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	Series Parameters of Transmission Lines 

	 
	· Line Resistance 

· Inductance of a Straight Conductor 
· Internal Inductance 

· External Inductance 

· Inductance of a Single-phase Line 

· Inductance of Three - Phase Lines with Symmetrical Spacing 

· Inductance of Three - Phase Lines with Asymmetrical Spacing 

· Transposed Line 

· Composite Conductors 

· Bundled Conductors 
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	Shunt Parameters of Transmission Lines 

	 
	· Capacitance of a Straight Conductor 
· Capacitance of a Single - Phase Line 

· Capacitance of a Three-Phase Transposed Line 

· Effect of Earth on the Calculation Capacitance 
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	Synchronous Machine Model 
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	Transformer Model 
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	Balanced Operation of a Three-Phase Circuit 
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	Per Unit Representation 


	Development of Modern Power System - A Brief Historical Preview 

The development of the modern day electrical energy system took a few centuries. Prior to 1800, scientists like William Gilbert, C. A. de Coulomb, Luigi Galvani, Benjamin Franklin, Alessandro Volta etc. worked on electric and magnetic field principles. However, none of them had any application in mind. They also probably did not realize that their work will lead to such an exciting engineering innovation. They were just motivated by the intellectual curiosity. 

Between 1800 and 1810 commercial gas companies were formed - first in Europe and then in North America. Around the same time with the research efforts of scientists like Sir Humphrey Davy, Andre Ampere, George Ohm and Karl Gauss the exciting possibilities of the use of electrical energy started to dawn upon the scientific community. 

In England, Michael Faraday worked on his induction principle between 1821 and 1831. The modern world owes a lot to this genius. Faraday subsequently used his induction principle to build a machine to generate voltage. Around the same time American engineer Joseph Henry also worked independently on the induction principle and applied his work on electromagnets and telegraphs. 

For about three decades between 1840 and 1870 engineers like Charles Wheatstone, Alfred Varley, Siemens brothers Werner and Carl etc. built primitive generators using the induction principle. It was also observed around the same time that when current carrying carbon electrodes were drawn apart, brilliant electric arcs were formed. The commercialization of arc lighting took place in the decade of 1870s. The arc lamps were used in lighthouses and streets and rarely indoor due to high intensity of these lights. Gas was still used for domestic lighting. It was also used for street lighting in many cities. 

From early 1800 it was noted that a current carrying conductor could be heated to the point of incandescent. Therefore the idea of using this principle was very tempting and attracted attention. However the incandescent materials burnt very quickly to be of any use. To prevent them from burning they were fitted inside either vacuum globes or globes filled with inert gas. In October 1879 Thomas Alva Edison lighted a glass bulb with a carbonized cotton thread filament in a vacuum enclosed space. This was the first electric bulb that glowed for 44 hours before burning out. Edison himself improved the design of the lamp later and also proposed a new generator design. 

The Pearl Street power station in New York City was established in 1882 to sell electric energy for incandescent lighting. The system was direct current three-wire, 220/110 V and supplied Edison lamps for a total power requirement of 30 kW. 

The only objective of the early power companies was illumination. However we can easily visualize that this would have resulted in the under utilization of resources. The lighting load peaks in the evening and by midnight it reduces drastically. It was then obvious to the power companies that an elaborate and expensive set up would lay idle for a major amount of time. This provided incentive enough to improve upon the design of electric motors to make them commercially viable. The motors became popular very quickly and were used in many applications. With this the electric energy era really and truly started. 

However with the increase in load large voltage and unacceptable drops were experienced, especially at points that were located far away from the generating stations due to poor voltage regulation capabilities of the existing dc networks. One approach was to transmit power at higher voltages while consuming it at lower voltages. This led to the development of the alternating current. 

In 1890s the newly formed Westinghouse Company experimented with the new form of electricity, the alternating current. This was called alternating current since the current changed direction in synchronism with the generator rotation. Westinghouse Company was lucky to have Serbian engineer Nicola Tesla with them. He not only invented polyphase induction motor but also conceived the entire polyphase electrical power system. He however had to face severe objection from Edison and his General Electric Company who were the proponents of dc. The ensuing battle between ac and dc was won by ac due to the following factors: 

· Transformers could boost ac voltage for transmission and could step it down for distribution. 
· The construction of ac generators was simpler. 

