CHAPTER

16

NOISE

16.1 NOISE FIGURE AND NOISE TEMPERATURE

The noise factor is a measure of the signal to noise degradation caused by a circuit. Often one is
interested in increasing the power associated with a desired signal and uses a circuit with gain to achieve
this. The input noise is also amplified. Unfortunately, for any real circuit additional noise is added which
resultsin areduction in the signal to noise ratio at the output. The noise factor is defined such that an ideal
noiseless system would have a noise factor of 1 (input SNR = output SNR). To further motivate the
definition consider the illustration in Figure 16.1 below:

P S | Two-Port S,
Circuit

S =input signa power, S, = output signal power
N; =input noise power, N, = output noise power

Figure16.1 Input and output signa to noise ratio (SNR) of a
two-port circuit.

Sincethat S, =S|G.°, N, =N;|G,|, S =S,(1— |G,n|2), and N, = Ni(;l.— |qn|2),therefore

The system designer is interested the degradation in signal to noise ratio caused by his circuit. The
input/output SNR performance ratio, designed as g is
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16-2 MICROWAVE & RFCIRCUITS: Analysis, Design, Fabrication, & Measurement

wn

— |/Ni
g= SN, (16.2)

Noise is particularly important when very small signals are being amplified prior to some form of
processing. In this case, one is interested in getting the maximum signal to noise ratio out of the device.
Changing the output impedance will have the same effect on signal as the noise and therefore, the output is
normally conjugately matched so that the maximum signal is delivered to the load. An input matching (or
mismatching) network does not affect the input signal to noise ratio, but it can affect how much and where
the internal noise sources deliver their power. For this reason the relevant amplifier gain is the available
gain, G,. Mismatching the input affects the gain, but the effect is the same for both the incoming signal

and noise. However, the input mismatch can affect internal sources (of noise) and influence how much of
their available power is delivered to the load. By choosing the input matching network appropriately the
effectiveness of the internal noise sources to deliver power to the load can be minimized.

The output signal power isrelated to the input signal power by the gain, i.e.,

S, =G, S (16.3)
and the performance ratio becomes,
N
=2 16.4
g G\, (16.4)

The noise contribution added by the amplifier can be represented by and equivalent noise source, DN,
added to the input. The output noiseisthen N, =G, XN, + DN) asillustrated by Figure 16.2 below.

N%ﬁ N, =GN <o)
DN

Figure16.2 Contribution of the equivalent noise source DN of the
amplifier.

The SNR performance ratio becomes

g= GA(N‘ +DN) = N +DN =1+ﬂ (16.5)
GAN, N, N,

To evaluate the performance ratio one needs to know the equivalent input noise contributed by the

circuit. A standard for measuring DN , called the noise factor, is defined using performance ratio, g, when
the input noise, N, is that of a matched resistor at room temperature, i.e. T, =290°K , i.e. The noise

r

factor is
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F =1+D'\l—'\I (16.6)

r

where N, =KT,B. Thenoisefigureisthelogarithmic, i.e. dB, representation of the noise factor, or
Fse =10x0g(F) (16.7)

When the noise factor is known, the equivalent input added noise contribution of the circuit, DN ,
can be found from

DN =(F - DN, = (F - )KT.B (16.8)

Another way of representing the equivalent added input noise contribution is to define DN in terms of the
equivalent temperature that a matched resistor requiresto generateit. Then

DN = KT, B (16.9)

where T, is called the noise temperature of the circuit and is a measure of the noise that the circuit its self
adds. Equating the last two equations yields,

T =T.(F-1) (16.10)

A noise factor of 1 means that the circuit noise temperature is zero or that it contributes no additional noise
of itsown. A noise factor of 2 (or anoise figure of 3 dB) means that the circuit noise temperatureis T, , or

290°K, and the circuit itself is contributing added noise equivalent to a room temperature matched resistor
added at the input.

