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DISTRIBUTED-ELEMENT CIRCUIT ANALY SIS
TECHNIQUES

21 TRANSMISSION LINES

A transmission line can be viewed as a multiple combination of small circuit segments shown
below in Figure 2.1. The series inductance is due to magnetic field effects and the capacitance is due to
electric field coupling between the lines. The losses in the transmission media are depicted by the series
and the shunt resistors. These resistors represent the finite conductivity of the conductors and the dielectric
insulator between the conductors, respectively. The constants R, G, L, and C are defined as per unit length
circuit parameters and the resulting resulting circuit is referred to as a distributed model of a transmission
line. The length of the transmission line segment is Dx.
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Figure2.1 Distributed circuit model for atransmission line.

Applying Kirchoff's law to the series and shunt el ements respectively, one gets
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2-2 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

V(x,t)- V(x+Dx,t) = RDxl (x,t) + LDXM (2.2)

Tt

TV (x + Dx,t)

I(x,t)- 1(x+Dx,t)=GDxV(x + Dx,t) + CDx o

2.2)

Dividing both sides of the above equations by Dx and taking the limit of both equationsas Dx® 0, resultsin

v (xt) _ 11(xt)
S =RI(xt)+L Tt (2.3)
) _ Gy )+ c TV 2.4)
i x Tt

Sinusoidal steady state solutions of the voltage and current can be found by assuming the solutions to be
V(x,t) =V(x)ej‘”t and | (x,t) =1 (x)ej‘”t , i.e., the voltage and current can be described as a phasor which is

a complex vector rotating as a function of time. The amplitude and phase of the phasor is a function of x,
the position on the transmission line. Substitution of these for the voltage and current in (2.3) and (2.4)
yields

d\é E(X) =-71(x) (2.5)
d('jg(x) =-Y(x) (26)

where
Z=R+ jwL and Y =G + jwC

are known as the distributed impedance and addmittance, respectively. Since the time dependence is
removed from the differential equations one is dealing with only the voltage and current phasors. Further
differentiation of (2.5) and (2.6) resulted in two second order linear differential equations.

d2Vv(x

dxg ) =YzV(x) 2.7)
d?1(x

dx(2 ) =YZ1(x) (2.8)

Working with (2.7), the solution must bear the form of €%, where g, known as the propagation constant is

9=vYZ = JR+jwL)G+ jwC) =a + jb (2.9)

The parameter a is known as the attenuation constant and b is called the wave number. The general solution
of the voltage phasor is then

V(x)=V*e 9% +V- e (2.10)
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DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2 -3

where the + and - superscripts are chosen to indicate the propagation direction of the voltage wave. The
current phasor can be derived from (2.10) and (2.5), i.e.

— e OX 0% — g +0mOX _ \/- aOX
I(x)=1%e9- 1€ —R+ij6/ €9 -Ve ) (2.12)

The the forward propagating voltage is related to the forward propagating current characteristic impedance

whichis
7, = R+ jwL _ R+ j-WL 2.12)
g G+ jwC

If the transmission lineis lossless then R=G=0 and in that case the characteristic impedance becomes

L
and the propagation constant isgiven by g = Yz = w/f jWLR jWCi =0+ jw+LC implying that
a=0and b =w+/LC (2.14)

The results can be understood by considering a sinusoidal signal propagating in the positive x
directionis given by

A cos(vvt - bx)

Note that for afixed time that the wave repeats for different x positions along the line separated by
intergal multiples of 2p/b. This repeating spacia distance is called the wave length and usually designated
as| . Therefore, | =2p/b or the wave number isgiven by b = 2p/l . The wave number "b" can be thought of
as a spacia angular frequency analogous to ""w which is a temporial angular frequency. If timeis allowed
to advance and then a position for which wt - bx is a constant is called a point of constant phase. The

velocity of apoint of constant phaseis called the phase velocity of the wave and equalsw/b = fl .

The cosine trigometric function can be represented as the real part of a complex number given by

At afixed x position the complex number, A t- ) , Isarotating vector in the complex planeis

referred to a phasor. It is convenient to think of the wave as complex and to omit the "Re" operator. In
analyzing acircuit if the actual real values are required one only needs to take the real part of the phasor.
For the geometry shown in Figure 2.2 the voltage and current for a lossless transmission line are shown

below where A gl represents a forward traveling voltage phasor propagating in the positive x-

direction, while B&/"*+>) represents a reverse traveling phasor, i.e. propagating in the negative x-
direction.

V(x) = AR 4 Bl ()

V(x) = e (A 1 + B (
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2-4 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

Since the time dependence for a phasor is given by e™ which is multiplied by a complex number
independent of time it is convenient to omit it and include it only if the explicit time behavior is required.

Therefore a forward and reverse propagating phasor is represented, respectively, by A® ™ and B&>*.

If the explicit time dependence is required one multiplies the phasor by e and then take the real part of
the resulting function. Using this convention the voltage pahsor on alineis given by

V(X) = Ak ™ + BelP

which is consistent with the results of (2.12) with g = O+jb. Since x = L - d, where "d" is the length
measured from the right side of the circuit and "L" is the length of the transmission line.

V(x)=Ag PEd 4 gelbt-d)

V(d) = A PLel’ + Beltte 12

If A=A® 1’ and B=B&"" then
V(d) = Aeltd + Be 1Pd (2.15)

The current is given by the two phasors

(dy=————— 2.16
(d) Z0 (2.16)
where the propagation constant is
b =wvLC =|§ (2.17)
I(d)
> ‘ o]
Source v(d) (Zy Load
[e, ‘ O
ox L d
L T
K L

Figure2.1 Transmission line geometry

A forward propagating voltage and current phasor are related by the characteristic impedance, Zo.
A reverse propagating voltage and current phasor are related by the negative of the characteristic
impedance, -Zo. The plus sign is required for the forward wave and the negative sign for the reverse wave
so that the power associated with the propagating wave has the correct sign. When viewed at an arbitary
point on the line the power associated with a forward wave would be positive indicating that power appears
to be disipated by the right side of the circuit. On the other hand the power associated with a reverse wave
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DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2-5

would be negative indicating that power appears to be produced by the right side of the circuit, i.e., the right
side of the circuit appears to be a source for the reverse wave.

22 |IDEAL TRANSMISSION LINE CIRCUITS

Distributed-element circuits are those where the physical dimensions of one or more of the
components affect the circuit performance. In many important circuits the distributed components can be
represented in terms of transmission line models. Therefore, this section will consider the analysis of
circuits which contain transmission lines as components. Initially lossless transmission lines will be
considered, since they represent a simpler starting point and the techniques extend naturally to lossy lines.
Such lines referred to as ideal transmission lines do not represent a serious restriction since microwave and
RF circuits normally use low loss materials and circuit effects are rarely dominated by transmission line
losses.

The analysis of transmission line circuits is a natural extension of lumped-element circuit analysis.
Kirchoff's Current Law continues to be true at any node and Kirchoff's VVoltage Law must hold around any
loop. Voltage and current relations for lumped element resistances (Ohm's Law), inductive reactances, and
capacitive reactances are augmented with those for transmission lines. Transmission lines are therefore
treated like any other circuit element. Circuits are solved by using the current and voltage relationships to
create a system of equations which can then be solved for branch currents and node voltages. Transmission
line nodes exist at the input and the output and they may be combined with other elements in series and in
paralel. Lumped-element (LE) and distributed-element (DE) circuits are shown below in Figure 2.1 and
2.2.

