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Abstract 
World economies increasingly demand reliable and economical power 

supply and distribution. To achieve this aim the majority of power 

systems are becoming interconnected, with several power utilities 

supplying the one large network. One problem that occurs in a large 

interconnected power system is the regular occurrence of system 

disturbances which can result in the creation of intra-area oscillating 

modes. These modes can be regarded as the transient responses of the 

power system to excitation, which are generally characterised as decaying 

sinusoids.  For a power system operating ideally these transient responses 

would ideally would have a “ring-down” time of 10-15 seconds. 

Sometimes equipment failures disturb the ideal operation of power 

systems and oscillating modes with ring-down times greater than 15 

seconds arise. The larger settling times associated with such “poorly 

damped” modes cause substantial power flows between generation nodes, 

resulting in significant physical stresses on the power distribution system. 



Abstract  

 

 

iv 

If these modes are not just poorly damped but “negatively damped”, 

catastrophic failures of the system can occur.  

To ensure system stability and security of large power systems, the 

potentially dangerous oscillating modes generated from disturbances 

(such as equipment failure) must be quickly identified. The power utility 

must then apply appropriate damping control strategies.  

In power system monitoring there exist two facets of critical interest. The 

first is the estimation of modal parameters for a power system in normal, 

stable, operation. The second is the rapid detection of any substantial 

changes to this normal, stable operation (because of equipment 

breakdown for example). Most work to date has concentrated on the first 

of these two facets, i.e. on modal parameter estimation. Numerous modal 

parameter estimation techniques have been proposed and implemented, 

but all have limitations [1-13]. One of the key limitations of all existing 

parameter estimation methods is the fact that they require very long data 

records to provide accurate parameter estimates. This is a particularly 

significant problem after a sudden detrimental change in damping. One 

simply cannot afford to wait long enough to collect the large amounts of 

data required for existing parameter estimators. Motivated by this gap in 

the current body of knowledge and practice, the research reported in this 

thesis focuses heavily on rapid detection of changes (i.e. on the second 

facet mentioned above).  

This thesis reports on a number of new algorithms which can rapidly flag 

whether or not there has been a detrimental change to a stable operating 

system. It will be seen that the new algorithms enable sudden modal 

changes to be detected within quite short time frames (typically about 1 

minute), using data from power systems in normal operation. 

The new methods reported in this thesis are summarised below. 
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The Energy Based Detector (EBD): The rationale for this method is that 

the modal disturbance energy is greater for lightly damped modes than it 

is for heavily damped modes (because the latter decay more rapidly). 

Sudden changes in modal energy, then, imply sudden changes in modal 

damping. Because the method relies on data from power systems in 

normal operation, the modal disturbances are random. Accordingly, the 

disturbance energy is modelled as a random process (with the parameters 

of the model being determined from the power system under 

consideration). A threshold is then set based on the statistical model. The 

energy method is very simple to implement and is computationally 

efficient. It is, however, only able to determine whether or not a sudden 

modal deterioration has occurred; it cannot identify which mode has 

deteriorated. For this reason the method is particularly well suited to 

smaller interconnected power systems that involve only a single mode. 

Optimal Individual Mode Detector (OIMD): As discussed in the previous 

paragraph, the energy detector can only determine whether or not a 

change has occurred; it cannot flag which mode is responsible for the 

deterioration.  The OIMD seeks to address this shortcoming. It uses 

optimal detection theory to test for sudden changes in individual modes. 

In practice, one can have an OIMD operating for all modes within a 

system, so that changes in any of the modes can be detected. Like the 

energy detector, the OIMD is based on a statistical model and a 

subsequently derived threshold test. 

The Kalman Innovation Detector (KID): This detector is an alternative to 

the OIMD. Unlike the OIMD, however, it does not explicitly monitor 

individual modes. Rather it relies on a key property of a Kalman filter, 

namely that the Kalman innovation (the difference between the estimated 

and observed outputs) is white as long as the Kalman filter model is valid. 

A Kalman filter model is set to represent a particular power system. If 

some event in the power system (such as equipment failure) causes a 
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sudden change to the power system, the Kalman model will no longer be 

valid and the innovation will no longer be white. Furthermore, if there is a 

detrimental system change, the innovation spectrum will display strong 

peaks in the spectrum at frequency locations associated with changes. 

Hence the innovation spectrum can be monitored to both set-off an 

“alarm” when a change occurs and to identify which modal frequency has 

given rise to the change. The threshold for alarming is based on the 

simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. 

While the method can identify the mode which has deteriorated, it does 

not necessarily indicate whether there has been a frequency or damping 

change. The PPM discussed next can monitor frequency changes and so 

can provide some discrimination in this regard. 

The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) 

function was introduced as a tool for revealing frequency related spectral 

changes. This thesis extends the cubic phase function to a generalised 

class of polynomial phase functions which can reveal frequency related 

spectral changes in power systems. A statistical analysis of the technique 

is performed. When applied to power system analysis, the PPM can 

provide knowledge of sudden shifts in frequency through both the new 

frequency estimate and the polynomial phase coefficient information. 

This knowledge can be then cross-referenced with other detection 

methods to provide improved detection benchmarks. 
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Chapter 1 

1 Introduction 

1.1 The Analysis of Large Interconnected Power 
Systems 

The worldwide economic restructuring of the electrical utility industry 

has formulated large interconnected distribution networks, resulting in a 

greater emphasis on reliable and secure operations [17]. To ensure secure 

and reliable operations, the large interconnected power systems require 

ongoing wide-area observation and control. To meet these requirements 

many wide-area monitoring methodologies have been proposed and 

established [18-20]. One of the most well accepted approaches is to 

monitor the power system at various locations within the distribution 

network and to employ Global Positioning System (GPS) information to 

synchronise the information acquired [21, 22]. With this approach, the 

positioning of the measurement locations in the network is an important 

issue which is discussed in [23]. 

 Monitoring of power system stability is a critical issue for distributed 

networks with a significant focus on the inter-area oscillations, whereby 

this stability is largely dependent on all “inter-area oscillations” being 

positively damped.  The latter are oscillations that correspond to transient 

power flows between clusters of generators or plants within a specific 

area in the large interconnected power system [24]. Monitoring and 

control of these oscillations is vitally important, and has proven far more 
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difficult than monitoring and control of oscillations associated with a 

single generator [24]. 

The inter-area oscillations (or modes) are damped sinusoids, at a given 

frequency with a relevant damping factor. It is the “ring-down” time 

associated with the damping factor that is of consequence in the transient 

ability of the system to stabilise post disturbance. It is critical that the 

transient time is short (and stable) to minimise power flows between the 

generation clusters and minimise the associated stresses within the 

generation/transmission infrastructure. As a consequence there has been 

much work done in the area of damping factor estimation in large 

distributed power systems. Previous estimation methods have employed 

Eigen analysis [25-27] as well as Prony [28] analysis [29, 30]. For 

accurate damping factor estimation, however, one typically requires large 

amounts of data [12, 13]. Conventional damping factor estimation 

techniques are therefore not suitable for rapidly detecting sudden modal 

damping changes. This thesis addresses this shortcoming by presenting a 

variety of new monitoring methods which are able to provide indications 

of detrimental modal parameter change with short data records (typically 

of the order of minutes).  

 

1.2 The Monitoring of Australia's Large 
Interconnected Power System. 

In Australia, the power system associated with the eastern states is an 

example of a large interconnected power system. The eastern Australian 

distribution infrastructure contains a number of generation clusters and 

there are inter-area modal oscillations which arise from the interaction of 

these clusters. A generalised map of the cluster location in eastern 

Australia is shown in Figure 1-1, with the capital cities representing the 

generation nodes. Also listed in Figure 1-1 are the locations of the GPS 



Chapter 1 

 

 

31 

monitoring sites as presented in [22]. Due to the importance of 

monitoring inter-area oscillations, a number of partners have entered into 

collaboration to effect the monitoring. These partners include Queensland 

University of Technology (QUT), and various transmission distributors as 

listed in [22]. The wide-area GPS synchronised techniques outlined in 

[22] and [23] have provided the real system data analysed in this thesis.  

Queensland

Victoria

New South Wales

South Australia

Melbourne

SydneyAdelaide

Brisbane

275 kV

220 kV

330 kV

275 kVSouth PineBrisbane

ParaAdelaide

RowvilleMelbourne

Sydney WestSydney

GPS Measurement Location 
& bus rating

City

275 kV

220 kV

330 kV

275 kVSouth PineBrisbane

ParaAdelaide

RowvilleMelbourne

Sydney WestSydney

GPS Measurement Location 
& bus rating

City

 

Figure 1-1 States associated with the eastern Australian large interconnected power 
system (shaded). State capital cities that represent generation nodes and 

measurement site location and ratings are shown.  

(Template image of Australia sourced from http://www.rrb.com.au/Images/Australia) 

1.3 The use of Externally Sourced Simulated Data 
for Algorithm Verification  

The ultimate goal of power system monitoring algorithms is to perform 

reliably in real power system scenarios. Before this can be achieved, 
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however, the algorithms need to be tested via simulations. The simulation 

environment allows conditions to be varied and consequent performance 

to be evaluated in a controlled manner. For the simulation environment to 

provide useful testing, however, it must incorporate modelling which is 

representative of real systems. Good modelling strategies help to verify 

new techniques prior to real data implementation and provide confidence 

in real data analysis results. The task of creating satisfactory models of 

large dynamically interconnected systems is a challenging and non-trivial 

task. Fortunately, for the purposes of this PhD research, the author was 

given access to externally1 created simulation models and data, based on 

the eastern Australian interconnected power system. The modelling of the 

system was performed by Adelaide Research & Innovation (ARI), a 

group associated with The University of Adelaide (UA), Australia. The 

formulation of the power system model and associated data was 

commissioned and contracted by the National Electricity Market 

Management Company Limited (NEMMCO) to provide benchmark 

testing of modal estimation methods from various research centres. The 

Centre of Energy and Resource Management within the School of 

Engineering Systems at Queensland University of Technology was one of 

the research centres that was benchmark tested in 2004 [31]. The 

simulated data provided in [31] was referred to as the “MudpackScripts” 

by the University of Adelaide authors. It consisted of various non-

stationary data sets that were of interest in this thesis. The data set of most 

interest for this thesis is MudpackScript “Case13” which contains large 

detrimental step changes of damping. The details of the changes in the 

MudpackScripts will be presented in Chapter 2 Section 2.7 where it is 

first used for technique verification prior to real data analysis. 

                                                 

1 Externally in this context means not associated with Queensland University of 
Technology, Brisbane Australia. 
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1.4 Review of Existing Modal Estimation Methods 
With power systems becoming increasingly large and interconnected, the 

resulting advantages in efficiency have been offset somewhat by the 

disadvantage of greater vulnerability to system instability. This latter 

problem has made it very important to be able to perform reliable 

detection of system disturbances from modal oscillation data records. 

These data records can be associated with either a single isolated 

disturbance or with continuous random disturbances. The power 

industry’s chief concern is in the detection of exponentially growing 

disturbance modes potentially present in the power system. If a growing 

mode is detected then the power utilities must introduce some dampening 

to counteract the mode. As a result, methods for fast, reliable and accurate 

estimation of the modal parameters are very important. 

1.4.1 Single Isolated Disturbance 

The parameter estimation methods in this section of the literature review 

focus on the power system’s response to a single isolated disturbance. 

1.4.1.1 Eigenanalysis of Disturbance Modes 

There are a number of well established methods that have been used for 

the analysis of power systems. Many of these methods assume that the 

intrinsically non-linear power system can be approximated as a linear 

system for small perturbations from the steady state. Under this 

assumption Kundur et. al. [32] showed that eigenvalue analysis 

techniques could be quite effective. Conventionally, eigenanalysis of a 

power system is carried out by explicitly forming the system matrix, then 

using the standard QR algorithm to compute the eigenvalues of the matrix 

[32]. Modal oscillation parameters were then obtained from the 

eigenvalues. This basic method has proven to be generally reliable and 

has been extensively used by power utilities worldwide. Unfortunately 
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this method is unsuitable for large interconnected systems [26]. To enable 

large system mode monitoring the basic Eigen methods above have 

undergone various adaptations. Byerly et. al. [7]  developed the best-

known algorithm – AESOPS (Analysis of Essentially Spontaneous 

Oscillations in Power Systems). The advantage of AESOPS is that it does 

not require the explicit formation of the system state matrix [7]. The 

shortfall of the AESOPS method is the inadequacy for analysing very 

large interconnected systems. 

Uchida and Nagao [25] made another development in eigenanalysis by 

proposing the use of the “ S  matrix method”. In this method, it is 

assumed that the dynamics of power systems can be linearly 

approximated with a set of differential equations of the form, x Ax=& , 

where x  is the (vector) state of the system and A  is the system matrix. 

The S  matrix method transforms the matrix, A , into the matrix, 
1( )( )S A hI A hI −= + − , where I  is the unit matrix and h  is a positive real 

number. It can be shown that the dominant eigenvalues of S  are the same 

as the dominant eigenvalues of A , but with an appropriate choice for h, 

can be computed with better numerical precision and speed [25]. The 

refined Lanczos process is also employed to make high-speed calculation 

possible [25]. Despite the computational advantage of the “ S  matrix 

method” eigenanalysis has limited application for very large 

interconnected power systems [33]. 

1.4.1.2 Spectral Analysis using Prony’s Method 

The spectral analysis of modal parameters for power system disturbance 

monitoring is another area of research which has received much attention. 

In this approach power system disturbance data records are spectrally 

analysed immediately after a fault or disturbance. One popular technique 

used for the spectral analysis is Prony’s method, which originated in an 

earlier century [28]. Its ability to be practically implemented, though, was 
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delayed until the advent of the digital computer. Numerical conditioning 

enhancements developed in 1982 by Kumaresan and Tufts [3] broadened 

its applicability to modal estimation. C.E Grund et. al. [33] compared 

Prony analysis to eigenanalysis and stated that “Prony analysis has an 

important advantage over eigenanalysis techniques in that it does not 

require the derivation of a medium-scale model”. Additionally, it can also 

be applied to field measurements for the derivation of control design 

models [33]. Many papers have been written on the use of Prony analysis 

for oscillation modal parameter estimation [34], [29] , [35], with each 

providing its own insights. 

It should be noted however that the above applications of Prony’s method 

assume that the signal contains little noise. In practice methods based on 

the Prony technique are only effective where the noise power is relatively 

small. Trudnowski et. al. [30] alluded to this when they stated for Prony 

analysis  “…The accuracy of the mode estimates is limited by the noise 

content always found in field measured signals…”. 

