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Preface

The author has been concerned for years with the effects of moving loads on
structures and has dealt with this subject in the book Vibration of Solids and
Structures under Moving Loads, Academia Publishers, Prague, and Noordhoff
International Publishing, Groningen, 1972, [68]

The book Dynamics of Railway Bridges represents a continuation of the au-
thor’s mterest 1n this field with the applications to the vibration of railway
bridges Itis the result of the theoretical and experimental activity of the author
in the course of the solution of various research problems, of scientific as well as
of apphed character, and 1n the course of his activity for international research
programs ORE D 23, D 101 and D 128 of the Office for Research and
Experiments (ORE), now European Rail Research Institute (ERRI), of the
International Union of Railways (UIC)

The book summarizes the author’s theoretical contributions to the dynamics
of railway bridges as well as the results of experiments on many bridges n
Czech and Slovak Republics and abroad It 1s divided 1nto 14 chapters dealing
systematically both with the bridge and with railway vehicles travelling along it
It sums up the basic dynamic characteristics of raillway bridges (natural fre-
quency and damping) and describes the mfluence of the most important para-
meters, such as the speed of vehicles, track irregularities, etc Apart from the
vertical effects of vehicles, attention 1s also given to horizontal longitudinal and
hornizontal transverse effects on bridges

The book pays special attention to traffic loads and their railway bridge re-
sponse These factors influence principally the fatigue of bridges and their hfe
expectancy as well as the safety, mamntenance and economy of railway traffic

The problem of thermal interaction of long-welded rais with the bridge 1s
considered 1n the appendix This 1s a static rather than a dynamic problem, but
1t 1s very important for the passenger’s environment and ecology

It 1s expected that railway traffic based on the principle of wheels rolling
along rails has a maximum speed of about 500 km/h However, further devel-
opment mncludes magnetically levitated vehicles which will attain even higher
speeds It 1s interesting that the structures, along which the air cushion vehicles
move, may be mvestigatea using the methods explained m [68] and in the pre-
sent book, see [12], [124], [126], [170]

In spite of the large scope of the book 1t was impossible to include some other
problems either forming part of dynamics of bridges, such as the effect of wind
load [114] and earthquakes [150] (which, however, are not of great importance
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in Central European conditions) or which are at the boundaries of this discip-
line, such as noise [161] (noise generated by vehicles passing over bridges). With
one exception the book does not include any computer programs as these are
created individually according to the relevant hardware available.

The purpose of the book is to present a well founded survey of the dynamic
behaviour of railway bridges, to present abundant experimental data obtained
on numerous bridges, and to describe the methods which have been success-
fully applied in this field. The book is intended for civil and railway engineers,
and for scientists and students concerned with the problem of the behaviour of
bridges during the passage of vehicles.

In conclusion, I should like to thank all my former and present fellow-
workers as well as Academia and Thomas Telford Publications who enabled this

book to be written.
Ladislav Fryba
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constant

axle distance

crack length

acceleration or deceleration of motion
constant

constant of damping or dry friction
annual increment of traffic load
relative rail -and bridge displacement
coeffiecient in adhesion computation
velocity of motion

constant

crack width

speed of propagation of longitudinal or transverse waves
constant

sleeper distance

axle distance

frequency

deflection due to uniformly distributed load
natural frequency

natural frequency of loaded bridge
function

load per unit length

probablity density

centred value of random function f(x, t)
acceleration due do gravity

initial beam deflection

initial beam velocity

difference in height

plate thickness

constant

spring stiffness

gradient of Wohler fatigue curve
span of the bridge

length



14

S 53

=X 3 =
I
\.H
»
\_U-)

=
—

R B~ I SR

NN e N

AT

]

Notation

mass
coefficient
lengths ratio

number of stress cycles per year

number of spans of a continuous beam
number of stress cycles in the ith class
number of trains per year

horizontal transverse uniformly distributed load
generalized displacement

longitudinal load

number of tracks on the bridge

radius of wheel, curvature, inertia

span ratio in a continuous beam

track irregularity

amplitude

auxiliary variable

standard deviation

time

temperature

displacement in the direction of axis x
function expressing the motion of a force
velocity (km h™")

displacement in the direction of axis y
static midspan deflection due to self-weight
midspan deflection due to force F applied at midspan
function of time

displacement in the direction of axis z
deflection of the plate

coordinate

coordinate

vertical unevenness

coordinate

horizontal unevenness

constant

Cross section area

constant

parameter of accelerated or decelarated motion
dynamic bridge stiffness

constant

centre of gravity (centroid)
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centre of flexure

variation coefficient of random function f(x, t)
covariance of random functions x(¢) and y(¢)
constant

fatigue damage

bending stiffness of a plate
standard deviation

variance

dimensionless axle distance
modulus of elasticity
experiment

constant

mean value of random function f (x, 1)
force

vehicle weight

track frequency

time-variable force

centrifugal force

weight of the bridge

modulus of elasticity in shear
influence or Green function
power spectral density of unevennesses (one-sided)
horizontal force

horizontal transverse force
moment of inertia

spring force

stress intensity factor

length

life of the bridge

length of unevenness

expansion length of the bridge
interval of bridge inspections
bending moment

mean value

horizontal longitudinal force
normal force

number of axles

number of stress cycles

ultimate number of stress cycles
number of trains per bridge life
probability

horizontal force in rails
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Notation

power spectral density of random function f{x, f), (two-sided)

traffic load per year (in millions of tonnes)
dimensionless coefficient

period of natural vibration

theory

tensile force

Heaviside unit function

variation coefficient

matrix of dependence of the nth and the mth forces
cross section modulus

resistance to motion

horizontal longitudinal force below bridge bearings
horizontal transverse force

vertical reaction under bridge bearings

function

velocity parameter

angle

coefficient of thermal extension
damping parameter

coefficient of reliability
coefficient of internal damping
load factor

dynamic coefficient

Dirac delta function

strain

very small quantity

yawing

pitching

logarithmic decrement of damping
weight parameter

dimensionless stress range

value dependent on natural frequency
fatigue load factor

mass per unit length of a beam or per unit area of a plate

Iriction coefficient

Poisson’s number (v < 1)
dimensionless length coordinate
rolling

arm of a force

stress
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deflection variance

dimensionless time

auxiliary time variable

dynamic increment

dimensionless parameter

sectorial coordinate

angle

phase

circular frequency

circular frequency of passage of force
circular frequency with damping
circular frequency of damped vibrations
natural circular frequency

Gamma function

stress range

rail temperature difference from fixing temperature
bridge temperature difference from fixing temperature
summation

dimensionless friction force

distribution function of the normal Gauss distribution
circular frequency of harmonically variable force
circular frequency of nonuniform motion

track frequency

admissible value
damping
centrifugal
comparative
critical value
damping
equivalent
horizontal

yield limit

standard load
horizontal transverse
horizontal

{ixed bearing
movable bearing
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T traffic
& torsional
© torsional

Superscripts

L derivatives with respect to length coordinate
' damped vibration

, derivatives with respect to time

- loaded

* complex quantity

Units of measurements
International System (SI)

Lengths : metre (m), millimetre (mm), kilometre (km)
Force : newton (N), kilonewton (kN), meganewton (MN)
Mass . kilogram (kg), tonne (t)

Time : second (s), hour (h), year

Frequency : hertz (Hz)

Circular frequency : (57)

Velocity : (ms'), (kmh™)

Stress : megapascal (MPa) = N mm™

Temperature : degrees centigrade, Celsius, (°C)



1. Introduction

1.1 Object and history of the dynamics of railway bridges

The dynamics of railway bridges is a scientific discipline forming part of ap-
plied mechanics and its subdivision dynamics of structures. it is concerned with
the study of deflections and stresses in railway bridges. The loads are represen-
ted by the moving wheel and axle forces, by means of which railway vehicles
transmit their load and inertia actions to railway bridges. A survey of the dy-
namic effects of vehicles on railway bridges is given in Fig. 1.1,

Thus the dynamics of railway bridges involves the response of bridges to the
movement of vehicles and to the influence of a number of parameters which

Dynamic effects
of railway vehicles on bridges

stochastic

determmnistic also due to traffic flow

:

vertical effects horizontal effects

1
| | 1

influence of moving

torces and masses irregularities longitudinal transverse
of of vehicle| | starting braking lateral Cfigt;f-
the track | | wheels forces forces impacts forens

Fig. 1.1. Dynamic effects of railway vehicles on bridges.
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increasec dynamic strains or stresses. The most important parameters influ-
encing the dynamic stresses in railway bridges are: the frequency characteristics
of bridge structures (i.e. the length, mass, and rigidity of individual members),
the frequency characteristic of vehicles (i.e. the sprung and unsprung masses,
the stiffness of springs), the damping in bridges and in vehicles, the velocity of
vehicle movement, the track irregularities, and so on.

The vehicles affect the bridges not only by vertical forces, but also by move-
ments which generate longitudinal and transverse horizontal forces.

This results in an increase or decrease of bridge deformations when com-
pared to that due to static forces. In design practice, these effects are described
by the dynamic coefficient (or dynamic impact factor) which, however, only
states how many times the static effects must be multiplied in order to cover the
additional dynamic loads. Because of its simplicity the dynamic coefficient
cannot characterize the effect of all the above-mentioned parameters, but it
does generally ensure the safety and reliability of bridges.

The fatigue assessment of bridges has resulted in the derivation of a new ap-
proach. This assumes the magnitude and number of stress cycles generated in
the bridge by the passage of all trains during its service life. This approach,
which is closer to reality, has yielded valuable data for the fatigue assessment of
bridges, for the estimation of their fatigue life and for the determination of
inspection intervals.

At the boundary between the statics and the dynamics of bridges, the prob-
lem of thermal interaction of bridges with rails occurs. Because the tempera-
ture changes also depend on time, the solution of these problems has been also
included in this book, although the thermal effects do not generate any vibra-
tion in bridges.

In addition to a wide range of problems of the railway bridge dynamics, some
commonly used experiments are also described; these are to check the reliabi-
lity of bridges in practice and also to verify the feasibility of new theories in
research. Over the years, a certain methodology of these experiments has de-
veloped, the keeping of which greatly contributes to the comparability of the
individual experiments.

Scientific and research studies in the field of railway bridge dynamics have
yielded a number of measures and instructions which have been incorporated
into national or even international standards for the design and analysis of rail-
way bridges [211] to [213].

This brief survey of the problems of railway bridge dynamics confirms that
this discipline has a rich history and great attention has been paid to the study
of bridge dynamics all over the world. Indeed, the problem of vehicle move-
ment along railway bridges was the second problem (after the study of impact
of two colliding solids) with which structural dynamics was concerned. The
problem arose during the construction of the first railways in England in the
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first half of the 19th century, when the engineers split into two groups. One be-
licved that the passage of a railway locomotive along the bridge would generate
an impact, while the other was of the opinion that the structure would not have
enough time to become deformed during the engine passage.

For this reason, this very early period gave rise to the first experiments by R.
Willis [222] and to the first theoretical studies by G. G. Stokes [201] which sug-
gested that the actual effect of a moving railway locomotive on the bridge
would lie somewhere between those two extreme opinions mentioned above.
Since that time the dynamics of railway bridges has received consistent atten-
tion in most technically developed countries all over the world.

From the number of theoretical pioneers of this discipline mention should be
made of H. Zimmermann [230], A. N. Krylov [130], and particularly S. P.
Timoshenko [207], who solved the two fundamental problems of motion of a
constant and of an harmonically variable force along a beam.

Between the two World Wars the dynamics of railway bridges was given great-
est attention in the former USSR [55] and in Great Britain [175]. In this connec-
tion particular mention should be made of the classical work by Prof C. E. Inglis
[106] who explained both theoretically and experimentally the effect of steam
railway locomotives on the vibration of railway bridges. His research exercised a
decisive influence on the subsequent development of the whole discipline.

In late Czechoslovakia, Prof. V. Kolousek [120] solved the effects of steam
railway locomotives on the statically indeterminate continuous, frame and arch
railway bridges. The author has also contributed, together with other Czech and
Slovak specialists [8], [63] to [80], [142], [191].

In the former USSR, there originated at least three schools studying this di-
scipline both theoretically and experimentally. Their number included Prof. N. G.
Bondar [22], [23], [208] and his followers in Dnepropetrovsk, Prof. Ju. G. Kozmin
[22], [23] in St. Petersburg, and L. I. Kazej [115] and colleagues in Moscow.

Also in the USA, the dynamics of railway bridges has been studied at several
universities, particularly the Northwestern University, the University of 1llinois,
Massachusetts Institute of Technology, Stanford University, Michigan State
University and elsewhere [29], [52], [180], [202], [206].

From other countries mention should be made of Poland [46], [90], [128],
[173], the Federal Republic of Germany [25], [27], [124], [170], [185], [188], [192].
[196], Switzerland [9], [30], [97], [100] to [102], [138], France [31], [32], Great
Britain [175], Sweden [43], [44], [98], [156], [157], the Netherlands [137], [200],
Japan [99], [108], [140], [141], [147], [226], [227], and India [26], [99]. [227].

Several international organizations have been concerned with research on
bridge dynamics. For example, the OSZhD (Organizacija sotrudnitestva Zelez-
nych dorog — Organization of Railways Cooperation) dealt with this problem
between 1960 and 1970 and with the methodology of loading tests from 1980 to
1985. The Office for Research and Experiments (ORE) of the International
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Union of Railways (UIC) has had in its research program a number of prob-
lems which form part of railway bridge dynamics. These are particularly the
questions ORE D 23, 101, 128, 154, 160 and others dealing with the problem.
The research has been continuing by the successor of the last organization, i.e.
by the European Rail Research Institute (ERRI).

The author of the present book had the opportunity of being able to coope-
rate or to lead (ORE D 128 and ERRI D 191) the research in both interna-

.tional organizations mentioned above. The results of this activity appear in the
present book.

This brief survey of state-of-the-art railway bridge dynamics and of its individual
problems shows the importance of this discipline for structural engineering in
general, and for the design and analysis of bridge structures in particular. Correct
understanding of the problems of bridge dynamics contributes to economic design
of new structures and to the rational exploitation of bridges in service.

1.2 Deterministic vibration

The response of a railway bridge to the passage of any vehicle manifests itself
as vibration. It will be advisable, therefore, to recapitulate first the fundamental
concepts of the vibration of mechanical systems [8], [42], {120], [176].

Deterministic vibration is motion which can be predicted at any moment. The
basic model from the field of vibrations is a system with one degree of freedom
(Fig. 1.2) whose motion is described, according to Newton’s second law and
D’Alembert’s principle, by the differential equation

' d’ vgt) b dv(¢)
d¢ dr

+ k v(t) = F(1) (L)

LFit)

lv(t)

Fig. 1.2. System with one degree of freedom with Kelvin-Voigt absorber of vibrations,

where v(1) — displacement of a body of mass m at time #,
m — lumped mass of the system,
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b = 2mw, — damping force at unit velocity (according to Voigt’s hypo-
thesis of damping proportional to the velocity of vibration),

k — stiffness or rigidity of the spring (force per unit length of
spring deformation), assumed constant,
£(1) — external force dependent on time ¢.
The fundamental concepts in the ficld of vibrations are the natural circular

frequency of the system (1.1)

w, = (ﬁjw, (1.2)

m

the circular frequency of damped vibrations with subcritical damping (@, < @,)
W, = 0, - o, (13)

the natural frequencies of undamped or damped vibrations derived from it
o,
= — 1.4

o = o0 (1.4)

and
W

f == (L5)

EE 5

respectively, and the period of natural vibrations

1
T, = — 1.6
T 7 (1.6)

and
T, = =+
fa
respectively, this being the shortest time after which the vibration repeats.
The damping of the system (1.1} is characterized most frequently by the logar-
ithmic decrememt of damping, ¥, which is defined as the natural logarithm of
the ratio of any two successive amplitudes of like sign after time 7,. In the case

of damping proportional to vibration velocity, this ratio is constant. In practice,
it is often determined on the basis of # successive vibrations

9 = -}% In (1.8)

i

(L7)

where s, is the amplitude after the nth cycle (see Fig. 1.3).
The relation of the logarithmic decrement of damping to the constant b or ,
In equation (1.1) is

w b
— b — . 1
v fa 2m f, (-9




The quantity # is sometimes replaced by the dimensionless damping ratio

B b Sy D (1.10)
, 2m o, , 2
bvit)/vio)

Fig. 1.3. Time-history of natural damped vibration of a system with one degree of freedom at sub-
critical damping.

1.3 Dynamic coefficient

The dynamic coefficent (also known as the dynamic impact factor or dy-
namic magnification or dynamic amplification) is usually defined as a dimensi-
onless ratio of the maximum dynamic displacement to the static displacement.
In the simplest case, shown in Fig. 1.2 and described by equation (1.1), it can be
obtained as follows:

Analysis of the forced vibration of a system with one degree of freedom
requires the solution of equation (1.1) under the action of a force

F(t)y=F sin ot . (1.11)
At t — o, the sustained vibration takes the form of
v(t) = Asin ot + B cos wt . (1.12)

After the substitution of equations (1.11) and (1.12) in equation (1.1) and a
comparison of coefficients of the individual terms we obtain the following
expressions for the constants A and B:

Flw, - )
- o) + 4a)2a)i] ’

A =

B = oo, (1.13)
m[(a)2 - @) + 4a)2a);]
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The maximum amplitude of forced stationary vibrations is then the vector
sum of A and B, so

2 2 G F 2 2 ! 2 .52 e
s, = (A + B :—[(a)ﬂ—w)+4a)a)b} . (1.14)
m

The static displacement of a mass on the spring of stiffness & subjected to the
force F, according to the definition of the spring stiffness (Fig. 1.2 and equation
(1.2)), is

F F
¥ . = — = — 1. 15
’ k mo; (1.15)

The dynamic coefficient for the simplest case of forced vibration of a system
with one degree of freedom is then defined as the ratio of the maximum dy-
namic displacement (1.14) and the static displacement (1.15)

S() =172

§="2 =1~ @0} + 40’0}/ 0] (1.16)

VS[

and depends, consequently, on the ratio w/w, and on f§ = w,/@, The function
(1.16) is represented graphically by the resonance curve in Fig. 1.4.

Ji
5
10 - /3:0\0.0

0 ! T L Li T T L} ¥ 1 é U/w:
Fig. 1.4. Resonance curve of amplitudes of damped stationary vibrations (dynamic coefficient &
Plotted against the excitation frequency a¥ey, for various damping ratios § of a system with one

degree of freedom).
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The maximum dynamic coefficient may be calculated from the condition that
the expression (1 — @¥/@}) + 40 @, /¥, (the denominator in equation (1.16)) at-
tains its minimum value. When the derivative of this expression is made equal
to zero the maximum dynamic coefficient is obtained when

o = o - 20;. (1.17)

This means that for small damping the highest effects arise when the fre-
quency @ is approximately the natural frequency @,; that is

w=0,. (1.18)

This frequency produces strong (resonance) vibrations of the system.

If we substitute the excitation frequency (1.17) into equation (1.16), we ob-
tain the maximum values of the dynamic coefficient (see also equations (1.9)
and (1.10)):

2
- % .o 1 _ T (1.19)
20,0, 20, 23 o
Equation (1.19) shows that maximum dynamic effect in resonance conditions
depends chiefly on the damping characteristics of the system (it is indirectly

proportional to the logarithmic decrement of damping).

max

1.4 Stochastic vibration

Random or stochastic vibration represents a motion the characteristics of
which can be determined only with a certain probability. The number of prin-
cipal concepts from the field of stochastic vibration includes (for details see
[20], [41], [42], [176]):

The mean value (or mathematical expectation) of a stochastic process x(f) is
defined as a statistic moment of the first order

o0

E[x(r)] = Jx f(x, t)ydx (1.20)

o0

where f(x, f) is the first-order probability density function.
The variance (dispersion) is a central moment of the second order

Bl{x) - E@]} |-

D*[x(1)]

- '[ Lo = E[x(0)} f(x. 0)dx . (1.21)

The standard deviation is the square root of the variance (often denoted by
RMS)
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D[x(t)] (1.22)

and the variation coefficient expresses the dimensionless ratio of the standard
deviation to the mean value
Dl x(t
C(t) = (1)

E[x(r)]
The characteristics of a random process (1.20) to (1.23) are called statistical
characteristics of the first order. The statistical characteristics of the second
order express the relation of the processes x(f) and y(¢) in two moments, ¢, and
t, according to Fig. 1.5.

(1.23)

x(t)
)

My A
W

ylt) v

l
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Fig. 1.5. Correlation of random processes x(¢) and y(7) at times ¢ and ,.

The correlation function is the mean value at times ¢, and ¢, (generally statist-
ical moment of two-dimensional distribution):

R(t, t,) = E[x(t,) x(4,)]. (1.24)
In the case of two processes x(¢) and y(f), the correlation function is defined as
(Fig. 1.5):

R (. t,) = E[x(t) ¥(t,)]. (1.25)
If x(¢) = y(), we speak about the autocorrelation function R, (t,,1,), i.c. (1.24).

The random function x() is often resolved into its mean value E[x(7)] and the
centred random value X ()

x(tr) = E[x(0)] + #(r) . (1.26)
The correlation function of a centred random process is called the covariance

C,(t, ) = E[y%(rl)j’)(zz)]. (1.27)
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In the special case of x = y, and ¢, = t,=, according to equation (1.21)

C (1 1) = E[{x(t) - E[x(r)]}z] = D*[x()]. (1.28)

The covariance (1.27) and the correlation function (1.25) are bound by the
following relation

C,(1. t,) = R(,, .) — E[x(r))] £[3(1,)] (1.29)

In stationary processes (in the wider meaning of the term), the mean value
and the variance are constants, while the correlation function depends only on
the difference t=1,— t,.

Another important concept is the power-spectral-density of a random process
which characterizes its frequency composition. It is defined mathematically as a
Fourier integral transformation of the correlation function.

For stationary processes, therefore, the following Wiener—Khinchin mutual
relations hold true:

S, () = j R, (7) e™ dr,
- ! °° “d 1.3
R (7) = 5 S, (w)e™ dw (1.30)

where S, is the cross power-spectral-density of random functions x(¢) and y(z).
Also the one-side power-spectral density will be used in Sect. 7.2.

A special case of stationary random processes is represented by ergodic pro-
cesses which, apart from being stationary, must comply also with the condition
that all statistical characteristics calculated from a single realization of a ran-
dom process must equal the characteristics calculated for the whole set of
sample functions of the respective random process. For instance, the loading
of a railway bridge by a running train with unequal wagons (with the exception
of the first and the last vehicles), track irregularities, wind loads, etc., are approx-
imately considered as ergodic processes.

Random processes, which do not comply with the conditions of stationarity,
are called non-stationary processes. In the case of bridges, their number includes
such transient processes as the loading by one vehicle with random effects or
running over random irregularities, earthquake, and so on.
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Railway bridges are generally long structures which is reflected also in the
theoretical models used in their analysis. In principle, theoretical models of rail-
way bridges are of two types: those with continuously distributed mass and
those with mass concentrated in material points (lumped masses), or their com-
binations. The choice of an adequate model depends on the particular case and
on the purpose of the analysis.

2.1 Beams

The railway bridge model most frequently used is a beam which models well
and simply the linear character of the structure which has small transverse
dimensions when compared with its length.

2.1.1 Mass beams

If the mass of the bridge structure is comparable with or considerably higher
than the mass of the vehicles, it cannot be neglected. This is the case for medium
and large span bridges. In this way the mass beam is necessary (see Fig. 2.1)
which is used most frequently for theoretical idealization. The equation of motion
of the beam expresses the equilibrium of forces per unit length:

4 ¢ 2 y
Ela—g—%—) + ua—a%iﬂ + Z,ua)ba—v(%l = f(x,t) (2.1)
where v(x, t) - vertical deflection of the beam at the point x and at time /,
E — modulus of elasticity of the beam,
! — moment of inertia of beam cross section,
U — mass per unit length of the beam,
W, — circular frequency of viscous damping, see equation (1.9),

f(x, ) -load at point x and time ¢ per unit Jength of the beam.

L8]

Fig, 2.1. Mass beam of span /.
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Differential equation (2.1) was derived by Bernoulli and Euler assuming the
theory of small deformations, the validity of Hooke’s law, Navier’s hypothesis
and the Saint-Venant principle. Equation (2.1) assumes constant cross section
and mass per unit length of the beam and the damping according to the
Kelvin—-Voigt model is considered proportional to the velocity of vibration.

Apart from the differential equation (2.1) the behaviour of the beam can also
be described by the following integral-differential equation

! 2
v(x, t)—fG (x, 5) {f(s, ty — u —O—LE(—?L) - 2uw, M} ds, (2.2)
. ot ot
which follows from the theory of influence lines (see [68]). In equation (2.2):

G(x, s) — influence function of the beam also called Green’s function. It is
the deflection of the beam at point x due to a unit force applied at point s,

[ - span of the beam.

Both methods — that using equation (2.1) and that using equation (2.2) — are
equivalent.

A current method of analysis is that using equation (2.1) which is applied in
all analytical and numerical methods of applied mathematics. Equation (2.2)
provides some advantages in those cases where the influence function G(x, s) is
known, e.g. from the structural analysis. The advantage of the second method is
that the theory of integral equations of Fredholm type makes it sometimes
possible to estimate the error by considering a finite number of successive
approximations (sce [174]).

2.1.2 Massless beams and other special cases

If the mass of the bridge structure or of its element is substantially lower than
the mass of the vehicle, it is possible to neglect it entirely; thus we obtain a mass-
less beam as shown in Fig. 2.2. This idealization is used for small span bridges,
and longitudinal or transverse girders, which fulfil the above conditions. The
equation of motion of such a beam can be obtained from equation (2.1) or
equation (2.2) for g — O:

£ 22D (2.3)
or
v(x, 1) = JG (x, s)f(s, 1) ds, (2.4)

where the individual symbols have the same meaning as in equations (2.1) and
(2.2).

However, the load f(x, {) in equation (2.3) and equation (2.4) must be con-
sidered including its force and inertia effects, as is shown in Sect. 3.4.3.
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This makes the solution of equations (2.3) and (2.4) much more difficult than
the solution of equations (2.1) and (2.2), because in these equations it is pos-
sible, in accordance with initial assumptions, to neglect the inertia effects of the
load; for details see [68].

ELu =0 ’ j [ Flxt)
Fay @]
L. L |
X
vix,t)

Fig. 2.2. Massless beam of span L

If the beam stiffness in equation (2.1) is negligibly small, / — 0, a string is
obtained, whose carrying capacity is provided by the horizontal force N stretch-
ing the string. This gives rise to the equation

" v(x, t) & v(x, t) av(x, t)
— U —— + 2uw, —————== f(x, ¢ 2.5
where N is positive, if it is in tension which is always so.
The idealization of railway bridges by equation (2.5) is not used, because rail-
way bridges must always be sufficiently stiff (for details see [68], Chapter 14).
The theoretical model of suspension bridges can be derived from the equation

" v(x, t) " v(x, t) " v(x, 1) av(x, t)
El ——~* - N——F +———=+ + 2 ——==f(x, t) (2.6
Jx* ox’ o0 R, ot J(x 1) (2.6)

-N

which is a combination of equation (2.1) and equation (2.5) (for details see [68],
Chapter 20). Suspension railway bridges are occasionally used in construction
practice,

2.1.3 Continuous beams

The mathematical model of a continuous beam according to Fig. 2.3 is de-
scribed by the same equations as those given in Sects 2.1.1 and 2.1.2 and the
respective boundary conditions, Sect. 2.1.4. The continuity above intermediate
supports is ensured by special conditions which form the core of the individual
methods of analysis of continuous beams in structural mechanics, such as the
slope-deflection method, the statical method, the method of initial parameters,
the three-moment equation, the five moment equation, and others.

& o o]
! b L2 | 3 |
| 1 ! |

Fig. 2.3. Continuous beam.
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Analogous procedures are applied in special cases of continuous beams, such
as structures with suspended spans, cantilever ends, and so on.

2.1.4 Boundary and initial conditions

The differential equations (2.1), (2.2), (2.5) and (2.6) necessitate boundary
conditions expressing mathematically the bearing of beam ends on supports
according to Fig. 2.4. We can discern the following types of bearings of

beams:
Hinged bearing (Fig. 2.4a); this has zero deflection and bending moment at

the point x = 0 (or at the point x = /), so

o’ v(xz, I) -0,
dx

The hinged bearing (Fig. 2.4b) is described by the same equations as equa-

tion (2.7).

a)

v(x, 1)=0 and (2.7)

Fig. 2.4. Boundary conditions of beam in point x = 0: a} hinged bearing, b} sliding hinged bearing, b
¢} clamped end, d) free end, i

A clamped beam end (Fig. 2.4c) has zero deflection and rotation, so

W, f) =0 and 280D _ g (2.8) |
ox |
The free end (Fig. 2.4d) has a zero bending moment and shear force, so
o v(x, t) 2> v(x, 1)
Z 2 =0 and ——2 2 = (. 2.9
ox’ Jx’ (29)

Continuous beams must obey conditions above the supports, i.c. the condi-
tions of deflection, rotation, bending moment and the shear force limiting from
the right and from the left hand sides.

The geometric conditions for x = 0 and for x =/

W, 1y, L&D (2.10)
adx
and the dynamic conditions
" v(x, t) > v(x, t) (2.11)

ox o x’
are generally different.

In the integral-differential equations (2.2) or (2.4), the boundary conditions
arc alrcady included in the influence functions G (x, s) which must satisfy

them.
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The initial conditions express the initial deformation and velocity of the struc-
ture at the time ¢ = 0 from which we begin the analysis. Naturally, they can also
be the functions of spatial coordinates, such as for ¢ =0

v(x, t) = g(x) and i}}gx;—r) = g(x). (2.12)

2 2 Plates

Although reinforced and prestressed concrete railway bridges are often con-
structed as plates, they are not usually modelled in this way. Therefore, we give
here only the differential equation of plates derived with analogous assump-
tions as equation (2.1):

s {84 Wy 1), 5 9wy, 1) 9wl y 1)

Jdx* dx’ ady’ dy'
2
pp TWEI D gy (2.13)
dt
where w(x, y, t) — vertical deflection of the plate at the point x, y and at

time ¢, see Fig 2.5,

3
D= _En bending stiffness of the plate,
12(1-v")
E — modulus of elasticity of the plate,
h — plate thickness,
v — Poisson’s number (v < 1),
J7i — mass per unit area of the plate,

fx, v, 1) — load per unit area of the plate.

Fig. 2.5, Plate.

Orthotropic plates possess different mechanical properties in two mutually
perpendicular directions. The orthotropic plate is often used as the super-

Structure of steel bridges with ballast. The differential equation of the plate
is then
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4 4 , 4
D ' wi(x, y, 1) 2D d'w(x, y, t) D d*w(x, y, 1)

x o it <y J x> 8)22 ¥ (9)74
d’ v,
+ U ngtzy ) _ flx, vy, 1) (2.14)

where, in comparison with the homogeneous plate according to equation (2.13),
its mechanical properties in the directions x and y are:

Dx — Ex]x ,
I - vy
D = E>Iy
Tl - vy,
2D, = D,v, + D,v, + 2[1 - (v,v))"| (D.D)", (2.15)

where E,, E,, v,, v, — moduli of elasticity and Poisson’s ratios of normal defor-
mation in the directions of x and y, respectively,
1,1, — moment of inertia of plate unit width perpendicularly to x
and y, respectively.
The expression of boundary conditions for plates is more difficult (for details
see [120]). For instance, the boundary conditions of a rectangular plate (Fig. 2.5)
for the edge x = 0 (i.e. for the axis y) are expressed as follows:

2 2
simple support w = 0, J VZV + va VZV =0, (2.16)
dx dy
ow
clampededge w =0, — =0, (2.17)
dx
I w dw a’w d’w
free ed + v = 0; + (2-v = 0. (2.18
& oy o PTGy (218)

2.3 Complex systems

More complex structural systems used in bridge engineering, such as trusses,
frames, arches, etc., are analyzed in dynamics by the concentration of their mass
in lumped masses, as shown in Sect. 2.4. In the present section, therefore, we
shall deal only with certain simplifications and special cases.

2.3.1 Trusses

Lattice steel structures (trusses) are frequently found in medium and large
span railway bridges.
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For the purpose of dynamic analysis, trusses are often replaced by a mass
beam of constant cross section so that equation (2.1) applies. The mass per unit
length is determined from the total bridge weight G as

G
= — (2.19)
gl
where g- acceleration due to gravity, and
[ — span of the bridge.

In the case of variable depth of truss, the mass per unit length valid at mid-
span of the actual system may be used for i as well.

The moment of inertia / of an equivalent beam is calculated so as to make the
maximum static deflection v, due to adequate load equal to the deflection of
the actual lattice structure. As the static deflection of the structure due to an
uniformly distributed load f, (e.g. due to self-weight) is usually known, the com-
putation is simple. For a simply supported beam, for instance, the deflection at
midspan due to a uniformly distributed load f, is

14
v({/2) = S 4
384 FEI
which can be made equal to the deflection of the equivalent beam v, = v(l/2).
From this condition we obtain the moment of inertia
l4
TR (2.21)
384 Ev,

The moment of inertia of the cross section I may also be obtained from the
cross section area A, of the upper and A, of the lower chords of the truss of
height A as follows:

\ (2.20)

sup

i
1=§(A

Sup

+ A,) R (2.22)

'The moment of inertia from equation (2.22) is usually higher than that from
equation (2.21), particularly in the case of lattice structures of variable height.

2.3.2 Frames

The Kolousek’s deformation (slope-deflection) method [120] is used most
frequently in the dynamic analysis of frames for the investigation of natural fre-
quencies and natural modes.

For the analysis of forced vibrations, the modal analysis as well as other
methods of structural dynamics are suitable, [8], [120].

2.3.3 Curved bars
The equation of motion of a spatially curved bar of variable cross section can
be expressed by a single vector equation
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2
IYEN oy, YO oy =t (2.23)
dt dt
derived by V. Kolousek [120]. Equation (2.23) is a vector sum of all forces ap-
plied to an element of the bar (Fig. 2.6) The independent variable s is measured
along the bar centre line.

H(s)

i;‘(

\ — o —

v (s,t)- e
e

yist)
/ '
I ulst) |

Fig. 2.6. Forces applied to a curved bar element.

Flst)ds

In equation (2.23):

¥(s, t) — vector of displacement with components u(s, t), v(s, t), w(s, 1),

F.(s, t) — vector of reversible force, depending on the type of structure, with
components X(s, t), Y(s, 1), Z(s, t),

f(s, t} —vector of load,

u(s) —mass per unit length of the curved bar,

@, — circular frequency of viscous damping.

Equation (2.23) is usually solved by modal analysis. Equation (2.23) can be
simplified for a planar circular arch with incompressible centre line, in which
the fibre compression in the centre line and the influence of shear (in compar-
ison with the influence of bending) may be neglected. If we introduce polar
coordinates with the origin in the arch centre and denote the arch radius by
and the independent variable angle according to Fig. 2.7 by ¢, we can adjust the
equation of motion to the form (see [120] and [68]) of:

rulg. 1) L ulp, 1)  Pule.r) pr {9%(@, ) o, f)}

IQ° J¢* @’ El | 0¢°0F ar

_ E( W0 1) _ (p g 1y 4 LLal9 1)

1) ¢

+ fulo, t)-’ (2.24)

vigs)

Fig. 2.7. Circular arch.
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where u(@, t) — tangential displacement,
v(@, 1) - radial displacement. v{¢, 1) = du(@, t)/oy,
f.{o, t)— normal
fi(p, 1) — tangential } load per unit length of the arch,

fa(p, t)- bending
U — constant mass per unit length of the arch.

2.4 Lumped masses and models with continuously
distributed mass

A typical theoretical model in structural dynamics is an element of volume
which possesses six degrees of freedom in spatial vibrations (i.e. displacements
in the directions x, y, z and rotations about the same axes).

This is used for the modelling of railway bridges by concentrating the masses
of the individual structural elements at significant points of the structure, and
by determining the respective stiffness in all directions and around all axes in
each of these points. This procedure is illustrated in Fig. 2.8, where the whole
lattice structure is concentrated in 44 lumped masses (see also [81]). The deflec-
tions of the individual structural elements between these points are usually
linearly interpolated.

ANV AV AV, )
OV Y OVY% VL% 0% YDA
aaVEAVA AV A ANIS A

Fig. 2.8. Lattice bridge idealized by a system of 44 lumped masses: ] to 22 - main girder including the
lower and upper wind bracings, 23 to 35 — cross-beams, 35 to 44 — longitudina!l girders.

In this procedure, it is an advantage to introduce global coordinates for the
Structure as a whole and local coordinates for the individual bars. This formulation
makes it possible to consider also hinged or rigid joints of the individual bars
and/or simplify the structure to a planar model by the selection of adequate input
Parameters, etc.

This method of idealization of a bridge results in equations of motion of a
System of lumped masses which have a general form

ml{a} + [p){a} + []{qa} = {F}. (2.25)
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Equation (2.25) is analogous to equation (1.1) which applies to the system with
one degree of freedom. In equation (2.25), however, the individual symbols
used have the following meanings:

[q] — generalized vector of displacement of lumped masses,

[q] - generalized vector of velocities of lumped masses (the dot represents
the derivative of the respective function with regard to time),

[g] — generalized vector of acceleration of lumped masses,

[m] — mass matrix,

[b] — damping matrix; the assumption [b] = 2Bw,[m] results in significant
simplification of computations; compare with equation (1.1),

[k] - stiffness matrix,

{F} —vector of modal forces and forces acting between the vehicle and the
bridge structure.

Railway bridges may also be idealized by models with continuously distrib-
uted mass. The finite element method [92] is suitable for general forms; in the
case of structures consisting of individual elementary members, such as beams,
plates, and so on, also the folded plate method can be used, see Fig. 2.9.

Fig. 2.9. Railway bridge model suijtable for the application of the finite element method or the
folded plate method.

2.5 Bridge deck modelling

2.5.1 Cross-beam effect

The cross-beam effect of steel railway bridges comprises the dynamic effects
of the rolling stock (vehicles) passing along an open bridge deck of classical
type, i.c. consisting of a system of longitudinal and transverse girders (Fig. 2.10).
The stiffness of such a bridge deck is variable along its length: it is stiffer above
the cross beams and less stiff between them (at midspan of longitudinal gir-
ders). The passage of a vehicle produces different deflections above the cross-
beam (where the deflections are smaller) and at midspan of longitudinal girders
(where they are larger).

Actually, the vehicle passes along a regularly undulating curved pathway. The
ordinates of irregularities originating in this way, however, arise from the mutual
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Fig. 2.10. Deflections of the deck grillage (longitudinal and transverse girders}); the cross-beam effect.

interaction of the bridge and the vehicle as an integral dynamic system. When
modelling the effects of the bridge deck upon the main girders, its influence
may be characterized by a system of closely spaced elastic springs of variables
stiffness along the bridge length (Fig. 2.11):

k(x)=k + k, cos 2mx/l, . (2.26)
kman kmi\ k“;‘
I o A
™ ;

Fig. 2.11. Idealization of a bridge deck as an elastic layer of variable stiffness.

This characterization is made possible by the relatively low mass of the bridge
deck when compared with the mass of the main girders and by the relatively
small spans of longitudinal girders with respect to the bridge span.

If the distance [, equals the span of longitudinal girders, the resulting effect is
called the cross-beam effect; if I, equals the spacing of sleepers, the effect is called
the sleeper effect. If k, = 0, it is possible to include the influence of the rail bed.

The cross-beam effect appeared after the introduction of new locomotive
types such as electric and diesel-electric [65]. These locomotives have bogies
and their wheel base is often so arranged as to increase the cross-beam effect
(Fig. 2.12). Locomotives with frames cannot be influenced by the bridge deck,
because the irregularities of 2 m to 7 m length do not substantially affect them.

The cross-beam effect was investigated in detail in [65] and [68]. It has been
found that it is characterized by the dimensionless parameter

v= kK (2.27)
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see Fig. 2.13. The values of k, and k, are computed from the maximum K. and
the minimum k_, stiffnesses of the bridge deck

1
k = 3 (ke + k)
k, = %(km,x — ko) (2.28)
Fl Fl * IF |F a)
- - t - —
= - ! - b
L §

ik

Fig 212 Location of axle forces F with respect to the span /, of longitudinal beams, the cross-beam
effect a) the centre of the vehicle above the midspan pomt of the longitudinal girder, b) above the
cross-beam

The vehicle is placed in two positions such as to make the computed constant
k... maximum and k,, minimum; [, is double the distance of the centre of the
vehicle in the two positions in which &, and k,,, were found.

kix)

kmux

] o
—~

Fig 213 Vanable stiffnesses of an elastic layer

—n

The calculation is as follows: the centre of the vehicle is situated, for instance
(Fig. 2.12a), above the midspan point of a longitudinal girder and the static
deflection of the bridge deck y,, is computed below every axle with an axle force
F, where i is the successive number of vehicle axles and » their total number.
These deflections are computed with regard to the interaction of longitudinal
and transverse girders. The stiffness k., is then
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~ F
kmax = z — ’ (2 29)
11 y“
Then, the centre of the vehicle is positioned above the cross-beam (e.g. accord-
ing to Fig. 2.12b) and the deflections y,, under every axle F, are found, so that
the stiffness is

ko = 2 LIy (2.30)
-1 Yy,
The value of the parameter ¥, calculated from equation (2.27) with data ob-
tained from equations (2.28) and (2.29), should be as low as possible. Experi-
ence has shown

y< 0.3 (2.31)

so that the dynamic effects are relatively small for the speeds currently attained
on railways.

The practical consequence of the condition (2.31) is that the bridge deck stiff-
ness should be as uniform as possible. An example of the computation of the
parameter y with necessary tables for deflections may be found in [65].

2.5.2 Ballast

For reasons of mechanized maintenance and noise reduction, modern rail-
way bridges are built with a continuous rail bed (ballast). Its idealization is very
difficult. Initially, the rail bed can be characterized as an elastic layer of constant
stiffness according to Fig. 2.11 (k, = 0 in equation (2.26)). At high speceds,
however, the sleeper effect shown in Fig. 2.14 can be important because the ver-
tical deflection under the wheel is higher when it is between sleepers than it is
when above a sleeper.

T
58

Fig 2.14 The sleeper effect.

However, modern finite element methods can characterize the gravel bed,
see C. S. Desai and A. M. Siriwardane [48]. According to Fig. 2.15, the rails,
sleepers, ballast and possibly other parts of the permanent way are divided into
finite elements; moreover, there are special boundary elements characterizing
the behaviour of the transition between the substructure and the permanent
way. The equations of motion of this system are similar to equations (2.25), but
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they contain numerous non-linearities because of the constitutive equations of
soil mechanics. Such problems may be solved by the incremental iterative
methods based on the Newton—Raphson method [123].

Fig. 2.15. Model of the permanent way and railway substructure according to C. S. Desai and A. M.
Siriwardane [48]: 7 — rails, 2 — sleepers, 3 — boundary layer, 4 — gravel bed and substructure (not to

scale).

2.6 Modelling other factors

2.6.1 Variable cross section

In the case of bars of variable cross sections both the mass per unit length
W(x) and the moment of inertia /(x) depend on the longitudinal coordinate x.
The differential equation for the deflection of a beam of variable cross section
is analogous with equation (2.1):

J’ o v(x, 1) d* v(x, 1)

£y [EI(X) T} ) — o = fl ). (2.32)
In this case the bending moment is found from the relation
2
M(x, 1) = —EI(x) i—‘-(-xz’—’) (2.33)
dx
and the stress from equation
olx, 1) = M 1) (2.34)
W{x)

where W(x) — cross section modulus, dependent on x.

Equation (2.32) with variable coefficients can be solved in a closed form for
special cases only [120]. Therefore, one of the approximate methods (e.g.
Ritz, Galerkin) is applied; it is also possible to proceed numericaily by the
division into finite elements according to Fig. 2.16. In this case, every element
possesses a different mass; a2lso the stiffness matrix in equation (2.25) is more
complex.
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Fig. 2.16. Beam of variable cross section.

2 6.2 Prestressed concrete bridges

In prestressed concrete bridges, there are two principal cases: the prestressing
tendons are either perfectly grouted or are entirely free.

In actual prestressed concrete railway bridges the reinforcement is bounded
with concrete along the whole tendon length both in pre-tensioned and in post-
tensioned beams. Thus the state approaches the first case. In this case the pre-
stress in the tendons has no influence on the potential energy of the beam and,
therefore, it does not cause any changes in its natural frequencies. The overall
forces applied to the element of length do not vary, because the prestressing
force is in equilibrium with the forces compressing concrete. Therefore, in the
case of grouted tendons, we proceed with the dynamic analysis of the beam
according to equation (2.1) as if the beam were not subjected to an axial force.
We include the concrete cross section in full and the ideal cross section of the
reinforcement into the cross section area of the beam and prestress. This pro-
cedure is applied, whether the beam is pre-tensioned or post-tensioned.

In the second case, when the beam is exposed to constant compression N at
its ends only according to Fig. 2.17, the equation (2.6) is applied. The natural
frequencies of such a beam are influenced by the axial force (for details see [68]
Chapter 20). However, the tendons of such bridges would have to be free along
their whole length, i.e. not embedded in concrete, situated on the neutral axis
of the beam, and their stresses should not vary in the course of vehicle passage.
Cases other than those mentioned above must be analyzed individually.

- N F -N
| ( |
A 1

Fig. 2.17. Beam compressed by static axial force N and subjected to the transverse force F.

2.6.3 Influence of elastic foundation, shear and rotatory inertia

In Sect. 2.1 we have described the so-called Bernoulli-Euler beam model,
which is most frequently used in theoretical modelling of bridge structures. This
model, however, can be so generalized as to characterize other factors which can
influence the stresses of the beam. These include the elastic foundation used for
the modelling of the permanent way or even the substructure on the bridge, and
the effect of shear stresses and rotatory inertia when the beam is deflected.
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The last two effects come into consideration only for beams the depth-to-
span ratio of which considerably exceeds 1:10, or for materials sensitive to shear
stresses. In other cases, the influence of shear and rotatory inertia on the basic
vibration modes is very small.

If we consider all forces and moments applied to an element of the beam of
length dx as shown in Fig. 2.18, we can derive from the condition of equilibrium
of vertical forces and moments differential equations describing the deforma-
tion of the beam (for details see [68], Chapter 23). Thus, we proceed from the
simplest to more complex models (neglecting damping):

lfdx
M (Q Bfar \\M*%&idx
a
/ tﬂfdx Q*Fg“dx
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Fig. 2.18. Forces and moments applied to a Iength element of the beam on elastic foundation.

For the Bernoulli-Euler model of the beam on an elastic foundation (neglec-
ting shear and rotatory inertia effects)

" v(x, 1) " v(x, t)
El ——— e
dx’ T H at’

using the same notation as in equation (2.1), & is the stiffness of the elastic
foundation (vertical force per unit length, resulting from unit deflection of the
beam).

For the Rayleigh model of the beam on an elastic foundation (taking into
account rotatory inertia, but neglecting shear effects)

+kov(x, 1) = f(x, 1) (2.35)

*v(x, 1)  EI 9*v(x, t) @ v(x, 1)
pr 20 ELowvx n) o vy, 1)
dx* ¢ dx'ar TH ar

1

+ k v(x, 1)=f(x, 1) (2.36)

where
¢ = Elp (2.37)
and ¢, is the velocity of propagation of longitudinal waves along the beam, p

being the beam mass per unit volume,
For the shear model of the beam on an elastic foundation (taking into account
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the influence of shear stresses on deformation, but neglecting rotatory inertia
effects):

0% v(x, 1) El 9" vi{x,t) J° v(x, t) a2t P v(x, t)
[— - — —= 4+ U—= 4+ , -t ——2 7
B & axar e o -E o
¢l 9% f(x, 1)
=f(x, 1) - ' % —=— 2.38
f( ) C22 8x2 ( )
where
¢, =a,Glp (2.39)
and ¢, is the velocity of propagation of transverse waves along the beam,
o — constant dependent on cross section form,
G — modulus of elasticity in shear,
i* = I/A —radius of gyration,
A — cross section area.

For the Timoshenko model of the beam on an elastic foundation (taking into
account the influence of both shear stresses and rotatory inertia):

£l J v(x, 1) I (_1_ N L} d' v(x, t) N El d'v(x, 1)
dx* ¢! cl ) ox?or clc ar’
d v(x, 1) Lc |1 Flx, 1) d v(x, 1)
gV C) L g I _
T i’ " {v(x, . c: Lf at’ dx’
—fn )+ A [i VLGV (CF f)}. (2.40)
c: | ¢ ot dx

From equation (2.40) it is possible to obtain all simpler models of the beam:
for ¢, — = we obtain equation (2.38), for ¢, — ® we obtain equation (2.36), and
for ¢; — « and ¢, — « equation (2.40) is simplified to equation (2.35).

Equations (2.35), (2.36), (2.38) and (2.40), are solved in detail in [68] for the
case of a moving force.

2.7 Modelling of railway bridges

In the present-day era of advanced computer technology it would be pos-
sible to construct a general three-dimensional model of any railway bridge
which would include all factors affecting its behaviour. The equations for the
calculation of the bridge deflections would have the form of equations (2.25),
and in addition would include a number of non-linearities and other factors.
The solution would be lengthy and time consuming even if the most up-to-date
computers were used.
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Such a model would also require a large number of input parameters and data,
some of which may not be known with sufficient accuracy. Hence, simplified
models are suggested and usually used, which take into account only certain
aspects. Such simplified models quite often satisfy engineering practice and
requirements.

The choice of a representative, but approximate, model depends on the par-
ticular case, the purpose of calculations, the required accuracy and other factors.
Further cases of modelling are described in Chapters §, 9 and 14.



3. Modelling of railway vehicles

Railway vehicles are complex mechanical systems with many degrees of free-
dom, linear and non-linear springs and various types of damper. During their
passage. they affect bridges by spatially oriented forces, i.e. vertical forces (wheel
or axle forces), horizontal longitudinal forces (starting and braking forces) and
horizontal transverses forces (centrifugal forces and lateral impacts) - see Fig. 3.1.

Fig, 3.1. Forces applied to railway bridges: [, — vertical forces, ¥, -~ honzontal longitudinal forces,
F, —honzontal transverse forces (if only a plane model is considered, the vertical axis is denoted v).

According to Newton’s law and the d’Alembert principle, the vehicles pro-
duce weight effects, i.e. vertical forces due to vehicle weight, and inertia effects,
i.e. the effect of vehicle mass and its acceleration. Weight effects exist even if
the vehicle does not move; therefore, they are the principal inputs for static ana-
lysis of bridges. The static forces act in a vertical direction. The inertia actions
arise only when the vehicle is in motion and in all directions; therefore, they are
the cause of dynamic effects.

Generally speaking, the loads on a railway bridge arise from the movement
of vehicles over the bridge. It is a very complex problem and it is, therefore,
often simplified in engineering practice. The simplification depends on the pur-
pose of the analysis. For example, if our principal purpose is the dynamic ana-
lysis of a railway bridge, it is meaningless to consider all details of the contact
forces between the wheel and the rail and similar factors, whose influence is
only local and which do not affect more distant points, for example the main
railway bridge beam, because of numerous filtrations or due to the Saint-
Venant’s local principle.

We shall deal now in greater detail with the simplifications most frequently
used in the modelling of railway vehicles.
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3.1 Moving vertical forces

3.1.1 Constant forces

If the inertia effects of moving vehicles are considerably less than their weight
effects, the inertia forces can be entirely neglected. This can be permitted in the
case of medium and large span bridges (over 30 m) the self-weight of which is
considerably higher than the vehicle weight.

Fig. 3.2. Constant forces F moving at the velocity ¢ along a mass beam of span L

According to Fig. 3.2 the idealization thus originates by a system of moving
constant forces F the magnitude of which equals the static axle or wheel
forces. The inertia effects of the bridge beam are considered according to
equation (2.1).

C. E. Inglis [106] and V. Kolousek [120] introduced a significiant simplifica-
tion by separating the weight and the inertia effect of vehicles. The vehicle
weight in the form of axle forces moves along the bridge, while the vehicle mass
m is fixed at midspan (Fig. 3.3) or in some cases in the first third of the span.

L Y2 yz
T [ 1

Fig. 3.3. Separation of weight and inertia effects of a vehicle with mass /m during its passage along the
bridge.

