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CHAPTER

2

DISTRIBUTED-ELEMENT CIRCUIT ANALYSIS
TECHNIQUES

2.1 TRANSMISSION LINES

A transmission line can be viewed as a multiple combination of small circuit segments shown
below in  Figure 2.1.  The series inductance is due to magnetic field effects and the capacitance is due to
electric field coupling between the lines.  The losses in the transmission media are depicted by the series
and the shunt resistors.  These resistors represent the finite conductivity of the conductors and the dielectric
insulator between the conductors, respectively.  The constants R, G, L, and C are defined as per unit length
circuit parameters and the resulting resulting circuit is referred to as a distributed model of a transmission
line.  The length of the transmission line segment is ∆x .

Applying Kirchoff's law to the series and shunt elements respectively, one gets

  V x,t  ( )

  L  ∆x

  C  ∆x

  R  ∆x

  G  ∆x

   I  x,t  ( )
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Figure 2.1 Distributed circuit model for a transmission line.
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Dividing both sides of the above equations by ∆x  and taking the limit of both equations as ∆x → 0, results in
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Sinusoidal steady state solutions of the voltage and current can be found by assuming the solutions to be
( ) ( ) tjexVtxV ω=,  and ( ) ( ) tjexItxI ω=, , i.e., the voltage and current can be described as a phasor which is

a complex vector rotating as a function of time.  The amplitude and phase of the phasor is a function of x,
the position on the transmission line.  Substitution of these for the voltage and current in (2.3) and (2.4)
yields

( ) ( )xIZ
xd
xVd −= (2.5)

( ) ( )xVY
xd
xId −= (2.6)

where
LjRZ ω+=  and CjGY ω+=

are known as the distributed impedance and addmittance, respectively.  Since the time dependence is
removed from the differential equations one is dealing with only the voltage and current phasors.  Further
differentiation of (2.5) and (2.6) resulted in two second order linear differential equations.

( ) ( )xVYZ
xd

xVd =
2

2

(2.7)

( ) ( )xIYZ
xd

xId =
2

2
(2.8)

Working with (2.7), the solution must bear the form of e x±γ , where γ, known as the propagation constant is

( )( ) βαωωγ jCjGLjRYZ +=++== (2.9)

The parameter α is known as the attenuation constant and β is called the wave number. The general solution
of the voltage phasor is then

( ) xx eVeVxV γγ −−+ += (2.10)
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where the + and - superscripts are chosen to indicate the propagation direction of the voltage wave.  The
current phasor can be derived from (2.10) and (2.5), i.e.

( ) ( )xxxx eVeV
LjR

eIeIxI γγγγ
ω

γ −−+−−+ −
+

=−= (2.11)

The the forward propagating voltage is related to the forward propagating current characteristic impedance
which is

CjG
LjRLjR

Z c ω
ω

γ
ω

+
+=+= (2.12)

If the transmission line is lossless then R=G=0 and in that case the characteristic impedance becomes

C
LZ =0 (2.13)

and the propagation constant is given by ( )( ) LCjCjLjYZ ωωωγ +=== 0  implying that

α=0 and LCωβ = (2.14)

The results can be understood by considering a sinusoidal signal propagating in the positive x
direction is given by

( )xtA βω −′cos

Note that for a fixed time that the wave repeats for different x positions along the line separated by
intergal multiples of 2π/β.  This repeating spacial distance is called the wave length and usually designated
as λ.  Therefore, λ=2π/β or the wave number is given by β = 2π/λ.  The wave number "β" can be thought of
as a spacial angular frequency analogous to ""ω which is a temporial angular frequency.  If time is allowed
to advance and then a position for which xt βω −  is a constant is called a point of constant phase.  The
velocity of a point of constant phase is called the phase velocity of the wave and equals ω/β = fλ.

The cosine trigometric function can be represented as the real part of a complex number given by

( ){ }xtjeA βω −′Re

At a fixed x position the complex number, ( )xtjeA βω −′ , is a rotating vector in the complex plane is
referred to a phasor.  It is convenient to think of the wave as complex and to omit the "Re" operator.  In
analyzing a circuit if the actual real values are required one only needs to take the real part of the phasor.
For the geometry shown in Figure 2.2 the voltage and current for a lossless transmission line are shown
below where )(A xtje βω −′  represents a forward traveling voltage phasor propagating in the positive x-

direction, while )(B xtje βω +′  represents a reverse traveling phasor, i.e. propagating in the negative x-
direction.

)()( BA)V( xtjxtj eex βωβω +− ′+′=

( )xjxjtj eeex ββω BA)V( ′+′= − (



2 - 4    MICROWAVE & RF CIRCUITS:  Analysis, Design, Fabrication, & Measurement

All Rights Reserved -- M. L. Edwards, 7 September, 2001 Chap_02r.doc

Since the time dependence for a phasor is given by tje ω  which is multiplied by a complex number
independent of time it is convenient to omit it and include it only if the explicit time behavior is required.
Therefore a forward and reverse propagating phasor is represented, respectively, by xje β−′A  and xje βB′ .

If the explicit time dependence is required one multiplies the phasor by tje ω  and then take the real part of
the resulting function.  Using this convention the voltage pahsor on a line is given by

xjxj eex ββ BA)V( ′+′= −

which is consistent with the results of (2.12) with γ = 0+jβ.  Since x = L - d, where "d" is the length
measured from the right side of the circuit and "L" is the length of the transmission line.

)()( BA)V( dLjdLj eex −−− ′+′= ββ

djLjdjLj eeeed ββββ −− ′+′= BA)V(

If LjeA β−′= A  and LjeB βB′=  then
djdj eed ββ −+= BA)V( (2.15)

The current is given by the two phasors

0Z
BA

)I(
djdj ee

d
ββ −−= (2.16)

where the propagation constant is

λ
πωβ 2== LC (2.17)

A forward propagating voltage and current phasor are related by the characteristic impedance, Zo.
A reverse propagating voltage and current phasor are related by the negative of the characteristic
impedance, -Zo.  The plus sign is required for the forward wave and the negative sign for the reverse wave
so that the power associated with the propagating wave has the correct sign.  When viewed at an arbitary
point on the line the power associated with a forward wave would be positive indicating that power appears
to be disipated by the right side of the circuit.  On the other hand the power associated with a reverse wave

Source Load

 x d

L

(Z )0

I(  )d

V(  )d

Figure 2.1 Transmission line geometry
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would be negative indicating that power appears to be produced by the right side of the circuit, i.e., the right
side of the circuit appears to be a source for the reverse wave.

2.2 IDEAL TRANSMISSION LINE CIRCUITS

Distributed-element circuits are those where the physical dimensions of one or more of the
components affect the circuit performance.  In many important circuits the distributed components can be
represented in terms of transmission line models.  Therefore, this section will consider the analysis of
circuits which contain transmission lines as components.  Initially lossless transmission lines will be
considered, since they represent a simpler starting point and the techniques extend naturally to lossy lines.
Such lines referred to as ideal transmission lines do not represent a serious restriction since microwave and
RF circuits normally use low loss materials and circuit effects are rarely dominated by transmission line
losses.

The analysis of transmission line circuits is a natural extension of lumped-element circuit analysis.
Kirchoff's Current Law continues to be true at any node and Kirchoff's Voltage Law must hold around any
loop.  Voltage and current relations for lumped element resistances (Ohm's Law), inductive reactances, and
capacitive reactances are augmented with those for transmission lines.  Transmission lines are therefore
treated like any other circuit element.  Circuits are solved by using the current and voltage relationships to
create a system of equations which can then be solved for branch currents and node voltages.  Transmission
line nodes exist at the input and the output and they may be combined with other elements in series and in
parallel.  Lumped-element (LE) and distributed-element (DE) circuits are shown below in Figure 2.1 and
2.2.