Cascading amplifier is normally required and can be easily examined by whenever inter-stage
matching networks exist to insure a conjugate match between gain block or that the gain blocks have
previously been matched to 50 ohms. In either case the equivalent input noise DN, can be found by

examining the following diagram.

N, = GZ[GI(Ni + DN1)+ DNZ]

Figure16.3  Contribution of the equivalent noise sources DN, and DN, of cascaded

amplifiers.
Consequently,
é DN, U
N, :GZ[Gl(Ni +DN1)+DN2]:(3162Ni +G,G,eDN, + Gzl] (16.11)
é 1 0
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16-4 MICROWAVE & RFCIRCUITS: Analysis, Design, Fabrication, & Measurement

From the above equation, it is observed that the cascaded circuits can be represented as a single circuit with
gain G,G, and equivalent noise source DN, as shown below.

N; 4>.—>>—> N, =G,G,(N, + DNeq)

DN,

Figure16.4  Equivalent noise source DN, of the cascaded amplifiers and its
contribution.

Therefore, the equivalent added input noise for the cascaded pair, DN, is

DN,, =DN, + D(';z (16.12)

1
This equation illustrates how important it is for the first stage of cascaded amplifies to be a low noise

circuit. The gain of the first stage effectively reduces the contribution from the following stage. Rewriting
the above in terms of noise temperature yields

T, =T,+-2 (16.13)

This expression can be converted easily to noise factor by substituting T, =T, (Feq - 1), T, =T, (F1 - 1),
and T, =T, (F, - 1), to get

Fo=f ez Y (16.14)

162 RANDOM VARIABLESAND STOCHASTIC PROSSES

The usual variables encountered in calculus are called deterministic meaning that for a physicaly
well posed problems that a unique number can be assigned to the variable. |If the problem is repeated, the
exact same value for the variable will be the result. On the other hand, random variable is one in which a
unigue value is not assignable in general. Multiple executions of the same problem can result in different
value assignments for each of the random variables. A random variable can be thought of has a hat full of
paper tags with numbers on them. Each time a number is to be assigned to the random variable, a tag is
withdrawn and its number assigned to the variable. Thus, the composition of the tags determines whether a
certain value will be favored over others. A random variable x represents the collection of possible values
that it can take on.
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NOISE 16-5

If one value appears on more tags, then it has a greater likelihood of being drawn. Or,
equivalently, if the problem is performed many times then that value will occur more often. The weighting
associated with a particular value for arandom variable, x, is represented by a probability density function,

p(x). This function describes the relative likelihood that the assigned value for x will be between x and
x+dx. Theintegral of p(x) between two limits a and b is a measures of the fraction of experiments
resulting in assigned values between a and b. Consequently, the probability density function is aways
normealize such that 6: p(x)dle, i.e., a hundred percent of the values occur between -¥ and +¥ . The

random variable can be pictured assuming values along a vertical number line according to an associated
probability density functions drawn along side.

The mean value of a random variable is designated nm (or m, when it is necessary to distinguish

between different random variables). It represents the average value of the values that would be assigned to
the random variable. It depends, of course, on the specific random variable and its particular probability
density function, p(x). The mean value is given by the first moment integral

m= ¢, x p(x)dx (16.15)

This first moment, or average, is also called the expected value and represented by a bracket symbol as
shown

m=(x) (16.16)

I nstantaneous voltage or current samples of noise can naturally be thought of as a random variable.
One sample may result in a positive value while the next may be negative. However, we expect the average
value of the noise to be zero since otherwise we could tap the noise as an energy source and produce work
which would be a violation of the laws of thermodynamics. Hence, attention will be directed to random
variables with a zero mean and such will be assumed unless otherwise stated.

The power associated with a noise voltage (or current) is represented by the average of square of

the voltage (current) samples. The power is therefore represented by the second moment integral called the
variance, Var(x), that equals

Var(x) = §, x*p(x)dx (16.17)

The standard deviation, s (or s, ) is the square root of the variance, i.e., s isthe rms noise voltage or
rms noise current.

