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CHAPTER

8

MATCHING NETWORKS

8.1 INTRODUCTION

This chapter examines an important class of networks known as matching circuits.  A matched load
has already been observed to be a critical element in the measurement of S-parameters.  In this case
"matched" meant that the load impedance equaled the reference impedance to simulate an infinitely long
transmission line so that no reflections would occur that would otherwise contaminate the S-parameter
measurement.  As a result, one of the meanings of the term "matched" refers to a circuit or a load that
produces no reflections.  A second meaning comes from a concept in basic AC circuits.  In this case the
term “matched” refers to a circuit or load which receives maximum power from a source which may be the
Thevenin equivalent representation of a complex configuration of sources and impedances.  In the first case
a matched load reduces the VSWR to 1, but may not result in the maximum power being delivered to the
load.  On the other hand, in the second case the matched load causes maximum power to be delivered to the
load but the VSWR may be greater than 1.  The maximum power transfer definition for the “matched” load
will be examined first by considering the familiar AC circuit situation.  In this case a load is connected to a
source as illustrated in figure 8.1.

In this case the power dissipated by the load, LP , is given by
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Figure 8.1  A load connected to a source with voltage, sV ,and
impedance, sZ ,
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To maximize the value of LP , on notes first that the load reactance, LX , appears only in the denominator
and if it is set equal to the negative of sX  then the fraction will be maximum with respect to the load
reactance.  Therefore, choosing sL XX −=  implies that
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The choice of an optimum value for the load resistance is a little more complicated since LR  appears in
both the denominator and numerator of the expression.  In this case the value of LR  resulting in maximum
can be found by taking the derivative of the expression and setting it equal to zero.  Therefore,
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The maximum power is also referred to as the available power from the source.  In this case notice that the
load which results in maximum power transfer occurs when the load impedance is the conjugate to the
source impedance, i.e., *

sSSLLL ZjXRjXRZ =−=+= .  For this reason the matched load is sometimes
referred to as a being a conjugate match.  Often in the design of circuits a source or Thevenin Equivalent
Source exists with an impedance that is unequal to the conjugate of the desired load.  In this case it is
desirable to insert a passive, lossless, reciprocal circuit (PLRC) between the source and load so that the
circuit is conjugately matched.  This is illustrated in figure 8.2.

In terms of reflection coefficients
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and conveniently a conjugate match means that *
SL ZZ =′  or equivalently, *

SL Γ=Γ ′ .  The insertion of such a
circuit means that maximum power is delivered to the input of the matching network, LZ ′, and since the
matching network is a lossless circuit then that same power must be delivered to the actual load.
Equivalently, the available power from the source is delivered to the load because the real load is made to
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Figure 8.2  Illustrating a passive, lossless, reciprocal circuit insert between a
load and a source to provide a conjugate match
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appear to the source as a conjugately matched load.  Sometimes the matching network is called a
transformer since it transforms the actual impedance into a value that matches the rest of the circuit.

Example 8.1.1.  Prove the reflection coefficient conjugate match criterion using signal flow graphs and
determine the maximum power (available power) in terms of the source reflection coefficient.

The circuit of figure 8.1 can be represented as the SFG shown in figure 8.3 where ( )00 ZZZVb sss += ,

( ) ( )00 ZZZZ sss +−=Γ , and ( ) ( )00 ZZZZ LLL +−=Γ .

The power delivered to the load is therefore,
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Maximizing LP means that the cosine term should be as large as possible.  This occurs when SL θθ −= , and
in that case
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Maximization with respect to Lρ  is implemented by setting the derivative of the above expression equal to

zero, 0=
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, which implies that SL ρρ = .  Therefore the maximum power transfer to the load occurs

when *
S

j
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SL ee Γ===Γ − θθ ρρ , which is the same result obtained earlier.  The maximum power (or
available power from the source) is found to be
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Direct substitution shows that
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Figure 8.3  Signal flow graph representation of the circuit in figure 8.1.
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thus verifying that the maximum power can be calculated from the reflection coefficient and initially
launched signal or from the impedance and voltage parameters of the source.

Matching circuit are most often created by combining passive elements such as inductors,
capacitors, transmission lines, and open-circuited or short-circuited transmission line stubs.  It is often a
good approximation at RF and microwave frequencies to assume that these elements are lossless.  Therefore
it is useful to consider some of the theoretical properties of passive lossless circuits and see their
implications for matching networks.  Recalling that the scattering matrix for a passive lossless circuit is a
unitary matrix implies that

ISSSS t =⋅=′⋅ * (8.5)
or
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In this case the complex transpose of the S matrix is the inverse of the S-matrix and from linear algebra it is
well known that the inverse of a matrix commutes with its matrix under the operation of matrix
multiplication.  Therefore, it immediately follows that the following matrix relationship also holds.

