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PREFACE 

Since the First Sino-US Joint Symposium/Workshop on Recent Developments and Future Trends 
of Computational Mechanics in Structural Engineering was held September 24-28, 1991, in 
Beijing, both countries have been actively engaged in cooperative research benefitting both 
countries and the research communities at large. Researchers from the US and China have a 
strong desire and commitment to exchange state-of-the-art information and to advance scientific 
progress. 

The Second Sino-US Symposium Workshop on Recent Advancement of Computational 
Mechanics in Structural Engineering was held May 25-28, 1998, in Dalian, China. The 
objectives were: 

to share the insights and experiences gained from recent developments in theory and 
practice 

to assess the current state of knowledge in various topic areas of mechanics and 
computational methods and to identify joint research opportunities 

• to stimulate future cooperative research and to develop joint efforts in subjects of 
common needs and interests 

to build and to strengthen the long-term bilateral scientific relationship between academic 
and professional practicing communities 

Topic areas discussed cover the entire field of computational structural mechanics. These topics 
have advanced broad applications in the engineering practice of modern structural analysis, 
design and construction of buildings and other structures, and in natural hazard mitigation. 

Speakers were invited through steering committees in both countries. The Chinese steering 
committee consisted of: 

Professor Wanxie Zhong (chair) 
Department of Engineering Mechanics, Dalian University of Technology 

Professor Junzhi Cui 
Institute of Computational Mathematics and Science-Engineering Computation, 
Academia Sinica 

Professor Yuanxian Gu 
Department of Engineering Mechanics, Dalian University of Technology 

Professor Jianjing Jiang 
Department of Engineering Mechanics, Tsinghua University 



x Preface 

The US steering commi t t ee  consis ted  of: 

Dr. Jann  N. Yang  (chair) 
Professor of Civil Engineering, University of California at Irvine 

Dr. F rank l in  Y. Cheng  
Curators' Professor of Civil Engineering University of Missouri-Rolla 

Dr. Z h e n  Chen  
Assistant Professor of Civil Engineering, University of Missouri-Columbia 

Chinese  de lega tes  included:  

Professor  Pu Chen,  . . . . . . . . . . . . .  Beijing University 
Professor  Ying jun  Chen,  . . . . . . . . .  Northern Jiaotong University 
Professor  G e n g d o n g  Cheng,  . . . . . .  Dalian University of Technology 
Professor  Junzhi  Cui, . . . . . . . . . . .  Chinese Academy of Sciences 
Professor  B a o y a n  Duan,  . . . . . . . . .  Xian University of Electronic Science & Technology 
Professor  Yuanx ian  Gu, . . . . . . . . .  Dalian University of Technology 
Professor  Zh ichao  Hou,  . . . . . . . . .  Tsinghua University 
Professor  H a iyan  Hu, . . . . . . . . . . .  Nanjing University of Aeronautics & Astronautics 
Professor  Yi Huang,  Xian University of Architectural Science & 

Technology 
Professor  J ianj ing Jiang, . . . . . . . . .  Tsinghua University 
Professor  Xikui  Li, . . . . . . . . . . . . .  Dalian University of Technology 
Professor  J iahoa  Lin,  . . . . . . . . . . . .  Dalian University of Technology 
Professor  J.G. Teng,  . . . . . . . . . . . .  Hong Kong Polytechnic University 
Professor  C h a n g c h u n  Wu, . . . . . . .  University of Science & Technology of China 
Professor  You l in  Xu, . . . . . . . . . . .  Hong Kong Polytechnic University 
Professor  Z h e n h a n  Yao, . . . . . . . . .  Tsinghua University 
Professor  Si Yuan,  . . . . . . . . . . . . .  Tsinghua University 
Professor  Wanx ie  Zhong ,  . . . . . . . .  Dalian University of Technology 

US de lega tes  included:  

Professor  L a w r e n c e  A. Bergman ,  . .  University of Illinois at Urbana-Champaign 
Professor  Zhen  Chen,  . . . . . . . . . . .  University of Missouri-Columbia 
Professor  Frank l in  Y. Cheng,  . . . . .  University of Missouri-Rolla 
Professor  Car los  A. Fel ippa,  . . . . . .  University of Colorado at Boulder 
Professor  Henr i  P. Gavin,  . . . . . . . .  Duke University 
Professor  L e - W u  Lu, . . . . . . . . . . . .  Lehigh University 
Professor  A r i f  Masud,  . . . . . . . . . . .  University of Illinois at Chicago 
Professor  Kev in  Z. Truman,  . . . . . .  Washington University 
Professor  Sara Wadia-Fasce t t i ,  . . . .  Northeastern University 
Professor  Ming  L. Wang,  . . . . . . . .  University of Illinois at Chicago 
Professor  Jann N. Yang  . . . . . . . . . .  University of California at Irvine 

All technical  papers  were carefully reviewed by the steering commit tees .  Professor  F rank l in  Y. 
C h e n g  comple t ed  the final edi t ing o f  the papers  in the p r o c e e d i n g ' s  v o l u m e  for publ ica t ion .  
Thei r  con t r ibu t ions  are specia l ly  acknowledged .  

S.C. LIU,  P r o g r a m  Direc tor  
K.P. C H O N G ,  P r o g r a m  Di rec to r  

Civil & Mechan ica l  Sys tems  
Nat iona l  Science F o u n d a t i o n  
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RESOLUTIONS OF 
SECOND SINO-US JOINT SYMPOSIUM / W O R K S H O P  ON 

RECENT A D V A N C E M E N T  OF COMPUTATIONAL 
MECHANICS IN STRURCTURAL ENGINEERING 

The second Sino-US Joint Symposium/Workshop on Recent Advancement of Computational 
Mechanics in Structural Engineering, jointly chaired by Professor Wanxie Zhong of the Dalian 
University of Technology and Professor Jann N. Yang of the University of California at Irvine, 
was held May 25-28, 1998, in Dalian, China. Presentations and discussions during the 
symposium mainly focused on the areas of structural optimization, stochastic structural 
dynamics, structural control and system identification, linear and nonlinear finite element 
analysis, large-scale and parallel computing, and structural design. 

At the conclusion of the workshop, which followed the symposium, the participants unanimously 
passed the following resolutions: 

Encourage collaborative research projects between Chinese and US individual 
investigators and groups of investigators, through short-term exchange of science and 
engineers; 

Seek NSF (US) and NNSF (China) joint research support to promote and facilitate the 
evaluation of joint research proposals; 

Establish future Sino-US joint symposia/workshops on a biennial basis, with venues 
alternating between the US and China; 

Propose that the Third Sino-US Joint Symposium/Workshop be scheduled for the year 
2000 and that the theme of the symposium be "Methods and Applications of 
Optimization in Design" with St. Louis, Missouri as a possible location. Professor Kevin 
Truman of Washington University in St. Louis will investigate such possibilities and will 
coordinate his efforts with Professor Yuanxian Gu of the Dalian University of 
Technology. 

Resolutions thanking the co-chairs for their efforts and the local organizing committee for their 
outstanding arrangements and hospitality also passed unanimously. 

Topics of mutual interest that were recommended for further investigation as potential joint 
research activities by the three working groups are as follows. 

Working Group 1: Optimization of Civil Infrastructure Systems 

Structural Design Using Optimization Theory 

Performance-Based Design - application of optimization theory to performance-based design 
including objectives and constraints that reflect reliability, serviceability, and strength. 

Life-Cycle Costs - development of optimization-based system (integrated) design including 

xix 



xx Resolutions 

elements such as multiple objectives, damage costs, strength degradation, and environmental 
loads. 

Upgrade, Repair and Retrofit - development of advanced optimization theory to assess structural 
enhancements (designs) for improved safety, risk mitigation, and potential loss reduction. 

Nonlinear Systems - development of advanced optimization theory for application to nonlinear 
systems due to conditions such as material nonlinearity, large deformations, environmental loads, 
dynamic loads, optimal control, deterioration or fracture. 

Socio-Economic Impact- integration of socio-economic factors into the optimal structural design 
theory based on a given structure's impact on elements such as commerce, transportation 
networks, and community living. 

US/China Joint Meeting - exchange of practical applications of structural optimization through 
a joint meeting between the ASCE committee on Optimal Design, other qualified US researchers, 
and their Chinese counterparts. 

High-Performance Computing - application of high-performance computing for the optimal 
design of large-scale systems. 

Working Group II: New Technologies in Structural Engineering 

High-Performance Structures - objective-based issues include durability, damage control, and 
survival. 

Random Vibration-Based Design - development of computational methods for random vibration 
analysis, statistical identification of loading, and development of probability-based design 
criteria. 

Advanced Monitoring Systems for Large Structures - new sensor technologies, algorithm 
development, damage identification, and prediction models for life-cycle design. 

Advanced Materials - homogenization for composite materials, engineering-based design of 
advanced materials, and design of structural components (i.e., connections). 

Passive/Hybrid/Active/Semi-Active Technologies for Structural 
implementation, theoretical developments, and device development. 

Control - practical 

Working Group III: Mathematical and Computational Aspects of Design and Optimization 

Long-Span Bridges - advanced methods for analysis and design under multiple loadings 
(earthquake, wind, traffic). 

Integrated Structural and Material Design- development of unified approaches. 

High-Performance Computing - application of high-performance computing and communication, 
and virtual reality modeling and visualization, to the analysis and engineering design of large- 
scale structures. 

Multiphysics - development of a computational testbed for multiphysics, multiscale, material 
modeling and testing. 

Symbolic Computation- integration of symbolic computation into large-scale multidisciplinary 
problems in infrastructural engineering. 



MULTIOBJECTIVE OPTIMUM DESIGN OF 
STRUCTURES WITH GENETIC A L G O R I T H M  AND 
GAME THEORY: APPLICATION TO LIFE-CYCLE 

COST DESIGN 

Franklin Y. Cheng 

Curators' Professor, Department of Civil Engineering 
Senior Investigator, Intelligent Systems Center 

University of Missouri-Rolla 
Rolla, MO 65409-0030 USA 

ABSTRACT 

Loss of life and property from possible future earthquakes as well as the expense and 
difficulty of post-earthquake rehabilitation and reconstruction strongly suggest the need for 
proper structural design with damage control. Design criteria should balance initial cost of 
the structure with expected losses from potential earthquake-induced structural damage. 
Life-cycle cost design addresses these issues. Such a design methodology can be developed 
using multiobjective and multilevel optimization techniques. Presentation here focuses on 
genetic algorithm and game theory as well as a life-cycle cost model for this innovative 
design methodology. 

Genetic algorithms (GAs) have the characteristic of maintaining a population of solutions, 
and can search in a parallel manner for many nondominated solutions. These features 
coincide with the requirement of seeking a Pareto optimal set in a multiobjective 
optimization problem. The rationale for multiobjective optimization via GAs is that at each 
generation, the fitness of each individual is defined according to its nondominated property. 
Since nondominated individuals are assigned the highest fitness values, the convergence of 
a population will go to the nondominated zone - the Pareto optimal set. Based on this 
concept, a Pareto GA whose goal is to locate the Pareto optimal set of a multiobjective 
optimization problem is developed. In this GA, to avoid missing Pareto optimal points 
during evolutionary processes, a new concept called Pareto-set filter is adopted. At each 
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generation, the points of rank 1 are put into the filter and undergo a nondominated check. 
In addition, a niche technique is provided to prevent genetic drift in population evolution. 
This technique sets a replacement rule for reproduction procedures. For a constrained 
optimization problem, a revised penalty function method is introduced to transfer a 
constrained problem into a nonconstrained one. The transferred function of a point contains 
information on a point's status (feasible or infeasible), position in a search region, and 
distance to the Pareto optimal set. Three numerical examples are provided: 1) optimum 
design of a seismic-resistant structure with/without control, 2) optimum design for a final 
structural system selected from steel frame, reinforced concrete, or composite system, and 
3) sensitivity analysis of the effect of cost function on structural probability failure. It is 
concluded that multiobjective and multilevel optimization is essential to determine target 
reliability and seismic building code performance. 

KEYWORDS 

Genetic algorithm, game theory, life-cycle cost, multiobjective and multilevel optimization, 
earthquake, probability failure, fuzzy logic, Pareto set filter, niche technique, control. 

INTRODUCTION 

In the current engineering design community, major design efforts are based on a 
conventional trial and error approach for which the relative stiffness of a structure's 
constituent members must be assumed. If preliminary stiffness is misjudged, then repeat 
analysis, even with a sophisticated computer program, will usually not yield an improved 
design. The optimum design concept is recognized as being more rational and reliable 
than the conventional design approach. Considerable literature has been published on the 
subject of optimal structural design for single-objective function (Cheng and Truman, 
1985; Cheng [ed.], 1986; Cheng and Juang, 1988; Frangopol and Cheng [eds.], 1996) 

Most real-world design optimization problems in structures are multimodal. There often 
exist several objectives to be considered by the designer. Usually these objectives are 
conflicting rather than complementary. A single-objective optimization formulation does 
well with respect to an optimal objective, but the design may not always be a "good" 
design. Consider a hypothetical example. If a structure is optimized for minimum weight 
subject to constraints such as stress, displacement, buckling and vibration period, a 
structure is then obtained with minimum constructed materials. However, the structure 
may have a poor performance of dynamic response under the action of seismic loadings. 
If the minimum earthquake input energy is also included as objective, a more rational, 
compromise design will be produced (Cheng and Li, 1996; Cheng and Li, X.S., 1998)). 
This combined formulation is a multiobjective optimization problem (MOP). 
Multiobjective optimization offers the possibility to consider effectively all the different, 
mutually conflicting requirements inherent in a design problem. 
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In game theory, if players agree to cooperate, a Pareto optimum will be an ideal solution 
because it has the property that if any other solution is used, at least one player's 
performance index is worse, or all the players do the same. This study demonstrates how 
game theory as a design tool applies to an MOP, and describes the relationship between 
cooperative game theory and Pareto optimal solution. Three genetic algorithms for 
multiobjective optimization are proposed based on game theory. In the Pareto GA, whose 
goal is to find a representative sampling of solutions along with the Pareto optimal set, two 
new techniques are investigated: a new operator called Pareto-set filter is introduced to 
prevent the loss of Pareto optimum points in evolutionary progress; and niche technique is 
created by putting limitations on reproduction operators. Pareto GA for a constrained MOP 
is further studied te include fuzzy-logic scheme. Life-cycle cost model is introduced along 
with multilevel optimiziation concept. The proposed multiobjective optimization techniques 
are applied to the optimum design of a seismic structure with/without control and applied to 
evaluate a structural system as wether it should be steel frame, reinforced concrete frame, or 
composite steel-and-reinforced-concrete flame. Numerical results show that multiobjective 
optimization is essential to produce a good seismic structural design. 

MULTIOBJECTIVE OPTIMIZATION AND PARETO OPTIMUM 

Multiobjective optimization can be defined as determining a vector of design variables that 
are within the feasible region to minimize (maximize) a vector of objective functions and can 
be mathematically expressed as follows 

M i n i m i z e  F(x)  - {fl(x), fz(X) ...... fm(X)} 
(1) 

Sub jec t  to g(x)  <_ 0 

where x is the vector of design variables, fi(x) is the ith objective function, and g(x) is the 
constraint vector. 

One feature of multiobjective optimization involves possible conflicting objectives. 
Therefore there exists a trade-off among objectives, i.e., an improvement gained for one 
objective is only achieved by making concessions to another objective. There is no optimum 
solution for all m objective functions simultaneously. There only exists a "compromise 
solution" rather than an optimum solution (see Fig. 1). Thus the solution of a multiobjective 
optimization problem can be defined so that if vector x* is a solution to Eq. (1), there exists 
no feasible vector x which would decrease an objective function without causing a 
simultaneous increase in at least one other objective function. The solution by the above 
definition is also called a Pareto optimum or nondominated solution. A feasible vector x* 
is a Pareto optimum for Eq. (1), if and only if there exists no feasible vector x such that 
f~(x)<_f~(x.), ic{1,2 ...... m} and fj(x)<fj(x.), for at least one i~{1,2 ...... m}. For a 
multiobjective optimization problem, the solution procedure is composed as generating its 
Pareto optimal set and deciding the final selection from the set. 
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y 

fl x, 

a. Objective Function Space b. Conflicting Objectives 
Figure 1" Two-Objective Maximization Problem 

GAME THEORY ALGORITHMS 

Game theory has been developed for both cooperative and non-cooperative games (Neumann 
et al., 1947). In the latter each player acts independently in an effort to maximize his own 
payoff, which produces an outcome (Nash equilibrium solution) that may be favorable for 
one player, but not for another. The concept of player cooperation therefore becomes 
important when considering compromise game outcomes. A cooperative game means that 
the players agree to form coalitions under the expectation that, by working together, a 
mutually beneficial outcome can be obtained. The measure of success of a cooperative play 
is embodied in the concept of Pareto optimum since it has the property of a nondominated 
(Pareto optimum) solution. A cooperative game theory consists of analyzing conflicts 
existing in objectives or interest groups (players), providing an unemotional form for 
discussion and negotiations among players, and then suggesting a "compromise solution" 
which can be accepted by all players. 

A multiobjective optimization problem can be cast as a cooperative game problem in which 
it is assumed that one player is associated with an objective. The objective function fi can 
be regarded as the payoff of the ith player. With cooperative multiobjective optimization, 
the "compromise solution" should make sure that each objective obtains its maximum 
possible value even though each objective cannot arrive at its own best value. Optimal trade- 
off among the objectives is sought by using the concept of game theory as follows (Cheng 
et al., 1996). First, the m individual objective functions are minimized respectively subject 
to given constraints. 

Minimize Fi(x ) (2) 
Subject to g(x) <_ 0 

For each objective function f~, an optimal solution x*i is obtained; then a pay-off matrix is 
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constructed. The best and worst values in the Pareto set can be obtained from the pay-off 
matrix as 

f/,min =g(X i * ) j = l  ...... m 

fi,max:MaX:l(X.*)] j = l  ...... m i=1, .... ,m 
(3) 

Consequently the ith objective function should not expect a value better than fi,min, but not 
worse than fi,max" Thus a substitute objective function can be constructed as 

m m 
m ~i'max-fl(X)]:iIIlfi(x) (4) 

S = i =I~l ~/,max -f/,min ] ": 

Maximizing the function S produces a solution that results in optimal compliance with 
multiple objectives subject to given constraints. The solution is a Pareto optimum (Cheng 
et al., 1996) and stands for the "rational compromise" of the conflicting objectives. 

MULTIOBJECTIVE OPTIMIZATION WITH GENETIC ALGORITHMS 

GAs can be used directly for unconstrained single-objective optimization problems. A 
fitness function connects with the objective function in a linear or nonlinear formulation. For 
constrained optimization problems, one approach is to transform them to unconstrained ones 
by penalty function methods (Richardson et al., 1989). There are usually two categories of 
algorithms to solve multiobjective optimization problems. One is directly seeking the 
rational compromise solution; the other is generating the Pareto optimal set of a problem. 
Then the decision maker's preference should be determined from the set on the basis of 
trade-off analysis of objectives. For an MOP, the analysis procedure for the proposed Pareto 
GA is composed as follows: (1) obtain an evenly distributed subset of Pareto optimal set, 
and (2) choose a reasonable solution from the set. The decision procedure to choose a 
compromise solution from a Pareto optimal set is constructed by the Pareto-set filter with the 
cooperative game theory. At each generation, the maximum and minimum values of each 
objective are found from the filter. Then the substitute function S (Eq. 4) is constructed. 
Checking each group of functions in the filter, the group which makes S the maximum value 
produces the optimum solution for the current generation. If maximum S keeps constant, 
continuing for more generations, it can be considered the convergence of the evolutionary 
processes and the analysis ends. The points in the Pareto-set filter are on or close to the 
Pareto optimal set-- trade-offs among objectives. 

PARETO GA WITH CONSTRAINED MULTIOBJECTIVE OPTIMIZATION 

GAs cannot be directly applied to a constrained optimization problem. One way to solve 
such a problem via GAs is to transform a constrained into an unconstrained optimization 
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problem through penalty function methods. A Pareto GA has the unique ability to seek a set 
of solutions by means of rank rather than function values of a point. To determine rank of 
a point, it is necessary to know the point's status (feasible or infeasible), distance from Pareto 
optimal set, and position in an infeasible zone. Three rules should be followed to construct 
the input function of a point for a Pareto GA to implement ranking. (A) The point's status 
as feasible or infeasible should be indicated by the fimction. (B) The closer a point is to the 
feasible zone, the higher its fitness evaluation is. (C) The closer a point is to the Pareto 
optimal set, the higher its fitness evaluation is. Rule B supersedes rule C because an 
infeasible point is an unacceptable solution in a constrained optimization problem. A fuzzy- 
logic penalty function method is developed for GA MOP problems (Cheng and Li, 1997). 

LIFE-CYCLE COST AND MULTILEVEL OPTIMIZATION 

Recent studies have focused on loss estimation for earthquakes and other natural hazards 
(FEMA, 1994). Jones and Chang (1995) provide an overview of current work on the 
economic impact of natural disasters. Nigg (1995) presents community-level disaster 
preparedness planning and response as well as mitigation actions. These studies are 
generally conducted to determine the after-effects of an event, or to estimate gross regional 
losses expected in a future event, and were intended primarily for post-earthquake recovery 
and response planning (Cheng and Wang [eds.], 1996). 

From a theoretical standpoint, the first definitive mathematical model for aseismic design 
optimization on the basis of minimum life-cycle cost was presented by Liu et al. (1972) in 
which the objective was the determination of a "design earthquake" for structures including 
buildings (Liu et al., 1976; Decapna and Liu, 1976). Other studies have addressed particular 
aspects of the same issue: e.g., the present worth of future damage cost, assuming that 
extreme hazards occur as a random process (Rosenblueth, 1976), and the importance of a 
trade-offbetween risk and cost (Kupfer and Freudenthal, 1977). 

The platform for the systematic integration of seismic reliability engineering and 
socioeconomic is the expected life-cycle cost function which can be summarized as follows 

CT=CI+CD (5) 

where C I is the initial cost of a structure, and C D is the damage cost over the life of the 
structure composed of the following (for buildings) 

C D=Cr +C c +C e +Cs +el (6) 

in which C r = repair or replacement cost of the structure; C c = loss of contents; C e = 
economic impact of structural damage; Cs = cost of injuries caused by structural damage; and 
Cf = cost of fatalities from structural damage or collapse. Items in Eq. (6) comprising the 
total damage cost are functions of structural damage level, x; for example, item Cr has an 
expected repair cost of 
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c = fo°°C(x)fx(x)dx (7) 

where x = damage level, and fx(x) = probability density function (PDF) of X. Structural 
damage, x, and its PDF fx(x) are calculated for a given earthquake, from which the particular 
damage costs, Cr(x), can be determined as a function of the damage level, x. 

Direct losses caused by an earthquake include human fatality and injury, as well as physical 
damage to structures and their contents. Concerning human fatality, Wiggins (1979) 
correlated the number of fatalities to building damage; Shiono and Krimgold (1989) reported 
fatality data for a hospital that collapsed during the 1985 Mexico City earthquake; and 
Coburn et al. (1992) suggested a simulation model to estimate the number of fatalities in 
buildings of a given structural type. Besides immediate or direct losses from an earthquake, 
there is also secondary or indirect impact: e.g., economic loss associated with the disruption 
of business due to structural damage (Nigg, 1996). 

Ang and De Leon (1996) examined the minimum expected life-cycle cost vis-a-vis structural 
damage, and the reliability analysis of an RC frame building based on actual cost data from 
Mexico City buildings damaged in the 1985 earthquake. Ang et al. (1998) investigated a 
class of Japanese RC frame-wall structures and designed a five-story model building based 
on the conventional approach and Japan's building code. Cost of damage repair and loss of 
contents was obtained from six Japanese RC buildings (two to six stories) after previous 

. . . .  "1 GAs MOPI 

[ M°del Building ] 

[ Skeleton curves for force-displacement I 

[Median global damage indices [ [__J Seismic hazard functions ] 

[Expected damage cost I~--n i C'ost function for damage 1"~" ¼ 
[ Total expected life-cycle cost ]~ [Initial building cost I~ 

l 
["Optimal target reliability [ 

[Expected annual risk of death [ 

No 

Yes 

Figure 2: Multiobjective and Multilevel Optimization Scheme 
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earthquakes. Cheng et al. (1994) studied reliability-based design of structures subjected to 
seismic loading from UBC-94 and Newmark's nondeterministic seismic response spectra 
considering initial and expected damage costs. The difference in approach between the work 
of Ang and Cheng is that Ang's structure is based on conventional design without 
optimization; the structure is then studied with sophisticated damage model derived from 
casualties. In Cheng's study, the structure results from optimization for which the sensitivity 
of each structural member changes is in function of structural system cost and external 
seismic input, while the cost function is based on a mathematical modal. These two 
approaches are being merged by interweaving the GAs of MOP with target reliability and 
minimum expected life-cycle cost as multilevel optimization as shown in Fig. 2. 

NUMERICAL EXAMPLES 

Optimum Design of Seismic Structure with~without Control 

Consider a three-story steel shear frame with an active control system located on the top floor 
(Cheng et al. 1996) shown in Fig. 3. Floor diaphragms are rigid and axial deformations are 
neglected. Thus the system has only one degree of freedom (in the lateral direction) at each 
floor. The total of live and dead loads at each story is 56kN/m, which does not include the 
weight of the columns. Lateral forces as well as weight density 9 and elastic module E of 
the structure are also presented in Fig. 3. 

Active Control 

F3 ~ ~;~ 

F ~ ~  
I3 I3 

I2 12 

I1 

u .  6 m  

Et 

Figure 3" Three-Story Shear Frame 

Optimum design of the system takes place under two cases. The first case is optimizes the 
system without control. Optimization criteria are structural weight W to better utilize 
materials and reduce structural cost, and earthquake input energy Ei to reduce dynamic 
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response and damage to the structure under the action of seismic loadings. Input energy E i 
represents the work done by the structure's base shear as the structure moves through ground 
displacements. The second case optimizes the system with an active control system. 
Optimization criteria are weight W and performance index PI to optimize control energy 
input. The two multiobjective optimization problems are formed as 

Case I: Min. (W,E~); Case H: Min.  (W,PI) (8) 

Both cases are subject to the same constraints as 

~ Ji[_<165,000 kN/m 2. TI>_0. 3. 0.00001 <I <0.002m 4 

K~ 

(9) 

where tJi, 6 i and Ki are column stress, relative story stiffness of the ith story, respectively, and 
i=1,2,3. T1 is the fundamental natural period of the structure. Details of the integrated 
structural/control optimization design are given previously (Cheng and Tian, 1993). The 
proposed genetic algorithms have been applied to optimum design. Due to space limitation, 
only the results from the Pareto GA are presented and discussed. GA parameters are that 
uniform crossover (Davis, 1991) and stochastic remainder selection (Goldberg, 1989) are 
used in crossover and selection operating procedures. 
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Figure 5: Points in Pareto-Set Filter 

Figures 4 and 5 illustrate part of the solution. Figure 4 shows the points in the Pareto-set 
filter which gives the trade-offs between the two conflicting objectives. The two points 
(Min. W and Min. Ei) , determined by using a traditional optimal method, are drawn as 
reference points because they are the two end-points of the Pareto optimal set for this 
problem. Note that the points in the filter are on or very close to the Pareto optimal set. The 
compromise solution point (W=2.8110, Ei=5.1635) is the decision-making result. Results 
of case II are given in Fig. 5. 
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Optimum Design for Selection of a Structural System 

For a ten-story building shown in Fig. 6, MOP is applied to evaluate three choices: steel 
frame, reinforced concrete flame, and composite system of reinforced concrete (lst  - 4th 
floor) and steel (5th- 10th floor). The structural weight and construction cost are obtained 
from Cox and Horsley handbook (1983). Design variables are defined as follows. At each 
story, cross-sectional areas of all the beams are identical. Cross-sectional areas of the 
intemal columns are the same, and the two outside columns are identical. Structural 
members and member locations of first and second stories are the same as those of the third 
and fourth, fifth through seventh, and eighth through tenth stories. 

O 

@ 
O 

11 
II 

llJ 
i l l  

lOth Flr 

5th Fir 

4th Fk 

1st Fir 

Earthquake Excitation 

Figure 6: Ten-Story Building (1 ft = 0.3048 m) 

For seismic design, calculation of the earthquake force is based on UBC requirements (UBC, 
1994), and the following assumptions are made. The building is located in seismic zone 2B 
with factor Z-0.20; site coefficient S=1.2, and importance factor I=l.0. The building is a 
moment-resisting frame type with factor Rw=6 for the steel flame, and Rw=5 for the RC and 
the composite frame. The building is in the occupancy category of seismic zone 2, static 
lateral force procedure in UBC can be used. Objective functions comprise construction cost 
and potential energy for steel, reinforced concrete, and composite frames. Constraints 
include allowable stress and allowable drift as well as upper and lower bound of member 
cross section (Cheng and Li, D. 1998). 

The optimum design results are shown in Fig. 7, where the curves reveal a tradeoffbetween 
structural cost and structural potential energy: minimum cost vs max. potential energy. A 
compromise solution could be selected at any point along the prospective curve. 
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Response performance of these three structures is studied. The structures are selected at the 
same cost of $118,000; each of them undergoes time-history analysis with N-S E1 Centro 
May 18, 1940 earthquake. One of the essential response parameters is top-story 
displacement which is compared in Fig. 8. The RC frame has the smallest displacement 
response, and the steel frame has the largest. 

Sensitivity of Cost Function on Structural Probability Failure and Optimum Solution 

This example shows the influence of cost function on structural probability failure (or 
safety). The sensitivity observation is studied using mathematical programming with single 
objective function (Cheng et al., 1994). A ten-story one-bay steel shear-building is 
optimized with probability failure at Pfo=10 -1, 10 -3, 10 5, and 10 -7, where Pro is based on 
normal distribution. The structure is optimized with the earthquake load of equivalent lateral 
force recommended in UBC. The cost function comprises three components: initial 
construction cost (Ct), future failure cost (Lf), and system probability of failure (PIT)" They 
are expressed as 

C T : C i + L f P f r  (10) 

in which C I = Cu~LiAi + Cn; Cu = a unit steel volume cost; Cn = nonstructural members cost; 
Lf = CvC~ + CL; JCv = coefficient to describe the ratio of repair cost to initial cost; CL = 
business and human losses; and Pz~ = system probability of failure. 

Although initial construction cost and future failure cost can be classified into many items, 
these quantities are difficult to estimate. Therefore two coefficients of the ratio of initial cost 
to members cost (Cin) and the ratio of future failure cost to initial cost (CvL) are used to 
represent the various magnitudes of initial construction cost and future failure cost which 
may now be expressed as: 

Ct = C.  C El f l j ;  L z = CvLC ~ (11) 
i 

The influences ofnonstructural cost and future failure on the optimum cost design are shown 
in Fig. 9. Note that the initial cost affects the total cost more at higher probability of failure 
and the influence depends on the ratio of future cost to initial cost. CvL is assumed to be 1 
for this example. Therefore the life-cycle cost model based on actual building damages 
earthquake casualties is essential for determining target reliability along with minimum 
seismic force level as presented in Fig. 2. 
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CONCLUSIONS 

In this paper, the concepts of genetic algorithms, game theory, Pareto optimal set 
with/without constraints, and life-cycle cost are discussed. For constrained Pareto GA and 
life-cycle cost, fuzzy logic and multilevel concepts are respectively introduced. Based on  
them, new algorithms for multiobjective optimization are developed. The Pareto GA is 
demonstrated on a seismic structure with/without control. Seismic structures are designed 
for selected construction materials: steel frame, reinforced concrete flame, or a flame 
comprised of steel and reinforced concrete members. With cost kept uniform, these three 
systems are further investigated for their performance such as displacement response 
subjected the same earthquake input. 

Multiobjective optimization provides a designer with a systematic method for considering 
all the conflicting requirements inherent in an application. Game theory offers a decision 
method for guiding an optimum process and as such, results in optimal compliance with 
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multiple objectives. Comparing traditional multiobjective optimization methods, Pareto GA 
is an effective numerical algorithm for generating Pareto optima. The Pareto-set filter 
enables the Pareto GA to be more robust, stable and computationally feasible for even 
extremely difficult problems. The niche technique effectively prevents genetic drift. It 
involves no new parameters, and the computational cost for niche operating is negligible. 
The sensitivity of cost function on structural probability failure and optimum solution 
indicates multiobjective and multilevel optimization along with life-cycle cost model based 
on actual earthquake casualties and building damages are essential to determine target 
reliability and seismic building code performance. 
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NEW SOLUTION SYSTEM FOR PLATE BENDING 

W. X. Zhong and W. A. Yao 

Department of Engineering Mechanics, Dalian University of Technology, 
Dalian, 116024, P.R. China 

ABSTRACT 

Instead of the biharmonic type equation, a set of new governing equations and solution 
methodology for plate bending classical theory is presented in this paper, which is based on 
the analogy between plate bending and plane elasticity, so Hamiltonian system formulation 
can also be applied to plate bending problems. The new methodology presents the analytical 
solutions in rectangular plate via the methods of separation of variables and eigenfunction- 
vector expansion; it breaks through the limitation of traditional semi-inverse solution. The 
results show that the new methodology will have vast application vistas. 

KEYWORDS 

Plate bending, Plane elasticity, Hamiltonian system, Bending moment function vector 

ANALOGY BETWEEN PLATE BENDING AND PLANE ELASTICITY PROBLEMS 

It is well-known that the governing equation for plate bending is biharmonic equation 
(Timoshenko, et al. 1959). It fixed in last century, but the critical problem is how to solve it. 
The traditional solution methodology is the semi-inverse one that causes limitations. The Airy 
stress function is usually applied traditionally for plane elasticity problems; it also satisfies 
biharmonic equation (Timoshenko and Goodier 1970, Muschelishvili 1953). The analogy 
between plate bending and plane elasticity problems had been noticed long before (Hu 1981), 
but their solution systems are different each other, and the analogy relationship had not been 
used systematically. FEM was developed firstly in plane elasticity. The formulation of 
elements is based on displacement method, and the Airy stress function is given up. It is 
noticed that giving up biharmonic equation in plane elasticity was successful for FEM. 
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The deflection w for plate bending corresponds to the Airy stress function in plane elasticity; 
conversely, the displacements in plane elasticity correspond to two bending moment functions 
tbx,~y in plate bending, but their theory and solution system have not been set up yet. 

Particularly, a new systematic methodology for plane elasticity has been developed (Zhong 
1995); therefore new methodology for plate bending can also be developed along the same 
way. New solution system for plate bending is presented in this paper. 

B E N D I N G  M O M E N T  F U N C T I O N  V E C T O R  

For plate bending, the variables corresponding to displacements u,v in plane elasticity are 
bending moment function vector ~b x, ~ y. Let the positive internal force be defined as in Fig. 1, 

Figure 1" Internal force positive sign 

so traditional equilibrium equation can be written as 

2 Oy2 02Mx / Ox 2 - 2c32Mxy / c3xOy + c3 M y  / = q (1) 

The load q can be handled via a special solution beforehand, so the homogeneous equation 

of q = 0 are considered first. Let the relation for bending moments and bending moment 

ftmction vector be given below, and it is easily seen that Eqn. 1 is automatically satisfied. 

M y  m_ O*x / OX , M x = ~ y I Oy , 2 Mxy = O~x I Oy + O~ y Iax (2) 

Curvature-deflection relations can be described as 

K x = 0 2 W  / OX 2 , Ky = 02W / ay 2 , ~Cxy = --02W / OxOy (3) 

The constitutive relation for bending moments and curvatures is given as 

I1 lI:l My 1 v 0 y 

m = c - l l ( ,  i.e. M x ,= 1 0 ' --x 

12 xyl o2 1_ ) l xyl 
Eh 3 

, where D= 12(1-v 2) (4) 

Firstly, we notice that functions ~x = a  0 +a2y ,~y = a  1 - a 2 x  are similar to rigid body 

translation in plane elasticity, which generate no bending moments, where ao,al,a2 are any 

constants. We call them the null moment functions. Let (x' ,y') rotate an angle a from 

(x, y) ,  the moment should be transformed as 
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M "  = M x cos 2 cz + My sin 2 cz- Mxy sin 2cz 
? 

My = M x sin 2 a + My cos 2 ot + M~y sin 2 a  
? 

M~y = M~y cos2a +(M~ - My)sinacosc~ 

(5) 

The ¢x, Oy should also be transformed so that Eqn.2 still valid in the rotated coordinate. 

(D ~x = ¢ x COSC~ "1- (I) y sin c~, ' = - ¢  sin ot+¢ cos cx Cy x y (6) 

i.e. C x ' ¢ y  transformed just as a vector, so we call it the bending moment function vector. 

Cx'  Cy correspond to the displacement vector u,v in plane elasticity. 

The boundary condition is considered next. For convenience, we regard the boundary as a 
straight line. Let external normal and tangent directions be n and s, respectively, that 
composes right-handed coordinate system, and the bending moment functions are (d~,, ~ , ) ,  so 

Q.  = a M . / O n  - OMn. / c3s = (0 2,S / OnOs - 0 2 dO. /Os2) /2  (7) 

The given force and displacement boundaries are denoted as s m and swrespectively. In 

theory of plate bending, there are given normal bending moment and equivalent shearing force 

(M. =)O~b,/as = M .  , ( V. = Q,, - a M . s  / aS = ) - a ~ ~ ,, / as 2 = V .  o n  s m (8) 

Only differentials along s exist in Eqn.8, so the equations can be integrated as 

~ , = ~ , =  ~ M . d s ' + a , ,  qb, =~ .  = ~ ( s ' - s ) U . d s ' + a  o + a z s  (9) 

where a o , a l , a  2 are constants to be determined. There may be several segments of given 
force boundary s m , but only for one of the boundary segment its a o , a  1 ,a 2 can be brought to 

zero via applying null bending moment functions. The d~n,~s correspond to normal and 

tangent displacements un ,u S in plane elasticity. 

In terms of bending moment functions, the complementary strain energy is 

U*= 6 a~x 2 a ¢  y 2 a ,  x a¢  y 1 + v 
+ - 2v--~-x --~- + 2 + dy (10) 

The strain energy density can be expressed with bending moments 

, 1 m T C m  6 U o ( m )  = 2 - ~  [M~ + M~ 2 v M x M  , + 2(1 + V)Mx2y] (11) 

Besides, complementary support displacement energy is expressed as 
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(12) 

m 

where, ~ and 0, are given deflection and normal rotation which are functions of s.  Via 

integration by parts, Eqn. 12 can be rewritten as 

(13) 

where So,S 1 are two ends of straight line Sw. The principle of minimum complementary 

energy can be written as 

H* --U* + U~ min/7" (14) 

Carrying out the variation, the following equations are derived 

__ 0 2 __ 0 2 02t~x 1 q- V (~2~x 1 V 021~y t~21~y 1 q- V (~y 1 V fix 
0x 2 + - - ~ - - ~ 2  + 2 c3x0y - 0 '  0y z + - - 7 - ~ - - - T + - - 2 - 0 x @  =0 (15) 

Their physical meaning is strain compatibility. In fact, they can also be derived from 

C~y / aX + OKxy l Oy = O , C~x / Oy + O~xy l 3x = O (16) 

The Eqn. 15 is almost the same as plane stress besides changing the sign of Poisson ratio v. 
Via variational principle, the boundary conditions on s w are given as (in case of the given 

displacement being zero) 

- v  x s i n a + ~  + cosa =0, i.e. K x s i n c t + K x y c o s a - 0  Eh 3 Oy Ox 2 Oy 

12IQO~x OI~Y I l+viC3~y c3~bx) ] 
- v cos ot + ~ + sin a = 0, i.e. ~:y cos a + ~:xy sin a = 0 

Eh 3 Ox Oy 2 Ox Oy 

(17) 

The formulations are the same as given force boundary condition in plane elasticity, where a 
is the angle between x axes and normal direction n. They can also be expressed with 
coordinates (n,s) 

K.~ = - 0 2 w  / OnOs = ~.~ , K s = O  2w/Os 2 = ~ s  on s w (18) 

Integrating Eqn.18 for s ,  the given displacement conditions can be written as 0 .  = known, 

w = known on Sw • 

For force method, displacements aren't the basic variables; therefore boundary conditions 
must be expressed with ~ x, ~ y. These are the natural boundary conditions for the principle of 
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minimum complementary energy. 

Od~, I On + Od~. I Os = known.  0~. I On-  vOd~, I Os = known on s~ (19) 

Corresponding to the Hellinger-Reissner variational principle for plane elasticity, the new 
variational principle called the Pro-H-R one for plate bending can be proposed as 

81-1en R =8  ~:x --~--+ Ky --~-+ K~y + . . . . .  Uo(K:y,~:~,~:~) dy 
% 

(20) 

m 

where ~s,t~,,~,s,~s are given functions, and the strain energy density is 

UoO¢ ) =IK:Tc_, r = 1 D[K::j + :' 2 -~ I¢.y + 2VKxKy + 2(1--V)r 2~y ] (21) 

Carrying out the variations of Eqn.20 for Ky,~:~,K:~y,~,~y gives the relation between 

bending moment and curvatures, 

/ = a Wo / / & = a eo / & , ,  / & + a, x / = aWo / (22) 

the equation of curvature compatibility Eqn. 16, and boundary conditions Eqn. 9, 18. In the 
Pro-H-R variational principle Eqn. 20, deflection w doesn't appear, and it must be solved 
after K x , ~:y, K xy are solved. Table 1 gives the analogy relationship between plate bending and 

plane elasticity problems. 

THE FUNDAMENTAL EQUATIONS FOR RECTANGULAR PLATE 

Analogy between plate bending and plane elasticity problems can be applied to FEM 
formulation. Elements developed so far for plane elasticity are better than those for plate 
bending; based on the analogy relationship these elements can be transplanted to plate bending 
problem (Zhong and Yao, 1998). In this paper, we consider only analytic solution. A new 
systematic methodology for plane elasticity has been set up via introducing the Hamiltonian 
system theory (Zhong 1995), so a new systematic methodology for plate bending can also be 
developed according to the analogy. Let us initiate to derive from the Pro-H-R variational 
principle Eqn. 20. 

The new systematic methodology can be applied to rectangular and sectorial domain as those 
in plane elasticity. In this paper, we consider only solutions for rectangular plate. Let y 
denote the lateral coordinate; b I < y < b2, boundary conditions of both sides are considered 
free, simply supported or clamped. The first step is to introduce the Hamiltonian system 
theory into the fundamental equations, and the longitudinal coordinate x is treated analogous 
to the time coordinates (Zhong and Yang, 1991); thus (') represents 0( ) / & .  Minimization 
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TABLE 1 
ANALOG Y RELATIONSHIP BETWEEN PLANE ELASTICITY AND PLATE BENDING 

Plane elasticity 
Airy stress function tp 

Displacement vector u,v 

Strain e x , ~, y ,'~ xy ; 

Ou Ov Ou Ov 

Stress function-stress relation 
02(1) 02(p 02(p 

er x ~y 2 ' er Y T" xy O~ 2 ' ~ X ~  

Stress-strain relation, 
ex = (erx - Very) / E ,ey = (Cry - Verx) / E 

7xy = Xxy2(1 + v) / E 

Plate bending 
Deflection w ( x ,  y )  

Bending moment fimction vector qbx, ~y 

Bending moment M y ,  M x ,2 Mxy ; 

O' y O, x M y  OdO x M x = ,2 M xy = + 
: Ox'  Oy Ox 

Deflection-curvature relation 
02W 02W O2W 

Ky "-" OY 2 ,K : ~ ,  -- x ~X 2 I~2xY OxOy 

Bending moment-curvature relation 
M y  = O(K:y + VKx), Mx = D ( K  x + V K y ) ,  

2 M xy = 2(1-  v ) DK xy 

The principle of minimum potential energy 
Determined displacement boundary s u, 

u = u - ,  v = v  

Determined force boundary s~, 

cr x cosc~ + Xxy s ina  = 0 

x xy cosa  + ~y sin a = 0 

H-R variational principle 
Pro-H-R variational principle 

Rigid body translation 

The principle of minimum" complementary energy 
Given force boundary s m , 

m 
Cs=¢s, 

Given displacement boundary s w , 

Ky COSO~ -1- l(xy sincz = 0 

K xy cos or + ~:x sin cz = 0 

Pro-H-R variational principle 
H-R variational principle 
Null moment functions 

of Eqn. 20 for ~:x and rewritten Eqn.20 can give, respectively 

l{ x : 0(~ y / D0y- Vl{y 

8{ ~0 f ~l 2 [](y~x Jr" K.xy~y --VK.y(Of~y/Oy)d- l(xy(O(~x /Oy)  

+ (O~)y / 0y) 2 / 2D - D(1 - v)K~y- D(1 - v 2)~:2y / 2}iydx} = 0 

(23) 

(24) 

Carrying out the variation of Eqn.24 for ~ x, qby, K y, 1~ xy gives 

~x 0 vc3 / 0y D(1-v  2 ) 

Cy -o~/~ 0 0 
= H v  where v= , H =  

' ~:y 0 0 0 

xy 0 --02 1Do~ 2 vO I 

(25) 

It is natural to apply the method of separation of variables to Eqn.25. Let 
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v(x,y) = ~(x). ~'(y), and H~(y)  = ~t ~ ( y ) ,  ~(x) = exp(gx) (26) 

where ~t is the eigenvalue, and ~ is the eigenfunction-vector which must satisfy both side 

edge boundary conditions. Let us define the operation 

< v?,e,v~ > :  ~~v?e~dy (27) 

It can be verified that the following equation is valid when v~, v 2 satisfy the homogeneous 

boundary conditions being free, simply supported or clamped. 

T J H ,  v~ > < v T , J H , v  2 >=< v 2 , w ere ,:[O, ;] 
so JH is a symmetric operator, i.e., H is a Hamilton symplectically self-adjoint operator. 
Let ~ ,  ~ be eigenfunction-vector corresponding to eigenvalues ~t;, ~tj, respectively, 

so 

also 

< ~T,JLr,  g .  >= ~tj < ~ T , j , g .  > 

< g .+,J~,  e >= , ,  < g.+,J, e > = - , ,  < e + , J ,  g. > 

(29) 

(30) 

(31) 

According to Eqn. 28,30,31, adjoint symplectic orthogonality relationship for eigenfunction- 
vectors can be proved 

< ~ T , j ,  ~ >= 0, when kt; + ~tj ¢ 0 (32) 

Any state function-vector v can be expanded with the eigenfunction-vectors, 

oo 

v=~-'~(c,~+d,~,) (33) 
i=1 

where c; and d; are constants to be determined. 

In cases of some lateral boundary conditions, there are solutions corresponding to zero 
eigenvalue, which can be solved analytically. For solutions corresponding to non-zero 
eigenvalue, the eigensolution of Eqn. 26 can be given the general form 

qb, = Aj cos(~ty) + B 1 sin(~y) + C~ysin(py) + Dlycos(~ty ) 
y - A 2 sin(~ty) + B 2 cos(~ty) + C2y cos(~ty) + D2y sin(~ty) 

•y = A 3 cos(~ty) + B 3 sin(~ty) + C3y sin(py) + D3y cos(~ty) 

K,y = A 4 sin(~ty) + B 4 cos(~ty) + C4y cos(~ty) + D4y sin(~ty) 

(34) 

in which the constants aren't independent each other. According to Eqn.26, the relations are 
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solved as 

A, = - A  2 - C 2 (3 + v)/[p,(1 - v)] 

D A  3 = -A2~/(1 - v) - C 2 (3 - v)/(1 - v) 2 

D A  4 = A21.t/(1 - v) + 2C 2/(1 - v) 2 

B, = B 2 - D 2 (3 + v)/[~t(1 - v)] 

D B  3 = B2~t/(1 - v) - D 2 (3 - v)/(1 - v) 2 

D B  4 = B2~t/(1 - v) - 2D 2/(1 - v) 2 

C 1 = C 2 

t D C  3 = C2kt/(1 - v) 

D C  4 = C21.t /(1 - v) 

D 1 = - D  2 ] 

D D  3 = -D2~/(1 - v) 

D D 4 = D 2 1 . t / ( 1 - v )  J 

(35) 

(36) 

there are only four independent constants selected as A 2, C 2 and B 2, D 2 above. It should be 

mentioned that relations Eqn.35,36 can only be applied to basic eigenfunction-vectors of  
eigenvalue ~t. Substituting Eqn. 34,35,36 into the boundary conditions, equations for non- 

zero eigenvalue ~ and their eigenfunction-vector are determined. In case of  duplicate 

eigenvalue, the equation for Jordan normal form is 

H ~  ~ = ~t ~k  + ~k-~ k = 1,2,.--,m (37) 

The Jordan vectors depend on their lower order eigenfunction-vector. 

PLATE SIMPLY SIMPLY SUPPORTED ON BOTH SIDES 

This problem is classical but typical, because it has Jordan form solution. Assuming two 
edges y - O, b are simply support, the lateral boundary conditions can be written as 

C x ( y = 0 ) = 0 ,  C x ( Y = b ) = a ~ ,  C3¢y / D 0 y -  Vl(y (y = 0 or b) = 0 (38) 

Due to the given force conditions, there is an indeterminate constant a~ according to Eqn.9. 

Because eigensolution can only be applied to the homogeneous equation and lateral boundary 
conditions, the non-homogeneous factor, i.e. the indeterminant constant a~, is considered 

first. The related governing equations are (a~ = 1 ) 

H ~  0 = 0 ;  Cx(O)=O,¢x(b  ) = 1 ;  O d ~ y / D ~ y - V r C y = O  when y = O o r b  (39) 

Via some integration procedures its solution is given as 

~'o : {d~x : Y / b, C y = O, K y "- O, K x y  "- 1/[2bD(1  - v)]} T 

v o = ~F o, w = - x y / [ 2 b D ( 1  - v)] + rigid body motions 
(40) 

It is a superfluous solution of  the original problem due to substituting the boundary condition 
w = 0 with ~:x = 0,  and should be discarded. So we consider only homogeneous boundary 

conditions for both sides simply support plate. 
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¢ x -" 0 ,  0 ¢  y / D0y - vv: y = 0 when y = 0 or b (41) 

It can be proved that solution corresponding to zero.eigenvalue doesn't exist. Substituting Eqn. 
34,35,36 into Eqn.41, the transcendental equation for non-zero eigenvalue can be derived as 

sin 2 (~b) = 0, that is, ~t, = nn / b ( n = +1,+_2,-..) double root (42) 

the basic eigenfunction-vector is { }T 
~o = D(1-  v_______~)sin(~t.y); D(1-  v______~)cos(~t.y); sin(~t.y); cos(~t.y) (43) 

The solution of the original Eqn.25 is 

0 exp(~t,x) ~0 0 exp(~t,x) sin(g,y) / ~ 2 (44) Vn = ; Wn = -  n 

Due to the eigenvalue ~t, is double root, the first order solution of Jordan normal form exists. 
According to Eqn.37 with k = 1, the solution can be solved as { }T 

3 + v 3 + v Dcos(la,y); 1 sin(la,y); 1 cos(p,y) 
g"~ = -  292, D sin0"t'y); 2bt2~ - 2bt'---7 2bt---7 (45) 

The solution of the original Eqn.25 is 

v,' = exp(la,x)(~ '  + x ~0 ) 1 (1 2~t,x)exp(g.x)sin(~t,y)/(2~t3,) W ? /  - -  (46) 

It is easy to verify that 

< ~ l v , j ,  ~o >= 2Db  / i.t 2 
/1 (47) 

and relationships among the eigenfunctions of different eigenvalues are all symplectic 
orthogonal each other. 

According to adjoint symplectic orthogonality and the expansion theorem, the general 
solutions for both sides simply support plate can be expanded as 

oo oo 

Z ;0 , ,  0 0 1 ' w '  0 , 1 0 0 v =  v, + f , v ,  + f'_,,v_, + f'_,,v_,), ~ +  w, + f~w;, • + f - n w - n  1 ! = + A . w _ . )  
n = l  n = l  

(48) 

where ~ is a special solution of the original problem. Eqn.48 satisfy exactly the differential 
equation in domain and two lateral boundary conditions; the f k ( k  =0,1; i -+1,+2, . . . )  are 

constants, which should be determined from the two end boundary conditions. 

In case of four edges simply supported rectangular plate ( -  a / 2 < x < a / 2 ,  0 < y < b ) under 
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uniform load q = q0, the special solution is given as 

~ = q 0 ( Y  4 - 2 b y  3 + b 3 y ) / 2 4 D ;  ~y = q o Y ( y - b ) / 2 D ;  ~x =~xy = 0  

M x = vqoy(y  - b) / 2; My = qoY(Y - b) / 2; Mxy = 0 
(49) 

Substituting Eqn. 48 into two end simply support boundary conditions 

Mx = Mx + Mx =0 ,  K:y =](y -[- l (y  = 0  when x = +a / 2 (50) 

After some algebraic derivations, the solution is given as 

i ° - - i ° .  - f 2  - - f °  : 0 } 

f o  = _ f o  _ q0[c~,th(°t,) + 1.5] 
- 

_ q0 
f2  = f l  = Db~ t2,ch(ct,) 

(n = 2,4,6,...) (51) 

ann 
; where or, = -  (n = 1,3,5,...) (52) 

2b 

This solution is the same as the classical solution. In fact, Eqn. 48 is equivalent to the Levy 
single trigonometrical series expansion method, so all analytic solutions for both sides simply 
supported plate can be solved via the new method; the detail is neglected. The new method is 
not the same as the classical semi-inverse method; the new method is derived rationally and 
analytically, and therefore it can easily be applied to other lateral boundary conditions. 

B O T H  S I D E S  F R E E  P L A T E  

The two lateral edges y = +b are free; the boundary conditions can be written as 

~x (Y = -b )  = 0, dp x (y = b) = a, - a2b; d?y (y=-b )=O,  ~ y ( y = b ) = a  o +a2x (53) 

The indeterminant constants ao,a I ,a 2 are non-homogeneous terms, and are considered first. 

For a 0 , the governing equations are (a0 = 1 ) 

H ~  ° = 0 ;  (~x ( -b ) : (~x (b )=(~y( -b )=O,  ~y(b)=  1 (54) 

Its solution is 

~0 = {0, (y + b) / (2b) ; - v / [2bD(1 - v 2 )], 0} r ; (55) 
0 0 that is, v o = ~o ° , w o = ( x  2 - v y 2 ) / [ 4 b D ( 1 - v 2 ) ] +  rigid body motions (56) 

For a 2 , because of  the multiplier x ,  this solution is similar to Jordan normal form. The 

governing equations are (a  2 - 1 ) 
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H ~ 2  = ~ o  ; tbx(_b ) = tby(_b) = tby(b ) = O. tbx(b ) = - b  (57) 

Its solution is 

that is. 

~o 2 = {- (1 - v)(y 2 - b2)/[4b(1 + v) ] -  (y + b) / 2, O, O, vy/[2bD(1 - v 2)]}x 

2 2 
V 0 ~--- ~0 2 "1- X ~ O ,  W 0 = ( X  3 -3vxy2 ) / [12bD(1 -v2 ) ]+r ig id  bodymotions 

(58) 

(59) 

For al, the goveming equations are (a 1 = 1 ) 

H ~  o = 0 ;  ~x(b)= 1, d ? x ( - b ) = d d y ( - b ) = d d y ( b ) = O  (60) 

Its solution is 

~Fo ~ = ~x  = ( y  + b)/[2b]. (~y = 0 ,  K y - - 0 ,  ]('xy = l / [ 4 b D ( 1 -  v)]} v (61) 
1 1 __ that is, v o "-- ~01 , W 0 - x y  /[4bD(1 - v)] + rigid body motions (62) 

1 is the pure torsion, and 2 0 is the pure bending solution, v 0 v 0 The physical interpretation of v 0 

is the bending solution with constant shearing force. In fact, displacement Hamiltonian system 
can also be introduced into plate bending (Zhong and Yang, 1991); then there are six 
eigensolutions corresponding to eigenvalue zero, that is, three rigid body motions and other 

0 1 2 respectively. Due to three solutions corresponding to the present solutions Vo,Vo,V o 

substituting deflection with curvature boundary conditions, three rigid body motions don't 
appear presently, so their dual solution appear as the special solutions for non-homogeneous 
boundary conditions. The remaining solutions are all with homogeneous boundary conditions. 

The homogeneous boundary conditions are 

~) x = (~ y -- 0 when y = +b (63) 

It is easy to show that only solutions with non-zero eigenvalue for Eqn.26, 63 exist, which can 
be divided into two groups (1) symmetric eigensolutions. (2) anti-symmetric eigensolutions. 

Choosing group A. C of Eqn.34. the symmetric eigenvalue equation is given as 

2(1 - v)~tb = (3 + v)sin(2~tb) (64) 

the related eigenfunction-vector is 

- (3  + v)sin z (~t.b) cos(la.y)/(1 - v) + ~t.y sin(kt.y) 

= ~- (3+  v)cos 2 (~ t ,b ) s inO. tny ) / (1 -v )+g ,ycos ( la , y )  

~" fg,{[(3+v)cos2(g,b)-3+v]cos( la ,y)+(1-v)g,ysin( l . t ,y)}/[D(1-v)  2] 

[~t, {[2 - (3  + v ) c o s  2 (~t, b)] sin(ILt, y) + (1 - v)~t, y COS(ILt, y) }/[D(1 - v )  2 ] 

(65) 
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[1 + v - ( 3 +  v) cos2 (~t,b) 
that is, v, =exp(~,x)~;  w, =exp(~,x)~ D(1 - v) 2 ~, 

y_sin .Y) 1 
cos(~t,,y)- D O - v )  J (66) 

The Newton iteration method is used to solve Eqn.64; the first several non-zero eigenvalues 
are solved for v = 0.3 (see Table 2). 

TABLE 2 
SYMMETRIC NON-ZERO EIGENVALUES (v = 0.3 ) 

n = 1 2 3 4 5 6 

Re(~t.b) = 1.2830 n +0.6973 2n +0.7191 3 n+0.7313 4~ +0.7393 5 n +0.7450 

Im(l.t,,b) = 0.0 0.5446 0.8808 1.0730 1.2101 1.3172 

where each eigenvalue ~t,(n > 1) contains also its symplectic adjoint -~t ,  and their 

complex conjugate + ~ , .  The eigenvalue ~t, is a real number, there is symplectic adjoint 

- ~,.  All these eigenvalues are single roots. 

Choosing group B, D of Eqn.34, the anti-symmetric eigenvalue equation is 

2(1 - v)~tb + (3 + v)sin(2~tb) = 0 (67) 

and the related eigenfunction-vector is 

- ( 3 + v) cos 2 (12. b ) sin(12 ,y)/(1 - v) - ~t.y cos(~, y) 

= J(3 + v)sin 2 02,b) cos(let, y)/(1 - v) + 12,y sin(~,y) 

~" /12,{[(3+v)sin2(~qb)_3+v]sin~,y)_(l_v)~t, ,ycos(fa, ,y)}/[D(l_v) 2] 
b2, {[(3 + v)sin 2 ((t, b ) -  2] cos~ ,y )  + (1-  v)~t,ysin(~,y)}/[D(1- v) 2 ] 

{ ycos(~t,y)} that is, ~3 =exp(~t,x)~,; ~, =exp(~t,x) l+v-(3+v)sin2(~t"b)sin((t.y)+ 
D(1-v)2 ~, D(1- v) 

(68) 

(69) 

The Newton iteration method is used to solve Eqn.67~ the first several non-zero eigenvalues 
are solved for v = 0.3 (see Table 3) 

TABLE 3 
ANTI-SYMMETRIC NON-ZERO EIGENVALUES (v = 0.3 ) 

n = 1 2 3 4 5 

Re(~.b) = 0.5 n +0.5690 0.5 n +0.7863 1.5 n +0.7100 2.5 n +0.7259 3.5n +0.7357 

Im(~.b) = 0.0 0.0 0.7439 0.9865 1.1464 

where each eigenvalue (t,(n > 2) contains also its symplectic adjoint - ~ ,  and their 

complex conjugate + ~ , .  Because of the eigenvalue ~, and 122are real numbers; there are 
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only symplectic adjoint - ~  and -~2 respectively. All eigenvalues are single roots. 

As an example, the pure bending of semi-infinitely long free strip plate (b - 1) is solved. The 

condition for x = 0 end is clamped, and the end condition for x---> oo is a unit bending 
moment acted upon. Because this problem is symmetric for x-axis and only bending moment 
exist when x ---> oo, its expansion is composed of Eqn.55 and the symmetric solutions Eqn.65 
with non-zero eigenvalues with negative real parts Re(~t,) < 0. 

v = 2v ° + ' ~ f ,  e x p ( p , x ) ~  (70) 
n=l 

the Eqn.70 satisfy the differential Eqn. 25 the two lateral boundary condition at y = _+b and 

the x --> oo end boundary conditions. Now the end boundary condition of x = 0 is applied to 
determine the constants f , ,  (n = 1,2,...). Only the first k terms of Eqn. 70 are selected to 

solve, the variational equation of x - 0 end boundary reads 

(71) 

Due to some of eigenvalues are complex numbers, the real valued canonical equation of 
Eqn.70-71 (Zhong, 1995) is applied. 

As an example, let v = 0.3, k -  11 and k = 21 respectively. The distributions of bending 
moment at the clamped end are shown in Figure 2. It is clear that the comer has stress 
singularity ( M  x - - ->-oo  ). The wavy form of bending moment appears due to choosing only 

finite number of terms in expansion solution. 

1 . 4  

1 . 2  

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 

-o. 2 0 o'2 o'4 o;6 o:8 1 

- - k : 2 1  . . . . . . .  k : 1 1  

Figure 2: Distribution of bending moment at clamped end (x = 0 ) 

The method proposed in this paper can also be applied to other boundary conditions. A series 
of analytic solution can be derived. 
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CONCLUDING REMARKS 

In this paper, a new formulation of fundamental equations and the respective solution 
methodology for classical theory of plate bending is presented, which contrasts with the 
traditional methodology (Timoshenko and Woinowsky-Krieger,1959). The traditional solution 
uses displacement method and biharmonic equation; the new methodology applies bending 
moment function vector and differential Eqn.15. The traditional method is semi-inverse 
solution; thus only a few of solutions available. For example, only solution for both lateral 
simply support plate have been given for rectangle plate, and it is difficult to solve for other 
lateral boundary conditions. However, the new methodology presents a direct solution via 
introducing Hamiltonian system. Therefore the efficient mathematical methods, for example 
separation of variables and eigenfunction expansion etc., can be applied. The new 
methodology breaks the limitation of traditional semi-inverse solution. The solution for both 
sides free plate given in this paper can't be solved by the traditional method. 

The analogy between plate bending and plane elasticity can be applied to not only analytical 
solutions but also to plate bending finite element; therefore the plate bending finite element 
can be improved to the same level as plane elasticity (Zhong and Yao, 1998). 

Generally speaking, the new advances in plate bending mathematical theory present many 
opportunities. More research is anticipated. 
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ABSTRACT 

The FE algorithm based on two-scale analysis method for the structural problems of 
composite materials and the structures with small period in 2-dimension case is briefly 
presented in this paper, and some numerical results are shown. It is an effective method in 
computational mechanics to be developing. 

KEYWORDS 

Two-Scale Analysis Method, Composite Material, Structure with Small Period, Finite Element 
Algorithm. 

INTRODUCTION 

The structures shown in Fig. 1 are often encountered in structural engineering and in the 
design of new industrial products. They are made from woven composite materials or 
composed of numbers of same basic configurations. 
The analysis problems for this kind of structure have some common properties as follows: The 
material parameters vary sharply and periodically, and the period ~ of material change is very 
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small; it means that, in mathematics and in mechanics, 

a~hk(X+o~):a,jhk(X) , 
where L is the size of considered structures. 

the coefficient of materials satisfy 

< <  1 ( 1 )  

!: 
Fig. 1 Composite materials and structure with periodicity 

The mechanical behaviour of this kind of structure depends not only on the macroscopic 
conditions, such as the geometry of the structure, the effective constants of the materials, the 
loadings and the constraints, but also on the detailed configurations. Since the stresses within a 
basic cell vary sharply in locale and the size of a cell is very small, either macroscopic analysis 
or microscopic analysis cannot obtain an accurate evaluation of stresses. 
A Two-Scale Analysis (TSA) for this kind of structure, which combines the macroscopic 
behaviour of the structurewith its detailed configurations, is proposed by author in Ref.[ 1]. 

D 
cO 

Q 

r l  

eQc 

Fig. 2 Structure only including entirely basic configurations 

From Eqn. 1 for the analysis problem of the structure shown in Fig. 2 in 2-dimension case the 
displacements can be asymptotically expressed in two-scale variables x ,  ~ as follows 

oo ~l ~0 

u(x) = u 0 (x) + Z,=l e' 6,Z=1.2 N~,...~, (~) & i :  ::~3c~ ' ( 2 ) 

[ N~,...~,,I (~), N~,...~,lZ (~)~ 

Ua, .~,2, (~), Ual...a,22 (~)J ' 
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( No, ] 
Nctl" "atm ( ¢) -- ga  I .otl 2m ( ¢) ' m:l .2  (3) 

where x denotes the global coordinates of structure, and ~ = x the local coordinates, and all 

N~I...~, (~) (1 = 1,2,..., a i = 1,2) are the periodical functions defined on space R E with period 

1; they can be determined on I- square Q, and u 0 (x) is the solution of homogenized problem 

defined on whole ,(2. 

1. The m-th column N~lm(~) (al,m=l,2) of N~I(~ ) is the solution of the 

following virtual work equation 

~£~](V)a~.hk(~)Chk(Na,m)d~= ~C~(v)avalm(~)d ~ Vv ~H~(Q) ( 4 )  
O Q 

where d4=  d~:ld~' 2 , H~(Q) is the set of the functions fixed on the boundary of the unit 

square. 
2. The m-th column Nala2m(~)(gtl,Ct2,m= 1,2) of N~,~(~) is the solution of the 

following virtual work equation 

~6 v. (v)ao.hk (~)O~hk (Nala2 m )d~ = - ~[l~ia2t;tlm -- aia2alm (¢) -- aia2h k (~)Oehk (Nal m )]v,d~ 
O O 

+ $av.al h (~)Na2hm (~),~/j. (v)d¢ Vv ~ H 0 (Q) ( 5 ) 
Q 

where aOhk are the homogenized coefficients of materials computed f r o m  Sa,m(~} 
(a 1, m = 1,2) in following formulation 

a~hk : ~[aVhk (~) + aopqCpq (Nhk (~))~¢ ( 6 ) 
Q 

1< 67Nhpk ~]'hqk ) 
~pq(Nhk(¢))= ~ C9¢q + ~ P  (7) 

3. The m-th column Na,...~, m (~') (a , , . . . ,  a , ,m  : 1,2) of N~,...,~, (~') ( l : 3,4,...) is the 

solution of the following virtual work equation 

fC. ij(v)aijhk(~)6"hk(Sa~...a,m)d¢ : 
Q 

-- ~[a.~,,~,_. m (~)gal...ctt_2hm (~) "+" aiath k (~)Chk (Sott...at_, m )~id~ 
Q 

+ ~a~,_, h (~)Nal...a,_lhZEij. (v)d¢ , VV E H o (O) ( 8 ) 
Q 

4. u 0 (x) is the solution of the homogenized problem defined on global ,Q 

n r~, r,, 
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= I f ,  v, dx Vv e H~ (.(2) ( 9 )  

Since the asymptotic expression can not be strictly evaluated in practical computation, the sum 
of fore terms (l < M) in Eqn. 2 is evaluated as the approximation of u(x); let 

M ¢~/Uo 
U M (X) ---- U 0 (X) "b E/=I ~I a,Z=I,2 Nal'"at (~) ~a I -':-'-~at ( I0 ) 

We have proved that Eqn.9 if .(2 is convex domain with piecewise smooth boundaries and 
f ( x )  satisfies the conditions so that the homogenization solution u 0 (x) e C M÷2 ( ~ ) ,  then 

II ""(x)-u(x) -< (g6) M-1C ( 11 ) 

where A and C are constants independent of z . Therefore uM(x) is a proper 

approximation of u(x). 

FE SOLUTION BASED ON TSA 

From previous description it is not difficult to see that the FE displacements can be 

approximately expressed in two-scale variables x, ~ x = -  as follows 
S 

u M h ( x ) = u o h ° ( x ) n t ' Z C I Z ' = I  a, =1,2 N h '  "''at G~X-~l::7~'at (12) 

h where N21...~,m(~'), m = 1, 2, 1 = 1,-.-, M, and u 0 (x) are the FE solutions of the following 

problems respectively • 

1. Nhm (~') ( a 1 , m = 1, 2 ) is the solution of the following virtual work equation on FE 

space S0 h (Q) = {v e S h(Q) / v(c~) = 0} 

Z [C,(v)a.hk(~)~hk(N:,m(~))d~=E Ic,(v)a,j,~:(~)d~ VveSho (Q) (13) 
eeSh ; eeS h e 

where d~: = d~:ld~:: , and S h denotes the FE partition on 1-square Q. 
^h ^ Then a~h k approximate to homogenized material constants a~h k Can be computed in the 

h ( ~ ) ( a  m=1 ,2 )  following formulation from Na~ m 1, 

6epq (Nhhk (~)) = -2 O~:q + CT~p ( 14 ) 

,,h e~ e ( h (~))~ aiJ hk = Z aiJ hk ( ~) ..t- aijpq ( ~) E pq S hk ~ ( 15 ) 
eeS h 

h 2. From virtual work Eqn. 5 its FE solution Na,a2m(~) (a l ,a '2 ,m = 1,2) should be the 

solution of the following FE virtual work equation 
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Z fg~(v)achk(~)Chk(N:,a2m) d~ 
e eS h 'e 

"---ZeeS ~ f[Clia2alm--aia2a,m(~)--aia2hk(~)Chk(Na~m(~))]vid~ 

at- eES hZ !a~a,h(~)Nalhm(~)SO(v)d~ VI~ sSho (Q) (16) 

It is well-known that the true solution N~,m(~)(ctl,m- 1,2) of Eqn. 4 cannot be obtained as 

well as the accurate values of homogenization coefficients fiqhk" So 
h Notl~2m(¢ ) (a,,a2,m= 1,2) are corrected as the FE solutions of the following virtual work 

equation 

Z I6"~(V)aOhk(~)ghk(N~a,a2m)d~ 
eeS h e 

~ h  h --Z I[ "~2~,m--a"~2a,m(4)--a'~2hk(~)'?'hk(N"~m(~))]v'd~ 
eeS h e 

+ Z [aqalh(~)N2,hm(~)~i)(l~)d~ VI~ ~ S o ( Q )  (17) 
eaS h 'e 

3. In the same way N2, (¢) (~l,...al,m = 1,2, 1 = 1. . .  M) is considered as the FE • ..~1 m ~ 

solution of the following virtual work equation 

Z [°~iJ(lY)aijhk(~)~hk(Nh,'"atm) d~ 
eeS h e 

----ZeeS h f[a'a,a,-~m(~)N2~'"at-2hm(~)Waiathk(~)°~hk(N2,'"a,-,m)~id~ 

+Z Vv 
e eS h ' "e 

h 4. From virtual work Eqn. 9 its FE solution u 0 (x) should be the solution of the 

following homogenized FE problem defined on global /2 

Ie,j(V)gt,jhkehk(Uho° )dx- IP,(X)v, ds- I~hOhkehk(Uo ~ )aids 
.o G r. 

= I f  ,v;dx Vv e S~ (/2) ( 19 ) 
~2 

where S,h°(.(2) denotes the FE space defined on global structure .(2. Since the exact 

{fi~hk }cannot be obtained they are substituted by their approximate values {a:nk }. So here we 

consider u~ (x) to be the FE solution of the following approximate problem from Eqn. 9 

ISo(V)fiVhhkehk(Uho° )dx- Ip,(x)v, ds - I~,gt~hkeh~(Uno° )aids 
a G r. 

= If, v, dx Vv s H~ (.Q) ( 2 0 )  
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r E  COMPUTATION o r  Nh...a,m(~) 

^h FE Computation o f  Nhlm(~) and avhk 

Nhlm(~) can be obtained by solving FE virtual work Eqn.13 defined on 1-square Q. 

Partition Q into the set S h of consistently triangular or/and quadrangular elements according 

to material distribution aOh k (~:) of the basic configuration shown in Fig. 3, where h denotes 

the maximum size of the elements. Let 

S~o(Q) {v (Vl,V=)~l s ~ } = = v, ~Pk(e ) , e~  a n d v , = O o n c ~  ( 2 1 )  

where Pk (e) denotes the set of k -  order polynomials defined on element e. Since the basic 

configuration is so complex and the material coefficients a~h k (~) vary so sharply, the true 

solutions N ~ , m ( ~ ) ( a  1 , m  = 1, 2 )  have not more than 2-order smoothness only linear 

or/and bilinear elements are chosen to solve FE virtual work Eqn.13. By making use of FE 
program based on linear or/and bilinear elements, Nhm(~) ( a 1 , m = 1, 2 ) can be evaluated. 

In this case, from finite element analysis, it follows that 

II v(  sa,m -S°lm)llL < ) - aim (Q) 

II Salm --Shal m IIL=< ) -< Ch= II D2Sal m IIL2(Q) ( 23 ) 

where C is independent of h. 
^h from h Making use of Eqns. 14 and 15, one can evaluate aVhk N~,m(~) ( a 1 , m  = 1, 2 ). 

Using Eqns. 6 and 15, one can prove that the approximate homogenization coefficients {hv hhk } 

converge the true {hy hk } as h --> 0, and they satisfy the following inequality 

^ ^h l -a~, k l< CAh ( 24 ) 

where C and A is independent of h. 
In order to verify the effectiveness of previous computational formulations on homogenization 

coefficients using the following two kinds of original materials, the first is much stiffer than 

the second 

/  l ,OOO 6  000 00/ 17  !1.4  714  . 7 0 / 
625000 3 125 000 0 , 714 8.57 178 571.43 0 ( 2 5 )  

o 0 1 250 00 0 53 571.4 

We constructed three basic configurations as shown in Fig.3. The numerical results on 
homogenization coefficients evaluated by 40 × 40 meshes are shown in Fig. 3. 

FE Computation ofShl...aim (~) (2 _<l _< M) 

From the formulations of the previous section, it is noticed that all FE virtual work equations 
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satisfied by N~a,...a,m(~) are defined on 1-square Q. The left sides are the same,  and the 

right sides are different, but they can be recursively evaluated from the material coefficients 
Clv.h~ (~) h h (~) In this case, the finite element meshes for evaluating , N~...~,_~(~) and N~,...,~,_, . 

N~,...~,m (~:) (2 _< l _< M) are chosen the same as for evaluating N~,m(~) ( a 1 , m = 1, 2 ) . So 

the global stiffness matrix K is computed, decomposed as K = L D L  T and saved only one 
h time, in the stage of evaluating N]~(~). When evaluating N~,...~,m(~), we only need to 

evaluate the right side of FE equation, forward substitution and backward substitution in 
succession. 
Through complicated finite element analysis, see [3,9], we can obtain the following results: the 

~ ~ " 1  i I I I 
i ~ 1 1 1  I I 

_k'~_~'9... I i ~ ' i  ~ i t J  i t 
k'~',,Rq I I ~ ~ I I ! I I 

I I I ~ " ~  K'~k~l i i i I I 
I I I ~ 1  .l~,~%~kNI I I I I 

k ~ . ~  I I I kN~ '~  ~ I I I 
I 

I I ~ k~.~k"~l~l I I I  
I I ~ N ~ I  ~--~1~ i I I I  
I I k ~ " ~  ~ 1  I I I I !  
I. I k'%-w'x~,X~l ~ I I i l l  ~ ~ 1 1  I I I  

L ~ I ~ K ' , , ~ ' , , ~ " , ~ ' , ~ " , ~ ' , ~ ' , , X ~  k ' ~  I I I I , ___________._~ 
l i ' ~  

l ~ . ~ d l  l l l l l l l ~ ~  
I I ~ " ~ , l l ~ , ~ l  l l l l l l l ~ l ~ - ~ C ~  
I I k " ~ l ~ , ~ l l  I I I I 1 ~ ] ~ 1  
I I . ~ x , ~ K % ~ l l  I ! 1 1 ~  ~',,,~ 
I L,~',~.~-N~I~X'-'~ll I I 1 ~  k",.~N~ 

' , , ~ ~ k " ~  I I L ~  1 ~  
' ~ ~ k ' ~  L ~  

I l k - ' ~ [ ~ l ~ l  k ~  
i 1 1 ~ [ ~ [ ' - , ' [ ~ 3 ~ 1 1  k ' ~  
I I k ' ~ N ~ ~ l l l  ~ l  
II.,&N.~-X~ 

(11,36  175o17 :)(1334341,8s1 .1 o) 1o295,7 .6697  
175017 1143604 , 188121 937491 0 , / 266973 1029547 85244 1 

0 0 286746 0 0 245477 \ 85244 85244 343238 ] 

Fig. 3 Basic configurations and their homogenization constants 

true Na,...a, m (~) and its FE approximation Nha,...a,m (~) satisfy these inequalities 

• . .aim h...alm <C(o~h)A IIv( o - o, 
N,~, ,'m - Nh, .,~,m L2(a) 

where C and A are constants independent of h,  e and ~ ,  and 

(26) 

(27) 

( 2 8 )  

FE COMPUTATION OF u Mh (x) 

IrE Computa t ion  o f  Uho ° (X) 

According to Eqn. 12, the next step of computing u Mh (x) is to solve the homogenized FE 

vitual work equation ( 19 )to obtain ,0 h° (x).  Since {~.hhk } are constant for global .(2, the true 

solution ~0(x) of Eqn.19 must be sufficiently smooth inside D according to the regularity 

theorem of PDE problems. So high-order elements can be chosen to evaluate . ~  (x).  Using 
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high-order elements with mesh size h 0 partition .(2 into FE set S h° . Let 

{ , )T S h° u(x) -a on 0.(2} ( 2 9 )  Su h° (.('2) - v -" (v 1 v 2 [vt E Pk (e),e ~ and = F~ c 

where k is the order of the interpolation polynomials within elements. Taking advantage of 
FE program we obtain u0 h° (x). 

Through detailed FE calculus, see [3,9], we can prove that 

II Uo(X)-U o°(x)ll.l¢o, <- c(hllfll  , , + h:IID -'NIIL ¢ ,) (30) 
where u 0 (x) is the true solution of the homogenized Eqn. 9 and u0 h° (x) is the FE solution of 

Eqn. 19 obtained by previous procedure , and h is the mesh size for evaluating 

N~,m(~)( 0~1, m = l ,  2 ). 

Evaluation of 
~Of  I * ° ° ~O~ I 

Below the formulations for evaluating high-order partial derivatives of scale function 
u h° (x) are shown. Let 

6x'uh°(M)= r(M) 2 - ~  ( 3 1 )  
eeSh(M) e 

where M is a node of FE set S h° , S h (M) denotes the set of the elements with node M 

and r (M) is the number of the elements in Sh(M). For l =  1,2,... and x e e, let 

~1+1 U h ( X )  : Z 6'x, .... o, (M) OAeM (x) ( 32 ) 
Xal "" "Xal Xal+l a + 

MeSh(e) dT~X a, , 

where Sh(e) is the set of the nodes located on element e, and 2eM(x) is the shape 

function corresponding to node M on element e. If x coincides with node M,  let 

'+' u h° (e) ( 33 ) /+1 uho(M) : 1 Z 6X, l'.'xo,,, 
~X"l ""x'~'+l ~ ( M )  ee~h(M) 

and if x e e  1Ne 2,let 

8' -1(8' . 8' xo...x~,Uh°(x)=2, xo ..xo, Uh°(e,)+ xo...xo, Uh°(e2)) 

In the approximate computation of u Mh (x), let 

#uh° (x) ~ 6' 
xo, 

From u M~ (x) the approximate strains can be evaluated in the following formulation 

M h Uom Chk(X):~hk(Uho°(X))+ZCt-' a,=l.2 °~hk Nal'"a'm t:gX~::--~a, 

( 3 4 )  

( 3 5 )  
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~ a~l I /~/  1+1 h° c7 Uom 
+ /=1 °c" ,= ,2 Nha'"'a'hm O~XaI'::~OXk 

and then the approximate stresses 

tr~ (x) = a~hk °%k (X) 

( ~ /  1+1 h0 1 X ~ Uom 
+Nh,'"~, k" ~ i : : : ~ ~  h (36)  

(37)  

NUMERICAL EXPERIMENTS 

Procedure o f  F E  Algorithms 
Summing up the procedure of FE algorithms: 

1. Set up the mechanical model • 
• Form and verify the geometry of the structure, the loading conditions and constraints. 
• Form and verify the composition of the basic configurations for every component with 

periodicity, the matrix, reinforcement and their interfaces. 
2. Partition Q into set S h of triangular or/and quadrangular elements in mesh length h 

according to the distribution of aUh k (~) , and .(2 into S h° in h 0 . 

3. Solve FE Eqn.13 to obtain Shl m(~) ( a l ,  m = 1, 2 ) .  

^h h ( ~ ) ( a l , m  1 , 2 )  4. Evaluate aOhk in Eqns.14 and 15 from N~, m = . 
h 5. Solve FE Eqn.17 to obtain U~,~m(~) ( a l , c t 2 , m :  1,2), and solve Eqn. 18 tO 

h , 1,2) for 3 < l < _ M .  obtain N~l...~,m(~)(a i m= 

6. Solve FE Eqn. 20 to obtain u0 h° (x). 

(x) 
7. Evaluate in the formulations ( 31 )--(  35 ). 

c ~ , - . . ~ ,  

8. Evaluate the approximate displacements u Mh (x) in formulation ( 12 ) ,  the strains 
M e h~ (x) in formulation ( 36 ),  and the stresses cr~ (x) in formulation ( 37 ). 

Numerical Results 
We have coded the computing program of the FE method based on TSA for 2-dimension case, 
and made some numerical experiments to verify its effectiveness. Here are some numerical 

results. 
The structure is a cantilever investigated by us; the macroscopic model is shown in Fig. 4 and 
three types of basic configurations are shown in Fig. 3. The basic configuration is partitioned 
into 40 × 40 meshes, and the structure into 38 × 94 meshes. The stress states for three typical 

cells are shown in Fig.5. By using the classical FE method to obtain such detailed results, 
190 × 470 rectangle meshes might be needed. 