For reasons which will be shortly motivated, a common random variable is one whose probability
density function is normally distributed (a gaussian function), i.e.,

p(x) = \/2%8 expl- (x- m?/,s2) (16.18)

where n is the mean and s is the standard deviation. For a zero mean gaussian function distributed
random variable, the density function is given by

p(x) =Lexp(- x*1,s 2) (16.19)

J2ps
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16-6 MICROWAVE & RFCIRCUITS: Analysis, Design, Fabrication, & Measurement

The combination of two or more random variables are possible but their possible values depend upon a joint
probability density function, p(x, y) . This function describes the relative likelihood of getting a value from

the first random variable between x and x+dx and avalue for the second between y and y+dy. If the

two random variables are independent, in that the outcome for one variable does not depend on the outcome
of the other, then the joint probability density function can be expressed in the form as the multiple of the
individual probability density function as below.

p(x,y) = p,(x)xp, (v) (16.20)
This means that the probability density function of the ordered pair of random variables (x, y) is p(x, y) .

New random variable can be created from existing random variables using algebraic
manipulations. For example, random variables x and y can be added to form a new random variable z .
The probability density function for z, such that z=x+y, depends upon the joint probability density
function p(x, Y). If x and y areindependent, the probability density function for z isgiven by

p.(2)=6, p,(X)p,(z- x)dx =& p,(y)p,(z- y)dy (16.21)

The probability density function for a sum of two independent random variables is the convolution of the
two probability density functions.

The central limit theorem says that if a random variable consists of a sum of independent random
variable components, then the probability density function for the sum approaches a gaussian function as
the number of componentsincreases. The convergence to a guassian like distribution is quite fast as can be
illustrated in Figure 16.5 by choosing two clearly non-gaussian distributions and computing the convolution
to determine the probability density function for the sum. A uniform distribution convolved with a
triangular one resultsin a quadratic one. If the sum of the random variables is added to a third one, then the
quadratic probability density function is now being convolved with a third probability function, e.g. a
trapezoidal one, the results are seen to already taking on the qualitative appearance of a gaussian function.

Electronic noise arises because of non-uniform current flow and because of conduction charges
variations resulting from thermal excitations of electrons from lower bands in the atoms. These represents a
large number of independent random effects which combine together to produce a noise voltage or current.
As aresults, it is reasonable to expect that a Gaussian distribution will describe noise voltage or current
samples.

A complex random variable has areal and imaginary part, which are random variables, i.e.,

Z=X+jy (16.22)

For the purpose of analyzing noise, x and y may be assumed to be independent. In such case, the mean
and variance of the random variable z are defined as

m=(z)=(x)+(jy) =(x) + j(y)=m + jm, (16.23)
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A
CONVOLVED
-a a -b o -a-b sa+b
(@)
A
CONVOLVED m
-a-b ratb -C < -a-b-c +a+b+e
(b)
Figure16.5 Illustration of the central limit theorem by (a) convolving a rectangular and a triangular

shaped probability density function, and (b) convolving the resulting quadratic shaped
probability density function with a third on which is trapezoidal.

var(z) = <|z|2> = <zz> = <x2 + y2> = <x2> +<y2> =Var(x)+Var(y)=s 2 +s 2 (16.24)

A measure of the correlation between two random variables can be found by looking at the average (or
expected value) of the conjugate product. Two gaussian random variables are independent if and only if the
average of their conjugate product equals zero. Suppose z is the sum of two independent complex random
variables m and n (zero mean assumed), i.e., z=m+n, then the variance of z isthe sum of the variances
of m and n as shown in the derivation below.

