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CHAPTER

16

NOISE

16.1 NOISE FIGURE AND NOISE TEMPERATURE

The noise factor is a measure of the signal to noise degradation caused by a circuit.  Often one is
interested in increasing the power associated with a desired signal and uses a circuit with gain to achieve
this.  The input noise is also amplified.  Unfortunately, for any real circuit additional noise is added which
results in a reduction in the signal to noise ratio at the output.  The noise factor is defined such that an ideal
noiseless system would have a noise factor of 1 (input SNR = output SNR).  To further motivate the
definition consider the illustration in Figure 16.1 below:
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iN  = input noise power, oN  = output noise power

Figure 16.1 Input and output signal to noise ratio (SNR) of a
two-port circuit.
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The system designer is interested the degradation in signal to noise ratio caused by his circuit.  The
input/output SNR performance ratio, designed as γ is
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Noise is particularly important when very small signals are being amplified prior to some form of
processing.  In this case, one is interested in getting the maximum signal to noise ratio out of the device.
Changing the output impedance will have the same effect on signal as the noise and therefore, the output is
normally conjugately matched so that the maximum signal is delivered to the load.  An input matching (or
mismatching) network does not affect the input signal to noise ratio, but it can affect how much and where
the internal noise sources deliver their power.  For this reason the relevant amplifier gain is the available
gain, AG .  Mismatching the input affects the gain, but the effect is the same for both the incoming signal
and noise.  However, the input mismatch can affect internal sources (of noise) and influence how much of
their available power is delivered to the load.  By choosing the input matching network appropriately the
effectiveness of the internal noise sources to deliver power to the load can be minimized.

The output signal power is related to the input signal power by the gain, i.e.,

iAo SGS ⋅= (16.3)

and the performance ratio becomes,
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The noise contribution added by the amplifier can be represented by and equivalent noise source, N∆ ,
added to the input.  The output noise is then )( NNGN iAo ∆+⋅=  as illustrated by Figure 16.2 below.
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Figure 16.2 Contribution of the equivalent noise source N∆  of the
amplifier.

The SNR performance ratio becomes
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To evaluate the performance ratio one needs to know the equivalent input noise contributed by the
circuit.  A standard for measuring N∆ , called the noise factor, is defined using performance ratio, γ, when
the input noise, iN , is that of a matched resistor at room temperature, i.e. KTr °= 290 , i.e.  The noise
factor is
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where BKTN rr = .  The noise figure is the logarithmic, i.e. dB, representation of the noise factor, or

)log(10 FFdB ⋅= (16.7)

When the noise factor is known, the equivalent input added noise contribution of the circuit, N∆ ,
can be found from

BKTFNFN rr )1()1( −=−=∆ (16.8)

Another way of representing the equivalent added input noise contribution is to define N∆  in terms of the
equivalent temperature that a matched resistor requires to generate it.  Then

BKTN ckt=∆ (16.9)

where cktT  is called the noise temperature of the circuit and is a measure of the noise that the circuit its self
adds.  Equating the last two equations yields,

)1( −= FTT rckt (16.10)

A noise factor of 1 means that the circuit noise temperature is zero or that it contributes no additional noise
of its own.  A noise factor of 2 (or a noise figure of 3 dB) means that the circuit noise temperature is rT , or
290°K, and the circuit itself is contributing added noise equivalent to a room temperature matched resistor
added at the input.

Cascading amplifier is normally required and can be easily examined by whenever inter-stage
matching networks exist to insure a conjugate match between gain block or that the gain blocks have
previously been matched to 50 ohms.  In either case the equivalent input noise eqN∆  can be found by
examining the following diagram.
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Figure 16.3 Contribution of the equivalent noise sources 1N∆  and 2N∆  of cascaded
amplifiers.
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From the above equation, it is observed that the cascaded circuits can be represented as a single circuit with
gain 21GG  and equivalent noise source eqN∆  as shown below.
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eqN∆

21GG ( )eqio NNGGN ∆+= 21

Figure 16.4 Equivalent noise source eqN∆  of the cascaded amplifiers and its
contribution.