The poor conditioning of Prony’s method exists because of an ill-

conditioned matrix inversion in the method. To improve the ill 

conditioning, Kumaresan and Tufts [3] [4] proposed using a “Pseudo-

Inverse” matrix, incorporating Singular Value Decomposition (SVD). 

This technique was further explored by Kumaresan and Tufts in [4] and 

was an improvement of the backward linear prediction methods proposed 

by Nuttall [36], which in turn were improvements of Prony’s original 

method.   

This process of applying a truncated SVD analysis effectively increases 

the SNR in the data prior to obtaining the solution vector. In [3], 

simulations show that this method gives much more accurate estimates of 

the modal parameters than traditional Prony methods. In [2], Kumaresan 

also provided further enhancement to Prony’s method with the 

introduction of FIR pre-filtering to reduce the sensitivity of measurement 
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errors in observed signal samples when determining the parameters of 

sinusoidal signals. 

Gomez Martin and Carrion Perez also introduced some extensions in 

working with noisy data with the application of Prony’s method [6] by 

using a moving window in both forward and backward directions. This 

application of forward and backward methodologies were further 

explored by Kannan and Kundu [37]. 

A time-varying Prony method for instantaneous frequency estimation 

from low SNR data was introduced by Beex and Shan [38]. This was 

pertinent since power systems do have substantially non-stationary 

components on occasions. 

1.4.1.3 The Sliding Window Derivation 

Prony’s method is a parametric spectral analysis method. Some authors 

have pursued solutions using classical spectral analysis based on Fourier 

methods. For example; Poon and Lee [39] developed a technique to 

determine the modal parameters by employing a Sliding Window Fourier 

Transform. The frequency components of the modes were first identified 

in the frequency spectrum. The damping constants could then be obtained 

by comparing the spectral magnitudes of a given modal component in 

different time windows. These Fourier techniques proved to be quite 

robust to noise and worked well as long as the oscillation modes were 

well separated and could be separately distinguished within the Fourier 

spectral domain.  

Basically the method developed by Poon and Lee uses the rate of decay 

of the Fourier Transform as a rectangular window slides to determine the 

damping factor of the mode. The results of this method provided good 

correlation compared to conventional techniques. However the 

fundamental limitation of the Poon and Lee method was the tight 

restrictions on the length of the window that could be used. 
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It was subsequently shown that this restriction was needed to avoid errors 

due to the interference from the superposition of the positive and negative 

frequency components [9]. This interference was formulated by the large 

side lobes of the spectral sinc function introduced by the rectangular 

windowing. Hence, Poon and Lee specified that the window lengths only 

have certain discrete values, at which the interference (zeros in the sinc 

function) turned out to be zero. The problem was that the window length 

was dependent upon the modal frequency, and hence this frequency had 

to be accurately estimated prior to the windowing implementation. 

Additionally, a different set of windows was required to process every 

different mode present. O’Shea [8] extended Poon and Lee’s Fourier 

method and showed that a relaxation of the restriction on window lengths 

could be achieved by applying a smooth tapering window (Kaiser 

window) rather than a rectangular one [40], [9]. 

Although the sliding spectral window methods in [39] and [9] were robust 

to noise, they only allowed analysis of multiple modes if the modes were 

sufficiently well separated to be resolved with conventional Fourier 

techniques. To deal with multiple closely spaced modes Poon and Lee 

[41] developed a modified technique. For lightly damped closely spaced 

low frequency oscillation modes exhibiting beat phenomenon they made 

use of the imaginary part of the Fourier Transform of the swing curves. 

Their simple dual modal case was modelled by: 

1 2
1 1 2 2( ) cos(2 ) cos(2 )t tf t a f t e a f t eσ σπ π− −= +

 (1.1)  

and 1f  and 2f  were assumed to be close in frequency and unable to be 

resolved using Fourier techniques.  

Although not specifically stated by Poon and Lee, a major problem with 

their method was that it was not straightforward to determine either 1f  or 

2f . It was therefore not straightforward to determine the damping factors. 



Chapter 1  

 

 

38 

O’Shea [42] showed that a simpler and more reliable method of 

determining modal parameters for closely spaced modes was to extend 

the earlier Sliding Window method in [9] by calculating the spectrum in 

more than two windows. Using the results from the multiple spectral 

windows, a set of simultaneous equations in the desired parameters could 

be created. These parameters were the complex amplitudes, frequencies 

and damping factors of the modes. These simultaneous equations could 

then be solved in a least squares sense [4] to obtain estimates for the 

modal parameters. The presented simulations indicated good results. 

1.4.2 Continuous Random Disturbances 

The methods for modal analysis so far discussed all assumed that the data 

record could be well modelled as a sum of complex exponential modes. 

This is an acceptable model if the record has been obtained after a single 

isolated disturbance. However this is not acceptable for a record obtained 

from continuous random disturbances (which is the scenario for power 

systems in normal operation [11]). The following sections investigate 

modal parameter analysis in relation to continuous random disturbances. 

1.4.2.1 Autocorrelation Methods 

The estimation of modal parameters from data records corresponding to 

continuous random disturbances was discussed by Ledwich and Palmer in 

[11]. They reasoned that the continuous random disturbances exciting a 

power system in normal operation should be fractal in nature, having a 1/f  

shaped spectrum [11], i.e. it should be equivalent to integrated white 

noise. They also reasoned that a power system could be approximated as 

an IIR filter. With these assumptions about the excitation and power 

system, Ledwich and Palmer showed that if one differentiated the output 

of the power system, the result would be equivalent to the output of an 

IIR filter driven by white noise. Since the autocorrelation function of a 

system driven by white noise reveals the impulse response of that system 
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[43], then the autocorrelation function of the differentiated power system 

disturbance output should be the impulse response of the power system, 

i.e. it will have the form of a sum of complex exponentials. The modal 

parameters can then be determined using Prony analysis [11]. 

Autocorrelation techniques were further examined by Banejad and 

Ledwich [12] to determine resonant frequencies and mode shape by 

modelling disturbances using white noise to represent customer load 

variations and an impulse to represent a disturbance. The simulation 

results provided tangible relationships to a known system’s eigenvalue, 

resonant frequencies and mode shape, but did not make any reference to 

the limitations of mode spacing. 

1.4.2.2 Review of Kalman Filter Innovation Strategies 

In the 1950s, increased control requirements for advancing avionics led to 

the formulation of what is now commonly known as the Kalman filter. 

Although earlier radar tracking work by Swerling had formulated very 

similar algorithms [44] the more highly recognised publications by 

Kalman [45], [46] then Kalman and Bucy [47] were generally recognised 

as the origins of the Kalman filter. Since that time the Kalman filter has 

been recognised as a very important (and optimal) linear estimator; it has 

been used extensively in a multitude of areas that encompass stochastic 

models, state and parameter estimation and control requirements. There 

have also been a multitude of Kalman filter variations for non-linear 

systems, such as the extended Kalman filter [48] and unscented Kalman 

filter [49]. In this thesis, the focus of interest is on the Kalman filter 

innovation. The innovation is defined as the difference between the 

measured output and the estimated output [50]. It is well known that the 

innovation from a Kalman filter is spectrally white as long as the assumed 

model parameters are valid [50, 51].  However under faulty or changed 

conditions the innovation sequence will demonstrate large systematic 

trends as the model will no longer represent the physical system [50]. 
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Various Kalman filter innovation approaches, that target fault detection, 

diagnosis of dynamic systems and least squares estimation, are presented 

in [50-55]. In this thesis the Kalman filter model is used to estimate the 

system output. By monitoring the whiteness of the innovation one can 

detect if there are any sudden detrimental changes in the model 

parameters [50], otherwise the innovation sequence is equivalent to the 

original excitation under normal plant conditions [51]. 

1.5 Review of Frequency Estimation Methods 
Although modal damping estimates are of critical importance, the 

frequency of the modes also provides an opportunity to determine 

changes in system behaviour and dynamics. In the case of large 

interconnected power systems, if a particular major site disconnects from 

a national grid (example South Australia disconnects from the Australian 

Eastern network) then the resulting power system will undergo a dynamic 

shift in an attempt to re-establish an equilibrium state. In doing so it is 

expected that the frequencies of the remaining modes will also change. 

Therefore to rapidly detect and estimate the changes in modal frequencies 

is of critical importance. 

The nature of the frequency changes that occur in a power system over 

time will not be known precisely. To allow for the arbitrary nature of the 

frequency trajectories, polynomial modelling will be used. Note that if the 

frequency trajectory is a polynomial as a function of time, then the phase 

trajectory will also be polynomial. It will be assumed that the 

component/mode in question is given by: 

  
( ) ( )0( ) ,j n

r wz n b e z nφ= +
   (1.2) 

where b0 is the amplitude, the polynomial phase coefficients are given by 

{ }0 1, , , Pa a aK  and the phase is: 
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0
( )

P
p

p
p

n a nφ
=

= ∑
   (1.3) 

and ( )wz n  is complex white Gaussian noise. 

1.5.1 Polynomial-Phase Estimation Methods 

To determine the frequency/phase trajectory of a component/mode 

conforming to the model in (1.2) it is necessary to determine the 

polynomial phase coefficients. An obvious solution to the problem of 

obtaining estimates of these parameters is to use the direct Maximum 

Likelihood (ML) method.  However as discussed in [56] the 

implementation of this method is very computationally intensive, 

requiring a P-dimensional search. To overcome the computationally 

restrictive implementation of the ML method, various authors have 

introduced alternative strategies [57], [58], [59], [60] and [61]. 

Fundamentally these strategies employ multi-linear transforms that 

reduce the search requirements from a P-dimensional search to a far more 

computationally efficient P-one-dimensional search. 

More recently O’Shea introduced a “time-frequency rate” representation 

which is defined in equation (1.4) [16]: 

( )
( )

( )
2

1 / 2

0
( , ) .

r

N
j m

z r r
m

CP n z n m z n m e
−

− Ω

=
Ω = + −∑

 (1.4) 

This representation reveals the rate of change of frequency of a signal as a 

function of time. This has some relevance to the power system scenario 

where frequency changes are of particular interest. If n is set equal to 0 in 

equation (1.4) the Cubic Phase (CP) function is obtained. This function 

has been demonstrated to be very effective in the estimation of 

Polynomial Phase Signals (PPS) up to orders of 3P = . The 

computationally efficient implementation of the CP was procedurally 

outlined by O’Shea in [62]. This fast algorithm was shown to produce 
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predictable estimate Mean Squared Errors (MSE) in close proximity to 

relevant Cramér-Rao Lower Bounds (CRLBs), above a given Signal to 

Noise Ratio (SNR) threshold. The relevant CRLBs associated with the 

Polynomial Phase Coefficients for a given order PPS are outlined in [63].  

Generalised higher order (HP) phase functions were also introduced by 

O’Shea in [62]. The HP function formed a multi-linear extension to the 

CP function, specifically for the purposes of parameter estimation of PPS 

of order greater than three. The definition of this function is shown below 

in (1.5), 

( )
2

( , ) , ,
r r

P P j m
z z

m
HP n K n m e− ΩΩ = ∑

  (1.5) 

where   ( ) ( ) ( )1,
i

i i

r

rk kP I
z i r i r iK n m z n c m z n c m

∗

=
 = Π + −   

is the kernel and [ ] . ir ∗  indicates conjugation of [ ].  iff 1ir = .  

The parameters ,  ,i ic k ,  and ir I  are selected to ensure unbiased parameter 

estimates for a phase polynomial of order P. The choice of these 

parameters was conducted in a comparable manner to procedures outlined 

in [61] and [59], to ensure unbiased phase coefficient estimates. 

Further work on the HP function was explored by Farquharson et. al. in 

[56]. New HP functions were devised that allowed parameters to be 

determined in isolation [56]. It was noted in [56] that the new HP 

functions had some similarities to functions introduced in [60], but they 

also had some notable differences. In particular the new HP function 

based estimates in [56] had much lower SNR thresholds and were 

therefore much more practically applicable. 

1.6 Conclusion 
Despite the advances of the last decades for modal parameter estimation 

techniques, there is a common recognition by many authors that no 



Chapter 1 

 

 

43 

individual technique accounts for all the various situations that arise in 

practice. Each tool has its own merits and applications, and provides a 

different view into dynamic system behaviour. With technological 

advances constantly changing the face of power systems, the need to 

continually improve oscillation modal estimation algorithms has been 

widely accepted as being very important. Reliable detection of sudden 

detrimental changes in modal oscillations is also extremely important so 

that catastrophic failures can be avoided. Relatively little work has been 

done to date on optimal procedures for such detection. 

In relation to frequency and frequency rate estimates methods outlined 

earlier, it is important to keep in mind the desire of the power industry to 

obtain estimates as quickly as possible with an acceptable level of error. 

In the situation of angle measurements from sites around a national power 

system, it is generally recognised that these recorded measurements have 

a reasonable SNR. These SNRs should be adequate for the PPS modelling 

approaches considered in this thesis for estimating/detecting changes in 

post-separation modal frequencies. 

Therefore the major focus of this thesis will be the rapid acquisition of 

system information (both modal damping and modal frequency) under the 

scenario of sudden detrimental change to a quasi-stationary large 

interconnected power system. 

1.7 Organisation of the remainder of the thesis 
The remainder of the thesis is organised as follows. Chapter 2 introduces 

a unique energy based method that is primarily focused on the rapid 

detection of deteriorating modal damping in power systems. In Chapter 3 

the technique in Chapter 2 is further extended and optimised for 

monitoring of individual modal damping changes in multi-modal power 

systems. Chapter 4 will then introduce another prospect of modal 

parameter monitoring which is based around the Kalman filter innovation 
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spectrum. Chapter 5 will introduce a new class of multi-linear functions 

for polynomial phase signal analysis and examine implementation 

opportunities in power system monitoring. Chapter 6 will be devoted to a 

general discussion and Chapter 7 will present conclusions and future 

directions.
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Chapter 2 

2 Rapid Detection of Deteriorating Modal 
Damping 

2.1 Introduction 
In this chapter a new method is introduced that deals with the problem of 

detecting sudden changes in the damping of inter-area modes in large 

interconnected power systems. The motivation for focus on rapid 

detection, rather than the more traditional modal parameter estimation, is 

drawn from the verity that standard modal parameter estimation methods 

require long data records to yield accurate estimates – typically an hour or 

more of data is needed. This is too long to wait if there is a sudden and 

seriously problematical change of damping. 