This assumption is suitable for large span bridges and considerably simplifies
the theoretical analysis. The comparasion of theory with experiments is very
good, when the natural frequency of the loaded bridge, which is variable in time
due to vehicle motion (Fig. 4.15), approaches the natural frequency of the sim-
plified case.

For the investigation of the action of the whole train, when the mean mass of
the vehicle is uniformly distributed along the bridge, the above simplification is
even more acceptable than in the case of a single vehicle, and considerably
speeds the analysis even in computerized form.

A detailed solution of the movement of a constant force along a beam has
been derived in [68], Chapter 1.
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3.1.2 Harmonic variable force
The unbalanced counterweight on the driving wheels of steam locomotives
produced an harmonic variable force which besides the force F characterized
the action of steam locomotives, so
F(t) = F, sin Qr (3.1

where F, was the amplitude of force, dependent on the number of wheel re-
volutions per unit time. In the case of the CSD locomotive, series 524.1, the
empirical amplitude of force F, in kN was

E =24 « 3) n (3.2)
where n = c/u, —number of revolutions of the driving wheels per
second,
£ = 2nn = ¢/r — circular frequency in equation (3.1),
r, U, - —radius or circumference of driving wheels, respectively,
C — velocity of motion.

The harmonic variable force (3.1) could also be used as the idealization of
actions of regular sinusoidal irregularities on the rail head surface. (This is an
approximaton, it assumes that the difference between the deformations of the
vehicle springs and the bridge deflection under the vehicle is small in compar-
ison with the depth of the irregularities.) The force amplitude and circular fre-
quency would then be

F, = 1 ka
2
and
£ = 2nc/b 3.3)

where a, b — depth and length of sinusoidal irregularities, respectively,
k - spring stiffness.
The solution of the movement of the harmonic variable force along the beam
can be found in [68], Chapter 2.

3.1.3 Continuous load

When the span of the bridge is large in comparision with the distance be-
tween axles, idealization by means of a continuous load can be used and is
considered either as the load per unit length or per unit area according to
Fig. 3.4, The system of wheel forces can be approximated to a uniformly
distributed load £,, in those cases where more than about four forces can be
applied to the element of the bridge considered. In practice, a system of con-
centrated forces and uniformly distributed load is used, which models both

local and global actions of the vehicle on small-span and large-span bridge
elements,
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Steady state bridge vibrations can be investigated by considering Fig. 3.4, pro-
vided the length of the loading strip (i.e. the train) is considerably larger than
the bridge span, which is usually a fair assumption. The mass of the load is
added to the bridge as in Section 3.1.1.

The solution of this problem may be found in [68], Chapter 3.
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Fig. 3.4. Continuous moving load.

3.1.4 Random load
If the inertial action of vehicles is deadened by random actions of track ir-

regularities, heterogenity of static axle forces or by other factors, the load can
be expressed globally by a random load. The idealization of this approach gives
tise to two extreme cases, see Figs 3.5 and 3.6.

1

}__ {
Fig. 3.5. Movement of a random force F(7) along the beam.

Figure 3.5 shows the motion of a random variable force F(¢) along the beam.
The force is a random (stationary and ergodic) function of time which can be
resolved into a constant mean value and a random centred component

T
L

Fig. 3.6. Movement of an infinite random strip load f(x, r) along the beam.



3.1 Moving vertical forces 51

F(t) = F + &el(1) , (3.4)

where F = E[F(f)] is the mean value (static axle or wheel force), F (1) is the centred
random component defined by equation (1.26), and £ <1 is a small quantity if the
random component of the force is small in comparison with the mean value.

The idealization of vehicle action according to (3.4) is adequate for bridges of
very small spans, longitudinal girders, and so on, complying with the above
assumptions. A detailed solution of this case may be found in [73]. It can be
observed that the response of the beam is a non-stationary process even if the
beam is loaded by a stationary force. This is due to the fact that the passage of
the force along the beam is a transient process.

The other extreme case is shown in Fig. 3.6. The model represented in it is
adequate for large span bridges, where track irregularities, imperfections of the
gravel bed, the number of simultaneously acting vehicles with different axle
distances and different axle forces, etc., appear. There is a great number of
dynamic effects which, although often deterministic, act stochastically in the
sum in accordance with the laws of probability.

According to Sect. 3.1.3 the bridge load can be considered as a continuous
load which is a random variable both with regard to the coordinate x and to the
time ¢ and moves at a constant speed along the beam. The load was formulated
in [74] as follows:

flx, 1)y =[p +ep)][1 + #)]. (3.5)
where p = E[f(x,r)] is the constant mean value of the continuous load,
p(s) — centred random component of the load depending on the
moving coordinate s,
(1) — centred random component of the load depending on
time t,
s — length coordinate with the origin moving at the speed c,

g <€,

The component p(s) idealizes the composition of the traffic stream in railway
traffic, while the component #(¢) characterizes the random character of the foad
in time, i.e. irregularities of the track, the springing of the vehicles, etc. For
#(r) = 0 the load (3.5) characterizes the motion of a random strip load along the
bridge. It j(s) = 0, the load f(x.f) is random in time, but does not move.

A detailed solution is given in [74]. The response of the beam to such a load is a
stationary process, as long as both random components p(s) and #(¢) are stationary.

3.2 Mass elements

For the dynamic analysis of bridges it is sufficient to resolve the railway
vehicles into individual mass elements, the simplest of which are lumped masses
and rigid plates.
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3.2.1 Lumped mass
A concentrated mass point adequately represents the axle and/or the wheel
of railway vehicles (Fig. 3.7). The following forces are applied to the unsprung
mass:
weight F of the mass m1,

d® v(r)
de®
reversible forces from spring compression K,
damping forces of springs B,
track reaction —R,
and force directly applied to the mass m, e¢.g. an harmonic variable force
F(1) according to equation (3.1).

vit) l
| |

Fig. 3.7. Lumped mass and forces applied to it (positive force direction is downwards).

the inertia force —m

B

|
1 m¥ lF(t)

K
F
R

The choice of the state of equilibrium depends on whether we want to deter-
mine only the dynamic bridge response or the static and dynamic components.
In the [atter, more frequent case, it is necessary to add to the static force F also
the static weight of the sprung mass affecting the wheel under consideration.

When considering the state of equilibrium we must distinguish between the
cases, when the wheel is in constant contact with the rail, and the case where
there is loss of contact. In the latter case it is more advantageous to consider the
unloaded beam as the state of equilibrium.

The idealization of the whole vehicle by a sprung mass point according to Fig.
3.8 is acceptable when the bridge span is considerably larger than the vehicle
axle base and when the unsprung masses are relatively small. With respect to
the choice of the state of equilibrium the above notes apply to this case, too.

11
0

Fig. 3.8. Idealization of a vehicle by a sprung mass.
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3.2 Mass elements

Besides the two basic cases according to Figs 3.7 and 3.8 there are vari-
ous combinations of mass points possible, e.g. the concentration of all
unsprung masses in one mass point and that of all sprung masses in another
mass point, etc. Figure 3.9 shows this case which is adequate for large span
bridges.

Every mass point possesses one degree of freedom if its motion is limited to
a straight line. In Figs 3.7 to 3.9 the straight line has been represented by the
vertical axis. On the other hand, an oscillating motion of a mass point in space
provides three degrees of freedom, according to Table 3.1. The motion in the
direction of x is considered uniform and independent of other components (in
the majority of cases).

'"‘z‘l"’z
K: IB
F ]m,x?

J
Fig. 3.9. Idealization of a vehicle by unsprung and sprung masses.

TaBLE 3.1 Oscillating motion in the directions of coordinate axes according to Fig. 3.1

Motion in the
direction of Motion Notation
axis
X longitudinal motion u(r)
hunting v(£)
Z bouncing w(r)

3.2.2 Rigid plates and bodies

As a rule, the sprung elements of railway vehicles or their bogies are consid-
erably stiffer than the bridge; therefore, they are idealized as rigid mass plates
if their motion is considered to occur only in a vertical plane.

In this simplest case, the rigid plate possesses two degrees of freedom and can
move in a vertical direction, v(¢), and rotate, 7(¢), about its horizontal transverse
axis passing through the centroid C, of the vehicle according to Fig. 3.10. The
following vertical forces are then applied to the plate:

the weight F of the plate with mass m (if the springs are not compressed in
the state of equilibrium),
inertia force -mv,
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reversible forces from spring compression K, and

damping forces in springs B.
In addition the following moments are applied:

moment of inertia —I1], where [ is the moment of inertia of the mass plate
with respect to the centroid C,,

the reversible moments due to springs Kd, and

the damping moment due to springs Bd.

Cy
an [ i l ImG )13
U e
ot
Fig. 3.10. Rigid plate and forces and moments applied to it (positive direction of forces is downwards,
positive direction of moments is clockwise).

In a general three-dimensional case, the elements of railway vehicles can be
idealized by mass rigid bodies which provide six degrees of freedom. The body
can move in the directions of the coordinate axes according to Fig. 3.1 and Table
3.1 and rotate about these axes according to Table 3.2.

TABLE 3.2 Rotatory oscillating motion about coordinate axes according to Fig. 3.1

Rotat ti
o ory' motion Motion Notation
about axis
X rolling, sway motion £
y pitching (o)
b4 yawing &

The individual elements of railway vehicles could be substituted also by
elastic bodies possessing mass, such as beams, frames, trusses, walls, plates,
etc. However, such accurate idealization is too detailed for bridges and would
not bring any great advantage. In any case, the substitution always depends on
the purpose of the analysis.

3.3 Springs and damping elements

The individual components of railway vehicles are interconnected by springs
and damping elements. Their mathematical description is usually complicated,
because they are non-linear in the majority of cases. For this reason they are
often linearized.
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3.3.1 Linear spring
The simplest springing element is the linear spring, in which the relation be-

tween the reversible force K and the relative displacement of both spring ends v

< Hinear
is linea K = kv = k(v, — v,). (3.6)
In equation (3.6) k is the spring stiffness (see also equation (1.1) and Fig. 1.2).
The relation (3.6) is presented graphically in Fig. 3.11.

1.
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Fig. 3.11. Linear spring.

3.3.2 Non-linear spring
Non-linear springs occur frequently. A general equation between the force K

and the relative displacement v is

K = kv + kv + kv’ + ... (3.7)
According to the magnitudes and signs of constants k, special cases appear, for
instance, a stiffening spring which occurs in rubber springing is represented by

the equation (Fig. 3.12)
(3.8)

Fig. 3.12. Hardening spring.
The single-sided softening spring with the equation
K = kv + ky (3.9)
occurs in the so-called C-springs (Fig. 3.13).
K C I"z
T

V= Vz‘\"

Fig. 3.13. Softening C-spring.
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Bilinear springs may have a deviation in the origin (Fig. 3.14a) or in the point

v, (Fig. 3.14b). In the former case (Fig. 3.14a) the following equation holds true
K =kv for v <0

and
K = kv for v > 0. (3.10)

In the latter case (Fig. 3.14b) the following equation is valid

K = kv for v < v, ,

and
K = kv, + k(v = v,) for v > vy, . (3.11)
aj K K, b) K K
v C,o v
ky ki

Fig. 3.14, Bilinear spring: a) point of deviation in the origin v = 0, b) deviation in the point v = v,.

3.3.3 Stop

Stops are also used in vehicles to limit the displacement of the springs.
Figure 3.15 shows the relation between the reversible force K and the relative
displacement of springs, described by the equations

K = kv for v, < v < v, ,

K =4kv + k(v —v) for v < v,

K =k + k(v —v,) for v > v, . (3.12)
K
k+k, ky gg .
k
1 . -
k
K+ Ky

Fig. 3.15. Spring with stops.

A stiff stop would be represented by equation (3.12) by the introduction of high
values of k, or k,. Equation (3.12) can also be used for the linearization of a
non-linear spring according to Fig. 3.12.
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3.3.4 Viscous damping
The equations of motion must include the damping force, which, in the case
of viscous damping, is
B = bv (3.13)

so that it is proportional to the velocity of motion v (i.e. the velocity of relative
motion of the spring ends), see also equation (1.1).

This assumption corresponds to the motion of a system immersed in a liquid,
whose mass is subjected to viscous friction (Kelvin—Voight hypothesis). This
damping is characterized by exponentially diminishing amplitudes of natural
vibrations — see Fig. 1.3 (the ratio of two successive amplitudes is constant). A
viscous damper is schematically represented in Fig. 3.16.

B

A el

Fig. 3.16. Viscous damper.

3.3.5 Friction

In dry sliding friction (Coulomb hypothesis) a constant force acts in a direc-
tion opposing the motion, and it is proportional — through the friction coeffi-
cient g — to the normal force N:
Hence

B = uUN for v >0
and
B = —uN for v < 0. (3.14)

A Coulomb damper is shown schematically in Fig. 3.17. This damping is char-
acterized by the fact that the difference between two successive amplitudes of
natural vibration is constant (the extreme positions of the displacement may be
connected by a straight line).

Fig. 3.17. Friction damper.

In numerical calculations the discontinuity at the point v = 0 is sometimes
replaced by a straight line, shown by a dashed line in Fig 3.17. The choice of
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width of this zone is important: a too wide zone introduces viscous damping into
the system, while a too narrow zone may bring some numerical difficulties.

3.3.6 Elastic-plastic element

Railway vehicles may be provided with elastic-plastic springs which also pos-
sess damping. Fig. 3.18 shows the dependence of the force K on the displace-
ment v which is first elastic and then plastic. When the load is removed the
deformation is, once again, first elastic and then plastic. The energy used in
every loading cycle is proportional to the area between these curves (the hys-
teresis loop) and represents the damping.

K

V2

Fig. 3.18. Elastic-plastic element.

The behaviour of the elastic-plastic element described is often idealized by
the model shown in Fig. 3.19, and depends on increasing (v > 0) or decreasing
(v < 0) displacement.

K - \}:0
Kt ( !
k/ | |
. / |
Yo LVp 1 v
ﬁmin{ Vm Venax
}
Kc‘-"" -
v=0

Fig. 3.19. Elastic-ideally plastic element.

Let us assume knowledge of the initial deformation v,, the tensile yield limit
K., the compressive yield limit K, and the stiffness k (Fig. 3.19). Then we can
find the deformation v, at which plastic deformation occurs from

+ K k. (3.15)

VP = ¥V

The reversible force K is then found as follows:
If v > 0 elastic or plastic tensile deformation appears

K =K — kv, —v) for v < v ,
K = K for v > v, . (3.16)

i
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This cycle terminates when v = 0, for which we shall denominate the defor-
mation as v,,,.. Then, the load removing cycle begins with v < 0. In this process

K =K - kv, —v) for v, . — (K — K}k <v < v

I max

K = K for v < v, - (K - K)/k. (3.17)

9

max

The load removing cycle will terminate, once again, when v = 0, for which v
is defined. Then, again v > 0, so

K = K, + k(v — v

min

y for v <v,, — K./k. (3.18)

T nnn

When v = v,.. — K./k, the cycle begins with a new value of
Vo = v, = v, — K. /k. (3.19)

nun

3.4 Modelling of a bridge and a running train

The equations for the calculation of the vibration of railway vehicles when
crossing a bridge are derived on the basis of either the conditions of equilibrium
of forces and moments, or by means of Lagrange equations of the second type.
Recently, the component element method has also been used [132]. In this met-
hod railway vehicles are broken down into individual elements, i.e. lumped
masses, plates, bodies, springs and damping elements according to Sects 3.2 and
3.3, where all relevant forces and moments are described. Then, the differential
equations for the motion of the individual elements are written considering the
conditions of equilibrium of forces and moments.

We shall demonstrate this method by an example of the movement of a num-
ber of railway vehicles (a train) across a multispan bridge according to Fig. 3.20
(plane model). Further models (including spatial models) and their equations
may be found in [23], [81], [162], [165].

3.4.1 Initial assumptions

The bridge is idealized by a mass continuum according to Chapter 2. Fig 3.20
represents a continuous beam with 1, 2, ..., i, ..., I spans, of length [; vertical
deflection is denoted by v,(x, ), moment of inertia /(x) and mass per unit length
H(x) in the ith span. The coordinates x are measured from the left-hand end of
the first span.

The damping of the bridge is proportional to the vibration velocity (constant
,,).

The boundary conditions are determined by the type of supports under con-
sideration. The initial conditions are, generally,

vi(x, 0) = vy(x) and v /(x, 0) = v,(x). (3.20)

The influence of the bridge deck will be replaced (Sect. 2.5) by an elastic layer
of rigidity k(x) which is generally a random variable depending on the length x.
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Irregularities r(x) which occur on the track surface, are random variables in
the length x.

The train moves along the bridge with an irregular velocity; the motion of the
first axle in time is determined by the function u(¢). The regular motion is de-
scribed by the equation

u(t) = ct (3.21)
where c is the velocity of motion and ¢ is time.

The train consists of 1, 2, ..., g, ..., Q vehicles which possess 1, 2, ..., n, ..., N
axles counted from right to left in Fig. 3.20. The static axle force of the g-th
vehicle is F,.
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Fig. 3.20. Model of a train driving along a railway bridge.

The body of every vehicle is considered to be elastic, as shown in Fig. 3.20.
For this reason, its motion is described by the Bernoulli-Euler equation for the
beam with the notation of v, (z, t) for vertical displacement, 7,, for the moment
of inertia and y,, for the mass per unit length (both constant) and FE;,. The
length coordinate z is measured from the left-hand side of every vehicle.

Secondary masses m,, with moment of inertia /,, (their number r = 1, 2 in
every vehicle) are considered to be rigid plates which can move in the vertical
direction v,,(¢) and rotate n,,().

Primary masses (wheels and.axles) m,, are idealized by lumped masses with
vertical displacement v, (f), where the index s denotes the number of the axle
in the gth vehicle.

Figure 3.20 (as well as the equations below) considers four-axle vehicles or
locomotives which are the most frequent type of railway vehicles. However, the




3.4 Modelling of a bridge and a running train 61

formulation of the problem for two-axle or for six-axle vehicles using the index s
would be similar.

We assume that in the body a passenger is seated whom we shall represent —
until more adequate models are available — by a one degree of freedom system:.
In the gth vehicle it is the mass m,, which can move in vertical direction v, (7).

The distance of the passenger from the left-hand end of the gth vehicle is d,,,
the distance of the rth bogie from the left-hand side is d,,, half the axle base of
the bogie is b, and the distance of the nth axle from the first axle from the right-
hand side is d,..

The beginning of the movement is assumed at the moment of the entry of the
first axle from the right-hand side on the left-hand edge of the first beam from
the left. The train moves from left to right. The initial conditions are, generally
(the vibrating train is assumed at ¢ = 0):

Vo, (0) = vye 9, (0) = Yy
v, (0) = v, v, (0) = v, ,
v, Q) = v, , v,,(0) = ¥, ,
1,0 = v 1,0) = M,
v, (2, 0) = v, (2), (2, 0) = v,(2). (3.22)

The boundary conditions of the beam idealizing the body are those of the free
end:
v, (0, 1) =0, vy (d,, t) =0,

v (0, 6) = 0, v (d, 1) =0, (3.23)

where d, is the length of the gth vehicle.

It is assumed that at the beginning of the movement all springs of the vehicle
are compressed, while the beams of the bridge are not deformed (including the
influence of the static action of axle forces).

3.4.2 Equations of motion

With these assumptions it is possible to put together the respective differen-
tial equations of motion for the vertical displacement of all parts of the model
shown in Fig. 3.20. The positive direction of motion is downwards, the tensile
force is positive.

For the motion of the passenger,

- my, v, (t) - K, (1) = 0, g =1,2,..., 0, (3.24)
where the force in the spring
K, (t) = kv, (t) = v, (d,. )] + B, (3.25)

has the first (elastic) component proportional to the difference of the respect-



ive displacements, and the second component B, denotes damping or non-lin-
ear action.

A similar system of notation for forces is used for other springs.

Flexural vibrations of the vehicle body are described by the equations

v (2 1) 4 py V(2 1) + 20, 0, v (1)
= 8(z - d,,) K, () - 2 8z - d) K, (), q¢=12..,0, (3.26)
where 8(x) is the Dirac func:tlion (see Section 3.4.3), and
K, (1) = k,[v.,d, 1) = v, )] + B, (3.27)

is the force in the spring between the body and the secondary mass.
Vertical motion of the secondary mass is determined by the equation

_qui;Zq(t.) + Kzfq(t) - ZKIVq(r) = 0 >

' f b2 L2 ..,0 3.28
Fo= or s = =12, .. Q, .
> 3,4, (5.25)
where the force between the primary and the secondary masses is denoted by
K, (6) = kv, (0 = (1 b, (0) - v, 0]+ B,. (329

For rotatory motion of secondary mass

-1, 1 (1) + bqZ -1y K, @) =0

wh = {1 jl =1, 2 3.30)
ere r L 2,0, Q. .
5 3 ] 0 (

Vertical motion of the primary mass is descnbed by the equation
my, (1) + K (1) -F ()=0, s =1,2,3,4,¢9g=12,..,0 (331

where the dynamic component of the nth axle force is
F;q (r) = P;(t) = k('xn) [V15q (I) - Em Vl (xn’ t) - r('xn )] + B (3'32)

and it characterizes the interactions between the vehicle and the bridge with an
elastic layer and irregularities; B expresses the damping force in the elastic
layer.
The Bernoulli-Euler differential equation applied to bridge beams gives
d . :
Ei §x2 [11 (JC) Vl” (x’ t)] + luz('x) Vi(x3 t) + 21“:()() mbz Vl (’X’ l)

= Ye,8(x - x)[F, + FE], i=12..,1. (3.33)

The deflection of the ith span v.(x, £) is valid over the interval of L., < x < L,
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In equation (3.32) and equation (3.34) the notation
x =ut)y—-d , n=1,2.,N, d =0 (3.34)

I 1

is used for the coordinate of the nth axle, and the symbol

_ 1 LJ—'1 g xn = Lr
En = {2 for {x, < L, x> L (3.35)

£

characterizes whether the nth axle is loading the ith girder or not.
The condition of the contact between the wheel and the rail requires

E + F()=0. (3.36)

When this condition has not been complied with, the wheel loses contact with
the rail and

F + F() =0, (3.37)

is substituted in equation (3.33) until the contact has been regained. This pro-
duces an impact.

The system of differential equations (3.24) to (3.33) may be computed by any
appropriate method of numerical mathematics. So far only some special cases
have been analyzed (see [23], [191]) while the general formulation proposed
here would necessitate a fairly large computer. To illustrate this point, a train
with 100 axles and a 3-span bridge (N = 100, Q = 25, I = 3), which is a current
case would result in the following number of differential equations:

Equation Number of equations
(3.24) 25 |
(3.26) 25
(3.28) 50
(3.30) 30
(3.31) 100
{3.33) 3

Together 253

Moreover, equations (3.26) and (3.33) are partial differential equations for
which the solution by resolution into natural modes would result in an even
greater number of ordinary differential equations. For these reasons only

some special cases are solved, usually according to the analysis require-
ments.

3.4.3 Movement of the vehicle along the bridge

As has already been suggesied in equation (3.33), the movement of the vehicle
along the bridge is often expressed by means of the Dirac function §(x) which
in mechanics characterizes the action of unit force concentrated in point x = 0.
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In mathematics, the Dirac function is considered a generalized function which
has the following properties:

J S(xydx = 1, (3.38)
J' olx — a) f(xydx = f(a), (3.39

or , 0 for € < a < b
J S(x — & flx)ydx = £ for a < & < b (3.40)

‘ 0 for a < b < &

where f(x) is a continuous function within the interval of la, b and a, b, & are
constants. For further details see [68] Chapter 1.1.

Therefore, if a concentrated force F moves along a beam type structure, the
load per unit length, which appears on the right-hand side of the differential
equation (2.1), has the form of

f(x, 1) = 8[x — u(®)] F, (3.41)
where u(¢) expresses the law of the force movement. For uniform motion it is
the function (3.21).

The equation (3.33) formulated above did not reveal the difficulties which are

encountered when analysing the movement of a load along a structure.
Consider the simplified example shown in Fig. 3.21.

.m
A

8]
i)
U J

{

Fig. 3.21. Movement of mass m along a beam obeying the mass.

The mass m of the weight F moves along a mass beam. If neither the mass of
the beam nor the moving mass may be neglected, it is necessary to consider the
forces of inertia of the moving mass at the point of contact. The position, natur-
ally, changes in the course of the movement of the load, and is a function of time
u(?). Then, the load on the right-hand side of equation (2.1) is, according to
d’Alembert’s theorem,

d¢

Consequently, the load depends on the response of the beam in the place of
contact v[u(1), t], which introduces complications into both theoretical and

flx, 1) = 5[x - u(t)] {F - m d v[u(z), r]} (3.42)
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numerical solutions. The derivative in (3.42) must be calculated as follows:

d” v{u(r), 1] d*v (du]z Jdv du dv d’u J*v
— = | —| + 2 + + . (3.43
ar o \di ougt di ou ap T gr OF
In the case of uniform movement at velocity c it is
x = u(ty = ct du = ¢ and du 0 (3.44)
©de de ' '
The derivative of (3.43) is
d* v(ct, 1) [zyﬂxt) Fvlx, 1) Fv(x, 1)
— " T |+ 2c + : . (3.45
dr Ix’ dx Jt 7 (-43)

The first term on the right-hand side of equation (3.45) expresses the influence
of track curvature, the second term the influence of Coriolis acceleration, and
the third term the influence of the acceleration of the moving load in a vertical
direction. The action of the first and particularly of the second term is usually
small in comparison with the action of the third term.

These considerations can be extended to cover the movement of the load in
a plane, e.g. on a plate, see equations (2.13), (2.14) and Fig. 2.5. In that case the
load f(x, y, t) of the mass u(x, y, t) per unit area possesses the form

2

f(xl Y f) - LL(X, s f) (i{l‘zv s (346)

while the movement of this load is determined by the parametric functions of time
x = u(t)y, 'y = v(t). (3.47)

The derivative in (3.46) in this case is:

d’ w {8214/ (dujz Fw [dng Fw Fw du dv
— | + 2

ds dx* \dr ayt \drs ar dxdy dr dt

dw du dw dv dw d*u dw d’v
— + 2 + +
oxdt dt dydt dt dx dr dy df

} (.43)
vuli) v=i(r)

Equation (3.43) or equation (3.48) reveals that the consideration of vehicle
Mmass considerably complicates the analysis, as noted in Sect. 2.1.2.
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The most important dynamic characteristics of railway bridges are their nat-
ural frequencies which actually characterize the extent to which the bridge is
sensitive to dynamic loads. They are measured by the number of vibrations per
unit time. The unit of the frequency is Hertz (Hz), which is the number of
cycles executed per second.

Mechanical systems with continuously distributed mass have an infinite num-
ber of natural frequencies, only the lowest of which have any practical applica-
tion. If excitation forces are applied to a system over a wide spectrum of fre-
quencies, the structure selects only the frequencies near its own natural fre-
quencies and reacts to these. This is the reason for the great importance at-
tached to natural frequencies.

The notation for natural frequencies is f, and the subscript j =1, 2, 3, ... in-
dicates their sequence. Apart from f, the natural circular frequency is @ where

@, =2nf . 4.1

The unit of circular frequency is s™.
Natural frequency is also connected to the period of vibration by

T =1/f . (4.2)

/

T} is measured in seconds and expresses the duration of one cycle.

4.1 Calculation of natural frequencies

The calculation of the natural frequencies of an undamped mechanical sys-
tem is based on equation (2.25) in which [»] = 0 and {F} = 0 are substituted:

[m] {G} + [k] {q} = {0} . (4.3)

In equation (4.3) the modified form is used, where [m] is a diagonal mass mat-

rix and [k] a square symmetrical stiffness matrix.
It

{q} = {q}e"" (4.4)

is the jth natural mode of harmonic vibrations with a circular frequency o, then
after substitution in equation (4.3) we obtain

(4] - @’[m]) {q,} = {0}. (4.5)
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This equation is soluble only if its determinant equals zero, i.e.
[k} — @i[m] = 0. (4.6)

The circular natural frequencies @ are found from equation (4.6) and also the
quantities f, or T, according to equations (4.1) or (4.2). There are special
methods for the solution of equations of the type (4.6) which are described in
all text-books on dynamics or numerical mathematics, e.g. [8], [120], [174].
Some of these methods calculate only the lowest or approximate values of nat-
ural frequencies.

The roots o, of equation (4.6) pertain to characteristic vectors {g } which we
obtain from equation (4.5), with significiant orthogonal characteristics.
Consequently, for a system of n degrees of freedom there are n natural frequ-
encies and n modes of natural vibration, j =1, 2, 3, ..., .

4.1.1 Beams

The calculation of the frequencies of natural vibrations of an undamped
beam of constant cross section is based on equation (2.1), in which the loading
and damping terms are considered equal to zero. Hence,

4 2
t
£l (9v(x£ ) +u8v(xz, N _
dx dt

In harmonic vibrations with frequencies @, the solution of equation (4.7) is

assumed to be of the form

vix, 1) = i v (x)ysma ¢, (4.8)
=l

0. (4.7)

where v (x) are the modes of natural vibration.
After substituting (4.8) in equation (4.7) we obtain
= d'v (x) | =, :
EIZ; d;4 sin@ ¢ - u;a);v](x)sma)]t =0. (4.9)
Equation (4.9) must be obeyed by every one of the j natural modes, so that it
_can be simplified into a set of independent ordinary differential equations
d* v,(x) Al

P 7 v(x) =0, j=1273.., (4.10)

where

uo;
A= P 4.11
) I, (4.11)

The general solution of the homogenous differential equation (4.10) is

A A x ) A
v(x) = A sin fl“ + A cos ;]‘ + A, sinh ]lx vy cosh’Tx (4.12)
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where the coefficients A,, i = 1, 2, 3, 4, are integration constants determined
from the boundary conditions of the beam.
For a simply supported beam the boundary conditions (2.7) apply, i.e.

d*v (x, ¢
for x =0 v(x) =0, 4&2—)=0
dx
and
dZ
forx =1 v(x) =0, —&V’—(fl = 0. (4.13)
X

If we substitute the solution (4.12) into the four conditions (4.13), we obtain
four equations for the unknown constants A, For a simply supported beam it

follows that
vj(O) = A + A =0,

4

o)

" A,
v’ (0) = —l;(—Az + A) =0,

v(l) = A sind + A sinhi =0.

and ,
v (1) = %— (A sin A, + A sinh ) =0. (4.14)
Equations (4.14) are satisfied only when
A, = A = A =0 (4.15)
and
sinA, = 0. (4.16)

The constant A, can be arbitary; for a natural mode the notation
A =g, (4.17)

is used. Note that natural vibration may occur with any amplitude A, or g, which
ought to be taken into account in Table 4.1 and in Figs 4.1 to 4.5 and 4.9 to 4.12.

Equation (4.16) is the frequency equation, which indicates that for a simply
supported beam

A= im, jo=123 .., (4.18)

li

A being a dimensionless frequency parameter.
The natural circular frequency follows from equation (4.11):
4
@ = A EL

T

f, = 4 (ﬂj : (4.20)

(4.19)

sO that

2l \ u
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TABLE 4.1. Characteristics of natural vibrations of single span beams of constant cross section
{natural frequency (4.20) and vibration modes (4.12) according to [14])

No. of )
Beam, Boundary natural 1 Frequency Natural vibration A Equation for
Figure conditions mode ! equation mode v (x) ! A,
1 3,142 —
v(0 =014 6.283
Slmply »r -
vi(0) = 0 3 9.425 i
d J : _ . A _
sgpporte ) vy = 0 4 12,566 sin 4, =0 un 1[ B _
Fig. 4.1 J
Vi) = 0 5 15.708 _
55 jn _
A
1 4.730 cosh —/— ~
0.983
v =01 5 7.853 = oo
Both ends v (0) =0 3 10.994 — cOs ! _ ' (COSh .ﬂ./ —
clamped, ’ _ cos A, cosh 4, =1 l 1 —cos A)/
v,(l) =0 4 14.137 }
Fig. 4.2 K ~al sion A, x 1 (snh A, -
vi(h =0 5 17.279 f| sfah == = Csin &)
. T
>5 0 Gy 2, ,}L‘] I
— sin
/
A
cosh —!f—i +
vi(0) = 0 A x
Both end “,f, I
free ° V,'(O) =0 the same as for beam with both +eos i the same as for
L “(1) = 0 | endsclamped A x beam with both
Fig. 4.3 VJ( Al i
vty = 0 ;| sink T ends clamped
. lj A
+ sin
!
1 1.875 cosh ‘1 - 0.734
v, =0 2 4.694 1.018
. A (sinh -
Cantilever | V() = 0 3 7.855 cos 4 cosh 4 + —cos " 0.999 i /IJ/
Fig. 4.4 Vil = 0 4 10.996 ’ ) : -sin A,
"0y = 0 14.13 H1=0 A s 22D - f(cosh 4, +
tJ() = 5 . 77E ; ; 1 —4—(:051],)/
5 ~ 1y 1
> (Z-1) 2 A
— Sin
!
vosh A v
One end (o) = 0 1 3.927 cosh —— 1001
clamped, | 2 7.069 A, :
Qne end vi(0y = 0 3 10.210 g A4 =tgh A — cos - l
simply V) (h =0 4 13.352 llx . cotg A,
supported vy = 0 . — A} sinh -
Fig, 4.5 ) 5 16,493 ; |
=5 . b1
(4 + = o /'L][x) 1
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Therefore, the natural frequency of beams and, consequently, of the majority
of railway bridges depends on the following quantities:
[ —span,
A, — boundary conditions,
E — modulus of elasticity of the beam or bridge material,
1 — moment of inertia of the cross section of the beam or bridge,
( —mass of the beam or bridge per unit length.

The roots 4, of the frequency equations and the natural modes v (x) of single
span beams with different types of support together with further characteristics
of natural vibrations, are presented in Table 4.1 and Figs 4.1 to 4.5,

According to equation (4.8) a beam can vibrate with simple harmonic motion
in an infinite number of modes. The simplest natural mode is the sine curve

v(x) = g sin i-"lif , (4.21)

which can be obtained from (4.12), (4.15) to (4.18) for a simply supported beam.

e
1
24
o
3

Qo8slL
“‘—l&—i 2l/4 — 3/ . _a_‘.?_".il_q [/2_%4 07721, '.\P'i_m /2 : /\
LN N NN S LN\
U \jj=4 © 4 \/ \/ is4 X
B s 02271 Q061
:_"'“_“ZV_“_! 1‘/5_;1 "VS__] T—L%O.Sgil% ___g._gas! 04081
yaiiiyaN N N _ /N /S
J=5 j:s j=5

Fig. 4.1. Simply supported beam: Fig. 4.2. Beam with both ends clam- Fig. 4.3. Beam with both ends
modes of natural vibration. ped: modes of natural vibration. free: modes of natural vibration.
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Fig. 4.4. Cantilever beam: modes Fig. 4.5. Beam with left end clamped and
of natural vibration. right end simply supported: modes of

natural vibration.

However, vibrations without external forces need not be simple harmonic
motion; they can consist of a combination of simple harmonic motions each of
which has a different frequency and their phases may be mutually displaced.
For this reason natural vibrations are sometimes distinguished from {ree vibra-
tions. A complete solution of equation (4.7) for free vibrations of a simply sup-
ported beam is
JTX

{
where @, is the phase of the jth natural mode.

The time-history of free vibrations depends on the mode or modes in which
the beam has been deflected at the beginning of the motion and on its velocity.

This phenomenon complicates the evaluation of natural frequencies and
logarithmic decrement of damping from records of deflections or stresses,
which occurred after a vehicle has left the bridge. If before that moment the

vix, t) = iqi sin sin (a)]t + ), (4.22)
=1
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TABLE 42 Roots A of frequency equation for the computation of natural frequency (4 20) of con
tinuous beam of constant cross section of n equal spans according to [33]

Roots A of frequency equation
Continuous No No of natural mode ;
beam of
of n spans spans
Figure 1 1 2 3 4 5
1 3142 6 283 9425 12 566 15 708
2 3142 3927 6283 7069 9425
3 3142 3 550 4304 6 283 6 692
4 3142 3393 3927 4461 6283
Both ends 5 3142 3299 3707 4147 4 555
hinged 6 3142 3267 3550 3927 4304
Figs 46 49 7 3142 3236 3 456 3770 4084
to4 12 8 3142 3205 3393 3644 3927
9 3142 3205 3330 3550 3 801
10 3142 3205 3299 3487 3707
11 3142 3173 3267 3424 3613
12 3142 3173 3267 3393 3550
1 4730 7853 10 996 14 137 17279
2 3927 4744 7069 7855 10210
3 3550 4304 4744 6 692 7 446
Both ends 4 3393 3927 4 461 4 744 6535
clamped 5 3299 3707 4147 4 555 4744
Fg 47 6 3267 3 550 3927 4304 4 587
8 3205 3393 3 644 3927 4210
10 3205 3299 3487 3707 3927
12 3173 3267 3393 3550 3739
1 3927 7 069 10210 13352 16 493
2 3393 4461 6 535 7 603 9677
Left end 3 3267 3927 4 587 6 409 7 069
clamped 4 3205 3 644 4210 4 650 6 347
Elgnhgteznd 5 3205 3487 3927 4367 4 681
Fig 48 6 3173 3393 3739 4116 4 461
8 3173 3299 3393 3770 4 084
10 3142 3236 3456 3582 3 801
12 3142 3236 3380 3487 3 644
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bridge was deformed m the mode near one of the natural modes, the vibrations
represent natural vibrations Otherwise the vibrations represent free vibrations
of an unloaded bridge

4.1.2 Continuous beams

The calculation of natural frequencies of continuous beams 1s analogous with
the calculation of single-span beams (Sect 41 1) Equation (4 7) 1s apphed to
beams of constant cross section 1n every span and the natural vibration modes
can be found from equation (4 12) Naturally, the integration constants A are
different m every span Thus, an n span continuous beam possesses 4n integra-
tion constants The integration constants are determined by the solution of a
system of linear algebraic equations following out of the boundary conditions
of the beam and of the conditions for deflection, rotation, bending moment and
shear forces above 1nternal and external supports of the continuous beam This
system of equations 1s homogeneous, therefore, its non-trrvial solution neces
sitates that the determinant of the system should equal zero In this way we
obtamn the frequency equation from which A are found

The roots A of the frequency equations for three types of continuous beams
according to Figs 4 6 to 4 § of n equal spans are given 1n Table 4 2, the natural
modes arc represented 1n Figs 4 9 to 4 12 From the data of Table 4 2, the nat-
ural frequency of a continuous beam of constant cross section can by found
usmg equation (4 20)

Natural frequencies of a continuous beam of constant cross section have con-
centrated zones Every zone contains as many natural frequencies as there are
spans of the continuous beam The frequencies in every dense zone are near
one another In Table 4 2 they are boxed by thick lines

Fig 46 Continuous beam of » equal spans hmged at both ends

N

™ -
ni

Fg 47 Continuous beam of » spans clamped at both ends

§f_ L O 4 (@] _-—-'O_T—O
—,-.—-1—-———-1—

L ni

— T

Fig 48 Continuous beam of » equal spans left end clamped and right end sumply supported
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{
j=2
i /2 — Fig. 4.9. Continuous beam of two equal spans: modes of nat-
ural vibration. The first dense region of natural frequencies
j= j=1and?2. '

L Ve
j=2
08461
bl j ._..3
V2 . _
Tt Fig. 4.10. Continuous beam of three equal
spans: modes of natural vibration. The first
is dense region of natural frequencies j= 1 to 3.

PN

j=2
j=3
| 0793
- j=4

\/ Fig. 4.11. Continuous beam

of four equal spans: modes
1/2 of natural vibration. The

Tt j=5
first dense region of natural

frequencies j = 1 to 4.
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Figure 4.13 and Table 4.3 show the dependence of the roots 4, and A, of fre-
quency equations on the ratio of lengths //l, of a continuous beam of constant
cross section with two spans of different lengths /; and /.. The length /, is substi-
tuted for / in equation (4.20).

N LN, -

{
V2
j=2
102974
r—-i-
j=3
0899 L2
j=b
| o7eat iS5
\/ \__)
1 /2 | j=6

Fig. 4.12. Continuous beam of 5 equal spans: modes of natural vibration. The first dense region of
natural frequencies j = 1 to 5.

- A
2‘11 & '-—-'::d“""-_.____ \'T:_-,,.a-"’o
1 - —
L
| 1) i b )
7 1 2 I i
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5 —
.
4~\\
3 T T . 1 ' L] Ll T L l T
0 05 1 W

Fig. 4.13. Continuous beam of constant cross section with 2 unequal spans and its first two natural
modes 1, 2. Roots of frequency equation 4, and A, plotted against ratio of spans /.
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TABLE 43 Roots A, and A, of frequency equa-
tion of continuous beam of two unequal spans /|
and [, (g 4 13)

TABLE 44 Roots 4 of frequency equation of
three-span symmetric girder (Fig 4 14) (/1n Eq
(4 20) 15 substituted by £)

i Ratio Frequency parameter Ratio Fequency parameter of the
of spans, (/ m Eq (420) of spans, first symmetnic ($) and

Mg 413 1s substituted by ) g 414 antisymmetric (A4) vibrations

( L/ A As I/ A, 2y

0 3926 60 7 068 58 0 4730 04 7853 20
01 3814 27 6 883 86 01 4 471 37 7459 54
02 372977 676302 02 4 289 39 721408
03 3663 01 6 664 49 03 4150 17 7 011 98
04 3607 04 6 544 34 04 4033 91 6756 97
05 3556 41 628319 05 3926 60 628319
06 350599 5698 28 06 381595 558216
07 3 449 66 505973 07 368917 491523
08 337848 4 549 93 08 3534 26 4365 93
09 327948 4176 79 09 334773 3920 80
1 314159 3926 60 1 3141 59 3556 41
11 2934 63 325371
12 2739 81 2998 64
13 2562 34 2780 91
14 2402 93 259291
L | 15 2260 34 2428 96

Wy

T

7
0s

|
15

Fig 414 Three span continuous symmetric beam of constant cross section and its first natural mode
for symmetric () and antisymmetric (4) wibrations The roots of frequency equation #, plotted
agamnst ratio of spans //1,
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The continuous symmetric three span bridge of /; + 4, + /[, the lengths of the
outside spans of which are equal, occurs frequently in practice. The first roots
A, of the frequency equation for the symmetric and antisymmetric vibrations of
this continuous beam of constant cross section are plotted in Fig. 4.14 against
the ratio of lenghts [/, — see also Table 4.4. Once again, the length /, is subst-
tuted for /1n equation (4.20).

In both cases the frequency parameter A was determined using the Kolousek
deformation (slope-deflection) method according to [120].

4.1.3 Plates
Rectangular plates frequently occur in railway bridges. Their natural fre-
quency can be characterized by a form similar to equation (4.20), i.c.

22 D 12
= —= = 4.23
= 2 [u } 4.2
where according to Sect. 2.2:
l, — plate span in the direction of x (Fig. 2.5),

3
= iz__ — flexural rigidity of the plate of thickness /# and Poisson’s

12(1 -V number v,

U — plate mass per unit area.

The lowest values of the roots A, of the frequency equations for several ratios of
plate dimensions /1, in the directions x and y, respectively, are given in Table 4.5.

For a rectangular plate, simply supported on all four sides, a procedure sim-
ilar to that described 1n Sect. 4.1.1 can be used for the derivation of expressions
for natural modes and frequency parameters A, (natural frequency is found,
once again, from equation (4.23)):

w,(x,y) = g, sin l?x sin J?y , (4.24)
X >
2
A; = Tcz (12 + ']1 %] ’ i).] = ]’ 2’ 3’ el (4.25)
y

There is a number of methods for the calculation of natural frequencies of
more complex railway bridges, which have been described in references [8],
[120]. In recent years, the finite element method has also been applied which
leads to equations of the type (4.6).

4.1.4 Natural frequencies of loaded bridges
If the mass of the unloaded bridge u per unit length is increased to the value
of fi(e.g. by loading the bridge with a whole train), the natural frequencies of
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TABLE 4.5. Roots A’ of frequency equation for rectangular plates (according to [95])

Frequency parameters A

5

i

Boundary conditions Ratio for Eq. (4.23)
1 — simply supported === of spans
2 — clamped edge IW/R Lowest Second Third
3 —free edge frequency frequency | frequency
— ——-——1—- —
| L]
{ i L Ll 1 19.74 see eq. (4.25)
ST
3
3 3 1 14.1 20.5 23.9
3
3
2’ 3 1 6.96 24.1 26.8
2
3 2 3.51 5.37 22.0
2’ 3 1 3.49 8.55 21.4
0.5 3.47 14.9 21.6
3
i
e 2 17.3
2' 11 1 23.7 31.7 58.7
_______ ! 0.5 51.7
1
1
——————— 2 238
2 l lz 1 29.0 54.8 69.3
_________ 0.5 54.8
1
2 % 224
2 3 232
2 2 24.6
- 2 1 36.0 73.4 108.3




4.1 CUICHIULOR O] AAIUYal Jrequencres 79

the loaded bridge f, can be found from the natural frequencies of the unloaded
bridge f, (equation (4.20)) by writing

=1 [%j . (4.26)

When a bridge of a large span is loaded only by a concentrated load of weight
F(cg bya vehicle), such a load is resolved into a Fourier series and added to the
self-weight of the bridge. FFor instance, for the simply supported beam the mass
per unit length of the bridge subjected to such a load is (see [68], Sect. 1.4.3):

i = u(l + 2 Gy ﬂx—“) (4.27)

where F — weight of the vehicle,
G — weight of the bridge,
x, — coordinate of the vehicle position.
For the first natural frequency of the loaded simply supported beam loaded
by the force F at midspan x, = I/2 we obtain, from equations (4.24) and (4.23),

fi = £+ 2FIGY"™ (4.28)

The change of natural frequency of the loaded simply supported beam as a
function of the position x, calculated from equations (4.28) and (4.27) is shown
in Fig. 4.15; this clearly illustrates how the position of the load influences the
natural frequency of the loaded structure. If the vehicle is near the middle of the
span, however, this effect is relatively small. Consequently, the frequency char-
acteristics of the bridge/vehicle system depend on the position of the travelling
vehicle and, consequently, on time.

f/h

1 B
02
T

FG=2

— —t X T T

o 05 1 %/l

Fig. 4.15. The first natural frequency f; of loaded simply supported beam plotted against the position
¥, of load of weight F; the weight of the beam is G.

Equations (4.26) and (4.27) may also be used to estimate the natural fre-
quency of an unloaded bridge from the measured natural frequency of the
bridge under load and the knowledge of the position and magnitude of the load:

fo=7 (—"_’—j . (4.29)
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4.2 Experimental results

In this Section we summarize the results of measurements of the natural fre-
quencies on 113 railway bridges. The tests were carried out on bridges of the
former Czechoslovak State Railways by several Czech and Slovak institutes, of
seven European raitways within the framework of international research pro-
grams ORE D 23, D 128, D 154 and D 160 of the Office for Research and
Experiments (ORE) of the International Union of Railways (UIC), [159] to
[165], and on bridges of the German Federal Railways (DB), [25].

With respect to natural frequencies the bridges were divided into five groups:

1. Steel truss bridges with and without ballast;

2. Steel plate girder bridges with ballast (this group includes also bridges
with orthotropic bridge deck, box girder bridges and Langer beams stiffened by
an arch);

3. Steel plate girder without ballast (including with open decks);

4. Concrete bridges (reinforced and prestressed concrete bridges and
bridges with steel girders embedded in concrete) with ballast;

5. Concrete bridges without ballast.

It should be noted that the tests mostly determine only the first natural fre-
quency of vibrations of the main beam. The vibrations of various other elements of
the bridge, such as cross-beams, longitudinal beams (stringers), orthotropic deck
slabs, etc., are influenced considerably by the vibrations of the main bearing sys-
tem, so that their natural frequencies cannot be found without special equipment.

4.2.1 Dynamic bridge stiffness
Railway bridges are often idealized by a beam, the natural frequency of

which, according to (4.20), can be found from
2

A
= —— B, 4.30
fo= 55 (4.30)

where [ — span of the bridge,
A, —solution of frequency equations, which depend on the structure of
the bridge, i.e. on boundary conditions of the bridge span, see Tables

4.1 to 4.5.
The constant B for beams, characterizing their dynamic stiffness, is — accord-
ing to equation (4.20) —
1/2
B = (EI-J . (4.31)
u

Note that for plates equation (4.23) has to be applied.

B characterizes the material of the bridge structure (£), the stiffness of the
cross section (I) and the mass of the bridge (u). Its unit is m* s, if / is measured
in metres and f, in Hertz in equation (4.30).
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With respect to the dynamic stiffness B the bridges were divided into the
groups mentioned above: truss bridges are stiff and usually of large spans, so
that the existence of the ballast does not play any decisive role. Plate girder
bridges, on the other hand, are usually of medium and small spans and possess
a lower moment of inertia; consequently the presence or absence of the ballast
is of some significance. Concrete bridges are considerably heavier than steel
bridges, but possess a lower modulus of elasticity £.

The dynamic stiffness of bridges may be found from measurements of first
natural frequencies and the span:

B = Z g (4.32)
TC

assuming that A, = w. This applies to simply supported beams or continuous
beams with any number of equal spans of constant cross section. It may also be
used approximately in other cases, if the variations of cross section or the differ-
ences in spans are not too great.

The dependence of the dynamic bridge striffness B on the span [ for the five
groups of bridges was analyzed by regression analysis. From the four basic
regression types (linear, exponential, logarithmic and power regression) linear
regression

B = a + bl (4.33)
has proved the best one, which means that the dynamic stiffness B grows ap-
proximately linearly with the span / (see Figs 4.16 to 4.20, showing also the
measured values).

m25"] 7

10000

O T T T T T
20 30 40 50 60 70 lm)

Fig. 4.16. Dynamic stiffness B plotted against span / for steel truss bridges (regression coefficients are
in Table 4.6).
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Fig. 4.17. Dynamic stiffness B plotted against span / for steel plate girder bridges with ballast (regres-
sion coefficients are in Table 4.6).
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Fig. 4.18. Dynamic stiffness B plottcd against span [ for steel plate girder bridges without ballast
(regression coefficients are in Table 4.6).
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ﬁ
i Fig. 4.19. Dynamic stiffness B
plotted against span [ for con-
0

—A crete bridges with ballast (regres-
0 -~ 10 20 30 40 50 60  (fm) sion coefficients are in Table 4.6).
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The regression coefficients @, # in equation (4.33), found by the least square
method, are tabulated in Table 4.6, showing also the regions of validity (from [,
to [,..) and the correlation coefficient r, which is very high in all cases (» = 0.92).

The range of reliability s for observations at point x for the general linear

regression
y = a + bx (4.34)

was calculated according to [181] as follows:
1 (x . z’“)
s o= 1,5, |1+ — + n , (4.35)
: a 0.

/2

{m?s"
2000 - _
-

0 T 1

9] 10 20 Hm)

Fig. 4.20. Dynamic stiffness B plotted against span / for concrele bridges without ballast (regression
coefficients are in Table 4.6).

where 1., , is the value of Student’s distribution (for tables see [181]) for n — 2
degrees of freedom (n being the number of measurements) and the probability
of error P. The computations considered the two-sided test for P = 0.05, which
means that the results assure a 95% reliability. Further notations:

) _ (Q} . bQM jl/Z
e n— 2 ’
2 1 2
0 =Yx - —(Xx),
0 =Yy -=(Iv).
0, = Txy - = (Tx) (X)- (4.36)

This means that for the regression relation (4.34) the mean value of the quant-
1y y at point x is

e 3

y = a + bx (4.37)
with lower limit y =a + bx — s
and upper limit y =a+ bx + s

for (1~ P) 100% reliability.
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The data of Table 4.6 and Figs 4.16 to 4.20 can be used for the computation of
natural frequencies of bridges from equation (4.30). The mean value of the
dynamic stiffness of bridges from Figs 4.16 to 4.20 is usually considered. If the
stiffness is higher, the values nearer the upper limit may be chosen; it the bridge -
has a limited structural height or if it is heavier, the values nearer the lower limit
should be used. The mean value is shown by a solid line in Figs 4.16 to 4.20, while
the lower and upper limits for 95% reliability are represented by dashed lines.