Therefore, the equivalent added input noise for the cascaded pair, eqN∆ , is
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∆+∆=∆ (16.12)

This equation illustrates how important it is for the first stage of cascaded amplifies to be a low noise
circuit.  The gain of the first stage effectively reduces the contribution from the following stage.  Rewriting
the above in terms of noise temperature yields
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This expression can be converted easily to noise factor by substituting ( )1−= eqreq FTT , ( )111 −= FTT r ,

and ( )122 −= FTT r , to get
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16.2 RANDOM VARIABLES AND STOCHASTIC PROSSES

The usual variables encountered in calculus are called deterministic meaning that for a physically
well posed problems that a unique number can be assigned to the variable.  If the problem is repeated, the
exact same value for the variable will be the result.  On the other hand, random variable is one in which a
unique value is not assignable in general.  Multiple executions of the same problem can result in different
value assignments for each of the random variables.  A random variable can be thought of has a hat full of
paper tags with numbers on them.  Each time a number is to be assigned to the random variable, a tag is
withdrawn and its number assigned to the variable.  Thus, the composition of the tags determines whether a
certain value will be favored over others.  A random variable x  represents the collection of possible values
that it can take on.
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If one value appears on more tags, then it has a greater likelihood of being drawn.  Or,
equivalently, if the problem is performed many times then that value will occur more often.  The weighting
associated with a particular value for a random variable, x , is represented by a probability density function,

( )xp .  This function describes the relative likelihood that the assigned value for x  will be between x  and
dxx + .  The integral of ( )xp  between two limits a  and b  is a measures of the fraction of experiments

resulting in assigned values between a  and b .  Consequently, the probability density function is always

normalize such that ( ) 1=∫+ ∞
∞− dxxp , i.e., a hundred percent of the values occur between − ∞  and + ∞ .  The

random variable can be pictured assuming values along a vertical number line according to an associated
probability density functions drawn along side.

The mean value of a random variable is designated µ  (or xµ  when it is necessary to distinguish
between different random variables).  It represents the average value of the values that would be assigned to
the random variable.  It depends, of course, on the specific random variable and its particular probability
density  function, ( )xp .  The mean value is given by the first moment integral

( )dxxpx∫+ ∞
∞−=µ (16.15)

This first moment, or average, is also called the expected value and represented by a bracket symbol as
shown

x=µ (16.16)

Instantaneous voltage or current samples of noise can naturally be thought of as a random variable.
One sample may result in a positive value while the next may be negative.  However, we expect the average
value of the noise to be zero since otherwise we could tap the noise as an energy source and produce work
which would be a violation of the laws of thermodynamics.  Hence, attention will be directed to random
variables with a zero mean and such will be assumed unless otherwise stated.

The power associated with a noise voltage (or current) is represented by the average of square of
the voltage (current) samples.  The power is therefore represented by the second moment integral called the
variance, ( )xVar , that equals

( )∫+ ∞
∞−= dxxpxx 2)Var( (16.17)

The standard deviation, σ  (or xσ ) is the square root of the variance, i.e., σ  is the rms noise voltage or
rms noise current.

For reasons which will be shortly motivated, a common random variable is one whose probability
density function is normally distributed (a gaussian function), i.e.,

( )( )2
2

2 /exp
2
1

)( σµ
σπ

−−= xxp (16.18)

where µ  is the mean and σ  is the standard deviation.  For a zero mean gaussian function distributed
random variable, the density function is given by
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The combination of two or more random variables are possible but their possible values depend upon a joint
probability density function, ( )yxp , .  This function describes the relative likelihood of getting a value from
the first random variable between x  and dxx +  and a value for the second between y  and dyy + .  If the
two random variables are independent, in that the outcome for one variable does not depend on the outcome
of the other, then the joint probability density function can be expressed in the form as the multiple of the
individual probability density function as below.

( ) ( ) ( )ypxpyxp yx ⋅=, (16.20)

This means that the probability density function of the ordered pair of random variables ( )yx,  is ( )yxp , .

New random variable can be created from existing random variables using algebraic
manipulations.  For example, random variables x  and y  can be added to form a new random variable z .
The probability density function for z , such that yxz += , depends upon the joint probability density
function ( )yxp , .  If x  and y  are independent, the probability density function for z  is given by

( ) ( ) ( ) ( ) ( )dyyzpypdxxzpxpzp xyyxz −=−= ∫∫ + ∞
∞−

+ ∞
∞− (16.21)

The probability density function for a sum of two independent random variables is the convolution of the
two probability density functions.

