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CHAPTER

3

S-PARAMETERS, SIGNAL FLOW GRAPHS, AND
OTHER MATRIX REPRESENTATIONS

3.1 S-PARAMETERS

In chapter 2 it was shown that a voltage waves propagating to the right and left could be
represented, respectively, as

djAeV β=+ (3.1)

djBeV β−− = (3.2)

In the analysis of distributed circuits it is convenient to define normalized voltage variables, called signal
parameters as follows

0Z

V
a

+
= (3.3)

0Z

V
b

−
= (3.4)

This definition results in 2a  equating to the power propagating to the right and
2b  equating to the power propagating to the left.  In characterizing a linear device or a

linear circuit, it is convenient to consider its response when subjected to an incident propagating signal.  In
such an experiment the circuit is called a Device Under Test (DUT).  For a two port circuit the test can be
visualized as starting with an infinitely long, lossless, transmission line with characteristic impedance 0Z
and inserting the two port DUT as shown in Figure 3.1.  An incident signal from the left, designated a1

results in a reflected signal, designated 1b , propagating back towards the left, and a transmitted signal,
designated 2b , which emerges from the device and propagates to the right.
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The subscripts "1", and "2" refer to the left and right ports, respectively.  If the device is linear
then the stimulated signals are related to the incident signal by a constant.  That is,

1111 aSb =  (incident signal in port 1 only)

1212 aSb =  (incident signal in port 1 only)

Likewise, if the device is hit with a signal from the right then again a reflected signal and a transmitted
signal are generated.  In this case

2121 aSb =  (incident signal in port 2 only)

2222 aSb =  (incident signal in port 2 only)

Since the device is linear, superposition holds and the combined response given two incident signals, one
from left and one from right, can be written as

2121111 aSaSb += (3.5)

2221212 aSaSb += (3.6)

The parameters ijS  are called scattering parameters.  This terminology conveys the idea that an
incident signal impinges upon a target, the device under test, and signals are scattered away.  For a two port
device scattered signals can occur in only two directions, from ports 1 scattered signals propagate to the left
and from port 2 scattered signals propagate to the right.  The scattering parameters and incident and
reflected signals can be represented in matrix form where the square matrix of s-parameters is called the
scattering matrix.
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The scattering matrix together with the underlying propagation environment, in this case  transmission lines
of characteristic impedance 0Z , uniquely characterize a two port device.  Therefore, when a device is
characterized by scattering parameters the reference characteristic impedance must also be given.
Frequently, the characteristic impedance is 50Ω , which is often assumed unless a different value is
explicitly specified.

  DUT

 ( Z0 )

 ( Z0 )  ( Z0 )a1
b1

b2

Figure 3.1 When a Device Under Test (DUT) is inserted in an
infinitely long transmission line with an incident signal

1a  propagating to the right, a reflected signal, 1b , and
transmitted signal, 2b , result.
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The concept of a scattering matrix with scattering parameters has been developed for a two port
device under test, but naturally extends its self to devices with any number of ports by assuming that
transmission lines are connected to each port.  Again the characteristic impedance of the lines must be
known for the scattering matrix to define the behavior of the circuit.
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Since a measurement environment consisting of an infinitely long transmission line is not possible,
it is necessary to consider how one might practically measure the s-parameters.  Each of the s-parameters
are a ratio of scattered signal to the incident signal.  Therefore, a situation must be created in which only
one incident signal can exist.  To do this requires a matched source and a matched load.  To measure

11S  and 21S  the source is connected to the transmission line on the left and the matched
load to the transmission line on the right as shown in Figure 3.2.

The matched load insures that the scattered signal 2b  does not interact with the end of the line and
produce a reflection that would propagate from the right towards the left and becomes a second, unwanted
incident signal.  That is, the matched load insures that 02 =a .  Under this measurement condition the s-
parameters are given by (3.9a) and (3.9b).  If the set up is reversed then one can measure the other two s-
parameters, i.e. (3.9c) and (3.9d).
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It is possible and sometimes desirable to have a different reference impedance for each of the
ports.  This is illustrated in Figure 3.3 for a two port circuit.

  DUT ( Z0 )  ( Z0 )a1
b1

b2  Matched
  Source

  Matched
  Load

Figure 3.2 A matched source and a matched load simulate an incident signal on
an infinitely long transmission.
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In this case when a matched load is connected it must be appropriate for the particular line.  And, as
expected the values of the s-parameters may be different since the generating and scattered signals are
propagating in a different environment.  The normalization for the signal parameters is different for each of
the ports.  Again it is essential in characterizing a linear device to know both the s-parameter values and the
reference impedance under which they were determined.  To illustrate the determination of s-parameters a
two-port device under test is created which consists of a shunt resistor.  While this is a simple circuit its
characterization will serve to illustrate the theory.

Example 3.1.1 What are the s-parameters for the two port device (circuit) in Figure 3.4 where the input
and output reference impedance is 50 Ω  ?

To determine 11S , a matched load is connected to port 2 as shown in Figure 3.5(a).  An incident

signal 01 1 Za =  is assumed to be propagating into port 1, equating to an incident voltage 11 =+V .

Determination of 11S  is equivalent to finding the input reflection coefficient, INΓ , which in turn can be
found by computing the input impedance.  This is accomplished in equations (3.10a) and (3.10b).  The
reflected voltage is 311 −=−V , implying ( ) 01 31 Zb −= ,  and therefore , 11S  can be computed as the

ratio of 1b  to 1a .

Ω= 25INZ (3.10a)
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  DUT ( Z1 )  ( Z2 )a1
b1

b2
a2

Figure 3.3 In general it is possible for the input transmission line
and the output transmission line to be of different
impedance.