Figure2.2 An example of alumped element circuit in which the
physical size and spacing of components are not
factors in determining performance

()

(Z) — (Z)
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2-6 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

Figure2.3 A distributed element circuit in which transmission lines as well as
lumped elements are used as components

A simple distributed element circuit consisting of a source, a transmission line, and a load is
illustrated in Figure 2.4. The load and source are assumed to be lumped-element components. It is desired
to find the voltages and currents everywhere in the circuit. At each of the terminals of the transmission line
Kirchoff's Laws together with Ohm's law can be applied to obtain Equations (2.18a) and (2.18b).

Vo, =Z,in +Vi; lip=1(d=L); V;, =V(d=L) (2.18q)
Vout = ZLlout;Iout = I(d = 0);Vout = V(d = O) (218b)
Z, -2,
ZS GL - ZL + ZO
J) N
Vg \/‘(d) (Z) ZL§
x L d o—|_
~IS
L
q=b

Figure2.4 A source, atransmission line, and aload

At the load (d = 0) the reflection coefficient G_ is the ratio of these two waves, i.e. G. = B/A or
B = A G, and the transmission line voltage and current can be expressed as shown in Equations (2.19a) and
(2.19b). Since the source is on the |eft then we can view the forward propagating voltage wave as a

V(d) =A™ +G e ) (2.193)

I(d)=A(e™- Ge™)/z, (2.19b)

stimulus which interacts with the load on the right to produce areflected wave. At apoint "d" along the line
a generalized reflection coefficient can be defined as the ratio of reflected voltage, AG e ™ to incident

voltage, Ae/® . This reflection coefficient designated G can therefore be expressed as Equation (2.20a),
and the total transmission line voltage and current is given by Equations (2.20b), and (2.20c).

G=Gd)=G e 12 (2.20a)
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DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2-7

V(d)=Ae™(1+G) (2.20b)

1(d) = Ae™ (1- G)/Z, (2.200)

At the end of the line "d=0" the voltage is given by V(0) = A1+ G) and the current is given by
1(0) = A(l- G)/Z0 which resultsin aratio shown in Equation (2.21). The generalized and load reflection

coefficient have a value that results in the proper voltage current ratio at the load. Equivalently, the load
reflects just the right amount of voltage so that the ratio satisfies the boundary condition (i.e., Kirchoff's &
Ohm's Laws) at the output node of the line. The actual magnitude of the voltage and current depends on the
constant "A" which will now be shown to depend upon the input node boundary condition (again Kirchoff's
Laws).

VO _, 1+G)_, 0ol
10 °f-g) " (2219
_ZL- %

Specifically at the input of the line V(d=L)=A(e/ +G e ) and I(d=L)=A(e! - Ge 19)/z,.
Substitution of these equations into the input Kirchoff's Law condition yields Equation (2.22a). Factoring
out the (Z, + Z,,) term resultsin Equation (2.22b) where the term G, is given by Equation (2.22c)

Vi =sti(ejq -Ge ) +AEY +Gge ) (2.223)
0
75 _
Vo =AgZs 20 %l g e i) (2.22b)
Zy g
G = Zs~ Zo (2.22¢)
Z +7Z,

G, formally appears as a source reflection coefficient, i.e., the reflection coefficient that would result from
aload Z if an incident wave impinged upon it. It will shortly be shown that such an interpretation is

physically correct. The constant "A" can now be determined as shown below and equals and the voltage
and current at an arbitrary point "d" on the transmission lineis given by

_ e ® Z, q,
A - q&e‘”‘*}@Zuzozs
& Z, jbd jbd
V= Gse 2 gz +Zo§/ erras (2.239)
- iq - 2) 1 0 .
dy=p Q/ (elbd _ g g ibd
') L- qese-lzq)gz +2055(e ~Ge ™) (2.230)
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2-8 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

While the voltage magnitude is proportional to V, and depends upon Z, in a complicated way the physical
interpretation of the above results can be seen by using the relationship 1/(1- r) =1+r + r2+r3+L with
r=GGe '™ ~ The voltage expression then becomes

V(d)=§ez Zfz Ve i+ g ae @ + GG 1 +L ) (e + G e i)
s 0g
and

%/S(ei(bd-q) +G G/ M) 4 @ReIP0- ) 4| )+

Zs 09

Zs+ZOﬂ

g Z, g/s(GLe j(bd+a) Gnge j(bd+3) Gf(%ze i(bd+5q) 4| )

Each of the numbered terms can now be given a physical interpretation as follows:

(1) TERM: [Z0 /(ZS + ZO)]\/Sej(bd'q) represents a forward propagating wave. At the input node of the
transmission line d = Lb bL =q and the voltage is thus seen to equal [Z,/(Zs + Zo)Vs which can be
interpreted as the source voltage V, being divided by two series impedances of Z, and Z, (voltage divider

rule). If one thinks of this wave as the one that is initially launched then the input impedance at the
transmission line equals Z, since no wave has yet reached the load and had a chance to be reflected back to

the input. Consequently, the input impedance, V;,/l;, , is determined initialy by only the characteristic
impedance of the line. This voltage is referred to as the initialy launched voltage or incident voltage and
designate it by V,,.. Therefore, Vi, =Vi[Zo/(Zs +Z,)] and the forward propagating voltage at the load

end is determined by substituting d = 0 and equals Ve 19 .

(190 TERM: [Z,/(Z¢ +Zo)V.G e P9 =y, G e /(P9*®  represents a reverse propagating wave. At
the load, d =0 the voltage is the same as the initial wave multiplied by the load reflection coefficient G .
Thiswave resultsin avoltage at theinput node, d =1 or bl =q , equa to Vi .G e '™

(2 TERM: [Z,/(Z¢ +Z,)VsG Ge! ™) =v, G Ge/®d"*  represents a forward traveling wave
generated when wave 1' interacts with the source end of the line resulting in a reflected wave determined by
the source reflection coefficient.

(29 TERM: [Zo/(Zs +Zo)V.GEGe /®4*®) =y, G2Ge 1(PI* ™) represents a reverse traveling wave
resulting when wave 2 reaches the load end of theline.

The process of an incident wave resulting in repeated reflections can be represented by the
following diagram:
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< Electrical Lenght=q————=>| 0
0
VA :( ) inc
Inc Zs+Zo
q q
V. q_ e'j(bd+q)
inc
2q 2q
Vie GG l(bd39)
Inc
3q 3q
V. GLZGS e-J'(bd+3q)
Inc
4q 4q
Phase
j(bd-5q)
or
Time |ncG_ Gs \
5q 5
Source = d Load
G q

Figure 2.5 lllustration of multiple reflections generated by a source and
load connected by a transmission line where V. = the

initially launched voltage, and q = the electrical length
of theline.
Thus, the voltage expression above can be seen physically to be the steady state situation resulting from
multiple reflected voltage waves on the line between the source and the load. The reflections occur because
Kirchoff's Laws are required to be satisfied at both ends of the line.

Example2.2.1.. What isthevoltageif Z, =Z,, i.e, for a matched load?

Inthiscase G =0 and substitution yields,
v(d) = g 9\, oli(bd-a)

The initialy launched wave V, . has a magnitude of V. :VS[ZO/(ZS + ZO)] . The phase term -q appears
since the phase at the load (d = 0) since the load voltage will be out of phase by the electrical length of the
line.

Example 2.2.2.. What isthe voltage on thelineif Z;, =27, ?

Inthiscase G, =0 and
V(d) = %Vse' Iq (ejbd +Ge jbd)

=Ly [eioe-0) 4 g e i)
2

There is an initialy launched voltage of magnitude V. =V,/2 since the source voltage initialy splits
evenly between the source impedance and the line characteristic impedance (which is the input impedance
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2-10 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

for the initial wave). A second wave results since the load is not matched. The reflected wave at the load
(d :O) equals the incident wave multiplied by G . The reflected voltage has a term €’ 1(bd+a) \which

represents a wave propagating to the left. Thisis the same as the forward propagating exponential with "d"
replaced by "-d." The phase delay, q, at d=0 is the same for both exponential terms so the phase delay for
the reflected signal continues to account for the total travel delay from the source.