The central limit theorem says that if a random variable consists of a sum of independent random
variable components, then the probability density function for the sum approaches a gaussian function as
the number of components increases.  The convergence to a guassian like distribution is quite fast as can be
illustrated in Figure 16.5 by choosing two clearly non-gaussian distributions and computing the convolution
to determine the probability density function for the sum.  A uniform distribution convolved with a
triangular one results in a quadratic one.  If the sum of the random variables is added to a third one, then the
quadratic probability density function is now being convolved with a third probability function, e.g. a
trapezoidal one, the results are seen to already taking on the qualitative appearance of a gaussian function.

Electronic noise arises because of non-uniform current flow and because of conduction charges
variations resulting from thermal excitations of electrons from lower bands in the atoms.  These represents a
large number of independent random effects which combine together to produce a noise voltage or current.
As a results, it is reasonable to expect that a Gaussian distribution will describe noise voltage or current
samples.

A complex random variable has a real and imaginary part, which are random variables, i.e.,

jyxz += (16.22)

For the purpose of analyzing noise, x  and y  may be assumed to be independent.  In such case, the mean
and variance of the random variable z  are defined as

yx jyjxjyxz µµµ +=+=+== (16.23)
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a− a+ b− b+

c− c+ba −− ba ++

ba −− ba ++

cba −−− cba +++

Figure 16.5 Illustration of the central limit theorem by (a) convolving a rectangular and a triangular
shaped probability density function, and (b) convolving the resulting quadratic shaped
probability density function with a third on which is trapezoidal.

( ) ( ) ( ) 2222222 VarVarVar yxyxyxyxzzzz σσ +=+=+=+=== ∗ (16.24)

A measure of the correlation between two random variables can be found by looking at the average (or
expected value) of the conjugate product.  Two gaussian random variables are independent if and only if the
average of their conjugate product equals zero.  Suppose z  is the sum of two independent complex random
variables m  and n  (zero mean assumed), i.e., nmz += , then the variance of z  is the sum of the variances
of m  and n  as shown in the derivation below.

( ) ( )( ) ( )( )

22

2Var
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++=++==

∗∗
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The two middle terms of the last expression in the above derivation equal zero since the random variables
m  and n  are independent, then

( ) ( ) ( ) 2222 VarVarVar nmmmmmz σσ +=+=+= (16.25)

A stochastic process is function in a random variable, which is a function of a deterministic
variable.  Noise is a random variable that is a function of time and therefore we will discuss stochastic
process in terms of time.  A stochastic process can be thought of in an analogous way to that of a random
variable.  Imagine a hat with tags, but instead of discrete values the tags have functions of time listed on
them.  Sample functions are obtained by selecting the tags.  If multiple tags have the same function then the
multiple sampling of the stochastic process will favor that particular function.  The collection of function is
called an ensemble.  The mean function can be calculated by averaging the functions in the ensemble.
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Likewise a variance function can be visualize by averaging the square of the functions in the ensemble.
This type of averaging is known as ensemble averaging and the mean and standard deviation are a function
of time, ( )tµ  and )(tσ .  A stationary random process is one in which statistical quantities such as mean and
variance are a constant, i.e., independent of time.

Given a particular sample function, ( )ts , from the ensemble it is possible to determine a mean
value by averaging over time.  This mean value, designated as m , is given by

∫+
−= T

T
dtts

T
m )(

2
1

(16.26)

Time averages are designated by a bar over the function, i.e., ( )tsm = .  Likewise the variance can be

calculated by averaging ( )[ ]2ts  over time, i.e., ( )[ ]2ts .  When the statistics over time are the same as the
statistics over the ensemble then the process is said to be ergodic.  Noise is an example of a stationary
ergodic process and thus averages can be made on one sample over time or by computing them from
multiple samples.  A gaussian random process is a stationary ergodic process in which the statistics are
described by a Gaussian distribution function.

Given a value for the random process at a time 0t , the value of the function at time 1t , in general,
may not be independent random variables.  The correlation of the random variables for separate times is
described by the auto-correlation function or its Fourier transform, which is known as the power spectral
density or psd.  If the psd has a very low bandwidth then the values of the random process can not change
fast implying that future value of the random process are most likely to be near the current value.  However,
if the psd is a wide band function then future value of the random process can jump quickly and bigger
changes are equally as likely.  A random process that has a flat psd is said to be white (all frequencies
present) and it means that the random values between any points are uncorrelated or independent.
Electronic noise is an example if a white gaussian stochastic (random) process.