While accurate estimation of the modes requires long time scales, 

detection of sudden deterioration from a known quiescent point can be 

done in much shorter time scales (typically a minute). The “sudden 

change” can be detected very easily via a sudden change in the energy of 

the system modes. However to be able to make an informed decision on 

whether a change has actually occurred a statistical characterisation of the 

quiescent system energy must be established.  Once the statistical 

characterisation has been formulated the thresholds for rapid detection of 

modal deterioration may be set that can provide an alarm benchmark with 

a defined confidence level. 
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2.2 The Power System Model in the Quiescent State 
To establish an energy characterisation of a power system, first an 

understanding of system behaviour is required. In [11] the power systems 

are assumed to be in normal operation and as such, are assumed to be 

excited by multiple quasi-continuous random disturbances. Such 

disturbances arise naturally as a result of load changes in the form of 

connections and disconnections. Once excited, each of the disturbances is 

then damped according to the modal resonances of the power system. 

This type of scenario can be modelled well with a single continuous 

random background noise exciting a filter whose resonances are 

characteristic of the power system. The model for the excitation is based 

on the work of Ledwich and Palmer [11]. This model introduced the 

hypothesis that the disturbance is fractal in nature, possessing a 1
f  type 

spectral shape. Therefore the excitation noise can be well modelled as 

white noise that has passed through an integrator. The power system 

output is then the output of a “power system filter” driven by the above-

mentioned excitation. This model is illustrated in Figure 2-1. 

Power System Filter
h(n)Integrator

white noise, w(n)

fractal (1/f )
excitation noise,

γ(n)
Power System 

output, x(n)
Power System Filter

h(n)Integrator

white noise, w(n)

fractal (1/f )
excitation noise,

γ(n)
Power System 

output, x(n)

 
Figure 2-1 Model for quasi-continuous modal disturbances in a power system. 

The model in Figure 2-1 can be used to derive the equivalent model 

shown in Figure 2-2. As indicated in Figure 2-2, if the output of the 

power system is differentiated, the resulting signal, y(n), can be 

considered to have been obtained from a white noise based excitation of 

the power system filter, h(n). It is recommended that the measured output, 

x(n), be taken as the angle of the generator cluster at the measurement 

point, with respect to the steady state (i.e. 50Hz/60Hz) angle component. 

The measurement point to extract the “angle of the generator cluster” is 
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ideally obtained according to the procedure in [23]. This procedure 

maximises the lightly damped inter-area mode information and minimises 

the effect of the more heavily damped local modes (that are less critical in 

regards to overall supply stability and control). 

Power System Filter
h(n)Integrator

white noise,
w(n)

γ(n)

Differentiate

y(n)

Power System Filter
h(n)

white noise
w(n) y(n)

output
x(n)

Power System Filter
h(n)Integrator

white noise,
w(n)

γ(n)

Differentiate

y(n)

Power System Filter
h(n)

white noise
w(n) y(n)

output
x(n)

 
Figure 2-2 Equivalent model for quasi-continuous modal oscillations in a power 

system. 

With the power system model established, a statistical characterisation of 

the system energy will be formulated in the following section. 

2.3 The Power System Statistical Characterisation 
The rationale behind the method proposed in this chapter is that the 

energy of the output, y(n), will remain stable unless either the power 

system filter transfer function or the excitation noise level changes 

suddenly. If the power system transfer function changes such that there is 

less damping of the excitation noise, then the result is more energy within 

the output signal. Alternatively if there is a sudden (and sustained) 

increase in excitation energy there could be a fault. In either case an 

alarm should be created so that appropriate investigation/control can be 

implemented.  

This section will apply the knowledge of the power system model 

established in [11] to generate a statistical system characterisation. A 

formula is derived for a probability density function (PDF) of the energy 
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y(n) under quasi-stationary operating conditions. The statistical 

characterisation of the energy y(n) enables a reliable threshold to be set so 

alarms can be raised if the energy deviates too much from these quasi-

stationary operating conditions. These operating conditions can be 

determined by the types of techniques described in [11]. As the detection 

condition is for large detrimental change then the False Alarm Rate 

(FAR) for detection is usually set fairly low (1% or lower). Such a low 

FAR facilitates the minimisation of unwanted false alarms. Once an alarm 

has been triggered, further monitoring of the system energy is necessary. 

Sequential data windows are collected and a statistical analysis with 

respect to the PDF is undertaken. Repeated alarms due to consistently 

high energy readings would induce corrective action by the power system 

utility.  

To develop the PDF for the energy in y(n) we return to the model in 

Figure 2-2. It follows from Figure 2-2 that the output signal’s discrete 

Fourier transform is: 

( ) ( ) ( ),Y k H k W k=     (2.1)  

where H(k) is the discrete Fourier transform (DFT) of h(n), W(k) is the 

DFT of w(n) and Y(k) is the DFT of y(n). Now, according to Parseval’s 

theorem, the energy of y(n) can be determined from the samples in either 

the time domain or the frequency domain. Because the samples are 

independent in the frequency domain, though, this domain is most 

conducive to developing a statistical characterisation. Note also, that for 

real signals, all the information in the frequency domain is contained in 

the positive half of the spectrum – the information in the negative half is 

just a copy of that contained in the positive half. Using Parseval’s 

theorem and the fact that half the energy is contained in the positive half 

of the spectrum for real signals, total energy of y(n) is: 
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Note that ( )W k  is a complex Random Variable (RV) with real and 

imaginary parts: 

( ) ( ){ } ( ){ }2 2 2
Re ImW k W k W k= +   (2.3) 

Now if the variance of w(n) is 2σ , then the left hand side of (2.3) is a chi-

squared RV with two degrees of freedom and variance, N
2σ  [15]. 

Therefore the PDF at any discrete ensemble frequency ik  is: 
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where x is the random variable power. 

Using (2.1) and (2.4) the PDF of  ( )ikY  can be deduced to be: 
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From (2.2) it is evident that the energy is obtained by summing / 2 1N +  

RVs and then scaling by 2/N. Furthermore these RVs have PDFs given by 

(2.5). The PDF of the sum is obtained by convolving the PDFs of all the 

RVs being summed. That is, the PDF of this sum is: 

 ( ) ( ) ( ) ( )
/ 2 / 2 1 0/ 2 / 2 1 0N Ny y N y N yf x f x f x f x

− −= ∗ ∗ ∗L  (2.6) 



Chapter 2  

 

 

50 

 

( ) ( )

( ) ( )

( ) ( )

2 21
2

2 2

2 2

2 01
2

2 1
2

2 / 2

0

1 ,

/ 2

xN H

xN H

xN H N

H e

N H e

H N e

σ

σ

σ
σ

− −

− −

− −

− −

− −

− −

 
 
 

= ∗ 
 
 ∗ ∗
  
L

 (2.7) 

where * denotes convolution. 

Finally the PDF of the energy is obtained from the sum by scaling by 2/N. 

The final energy PDF must therefore have its axes re-scaled accordingly. 

From the PDF the threshold for detection of change can be formulated. 

Establishing say the 1% false alarm rate is obtained via the cumulative 

summation of the PDF area until the 99% point is determined.  

2.4 PDF Verification  
To verify the theoretically determined system output PDF, a comparison 

of a theoretical PDF and simulated histogram was undertaken. Using 

known modal parameters, simulations created a collection database of 

outputs that were formulated into a histogram. A theoretical PDF was 

then formulated and compared directly to the histogram. 

The procedure for verification involved 10,000 simulation runs of random 

noise, ( )~ 0,1N , feeding a known modal system, depicted in Figure 2-2 

and defined below:  

( ) ( ) ( )1 2 ,h n h n h n= +    (2.8) 

where 

( ) ( )sin 1, 2in
i i i ih n A e n iσ ω φ−= + =   (2.9) 

with modal parameters: 

1
1 1 1 11.7 / , 0.4 , 1, 0r s s Aω σ φ−= = − = = o  
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1
2 2 2 22.7 / , 0.52 , 1, 0r s s Aω σ φ−= = − = = o  

Energy measurements were based on a 20, 40 and 60 second data window 

with a sampling rate of 5Hz. Statistical characteristics of the simulated 

histogram and of the theoretical PDF were calculated and compared. The 

statistical characteristics examined were the first three central moments, 

mean, variance and skewness [64]. The percentage errors between the 

theoretical and simulated PDFs are shown in Table 2-1. The errors are all 

comparatively low, inspiring confidence in the fact that the derived PDF 

is correct. 

TABLE 2-1 RELATIVE ERROR OF MOMENTS 

TIME WINDOW 20SEC 40SEC 60SEC 

NOISE VARIANCE 1.0 1.0 1.0 

MEAN 0.04% 0.43% 1.67% 

VARIANCE 0.82% 1.65% 0.24% 

 

% 
ERROR 

SKEWNESS[64] 2.59% 5.76% 6.53% 

 

Further validation of the theoretical PDF is provided by a visual 

comparison with a histogram. The result from a 60sec analysis window is 

shown in Figure 2-3. There is a close visual alignment. 



Chapter 2  

 

 

52 

5 10 15 20 25
0

10

20

30

40

50

60

70

80

Output half energy hisogram vs PDF

Energy-Joules

Output Energy Histogram vs PDF

5 10 15 20 25
0

10

20

30

40

50

60

70

80

Output half energy hisogram vs PDF

Energy-Joules

Output Energy Histogram vs PDF

 
Figure 2-3 Energy PDF and Histogram Comparison (60 second window). 

2.5 Setting the Threshold for Alarm 
From the PDF the threshold for detection of change can be formulated. 

Establishing say the 10% false alarm rate is via the cumulative 

summation of the PDF area until the 90% point is determined.  

2.6 Simulated Results 
It will be seen in this section that the simulations for detecting change 

provided good results. The modal values were initially set to:  

 Mode 1: ( )0.4 sin 2te t−  1 0.4σ∴ = − 1& 2.0 /r sω =  

 Mode 2: ( )0.52 sin 2.7te t−  2 0.52σ∴ = − 2& 2.7 /r sω =  

In the 300 minutes of simulated data, mode 1 underwent two damping 

changes; a step deterioration to 1 0.1σ = −  damping at 100 mins and 

another step change to 1 0.2σ = −  damping at 200 mins. The variance of 
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the driving noise, w(n), was set to unity. The output, y(n), was generated 

as per the model shown in Figure 2-2. Energy measurements for the 

output were then taken over 1 minute block periods. The first 100 minutes 

represent the quasi-stationary system prior to the damping changes. 

The graphical results and relevant statistics are shown in Figure 2-4 and 

Table 2-2 respectively. The results are as one would expect – a low alarm 

rate for the quiescent conditions, a high alarm rate during the major 

damping change, and a lesser alarm rate during the period when the 

damping “corrects itself” somewhat.  
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Figure 2-4 60 second Data Window of Energy Measurements with 1% False Alarm 

Rate Shown. 
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TABLE 2-2 PERCENTAGE OF ALARMS 

FALSE ALARM RATE SET AT 1% 
 

0-100 MIN 
NO CHANGE 
( )1

1 4.0 −−= sσ  

100-200 MIN 

STEP CHANGE 
( )1

1 1.0 −−= sσ  

200-300 MIN 
STEP CHANGE 
( )1

1 2.0 −−= sσ  

% OF TIME 
ALARM ON 

0.0% 80.0% 32.0% 

2.7 Validation of Method using MudpackScripts 
In this section the energy based method is verified using the Case13 

MudpackScript data.  

This data set is useful as it contains an initial 2 hour section that may be 

regarded as representing the power system in a quasi-stationary state with 

acceptable damping. It is this initial 2 hour section that is analysed by the 

LTE to generate the required system PDF. From this the desired threshold 

can be set. This data set used for verification represents the Queensland 

(QNI) mode of the power system. Within this QNI data, the damping 

suddenly deteriorates from an acceptable -0.25 to a very 

undesirable 0.05− . The trajectory of the damping factor associated with 

the Case13 script can be seen in Figure 2-5. 

The detection results from the analysis of the first 12 hours of data can be 

seen in Figure 2-6. The analysis window used is a block window set to 60 

seconds at a 5Hz sampling rate. Comparison of Figure 2-5 and Figure 2-6 

shows that the energy experiences sudden jumps when the damping 

experiences sudden jumps, as one would hope. Various different alarm 

thresholds are shown in Figure 2-6; for the data under analysis it is seen 

that if one uses a 1% false alarm rate, one only gets alarms when there are 

genuine damping changes.  

In the following section, the energy detection technique will be applied to 

real multi-site data obtained from wide area monitoring sites. 
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Figure 2-5 Mode Trajectory of QNI Case13 MudpackScript Data. 
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Figure 2-6 Output Energy vs 1, 5, 10% thresholds. 
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2.8 Application to Real Data 
To apply the energy detection method to a real data situation a long term 

estimator is required to provide an estimation of the quiescent modal 

values. Initially the long term estimator establishes estimates for the 

system transfer function. From this an estimated impulse response can be 

determined. With this knowledge an approximation of the variance of the 

excitation signal, w(n) in Figure 2-1, can be estimated. Once the system 

transfer function, h(n), and the excitation variance, 2σ , have been 

estimated then the expected energy PDF can be formulated. It is this 

formulated PDF that enables a threshold to be set (given a suitable false 

alarm rate). Note that the long-term estimate is periodically updated, and 

the threshold is changed, based on the updated estimate. 

The process for simultaneously performing the long-term estimation, 

generating the energy estimate, thresholding and alarming is depicted 

diagrammatically in Figure 2-7. As shown in Figure 2-7, the first task is 

to differentiate the power system output signal (as per the model in Figure 

2-2). The long term modal estimator used in this thesis is based on work 

by Zhang and Ledwich [13] and applies a greater than one hour data 

window to the differentiated output signal, y(n), and generates a system 

transfer function in the Laplace domain. By applying the traditional 

inverse Laplace transform method of partial fraction expansion, the 

individual modes can be determined and an estimated impulse response 

found.  
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Figure 2-7 Short Term Energy Detection Applied to Real Data, red denotes past 

data used to formulate long term estimates. 

Once an estimate of the transfer function is found then an estimate of the 

excitation spectrum may be determined according to: 

( ) ( )
( )

ˆ ,ˆ
Y k

W k
H k

=    (2.10) 

where ( )Y k and ( )Ĥ k  denote the DFTs of ( )y n  and ( )ĥ n  respectfully, 

evaluated at bin, k. 

Then the estimate of the excitation variance (noise power) is estimated as: 

 ( )
21

2 1

0

ˆˆ .
N

w N
k

W kσ
−

=
= ∑     (2.11)  
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At this point the two system characteristics, 2σ̂  and ( )ˆ ,H k  are 

established and can then be employed to generate the required system 

PDF. Once the system PDF is established a suitable threshold for alarm 

can be set with respect to a desired FAR. 