50 Ω

Figure 3.4 The Device Under Test (DUT)
consists of a shunt 50 Ω  resistor.
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The transfer s-parameter, 21S , can be found by realizing that the total input voltage equals

( )ININ VVVV Γ+=+= +−+ 1111 , and since 11 =+V , 323111 =−=Γ+= ININV .  Knowing this voltage one
can find the voltage across the output which equals the voltage propagated away from port 2.  Since

−+ += 22 VVVOUT , and, in this case, INOUT VV =  and 0022 == − ZVa , consequently 322 =+V  as

illustrated in Figure 3.5(b).  Therefore ( ) 02 32 Zb = , and the transfer s-parameter 321221 == abS .

Since the circuit is symmetric then 2211 SS =  and 1221 SS =  and the scattering matrix is given by
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Example 3.1.2 Find the s-parameters for the DUT in Figure 3.4 assuming an input and output reference
impedance of 75 Ω ..

The procedure is similar to that used in the previous example.  11S  is determined  by connecting a
matched load to port 2, this time equal to 75 Ω , and determining INZ  and INΓ  as illustrated in Figure

3.6(a).  Assuming an incident signal 01 1 Za =  propagate into port 1 which equates to an incident voltage

V1 1+ =  implies that the reflected voltage 731 −=−V  , and the reflected signal ( ) 01 73 Zb −=

Ω=
+
⋅= 30

7550
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INZ (3.13a)
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= = − (3.14)

50 Ω 50 ΩZ IN

  (a)

  VIN   = 1-1/3 = 2/3 50 Ω 50 Ω

  (b)

  VOUT  =  = 2/3  V2
+

Figure 3.5 (a) S11is calculated by first finding the input impedance with the
load terminated in the reference impedance, 50 Ω  in this case.
(b) The total input voltage is found by adding the incident
voltage, 1, to the reflected voltage, 31− .
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The transfer s-parameter 21S  is found in a similar manner to the previous example.  First, the total
input voltage is found which is used to determine the output voltage.  The output voltage must equal the
propagating voltage wave at port 2.  Therefore, ( ) 02 74 Zb = , and the transfer s-parameter

741221 == abS .  Again the circuit is symmetric so 2211 SS =  and 1221 SS = .  The scattering matrix is
given by  equation (3.15) which is observed to be different than that obtained above for the 50Ω  input and
output reference impedance.
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Example 3.1.3 Find the s-parameters for the DUT in Figure 3.4 assuming an input reference impedance
of 50 Ω  and an output reference impedance of 75 Ω ..

To determine 11S  a matched load is connected to port 2, this time equal to 75 Ω .  The

determination of INZ  and INΓ  are determined as shown below.  An incident signal 11 1 Za =  is assumed

to propagate into port 1.  This equates to an incident voltage V1 1+ =  which results in a reflected voltage

411 −=−V  , and a reflected signal ( ) 11 41 Zb −= .  Thus, we see that
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50 Ω 75 ΩZ IN

  (a)

  VIN   = 1-3/7 = 4/7 50 Ω 75 Ω

  (b)

  VOUT  =  = 4/7  V2
+

Figure 3.6 (a) The reflection coefficient is found by first determining the
input impedance with the output terminated in the reference
impedance, 75 Ω  in this case.
(b) The total voltage at the input is the sum of the incident and
reflected voltages.



S-PARAMETERS, SIGNAL FLOW GRAPHS, AND OTHER MATRIX REPRESENTATIONS 3 - 7

Chap_03r.doc All Rights Reserved -- M. L. Edwards, 7 September, 2001

Determination of the transfer s-parameter 21S  is determined by first finding the total input voltage
and then using it and the circuit configuration to determine the output or exiting voltage.  In this case

( ) 12 43 Zb = , and 21S  equals
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50 Ω 75 ΩZ IN

  (a)

  VIN   = 1-1/3 = 3/4 50 Ω 75 Ω

  (b)

  VOUT  =  = 3/4  V2
+

  Output
  Reference
  Z 2  = 75 Ω

  Input
  Reference
  Z 1  = 50 Ω

50 Ω50 Ω Z IN

  (c)

  VIN   = 1-1/2 = 1/250 Ω50 Ω

  (d)

  VOUT  =  = 1/2  V1
-

  Output
  Reference
  Z 2  = 75 Ω

  Input
  Reference
  Z 1  = 50 Ω

Figure 3.7 (a) The procedure starts by attaching a load equal to the output
reference impedance and determining the input impedance and
reflection coefficient.
(b) The total input voltage is next calculated (incident +
reflected) and the output voltage determined.
(c) Now an incident signal is assumed to impinge on the left hand
side of the DUT and hence the process is repeated from that
point of view.
(d) The total voltage on the left hand side of the DUT is
calculated and the resulting output voltage (right hand side) is
determined.
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Symmetry no longer exists because of the different input and output reference impedance and one therefore
must calculate 22S  and 12S  separately.  To this end let an incident signal 22 1 Za =  propagate into port

2.  This equates to an incident voltage 12 =+V .  For this calculation port 2 now becomes the input and port

1 the output.  The calculation of INZ  and INΓ  are illustrated below.  The reflected voltage 212 −=−V , and

the reflected signal ( ) 22 21 Zb −=  are used to determine S22.

Ω= 25INZ (3.19a)
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Determination of the transfer s-parameter 12S  follows from the total input voltage which is used to

determine the output voltage which equate the voltage wave exiting port 1.  Therefore,  ( ) 11 21 Zb = ,

and 12S  is given by equation (3.21).  The scattering matrix is shown below and has values different from
those obtained earlier.  Notice that still 2112 SS = .  This illustrates that a circuit may be asymmetric (in this
case because a different impedance is used for the input and output reference) but still reciprocal.
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Example 3.1.4 Find the s-parameters ( )0Zref =  for a circuit consisting of a quarter wave transmission
line with characteristic impedance Z1 .