Noise can be viewed in the time domain or in the frequency domain.  It is easiest to think of
discrete time samples of the noise as a time domain member of the ensemble.  Data can be taken over
multiple time windows resulting in a collection of such samples, which begins to comprise the ensemble.
Likewise an FFT operation can be performed on each of the time samples resulting in a complex random
variable associated with discrete frequencies.  Since the FFT process is a linear function then the FFT of a
gaussian random process must result in a complex gaussian variable for each frequency.  If the process is
white then the real and imaginary parts are independent.

( ) ( )[ ]tsFFTS =ω (16.27)

( ) jyxS +=ω (16.28)

where x  and y  are independent gaussian random variables.  In the frequency domain the random variable
can be thought of as a phasor (containing amplitude and phase information) for that frequency of the noise.

The amplitude is given by 22 yx +  and the phase is given by ( )xy1tan − .  Since the average power has to
be the same whether viewed in the time or frequency domain then

( ) ( ) ==== ∫∫ +
−∞→

+ ∞
∞− s

T

TT
T

sdttsdwS σω )Var(212
lim  mean square voltage (current).  For this reason ( )2ωS  is

given the name power spectral density and has units of power per Hertz.
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16.3 TWO PORT EQUIVALENT CIRCUITS

Equivalent circuits are an important circuit analysis technique.  Circuits are equivalent if their
current and voltage characteristics at their terminals are the same, i.e., from terminal point of view the
circuits are the same.  The conventional Thevenin equivalent circuit applies to a one port circuit.  Any linear
one port circuit can be replaced by a voltage source and a series impedance and exhibit the same terminal
current/voltage behavior.  We note that the one port may have embedded in it any number of dependent and
independent sources.  Also, the Thevenin impedance is not normally a simple resistance plus an inductor or
capacitor but is a complicated reactance expression.  Since the terminals must be the same, the equivalent
circuit values can be obtained by simply applying the same voltages across the terminals of both circuits and
adjusting the Thevenin components until the resulting current is the same.  Applying this procedure with
two different voltages result in a unique determination of the Thevenin circuit.  A Norton Equivalent circuit
consisting of a shunt current source and admittance can be similarly obtained.

A linear two port circuit with no independent sources can be represented by an impedance matrix
as shown
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(16.29)

If independent sources are included in the circuit, then the matrix representation has to change to
accommodate the fact that a voltage can appear at a terminal when no current is flowing.  However, the Z-
matrix formulation can be easily amended by adding a constant voltage vector as shown







+














=








10

20

1

2

2221

1211

1

2

V
V

I
I

ZZ
ZZ

V
V

(16.30)

Therefore, a circuit with independent sources can be equivalently represented by a two-port circuit
without independent sources and two voltage sources in series with each output respectively as shown in
Figure 16.6(a).  The independent sources could be also accounted for by including shunt current sources at
the terminals as shown in Figure 16.6(b).  It is permissible to have a mixture of sources as illustrated in
Figure 16.6(c).  Also, the sources can be at either end of the circuit if a combination of current and voltage
sources is used as shown in Figure 16.6(d).  Likewise, the sources can both be on the output as illustrated in
Figure 16.6(e).  The order of the series voltage source or shunt current source can be interchanged (with
different values), but the current source must be shunt and the voltage source must be in series.

The appropriate equivalent circuit to use depends upon the specific analysis objectives.  Each of
the equivalent circuits produces the same terminal characteristics as the original circuit.

16.4 THERMAL NOISE (KTB)

In any non-superconductive material at a temperature greater than absolute zero (0° Kelvin),
electrons are constantly being excited between bound atomic states and conducted states.  The number of
electrons affected increases as the temperature increases.  This variation of available electrons represent a
variation in mobile charge and results in a random voltage appearing across the material.  The average value
of the random voltage is zero since the charge distribution at any instant of time is equally likely to result in
a voltage in any direction.  The voltage can be assumed to be gaussian random process since the material
consists of many atoms whose influence can be expected to extend only over a few atomic spacings. Hence,
the process can be expected to satisfy the central limit theorem and therefore result in a gaussian random
voltage.
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10I 20I 2V
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Figure 16.6 (a) Two-port Thevenin equivalent circuit, (b) two-port Norton equivalent
circuit, (c) mixed use of the equivalent sources are permissible, (d)
equivalent circuit with both sources at the input, (e) equivalent circuit
with both sources at the output.
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The variance of the voltage across a resistor has been measured by J.B. Johnson in an experiment
[Thermal Agitation of Electricity in Conductors, Phys. Rev., vol 32 July, 1928, pp. 97-109] and was shown
to be equal to

( ) KTBRv v 4Var 2 == σ (16.31)

where

K = Boltzmans Constant
T = Temperature in Kelvin
B = Bandwidth
R = Resistance in Ohms

For this reason thermal noise is sometimes referred to as Johnson noise and can be represented as an ideal
(noiseless) resistor in series with a zero mean gaussian random noise voltage source.