· The construction of ac motors was simpler. Moreover they were more robust and cheaper than the dc motors even though not very sophisticated. 

With the advent of ac technology the electric power could reach more and more people. Also size of the generators started increasing and transmission level voltages started increasing. The modern day system contains hundreds of generators and thousands of buses and is a large interconnected network. 


 

Introduction of Modern Power System 

Modern electric power systems have three separate components - generation, transmission and distribution. Electric power is generated at the power generating stations by synchronous alternators that are usually driven either by steam or hydro turbines. Most of the power generation takes place at generating stations that may contain more than one such alternator-turbine combination. Depending upon the type of fuel used, the generating stations are categorized as thermal, hydro, nuclear etc. Many of these generating stations are remotely located. Hence the electric power generated at any such station has to be transmitted over a long distance to load centers that are usually cities or towns. This is called the power transmission. In fact power transmission towers and transmission lines are very common sights in rural areas. 
Modern day power systems are complicated networks with hundreds of generating stations and load centers being interconnected through power transmission lines. Electric power is generated at a frequency of either 50 Hz or 60 Hz. 

In an interconnected ac power system, the rated generation frequency of all units must be the same. In India the frequency is 50 Hz. 

Basic Structure of a Power System 

The basic structure of a power system is shown in Fig. 1.1. 
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Fig. 1.1 A typical power system.
It contains a generating plant, a transmission system, a subtransmission system and a distribution system. These subsystems are interconnected through transformers T1 , T2 and T3 . Let us consider some typical voltage levels to understand the funtioning of the power system. The electric power is generated at a thermal plant with a typical voltage of 22 kV (voltage levels are usually specified line-to-line). This is boosted up to levels like 400 kV through transformer T1 for power transmission. Transformer T2 steps this voltage down to 66 kV to supply power through the subtransmission line to industrial loads that require bulk power at a higher voltage. Most of the major industrial customers have their own transformers to step down the 66 kV supply to their desired levels. The motivation for these voltage changes is to minimize transmission line cost for a given power level. Distribution systems are designed to operate for much lower power levels and are supplied with medium level voltages. 
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The power distribution network starts with transformer T3, which steps down the voltage from 66 kV to 11 kV. The distribution system contains loads that are either commercial type (like office buildings, huge apartment complexes, hotels etc) or residential (domestic) type. Usually the commercial customers are supplied power at a voltage level of 11 kV whereas the domestic consumers get power supply at 400-440 V. Note that the above figures are given for line-to-line voltages. Since domestic customers get single-phase supplies, they usually receive 230-250 V at their inlet points. While a domestic customer with a low power consumption gets a single-phase supply, both industrial and commercial consumers get three-phase supplies not only because their consumption is high but also because many of them use three-phase motors. For example, the use of induction motor is very common amongst industrial customers who run pumps, compressors, rolling mills etc. 
The main components of a power system are generators, transformers and transmission lines. 

In this module we shall discuss the models of these components that will be used subsequently in power system studies.   
	Section I:   Series Parameters of Transmission Lines 

· Line Resistance 
· Inductance of a Straight Conductor 

· Inductance of a Single-phase Line 

· Inductance of Three-Phase Lines with Symmetrical Spacing 

· Inductance of Three-Phase Lines with Asymmetrical Spacing 

· Transposed Line 

· Composite Conductors 

· Bundled Conductors 
Overhead transmission lines and transmission towers are a common sight in rural India. The transmission towers are usually made of steel and are solidly erected with a concrete base. The three-phase conductors are supported by the towers through insulators. The conductors are usually made of aluminum or its alloys. Aluminum is preferred over copper as an aluminum conductor is lighter in weight and cheaper in cost than copper conductor of the same resistance. 

The conductors are not straight wires but strands of wire twisted together to form a single conductor to give it higher tensile strength. One of the most common conductors is aluminum conductor, steel reinforced (ACSR). The cross sectional view of such a conductor is shown in Fig. 1.2. The central core is formed with strands of steel while two layers of aluminum strands are put in the outer layer. The other type of conductors that are in use are all aluminum conductor (AAC), all aluminum alloy conductor (AAAC), aluminum conductor, alloy reinforced (ACAR). 
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Fig. 1.2 Cross sectional view of an ACSR conductor. 