(Z )1

(Z )2

(Z )3

Figure 2.2 An example of a lumped element circuit in which the
physical size and spacing of components are not
factors in determining performance
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Figure 2.3 A distributed element circuit in which transmission lines as well as
lumped elements are used as components

A simple distributed element circuit consisting of a source, a transmission line, and a load is
illustrated in Figure 2.4.  The load and source are assumed to be lumped-element components.  It is desired
to find the voltages and currents everywhere in the circuit.  At each of the terminals of the transmission line
Kirchoff's Laws together with Ohm's law can be applied to obtain Equations (2.18a) and (2.18b).

ininoo VIZV += ;  L)I(dI in == ;  L)V(dVin == (2.18a)

)0V(V);0I(I;IZV outoutoutLout ===== dd (2.18b)

At the load (d = 0) the reflection coefficient ΓL  is the ratio of these two waves, i.e. B/AL =Γ  or
B A L= Γ  and the transmission line voltage and current can be expressed as shown in Equations (2.19a) and
(2.19b).  Since the source is on the left then we can view the forward  propagating voltage wave as a

)A()V( L
djdj eed ββ −Γ+= (2.19a)

I( ) A( ) ZL 0d e ej d j d= − −β βΓ (2.19b)

stimulus which interacts with the load on the right to produce a reflected wave.  At a point "d" along the line
a generalized reflection coefficient can be defined as the ratio of reflected voltage, dje β−ΓLA   to incident

voltage, djAe β .  This reflection coefficient designated Γ can therefore be expressed as Equation  (2.20a),
and the total transmission line voltage and current is given by Equations (2.20b), and (2.20c).

( ) dj
Led β2−Γ=Γ=Γ (2.20a)

 x d

L

(Z )0

I(  )d

V(  )d
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 Z   +L
 Γ   =L
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 Z0

Figure 2.4 A source, a transmission line, and a load
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( )Γ+= 1)( djAedV β (2.20b)

( ) 01)( ZAedI dj Γ−= β (2.20c)

At the end of the line "d=0" the voltage is given by ( )Γ+= 1)0( AV

 

and the current is given by
( ) 01)0( ZAI Γ−=

, 

which results in a ratio shown in Equation (2.21).  The generalized and load reflection
coefficient have a value that results in the proper voltage current ratio at the load.  Equivalently, the load
reflects just the right amount of voltage so that the ratio satisfies the boundary condition (i.e., Kirchoff's &
Ohm's Laws) at the output node of the line.  The actual magnitude of the voltage and current depends on the
constant "A" which will now be shown to depend upon the input node boundary condition (again Kirchoff's
Laws).
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Specifically at the input of the line )(AL)V(d L
θθ jj ee −Γ+==

 

and 0L Z)(AL)I(d θθ jj ee −Γ−== .
Substitution of these equations into the input Kirchoff's Law condition yields Equation (2.22a).  Factoring
out the ( )os ZZ +  term results in Equation (2.22b) where the term Γs  is given by Equation  (2.22c)
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sΓ  formally appears as a source reflection coefficient,  i.e., the reflection coefficient that would result from
a load sZ  if an incident wave impinged upon it.  It will shortly be shown that such an interpretation is
physically correct.  The constant "A" can now be determined as shown below and equals and the voltage
and current at an arbitrary point "d" on the transmission line is given by
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While the voltage magnitude is proportional to Vs  and depends upon Zs  in a complicated way the physical

interpretation of the above results can be seen by using the relationship Λ++++=− 321)1(1 rrrr
 
with

θ2j
sL er −ΓΓ= .  The voltage expression then becomes
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Each of the numbered terms can now be given a physical interpretation as follows:
(1) TERM:  ( )[ ] )(

00
θβ −+ dj

ss eVZZZ   represents a forward propagating wave.  At the input node of the
transmission line θβ =LLd ⇒=  and the voltage is thus seen to equal ( )[ ] ss VZZZ 00 +  which can be
interpreted as the source voltage Vs  being divided by two series impedances of sZ  and oZ  (voltage divider
rule).  If one thinks of this wave as the one that is initially launched then the input impedance at the
transmission line equals oZ  since no wave has yet reached the load and had a chance to be reflected back to
the input.  Consequently, the input impedance, inin IV , is determined initially by only the characteristic
impedance of the line.  This voltage is referred to as the initially launched voltage or incident voltage and
designate it by Vinc .  Therefore, ( )[ ]00 ZZZVV ssinc +=

 
and the forward propagating voltage at the load

end is determined by substituting d = 0  and equals θj
inceV − .

(1′) TERM:  ( )[ ] )()(
00

θβθβ +−+− Γ=Γ+ dj
Linc

dj
Lss eVeVZZZ   represents a reverse propagating wave.  At

the load, d = 0  the voltage is the same as the initial wave multiplied by the load reflection coefficient LΓ .

This wave results in a voltage at the input node, l=d  or θβ =l , equal  to θ2j
Linc eV −Γ

(2) TERM:  ( )[ ] )3()3(
00

θβθβ −− ΓΓ=ΓΓ+ dj
sLinc

dj
sLss eVeVZZZ   represents a forward traveling wave

generated when wave 1' interacts with the source end of the line resulting in a reflected wave determined by
the source reflection coefficient.

(2′) TERM:  ( )[ ] )3(2)3(2
00

θβθβ +−+− ΓΓ=ΓΓ+ dj
sLinc

dj
sLss eVeVZZZ   represents a reverse traveling wave

resulting when wave 2 reaches the load end of the line.

The process of an incident wave resulting in repeated reflections can  be represented by the
following diagram:
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Thus, the voltage expression above can be seen physically to be the steady state situation resulting from
multiple reflected voltage waves on the line between the source and the load.  The reflections occur because
Kirchoff's Laws are required to be satisfied at both ends of the line.

Example 2.2.1..  What is the voltage if 0ZZ L = , i.e., for a matched load?

 In this case 0L =Γ  and substitution yields,

)()( θβ −






+
= dj

s
os

o eV
ZZ

Z
dV

The initially launched wave Vinc  has a magnitude of ( )[ ]00 ZZZVV ssinc += .  The phase term -θ appears
since the phase at the load  ( )0=d  since the load voltage will be out of phase by the electrical length of the
line.

Example 2.2.2..  What is the voltage on the line if os ZZ = ?

In this case 0=Γs  and

( )
( ))()(

2
1

2
1

)(

θβθβ

ββθ

+−−

−−

Γ+=

Γ+=

dj
L

dj
s

dj
L

djj
s

eeV

eeeVdV

There is an initially launched voltage of  magnitude 2sinc VV =  since the source voltage initially splits
evenly between the source impedance and the line characteristic impedance (which is the input impedance

0

θ

2θ

3θ

4θ

5θ

0

θ

2θ

3θ

4θ

5θ

Electrical Lenght = θ

d

Phase
or

Time

Vinc =
Z o

Z oZ s +
Vs( ) Vinc e j(βd- θ)

Vinc ΓL e -j(βd+θ)

Vinc ΓL e j(βd-3θ)ΓS

Vinc ΓL e -j(βd+3θ)ΓS
2

Vinc ΓL e j(βd-5θ)ΓS
2 2

Source Load
Γs ΓL

Figure 2.5  Illustration of multiple reflections generated by a source and
load connected by a transmission line where incV  = the
initially launched voltage, and  θ = the electrical length
of the line.
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for the initial wave). A second wave results since the load is not matched.  The reflected wave at the load
( )0=d  equals the incident wave multiplied by LΓ .  The reflected voltage has a term )( θβ +− dje  which
represents a wave propagating to the left.  This is the same as the forward propagating exponential with "d"
replaced by "-d."  The phase delay, θ, at d=0 is the same for both exponential  terms so the phase delay for
the reflected signal continues to account for  the  total travel delay from the source.

It is often just as easy to analyze a transmission line circuit applying the specific boundary
conditions and solving directly for the desired current or voltage.  This approach often results in a better
understanding of the physical behavior of the circuit and is illustrated in the next set of examples.
Obviously, the results must agree with those obtained by direct substitution into the above equations.

Example 2.2.3..  What is the voltage on the line if 0=sZ ?

)()( dj
L

dj eeAdV ββ −+ Γ+=

0/)()( ZeeAdI dj
L

dj ββ −+ Γ−=

s
j

L
j VeeALV =Γ+= −+ )()( θθ

)( θθ j
L

j
s eeVA −+ Γ+=

)()()( θθββ j
L

jdj
L

dj
s eeeeVdV −+−+ Γ+Γ+=

[ ]0)()()( ZeeeedI dj
L

djdj
L

dj ββββ −+−+ Γ+Γ−=

Example 2.2.4..  Find the voltage transfer function ,(load voltage/input voltage) and input impedance for a
quarter-wave transmission line.