4.2.2 Statistical evaluation of natural frequencies

The measured natural frequencies of 113 railway bridges are plotted against
span in Figs 4.21 to 4.25 for the individual groups and in Fig. 4.26 regardless of
their structure. From the four types of regressions (linear, exponential, log-
arithmic and power regression) the power regression

fio=al’ (4.38)

has proved the best.

The regression coefficients a, b as well as other data are given in Table 4.7.
The correlation coefficients (r = 0,83), show, once again, that the proposed
regression model (4.38) is adequate enough.

The power regression of the type
y = ax’ (4.39)

can be converted into linear regression (4.34) by taking logs. The computation
then proceeds in accordance with the equations (4.34) to (4.37). The mean
value at x is (4.39), while the lower limit is

y = ax’s’
and the upper limit

y = ax’s" (4.40)
for the (1 — P) 100% reliability.

Fig. 4.21. First natural frequency f, plotted
- v eyt ——l against span / for steel truss bridges (regres-
20 50 100 200 Um  sion coefficients are in Table 4.7).
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Fig. 4.22. First natural frequency f, plotted against span [ for steel plate girder bridges with ballast
(regression coefficients are in Table 4.7).

L] [I'l'll|1lll 1 l—l'!l
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Fig. 4.23. First natural frequency f, plotted against span { for steel plate girder bridges without ballast
(regression coefficients are in Table 4.7).
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Fig. 4.24. First natural frequency f, plotted against span / for concrete bridges with ballast {regression
coefficients are in Table 4.7).
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Fig. 4.25./First natural frequency f, plotted against span [ for concrete bridges without ballast (regres-
sion coefficients are in Table 4.7).
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Consequently, the dependence of the first natural frequencies of railway
bridges on their span can be expressed by equation (4.38); this can be shown
graphically by a descending straight line (see Figs. 4.21 to 4.26). The mean
value is indicated by a solid line, the lower and upper limits for 95% reliabulity
are represented by dashed lines.

Figure 4.21 reveals the high reliability of determination of the first natural fre-
quency of steel truss bridges, as they are of a relatively uniform type. The group
of plate girder bridges, on the other hand, contains bridges of various types, so
that the range is wider. In the group of concrete bridges without ballast only the
results of four structures were available, which is a very small sample. It is of inter-
est, however, that the regression coefficients for concrete bridges with and with-
out ballast are very close to each other, which justifies the conclusion that the bal-
last has only a very small influence on the first natural frequency of concrete
bridges (the ratio of mass of the ballast and that of the concrete bridge being low).

\
fy ~
(MD AFs N

1 T L T T ITIIII\I]]!TTT

2 5 10 20 a0 100 200 ((m)

Fig. 4 26 First natural frequency £, of railway bridges plotted agamst span / (regression coefficients
are m Table 4 7)

I - steel truss bridges 2 — steel plate girder bridges with ballast, 3 - steel plate girder bridges without
ballast, 4 — concrete bridges with ballast, 5 — concrete bridges without ballast,

mean value for all bridges, — — — lower and upper Linuts of 95% rehability for all bridges
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Figure 4.26 represents the measured first natural frequencies of all 113 raillway
bridges. The figure shows that practically all experimental data may be found
within the zone of 95% reliability around the mean value. Consequently, Fig.
4.26 can be used for the estimation of the mean value and of the lower and the
upper limit of the first natural frequency of railway bridges of any type, mater-
ial and structural system.

4.2.3 Empirical formulae

On the basis of statistical evalution of measured natural frequencies it is pos-
sible, after the rounding-off of regression coefficients from Table 4.7, to propose
empirical formulae for the estimation of the first natural frequencies.

For railway bridges of all types, materials and structural systems it follows that

fo= 1330, s = 2.1 (4.41)

where f, is in Hertz, and / in metres. These units are also used in all formulae
which follow. The reliability constant s gives, after multiplication or division by
the mean value, the upper and lower value, respectively, for the 95% reliability
according to equation (4.40). This empirical dependence is represented in Figs
4.26 and 4.27, lines I and 2.

For steel truss bridges the formula

f =307, s = 1.4 (4.42)

can be recommended, see Fig. 4.21. Line 3 in Fig. 4.27 represents the mean
value only, the same applies also to lines 4 to 7.
For steel plate girder bridges with ballast the relation

£ =590, s =17 (4.43)

is satisfactory; see Fig. 4.22 and line 4 in Fig. 4.27.
For steel plate girder bridges without ballast

fo=2081", s =19, (4.44)
see Fig. 4.23 and line 5 in Fig. 4.27.
For concrete bridges with ballast the relation
fo=1901", s =23 (4.45)

forms an optimum, see Fig. 4.24 and line 6 in Fig. 4.27, while for concrete
bridges without ballast

fo=2251" s = 1.4

sce Fig. 4.25 and line 7 in Fig. 4.27.

The regions of validity of all the above formulae are given in Table 4.7 and
presented in Figs 4.21 to 4.26.

The International Union of Railways [212] recommends the region within

(4.46)

?
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which the first natural frequencies of unloaded railway bridges of all types and
materials should lie. The lower limit of this region is

fi = 8071 for 4 =<1 =20m
and

f = 23.581 "7 for 20=1=100m, (4.47)

while the upper limit is
f, = 9476 I for 4<1<100m. (4.48)

The graphical representation of the functions (4.47) and (4.48) is shown in Fig.
4.27 as lines 8 and 9.

1
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Fig 427 First natural frequency £, of rallway brndges plotted against span /

{ —- mean value obtained by statistical evaluation of all bridges according to equation (4 41), 2 - lower
and upper lmuts of 95% rehabihity for all bridges, 3 — mean value for steel truss bridges (4 12), 4 -
mean value for steel plate girder bridges with ballast (4 43), 5 ~ mean value for steel plate girder
bridges without ballast (4.44), 6 — mean value for concrete bridges with ballast (4.435), 7 — mean value
for concrete bridges without ballast (4 46). 8 — lower limit according to the recommendations of the
International Union of Railways (4 47), 9 — upper limit acording to the recommendations of the
International Union of Ratlways (4 48), 10 — steel bridges (4 49), 17 - lower limit for remforced con-
crete bridges (4 50) and mean value for prestressed concrete bridges (4.52), 12 — upper it for rem-
forced concrete bridges (4 50), 13 - lower limit for reinforced concrete bridges of very small spans
(4 51), 14 — upper limit for remforced concrete bridges of very small spans (4.51)
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The author presented the following simple empirical formula in [64] and [68]:

fi = 250/1, (4.49)

this was based on earlier measurements of natural {requencies of steel bridges.
It is line /0 in Fig. 4.27.

According to [22] for the spans up to 23 m (up to approximately 33.5 m), the
first natural frequencies of reinforced concrete bridges vary within the limits of

1/(0.00727) < f < 1/(0.00721 - 0.05) , (4.50)

which are represented by lines // and /2 in Fig. 4.27.
For spans below 5 m, the relation [22]

100/1 < f <50, (4.51)

is better, see lines 13 and 4 in Fig. 4.27.

The first natural frequencies of prestressed concrete railway bridges usually
are lower than those of reinforced concrete bridges [22] and follow approxim-
ately the lower limit of (4.50) (this applies to the spans up to 33.5 m, see line 771
in Fig. 4.27)

fi = 1/(0.00721) . (4.52)

Figure 4.27 shows quite well that the empirical frequency versus span rela-
tions lie within the zone of 95% reliability, i.e. between the lines denoted by 2.
In fact, line { represents the mean value. From the other formulae, the lower
limit & of the International Union of Railways recommendation is in good
agreement with the lower statistical limit 2. The upper limit 9, however, is too
low in comparison with the upper statistical limit 2 and does not cover some
steel bridges.

In all cases, however, the first natural frequency can be found from the for-
mula

£ o= 17.753v." (4.53) |

whenever the midspan deflection v, (in mm) of the bridge due to self-weight
can be determined; f; is in Hertz. Equation (4.53) follows from the formula for
the midspan deflection of a simply supported beam loaded by a uniformly
distributed load ug

4
vo= — kel (4.54)
384 EI

which is substituted in equation (4.20). It yields for a simply supported beam,

A=Tw

12
f = %(%& g) yoi (4.55)
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In equations (4.54) and (4.55), g = 9.81 m s”. The numerical evaluation of the
constants in equation (4.55) yields equation (4.53), which is frequently used for
bridges.

Otherwise, it is possible to estimate natural frequencies by means of equation
(4.30) and the data from Table 4.6 or equation (4.20) with the moment of iner-
tia according to either equation (2.21) or (2.22). The choice depends on which
quantity (£, I, u, B or v,) is known or can be determined easily. In all cases we
assume that the bridge span [ is known.

Further empirical relations can be found in [22]. They are based on permis-
sible stresses used in the design of bridges according to the theories of permis-
sible stresses or limit states.



5. Damping of railway bridges

Damping is a desirable property of building materials and structures which,
in majority of cases, reduces the dynamic response and causes the bridge to
reach its state of equilibrium soon after the passage of vehicles or other excit-
atior.

The physical causes of damping are very complex. During vibration one form
of energy changes into another (potential energy into kinetic energy and vice
versa) and part of the energy is lost by plastic deformations of the material or
is changed into other forms of energy, e.g. thermal, acoustic, etc. In this way the
energy supplied by the passage of vehicles is irreversibly dissipated into the
environment.

The sources of damping of bridge structures are both internal and external.
The internal sources of damping includes viscous internal friction of building
materials experienced during their deformation, their non-homogeneous pro-
perties, cracks, and so on. The external sources of bridge damping includes fric-
tion in supports and bearings, friction in the permanent way and particularly in
the ballast, friction in the joints of the structure, aerodynamic resistance of the
structure (which is very small with regard to the great rigidity of railway
bridges), viscoelastic properties of soils and rocks below or beyond the bridge
piers and abutments, and so on,

It is obvious that the number of sources of damping of vibrations of railway
bridges is high and that it is almost impossible to take them all into account in
engineering calculations. Damping depends on the material (steel, reinforced
concrete, prestressed concrete ) and on the state (presence of cracks, ballast, etc.)
of the structure. The magnitude of damping also depends on: the amplitude of
vibrations {25], [122]; in this respect, however, the influence of the forced vibra-
tions has not yet been fully investigated. The component of forced vibrations is
usually substantially higher in bridges than the amplitude of free vibrations after
the departure of the vehicle from the bridge. However, the damping depends
very little on vibration frequency in the region of low {requencies up to 50 Hz,
and this is the range within which railway bridges vibrate most frequently.

5.1 Damped vibrations of a beam during the passage of a force

There are a number of damping hypotheses, most of which are described in
[197]. For this reason, we will limit our considerations to the three most import-
ant damping theories and to the assessment of their influence on the vibration
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of a simply supported beam during the passage of a constant force F according
to Fig. 5.1, 1i.e. to the basic case as in Chapter 3. We shall base our considerations
on the assumption that at the time 0 < t = //c the greatest static and dynamic
deflections of the beam take place which are important in its design. Free vibra-
tions which occur after the departure of the force from the beam possess consid-
erably lower amplitudes and, therefore, this second phase of the phenomenon
is of lower significance in practice {only being used for the evaluation of natural
frequencies and damping characteristics and for assessment of fatigue).

Fl ¢
a8 O
e ( Fig. 5.1. Motion of a constant force F along a simply sup-
b ) ported beam of span / at velocity c.

5.1.1 Viscous damping proportional to the velocity of vibration

The Kelvin—Voigt theory of viscous damping assumes that damping is pro-
portional to the velocity of vibration in every element of the beam. This hypo-
thesis actually expresses the external damping of a body immersed in a liquid.
Because of its mathematical simplicity, however, this hypothesis has found by
far the widest application even though it assumes that damping depends on
vibrations frequency, which is at variance with some laboratory experiments
[197]. However, global results in the case of complex and big structures, such as
railway bridges, usually are in satisfactory agreement with experiments.

A partial differential equation may be derived from the condition of equilib-
rium of vertical force and bending moments in a beam element (Fig. 5.2)
d*v(x, 1) " v(x, t)

E + 37 + 2Uw,
for the motion of constant force F at velocity ¢ along the beam (the symbols
having the same meaning as in equation (2.1), see Sects 2.1.1, 3.1.1 and 3.4.3).

EI = 8(x — e} F (5.1)

l f(xt)dx

29 M
,U{Id! \Q‘ x dx | M+ F- dx

|
I 24 0 v dx Fig. 5.2. Forces and moments applied to an ele-
" ment of the beam with damping proportional to
J dx - vibration velocity.
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The complete solution of equation (5.1) for all cases ot viscous damping and
velocities has been derived in [68], Chapter 1. Therefore, only the result is given
here:

= 1
v(x, 1) = v - —
0; Jz[}z(]z . 062) + 40(4[32}

jol (7 - o) - 28]

-y
7 c

L3

j (]2 — az)sin jot —

t

.sin @'t — 2]05;3((:05 jot — e ' cos a)j’z‘)} sin % ,  (5.2)
which applies to the period of passage of the force along the simply supported
beam, 0 = ¢ = [/, for subcritical damping ®, < @, and for ¢ # j.

The following notation has been used in equation (5.2):
— static deflection of the beam at midspan due to force F applied at the same point
2F 2F0

v, = = , 5.3
o wlew! w'El (5:3)

— dimensionless velocity parameter
® c

o = — = — 5.4
o) 2fll (3-4)
— dimensionless damping parameter (damping ratio)
gL _ 0 (5.5)
, 2
— circular frequency of force passage
W = % : (5.6)

— circular frequency of damped vibrations of unloaded beam at subcritical damp-
ing (@, < @)

2 2

w’ = o - o, (5.7)

— circular frequency of undamped vibrations of unloaded simply supported
beam according to equation (4.18) and equation (4.19)
, j5'm El
5 i4 ‘;:L— ’
and the logarithmic decrement of damping ¢ according to equation (1.8) in
Chapter 1.
Figure 5.3 shows the time-history of midspan deflection of the beam for vari-
ous velocities o of force movement and for different damping (3, calculated
from equations (1.30) to (1.39) in [68]. The figure shows that for usual velocities

0]

f, = o /(27), (5.8)
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(o < 1) and low damping (B < 1) the greatest dynamic deflection at midspan
occurs when the force is above midspan of the beam or immediately afterwards.

For current cases (¢ < 1, f < 1) the first term j = 1 of equation (5.2) yields
satisfactory results, so that equation (5.2) can be simplified to

v

v(x, t) = 1—_0712- (sinwt — oe V' sinw t)sinnwx/l, (5.9

where the second term in brackets represents natural damped vibrations and is
substantially less than the first term, which expresses the forced motion, i.c. a

quasistatic case. .

a) OIEILLOiSlLlllct/l
=2
1 B=0
v {l/20/Y o 05 o= 1
1 t
b) 0 op e/
o= 2
1 B=01
v{L/20/ o=
¢) 0 as et/
o= 2
VET
1 a=05 ‘3: Bcr= 4
vil/28/v,
d)
v (/2 A,

Fig 53 Dynamuc deflection at mudspan of a simply supported beam v(//2, t)/v, for various dimen-
sionless velocities o and damping 3

a)f=0,a=0,05,1,2,

bYB=01,02=0,05,1,2,

Syf=h.=1,0=0,051,2,

d)Bf=20=005,1,2
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It is often maintained that high vibration modes have higher damping than
the basic mode. If we denote the circular frequency of damping of the jth mode
as w, then equation (5.1) will contain the expression @, instead of w, and the
solution of equation (5.2) will be identical except for the notation of the damp-
ing terms:

w =W - 0,

B, =w,/o = v /(2r). (5.10)

Although this does not yield any new quality it does give rise to practical dif-
ficulties concerning the evaluation of the deflection or siress-time records to
obtain the respective damping coefficients @, or ¥, when the pure higher vibra-
tion modes could rarely be obtained.

Another hypothesis from viscous damping is that damping is proportional to
the rate of stress variations. It expresses internal damping as a function of stress.
According to this theory, it is assumed that the stress o depends on the velocity
of strain &

O = bE éﬁ , (5.11)
dr

where b is the damping coefficient with the unit (s).
As the strain at point y (which is the distance from the neutral axis) of the
Cross section A is
e=v"y, (5.12)

the bending moment, which damps the vibration of the beam, has the form
{
M = jay da = j bEV'y*dA = bEW" . (5.13)

It is assumed (according to Fig. 5.4a) that the stresses are lincarly distributed
along the cross section.

a) b} ! flxt)dx

M Q Q-o%?(— d:§ M+ g—':' dx - bEW'dx
g uvdx
]y
&

N dx P
r i

Fig. 5.4. Damping proportional to the rate of stress variation:
a) stress distribution along the cross section, -
b) forces and moments applied to an element of the beam.,
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From the conditions of equilibrium of vertical forces and bending moments
in an element of the beam as shown in Fig. 5.4b the differential equation for the
deformation of the beam is given by

I v(x, 1) " v(x, 1) >’ v(x, 1)
El ————~ + bE] ————— + y ———>—= = o(x — ct)F. (5.14
T axar T or (x = e)F. (5.14)
When

b = 2w,/ w0, (5.15)

the solution of equation (5.14) is represented by equation (5.2) using the nota-
tion @, = bw,/2.

The assumption of damping proportional to stress variation rate, therefore,
leads to the same results as the assumption of damping proportional to the
vibration velocity, although both theories have been based on different ap-
proaches, see Fig. 5.2 and Fig. 5.4b.

5.1.2 Dry friction

The hypothesis of Coulomb dry friction assumes that a constant force acts on
every element of the beam against the direction of its movement. The partial
differential equation follows from the conditions of equilibrium of vertical
forces and moments in Fig. 5.5

EIMerMib:ﬁ(x—cr)F, (5.16)
dx’ dr

where the upper sign of b holds true for v(x, f) > 0 and the lower sign for
v(x, t) < 0.

The constant » has the dimension of force per unit length and, for railway
bridges, is about 1 to 3 kN m™.

] f{xt)dx

l bdx
dx

[ e
T -

Fig. 5.5. Friction; forces and moments applied to an element of the beam at v(x, ) > 0.



100 5. Damping of railway bridges

For simplificaton assume that the solution of equation (5.16) for the simply
supported beam has the form

vix, t) = vq(t)sinmtx/1l (5.17)

where v, is given by equation (5.3). Alternatively, a numerical solution of equa-
tion (5.16) or (5.18) can be derived.

The Galerkin method with the basic function (5.17) provides instead of equa-
tion (5.16) an ordinary differential equation

2
dd%gr)— + w g(t) £ @@ = @lsinwt, for q(¢)=0, (518)
with the notatiton (5.8)
Y EI
w =L (5.19)
"1

for the first circular natural frequency of the simply supported beam, equation
(5.6) for @ and the dimensionless friction force
D = 20 : (5.20)
T F
The function g(f) represents the dimensionless midspan deflection of the
bridge with initial conditions

gty = g(t) = 0 for t = 0. (5.21)
The force on the beam (Fig. 5.1) starts at time ¢ = 0.
The motion of the force along the beam damped by internal Coulomb friction
can be divided into three phases:

(1) In the first phase, the deflection g(¢} will be zero, until the friction
forces have been overcome by beam deformations. It holds that

gty + @ g(t) = w (sinwt — @) = 0, (5.22)

from which it follows (assuming equation (5.21)) that

gty = 0 (5.23)
and that it will hold true until
sin wt, = D. (5.24)
It follows from equation (5.24) that equation (5.23} is valid during the interval
0=r=1 (5.25)
where
2
f =larcsind§z @ _ 28
0, ® 7 cF

is the time at the end of the first phase.

kb
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(2) For the second phase, we shall introduce a new independent variable
T=1T — ﬁl s (5.26)

which has its beginning at ¢, in absolute time, and whose initial conditions for
g(7) equal zero, since it follows the preceeding phase.
According to (5.18) the equation

G(1) + o} g(7) = @[sinw@, + 1) — @] (5.27)

now holds true, as long as g(7) > 0.

We shall derive the solution of the differential equation (5.27) with zero ini-
tial conditions by means of equations (27.17), (27.18), (27.31) and (27.32) from
[68] in the following form:

cos wt, , . :
L (sin w7 — asin @, 7 )

9(1) = T2

— CD[l R ! (cos T — a® cos a)lr)} (5.28)

aZ

and its derivative with respect to time is

@1 = 1 wlO;Z [Cos wt (cos o7 — cos ®,7) — P(sin wr — asin COIT)]. (5.29)
Both equations hold true while g(7) > 0.

For small parameters o (5.4) and @ (5.20), equation (5.24) and cos wt, = 1, it
follows from equations (5.28) and (5.29) approximately

g(7) =

(sin @7 — osin ®,17) — Cb(l — - COS 601') (5.30)

1 - a’ l -«

and

g(t) = 1 o > (Cos 0T — cos w7 — Dsin WT) . (5.31)
- o
The condition ¢g(7,) = 0 is complied with according to equation (5.31) approx-
imately at the instant when the force traverses the midspan point

[
T, =t = —. 5.32
= h = o (3.32)
At that moment, according to equations (5.30) and (5.31), the dimensionless
deflection and its derivative with respect to time are approximately
1
q(tg) = 1 5 @ 3

g(t,) = 0. (5.33)

_ Phase 2 terminates at time t, and equation (5.33) represents the initial condi-
tions for the third phase.
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(3) In the third phase, the dimensionless deflection according to equation
(5.18) is described by the differential equation

§(7) + 0] q(7) = o}|sin (1, + 1) + O] (5.34)
which holds true while ¢g(7) < 0. An independent variable
T=1 - (5.35)

has been introduced in equation (5.34).
The solution of equation (5.34) with initial conditions (5.33) is, according to
equations (27.19), (27.33), and (27.17) from [68],

g(1) = ! ! ~cos Wt + @(1 — 2cos @ 1T),
J— a'
g(1) = (1 :aaz sin wt + 2@ sin a)lfja)I (5.36)

for g(7) < 0.

The force leaves the beam when t; = l/c, i.e. according to equations (5.35)
and (5.32) when 7, =, — t, = [/(2c). At this instant, the dimensionless deflec-
tion at beam midspan according to equations (5.36}, (5.4) and (5.6) is approx-
imately

g(7,) = CD(I — 2 cos —E—) (5.37)
20
and the deflection of the beam is usually stopped by dry friction.

The derived expression can be used for the evaluation of the dry friction coef-
ficient b. From the recorded time-history of midspan deflection the residual
deflection v, at the moment of vehicle departure from the bridge is evaluated.
Then according to equations (5.17) and (5.18)

w112, lic) = v. = v, @[l — 2 cosm/(2a)] (5.38)
and, using equation (5.20), we obtain

b = a2 Y (5.39)
201 = 2 cosm/(2a)] v,

All the values in equation (5.39) can easily be found from tests. The term in
square brackets depends on the phase of bridge motion, because it can acquire
the values from -1 to +3. The residual deflection v, is easily recognizable in test
records, as the record before the arrival of the vehicle on the bridge sometimes
does not coincide with the record after the departure of the vehicle. This in-
dicates the presence of dry friction.

Dry Iriction theory describes well the influence of ballast on railway bridges
of minor spans.
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In case of poor bearing maintenance, the bearings are clogged with impur-
ities and resist motion. This case can be modelled according to Fig. 2.17, by
considering that the beam is subjected to the vertical force F and a horizontal
longitudinal friction force from the bearings. That is, a force

N@) = + f(ﬁ A (5.40)
2 [/
applied to its ends, which is proportional to the reaction of the beam at the sup-
ports below the moving bearings. In this equation
f - friction coefficient and
G — self-weight of the bridge.

The upper sign of the force N(i) applies to the motion of the rolling bearing
towards the left, the lower sign to the motion towards the right, see Fig. 2.17 or
Fig. 5.1. This movement is characterized approximately by the deflection rate of
the beam v(x, t) which means that the upper sign applies to v(x, {) > 0 and the
lower sign to v(x, 1) < 0.

With these assumptions, it is possible to derive the differential equation (2.6)
using the conditions of equilibrium of forces and moments, which in this par-
ticular case is of the form

d*v(x, t) d*v(x, t) d*vix, 1)
[y QAL A LA LA B LA
ax’ o ax’
The solution of equation (5.41) with (5.40) leads to Bessel function, see [113],
equations (2.10), (2.14) and (2.162). An approximate solution in the form of
equation (5.17) by the Galerkin and perturbation methods for ¢(r) > 0 yields

— N(1) = o(x — ct)F . (5.41)

q(t)y = q,(t) + q, (1), (5.42)
where
q,(t) = 1 _l - (sinwt — a smo,t), (5.43)
f {G [ : i
ty = — — sin @t — o sin @, ¢
40) N.(1-a”) 12 = sin 1)

04 .
-5 (sin @, 1 — @t cos @, 1)

F 2 l_az . ) 2
+ = — @i sin @t — a’ cos Wt + & cos W, ¢t
T|(l - o) 2

awt

(sin w, 1 — ot cos o, r)}} . (5.44)

In the above case, the relations (5.3) to (5.8) hold true; apart from that, the
Critical axial force is denoted by
N, =mFEl . (5.45)

cr
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q.(t) represents the motion due to a force F (compare with equations (5.9)),
while g,(f) represents the motion of the beam due to the force N(7). The dimen-
sionless deflections (5.42) to (5.44) hold approximately true for ¢ < //(2c). The
direction of the axial force N(7) influences the naturatl frequency of the beam
in equation (20.4) and (20.6) from [113]. In the first phase of the motion
0 < t < l/(2¢), o, is higher, while in the second phase, //(2¢) < t < l/c, o, is lower
in comparsion with equation (5.19).

For low values of fand o the expression g,(t) is considerably lower than ¢,(7).

5.1.3 Complex theory of internal damping
Sorokin’s theory of internal damping [197] is based on the relation between
stress and strain in the complex form

c* = (1 +iy)Fe* | (5.46)

where ¥ is the coefficient of internal damping which is generally dependent on the

instantaneous vibration displacement. The quantities 0* and £* are complex, the

other quantities being real. The expression (5.46) characterizes the event that the

non-reversible deformation ye lags behind the elastic deformation € by a certain

phase angle and that damping does not depend on the frequency of vibration.
'The mean value of the coefficient of internal damping is

according to [122] and [25]
for steel bridges Y = 0.027 0.031
for reinforced concrete bridges Y = 0.1 0.072 (5.47)

and its relation to the logarithmic decrement of damping (1.8) is
Yy=9/m. (5.48)

From equation (5.46), the partial differential equation for damped vibrations
of a beam with complex load f*(x, ¢) is
d*v¥(x, 1) ru d*vF(x, 1)

adx* ar’

where v#(x, t) is the deflection of the beam in complex form, and the coeffi-
cients 8, and S, depend on y:

(B, +iB,)El = f*x, 1) (5.49)

1 —-y*/4
A 1+ 9y /47
Y
= —t — 5.50

According to Sorokin [197], the real load
f(x, 1) = 6(x — ct)F (5.51)
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is matched to the complex load with (5.51) as the real component. In our par-
ticular case, it is approximately the load

H(x, 1) = gFel“”"“’” sin(mx/1) = ~2—F(sin wi — icos we)sin(nx/l), (5.52
FHe [ [ )

the real component of which, after development into Fourier series and forj =1,
corresponds to equation (5.51).
The solution of equation (5.49) with f*(x, ¢} from equation (5.52) is assumed
to be of the form
vE(x, 1) = v,g* (1) sin(mwx/1) {3.53)

for a simply supported beam.
After the substitution of (5.53) and (5.52) in (5.49) we obtain an ordinary dif-
ferential equation

GE() + o g* (1) = o €T, (5.54)

where the complex natural frequency is
o = (B +if)o =1 +iy/2Yw/", _
o = o0+ 7y /47", (5.55)

and o, is determined by either equation (5.8) or (5.19).

The solution of equation (5.54) covers two complex initial conditions, the real
components of which are assumed to equal zero. The solution also includes the
terms with growing amplitudes which, however, are considered equal to zero.
The mathematical aspect of Sorokin’s theory has been criticized because of its
ambiguity and improved by V. KolouSek and I. BabuSka [120]. Nevertheless,
Sorokin’s hiypothesis is often in good agreement with experiments and is fre-
quently referred to in the literature.

The procedure described in Sect. 19 of {197] yields the real part of the solu-
tion of equation (5.54)

1 _ 2 Y
W=ay {Al sin ot — (@AB = A, 7" /2) exp (EZ ”N’)
™
xsin @/t — A, y{cos Wt — exp (——?}i a)l’tJ cos a)l’t} . (5.56)
where _

A=1-v/4 -a B,

B =1+ 7v"/4,

A =0 -7/HA + v,

A =1-9"/4 - A =a*B . (5.57)
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The dimensionless deflection (5.56) at midspan of the beam is analogous with
equation (5.2), and for y= 0 and j = 1 both expressions are identical. As the
coefficient of internal damping y for bridges is small (see equation (5.47)), the
Sorokin’s theory does not yield very different results in comparison with the
Kelvin—Voigt theory (for the case solved above). This is because the forced
vibration prevails over the natural vibration in the case of a beam loaded by a
moving force and the excitation lasts for a limited time.

Sorokin’s theory also permits the consideration of a non-linear internal damp-
ing coefficient which depends on the vibration amplitude 4, in accordance with

r(a,) = V(—i— + B, aé] : (5.58)
o, + a,
where o, 3, and k are empirical coefficients [197].

It the case of non-stationary vibrations the coeftficient y(a,) is approximately
constant over the time of a half cycle, which corresponds to the travel of the
force along the beam. For this reason, equation (5.54) is linear over this period,
with constant coefficients, and as such it can be integrated. The non-linearity
according to equation (5.58) can be introduced only into the results. Naturally,
the procedure is only approximate.

In experiments, such as those described in [25], it is often observed that the
damping is directly proportional to displacement, i.e. according to equation (5.58)

via,) = 7,4, , (5.59)

where 0 — =, k=1, % = yB.
'The maximum displacement in equation (5.56) takes place approximately at
the moment ¢ = //(2¢) and its magnitude is

a, = q(l/(2¢)) = ?’i—_ (5.60)

2

7
for small o and . When neglecting y*/4 in comparison with unity we obtain,
from equations (5.57) and (5.59), andforA=1-0’ A, =1- o’ + y*and B =1,
a cubic equation for the amplitude a,
. 1-o +7r.ad
‘ (1 -y +7va
Its approximate solution is

(5.61)

o l+y/d - oy
ol -+ (- o)

a (5.62)

which is, for small ¥, very near the maximum displacement 1/(1 - o) in equa-
tions (5.9}, (5.30), (5.43) and (5.56).

From the various theories of damping it is possible to conclude that damping,
influences free vibrations after the departure of the vehicle from the bridge, and
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that the theories do not yield too different results during the passage of the
vehicle along the bridge, when the static together with dynamic action is a
maximum. The loading of railway bridges is a transient process of a relatively
short duration, in which the application of simple hypotheses is permitted
(e.g. the Kelvin—Voigt hypothesis). For a more accurate analysis it would be
necessary to introduce the hypotheses and procedures described in Sects
5.1.1,5.1.2 and 5.1.3.

5.2 Experimental results .

The coefficients which characterize damping cannot be determined by theor-
etical calculations. They must be obtained from experiments on bridges.

Usualily, the deflection- and stress-time records are used for the evaluation of
the logarithmic decrement of damping ¢ by the procedure described in Fig. 1.3
from two or more successive amplitudes of free vibrations (equation (1.8)). The
basic theory is explained in all text books of dynamics and has been briefly de-
scribed 1n Sect. 1.2.

5.2.1 Statistical evaluation of logarithmic decrement of damping
Our own measurements, the experiments carried out by other Czech and
Slovak institutes, the tests of the Office for Research and Experiments (ORE)
and the measurements carried out on the bridges of the German Federal
Railways (DB) [25], have furnished the logarithmic decrements of damping ¢
for 73 railway bridges, which are plotted against span ! in Figs 5.6 and 5.7. The
figures differentiate steel truss bridges, steel plate girder bridges with ballast.
steel plate girder bridges without ballast, concrete bridges with ballast and
concrete bridges without ballast.
Statistical analysis of the logarithmic decrements of damping has yielded the
following results.
—a great variation in results depending on the methods and gauges used 1or
neasurements,
_ ~—very poor correlation between ¢ and span / and natural freqency f, of the
bridges,
~ poor correlation with the occurrence of bailast for spans greater than 20 m,
- in minor spans (/ < 20 m), the damping due to dry friction is observed accord-
ing to the theory described in Sect. 5.1.2. The smaller the span, the higher the
dependence on friction in bearings and on the influence of continuous gravel
bed,
— logarithmic decrements of damping of concrete bridges are higher than those
of steel bridges,
~ the differences among the individual bridge types in the groups of steel bridges
and in the group of concrete bridges are statistically insignificiant.
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For these reasons, the experimental results were divided into two sets only,
concerned with steel and concrete bridges. The results for the bridges with
spans over 20 m yield logarithmic decrements of damping characterizing two
principal structural materials of railway bridges — steel and concrete. In bridges
with spans less than 20 m, this phenomenon is made indistinct by the influence
of bearings and continuous gravel bed. This is due to the mixed influence of vis-
cous damping and dry friction which results in increasing ¢ with decreasing
span /.
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Fig. 5.6. Logarithmic decrement of damping  of steel railway bridges for various spans.

1 —steel truss bridges, 2 — steel plate girder bridges with ballast, 3 — steel plate girder bridges without
ballast,

mean values (5.64), (5.65).

For these reasons, Figs 5.6 and 5.7 contain, apart from test results, also the
curves of mean values within the range of / > 20 m and within the range of { <
20 m. The empirical relation

9 = 0, (170) , (5.63)

evaluates by the least square method the results obtained by tests on small
spans. 1n equation (5.63) &, is the mean value of logarithmic decrement of damp-
ing for [ > 20 m, /, = 20 m, and the exponent a is given in Table 5.1.
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Table 5.1 gives, in addition to the mean values of ¥, their standard deviation
s, the 1.96 s multiple which, with the assumption of Gauss distribution, includes
05% of results, and the reliability region t,_ ,sn'”?, where t,_, is the value of
Student distribution for the number n of measured data for % of two-sided

reliability.
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Fig. 5.7. Logarithmic decrement of damping ¢ of concrete railway bridges for various spans
1 — concrete bridges with ballast, 2 — concrete bridges without ballast,
mean values (5.60), (5.67).

'The analysis of the damping of railway bridges also shows that it is essential
to record the magnitude of the amplitude at which data are measured, because
of the non-linear dependence of damping on amplitude, and the necessity of
evaluating also the residual deformation v, for the purpose of ascertaining the
dry friction according to equation (5.39).

TABLE 5.1. Logarithmic decrement of damping ¥ of railway bridges

Rail brid
_ ) Reliability afiway brieges
Quantity Notation )
region Steel Concrete

Number of measurements n 43 3
Mean value 1) 0.080 0.177
Standard deviation 5 [>20m 0,041 0.073
Reliability (for Gauss distribution) 1.96s 0.080 (0.143
Reliability region (P ' 0.013 0.182
Number of measurements n 16 i1
E ) s [<20m

Xponent in equation (5.63) o 1.494 0.918
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Similar statistical analysis of the logarithmic decrements of damping of 27
railway bridges of the German Federal Railways (DB) was carried out by W.
Braune [25], who came to the following conclusions:

— the dependence of ¥ on span /, stiffness £/, deflection due to self-weight of
the bridge v,, dynamic stiffness (£//i)"” and the first natural frequency f, is
statistically insignificiant,

~ ¥ depends on the displacement in natural vibrations at least linearly. In prac-
tice, however, this phenomenon will find hardly any application because of
limitations of deflection prescribed for bridges,

— with poor bearings, t#increases to as much as 0.4 to 0.8,

— there is no great difference in values of ¢ between the bridges with and with-
out ballast,

— the set of results was classified into six groups according to bridge types and
materials; it has come to light, however, that it could be classified into three
groups only. The mean values and reliability limits are given in Table 5.2. The
conclusions of [25] are in good agreement with our results.

TaBLE 5.2 Logarithmic decrement of damping @ of DB railway bridges according to W. Braune [25]

1
Railway bridges }
Quanfity Notation
Steel Sieel box Concrete
Number of measurements n g 8 16
Mean value 1) 0117 0.079 (5.228
Reliability region (W e 0.028 0.028 0.068

5.2.2 Empirical formulae

On the basis of statistical evaluation of logarithmic decrements of damping in
railway bridges, it is possible to recommend the following empirical values {ori-
ginated by the rounding-off the data of Table 5.1;:
— for steel bridges / > 20 m

9 =008, s =004, (5.64)
— for steel bridges / < 20 m |
¥ = 0.08(20/1)"” , (5.65)
— for concrete bridges / > 20 m
=018, s = 0.07, (5.66)
— for concrete bridges { <20 m
¥ = 0.18(20/1H°° . (5.67)
The span / substituted in equations (5.65) and (5.67) is in metres.
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The author’s measurements of older data [64] yielded the empirical formula

B = (0.3 - 1.2 x 107 2)", (5.68)

where [ is the span in metres.
In the former USSR, according to {23], the relation
_ f;

9 =
10(1 + 10/ f) (5.69)

is recommended, where f, is the first natural frequency in Hertz.

4111.



6. Influence of vehicle speed on dynamic stresses of bridges

Vehicle speed is the most important parameter influencing the dynamic
stresses in railway bridges. In general, the dynamic stresses in bridges increase
with increasing speed. We will show, that they depend also on the bridge and
vehicle dynamic system, track irregularities and other parameters.

Considering the general tendency to increasing speed, the dynamic stresses in
bridges at higher vehicle speeds have been given considerable attention. For
example, the Office for Research and Experiments (ORE) of the International
Union of Railways (UIC) concentrated several research programs in this field
to elucidate the problem with respect to stresses [159], fatigue [162}, noise [161}
and the effect on man [165]. Also Japanese National Railways tested their
bridges at high vehicle speeds [141]. Up-to-date field measurements have veri-
fied dynamic stresses in railway bridges at vehicle speeds up to 250 km h™' (Fig.
60.6), while theoretical results have been extrapolated up to 500 km h™ (Fig. 6.3).

Theoretical analyses consider constant speed of motion of vehicles along the
bridge, which is usually so in practice. The actual speed depends on the hori-
zontal and vertical track alignment on the bridge. Even in the cases where the
bridges are in poor condition or are temporary the speed remains constant even
though it is reduced.

However, in those cases when the vehicles or the train start or brake on
bridges the speed is variable. These speed considerations form the sections of
this chapter.

6.1 Constant velocity of motion

The simplest case, i.e., the motion of a concentrated force I along a simply
supported beam at constant velocity, was solved in Sect. 5.1.1, and the response
of the beam to such an excitation is determined by equation (5.2), which shows
that the deflection of the beam v(x, ¢) is a function of a dimensionless velocity
parameter «, defined by equation (5.4).

From equation (5.2) the maximum midspan deflection of the beam
max v(//2, t)/v, was found, where v, is determined by equation (5.3), and plotted
in Fig. 6.1 against the velocity parameter « (5.4) for various damping j (5.5).
Fig. 6.1 shows that the dynamic actions increase with increasing velocity to
about o = 0.5 to 0.7 at subcritical damping. For greater o the midspan deflec-
tion of the beam drops, while for very small o the dynamic deflection approaches
the static deflection.
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It follows from equation (5.4) that the velocity parameter « is less than 1 for con-
temporary railway speeds and usual natural frequencies and bridge spans. This
explains why the dynamic response of bridges increases with increasing speed.

The phenomenon has also been verified on more complex models than that of a
force moving along a simply supported beam. For instance, Fig. 6.2 reproduces
(according to [68]) a theoretical model of a multiaxle vehicle of the Czech Railways
(CD) travelling along a beam with an elastic layer and track irregularities.

max v (1/24)/vel

.

Fig. 6.1. Maximum dynamic deflection at midspan of a simply supported beam, max v(//2, t}/v, as a
function of velocity parameter o and damping f3.

C C ¢
G
o m12n)
K
v(x,!’)K K

l |

Fig. 6.2. Theoretical CD model according to [68]: beam with an elastic layer K and track irregularities
r(x) loaded by a multiaxle vehicle.

~According to this model the dependence of the dynamic coefficient & on velo-
€Ity during the passage of an clectic four-axle locomotive of type E 10, weight
830 kN, along a prestressed concrete bridge of span 10 m, Fig. 6.3, was calcu-
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lated with the observance of the sleeper effect for various depth of track ir-
regularities a = 0; 0.25; 0.5 mm. Fig. 6.3 shows the dynamic coefficients calcu-
lated for the stresses.

Fig. 6.3 confirms the (roughly) rising tendency of the dynamic coefficient with
increasing speed. There are also various Jocal maxima, the position and magni-
tude of which depend on the dynamic bridge/vehicle system. Dahlberg [43] and
Melcer [142] have supplemented this explanation with the statement that the
highest effects of a multiaxle system is attained at various velocities in various
positions of the moving axles. The consequence of this phenomenon is the the-
oretically stepped-up dependence of é on c. In field tests of bridges,  has a con-
siderable variation which conceals the above facts.

mm
0 ——
a=305—- -
s —-—
d
18 4
1.6 1
i
14 - )
n
1
§ : I
II\‘ '!‘\I‘JQ\
121 ,‘ \\\ ,_’j .i-,,-"-\—:'-’/
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T L L] T } ) L3 k) 1
05 1 &
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Fig. 6.3. Dynamic coefficient & plotted against velocity ¢ for a prestressed concrete bridge of span
[ =10 m, loaded by an electric four-axle locomotive of DB, type E 10, weight 850 kN. The influence
of track irregularities of a depth a = 0; 0.25 and 0.5 mm, sleeper effect [68].

Great attention was paid to the effect of high speeds (over 200 km h™) on the
dynamic behaviour of railway bridges in experimental bridge tests. Fig, 6.4 com-
pares the stress-time history found from the measurements carried out by the
DB on the bridge across the river Paar (steel plate girder bridge of span 19.6 m)
during the passage of an electric four-axle locomotive of type E 10, weight
830 kN, at a speed of 200 km h™ with the calculations of the CD according to
the theoretical model shown in Fig. 6.2.

Fig. 6.5 presents a comparison of theoretical and measured stresses on the
SNCF bridge near Angerville (composite bridge of span 26.4 m) during the pas-
sage of an RTG train drawn by an electric six-axle locomotive type CoCo 6 500,
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weight 1 140 kN, at the velocity of 241 km h™ [162]. Fig. 6.6 give the calcu-
jated and measured (£ = 48 000 MPa) bending moment at midspan of a
prestresed concrete slab of the DB bridge at Rheda Nonnenstrasse, span
16.5 m, during the passage of a test train at a velocity of ¢ = 251 km h™', six-
axle electric locomotive, type 103 118-6, weight 1 148 kN, and three four-axle
measuring cars [162].

The mecasurements on the bridges of Japanese National Railways also
achiecved good agreement between calculated and measured stress-time or
deflection histories during the passage of trains or car sets at high speeds [141].

¢ =200 km/h
G (MPa) | P
i -

20
b)
ol .
20
Q)
| 1 ct/t
1 ) i L 1 1 i 1 ) 1 i 1 L 1 i -
0‘ T T
10 20 ctim
' V10s

Fig. 6.4 a) Theoretical, b) experimental stress-time history at midspan of a steel plate girder bridge of
the DB of span / = 19.6 m during the passage of an electric locomotive, type E 10, at speed
c=200km", [159].
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Fig. 6.5. a) Theoretical, b) experimental stress-time history at midspan of a composite (steel-con-
crete) bridge of the SNCF near Angerville, 7 = 26.4 m, during the passage of an RTG set at
speed ¢ = 241 km h, [162].
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In general, the mathematical models from Chapters 2 and 3 are adequate
for the computations of dynamic stresses and dynamic coefficients even for
speeds over 200 km h™. Dynamic coefficients roughly increase with increas-
ing vehicle speed; however, in measurements they show a relatively large
variation. This is contributed to the fact that complex models are described
by many parameters, the accuracy of which is difficult to estimate in many
cases. Therefore, it is recommended to calculate more cases for a number of
parameters.

Mt
(MN m)

Fig. 6.6. a} Theoretical, b} experimental bending moment at midspan of a prestressed concrete slab
of a DB bridge in Rheda Nonnenstrasse, span / = 16.5 m, during the passage of a test set at speed
c =251 km h™', [162]

6.2 Variable velocity of motion

Vehicles on bridges need not always travel at a constant speed, for example
when starting or braking the train. In these cases, the time coordinates of wheel
contact points are described by the function of time u().

The simplest model, i.e. the simply supported beam during the passage of
constant force F at variable speed, was analyzed in [69]. This case is described
by the differential equation according to Fig. 6.7 and equation (3.41)

£/ ' vix, t) ‘o & vix, 1) _

3 57 flx, 1y = 8[x — u]F . (6.1)

e
O

g

Fig. 6.7. Constant force F moving along a simply supported beam; the motion of the contact point is
described by the function of time u(z).
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The general solution of equation (6.1) is

vix, ) = 2 {A‘:[J(“;) J.U.f(x, T)vj(x)dx}sin o, (t - 1)dr

" A—f}j— G,(j)v,(x) cos @ t + Mf‘wj G, (j)v,(x) cos ® r} (6.2)
where (other symbols being identical with those of equation (2.1)):
v, (%) — jth natural vibration mode of a beam of length /,
M, — generalized mass,
o — natural circular frequency of the beam,

g,(x) = v(x, 0) —initial deflection of the beam at 7 =0,
2,(x) = v(x, 0) - initial velocity of the beam at ¢ = 0,
-
Gy = J&a(x)v (x)dx,
LAt
g
G, (/) = | &(x)v,(x)dx
¥
If we substitute the right-hand side of equation (6.1) into equation (6.2) and
use (3.39), the first component of the right-hand side of equation (6.2) acquires
the form of

v(x, t) = i ;?;’(;C) J v [u(t)] sinw (¢ - 7)dr. (6.3)

J J

Equation (6.3), together with the remainder of equation (6.2), expressing the
influence of initial conditions, describes the deflection of the beam during the
motion of a force F characterized by the function u(f). Equation (6.3) can be
integrated numerically in the case of the general motion of the force.

We shall consider as a particular case the motion of a force where the contact
point follows a quadratic function of time ¢

*

u(t) = x, + ct + % at®

u(t) = ¢ + at, u(t) = a (6.4)
where x, - coordinate of the point of application of force F at time = 0,
¢ —initial velocity,
a — constant acceleration of motion.
Equation (6.4) expresses the motion which is either constant acceleration
(a > 0) or constant deceleration (a < 0).
As it has been shown in [69], equation (6.3) together with equation (6.4) may
be solved in a closed form for the simply supported beam, for which

v,(x)y =sin jox/l, M = ul/2 (6.3)
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where the following notation has been used:

E,= Jmx, /1,
w= jmc/l, Q= jmal/ (2D,
E& =& — or £, =&, + o1,
rI:l(a)+a)), rzzi(a)—a}),
2 ’ 2 ’
b = /8, b, = 1/ Q. (6.6)

In this particular case, the solution of equation (6.3) yelds, according to [69]

v(x, 1) = i F (ch

- Hlo 2

csin j masl {cos (& —~ b)) [C(2t £ b) = C(xb)]

—sin (£&, — b)) [S(2¢ £ b)) — S(zb)]

—cos (£&, - b)) [C(Q2r £ b)) — C(b,)]

+sin (&, - b)) [S(2¢ £ b,) - S(+b)]} (6.7)

where the upper sign applies to accelerated (a > 0), the lower sign to deceler-
ated (a < 0) motion, respectively. Equation (6.7) contains Fresnel integrals

("

2 1/2
S(x) = (—) sin #dr
T
LX)

(o

Clx) = (3) cos I dt . (6.8)
i

¥

The dimensionless velocity parameter (5.4) was introduced in numerical calcu-

lations, i.e.
c

o= — (6.9
X (6.9)
and the dimensionless parameter of acceleration or deceleration
B = gé : (6.10)
¢

Equation (6.3) together with (6.2) were integrated numerically for various
values of parameters o and B for three cases:

1. Force F arrives at the left-hand beam end at an initial velocity ¢ and then
its motion is regularly accelerated or retarded. A sample calculation is shown in
Fig. 6.8.

2. Force F starts to move on the left-hand side of the beam at an initial velo-
city equal zero, see Fig. 6.9.
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3. Force F starts at midspan with zero initial velocity, Fig. 6.10 (v, being
determined by equation (5.3)).

The calculations of 75 different combinations of parameters o and B in the
above three cases have resulted in the following conclusions [69]:

In many cases the beam vibrates more intensively during retarded motion of
the force than during accelerated motion. If the force starts to move from zero
initial speed, the beam hardly vibrates at all. The variable speed of motion will
be also encountered in Chapter 8.
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Fig. 6.8. Time-history of deflection at midspan of the beam, v(I/2, 1)/v,, loaded by force F at variable
speed for various B, o= 0.1.
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Fig. 6.9. Time-hustory of deflection at midspan of the beam, v(//2, £)/v,, when force F starts on the left-
hand side of the beam at zero intial velocity for various accelerations B, ¢ = 0.1.
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Fig. 6.10. Time-history of deflection at mudspan of the beam, v(//2, 1)/v,, when force F starts to move
at midspan at zero initial velocity for various accelerations 8, o= 0.1,
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7. Influence of track irregularities and other parameters

Track irregularities represent an important source of excitation of bridges
during the passage of vehicles. The irregularities consist of deviations of the
inside edge of the rail from the ideal geometric rail contour and may occur both
in an unloaded position and in a loaded position (i.e. deviations from the geo-
metric position even during the passage of the vehicle at a very low speed). The
differences between irregularities in unloaded and loaded positions may be
considerable at times; they depend chiefly on the clearances between the indi-
vidual elements of the permanent way and the bridge and their elastic or non-
elastic properties.

According to Fig. 7.1 four types of track irregularities can be distinguished:

1. elevation irregularity (vertical profile)

% .+ 3 (7.1)

which is the mean elevation of two rails,
2. alignment irregularity

%(z1 + z,) (7.2)

which is the mean lateral position of two rails,
3. superelevation irregularity (cross level)

1
5 = ¥) (7.3)

which is the difference in elevations of two rails,
4. gauge irregularity

—12— (z - z,) (7.4)

which is the horizontal distance between the inside edges of two rails measured
perpendicularly to them 14 mm below the top of rails,

In equations (7.1) to (7.4) and in Fig. 7.1 the letters y, z, denote the co-
ordinates of the left-hand (index 1) and right-hand (index 2) rail at the place x,
respectively. Other definitions of irregularities are sometimes used as well.

The elevation and superelevation irregularities influence chiefly the vertical
vibrations of vehicles and of the bridge, while the alignment, gauge, and super-
elevation irregularities initiate horizontal transverse vibrations of vehicles and
bridges and the torsion of bridges.
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7 1 Periodic wregularities

All railway administrations limit these deviations from the ideal state by tol-
erances, stipulated for the straight track and for curves, and which may also

depend on speed.
The irregularity distribution along the length x (Fig. 7.1) may be periodic or

entirely irregular (stochastic).

w2 y-yl/2

3

(2+2,)/2

{Z; '22)/2

Fig. 7.1. Track irregularities: a) scheme of track with coordinate axes, b) elevation and superelevation
irregularities, ¢) alignment and gauge irregularities,
(1) - left-hand rail, (2) - right-hand rail.

7.1 Periodic irregularities

Periodic irregularitics of the track arc analytically described by trigonometric
Fourier series

r(x) = % a, + 3 (a, cos mx + b, sin nx), (7.5)

n=1
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with coefficients

a, = —l—j r(x)cos nx dx , n =2012, ..,
T
and
b, = ! f r(x)sin nax dx , n =123 .., (7.6)
T

obtained from measurements.
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Fig. 7.2. Periodic track irregularities: a} rail joints or flat wheel effects, b) isolated irregularities,

¢) undulated rail surface (according to [68]).