The thermal noise voltage waveform consists of independent gaussian distributed voltage values.
As a result there is no correlation between the voltages at one time and any other time.  Thus, the noise has
a power spectral distribution, which is uniform, i.e., it is white noise.  The magnitude of each power spectral
component equals KTR4  since its integral over the band must equal the total power of BKTR ⋅4 .  If ( )tv  is
the voltage waveform and ( ) ( )[ ] ( ) ( )ωωω jYXtvS +== FFT , then

( ) ( ) ( ) ( )[ ] ( ) ωωωωωωω ∆=∆+=∆== ∑∑∑ PYXStvKTBR 22224

Therefore,

( ) KTRP 4=ω (16.32)

16.5 CIRCUIT COMBINATIONS OF THERMAL NOISE

A real resistor can be viewed as an ideal noiseless resistor, R , with a series voltage source, ( )ωV ,
whose value is defined as a complex gaussian zero-mean random variable with a white power spectral
density which equals KTR4  as shown below.

Suppose two resistors are connected in series as depicted below.

Examining the problem from the frequency domain, ( )ω1V  and ( )ω2V  are complex gaussian stochastic
processes with zero mean.  The total voltage ( )ωV  equals the sum of the individual voltages
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)()()( 21 ωωω VVV +=

The variance of V  is

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]∗∗∗ ++== ωωωωωωω 2121
2 VVVVVVV

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∗∗∗∗ +++= ωωωωωωωω 22122111 VVVVVVVV

( ) ( ) ( ) ( ) ( ) ( )2
21221

2
1 ωωωωωω VVVVVV +++= ∗∗

Since the voltages are uncorrelated then the cross moments equal zero, i.e.,

( ) ( ) ( ) ( ) 01221 == ∗∗ ωωωω VVVV (16.33)

and

( ) ( ) ( )2
2

2
1

2 ωωω VVV += (16.34)

or

2
2

2
1

2 σσσ +=T (16.35)

Thus, for series connections of resistors the variances add, i.e., the power densities add,

21
2 44 KTRKTRT +=σ

( )214 RRKT +=

SERIESKTR4=

( ) SERIESKTRV 42 =ω (16.36)

Next consider two resistors connected in parallel as shown

The Thevenin Equivalent circuit consists of
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The cross moments are zero, and
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resulting in
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Therefore,

( ) PARALLELKTRV 42 =ω (16.37)

The Thevenin voltage equals the thermal noise voltage associated with a resistor equal to parallel
combination of the original two resistors, which is the Thevenin resistance.

Consider a circuit involving a resistor and a reactance as shown
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There is no noise source associated with the reactance component since it represents inductance and
capacitance effects and not conductance effects.  The Thevenin equivalent impedance and source are

TTT jXR
RX

XRj
RX

RX
RX
jXRRX

RjX
jXRZ +=

+
+

+
=

+
+=

+
= 22

2

22

2

22

22

( )ωV
RjX

jX
VT +

=

The variance of TV is

( ) ( )∗∗

+−
−

+
== ωω V

RjX
jXV

RjX
jXVVV TTT

2

( ) ( )∗
+

= ωω VV
RX

X
22

2

( ) TKTR
RX

RXKTV
RX

X 44 22

2
2

22

2

=







+
=

+
= ω

Therefore,

( ) TT KTRV 42 =ω (16.38)

where TR  is the resistor component of the Thevenin impedance.  Hence, the equivalent noise source equals
the thermal noise associated with the resistive component of the Thevenin impedance.