The FE method based on TSA is thus very effective for solving problems raised by woven 
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composite materials and structures with small periodicity. 
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Fig.5 The stress distribution for 3-typical basic configurations 

REFERENCES 

1. Cui J.Z., Shih T.M. and Wang Y.L.(1997), Two-Scale Analysis Method for Bodies with 
Small Periodic Configuration. Invited Paper in CASCM-97, Sydney, Australia, Proc. of 
CASCM-97. 
2. Cui J.Z. and Yang H.Y.(1996), A Dual Coupled Method of Boundary Value Problems of 
PDE with Coefficients of Small Period. lntern. J. Comp. Math., 14: 159-174. 
3. Cao L.Q. and Cui J.Z.(1998), Finite Element Computation For Elastic Structures of 



Finite Element Algorithm Based on Two-Scale Analysis Method 41 

Composite Materials Formed by Entirely Basic Configurations, to be published on Math. 
Numer. Sinica, Vol. 20, No. 3. 
4. Bensoussan A., Lions J. L. and Papanicolaou G.(1978), Asymptotic Analysis for Periodic 
Structures, Amsterdam; North-Holland. 
5. Aboudi J.(1991), Mechanics of Composite Materials - A Unified Micromechanical 
Approach, Elsevier, Amsterdam - Oxford- New York-Tokyo. 
6. Oleinik O.A., Shamaev A.S. and Yosifian G.A.(1992), Mathematical Problems in Elasticity 
and Homogenization, Amsterdam, North-Holland. 
7. Cui J.Z., Shih T.M., Shin F.G. and Wang Y.L.(1997), Finite Element Methods Based on 
Two-Scale Analysis. presented in WSC97-HK, Proc. of WSC97-HK. 
8. Cui J.Z.(1996), The Two-Scale Analysis Methods for Woven Composite Materials and The 
Structure With Small Period, in The Advances in Computational Mechanics, edited by 
Zhong W.X. et al, International Academic Publishers. 
9. Cui J.Z., Shih T.M., Shin F.G. and Wang Y.L.(1997), The Two-Scale Analysis Method for 
Composite Materials and Structures with Period Configurations, ICM-97 Report. 



This Page Intentionally Left Blank
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ABSTRACT 

The 310 m Nanjing TV transmission tower in China will be installed with an active mass driver 
on the upper observation deck in order to reduce the acceleration responses under strong winds. 
This paper presents the Linear Quadratic Gaussian (LQG) control strategy using acceleration 
feedback to reduce the tower response. Emphasis is placed on the practical applications, such as 
the limitations on actuator peak force and stroke, limited number of sensors, etc. The along- 
wind and across-wind components of the wind velocity are defined by the Davenport cross- 
power spectra. The power spectral density and rms of acceleration responses of the TV 
transmission tower equipped with an active mass driver have been computed. Simulation results 
demonstrate that the performance of the LQG control strategy is remarkable in reducing the 
coupled lateral-torsional motions of the tower and it is suitable for the full-scale implementation 
of active mass driver on Nanjing Tower. 

Keywords: structural control, active mass driver, Linear Quadratic Gaussian (LQG) control, 
dynamic output feedback, coupled lateral-torsional motion, wind response. 

INTRODUCTION 

The newly constructed 310-meter Nanjing Tower in China consists of three prestressed concrete 
legs with hollow rectangular sections, as shown in Fig. l(a) and (b). It has two observation 
decks at the heights of 180-meter and 240-meter, respectively. Preliminary investigations 
indicate that the acceleration response of the upper observation deck is too high and that a 
passive mass damper is not capable of reducing the acceleration response to an acceptable level 
for human comfort [Cao et al (1998)]. Consequently, an active mass driver system, in the form 
of a ring mass driven by three actuators as shown in Fig. 2, was designed [Cao et al (1998)] to 
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be installed on the upper observation deck to reduce the acceleration response. Active control of 
wind-excited tall buildings has been investigated in the literature [e. g., Samali et al (1985), 
Ankireddi et al (1996), etc.], including the applications of advanced control theories, such as H2 
control [Suhardjo et al (1992)], LQR and H~ static output feedback control [Wu et al (1998)], 
sliding mode control [Yang et al (1997)], etc. Today, full-scale active tuned mass dampers have 
been installed on many high-rise buildings in Japan [e. g., Spencer & Sain (1997)]. 

Y x 9 

16 th node (x, y, 0 DOF) 
• • °  

12 th node (x, y, 0 DOF) 
D 10 th node (x, y,O iSOF) 

9 th node (x, y,O DOF) 

l~i node (x, y, 0 DOF) 

(a) (b) (c) 

Fig. 1" (a) Configuration of Nanjing Tower; (b) cross-section of concrete leg; (c) 
Discrete Structural Model 

The structural properties of the Nanjing Tower in the along-wind direction, as modeled by a 
discrete 16-degree-of-freedom system shown in Fig. l(c), have been described in Cao et al 
(1998). Previous investigations [Wu et al (1997a,b), Cao et al (1998)] assumed that the tower is 
completely symmetric and the axes of mass centers, elastic centers, and aerodynamic centers 
coincide with each other. Based on this premise, the along-wind motion and the across-wind 
motion of the tower can be analyzed and computed independently. In reality, the elastic center 
and mass center may not coincide, for instance, the mass centers of the observation decks may 
not locate at the elastic center of the cross-section due to the arrangement of indoor furnitures 
and equipments. As such, coupled lateral-torsional motion is introduced when the tower is 
subjected to wind gusts. Since the tower is not symmetric in one of the principal axes, the 
aerodynamic center may be different from the elastic center and mass center. Hence, the wind 
forces acting on the aerodynamic center will introduce an eccentricity, resulting in an external 
torque to the tower. 

In this paper, we present the Linear Quadratic Gaussian (LQG) control strategy for the 
acceleration reduction of the tower equipped with an active mass driver, taking into accotmt the 
coupled lateral-torsional motion. Emphasis is placed on practical considerations of full-scale 
implementations, including limited number of sensors, limitations on actuator peak force and 
stroke, noise pollution, acceleration feedback, etc. Since civil engineering structures involve too 
many degrees of freedom, a state reduced-order system [Wu et al (1998)], that can capture the 
significant modes of acceleration response, is established for the controller design. The size of 
the reduced-order system is reasonable for the on-line computation of the dynamic output 
controller. 

The performance of LQG controller is measured by the acceleration reduction criterion. The 
spatial correlation of wind loads is accounted for in the LQG observer designs. The Davenport 
spectrum is used for the fluctuating wind velocity in the along-wind (x) direction and across- 
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wind (y) direction. Both deterministic 
and stochastic analyses have been used 
to demonstrate the performance of the 
controller. For the deterministic 
approach, a set of sample functions of 
wind loads on every degree-of-freedom 
is simulated from the wind velocity 
spectrum and the peak responses are 
computed. For the stochastic approach, 
the root-mean-square and the power 
spectral densities of the response 
quantities are obtained using random 
vibration analyses. It is demonstrated 
that the LQG controller is quite suitable 

)RT BEAM 

ACTUATOR 

ACT 

for practical implementations and its Fig. 2" Configuration of Active Mass Driver System 
performance is remarkable, with Three Actuators on the Upper 

Observation Deck [from Cao et al (1998)]. 

F O R M U L A T I O N  

Equations of Motion of Tower Structure with Lateral-Torsional Motion 

To compute the stroke of the actuator, the active mass driver is modeled as an active tuned mass 
damper in the following formulation and numerical simulation. Then, the forces in the springs 
and dashpots of the active tuned mass damper are added to the control forces for the active mass 
driver system. Finally, the required actuator forces and strokes will be determined through the 
transformation later. 

Full-Order System (FOS) : The Nanjing TV transmission tower has been modeled by a 16-node 
linear system, as shown in Fig. 1 (c). With an active mass damper to be installed on the upper 
observation deck (12 th node), the total number of nodes is 17. We consider the elastic center of 
the cross-section of the tower as the geometric center while the mass center of the designated i- 
th node is shifted by a distance (Xci, yci) from the elastic center. The vector equation of motion is 
expressed as 

MsJ((t) + Cs J((t) + Ks X( t )=  H 1 U(t) + W(t) (1) 

in which X(t) = [Xl,X 2, ..., Xn,Yl ,y  2 . . . . .  Yn, 01, 02 . . . .  , O n ]' is a 3n vector (n = 17) with 

x i (t), Yi (t), 0 i (t), i = 1, 2,...,  16, being the displacement of the elastic center of the designated 

i-th node in x (along-wind), y (across-wind) and 0 directions w.r.t, the ground, as shown in Fig. 

l(c); X17,Y17 and 017 are the relative displacements of the center of the mass damper with 

respect to the upper observation deck; U(t) =[Ul(t), u2(t) . . . . .  Ur(t)]' is a r control force vector (r = 

3) in x, y and 0 directions generated by three actuators; W(t) = [Wlx (t), W2x (t) ..... w16 x (t), 0, 

Wly (t), W2y(t ) ..... Wl6y (t), 0, Wl0(t ), w20(t) ..... Wl60(t), 0]' is a 3p vector (p - 17) denoting 

the wind loads on the tower in x, y and 0 directions, respectively; and a prime denotes the 

transpose of a vector or a matrix. In Eqn.1 M s, C s and K s are (3nx3n) mass, damping and 
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stiffness matrices, respectively, in which the mass in the equations of torsion is the mass 
moment of inertia and the stiffness is the torsional stiffness. HI is a (3nxr) matrix denoting the 
location of controllers. The inertial force term for the equation of motion of the i-th node in x, y 

and 0 directions are expressed as mixi - mi Yci0i, miYi + mi Xci0i, and 

-miYciXi + mixciYi +[Ji + mi (Xci 2 + Yci 2) ]0i,  respectively, where Ji is the mass moment of 

inertia of the i-th node w.r.t, the mass center. 

In the state space, Eqn. 1 becomes 

Z = A Z + B U + E W  (2) 

where Z(t) is a 6n state vector; A is a (6n×6n) system matrix; B is a (6n×r) control location 
matrix; and E is a (6n×3p) excitation influence matrix given, respectively, by 

[ I [ I E 1 IX 1 0 I 0 0 
Z=  (t) ;A = ;B=  ; E =  -1 (3) 

LX(t)J - Ms 1 Ks - Ms-lCs Ms -1 H1 Ms 

Since Eqn. 2 represents the dynamics of the entire structure, it is referred to as the full-order 
system (FOS). In general, a /-dimensional controlled output vector z and a m-dimensional 
measured output vector y can be expressed, respectively, by 

z = C z Z + D z U + F z W  (4) 

y = C y Z + D y U + F y W + v  (5) 

in which C z , D z , F z , Cy , Dy and Fy are matrices with appropriate dimensions, v is a m- 

dimensional measurement noise vector. If only the state variables (displacement and velocity) 
are measured, then Dy = Fy = 0. In civil engineering applications, since acceleration 

measurements are easier to obtain, Eqn. 5 is the general expression including acceleration 
measurements. The same remark applies to the controlled output in Eqn. 4. 

Reduced-Order System (ROS): Under wind excitations, the acceleration response of civil 
engineering structures is dominated by the first few modes. Hence, the controller can be 
designed based on the reduced-order system (ROS), referred to as reduced-order control (ROC). 
There are many system reduction methods available in the literature, which can be used to 
obtain the reduced-order system. The method of state reduced-order system [Davison (1966)] 
that retains the same eigen properties of selected modes has been demonstrated to be very useful 
for civil engineering applications [Wu et al (1998)]. Such a method will be used in this paper. 
Then, a k-dimensional state equation of the state reduced-order system (SROS) can be derived 
as 

Zr = Ar Zr + BrU + ErW (6) 

in which the eigenvalues and the eigenvector matrix of A r are equal to the first k eigenvalues 

and eigenvectors of A. Since the eigenvalues of A are complex conjugates in pairs, it is 
necessary to choose even number for k so that A r, B r and E r are real. The controlled output 

vector and the measured output vector of the SROS, z r and Yr, can be obtained accordingly 
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[Wu et al (1998)], 

z r = CzrZr + DzrU + FzrW 

Yr = CyrZr + DyrU + Fyr W 

in which Czr,  Dzr , Fzr, Cy r , Dy r and Fy r are matrices with appropriate dimensions. 

(7) 

(8) 

Wind M o d e l  

The along-wind velocity is usually decomposed into an average wind velocity and a wind 
fluctuation, that is a stationary random process in time. The average wind velocity varies along 
the structure, and hence the wind load is nonhomogeneous in space. In the across-wind 
direction, the wind velocity is also modeled by a set of fluctuation random processes, which 
could be different from the along-wind fluctuation. The wind-structure interaction effect is 
neglected herein, and therefore the wind load can be computed from the wind velocity. 
Consequently, the wind load consists of a set of static loads due to the average wind velocity and 
a set of dynamic loads due to wind fluctuations in both along-wind and across-wind directions. 
For the reduction of acceleration responses in structural control, only the fluctuating wind loads 
should be considered. It has been assumed in the literature that the along-wind and across-wind 
velocity fluctuations are mutually uncorrelated random processes with zero mean. The well- 
known Davenport wind velocity spectrum will be used to simulate the along-wind and across- 
wind velocities. The (i, j)  element of the two-sided Davenport cross-power spectral density 
matrix Svv of fluctuating wind velocity can be expressed as 

Svivj   = 2K°Vr /600 12[ /600 /2] /3 / / 1+ exp Cl I col I hi-hj l  
Ic01 71;Vr 71;Vr 271; V~ (9) 

where co is in radian per second; Vr is the reference mean wind velocity in meters per second at 
10 m above the ground; Cl is a constant; hi is the height of the i-th node; and K0 is a constant 
depending on the surface roughness of the ground [Simiu et al (1986)]. 

The location that wind forces apply, i. e. aerodynamic center, is determined by the geometry of 
the cross section of the structure. Due to the eccentricity between the elastic center and the 
aerodynamic center, an external torsional moment will be generated to the structure. Yang et al 
(1981) has derived a set of wind loads in the along-wind, across-wind and torsional directions in 
which the aerodynamic damping effect is neglected and small deformation is assumed. The 
static wind loads Wix, Wiy and Wi0 on the i-th node in x, y and 0 directions are given by 

Wix --0.5 9 A i Vi 2 Cxi ; Cxi - C D i  cos~-CLi  sin[3 ; Wiy = 0.5p A i Vi 2 Cyi; Cy i --CDi sin~+ 

CLi cos[3 ; Wi0 = 0.5 p A i Vi 2 gli; gli = XAi Cyi - YAi Cxi, respectively, where V i is the 

mean wind velocity, p is the air density, c oj and c Li are the drag and lift coefficients for the i-th 

node, Ai is the tributary area for the i-th node, [3 is the angle of attack, X Ai and YAi are the 

coordinates of aerodynamic center w.r.t, the elastic center at the i-th node. The dynamic loads 
due to fluctuating part on the i-th node in x, y and 0 directions are [Yang et al (1981)] 
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Wix = 0.5 19 A i V i ( 2 Cxi Vix - Cy i Viy) (10) 

Wiy = 0.519 A i Vi ( 2 C yi v ix + C yi v iy ) (11) 

m 

wi0 -0 .59Ai  Vi (2gl i  Vix + g2i Viy) ; g2i =XAi Cxi +YAi Cyi (12) 

, respectively. In Eqns. 10-12, V ixand V iyare the fluctuating wind velocities in x and y 

directions, respectively, and both of them follow the spectrum in Eqn. 9. The mean wind 
velocity V i is assumed to follow a power law 

Vi = Vg(hi/hg) ct (13) 

in which hg is the gradient height; Vg is the average wind velocity at the gradient height; and ct 

is a constant between 0.15 and 0.5. The values for the parameters hg and c~ can be found in 

[Simiu et al (1986)], which are characterized by the ground condition, such as the roughness. 
Note that, in Eqns. 10-12, Cxi, Cyi ,  gli,g2i are functions of the angle of attack [3. 

Consequently, the power spectral density matrix of the wind loads on the structure can be 
written as 

Swxw x Swxwy Swxw 0 

SWW = Swywx Swywy Swyw0 (14) 

Sw0w x Sw0wy Sw0w 0 

where Swywx ( i , j )= Swxwy (j,i)', Sw0wx (i , j )= Swxw0 (J, i) ", Sw0 wy (i,j) = Swyw0 (j,i) 

and S indicates the complex conjugate of S. The (i, j) element in each block matrix can easily 
be obtained from Eqns. 10-13 knowing that Vix and Viy are uncorrelated, for instance 

Swxwx(i, j) = 0.25 p 2 AiA j V i Vj (4Cxi Cxj SvixVjx 

Swxwy (i,j) - 0.2592 AiAj Vi Vj (4 Cxi Cyj SvixVjx -Cyi  Cxj Sviyvjy) (15) 

+ Cy i Cyj S viy v jy ) 

Swow0 (i, j) - 0.25 p 2 AiA j V i Vj (4 gli glj SvixVjx + g2i g2j SviyVjy ) 

Linear Quadratic Gaussian (LQG) Control Method 

The Linear Quadratic Gaussian (LQG) control method is presented to demonstrate the control 
effectiveness for the Nanjing tower equipped with an active mass driver. The LQG theory is 
derived based on the assumption that the excitation W and the measurement noise v are 
uncorrelated Gaussian white noise processes. However, different components within W or v can 
be correlated as indicated by the wind load spectrum in Eqns. 9 and 14. Based on the separation 
theorem [Skelton (1988)], the design procedures for the LQG method are divided into two parts; 
namely, the design of controller and the design of observer. 
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Design of Controller : The state feedback control gain is obtained by minimizing the quadratic 
objective function 

J-- lim (1/'0E { ~ ) ( ~ ' Q ~ + U ' R U )  d t }  (16) 

in which 2 = z r -Fz rW =Czr Z r + Dzr U (see Eqn. 7), and Q and R are weighting matrices. 
The optimal controller is obtained as [Skelton (1988)] 

U - K  b Z  r ; K b = - ~ - I ( B  r Pc +S ' )  (17) 

where Pc is the solution of the Riccati matrix equation 

Pc A + A '  Pc-PcBrR-1BrPc  + Q - S  R - 1 S ' = 0  (18) 

? • ! ! • m Q = C z r Q C z r ,  R - D z r Q D z r + R ;  S - C z r Q D z r ,  A - A  r B r R - 1 S  ' (19) 

Design of Observer : The optimal controller obtained in Eqn. 17 requires the state feedback Z r , 

which will be estimated from an observer based on the measurements from a limited number of 
acceleration sensors installed at strategic locations. Such an observer should be designed 
appropriately. With the assumption that the wind gust W and the measurement noise v are 
uncorrelated Gaussian white noise processes, the Kalman-Bucy filter can be used to estimate the 
state Z r ; 

Zr - Ar Zr + Br U + L o ( Yr -Cyr  Zr - D y r  U) (20) 

in which Zr is the estimate of the state Z r , and Y r is the measured output. The procedures for 

determining appropriate observer gain matrix L o in Eqn. 20 are well-known [e.g., Skelton 

(1988), Wu & Yang (1997b)]. It is mentioned that the observer gain matrix Lois a function of 

Sww and Svv which are the power spectral density matrices of the white noises W and v, 

respectively, for the design purpose. For the observer design, Sww and Svv can be scaled 

appropriately for convenience of numerical computations. 

Thus, the control vector U follows from Eqns. 17 and 20 as 

U - KbZ r (21) 
^ 

Substituting Eqn. 21 into Eqn. 20, the estimate Z r is computed on-line from the following 

dynamic output feedback equation 

Zr = [Ar + BrKb - LoCyr - LoDyrKb ] Zr + L0Yr (22) 

In practical implementation, Y r in Eqn. 22 should be replaced by the real measured output y. 

Actuator Forces and Strokes 

The required control forces U - [ u  1, u 2, u 3 ] computed above represent the control forces 
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in x-direction, y-direction and torsional moment in 0 direction, u l, u2 and u3 should be 
modified for the active mass driver system by adding the corresponding forces in springs and 
dashpots in x, y and 0 directions of the active ttmed mass damper. These modified control 

forces are denoted by E l, u2 and ~3, for instance Ul = Ul - kdxXl7 - CdxX17 where kdx and Cdx 

are the spring constant and damping coefficient of the tuned mass damper in x-direction. Based 
on the actuator configuration shown in Fig. 2, the control forces from three actuators are 
denoted by F 1, F 2 and F 3 as shown in Fig. 3. The required actuator forces F 1 , F 2 and F 3 as well 

as the strokes can be obtained through the transformation of E l, u2 and u3 as well as the 

geometric configuration in the following. The actuators are connected between the 12-th node 
and the mass damper (17-th node). The points of attachment on the 12-th node are denoted by 
A i (i = 1, 2, 3) and that on the mass damper are denoted by B i (i = 1, 2, 3) in Fig. 3. In motion, 

the coordinates (positions) of A i and B i (e. g., Alx is the x coordinate and Aly is the y 

coordinate of A 1 ) are tabulated in Table 1, in which l = 368 cm, r = 405 cm. 

The directions of F1, F2 and F3 are def'med by the angles Ctl, tx 2 and ~3, respectively, which 

are measured cotmterclockwising from the x-axis as follows 

C t l -  tan-1 ( B l y -  Aly / ' B l x  - A ix ~2 = tan-1 ( B 2 y -  A2y / , B 2 x  - A 2x ~3 = tan-1 (B3y - A 3 y / B 3 x  - A 3x (23) 

, in which the quadrant should be considered in computing angles t~i, i = 1, 2, 3. Hence, the 

actuator forces F1, F2 and F3 are related to the computed control forces E 1 , u2 and u3 as 

follows 

F 1 cos ct 1 + F2 cos ct 2 + F3 cos cz3 = fil 

F 1 sin ~1 + F2 sin ot 2 + F 3 sin ct 3 = u2 

F1 [ (Blx - x12 - Xl7)sin ct 1 - ( B l y  - Y12 - Y17) c°s CZl ] 

+ F2 [(B2x -x12  - Xl7)sin cz2 - ( B 2 y  - Y12 - Yl7)COSCt2] 

+ F3[ (B3x - x12 - Xl7)sin ot 3 - (B3y  - Y12 - Y17) c°s cz3] = u3 

(24) 

A1 

A2 

A3 

TABLE 1 
COORDINATES OF A i AND B i IN MOTION 

Alx - x12 + l cos (-107.6 ° +012 ) 
B1 

Aly = Y12 + l sin (-107.6 ° + 012 ) 

A2x - x12 +lcos(12 .4  °+012 ) 
B2 

A2y = Y12 + l sin (12.4 ° + 012 ) 

Blx = x 12 + x 17 + r cos ( -60 ° + 012 + 017 ) 

Bly = Y12 + Yl 7 + r sin ( -60 ° + 012 + 017) 

B2x = x12 + x17 + r cos (60 ° +012 +017 ) 

B2y -Y12 +Y17 + r  sin(60°+012 +017) 

A3x - x12 + l cos (132.4 ° + 012 ) 

A3y = Y12 + l sin (132.4 ° + 012 ) 
B3 

B3x - x 1 2  +x17 + rcos (180°+012  +017 ) 

B3y = Y12 + Y17 + r s in (  180° +012 +017) 
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The length of the actuators without motion as arranged in Fig. 2 is 313.8 cm. The actuator 
strokes can be determined by computing the difference in the length between AiB i ( i = 1, 2, 3) 

and 313.8 cm for each actuator, see Fig. 3, i.e., 

Stroke of the ith Actuator = [ AiB i ] - 313.8 cm for i = 1,2, 3 (25) 

in which IAiBi[ can be computed using Table 1. 

SIMULATION RESULTS B 

The control performance of the LQG controller in 
reducing the coupled lateral-torsional response of the 
Nanjing tower will be demonstrated through numerical 
simulations. The mass and stiffness matrices modeled 
by a 16-node system (Fig. 1 (c)) in x direction are given 
in Cao et al (1998). The stiffness in the y direction is 
assumed to be 20% higher than that in the x direction. 
In this preliminary study, the structural parameters for 
the torsional motion are obtained by estimation, 
whereas the actual data will be available in the future. 
The mass moment of inertia Ji ( i - -  1, 2, . . . ,  16) w.r.t. 

the mass centers are 2.5e5, 1.8e5, 8.4e4, 5.5e4, 3.6e4, 

B 

Fig. 3 : Actuator forces applied to the 
mass driver 

2.1e4, 1.5e4, 1.2e4, 8.4e4, 1.6e5, 6e4, 4e4, 3e3, 2e2, 1.5e2, 50 Ton-m 2, respectively. The 
torsional stiffness vector (between adjacent nodes) is 1/5 x [6.0e9, 3.5e9, 2.1e9, 1.5e9, 1.0e9, 
6.7e8, 3.3e8, 4.3e8, 6.4e8, 4.0e8, 5.7e7, 5.3e7, 2.5e7, 1.2e7, 8e6, 5e5] KN-m/rad. The natural 
frequencies of the first five modes in x, y and 0 directions are 1.529, 3.980, 7.926, 11.749, 
15.768 rad/sec, 1.675, 4.360, 8.682, 12.870, 17.273 rad/sec, and 6.038, 12.079, 22.836, 28.180, 
37.459 rad/sec, respectively. The dampings in each direction are assumed to be a combination 
of the mass and stiffness matrices in each direction such that the resultant damping ratios for 
each mode are 2%, 3%, 5.4%, 8%, 10%, 19%, 21%, 37%, 39%, 40%, 40%, 40%, 40%, 40%, 
40%, 40%. The mass centers are different from the elastic centers only for both observation 
decks, i.e., Xcl 0 = 2 m, Ycl0 = 2 m, Xcl 2 = 1 m, Ycl2 = 1 m. A 60 metric tons active mass 

driver (mass ratio of 0.194%) shown in Fig. 2 will be installed on the upper deck (12-th node). 
We modify the active mass driver system into an active tuned mass damper in the numerical 
simulation for computing the relative displacements of the damper and required control forces 
u l, u 2 and u 3 in x, y and 0 directions. A tuned mass damper with a damping ratio of 7% in 

each direction and the frequency tuned to the first mode in each direction will be used in the 
simulation. For the actuator capacity, the peak force is 150 kN and the peak stroke is 75 cm. 

The fluctuating wind velocities in the along-wind and across-wind directions are uncorrelated 
random processes with zero mean, and their cross-power spectra are considered identical in the 
simulation for simplicity. The parameters used in the Davenport wind velocity spectrum, Eqn. 
9, have been adjusted to match the Chinese design specifications for wind velocity in the 
Nanjing area. The resulting parameters are as follows: K0 = 0.008, el = 7.7, o~ = 0.16, air density 
p = 1.25 kg/m 3, gradient height hg = 300 m, and Vr = 20.7 m/see. The angle of attack of wind 
velocity is assumed to be zero, and consequently, the drag coefficient CD is 1.39 for l St-8th node; 
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1.2 for 9th-12 th node; 1.3 for 13th-16 th, the lift coefficient CL is 0.3 for each node. The tributary 
areas for each node are 413.24, 536.02, 469.5, 387.18, 323.73, 271.35,277.38, 233.65, 182.51, 
183.85, 213.51, 175.58, 66.38, 21.55, 11.28, and 4.13 m 2. The heights of each node are 10.1, 
32.2, 58.6, 80.2, 101.8, 119.8, 137.8, 158.6, 171.8, 185.8, 199.2, 240.4, 270.1,286.1,299.1, and 
310.1 m. Since the external torsional moment is also induced by the off-set between elastic 
centers and aerodynamic centers, a set of aerodynamic centers is assumed in the simulation to 
investigate the structural response and the performance of active control as follows: XAi (i = 1, 

2, ..., 16) are all zero and YAi (i = 1, 2, ..., 16) are 15/4, 12/4, 10/4, 9/4, 8/4, 7/4, 6/4, 5/4, 4/4, 0, 
0, 0, 0, 0, 0 and 0 m, respectively. 

Both the stochastic and deterministic analyses were used to compute the response quantities of 
the tower. For the deterministic analysis, one set of sample functions of wind velocities in along- 
wind and across-wind directions, v ix and V iy, on every node is simulated using the cross-power 

spectral density matrix in Eqn. 9 for a duration of 300 seconds. The method of simulation is 
described in Wu & Yang (1997a,b) and Wu et al (1998). Then, the sample functions of wind 
loads on every node, Wix,Wiy and wi0 are computed from Eqn.10-12, and these sample 

excitations are used to compute the response quantities. For the stochastic approach, the random 
vibration analysis in the frequency domain, based on the transfer function of the closed-loop 
system, has been conducted to compute response power spectral densities and the rms values. 
Such an approach is described in Wu & Yang (1997a,b) and Wu et al (1998). 

Without the mass damper, the response quantities of both observation decks (10-th and 12-th 
nodes) are shown in columns (2)-(13) of Table 2, denoted by "No Control". The results for the 
tower equipped with the passive tuned mass damper (without actuators) are presented in 
columns (15)-(26) of Table 2, denoted by "Passive Control". In Table 2, xi, :~ai, Yi, 3?ai, 0i and 

0ai represent the peak displacements and peak absolute accelerations of each node in x, y and 0 

directions, respectively, based on the deterministic analysis. Likewise, ~xi ,  o'5~ai, O'y i , O~a i , 

~0i and Cr6a i denote the standard deviations of the displacements and the rms values of the 

absolute accelerations for each node in x, y and 0 directions, respectively, based on the 
stochastic analysis. Note that x17, ~Xl 7 , y17, cyYl7,017 and ~017 represent the peak values and 

standard deviations of the relative displacements of the mass damper w.r.t, the 12-th node (upper 
observation deck) in x, y and 0 directions, respectively. The values in the parentheses are the 
reduction percentages with respect to the "No Control" case. Based on the stochastic analysis, 

the acceleration power spectral densities of the upper observation deck x12, 3712, 012 for "No 
Control" and "Passive Control" cases are denoted by the dotted curve and solid curve , 
respectively, in Fig. 4. In Fig. 4, the passive tuned mass damper is capable of reducing the 
response of the first mode only. As observed from the "No Control" case in Table 2, the 
accelerations of two observation decks due to torsional motion are in the same order of 
magnitude as the lateral accelerations in x and y directions. This indicates the importance of 
considering the coupled lateral-torsional motion. With a passive tuned mass damper, the 
acceleration response is not reduced to the design requirements. Therefore, an active mass 
driver system is used. 
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TABLE 2 

RESPONSE QUANTITIES OF THE TV TOWER 

No Control 

Oi Oai OOi 0"" Node Xi Xai Ox i O~ai Yi Yai Oy i O~,ai 104 104 104 10 .5 No. 0ai 

(1) cm cm/s 2 cm cm/s 2 cm cm/s 2 cm cm/s 2 rad rad/s 2 rad rad/s 2 
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

10 3.155 5.549 1.063 2.073 1.353 3.033 0.469 1.083 9.098 151.41 2.590 63.64 
12 5.466 14.119 1.850 4.198 2.275 6.595 0.817 2.202 13.364325.43 3.609 119.71 

Passive Control 

Node Xi Xai Ox i (Y~ai Yi Yai Oy i O~a i O i Oai OOi (Yi~ai 
No. 10 .5 10-5 10-5 10_ 5 
(14) cm cm/s 2 cm cm/s 2 cm cm/s 2 cm cm/s 2 rad rad/s 2 rad rad/s 2 

(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) 

10 2.766 4.725 0.888 1.560 1.174 2.647 0.397 0.818 6.784 147.41 2.010 60.88 
(12.3) (14.9) (16.5) (24.7) (13.3) (12.7) (15.4) (24.5) (25.4) (2.7) (22.4) (4.3) 

12 4.823 12.234 1.551 3.460 1.937 5.394 0.694 1.825 9.701 i321.83 2.692 115.31 
(11.8) (13.4) (16.2) (17.6) (14.9)(18.2)  (15.1) (17.1) (27.4) (1.1) (25.4) (3.7) 

17 13.666 32.156 5.480 12.898 6.180 17.504 2.391 6.774 16.443 605.58 5.464 201.28 
LQG Control 

Node 
No. 
(27) 

0i 00_15 (y xi x ai o x i o ~ ai Yi Y ai o y i o ~, ai 10 -5 o 0i 0a i 
10 .5 10-5 

cm cm/s 2 cm cm/s 2 cm cm/s 2 cm cm/s 2 rad rad/s 2 rad rad/s 2 
(28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) 

10 2.653 4.313 0.809 1.199 1.145 2.695 0.368 0.679 5.436 111.15 1.644 43.93 
(15.9) (22.2) (23.9) (42.2) (15.4) (11.1) (21.5) (37.3) (40.3) (26.6) (36.5) (31.0) 

12 4.508 7.481 1.424 2.359 2.093 3.731 0.647 1.273 7.481 151.80 2.101 52.31 
(17.5) (47.0) (23.0) (43.8) (8.0) (43.4) (20.8) (42.2) (44.0) (53.4) (41.8) (56.3) 

17 56.136 147.99 18.798 42.873 33.798 94.791 9.629 29.722 99.813 5140.8 29.604 1632.0 

Ui " U 1 max -- 57.1 kN,  u 2 max - 51.8 kN, 

= 44.3 kN-m u 3 max 

o u =18.2 kN, o u -14 .2  kN, 
1 2 

Ou3 - 14.4 kN-m 

To design the controller and observer for active control, a state reduced-order system, Eqn. 6, 
has been constructed which retains the first 24 complex modes (k = 24) of the entire structure, i. 
e., the first twelve pairs of complex conjugate eigenvalues and eigenvectors. The reduced-order 

state vector is Z r =[xlO, Xl2,Xl4,Xl7 ,Ylo,Yl2,Yl4,Yl7,010,012,014,017,  x14,x17 ,x14, 

XlT, 3'10, Y12, Y14, 3'17 , 010, 012, 014,1}17]'. The main objective of control is to reduce the 

accelerations x12, Y12 and 012 of the upper observation deck. Likewise, the actuator 
constraints, including the peak stroke of 75 cm and the peak force of 150 kN should not be 
exceeded. Although other measurements can be made, we only install three acceleration sensors 
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to measure the accelerations at the upper observation decks, i. e., x12, ~?12, and 012. 

Therefore, the measured output feedback vector is Yr = [ ~12, Y12,012 ] ' in  Eqn. 8 The noises 

associated with the 3 measurements are tmcorrelated white noise processes with power spectral 
densities of 7.7×1013/2n: m2/sec3/rad, 2.1×1013/2n; m2/sec3/rad and 1.0xl 09/2n: rad2/sec3/rad for 

x12, 3712, and 012, respectively. These noises are introduced in the simulation of the structural 
response at a sampling rate of 10 -4 sec (Nyquist frequency = 5000 Hz). These rms values are 

about 0.25 % of cr5~12, o~12 and ~012 ofthe controlled structure. 

LQG Controller : The control parameters used for the LQG controller are as follows : controlled 

output z r = [ :~10, x12, X17a, Yl0, ~?12, ~?17a, 010, 1~12, l~17a ,]', Q = diag [ 105, 105, 0, 105 , 

105 , 0, 102, 102 , 0], R = diag [ 8×10 "3, 8×10 "3 , 5x10 "2 ], S-vv = diag [7.7x10 "13, 2.1×10 "13, 1.0xl0 

9], and S-ww = 10 • Sww(co ) at co =1.6 rad/sec, where Sww(co ) is the cross-power spectral 

density of the wind load given by Eqn. 9 and 14. It is important to emphasize that in designing 
the observer, although the wind loads are assumed to be Gaussian white noise processes, their 
spatial correlations should be taken into account. Consequently, the cross- power spectral 

density matrix Sww chosen above retains the spatial correlations Sww(co ), Eqn. 14, at the 

dominant frequency co =1.6 rad/sec (first mode in x direction). The response quantities of the 
structure with the LQG controller are presented in columns (28)-(39) of Table 2. The peak value 
Uimax ( i - 1, 2, 3) and the rms value Oui ( i = 1, 2, 3) of the computed control forces in x, y 

and 0 directions are shown in the last row of Table 2. For the stochastic analysis, the 

acceleration power spectral densities of the upper observation deck x12, ~?12 and 012 are 
plotted in Fig. 4, denoted by the long-dashed-short-dashed curve. As observed from Table 2 and 
Fig. 4, the percentages of acceleration reductions for the peak and rms responses of the upper 
observation deck are remarkable, in particular the torsional acceleration. 

The actuator forces F1, F2 and F3 and strokes computed from Eqn. 24 and 25 based on the 
deterministic analysis are listed in Table 3, in which the rms value are obtained by taking 
temporal averages over a duration of 300 seconds. As shown in Table 3, the actuator forces and 
strokes do not exceed the actuator capacity and stroke limitations. 

TABLE 3 

ACTUATOR FORCES AND STROKES 

Actuator 
No. 
(1) 

1 
2 
3 

F, 
Peak Temporal 
value rms 
64.6 17.9 
34.8 9.4 
51.9 16.0 

Strokes (cm) 
Peak 
value 

Temporal 
r m s  

56.53 19.35 
25.05 
49.48 

8.14 
16.16 



Control of Lateral-Torsional Motion of Nanjing TV Transmission Tower 55 

CONCLUSION 

The LQG control strategy using dynamic output feedback controller has been applied to the 
310 meters Nanjing TV transmission tower equipped with an active mass driver. The coupled 
lateral-torsional motion due to noncoincidence of the mass center, elastic center and 
aerodynamic center has been considered. The along-wind and across-wind velocities are both 
modeled as random processes defined by the Davenport cross-power spectra. The main 
objective of active control is to reduce the acceleration response of two observation decks under 
the design wind gusts. Emphasis has been placed on the control performance and practical 
applications of the LQG controller, such as acceleration feedback, limitations on peak control 
force and stroke for the actuator. The statistical response quantities of the tower with and 
without active control, including the power spectral densities and the rms of the acceleration 
response, have been computed. The deterministic analyses based on simulated sample functions 
of wind loads have been conducted for comparison. Simulation results demonstrate that the 
performance of passive mass damper is not acceptable. Based on the stochastic and 
deterministic analyses, the LQG control strategy is suitable for full-scale implementations of the 
active mass driver system and its control performance is quite remarkable. 
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ABSTRACT 

The PEM (Pseudo Excitation Method) for analyzing structural stationary/non-stationary 
random responses is outlined. Because any stationary random response analysis is converted 
into harmonic response analyses, while any evolutionary non-stationary random response 
analysis is converted into step-by-step integration computations, this method is very simple to 
use. It is accurate because both the cross-modal and cross-excitation terms are included. Its 
efficiency is much higher than the traditional methods; therefore complex engineering 
structures with thousands of degrees of freedom subjected to dozens of fully or partially 
coherent stationary/non-stationary excitations can be computed easily on ordinary personal 
computers. 

KEYWORDS 

random, structure, response, power, spectrum, stationary, non-stationary, coherency 

INTRODUCTION 

It is known that the basic framework of linear random vibration theory has been well 
established. However, its applications to practical engineering have been seriously restricted. 
This is mainly because of the huge amount of computational efforts required for complex 
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engineering problems, particularly for multiple excitation problems or non-stationary problems. 
Der Kiureghian and Neuenhofer (1992) pointed out that : While the random vibration approach 
is appealing for its statistical nature, it is not yet accepted as a method of  analysis by 
practising engineers. Emesto and Vanmarcke(1994) further pointed out that: The theoretical 
framework of  a methodology for stochastic-response analysis to random-excitation fields is 
already available; however, its use by the earthquake-engineering community is viewed as 
impractical except for simple structures with a small number of  degrees of  freedom and 
supports. It is quite natural that they hold a pessimistic viewpoint since they both base their 
computations on the traditional, inefficient random response algorithms. As a result, when they 
dealt with the equations derived from the random vibration theory, they both selected the 
approximate response spectrum methods. Their point of view is quite representative, and is 
now out of date because this problem has been solved, using the PEM, exactly and efficiently 
(Lin 1985, Lin 1992, Lin, et al. 1992-1997). By using it, structures with thousands of DOFs and 
dozens of supports, subjected to stationary or non-stationary multiple random seismic 
excitations, can be computed on ordinary personal computers quite easily. 

The PEM is not only efficient, but also easy to implement on computers because 
stationary random response analyses are replaced by harmonic response analyses, while 
evolutionary non-stationary random response analyses are replaced by step-by-step integration 
computations. Therefore, the computation processes are very simple. Various complex 
engineering structures can be modeled delicately and be computed very quickly. These 
advantages are particularly useful for some traditionally difficult problems, such as the 
stationary or non-stationary 3D random seismic analysis of long-span structures(Lin and Li, et 
al. 1995, Lin and Li, et al. 1997a,b); 3D buffeting analysis of aero-elastic structures; the 
propagation of stationary or non-stationary random waves along infinitely long structure chains 
(Lin and Fan, et al. 1995a ,b). 

STRUCTURAL RESPONSES TO STATIONARY SINGLE EXCITATION 

Traditional Algorithm 

Firstly, consider the equations of motion of an elastic structure subjected to a zero-mean- 
valued stationary random excitation x(t),with its PSD Sxx(CO) given, 

[M]{ j)} + [C]{.,/,} + [Kl{y} = {p} x(t) (1) 
in which {p} is an n dimensional constant vector. For complex structures, n is very large, and 

so the mode superposition scheme is usually used to reduce the equations, i.e. let 

{y} =£{~bj}uj = [*]{u} (2) 
j=l 

where [~] consists of the lowest q M-normalized modes of the structure. When [C] is 
proportionally damped, Eqn. 1 can be reduced and uncoupled into the q SDOF equations 
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iij + 2(jcoji~j + co] uj = yjx( t) (3) 

in which (j,coj are the j-th modal damping ratio and angular frequency, while yj is the j-th 

modal participation factor 

The solution of Eqn.3 is 

uj (t) = f® yjh(r)x(t - r)dr 
in which h(r) is the pulse response function, and so 

{y(t)} = '~-~{~j} f®yjh(r)x( t -r)dr  
j=l 

Its correlation matrix is 

(4) 

(5) 

(6) 

[Ryy(r)] = E[{y(t)}{Y(t+r)} r] 

q q 

- Z  Z 
j=l k=l 

(7) 

Transform it into the frequency domain to give 

q q 

j-1 k---1 

(8) 

This is the traditional CQC (complete quadratic combination) formula for computing the PSD 

matrix of structural displacement responses. It is exact because all the cross-modal terms have 

been included. When both n and q are big, the computational efforts are very significant 

because Eqn. (8) involves double summation operations. For example, when q=30, the 

operation after the summation symbols must be repeated 900 times, in other words 900 n- 

dimensional vector multiplication operations are required. Therefore, for engineering 

computations, the following SRSS (squareroot of the sum of squares) approximation equation, 

by neglecting the cross-modal terms, was widely suggested 

j=l 

(9) 

Equation (9) approximately applies only for lightly damped structures with sparsely spaced 
participant frequencies. For most complex structures, there always exist some participant 
frequencies which are closely spaced. Therefore Eqn.9 is, in fact, not applicable; only Eqn.8 is 
applicable. Thus the remarkable efforts caused the viewpoint "the random vibration approach is 
impractical except for very simple structures". 
Pseudo Excitation Method 
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For stationary single excitation problems, the PEM can be described as: A linear system is 
subjected to a zero-mean-valued stationary random excitation with its PSD (power spectral 
density) S=(co) specified. If {y(t)} and {z(/)} are two arbitrary stationary response vectors 

due to the pseudo harmonic excitation x(t) = ,JS=(co)e '°', then {y}.{y}r= [S~(co)] must be 

the PSD matrix of the corresponding random response vector {y(t)}, and {y}'{z} r = 

[s~(co)]must be the cross-PSD matrix between the corresponding random response 

vectors{y(t)} and {z(t)}. 

As an example, let the random excitation x(t) on the fight-hand side of Eqn. 1 be replaced 

by the following pseudo sinusoidal excitation 

x(t)= ~/S~(co) e '°" (10) 

and so Eqn. 1 gives the pseudo harmonic solution 

{y(t)}= {Y(co)} e '°" (11) 

in which 

j--I 

Therefore the PSD of {y(t)}, according to the PEM, would be 

[Syy(CO)] = {y}* {y}r= {Y(co)}* {Y(co)} r 

The computational formula of PEM, i.e. Eqns.12 and 13, can also be written as 

or in the matrix form 

(12) 

(13) 

(14) 

(15) 

where [H] is a diagonal matrix. 
Equation 8 can be obtained by substituting Eqn.12 into Eqn.13 and expanding it. It shows 

that the PEM also produces the exact CQC solution. However, in order to produce exact 

[S.(co)], the PEM formula only needs one n-dimensional vector multiplication operation. And 

it is still so for q=300 or even bigger. It can be seen that the computational efforts required by 
the PEM are only about 1 / q2 of that required by the traditional CQC method, i.e. Eqn.8. 

An important character of the PEM is its exactness, because it is impossible for the PEM 
to neglect the cross-modal terms; in other words, the PEM always gives the exact CQC results 
even though the required computational efforts are only about 1/q of that required by the 
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SRSS approximation formula, Eqn.9. Compared with the PEM, the SRSS equation is neither 
exact nor efficient. Unfortunately, this sort of approximation has been widely recommended, 
e.g. by Ellishakoff, Lin & Zhu(1994), Simiu & Scanlan(1978), Dowell, Curtiss, Scanlan & 
Sisto(1978), Nigam(1983), Clough & Penzien(1975), Warburton(1976), and many other well- 
known scholars. None of the references ever pointed out the above disadvantages of the SRSS 
approximation. Computational methodologies are very important for the applications of various 
theories. Because of the limitations of the traditional CQC and SRSS methods, the theoretical 
development and engineering applications of the random vibration theory have long been 
subjected to insurmountable obstacle. The PEM just provides a new way to solve this 
difficulty. 

Because this is a very important problem, we use the following very simple algebraic 
equations to further clarify the main points. Let 

~ :  ( a , + a 2 + . . . + a 3 o l x ( b l + b 2 + . . . + b 3 o )  (a) 
and 

= alb , + a,b 2 + . . .  + a,b3o + a2b , + a2b 2 + . . .  + azb30 + ...... + a3ob, + a30b2 + ... + a30b30 

(b) 

Clearly, the above two equations are mathematically identical to each other. However, nobody 
would use the form of Eqn.b because it needs 900 multiplication and 899 summation 
operations, while Eqn.a needs only 1 multiplication and 58 summation operations. The 
difference is remarkable. It amounts to one day and three years of computational time . 
Traditional CQC method corresponds to Eqn.b, and its SRSS form is 

~ alb 1 + a2b 2 + . . . . . .  + a30b30 (c) 

It still needs 30 multiplication and 29 summation operations; the computation remains very 
inefficient while losing precision. 

For simplicity, we did not distinguish between real or complex operations in the above; 
however it does not affect the essence of the efficiency comparison. 

STRUCTURAL RESPONSES TO STATIONARY MULTIPLE EXCITATIONS 

The equations of motion of a structure subjected to stationary multiple excitations are 

[M]{j)} + [C]{.9} +[K]{y} -[R]{x(t)} (16) 

in which JR] is a n x m matrix consisting of 0 and lonly, which expands the m dimensional 

vector {x(t)} into an n dimensional vector. Similar to the derivation in the last section, the 

traditional CQC algorithm has the form 

j=l k=l 

It can be expressed as 
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in which 

q q T 

j=l k=l 
(18) 

(19) 

The computation based on Eqns. 18-19 is very time-consuming; therefore 
approximation was also widely suggested 

its SRSS 

./=1 
(20) 

The above problem can be dealt with by the use of PEM. The first step is to decompose 

[&x]int° the sum of r (r < m) matrices; each corresponds to a pseudo excitation {Xp} e '~ 

-- I/x l (21) 

w~ere r is t~e rank of m,~rix [*~1" T~o gonera~ion of {Xp} was origir, a,,:,, in ~rms of t~e 

eigenpairs of [Sxx ] (tin, Zhang and Li 1994); and was then further simplified by taking the 

Cholesky decomposition of [Sxx I (Lin and Sun 1995). The response corresponding to {Xp } is 

{y,,}= £ ,,,{~,}{,,;}Tt,,l {x,,} 
J=l 

(22) 

and the total PSD matrix of the displacement vector {y} is 

p=l 
(23) 

Analogous to the previous section, substituting Eqn.22 into Eqn.23 gives 

I yy(o)l: lx lIx l   JloJll Jl   
or its matrix form 

(24) 

[s~(o,)] : [ .][ H]*[ .IT[ RI[Sxx ][ R]~[ a,][ H][ a,] T (25) 

It is not difficult to establish the traditional CQC algorithm Eqn.17, or Eqns.18-19 from 
Eqns.22-23, 24 or 25. Because of the unacceptable computation cost of the traditional CQC 
Eqns. 17-19, the SRSS approximation which neglects the cross-modal terms was suggested in 
many areas, e.g. in the analysis of wind-excited random vibration ( Simiu and Scanlan 
1978,Dowell, et al. 1978), or multi-support random seismic responses in which the argument 
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between Der Kiureghian and Vanmarcke is very typical. Der Kiureghian and Neuenhofer (1992) 
put forward the PSD formulas for such multiple excitation aseismic problems, whose essence 
is the use of Eqn.17. Thus their algorithm involves the operations of a four-fold 

q q £ £  
summation(~-'~ ~ ).In order to reduce this enormous effort, Emesto and 

j=l k=l p=l s=l 

Vanmarcke (1994) proposed an algorithm which involves only the three-fold summation 
q 

(~--'~ £ £ ) b y  neglecting the cross-modal terms, whereas they added some extra 
)=1 p=l s=l 

computations for reducing the errors due to this neglect. In fact, this is a revised version of the 
SRSS algorithm. Der Kiureghian and Neuenhofer(1995) commented it as "This reduction is 
seemingly advantageous, since it eliminates the need to compute cross-modal terms ...... etc. 
However, this reduction comes at the cost of  extra calculations for each modal response and 
possibly a gross error." Emesto and Vanmarcke (1995) defended themselves by "(their 
method ) is advantageous not only in the eliminates the need to compute cross-modal terms, 
but also because the analysis of  the modal oscillators can be performed a priori ...... " In fact, 
none of them has got rid of the frame of the traditional CQC or SRSS methods. This problem 
has also been computed using the PEM (Li 1994, Lin and Li, et al. 1997), which is accurate, 
simple and very efficient. Moreover, the much more difficult non-stationary version of this 
problem has also be solved using the PEM. 

It should be noted that when implementing Eqns.22 and 23 by PEM, the following 
operations should be executed first 

P q ~ ~ E ~ 
w ere  'un tion of L Jlx I is to lx l  nto an,    mension ., veo, or, i.e. to put tho 

m elements of {Xp} into the appropriate positions of an n dimensional vector , and the 

required effort is negligible. Zip is the project of {Xp} on the j - th  mode, only n real 

multiplication operations are required to produce it. Thus, the computation of {yp} according 

to Eqn.22 requires about 3 qn real multiplication operations in all. If it is done on an available 

program for structural harmonic analysis, the displacement vector {yp} can be computed by 

taking [R]{Xp} as the vector of the harmonic force amplitudes. That makes the implementation 

of Eqn.22 very simple. The implementation of Eqn.23 needs about 4 rn 2 real multiplication 

operations. In addition, to execute the Cholesky (LDLT)decomposition of [Sxx ] needs about 

m3/6 or 8 m3/6 real multiplication operations (when[Sxx ] is a real symmetric or Hermitian 

matrix) . The sum of the above three terms is much smaller than that required by the traditional 
CQC method, i.e. Eqn.17 or Eqns.18-19. It should also be noted that if using the matrix 
multiplication form Eqn.25, the computational efficiency is also much higher than using 

In case the rank r of matrix [Sxx ] is very large, the direct use of Eqn.17. Eqn.25 to 



64 Lin, J.H. and Zhong, W.X. 

the whole matrix [S.] may need less effort than using Eqns.22-23(Lin, et al. compute 1995). 

But, for most practical engineering problems, it is not necessary to compute the whole matrix 
iw q 

[S.] .  Usually only n'(n'<<n) of its diagonal elements are of interest. So that only the 

following computation should be implemented 

= Z{[y,l} (27) 
p-I 

{I ;I} in which y means to square the norms of the n' elements in the pseudo response vector 

yp }. Thus, computational multiplication operations to only the effort reduces from 4 rn 2 

4 rn' multiplication operations. The storage requirement is also reduced considerably. 
If the PSDs of some internal forces (or stresses) are required, using the PEM is particularly 

efficient. Traditionally, the displacement PSD matrix, the strain PSD matrix, the transfer 
matrices between the displacements and strains and between the strains and stresses need be 
produced before the stress PSD matrix is computed. If the PEM is used, none of such matrices 
is required. Instead, it only need compute the harmonic strains from the pseudo sinusoidal 
displacement, and then the harmonic stresses (or intemal forces). The interested stress PSDs 
can be directly obtained by squaring the norms of the corresponding stress components. The 
computation of various cross-PSDs is equally convenient. Because of this advantage, the period 
for developing corresponding computation software is short, and so the cost is low. 

For non-proportionally damped problems, the conventional means is to reduce and 
uncouple Eqns.1 or 16 in terms of the complex modes, so as to lead to the traditional CQC 
Eqns.8 or 17, and their SRSS forms. For complicated structures, however, a great amount of 
complex operations may cause a considerable increase of the computational cost. In order to 
avoid such complex operations, Connor (1979) used the classical real modes to reduce the 
equations of motion in the computations of random wave responses of offshore platforms. For 

the resulting non-diagonal damping matrix [C] '= [~]r[c][~], he diagonalized it by means of 

some approximate means in order to adopt the traditional CQC or SRSS formulae. Clearly, this 
processing is neither exact nor efficient. This problem can be dealt with by means of the PEM 
very easily since all pseudo excitations are sinusoidal; therefore even though the reduced 

damping matrix [C]' is non-diagonal, the responses of various displacements, internal forces, 

etc. can be computed analytically. To square the norms of such pseudo responses gives the 
required PSDs accurately. 

STRUCTURAL RESPONSES TO NON-STATIONARY SINGLE OR MULTIPLE 

EXCITATIONS 

The pseudo excitation method for non-stationary single excitation problem can be 
described as follows: A linear system initially at rest is subjected to an evolutionary random 
excitation f( t)= g(t) x(t), in which g(t) is a given slowly varying modulation function while 
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x(t) is a zero-mean-valued stationary random process whose PSD Sxx(CO) has also been 

specified. If {y(t)} and {z(t)} are two arbitrary transient response vectors due to the pseudo 

excitation x(t) = g(t)4Sxx(co)e '°~ , then {y},{y}r= [Syy(CO, t)] m u s t  be the time-dependant 

PSD matrix of the random response vector{y(t)}, and {y}*{z} T = [Syz(O),t)]must be the time- 

dependent cross-PSD matrix between the random response vectors {y(t)} and {z(t)}. 

Take Eqn. 1 as the example. It is now necessary to replace x(t) on its right-hand side 
by the following pseudo excitation before it is integrated numerically for a series of selected 

frequency points. 

x(t) = g(t) x/S=(co) e '°~ (28) 

In general, this can be done by means of the Duhamel integration formula, Wilson-0 or 
Newmark scheme, etc. However, when the precise integration method is instead used (Zhong 
1995, Zhong & Williams 1995) the efficiency has been proved to be extremely high(Lin, Shen 
and Williams 1995a, b, Lin, Shen and Williams 1997). That means rather complex structures 
with thousands of DOFs subjected to non-stationary random excitations can be computed on 
personal computers easily. 

The time-dependant PSD matrix [Sxx(co, t)] of zero-mean-valued evolutionary multiple 

random excitations can be decomposed into the sum of a limited number of PSD matrices. 
Each of such matrices corresponds to a single pseudo excitation (Li 1994, Lin and Li, 

et al. 1997). Therefore, [Sxx (co, t)] can be decomposed into the form 

[Sx~(co,t)] = g2(t)~[Sxx(co,t)] p = g2(t) ~~{Xp}" {Xp} T (29) 
p=l p=l 

g(t){Xp } e '°~ is one of the pseudo excitations, which is deterministic. Superposing all the and 

responses due to these r pseudo excitations gives the total response PSD matrix; which is 
entirely similar to Eqn.23. 

This algorithm also applies to the analysis of non-stationary random responses of 
structures subjected to non-uniformly modulated evolutionary single or multiple random 
excitations(Lin and Sun, et al. 1997). 

EXAMPLES 

Three examples on multi-excitation stationary/non-stationary random seismic analysis were 
computed and are given below. The following 6 cases were computed using PEM: 
Case 1. Stationary uniform ground excitations, i.e. all ground nodes move synchronously. 
Case 2. Stationary fully coherent ground excitations, i.e. the phase-lags between all ground 

node excitations were taken into account. 
Case 3. Stationary partially coherent ground excitations, i.e. the phase-lags and a partial loss of 
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the coherency between all ground node excitations were taken into account. 
Case 4. Non-stationary uniform ground excitations, all ground nodes move synchronously. 
Case 5. Non-stationary fully coherent ground excitations, i.e. the phase-lags between all ground 

node excitations were taken into account. 
Case 6. Non-stationary partially coherent ground excitations, i.e. the phase-lags and a partial 

loss of the coherency between all ground node excitations were taken into account. 
We are interested in the scale of the structures and the computational efficiency. Therefore 

the physical and geometrical parameters of the structures are not given in detail here. 

Example I 25-column platform 

The platform of Figure 1 was 
modeled as a space frame. Its finite 
element model has 239 nodes of 
which 25 are ground nodes, 318 3D 
beam elements, 1284 degrees of 
freedom. Its lowest 20 modes were 
taken for mode-superposition. The 
apparent speed of the horizontally 
traveling SH waves is 500 m/s; they 
travel at a 30 ° angle with the 
longitudinal axis of the platform. 

x 

The variances of selected 1434 displacements Figure 1: 25-column platform 
and 300 internal stresses were computed. In order to compute these variances, 122 frequency 

points within the frequency band co e[0.5, 9.511/s were used. In the non-stationary analysis, 

161 time steps were computed. The computations were executed on an IBM/486 personal 
computer (main frequency 66 mHZ). The computing time for the six cases is listed in Table 1. 

TABLE 1 
COMPUTING TIME FOR THE 25-COLUMN PLATFORM 

STATIONARY NON-STATIONARY 

COMPUTING 20 MODES CASE1 CASE2 CASE3 CASE4 CASE5 CASE6* 

2' 15" 2'40" 5'23" 49' 10" 32'39" 2°15'25 , 6036'25 '' 

*CASE6 was computed on a Pentium-2 Personal Computer (main frequency 233 MHZ) 

Example 2 Concrete Dam 

The concrete dam of Figure 2 is located in Jilin Province, China, as part of a power station. Its 
finite element model has 1020 nodes of which 27 are ground nodes, 720 8-node iso-parametric 
elements, 2979 degrees of freedom. Its lowest 32 modes were taken for mode-superposition. 
The apparent speed of the horizontally traveling P waves is 500 m/s; they travel at a 30 ° angle 
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with the longitudinal axis of the dam. 

The variances of selected 1800 
displacements and 480 internal stresses 
were computed. In order to compute 
these variances, 127 frequency points 

within the frequency band 

co e[10.0,85.0]s -a were used. In the non- 

stationary analysis, 161 time steps were 

computed. The computations were 
executed on a Pentium-2 personal 

computer with main frequency 233 mHZ. 

The computing time for the six cases is 
listed in Table 2. Figure 2: Concrete dam 

TABLE 2 
COMPUTING TIME FOR THE CONCRETE DAM 

STATIONARY 

COMPUTING 32 MODES CASEI CASE2 CASE3 

7'5" 7'25" 10'31' 39'10' 

NON-STATIONARY 

CASE4 CASE5 CASE6 

21' 17" l°12'5 '' 24°48'12 '' 

Example 3 Complex Frame 

The frame of Figure 3 has 1789 nodes of 
which 45 are ground nodes, 3540 3D 
beam elements, 10536 degrees of 
freedom. Its lowest 30 modes were taken 
for mode-superposition. The apparent 

speed of the horizontally traveling SH 
waves is 500 m/s; they travel at a 30 ° 
angle with the longitudinal axis of the 

frame. The variances of selected 1800 
displacements and 300 internal stresses 

were computed. 122 frequency points Figure 3: Complex flame 

within the frequency band co~[0.1,3.7]l/s and 161 time steps were computed. The 

computations were executed on a Pentium-2 personal computer with main frequency 233 mHZ. 

The computing time for the six cases is listed in Table 3. 

COMPUTING 30 MODES 

16'10" 

TABLE 3 

COMPUTING TIME FOR THE COMPLEX FRAME 

STATIONARY NON-STATIONARY 

CASE 1 CASE2 CASE3 CASE4 CASE5 CASE6 

17'9" 26'5" 2°4'56 '' 52'28" l°43'3" 43°34' 19 '' 
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It is seen that even for this complex structure, the CASE 3 that Der Kiureghian and 
Neuenhofer(1992), Emesto and Vanmarcke (1994) tried to compute by means of the 
approximate response spectrum method, needs only about 2 hours on a personal computer. 

CONCLUSIONS 

The PEM is an exact and efficient method series. For stationary excitations, the random 
analyses are transformed into harmonic analyses; for evolutionary non-stationary excitations, 
the random analyses are referred to deterministic step-by-step integration. Hence it is very easy 
to use because such deterministic harmonic analysis or direct integration analysis is quite 
ordinary for general engineering major undergraduates. 

For non-stationary random response analysis, the traditional time-dependant PSD 
computations are very cumbersome and inefficient, e.g. see To(1986). However, it is quite 
simple and efficient for the PEM to do it. In particular, if the precise integration scheme is 
combined with the PEM(Zhong 1995, Zhong and Williams 1995, Lin, et al. 1997), the 
computation efficiency can be further raised remarkably. 

It is concluded that the PEM is computationally much better than the traditional CQC 
method and its SRSS approximation, which have been used for many years. 
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ABSTRACT 

A numerical method previously developed by the authors for the solution of stochastic systems 

excited by Poisson white noise will be applied to several dynamical systems. The stationary 

probability density function of the response process for the single degree-of-freedom Duffing 

oscillator will be obtained by solving the Fourier-transformed forward generalized Kolmogorov 

equation directly for the characteristic function, followed by numerical Fourier inversion to 

recover the probability density function. The excitation process will modeled as a sum of 

Gaussian and Poisson white noises. Resulting second and fourth order moments of response will 

be examined in order to assess relative effects of the two inputs. 

KEYWORDS 

Poisson white noise, stochastic dynamical system, generalized Kolmogorov equation, finite 

difference method, Fourier transform, characteristic function, probability density function. 
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INTRODUCTION 

A number of analytical and computational methods have evolved over the past forty years to 

determine the response of linear and nonlinear dynamical systems subjected to additive and/or 

multiplicative Gaussian white noise excitations. While Gaussian white noise and the more general 

filtered Gaussian white noise provide useful models of environmental loads such as earthquakes 

and wind, a broader class of random processes, filtered Poisson processes, have been shown to be 

more realistic in modeling disturbances that originate from impact-type loads. These 

representations have been used, for example, by Tung (1972) to examine the response of bridges 

to moving loads, by Lin (1963) and Cornell (1964) to model seismic loads acting on structures, 

and by Roberts (1972) to analyze the effects of wave action on ships. In a recent monograph, 

Grigoriu (1995) assessed the efficacy of combinations of Gaussian and Poisson white noises as 

models for a wide range of loadings, including the aforementioned earthquake, wave and traffic, 

as well as wind and a number of others, and showed its superiority to purely Gaussian white noise 

in many situations. 

Several methods for characterizing the response of nonlinear dynamical systems to combinations 

of Gaussian and Poisson white noises have been developed. Some of these techniques include 

Monte Carlo simulation, moment closure techniques, path integral methods, and numerical 

methods including those based on the characteristic function of the response process. A more 

thorough review of these methods can be found in Wojtkiewicz, et al. (1998)  and the references 

therein. 

The method used here falls into the group utilizing the characteristic function, ~x(U, t), to 

describe the response. Tylikowski and Marowski (1986) used a partial differential equation for the 

characteristic function, obtained by taking the Fourier transform of the forward generalized 

Kolmogorov equation, to study the response of a single degree of freedom nonlinear oscillator to 

Poisson impulses. Grigoriu (1996) showed that the characteristic function satisfies a boundary 

value problem which can be derived directly from the state equations of the system using a 

generalized version of It6's rule. In that paper, he investigated two scalar examples by solving the 

boundary value problem for the characteristic function using a standard finite difference 

procedure. Recently, the method introduced by Grigoriu was extended in Wojtkiewicz, et al. 

(1998) to the case of multi-state dynamical systems, and the stationary probability density 

function of the response process for several one- and two-state dynamical systems was found by 

numerically solving the Fourier-transformed forward generalized Kolmogorov equation (the 

TFGK equation, for convenience) for the characteristic function, followed by numerical Fourier 

inversion to recover the density function. 

In this paper, the response of a particular nonlinear system to a combination of Gaussian and 
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Poisson white noises will be further examined in order to assess the sensitivity of the solution and 

subsequent moment calculations to the relative weight of each. 

PROBLEM FORMULATION 

Consider the stochastic differential equation describing a time-independent discrete dynamical 

system subject to Gaussian and Poisson white noises, given by 

X(t) = a(X(t), t) + GW(t) + e Y(t) (1) 

X(t0) = X 0 (2) 

where X and a(X, t) ~ 9i 'n , W(t) ~ 9i 'm is a unit intensity Gaussian vector white noise process, 

G is an n x m-dimensional matrix, and c is an n x 1 constant vector. The statistics of the 

Gaussian white noise are given by 

E[W(t)]  = 0, E[W(t)W(t+t')] = l ~ t ' )  (3) 

where N.) is the Dirac delta function and I is the m x m identity matrix. Y(t) in Eqn. 1 is a 

. - .N(t)  .7 ~ t  , a sequence of Dirac impulses scalar Poisson white noise excitation (i.e., Y(t) = 2,, i = 1 L i  - t  i) 

with Poisson arrivals) characterized by the intensity, /l, of the underlying Poisson counting 

process, N(t), and Z is a sequence of random variables representing independent random 

amplitudes identically distributed with density function pz(z). 

It has been established in Gikhman and Skorohod (1972) that Eqns. 1-3 define a vector Markov 

process, the behavior of which is completely characterized by its transition probability density 

function p(x, t lx 0, to), where x 0 = X(0). The density function satisfies both the forward 

~)p 
-~+LxP = 0 onlY, (4) 

and backward generalized Kolmogorov equations 

~p • 
~t o + Lxo p = 0 onlY, 

subject to the initial, boundary, and normalization conditions, respectively, 

t0]x @ to) = 6 ( x -  x0), lim p(x, t) --~ 0, and [ p(x, tlx 0, t0)dx = 1. p(x, 
I Ilxl ~oo d 

9( 

(5) 

(6) 
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The operators L x and Lx0 are, respectively, 

n 3 1 n n ~. 

= - ~ Z °3XkOXja- LxP ~,p 4" k=lZ ~ [ak(x' t)p] ~. = 1 j = 1 

and 

o o  

[t~jp]- X f p ( x -  cz, tlx 0, to)pz(z)dz (7) 
- - o o  

, n o~p 1 n ~ 7  o~2p 
Lx°P : ~'P- k=lZ a~(x0' to)Ox0k 2k=lZ j--l~" crkjox~3xoj- X_=~ p(x, t[x 0 + cz, to)pz(z)dz (8) 

where ~, is the average arrival rate of the Poisson impulses and Z = GG T = [cYij ] . 

While exact solutions have been found for several special scalar systems by Vasta (1995), the 

generalized Kolmogorov equations for dynamical systems with two or more states and arbitrary 

nonlinearity currently defy analytical solution, leaving computational approaches such as path 

integral, finite element and finite difference methods, as well as Monte Carlo simulation, to fill the 

void. 

A boundary value problem for the response characteristic function can be derived by exploiting 

the fact that the response probability density function and characteristic function form a Fourier 

transform pair. Consequently, the TFGK equation can be found by applying an n-dimensional 

Fourier transform to the FGK equation. An equivalent method, where the boundary value problem 

is obtained directly from the state equations of the system, Eqn. 1, is outlined in Grigoriu (1996). 

The response characteristic function of the system given by, Eqn. 1, is governed by 

~ x ( U ,  t) = iuTE[a(X, t )expiuTX]-  ~ u~ulcr~l- ~,{ ~z(CTu)-  1 } ~x(U, t) 
k = l  l=l 

(9) 

subject to the boundary conditions 

lim ~x(U, t) --~ O, ~x(O, t) = 1, (10) 
Ilull ~ oo 

and to an initial condition satisfying the boundary conditions at t = t o . In Eqn. 9, ~z(Z) is the 

characteristic function of the amplitudes of the pulse train, u is the n x 1 vector of transform 

variables, and a,  ~,, E, ~x(U, t) are as previously defined. The precise nature of Eqn. 9 is not 

clear at this point; i.e., whether it is a partial differential or an integro-differential equation. 

However, if analysis is restricted to systems in which the drift coefficient, a(x, t), is polynomial in 

the states, the situation clarifies. The boundary value problem becomes, for n = 1 and 2, 
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respectively, 

Case l ' n  = 1 

d 
a(x, t) = E ar(t)x r 

r = l  
(11) 

- ~ x ( U ,  t) - u ~_~ ar(t)i 1 -r ~x(U, t ) -  u2o "-  2{ ~z(CU)- 1 } ~x(U, t) 
r = l  

(12) 

Case 2"n = 2 

d d d d 
a l(x, t) = E E drs(t)x~x~' a2(x , t) = E E ers(t)x~x~ 

r = l  s = l  r = l  s = l  
(13) 

since 

C) d d ~)r + s 
~x(U, t) = u 1 E E il - r -  S drs(t) ~x(U, t) 

r = 1 s= 1 ~tt~O~tt~ 

d d Or+s 
+ u2 E E i l - r - sers ( t )  ~x(U, t) 

r = 1 s= 1 O~U~ "C)u~ 

--[~ k= l  ~ /=1~ UkblICYkI-~{f~z(CTu)-I} 1 

(14) 

E [ X r e x p i u T X ]  1 0 r 1 0 r + s = - - ~ ~ x ( U ,  t), E [ ( X ~ X ~ ) e x p i u T X ]  = 
i r ~?u r i r + s ~?u~ ~?u~ 

~,x(U, t) (15) 

by definition of the characteristic function. Similar equations can be derived for cases in which 

n > 2 .  

Note that, for this class of system, the boundary value problem (TFGK) for the characteristic 

function, ~x(U, t), is an n-dimensional partial differential rather than integro-differential 

equation. Note, also, that the TFGK equations can be complex valued, although here only systems 

with odd nonlinearities will be studied; consequently, the equations will be purely real. Finally, it 

is interesting to further note that the highest order derivative appearing in the TFGK equation is 

equivalent to the highest order nonlinearity appearing in the drift vector a(X, t) of the system, as 

has been observed by Grigoriu (1996). Eqn. 14 is the boundary value problem that will be the 
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focus of our study. 

SOLUTION OF THE TWO-DIMENSIONAL TFGK EQUATION 

The numerical solution of Eqn. 14 can be divided into four parts: (1) spatial discretization, (2) 

temporal discretization, (3) solution of the system of linear equations governing the nodal 

values of the characteristic function, and (4) postprocessing of results. 

Spatial Discretizatio n 

The authors have previously applied standard Bubnov-Galerkin finite element techniques to 

the solution of Fokker-Planck equations in two and three dimensions in Spencer and Bergman 

(1993) and Wojtkiewicz, et al. (1995). Here, though, it was decided to use finite difference 

methods in order to avoid shape functions of high order necessitated by the higher order 

derivative terms in the TFGK equation. 

Recently, high order finite difference schemes to solve Fokker-Planck equations have been 

developed by Wojtkiewicz, Bergman and Spencer (1998), and similar methods will be 

employed herein. Through the use of Taylor expansions of the characteristic function about 

prudently selected points on a uniform mesh, difference stencils of arbitrary orders of accuracy 

can be developed. By including more of the neighboring nodal points, schemes with smaller 

discretization error are obtainable. Derivative approximations corresponding to a tenth order 

accurate scheme were determined and can be found in Wojtkiewicz, et al. (1998). 

Boundary conditions must be imposed as part of the spatial discretization process. The formal 

conditions for the TFGK equation are Dirichlet, located at infinity as implied in Eqn. 10, along 

with the constraint at the origin. The former are not readily implementable within a finite 

difference framework. Rather, one prescribes Dirichlet conditions at the edges of a finite, 

computational mesh of sufficient extent such that the characteristic function is essentially (i.e., 

within roundoff) zero everywhere outside the mesh. 

Spatial discretization of the TFGK equation using the tenth order finite difference scheme 

results in a system of first order differential equations given by 

~m,n + Kt~m,n = 0 (16) 

where (~m,n = ~(mAUl,  nAu2) and K is a matrix of dimension max(m)  x max(n) .  
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Temporal Discretization 

The system of differential equations for the nodal characteristic values, Eqn. 16, is further 

discretized in time using the second order accurate (in time) Crank-Nicholson method, 

KAt k+ 1 (17) 

By solving this system of algebraic equations at each time step, the evolution of the nodal 

characteristic function values can be computed from a given initial condition. An initial 

multivariate Gaussian characteristic function with origin at x 0 is prescribed which satisfies the 

boundary conditions of the problem and which is sufficiently smooth to make the evolution 

computation tractable. 

Solution of  the Linear System of  Evolution Equations 

The efficient solution of the linear system, Eqn. 17, is a formidable computational task as the 

coefficient matrix ( I + K ~  At] is, in general, nonsymmetric and sign indefinite. Sparse matrix 

techniques were used to assemble and store the coefficient matrices to conserve memory. The 

iterative solver GMRES (Generalized Minimum Residual) (cf. Saad (1996)) was used in concert 

with an incomplete LU preconditioner to solve Eqn. 17 at each time step. Further details can be 

found in Wojtkiewicz, et al. (1998). 

Postprocessing of Numerical Results 

Once the characteristic function is determined at all times of interest, various response statistics 

such as moments and upcrossing rate can be computed from it directly. For instance, when 

n = 2, the response moments are given by 

E [ X f ( t ) S ~ ( t ) ]  = ~ P + q  CIIx(U , t) 

 uf uq u = 0  

(18) 

+ by and the mean upcrossing rate of level a, V a , 

V+a(a,t) = 1 ~o ~o 1 O • (u, t) exp (-i  1 • 
(2rt)2_joo_joo~2~-~u 2 x u a)du (19) 

The probability density function, no longer conditional due to application of the theorem of total 

probability, can be recovered by taking an inverse Fourier transform of the unconditional 

characteristic function; i.e., 
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o o  o o  

Px(X, t) : f ... f exp(-iuTx)~X(U, t)du. 
~ o o  ~ o o  

(20) 

Though the response moments and upcrossing rate can be computed directly from the 

characteristic function, their determination can sometimes be made more tractable by determining 

them from the computed density function obtained from the characteristic function by numerical 

Fourier inversion. For the present case, the response moments are given by 

o o  

E[X~(t)xq2(t)] = f J P q X 1X2Px(X, t)dx = a(p, q) 
~ o o  ~ o o  

+ by and the mean upcr0ssing rate, V a , 

(21) 

o o  

t) = X2Px t)d 2. 
o 

(22) 

The solution process is general and can be applied to any memoryless system possessing 

polynomial nonlinearities. A single degree-of-freedom Duffing oscillator subjected to a 

combination of additive Gaussian and Poisson white noise excitations will be examined to assess 

the sensitivity of the response to each. 

SINGLE D E G R E E - O F - F R E E D O M  DUFFING OSCILLATOR 

The Duffing oscillator models the stiffness nonlinearity encountered in many mechanical and 

structural systems. Here, the response of two Duffing systems to the sum of additive Gaussian and 

Poisson white noises will be analyzed using the previously described method. The system of 

stochastic differential equations is given by 

ff(~ l = X 2 ,  ff(~2 = -- eo)2X~-2~o)X2- Y(-o2X1 + Y(t) + 2~W(t )  (23) 

where W(t) is a unit intensity Gaussian white noise process, and Y(t) is Poisson white noise, 

defined previously. The FGK equation for this system is given by 

~2 
(x , t )+ (x2Px(X,t)) ~x 2 (2~O3nXz+7~exl + ~ o  x l )Px (X , t ) ] -D~x~PX(X , t )  3 - - / p x  - 
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+ ~,Px(X, t) - ~,f_°°ooPx(Xl, x 2 - Z, t ) p z ( z ) d z  = 0 (24) 

where Px(X, t) = PX1XE(Xl, x2, t). Taking the Fourier transform of Eqn. 24 with respect to the 

spatial variables x 1 and x 2 results in the TFGK equation for the characteristic function, 

• x(U, t) = ~X1x2(Ul, 112, t), 

~t~x(U, t) + (2(c0u 2- )~u ~x(U, t) u 1 

+ 7 ~ u  2 ~x(U, t) - ero2u27u13~x(U, t) 

+ AOx(U, t)[ 1 -@z(U2)] + Du2@x(U, t) = 0 

(25) 

boundary conditions Cx(0 ,  t) = 1 and Cx(U, t )  = 0 V u ¢  [-20, 20] x [ - 2 0 , 2 0 ] ,  and 

initial condition Cx(U, 0) = e -(u~÷u22)/2 corresponding to a zero-mean, bivariate Gaussian 

process with unit variances. 

The nonstationary problem was solved by the finite difference method for system parameters 

e = 1, ~" = 0.2, and co = 1 on the computational domain [-20,20] x [-20,20]. Six systems 

were considered: the first three examined a system with positive linear stiffness 7 = 1 exhibiting 

a single stable equilibrium at the origin, while the second three examined a system with negative 

linear stiffness 7' = -1 possessing two stable equilibria at x = + , , / i / e ,  respectively, and one 

unstable equilibrium at the origin. For each group, three different excitations were studied. These 

consisted of the pure Poisson white noise case with bilateral exponential pulses (i.e., 

dIIz(Z ) = O ~ 2 / ( a  2 + Z 2) ), the combination noise, and the pure Gaussian white noise case. In each 

case, parameters of the Gaussian and Poisson white noises were chosen to maintain equivalent 

second moment characteristics (i.e., 2D + 2 ~ 2  - constant). 

T A B L E  1: S Y S T E M  P A R A M E T E R S  

System # 7 o~ )~ D 

1 1.0 5.0 10.0 0.0 

2 1.0 4.0 4.0 0.15 

3 1.0 4.0 0.0 0.40 

4 -1.0 10.0 5.0 0.0 

5 -1.0 4.0 4.0 0.15 

6 -1.0 4.0 0.0 0.40 
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The system parameters are summarized in Table 1. While the excitation parameters were chosen 

so that, in all cases, the inputs were second order equivalent, no such property is guaranteed of the 

higher order moments of the input. The effects of the non-Gaussian input are of interest. The 

stationary response characteristic function for the first three systems is shown in Fig. 1, and the 

corresponding stationary probability density function is shown in Fig. 2. The stationary response 

characteristic function for the second three systems is shown in Fig. 3, and the corresponding 

stationary probability density function in Fig. 4. For both systems, the characteristic functions and 

probability density functions were indistinguishable for the three load combinations. The effects 

of the non-Gaussian components of the input can, however, be seen by examining the higher order 

moments of response. This analysis was performed, and the results summarized in Table 2. 
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Fig. 1: Stationary characteristic function, ~x(U), for the SDOF Duffing example; 7 = 1. 
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Fig. 2: Stationary probability density function, px(X), for the SDOF Duffing example; 7 = 1. 
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Fig. 5: Stationary probability density function, px(X), for the SDOF Duffing example; }" = -1 

It can be seen in Table 2 that the effects of the non-Gaussianaity of the input on second order 

response moments is very small. However, the effects are quite apparent in the fourth order 

moments, especially that of the velocity process, o~(0, 4),  where deviations ranging up to eight 

percent are observed. 
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TABLE 2: SECOND AND FOURTH MOMENTS OF RESPONSE 

y =  1 D = O  ~ =  10 a =  5 

y = 1 D - 0.15 ~ = 4 a = 4 

y - -  1 D = 0 . 4 ~ = 0  a = 5  

Exact Solution: 7 = 1 D = 0.4 

~(2, 0) 

0.4638 

0.4640 

0.4679 

0.4679 

~(0, 2) 

1.0003 

1.0003 

1.0002 

~(4, 0) 

0.53626 

0.53604 

0.53210 

0.53208 

y ._. 

y m 

y B 

1 D = 0 ~ =  10 a =  5 

1 D = 0.15 ~ = 4 a  = 4 

1 D =  0.4 ~ = 0  a =  5 

D = 0 . 4  Exact Solution: 7 = 1 

1.0396 

1.0394 

1.0419 

1.0418 

1.0020 

1.0003 

1.0002 

2.0409 

2.0397 

2.0420 

2.0418 

~(2, 2) 

0.4832 

0.4828 

0.4680 

a(0, 4) 

3.198 

3.193 

2.999 

.04679 3 

1.0612 3.224 

1.0584 3.210 

1.0420 2.999 

1.0418 3 

CONCLUSIONS 

The ability to formulate and solve a broad class of boundary value problems describing the 

nonstationary response of both linear and nonlinear systems subjected to excitations modeled as 

combinations of Gaussian and Poisson white noise has been demonstrated. The proposed method 

can accommodate a wide variety of pulse distributions and intensities. These input processes 

provide a more realistic way to model natural phenomena, more so than prior models employing 

only Gaussian white noise. The formulation allows the simultaneous application of Gaussian and 

Poisson input processes as well as the computation of nonstationary response probability and 

statistics. The boundary value problem, which we have called the TFGK equation, is obtained 

through Fourier transformation of the integro-differential forward generalized Kolmogorov 

equation and is solved here by a high order finite difference method. Recovery of the joint 

probability density function of the response process is accomplished through inverse numerical 

Fourier transformation. The computation has been shown to be efficacious for the two- 

dimensional problem presented herein and is able to identify important non-normal characteristics 

of the response, most apparent in higher order moments. 
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ABSTRACT 

In the area of high-performance computation, direct methods for solving large systems of 
equations on distributed memory machines is one very important issue. In general, there are 
two ways to improve the computational efficiency of the solution procedure. One is to 
increase the sequential efficiency by maximizing vector operations and/or using other 
techniques, such as unrolling. The other is to decrease the communication cost across 
processors. Conventionally, the pure JIK form of LDL ~ factorization algorithms based on the 
column skyline storage scheme lead to natural synchronization, i.e., starting a step, all but 
one processor waits for the result of a particular processor for the j-th column or j-th block. 
Carefully rearranging the communication order, this paper proposes a mixed JIK form with 
one-step overshoot for sending and receiving. Associated with asynchronous communication, 
the mixed asynchronous approach can greatly reduce the processor idling time and enhance 
therefore the performance of parallel computation. Several practical examples show the 
efficiency of this approach. 

KEYWORDS: linear equation, parallel computation, finite element method 

INTRODUCTION 

General purpose finite element codes have been widely used for both iit:ear and non-linear 
structural problems. Many of the real-world problems in science and engineering applications 
are large in size, and require extensive computational efforts. A prevailing trend in industry is 
that products must meet more stringent design requirements and in turn require more detailed 
analysis. Therefore, even more computational efforts for solving large-scale problems will be 
needed. The computing power of current sequential machines is generally inadequate. Recent 

85 
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development in parallel computers provides an opportunity for significant gains in computing 
capability and also in broadening the range of structural problems that can be solved. The key 
to success is in the effective implementation of suitable parallel algorithms that can exploit the 
concurrent features of such machines. In this connection, we shall study a very important 
stage of finite element analysis - solving large system of equations. Originally the code runs on 
sequential machines; we shall convert the code using parallel constructions for Intel-Paragon 
and study their performance. 