Fig. 7.2 shows some typical elevation irregularities of the track as given in
[68]. For many cases, they can be expressed by:

[

la,[-l—cosgﬁ(.*ckaﬂB,) .
r(x) = 42 L b ’ (7.7)

10

. [B + kA =x<=B + kA + b,
lfor
15: + kA + b < x < B +(k + 1A
where i=1,2 means the left-hand and the right-hand rail or the first and the

second axle, respectively,

k=0,1,2, ...
Equation (7.7) can characterize several types of periodic elevation irregular-

ities (Fig. 7.2):
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a) The influence of wheel flats of railway vehicles can be considered as a
change of distance between the wheel centroid and the neutral axis of the
bridge. Then in equation (7.7):

a_— depth of the flat spot,

b, — length of the flat spot,

A, — wheel circumference,

B, — the distance of the first impact of the wheel flat from the origin x = 0,

If the wheel flat is only on one (first or second) axle, we substitute a, = 0 or
a, = 0, respectively, in equation (7.7).
The effect of rail joint can be similarly expressed.

b) An isolated irregularity on rail surface can be characterized by equation

(7.7) with the following parameters:

a =a, b =5b, A >[]+d B =B

I

where [ is the bridge length and d is the vehicle axle base.
¢) A corrugated rail surface can be expressed by equation (7.7) with the fol-
lowing parameters:
a, = a

27 b, = b, A = b, B =B .

A combination of constants a, b. A, B, can be used to characterize also
other types of periodic irregularities of the track. The ordinates of irregularity
r(x) are then substituted in the contact equations of the type (3.32) in Sects

341 and 3.4.2.

7.1.1 Impact of wheel flats
Periodic track irregularities can generate resonance vibration of bridges;
however, this is a rare phenomenon with contemporary mechanized mainten-
ance. More frequent are isolated irregularities represented in practice by wheel
flats or rail joints. Railjoints, according to the regulations of most railway admin-
istrations. should not occur on bridges because of their large dvnamic effects.
Howewer, wheel flats load bridges by their impacts. Their influence on raiis
and bridges has been given considerable experimental and theoretical attenticn
_ [63], [66]. Fig. 7.3 analyzes the time history of force R(7) originating between
the wheel with a flat spot and the bridge, = ¢t/ being dimensionless time.
The time history of the force for several dimensionless velocities o (5.4}
shows three significant phases:

L. For very low o < 0.0075, the wheel with a flat spot is in constant contact
with the rail and the dynamic effects increase with increasing .

2. For the velocity about o= 0.0125 (in practice about 30 km h™), the wheel
looses contact with the rail and the recovery of contact generates an impact.
The highest dynamic effects occur in this case.

3. For higher velocities, & > (.02, an impact is also generated, but the dy-
namic effects on bridges decrease.
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Similar influence on dynamic stresses of railway bridges 1s also exerted by rail

joints.

For the above reason speed reduction measures which intend to reduce dynamic
stresses appear highly problematic. The main prerequisite for their reduction must
be the elimination of all irregularities on the bridge and on the track in front of it.
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Fig 73 Time-history of dimensionless force R(7) between a flat wheel and bridge for various velo-

cities o (according to [68])

7.1.2 Cross-beam and sleeper effects
The cross-beam and the sleeper effects generate periodic irregularities only
in the loaded state. They can generate resonance vibrations in bridges, but this
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TaBLE 7 1 Charactenistics of geometric position of ratls of FRA, USA (according to [81])
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— =

Parameter Equation parameters on track of class (1)

Irregularity Eq
Notation Unnt 1 2 3 4 5 6
a) Random irregularities (2)

A 10°m* [ 1553 885 492 275 157 098
Elevation (7 25) Q 10 m 233 233 233 233 233 233

[0 W0m' | 131 131 131 131 131 131

A 10° m’ 9 83 551 315 177 098 059
Alignment (7 25) Q, 10°m 328 328 328 328 328 328

£, 1m' | 184 184 184 184 184 184

A 10° m’ 452 315 216 138 098 059
Superelevation | (7 26) Q, 10° m 233 233 233 233 233 233

£, 10m' )] 131 131 131 131 131 131

A 10> m® 983 551 315 177 098 059
Gauge (7 26) Q 10°'m"| 292 292 292 292 292 292

0 10° m 233 233 233 233 233 233

b) Isolated irregularities

A mm 114 84 64 48 36 28
Elevation (78)

k m’ 043 043 046 049 0 66 082

A mm 89 69 51 38 28 20
Algnment (78)

k m' 039 049 0 66 11 15 19

Notes (1) Track quality rises from Class 1 to Class 6
(2) The constants of power spectral densities refer to 1 cycle per 1 m
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phenomenon is not frequent because of the different wheel bases of railway
vehicles.

The cross-beam and the sleeper effects were described in some detail in
Sects 2.5.1 and 2.5.2 and illustrated in Figs 2.10 to 2.14.

7.1.3 Isolated irregularities

Apart from the aforementioned irregularities, there are also other forms of
irregularities occurring in rail joints, in waterlogged railway embankments, in
rail switches. on bridges, on bridge piers and abutments, on bridge approaches,
and so on.

Seven forms of isolated irregularities are described in [81]. They are ex-
pressed analytically by the following equations:

r(x) = Ae ™, (7.8)
r(x) = A etVP®" (7.9)
Akx

r(x) = 05 4y (7.10)
; 2 5 172

r(x) = —A—; : (7.11)
b+ (kx)" )

r(xy = A7k - K27, (7.12)

r{x) = Asin®kxy , (7.13)

rx) = Ae™cosmkx . (7.14)

The parameters A and & of various irregularity types can be found in [81]. For
the most frequent irregularity (7.8), characterizing the irregularity in a rail joint
(so-called cusp), the parameters A and k are given in Table 7.1 based on the
results of American measurements on tracks of different categories.

7.2 Random irregularities

If the track irregularities are entierty irregular, we consider them as random
(stochastic) irregularities which are described by statistical characteristics (Sect.
1.4).

These irregularities are due to wear, clearances, subsidence, insufficient main-
tenance of the permanent way and the bridge and so on and appear in both
unloaded and loaded states.

The irregularities are considered as stationary and ergodic processes in space,
i.c. as random functions in the longitudinal coordinate x, and they are charac-
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terized most frequently by the one-sided power spectral density G,.(£2), equa-
tion (1.30). The power spectral density depends on the route frequency

£ =2n/L (7.15)

or
F=1/L = Q/(2n), (7.16)

while the length of the irregularity is
L =2n/0. (7.17)
The circular frequency for the velocity of vehicle motion c is
W= c = 2nc/L (7.18)

so that the conversion of the power spectral density in route frequency €2 to the
power spectral density in circular frequency @ is

G ()= ¢ G (o). (7.19)

The power spectral density of irregularities is an important quantity in the
calculation of vibrations of vehicles and of bridges, because it contains in-
formation on track quality. Hence the idealization by random load described in
Sect. 3.1.4 and illustrated in Figs 3.5 and 3.6. If the curve characterizing G,,(£2)
contains sharp peaks, it means that periodic irregularities occur. The functions
G,(£2) obtained by measurements are often smoothed by various statistical
methods and, as a result, they vield only averaged information on track quality.

The analytical expression of the power spectral density of track irregularities
is given in various empirical forms, see Fig. 7.4. A comparison of individual
results is difficult, because — apart from the natural differences in the track qual-
ity of individual railways - the measuring instruments and evaluation methods
are often not described in the literature in sufficient detail.

In comparative computations the formula

G (Q) = AQ™, (m?) (7.20)

is often used, which is adequate for wave lengths 4 < L. < 40 m. The constant
A is influenced by track quality, while the second constant @ usually lies within
the limits of 2 < a < 4. Both extreme cases fora=2,a=4and A =1 X 10° are
represented by curves / and 2 in Fig. 7.4.

_ According to the Technical University of Transport and Telecommunications,
Zilina, the formula

2.72 x 107

G (£) =
,(42) (1 + 1.1850Q2%) (1 + 14.38807%)

, (m’), (7.21)

Wwas satisfactory for Czechoslovak State Railways (CSD) over a wide frequency
range. The formula is represented by curve 3 in Fig. 7.4.
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Fig. 7.4. Power spectral densities of elevation track irregularities according to various empirical for-
mulae:

I-a=2,A=1X10°%(720),2-a=4A=1x10°(720),3-CSD, (7.21),4- 220, (7.22),5 - SZD,
(7.23), 6 - SNCFE, A =160, (7.24), 7- SNCE, A = 550, (7.24), 8 - FRA, class 4, (7.25).

The measurements carried out by the CKD and by the Railway Research
Institute on the Railway Test Circuit in the Czech Republic yielded the fol-
lowing empirical relation:

0.135
G (Q) = , ", 7.22
A= oo a1 @ T ™) (7.22)

which is represented by curve 4 in Fig. 7.4.
In the CIS (SZD), the formula

10°a

G (42) = 2+ a’y’

(m’), (7.23)

is used, which is adequate for wavelengths of 8 = L < 250 m, while a = 9.54 X
X 107 m™, see curve 5 in Fig. 7.4,
French National Railways (SNCF) have found the relation

10° A

G, (8 = 1 +Q/9y"°

(m’), (7.24)
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satisfactory, which is adequate for wave lengths of 2 = L = 40 m and the con-
stant €2, = 0.307 m'. Track quality is expressed by the parameter A; for good
track A = 160, whilst for poor track A = 550; curves 6 and 7 in Fig. 7.4.

On the basis of extensive measurements on railways of the USA (FRA) [81]
the empirical formula
AL (Q° + Q%)

QU2+ 42

was devised for elevation and alignment irregularities, while for superelevation
and gauge irregularities the formula

G, (L) =

. (mY), (7.25)

AL :
G, (&) = . > - — (m”), (7.26)
(27 + Q7)) (L7 + )
has been suggested.

The respective constants in equations (7.25) and (7.26) after conversion to SI
units are given in Table 7.1 for various types of irregularities and for the various
quality categories into which the FRA railway tracks are classified.

The power spectral density of elevation irregularities (7.25) for FRA class 4
tracks is shown in Fig. 7.4 as curve 8.

Mutual relationships between the individual types of irregularities are de-
scribed by cross power spectral densities or coherence functions. Most import-
ant of them is the mutual relation of alignment irregularities of a single rail and
the gauge deviations.

7.3 Further parameters

In addition to the velocity of vehicle motion and track irregularities, the dy-
namic stresses in railway bridges are influenced by a number of further para-
meters: the frequency characteristics of the bridge and of vehicles, the damping
of vehicles and of the bridge, the mass of the bridge, the mass of the sprung
and unsprung vehicle parts, the elastic characteristics of bridge deck, initial
conditions of vehicles at the moment of entry on the bridge and further para-
meters characterizing the complex dynamic bridge/vehicle system.

The study of the influence of the individual parameters has been given great
attention, see Chapters 8, 9 and 10 in [68]. The influence of the variations in the
magnitude of one or several parameters is difficult to observe experimentatly.
Therefore, dynamic bridge tests determine only the influence of vehicle speed,
while the other parameters are studied theoretically [68] or on laboratory
models [159].

In many cases, it is also difficult to ascertain the accurate magnitude of the
parameters to be used in the calculations. For this reason, the calculations use a
number of input data within the limits of engineering estimates, and the bridge
response is then determined within certain limits.
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The movement of railway vehicles along bridges gives rise to horizontal lon-
gitudinal forces transferred through friction via the rails and further parts of the
permanent way to the bridge superstructure, bearings, piers and abutments.

When the horizontal longitudinal forces are transmitted from the wheels to
the bridge by rolling friction at constant vehicle speed, they are relatively small.
However, they acquire greater values during the movement at nonuniform
speed, which takes place during starting and braking. In this case, significant
forces of adhesion act between the vehicle wheels and the rail which are neces-
sary for the starting and braking of vehicles.

8.1 Mation of a disc rolling along a beam taking into account adhesion

Fig. 8.1 shows the simplest model of this problem, i.e. the motion of a disc of
mass m, weight I = mg, and mass moment of inertia /, along a simply supported
beam of length /. Apart from its weight F, the disc is also affected by the forces
of inertia with the vertical component mv,(z), horizontal component mu (1),
inertial moment 1,(r), the vertical beam reaction F(¢) which acts on the arm p
from the disc centroid (describing the influence of rolling friction), the
horizontal force H(t) on the wheel circumference, the traction force 7{(t), the
driving moment M(¢) and the resistance to motion W(r).

(1) Igt)
N of
@ F"UU(H uix,t) /

a vo(t) v r migit)

s | vix,t) Hit)

Fig. 8.1. Motion of a rolling disc along a beam: acting forces and moments.

The direction of movement of the disc rolling in Fig. 8.1 is from left to right
and the direction of the acting forces and moments is as for accelerated motion,

The beam is affected by the forces F(r) and H(r) in the opposite direction from
that of the disc and by other forces assumed in a Bernoulli-Euler beam model
with viscous damping. Its deformation is marked v(x, t) in vertical and u(x, ¢) in
horizontal directions.
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The motion of the disc is described by the displacement v(¢) in the vertical
and by the displacement u(f) in the horizontal directions and ¢(7) is its rotation.
The zero position of the beam is its non-deformed state; for the disc it is when
positioned above the left-hand support of the beam.

With these assumptions the following equations hold true for the vibration of
the beam and for the disc motion:

EI il-—‘(;—(f;—”‘l +u %’%—ﬁ + 2w, a"(a"t’ D esx - SFQ), 81)
—EA-&—Z—%%—Q + u—ai%;’—ﬂ + Zya)bu@—%’ﬁ = —&d(x — $)H(0), (8.2)
F—m%@-m):o, (8.3)

—m %@ + T - W) + Hi) = 0, (8.4)

-1, %%gﬂ + M(t) — pF(t) = rH(1) = 0. (8.5)

In addition to the symbols explained earlier and the notation of equation
(2.1) the following notation has been used:

1 0= g1
£ = for
0 s < 0,8 > 1

where s = u,(r) — distance of the contact point of the disc with the beam from
the left-hand support,
A - constant area of the beam cross section,
w,, — constant of viscous damping during longitudinal vibrations of
the beam,
r  —radius of the disc.

Equations (8.1) and (8.2) describe the bending and longitudinal vibrations of
the beam which are, after certain simplifications, mutually independent, as has
been proved in [70]. The equilibrium of vertical forces affecting the disc is
expressed by equation (8.3), the equilibrium of horizontal forces by equation
(8.4) and the equilibrium of moments by equation (8.5).

Moreover, it follows from the rolling motion of the disc (without slipping)
along the beam that it must hold true that

v, (t) = €v(s, t), (8.6)
and
u,(ty = ro(r) . (8.7)
The following condition of disc and beam contact applies for the force F(r)
F(y=0. (8.8)
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Should F(¢) < 0, F(t) = 0 must be substituted in equations (8.1) to (8.5) and
equation (8.6) ceases to be valid.

Also the force H(t) on the circumference of the wheel is determined by cer-
tain conditions concerning the other forces and moments affecting it. Firstly,
substitute the relation (8.7) in equation (8.5) and let us find u(¢) and substitute
this value in equation (8.4). We obtain the condition with which the force H(r)
must comply, while the disc rotates:

Fd

Hie) = — 2 {ﬁ 1 [M(t) — pF@W)] — T) + W(r)} (8.9)

m + m owm’or

where m’ = I/r is the reduced mass of the disc.

The absolute value of the force H(f), naturally, cannot exceed - according to
Coulomb friction law — the value of the product of vertical force F(t) and the
coefficient of friction u(t), so

RO < 1) F(o) . (8.10)

where the coefficient of friction is generally a function f[ ] of the velocity motion
uw = fli, (0] . (8.11)

With the knowledge of external forces 7(¢), W(¢) and of the moment M({r) we
can find from equation (8.9) the force H(r) on the wheel circumference (except
for the influence of rolling friction), as long as it complies with the condition

(8.10). If this condition has not been complied with, the disc stops rotating, it
begins stiding and the force on its circumference is

H(ry = |sign ii (1)) u(t) F(1). (8.12)

The direction of the force F/(r) depends on the sign of the acceleration of the
disc m.

It is customary in technical practice for all driving and resistance forces to be
referred to the circumference of the railway vehicle wheel, and to neglect the
rolling friction (p = 0) as being very small in comparison with other forces. In
this interpretation the force H(f) becomes the given external force. However,
the conditions (8.10) and (8.12) remain valid.

In the numerical calculations in [71] the forces 7(¢) and W(t) in the equation
(8.4) were also neglected, which are of smaller importance during the nonuni-
form motion than the driving or braking force and moment. This means that out
of all external forces shown in Fig. 8.1 only the moment M(t) and the force H(t)
on the wheel circumference are taken into account,

8.1.1 Solution
The system of equations (8.1) to (8.5) was solved for boundary conditions

v(O, 1) = v, t) = v7(0, t) = v, t) = 0,
wO, 6y = u'(l, t) =0 (8.13)
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and for the following initial conditions:
vix, 0) = v(x, 0) = 0,
w(x, 0) = n(x, 0) = 0,
vo(0) = v, (0) = 0,
u,(0) = 0, 4, (0) = ¢, (8.14)
wherte c is the initial horizontal velocity of the disc.

A numerical solution was carried out by the Euler and Runge—Kutta method
in the dimensionless form of

vix, 1)/ vy, u(x, t)/u,

and
T= !
where
FI
— : 8.15
Yo T ARET (8.15)
Fl
= —, 8.16

are the static deformations of the beam due to the force F, and w, is the first cir-
cular frequency of the bending vibrations of the beam.
The external force on wheel circumference was assumed to be of the form

H() = FI(T) (8.17)

where

0

The dimensionless force (8.18) permits, by adequate choice of coefficients r,
(i=0,1,2, 3,4,5), the idealization of the force on wheel circumference and
characterizes approximately the braking, /(7) < 0, or the starting, A(7) > 0,
forces on the wheel circumference, respectively.

The coefficient of adhesion (8.11) was assumed, according to [71], to be of the
following empirical form:

ol naﬂ(r)]uz _—
u(z) = P o, for i (7) L (819)

0 < 0

where the constants 4, and o, were obtained by experiments [160).
The numerical solution is described in detail in [71] and shown in Figs 8.2 to
8.8, which give the time-histories of some quantities during the braking of a disc

==

r(r + r,t—r e" cosr 1)
h('z:) - {O 1 2 3 5

> 0
for u, (7) {{ 0 (8.18)
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on a beam. The input quantities for the calculations represented in Figs 8.2 to
8.8 correspond approximately to the parameters of a steel plate girder railway
bridge of span 30 m with a continuous gravel bed (see Table 8.1).

TABLE 8.1. Input data of the basic case No. 5

(04 X Y v Lgn O Ho B
0.02 2 5 0.15 0.3 (.03 0.3 2 X 107
Fy ¥ r ry Fy s h T

-0.3 1 0 0 0 0 0.1 3

Note: b is the integration step length,
Jme i8 the number of terms in series development.

“v(UZ,t)/vU

1

0 n !
100 200 wf

Fig. 8.2. Time-history of vertical beam deflection at midspan.
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Fig. 8.3. Time-history of beam bending moment at midspan.
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Fig. 8.4. Time-history of horizontal force on disc circumference.
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According to Fig. 8.7 the braked disc stops just after the beam midspan, the
point s// = 0.655. The dynamic etfect of the rolling disc disappears shortly after
the arrival at the beginning of the beam and when the disc passes above the
beam midspan its velocity is low. For these reasons the deflection v(x, 7) and
the bending moment M(x, ¢) of the beam have a quasistatic rather than dy-
namic character (see Figs 8.2, 8.3, 8.5). This once again confirms the conclu-
sions from Sect. 6.2 about the influence of the force moving along the beam
with variable speed.

b Fiti/F

I e

05 .

0 100 200 wyt

Fig. 8.5. Time-history of vertical force between disc and beam.

INiOtI/F
0.4-
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T ¥ ]
0 100 206wyt

Fig. 8.6. Time-history of horizontal longitudinal force in fixed beam support.

bugtin

'

0 100 200 wit
Fig. 8.7. Time-history of disc motion along a beam.
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The horizontal longitudinal force N(0, 1) = EAu’(0, 1) in the left-hand beam
support shows a slight increase with time and attains its maximum shortly be-
fore the stopping of the disc (Fig. 8.6). When the disc stops, the studied phe-
nomenon disappears, as is suggested by the damped natural vibrations of the
beam in a horizontal direction (Fig. 8.8 or Fig. 8.6).

A ullt)/u,

0.4 A
1

0.2 4

0 100 200wt
Fig. 8.8. Time-history of motion of movable beam end.

8.1.2 Influence of some parameters

In the study of the influence of some parameters those from Table 8.1 were
considered as basic data and only one of them is varied in what follows. In this
process the dependence of the maximum horizontal longitudinal force on the
fixed beam support N(0, ¢)/I" on one parameter was studied.

The influence of the dimensionless velocity parameter o (5.4) is shown in Fig.
8.9. An increase in o results in a drop in the horizontal force on the fixed beam
support. It should be noted, however, that at higher velocities the disc will not
stop on the beam and that due to (8.19) the braking force will not attain its
highest value while the disc is on the beam.

The dependence of N(0, t)/F on the weight parameter

w= F/G (8.20)
Anio tiF
0.3-
0.2
0.14
0 0.1 02«

Fig. 8.9. Influence of velocity parameter o (5.4) on the horizontal force N{0. r) at the fixed bearing.
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where G = ulg is the beam weight, is constant (for the parameters from Table
8.1 and 0.1 =< x < 5).
Consequently, it holds approximately true that

max N(O, 1) = u, F , (8.21)

which means that the horizontal longitudinal force in the fixed beam support
equals approximately the weight of the disc multiplied by the coefficient of
adhesion u, and that the studied problem has a quasistatic rather than dynamic
character.

The frequency parameter

v= 1. (8.22)

where f,, and f, are first natural frequencies of longitudinal and bending beam
vibrations, respectively, has no substantial influence on the horizontal longit-
udinal force on the fixed beam support within the range of 1 < y < 5. The same
also applies to the bridge parameter

B = g/t (8.23)

within the range of 2 X 10* < B < 5 X 10™*. For large B = 1 X 107 (impossible
for railway bridges), however, the vibrations of the system are significant,

The logarithmic decrement of damping for bending vibrations, @, and for lon-
gitudinal vibrations, ¢, of the beam had very little influence within the studied
range (0.1 = 8=02;02=< 9, =< 04).

A significant role is played by the coefficient of adhesion p, from equation
(8.19), as follows from Fig, 8.10. Generally speaking, the growth of u, results
also in the growing horizontal longitudinal force in the fixed beam support. On
the other hand the parameter ¢, which also appears in equation (8.19), has no
significant influence within the range of 0.01 = ¢, = 0.1.

i

-4

N(O,tI/F

0.3 -

-~
-

—

0.2 T r -
0.2 0.3 0.4 (‘10

Fig. 8.10. Influence of coefficient of adhesion g, on the horizontal force N(0, 1) at the fixed bea-
ring,
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The horizontal torce on wheel circumference (8.17) and (8.18) was calculated
for some braking conditions. Fig. 8.11 shows the horizontal longitudinal force
on the fixed beam support as a function of the parameter r, with the braking
force constant for two values of u, The horizontal force grows linearly until
l¥| = 1, and then remains constant.

b N{O,t)/F
0.4
Ho=1
a3 -
My 03
0.2
Qs T T et
-0.15 (0.2 -0.3 -0.4 My

Fig. 8.11. Influence of the parameter of constant braking force r, for 1, = 0.3 and g, = 1 on the hori-
zontal force N(0, r} at the fixed bearing.

Iig. 8.12 represents the case of the braking force growing linearly with time,
i.e. with changing r, while r, = r, = r, =, = 0.

The simplest railway bridge model characterizing the starting and braking of
vehicles results in the following significant conclusions:

As the vehicle velocities at the time of starting and braking (should the
vehicle stops on the bridge) are low, the [orces acting on the beam are of static
rather than dynamic character.

Hence the largest longitudinal beam deformations can be calculated approx-
imately from static horizontal forces equal to the vehicle weight multiplied by
the coefficient of adhesion.

AN, tI/F
0.2
0.1
0 01 02 03 04 05 r

Fig. 8.12. Influence of the paramete. of braking force r, growing linearly with time (r, = 0, other para-
meters according to Table 8.1) on the horizontal force N(0, ¢) in the fixed bearing.
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8.2 Quasistatic model

On the basis of the conclusions from Sect. 8.1 a quasistatic model has been
constructed, enabling the calculation of the distribution of starting and braking
forces in the rails and in thc bridge. The model according to Fig. 8.13 is based
on thc following assumptions:

i. The model characterizes the static state at the moment when the hori-
zontal longitudinal forces are at their maximum. This 1s shortly before stopping
in the case of braking, or at the moment when the starting forces are highest.
i.c. at small velocities (Fig. 8.14).

2. Longitudinal stresses in the bridge and in the rails can be considered
separately from bending stresses (for proof see [70]).

3. The bridge is idealized as a beam. In the simplest case, shown in Fig. 8,13,
the beam is fixed on the leit-hand side and can move [reely horizontally on a
perfect roller bearing on the right-hand side.

4. The rails are idealized as bars. Both the left-hand and the right-hand ends
of the rails are considered horizontally free (perfect joints are assumed).

5. The complex interaction of the rails and bridge in a horizontal direction
is approximated by an elastic layer (i.e. by a system of horizontal springs situ-

{ {

- 1 2 — ‘s

‘ l Hir, —l ‘
. — —— .

Fog. 8.13. Quasistatic modcl of railway bridge for loading by horizontal longitudinal forces.

*Xg a)

il e

Fig. 8.14, Time-history of horizontal longitudinal force X under fixed bridge bearing
a) during braking, b) during starting: direction of motion from left to right.
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ated infinitely closely together, which can provide different characteristics in
front of, on and behind the bridge — see Fig. 8.13). The purpose of this idealiza-
tion is to characterize the distribution of horizontal forces along the bridge and
the track fields in front of and behind the bridge. The elastic layer idealizes the
complex characteristics of the permanent way in the horizontal direction which
has not yet been sufficiently investigated. These characteristics are influenced
by vertical and horizontal loads, friction, structural details of the bridge and of
the permanent way, the gravel bed, climatic conditions, maintenance and nu-
merous other factors, the majority of which have non-linear effects.

Figure 8.15 shows, according to 2], the dependence of the coefficient of hori-
zontal elastic foundation k& on horizontal load ¢ for several values of the verti-
cal load f The tests were made on a Russian railways (SZD) track with type R
65 rails, prestressed concrete sleepers with the number of 1840 per 1 km of track
with 1524 mm gauge. Fig 8.15 shows that the coefficient k£ of horizontal elastic
foundation increases with increasing vertical load per unit track length, but
decreases with increasing horizontal load. Fig. 8.15 can be used to estimate the
magnitude of the coefficient k. Similar results were also found on Czech and
Slovak railway tracks, where & varies from about 0.1 X 10°to 1 X 10 kNm %

k
fkNm)

3x10* :

oot LA f=180 kN m"

\ \ fx60-70 kN m'
110 <
\-
f=0
0 10 20 30 q (kN @)

Fig. 8 15, Coefficient of elastic foundation 1n hortzontal direction & as a function of horizontal load g
and vertical load f (according to [2]).
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Fig. 8.16. Bridge a) in ascending track, b) in descending frack.
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6. The external forces include the horizontal longitudinal forces H obtained
according to Coulomb’s law from vertical forces /' by the multiplication with the
coefficient of adhesion for the quasistatic solution:

H =uF. (8.24)

The ascending or descending track on the bridge influences the magnitude of
starting or braking forces according to Fig. 8.16. In an ascending track these
forces decrease during braking (the upper sign in equation (8.25)), while in
descending track they increase (lower sign) by the component of vehicle force
parallel with the centre line of the bridge.

H =y Fcosoo+ Fsino. (8.25)

H is now the component of the force parallel with the centre line of the beam
and ¢ is the track gradient. As track gradient is usually small

cos @ = 1 and sino = A/1000 (8.26)

where £ is the track gradient per mille.
After the substitution of (8.26) in (8.25) we obtain

H = F(u, ¥ h/1000) . (8.27)

During starting from the left to right the force H increases (the lower sign in
equations (8.25) or (8.27) on an ascending track and decreases (upper sign) on
a descending track by the component F sin ¢.

8.2.1 Solution

According to Fig. 8.13, N, horizontal longitudinal forces H,, (n =12, ..., N,) act
in every span { (i = 1, 2, 3) at a distance s,, from the left-hand end of the ith bar.

The bars are of lengths / and the coefficient of elastic foundation are k,
(Winkler’s elastic foundation in horizontal direction). The bar of length /, rep-
resents the bridge ([, =1, k, = k,).

The horizontal longitudinal deformations u,(x) of the system of beams in Figs.
8.13 are found from the equations of equilibrium:

_ElA{ dzu,(zx) + klul(x) = q,(x) , l = 1’ 3 ,
X
_E2A2 ddMZEX) + kz[uz(x) - LL4(X)] = qz(x) ’
X
d®u, (x)
~-E A, S+ kfu(x) - u(x)] =0 (8.28)

2
X
where E, and A, are the modulus of elasticity and the cross section area, re-
Spectively, in the ith bar, and

g,(x) = Z 8(x - s, )H,

is the external load in the ith span.
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Further
Al = ——, where i = 1,2 3,4,
E
and
AP = A2+ AR, (8.29)

The solution of the system of equations (8.28) carried out in [72] by the method
of Laplace—Carson integral transformations according to [68] has the form

N,
u(x) = — E;A SH Ux — s,)sinhA,(x — s,) + 1, (0)cosh A x
+%O)s’mhl,x, i=13,
1 & 2 2
uz(x) = 7 EA22~3 sznU(x - Sln)[ﬂ"?_ Slnhl(x - S'Zn) + /14/1(35 - Szn)]
2 n=l1
1 I 2 2 u;(o) 2 2 .
+ e Luz(())(/h + A, cosh Ax) + R (A;Ax + A; sinh A x)
2 r ’
— % u, (0)(coshAx — 1) + 3‘_4%)2 (sinh A x - /'Lx)] .
lz_ Ny
u,(x) = E2A24/13 n_]HMU(x — s“)[sinh Alx = s5,) — Alx — s“)]
2 [ ’
- % 1, (0)(cosh Ax — 1) + %3) (sinh Ax — lx)}
+ % u, (0)(A; + Al cosh Ax) + %O_) (Afsinh Ax + A4 x)} ,
(8.30)
where
1 >0
Ux) = {O for x {< 0 (8.31)

is the Heaviside unit function.
The system of equations (8.28) must satisfy the following boundary condi-
tions (formulated in points 3 and 4 of Sect. 8.2):

N,(0) = 0, u(l) = (0,
w, (L) = u,(0), N3(lg) =0,

CONU) - H = N0y,  N,(L) - H, = N0,
u,(0) = 0, N,1) =0, (8.32) 1
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where the normal axial force in the ith bar is
du,(x)
dx

and H, is the external force acting at the beginning of the ith bar.

There are unknown quantities «,(0) and « {(0) in equation (8.30), which can be
found from the initial conditions (8.32). This produces eight equations with
eight unknown quantities which may be modified into the following form:

w(0) =0, u(0) =20,

1 o :
H Ul — s )sinh A, (I - s ),
E]A] ),,] ”ZI( 1at ( 1 ln) i(] S'IH)

N(x) = EA (8.33)

u (0)cosh 4,1, — u,(0) =

1, (0) ;Li (A2 + A2 cosh AL) + (0) % (APAL + 2% sinh A1) — u,(0)

~ 1. (0) i—’ (sinh A, - AL)

N,
_ EAl/V S, U, = s, (Al sioh A, = s, + A4 = 5],
24, .
u, (0)A, sinh A, [,+u;(0) cosh A,/, = EIA M H, U(l,—s, )cosh A,(1,—s,),
34y =l
/l: . ; )«j 7 1 2 2
—u,(0) p sinh A/, —u;(0) T(coshﬂ.&—l) + u,(0) PE (A;coshAl+ A))
= A, . iH, U, - s,)cosh A, - s5,,) - 1],
E2A2 1_ -y =n = -l 4 it

u(0YEA A sinh Al — EAu0) = Z“HI” U, — s, )coshA (/, — s,),

n=1

u, (0) E‘j A Ginh AL + u’(0) EﬂdA (A + A2cosh AL) — E.Au(0)
—W(0) Ef‘;f‘tg”@ (cosh AL, — 1)
= /li iHZ,,U(lz — s5,)[Alcosh A(), - 5,,) + A1]. (8.34)

Equations (8.34) yield the unknown «,(0) and equations (8.30) the bar deforma-

tions u(x); equation (8.33) can be used for the calculation of axial forces N,(x).
Particular cases may also be derived from the model in Fig. 8.13:

~in a bridge with perfect rail joints or expansions on both ends: /, = [, = 0,

- if long-welded rails are on the bridge: [, =, — <o,

~if the displacement of rails along the bridge is perfectly free: &, = 0,

—~if the rails are fixed to the bridge: k, — oo.
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All cases can be obtained from equations (8.28) to (8.34) by including the re-
spective limit.

Numerical evalution of equation (8.30) was carried out on a computer.
According to Fig. 8.17 the following quantities were calculated:

X, = N,(0), X, = N,(,),
X = x|+ |x,], S = S| + Su]
S, = N,0). S, = MO,
z L S, |a L5
F #014 "Z;‘ 2n (4 - SZn) s ZM = I.l—o_l;— ;‘Hzn S5,
zZ=2 +72Z,,
_ x| Xl
Tz v 6 M = 7= G
= 2 _ X+
Hg = F ’ Hy = F » (835)
SF —H SM
T M T
xr X

TZF ,ZM

Fig. 8.17. Distribution of force H into rails S, bridge bearings X, gravel bed D. Vertical bridge reac-
tions are Z. Indices: F — fixed bearing, M — movable bearing.

kN

14=30m . 1,=30m L 13=30 m
150 4 ! o
100 Nq(X) Ny [X) Nq (X}
50-
: A
0 |
kN
300 -
100 ]
0 (,=30m |

Fig. 8.18. Distribution of horizontal forces in rails N,(x), i = 1, 2, 3, and in the bridge N,(x) for Case
No. 48 in Table 8.2.
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where F — total vehicle weight on the bridge,
G - bridge weight,

X —horizontal forces under bridge bearings (X, = 0 according to
assumptions),
S — horizontal forces in rails,

Z, — vertical reactions in bridge bearings,
4, — ratio of horizontal to vertical forces,

i —index: F - fixed bearing,
M - movable bearing.

TaBLE 8.2. Input data computation

Bridge

Quantity Unit Casc No. 48

/=30m [=162m
l, m 30 30 30
L=1 m 30 30 16.2
I& m 30 30 30
EA, kN 2.5 X 10° 2.35 x 10° 1.86 x 10°
E.A. kN 2.5 x0° 2.35 x 10¢ 1.86 > 10°
E.A, kN 2.5 X 10° 2.35 x 10° 1.86 X 10
E.A, kN 5 X107 5.06 X 10" | 1.85 x 107
k, kN m~ 107 10° 0.5 x 1¢°
k, kKN m™ 10 10° 0.5 x 10
k kN m~ Rix 10! 0.5 x 10
G kN 1400 1360 270
F kN 1600 1760 720
Ly 1 0.3 0.352 0.283
H, kN 0 0 0
S m 0 0 0
H.,, kN 60 77.4 51.25
H. kN 60 77.4 51.25
H- kN 60 77.4 51.25
H., kN 60 77.4 51.25
H.s kN 60 77.4 0
H., kN 60 77.4 0
Ho; kN 60 774 0
H., kN 60 77.4 0
§ay m 28 28.82 13.8
Sun m 25 25.49 11.4
S m 20 20.65 4.8
S m 17 17.32 24
S m 13 12,68 0
So m 1o 9.35 0
8y m 5 4351 0
S m 2 1.18 0
H,, kN 0 0 0
S m 0 0 0
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An example of the calculation of horizontal longitudinal forces and their
distribution in the individual bars is illustrated in Fig. 8.18. The input data are
given in Table 8.2, case No. 48.

8.2.2 Iinfluence of some parameters

The problem solved in the preceding section depends on a number of para-
meters. Therefore, their influence was studied for case No. 48 from Table 8.2
which, after rounding-off, represents a bridge of span 30 m loaded by two four-
axle locomotives which braked in the middle of the bridge. During the calcula-
tions only one parameter is varied, the others remaining the same as in Table
8.2. In Figs 8.19 through 8.37, the notation (8.35) is used according to Fig. 8.17.

{ kNj} 1
3004 e
—-—"_"-’—"—_
2001
— - SM
100 - B T T T
3¢
0 T - T Lond
25 28 30 32 lbsl; (m)
O] ;
60 Xe/H
/
40 1
1 H
‘-u_-___a
20 S
Sg/H
2 28 3 32 L=l, (m}
(1]
HF
0.180 -
&g
0.170 -
0.160 -
0-150 T T Y S
25 28 30 3?2 =le (m)

Fig. 8.19. Influence of span /, of the beam on forces Xr, S.. Su.



8.2 Quasistatic model L4/

The influence of the span /, is investigated in Fig. 8.19, which shows that the
force X, under the fixed bearing grows slightly while the forces in the rails .5,
and Sy decrease slightly with increasing span /,. On the other hand, it is possible
to observe a step rise of u. and u,, because the denominator in the re-
spective equations (8.35) decreases with increasing span. Within the observed
range of 4 X 107to 6 X 10/ kN the parameter £,4, exerts little influence on the
quantities (8.35).

The influence of rail lengths /, and /; in front of and behind the bridge was
investigated over the range 2 m to 90 m for three values & = &, = &, = £,
(k=0.2 X 10% 0.5 X 10", 1 X 10 kN m™). The results are given in Fig. 8.20 which
shows that with increasing rail lengths the force X, in the bearing decreases,
while the forces in the rails S; and S increase. However, this applies only to the

(kN b
500 1
400 1
300 -
Xp k=10" kN m?
XF k.—_O.SX‘]O"'
200 - o XF k=02s10
‘%M s k=0.2+10"
e SM L, k =05x10%
']OO A r‘\;\\ S:‘,‘l‘ > 0 1
\*ggw:m‘
0 . . — ' . T —T ¥ v T
0 30 60 90 li= 13 (m)
2]
{o/0) i
80 -
60 4 4 2
Xp/H k=110" kNm
Xe/H k=a5.1o’;
40 Xg/H k=02<10
204 '\\\ g;"/HHm.- 08-10°
Fig. 8,20 : AR
(continuation 0 SF/H —
On page 148). 0 30 60 90 ly~ly (m}
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{1)1\
0.25-
0.201
| e k=110 kN i)
] g k=110°
0.15 -
Mg k=05+10°
: Mg k=05+10°
k= 0.2+ 10
0.0 A oF 4
Uy k=0.2x10
0 30 60 0 L=l (m)

Fig. 8.20. Influence of rail length in front of, on and behind the bridge /, = /; for various values of £ on
forces X;, -, S,

length of 30 m; the change of these forces is small beyond that limit. The rail
length, which absorbs almost the whole horizontal force, depends also on the
coefficient k. When the horizontal rigidity of the track is lower, the active rail
length increases. The coefficients u. and y; decrease with the increasing lengths
[, and /, but the asymptote is attained once again when the length of the rails is
about 30 m.

The influence of the product of E\A, = E.A, = E A, is investigated in Fig, 8.21,
where the coefficients u; and p, drop steeply with increasing E,A..

The rigidity of the horizontal elastic foundation in front of, on and behind the
bridge was considered similarly to the first study (k = k, = &, = k;, Fig. 8.22). Its
increase resulted in an increase of X but a drop of S; and §,,. With high rigid-
ity, however, all quantities vary very little.
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(km)l
300 |
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o SM
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01.3,-10's 20:10°  2510°  30-10° EArEAS E3Ay
A ‘
60 4
40 4
. Spy/H
201 \SF/H
] {(kN)
0, g e 1y b 110° E. A=E “E,A
1510°  20:10° 25-10 30:10° B ArE A EjA,

0161

(4

0.18

0.174
MF
B

(kN}
1S " — T .
PEt 2000 2500 300 E AE AT EA

Fig. 8.21. Influence of modulus of elasticity £ and cross section area of the rails A, i =1, 2, 3, on
forces X¢, Sy, Su.
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|
{°%}]
60 -
40 | XF/H
] —_— Sw'H
" == = Sp/H
| (kN m?)
O ~T T T T T
05«10% 5:10* Kk ‘k3
)
(1)
0.15 4 \
] KN
0. 121 , : B{ m
1,104 5:10° Kk
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Fig. 8.23. Influence of rigidlty of elastic foundation in front of and behind the bridge k, = k;,
k=1 X 10" kN m~ on forces X, S.. S,
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(1)
0.20 ME
&p
0.10 Y - - - —-
800 1000 1200 1400 1600 G (kN)
Fig. 8.24. Influence of bridge weight G on forces X, S¢, S,
(kN} A
300
1 /XF
200 A
_SM
0 ¥ - T T ko
1400 1600 1800 F {kN)
(/)
60 A
_X_f
H
£0
S /H
20 M
SF/H
O T T T T T T —
1400 1600 1800 F (kN}
(1)
0.18 /(UF
0.16 - o
0.14 1
%00 1600 1800  F (kN)

Fig. §.25. Influence of vehicle weight F on forces X;, S;., S,
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Fig. 8.26. Influence of the coefficient of adhesion u, on forces X,, S¢, Su.
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Fig. 8.23 investigates the case, when the rigidity k£, = 1 X 10* kN m™ is constant
on the bridge, but the rigidities k, = k, in front and behind the bridge vary. When
k, = k, is less than k,,the force X; increases and the forces S; and S, decrease.
When k, = k, exceeds k, the opposite situation arises to that when k, = k, = k..
The parameters tr and y, decrease with increasing k, = k..

The bridge weight G influences only the coefficient py, Fig. 8.24. The weight
of the vehicle F'in Fig. 8.25 was studied with the assumption that the number of
braked axles is constant. The quantities X, S, Sy, and U, increase with the in-
creasing . On the other hand, the forces referred to the total horizontal force
H and the coefficient u; are not influenced by the variation of F.

The influence of the coefficient of adhesion g, is shown in Fig. 8.26. The
forces X: Sg, and S, and the coefficient g, and y; increase linearly with in-
creasing g, but the relative values of forces with reference to the force f are
independent of y,.

The results of the basic case No. 48 from Table 8.2 are given in Fig. 8.27 and
this case was further studied in detail with reference to the direction of drive
(Fig. 8.28), position of vehicle on the bridge (Fig. 8.29 and Fig. 8.30), number of
axles in front of (Fig. 8.31), on (Fig. 8.32) and behind (Fig. 8.33) the bridge, the
braking in front of (Fig. 8.34) and behind (Fig. 8.35) the bridge with reference
to the number of braking axles on the bridge (Fig. 8.36) with two six-axle loco-
motives of the same total weight and adhesion coefficient as the basic case.

The horizontal longitudinal force under the lixed bearing X acquires its high-
est values when the braked axles are distributed in front of, on and behind the
bridge (Fig. 8.32). In this case the rails transmit the smallest part of horizontal
forces. This has also been proved by experiments.

fay ]
Se=1080 kN Su=1095 kN
X, = 2625 kN Xy= 0

H = 480 kN

g =0175 pg=0.164

no

Fig. 8.27. Basic case No. 48 from Table 8.2.

—

IRIRTNY

1.3 )
Sk~ -108.0 kN  S4=109.5 kN

Xe = ~2625 kN Xy =0

H = 480 kN
M =0.175 Mg=0.164

Fig. 8.28. Direction of motion from right to left,
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1im =
Tl b

Sg=114.8 kN Su=-103.0 kN
Xp = 262.1 kN Xu =0

H =480 kN
ug - 0.169 Mg = 0.164

Fig. 8.29. The first force 1 m from the left-hand abutment.

Im
BRI
z il
Sg=101.6 kN Sm =-115.4 kN
Xg= 262.0 kN Xu=0
H = 480 kN
e = 0181 ag-0164

Fig. 8.30. The first force 3 m from the left-hand abutment.

—

Hobe bbb 4y il by

[ 2y [+
Se=~14.6 kN S,7-128.8 kN
X = 365.8 kN X = 0

H = 509.3 kN

fe = 0.244 ng = 0.229
Fig. 8.31. The first and the second spans loaded by eight forces.

—

TR RN R TN IR I EY)

Lt . _
Sex4.7 kN Sy =74 kN
Xe= 467.9 kN Yo « 0

H = 480.0 kN

p =0.312 pg=0.292
Fig, 8.32. The first, second and third spans loaded by eight forces.

—

bbby b B

o o

Se=127.3 kN Su=11.9 kN
Xe= 3666 kN Xu=0

H =503.9 kN

Fig. 833. The second and third spans loaded by eight forces.
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—]
[+ -]
S¢=-1226 kN Sm*-18.3 kN
X¢ = 103.3 kN X =0
H = 245.3 kN
M= 0.148 Mg=0065
Fig. 8.34. The first span loaded by eight forces.
— ]
J; o '
S¢=19.3 kN Sm=121.4 kN
g = 102.1 kN XM=O
H = 242.9 kN
qu= 0.‘}[06 HBS 0-06[9
Fig, 8.35. The third span loaded by eight forces.
—]
o - L
Sg =109.6 kN Sy=111.1 kN
Xg =259.3 kN Xy=0
H = 480.0 kN
Mp=0.173 Mg=0.162

Fig. 8.36. The second span loaded by twelve forces.

8.2.3 Experiments on bridges

Considerable experimental research in the international program of the ORE
D 101 [160] was carried out to ascertain the effect of starting and braking
forces on bridges. Seven European railway administrations participated (CSD,
DB, NS, OBB, RATP, SBB and SNCB). Their experiments included the tests
on seven bridges of various types and spans {75}, {160].

The experiments involved the measurements of the forces Xp, Xu» Z Zows Ser
S, D (horizontal force transmitted by the gravel bed or by the closing wall, Fig.
8.17), acceleration @ on the engine body and other data.

During evaluation it was also possible to calculate

M, = alg,
and
H = am , (836)

where g = 9.81 m s~ is the acceleration due to gravity, and m is the mass of the
set braked on the bridge.
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TaBLE 8.3. Comparison of theoretical and experimental results

X, X, S S, D
Bridge T — Theory ' " ' He Ho :
span E — Experiment KN 1
T 338.6 0 1393 | 141.3 02171 0.192 0.352
/=30m E 303.0 | 21.5 1392 | 148.0 4.6 0.193 | 0.186 0.352
T 68.9 0 68.0 68.1 0.139 | 0.096 0.285
[=162m E 568 | 118 | 4221 1027 0.134 | 0.146 | 0.285

Table 8.3 gives a comparison of theoretical calculations according to Sect. 8.2.1
with the results of measurements on two bridges of CSD, The first bridge of span
30 m was a steel plate girder bridge with continuous gravel bed and orthotropic
bridge deck, the other, of span 16.2 m, was a steel plate girder bridge with an
open bridge deck. The computation input data are summarized in Table 8.2.

Table 8.3 reveals that the theoretical results are in very good agreement with
the measurements of the 30 m bridge. Major differences can be observed only
in some quantities ascertained by measurement on the 16.2 m bridge. This is
due, probably, to a poorer state of track in the latter case which caused great
scatter of experimental results.

The theory was in good agreement with measurements particularly in test
series, when the bridge was under load. In the cases, when the locomotive
stopped in front of the bridge, the differences were greater.

The calculations were carried out for several values of the coefficient of hori-
zontal elastic foundation k, however, it has come to light that constant k, = k, =
= k, has proved most satisfactory, i.e. for the 30 m bridge k =1 X 10" kN m™ (good
track state) and k = 0.5 x 10* kN m™ for the 16.2 m bridge (poor track state).
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Fig. 8.37. Percentage distribution of braking forces on a CSD bridge with span 30 m.
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It has also been discovered by experiments that under moving bearings a cer-
tain small part of the braking and starting force is applied (Fig. 8.37) which is
transferred by friction in the case of imperfect bearings. This had not been con-
sidered in theoretical computations, where X, = 0.

The horizontal longitudinal force is distributed in about 30 m of rails in a well
maintained track. In a poorly maintained track, however, this distribution
length drops, on the bridge of span 16.2 m, for instance, to as little as 7 m.

8.3 Starting and braking forces on bridges

Theoretical and experimental research on the actions of horizontal longitud-
inal forces on bridges has yielded the {ollowing conclusions:

The characteristic feature of horizontal [ongitudinal forces during braking is
their slow increase and their sudden drop at the moment of stopping. During the
starting process these forces slowly increase in accordance with the increasing
traction force of the engine. Maximum values coincide with small velocities in
both cases. The starting force is also limited by the capacity of the coupling.

The percentage distribution of horizontal [orces is approximately the same
for starting and braking. According to static laws the horizontal longitudinal
forces are mostly carried by those members which are most rigid: these include
fixed steel bearings and rails. The soft and vielding members (neoprene bear-
ings, gravel bed, etc.) carry a substantially smaller part.

The adhesion coefficient g, is the most important factor in (8.35) and (8.36).
Due to the interaction of the permanent way and the bearings only a part of the
external forces is transmitted to the bridge structure itself, which is character-
ized by the factor y; (8.35).

The structural system and bridge material exercise no substantial influence.
The bridge span does not influence the relative magnitude of braking forces, as
the bridge may be loaded by the braking train along its whole length. On the
other hand, the greatest starting forces may be caused by two driving locomot-
ives, which may attain the permissible force on the coupling. The length of these
two locomotives is about 25 to 30 m; for this reason, the starting forces drop
relatively in those bridges with spans over 30 .

The rails transfer relatively high forces in the case of smaller span bridges, but
their participation in interaction drops with increasing span. The track gradient in-
creases or decreases the adhesion coefficient, but this change is fairly insignificant.

Horizontal longitudinal forces influence the design of bridge piers and abut-
ments. The bridge ends transfer the forces to the backfill soil, which are higher
if the soil has been compacted than in the case of fresh, insufficiently compacted
soil. Earth pressure below the piers and abutments were found to be very low.

The principal influence on the distribution of horizontal longitudinal forces is
exerted by the type of bearing. The major part of these forces is sustained by
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hinged steel bearings, while movable (roller) bearings can sustain only about
3-5% of vertical forces applied to them. Pot bearings are less rigid members than
steel bearings, their action eliminating the difference between fixed and movable
pearings. This difference does not arise with neoprene bearings, because they are
sufficiently yielding in a horizontal direction and, therefore, transmit relatively
small horizontal forces. The influence of the location of steel bearings on piers
and abutments is important and must be taken into account in design.

The rails may transfer a considerable part of the horizontal longitudinal
forces to a distance of some 30 m; therefore, their interaction must be taken
into account. On the other hand, the gravel bed may transfer only a very low
longitudinal force. The overall quality of the permanent way is described by
the coefficient of longitudinal elastic rail fastening &, which depends consider-
ably on the state of the track. The weaker the permanent way and the poorer
its state, the more the rails are stressed by braking and starting forces. On the
other hand, the increasing rigidity of fastening increases the horizontal forces
in bridge bearings and decreases these forces in rails.

The growing axle forces of railway vehicles and the growing adhesion coef-
ficient linearlv influence the horizontal forces in bridge bearings and rails.
The greatest horizontal forces in bridge bearings originate when the braked or
driven sets cover the rail field in front of, on and behind the bridge. In such a
case, the rails take over the smallest part of horizontal force as compared with
the case when only the bridge is loaded.

'The coefficient of adhesion possesses higher values (0.3 to 0.4) during starting
than during braking (0.15 to 0.3), and g, of electric locomotive is higher than
that of diesel-electric engines. The magnitude is influenced by a number of fac-
tors, such as the weather, moisture, state and fouling of rails, wheel tyres, type
of brakes, etc.

The magnitude of horizontal longitudinal forces in bridges and rails is also
influenced by the mode of driving, place of stopping or starting, the braking
regime, the method of wagon coupling and other factors.

On the basis of all these conclusions it is possible to consider the starting and
braking force at the rail top level as

H =v uF, (8.37)
where 3 —load factor; according to experiments % = 1.3 with 97.7% reliability,

(0.2 for braking

j , is the coefficient of adhesion ,
10.35 for starting

Hy =

F — sum of vertical axle forces which can be placed on the loading length
of the bridge L (equal to the span in the case of simply supported
girders or the sum of spans of the individual fields in the case of con-
tinuous girders).
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With regard to interaction with rails, the force
X =y, uF, (8.38)

is applied in the bridge bearing plan, where the coefficient y, can be given in
the form
U, = bbb u,. (8.39)
The coefficients b, characterize:
— the type of bearings:
0.5 for steel bearings
b, = <0.45 for pot bearings

0.4 for neoprene bearings ,
— the interaction with rails:
1 for jointed or welded rail
b, = {1.2 for rail with expansion or entirely free joint on one bridge end

1.4 for rail with expansions or entirely free joints on both bridge ends,

— the loading length of bridge:
1 during braking
b, =<1 : ) )
3 during starting for loading length L
051 } g g gleng {

=25m

> 25m.

