
Chap_07r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

CHAPTER

7

CALIBRATION AND MEASUREMENT OF
S-PARAMETERS

7.1 MEASURING S-PARAMETERS

The measurement of s-parameters normally takes one of two forms.  Originally slotted lines were
used and the VSWR and locations of nulls was measured and the circuit s-parameters were deduced as
discussed in chapter 3. .  A second technique which is the basis of modern network analyzer is to use a four
port circuit known as a coupled line to sample forward and reverse propagating waves.  A symbolic
representation of coupler together with ideal s-parameters for the coupler are shown in figure 7.1.  Using an
ideal coupler the following system could be used to measure the s-parameters of a one port "device under
test" by measuring the complex voltage from ports 3 and 4, i.e., 3v  and 4v  and computing the ratio referred
to here as the measured reflection coefficient,

3
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v
v

m =Γ .

These voltage terms are proportional to the counter-propagating signals at those points, i.e.,

( ) oZbbav 33333 1 Γ+=+=

( ) oZbbav 44444 1 Γ+=+=
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Figure 7.0  Schematic symbol for a coupler with ideal s-parameters
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If matched loads are placed at ports 3 and 4 then 043 =Γ=Γ  and then oZbv 33 = , and oZbv 44 = .  In

this case the measured reflection coefficient is given by 
3

4

b
b

m =Γ .  Also, if ports "3" and "4" are matched

then the entering signals are zero, 043 == aa .  Therefore,





































=





































=



















0
0

0110
1001
1001
0110

0110
1001
1001
0110

2

1

4

3

2

1

4

3

2

1

a
a

a
a
a
a

b
b
b
b

and 12 ab = , 13 ab = , 24 ab =  implying that the measured reflection coefficient equals the reflection

coefficient of port "2," 2Γ ., since 2
2

2

1
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4 Γ====Γ
b
a

a
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m .  If AΓ  designates the actual reflection

coefficient for a one port device then

mAs Γ=Γ=11 .

Figure 7.1 illustrates a system to implement the ideal measurement system.  In practice two effects
degrade the previous system.  First the terminating system at the measurement ports, 3 and 4, can not be
expected to be matched ( 03 ≠Γ  and 04 ≠Γ ), particularly over a very wide band of frequencies, and
second the coupler circuit can not be expected to be ideal..

The results of the first degradation is that  
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k .  The second

degradation results from the non-ideal nature of the coupler system.  In general the coupler system can be
represented by a 4x4 scattering matrix, where the elements of the matrix are unknown constants.  Including
the source term results in the following matrix equation
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Figure 7.1  A system to measure the reflection coefficient.
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Expansion of the matrix equation gives

sbsbsbsbsbsb 1144143313221211111 +Γ+Γ+Γ+Γ=

sbsbsbsbsbsb 2144243323222211212 +Γ+Γ+Γ+Γ=

sbsbsbsbsbsb 3144343333223211313 +Γ+Γ+Γ+Γ=

sbsbsbsbsbsb 4144443343224211414 +Γ+Γ+Γ+Γ=

Manipulating these equations results in

( ) sbsbsbsbsbs 114414331322121111 1 −=Γ+Γ+Γ+−Γ

( ) sbsbsbsbsbs 214424332322221121 1 −=Γ+Γ+−Γ+Γ

( ) sbsbsbsbsbs 314434333322321131 1 −=Γ+−Γ+Γ+Γ

( ) sbsbsbsbsbs 414444334322421141 1 −=−Γ+Γ+Γ+Γ

which can be put in the following matrix form
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The signal parameters, 3b  and 4b  can be found by solving the system of equations using Kramer's Rule.

Thus, 
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where α and β are constants independent of Γ2 ..  Therefore,
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where α, β, γ, and δ are not functions of Γ2 .  The signal parameter ratio is
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Letting AΓ denote the actual reflection coefficient of the circuit being tested then the measured reflection
coefficient is related to the actual reflection coefficient by the relationship below where A, B, and C are
complex number independent of AΓ .