	Line Resistance 

It is very well known that the dc resistance of a wire is given by 
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(1.1)

 

where ρ is the resistivity of the wire in Ω - m, l is the length in meter and A is the cross sectional area in m2 . Unfortunately however the resistance of an overhead conductor is not the same as that given by the above expression. When alternating current flows through a conductor, the current density is not uniform over the entire cross section but is somewhat higher at the surface. This is called the skin effect and this makes the ac resistance a little more than the dc resistance. Moreover in a stranded conductor, the length of each strand is more that the length of the composite conductor. This also increases the value of the resistance from that calculated in (1.1). 

Finally the temperature also affects the resistivity of conductors. However the temperature rise in metallic conductors is almost linear in the practical range of operation and is given by 
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(1.2)

 

 

where R1 and R2 are resistances at temperatures t1 and t2 respectively and T is a constant that depends on the conductor material and its conductivity. Since the resistance of a conductor cannot be determined accurately, it is best to determine it from the data supplied by the manufacturer 


 

Inductance of a Straight Conductor 

From the knowledge of high school physics we know that a current carrying conductor produces a magnetic field around it. The magnetic flux lines are concentric circles with their direction specified by Maxwell's right hand thumb rule ( i.e., if the thumb of the right hand points towards the flow of current then the fingers of the fisted hand point towards the flux lines ). The sinusoidal variation in the current produces a sinusoidal variation in the flux. The relation between the inductance, flux linkage and the phasor current is then expressed as 
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where L is the inductance in Henry, λ is the flux linkage in Weber-turns and I is the phasor current in Ampere. 

A.   Internal Inductance 
Consider a straight round (cylindrical) conductor, the cross-section of which is shown in Fig. 1.3. The conductor has a radius of r and carries a current I . Ampere's law states that the magnetomotive force (mmf) in ampere-turns around a closed path is equal to the net current in amperes enclosed by the path. We then get the following expression 
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	(1.4)


 

where H is the magnetic field intensity in At/m, s is the distance along the path in meter and I is the current in ampere. 

Let us denote the field intensity at a distance x from the center of the conductor by Hx. It is to be noted that Hxis constant at all points that are at a distance x from the center of the conductor. Therefore Hx is constant over the concentric circular path with a radius of x and is tangent to it. Denoting the current enclosed by Ix we can then write 
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Fig. 1.3 Cross section of a round conductor. 

If we now assume that the current density is uniform over the entire conductor, we can write 
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Substituting (1.6) in (1.5) we get 
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Assuming a relative permeability of 1, the flux density at a distance of x from the center of the conductor is given by 
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where µ0 is the permeability of the free space and is given by 4π X 10-7 H/m. 

The flux inside (or outside) the conductor is in the circumferential direction . The two directions that are perpendicular to the flux are radial and   axial . Let us consider an elementary area that has a dimension of dx m along the radial direction and 1 m along the axial direction. Therefore the area perpendicular to the flux at all angular positions is dx X 1 m2 . Let the flux along the circular strip be denoted by dφ x and this is given by 
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	(1.9)


 


Note that the entire conductor cross section does not enclose the above flux. The ratio of the cross sectional area inside the circle of radius x to the total cross section of the conductor can be thought about as fractional turn that links the flux dφ x. Therefore the flux linkage is 
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	(1.10)


 

 

Integrating (1.10) over the range of x , i.e., from 0 to r , we get the internal flux linkage as 
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	(1.11)


 

 

Then from (1.3) we get the internal inductance per unit length as 
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For μ≠1,                        [image: image25.png]Ly = Lx107



 μr H/m
It is interesting to note that the internal inductance is independent of the conductor radius. 