Referring to Figure 2.5 one sees that the total voltage at a distance "d" is ( ) ( )dj
L

dj eeAdV ββ −Γ+= , and

therefore at the input the total voltage is ( ) ( )2/2/4/ ππλ j
L

j eeAV −Γ+=  ( )Ljj Γ−=  which simplifies to
( ) ( )LjAV Γ−= 14/λ .  At the load 0=d  and the total voltage equals )1()0( LAV Γ+= .  The voltage

transfer ratio is found by diving V(0) by V(λ/4) which simplifies to the results in Equation (2.24).  This is

θ= π/2

ZinSource Load

 x d

λ/4 L =

(Z )0

I(  )d

V(  )d  ZL

Figure 2.5  A quarterwave line with load
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L

Lj
V

V
Γ−
Γ+−=

1
1

)4/(
)0(

λ

o

L

Z
Z

j
V

V −=
)4/(

)0(
λ

(2.24)

a very useful result which is easy to remember since it is a simple ratio of the load impedance and the
characteristic impedance.  The -j term accounts for the phase shift naturally associated with a λ/4 line.  The
load impedance can be remembered as being in the numerator since for a short circuit load the voltage ratio
must be zero.

The input impedance can be found by additionally considering the total current at an arbitrary
distance "d" from the load, 0)()( ZeeAdI dj

L
dj ββ −Γ−=

 
and specifically at the input where d=λ/4 the

total current is 0
2/2/ )()4/( ZeeAI j

L
j ππλ −Γ−=

 

0)1( ZA LΓ+=  and therefore ,the impedance is given
by  the ratio of total voltage to total current which simplifies to give the results in Equation  (2.25)

o
L

L
in Z

I
V

Z
Γ+
Γ−==

1
1

)4/(
)4/(

λ
λ

L

o
in Z

Z
Z

2

= (2.25)

Power in a transmission line circuit is computed using the familiar expression
{ } { }.ReRe ** VIIVPower ⋅=⋅=   This represents actual power transmitted or lost at particular terminals of

a circuit.  The imaginary component, i.e., { }*Im VI  , is called reactive power and represents power stored
and exchanged (within a cycle) between magnetic and electric fields of the circuit.  The time average of
reactive power is zero.  The expression above assumes that I and V have been defined as rms currents and
voltages, which is an assumption which will always be made unless explicitly stated otherwise.

However, for transmission line circuits there are additional forms of power.  Since voltage and
current waves can exist on a line they represent a flow of power.  The power associated with these waves is
found by applying the above formula to the separate propagating components.  To illustrate this consider
the figure below.

d

(Z )0

I(  )d

V(  )d

 Z S

 VS  ZL

Figure 2.5  Power on the line is given by P(d)= ( )dP + - ( )dP − .
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The total voltage and current as seen earlier equals )()( dj
L

dj eeAdV ββ −Γ+=  and

0)()( ZeeAdI dj
L

dj ββ −Γ−=  where ( ) ( )[ ] ss
j

sL
j VZZZeeA 00

121 +ΓΓ−= −−− θθ  .  The forward voltage
+V , and current +I  are given by djAeV β=+  and 0ZAeI djβ=+ .  The power associated with them is

the forward propagating power +P  and is given by Equation (2.26a).  Similarly, the reverse propagating
power P−  is given by Equation (2.26b).  The net power or power delivered down the line is

−+ −= PPPdel  which is shown in Equation (2.26c)
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AeIVP
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
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
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


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
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



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 (2.26a)

o
L Z

A
P

2
2Γ=−  (2.26b)

( )
o

Ldel Z

A
P

2
21 Γ−= (2.26c)

Example 2.2.5..  Compute the power using )(I(d)* dV•  and compare with the previous results.

The power associated with abstract terminals at a distance "d"  along the line, designated P(d), is
given by { })()(Re)( * dVdIdP = .  Substitution of the expressions for I(d) and V(d) yields the results of
Equation  (2.27), where .IRL jΓ+Γ=Γ .

( )( )dj
L

djdj
L

dj

o
eeee

Z
A

dV ββββ −− Γ+Γ−=⋅ *
2

* )(I(d)

[ ]dj
L

dj
LL

o
ee

Z
A ββ 2*22

2

)1( Γ+Γ−Γ−= −

( )[ ]ddj
Z
A

dV RIL
o

ββ 2sin2cos2)1()(I(d) 2
2

* Γ+Γ−Γ−=⋅ (2.27)

Taking the real part of Equation (2.27) results in ( ) 0
22 1)( ZAdP LΓ−=   which is the net power

or power delivered by the line, delP , as seen above.
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Example 2.2.6...  Calculate the forward and reverse propagating power and the power delivered to the
load for the circuit shown in Figure 2.6

For this circuit substitution into the formulas yields 
10
3

jA −= , therefore, wattsP
5000

950
10
3 2

=




=+ .

Since 3/1=ΓL  then 
5000

1
5000

9
9
12 =











=Γ= +− PP L .  The power delivered to the load is

wattsPPPdel 625
1

5000
1

5000
9 =−=−= −+

The Thevenin Equivalent Theorem applies for transmission line circuits and the  equivalent
voltage and impedance is found using the familiar techniques.  Given two terminals of a circuit, which can
include any points along a transmission line, the equivalent circuit has the same voltage, current
characteristics that would be observed by the original circuit at the terminals.  The Thevenin voltage equals
the open circuit voltage at the terminals and the Thevenin impedance is  that seen by looking  into  the
terminals (with  voltage source shorted, and current sources opened).  This is illustrated by the following.

Example 2.2.7...  Find the Thevenin Equivalent circuit using the output terminals of the transmission line
circuit above.

Having determined the equivalent circuit compute the power delivered to the load.  The Thevenin
Equivalent circuit is found by opening the terminals and observing the input impedance and open circuit
voltage.  This  situation  is illustrated in Figure 2.7.

=100Ω

=1 ( )Zo=50Ω

λ/4

I(  )d

V(  )d

 Z S

 VS

=100 Ω ZL

Figure 2.6  Quarterwave line with source and load
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The input impedance can be found using the quarter wave relationship derived previously to get
( ) Ω=== 25100/50100/ 22

0Thev ZZ .  The open circuit voltage is found using the voltage and current

relationship for a transmission line, i.e., )()( djdj eeAdV ββ −+=  and  50)()( djdj eeAdI ββ −−= , since
1=ΓL  for an open circuit load.  At the input (d = λ/4) of the line ( ) 04/ =λV  and ( ) 25/4/ jAI =λ .  The

current into the transmission line under these conditions would be 1/100.  This determines the constant A,
)4/1(jA −=  and the general voltage and current expression becomes 4)()( djdj eejdV ββ −+−=

,

, and

200)()( djdj eejdI ββ −−−= .  The open circuit voltageVoc =V(0) = -j
2
1

.  The Thevenin Equivalent circuit

is therefore, Figure 2.8.

The power delivered from the transmission line to the load can now be found.  The voltage across
the load is 5/2)10025(100)2/1( jj −=+− -.   The power delivered to the load is, therefore

( )
watts

R
V

P
L

L
LOAD 625

1
100

5/2 22

===

which agrees with the results from above.

2.3 GRAPHICAL ANALYSIS OF TRANSMISSION LINES

The behavior of distributed circuits with respect to parameter changes is usually very important.
The two parameters whose variation is of most interest is usually physical dimensions (E.G. length), and
frequency (bandwidth).  Interest in the first come about because of tolerance considerations in fabricating

ZinVoc

=100Ω

=1 ( )Zo=50Ω

λ/4

I(  )d

V(  )d

 Z S

 VS

=100 Ω ZL

Figure 2.7  Determination of Thevenin Equivalent circuit for quarterwave line
with source.

VThev = -j 1
2

Z Thev
= 25 Ω

= 100 Ω Z
L

Figure 2.8  The Thevenin Equivalent circuit for the
source and transmission line.
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the circuits and interest in the second occurs because most circuits require more than a single frequency to
operate or communicate.  In the second case the range of frequencies is the bandwidth of the system.   It is
convenient to examine the effects of physical dimensions and frequency together for a distributed circuit
because the critical parameter which determines performance is electrical length which compares physical
length with wavelength.  Of course, the wavelength of a propagating signal on a distributed circuit is a
function of frequency.