2.8.1 Results of Real Data Analysis 

In this section, real multi-site data obtained from the Australian power 

system is analysed using the energy based method. The recorded data was 

collected on 02/10/2004 over a 24 hour period and is shown in Figure 

2-8. In this section the first 6 hours only will be examined. The 

measurement sites that represent the intra-area generation clusters are 

referred to as Queensland, NSW, Victoria or South Australia, as 

previously discussed in Chapter 1. In the analysis performed, the LTE 

used the first three hours of data to determine the site transfer functions 

and impulse responses. The plots in Figure 2-9 to Figure 2-12 show the 

site impulse responses as estimated by the long term estimator. 

Subsequently, the expected energy PDF for a short-term window of 60 

seconds is shown in Figure 2-13 to Figure 2-16. These figures of site 

PDFs also contain verification histograms that would result from a pure 

white noise, of power 2σ̂ , feeding into the respective site transfer 

functions. Finally in Figure 2-17 to Figure 2-20 the resulting site energy 

measurements are shown with respect to three false alarm rate thresholds, 

1%, 5% and 10% respectively. The 60 second analysis windows do not 

overlap and are simple sequential block windows. In the real data, a 

deteriorating damping event was apparent in three of the four states at 

around 04:30 hours. Prior to this event, the false alarm rates were as one 

would expect for quasi-stationary operation. See for example, Table 2-3, 

which provides statistics of the actual false alarms in the first 3 hours of 

data. After the event at around 04:30 hours, the false alarm rates increase 

markedly.  
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Figure 2-8 24 hours of recorded angle measurements (2nd October 2004), sites as 

indicated. 
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Figure 2-9 Queensland Estimated Impulse Response. 
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Figure 2-10 New South Wales Estimated Impulse Response. 
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Figure 2-11 Victorian Estimated Impulse Response. 
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Figure 2-12 South Australian Estimated Impulse Response. 
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Figure 2-13 Queensland PDF Estimate with white noise verification histogram. 
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Figure 2-14 New South Wales PDF Estimate with white noise verification 

histogram. 
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Figure 2-15 Victorian PDF Estimate with white noise verification histogram. 
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Figure 2-16 South Australian PDF Estimate with white noise verification 

histogram. 
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Figure 2-17 Queensland 60 second energy measurements vs various FARs shown. 
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Figure 2-18 New South Wales 60 second energy measurements vs various FARs 

shown. 
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Figure 2-19 Victorian 60 second energy measurements vs various FARs shown. 
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Figure 2-20 South Australian 60 second energy measurements vs various FARs 

shown. 

 

TABLE 2-3 PERCENTAGE OF FALSE ALARMS OVER INITIAL 3 HOURS OF 
DATA 

60 SECOND ANALYSIS WINDOW 

FALSE ALARM RATES 
SITE FALSE ALARM RATE 

10% 
 

FALSE ALARM RATE 
5% 

 

FALSE ALARM RATE 
1% 

 
QLD 

(SOUTH PINE) 
 

6.13% 3.34 % 1.11% 
NSW 

(SYDNEY WEST) 
 

8.35% 3.90% 2.23% 
VIC 

(ROWVILLE) 9.47% 5.57% 1.39% 

SA 
(PARA) 10.31% 6.40% 1.67% 
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2.9 Discussion 
In the simulations shown in Figure 2-6 it was seen that the energy 

detector method responded in a timely manner to each deteriorating shift 

in damping factor. In the subsequent real data analysis the modal 

disturbance just after 04:30 hours can be clearly seen in Figure 2-17, 

Figure 2-19 and Figure 2-20. However the NSW response in Figure 2-18 

does not indicate the disturbance. This is due to the weak response the 

particular disturbance mode has at the NSW measurement site. The 

justification of this statement will become more evident in Chapter 3 

where the individual modal contribution for each site is estimated and 

shown spectrally. 

In the real data case shown, it can be seen that the poor damping is only 

temporary as the subsequent post-disturbance energy measurements do 

not continue alarming. Consequently in practical real data analysis once 

an alarm has been “raised” it is necessary to further monitor the energy. A 

series of sequential data windows are collected and statistical 

comparisons are made with the energy PDF. Consistently high energy 

readings will trigger corrective action. 

2.10 Conclusion 
It can be seen from the simulated results that the energy detector method 

can provide short term alarming of modal deterioration of power systems. 

It does so with a predetermined level of confidence that sets the alarm at a 

desired false alarm rate. 

Longer time windows reveal changes more clearly and can be used in 

conjunction with the shorter time windows to confirm or disaffirm a need 

for remedial action. 

When there is no change in the system, the false alarms occur at close to 

the theoretical rates, both in simulation and in real data analysis. 
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An important point to note is that this Chapter examines the energy of the 

systems signal as a whole. It provides a very simplistic method to identify 

rapid modal deterioration within a system. If the system is a single mode 

system then any subsequent detected deterioration naturally represents the 

mode deterioration. If the system was a multi-mode system then this 

method would provide information that there had been a damping 

deterioration but would not identify which mode. Identification of exactly 

which mode is changing in a multi-mode system is an important issue as 

well but is not addressed in this Chapter. It will be addressed in Chapter 

3. 
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Chapter 3 

3 Rapid Detection of Changes to Individual 
Modes in Multimodal Power Systems 

3.1 Introduction 
The previous chapter introduced a method of rapid detection of modal 

deterioration by setting a threshold for energy measured from the entire 

system. This threshold was based on a statistical characterisation of the 

expected energy under quiescent conditions. Once this threshold was 

established, the energy of the differentiated system output signal was 

determined using a short time window and compared to the established 

threshold. The energy-based method used in the previous chapter would 

provide adequate information in a single mode power system if it was 

experiencing sudden deteriorating damping; however in multi-modal 

power systems it would be far more desirable to highlight which 

particular mode/s may be experiencing detrimental damping conditions. 

This would provide the power utilities a heightened ability to administer 

timely corrective action in the appropriate manner. Motivated by the 

desire to have more specific modal identification, this chapter introduces 

a new method for rapidly detecting individual modal deterioration in 

large interconnected multi-modal power systems. Any “sudden 

detrimental change” of an individual mode is detected using strategies 

derived from optimal detection theory. A statistical characterisation of a 

mode’s test statistic is used to establish reliable thresholds for detection of 
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individual mode changes.  To enable the individual monitoring of modal 

damping conditions the power system is again assumed to be excited by 

on-going random disturbances, corresponding to such things as load 

changes [11].  The next section will re-visit the stochastic power system 

model. Subsequent sections, 3.3 to 3.5, will then go on to apply optimal 

detection theory to the problem of individual modal monitoring. Section 

3.6 will then present and examine simulated data results. Sections 3.7 to 

3.9 will outline the integration of the technique into a real power system 

monitoring application and present a verification/validation stage using 

the MudpackScript data followed by real data analysis examples. 

3.2 The Stochastic Power System Model Revisited 
In Chapter 2, the stochastic power system model experimentally 

hypothesised by Ledwich and Palmer was presented [11]. This simplified 

model is again shown here in Figure 3-1.  

Power System Filter
h(n)

white noise
w(n) y(n)

Power System Filter
h(n)

white noise
w(n) y(n)

 
Figure 3-1 Previously introduced stochastic power system model. 

One can measure the disturbance output from a power system by 

extracting the “angle of the generator cluster” at the measurement point 

with respect to the steady state (i.e. 50Hz/60Hz) angle component. The 

measurements are recorded at particular points within the large 

interconnected power system according to the procedure in [23]. 

Implementing this procedure maximises the lightly damped inter-area 

mode information and minimises the effect of the more heavily damped 

local modes. Differentiating the measurement will then provide the 

signal, ( )y n , in Figure 3-1. Once y(n) is obtained through differentiation 

of the measured output then the filter impulse response, h(n), can be 
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estimated using long term estimators. From the system impulse response 

estimate the power of the white noise excitation, w(n), may also be 

estimated.  

It is assumed for the purposes of this section that the power system has 

been in a quasi-stationary operating environment for a long period of 

time. Then a long term parametric estimator (such as Prony’s method 

[28]) may be used to determine the filter impulse response, ( )h n and its 

transfer function ( )H z . Subsequently the individual modal contributions 

that combine to formulate ( )H z  may be found using partial fraction 

analysis. Hence for any given mode i the transfer function ( )iH z  can be 

found, as can the impulse response ( )ih n . 

While the work in Chapter 2 addressed the issue of rapidly detecting any 

changes in damping to the system, this chapter focuses on monitoring all 

modes to see where the critical detrimental change is occurring. To 

achieve this, the technique does not follow the traditional approach that 

has concentrated on estimating modal parameters. The rationale for this is 

that major changes can be detected with short data records whereas 

precise estimation of parameters requires long data records. The 

justification for this is that current algorithms in parameter estimation all 

require a large amount of data to ensure accurate estimates. Obtaining 

large data records conspires against the aim of this work, which is to 

rapidly detect and identify a sudden and significant detrimental change in 

modal damping within a power system. It is important to note that the 

approach used in this chapter supports the work outlined in [65]. 

3.3 Application of the Optimal Detection Strategy 
To enable the detection of adverse changes to individual modes this 

chapter employs the theory of optimal detection of random signals [66]. 
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The implementation of the optimal detector is as follows: let the system 

impulse response, ( )h n , be considered to be the sum of ( )1h n  and 

( )2h n , with ( )1h n  corresponding to the mode of interest, and ( )2h n  

corresponding to the sum of all the other modal components of ( )h n . 

Therefore the output, ( )y n  is considered to have two components, ( )1y n  

and ( )2y n , with ( )1y n  being the output due to the mode of interest and 

( )2y n  being the output due to the other modes. Defining the “observed 

signal” as ( )y n , and the “reference signal” as ( )1y n , then the procedure 

for the generation of the optimal detection statistic is depicted in Figure 

3-2 [66]. It involves the whitening of both the power spectral density 

(PSD) of the “reference signal”, ( ) 2
1 ,Y k  and the PSD of the “observed 

signal”, ( ) 2
,Y k  followed by cross-correlating. The whitening filter 

transfer function is the inverse of the discrete Fourier transform of ( )2 .h n  

It is assumed that there are N samples in the observation. 

Whiten

Observation 
PSD

Whiten

Cross-correlate Threshold
& 

Detect

Reference 
PSD

( ) 2
Y k

( ) 2
1Y k

( ) 2
2H k

−

( ) 2
2H k

−

η
Whiten

Observation 
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Cross-correlate Threshold
& 

Detect

Reference 
PSD

( ) 2
Y k

( ) 2
1Y k

( ) 2
2H k

−

( ) 2
2H k

−

η

 
Figure 3-2 Generation of the optimal detection statistic. 

It is necessary to determine how to set the threshold for appropriate 

detection. To do this the Probability Density Function (PDF) of the cross-

correlated output must be determined. The availability of the PDF enables 

reliable thresholds to be set so that one can create alarms if the modal 

response deviates too much from the normal operating conditions. As the 
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main focus of this chapter is the rapid detection of large detrimental 

modal change (as opposed to monitoring small changes) thresholds are 

typically set to yield False Alarm Rates (FARs) of 1% or less. 

In practice, the monitoring process would ideally involve the application 

of the detection algorithm to all the modes individually and at the same 

time. In other words, an n-mode power system would require n parallel 

detectors to monitor each mode. Because the detection algorithm can be 

implemented fairly rapidly, the computational overhead does not provide 

a significant barrier to monitoring all of the individual modes.  

Once an alarm has been “raised” it is necessary to further monitor the 

modes. A series of sequential data windows are collected and statistical 

comparisons are made with the stationary condition PDFs. Consistently 

high readings will trigger corrective action on the deteriorating mode. 

3.4 Individual Mode Detection Statistic Details  
To specify the optimal detector for an individual mode the following 

quantities are defined: 

( ) ( )( ) ( )y n Y k W k H k
ℑ
⇒ =  (3.1)  

1 1( ) ( )h n H k
ℑ
⇒  (3.2) 

2 2( ) ( )h n H k
ℑ
⇒  (3.3)  

( ) ( ) ( )1 1 1( )y n Y k W k H k
ℑ
⇒ =  (3.4) 

( ) ( ) ( )2 2 2( )y n Y k W k H k
ℑ
⇒ =  (3.5) 

where ℑ  indicates discrete Fourier transformation. 

Now to detect a change in Mode 1 (the mode of interest); choose 1( )Y k  as 

the (frequency domain) reference signal. The remainder of the frequency 



Chapter 3  

 

 

74 

domain observation 2, ( ),Y k  becomes the “interference signal”. According 

to standard optimal detection theory, a whitening filter is created to 

whiten the interference: 

( ) 1
2 ( ).whH k H k−=  (3.6) 

Also, according to standard optimal detection theory, the whitening filter 

is applied to both the reference and observation signals. The 

corresponding PSDs are then determined: 

( ) ( )2 2

2 2 2

( ) | | | |

| ( ) | | ( ) | | ( ) |
obs wh

obs wh

PSD k X k H k

W k H k H k

=

=
  (3.7) 

( ) ( ) ( )2 2 2
1| | | | {| ( ) | }ref whPSD k H k H k E W k=  (3.8) 

where { }E denotes the expected value. 

Now cross-correlate (3.7) and (3.8) to obtain the detection statistic η  

shown in Figure 3-2: 

/ 2

/ 2
( ) ( ).

N

ref obs
k N

PSD k PSD kη
=−

= ∑    (3.9) 

To practically apply the detection statistic (3.9) in the detection process a 

threshold level must be determined. To intelligently set the threshold a 

probability density function (PDF) of the detection statistic is required. A 

threshold can then be set based on the PDF at a desired level of 

confidence. 

3.5 Statistical Characterisation of the Detection 
Statistic η 

The formulation of the Mode 1 detection statistic PDF is as follows. 

To derive the detection statistic PDF, (3.9) can be expanded using (3.7) 

and (3.8) to give: 
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 ( ) ( ) ( ) ( )
/ 2 2 2 2 4 2

1
/ 2

{ } | | | | | ( ) | | |
N

wh
k N

E W k H k H k H k W kη
=−

= ∑ (3.10) 

which can then be re-written as 

/ 2
2 2

/ 2
| ( ) | | ( ) |

N

k N
Z k W kη

=−
= ∑   (3.11) 

where ( )Z k  is defined as: 

( ) ( ) ( ) ( ) 22
1| || || ( ) | { }.whZ k H k H k H k E W k=   (3.12) 

Now the expression in (3.11) contains ( )W k which is a complex Random 

Variable (RV) with real and imaginary parts. Furthermore, the squared 

magnitude of 2( )W k is: 

( ) ( ){ } ( ){ }2 2 2
Real ImagW k W k W k= +   (3.13) 

where { }Real  and { }Imag denote the real and imaginary parts 

respectively. It is assumed that the variance of ( )w n  is 2σ . Then W(k) is 

a complex Gaussian RV with variance, σ2/N [67]. Then the left hand side 

of (3.13) is a chi-squared RV with two degrees of freedom and 

variance, 2

N
σ  [67]. That is, the PDF of any discrete “bin” in the ( )W k  

power spectrum is: 

{ } 2

2 ,
xNNf x e σ

σ

−

=  (3.14) 

where x is the random variable, power. 