The coefficient u, has been found by this method and tabulated in Table 8.4.
This table reveals that in single-track bridges up to the loading length of 43.75
m the starting forces prevail, while for major spans the braking forces yield
higher values.

The force X (8.38) is resolved according to bearing types as follows:

—~ fixed steel bearing take up the whole force X,
—movable steel bearings (roller bearings) transmit an horizontal force equal

5% of vertical load applied to these bearings,

— pot and ncoprene bearings take up the force X uniformly.

The difference between the forces H (8.37) and X (8.38) is transferred by the

rails, rail bed, etc.



9. Horizontal transverse effects on bridges

Horizontal transverse forces are generated by latcral movements of railway
vehicles from two sources in a straight track: horizontal track irregularities and
the sinusoidal motion of conical wheels along cylindrical rail heads. The load
can be characterized by a system of horizontal transverse random forces which
are variable with time, moving on the rail head level. Their number corresponds
with the number of wheels of the vehicle or train.

Apart from these two sources, which are called lateral impacts, centrifugal
forces also originate in a curved track which act on the bridge in the outward
direction.

The problem of the movement of vertical random forces along a bridge was
dealt with by J. Sldma {191} and B. Sniady [195]. In the sections which follow we
shall derive the solution for horizontal random forces applied to railway
bridges idealized by two models.

9.1 Beam

The most usual model of railway bridges is the Bernoulli-Euler beam
loaded by a system of N forces which are random functions of time and which
arrive at the bridge with deterministic spacings d, according to Fig. 9.1.
Vertical, horizontal and torsional vibrations can be investigated separately in
this beam.

y tvixyj

Fig. 9.1, Movement of vertical, F, (). and horizontal, (1), random forces spaced at d, along a beam
with span /.
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9.1.1 Vertical vibration

The beam vibrating in a vertical direction is affected by axle forces F,(t), n =
1, 2, ..., N, according to Fig. 9.1. The deformation of the beam is described by
the Bernoulli-Euler differential equation

N
El vWix, t) + pi(x, t) = Y& d(x + d, — ct) F(1), (9.1)
1=l
where v(x, t) is the vertical deflection of the beam at point x and time ¢,
EI - constant flexural rigidity of the beam,
u — constant mass of the beam per unit length,
. {1 for {d,,/c =t ={lc+d/c function expressing the
" 0 t < dle;t > + d)lc presence of the force
F (1) on the beam,
{ — beam span,
c — constant velocity of motion,
d, — distance of the nth force from the first, d, = 0.

The axle force F,(¢) is resolved into its mean value F, (static axle force —
deterministic) and its centred random component F,(t)

E(ry = F, + E(1), (9.2)

where F, = E[F,(t)]; £ is of the mean value.
a) Approximate solution

An approximate solution to equation (9.1) may be derived for low velocities
of motion and small damping. Both of these prerequisites are complied with by
railway bridges, because the velocities of railway vehicles at present are relat-
ively low in comparison with the critical velocity (compare with equation (5.4)
and Sect. 6.1). The approximate solution characterizes very well the action of
the system of forces travelling along the bridge.

Neglecting the second term in the left-hand side of equation (9.1) we obtain

its solution in the form

o N — .ot - d . X

vix, 1) = > Deg, vy, F,(t)sin T’L sin T (9.3)

=t =l ! /
which can be considered, under the above mentioned assumptions, as an
approximate solution (quasistatic) of equation (9.1) with boundary conditions
for a simply supported beam with zero initial conditions — compare with equa-
tion (1.30) in [68].

In equation (9.3) the following symbols were used:
Ve, = _:1_2_}21 — midspan deflection due to the mean axle force Fapplied at
J T EL midspan,

= F (t ) )
F(t) = _}(;l — dimensionless axle force
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L = —, L = —. (9.4)
JT T
Analogously with equations (Y.3) and (9.4), the centred random component
is obtain as:
S(r, 1) = 3 Yv e, F (1) sin -”—L—ﬁ”- sin - (9.5)
=l =i

! !

The covariance of deflection is then found in accordance with its definition (1.27)

oo e N
Cn('xl’ 'X2’ t]’ Il) - E[ﬁ('xl’ Il)f;(XQ’ tQ)JZZZZXV v()k n m

=1 A=l a=1 m=|

.ot —d . oct, —d . . X,
.sin — 3 s gin <2 “ sin % Sm—{aCm (4, 1), (9.6)

! 3 ! L

where C, - (t, t,) are cross covariances of the forces F,(t).

rrrrr

The variance of the deflection is found from equatlon (9.6)

o/(x, 1) = C (x x 1 1) = Z )IDID RIS

=1 A=l a=l =l

., ¢ —d . ¢t —d . x . x
.SIn £ 8in 2 gin — sin — C, _(f, 1) . 9.7
L L L [”Fm( ) ( )

I A ! A

In equation (9.7), only the first term of the series is considered in the approx-
imate solution, j = k=1, L = L., v, = v, because the convergence of the
series for deflection is very rapid:

5 AN, .t — : d ., X
cl(x, t) = 3 D viee, sin —L— sin ——L——— sin” C..(t.1). (9.8)

n=l =l

With the assumption of equality of cross covariances of two adjacent axle forces
C,r.= Cq ,, and very low covariances of more distant axle forces the dual
series in equation (9.8) can be simplified further to a single series
A ..ot~ d X
cl(x, t) = > v e, sin’ ——Z,—_ sin’ 7 C,., (1, 1)

ttttt
=1

= oo —d .o ~d. . ,x
+ ) .2v g, sin —~—E——’— sin —-—-L—'- sin’ T Cor (8 1) (9.9)

n=1
All the most important statistical characteristics of the first and the second
order have been obtained in this way for the deflection of the bridge loaded by
a series of moving random forces.
b) Dynamic solution
The solution of equation (9.1) without making simplifying assumptions can
be derived from equation (4.5) in [68] in the following form:

= Y2 ' :
vix, 1) = X Y ga’) sin —g— j F (7) sin %_ﬂ sin @ (+ — 7) drt,
E ;o0
(9.10)
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where the natural circular frequency of the simply supported beam is

> jt ' El @,
W, = —_, = —. 9.11

The natural frequencies used in Chapter 9 are found for the two investigated
bridges in Table 9.1.
The covariance of deflection is calculated by the same procedure as that used

in point a), i.e.

C 1? X » 1’
S e e v 4dee X, CT—d.CT—d
=Y 3> sm——sm— " sin
=1 k=1 n=1 m=1 u l wa) LL
.sin @ (¢, — 7,)sin a)k(}r2 - Tz) C,m,m(’c], T,) dT1 dz, . (9.12)

A comparison of equation (9.12) with equation (9.6) reveals that the approx-
imate solution (9.6) depends directly on the covariances of forces, while in the
dynamic solution (9.12) these covariances are below the integration symbol.
The double integral in (9.12) can be found in a closed form for the following
covariance (white noise)

,,,,, i (L 1) = 8p 6, = 1) (9.13)

'The variance of deﬂectlon is found from equatlon (9.12) for j = k =1 after the
substitution of equation (9. 13)

nm

o (x, t) = Z 28” o'y, sin’ z AR (9.14)

=1 =l

where o = ¢/(2f,/) is a dimensionless parameter of velocity (5.4),

w

Z: = Jsm a(z — x)sin (x — D))sin (x — D )dx
0

-1 (z _ L sin 2az) cos (D-D ) — fz—. sin (2z—D - D )
4 2a v 20a - 1)

_ sin (D + D ) + ——,a— sin 2az cos (D, + D ) — —,1—
2 ’ 2@ - 1) ' ’ 2a - 1)

.cos 2az sin (D, + Dm)J : (9.15)

z = /L,

X = c1/L,

a =1/e,

DH = drr/L’

(S, @) . -
V, = —= is the coefficient of variation for forces £, (1).
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The coefficient of variation for deflection is then

N N 172
V. (x,t) = CACTRI {2 Y ee, o sin® = 22V } . (9.16)

X
e
) wml ) L JJJJJ

9.1.2 Horizontal vibration

Horizontal vibrations of the beam in a transverse direction w(x, t) according
to Fig. 9.1 are generated by lateral random forces /7,(¢) due to random irregu-
larities and sinusoidal motion. The differential equation for the deformation of
the beam is analogous with equation (9.1)

El, wV(x, ) + pw(x, 1) = Yedx +d — ) H(), (9.17)

where [, is the moment of inertia of the beam cross section with regard to the
vertical axis y. The circular natural frequency of horizontal vibrations of the
simply supported beam is

oL (9.18)

see Table 9.1.
a) Approximate solution
The approximate solution is obtained from equation (9.17) where the second
term on the left-hand side is neglected. Thus, a quasistatic solution is obtained,
analogous with equation (9.3):

wrn =3 3

n=1 ‘Aulwﬁj

.X ct — d
sin — H (¢) sin ——=, 9.19
L H() L ( )

i

The horizontal forces H,(f) have zero mean values, hence the covariance of
horizontal deformations of the beam is

o = N N 4
C X H X b t ’ 't = gngm 2
Mw( [ 2 1 2) ; ; ”z:; mz_; uz l“ a)éja)ik
. . . t — d L, —
. sin _[)% sm—xLi sin - L 5in 2 = Cupy (6 1), (9.20)
i IS / k

where C &1 (4, 1) are cross covariances of horizontal forces H,(r).
The variance is then

—— sin o - d, Cun (&, 1), (9.21)

. X . X .
. 81N — S1n — sin
L L

)
—~
Nl
QL
™
=~
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and for j = k = 1 may be simplified to

. 2 . ‘t - d . ‘t - d
o, (x, 1) Z 28” o Vo @ SN’ %Sln ‘ i L sin £ 7 = Vg, (6 1)
n=1 m=1
(9.22)
where
- O
Py o, ’
V;,,Hm(r’ t) = HH (6, )1 F* . (9.23)
The coefficient of variation yields
o (X, I
h(x r) - —_(_—)
‘V[)
AR 4.2 X ot —d . o —d _, .
=Y Elensm(ph sin® = sin ————* sin —— Var @& 1) 5 (9.24)
n=l m=

which can be simplified as equation (9.9).
b) Dynamic solution
The solution of equation (9.17) may be found as (sece equation (9.10)):

w(x,z‘)ziis

x| .ct—d,
sin - H (7)sin 27 % §in o (t - 1)drT,
L J L !

1 ul @, )
(9.25)
and the covariance of horizontal transverse deformations is
o e NN 4
C.(x, x,, t,, t,) = ; ,{2:; z—; ;:lgnem o o
sin —- sin —% sin —1— d, sin ”—2]}& sin @, (¢, = 7,)
! PR [V | k
sin o, (4, - 1,) Cy ), (z,, 7,) d7, dr, . (9.26)

The variance forj=k=1and C, , (1, ,) =S}, , (¢, —1,) is calculated from equa-
tion (9.26)

N N
ol(x, 1) = > e, vioia sin® = meVz ; (9.27)

n=l m=1

where 77, is determined by equation (9.15) with a = 1/(e¢,) and
Vi = (S, @)" |F. (9.28)

is the coefficient of variation for forces H,(f).
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The coefficient of variation of horizontal deflection gives:

N N 172
V, (x, 1) = o _ [2 Y e, 00 sin® %22 VH} . (9.29)
n=l  m=I

9.1.3 Torsional vibration

The horizontal lateral forces of railway vehicles act on the rail top level, i.e.
outside the cross section centroid of the bridge in the majority of cases. Let the
difference of elevations according to Fig. 9.1 be h. Consequently, they affect the
bridge by twisting moments & H,(¢). The differential equation of a beam due to
simple torsion is

Gl E(x, 1) + u, E(x 0 = Ye,8(x + d, — cyh Hy(1), (9.30)

where &(x, 1) is the rotation about the longitudinal beam axis x,

G —modulus of elasticity in shear,
GI. - moment of torsional rigidity per unit length,
Ue — mass polar moment of inertia with regard to axis x per unit
length.
The natural circular frequency of the simply supported beam in torsion is
Pt Gl @
®;, = J l:‘ i, f., = _2% : (9.31)

see Table 9.1.
a) Approximate solution
The approximate quasistatic solution of equation (9.30) is when neglecting
the second term in the left hand side,
o < 2h X ct — d
X, t)y = £, sin ~— H (t)sin ——*, 9.32
S(x, 1) ;Z} ial L (1) L (9-32)

The same procedure yields the covariance of torsion

w e N N 4h2
C;g(xl’ Xos By ) = 2 Z 2 Zgngm 212 0 o
=1 k=1 n=1 m=l ‘I-'Lé (Dtgj (Dék
A T t. — d . t, — d
_sin =L sin 22 sin St % gjp 2 — % Cuu (1, 1), (9.33)
14 k LI Lk o
and the variance
5 B R 4 h?
oi(x, 1) = X X X &L, T
=1 k=1 np=l m=| ,uél wéfwgk
.X . X ct — d . ¢t — d
. 8SiIn — sin — sin ———* sin ———= ( t, t). 0.34
= sin = sin < — G 0. 039

k
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For j = k = 1 the equation (9.34) will be simplified to

LA V. L 4 .. x . et —d . ot —d
o, (x, 1) = 2 mz_]e”emi’z— Y@, sin’ 7 sin ———=sin — Vo (40 1),
(9.35)
where V?,, ; (¢, 1) = Cy , (2, 1)/F coefficient of variation of forces H,(z),
0, = 2
Ty
hz
y = 2L (9.36)
My
With these symbols the coefficient of variation for beam torsion yields
c.(x,t
V§ (.)C, f) = _L)
v,/ h
(3 S yigrsin Lsin L g ey 51 937
- et L n my qoéj L L L HH, A" . .

The double series in equation (9.37) can be simplified once again to a single
series by the same approach as that used for equation (9.9).

b) Dynamic solution
The solution of equation (9.30) representing torsional vibration of a beam
loaded by a series of moving random forces is

g 2 . x| .cT—d
E(x, 1) =D D, sin — jsm o, (t = 7)sin ——= H (7) dr.
J=1 n=l Jué 10)5’ Lj 0 & L!

(9.38)

The covariance of beam torsion is calculated from its definition and equation
(9.38):

A 4R ox

Céé(‘xlﬂ Xy, 1), tz) = 2 Z 2 zgngm 2 12 sin ==

J=1 k=l n=l m= uél wé‘ja)ék 'y

H I
X o : . ¢t —d, . ct,— d
. sin == sin , (¢, — 7,)sin @, (,~ 7,) sin Ch = % gy 2~ T
Lk 0 JO ! L, Lk
Cyy (7, T,) d7, d7, . (9.39)

Equation (9.39) can be calculated in closed form for white noise C,, (¢, t,) =
Sy 6(t,— 1,). For j = k = 1, the variance of torsional vibration gives
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4 h'S X ! cT — d
Gi(x, t —m_gin? = sin® @, (I — 7)sin ———*
g( ) ; ; ' m llé lz a)zl L . 5‘( ) L
. cTt—d v
sin ———& d7 = 4 Ve (9.40
L ”21 HZ; n m ]2 y qog L an O H ( )

where the symbols of equation (9.36) and ecquation (9.15) with @ = 1/(o; ) and
Viuu = (S, @)"*/F as the coefficient of variation of horizontal forces have been
used.

The coefficient of variation for the beam torsion is then

a. X 14 N N 1z
Vé(x, t) = (—/h) {Z Zgn m/ qoéoc ' sin’ z Z2 Vzl . (9.41)

V(J =l m=

9.2 Thin-walled bar with vertical axis of symmetry

The idealization of the bridge by a mass beam in Sect. 9.1 made it possible to
investigate separately the vertical, horizontal and torsional vibrations, Actually,
however, these motions are mutually coupled. The theoretical model charac-
terizing this circrumstance is the Vlasov and Umanskii thin-walled bar; the
assumptions for its derivation are described in greater detail in Chapter 22 of
[68]. Most bridges approximately satisfy these assumptions.

The majority of bridges possess a vertical axis of symmetry, which brings con-
siderable simplifications. In the first place, vertical vibrations become inde-
pendent of other motions (for their solution see Sect. 9.1.1) and horizontal
longitudinal vibrations can be analyzed separately. In this chapter, only the
lateral actions of vehicles are of interest and for this case horizontal forces
and their twisting moments influence the coupled bending and torsional
vibrations in the direction of axis z and around the axis x according to Fig. 9.2.

X

Z
a
7 Y
wixt] .~
-
P H,(t)
y=Y1 v(x,t)

Fig. 9.2. Movement of honizontal random forces 1,(7) spaced at d, along a thin-walled bar of the length L.
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The differential equations for both of these motions are (following Vlasov
[216]) ’

ElC w™(x, 1) + pr? wi(x, 1) + pw(x, 1) — pa, &x, 1)

N
= Yedlx +d — o) H(1),

n=i

EILE" (x, 1) — GI, E(x, 1) — ur, E”(x, 1) + pr’ é(x 1y = pa w(x, 1)

= 2.e8(x +d, — etyh H,(1), (9.42)

n=l1

where, in addition to the symbols explained in the preceding text:

I, — polar moment of inertia of the cross section with regard to axis x,

I = [,¢ dA —section moment of inertia,

¢ — sector coordinate equal to double the sector area the pole of which
coincides with the centre of bending €, whose zero position can be found from
the condition f,¢ dA = 0 where A is the cross section area; the centre of bend-
ing C, in thin-walled bars differs from the cross-section centroid C, — see Fig.
9.2,

a, — coordinate of the centre of bending C,,

{ [ /
PP= =, = —, =2 P =a+

For the solution of the problem of movement of a series of horizontal random
forces H,(1) along a thin-walled bar with vertical axis of symmetry, described by
equations (9.42), the following symbols will be used (see Table 9.1):

2?2 2 2
y‘:u[]JrJ[z‘J, u¢:u[;"2+1 “DJ,

12
b =ualu,, b, = paly,,
it El tnt El Pt G
wQ\ — J T = : a)z, _ J T 24 J :t ¢ ,
S T, P,
f, = w, /(2n), f,, =0, /(2n). (9.43)

The boundary conditions of a simply supported beam and zero initial condi-
tions are assumed. In a thin-walled beam, the natural vibration frequencies in
the direction of axis z is @,, and in torsion about axis x, @,

9.2.1 Approximate solution

Once again, the approximate solution of the system of equations (9.42) will
be sought by neglecting (with regard to the low velocity of motion) all terms
with derivatives in respect of time. Thus, the quasistatic solution is obtained:
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172
= X ct — d
wix, t) = £, - sin — H (¢) sin ———,
() ; Z_( [IyoN L, ) L
= & 2h . ox .ot — d
x,t) = g ———— sin — H (f) sin ———= ., 9.44
S0 = B X e sin o H(0sin S 0.4

It is assumed that the horizontal forces H,(f) have zero mean values, so that

the mean values of the functions w(x, 1) and &(x, t) are zero as well. Statistical
characteristics of the second order are obtained from equation (9.44) and from

the definition of covariance

Cnu(x17 x'_” tl? t?) = 2 4
j=l1

N N
EE ——F——
2200 T,

=l

Nk

A=1

ox, . ox, .ty —d . ct, — d
.sm—‘smL—zsm IL L sin 2L LCLa (),

. X, . x, . c¢t —-d . ct, d
. sin =+ sin = sin — “ gin —2 3 o Cua t ). (9.45)
!

' 4 !
The variance is found from equation (9.45)
N N 4

, B = =
O-u (x’ Z‘) - Z ; Z zgiigm #2 12 wzwz

j=l =l m=l \ v WL

t —d . o — d
¢ L sin ¢ CH,,H,,, (¢, 1),

. X . X .
. SIn — s1n — sIn
L

i A L! Lk
S T~ 4h°
Gz(x’ t) = gngm 2
: ,Z-f ;Z—f 2_; 2_1 u, ' o,
.x . x . ct —d . ct —d
. sin — sin — sin Login w C t, t). 9.46
-sin - sin = G0 040
The coefficient of variation is obtained from equation (9.46) forj=k =1
o, (x, 1t
V(rn = 200
vO
S : t ~ d ct ~ d "
= €€ 2,"'311'12—){—sir1C———Asin——’”V2 r,t:|,
|:; nr=1 ! my) q)) L L L H"HM( )
o.(x, I
V.(x, t) = -75( )
: v,/ h

N N _ _ 172
- [Z Y ee, vi0lsin’ % sin izi sin -”—L—d Vi, (t, r)} . (9.47)

n=1 m=l
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where .
Vo = y}(t)z » vﬁnH,,, (f, f) = CH”HJ,, ([; t)/Fz ,
hz
y, = £, y = B
L, u,
W, w
gox - B_ ’ qocp - a)—l . (9.48)

9,2.2 Dynamic solution

The solution of equations (9.42) for a general time history of the forces H,(f)
may be derived by the integral transformation method by means of equations
(27.5), (27.32), (27.33), (27.67) and (27.74) from [68]. The method results in the
equations for the horizontal deflection and torsion of a thin-walled bar under
lateral forces in the form

N 2F ! _
wix, t) = Y, Z "ogin H (1) sin cr-d
=l L J L
: [A, sin w (t — 1) + B, sinw, (t — r)] dr
= N 72F —
E(x, 1) = ), Eosin — H (1) sin ct—d,
el 0 L,
e sinel ¢ - ) + D, sin @), (r - )| dt, (9.49)
where
’2 2 2 2 N 2 "
a)\,} _ W, 0y, 1 [wu + a)wj o,
72 ’
o’ 2(1 - bb,) |41~ b, 1 - bb,
;= o, /(2m); fw'f = a)’w /(2m), see Table 9.1,
A = Q’J_ o, . hb, @,
B R H,
B = — _ai:?."_ + a);!?l hb\ a);)! ,
’ uooo pa, H,
ha ha? b
C — - i + ¢ i )
’ , 1o £,
b - _ ha, N ha, b o ,
’ Ky 1,0, K,
= £ (9.50)

Efﬁ _ 2 72 )
(1 b\bqy) (a)\/ W )

g
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Equations (9.49) can be used for the derivation of the equations for covariances

o & & 4E FE,
Cnn (‘xlﬂ 'X23 tl? t2) = 2 2 Z 12 Am Sin :1‘1_ Sln —j J H, (T T)

M=

=l A=l =l =l

3 ¢ Tl _ dn 3 ¢ TZ — dm 1 ’ - ’
. sin ———* sin ———~ [A/ sin  (/, — 1,}) + B, sin @, (1 ~ Tl)]

L L
.[AA sin @, (t, — 1,) + B, sin @ (1, — drdr,,
Sow v e YELE,
Co(x, xp, 1, 8) =2 > > Y ’[2 Y gin =L sin ——j j wa (T T,)
=1 A=t =l m=l
et —d, . cT, - d, ., .,
. 8In _L_,__ sin —T [C! sin @ (¢, — 7,) + D sinw (1, - Ti)]
¢ sinar @, - 1) + D, sin @, (1, - 1,)] dr,dr, . (9.51)

The variance is found from equation (9.51)

) = Y 4EE, . x . x|t
o (x, 1} = Z Z z — . sin I sin I J‘J‘CHHHH(T" 7,)
=1 7 IS 0 of0

1 n=l nm=
¢t —d, . c1,—d : :
. 8in ———= gin ——= [A sin w’ (t — 1) + B sin o (t — 7:)]
L L 1 Vi ! o 1

! S

M

~
1l

JAcsin @ (¢ - ) + B sinw, (r - 1) dr, dr,

e L& 4EE, o« . x [
B DI 1D SN S ——”c (o 2)
L= #i=1 [ L; L/\ ] 0 "

1= n=l

.ot —d .1, — d : .,
. sin 7 sin 7 [C{ sin @ (¢ — 7,) + D, sin @ (1 — rl)]

; A

G sin @, (r - %) + b, sinw), (r - 1,)] dr,dr, . (9.52)

For white noise C), , (£, 1,) =S, , &(,— t,) and for j = k = 1 the variance will sim-

:::::

Xoo 4SS EE o . cr— d _
o.(x, 1) =2, ¥ —’—*“_'“”"’"lgln L gin® J sin S Do T a,
= - 0
A sin@, (- 1) + B sinw(r - 1) dr,

N v 4
: X X —d . c1-4d
o:(x, ) = S T G0t XL in cr- 4 sin ———*
00 2 2 : L], I3 L

e sina' (r = 1) + D sine’ (r — 1) dr. 9.53)
1 ol
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g.2.3 Thin-walled bar with two axes of symmetry

Should the thin-walled bar possesses two axes of symmetry, which is a rare
case in bridges, the centre of bending C coincides with the cross section cent-
roid C,, a, = 0, see Fig. 9.2. In that case both the vertical, horizontal and torsion
vibrations are mutually independent.

Equations (9.42) differ from equations (9.17) and (9.30) only in that the for-
mer include the influence of the warping of the thin-walled bar cross section,
which is not considered for the beam.

However, the solutions of equations (9.42) for a, = 0 are identical with the
expressions in Sects 9.1.2 and 9.1.3. In the case of horizontal vibrations, how-
ever, it is necessary to substitute u, and @, for y and ,, respecively (in Sect.
9.1.2) and p, and @, for . and w,, respectively (in Sect. 9.1.3), in accordance

with equation (9.43).

9.3 Experiments on bridges

The lateral action of vehicles due to horizontal rail irregularities and sinus-
oidal motion are of a typically random character and can be replaced by hori-
zontal transverse forces with zero mean values.

Y
mm
i mm
10— 10 -
] N Q‘:
-'-.:-(\\
— _‘ “%.
5 — 5 a""
S
N N b)
z z
04 Y T 0 Y T T T T T -
-03 mm -2 -1 0 1 2 3 & mm

Fig. 9.3 Vertical (y) and horizontal (z) deflection of a steel lattice bridge with span { = 48.4 m at the
point x = 0.4/ (according to the measurements by J. Slama):

a) during the drive of the T 678.0009 locomotive weighing 1100 kN at the velocity of 31.3 km h ' from the
fixed to the movable bearing, b) during the drive of a mixed freight train, consisting of the T 435 loco-
motive (weight 630 kN) and 12 cars, at a veloaty of 46.4 km h™ from the fixed to the movable bearing.
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The response to such a load is spatial stochastic vibrations of railway bridges.
This is illustrated in Fig. 9.3, which shows the spatial motion of one point of a
bridge with a span/ = 48.4 m in the vertical plane y, z perpendicular to the lon-
gitudinal bridge axis x (according to the orientation of axes in Fig. 9.2). On this
bridge, the vertical displacements v(x, f) in the direction of axis y and the hori-
zontal displacements w(x, ) in the direction of axis z were measured separ-
ately and independently on each other; in Fig. 9.3 both of these displacements
have been summed as vectors. Fig. 9.3 shows that every point of the bridge is
undergoing a complex spatial motion of random character.

TaBLE 9.1. Spatial vibrations of steel truss bridges with open bridge deck

Bridge with span
Vibration type Symbol Equation J
{=2585m [=484m

1 8.7 5.4

Vertical f (9.11) 2 34.7 21.5

3 78.1 48.3

1 153 4.7

fin (9.18) 2 61.1 19.0

3 137.5 427

1 14.8 4.7

Horizontal £ (9.43) 2 53.9 18.1

3 107.4 38.8

1 14.7 4.6

1 (9.50) 2 52.5 17.5

3 101.7 36.4

1 35.7 19.2

fq (9.31) 2 71.3 38.4

3 107.0 57.7

1 34.9 16.7

Torsional fa (9.43) 2 73.5 35.4

3 117.4 56.9

1 36.5 19.7

fa (9.50) 2 77.6 41.9

3 126.4 67.5

% (9.48) 0.934 0.977

Y (9.48) 0.118 0.087

Constants 0 (9.43) 0.588 1147
0y (9.48) 0.244 0.279 J

L
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In addition, another bridge of span / = 25.85 m was investigated experiment-
ally. Both bridges are steel lattice structures with open bridge deck. The hori-
zontal transverse wheel forces on the second bridge have a mean value equal to
about one third of the vertical wheel forces and are analyzed in some detail in
Sect. 10.1.3.

Table 9.1 presents the first three natural frequencies of vertical, horizontal
and torsional vibration of a mass beam and of the thin-walled bar, idealizing the
two investigated bridges analysed according to the various formulas from Sects
9.1 and 9.2.

The natural frequencies of vertical and horizontal vibrations are relatively
close to each other and in some cases are difficult to separate.

On the other hand, the natural frequences of torsional vibrations are usually
higher than the corresponding frequencies of vertical and horizontal vibrations.

9 4 Coefficients of variation for horizontal and torsional vibrations

The approximate expressions for the coefficient of variation of horizontal
and torsional vibrations, equations (9.47), at midspan of the beam x = //2 can be
modified in the following form:

)
ol -,
\2

V(5] = R = e o,
2 v,
o=, t
V (_l_ t) = N2 ) 2 var (1) (9.54)
2 v/ h VoPs ’ '

where the function var (1) characterizing the variance is

N N

12
var (1) = {2 zsngm sinm(t — D)sinn(t - D)) Ki’,,,/,(r)} (9.55)

n=l  ui=l

and the coefficients ¥, ¥, ., @, for two investigated cases have been found
numerically according to equations (9.48); they are given in Table 9.1.
In this process, the dimensionless time

T = ct/l (9.56)

and the dimensionless axle distances (Fig. 9.2)

-4 p - (9.57)

i ? 1

were introduced, so that the function &, appears in the form:

1 D =1=1+ D,
= for (9.58)
0 T< D,r>1+ D, .

i
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For the covariance of horizontal transverse forces, equation (9.48), the fol-
lowing expression was used provisionally

Ve, ety =V He'r, (9.59)

FFFFF nh

until more experimental data are available (see also Sect. 10.1.3).
In equation (9.59):
V.. is the matrix of mutual dependence of the nth and the mth horizontal
forces (for example sec equation (9.63)),
T — dimensionless coefficient characterizing the reduction of the coefficient
of variation with time,
H = (H/F) is the square of the ratio of mean horizontal and vertical forces.
The form of the function var (7) is studied in some details in Figs 9.4
through 9.7.

14 var {T)
4]
b
| c
054 d

L] T T T ‘ T T T T T —

0 05 1 e/l

Fig. 9.4. Time-history of the function var (7) under one force: influence of the damping coefficient
T'in equation (9.59):

) I'=0;b) T=05,¢) T=1;d) T=2.

j var(T)

7 b
05
J

: al | ||

L T T l T T L) T 1 Y L T T "W

0 05 1 15 i/l

Fig. 9.5. Time-history of the function var (7) on the 25.85 m span bridge during the drive of:
a) four-axle locomotive type T 478.3, b) six-axle locomotive type T 679.1.
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The infuence of the damping coefficient 7" was investigated for the case of the
movement of a single horizontal random force; the following coefficients were
used in equations (9.55) and (9.59):

N=1 D =0, V, =1, vV =0 H =1;

fora) T =0; b)T =05 ¢)T =1 and d)T = 2. (9.60)
Fig. 9.4 shows that increasing the coefficient T reduces the coefficient of variation.
Fig. 9.5 compares the function var (7) for a four-axle and a six-axle locomotive
in the case of the 25.85 m span bridge (see Table 9.1). In this case, the exponential
decay of the coefficients V,, was used (e, n being the number of the axle):
ay N =4; D, = 0,0.093, 0.348, 0.441;

o= 1,0368, 0.135, 0.050; H =01, T =1, (9.61)
by N =6; D =0,0.081 0162, 0.333, 0.414, 0.495;

=1, 0.368, 0.135, 0.050, 0.018, 0.007;

H =01, T =1 (9.62)

Fig 9.5 shows that on the same bridge and with the same parameters the six-
axle locomotive produces greater horizontal and torsional actions than the four

axle locomotive.
Fig. 9.6 investigates the influence of the matrix V,,, of the mutual relations of

the nth and the mth forces on the 48.8 m span bridge using a six-axle diesel-
electric locomotive of the type T 678.0. In the case of the exponential decay the
matrix V,, presents, for instance, the following values:
1 0.368 0.135 0.050 0.018 0.007]
0.368 1 0.368 (.135 0.050 0.018
0.135 0.368 1 (0.368 0.135 0.050
Vv = : (9.63)
z 0.050 0.135 0.368 1 0.368 (.135
0.018 0.050 0.135 0.368 1 0.368

10.007 0.018 0.050 0.135 0.368 1

Similarly in other cases, the matrix V), being defined by the first line only.

Further parameters are: "
N=6; D = 0,0.041, 0.083, 0.196, 0.238, (1.279;
ayv =1,1,1,1,1,1;
by V. =1,1038, 06, 04,02,0;

L

c) V. =1, 0.368, 0.135, 0.050, 0.018, 0.007;
dyv,=10,0000;

i

H=01 T=1 (9.64)

?
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Fig. 9.6 shows that the lower the coefficients V,, in more distant axles, the
lower the magnitude of the function var (7).

Finally, the time-history of the function var (1) was calculated for a number
of cases of bridge spans within the limits of //d, = 0.5 to 10, d, being the distance f
between the first and the last axles of a four-axle locomotive. The following

coefficients were used in equations (9.55) and (9.59);
N = 4 D =2t00,1; V=1 0368, 0.135, 0.050 ;

il

H =01 T-=1. (9.65)

| var(T)

14 ’
| _

0.5
1 d N
d [T

o T T T T 1w

Fig. 9.6. Time-history of the function var (7) on the 438.4 m span bridge; influence of coefficients V,,
in equation (9.59):
a) constant, V,, = 1, b) linearly decreasing, V,,, = 1; 0.8, 0.6; 0.4; 0.2; 0.2; 0, c) exponentially decreasing,

Vo = 15 0.368; 0.135; 0.050; 0.018; 0.007, d) zero except for V,,,i.e. V,, = 1,0, 0, 0; 0; 0.

max var{T)

0.5

T T T T T T T ¥ T

5 10 {/d,

Fig. 9.7. Maximum values of var (7) plotted against span [; 4, — distance between the first and the last

0
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The maximum values max var (7) are plotted in Fig. 9.7 against the ratio of //d,.
The diagram shows that the coeffiecient of variation of horizontal and torsional
vibrations increases with the span, but gives a certain limit value.

9.5 Centrifugal forces

If the track on the bridge is curved or in a transition curve, the movement of
vehicles produces centrifugal forces.
Movement of a mass m = /g along a circular curve of radius 7 at a velocity ¢
generates a centrifugal force
mc

F. o= . (9.66)

g .
!

After the substitution of the respective SI units, equation (9.66) is used for
the formula given in the national standards
Fv’

F = . 9.67
e 127 (9.67)

where F, — centrifugal force (kN),
F —vertical moving load (kN),
v —velocity (km h™),
r —radius of curve (m).
Centrifugal force is of a deterministic character and acts horizontally at the
centroid of vehicles, in a direction outwards from the curve.
If the centrifugal force [, is to be calculated for the standard load scheme
according to [212], the right-hand side of equation (9.67) is multiplied by the
reduction coefficient

y=1- Y120 (814 + 1.75) | - [&) 1, @)
1000 v z

where [ —span in (m),
v — design velocity in (km h™),

The reduction coefficient y characterizes the fact that the passenger trains,
which achieve high speeds, have considerably lower axle forces than the stand-
ard load and that lower centrifugal forces originate on bridges in reality than
those calculated by equation (9.67). For v = 120 km h™ and / < 2.28 m the
reduction coefficient y = 1.00.

The centrifugal force acts always simultaneously with the vertical moving
load. The simultaneity of action of centrifugal force and lateral impacts (i.e.
forces due to horizontal rail irregularities and sinusoidal motion) has not yet
been investigated sufficiently. Some authors believe that a high centrifugal
force presses the wheel flange to the rail head so that the sinusoidal motion
can no longer occur. The situation depends obviously on the velocity, super-
¢levation and on the radius of curvature.
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According to the majority of national standards. the action of centrifugal
force and lateral impacts is assessed as a combination of two mutually inde-
pendent loads with the application of the factor of load combination because
the simultaneous occurrence is a random phenomenon. The centrifugal force is
considered without any dynamic coefficient because the influence of velocity is
alrcady incorporated in equation (9.67).



10. Traffic loads on railway bridges

From Newton’s laws and d’Alembert’s principles railway bridges are loaded
by vehicles according to:

— whether the applied forces are static or dynamic loads,

— the direction of the applied forces: vertical, horizontal longitudinal and
horizontal transverse loads,

— the magnitude of the applied forces caused by traffic, standard and extreme
loads.

In this and the subsequent three Chapters we shall consider traffic loads, i.c.,
the loads currently occurring in everyday operation which are important
chiefly for the assessment of bridges to fatigue.

European railway administrations have accepted the mass of the useful load
and vehicles including engines traversing the given railway bridge in a year as
unit of traffic load. It is expressed in millions of tonnes per year. This unit has
two advantages:

1. It is generally recorded in railway statistics (or can be computed from the
gross tonnes-km by dividing them by the length of the respective railway section
in km).

2. The fatigue damage of bridges is approximately proportional to the traffic
load.

According to [162] the traffic loads of bridges are usually classified as fol-
lows:

very heavy  over 60 X 10° t/year,

heavy over 30 X 10° t/year,
medium over 10 X 10° or 20 X 10° t/year,
light over 2 X 10° t/year,

very light up to 2 X 10° t/year.

The former Czechoslovak railways ranked among the most highly loaded in
the world and in several sections the traffic load considerably exceeded
60 X 10° t/year. Fig, 10.1 shows the development of traffic load on one track of
one of the main railway lines in late Czechoslovakia over the past 100 years. The
graph shows the slow increasc of traffic load until the post-war period and its
rapid growth since 1950.

The development of the mean traffic load in the whole Czech and Slovak rail-
way networks converted to one track is similar. This is illustrated in Fig. 10.2
based on statistics [121].
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Fig 10 1. Development of traffic load in million tonnes per year on one of the mamn CSD lines over
the past 100 years.
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Fig 102 Mean traffic load in million tonnes per year on CSD lines and 1ts development over the past
50 years (converted to one track).

The increase of traffic on railway bridges, illustrated in Figs. 10.1 and 10.2, is
due to the rise of the technical and economic standard of every state. The bridges
themselves, naturally, are unfavourably influenced by this tendency, particularly
in the form of reduction of the fatigue life of their structures and the reduction of
the possibilities of maintenance of both the permanent way and the bridges.

The traffic load is characterized by axle forces, axle distances and speed.
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10.1 Axle forces

The past period is characterized by the increase of not only traffic loads, but
also axle or wheel forces of railway vehicles. Until 1870, bridges in the former
Austria-Hungary were designed for loads agreed between the customer (i.e.,
the railway company) and the bridge builder.

It was not until 1870 that an ordinance of the Austro-Hungarian Ministry of
Trade was issued, according to which railway bridges were to be designed for a
uniformly distributed load the magnitude of which depended on the bridge
span. This load amounted to some 180 kN m ' for the spans of from 1 m upwards
and decreased to 36 kN m™ for the spans exceeding 30 m. Apart from that, the
structure had also to withstand axle forces of 116 kN,

Since that time several bridge codes and standards for the loads of bridges
have been issued in which the axle forces continuously increased to reach the
present day value of 250 kN and the uniformly distributed load increased to the
present value of 80 kN m ' according to the international recommendations of
the UIC [211], prescribed for the design of new bridges. Some national stand-
ards contain even higher loads.

10.1.1 Measurements of axle forces

The actual axle or wheel forces may be measured in three ways:

1. Weighing on a weighbridge by which the static vertical forces are obtained.

2. Strain measurements on wheel discs or axles or bearing housings [221],
[155]; in this way, the time history of wheel forces is obtained which, however,
only applies to the particular vehicle selected for experiments.

3. Strain measurements on rails, which yield the instantenous dynamic axle
or wheel forces at the moment of the passage of any vehicle over the measured
place.

Every experimental method obviously has its advantages and disadvantages,
depending on the purpose of measurements. With respect to traffic loads, the
third method is most advantageous. Therefore, we shall describe it in greater
detail for three components of force:

a) Vertical axle forces are measured as shear forces in the section between
two supports (sleepers) according to Fig. 10.3.

Sixteen active strain gauges are fastened on the neutral axis of the rail at an
angle of 45° so as not to be influenced by supports (Fig. 10.3a). This means that
a line is drawn at 45° from the edges of a sole plate and at its crossing point with
the neutral axis two strain gauges are mounted (preferably a rectangular rosette
on cach side of the rail web).

The strain gauges are numbered /-6 in Fig. 10.3. They are connected to a full
Wheatstone bridge according to Fig. 10.3b. Calibration is carried out by the very
slow passage of a vehicle of known weight.
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The result of the mesurements, shown in Fig. 10.3c, is the time history of the
shear force: in the section between the strain gauges the shear force equals the
axle force, outside them it equals zero.

Similarly, vertical wheel forces are obtained by connecting only eight strain
gauges, Nos /-8 or 916, on one rail to a single Wheatstone bridge.

The connection of strain gauges according to Fig. 10.3 is time consuming, but
the results are usually very good, because the described method eliminates the
influence of the bending of rail webs and further disturbing factors (the influ-
ence of temperature is small in dynamic tests of short duration).

b}

¢)
F
(k N} e
200

AL .

t

Fig. 10.3. Measurements of vertical axle forces
a) fastening of 16 strain gauges to the rail, b) their connection to a full Wheatstone bridge, ¢) instant-
aneous dynamic axle forces F during the passage of a 6-axle engine (oscilogram of the shear force).
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b) Horizontal longitudinal forces are measured as the axial force in the rail
according to Fig. 10.4. Two strain gauges are fastened horizontally on the neut-
ral axis of the rail and are connected to opposite branches of a Wheatstone
bridge. In this way the stress o in the neutral axis of the rail of a cross section
area A is obtained with double sensitivity. The horizontal longitudinal force is

then
H =c0A. (10.1)
An example of the history of horizontal longitudinal force in a rail during
braking and starting is shown in Fig. 8.14.

b) Z

Fig. 104, Measurements of horizontal longitudinal forces:
a) fastening of two longitudinal strain gauges in the neutral axis of the rail, b) connection to a
Wheatstone bridge. Active strain gauges /, 2, compensation strain gauges 3, 4.
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b)

Fig. 10.5. Measurements of horizontal transverse forces:
a) fastening of two vertical strain gauges in the neutral axis of the rail, b) connection to a Wheatstone
bridge. Active strain gauges / and 2. strain ganges 3 and 4 are superfluous,

The method of measurements of horizontal longitudinal forces is very simple,
but is influenced by local wheel action and by the influence of several axles.
Temperature is of little importance in short-term dynamic tests; otherwise
further arrangements must be made [78].

c) Horizontal transverse forces are assessed on the basis of bending stresses
1n the rail web according to Fig. 10.5. Two strain gauges are fastened vertically
on the neutral axis of the rail according to Fig. 10.5 and are connected to
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adjoining branches of a Wheatstone bridge. These strain gauges then show the
difference of strains & — g; the bending stress is found from the equation

o= L(g - ¢), (10.2)

where F is the modulus of elasticity of the rail.
The bending moment M producing the stress o is

M= Wo, (10.3)

where W is the resistance modulus of the interacting rail cross section. This
cross section is a rectangle defined by the web thickness ¢ and the width b, so

that

W = —é- be> . (10.4)

The width b can be obtained from oscillographic records according to Fig.
10.6. Actually, only about one half this width operates (with regard to rail

length) so that
b, = b/2 (10.5)

red

is substituted for b in equation (10.4).

b)

D ed

Fig. 10.6. a) Oscillogram of bending stress ¢ in rail web, b) reduced interacting width b, ,.

The determination of the horizontal transverse force H, from the vertical
force F follows from the moment condition of equilibrium at the measured
place which, according to Fig. 10.7, is given by

M= Fa+ Hh. (10.6)
From this equation
H = % (M — Fa). (10.7)
or, using o and W,
1

H = = (Wo - Fa). (10.8)
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The distances a and A (fig. 10.7) are variable, but our purpose will be satisfied
approximately, if they are considered constant:
a=bl/2-r,
h=v—e—r,
where b, is the rail head width,
r — radius of rail head,

v — rail height,
¢ — distance of neutral axis from rail base.

Fig. 10.7. Forces acting between the wheel and the rail,

Figure 10.7 and equation (10.8) represent the force in the left-hand rail (in
driving direction). The condition of equilibrium in the right-hand rail (10.6) is

M= —-Fa + Hyh , (10.9)
so that the horizontal transverse force is
1
Hy = Z (Wo + Ia). (10.10)

The positive direction of vertical force is assumed downwards, horizontal
force to the right, and positive moment clockwise.

The described method for measurements and assessment is simple, but it has
some disadvantages: with regard to its fastening the interacting rail width is
rather variable, the necessity of simultancous measurements of the vertical
force, etc. Therefore, more accurate, but also more complicated methods for
measurements of horizontal transverse forces were devised [47].

10.1.2 Vertical axle forces

Instantancous dynamic vertical axle forces were measurcd at midspan of
many bridges, so that the data of about 30 000 axles were obtained.

An example of the measurements on a bridge with freight transport is shown
in Fig. 10.8, while an analogous histogram of vertical axle forces on a bridge
with major passenger transport is given in Fig. 10.9. For the numbers of tested
bridges see Table 12.6. The traffic load characteristics pertaining to these two
bridges are tabulated in Table 10.1. The measurements on both bridges lasted
24 hours; annual data were obtained by extrapolation.
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Extensive measurements of {raffic loads and vertical axle forces were carried
out on one of the most heavily trafficked bridges of the CSD, where — according
to Table 10.2 — the annual traffic load amounts to 39.6 X 10" tonnes per year.
The measurements concerned 180 trains with 13 733 axles, a survey ol which is
given in Table 10.3.

In this particular case the axle forces were measured 53.13 m in front of the
bridge midspan (F7) and at midspan (F2). Detailed results are shown in Tables

10.3 and 10.4.

1
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Fig. 10.8. Frequency histogram of vertical axle forces F on a bridge with prevailing freight transport.
100% = 5242 axles, traffic load 23.7 X 10/ tonnes per year, F — mean value, s, — standard deviation
(steel plate girder bridge, No 2,/=2 X 16.2 m).
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Fig. 10.9. Frequency histogram of vertical axle forces F on a bridge with prevailing passenger trans-
port, 100% = 2998 axles, traffic load 12.75 X 10" tonnes per year, F — mean value, s, — standard devi-
ation {steel truss bridge, No 3,{ =30.32 m).
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TaBLE 10.2. Traffic statistics of a very heavy trafficked CSD bridge (No. 1,/ =32 m)

Trains
Together
Passenger Freight
Number of trains per year 11 480 25378 37218
Mass of trains per year (t) 53 % 10° 34.3 x 1¢° 39.6 x 10

TaBLE 10.3. List of investigated trains on a very heavily trafficked CSD bridge (No. 1,7/ =32 m)

Weight of trains
Number | Number Measured From
of of traffic
i trains axles In front On the bridge statistics
Trains of the bridge
FI F2
kN kN kN
Passenger 57 2272 259770 282 510 301 330
Freight 05 11 306 1 643 640 1736 700 1 631 8§70
Work 10 55 10 905 11 265 10 515
Calibration 18 100 18 270 19 170 17 310
Together 180 13733 1932 585 2 049 645 1 961 025

Extensive experiments have yielded the following most important conclu-
sions concerning vertical axle forces:

— instantaneous dynamic axle forces acquire random values depending on the
vibration of both the vehicles and the bridge;

— histograms of axle forces, usually possess three peaks, the ocurrence and mag-
nitude of which depends on the type of traffic on the given railway line. The
first peak of about 180-200 kN characterizes the locomotives and fully loaded
freight cars. The second peak of about 100 kN suggests the presence of pas-
senger cars and not fully loaded freight cars, while the third peak of about 50
kN characterizes empty freight cars;

~dynamic axle forces on the bridge and in front of it do not differ much,
although in many cases the forces on the bridge were slightly higher. These
differences, due to the dynamic interaction of vehicles with the bridge, were
covered by a [arge variation in experimental results;

— the load data obtained from traffic statistics are in relatively good agreement
with the sum of the measured axle forces.
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TaABLE 10.4. Statistics of axle forces on a very heavily trafficked CSD bridge (No. 1,/ =32 m)

193

h— Axle force
Trains Quantity Unit In front
On the bri F
of the bridge FI n the bridge F2
n 1 2272 2272
max F kN 255 235
F kN 114.3 124.3
Passenger S, kN 35.97 36.49
14 1 0.315 0.293
S kN 0.755 0.766
n 1 11 306 11 306
Froieh F kN 145.4 1536
reight S, kN 49.27 53.20
| % 1 0.339 0.346
Sr kN 0.463 0.500
n 1 55 55
max F kN 225 255
F kN 198.3 204.8
Work S, kN 36.8 41.66
| 1 0.186 0.203
Sr kN 5.00 5.62
n 1 100 100
max F kN 195 225
N F kN 182.7 191.7
Calibration 3 kN 19.1 14.07
%4 1 0.105 0.073
Sr kN 1.91 1.41
n 1 13733 13733
max F kN 225 285
F kN 140.7 149.3
Toget
ogether s, kN 48.78 51.99
%4 1 0.347 0.348
Sr kN 0.416 0.444
Symbols: n number measurements
max F maximum axle force
F mean axle force
S, standard deviation
V =S./F coefficient of variation
S standard deviation of mean axle force
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10.1.3 Horizontal transverse wheel forces

Horizontal transverse wheel forces measured on the bridge in a straight line
according to the method described in Sect. 10.1.1 have yielded values within the
limits of about 10 kN and 30 kN with a mean value of 24 kN. They act mostly
outward from the longitudinal bridge axis, but their absolute values on the
right-hand and the lefi-hand rails differ very little (sec Table 10.5).

The dependence of horizontal transverse forces H, on vertical forces F was
analyzed statistically. Table 10.5 shows that this dependence is statistically
fairly significant, which follows from the small standard deviations and the rei-
atively high correlation coefficient.

For the same reason the ratio of horizontal and vertical forces was found for
Table 10.5, which amounts, on average, to

H/F =028. (10.11)

Also linear regression of horizontal transverse forces H, as a function of velo-
city V and vertical wheel forces F was investigated according to the equation

H =a+ bV + cF (10.12)

¥
where a, b, ¢ are regression coefficients.

The resulis of the calculations are given in Table 10.6 which shows that in the
investigated range of low velocities between 0 and 60 km h™ the horizontal trans-
verse forces do not depend significantly on the velocity. However, the regression
analysis has also confirmed the conclusion that the horizontal transverse forces
amount to about one third of the magnitude of vertical wheel forces.

The horizontal longitudinal forces are dealt with in detail in Chapter 8.

TABLE 10.6. Linear regression of horizontal wheel forces H, (kN) as a function of velocity V
(km h™) and vertical wheel forces F (kN): H, = a + bV + cF (steel truss bridge, / = 25.85 m)

o . Locomotive type Usual
Characteristic Symbol Unit traffic
T4783 | T 679.1
Number of measurements A 1 314 202 303
Coefficient of determination R 1 (0.383 0.234 0.611
@ kN -2.801 0.699 —-8.686
Regression coefficients b kN h km™ 0.004 -0.004 0.076
c 1 0.201 0.307 0.345

10.2 Axle spacing

The axle spacing of railway vehicles is a deterministic quantity in the case
when known vehicles travel along the bridge. This particularly applies to pas-
senger trains. In the case of current traffic — especially if it involves mixed
[reight trains — the vehicle composition is unknown; therefore, the axle spacing
is also considered as a stochastic quantity.
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This phenomenon is shown in Figs 10.10 and 10.11 which give three-dimen-
sional presentations of the frequency of the occurrence of axle forces F and the
respective axle spacings a. The first axle has been omitted to make the number

of axles correspond to the respective number of axle distances.
nk
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Fig. 10.10. Frequency histogram of axle spacing a and axle forces F, passenger trains (steel plate gir-

der bridge, No 6,/ =35m).
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Fig. 10.11. Frequency histogram of axle spacing a and axle forces F, freight trains (steel plate girder,
No 6,/ =35 m).
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Figure 10.10 applies to passanger trains (light-weight locomotive units), while
Fig. 10.11 applies to freight trains. Both figures illustrate the above mentioned
statement, i.e., the deterministic spacing of axles in the case of passenger trains
and the mostly stochastic spacing in the case of freight trains.

The basic statistical data on axle spacing for the given case are tabulated in
Table 10.7. The spacings were determined from the oscillographs of axle forces
with the assumption of constant velocity of motion which was also measured by
an independent method.