CALIBRATION AND MEASUREMENT OF S-PARAMETERS 7 - 5

Chap_07r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

1+Γ
+Γ=Γ
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7.2 ERROR ADAPTER MATRICES

Suppose that a two port circuit is inserted between the device under test and an ideal measurement
system.  This is illustrated in figure 7.2 which also shows the SFG manipulations to obtain the transfer

ration 
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Figure 7.2  Two port circuit between measurement ports and DUT.
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The measurement can be viewed as a combination of two circuits, an error two-port and the actual one-port,
ΓA , as shown in figure 7.3

Representing the error circuit in terms of its transmission matrix yields
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Expanding the matrices results in two equations
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Figure 7.3  The measured reflection coefficient results from
actual circuit combined with an error circuit
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7.3 ONE-PORT CALIBRATION--SHORT, OPEN, LOAD (SOL)

It is desired to find the constants A, B, and C . To do this standard devices are inserted into the
measurement system and the measured reflection coefficient observed.  It is shown that if three calibration
standards are used then the constants can be deduced.  Letting subscripts S,O,L refer to short, open, and
load and using primes to indicate the known reflection coefficient and unprimed for the measured reflection
coefficients then substituting
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ΓΓΓ=Γ
Γ′Γ′Γ′=Γ
,,
,,
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One approach is to solve this system of equations using matrix techniques, i.e.,
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A second approach is to solve the equations by taking pairs of them and subtracting.  For example
subtracting the second equation from the first, and the third equation from the second results in

( ) ( )
( ) ( ) LOOOLLLO

OSSSOOOS

CA
CA

Γ−Γ=ΓΓ′−ΓΓ′+Γ′−Γ′
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These equations can be solved by multiplying the first by 2Q  and the second by 1Q
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212121
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Subtraction yields
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Repeating this process by multiplying  the first equation 2P  and the second by 1P
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With A and C determined then B is found from any one of the original three equations.  Using the third
yields

ACB LLLL Γ′−ΓΓ′+Γ=

With A, B, C, determined then the Device Under Test (DUT) can be measured an its actual reflection
coefficient determined from the formula

AC
B

b
a

M

M

A

A
A +Γ−

−Γ==Γ

Example 7.1.  Illustration of  a One Port, Short-Open-Load (SOL), Calibration Technique used for S-Band
Antenna Patch Measurements o an HP 8510 (Courtesy of the J. H. U. Dorsey Center)

Ground Plane

Dielectric

Patch

Feed Line

Figure 7. 4.  The Device Under Test (D.U.T.) is a microstrip  S-band Patch Antenna
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Figure 7. 5  (a.) Raw (Uncalibrated) data, (b.) Data for Short, (c.) Data for Open, (d.) Data for Load, and
(e.)  Calibrated (De-Embedded) Data for S-band Antenna Patch
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% Filename: sol_95.m
% Date: 10/2/95

% This File will extract the A, B and C vector for an SOL
% calibration using the raw measurement data and the model
% of the cal standards. The A, B and C vector are then used
% to calculate the reflection coefficient of any 1-port
% circuit from its raw measurement data.  Uses relationship
%
% Gamma_M=(A*Gamma_A+B)/(C*Gamma_A+1)
% or equivalently
% Gamma_A=(Gamma_M-B)/(-C*Gamma_M+A)
%

load rd_shrt.s1p;     % load measured raw data for short
load rd_open.s1p;     %   "     "      "    "   "  open
load rd_load.s1p;     %   "     "      "    "   "  load

Gs=rd_shrt(:,1)+i*rd_shrt(:,2);    % convert measured data to complex numbers
Go=rd_open(:,1)+i*rd_open(:,2);
Gl=rd_load(:,1)+i*rd_load(:,2);

F=[1e9:8e7:5e9]';                  % frequency sample points

% - - - - - - - - - - model for short - - - - - - - - - - - - - -
L0=2.0765e-12;
L1=-108.54e-24;
L2=2.1705e-33;
L3=-.01e-42;

Ltau=31.785e-12;
Lrv0=2.36e9; %atten/sec=(atten/dist)(prop. vel)
Lrv=Lrv0*sqrt(F/1e9);
Lloss=.5*Lrv/50;

Zsp=i*2*pi.*F.*(L0+L1*F+L2*F.^2+L3*F.^3);
Gsp=((Zsp-50)./(Zsp+50)).*exp(2*(-Lloss-i*2*pi*F)*Ltau);