B. External Inductance 

Let us consider an isolated straight conductor as shown in Fig. 1.4. The conductor carries a current I . Assume that the tubular element at a distance x from the center of the conductor has a field intensity Hx . Since the circle with a radius of x encloses the entire current, the mmf around the element is given by 
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and hence the flux density at a radius x becomes 

	[image: image27.png]



	(1.14)
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Fig 1.4 A Conductor with two external points 

The entire current I is linked by the flux at any point outside the conductor. Since the distance x is greater than the radius of the conductor, the flux linkage dλx is equal to the flux dφx. Therefore for 1 m length of the conductor we get 
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	(1.15)


 

 

The external flux linkage between any two points D1 and D2, external to the conductor is 
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From (1.3) we can then write the inductance between any two points outside the conductor as 
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For μ≠1,                        [image: image32.png]


 H/m  where μr =relative permeability 
	Inductance of a Single-phase Line 

Consider two solid round conductors with radii of r1 and r2 as shown in Fig. 1.5. One conductor is the return circuit for the other. This implies that if the current in conductor 1 is I then the current in conductor 2 is -I . First let us consider conductor 1. The current flowing in the conductor will set up flux lines. However, the flux beyond a distance D + r2 from the center of the conductor links a net current of zero and therefore does not contribute to the flux linkage of the circuit. Also at a distance less than D - r2 from the center of conductor 1 the current flowing through this conductor links the flux. Moreover since D >> r2 we can make the following approximations 
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Fig. 1.5 A single-phase line with two conductors. 
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Therefore from (1.12) and (1.17) we can specify the inductance of conductor 1 due to internal and external flux as 
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We can rearrange L1 given in (1.18) as follows 
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Substituting r1( = r1 e(1/4 in the above expression we get 
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The radius r1( can be assumed to be that of a fictitious conductor that has no internal flux but with the same inductance as that of a conductor with radius r1 . 

In a similar way the inductance due current in the conductor 2 is given by 
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Therefore the inductance of the complete circuit is 
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If we assume r1( = r2( = r( , then the total inductance becomes 
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where r( = re(1/4. 


 

	Inductance of Three-Phase Lines with Symmetrical Spacing 

Consider the three-phase line shown in Fig. 1.6. Each of the conductors has a radius of r and their centers form an equilateral triangle with a distance D between them. Assuming that the currents are balanced, we have 

[image: image41.png]L+l,+1 =





(1.23)

 

Consider a point P external to the conductors. The distance of the point from the phases a, b and c are denoted by Dpa, Dpband Dpcrespectively. 
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Fig. 1.6 Three-phase symmetrically spaced conductors and an external point P. 
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Let us assume that the flux linked by the conductor of phase-a due to a current Ia includes the internal flux linkages but excludes the flux linkages beyond the point P . Then from (1.18) we get 
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(1.24)

 

 

The flux linkage with the conductor of phase-a due to the current Ib , excluding all flux beyond the point P , is given by (1.17) as 
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Similarly the flux due to the current Ic is 
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Therefore the total flux in the phase-a conductor is 
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The above expression can be expanded as 
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From (1.22) we get 
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Substituting the above expression in (1.27) we get 
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(1.28)

 

 

Now if we move the point P far away, then we can approximate Dpa ( Dpb ( Dpc.. Therefore their logarithmic ratios will vanish and we can write (1.28) as 
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Hence the inductance of phase-a is given as 
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(1.30)

 

 

Note that due to symmetry, the inductances of phases b and c will be the same as that of phase-a given above, i.e., Lb= Lc = L a . 


 

Inductance of Three-Phase Lines with Asymmetrical Spacing 

It is rather difficult to maintain symmetrical spacing as shown in Fig. 1.6 while constructing a transmission line. With asymmetrical spacing between the phases, the voltage drop due to line inductance will be unbalanced even when the line currents are balanced. Consider the three-phase asymmetrically spaced line shown in Fig. 1.7 in which the radius of each conductor is assumed to be r . The distances between the phases are denoted by Dab, Dbcand Dca. We then get the following flux linkages for the three phases 
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	(1.32)
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Fig. 1.7 Three-phase asymmetrically spaced line. 

Let us define the following operator 
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Note that for the above operator the following relations hold 
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Let as assume that the current are balanced. We can then write 
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Substituting the above two expressions in (1.31) to (1.33) we get the inductance of the three phases as 
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	(1.36)
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	(1.37)
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	(1.38)


 

 

 

 

 

It can be seen that the inductances contain imaginary terms. The imaginary terms will vanish only when Dab= Dbc= Dca. In that case the inductance will be same as given by (1.30). 