It is often just as easy to analyze a transmission line circuit applying the specific boundary
conditions and solving directly for the desired current or voltage. This approach often results in a better
understanding of the physical behavior of the circuit and is illustrated in the next set of examples.
Obvioudly, the results must agree with those obtained by direct substitution into the above equations.

Example 2.2.3.. What isthe voltage on thelineif Z, =0?

V(d) = Ae* i +Ge jbd )
I(d)= A" - ge M)/z,
V(L) = A" +Ge %) =V,
A=V,/(e" 9 +Ge )
V(d) =V (e + G e ) /(e*d + G e 1Y)
()= - e ™)/ +qe )z,

Example 2.2.4.. Find the voltage transfer function ,(load voltage/input voltage) and input impedance for a
guarter-wave transmission line.

— i
source  Zin— V(d) (Zy Z § Load
o
C g T
L= 1/4
q= P2

Figure2.5 A quarterwave line with load

Referring to Figure 2.5 one sees that the total voltage at a distance "d" is V(d) = A(ejbd +Ge bd ) and
therefore at the input the total voltage is V(I /4)= A(e””2 +Ge ””2) =(j- jG.) which simplifies to
V(I /4): jA(l- GL). At the load d =0 and the total voltage equals V(0)=A(l+ G ) The voltage
transfer ratio is found by diving V(0) by V(I /4) which simplifiesto the resultsin Equation (2.24). Thisis
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V(O _ .1+G
v( /4 '1-Gg

VO __ Z4 (2.24)
V(l 14) Z, '

a very useful result which is easy to remember since it is a smple ratio of the load impedance and the
characteristic impedance. The -j term accounts for the phase shift naturally associated with al /4 line. The
load impedance can be remembered as being in the numerator since for a short circuit load the voltage ratio
must be zero.

The input impedance can be found by additionally considering the total current at an arbitrary
distance "d" from the load, 1(d)= A(e/™ - G e 1¥)/z, and specificaly at the input where d=I /4 the
total current is (1 /4)=AeP’2- G e P'2)/z, = A1+G)/Z, and therefore the impedance is given
by theratio of total voltageto total current which simplifiesto give the resultsin Equation (2.25)

V(4 _1-G

"N /4 1+G °

7, =20

=7 (2.25)

Power in a transmission line circuit is computed using the familiar expression
Power = Reﬁ/ x| } = Re{l R/ } This represents actual power transmitted or lost at particular terminals of

acircuit. The imaginary component, i.e., Im{\/l } , is called reactive power and represents power stored
and exchanged (within a cycle) between magnetic and electric fields of the circuit. The time average of
reactive power is zero. The expression above assumes that | and V have been defined as rms currents and
voltages, which is an assumption which will always be made unless explicitly stated otherwise.

However, for transmission line circuits there are additional forms of power. Since voltage and
current waves can exist on aline they represent a flow of power. The power associated with these wavesis
found by applying the above formula to the separate propagating components. To illustrate this consider
the figure below.

Figure 2.5 Power on thelineisgiven by P(d)=P*(d)- P~ (d).
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2-12 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

The total voltage and current as seen earlier equals V(d)=A(ejbd +Ge jbd) and
I(d)= A - g e ™)/z, where A=e 19 (1— G Ge '™ )_1[20/(2S +Zy)Vs . The forward voltage
V*, and current |+ aregivenby V* = Ae™ and I = Ae/™/Z, . The power associated with them is

the forward propagating power P* and is given by Equation (2.26a). Similarly, the reverse propagating
power P~ is given by Equation (2.26b). The net power or power delivered down the line is
P,y =P* - P~ whichisshown in Equation (2.26c)

N * o 2
P*=Relv"I" nge}_(Ae'bd > % 'bdy=|j
f o8 p “o (2.263)
2
P =|G|° |j (2.26b)
2
Pae =(1- |G\_|2)|j (2.260)

Example 2.2.5.. Compute the power using I(d)” - V(d) and compare with the previous results.

The power associated with abstract terminals at a distance "d" aong the line, designated P(d), is
given by P(d) = Re{l (d)*V(d)}. Substitution of the expressions for 1(d) and V(d) yields the results of
Equation (2.27), whereG =Gy + |G ..

2
I(d) v/(d) = "j [0 - e e + g e o)

2
:@[(1_ |GL|2)_ GLe—ijd +G"_‘ej2bd]

| * _ |'A42[ 2 . .

(d) v/ (d) = > (- |G[) - 2j(G cos2bd + Gysin2bd) (2.27)

Taking the real part of Equation (2.27) resultsin P(d) = |A{2(1 |G|_|2)/Z0 which is the net power
or power delivered by theline, Pyy , as seen above.
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Example 2.2.6... Calculate the forward and reverse propagating power and the power delivered to the
load for the circuit shown in Figure 2.6

Zs=100W Z, =100 W

W [0

\ o
Vs =1 @D V@ (Zg=50W) §
B |

| /4

Figure 2.6 Quarterwave line with source and load

For this circuit substitution into the formulas yields A=- j— 3 , therefore, P* -2 O 50= iWatts.
10’ elOg 5000

aé.'_déeg o__1 The power delivered to the load is

Py =P" - P° -9 1 _ 1 s
5000 5000 625

The Thevenin Equivalent Theorem applies for transmission line circuits and the equivalent
voltage and impedance is found using the familiar techniques. Given two terminals of a circuit, which can
include any points aong a transmission ling, the equivalent circuit has the same voltage, current
characteristics that would be observed by the original circuit at the terminals. The Thevenin voltage equals
the open circuit voltage at the terminals and the Thevenin impedance is that seen by looking into the
terminals (with voltage source shorted, and current sources opened). Thisisillustrated by the following.

Example 2.2.7... Find the Thevenin Equivalent circuit using the output terminals of the transmission line
circuit above.

Having determined the equivalent circuit compute the power delivered to the load. The Thevenin
Equivalent circuit is found by opening the terminals and observing the input impedance and open circuit
voltage. This situation isillustrated in Figure 2.7.
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Zs=100W z,=100W
Q I
Vg = V‘(d) (ZOZSOW) \‘/oc & §
° L
| /14

Figure2.7 Determination of Thevenin Equivalent circuit for quarterwave line
with source.

The input impedance can be found using the quarter wave relationship derived previously to get
Z1hey =Z21100=(50)?/100=25W. The open circuit voltage is found using the voltage and current
relationship for a transmission line, i.e, V(d) = A(e™ +e ™) and 1(d) =A™ - e )/50, since
G_ =1 for an open circuit load. At theinput (d = | /4) of theline V(I /4)=0 and 1(l /4)= jA/25. The
current into the transmission line under these conditions would be 1/100. This determines the constant A,
A=-j(1/4) and the general voltage and current expression becomes V(d) = - j(ejbd +e jbd)/4 , and

I(d)=- j(ejbd - e Ipd )/200. The open circuit voltageV, .=V (0) = -j % . The Thevenin Equivalent circuit

istherefore, Figure 2.8.

Z ey BW

o =11 § z,=100W

Figure2.8 The Thevenin Equivalent circuit for the
source and transmission line.

The power delivered from the transmission line to the load can now be found. The voltage across
theload is - j(1/2)100/(25+100) = - j2/5-. The power delivered to the load is, therefore

which agrees with the results from above.