In computation, the finite element discretization of elliptical differential equations usually 
results in a large linear system of equations in the form Ax = f with positive stiffness matrix 
A T=A. In this paper, we consider the direct method of solution for solving a large sparse 
system of linear equations with symmetric matrix. The focus of the study is to design an 
efficient computational algorithm that exploits the multiple-processing and vector capabilities 
of today's high-performance computer architecture of distributed memory. 

Conventionally, the pure JIK form of LDL T factorization algorithm based on the skyline or 
half-bandwidth storage scheme has been widely implemented in parallel computation on 
machines with distributed memory. At each step of the extraneous loop, the JIK form lead to 
a sending and receiving synchronization due to message passing for the j-th column or j-th 
block. This is obviously the bottleneck of solving scheme. In order to enlarge the bottleneck, 
this paper proposes a mixed JIK form with one-step overshoot for asynchronous sending and 
receiving. This mixed approach can greatly reduce the processor idling time and enhance 
therefore the performance of parallel computation. Several practical examples show the 
efficiency of this approach. 

REVIEW OF FACTORIZATION 

Solving the following equation 

involves three major steps: 

1. Factorization: 

2. Forward reduction: 

3. Back substitution: 

Ax = f with AT _ .  A, (1) 

A = LU = LDLT; (2) 

LD y = f ;  (3) 

LTx=y .  (4) 

Here L denotes a lower triangular matrix with its diagonal elements equal to 1, and D a 
diagonal matrix. Among the three steps, factorization takes much more computing time as 
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compared to the other two steps. Therefore, we shall focus on the solution efficiency of 
factorization. 

Following the notation in [2,3], there are two basic operations in LDL v factorization, which 
are designated by Yask(i,j,k) and Div(i,j). The operation Task(i,j,k), k<j<=i, uses L(j,k) and 
U(k,i) to modify A(j,i), i.e. A(i,j). The operation Div(i,k) converts U(k,i) to L(i,k); i.e. 

Task( i , j ,k) :  

AG,i ) = A(j,i) - Ld,k)*U(k,i) 

Div(i ,k):  

L(i,k) = U(k,i)/D(k) 

Since the stiffness matrix A is symmetric, only the upper (or lower) triangle of the matrix is 
loaded into memory, and L as well as U will occupy the same memory location as A. One 
may notice that Task(i,j,k) can be done in various orders Operation Task(i,j,k) uses L(j,k) 
and U(k,i), which are results of Task(i,j,:), Div(j,k) and Task(i,k,*), respectively, to modify 
AG,i). Once Task(i,j,k) is done for all k, AG,i ) becomes U(i,j) and then one is ready to modify 
the next A(j,i). Circling the indices i, j and k, we can obtain different factorization schemes. 
Their performance is strongly related to the storage scheme used and the vector processing 
implementation[3]. 

Denoting neq as the number of equations, the factorization of JIK form can be outlined for a 
full sparse symmetric matrix as: 

doj = 1, neq do bj = 1, nblk 
CTask(j,j) BCTask(bj,bj) 
do i= j+l ,  ie do bi = bj+l, bie 

CTask(i,j) BCTask(bi,bj) 
end do end do 

end do end do 

JIK Algorithm Blocked JIK Algorithm 

Where ie specifies the last column that has a common part with column j. The CTask( i , j )=  
Task(i,j,*) denotes reduction of column j by cohlmn i, and it produces the matrix element 
U(i,j) in the j-th column. The operation is a dot-product of two vectors over the index k in 
Task(i,j,k). The task CTask(j,j)=Task(j,j,*)+Div(j,*) is known as reduction of column j by 
itself; it converts U(i,j) to L(j,i) and produces the matrix element D(j). The operation involves 
both dot-product and vector division[ 1,4,6,7]. 

Since the matrix A arising from FEM is usually a sparse matrix, there are several ways to 
exploit its sparsity. In finite element analysis the column-oriented skylme storage scheme has 
been known as to be particularly effective[I]. In this scheme, only those terms of the upper 
triangle of matrix under the skyline of the highest non-zero term in each column are stored in 
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a one-dimensional pattern. It is well-known that only the terms under the skyline can be non- 
zero in the factorization procedure. Because the height of each column varies, it is also called 
as active column scheme. Associated with this storage scheme, the JIK form for parallel 
computation and the IJK form for sequential computation can easily arrange the 
arithmetic operations in the dot-product dominated procedure[3]. 

In implementation, all columns are linked into a one-dimensional real array, while an integer 
array points the beginning of each column, and only those terms of the upper triangle of global 
stiffness matrix under the skyline of the highest non-zero term in each column are handled. It is 
well-known that only the terms under the skyline can be non-zero in the factorization 
procedure. Some equation numbering technique such as reverse Cuthill-Mckee (RCM) 
algorithm can be employed to minimize the total number of terms under skyline. 

In parallel computation, a block concept has been introduced to reduce the communication 
overhead by sending or receiving a number of columns simultaneously[4,5]. Replacing column 
operations CTask(i,j) by block operations BCTask(bi,bj), and the number of equations neq 
by the number of blocks nblk, we obtain the Blocked JIK Algorithm, in which BCTask(bi,bj) 
consists of several CTask(i,j)'s. 

3 INTEL-PARAGON MACHINE AND ITS PERFORMANCE 

The Intel-Paragon is a particular form of parallel machines which makes concurrent 
computation available at relatively low cost. The hardware consists of a number of nodes, disk 
systems, communications networks all mounted together in one or several cabinets with power 
supply for the whole system. Each node is a separate board, rather like a separate computer. It 
has memory, network interface, expansion port, cache and so on. The nodes are linked 
together through a back plane which provides communication between them[ 10]. 

The Paragon is a multiple instruction multiple data stream (MIMD) type machine. Each single 
node works like a sequential machine; data communication between nodes is realized in 
message passing style. The Paragon node is based on the 64 bit i860XP TM microprocessor 
produced by Intel, whose theoretical speed is 100 MFLOPS in 32 bit floating point and 75 
MFLOPS for 64 bit in floating point operations. 

A single node of the Paragon XP/S consists of two i860XP TM microprocessors: one for 
computation and the other for communication. The compute processor is for computation and 
the communication processor handles all message-protocol processing, thus freeing the 
computation processor to perform computations. Each compute processor has 32 MB of local 
memory but only about 24 MB is available for applications, the rest being used for the micro 
kernel, OSF (Operating System Foundation) server and system buffers. 

The Paragon at the Hong Kong University of Science & Technology (HKUST) has 140 
compute nodes. Mostly, 128 nodes can be used for one application under control of the 
Network Queuing System (NQS). In this study we utilized maximum 64 nodes. 
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The Paragon Operating System Open Software Foundation (OSF/1) used in this study is 
version R1.3.3. The software platform in the study consists of Paragon FORTRAN version 4.1 
and the native message passing library NX. 

As a benchmark, the dot-product of the simple form: 

do 100 i=l,nn 
ss = ss + a(i)*b(i) 

end do 

is tested on the Intel-Paragon machine, because the dot-product is the key operation of 
factorization in the skyline storage scheme. Utilizing different compiler switches, dynamic 
allocated common block and various vector lengths, we obtained the wall-clock time scaled to 
106 multiplications as shown in Table 1. 

TABLE 1 
WALL-CLOCK TIME FOR DOT-PRODUCT (SEC.) 

vector length 
103 
104 
105 
106 

Compiling case 1 
Compiling case 2 

case 1 case 2 
0.7031 
0.7891 
0.7785 
0.7781 

no optimization 
-04 -Mvect optimization 

0.1178 
0.0938 
0.0836 
0.0822 

Besides the dot-product, the average wall-clock time scaled to 10 6 operations of more tests on 
vector operations resulted in Table 2. 

TABLE 2 
AVERAGE WALL-CLOCK TIME OF VECTOR OPERATION (SEC.) 

dot-product addition multiplication division 
ss=a(i)*b(i) a(i)=a(i)+b(i) a(i)=a(i)*b(i) a(i)=a(i)/b(i) 

0.0920 O. 1250 O. ]289 4.0927 
Compilingl-O4 -Mvect optimization 

Reading from Table 2, division needs much more time than other operations. In our tests the 
factor is about 35 in comparison with vector multiplication and about 45 in comparison with 
dot-product. Our tests show that on SUN Sparc 30, HP 9000/730, SGI Power Indigo 2 the 
wall-clock time ratios of vector division and vector multiplication are in the same order. 

These test results show that in vector operation the practical running speed of Paragon is about 
10 IV[FLOPS, which is unfortunately much lower than the announced theoretical speed of 75 
MFLOPS. Although some delicate techniques, such as unrolling, can greatly improve the 
vector performance[8,9], they are not installed in our code. 
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Due to the huge time difference between multiplication and division, the inverse of diagonal 
matrix D is suggested by authors to be stored in the calculation, so that a large amount of 
divisions in CTask(j,j)can be replaced by corresponding multiplications. This improvement 
makes the sequential code more efficient. 

BASIC PARALLELIZATION 

Consider the case that there are Np processors labeled fiom 1 to Np. The columns and/or 
blocks are scattered to different processors for the skyline solver in a wrapping manner where 
block bi is held by its owner processor mod(bi-l,Np)+l=iam as shown in Figure 1 for 4 
nodes[5,6,7,8,9]. 

m 

3 

4 

1 
2 

~ ~ ~ ~ 3  4 

\ 
Figure 1: Wrapping Distribution of Blocks (4 nodes) 

In programming, all blocks stored in an individual processor iam, that are of an identical label 
in Figure 1,are linked into a one-dimensional real array. Any block of other labels does not 
reside permanently in this processor iam, and it is passed to this processor iam only when it 
is the master block bj of extraneous loop in Algorithm 1. This distributed data structure allows 
the data locality to be independent of that of the target processor. The corresponding algorithm 
is outlined as: 

do bj = 1, nblk 
! sequential computation for master block bj 
if it is owner of block bj 

BCTask (bj,bj) 
end if 
! sending and receiving synchronization 
if it is owner of block bj 
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send bj to others 
else 

receive bj 
end if 
! parallel computation 
do bi = bjb, bje, Np 

BCTask (bi,bj) 
end do 

end do 

Algorithm 1: Basic Parallel Block JIK Algorithm 

in which blocks bjb and bje (bje>=bjb>bj) are, respectively, the first and last blocks that couple 
block bj. They are determined by the profile of matrix A and the processor labeling. 

PARALLELIZATION WITH ONE-STEP OVERSHOOT 

We shall analyze the algorithm given above. For simplification, we assume that there is 
enough core memory to hold the matrix A across all the nodes of the computer. The 
computation can be classified into the sequential part BCTask(bj,bj) and the parallel part 
BCTask(bi,bj), bi>bj, where bi's are distributed across all nodes. The key to get higher speedup 
is to reduce the sequential part (including computing and waiting). We found that the 
bottleneck occurred in communication. At each loop of bj, all processors except the master 
processor iam [=mod(bj-l,Np)+l] of block bj waited for the factored master block bj. In other 
words, all processors are synchronized by the sending and receiving activities. 

In practice, the idle time due to communication and working load could be much longer than 
the computation time for most of the processors. This limits the extent of possible speedup 
improvement. We must reduce the idle tilne in order to improve the parallel performance. 

As an example, we consider an execution with 4 nodes, that are labeled from 1 to 4. Assume 
that the extraneous loop for bj=5, processor 1 is clearly the owner of block bj=5. While doing 
self-reduction BCTask(5,5), processors labeled 2,3 and 4 wait for receiving block 5 sent by 
processor 1. Once processor 2 receives block bj=5, it starts its own works BCTask(6,5), 
BCTask(10,5), BCTask(14,5) and so on. Assume the height of each column takes a constant 
value; processor 2 will have the heaviest working load in the parallel part of tasks. So the 
sequential part of step bj=6 will start ,,hen all other processors have finished their own tasks 
and have been waiting for the next master block 6. 

Clearly, the sending and receiving syuchronization of the master block is a bottleneck of 
parallel computation on distributed memory machines. For this reason, the parallel 
computation efficiency of LDL T in the JIK form on distributed memory machines is much 
lower than expected. 

The prerequisite to start BCTask (bj+l,bj+l) (A in Figure 2) depends only upon the 
complement of BCTask (bj+l, bj) (or in Figure 2) and not upon the complement of BCTask 
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(bj+l,bj+Np), BCTask (bj+l,bj+2Np).. (13,X in Figure 2). In conclusion, the blocked JIK 
form is not the only way to arrange the LDL r factorization. 

x a i i i i l l  ......... 

3 

2 

m 

4 
1 

N~C~ 2 
\ 

-iiiiiTii iii £1111! 

3 
\ 4  

Figure 2: One-step Overshoot Concept (4 nodes) 

Using the asynchronous communication model for receiving, we adopt an algorithm with 
overshoot to minimize the idle time as shown in Fig. 1. In the design, the task order by the 
processor 2 follows the route A-A'-ot-13-X... rather than the route A-ot-13-X...-A' in the 
algorithm of Table 1. Clearly, the A' corresponding task BCTask (bj+l=6,bj+l=6) has been 
overshot into the parallel part of the step bj=5. Once the block bj+l =6 is factored, the master 
processor for block bj+l will immediately send the block to the others that may still work on 
the parallel part for step bj=5. This leads to the one-step overshoot scheme. Please note that in 
this algorithm synchronous communication model cannot be used. 

NUMERICAL RESULTS AND REMARKS 

In order to evaluate the computational time and parallelism of the one-step overshot algorithm, 
we consider the flex joint of a tension-leg of an offshore platform. We discretize the flex joint 
using finite elements of different mesh sizes. Because of symmetry in geometry, material and 
loading, only half of the flex joint is considered in the analysis. Table 3 summarizes the 
parameters of the analysis, where mmmp denotes the number of nodes, neq denotes number of 
equations, and m is the average half-bandwidth. 
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TABLE 3 
FINITE ELEMENT MODELS OF A FLEX JOINT 

model 

1 

nr 

8 
2 1 
3 10 

no n~ numnp neq m 
20 23 4536 12764 554 
35 24 8100 23155 667 
35 32 13068 37557 1071 

In Table 4, the average wall-clock time, Tp, required for one-step overshoot LDL T 
factorization with p processors running at HKUST is listed in Table 4. The corresponding 
results of the parallel speedup, Sp=TI/Tp, and the parallel efficiency, Ep=Tp/p, calculated on 
Tp are shown in the same table. The wall-clock time reflects the parallel computation 
performance. In order to test the speedup and the efficiency equitably, all cases were executed 
four times for each given number of processors. In the table, BC and RS represenl 
broadcasting and ring-sending models of communication[6,8,9]. All communications ar~ 
asynchronous. We have to mention that the recorded wall-clock times are very discretized. Ir 
some cases of small number of processors, the standard deviation were as high as 30%, so th~ 
performance measurement was a difficult job. 

TABLE 4 
PERFORMANCE OF ONE-STEP OVERSHOOT ALGORITHM 

performance 

model sending 

BC 

1 

RS 

BC 

2 

RS 

BC 

3 

RS 

number of processors 

term 1 2 4 8 i 16 32 64 

Tp 278.3 153.5 89.1 70.1 59.7 41.7 33.1 

Sp 1.000 1.812 3.124 3.969 5.086 6.675 8.400 
Ep 1.000 0.906 0.781 0.496 0.424 0.209 0.131 

Tp 138 85.6 65.2 64.6 51.6 53.6 

Sp 2.014 3.251 4.268 4.308 5.393 5.192 
Ep 1.007 0.813 0.534 0.269 0.169 0.081 

Tp 674.5 344.8 224.5 151.9 132 103 85.7 
Sp 1.000 1.956 3.004 4.439 5.109 6.547 7.871 
Ep 1.000 0.978 0.751 0.555 0.319 0.205 0.123 

Tp 344.8 210.1 125.5 215.1 137 123.1 

Sp 1.956 3.21 5.375 3.136 4.923 5.479 

Ep 0.978 0.803 0.672 0.196 0.154 0.086 

Tp 2300.8 1188.1 632.9 479.4 326.3 187.4 112.3 

Sp 1.000 1.937 3.636 4.800 7.051 12.28 20.48 

Ep 1.000 0.968 0.909 0.600 0.441 0.380 0.320 

Tp 1191.7 680.1 388.6 700.1 524.4 289.9 
Sp 1.930 3.383 5.921 3.286 4.387 7.936 
Ep 0.965 0.846 0.740 0.205 0.274 0.124 
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As a reference, the wall-clock time, Tp, required by the basic parallel algorithm is listed. We 
can observe great difference. 

TABLE 4 
WALL-CLOCK TIME FOR BASIC PARALLEL ALGORITHM 

wall-clock time 
model sending 

BC 
1 

RS 
BC 

2 
RS 
BC 

3 
RS 

number of processors 
1 2 4 8 16 32 64 

278.3 171.5 78.5 
161.0 115.6 65.6 

674.5 370.1 265.5 199.0 
369.8 231.1 144.4 

2300.8 1308.4 681.9 506.3 467.7 433.1 389.2 
1295.1 681.1 497.4 450.4 358.4 308.8 

Because of the size of problems, unavoidable I/O has influence on the performance, although 
the asynchronous read and write control are used in the coding. Research on quantitative 
influence of I/O has not been reported in the literature for MIMD machine. 

We obtained the maximum computation rate of 382.65 MFLOPS (multiplication and addition) 
for FE model 3 using 64 processors, which corresponds to 7.99% of the theoretical peak 
performance of 64x75 MFLOPS. This is 24.66% of the peak performance of dot-product of 
Intel Paragon processor measured in the same machine. The best single node computation rate 
takes 18.7 MFLOPS for FE model 3, that is, 12.5% of the theoretical peak performance and 
77.7% of the measured dot-product performance. From this view, the influence of I/O cannot 
be over 22.3% of the wall-clock time. 

We have the following observations: 

• Unlike the basic parallel algorithm reported in [6,8,9], broadcasting communication is 
in general better than the ring-node sending for the proposed algorithm. The exception 
is for the small-scale problem using only a small number of processors. 

• The upper limit on the number of processors is 64, beyond which there is no additional 
speedup for the LDL T decomposition. 

• The wall-clock time is dominated by inter-processor communication when larger 
number of processors are used. 

In summary, we have implemented the LDL v parallel factorization on a distributed memory 
machine such as the Intel-Paragon. Compared with conventional approaches, two 
improvements have been made to increase sequential and parallel calculation, respectively. 
Since inter-processor communication across network dominates the efficiency of parallel 
calculation, using an asynchronous communication algorithm with one-step overshoot can 
greatly reduce the processor idling time and enhance the performance of parallel computation. 
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DYNAMIC BEHAVIOR OF RAILWAY BRIDGES 

UNDER RANDOM LOADING 

AND ASSESSMENT OF VEHICLE-RUNNING SAFETY 

Ying-Jun Chen, He Xia and Daqing Wang 

Civil Engineering Department, Northern Jiaotong University, 
Beijing 100044, China 

ABSTRACT 

The dynamic model of a train-bridge system consists of the train model and the bridge 

model. Self-excitations of the system are the track irregularity and the vehicle hunting 

movement. As the main external excitations, there are wind load and earthquake ac- 

tion. This paper studies this problem of different cases for the purpose of assessment 

of vehicle-running safety and serviceabiliy; three methods are used and the theoretical 

characteristics of them are studied from the viewpoint of engineering application. 

K E Y W O R D S  

railway bridge, dynamic behavior, wind loading, earthquake, computer simulation, 

dynamic interaction, vehicle-running safety, stochastic process, dynamic serviceability 

ASSESSMENT BY E X P E R I M E N T  AND SIMULATION 

The "snake-hunt ing"  movement by vehicle tracking is a principal self-excitation 

source. It can be expressed as follows 

97 
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Y ,  = A , s i n {  2zrVt 
L, + ~';) (1) 

where A, and L, are the amplitude and wave length respectively, and ~ is the phase an- 

gle of ith wheelset ;  it is a random variable. A , = 3 . 0 m m ,  L , = 2 0 . 0 m .  

\ t / 

x 

~X~ - 6 4  = 

I 

( LI 

~ _ % 2 m  _ ,  

Figure 1.. Train-bridge system model 

In order to increase train speed, a truss bridge of 64m span is studied; the dynamic in- 

teraction model is shown in Fig. 1. Degrees-of-freedom for movement are 23 and 17 for 

6--axle  diesel locomotive and 4--axle passenger-freight cars respectively. 
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Figure 2: Model of diesel locomotive 

The vehicle model is shown in Fig. 2 E13. Horizontal torsional vibration is coupled with 

vertical vibration for it is a two-track bridge, so a spatial model should be used. In or- 

der to simplify the calculation, the modal analysis method is used. 

The train on the bridge is directly concerned with the stringer. Suppose that there is 

no relative displacement between the stringers and the track. When the vibration 
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modes of the bridge are normalized as ~rnrp, - -1 ,  the nth order modal equation is ex- 

pressed as follows 

i j 
(2) 

in which F,,~,,F,,~ and Fo~j are horizontal, vertical and torsional force components when 

the j th wheel of the i th car acts on the bridge position, co and ~ are natural frequency 

and damping ratio respectively, ~;:,fL~and ~.~are horizontal, vertical and torsional dis- 

placement components at the stringer of nth mode at the position of ith car and jth 

wheel, respectively. When a train is moving on the bridge, lateral displacement Yw;j , 

torsional angle 0~;1, vertical displacement Z~;j of the wheelset, displacements of the 

girder Yb(3Cij),Ob (:C;j) and Zb(:r~j), hunting movements and irregularities of rails 

Y,(:c;j) ,O,(x~j) and Z,(scij) should satisfy the following relations 

[Y,.~j~ [Yb(x~j) + H i O b ( X i j )  "Jr- Y,(x;j)} 

[ Z ~ J  Zb(Z~j) + BOb(xij) + Z,(x u) ,=1 

I q,(~,j + Hi~i~) + Y,(xij) i 

l q.:o,j + O,(x,j) I 
q,(~ij + B~j )  + Z,(xij) , 

(3) 

in which distances H and B are shown in Figs. 1 and 2. 

Dynamic spatial equilibrium equations can be obtained by combining the vehicle models 

and the bridge modes with the wheel-rail relations (3) .  

MA 4:-CA + K A - -  F (4) 

Matrices of mass M, damping C and stiffness K,generalized displacement A and gener- 

alized force F in Eqns. 4 and 2 can be written in detailed .form ~23. A similar problem is 

also studied in this paper for Fig. 10. The equations are solved by Newmark/9 method, 

¢ / =  1/4. In this example (Fig. 1),  the train consists of two locomotives and eight pas- 

senger-freight cars. In order to  investigate the effect of phase angle ~" in Eqn. 1 which is 

a random number of uniform distribution in 0 ~  2n, the Monte Carlo simulation method 

is used; 30 sets are calculated for each train speed. Dynamic deflexions of the bridge 

are analyzed statistically. 

Figs. 3 and 4 show the dynamic factor and horizontal ampli tude(maximum, mean and 

standard deviation ~) at the midspan lower chord panel point respectively. But values 

higher than 200km/h are only reference values. They are also compared with the field 
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Figure 3 : Dynamic factor ( 1 ÷ # )  Figure 4 .Horizontal amplitude of 
bridge lower chord 

experiments. From the Chinese code, it is known that vehicle-running safety is as- 

sured when maximum train speed is 160km/h. 

ASSESSMENT OF VEHICLE-RUNNING SAFETY UNDER EARTHQUAKE 

BY USING THE WHEEL-RAIL INTERACTION MECHANISM 

Due to lack of data,  the method by Wakui H. [3]is used. But in our case, maximum 

train speed is 300kin/h,  degrees-of-freedom of movement of the vehicle are 17 in order 

to study lateral responses, and earthquake acceleration record during the Tangshan 

earthquake is used. Vehicle-running safety is controlled by horizontal bent angle 0y of 

the track~ track deformation yR can be expressed as follows(Fig. 5) 

X¢. 
yR -- 0, x < - - ~  

2 
O, ( xc) z xc 

Xc 
> YR = ZyX  , x 

2 

straight line ~ransitEon curve straight line 

. . . . . . .  

0 
X c X : 

T T 

Figure 5: Track shape of bent angle 
portion 

L1 

Figure 6: Tread surface slope 
of wheel. 

( 5 )  

-/ 

When the train passes through this portion, a relative displacement between the wheel 
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creep force 

~ K p  

f lange n ~ ~ t i i t i n g  
compres s io  

action 

Figure 7: Cause of horizontal compressions[3] 

axle and the track may happen from the inertial force of the train; if this displacement 

is greater than clearance u, the flange may accept a shock ;the wheel radius also varies 

owing to the tread surface slope "/(Fig. 6); then the wheel axle may accept an action in 

the direction of the bent angle. This is the mechanism of the "snake hunting" move- 

ment. Fig. 7 shows the action o{ horizontal forces; creep forces also play an essential 

role in determining the lateral dynamic performance of ra{1 vehicles [4~. 

Fig. 8 shows a mechanical model of vehicle; it consists o{ one car body, two bogies and 
• 

four wheelsets connected with various springs; all data of the Japanese Shinkansen car 

[3-] are used in this study. The total degrees-of-freedom o{ movement are 17 for one 

car, for car body: lateral moving (yB) , rolling (asB) , yawing ( grB ) ; for  bogies (i = 

1 ,2 ) :  lateral moving (YT;), rolling (aST;) , yawing (grT;) ; for wheelsets (i = 1 , 2 , j  -- 

1,2)  :lateral moving (y~; j ) ,  yawing ( g r )  , where/  = 1 ,2represen ts  front and rear 

bogie respectively, j = 1,2 represents former and latter axle respectively ; the effects of 

rolling as~,~ and vertical motion zwij can be neglected; it is different from [3-] for earth- 

quake acceleration ag is considered in this case. The springs are divided into two kinds 

(Fig. 8) .  one is the nonlinear spring with damping; it consists of vertical support 

spring K2 , horizontal spring K3 , axle box spring K1 ; the other is linear spring with- 

out damping. For the bolster anchor spring K0 , suppose the relation between the rela- 

tive yawing angle and the moment has bilinear hysteresis characteristic. The resultant 

F from spring stiffness K and damping C can be obtained from spring displacement q 

and its velocity; q has a limited value q, by a stopper, for example 

q~;~ = ~ y~ ± (--  1);L~B ::P- h2¢B 4- YT~ =~ h,CPT~ 
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Z.T~ 
K,. C, \ j }  

X l  .i- 

X K,. 

b, b, 

mwl 

side A 

sKJe B 

Side A SKIa B 

Figure  8: Mechanica l  model  of veh i c l e [3 ]  

q~i~ 
[qai~ I > qa,, F a , ~ - -  [qa,; I { K , q 3 ,  + K s , (  Iqai~ ] --  q3,) } -+- C,c).;~ (6)  

T h e  o t h e r  no t a t i ons  are 2m~: mass  of car b o d y ,  2IB=and 2IB, : m o m e n t  of iner t ia  of the 

car abou t  x axis and tha t  abou t  z ax is ,  mr  : mass  o{ bogie f r a m e ,  IT= and Iv,  : m o m e n t  

of iner t ia  of bogie  abou t  x axis and tha t  about  z ax is ,  mw:  mass  of whee l  ax le ,  1~ : mo-  

m e n t  o{ iner t ia  of whee l  a x l e a b o u t  its center  o{ g rav i ty ,  2L:  d is tance  of two  bog ie s ,  

cen te r  to cen te r .  T h u s  the dynamic  equi l ibr ium equat ions  of the car are as follows: 

I 
2mByB = F3.1a --  F3.1~ + F3.ZA -- F3.zB + 2tuBa, 

car body 2Inz#B  = (F3.1A --  F3.1B - Fa.ZA "Jr- F3.zB)L - (M1 + M2) 

2I~@B = (Fz ,A --  Fz ,B + Fz zA -- Fz zs)bz + (F3 ,A -- F3.,B + F3,ZA - -  

rnTYTi  = - -  F3.,A + F3.,B + F w y . i , t  "Jc" Fwy.izA - -  Fwy. i iB - -  Fwy,izB + m T a g  

] ITz'~Ti = Mi + (Fw..i,A -- Fv¢=,B-  Fw,..IzA + Fw..izB)bl + 

bogie-~ (Fwy.i,,1 --  F w y . i , ~ -  Fwy.i2A + Fwy.i~s)a 
[ 
[ I T ~ T i  --- ( - -  Fz iA + Fz in)bz + (F3 iA --  F3.is)h, + (FI.qA -- Fl.i,s -+- Fi.iza 

l ,  ( F w y . i , A  - -  Fwy. ;  B "Jr- Fwy. iza - -  Fwy . i zS )  ( H T  - -  r )  

F3.z~)h2 

- -  F l , i ~ ) b  1 + 

(7) 

(8) 
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w h e e l s e t j m w y . . j  = -  Fwy.ijA -{- Fwy.us -- QijA Jr" QijB Jr- mwa. 
I~-~,,.j = ( - -  1)~(Fw..;jA- F w . . u s ) b l -  T~  u 

(9) 

in which horizontal compression Qu; = Q-J~ + Qs;;; ,Q,,j~ .... is horizontal creep force , Qfu, ~ 

is the flange compression (Fig. 7) ,  Qf,-j~ -- K p • Y,o~ , where K p is the spring constant  

f rom tilting action of the rail, y,;j-; is the rail-tilting displacement when the flange col- 

lides against the rail. Restoring moment M of the bolster anchor spring is M = 2KobZoCE 
, relative yawing angle aF = aY E -- g"r , a n d  aFE is a value of ~ within the elastic limit,  

when g" > We . . . .  M has a bilinear relation [3-]. T~,,.i is yawing moment  from the creep 

action. Equil ibrium equations (7) ~ (9) are a t ime-dependent sys tem ; on the basis of 

the above idea, simulation analysis is used. 

The initial condition is that the train passes in uniform speed at the position of the be- 

ginning point of the bent angle portion when t --  0 , and the earthquake acts at the 

same time. 

1.6 

lii .,_.1 
( . -  

(1) 

- i (1) o 0.8 
( . )  

~ 0 . 6  

-u 0.4 

0.2 

0 0  F 
o.ooo 

. - 7...'.: "; ' ' ' ' ' ' ' ;  r ' ' ' ' '" r ' ' ' : ' ' ' ' ' "  

B1 .':¢::/: , ::.::':" 

::;.:' A 1  .... . : : :?t. : : :"" - - - -  o .29  :::iiii l t 
J I ~ I ,, a I , I i I J 

0.002 0.004 0.006 0.008 0.010 bent angle 
(v=3OOkm/h, ag=O. 1 g-O. 3g) 

Figure 9: Horizontal bent angle versus derail coefficient 

Fig. 9 shows the relation be tween  the horizontal bent angle (in radian) and the derail 

coefficient when train speed v = 3 0 0 k m / h  and earthquake acceleration a, = 0 .  lg"~0.  

39; in the f igure,  A indicates inner rail, B indicates outer rail. In the same manner ,  

this angle can be calculated for various parameters (derail coefficient, side compression 

of wheel f lange,  horizontal vibration acceleration of c a r ) a n d  for other vehicle models 

( T G V ,  ICE) and other design earthquake actions. Then the allowable bent angle val- 

ue can be decided in order to.satisfy vehicle-running safety. In our case,  the calculated 
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results are shown in Table 1; earthquake acceleration is a,  = 0 .  2g, it approximately 

corresponding to Richter Magnitude M -- 6 , Modified Mercalli Intensity I = 7 ~ 8. 

T A B L E  1 

ALLOWABLE BENT ANGLE 

Train 

Speed 

k m / h  

300 

350 

Horizontal Bent Angle 0 (1/1000) 

Horizontal Moving (1) 

L < 3 0 m  

3.5 

2.5 

L ~ 3 0 m  

3.0 

2.0 

Folding (2) 

L < 3 0 m  

4.5 

3.0 

L > / 3 0 m  

3.5 

2.5 

Note: L represents girder length or block length of rigid frame viaduct. 

,; ') 'illillilll~~?~ (2) / t " / / I / 1 1 I I ~ ] ~ ~ (  ~ 
(1) L --f ..... ..- 

~- 2L 

r 

A S S E S S M E N T  BY STOCHASTIC PROCESS E X T R E M E  A N A L Y S I S  FOR S E R V I C E -  

A B I L I T Y  OF T R A I N - B R I D G E  SYSTEM U N D E R  R A N D O M  W I N D  L O A D  

For the dynamic interaction of a train-bridge system under wind action, the random re- 

sponses become a complex nonlinear problem owing to the continuous movement of the 

t rain,  which cannot be generally treated as a stationary process. The proposed method 

[-5] is to analyze serviceability by studying the peak distribution of structural  respons- 

es, and transforming their first-passage probability distribution into the extreme distri- 

bution which is more convenient for engineering purposes. The calculation process is 

explaind by an example. Fig. 10 shows a truss bridge stiffened by a flexible arch. The 

dynamic behavior of the train-bridge system under random wind loading is studied. Ac- 

cording to the Chinese bridge code [-6], the transverse wind load per unit area exposed 

to the wind (A = 1) is calculated by the following expression 

W , -  K1K2K3Wo (in Pa) (10) 

7 2 
where basic wind pressure W0 = 1 .6 '  V is wind speed ( m / s e c ) ,  K1 is drag coefficient, 
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[ / f  f f  

l12m 

W$ 

i 

r 

Ws i ~  

_.__Yi 

Y,~j 

- - -  Wb 

Figure 10 : Train-bridge system model 

Kz is gust distribution coefficient, Ka is a coefficient referring to the topography and 

terrain condition. For dynamic analysis, the power spectrum S , , ( f )  of horizontal wind 

speed proposed by Davenport is used 

S. ( f )  - 4KrV~o X[ 
f (1 + X~) */3 (11) 

where X1 = 1200 f /V to ;V lo - -average  wind speed at 10m's height; f - - f r e q u e n c y ;  K r - -  

ground roughness factor (0. 003- -0 .03) .  The random wind speed samples can be ob- 

tained by the trigonometric series [71. Considering the effect of wind-structure interac- 

tion, the response velocity should be considered together with the wind speed; then 

1 K I I 4 K a A V  2 aerodynamic damping C a -- 1.25K~p~,KaA • V and wind force W, -- 1---7-6 

where p, is a coefficient referring to the altitude z of the structure above ground level; 

since the wind gust consists of mean and turbulent components,  p. is used instead of K2 

; here the wind tunnel test for C ° is avoided. 

The vehicie model is the same as Fig. 2, and with the same notations,  basically in the 

same manner ,  the dynamic equations of the train-bridge system acted on by wind com- 

posed of vehicle model and bridge model are [7]E8]: 

Je; Oi +" hiCi Ce,. gi "+" -- hiKi Ke,. 6i 

0 J , i  ~ i  0 0 C,i ~i  0 0 K~,i g"i 
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---- 2 2N,~l t2gi,~(Ko,~q. + Co,~[t.) -- H,G,5(K,q.  + C,q.) + 0 

J=t "=~ [0.  5$jSuGTi(K,q. + C,q.) j 0 

• [K iY , ( xu  ) + Q Y , ( x u )  

+ 2N,o -- h~[K~Y'(xu)  + C'Y,(xu)-]  + 2[K°~O' (xu)  -4- C ~ 0 , ( x u ) ]  

J=t 'LO. 5 $ j S u [ K i Y , ( x u )  + C~Y,(xu)-] 
N Nb¢ N 

M"//. + (C. + C:)q. + K.q. = ~ ~ ~ -- <(G~;'M~,~ + g,5°'J~,~)ig. 
i----I j = l  m = l  

1 1 . • 1 .m 
-4- 2 ~  [(--~-G~'~'C; + g,'~"C6~,)q., + (--~-G, i K,  + g,'~mKo~,)q.,]} 

N v Nbl 
1 1 1 + ~ ~ {-fGTj(K,Y, + CY,) + [(gTjK~,- --fh,K,)O, + (g,'~C~, 2h,C,)O,? 

i=i j=l 

Nq N~ 

+ l~fi,.j(K,g,',. + C,~,)} + ~ ~ {- Ea:~M~,j2,(x,j) + g,SJ~,, + O,(z,j)3 
i = 1  j = l  

1 ,, 1 + 2N,~iG,jEC,Y,(scu) + K,Y.(xu)] + -~--~Eco..,,O,(x,j) + K ~ O , ( x u ) ] }  + W. 

(i = 1 , 2 " ' , N . , n  = 1 , 2 , ' " , N a )  (12) 

in which C~ and W. are respectively the general damping coefficient and the general wind 

force acting on the nth bridge mode. Suppose there are N, joints,  and the modal value 

of the nth mode at the sth joint is ~ . ( s )  ; we have 

N L 

C7, = 1 . 2 5 K t K s V , = t ~ Z . ( s )  --~ = ff.A~ ;W.  -- 1.6 

N L 

- -  ~ K t K s  ~ cI),,(s) --~ ff, Az V 2 (13) 

In Eqn. 12, G~) -- q'.' (x u) -+- hscI'."(xu) ;g'ij -- ~ . " (xu ) ;G~7  -- G~'~ • Gi"};g~ 7' = g~'~ • g~}; 

where q'.' (x u) and q' ."(x u) are respectively the horizontal displacement and the torsion- 

al angle components ,  (x u) means the position of jth wheel of ith car on the bridge. 

In this example ,  the joint number  of the bridge equals 82, the train consists of two lo- 

comotives and six passenger cars,  the total degrees of freedom are 96. Calculation re- 

sults show that  the displacement at midspan under random wind load is 15 ~ 20% 

greater than that  by statical analysis based on the code. 

To avoid the difficulty of directly determining the joint probability distributions of ex- 

tremes of the responses and wind speeds,  the extreme value distributions of sys tem re- 

sponses under certfiin wind speeds are firstly studied with a large amount  of simulation 
.. 

calculations. The joint distributions of system responses and wind speeds are finally 
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obtained by combining extreme value distributions of the wind itself. 

Supposing {x(t;)} (i -- 0 ,1 , - - .  , N )  is the simple sample series of the stochastic pro- 

cess,  the sample set composed of their extremes X = {maxix( t i )  l ; t  E (0,t0) } are also 

random variables. Where to is the lasting time of the structural  vibrat ion,  it is approxi- 

mately equal to the entire time of the train passing through the bridge each time; x( t l )  

is the response series. When the original distribution of the random variable is un- 

known ,  as in the usual case, the asymptotic distribution of N --~ oo is considered. It is 

proved that the extreme value distributions of system responses are close to the first 

asymptotic distribution [7], the PDF and the CDF of which are 

F ( x )  ---- exp [ - -  e-".(~-".)]; f ( x )  - -  a.exp[ - -  a . ( x  - -  u . )  - -  e-°.( '-". )] (14) 

where a, is the extreme intensity function, u, is the character extreme. 

For continuous random variables X (here a dynamic response)  and V (mean wind 

speed) ,  the joint cummulative distribution function when V < v and X > x is 

P(X  > x ,V  < v) = f  f (x ,v)dvdx 
: r  - -  c r z  

= f  f ( x l v ) f ( v ) d v d x =  [1 -- F ( x l v ) ] f ( v ) d v  
x ~ o o  0 

(15) 

where f ( x  tv) is the conditional probability density function of the extreme responses ,  

f ( x , v )  is the joint probability density function. 

Structural  serviceability is defined as the probability of which s tructural  response ex- 

treme X does not surpass i ts . threshold within service period T .  This probability is an 

evaluation index for the br idge ' t ra in system reliability and can be called dynamic ser- 

viceability. Since F x T ( X  % X It " ( T )  = ] - -  PX,T(X > x, t  < T) , we have 

v(T) 

FxT(X < x It < T) = ] -- f exp [ - -  e-",~"-~o>]e-O,("-~o)a,, 
0 

{ [ { 1 ix__ (bo_4_blv+b,vZ)])]}dv × 1 - - e x p  - - e x p  - - a o + a l v 4 _ a 2 v  2 (16) 

where the upper limit of the integration is the maximum expected mean wind speed de- 
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termined by the re turn  period. Taking a bridge in south China for example ,  the local 

annual extreme parameters  for wind speed a re /1 , , - -14 .9~ ,m/s  and a,, = 0. 417.  For a 

given re turn period T -- 100year,  the maximum mean wind speed is 2 6 . 0 m / s .  

The  average passage time T,(x)  is the inverse of the probability of which an event hap- 

pens in one unit period 

1 1 
T . ( x )  - -  P x , T  1 - -  F X , T ( X )  (17) 

The threshold for response X can be calculated from a given service period To . 

T A B L E  2 

D Y N A M I C  SERVICEABILITY INDEXES AND T H E I R  

R E F E R E N C E  THRESHOI . I )S  

Thresho ld  

7" = ] o o  

V = 3 0 . 0  

Horizontal 

Deflexion (mm) 

56 

Japan 

0. 9291 

O. 9208 

28 

UIC 

0. 4262 

0.4178 

Amplitude (mm) 

7.8 ¸ 

China 

0. 2657 

0. 2574 

24.8 

Japan 

O. 9024 

0. 8947 

Bridge 

Accleration (g) 

Vehicle 

Accelera t ion(g)  

0.2 0 .50 

Japan China 
1 

O. 9997 j O. 9999996 
I 

O. 9993 t o. 999993 I 

The calculated dynamic serviceability indexes (DSI)  are shown in Table 2 for 7" = 

l OOyear, V = 26 m/s  and V = 30m/s ;  the latter is the maximum wind speed for an 

empty car. For such a complicated system as bridge-train interact ion,  since wind and 

train loads do not correlate with each other ,  all the DSIs are neither fully correlative 

nor independent .  The system DSI can therefore be estin~ated by the following equation 

l-[ Fxi ~ F, ~ min{Fx, } (18) 

In this example ,  for T = 1 0 0  years and the threshold of Japanese code, the system DSI 

is be tween 0.8381 and 0. 9024. 

Figure 11 shows the distribution of the calculated DSI versus maximum mean wind 
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speed. Th re sho lds  for lateral  deflexion,  ampli tude and accelerat ion of this bridge for 

service p e r i o d T =  1 0 0 y ,  inversely calculated by Eqn. 17, can be 70mm,  45mm and 

160gal respect ively.  

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.2g(acceleration) 
. . . . . .  . .  , . . . . .  

0 1 g(acceleration) 
"... ', 56mm(deflexion) 

• -. ', 24.8(amplitude) 
" ;  • % 

• . % 

• . . 

' " . , . . .  

° - .  . . . . . . . . . . . . . . . . . .  . . . . . .  

28mm(deflexion) 

7.8mm(amplitude) 

! ~ I , , I , 'o , , , v(m/s) 0 5 1 15 2XO 2z5 3XO 
Figure 1 1 :  System DSI versus wind threshold  

For this kind of br idge ,  methods  for design and assessment  aiming at assurance  of 

bridge serviceabil i ty for train and wind interaction should be emphasized.  In this exam- 

ple,  the es t imated  DSIs for lateral bridge deflexion and ampli tude are only 0. 9 or so 

upon the local wind speed distr ibut ion and design period 7 " =  lOOyear, not suitable to 

the Chinese code. 

CONCLUSION 

Al though  the compute r  s imulat ion can be used for the research of t ra in-br idge  s y s t e m ,  

some difficulties remain to be fur ther  s tudied,  for ins tance,  the power spec t rum of rail 

i r regu la r i ty ,  the vehicle hunt ing movement  function and its ampl i tude ,  wave length 

and phase ang le ,  unless it is a case study. It is more rt:~tsonable to use the mechan ism 

of wheel-rai l  in te rac t ion ,  but the exact data of parameters  are necessary.  For the as- 

sessment  of serviceabi l i ty ,  vibration thresholds  to ensure t r a in - runn ing  stabil i ty and 

human comfor t ,  de ter iora t ion  of s t rength  caused by external  loading and envi ronmen-  

tal condi t ions ,  etc. are now fur ther  studied. 
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A REVIEW ON THE NUMERICAL SOLUTION SCHEMES 
FOR LOCALIZATION PROBLEMS 

Z. Chen, X. Xin and D. Qian 
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ABSTRACT 

An introduction is given on the current status of research on localization problems. Numerical 
solution schemes to simulate the evolution of localization are then reviewed in detail. First, 
material integration schemes are discussed for both plasticity and damage models for which a 
continuum tangent stiffness tensor can be formulated for bifurcation analysis. Second, 
structural integration schemes are reviewed for the post-limit responses including snap-back 
and snap-through. Finally, one of the "meshless" methods, the material point method 
(MPM) is introduced for localization problems. Sample problems are then considered to 
demonstrate the robustness and potential of a newly proposed procedure based on the 
moving jump forms of conservation laws. Conclusions and future work are given based on the 
review paper. 

KEYWORDS 

Softening with Localization, Plasticity and Damage, Post-limit Response, Jump Conditions, 
Transition between Governing Equations, Failure Wave 

INTRODUCTION 

For modem engineering design, the limit design methodology based on elastic or yield strength 
might not be suitable in many cases. In dynamic cases such as impact or seismic disturbances, 

l l l  
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the loads are of very short duration so that collapse may not occur even if the limit point is 
reached. Engineering structures are often designed to be statically indeterminate which also 
helps to preclude collapse. In addition, the current interest in explosion-resistant design 
requires the understanding of the post-limit structural responses. Since a significant part of 
energy dissipation in the post-limit regime is associated with the evolution of localization, 
much research has been conducted to investigate the experimental, analytical and numerical 
aspects of localization problems, as reviewed by Chen [1996b], Chen and Schreyer [1994], 
and Xie et al. [ 1994]. 

Localization is manifested by softening or degradation of material properties, which is 
accompanied by localized large deformations in a finite zone. To predict the evolution of 
inhomogeneous interactions among material particles within the localization zone, several 
kinds of unconventional constitutive models have been proposed with the use of higher order 
terms in space and/or time, such as nonlocal (gradient or integral), Cosserat continuum and 
rate-dependent approaches. Although the advantages of these unconventional models over 
conventional (local) ones have been demonstrated for many academic problems, there still 
exist some pressing limitations that prohibit the routine prediction of localization phenomena 
in practical applications. In particular, it might not be feasible, with current computational 
facilities, to perform large-scale simulation of structural failure due to the use of higher order 
terms. Since the shift from a test-based to a simulation-based design environment requires an 
efficient numerical procedure for localization problems, an altemative approach is to catch the 
essential feature of localization phenomena without invoking higher order terms for 
constitutive modeling. 

As can be found from the literature review [Chen and Schreyer, 1994; Chen and Sulsky, 
1995], the key component of various higher order models is an attempt to predict the 
evolution of inhomogeneous interactions among material particles, with mesh-independent 
results. Before the initiation of localization, there is no need to use higher order terms. In a 
macro-mechanical sense, however, the evolution process might be equally well characterized 
by the formation and propagation of a moving material boundary that is associated with a 
local change in material properties. With the introduction of a moving material boundary, a 
partitioned-modeling approach has been proposed for localization problems [Chen, 1993a]. 
The basic idea of the approach is that different local constitutive models are used inside and 
outside the localization zone, with a moving boundary being introduced between different 
material domains, if localization occurs. As a result, the extrapolation of material properties 
beyond the limitations of current experimental techniques can be avoided in identifying the 
evolution of localization, and simplified governing differential equations can be formulated in 
the partitioned domains for given boundary and initial conditions. 

To establish a sound mathematical foundation for the partitioned-modeling approach, an 
attempt has been made to investigate the use of the jump forms of conservation laws in 
defining the moving material boundary, with one-dimensional analytical illustrations for rate- 
independent local models [Chen and Sulsky, 1995]. By taking the initial point of localization 
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as that point where the type of the governing differential equations changes, i.e., a hyperbolic 
to an elliptic type for dynamic problems and an elliptic to another elliptic type for static 
problems, a moving material boundary can be defined through the jump forms of conservation 
laws across the boundary. Jumps in density, velocity, strain and stress can be accommodated 
on this moving surface of discontinuity between two material domains. Interestingly, the 
problems involving the change in the types of governing differential equations also occur in 
other areas such as fluid mechanics [Chen and Clark, 1995] and thermal shock wave 
propagation [Tzou, 1989]. It has been shown that the transition from continuum damage 
mechanics to fracture mechanics might be linked through the moving jump forms of 
conservation laws so that a complete failure evolution process might be simulated with the 
use of simple models [Chen, 1996a and b]. 

Based on the previous research results, numerical solution schemes for localization problems 
are reviewed in this paper. First, material integration schemes are discussed for both 
plasticity and damage models for which a continuum tangent stiffness tensor can be 
formulated for bifurcation analysis. Second, structural integration schemes are reviewed for 
the post-limit responses including snap-back and snap-through. Finally, one of the 
"meshless" methods, the material point method (MPM) [Sulsky et al., 1994; Zhou et al., 
1998] is discussed for localization problems. To demonstrate the robustness and potential of 
a newly proposed procedure that is based on the moving jump forms of conservation laws, 
sample problems are considered for both quasi-static and dynamic cases. Conclusions and 
future work are then given based on the review paper. A direct notation is employed to 
describe the constitutive models, with bold-faced letters denoting tensors of first or higher 
orders. 

EXISTING NUMERICAL PROCEDURES 

Structural solution schemes consist of constitutive model solvers, spatial and temporal 
discretization methods. With a focus on the localization problems, the numerical solution 
schemes are reviewed as follows for nonlinear structural analyses including failure simulation. 

Material Integration Schemes 

To perform large-scale computer simulation, a simple stress-strain relation, that can predict 
the essential feature of nonlinear material responses, must be formulated for structural 
analyses. Nonlinear material behaviors arise from two distinct modes of microstructural 
changes: one is plastic flow and the other is the degradation of material properties. Plastic 
flow, which is reflected through permanent deformation, is the consequence of a dislocation 
process along preferred slip planes as in metals, or particle motion and rearrangement as in 
geologic materials. Because the number of bonds between material points is hardly altered 
during the flow process, the material stiffness remains insensitive to this mode of 
microstructural motion, and change of strength is reflected through plastic strain hardening 
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and apparent softening. On the other hand, the nucleation, crushing and coalescence of 
microcracks and microvoids result in debonding, which is reflected through the damaging of 
material stiffness and strength. In general, both modes are present and interacting although 
some mode might dominate at some stage of the evolution process. Final rupture occurs when 
macrocracks form and propagate from the cluster of microcracks. 

A systematic procedure, which satisfies thermodynamic restrictions, has been used to 
formulate local plasticity and damage models [Chen and Schreyer, 1990b and 1994]. A family 
of incremental-iterative integration rules has also been given with or without the use of a 
tangent stiffness tensor. In general, both the generalized trapezoidal and midpoint rules can be 
employed for the integration of inelastic constitutive equations, depending on the feature of a 
specific model. 

Structural Integration Schemes 

There exist two major computational difficulties in simulating the post-critical structural 
response. One is the occurrence of an ill-conditioned tangent stiffness matrix around critical 
points, namely, limit and bifurcation points. The other is the selection of a suitable constraint 
on the solution path such that the post-critical response can be traced. Since a robust and 
efficient solution scheme is necessary to make failure simulation available in a routine manner, 
several procedures have been proposed to circumvent the difficulties associated with critical 
points [de Borst et al., 1993; Chen, 1993b and 1996b; Chen and Schreyer, 1990a and 1991; 
Pijaudier-Cabot and Bode, 1995]. The standard arc-length control is still commonly employed 
in geometrically nonlinear cases, and with some modifications in materially nonlinear cases. 
Because the material failure zone is localized into a small region, the arc-length constraint 
formulated in the global deformation field is insensitive to the evolution of the localized 
deformation mode. As a result, a suitable constraint should be constructed in terms of a 
localized kinematical field if localized failure needs to be simulated. Due to the fact that the 
localization zone is evolving and there is a sign change of the load increment at a critical point, 
the control point (element) should also vary in position with a suitable measure of failure, and 
the localized constraint parameter that reflects the extent of irreversible energy dissipation 
should be constrained to increase monotonically. 

Preliminary results obtained for plasticity and damage problems indicate that the use of an 
evolving localized control is a reasonable choice for localization problems including snap-back 
or snap-through [Chen, 1993b; Chen and Schreyer, 1990a and 1991 ]. As a remedy to avoid 
the use of an ill-conditioned tangent stiffness matrix around critical points, a secant stiffness 
matrix based on continuum damage mechanics has been used with a dramatic increase in the 
rate of convergence with respect to the rate obtained using a tangent stiffness matrix. In order 
to incorporate both damage and plasticity models into one computer code, it has been 
proposed that an incremental-iterative solution scheme be constructed through the use of an 
initial elasticity stiffness matrix together with an evolving-localization constraint [Chen and 
Schreyer, 1994]. Thus,  only one inverse calculation is required, and the amount of 
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computation involved in the iterative loop is dramatically reduced. It can be found that the 
numerical procedure for tracing the post-bifurcation path depends mainly on the choice of a 
suitable constraint instead of a stiffness matrix. Different constraints generally yield different 
solution paths. In other words, the constraint imposed on the solution path plays a crucial 
role whether or not the stiffness matrix is ill-conditioned. Thus, the dependence of the 
evolving-localization constraint on the location of initial imperfections and on the evolution 
history of localization detects the solution path following the critical point, while the use of a 
well-conditioned stiffness matrix guarantees that a numerical solution can be obtained. 

The Material Point Method 

As one of the innovative spatial discretization methods, the Material Point Method is an 
extension to solid mechanics problems of a hydrodynamics code called FLIP which, in turn, 
evolved from the Particle-in-Cell Method. The motivation of the development was to 
simulate those problems, such as penetration, perforation, metal forming and cutting, which 
involve large deformations, the transition from continuous to discontinuous failure modes and 
the creation of new material surfaces, with history-dependent internal state variables. The 
essential idea is to take advantages of both Eulefian and Lagrangian methods. And also, this 
MPM and other unconventional spatial discretization methods employ the concept of local 
moving interpolation so that local remeshing can be achieved without the cost of global 
remeshing. Although the MPM is still under development, sample calculations have 
demonstrated the robustness and potential of this method [Sulsky et al., 1994]. It is believed 
that the MPM can be developed into a robust spatial discretization method, combined with 
solid modeling and post-processors, for large-scale computer simulation of structural failure 
responses. 

A DEVELOPING NUMERICAL PROCEDURE 

Recently, efforts have been made to simulate the evolution of localization without invoking 
higher order terms, and to fill the gap between continuum damage mechanics and fracture 
mechanics. A developing numerical procedure is presented as follows. 

Based on the previous study [Chen 1996a], a set of moving jump forms of the conservation 
laws is used here to define a material failure criterion that can predict the initiation and 
orientation of localized failure, and the transition between continuous and discontinuous 
failure modes. In a three-dimensional framework, the use of the jump forms of conservation 
of mass and linear momentum would result in 

Vb'n-- PlVl.n-P2V2 .n (1) 
Pl-P2 

and 
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-'01'02n'(v1-v2)l(vl-v2) (0.1 - 0"2)" n 

,01 - 192 
(2) 

if there is a jump in mass density p. In Eqs. (1) and (2), the subscripts 1 and 2 denote field 

variables on the two sides of a moving material surface that has a velocity vb in the three- 

dimensional space, and n is the unit normal to the material surface. The other variables are v 
(particle velocity vector) and 0. (stress tensor), with body forces being omitted. For purely 
mechanical problems where there exists no energy sources or sinks, the conservation of mass 
and linear momentum implies the conservation of energy. Since the evolution of localization 
involves jumps in certain field variables, a material failure criterion is defined based on the 
jump types of the kinematic field variables as follows" 

Localized Failure := 

Discrete Failure := 

v l = v2 and  i~ 1 :/: i~ 2 

v I # v 2 and ~1 ~ ~2 

with ~ being the strain rate tensor. In other words, the change in the jump type of the 
kinematic field variables identifies the initiation of different failure modes. As can be seen, the 
transition from continuous to discontinuous failure modes is characterized by the condition of 
localized failure. Because there is a jump in the strain rate for localized failure, it makes sense 
to claim that a corresponding jump must exist in the mass density due to a jump in the 
volumetric strain rate. The jump in the volumetric strain rate is manifested by micro-cracking 
in the localization zone. The use of Eqs. (1) and (2) then yields 

v l . n  = v e . n  = v b.  n (3) 

and the continuity of the traction across the moving material surface, namely 

((71- (~2)" n = 0 (4) 

for localized failure. Thus, Eqs. (3) and (4) together with a jump in the mass density 
represent the essential feature of localization. 

To examine how the jump in the strain rate is derivable from Eq. (4), assume that side 1 
initiates localization from a weak material point. The stress tensor on side 1 is then related to 
that on side 2 by 

cr 1 = cr~ + T l: Aek (5)  

in which T1 denotes a fourth-order tangent stiffness tensor with minor symmetries, and Aek  

is the incremental strain within side 1 due to the evolution of localization. According to 
Maxwell's compatibility conditions, Aek  must be a rank-one tensor of the form 
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1 
Aek = -d-7. (Am On + n ® A m )  (6) 

2l  

with l being the half-band width of the localization zone. The use of Eqs. (4) - (6) then yields 
the classical necessary condition for a discontinuous bifurcation or loss of ellipticity" 

Q • A m  = 0 (7) 

with Q = n . T l . n  being the acoustic tensor. An eigen analysis can be performed to find out the 

orientation of localization, A m ,  corresponding to a zero eigenvalue of the acoustic tensor. 
However, the magnitude of Am depends on the evolution of localization. If Am is 
determined from a constitutive model, then the jump in the strain rate can be found. 

To determine the jump in mass density, an evolution equation for damage must be defined. It 
is assumed that the shear-induced cracking in a representative volume is governed by a strain- 
based damage surface [Chen and Xin, 1997], 

f -  E -  ~o(1 + moD ) (8) 

where ~' is the second invariant of deviatoric strain tensor, ~o is the critical state parameter, 

D is damage, and mo is a model parameter. With the use of a standard procedure (Chen and 

Schreyer 1994), it can be shown that the damage surface satisfies the thermodynamic 
restrictions and the rate of damage is determined by 

e 
b - ~ . _  (9) 

eomo 

To represent the overall effect of shear-induced local dilatation on the change in mass density, 
an integral average of damage over the representative volume, D,  is used to find 01, namely, 

P' --P2 +(Pro--P2)(1-e-m'-~) (10) 

w i t h  m 1 being a model parameter. As can be found from Eq. (10), 191 =P2 if there is no 

damage, and P~ will approach the maximum value Pm with an increase in D. If Pm is 

reached, phase transformation might occur, a further discussion on which is beyond the scope 
of this paper. Because of P~ > P2 with the evolution of damage, the localization zone will 

expand based on Eq. (1). 

A partitioned-modeling approach is employed in the proposed numerical procedure with a 

total-strain-control scheme, as discussed next. Since the condition of v 1 • n = v 2 • n = v b" n 
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holds across the moving material surface between the damaging and unloading zone, the 
increase in the total strain inside the localization zone would expand the zone. A typical 
example is the formation and propagation of a shear band under uniaxial compression as 
shown in Fig. 1. As can be seen, local micro-cracking (dilation) would push the materials 
inside the band to the boundary of the band so that pl > 19 2 across the moving boundary. 

I I ()  ( )  ( )  ( )  

~ .°,..e. "'r 

o.,e.,o. -°°' 

Figure 1: Evolution of shear band after failure occurs 

To implement a moving material surface into the numerical procedure, a local remeshing 
process is proposed here [Chen et al., 1997]. If the eigen analysis on the acoustic tensor 
indicates that the material is still in the pre-limit stage, no change needs to be made to the 
original mesh. If material failure occurs, the moving speed of the material surface between the 
elastic unloading zone and the localization zone is determined based on the jump conditions. 
For the orientation of the localization zone given by the eigen analysis, a simple remeshing 
process can be demonstrated through a 2-D example as shown in Fig. 2. If the weak element 
is located in the center, a shear band will occur between the boldfaced lines. The unit normal 

obtained from the eigen analysis is given as n = (costx, sintx) in the 2-D space. Due to the 

evolution of the failure process, a new material surface is shown by the dashed lines. 
Assuming the coordinate for a node along the top surface of the shear band is (xl, Yl), and the 
magnitude of the moving speed for the current incremental step is vb,, then the new coordinate 
of this node (Xl ,Yl ) is given by 

X 1 - -  X 1 + V b i A t "  COS a (11 a) 

y( = y~ + V b i A t  . sin a (11 b) 

in which At is the time interval. The same operations will be performed for the other nodes 

along this moving material surface. It should be noted that when a shear band forms, there are 
two moving material surfaces, both departing from the original shear band in the contrary 
direction. Hence, an upper and a lower surface with corresponding normals should be defined 
based on the location of the node. 
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Figure 2 : A 2-D demonstration for the moving material surface and the remesh 
process at a specific node 

In summary, the proposed solution scheme for simulating the evolution of localization 
consist of the following steps: 

Step 1: At the beginning of a new incremental step, an eigen analysis is performed 
on the acoustic tensor for each element. If failure is detected, find the unit normal to 
the moving material surface and record the element number, then go to next step; If no 
failure is indicated, go to step 4. 
Step 2: Based on the jump conditions, the moving speed of the material surface can 
be obtained. 
Step 3" Starting a loop for the elements in which material failure occurs, and update 
the configuration for the nodes inside the localization zone by using Eq. (11). 
Attention should be paid to those nodes shared by two or more elements: only one 
update in the configuration can be made for each of these nodes in a single shear band 
case. For the nodes inside the elastic regime, no change needs to be made. 
Step4: Return to the main program which employs the total-strain-control 
algorithm. 

In the proposed procedure, several assumptions have been made as a result of numerical 
approximation. First of all, in order to get the displacement of the node at the new location, 
certain interpolation is performed in the displacement field, depending on the assumption 
used for a specific type of elements. For example, linear interpolation is applied in the case of 
classical triangular element. In addition, since there is a change in the nodal position along the 
material surface, we can expect a change in the shapes of the corresponding elements both 
inside and outside the localization zone. In this case, we assume that the basic variables such 
as stress, strain and internal variables are the same as the values from the last step for these 
elements. For a small incremental step, this is reasonable and therefore the algorithm can be 
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greatly simplified. The remeshing process is designed so that the size of the localization zone 
is updated based on the moving jump conditions. 

DEMONSTRATIONS 

To demonstrate the robustness and potential of the proposed procedure that is based on the 
moving jump forms of conservation laws, sample results s are presented for both quasi-static 
and dynamic cases. 

Ly 

A 

~ X  

I-~ Lx 

Figure 3" The geometry and notation for a plane problem 

For the quasi-static loading case, the problem geometry is given in Fig. 3. The sizes of the 
specimen are L x -  3m and L y -  6m. Rectangular elements composed of four triangles are 
employed for the simulation. The load is applied such that all the points at the top surface 
will have the same vertical displacements. In addition, all the points at the bottom are 
constrained in the vertical direction and no horizontal displacement is allowed for the left 
most point. An associated von Mises model with bilinear hardening and softening function is 

used, with Young's Modulus E - 50GPa and Poisson's ratio v - 0.2. An initial imperfection 

is introduced by assigning a weaker limit strength in the weak element. With the use of a free 
mesh, the deformation pattern with the local von Mises model is shown in Fig. 4, and the 
corresponding deformation pattern with the proposed procedure is given in Fig. 5. As can be 
seen, the use of a moving material surface expands the localization zone. Figure 6 
demonstrates the mesh-independence of numerical solutions with the proposed procedure. 
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0 X(m) 
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Figure 4: Deformation pattern with local von Mises model for mesh III 

0 X(m) 
0 1 2 3 

Figure 5" Deformation pattern with proposed procedure for mesh III 
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Figure 6" Mesh-independent solutions with the proposed procedure 

For the dynamic case, a bar of length L - l m  is considered here [Chen et al., 1997]. The bar 
is fixed at x=O and loaded at x = L .  A Newmark integrator is used in the time domain with the 
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time step satisfying the standard stability condition. After the limit state is reached at the fixed 
end, the evolution of localization is shown in Fig. 7, and the corresponding decrease of stress 
is given in Fig. 8. Figure 9 demonstrates the convergence of numerical solutions with different 
meshes at t = 3 0 0 p s .  
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Figure 7" The evolution of localization after the limit state is reached 
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Figure 8: The decrease of stress corresponding to Fig.7 

0.010 t E,, 

0.008 

0.006 - x 
,, 

0.004 - 

0.002 - ~ ~  

0.000 , i 
0.0 0.2 0.4 

ne=  10 

ne=  20 

ne=  40 

" -  x (m)  I I I 
0.6 0.8 1.0 

Figure 9: Convergence study with different meshes at t = 300 ~ts 



Review on the Numerical Solution Schemes for Localization Problems 123 

CONCLUDING REMARKS 

Existing numerical procedures for simulating the evolution of localization have been reviewed 
in this paper. To simulate the evolution of localization without invoking higher order terms, a 
developing numerical scheme has also been introduced. As a result, a simple solution 
procedure with the use of local models can be designed for localization problems, if 
localization is considered as a phase transition (diffusion) process. In this procedure, the 
initiation of localization is identified via monitoring the transition between different types of 
governing differential equations, and the evolution of localization is traced by using a moving 
material surface of discontinuity. The proposed p~ocedure has been demonstrated through 
sample problems under dynamic (an elliptic equation inside the localization zone and a 
hyperbolic one outside the zone) and quasi-static (two different elliptic equations inside and 
outside the zone, respectively) loading conditions. The numerical results are consistent with 
the essential feature of localization phenomena. 

Further study is required to apply the proposed procedure to a general case, which involve 
multi-dimensional effects, large deformations, discontinuity, anisotropy and phase transition. 
Although several promising approaches have been proposed for spatial discretization in 
localization problems, it is still a challenging task to tackle different types of goveming 
equations in a single computational domain, because of different temporal and spatial scales. 
Since the design of advanced engineering structures needs the solutions for this kind of 
problems, it is hoped that more innovative ideas will come from the international research 
community in the near future. 
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ABSTRACT 

A so-called c-continuation approach is proposed for the solution of singular optima in 
truss topology optimization. In the approach, we start the optimization process from a 
relatively large value of c, apply the c-relaxed formulation and obtain an optimum design of 
this relaxed problem; then we decrease the value of c by Ae, and choose the design from the 
previous optimization as initial design to begin the next optimization, and continue the 
process until convergence. It is shown by numerical examples that this scheme alleviates the 
dependence of the final solution on the choice of the initial design and increases greatly the 
probability of finding the singular optima from rather arbitrary choice of the initial design. 

KEYWORDS 

structural topology optimization; numerical algorithm; singular optima; relaxed formulation; 

INTRODUCTION 

While many efforts have been made in solving topology optimization problems of truss 
structures, it is well-recognized that there are still serious difficulties in this field. One of them 
is the so-called singular optima phenomenon which prevents the iterative algorithms from 
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converging to the true optimal solution. Singular optima in structural topology optimization 
was first shown by Sved and Gions t11. They found that in some cases, global optimal topology 
could not be obtained by employing the nonlinear programming techniques unless one deleted 
the unnecessary bars from the ground structure in advance. Since then, the phenomena of 
singular optima was studied intensively by many authors. Kirsch t2j investigated the singular 
optima in truss and grillage topology optimization problems. He suggested that singular 
optima corresponds to a singular point in the design space and it is very difficult or even 
impossible to arrive at it by numerical search algorithms. Cheng and Jiang I31 pointed out that 
singular optima appears mainly due to the nature of local behaviour constraint. Illustrating by 
truss topology optimization problems subjected to stress constraints, they demonstrated that 
the discontinuity of the bar's stress constraint function when its cross sectional area takes zero 
value is the essential cause of the existence of singular optima. The authors suggested to 
establish a rational formulation which unifies the sizing and topology optimization and 
enables one to apply the sizing optimization techniques for the solution of topology 
optimization problems. Rozvany t41 studied the singular optima in the light of exact optimal 
layout theory and proposed a precise definition of singular optima. 

Since singular optima is a major obstacle to structural topology optimization, various methods 
have been suggested to overcome the difficulties. Kirsch t51 proposed a design procedure to 
find the optimum of singular topologies by neglecting the compatibility conditions and 
applying linear programming technique. His method is appropriate only when the optimal 
design is statically determined. Recently, Kirsch t6j has presented another two-stage topology 
optimization procedure consisting of reduction and expansion process in order to eliminate 
the problems of singular optima which may appear in the conventional approach. RozvanyETJ 
suggested that for truss topology optimization problems subjected to stress constraints ,smooth 
envelope functions should be used to make the feasible set nonsingular. Recently, a e-relaxed 
approach for the solution of singular optima has been developed by Cheng and Guo t81. In this 
approach, the problem is reformulated by relaxing the local behaviour constraint through the 
introduction of a relaxation parameter c. Under this relaxed formulation, singular optima does 
not exist in the design space, so that one can now apply the sizing optimization technique to 
solve this reformulated problem. It is proved that the solution of the relaxed problem is a good 
approximation of the solution of the original problem as long as c is sufficiently small. 
Although great successes have been achieved by applying this approach for the solutions of 
singular problems, however, it should be noted that this approach cannot locate the global 
optimal solution exactly unless the relaxation parameter e is small enough and initial design 
is properly chosen. Hoback t91 proposed a percent method to find the global optimal design of 
singular problems and presented a number of numerical examples. 

In the present paper, based on the aforementioned c-relaxed approach, a so-called c- 
continuation approach is developed for the solutions of truss topology optimization. By 
applying this approach, in most of the test cases, global optimal solution, even if a singular 
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one, can be obtained from rather arbitrary choice of the uniform initial design. The 
effectiveness of this approach is illustrated by several numerical examples. 

oe-RELAXED A P P R O A C H  

For completeness, in this section, we will describe the e-relaxed approach briefly. The 

problem of truss topology optimization subject to stress constraints can be given as follows. 
Po" to find 

St 

AI,A2,...,AN 
N 

Min W= ~p,l~A, (la) 
i=1 

KUj = Pj j = 1,..., m ( lb)  

O'i L - - %  ~-~0 j =  1,..., M ;  i =  1,2,... ,N (lc) 

cr~-o-y < 0 j = 1,..., M ;  i= 1,2,... ,N (ld) 

A, >_ 0 i = 1,2,... ,N (le) 

As noted in [8], under c-relaxed approach, the problem can be reformulated as follows: 

P • to find A~,A2,... ,A u 
N 

Min W = ~ p,l, A t (2a) 
i=1 

St KUj - Pj (2b) 

(o-~ L - cr~ ) A, < c (2c) 

(or 0 - o'y ) A t < e (2d) 

A i ~_ A~ L (2e) 

where N is the total number of bars in the ground structure, M denotes the number of loading 
cases. A t ,p, ,l~ are cross sectional area, mass density and the length of i-th bar. The superscript 

U and L refer to the upper and lower bounds of the relevant quantities, respectively. 

j = 1, . . . ,M 

j = 1,..., M ;  i = 1,2,..., N 

j = 1,...,-M; i = 1,2,... ,N 

i = 1,2,..., N 

Under this formulation, the stress constraints are relaxed by introducing a relaxation 
parameter e .  It can be seen that for any given ~ > 0, the constraint (2c),(2d) can always be 
satisfied for sufficiently small A t . Thus, in the vicinity of the degenerated subdomain 

corresponding to A i = 0, the measure of the feasible design space is non-zero. Therefore, 

under this formulation, optima is not singular and one can apply the conventional numerical 

search algorithms to arrive at the optima of the relaxed problem. With the help of the theory 

of point to set mapping tl01, it can be proved that the optimal solution of the relaxed problem 

will converge to the solution of the original problem as the relaxation parameter c tends to 

zero. Thus the optimal solution of the reIaxed problem provides a good approximation of the 

corresponding optima of the original problem, even if it is singular. 
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e-CONTINUATION APPROACH 

Although the e-relaxed approach enables one to reach the singular optima by numerical 
optimization, it should be noted that just like most of the optimization techniques, this 
approach cannot locate the global optimal design unless the initial design is properly chosen. 
In fact, the global optimization is still a challenge in the field of structural optimization. From 
mathematical point of view, it is essentially unsolvable. In order to obtain the global optimal 
design, various methods haye been proposed. But unfortunately, these methods are either 
eomputationally expensive or not suitable for the solution of large-scale problems. Thus for a 
practical problem, if global optima is needed, it seems that the best thing one can do is to 
extend the "attractive region" of the global optima if one is not willing to bear the enormous 
cost. The e-continuation approach follows this idea. Its basic steps can be described as follows. 

Step 1. Under e-relaxed formulation, start the optimization process from a relatively 
large value of c and an arbitrary chosen uniform initial design; 

Step 2. Decrease e by Ae, and choose the optimal solution obtained from the previous 
optimization step as initial design to begin the next optimization step; 

Step 3. Continue this until a small desired value of e has been reached. 

G S 

Figure 1" Feasible domain for singular problem 

To explain the idea behind the approach, let us consider a typical geometric representation of 
singular topology optimization (see Fig. 1). There is a degenerated sub-domain in the design 
space and the global singular optima is located at point G in whose vicinity the measure of the 
feasible domain is zero. Under conventional formulation, numerical search algorithms 
terminate at non-optimal solution point S. 

Figure 2" Feasible domain under different values of e 
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Under e-relaxed formulation, the design space for different values of c can be shown in 
Fig.2. Observing these figures, it is clear that under e-relaxed formulation, the shape of the 
feasible domain is rather regular for a large e; with the decreasing of the value of e ,  the 
feasible domain of the relaxed problem approaches more and more that of the original 
problem, but becomes irregular. Since the shape of the feasible domain is rather regular for a 
large e , the attractive region of the global optima of the relaxed problem may also be 
relatively large; therefore the probability with which numerical search algorithms converge to 

the global optima from an arbitrary choice of the initial design is high. Moreover, based on 
the convergence analysis of e-relaxed approach in [8] it has been concluded that the global 
optimal design of the relaxed problem is a continuous function o f t ,  so the optimal designs 
from two successive optimization steps may be very close if the degradation of e is not too 

large. Thus the optimal solution obtained from previous optimization step is a good initial 
design for the next optimization step. In other words, by means of this continuation approach, 
we can choose a proper direction to converge to the global optimal solution of the original 
problem. Numerical examples show that in most of the cases, the global singular optima can 
be obtained by means of this approach without much extra computation effort. 

CONVERGENCE ANALYSIS 

In this section, proof of convergence for our e-continuation approach will be given. It is 
established under the following assumptions. 

Assumpt ion  1 . The original optimization problem P0 has a bounded optimal solution 

Wgpt < +00 . 

Assumpt ion  2. In every optimization step, we can get the global optimal solution W S of the 

relaxed problem P .  

Denoting the feasible set of the design variable associated with problem P0 and problem P~ as 

U 0 and Ue respectively, we have the following lemmas. 

L e m m a l .  Ue, cUe, for c k <ct, c k >_0,c t _>0. 

The proof of this lemma is obvious. 

L e m m a 2 .  I f c  k<C I c k>0 ,C t > 0  thenW °p '>W °p' 
' - -  - -  ~ ek  - -  e l  " 

Proof: Denoting the optimal design corresponding to problem P~ as A~ p' , then from lemma 

1 we have A°P' c Uek c Ue, if c k < c / . Then 
e k 

W °p' In particular, we have W "p' = W ( A  °p`) - inf W(A) _< W(A~ p') = e~ • 
e l  c l  A ~U~t 

opt 
W °p' < Wo "p' = W(A 0 ) for all c k > 0 

~ ' k  m ~ * 

From the above lemmas, we have the following theorem. 
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Theorem 1: For a positive sequence {ek }, ~k ~> Ek+l > 0 and l imc k = 0; then under 
k--~oo 

assumptions 1-2, we have lim W °p' k-.+~ ~'~ ~ W ; p t "  

¢, W Op ̀ Proof: By lemma 2 and assumption 1, it is clear that , ck }is an above bounded 

monotontically increasing sequence. Therefore, from the theory of mathematical analysis, the 
(WOp , sequence , ~k } must have limit lim W °p' = W < Wo p' For the completeness of the proof, it is 

k ~  6t - -  " 

only required to show that W < Wo p' is impossible. Assuming that W < Wo p' , then we can find 

a real number 6 > 0 such that 0 = Wo p' - W -  6 > O. Since lim W °p' = W there exists an 
k ~  Ek 

Iwo , < 0", then for all k > K o integer K o > 0, for all gk such that k > K o, ; ~ - 

WO pt < W - F  O - W ; p t  - W -  (~-I- W - Wgpt  - (~ (3) ek 

On the other hand, based on the continuity result of W °p' (e) with respect to c when c = 0 

which was established in [8], we have for 6 > 0; there exists an integer K~ .> 0, such that for 

all k > K1, ,[W °p'̀~ - W / '  [ < 6 .  So it readily follows that for all k > K 1 , W °p'̀̀ > Wo p' - 6 .  This 

contradicts (4a) when k is sufficiently large. Thus the assumption of W < Wo p' is invalid 

and W = Wo p' holds. The proof is completed. 

NUMERICAL EXAMPLES 

In this section, several numerical examples will be presented to illustrate the effectiveness of 
our e-continuation approach. A program which implements the Constraint Variable Metric 

optimization technique was used as optimizer and another structural analysis program has also 
been developed for the function calculations. All the design variables and constraints are 
scaled. Sensitivity analysis is carried out by means of backward finite difference approach. 

The difference step was T=0.005 for all examples. 

Generally speaking, the starting value of ~ may be chosen'heuristically as long as g0 is larger 

than a critical value %. It is clear that this value is problem-dependent. Setting %=10.0 was 

found to be adequate for all examples shown below. The value of A~ also depends on the 

characteristics of the particular problem; setting ek+~=ek-0.5 often works well. The termination 

value ~ter can be taken as 0.01-0.00001. If ~ter is too small, machine error will predominate; 
thus the effect of relaxation can not be manifested. The symbol SF,IF,RF in the following text 

denotes the stress formulation (1), internal force formulation which impose constraints on bar 

internal force, i.e., set e=0 in (2c) and (2d), and ~-relaxed formulation (2), respectively. 
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3-bar truss example 
A three-bar truss subjected to three load cases (see Fig.3)is optimized. It is a classical 
example from [ 1 ]. E= 1.0,h= 1.0,p= 1.0. The allowable stresses are 
o-ia = +5.0,i = 1,3; o-2a = +20.0. The three loading cases are (a) P=40,c=45°; (b) P=30, c=90 ° 

; (c) P=20,c=135 °, respectively. 

h h 

Figure 3" Sved and Gions' 3-bar truss example 

As was shown t~], its global optimal design is a 2-bar truss, i.e., 
A~ = 8.00, A 2 = 1.50, A 3 = 0.00. This is a singular optima because for this design 

lim o-23 = 20.00 > 5.00, lim o'33 = 21.36 > 5.00 

The optimization results obtained under different problem formulations are listed in Table 1.  

TABLE 1 

OPTIMIZATION RESULTS UNDER DIFFERENT FORMULATIONS 

Final results of different formulations from different initial designs 

A1 

8.0 

0.0 
0.7 

1.0 

1010 
1.0 

10.0 

G1.Opt 

Initial Design 

A2 

2.4 

12.0 

4.0 

1.0 

10.0 

1.0 

A3 

3.2 

18.0 

10.0 

1.0 

10.0 

0.1 

A1 

7.024 

0.000 

0.000 

7.024 

7.024 

8.00 

10.0 0.1 8.00 

8.00 

Relaxed Formulation 

A2 

2.135 

2.828 

2.828 

2.135 

2.135 

1.50 

1.50 

1.50 

A3 W 

2.767 15.97 

8.000 14.14 

8.000 14.14 

2.767 15.97 

2.767 15.97 

0.00 12.81 

0.00 12.81 

0.00 12.81 

Stress 
Formulation 

W-15.97 

W=15.97 

W=15.97 

W=15.97 

w-2-15.97 

w=15.97 

w=15.97 

w=15.97 

From Table 1, it can be seen that under conventional stress formulation, the singular 

global optimal solution cannot be obtained no matter how you choose the initial design. The 

numerical search algorithms always terminate at a local optima. But if the initial design is 

properly chosen, it is possible for c-relaxed approach to arrive at the global optimal solution. 

It is worth noting, however, that if we start the optimization process from an arbitrary chosen 

initial design, c-relaxed approach cannot always locate the global optima. For this example, 
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the global optima cannot be achieved unless the initial value of A 3 is less than 0.1. This 
unpleasant behavior can be attributed to the fact that when the value of the relaxation 
parameter 6 is very small, the shape of the feasible domain may be rather irregular in the 
vicinity of the singular optima; thus the attractive region of the singular optima may be very 
small, so the global optima can be found only when the initial design is very close to it. 

TABLE 2 

OPTIMIZATION HISTORY AND CORRESPONDING ELEMENT STRESS 

C 
5.0 

Continuation History (3' 10.0) 

A1 A2 A3 W 

6.8409 0.8214 0.2406 10.684 

4.0 7.0232 0.9554 0.2075 11.094 
. . . . . . . . . .  

2.0 7.4931 1.2270 0.1149 11.937 

1.0 7.7425 1 . 3 6 3 5  0.05"95 12.371 

0.5 7.8703 1 . 4 3 1 8  0.0317 12.592 

0.1 7.9739 ] 1.4864 0 . 0 0 6 1  12.768 

0 .01  7.9974 
. . . . . .  

0.001 8.0000 

1.4986 0.0006 12.808 

Gl.Opt 

1.4999 0.0000 [ 12.812 

8.0000 i.5000 0.0000 12.812 

Element Stress 
1 2 

5.735 1.680 

0.891 26.087 
. . . .  

-2.028 23.756 

5.570 1.309 

0.694 24.187 

3 

-4.056 

25.197 

25.,783 

-4.261 

23.493 

-2.130 22.150 24.280 

5.267 0.616 -4.651 

0.327 21.630 21.303 

-2.326 20.085 22.410 

0.298 
20.733 

5.129 
0.158 

-4.831 
20.575 

-2.416 1 9 . 3 9 9  21.814 

5.062 0.154 -4.909 

0.082 20.319 20.237 

-2.454 19.080 21.534 
5.013 0.029 -4.983 

0.015 20.067 201052 

-2.492 1 8 . 9 0 5  21.397 

5.001 0.003 "4.998 

0.002 20.007 20.005 
, , ,  

18.860 21.360 -2.499 

5.000 0.000 

0.000 20.001 

-2.500 18.857 

-5.000 

20.000 
21.357 

To illustrate the effectiveness of our c-dontinuation approach, optimizations are performed 
by means of the propose method under different choice of the initial design. Since in practice, 
we have no idea about which bar will remain in the final optimal topology, it is natural to 
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start the optimization process from a uniform initial design. Taking the initial design as 3* 1.0, 
3*5.0, 3'10.0, 3*20.0, in all cases, c-continuation approach gives the same optimal result. 
Table 2 gives the optimization results from initial design 3'1.0 with e 0 -5 .0 .  With 

reference to Table 2, it may be seen clearly that the proposed approach could achieve result 

very close to the global optima of the original problem when e is sufficiently small. It can also 
be observed that with the decreasing of e, all of the constraints can be satisfied to a high 
accuracy. In this example, the termination value of e is taken as 0.001; further iterations did 
not improve the result. Fig.4 shows the continuation history of the structural weight. 