Using (3.11) and (3.14) the PDF of ( ) ( )2 2
Z k W k  at discrete ensemble 

frequency k  can be deduced to be: 
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From (3.11) it is apparent that the detection statistic (3.9) is obtained by 

summing N random variables (RVs). Only half of these RVs, however, 

are independent, because the “negative frequency” half of the spectrum 

contains the same information as the “positive frequency” half [68]. Since 

one side of the spectrum contains all the information necessary then the 

PDF of the detection statistic is formulated from just one half of the 

spectrum. Therefore the detection statistic in (3.9) is reformulated and 

redefined to become (3.16): 

( ) ( ) ( ) ( )
/ 2

1

1 0 0 .
2

N

ref obs ref obs
k

PSD k PSD k PSD PSDη
=

= +∑  (3.16) 

Because (3.16) indicates that the threshold is the sum of / 2 1N +  

independent RVs, its PDF can be computed by convolving the PDFs the 

/ 2 1N + individual RVs. Consequently the PDF of the detection statistic 

for Mode 1 is given by: 

( ) ( ) ( ) ( )
/ 2 / 2 1 0

1
/ 2 / 2 1 02 .

N NZW N ZW N ZWf zw f zw f zw f zwη − −= ∗ ∗L  (3.17) 

Expanding the above gives the PDF of the test statistic for Mode 1 as: 
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(3.18) 

where * denotes convolution. 

From the PDF in (3.18), the threshold for detection of change can be 

formulated. To establish the 1% false alarm rate, the cumulative 

summation of the PDF area is taken until the 99% point is determined. 

3.6 Results 
For practical power systems in normal operation the modal parameters 

are quasi-stationary and these parameters can be estimated from long data 

records via modal estimate algorithms [11], [28], [12], [13]. These 

algorithms are applied to data measured at suitable points within a power 

system, as outlined in [23]. From these estimates PDFs can be generated 

according to the procedure outlined in Section 3.5. These PDFs can then 

be used to set thresholds on the various modes so that any rapid 

deterioration from quasi-stationary operating conditions can be registered. 

Short data records (e.g. 60 seconds long) can be used for this purpose. 

Before determining what constitutes a major deterioration in damping it is 

useful to consider the following Table 3-1 (based on recommendations 

from NEMMCO [31]) which attempts to quantify damping performance 

in relation to damping values.  
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TABLE 3-1 QUALITATIVE REFERENCE TO DAMPING PERFORMANCE  
(NEMMCO)* 

DAMPING /Np s  QUALITATIVE DESCRIPTION 

0σ >  UNSTABLE 

0 0.05σ> > −  VERY INADEQUATE (VERY POOR) 

0.05 0.07σ− > > −  INADEQUATE (POOR) 

0.07 0.139σ− > > −  MARGINALLY ADEQUATE 

0.139 0.2σ− > > −  ACCEPTABLE (GOOD) 

0.2σ < −  HIGHLY ACCEPTABLE (VERY GOOD) 
* National Electricity Marketing Management Company (Australia) 

 

Based on the criteria in Table 3-1 above, a change in damping will be 

considered unacceptable if damping moves into the marginally adequate 

region. The following subsections consider the performance of the new 

method for both simulated and real data.  

3.6.1 Simulated Results 

The simulation in this section is for a three mode system with the 

following definition for each individual mode: 

 ( ) ( )sin , 1, 2,3.in
i i ih n A e n iσ ω−= =  (3.19) 

Hence the overall impulse response of the measurement site is defined as: 

( ) ( ) ( ) ( )1 2 3 .h n h n h n h n= + +  (3.20) 

The stationary modal parameters and modal weights of (3.20) are based 

on practically realistic estimates, as listed in Table 3-2. 
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TABLE 3-2 STATIONARY MODAL PARAMETERS AND WEIGHTS 

MODE PARAMETER VALUE 

  MAGNITUDE, 1A  7.58 

1  DAMPING 1σ (NP/S) -0.28 

  FREQUENCY 1ω (R/S) 1.75 

  MAGNITUDE, 2A  1.62 

2  DAMPING 2σ  -0.58 

  FREQUENCY 2ω
 2.87 

  MAGNITUDE, 3A  0.10 

3  DAMPING 3σ  -0.85 

  FREQUENCY 3ω  5.473 

 

To test the proposed method, 400 minutes of simulated data were 

generated with the damping changing from the initial quiescent values as 

indicated in Table 3-3. The threshold for the output was set to yield a 1% 

false alarm rate. The simulations were run for 60 second data windows, 

involving change detection of Mode 1, Mode 2 and Mode 3. The results 

are shown respectively in Figure 3-3, Figure 3-4, Figure 3-5 and Table 

3-4. 
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TABLE 3-3 DAMPING CHANGES 

DAMPING* 
MODE 

0-100MIN 100-200MINS 200-300MINS 300-400MINS 

1 -0.28 -0.1 -0.28 -0.28 

2 -0.58 -0.58 -0.1 -0.58 

3 -0.85 -0.85 -0.85 -0.1 
* BOLD highlights changes from quiescent state. 
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Figure 3-3 Mode 1 test statistic vs alarm threshold. 
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Figure 3-4 Mode 2 test statistic vs alarm threshold. 

TABLE 3-4 ALARMS (1% FAR) 

% OF ALARMS DURING TIME PERIOD 
MODE 

0-100MIN 100-200MINS 200-300MINS 300-400MINS 

1 0 78 2 2 

2 3 0 61 1 

3 2 1 4 4 

 

It can be seen in Figure 3-3 and Figure 3-4 that the stronger modes, Mode 

1 and 2, demonstrate high alarm rates in marginal damping situations. 

However from Figure 3-5 (and Table 3-4) the Mode 3 processing 

provided no significant indication that the damping had deteriorated to a 

marginally adequate condition. This is because the relative strength of the 

modes affects the performance of the optimal detector. The relative mode 

strengths in the quiescent state can be observed in Figure 3-5. It can be 
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seen that Mode 3 is extremely weak in comparison to the other modes. In 

fact it is hard to even see evidence of it in the diagram. In practice 

therefore longer windows need to be used for detecting changes in very 

weak modes. 
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Figure 3-5 Spectral plot of mode contributions within system frequency response. 

3.7 Real Data Analysis 
To enable modal characterisation, a priori estimates of the quasi-

stationary system parameters are required. That is, a long term estimator 

(LTE) is applied to a relatively long record (typically one hour) of quasi-

stationary data. Under normal operating conditions these estimates are 

updated once every half an hour. The modal deterioration algorithm, on 

the other hand, is applied continuously. The long term estimator method 

used in this paper is outlined in [13], and provides estimates of the 

measurement site transfer functions and modal parameters. From this the 

individual modal response estimates at each site can be extracted. 
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It should be noted that in this application the variance of the noise feed is 

not known and consequently the detector PDFs are initially formulated 

with the noise variance in (3.18) set to unity. To correctly de-normalise 

the PDF, a rescaling factor is necessary. The rescaling factor is obtained 

by simply taking K short-term N length test statistic measurements over 

the M length long-term analysis window and determining the mean value 

(where K = M/N). The ratio of the mean value of the measurements and 

the expected value of the theoretical PDF is the scaling factor estimate 

given by (3.21),   

 

( )

/ 2

1

1( ) ( ) (0) (0)
2ˆ .

N

ref obs ref obs
k

E PSD k PSD k PSD PSD
SF

xf zw dxη

=
∞

−∞

 
+ 

 =
∑

∫
                

(3.21) 

Once the appropriate re-scaling is performed and the threshold is 

established the detection process begins on all concurrent short term 

measurements until another threshold update (corresponding to an update 

set of quasi-stationary conditions) is instigated at a later time. 

Diagrammatically the complete short-term detection procedure for a 

single mode at one site is shown in Figure 3-6. For the purposes of this 

chapter the 30 minute updates only occurred if all modal damping 

estimates were below 10.139Nps−− (i.e. if all modes were in the 

acceptable to very good range as defined in Table 3-1). 
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Figure 3-6 Short Term Modal Detection Applied to Real Data. 
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3.8 Verification of Method 
The University of Adelaide MudpackScript data was again used in this 

verification stage. Case13 was used as the test case and the damping and 

frequency trajectories for this test case are shown in Figure 3-7 below. 

Long-term modal estimates from the LTE in [13] were determined for the 

data corresponding to the first 1.5hrs of the Case13 data. The resulting 

damping and frequency estimates are shown in Table 3-5. 
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Figure 3-7 Case13 Modal Damping and Frequency Trajectory. 

TABLE 3-5 LONG TERM MODAL PARAMETER ESTIMATES 

1.5 HR ANALYSIS 
MODE 

DAMPING 
 NPS-1 

FREQUENCY  
R/S 

1 -0.278 1.78 

2 -0.457 2.76 

3 -0.763 3.71 
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When comparing the known initial damping and frequency in Figure 3-7 

with the LTEs in Figure 3-7, it can be clearly seen that the LTE has 

performed adequately. The individual site frequency responses from the 

LT estimates are shown in Figure 3-8. It can be seen that the Brisbane 

response is strongest in Mode 1, with Mode 2 just distinguishable. The 

Sydney response is strongest in the Mode 2 while the Adelaide site is 

strongest in Mode 1 with a distinct Mode 3 contribution. 
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Figure 3-8 Spectral Estimate of Site Magnitude Response. 

As discussed previously, the individual modal contributions must be 

inferred (via partial fraction expansion) from each of the overall site 

responses. The contributions of the individual modes at each site can be 

seen in Figure 3-9 to Figure 3-11. 

 



Chapter 3 

 

 

87 

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

frequency, r/s

m
ag

ni
tu

de
 re

sp
on

se

Estimation of Individual Modal Contibution - Brisbane

 

 
Mode 1
Mode 2
Mode 3
Total

 
Figure 3-9 Estimates of Individual Modal Spectral Contributions - Brisbane (QNI). 
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Figure 3-10 Estimates of Individual Modal Spectral Contributions - Sydney (NSW). 
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Figure 3-11 Estimates of Individual Modal Spectral Contributions - Adelaide (SA). 

The results of the Mode 1 monitoring for each “measurement site” are 

shown in Figure 3-12 to Figure 3-14 respectively. 
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Figure 3-12 Individual Mode Monitoring - Mode 1 Brisbane. 
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Figure 3-13 Individual Mode Monitoring - Mode 1 Sydney. 
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Figure 3-14 Individual Mode Monitoring - Mode 1 Adelaide. 
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The results of the Mode 1 monitoring at the three sites shown in Figure 

3-12 to Figure 3-14 demonstrate the expected alarming of the 

deteriorating mode. The Brisbane and Adelaide sites test statistic 

measurement exhibits a very strong response to the poor damping 

condition; while the Sydney response is less pronounced due to the 

weaker contribution from Mode 1 within the Sydney frequency response. 

The Mode 1 contribution to the Sydney site response is seen in Figure 

3-14 and can be clearly seen to be quite small in relation to the Mode 2 

and 3 contributions. Importantly though, there is still strong ongoing 

alarming while the poor damping condition exists at Sydney and minimal 

false alarms when the condition does not exist. 

3.9 Real Data Analysis Results 
The real data used in this paper was obtained from voltage angle 

measurements taken at the four sites within the Australian power system 

(Brisbane, Sydney, Adelaide and Melbourne). The data was collected by 

Queensland University of Technology (QUT) in conjunction with the 

National Electricity Market Management Company Limited (NEMMCO). 

To obtain the quasi-stationary transfer functions, and consequently 

detection statistic PDFs, the LTE, described in [13], was applied. The 

results obtained from the LTE tended to indicate that there were no 

significant damping deteriorations anywhere in the data. The results of 

the short-term alarming procedure are displayed in Figure 3-15 to Figure 

3-18. Observation of the Mode 1 detection statistic measurements at the 

Brisbane and Sydney sites between 05:30 and 06:00hrs (Figure 3-15 and 

Figure 3-17) shows that Mode 1 rarely crosses the 99% FAR threshold 

during the 2 hour period.  
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Figure 3-15 Brisbane Mode 1 Test Statistic vs Time (1% FAR). 

Only in the Sydney measurements (Figure 3-17) are there any false 

alarms in this period. The reason for this is highlighted in Figure 3-19, 

where the spectrum of the magnitude of the voltage angles is shown for 

each measurement site. It can be seen clearly in Figure 3-19 that in all 

sites except Sydney, Mode 1 is the dominant mode, whilst in Sydney; 

Mode 2 is the dominant mode. Table 3-6 shows the percentage of false 

alarms for each mode at each site over the 24 hours. 

TABLE 3-6 FALSE ALARMS (1% FAR) 

% OF FALSE ALARMS OVER 24HRS AT SITE 
MODE 

BRISBANE SYDNEY MELBOURNE ADELAIDE 

1 0.96*     3.85    1.48*     1.03 * 

2 6.00     0.81*    14.74     11.62 

* Dominant mode 
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Figure 3-16 Brisbane Mode 2 Test Statistic vs Time (1% FAR). 

This table verifies the choice of the 1% FAR with false alarms occurring 

close to the theoretical level in relation to dominant mode detection. This 

provides confidence in the reliability of the detector in relation to 

dominant modes. However Mode 2 has spasmodic results with generally 

higher than desired FAR with the exception of the Sydney measurements 

where Mode 2 is the dominant mode. 
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Figure 3-17 Sydney Mode 1 Test Statistic vs Time (1% FAR). 
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Figure 3-19 Magnitude spectrum of voltage angles at different sites at 24:00hrs. 

The higher FAR of the non-dominant mode is due principally to two 

things. Firstly, the relative mode strength of Mode 2 to Mode 1 will not 

be stationary, and secondly, the close proximity of the Mode 2 frequency 

to the Mode 1 frequency. Both of these points will affect the estimating 

performance of the LTE. Hence the accuracy of the individual modal 

responses for weaker modes, and the associated reference and whitening 

filters derived from them, will be compromised.  