Var(z) = <|z|2> = <(m+ n)(m+ n)> = <(m+ n)(m* +n )>

= <mm* +mn +nm + nn*>
:<|n12>+<mn*>+<nm*>+<|n|2>

The two middle terms of the last expression in the above derivation equal zero since the random variables
m and n are independent, then

var(z) = <|n12> + <|n12> =Var(m)+Var(m)=s 2 +s ? (16.25)

A stochastic process is function in a random variable, which is a function of a deterministic
variable. Noise is a random variable that is a function of time and therefore we will discuss stochastic
process in terms of time. A stochastic process can be thought of in an analogous way to that of a random
variable. Imagine a hat with tags, but instead of discrete values the tags have functions of time listed on
them. Sample functions are obtained by selecting the tags. |f multiple tags have the same function then the
multiple sampling of the stochastic process will favor that particular function. The collection of function is
called an ensemble. The mean function can be calculated by averaging the functions in the ensemble.
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16-8 MICROWAVE & RFCIRCUITS: Analysis, Design, Fabrication, & Measurement

Likewise a variance function can be visualize by averaging the square of the functions in the ensemble.
This type of averaging is known as ensemble averaging and the mean and standard deviation are a function
of time, n(t) and s (t) . A stationary random process is one in which statistical quantities such as mean and

variance are a constant, i.e., independent of time.

Given a particular sample function, s(t), from the ensemble it is possible to determine a mean
value by averaging over time. This mean value, designated as m, is given by

1

m=__ O, s(t)dt (16.26)

Time averages are designated by a bar over the function, i.e., m= E(f) Likewise the variance can be

calculated by averaging [s(t)]2 over time, i.e., [s(t)]2 . When the statistics over time are the same as the

statistics over the ensemble then the process is said to be ergodic. Noise is an example of a stationary
ergodic process and thus averages can be made on one sample over time or by computing them from
multiple samples. A gaussian random process is a stationary ergodic process in which the statistics are
described by a Gaussian distribution function.

Given avalue for the random process at atime t,, the value of the function at time t,, in general,

may not be independent random variables. The correlation of the random variables for separate times is
described by the auto-correlation function or its Fourier transform, which is known as the power spectral
density or psd. If the psd has a very low bandwidth then the values of the random process can not change
fast implying that future value of the random process are most likely to be near the current value. However,
if the psd is a wide band function then future value of the random process can jump quickly and bigger
changes are equally as likely. A random process that has a flat psd is said to be white (all frequencies
present) and it means that the random values between any points are uncorrelated or independent.
Electronic noise is an example if a white gaussian stochastic (random) process.

Noise can be viewed in the time domain or in the frequency domain. It is easiest to think of
discrete time samples of the noise as a time domain member of the ensemble. Data can be taken over
multiple time windows resulting in a collection of such samples, which begins to comprise the ensemble.
Likewise an FFT operation can be performed on each of the time samples resulting in a complex random
variable associated with discrete frequencies. Since the FFT process is a linear function then the FFT of a
gaussian random process must result in a complex gaussian variable for each frequency. If the process is
white then the real and imaginary parts are independent.

Sw) = FFT[s(t)] (16.27)
Sw)=x+jy (16.28)

where x and y are independent gaussian random variables. In the frequency domain the random variable
can be thought of as a phasor (containing amplitude and phase information) for that frequency of the noise.
The amplitude is given by /x? + y? and the phase is given by tan’l(y/x) . Since the average power has to
be the same whether viewed in the time or frequency domain  then

65 S(W)|2dw= lim+ 6:s(t)2dt =Var(s) =s , = mean square voltage (current). For this reason |S(W)|2 is
T®¥

given the name power spectral density and has units of power per Hertz.
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16.3 TWO PORT EQUIVALENT CIRCUITS