     % Zsp=Zs-prime=impedance for short
     % Gsp=Gamma_s-prime=reflect coef for short
     %    gamma=wave number=alpha+j*beta=atten+j*prop const.
     % Gamma(d)=Gamma_L*exp(-2*gamma*d)
     % Gamma(d)=Gamma_L*exp[2*(-alpha-j*beta)*d]
     % alpha*d=alpha*vel*Tau=Lloss*Tau
     %
     %         =Gamma_L*exp[2*(-Lloss-jw)*T]
     % w=2*pi*freq,   T=time delay (tau)

% - - - - - - - - - - model for open  - - - - - - - - - - - - - -
C0=49.433e-15;
C1=-310.13e-27;
C2=23.168e-36;
C3=-.15966e-45;

Ctau=29.243e-12;
Crv0=2.2e9; %atten/sec=(atten/dist)(prop. vel)
Crv=Lrv0*sqrt(F/1e9);
Closs=.5*Lrv/50;

Zop=-i./(2*pi.*F.*(C0+C1*F+C2*F.^2+C3*F.^3));   % impedance for open
Gop=((Zop-50)./(Zop+50)).*exp(2*(-Closs-i*2*pi*F)*Ctau);
 %  reflect coef for open

% Filename: sol_95.m  Cont'd

% - - - - - - - - - - model for load - - - - - - - - - - - - - - -
Glp=zeros(size(F))+i*zeros(size(F));

   % Gl-prime = actual load reflect coef = 0+i0
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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M1=Gs-Go;
M2=Go-Gl;
P1=Gsp-Gop;
P2=Gop-Glp;
Q1=Gop.*Go-Gsp.*Gs;
Q2=Glp.*Gl-Gop.*Go;

A=(Q2.*M1-Q1.*M2)./(P1.*Q2-P2.*Q1);
C=(P2.*M1-P1.*M2)./(P2.*Q1-P1.*Q2);
B=Gl+Glp.*Gl.*C-Glp.*A;

load rd_patch.s1p
load dd_patch.s1p

Grdut=rd_patch(:,1)+i*rd_patch(:,2);
Gddut=dd_patch(:,1)+i*dd_patch(:,2);

Gcdut=(Grdut-B)./(-C.*Grdut+A);     %Calibrated measurements of DUT

% ------------------------------- Plot Routines -----------------------
plot(F/1e9,angle(Grdut)*180/pi);
title('Measured Phase of DUT');
xlabel('Freq (GHz)');
ylabel('Ang(S11) (degrees)');
axis([1 5 -200 200]);

figure;
plot(F/1e9,abs(Grdut));
title('Measured Magnitude of DUT');
xlabel('Freq (GHz)');
ylabel('Mag(S11)');
axis([1 5 0 2]);

figure;
plot(F/1e9,angle(Gs)*180/pi,F/1e9,angle(Gsp)*180/pi);
title('Measured and Modeled Phase of Short');
xlabel('Freq (GHz)');
ylabel('Ang(S11) (degrees)');
axis([1 5 -200 200]);

figure;
plot(F/1e9,abs(Gs),F/1e9,abs(Gsp));
title('Measured and Modeled Magnitude of Short');
xlabel('Freq (GHz)');
ylabel('Mag(S11)');
axis([1 5 0 2]);

figure;
plot(F/1e9,angle(Go)*180/pi,F/1e9,angle(Gop)*180/pi);
title('Measured and Modeled Phase of Open');
xlabel('Freq (GHz)');
ylabel('Ang(S11) (degrees)');
axis([1 5 -200 200]);
% Filename: sol_95.m  Cont'd

figure;
plot(F/1e9,abs(Go),F/1e9,abs(Gop));
title('Measured and Modeled Magnitude of Open');
xlabel('Freq (GHz)');
ylabel('Mag(S11)');
axis([1 5 0 2]);

figure;
plot(F/1e9,angle(Gl)*180/pi,F/1e9,angle(Glp)*180/pi);
title('Measured and Modeled Phase of Load');
xlabel('Freq (GHz)');
ylabel('Ang(S11) (degrees)');
axis([1 5 -200 200]);
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figure;
plot(F/1e9,abs(Gl),F/1e9,abs(Glp));
title('Measured and Modeled Magnitude of Load');
xlabel('Freq (GHz)');
ylabel('Mag(S11)');
axis([1 5 0 2]);