23 GRAPHICAL ANALYSISOF TRANSMISSION LINES

The behavior of distributed circuits with respect to parameter changes is usually very important.
The two parameters whose variation is of most interest is usually physical dimensions (E.G. length), and
frequency (bandwidth). Interest in the first come about because of tolerance considerations in fabricating
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DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2 - 15

the circuits and interest in the second occurs because most circuits require more than a single frequency to
operate or communicate. In the second case the range of frequencies is the bandwidth of the system. It is
convenient to examine the effects of physical dimensions and frequency together for a distributed circuit
because the critical parameter which determines performance is electrical length which compares physical
length with wavelength. Of course, the wavelength of a propagating signal on a distributed circuit is a
function of frequency.

Significant insights are possible by considering a transmission line with a load, Z, . The load
reflection coefficient is G, and from Equation (2.5a) the total voltage at a distance "d" from the load equals
V(d) = Ae*iPd (1+ G e 12 ) The magnitude of this voltage is therefore, |V (d)| = |A”1+ Ge ijd‘ . This
magnitude is illustrated in Figure 2.9a as the vector addition of two complex numbers, 1+j0, and G e 29
If the distance d is increased then the total voltage V(d) varies as shown in figure 2.9b. The vector
representing the complex number Ge 12bdrotates in a clockwise fashion since negative angles are
measured in a clockwise rotation and positive angles in a counter clockwise rotation. The total voltage
increases and decreases as the tip of the vector traces out a circle or radius |GL| . The maximum total

voltage occurs when the vector G e 12bd points to the right (O degrees) and the minimum occurs when the

vector points to the left (+180 degrees or +p radians). A rectangular plot of the total voltageisillustrated in
Figure 2.10 as afunction of the distance d.

(b.)

(@)

Figure2.8 (a.) Thetotal voltage on atransmission line as a vector sum.
(b.) Hlustration showing how the total voltage changes as the
distance "d" isincreased
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IV (d)
<— 12—

v
I Vo et —

Vmin

V(d) z,

Figure2.10 Plot illustrating variations in the total voltage
magnitude |V (d)|

The voltage variation illustrated in figure 2.10 is called a standing wave pattern. It is an amplitude
resulting from the combination of counter propagating voltages which remains stationary with respect to
position on the line, and hence the name. The minimum amplitude is designated V,;,, and occursin anull
in the pattern. Similarly the maximum voltage amplitude is designated V,,,,, . Theratio of the maximum to
minimum voltage on the line is called the Voltage Standing Wave Ration., VSWR =V, 5 /Vin Whichisa

real number always greater than or equal to one. To emphasize that the VSWR is a ratio it is often
numerical reported as "n:1", (spoken " n to one"), for example an antenna as a load at the end of
transmission line may produce a VSWR on the line of 1.4:1. Often in this situation the load is referred to
has having a VSWR which really means that it produces the VSWR when connected to the transmission
line.

The maximum voltage is given by V, =|A{(1+|GL|) and while the minimum voltage is
Ve =|A{(1— |q|) The ratio of these gives the expression for the VSWR shown in Equation (2.28a). Also,

one can solve for the magnitude of the reflection coefficient which is observed to be only a function of the
VSWR as seen in Equation (2.28b)

SWR = % (2.28a)
_VSAR- 1
Q1= Verre1 (2.260)

In addition to the information provided by the VSWR, the locations of the nulls, which are usually
much sharper than the peaks, provides useful information. The physical distance, Dd , between successive
nulls occurs when the vector in figure 2.8 rotates through 180 degrees or 2p radians. This occurs when
2b Dd =2p and since b =2p/I then Dd =1 /2. Therefore, the null-to-null distance equals the
half wavelength. Based only on measurements of the total voltage magnitude the propagation wavelength
and the magnitude of the load reflection coefficient can be determined. If the frequency is known then the
propagation phase velocity, V is determined by v = fI . Since the load reflection coefficient is a complex
number and only its magnitude has thus far been determined it remains to see how to calculate the angle for
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the load reflection coefficient. Assuming that the load reflection coefficient angle is g then G = |GL|e+"qL
and the distance to the first null is d,, then Ge 12w =|G e and |G |e!%e 12" =|G|e P which
impliesthat g, =2bd,,, - p andwith b =2p/l then q, = (4/d,, - Ip .

Example 2.3.8.. When a 50 W is connected to an unknown load the following plot of voltage magnitudes
are observed along the line for an operating frequency of 10 GHz. Determine the load impedance and the
propagation velocity for the line.

(8) d=0.46
(b) d=2.96

VSWR=1.8:1
V(d)

To
dincm a

Figure2.11 VSWR datafor Example 2.3.8.

The problem is solved by first computing the wave length, lambda, and then computing the
reflection coefficient observed at the first null, G. Note that the magnitude of G is found from VSWR
formula and the angle is 180 degrees (or negative real number). The veloctiy is found since both the
frequency (given) and the wavelength (calculated) are known.

dnull=0.46
lambda=2* (2.96-0.46)
lambda=5

» Beta=2*pi/lambda
Beta= 1.2566

VSWR=LS;
G=-(VSWR-1)/(VSWR+1)
G= -0.2857

GL=G*exp(+j* 2* Beta* dnull)
GL = -0.1151 - 0.2615i

ZL=50* (1+GL)/(1-GL)
|ZL = 35.0024-19.9333i |

» f=4€9;

» v=f*|ambda

v = 2.0000e+010

Complex Geometry Theorem :
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A straight line in the complex plane is defined by ¢ z+cz =2d where ¢ is a complex number of having
magnitude 1 and d is a real number. The unit vector defined by the complex number c is perpendicular to
the line and the real number d is equal to the line's distance from the origin.

Proof:

Since z=x+jy and c=a+ jb then c'z+cz =2(ax+by)=2d and ax+by=d is a straight
line. Since || =|a+ jb| =1 then ax+by can be viewed as the dot product (inner product) between a unit

vector e= &+ bfy and a position vector r = xfx + yfy and therefore d =r>¢ and therefore d is the
projected distance from the point (x,y) in the direction of ¢C.

Complex Geometry Theorem I1;

A circle in the complex plane is defined by |z|2 - ¢'z- ¢z =b where a is a complex number and b is a

real number such that b+|c|2 >0. The center of the circle is given by the complex number a and the

radius of the circle equals /b + |c|2 .

Proof:

Adding |d/* to both sides of |2 - ¢’z- ¢z’ =b gives |4° - ¢'z- ¢z’ +|d® =b+|d® and since
12%- ¢"z- 2’ +|d® =(z- c)(z- ¢) =|z- d* then |z- d* =b+|d” and |z- d=[b+|d*® which is the
equation for a circle with center located on the complex plane at the point "c" and having radius \/b+—|c|z .
Note that the equation requires that b+|c|2 >0

Looking at the relationship between Z and G one can consider how the reflection coefficient
changes as the resistance alone varies. In this case Z = R+ jX, where R can be viewed as a variable
resistance while X, is taken as a constant. The curve in the Z-plane is a straight line as shown in figure
2.12a. Using the complex geometry theorem | the equation for the constant reactance line would be
c'z+cZ =2d where c=0+j1, or- jZ+jZ" =2X,. Substtution of Z from the relationship
Z=27,1+G)/(1- G resultsin

A+ Gg #+G 0
- JQ—gzo +] iy =2Xq
el- Gg 1-G 4
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c=1+
imaj
imaj Z-Plane A
i Xo Z=R+Xq P T
rad
/\ |
real 1 real
(@) (b))

A img
imgj " Z-Plane a

; )
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(c)
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o
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Figure2.12 (a.) The complex impedance plane showing the trace of a constant
reactance line (b.) the constant reactance curve in the G-plane (c.)
multiple constant reactance line in Z-plane (d.) multiple constant
reactance curvesin G-plane

and clearing the denominator results in the Equation (2.29a) where the normalized reactance is given by
Xo = Xo/Zy. This simplifies to give Equations (2.29c) which can be recognized from the complex

geometry theorem Il to represent a circle in the G-plane with center given by c=1+j1/x, and b=-1

implies that theradius=,/|c|2+ =y1+1/x2 - 1=1/|x,|. Thisisillustrated in figure 2.12b. Figures 2.12c

and 2.12d illustrate the set of circle in the G-plane resulting from a set of constant reactance lines in the Z-
plane.