Equivalent circuits are an important circuit analysis technique. Circuits are equivalent if their
current and voltage characteristics at their terminals are the same, i.e., from terminal point of view the
circuits are the same. The conventional Thevenin equivalent circuit appliesto aone port circuit. Any linear
one port circuit can be replaced by a voltage source and a series impedance and exhibit the same terminal
current/voltage behavior. We note that the one port may have embedded in it any number of dependent and
independent sources. Also, the Thevenin impedance is not normally a simple resistance plus an inductor or
capacitor but is a complicated reactance expression. Since the terminals must be the same, the equivalent
circuit values can be obtained by simply applying the same voltages across the terminals of both circuits and
adjusting the Thevenin components until the resulting current is the same. Applying this procedure with
two different voltages result in a unique determination of the Thevenin circuit. A Norton Equivalent circuit
consisting of a shunt current source and admittance can be similarly obtained.

A linear two port circuit with no independent sources can be represented by an impedance matrix
as shown

%) T
C>C~ C

11

i_¢ Z,
Z,

&

If independent sources are included in the circuit, then the matrix representation has to change to
accommodate the fact that a voltage can appear at a terminal when no current is flowing. However, the Z-
matrix formulation can be easily amended by adding a constant voltage vector as shown

(16.29)

w2
C>C C

&,u_€eZ, leuel u é/20
q=

at (16.30)
evil &21 Zzzuellu eVa

u
ol

Therefore, a circuit with independent sources can be equivalently represented by a two-port circuit
without independent sources and two voltage sources in series with each output respectively as shown in
Figure 16.6(a). The independent sources could be also accounted for by including shunt current sources at
the terminals as shown in Figure 16.6(b). It is permissible to have a mixture of sources as illustrated in
Figure 16.6(c). Also, the sources can be at either end of the circuit if a combination of current and voltage
sources is used as shown in Figure 16.6(d). Likewise, the sources can both be on the output asillustrated in
Figure 16.6(e). The order of the series voltage source or shunt current source can be interchanged (with
different values), but the current source must be shunt and the voltage source must bein series.

The appropriate equivalent circuit to use depends upon the specific analysis objectives. Each of
the equivalent circuits produces the same terminal characteristics as the original circuit.

164 THERMAL NOISE (KTB)

In any non-superconductive material at a temperature greater than absolute zero (0° Kelvin),
electrons are constantly being excited between bound atomic states and conducted states. The number of
electrons affected increases as the temperature increases. This variation of available electrons represent a
variation in mobile charge and results in a random voltage appearing across the material. The average value
of the random voltage is zero since the charge distribution at any instant of time is equally likely to result in
avoltage in any direction. The voltage can be assumed to be gaussian random process since the material
consists of many atoms whose influence can be expected to extend only over afew atomic spacings. Hence,
the process can be expected to satisfy the central limit theorem and therefore result in a gaussian random
voltage.
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(a) Two-port Thevenin equivalent circuit, (b) two-port Norton equivalent

circuit, (¢) mixed use of the equivalent sources are permissible, (d)
equivalent circuit with both sources at the input, (€) equivalent circuit
with both sources at the output.
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The variance of the voltage across aresistor has been measured by J.B. Johnson in an experiment
[Thermal Agitation of Electricity in Conductors, Phys. Rev., vol 32 July, 1928, pp. 97-109] and was shown
to be equal to

Var(v)=s 2 = 4KTBR (16.31)
where

K = Boltzmans Constant

T = Temperature in Kelvin
B = Bandwidth

R = Resistance in Ohms

For this reason thermal noise is sometimes referred to as Johnson noise and can be represented as an ideal
(noiseless) resistor in series with a zero mean gaussian random noise voltage source.