Significant insights are possible by considering a transmission line with a load, LZ .  The load
reflection coefficient is ΓL  and from Equation (2.5a) the total voltage at a distance "d" from the load equals

( )dj
L

dj eAedV ββ 21)( −+ Γ+= .  The magnitude of this voltage is therefore, dj
LeAdV β21)( −Γ+= .  This

magnitude is illustrated in Figure 2.9a as the vector addition of two complex numbers, 1+j0, and dj
Le β2−Γ .

If the distance d is increased then the total voltage V(d) varies as shown in figure 2.9b.  The vector
representing the complex number dj

Le β2−Γ  rotates in a clockwise fashion since negative angles are
measured in a clockwise rotation and positive angles in a counter clockwise rotation.  The total voltage
increases and decreases as the tip of the vector traces out a circle or radius LΓ .  The maximum total

voltage occurs when the vector dj
Le β2−Γ  points to the right (0 degrees) and the minimum occurs when the

vector points to the left (±180 degrees or ±π radians).  A rectangular plot of the total voltage is illustrated in
Figure 2.10 as a function of the distance d.

1

e- βd2jΓ
L

1 e- βd2jΓ
L+

(a.)
(b.)

Figure 2.8  (a.)  The total voltage on a transmission line as a vector sum.
(b.)  Illustration showing how the total voltage changes as the
distance "d" is increased
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The voltage variation illustrated in figure 2.10 is called a standing wave pattern.  It is an amplitude
resulting from the combination of counter propagating voltages which remains stationary with respect to
position on the line, and hence the name.  The minimum amplitude is designated minV  and occurs in a null
in the pattern.  Similarly the maximum voltage amplitude is designated maxV .  The ratio of the maximum to
minimum voltage on the line is called the Voltage Standing Wave Ration., minmax VVVSWR =  which is a
real number always greater than or equal to one.  To emphasize that the VSWR is a ratio it is often
numerical reported as "n:1", (spoken " n to one"), for example an antenna as a load at the end of
transmission line may produce a VSWR on the line of 1.4:1.  Often in this situation the load is referred to
has having a VSWR which really means that it produces the VSWR when connected to the transmission
line.

The maximum voltage is given by ( )LAV Γ+= 1max  and while the minimum voltage is

( )LAV Γ−= 1max .  The ratio of these gives the expression for the VSWR shown in Equation (2.28a). Also,
one can solve for the magnitude of the reflection coefficient which is observed to be only a function of the
VSWR as seen in Equation (2.28b)

L

LVSWR
Γ−
Γ+

=
1
1

(2.28a)

1
1

+
−=Γ

VSWR
VSWR

L (2.28b)

In addition to the information provided by the VSWR, the locations of the nulls, which are usually
much sharper than the peaks, provides useful information.  The physical distance, d∆ , between successive
nulls occurs when the vector  in figure 2.8 rotates through 180 degrees or 2π radians.  This occurs when

πβ 22 =∆d  and since λπβ 2=  then 2λ=∆d . Therefore, the null-to-null distance equals the
half wavelength.  Based only on measurements of the total voltage magnitude the propagation wavelength
and the magnitude of the load reflection coefficient can be determined.  If the frequency is known then the
propagation phase velocity, v  is determined by v f= λ.  Since the load reflection coefficient is a complex
number and only its magnitude has thus far been determined it remains to see how to calculate the angle for

Vmin
Vmax

d

V(d)
λ/2

d null

  ZLV(d)

Figure 2.10  Plot illustrating variations in the total voltage
magnitude )(dV
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the load reflection coefficient.  Assuming that the load reflection coefficient angle is θ then Lj
LL e θ+Γ=Γ

and the distance to the first null is nulld  then πβ j
L

dj
L ee null −− Γ=Γ 2  and πβθ j

L
djj

L eee nullL −− Γ=Γ 2  which

implies that πβθ −= nullL d2  and with λπβ 2=  then ( )πθ 14 −= nullL d .

Example 2.3.8..  When a 50 Ω  is connected to an unknown load the following plot of voltage magnitudes
are observed along the line for an operating frequency of 10 GHz.  Determine the load impedance and the
propagation velocity for the line.

The problem is solved by first computing the wave length, lambda, and then computing the
reflection coefficient observed at the first null, G.  Note that the magnitude of G is found from VSWR
formula and the angle is 180 degrees (or negative real number).  The veloctiy is found since both the
frequency (given) and the wavelength (calculated) are known.

dnull=0.46
lambda=2*(2.96-0.46)
lambda = 5
» Beta=2*pi/lambda
Beta =    1.2566

VSWR=1.8;
G=-(VSWR-1)/(VSWR+1)
G =   -0.2857

GL=G*exp(+j*2*Beta*dnull)
GL =  -0.1151 - 0.2615i

ZL=50*(1+GL)/(1-GL)
ZL =  35.0024 -19.9333i

» f=4e9;
» v=f*lambda
v =  2.0000e+010
Complex Geometry Theorem I:

0246810
d in cm

V(d)

ab

(a)  d=0.46
(b)  d=2.96

VSWR=1.8:1

Figure 2.11  VSWR data for Example 2.3.8.
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A straight line in the complex plane is defined by dczzc 2=+ ∗∗  where c is a complex number of having
magnitude 1 and d is a real number.  The unit vector defined by the complex number c is perpendicular to
the line and the real number d is equal to the line's distance from the origin.

Proof:

Since jyxz +=  and jbac +=  then ( ) dbyaxczzc 22 =+=+ ∗∗  and dbyax =+  is a straight

line.  Since 1=+= jbac  then ax by+  can be viewed as the dot product (inner product) between a unit

vector $ $ $c i i= +a bx y  and a position vector yx yx iir ˆˆ +=  and therefore cr ˆ⋅=d  and therefore d is the

projected distance from the point (x,y) in the direction of ĉ .

Complex Geometry Theorem II:

A circle in the complex plane is defined by bczzcz =−− ∗∗2  where a is a complex number and b is a

real number such that 02 >+ cb .  The center of the circle is given by the complex number a and the

radius of the circle equals 2cb + .

Proof:

Adding 2c  to both sides of bczzcz =−− ∗∗2  gives 222 cbcczzcz +=+−− ∗∗  and since

( )( ) 222 czczczcczzcz −=−−=+−− ∗∗∗  then 22 cbcz +=−  and 2cbcz +=−  which is the

equation for a circle with center located on the complex plane at the point "c" and having radius b c+ 2 .

Note that the equation requires that 02 >+ cb

Looking at the relationship between Z and Γ one can consider how the reflection coefficient
changes as the resistance alone varies.  In this case ojXRZ +=  where R can be viewed as a variable
resistance while Xo  is taken as a constant.  The curve in the Z-plane is a straight line as shown in figure
2.12a.  Using the complex geometry theorem I the equation for the constant reactance line would be

dczzc 2=+ ∗∗  where c=0+j1, or 02XjZjZ =+− ∗ .  Substitution of Z from the relationship
( ) ( )Γ−Γ+= 110ZZ  results in

000 2
1
1

1
1

XZjZj =





Γ−
Γ++







Γ−
Γ+− ∗

∗
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and clearing the denominator results in the Equation (2.29a)  where the normalized reactance is given by
000 ZXx = .  This simplifies to give Equations (2.29c) which can be recognized from the complex

geometry theorem II to represent a circle in the Γ-plane with center given by 011 xjc +=  and b=-1

implies that the radius= oo xxbc 1111 22 =−+=+ .  This is illustrated in figure 2.12b.  Figures 2.12c

and 2.12d illustrate the set of circle in the Γ-plane resulting from a set of constant reactance lines in the Z-
plane.

( )( ) ( )( ) ( )( )∗∗∗ Γ−Γ−=Γ−Γ+−Γ−Γ+ 1121111 0xj (2.29a)

( ) ( )2
0

22 1211 Γ+Γ−Γ−=Γ−Γ+Γ−−Γ−Γ−Γ+ ∗∗∗ xj (2.29b)

11111
00

2 −=Γ



 +−Γ



 −−Γ ∗

x
j

x
j (2.29c)

In a similar way one can examine what happens to the constant resistance line in  Z-plane  when it
is mapped into the Γ-plane. A constant resistance is presented by Z R jXo= +  where X varies and Ro

Xoj Z = R+jXo

Z-Plane

real

imaj

real

imaj

1

1+ jc =

radius =

imaj

1

Z-Plane

real

imaj

(a.) (b.)

(c.)
(d.)

