water-pouring technique, 330
waterfall region, 462
weight distribution, 139
weight enumerator polynomial, 353
weight spectrum, 353
weighted LS, 220
Weiss–Weinstein, 232
whitened matched filter, 174

Wiberg-type graphs, 496
wide-sense stationarity, 25, 55, 593
Wiener filters, 225
Wiener–Hopf equations, 224
Wiener–Hopf filtering equations, 226
Wiener–Khintchine theorem, 594
wireless local area network, 2
Wishart matrix, 334
wrapped ST codes, 548
WSS channel, 55
WSS-US channel, 55
WSS-US-UP channel, 56

Zigbee, 2