The thermal noise voltage waveform consists of independent gaussian distributed voltage values.
As aresult there is no correlation between the voltages at one time and any other time. Thus, the noise has
apower spectral distribution, which is uniform, i.e., it iswhite noise. The magnitude of each power spectral
component equals 4KTR since itsintegral over the band must equal the total power of 4KTR3>B . If v(t) is

the voltage waveform and S(W) = Fl—‘l’[v(t)] = X(W)+ jY(W), then

4KTBR = (v(t)*) =& |S(w)"Dw =4 [X (W) +Y(w)?ow = & Plw)ow

Therefore,

P(w) = 4KTR (16.32)
16,5 CIRCUIT COMBINATIONSOF THERMAL NOISE

A redl resistor can be viewed as an ideal noiselessresistor, R, with a series voltage source, V(W),

whose value is defined as a complex gaussian zero-mean random variable with a white power spectra
density which equals 4KTR as shown below.

Suppose two resistors are connected in series as depicted below.

Examining the problem from the frequency domain, V, (W) and V, (W) are complex gaussian stochastic
processes with zero mean. The total voltage V(W) equals the sum of the individual voltages
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16 - 12 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

Vw) =V, (w) +V,(w)
Thevariance of V is
(VWY) = (Vi ) ) = (M) + v, ) +v,) )
= (VWM w) VoW, () +V, () +V, (), (w) )
= (Vo)) + (v ) )+ (Vo) )+ (v )
Since the voltages are uncorrelated then the cross moments equal zero, i.e.,
<V1 (w)v, (w) > = <V2 (wv, (w) > =0 (16.33)
and
(Vo)) = (M) + (Vo)) (1634)
s2=sl+s? (16.35)
Thus, for series connections of resistors the variances add, i.e., the power densities add,
s 2 =4KTR +4KTR,

=4KT(R +R,)

= AKTRgres

<[V (WM2> = 4KTRgres (16.36)

Next consider two resistors connected in parallel as shown

The Thevenin Equivalent circuit consists of
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RR, and V( ) évl(W)'Vz(W)@R +V2(W)

RoaraLier = m eRl—R

The voltage becomes

= e o (MR Vs lRlbefe) R+, R ]

= 1R 2 <B/1(W)V1(W)* RS +V, W)V, (W) RR, +V, (W, (W) RR, +V, (W), (w) R12]>

(R1+R2) SR (VW) )+ RR (VN () )+ RR (Vs ) )+ RE(N: () )

The cross moments are zero, and

(M)} = 4kTR,

(Vo)) = 4kTR,

resulting in
Vo)) = (s R ekTR)+ RiacTR )
"Rair )2 R1R2 4KT + 4KT R1R2 _4KTRPARALLEL
(R+RJ R +R]= &R R,
Therefore,
<[V(W)|2> = 4KTRpppa 1 (16.37)

The Thevenin voltage equals the thermal noise voltage associated with aresistor equal to parallel
combination of the original two resistors, which is the Thevenin resistance.

Consider acircuit involving aresistor and a reactance as shown
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16 - 14 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

There is no noise source associated with the reactance component since it represents inductance and
capacitance effects and not conductance effects. The Thevenin equivalent impedance and source are

jXR _RX?+jXR?® _ RX? . XR?
Jx2+R2

=R + X,

= = +
X+R  X?+R? X2 +R?

T

__ X
V, = x +RV(W)

The variance of V; is

(W) = o) = (vt vt )

X2 2 é RX? U
——— (VW) ) =4KT &——=1= 4KT
<|V( M > éx2 + Rzg R
Therefore,

<|vT (w)|2> = 4KTR, (16.38)

where R; isthe resistor component of the Thevenin impedance. Hence, the equivalent noise source equals
the thermal noise associated with the resistive component of the Thevenin impedance.

The noise power delivered from one resistor to another can be examined by the following circuit
configuration

The noise power delivered by resistor 1 to resistor 2, designated P,,, can be found by ignoring source 2,
i.e., replace it with a short circuit, and find the power dissipated in R, fromthe source V. Inthiscase,

All Rights Reserved — M. L. Edwards, 7 September, 2001 Chap_16.doc



NOISE 16-15

2

V, R,

R1+

P2y =‘
. R 2\ _ 4KTRR,
Py = < p21> = W <|V1| > = W (16.39)

The power deliveredto R, from R,, B, isgiven by

b - AKTRR,

1= > 16.40
(R+R,) (1640

The power delivered by R, to R, is the same as that delivered to R by R, if they are at the same
temperature. This hasto be true since otherwise we would violate the laws of thermodynamics.