Figure 2.12  (a.)  The complex impedance plane showing the trace of a constant
reactance line  (b.)  the constant reactance curve in the Γ-plane (c.)
multiple constant reactance line in Z-plane (d.)  multiple constant
reactance curves in Γ-plane
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remains constant.  This is illustrated in figure 2.13a for several different choice for the constant Ro
including several that are negative.  The development will apply to both positive resistance loads as well as
to negative resistance loads.  Again the development begins using the Complex Geometry "Theorem I
which describes a constant resistance line in the Z-plane, i.e., 02RZZ =+ ∗ .  Substitution of

( ) ( )Γ−Γ+= 110ZZ  and r R Z0 0 0=  together with simplification as before yields

( )( )∗Γ−Γ−=Γ− 11222 0
2 r  and 2

0000
21 Γ+Γ−Γ−=Γ− ∗ rrrr .  Combining terms and division results

in Equation (2.30) which is recognized from the complex Geometry Theorem II to be a circle

0

0

0

0

0

02

1
1

11 r
r

r
r

r
r

+
−=Γ





+
−Γ





+
−Γ ∗  (2.30)

where ( ) ( )00 11 rrb +−=  and ( )00 1 rrc +=  and for both positive and negative values of 0r  one sees that

02 >+ cb .  The center of the circle is therefore given by ( )00 1 rrc +=  and radius = 011 r+ .   Note that

for 10 −>r  that Center + Radius =1 i.e., the right hand side of the circles are tangent to point Γ=1+j0.  For
10 −<r  then Center - Radius=1 and the left hand side of the circles are tangent to the point Γ=1+j0.  If

10 −=r  then from ( ) 2
0000 11 Γ++Γ−Γ−=− ∗ rrrr  it follows that 2=Γ+Γ ∗  the curve is a straight line

perpendicular to the real axis and crossing the real axis at the point Γ=1.  This is illustrated in figure  2.13b.

Z = R  +jX

Z-Plane

real

imaj

real

imaj

1

r0 = -1

r
0 = 0 r0 = 1

r0 < 0-1 <

r0 = -2

r0-2 <

r0 = -3

r0 = -1

r0 < -1-2 <

r0 < 0-1 <

r
0 = 0

r0 = 1
r0 = -2

r0 = -3

(a.) (b.)

Figure 2.13  (a.)  Example of seven constant resistance line in the S-plane.  (b.)  the
seven constant resistance line in the Γ-plane.



DISTRIBUTED-ELEMENT CIRCUIT ANALYSIS TECHNIQUES    2 - 21

Chap_02r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

From the above analysis one can plot both the constant reactance and constant resistance circles on
the Γ-plane as illustrated in figure 2.14a.  The dark circle equates to a resistance of zero.  Inside this circle
the resistance is positive and outside of it the resistance is negative.  Inside the reflection coefficient has a
magnitude less than one and outside its magnitude is greater than one.  The dark circleis the unit circle on
the complex Γ-plane since 1=Γ .  This representation of the Γ-plane with the circles is referred to as a
Smith Chart named for its founder.  The region in the dark circle is referred to as the Unit Smith Chart
(USC) and represents passive loads, i.e., those having an impedance with a positive real part.  The region
outside of the USC equates to active load, i.e., those having an impedance with a negative real part.  The
USC region is shown expanded in figure 2.14b

b = 1
= 2 = .5bb

= .5g

= 1g

= 2g

= -2b
= -1b

= -.5b

Admittance

Impedance
Coordinates

Coordinates

(a.) (b.)

Figure 2.15  (a.)  The USC showing circles of constant conductance and constant
suseptance.  (b.)  A Y-Z Smith Chart shows both admittance and
impedance circles

real

imaj

x = 1

x = -1

x = 2

x = -2

x = .5

x = -.5

r = 0

r = 1 r = 2
r = .5

real

imaj

(a.) (b.)

Figure 2.14  (a.)  The Γ-plane with the circles of constant reactance and constant resistance
displayed.  (b.)  The Passive Smith Chart or Unit Smith Chart (USC)
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If one looks at the reflection coefficient in terms of an admittance ZY 1=  then the reflection
coefficient becomes ( ) ( )00 YYYY +−−=Γ  which is of exactly the same form as the resistance formula
except with a negative sign in the front.  Therefore it follows immediately that a mapping from the complex
admittance plane would result in lines of constant conductance and constant suseptance become circles on
the Γ-plane.  However the negative sign would mean that everything would be rotated by 180 degrees.  This
is illustrated in figure 2.15a for the USC where g represent conductance and b represents suseptance.
Figure 2.15b illustrates the USC showing some of the admittance coordinates as well as the impedance
coordinates.  This type of representation is called a Y-Z Smith Chart.  Note that in all charts the bottom
represents a capacitive load and the top an inductive load

One now considers a series resonant circuit consisting of an inductor, capacitor, and resistor as a
load and considers how the reflection coefficient would change as the frequency is increased from a low
value to a high value.  The reactance values will change from a net negative value to a net positive value as
the frequency increases.  The resistor, assuming that it is ideal, will have a value independent of frequency,
i.e., it will be a constant.  Hence the reflection coefficient, Γ, will follow a trace similar to that illustrated in
Figure 2.16a.  It will lie upon a circle of constant resistance an move from capacitive to inductive reactance,
i.e., move from the lower half of the USC to the upper half.  The real and imaginary axis are shown as a
reminder that the Smith Chart is an overlay of impedance and admittance coordinates on the complex Γ-
plane.  Similarly, a shunt or parallel resonant consisting of an inductor, capacitor, and resistance will follow
a constant suseptance trace moving from inductive which will dominate a lower frequencies to capacitive
which will dominate at higher frequencies as illustrated in Figure 2.16b.

real

imaj
Γ

real

imajΓ

(a.) (b.)

real

imajΓ

Lower

Resistance
Shunt

(c.)

Figure 2.16  (a.)  Plot of Γ with increasing frequency of a series resonant circuit,  (b.) shunt or parallel
resonant circuit with increasing frequency.  (c.)  Plot of the reflection coefficient of a shunt
resonance circuit with a lower shunt resistance.

For the shunt resonator if the resistor is lower (conductance higher) then the reflection coefficient
could follow a trace similar to that shown in Figure 2.16c.  Therefore, it is clear that a shunt resonator
always follows a path from top to bottom (inductive to capacitive) and is at resonance at the frequency
where Γ crosses the real axis.  The opposite is true for a series resonance.

In figure 2.16c the Q of the resonance is lower than the previous shunt circuit.  Hence the radius of
curvature of the trace gives an indication of the Q associated with the circuit's resonance. Often a circuit
manifests more complicated behavior revealing multiple resonances.  Such an example is illustrated in
Figure 2.17a.  In this example as the frequency is increased from a low to a higher value the circuits
reflection coefficient (or impedance) first looks capacitive and then passes through a series resonance.  As
the frequency continues to increase the circuit looks inductive and then passes through a shunt resonance.
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As the frequency is increased even higher the circuit passes through a series resonance again and
remains inductive thereafter.  The example of figure 2.17a illustrates the property that loops in the reflection
coefficient trace proceed in a clockwise fashion as frequency increases.  This usually makes it possible to
examine data on a Smith Chart and deduce which point on the trace is the lower versus the higher
frequency.  This behavior of the reflection coefficient trace is due to of causality property of a physically
realizable circuit.  This follows from the fact that the reflection coefficient as a function of frequency is
relates an reflected voltage to an incident voltage by )()()( ωωω +− Γ= VV .  If the incident voltage is

viewed as a time signal whose Fourier Transform is )(ω+V  then ∫
+ ∞

∞−

++ = ωω
π

ω deVtv tj)(
2
1

)( .  Likewise the

reflected time signal would be related to )(ω−V  by its Fourier transform, i.e.,

∫
+ ∞

∞−

−− = ωω
π

ω deVtv tj)(
2
1

)( .  Also )()()( tvtgtv +− ⊗=  where ⊗  represents the convolution operation, i.e.,