@+0i- G)- [1+6 Ja- 9= j2x,(1- Q- &) (2.299)
1+G- G -|G*- (1 G+G - |q2)= jzxo(l- G- G +|q2) (2.29b)
Q- gi Jx_loge g’?‘[ﬂx_loge =1 (2.290)

In asimilar way one can examine what happens to the constant resistance linein Z-plane when it
is mapped into the G-plane. A constant resistance is presented by Z = R, + jX where X varies and R,
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2-20 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

remains constant. This is illustrated in figure 2.13a for severa different choice for the constant R,

including several that are negative. The development will apply to both positive resistance loads as well as
to negative resistance loads. Again the development begins using the Complex Geometry "Theorem |

which describes a constant resistance line in the Z-plane, i.e, Z+Z =2R,. Substitution of
Z=27Z, (1+ G)/(l- ) and r,=Ry/Z, together with simplification as before yields
2- 2§ = 2r,(t- G)(l— G*) and 1- |G% =1y - 1yG- 1,G +1o|G”. Combining terms and division resuts
in Equation (2.30) which is recognized from the complex Geometry Theorem Il to be acircle

(2.30)

where b= (1- r,)/(1+1,) and c=ry/(1+r,) and for both positive and negative values of r, one sees that

b+|c|2 >0. The center of the circleis therefore given by c=r,/(1+1,) and radius = 1/[L+r,|. Note that
for ry > -1 that Center + Radius =1 i.e., the right hand side of the circles are tangent to point G=1+j0. For
rp <-1 then Center - Radius=1 and the left hand side of the circles are tangent to the point G=1+j0. If
r, = -1 then from 1- ry =-r,G- r,G' +(1+r0)|q2 it follows that G+C™ =2 the curve is a straight line
perpendicular to the real axis and crossing the real axis at the point G=1. Thisisillustrated in figure 2.13b.

1< I’0 <0
2<fo<1\

.,
o

",

e
1
L
w
o
—
o
1
=
—
|
'
[N

(@) (b.)

Figure2.13 (a) Example of seven constant resistance line in the S-plane. (b.) the
seven constant resistance line in the G-plane.
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Figure 2.14 (a.) The Gplane with the circles of constant reactance and constant resistance
displayed. (b.) The Passive Smith Chart or Unit Smith Chart (USC)

From the above analysis one can plot both the constant reactance and constant resistance circles on
the Gplane asiillustrated in figure 2.14a. The dark circle equates to a resistance of zero. Inside this circle
the resistance is positive and outside of it the resistance is negative. Inside the reflection coefficient has a
magnitude less than one and outside its magnitude is greater than one. The dark circleis the unit circle on
the complex G-plane since |q =1. This representation of the G-plane with the circles is referred to as a

Smith Chart named for its founder. The region in the dark circle is referred to as the Unit Smith Chart
(USC) and represents passive loads, i.e., those having an impedance with a positive real part. The region
outside of the USC equates to active load, i.e., those having an impedance with a negative real part. The
USC region is shown expanded in figure 2.14b

Admittance
Coordinates

Impedance -

Coordinates

(@) (b)

Figure 2.15 (a.) The USC showing circles of constant conductance and constant

suseptance. (b.) A Y-Z Smith Chart shows both admittance and
impedance circles
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If one looks at the reflection coefficient in terms of an admittance Y =1/Z then the reflection
coefficient becomes G= - (Y - Yo )/(Y +Y0) which is of exactly the same form as the resistance formula

except with a negative sign in the front. Therefore it follows immediately that a mapping from the complex
admittance plane would result in lines of constant conductance and constant suseptance become circles on
the G-plane. However the negative sign would mean that everything would be rotated by 180 degrees. This
is illustrated in figure 2.15a for the USC where g represent conductance and b represents suseptance.
Figure 2.15b illustrates the USC showing some of the admittance coordinates as well as the impedance
coordinates. This type of representation is called a Y-Z Smith Chart. Note that in all charts the bottom
represents a capacitive load and the top an inductive load

One now considers a series resonant circuit consisting of an inductor, capacitor, and resistor as a
load and considers how the reflection coefficient would change as the frequency is increased from a low
value to ahigh value. The reactance values will change from a net negative value to a net positive value as
the frequency increases. The resistor, assuming that it is ideal, will have a value independent of frequency,
i.e, it will be aconstant. Hence the reflection coefficient, G, will follow atrace similar to that illustrated in
Figure 2.16a. It will lie upon acircle of constant resistance an move from capacitive to inductive reactance,
i.e,, move from the lower half of the USC to the upper half. The real and imaginary axis are shown as a
reminder that the Smith Chart is an overlay of impedance and admittance coordinates on the complex G-
plane. Similarly, a shunt or parallel resonant consisting of an inductor, capacitor, and resistance will follow
a constant suseptance trace moving from inductive which will dominate a lower frequencies to capacitive
which will dominate at higher frequencies asillustrated in Figure 2.16b.

&< /[\imaj %\{:G

rea

3Ty

Lower

/P img
h shunt
Resistance
\ 1\ real red
I E ”
/

(a) (b)) ()

Figure 2.16 (a.) Plot of G with increasing frequency of a series resonant circuit, (b.) shunt or parallel
resonant circuit with increasing frequency. (c.) Plot of the reflection coefficient of a shunt
resonance circuit with alower shunt resistance.

For the shunt resonator if the resistor is lower (conductance higher) then the reflection coefficient
could follow a trace similar to that shown in Figure 2.16c. Therefore, it is clear that a shunt resonator
always follows a path from top to bottom (inductive to capacitive) and is at resonance at the frequency
where G crosses the real axis. The oppositeis true for a series resonance.

In figure 2.16c the Q of the resonance is lower than the previous shunt circuit. Hence the radius of
curvature of the trace gives an indication of the Q associated with the circuit's resonance. Often a circuit
manifests more complicated behavior revealing multiple resonances. Such an example is illustrated in
Figure 2.17a. In this example as the frequency is increased from a low to a higher value the circuits
reflection coefficient (or impedance) first looks capacitive and then passes through a series resonance. As
the frequency continues to increase the circuit looks inductive and then passes through a shunt resonance.
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As the frequency is increased even higher the circuit passes through a series resonance again and
remains inductive thereafter. The example of figure 2.17aillustrates the property that loops in the reflection
coefficient trace proceed in a clockwise fashion as frequency increases. This usually makes it possible to
examine data on a Smith Chart and deduce which point on the trace is the lower versus the higher
frequency. This behavior of the reflection coefficient trace is due to of causality property of a physically
realizable circuit. This follows from the fact that the reflection coefficient as a function of frequency is

relates an reflected voltage to an incident voltage by V™ (w) = GWw)V " (w). If the incident voltage is
+¥
viewed as atime signal whose Fourier Transformis V" (w) then v*(t) = 2i d"(w)e’w‘dw . Likewise the
p
-¥
reflected time signal would berelated to V™ (w) by its Fourier transform, i.e.,

ima
/]\ mg G-Plane
et |
red glt)e 3 /q(tl)ejw21 red
\_/ 4
sum N
ot )M
. Swta
} t
olty)e3 A
(a) )

Figure2.17 (a.) More complex circuits display multiple resonant behavior (2
series+1 shunt). (b.) Tendency towards clockwise rotation
due to causality of physical circuits

+¥
vo(t) = = 0{ (w)e™dw . Also v (t) = g(t) A v*(t) where A represents the convolution operation, i.e.,
-¥
+¥

v (t) = (‘)/"(t— t)g(t )dt . If the circuit is a physicaly realizable one then the principle of causality
-¥

applies. This means that the signal output at a time "t" can only depend of signal inputs occurring only
before time "t" and not afterwards. Therefore from the integral it must follow that g(t) = 0 when t<0 since

otherwise the integral would have a contribution from v*(t) for times exceeding t. Also,

¥ ¥
Gw) = Cp(te Mt and since g(t)=0 for negative times then Gw) = Cpte Mt . Notice that c(w) isa
-¥ 0

sum (integral) of complex unit vectors, e ™, rotating clockwise as a function of increasing frequency, w,
and which are scaled by an amplitude factor, g(t). Therefore a trace of ¢(w) can be though of as a vector
sum asillustrated in figure 2.17b.
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Figure 2.18 illustrates a G plot of a transmission line with a load as a function of frequency. The
radius of the circle is |GL| . Again notice that the trace proceeds in a clockwise direction with increasing
frequency.