figure;
plot(F/1e9,angle(Gcdut)*180/pi);
title('Calculated (De-Embedded) Phase of DUT');
xlabel('Freq (GHz)');
ylabel('Ang(S11) (degrees)');
axis([1 5 -200 200]);

figure;
plot(F/1e9,abs(Gcdut));
title('Calculated (De-Embedded) Magnitude of DUT');
xlabel('Freq (GHz)');
ylabel('Mag(S11)');
axis([1 5 0 2]);

% Filename: HP2ML1P.M
% Date: 9/30/94

% This file reads 1-port data files saved by HP8510 and create
% a data matrix under the same name.

% HP8510 saved files must be included in Fname matrix.

Fname=['rd_short';'rd_open ';'rd_load ';'rd_patch'];
Listsize=size(Fname,1);  %Number of entries (rows) in file list

for m=1:Listsize; % Main loop to go through each file

   name=Fname(m,:);
   Letters=length(name);
   fid=fopen(name);
   Test='SEG'; % To skip until 'SEG' is found.
   A=zeros(size(Test));
   while ~all(A==Test);
      B=fscanf(fid,'%s',1);
      size(B);

 if size(B)==size(A); % can only compare if size is the same
 A=B;
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 end
   end
   for n=1:3 % Read in the frequency data from the file.
      finfo(m,n)=fscanf(fid,'%f',1);  % since it follows immediately "SEG'.
   end
   Test='BEGIN'; % To skip until 'BEGIN' is found
   A=zeros(size(Test));
   while ~all(A==Test);
      B=fscanf(fid,'%s',1);
      size(B);

 if size(B)==size(A);
 A=B;
 end

   end
   for g=1:finfo(m,3) % Start reading data
      for h=1:2 % read both real and imaginary part
      Temp(g,h)=fscanf(fid,'%f',1);  % Put data in Temp matrix
      delimit=fscanf(fid,'%c',1);  % takes care of ',' between R and I parts
      end
   end
   fclose(fid); % Close file
   eval([name,'=Temp;']) % Use original filename as name of the data matrix
end

7.4 TWO-PORT CALIBRATION--SHORT, OPEN, LOAD, THRU (SOLT)

The following measurement system can be used to determine two port s-parameters

This system is equivalent to the following signal flow graph which illustrated that their are now two error
circuits associated with each of the two connectors.  The analyzer can be view as follows

DUT

S-parameter
Test-Set

Network
Analyzer

Connector-1 Connector-2

v1 v2 v3 v4

Figure 7.6  Two port S-parameter measurements
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where, { 11e , 21e  12e , 22e } represent the error circuit associated with one terminal (connector 1) and { 11f ,

21f  12f , 22f } are the s-parameters associated with the second terminal (connector 2).  Letting
{ }22,12,21,11 AAAA  represent the "actual" s-parameters for the D.U.T. then when it is connected to the
Network Analyzer the system can be described as follows

The error circuits sometimes called error adapters can be represented as a Signal flow graph of s-parameters
as illustrated above where the measured s-parameters would be
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Also the measurement could equivalently be represented as Transmission matrices and since the circuits are
cascaded the Transmission matrices are multiplied to get the transmission matrix of the combination which
represents the measured s-parameters, i.e.,
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Figure 7.7  Error adapter circuits for two port S-parameter
measurements
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Figure 7.8  Error adapter circuits connected to actual two port
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The inverse of the matrix fR  is easily found by performing the SOL calibration using connector 2 as
previous applied to a single connector for a one port.  In this case the signal flow graph and the transmission
matrix are naturally defined viewing the circuit from right to left as opposed to the earlier development of
left to right.  This is why the inverse is defined in terms of the A', B' ,C' constants.  The actual transmission
matrix can be found by simple manipulation to be