∫
+ ∞

∞−

+− −= τττ dgtvtv )()()( .  If the circuit is a physically realizable one then the principle of causality

applies.  This means that the signal output at a time "t" can only depend of signal inputs occurring only
before time "t" and not afterwards.  Therefore from the integral it must follow that g(τ) = 0 when τ<0 since
otherwise the integral would have a contribution from )(tv +  for times exceeding t.  Also,

dtetg tjωω −
+ ∞

∞−
∫=Γ )()(  and since g(t)=0 for negative times then dtetg tjωω −

+ ∞

∫=Γ
0

)()( .  Notice that Γ( )ω  is a

sum (integral) of complex unit vectors, e j t− ω , rotating clockwise as a function of increasing frequency, ω,
and which are scaled by an amplitude factor, g(t).  Therefore a trace of Γ( )ω  can be though of as a vector
sum as illustrated in figure 2.17b.

real

imaj

sum

Γ-Plane

real

imaj

(a.) (b.)

g(t  )e1
-jω t11

g(t  )e2
-jω t21

g(t  )e3
-jω t31

g(t  )e1
-jω t12

g(t  )e2
-jω t22

g(t  )e3
-jω t32

Figure 2.17  (a.)  More complex circuits display multiple resonant behavior (2
series+1 shunt).  (b.)  Tendency towards clockwise rotation
due to causality of physical circuits
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Figure 2.18 illustrates a Γ plot of a transmission line with a load as a function of frequency.  The
radius of the circle is LΓ .  Again notice that the trace proceeds in a clockwise direction with increasing
frequency.

real

imaj
Γ Z0( ) ZL

ΓL

Figure 2.18  Reflection coefficient trace as a function of frequency for a
transmission line connected to load impedance

Example 2.3.1..  Find the reflection coefficient for a load consisting of a series combination  75 Ω
resistance and 1 pF capacitor operating a 1 GHz where Zo= 50 Ω .  What is reflection coefficient the load
is connected to a λ/2 line, λ/4 line, or λ/8 line.

The calculations are easily computed using the above dirived relationships

f=1e9;  ω=2*pi*f;  C=1e-12;   R=75;    Zo=50;

X=-1/(ω*C);   ZL=R+j*X;   GL=(ZL-Zo)/(ZL+Zo)   ⇒
GL =   0.6948 - 0.3886i

length=λ/2,  ⇒   beta*length = pi  ⇒   G=GL*exp(-2*jπ)  ⇒
G =   0.6948 - 0.3886i

length=λ/4  ⇒   beta*length = pi/2  ⇒    G=GL*exp(-j2π/2)  ⇒
G =  -0.6948 + 0.3886i

length=λ/8  ⇒   beta*length = pi/4  ⇒   G=GL*exp(-j2π/4)  ⇒
G =  -0.3886 - 0.6948i
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Example 2.3.2..  A new load is created by making parallel connection of two 50 Ω  lines each having their
own load as illustrated below.  What is the impedance.  What is the reflection coefficient produced by the
new load on a 75 Ω  line with length λ/4.

ZL1=25+j*75;
Zo=50;
GL1=(ZL1-Zo)/(ZL1+Zo)
GL1 =   0.3333 + 0.6667i
G1=GL1*exp(-j*2*pi/2)
G1 =  -0.3333 - 0.6667i
ZL1p=Zo*(1+G1)/(1-G1)
ZL1p =  10.0000 -30.0000i

ZL2=50+j*25;
GL2=(ZL2-Zo)/(ZL2+Zo)
GL2 =   0.0588 + 0.2353i
G2=GL2*exp(-j*2*pi)
G2 =   0.0588 + 0.2353i
» ZL2p=Zo*(1+G2)/(1-G2)
ZL2p =  50.0000 +25.0000i    [Note same as ZL2 since line is lambda/2]

ZL=(ZL1p*ZL2p)/(ZL1p+ZL2p)   [Parallel combination]

ZL =  22.4138 -18.9655i

Z1=75;                 [Characteristic impedance of line]
GL=(ZL-Z1)/(ZL+Z1)

GL =  -0.4836 - 0.2888i

Example 2.3.3.. For the load illustrated below compute the reflection coefficient as the  frequency
increases from .5 to 8 GHz..

(Z  )1

(Z  )0

(Z  )0

Z L1

ZL2

λ /8

λ /4

λ /2

ZL

ΓZL = ?
Γ = ?

Z1 = 50 Ω
Z0 = 75 Ω

Z L1 = 25 +j 75 Ω
ZL2 = 50 + j25 Ω

Figure 2.19  VSWR data for Example 2.3.2
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%script file ex2_2_4.m
%Solution to exmaple 2.2.4
%

f=[.5:.1:8]*1e9;
w=2*pi*f;

L1=1e-9;
C1=10e-12;
R1=2;     |
C2=.5e-12;
R2=500;

v=2e10;
lambda=v./f;
beta=2*pi./lambda;
length=.05;
Zo=50;

XL1=w*L1;
XC1=-1./(w*C1);
Z1=R1+j*XL1+j*XC1;
Y1=1./Z1;

XC2=-1./(w*C2);
Z2=j*XC2;
Y2=1./Z2;

Y3=1/R2;

YL=Y1+Y2+Y3;
ZL=1./YL;
GL=(ZL-Zo)./(ZL+Zo);
G=GL.*exp(-j*2*beta*length);
plot(G)
hold on
usc1
axis off
function usc1
%over lays Unit smith chart on ploted complex data
plot(res2usc(0))
hold on

(Z  )0

L
C1

L1

R1

C2

R2
Γ C1

L1

R1

C2

R2

=

=

=

=

=

Z  0 = 50 Ω
1 nH

500 Ω

.5 pF

2 Ω

10 pF
L = .05 cm

v = 2 x 1010 cm/s

Figure 2.20  VSWR data for Example 2.3.3

#1 #2

#1 = Series Resonance
#2 = Shunt or Parallel Resonance

f1 = .5 GHz
f2 = 8 GHz

Figure 2.21  Reflection coefficient trace for the
circuit in Example 2.3.3
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axis('square')
plot(res2usc(1),'c--')
  %plot(res2usc(1/3),'c--')   Comment out unwanted coordinates
  %plot(res2usc(.5))
  %plot(res2usc(.25))
  %plot(res2usc(2))
  %plot(res2usc(3),'c--')
  %plot(res2usc(4))
plot(x2usc(0),'c:')
plot(x2usc(1),'c:')
  %plot(x2usc(3),'c:')
  %plot(x2usc(1/3),'c:')
  %plot(x2usc(.5))
  %plot(x2usc(.25))
  %plot(x2usc(2))
  %plot(x2usc(4))
plot(x2usc(-1),'c:')
  %plot(x2usc(-3),'c:')
  %plot(x2usc(-1/3),'c:')
  %plot(x2usc(-.5))
  %plot(x2usc(-.25))
  %plot(x2usc(-2))
  %plot(x2usc(-4))
--------------------------------
function y=res2usc(r)
%generates constant resistance circle for Unit Smith Chart
theta=pi*[0:5:360]/180;
Ucir=exp(j*theta);
ctr=r/(1+r);
rad=1/abs(1+r);
y=ctr+rad*Ucir;

-------------------------------
function y=x2usc(x)
%generates constance reactance circle-segments for Unit Smith Chart
if x==0
  y=[-1+j*eps, 1+j*eps];
else
  ctr=1+j/x;
  rad=1/abs(x);
  maxangle=2*atan(x);
  if x>0
   theta=-pi/2-[0:maxangle/20:maxangle];
  elseif x<0
   theta=pi/2-[0:maxangle/20:maxangle];
  end
  y=ctr+rad*exp(j*theta);
end

2.4 TRANSMISSION LINE STUBS (λ/4. etc.)

Transmission lines where the load is either an open circuit or a short circuit are of special importance.  In
the first case ∞== openL ZZ  and the second Z ZL short= = 0 , and the reflection coefficient becomes Γopen = 1
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and Γshort = − 1 .  The total voltage and currents at a location "d" from such loads are given by
V d A e eopen

j d j d( ) ( )= ++ −β β , 0/)()( ZeeAdI djdj
open

ββ −+ −= , and V d A e eshort
j d j d( ) ( )= −+ −β β ,

0/)()( ZeeAdI djdj
short

ββ −+ += .  Each of these expression can be simplified using Euler's identity to get
dAdVopen βcos2)( = , 0/sin2)( ZdAjdIopen β= , and dAjdVshort βsin2)( = , 0/cos2)( ZdAdI short β= .

The impedance looking through a line of length d at an open or short load is given by
)()()( dIdVdZ openopenopen =  and )()()( dIdVdZ shortshortshort =  resulting in Equations 2.31a and 2.31b.