The calculation of 11S  is illustrated below.
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The calculation of S21 is illustrated below.  Using the voltage transfer ratio for quarter wave transmission
lines permits the output voltage to be found from the total input voltage.
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Z IN

  (a)

  (b)

 = 1  V1
+

  VIN   VOUT

 ( Z1 )   ZLOAD  =  0 Z
  a1 =

Z0

1

  λ/4

 ( Z1 )   ZLOAD  =  0 Z

  λ/4

Figure 3.8 (a) The input impedance and reflection coefficient is found by
connecting a load equal to the reference impedance.
(b) S21 is found by determining the total input voltage and then
determining the output voltage.
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3.2 SIGNAL FLOW GRAPHS

Signal and Scattering parameters can be described using a graphical technique called Signal Flow
Graphs (SFG).  In this technique variables which are related via a multiplicative constant are represented as
nodes connected by paths with assigned values called parameters.  The assigned value is equal to the
multiplication constant.  Consequently, y cx=  would be represented as Figure 3.9(a) and  ycxcw 21 +=
could be represented as Figure 3.9(b).

This technique can be used to represent the relationship of signals via their scattering parameters.  That is,
the signal parameters would be represented by nodes and the s-parameters would be represented by the
paths.  A two port device is described by the equations (3.5) and (3.6) restated below or by the SFG shown
in Figure  3.10.  When signal flow graphs are used to represent the signal, there will always be two nodes
associated with each circuit port.  One node represents the entering signal and the second represents the
exiting signal.  In signal flow graphs if two nodes are connected by a single path with a value of unity then
the nodes are equivalent.

2121111 aSaSb += (3.5)

2221212 aSaSb += (3.6)

  x
  c

  y

  (a)

  x   w

  y

  c 1

  c 2

  (b)

Figure 3.9 (a) A signal flow graphs consists of node or variable (for
example x  and y ), and paths which show variable dependency
and proportionality constants such as "c".

(b) SFG representation of ycxcw 21 += .

  S 21   b 2  a 1

  a 2  b 1

  S 22  S 11

  S 12

Figure 3.10 A signal flow graph representation of
the scattering matrix
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Signal flow graphs are sometimes useful in analyzing microwave circuits because it is usually
possible do describe the flow of signals in a circuit, but may be difficult to solve a complex set of boundary
conditions for various sources and loads.  Generally, one is interested in obtaining the relationship between
various signals.  This is obtained by determining transfer ratios between signal variables, e.g. the ratio of the
reflected signal on the load to the exiting signal at the source.  Such ratios can be obtained from signal flow
graphs by considering the denominator signal variable to be  independent variable (i.e.  independent node)
and the numerator signal variable to be a dependent variable (dependent node) and to reduce the SFG until
only one path exists between the two nodes.  In order to perform such a reduction, it is necessary to
understand only 4 fundamental rules.  These are discussed below.

SERIES RULE

S-parameters for paths in series can be combined into one path by multiplying the s-parameters.
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PARALLEL RULE

S-parameters for multiple paths connecting the same two nodes can be combined into a single path by
adding the s-parameters.
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RECURSION RULE

A path with s-parameter "S" which returns to the same node can be eliminated if all other paths into the
node are divided by (1-S)
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Proof:
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NODE SPLITTING RULE

A node with multiple input or output paths can be split into multiple equivalent nodes with each of the
separate input paths connected to the new nodes provided that each new node contains all of  the output
paths.  Similarly, the nodes will be equivalent if each new node connects to each of the original output paths
provided that each new node is connected to all of the original input paths.
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Proof:
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The signal flow graph representation of a source can be derived by examining the scattering
parameters of a voltage and impedance circuit when connected to a transmission line as illustrated in Figure
3.11.  Assume a forward traveling voltage wave djAe β  impinges upon the load, which in this case

V(d)

I(d)

d

Z s

V s

Figure   3.11 The SFG representation of a source is found by connecting a
source to a transmission whose characteristic impedance is the
reference impedance for the s-parameters.

happens to include an active element equal to Vs.  The total voltage and current on the line equals (3.30a)
and (3.30b), where B is an unknown constant.  The constant A in front of the Ae j dβ  is assumed to be

djdj BeAedV ββ −+=)( (3.30a)

( )
o

djdj

Z
BeAe

dI
ββ −−=)( (3.30b)

known if the incident voltage is given.  Applying Kirchoff's Laws at the point 0=d  reveals the relationship
between V(0) and I(0) that must exist at that point in the circuit to insure that Kirchoff's Laws are satisfied.
Such constraints are sometimes called boundary conditions.  Substituting V(0) from equation (3.31a) and
I(0) from equation (3.31b) into equation (3.31c) results in a relationship between A and B which can be
represented as a SFG.

,)0( BAV += (3.31a)
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If one lets a be the signal parameter representing the incident signal, and b be the signal parameter for the
reflected signal then oZAa /= , and oZBb /=  and equation (3.32b) becomes

ss bb +Γ= (3.33a)
where

.
o

s

os

o
s

Z

V
ZZ

Z
b 





+
= (3.33b)

From previous work we it is clear that bs  is the normalized voltage that is initially launched by the source
Vs  onto the line with characteristic impedance oZ .  That is, the signal parameter bs  represents a voltage
which has been divided by two series impedance of sZ  and oZ .  Since bs  does not depend upon the
incident signal it is an independent node.  The signal flow diagram for a source is shown in figure 3.12

b

a

1bs

sΓ

b

a

1 bs

sΓ

Figure 3.12  SFG representation of a source consists of an,
independent node “bs ”
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To illustrate the technique for signal flow graph reduction an example is considered.  Assume that
it is desired to find the transfer ratio d/a for the SFG illustrated in Figure 3.13a.  To determine this ratio the
node "a" is taken to be an independent variable (or node) and node "d" is considered to be a dependent
variable (or node).  The path from d to a can then be dropped since if "a" is known then it can be treated as
an independent node and therefore inputs into "a" are not required for its definition.  As illustrated in Figure
3.13c  the path from "d" to "c" and "c" to "b" can be combined according to the series rule.  Applying the
node splitting rule to the node b results in Figure 3.13d. Two sets of paths can be combined using the series
rule to get  Figure 3.13e.  Applying the recursion rule results in Figure 3.13f and therefore - d/a= -6/23.
These principles can often be used effectively to analyze microwave circuits.  In order to reinforce the skills
it is useful to consider an ac circuits for which the results may be checked by conventional lumped element
analysis techniques.  .