The noise power delivered from one resistor to another can be examined by the following circuit
configuration

The noise power delivered by resistor 1 to resistor 2, designated 21P , can be found by ignoring source 2,
i.e., replace it with a short circuit, and find the power dissipated in 2R  from the source 1V .   In this case,
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2

2

21

1
21 R

RR
Vp
+

=

( ) ( )2
21

212
12

21

2
2121

4
RR

RKTR
V

RR
R

pP
+

=
+

== (16.39)

The power delivered to 1R  from 2R , 12P , is given by

( )2
21

21
12

4
RR

RKTR
P

+
= (16.40)

The power delivered by 1R  to 2R  is the same as that delivered to 1R  by 2R  if they are at the same
temperature.  This has to be true since otherwise we would violate the laws of thermodynamics.

The maximum power is delivered from one resistor to the other when 21 RR = , i.e., the resistors
are matched.  The power so transferred is called the available noise power and equals KT  for the power
spectral density or KTB  for the total noise power when integrated over the bandwidth B .

16.6 MINIMUM NOISE FIGURE
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Need to compare (in other words, find the ratio of) the total noise at output to noise at output if
circuit were truly noise free, i.e., when E  and I  were zero.  Since the network is linear we can compare
noise contribution at port 11 ′−  instead.  Note that the noise temperature at input must be K°290 .

Total input noise 222 EYIII sssc ++=α

This is seen since

Using superposition

IEYII sssc −−=

( )[ ] ( )[ ]∗∗∗ +−+−== IEYIIEYIIII ssssscscsc
2

( ) ( ) ( )( )∗∗∗∗ ++++−+−= IEYIEYIEYIIEYIII ssssssss

22 IEYI ss ++=

since sI  is independent of E  and I , i.e., they are uncorrelated.

If the MESFET was truly noise free, then the input noise power would be proportional to 2
sI ,

i.e., E  and I  would be zero.  Therefore, the noise factor F  is

2

22

s

ss

I

EYII
F

++
=

2

2

1
s

s

I

EYI +
+=

E   and I  are not necessarily uncorrelated.  Assume I  consists of a component uI  which is uncorrelated
to E  and ( )uII −  which is perfectly correlated to E .  The correlated part of I  can be related to E  by a
complex constant cY  such that

EYII cu += (16.41)

The noise power defines real or equivalent circuit resistances
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nr RKTE 42 = (16.42)

uru GKTI 42 = (16.43)

srs GKTI 42 = (16.44)

The numerator term in the noise factor expression can be evaluated as follows:

( )[ ] ( )[ ]∗++++=+ EYYIEYYIEYI scuscus
2

222 EYYI scu ++=

nrscur RKTYYGKT 44 2 ⋅++=

F  then equals

sr

nrscur

GKT
RKTYYGKT

F
4

44
1

2 ⋅++
+=

s

scnu

G
YYRG 2

1
++

+=

( ) ( )[ ]221 cscs
s

n

s

u BBGG
G
R

G
G

F +++++= (16.45)

where

SSS jBGY += (16.46)

and

ccc jBGY += (16.47)

Note that we can reduce noise factor F  if

cs BB −= (16.48)

in that case

( )21 cs
s

n

s

u GG
G
R

G
G

F +++= (16.49)

If we plot F  as a function of sG we see
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To find minF , let 0=
sdG

dF
 and solve for SG .  The solution found is the source conductance which, along

with the source admittance set at cB− , produces the minimum noise factor.  This source conductance is
denoted as mG , and

2
1

2




 +=

n

u
cm R

G
GG (16.50)

and
















 +++=

2
1

2
min 21

n

u
ccn R

GGGRF (16.51)

In general F  equals

( ) ( )[ ]22
min msms

s

n BBGG
G
R

FF −+−+= (16.52)

16.7 NOISE CIRCLE

Let 
so

so
s YY

YY
+
−=Γ  and 

mo

mo
m YY

YY
+
−=Γ ,then

( )22

2

min
11

4
sm

ms

o

n

Z
R

FF
Γ−Γ+

Γ−Γ
⋅+= (16.53)

F  completely specified by four parameters: minF , nr , mΓ , and mΓ∠ , where 
o

n
n Z

R
r = , i.e., normalized

resistance.

For a specific noise factor iFF = , one can define

2min
2

2

1
41

m
n

i

s

ms
i r

FF
N Γ+−=

Γ−
Γ−Γ

= (16.54)

and
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( )
( )2

222

1

1
1 i

mii

i

m
s N

NN
N +

Γ−+
=

+
Γ−Γ (16.55)

Locust of constant noise factor (or in dB scale, noise figure) is a circle.