12.5 

11.5 

10.5 

W 

0 o.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Figure 4" Continuation history of structural weight of 3-bar truss 

5-bar truss example 
Fig.5 shows the ground structure. Geometrical and material data are E = 1.0,h = 1.0,p = 1.0, 
allowable stresses are 0% = +5.0,i = 1,3,4,5; a2a = +20.0. Two loading cases are considered; 

they are (a) Pax=0.0, P~y=0.0, Pbx=-5.0, Pby=50.0; (b) P~ =-5.0, P~y=50.0, Pbx=0.0 P b y = 0 . 0 ;  t h e  

optimization results of this example are given in TABLE 3. The global optimal solution of 

this problem is a still a singular one because for the optimal design we have 

llimcr,, I= 15.00 > 5.00, Ilimcr2, I= 7.25 > 5.00 

Y 

h 

/ 
X 

Figure 5" 5-bar truss example 
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Inspection of Table 3 reveals that the conventional formulation generates only non-optimal 

design no matter from what initial design the iteration starts. For e-continuation approach, 

global optimum was obtained. Table 3 gives the optimization results with 5"10.0 and 
eo = 10.0 . Global optimal design is obtained after 7 continuation steps. 

TABLE 3 

OPTIMIZATION RESULTS FOR 5-BAR TRUSS 

A1 

10.0 0.776 

1.12 

Continuation History(5* 10.0) 

A2 A3 A4 A5 W 

1.55 6.23 0.97 11.06 26.933 

11.51 28.551 8.0 1.67 6.68 0.84 

610 1.11 1.87 7.50 0.64 12.14 30.173 

4.0 1.07 2.08 8.33 0.43 12.79 32.657 

1.0 1.01 

0.01 1.00 

0.001 1.00 

GL.Opt 1.00 

SF 7.219 

2.40 9.59 0.10 13.80 33.416 

2.49 9.96 0.01 14.14 33.486 

2.50 10.00 0.00 14.14 33.496 

2.50 10.00 0.00 14.14 33.500 

4.735 4.531 8.795 7.828 39.990 

Hoback's 4-bar truss example 
The 4-bar truss shown in Fig.6 was optimized. This example was discussed by Hoback for 
demonstrating the effectiveness of his percent method for the solution of singular problems. 

The structure is subjected to two load conditions, that is, P t=I 0, P2=0 for load case 1, P 1=0, 
P2=10 for load case 2. The allowable stresses for all members are 20 and 5 in tension and 

compression respectively. 

3 4 
25 

~75 

-" 100 ~ - " 1 0 0  r 

Figure 6" Hoback's 4-bar truss example 

Its global optimal solution is A l = 0.000,A 2 = 0.4286,A 3 = 0.4773 and A 4 = 0.3476. This is a 

singular and static indeterminate design because for this design the limiting stress of bar 1 
violates the constraint imposed on it. The results of e-continuation approach are shown in 
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Table 4. Singular optima was obtained after 7 continuation steps from the uniform initial 
design 4* 10.0 (see Table 4). Optimization from other uniform initial design gives the same 
results. Under conventional formulations, numerical algorithms iterate only to the local 
optimum. Compared with the percent method tgj, e-continuation approach can obtain the global 
optimal solution from arbitrary choice of the initial design without introducing extra design 
variables. And our result is lighter in weight than the one given by the percent method. 

TABLE 4 

CONTINUATION HISTORY, FINAL DESIGNS FROM HOBACK, SF AND IF FOR 4-BAR TRUSS 

A1 A2 A3 A4 W 

2.0 0.0529 0.1451 0.1521 0.1592 79.39 

1.5 0.0481 0.2083 0.2586 0.2021 105.79 

1.0 0.0372 0.2757 0.3361 0.2483 132.66 

0.5 0.0210 0.3480 0.4109 0.2969 159.42 

0.1 0.0046 0.4115 0.4653 0.3373 180.48 

0.01 0.0000 0.4274 0.4757 0.3471 185.15 

0.001 0.0000 0.4286 0.4773 0.3476 185.62 

Hoback 0.0000 0.5600 0.3980 0.3620 191.00 

SF 1.0157 1.0115 0.4939 0.4886 

IF 0.tJ000 1.2500 0.0000 2.1479 
, , ,  

410.69 

500.08 

10-bar truss example 
This example is a modified version of the well-known 10-bar truss problem(see Fig. 7). The 
truss is subjected to two load cases, that is, P~=100, P2=0 for load case 1, P1=0, P2=200 for 
load case 2. E = 1.0E + 04,h = 360.0, p = 1.0. The allowable stress for all members is 20 and 

5 in tension and compression respectively. 

. Pl 

Figure 7:1 O-bar truss example 

To show the superiority of our ~-continuation approach to other methods; the example was 
optimized under different formulations.. The results are listed in Table 5. From the uniform 
initial design 10* 10.0, ~-continuation approach gives the global optimal solution denoted by 
GO whereas algorithms under stress formulations can only arrive at the solution which is non 
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optimal. In Table 6 we list the bar stresses under the two load cases for the two designs 

obtained by the e-continuation approach and the stress formulation. It shows that the solution 

from stress formulation is not the optimum one because for this set of cross sectional area, the 

stress constraint imposed on bar 9 is active though this bar does not exist in the final 

structure. 

TABLE 5 

OPTIMIZATION RESULTS FOR 10-BAR TRUSS 

10.0 

A1 10.09 

A2 8.91 

A3 75.66 

A4 1.04 

A5 0.00 

A6 3.74 

A7 12.81 

A8 2.29 

A9 1.17 

A10 51.25 

W 7017 

, m  

Continuation History (initial design 10* 10.0) 

6.0 1.0 0.1 0.01 SF IF GO 

10.07 9.99 10.00 10.00 10.00 11.43 10.00 

9.33 9.90 9.99 10.00 10.59 8.65 10.00 

77.33 79.64 79.96 80.00 81.24 74.28 80.00 

0.67 0.08 0.01 0.00 0.02 6.06 0.00 
. . . . . . .  

0.00 0.00 0.00 0.00 0.00 0.11 0.00 
, , ,  

4.23 4.90 4.99 5.00 11.30 5.40 5.00 

13.32 1 4 . 0 3  14.13 14.14 22.54 12.47 14.14 

1.44 0.09 0.02 0.00 0.04 9.18 0.00 

0.71 0.12 0.01 0.00 0.00 2.14 0.00 

53.29 56.14 56.52 56.56 96.62 48.94 56.56 

7160 7346 7376 7380 10142 7517 7380 
m 

TABLE 6 

BAR STRESS FOR FINAL DESIGNS UNDER DIFFERENT FORMULATIONS 

C-~ 

SF 

Bar 

Load 1 

Load 2 

Load 1 

Load 2 

Bar Stress 

1 2 3 4 5 

10.00 10.00 -3.75 -9.59 1.73 

20.00 20.00 -5.00 -8.00 0.62 

10.00 9.44 -3.69 0.00 18.78 

20.00 18.88 -4.92 0.00 10.02 

6 7 8 9 10 

20.00 20.00-16.01 13.57 -2.50 

0.00 20.00 -12.19 11.31 -5.00 

8.85 12.55 0.00 20.00 -1.46 

0.00 12.55 0.00 17.38 -2.93 

RANDOM TEST OF THE E-CONTINUATION APPROACH 

The present e-continuation approach is a heuristic algorithm. It cannot guarantee the 

convergence to global optimal solution from any initial design. But as we know, a good 

heuristic algorithm should locate the global optimal solution with high probability. To study 
the practical performance of our e-continuation approach for finding the singular global 

optimal solutions, in this section, a set of random tests are performed by applying the e- 
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continuation approach together with Constraint Variable Metric optimization technique with 
different randomly generated initial designs and checking whether the global optimal solution 
of the problem is attainable. 

3-bar truss example 
Let us consider the above mentioned 3-bar truss example. Using the random number 
generator, the sample space SNU(non-uniform initial design) and SU(uniform initial design) 
of the test are generated respectively. Table 7 lists the optimization results obtained from 
different sets of non-uniform initial designs and optimization algorithms. With 20 randomly 
chosen initial uniform designs,algorithms all converge to the global optima. 

Here symbol S denotes the fact that the singular global optima can be obtained starting from 
the corresponding set of initial design, whereas symbol F denotes that only local optima is 
achieved with this set of initial design. 

TABLE 7 
TESTS FOR 3-BAR TRUSS WITH NON-UNIFORM INITIAL DESIGN 

A ° A ° A ° c 

1 8.91 6.85 1.09 S S 

2 4.30 3.59 9.46 S F 

3 5.35 9.65 10.06 S F 

4 9.00 7.76 2.32 S S 

5 5.29 2.35 8.62 S F 

6 4.36 9.22 10.56 S F 

7 ..... 8.92 8.53 3.71 S F 

8 6.20 1.08 7.64 s F 

9 3.30 8.62 10.88 S F 

10 8.69 9.15 5.04 S F 

11 7.01 2.19 6.51 S F 

12 2.20 7.86 11.00 F F 

13 8.30 9.60 6.29 S F 

14 7.69 3.44 5.28 S F 

15 1.07 6.97 10.92 F F 

16 7.77 9.89 " 7.44 s F 

17 8.24 4.64 3.96 s F 

18 2.06 5.96 10.64 S F 

19 7.10 9.99 8.45 S F 

20 8.65 5.76 2.58 S S 
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Hoback's 4-bar truss example 
In this example, 20 non-uniform and 20 uniform random generated initial designs are used to 

perform the test. The optimization results corresponding to each of the non-uniform initial 

design are listed in Table 8. Again, with 20 randomly chosen initial designs, algorithms all 

converge to the global optima. 

TABLE 8 

RESULTS OF 4-BAR TRUSS WITH NON-UNIFORM INITIAL DESIGN 

A ° A ° A ° A ° 

1 12.00 11.04 6.25 3.22 F F 

2 6.90 1.10 8.17 13.83 S F 

3 5.62 11.15 14.00 12.64 S F 

4 11.90 11.87 7.88 1.25 F F 

5 8.15 2.59 6.57 12.91 S F 

6 4.17 10.15 13.89 13.63 S F 

7 11.58 12.48 9.37 2.73 F F 

8 9.26 4.25 4.85 11.76 F F 

9 2.65 8.96 13.53 14.35 S S 

10 11.04 12.86 10.69 4.67 F F 

11 10.20 5.85 3.06 10.38 S F 

12 1.10 7.62 12.91 14.81 S S 

13 10.31 13.00 11.81 6.54 F F 
, , ,  

14 10.96 7.35 1.23 8.82 S F 

15 2.46 6.14 12.06 15.00 S S 

16 9.39 12.90 12.72 8.30 S F 

17 11.52 8.72 2.60 7.10 S F 

18 3.98 4156 10.99 14.90 S F 

19 8.30 12.57 13.40 9.91 S F 

20 11.87 9.94 4.41 5.27 S F 

5-bar truss example 

For this example, the results of the performed optimizations with 20 non-uniform initial 

designs are given in Table 9. With 20 randomly chosen initial designs except the one 

A ° , A ° , A ° = 1.64, all of them converge to the global optima. 
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TABLE.9 
RESULTS OF 5-BAR TRUSS WITH NON-UNIFORM INITIAL DESIGN 

A ° A ° A ° A ° A g C -  

1 8.91 6.85 1.09 8.30 12.90 F F 

2 4.30 3.59 9.46 11.87 8.72 F F 
/ 

3 5.35 9.65 10.06 5.44 4.56 S F 

4 9.00 7.76 2.32 7.07 12.57 S F 

5 5.29 2.35 8.63 12.00 9.94 F F 

6 4.36 9.21 10.56 6.82 2.90 F F 

7 8.92 8.53 3.71 5.71 12.00 S F 

8 6.20 1.08 7.64 1 1 . 9 1  10.98 F F 

9 3.30 8.62 10.88 8.08 1.21 F F 

10 8.69 9.15 5.04 4.26 11.21 S F 

11 7.01 2.19 6.51 11.60 11.82 F F 

12 2.20 7.86 11.00 9.20 2.48 F F 

13 8.30 9.60 6.29 2.74 10.22 S S 

14 7.69 3.44 5.28 11.08 12.45 1 ~ - F 

15 1.07 6.97 10.92 10.15 4.15 S F 

16 7.77 9.89 7.44 1.19 9.04 S S 

17 8.24 4.64 3.96 10.36 12.84 F F 

18 2.06 5.96 10.64 10.92 5.75 - S F 

19 7.10 10.00 8.45 2.36 7.71 S S 

20 8.65 5.76 2.59 9.45 13.00 S F 

With reference to the above results, the following observations are drawn: 

~-continuation approach has the high probability to locate the singular global optima starting 

from rather arbitrary uniform initial design. It is worth noting that starting the optimization 
process from uniform initial design is natural if we have no idea about the optimal topology in 

advance. Because of this feature, the method provides an ideal tool for singular topology 

optimization problems where the singular global optimum are usually very difficult to achieve 

by other methods. 

For some non-uniform initial design, E-continuation approach can lead to the singular optima, 

though the convergence to singular global optima cannot be guaranteed. However, it is well 

known that global optimum remains open for non-convex mathematical programming. 



140 Guo, Xu and Cheng, Gengdong 

CONCLUSIONS 

For making the most efficient use of resources, in engineering practice, the determination of 
global optima is always highly desirable. By this motivation, a e-continuation approach which 
is a variant version of e-relaxed approach is proposed in this paper. It is based on the solution 
of a sequence of problems constructed by relaxing the constraints to some extent through the 
introduction of a relaxation parameter e. In the limit as e tends to zero, the solution of the 
singular problem is approached. This approach works well for finding the global optimal 
solution of singular problems. By means of this approach, global optimal solution can be 
obtained from rather arbitrary choice of the initial design; thus the initial design-dependency 
problem of the e-relaxed approach is alleviated. Though this approach cannot guarantee a 
global optimum from any initial design, numerical examples show that it does have the ability 
to avoid entrapment by local optima and locate the global optima with high probability. 
Although only truss topology optimization problems under stress constraints are discussed in 
this paper, the method presented can be applied equally to other discrete topology 
optimization problems with various behavior constraints. 
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ABSTRACT 

High performance (HP) elements are simple finite elements constructed to deliver engineering 
accuracy with arbitrary coarse meshes. This paper overviews original developments based on 
parametrized variational principles, which provide a common foundation for various approaches 
to HP element construction. This work led to the template approach. Templates are parametrized 
algebraic forms of finite element stiffness equations. The application of templates to the construction 
of an optimal 3-node plate bending element is outlined. The template approach holds future promise 
in the unification of finite element methods and connection to arbitrary grid finite differences. 
Essential to this unification work is the availability of powerful computer algebra systems. 

KEYWORDS 

Finite element method, variational principles, templates, parametrization, morphing, high perfor- 
mance elements, optimal elements, plate bending, triangular elements, computer algebra systems. 

INTRODUCTION 

The Finite Element Method (FEM) was first described in its presently dominant form by Turner 
et al. (1956). It was baptized by Clough (1960) at the beginning of an explosive growth period. 
The first applications book, by Zienkiewicz and Cheung (1967), appeared seven years later. The 
first monograph on the mathematical foundations was written by Strang and Fix (1973). The 
opening sentence of this book already declared the FEM an "astonishing success." And indeed the 
method had by then revolutionized computational structural mechanics and was in its way to impact 
non-structural applications. 

The FEM was indeed the right idea at the right time. The key reinforcing factor was the expanding 
availability of digital computers. Lack of this enabling tool meant that earlier related proposals, 
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notably that of Courant (1943), had been forgotten. A second benefit was the heritage of classical 
structural mechanics and its reformulation in matrix form, which culminated in the elegant uni- 
fication of Argyris and Kelsey (1960). A third influence was the victory of the Direct Stiffness 
Method (DSM) developed by Turner (1959, 1964) over the venerable Force Method, a struggle 
recently chronicled by Felippa (1995). Victory was sealed by the adoption of the DSM in the 
earlier general-purpose FEM codes, notably NASTRAN, MARC and SAP. In the meantime the 
mathematical foundations were rapidly developed in the 1970s. 

"Astonishing success", however, carries its own dangers. By the early 1980s the FEM began to be 
regarded as "mature technology" by US funding agencies. By now that feeling has hardened to the 
point that it is virtually impossible to get significant research support for fundamental work in FEM. 
This viewpoint has been reinforced by major software developers, which proclaim their products 
as solutions to all user needs. 

Is this perception correct? It certainly applies to the core FEM, or orthodox FEM. This is the 
material taught in textbooks and which is implemented in major software products. Core FEM 
follows what may be called the Ritz-Galerkin and Direct Stiffness Method canon. Beyond the core 
there is an evolving FEM. This is strongly rooted on the core but goes beyond textbooks. Finally 
there is a frontier FEM, which makes only partial or spotty use of core knowledge. 

By definition core FEM is mature. As time goes, it captures segments of the evolving FEM. 
For example, most of the topic of FEM mesh adaptivity can be classified as evolving, but will 
eventually become part of the core. Frontier FEM, on the other hand, can evolve unpredictably. 
Some components prosper, mature and eventually join the core, some survive but never become 
orthodox, while others wither and die. 

Four brilliant contributions of Bruce Irons, all of which were certainly frontier material when first 
published, can be cited as examples of the three outcomes. Isoparametric elements and frontal 
solvers rapidly became integral part of the core technology. The patch test has not become part 
of the core, but survives as a useful if controversial tool for consistent element development and 
testing. The semi-loofshell elements quietly disappeared. 

The words "basic FEM technologies" in the title of this article refers to construction of element- 
level models of physical problems. Frontier topics therein include interface, multiscale, and high 
performance elements. The material that follows deals with the last topic. 

HIGH PERFORMANCE ELEMENTS 

An important objective of frontier FEM is the construction of high performance (HP) finite elements. 
These have been defined by Felippa and Militello (1989) as "simple elements that deliver engineering 
accuracy with arbitrary coarse meshes?' This definition requires further clarification. 

Simple means the simplest geometry and freedom configuration that fits the problem and target 
accuracy consistent with human and computer resources. This can be summed up in one FEM 
modeling rule: use the simplest element that will do the job. 

Engineering accuracy is that generally expected in most FEM applications in Aerospace, Civil and 
Mechanical Engineering. Typically this is 1% in displacements and 10% in strains, stresses and 
derived quantities. Some applications, notably in Aerospace, require higher precision in quantities 
such as natural frequencies, shape tolerances, or in long-time simulations. 
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Coarse mesh is one that suffices to capture the important physics in terms of geometry, material and 
load properties. It does not imply few elements. For example, a coarse mesh for a fighter aircraft 
undergoing maneuvers may require several million elements. For simple benchmark problems such 
as a uniformly loaded square plate, a mesh of 4 or 16 elements may be classified as coarse. 

Finally, the term arbitrary mesh implies low sensitivity to skewness and distortion. This attribute 
is becoming important as push-button mesh generators gain importance, because generated meshes 
can be of low quality compared to those produced by an experienced analyst. 

Tools for Construction of HP Elements 

The origins of HP finite elements may be traced to several investigators in the late 1960s and early 
1970s. Notable early contributions are those of Clough, Irons, Taylor, Wilson and their coworkers. 
The construction techniques made use of incompatible shape functions, the patch test, reduced, 
selective and directional integration. These can be collectively categorized as unorthodox, and in 
fact were labeled as "variational crimes" at that time by Strang and Fix (1973). 

A more conventional development, pioneered by Pian, Tong and coworkers, made use of mixed and 
hybrid variational principles. They developed elements using stress or partial stress assumptions, 
but the end product were standard displacement elements. This approach was further refined in the 
1980s. A good expository summary is provided in the book by Zienkiewicz and Taylor (1992). 

New innovative approaches came into existence in the 1980s. The most notable have been the Free 
Formulation of Bergan and Nyghrd (1984), and the Assumed Strain method pioneered by MacNeal 
(1978). The latter was further developed along different paths by Bathe and Dvorkin (1985), Park 
and Stanley (1986), and Simo and Hughes (1986). 

Unification by Parameterized Variational Principles 

The approach taken by the author started from collaborative work with Bergan in Free Formulation 
(FF) high performance elements. The results of this collaboration were a membrane triangle with 
drilling freedoms described in Bergan and Felippa (1985) and a plate bending triangle described by 
Felippa and Bergan (1987). It continued with exploratory work using the Assumed Natural Strain 
(ANS) method of Park and Stanley (1986). Eventually FF and ANS coalesced in a variant of ANS 
called Assumed Natural Deviatoric Strain, or ANDES. Elements based on ANDES are described 
by Militello and Felippa (1991) and Felippa and Militello (1992). 

This unification work led naturally to a formulation of elasticity functionals containing free parame- 
ters. These were called parametrized variational principles, or PVPs in short. Setting the parameters 
to specific numerical values produced the classical functionals of elasticity such as Total Potential 
Energy, Hellinger-Reissner and Hu-Washizu. For linear elasticity, 3 free parameters in a 3-field 
functional with independently varied displacements, strains and stresses are sufficient to embed all 
classical functionals. Two recent survey articles with references to the original papers have been 
written by Felippa (1994,1996). 

One result from the PVP formulation is that, upon FEM discretization, free parameters appear at 
the element level. One thus naturally obtains families of elements. Setting the free parameters 
to numerical values produces specific elements. Although the PVP Euler-Lagrange differential 
equations are the same, the discrete solution produced by different elements are different. Thus an 
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obvious question arises: which free parameters produce the best elements? It turns out that there is 
no clear answer to the question because the best set of parameters depends on the element geometry. 

The PVP formulation led to an unexpected discovery. The configurations of elements constructed 
according to PVPs and the usual assumptions on displacements, stresses and strains were observed 
to obey certain algebraic rules. Such configurations could be parametrized directly without going 
through the source PVP. This observation led to a general formulation of finite elements as templates. 

FINITE ELEMENT TEMPLATES 

A finite element template, or simply template, is an algebraic form that represents element-level 
stiffness equations, and which fulfills three conditions: 

(C) Consistency: the Individual Element Test (lET) form of the patch test, introduced by Bergan 
and Hansen (1975), is passed for any element geometry. 

(S) Stability: the element stiffness matrix satisfies correct rank and nonnegativity conditions. 

(P) Parametrization: the element stiffness equations contain free parameters. 

(I) Invariance: the element equations are observer invariant. In particular, they are independent of 
node numbering and choice of reference systems. 

Setting the free parameters to numeric values yields specific element instances. 

Constructing Optimal Elements 

By making a template sufficiently general, all published finite elements for a specific configuration 
can be generated. This includes those derivable by orthodox assumptions and those that are not. 
Furthermore, an infinite number of new elements result. The same question posed above arises: 
Can one select the free parameters to produce an optimal element? 

The answer to this question is not yet known for general elements. An unresolved difficulty is 
the definition of unique optimality conditions at the element level. But even invoking reason- 
able criteria, a major technical difficulty arises: the actual construction of optimal elements poses 
formidable problems in symbolic matrix manipulation, because one has to carry along arbitrary 
geometries, materials and free parameters. Until recently those manipulations were beyond the 
scope of computer algebra systems (CAS) for all but the simplest elements. As personal computers 
and workstations gain in CPU speed and storage, it is gradually becoming possible to construct 
optimal two-dimensional elements for plane stress and plate bending. Most three-dimensional and 
curved-shell elements, however, still lie beyond the power of present systems. 

The mathematical theory behind templates is elaborate and will not be pursued in this article. Only 
a few basic results needed for the plate bending example presented in Section 4 are given in the 
next subsection. For further historical and technical details the reader is referred to a recent article 
by Felippa, Haugen and Militello (1995). 

The Fundamental Decomposition 

The stiffness matrix derived through a template approach has the fundamental decomposition 

K -- Kb(ffi) + Kh(~j)  (1) 
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Here Ko and Kh are the basic and higher-order stiffness matrices, respectively. The basic stiffness 
matrix Kb is constructed for consistency and mixability, whereas the higher order stiffness Kh is 
constructed for stability (meaning rank sufficiency and nonnegativity) and accuracy. The higher 
order stiffness Kh must be orthogonal to all rigid-body and constant-strain (curvature) modes. 

In general both matrices contain free parameters. The number of parameters O/i in the basic stiffness 
is typically small for simple elements. For example, in the 3-node KPT elements considered below 
there is only one basic parameter, called c~. Its value must be the same for all elements in a mesh to 
ensure satisfaction of the IET. 

On the other hand, the number of higher order parameters flj can be in principle infinite if cer- 
tain components of Kh can be represented as polynomial series of element geometrical invariants. 
In practice, however, such series are truncated, leading to a finite number of flj parameters. Al- 
though the flj may vary from element to element without impairing convergence, usually the same 
parameters are retained for all elements. 

A 3-NODE KPT ELEMENT TEMPLATE 

The application of the template approach is rendered specific using a particular configuration: a 
3-corner-node fiat triangular element to model bending of Kirchhoff (thin) plates. The element has 
the conventional 3 degrees of freedom: one transverse displacement and 2 rotations at each corner. 
For brevity this will be referred to as a Kirchhoff Plate Triangle, or KPT, in the sequel. 

Stiffness Decomposition 

For the KPT under study the configuration of the stiffness matrices in (1) can be shown in more 
detail. Assuming that the 3 × 3 moment-curvature plate constitutive matrix D is constant over the 
triangle, we have 

A [BxT4DxB + T r Kb -- 1LDLT Kh -- x4 BxsDxBx5 + Bx6DxBx6 ] (2) 
A ' 3 

Here A is the triangle area, L is the 9 × 3 force lumping matrix that transforms a constant internal 
moment field to node forces, Bxm are 3 × 9 matrices relating natural curvatures at triangle midpoints 
m -- 4, 5, 6 to node displacements, and DX is the plate constitutive matrix transformed to relate 
natural curvatures to natural moments. Parameter ot appears in L whereas parameters flj appear in 
Bxm. Expressions of these matrices are given in the Appendix. 

The KPT-1-36 Template 

A useful KPT template is ba',< d on a 36-parameter representation of Kh in which the series noted 
above retains up to the linear terms in three triangle geometric invariants )~1, )~2 and )~3, defined in 
the Appendix. The template is said to be of order one in the )~s. It has a total of 37 free parameters: 
one et and 36 fls. Collectively the template is identified as KPT- 1-36. Instances are displayed using 

the following tabular arrangement: 

element-acronym et ill0 /~20 f130 /~40 /~50 f160 f170 f180 /~90 
fill /~21 j~31 /~41 f151 j~61 f171 f181 fl92 
ill2 fl22 fl32 fl42 fl52 fl62 fl72 fl82 /693 
ill3 fl23 fl33 fl43 fl53 fl63 fl73 fl83 fl93 

(3) 
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Table 1. Template Signatures of Some Existing KPT Elements 

Acronym cr /31j fl2j fl3j fl4j fl5j fl6j fl7j fl8j fl9j 
ALR 0 

AQR1 1 

0 0 0 0 0 0 0 3 0 
- 3  0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 - 3  0 

-1  0 0 0 0 1 0 2 0 
-1  0 0 0 0 0 0 0 0 
0 0 0 0 0 - 2  0 0 0 
0 0 0 0 0 0 0 -1  0 

AQR0 Same as AQR1 except c~ = 0 

AQRBE Same as AQR1 except c~ = 1/~r~ 

AQRV 1 0 - 1 0 - 1 0 0 0 3 1 
- 3  0 0 1 0 0 1 0 0 
0 0 -1  0 0 0 0 0 -1  
0 1 0 0 1 0 0 - 3  0 

AVG 0 - 3 / 2  0 0 0 0 0 0 3/2 0 

BCIZ0 0 - 3 / 2  1/2 1/2 0 0 0 - 1 / 2  3/2 - 1 / 2  

BCIZ1 1 - 3 / 2 - 1 / 2  1/2 -1  0 0 - 1 / 2  3/2 1/2 
0 0 0 1 0 0 1 0 0 
0 0 -1  0 0 0 0 0 -1  
0 1 0 0 1 0 0 0 0 

DKT 1 -3 /2  1/2 0 -1 
0 0 0 1 
0 0 1/2 0 
0 - 1 / 2  0 0 

0 0 0 3/2 - 1 / 2  
0 0 - 1 / 2  0 0 
0 0 0 0 1/2 
1 0 0 0 0 

FF0 0 - 3 / 2  1/6 1/6 - 1 / 3  1/3 0 - 1 / 6  3/2 - 1 / 6  

FF1 Same as FF0 except ~ = 1 

HCT 1 - 7 / 2  0 - 5 / 2  -1  0 0 - 5 / 2  2 - 5 / 2  
3/2 0 0 1 0 0 5/2 0 0 
0 0 5 0 0 0 0 0 5 
0 5/2 0 0 1 0 0 3/2 0 

Setting the 37 parameters to numeric values yields specific elements, identified by the acronym 

displayed on the left. Some instances that are interesting on account of practical or historical 

reasons are collected in Table 1. This represents a tiny subset of the number of published KPT 

elements, which ranges in the hundreds, and is admittedly biased in favor of elements developed by 

the author. Table 2 identifies the acronyms of Table 1, correlated with original publications. 

A historically important subclass of (3) is that in which the bottom 3 rows vanish" f i l l  - -  / ~ 1 2  - -  

• . .  f l 3 9  - -  0. This 10-parameter template is said to be of order zero because the invariants 1.1, 1 . 2  

and 1.3 do not appear in the higher order stiffness. It is identified as KPT-1-9. For brevity it is 
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Table 2. Element Identifiers Used in Table 1 

Name Description 

ALR Assumed Linear Rotation element of Militello and Felippa (1991). 

AQR1 Assumed Quadratic Rotation element of Militello and Felippa (1991). 

AQR0 or-variant of AQR1 with ct = 0 

AQRBE or-variant of AQR1 with ot = 1/~/2; of interest because it is BME. 

AQRV Non-energy-orthogonal variant of AQR 1. 

AVG Average curvature element of Militello and Felippa (1991). 

BCIZ0 Nonconforming element of Bazeley, Cheung, Irons and Zienkiewicz (1966) 
"sanitized" with ot = 0 as described by Felippa, Haugen and Militello (1995) 
Historically the first polynomial-based, complete, nonconforming KPT 
and the motivation for the original (multielement) patch test of Irons. 

BCIZ 1 Variant of the above, in which BCIZ is sanitized with ~ = 1. 

DKT Discrete Kirchhoff Triangle of Stricklin et al. (1969), streamlined by Batoz (1974) 

FF0 Free-formulation element of Felippa and Bergan (1987) 

FF1 Variant of FF0 with ot = 1. 
HCT Hsieh-Clough-Tocher element (1966) with corner-averaged curvature field. The 

original (unaveraged) form was the first successful C 1 conforming KPT. 

written simply as 

l element-acronym c~ /~10 /320 /~30 f140 f150 f160 f ly0 f180 f190 I (4) 

omitting the zero entries. 

Template Genetics: Signatures and Clones 

An examination of Table 1 should convince the reader that template coefficients uniquely define an 
element once and for all, although the use of acronyms has been prevalent in the FE literature. The 
parameter set can be likened to an "element genetic fingerprint" or "element DNA" that makes it a 
unique object. This set is called the element signature. 

If signatures were randomly generated, the number of possible elements would be of course huge: 
more precisely o<937 for 37 parameters. But in practice elements are not fabricated at random. 

Attractors emerge. Some element derivation methods, notably those based on displacement shape 
functions, tend to "hit" certain signature patterns. The consequence is that the same element may 
be discovered separately by different authors, often using dissimilar derivation techniques. Such 
elements will be called clones. Cloning seems to be more prevalent among instances of the order- 
zero KPT-1-9 template (2). Two examples discovered in the course of this study are reported. 

The first successful nonconforming triangular plate bending element was the original BCIZ, pub- 
lished by Bazeley et al. (1966). This element, however, does not pass the lET, and in fact fails 
Irons' original patch test for arbitrary mesh patterns. The cause of the disease resides in the basic 
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stiffness. The element can be "sanitized" by removing the infected matrix as explained by Felippa, 
Haugen and Militello (1995). This is replaced by a healthy Kb with, for example, ot = 0 or c~ = 1. 
This transplant operation yields the elements called BCIZ0 and BCIZ1, respectively, in Table 1. 
Note that BCIZ0 pertains to the KPT-1-9 template. 

Hansen, Bergan and Syversten (1978) reported a nonconforming element which passed the IET 
and (for the time) was of competitive performance. Construction of its template signature revealed 
it to be a clone of BCIZ0. An energy orthogonal version of the HBS element was constructed by 
Nyg~.rd (1986) in his Ph.D. thesis. Its signature turned out to agree with that of the FF0 element, 
constructed by Felippa and Bergan (1987) with a different set of higher order shape functions. Thus 
four apparently different elements coalesce into two. 

Clones seem rarer in the realm of the full KPT-1-36 template because of its greater richness. The 
DKT appears to be an exception. Although this popular element is usually constructed by assuming 
rotation fields, it coalesced with one of the ANDES elements derived by Militello and Felippa 
(1991). At that time the coalescence was first suspected from benchmarks, and later verified by 
direct examination of numerical stiffness matrices. Using the template formulation such numerical 
tests can be bypassed, as it is sufficient to compare signatures. 

OPTIMAL ELEMENT DESIGN 

Given a template with a large number of free parameters, such as (3), the first order of business is 
to reduce their number by imposing optimality constraints. There is as yet no established general 
theory for selecting such constraints at the element or mesh-unit level. 

Several conditions that have produced satisfactory results are discussed below with reference to the 
KPT template. The reader should be cautioned, however, that these may not represent the final 
word inasmuch as templates are presently a frontier subject. 

Observer Invariance Constraints 

The easiest constraints to write down pertain to observer invariance. If the element geometry exhibits 
symmetries, those must be reflected in the stiffness equations. For example, if a triangle becomes 
equilateral or isoceles, certain equality conditions between entries of the curvature-displacement 
matrices must hold. The resulting constraints are linear in the ~s. As these are quite easy to obtain, 

they will not be discussed further. 

Skew and Aspect Ratio Insensitivity Constraints 

In the case of KPT-1-36, 29 linear constraints can be found by requiting that the element be both 
skew and aspect ratio insensitive, or SARI for short. Mathematically this means that the ratio of 
element energy to exact energy remain bounded for all possible mesh units of the form depicted 
in Figure 1, for any possible combinations of length L, aspect ratio r and skewangle ~. Lack of 
boundedness leads to undesirable behavior known as skew and aspect ratio locking. 

It is not difficult to show that no instance of the KPT-1-9 template can satify all of the SARI 
constraints. Consequently any 3-node KPT element whose higher order stiffness does not depend 
on the invariants ~1, ~.2 and ~-3 defined in Appendix A cannot be insensitive to aspect ratio and 
distortion. This property explains, once and for all, why certain elements, such as BCIZ0, are not 
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Figure 1. General triangle geometry used for establishing SARI constraints. 

competitive in general mesh configurations. Thus a template signature of the form (4) is grounds 
for immediate KPT element rejection. 

The technical derivation details of SARI conditions are quite elaborate and will not be given here. 
Suffices to say that it relies completely on symbolic algebra programs because the manipulations 
involved (even for this comparatively simple element) are way beyond human endurance. All SARI 
constraints are linear and geometric in nature, that is, independent of constitutive properties. 

Morphing Constraints 

This is a class of asymptotic optimality constraints that is presently being studied to ascertain 
whether enforcement would be generally beneficial to element performance. 

Consider the 2-KPT-element rectangular mesh unit shown in the center of Figure 2. The aspect ratio 
r is the ratio of the longest rectangle dimension L to the width b = L / r .  The plate is fabricated 
of a homogeneous isotropic material with zero Poisson's ratio and thickness t. Axis x is selected 
along the longitudinal direction. We study the two morphing processes depicted in Figure 2. In 
both cases the aspect ratio r is made to increase, but with two different objectives. 

Plane Beam Limit. The width b = L~ r is decreased while keeping L and t fixed. The limit is the 
thin, Bernoulli-Euler plane beam member of rectangular cross section t x b, b < < t, shown on the 
right of Figure 2. This member can carry exactly a linearly-varying bending moment M ( x )  and a 
constant transverse shear V, although shear deformations are not considered. 

Twib Limit. Again the width b = L~ r is decreased by making r grow. The thickness t, however, 
is still considered small with respect to b. The limit is the twisted-ribbon member of narrow cross 
section t × b, t < < b, shown on the left of Figure 2. This member, called a "twib" for brevity, can 
carry a longitudinal torque T (x). This torque may vary linearly in x. 

Two conditions called morphing constraints are now posed as follows. 

1. Does the mesh unit approach the exact behavior of a Hermitian (cubic) beam? If so, the plate 

element is said to be beam-morphing-exact or BME. 

2. Does the mesh unit approach the exact behavior of a twib under linearly varying torque? If so, 
the plate element is said to be twib-morphing-exact or TME. 

If the element satisfies both conditions, it is said to be beam-and-twib-morphing-exact, or BTME. 
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Figure 2. Morphing a rectangular plate mesh unit to beam and twib. 

The BME and TME conditions can be derived by symbolically expanding transformed mesh-unit 
stiffness equations in Laurent series as r --+ oo. Unlike the invariance and SARI conditions, the 
morphing constraints are nonlinear (more precisely, quadratic) in the free parameters. 

Energy Orthogonality and Energy Balance Constraints 

These constraint types were extensively used in the construction of HP elements over the period 
1984-1994. Energy orthogonality means that the average value of deviatoric strains over the element 
is zero. This condition was a key part of the early developments of the Free Formulation by Bergan 
(1980) and Bergan and Nyggtrd (1984). Recent work has shown that it should not be imposed a 
priori but that it often emerges as a consequence of invariance and SARI constraints. 

Energy balance conditions, introduced by Bergan and Felippa (1985), have been used in several HP 
elements. These impose the exactness of higher order energy for specific mesh unit geometries, and 
can be viewed as a form of higher order patch tests. Their replacement in favor of more physically 
transparent conditions, such as the morphing constraints discussed above, is under study. 

Optimal KPT Element Family 

Application of the invariance, SARI and morphing constraints reduces the 37 parameters of KPT- 
1-36 to one, which is taken to be or. Results obtained with members of this family on benchmark 
problems were presented at the Workshop. They are omitted from this article because of length 

restrictions. 

CONCLUSIONS 

The usual finite element construction process, which involves a priori selection of a variational 
principle and shape functions, hinders the exploration of a wide range of admissible finite element 
models. As such it is ineffectual for the design of finite elements with desirable physical behavior. 
The template approach attempts to implement the hope expressed two decades ago by Bergan and 
Hansen (1975) in the Introduction of their MAFELAP II paper: 
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"An important observation is that each element is, in fact, only represented by the numbers in 
its stiffness matrix during the analysis of the assembled system. The origin of these stiffness 
coefficients is unimportant to this part of the solution process ... The present approach is in a sense 
the opposite of that normally used in that the starting point is a generally formulated convergence 
condition and from there the stiffness matrix is derived ... The patch test is particularly attractive 
[as such a condition] for the present investigation in that it is a direct test on the element stiffness 
matrix and requires no prior knowledge of interpolation functions, variational principles, etc." 

This statement sets out what may be called the direct algebraic approach to finite elements: the 
element stiffness is derived directly from consistency conditions m provided by the Individual 
Element T e s t -  plus stability and accuracy considerations to determine algebraic redundancies if 
any. It has in fact many points in common with energy-based finite differences. 

This ambitious goal has proven elusive because the direct algebraic construction of the stiffness 
matrix of most multidimensional elements becomes effectively a problem in constrained optimiza- 
tion. In the symbolic form necessitated by template design, that problem is much harder to tackle 
than the conventional element construction method based on shape functions. Only with the general 
availability of powerful computer algebra systems, plus the theoretical foundations provided by the 
parametrized variational principles, can the dream become a reality. 
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APPENDIX A. FORMULATION OF KPT-1-36 TEMPLATE 

This Appendix collects the formulas that define the 3-node KPT-1-36 element template. 

Element Relations 

The triangle geometry is defined by the corner coordinates in its (x, y) local system, which are 
(xi,  Yi ), i = 1,2, 3. Coordinate differences are abbreviated a s  x i j  = x i  - x j  and Yij -- Yi -- Yj. The 
signed triangle area A is given by 2A = x21Y31 - x31Y21 = x32Y12 - x12Y32 = x13Y23 - x23Y13 and 
requires that A > 0. The visible degrees of freedom of the element collected in u and the associated 
node forces collected in f are 

ur  = [Uzl Oxl Oyl blz2 Ox2 Oy2 UZ3 Ox3 Oy3]. (5) 

f r  = [fzl -/~xl -~yl  fz2 -/~x2 -~y2 fz3 J~x3 -/~y3 ] • (6) 

The Cartesian components of the plate curvatures are tCxx, ICyy and 2Kxy = tCxy + tCyx, which are 
gathered in a 3-vector ~. In the Kirchhoff model, curvatures and displacements are linked by 

02110 0 2 W 0211) 
= -- 2gxy -- 2 ~ .  (7) tCxx OX 2 , Kyy Oy 2 ' OxOy 

where w = w(x,  y) -- Uz is the plate transverse displacement. In the KPT elements considered here, 
however, the compatibility equations (7) must be understood in a weak sense because the assumed 
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curvature field is not usually integrable. The internal moment field is defined by the Cartesian 
components mxx, myy and mxy, which are placed in a 3-vector m. Curvatures and moments are 
linked by the constitutive relation [mxx I [Oll O12 O13][ xx] 

m = myy -- D12 D22 D23 I¢yy - D~.  (8) 
mxy D13 D23 D33 2tCxy 

where D results from integration through the thickness in the usual way. Three dimensionless side 
direction coordinates zr21, zr32 are zq3 are defined as going from 0 to 1 by marching along sides 12, 
23 and 31, respectively. The side coordinate 7(ji of a point not on a side is that of its projection 
on side ij. The second derivatives of w -- Uz with respect to the dimensionless side directions 
will be called the natural curvatures and are denoted by Xji "-" 0 2 1 / 3 / 0 7 t ' 2 -  These curvatures have 
dimensions of displacement. They are related to the Cartesian plate curvatures by the matrix relation 

O2W O2W 

X221 y221 x21Y21 -~X [X l I [ ] 
X = X32 -- ~ -- x~2 Y22 x32Y32 - ~ y  

X13 x23 Y23 x13Y13 02w 
02W 2OxOy 

the inverse of which is 

"- T -1 tO,, (9) 

02W 
- f l U x  

02w 1 [ , , -  - 

2 02w 
OxOy 

Y23Y13 Y31Y21 

x23x13 x31x21 

Y23X31 d- x32Y13 Y31Xl2 n t" Xl3Y21 

02W 

Y12Y32 
02 w 

X12X32 ~ -- TX. 

YlEX23 -]- XElY32 02tO 

(10) 
The transformation equations (9) and (10) are assumed to hold even if w(x, y) is only known in a 
weak sense 

The Basic Stiffness Template 

Following Militello and Felippa (1991), the ot-parametrized basic stiffness is defined as the linear 
combination 

Kb -- A-1LDL T, L - (1 - c~)L/d- otLq (11) 

where L is a 9 x 3 force-lumping matrix that maps an internal constant moment field to node 
forces. Lt and Lq are called the linear and quadratic versions, respectively, of L. Matrix Lt was 
introduced by Bergan and Nygfird (1984) and Lq by Militello and Felippa (1991). Expressions for 
both matrices may be found in the latter paper. 

The Higher Order Stiffness Template 

For an element of constant D, the higher order stiffness template is defined by 

A (B4TDxB4 + B/DxB5 + B6TDxB6) - (12) 
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where D x - T T D T  is the plate constitutive relation expressed in terms of natural curvatures and 

moments ,  and Bxm are the natural curvature-displacement matrices evaluated at the midpoints  
m -- 4, 5, 6 opposing corners 3,1,2, respectively. 

These matrices are parametr ized as follows. Define the geometric invariants 

X12X13 -~- Yl2Yl3 ~'2 - -  X23X21 -~- Y23Y21 )~3 = X31X32 + Y31Y32 (13) 
~'1 -- X~l -I- y21 ' X22 + y32 ' X23 q- y23 " 

which have a simple physical meaning as measures of triangle distortion (for an equilateral triangle, 

~.1 = ~.2 = ~.3 = 1/2). In the following expressions, the/3-derived coefficients )//and cri are selected 
so that the Bxm matrices are exactly orthogonal to all rigid body modes  and constant curvature states. 

This is a requirement  of the fundamental  stiffness decomposit ion.  Only the expression of  Bx4 is 

given below. Those of  Bx5 and Bx6 follow from appropriate cyclic permutations.  

/~l = /~lO'qt-]~ll~'3"~-/~12~'l-~-/~13~'2 ' 1~2 ~-~ /~20-~-/~21~'3qt-/~22~1-~-fl23~'2 ' /~3 ~--~ /~30-~-/~31~3-~-~32~'1 "~'fl33~'2 ' 

/~4 ~ /~40 -+-/~41 ~3 ~ fl42/~'1 .ql_ ~43~,2 ' /~5 --  /~50 ql._/~51/~'3 "~-/~52~'1 ~/~53~'2 ' /~6 --  /~60 -~-/~61 ~'3 -~- ~62~'1 -~-/~63~'2 ' 

/~7 "-- /~70-~-'/~71~'3-+-/~72/~'1 -+-/~73~'2 ' /~8 --  /~80ql"f181~'a-JC/~82/~'l Jf'/~83~2 ' /~9 - -  /~90"~'/~91/~'3-'~-/~92~1 ~t-/~93~'2' 

}/1 -" fll -+- /~3' }/2 = f13' }/3 "-- f12 -~- f13' }/4 --" /~4 @ f16' }/5 "- 1~6' }/6 = f15 -~- f16' 

}/7 = 137 +/~9, }/8 = 139, }/9 = 138 + 139, 0.1 = -2}/3, 0.2 = 2}/3 - 2Yl, 0"3 = 2}/4, 

0"4 = -2}/6, 0"5 = 2}/7, 0.6 = 2}/9 - 2}/7, 0.7 = 2}/1, 0"8 = 2}/6 - 2}/4, 0"9 = -2}/9 

I 
0"3 

Bx4 = 0"5 
0"v 

0"8 
0.6 
0.2 

}/4Y31 + }/5Y23 }/4X13 -~- }/5X32 0"4 f16Y31 -'1- }/6Y23 f16X13 -I- }/6X32 
}/7Y31 nt" }/8Y23 }/7X13 "nt- }/8X32 0"9 /~9Y31 "t- }/9Y23 f19X13 + }/9X32 
}/lY31 -~- }/2Y23 }/1X13 q" }/2X32 0"1 /~3Y31 -~- }/3Y23 ~3X13 + }/3X32 

f14Y31 d-/~5Y23 /34X13 +/35X32"] 
/37Y31 +/38Ye3 ~7X13 ~ /~8X32 J fllY31 + f12Y23 fllXl3 -~- /~2X32 

(14) 



This Page Intentionally Left Blank



STRUCTURAL OPTIMIZATION FOR PRACTICAL 
ENGINEERING: 

SOFTWARE DEVELOPMENT AND APPLICATIONS" 

Yuanxian GU, Hongwu ZHANG, Zhan KANG, Zhenqun GUAN 

State Key Laboratory of Structural Analysis of Industrial Equipment 
Department of Engineering Mechanics. 

Dalian University of Technology, Dalian 116024, China 

ABSTRACT 
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INTRODUCTION 

With the development of modem computational technologies such as advanced computers 
and software techniques, finite element methods, computer-aided design and engineering, and 
etc., the technology of design optimization is becoming more and more significant in the 
structural engineering. On the basis of theories and algorithms of the optimization, the 
numerical methods and software implementation are particularly important to the practical 
application of the structural optimization technology. In the practical applications of the real 
life engineering, the numerical methods and software implementations of design optimization 
have to be composed of the following components: 

The numerical modeling and simulation of complex structures in the analysis and the 
optimization. 
The structural analysis with general purposed capabilities. 
The efficient sensitivity analysis, i.e. the sensitivity derivatives calculation for structural 
behavior functions. 
The efficient and robust solution algorithms of optimization problems. 
The reliable and applicable software with large-scale numerical computing capability 
and user friendly operations. 

In the past three decades, there was much research on the numerical methods of structural 
optimization and some programs developed. However, most of these kinds existed programs 
are research oriented and insufficient in the capabilities such as the types of elements, loads, 
and variables, functions of analysis, constraints as well as sensitivity calculations, and 
computational scale. This has limited the applications of the structural design optimization 
technology in practical engineering. The problem is that the linkage between the theoretical 
research and the software development, and the requirement of sottware being application 
oriented. Due to the complexity of practical engineering, the above-mentioned facilities are 
necessary for structural optimization softwares. 

This paper presents the development and applications of some numerical methods of 
structural design optimization implemented in the software system JIFEX t~l and its former 
version MCADS t2]. The development of JIFEX software is practical application oriented and 
based on the advanced computer techniques. First of all, the JIFEX and MCADS were 
developed on the basis of general purpose software for the finite element analysis of 
complex structures. Its general purpose analysis for the static, dynamic, and buckling 
problems is supported by the versatile modeling capability to complex structures with 
various elements, loads, and boundary conditions. On the basis of these structural analysis 
and modeling capabilities, the numerical methods of sensitivity analysis have been studied for 
the constraints of static stress and deformation, eigenvalues of vibration frequencies and 
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buckling loads, dynamic responses in the frequency domain and time domain, as well as the 
transient heat transfer in structures. This way, the design optimization model of JIFEX is 
implemented for various elements, loads, variables, constraints, and objectives. 

The JIFEX system is developed on the platforms of Pentium PC and MS Windows 95/NT, 
with the 32bit C/C++ programming tool. The pre-processing of the finite element modeling is 
developed on the CAD package AutoCAD, and implemented the interactive geometric 
modeling and automatically generation of finite element model data. The computing 
visualization under the Windows 95/NT environment is available. The advanced technologies 
of computer sottware and numerical computing make JIFEX to be new generation software of 
structural analysis and design optimization. 

STRUCTURAL MODELING OF ANALYSIS AND OPTIMIZATION 

Firstly, JIFEX software is capable of simulating complex structures by means of various kinds 
of elements, loads, and boundary conditions. Particularly, it simulates boundary support and 
component connection conditions with displacement constraint on each freedom of node in 
arbitrary local co-ordinate system. And the displacement constraints include status of fixed, 
pre-assigned displacement value, and particularly, multi-level master-slave relation. The so- 
called master-slave relation means that the displacement status of a freedom of slave nodes 
can be controlled by (i.e. with the same value of) one master node and this control relation 
can be defined level by level. These methocts make the simulation of complex structures 
convenient and easy. 

The finite element analysis of JIFEX generally applicable to the design optimization of 
complex structures includes the following fundamental requirements: 
• Structural static strength analysis, 
• Free vibration frequency analysis, 
• Dynamic response analysis both in frequency and time domains, 
• Global buckling stability analysis, 
• Transient heat transfer and thermal stress analysis, 

In accordance to the versatile finite element modeling, the design optimization model of 
JIFEX has developed following three types of design variables: 
• Size design variable. It includes the geometric sizes of cross section of various elements, 

such as bar, beam, membrane, plate, and shell elements. 
• Shape design variable. It includes the co-ordinates of special nodes and geometric 

parameters of boundary shape interpolations. Then, the boundary shape of continuum 
structures, the configuration of frame structures, the locations of stiffeners and linkages 
can be optimized. The shape optimization modeling is cooperated with the parameterized 
design concept of the CAD. 

• Composites design variable. It includes the design parameters of composite laminate and 
honeycomb sandwich plates, such as ply orientation, layer thickness, core height, and 
material parameters of special composite components. 
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The design constraint functions of JIFEX95 cover the following structural behaviors: 
structural weight, node displacement, stresses, vibration frequencies, dynamic displacement 
and stress responses, and buckling loads. The design objective function can be selected 
from any one constraint function or combined with several constraint functions. This way, the 
objective of design optimization can be 
= Minimizing structural weight, 
• Reducing structural stress and/or deformation, 
• Improving structural stiffness, 
• Increasing structural fundamental frequency or adjusting the distribution of a group of 

vibration frequencies, 
• Minimizing structural dynamic responses, 
= Increasing structural buckling loads, 
• Multiple objectives optimization. 

The basic feature of the modeling and simulation facilities of JIFEX is its general 
applicability to complex structures. This applicability is presented from the finite element 
model, analysis functions, design variables, design constraints, and optimization objectives. 
JIFEX is also capable of large-scale engineering computing. The finite element model with 
100000 nodes can be computed with Pentium PC. Some analysis applications of practical 
structures with this scale have been completed. 

STRUCTURAL SENSITIVITY ANALYSIS 

The optimization solution algorithms of JIFEX are sequential linear programming and 
sequential quadratic programming. The solution efficiency and convergence stability of these 
algorithms are based on the sensitivity analysis on the constraint and objective functions. The 
difficulty of sensitivity analysis for the general purpose optimization software such as JIFEX 
is that it must be suitable to various elements, variables, and structural responses. The 
numerical methods of sensitivity analysis have been studied for (1) static stress and 
deformation, (2) eigenvalue problems of free vibration and buckling stability, (3) frequency 
response problem, and (4) transient problems of dynamic response in time domain and heat 
transfer in structures. 

Static Strength Problem 

The sensitivity derivatives of displacement vector U and stresses o are calculated with Eq.(2) 
derived from Eq.(1), the finite element formulation. The K and P are structural stiffness matrix 
and load vector respectively, S is element stress matrix, subscript e denotes element. 

KU=P,  cr=SeU , (1) 

x u ' =  p ' -  xz , d -  s'u, + s y ;  (2) 
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Eigenvalue Problems 

The eigenvalue problem can be expressed as below 

K~b- 3M~ = 0 (3) 

Two kinds of eigenvalue problems have been considered: (a) The free-vibration, M is mass 
matrix, and ;t is the square of vibration frequency; (b) The buckling problem, M is geometric 
stiffness matrix, 2 is critical load factor. The derivatives of the eigenvalue are obtained by 
Eq.(4). 

2. ' -  ~b r (K'-AM')~b (4) 

qbr Mq~ = 1 

The following Rayleigh quotient can be used to improve the approximation accuracy of the 
eigenvalues. 

~j(x): uj(x)/~(x) 

O , ( x ) -  v , (Xo)+  ev ,  .. . er,. : , , ,  (x, - Xo,), r , . (x )  = r, .(Xo) + 2 = - ~ r . ,  - Xo,) 
~=1 ~=l v'  x, 

(5) 

where Uj and Tj are modal strain energy and modal kinetic energy of the j-th eigenvector. 

For the buckling problem, Eq.(5) is approximate since M depends on pre-buckling stress field. 
The accurate derivatives are 

,~' = #~ (K ' -  aM')~ + ~A~ K'U~ (6) 

where Us is pre-buckling displacement, and the adjoint field A is obtained by 

KA : -{D(#rMqk)} r (7) 
cTJ B 

Dynamic Frequency Response Problem 

The dynamic frequency response problem is formulated as below 

Mii + Cft + Ku = f (8) 

The C is damping matrix. The harmonic exciting is expressed asf=foCos(0t)orf=foSin(0t). 
Two kind of loads fo are dealt with: (a) the node-force load exciting is fo = P, (b) the 
accelerate movement exciting is fo = -MAUo. u o is the rigid displacement vector with unit 
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movement, A is accelerate scope. The displacement response of Eq.(8) is: 

u - s sin(0 t) + c cos(0 t) (9) 

With the modal superposition method, the derivatives of eigenvectors are required. It is 
difficult in the case of repeated eigenvalues. Following subspace iteration method and direct 
eigenvector space method are implemented in JIFEX. 

Subspace  i terat ion m e t h o d  

Starting from trial vectors qj(0), compute eigenvector derivatives by following subspace 
iteration procedures with k=0,1,2,. ..... 

(a) Inverse-iteration: 
( K  + o M ) V  (k+° - f f  + Mq/(k) (10) 

w 

F - M'~bp - ( X '  + ~ ' ) W  

W -  ~pp- l ,  p = Ap + ¢rI 
( l l )  

Ap and ~p are p eigenpairs, o is shift value. 

(b) Projecting into trial vector space for eigenvector derivatives: 

/(D (k+° - A~/D(k+')Ap = A~A]. + A ~ ' ( k + 0 p A p  - ~,(k+,)p (12) 

~,(k+l) _ W r K , W  + W r K V  ~k+° + (W rKV(k+°) r 

l~l'(k+') = W r M ~ V  + WrMV (k+' + (WrMV(km) r 

- Wr  K W ,  I~t - Wr  M W  

(13) 

(d) Updating the trial vectors and convergence checking: 

T(k+~) _ V(k+Op + W D  (k+~) 
(14) 

The Nelson's method is used to solve Eq.(12) for repeated eigenvalues. 

Eigenvec to r  space  m e t h o d  

Let C be independent to variable, excitingf=foCos(0t). Differentiating Eq.(8) gives 

Mii '  + Cit'  + K u '  - f s  sin(0 t) + .[c cos(0 t) 

f s  - M ' s 0 2  - K's ,  f c  - M ' 0 2 c  - K 'c  + f o  
(15) 
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Solving Eq.(15) in eigenvector space twice with respect exciting fsSin(0t) and fcCos(Ot) 
respectively, we have 

s Ss sin(0 t) + c s cos(0 t) 
U' c = sc sin(0 t) + c c cos(0 t) 

(16) 

Then, the derivatives of u can be obtained 

{u}' : {u~ }' + {u~ }' : ({S~ } + {S~ })Sin0 t + ({C~ } + {Co })CosO t (17) 

Both of the methods have advantages of easy to be implemented on the basis of dynamic 
analysis, computational efficiency and accuracy, but without difficulty of eigenvector 
sensitivity calculation with repeated eigenvalues 

Transient Problems 

The motion equations and critical-point constraint of transient problems can be written in a 
general first-order form 

Air = f (u,a, t) ,  u(a,O) = u o 

g ( u , a ) -  f ' p ( u , a , t ) d t  < O, p (u ,a , t )  - g(u ,a , t ) f i ( t - tm~)  

(18) 

(19) 

where u is response vector, a is design variable, g is a general form constraint function, t 
denotes time. The sensitivity analysis with the direct method and the adjoint method are 
implememed with Eq.(20) and Eq.(21) respectively. 

A dit _ j _ _  
dot 

du dA i, + f 

d a  d a  Oa'  

AT2 + (jT + AT ))t, --" 0 ,  

du(a,O____.__~) = 0, J, j. = ~ (20) 
d a  ' &tj 

A T 2(t,,, ) = --.c3g(tm, ) (21) 
\ &l 

For the transient heat transfer problem, the finite element formulation is 

M T + K T = Q = P + ~  (22) 

where M is the heat capacity matrix; T is the vector of node temperature; Pb is reduced by the 
given temperature on the boundary. With the implicit 0-difference method, the temperature 
T "~' of time t,+~ is computed from T' with 

v + x)r  (a,,~l + K)T  "+' - (a,,M - b K ) T "  +-0 (23) 

a ,=l / (OAt , ) ,  b = ( 1 - O ) / O ,  0 < 0 < 1  
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With the direct method, the derivatives of temperature are computed by solving Eq.(24) 
simultaneously with the solving of Eq.(23) at each time point. 

(a,,M + K = (a,,M - bK + a,, - - -  b T" 
aa  d a  da  

dP ~ 
+ ~ -  a n ~ +  + Oda da  da  

(24) 

The derivatives of equivalent constraint are calculated at critical points as follows 

da  • c3T d a  
(25) 

With the adjoint method, the derivatives of the equivalent constraint are computed as below 

dg = ~f, (t., ) _ 2z (t.. ( OO dK 0g (t..) (26) ~ I ' ( t . . ) - - d - ~ a T ( t . . )  , MT2(I,,n) - - ~  

For the generality of sensitivity analysis with respect to various design variables, elements, 
load and boundary conditions, the semi-analytic scheme simplified the programming 
implementation a great deal. The structural optimization is available for the design on the 
multiple behaviors of strength, stiffness, vibration frequency, buckling stability, and dynamic 
responses. 

USER INTERFACE WITH ADVANCED PLATFORM 

The development of JIFEX follows the strategies of." 
• Using Pentium PC as the basic hardware environment and implement 32-bit computing 

for large-scale engineering applications. 
• Using the MS Windows 95/NT as the standard platform, and implement unified graphics 

interface and computing visualization. 
• Using the C/C++ programming tools for complete software system and make it 

compatible with MS Windows 95/NT and other CAD packages. 
• Integrate the finite element modeling with popular CAD package AutoCAD, and employ 

it as the geometric modeling engine. 

J I F X  has integrated the structural analysis, sensitivity analysis, design optimization, pre- and 
post-processing for practical application of general purpose engineering. Since the system is 
developed on the advanced software platform of MS Windows 95/NT, its interactive graphics 
interface is user-friendly and unify to the standard Windows 95/NT environment. And the 
multiple processing facility of Windows NT is employed to implement the distributed 
computing and visualization. The combination of the advanced software technologies and 
numerical computing methods make JIFEX to be new generation software of structural 
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analysis and design optimization. 

The pre-processing of the finite element modeling is implemented on the basis of popular 
CAD package AutoCAD, with which as the geometric modeling platform. The interactive 
geometric modeling and automatical generation of finite element model data has been 
implemented, and the finite element modeling is linked with CAD directly. The geometric 
model of structures is constructed with AutoCAD easily, and then the finite element mesh is 
generated with a group algorithms developed in JIFEX. All of the attribute data of finite 
element model, such as load, material, element property, boundary condition, can be produced 
interactively. The Figure 1 is the finite element model of a complete containership generated 
by JIFEX. 

~ b / , N " , a - , a  

Figure 1" Finite element model of containership 

The computer graphics and computing visualization under Windows 95/NT environment is 
available. Besides the conventional facilities of computer graphics, such as hidden line and 
surface removal, shading, contour, color filling, computer animation and etc., the advanced 
visualization technique of direct volume rendering and iso-surface have been developed in 
JIFEX for the 3D data field visualization. By means of the multiple processing and DDE 
support of the Windows 95/NT, the distributed computing and visualization has been 
implemented for structural analysis and optimization. 

APPLICATION EXAMPLES 

Example 1. The design optimization of a structural component of the launch rocket CZ-2E. 
The upper-stage component of the rocket is modeled with 580 nodes and 1460 elements, 
shown in Figure 2. The objective is to minimize the structural weight under the constraints of 
the structural fundamental frequency, the maximum stresses and deformations. There are a 
total of 20 master design variables to control all elements by means of the variable-link. These 
design variables are classified into three groups to represent: (1) the thickness of plate 
elements; (2) the size parameters of beam cross-sections such as the L-shaped, the I-shaped, 
and the complicated shape shown in Figure 3(a); and (3) the size parameters of milled regions 
of some plates shovv~a in Figure 3(b). So the design model is rather complicated. The upper 
and lower bounds of the design variables are given by considering the design and 
manufacturing requirements. In the optimum design obtained, the structural weight has been 
reduced from the initial design by 12% and all of constraint conditions are satisfied. This 
optimization result indicates a great improvement over the initial design. 
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Figure 2: The rocket component 

unmi l l ed  t = 8 m m  

r t 
I . _ t 5 o  

l°° / 

/ 

_1_ _ mi l l ed  t = 2 m m  u - I -  - I  
Figure 3(a) Figure 3(b) 

Example 2. The dynamic synthesis of a spaceship orbit-module structure. The structural finite 
element model, shown in Figure 4, is composed of 369 shell and beam elements. The 
thickness of the shells and area of the beams are represented by 11 master design variables. 
Two problems are computed as follows. 

(1) The optimum design of fundamental vibration frequency with weight constraint. Two 
group results of optimization have been obtained with different cxmstraints of the structural 
weight. The first one is that the structural fundamental vibration frequency is increased by 9% 
without increasing weight, and the second one is that the structural fundamental vibration 
frequency is increased by 16% with the weight increasing by 9°4. 

(2) The design optimization with constraints on structural dynamic responses and flee- 
vibration frequencies. The accelerated movement of the spaceship during the launch period is 
considered as the excitation source of structural dynamic response. The excitation frequency 
of accelerated movemem changes from 42(HZ) to 55(HZ). The maximum value of 
displacement responses within this excitation frequency band is checked and put into 
constraints. The initial value of the maximum displacement response is 0.202, and its upper 
bound is limited by 0.22. The optimum design has reduced structural weight by 7% and 
satisfied all of the displacement response and vibration frequency constraints, shown in the 
Table 1. It is noticeable that the first two vibration frequencies are also repeated eigenvalues. 
Both of them are computed in optimization, and kept due to the symmetric variable-link. 

Example 3. The design optimization of a spaceship orbit-module structure with the constraints 
on displacement, vibration frequency, and critical buckling load. The structural model is same 
as that of the example 2. The thickness of the shells and area of the beams are represented by 
13 master design variables, six variables of cross-section area of beams and seven variables of 
thickness of shells. There are also 2000kg non-structural masses attached to cylinder nodes. 
The load is gravity due to the acceleration movement in z-direction. The optimization 
objective is to minimize structural weight W with the constraints on the maximum 
displacement in z-direction Win, x, the fundamental vibration frequency to~, and the critical 
buckling load factor ~,cR. The constraint conditions are listed in Table 2. The optimum design 
is obtained after 6 iteration, and the structural weight is reduced by 9.5%. The design 
variables are listed in Table 3 with the initial, optimum, up- and low-bound values. 
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TABLE 1 
SPACESHIP ORBIT-MODULE OPTIMIZATION 

Initial Optimum 
, , 

ol/0~a~ 1.046 1.015 

ozlo~m, 1.047 1.016 
. . . . . .  

w,,~, (mm) 0.202 0.22 

Weight/W o 1.0 0.93 
. . . . . . . . . . .  

TABLE 2 
SPACE ORBIT-MODULE OPTIMIZATION 

Constraints 

~'CR _>0.650 

o~ >10.00 

wm,~ >-2.000 

W/W o 

initial 

0.703 

Optimum 

0.650 

10.28 10.01 

-1.809 -1.930 

1.0 0.905 
, ,  Figure 4: The Spaceship orbit-module 

TABLE 3 DESIGN VARIABLES OF THE SPACE ORBIT-MODULE STRUCTURE 

Design Variables Initial Optimum Up-bound Low-bound 
Beam variable 1 477.00 441.20 420.00 

Beam variable 2 477.00 

Beam variable 3 158.00 
Beam variable 4 

Beam variable 5 

158.00 

158.00 
Beam variable 6 158.00 
Shell variable 1 10.00 
Shell Variable 2 3.00 ' 
Shell variable 3 
Shell variable 4 

Shell variable 5 

2.00 
2.00 

, , 

2.00 

Shell variable 6 5.00 

Shell variable 7 6.00 

500.00 

500.00 

140.30 

441.20 420.00 

140.30 170.00 130.00 " 
170.00 130.00 

140.30 170.00 ' 130'.00 
140.30 170.00 130.00 

. . . . . . . . . . . .  

9.16 10.00 8.50 
3.20 3.50 2.50 
1.64 

. . . .  

2.50 
2.50 

2.50 

1.64 

1.64 ' 

1.50 

1.50 

1.50 
, ,  

4.64 5.50 4.50 

'5.60 .... 6.50' 5.50 
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ABSTRACT 

In this paper, parallel implementations of the explicit/implicit integration algorithms for 
dynamic analysis of structures are presented. The parallelism of the former is based on the 
domain decomposition method and the use of lumped mass matrix. That of the latter is on the 
block parallelization of the assembling, the triangular factorization of the equivalent stiffness 
matrices and the back/forward substitutions in each Newmark step. Implementations are 
carried out on the clustered network systems with PVM parallel environment. The developed 
parallel integration algorithms are incorporated into the PFEM, which is a general-purpose 
serial-parallel mixed system tbr structural analysis. Illustrative examples are presented and the 
parallel efficiencies are discussed. 

KEYWORDS 

Explicit/implicit integration method, parallel algorithm, clustered network system 

LNTRODUCTION 

The parallel integration algorithms for dynamic analysis of large structures have been topics 
in the engineering analysis community for quite some time. Noor(1979) discussed the parallel 
explicit integration method on pipeline vector computer. On shared memory MIMD parallel 

" Supported by the NNSF of Clmla (19670232) and file Foundation of National Education Commission of Cluna. 
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computer, Ou(1986) compared parallelization for explicit and implicit integration and 
concluded that the central difference method is favorable with diagonal mass matrix and 
damping matrix. Hajjar(1989) discussed the parallel efficiency of the central difference 
method for 3D nonlinear truss structure on distributed memory MIMD computer and 
presented a data structure to decrease communication. Chiang(1990) parallelized the central 
difference method on two kinds of MIMD environments and demonstrated that data 
communication is of key importance to improve parallel efficiency. Cheng et al. (1995, 1996) 
developed explicit integration algorithms on Transputer computer. The available literature on 
parallel explicit integration is mostly developed on vector computer or shared memory MIMD 
parallel computer. 

In China the PCs usually serve as main hardware for structural analysis. The motivation of the 
current research of the authors is to enhance the capacity of PCs through network and parallel 
computing, aiming at solving more complicated dynamic problems of structures in available 
hardware. In this paper, explicit/implicit integration methods, namely, central difference 
method and Newmark method are parallelized on the clustered network system. The 
parallelized algorithms have also been incorporated into a general-purpose finite element 
system- PFEM. 

THE PARALLEL CENTRAL DIFFERENCE METHOD 

The dynamic equations of linear structures at time t can be generally expressed as 

M(7~ + CO~ + KU, = R, (1) 

where M, C and K stand for the mass, damping and stiffness matrices respectively, and 
u , U , U  and R are, respectively, the displacement, velocity, acceleration and applied loading 
vectors. 

The employed explicit central difference scheme for the damped structures is as follows, 
which requires no matrix factorization: 

Mf), = R~ - ( cu ,  + KU,) (2a) 

M U r -  k, (2b) 

where R , - R , - ( c U ~ + K U , )  

O~ -- 0~+~"2 - 0~-""2 , U , -  U~+A, - U~ (3a,. b) 
At At 

Domain decomposition method is one of the most important and mature methods, the 
superiority of which is easy to implement on distributed memory MIMD environment. For 
the central difference method, it is very instructive to design the parallel programs and 
improve the parallel efficiency on the base of substructure. 
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Assuming that the parallel computer system consists of np processors, the engineering 
structure should be divided into np substructures. In the meanwhile, we must decide the 
elements of each substructure and the 'correlative elements' which relate directly to each 
substructure but belong to the neighboring one. Then at the time steps, each processor 
calculates the displacement, velocity, acceleration and stress for every element in the 
respective substructure independently. Only the displacement of the 'correlative element' at 
the last time step should be transferred between the related processors. 

With diagonal M and the Rayleigh damping, the equations of motion can be reformulated: 

R ,  - R~ - a M  (: - ZK;:e;(br2f  ~; + v f  ~)  
t 

(5) 

Now, the detailed algorithm steps can be described as follows: 

1) Preprocess: Decompose the structure and decide the elements belonging to each 
substructure and then construct the 'correlative elements' information table 

2) Initial calculation (parallelized on the substructure level) 

a) form the element stiffness matrix K/e and the diagonal mass matrix M (') , where 

s=l, 2 . . . .  ,np 

b) initialize Uo,g..? o and Uo 

c) calculate 

at f2,., + 0,, (6) 
A t , '  2 - - "  _ . 2 

UAt = 8at 2At + U o (7) 

0~, = f)oAt + 0o (s) 

3) For each time step(parallelized on the substructure level) 
a) communicate between processors, transfer the displacement and velocity of the 

'correlative elements' of each substructure to each other 
b) calculate the effective load of each substructure at the time t 

k~ ~~ - R{ ~ - ~M~'~ t ;~  - Z ~ ~  (brr~.~ ~., ~ + "~ ..,'~ ) (9) 
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T?(e) ~f(e) where ~ K~e~(b.~t(,) + _~(,)) is the contribution of the elements and the 

'correlative elements' of the substructure to the effective load 
c) calculate the acceleration at the time t 

where "-(')is the number I element of the effective mass matrix, and assume that I n  ii 

(~) >0 mii 

d) calculate U~+,~t.: , Ut+,~t,: 

4) Output the computational results if required, then turn to 3) for the next step, else stop at 
the last step. 

It is noteworthy to point out that the parallel efficiency of this parallel algorithm on the 
substructure level is dependent on the structure decomposition. Thus, when decomposing and 
dispensing the substructures, we should pay attention to two points: 

1) Balance load among different processors as possible as we can get. Otherwise, the 
parallel efficiency will be decreased because of the heaviest loading processor 
following the Amdahl principle. 

2) Interfaces between the substructures (also the number of the correlative elements of 
each substructure) should be minimized to decrease the communication between 
processors and the computation repeatedly. 

PARALLELIZATION OF NEWMARK INTEGRATION METHOD 

For Eqn. 1, Newmark integration method employs the following time-marching scheme: 

(11) 

U~+,~t-U~+ U~At + I ( 1 - a ) ~ )  ' + aU,+z/lAt2 

By satisfying the Eqn. 1 at time t + At, we obtain 

Rg),+~, - k,+,,, 

(12) 

(13) 

Where 
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[( - M + 6 AtC + teat 2 K (14) 

- K  U, +UtAt+(2 
(15) 

Computing time for the Newmark integration is mostly spent on the assembling of global 

matrices, evaluating effective load vector R, formation, factorization and back/forward 

substitutions of effective stiffness matrix /f through the each time step. 

Assembling 

Since the effective stiffness matrix /f is generally of large scale in the FEM analysis of 
engineering structures, the assembling, factorization and back/forward substitution, which 
have to be segmented into blocks even in the modern computers, and the incore- outcore 
swapping techniques have to be employed. A routine in the available PFEM provides the 
function of automatic segmentation of global matrices, which can be easily used for the 

parallelization of assembling. Suppose that m processors are available and t( has been 
separated into il blocks. Then the k-th processor cyclically processes block k, block re+k, etc., 
and store them in the local hard disk. 

Computing effective load vector 

After loading element stiffness matrices, the correlative nodes and the load vectors distributed 
on slave processors are updated simultaneously and are further transferred among the 
processors to fulfill the final load vector updating. 

Triangular f actorization 

The global stiffness matrix can be factored: 

R - Lz)/5 (~ 6) 

where L is the lower triangular matrix and D is the diagonal matrix. The global matrices are 
stored in one-dimensional array by employing the variable bandwidth technique. The largest 
bandwidth is denoted as d. Denote m i as the row number of the first non-zero entry of 

column j, for which 
Smj,j - Kmj,j (17) 

For other elements of column j 

i -1  

r = m n  

- max(mj  , ran) 
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where 

L 0 - S , j / d ,  ( j -  2,3,.-., d ; i -  1,2,..-, n) (19) 

i-1 

r d  r (i 1,2, n) (20) di, - K ,  - ~ L,., r,.Lr, . . . .  , 
r - m !  

Block 2 ~ . . . . . .  

Figure 1: Blocking diagram of the variable bandwidth stiffness matrix 

The block partition of A" is illustrated in Figure 1. Triangular blocks and rectangular blocks 
are denoted as T1, T2 . . . . .  etc. and R1, R2, ..., etc., respectively. The triangular factorization 
of T1 is the same as the original. The factorizations of T2 and R1 are affected by the 
factorization of T1. Generally the process of the following blocks is affected by its 
predecessors, and the blocks had to be swapped between the incore memory and the 
secondary memory. 

Denote the triangular block size as n, and partition it into b=[n/m] sub-blocks. Thus processor 
Cn processes column Cn of each block: 

(1) decompose the first sub-block in every processor 

(2) processor 1 decomposes column 1 of sub-block 2 and transfers the decomposed 

element into the other processors. 

(3) processor 2 decomposes column 2 of sub-block 2 and transfers the decomposed 
element into the follower processors. 

(4) processors 3, 4 . . . . .  m carry out the same processing as processors 1 and 2 

(5) processor m transfers column m of block 2 into the former processors 

(6) processor (m-l) transfers column m of block 2 into the tbrmer processors 

(7) processors (m-2), (m-3) . . . . .  2 complete the message passing as processors m and 
(m-l) 

Repeat the above procedures till current block is factorized. 
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Each rectangular block should be partitioned into jk=[n/2m] sub-blocks. Every sub-block is 
decomposed simultaneously as follows: 

(1) processor 1 decomposes sub-blocks 1 and jk 

(2) processor 2 decomposes sub-block 2 block jk-1 

(3) processors 3, 4 . . . . .  m complete the parallel work as processors 1 and 2 

The results are transferred from each other after decomposing the last rectangular block in 
front of the triangular block. 

Back substitution 

Considering Eqn. 1, Eqn. 13 can be solved by the following two steps, i.e. 

Ly - k (21) 

DLT ~f t+At -: Y (22) 

The loading manipulations from outcore memory are intensive for large problems, so the 
parallelization of the loading manipulation is as important as that of algorithms. Here we take 
Eqn.21 to illustrate the procedure: 

(1) processor 1 loads block 1, updates the corresponding part of y ,  and transfers results to 
the following processors. 

(2) processors 2, 3, 4 . . . .  , m load blocks 2, 3, 4 . . . . .  m respectively and update the 
corresponding part of y with the triangular part of correlative blocks. Then these 
processors receive the results transferred from the former processors, update y, transfer 
the updated parts to other processors, and so on. 

For blocks m+ 1, m+2, ..., the same solution procedures can be used. 

NUMERICAL EXAMPLES 

Examples of the parallel central difference integration algorithm 

The computations are performed on three pyramid-shaped space flames, respectively, of 
DOFs 128, 288 and 512. The implementations are carried out in the PVM platform on high- 
speed hub-clustered PCs. The pre- and post-processing are finished with an available serial 
FEM package to which the parallel algorithms are incorporated. The results of parallel 
analysis are fully coincident with those of the serial analysis. 

The effectiveness of a parallel algorithm can be assessed by the speed-up ratio Sp(n) and the 
parallel efficiency Ep(n), where Sp(n)=ts(n)/tp(n), Ep(n)=Sp(n)/n. ts(n) and b(n) are, respectively, 
the computer time used on the single processor with the best serial program and that on the n 
processor system with the parallel program. 
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The achieved parallel efficiencies are shown in Table 1. These parallel efficiencies increase 
with the number of time steps and the size of the problems. 

TABLE 1 
PARALLEL EFFICIENCY ON PVM 

Examples Time steps 
of load 

Number of processors 

2 3 4 5 

500 0.92 0.86 0.76 0.72 

1 800 0.93 0.88 0.77 0.69 

1000 0.92 0.84 0.77 0.71 

500 0.96 0.91 0.83 0.77 

2 800 0.94 0.89 ' 0.84 0.76 

1000 0.95 0.89 0.82 0.75 

500 0.95 0.90 0.84 0.76 

3 800 0.94 0.90 0.82 0.75 

1000 0.93 0.90 0.82 0.76 
i 

Examples of  parallel Newmark algorithm 

Computations are carried out on a plane stress problem and a 3D bending plate problem, 
shown in Figure 2. 

The material and geometrical parameters are as follows: 

E = 2.1e + 11N / m-', v -  0.3, p -  7.84e + 3 kg / m 3, l - 100m, h - 20m , b - 0.1m, 

co-19.4224,a:  = - 1 0 0 0 N , a , -  100 100 100 N , a - 0 . 2 5  8 - 0 . 5 0 , 0 - 2 . 0 0 , A t = 0 . 0 4 .  

Speedup Sp and parallel efficiency Ep under different DOFs n of the structure, bandwidth d, 
number of blocks il, and time steps are depicted in Table 2. 

/ 
/ 
/ 
/ 
/ 

E p v  

F(t)  - a a sin co t 
F(t) - a 2 sin co t 

, ~  F ( t )  - - a 2 s i n  cot 
l 

Figure 2 Structures and parameters 
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These results show that the parallel e~ciency increases with the DOFs and the bandwidth of 
the problem, and with the time steps to be solved. For the available network system and the 
present examples, time spent on parallel computation is relatively smaller than that on 
communication, so the parallel efficiency of triangular factorization is lower comparatively. 
Since the stiffness matrix in Example 1 is partitioned into 6 blocks, the parallel efficiency is 
on the low side because of the load unbalance when the number of the processors is 4 and 5. 
The super linear speedups are observed in Example 2 due to the relatively larger buffers for 
swapping when the number of processors increased. 

Number of 

Processors 

2 

3 

4 

5 

TABLE 2 
PARALLEL EFFICIENCIES 1N THE EXAMPLES 

N 

D 

I1 

Steps 

Sp 

Ep 

Sp 

Ep 

Sp 

Ep 

Sp 

Ep 

Example 1 Example 2 

3262 7579 

318 726 

6 32 

20 50 100 20 50 100 

1.67 1.83 1.88 1 . 8 1  1.89 1.96 

0.84 0.92 0.94 0.91 0.95 0.98 

2.30 2.62 2.65 2.61 2.75 2.91 

0.77 0.87 0.88 0.87 0.92 0.97 

2.75 2.69 2.82 3.34 3.52 3.78 

0.69 0.68 0.71 0.84 0.88 0.95 

2.79 2.75 2.88 3.56 4.04 4.49 

0.56 0.55 0.58 0.71 0.81 0.90 

CONCLUSIONS 

In this paper, the central difference method and the Newmark method are parallelized on a 
clustered network system and are also incorporated into a general-purpose finite element 
package - PFEM, which results in a serial-parallel mixed FEM package. Satisfactory parallel 
efficiencies are obtained for the examples presented. In both algorithms, the parallel 
efficiencies are found to increase with the size of the problems. In the Newmark algorithm, 
super linear speedups have also been observed, the reason for which can be ascribed to the 
increase of the swapping buffers with the number of processors and the swapping intensive 
nature of the devised algorithm. 

Due to limitations of the hardware and software, the scale of the examples presented is rather 
small; it will be increased in further work. 
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ABSTRACT 

This paper presents an entropy - based topological optLrnization method for truss structures. A 

group of variables meaning the density distribution of energy is defined first, so that a bridge be- 

tween energy distribution and topological optimization is built. After the energy distribution is 

found, optimal cross - sectional areas are found .  Then the above two steps are executed in turn 

till the convergence is reached. Next,  the stiffness and strength reliability corresponding to the 

final topology are computed with reasonable results. 

KEYWORDS 

maximum entropy principle, topology optimization, structural reliability, linear programming 

INTRODUCTION 

Maximum entropy principle(MEP) [1] has been applied in most information systems. Since engi- 

neering analysis and optimum design can be viewed as an information system, ~ has been 

applied in this area too. Simoes and Templeman E21 applied IVIFP in a synthetic problem of preten- 

sioned steel net; Li and Templeman [sl-[s] utilized MEP to solve structural optimum design; Er- 

lander [6] used MEP in problems of distribution and assignment of traffic; Tiku and Temple- 

man [sl applied MEP to the problem of analysis and optimum design of underground water net in 

a city. Recently, Abraham I. Beltzer [141 applied ~ to finite element with some interesting 
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results. 

Study on topological optimization has continued several decades since the first paper Es] was pub- 

lished in 1964. So far ,  the two main methods are Ground Structural Approach(GSA) and Ho- 

mogeneous Method(HM) [1°]-[11]. Both methods view topological optimization from a viewpoint 

of either force transmitted or material distribution. Whether it is the force transmitted or materi- 

al distribution, both can be classified as a problem of information treatment in engineering. That 

is to say,  topological optimization is also information treatment which could be considered from 

an information entropy concept. 