TaBLE 10.7. Statistical characteristics of axle spacing (steel plate girder bridge, No. 6,/ = 35 m)

Trains
Characteristic Symbol Unit
Passenger Freight Together
Number of measurements n 1 35 124 159
Mean spacing a m 5.54 3.83 4.21
Standard deviation 5, m 3.67 1.95 2.52
Variation coefficient V=s/a % 66.32 50.87 59.96

10.3 Velocities

The speed of train on bridges depends on the maximum permitted track velo-
city in the given section and/or local conditions, such as gradient, curve, prox-
imity of signal equipment, etc.

Surprisingly, the train speeds in the set of passenger trains do not differ much
from those of the set of freight trains, which is testified to by a relatively low
variation coefficient of these two sets in Table 10.8.

For all trains, however, the histogram of velocity frequencies is rather flat
(Fig. 10.12).

TABLE 10.8. Statistical characteristics of train velocities (steel plate girder bridge, No. 5,/ = 30 m)

—
Trains
Characteristic Unit
Passenger Freight Together

Number of measurements 1 31 44 75
Maximum velocity kmh' 104.0 73.7 104.0
Average velocity km h' 75.8 47.5 59.2
Standard deviation km h”' 1496 10.93 18.9
Variation coefficient 1 0.197 0.230 0.319
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Fig. 10.12. Frequency histogram of velocities ¢, 100% = 75 trains, traffic load 20.1 X 10° tonnes per
year, ¢ — mean value, s, - standard deviation (steel plate girder bridge, No 5, / = 30 m).



11. Statistical counting methods for the classification
of random stress-time history

The stress-time history of railway bridges due to the passage of trains con-
sisting of vehicles of different types is a more or less random process. The ran-
dom component in the length coordinate (along the train) is usually higher than
the dynamic component, because in mixed freight trains different axle forces
follow with unequal spacings. An example of the stress-time history in a railway
bridge is shown in Fig. 11.1.

sy
F1 2%
100 -
;
201,
1004 KN “ .
5 |

301
M 201 MPa

101
¢ gg.é MPa MW’

107 =T
300}
20

3 T VWAL ANAAAARAD A

0

Fig. 11.1. Example of stress-time history in main girder (M), cross-girder (C) and stringer (L) of a
32 m span steel railway bridge (No 1) during the passage of a mixed freight train constaining 35 cars
driven by an electric locomotive type E 699.1 at the velocity 30 km h™'. Instantaneous dynamic axle
forces 53.15 m in front of the bridge (F1) and at midspan (F2).

'The analysis and classification of the stress-time histories represent a specific
problem in structural dynamics.

The random processes in accordance with Sect. 1.4 are described by sta-
tistical characteristics of the first order (mean value, variance, standard devi-
ation, probability density) and/or of the second order (correlation function,
power spectral densities). For the problems of strength, fatigue and reliability
of structures, however, special methods have been developed classifying the
extreme values of random functions and the modes of their alternation. These
methods, intended to characterize the random process with reference to fatigue
damage, are of empirical character only. They endeavour to replace the random
process with a certain number of equivalent complete stress cycles, often
regardless of their sequence in time. Equivalence between these methods is
achieved by making the fatigue life the same.
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This chapter will give a survey of the most important methods of classifica-
tion of stress-time histories. Particular attention will be paid to the rain-flow
counting method which has been used for the analysis of structures subjected to
fatigue load with ever increasing frequency. For this reason, this chapter de-
scribes in some detail both the method itself and the instrumentation for the
evaluation; also a flow diagram and computer program are given.

11.1 Statistical counting methods

To clarify the concepts, Fig. 11.2 contains the terms most frequently used
in the ficld of the statistical counting methods. There are a number of such
methods, the most important of which are described in this chapter; for others
see [49], [51], [93], [143]. All methods depend on the sensitivity of the respect-
ive devices, i.e. on the counting dead-zone in which the instruments are not able
to record the vibrations (see Fig. 11.2).

5 |
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—1

Fig. 11.2. Most important terms in counting methods:

O - absolute maximum within the interval {0, /), @ — absolule minimum within the interval {0, 1),
U - positive local maximum, B - negative local maximum, V — positive local minimum, ¥ — negative
local minimum, A - positive stress range, A — negative stress range.

The positive stress range and the negative stress range of equal magnitude form a complete cycle.
/I/l — insensitive dead-zone, 0 —  basic (mean) level.

11.1.1 Sampling method

In the sampling method, [49], according to Fig. 11.3, the stress values are
counted at regular time intervals 7. To characterize the stress-time history
faithfully, it must hold that 7" < 1/(2f), where f is the highest frequency. In
some classification instruments, the counting is carried out during the short
interval 7, which should be less than about 7/50 to obtain sufficiently accur-
ate results.

There is also a variant of the sampling method, [49}, which, counts the max-
imum value in every interval T (see Fig. 11.4) The sampling methods depend on
the position of the base (or zero) level.
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Fig. 11.3. Sampling method, 7' < 1/(2f), T = T/50, O — count.
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Fig. 11.4. Sampling method counting the maximum in every interval T, O — count.

11.1.2 Threshold method
The treshold method, [49], adds the time X, for which the recorded stresses

are within the ith class, i.c. between the thresholds i — 1 and i (see Fig. 11.5).

6 4

-1 0
|
e t

P

Fig. 11.5. Threshold method, ¥, , O — start of counting in the i-th class, ® — stop of counting in the

ith class.

11.1.3 Peak counting methods
a) Absolute peaks method
The absolute peaks method, [49], counts the absolute maxima within the indi-
vidual intervals above the mean level and absolute minima within the intervals
below the mean level. In Fig. 11.6, the absolute maxima are 3, 7, 11 and the
absolute minima 6, 8, 12. The result depends on the position of the mean level.

Fig. 11.6. Peak counting methods, O — transition of mean (basic) level.
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b) Relative peaks method
The method of relative peaks, [49], counts all local maxima above the mean
level (i.e. the points 7, 3, 5, 7, {1 in Fig. 11.6) and all local minima below the
mean level (i.e. the points 6, 8, 10, 12 in Fig. 11.6). The result depends on the
position of the mean level.

c¢) Local peaks method
The method of local peaks, [49], counts separately all local maxima (Z, 3, 5, 7,
9, 11 in Fig. 11.6) and all local minima (2, 4, 6, 8, 10, 12 in Fig. 11.6). The result
does not depend on the position of the mean level.
In addition to these principal methods, there are other peak counting
methods, see [143].

11.1.4 Level crossing methods

a) Level crossing count
The level crossing method, [49], counts every signal transition across the class
level separately for the positive transition on the rising parts of the process
above the mean level and separately for the negative transition on the decaying
parts of the process below the mean level (see Fig. 11.7). The transition across
the mean level are usually inctuded in the first positive class.
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Fig. 11.7. Level crossing count,
O — count in positive classes, ® - count in negative classes.

b) Fatigue meter method
This method, [51], is similar to the level crossing count, only every lower (higher)
subsequent class within one interval above {below) the basic level is counted only
once (see Fig. 11.8). The intermediate small stress cycles are lost in this method.
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Fig. 11.8. Fatigue meter method,
O — count in positive classes, @ — count in negative classes.
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11.1.5 Stress range counting methods
For further methods see [143].

a) Range counting
The stress range method, [49], [143], counts the differences between two

succeeding local extremes (peaks). Every stress range is considered as a half-
cycle (see Fig. 11.9). The large dead zone will neglect small stress ranges.

64 Mig
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Fig. 11.9. Stress range and range-mean counting,
A, — positive stress range, A, — negative stress range, M, — mean value of siress range.

b) Range-pair counting
This method, [143], counts the stress ranges as in the stress range method.
The positive and negative stress ranges of equal magnitude are arranged to-
gether and form one complete cycle regardless of their sequence in time.

Unpaired stress ranges are lost (Fig. 11.10).

o}

) 2 [\ ZS\'BZJ‘BA l‘_
s

Fig 11.10. Range-pair counting, complete cycles Ay, Ay, Ay, A, uncounted stress ranges in the
interval {0, £): Agy,,.

¢) Rain-flow counting method
The rain-flow method counts complete stress cycles corresponding to the
Closed loops in the o(¢) diagram; for details see Sect. 11.2.

11.1.6 Multiparametric methods

a) Range-mean counting
This method, [51], is identical to the stress range method (see Sect. 11.1.5a);
moreover, it also records the mean values M, which are assigned to the respect-

ive siress range A, or A, (sce Fig. 11.9).
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b) Correlation table
More complete information about the random process is afforded also by the
correlation table [129] — see Table 11.1 — in which the occurrence rates of local
maxima x,, are recorded vertically and the occurrence rates of local minima x,,
horizontally, classified into a certain number of classes. In every field of the cor-
relation table, a local maximum is assigned a local minimum. The correlation
table makes it possible to derive the empirical probability density of maxima x,,
(in vertical columns), of minima x,, (in horizontal lines), of stress ranges x; (in
the direction of the main diagonal) and of mean values x, (in the direction of

the secondary diagonal).

TaBLE 11.1. Example of a correlation table of maxima and minima and the derived empiric
probability densities of maxima x,,, minima x,,, stress ranges x, and mean values x, according to [129],
n, = number
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11.2 Rain-flow counting method

This method was reported orally in Japan in 1968 for the first time [139]; it
first appeared in the literature in 1972 when it was described by N. E. Dowling,
[51]. In the CIS. a very similar count was developed under the name of ,full-
cycle method‘ and to date there exist several variants of this count all over the
world, [162], [220].

The method obtained its name from an idea that water is flowing along a
pagoda-shaped roof (Fig. 11.13). In order to obtain such a pagoda-shaped roof
the g(r) diagram must be rotated by 90° (time-axis downwards).
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11.2.1 Justification of the counting method from the o (¢) diagram

'The decisive component for the fatigue of building materials consists of the
irreversible part (the so-called hysteresis) in the relation between the stress o
and the strain ¢, because the fatigue damage is particularly affected by the al-
ternate plastic deformations (see [119]). The evaluation of random processes
with reference to the fatigue of structures, therefore, must be based not on the
stress-time history (Fig. 11.11), which is only in the elastic region proportional
to the strain &(r), but from the stress-strain diagram (see Fig. [1.12).

o | 10

'

Fig. 11.11. Siress-time history.

6l

Fig. 11.12. Stress-strain diagram,

complete cycles: 2-3-27,
5-6-57,
§-9-8",

half cycles (stress ranges): /-2-4,
4-5-7,
7-8-10.

The stress-time history in Fig. 11.11 is converted into the stress-strain
diagram of Fig. 11.12; on the other hand, Fig. 11.13 shows the strain-time
history of the same random process. These three relations must be clearly
distinguished.

The fundamental assumption of the rain-flow counting method is that the
fatigue damage due to small induced stress cycles may be added to the fatigue
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damage due to large stress cycles. If the cycle I-4 in Fig. 11.11 is interrupted
by a small cycle 2-3-2" the coordinate of point 2’ is very near to the point 2
in Fig. 11.12 and the material acts as if no interruption by an inserted cycle
has taken place. Moreover, one complete cycle 2-3-2’ has remained at

disposal.

Fig. 11.13. Dependence of strain £ on time 7,
complete cycles: 2-3-2],

5-6-5,

8-9-8,
half cycles (stress ranges): 7-2-4,

4-5-7,

7-8-10.

The rain-flow counting method evaluates the strain-time history in the
same way as the material reacts to a random loading process. It counts both
the large amplitudes (half-cycles) and, separately, small inserted stress
cycles (complete cycles), see Figs 11.12 and 11.13. This results in classified
stress ranges which are paired into complete stress cycles after assessment,

see Fig. 11.14.

10

6 4

4
+ + t g g + +
[ 2 2 6
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7 7 1 9 3 5 5
Fig. 11.14. Idealized stress-time history equivalent in respect of fatigue with stress-time history
in Fig. 11.11 (after classification by the rain-flow counting method).
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Among all the methods described only the rain-flow counting method faith-
fully reflects the behaviour of the material and characterizes its hysteresis. For
this reason it is recommended for the evalution of random stress-time histories
with reference to the fatigue of materials. Every time interval of stress is
counted only once and the same result is obtained, if the evaluation proceeded
in the opposite direction.

The method, however, does not explain the fatigue process itself; it only
describes it in a phenomenological way.

11.2.2 Counting rules
The progress of the stress-time history processing (Fig. 11.11) by the rain-flow

method is shown in Fig. 11.13 in which the strain-time history has been rotated
by 90° to enable the idea to be grasped of rain-flow along a pagoda-shaped roof.
The following rules for the strain range counting are applied (one complete
cycle = two strain ranges):

(1) One strain range is counted, when water flows from the initial strain to
the maximum, from which it flows downwards along the next roof slope to the
next maximum.

The flowing water is stopped, when

(1a) the strain minimum is lower than the initial strain,

(1b) it meets some former rain-flow, or when

(1c) it reaches the end of the strain record.

(2) The strain range is counted, when the water flows (from the highest
maximum attained during the preceding range) downwards along the roof to
the nearest minimum, from where it flows down to the nearest roof slope and
to the next minimum.

It stops only, when

(2a) the strain maximum is higher than the initial maximum,

(2b) it meets some former rain-flow,

(2c) it reaches the end of the record.

(3) In this way the strain ranges are counted by the successive application
of Rules (1) and (2).

(4) The roof parts which have not been covered by the rain-flow so far are
counted as

(4a) the flow beginning in the maximum and flowing down across the fol-
lowing minima as described in Rule (2), or

(4b) the flow beginning in the minimum and flowing down accros the fol-
lowing maxima as described in Rule (1).

In either case the flow stops, when

(4c) it meets an earlier strain which is more extreme than the initial point
of the flow, or when

(4d) it meets an earlier flow.
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11.2.3 Algorithm for a computer
The rain-flow counting method is easy to program. There exist a number of

programs for the evaluation of random processes by this method which provide
slightly different results. One of the simplest programs is based on the following
algorithm (Fig. 11.15):

(1) The local peaks A(0), A(1), ..., A(k) are read from the stress-time his-
tory and digitalized.

(2) The set of local peaks obtained is decomposed into half-cycles and

cycles.
(3) The condition for a cycle counting is defined by the relations

Al - 1)< AG + 1)< A() < AG + 2) (1L.1)
or

Al = 1) = A(G + 1) >A() = A(G + 2), (11.2)
see Fig. 11.15a, b.

6 | Aliv2) o p Ali-)

Ali+1}

Ali+1}

Alis2)

b) t

Afi-1)

a)

Fig. 11.15. Two basic cases of complete cycle counting in the rain-flow method according to Eq. (11.1)
and Eq. (11.2):

a) rising, b) decaying part of the o (1) relation.

A —local extreme, 1 — order of local extreme, s — stress range between the 1 + 1 and the ith local extremes.

(3a) The computation proceeds from the lowest i = 1 to the highest
i = k — 2. If the conditions (11.1) or (11.2) have been complied with, one cycle
= 2 half-cycles are counted with the range of

s = |AG) - A@ + 1) (11.3)
and with the mean value of
A@) + A + 1)
5 .

(3b) The peaks A(i) and A(i + 1) are eliminated from the sequence of
extremes and the sequence is re-numbered.

(3c) The procedure according to (3a) and (3b) is repeated until at least one
cycle has remained from the remaining sequence.

M =

(11.4)
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(4) If the decomposition into cycles has been completed, the stress ranges
(i.e. the absolute values of differences of adjoining extremes) in the remaining
sequence are called half-cycles. An example of completed decomposition into
cycles is shown in Fig. 11.16; the remaining sequence is decomposed into half-
cycles.

b) Y

Fig. 11.16. Decomposition into cycles finished, counting of half-cycles to be made in the a) rising,
b) decaying part of the of¥) relation.

Local extremes do not satisfy Eqs (11.1) and (11.2).

A —local extreme, i — order of local extreme, s — counted half cycle (stress range).

(5) The cycles and the remaining half-cycles of equal magnitudes are added in
the course of the calculations; the result is a table of stress range frequencies, usu-
ally represented in the form of a frequency histogram and called the stress range
spectrum. An example of such a spectrum obtained on a steel railway bridge
during the passage of a train is shown in Table 11.2 (see also Figs. 12.4 and 12.5).

Table 11.2. Example of a stress range spectrum
obtained on a cross-beam of the stecl railway
bridge No. 6 (Table 12.6) during the passage of
a mixed freight train (diesel-electric locomotive T
478 + 10 cars + T 478), total weight 7420 kN, speed
385kmh”

Stress range Ao Number of complete
(MPa) stress cycles
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Fig. 11.17. Flow diagram of the computer program for the rain-flow counting method.



TabLE 11.3. Computer program for the rain-flow counting method (Hewlett Packard Language)

oG =1 Oy bh B

-b-bﬁ-b-lh-ih-lhblu-)muJuJuJUJUJL;JUJNNNNM[\JNNN[\)WHWHHHHWHH
N n LD = DN 00 SR W = O N0 R N - OO 00N WM =D

|

0:
1:

spc 3; prt "RAIN FLOW METHOD?”; prt "X X X X X X X X X X X X X X X7

dim, X, Y, H, T, T[0:30], A[0:4100], D{0:30]
s spe; fxd 0; ent "MAX. RANGE = 77, H; prt "MAX. RANGE”, H
- ent "NO OF CLASSES =77, T, prt "NO OF CLASSES”, T
forI=1toT
- [H/TID({I]
:next |
- spe; fxd 0; ent "STRAIN GAUGE?”, X; prt "STRAIN GAUGE”, X
: fxd 6; ent "CALIBRATION?”, C; prt "CALIBRATION", C
- "TEST RUN": spc 3; fxd 0; ent "NO OF TEST RUN?”, Y; prt "NO OF TEST RUN", Y; spc
forI=1toT
- O)T{I}
:next [

- fint 2£3; time 6000; on err "ALL”

: dsp "START OF ANALYZER”

:for I =1 to 4100

:red 3, A[1], B

:next I

: "ALL™ T}K; fxd 0; prt "NO OF EXTR”, K
cforI=1t0o K

cotd A[I[JA[L}

- if AJI]) = 128; A[1]—255}AlT]}

: CA[T}A[]

rnext [

s KL 1)L

Dif A[T-1] = A[I+1] and A[I+1[(A[I] and A[I} = A[I+2]; gto +3
(if A[I-1]) = A{I+1] and A[I+1]}A[I] and A[I]) = A[I+2]; gto +2
: I+1}; gto +6

:abs (A[I]-A[I+1]))S; 2)E; gsb 44

cforJ=I+2to K

cA[JA[T-2]

1 next J

t K-2jK

(I =K-2; gto -8

HK # L gto — 10

forT=110K — 1

:abs (A[I] —A[I+J])IS; 1}E; gsb 44

‘next I

:pri "CLASS NUMBER™; fxd 0; fmmt {3, ”—", {3, {9
forl=1t0T

swrt 16, D[I-1], D[], T[1]

inext 1

:gto "TEST RUN”

: "CLLASS™

tforN=1toT

tif 8) = D[N—1] and S<D[N]; T[N] +E} T[N]; ret
:next N; ret
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The described algorithm of the rain-flow counting method is represented by
the flow diagram in Fig. 11.17. On this basis a program in the Hewlett Packard
Language for a desk calculator Hewlett Packard 9825 was prepared. An excerpt
from the program is presented in Table 11.3.

Figure 11.18 shows a schematic diagram of an evaluation instrument line for
data processing by the rain-flow method. If the stress-time history has been
obtained by calculation, it is most advantageous to evaluate it by the rain-flow
counting method on the same computer. If the evaluation involves experi-
mental data recorded on a measuring tape-recorder, it is necessary first to digit-
ize them, feed them to the computer and eliminate local extrems. The feeding
can be checked on an oscilloscope.

The method described may easily be extended by the evaluation of the mean
values. In this way a biparametric method is obtained which classifies the stress
ranges and their mean values and thus describes the random process in greater
detail.

storage of results
for further processing

Note: The blocks in dashed lines
are necessary for the evaluation
of experimental data

1

| I

: | i

| Sampling | Printer
: Measurin analyzer : Display -
: 9 > or —»  Computer [—» Py

| tape recorder - | check

i analog-digital i

, I of results
! converter !

| !

I |

: :

i = Oscilloscope E Magnetic tape
! : Disc memory —
: :

] i

| I

| I

i |

I |

Fig, 11.18. Scheme of evaluation line for data processing by the rain-flow counting method.

11.3 Appreciation of counting methods

In the investigation of railway bridge vibrations, strength, fatigue and reliab-
ility, various statistical counting methods have been applied to classify the
extreme or other stress values and the mode of their alternation in accordance
with several requirements.

These clasification methods are of empirical character; the most widely
known methods have been briefly described in Sect. 11.1.

The sampling method (Sect. 11.1.1) is used chiefly for the computation of
statistical characteristics of the first and of the second order, as the numerical
computation of these quantities operates with the data obtained in this way.

v ot

|
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11.3 Appreciation of counting methods 213

The probability of transition over a certain stress level can be ascertained by the
threshold method (Sect. 11.1.2) or by the level crossing count (Sect. 11.1.4a).

The peak counting methods (Sect. 11.1.3) describe the random processes
mostly with undue pessimism, while the fatigue meter method (Sect. 11.1.4b)
with undue optimism in respect of the fatigue of structures.

The stress range counting methods (Sect. 11.1.5) are based on the knowledge
that it is the stress range which is the statistically most significant factor affect-
ing the fatigue of structures. The most frequently used method is the rain-flow
counting method which faithfully characterizes the irreversible stress compon-
ents of the stress-strain diagram that are decisive for the fatigue of structures.
Moreover, this method also makes it possible to evaluate another parameter,
e.g. the mean value of the vibration. The algorithm, flow diagram and computer
program are easy to write.

11.4 Statistical evaluation of stresses

In selected places of the bridge maximum or minimum stresses can also be
evaluated statistically. In this process two methods have been applied.

11.4.1 Stress extremes during train passage

From every recorded train passage, one extreme stress value is counted, i.e.
max o in the tensile bridge element or min ¢ in the compressed bridge element,
or both, if the element is subjected to alternate loading. The set of these ex-
treme values is evaluated statistically.

An example of statistical evaluation of maximum stresses in the tensile part
of a two-span continuous girder is shown in Fig. 11.19. The histograms can only
occasionally by smoothed by the Gauss curve.

This method of evaluation is used for the calculation of the probability that a
certain stress threshold will not be exceeded. The threshold usually equals the
mean value of the set ¢ and the y— multiple of standard deviation s

Ploc< 0+ vs) = @(y). (11.5)

"Here the function

P(x) =

1 ) 2 1 X
G j_::xp (- y'/2)dy = 5 [1 + erf[zlf2 H (11.6)

represents the normal Gauss distribution. It is often assumed without any de-
tailed verification.

Table 11.4 gives the coefficients of reliability v and their respective probabil-
ities @(y) according to (11.5) for several practically used values for the one-sided
probability of Gauss normal distribution, which is most frequently used in engin-
€ering practice.
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Fig. 11.19. Histogram of maximum stresses during the passage of 142 (100% ) trains in the main con-
tinuous girder bridge (No 2), 2 X 16.2 m, 6 = 39.3 MPa, s = 17.2 MPa.

Table 11.4. Probability that the mean stress value
¢ and the y— multiple of the standard deviation s
will not be exceeded (one-sided probability of
Gaus normal distribution)

Y

P(s <G +ys)= &)

0.842
1.282
1.5

1.645
2.326

3.090

0.5

0.8

0.841 31
0.9

0.933 19
0.95

0.977 235
0.99

0.998 648
0.999
0.999 968 7
0.999 999 7

In Table 11.5, the set of measurements from Fig. 11.19 is analyzed statistically

and supplemented with the probability

P(o > max max o) (11.7)
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that the stress will not exceed the max max of the whole set of max max o, and
the probability

P(o > o, 9) (11.8)

that the stress will exceed the stress due to the standard load o, multiplied by
the standard dynamic coefficient 8. This last named probability is usually very
low in practice.

TaBLE 11.5. Statistical evaluation of stresses in the main girder of the
bridge No. 2 from Fig. 11.19

Method

Quantity Unit

Peak counting Sampling
Number of measurements 1 142 142
Maximum measured value MPa 72.6 68.8
Mean value MPa 303 341
Standard deviation MPa 17.2 16.2
Variation coefficient 1 0.438 0.475
c,0 MPa 160.52
P{or > max max o) 1 0.026
P 1 x10™"

(0> 0,0) | 5

11.4.2 Statistical evaluation of resuits of the sampling method

Some evaluation instruments evaluate the stress-time history by the sampling
method (Sect. 11.1.1 and Fig, 11.3). The results of an example from Fig. 11.9 are
tabulated in Table 11.5.

This method can be used for the computation of the statistical dynamic
coefficient

5=1+lf—_§—,
c

(11.9)

where ¢ — mean stress value obtained by the sampling method,
' s —standard deviation of this data set,
v — coefficient of reliability.

In bridge dynamics, the reliability coefficient is usually considered as y= 1.65
which guarantees 95% reliability according to Table 11.4. It means that the mean
stress value, multiplied by the statistical dynamic coefficient (11.9), will be
€xceeded in 5% of cases only.

Eq. (11.9) includes both the random load distribution along the length of the
train and the actual dynamic component. The statistical dynamic coefficient
(11.9) works well, when the dynamic coefficient during the passage of whole
trains is to be found.
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The classical dynamic coefficient

5 - max v(x, ¢) ’ (11.10)

vO
where max v(x, /} — maximum dynamic deflection (or stress),
Vo — the same value due to the static load,
can be used in practice only for the passage of a test vehicle, when the static test

or the drive at a very low speed can be performed. This is not possible in the
majority of cases for trains in every-day traffic.
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With references to the fatigue of steel structures it has appeared, [59] to [61],
that the most important parameter influencing it is the stress range

Ac =0, — O (12.1)

max nin

defined as the difference between the local maximum o,,, and the local min-
imum ©,,, of stress. The values of o,,, and g,,, are considered algebraically, so
that the stress range Ao is always a positive value. Ao is considered the most
important parameter with respect to the response of the structure to current
loading. Otherwise, fatigue is influenced substantially by stress concentrations,
notches, weld details, and so on.

In case of complex stressing, e.g. stochastic stress-time history, the stress
range is obtained by one of the statistical counting methods described in detail
in Chapter 11.

For the fatigue of bridges, it is important to know the number of the indi-
vidual stress ranges due to traffic loads per unit of time, e.g. per day, or per year.
For this purpose, the stress ranges are classified into several (usually 20) classes
and the number of stress ranges or stress cycles is ascertained in every class. In
this way the histogram of stress range frequencies is obtained; it is called the
stress spectrum which should not be confused with the frequency spectrum and
the power spectral density.

The counting of stress ranges can be done either theoretically or experimentally.

12.1 Theoretical calculation of stress spectra

In the research program ORE D 128, [162], the problem was first solved
theoretically: the loading schemes of typical trains of individual railway admin-
istrations were driven along a triangular influence line of the bending moment
at midspan of a simply supported beam. The bending moment history thus
obtained was classified by the rain-flow counting method to obtain the bending
moment spectra. This procedure is represented schematically in Fig. 12.1. The
principles of classification by the rain-flow counting method are briefly recap-
itulated in Fig. 12.2.

12.1.1 Characteristic trains
The following typical trains were selected as characteristic: passenger trains
for suburban traffic, long-distance high-speed passenger trains, mixed freight



210 12, dtress ranges in steel railway bridges

trains with randomly arranged cars, and block freight trains carrying heavy

substrates.
For every train, the total weight XF, velocity V, number of axles i and axle

distances were determined.
For the CSD (former Czechoslovak State Railways), for instance, the follow-
ing trains were selected as typical trains (Fig. 12.3; for other railway adminis-

trations see [162]):

al
F
(kN) Fi
clmgl)
“ “l ¥ i“ W
b) lL
O Ja
c) lL
G(t)
(MPa)
-t
RAIN- FLOW
d}
. l
At ke il A (A
I
H N
At A

Fig. 12.1. a) Typical train with axle forces F, travelling at the velocity ¢, b) Influence line of bending
moment or stress at midspan of a simply supported beam, ¢} Computed stress-time history o{f) during
the passage of a typical train, d) Histogram of numbers #n, of stress cycles (stress spectrum) after
classification by rain-flow counting method; A, = Ac/(8 Ac,) is the dimensionless stress range Ag; in
the ith class.
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1. Suburban train unit, velocity ¥ =110 km h™".

2. Express train with a four-axle locomotive, V = 120 km h™".

3. Mixed freight train with two four-axle locomotives L, 20 four-axle cars not
fully loaded P and 20 cars fully loaded R, randomly assembled, V = 90 km h,

3A. The same train as in 3, but with a different arrangement, the numbers
of cars P and R remained the same (20 each), V=90 km h™".

4. Very heavy block freight train with two six-axle locomotives and 47 four-
axle fully loaded cars, V' = 90 km h™.

5. Heavy block freight train with one six-axle locomotive and 36 fully
loaded four-axle cars, V= 90 km h™".

6. Mixed freight train with two four-axle locomotives L, 8 empty four-axle
cars P, 20 over loaded four-axle cars R, 4 not fully loaded four-axle cars T,
4 medium-loaded two-axle cars B and 4 medium-loaded four-axle cars W. The
cars were randomly assembled, V' =90 km h™".

a) b)
G't) 86;
] A e —m e - -] 4
-4 ', \‘ ~4
1 11’3 \\ /@.\ """ - 1
- - A / A\ -
7AN A B tok =
ot I/ - -
” \\: S \\ f'\‘ K -
p l’ 2 ———————— -(‘\___‘_“10 < V
‘ -t
8 Y JAVAUN
0 0 ot 0 5 78 10!
c) d)
2n
4 —
_ 3 Ai [0-01]01-02|02-03]03-04 | - [09-10
>
=
2 2n 0 4 0 2 2
i
th n 0 2 0 1 1
9 l T 7 T+
0 05 1 k.=A6"./(5'A(5'n)

Fig 12.2. Rain-flow counting method:

a) stress-time history o(r), b) stress ranges after classification, c) stress range spectrum in a histogram
form, d) stress range spectrum in a tabular form.

2n, — number of stress ranges, 7, — number of stress cycles in the ith class.
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6x200 36x4x20 kN

5 HHH-

2923 23 48 T4 8
R e B A 2
25 3425 20 20

3F = 30000 kN V=30 km ' i=150

L P R T B w
4x220  4xB0  4x220 4x150 20 4x100 kN
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LLPRRPT-R-TRP-PR-R-PRT-BR-R-B-RRRRRBW-PW-RRPPRTRBWRWR

3F = 24 160 kN V =90 kmh' i =160

Fig. 12.3. Characteristic trains of CSD:

! — suburban train (multiple unit train), 2 — passenger train or express train (loco hauled passenger
train). 3 — mixed freight train, L — locomotive, P - four-axle not fully loaded car, R — four-axle fully
loaded car. 34, — mixed freight train with different car sequence in comparison to the train sub 3,
4 — very heavy freight block train, 5 — heavy freight block train, 6 — mixed freight train, 1. — locomotive,
P —four-axle empty car, R — four-axle overloaded car, T - four-axle not fully loaded car, B — two-axle
medium loaded car, W — four-axle medium loaded car. 3 F - total train weigth, V — velocity, i — num-
ber of axles.

12.1.2 Traffic loads
From the characteristic trains, the annual traffic load was composed for every

railway administration [162]. This quantity is given in million tonnes per year
transported over the given bridge. This traffic load is recorded in the statistics
of railway administrations. According to conditions prevailing on main and
secondary railway lines the traffic loads were classified into several groups. The
1example given in Table 12.1 gives an idea about the traffic loads on the CSD
ines:

IT - Very heavy traffic load of 60 X 10° t/year prevailed on some sections
of the main line of the CSD.

T2 — Heavy traffic load of 25 X 10° t/year on main lines of the CSD. (This
traffic load was increased in Table 12.7 and later to 30 X 10° t/year.)

I3 —~Medium traffic load of 10 X 10° t/year on other CSD lines.

14 - Light traffic load of 2 X 10° t/year on secondary CSD lines.
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The analysis of typical trains and traffic loads of the individual railway
administrations has revealed that the very heavy traffic load 77 of the CSD
represents almost double the heavy traffic load of the BR, DB, NS, SBB or
SNCF. A typical train for the railway traffic in the former Czechoslovakia
(CSD) was a mixed freight train with randomly-arranged cars. The opposite
extreme is represented for example by the trains of the NS, which consist
mostly of block trains with constant axle forces and regula{ axle distances,
see [162].

12.1.3 Bending moment spectra

The bending moment spectra were found by the method described above
with the following assumptions:

Typical trains were considered as axle forces only, i.e. only their weight
action was considered. Typical trains according to Fig. 12.3 were used for the
generation of characteristic traffic according to Table 12.1.

The bridge was represented by a simply supported beam and for the calcula-
tion of its stresses it is assumed a triangular influence line of the bending
moment at midspan. The bending moment was applied, because its use elim-
inates the influence of the cross section of a particular girder and the results,
consequently, are of more general use.

The dynamic action of trains was considered only by the standard dynamic
coefficient which depends, according to [212], on velocity and span.

The computations were carried out for the spans of 2, 3,4, 5, 7, 10, 15, 20, 30
and 50 m. Examples of the tables of bending moment range for the spans of 3,
3, 30 and 50 m are shown in Tables 12.2 to 12.5. Tables 12.2 and 12.3 give the
numbers 2n, (see Fig. 12.2) in the individual classes of bending moments in
kN m for all characteristic CSD trains. Tables 12.4 and 12.5 present analogous
data for typical CSD railway traffic 7/-74 according to Table 12.1.

However, it has appeared, [162], that the spectra obtained in this way afford
pessimistic results in respect of fatigue. This is due to the following:

The characteristic trains are heavier than the actual trains; also their com-
position resulting in the traffic loads 77 is different.

The actual velocities are usually lower than those considered theoretically.

The dynamic action of whole trains is actually lower than that considered
theoretically. The standard dynamic coefficient 6 = 1 + ¢, [212], covers the
highest dynamic actions of locomotives alone with 95% reliability, which are
higher than the actions of whole trains.

The spatial interaction of all bridge elements makes the stresses in them
lower than those considered theoretically.

Thus, the measured stresses are generally lower than the stresses determined
by structural analysis.
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TaBLE 12.1. Theoretical traffic loads of CSD consisting of characteristic trains (according to

223

Fig. 12.3)
Charac- Mass Number Anngal Round.ed—off
. load CSD teristic of one of trains traffic traffic load
Traffic loa train frain er vear load value
' (t) Pty (10°t) (10°t)
Passoncer 1 334 3 650 4
asseng 2 568 2190 '
71
very 3 2336 4000
heavy _ 4 4000 1 000 st
reight 5 3000 10 000 :
6 2 416 5 000
Together 25 840 57.8 60
1 334 5110 60
Passenger 2 568 7 665 :
T2
heavy 3 2336 2 500
Frcight 4 4000 500
relg 5 3 000 1500 18.8
6 2 416 2 700
Together 19975 24.8 25
1 334 3 650
Passenger ) 568 1825 2.2
T3
medium 3 2336 1 500
. 4 4 000 -
Freight
8 5 3000 _ 7.1
6 2416 1 500
Together 8 475 9.3 10
N 334 3 650
passeng 568 - 12
T4
light 3 2336 _
. 4 4 000 _
freight 5 3000 3 0.5
6 2416 200
Together 3850 17 2
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Consequently, the data on the numbers of stress ranges in Tables 12.2 through
12.5 must be considered as maxima. However, their calculation corresponds
with the methods currently used in structural analysis of bridges in accordance
with the respective standards and national codes.

12.2 Experimental stress spectra

The stress spectra were recorded experimentally in 8 steel railway bridges of
CSD, see Table 12.6. In the course of this investigation the response of the struc-
tures at selected points was measured under normal traffic conditions for a period
of approximately 24 hours. The stress-time history was recorded and the stress
ranges were classified by the rain-flow counting method according to Chapter
11 and Fig. 12.2.

In this way, histograms of stress ranges in all important elements of steel rail-
way bridges were obtained (main girder, diagonal of a truss, wind brace, cross-
beam, stringer, longitudinal stiffener and plate of orthotropic bridge deck) in
the most varied traffic conditions on railway lines with traffic loads between 2.1
x 10° and 39.6 X 10° t/'year. An example of an experimental stress spectrum is
shown in Fig, 12.4a and in Table 11.2.

The analysis of all 79 stress spectra has enabled the following conclusions to
be drawn:

a) The stress spectra include both the static and dynamic stress components
due to running trains. In accordance with the rain-flow counting method these
two components cannot be separated.

b) The number of stress cycles with large amplitudes is low. These cycles
correspond to the static component of the trains, the groups of heavy cars and
locomotives.

c) The number of stress cycles with small amplitudes is high. They charac-
terize the dynamic action of running trains and their effects on the vibration of
bridges.

d) The number of stress cycles in every class and the number and magni-
tude of classes depends on the intensity and composition of traffic loads.
‘Roughly speaking, the number of cycles is approximately proportional to the
magnitude of traffic load.

e) The number of stress cycles and the number of classes depend on the ele-
ment of the bridge investigated, i.e. particularly on the length and the shape of
the respective influence line as well as the cross section of the element. For this
reason, all principal elements of steel bridges which have mutually different
shapes of influence lines (main girder, cross-beam, stringer, etc.) were invest-
igated. It has appeared that in shorter elements the number of stress cycles is
usually higher than in longer elements. The stress spectra of less loaded and of
secondary bridge elements are rather poor.
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f) The histograms of stress ranges do not include any hypothesis of fatigue
damage accumulation or any hypothesis of fracture mechanics. The stress
spectra do not depend on Wohler fatigue curves, either; they represent merely
an evaluation of the response of the bridge to current traffic loads. From the
available analysis methods only the rain-flow counting method is applied to the
spectra.

g) A considerable number of oscillations arise usually in the lowest stress
range class. It is difficult to distinguish, whether they are due to mechanical
vibrations or to signal noise in the measuring instruments. For this reason, some
authors, e.g. [101], recommend neglecting these data entirely. For the method of
linear accumulation of fatigue damage, the number of stress cycles in the lowest
class is of little significance; therefore, this problem loses its importance to a
certain extent.

h) The variation in experimental results is considerable.
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Fig. 12.4. Histogram of frequencies of complete stress cycles in the main girder of the bridge No. 5
during the 24 hours traffic:

a) experimental spectrum, b) theoretical spectrum according to equations (12.5) and (12.9), g, = 5.013
MPa, ¢) theoretical spectrum according to equation (12.15), &, = 5.160 MPa, d) theoretical spectrum
according to equation (12.16), g, = 5.160 MPa.
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12.2.1 Empirical formula for the number of stress ranges

The first series of bridges investigated (Nos 1-5 in Table 12.6) provided 19
stress spectra which were statistically processed. To allow the comparison of
results from the measurements on various bridges and their elements the stress
ranges were written in the dimensionless form

Ao
A, = : 12.2
’ é Ao, ( )

where A, is a dimensionless stress range in the ith class,
Ao, - stress range,
§ - standard dynamic coefficient,
Ao, — maximum stress range due to the standard load.
Theoretically 4, can attain the value from 0 to 1 if the structure is not over-
stressed.
These standardized stress spectra were evaluated statistically by regression
analysis. The following parameters were selected as independent variables:
T - traffic load, i.e. weight of all trains passing along the bridge in a year
(in million tonnes),
[ - length of the bridge element in metres,
A —0;0.1;0.2;0.3;0.4;0.5;0.6;0.7, 0.8, 0.9; 1 the dimensionless stress range
(12.2).
Out of the four applied regression relations, the power regression

n, = alT’l°Ae” (12.3)
has appeared most satisfactory, where
n, — number of stress cycles in the ith class per year,
a, b, ¢, d - regresion coefficients (12.4),
s — standard deviation,
k =1.65 - coefficient guaranteeing 95% reliability.
Experimental data from the bridges Nos 1-5 (Table 12.6) have provided the

following regression coefficients for railway bridges:

a=17.742, ¢ = —0.354,
b= 0.860, = —4.464,
s = 1323, k= 1.65. (12.4)

The numbers of stress cycles #,, in thousands per year, computed from (12.3)
with the application of the data from (12.4), are given in Table 12.7.

12.2.2 Probability density of stress ranges

After the completion of experiments on eight bridges, all 79 histograms of
stress cycles (Table 12.6) were subjected to statistical analysis. It has appeared
that the exponential distribution of the probability density satisfies relatively
well all the experimental conclusions a) to h) of Sect. 12.2.
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TABLE 127 Numbe1 of stress cycles of steel raillway bridges per year

A
Length| Traffic
[ load 01 02 03 04 05 06 07 08 09 1
(m) CSD
n (X10Yyear)
T1 120000] 55004 900 | 250 |92 4] 20 11 67 472
2 73 670001 3000 490 | 140 | 51 22 11 62 | 37 23
73 260001 1200 190 53 |20 87 44 24 14 09
T4 6 500 290 48 13 49 22 11 061 036 022
T 100 000 | 4 800 780 220 80 35 18 98 58 36
3 T2 58000 | 2600 | 430 | 120 | 44 19 98 54 | 32 20
T3 220001 1000 170 46 | 17 75 38 21 12 077
T4 5 600 260 4?2 12 43 19 095 052 031 1019
T1 88000 4000 | 650 | 180 | 66 29 15 81 48 30
5 72 48000 | 2200 | 360 99 | 37 16 81 45 27 17
13 19 000 850 | 140 38 14 63 32 17 10 064
T4 4 700 210 35 96 36 18 079 0441 026 | 016
T1 46000 | 2100 | 340 95 |35 16 78 43 25 16
10 T2 26000 1200 [ 190 52 119 86 43 24 14 0 88
13 9900 450 74 20 75 33 17 0921 055 | 034
T4 2 500 110 18 511 19 0841 042 0231 014 | 0086
T1 390001 1800 | 290 79 | 29 13 65 36 | 21 13
50 T2 21 000 970 160 44 16 72 36 20 12 073
T3 8 300 370 61 17 63 28 14 0771 046 | 029
T4 2100 94 15 431 16 070 035 019: 011 | 0071
T 30000 1400 | 220 62 |23 10 51 28 17 10
100 T2 17 000 760 120 34 13 56 28 16 092 057
T3 6 500 290 48 13 49 22 11 060 036 | 022
T4 1 600 74 12 331 12 055} 027 015| 0089} 0056
Traffic loads CSD per year
Mass Number Number of tramns
Notation
of all trams passing along one hne per year per hour
T1 Very heavy 60 X 10°t 35040 4
T2 Heavy 30 X 10°t 26 280 3
T3 Medmum 10 X 10°¢t 17 520 2
T4 Taght 2 X 16°t 8 760 1
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There are of course other possibilities, too. For instance, the author [76] con-
sidered earlier the chi-distribution and Sedlacek and Jacquemoud [189], sup-
posed the beta-distribution. However, the exponential distribution has a great
advantage in 1ts sumplicity.

The exponential is of the form

—_ _1__ 5/0p
Flo) = —e (12.5)

U]
where s = Ao are stress ranges,
o, is parameter of exponential distribution.

The parameter o, is usually determined from measured data by the least
squares method. In this case, because of the conclusion g) from Sect. 12.2, it is
necessary to suppress somewhat the influence of small stress ranges and accen-
tuate the influence of high stress ranges. The least squares method, however,
does not allow this modification. For this reason, the computation was based on
the condition of equality of statistical moments of the kth order of theoretical
and experimental results

n j s* f(s)ds = anslk (12.6)
) I
where n = Zn, is the sum of the number of stress cycles,
n, — number of stress cycles in the ith class,

s, = Ao, — stress range in the ith class.
The integral on the left-hand side of (12.6) is the statistical moment of the
kth order which, after substitution of (12.5) and computation, yields

m, = J.ms" f(s)ds = os T(1 + k) (12.7)

where I'(x) is the Gamma function.
Using (12.7) the unknown parameter o, is then found from (12.6), i.e.

xn,s

O, X
nT(l + k)

1/k

(12.8)

The condition (12.6) is equivalent to the condition of equality of the fatigue
damage due the theoretical distribution of probability density and the fatigue
damage due to experimental distribution of the number of stress cycles with the
assumption of the validity of the linear theory of accumulation of fatigue dam-
age (Sect. 13.2). For these reasons & was considered with the value of k = 5,
because the measured stress ranges were generally within the range of the time
fatigue limit, i.e. in the region in which the Wohler fatigue curve has a minor
slope 1k = 1/5.
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All measured histograms of stress cycles were then evaluated according to
Eq. (12.8). The values of o; obtained were gathered into groups according to the
individual elements of the steel railway bridges; in every group the maximum
and the minimum values, the mean value of ¢,, the standard deviation and the
variation coefficient were determined. The results of these calculations are
given in Table 12.8.

Table 12.8 reveals that the principal and most heavily loaded elements of
steel railway bridges, such as main girders, cross-beams and stringers, pro-
vide high vaues o, while in secondary and slightly loaded members, such
as wind braces, or elements of orthotropic bridge decks, the value of o,
remains low.

TaBLE 12.8. Statistical evaluation of o, in Eq. (12.8) for all investigated elements of steel railway
bridges

) Standard Variation
El.ement o.f steel Number of max o, min o, mean ¢, deviation | coefficient
railway bridge measurCImnents (MPa) (MPa) (MPa) (MPa) (%)
Main girder
simply supported 1 7.009 2.692 5.160 1.238 23.996
Main girder,
continuous 3 7.060 5.379 6.464 0.941 14.557
Diagonal 3 5.805 3.835 4779 0.988 20.665
Wind brace 5 1.692 1.508 1.588 0.085 5353
Cross-beam 11 6.999 2.941 5.275 1.259 23.863
Stringer, midspan 19 8.285 3.980 5.883 1.247 21.199
Stringer, support 9 7.684 4.400 5.713 1.370 23.975
Longitudinal stiffener,
midspan 3 4.605 2.092 3.304 1.259 38.106
Longitudinal stiffener,
support 2 4.646 4478 4562 0.119 2.604
Deck plate, along 5 1.826 0.826 1462 0.385 26.336
Deck plate, across 8 4.431 0.785 1.607 1221 75961

Figure 12.4. compares the measured (Fig. 12.4a) and theoretically calculated
(Fig. 12.4b) stress spectra according to Eq. (12.5) with the value of g, = 5.013
MPa, evaluated from Eq. (12.8) for the bridge No 5. The comparison reveals
that the histograms are in good agreement in the region of large stress ranges,
which are decisive for fatigue considerations.

The numbers of stress cycles #, in the ith class are found from the probability
density as follows:

n AG e—AO"/O'g

n = nAc f(s) =

i

(12.9)

0
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where n = Xn, is the total number of cycles in the spectrum under considera-

tion,

Ao — division on the horizontal axis of the histogram (e.g. Ao =2 MPa
in Fig. 12.4),

Ac; — stress range in the ith class,

o — value of (12.8).

12.2.3 Number of stress cycles per year

The number of stress cycles calculated according to Eq. (12.9) was added
across all classes i, giving the smoothed total number n = Zn, cycles. This num-
ber was extrapolated by the ratio of the annual and measured traffic loads
(Table 12.6) yielding the total number of stress cycles per year for every in-
vestigated bridge element.

This annual number of stress cycles depends on traffic load and on the in-
vestigated bridge element. According to previous experience (12.3) the power
regression

n = al"l* (12.10)

was sought between the total number of stress cycles per year 7, the traffic load
T (in milions of tonnes per year) and the length of the bridge element / (in
metres).

The regression coefficients a, b, c were found by the least squares method for
the set of 79 triads of data n, 7 and [.

The attempt to divide this set of 79 data triads into subsets according to the
individual elements of steel railway bridges and their analogous evaluation was
not successful, because the subsets contained only few data.

The numerical computation resulted in the following values:

= 95642,
1.040,
= — 0.165 (12.11)

with the coefficient of determination R* = 0.558. Standard deviation

l

a
b
c

172
s, = [79 _12 — Z(lnn, —Ina - bInT - ¢ lnlr)z:l (12.12)

yielded the value of
s = 0.829 . (12.13)

The reliability zone is obtained by the multiplication of Eq. (12.10) by the fac-
tor

phrrt o @I985 o1 (12.14)
Wwhich will ensure, [181], that the results have 95% reliability.
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After the substitution of (12.10) in (12.9), the mean number of cycles n, in the
stress range class Ag; of the width Ao is obtained as

a Ao

;= TP e =27™ (12.15)
O-O
or the number of stress cycles n, with 95% reliability
”l,- — a AO' Tblc e—AG,/GO e’n—z,f’s . (1216)
0-0

12.2.4 Number of stress cycles

The number of stress cycles in the elements of steel railway bridges according
to equations (12.15) and (12.16), using the data from (12.11) to (12.14) was
calculated in Tables 12.9 to 12.11. The tables give the mean numbers of stress
cycles n, according to (12.15) or the same data with 95% reliability according to
(12.16), denoted briefly by ne, in thousands per year. The width of the stress
range classes is Ao, = 5 MPa.

TaBLE 12.11. Number of stress cycles in steel railway bridges per year. Main girder, simply supported,
influence of traffic load T according to equations (12.15) and (12.16)

Bridge element Main girder, simply supported
Traffic load T (t/year) 2 %108 10 x 1¢f 30 X 1¢° 60 x 10°
Span I (m) 30
Mean g, {MPa) 5.160
A, i, e i _F 7, e’ n, [ n e’ t n L ne"
Ag, (MPa)
(X10%year)
5 41.3 | 215 220 1146 690 3593 1418 7388
10 15.7 81.6 83.5 435 262 1363 538 2804
15 594 | 31.0 31.7 165 99.3 517 204 1064
20 2.25 11.7 12.0 62.6 377 196 71.5 404
25 0.855 4.46 4.56 23.8 14.3 74.5 29.4 153
30 0.325 1.69 1.73 9.02 5.43 283 11.2 58.1
35 0,123 0.642 0.657 342 2.06 10.7 4.23 22.1
40 0047 0.244 0.249 1.30 0.781 4.07 1.61 8.37
45 0.018; 0.092 0.095 0.493 0.296 1.55 0.610 3.18
50 0.007] 0.035 0.036 0.187 0.113 0,586 0.231 1.21
35 0.003| 0.013 0.014 0.071 0.043 0222 0.088 0.457
60 0.001 0.005 0.005 0.027 0.016 0.084 0.033 0.174
65 0.002 0.002 0.010 0.006 0.032 0.013 0.066
70 0.001 0.001 0.004 0.002 0.012 0.005 0.025
75 0.001| 0.001 0.005 0.002 0.009
80 0.001 0.002 0,001 0.004
85 0.001 0.001
90 0.001
2n, (X10%year) 66.5 346 355 1847 1111 5790 2285 11906
L
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Table 12.9 gives the numbers of stress cycles in the individual elements of
steel railway bridges differing from the value of o, for a heavy traffic load T =
30 X 10° t/year and for the spans / typical for the individual elements. The table
shows that the principal bridge elements endure a higher number of stress
cycles per year and also include stress cycles in higher stress range classes.
The secondary bridge elements and the orthotropic bridge deck endure lower
numbers of stress cycles and the stress ranges are lower. It should be noted,
however, that the stress magnitude in an element depends on its cross section
and, additionally, on the designer’s distribution of material.

Table 12.10 shows the influence of the span / on the number of stress cycles
in the main girder in identical conditions. It is obvious that this number in-
creases slightly with decreasing span — see conclusion ¢) in Sect. 12.2.

Table 12.11 shows the influence of the traffic load 7 on the number of stress
cycles in the main girder. The number of stress cycles increases with increasing
load, which is in agreement with the conclusion d) in Sect. 12.2.

It should be noted in Tables 12.9 to 12.11 that the calculation of the number of
stress cycles stops when the value after rounding drops below one unit per year.

Figure 12.4 shows a comparison of the measured and calculated stress spectra
for the main girder of the bridge No. 5 in the course of 24 hours. Fig. 12.4¢ shows
the theoretical spectrum according to Eq. (12.15), while Fig. 12.4d has been
found with 93% reliability from Eq. (12.16). In both cases the mean value for the
main girder in the form of a simply supportead beam g, = 5.160 Mpa (Table 12.6)
was applied. The mean theoretical spectrum in Fig. 12.4c corresponds well with
the measured spectrum in Fig. 12.4a, especially in the region of higher stress
ranges which are decisive for fatigue. Fig. 12.4d furnishes a very safe spectrum.