Example 3.2.5..  Calculate the power delivered to the load for the circuit shown in Figure 3.14 using
conventional techniques.

The voltage across the load is seen to be 2/5 v.  The power absorbed by the load is therefore,

( )
wattsPLOAD 625/1

100
5/2 2

== (3.34)

b2

2

3
4

a

c

d2

b2

2

3
4

a

c

d

(a.) (b.)

b2

2

3

4

a

d

b2

2

3

4

a

d

3

b'

(c.) (d.)

2

2

3

4

a
d

3

a d
2 4 3

2 3
1- = - 6/23

(e.) (f.)

Figure 3.13  (a.) SFG to find transfer function d/a .  (b.)  Paths into the independent node
“a” eliminated (c.)  after applying the series rule.(d.) after applying the node
splitting rule.(e.)  after series rule applied twice.(f.)  final SFG=transfer ratio
obtained by applying recursion rule.

Z s = 50

V s = 1

Ω

 50 Ω = 100 ΩR LOAD

Figure 3.14  Example circuit to analyze using circuit reduction and
SFG techniques.
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Example 3.2.6..  Analyze the circuit in Figure 3.14 using SFG and s-parameters with a input and output
impedance reference of 50Ω .

The circuit can be viewed as consisting of a source, a load, and an intervening two port circuit (shunt
resistor) as illustrated in Figure 3.15.

It is desired to calculate the transfer ratio sL ba /  since that will reveal the amount of power
incident upon the load.  The reflected power can be determined using the incident power together with the
load reflection coefficient.  The node sb  will be treated as an independent node (it was one anyway since it
has no input paths).  The path in Figure 3.16a involving Γs  drops out since the associated s-parameter is
zero.  Additionally, the several lower paths in Figure 3.16a drop out since the arrows are opposite to give
the simplified SFG in Figures 3.16b and 3.16c.   The series and recursion rules can be applied to get the
reduced SFG shown in Figures 3.16d.  Therefore, ( ) sL ba 5/3=  and since 502/1=sb  then

5010/3=La  and 5000/92 =La  which is the incident power impinging upon the load.  The reflected

signal is LLL ab Γ=  and thus the reflected power is therefore 222
LLL ab Γ= , and substitution of

3/1=ΓL  together with the value of La  yields 5000/12 =Lb .  The power delivered  to (absorbed by) the
load is given by equation (3.35c) which is the same result obtained above by conventional ac circuit
analysis.

1

Γs = 0
b s = 

1
2 50

Zs= 50

Vs = 1

Ω

=

a1 b 2

a2b 1

 50Ω
50 Ω
Input

Reference

50 Ω
Output

Reference

-1/3 -1/3

2/3

2/3

=

b L

aL

ΓL= 1/3= 100ΩRLOAD =

(a.)

(b.)

(c.)

Figure 3.15   (a.)  The SFG for the source.(b.)  SFG for the two port (shunt 50Ω
resistor) (c.)  The SFG for the load.
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22
LLL baP −= (3.35a)






−





=

5000
1

5000
9

(3.35b)

625
1=LP (3.35c)

Example 3.2.7..  Analyze the circuit in Figure 3.14 using SFG and s-parameters with a 50 input and a
100Ω  output impedance reference.

Since the input reference is the same as before the SFG representation of the source remains the same.
However, the load and the two port parameters change as illustrated in the figures below.

b L

aL

-1/3 -1/3

2/3

2/3

b s 1 1

1

ΓL= 1/3
Γs = 0

1

1

b s = 
1

2 50

b L

a L

-1/3

b s 1

1

ΓL= 1/3

2/3

b s = 
1

2 50

aL
b s 12/3

-1/9

b s = 
1

2 50

aLb s
2/3

1+1/9= 3/5

(a.)

(b.) (c.)

(d.)

Figure 3.16  (a.)  The SFG for the total circuit.  (b.)  The simplified SFG  (c.) the SFG
after application of the series rule. (d.)  The SFG reduced to determine the
transfer ratio between the source and the load.
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It is necessary to calculate the transfer ratio sL ba /  since that will reveal the amount of power incident upon
the load.  In this case it will also be the power delivered to the load since the load reflection coefficient is
zero for a 100Ω  reference.  That is, the load is matched to the 100Ω  reference impedance which was used
to compute the s-parameters (see previous section).  The node bs  is an independent node.  The paths
involving sΓ  and LΓ  drop out since the associated s-parameters are zero. Again the other paths drop out

since the arrows are opposite directions.  Therefore, sL ba 2)5/2(=  and since )502/(1=sb  then

5000/82 =La  and which is also the total power, i.e.,

625
1=LP (3.35)

3.3  S-PARAMETER PROPERTIES.

A Symmetric Circuit is an electrical device or combination of elements whose physical
characteristics are exactly the same as viewed from each of its ports (terminals).  An individual ideal
resister, inductor, capacitor, transmission line, etc. are examples of a symmetric component.  Combinations
of basic elements can result in either a symmetric or asymmetric circuit.  The circuits in

b L

aL

ΓL= 0=

a 1 b 2

a2b 1

-1/5= -3/5

(2/5) 2

(2/5) 2(a.)