This is illustrated in figure 2.22 which shows that the VSWR = ∞  Open and short circuited transmission line
are often referred to an open stub or shorted stub.

djZdZopen βcot)( 0−= (2.31a)

djZdZ short βtan)( 0= (2.31b)

d

V(d)

I(d)

d

V(d)

I(d)

d d

X     (d)open X     (d)short

Z     (d) = jX    (d)open open Z     (d) = jX     (d)short short

Impedance Impedance
(a.) (b.)

Figure 2.22  (a.)  )(dV  , )(dI , Reactance plots, and impedance type for an open
circuited transmission line.  (b.) same for a short circuit transmission line.

The reflection coefficient for an open circuited stub is dje β2−=Γ  and therefore data as a function of
length, "d," or as a function of increasing frequency would produce a trace on the unit circle of Smith Chart
display.  This is illustrated in figure 2.23 which shows the impedance type associated with the point.
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openshort

Figure 2.23  A reflection coefficient trace of an open stub on the USC follows
the unit circle rotating in a clockwise direction starting from
the right (open) value.  Trace is a function of increasing length
or increasing frequency.

Example 2.4.1.. A circuit consisting of two sources, one operating at 1 GHz and other at 2 ±.05 GHz are
connected via a 50 Ω  resistor to a transmission line which in turn is connected to a 50 Ω  load.  It is desired
to suppress the 2 GHz signal using an open circuited stub.  If a 2 GHz λ/4 open stub is connected in shunt
with the load what suppression can be achieved as a worst case.?  How does the characteristic impedance of
the stub affect the power delivered to the load at the desired frequency?

This problem is easily examined using computer aided analysis.  The solution below assumes a propagation
velocity of 20 cm/ns for the direct line and stub (all impedances).  A frequency of 2 GHz equates to a
wavelength λ/4=5 cm which becomes the length for the stub, D1.

%script file ex2_3_1.m
%solution to example 2.3.1
%
RL=50;
Rs=50;
V=1;
for Zstub=20 :30:110;
  f=[1:.01:2.5]*1e9;
  w=2*pi*f;
  vo=2e10;
  vstub=2e10;
  beta=2*pi*f/vo;
  betastub=2*pi*f/vstub;
  Do=11;
  Dstub=2.5;
  Zo=50;
  ZZ=-j*Zstub*cot(betastub*Dstub);
  Y=1./ZZ;
  YL=1/RL;
  YT=Y+YL;

(Z )0

V
1

V
2

R1

RL

(Z  )1

Do

D1

Figure 2.24  Example of a stub being used
to suppress a signal
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  ZT=1./YT;
  GT=(ZT-Zo)./(ZT+Zo);
  G=GT.*exp(-j*2*beta*Do);
  Zin=Zo*(1+G)./(1-G);
  Iin=V./(Rs+Zin);
  Vin=V*Zin./(Rs+Zin);
  P=conj(Iin).*Vin;
  Preal=real(P);
  P=10*log10(abs(Preal));
  Parray=[Parray;P];
end

Pmin=-80*ones(size(Parray));
plot(f*1e-9,max(Parray,Pmin))
axis([1 2.5 -80 0 ])
title('Power delivered to load vs Frequency')
xlabel('Frequency (GHz)')
ylabel('Power (dBm)')
Compare=[Parray(:,find(f==1e9)),Parray(:,find(f==1.95e9))];
Compare(:,1)-Compare(:,2)

20          25.9702

80          17.6748

Example 2.4.2.. A λ/4 stub is used so that the voltage from a DC source (called a bias voltage) can be
applied to the output of a transistor.   Find the percentage of power that goes to the laod vs. the bias supply.
for the ciruit below.

It is desirable for no DC power to reach the load so a series capacitor is used.  It is also desireable for very
little microwave power to propagate down the stub into the bias circuits so the source should appear as a
low impedance.

1 1.5 2 2.5
-80

-70

-60

-50

-40

-30

-20

-10

0
Power delivered to load vs Frequency

Frequency (GHz)

Power (dBm)

Z stub=
20
50
80

110

Figure 2.25  Plot showing power delivered to load as a
function of frequency for a fixed stub

Power to load at desired freq compared to power to load at
unwanted freq

Zo in Ω   P(1)/P(1.95) in dB
20          25.9702

50          21.1514

80          17.6748

110          15.1545
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%script file ex2_3_2.m
%solution to example 2.3.2
%
RL=50;
Rtran=200;
V=1;
Zo=50;   %Z1=Zo & Z2=Zo
Zstub=120;
f=1e9;
w=2*pi*f;
theta1=2*pi*3/8;  %beta1*D1
theta2=2*pi*7/16; %beta2*D2
thetastub=2*pi/4; %betastub*Dstub
Rbias=1;
Gbias=(Rbias-Zo)/(Rbias+Zo);
Gstub=Gbias*exp(-j*2*pi*thetastub);
Zstub=Zo*(1+Gstub)/(1-Gstub);

C=100e-12;
Xc=-1/(w*C);
Ztotal=RL+j*Xc;
GL=(Ztotal-Zo)/(Ztotal+Zo);
G2=GL*exp(-j*2*pi*theta2);
Z2=Zo*(1+G2)/(1-G2);

Zcomb=Zstub*Z2/(Zstub+Z2);
Gcomb=(Zcomb-Zo)/(Zcomb+Zo);
Gin=Gcomb*exp(-j*2*pi*theta1);
Zin=Zo*(1+Gin)/(1-Gin);
Iin=V./(Rtran+Zin);
Vin=V*Zin./(Rtran+Zin);
P=conj(Iin).*Vin;
Pin=real(P);
Pcomb=Pin;
V2magsqr=Pcomb*Zcomb;
Pstub=real(V2magsqr/Zstub);
P2=real(V2magsqr/Z2);
Loadfraction=10*log10(P2/Pin)      % dB
Stubfraction=10*log10(Pstub/Pin)   % dB

To Load    -0.3135  dB

(Z )0

A

B(Z )0

(Z  )1

C

Transistor

Bias5 v

1 Ω

50 pF

R  = 50L Ω

λ/4

λ/8 λ/163 7

Figure 2.26  Plot showing power delivered to
load as a function of frequency for a fixed stub

Fractional Power split between Load and Bias

Where Power Delivered Power Ratio (dB)
To Load    -0.3135  dB

To Bias Supply   -11.5714  dB
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2.5 LOSSY TRANSMISSION LINES

In some cases it is desireable to consider the losses associated with propagation on transmission
lines.  This may occur when circuits involve longer lines, or for lines required to be fabricated with lossy
materials, or for circuits operating at very high frequencies such as millimeter wave circuits.  For a low loss
transmission line, it is generally assumed that LR ω<<  and CG ω<< .  With these assumptions one can
determine the characteristic impedance cZ  the phase velocity of the signal using the expression for the
propagation constant γ derived in section 2.1.  The low loss assumptionsimply that

CLZ c ≅ (2.32)

which is the same as the characteristic impedance of a lossless transmission line.  For the propagation
constant, one should proceed as follows.  From (2.9),

( )LGRCjLCRG ++−= ωωγ 2 (2.33)

With the low loss assumption, one can dismissed the RG  term in the equation above since it is too small
compared to other terms.  Thus,

( )LGRCjLC ++−≅ ωωγ 2 (2.34)

Applying the binomial expansion, i.e. ( ) ( ) ⋅⋅⋅+−++=− −− 221

!2
1

xa
nn

xnaaxa nnnn , to (2.34).

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅++−++−+−≅ −− 222
3

22
1

22
1

2

8
1

2
1

LGRCLCLGRCjLCLC ωωωωωγ

or

⋅⋅⋅+



 ++





 ++≅

2

82
1

C
G

L
RLC

j
C
G

L
RLCLCj

ωω
ωωγ (2.35)

All terms after the second in the above equation is negligible based on the small loss assumptions.  And,
finally,

LCj
C
G

L
R

LCj ωβαγ +




 +=+≅

2
1

(2.36)

The phase constant β is also the same as the wave number defined in a lossless transmission line, but now
the attenuation constant is not zero.  Since the wave is attenuated by the factor of xe α−  as it traveled in the

x+  direction,.  One can readily see that

( )cc GZRY
C
L

G
L
C

R +=





+=

2
1

2
1α (2.37)



DISTRIBUTED-ELEMENT CIRCUIT ANALYSIS TECHNIQUES    2 - 33

Chap_02r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

The complete solution of the voltage wave that travels in the x+  direction is tjxeV ωγ +−+ .  The phase
velocity is derived from the time displacement of the constant phase point, i.e. assuming the exponential
term  to be a constant, utjx =+− ωγ , and taking the time derivative of it.  This yields

LCLC
C

G
L

R
LC

j
LCj

C
G

L
R

LC

jj
td
xd

v p
1

2
1

1

2
1

≅
+



 +

=
+





 +

≅==

ωω
ω

ω
γ
ω (2.38)

The phase velocity of the signal in a low loss line is the same as that in a lossless line.  It is customary to
expressed the characteristic impedance in terms of the phase velocity and one of the circuit parameter as
below.