12.3 Growing traffic loads

Figures 10.1 and 10.2 have illustrated the increase of the traffic loads in the
past, while all data on the number of vibrations are ascertained at the time
when the bridge has been in operation for m years.

Let us assume that the increase of traffic loads is linear and that its annual
increment is b. According to the data from Figs 10.1 and 10.2 the estimated in-
crements b are given in Table 12.12,

Table 12.12. Annual increments of trafic
loads on CSD railway lines

Trafic load Annual increment b
(10° t)

17 very heavy 0.8

72 heavy 0.4

T3 medium 0.2

T4 light 0.1
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Let us assume that the increase of the traffic load is approximately due
to the higher loading of the cars, so that the number of trains per year,
n,, remains the same. During the bridge life L the bridge is traversed by Ny

trains:
Ny = n L. (12.17)

According to the conclusion d) from Sect. 12.2 the number of stress cycles is
roughly proportional to the traffic load passing along the bridge. Consequently,
during the bridge life L every class contains

Tn (12.18)

4

stress cycles. Here n, is the number of stress cycles in the ith class per
year per unit traffic load T (i.e. per 1 million tonnes), and 7'is the sum of traf-
fic loads traversing the bridge in the course of its life L. It is calculated
by means of the summation of L terms of the arithmetic series from the
equation

T - L{Tm v b (1 Z L_ mﬂ (12.19)
where T, is the traffic load at present, when the bridge has been in operation
for m years,

b - the annual traffic load increment according to Table 12.12,
L - the total life of the bridge.
Should we wish also to characterize the increase of the traffic loads in the
future, we would have to replace in (13.11), (13.14) and (13.17) n, with (12.18)
and n, with (12.17).

12.4 Influence of overloading

Across the bridge No. 7, a pressure vessel for a nuclear power plant was trans-
ported during the experiments. The vessel was loaded on a special Krupp car
Uaai 839 with 32 axles and axle loads of up to 160 kN.

The stress spectra recorded and evaluated during current one day traffic,
during ten travels of the heavy train with the Krupp car and during one travel
of the same train are shown in Fig. 12.5.

Figure 12.5 reveals that the maximum stress range due to the heavy train is
almost twice as large as that due to current traffic. The numbers of stress cycles
in the individual classes are higher than those of the current traffic in the
majority of cases. It should be noted that the speed of the heavy train was very
low (less than 30 km h™).
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Fig. 12.5. Histogram of frequencies of complete stress cycles in the main girder of the bridge No. 7:
a) daily traffic, 65 trains per 24 hours, b) ten passages of the Krupp very heavy train, ¢) one passage
of the Krupp very heavy train.

12.5 Other factors

The length and shape of the influence line of the investigated element influ-
ences the form and magnitude of the stress spectrum. This influence was
studied theoretically in [162] on a number of examples (bending moment at
midspan of a simply supported beam, shear force above support and at midspan
of a simply supported beam, bending moment at midspan of the first field and
above the first intermediate support of a continuous beam of four equal spans
and the support reaction of the same continuous beam). The load was repres-
ented by four characteristic trains NS 1, 2, 3 and 6 and the spans considered were
3,4,5,7 and 10 m. The theoretical procedure described in Sect. 12.1 was used.
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In comparison with the spectrum of bending moments at midspan of a simply
supported beam the results were both less and more favourable, see [162].

In the quantity g, (Table 12.8) the experimental procedure described in Sect.
12.2.2 incorporates the influence of the length and shape of the influence line,
because the individual elements of steel railway bridges provide characteristic
shapes of influence lines and their lengths are variable only within narrow
Jimits. Therefore, the problem is characterized with sufficient accuracy.

The number of further, so far unsolved, problems include secondary stresses,
stress concentrations, spatial stresses, shear stresse, etc., which can significantly
influence the form and magnitude of stress spectra and, consequently, the
fatigue of the bridge.

12.6 Appreciation of stress spectra

The stress spectra in steel railway bridges were obtained in this chapter by
three methods:

1. The theoretical spectra of bending moments given in Tables 12.2 to 12.5
are very conservative with respect to fatigue. A minor increase of accuracy
could result from the consideration of the effect of inertia of moving trains.

2. The spectra shown in Table 12.7, found from Eq. (12.3), are suitable for
the fatigue assessment of new bridges. With regard to the long life of bridges
they guarantee a sufficient safety margin.

3. The number of stress cycles according to Eq. (12.15) affords realistic
values for contemporary traffic; therefore, it is suitable for the calculation of
stress spectra in the fatigue assessment of existing bridges. Eq. (12.16) guaran-
tees sufficient reliability. Some spectra found from these equations are given in
Tables 12.9 to 12.11, they follow the real shape of influence lines of standard
elements of steel railway bridges.

The advantage of the representation of the bridge response to usual traffic
loads in the form of a stress spectrum consists of its independence of any hypo-
thesis of fatigue damage cumulation, fracture mechanics or Wohler fatigue
curve. In practical applications, however, one of these hypotheses must be as-
sumed, sce Chapter 13,



13. The assessment of steel railway bridges for fatigue

Two approaches have been developed for the fatigue assessment of steel rail-
way bridges:

The first is based on the hypothesis of fatigue damage accumulation and is
well suited for the structures which are in the design phase. Hence this approach
has become part of bridge design standards in many countries. The design based

on the fatigue damage accumulation hypothesis results in a structure with

individual elements which are more or less balanced with reference to fatigue,
although their life expectancy cannot be estimated with full reliability.

The second approach is based on the principles of fracture mechanics which
assumes an initial crack of a certain length and envisages its propagation until it
has attained a critical length. For this reason, the second approach is applied to
existing structures in which fatigue cracks have originated under traffic load. The
methods of fracture mechanics make it possible to estimate the time of periodic
inspections of bridges and, possibly, the residual life expectancy of the structure.

Apart from these two principal approaches to fatigue assessment of steel rail-
way bridges there is a number of further variants and combinations.
Nevertheless, even fracture mechanics and particularly the theory of fatigue
damage accumulation do not completely clarify the causes of fatigue and remain
theories of phenomenological character.

In the fatigue assessment of railway bridges it is assumed that the loading
process and, consequently, its response in the form of stresses in the bridge is of
random character (stochastic process) and that the probability, that after a
small stress range a large stress range follows, is identical with the probability
of the phenomena appearing in the opposite sequence. For this reason the
counting methods described in Chapter 11 should be used.

13.1 Theory of fatigue damage accumulation

The research of fatigue of steel structures, [59] to [61], has yielded the follow-
ing most important results:
1. Fatigue damage is substantially influenced by the stress ranges
Ac =0, — O, (13.1)

where 0, is the local maximum, and
O,.» — the local minimum, see also equation (12.1) and Fig. 11.2.
Further parameters, such as the mean stress value, steel quality, etc. have been
found to be statistically less significant for large civil engineering structures.
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2. The relation between the number of cycles preceding damage N and the
stress range Ao (Wohler fatigue curve) may be represented, on the bilogar-
ithmic scale, by one, two or several straight lines of the type (Fig. 13.1)

Ao = (C/NY™ (13.2)

where 1/k isthe slope of the Wohler curve on a bilogarithmic scale and
C - a constant depending on the investigated structural detail, on
stress concentration, weld type, required reliability, etc.

Figure 13.2 shows the fatigue curves due to ORE, [162], for one slope and for
two slopes, and Fig. 13.3 shows the Wohler curve with two slopes according to
Czechoslovak standards CSN 73 1401 and CSN 73 6205, where the respective
constants and the point of deviation depend on the investigated structural detail.
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Fig. 13.1. Wohler fatigue curve and Palmgren—Miner theory of fatigue damage accumulation.
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Fig. 13.2. Wohler fatigue curve according to ORE [162]
a) with one slope
SN1:k=3,C=4x10% N, =2 X 10°, Ac, = 126 MPa, log N = 12.6 - 3 log Ao,
SN3: k =375,C =15 x 10, N, =2 X 10°, A, = 126 MPa, log N = 14.18 - 3.75 log Ac,
b) with two slopes
SN2k, =4,C,=2.95 X 10% k, =3, C, =4 x 102 N, = 107, Ag, = 73.56 MPa, log N = 12.6 — 3 log 4o,
N <10, log N = 1447 —4log Ao, N> 107, *
SNd: k, = 65, C, =9 X 10 k, = 375, C, = 1.5 x 10% N, = 2 x 10°, Ag, = 126 MPa,
log N=148 -3.75log Ao, N <2 X 10° log N = 19.95 - 6.5 log Ac, N > 2 X 10°,
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Figure 13.4 shows the fatigue curve for normal nominal stress according to
Eurocode 3, [56], which has three parts with points of deviation at N =5 X 10°
and N = 1 X 10° and the slopes &, = 5 and &, = 3. For N > 10%, the limiting value
of Ag, is considered to act; stresses below this are not taken into account. The
categorization of structural details given in [56] is quantified by a reference
value Ao, for N =2 X 10° The fatigue limit at a constant amplitude corresponds
to the fatigue strength Ag, at N =5 X 10° The sct of fatigue curves in Fig. 13.4
represents mean values minus twice the standard deviation of test results with
constant stress range. When the test results are used for the categorization of a
certain detail, the 95% confidence interval for the 95% survival is calculated at
N = 2 X 10° cycles to determine the standard deviation and the number of
samples (the minimum number being 10 samples).
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Fig. 13.3. Wohler fatigue curve according to Czechoslovak standards CSN 73 1401 and CSN 73 6205

with two slopes,
ky =545k, =3.45, Ao = (C/NY* for N > N, Ao = (C/N)"™ for N = N, for structural details:

N

Detail | A, (MPa) N, log C, log C,
A 170 2 X 10° 18.457 13.996
B 123 278 x 10¢ 17.834 13.654
C 87 3.96 X 10° 17.168 13.289
D 69 5.01 X 10° 16722 13.044
E 53 6.51 x 10F 16.211 12.762
F 43 8.11 x 10° 15.811 12.544
G 35 1% 10 15415 | 12.327

3. The fatigue damage D is described sufficiently by the Palmgren—-Miner
theory of linear fatigue damage, [168], [146],

D=Y l;? (13.3)

where #, is the number of stress cycles of the range Ag, Fig. 13.1,
N,— the number of stress cycles on the Wohler fatigue curve, and
i — the ordinal number of the stress range level.
4. According to this theory fatigue failure occurs, when
D =1. (13.4)
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13.2 Method of equivalent damage

For practical application of stress spectra the method of equivalent damage
(also known as the A; method) has proved useful. This method is based on the
comparison of fatigue damage due to two stress spectra:

1. A real or a theoretical spectrum (n,, Ac,) measured or computed for n,

trains.

2. A fictitious single-step spectrum with the maximum stress range & Ag,

and the number of cycles 7nr.

Fig. 13.4. Wohler fatigue curve for normal nominal stresses according to Eurocode 3 [56] with three

slopes,

ky=, k. =3,k,=3,A0= A, for N> 1 % 10°, A = (C/N)™ for 5 X 10f < N < 1 X 108, Ao = (C/N)"™

for N <5 % 10%
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Detail category Fatigue limit Limit value
at constant
amplitude
(for N =2 X 10%) for N=5 x 1¢¢ for N =10 log C, log C,
Ao, Ao, A,
(MPa) (MPa) (MPa)
160 117 65 17.036 12.901
140 104 57 16.786 12.751
125 93 51 16.536 12.601
112 83 45 16.286 12.451
100 74 40 16.036 12.301
90 66 36 15.786 12.151
80 59 32 15.536 12.001
71 52 29 15.286 11.851
63 46 25 15.036 11.701
56 41 23 14.786 11.551
50 37 20 14.536 11.401
45 33 18 14.286 11.251
40 29 16 14.036 11.101
36 26 15 13,786 10.951
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Here the quantity 8 Ag, indicates the maximum stress range at the investig-
ated point due to the standard load Ao, multiplied by the standard dynamic
coefficient & (but without the load factor).

If the equation of the Wohler curve (13.2) in the form of

N = C Ac’t (13.5)
is substituted in Eq. (13.3), the damage due to actual traffic load is obtained
D - % Y n At . (13.6)
The single-step stress spectrum (ny, Ao) yields the damage
n 1
D =-—L == nAc". 13.7
R (13.7)

The equivalent damage method compares the damage (13.6) and the damage
(13.7):

1 k 1 k
— n,. Ao" = — n Ao 13.8
C T C Z ! [ ( )
and calculates Ao
Act = = T n Act. (13.9)

ny =

The individual classes of stress ranges Ag; are converted into a dimensioniess
form by dividing by 6 Ao
7, = A% (13.10)
o0 Ao,
Therefore, both sides of equation (13.9) are divided by the same quantity
0 Ao, so that equation (13.9) yields the parameter 4; (see also Fig. 12.1d):

Ao [L

1k
A AF X 13.11
" §Ao, Z s } ( )

Ry

Ar is called the traffic load factor and is found from the data with numbers of
stress cycles n, in the individual dimensionless stress clasess A, and the number
of trains n; given in Table 12.7 or Tables 12.9 to 12.11.

The practical application of the A; method is very simple: in the case of the
single-slope Wohler curve it depends, according to equation (13.11), on & only;
it does not depend on the contant C because in the derivation only equation
(13.3), and not equation (13.4), has been used.

The traffic load factor A, for Wohler curves with two slopes &, > &, can be
found approximately as follows (assuming that the majority of stress ranges is
in the sector of the &, slope):
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In this case the damage is

_ vy Ag) A0
D 2 c + zj: C. c (13.12)
where the indices i, j and the constants C,, C,, k, and &, pertain to sectors / and
2, respectively, of the Wohler curve. A fictitious Wohler curve with a uniform
slope of 1/k has the constant C and the number of cycles n; which equals the
number of trains per year.

Equation (13.12) can be divided by (6 Ao, )" so that from equation (13.11),

Ay = {ng {@—SLZ;@,A,’" (MG A kz AL J} . (13.13)

Assuming that the number of cycles n; appears in the sector 1 of Wohler
curve, it holds true that k =k, C = C,, and

{ {Zn _—— 2 Ak }M(. (13.14)

"¢, (bac )k' E

If n, appears in the sector 2, the derivation is similar.

When the stress ranges Ao, appear in both the first and the second sectors of
the Wohler curve and the length of the service life of the structure L is pre-
scribed, A; must be calculated iteratively from the data of n,, Ao, and the number
of trains n, per year:

The number of trains N; for the whole service life of the bridge is

N, = Ln, . (13.15)

The prolonged first sector of Wohler curve yields, according to equation (13.2)
and Fig 13.3

Ao, = (CIN)H"™ = Ao, (N, / N (13.16)

and, according to equation (13.11),

_ [L Y, ;ﬂ _ (13.17)
n.

The comparative stress range Ao, is defined by means of equation (13.16) and
cquation (13.17) as

AG.,, = AG,/ Ay . (13.18)

com

The damage (13.12) is modified into the form of

k| kA
1 [ Ao, P 1 [ Ao
D =) — ©m b g A+ Y — ri A 13.19
Z NO [ AO_O } 4 3 ; NO [ AO_ ) n] J ( )

0
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and the service life in years from equation (13.19)
L =1/D (13.20)

is compared with the assumed service life. If both data differ, Ac,,,, is corrected
and the computation of D and L according to equations (13.19) and (13.20), re-
spectively, is repeated. When the assumed and calculated periods of service life
are the same, A, is found from equation (13.18)

A, = Ao/ Ao, . (13.21)

In the case of Wohler curves with a horizontal sector (Fig. 13.4) the process is
gencrally the same, but stress cycles n, are neglected for which Ao, < Ag;.

13.3 Limit state for fatigue

The limit state for fatigue is defined for bridges as folows:

The bridge must guarantee the passage of a minimum number of trains N,
without being damaged due to fatigue.

When the fatigue service life of the bridge is expressed by the number of
trains during its service life Ny, then — according to the limit states theory — the
bridge must be so designed as to ensure that

N, =N,_._ . (13.22)

min

-

This is the condition of the limit state of fatigue.
The fatigue life N, expressed by the number of trains, can be found from
equations (13.11) and (13.2):

1 C
N, = : 13.23
YAE (840 ( )
Therefore, it is necessary that
1 C
— 2 =N 13.24
Ay (A0 “““ ( )
or
Lk
A.8A0, < (c ) (13.25)
kNmm

The constant C can be expressed, according to equation (13.2) as follows:

C = N, Ac* | (13.26)

where N, Ac, indicates a point on the Wohler curve. After the introduction of
cquation (13.26) into the inequality (13.25) we obtain

1k
A0AC, < [A]]VU } Ao, (13.27)

min
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or
AbAC, < y,A0, (13.28)
with the notation
Yk
NO
= - 13.29
74 [Nmm ] ( )
In a limit case it may happen that
N = Ny (13.30)
and the coefficient of the service life of the bridge ¥ is
1/k
N()
il Brenl B 13.31
Y4 ( N, J (13.31)

In the majority of cases the number of trains N is expressed as the product of
the number of trains per year n; and the assumed service life of the bridge L in
years, 1.¢.

N, = n L. (13.32)
For the usual number N, = 2 X 10° the coefficient of service life of the bridge is
11k
6
v, = (Zilo_] _ (13.33)
n, L

In the left-hand side of inequality (13.28) the coefficient of probability of load
occurrence on multi-track bridges 7 is included. It has appeared [162] that in
the case of railway bridges this coefficient varies within the limits of

q—l+(l/k} < ,}/3 < 1 . (13'34)

where g is the number of tracks on the bridge. The upper limit in (13.34) cor-
responds to the case when the train on the bridge always meets the trains on all

other tracks. The lower limit
y, = q*”(”") (13.35)

represents the opposite case, when the train on the bridge never meets any train
on other tracks.

Detailed calculations in [162] have shown that the probability 7 approaches the
lower limit of (13.35); therefore, it is taken into account in fatigue assessment.

13.4 Fatigue assessment of bridges according to limit states theory

The derived condition (13.28) can appear in the assessment of steel railway
bridges for fatigue according to the limit states theory in the following form:

117,7,040, <7, AC, . (13.36)
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The left-hand side of inequality (13.36) represents the response to the load,
while the right-hand side represents the fatigue strength of the investigated
structural detail. In equation (13.36) the symbols have the following mean-
ing:

1 = A;is the fatigue load factor; it is found from the stress spectra in Tables
12.7,12.9 to 12.11 according to equations (13.11), (13.14) or (13.21),

% is the factor characterizing the influence of the form of influence line,
based on the data of Table 12.7, 1f the data for typical elements of steel railway
bridges from Tables 12.9 to 12.11 are used, 3 = 1,

% is the factor characterizing the probability of load intensity on multi-track
bridges (13.35),

v, is the factor of planned service life of the bridge (13.33),

1 is the factor of notch effects, which depends on the categorization of the
structural detail of the investigated element,

Aoy is the basic design fatigue limit. Naturally, the product of 3, Aoy may be
combined into a single limit value of fatigue strength [56].

The factor 7 according to equation (13.35) is calculated for several values of
g and k in Table 13.1. In practice, the value of % = 0.60 is considered, which cor-
responds, in the case of two-track bridges, approximately with any value of k.

The coefficient 7, according to equation (13.33) is given in Table 13.2 for four
traffic loads of CSD from Table 12.7 and for two values of k. This coefficient is
used to characterize the planned service life the bridge. For instance, in the case
of a temporary bridge, the permitted fatigue strength limit may be increased in
this way.

The purpose of the assessment condition (13.36) is to compare the greatest
stress range due to the standard load Ao, multiplied by the standard dynamic
coefficient 8, reduced by the factor % according to traffic load intensity and its
probability on multi-track bridges % with the fatigue strength of the investig-
ated structural detail % Aoy with reference to the planned service life of the
bridge 7.

TaBLE 13.1. Tactor 7 for multi-track bridges

Number
%
of tracks
on the bridge
k=3 k=35
q

1 1 1
2 0.63 0.57
3 0.48 0.42
4 0.40 0.33
5 .34 0.28
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Table 13.2. Factor ¥ of the planned service life of bridges

Bridge CSD traffic load
Coefficient Ser_wce
i life T7 72 73 T4
L
(years) %
30 1.4 1.36 1.56 1.97
60 0.98 1.08 1.24 1.56
3 90 0.86 0.95 1.08 136
120 0.78 0.86 0.98 1.24
30 1.14 120 131 1.50
60 0.99 1.05 1.14 1.31
5 90 0.91 0.97 1.05 120
120 0.86 0.91 0.99 1.14

13.5 Propagation of fatigue cracks

According to [119], fracture mechanics distinguishes three phases of the fa-

tigue process which follow one another or even overlap:

a) the phase of changes of mechanical properties,

b) the phase of nucleation of fatigue cracks,

¢) the phase of crack propagation for which the stress conditions at the
head of the crack are decisive. This phase terminates with fatigue fracture,
which is represented for example by the Wohler curve.

For civil engineering structures operating in normal traffic and temperature
conditions the third phase lasts a relatively long time. From practice it is generally
known that a bridge with a fatigue crack can serve for a long time in normal
conditions. Therefore, the phase of crack propagation is given great attention.

Paris-Erdogan {169} derived a differential equation for the velocity of fatigue
crack propagation in the third phase

da
— = C,(AK)", 13.37
v = GOK) (13.37)
where ¢ — crack length,
N - number of stress cycles,

C, m — material constants,

AK  —range of stress intensity factor which characterizes the stress con-
ditions at the head of the crack. The quantity AK depends on the
direction of applied force with reference to the direction of crack
opening and is found from

AK =Ac (na)” f(a), (13.38)
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where Ao, — equivalent stress range under random load (for stochastic stress

o

time history),

f(a) — dimensionless function depending on stress and geometric condi-
tions of crack environs, crack length and structure dimensions

(e.g. plate width b etc.).

For AK or f{a), manuals have been produced, giving these quantities for the
most varied cases. In Figs. 13.5 to 13.9 the functions f(a) have been taken from
[96] for the cases of cracks most often occurring in steel railway bridges. Further
cases can be found in [179] and [190].
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Fig. 13.5. Symmetrical crack in
a plate at normal stress, valid
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Fig. 13.7. Asymmetrical crack
in a plate at normal stress,
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Fig. 13.8. Asymmetrical crack
in a plate at flexural stresses,
valid for a/b < 0.7

fla)=1.12-1.39a/b + 73

Aa/by - 13(a/bY +14(a/b).

-

T T, ®

Fig. 13.9. Plate with a circu-
lar hole and with one or two

cracks in uniaxial and biaxial
stress state. Explanations,

see the Table on page 255.
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Explanations to the Fig. 13.9

One crack Two cracks
Stress
a’r Uniaxial Biaxial Uniaxial Biaxial
fla)

0 3.36 2.24 3.36 2.24
0.1 2.73 1.98 273 1.98
0.2 2.30 1.82 2.41 1.83
0.3 2.04 1.67 2.15 1.70
0.4 1.86 1.58 1.96 1.61
0.5 1.73 1.49 1.83 1.57
0.6 1.64 1.42 1.7 1.52
0.8 1.47 1.32 1.58 1.43
1.0 1.37 1.22 1.45 1.38
1.5 1.18 1.06 1.29 1.26
2.0 1.06 1.0l 1.21 1.20
3.0 0.94 0.93 1.14 1.13
5.0 0.81 0.81 1.07 1.06
10 0.75 0.75 1.03 1.03

0 0.707 0.707 1.00 1.00

The Paris—Erdogan equation was derived for harmonic stresses in which
Ao, = Ao. (13.39)

In the case of stochastic stress time history an equivalent stress range Ag,,
causing the same crack propagation, must be substituted in equation (13.38).
This is a difficult requirement which can only be complied with approximately.
Therefore, Rolfe and Barsom [178], recommend the calculation of the quad-
ratic mean from random stress ranges

Ao, = (lsz] , (13.40)
n .,

where n = Zn, is the number of all stress cycles.

Maarschalkerwaart [137], bases his considerations on the method of equi-
valent damage (Sect. 13.2), applied to a Wohler fatigue curve of one slope,
arriving at

17k
Ao, = [lZn, Aaf] (13.41)
n .,

and recommends k = 3.
The method of single-step equivalent damage (Sect. 13.2) can also be applied
to a Wohler curve of two or three slopes (Fig. 13.3 and Fig. 13.4). The method
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is based on the damage (13.12) and the assumption that Ag,, appears in the sec-
tor of Wohler curve with the slope k. Then equation (13.12) yields

17k,
Ao, = {l[z n, Ach + ¢ > n Ac® H , (13.42)
n\ "~ C, 7 /
In the case of a Wohler curve with three slopes (Fig. 13.4), the values Ag, < Ag;,
are omitted and only the values Ag, < Ao, = Ao, and Ao, < Ag, are used.
If the numbers of random stress ranges #, have an exponential distribution of
probability density (12.9), the equivalent stress range (13.41) can be found as
(after the substitution of (12.9) and integration):

1k
Ao, = [aiT(1 + k)| . (13.43)

In this process k = 5.

The Paris—Erdogan differential equation is non-linear with reference to the
presence of a in equation (13.38). Its approximate solution consists of the in-
troduction of its initial crack length @, and is left constant in the course of in-
tegration. Equation (13.37) is thus modified into the form of

dN = da___ (13.44)
C,[a0. (ma,)" f(a)]" (a /a)™

and integrated from a, to a (while N, corresponds with a,):

N - N, = j da___ . (13.45)
Cy|Ac, (ma,)” f(a,)]" (al a,)"™

The integration in (13.45) presents the number of cycles N which increases
the fatigue crack from a, to a:

(mi2)-1
N- N, = Clom — 2 {1—[&] ] for m>2
CO[AGeV(Tan) f(ao)] m — 2 d
| (13.46)
or
a, a
N- N, = In — form = 2 (13.47)

Y CGlac,(ra)” f(a)] g

As an example let us follow the propagation of a crack of initial length
a, = 10; 15; 20; 25; 30 mm at midspan of a stringer, span / = 3 m, under traffic
load 7"=30 X 10° t/year. The crack is asymmetric according to Fig, 13.7, b = 200
mm, f{a,) is in Table 13.4. From Table 12.8 Ag, = 5.883 MPa, so that for k =5 we
obtain from equation (13.43) the equivalent stress range

Ao, = 1533 MPa or Ao, = 21.32 MPa (13.48)
for traffic load with 95% reliability, see equation (12.16).
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Further we consider
C, =4 x10"N"mm'™, m =3. (13.49)

The results of the computation of the crack length a as a function
of the number of cycles N according to equation (13.46) are shown in
Fig. 13.10. The values for traffic loads with 95% reliability are shown in
dashed lines. The horizontal axis also shows the scales of L and L’ for
the service life in years according to equation (13.52) with the assumption
of n = 2.742 X 10° for L or n = 1.429 X 10" for L', found from equation
(12.10).

Figure 13.10 shows the velocity of crack propagation which increases with
increasing initial crack length.

H T
15:107 2407 N-N,
[ [ | T T T [
c 1 2 3 4 5 6 7 L
L T T — -tk s mml W owm wm Sy G mm e BB e mm WM e _.,____,.,.._..,__.__._._.._.__r-——w--——’
0 1 1P 3/ 1 5/ L

Fig. 13.10. Dependence of crack length a on the number of stress cycles N for the initial crack
length a,

!~ a,=10 mm, 4 —a,=25mm,

2-a,=15mm,  5-a,=30mm,

3 ~a, =20 mm, w
—— Ag, =15.33 MPa, — - - Ag,, = 21.32 MPa (traffic load with 95% reliability), L, L’ in years. !
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13.6 Fatigue life and interval of railway bridge inspections

13.6.1 Residual service life for initial crack g,

Fatigue fracture of the structure occurs, when a crack of initial length a,
propagates to attain its critical length a,. In this proces a,, > a, is considerably
longer than the initial length a,. This means that in equation (13.46) the value
of (a,/a)”™" can be neglected in comparison to 1, so that the residual service life
expressed in terms of the number of cycles 1s

N- N = % . 13.50
o = Clao.may” j@yy (i — 1 B0

Let us denote
n = 2”; (13.51)

as the total number of cycles of all amplitudes per year, which can also be found
from the empirical formula (12.10) with the coefficients (12.11).

In the following, n is found from equation (12.10). However, more realistic
results can be obtained with Y n, data from the last line of Table 12.9, which dif-
fer from (12.10) by their being rounded and terminated, if the number of cycles
drops below one per year.

The residual service life in years is then found from equation (13.50) and
cquation (13.51):

N - N,
- .

L = (13.52)

The expression (13.52) has been used in Table 13.3 for the estimation of the
residual service life of some elements of steel railway bridges from Table 12.8.
The initial length of fatigue crack was considered as a, =1, 2, 3, 4 mm; the cal-
culation done for the typical span /, number of cycles per year according to
equation (12.10), stress ¢, {from Table 12.8, equivalent stress Ag,, from equa-
tion (13.43), fla,) was estimated, C, = 4 X 10° N° mm"”, m = 3, k = 5,
T =30 X 10° t/year.

Table 13.3 shows that the service life of a bridge element is shortened by the
increasing crack length a, and the increasing equivalent stress Acg,, or o;.

13.6.2 Service life assuming fatigue damage accumulation

Considering the hypothesis of fatigue damage accumulation, the fatigue
damage per year D is found first from equation (13.3). After L years the dam-
age is LD. According to the Palmgren—Miner theory (13.4) fatigue failure
occurs, when LD = 1. Hence the service life

L =1/D. (13.53)
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TABLE 13 3 Residual service life of some elements of steel rajlway bridges for imtial crack length a,
under traffic load 7' =30 X 10° t/year

Initial crack length a, (mm)
No Stress
Span | of cycles from Eq;:;em 1 2 3 4

Element of a steel er vear Table 12 8, ?
railway bridge e[; (1y2 10) | coq (128) | 413 flao)

112 112 ] 113 114

f n a, Aa,,
(m) (X109 (MPa) (MPa) Service hfe L (years)

Main beam,
simply supported 30 1876 5160 13 44 140 99 79 67
Mam beam continuous 30 1876 6 464 16 84 71 30 40 34
Diagonal 6 2446 4779 12 45 135 96 76 64
Wind bracing 3 2521 1588 414 3537 | 2528 | 2009 | 1694
Cross-beam 5 23521 5275 1374 98 69 55 46
Stringer mudspan 3 2742 5 883 1533 63 46 36 31
Stringer, above support 3 2742 3713 1488 71 50 40 34
Longitudinal stiffener
midspan 2 2932 3304 861 342 242 192 162
Longitudinal stiffener
above support 2932 4562 1188 130 92 73 62
Deck plate, along 2 2932 1462 381 3941 | 2788 2216 1869
Deck plate, across 04 3824 [ 607 419 2272 | 1607 | 1277 | 1077

For Wohler curve with one slope and exponential distribution of cycle num-
ber probability (12.5) the damage is found as

_ [ n(sds 13.54
et (13.54)

0
where we substitute (s = Ao)

L
n(s) = Ul e,
0

N(s) = Cs™ . (13.55)

After integration of equation (13.54), equation (13.53) yields the service life

- ¢ (13.56)

nofT(1 + k)

For the stringer midspan, I = 3 m, 7 = 30 X 10° t/year, ¢, = 5.883 MPa,
n=2742 x 10° C = 3.436 X 10* N° mm™, k = 5 the service life L is computed

from equation (13.56) as
L = 148 years . (13.57)

For a Wohler curve with three slopes (Fig. 13.4), equation (13.54) must be
integrated by parts while omitting Ag, < Aagy:

p = "L

c|C

4]

AO'| I3
ky L —sioy d 1 ey sloy
ste s + c 52 e ds
o 2 Agy

I oA
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In this way the service life is obtained for the exponential distribution of the
probability density of stress ranges (for &, = 5, k, = 3)

L=%a+1), (13.58)
H

where
I = %& [e™ (AGS + 50, Ac* + 200 AG: + 600° AG
L

+ 1200 Ao, + 1200)) — e "™ (Ao, + 50, AC;
+ 200, Ao} + 600, Ao, + 1200, Ao, + 1200,)],

1

L = g‘)— e “(Ao; + 30, A0, + 60, Ao, + 60,) . (13.59)

1
2

For the same stringer, / = 3 m, T = 30 x 10° t/year, n = 2.742 X 10°, o,
= 5.883 MPa, Ac, = 20 MPa, Ao, = 37 MPa, k, = 5, k, = 3, C,
=3.436 X 10N’ mm™, C, = 2.518 X 10" N° mm ° equation (13.58) yields

[. = 206 years . (13.60)

Finally for the experimental number #, of stress ranges Ag, equations (12.12)
and (13.53) present
1
1 1
L =|—YnAch + — Y n Ac" | . 13.61
& Tnact v - Snag (13.61)
The use of the respective columns of #, or n, €" in Table 12.9 for stringer mid-
span in equation {13.61) yields the life of

L = 192 years or L = 37 years, respectively, (13.62)

for traffic load with 95% realibility.
Should we not neglect Ag, < Ag, we would obtain

L = 175years or [ = 34 years, respectively. (13.63)

13.6.3 interval of railway bridge inspections

The estimation of the service life of steel railway bridges given in Table 13.3
and in equations (13.57), (13.60), (13.62) and (13.63) show a great varjation
and, consequently, a considerable unreliability of results. For this reason the
estimation of fatigue life calculated either on the basis of fracture mechanics
or by means of the fatigue damage accumulation methods cannot be recom-
mended.

Of more practical importance is the estimation of the interval of bridge
inspections and thus the prevention of unexpected propagation of a fatiguc
crack. This is possible by the methods of fracture mechanics.
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The particular consideration is based on the assumption that during a current
bridge inspection a fatigue crack of a length g, has been discovered. The object-
ive is to estimate the period (time interval) L, until the next ingpection during
which the crack will increase by a certain measurable length Aa (in practice
about Az = 5 mm).

Once again, the value of L, in years will be found from equation (13.52)

L= =% (13.64)

n

where, according to equation (13.46),

(m/2) 1
a a
- N = 9 1 - | ——C
N ’ ClAo, (ma )} fla)}" [(m/2)y — 1] (ao + Aa}

(13.65)
and n = X n, is the total number of all cycles per year.

For the same example as that used in Sect. 13.5 and in Fig. 13.10 the intervals
L, in years or months were calculated and given in Table 13.4., which also gives
the intervals found for traffic loads with 95% reliability. Table 13.4 shows that
the intervals of inspections are growing shorter, if the initial crack length is
greater.

TABLE 134 Interval of mspections of a stringer with a crack of a length a, under traffic load of
30 X 10° t/year

Crack length Inspection nterval
Initial At the end fla Tra(f)flc load with
of nspection g 103 ; 95% rchability
period I3 3
(23 a=a,+5

(nam) (mm) years = months years = months

10 15 113 37 44 026 31

15 20 115 21 25 015 18

20 25 118 13 16 009 11

25 30 122 09 10 006 08

30 35 127 06 7 004 04

_

When the inspection, carried out after the interval L, reaches an increased
crack length, this new crack length is considered as g, and a further inspection
interval £, is found from equations (13.64) and (13.65). If the fatigue crack in-
creases, the inspection interval will decrease. Such safeguarding of railway traf-
fic represents the biggest contribution of fracture mechanics to bridge engin-
cering practice.



Appendix

14. Thermal interaction of long-welded rail with railway bridges

Railway bridges induce additional forces into long-welded rail, thereby limit-
ing its use. For this reason, the problem is given great attention, since there is a
general tendency to use long-welded rail wherever possible. Its use results in a
significant reduction of dynamic effects and a smoother vehicle ride (and con-
sequent ecological and economic advantages). In addition, it facilitates the
mechanized maintenance of railway tracks.

Thermal stress state does not form part of the dynamics of structures, but
temperature is, naturally, a function of time. For these reasons, this chapter on
thermal interaction is added as a supplement to describe in detail the behaviour
of bridges and rails during temperature changes.

14.1 Theoretical model of long-welded rail and bridge

14.1.1 Basic assumptions

The theoretical solution of the problem of mutual interaction between a long-
welded rail and a bridge during temperature changes is based on the following
assumptions:

(a) The bridge girder and the long-welded rail are considered as a system
of i bars as in Chapter 8. The bridge has one fixed and one or several movable
bearings, in which friction is neglected. The long-welded rail is of infinite length.
The simplest case is shown in Fig. 14.1.

Fig. 14.1. Theoretical inodel of a brldge with long-welded rail.

(b) The connection between the rails and bridge in a horizontal direction is
idealized by an elastic layer, i.e. by a system of infinitely close horizontal
springs (Fig. 14.1). With the assumption of linear action of these springs their
spring constant (stiffness) per unit length in the ith field is k£, (N mm™). [t is a
force per unit length which causes a unit displacement of the track (i.e. two
rails) with reference to the bridge or the rail bed. Linearity is used here to sim-
plify a highly complex relation between the resistance of the rail against dis-
placement, which is generally non-linear and depends on many factors such as
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the individual elements of permanent way and its maintenance, on temperature,
moisture, degree of soiling, vertical load, and so on.

(c) It is assumed that the bridge is not influenced by the rails during tem-
perature changes and that it can move freely. The opposite effect, i.e. the influ-
ence of the bridge on the stresses in the rail is, naturally, considerable.

(d)y According to Hooke’s law and physical laws governing thermal exten-
sion, the longitudinal force N in a bar with the modulus of elasticity £ and cross
section area A is

N = FEA(w' — aAt), (14.1)
where 1’ — relative elongation (strain) of the bar,
o — coefficient of thermal extension of the bar,
At =t — 1, — temperature change with reference to the initial (basic) tem-
perature {,,
t —temperature (°C).

(e) Longitudinal stresses in the bridge and in the rails are independent of
bending stresses and, therefore, they can be investigated separately [70].

(f) It can be assumed in many cases that the rails on the bridge and beyond
the bridge are indentical and that their fastening is similar. In computer ap-
plications, the omission of this assumption does not bring any difficulties.

14.1.2 Basic equations and their solution
If an element of the bar, length dx, is considered (see Fig. 14.2), it is possible
to write the condition of equilibrium of forces in a horizontal direction accord-
ing to the assumptions (e) and (b} as:
-N+ N + N dx — kudx = 0, (14.2)

where N = N(x) - longitudinal normal force in the bar at the point x,

u =u(x) - horizontal longitudinal displacement of the bar, where the
dash indicates differentiation with respect to x.
i

N - :—-- N+N|dx
i
i

-

e

kudx

Fig, 14.2. Forces affecting an element of the bar,
Equation (14.2) can be written
N — ku =0 (14.3)
or, after the substitution N’ = EAu”from equation (14.1), according to assump-

tion (d)
-EAu” + ku = 0. (14.4)

Equation (14.4) is the basic differential equation valid for the bar subjected to
longitudinal forces.
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a) Fixed bearing on one bridge end
Let us investigate the basic case, when the long-welded rail passes over
a bridge provided with a fixed bearing on its left-hand side (either a simply sup-
ported or continuous beam) - Fig. 14.3 and assumption (a). The origin of co-
ordinates of every bar is at its left-hand side with the exception of the bar i =1,
where the origin is at its right-hand end.

x 0 x

,__[:
t
—
0
)

+X

0
(, j’

o}

1

AN 1I.=L .
]

T

-r;

Fig. 14.3. Fixed bearing on a one bridge end
a) simply supported beam, b) continuous beam.

The differential equations (14.4) for the bars, denoted in Fig. 14.3 with num-
bersi=1,2, 3, 4 and with lengths of [, are as follows

~-EAu" + ku =0, i =13,
—EAW + kG, - ou) =0,
-EAu + k(u, — u) =0 (14.5)

and the forces in the bars are found from equation (14.1) as
N = LE AU - o At), (14.6)

where At, = ¢, — ¢, is the temperature change in the ith bar from its basic
temperature f,, and
o, — coefficient of thermal extension.
According to (c) it is assumed that the bridge (bar 4) may expand freely and
that, consequently, the solution for the bar 4, according to the law of thermal
extension, is

u,(x) = o, Atx, u,(x) = o, At,,
u(x) = 0, N,(x) =0 (14.7)

and does not depend on the behaviour of the bar 2.
The system of differential equations (14.5) and (14.7) is constrained
by boundary conditions indicating that the displacements in bars 1 and 3 in
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Fig. 14.3 at a sufficient long distance from the bridge equal zero and that
the displacements and the forces in adjoining bars at their joints are ident-
ical:

u,(— o) = 0, u, (o) = 0,
w(0) = 1,(0),  N(0) = N,(0),
w(L) = w,(0), N, (L) = Ny(0),
1, (0) = 0, N(,) =0, (14.8)
where [, = [, is the length of the bridge, see Fig. 14.3.
The assumed solution (14.7) for bar 4 satisfies the boundary conditions (14.8)

for this bar.
The general solution of the system of differential equations (14.5) is

u(xy = Be* + Ce™', i =13,
w(x) = Be™ + C,e™ + o, Al,x, (14.9)
“where
g = K
t El A[
B, and C, are constants found after the substitution of equation (14.9) in

the boundary conditions (14.8).

The assumption (f) considerably simplifies the calculation of the constants B,

and C, because EA = E A, i=1,2, 3, where E and A are modulus of elasticity
and area of the cross-section of the rail, respectively, so

PR LR N P= 12,3, (410

: (14.10)

At = At =1t -1, =1t — {1, i =1,2,3 (14.12)
where At is the difference in temperature ¢ of the rails from the initial temper-
ature ¢, of the rail fixing,

AT = AT, = 1, — ¢ (14.13)

is the difference between the mean temperature of the bridge #, and the mean
temperature of the bridge f,, when the rails were fixed to it,

o= o, i =1,2,3 (14.14)

40

i8 the coefficient of thermal extension of the rails, and
o, = o, (14.15)

is the coefficient of thermal extension of the bridge.
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This notation yields expressions for the displacements of the individual bars
in the following form:

u(x) = a[‘)ziT [1 — (1 + AL) e_juz]e’u,
() = 280 22 et - (14 ALy e,
24
u3(x) = aﬂziT (ifz -1+ efllz) e‘“,
u4(_X) = a(} ATX (1416)

and for the forces in the bars

N (x) = —EAa At {1 + o, AT -1+ (1 + Xlz)e_’”z]e“},
20 At

N,(x) = —EAaAt {1 y Al -2 +e™ + (1 + Mz)e"wf’f)]},
200At
o, AT y _h]

N = —FAgAr |1 + = AL —14+e™

0 = —mraar|te B8 gy ey
N,(x) = 0. (14.17)

The expression factored out in equations (14.7), i.e.,
N = —-EA oAt (14.18)

is the force in the long-welded rail due to the temperature change Af and the
expressions in brackets in equations (14.17) give the contribution of the bridge
to the force in the long-welded rail.

b) Fixed bearing in the middle of the bridge

Further practical cases are shown in Fig. 14.4. The common feature for
all these cases is the possibility that the bridge may expand in both direc-
tions from the fixed bearing. These cases can be described by differential
equations in accordance with the notation of the individual bars from
Fig. 14.4.

—EAu” + ku =
-E AW + k(n, — u) =
—EAu + k(u, — u,) =
—~EAu + k(u, — u,) =
-EAW + k(u, — u) =

~—

I
\r—.\
N

-

oo o o o o

(14.19)
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The boundary conditions are:
(=) = 0, 1, (=) = 0,
u,(0) = 1,(0),  N,(0) = N(0),
(L) = w(0),  Ny(L) = N(0),
(L) = u (0),  N,(4) = N(0),
u(l.) = 0, N, (0) = 0,
u, (0y = 0, N(L) = 0. (14.20)

The system of equations (14.19} with the boundary conditions (14.20) is
solved by the same procedure as in Sect. a) and with the same simplification:

0 0] 0
- “—?""“X ?—‘—‘K Y-—h-ox
i lz 1 !3 n
1 bl | |
1 | 2 { 3 | 4 a)
O O |#]
0 .xs 0 .« 6
B Sl S S
1 2 3 4
! { | by
O 3 o Ci
|l 5 J'_ 6 o
L
1 { 2 | 3 i 4 ¢)
o a i h5
(.- "'_'" 5 |
L
1 | 2 3 | A d)
[* I Y o
L. S 5
™ -1

Fig. 14.4 Fixed bearing in the middle of the bridge
a) two-span continuous beam,

b) three-span continuous beam,

¢) two fixed bearings on central pier,

d) bridge without fixed bearings.
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T
() = = BIL AL - U (s AL e
T
w(x) = *O‘ozj [2A(, — x) = (L + AL)e™ + (1 + AL) e ],
o, AT

u,(x) = 7 [2Ax + (1 + AL)ye ™™™ — (1 + AL)e™™],

AT .
u,(x) = O‘OM (AL, — 1+ (1 +AL) e ]e™,

u(x) = —o, AT (L, - x),
ug(x) = 0, ATx (14.21)
o, AT Ay .

N(x) = —EAaAt {1 + 22xAz‘ [AL— 1+ (1 + ALy e’ ]e }

— o AT —Aly Hy—a)
N,(x) = —FAa At {1 + 2‘;1&5 [(1 + Al)e

+ (1 + AL)e™ — 2]},

— o AT —Ml3—x)

N,(x) = —EAaAt {1 + 221At (1 + AL)e

£ (L + ALy e - 2]},

o. AT Ah e L
N,(x) = —EAaAt {1 + 23xAr [/'Ll3 — 1+ (1 +AL)e™ :3)]6 A }’
N, (x) = 0, N (x) = 0. (14.22)

¢) Alternate bearings on one pier
A bridge of two spans with alternate fixed and movable bearings on an inter-
mediate pier is shown in Fig. 14.5. This case is characterized by the differential
equations (14.19) similar to the above. However, their boundary conditions are:

u(—) =0, u, (=) = 0,
u (0) = 1, (0), N,(0) = N,(0),
uz(zz) = u,(0), Nz(lz) = N,(0),
uy (1) = u,(0), N,(L) = N,(0),
us(0) = 0, N(L) =0,

u,(0) = 0, N,(l) = 0. (14.23)
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Fig. 145 Alternate (fixed and movable} bearings on intermediate pier.

The solution of the system of equations (14.19) with the boundary conditions
(14.23) has the following form:

AT

u (x) = a"m =aL + @+ 20)e™] el e,
AT

Mz(x) - aozl {21)6 +e ™ — [}L[z + (1 + 113) e—,ua] efl(lzfx)} :
AT

L£3(_X) — aﬂzﬂ [21}6 n (llz + e—/llz) e—/lr _ (1 + 113) e—/l([g—x)] ’

=~

A
4(x) = 0502)L [)1,]3 -1 + (llz + e—mq) eﬂu?]e,h,

u(x) = o, ATx

0 3

) = o A (14.24)
_ o, AT 1] s
N(x) = —EAaAt [1 ey {—1 +[an + @+ 2Ly e™ e }e ’
N,(x) = —EAa At |:1 + o AT D 4 e M
oAt

v (A 4 113)6‘”‘]6”’2”}}

o, AT . N CAdlaer
Ny(x) = —FEAaAt {1 + 2;& |2+ (A +e? )y e +(1+ A1) e™" )]}

o, AT - A
N,(x) = —EAaAr {1 + (A0, =1+ (AL, +e*)e™ ]e” }
Ny(x) =0, Ny(x) = 0. (14.25)

| {, | L3 |

1 i 2 1 3 i 4
g 5 5
’ l5 ' I [5 ’
.1-___.L__-t.

Fig. 146, Two movable bearings on a pier.
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d) Two movable bearings on one pier
The case of a two span bridge with two movable bearings on the intermedi-
ate pier is shown in Fig. 14.6. In this case, the differential equations (14.19) are
applicable, but the boundary conditions are:

(=) = 0, i, (=) = 0,
1, (0) = u,(0). N(0) = N,(0),
u,(l,) = u;(0), Ny () = N;(0),
(L) = u,(0), Ni(l5) = N,(0),
1. (0) = 0, N.(l,) = 0,
(1) = 0, N,(0) = 0. (14.26)

The solution of the system of equations (4.19) with boundary conditions (14.26)

has the following form:

o, AT
22

1-A{ + L)e™ —e"’wz”ﬂ] e™,

i (x) =

|
o

AT “MI—x — Al +x —ix
u () = == 2235, = x) + ™ — e -2 + L)e ™,
o AT - —A{ly +iy —-Ax
w,(x) = 02/1 [/'L(l2 +Lye™ — 1 +e™ ’)]e’L ,
u,(x) = o, ATx |
u(x) = —a,AT (I, - x), (14.27)
o AT _ Al +s .
N(x) = —FAa At {1 + ZOOCAI [A(l2 + Lye™ — 1 4 e ’)] et },

o, AT
200 At

N,(x) = —EAaAt [1 + {__ 2 Let o [e,% o)

+ A, + L) e‘l’z]el‘}},

N3(X) = —FAa At l:l + goaAAj; {_2 + efl{!rr)_l__ [eﬂllg_‘_ /1(12_'_{3)] e&\}:l,

o, AT
200 At
N.(x) = 0, N,(x) = 0. (14.28)

N,(x) = —EAa At {1 + [— L+ ML, + L)ye™ + e—/l[z'z-H‘s)] e-;n},
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¢) Three-span bridge with alternate bearings
The case of a three-span bridge with alternate fixed and movable bearings is

shown in Fig. 14.7. It is characterized by the following differential equations:
~EAu” + ku =0, i =15,

~EAu + k(u, — u)=0,
—EAuw] + k(u, — u)=0,

-EAu] + k (v, — u)= 0. (14.29)
The pertinent boundary conditions are:
u,(— o) =0, u, () =
u(0) = w(0),  N(0) = N,(0).
u (L) = u,(0), N, (L) = N,(0),
(L) = u,©0),  N(L) = N,0),
u(l) = u(0),  N,(,) = N,(0),
4, (0) = 0, N,() =0,
u,(0) = 0, N.(L) =0,
u (0) = 0, N ()} = 0. (14.30)

With the same simplifying assumptions as in the case at a) the solution of the
system of equations (14.29) with boundary conditions (14.30) results in:

AT
u(x) = 0‘021 [1 - {ME + [3.13 + (1 + AlL) e"““]e"”ﬁe”’]e“,
u,(x) = OfoziT [2/1x +e - {Mﬁ [AL+ (1 + A1) e | e"“’} e’wz“)],
u,(x) = aﬁT {zm + AL+ e yet — | AL+ (1 + ﬂ.h)e’“‘*]e'w"‘)},
A Al
u,(x) = a(’ZAT {Z)LX - M + (AL+ e e_l“] e™ — (1 + AlL)e™™ *)} :
AT
u(x) = 4 {/ll -1+ M + (A, +e*)ye™ ]e“*}e"“,
u(x) = OCGATx, i =6,7,8. (14.31)
[ L2 e 3 o Y
T T 1 =1
1 i 2 ! 3 | 4 ! 5
I T e

{
| ls 4 L7 'y ls
B B ——

Fig 147, Three-span bridge with alternate fixed and movable bearings on intermediate prers,




— R L L e A T L TR S P P erEe r e — e
v JUVIER PYLELALLE FLEEE Fb LIl 7 o~

o, AT
2O0AT

N (x) = —FAa At {1 -

{1 —-{AL +[AL
+ (1 + AL) e‘“‘] et }el”} e“} )

o, AT
N,(x) = —EAo At [1 + 2°am {— 2+ {AL + [A4
+ (1 + AL) e'“4 } - MG —x) AH ’
o, AT A
N,(x) = —FAa At {1 205A1 [ P [ o+ o+ /U)e 114] Aty ~z)

+ (AL +e™) e“]} :
o, AT
200 At

N,(x) = —EAu At {1 + [_ 2 + (1 + 114) )

+ [/'Ll3 + (A, + ™) e*’”‘] e‘“]},

o, AT
N,(x) = - EAaAs [1 ¢ D2 fa -1
+ (AL + (AL +eye™ | et e'“} ,
N(x) =0, =678 (14.32)

f) Bridge with n-spans and with alternate bearings
An analogous procedure may also be used for the solution of the case of a bridge
with 7 spans and with alternate fixed and movable bearings; for n = 3 see Fig. 14.7.
It can be shown that the highest stresses in the rail are above the last movable bear-
ing. In case of the bridge with equal spans / = L., therefore, this stress has the form

- N ppa [1 + &AT ~ (AL - 1+ C)} (14.33)
A 2a A
where the constant C, depends on the number of spans n
C, =e™,
C, = (AL + C_Ye™, n=2. (14.34)

The greatest relative displacement u between the bridge and the rail can be
found above the last movable bearing as:

u = uZ(n+1)(L) - un+1(L) =

For n = 3 the expressions (14.33) and (14.35) differ very little.

o, AT

(1+AL - C).  (14.35
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mples o
141.?11;22(24.5 and 14.9 show the distribution of the longltgdlnal f_orcle Nt (x?
and the longitudinal displacement #,(x) in the long-welded r:ful on asing fe-, :vo1
and three-span bridge with various bearing grrangement. It is dthe :]asi 0 E.lt; sst
bridge with the long-welded rail fastened dlrect-ly on the bridge dec ,b V\?t out
ballast, in extreme winter conditions. The following input data were substitute
in the respective equations given in Sect. 14.1.2:

Ni (x) at = -58°C
{kN) AT = -55°C
1200 -
a)
1000+
8004

l 324 m |

m‘ o -¥-9 p~4
800H \/

1200
c)

800

1200
1 d)

12
1000
80

e}

i i i irect
Fig. 14.8. Theoretical distribution of the force m the long-welded rail on a steel bridge with direc
fastening of rails in extreme winter conditions: | N
a) simpljg( supported beam, b) two fixed bearings on central pier, c) alternate bearings on central plzl.,
d) two movable bearings on central pier, e) three-span bridge with alternate bearings on intermedi-
ale piers.
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At = —58% C, AT = -55° C, |
k = 8 Nmm™, E = 2.1 x 10° MPa,
a =12 x 10°/°C, a, = 9 x 107°/°C,
A = 6250 mm?, L =324m. .
uilxl a4t =-58°C 1 324em ]
om) T essc . 3

ug (x) uq(x) ug {x}
Fig. 14.9. Theoretical distribution of long-welded rail displacements on a steel bridge with direct

fastening of rail in extreme winter conditions:
a) simply supported beam, b) two fixed bearings on central pier, c) alternate bearings on central pier,
d) two-movable bearings on central pier, ) three-span bridge with alternate bearings on ntermedi-

ate piers.
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14.2 Comparison of theory with experiments

Experimental research was carried out on three steel bridges of the late
Czechoslovak State Railways with characteristic fastening of long-welded rail
(for a detailed description of these bridges see [78]):

1. Bridge with direct fastening of rails on to bridge deck, without ballast.
Steel plate girder construction of span 32.4 m, simply supported, skew, with
orthotropic floor system below; the rail is fixed by means of ribbed sole-plates
and rubber pads.