(b.)

b L

aL

-1/5 -3/5

b s 1 1

1

ΓL= 0
Γs = 0

1

1

b s = 
1

2 50
(2/5) 2

(2/5) 2

aL

b s = 
1

2 50

(2/5) 2

(c.)

(d.)

= 100ΩRLOAD

 50Ω
50 Ω
Input

Reference

50 Ω
Output

Reference

Figure 3.17  (a.)  The SFG for the load with output reference of 100 Ω ..(b.) The SFG for
the two port circuit with the 50 Ω  input and 100 Ω  output reference(c.)
The SFG for the total circuit (d.)  and the reduced SFG.  .
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The circuits inFigure 3.18a are examples of symmetric circuits.  One can see that the ports could be
interchanged arbitrarily and the circuits would remain the same.  On the other hand the circuits in Figure
3.18b illustrate examples of asymmetric circuits, i.e., the ports can not be interchanged.  In this case the
circuit topology is symmetric, i.e., the configuration of element types is the same but the element values
violate symmetry.  The circuit in figure 3.19 is clearly asymmetric since the pattern of element types is not
even symmetric.

For a symmetric two port

2211 SS =  and 1221 SS = (3.36)

A reciprocal circuit is one for which

1221 SS = (3.37)

Zo= 50( ) Zo= 50( ) Zo= 50( )

Z 1 = 25( )
Z 1 = 25( )

o.c. o.c.

(a.)

(b.)

L=1 L=1

C=2
R=5R=5

L=2L=1

C=2
R=5R=5

Zo= 50( ) Zo= 50( ) Zo= 50( )

Z 1 = 25( )
Z 1 = 75( )

o.c. o.c.

Figure 3.18  (a.) Examples of a lumped and distributed element symmetric circuits  (b.)
Examples of a lumped and distributed element asymmetric circuits where
the circuit topology (configuration of element types) is symmetric but the
element values are asymmetric.

L=1 R=1

C=2
R=5R=5

Figure  3.19 An example of an asymmetric circuit where
the circuit topology (configuration of
element types) is asymmetric.
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Note that a symmetric circuit is automatically a reciprocal circuit but not visa versa.  A circuit composed of
symmetric components is guaranteed to be reciprocal even though the combination may end up being
asymmetric.  Hence, for the three figures above, all of the circuits are reciprocal. However only the circuits
in Figure 3.18a are symmetric.

Theorem:  If a circuit is passive then 1≤ijS ,, , and  1≤iiS ,

Theorem.  The Scattering Matrix for a symmetric circuit has the following properties

1.)  The diagonal terms are equal
2.)  The off diagonal terms are pair wise equal

An example of a scattering matrix for a symmetric circuit would be

















−
−−

−

25.2.0
2.25.1.

01.25.

j
jj

j
(3.38)

Theorem. The Scattering Matrix for a reciprocal circuit has the property that the off diagonal terms are pair
wise equal, i.e., jiforSS jiij ≠=

An example of a scattering matrix for a reciprocal circuit would be

















−
−

−

4.2.0
2.3.1.

01.1,

j
jjj

j
(3.39)

Theorem.  The Scattering Matrix for a passive, lossless, reciprocal circuit is a Unitary Matrix, i.e.,
 ISS t =⋅ ∗ , where I=identity matrix

Theorem  Eigenvalue for passive scattering matrix all have magnitude less than or equal to one

Theorem  Circulator must be non-reciprocal circuit
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Example 3.3.1..  Calculate  the S-parameters for the circuit shown in figure 3.19 assuming that the units are
nH, pF, Ω , and that the operating frequency is 4 GHz.

Successive impedances are calulated to determine reflection coefficient which gives S11 and S22 .  Repeated
application of the voltage divider rule results in the S-parameters 21S  and 12S .

%script file ex3_3_1.m
%Illustrate calculation of S-parameters
%

%           1         2         3
%    --- o-----L=1--------R=1------o  ---
%   |       |         |         |        |
%  R=50    R=5       C=2       R=5      R=50
%   |       |         |         |        |
%    --- o-------------------------o  ---
%

% Units
nH=1e-9;
pF=1e-12;
GHz=1e9;

f=4*GHz; w=2*pi*f;
Zo=50;L=1*nH;C=2*pF;
XL=w*L; XC=-1/(w*C);

Z1= 5*50/(5+50);
Z2=Z1+1;
Z3=j*XC*Z2/(j*XC+Z2);
Z4=j*XL+Z3;
Z5= 5*Z4/(5+Z4);
S11=(Z5-Zo)/(Z5+Zo)

V1=1+S11;  V2=V1*Z3/Z4;  V3=V2*Z1/Z2;
S21=V3

ZZ1=5*50/(5+50);
ZZ2=ZZ1+j*XL;
ZZ3=j*XC*ZZ2/(j*XC+ZZ2);
ZZ4=1+ZZ3;
ZZ5=5*ZZ4/(5+ZZ4);
S22=(ZZ5-Zo)/(ZZ5+Zo)

VV3=1+S22;  VV2=VV3*ZZ3/ZZ4;  VV1=VV2*ZZ1/ZZ2;
S12=VV1

S11 =  -0.8304 + 0.0299i

S21 =   0.0036 - 0.0309i

S22 =  -0.8243 - 0.0090i

S12 =   0.0036 - 0.0309i
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Example 3.3.2..  Calculate the S-parameters for a single element circuit consisting of only a series
impedance, seriesZ  or of only a shunt impedance, shuntZ

For the series circuit:

0ZZZ seriesin +=

( )00

0
11 2ZZ

Z
ZZ
ZZ

S
series

series

in

in

+
=

+
−=

( )
( )0

0
111 2

2
1

ZZ
ZZ

SV
series

series

+
+=+=

( )0

0

0

0
121 2

2
ZZ

Z
ZZ

Z
VS

seriesseries +
=

+
=







+
=

series

series

series ZZ
ZZ

ZZ 0

0

0 2
2

2
1

S

Special Case 0=seriesZ  ⇒  IS =



=

01
10

 and ∞=seriesZ  ⇒  



=

10
01

S  are left to the reader to verify

The fact that S is unitary for a lossless impedance, jXZ series = , also left to reader

For the shunt circuit:

Z
Z Z

Z Zin
shunt

shunt

=
+

0

0

S
Z Z
Z Z

Z
Z Z

in

in shunt
11

0

0

0

02
= −

+
= −

+

S V S
Z

Z Z
shunt

shunt
21 1 11

0

1
2

2
= = + =

+







−
−

+
=

0

0

0 2
2

2
1

ZZ
ZZ

ZZ shunt

shunt

shunt
S

Special Case 0=shuntZ  ⇒  IS −=





−
−

=
10

01
 and ∞=shuntZ  ⇒  



=

01
10

S  are left to the reader to

verify

Z series

Ref = Z 0
Ref = Z 0

Z shunt

Ref = Z 0Ref = Z 0

(a.) (b.)

Figure 3.20  (a.) Series impedance  (b.) Shunt impedance
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The fact that S is unitary for a lossless impedance, jXZ shunt = , also left to reader

3.4  TRANSMISSION MATRIX REPRESENTATION.

When two port circuits are cascaded it is often convenient to organized the signal parameters so
that the input (port 1) signal parameters, 11,ba  are grouped together and output (port 2) parameters, 22 ,ba
are grouped together.  This can be accomplished by starting with signal parameters arranged to emphasize
their scattering characteristic.

2211111 aSaSb += (3.40)

2221212 aSaSb += (3.41)

Rearranging the second equation gives 2122221 /)( SaSba −=  which can be substituted into the first
equation to give ( ) 2121121 / SbSab S +∆−= , where the determinant of the Scattering matrix is

12211122 SSSSS −=∆ .  These equations can then be represented as the following matrix equation ( 3.42)
where one notes that the signal parameters are organized so that signals propagating to the left are the top
entry of the vector as illustrated below Figure 3.21












−

∆−
=





2

2

22

11

211

1

1
1

b
a

S
S

Sa
b S (3.42)

The value of the transmission r epresentation can be seen when considering two circuits which are
to be cascaded together to form a new combined circuit.  Let X and Y represent the transmission matrices
for the respective circuits shown in Figure 3.22a.  Connecting the circuits yields the composite circuit
illustrated in Figure 3.22b.

b
1

b
2

a
1

a
2

port 1 port 2

Figure 3.21  The signal vectors are configured with the left
propagating terms as the top entry.
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Since 



=



=


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=
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

4
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3

2

2
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1

b
a

XY
a
b

X
b
a

X
a
b

 then when a circuit with transmission matrix X is cascaded with

a circuit with transmission Y then the resulting circuit has a transmission matrix Z equal to XY.   The
transmission matrix for the new cascaded circuit equals the matrix product of the individual circuit
transmission matrices.   If the transmission matrix for a circuit is known then one can determine the
scattering matrix by rearranging the equations so that the scattered signals are the dependent variable

(usually on left of equations).  If the transmission matrix R equals 



=

2221

1211

rr
rr

R  then



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
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

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2
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1

1

b
a

rr
rr

a
b

 and

2122111 brarb += (3.43a)

2222211 brara += (3.43b)

Solving for 2b  in the second equation gives 2222112 /)( rarab −=  and substitution of this into the first
equation gives ( )[ ] 222122122111121 / rarrrrarb −+=  which can be summarized as the following matrix
equation, where the determinant notation is used, i.e., 12212211 rrrrR −=∆













−
∆
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



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1
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1
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a
a

r
r
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b R (3.44)
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Figure 3.22  (a.)  Circuits with a transmission matrices X and Y. (b.)  Composite circuit
formed by cascading the circuit X and Y.
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In summary
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where 12212211 ssssdet(S) −==∆ S , and

12212211 rrrrdet(R) −==∆ R

(3.45)

Example 3.4.1..  Find the S-parameters for the circuit illustrated in Figure  3.22 assuming that the units are
nH, pF, Ω , and that the operating frequency is 4 GHz.

Use single impedance formulas for S-parameters for single element circuits then compute trasmission
matrix, multiply to model cascading of component circuits, and convert result back to S-parameters.
Calculation script files are shown below

%  script file ex3_4_1.m
%  Illustrate calculation of S-parameters
%  using tramission matrix multipication
%

%    Ref    1         2         3         4         5     Ref
%    --- o-----o  o--L=1--o  o-----o  o--R=1--o  o-----o  ---
%   |       |                   |                   |        |
%  R=50    R=5                 C=2                 R=5      R=50
%   |       |                   |                   |        |
%    --- o-----o  o-------o  o-----o  o-------o  o-----o  ---
%

% Units
nH=1e-9;
pF=1e-12;
GHz=1e9;

f=4*GHz; w=2*pi*f;
Zo=50;
L=1*nH;C=2*pF;
XL=w*L; XC=-1/(w*C);

Zshunt=5;       %Circuit #1
S1 = (1/(2*Zshunt+Zo))*[-Zo 2*Zshunt;2*Zshunt -Zo];
R1=S2R(S1);

Zseries=j*XL;   %Circuit #2
S2 = (1/(Zseries+2*Zo))*[Zseries 2*Zo; 2*Zo Zseries];
R2=S2R(S2);
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Zshunt=j*XC;    %Circuit #3
S3 = (1/(2*Zshunt+Zo))*[-Zo 2*Zshunt;2*Zshunt -Zo];
R3=S2R(S3);