CL

—J

real

Figure 2.18 Reflection coefficient trace as a function of frequency for a
transmission line connected to load impedance

Example 2.3.1.. Find the reflection coefficient for a load consisting of a series combination 75 W
resistance and 1 pF capacitor operating a 1 GHz where Zo= 50 W. What is reflection coefficient the load
isconnectedtoal /2line, | /4line, or | /8 line.

The calculations are easily computed using the above dirived relationships
f=1€9; w=2*pi*f; C=1e-12; R=75; Z0=50;

X=-U(WC); ZL=R+*X; GL=(ZL-Zo)/(ZL+Z0) P
|GL= 0.6948-0.3886i |

length=I /2, b beta*length=pi b G=GL*exp(-2*jp) b
[G= 06948-0.38861 |

length=I /4 b beta*length=pi/l2 b G=GL*exp(-j2p/2) b
|G=-06948+0.3886 |

length=I /8 b beta*length=pi/4 b G=GL*exp(-j2p/4) b
|G=-0.3886-0.69481 |
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Example 2.3.2.. A new load is created by making parallel connection of two 50 W lines each having their
own load as illustrated below. What is the impedance. What is the reflection coefficient produced by the
new load on a 75 W line with length | /4.

i Z,,=25+ 75W
=7
7 Z,,=50+j25W
' Z, =50 W
Z,=75 W

Figure2.19 VSWR datafor Example 2.3.2

ZL1=25+*75;

Z0=50;
GL1=(ZL1-Z0)/(ZL1+Z0)
GL1= 0.3333 + 0.6667i
G1=GLI*exp(-j*2*pi/2)
G1 = -0.3333 - 0.6667i
ZL1p=Z0*(1+G1)/(1-G1)
ZL1p = 10.0000 -30.0000i

ZL 2=50+j*25;

GL2=(ZL2-Z0)/(ZL2+Z0)

GL2= 0.0588 + 0.2353i

G2=GL2*exp(-j*2* pi)

G2 = 0.0588 + 0.2353i

» ZL 2p=Z0* (1+G2)/(1-G2)

ZL2p = 50.0000 +25.0000i [Note sameasZL2 sincelineislambda/2]

ZL=(ZL1p*ZL2p)/(ZL1p+ZL2p) [Paralel combination]

|zL = 22.4138-18.9655i |

Z1=75; [Characteristic impedance of lin€]
GL=(ZL-Z1)/(ZL+Z1)

|GL = -0.4836-0.28881 |

Example 2.3.3.. For the load illustrated below compute the reflection coefficient as the frequency
increases from.5to 8 GHz.
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R,= 2W
R c Li=1nH
2 Z,= 50 W
G @) = § R, ° C= 10pF
1 L=.05cm C2: 5 pF
—L—
C v=2x10%cm/s R = 500w
T )

Figure2.20 VSWR datafor Example 2.3.3

Y%script fileex2_ 2 4.m
%Solution to exmaple 2.2.4
%

f=[.5:.1:8]* 1€9;
w=2*pi*f;

L1=1e-9;
C1=10e-12;
R1=2; |
C2=.5e-12;
R2=500;

v=2€e10;
lambda=v./f;
beta=2*pi./lambda;
length=.05;

Z0=50;

XL1=w*L1;
XC1=-1./(w*Cl);
Z1=R1+j*XL1+j*XC1,;
Y1=1./71;

XC2=-1./(w*C2);
Z2=j*XC2;
Y2=1./Z2;

Y 3=1/R2;

YL=Y1+Y2+Y3;

ZL=1/YL;
GL=(ZL-Zo0)./(ZL+Z0);
G=GL.* exp(-j* 2* beta* length);
plot(G)

hold on

uscl

axis off

function uscl

%over lays Unit smith chart on ploted complex data
plot(res2usc(0))

hold on
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f1=.5GHz
f2=8GHz
#1 [

#1 = Series Resonance
#2 = Shunt or Parallel Resonance

Figure 2.21 Reflection coefficient trace for the
circuit in Example 2.3.3

Chap_02r.doc



DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2 - 27

axig(‘'square)
plot(res2usc(1),'c--")

%plot(res2usc(1/3),'c--) Comment out unwanted coordinates

%plot(res2usc(.5))

%plot(res2usc(.25))

%pl ot(res2usc(2))

%oplot(res2usc(3),'c--")

%pl ot(res2usc(4))
plot(x2usc(0),'c:")
plot(x2usc(1),'c:)

%plot(x2usc(3),'c:)

%plot(x2usc(1/3),'c:")

%plot(x2usc(.5))

%plot(x2usc(.25))

%plot(x2usc(2))

%plot(x2usc(4))
plot(x2usc(-1),'c:")

%plot(x2usc(-3),'c:")

%plot(x2usc(-1/3),'c:")

%plot(x2usc(-.5))

%plot(x2usc(-.25))

%oplot(x2usc(-2))

%opl ot(x2usc(-4))
function y=res2usc(r)
%generates constant resistance circle for Unit Smith Chart
theta=pi*[0:5:360]/180;
Ucir=exp(j*theta);
ctr=r/(1+r);
rad=1/abs(1+r);
y=ctr+rad* Ucir;

function y=x2usc(x)
%generates constance reactance circle-segments for Unit Smith Chart
if x==
y=[-1+j*eps, 1+j*eps];
else
ctr=1+j/x;
rad=1/abs(x);
maxangle=2* atan(x);
if x>0
theta=-pi/2-[0:maxangle/20:maxangle];
elseif x<0
theta=pi/2-[ 0:maxangle/20:maxangl€];
end
y=ctr+rad* exp(j* theta);
end

24  TRANSMISSION LINE STUBS(I /4. etc.)

Transmission lines where the load is either an open circuit or a short circuit are of special importance. In
the first case Z| = Z,,, =¥ and the second z, =z, =0, and the reflection coefficient becomes G, =1
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and ¢, =-1. The tota voltage and currents at a location "d" from such loads are given by
Vipen(d) = A€ + ), lopen(d) = A€ - & 1Py /7, and Vi (d) = A(e"™ - & 1),
I ot (d) = A(e™Pd + @104y /7 Each of these expression can be simplified using Euler's identity to get
Vopen (d) = 2Acosbd , | (d) = j2Asinbd / Zy, and Vg (d) = j2Asinbd, |44 (d) =2Acoshd /Z,.
The impedance looking through a line of length d a an open or short load is given by
Zpen (d) =Vopen (d) /1 open (d) @A Z g0 (d) =Venort (d)/ 1 sport (d)  resulting in Equations 2.31a and 2.31b.