It can be anticipated that a new area of study might be opened if topological optimization can be 

studied from the angle of information treatment by MEP. This paper attempts to make such a 

study. 

M A T H E M A T I C A L  M O D E L  OF  E N T R O P Y  - B A S E D  M E T H O D  
F O R  T O P O L O G I C A L  O P T I M I Z A T I O N  OF  T R U S S  S T R U C T U R E S  

I n t r o d u c t i o n  o f  Des ign Variables  and  Object ive  F u n c t i o n s  

Considering a truss from the viewpoint of energy distribution reveals that different topological 

forms correspond to different energy distribution. Suppose the total structural energy is Q0 and 

energy of the/ th  bar is q~, both Q0 and q~ will satisfy 

Q0 = ~-]q~ (1)  
i--1 

in which n is the total number of elements. 

Now a set of variables { ~}~" - -  (~vl ,  J~2, " " ,  ~ ) T  is defined as 

q' ( i =  1 2 ... n) (2)  
;~ - -  Q 0  ' ' ' ' 

Variable & is of obvious physical sense, its value stands for the percent of energy stored in the/th 

element. If & equals zero, then the/th bar can be eliminated from the ground structure. As a re- 

suit, all those elements with variable & (i --  1 , 2 , . . . ,  n) being non - zero construct a topological 

form under consideration of a certain sense. 

It is obvious that variables & (i ---- 1 , 2 , . . .  ,n) satisfy equations 

i--1 

and & ~ 0 ,  g i E  F 

where F is a set consisting of all connectable elements for the given fixed points. 

(3)  

(4)  

Because variables & (i = 1 , 2 , . . . ,  n) satisfy non - negative and normality conditions required by 

entropy, the corresponding structural entropy can be described in the form of 
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S = - -  O~-~& • ln& ( 5 )  
i=1 

where O is a large positive constant and S is structural entropy. 

In adch'tion, an e n e r g y -  related function can be described in 

f -  ~ , .  IF, I (6) 
i----1 

in which Ti __ "]l;,['_.~.q,.........~ 
2E 

~q~ ~ is the permissible stress of the/th bar ~ L~ is the length of the/th bar 

E is the modulus of material. 

It can be noted from Eqn. 6 that volume of f is directly proportional to structural weight for the 

case of fully stressed design. In the general case ( n o n -  fully stressed design),  this will not be 

valid. However,  what we are interested in is if the ith bar exists and what is the concrete re- 

sponse in f .  Actually, the situation whether the ith bar exists or not can be mathematically 

shown by if [F,[ ~ 0. According to the sense of topological optimization, [F~ I --~ 0 means that 

the ith bar will tend to be eliminated from ground structure. That is to say,  the/th barfs weight 

will tend to be eliminated from the whole structural weight, which means the decrement of 

structural weight. Seen from this point of view, both problems of minimizing f and minimizing 

structural weight are equivalent. 

Up to this point, two parameters have been defined. One is the structural entropy expressed in 

Eqn. 5 and the other is the function shown in Eqn. 6. It can be seen from the following discus- 

sion that both functions can be expressed as the functions of variables { Z } r = (Zl, Zz, . . . ,  £,)r  

D e s c r i p t i o n  o f  B e h a v i o u r  C o n s t r a i n t s  

Substituting energy definition of the ith element into physical equation yields 

1 
q, = - ~ g , .  A,~ (7)  

where K~ = EA~/L~ is the ith barfs stiffness. A,, A and F~ are cross - sectional area,  elongation 

and member force respectively. 

Solving A from Eqn. 7 and considering Eqn. 2 leads to 

A = + _  ~2O0&K, , ( i =  1, 2, . . . ,  n) 

Similarly, the member force F~ can also be written as 

F, = +  J2K, o0 , = 1 ,2 , . . . , , )  
Substituting Eqn. 9 into equilibrium equation 

[NJ{F} = {P} 

results in 

(8)  

(9)  

(~0) 
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+ ~/2K1Qo& 

r - N ]  . - -  

-I- ~ / 2 K . O o &  

{P} (11) 

in which IN]  is a projection - geometry matrix; {P } is a loading vector to which structure is 
subjected. 

From geometry equation 

{A} = [N]~{6} (12) 

and considering boundary condition, we have 

{6} = ED]{A} (13) 

where {A } is a vector of elongations; {6} is a vector of displacements ~ matrix [D] -- 

EEN]EN]~']-I[N] . 

ff the allowable values of m displacement constraints are given as {6} -- (a~, a2, . . . ,  a.)~ , dis- 
placement constraints can be, by substituting Eqn. 8 into Eqn. 13, described as, 

+ ~ 2O0& 
- -  KI 

ED] : {a} (14) 

~2O0& 
+ K, 

As for stress constraint, it can be written in the form of 

~/2K, Oo& ~ A,[a,], ( i -  1, 2, "" ,  n) (15) 

where [~r~] is the permissible stress of the ith element. 

Up to this point, all constraints such as equilibrium equation, displacement and stress have been 

described as the functions of variables {£} -- (&,  ~2, "" ,  &)~". 

Mathematical Model of  Topological Optimization 

Synthesizing Eqns. 3 , 6 , 1 1 , 1 4  and 15, and considering minimum weight and maximum entropy 

design simultaneously, yields the following mathematical model. 

(P I ) find variables { ~} -- (~1, &, "" ,  £,)~ in space 

minimize f -- ~ T, . F, - ~ ~, . ~/2K, Oo& (16) 
i = 1  i = 1  

maximize S = -- O ~ & • In& (5) 
i = 1  
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-+- J2KIQoX1 

subject to EN] . - -  { P } (11 ) 

! ~/2K,,Qo~ 

~2Q0~1 
:J: K~ 

i 

EDJ ~_ 

+__ ~/2OO~K~ 

{~} (14) 

~/2K~qo& ~_ A, Ea~], (i = 1, 2, . . . ,  n) (15)  

& = 1 (3)  
i = l  

>_ 0 , V i E r (4) 

Actually non - negative condition Eqn. 4 can be satisfied automatically due to the logarithmic 

form of entropy function. 

In order to simplify problem (P I ) ,  to eliminate the absolute symbol and to have a standard LP 

model, let 

( i = 1  2 ... n) (17)  
= 2Q0 ' ' ' ' 

= 1 . 2 .  . 

and adding slacking variables {Y} --  (yl ,  y2, " " ,  y~)~ and {Z} --  (zl ,  z2, . . . ,  z . )~to  the left 

hand side of Eqns. 14 and 15, respectively, and introducing two weight coefficients ~1 and ~)2, 

yields the following problem 

( P I I )  

find variables ({~}~,  {~}~)~ = (~, ,  ~2, . . . ,  ~ ,  ~, ,  ~2, . . . ,  h . ) ' in  space E 2" 

n ~ ~  ¢ = ~1~,(~. + ~-) + ~ O ~  ~ - -  ~>" (~ - -  ~>" i= 1 i= 1 200 " In 200 (19)  

subject to I[DK-] --IEDK'] [I,,,,,,] [-0,~-]0 { ~-- ~} (20) 
L [I..-] [-I..] EO..-] [-L.-]J z}J L{~>J 
{a} , {a} , {Y} , {Z} ~ 0 (21) 

2 (~. _ ~.)2 = 200 (22)  
i = 1  
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0 

°o ° 

[OK] = Eo] 

[~,] = A![~,] 

- 1 

9 Oq 

i 

(23) 

(24) 

(25) 

[ I ~ ]  is a unit matrix. [0~.], [0,,] and [0.. ]  are zero matrixes. 

In problem (P 11 ) ,  the expressions except for entropy and normality condition Eqn. 22 are all 

linear functions, provided cross -sectional areas are given. Considering the characteristics of 
problem (P 1I ) ,  SLP is utilized to solve it without considering the normality condition first. 

M E T H O D  OF F I N D I N G  OUT E N E R G Y  D I S T R I B U T I O N  

The normality condition of Eqn. 22 is dealt with in the following method. 

For the known variables ({a (k) }~, {a (k) }~)~ after the kth iteration, let 

2Q0 , ( i - -  1, 2, . . . ,  n) (27) 

Then parameters {A(k)} are normalized by 

---~- , (i--i, 2, ..., n) (28) 

where ~ = ~ )~(') 
i=1 

Next, update variables a~k) = ~(k) _ ~(k) , (i --- 1, 2, " " ,  n) as, 

&(') =_+ ~/2Q0~ (~) , ( i -  1, 2, . . . ,  ~) (29) 

symbol ± of ~(k) should be the same as that of ~(k). 

Finally, ~k) is considered as the present design point ; go to the next iteration again. 

M E T H O D  OF F I N D I N G  OUT CROSS - S E C T I O N A L  A R E A S  
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The previous discussion is merely concerned with seeking {,~} --  (,~1, Z2, - " ,  ,~)~ under the 

known area { A } --  (A1, A2, ". . ,  A,) r. As a matter of fact ,  topological form will be influenced 

by { A } . Meanwhile,  what  is necessary in engineering is to know the cross - sec t iona l  area. In 

order to find optimum topology and cross - sectional areas as well ,  both parameters of {,% } and 

{ A } should be viewed as variables. 

ff the work of finding {,% } under the given { A } is called step ( I ) ,  process of seeking { A } is 

called step ( lI ). The final result of { Z } and { A} can be obtained by carrying out two steps in 

t u r n .  

Problem of seeking cross - sec t iona l  area under the given energy distribution can be described as 

follows. 

( p  11I ) find variables {¢} - -  (¢1, ¢2, " " ,  ¢.)~in space 

minimize W -  
p L  

,=~ T (30) 

maximize S = - -  O ~ ,8,g, • lnfl,¢, (31 ) 
i=1 

subject to " ~ , < ~ ¢  , ( j =  1, 2,  "-., m) (32)  
i=1 • 

¢ , < [ ~ ' ]  ( i - - i  2 ..., n) 
- I F ,  I ' ' ' 

B, 1 
and ~ --  A~ ~ ; ~ = & ; Eqn. 32 is f rom virtual work principle. 

L,~ 
in which parameter fl~ is 

2EO0 

(33)  

Similar to the previous method,  two weights 71 and ~2 are introduced so that both objective func- 

tions W and S can be integrated into a function co--  71W + 72S. Problem (P 11I ) is an NLP. To 

be in accordance with searching for {,% } , SLP is also utilized here to solve it. 

R E L I A B I L I T Y  O F  S T R U C T U R A L  S T I F F N E S S  A N D  
S T R E N G T H  O F  F I N A L  T O P O L O G I C A L  F O R M  

Final topological form and cross - sectional areas corresponding to different combinations of 71 

and 72 can be obtained by executing two steps in turn. In order to know if the obtained structure 

can be used in engineering and to attempt to see, perceptually, the relation between entropy lev- 

el and reliability, it is necessary to make a reliability analysis of both stiffness and strength. 

Suppose displacement and stress as well as their permissible values are all the normal random 

variables. For the sake of the discussion below, denoting the ith displacement or stress random 

variable by ~ ,  and corresponding allowable random variable by [r/i] , the following formulation 

holds 

[ ~ ]  ~ ~ ( ~ , , ]  vE,,]) ( 3 4 )  
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where/~, and v,, are the mean and variation of random variable 7/~, respectively. #[.,] and v[.,] are 

the mean and variation of random variable [~ ] , respectively. 

According to the mean of random variables r/i and [7/i] , stiffness and strength reliability can be 

generally stated as 

P~, = P ~ { ~  <~ [~-1} (35) 
The approximate expression of Eqn. 35 can be further described by second moment DS] as 

P~' = ~ L~-,i:] + ~,J (36) 
Considering the relationship between the mean and variance 

v[.,] = ~F.,] • #[.,1 ( 37) 

and taking variation factor ~[,,] = ~,, = 0. 1 gives the formula of computing reliability 

n .  (38) 
i 1 ,x/,ut,~,l -I-/~,J 

~m which ~( .  ) means the function with normal distribution. 

N U M E R I C A L  E X A M P L E S  A N D  D I S C U S S I O N  

E x a m p l e  1 : f i v e  - bar  t r u s s  ( F i g u r e  1) 

It is composed of four joints and five elements. Modulus of elasticity and density of material are 
E- -0 .  21X 10 z kg/cm 2 and p = 0 .  785X10  -2 kg/cm 8 respectively. Structural form and loading 

conditions are shown in Figure 1. 

Constraints of displacement and stress are 5zy~>--0. 25 cm and ~e~<-+- 1600 kg/cm 2 , ( e = l ,  2, 

• . . , 5 )  . 

Numerical computation is executed for four combinations of 7t and 72, ( 1 . 0 ,  0. 0 ) ,  (0. 7, 

0. 3 ) ,  ( 0 . 2 ,  0. 8) and (0. 0, 1 .0 ) .  Optimum results are given in Tables 1, 2, 3 and 4, and 

corresponding topological forms are shown in Figures 2 (cases I and lI ) and 3 (cases llI and 

IV ). In each table, the second, third and fourth rows give the strain energy, cross - sectional 

area and strength reliability, respectively. Stiffness reliability with respect to displacement con- 

straint for the four combinations is 0. 7365, 1 .0 ,  1 .0 ,  and 1 .0  separately. 
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Table  1 

Optimum Result I of Five - Bar Truss [ ~,~ = 1. O] 

~2 0.0 

Bar No. 

A 

R,, 

0.0 

0.0 

0.0 

0.0 

0. 2612 

O. 0625 

0. 5000 

0.0 

0.0 

0. 7388 

O. 08839 

0.5001 

Table  2 

Optimum Result II of Five - Bar Truss [ ~1 ~---0o 7] 

r2 0.3 

Bar No. 

A 

0.0 

0.0 

0.0 

0.0 

0. 2612 

O. 1556 

1.0000 

0.0 

0.0 

0. 7388 

0. 2865 

1.0000 

Table  3 

Optimum Result llI of Five - Bar Truss Iv1=0. 2] 
v2 0.8 

Bar No. 

& 

0. 11461 

0. 06389 

1.0000 

0. 11461 

0. 06389 

1.0000 

0. 11666 

O. 06203 

0. 9955 

0. 32416 

0. 12096 

1.0000 

O. 32997 

0. 28286 

1.0000 

Table 4 

Optimum Result IV of Five - Bar Truss 
1 

Bar No. 

& 

R,, 

0. 11461 

0. 048326 

1.0000 

0. 11461 

0. 048326 

1.0000 

0. 11666 

0. 08185 

O. 9999 

0.32416 

0. 16080 

1.0000 

O. 32997 

0. 28460 

1.0000 

It can be observed from the above results that when structural weight is the major one of two ob- 

jectives, the same topological form (shown in Figure 2) is obtained for cases I and lI , which 
is a static -determined structure consisting of elements 3 and 5. However, the distribution of 
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cross - sectional areas of the two cases is different (see Tables 1 and 2) .  The more interesting 

point is that both stiffness and strength reliability of case II are higher than ease I .  Stiffness 

reliability is increased from 0. 7365 to 1 . 0 ,  and strength reliability of bar 3 and 5 are enlarged 

from 0. 5 and 0. 5001 to 1 .0  , respectively. 

Figure 1 Five - bar m m  Figure 2 Optimum result of f ive  - bar truss 

( w , e ~ ) = ( 1 . 0 ,  0. 0) and (0. 7, 0. ~) 

Figure 3 Optimum result of f ive  - bar truss 

( y l ,  y2) - -  ( 0 . 2 ,  0 . 8 )  and ( 0 . 0 ,  1 . 0 )  

When entropy is the major one of two objective functions, the final structure becomes a static 

undetermined structure (shown in Figure 3) .  Even though the topological form of cases ]!I and 

IV is the same, their cross - sectional area distribution is different (see Table 3 and 4).  As for 

the corresponding situation of reliability, stiffness reliability of both cases is equal to 1 .0 .  

Strength reliability of element 3 is enhanced from 0. 9955 of case III to 0. 9999 of case IV. 

In short,  stiffness and strength reliability of final topological form are increased, to some ex- 



Maximum Entropy Principle and Topological Optimization of Truss Structures 189 

tent,  with the increment of entropyrs promotion within both objectives. 

Example 2: t e n  - bar truss  (Figure 4) 

This famih'ar structure comprises six joints and ten elements. Modulus of elasticity and density of 
material are E - - 0 .  1 X 10 8 psi and p = 0 .  11b/in 3 , respectively. Structural form,  geometrical 
size and loading condition are described in Figure 4. 

.tgt-'~6°r%i-~ ~ .... ._; 
J 1i 

3 

t~L6 

Figure 4 Ten - bar truss Figure 5 Optimum result of ten - bar m ~  

(1~x ,122) - - (1 .0 ,  0. 0) and ( 0 . 7 ,  0 . 3 )  

Constraints of displacement and stress are: 16sy 1 ~ 2  in and ~ , ~ + 2 5 0 0 0  psi, ( e - - l ,  2, ...). 

Numerical computation is executed for four different combinations of 71 and 72, ( 1 . 0 ,  0. 0 ) ,  

( 0. 7, 0. 3 ) ,  (0. 2, 0. 8) and (0. 0, 1 . 0 ) .  Computation results are given in tables 5, 6, 7 
and 8, respectively. In each table the second, third and fourth rows give the energy distribu- 

tion, cross - sectional area and strength reliability respectively. The same structural form (Fig- 

ure 5) is obtained for cases I and lI. Topological forms of eases llI and IV are described in 
Figures 6 and 7, respectively. 

I , 
Figure 6 Optimum result of ten - bar truss Figure 7 Optimum result of ten - bar t r t ~  

( v x , v , ) = ( o .  2, o. 8) ( v , , v , ) = ( o .  o, x. o) 

Stiffness reliability with respect to displacement constraint for the four cases is 0. 3897, 

0. 9921,  0. 9988 and 0. 9985 , respectively. 
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TaMe 5 

Optimum Result I ° fTen-BarTruss(71=l"~)72 0. 

Bar No. 1 2 3 4 5 

0. 22876 0. 0 0. 22876 0. 057191 0. 0 

& 0. 02293 0. 0 0. 026912 0. 01146 0. 0 

R,, 

Bar No. 

1.00000 

6 

1.0000 

8 

1.0000 

9 

/ 

10 

2~ 0. 0 0. 16176 0. 16176 0. 16176 0. 0 

& O. 0 O. 00707 0. 028507 0. 0218 0. 0 

It,, / O. 9407 1.0000 1.0000 / 

Table 6 

Optimum Result 1I °f Ten - Bar Truss (71=0"73)7z=0. 

Bar No. 1 

0. 22876 

2 

0.0 

3 

0. 22876 

4 

0. 057191 

5 

0.0 

A 0.033438 0.0 0.07312 0.01357 0.0 

R~, 1.0000 / 1.0000 1.0000 / 

Bar No. 6 7 8 9 10 

0.0 0.16176 0.16176 0.16176 0.0 

At 0.0 0.05173 0.02884 0.03882 0.0 

R~ / 1.0000 1.0000 1.0000 / 

Table 7 

Opt~um Result llI of T e n -  Bar Truss (7~=0" 28)72=0 . 

Bar No. 1 2 3 4 5 

0. 064418 0. 060875 0. 057432 0. 062634 0. 0 

& 0. 0538 0. 00158 0. 11603 0. 01577 0. 0 

Bar No. 

1.0000 

6 

1.0000 

7 

1.0000 

8 

1.0000 

9 

/ 

10 

,~ 0. 060875 0. 16728 0. 17716 0. 17716 0. 17728 

A~ 0. 00148 0. 05107 0. 0392 0. 0165 0. 00468 

R,, 1.0000 1.0000 1.0000 1.0000 1. 0000 
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Tab le  8 

Optimum Result IV °f Ten - Bar Truss [ Vl = 0" 00 1. 

Bar No. 

& 

R,, 

Bar No. 

A, 

R,, 

0. 05733 

O. 0771 

1.0000 

O. 062523 

0. 00351 

1.0000 

0. 062523 

O. 00351 

1.0000 

O. 17684 

0. 05705 

1.0000 

0. 064304 

0. 10519 

1. 0000 

8 
i 

O. 16698 

0. 03688 

1.0000 

0. 060767 

0. 0065 

1 .0000 

0. 17188 

0. 01664 

1.0000 

0. 0000125 

0. 00309 

1. 0000 

10 

O. 17684 

O. 00984 

1.0000 

Investigating the result reveals that if structural weight is dominated within both objectives (case 

I and 1I ) ,  the optimal result will be a static determined structure (figure 5). The same topo- 

logical form but different cross -sect ional  areas of elements is obtained for cases I and II. 

Moreover, both stiffness and strength reliability of case II are all higher than that of case I .  

The stiffness reliability is increased from 0. 3897 to 0. 9921 while strength reliability of element 

7 is enhanced from 0. 9047 to 1. 0000. By contrast, if the entropy is dominated, the topological 

form becomes a static undetermined one. And more, the stiffness reliability is higher than that 

of cases I and II. The strength reliability of elements are all equal to 1.0000.  

It should be noted that reliability target for four cases are different although 
0.1 + g, 

strength reliability are all equal to 1. 0000. Take the first element as an example, its reliability 

targets corresponding to eases I , lI , llI and IV are 6. 148, 7. 399, 8. 518, and 9. 059 re- 

spectively. Obviously, its value is in the tendency of increment gradually. Since they are all 

greater than 6. 0, the value of (9( . )  will be 1. 0000. The reason why strength reliability are all 

equal to 1 .0000 ,  but the stiffness reliability is rather lower comparatively, is because displace- 

ment constraints are more tight than strength constraints. 

C O N C L U S I O N S  

The preceding discussion and results may lead us to conclude the following. 

1 ) The introduced parameters 2, (i --  1, 2, . . . ,  n) from a viewpoint of energy distribution not 

only erect a bridge between information entropy and topological optimization, but also make a 

designer able to observe the distribution of energy among all elements, which is significant. 

2) With increasing 72 and decreasing 71, energy distribution 2, (i = 1, 2, . . ' ,  n) tends to be in 

agreement , in accordance with the principle of maximum entropy. 
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3 ) With the increment of entropyts promotion in both objectives (stiffness and strength), the 
cross -sectional area of each remaining bar is also increased. It is particularly obvious where 
distribution of 2~ (i -- 1, 2, ".., n) is the same but the combination of 71 and 72 is different. For 
instance, projects I and lI of examples 1 and 2 show this characteristics. 

4) Structural stiffness and strength reliability or reliability target (corresponding to displacement 
and stress constraints) tend to increase with the increment of entropyrs promotion in the two ob- 
jectives, which is an important point worthy of further study. 
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ABSTRACT 

The stiffness parameters of a structural system can be adjusted to match the analytical model's 
response in order to reproduce the measured test data. There are a number of practical issues that 
must be considered for the successful application of parameter estimation to full-scale structures. 
These include the design and implementation of the experiment; errors in the mathematical 
model used for parameter estimation; and errors in the parameter estimation procedure itself. 
Modeling error, the uncertainty in the parameters of a finite element model, can have a 
significant impact on the quality of the resulting parameter estimates. The impact of modeling 
error on the resulting parameter estimates is investigated with two scenarios: deterioration and 
damage. Deterioration error is modeled as uncertainty in a single parameter distributed across 
the structure. Damage error is modeled as localized undetected change in a single parameter and 
a single element. Three types of parameters are used in an existing parameter estimation 
procedure: (1) unknown parameters which are to be estimated, (2) known parameters assumed to 
be accurate, and (3) uncertain parameters that are assumed known and not to be estimated. The 
third group introduces the modeling error into the parameter estimation. Modeling error is 
investigated with respect to load and measurement locations, the type of error function used 
(stiffness-based or flexibility-based), and the selection of unknown parameters to be estimated. 
In the example presented, the stiffness-based error function performed much better than the 
flexibility-based error function. However, topology of the structure, load and measurement 
locations, and location of the uncertain parameters with respect to the unknown parameters can 
have a significant impact on the quality of the parameter estimates. 

KEYWORDS 

Modeling error, parameter estimation, model updating, structural identification, error function. 
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INTRODUCTION 

Parameter estimation is the art of adjusting the parameters of an analytical model of a structure to 
reproduce measured data (static or dynamic). Parameter estimation also can be used to identify 
element parameters implicit in the stiffness or mass matrices describing a structural system at the 
component level and is a useful tool for finite element model updating. These implicit 
parameters include element properties such as EA, El, G J, and Kspring. 

The theory behind parameter estimation is not new but advances in algorithm development have 
helped to make parameter estimation a useful tool for structural condition assessment. When 
successfully applied to a structure parameter estimation can be used for health monitoring and 
damage assessment as changes in particular parameters of a baseline model can be related to 
physical changes in a structural model. The application of parameter estimation to a physical 
model requires experiment design, controlled testing, data processing to evaluate data quality, 
parameter estimation, and finally, the interpretation of the results. The collection of objective 
inspection data obtained through nondestructive testing and parameter estimation can give a 
meaningful representation of the performance of a structure. 

When applied to a small-scale structure with simulated data parameter estimation is a 
straightforward process. A number of challenges exist in the application of parameter estimation 
to a full-scale structure. For example, the quality of the testing procedures and the environment 
can be as important as the algorithm and error functions used in parameter estimation. Sanayei 
et al. (1998a) describes three primary challenges limiting the application of parameter estimation 
to full-scale structures. These challenges are summarized as: 

Design and implementation of the experiment, which consists of: the selection of 
excitation sources; excitation location and magnitude; sensor type and locations; 
selection of data acquisition systems; and testing economy. 

Errors in the mathematical modeling for parameter estimation including nonstructural 
members or members not accounted for in the a priori finite element model, nonlinear 
structural response not explicitly accounted for in the finite element model, 
inadequate knowledge or inability to accurately model the boundary conditions, 
damping, or environmental variability. 

Errors in parameter estimation consisting of the selection of the objective function 
and optimization techniques used, possible degree of freedom mismatch due to the 
inability to measure responses at sufficient and optimal locations, model order which 
can cause the problem to be over or under defined, and uncertainty in measured data 
(noise) and model parameters (modeling error). 

Modeling error is defined as the uncertainty in the parameters in a finite element model. 
Although it is possible to quantify the effect of errors in a finite element model on the response 
of a structure (Wadia-Fascetti and Smith 1996), these errors complicate the solution of the 
inverse problem and can not be avoided in the practical application of parameter estimation 
(Wadia-Fascetti et al. 1998). The impact of modeling error on estimated parameters is 
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investigated withegar d to location and magnitude. Two scenarios are considered. The first 
type of modeling error represents structural deterioration applied uniformly across all the 
elements of a finite element model. Inaccurate assumptions made during model calibration or 
even deterioration across a structure can lead to this type of error. The second type of modeling 
error is localized to one element and represents undetected damage. 

PARAMETER ESTIMATION FOR STRUCTURAL IDENTIFICATION 

Structural parameter estimation uses optimization to reconcile an analytical model of a structure 
with non-destructive test data. The theory behind parameter estimation and structural 
identification is not new and the reader is referred to the literature reviews prepared by Ghanem 
and Shinozuka (1995) and Doebling et al. (1996). Increased computational capability has 
resulted in significant progress in algorithm development and testing. As a result, structural 
identification and parameter estimation are objective tools for determining the actual state 
properties of a structure. Thus, it is possible to gain an improved understanding of a structure's 
properties leading to improved representation of the stiffness matrix describing a structure. The 
advantage of parameter estimation at the component level is that it can easily lend itself to 
condition assessment of structures as parameter estimation can detect changes in stiffness 
coefficients. 

Parameter Estimation 

Parameter estimation is used at the element level to identify the implicit parameters in the 
stiffness matrix of a structure. The analytical response used may be modal or static 
measurements (Sanayei et al. 1997; 1998b). Structural stiffness parameters (EA, El, GJ, Kspring), 
and mass parameters (effective lumped masses) are estimated at the component level. The two 
types of parameters in the estimation procedure are those that are known and assumed to be 
accurate and those that are unknown and are to be estimated. Sanayei (1997) implements the 
following steps within the program PARIS (PARameter Identification System). 

1. The assemblage of a finite element model with assumed accurate values for all known 
parameters and initial guesses for all unknown parameters. 

2. The formulation of error functions as the difference in the response of the analytical 
model and the measured response. Error functions are based on static displacement 
and strains and modal responses. 

3. The minimization of the error function with respect to the unknown structural 
stiffness parameters at the element level. 

Parameter estimation using static responses is used in this study. The constrained stiffness 
matrix, K, is assembled with known parameters and initial guesses for unknown parameters. The 
system equation is partitioned to distinguish between measured and not measured displacements 
(U) and forces (F) where the subscripts a and b denote degrees of freedom that are measured and 
not measured, respectively (Sanayei et al. 1997). 
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[ Kaa Kab]~ Ua 
Kba Kbb.J{Ub } = { Fa}Fb 

(1) 

The substructured matrix in Eqn. 1 can be solved to relate measured forces or responses to those 
obtained from the analytical stiffness matrix updated through parameter estimation. Eqns. 2 and 
3 are the stiffness-based (Es) "equation error function" and the flexibility-based (Ey) "output error 
function" and are implicitly functions of all structural parameters, P that describe the stiffness of 
the structural system at the component level. 

[Es(P)]=([Kaa]_[Kab][Kbb]-l[Kba])[Ua] m +[Kab][Kbb]-l[Fb]m _[Fa]m (2) 

[Ef(p)]= ([Kaa]-[Kab][Kbb]-l[Kba] )-l([Fa]m-[Kab][Kbb]-l[Fb]m)-[Ua] m (3) 

The superscript m denotes measured forces and responses. The error functions are minimized by 
updating stiffness parameters, P at the element level such that the scalar objective function, J, 
(shown in Eqn. 4) is minimized. 

J(P)=~/~i ~Eij (4) 

J in Eqn. 4 is defined as the Eucledian norm of the error functions shown in Eqns. 2 and 3. 
When there is no modeling error or measurement noise, J will approach zero with an acceptable 
tolerance limit as the updated parameter estimates approach the true value of parameters. 

PARIS uses the measured responses (modal and static) to obtain parameter estimates using Eqns. 
1 through 4. Practical issues that need to be considered and can effect the quality of the final 
parameter estimates are the selection of load and measurement cases, the error function used, and 
the quality of the known parameters used to assemble the initial finite element model. Solution 
strategies such as the use of super elements and grouping can be used to reduce the number of 
unknown parameters sought (Sanayei et al. 1998b; McClain 1996) making parameter estimation 
adaptable to full-scale structures. However, these techniques do not account for modeling errors 
in the finite element model. 

The change in the structural parameters to be estimated must be observable by the sensors and 
load cases. At a minimum, one independent measurement for each unknown parameter is 
required to avoid an underdefined problem. In most practical cases, the load and measurement 
cases available are dependent on accessibility and cost limiting the information available to the 
parameter estimation. Without measurement noise or modeling error additional load cases can 
improve the resulting parameter estimations. However, errors propagate in the presence of 
measurement noise and modeling error and can have a reverse effect on the quality of the final 
estimates. Sanayei et al. (1992; 1996) developed a heuristic method for design of NDTs to 
reduce the error in the geometric parameter estimates caused by noisy measurements. 
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Parameter Estimation Considering Modeling Error 

When parameter estimation is performed in the presence of modeling errors there are three types 
of parameters considered in the analytical model" 

• unknown parameters to be estimated, 
• known parameters assumed to be accurate, and 
• uncertain parameters that are assumed known and not to be estimated. 

The impact of using uncertain parameters as known values on the unknown parameters is 
studied. Two scenarios are considered: 1) deterioration that effects a significant amount of the 
structure and 2) damage that effects a localized area of the structure are represented in the 
unknown parameters. In addition to these scenarios, the effect of load and measurement 
locations, error function selection, and magnitude of the uncertainty on the resulting parameter 
estimates are studied. 

Influence of Modeling Error on J 

As stated previously, the minimum value of the objective function, J, is zero when the true 
parameter values are used in the error functions Es or Ef and when there is no measurement noise 
or modeling error in the system. Once modeling error is introduced into the parameter 
estimation as uncertain values in the stiffness matrix, J is no longer zero when error functions are 
evaluated with the true parameter values. Consider the frame shown in Figure 1. The columns 
and beams have I equal to 170 in n (7,076 cm 4) and 800 in n (33,299 cm4), respectively. E is 
assumed to be 29,000 ksi (2.0x108 kPa) and constant for the whole structure. The measured 
response is obtained for degrees of freedom 1 and 3 and the loads are applied independently at 
degrees of freedom 16 and 18. The unknown parameters are I for members 1 and 3 and will be 
estimated due to the modeling error introduced to I of member 9. J is computed based on the 
stiffness (Eqn. 2) and flexibility (Eqn. 3) error functions. 
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When the true values for members 1 and 3 are used and an uncertain value for I of member 9 is 
assumed to be 212.5 in n (8,449 cm 4) rather than the actual value, 170 in 4 (7,076 cm4), J is equal 
to 5.96 (with force units) and 0.1217 (with displacement units) for the stiffness and flexibility 
error functions, respectively. The optimization procedure updates the unknown parameters until 
J reaches a minimum value. It is conceivable that a set of unknown parameters can be found that 
produces a value for J that is less than the values reported above. Thus, when modeling error 
exists and the parameter estimation converges, the parameters will never converge to the true 
values of the unknown parameters as the optimization blames the error in the uncertain 
parameters on the unknown parameters. 

It is impossible to track the effect of modeling error through J as this scalar represents a 
complicated structural system. Although, the existence of modeling error is evident in J, the 
location and severity of the error can not be interpreted from a single scalar. The minimization 
of J causes the effect of modeling error to be distributed throughout the estimated parameters, 
effecting some unknown parameters more severely than others. Since the error function is 
partitioned based on the location of measured responses, a change in measured response will 
change the value of J. The effect of modeling error, which is illustrated in the next section is 
dependent on the location and magnitude of the modeling error, the load and measurement cases, 
and the error function used in the parameter estimation. 

ILLUSTRATIVE EXAMPLE 

Two possible types of modeling error are illustrated on the two-story frame shown in Figure 1. 
In each case for members with unknown stiffness, only I is estimated and E is assumed to be 
constant for the whole structure. Parameter estimates are obtained using the program PARIS. 
Modeling error is quantified on the estimated parameters to demonstrate the influence of 
deterioration or damage. 

Influence of Deterioration on Estimated Parameters 

All beam elements (1, 4, 6, 8, and 10) are assumed to be known with a high degree of certainty. 
Deterioration is simulated by assuming I for members 2, 3, 5, and 7 are known with some degree 
of uncertainty. Then, values for I of members 9, 11, and 12 are estimated. For the purposes of 
providing bounds on the final results each member is given the same amount of modeling error 
(i.e. +25% for all members). The four different load and measurement cases considered are 
shown in Table 1. Figure 2 shows the percent error in the estimated parameters 19, 111, and 112. 
In this figure, "o" and "x" represent the stiffness-based and flexibility-based error functions, 
respectively. FDOF and MDOF denote the degrees of freedom at which loads are applied 
independently and measurements made. 

TABLE 1 
LOAD AND MEASUREMENT CASES USED IN FIGURES 2 AND 3 

Case 
a) All/All 
b) Trans/All 
c) Trans/Trans 
d) Trans/Rot 

FDOF MDOF 
1-21 1-21 

1,4,7,10,13,16,19 1-21 
1,4,7,10,13,16,19 1,4,7,10,13,16,19 
1,4,7,10,13,16,19 3,6,9,12,15,18,21 
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In general, the stiffness-based error function yields more consistent results than the flexibility- 
based error function tolerating more modeling error and leading to parameter estimates with 
lower errors. All estimated parameters were checked for convergence. Parameters that 
converged to unreasonable values are reported, while divergent results are not. Both error 
functions are unbiased meaning that with no modeling error, they are capable of obtaining exact 
parameter estimates. The amount of modeling uncertainty that the error functions can tolerate is 
dependent on the load and measurement cases as well as the amount of error in the system. In 
three cases, the flexibility-based error function converged to unreasonable values yielding high 
errors in the estimated parameters (Figures 2a, 2b, and 2c). The stiffness error function, 
however, yielded excellent results in all estimated parameters (19, 111, 112) for three of the four 
cases (a, b, and c). 

A similar analysis is performed with modeling error applied to members 7, 9, 11, and 12 to 
estimate moment of inertia for members 2, 3, and 5. Results for 12, I~, and 15. are shown in 
Figure 3. In most cases, the flexibility error function didn't converge for cases with at least 25% 
modeling error (see Figures 3a, 3b, and 3c). Results that didn't tolerate at least 25% error are not 
reported. Again, the stiffness-based error function yields consistent and reliable results. It is 
interesting to note that the flexibility-based error function did not converge with more applied 
forces and measured displacements in cases a, b, and c. However, it converged and performed as 
well as the stiffness-based error function using less applied forces and measured rotations as 
shown in case (d) of Figure 3. 

Figures 2 and 3 show that the resulting parameter estimates are sporadic and are highly 
dependent on the load cases, measurement locations, error functions, and location of the 
modeling errors. In general, the stiffness-based error function tolerates more modeling error and 
estimates more accurate parameter estimates compared to the flexibility-based error function. 

Influence of  Localized Damage on Estimated Parameters 

Localized damage is simulated on the four bay frame by adding uncertainty to the stiffness of 
member 9, the column on the far right of the frame. The four different load and measurement 
cases used in this scenario are shown in Table 2. 

TABLE 2 
LOAD AND MEASUREMENT CASES USED IN FIGURES 4, 5 AND 6 

Case 
1 
2 
3 
4 

FDOF 
16,18 
19,21 
16,18 
4,6 

MDOF 
1,3 
4 ,6  

19,21 
1,3 

In each of these cases, two unknown parameters are estimated. All other parameters are assumed 
as known with a high degree of certainty. In addition to the amount of modeling error in the 
system, the value of the resulting parameter estimates also depends on the unknown parameters 
that are to be estimated together. For example if there are four unknowns, the effect of the 
modeling error may be distributed across all the unknowns rather than influencing an individual 
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parameter. Figure 4 shows that the final values for the parameter estimates depend on all 
unknown parameters estimated in a group. In this case, parameters 16 and 17 are estimated 
together (i), and parameters 17 and 18 are estimated together (ii). 
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Figure 4. Parameter estimates for case (1) with modeling error applied to element 9. 
o = stiffness-based error function; x = flexibility-based function 

Selection of load and measurement locations is important as the member in question must 
respond to the loads and the loads must be observable at the measurement locations. Often when 
an inappropriate load and measurement case is selected, the parameter estimation diverges. The 
selection of load cases also influences the quality of the parameter estimates as modeling error 
increases. Figure 5 shows the parameter estimates for /1 and 13 due to each load and 
measurement case. With +100% modeling error the parameter estimations of I1 varies from 
150% to -15% of the true values. In this example where localized damage was introduced, both 
error functions performed similarly. However, in case 2 of Figure 5, unlike the previous cases, 
the flexibility-based error function had a better convergence record while the stiffness-based 
error function did not tolerate large modeling errors with positive percentages. 

A practical problem in the application of parameter estimation to in-service structures is that the 
modeling error may not be located near the area of the structure that is of interest in the 
identification. Thus, it is useful to understand the relationship or impact of modeling error in a 
localized region on parameter estimates at other locations of the structure. The relationship 
between the location of the parameters estimated and the location of the modeling error is an 
important consideration in experiment design. Figure 6 shows the effect of modeling error in 
element 9 for case 4 on the estimation of four different pairs of elements (1 & 3), (4 & 5), (6& 
7), and (7 & 8). 
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F igu re  5. P a r a m e t e r  e s t ima tes  for m e m b e r s  1 and 3. 

o = s t i f fnes s -based  e r ror  funct ion;  x = f l ex ib i l i t y -based  func t ion  
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Figure 6. Parameter estimates for different members estimated in case 4. 
o = stiffness-based error function; x = flexibility-based function 
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The effect of the modeling error at element 9 has less of an impact on the location of the 
parameters to be estimated. In the case of the stiffness-based error function, the observability of 
the modeling error is higher in elements that are closer to the uncertain element The quality of 
the parameter estimates are similar for error functions as shown in Figures 6a, 6b, and 6c. 
However, in Figure 4d where 17 and 18 are unknown are very close to the uncertain parameter 15 
only the stiffness-based error function converged. 

FINAL REMARKS 

Parameter estimation can be a useful tool for condition assessment of in-service structures. 
However, before application to full-scale structures it is necessary to first understand the 
influence of modeling errors on the estimated parameters. The simulations presented in this 
paper give an overview of the impact of modeling error on a four-bay frame subjected to 
different types of modeling errors and load and measurement cases. The quality of the parameter 
estimates is highly dependent on the loading magnitude and locations; measurement type and 
locations; and error functions used for parameter estimation. Overall the stiffness-based error 
function yields more reliable results than the flexibility error function. Many parameter 
estimation cases diverged when the flexibility error function was used while the stiffness-based 
error function routinely converged and overall it tolerated more modeling error. Finally, it is 
important to stress that in addition to the type of error function used in the parameter estimation, 
the effect of modeling error is dependent on structure topology, load and measurement locations, 
and the location of the uncertain parameters with respect to the unknown parameters. 

ACKNOWLEDGMENTS 

The work presented in this paper is supported by NSF grant numbers: CMS-9622515 and CMS- 
9622067 with Drs. Shih-Chi Liu and Ken Chong as the NSF Program Directors. This support is 
gratefully appreciated. 

REFERENCES 

Doebling, S. W., Farrar C. R., Prime, M. B., and Shevitz, D. W. (1996). Damage Identification 
and Health Monitoring of Structural and Mechanical systems from Changes in Their 
Vibration Characteristics: A Literature Review, LA-13-70-MS, Los Alamos National 
Laboratory, Los Alamos, NM. 

Ghanem, R., and Shinozuka, M. (1995) Structural-System Identification I: Theory. Journal of 
Engineering Mechanics, 121:2, 255-264. 

McClain, Jennifer A. S. (1996), Parameter Estimation for Large Scale Structures, M.S. Thesis, 
Tufts University, Medford, MA. 

Sanayei, M. (1997) "PARIS"@, PARameter Identification System. Tufts University, Medford, 
MA. 



206 Gunes, B. et al. 

Sanayei, M., Doebling, S., Farrar, C., Wadia-Fascetti, S., Arya, B. (1998a) Challenges in 
Parameter Estimation for Condition Assesment of Structures. Proceedings of the Structural 
Engineers Worm Congress. July 18-23, San Francisco, CA. 

Sanayei, M., Imbaro, G., McClain, J. A. S., and Brown, L. C. (1997) Parameter Estimation of 
Structures Using NDT Data: Strains or Displacements. Journal of Structural Engineering, 
123:6, 792-798. 

Sanayei, M., Onipede, O. and Babu, S. R. (1992) "Selection of Noisy Measurement Locations 
for Error Reduction in Static Parameter Identification", AIAA Journal, 30:9, 2299-2309. 

Sanayei, M. and Saletnik, M. J. (1996) Parameter Estimation of Structures from Static Strain 
Measurements II: Error Sensitivity Analysis, Journal of Structural Engineering, 122:5, 563- 
572. 

Sanayei, M., Wadia-Fascetti, S., McClain, J. A. S., Gornshteyn, I., and Santini, E. M. (1998b) 
Structural Parameter Estimation Using Modal Responses and Incorporating Boundary 
Conditions, Proceedings of the Structural Engineers Worm Congress, July 18-23, San 
Francisco, CA. 

Wadia-Fascetti, S., Gunes, B., and Sanayei, M. (1998) Significance of Modeling Error in 
Structural Parameter Estimation, Proceedings of the 12 th Engineering Mechanics 
Conference: A Force for the 21 st Century, May 17 - 20, La Jolla, CA. 

Wadia-Fascetti, S. and H. A. Smith (1996) "Calibration of Structural Models Using Fuzzy 
Mathematics." Microcomputers in Civil Engineering. 11:1, 19-35. 



E R  D E V I C E S  F O R  C O N T R O L  O F  
S E I S M I C A L L Y  E X C I T E D  S T R U C T U R E S  

Henri P. Gavin 

Department of Civil and Environmental Engineering 
Duke University, Durham NC 27708-0287, U.S.A. 

A B S T R A C T  

This study illustrates the behavior of a closed-loop vibration control system making 
use of electrorheological electrorheological (ER) devices. ER fluids exhibit damping and 
stiffness properties which can be modulated by orders of magnitude when subjected 
to strong electric fields (kV/mm). a n  increase in yield stress (from 0 to 3 kPa) is 
characteristically observed when the field is applied. A Lyapunov-based controller results 
in control decisions which are independent of the structural model, and are therefore 
insensitive to modeling errors. Structures operated according to the control rule maintain 
an anti-resonant condition. In order to capitalize on the unique properties of ER materials 
in this application it is desirable that the material be configured in a device in such 
a way that when the device undergoes characteristic motions, the device forces can 
be modulated to a significant degree (a factor of 10 or more). Because the range of 
adjustable forces is closely linked to the ratio of finite field-controllable yield stresses 
to uncontrollable viscous stresses, it is desirable for controllable ER dampers to operate 
at low flow rates. In addition to the range of available forces, ER dampers should have 
a short characteristic time, low stored electrical energy, and forces high enough to be 
effective for the intended application. The ER damper described herein features multiple 
concentric electrodes which are electrically in parallel, but may be hydraulically inter- 
connected through multiple paths. 

207 



208 Gavin, H.P. 

K E Y W O R D S  

vibration control, electrorheological materials, adaptive damping and stiffness, visco- 
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I N T R O D U C T I O N  

Vibration suppression in civil engineering structures during strong earthquakes presents 
unique challenges [9]. Properly detailed structures behave non-linearly during earth- 
quakes, large control forces must be applied rapidly to respond to impulsive ground mo- 
tions, but control forces need not be accurately controlled. The control system should 
be able to operate in the absence of external power. 

Because details regarding structural behavior and the earthquake characteristics can not 
be exactly foreseen, endowing a degree of adaptability to structural systems could satisfy 
safety and performance requirements for a broad range of earthquake characteristics. 

While the required electric fields in ER materials are strong (kV/mm), the field's dis- 
placement currents are small (#amp/cm 2) [7] [4]. Thus, ER devices can be operated using 
low-power, battery-operated, energy sources [2, 11]. Therefore, ER devices designed to 
provide a wide range of adjustable forces must have small viscous stresses as compared 
to yield stresses. Instead of forcing a viscous material to flow at high velocity through a 
relatively narrow orifice, the proposed device develops large forces by forcing a dissipative 
fluid to flow at a relatively low velocity over a large surface area. 

P R E - Y I E L D  V I S C O E L A S T I C I T Y  OF E R  M A T E R I A L S  

Visco-elasticity in ER materials is strongly affected by the electric field at low strains 
(<0.1); at high strains a yield stress is quadratically related to the field [7]. At low 
shear rates, ER devices provide a large range of controllable forces. Based on extensive 
Couette shear measurements, Gamota and Filisko [7] elucidated the material behavior 
of ER materials with the mechanical analog illustrated in Figure 1. 

Considering the mechanism of Figure 1, a balance of forces on the mass m0 gives 

m020 + Co2o + fo(2o) = f ( t ) ,  (1) 

where fo(iCo) is the only non-linearity and represents the Coulomb friction element. This 
nonlinearity can be approximated by a hyperbolic tangent. The right hand side of 
Equation (1) is the applied stress. The total deformation of the element is the sum of 
x0 and x l, where X l is obtained from the equations of motion for the Zener element, 

f(kl + k 2 ) +  c1¢ -- ~l]~2Xl ~- Cl]~2Xl. (2) 



ER Devices for Control of Seismically Excited Structures 209 

k 
1 

m o 

Co fo(~o) cl 
Newtonian Coulomb Zener 

f ( t )  

<7. 3><= 2:" 
x x 

0 1 
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Figure 1" A mechanical analog for ER materials. 

Equations(i) and (2) can be cast into a state-space form using a state vector of [x0 20 f]T 

[Xo] [ 0  1 0 ]IXo] [ 0 
d 20 - 0 -Co~too 1~too 2o + 0 0 x 
dt f --~1]~2/Cl --]g2 --(]~1 -71- ~2)/C1 f ]~1~2/C1 ~2 2 [ 0 ] 

+ fo( o). (3) 
0 

The dynamics are always asymptotically stable, provided that all parameters are positive; 
and the linear dynamics are explicitly separated from the sole dissipative nonlinearity, 
f0. The equations are well conditioned and can be solved using a number of numerical 
techniques [8, 12]. 

The parameters in the state space models for the ER dampers (f0,/~1, el,  and k2), increase 
monotonically as a function of an input voltage, u. 

C O N T R O L  S Y N T H E S I S  

A control method, based on minimizing the kinetic energy content in a seismically-excited 
structure, leads to a bang-bang control rule, which can be physically implemented using 
a nonlinear analog feed-back loop. Consider the equations of motion for a base-excited 
structural system with unknown, and possibly highly non-linear, restoring forces 9(r, ÷), 
and a set of ER dampers described by the strictly proper Equation (3), 

Mi: + g(r, ÷)+ Bff(u)  - - M h S ,  (4) 

where M is an n by n positive definite symmetric mass matrix, g(r, ÷) is the gradient 
of the non-negative definite potential energy function W(r, ÷), Bf is a n by m matrix 
relating the m ER damper forces to the n structural coordinates, f(u)  is an m vector of 
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ER damper forces, given by Equation (3), and 5 is the base acceleration. A new algebraic 
hysteresis model was developed to describe the restoring forces g(r, i'), and is represented 
by the closed-form expression 

g(r'÷)-gt+gtanh( ]%i(r-rt))g- ~- ]'glo(r -- r t) ,  (5) 

in which the coordinate (gt, rt) is the coordinate at the most recent direction reversal, 
and 

-- Fy - - ( g t -  h:lort)sgn(?:') (6) 

This hysteresis model has three parameters corresponding to the pre-yield stiffness, khi, 
the post-yield stiffness, klo, and the yield strength Fy, is rate dependent, and enforces 
the Bauchinger effect. 

The total energy in the system is 

1(~ + h~,) TM(÷ + h~,) + W(r,  i~). (7) V-~ 
Following Lyapunov's direct method, the objective of the control is to minimize the 
internal energy by forcing the rate of change of internal energy to be as negative as 
possible. The rate of change of internal energy reduces to 

? -  --~,Tg(r,÷) - (i ~ + hi)T f(u) .  (8) 

The only term over which one has control in Equation (8) is f indirectly, through u. The 
"bang-bang" control rule reduces to making the last term in Equation (8) as positive 
as possible by varying u. The control is decentralized, robust to scaling errors of the 
sensors, robust to model errors, but is sensitive to phase and bias errors. 

E X P E R I M E N T A L  E X A M P L E  

Experiments on a small 3 DOF shear building model illustrate the effects of the control 
rule. The mass of each floor was approximately 1.25 kg and inter-story stiffnesses were 
5.5 N/ram. The identified natural frequencies of the bare frame were 4.3, 12.7, and 
18.8 Hz. An ER shear wall was constructed of stainless steel and poly-carbonate, and 
was installed between the first DOF and the ground, The ER material was 30°-/; (v/v) 
anhydrous Zeolite "3A" in paraffin oil [4]. The forces generated in the ER wall were on 
the order of the column shear. To perform the required control tasks, the device was 
charged and discharged up to 100 times per second. 

The structure was excited on an electro-magnetic shaking table which made use of a 
proportional acceleration feedback control loop. This control was sufficient to obtain 
coherent transfer functions for the structure without the ER damper. Figure 2 illustrates 
the structure with the ER wall, the sensors and the control circuit. 
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Figure 2: Structural model illustrating shaking table system with feed-back control loops. 

Results of the vibration control experiments are given in Figures 3 and 4. Figure 3 shows 
transfer function data between the base acceleration and the second and third degrees of 
freedom. Three cases are shown in each figure. The two dashed lines correspond to the 
response with the device operating at constant low and high fields. The primary effect 
of the ER wall is to selectively increase or decrease the coupling between the support 
and the adjacent degree of freedom, and is exhibited by a shift of natural frequencies. 
The solid line corresponds to the controlled case, and follows the minimum of the two 
constant voltage transfer functions. The same wide-band random disturbance was used 
for all three cases. 
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Figure 3" Frequency response data for second and third degrees of freedom. The con- 
trolled system follows the lower bound of the constant on and constant off cases. 

A similar behavior is observed in the time-domain response to a sinusoidal excitation 
with slowly increasing frequencies: the controlled system follows the trajectory of lowest 
amplitude. Sections of the sine-sweep responses are shown in Figure 4. Tile fundamental 
resonance of the constant zero voltage and constant high voltage are shown by the dotted 
lines. In the left figure the solid line corresponds to the controlled case, and follows the 
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smallest signal. In the right figure the solid line corresponds to the "mis-controlled" case, 
(in which the polarity of the control decision is reversed) and follows the largest signal. 
This figure illustrates that the ER shear wall can be used to enhance resonance, should 
that ever be desired. Even in these narrow-band excitations, the control called for rapid 
periodic switching of the electric field. 

L | i | | | J L ! | | | | 
/ 

1 0 0 0  V o l t a g e  O F F  . . . . . .  1 0 0 0  . , | V o l t a g e  O F F  . . . . . .  .~ 
[ , : ~ ,~ . V o l t a g e  O N  ........... | ~:: C O N T R O L L E D  / i / [ t~ ~ ~I|S-CONTRO'LLED m /  
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Figure 4: Time history data for the third degree of freedom. The control is applied 
correctly in the left plot. The polarity is reversed in the right plot. 

N U M E R I C A L  E X A M P L E  

The above equations can be cast into a set of non-linearly coupled first order ordinary 
differential equations to model the dynamics of the closed loop system. Such a model 
incorporates the full interaction between the dampers and the structure. 

where 

d--/ ÷ - q 
- M  -1Bgg(r, ÷) - hii - M -1BfCcq 

A~(u)q + ~ c ( t t ) [ r l  7;1] TAr -  [0  - -  1/mo]Tfo(U)tanh(÷l)  
, (9) 

1 - i  0 1 B g -  0 1 -1  , (10) 
0 0 1 

q is the state vector in Equation (3), and Bf - [1 0 0]  T .  A qualitative comparison of 
simulated responses of a system described by Equation (9) confirms the experimental 
results of the previous sections. To visually compare the time- and frequency- domain 
data, sine-sweep excitations were applied to a three degree of freedom building model. 
The typical hysteresis of the ER damping wall [1, 10, 13], as modeled by Equation (3) is 
shown in Figure 5. Simulation results of Equations (9) are shown in Figure 6. In each 
of these figures, absolute acceleration time histories, force-deflection hystereses of the 
structural elements, and frequency response functions of the absolute accelerations are 
plotted. The voltage "OFF" case is more flexible and passes through resonance first (at 
around 10 seconds), whereas the voltage "ON" case passes through resonance at around 
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Figure 5" Typical hysteresis of ER devices, as modeled by Equation (3). 

14 seconds. The "CONTROL" case does not demonstrate any resonance, and maintains 
amplitudes at or below the two constant voltage cases. This behavior is confirmed by the 
two frequency response functions at the bottom of the figure. The control also reduces 
relative deformations, as illustrated by hysteresis in the structural elements. 

M U L T I - D U C T  E L E C T R O R H E O L O G I C A L  D E V I C E  D E S I G N  

The electrodes in a multi-duct El[ device create a set of concentric annular ducts. These 
ducts can communicate hydraulically to form parallel ducts, ducts in series, or groups of 
parallel or series ducts. Apart from the nature of duct interconnections, design variables 
include the inter-electrode gap, h, the electrode (duct wall) thickness, w, the piston 
radius, Rp, the piston shaft radius, Rs, the device radius, /~b, and the device length, L, 
as illustrated in Figure 7. In this figure, the black electrodes are grounded and the white 
electrodes are at high voltage. Assuming incompressible flow, the total volumetric flow 
rate, QT, is proportional to the piston velocity, Vp, 

(11) 

In Figure 7 all ducts are hydraulically parallel. 

The pressure gradient (p' - -Op/Ox) ,  in a homogeneous El[ material following a Bingham 
constitutive law 

T('~,  E )  - T y ( E ) s g n ' ~  -t-- 1]~/ (12 )  

along an annular gap of width h can be approximated by 

' (13)  P' ~ PN + 2"07- h- + p~h + 0.4ry 
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Figure 7: Arrangement of piston and ducts in the proposed ER damper design. 

to within two percent of the true value of P'/P~N [5]. The approximation 

p' ~ p~ + 2 . 1 2  (14) 
h 

is linear in Q allows a closed form solution for the device forces. In the above expressions, 
Ty is the field-dependent yield stress, p~ is the pressure gradient of a Newtonian fluid 
of viscosity r / flowing through a duct of width h at a volumetric flow rate, Q; and p' is 
the pressure gradient of a Bingham material with yield stress 7y flowing through a duct 
of width h at a flow rate Q. Under steady flow conditions, the force in an ER device 
increases by a factor of P'/P~N when the field is applied. The Newtonian pressure gradient 
is proportional to Q (p~ - Q~) ,  where 7~ depends only on geometry and viscosity, 

[ 1-1 - -  r g d -  rgd) (15) ,]p~gd(irgd, Orgd, r] ) _ 87"] o 4 i 4 (o 2 i 2 \2 
7c rgcl- rgd --log(°rgd/irgd) " 

The inner radius of the duct is ir and °r is the outer radius. The across-flow dimension of 
the duct is h - ° r -  i t .  In the analyses that follow, flow ducts are separated into groups. 
Adjacent ducts within a group may be hydraulically connected in series, or in parallel. 
Adjacent groups may be connected in series or in parallel. The sub-scripts 'gd' indicate 
that the sub-scripted quantity pertains to duct d within group g, where 1 _< g -< G and 
1 _< d _< Dg. There are Dg ducts in group g. When the subscript g is omitted, G = 1. 
The values for the inner and outer radii can be derived from the geometry shown in 
Figure 7, 

d d-1 

i F g d -  °T'(g-1)D(g-1)+ E Wg5 2V E hg5 (16) 
5=1 5=1 

and 
d d 

°Fgd (9-1)D(g_l) 
(~--1 5--1 

where °rOD 0 -- /i~p. 

The ER device designs are evaluated with four performance parameters" the maximum 
device force, F,  at low piston velocities, the ratio of maximum to minimum device forces, 
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P'/P'N, at high piston velocities, the electrical energy required to operate the damper, 
CE2h 2, and the response time of the device due to fluid inertia, t. The optimal device 
has the design with the fastest response time, t, that meets or exceeds a required force 
level, and a required dynamic range within a given device size (Rb, L), and without 
exceeding a pre-specified energy requirement. 

The total force developed by the device is proportional to the total pressure drop along 
the network of ducts, Ap. In the analyses which follow, P~r is an effective total pressure 
gradient, such that Ap - p~L. The time required for the Newtonian flow profile to 
develop from a nearly plugged flow profile is 

t-o.22 phi, ( I 8 )  
rl 

where p is the mass density of the ER material (p ~ 1 g/cc) [5]. The capacitance of a 
multi-electrode device (as illustrated in Figure 7) in Farads is" 

G D9 
C__ I~f_oT.f.L Z Z ?r9 d-'~-ird 

g=l d=l °r9 d -- ~r9 d 
(19) 

where Co is the permittivity of free space and ec is the dielectric constant of the material 
(ec ~ 4). The maximum field typically applied to an ER material is about 5kV/mm. The 
total capacitive energy at this field is about 25 x 1012Ch 2 Joules. 

Multiple-duct ER devices have more design variables (gap widths) than are easily man- 
aged. Because steel tubes are readily available in only discrete sizes of diameter and wall 
thickness, the following analysis will presume that the ducts in the ER device are annular 
gaps formed by tubes with a equal wall thicknesses, and that all of the ducts have the 
same across-flow dimension, h. Even within the constraint of limited tube availability 
and a fixed device size (diameter and length), the arrangement of the flow paths within 
the device leads to devices with a wide range of characteristics. While all of the ducts 
are electrically parallel, the flow paths can be arranged either in parallel, in series, or 
both. The number of possible hydraulic interconnections of N concentric ducts is 2 (N-l). 
Each configuration has distinctly different properties. 

These configurations will be analyzed in the context of several parallel groups of ducts 
in series. In this configuration, the total pressure drop across the piston is equal to the 
the pressure drop along each group of ducts. Mass conservation and an incompressibility 
assumption require that the sum of the volumetric flow through each group equals the 
total volumetric flow rate, QT. Within each group, the sum of the individual duct 
pressure drops equals the total pressure drop and the volumetric flow through a duct 
equals the volumetric flow through that duct's group. These conditions give 

G 

- (20 )  
9=1 
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and 
D9 

' ' ( 21 )  PT -- E Pge d=l 
Assuming a conservative linear approximation for the ER pressure gradient (equation 
14), the flow within group g of a set of parallel groups is 

l E ] Q g -  "Pt.gd p~--2.1Ty hg-d 1 . (22) 

The total flow is then: 

QT -- ~ 7~gd  r-2.1 ,Eh . d=l (23) 

This equation can be solved for the total effective pressure gradient: 

[ Ida91 ]-11-1 I G Ida=91 IdD~l 1-111 P~r -- g =1~ "]~gd QT + 2.1Ty 9~ 1= hg-d 1 ~'~9d " (24) 

The total effective pressure gradient due to a purely Newtonian flow is obtained by 
setting ry - 0 in the above equation, j_1]_1 

PNT -- QT 7~gd 9=1 (25) 

N U M E R I C A L  E X A M P L E  

To illustrate the analysis outlined above, a device with constrained geometry and mate- 
rial properties was investigated. The across flow dimension, h, and electrode thickness, 
w, were fixed at 1.59 mm (1/16 inch). The outer radius of the device was fixed at 
3.81 cm (1.5 inches), and the length of the electrodes was fixed at 25.4 cm (10 inches). 
The maximum ER fluid yield stress, ~-y, is conservatively chosen to be 3 kPa, and the 
Newtonian viscosity, r/, is set at 0.1 Pa-sec. Devices with five ducts and seven ducts were 
analyzed. The only design variables are the arrangement of the ducts in the device, and 
the total number of ducts. A device is determined to be "feasible" if the dynamic range, 
P'/JN is between 10 and 20, and if the force levels are above 1.5 kN. 

The wide range of device performances, attributed to different hydraulic designs is il- 
lustrated in Figure 8. Each point in these figures corresponds to a different design 
duct configuration. These figures show three performance variables, P'/P~N" The force, 
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F ,  increases with velocity due to the Newtonian stresses. Therefore  F was conserva- 

t ively evalua ted  at Vp - 1 cm/sec.  Likewise, P'/P'N decreases with velocity. So P'/P~N 
was conservat ively evaluated at Vp = 50 cm/sec.  The other  per formance  variables are 

ve loc i ty- independent ,  but  depend on geometry,  viscosity, and density. In each figure, 

the  device with the greatest  dynamic  range corresponds to all ducts in parallel,  and the 

device with the  greatest  force capacity corresponds to all ducts in series. 

It is clear f rom Figure 8 tha t  devices with seven ducts provides an ou t s t and ing  dynamic  

range but  sacrifices the force level. The  effect of grouping the ducts enhances  the  t rade-  

off be tween  dynamic  range and force level. Many designs with five ducts  in groups have 

an adequa te  force level and dynamic  range. 
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Figure  8" Dynamic  range vs. force for a mul t i -e lect rode ER damper .  

Whi le  there  is a trade-off between dynamic  range t ime and force level, dampers  with 

higher  force levels have shorter  response times. Because the response t ime is assumed to 
vary only with h 2, the manne r  in which the ducts are in terconnected  does not effect the  

inert ial  response t ime. Because all devices in this analysis have the same h, the  response 

t ime  for every design is 5.5 milli-seconds. 

Like the  response t ime,  the energy requi rement  is not dependent  on flow rate. Therefore,  

all the  designs require similar amounts  of energy. The  capacit ive stored energy of the  five 

duct  devices is 0.35 Joules, and the capacit ive stored energy of the seven duct  devices 

is 0.44 Joules. These  devices could be charged hundreds  of t imes from a c ommon  9-volt 

bat tery .  

Devices made  with more groups of ducts but  the same total  number  of ducts have lower 

forces but  greater  dynamic  range. Placing the groups with the greater  numbe r  of ducts  

toward  the outer  pe r imete r  of the device results in devices with slightly larger forces and 

slightly smaller  dynamic  ranges. 
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C O N C L U S I O N  

A linear approximation to exact solution of steady ER flow was used to obtain closed 
form design expressions for ER devices. Dampers in which the ER material flows through 
multiple concentric electrodes can demonstrate a wide range of behaviors within a fixed 
device size. The electrode gaps are electrically in parallel but hydraulically arranged in 
series, parallel, or combinations of series and parallel. Despite low yield stresses, high 
forces are generated in these dampers by virtue of the large surface area over which the 
ER material flows. Forces can be controlled by a factor of 10 or more, even at high 
velocities. By carefully separating and isolating the electrified metallic tubes, rugged 
devices with complicated flow paths can be easily assembled. 

This study concludes that ER materials can be effective in reducing structural responses, 
when the electric field is switched according to a bang-bang control rule which minimizes 
kinetic energy. Although operating the ER devices in a bang-bang fashion requires much 
more electrical energy than the constant voltage case, the control system can be operated 
using a battery-operated high-voltage supply. The control rule described here requires 
only that the structure is base-excited, that the physical parameters of the EFt material 
increase monotonically with electric field, and that the force- velocity relationship for 
the ER damper is always in the first and third quadrants. Because of the low, cyclic, 
shear rates of the material in ER devices, pre-yield, visco-elastic behavior is observed in 
experiments. This controllable pre-yield visco-elasticity is central to the behavior of the 
control system. 
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ABSTRACT 

Preconditioned conjugate gradient (PCG) method is an equation solver that is suitable for 
parallelism. Cluster technology leads parallel computation to a new stage and dramatically 
increases the transferability of parallel algorithms. This paper tries on a fast Ethernet to develop 
a parallel PCG algorithm as an independent solver of linear system of equations. After a brief 
review, a parallel PCG strategy is given through modification of an existing scheme. It is 
programmed on the parallel virtual machine (PVM) platform, and the local area network is 
composed of 5 Pentium PCs connected by 100BASE-TX Switching Hub. Considering load 
balance, two types of decomposition of the whole coefficient matrix are adopted, so as to 
implement the dominant and computation-exhausting processes, preconditioning and sparse- 
matrix vector product. As an initial approach, a Jacobian and block-Jacobian preconditioning 
are adopted respectively. Some simple examples show that the PCG converges very fast for 
those diagonal dominant matrices, but may fail for structural analyses. 

KEYWORDS 

Parallel PCG algorithm, Cluster technology, PVM, Equation solver, Sparse matrix vector 
product 

INTRODUCTION 

Using the Galerkin formulation on any continuum that is to be studied, structural analysis is 
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reduced to solving the matrix equations 

K X = F  (1) 

where K ~ R n" is the stiffness or equivalent stiffness matrix, X , F  ~ R" are the generalized 
displacement and force vectors, respectively. The solution of Eqn 1 may be obtained in one of 
two possible ways, direct or iterative approaches. In traditional FEM programs that are 
sequentially executed on one-processor computers, direct approaches have been almost 
exclusively used, see Zois (1988). 

Iterative methods approach the real solution through successive approximation techniques. 
They not only require less storage and are easy for implementation, but also give users the 
possibility of controlling the accuracy of the solution. Along with time extension, CG/PCG 
families are attracting more and more attention. Although CG approach has poor reputation of 
low convergence in structural analysis, there have been some successes with PCG algorithms 
recently by preconditioning and special ordering techniques. The inherent characteristics of the 
family and these techniques imply better performance in parallel environment than in sequential 
one. 

The most widely used pre-conditioners are derived either from the incomplete Cholesky 
factorization of the coefficient matrix or by SSOR characteristic matrix. Since CG/PCG can be 
easily executed without the factorization of the whole stiffness matrix, most of the 
implementation and preconditioning have been achieved in element or certain sub-domain levels. 
Hughes, Levit and Winget (1983a,1983b) may be the first people who introduced the idea of 
element-by-element process for the solution of linear systems of equations. Law (1986) 
developed a parallel CG algorithm by using the displacement (as well as force) vectors local to 
each processor and the corresponding global vectors. Carter, Sham and Law (1989) described a 
parallel implementation of the finite element method on a multiprocessor computer. A parallel 
element (or substructure) oriented CG procedure was employed to compute the displacements. 
Based on Law's work, Yalamanchili, Anand and Warner (1992) implemented a parallel PCG 
algorithm with a Jacobian preconditioning. Here the patterns of the matrix vector product were 
discussed. Chiang and Fulton (1992) put forward a PCG algorithm that was in a node-by-node 
pattern and executed on vector computers. The preconditioning was also Jacobian. Zhu and 
Qiao (1993) gave two PCG strategies in substructure level. 

By means of Krylov subspace theory, Yang and Li (1993) depicted four solvers of linear 
algebraic equation with the large-scale coefficient matrix being sparsely inhabited. A PCG 
procedure was briefly described as an independent algorithm and pointed out to be executed in 
the YH-1 computer of China. The main contents of Chadha and Jr. Baugh (1996) are about a 
parallel PCG algorithm for structural analysis on a conventional Ethernet-connected 
workstation network. The performances on plane-elasticity problems are evaluated. The listed 
scheme should be executed atter finite element modeling on each sub-domain. The local pre- 
conditioner assigned to each server was initially formed in another program, and was modified 
based on interface conditions during the starting steps of PCG. But there was no modification 
with stiffness matrix of each server. 
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It can be obviously found that most of PCG methods, whether being sequential or parallel, have 
been implemented with the combination of some domain decomposition technique(DDT). Of 
course, it is DDTthat gives merits to PCG family. But there is difficulty for these schemes to 
directly solve those problems in which only the whole global stiffness matrix is given. 

For real engineering problems, the users would rather give the global information, such as 
matrix of the whole structures, than show the design in detail. A lot of famous universal 
software for structural analysis already on hand is able to manage it. There are also some 
problems, such as the dynamic analysis on periodic or partially periodic structures, like large 
space flexible structures, the global stiffness matrix can be obtained easily (Hou and Zheng, 
1997). In that situation, it is not necessary to modify the whole stiffness matrix. In the case of 
nonlinear structural analysis furthermore, the global matrix is the only object one has to 
confront. To solve these problems, parallel strategies of direct methods have been successfully 
implemented. 

As a supplementary to mainstream research work on PCG approach, this paper develops a 
strategy. That strategy is implemented on fast Ethernet and is a real independent solver of linear 
system of equations. The rest content of this paper is arranged in four sections. The first 
describes the parallel environment and gives a strategy of PCG algorithm as an independent 
equation solver. The decomposition of matrix K is discussed in the second section, two 
partitions are demonstrated. The third section is on sparse matrix vector product. It is the 
extension of the previous section. Some opinions are put forward in the last section, based on 
our initial computational experiences. 

IMPLEMENTATION OF PARALLEL PCG ALGORITHM 

Parallel Environments 

During parallel computing, the speedup and efficiency are two important indexes. They reflect 
the comprehensive performance of a parallel system and the corresponding algorithm. In order 
to have a good gain, one should attach importance to the performances of his node machines 
and local area network(LAN) before designing efficient algorithm. 

[Pc l IPc3[ 

I ,,(, 1 i .... 
I Campus 

Network 

Fig 1 Parallel computer cluster 
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After careful survey on the development of parallel computing, we have set up a cluster system 
for research and application of parallel computation. The sketch is shown in Figure 1. 

There are in the LAN 5 node machines, each of which is personal computer with CPU of 
Pentium 133. They are connected by SMC 100Mbps PCI network card and Intel Express 
100BASE-TX switching Hub. This fast Ethemet adopts TCP/IP as network protocol. The 
Solaris 2.5 for X86 is chosen as operating system, and PVM (Parallel Virtual Machine) and 
MPI (Message passing Interface) as message transmitting platform. The programming language 
can be one of FORTRAN, C or C ++, which are all supported by Solaris for X86. 

It is obvious that the distributed computing system has star-like topology and is homogeneous 
in architecture. By adding some workstations with high performance however, the architecture 
can be easily extended to be heterogeneous. In fact, our distributed system can be linked to the 
IBM SP/2 machine in the center of CERNET located in Tsinghua University through the 
campus network. More important, from the choice of the hardware, the operation systems and 
parallel computing platforms, one can find out the good flexibility of the system and so the 
transferability of the algorithms developed on it. 

Scheme of PCG algorithm and Pre-conditioners 

The algorithm in this paper is derived from that of Chadha and Jr. Baugh (1996). It is suitable 
for coarse-grained computing. A master-slave pattern is employed during the design of the 
principal computing process, although a pure node mode is also suitable. In fact, some 
processes have been programmed in the latter way. 

Before listing the flow chart of our algorithm, a note on symbols is given at first. Subscripts 
e,m denote the code and total number of slave processes. The upper case and lower case 
symbols are used for global or local variables, which are respectively in the master and slave 
processes. Each process is executed on a personal computer. A guess for generalized 
displacement vector X 0 generates the initial values for the residual load vector R and residual 
displacement vector D. Their local counterparts, or their components, are respectively 

, . , . . ,  

denoted as x, r, d. k is the local pre-conditioner. 

Now let's see the flow chart. 

Step 0 : (a) decompose K to k 

(b) form k 
, . . . . ,  

(c) transfer f k and k 

Step 1: ( a )  x = x 0 

(b) r = f - k x  

(c) k - L . L  T 

(d) d = (LL ~)-'r 
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Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

Step 10: 

Ye = r T d  

(a) send 7e 

if the first iteration 
Z o 

merge y - e=l Ye 

else 

merge Y ' - E ~ ' _ l Y e  

if 7 '  < tolerance, STOP 

~=y ' / r  
! 

7 = 7  
(b) receive fl 

if the first iteration 
p = d  

else 
p = d + / 3 p  

(a) send p 

merge P - ~ m _ l  p 

(b) receive p 

(a) 

(b) 

send u 

m e r g e  U - Z m : l / /  

receive u 

/']e -- p T / /  

(a) 

(b) 

send qe 
y m 

merge r I - e=l tie 

a = 7 1 q  

receive a 

(a) 
(b) 
(c) 

X= X + a/'_) 

r = r - a u  

d = (LL r ) - l r  
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When k-1 _ I ,  the above scheme degenerates to a parallel CG one. The focus of description 

is evidently put on slave process. 

In this master-slave parallel pattern, a global quantity is evaluated on the client (executing the 
master process) by summing the components (merge) that each server (executing slave 
process) sends. The updated values are then returned to the respective servers. The client is 
thus involved only in operations between a send and a receive, all other tasks are performed 
on the servers. Step 0 is an exception and which will be discussed later in detail. 

The computation flow is obvious. The vectors x, r, and d are initialized in step 1. Steps 2- 
10 are repeatedly performed until convergence is reached. While steps 1, 2, 4, 6, 8 and 10 
consist only of computation on the servers, the times for steps 3, 5, 7 and 9 also include 
delays due to communication and synchronization that are required for server to send and 
receive components of the variables whose current values are to be computed on the client. 
All servers are synchronized at each merge since the client does summation only atter it has 
received a message from each server. 

As an initial edition, the pre-conditioner k is chosen as unity matrix, the diagonal elements of a 

sub-matrix of k~ noted as k",  and k'itself, respectively. The latter two are also respectively 
called Jacobian or block-Jacobian preconditioning. No global pre-conditioner is to be formed or 
stored. Please refer to Figure 2(b). 

MATRIX DECOMPOSITION 

Because attached to domain decomposition process, most of the previous PCG strategies do 
not have step 0 as an independent module. Instead, some functions of the step are finished by 
the program of finite element analysis on sub-domain, and others are transacted in PCG 

module. For example, the modifications of k and d have been done in steps 1 and 2 for 
each server according to the interface conditions (see Chadha and Jr. Baugh 1996). There is 
no necessary to divide stiffness matrix, and the load balance should be considered during 
domain decomposition. 

When the finite element modeling has been constructed with the whole structure, the 
modifications are avoided. But one should have to divide the whole matrix and assign 
different parts to all the servers before computation. These are tasks of step 0. In order to 
develop an independent equation solver, step 0 can be either embraced by PCG algorithm as 
listed above, or treated in outside PCG algorithm. The former scheme will suffer in its 
efficiency, because the latter one can omit the time used by the independent program in 
computing speedup. The latter plan however, should not only execute the independent 
module in advance, but also pay attention to the alignment between two modules. In this 
paper, step 0 is embedded in the whole algorithm so as to enhance its independence and 
capability. 
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Let's see how many divisions may be confronted. The decomposition should be implemented 
on the base of load balance between different servers, therefore it should be designed with 
operations the matrix is experienced. For sparse matrix, there need at least two times of 
decomposition. One is done for matrix vector product, the other for preconditioning. From 
different divisions, we choose two natural forms as shown in Figure 2. 

(a) For matrix-vector product (b) For preconditioning 

Figure 2 Two types of matrix decomposition 

In the first division, the numbers of elements assigned to each server are determined by 

S m nw k  / nhos t_ l ,  or S - 1 + mvk  / n h o s t _ l  

where nwk, n h o s t l  are the total element number of the global matrix and the number of 
servers, respectively. The numbers of elements assigned to servers are equal or almost equal to 
each other, but the corresponding column numbers are different. In fact some columns may be 
partitioned to different servers when a very large n appears. 

The second partition constructs block-diagonal pre-conditioners for servers, and the dimensions 
of these pre,conditioners are almost the same. The number of columns of each local pre- 
conditioner is ( n is the dimension of the matrix K as mentioned before) 

T - n / n h o s t  1, or T - l + n / n h o s t  1 
m 

That can usually ensure good load balance among different servers when solving the following 
preconditioning equation 

k d - r "  (2) 
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SPARSE MATRIX VECTOR PRODUCT 

Matrix vector product has many applications in dynamic analysis of engineering structures. It is 
one of the most dominant processes for PeG algorithm, and engrosses much of the time in 
executing the whole algorithm. Therefore it is very important for the success of PCG method to 
implement the procedure of matrix vector product satisfying load balance. 

When a fully inhabited matrix is concerned, the load balance is relatively easy to reach and there 
are several mature schemes of matrix vector product, see Sun (1995). Unfortunately however, 
it is not so easy to satisfy load balance when a sparse matrix is confronted. In this paper, we 
decompose the coefficient matrix as in Figure 2(a) and compute the product accordingly. As 
mentioned above, the differences in the element numbers of the servers are in general not 
greater than 1, the load balance could then be considered achieved. 

There is another matrix decomposition and so another strategy of matrix vector product. The 
product is evaluated along the direction parallel to the diagonal of the matrix. In other words, 
the diagonal elements are firstly multiplied by components of the right-hand vector, then the 
off-diagonal elements are dealt with and so on. It is complicated for programming, so is not 
adopted at this initial stage and will not be discussed here in detail. 

DISCUSSION 

Based on the above consideration, a PCG algorithm has been programmed with three 
preconditioning versions. One is no preconditioning, the other two are Jacobian and block 
Jacobian preconditioning, respectively. By the program, we have computed some simple 
examples. At first, the equations are solved with diagonal dominant coefficient matrices that are 
specially designed. Secondly, the deflection analysis on a type of truss structure is carried out. 

From the examples, we can have some understanding on the time distribution and the speedup 
of the developed algorithm. It can also be deduced that: 

1) 
2) 

the PCG converges very fast for those diagonal dominant matrices; 
the condition number of the stiffness matrix of some trusses in large flexible space 
structures is very large, and PCG method may fail to accomplish static analysis, to 
say nothing of dynamic analysis. 

Therefore, work in the future is to construct efficient preconditioning that is suitable for 
parallelism. The incomplete Cholesky factorization may give us better pre-conditioners. 

We also find that from our other computing experiences that the LAN system does can be 
easily constructed with already computers and expanded with lower cost. Its performance is 
stable. We are confident in that cluster technology will bring about bright prospect for parallel 
computation. 



Parallel PCG Algorithm on Distributed Network by PVM 229 

REFERENCES 

Carter W.T. Jr., Sham T.L. and Law K.H. (1989). A parallel finite element method and its 
prototype implementation on a hypercube. Computers and Structures 31:6, 921-934. 
Chadha H.S. and Jr. Baugh J.W. (1996). Network-distributed finite element analysis. 
Advances in Engineering Software 25, 267-280. 
Chiang K.N. and Fulton R.E. (1992). Parallel transient finite element analysis. Computers 
and Structures 42:5, 733-739. 
Hestenes M. R. and Stiefel E. (1952). Methods of conjugate gradients for solving linear 
systems. J. Res. Nat. Bureau Stand., Section B, 409-436. 
Hou Z.C. and Zheng Z.C. (1997). Partial assemblage FEM and Iterative algorithm for static 
and dynamic analysis of a type of structures. Chinese Journal of Engineering Mechanics 
14:4, 11-17. 
Hughes T.J.R. Levit I. And Winget J. (1983a). Element-by-element implicit algorithm for 
heat conduction. Journal of Engineering Mechanics 109: 2, 576-585. 
Hughes T.J.R. Levit I. And Winget J. (1983b). An element-by-element solution algorithm 
for problems of structural and solid mechanics. Comput. Meth. Appl.Mech. Engng 36, 241- 
254. 
Law K. H. (1986). A parallel finite element solution method. Computel:s" and Structures 23, 
845-858. 
Sun J.C., Zhang L. B. and Chi X.B. et al (1996). Parallel computation on Network and 
distributed programming environment. Beijing: China Science Press. 
Yalamanchili K. K., Anand S. C. and Warner D.D. (1992). Three-dimensional finite element 
analysis on a hypercube computer. Computers and Structures 42:1, 11-20. 
Yang Y.X. and Li X.M. (1993). The Krylov subspace methods to solve large sparse 
problems on supercomputers. Journal of National University of Defense Technology 15:3, 
51-55. 
Zhu J.F. and Qiao X. (1993). Parallel iterative solutions for FEM on multi-transputer 
systems. Chinese Journal of Numerical Computation and Computer Applications 3,192- 
199 
Zois D. (1988). Parallel processing techniques for FE analysis: system solution. Computers" 
and Structures 28:2, 261-274 



This Page Intentionally Left Blank



COMPUTER AIDED DESIGN FOR VIBRATION ISOLATION 
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ABSTRACT 

From the viewpoint of nonlinear dynamics, a systematic design approach is proposed for the 
vibration isolation systems with a damped elastic stop. The approach consists of three steps. 
The first one is to design a slightly damped linear isolation system according to the linear 
theory of vibration isolation. Then, the optimal parameters for the damped elastic stop can be 
chosen in a region given according to the singularity analysis of the primary resonance. Finally, 
the continuation scheme for periodic motion and the interpolated cell-to-cell mapping for the 
global behavior of the system are used to test and evaluate the design. The approach 
enables one to make use of damping in the stop to attenuate the resonance transmissibility, 
while keeping very low transmissibility in the frequency range of vibration isolation. 

KEYWORDS: vibration isolation, nonlinear vibration, elastic stop, design, primary 

resonance 

INTRODUCTION 

Elastic stops have been widely used to limit the excessive deformation of the elastic 
component of a vibration isolator in engineering. As reviewed in Hu (1996), no theoretical 
design approach for this kind of vibration isolators has been reported in archival publications, 
partially because the combined restoring force of the elastic component and the stop in the 
vibration isolator is no longer linear with respect to the large deformation. In the current 
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design of the vibration isolator with an elastic stop, the stiffness and damping of the main 
elastic component is determined first on the basis of linear theory of vibration isolation. Then, 
the elastic stop is empirically designed and modified through a series of tests. Such a design 
procedure is not only very expensive, but also dangerous in the test when the nonlinear 
dynamics of the vibration isolation system is totally unknown. 