3.10  Discussion 
The simulations in Section 3.6 indicate that the method proposed in this 

chapter can effectively monitor individual modal changes in power 

systems. It does so with a predetermined level of confidence that sets the 

alarm at a desired false alarm rate.  The level of confidence is formulated 

through analytical means by way of providing a PDF function 

representing a detection statistic for the particular measurement site. The 

method was then verified in Section 3.8 by exploiting the MudpackScript 
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data. The method displayed clear and sudden alarming in response to a 

sudden detrimental damping change to one of the modes. These sections 

also demonstrated the limitation of the method in individually alarming 

modes that have weak spectral contributions to the overall frequency 

response at a given measurement site. 

Although not shown in this chapter, longer time windows exhibit a 

greater degree of confidence in a detected change, and can be used in 

conjunction with the shorter time windows to confirm or disaffirm a need 

for remedial action. 

In practice the monitoring is done for all modes concurrently. It should be 

noted that the methods outlined in this chapter only apply to multi-mode 

systems. In a single mode system the method proposed in Chapter 2 

would be more suitable to alarm the rapid detection of sudden 

deterioration modal damping. 

3.11 Conclusion 
It can be seen from the results that the proposed method can provide short 

term alarming of individual modal deterioration in large interconnected 

power systems. Importantly the alarming can be set to a desired level of 

confidence whereby false alarms occur within expected theoretical rates 

when the system is under quasi-stationary conditions. More specifically 

this method is aimed at alarming large adverse changes in modal damping 

rather than monitoring small drifts in damping values. The ability of the 

optimal detector is limited by the relative strength of the modes. However 

this limitation needs to be put into perspective - the stronger modes are 

what dominate the system response, and so the inability of the optimal 

detector to work well with very weak modes is not of paramount concern. 

To ratify alarms for weaker modes, longer time windows can be used in 

parallel with shorter time windows and a dynamic alarm response 

strategy can be formulated. Significantly this chapter provides a simple 
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method of modal deterioration detection by using the system angles in 

normal operation. The computational simplicity of the method is 

particularly appealing and as a consequence accommodates the desire for 

rapid detection. 
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Chapter 4 

4 A Kalman Filtering Approach to Rapidly 
Detecting Modal Changes 

4.1 Introduction 
In the previous two chapters, energy based statistical techniques targeting 

the detection of detrimental modal damping were presented. In this 

chapter a unique approach that applies Kalman filtering techniques to the 

problem of detecting modal changes in large interconnected power 

systems will be introduced. The short-term alarming procedures are 

developed based on the statistics of the power spectral density of the 

Kalman filter innovation. The new technique is tested on simulated data, 

verified using the MudpackScript data and then used to analyse real data 

obtained from power systems in normal operation. The particular 

advantage of the new method is its ability to detect changes very quickly. 

As mentioned earlier, conventional damping factor estimation techniques 

are limited by the requirements of long data records. Even though these 

estimation methods provide reliable means to monitor power systems 

under normal operating conditions they do not favourably accommodate 

the need for rapidly detecting sudden modal damping changes that may 

be harmful to power system stability and reliability. 
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This chapter seeks to again address this shortcoming by presenting 

another method which is able to provide indications of modal parameter 

change based on short data records.  

It is proposed that the change detection be performed using measurements 

from power systems in normal operation. Section 4.2 of this chapter will 

reiterate the stochastic model relating random ambient disturbance inputs 

in the power system, such as customer load changes, to the measured 

system output. Based on this model a Kalman filter is then set up to 

estimate the output arising from the disturbances. The innovation is then 

determined as the difference between the measured output and the 

estimated output. It is well known that the “innovation” from a Kalman 

filter is spectrally white as long as the assumed model parameters are 

valid [51] [50].  By monitoring the whiteness of the innovation, therefore, 

one can detect if there are any changes in the these parameters [50]. 

The stochastic power system model is presented in Section 4.2. The 

Kalman filter formalism is provided in Section 4.3. Simulated data results 

are given in Section 4.4. Verification using the MudpackScript data is 

undertaken in Section 4.5, while real data examples are considered in 

Section 4.6. Methods in tuning the Kalman filter are discussed in Section 

4.7. Sections 4.8 and 4.9 are devoted to discussion and conclusion 

respectively.  

4.2 Stochastic Power System Model  
Once again the experimentally motivated hypothesis from Ledwich and 

Palmer [11] is used as the initial point of reference for the power system 

model. In this model the power system itself is modelled as an IIR filter. 

Therefore the power system response to disturbances can be modelled as 

the output of an IIR filter driven by integrated white noise.  

The formulation of this model was defined earlier in Section 2.2. 

Equivalent principles still apply whereby the measured power system 
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output (e.g. power , angle, …) at site i is differentiated to provide the 

signal yi(n). As illustrated in Figure 4-1, this is the signal that would have 

been obtained if the white noise, w(n), had excited the power system.  

Consequently the power system model used in this chapter is the single 

measurement site, single excitation model depicted in Figure 4-1.  
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Figure 4-1 Equivalent model for the individual response of a power system to load 
changes. 

We now consider that the IIR power system filter is the “plant”. With this 

in mind we turn to the standard Kalman estimator. The general Kalman 

estimator for a plant driven by a control signal, u(n), perturbed with white 

noise, w(n), with (multi-dimensional) output measurements, y(n), 

corrupted by measurement noise, v(n), is depicted in Figure 4-2 [69]. A 

set of measurements from a set of sites will be driven from the load 

variations at a wide set of sites.  
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ŷ

 
Figure 4-2 General Kalman filter estimator. 

For our application the control signal, u(n), is zero and the plant  is only 

excited by the white noise, w(n). Generally the output of the Kalman filter 
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provides estimates of the plant output, ( )ˆ ny , and of the states, ( )ˆ nx . In 

this contribution chapter the “plant” represents a large interconnected 

power system. The current measured plant output, yv(n), corresponds to a 

vector of measurements from multiple recording sites. In practice the 

measurements are voltage angle measurements rather than power 

measurements because the potential for modal information extraction is 

greater for voltage signals than for power signals [11]. The optimal 

placement of these measurement sites within a large distributed power 

system is discussed in [23].  The vector ( )v n  represents noise 

measurements from each site. In a practical application the plant output 

measurement vector, ( )v ny , can be recorded at a GPS synchronised wide 

area monitoring centre [22, 23].  In our application the state estimates 

themselves are not used, only the innovation.  For the model in Figure 4-2 

the Kalman estimator of ( )ˆ ny  is optimal [70], as is the estimator of 

( )ˆ−vy y . The latter “innovation” is well known to be white when the 

signal model presented in Figure 4-2 is valid and stationary [50, 51]. The 

whiteness of the innovation, then, is a convenient means to monitor any 

sudden changes which are not accounted for in the model depicted in 

Figure 4-2.  

In a power system operating under stationary conditions, the innovation 

will be white and will therefore have a flat Power Spectral Density (PSD). 

On the other hand, if there is a sudden change in the power system 

response (say a sudden detrimental damping change) the spectrum of the 

innovation will highlight this change with a peak around the modal 

frequency in question. Therefore with a suitable threshold set, large 

undesirable damping changes can be readily detected. A suitable 

threshold is one which is set to give a False Alarm Rate (FAR). If say the 

FAR is set to 1% then when an alarm occurs, one knows that it is a 

genuine alarm with 99% confidence. In choosing the FAR it should be 
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again highlighted that the aim of this proposed method is to detect sudden 

large detrimental changes and not to track small drifts in system 

parameters. As a result, thresholds should be set to minimise false alarms, 

whilst still providing the required rapid alarming of sudden system 

deterioration. The innovation can also be used to detect a frequency shift 

(as opposed to a damping change). In this scenario the innovation’s PSD 

will display a peak around the new modal frequency and a trough around 

the original modal frequency.  

The formula for the Kalman filter estimation and the derivation of the 

PSD threshold will be examined in the next section. 

4.3 The Kalman Application in Power System 
Analysis 

4.3.1 Kalman formulation 

In the power system model under consideration the state and output 

equations are:  

( ) ( ) ( )1n n w n+ = +x Ax G    (4.1)  

( ) ( ) ( ) ( )v n n w n n= + +y Cx D v   (4.2) 

where A, G, C and D denote the usual state and output equation matrices 

[69]. The noise processes, w(n) and v(n), are zero mean Gaussian white 

noise sequences with covariances given by: 

( ) ( ){ }TE w n w n Q=     (4.3) 

( ) ( ){ }TE n n =v v R     (4.4) 

( ) ( ){ }TE w n n =v N     (4.5) 
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where { }E L  denotes expected value. It will be assumed hereafter that 

w(n) and v(n) are uncorrelated. It will also be assumed that the plant is 

excited by a common white noise source, w(n), however the plant 

response to such excitation is measured at different geographic locations. 

Hence the measurement noise, v(n), is a vector that is congruent to the 

wide-area monitoring of inter-area oscillations introduced in Section 1.2. 

The load variations become close to Gaussian when there are a large 

number of independent customer loads [11]. 

In “normal” stationary operation the optimal Kalman state estimator is 

given by the following set of discrete equations [55]:  

( ) ( ) ( )ˆ ˆ1/ /n n n n w n+ = +x Ax G   (4.6) 

( ) ( ) ( )ˆ ˆ/ / 1n n n n k= − + γx x M   (4.7) 

( ) ( )ˆ ˆ / 1n n n= −y Cx     (4.8) 

( ) ( ) ( )ˆvn n n= −γ y y     (4.9) 

where ( )nγ  is the white zero-mean Gaussian “innovation” sequence with 

units rad/sec. The gain matrix, M, is calculated from the following 

equations: 

( ) ( )1/ / 'n n n n+ = +P AP A Q   (4.10) 

( )/ 1n n '= − +V CP C R    (4.11) 

( ) 1/ 1 Tn n −= −M P C V    (4.12) 

( ) ( ) ( )/ / 1 / 1n n n n n n= − − −P P MCP  (4.13) 
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where ( )/i jP  is the estimation error covariance of the state estimates 

vector, ( )ˆ /i jx , and V is the covariance of the innovation vector, ( )nγ . 

The gain matrix, M, is derived by solving the discrete time Ricatti 

equations [71].  

4.3.2 State space representation of the power system 
model 

To generate the matrices A, G, C and D for the power system model in 

Figure 4-1, the transfer function of h(n) is first identified. This enables 

subsequent formulation of the state space matrices into controllable 

canonical form. To illustrate the process a power system example 

comprising a two mode system with single site measurement and 

disturbance is considered.  

The impulse response at the site is assumed to be: 

( ) ( ) ( )1 2h t h t h t= +    (4.14) 

where 

( ) ( )sinit
i i ih t Ae tσ ω−=   i = 1, 2…  (4.15) 

iσ is the modal damping, iω  is the modal frequency and iA is the 

magnitude respectively of the ith mode. 

Taking the Laplace transform of (4.14) yields the continuous time power 

system transfer function: 

( )
( ) ( )

1 1 2 2
2 22 2

1 1 2 2

.A AH s
s s

ω ω
σ ω σ ω

= +
+ + + +

 (4.16) 

If the sampling period is T, then the discrete time transfer function for the 

site is: 
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( ) ( )
( )

( )
( )

1

1 1

2

2 2

1
1 1

21 2
1

1
2 2

21 2
2

1 2 3
1 2 3
1 2 3 4

1 2 3 4

 sin
1 2 cos

 sin
1 2 cos

1

T

T T

T

T T

A ze T z
H z

e T z e z

A ze T z
e T z e z

b z b z b z
a z a z a z a z

σ

σ σ

σ

σ σ

ω
ω

ω
ω

− −

− −− −

− −

− −− −

− − −

− − − −

=
− +

+
− +

+ +
=

+ + + +

  (4.17) 

where the coefficients, { }1 2 3 1 2 3 4, , , , , ,b b b a a a a , are given by: 

( ) ( )1 1
1 1 1 2 1 sin  sinT Tb A e T A e Tσ σω ω− −= +  (4.18) 

( ) ( ) ( ) ( ) ( )( )1 2
2 1 1 2 2 2 12  sin cos  sin cosTb e A T T A T Tσ σ ω ω ω ω− += − +  (4.19) 

( ) ( ) ( ) ( )( )1 2 1 22 2
3 1 1 2 2 sin  sinT Tb A e T A e Tσ σ σ σω ω− + − += +  (4.20) 

( ) ( )( )1 2
1 1 22 cos cosT Ta e T e Tσ σω ω− −= − +   (4.21) 

( ) ( ) ( )1 22 12 2
2 1 24 cos cosTT Ta e e T T eσ σσ σω ω− +− −= + +   (4.22) 

( ) ( ) ( ) ( )( )1 2 1 22 2
3 1 22 cos cosT Ta e T e Tσ σ σ σω ω− + − += − +  (4.23) 

( )1 22
4 .Ta e σ σ− +=  (4.24) 

 

From the transfer function, the state space matrices in controllable 

canonical form can be determined [72]: 

1 2 3 4

1 0 0 0
0 1 0 0
0 0 1 0

a a a a− − − − 
 
 =
 
 
 

A   (4.25) 



Chapter 4 

 

 

105 

1
0
0
0

 
 
 =
 
 
 

G     (4.26) 

[ ]1 2 3 0b b b=C    (4.27) 

[ ]0 .=D     (4.28) 

4.3.3 Kalman Solution  

With the discrete state space plant defined in (4.25)-(4.28) the Kalman 

solution depicted in Figure 4-2 can be realised. Accordingly, the Kalman 

estimator equations, (4.6)-(4.9) are evaluated and then the normalised 

innovation is defined: 

( ) ( ),n n K nγ = γ    (4.29) 

where K is the normalisation gain that normalises the innovation to unity 

variance. Therefore the normalisation gain is the square root of the 

inverse power of the innovation window. If the normalised innovation 

sequence results from a significantly different system than the one 

considered, then the concentration of spectral energy around the mode of 

significant change will still demonstrate a strong threshold crossing. This 

will be demonstrated Section 4.6. 

It must be noted that for the Kalman analysis to operate, the power 

system model and noise data must satisfy the limitations outlined in [69] 

whereby the plant and noise data must satisfy the following relationships:  

 The plant transfer function state space matrices, (4.30) must be 

detectable.  

 The measurement noise variance, (4.31), must be non-zero.  
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 The left hand side (LHS) of (4.32), must be non-zero.  

 And the matrix defined by the LHS of (4.33) must have no 

uncontrollable modes on the unit circle [69]. 