	Transposed Line 

The inductances that are given in (1.36) to (1.38) are undesirable as they result in an unbalanced circuit configuration. One way of restoring the balanced nature of the circuit is to exchange the positions of the conductors at regular intervals. This is called transposition of line and is shown in Fig.1.8. In this each segment of the line is divided into three equal sub-segments. The conductors of each of the phases a, b and c are exchanged after every sub-segment such that each of them is placed in each of the three positions once in the entire segment. For example, the conductor of the phase-a occupies positions in the sequence 1, 2 and 3 in the three sub-segments while that of the phase-b occupies 2, 3 and 1. The transmission line consists of several such segments. 
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Fig. 1.8 A segment of a transposed line. 

In a transposed line, each phase takes all the three positions. The per phase inductance is the average value of the three inductances calculated in (1.36) to (1.38). We therefore have 
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This implies 
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From (1.35) we have a + a2 = - 1. Substituting this in the above equation we get 
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The above equation can be simplified as 
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Defining the geometric mean distance ( GMD ) as 

[image: image68.png]GMD =
3 DpDy D,y




(1.42)

 

equation (1.41) can be rewritten as 
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Notice that (1.43) is of the same form as (1.30) for symmetrically spaced conductors. Comparing these two equations we can conclude that GMD can be construed as the equivalent conductor spacing. The GMD is the cube root of the product of conductor spacings. 


 

	Overview
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	Real and Reactive Power Injected in a Bus 
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	Classification of Buses 
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	Preparation of Data for Load Flow 
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	Load Flow by Gauss-Seidel Method 

	 
	· Updating Load Bus Voltage 

· Updating P-V Bus Voltages 

· Convergence of the Algorithm 
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	Solution of a Set of Nonlinear Equations by Newton-Raphson Method 
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	Load Flow by Newton-Raphson Method 

	 
	· Load Flow Algorithm 

· Formation of the Jacobian Matrix 

· Solution of Newton-Raphson Load Flow 
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	Load Flow Results 
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	Load Flow Programs in Matlab 

	 
	· Forming Y bus Matrix 
· Gauss- Seidel Load Flow 
· Solving Nonlinear Equations using Newton- Raphson 
· Newton - Raphson Load Flow 


Overview

Load flow studies are one of the most important aspects of power system planning and operation. The load flow gives us the sinusoidal steady state of the entire system - voltages, real and reactive power generated and absorbed and line losses. Since the load is a static quantity and it is the power that flows through transmission lines, the purists prefer to call this Power Flow studies rather than load flow studies. We shall however stick to the original nomenclature of load flow. 

Through the load flow studies we can obtain the voltage magnitudes and angles at each bus in the steady state. This is rather important as the magnitudes of the bus voltages are required to be held within a specified limit. Once the bus voltage magnitudes and their angles are computed using the load flow, the real and reactive power flow through each line can be computed. Also based on the difference between power flow in the sending and receiving ends, the losses in a particular line can also be computed. Furthermore, from the line flow we can also determine the over and under load conditions. 

The steady state power and reactive power supplied by a bus in a power network are expressed in terms of nonlinear algebraic equations. We therefore would require iterative methods for solving these equations. In this chapter we shall discuss two of the load flow methods. We shall also delineate how to interpret the load flow results. 

Section I:  Real And Reactive Power Injected in a Bus

For the formulation of the real and reactive power entering a b us, we need to define the following quantities. Let the voltage at the i th bus be denoted by 
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Also let us define the self admittance at bus- i as 
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Similarly the mutual admittance between the buses i and j can be written as 
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Let the power system contains a total number of n buses. The current injected at bus- i is given as 
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It is to be noted we shall assume the current entering a bus to be positive and that leaving the bus to be negative. As a consequence the power and reactive power entering a bus will also be assumed to be positive. The complex power at bus- i is then given by 

	[image: image82.png]R=JQ =V L=V 2 L0
=Willcos &~ ssin &) |, Neos8, + sin By Neosd, + jsin &)

=t

=S R [oos 5 - s A)eosy + 50 8, eos, + s &)
z




	(4.5)


 

 

 

 

Note that 
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Therefore substituting in (4.5) we get the real and reactive power as 
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