The primary aim of this paper is to present a theoretical design approach for the vibration 
isolation system with a damped elastic stop from the view point of nonlinear dynamics. As the 
system is piecewise linear, i.e., nonlinear by nature, it is not possible to gain insight into the 
complicated dynamics of the system by using any analytical approach. Thus, analytical 
approaches and computational approaches are combined to form a systematic and practical 
design approach. 

MECHANICAL MODEL AND PRIMARY RESONANCE 

,T, 

Z' k0 

Fsinc0~ 
'ff~ 

C) r O  

Figure 1: Mechanical model of the vibration isolation system 

Consider the vibration isolation system shown in Figure 1, where a damped elastic stop with 
symmetric clearance is mounted so that the combined restoring force in the system is 
piecewise linear when Ix], the absolute value of the displacement, exceeds the clearance 6. 

Using the dimensionless time and displacement, as well as a set of dimensionless positive 

parameters 

- ~  X C 0 

i 
: t, y=-~,  ( o : 2  m ~ ~  o, 

kl f : k° ~ ,,~ = (_o 
k 0 ' 

¢1 
= 2 ' 

(1) 

one can write out the differential equation of motion of the system 
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where the dot represents the derivative with respect to the dimensionless time r and 

g(y) = { Y, lyl -< 1, 

(1 + / ~ ) y -  l.t sgn(y), [Yl > 1; 

h(j,) = { 24"0"9' ]Y[ < 1, 

2(4"0 + 4",).9, [y[ > 1; 

(3) 

(4) 

are the piecewise linear forces of elastic components and damping, respectively. 

To provide the theoretical background for the design, it is essential to study the nonlinear 
primary resonance of the system when maxly] >1. If the parameters (0,4"1,/~ and f are 

small, the primary resonance can be approximated, through the use of average approach, as 

y( r )  = a( r )  cos[2r + (p(r)], (5) 

where a( r )  and (,o(r) yield 

a - q ( a ) -  f~coscp, 
22 

ip = 1- ~2 p(a) f (6) 
+ + s in  co, 

22 2a 22a 

I pa - sin2cp ), p(a) - - ~  (2(,o o o 

[q(a)  = a [4:07rg + ~:l (2(f10 - s i n  2c, o0) ], (Po = arcc°s(1), a > 1. 
a 

(7) 

From Eqn.6, one has the relationship between the amplitude of the steady state resonance and 
the excitation frequency 

a 22 2 ,~,2q2 f 2 [ p ( a ) + - ~ ( 1 -  )] + ( a ) - ( ~ )  = 0 .  (8) 

To classify the types of the primary resonance, one can focus on the case of a >> 1 and let 
z = 1 / a << 1. Using the Taylor expansion of order three with respect to z, one obtains the 
bifurcation equation of the primary resonance from Eqn.8 (see Wang and Hu, 1997) 

2_p~z+a2 Z2 "- 0 G(z,  r ] , a l , a 2 )  - [ ( z -  z 3 / 6) + ?.]]2 + a l  (9) 

where 
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rc24, (1 + or) 4a ,  2 rc f  (10) 
= , a2 = [ r t ( l + c r )  ] _ (  )2 a~ 2/a 4/.z ' 

rt A2-1 8 4"0 
r / = ~ (  -1) ,  p = ~ ,  o-= . (11) 

/a rc(1 "+- O") (1 

According to the singularity theory, one can prove that Eqn.9 is a universal unfolding of the 

normal form [ ( z -  z 3 / 6) + r/] 2 with two unfolding parameters a 1 and a 2 . The transition set 

of G consists of the following two subsets. 

(1) Bifurcation set B = B 1 [..J B 2 [..J B 3 : 

2 
B 1" a 1 - 0, B 2" a 2 = ~---a 2 , B 3 ' a  2 = l [ 4 p a ~ - l _ + 4 1 - 1 6 c ~ + 8 p c ~ ] .  (12) 

(2) Hysteresis set H: 

= _ + / a 2  z4 + [ a 2  + ( 1 - z  2 / 2 ) 2 ]  2 
H:of 1 

( p z -  1)z 2 

1 
a 2 : - ~ [ - b - I - 4 b  2 - 4 c ] ,  

where 
z 2 

be- Z 4 "4- 2(1--T )2 + 

Z2 )3 Z2 
= ( 1 - - ~ -  [(1--7-)  Z 

2 
2(1 - ,oz)z (1 + z_:_), 

P 2 

2 (1 -  pz)z 
+ ]. 

P 

(13) 

(14) 

It can be proved that the hysteresis set H intersects with the bifurcation set B only once at 
the subset B 3 . 

'~X2 ~ B1 13:t B2 

1 

Figure 2: Transition set of G with respect to unfolding parameters c~ l and a 2 
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Now, one can check the possible types of the primary resonance for a I > 0 ,  which is the 

natural consequence of (0 > 0 and (1 > 0 in practice. Figure 2 shows a typical transition set 

of these two unfolding parameters. The transition set divides the right half plane of (a I , a2) 

into 4 regions as shown in Figure 2. In each region, the amplitude-frequency curve of the 
primary resonance looks the same qualitatively. This figure, thus, enables one to choose an 
appropriate combination of unfolding parameters so that the vibration isolation system 
possesses the desired qualitative behavior in primary resonance. 

It should be emphasized at the end of this section that though the above analysis is made for a 
piecewise linear system on the assumption of weak nonlinearity, i.e., the parameters ~ and 

(l are small, the numerical simulations in Wang and Hu (1997) showed that the results were 

valid even when /~ and (1 were  not small. 

D E S I G N  A P P R O A C H  

The basic idea of present approach is to design a linear vibration isolation system with very 

small damping first, and then an elastic stop with large damping. In the working frequency 
range, the slightly damped vibration isolation system has required vibration transmissibility. 
Once the vibration isolation system undergoes the primary resonance somehow, both the 
elastic stop and the large damping reduce the vibration amplitude and remove the jumping 
phenomenon that may occur for a harmonically forced nonlinear oscillator. 

3.1 Design of primary system 

The vibration isolation system without any stop is referred to as the primary system 
hereinafter for brevity. The vibration transmissibility of the primary system yields 

T= I. 1+(2~:oA)2 
(1 - 2 2 )2 _+. (2~:o~)2  ' 

(15) 

where only two dimensionless parameters 2 and (0 are to be designed. For a linear vibration 

isolation system in traditional sense, the vibration transmissibility in resonance can only be 
attenuated by increasing the damping ratio (0. For the vibration isolation system with an 

elastic stop, however, the task of attenuating the vibration transmissibility in the case of 
resonance can be left to the damped stop. Hence, a very small damping ratio 4"0 can be chosen 

in the design of primary system in order to avoid the system impacting the stop when the 
system starts running, see Hu (1996). In the case of 4"0 < 0.1 and 2 > 2, the stiffness of the 

main elastic component can be determined by using the following approximation of Eqn. 15 

A~_41+1/T . (16) 
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3.2 Design of Damped Elastic Stop 

3.2.1 Preliminary Design 

Given the dimensionless excitation frequency 2 ,  the damping ratios (0 and (~, the system 

parameters to be designed are only /~ and f .  These two parameters appear in the expressions 

of unfolding parameters a 1 and a 2, and hence, follow the selection of the two unfolding 

parameters. In principle, any parameter combination of a 1 and a 2 in region IV in Figure 2 

makes sure that the frequency-amplitude curve of primary resonance does not have jumping. 
Thus, an arbitrary combination of (a  1 ,c~2) in region IV can be chosen to determine the 

corresponding parameters /.t and f ,  provided that the vibration transmissibility is acceptable. 

A great number of numerical simulations showed that the stiffness ratio y should not be too 

large. As shown in Figure 3, the function of stop is very obvious in the lower frequency range. 
The response amplitude goes down very rapidly in the beginning of the increase of /1, and 

then changes not verymuch later until very complicated dynamics happens. For the sinusoidal 
excitation of high frequency, the response amplitude has a peak as shown in Figure 4. It is 
smaller than the initial value only when ¢z is very large. As a result, an excessive stiffness 

ratio ~ is harmful. 

1.6 3.4 

1.5 

Ymax 
1.4. 

Y max 

1 . 3  . . . . . . . . . . . . . . . .  
0 2 4 8 

2.85 

2.3 

1.75 j - - - ~  

1.2 . . . . . . . . . .  
0 2 8 10 4 8 8 10 

Figure 3" Maximal displacement 
versus stiffness ratio when )~ = 0.5 

Figure 4' Maximal vibration amplitude 
versus stiffness ratio when )~ = 1.4 

Moreover, the dimensionless excitation amplitude f defined in Eqn.1 is inversely 

proportional to the clearance 6 when the excitation amplitude F is fixed. So, the clearance 
can be determined from c~ 2. If the clearance is too large, the stop can not be in function, tf too 

small, the vibration may become nonlinear and then undergoes a sub-harmonic resonance in 

working frequency range. 

In summary, the stiffness of the stop should not be very large and the clearance should be 
appropriate. So, it is necessary to optimize these two parameters, or namely two unfolding 

parameters in region IV in Figure 2. 



3.2.2 Optimization for Parameters 

Now f ,  the dimensionless excitation amplitude, is taken as the design variable to look for the 

minimal stiffness ratio of an elastic stop such that the requirement for vibration 
transmissibility in the primary resonance is met. The constraint conditions for this problem are 
as follows: 

(a) the parameter boundary where the forced vibration of the system is linear in the 
working frequency range; 

(b) the minimal stiffness ratio of the stop for given resonance transmissibility at different 
excitation amplitudes (or clearances); 

(c) the hysteresis set H that guarantees no jumping and no hysteresis in the primary 
resonance. 

It is obvious that condition (c) has been given in Eqn. 13. Hence, only the first two conditions 
are discussed hereafter. 

By eliminating /2 in the expressions of a l and G~ 2 in Eqn. 10, one obtains 

64 2 2  ' ~ ' , -  71;2f 2 2 

O~ 2 471;2 ;]2~,~ (l + O.)2 a , .  (17) 

The forced vibration of the system in the working frequency range is linear if the following 
inequality holds true 

f < fmax = "-~/(1-Aw2) 2 - +  (2g02w) 5 , (18) 

where 2 w is the ratio of working frequency to the natural frequency of the primary system. 
Given fmax, the critical value of Eqn.18, a parabola denoted by fma~ in Figure 5(b) can be 

determined from Eqn. 17. This is the parameter boundary of condition (a). 

2 2 

a 0 
2 

a 0 
2 

-2 -2 
0.0 0.0 

\ H  Bl 

_ 

0.2 0.4 0.6 0.8 1.0 a 
l 

0.2 0.4 0.6 0.8 1.0 
a 

1 
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(a) Transition set of unfolding parameters (b) Optimal parameter region 
Figure 5' Transition set and optimal parameter region in (a~, a 2) plane 

when(0=0 .01 ,  4"1=0.2, Z w=2.75 and a a=1.2 at f - 0 . 5 2  
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Inthe fourth quadrant ofthe ( ~ l , a 2 )  plane, i.e., a 1 > 0 and a 2 < 0, a contour chart shown in 

Figure 5~ b) can be obtained from Eqn. 17 if f = f = const., i = 1,2,... are taken respectively. 

It is easy to see from Eqn.10 that (al ,  a2) --+ (0, 0) when /a -+ +oo. Thus, the intersection of 

a contour curve with the hysteresis set /-/ in Figure 5(b) gives the maximal stiffness ratio of 
stop, which guarantees no jumping and no hysteresis in the frequency-amplitude curve of the 
primary resonance. In addition, Eqn.10 implies that a 2 ~- - co  when f + +oo or 6"--+ 0 

equivalently. 

To derive condition (b), it is necessary consider the maximal amplitude of the primary 
da 

resonance. By differentiating Eqn.8 with respect to 2 and imposing ~ = 0, one has 

/]2 = 1 + 2 p ( a ) - 4 q ( a ) 2 .  (19) 
a a 

Substituting Eqn. 19 into Eqn.8 yields 

2 1 2  2 f 2  [ l + - - p ( a ) - -  q(a) ]q(a) - (  ) =0 .  (20) 
a a"  

Solving Eqn.20 for the stiffness ratio, one obtains 

_~Tr f ]2 [q(a)]2 ~ / 1 - 1 / a  2 
= t [  + " -1}[arccos( 1 ) -  

2 2q(a) a a a 2 ]-1. (21) 

If the acceptable dimensionless deformation of the vibration isolator is specified as a a when 

f = fa" Substituting the vibration amplitude a in Eqn.21 with a a , one obtains the minimal 

stiffness ratio of the stop that guarantees the vibration transmissibility for given f , .  Let /~mm 

be the stiffness ratio. Then,/Jmi n results in a pair of (a 1 ,a2)  from Eqn.10. For other f ,  one 

can make use of the fact that the maximal amplitude of the primary resonance is approximate 

to the amplitude in Eqn.8 when p(a)  + a(1 - 22) / 2 = 0, and proportional to f approximately. 

Thus, one obtains the change of /-/rain with variation of f from Eqn.21 by substituting 

a = a a f  / f~ into Eqn.21, and then has a curve denoted by /dmi n shown in Figure 5(b). 

As shown in Figure 5b, the region of optimal design parameters is the shaded one surrounded 
by the boundary of linear vibration, the boundary of minimal stiffness ratio of stop and the 
hysteresis set H. In summary, the parameters f and /a should be chosen such that the system 

does not have the excessive vibration transmissibility and jumping in the resonance frequency 
range. Hence, the design of dynamic characteristics of the system is independent, and will not 
affect the vibration transmissibility of the primary system designed according to the linear 

theory of vibration isolation in the working frequency range. 
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3.3 Numerical Verification 

The above design for the parameters of the damped elastic stop is based on the analysis of the 
primary resonance. Very often, a harmonically forced nonlinear system undergoes the sub- 
harmonic or superharmonic resonance, or vibrates chaotically when the system parameters are 
slightly perturbed or the initial state of the system does not fall into the basin of attraction of 
the designed state. Thus, it is necessary to verify the system design numerically from the 
viewpoint of both local and global nonlinear dynamics. The numerical verification includes 
the following steps. 

3.3.1 Accurate Computation of Primary Resonance 

At this step, the excitation frequency is taken as the control parameter and the periodic 
vibration designed is computed by using the continuation technique developed in Wang and 
Hu (1996). If the analytic result greatly deviates from the numerical one, a new parameter 
combination in the optimal parameter region should be taken to check the results. If the new 
result is still not good, the constraint damping ratio (~ can be modified and the design in 

subsection 3.2 should be repeated. 

3.3.2 Analysis of Global Dynamics 

One of the most important features of a nonlinear dynamic system is the coexistence of 
multiple steady state motions evolving from different initial states, say, three coexisting 
periodic motions or two coexisting periodic motions and a chaotic motion of large amplitude. 
It is obvious that the continuation technique is not able to determine all these motions. So, it is 
necessary to examine the effect of the initial states on the system dynamics when the system 
parameters are fixed. This can be accomplished by using the technique of interpolated cell-to- 
cell mapping or the technique developed in Wang and Hu (1998). For the sake of reliability, it 
is better to make the analysis of cell-to-cell mapping in a large region of the Poincare section. 
The size of convergence criterion in the cell-to-cell mapping should not be too large in order 
that the results are reliable. If coexisting steady state vibrations are found in the cell-to-cell 
mapping, the amplitude of each vibration should be examined. Once the expected vibration is 
not tolerable, the design has to be modified. Otherwise, the possibility of jumping 
phenomenon should be examined in order that the isolated equipment will not undergo 
dangerous shock due to the jumping when the excitation frequency varies. If there is a wide 
frequency range wherein multiple steady state vibrations exist, the robustness of the expected 
vibration should be examined. The robustness includes the stability of expected vibration, the 
stability redundancy of the vibration against the perturbation of system parameters and initial 

states. For this purpose, the following concepts will be used in the evaluation of a design. 

(a) The stability redundancy index is defined as the distance between the largest module of 

the eigenvalue of the linearized Poincare mapping and 1, i.e., 
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R, IIv[-11  lOO%, 

where v is the eigenvalue with the largest module. 

(b) The redundancy index against the perturbation of a system parameter p is defined as 

(22) 

Rp = ( 1 -  I =l-I lll> 100% zXp 
(23) 

where v I and v 2 are the eigenvalues with the largest modules before and after the 

variation ofp. 
(c) The redundancy index of a basin of attraction is defined as 

qy,.-  11,' Ra = x 100%, (24) 
A 

where A is the area of the Poincare section of concern, YF is the fixed point, Yb is the 

point which is on the boundary of basin of attraction and most close to the fixed point. 
The value of R a reflects the robustness of a basin of attraction. 

3.3.3 Analysis of Bifurcated Periodic Motions 

The result of cell-to-cell mapping provides a set of initial fixed points for the continuation of 
periodic motions. At this step, larger meshes can be used so as to find the number and 
locations of the periodic motions efficiently. The technique developed in Wang and Hu (1998) 
is suggested to determine the fixed points of node-saddle type since they can hardly be 
determined by using cell-to-cell mapping. Once the initial fixed points are given, several kinds 
of continuation techniques can be used. Among them, the method suggested in Foal and 

Thompson (1991 ) is relatively simple. 

The sub-harmonic number of the resonance of a piecewise linear system depends on /a, the 

stiffness ratio of the elastic stop, but the occurrence of a sub-harmonic resonance depends 

mainly on damping. In the traditional design, small damping is usually used to guarantee low 
vibration transmissibility in high frequency range, and no damping is artificially arranged in 
the elastic stop. Thus, the sub-harmonic resonance is likely to occur. In the present design, 
large damping will be arranged in the elastic stop to avoid the sub-harmonic resonance 

effectively. 

A NUMERICAL EXAMPLE 

For simplicity, an example is discussed here in the form of dimensionless parameters. The 
damping ratio of the primary system of concern is 4"0 = 0.01. It is required that the vibration 
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transmissibility at 2 w = 2.75 should be 0.2, the acceptable vibration amplitude should be 1.2 

for f = 0.52, and the vibration transmissibility in primary resonance should be T < 5.0. 

The region of the optimal parameters for this system is shown in Figure 5b when the damping 
ratio of stop was set t o  ( 1  = 0.2. If tWO unfolding parameters were chosen as  a I = 0.l 6 and 

a 2 = -1.05, there followed f = 2.73 and Iz = 2.06. The corresponding frequency-amplitude 

curve of the primary resonance is shown in Figure 6. It is easy to verify from Figure 6 that 

T ~ 2.81 < 5.0. In the continuation of the periodic motion, two turning points were observed 
when 2 e[0.5045, 0.5054]. In this frequency range, there exist three periodic motions. As 

shown in Figures 7, two of these periodic motions are stable, while the other is unstable. The 

multiplicity of these periodic motions exists in a very narrow frequency range. Even though 

there is a jumping between the stable periodic motions, the variation of the vibration 

amplitude in jumping is very small. 

The global dynamics of the system in the Poincare section of [-4,0] x [-2.4,2.4] was analyzed 

by using cell-to-cell mapping approach at 2 = 0.5053. The result is shown in Figure 8, where 

two fixed points represent the above-mentioned stable periodic vibrations. The redundancy 

indexes of these two stable fixed points are as following. The first fixed point corresponds to 
R s = 72.5%, Re,-  64.13%, Rf = 53.56% and R a =0.32%, and so does the second fixed 

point to Rs = 39.1%, R~ = 95.31%, Rf = 94.41% and R a = 5.58%. It is easy to see that all 

the redundancy indexes of the second fixed point are relatively larger. Compared with the first 

fixed point, the second fixed point is more robust. This assertion was verified in the 

continuation of these periodic motions. Finally, the cell-to-cell mapping was made for the 
system when the excitation frequency was fixed at 2 = 0.5 , 0 .75,1 .0 ,  1.25, respectively. As 

expected, the only periodic motion found is the motion of period 1. In addition, no sub- 
harmonic resonance was found when the excitation frequency was set as multiplication of 

natural frequency of the linearized system. 

Yrr~ 

0 2 

5 

2:7.~:~_..~ x_ Aaalytica 

0.5 1 1.5 

o.9 

0.7 

0.5 

0.3 

0.1 

0.5 0 .505 0.51 0 .515 0 .52  

Figure 6" Frequency-amplitude curves 

of primary resonance when ( l  = 0.2 

Figure 7: The Poincare velocity versus 

excitation frequency curve when ( 1  - - 0 . 2  
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Figure 8" The Poincare section of basins of attraction 

of two periodic vibrations when 2 = 0.5053 

If a large stiffness ratio of the stop, say, ~ = 15.0 was chosen, a chaotic vibration was 

observed in the cell-to-cell mapping. The Poincare section of corresponding strange attractor 

is shown in Figure 9. In this case, the system lost the function of vibration isolation. Hence, it 

is very dangerous to increase the stiffness of the elastic stop intuitively in order to limit the 

vibration amplitude. However, the vibration amplitude can be greatly reduced if the damping 
in the elastic stop is increased. For instance, when the damping in the above system was 
increased to (1 = 0.4, the maximal amplitude was greatly reduced as shown in Figure 10. 

Moreover, only a period 1 motion was found in the cell-to-cell mapping. 
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CONCLUSIONS 

A systematic design approach is suggested, by integrating several analytical and numerical 
approaches of nonlinear dynamics together, for the vibration isolation system with a damped 
elastic stop. This design approach has satisfied accuracy and reliabilit~ so that a great number of 
tests can be avoided. Both the numerical simulation and real test showed that the design of the 
vibration isolation system can greatly reduce the vibration transmissibility in the frequency 
range of resonance through the use of damping in the stop and keep very low vibration 
transmissibility in the working frequency range. 
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CALCULATION OF THIN PLATES 
ON STATISTICAL NON--UNIFORM FOUNDATIONS 

Yi Huang, Yuming Men and Guansheng Yin 
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and Technology, Xi' an 710055, P. R. China 

ABSTRACT 

In this paper,the calculation methods of reliability of structure (plate) -- medium (soil) 
interaction are presented. Based on reliability theory, calculation methods of reliability of 
thin plates on statistical nonhomogeneous foundation are studied. Calculation formulas of 
reliability of elastic thin plates on Winkler, elastic half-space and two-parameter foundation 
are developed. The calculation procedure is further demonstrated by examples of plates with 
four free edges and the plates with four-simply supported edges. 

KEYWORDS 
Statistical nonhomogeneous foundation, thin plates, reliability 
foundation, elastic half-space, two-parameter foundation 

calculation, Winkler 

INTRODUCTION 

Thin plates on elastic foundations are widely employed in engineering. Many 
applications,such as raft foundation, road pavement ,airport runway, etc. can be calculated 
by reducing them to thin plates on an elastic foundation~ that is the typical problem of 
structure-medium (soil) interaction. Concerning the calculation of plate on an elastic 
foundation, the certainty analysis method has been used, i .e.  the physical parameters, 
geometrical dimensions of plate and foundation properties are considered as determinate 
factors, and actual variabilities of them are considered through so-called "safety factor". 
Actually, each kind of parameter has a relatively large variability because the foundation 
(soil) is highly dispersed, so it should be considered as a statistical nonhomogeneous 
medium, that is a key to reliability calculation of structure--medium interation. On the 
other hand, there are also variabilities in varying degrees for material properties and 
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geometrical dimension of plates. This leads to uncertainty of the actual parameters that is 
difficult to represent by the classical "safety factor". Due to the lack of quantitative analysis 
of variability effect of all kinds of parameters on the deformation and strength of thin 
plates, unreasonable errors are caused in the design of foundation plate structures. 
Therefore ,in order to reasonably design the foundation plates,it is very important to study 
the effects of all kinds of uncertain parameters on the deformation and internal force of the 
thin plates. So it is inevitable to introduce reliability calculation of s t r u c t u r e -  soil 
interaction. 

Recently, the fast development of reliability theory provides a powerful method to 
study the variable effects of the parameters on the structural internal force and deformation, 
and the reliability theory has been used in structural design. But up till the present moment 
there are not many papers dealing with reliability calculation of structure--soil interaction at 
home and abroad. In this paper, the reliability theory of plate--soil interaction is discussed. 
Based on reliability theory, the reliability calculation of thin plates on elastic foundation is 
studied by considering the foundation as a statistical nonhomogeneous medium. The 
calculation procedure is further demonstrated by examples of a plate with four free edges 
and a plate with four simply supported edges. In fact , this paper presents reliability 
calculation method of structure-medium (soil) interaction. 

RELIABILITY CALCULATION 
HOMOGENOUS FOUNDATION 

OF THIN PLATES ON STATISTICAL NON- 

Reliability calculation o f  thin plates on Winkler foundation 

Winkler model is one of the simplest linear elastic foundation models. Although it has 
some theoretical drawbacks , it is still used in current engineering because of its simplicity. 

According to Winkler model, the deflection surface differential equation of elastic thin 
plates is 

k -- q (1) a,w + b w -  b 

where A4( : )  is symbol of the double Laplacian, W is deflection of the thin plate, k is 
Et 3 

modulus of the foundation, q is load of the plates, D -- 12(1 --/~2) , h is thickness of the 

plate, 9 is Poisson's ratio of the plate material, and E is modulus of elasticity of the plate 
material. 

Once the deflection equation of plates is solved, the bending moment of plates can be 
obtained by the following equations: 

azW azW 
M~ = - - - D ( ~  +/~ Oy---q-) 

azw azw 
My - - - -  D( 3y-- T +/1-4-~_z) 

(TiA;- 

(2) 
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In the strength design of elastic foundation plates, ultimate moment of resistance is 

considered as the critical point. Thus, the reliability of elastic foundation plates is the 
probability that the maximum moment is less than the ultimate moment of resistance. Under 
normal design, construction and usage,the probability of reliability ps can be expressed as 

Ps = P(Ms  > Mma~) (3) 

where M j is ultimate moment of resistance Mm~ is actual maximum bending moment. 
In the reliablity calculation of thin plates on Winkler foundation, the value of the 

modulus of subgrade is an important parameter, which is also the parameter of most 
variability. So, from a statistical nonhomogeneous viewpoint, it must be considered as a 
random variable in calculation. In addition, load p ,  modulus of elasticity E and plate 
thickness t , which should be considered as random variables,have a considerable effect on 
reliability. The ultimate moment of resistance, which depends on material properties and 
construction conditions, also has variability and should therefore be considered as a random 
variable. Poisson ratio of the plates has less variability and thus has less effect on calculation 
results. For this reason it can be considered as a constant in order to simplify the 
calculation. Other random variables can be regarded as independent of each other. Thus, the  
probability of reliability of thin plates on Winkler foundation can be approximately expressed 
in a function of the random variables, M s, E,  t, q and k ~ that is 

Ps = f (Ms ,  E ,  t ,  q , k )  (4) 

To simplify the expression, the above random variables can be written as Xi~ that is, X1 -- 
Ms,  Xz  = E ,  X3 = t ,  X4 = q, Xs = k. The mean and standard deviation of each variable 
is/~x, and ax, respectively. Hence the limit state equation of thin plates is 

Z = g ( X 1 ,  X2,  X3,  X~,  Xs) -- M s -- [ M ( X z ,  X3,  X4,  Xs)[ .... (5) 

where Ms is ultimate moment of resistance, which represent the resistance o~ the plates, and 
M is design bending moment,  which represents the effects of actions of loads. 

When every random variable is of normal distribution, the reliability index equation 
can be obtained by using checking points method of first-order second moment. 

5 

g ( X ;  , X ;  , . . .  , X ~  ) - ~ -~-.7.. (X~ - ~ )  
___ i----1 ( 6 )  

/~ og ~x  

where p" is design checking points. 
Substituting Eqns. 2 and 5 into Eqn. 6 and noting the expression 
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g ( X (  , X ;  , ... , X ;  ) = 0 (7) 

at the checking points, the formula of reliability index can be written in the following form 

Et3 1 
f l =  { g ( X (  ) - -  { ( X [  - -  t~x,) - -  12(1- /~2){ME (X2" - / % ) - + -  

3 O M  
+ t(Xa" --/~x,) ] + -~-xT(X; --/~x,) },. }}/A 

/=2 

(8) 

where 

O2W a2W a2W o2W 
M =  (or 

{ 2 + [ Eta ?21( M2 1 8M2} 2 
A - ax, 12(1 - -  / j 2 )  ~ + -E -~2 ax,_ 

(9M 2 3 aM 2) aM 2} },/2 
i = 2 ~ GXi P" 

(8') 

(8") 

Eqn. 8 is the reliability index equation of thin plates on Winkler foundation. The direction 
cosine of the normal op" to coordinate vector is. 

cosOx, = - -  -~ax, ,  cosOx, = - -  12(1 -- ~)A E + ~ ax, 

cOSOx, = 12(1 /~2)A t ~ ax, 1 2 ( 1 -  ] ) A  ~ ax, 

E 6  ( a M )  
c°sOA = 12(1 -- /~2)A ~ ax~ 

(9) 

Coordinates Xi" of the checking points are 

X ;  = gx, + flax cosOx, (10) 

Solving Eqns. 7,9 and 10 simultaneously, the fl value of plate on elastic foundation can be 
obtained. In actual calculation, fl can be obtained only by iteration, of which the procedures 
are as,shown in Figure 1. 
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[Assume X,* (px, can beuSed . . . . .  as initialvalue)] 

no 

l [Calculate/3 by using limittstate equation g ( . ) - - 0  i 
¥ 

--~tAre X;' and fl equal to the previously Calculated value or within acceptable error? h 
yes 

[/3 is the calculated reliability index, and .Xi* is the design . checking point. I-" -] 

Figure 1 Procedures of iteration 

In the above analysis, basic variables X~ are assumed of to be normal distribution. If X~ 
is not a normal random variable, it should be converted to an equivalent normal random 
variable before calculation. The calculation equations of mean/~x' and standard diviation ax' 
can be found elsewhere [4]. 

Reliability calculation o f  thin plates on elastic half-space foundation 

According to half-space foundation model, the foundation is assumed to be a 
continuous, homogeneous, isotropic, completely elastic half-space body. The mechanical 
properties of the foundation are functions of modulus of elasticity E, and Poisson's ratio/z, of 
soils. Although the solution of this model is much more complicated than that of Winkler 
foundation model, Eqn. 2 can still be used to describe the relationship between deflection 
and internal forces. Thus,  the limit state equation of this model is similar to Eqn. 5. 
Among all parameters, M s, E, t and q are still considered as random variables. Although 
both modulus of elasticity E, and Poisson ratio/~, of soil are actually random variables, only 
E, is considered as a random variable during calculation in order to simplify calculation, and 
/~s is regarded as a determinate variable because it has less variability. Negl6cting the actual 
variability of/~, does not very affect the results of reliability calculation. When each random 
variable Xi is of normal distribution, Eqns. 7, 8, 9 and 10 can still be used as reliability 
calculation for the plates on the elastic half-space foundation provided, replacing k in the 
above equations by E,. 

Reliability calculation of  thin plates on two-parameter foundation 

Two independent elastic constants are used to describe soil mechanical properties in the 
two-parameter model. According to the difference in the parameters used, this type of 
model can be further classified as Filoneko-Borodich model, Hetenyi model, Pasternak 
model, Vlazov model, etc. 

In practice, the two parameters that characterize mechanical properties of soil are 



250 Huang, Yi et al. 

always variable with the discreteness of soil properties, no matter which model is used. So 

they are all actually random variables. However, whether both parameters are used as 
random variables in calculation depends upon practical circumstances. If it is complicated or 
time-consuming to determine both parameters, only the parameter that represents the main 
soil properties is considered as a random variable, while the other one can be considered as a 
constant. For instance, subgrade coefficient k is considered as a random variable in 
Filonenko-Borodich model, while membrane tension T can be considered as a constant. The 
reliability calculation equations are thus exactly the same as those of Winkler model. 

However,  It should to be noted that the subgrade coefficient here, k ,is different from that 

in Winkler model when 7" is introduced. If both parameters are relatively easy to determine, 

they can all be considered as random variables. For example, k and G in Pasternak model 

can be determined by means of ground testing,a relatively easy test and calculation. Both 
parameters are then considered as random variables. Let Xs = k ,X6  = G. Then Eqn. 8, the 
reliability index equation, becomes 

Et 3 1 
fl = {g(Xx) -- {(X~" -- /ax) -- 12(1 --/~z) {M[-~(X~ -- /~x, 

3 ~ aM 
-4- y ( X ; --  lax,)-] + - ~  ( X ~" -- t~ x, ) } p " } } / A 

i = 2  

) +  

(11) 

where 

{ z + [ Eta ]z{{ Mz 13MZ}  z +_ 
A = ax, 12(1 -- !1 z) --E Y + -E -~2  ax,_ 

-t- ( 9MZ 3 OM z OM z 1/z 
i= z -ffxiaX' (11 ' )  

and the expression of M is the same as Eqn. 8' 

A new item is added in the equation of cosOx, 

Et a 3M £1 ( 1 2 ) cosux~ = 12 (1 -- ~z) A 3X6 ax~ 

and 

g ( X [  , X2" , -.. ,X~" ) = 0 (13) 

Calculation procedures are the same as above. 
Obviously, the reliability index equations of thin plates on two-parameter foundation 

are almost the same as those on Winkler foundation except for the addition of the X6 item. 
Thus ,  we conclude that for elastic thin plates on three-parameter foundation, the reliability 

index equations can be obtained only if items - ~ ( X i *  /~x,) and - ~ a x ,  in the 
i = 2  i = 2  
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3M OM 2 
above expression are changed to (X; ' - - /~x , )  and ax, , respectively, 

i = 2  iffiffi2 

when three parameters are considered as random variables. Also, in the expression of 
Et 3 3M 

cosOx i , a new item cosOx, = 12 (1 - - / j 2 )  A OX7 ax, should be added . 

When reliability index/? is obtained, the probability of reliability p, can be calculated by 

p , - -  f(fl) (14) 

where, p, is the probability of reliability of the plate, and ~o(fl) is the standard normal 
distribution function. 

If there are complex limit state equations or many random variables in practical 
problems, this computation procedure is very complicated to solve reliability index by using 
checking point method of first-order second momnent. This can be avoid by using the 
iteration method of Fiesslur (1980). The principles can be found in reference [7-] and the 
procedure is as follows: 

(1) Determine an expression for g ( X )  
( 2 )  Express the limit state equation g ( X )  as a function of yi by introducing 

X i -  Yx, 
standardization variable y; = (i = 1 ,2 ,  .. . . . .  ,n) 

ax 

(3) 
(4) 
(5) 
(6) 
(7) 

Determine expressions for all first derivatives of h ( y ) ,  h'i 

S e t y =  0 a n d f l =  0 
Evaluate all h'; values 
Evaluate h (y) 
Evaluate standard deviation of Z from 

(8) Evaluate new values for y from 

h', [fl + h ( y ) ]  
Y = -  o-; ~z 

(9) Evaluate ~ = ~ / E y ~  

(10) Repeat steps (5) to (9) until values converge. 
Fiesslur's iterative procedure can be used together with variables. This method is very 

convenient for multi-variable problems or problems with complex relationships, because of 

its relative simplicity. 

EXAMPLES 

As an first example, we discuss a reliability calculation of a four-free-edge rectangular 
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plate on two--parameter  foundation ESl. Length of the plate is 2l = 8m and width of the 
plate is 2 b = 4m. The plate is acted upon by uniform load p .  When soil thickness H --~c~, 
the two parameters, K and Gp , of the foundation are 

Eo7 Eot 
K = 2(1 -- ~0) Gp = 4)'(1 + ~0) 

and 

E, v, 
Eo -- 1 - -  ~ Vo = l - - v ,  

where 7 is a measurement of nonlinear variation o{ normal strain of foundation,and E,,  u, 

are elastic constants of soil material. Two parameters , K and Gp,  can then be expressed by 
E, and v,. 

Let Y and v0 be equal to 1. 5 and 0. 4 respectively; the relative rigidity between 

foundation and plate system is K , =  1.0. Solution of the deflection equation of plate is/8~ 

W ( x y )  = p0L(1 -- ~0) X 10 -3 
E0 

zra: zt'y 
[-408 + 2 .37cos(-~)  + 17.4cos(-f[) -+- 

7rx Try 
+ O. 4cos ( ~ )  cos ( -=v ) 

ZO "~t 
(a) 

The values of mean and standard deviation of each parameter are given in Table 1. 

TABLE 1 
VALUES OF MEAN AND STANDARD DEVIATION OF PARAMETERS 

Variable 

Ms 

Po 

E$ 

Symbol 

X1 

X2 

X3 

X4 

Xs 

Mean(/%) 

500 

2.25 X 107 

0.35 

300 

635 

Standard deviation (ax)  
, 

50 

3.6X106 

30 

190.5 

Unit 

KN. m / m  

K N / m  2 

m 

K N / m  2 

K N / m  2 
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Poisson ratio of thin plates is/~ = 1/6 ,Poisson ratio of soil is u, 

constants;  then 
--0.  2857. Both of them are 

M nl a,.Tg 
o~W o2W .,----r + 
oy x=O 

y = O  

= 93 4913 X 10 -4 Po • E--] = 93. 4913 X 10 -~ X~ 
Xs 

Therefore ,  the limit state equation of the plate is 

Z = g ( X i )  = M s -  I D M  . . . .  I = X1 - -  O. 3436 X l O - ' X z X , / X s  (b)  

The reliability index equation can be expressed in the following form by using checking 
points method of first-order second moment as 

x ;  
t 9 -  {g(X;*) -- {(X[  - -  p t x )  - -  O. 3436 X 1 0 - 4 [ ( ~ T ) ( X z "  - - /*x , )  -- 

x~" 
O. 3436 X I O - 4 ( w ) ( X {  -- /~x,)  q- O. 3436 X lO- ' (X2*z 4. 

x 
Xs" ) (Xs* --/~x~) 3} }/A 

,~x 5 

where 

2 
A - -  { GX1 

2 
2 4- GX z 

X; 
27 

, i x ; x :  
a~,+[ x;' 

2 ]}I /2  2 
GX s 

At the checking point 

g ( X ? ,  x ; ,  • . . , X d )  = X? - -  0 .  3 4 3 6  X 1 0 - '  I X ; X ;  
[ x ;  - - 0  

that is 

X~*Xs* -- o. 3436 x lO-4Xa *X ;  = o (c) 

Each direction cosine is 

COS~x t 

COSOx z 

COSO x,~ 

COSOx 4 

COS~x 5 

= -  50/A 

= 1 2 3 . 6 9 6 ( X ; / X ~  ) / A  

= 0  

= 1 0 . 3 0 8  × 10 -~ ( x ; / x ~  ) / A  

= -- 65.4558 ( X ;  X ; / X ~  a ) / A  J 

(d)  

Coordinate of each checking point is 
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X~ = 500 + 50flcosOx, 

Xj  = 2.25 X 107 -+- 3.6 X 106flcosO G 

Xa ~ = 0.35 

X ;  = 300 + 30pcosOx, 

Xs* = 635 + 190.5flcosOx s 

(e) 

Using the system of Eqns. (d)  (e) and (b) , the results can be obtained by iterations ~ the 
procedures are given in Table 2. 

TABLE 2 
PROCEDURES AND RESULTS OF ITERATIONS 

Iteration 

order 
X;' 

5,00 

485. 5304 

490. 4025 

490. 6520 

490. 6679 

X; 

2.25 X 107 

2. 3718 X 107 

2. 3519 X 107 

2. 3510 × 107 

2. 3510 X 107 

0.35 

0.35 

0.35 

0.35 

0.35 

X; 

300 

306.342 

305. 4781 

305.4020 

305. 3973 

635 

514. 1684 

503. 3878 

502. 8143 

502. 7842 

0. 8032 

0. 7922 

0. 7922 

0. 7922 

0. 7922 

Final result is ~3=0. 7922; the probability of reliability of the plate can then be obtained 

p, = ¢ ( P )  = 7 8 . 5 8 %  

and the probability of failure is 

P f =  1 - - P , =  21 .42% 

It is evident that the probability of failure is larger. If we use the traditional safety factor 

method to calculate its safety factor ,we obtain 

5OO 
K =  = 1.37 

365. 2441 



Calculation of Thin Plate on Statistical Non-Uniform Foundations 255 

It follows that the plate has enough safety capacity. That the variabilities of all kind of 

calculation parameters cannot be considered in safety factor is the main reason for different 

conclusions between the reliability and safety factor methods. Therefore unreasonable results 

arise. 

If the standard deviation of E is decreased to ax~ -- 2.25 X 10SkN/m 2 , and that of E, to 

ax~ = 7 6 . 2 k N / m  2, then probability of failure of the plate will be decreased to 

py -- 7 .08% 

As our second example, we discuss reliability of a four-edge simply supported 

rectangular thin plate on Winkler foundation. This plate supports uniform load q and has 

1 
length a - - 6 m ,  width b = 4 m  and Poisson ratio/1 = ~ .  Other variables are given in Table 

3. 

TABI.E 3 
VALUES OF MEAN AND STANDARD DEVIATION OF PARAMETERS 

Variable 

Mj 

E 

q0 

Symbol 

X l  

X2 

Xa 

X4 

X~ 

Mean (ff~,) 

5O0 

2. 304 X 107 

0.3 

400 

30000 

Standard deviation( G ) 

5O 

2.88 X 106 

0.02 

40 

7500 

Unit 

KN. m / m  

K N / m  2 

m 

K N / m  2 

K N / m  a 

Thus ,  the solution of a four-edge simply supported rectangular thin plate under 
uniform load q0 is Eg~ 

nTr 
oo ~ sin(m---n)x s in (  ) y 

W =  16q0 ~--~ ~ a -b- ( f )  
zr2 m2 n2 ) 2 

,,,=,,a,,~,...,,,=,,a,s,... rnn[~r,D(_.a_ ~ + _~ + k-I 

This series converges fast. Here , only the first item is taken to illustrate the calculation 
procedure. 
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Substituting Eqn. f into Eqn. 8, we find 

i 7r)s = ~ W  ~ W  = 16q0 ( b ) 2  + t ~ a  

i [ 1 ~ M I Oy~ + ~ - ~ 1  -V-,o ( + ~  +k ,sin ~rXsin zr__.y 
a b 

(g) 

Putting in known data into the formula and expressing it as a basic variable, the result is 

1074.1X4 ~rx . Try 
M = 68.05X~X] + l O00Xs sin --~-sm 4 

X2X]X,  
So, Z = g ( X , )  = Mj IMI .... = M j -  IDMIm,, ~ - -  X 1 O. 7392XzX] + 10. 8618Xs 

X i -  ~x, 
Introducing the standardization variable y; = ~ ,  (i = 1 ,2 ,  " ' ,  5 ) ,  the limit state 

ax, 
equation can be expressed as 

Z = h (y )  = (y,ax, + px,) -- 

(yzax, + px~)(ysax~ + IJx~)3(yiax, + px,) 

O. 7392(y2ax~ + Zx2)(y3ax~ + Zx~) 3 + 10. 8618(ysax, + Zx~) 

Forming the derivative of this expression with respect to y~(i= 1 ~ 5 ) , w e  obtain 

3h (y)  
~ Y l  

-- ax, 

~h(y) 
~Y2 

10. 8618(ysax 5 + [Jxs)(y3ax, + tlx3)3(Y4ax, + Fx )ax, 
[0. 7392(yzax~ + ~x,)(y3ax, + [~x~) 3 + 10. 8618(ysax, + ~x )] 2 

3h(y) 3 X 10. 8618(y2ax, + /2x,)(ysax~ +/2x)Z(y4ax, + llx )(ysax~ + t2x )ax 3 
- . - .  

~Y3  [0. 7392(yzax2 + ~x,) (y3ax3 + ~x~) 3 + 10. 8618(ysax, + t~x )-] z 

~h(y) (Yzax 2 + Px,)(Y3ax 3 + Px3)ax , 

~Y4 O. 7392(yzax2 + ~x~)(y3ax~ + t%)  3 + 10. 8618(ysaxs + ~x,) 

Oh(y) . . _ _  
10. 8618(y2ax 2 + px2)(y3ax ~ + lax ) ( y ,  ax, + px )ax s 

~Y5 [-0. 7392(y2ax~ + [lx,)(yaax~ + / 2 x )  3 + 10. 8618(ysax, + ~x )] 2 

From Fiesslurrs method,the iteration results are given in Table 4. 
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TABLE 4 
PROCEDURES AND RESULTS OF ITERATIONS 

Iteration 

order 
yl 

0 .0  

1. 6540 

1. 4704 

1. 4207 

1. 4250 

1. 4242 

1. 4237 

1. 4236 

y2 

0.0 

0. 5431 

0. 4236 

0. 4172 

0. 4152 

0. 4155 

0. 4151 

0. 4150 

y3 

0.0 

0.8690 

0. 6841 

0.6721 

0. 6700 

O. 6693 

O. 6688 

O. 6687 

y4 

0.0 

1. 0477 

1. 1301 

1. 0937 

1. 1000 

1. 1000 

1.1000 

1. 0999 

ys 

0.0 

1. 0863 

1. 2420 

1. 2741 

1. 2838 

1. 2872 

1. 2876 

1. 2877 

0.0 

2.4624 

2.3726 

2.3375 

2.3474 

2.3486 

2.3483 

2.3482 

X i *  ~ ~ x  i 
where yi -- is the conversion variable. 

ax, 
Reliability index is ~----- 2. 3482 ~therefore, the probability of reliability of the thin piate is 

p, = ~ f l )  -- 99.0567 

500 
According to the safety--factor method,safety factor K = 316.7-------0 = 1.58 

The above result is approximate because only the first item of the series is taken to 

demonstrate the calculation procedure. 

CONCLUSIONS 

The reliability calculation method of thin plates on Winkler, elastic half-space and two- 
parameter foundations is discussed in this paper. The equation of reliability calculation is 

established for three different models of foundation. In the reliability calculation, the 

ultimate moment of resistance M i , modulus of elasticity E , thickness t and load q0 are 

considered as random variables. Other random variables which represent soil properties 

should be selected according to the concrete model of the foundation. 

Furthermore~ the selection of random variables suggested in this paper is not unvaried~ 

they depend on specific conditions of practical engineering. For instance, high construction 

quality of foundation plates leads to little variability of structure dimensions ~ the thickness t 
of the plate can then be treated as a constant. Otherwise, it should be treated as a random 

variable. 
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The reliability index equation in this paper is only suitable for the calculation of thin 
plate structure on elastic foundation. As to the probability of reliability for soil--foundation 
--structure interaction ,this topic will be discussed in future papers. 
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ABSTRACT 
In this paper, structural analysis and failure process in civil engineering are discussed. The main 
contents are: (1) The philosophy of computer simulation in structural engineering; (2) The 
mathematical model for engineering problem; (3) The visualization of numerical results. Some 
simulation examples are presented. 
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Figure 1" Philosophy of computer simulation in structural analysis 
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Computers are used widely to simulate the objective world, including natural phenomenon, 
system engineering, kinematics principles and even the human brain. Though civil engineering 
is a traditional trade, computer simulation has been applied successfully, especially in structural 
analysis. Three prerequisites are needed to perform structural analysis: (1) Constitutive law of 
specific material, which can be obtained by small-scale test; (2) Effective numerical method, 
such as finite element method (FEM), direct integration, etc.; (3) Graph display software and 
visual system. Figure 1 shows the philosophy of computer simulation in structural analysis. The 
following parts give a comprehensive explanation of several aspects. 

SIMULATION OF STRUCTURAL FAILURE 

Structural behavior under various loading conditions and environment is of great importance, 
especially its collapse procedure and ultimate loading capacity. When the structure form is very 
special, we usually resort to model experiment in order to determine the characteristic of the 
structure. Yet the model usually is small because of the constraints of space and equipment, 
thus can not reflect the behavior of real structure. If we want to study the influence of a 
parameter, series analogous experiments must be done, which is very time-consuming and 
expensive. 

(a) ~ - - ~  

(b) ~ 3 0 . 3 I ~  

(c) P=33.6KN 

Figure 2: Development of micro fracture 
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Taking advantage of computer simulation, we can carry out "full-scale experiments" without 
worrying about time and budget. Simply changing several input parameters, we can obtain the 
influence of these parameters. Sometimes it is impossible to do real experiments, then 
computer simulation is of more significance. For example, it is obvious that we cannot repeat 
the procedure of accident of nuclear reactor safety shell. Using computer simulation, we can 
perform reversal analysis of the accidents to determine the cause and unfolding procedure of 
accidents. Other examples are high-speed collisions of car and structure collapse under 
earthquake, which can be performed only by computer. Under high speed loading, structural 
response is very quick, therefore what we get is the final result. An extremely contrary 
situation is the evolution of the earth's crust, which may take millions of years. Both can be 
simulated by computer by changing time rate according to request. Figures 2 [41 and 3 [11 show 
the development of micro-fracture and dynamic response of a frame, respectively. 

1 

t = 7 . 8 6  s 

(a) 
(b) 

Figure 3" Dynamic response of flame 

APPLICATION IN HAZARDS PREVENTION 

The history of human being is a history of hard battle with various hazards, such as flood, fire, 
earthquake and so on. Because hazards are unreplicable for experiments, computer simulation 
has become more and more popular and of great value. Many simulation systems have been 
developed successfully. For instance, software has been developed and preloaded with 
landform, topography and surface features of a flood area. Given flood standard and specific 
location of burst, computers can demonstrate submerged areas at different time on screen, 
which are calculated according to water quantity, speed and area. People can view the gradual 
inundation process and, in turn, work out flood prevention and personnel dispersion programs. 
Fire prevention software is another successful example. Using this software, we could simulate 
spreading of fire in forest and building, which give guidelines to fire-fighting. Figure 4 [31 shows 
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the distribution of  debris after an earthquake. 

g iNCK 

t~ t r t~ i l - /  

l ~ l l t g l ~ : 8  

Figure 4" Distribution of  debris after earthquake 
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APPLICATION IN ROCK AND SOIL ENGINEERING 

Construction in rock engineering is under-ground, hence it cannot be observed directly. 
Computer simulation which can reveal its inner procedure, is of great value. For example, 
during the excavation of underground construction, there is always collapse, which can be 
solved by thorough geological survey to find the strike of faults, crevices and joints. Through 
small-scale experiments we can determine the mechanics of rock body and joints, which can be 
stored in computer for later use. 

Besides finite element method (FEM), there is discrete element method (DEM). The behavior 
of elements of DEM is similar to FEM ones in equilibrium, while elements of DEM will move 
under external force and gravity when equilibrium is lost until they get new equilibrium. In the 
analysis of underground rock structure and stability of slope, the structure is divided into 
elements along crevice and joint faults In simulation of excavation, the upper and side part 
elements may lose equilibrium and fall down; this procedure can be shown on screen and thus 
we can obtain the cave-in area and provide reliable instruction to anchor design 

Computer simulation is also applied in research fields such as seepage of underground water, 
deposition of fiver silt, settlement of foundation and so on For example, a simulation so,ware 
of fiver-mouth deposition has been developed. When given the condition of fiver mouth, it can 
show the deposition rate of different size of silt and accumulating thickness, which give 
instruction to port design and fiver course dredging Figure 5 t21 shows a simulation of bridge 
pier collapse 

~ °°°'°° . . . . . . . . .  i 
. . - B ~ . " :  : : ' . % . . / Y .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

° 

°°~ 

~a× 01 ~pl  ec~ment  O. ~ 750+02 

Figure 6: Collapse of bridge 
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SIMULATION SYSTEM OF TEACHING EXPERIMENTS 

During the teaching of reinforced concrete element for students of civil engineering, 
demonstrating experiments is a key part, which can make the knowledge easier to understand 
and strengthen perceptual knowledge of students. Yet, the real element failure test is very 
tedious, time-consuming and expensive, not affordable by university teaching budget. With the 
aid of computer simulation method, we can build a graphic environment to simulate the 
experiment. After input geometric and physical data, the students can observe the procedure of 
element failure, details of the inner process, and other changes. Compared with teaching test, 
this method can initiate students' activity, giving them the opportunity to participate in the 
experiment as well as saving large quantity of work, material and time. 

Three aims can be achieved through simulation teaching: 
1)The student can get a clear and vivid knowledge of the phenomenon of element failure and 
its characteristics. 

Load ing . . .  50 [ ~ ] 

I~ II, 

I- / , (  
1 +' ) 

i 

' ' o  

Load ing . . .  100 [ 9f; ) 

( 

Figure 7" Demonstration of test 

2)They can select different parameters of elements, such as section dimension, concrete 
strength, reinforced ratio, and the location of force and the influence of these parameters on 
failure shape, ultimate loading capacity. 
3)When doing the simulation, there are instructions on the screen, as if there is a teacher. 

In the simulation instruction system developed by the author, there are two types of 
experiment--the example experiment and free experiment. The former takes the role of a real 
instruction experiment usually used nowadays in teaching, and the students' job is to select 
what type of failure they want to see. Then everything is done by computer automatically. 
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With the self-experiment, students have an opportunity to experiment by themselves. They 
design their own elements; the system automatically analyses element failure and demonstrates 
the failure procedure. By selecting different values, the students can acquaint themselves with 
the influence of these parameters. 

CONCLUSIONS 

Computer simulation has achieved great success in many fields, including structural analysis. 
Through the above description, three conclusions can be reached: 

(1) Along with the rapid improvement of CPU speed and update of hardware, the computer 
has been used not only as a tool of scientific calculation but also in structural analysis, hazard 
prevention, construction management and failure simulation. 
(2) Much hard work, expense and time can be saved by using computer simulation. A 
combination of computer simulation and experiments will be the main tools of engineers. 
(3) Computers can give miscellaneous dull data a vivid and lifelike form, they will play a more 
important role in teaching and management. 
(4) Compared with the high level of hardware, simulation systems lag behind. More mature and 
businesslike simulation systems need to be developed. 
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ABSTRACT 

This paper develops a mixed finite element with one point quadrature and hourglass control in 
local and non-local (gradient) plasticity for pressure dependent and independent materials at 
large strains, which allows for its application to the modelling of strain hardening and softening 
(strain localization) behaviors. The two yield strength parameters of strain hardening/softening 
materials not only depend on the internal state variable but also on its Laplacian. The 
evaluation of the Laplacian is based on a least square polynomial approximation of the internal 
state variable around each integration point. To derive the consistent element formulations in 
pressure dependent elasto-plasticity, a natural coordinate system in the stress space and a new 
definition of internal state variable are introduced. Numerical examples are given to 
demonstrate the performance of the mixed element, particularly in preserving ellipticity as 
strain softening behaviour is incorporated into the computational model. 

KEYWORDS 

mixed finite element, local plasticity, gradient plasticity, pressure dependent materials, 
natural coordinates, internal state variable, strain localization, consistent formulations 

INTRODUCTION 

Owing to the advantages of the one point quadrature mixed finite element with hourglass 
control in both accuracy and efficiency, it has been widely implemented in finite element codes 
and used to solve a variety of practical engineering problems with success. Many efforts have 
been devoted to develop and improve this type of mixed elements since it was first published 
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by Flanagan and Belytschko (1981). Jetteur and Cescotto (1991) developed their one point 
quadrature mixed element for the von-Mises elasto-plasticity with strain hardening at large 
strain and reported excellent results obtained with cheap cost in computation. Localization of 
deformation into narrow bands of intense strain caused by strain softening is a characteristic 
feature of plastic deformation and is a common occurrence in many pressure independent and 
dependent materials. Numerous attempts to simulate the localization behaviour by using 
classical (local) plastic continuum theories have been unsatisfactory. It has been realized that 
the effective and radical measure to remedy this situation is to introduce the regularization 
mechanism into the continuum to preserve ellipticity or hyperbolicity of the governing field 
equation for the quasi-static problems or the dynamic problems respectively. Among diverse 
approaches to introduce the regularization mechanism are: non-local continuum theory (Bazant 
et a1,,1984, de Borst, 1992), Cosserat continuum theory (Muhlhaus et al., 1989) and rate 
dependent continua (Needleman, 1988). The basic idea of the non-local gradient plasticity is to 
include higher order spatial gradients of the effective plastic strain in the yield condition, de 
Borst et al. (1992) and Sluys et a1.(1993) presented the formulations and algorithms for the 
gradient plastic continuum in a finite element context. A finite element method for gradient 
elasto-plastic continuum was presented by Xikui Li et al,(1996), in which the Laplacian of the 
effective plastic strain at a quadrature point is evaluated on the basis of a least square 
polynomial approximation by using the values of the effective plastic strains at neighbouring 
quadrature points. This non-local approach allows to satisfy exactly the non-local consistency 
condition of the yield function at each quadrature point, whereas the consistency condition is 
only enforced in a weak form and is not satisfied at each iteration but only at the end of a load 
step in de Borst et a1.(1992) and Sluys et a1.(1993). 

The objective of the present work is to develop a nonlinear version of the element for both 
gradient and local plasticity of pressure dependent material models, such as the Drucker-Prager 
and the modified von-Mises models, at large strain. The element is formulated not only for the 
plane strain and the axisymmetric solid, but also for the plane stress state. To formulate the 
non-local consistent compliance matrix and the non-local consistent integration algorithm in a 
concise and numerically efficient manner for closed-form implementation, the so-called natural 
coordinate system in the stress (strain) space (Duxbury & Xikui Li et a1.,1996) is introduced. 
The separation of the plastic strain into its deviatoric and hydrostatic components due to the 
introduction of the natural coordinates provides an opportunity to define a new internal state 
variable that is capable of capturing different post-yield curves in tension and compression 
simultaneously. To analyze the geometrically non-linear problem by utili~ng the present mixed 
element, the co-rotational formulation (Jetteur and Cescotto, 1991) is adopted and the co- 
rotational Cauchy stress tensor and its energetically conjugated strain measure are employed. 

TIlE MIXED FINITE ELEMENT 

Let us start with the variation of the fimctional H for the Hu-Washizu principle in the form 

6n= j'[6~(c~- o)+~d(~ - Vu)+5(Vu) ~o]dA, 
Ae 

(1) 
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where the stress , the strain ~, the displacement gradient Vu and the elastic modulus matrix 
C are referred to the original coordinates. For the two-dimensional case, we have 

6 r =[6~ 6,  6~ X,y]; er =[~, ~;y g~ ~;~y]; Vu r =[u,,., uy,y u,,, u:,,y +u,,~] (2) 

The natural coordinate system in the stress (strain) space is introduced in such a way that the 
deviatoric and the hydrostatic components of the normal stress (strain) components are split 
and 6, e and Vu are transformed into their counterparts 6, ~ and Vfi referred to the natural 
coordinates as follows 

8 = T 6 ;  ~ = T ~ ;  V f i = T V u  with~yr=[% % 6mX,y]; ~ r=[e ,  engm~y ] (3) 

where the transformation matrix T is defined by 

- /4g 1/4  
T = (4) 

l 1/xf~O 1/xf30 1/X~O OlJ 

According to the displacement field equivalent to the classical bilinear function of the 
isoparametric coordinates ~ and 11 

, Ae 
; n U i - -  a 0 - ~ - a j  x i J r - a  3 ( i= l ,  2) (5) 

where A~ is the area of the element, the displacement gradient can be derived as 

n 
Vfi = T ( B  + h b F ) q  = T B  q (6) 

where qr = [u r v r] is the nodal displacement vector of the element and 

[b 0 0hi 00h ] 
B r ,x ,y r " " F =  

= " h b =  h v 0 h~ ' 0 by 0 b~ ' .. o 

1 1 
T ~ _ ~ _  IX4 2 ] br,~ = ~ [ Y 2 4  Y31 Y42 Y13] ," b,y  : X13 X24 X31 

I g  

2A e = x31Y42 + x24Y31 , X/j = X i -- Xj ; y~ = yi -- yj 
A, c?h 3 h  1 

• , - • h y =  ; y =  [ h - ( h  r h=  4 ~ r / ,  h~ 3 x  ' " 3 y  ~ x j )b ° ]  

T . _  [X 1 X2 X3 X4]  ; T h r - [1  - 1  1 - 1 ] ;  X 1 X2 = [Yl Y2 Y3 Y4] (7) 

The stress ^ and the strain ~ are chosen in the 'optimal incompressible' modes as 
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o Ool =¢y+h~& ; ~ = ~ + h ~  ; with h T = -h.y h,y 0 (8) 

where ~r = [~i ~i1 F-'m F_,xy], ~xT = [~1 ~2] and ~T = l% % ~m xxy], &r = [~ ~] .  The constant 

field (~ ,  ~) is uncoupled with the anti-hourglass mode ( & , U ) .  With substitution of 
expressions (6) and (9) into equation (1) we may integrate each term in the equation and obtain 

~) 1--I = A e [5~ T ( ~  _ ~) + 5~T (~ _ TBq) + ~SqrBTTr~] + ~SU r [4GH~ _ 2H~¢ ] 
+~&r [2H~;~ - H*Fq]+SqTFTH *r& (9) 

Here C c R 4×4 referred to the natural coordinates for isotropic elasticity can be given by 

C= TCT r =diag(2G,  2G, 3K, G) 

H=L-H~, H .  ; Ho = h~ ha dA , ;H*=  h r T h b  dA e 

(10) 

(11) 

where G and K are the elastic shear and bulk moduli. From the stationary condition of 
(9) and the arbitrariness of the variations 6~,5~,~q,~ x and ~&, we obtain the constitutive 
laws, the element strain-displacement relations, the internal nodal forces F and the linear 
stiffness matrix of the element 

~ = C ~  ; & = 2 G ~ ' ;  

F = A e B r T r ~  + FTH *r~x ; 

~- = TBq ; 2 ~  ~' = H-1H*Fq 

K = A e B T C B  +GFTH*TH-1H*F 

(12) 

(13) 

THE GRADIENT DEPENDENT PLASTICITY 

Two pressure dependent elastoplastic models for the gradient plasticity are particularly 
considered. The yield functions for the gradient Drucker-Prager (GDP) and the modified von- 
Mises (GMVM) models can be given in the form (Duxbury and Li, 1996) 

F = q + A(~P,V2~P~y m + B(~P,V2~ p) 
F = q2 + A ( ~ v , V 2 ~ p ) %  + B(~v ,V2~V)  

(14) 
(15) 

where the effective deviatoric stress q and the hydrostatic stress ~m are defined by 

1 q = (~I~T e{~) 1/2 ", {~m=-~(l~x+~+l~z) ", with P = diag( 3, 3, 0, 6) (16) 

A and B are the current material parameters defined as 

2Sind~ (~ P, V2~ p) _6c h (~ v, V2~ p ) Cosd~ (~ p, v2~ p) 

A = ~(3-Sind~(~v,V2~V)) ' B =  ,f3(3-Sind~(~v,V2~V)) (17) 
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for the Drucker-Prager criterion, where c h is the cohesion and ~ the internal frictional angle. 
For the modified von-Mises criterion, 

c p ; = c A:  45(~;(~ , v ~ , ) - < ( ~ , , v ~ ) )  ~ -~;(~,,v~,)o'~(~ , v ~  ,) ( 1 8 )  

where ~ and a~ are the current yield stresses in tension and compression respectively. For 

simplicity in the following discussion the associate plasticity rule is considered. The incremental 
plastic strain vector can be written 

OF 
A~; p = ~ ~ = ~ (y lP(y+ A1  m ) (19) 

where Y l = 1 (GMVM) and Y l -- 1/2q (GDP),)~ is the plastic multiplier, 1 m = [0 0 1 0] and 

A~ p can also be decomposed into 

A~: p = A~ p +h~AU 'p with A ~  p = )~,, ( ~ l e ~  + Alm) ; A~ x'p = 371~, ~,x (20) 

The new definition of the internal state variable proposed by Duxbury and Li (1996) is given by 

A ^ p  2 )z)~ ~m em 
Aq/= (-~ e, (A~f. - "~-l [1% ] 45 

( no sum over m ) (21) 

where I ml is the absolute value of the hydrostatic stress ~m, A~f are the incremental plastic 

strain components referred to the natural coordinates and the coefficients e i are given by 

e r =  [1 1 0 0.5]. The effective plastic strain Ag p for the present element is defined as the 
average value of AW over the element and can be written in the forms 

- cy m A 
F 2 = Ag v - ~ (2~- + i-----5----~-) = 0 ; 

I~.1 v~ 

- -  o m A 
F2 = Agv -)~ ( 1 + ~ ] - ~ )  = 0 (22) 

for the modified von-Mises and the Drucker-Prager criteria, where 

1 1 ~ 1 I ~ T  q=(--Zj',(~-6~i'6)dAe) =[-f](~ i'~ Ae +3&rn&)] (23) 

As for the yield strengths to evaluate material parameters A and B in expressions (17) and (18) 
we assume the following non-local forms 

c h=cho+hhgp-c hV2~ p • d~=d~o+h¢gP_c *V2g p p ~ p (24) 

for the Drucker-Prager criterion and 

t -~p  C t 
< - < 0 + h .  - p 

c ~) = ~ o  + h,, e"  - c ~ V~e"  (25) 
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for the modified von-Mises criterion respectively. I~ere Ch,tb,~,o~ and cho,dPo,CCyo,t~o are 

current and initial cohesions, the frictional angles, the tensile and the compressive yield 
h t e , C t , C  e strengths; he,h~,hp,h e are material softening/hardening parameters, c h c*, are non-local 

material parameters. It is noted that the modified von-Mises model will degrade to the von- 
t t C t Mises model as the material tensile parameters cry, he, are set to equal to the material 

" " c" respectively; in addition, the two gradient plasticity models compressive parameters t~y, h e, 

will degrade to the local plasticity models as non-local parameters c h, c*, c t, c c are set to zero. 

ro evaluate v 2 ~  at an integration point i, we take account of the values of ~e at the 
mighboudng integration points. Let L(i) and N(i) be the set of neighboudng integration points 
md the number of these points for integration point i. The Laplacian of ~P at point i can be 
tpproximated in terms of ~ (j e L(i)) in the form 

V2~ = U~)gu~ f (26) 
j--I 

he coefficients g# are determined on the base of a least square polynomial approximation of 

le effective plastic strain around each integration point. For an integration point in an element 
a the boundary of the domain considered, we have to impose O-~e/an= V ~ P n  = 0 ,  
here n is the normal to the boundary. 

ON-LOCAL RETURN MAPPING A L G O R I T H M  

~w we consider a typical time sub-interval [t, t + At] and an arbitrary integration point. The 
nstimtive equation at time t + At can be given by 

= - =~+~t - 2G hf;"P (27) q+,,,, o',+a, 

ere the trial elastic stress vectors are 

O,+At = -- &,+at = 2 G ( e , + ~  --f : ,  ) ( 28 )  

~stitution of equations (20) and (10) into (27) gives 

-~ = ) q + ~  , ~ + ~  = a ~ , + ~ ,  q+a, ( a  1 d + 131 h ± e  . ^~.e (29)  

;re 1 d = diag(1, 1, 0, 1) and 1 h = diag(O, O, 1, O) and 

13= 1 - ~  
3KLA fl/(1 + 6G~.) for the modified von - Mises criterion (30) 

; a = [ 1-(3G~.)/~te+A, for the Drucker-  Prager criterion 

1 1 r~ )~  1 1 36.,,ErH6.,,~)]~ = = .tA, ( = [ Z ,  A, + (31) 
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By using (30), (31) and Om " -  ~ m  - -  3KAY, the yield fimctions are given in average form as 

- 1 qe Acr~ +B F =-~-~A, FdA, = - 3 ~ ( K A  2 +G)+ 

- 1 )2  F=~-~L, FdA, = (~..,e /(l+6G~,)2_3KA2X +Ao'~ +B 

(32) 

(33) 

for the Drucker-Prager and the modified von-Mises criteria and are written in a unified form as 

F= F(~,~', ~,~., v~  .) = Y(q",~, ~, ~., v~  .) (34) 

In addition, a unified form for the consistency conditions in (22) can be given by 

O F~ O F~ q" aa . O F~ ~ . +- O & a F ~ .  =0 (35) 
V'~" + Oq 

It is noted that the strain vectors ~- and ~ at each integration point are given in the return 
mapping algorithm to fulfill the yield condition. With the use of equations (34), (35) and (26) 
a non-local N-R iterative procedure at an integration point i for iteration k can be written as 

where 

aF, , a t , . ,  a f  , ., + 5 "£',=, 
j~i 

(36) 

(37) 

. . . .  0 V2~f 0~k~ i 0 V2~; ~/k, i 
dF,., OF, OF, aft,, aFt, aF~ &, 

(~)-~,j = ( - ( 0 ~" + q f  0~ 0~,, ))g# (38) 

It is noted that unlike in local computational plasticity, 5(Agp) k cannot be determined at 
the local level. Nevertheless, the N-R iterative procedure is not a global one since only limited 
number of integration points within the localized plastic zone are involved and the non-local 
condition F = 0 is still enforced in a pointwise fashion and at each iteration of a load step. 

NON-LOCAL CONSISTENT TANGENT STIFFNESS MATRICES 

Substitution of equations (26) and (35) into the consistency condition of equation (34) 
eliminates the terms relating to ~, and V2~ v and gives the effective plastic strain rate ~P at 
each integration point with respect to the rate predictors ~-E and 6-~ e at its surrounding 
integration points, which are related to the rate strain vectors as 

~ _ ~  1 ^ ^ r ^ ~ 1 2 G  
1T(2~ 3 r" = m  = Klm~ (391 
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To derive the consistent tangent matrix we consider the variation of equations in (29) 

^E ^E =(c~,la + ~ , l h ) ~  ~ + 6 , , l a q  - I - ~ , l h q  ; ~" ~"~ +(2,~ "~ (40) Gi = (~i Oi 

Substituting ~P for each integration point as a function of ~ and 6m e at its surrounding 
points into equations (40) and using the definitions of (x and [3 in (30) give local and non-local 
consistent tangent modulus matrices With the use of strain-displacement relation (12) the 
integration of the virtual work done by the stress rate over the element i is given by 

N. nl N.  nl 14 8g;f ~,dAe, = a q f ( K l q  , + Z ( K  o qg + ~=lKuk qk)) 
e" j = l  

(41) 

Here the local and the non-local dement tangent stiffness matrices for the element i are 

1 1 
1 ^, H_IH.F), + F : H ~ r H / T  , , t  - -  i~ H_,H.F) ' KI = - - r  t ( D 2 1 T B  + - r ( O l l T n +  2 2 2 B~ T -D12 

.t BfTT ^.t -- 1 ^,,t 1 • 1 ^.1 -- 1 .I l~-ll~*V K U = (D11,#TB j +~-D12.oH ~. Hjrj)+ -~FrH;TH/T(D~I,uTBj +-~b::~i~ j ~-j . j )  

K~, k --T r TB "l- 6 nt -1 * = B i T  (~). t  - -  1 11~jk k ~ ,:,okHkHkrk) 

1 r . r  ^ . ,  _ 1 ^ nl H~IH~,Fk) (42) + 2 ]-', H, HI T (D:I,okTB k +-~D::.o k 

The local and the nonlocal compliance sub-matrices in (42) are 

^ T C~21h)], D~l,i = A,,,[(°~la + lh)C +6G(C~Ila-~-~Tla +C~,lm-~T la)+ 3K(C~:la°lm + 
Dr12.,-- 12G,[C~lla-~ +C~llm],(H&)r ; D'21., = (H&),[12GC~I(Ia-~) T +6KC~21rm], 

24G D'::,, = [ A, C~I (H& XH&)T + 4GczH], (43) 

D/I,U = A,,,[f~l(la-~),(la-~) T +~llm(la~)T +f~(la~),lTm +Y~lh] 

Dl.1,o Ae,i -3 r -3 = [Zj (la-~),(H~)j +to lm(H&)~'] 

" - ( l a~)  r 2 L ] ( H & ) , I  m ; D22./j - 2Zj (H&),  D21,# = 2f~)(H&)i + r ., -3 ^ (HS")~ (44) 

nl - 1 --1 ^ - T - -2  
D11,/jk - A e j [ Z j k  ( l d ~ ) i ( l d ~ ) k  -~- rijk l m ( l d ~ ) k  "~- Zjk ( l a ~ ) , l .  + r~)k lh] 

nl D12,y k = Ae,, [f#3k ( la~) , (H&)~  + ~3k lm(H()'~) ~ ] 
nl - 1 T nl - 3 

D21.# k = 2fok(H&),( la~)~ +2~j~(H&),lm; Da2.Ok = 2fok(H&),(Ha)~ (45) 

The coefficients in sub-matrices (43) - (45) are given by Li and Cescotto (1997). It is noted 
that the second part of the non-local virtual work in equation (41) will disappear for the case 
without introduction of the non-local parameter c ~ into the second equation in (24), i.e. we 
will not need to calculate the sub-matrices in (45) under this condition. 
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TEIE PLANE STRESS 

For the plane stress state, we have to enforce the constraint o, - 0, (i.e. ~, - 0 ) to the above 
formulations. Recalling equations (29) and (3) we have the constant component 

= T r (txl d + 131h)T~ ~ (46) 

where the components Bf  - ~  ~ in Bs , o~ and ~,y are the elastic trial stresses calculated from the 

given strains. The third component in equation (46) with the enforced constraint ~, = 0 gives 

o, - 2n+~3(o~ + %  ) (47) 

It is seen that - e  ty: - 0 is only true at the integration points under the elastic state, for which 
--E c~ - 1 and 13- . Consequently the variation ~e with respect to 6 z has to be involved in the 

calculation, which can be given by 

1 1 1 Or:/-e 1 ( ~ o e ) r T ,  " Tf = [ ~ ff-~ qr~] (48) 
O-6f - 2 4 "  

~ E  0 ~ f / 0 ~  can be calculated according to 6~ defined in (47). In order to form the consistent 
tangent stiffness matrices, the third column of the transformation matrix (4) is simply deleted in 
the calculation of the elasto-plastic stiffness matrices (42) to account for the effect of ~, - 0. 

In addition, C(3,3) in equation (10) should be replaced by the value of E(1 + 2u)/ (1-u2 ). 

NUMERICAL EXAMPLE 

As the first example,the large deformation of the short cantilever beam with the ratio I /h  = 3 

is studied. The beam is subjected to a vertical prescribed displacement Uy = 2 at the fight-hand 

side of the beam. We first check the performance of the present element in the case where the 
modified von-Mises criterion is degraded to the classical von-Mises one in the plane strain 
state. The material property data used are as same as those used for the example by Jetteur et 
a1.(1991). The results and the convergence rates obtained by the present work exactly agree 
with those given by Jetteur et a1.(1991). Then the beam is re-analysed with the use of the 
modified von-Mises criterion in the plane stress state. The material parameters used are: E = 

_~t0 600N/mm ~ t 8 0 0 N / m m  2 h ~ = to = 300 N / m m  2,0y  , p l O 0 0 0 N / m m :  , o =  0.15,Cry = ,hp = 1 2200 

N / m m  ~ . Three different meshes: (1) 4 × 12element regular mesh; (2) 8 x 24 element regular 
mesh and (3) an irregular mesh with 174 elements and 201 nodes generated by a non- 
structured mesh generator are used. The deformed meshes and the three contours for the 
effective plastic strain are illustrated in Figure 1. The fmal values of the reaction at the 
specified value of the deflection equal to 2.0 are: 3.135 x 10: N for the mesh (1), 3.092× 102 N 
for the mesh (2) and 3.095x 10:N for the mesh (3). It is shown that the results obtained for 
three different meshes agree with each other well and, therefore, illustrate the excellent 
convergence of the element in the space domain. 
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The modified von-Mises criterion with plane stress 

Figure 1 The contours' effective plastic strain on deformed meshes for the cantilever 

The second example is to analyze a footing problem. Due to symmetry consideration, the 
calculation is carried out for half of the footing. The footing is simply supported at both the 
side ends and the bottom, and is subjected to uniformly prescribed vertical displacements, 
distributed on the range of 1.5 M at the left of the top edge of the footing. These increase until 
those corresponding to the collapse load. The material properties with the Drucker-Prager 
model are: E = 21ON~ram ~ , t)=0.3, the internal frictional angle ~)=20 ° and cohesion 
c= 7 N / m m  ~ . The footing is modelled using two different discretizations with irregular 
meshes, generated by a non-structured mesh generator, which are: (1) 161 elements with 181 
nodes; (2) 329 elements with 351 nodes. Figure 2 illustrates three sets of the contours for the 
effective plastic strain, the deviatoric effective stress and the mean stress respectively. It is 
shown that the results obtained for the both different meshes agree very well over most of the 
domain of the footing, except the values of the effective plastic strain at the local region, where 
high values of plastic strain gradient arise and which indicate that local mesh refinement in the 
region is necessary in order to ensure the accuracy of the analysis. 
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Figure 2 The contours on deformed meshes for the footing problem 
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Figure 4 Distribution of effective plastic strain for u = 0.025 at the top of the plate 

The third example confiders a rectangular plate with initial length L 0 = 5.5 and initial width 
B0=0.75, meshed by N x M elements. N and M are numbers of the elements in length(y axis) 
and width(x axis) respectively. The plate fixed at the bottom and loaded by an increasing 
prescribed horizontal (in x axis) displacement at the top, is analyzed as a plane strain problem 
by using the Drucker-Prager model. The vertical displacements of the nodes at the top are 
fixed. To manifest that pathological mesh dependence has been overcome by using the present 
element, we consider five test cases with different element meshes N × M: (1) 11 x 3; (2) 
22 × 3; (3) 33 × 3; (4) 44 × 3; (5) 55 × 3 element meshes. The values of material elastic 
properties used for the entire plate are E = 2100 and ~t=0. The constant frictional angle ~ = 
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Figure 5 Evolution of effective plastic strain distribution with increasing 
displacement u of the top face 
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Figure 6 Distribution of effective plastic strains along Y axis of the plate subjected 
to a pure shear loading for different values of the non-local material plastic 
parameter for u = 0.025 at the top of the plate 

40 ° is assumed. The initial cohesion Ch0=2.0 except for the elements which lie within the 

middle of the plate between y - -0.25 and y = 0.25. The initial cohesion for these elements has 
h _ been weakened to the value of Cho = 1.8. The softening modulus h p -200 and the non-local 

parameter c h = 5 are used for all elements, including the weakened ones. Figure 3 illustrates 
the convergence of the shear s t ress-  displacement (at the nodes on the top face) curves. 
Analytical solution of the width of the localization zone for a one-dimensional case for the 
Drucker-Prager criterion and the frictional angle ~ = constant being assumed, can be given in 

~/_  h h the form w = 2 ~  C / h p .  Numerical results shown in Figure 4 illustrate that the width of the 
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localization zone and the effective plastic strain distribution along y axis over the zone rapidly 
converge to a unique solution. It is observed that the width of the localization zone evaluated 
by the analytical solution gives a good approximation of the shear band thickness obtained in 
the present simulation. Figure 5 illustrates the evolution of effective plastic strain distribution. 
It is observed that the localization zone grows quickly to a certain width andthen intense plastic 
strains are developed in the narrow band with the unchanged width. To show the dependence 
of the thickness of localization zone on the non-local material parameter c h relating to the 
internal length, we consider the example again. All the data used for the example, except the 
value of c h, are unchanged. The three test cases, with the different values of c h, i.e. 
c h = 20,11.25, 5 are executed. Figure 6 illustrates the thicknesses of the localization zones and 

the effective plastic strain distributions within the zones for the three test cases. It is observed 
that using a large value for internal length results in the wider localization zone and the lower 
peak value of the effectiveplastic strain. 
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ABSTRACT 

A new seismic lateral load resisting system, consisting of steel frames and infilled plate panels, has 
been developed and extensive research has been conducted to study the overall response of the 
system as well as the behavior of the panels under cyclic shear. In this system, the thin-walled 
panels are connected only to girders of the frame. The research includes studies of the interaction 
between the frame and the panels, behavior of the girder-supported panels subjected to monotonic 
and cyclic in-plane shear and development of hysteretic models for use in seismic analysis. 

A special finite element analysis package, ULSAS-GE, which is based on a program previously 
developed by Tetsuya Yao for analyzing plates under cyclic in-plane normal forces, has been 
prepared to perform the shear analysis. Included in the analysis are the effects of out-of-plane 
buckling and yielding. A special algorithm for circumventing the severe instability encountered at 
load reversals was implemented into the package. A detailed study of the cyclic behavior of four 
panels selected from a frame-panel system has been made. Simple formulas which can be used in 
design to predict the behavior and strength of the panels have been proposed. The paper presents 
a discussion of the problem, descriptions of the analysis procedure adopted, implementation of the 
algorithm and numerical results. A general discussion of the performance of thin-walled panels 
under cyclic shear is also given. 

KEYWORDS 

Plate panels, cyclic shear, post buckling, seismic resistance, plasticity, finite element. 
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INTRODUCTION 

Cyclic behavior of thin plate panels under in-plane shear has recently been a subject of international 
studies because of the promising application of steel plates as shear walls in structural frames to 
resist wind and seismic loads. Owing to the tension field action, first revealed by Wagner in 1931 
(Wagner, 1931), thin plates under in-plane shear possess substantial and stable post-buckling 
strength and deformation capacity. A recent study by the authors (Xue and Lu, 1994) suggests that 
a control on lateral stiffness can be exercised by selecting proper width-to-thickness ratios of the 
plates and the means to connect the plates to frame members. This control can be used in seismic 
design to contain structural deformations to certain limits under different magnitudes of loads. This 
control is also helpful for achieving a desirable balance between lateral strength and stiffness. The 
issues of deformation control and balanced design have been recognized as critical design measures 
for seismic-resistant structures, especially after the recent earthquake events in the U.S.A. and Japan. 
To effectively utilize these concepts, knowledge about the cyclic behavior of steel wall panels in the 
elasto-plastic, post-buckling range is necessary. 

Similar to plate post-buckling behavior under uniaxial in-plane compression, a plate under in-plane 
shear has stable post-buckling behavior and substantial post-buckling strength because of the 
membrane stress restraints on the plate. Different from a plate under compression, a plate under 
shear experiences profile changes as well as magnitude changes of the out-of-plane deformations as 
load increases. The profile changes are due to the in-plane stresses, composed of in-plane shear and 
normal tension components. This feature of the plate post-buckling behavior under in-plane shear 
has been observed in laboratory tests and analytical studies by several researchers (Thorburn, Kulak 
and Montgomery, 1983; Elgaaly and Caccese, 1990; Kossira and Horst, 1991). In a numerical 
analysis, a profile change results in local instability and is responsible for severe convergence 
difficulties. For monotonic loading, these difficulties can be circumvented by using either advanced 
computational algorithms (Riks, 1972 and 1979) or initial imperfections which include all necessary 
profile modes. For cyclic loading, the severe instability and convergence at load reversals cannot 
be handled in the same manner, because a user control over loading is necessary and the tension field 
action can eliminate initial imperfections in some areas of the plate. 

In this paper, an algorithm is presented to circumvent the instability at load reversals in analysis of 
the cyclic behavior of steel plates under in-plane shear. The algorithm was implemented in a finite 
element analysis package, ULSAS-GE. Four steel wall panels were analyzed and the results are 
presented. 