ISSSS t =⋅=⋅′ * (8.7)

The matrix equation (8.6) which results in the following set of equation
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1121 =+ SSSS (8.10)
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Equations (8.8) through (8.11) can be manipulated to provide a number of interesting facts about the s-
parameters of two port passive lossless circuits.

Magnitude Theorem for 2-Port Passive Lossless Circuits:  The input and output s-parameters of a 2-port
passive lossless circuit have equal magnitudes, and the forward and reverse transfer s-parameters have
equal magnitudes, i.e., 2211 SS =  and 2112 SS =

Proof:

From equation (8.9) it follows that *
22

*
211112 SSSS −=  which can be substituted into equation

(8.8) to get 1
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2
11 =+ SSSS  and multiplying by 2
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eliminates the complex conjugate operation results in 2
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the first part of the theorem is proven.
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The second part of the theorem follows by combining equations (8.8) and (8.11) to get
2

22
2
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2

12
2

11 SSSS +=+  and since 2211 SS =  it follows that 2
21

2
12 SS =  and therefore

2112 SS = .

Determinate Theorem for 2-Port Passive Lossless Circuits:  The determinate of a 2-port passive lossless
circuit is the ratio of the output s-parameter divided by the complex conjugate of the input s-parameter and
its magnitude equals 1, i.e., *

1122 SS=∆ and 1=∆ .

Proof:

One can use equation (8.10) to get *
11

*
122221 SSSS −= , which can be substituted in the definition

of the determinate, 21122211 SSSS −=∆ , to get *
11

*
1222122211 SSSSSS +=∆  which simplifies to

( ) *
11

2
12

2
1122 SSSS +=∆  and equation (8.8) results in *

1122 SS=∆  which proves the first part of the
theorem.

The second part dealing with the magnitude of the determinate follows immediately from the first
part and the magnitude theorem above, i.e., *

1122 SS=∆  implies *
1122 SS=∆  and

1122
*
1122 SSSS ==∆ .  Since 1122 SS =  then 1=∆  and the second part of the theorem is proven.

Simultaneous Conjugate Match Theorem for a 2-Port Passive Lossless Circuit:  A 2-port passive lossless
circuit inserted between a source and load can only be conjugately matched at its output if it is conjugately
matched at its input, and vice versa.

Proof:

The SFG describing this situation is shown below in figure 8.4
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The input reflection coefficient is defined as the reflection coefficient that exists at the input of the circuit
when the load is connected to the output.  This is illustrated in figure 8.4 (b.).  In this case
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The output reflection coefficient is defined as the reflection coefficient that exists at the output of the circuit
when the source is connected to the input.  This is illustrated in figure 8.4 (c.) and
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Note that the input reflection coefficient is a function of the s-parameters of the circuit and the load
reflection coefficient while the output reflection coefficient is a function of the s-parameters of the circuit
and the source reflection coefficient

The theorem states that INS Γ=Γ *  if and only if *
LOUT Γ=Γ .  Assuming that the input is conjugately

matched one now must show that that the output is conjugately matched.  Assuming INS Γ=Γ *  then equation
(8.12) implies that
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which can be substituted into equation (8.13) to get
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Figure 8.4  (a.) Signal flow graph showing a circuit inserted between a
source and a load, and the (b.) input and (c.) output
reflection coefficients
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which simplifies to
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Substituting the results previous theorem on 2-port passive, lossless circuits, i.e., *
1122 SS=∆  and 1=∆

results in
( )
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and from equations (8.8) and (8.11) it follows that

2
12

*2
21

S

S L
OUT

Γ
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and the magnitude theorem for 2-port passive lossless circuits implies that 1221 SS =  and (8.17) becomes
*
LOUT Γ=Γ  which proves the assertion.  The reverse proof follows similarly and is left as an exercise.