Thisisillustrated in figure 2.22 which shows that the VSWR =¥ Open and short circuited transmission line
are often referred to an open stub or shorted stub.

Z gpen (d) =- jZ, cot bd (2.31a)
Z ot (d) = jZ, tanbd (2.31b)
e V()

— 1@

o o

Z (@) =X (@) =

O o

\ PR

, Reactance plots, and impedance type for an open

Figure 222 (a) V(d) , |I(d)
circuited transmission line. (b.) same for ashort circuit transmission line.

The reflection coefficient for an open circuited stub is G=¢ 12bd - and therefore data as a function of

length, "d," or as afunction of increasing frequency would produce atrace on the unit circle of Smith Chart

display. Thisisillustrated in figure 2.23 which shows the impedance type associated with the paint.

All Rights Reserved -- M. L. Edwards, 7 September, 2001 Chap_02r.doc



DISTRIBUTED-ELEMENT CIRCUIT ANALYSISTECHNIQUES 2 - 29

Figure 2.23 A reflection coefficient trace of an open stub on the USC follows
the unit circle rotating in a clockwise direction starting from
the right (open) value. Traceis afunction of increasing length
or increasing frequency.

Example 2.4.1.. A circuit consisting of two sources, one operating at 1 GHz and other at 2 £.05 GHz are
connected via a 50 Wresistor to atransmission line which in turn is connected to a50 Wload. It is desired
to suppress the 2 GHz signal using an open circuited stub. If a2 GHz | /4 open stub is connected in shunt
with the load what suppression can be achieved as aworst case.? How does the characteristic impedance of
the stub affect the power delivered to the load at the desired frequency?

This problem is easily examined using computer aided analysis. The solution below assumes a propagation
velocity of 20 cm/ns for the direct line and stub (all impedances). A frequency of 2 GHz equates to a
wavelength | /4=5 cm which becomes the length for the stub, D1.

Y%script fileex2_3 1.m
%solution to example 2.3.1 R,
%
RL=50;
Rs=50; \%
V=1,
for Zstub=20 :30:110;
f=[1:.01:2.5]* 1e9; 2
w=2*pi*f;
vo=2¢€l0; @)
vstub=2¢e10; D,
beta=2*pi*f/vo;
betastub=2* pi* f/vstub; Figure 2.24 Example of astub being used
Do=11; to suppress asigna
Dstub=2.5;
Z0=50;
27 =-j* Zstub* cot(betastub* Dstub);
Y=1./ZZ;
YL=1RL;
YT=Y+YL;
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ZT=1/YT;
GT=(ZT-Z0)./(ZT+Zo);
G=GT.*exp(-j* 2* beta* Do);
Zin=Zo* (1+G)./(1-G);
lin=V./(Rs+Zin);
Vin=V*Zin./(Rst+Zin);
P=conj(lin).*Vin;
Preal=real (P);
P=10*0og10(abs(Preal));
Parray=[Parray;P];

end

Pmin=-80* ones(size(Parray));

plot(f* 1e-9,max(Parray,Pmin))
axis([12.5-800])

title('Power delivered to load vs Frequency')
xlabel ('Frequency (GHz)")

ylabel ('Power (dBm)")

0

-10}

-20

-30}

-40t

Power (dBm)

Power delivered to load vs Frequency

-50}

-60}

-70}

Frequency (GHz)

-80
1

15 2 25

Figure 2.25 Plot showing power delivered to load asa
function of frequency for afixed stub

Compare=[Parray(:,find(f==1€9)),Parray(:,find(f==1.95€9))];

Compare(:,1)-Compare(:,2)

Power to load at desired freq compared to power to load at

unwanted freq
ZoinW P(1)/P(1.95) in dB
20 25.9702
20 ‘ 25.9702
50 21.1514
80 17.6748
80 ‘ 17.6748
110 15.1545

Example 2.4.2.. A | /4 stub is used so that the voltage from a DC source (caled a bias voltage) can be
applied to the output of atransistor. Find the percentage of power that goes to the laod vs. the bias supply.

for the ciruit below.

It is desirable for no DC power to reach the load so a series capacitor is used. It is also desireable for very
little microwave power to propagate down the stub into the bias circuits so the source should appear as a

low impedance.
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Y%script fileex2_3 2.m
%solution to example 2.3.2
%

RL=50;

Rtran=200;

V=],

Z0=50; %Z1=7Z0 & Z2=Zo
Zstub=120;

f=1e9;

w=2*pi*f;

thetal=2*pi*3/8; %betal*D1 50 pF
theta2=2*pi* 7/16; %beta2* D2

thetastub=2* pi/4; Ybetastub* Dstub A T8 e e H[‘{
Rbias=L; @ [/ @ g
Gbias=(Rbias-Z0)/(Rbiast+Z0);
Gstub=Gbias* exp(-j* 2* pi* thetastub);
Zstub=Z0* (1+Gstub)/(1-Gstub);

C=100e-12;
Xc=-1(w*C);
Ztotal=RL+j*Xc; C

GL=(Ztotal-Zo)/(Ztotal +Z0); Figure 2.26 Plot showing power delivered to

G2=GL*exp(-j* 2* pi*theta2); load as afunction of frequency for afixed stub
72=70* (1+G2)/(1-G2);

Zcomb=Zstub* 22/(Zstub+22);
Gcomb=(Zcomb-Z0)/(Zcomb+Zo0);
Gin=Gcomb* exp(-j* 2* pi*thetal);
Zin=Zo* (1+Gin)/(1-Gin);
lin=V./(Rtran+Zin);
Vin=V*Zin./(Rtran+Zin);
P=conj(lin).*Vin;

Pin=real (P);

Pcomb=Pin;

V 2magsqr=Pcomb* Zcomb;

Pstub=real (V 2magsqr/Zstub);

P2=real (V2magsqr/Z2);
Loadfraction=10*1og10(P2/Pin) % dB
Stubfraction=10*1og10(Pstub/Pin) % dB

Fractional Power split between Load and Bias

Where Power Delivered Power Ratio (dB)

To Load -0.3135 dB
To Load -0.3135 dB

To Bias Supply -11.5714 dB
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25 LOSSY TRANSMISSION LINES

In some cases it is desireable to consider the losses associated with propagation on transmission
lines. This may occur when circuits involve longer lines, or for lines required to be fabricated with lossy
materials, or for circuits operating at very high frequencies such as millimeter wave circuits. For a low loss
transmission line, it is generally assumed that R<<wL and G <<wC . With these assumptions one can

determine the characteristic impedance Z_ the phase velocity of the signal using the expression for the
propagation constant g derived in section 2.1. The low loss assumptionsimply that

Z, @J/L/C (2.32)

which is the same as the characteristic impedance of a lossless transmission line. For the propagation
constant, one should proceed as follows. From (2.9),

g=RG- w2LC + jw(RC +LG) (2.33)

With the low loss assumption, one can dismissed the RG term in the equation above since it is too small
compared to other terms. Thus,

g @/- w2LC + jw(RC +LG) (2.34)

n(n- 1)

> a" 2x? + %, t0 (2.34).