( ), ,C A     (4.30) 

0,>R      (4.31) 

1 0,TQ − ≥- NR N    (4.32) 

( )1 1, ,T− −A - NR C Q- NR N   (4.33)  

where [69]: 

,T=Q GQG     (4.34) 

,T T T= + + +R R DN N D DQD  (4.35) 

( )T= +N G QD N    (4.36) 

4.3.4 Detection using the Innovation 

Under stationary operating conditions the normalised innovation defined 

in (4.29) is white and Gaussian  [51] [50] with zero mean and unity 

variance. As a result, the innovation’s power spectral density (PSD) will 

be flat. Let us assume that the observation window has N samples and 

that the sampled PSD is created by taking the squared magnitude of the 

Discrete Fourier Transform (DFT) of ( )n nγ , i.e.  

( ) ( ){ } 2

d nk nγΛ = ℑ   k=0, 1, …N-1, (4.37) 

where { }  dℑ  is the discrete Fourier transform (DFT). It is well known 

that the samples of the DFT of white noise are chi-squared with two 
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degrees of freedom (also known as the exponential distribution) [14, 15, 

73], i.e. 

( ){ } ( ) ,k Nf k Ne−ΛΛ =     (4.38) 

where { }f x  denotes the probability density function of x [74].  

A suitable threshold can be set within the PSD at a theoretically 

determined confidence level found through the cumulative sum of the 

area under the Probability Density Function (PDF) (4.38). A 99% 

Confidence Interval (CI), say, would be determined by solving (4.39) for 

CI: 

{ }
0

0.99 .
CI

f dΛ= Λ Λ∫     (4.39) 

For example, using (4.39), a 60 second analysis window sampled at 10 

Hz will yield a 99% Confidence Interval (CI) threshold of 0.0115. This 

figure is the normalised PSD ensemble threshold in watts/Hz.  

As long as the system remains stationary the normalised innovation PSD 

is expected to remain white and reside within the threshold bounds at a 

given level of confidence. If the system experiences a large detrimental 

deviation from the stationary system model defined in (4.1)-(4.2) then a 

dominant spike is likely to appear above the threshold in the innovation 

PSD. This can be linked to an alarm in practice.  

It should be noted here that the motivation behind the choice of the 60 

second analysis window was not to be compliant with settings of 

protective devices, but to demonstrate the effectiveness of the technique 

in providing rapid information. In practice, if the damping is deteriorating 

there would not normally be an automatic protection relay to trip a line. 

The response would be to ramp back generator settings or to trip an 

offending item of plant if it could be identified. Hence the choice of using 
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a 60 second analysis window came about through discussions with the 

National Electricity Marketing Management Company (NEMMCO), 

Australia. These discussions focused more on the nature of the alarm to 

the operator and the requirement to provide rapidly available information 

as outlined in [65]. 

The following section will demonstrate the detection process with both 

simulated and real data. 

4.4 Simulated Data Results 
Before proceeding any further it is beneficial to qualify what constitutes a 

major deterioration in damping. Table 4-1 provides an assessment of 

damping performance as provided by the National Electricity Marketing 

Management Company (NEMMCO) Australia [31].  

Based on the criteria in Table 4-1, a change in damping will be 

considered unacceptable and detrimental if damping moves into the 

inadequate region (i.e. damping is worse than 0.07s-1). 

The simulations in this section pertain to a two mode, single measurement 

system as per equation (4.14). The simulation modal parameters used in 

this section represent typical modal parameters that may be found within 

the Australian power system. Hence initial parameters for Modes 1 and 2 

(which represent a power system in quasi-stationary operation) were set 

respectively to:  

1
1 1 1:  1,  0.25  and 0.25A s f Hzσ −= = =Mode 1  

1
2 2 12 :  0.2,  0.4  and 0.6 .A s f Hzσ −= = =Mode  

All simulations were run on 5 minute records. In all simulations the Mode 

2 parameters remained constant over the duration of the 5 minute record, 

whereas the Mode 1 parameters were changed after an arbitrarily chosen 

two minutes. Three independent simulations (Type 1, Type 2 and Type 3) 



Chapter 4 

 

 

109 

were performed. The reason for undertaking three different simulations 

will become apparent when reviewing the simulation results. In 

simulation Type 1 a sudden detrimental change in damping was 

introduced to Mode 1 after two minutes, while the frequency remained 

constant. 

TABLE 4-1 QUALITATIVE REFERENCE TO DAMPING PERFORMANCE  

DAMPING /Np s  QUALITATIVE DESCRIPTION 

0σ <  UNSTABLE 

0 0.05σ< <  VERY INADEQUATE (VERY POOR) 

0.05 0.07σ< <  INADEQUATE (POOR) 

0.07 0.139σ< <  MARGINALLY ADEQUATE 

0.139 0.2σ< <  ACCEPTABLE (GOOD) 

0.2σ >  HIGHLY ACCEPTABLE  

(VERY GOOD) 

 

In simulation Type 2 a sudden shift in modal frequency was introduced to 

Mode 1 after two minutes, while the damping was held constant. In 

simulation Type 3 a sudden shift in both modal frequency and a 

detrimental change in damping was introduced to Mode 1 after two 

minutes.  These changes are quantified in Table 4-2. The detection 

process applied a “running” 60 second analysis window to the simulated 

data.  

The PSD of the normalised innovation, as specified in (4.38), was then 

determined and the PSD was compared directly to the 99% CI threshold. 

The 99% CI threshold was chosen as an appropriate threshold based on 

previous work which examined suitable rapid detection of sudden large 
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changes within a stochastic system [73-76]. In this previous work, 

detailed in the earlier chapters of this thesis, it was shown that a 99% CI 

was capable of practically desirable detection [77], whilst minimising 

false alarms inherent within a stochastically excited system. 

The measurement noise covariance matrix (4.4) was set to:  

( ) ( ){ } [ ]0.01 ,TE n n =v v    (4.40) 

as the measurement noise in real power systems transducers is 

comparatively small with respect to the excitation covariance, Q [77]. For 

the simulations, the excitation covariance, Q, was arbitrarily set to unity 

for simplicity of analysis. The covariance, N in (4.5), is set to zero.   

The results are outlined in the following subsections. 

TABLE 4-2 DAMPING AND FREQUENCY CHANGES TO MODE 1 

SIMULATION DAMPING* FREQUENCY* 

TYPE 0-2MIN 2-5MINS 0-2MIN 2-5MINS 

1 0.25 0.07 0.25HZ 0.25HZ 

0.25 0.25 0.25HZ 0.32HZ 2 

3 0.25 0.07 0.25HZ 0.32HZ 
* BOLD highlights changes from quiescent state. 
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4.4.1 Simulation Type 1- damping change. 

One simulation run of the innovation PSD is shown in Figure 4-3 for a) 

the 60 second interval prior to the damping change, and b) the 60 second 

interval subsequent to the damping change. 
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Figure 4-3 Innovation PSD of:  a) the 60 second interval prior to the damping 

change, and b) the 60 second interval subsequent to the damping change. 

 

The high spike around 0.25 Hz indicates a change in the damping of the 

mode centred at this frequency. 
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4.4.2 Simulation Type 2- frequency change 

One simulation run of the innovation PSD is shown in Figure 4-4 for a) 

the 60 second interval prior to the frequency shift, and b) the 60 second 

interval subsequent to the frequency shift. 
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Figure 4-4 Innovation PSD of:  a) the 60 second interval prior to the frequency 

shift, and b) the 60 second interval subsequent to the frequency shift. 

In this result, the high spike around 0.32 Hz indicates a change in 

frequency. 
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4.4.3 Simulation Type 3- damping and frequency change 

One simulation run of the innovation PSD is shown in Figure 4-5 for a) 

the 60 second interval prior to the damping change, and b) the 60 second 

interval subsequent to the damping and frequency change. 

Note the high spike around 0.32 Hz indicates a change in frequency. It 

should also be noted that there is no means to distinguish if there is also a 

damping change; however simulations consistently demonstrated larger 

peaks when associated with detrimental damping change and frequency 

shift of a mode. Hence the simulations highlight the ability of this method 

to detect both a sudden detrimental change in damping as well as a shift 

in modal frequency. 

Similar results were also obtained in the three tests when analysing the 

detector for changes in the weaker Mode 2, but these results are not 

shown here. 
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Figure 4-5 Innovation PSD of:  a) the 60 second interval prior to the damping 

change, and b) the 60 second interval subsequent to the damping and frequency 
change. 
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Note that this chapter has focused on examining the spectrum of the 

Kalman innovation so as to detect significant modal changes within a 

power system. It would also be possible to monitor for changes by 

examining a waterfall PSD plot of the power system output. The latter has 

a number of disadvantages, however. Firstly, it is well known that PSD 

estimation introduces spectral smearing due to finite duration (i.e. 

windowing) effects. This spectral smearing has very little impact on 

spectrally white signals (such as Kalman innovations), but can have a 

large impact on “peaky” spectra (such as power system output PSDs). 

Secondly, the Kalman innovation is a well studied process and is well 

characterised statistically. It therefore lends itself well to thresholding and 

subsequent alarming. The power system output PSD (because it is 

burdened by finite duration artifacts) is much more difficult to 

characterise statistically. 

4.4.4 Statistics of results 

To gauge the reliability of the detector; statistics for 1000 simulation runs 

were examined. Table 4-3 shows the detection rate in the first 60 second 

window after the detrimental change has occurred, given a false alarm 

rate (FAR) of 0.1%.  

TABLE 4-3 ALARMS (0.1% FAR) 

DETECTION RATE SIMULATION 

TYPE % OF ALARMS CORRECTLY REGISTERED 

1 81.8% 

2 82.5% 

3 90.6% 

 



Chapter 4 

 

 

115 

4.5 Verification of the Kalman Method 
Again the MudpackScript Case13 data is used for verification of the new 

method. In this analysis 150 minutes of the Case13 QNI data was used. 

To obtain the long-term system estimates the 1.75 hours of quasi-

stationary data was used. After the long-term estimates are established the 

subsequent data was processed to see if any alarms occur (See Figure 

4-6).  

In Figure 4-6(a) the innovation at 107 minutes is examined. This section 

of data is expected to exhibit quasi-stationary characteristics as it is prior 

to the damping change at 120mins. The innovation spectrum shown in 

Figure 4-6(b) demonstrates the expected “white” spectrum of a system 

that has not undergone any detrimental changes. 
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Figure 4-6 Analysis of Normalised Innovation prior to sudden deteriorating 

damping at 120mins. 
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Figure 4-7 Analysis of normalised innovation in the 60 seconds after the 

deteriorating damping at 121mins. 

In Figure 4-7(a) the analysis examines the first 60 seconds of the change 

at 120 mins. In Figure 4-7(b) the large spectral spike at 0.3Hz can be seen 

clearly which indicates the detrimental change of the mode centred 

around 0.3Hz. This corresponds to the expected change of the QNI mode 

at 2 hrs as shown earlier in Figure 2-5. The new method has thus 

performed as expected on the MudpackScript simulated data. 

The Kalman method of modal analysis will now be applied to real data in 

the following section. 

4.6 Application to Real Data 
Data was obtained from the Australian power system, comprising voltage 

angle measurements at the Adelaide, Melbourne and Sydney 

measurement sites from 22:00 on 09/04/2004 to 03:05 on 10/04/2004. As 

mentioned earlier, voltage angle measurements were used rather than 

power signals because the potential for modal information extraction is 
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greater than when using power signals [11]. It is generally understood 

that inter-area modes have frequencies in the range 0.1 to 0.8 Hz and so 

this will be the region of focus in the PSD [24].  

To formulate the state space model and consequently the system Kalman 

estimator, a knowledge (or at least an accurate estimate) of the power 

system transfer function must be available.  Accordingly, for the work 

reported in this section, a long term estimator (LTE) was applied to 

estimate this transfer function [13]. This LTE was determined using a 45 

minute window. Short-term (change) detection was then continuously 

applied to the PSD of the Kalman innovation. 

The real data analysis was conducted in two parts. Part I closely 

examined 305 minutes of the Melbourne measurement data difference 

from the centre of area of the connected system (called Melbourne-COA) 

and Part II briefly analysed the data collected at the Sydney and Adelaide 

sites. Part II also examines the opportunity for combining the multi-site 

innovation power spectrum data to enhance the detector performance.  

4.6.1 Part I: Analysis of the Melbourne Data 

The LTE was determined from the data between 120-165 minutes after 

the start of the measurement record. The LTE quasi-stationary modal 

estimates were obtained using the technique in [13] and are listed in 

Table 4-4. The LTE also provides an estimate of the measurement site 

transfer function in Laplace form. As a result an estimate of the system 

quasi-stationary frequency response for Melbourne-COA can be observed 

in Figure 4-8. In Figure 4-8 the Mode 1 peak is quite apparent at 0.33 Hz, 

while the Mode 2 peak (estimated to be at 0.59Hz) is harder to distinguish 

due to the relatively heavy modal damping.  
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TABLE 4-4 DAMPING AND FREQUENCY LONG TERM ESTIMATES OVER 120-
165 MINS 

MODE EIGENVALUES DAMPING FREQUENCY 
HZ 

DAMPING 
RATIO % 

1 0.2913 2.0735j− ±  0.2913 0.33 13.91 

2 1.0083 3.7071j− ±  1.0083 0.59 26.25 
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Figure 4-8 Melbourne frequency response estimate from LTE at 165 minutes. 

Once the long term estimate of system characteristics was established, the 

remaining 140 minutes were examined in 1 minute intervals for any 

sudden detrimental changes to system modes.  

To demonstrate the significant information the innovation sequence 

contains, one only has to compare the differentiated angle measurements 

with the normalised innovation (4.29) obtained after application of the 

Kalman estimator, shown in Figure 4-9. The comparison appears to 

support the result noted by Kailath in [51] – namely that the Kalman filter 
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innovation sequence contains the same information as the system output 

sequence, but in a less correlated form.  

It is apparent from inspection of Figure 4-9 that the system output and the 

innovation both demonstrate a deviation from a quasi-stationary operation 

within the 197-201 minute interval. To lend some numerical support to 

this visual inspection a 60 second analysis window was applied to the 

innovation PSD before and during the 197-201 minute interval. The 

results of the analysis are provided in Figure 4-10 to Figure 4-12. The 

innovation is shown in Figure 4-10(a) with the 196-197 minute interval 

marked off by two vertical lines. The spectrum of the 196-197 minute 

segment of innovation is shown in Figure 4-10(b). To account for the fact 

that with real data, there is less certainty than there was with simulated 

data, a different threshold level will be used for the detection. 

Accordingly, the 99.999% CI threshold is shown as a dashed horizontal 

line. Even though such a threshold could be regarded as high, the main 

focus is to detect only large detrimental changes, and minimise false 

alarms. In the single site analysis, the data does exhibit a wide variance 

and hence a high threshold is required to minimise the false alarms. 