Zseries=1;      %Circuit #4
S4 = (1/(Zseries+2*Zo))*[Zseries 2*Zo; 2*Zo Zseries];
R4=S2R(S4);

Zshunt=5;       %Circuit #5
S5 = (1/(2*Zshunt+Zo))*[-Zo 2*Zshunt;2*Zshunt -Zo];
R5=S2R(S5);

Rtotal=R1*R2*R3*R4*R5
Stotal=R2S(Rtotal)

Calculation results:

Rtotal =
  -3.1018 -21.8404i  -4.0544 -26.4145i
   2.7911 +26.3642i   3.7332 +31.9437i

Stotal =
  -0.8304 + 0.0299i   0.0036 - 0.0309i
   0.0036 - 0.0309i  -0.8243 - 0.0090i

---------------------------------- Suopporting Functions --------------------------------------------------

function S=R2S(R);

%Takes an R matrix and converts it into a Scattering Matrix (S)
%

% (b1) (r11  r12)(a2)    (b1) (s11  s12)(a1)
% (  )=(        )(  )    (  )=(        )(  )
% (a1) (r21  r22)(b2)    (b2) (s21  s22)(a2)
%

%   (s11  s12)    1  (r12   det(R))
%   (        ) = --- (            )
%   (s21  s22)   r22 (1     -r21  )

S11=R(1,2)/R(2,2);

S12=det(R)/R(2,2);

S21=1/R(2,2);

S22=-R(2,1)/R(2,2);

S=[S11,S12;S21,S22];
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function R=S2R(S);

%Takes an S matrix and converts it into a Transmission Matrix (R)
%

% (b1) (r11  r12)(a2)    (b1) (s11  s12)(a1)
% (  )=(        )(  )    (  )=(        )(  )
% (a1) (r21  r22)(b2)    (b2) (s21  s22)(a2)
%

%   (r11  r12)    1  (-det(S)  s11)
%   (        ) = --- (            )
%   (r21  r22)   s21 (  -s22    1 )

R11=-det(S)/S(2,1);

R12=S(1,1)/S(2,1);

R21=-S(2,2)/S(2,1);

R22=1/S(2,1);

R=[R11,R12;R21,R22];

Example 3.4.2..  Suppose a circuit with s-parameters { }22122111 u,u,u,u  is cascaded with a circuit with s-
parameters { }22122111 v,v,v,v .  Find the s-parameters for the combined circuit using signal flow graph
reduction.   

The next example will solve the same problem using transmission matrix approach..  The signal flow graph
for the combined circuit is shown in the figure below.  The s-parameters for the combined circuit will be

designated by { }22122111 ,,, wwww . Determination of the s-parameters for the combined circuit is best
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Figure 3.23.  The SFG for two cascaded circuits
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undertaken in steps.  First w21  is determined by recognizing it as a transfer ratio between nodes “1” and “3”
if Figure 3.23.  With node “1” taken as an independent node then the SFG can be reduced as follows

Therefore,

1122

2121
21 vu1

vu
w

−
= (3.46)

In a similar manner the SFG of figure 3.22 can be reduced to determine 12w  which is the transfer ratio from
node “4” to node “2.”  The reduction is illustrated below.

1122

1212
12 vu1

vu
w

−
= (3.47)

The s-parameter, 11w , is found from the transfer ration from node “1” to node “2.”  The SFG is shown
below
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Figure 3.24   The SFG reduction to obtain the transfer ratio representing w21
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1122

121121
1111 vu1

uvu
uw

−
+= (3.48)

In a similar manner w22  is found.

1122

212212
2222 vu1

vuv
vw

−
+= (3.49)

Example 3.4.3..  Suppose a circuit with s-parameters { }22122111 ,,, uuuu  is cascaded with a circuit with s-
parameters { }22122111 ,,, vvvv .  Find the s-parameters for the combined circuit using a transmission matrix
approach.

The two transmission matrices are


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R v

v (3.50)

The transmission matrix for the combined circuit is
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Figure 3.27  Sequence of SFG reductions to obtain 22w
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
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These are the same relationships obtained using the SFG approach.
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3.5  IMPEDANCE AND ADMITTANCE MATRIX REPRESENTATION.

The figure below shows an N-port linear circuit.  The voltage and current at each of the ports is
related by the impedance or Z-matrix equation V=ZI which is shown in expanded form below.
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If each of the ports are connected to transmission lines then the total voltages and currents can be
represented in terms of propagating voltage waves as  −+ += iii VVV  and −+ −= iiii VVIz0 , where iz0  is the
characteristic impedance of the transmission line connected to the i th port of the circuit.  In terms of signal
parameters
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The matrix relationship between the total voltages and currents can now be represented as
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The formalism is facilitated by defining a diagonal matrix of characteristic impedance as follows

V1

V2

V3

VN

N-Port
Circuit

I1

I2

I3

IN

Figure 3.28.  Voltage and current for an N-port circuit
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Therefore,
( )BAZV / += 21

0

( )BAZI / −= − 21
0

and substitution into V=ZI yields ( ) ( ) 21
0

21
0

// ZBAZBAZ −−=+ .  Because the matrix 0Z  is diagonal hence
its multiplication is a commutative operation and ( ) ( )BAZBAZ −=+0 .  Manipulation of this to solve for

B yields ( ) ( )AZZZZB 0
1

0 −+= −  which implies that the scatter matrix of s-parameters is

( ) ( )0
1

0 ZZZZS −+= − (3.65)

It is interesting to note that while in general multiplication of square matrices is a non-commutative
operation that in the particular expression in Equation ( 3.65) is equivalent to that of Equation (3.66)

( )( ) 1
00

−+−= ZZZZS (3.66)