The maximum power is delivered from one resistor to the other when R = R, , i.e., theresistors

are matched. The power so transferred is called the available noise power and equals KT for the power
spectral density or KTB for the total noise power when integrated over the bandwidth B .

16.6 MINIMUM NOISE FIGURE
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16 - 16 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

Need to compare (in other words, find the ratio of) the total noise at output to noise at output if
circuit were truly noise free, i.e,, when E and | were zero. Since the network is linear we can compare
noise contribution at port 1- 1¢ instead. Note that the noise temperature at input must be 290°K .

Total input noisea <|I SC|2> = <|| s|2> + <|| +YSE|2>

Thisis seen since

Using superposition

lo=1.- EY,- |

(1) = (11~ (Y, + 1l - (B, +1) ])

(1)
=(105)- (LB 1)) (15(EY, + 1)) +((BY, +1)(BY, + 1))
=(1f)+(Ev. +11)

since | isindependent of E and | , i.e., they are uncorrelated.

If the MESFET was truly noise free, then the input noise power would be proportional to <|I S|2> ,

i.e., E and | would be zero. Therefore, the noise factor F is

<||S|2>+<|| +YSE|2>
(1)

(1 +v.ef)

=1+

()

E and | arenot necessarily uncorrelated. Assume | consists of a component |, which is uncorrelated
to E and (I - Iu) which is perfectly correlated to E . The correlated part of | can berelatedto E by a
complex constant Y, such that

| =1, +Y,E (16.41)

The noise power defines real or equivalent circuit resistances
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(E7) = 4kTR,
(IF)=4kT0,
(1.f)=4xT,

The numerator term in the noise factor expression can be evaluated as follows:

(r+YEF) = (D1, + (v + Ve, + (% + Y )ET)

= <||u|2> +|¥, +Ys|2<|E|2>

= 4KT,G, +|Y, +Y,|" *4KT,R,

F then equals
_, ., AKT,G, +|Y, + Y[ 4KT,R,
4KT, G,
F =1+2—: +%s[(GS +G, ) +(B, + BC)Z]

where

Ys =Gg + jBg
and

Y. =G, + ]B,
Note that we can reduce noise factor F if

B.=-B

in that case

If weplot F asafunction of G,we see

NOISE 16-17

(16.42)

(16.43)

(16.44)

(16.45)

(16.46)

(16.47)

(16.48)

(16.49)
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16 - 18 MICROWAVE & RF CIRCUITS: Analysis, Design, Fabrication, & Measurement

let (%: =0 and solve for G5. The solution found is the source conductance which, along

S

with the source admittance set at - B,, produces the minimum noise factor. This source conductance is
denoted as G, and

To find F

min !

e, G,§
G, =062 +—u* (16.50)
£ RS
and
é 57U
Foo =14 2R, 85, +{0 8 (1651)
8 Rigf
Ingeneral F equals
F=Fun +%[(Gs - Gm)2 +(Bs - Bm)z] (16.52)
16.7 NOISE CIRCLE
- Yo - Ys = YO - Ym
Let G _—Y0+YS and G, V.Y, ,then
2
S SPULL N s (16.59)
Zo +G[ - G|

F completely specified by four parameters: F

min ? rn'

IG,|, and BG,, where r, :%, i.e., normalized

resistance.

For a specific noise factor F = F,, one can define

N :|Q-G‘ﬂ| :Fi

- I:min 2
T (1654

and
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NOISE 16-19

& [ _Nenffar)
G L N;| @+N) (1659

Locust of constant noise factor (or in dB scale, noise figure) isacircle.
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