BACKGROUND 

Study on the post-buckling behavior of plates under in-plane shear was started in the early 1930s and 
is still going on now. Before the early 1980s, the focus was on prediction of plate ultimate strength 
under monotonic loading. Under in-plane shear, the stress state in a simply supported plate is 
initially described by a tension and a compression principal stress. The principal stress orientations 
can be parallel or inclined, with a small angle, to the two plate diagonals, depending on the plate 
aspect ratio. The diagonal along which the tension principal stress acts is called the tension diagonal. 
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The other diagonal is called the compression diagonal, because the stress in its direction is mainly 
compressive. As the applied shear increases, the plate buckles when its critical shear buckling load 
is reached. The buckling is produced by the compression principal stress, and the buckling profile 
along the compression diagonal usually has more waves than that along the tension diagonal. The 
profile difference along the two diagonals is an important feature of plate shear buckling. After 
buckling, the plate has both in-plane stresses and out-of-plane bending stresses. Despite the bending 
stress interference to the stress state in inner plate areas, the in-plane stresses are still dominant at 
the boundaries, but are very different from the state before buckling. Besides the in-plane shear 
stress, which is the only stress at boundaries before buckling, an in-plane normal tension stress 
emerges after buckling and keeps growing, due to the boundary restraints on the plate post-buckling 
deformations. The in-plane shear and normal tension stresses form an equivalent tension stress, at 
boundaries, leaning to the tension diagonal. The magnitude and orientation of the equivalent tension 
stress depend on the magnitudes of both the in-plane shear and normal tension stresses. While the 
in-plane shear stress acts as loading and continues to produce large buckling deformations, the in- 
plane normal tension stress acts as reaction and exerts restraints on the buckling deformations. Due 
to the effects of the two in-plane stresses on buckling deformations, the shear post-buckling behavior 
is distinguished from its compression counterpart by a unique character. That is, the plate 
experiences profile changes as well as magnitude changes of the out-of-plane deformations as the 
load increases. To avoid post-buckling behavior complexity, early studies focused on simple 
simulations of the equivalent tension stress, which has different magnitudes and orientations at 
different boundary locations. By approximating the actual stress by a tension stress uniformly 
distributed over a limited plate area, Wagner proposed the tension field theory (Wagner, 1931). To 
include rigidity effects of the boundary supports, Basler (Basler, 1960) and Rockey (Porter, Rockey 
and Evans, 1975) later modified and extended the tension field theory. In all versions of the tension 
field theory, the size and orientation of the tension field were formulated based on test data. By 
assuming material yield stress as the ultimate tension stress, the ultimate shear strength can be 
computed by the tension field theory. 

The behavior under cyclic in-plane shear has been studied since the early 1980s when steel plates 
were used as shear wall panels in seismic-resistant structures. It is necessary to be able to predict 
the cyclic behavior of thin plates from elastic pre-buckling to elasto-plastic post-buckling range. 
Due to the difficulties encountered in the analytical studies, the early work had emphasized 
laboratory testing. A summary of the experimental studies and test observations has been provided 
by the first author (Xue, 1995). 

Kossira and Horst (1991) studied the low cycle fatigue behavior of thirty-seven 50x50 mm 
aluminum plates under in-plane shear. The work involved both laboratory tests and finite element 
analyses. The analytical results were compared with the corresponding test data. They found that 
there were two different deformation paths for a plate to take at a load reversal (i.e., zero external 
loading). In one path, the unstable path, the plate experienced a sudden profile change of its out-of- 
plane deformations as it was reloaded in the opposite direction. The change involved sign switches 
as well as magnitude changes. In the other path, the stable path, only the magnitude of the out-of- 
plane deformations changed with reloading. The residual out-of-plane deformations were found to 
control the path that a plate would take at a load reversal. In the small square plates analyzed, the 
unstable path would be taken if the out-of-plane residual deformations were primarily anti- 
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symmetric. On the other hand, the stable path would be taken when the residual deformations were 
predominantly symmetric. However, the study showed that almost the same relationship of shear 
load versus shear deformation was obtained no matter which path was enforced in the analysis. 

A sudden profile change with sign switches of the out-of-plane deformations signifies occurrence 
of a bifurcation or severe instability, and often leads to convergence difficulty in numerical analysis. 
Because the plate residual out-of-plane deformations depend primarily on the magnitude of the shear 
applied prior to unloading, the path that the plate would adopt is load-history dependent. Thus, the 
observed instability cannot be circumvented by using initial imperfections. To avoid the instability, 
Kossira and Horst artificially filtered out the anti-symmetric components of the residual out-of-plane 
deformations in their analyses. They found good agreement between the analytical results and test 
data. 

BEHAVIOR OBSERVATIONS AND POSTULATES AT IN-PLANE SHEAR REVERSAL 

Figure 1 illustrates the changes of the out-of-plane deformations of a plate at a shear reversal. The 
plate has elasto-plastic out-of-plane deformations under a shear in direction 1. Notice that in Fig. 1 (a) 
the out-of-plane deformation profiles are different along the two diagonals of the plate. The profile 
has more waves along one diagonal than the other. This profile difference along the plate diagonals 
can be described by profile orientation. The profile containing more waves is always orientated 
along the compression diagonal and the profile with less waves along the tension diagonal. The 
reason for this is that the tension field action tends to stretch out the out-of-plane deformations along 
the tension diagonal and to increase the constraints along the compression diagonal. On the other 
hand, the increase in the in-plane shear tends to increase the out-of-plane deformations. Because of 
this interaction, the plate must accommodate an increasing number of waves along the compression 
diagonal, as the shear load increases. 

If the material yields, out-of-plane residual deformations will result when the load is completely 
removed, as shown in Fig. 1 (b). The residual deformations inherit many of the characteristics of the 
profile shown in Fig.1 (a). As the shear load is applied in direction 2, opposite to direction 1, the 
equivalent tension stress at boundaries changes its direction. As a result, the previous tension 
diagonal is now subjected to compression and the previous compression diagonal to tension. As 
illustrated in Figs. 1 (c) and 1 (d), the out-of-plane residual deformations will be reduced along one 
diagonal, the current tension diagonal (to be different from the previous tension diagonal), and 
increased along the other, the current compression diagonal. As the shear load increases, the out-of- 
plane deformations may take a profile different from that of the out-of-plane residual deformations 
when the current out-of-plane deformations are incompatible with the in-plane stresses produced by 
the reversed shear load. 

It is reasonable to postulate that the new profile, which can stabilize the panel behavior during 
reloading, differs from that of the out-of-plane residual deformations in two aspects: orientation and 
component content. The new profile should orientate itself so that more waves would be present 
along the current compression diagonal and less along the current tension diagonal, which is just 
opposite to the profile orientation of the out-of-plane residual deformations. The component content 
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(a) Out-of-plane deformations 
under loading in 
direction 1 

Co) Out-of-plane residual 
deformations 

Loading direction 1 

(c) Out-of-plane deformations 
at beginning of loading 
in direction 2 

(d) Out-of-plane deformations 
under loading in 
direction 2 

loading direction 2 

loading direction 2 

Figure 1 Changes of Out-of-Plane Deformations at Load Reversal 
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is defined by the number of modes included in a profile, if the profile is assumed to be composed 
of a series of linearly independent modes. The new profile should have more component content 
along the current compression diagonal and less along the current tension diagonal. Due to the 
nature of the interaction between the in-plane shear and normal tension stresses, the component 
content along the compression diagonal should monotonically increase, and that along the tension 
diagonal should monotonically decrease, as the load increases. This suggests that the profile of the 
out-of-plane deformations constructed with a mirror switch of the out-of-plane residual deformations 
about the plate central section would satisfy both the orientation and component content 
requirements, and can be used as the new profile. 

With the stabilized out-of-plane deformations, tension field action can develop and again dominates 
the post-buckling behavior of the plate under the reversed shear loading. If the component content 
along current compression diagonal contains all the necessary modes, the stable behavior could 
continue till the next load reversal. 

APPROACH TO BIFURCATION-LIKE INSTABILITY AT SHEAR LOAD REVERSAL 

Based on the understanding of the plate post-buckling behavior at a shear load reversal, a general 
algorithm was proposed for shear panels to circumvent the instability problem discussed above. In 
the algorithm, small artificial out-of-plane deformations are introduced slightly before a load 
reversal. As illustrated in Fig. 2, the plate is divided into four rectangular areas by its horizonal and 
vertical center sections. T-I and T-II denote the areas linked by the current tension diagonal; C-I and 
C-II denote the areas linked by the current compression diagonal. The artificial out-of-plane 
deformations are formed by replacing the out-of-plane displacement of a node in area T-I (T-II) with 
the corresponding nodal displacement in area C-I (C-II), shown in Fig.2(b). The node 
correspondence is determined by symmetry about the plate vertical central section. As discussed 
in the previous section, the out-of-plane deformations formed in this way should be compatible with 
the in-plane stresses subsequently developed after the shear load is reversed. Therefore, the 
instability discussed before is prevented and consecutive analysis can be stabilized under reloading. 
Notice that the out-of-plane residual deformations in areas C-I and C-II are retained rather than 
replaced with the out-of-plane nodal displacements of areas T-I and T-II. There are two reasons to 
do this. One is that along the two diagonals the profile differences are insignificant in the small 
loading range. The other is that a significant reloading magnitude is required to stretch out the out- 
of-plane residual deformations for a moderate or large load. Thus, unrealistic stiffness will result 
at the beginning of reloading if the out-of-plane deformations of areas C-I and C-II are replaced by 
that of areas T-I and T-II, respectively. 

The use of the artificial out-of-plane deformations in analysis causes behavior discontinuity of a 
plate and produces computation errors. However, because of the physical stability and insensitivity 
of the shear panel overall behavior to the out-of-plane deformations, the errors introduced can be 
quickly balanced out through consecutive iterations. The errors will be localized at load reversals, 
where extemal load magnitude is always small. By controlling load increment and number of 
iterations, analysis inaccuracy caused by using the artificial out-of-plane deformations can be limited 
to a tolerable range. This argument is based on the variational and computational principles which 
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(b) Artificial out-of-plane deformation 
profile introduced at a load reversal 
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(c) Out-of-plane deformation profile 
at beginning of reloading 
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Figure 2 Artificial Out-of-Plane Deformation Formation 
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and Montgomery, 1983) was modeled and analyzed with ULSAS-GE under both monotonic and 
cyclic loading. Analytical results were compared in a large deformation range to the test data under 
monotonic loading. Due to the availability of the test data, however, the comparison under cyclic 
loading was made only in a small deformation range. The comparison showed that ULSAS-GE is 
capable of predicting both the monotonic and the cyclic behavior of the frame-wall panel 
assemblages. The ULSAS-GE program successfully circumvented the instability problem at load 
reversals. However, it is believed that the proposed algorithm should be verified with more test data, 
when available. 

CYCLIC BEHAVIOR OF THIN PLATE UNDER IN-PLANE SHEAR 

Four frame-wall panels assemblies were analyzed with ULSAS-GE. The assemblies were selected 
from a specially designed frame-wall system (Xue and Lu, 1994). As shown in Fig. 3, each 
assembly consists of a steel frame and a steel wall panel. The frame is composed of a top and 
bottom beam, a left and a right column. The beams, W18x35, are pin connected to the columns, 
varying from W14x233 to W14x74. The panel is filled in the frame with continuous connections 
to the beams only. Table 1 provides the width-to-thickness and aspect ratios, a/t and s/h, of the four 
panels in the selected assemblies. 

Table 1 Shear Panels Selected for Cyclic Analysis 

Shear Panel 

s/h 

a/t 

PGS1 

0.8 

1636 

PGS2 

1.0 

1309 

PGS5 PGS9 

1.0 1.0 

1516 1694 

Simple shear connections 
Figure 4 shows the finite element 
model  developed for the 
assemblies. Because of the large 
axial rigidity, the columns in the 
model are simulated by two rollers 
at top between the top beam and a 
rigid support. Found from studies 
by the authors, the beam bending 
deformations do not have 
significant effects on the panel 
behavior for the beam sizes 
commonly required by gravity 
load design. In the model, 
therefore, only the top beam is 
included and the panel is fixed at 
the bottom edge to a rigid support. 
The shear load to the panel is 

!iii!ii !!i iilii! i 
A shear wall panel of thickness t i h 

!iii!iiiiii!iiiii!iiiiiiiiiiiii!!iiiiiii! i 
i 

T 

L. s .j  

Figure 3 Frame-Wall Panel Assembly 
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are the mathematical basis for all the approximation methods. 

In mechanics terms, the principles can be stated the following way, specifically for shear panels. If 
a set of continuous equations exists in a displacement domain to define deformations of thin plates 
subjected to in-plane shear, and the equations possess a stable and unique solution for a load 
condition in a given solution domain, the solution can be approached with an initial deformation 
approximation. For shear panels, the continuity requirement is guaranteed, at least in lower orders, 
by the satisfaction of basic mechanics principles: constitutive law, continuity and compatibility 
conditions. The existence of a stable and unique solution is enforced by the equilibrium conditions 
and yield criterion, and has been verified by test observations. In the finite element method, some 
of the conditions stated above may only be partially satisfied in the displacement domain. However, 
sufficient analysis cases have proved that such minor continuity violation does not significantly 
affect the solution accuracy in finite element analysis. 

ALGORITHM IMPLEMENTATION 

The procedure proposed above was implemented in ULSAS-GE, which is an enhanced plate version 
of ULSAS. Originally, ULSAS was a finite element package for the elastic-plastic post-buckling 
analysis of plates subjected to cyclic, uniaxial in-plane loading (Yao, 1991). The only element 
included in the package is a four-node isoparametric shell element. In the element formation, large 
deformation effects were included and were considered in the updated Lagrangian approach. To 
achieve computational efficiency, the element was ft~her simplified to a bi-linear degenerate shell 
element so that integration points were reduced to one. In order to prevent the possible singularity 
due to the reduced integration scheme, hourglass control stiffness was used in the element stiffness 
calculation. The Kanok-Nukulchai method was employed to form the stiffness against the element 
in-plane rotation. The updated Green strains and the updated Kirchoffstresses were used to take into 
account the effects of large deformation on the equilibrium. To apply the flow theory of plasticity 
and hardening rules, the Kirchoff stress increments were transformed into the Jaumann stress 
increments at each load step. The Mises criterion was used to detect material yielding. To account 
for material hardening, options for isotropic hardening or kinematic hardening or a combination of 
both are available in ULSAS. 

A number of limitations existed with the original plate version of ULSAS; for example, only one 
piece of plate in the XY plane can be analyzed and only uniaxial in-plane compressive loading can 
be applied. In order to analyze the cyclic behavior of frame-panel assemblages, significant 
modifications and enhancements were made in the enhanced version, ULSAS-GE. Different from 
its original, ULSAS-GE is capable of analyzing large plate assemblies under general load and 
support conditions. Certain auto-meshing capability and customized loading options are also 
available for modeling efficiency. 

VERIFICATION 

To verify the proposed algorithm, the frame-wall panel assembly tested by Kulak (Thorbum, Kulak 
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applied to the top beam. 

Both the top beam and the panel were 
simulated with 4-node shell elements. 
Depending on the panel aspect ratio, 
12x12 to 12x15 mesh densities were 
used in the analysis. Because of low 
stresses found in the beams from 
previous monotonic analyses by the 
authors, the beams were assumed to 
act elastically, and only the panels 
were modeled with the inclusion of 
material yielding. A bi-linear 
material model simulating A36 steel 
was used for the panels, with 0.4% 
tangent modulus in the strain 
hardening range. The material 
hardening effects was included by 
using the combined isotropic and 
kinematic hardening model available 
in ULSAS-GE. 
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Initial imperfections with a maximum Figure 4 Model of Frame-Wall Panel Assembly 
magnitude equal to 10% of the plate 
thickness were assigned to each wall panel during modeling. The initial imperfections were 
composed of the buckling modes proposed by Timoshenko for thin plate buckling under in-plane 
shear. The first 16 modes were used to form the initial imperfections. Shown in Figs. 5, 6 and 7 is 
the cyclic behavior obtained 
from the analyses with ULSAS- 0.5 
GE for panels PGS5, PGS 1, and o.4 
PGS2. In the figures, Q/Qy and o.a 
D/Dy are non-dimensionalized 
shear load and displacement of o.2 
a panel, respectively. Qy 0.1 
denotes the full shear yield ~, 
capacity of a panel, so Qy = XySt ~ 0 
(Xy is the shear yield stress of -0.1 
the panel material). Dy denotes .0.9 
the drift at the top of a panel -o.s 
when Q = Qy; therefore, Dy = 
(xy/G)h. Refer to Fig. 1 for -o.4 
definitions of h, s and t. -o.s , , , , , , , , 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

The following hysteretic 
characteristics of the plate 

D/Dy 

Figure S Cyclic Behavior of Panel PGS5 
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panels under cyclic in-plane 0.4 
shear may be observed from the 
results, o.s 

1) The linear behavior of a o.z 
p a n e l  i s  n o t  o.1 
significantly affected ,, 
by buckling and post- ~ o 
buckling deformations 
before  the panel  -o.1 
significantly yields due -o.2 
to in-plane stresses. 
Such behavior has been -o.a 
observed from both the 
previous tests and the -o.a 
a n a l y s e s  u n d e r  
monotonic  loading 
performed by the 
authors. 

w . . | . • 

-8 -6 -4 -2 0 2 4 6 I 

D/Dy 

Figure 6 Cyclic Behavior of Panel PGSI 

0 . 5  j | | 

2) Shear panels exhibit / 
pinching behavior after 0.4 1 yielding caused by in- 0.3 
plane stresses has 0.2 
a p p e a r e d .  Both  
pinching and strength o.1 
d e g r a d a t i o n  were  ~ o 
alleviated in the large c~, 

deformation range. -0.1 / /  
This behavior was -o.2 
observed in the tests -o.3 
conducted by Kulak 
and by Elgaaly. -0.4 ] ~ 

i ~ i i I i i i i -0.5 i 
- 10 -8 -6 -4 -2 0 2 4 6 8 10 

D/Dy 

Figure 7 Cyclic Behavior of Panel PGS2 

3) The a/t ratio has a 
strong effect on both 
pinching and strength 
degradation of the 
panels. Parameter a is the largest of h and s. As the ratio increases, the panels had more 
severe pinching and suffered more strength reduction. It should be noted that the effects of 
fracture or tearing have not been included in this study. It is anticipated that panels with very 
large a/t ratios may have a localized fracture or tearing failure. Flexible stiffeners can be 
used to prevent possible fracture or tearing of shear panels. 

4) The hysteresis of the panels is rather sensitive to the change of the s/h ratio. When s/h ratio 
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is less than 1.0 (PGS 1), the hysteresis loops have severe pinching, stiffness deterioration, and 
strength degradation. To achieve stable strength and good energy dissipation capacity, steel 
panels with s/h ~ 1.0 are preferred in the construction of frame-wall systems. 

SUMMARY 

An algorithm was proposed to circumvent instability at load reversals in cyclic analysis of thin plates 
under in-plane shear. The algorithm was implemented in a special finite element analysis package 
and used to analyze wall panels selected from a frame-wall system. The algorithm worked well in 
the analysis. Analytical results compared favorably with the available test data. The hysteretic 
behavior of steel plate panels subjected to in-plane shear can be closely predicted by ULSAS-GE 
program. 
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A B S T R A C T  

This paper presents a multi-director and shear-deformable finite element formulation 
for geometrically nonlinear analysis of thick layered composite shells. The underlying 
variational formulation is based on an assumed strain method. The displacement 
field is continuous across the finite element layers through the composite thickness, 
whereas the rotation field is only layer-wise continuous and is assumed discontinuous 
across the discrete layers. From a kinematical viewpoint displacements and rotations 
are assumed finite while the strains are infinitesimal. The proposed model is then 
cast in a co-rotational framework which is derived consistently from the updated 
Lagrangian framework. The close relationship between the co-rotational procedure 
and its underlying updated Lagrangian procedure is presented to highlight the cost 
reduction for large and complicated geometric configurations. Numerical examples 
are presented to demonstrate the applicability of the proposed element. 

K E Y  W O R D S  

Laminated composites, Multidirector shells, 
framework, Nonlinear finite elements 

Finite deformations, Co-rotational 

I N T R O D U C T I O N  

Laminated structures made of advanced filamentary composite materials continue to 
be of great interest for engineering applications. Their high strength to weight ratio, 
and the flexibility to tailor make various components with strength far exceeding that 
of the parent constituent materials are their main attributes. These engineered ma- 
terials are generally orthotropic in nature and quite often show very unique response 
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even under simple loading and geometric configurations. For a detailed account on 
composite materials see Noor et al. [1989,1990], Reddy [1984,1996] Jones [1975] 
(and references therein). Most research efforts, as presented in the literature, can be 
grouped into three main categories. The first approach considers all material lay- 
ers as one equivalent anisotropic layer and employs the classical plate theory with a 
non-deformable director and zero transverse shear. Limitations of this approach and 
the effect of ignoring transverse shear for advanced composites are well documented 
in the literature. Accordingly refined laminate theories, based on Reissner-Mindlin 
plate theory have been proposed. These theories provide an improved response as 
compared to the classical lamination theory. A third approach that  claims to model 
the warping of the composite cross-section has gained considerable attention in lit- 
erature. In this approach the through thickness component of the displacement field 
is expressed as a power series in terms of the plate thickness coordinate. Although 
this approach accounts for transverse shear as well as warping of the composite cross- 
section, it is kinematically homogenous. If a detailed response of individual laminates 
is required, this approach would necessitate high order expansion in terms of plate 
thickness coordinate, resulting in considerable increase in the number of unknowns 
in the system and also in the complexity of the theory. 

In view of these issues, and because of the fact that these theories, although based 
on the concept of a two dimensional reference surface, are not much cheaper than 
a three dimensional analysis of laminated composites, has led some researchers to 
employ 3D elements to model the various material layers (Liao & Reddy [1990]).It 
is to be noted that  3D elements are not good for bending dominated response. The 
reason is that  even under the application of a constant moment, these elements can 
only model a shear-type response (Hughes [1987]) which infact is exceedingly stiff 
than a bending response. The situation worsen when 3D elements are used to model 
a thin flat laminate with adverse aspect ratios. 

In this paper we have endeavored to address these issues, and extend the linear 
model proposed by the first author to geometrically nonlinear anlysis. The underly- 
ing formulation is based on an assumed displacement field that  results in an enhanced 
strain Hu-Washizu variational framework. A condition of orthogonality on the en- 
hanced strains with respect to the 3D stress field results in a modified displacement 
based formulation which contains only translational and rotational degrees of free- 
dom. Since the rotation field is only layerwise continuous and is assumed to be discon- 
tinuous across the different material layers through the thickness, it can be condensed 
out via static condensation. The resulting element thus contains the translational 
degrees of freedom as the nodal unknown at the global level. The multi-layered shell 
model is then cast in a co-rotational framework which is derived consistently from 
the updated Lagrangian formulation. 

An outline of the paper is as follows. Section 2 presents the assumed displacement 
field. Section 3 presents the co-rotational framework for geometrically nonlinear 
analysis, evaluation of internal force vector, and a description of linear orthotropic 
constitutive relations in the co-rotational framework. In Section 4 we present the 
ensuing hybrid composite shell element. Numerical results are presented in Section 
5 and conclusions are drawn in Section 6. 
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T H E  L A Y E R - W I S E  S H E A R  D E F O R M A B L E  F R A M E W O R K  

We start with the assumed displacement field 

y. z) - y. z) + y) 

Ua(x,y,z) =  a(z,y,z) 

= 1.2)  (1) 

(2) 

where the translational component of the displacement field is assumed continuous in 
the x, y and z directions while the rotation component is only layer-wise continuous, 
and is discontinuous from one layer to the other. Thus rotation is infect an internal 
field embeded in the 3D continuum displacement field, and is therefore defined on 
the reference surface alone. This layerwise rotation field results in enhancement 
of the transverse shear strains and bending strains, thereby improving the bending 
dominated response. 

C O - R O T A T I O N A L  F R A M E W O R K  F O R  G E O M E T R I C A L L Y  N O N L I N -  
E A R  A N A L Y S I S  

This section presents the co-rotational procedure for geometrically nonlinear anal- 
ysis, derived consistently from the updated Lagrangian framework. The updated 
Lagrangian framework involves the principle of virtual work being established for the 
equilibrium configuration at the previous load increment at time tn. 

/ a  1 ~eext 
t 7 Tn+l 5~n+l  dft - J n+l  (3) 

where rn+l and Sn+l denote the second Piola-Kirchhoff stress tensor and the Green- 
Lagrange strain tensor measured in the updated configuration at time t~, respectively. 
The equilibrium configuration at time t~ is then called the reference configuration 
for current load step. Neglecting the quadratic terms in the Green-Lagrange strain 
tensor, we obtain the linearized incremental constitutive relation cr - i v  - c: e. 
Substituting the updated stresses and strains in (3), we obtain the linearized equation 
of motion 

/a e:c:Sedft+/a cr'Srldft- f e x t _ / ~  crSedf~ (4) 
t t t 

where the right hand side is the residual or the out-of-balance virtual work. In order 
to reduce the out-of-balance virtual work to within prescribed tolerance, we establish 
the incremental iterative form 

j~  (i+1) ~ c (i+1) ~eext ~ _(i) ~ (i) df~ (5) 
en+  1 "e: 5 e n + l  dgt + an+ 10~n_t_ 1 df~ - J n + l  - Un+l  Oen-t-1 

t t t 

Remark: After each iteration, displacements are accumulated and the incremental 
second Piola-Kirchhoff stress and Green-Lagrange strain tensors are evaluated which 
are then pushed forward to the current configuration. 

Element Co-rotational Procedure 
In the case of small strains, a series of approximations can be made to significantly 
simplify the updated Lagrangian formulation to the so-called element co-rotational 
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procedure. Theoretically, an arbitrary motion of a general continuous medium can 
be decomposed into a rigid body motion followed by a pure relative deformation. In 
finite element analysis, this decomposition can be accomplished by defining a local 
co-rotational coordinate system for each element which translates and rotates with 
the element, but does not deform with the element. If the finite element is sufficiently 
small, the pure deformation part of displacement obtained by subtracting the rigid- 
body motion components from the total displacement is normally small and is of 
same order of the magnitude as infinitesimal strains. 

Coordinate system for co-rotational framework 

In order to present the co-rotational procedure, we refer to the three sets of coordinate 
systems. They are: 

(i) The Global Coordinate System which is the Cartesian coordinate system fixed in 
space. 

(ii) The Local Co-rotational Coordinate System, I = [i1,i2, i3] which is associated 
with each element and undergoes rigid body rotations and translations with the 
element. 

(iii) The Surface Coordinate System, Va, which is the nodal triad associated with a 
typical node a. During the equilibrium iteration, Va experiences both the rigid 
body rotations and pure deformation. 

In ternal  Force Vector 

The internal force vector emanating from the second term on the right hand side in 
equation (5) can be expressed as 

"int(i) B (i)Tv n + l , ~  (6) 
J:n+l - -  (ni~ 1 

where B (i)T is form identical to the linear discrete strain-displacement matrix, but 

contains spatial derivatives with respect to the latest configuration o(~) which may ~n+l 

_(i) is the Cauchy stress tensor and is not necessarily be in an equilibrium state, on+ 1 
also measured in the latest configuration. To satisfy the objectivity requirement and 
to obtain exact Cauchy stress tensor, we first have to calculate the incremental Green- 
Lagrange strain, from which, the incremental second Piola-Kirchhoff stress can be 
obtained. Secondly, we need to push-forward the result to the current configuration 
with the incremental deformation gradient F,~+I. 

1 1 1 (gn+ l  ASn+I -T - - ( 7 )  O'n+l -- Jn+l  Tn+l -~n Tn ~t_ Jn+l  

Note that  Fn+l = Fn + GRAD u 

Fn+l  -- [1 + X~nU ]. 

- [1 + V n u ] g n  - g n + l g  n. Consequently 

Remark: All variables in (6) are defined with respect to the global coordinate system. 
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To apply the co-rotational procedure, it is convenient to transform equation (6) 
into local co-rotational coordinate system as 

i n  int<i) - ] ~  g (i)T~''(i) d ~  (8) 
+1  - -  (i) ~ ' n + l  

n+l  

where the tilde indicates quantities measured in the local co-rotational system. 

/)(i) _ symm grad ~i represents the strain-displacement matrix in the local co- 

rotational coordinate system in configuration (5(i) The Cauchy stress tensor in ~n+l" 
the latest obtained configuration can be calculated through the stress transformation 
in local co-rotational coordinate system as follows 

- jR s (9) 

where/~ - o~(x,t) is the co-rotational deformation gradient that eliminates the rigid OX 
body rotation of the continuum. Consequently, the incrementally objective stress 
update in the current configuration can be expressed as 

1 -= - T  

19"n+1 -- (~'n --~ 7 F / ~ S  -F (10) 

where F - [1 + Vn~i] is the incremental co-rotational deformation gradient that 
eliminates the incremental rigid body rotation of the continuum from configuration 
~)(i) to 5(i+1) 

n+l  ~ n + l  " 
Because of the small strain assumption, the pure deformation part of the dis- 

placements is a small quantity as compared to the element dimensions in the local 
co-rotated coordinates. Consequently, it is reasonable for us to make the following 
two approximations: 

1) The changes in element shapes are small in each individual local increment; and 

2) The displacement derivatives of the pure deformation part of the displacement 
field with respect to the current configuration measured in the local co-rotated 
coordinate system are of the same order of magnitude as the small strains. There. 
fore, the quadratic terms in the Green-Lagrange strain components can be ne- 
glected. (See Belytschko et al. [1973]). 

Based on the first assumption where the changes in element shapes are assumed to be 

negligible i.e., @(~)(x, t~+l) ~ @(~+l)(x,t~+l), the incremental deformation gradient 
matrix in the local co-rotated coordinate system is close to an identity matrix i.e. 

= 0:ZTj (i-F1) { 1 j -  J 

f j j  = O~j( i )  -- 0 j # J (11) 

=(~+1) and 2 j  where ~j are coordinates of a point in the current co-rotational frame ~ n + l  

are the coordinates in the previous co-rotational frame (5(i) Furthermore, change ~n+l"  
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in mass density is also negligible, i.e., Po - 
(10), we get further approximation 

Pt for J - 1. Substi tuting (11) into 

O'n+l -- O'n -F A S  

: O'n -~- ~'f: A E (12)  

N 

where A E  is the Green Lagrange strain tensor in co-rotated coordinates. Based on 
the second assumption, the stress update in an iterative form can be expressed as 

- ( i + 1 )  __ {:~.(n i)  -F C "  A ]~'~.(i) 
° ' n + l  - ~- 'n+l 

1 (V~i + V~i T~ (i) = + 

- &(~) + C: R(~) ~(~1 
- -  ~ . . . n + l ~ n + l  

__ t~.(ni) + ~ :  ~ ( i )  FT,4(i) 
- -  ~ J n + l  ~ ~ n + l  

where we have used the transformation relation between the nodal degrees of freedom 
in the global and the local co-rotated coordinate systems. Once the internal force 
vector is obtained in local co-rotated coordinate system, a simple coordinate trans- 
formation can be performed to obtain the internal force vector in global coordinate 
system as: 

fnint i) __ I T Zint (i) 
+1 J[n+l (14) 

where I is the transformation matrix. 

O r t h o t r o p i c  C o n s t i t u t i v e  R e l a t i o n s  i n  C o - r o t a t i o n a l  F r a m e  

Most fibrous laminated composites are made of a repeated sequence of laminates that  
often have the same material properties but are oriented at +0 and - 0  degrees with 

respect to one of the global axes. Let C '(1) represent the linear orthotropic consti- 
tutive matr ix  for an individual laminate with regard to its mutually perpendicular 
planes of elastic symmetry. This constitutive matr ix for a laminate can be projected 

onto the global composite coordinate system via a transformation matr ix  Q(t) which 

is a function of the angle 0. The transformed constitutive matr ix C (z) is obtained as 

C(1) _ QT(1) C'(1) Q(l) (15) 

These global orthotropic constitutive matrices defined layerwise, need to be mapped 
onto the co-rotational axes specific to each individual element to perform consistent 
numerical integeration of the element level quantities. Consequently, we need to 
develop an orthogonal transformation matrix from the global system on to the local 
element co-rotational system. The orthotropic constitutive relation in co-rotational 
frame can now be expressed as 

-- RT(e )  C (1) R(e)  (16) 



Finite Element,Model for Geometrically Nonlinear Analysis of Composite Shells 301 

where R (~) is the element specific orthogonal transformation matrix from the global 
frame to the local co-rotational coordinate frame. Equation (16) is then substituted 
into eqn. (13) to evaluate Cauchy stress in co-rotational system. 

T H E  H Y B R I D  E L E M E N T  

This section describes the hybrid element which is obtained via adding a 4-node 
shell type reference surface within the 8-noded 3D continuum element. The 4 noded 

reference surface is identified via a parameter ~ that places it with lower, middle or 
top surface of the element. The resulting hybrid element is also applicable to plate 
and shell type problems that can be modeled via single director Reissner-Mindlin 
type theories. 

The three-dimensional element used in this work follows Liu et al. [1994a,b, 1998]. 
Emphasis is placed on avoiding locking and removal of spurious singular modes and 
stabilization via an hourglass control approach. We expand the strain rate g in Taylor 
series about the element center 

(~,,, ¢) = s (o) + ~,~ (o)~ + ~,, ( o ) ,  + ~,~ (o) ¢ 
+ ~,~, (o)~  + ~,< (0),¢ + ~,~ (o) ¢¢ 

h e n  

-- Z -Ba (¢, ?], ¢) Va (17) 
a=l  

where Va are the nodal velocity degrees of freedom and 

/ ) a  (~,7],~) -- ga (0) + Ba, ~ (0) ~ -}- ga,r] (O) f] + ga, ~ (0) 

+ Ba,~. (O)¢rl + Ba,.¢ (O)rl¢ + Ba,¢~ (0)¢~ (18) 

The first term on the right hand side of the equation (17) or (18) represents the 
constant strain rates evaluated at the quadrature point, 0, and the remaining terms 
are the linear and bilinear strain rate terms. 

Trea tment  of  Volumetr ic  Locking 
_ 

To treat volumetric locking, Ba (~, r/, ~) is decomposed into dilatational and the 
deviatoric parts. 

J~a (~, T], ~) -- J~a dil (0) -J- J~a dev (~, T], ~) (19) 

The dilatational part of gradient matrices is underintegrated and evaluated at only 
one quadrature point, 0. We expand /3a dev about the element center. Accordingly 
equation (19) can be written as 

- lc2dev dev l¢2dev ( 0 ) ¢  Ba (~, r], ¢) -- Ba (0) Jr "-'a,( (0) ~ if- Ba,rl (0) r] q- ""a,¢ 
lc~dev lc~dev lc:~dev -~- J-~a,~rl (0)~/]  -~- ~"a,rl~ (0) ?']¢ -~- ~"a ,~  (0) ¢~ (20) 

where Ba (0) are the one-point-quadrature gradient submatrices contributed from 
both the dilatational and deviatoric parts. The remaining terms on the right-hand- 
side of the above equation are the gradient submatrices corresponding to non-constant 
deviatoric strain rates. 
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Treatment  of  Shear Locking 

In order to remove shear locking, the gradient submatrices corresponding to the 
assumed shear strain rates are written in an orthogonal co-rotational coordinate 
system rotating with the element. The gradient submatrices corresponding to strain 
rates ~ and ¢~Z ( for a,/3 = 1, 3 ) can be expressed as 

- l ~ d e v  R d e v  l ~ d e v  B ~  (~, 7, C) - B ~  (0) + ...~.,~ (0)~ + - - ~ , n  (0) ~ + ~.~,¢ (0) C 

~d~v ~dev (O) VC + ~dev + ~,~,~n (0) ~ + ~,~,n¢ ~,~,¢~ (0) ~ (a - 1, 2, 3) (21) 

and 

- l ~ d e v  B ~  (~, rl, ~) - B , ~  (0) + ~--zy,¢ (0) (a,/3 = 1, 2, 3) (22) 

N U M E R I C A L  E X A M P L E S  

Composi te  Cantilever Beam. [45,-45]s 

The first simulation is that of a laminated cantilever beam. Schematic diagram is 
shown in Fig. 1. The elastic moduli are E1 = 1.379E+08, and E2 = E3 = 1.448E+07. 
The remaining material properties are given below. It is interesting to note that the 
coarse mesh also captures the nonlinear geometric response with a great degree of 
accuracy (see Fig. 2), thus confirming the robustnesss of the element for bending 
dominated cases. 

• Material Properties 

L P i 

023 = 586E+04, O31 
'~3 = 0.21 , v31 = 0 21 

• G m n ~  Properties 

L = I0.0 
B= 1.0 
t = 0.1478 

• Loading 

P = 270 

= 386E+04,0 n = 586E+04 

, ~2 = 0.21 

Fig. 1. Schematic diagram of the composite beam problem. 
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Load-deflection diagram at load point. 

Bending  of  a Narrow  Cant i lever  Plate  

The second simulation is that  of a narrow cantilever isotropic plate subjected to a 
concentrated load. The superposed initial and final meshes are shown in Fig. 3a and 
surface stresses Crxx are shown in Fig. 3b. The applied load versus the displacement 
path  of the load point in our simulation shows a close agreement with tha t  given by 
the shell element S H E B A  of Argyris et al. [1994].One can clearly see tha t  the plate 
is made of two layers of elements through the thickness. 

S T R E S S  1 
- 1 . 4 4 E + 0 4  

1 . 5 0 E + 0 4  

T i m e  = 1 . 0 0 E + O 0  T i m e  = 1 . 0 0 E + 0 0  

Fig. 3. Initial and Final deformed geometry and stress crzx. 
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o 
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Fig. ~. Load-deflection diagram at load point. 

Clamped Iso tropic  Plate  under  U n i f o r m  Pressure  Load 

The next numerical simulation is a large deformation analysis of a fully clamped 
isotropic plate. Again we have selected this isotropic problem to benchmark our 
element for geometrically nonlinear analysis. To solve this problem we generated 
a mesh of 8 × 8 × 2 hybrid elements. The pseudo-time increment in the nonlinear 
solution strategy is At = 0.01. A total of 100 steps were required to apply the total 
load. Fig 6 presents the nonlinear load-deflection curve obtained at the center of the 
plate which compares very well with the experimental load-deflection curve reported 
in Kawai et al. [1969]. 

",, \ \ \ \/ 

\ Wc 

/ / / / \ 

• M a t e r i a l  P r o p  ~ r f i e s  

E = 2.1 x 10 ~ 1,,g/ram 2 

= 03 

• Din-~n.~on 

a = I000 mm 

b = I000 mm 

• Loading 

umfonn px~ssure, q = 0.8 x i0 ~ l~$mm 2 

Fig. 5. Schematic diagram of the problem. 
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j++ 

- -  nonlinear 
- - - -  inear 

0 Bcpedrnent 
( Katuai et al. 1060 ) 

~ . ~  I I I I 

0 ~ 100 150 ~0 250 

N~rmalised Load 

Fig. 6. Load-deflection diagram at the center of the plate. 

CONCLUSIONS 

In this paper we have presented a stabilized co-rotational formulation for geomet- 
rically nonlinear analysis of thick multi-layered composites with arbitrary ply lay-up 
sequences and orientations. The proposed approach is applicable to fiat as well as 
curved geometric configurations. In the finite element context this formulation em- 
ploys a eight-node hexahedral element with an embeded four-node reference surface 
to model the kinematics of composite laminates. The resulting hybrid element is free 
of volumetric and shear locking and possesses very good coarse mesh accuracy. In 
this element, stabilization is performed with respect to an orthogonal co-rotational 
framework attached to each individual element and the stabilization vectors are a 
function of element geometry alone. In the co-rotational framework the motion of 
element is conceived to be a finite rigid body motion followed by relatively small pure 
deformation. Elimination of the rigid body motion part from the total displacements 
leads to deformational displacement derivatives with respect to the co-rotated coor- 
dinates which are in the same order of magnitude as the small strains. A layerwise 
orthotropic constitutive model is incorporated in this co-rotational framework to ac- 
commodate the material directionality in each individual laminate. These individual 
material matrices are mapped onto the co-rotational framework to perform consis- 
tent numerical integration of the element level quantities. Numerical results show 
the good performance of the model. 
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ABSTRACT 

This paper introduces the NEPAS program which has been developed over a number of years for 
the nonlinear and buckling analysis of complex branched shells of revolution. Throughout its 
development, a strong emphasis has been placed on achieving robustness, efficiency, and 
accuracy. This has led to attempts to identify the best available numerical techniques and the 
development of new ones for implementation in the program. In this paper, the current 
capabilities of the NEPAS program are described and the numerical techniques implemented to 
achieve them are reviewed. A number of numerical examples are included to illustrate these 
capabilities. Further developments of the program to make it an attractive analysis tool for 
designers are also discussed. 

KEYWORDS 

Shells, Analysis, Finite Elements, Nonlinear Analysis, Buckling, Stability 

INTRODUCTION 

Axisymmetric shells are widely used in many engineering fields. Examples include aircraft, 
spacecraft, submarines, nuclear reactors, cooling towers, storage silos and tanks, roof domes, 
offshore platforms, tubular towers, chimneys, pressure vessels and pipelines. Shell structures, 
particularly civil engineering metal shell structures, have to be designed to avoid buckling or 
plastic collapse failures under combinations of load cases specified by design codes. Despite 
extensive research over many decades, existing knowledge of many shell buckling and collapse 
problems is still very limited (Teng, 1996). Consequently, shell stability/strength design criteria 
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given in codes of practice cover only simple geometries and loading conditions. For shells under 
non-ideal loads or having complicated geometries, there is little information either in the 
literature or in the design codes for the determination of their strength. For these complex shell 
structures, the use of numerical nonlinear and buckling analysis in design directly, or in the 
assessment of designs based on crude approximations has become an attractive alternative. 

A fully nonlinear analysis considering geometric and material nonlinearities should be carried 
out for reliable strength predictions. A number of difficulties still exist in this approach, 
including the specification of appropriate geometric imperfections for a buckling strength 
assessment, as these imperfections are unknown at the design stage. These and other related 
issues are currently being studied by many researchers. Needless to say, for this approach to be 
widely used, designers require access to a robust, efficient, and accurate nonlinear and buckling 
analysis computer program which meets their design needs. Most existing computer programs 
for shells of revolution have been developed without designers' needs in mind, and consequently 
do not meet their requirements. 

The aim of this paper is to introduce the NEPAS program developed over a number of years for 
the nonlinear and buckling analysis of complex branched shells of revolution and to review the 
numerical techniques implemented in this program. The initial development work (Teng and 
Rotter, 1989a; 1989b) took place with the aim of producing a program which can be used 
efficiently as a research tool in the study of shell buckling and collapse behaviour. It was 
envisaged that the program would be applied extensively to study many different problems. 
Consequently, a strong emphasis was placed on developing a robust, efficient and accurate 
program rather than one for the demonstration of a certain numerical procedure. It should be 
noted that the efficiency of a computer analysis does not rely only on a computationally less 
intensive numerical procedure, but also on the degree of automation of the analysis. As the 
computational power continues to advance rapidly, automation of analysis is becoming ever 
more important. The development of NEPAS has been carried out bearing this point in mind. 
The emphasis of recent and current work has been to further develop the program into an 
attractive analysis tool for designers. The strong emphasis placed on achieving robustness, 
efficiency, and accuracy of the analysis has led to attempts to identify the best available 
numerical techniques and the development of a number of new numerical techniques for 
implementation in the program. 

The latest version of the NEPAS program is capable of performing linear elastic stress analysis 
of shells of revolution under unsymmetric loads and nonlinear and buckling analysis of 
geometrically nonlinear elastic-plastic shells under axisymmetric loads including torsional loads. 
Plastic limit loads, linear bifurcation buckling loads, non-linear collapse loads, nonlinear 
bifurcation buckling loads, post-collapse bifurcation loads can all be determined efficiently. 
More specialized versions of NEPAS exist (eg NEPAC, EPSAC) and are used in actual 
applications, but for the description of this paper, only the general NEPAS program will be 
referred to. The program was developed as part of the FELASH Suite of computer programs for 
analyzing axisymmetric shell structures (Rotter, 1989). The program is now being extended to 
analyze geometrically nonlinear elastic branched shells under unsymmetric loads. 
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Figure 1: The doubly-curved axisymmetric shell element 

THE DOUBLY-CURVED AXISYMMETRIC SHELL ELEMENT 

The finite element formulation employs a doubly-curved isoparametric axisymmetric shell 
element with two ring nodes (Fig. 1). The element geometry is defined in cylindrical 
coordinates by the radius R, the axial coordinate Z and the element meridional curvature dq~/ds 
at the nodal points. The geometry is then interpolated between the nodes using cubic 
Hermitian functions (Teng and Rotter 1989a) 

R -  ~ NoiRi +Nli 
i=1,2 i 

Z - ~ N0,Z , + N,, - [N]{Z  e } 
i=1,2 i 

in which 

(-~SI-~ {N (--~sl +NliCd2~l } {(-~s/e} 
i=1.2 Oi i ~" ds2 ) i = [N] 

No, = 4 ( 2 -  3rl + r13) 

L ~ 113 + ) 

(la) 

(lb) 

(lc) 

(2a) 

(2b) 

(2c) 
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L(_  1 + 9 3) N,2 =~- - q  q- +q  (2d) 

[N] = [N0,N,,N02N12 ] (3) 
where q is a dimensionless curvilinear meridional coordinate related to the meridional 

coordinate s and the element half length L through (Fig. 1) 
2 s - s ,  - s  2 

1"1 = (4) 
2L 

L - s2 - s, (5) 
2 

The nodal displacements are defined by ui, (du/ds)i, vi, (dv/ds)i, wi and (dw/ds)i in the global 
coordinate system at each ring node at the end of the element. The displacements within the 
element, expressed in the global coordinate system, u, v and w (Figure 1) are interpolated 
between the nodal points in terms of the nodal values by the shape functions of Eqn. 2. The 

global displacements u, v and w at any point are related to the local displacements u, v and w 

in the curvilinear coordinates by a transformation matrix [T] (Teng and Rotter, 1989a). 

The six nodal variables used at each node are satisfactory for shells with a smoothly curving 
meridian and without sudden changes of thickness. However, when an abrupt change of 
meridional slope or thickness occurs, excessive continuity is imposed between elements 
(Figure 2). To avoid this problem, a static condensation procedure was adopted (Teng and 
Rotter, 1989a). As a result, the element can be applied to analyze complex branched shells of 
revolution such as ring-stiffened cylinders, and elevated steel silos and tanks with a complex 
transition junction. 
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Figure 2: Compatibility at a Meridional Slope Discontinuity 

NONLINEAR AXISYMMETRIC ANALYSIS 

The total Lagrangian approach is adopted in which all the quantities are referred to the 
undeformed configuration. The vector of nodal displacement variables for each element, denoted 
as {8~}, is given by 
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{Sa} = ul,  ,u2, ,v l ,  ,v2, ,w l ,  ,w2,  (6) 
1 2 1 2 1 2 

For a single element, the application of the principle of virtual displacements leads to the 
following nonlinear equations: 

{ ~ ( S a ) }  = {F} - ~[Ba I f  { Z }  d V  = 0 (7) 

in which { F} is a vector of equivalent nodal forces due to body forces and surface tractions, [Ba] 

is the incremental strain-displacement matrix, {F(Sa)} represents a vector of nodal residual forces 
and { Z }  is the vector of stress resultants. These relations constitute the basic equations for 

which a solution is sought. For each iteration, the displacement increments for the structure 
{ ASa} are obtained by solving the linearised system of equations 

{a) (~)}  = [Xr]{zXSa} (8) 
where [Kr] is termed the global tangent stiffness matrix. The tangent stiffness matrix for each 
element is given by 

[ X T -]e = [ K  ] e + [ K(~ -]e (9) 

where [K]~ accounts for the change of geometry and [K~]e accounts for the effect of internal 
stresses. The element tangent stiffness matrices are condensed to reduce the inter-element 
continuity. The global tangent stiffness matrix [Kr] may then be found by assembling the 
condensed element tangent stiffness matrices. 

NON-SYMMETRIC BIFURCATION BUCKLING ANALYSIS 

When the axisymmetric primary equilibrium path has been determined as described above, 
bifurcation into a secondary path may occur. The bifurcation displacements are assumed to be 
infinitesimal compared with the finite axisymmetric prebuckling deformations. The buckling 
displacements are expanded as symmetric and antisymmetric Fourier terms to allow non- 
symmetric buckling patterns with phase changes down the shell meridian to be described: 

Un = Uns cosnO+ unasinnO , vn= vnssinnO+ vnaCOSnO , Wn= wnsCOSnO+ wnaSinnO (10) 

where 0 is the circumferential angular coordinate, n is an integer which specifies the number of 
circumferential waves in the buckling mode, and the subscripts s and a denote the symmetric and 
antisymmetric Fourier components respectively. There are 24 degrees of freedom per element in 
the buckling mode, and the vector of buckling displacements for each elemenl is 

{ S n } -  Usl, ,Us2, ,Vsl, ,Vs2, ,Wsl, ,Ws2, , 
s! s2 sl s2 sl s2 

Hal ,  ,Ha2,  , Val , , Va2 , , W a l ,  , W a 2 ,  (l l) 
al a2 al a2 al a2 

in which the subscripts s and a denote symmetric and antisymmetric displacements with respect 
to the circumferential origin respectively. The buckling displacements in terms of global 
coordinates, un, vn and wn are related to the nodal global values of buckling displacements 
through element shape functions. Based on the principle of virtual displacements, the 
equilibrium of the buckled shell is governed by 
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8[Bn] r 
I~, [B~] r S { E }  dV + If, {E} dV = 0 (12) 

,~{a,,} a{~,,} 
where {E} is the vector of stress resultants and [Bn] is the strain-displacement matrix. The 
element stiffness matrix [K~]~ is defined by the first term of Eqn. 12, whilst the second term of 
Eqn. 12 leads to the stability matrix [Ksn]e. After condensation, the global stiffness and stability 
matrices can be assembled. For a given buckling mode with n circumferential waves, Eqn. 12 
may be written as an eigenvalue problem 

{[Xn]c + An[X~n]c}{Sn} = 0 (13) 

in which A, is the eigenvalue, { 8,} is the eigenvector, and [K~]~ and [Ks,,]~ depend on the current 
state of the structure. This eigenvalue problem must be solved many times at different load levels 
and for different numbers of circumferential waves. The final solution is achieved only when the 
number of circumferential waves associated with the minimum eigenvalue is found and this 
minimum eigenvalue is unity. 

N O N L I N E A R  S T R A I N - D I S P L A C E M E N T  R E L A T I O N S  

Different nonlinear shell theories may be used in numerical nonlinear and buckling analysis of 
thin shells. It should be noted that existing well-known nonlinear shell theories, including 
Donnell's (1934) theory as extended for general shells (often referred to as the Donnell- 
Mushtari-Vlasov theory) and Sanders' (1963) theory, were initially developed for analytical 
studies. In these theories, simplicity is an important consideration, and terms judged to be small 
in comparison with other terms are omitted. By contrast, in modem computer analysis, the extra 
complexity of a more accurate shell theory can be handled with little difficulty and only leads to 
a small increase in computing cost. As the NEPAS program is intended to analyze general 
complex shells of revolution with branches, it is necessary to ensure that the shell theory used 
yields correct results in all cases. The NEPAS program thus employs the nonlinear shell theory 
derived by Rotter and Jumikis (1988) for thin shells of revolution which is more complete than 
Sanders' (1963) theory. 

For thin shell applications, three components of membrane strain together with three 
components of bending strain define the state of strain at any arbitrary distance z normal to the 
shell reference surface. The strain-displacement relations of Rotter and Jumikis (Jumikis, 
1987; Rotter and Jumikis 1988; Teng and Hong, 1998) are given by 

- 

8u 8(0-  1 8w -8(p 
- -  + - - - w +  ~ bl 

eq~ 8s 8s 2 8s 

cosq)- 1 8v s inq) -  

R R 80 R 

1 8w - 8v 
+ R2 - - - v s i n q )  + 

2 80 80 

8u - c3(p 
+ + - - + w  (14) 

8s 8s 

- -  - -  ~ b /  - 

- -  + w s in  q) + u c o s  q) + - - - v c o s q )  
O0 

(15) 
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0v 1 8w -0q~ 8w - 0u v c o s q ~ + ~ + _  ~ - u  ~ - v s i n q ~  
Yq~o - RS0 R 8s R 8s 8s 80 

8v 8v - - 8u -Sq~ 0u - 
+ - -  - - + w s i n q ~ + u c o s q ~  + - - + w  -vcosq~ 

Os 00 Os 

(16) 

Kcp 
_ - 0(p 0it 0 2 W 82q~ u+ 

0 S 2 OS OS 63 S 2 
(17) 

K 0 = _ _ _ _  
u 8q~ 

R 8s 
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_ _ _  m 

1 c3v cos q~ 0w 1 02 w 

R7 sin q~ 80 R c3s R 2 00 2 
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R 0s 80 

sin q~ 0v 
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R 8s 

E - I v 0q~ 2 sin q~ cosq~ + cos~ c~s--R }- 

2 8w 2 02w 

R 5-c°sq~ 00 R 0s80 

(19) 

where s,, so and s,0 are the meridional and circumferential membrane strains and membrane 
shear strain respectively, and K¢, •0 and ~:,0 are the meridional and circumferential curvatures 
and twisting curvature respectively. Rotter and Jumikis (1988) believed that even Sanders' 
theory, when applied in a conventional manner to complex branched axisymmetric shells, such 
as ring-stiffened shells of revolution, could lead to erroneous results. Teng and Hong (1998) 
recently developed a nonlinear theory for shells of general form which can be reduced to that of 
Rotter and Jumikis (1988) for shells of revolution. They also discovered that the same strain- 
displacement relations for shells of revolution were derived at about the same time by Suet  al. 
(1987) and Yin et al. (1987). 

Teng and Hong (1998) also presented a comprehensive comparative study of several nonlinear 
shell theories in nonlinear buckling analysis. The simply-supported ring-stiffened cylinder 
under uniform external pressure (Figure 3) is one of the two numerical examples considered 
by Teng and Hong (1998) for which the buckling loads obtained using different nonlinear 
shell theories are given in Table 1. The buckling loads in Table 1 are in terms of the 

dimensionless buckling pressure defined as kc.. = pa(1-  v 2 ) / (Et) , in which p is the external 

pressure, E is the elastic modulus, v is the Poisson's ratio, a is the cylinder radius and t is the 

cylinder thickness. In the numerical analyses, the following values were used: E = 2.0 x 105 
MPa, v = 0.3, a/t = 100. The finite element model of the shell included only the ring- 

stiffened cylinder with one end allowed to have only meridional rotations and the other end 
allowed to have both meridional rotations and axial displacements. The circular plate covers 
at the ends of the cylinder were not included in the finite element model, but the pressure 
acting on the plate was included in the form of a circumferential line load on the cylinder end 
which was not restrained in the axial direction. 
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Figure 3" Ring-stiffened cylinders under external pressure 

TABLE 1 
BUCKLING PRESSURES OF RING-STIFFENED CYLINDERS 

General Instability 
%c,- xl0 3 Sanders' Sanders' Subbiah Rotter 

Donnell's Theory Theory & & 
Theory [3n [3° Natarajan Jumikis' 

omitted retained (1982) Theory 
6.403 6.000 6.451 5.967 

(3) (3) (3) (3) 
6.248 6.014 - 5.962 

(3) (3) (3) 
* Number of critical circumferential buckling waves 

Linear 5.192 
Buckling (3)* 

Nonlinear 5.163 
Buckling (3) 

Interframe Buckling 
Sanders' Sanders' Subbiah Rotter & 

Donnell's Theory Theory & Jumikis' 
Theory [3n 13. Natarajan Theory 

omitted retained (1982) 
3.745 3.755 3.749 3.755 3.749 
(13) (13) (13) (13) (13) 

3.239 3.248 3.243 - 3.232 
(12) (12) (12) (12) 

There are two possible buckling modes in such stiffened cylinders: global buckling and 
interframe buckling. These two modes correspond to two different numbers of circumferential 
waves. In the global mode of instability, the ring stiffeners' displacements are nearly all in the 
plane of the ring. On the other hand, these rings deform out-of-plane in the interframe mode of 
instability. Both linear buckling loads (prebuckling large deflection effect ignored) and 
nonlinear buckling loads (prebuckling large deflection effect included) are presented. The 
effect of prebuckling large deflections is seen to be small. It can be seen that for the interframe 
buckling mode, the results from the different shell theories are very close to each other as 
buckling displacements are out-of-plane in both the cylinder and the ring. For the general 
mode of instability, there are some significant differences. The predictions using the theory of 
Rotter and Jumikis are similar to those using Sanders' theory; however, the simplified Sanders' 
theory in which the rotation about the normal is ignored predicts buckling loads which are 7% 
higher than those of Rotter and Jumikis' theory. It is interesting to note that Subbiah and 
Natarajan's (1982) results are in very close agreement with those of the simplified Sanders' 
theory, but are different from those of Rotter and Jumikis' theory. Subbiah and Natarajan 
(1982) indicated that Sanders' theory was used in their analysis but did not elaborate whether 
the rotation about the normal was included. It seems very likely that the simplified Sanders 
theory was used by them. The unconservative predictions of the simplified Sanders' theory are 
due to its inability in modelling the in-plane buckling behaviour of the annular plate web of 
the T-section ring stiffeners as demonstrated by Teng and Hong (1998). Compared to the 
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theory of Rotter and Jumikis, the buckling loads predicted using Donnell's theory are lower by 
about 9%. The effect of Donnell approximations in the nonlinear strain terms leads to 
conservative predictions of the buckling load. 

In their study, Teng and Hong (1998) recommended that Rotter and Jumikis' theory as a special 
case of their more general theory be used in computer analysis for complete peace of mind that 
no terms, however small, have been left out in the analysis, although for their two test cases 
Sanders' (1963) theory with the rotation about the normal to the shell reference surface retained 
is also accurate. 

CONSTITUTIVE LAWS AND STATE DETERMINATION ALGORITHM 

The vector of generalized stress resultants {Z} in the shell which consists of the three 
membrane forces Ncp, No and Ncp0 and the three bending moments M,o, M0 and M, p0 is related to 
the generalized strains {c} defined earlier in an incremental manner through the tangent 
modulus matrix [DT] as 

t/2 IT d{2} = [Dr]d{c} where [Dr]  - I-t.J2 [Z [Dep][Z]dz (20) 

The matrix [Dep] relates the vector of stresses {cy} and the vector of strains {c z} at any point 
located at a distance z from the shell wall middle surface through 

d[cy} = [Dep]d{c:} where {c:}=[Z]{c} (21) 

with [Z] being a matrix relating the generalized strains to the strains at any point located at a 
distance z from the shell middle surface. The elastic-plastic modulus matrix [Dep] depends on 
the plasticity theory used. The J2 flow theory is used in the axisymmetric nonlinear analysis of 
NEPAS to model metal plasticity, and the matrix [Dep] is given in Teng and Rotter (1989a). A 
carefully designed state determination algorithm was employed to minimize the effect of load 
step size on the predicted structural response. Figure 4 shows the load deflection response of the 
large deflection elastic-plastic bending of a circular plate (Teng and Rotter, 1889a) predicted 
using two large load steps compared with the load deflection curve predicted using 25 steps. 
Evidently the NEPAS results are rather insensitive to load step sizes. This is an important 
feature, particularly when the program is used by inexperienced users to do elastic-plastic 
analysis. 

For plastic bifurcation buckling analysis of metal plates and shells, the paradox remains that the 
analytically less satisfactory deformation theory of plasticity gives results in closer agreement 
with experimental results than the more rigorous and well-accepted flow theory. The many 
available explanations are still inconclusive, and recent results once again confirm that the 
deformation theory predicts bifurcation loads in much better agreement with experimental results 
(Teng, 1996). As bifurcation analyses using the deformation theory usually also predict lower 
buckling loads than those with the flow theory, bifurcation analyses using the J2 deformation 
theory of plasticity are allowed in the NEPAS program which can also carry out plastic 
bifurcation analyses using the J2 flow theory and the modified J2 flow theory. The modified J2 
flow theory is the J2 flow theory with the shear modulus replaced by that from the J2 deformation 
theory (Bushnell, 1976). The incremental stress-strain relations for the J2 deformation theory of 
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plasticity under three-dimensional stress regimes have been given in tensor notation by 
Hutchinson (1974) as 

with 

Lijk/= 1 + v + h 

where 

d ~ij = Lok/d ek/ (22) 

3v + h dh / dJ2 so sktl 
3(1 - 2v)  6ij 6kt - I + v + h + 2(dh / dJ2) J2 

(23) 

1 2 3 9E 
: , = 2 [1 / E -  1 / Es] (24) J2 ~ v  h -~[E /  E s - 1 ] ,  d h / d J 2  - 4Ov 

in which s,j are the stress deviators, ~ is the von Mises equivalent stress, v is the Poisson's ratio, 
E is the elastic modulus, E~ is the secant modulus, and 60 is the Kronecker delta. These relations, 
when specialized for the plane stress condition, give the required matrix [Dep]. The deformation 
theory option has been usefully exploited in numerical studies of shell buckling problems to 
develop simple design methods (e.g. Teng, 1975; 1977). 
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Figure 4" Effect of load step size on predicted load-deflection response 

SOLUTION PROCEDURE FOR NONLINEAR ANALYSIS 

Among the many existing incremental iterative nonlinear solution methods, the arc-length 
method still appears to be the most effective and popular. The arc-length method as given by 
Crisfield (1981) has thus been implemented in the NEPAS program together with the 
conventional load-controlled Newton-Raphson method. While the arc-length method (or other 
methods with similar capabilities) can handle complex load-deflection paths effectively, the 
analyst has no control over the load incrementation scheme to achieve convergence to specific 
locations along the load-deflection path. There are a number of situations in which such control 
is required. In particular, when nonlinear structural analysis programs are used in structural 
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design, both the ultimate load carrying capacity and the deformations under service loads may 
need to be found. The arc-length method is suitable for the former task, but not the latter. The 
analyst needs to conduct two separate analyses if he needs to know both the ultimate load and the 
state of the structure at a particular load level. This is inconvenient for both programming and 
program application. A user-controlled arc-length method has recently been developed and 
implemented in NEPAS so that it can converge to pre-defined load levels (Teng and Luo, 1998). 
This user control is achieved by coupling the conventional arc-length method with the 
accumulated arc-length control procedure of Teng and Luo (1997). The proposed approach is 
equally effective for convergence to a pre-defined value of any other parameter and to multiple 
values of a parameter. As an example, an elastic circular plate with a completely fixed edge was 
analyzed by Teng and Luo (1998) for convergence to multiple stress levels. The plate has the 
following properties" radius R = 100 mm, thickness t = 1 ram, elastic modulus E = 2.0 x 105 
MPa and Poisson's ratio v - 0.3. The reference load of the plate is 1 MPa. The NEPAS program 
was instructed to find the load levels at which the maximum von Mises equivalent stress is equal 
to 100 MPa, 200 MPa and 250 MPa, respectively (Figure 5). A pre-defined stress level was 
judged to have been reached if the difference between the converged and pre-defined stress level 
was less than 0.1%. This kind of analysis is useful in design application of nonlinear analysis 
where first yield constitutes a limit state as it can precisely determine the load level 
corresponding to first yield. 
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Figure 5: Load deflection path tracing with convergence to multiple pre-defined stress levels 

AUTOMATED BIFURCATION SOLUTION PROCEDURE 

To find the critical mode and load in a linear bifurcation analysis, one only needs to search 
through a range of circumferential buckling wave numbers. The critical wave number is the one 
associated with the lowest buckling load factor and the critical load is the applied load times this 
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buckling load factor. Finding the critical bifurcation mode and load following a nonlinear 
axisymmetric prebuckling path is much more difficult. The critical bifurcation mode is uncertain 
before the analysis is completed. A range of circumferential wave numbers must be tested to find 
the wave number corresponding to the minimum eigenvalue at each load level as this wave 
number varies with load level. A solution is reached when this minimum eigenvalue at a certain 
load level is unity. This load level is the buckling load level, and the circumferential wave 
number corresponding to the minimum eigenvalue is the critical mode. In all previous programs 
for shells of revolution, this search is done by trial and error and requires several repetitions of 
the analysis, which is often very tedious and time consuming. An automatic procedure was 
developed and implemented in NEPAS (Teng and Rotter, 1989b). This automatic procedure was 
made possible for plastic bifurcation analysis using the innovative idea of reversible plasticity 
(Figure 6) developed from the incrementally reversible plasticity assumption initially proposed 
by Nyssen (1981). With this reversible plasticity assumption, the search for a bifurcation point 
can be conducted forward and backward for many cycles. Otherwise, the search has to move 
forward only and there is no permission to move back. 
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Figure 6: Stress-strain curves and reversible plasticity 

Shells of revolution under axisymmetric loads may bifurcate into a non-symmetric mode after 
the axisymmetric failure load has been reached. The existence of a post-collapse bifurcation 
point indicates a mode change, and has a strong bearing on the ductility of structural behaviour in 
the post-collapse range. The accumulated arc-length method (Teng and Luo, 1997) is a new 
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technique recently developed for the determination of a post-collapse bifurcation point and 

/// 

implemented in NEPAS. 
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Figure 9: Load-deflection and bifurcation behaviour of plate-end pressure vessels 

An interesting application of this method is to a structure with a shallow curved shape under 
compressive loading, for which snap-through buckling can occur under a very small load, but the 
real load carrying capacity may need to be taken as much higher at a bifurcation point on the 
second ascending branch in the post-snap-through range. The plate-end pressure vessel shown in 
Figure 7 serves as such an example. The buckling behaviour of internally pressurized perfect 
plate-end pressure vessels was investigated by Teng and Rotter (1989c). Due to inevitable 
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fabrication errors, the initial shape of the end plate may actually be that of a very shallow 
inverted dome. The effect of this kind of imperfection of significant amplitude can only be 
assessed if a post-collapse bifurcation analysis is carried out. In Teng and Luo (1997), a perfect 
and an imperfect vessel were analyzed. The imperfect plate is represented by an inverted 
spherical cap with a rise of Wo equal to 4 times the shell wall thickness t. The vessels have an R/t 
ratio of 100 with the following material properties: elastic modulus E = 2 x 105 MPa, Poisson's 
ratio v = 0.3, yield stress Cyy = 250 MPa with elastic perfectly-plastic behaviour. The material is 
modelled by the J2 deformation theory in the bifurcation analysis. Figure 8 shows the bifurcation 
mode of the perfect vessel while the load deflection curves of both the perfect and the imperfect 
structure are shown in Figure 9. Substantial yielding has taken place before bifurcation buckling. 
For the imperfect vessel, bifurcation buckling occurs on the ascending branch of the load- 
deflection curve after snap-through (Figure 9). It is interesting to note that the initial shape 
imperfection increases the bifurcation buckling load slightly, contrary to conventional wisdom 
about the effect of imperfections. The number of circumferential buckling waves is not affected 
by this imperfection. 

Another recent development of the NEPAS program is the implementation of a general nonlinear 
elastic foundation into the buckling analysis option (Luo and Teng, 1998), and this foundation 
may be a tensionless one if axisymmetric deformations only are being studied (Hong et al., 
1997). 

CONCLUSIONS AND FURTHER DEVELOPMENTS 

This paper has introduced the current capabilities of the NEPAS program for nonlinear and 
buckling analysis of complex branched shells of revolution, and provided a review of the 
numerical techniques implemented in this program to achieve them. A number of numerical 
examples have also been included to illustrate these capabilities. The development of the 
program has been carried out with a strong emphasis on robustness, accuracy and efficiency. For 
axisymmetrically loaded metal shells of revolution, the NEPAS program is believed to be one of 
the most powerful programs available with a number of important features not present in other 
well-known programs (Bushnell, 1976; Cohen, 1982; Esslinger et al, 1984; Wunderlich et al, 
1985; Combescure et al., 1987). The program has been applied to study many buckling and 
collapse problems in axisymmetric shell structures (eg Teng and Rotter, 1989c; Teng, 1995; 
1997). 

The NEPAS program is currently being extended to perform geometrically nonlinear analysis of 
elastic shells of revolution under non-symmetric loads. The programming work has been 
completed and the program is currently being tested. In the near future, the capability of 
including general non-symmetric initial imperfections in analysis will be added, and the 
nonlinear non-symmetric analysis will be further extended to elastic-plastic shells. In the longer 
term, the program shall be augmented with an automated procedure to realistically account for 
the effect of geometric imperfections, a user friendly post-processing facility, and a dynamic 
analysis capability. The ultimate aim of future development is to produce a program for the 
buckling and collapse strength prediction of complex branched shells of revolution under general 
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non-symmetric loads which will possess all the necessary features for direct applications in shell 
stability design and hence offer distinct advantages over other existing programs. 
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Response Spectra and Time History 
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ABSTRACT 

Optimal design of structures subject to seismic loads using an optimality criterion approach 
is presented. The fact that inertia related seismic loads are dependent upon the natural period 
of the structure provides a challenge in structural optimization as compared to statically 
loaded systems. The inertia loads, being dependent upon the natural frequency of the 
structure, become a function of the structural stiffness and mass which changes within each 
optimization iteration. Therefore, the loads also change within each iteration. The typical 
gradient calculations for static response assumes a constant load, whereas, the gradients of 
the dynamic structural responses are dependent upon the non-zero gradients associated with 
these seismic loads. The load gradients are directly affected by the type of seismic analysis 
performed. Descriptions of the required sensitivity analyses for equivalent lateral force, 
modal response spectra analysis and time history analysis procedures are presented. An 
example of how structural optimization can be used to benefit a structural designer is 
presented. This example clarifies how structural optimization can lead to better 
understanding of seismic resistant designs. 

KEYWORDS 

Equivalent lateral force, pseudo-static, response spectra, seismic loads, sensitivity analysis, 
structural optimization, time history. 
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INTRODUCTION 

Structural optimization of dynamically excited structures has been ongoing for several 
decades. Many times the word "optimization" is taken literally as finding the global optimal 
design. Realistically, structural optimization for earthquake loads should be viewed as an 
automated design process. A major advantage of using structural optimization for seismically 
designed structures is the capability of simultaneously optimizing a structure for multiple 
deterministic earthquakes. Traditionally, seismic designers design for the anticipated 
earthquake and verify that the structure could survive other earthquakes within the given 
design constraints. If the structure violates any of these design constraints, an iterative 
process ensues until a viable structure for all the deterministic earthquakes can be designed. 
This process can be avoided by using structural optimization procedures that can 
simultaneously design for multiple earthquakes. The optimization procedure resizes 
members in a fashion providing the most efficient dynamic properties for all of the 
predetermined earthquake events, whereas, a traditional design focuses on only one event 
resulting in an over designed structure with respect to the other design earthquakes. 

The research associated with structural optimization for earthquake loads is growing in 
volume, but is still limited. Cheng and Juang (1988, 1989), Truman and Cheng (1990, 1997) 
and Truman and Jan (1988) studied 2-D and 3-D building structures with respect to various 
code provisions and cost functions. Truman and Cheng (1983) have studied optimization of 
structures analyzed by modal response spectrum analyses. Truman and Petruska (1991) have 
applied optimality criteria techniques for optimization of 2-D structures using time history 
analysis procedures coupled with actual seismic accelerogram base excitations. Structural 
optimization of systems subjected to random seismic excitations and reliability theory is still 
in its developmental stage but has been studied by Cheng and Chang (1988), and Austin, 
Pister and Mahin (1978a, 1978b). 

A major difference between optimizing for statically loaded and earthquake loaded structures 
is the inertia related seismic loads. The loads are heavily dependent upon the natural period, 
mass and stiffness of the structure. Therefore, both the structural stiffness, inertia (dead) 
loads, and dynamic responses change after each optimization iteration. This fact requires 
changes in the manner by which the gradients of the dynamic structural responses are 
determined. A statically loaded structure changes with each iteration, but the loading remains 
essentially constant allowing certain simplifications in the calculation of the response 
gradients that cannot be made for seismic optimization. Currently, seismic analyses are 
performed using one of three methods, pseudo-static (equivalent lateral force), modal 
response spectra, or time history. The changes required to find the gradients of the structural 
response are directly affected by the type of seismic analysis performed. Descriptions of the 
required changes for pseudo-static, modal response spectra analysis and time history analysis 
procedures are presented. The use of structural optimization can lead to better understanding 
of seismic resistant designs and the limitations of the current state of design code based 
analysis procedures. 
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SEISMIC DESIGN LOADS 

Deterministic, seismically designed structures are typically loaded either through pseudo- 
static (equivalent lateral) forces based on design code formulae, a site specific design 
spectrum or a time dependent accelerogram, either actual or synthetic. Pseudo-static force 
procedures can be a single set of forces or multiple sets of modal forces used as a means of 
approximating a full modal response spectra analysis. The pseudo-static force method is a 
common approach for designers when actual earthquake data is scarce or its use is 
unwarranted (noncritical structures). Modal response spectrum and time history analysis 
procedures are very common when earthquake data for a specific site is known or when the 
structure is deemed a critical facility. Many times these procedures are used for structures 
located in a region of frequent seismic activity or a region of potentially high magnitude 
seismic events. 

Pseudo-Static Forces 

The Uniform Building Code (UBC) (1997) pseudo-static force procedures are based on 
finding a total base shear and then distributing this base shear to each floor according to the 
mass distribution and distance above the ground. The UBC equivalent static base shear 
equation is of the form: 

Cvl 
V= W (i) 

RT 

where I is an importance factor, Cv is a seismic coefficient, R is a structural over strength and 
related ductility factor, T is the fundamental period of the structure and W is the seismic dead 
load. Typically, the lateral forces are vertically distributed as a percentage of the base shear 
according to height and mass of a given level. The UBC lateral force distribution is of the 
form: 

(V - Ft) Wxh x rx: :(V-F,)px 
~ w i h  i 
i=1 

(2)  

where F x is the xth level horizontal force, Ft=0.07TV and is the top story horizontal lateral 
force, w x is the xth level portion of the weight W used in Eqn. 1, hx is the height above the 
base to level x and Px is the xth story distribution percentage. Note that the base shear and 

lateral forces are dependent upon the natural period of the structure, T, as well as the dead 
weight, W, which includes the structural weight. 
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Modal Response Spectra 

The modal response spectrum procedure suggested by the NEHRP Provisions (1995) is also 
based on finding a set of pseudo-static forces based on modal base shear forces for a 
prescribed number of modes. The displacements, stresses and drifts resulting from individual 
modes are then combined through the use of a statistically based procedure such as the 
square-root-of-the-sum-of-the squares (SRSS) or complete-quadratic-combination (CQC). 
The jth modal base shear for a response spectrum analysis is of the form: 

W. 
(3) 

m 

where the effective weight Wj is defined as" 

w = g (4) 

where {t~}j is the jth mode shape, [M] is the mass matrix, SAj is the jth mode spectral 

acceleration, g is the gravitational constant and {I} is a unity vector. Note that the mode 
shapes and the spectral acceleration are dependent upon the natural period of the structure. 
A classical response spectrum procedure with structural optimization procedures is presented 
in Cheng and Truman (1985). 

Ground Motion Accelerogram 

Time history analyses are based on the solution of the classic differential equation for seismic 
analysis using a ground motion accelerogram. The differential equation can be solved by 
numerous techniques. Truman and Petruska (1991) have successfully used Newmark 
integration procedures within the optimization algorithms. The classical differential 
equations are of the form: 

+ [C]{a} + I/el{u} CM]/I}  /R} (5) 

where [C] is the damping matrix, [K] is the stiffness matrix, {u } is the relative displacement 
vector, { R } is the load vector, x is the ground displacement and each dot is one derivative 
with respect to time. Note that the inertia force on the right side of Eqn. 5 is mass and time 
dependent, therefore, the maximum response for each iterative design typically occurs at 
different times within a single earthquake loading. Using a Newmark integration scheme 
allows direct formulation of the gradients for the velocity and acceleration in terms of the 
displacement gradients (Truman and Petruska, 1991). Newmark's Integration scheme is 
based on a formulation that is similar to a static load calculation as shown in Eqn. 6: 
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[/~] {Ut+At} = {Rt+At} (6) 

where the terms with "hats" are effective stiffness and loading terms: 

[/(] =[K]+ao[M]+a,[C ] (7) 

and 

{t~t÷at} = ~t+at} + [M~ao{Ut} + a2{0t} + a3{0t}) + [C~al{Ut} + a4{0t} + as{Or}) (8) 

The aj terms are the Newmark integration constants. Eqn.6 is then solved for the incremental 
change in the displacements throughout the time history. These terms are greatly affected by 
the change in structural properties during the optimization of a system. The loading term is 
heavily dependent upon the stiffness and the mass (ultimately the period) of the structure. 

OPTIMIZATION PROCEDURES 

Any structural optimization algorithm that can account for the gradient of the loads with 
respect to the design variables can be used for structural optimization for earthquake loads. 
The gradients of these loads with respect to the design variables can be found explicitly or 
implicitly, but are typically necessary for stable convergence of the optimization algorithms. 
The need for the gradients of the loads can easily be seen by exploring the use of an 
optimality criteria approach which has been modified for earthquake loads. 

Optimal i ty  Criteria 

Truman et ai. (1990, 1991 and 1997) have had much success using optimality criteria 
methods. Their major advantage is the significant reduction of iterations required for 
convergence to an optimum design. The optimality criteria used in the optimization 
algorithm is derived from the Kuhn-Tucker conditions of optimality and can be stated as: 

jll (OgJl"~~Xi)OXi) z i = - . ~  ~j = 1 i : 1 . . . . .  n tg) 

where ~.j is the jth constraint Lagrange Multiplier, gj is the jth constraint, X i is the ith design 

variable (member size), f is the function being minimized (objective function), 1 is the number 
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of active constraints and n is the number of structural members. As the structure reaches its 
optimal design 17 i approaches unity. Therefore, a recurrence relationship using Eqn. 9 can be 
derived as shown in Truman and Cheng (1990). Prior to the use of Eqn. 9 in a recurrence 
function for resizing of the structural elements, an estimate of the optimal Lagrange 
multipliers must be determined as described in detail in Truman and Cheng (1983). The 
gradient of, gj, requires the gradient of the different constraint responses such as 
displacements, stresses, natural frequencies and drifts be calculated. 

Sensi t iv i ty  Ana ly ses  

Eqn. 9 indicates that the gradients for the constraints are required which is where the major 
difference occurs between statically and dynamically loaded structural optimization 
algorithms. Using the simplest case of finding the gradients for the displacements of a 
statically loaded system, differentiating the equation [K]{u } = {P}, the general formulation 
becomes: 

( l o )  

where { P } is the vector of applied forces. For a statically loaded system, each term of the 
gradient of { P } is zero. The first term in the brackets, the partial derivative of the load vector 
with respect to the design variable, is not zero for seismic loads. 

Equivalent  Static Forces 

For the UBC equivalent static case the gradient of load vector {P} from Eqns. 1 and 2 
becomes: 

8{P} : 8{Fx} = (1 _0.07T)__~[T_I 8 W  +waT -1 ] 8T  ..... 
8X i aX i 8X i 8Xi {p} - 0.07V 

(11) 8Xi 

where {p} is the vector of story percentages for the distribution of the base shear according 
to story heights and mass. The gradient of the period can be found by using the chain rule and 
the well known natural frequency gradient (Cheng and Truman, 1983): 

_ dXi dXi (12) 

ax, 
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Modal Response Spectra 

The gradients for the modal response spectra displacements, stresses, and drifts are also 
derived by direct differentiation and application of the chain rule (Truman and Cheng, 1990). 
Therefore, the gradient for the jth modal base shear from Eqn. 3 can be written as: 

a v j _  l [ a ~  SAj + __aSA. ]q[ (13) 

where the partial derivative of the effective weight Wj from Eqn. 4 requires the partial 

derivatives of the mode shapes, the mass and the spectral acceleration as developed in 
Truman and Cheng (1990). The gradient of the load vector {P} is found by using the 
appropriate lateral force distribution equations which would be similar to Eqn. 2. 

Ground Motion Accelerogram 

The equilibrium equations of motion are approximately solved for by using Newmark's 
numerical integration method shown in Eqns. 6-8. Differentiating Eqn. 6 with respect to the 
design variable, X, and noting that the derivatives of the integration constants with respect 
to the design variables X are zero, gives the gradient of the dynamic displacement for each 
time step as: 

-~ i  axi [ axi + a° axi + a3 axi +A (14) 

where 

axi a[M](ao{Ut}+ a2{Ut} + a3{Ut}) + 
aX i aX i 

[M] a 0 + a2 + a3 t + 
aX ax  a x  i J 

a{ut} a{ot} a{urt}) 
a + a 4 + a s + [C] I a x  i a x  i a x  i ) 

a[C](al{gt}+ a4{U/} + a5{[]t}) 

(Is) 

and the derivatives of the acceleration and velocity can be found by direct differentiation of 
the Newmark equations for velocity and acceleration. With the displacement gradients for 
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each time step calculated, the story drift gradients can be obtained and so can the stress 
gradients (Truman and Cheng, 1985). 

TYPICAL CONSTRAINTS 

From a practical point of view, constraints are used to produce a feasible design. The 
constraints can be used to control drift, displacements, frequencies, stresses, stability, 
reliability and maximum and minimum member sizes. Note that each constraint must have 
quantifiable gradients to be used in Eqn. 9 as shown for displacements in Eqns. 10 and 14. 
Once these gradients are derived, the structural optimization, using the Kuhn-Tucker 
relationship, is able to control these responses while finding an optimal structural system. To 
be able to control these responses simultaneously for multiple earthquake loads is extremely 
useful for seismic resistant design. 

OBJECTIVE FUNCTIONS 

Deterministic seismic related objective functions are typically expressed in terms of structural 
weight or structural cost per geometric property such as volume or surface area. Structural 
weight is commonly used due to its importance as a major contributor to total construction 
cost. More importantly, design variables can be clearly defined vis-a-vis structural weight. 
Other objective functions can be and have been formulated to include any combination of the 
expense of structural members, nonstructural elements, painting, connections, and 
maintenance (Cheng and Juang, 1988). 