Applying the binomial expansion, i.e. (a- x)" =a" +na™!x +

9 @( WZLC)% +%( szc)'% jw(rRC + LG)+:—£;(- WZLC)_SWZ(RC +LG)? + 0

or

. ..2
g @w+LC += \/LCEEB+EQ+—W LcER L, G0 (2.35)
Cg wL wC g4

All terms after the second in the above equation is negligible based on the small loss assumptions. And,
finaly,

g@ + jb ——\/E +—_+ JW\/E (2.36)

The phase constant b is aso the same as the wave number defined in a lossless transmission line, but now

the attenuation constant is not zero. Since the wave is attenuated by the factor of € 2> asit traveled in the
+x direction,. One can readily see that

1ee
a—— R\f \P ==(RY, +GZ,) (2.37)
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The complete solution of the voltage wave that travels in the +x direction is V *e 9" The phase

velocity is derived from the time displacement of the constant phase point, i.e. assuming the exponential
term to beaconstant, - gx + jwt = u, and taking the time derivative of it. Thisyields

a
x
E

jw 1 1

p N —
at g \/ aEB+99+1W\/LC w/|_C 7+£0+w/LC LC

(2.38)

The phase velocity of the signal in alow loss line is the same as that in alossless line. It is customary to
expressed the characteristic impedance in terms of the phase velocity and one of the circuit parameter as

below.
L 1
Z.=|—=v L=—H 2.39
c=\g =V e (239)

At high frequencies, the electromagnetic field can penetrate only a small distance into a conductor.
In fact, the amplitude of the fields decay exponentialy from its value at the surface of the conductor

according to € Yds  Here, u is the normal distance into the conductor and d, is the skin depth given
below.
dg = 2 (2.40)
WIS m

where W is the angular frequency of the signal, m, is the permeability of the conductor, and s ,, is the
conductivity of the conductor. At one skin depth, i.e. u=dg, thefield strength is 37% of the surface value.
At three skin depth, i.e. u=3d,, the field strength is down to only 5% of its surface value. For copper, a

commonly used conductor in microwave transmission media, the skin depth at 100 MHz is 6.6 micron or
0.26 mils. At 10 GHz, the skin depth is 10 times smaller than that. Therefore, when considering the finite
conductance of a lossy transmission line, the series resistance R in Figure 2.1 is usually expressed in terms
of the surface resistance R, , which is defined as

R, = (2.41)

The exact formula for the series resistance of a particular transmission media also depends on the geometry
of the mediaitsalf.

In Figure 2.1, the admittance Y of the shunt components can be expressed as

= JWC +G= JWC?- Jio
wC g
The term G/wC, which causes the admittance Y to deviate from a pure imaginary value with non-zero
dielectric conductivity, is called the loss tangent and conventionally denoted as "tand". For a particular
transmission media, the geometric factor for the conductance and capacitance of the dielectric is the same
and can be eliminated from the loss tangent formula. In other words, G =ks 4 and C = ke, , wherek isthe
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geometric factor, sy and ey is the conductivity and the permittivity of the dielectric respectively.
Therefore,

tand = > (2.42)
wey

and the dielectric conductance G in terms of the loss tangent is

G =wCtand (2.43)

To account for attenuation due transmission line losses is reatively easy to accomadate since g= a + jb and
the total voltage on thelineis

V(d)=Ale® +Ge®)
The generalized reflection coefficient at a point "d" from theload is
G=Ge ™

The attenuation constant has units of inverse distance since when it is multiplied by "d" the exponent
becomes a unitless number. This unitless number is given the honorary label, Neper, after the Napier the
inventor of natural logarithms. Thus, a would be described in terms of Nepers/cm, Nepers/in indicating
that when multiplied by the length in appropriate units that the resulting number is the correct exponential
value. Howeve, loss is usually measured in terms of dB or dB per unit length and it is therefore important
to understand how to convert to Nepers per unit length for calculation purposes. The voltage apoint "d" on
amatched lineis compared with the voltage at a point "d+Dd" to get

V(d+Dd) _ A% | g _ and g ibod
Vv(d) Ae¥

P(d +Dd) _V(d+Dd)|* _ _oam
Pd) | v(@) |

aP(d +Dd) 6
DP,; =10l0g,q QW;: 20aDd log,, e

DPys
d

a = 20log;, e = 8.686

Therefore 1 Neper/unit length is seen to equal 8.68 dB/unit length. It is instructive to examine a line that
has 1 dB of loss per wavelength.
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Example 2.5.1.. Plot the total voltage magnitude on a rectangular plot and the reflection coefficient on a
Smith chart for an open circuited stub with a 1dB per wavelength loss.

Y%script fileex2 4 1
9%to illustrate attenuation

% aphais 1 dB / wavelength
% beta is just 2*pi radians since
% d is measured as fractional
% wavelenght

d=[0:.01:3];

beta=2*pi;

alpha=1/8.686;

gamma=al pha+j* beta;

GL=1,

V d=exp(gamma* d)+exp(-
gamma*d);

Vdmag=abs(Vd);
plot(d,Vdmag)

Figure 2.27 Plot showing reflection coefficient for loss open

G=exp(-2* gammar“d); circuit stub for lengthsup to 31 .

figure
plot(G,'r");hold
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usc

2.5

3 25 2 15 1 0.5 0
&—— d (fractions of wavelength)
O 0]

(Zo)  Loss=1dB/wavelength  open

0 O

Figure 2.28 Rectangular plot of total voltage for loss open circuit stub
with lengthsupto 31 .

From Figure 2.28 it is noted that the VSWR changes as the measurement moves away from the open end of
the stub. Measurements of the VSWR at multiple cycles from the open can be used to detemine the loss
associated with the line. From the smith chart display one see that the trace makes 6 cycles equating to a

length of 31 . One dB per wavelength causes the reflection coefficient to spiral inward so that its radius has
reduced from 1 to 1/2 for an open circuited stub.
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26 PROBLEMS

1. The function y=cos(W-bx) reprsents a propagating wave on the x-axis. If the frequency is 1 GHz and
the wave-length is 20 cm plot y vs x for t=0, .2ns, .4ns, .6ns where the x-axis goes from 0 to 100 cm.
Measure the movement of a wave crest for the different time intervals and calculate the phase velocity.
Compare with the formulav=fl .

2. A lossless transmission line has a distributive inductance of 1 nH/cm, a distributive capacitance of .5
pF/cm. What is the characteristic impedance of the line. What is the phase velocity. If awave on thisline
has a frequency of 1 GHz what is its wavelength?

3. For thecircuit shown use Kirchoff's voltage law (KVL) to write two equations in terms of the currents 1

. . : a . . .
and |,. Express the eguations as a matrix equation Agl 19- B where A is a 2x2 matrix and B is a 2x1
2

4]
column matrix. Solve for the current matrix by inverting A. What is the power deliveredto R _?

Rg V, L \A

f=1GHz L - 5nH
Vs R Vs=1vot C = 7 pF
C Rs= sow R =50w

-

4. For the circuit shown in problem 3 use Kirchoff's current law (KCL) to write two equations in terms of

the voltages V; and V,. Express the equations as a matrix equation Cgvl 2= D where C is a 2x2 matrix
2

2
and D isa2x1 column matrix. Solve for the current matrix by inverting C. What is the power delivered to

R ?

5. Solve the circuit in problem 3 by determining the Thevenin Equivaent for the circuit below an then
connect the resistor R and determine the power delivered to it.

Re L ‘1
. e —
VS / VT RL
= C -
=
6. What isthe power delivered to each of thetheloads R and R,?
50 W
WW—o
R = 100w
v (25 W) § R, (oow) ?Rz !
> R2 =50WwW
< | /8 . | /14 =

7. For an arbitary length, "L," of transmission line find the voltage transfer ratio (total voltage at load
divided by total voltage at input. Express ratio in terms of electrical length, g=bL. Substitute specia case
where L=| /4 and demonstrate results in chapter.
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1@

o o ‘ 3_,_
source  Zin—> V‘(d) () Z § Load
o
X J/ d o—l_
/'\
L
g=bL

8. Plot the reflection coefficient with respect to Zo=50 W on the Unit Smith Chart for a frequency range
from .1 GHz to 40 GHz. Identify the resonance points and characterize their type.

R,= 10W
L1= 1nH

Z,=50 W
C= 10pF °

G (@)

C2: 1 pF L =.05cm

R=1 w V=2x10°cms
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