2. Bridge with continuous ballast and wooden sleepers. Steel plate girder
bridge, continuous with three spans 25 + 55 + 25 m and with a stiffening arch in
the central span, orthotropic floor system carrying ballast with wooden sleepers
and sole-plates.

3. Bridge with free fastening without ballast, three span continuous steel
plate girder of spans 42.9 + 54.6 + 42.9 m. The open deck lying above consists
of stringers and cross-beams. The long-welded rails are attached to wooden
sleepers with ribbed sole-plates, however, the sleepers together with rails
can move along the stringers transferring only vertical and horizontal trans-
verse forces.

The experimental method was taken from [160] and it is described in detail in
[78]. As it was not possible to free the long-welded rail on the bridge before
experiments, all measured data refer to the time, when the rail temperature had
attained the fixing temperature. It is assumed that at that moment there are no
stresses in the rail.

During the tests the following quantitics were measured:
~ the temperature of the ambient air, of the bridge in one cross section and of

the rail,

— the longitudinal stresses in several cross sections of the rail in front of, on and
beyond the bridge,

~ the displacement of the bridge with respect to the abutment, of the rails with
respect to the bridge and of the rails with respect to the abutment of the per-
manent way.

The most important results of the experiments are summarized in Table 14.1.

For the purpose of comparison of theory with experiments it is necessary to
determine all constants occurring in equations (14.1) and (14.4). Their deter-
mination is easy with the exception of the coefficient of rigidity k which
depends on numerous factors and it also varies along the track. For these
rcasons the stress distribution along the long-welded rail was found for several
values of k. Those values of k which approached most closely the experimental
values were considered as experimental values in Table 14.1.

The distribution of forces along the long-welded rail on the three investigated
bridges is shown in Figs 14.10 to 14.12. Equations (14.17) and (14.22) were used
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TABLE 14 1 The most important results of experiments on steel bridges of CSD and their comparison
with theory

Brnidge Unuit 1 2 3
Type of superstructure Direct Ballast Free
fastening wooden fastening
sleepers
Static system simple contimuous continuous
with arch
Span m 324 25455425 42 9454 6442 9
Expansion length m 324 80+25 975+42 9
Number of days of measurements day 12 8 14
Thermal delay of the bnidge to temperature of air minute 25
Thermal delay of lower chord to temperature of air | minute 100 40 40
Arr 210 170 230
Maximum Upper chord 381 318 330
thermal Web (1) of bridge deck (1291 (1)309 228
differences Lower chord 1n sunshine °C 155 155 307
m a day of Lower chord in shade 156
Rail 333 240 344
Maximum Upper and lower chord 1 shade 217 167 160
mstant Upper and lower chord 1n sushine 39
aneous Left and right hand side of lower
thermal chord °C 09 54 136
differences Left and right hand side of bridge
of deck 124 57
Force 1n a rail over movable @) T 212 195 238
bearing Sy/As E 204 174 185
Force 1 a rail over fixed ) T 127 137 111
bearing SpfAf E 162 137 1053
kN/C
(Sui— Se)iA (2)7‘ 85 58 127
E 56 51 91
T 88 41 95
F fixed b XAT 3
orce m a fixed bearing X/ €)] E 76 39
Mutual displacement of rail 2) T 0076 0140 0220
10 abutment fAf E 0107 0107 0133
mm/°C
Mutual displacement of rail @) T 0208 0441 (5) 0266
to bridge /At E 0142 0275
Coefficient of thermal extension () E 903 664 979
of the bridge/AT
Coeffi f th | 1077C
ocetficient of thermal extension (&) E 1179 966 1025
of the bridge
Coefficient of elastic fastenng &k E N/mm® 8 1 2
Notes (1) bridge deck (4) related to temperature of ambient air
(2) related to temperature of rail (5) displacement of rail to stinger
(3) related to mean temperature of bridge T theory

E  experiment
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at = -16 7°C
N, Ix] 14/1/1978 AT = -109°C
(KN} ~ 0
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Fig 14 10 Theoretical (7') and experrmental (£) force distribution in the long-welded rai in the morn

ing (0400 h) and afternoon (1340 h) on a steel bridge of span 32 4 m with direct fastening of rails,
for N - see equation (14 18)
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Fig 1411 Theoretical (T) and experimental (£) force distribution 1n the long-welded rail i the

morning (3600 h) and afternoon (1500 h) on a steel bridge of spans 25 + 55 + 25 m with ballast and
timber sleepers, for N — see equation (14 18)

at = -65°C
- - &
Jm04  19/6/1660 aT= -4"C
400h
N=1048 kN | T ST I

- 300+ - s —

at= 207°C
sT= % 8°C
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‘ R

1 '

Fig 1412 Theoretical (T) and experimental (F) force distribution m the long welded rail 1n the
morning (0400 h) and afternoon (1600 h) on a steel bridge of spans 429 + 54 6 + 42 9 m with free
fastenmg of rails, for N — see equation (14 18)
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for the comparison of theory with experiments. Table 14.1 also contains the data
of the horizontal longitudinal forces below the fixed bearing X} and of the for-
ces in the rail above the fixed (Sr) and movable (S,,) bearings, referred to the
temperature range of the bridge and/or rail by 1°C.

Table 14.1 and Figs 14.10 to 14.12 show relatively good agreement between
the theory from Sect. 14.1 and the experimental results.

14.3 Expansion length of bridges with long-welded rail

It follows from the theoretical and experimental analysis of thermal interac-
tion between long-welded rails and the bridge that the bridge increases axial
forces particularly above movable bearings. This increase depends on the
expansion length of the bridge.

The expansion length of the bridge L is defined as the greatest distance from
the fixed bearing to the farthest end of the structure that may freely extend or
move. In the case of bridges with no fixed bearings, which have only movable
bearings, such as rubber, teflon, sliding (friction) bearings etc., the expansion
length of the bridge is the total length of the structure.

The expansion bridge length is, consequently, the most important factor lim-
iting the use of long-welded rail. It must be determined so as to comply with
four conditions:

— the strength of rail material,

— the gap in rail after its fracture,

— the mutual displacement between rail and bridge,
— the stability of the long-welded rail.

All considerations must be based on maximum and minimum temperatures
which can occur in the local climatic conditions.

14.3.1 Maximum and minimum temperatures

The formulae given in Sect 14.1 contain temperature ranges Af in the rail
(14.12) and AT in the bridge (14.13), which depend on the maximum and/or the
minimum temperatures and on the fixing temperatures. These temperatures,
naturally, depend on local climatic conditions and should be estimated by every
railway administration.

The determination of Ar and A7 must be based on extreme air temperatures
which may occur in a period longer than 50 years with a 95% probability. These
temperatures were assessed on the occasion of the preparation of the
Czechoslovak Standard CSN 73 6203 and are tabulated in Table 14.2,

On the basis of these data the extreme temperatures of insulated bridges of
various material with or without ballast which give a mean bridge temperature
were estimated. The studies of UIC and BR on this problem were taken also
into account.



14.3 Expansion length of bridges with long-welded rail L17

TABLE 14.2. Maximum and minimum temperatures of air, of bridges and of rails

S
Temperature AT At
max. min. max. min. max. min.

)
Ambient air (1) +36 —-30
- With ballast +30 =30 +20 -50
Steel
Without ballast | +35 =35 +25 =55
With and
Bridge (2) Composite | without +30 —20 +20 —40
balast
Concrete With and
" | without +30 -15 +20 —-35
prestressed
ballast
Rail +60 ~30
Wooden 28 | +15 +45 | -S8
Fixing temperature sleepers
of rails
Prestressed 28 | +10 50 | -s8
sleepers
Fixing temperature of bridges (2) +20 +10
Notes: (1) extreme temperatures that can appear with probability of 95% in the time period
longer than 50 years,
(2) mean temperature of the bridge.

The extreme rail temperatures, ie., +60°C and -30°C, are based on the
values traditionally valid in Central Europe.

Also the fixing temperatures of rails were taken from a CSD regulation. With
the assumption of these fixing temperatures the mean bridge temperature may
be about +20°C for the maximum fixing temperature and about +10°C for the
minimum fixing temperature.

On the basis of these values the difference AT of the bridge and Ar of the
rails were found (see Table 14.2) and used for the calculation of the expan-
sion bridge lengths. Table 14.2 shows that, with regard to the fixing temper-

ature, the maximum temperature ranges occur during winter in this particular
Case,
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14.3.2 Strength condition

The first condition for the calculation of the maximum admissible expansion
bridge length is that the rail stress must not exceed a certain value. Since the rail
stresses are found according to the theory of admissible stresses and not on the
theory of limit states, the admissible stress 0,4, which can be used for thermal
stresses in the long-welded rail was derived in accordance with [127], so that the
sum of the stresses did not exceed the yield stress ¢, = 600 MPa attained by rail
steels of the quality 95 CSD-Vk and higher. The individual stress components
are given in detail in Table 14.3.

TABLE 14.3. Stresses in long-welded rail

Type of rail unit R 65 S$49,T

Cross-section area of weared rail A mm’ 6823 5088
Traffic 90 130
Bad track conditions, additional 15 20
Bending in a curve 20 20

Stress

components Production MPa 20 20

due to
Flat wheels 100 1060
Temperature Ot 255 210
Reserve 100 100
Total siress 600 600

Thus, for the calculation of thermal stresses in a long-welded rail the values
of 0, = 255 MPa may be used for the type R 65 and o,,, = 210 MPa for types
S 49 and T of the rails, respectively. In this approach the fully worn rail of the
cross section area A (sce Table 14.3) and the modulus of clasticity E = 2.1 X 10°
MPa are considered. Tt is also safely assumed that o, = o = 12 X 10°/°C. The
coefficient of horizontal longitudinal fixing of rails depends chiefly on the
presence of ballast and the type of fixing (see Table 14.4). Also the results of
our experiments were taken into account.

With these assumptions the maximum admissible expansion bridge length L
was found from the condition

(14.36)

where 0 is the maximum stress in a long-welded rail on the bridge. This stress
appears above the movable bearing according to the individual cases shown

0= O

adm ?

o " PN - . cuviies s e
AN g TN 2 . i e o
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below. The condition (14.36) will be applied in that season when AT and At
achieve their greatest values.

With respect to the larger cross section area of the rail of type R 65 and its
higher admissible stress the expansion bridge length L with rails of type R 65,
found from the strength condijtion, is always greater than for rail types S 49 and T.

Table 14.4. Coefficient of horizontal longitudinal fastening of rails

k
Railway bed Fastening and sleepers (N mm?)
Wooden sleepers 1
With ballast
Prestressed sleepers 2
Free fastening (1) 2
Without ballast Indirect fastening (2) 7
Direct fastening (3) 8
Notes: (1) rail, sole-plate, wooden sleepers — can slide along
stringers
(2) rail, sole-plate, wooden sleepers, stringers,
(3) rail, sole-plate, bridge deck.

a) Fixed bearing on one bridge end
In the case represented by Fig. 14.3 the equations (14.17) present the highest
stress

NGO L poar {1 ¥ O‘OM; (AL — 1+ e'“)] (14.37)

O =
A 2o A

b) Fixed bearing in the middle of the bridge.
In the cases shown in Fig. 14.4, sce equations (14.22), the highest stress appears
above the movable bearing of greater expansion length

o= _poarli s AL
A 200 At
+ [1 + &j eAL(2+:)/(1+)):|} (1438)
1+ r

where [, = I, = L, and in the case of three-span continuous girders the ratio of indi-
vidual spans 1: r: 1 is considered. (In the summary Table 14.8 the following nota-
tion has been used: Case 2: r =0, Case 3: r =0, but L =2/, Case 6: r = 1, and Case
7: r = 1.3, which is the most frequent case for three-span continuous bridges.)



¢) Alternate bearings on one pier
In the case of the two-span bridge with alternate bearings (shown in Fig. 14.5,
see equations (14.25)) the highest stress in the rail occurs also above the second
movable bearing

o= MO~ paa {1 y Bl [AL -1
A 200At
+ (AL +e™h) e“]}. (14.39)

d) Two movable bearings on one pier

In the case of the bridge of two equal spans and two movable bearings above

the pier (Fig. 14.6, equations (14.28)) the highest stress in the rail is above the
pier:

o, AT

2a At

—EaAt [1 + (AL — 1+ e‘“)} (14.40)
¢) Three-span bridge with alternate bearings
For the bridge of three equal spans (Fig. 14.7, equations (14.32)) the highest
stress in the rails is above the last movable bearing:

o= M = —Eam[1+ LAT{AL -1 +[AL
A 200AtL
+ (AL + ety e?] e““}} (14.41)

and for n spans equation (14.33) is applicable.

14.3.3 Gap condition

The safety of railway traffic must be guaranteed even when long-welded rail
cracks on the bridge. The gap in the rail is further increased by the deflection of
the bridge, particularly in the case of bridges with floor systems lying above.
The gap can occur only during low temperature conditions.

This requirement is very severe and extremely disadvantageous for bridges,
althought it should also be applied to the long-welded rail of open track.

According to the bibliography and experience, the admissible width of the
gap varies between 30 and 50 mm (see [205]) which results in the drop of the
wheel centre by 0.78 mm, provided the rail is supported rigidly. Actually, an
impact occurs during the movement of traffic which, however, does not depend
on the gap width. For this reason the calculation of the expansion length is
based on the condition

a = 50 mm. (14.42)
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a) Width of the gap in long-welded rail
If the long-welded rail cracks, two semi-infinite beams arc formed, the dis-
placements of which are described by the differential equation (14.4), see Fig.
14.13. Let us apply to equation (14.4) the following boundary conditions for the
right-hand side of the beam

u(es) = 0, N() = 0. (14.43)
a} M M A g Ty W T T
NN NN NN NN
b w4 »
c) N(xlt X
N=-FEAxat Tt

Fig. 14.13. a) Semi-infinite beam, b) distribution of horizontal displacement u(x), ¢) distribution of
longitudinal force N{x).

With these conditions the solution of equation (14.4) results in

u(x) = —9‘% e, N(x) = —FAoAt(l —e™).  (14.44)
The rupture of the long-welded rail, consequently, gives rise to the gap
u, — u, (14.45)
(see Fig. 14.14), where
oAt AL
IM’2 &2 H 3 AB ( )

and A, and A, are found from equations (14.11) for the left and right-hand side

rail sectors, respectively.
—sﬁt‘i

K s I s |

K3

b
Fig, 14.14. Gap after the rupture of long-welded rail above movable bearing of a bridge.

b) Influence of deflection and depth of the bridge.
The gap in the rail is increased by the deflection of the bridge and it also
depends on the bearing depth of the bridge. The width ¢ for this case is shown
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in Fig. 14.15; it is calculated with the assumption that the ratio m, = I/h of the
span [ to the bearing depth 4 and the ratio m, = I/f of the span / to the deflec-
tion fis due to half the standard load attained in practice.

L.
I

Fig. 14.15. Influence of bridge deflection and girder depth on the gap in the rail.

{ =L "

The gap width then

: 4
c = L sin @ = / , (14.47)

m, m,m,
where tg ¢ =4 /I and sin ¢ = tg ¢ (parabolic deflection is assumed). In the case
of two movable bearings on a pier the double value of ¢ should be taken into
account, because the highest stress is above the central pier.

¢) Computation of expansion length
The condition of the maximum permitted gap width is, consequently

u, — U, + ¢ = a. (14.48)
After the substitution of (14.46) and (14.47), equation (14.48) can be written
L<a+ocAz‘—1—+i LY (14.49)
A A 4 '

where it is assumed that / = L (safe).

In the calculation of the expansion length L according to equation (14.49) the
following values were considered: ¢ = 50 mm, a = 12 X 10°/°C, At = -58°C and
the coefficients k, and k, were from Table 14.5, because winter conditions and
supports against rails slipping beyond the bridge were assumed. Otherwise
condition (14.49) would not be satisfied.

The coefficients of deflection and of the depth of the bridge are assumed
according to Table 14.6, which are generally current values for half the standard
load (approximately traffic load).

On the basis of these data, the expansion lengths L according to equation
(14.49) were found. Since the displacement of weaker rails of § 49 and T types
is smaller than the displacement of the type R 65, according to equation (14.46),
the expansion lengths L are greater for types S 49 and T than for the type R 65
of rails.
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TABLE 14.5. Coefficient of horizontal longitudinal fastening of rails (in extreme winter conditions)

k, k;
Bridges Railway bed Fastening and sleepers
N mm™
With ballast Wooden sleepers 5 10
Free fastening (1) 2 10
Steel
Without ballast Indirect fastening (2) 7 10
Direct fastening (3) 8 10
Wooden sleepers 5 10
With ballast
Composite Prestressed sleepers ) 12
Without ballast Direct fastening (3) 8 10
Wooden sleepers 5 10
Concrete and | With ballast
prestressed Prestressed sleepers 6 12
Without ballast Direct fastening (3) 8 10
Notes: (1) rail, sole-plate, wooden sleepers — can slide along stringers,
(2) rail, sole-plate, wooden sleepers, stringers,
(3) rail, sole-plate, bridge deck.

TABLE 14.6. Coefficients of depth and of deflection of bridges

Bridggs
Coefficient of Composite, concrete,
Steel
prestressed
Depth m, 12 15
Deflection m, 2000 4000

14.3.4 Mutual displacement condition

The next condition for the long-welded rail on bridges is the condition that
the relative displacement u between the rail and the bridge should be limited by
the maximum admissible value b. The omission to comply with this condition
results in plastic deformation and rupture of clamps, sole-plates, screws and
Other parts of the permanent way and the bridge deck.
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This condition is expressed mathematically
|lu|=b, (14.50)

where u the maximum mutual rail and bridge displacement. The condition
(14.50) yields the expansion length for the individual cases.

Condition (14.50) is only applied to bridges without ballast for the absolutely
maximum temperature ranges AT. The coefficient k is considered according to
Table 14.4, but the coefficients of thermal extension & according to Table 14.7.
These values are nearer reality and are based on our experiments [78] and on
reports [160] and characterize the fact that concrete bridges and particularly the
bridges with ballast are considerably influenced by friction.

TABLE 14.7. Coefficient of thermal extension

24
Bridges Railway bed (10%°C)
With ballast 6
Steel
Without ballast 9
With ballast 5
Composite
Without ballast 6
Concrete, With ballast 5
t d
presiresse Without ballast 6
Rails o 12

'The maximum admissible mutual displacement b is found from the equation

p = 2L (14.51)
kd
where F = 19 kN, according to laboratory experiments of Sackmauer [182], is
the ultimate strength of a bolt joining the sleeper to the stringer or of rail anchor-
ing clamp; k = 7 or 8 N mm™ is the coefficient for indirect or for direct fastening
of rails, respectively, see Table 14.4, and d = 600 mm is the spacing of sleepers.
The condition (14.51) considerably reduces the expansion length L which,
once again, is smaller for the type R 65 of rails than for types S 49 and T. This
is due to the smaller mutual displacement of weaker rails with reference to the
bridge. If new types of sole-plates and clamps are used, which allow the longit-
udinal displacement of the rails along the bridge, the condition (14.51) could be
omitted.
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a) Fixed bearing on one bridge end
The greatest mutual displacement occurs above the movable bearing and,
according to Fig. 14.3 and equations (14.6), attains the value of

o, AT

w = u,(Ly - u,(L) = (1 +AL —e™h). (14.52)
b) Fixed bearing in the middle of the bridge
For this case Fig. 14.4 and equations (14.21) yield the maximum relative dis-
placement above the movable bearing for a greater expansion length

u = M6(L) - MB(L) — a()ziT |i1 + /’LL _ [1 + lﬂ:’_Lrj eAlL(ZH)/(lH)j'-
(14.53)

Once again, the ratio of spans of a three-span bridge is denoted by 1: r: 1.

¢) Alternate bearings on an intermediate pier
According to the notation used in Fig. 14.5 and equations (14.24) the greatest
mutual displacement in the case of a two-span bridge of equal spans is above
the second movable bearing

o, AT

u = u (L) — u,(L) = [1+AL - AL +e?ye?t ]|, (14.54)

d) Two movable bearings on one pier
The bridge of two equal spans with movable bearings on one pier, see Fig.
14.6 and equations (14.27), possesses the maximum relative displacement above
the pier

u = u,(0) — u(0) = -, AT L (14.55)
so that the expansion length can be found directly from the condition (14.50),

1e.

b

o, AT

= (14.56)
¢) Three-span bridge with alternate bearings
The bridge of three and more equal spans with alternate bearings has the
Mmaximum mutual displacement always above the last movable bearing. For a
three span bridge, see Fig. 14.7 and equations (14.31), the displacement is

o, AT

W= u(L) - u(L) = H+AL - [AL + AL + ey e ]e™)

(14.57)
and for # fields the equation (14.35) applies.
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14.3.5 Stability condition

The long-welded rail must also be secured against buckling in summer.
According to our assumptions given in Sect. 14.3.2 the maximum axial force in
the long-welded rail on the bridge can be

1.74 MN R 65
N =o0,_A = for types of rails.  (14.58)
1.07 MN S49, T

According to [182] the ultimate force on the stability limit of the long-welded
rail at the end of the bridge is

3

5.65 MN for ( R 65 £ rail 14.50
= 0 S :
“ T la6sMN O PP sg9 T T (14.59)
and beyond the safety angles in the track
4.74 MN R 65
o = for types of rails. (14.60)
4.24 MN §49, T

The analysis of an endless bar on an elastic foundation gives the minimum
critical force
N, = 2(El k)", (14.61)

cr

where k, is the coefficient of elastic foundation of rails in vertical or horizontal
transverse directions. For a very low estimation of &k, = 10 N mm* and for hori-
zontal buckling we obtain for the force (14.61)

9.80 MN R 65 .
. = for types of rails. (14.62)
7.43 MN §49, T
In any case the safety against buckling is
N /N > 2, (14.63)

which is required for the long-welded rail.
Consequently, the condition of stability is complied with automatically by
keeping to the admissible stress .

14.3.6 Admissible expansion length of bridges

For every condition from Sects 14.3.2 to 14.3.5 and for every case of bridge
bearing arrangement the maximum admissible expansion length of bridges of
various material and with various arrangement of ballast, of superstructure and
of floor system was calculated. The calculation was based on the data given in
Sects 14.3.1 to 14.3.5 and carried out by an iterative method with the step of
L =1 m according to the block diagram shown in Fig. 14.16.

Table 14.8 contains those values of expansion length . which were obtained
as a minimum for the each case. In this way it has been ensured that the lengths
L satisfy all criteria described in Sects 14.3.2 to 14.3.5.
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For steel bridges with ballast and with free fastening the decisive criterion is
the gap condition in case of R 65 rails. In case of types S 49 and T of rails it is
the strength condition. The expansion length of steel bridges with indirect or
direct fastening is controlled by the mutual displacement condition.

In composite steel, concrete and prestressed bridges with ballast the strength
condition is decisive, similarly for the same bridges with direct fastenings of
rails § 49 and 1. However, for direct fastening of rails R 65 the mutual dis-
placement condition is decisive.

If sliding fastening of rails, which allows longitudinal horizontal displace-
ment, is used on the bridge, the condition of mutual displacement could be
omitted. Then in the case of bridges without ballast, the strength condition
may be used, which yields higher values of L. These data are given in brackets
in Table 14.8.

Maximum ' A
. emperature of bridge (mean value)
rails

maxtmum fixing temperature of rails

minimum g tempe ° bridge (mean value)

maximum rails At

TR temperature ranges of bridge AT

constants k, A, a, o, LE
theory — Sect 141t
T T T T e T e s - — T T T T T T T T e e e e e e |
| i
{ another another another another i
L L L k
I . i
[ ]
T E u < b stabitily I

l not nat not
] |
I yes yes |
| !
| L L t I
| L L |
| T ,
] !
[ assessment — Sect 143 l

minnum of L = admissible ditatable length of the bridge

Fig. 14.16 Block diagram for the calculation of the admissible expansion length I of a bridge with
long-welded ranl.



w e orvseree wesnruceibt Y OURE-WeELAEQ rail With raliway bridges

‘Junieaqg sjqeaow O ‘Bupieaq paxy v
*(*019 sBupreaq Jwplys 1o saqqn) sEurreaq paxy Mo s33pliq 10y pardde oq ues ¢ -ON] o582
‘(seo1aap Funoypue el [eads) pajio ST HolNIpos Juswase[dsip femyoiu iy sjqesjdde o1 s10%0eIq W 7 30 sonjea

Pp1 o1qeY, 998 - (£} (7) (1) saron
. _
9¢ T 101 43 ¥9 06 (cz) ¥z 1z 0% <L L6 S sueds oIow pue ¢ o
{(v9) 09 Lz1 0871 (L8) (4 p1L 191 (p+) €7 (i#) 9z 173 6Z1 9 ¥ L1
6% 8L ]9 L L 101 (0g) 1z (ze) %4 09 06 L 6r § g1 =4 ,
(L9) 09 €1 981 (09) 1S 0Z1 897 (8%) |£4 (¢5) £7 172 621 $9¥ aryl
e — st
oy 0% 41 S¢ 7L 701 (0g) 7z (ze) ¥2 09 83 L6t S 1=4 o
(99) 8 Z€eT 951 (09) oS 0zl 891 (8v) 0z (zs) ¥z 193 621 9 ¥ qr'$1
ST 0S oL £7 9% 9 (61) LT (0z) 61 8¢ 96 16%S -
(ov) 6¢ 08 vt | (o bE L w1 | (09 L (ze) 61 9¢ 59 509 9 s
R I R
9€ 7L 701 £ 59 76 (92) €z (s2) 9z Is L TL'erS vl )
{9) 09 £y 0871 (1) s 1aa 791 (sp) £7 (sp) 97 1L 621 9 ¥ 5
08 091 ¥z i, 9t1 $0Z (29) or (99) 9t zo1 £t | Lsv S qZ =7 'p=A c
| {zen) 911 $97 cTe (oz1) 26 ove £ze (86) 8t (O1) a4 TL 671 SOy PPyl
op 08 AR LE €L ¥01 (1g) 0z (gg) £z 19 16 L6rs =4 .
r {99) 85 el 981 (09) 6 0zl 691 (6%) 61 (z¢) 7z IL 621 $9d 298yl
6€ LL 601 9¢ 1L 007 (62) |4 (1¢) vZ 8¢ 98 L6¥S b1 .
{99) 65 €1 ¥81 (65) 0s 8IT L97 (8t) 0¢ (15) €7 1L 621 9231
(w) 7
() wax(] ‘11501 | uspoom {£) wau(y ‘nsa1g _ USPOOM. (£) weng () 1wompuy (1) 2913 .y doafs
Fuuase] s1odagsg Suuase] s1adas|g Furuoyse USpooAy o.SmE 908
s[rez 7 YIgus] ]
noyjim LELTIY INoYIM LY MO JIM 0 uogsuedxa pue mz
adiy sguuesq jo oSED
umm:mmm ﬁm&:mm umm:—wm HEDEquwH\;\
passansaid ‘91010107) spsodwoy) o015 -
s93pLiq Aempimy

S[IBI pOplom SNONURUOD [Ylim $a8priq Aeamyey Jo 7 q18uo] uosuedxs

SIQISSIUPY g'HT TTHVL




14.3 Expansion length of bridges with long-welded rail 291

The maximum admissible expansion lengths of bridges with long-welded rail
in Table 14.8. are sufficiently safe, because their computation was based on fully
worn rails with the coefficient of thermal extension ¢ =12 X 10°/°C in the majo-
rity of cases. The non-linear relation between the resistance force and displace-
ment, the use of safety angles, thermal inertia of bridges and hysteresis were not
taken into account.

14.4 Horizontal forces in bridges due to temperature changes

When the rails are jointed or provided with expansion devices at the ends of
railway bridges, no horizontal forces due to temperature changes are induced
into bridges, according to theoretical assumptions. In the case of the long-
welded rail, however, horizontal longitudinal forces are generated by temperat-
ure ranges which affect the bridge, the bearings, piers and abutments. Addition-
ally horizontal transverse loads occur if the long-welded rail lies in curve.

Let us consider the rail on the bridge of a span / in a curve of a radius r (see
Fig. 14.17). After the separation of the bridge and rails, the rails are affected by
the forces N, and the bridge by the force X; on the side of fixed (F) bearings,
and by the forces Ny and X,,, respectively, on the side of movable (M) bearings.
Fig. 14.17 shows the positive forces affecting the bridge. The abutments are sub-
jected to positive forces in opposite directions as shown in Figs. 14.18 to 14.25.

A
K
a2
/ I \
/ { \\
r// :]‘ NP
/ N
/ | \
/ f \
/ | \\
!
Y
_— o — il R
XF XM=0
/2 I 1/2
{

Fig. 14.17. External forces affecting the bridge and the rail in curve, plan.

According to assumption (a) in Sect 14.1.1 the forces in the movable bearing is
X, =0. (14.64)

The condition of equilibrium of forces in horizontal longitudinal and hori-
zontal transverse directions according to Fig. 14.17 yields

X. + N, cos@ = N, cos ¢, (14.65)
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Y = (N, + N,,)sin ¢, (14.66)

where ¢ is half the central angle according to Fig. 14.17. This angle is deter-
mined from the relation
sin @ = L : (14.67)
2r
Asr>l cos ¢=1.
Therefore, the horizontal forces under the fixed bearing is, from equation
(14.65),
X, = N, — N, (14.68)

and the horizontal transverse force is, from equation (14.66),
Y = (N, + N,) 5’- (14.69)
-

The force X; can also be found from Fig. 14.1 as the sum of forces affecting
every bridge element which has to be transmitted by the fixed bearing

X, = —".k[u4(x) — u,(x)]dx . (14.70)

Equations (14.68) and (14.70) give identical results.
In practice, the horizontal transverse force Y is replaced with horizontal
transverse informly distributed load

p =Y/l = (N, + N,)/(2r), (14.71)
which affects the bridge in the positive direction shown in Figs. 14.19 fo 14.25.
If the rail on the bridge is straight, r — o, the horizontal longitudinal forces
is determined by equation (14.68) or equation (14.70), while for the horizontal
transversc load equation (14.71) gives
p=0. (14.72)
According to equations (14.68) to (14.71) the load affecting the bridge
depends on the normal forces N; and N in the rails which must be calculated
for the individual cases.
a) Bridge with expansion devices above both bearings (Fig. 14.18)

If the rails are provided with expansion devices at both bridge ends, all forces
due to temperature equal zero. Hence

X, =0, and p =0. (14.73)

{2

Fig. 14.18. Bridge with expansion devices above both bearings, elevation.
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b) Bridge with an expansion device above a movable bearing (Fig. 14.19)
If the rails are provided with an expansion device above a movable bearing,
the temperature-produced forces are

1 _
X, = -N,(0) = X,, — EAe™" [a At — 2 o, AT(2 — ¢ ’“2)] (14.74)
1 1
pro= 5 N, (0) = ~3 X.. (14.75)
” FIANAN
I ly l b | b
1 ) B '—r' 1
b} Xe f.... kL i
F » ~|

Fig. 14.19. Bridge with an expansion device above a movable bearing, a) plan, b) elevation.

where
X, = FA (a At — % o, AT]. (14.76)
The forces X, and
P - —-;— X,, (14.77)

for the constants from Tables 14.2 and 14.4 are given in Table 14.9.
The dimensionless relation

X = X, /X, = priP, (14.78)

is plotted as a function of the bridge span /, in Figs 14.26 and 14.27 for two
basic cases: the bridge with ballast (Fig, 14.26) and the bridge without ballast
(Fig. 14.27).

From the data of Table 14.9 and Figs 14.26 and 14.27 it is possible to find the
forces X and p for the given span /, as follows:

X = XX (14.79)

F Fo ?

and
p = XPir. (14.80)

Figures 14.26 and 14.27 show that in the case at b) there is a limit to forces X
and p with reference to the bridge span /.
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¢} Bridge with expansion device above fixed bearing (Fig. 14.20)
Should the expansion device be placed above a fixed bearing (which would
be unusual), the horizontal forces generated by temperature would be

X = NO) = {X, - 3 Eaq AT AL+ 0+ ALY 0 - e
(14.81)
and
1 1
pr = 5 N,(0) = -3 X, (14.82)
where
X, = EA (~a At + % o, AT) (14.83)
and
1
PO = E XFO B (1484)
p
a)
L l1 1 12 1 3 i
! H T e |
b} ¥ _.::.. U
L

|
1

Fg 1420 Bridge with an expansion device above fixed bearing, a) plan, b) elevation

The values of X, and P, are calculated in Table 14.9 from the values of
Tables 14.2 and 14.4. The dependence (14.78) of the dimensionless quantity
X on the expansion length [, for two basic cases is plotted in Figs 14.28 and
14.29. In the case at c) the forces X; and p increase with increasing span 1,
which reveals the unsuitability of such location of the expansion device. The
actual load for the given span /, could be found from equations (14.79) and
(14.80).

d) Single-span bridge with long-welded rail (Fig, 14.21)

If the long-welded rail passes along the bridge with a fixed bearing at one

end, the force
1

X, = N(0) = N,(0) = —5 EAaATAL(1 - ¢™)  (14.85)

originates under the fixed bearing, according to equations (14.17) and (14.68).
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The transverse load according to equations (14.17), (14.69) and (14.71) appears
in the following form

1 (94 AT —At, g -5
pro= -3 FAa At {2 + Q;At [—2(1 —e )+ AL + e )]} (14.86)

where N; = N,(0) and N, = N;(0).
The forces denoted as
Xep = Xp (14.87)
and
P = pr (14.88)

were found for the data of Tables 14.2 to 14.8 and are given in Table 14.9. The
calculation used equations (14.85) and (14.86), where [, = L was substituted.

p
a)
I[ l1 __]'_ lz i (3 _J|
X FAY 1)
b F l4
- n ]
d

Fig. 14.21. Single-span bridge with long-welded rail, a) plan, b) elevation.

Figures 14.30 and 14.31 show
X = X./X,, (14.89)
and
P = prl/P (14.90)

plotted against the span /, for the bridge with ballast. The force X; for the given

span [, is then found from equation (14.79) and the 1oad p from equation (14.90)

p = PR/r. (14.91)

It can be stated, very approximately, that the quantity X increases in propor-

tion with increasing span, while the quantity P does not change much with in-

creasing span. This conclusion is used in Table 14.10 which gives only the value

of

X./L (14.92)

and pr for which /, = L. The values from Tables 14.2 to 14.8 have been used for

the calculation of the forces in Table 14.10. For other values of [, < L the force
X may be found approximately from the relation

LX./L (14.93)

while the load pr remains approximately independent of /,.
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¢) Continuous bridge with long-welded rail (Figs 14.22 and 14.23)
If the long-welded rail is mounted on a continuous bridge with a fixed bear-
ing on an intermediate pier, temperature changes produce the forces

X, = N,(0) — N,(0) = —% EAa, ATA(L — L)[1 - ] (14.94)

and
T
pr — _l EAOL’Af {2 + aUA [_ 2(1 _ ef&(lwls))
2 200 At
+ AL + L) (1 + 6/1([2”3))]} (14.95)
derived from equations (14.21).
p
a)
by o 7.y X o] o)
s ls
Ly

p
a)
. by SRR | I4 -
g 7.3 % o)
b) . ls . ls
L Ly b4

Fig. 14.23. Continuous bridge with long-welded rail or two simply supported beams with fixed bear-
ings on central pier, a) plan, b) elevation.

The forces (14.90) and (14.91) were calculated for the two cases:
, = 1,/2 —seeFig. 14.22

and i
[, =1, —seeFig. 14.23

2

and the results are tabulated in Table 14.10. However, the relation (14.92) has
been replaced with the dependence on the difference of L = [, and [, according

to Fig. 14.22 -
X/ (L - L). (14.96)
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14.4 Horizontal forces in bridges due to temperature changes
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In the case of /, = [; shown in Fig. 14.23, according to equation (14.94)
X. =0.

F
f) Two-span bridge with long-welded rail (Fig. 14.24)
If the long-welded rail is mounted on a bridge with movable bearings on the
intermediate pier, the forces are:
|

Xo = N(0) = N,(0) = 3 EAe, ATA(, + 1)
1 — e -Al
1o A=l ety 14.97
{ A(wl})}( °) (%5
X, = N,(0) - N,(0) = % EAc, ATA(L + 1)
i
N R SN RS (14.98)
AL+ 1)
1 o, AT
= —— EAaAr{2 + 20 [3 4
=y { rear 3t e
+ A + Ly e A+ e“z)]}. (14.99)

These quantities, derived from equation (14.28) have been found from the
data of Tables 14.2 to 14.8 for the case of [, = I, = L. The results are given in
Table 14.10. In this case X}, = —X;,.

p
a)

b 2 s . Lk
{ ¥ ¥
Pay DO 7\

b) —---—--XF1 —-———-XFZ
. ls ls ,
f bl 1
Lg Ly

Fig. 14.24. Two-span bridge with long-welded rail and movable bearings on central pier,
a) plan, b) evation.

g) Three-span bridge with a long-welded rail (Fig. 14.25)
If the long-welded rail passes along a three-span bridge with alternate bear-
ings, it is possible to derive, according to equation (14.32), the following tem-
perature generated forces

X, - _% EAoy AT(1 = ¢ ) [-1 + 4,0, + AL ¢ ™

+ (1 + Al) e, (14.100)
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X = =2 FAo,AT(L - e ) [A( = L) ~e ™ + (L4 Al)e™],
(14.101)
X, = —% EAa, AT(1 ~ %) [1 + A, — L) = (AL + e*’”i)e””ﬁ] ,
(14.102)
pr = _1 EFAa At {2 + oy AT [—3 + et
2 20 At
+ (AL + Ane™ 4 (1 + AL) e ™| (1 + )] } (14.103)
1 o, AT o
= —= BEAaAt {2 + =& -4 4+ A, + L) +e"
pP.r 3 { 2 At [ (Z, 3)

+ [a@ + 1) + e_l’z]e"”’ + (1 + L) (1 + e"”ﬂe‘“‘]}. (14.104)

1 o, AT
pr= - EAQ At {2 + ZOaAt [—3 + AL+ L)+ 1+ A+ 1)
et 4 (AL +e )y (1 + et e‘“]}. (14.105)
P
T ]ﬂ@

a) 1
, o L o L L l X s
i T T -r -t .

« Pay o JF2Y DA ¥ S

— Ko, — —_—

i l__[L_F2_+_.[7~_+_f+[!_..{

b) Ld Ld Ld

Fig. 14.25. Three-span bridge with long-welded rail and alternated movable and fixed bearings on
intermediate piers, a) plan, b) elevation.

The forces (14.100) to (14.105), represented in Fig. 14.25, have been calcu-
lated for /, = [, = [, =L. The results are given in Table 14.10.

The data may also be applied approximately to bridges of two or four and
more spans will alternate bearings with the understanding that the forces Xy,
and p, will be used for the first span with a fixed bearing on the abutment, the
forces X;, and p, for the last span with a movable bearing on the abutment,
and the forces Xy, and p, for the intermediate spans.

Otherwise, it holds generally for a bridge of n spans with alternate bearings,
using the notation according to Fig. 14.25, that the horizontal longitudinal



forces X, under fixed bearings and the horizontal transverse force Y, can be
calculated using the following formulae:

X = Nn+2(0) - Nm—l(o) ?

H

[
Y, = [N,.(0) + N, (0)] 2—“ - (14.106)
¥
1-
X
d\
e\
b
a\ L
05- ——
0 100 200 Ly}

Fig. 14.26. Dimensionless quantity X = X;/Xy, = pr/P, plotted against bridge span /; expansion device
above movable bearing (Fig. 14.19); steel bridge with ballast, timber sleepers;

R 65 rails: a) summer, b) winter,

S 49 rails: ¢) summer, d) winter temperature extremes.

1 -
X
05- —
0 100 200 La(m)

Fig. 1427, Dimensionless quantity X = X/ Xy, = p#/P, plotted against bridge span ; expansion device
above movable bearing (Fig. 14.19); steel bridge without ballast, direct fastening of

R 65 rails: a) summer, b) winter,

8 49 rails: ¢) summer, d) winter temperature extremes.
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The temperature-generated forces are calculated for extreme summer and
winter temperature ranges Ar and AT in Tables 14.9 and 14.10. The direction of
the positive action of force X, on the abutment and the piers, or of the uni-
formly distributed load p on the bridge is shown in Figs 14.18 to 14.25.

d
b
2,-
X c
a
1_
e
& 0»
! T T
0 100 200 Lpim} 300

Fig. 14.28. Dimensionless quantity X = X/Xy, = pr/P, plotted against bridge span /,; expansion device
above fixed bearing (Fig. 14.20); steel bridge with ballast, timber sleepers;
R 65 rails: a) summer, b) winter,

S 49 rajls: c) summer, d) winter temperature extremes.

10 - d
X
) p——— e b
& 0o
5 <
a
0 100 200 Lim 300

Fig. 14.29. Dimensionless quantity X = X/ Xz, = pr/P, plotted against bridge span /,; expansion device
above fixed bearing (Fig. 14.20); steel bridge without ballast, direct fastening of

R 65 rails: a) summer, b) winter,

S 49 rails: ¢) summer, d) winter temperature extremes.
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05
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0 50 Ly 100 La Ly(m)

Fig. 14.30. Diumenstonless quantity X = X,/ Xy, plotted agamst bridge span /, with long-welded rail (Fig.
14.21); steel bridge with ballast, timber sleepers;

R 65 rails: a) summer, b) winter,

S 49 rails: c¢) summer, d) winter temperature extremes.
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Fig. 14.31. Dimensionless quantity P = pr/P, plotted against bridge span /, with long-welded rail (Fig
14.21); steel bridge with ballast, tumber sleepers;

R 65 rails' a) summer, b) winter,

S 49 rails: ¢) summer, d) winter temperature extremes.
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14.5 Effect of some parameters

The influence of some dimensionless parameters has been studied on steel
bridges without ballast (i.e. cases (a) and (e) from Sect. 14.1.2). The following
data were considered:

At = —58°C,  @=12x10°/°C, E = 2.1 x 10° MPa,
AT = =55°C, o, = 9x10°/°C, A = 6297 mm’ (S 49).

0

The force (14.18) and the stress in the long-welded rail for this case are as fol-
lows

N = +21x 10" x 6297 x 12 x 10® x 58 = +920.4 kN,
o= N A = +146.2 MPa.

e

14.5.1 Rail displacement
The dimensionless rail displacement above a movable bearing (14.6),1, = L,
Fig. 14.3,
o, AT
0)y/L = =2 AL -1 +e™ 14.107
n(O)/L = S e ™) (14.107)

is shown in Fig, 14.32 as a function of 1 L.

——

T
10 ALY

' 1 1 v

0

440" -

-Zxﬁ‘ by
w0 VLY
{1)

Fig. 14.32. Dimensionless rail displacement above movable bearing of a simply supported beam as a
function of AL.

14.5.2 Rail force
The force in the long-welded rail above the last movable bearing attains,
according to equations (14.17), (14.25), (14.32), (14.33) and Figs 14.3, 14.5 and
14.7, the following value
Nn+](L) — 1 aOAT

%L a1 , 14.108
N * Soar ¢ +G) ( )

This function is shown in Fig. 14.33 for n equal spans.
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Fig. 14.33. Dimensionless force in long-welded rail above the last movable bridge bearing of a n-span

bridge with alternate bearings as a function of AL.

14.5.3 Mutual displacement
Mutual displacement of the bridge and the rail for the case of a bridge with n
equal spans with alternate bearings is, from equation (14.35):

u . uz(n+1)(L) - un+1(L) — aﬂ AT

L L 24 L
(see Fig. 14.34).

(1 +AL - C)  (14.109)

0 T T 1 T % ¥ T T T
-1)«16‘ B

‘2:(}_04 N
310" -
10 -

15 AL (1P}

~Sxigf n=123
u/k(1)

Fig. 14.34. Dimensionless mutual displacement above movable bearing of a n-span bridge with al-
ternated bearings as a function of AL

!
Xe{kN)
3000 4
2000 -
1000 4
0 T T T T T Sail
1 2 3 4 g AL{1}

Fig. 14.35. Force X: transmitted to fixed bearings from two long-welded rails as a function of AL.
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14.5.4 Force in fixed bearings
The force transmitted from two rails into fixed bearings is found from equa-

tion (14.85), Fig. 14.3a. It is shown as a function of the dimensionless quantity
AL in Fig. 14.35.

14.5.5 Uniform load subjecting the bridge with curved rail

The horizontal transverse load p (uniformly distributed) applied to the
bridge (from two rails, Fig. 14.21) with long-welded rail in curve of radius » is
found from equation (14.86):

Y _FAoA: {2 . o, AT

=707 27 Ja At

[-2(1 — e + AL + e‘“)]}
(14.110)

This equation is shown in Fig. 14.36 as a function of AL and the radius of cur-
vature of the track =

r{m}

~ 180

200
9_1 i
{kN m)

10 - 300

6 1—‘// 500

600

4 - / Bm

10

2 e 2000

4000
0 1 ) 3 4 5 aL(1)

Fig. 14.36. Uniformly distributed horizontal transverse load p affecting two long-welded rails on a
bridge with the track in curve as a function of AL for various radii of curvature .

14.5.6 Strength condition
The stress (14.37) has been calculated for several practical cases and is shown
in Fig. 14.37.

14.5.7 Gap condition
The gap condition in the case of rail rupture above a movable bearing (14.48)
was adjusted to the form of

a = —205At—§~ + 4L

AL mm, '

(14.111)

It is represented graphically in Fig. 14.38 for several cases of L, m,, and m,.
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Fig. 14.37. Stress ¢ (14.37) as a function of AL:

1 —steel bridges without ballast, 2 — steel bridges with ballast, 3 — composite bridges without ballast,
4 — composite bridges with ballast, 5 — reinforced or prestressed concrete bridges without ballast,
6 — reinforced of prestressed concrete bridges with ballast.

e

)

qa j\
{mm)
9
50 -
L=100m
8
40 - 7
30-
5
5 L=50 m
204 L
3
10 - $}L=20m
0 1 2 3 4 s AL(1)

Fig. 14.38. Gap a (14.111) as a function of AL:

1-L=20m,m, =8, m,=4000; 2 - L =20m, », =12, m, = 2000; 3 - L =20 m, m, = 15, m, = 1000;
4-L=50m,m =8, m,=4000;5 - L =50m,m =12, m, = 2000; 6 - L = 50 m, m, = 15, m, = 1000,
7-L =100 m, m, =8, m, =4000;8 - L = 100 m, m, = 12, m, = 2000; 9 — L = 100 m, m, = 15, m, = 1000.
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14.5.8 Mutual displacement condition
The condition of mutual displacement between the bridge and the long-
welded rail (14.50), adjusted to the form of
o, ATL

b = TV (1+AL — ey, (14.112)

is represented in Fig. 14.39 for several practical cases.

-~

b
{(mm)
5
A
3 1
2-& 2
\\ :-_%
14 6
T T T T T -
0 1 2 3 4 5 AL}

Fig. 14.39. Mutual displacement & (14.112) of a bridge with span 1. = 10 m as a function of AL (for
other spans, b should be multiplied by L/10):

1 - steel bridges without ballast, 2 — steel bridges with ballast, 3 - composite bridges without ballast,
4 — composite bridges with ballast, 5 — remforced or prestressed concrete bridges without ballast,
6 — reinforced or prestressed concrete bridges with ballast.

14.6 Conclusions for the application of long-welded rail on bridges

Railway bridges influence the stresses and displacements of long-welded rail,
especially above movable bridge bearings. For these reasons, it is necessary to
critically assess the use of long-welded rail, the limiting factor being the expan-
sion length of the bridge.

The maximum admissible expansion bridge length is determined on the basis
of four conditions: strength, gap in the case of rail rupture, mutuval rail and
bridge displacement, and stability. The strength and gap conditions decide the ad-
missible expansion length of bridges with ballast, while the condition of mutual
displacement determines it in the case of bridges without ballast. The stability
condition is complied with, if a certain stress in the rail has not been exceeded.

The admissible expansion length of bridges depends on the fastening of rails
and on its maintenance, on rail cross section area, on the presence of ballast, on
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the material of the bridge and on the maximum difference of temperature of the
rails and of the bndge from the fixing temperature

During temperature changes the long-welded rail also introduces horizontal
tongitudinal forces into the fixed bearings of bridges, 1n piers and abutments. If
the track on the bridge 1s curved, a horizontal transverse load also originates
which 1s inversely proportional to the radius of curvature of the track with long-

welded rail.
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of the plate 33
stop 56
strength condition 278, 280, 307
stress
admissible 280
cycles 232
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This book originated from work that the author has done for

the Office for Research and Experiments (ORE), now European Rail
Research Institute (ERRI), of the International Union of Railways (UIC)
during various research programmes dealing with railway bridges.
Important theoretical and experimental results obtained on European'é,.s
railway bridges are summarized.

Thé book is divided into 14 chapters in which both bridges and

moving railway vehicles are investigated. The basic dynamic
characteristics of railway bridges (natural frequencies and damping) |
are summatrized and the effect of parameters such as the speed of
vehicles, track irregularities etc. on the dynamic behaviour of bridges

is described. In addition to vertical effects, the horizontal longitudinal
and horizontal transverse effects are also investigated (starting and
braking forces, lateral impacts etc.).

Great attention is given to current traffic loads and to their effects on
railway bridges. This new approach affects the fatigue of bridge

structures, their fatigue life, the estimation of inspection intervals and
consequently the safety, maintenance and economy of railway traffic.

Moreover, the thermal interaction of long welded rails with railway
bridges is investigated in the appendix. This technology affects not
only the dynamics of railway vehicles but also the maintenance of
the track and the environment of the passengers.

Besides listing an extensive international bibliography, the book
presents a thorough survey of the dynamic stresses in railway
bridges under moving vehicles, provides abundant experimental data
obtained from many bridges and describes the techniques which can
be applied in the field.

Material in this book will be of great value to civil and railway

engineers, researchers and test engineers, postgraduate and
undergraduate students and all those interested in the dynamic

behaviour of bridges subjected to moving loads. -
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