EXAMPLE: TIME HISTORY OPTIMIZATION 

The three-story, two bay frame shown in Figure 1, Truman and Cheng (1997), was analyzed 
to show the capability of a time history optimization algorithm. The constraints for this 
design problem are displacement and minimum and maximum member sizes. The absolute 
value of the horizontal displacement at each floor was limited to 2.54, 4.19 and 5.97 cm 
(1.00, 1.65, and 2.35 in.) for the first, second and third floors, respectively. The lower limit 
on the moment of inertia is 12,070 cm 4 (290 in.a). Initial values for the member sizes were 
62,400 cm 4 (1500 in.4). Material constants are E = 200,100 MPa (29000 ksi) and 9 = 7820 
kg/m 3 (490 lb/ft.3). A uniformly distributed non-structural weight totaling 148.3 kN (33.33 
kips) was applied to each beam member of the frame. Damping of the structure was 
neglected. Three different loadings were examined. At time t = 0, the structure is at rest and 
the base undergoes a transient acceleration. The first base acceleration is defined as" 

rig(t) - 343sin(2rrt) cminches/sec 2, 0_<t_<l.0 sec (16) 
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Figure 1" Three story, two bay frame Figure 2: Optimization History 

and is zero for t greater than 1.0 seconds. The second base acceleration is defined by the 
accelerogram for the north-south component of the E1-Centro, California earthquake on May 
18, 1940. The third base acceleration is for the north-south component of the San Fernando, 
California earthquake on February 9, 1971 taken at the Caltech Seismological Lab. The 
constant of 343 used in the sine function was chosen to match the peak acceleration of the E1- 
Centro earthquake record. The San Fernando earthquake was also multiplied by a constant 
of 1.81 so that both earthquakes would have the same peak acceleration. The time step 
selected was 0.01 seconds. For the sine load, the time frame examined was 2.0 seconds and 
for the E1-Centro and San Fernando earthquake, the time frame was 10.0 seconds. Table 1, 
Truman and Cheng (1997), shows the optimum designs and Figure 2, Truman and Cheng 
(1997), shows optimization history. 

In this example, linking refers to forcing each column on a given level to be of one size and 
each beam on a given level to be of one size. Therefore, for this example a linked system has 
six design variables; the size of the columns on levels 1, 2 and 3 and the size of the beams on 
levels 1, 2, and 3. Comparing Case A to Case B and Case C to Case D (defined below Table 
1) shows that the linking examples produce heavier structures since each member is not able 
to take on its optimum size. The E1-Centro Earthquake results in a slightly lighter structure 
than the structures simultaneously optimized for the San Femando and E1-Centro earthquakes. 
It is worth noting that both earthquakes in Case E, simultaneous earthquakes, produce active 
constraints. This indicates that a design based on only one earthquake would most likely 
violate the constraints when loaded by the other earthquake. Figure 2 shows for Case C a zig- 
zag pattern between iteration 5 through 9 because at iteration 4, the process violates the 
displacement constraint, and the optimization process is returning to the constraint in 
iterations 5 through 9. Case D shows a large decrease in weight at iteration 6 due a change 
in the active constraints thus allowing the optimization process to use a new path to produce 
a better solution. 
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TABLE 1 
OPTIMAL SOLUTION FOR THE THREE STORY, TWO BAY STRUCTURE 

MEMBER 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

W*Total(kN) 

ITERATION 

DOF 
TIME (sec) 
VALUE (cm) 

DOF 
TIME 
VALUE (cm) 

DOF 
TIME 
VALUE (cm) 

CASE A 

50867 
94655 
50867 
15883 
44620 
15883 
12071 
22631 
12071 
52062 
52062 
30834 
30834 
12071 
1207 

43.35 

X3 
t=0.69 
5.98 

MOMENT OF INERTIA (cm 4) 

CASE B 

67921 
67921 
67921 
26630 
26630 
26630 
14639 
14639 
14639 
53577 
53577 
32566 
32566 
12071 
12071 

44.26 

CASE C 

115504 
115504 
115504 
39292 
39292 
39292 
27367 
27367 
27367 
71338 
71454 
44820 
44037 
16811 
16358 

54.03 

11 

X 3 
t=0.69 
5.97 

CASE D 

62559 
237015 
62485 
25868 
76058 
25960 
14776 
43733 
14918 
78543 
78547 
43080 
43375 
12670 
12799 

52.81 

10 

ACTIVE CONSTRAINTS 

X2 
t=8.00 
4.23 

X 3 
t=8.02 
6.09 

X2 
t=3.58 
4.14 

X 3 
t=3.59 
6.04 

X3 
t=4.22 
-5.91 

Case A Sine Function (No linking of members) 
Case B Sine Function (Linking of members) 
Case C E1-Centro Earthquake (Linking of columns) 
Case D E1-Centro Earthquake (No linking of members) 
Case E E1-Centro and San Fernando as separate load cases (No linking) 

CASE E 

44798 
404007 
54473 
41823 
71550 
41952 
16529 
52104 
16204 
99683 
109585 
73631 
72666 
14826 
14859 

60.15 

12 

X3(E1-C) 
t=4.74 
-5.99 

X3(SF) 
t=6.81 
5.98 
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CONCLUSIONS 

Several observations can be made with regards to the use of optimization procedures for 
earthquake loads. Structural optimization is a viable means of producing seismic resistant 
designs. The optimization procedures can produce a series of feasible designs which can be 
used for the final seismic resistant design. This series of feasible structures can be extremely 
useful in enhancing the designers understanding of the interaction between the structure and 
the seismic loads. The use of structural optimization procedures for full modal response 
spectra and time history analyses provides an opportunity to design structures for multiple 
earthquakes simultaneously. Being able to design a structure for a family of varied seismic 
accelerograms is of tremendous benefit. Objective functions can be related to cost, weight, 
damage, energy absorption or any other quantity that can be related to the actual design of the 
structure. Nondeterministic procedures are available in order to explore seismic resistant 
design from a probabilistic point of view. These techniques are useful in exploring potential 
structural costs associated with probable events and failures. The use of structural 
optimization for earthquake loads is not as easily applied as that for static loads, but it is 
possible. Structural optimization can be an extremely useful and beneficial tool for seismic 
resistant system designers. 
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ABSTRACT 

While a lot of research work has been done in the area of disaster prevention of large structural 
systems, very few methods have really been applied at field. The primary reason for this is the 
inherent complexity of most systems and the associated cost of instrumentation. The authors in this 
article have introduced the concept of utilizing a novel sensor technology for monitoring bridges. 
The technology is based on the principle of magnetostriction and work in this area is currently 
being carried out by the authors under a National Science Foundation International Cooperation 
grant involving researchers from both the United States and the Slovak Republic. 
KEYWORDS: Magneto-elastic, stress measurement, sensor, bridge monitoring. 

INTRODUCTION 

Instrumenting the critical locations of the structure with different types of strain sensors is 
definitely one way to evaluate the stress levels material has been subjected to. This has 
been implemented in quite a few monitoring schemes (Bartolli, et al. 1996; Shahawy, 
1996). The world's infrastructural needs are growing at a rapid pace, and to keep up with 
these needs a large number of new bridges have been commissioned or are in various 
stages of design and construction. A number of these bridges have very long spans, and use 
cable- stayed, cable-suspended or various forms of pretensioning and post-tensioning 
systems. Service properties of prestressed concrete structures depend on the real value of 
the prestressing forces. Similarly, the performance of both cable-stayed and cable- 
suspended bridges are dependent on the cable forces in the stays. While these forces are 
measured during the construction phase of a structure via built in load cells and strain 
gauges, what happens in the post-construction service life of the structure is usually 
guessed based on rules of thumb and laboratory simulations. 

Measurement of forces during the service live of a structure is typically very 
difficult, and can be carried out only if the structure was instrumented to begin with. In the 
vast majority of existing structures, this was not the case, and in a number of situations 
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structures were instrumented as an afterthought to carry out diagnostic and forensic 
investigation into the health of an ailing structure. Strain measurements at select distressed 
locations are carried out to measure the stress levels in the structure. The primary problem 
of such a measurement is that such measurements completely ignore the dead load 
component. However, in very large span structures, the dead load component is the most 
significant component of the actual loads. For the most part, the measurement of the total 
stress level in a member is virtually an impossible task. Research has shown that the 
magnetic properties of ferromagnetic materials are strongly dependent on the stress history 
of the material (Bozorth, 1951). Sensors for monitoring the prestressing force in rock bolts 
and post-tensioning operations can be designed on the basis of this principle (Kwun and 
Teller, 1994). 

The magneto-elastic method of force measurement that the authors have presented 
provides an innovative way of measuring forces, stresses and corrosion in cables and 
strands. The measurements can be carried out even when the cables and strands are 
enclosed in sheathing and ducts, which are grouted. The technique is relatively inexpensive 
and is one of the most commercially viable non-destructive evaluation tools available for 
bridge monitoring. 

THEORY OF OPERATION 

The magnetic properties of most ferromagnetic materials change with the application of 
stress to such an extent that stress may be ranked with field strength and temperature as 
one of the primary factors affecting magnetic properties. Depending on the material, 
magnetic properties can increase or decrease with the application of stress, The extent of 
the change being a function of the material itself. This forms the basis of magneto- 
elasticity. Therefore, it is possible to measure the stress level in ferromagnetic materials 
based on their measured magnetic characteristics. 

The magnetic field strength, H, and the flux density, B, for any material can be 
expressed by the constitutive law 

B = , u H  (1) 

where, la is called the magnetic permeability. Fig. 1 shows the partial magnetization curve 
for cast iron, and it serves as a representative example of most ferromagnetic materials. It 
• is evident that the permeability, ~t, is not constant, but is dependent on the field strength, H. 
This results in the magnetization curve being nonlinear. It should be noted that ~t is not the 
slope of the magnetization curve, but simply represents the ratio B/H. The maximum 
permeability ktm,x is at the point on the magnetization curve with the largest B/H ratio. 

If we now apply an alternating current to a coil that is wrapped around a 
ferromagnetic core, the magnetization curve of the core moves around a hysteresis loop 
(Fig. 2). The slope (dB/dH) varies over a very wide range and the average permeability or 
ordinary permeability is defined as the permeability at the maximum value of B attained in 
the cycle. However, if a small alternating current is added to a relatively large DC 
component, then the magnetization curve follows a minor hysteresis loop as shown in Fig. 
3 (Krauss 1992). In this case, the average value of (dB/dH) is given by the line passing 
through the tips of the minor hysteresis loop and is called incremental permeability ~l, inc. 
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Figure 1. Relationship between magnetic flux density (B) and magnetic field (H) 

Referring to Fig 3., ~Linc can be defined as 

~ i n c  - - (2) 

The effect of stress on the magnetic properties introduced above are large. Stress 
severely alters magnetization behavior. The magnetic properties of ferromagnetic materials 
may be described by the magnetic domain theory. This theory postulates that material is 
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Figure 2. Magnetic hysteresis curve Figure 3. Concept of incremental permeability 

made up of local regions called ferromagnetic domains, each magnetized to saturation but 
aligned according to the state of local magnetization. Adjacent domains are separated by a 
highly localized magnetic transition region called the domain wall. Even in the 
demagnetized state, all domains are still magnetized to saturation, but the orientation of the 
individual domain magnetization vector is random; which results in a net magnetization of 
zero for a specimen. The application of a magnetic field or a mechanical stress can change 
the configuration of the domains, principally by wall movement (Sablik and Jones, 1993). 
In some materials, a tensile stress increases the permeability and these materials are said to 
exhibit positive magnetostriction. In other materials called negative magnetostrictive 
materials, application of a tensile stress decreases permeability. Within the elastic limit, the 
effect of stress on magnetic properties is usually described by magnetization curves 
obtained by first applying a constant stress and then applying a varying magnetic field (or, 
H). If this is reversed (H, (~) such that, the field is applied before the stress, the 
magnetization curve differs from the one obtained earlier. 

MEASUREMENT PRINCIPLE 

Using the phenomena of magnetoelasticity described in the previous section, stresses in a 
test structure (steel prestressing strands and cables) can be evaluated through a 
measurement of the magnetization characteristics. Measuring its permeability at various 
bias conditions would allow us to determine the stress of the structure in a non-destructive 
way. The measurement of permeability is based on the principle of electromagnetic 
induction. The schematic diagram of the proposed sensor is shown in Fig 4. The stress 
transducer is essentially a coil wound around the test specimen. A long cylindrical cable 
with N tums of coil winding around it is used as an example (Fig 5.). A DC current is 
applied to the coil to produce a magnetic field (H) and the magnetic flux density (B) within 
the specimen. If we are able to determine the (B/H) ratio within the coils, the permeability 
at that bias condition can be determined. The direct measurement of magnetic flux or flux 
density is difficult. An easier way is to measure the induced terminal voltage across a 
pickup or secondary coil wrapped around the specimen also. This voltage is produced due 
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to rate of change of flux linkage through the pickup coil. According to Faraday's law: 

V i n d ( t )  - - N - -  
dt 

(3) 

• ! ......... 

! 

. . . . . . . . . . . .  ; . . . .  

Figure 4. Schematic of magnetoelastic stress measurement 

B 

Flux - - - -  

line 

Figure 5. A steel core inside a cylindrical solenoid 

The flux through the coil is along the direction of the test specimen. In the testing 
procedure, the specimen may not completely fill the surface enclosure of the coils. 
Therefore, the total flux consists of flux through air and through the specimen. The 
induced voltage can be written as (Kvasnica and Fabo, 1996): 

Vind  (t) - - N - -  kt 0 I H ( p ,  ~o, t)ds + I B ( p ,  (p, t)ds (4) 
dt SilO S ~ 

where S, uo and S,u, are the surface areas of the coils occupied by air and the specimen, 
respectively, ~t0is the permeability of air. 
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Based on (4), a number of measurement schemes can be devised. The first 
approach is to measure the total permeability B/H. The second approach is to measure the 
incremental permeability (dB/dH). It is also possible to obtain the entire magnetization 
curve (hysterisis curve) on the basis of those measurements. 

In the first approach, the induced voltage is integrated with respect to time, the 
resultant time average output voltage is 

t2 
1 ~V( t ) inddt  Vou t - _ _  

T t  1 

N I 1 = T  'uO ~ AH(p,q~, t)ds  + ~z~(p,q~, t)ds 
SpO S p  

(5) 

where AH and AB are the change of the magnetic field intensity and magnetic flux density 
in the time interval (t2- tl), respectively, where the current is increased from 0 to Ia. Ia 
corresponds to the magnetic field strength, Ha, at which the permeability is to be found. 
According to the theory of electromagnetism, if the number of tunas are large and the 
spacing between each turn is very small, the magnetic field within the coil is almost 
uniform, even with the presence of the specimen. As a result (5) may be simplified to 

Vou t - - + 
T 

(6) 
where So is the area of the entire cross-section of the coils, and Sf is the cross-section area 
of the specimen. The integration of the time-varying output voltage from the coils may be 
carried out by a RC analog integrator. T, which appeared in (6) is the time constant of the 
RC circuit and is given as RC. In order to find the total permeability, the integration of the 
time varying output voltage (V0) is first performed without the specimen. It can be easily 
shown that 

N v0-T 0s0  (7) 

By taking the ratio of (6) and (7), we may find the permeability from the following 
equation: 

 olvout 1 la - - / . t  o 1 + ~ -  1 (8) 

M~ S f V o 

The permeability in (8) is the total permeability which is proportional to the output voltage. 
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From this measurement, it is possible to obtain calibrated curves of the type shown in Figs. 
6 and 7 by varying AH. 
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The second approach is to measure the incremental (or differential) permeability, 
which is the slope of the B-H curve. In this approach, a DC current is applied to the coil 
and, subsequently, a small AC modulation signal is added to the DC signal to produce a 
minor hysteresis loop. It has been shown by Jarosevic et al. (1994) that the incremental 
permeability obtained from the minor loop is essentially a linear function of stress (Figure 
8). This material property is particularly useful in developing the magnetic-stress sensor. 
Experiments have also shown that as the material reaches saturation (due to a large DC 
current), the minor hysteresis loop becomes essentially a straight line. The/.t~nc can be 
expressed in terms of the measured quantities dH = ct dI and Fout according to 

dB _ RC Vout _ S O  - 1 ( 9 )  

At inc - d H  N S d I  /u 0 S f 

Note that d! in (9) is the incremental currem due to the small modulating AC currem. 
While the principle is rather simple, a number of issues must be addressed before a 

reliable sensor can be designed. These are related to removal of EMI, isolating the 
temperature effect, optimizing the sensor dimensions, power requirements, etc. The first 
step in the process is essentially the magneto-elastic characterization of the material itself. 
Since the metallurgical processes for manufacturing steel vary slightly across the globe, it 
is necessary to characterize the magnetic properties of the local material. 
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EXPERIMENTAL DATA 

As a first step it is necessary to carry out the magnetic characterization of the material to be 
encountered at site. With this in mind, the authors have initiated the process of measuring 
the measuring the magnetic properties as a function of applied stress and magnetic field 
strength. The dependence of the magnetic hysteresis curve for low carbon steel ( ~u = 1400 
Mpa, dia = 15.5 mm) have been investigated by the authors using a cylindrical sensor 
design, which is essentially a primary and a secondary coil wrapped around the strand. The 
complete hysteresis curves have been obtained in this case for stress steps of 200 MPa and 
is as shown in Fig 6. The data from the same experiment has been plotted in the form of kt 
versus H in Fig 7. In order to make these measurements, the specimen of the prestressing 
strand was prestressing bed in the laboratory, with the sensor attached. The prestressing 
force was measured using a load cell. While the prestressing load was kept constant, the 
sensor output voltage was measured for different input current values (H). Once the 
complete hysteresis curve for a given stress level was measured, the strand would be 
unloaded and then stressed to a different level, and the process repeated. 

As can be seen, this is a rather cumbersome process and can be carried out inside a 
laboratory environment only. Also it can be seen that the relationship between stress and 
permeability isn't necessarily linear. However, as the material is carried into it's saturation 
zone, the relationship gets more linear. Fig. 8 shows a plot of the ~l, inc as a function of stress 
for different values of excitation current. It can be seen that as the current changes, the 
slope of the curve increases, which means that as the field strength increases, the 
sensitivity of the method increases. However, increasing the current, increases the power 
requirement as well as generates heat, which affects the performance. Thus the input 
current needs to be optimized and in order to do so it is necessary to have access to data of 
the type shown in Fig. 8. The magnitude of the necessary excitation current is dependent 
on the cross-sectional area of the coil, which is in turn dependent on the size of the cable or 
strand being monitored. Finally, at the end of the calibration process, a calibration curve of 
the type shown in Fig 9 will be developed for each combination of material and size for an 
optimized excitation current. Once that is achieved, the stress level can be measured from a 
single measurement of ~t. 

Utilizing this technique, the authors have successfully implemented a scheme for 
monitoring the cable forces in the stays of the Tabor cable stayed bridge in Slovak 
Republic. Data from the experiment is shown in Fig 10. Based on this experience, the 
authors are confident that stresses can be measured with an accuracy of +/- 1 %  if the 
sensors have been calibrated for a given material type and strand diameter. 

CONCLUSIONS 

In this article the authors have introduced the concept of stress monitoring in structural 
systems using magneto-elasticity. They have provided a brief outline of the underlying 
principle and have enumerated the steps that are necessary for carrying out such a task. 
Typical experimental data that has been obtained in the calibration process has been 
presented. Data obtained from a monitoring program implemented by the European 
members of the group has been presented. The technique offers an unique ability to 
monitor prestressing forces in cables and tendons of existing structures, without the need 
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for cutting open the sheathing. Measurements can be made for cases where the strands are 
enclosed in pressure grouted ducts. 
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FRACTURE ESTIMATION: BOUND THEOREM 
AND NUMERICAL STRATEGY 
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ABSTRACT 

A bound analysis of fracture parameters is proposed. It is found that the lower bound for J- 
integral can be obtained by a compatible displacement finite element method. On the other hand, 
the upper bound of the/*-integral, as the dual of the J-integral can be obtained by an equilibrium 
finite element method. To avoid the difficulty of designing equilibrium finite element models, a 
hybrid stress model is modified by incorporating a penalty equilibrium constraint. Moreover, a 
relative error measure formula for J and I* is suggested. Numerical examples on different crack 
and loading configurations are presented to verify the validity of the bound theorems. 

KEYWORDS 

Fracture, Path-independent integral, Upper/lower bound, Hybrid finite element 

INTRODUCTION 

The J-integral had been proven to be equivalent to the release rate of the strain energy rI(lt,) 

with respect to the crack area (Rice,1968). Hence, the bound of the numerical solutions for the 
J-integral, if it exists, may possibly be established using the assumed displacement finite element 
method which is founded on H(lti). On the other hand, the/*-integral proposed as the dual 

counterpart of J-integral (by Wu et al.) has also been shown to be the release rate of the 
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complementary energy He(a0. ) with respect to the crack area. A natural conjecture is that the 

bound of the numerical solutions for the/*-integral, if it exists, may possibly be established using 
the assumed stress finite element method which is founded on II¢(~j) .  

In computational fracture mechanics, the estimation of upper/lower bounds for fracture 
parameters becomes a matter of great significance as one cannot obtain an accurate or reliable 
solution no matter what experimental or numerical method is used due to the complexity of 
fracture problems. The bound problem consists of two aspects: (1) theoretically, the existence of 
an approximate upper/lower bound for a certain path integral, and (2) if it exists, numerically, the 
evaluation approach. In addition, the error measure should be considered once the bound 
solutions are obtained. 

DUAL PATH-INDEPENDENT INTEGRAL 

For a given plane crack system with actual states of stress, strains and displacement (ajj,  e~j, u~ ),  

the J-integral (Rice, 1968) can be defined as: 

j _  dH ~ 1  - -J-a-a = Ir [ W ( e 'j ) dx 2 - a ,j n j ( )ds] (1) 

To find a dual integral of J, we introduce the Legendre transformation 

W(u~ ) + B(o'~j ) = a~je~j (2) 

into (1); then an alternative path integral can be derived 

~'  ds} _,, ( :  J )  : I,.. - B(o-,.,. - o-,.,.,.,. N 

(3) 

It is easy to verify that the present I* is a path-independent integral. The I*-integral can also be 
defined as a complementary energy release rate(Xiao,1996): 

I* dH ~ &r ,j 8 
- d a - Sr [ -B(a , j  )dx 2 + u, - ~ l  n jds  + (u ,a ,2)dx  l (4) c3cj Y 
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For an equilibrium stress field, crij,j = O, then it can be verified that (3) is equivalent to (4). In 

numerical calculations, the expression (3) is especially recommended due to its simplicity and the 
absence of derivative of stresses. 

BOUND THEOREMS 

Corresponding to the dual integrals J and 1', the following bound theorems can be established 
for a certain linear or nonlinear elasticity crack system with homogeneous displacement 
boundary constraint, i.e. 

Lower Bound Theorem for J: For the given cracked system, i f  u, and ~ are respectively the 

exact displacement cmd the approximate one based on the mh#mum potential energyprinciple, the 
approximate J-integral will take a lower bound of its exact one, L e. 

_< J( , , , )  (s)  

Therefore, the lower bound o ld  can be obtained by displacement compatible elements. 

Upper Bound Theorem for I*: For the given cracked system, i f  o" o. and ~j  are, respectively, 

the exact stresses and the approximate one based on the minimum complementary energy 
principle, the approximate I*-integral will take the upper bound of  its exact one: 

I*(o'o) > I'(cru) (6) 

Therefore, the upper bound of I* ccm be obtained by stress equilibrium elements. 

In the case of linear elasticity, a proof for above theorems was presented by Wu, Xiao and 
Yagawa(1998). Furthermore, in the case of nonlinear elasticity, including deformation theory-based 
plasticity, the theoremsstill hold. As an illustrating example, the lower bound theorem for J is proved 
here. 

For the given nonlinear crack system with homogenous displacement boundary constraints, it 
can be verified that for the actual solutions 06, or0.) : 

= v ( ¢  o. ) (7) 

n ( , , , )  = -ku(,,,) (8) 
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where V(crq) and U(u~) are the complementary energy and the strain energy, and the finite 

constant 

k = V ( % )  / U(u~ ) > o (9) 

For linear elasticity, k = 1. Let u~ = u~ + 8u i , then we have 

n(a, ) = n(u, ) + 8rl + 8:n(8, ,  ) (10) 

As the displacement finite element method is an implementation of the potential energy principle, 
the first and second variations are respectively 

and 
817= 0 

62 FI(6u~ ) - Iv A(Su, )dV 

Hence, Eqn.(1 O) becomes 

H(~'~ ) - H(u~ ) = Iv A(fu~ )dr  

In accordance with the definition of J, 

a n(. ,))  _- a j ( ~ , ) -  j ( u , ) -  - a, S - ~ ( . ~  A(Su,)av (a) 

Considering an actual status of the given system, the J-integral must be positive, i.e. J(u~)>__ O, 
and 
Eqs.(8) and (9) must be satisfied. Thus we have 

d d d 
j ( u .  ) -- - T a  n ( . .  ) - ku ( . , .  )] - k f A(..)dv >_ o (b) 

Observing that the employed compatible displacement elements can keep the strain energy to be 
positive definite, the comparison of (a) and (b) results in 

"L - ~ A(a . , )dV _< 0 (1~) 

Thus the inequality(5) holds. 
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NUMERICAL STRATEGY 

As for J, its lower bound can easily be obtained by using conventional isoparametric elements. 
For I °, however, its upper bound should be estimated by stress equilibrium elements. 
Unfortunately it is hard to get a reliable equilibrium model for 2D and 3D problems because of 
numerical difficulties, such as rank deficiency, displacement indeterminacy, etc. cannot be 
avoided .We face the problem of how to implement the upper bound theorem for I °. 

It is observed that the stress equilibrium element is based on the complementary energy 
formulation 1-Ic(o-), while the stress hybrid element based on the Reissner formulation 

l'I R (o-,u). However, I-[ R (o-, u) is identical to FI c (o-). Thus a hybrid model may degenerate into 

equilibrium model when the stress equilibrium equations are enforced to the hybrid element. 

For an individual element, let 

• ? HR a = . o-r(Du)_~o- So- V (12) 

A generalized functional can be created in the manner of ( Wu and Cheung, 1995). 

/7~6 = /-/~ _ 2 , (D r o-)r (D r o-)dV (13) 

In Eqn.(13) the penalty factor ct >0 is taken to be a large constant such that the homogeneous 
equilibrium condition D r o- - 0 is enforced to the element in a least-squares sense. 

Recalling the 4-node plane hybrid stress element, termed as P-S, proposed by Pian and 
Sumihara(1984), the assumed element stress trial functions can be expressed, in terms of the 
element coordinates (~, rl), as 

t o ,lf  t 
[a,: 0 0 1 a,b,r I a3b34d[fls 

(14) 

where the coefficients a, and b~ are related to the element nodal coordinates (xi, yi) in the 

manner: 
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a 1 b 1 - 1  1 1 
1 l a: b: = - ;  - 1  1 

- I "  

a 3 b 3 1 - 1  1 

_1-][ x, Y, 
_ l|/x  lj[x  

x4 Y4 

(15) 

By substituting the stress (13) and the bilinear displacements uq - N(~, r/)q into the functional 

(12), we have 

e a r iRG(p,q)=f lTGq_ f iT(  H + - - H  )fl E P 
(16) 

After condensing/3, the element stiffness matrix is now 

a -1 K e - G  r ( H + - H  ) G (17) 
E P 

In Eqn.(17) the matrices G and H are identical to those of P-S element, while the 
penalty matrix 

Hp - ~v" (Dr~)T (DT~) dV (18) 

In such a way, P-S hybrid element, is developed into a penalty-equilibrating model, termed as 
P-S(ot), in which the stress equilibrium equation is imposed by the penalty function method. 

ERROR MEASURE 

Let 6u, - u ,  - u  s be the displacement error induced by using the assumed displacement finite 

elements. Then, in accordance with the lower bound theorem (5), the relative error for the J- 
integral must be 

J(Su, ) - J ( ~  ) - J(u,  ) < 0 (19) 

and the absolute error 

[J(Su~ )] -  J(u,  ) - J(ff~ ) (20) 

Let 8a~j - cr'~j -a~j  be the stress error induced by using the assumed stress finite elements; in 

accordance with the upper bound theorem (6), the relative error for I*-integral must be 
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I* (8o,j)- I* (5,j)- I* o (21) 

and 

II * (8a~j)[ = I * ( ~ j ) -  I * (o-~j) (22) 

Corresponding to (20) and (22), the relative errors can respectively be expressed as 

[J(fu~)[/J(u~) and [I*(6o, j )[ / I*(o~j)  (23) 

The strength estimation for a certain structure can be carried out once the upper and lower 

bounds are obtained, and the approximate strength is usually taken to be a combination of the 
bound solutions. In order to measure the error of the fracture parameters given by finite 
element methods, a relative dual error for J and I* is defined as: 

Aj_I. = (24) 
J(u,  ) + I * (o~j ) 

In Eqn.(24), the sum of reference solutions is 

(25) 

Observing the small quantities J(Su,) < 0, whereas 

ignored, we then have 

I * (6o~j) > 0, the last term in (24) can be 

J(u,  ) + I * (o~j ) ~ J(K, ) + I * (~ j  ) (26) 

Substitute (20), (22) and (26) into (23), and note that the actual J and I* are identical in value; 
we finally obtain 

.~ _ I *  
Aj_,. - (aiJ) - J(u~) (27) 

I * (au) + J(u'~ ) 

The above relative dual error formula only depends on the approximate solutions of J and I*, so 

as to be easily used in nonlinear fracture estimations. Obviously, the error will vanish when the 
adopted finite element meshes become more and more fine. 
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NUMERICAL TESTS 

In numerical calculations, the well known 4-node isoparametric element Q4 and the present 
penalty-equilibrium element P-S(ot) are employed to estimate J and I* respectively. 

The center cracked panel CCP with uniform stretching load o'® (Fig. l-a) and the single edge cracked 
panel SECP with uniform stretching load ~®(Fig.2-b) are calculated. Only a quarter or half of a 

specimen needs to be considered due to the symmetry. Three finite dement meshes and two integral 
paths are shown in Fig.2-a,b,c. The specimen material consists of Young's modulus E =1.0 and 
Poisson ratio v =0.3. The distributed stretching load or® = 1.0. For linear elastic crack problems, all 

the solutions of J or I* will be transferred to the stress intensity factor K+ for convenient 

comparisons. The reference solutions of K+ are offered by H.L. Ewalds and R.J.H. Wanhill (1984). 

To inspect the convergence behavior of the solutions of J and I*, three meshes with different 
densities and two independent integral paths are simultaneously considered for each specimen. 
From the results shown in Fig.3-a,b and Fig.4-a,b, it can be seen that the solutions of J by Q4 
always converge to the exact one from a certain lower bound. On the contrary, the solutions of 
I* by P-S(ct) always converge to the exact one from a certain upper bound. All the numerical 
solutions demonstrate the bound theorems presented in the paper. 

The error formula A+_+. in (27) is implemented to measure the relative error of the bound 

solutions for CCP. The results are listed in Table 1---2. The results given by the formula As_ I. in 

(24) are also shown in parentheses in the tables for comparisons. It is found that, independent 

of the selection of meshes and paths, both A+_~. and A+_+. always offered almost the same 

results. These numerical tests exhibit the efficiency of the present approximate error formula 
(27). 

CONCLUSIONS 

Lower and upper bound theorems have been established for J and I* respectively such that 
the estimation of fracture parameters can be carried out by means of 

J ( ~ )  <_ J(u,) - l*(cro.) < 1"(~o) 

As an effective numerical strategy, the penalty equilibrium hybrid element is developed and 
implemented to estimate the upper bound of I*-integral. 

A practical error measure for dual integrals is presented to predict the relative error for the 
approximate bound solutions obtained. 
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Figure 3" The bound behavior of the solutions of J and I* (transferred to/£i )in three 
meshes with different densities and two independent integral paths of CCP 
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Figure 4: The bound behavior of the solutions of J and I* (transferred to K1 )in three 
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TABLE 1 

THE RELATED ERROR A j_ I. & A j_ I. (%) FOR CCP ( PLANE STRAIN ) 

Mesh 1 2 3 
Path 1 
Path 2 

8.187 (8.487) 
7.015 (7.225) 

3.855 (3.880) 
3.597 (3.639) 

0.965 (0.963) 
0.922 (0.921) 

TABLE 2 

THE RELATED ERROR Aj_ I. & Aj_ 1. (%) FOR CCP ( PLANE STRESS ) 

Mesh 1 2 3 
Path 1 8.157 (8.459) 3.828 (3.851) 
Path 2 7.815 (7.405) 3.661 (3.698) 

0.971 (0.969) 
0.942 (0.941) 
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ABSTRACT 

A formulation for fully-coupled buffeting analysis of long span bridges is presented, in which 
dynamic coupling between modes of vibration, interaction between bridge deck and towers 
and cables, and varying wind speed and structural properties along bridge deck and towers and 
cables can be taken into consideration. This formulation is featured mainly by a complete finite 
element approach and a pseudo-excitation method. The Tsing Ma long suspension bridge in 
Hong Kong is taken as a case study, in which the new formulation is validated through a 
comparison with Scanlan's method, and aeroelastic effects, multi-mode effects, inter-mode 
effects, interaction between bridge components are investigated. 

KEYWORDS 

Buffeting analysis, long span bridge, finite element approach, pseudo-excitation method, case 
study, aeroelastic effects, multi-modes, inter-modes, bridge component interaction 

INTRODUCTION 

Wind-induced vibrations of bridge deck of a long span cable-supported bridge are classified 
mainly as buffeting due to wind turbulence and self-excited vibration, such as flutter, vortex 
shedding and galloping. Many efforts have been made in last two decades so as to successfully 
prevent bridge deck from flutter instability and to significantly reduce vortex shedding 

361 
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response through the optimisation of deck cross section and/or the installation of aeroelastic 
devices. Attention to the deck buffeting response was relatively less, probably because the 
buffeting response does not generally lead to catastrophic failure. However, with the record- 
breaking span lengths of modern long span bridges, the buffeting response is significantly 
increased, which may lead to serious fatigue damage to structural components and 
connections, instability of vehicles travelling on the deck, and discomfort to pedestrian. 

The buffeting analysis of modern long span bridges is basically performed using either 
Davenport's theory (1962a) or Scanlan's theory (1977), which is actually a combination of 
numerical, experimental, and analytical approaches. Finite element technique is used to 
determine the natural frequencies and mode shapes of a modern long span bridge. The wind 
tunnel tests of bridge section models provide flutter derivatives and aerodynamic coefficients. 
A continuous beam is then used to model the bridge deck and analysed to determine the 
buffeting response in each mode of vibration and then to superimpose the modal responses 
using the SRSS method (the square root of the sum of squares of modal responses). 
Obviously, such a buffeting analysis ignores the coupling between the modes of vibration. 

Modern long-span cable-supported bridges tend to have very closely-spaced natural 
frequencies and significant coupling of flexural and torsional modes of vibration due to the 
separation of mass centre and stiffness centre of the deck (Xu et al. 1997). The contributions 
from multi-modes of vibration and inter-modes of vibration to the total buffeting response of 
the bridge deck, therefore, may have to be included. To consider multi-mode buffeting 
responses of a bridge deck, Lin and Yang (1983) proposed a general linear theory for the 
computation of cross-spectra of the deck response to turbulent wind. Jain et a1.(1996) 
considered both multi-mode and inter-mode buffeting responses using a continuous beam 
model and a random vibration-based mode superposition approach. They demonstrated the 
significance of the inter-mode responses and multi-mode responses of bridge deck. 

For all the aforementioned research work, the interaction between bridge deck, towers and 
cables during wind-induced vibration are completely disregarded. The wind-induced dynamic 
responses of bridge deck, towers and cables are traditionally determined separately to simplify 
the problem. Recently, with respect to flutter instability of cable-stayed bridges, Ogawa et al. 
(1992) pointed out that the ignorance of interactions between bridge deck, towers and cables 
may positively or negatively affect the prediction of flutter instability. Davenport (1994) also 
mentioned several possible mechanisms of interactions between bridge deck and cables. 

With the rapid development of modern computer technology, it is now possible for the writers 
to propose a fully-coupled three-dimensional buffeting analysis of a long span bridge, including 
not only the dynamic coupling between modes of vibration but also the interaction between 
bridge deck and towers and cables. The formulation is featured mainly by a complete finite 
element approach and a pseudo-excitation method. Aeroelastic forces on the bridge deck are 
changed into nodal forces to form aeroelastic damping and stiffness matrices while 
aerodynamic forces on bridge deck, towers and cables are converted into nodal forces to 
obtain a loading vector. After the system equation of motion is assembled and the loading 
spectral density function matrix is constituted, the pseudo-excitation method in conjunction 
with the mode reduction technique are applied to determine the bridge buffeting response with 
reasonable computation effort. 
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The formulation derived for fully-coupled buffeting analysis is then applied to the Tsing Ma 
suspension bridge in Hong Kong. The features of the bridge, its natural frequencies and mode 
shapes from the finite element analysis, and its flutter derivatives and aerodynamic force 
coefficients from wind tunnel tests are presented. The buffeting response of bridge deck is 
computed and compared with that from Scanlan's method. After a satisfactory comparison, 
the effects from aeroelastic forces and multi-modes and inter-modes of vibration on deck 
response are examined. Finally, the fully-coupled buffeting of bridge deck, towers and main 
cables is investigated. 

AEROELASTIC STIFFNESS AND DAMPING MATRICES 

Aeroelastic or self-excited forces on a bridge deck come from the interaction between the 
wind flow and the motion of the deck (Scanlan and Gade, 1977; Scanlan and Jones, 1990; 
Jain, et al. 1996). They can be expressed as 

F ae - Saed +Daed  ( l )  

where 

ro ae f!t f!l Fae-  J Lae ; d -  ; d -  
LM ae 

(2) 

s ae _ 

CI,aKzP; ~ 

KZH * C l , d  6 -~ 

C2,dK2A * 

[ 
m 

d 

d 

, l 
CI'dK2p6 -[ d 

CI,aK2H: -~ d 

[ 
K 2 * C~,d A4 

d 

CI,dK2p3 

CI,aK2H~ 

C2,dK2A3 

(3) 

o ae 

1 Kps ,  1 Kp 2 B a CI,dKP~*-~ - C~,d -~ C~,d --~ 

1 1 B d 
CI,dKH; -~ ClaKH* ~ CldKH ~ 

, 1 ' V 

1 1 B d 
C2,~KA~- C2,aKA~ U C2, aKA~ 

_ 

(4) 

1 _ 1  2. ,~ ,~ are the self-excited in which C1, d - ~ p U 2 B d ,  and C2, a _pUZBd 'D  , L , andM a° drag, 

lift, and torsional moment, respectively, on the deck segment of unit length; P is the air 
density; U is the mean velocity of the incident wind at the deck segment; if the deck segment is 
located at height z above the ground level, the mean velocity U(z) at the segment is equal 
to U r ( z / z r )  p , in which U r is the mean velocity at the reference height zr and 13 is an 



364 Xu, Y.L. et al. 

exponent constant; x, y, and z are the system coordinates with the z-axis being the vertical axis 
starting from the ground level and the x-axis being the horizontal axis along the longitudinal 
axis of the bridge deck and the y-axis being determined according to the right-hand rule; Bd is 
the width of the bridge deck segment; K is equal to Bdc0/U (called the reduced frequency); 
Pl*,H~,and A~ 0=1-6) are the functions of 2rc/K (called the flutter derivatives ); p(t), h(t), and 

or(t) are the lateral, vertical, and angular dynamic displacements of the deck segment, 
respectively; and each over-dot denotes one partial differentiation with respect to time. 

Assume that the bridge deck is modelled by three-dimensional beam elements, and the relation 
between the internal displacements of the ith element and its nodal displacements can be 
expressed as 

e 
d i - B i d  i (5 )  

where the v e c t o r  d i is the 3xl internal displacement vector of the ith deck element, 

corresponding to the vector d, in the local coordinate system denoted by x, y, z; the vector d~ 

is the 12 x 1 local nodal displacement vector of the ith deck element; and the matrix B i is the 

3 x l 2 interpolation function matrix of the beam element. By using the principle of virtual work 
the aeroelastic stiffness and damping matrices of the ith element can be then, respectively, 
expressed as 

K : e  - IL B~TS~eBidx  (6) 
i 

ae IL T ae C i - B i D i B i d x  (7) 
i 

where the integrals are definite integrals over the element length. The system aeroelastic 
stiffness matrix K2 e and aeroelastic damping matrix C~ e can be then assembled from the 

element aeroelastic stiffness and damping matrices in the same way as the system structural 
stiffness matrix K~ and structural damping matrix C~ are assembled from the element 

structural stiffness and damping matrices. 

AERODYNAMIC FORCES DUE TO TURBULENCE 

By assuming no interaction between the aeroelastic and aerodynamic forces and by using 
quasi-steady aerodynamic force coefficients, the aerodynamic forces (buffeting forces) on the 
deck segment of unit length are expressed by Scanlan and his co-workers ( Scanlan and Jones 
1990; Jain et al. 1996; Simiu and Scanlan, 1996) as: 

b F~ - Adq (8) 

in which 
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t 
F~ -'~ LBd ; u }  b _ 

q -  ; A  d 
w 

(2CDd I Cl 'd U '  Cl 'd 

i + C ,d_ 1 Cl 'd  Cl 'd U 

C2'd U'  U 
_ 

(9) 

b b b where Dd, L~, and M d are the buffeting drag, lift, and moment, respectively, on the deck 

segment of unit length;CD,d, CL.d, and CM, ~ are the drag, lift, and moment coefficients, 
! ! t respectively; CD, d - dCD, d / dot; CL, d -- dCc, d / dot; CM, d -- dCM, d / dot; ot is the angle of attack 

of normal incident wind referring to the horizontal plane of the deck segment; and u(t) and 
w(t) are the horizontal and vertical components of fluctuating wind, respectively.The 
consistent buffeting forces at the nodal points of the ith deck element in the local co-ordinate 
system can be obtained by the following definite integral. 

pb f E B  r b i,d -- , i Ai ,aqi  d~  (10) 

If the length of the element is sufficiently small, the aerodynamic coefficients and their 
derivatives, the wind velocities for the element, and the width of the element can be regarded 
as constant along the element. Consequently, the buffeting forces at the nodal points of the ith 
deck element can be expressed as 

pi,ba -- E b i,dqi (11) 

The aerodynamic forces on a bridge tower caused by along-wind and cross-wind turbulence 
can be derived based on the quasi-steady assumption in a similar way to the aerodynamic 
forces on the bridge deck (Davenport,1962b; Solari, 1985). The bridge tower is usually 
modelled as a series of three-dimensional beam elements. The consistent buffeting forces at the 
nodal points of the ith element in the local co-ordinate system for the bridge tower can be 
obtained by the following definite integral. 

Pi'bt -- J'L BirAb i i't r i d x  (12) 

where {;t b r -  ; A  t 

Cl,t 2 ,t Cl,t  

C2t C2 ' U '  't U 

(13) 

in which D ~, Lbt, and M~ are the buffeting drag, lift, and moment, respectively, on the tower 

segment of unit height; CD,t, CL,t, and CM, t are the drag, lift, and moment coefficients referring 

to the width Bt of the tower segment; CD, t - dCD, t / d~; C[, t - dCc, t / d~; CM, t - dCM. t / d~ ; 

is the angle of attack of normal incident wind referring to the vertical plane of the tower 

segment; u(t) and v(t) are the horizontal and lateral components of fluctuating wind, 
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1 2 
respectively; and C1, t - pU2Bt, and C2, t - ~ - p U 2 B t  . If the length of the tower element is 

sufficiently small, the aerodynamic coefficients and their derivatives, the wind velocities for 
the element, and the width of the element can be regarded as constant along the element. 
Consequently, the buffeting forces at the nodal points of the ith tower element can be 
expressed as 

Pi ,bt b -- Ei,tr i (14) 

In the eigenvalue analysis of the bridge, the cable is usually modelled as a series of two-nodes 
cable elements. In accordance with this arrangement and the quasi-steady assumption, the 
consistent buffeting forces at the nodal points of the ith cable element in the local co-ordinate 
system for the bridge cable can be obtained by the following definite integral. 

pb _ [  T b 
i,c Bi, c A d~ i,cUi ,/L i 

in which B i,~ is the 2 x 6 interpolation function matrix for the cable element and 

(15) 

~1,c( 2CDc 

Ab _ U '  (16)  
c (2CL c 

1,c U '  

where D bc and Lbc are the buffeting drag and lift, respectively, on the bridge cable segment of 

unit height; CD, c and CL,c are the drag and lift coefficients referring to the dominant dimension 

B e of the cable segment, and if the cable has a circular section, the lift coefficient is regarded 

1 
as zero; and C1, ~ - ~-pU2Bc. Assuming that the structural properties and wind properties are 

constant with respect to the element, the buffeting forces at the nodal points of the ith cable 
element can be expressed as 

pibc - -  E b , i,cUi (17) 

LOADING SPECTRAL DENSITY FUNCTION MATRIX 

The nodal forces obtained by Eqs. 11, 14 and 17 are in the local coordinate systems. They 
should be converted to those in the global coordinate system through the coordinate 
transformation matrix Ti which is used in the eigenvalue analysis of the bridge. 

P~b~ -- T1Pib ~ (18) 

where Pl~e can be either the aerodynamic forces on the deck element P~b d or the aerodynamic 

forces on the tower element pibt or on the cable element Pl~c ; P~ is the nodal force vector of 

the ith element in the global coordinate system with the same dimension as the system nodal 
force vector; and T~ is the coordinate transformation matrix with the dimensions equal to the 
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dimension of the system nodal force vector times 12 for a beam element or 6 for a cable 
element. As a result, the global (system) aerodynamic force vector, including the bridge deck 
and towers and cables, can be obtained by 

pb __ ~ p l b ,  s _ ~'~ TiPib e _ T p g  
i i 

where 

(19) 

T - T ,"'Ti,'"Tnl (20) 

pgT {pb T b T b T b T} T 
-- 1,e ' P2,e ," 'P i ,e  , ""  Pne, (21) 

where the superscript T means the transposition of a matrix; n is the total number of the 
elements subject to wind loading Notice that the coordinate transformation matrix T is not a 
function of t Therefore, if assuming that the fluctuating wind components u (t), v(t),  and w(t) 
acting on the elements can be represented by stationary random process, the spectral density 
function matrix of the nodal buffeting forces acting on the whole bridge in the global 
coordinate system is thus 

sb ( ) pp O) --T 

e e e 
-S PlPl ((J0) S PIP2 ((.1)) S PlPn ((3)) 

S; po 

e e e 
Spnpl ((.1)) SpnP2 ((.1)) SpnPn ((1)) _ 

T T (22) 

The cross-s3ectral density function matrix of the nodal buffeting forces acting on the ith and 
jth elements can be expressed in a general form as 

) ( )E SPiP j Xi,Xj,Zi ,Zj .0)  -- Ei ( z i )S i  j Xi ,Xj ,Zi ,Zj , ( l )  E j ( z j ) ]  T (23) 

e( ) If both the ith and jth elements are deck elements, Spipj x i ,x j , z i , z j , ( . .0  is the 12x12 cross- 

spectral density function matrix; E k (z k ) - Ebd (Z k), k - i, j ; and 

rSuu xi,xj,zi Suw xi,x.zi,zj, ll 
wu Xi ,Xj ,Zi ,Zj , ( t )  Sww x i , x j , z i , z j , o )  

in which xi and zi, and xj and zj can be selected as the global coordinates of the midpoint of the 
ith and the jth bridge deck element, respectively. Similar explanation can be given to the two 
tower elements, the two cable elements, and the two elements of which one is a tower element 
and other is cable element or to the two elements of which one is a tower element and other is 
a deck element, and so on. The cross-spectral density functions of the wind components on the 
elements used by Scanlan (Simiu and Scanlan, 1996) are adopted in this study. 
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PSEUDO-EXCITATION METHOD 

The equation of motion of the whole bridge for the buffeting analysis can be expressed as 

r e ( t )  + CY(t)+ KY(t) - RP(t) (25) 

in which Y(t) is the total nodal displacement vector of N dimensions including the bridge deck, 
towers, cables, and other components; M is the NxN total mass matrix; C is the NxN total 
damping matrix which consists of both aeroelastic damping matrix C~ ° and structural damping 

matrix C~; K is the NxN total stiffness matrix containing the aeroelastic stiffness matrix K2 e 

and the structural stiffness matrix K~; P is the total loading vector of m dimensions (in 

general, m << N), and it is equal to pb ; R is the N x m matrix consisting of 0 and 1, which 

expands the m dimensional loading vector into the N dimensional loading vector. The Fourier 
transformation of Eq. 25 gives the frequency-domain transfer function between loading and 
displacement response as 

H(ico) - [-co 2M + icoC + K] -1 (26) 

in which the superscript -1 means the matrix inversion. The pseudo-excitation algorithm is 
suggested here to determine the spectral density function matrix for the buffeting response. 
This algorithm actually converts the random response calculation to the deterministic response 
calculation. The principle of the algorithm (Lin et al. 1994) and its application to wind-excited 
structures are introduced as follows: 

Notice that the spectral density function matrix Spp (c0)or S bpp (co) is a symmetric matrix. 

Therefore, this excitation spectral matrix can be decomposed as 

Spp (c0) - L'DL w (27) 

in which L = the lower triangular matrix ; D is the diagonal matrix. With the k-th column of 
L denoted as L k and the k-th diagonal element of D denoted as dkk , Spp(co)can be further 

expressed as 

m 

Spp (co) - ~Y'~ dkkLkLk v 
k = l  

Then, the pseudo excitations are constituted as follows: 

(28) 

fk -- Lk exp(ico t) ( k -  1,2,...,m) (29) 

For each pseudo-excitation vector, a pseudo displacement response vector, Yk(CO), can be 

determined by 

Yk - H(co)Rfk  (30) 



Fig. 1 Configuration of Tsing Ma Bridge 
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It can be readily proved that the spectral density function matrix of the displacement response 
of the bridge can be obtained by 

m 

Z d  " kkY~ Yk (31) 
k = l  

Much less computation effort is needed to calculate the response spectral density matrix by the 
pseudo-excitation method, in particular if the internal force response spectral density matrix is 
required. Further reduction of computation time can also be achieved if the buffeting response 
of a long span bridge is dominated by the first few modes of vibration. In this case, the 
equation of motion (Eq. 25) can be first reduced from N dimensions to r dimensions in terms 
of the mode shapes found in the eigenvalue analysis, where r is the number of modes of 
vibration interested. After that, the pseudo-excitation method is applied in the same way as the 
aforementioned. Different from the SRSS method, the pseudo-excitation method retains the 
cross-correlation terms between the first r normal modes. The modal coupling effects can be 
thus included. The standard deviations of the displacement, velocity, and acceleration of the 
node can be readily computed according to the random vibration theory after the auto spectral 
density functions for each node are determined. 

TSING MA LONG SUSPENSION BRIDGE 

Hong Kong's new airport and port development are located on Lantau Island. The key section 
of the transportation between the new facilities and the existing commercial centres of Hong 
Kong Island and Kowloon is the Lantau Fixed Crossing, in which the Tsing Ma long 
suspension bridge (Fig. 1) is the central structure carrying a dual three-lane highway on the 
upper level of the bridge deck and two railway tracks and two carriageways on the lower level 
within the deck (Beard and Young, 1995). 

The Tsing Ma Bridge, stretching from Tsing Yi Island to Ma Wan Island, has a main span of 
1,377 m between the Tsing Yi tower in the east and the Ma Wan tower in the west. The height 
of the towers is 206 m, measured from the base level to the tower saddle. The two main cables 
of 36 m apart in the north and south are accommodated by the four saddles located at the top 
of the tower legs in the main span. A three-dimensional dynamic finite element model has been 
established for the Tsing Ma Bridge (Xu, et al. 1997). The modal analysis of the Tsing Ma 
Bridge shows that the natural frequencies of the bridge are spaced very closely. The first 20 
natural frequencies include the first 12 lateral modes, the first 6 vertical modes, and the first 2 
torsional modes. They range from 0.068 Hz to 0.380 Hz only. The computed natural 
frequencies and mode shapes have been verified by the field measurements. Among the first 20 
natural frequencies, the lowest frequency of the bridge is 0.068 Hz, corresponding to the first 
lateral mode of a half wave with the bridge deck and cables moving in phase in the main span. 
The first vertical mode of the bridge is almost antisymmetric in the main span at a natural 
frequency of 0.117 Hz in one wave and the second vertical mode is almost symmetric in the 
main span at a natural frequency of 0.137 Hz in a half wave approximately. The first torsional 
vibrational mode occurs at a natural frequency of 0.271 Hz in a half wave in the main span. 
This mode is structurally coupled with the seventh lateral vibrational mode, i.e, the first 
torsional mode contains the lateral component which is similar to the seventh lateral mode and 
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in turn the seventh lateral mode contains the torsional component which is similar to the first 
torsional mode. The more information on the structural properties, the finite element 
modelling, the dynamic characteristics of the bridge can be found in Xu et al. (1997). 

AEROELASTIC AND AERODYNAMIC PARAMETERS 

The flutter derivatives of the bridge deck section were measured for a range of wind incidence 
for the deck alone and for an incidence of 0 ° for the deck with traffic and trains in a laminar 
flow (Coleman et al. 1994). Only those derivatives corresponding to the 0 ° wind incidence 

, 

without traffic and trains are considered in the present study. All H i (i-1,2,..,4) curves are 

basically negative within the reduced wind speed range concerned. Among the A i (i=1,2..,4) 

curves, the A 1 curve exhibits the positive values in the reduced velocity ranging from 6 and 

12, indicating the possibility of negative aerodynamic damping in the torsional motion. The 

positive A 3 and negative A 4 curves, on the other hand, indicate respectively that the 

aeroelastic forces from torsional motion may generate negative torsional stiffness, and that the 
aeroelastic forces from vertical motion may generate positive torsional stiffness. 

The aerodynamic force coefficients of the bridge deck with angle of wind incidence were also 
obtained from the wind tunnel tests. (Lau and Wong, 1997). The drag, lift, and moment 
coefficients are 0.13 5, 0.090 and 0.063, respectively, at the wind incidence of 0 ° with respect 
to the deck width of 41 m. The first derivatives of the drag, lift, and moment coefficients with 
respect to wind incidence ( in degree) at the wind incidence of 0 ° are -0.253, 1.324, and 
0.278, respectively. For the two bridge towers, the drag coefficient is taken as 1.5 with respect 
to the tower width of 9.25 m (Flint and Neill, 1991). For the main cables, force coefficients 
critically depend on the Reynold's number and cable surface roughness. Conservatively, the 
drag coefficient of 1.0 is chosen with reference to the cable diameter of 1.1 m. 

SOME SELECTED RESULTS 

Comparison of Deck Response 

The displacement and acceleration responses of the bridge deck along the span are computed 
using the new formulation and compared with those from Scanlan's method ( Jain et al. 1996). 
Only the bridge deck is subjected to buffeting loading and no buffeting loading is applied to 
the towers and cables. The first 20 modes of vibration are included in the computation. Each 
mode of vibration contains three components, but for most of vibrational modes only one 
component is dominant. The results from both methods encompass multi-modes and inter- 
modes contributions as well as aeroelastic effects. The results from the new formulation are 
very compatible with those from Scanlan's method, but the varying wind speed and turbulence 
considered in the new method have some effects on displacement responses around the 
midspan. The satisfactory comparison verifies the accuracy of the new formulation and the 
new computer program and also highlights the advantages of the proposed method. 

Aeroelastic Effects 
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It is a common belief that self-excited forces (aeroelastic forces) would affect buffeting 
response of long span bridges (Davenport, 1962a; Scanlan and Gade, 1977). To understand 
such effects on the Tsing Ma Bridge, the response spectra of the bridge deck with and without 
aeroelastic effects (i.e., with and without flutter derivatives) are computed using the new 
formulation. The results show that the aeroelastic damping considerably reduces the vertical 
response of the bridge deck. The aeroelastic coupling between the second vertical and the first 
torsional modes of vibration significantly affects the torsional vibration of the bridge deck. The 
multi-mode approach should be taken into consideration of determining buffeting response of 
the bridge, in particular, the acceleration response. 

Multi-Mode Effects 

The spectral analysis of the deck response has demonstrated that the vertical and torsional 
displacement responses may not be dominated by a single mode of vibration. To further 
discuss this matter, the lateral displacement response attributed to the first lateral mode only, 
the vertical displacement response due to the second vertical mode only, and the angular 
displacement response arising from the first torsional mode only are computed and compared 
with the same quantities from the first 20 modes of vibration. From the results obtained, it can 
be concluded that for the Tsing Ma Bridge, multi-mode effects are significant for the vertical 
and torsional displacement responses but not for the lateral displacement response. 

Inter-Mode Effects 

To investigate effects of inter-modes, a number of pairs of vibrational modes are selected from 
lateral, vertical, and torsional motions respectively as well as their combination. For each pair 
of vibrational modes, the deck response along the span from each single mode is computed 
first and then the deck response from the two modes are computed using both the SRSS 
method (the square root of the sum of the squares of the model response) and the CQC 
method (the Complete Quadratic Combination). The CQC method used here is actually the 
pseudo-excitation method as introduced before. By comparing the responses from both the 
methods, inter-mode effects can be estimated. The results obtained show that for the Tsing Ma 
Bridge, inter-mode effects are negligible for the two modes from either lateral motion or 
vertical motion or torsional motion but inter-mode effects are considerable for the structurally- 
coupled torsional and lateral modes and also for the aeroelastically-coupled vertical and 
torsional modes of similar mode shapes. 

Interaction between Bridge Components 

The buffeting forces on the towers and the cables are now included in the computation in 
addition to the aeroelastic forces and aerodynamic forces on the bridge deck. This result is 
denoted by the term "full bridge". The full bridge results are then compared with those from 
the forces on the bridge deck only, the bridge tower only, and the main cable only. In this way, 
the interaction between the bridge deck, towers, and main cables can be examined. From the 
results obtained, one can conclude that the lateral displacement response of the bridge deck 
should include interactive effects from the main cables and towers. The buffeting responses of 
both towers and main cables should include interactive effects from the bridge deck. 
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CONCLUSIONS 

A new formulation has been presented for fully-coupled three dimensional buffeting analysis of 
long span cable-supported bridges. The formulation is featured by a complete finite element 
approach and a pseudo-excitation method. The advantages of the suggested formulation are: 
(1) to readily handle the bridge deck with significantly varying structural properties and mean 
wind speed along the deck; (2) to make good use of the ready-made finite element models of 
the bridge for both static and eigenvalue analyses as well as the relevant results; (3) to 
naturally include inter-mode and multi-mode responses; (4) to determine wind-induced 
responses of the bridge deck, towers, and cables simultaneously; (5) to examine the dynamic 
interactions between bridge deck, bridge towers and cables; and (6) to lay down a solid 
foundation for investigation of vibration mitigation or control of cable-supported bridges. 

The proposed formulation has been applied to the Tsing Ma suspension Bridge in Hong Kong. 
The buffeting response of the bridge deck from the new formulation is in good agreement with 
that computed using the latest Scanlan's method which includes multi and inter-mode effects. 
The aeroelastic damping was found to reduce the vertical response of the bridge deck, but the 
aeroelastic effects on the torsional vibration of the Tsing Ma Bridge are significant. The multi- 
mode effects are considerable on the vertical motion and torsional motion but not on the 
lateral motion of the bridge deck. Inter-mode effects can be neglected for the two modes in 
either lateral motion or vertical motion or torsional motion but inter-mode effects should be 
considered for the aeroelastically-coupled vertical and torsional modes of similar mode shapes. 
Finally, the buffeting of bridge deck considerably impacts the buffeting of towers and main 
cables whereas the buffeting of towers and main cables only moderately affects the lateral 
vibration of bridge deck. 
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ODE-ORIENTED SEMI-ANALYTICAL METHODS 

Si Yuan 
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ABSTRACT 

With the rapid advances of modern computational technology, a number of high-quality, 
general-purpose ordinary differential equation (ODE) solvers have emerged. As a result, a 
new class of ODE-oriented semi-analytical methods have been developed rapidly. The present 
paper reviews several classical ODE-oriented methods such as the Kantorovich method and the 
method of lines (MOL), and presents a series of new methods that are developed or developing 
by the research group in Tsinghua University in recent years. The potential superiority of 
ODE-oriented methods is emphasized and discussed. 

KEYWORDS 

ODE, solver, adaptivity, semi-analytical, Kantorovich method, method of lines, finite element 
method of lines, extended Kantorovich method 

INTRODUCTION 

Many engineering problems are originally cast into partial differential equations (PDEs), the 
solution of which, if no discretization is made, calls for analytical methods. However, the 
common strategy in most existing numerical methods is to convert a PDE problem, by various 
means such as finite element (FE), finite difference (FD), finite strip, weighted residual, 
boundary element, etc. into a set of algebraic equations (AE). These fully discretized methods 
can be termed as AE-oriented methods. The dominance of AE-oriented methods is a natural 
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result of the appearance of the computer that makes solution of algebraic equations much easier 
than before. 

However, between the analytical approach to continuous PDE problems and the fully 
discretized approach to AE problems, there exists an intermediate semi-analytical approach 
which solves ordinary differential equations (ODEs) to approximate the original PDE problems. 
This class of methods might as well be termed as ODE-oriented methods. Due to the 
limitation of solution means for ODE problems, this class of methods did not gain their due 
development. 

With the rapid advances of modern computational technology, a number of high-quality, 
general-purpose ODE solvers have emerged. Taking advantage of these ODE solvers, ODE- 
oriented methods come alive and have gained substantial development rapidly. Similar to 
AE-oriented methods, the strategy in ODE-oriented methods is that the original PDEs in 
engineering problems are semi-discretized, by various means such as FD, FE, etc. into ODE 
problems which are then efficiently and accurately solved by using a standard ODE solver. 
Owing to the self-adaptive capability built in the modern ODE solver, the accuracy of the ODE 
solution satisfies the user-specified error tolerances, which ensures the semi-analytical property 
inherent in this class of methods. The purpose of this paper is to give a state-of-the-art review 
of both developed and developing ODE-oriented methods. 

ODE SOLVERS 

ODE-oriented methods depend heavily on ODE solvers for boundary value problems (BVP). 
Without ODE solvers, there will be no ODE-oriented methods. As early as in 1976, Keller 
predicted in his significant monograph: "Indeed, the signs are rather clear that over the next five 
to ten years (or less), standard computer codes will be available to 'solve' most such problems". 
This turned out to be very true, and the following ten years saw ODE codes for B VP become 
fruitful. 

Among many existing ODE codes for BVP, we have chosen the collocation code COLSYS 
(Ascher, Christiansen & Russell (1981)) to serve us as the ODE solver. COLSYS solves 
mixed order, linear and nonlinear ODE systems by spline collocation at Gaussian points. In 
COLSYS, approximate solutions are computed on a sequence of automatically selected meshes 
until a user-specified set of tolerances is satisfied. For nonlinear problems, the damped and 
modified Newton methods are used for nonlinear iteration. The code was written using 
FORTRAN with about 3000 statements and is freely downloadable from TOMS web site. 
There are several reasons for us to make our choice, e.g. see Yuan (1993). 
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ODE-SOLVER METHOD 

Most ODE codes, although very powerful, are designed for certain standard forms of ODE 
problems which can hardly cover the variety of special forms in practical applications, and 
hence their direct applications are, to various degree, limited. However, there exist some 
feasible ODE conversion techniques to transform "special" forms into "standard" forms 
(Ascher & Russell (1981)). Using these ODE techniques, a large number of ODE problems of 
special forms can be transformed into "standard forms", and hence standard ODE solvers can 
be used for direct and efficient solution. Among the existing techniques, the following three 
appear to be most basic and useful (Yuan (1991)). 

l) Trivial ODE. For problems containing certain unknown constants, say a (e.g. an 
eigenvalue, an interface point, a Lagrange multiplier, etc.), we can establish a trivial ODE 
a '  = 0 for the unknown constant. This guarantees a to be a constant while incorporating 
the unknown a into the ODE system for a solution. 

2) Interval Mapping. This technique maps special intervals (e.g. irregular intervals, intervals 
with moving end-points, infinite intervals, etc.) to a standard and definite interval. For 
instance, r/= ( x -  a) / ( ~ - a )  maps the moving interval [a,~ with ~ unknown in advance to 

a unit interval [0,1], making the definition interval of the problem definite. 

3) Equivalent ODE. This technique is used to transform an integral such as 

f F{t; {y{t)})dt (1) 

to the following equivalent ODE problem 

R'(x) = F(x; {y(x)}) a < x < b 

R(a)=O, R(b)-~" (2) 

This technique can be used for normalization of eigenfunctions in eigenvalue problems. 

Equipped with these ODE techniques, a much larger range of practical problems can be solved 
by using standard ODE solvers. This has naturally produced a new computational tool, the 
ODE-solver method. This method turns out to be a convenient, powerful and efficient 
method for most one-dimensional problems. There have been many serious applications of" the 
ODE-solver-method, e.g. see Yuan (1993). 

METHOD OF LINES (MOL) 

This is a classical ODE-oriented method. The basic idea of the method is to semi-discretize a 
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PDE into a system of ODEs defined on discrete mesh lines by means of replacement of 

derivatives with respect to all but one independent variables with finite differences (FD). For 

example, consider the Poisson equation (elastic torsion problem) on a rectangular domain: 

(~2 u 02U 

- - +  - -  = - 2  ( 3 )  0x ~ 0y 2 

Replacing the derivative 0 2 u / 3 x  2 by three-point central difference (with O(h 2) accuracy) leads 

to a set of ODEs defined on discrete lines of x = x; as follows 

,, u~+ 1 - 2u; + ui_ ~ 
ui : -  h2 - 2  i : 0 ,1  ..... N (4) 

where u, = u i ( y  ) = u (x~ ,y ) .  Introducing proper boundary conditions (BC) the ODE system is 

well-established and solvable. MOL is very simple, but there are two major difficulties that 

prevent it from being well-developed: one is how to solve the derived ODE systems which can 

easily be overcome by using an ODE solver, and the other one is that the method with usual FD 

strategy can only be applied to problems defined on regular domains. To overcome the 

second difficulty, the parametric FD strategy is proposed by Yuan (1993), which will be briefly 

discussed in next section. 

P A R A M E T R I C  FINITE D I F F E R E N C E  M E T H O D  OF LINES 

By using parametric mesh line mapping, the classical method of lines can be extended to solve 

problems defined on irregular domains (Yuan (1993)). Figure 1 shows an irregular domain 

partitioned by vertical mesh lines of different lengths, each of which is mapped, by introducing 
a local parametric coordinate t, to a standard interval t e [-1, 1]. Then a three-point central 

difference formula of second-order accuracy O(h 2) can be constructed, e.g. 

x, - _ ' b + u ' kb  k 
02lg U j  - -  2ui + u k U yj j y 
( ~ 2  h 2 h 2 

+ (2b~- b~)(bj +b~)~;j + 2(b~ -b  A + b~)u;'; +(2b~ - bj)(bj +b~)~;; + O(h~) 
6h 2 

(5) 

t where uy, = d u , / d y ,  bj - y j - Y i  and b k = Yk -Yi.  It can be seen that when all lines are the 

same length, i.e. bj = b k = 0, the above formula degenerates to the regular one used in Eqn. (4). 
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Yi2 

Y Y;l 

Figure 1 Parametric line mapping 

Parametric finite difference formulae approximating upto fourth order derivatives on irregular 

mesh lines have been successfully constructed and allow a wide range of engineering problems 

to be solved in a semi-analytical fashion by directly discretizing a PDE into ODEs. 

KANTOROVICH METHOD 

Another class of ODE-oriented methods derives ODE systems by using variational principles or 
energy theorems. The most well-known classical method of this category is the Kantorovich 
method, in which a typical two-dimensional trial function is assumed to be of the form 

u(x,y)- ~ X,(x)Y(y) (6) 
i=1 

where the variation in x direction X,(x) is a priori specified (e.g. series of polynomials, 
trigonometric functions, etc.) whereas the variation in y direction Y,.(y) is left completely 

unknown and is to be determined by solving ODEs derived from certain variational principles. 
The classical Kantorovich method is superior to its fully-discrete counterpart, the Ritz method, 
in terms of accuracy. For many years, however, solving ODE systems had been a prohibitive 
difficulty and the method stopped further development. Nowadays, the situation has 
tremendously been changed as a number of ODE solvers appeared. Equipped with modern 
ODE solvers, not only can the Kantorovich method continue its due development but also a 
series of new ODE-oriented methods are emerging. Among those newly-developed ODE- 
oriented-methods, the finite element method of lines turns out to be the most well-established 
and developed one. 

FINITE ELEMENT METHOD OF LINES (FEMOL) 

The finite element method of lines (FEMOL) (Yuan, (1990, 1992, 1993)) was formally 
established at Tsinghua University in 1989 under the support of the National Natural Science 
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Foundation of China. In this method, a PDE problem defined on an arbitrary domain is semi- 
discretized, by FE techniques via variational principles, into a system of ODEs defined on 
discrete mesh lines (straight or curved), and then the resulting ODE system is solved directly by 
using a standard state-of-the-art ODE solver, such as COLSYS. 

Using finite elements in semi-discretization allows this method to be almost as flexible and 
convenient as finite element methods and the use of robust ODE solvers makes the solution of 
the resulting ODE systems highly reliable, accurate and efficient. As a result of the 
combination of the FE technique and ODE solvers, the semi-analytical characteristic inherent in 
this method is well-preserved without introducing additional analytical work. 

For the last several years, FEMOL has experienced both intensive and extensive study in the 
author's research group and gained remarkable advances in various directions and areas. The 
method tends to be mature in linear elastic fields and has shown potential power for nonlinear 
problems. "The Finite Element Method of Lines" (Yuan (1993)) is the first monograph about 
this method, which summarizes most important work in this method. Since this method is the 
most well-established and developed one in the ODE-oriented methods, we shall give a more 
extended description of the method in the following part of this section. 

Standard FEMOL Elements with 

Curved Lines and End-sides 

For general C o problems, FEMOL 
elements with curved nodal lines and 
end-sides can easily be established. 
Figure 2 shows a typical quadratic 
FEMOL element mapping. In 
general, an element mapping of 
degree p is 

22 32 

.~ \L2 ~ L3 

11 21 

q 12 

l i  $2 

-1- 11 

-1 

22 32 

21 31 
i I 
0 1 

Figure 2: Typical quadratic FEMOL 
element mapping 

p+ I p+ I 

x = '~--]N,(~:)x;(r/), y -  ~N,(~y;(r / )  (7) 
i=1 i=l 

where N, 's are Lagrange shape functions. The element nodal line displacement vector {d} e 

is let~ to be unknown, and the displacement vector {u} on the element can be expressed by 

shape function interpolation to nodal line displacements, i.e. 

{u} -[N(~)]{d(r/)} e = [N]{d}" (8) 
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where [N] is element shape function matrix, {d} e is element nodal line displacement vector 

that contains different degrees of freedom for different problems under consideration. From 
the minimum potential energy principle or virtual work theorem, the following set of second 
order ODEs can be derived 

[A]{d"} + [G]{d'} + [HI{d} + {F}- {0} - 1 < r / <  1 ( 9 a )  

with three standard types of BCs 

1) Fixed end-node DOF. d m - d m  

2) Loaded end-node DOF : Qjm - ~7jPj.~ 

3) Interface end-node DOF : d m = d,, 

(9b) 

where {d} is global nodal line displacement vector, d,, is the m-th component in {d l,  ( )' 

represents d( ) / d o .  Eqns. (9a) and (9b) form a standard two-point BVP in ODEs and can 

be solved directly by a standard ODE solver. 

Error  Es t imates  

As a semi-analytical method, FEMOL is most suitable for problems that, in the two-dimensional 
case, exhibit "wild" behavior in one direction (mesh-line direction) while being rather "mild" in 
the other. This is justified theoretically by an error analysis made by Pang (1993). An 
important conclusion in this error estimate is that, for standard line meshes, the errors in 
FEMOL solutions are independent of the true solution variations in the mesh-line direction. 

"Triangular" Elements Degenera te  L ines  a n d  End-s ides  

The reasonable and efficient application of FEMOL requires flexibility and arbitrariness in mesh 
design, which can be greatly facilitated if element end-sides and nodal lines are allowed to 
degenerate to points. Through careful study of the FEMOL formulation, it was found that the 
artificial singularity at degenerated points could be completely removed without losing accuracy 
and compatibility to regular elements. The detailed formulation is given in Yuan (1993). 
The success of degenerate elements equips FEMOL with a class of"triangular" elements that 
greatly enhance the flexibility and versatility of the method. 

Other  Spec ia l  E l e m e n t s  

There are a number of other special elements available 
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• Three-dimensional solid FEMOL element with curved lines and end-sides. 

• Thin plate bending rectangular element of C 1-type. This element only requires two 

DOF (deflection and normal rotation) on each nodal line and is found to be highly accurate. 

Arbitrary shaped plate bending elements of C 1-type are not available now to the author's best 

knowledge. 

• Singular element for singularity problems. This element can be used for crack/notch 

problems in fracture mechanics. Mesh lines are given radial direction and mesh-line mapping 

is given the following singularity mapping • 77 : -1 + 2(r / L) ~ , which converts a polynomial of 

r ~ to a polynomial of the local independent variable q and hence makes the solution very easy. 

This type of element is applicable to V-notches with any opening angles and hence is more 

general and accurate than the quarter-node technique frequently used in the finite element 

method. 

• Infinite element for infinite domain problems. The idea is to introduce infinite line 

mapping, which, on the one hand, maps an infinite line onto a standard interval [-1, 1] and, on 

the other hand, converts a polynomial of 1/(r +a) to a polynomial of the local independent 

variable 77 and hence makes the solution very easy. Unlike infinite elements in FE methods, 

the position of the interior node on an infinite line only modestly affects the computation time 

but not the final results since the ODE solver adaptively solves the solutions along the mapped 

infinite lines. 

Software Package FML98 

A general-purpose software package was developed as early as in 1992 and its newest version, 

FML98 for Windows (3.x, 95/NT), can solve a wide range of engineering problems of linear 

elasticity and free vibration, including infinite domain and singularity problems. The core 

computation module is written with Fortran 90 and is highly dynamic, encapsulated and 

modularized. A user-friendly interface written with MS Visual Basic provides an integrated 

environment for all preprocessing, solving and post-processing phases. The problems the 

package FML98 can solve are listed in Table 1. 

Many practical applications have shown that FML 98 is a convenient and powerful software 

and is especially good for certain tough problems such as stress concentration, stress singularity, 

almost incompressible material, narrow and long domain problem, infinite domain problem, etc. 
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1 
I 

2 

3 

4 

5 

6 

7 

8 

10 

TABLE 1 
PROBLEMS COVERED 1N FML 98 FOR WINDOWS 

Problem type Rectangular Polar 
coordinates coordinates Displacement DOF 

Poisson's equation (x,y) (r, 0) u 

Plane stress (x, y) (r, 0) u, v 

Plane strain (x, y) (r, 0) u, v 

Axisymmetric stress (r,z) ( R, ~b) w, u 

Mindlin plate bending (x, y) ( r,  0 )  w,  ~bCx, [//y 

Mindlin shallow shell (x,y) (r, O) u, v, w, v/x, ~,y 

3D elasticity (x ,y ,z)  (r,O,z) u, v, w 

3D Poisson's equation (x, y,z) (r, O,z) u 

Thin shells of revolution 
(mixed method) 

Thick shells of revolution 
(mixed method) 

11 Thick shells of revolution 
(displacement method) 

12 Elasticity solid of 
revolution 

13 Poisson's equation in 3D 
domains of revolution 

(r,O,z) 

(r,O,z) 

(r,O,z) 

(r,O,z) 

(r,O,z) 

u, v, w, v/o , V/o, 

No,No,Qo,M¢,Mo 

u , v , w ,  ~¢ ,  ~'o, 

No,No,Qo,M~,Mo 

u,v,w, gt¢, ~'o 

H, V, W 

E X T E N D E D  K A N T O R O V I C H  M E T H O D  

All the methods discussed so far are characterized by solving ODEs in one coordinate direction 

and the other direction is left to be discretized by various means. This semi-analytical property 

is both good and bad. The good side is that at least it eliminates our concern in one direction 

(better than none), and the bad side is that the other directions still depends on us. Since the 

variation of a trial function is lei~ completely unknown only in one direction (the analytical 

direction) and is a priori specified in other directions (specified direction), the quality of the 

solution in terms of accuracy and reliability is higher in one direction than in others. 

This situation, however, can be tremendously changed by assuming a trial function that is 

completely unknown in both directions. Then the solution can be sought in a natural and 

efficient iterative manner. Since the final solution obtained from this approach is analytical in 

two directions (not in all directions!), we term it a bi-analytical method. 
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The extended Kantorovich method is a typical bi-analytical method. This method was 
originally proposed by Kerr (1968, 1969) and has experienced substantial development recently 
due to the introduction of ODE solvers. In this method, an n term trial function for a 2D 
problem is assumed to be of the following form 

u(x, y ) :  Z,"-_~ X;(x)Y~(y): {X(x)} T {Y(y)} (10) 

Compared with the classical Kantorovich method, none of the two sets {X(x)} and {Y(y)} is a 

priori specified, i.e. the trial function in Eqn. (10) represents a broader class of functions by 

removing all assumptions on both sets, and hence considerably improves the solution accuracy 

with the same number of terms. Applying the trial function in a variational process, we can 

derive two coupled sets of ODEs of the following form 

(11) 

Taking the first equation as an example, [L~({X})] is a differential operator matrix, {F~({X})} 

is a load vector, in which each coefficient is of the form of an energy integral of {X}. The 

solution procedure is as follows: first a usual Kantorovich method is applied with {X} being 

given, and solving the first set of equations in Eqn. (11) gives {Y} ; then the obtained {Y} is 

used to establish the second set of equations in Eqn. (11), the solution of which provides an 

improved solution {X} ; these iterative steps are repeated until satisfactory results are obtained. 

Due to the difficulty of the solution of ODE systems, this method did not achieve its due 

development. Recently, Yuan et al. (1992, 1998) first introduced the use of multi-term trial 

functions with the aid of ODE solvers and have also extended the applications of this method 

to a variety of problems. Theoretical study and practical applications have clearly shown the 

following advantages of the method. 

1) Bi-analytical: The two dimensions are equally treated and the solution in both directions 

are optimally obtained by solving ODEs, and hence the accuracy is equally good in both 

directions. 

2) Fast convergence: The iteration procedure converges very fast, and usually two to three 

iterations are sufficient. 
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3) Arbitrary initial choice: The convergence is independent of the initial function choice 

and it is not necessary for the initial trial functions to satisfy any boundary conditions. 

4) High accuracy: Highly accurate results can be obtained by using very few terms of the 

trial functions. In most cases, however, three terms are sufficient to produce nearly 

exact solutions. 

5) Multi-term necessary: In certain cases, a single-term trial function is not adequate 

although in many cases one term is sufficient. 

6) Solver essential: The use of ODE solvers plays an essential role in the new 

implementation of the method, especially in the cases of multi-term functions. 

OPTIMIZATION OF SHAPE FUNCTIONS 

The above discussed bi-analytical idea can easily be extended to the existing semi-analytical 

method FEMOL. A typical FEMOL element trial function of degree p is usually assumed, in 

the local coordinate system, to be of the following form: 

p+l 

u(~,q)- ~N,(~)d,(q)= [N(~)]{d(rl)}" (121 
i=1 

where [N(~:)] is the shape function matrix which is a priori assumed and {d(r/)} e is the nodal 

line displacement vector which is to be solved from the FEMOL ODE system. The similarity of 

the two trial functions given in Eqn. (10) and (12) leads to a similar approach based on the same 

bi-analytical idea: after a standard FEMOL solution with nodal line displacement functions is 

obtained, the roles of the shape functions and nodal line displacement functions are exchanged, 

i.e. {d(r/)}" is now given and known whereas [N(~:)] is in turn considered to be unknown and 

to be computed by another variational process. In this way, we obtain the first optimization of 

the shape functions for the particular problem under consideration and if needed, the above 

iterative procedure can be repeated as in the extended Kantorovich method. 

In fact, if only one element is used for a problem, then this approach is the same as the extended 

Kantorovich method except for a domain mapping. If more elements are used, however, the 

FEMOL-based approach gains several additional advantages: 

1) Flexibility: Problems defined on irregular domains can easily be tackled. 
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2) Sparse system: The ODEs for [N(~)] are not coupled and only linked by BCs. 

3) Numerical stability: The decoupled systems of ODEs tremendously enhance the 

numerical procedure. 

Although this is a developing method that is currently undergoing intensive study, the potential 

advantages of this approach over the extended Kantorovich method are promising. 

FINITE ELEMENT METHOD OF NETWORK LINES 

FEMOL has turned out to be a general and versatile semi-analytical method. In FEMOL, 

element edges are distinguished by nodal lines and end-sides. The nodal lines can exactly 

model arbitrary domain boundary shape and the nodal line displacement function is solved from 

ODEs. In contrast, the element end-sides can, in general, only model boundary shape 

approximately and the displacement is obtained by interpolation to the nodal line values. Even 

with the shape function optimization presented in the previous section, the rough modeling on 

end-sides remains unchanged. To overcome this drawback in FEMOL, we proposed the so- 

called Finite Element Method of Network Lines (Yuan & Jin (1996)). In this method, we no 

longer distinguish lines and sides, i.e. all edges are lines and the displacements on the four edges 

(lines) of an element are all computed by solving ODEs. Taking a linear element as the 

example, the element trial function is of the following form which is basically Coon's surface 

interpolation (also called blending function interpolation): 

2 2 2 2 

u(~, rl) = ~ Ni(~)di(~7)+ ~ Nj(tl)di(~)- ~ ~ Ni(~)Nj(~7)d o. 
i=1 j= l  1=1 j= i  

(13) 

where Ni(~: ) and Nj(rl) are assumed shape functions, d,(q) and dj(~) are displacements on 

lines and dv is the corner displacement. In implementation, d,(r/) and dj(~) are solved in an 

iterative manner (usually two steps) similar to the previously discussed method. Practical 

computation also shows that the iteration converges very fast, usually two to three steps are 

sufficient. 

This method is a major improvement over FEMOL in that it greatly increases solution accuracy 

by equalizing two dimensions without increasing problem sizes. 
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HILBERT CONJECTURES 

The common strategy in ODE-oriented methods is to approximate "PDE" by using "ODEs". 

Essentially, using "ODEs" to approximate "PDE" is of the same nature as using "single variable 

functions" to approximate "multiple variable functions". Although very little can be found 

about this topic in the literature, one of the twenty-three conjectures proposed by the great 

mathematician Hilbert is very encouraging. 

The Hilbert thirteenth conjecture states roughly as follows: an arbitrary function of multiple 

variables on a regular domain can be represented in terms of finite number of functions of single 

variables. Later, Kolmogorov proved that for an arbitrary function of two variables f(x,y),  

there exist five pair of functions of single variables hi(x) and gi(Y) such that 

5 

f (x ,y)  = ~F~(h,(x)+ g,(y)) (14) 
i=I 

However, Kolmogorov only proved the existence but did not provide the construction method. 

Suppose the Hilbert conjecture holds true. Then this implies that instead of solving a PDE 

problem directly, one can equivalently solve a set of finite number of ODEs. In other words, a 

PDE can be converted into a system of ODEs in which the number of the unknown components 

is finite. Then, an ODE-oriented method can, if appropriately configured, serve as an exact 

method for a PDE problem. This is especially attractive nowadays when a number of 

powerful ODE solvers are available. 

Perhaps this is only a dream. 

want to wake up and lose it. 

But it is a nice dream. It is such a nice dream that we do not 

We wish one day this dream would come true. 
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