11 −−= fMeA RRRR

Since






−

−
−

=−
AC
B

BCA
e

Re
1211

then







′′
′






−

−
−



=

AB
C

R
AC
B

BCAf
e

R MA
111

21

21

In this case the actual Transmission matrix is not uniquely determined by the SOL calibration even though it
was applied to both test ports , i.e., both connectors 1 and 2.  A forth measurement of a calibration standard
is required.  This can be achieved by connecting the test ports together and observing the measured data.  In
this case the cal standard is just a series short between the two connectors.  This calibration standard is
called a "Thru."  The S-parameters for a thru are
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 can be computed by taking the determinant of the previous equation which results in
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Substitution of this allows the actual transmission matrix for the D.U.T. to be determined, i.e.,
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7.5 TWO-PORT CALIBRATION--THRU, REFLECTION, LINE (TRL)

If microstrip circuits are measured usually the board is mounted in a fixture which permit
connectors to interface with the board.  The SOLT calibration procedure can be used but the de-embedded
data now represents the connector/transition hardware plus the microstrip board.  To deduce the
uncontaminated board data requires knowledge of s-parameters of the connectors/transition system.  This is
illustrated in figure 7.9

Microstrip Board

Connector
1

Connector
2

Cable to
S-parameter
Test-Set

Cable to
S-parameter
Test-Set

Adjustable Fixture Support

Figure 7.9  S-parameter measurement of a microstrip circuit.
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It is desired now to create a calibration procedure which will permit correction for system variations from
the ideal but will also permit the fixture effects to be de-embedded from the data.  This is done by creating
calibration microstrip circuits on the same substrate used for the circuit of interest.  First a Thru is
created which consists of a short 50 microstrip line.  The center of this line sets the reference location for
calibration and the resulting de-embedded data.  This is shown in figure 7.10a.  The reflect standard can be
either an open or short circuited line 50 ohm line.  For microstrip it is usually easier to use an open circuited
line.  The length of the line should position of the open (or short) at the reference plane of the measurement
as set by the thru line.  This is illustrated in figure 7.10b.  The Line standard is a 50 line of unknown length.
Amazing enough the calibration technique will determine the length of this line.  The line must be longer
than the thru.  This is illustrated in figure 7.10c.  .

Center determines Ref. Plane

50 Ω Line

Ref. Plane Determined from Thru

50 Ω Line

50 Ω Line

 Calibration Standard"Thru"  Calibration Standard"Reflect"

 Calibration Standard"Line"

(a.) (b.)

(c.)

Figure 7.10.  Top view of TRL microstrip calibration
standards
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The transmission (R)  matrices for the x error adapter and y error adapter are given by
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The transmission (R) matrices associated with the measured and actual S-parameters are given by
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The R matrices for an ideal thru (short circuit) and a line of length, "L" and characteristic impedance 0Z
are
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In general the measured R matrix is related to the actual R matrix as shown.
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Figure 7.11  Steps in a TRL calibration
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The measured R matrix when the thru calibration circuit is inserted is given by

YXYATXMT RRRRRR ==

The measured R matrix when the line calibration circuit is inserted is given by

YALXML RRRR =
Solving for the Y adapter R matrix gives

MTXY RRR 1−=

Substitution of RY  into the previous matrix equation gives

ALXX RRMR =
where
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In a similar manner one can solve for the x adapter matrix, R X , and substitute it into the matrix equation for
the line to get
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When the high Reflectance calibration standard is measured with port 1, with the x adapter then the
measured reflection coefficient is MXG  with actual reflectance given by RG .  In that case

R

R
MX Ge

Gee
eG

22

1221
11 1 −
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Solving for the actual reflection coefficient gives
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An identical RG  connected to port 2 and measured through the y error adapter circuit to give
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Again solving for the actual reflection coefficient gives
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Equating the two expressions for the actual high reflectance gives
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A second equation is needed to solve for 22e  and 22f .  The measured input reflection coefficient obtained
when the thru calibration standard is connected is called GM1 , and is related to the error parameters by
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Solving for 22e  gives
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Substitution of 
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 from previous equation gives
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When square root is taken there is a ± ambiguity.  One can use the implication for the reflectance cal
standard to resolve the ambinguity, i.e., 1+≈RG  for
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After determining 22e  then
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The following pair of products are now also known
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Additional products can be found by using the transfer measurements obtained for the thru calibration
standard, i.e.,
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These result in a determination of the following products
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The wave number, γ can now be found since
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