Matching networks are often used in the design of active networks as an input, output, or interstage circuit
as illustrated in figure 8.5.  Matching networks are required because normally active circuits function
optimally when their input and output impedances are different than 0Z .  However the input and output to
the combination circuit is normally 0Z .  Therefore, input and output matching networks are for the purpose
of creating a conjugate match between 0Z  and an arbitrary impedance, or equivalently, the matching
network transforms the center of the Unit Smith Chart into reflection coefficient required for the input or
output of an active circuit.  On the other hand an interstage network is placed between two active circuits
with the function of conjugately matching the output of the first circuit while simultaneously conjugately
matching the input of the second active circuit.  An interstage matching network transforms the optimum
reflection coefficient required by the output of the first active circuit into the optimum reflection coefficient
required to conjugately match the input of the second active circuit.  In this case one expects that neither
reflection coefficient will be located at the center of the USC as in the previously discussed input and output
matching networks.  As seen from the previous discussion, conjugate matching with a passive lossless
network requires that both sides of the matching network be conjugately matched.  Subsequent sections will
illustrate specific matching networks.
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Since matching networks are primarily designed as passive lossless networks it is worth examining the s-
parameters of such circuits.  Based on the magnitude theorem the s-parameters of a matching circuit would
be given by αjeSS 1111 = , βjeSS 1122 = , γjeSS 2121 = , and δjeSS 2112 = .  From equation (8.8) and

(8.11) it follows that 2
2121 1 SS −= .  From equations (8.9) the phase terms can be related, i.e.,

( ) ( ) 011 2
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2
2111 =−+− −− βδγα jj eSSeSS

( ) ( )πβδγα njj ee +−− =    (n=odd integer)

πβδγα n+−=−

παδγβ n+−+=       (n=odd integer)

Therefore, the S-parameters of a passive, lossless network must be of the following form
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If in addition the circuit is reciprocal, as is usually the case, then 2112 SS =  or γδ =  and the S-parameters
circuit are of the form
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The determinate of the passive, lossless, reciprocal network equals

γ2j
PLRN e−=∆ (8.21)

Input and Output Matching Network Theorem:  When using a passive lossless reciprocal network (PLRN)
as an input or output matching network to transform 0Z  to a predetermined impedance with reflection

coefficient θjeΓ , the S-parameters of the network are uniquely determined except for an arbitrary length

of transmission line added to the 0Z  side of the matching circuit.
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Figure 8.5  An illustration of matching networks being used with active
circuits
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Proof:

With out loss of generality one may assume that the PLRN is an output matching network and port 2 of the
network will be connected to 0Z  and transform it to an impedance whose reflection coefficient is given by

θjeΓ .  This is illustrated in figure 8.6, where one notes that θjeS Γ=11 .  From equation (8.20) the s-
parameter matrix would be given by equation (8.22).
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which can be represented in SFG form by figure 8.7.

8.2 LUMPED-ELEMENT MATCHING NETWORKS

Suppose one desires to build an inter-stage matching network to be inserted between a source with
impedance is 7575 jZ S +=  Ω  and a load impedance of 5075 jZ S +=  Ω .  This is illustrated in figure
8.8(a.).  Figure 8.8(b.) shows the source and load impedance reflection coefficients on the unit Smith Chart.
Determining a lumped element matching network consists of finding segments of constant series resistance
or shunt conductance circles that move from LZ  (or LΓ ) to *

SZ  (or *
SΓ ).  Conceptually one can imagine

starting the process by looking at the load and backing through the matching network until finally looking
into the input side of the matching network.  At that point one wishes to see the complex conjugate of the
source impedance for maximum power transfer.
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Figure 8.6  Illustration of an output matching network and its implication on the s-
parameters

Γ e j θ Γ e-

1 - Γ 2

1 - Γ 2 e j γ

e j γ

1

1

j θ-

Figure 8.7  A SFG of an OMN showing that s-parameters are uniquely
determining except for an arbitrary length of
transmission line.
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The same matching network could have been created by looking at the source and backing again through
the matching network until finally looking into the output side of the matching network.  Similar paths on
the Smith Chart are illustrated in figure 8.9.

Input and output matching networks can also be realized using pairs of reactive, lumped element
components.  Eight different lumped element matching networks are possible using pairs of inductors and
capacitors.  Such networks are referred to as "L" networks because topology of the schematic representation
resembles an "L" shape, i.e., there is always a series element and a shunt elements.  In the case of an input
or output matching network the circuit can be developed following constant resistance and conductance
circle segments from a complex impedance (complex reflection coefficient) to the center of the Unit Smith
Chart which represents 0Z  ( 00 =Γ ).  The 8 networks are shown in the Smith Chart are illustrated in figure
8.10 and the shaded areas indicate impedances that can be matched to 0Z .
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An alternative two-component network is possible for input/output matching circuits if one
employs a transformer as one of the components.  The principle of operation consists of connecting a
reactive element in series or in shunt with the complex impedance so that the combined impedance is purely
resistive (or conductive).  Then a transformer is connected to step the real impedance up or down to 0Z .
This is illustrated in figure 8.11.