Cv
Lv

C
LZ

p
pc

1=== (2.39)

At high frequencies, the electromagnetic field can penetrate only a small distance into a conductor.
In fact, the amplitude of the fields decay exponentially from its value at the surface of the conductor
according to sue δ− .  Here, u  is the normal distance into the conductor and sδ  is the skin depth given
below.

mm
s σµω

δ 2= (2.40)

where ω  is the angular frequency of the signal, mµ  is the permeability of the conductor, and mσ  is the
conductivity of the conductor.  At one skin depth, i.e. su δ= , the field strength is 37% of the surface value.
At three skin depth, i.e. su δ3= , the field strength is down to only 5% of its surface value.  For copper, a
commonly used conductor in microwave transmission media, the skin depth at 100 MHz is 6.6 micron or
0.26 mils.  At 10 GHz, the skin depth is 10 times smaller than that.  Therefore, when considering the finite
conductance of a lossy transmission line, the series resistance R in Figure 2.1 is usually expressed in terms
of the surface resistance Rm , which is defined as

sm
mR

δσ
1= (2.41)

The exact formula for the series resistance of a particular transmission media also depends on the geometry
of the media itself.

In Figure 2.1, the admittance Y of the shunt components can be expressed as





 −=+=

C
GjCjGCjY

ω
ωω 1

The term CG ω , which causes the admittance Y to deviate from a pure imaginary value with non-zero
dielectric conductivity, is called the loss tangent and conventionally denoted as " tanδ".  For a particular
transmission media, the geometric factor for the conductance and capacitance of the dielectric is the same
and can be eliminated from the loss tangent formula.  In other words, dkG σ=  and dkC ε= , where k is the
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geometric factor, dσ  and dε  is the conductivity and the permittivity of the dielectric respectively.
Therefore,

d

d

εω
σδ=tan (2.42)

and the dielectric conductance G in terms of the loss tangent is

δω tanCG = (2.43)

To account for attenuation due transmission line losses is reatively easy to accomadate since γ = α + jβ and
the total voltage on the line is

( )d
L

d eeAdV γγ −Γ+=)(

The generalized reflection coefficient at a point "d" from the load is

d
Le γ2−Γ=Γ

The attenuation constant has units of inverse distance since when it is multiplied by "d" the exponent
becomes a unitless number.  This unitless number is given the honorary label, Neper, after the Napier the
inventor of natural logarithms.  Thus, α would be described in terms of Nepers/cm, Nepers/in indicating
that when multiplied by the length in appropriate units that the resulting number is the correct exponential
value.  Howeve, loss is usually measured in terms of dB or dB per unit length and it is therefore important
to understand how to convert to Nepers per unit length for calculation purposes.  The voltage a point "d" on
a matched line is compared with the voltage at a point "d+∆d" to get

djdd
d

dd
eee

Ae
Ae

dV
ddV ∆∆∆

∆+
===∆+ βαγ

γ

γ )(

)(
)(

de
dV

ddV
dP

ddP ∆=∆+=∆+ α2
2

)(
)(

)(
)(

ed
dP

ddP
PdB 1010 log20

)(
)(

log10 ∆=



 ∆+=∆ α

686.8log20 10 ==
∆

∆
e

d
PdB α

Therefore 1 Neper/unit length is seen to equal 8.68 dB/unit length.  It is instructive to examine a line that
has 1 dB of loss per wavelength.
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Example 2.5.1.. Plot the total voltage magnitude on a rectangular plot and the reflection coefficient on a
Smith chart for an open circuited stub with a 1dB per wavelength loss.

%script file ex2_4_1
%to illustrate attenuation

% alpha is 1 dB / wavelength
% beta is just 2*pi radians since
% d is measured as fractional
% wavelenght
d=[0:.01:3];
beta=2*pi;
alpha=1/8.686;
gamma=alpha+j*beta;
GL=1;
Vd=exp(gamma*d)+exp(-
gamma*d);
Vdmag=abs(Vd);
plot(d,Vdmag)

G=exp(-2*gamma*d);
figure
plot(G,'r');hold

Figure 2.27  Plot showing reflection coefficient for loss open
circuit stub for lengths up to 3 λ.
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usc

From Figure 2.28 it is noted that the VSWR changes as the measurement moves away from the open end of
the stub.  Measurements of the VSWR at multiple cycles from the open can be used to detemine the loss
associated with the line.  From the smith chart display one see that the trace makes 6 cycles equating to a
length of 3λ.  One dB per wavelength causes the reflection coefficient to spiral inward so that its radius has
reduced from 1 to 1/2 for an open circuited stub.

00.511.522.53
0

0.5

1

1.5

2

2.5

(Z   )0 Loss = 1 dB/wavelength open

d (fractions of wavelength)

Figure 2.28  Rectangular plot of total voltage for loss open circuit stub
with lengths up to 3 λ.
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2.6    PROBLEMS

1.  The function y=cos(ωt-βx) reprsents a propagating wave on the x-axis.  If the frequency is 1 GHz and
the wave-length is 20 cm plot y vs x for t=0, .2ns, .4ns, .6ns where the x-axis goes from 0 to 100 cm.
Measure the movement of a wave crest for the different time intervals and calculate the phase velocity.
Compare with the formula v=fλ.

2.  A lossless transmission line has a distributive inductance of 1 nH/cm, a distributive capacitance of .5
pF/cm.  What is the characteristic impedance of the line.  What is the phase velocity.  If a wave on this line
has a frequency of 1 GHz what is its wavelength?

3.  For the circuit shown use Kirchoff's voltage law (KVL) to write two equations in terms of the currents I1

and I2 .  Express the equations as a matrix equation B
I
I

A
2

1 =





 where A is a 2x2 matrix and B is a 2x1

column matrix.  Solve for the current matrix by inverting A.  What is the power delivered to RL?

Vs

Rs L

C
RL

Vs
Rs

L
C
RL

f =
=
=

=
=
=

1 GHz
1 volt
50 Ω 50 Ω

5 nH
7 pFI1 I2

VA VB

4.  For the circuit shown in problem 3 use Kirchoff's current law (KCL) to write two equations in terms of

the voltages V1  and V2 .  Express the equations as a matrix equation D
V
V

C
2

1 =





 where C is a 2x2 matrix

and D is a 2x1 column matrix.  Solve for the current matrix by inverting C.  What is the power delivered to
RL?

5.  Solve the circuit in problem 3 by determining the Thevenin Equivalent for the circuit below an then
connect the resistor RL  and determine the power delivered to it.

Vs

Rs L

C
RLVT

Z T

6.  What is the power delivered to each of the the loads R1 and R2 ?

λ/8 λ/4

50 Ω

25 Ω 100Ω( ) ( )R
1

R
2

R
1

R
2

=

= 50 Ω

100 Ω1 v

7.  For an arbitary length, "L," of transmission line find the voltage transfer ratio (total voltage at load
divided by total voltage at input.  Express ratio in terms of electrical length, θ=βL.  Substitute special case
where L=λ/4 and demonstrate results in chapter.
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Z inSource Load

 x d

 L 

(Z )0

I(  )d

V(  )d  ZL

θ = β L

8.  Plot the reflection coefficient with respect to Zo=50 Ω  on the Unit Smith Chart for a frequency range
from .1 GHz to 40 GHz.  Identify the resonance points and characterize their type.

(Z  )0

L
C1

L1

R1

C2

R2

Γ C1

L1

R1

C2

R2

=

=

=

=

=

Z  0 = 50 Ω
1 nH

1 Ω

1 pF

10 Ω

10 pF
L = .05 cm

v = 2 x 1010 cm/s
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