This follows from 1
00

1 −− +=+ ZZIZZI  which can be arranged as ( ) ( ) 1
00

1 −− +=+ ZZZZZZ  and taking
the inverse of both sizes gives

( ) ( ) 1
0

1
0

−− +=+ ZZZZZZ (3.67)

In addition because 0Z  is diagonal then

( ) ( ) 1
000

1
0

−− +=+ ZZZZZZ (3.68)

Subtraction yields ( ) ( ) ( ) ( ) 1
00

1
00

1
0

1
0

−−−− +−+=+−+ ZZZZZZZZZZZZ  and factorization gives

( ) ( ) ( )( ) 1
000

1
0

−− +−=−+ ZZZZZZZZ  which proves the assertion.  In summary

( ) ( ) ( )( ) 1
000

1
0

−− +−=−+= ZZZZZZZZS (3.69)

If the s-parameters are known then the Z-matrix for the circuit can be found by solving the above equation
for Z, i.e.,

( )( ) ( ) ( )SISIZSISIZZ +−=−+= −− 1
0

1
0 (3.70)
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Because 0Z  is a diagonal matrix it commutes under matrix multiplication and therefore can be placed at
any location in the above matrix multiplication chain in Equation ( 3.70).

The admittance matrix Y is defined as YVI =  and therefore it follows that 1−= ZY .  If a diagonal matrix
of characteristic admittances is defined as 1

0
−= ZYo  then direct substitution shows that

( ) ( ) ( )( ) 1
000

1
0

−− +−−=−+−= YYYYYYYYS

which can also be inverted to give the Y-matrix as a function of the scattering matrix, i.e.,

( )( ) ( ) ( )SISIYSISIYY −+=+−= −− 1
0

1
0

Example 3.5.1..  Determine the S Z and Y matrix for the circuit below

)(5050 2111 IIIV ++=
211 50100 IIV +=

212 5050 IIV +=





=

5050
50100

Z

S=z2s(Z,50)
    0.2000    0.4000
    0.4000   -0.2000

Y=s2y(S,1/50)
    0.0200   -0.0200
   -0.0200    0.0400

Zchk=inv(Y)
   100    50
    50    50

-----------------------------------------Supporting Functions--------------------------------
function y=S2Y(S,Yo)
% function converts S matrix to Y matrix
% with Yo=ref admittance

I=eye(size(S));
y=Yo*(I-S)*inv(I+S);

function y=S2Z(S,Zo)
% function converts S matrix to Z matrix
% with Zo=ref impedance

I=eye(size(S));
y=Zo*(I+S)*inv(I-S);

50Ω

50Ω

V1
V2

I1 I2

Figure 3.29  Find S Z and Y matrix
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function s=Y2S(Y,Yo)
% function converts Y matrix to S matrix
% with Yo=ref admittance

I=eye(size(Y));
s=-(Y-Yo*I)*inv(Y+Yo*I);

function y=Z2S(Z,Zo)
% function converts Z matrix to S matrix
% with Zo=ref impedance

I=eye(size(Z));
y=(Z-Zo*I)*inv(Z+Zo*I);

--------------------------------------------------------------------------------------------
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3.6 PROBLEMS

1.  (a.)  Using the circuit reduction techniques illustrated in Example 3.3.1 calculate and display the
magnitude of 21S  for the filter below as a function of frequency from 50 MHz to 5 GHz., where L=3.98 nH,
C=3.18 pF

L L

C RL

RS

VS

(b.)  Repeat part (a.) by cascading R matrice and converting the final R matrix to and S-matrix as illustrated
in Example 3.4.1.

(c.)  If a 1 volt (rms), 50 ohm source is connected to the input of the circuit and and a 50 ohm load is
connected to the output of the circuit what power is delivered to the circuit at 50MHz? 1GHz? 2 GHz? and
5 GHz?

2.  Repeat part (a.) of problem 1 where L=6.35 nH, C=1.75 pF.

3.  (a.)  Plot 11S  and 21S  on separate graphs for the following circuit as a function of frequency from 50

MHz to 5 GHz where 1L =  2.46 nH,  2L = 7.96 nH, and C=2.57 pF.

C

L1 L2 L1

C

(b.)  Plot 11S  and 21S  on the graphs in part (a.) for a circuit with parameters; 1L =  6.79 nH,  2L = 10.11
nH, and C=1.98 pF.  Describe any qualitative difference observed between the plots of part (a.) and
part (b.).

4.  The circuit below consists of two short circuited stubs in series and one open circuited stub in shunt
where L=λ/4 for a frequency of 4 GHz.  Plot 11S  and 21S  for a frequency range of from 50 MHz to 10

GHz.  1Z = 50 Ω , Z2= 25 Ω ,

(Z )2

(Z )1 (Z )1 LL

L
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5.  The circuit below consists of three open circuited stubs in shunt where L= λ/4 for a frequency of 4 GHz.
Plot 11S  and 21S  for a frequency range of from 50 MHz to 10 GHz.  Z1= 50 Ω , Z2= 100 Ω , Z3 = 25 Ω ,,

(Z )2

(Z )1 (Z )1

LL

L

(Z )2

L

(Z )3

L

6.  Because of electric field fringing effects at the end of an open circuit and open circuited stub often
appears to be electrically longer than expected from its physical length.  If the fringing capacitance for a 50
ohm open circuited line is .05 nH what is the effective increase in apparent line length for a frequency of 1
GHz and a phase velocity which is 66 % of the speed of light, c?  Hint:  An open circuited transmission line
produces the same capacative reactance when its length satisfies the following equation for which  the
length can be solved.

CjjZ ωβ
1

tan
1

0
=

λ

7.  For the SFG shown below find the transfer ratio 12 /aa

a1
s21 b2

s22
s11

s12
b

1 a
2

ΓL

1

1
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