8.3 DISTRIBUTED-ELEMENT MATCHING NETWORKS

Matching networks using distributed elements can follow the same pattern as those using lumped
elements where an inductor can be replaced with a short circuited transmission line and a capacitor replaced
by an open circuited transmission line, where in both cases the transmission lines are assumed to be less
than 4λ in length.  In this case the circuits of figure 8.10 become those illustrated in figure 8.12.
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Figure 8.10 Realization of an input/output matching network finding segments of
constant resistance and conductance circles from the source to the
conjugate of the load.
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Figure 8.11  Realization of a input/output matching network using a transformer as one of
two lumped-elements (shaded area shows permissible impedances for 1Z
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However, if circuits are to be designed using microstrip technology then series stubs are not possible and
matching networks must be designed which us only shunt stubs.  This is a relatively easy task since one may
design an input/output matching network by starting at the complex impedance and connecting a length of
transmission line which rotates the impedance until it intersects the unity conductance circle.  At this point
an open or short-circuited stub can be attached in shunt with a length to cancel the reactance and move the
impedance to the center of the Smith chart.  This is illustrated in figure 8.13.
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Figure 8.12 Realization of an input/output matching network using distributed element
components.  All transmission line elements are assumed to be less than

4λ in length.  Shaded area equals permissible impedances 1Z .



MATCHING NETWORKS 8 - 13

Chap_08r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

Another distributed element input/output matching network approach is to use a quarter-wave
transformer.  In this case an open or short circuit stub is placed in shunt with the complex impedance and
adjusted so that the combined impedance is real.  A quarter wave transmission line is then inserted with a
characteristic impedance designed to transform the real impedance to 0Z .  This is illustrated in figure 8.14.

A variation of the last technique is to use λ/8 shorted or open stubs to cancel the reactive part of
the complex impedance before transforming with the quarter wave transmission line.  Recall that the
impedance for a short-circuited transmission line is given by the expression θtan1jZZ SC = , where

λπβθ /2 LL == .  If L = λ/8 then 4/πθ =  and 1tan =θ  and 1jZZ SC = .  Therefore, the impedance for a
short circuited stub of length λ/8 is determined by 1Z , which can be adjusted in microstrip by changing the
width of the line.  Thus, if the complex impedance has a negative imaginary part (i.e., its capacitive) the line
width of a λ/8 shorted stub can be set to cancel the reactive part of the complex impedance.    In a similar
manner an open circuited stub has an input impedance given by θcot1jZZOC −=  and if the stub length is 
λ/8 then the input impedance is given by 1jZZOC −= .  In this case if the imaginary part of complex
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Figure 8.13 Realization of a distributed element, two component input/output
matching network.
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Figure 8.14 Realization of a distributed element, two component
input/output matching network using a stub and a
quarter wave transformer.
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impedance is positive (i.e., it is inductive) then a λ/8 open circuited stub can be connected in shunt to cancel
the reactance.
8.4 BANDWIDTH CONSIDERATIONS FOR MATCHING NETWORKS

The networks presented thus far are examples of narrow band matching circuits.  However, for
many applications they are sufficient to meet the task.  When wider bandwidths are required one must first
consider the nature of the complex impedances being matched.  Fano has developed a set of integrals that
show an important trade-off when considering the bandwidth of a matching network.  He considered four
types of complex loads, (1.) a resistor in parallel with a capacitor, (2.) an inductor in series with a
resistance, (3.) an inductor in parallel with a resistor, and (4.) a capacitor in series with a resistor.  These
cases are shown in figure 8.15.

Since perfect input/output matching means that 0=Γ  from the Fano relationships it is clear first
that perfect matching can at most occur only at discrete frequency points and not over a continuous band.
Secondly, the wider the band then for the same complex impedance the less perfect the match will be.  An
exception to this is the case where the impedance is consists of only a resistance.  In the low pass case C = L
= 0 which means that the bound on the integral is infinite and in that case the match can be perfect over a
band.  In the high pass case C=L=∞  and again the bound on the integral is infinite implying that a perfect
match is possible over a band.

An example circuit, which can be used to match two real impedances, is cascading quarter-wave
transmission lines of different impedance.  In microstrip the lines would have different width and so such
circuits are sometimes referred to as step impedance matching networks or stepped impedance transformers.
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Figure 8.15 Fano's integral relationships for impedances consisting of
series and parallel combinations of R + L and R + C.
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If wider bandwidth or improved performance is desired then additional quarter-wave sections can be added
to the matching network.  This is illustrated in figure 8.16.

In general increasing the bandwidth of a circuit requires added additional components or sections.
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Transmission Line Schematic

Microstrip Schematic

Microstrip Layout

Figure 8.16  A stepped impedance matching
network
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