However in the following section, this issue is addressed and the ability to 

have more acceptable threshold CI’s is presented along with a measured 

number of false alarms.  

In examining Figure 4-10, no part of the spectrum crosses the threshold. 

Figure 4-11 depicts the innovation segment and associated spectrum 

corresponding to the 197-198 minute segment. For this segment the 

innovation spectrum crosses the threshold. Moreover, the threshold is 

crossed at the 0.59Hz frequency position, indicating a loss of damping for 

Mode 2. Figure 4-12 shows the innovation sequence and associated 

spectrum corresponding to the 198-199 minute segment. For this segment 

the innovation spectrum crosses the threshold in an even more 

pronounced way than it did in Figure 4-11(b). Again, the threshold is 
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crossed at the 0.59Hz frequency position, indicating a damping change 

for Mode 2.  

Further analysis was performed which showed that the loss of damping 

was temporary. By the 201st minute of the data record, the modes re-set 

to their original characteristics. 
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Figure 4-9 Comparison of (a) system output and (b) normalised innovation. 
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Figure 4-10 (a) Innovation sequence γ(n), (b) Innovation PSD at 196-197 mins.  
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Figure 4-11 (a) Innovation sequence γ(n), (b) Innovation PSD at 197-198 mins. 
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Figure 4-12 (a) Innovation sequence γ(n), (b) Innovation PSD at 198-199 mins. 

4.6.2 Part II: Combining multi-site data for enhanced SNR 
and detection. 

Similar data analysis was conducted for the other two measurement sites 

in Sydney and Adelaide (with COA correction). A comparison of the 

results for the 196-197 and the 198-199 minute time-frame can be seen in 

Figure 4-13(a) and Figure 4-14(a) respectively. Figure 4-13(a) 

demonstrates a spectrum for Sydney and Adelaide which does not cross 

the threshold prior to the event. Figure 4-14(a) shows a detection of 

damping deterioration centred at 0.59 Hz at both the Sydney and 

Adelaide sites. These results confirm the detection registered at the 

Melbourne site for the same analysis window. 

Within these plots all sites exhibit similar responses to detection of 

damping deterioration. Therefore a combination of the innovation 

spectrum was examined to assess opportunities for an enhanced detector. 
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The combined spectrum was obtained by adding the complex innovation 

spectra from all three sites. 

The threshold for the combined innovation spectrum will need to be set 

differently to that for the individual innovation spectra. Ideally if the 

individual normalised innovation spectra are all uncorrelated with one 

another then the samples of the combined innovation spectrum will again 

have a Chi-squared Probability Density Function (PDF) with 2 degrees of 

freedom, 2
2χ , but with three times the variance (assuming the individual 

normalised innovations have unity variance) [68]. In the case of the 

innovation spectra from the multi-site data as examined in this paper, the 

innovation spectra will not be strictly independent, as the power system is 

interconnected. Nonetheless, empirical experiments have indicated that a 
2
2χ  distribution, with variance 23 ,σ is a reasonably accurate way to 

model the PDF. 

In the general case where X measurement sites are to be combined, the 

samples of the combined normalised innovation spectrum would have a 

Chi-squared PDF with 2 degrees of freedom [15, 76], and variance 2Xσ . 

Thus using (4.29) the generalised ensemble frequency PDF for a 

combination of X, N-point innovation spectra would be: 

 ( ){ } ( )
.

Nk XNf k e
X

−Λ
Λ =    (4.41) 

Hence for three measurement sites, X = 3, and (4.41) simplifies to: 

( ){ } ( ) 3 ,
3

NkNf k e
−Λ

Λ =     (4.42) 

where (4.42) is the PDF of the three combined spectra assuming the 

power system is quasi-stationary and the resulting innovation, white. 

The resulting combined innovation spectra prior to and during the 

disturbance are shown in Figure 4-14(b) and Figure 4-14(b) respectively. 
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It is important to note two significant outcomes attributed to the 

combining of the normalised innovation spectra. First, the combination of 

the three sites has led to an improvement in the Signal to Noise Ratio 

(SNR) for detectable signals. The SNR analysis results are shown in 

Table 4-5. The improved Signal to Noise Ratios exhibit comparable 

values to an ideal theoretical improvement of 4.77 dB (4.43), whereby an 

ideal theoretical improvement is one that would be expected if three 

identical deterministic signals, with independent, equal variance, 

Gaussian white noise were spectrally combined. Hence the resulting 

theoretical expected improvement would be: 

 ( )1010log 3
4.77 .

improvement sitesSNR
dB

=

=
 (4.43) 

In practice the responses from the three sites are not perfectly 

independent and so one would expect less improvement than that 

predicted by (4.43). This is observed in Table 4-5. 

The other significant point to highlight about the combined spectra is the 

reduced spectral variance. This result has enabled the ensemble spectral 

threshold to be reduced to a more desirable 99.9% FAR. Analysis of false 

alarms, from DC-1Hz, over the complete data set displayed an acceptable 

0.077% of false alarms (as compared to the predicted 0.1%), providing 

confidence in the analytically derived ensemble PDF defined in (4.42). 
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Figure 4-13 Normalised (a) Individual innovation PSDs for Sydney, Melbourne and 
Adelaide (b) Combination PSD at 196-197 mins. The new threshold corresponding 

to a 99.9% FAR. 
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Figure 4-14 Normalised (a) Individual PSD at 198-199 mins (b) Combination PSD 

at 198-199 mins showing new threshold for CI of 99.9% FAR. 
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TABLE 4-5 SNR IMPROVEMENT THROUGH COMBINATION OF SITE 
ANALYSIS 

ANALYSIS WINDOW DURING ALARM SIGNAL (MINUTES) 
PARAMETER 

197-198 198-199 199-200 200-201 

AVERAGE 
SINGLE SITE 
SNR (DB) 

9.60 7.60 10.82 11.64 

COMBINED 
SNR (DB) 

13.98 12.00 15.27 15.80 

SNR 
IMPROVEMENT 

(DB) 

4.38 4.40 4.45 4.16 

 

4.7 Guidance in tuning the Kalman Filter 
When dealing with real data applications of the Kalman Filter, the filter 

requires adequate tuning to achieve the desired optimal estimator. In 

Section IV, the values for Q and R are known a priori and can therefore 

be easily set; that is, the Kalman filter can be easily tuned. In real 

applications, however, such a priori knowledge of the error covariance 

matrices may not be available. Knowledge of the measurement transducer 

performance (i.e.: the measurement noise), however, could be obtained 

through testing. Even so, a method of tuning is still required to allow for 

changes over time. In addressing this issue, [77] notes that the selection 

of the error covariance Q is particularly important, such that .Q >>R  

This would ensure the adaptive capability of the Kalman filter.  In this 

thesis, it is also recognised that the measurement error covariance will be 

small; hence the determination of appropriate values in this analysis was 

obtained empirically, by first setting Q to unity, and then adjusting R so 

that the pseudo-stationary innovation result was close to white. Even 
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though the original system excitation covariance, Q, is not known, the 

subsequent normalisation of the innovation in (4.29) negates any effect of 

the unity assumption. Further techniques for tuning the filter can be 

derived from the literature (see [78] for example). 

4.8 Discussion on real data analysis 
From the time record it would appear that the disturbance to quasi-

stationary operation occurred at around 197.75 minutes. This disturbance 

manifested clearly in the innovation spectrum of the 197-198 minute 

segment, even though only ¼ of this segment corresponded to the 

“changed” operating conditions. That is, detection of a change was 

achieved very quickly by the innovation spectrum thresholding, and the 

change appeared to be detected at the correct frequency (i.e. at the centre 

frequency of Mode 2). The detection occurred in less than a minute. This 

is in contrast to conventional estimation of damping, which typically only 

yields useful results after about half an hour. This provides support for the 

contention that the PSD of the Kalman innovation is an effective means 

for rapidly detecting modal changes and for identifying the nature of the 

modal changes that have occurred. In providing multi-site measurements 

for the enhanced Kalman detector, the large interconnected power system 

would require ongoing wide-area observation to ensure secure and 

reliable operations. To meet these requirements many wide-area 

monitoring methodologies have been proposed and established [18-20] as 

outlined earlier. One of the most well accepted approaches is to monitor 

the power system at various locations within the distribution network and 

to employ Global Positioning System (GPS) information to synchronise 

the information acquired [21, 22]. With this approach, the positioning of 

the measurement locations in the network is an important issue which is 

discussed in [23]. 
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4.9 Conclusion 
The Kalman estimator is an optimal linear estimator and has proved 

effective for rapidly detecting modal changes in both the simulated and 

real world power system scenarios considered. The new detection method 

has demonstrated an ability to not only rapidly detect large changes to 

power system modes, but has also been able to identify the mode which 

has changed. Multi-site measurements can be also used to provide greater 

confidence in the detection alarming. This has significant implications for 

power utility intervention strategies. Importantly, the method is 

computationally efficient and can easily be implemented in real-time. 
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Chapter 5 

5 A new class of multi-linear functions for 
polynomial phase signal analysis 

5.1 Introduction 
This chapter introduces a new class of multi-linear functions which can 

be used for estimating/detecting changes to frequency in power systems. 

The new class of functions is based on modelling the frequency changes 

as arbitrary polynomial functions of time. The class incorporates a 

number of existing functions that include the Higher order Ambiguity 

Functions (HAFs) [79, 80], the Polynomial Wigner-Ville Distributions 

(PWVDs) [81] and the Higher order Phase (HP) functions [58]. Within 

this chapter the new class will be presented and the link between existing 

functions within the class will be explored. Subsequently the class 

formalism is used to deduce a new function. This new function is 

particularly suited to the analysis of a 4th order polynomial phase signal. 

The chapter presents a statistical analysis of this new class member and 

reveals that it outperforms all existing methods of comparable 

computational complexity. The new class member is applied to the 

analysis of both simulated and real power system data. 

In the past 15 years there has been a plethora of research contributions 

related to the analysis of time-varying frequency signals. A common 

modelling approach within this research field is to regard the time-

varying signal as one with polynomial phase (and therefore a frequency 

trajectory which is a polynomial function of time). Then the problem of 
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estimating the frequency trajectory reduces to a problem of estimating the 

polynomial phase parameters. This is the approach adopted within this 

chapter. Hence it will be assumed that the noise-free signal component, 

( )sz n , is a discrete-time polynomial phase signal (PPS) defined by: 

 

( ) ( )
0

j n
sz n b e φ= ,      

1 1
2 2

N Nn− −
− ≤ ≤ , (5.1)  

where   

( )
0

.
P

p
p

p
n a nφ

=
= ∑      (5.2) 

In (5.1) and (5.2), the generalised expressions for the time-varying signal 

has P as the order of the polynomial phase, and { }0 0 1 2, , , , , Pb a a a aK  as 

the unknown parameters, while N is an odd integer and the sampling rate 

is (without loss of generality) unity. Initially the amplitude, b0, will be 

assumed to be constant. This assumption, however, can be relaxed later to 

one of a slowly varying amplitude (with respect to the phase). To avoid 

estimate ambiguities due to the cyclic nature of the spectra of digitised 

signals it is also assumed that  the polynomial coefficients are bounded by 

(5.3) [79], [80]. 

  

 

 ( )1
, 1,2, , .

!
p p

a p P
Np
p

π
−

≤ =
 
 
 

K             (5.3) 
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The observed signal component, ( )rz n , is modelled as the noise-free 

component, ( )sz n , added to complex, white, Gaussian noise, ( )wz n , of 

variance, 2σ :  

( ) ( ) ( ).r s wz n z n z n= +    (5.4) 

In many cases, Maximum Likelihood (ML) estimation of the 

{ }0 0 1 2, , , , , Pb a a a aK  parameter set is computationally prohibitive. 

Therefore in a quest to obtain computationally efficient parameter 

estimates with acceptable mean squared errors, researchers have devised 

alternative methods based on multi-linear functions. Examples of 

alternative research approaches include the Higher order Ambiguity 

Function (HAF) method [79],  [80], the Polynomial Wigner-Ville 

distribution (PWVD) method [81] and the Higher order Phase (HP) 

function method [58]. The HAF, PWVD and HP methods achieve 

computational efficiency by requiring only one-dimensional 

maximisations. However, despite achieving computational efficiency, 

these methods are limited by the SNR threshold at which they can 

productively operate. The new class of multi-linear functions is partly 

motivated by this SNR threshold limitation. 

This chapter will introduce a new class of multi-linear functions which 

subsumes a number of previously defined functions (defined in [56, 58, 

79-81]). The new class, for example, incorporates the HAFs, the PWVDs 

and the HP functions; however the new class also develops a framework 

for the creation of new class members. Within this chapter, one such new 

member is introduced and applied to the problem of polynomial phase 

parameter estimation. This new class member is seen to have statistically 

superior performance to all previously known multi-linear functions. 

The formulation of the new class is presented in Section 5.2. Section 5.2 

also establishes the link to the previously defined sub-classes. In Section 
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5.3 the new class member is introduced, and applied to an appropriate 

parameter estimation problem. Section 5.4 contains a statistical analysis 

of the new class member introduced in Section 5.3. This is followed by 

Section 5.5 that presents results from simulations. Real data application 

and analysis follows in Section 5.6. 

5.2 The new class of multi-linear functions 
The new class of multi-linear functions introduced in this section is 

referred to as the Generalised Multi-linear Function Class (GMFC). It is 

defined in (5.5) below: 

( ) ( )$

  0
,      [ ( )]exp .i

I
p x

s p r i i p
over v i

T v z n c m jd vτ
=

Ω = + + − Ω∑ ∏   (5.5) 

The parameters of the generalised multi-linear function class in (5.5) are 

specified as follows: 

  s = 0 or 1, 

p is the order of the polynomial phase coefficient to be estimated, 

$

0
[ ( )]i

I

r i i
i

z n c mτ
=

+ +∏  is the “kernel”, 

{ , ,  , , }i iI c d xτ  are an arbitrarily set parameters, 

     0 
     1 

n if s
v

m if s
=

=  =
 and 

$ 1 or -1i = +  

where if $ 1i = + , then i$ (.) (.)z z=  

or if $ 1i = − , then i$ (.) (.)z z∗= , the complex conjugate of 

(.).z  
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From the generalised multi-linear function in (5.5) one can obtain the 

HAFs, the PWVDs or the HP functions by making appropriate selections 

for the various parameters listed above.  

For example, if one sets 0s = , / ,  0i iiN p c iτ = − = ∀ , 1x = , 

1 if  is even,
$

1 if  is odd.i
i
i

+
=  −

 1d = , and the kernel is defined as 

1
1

$

0
[ ( / )]i

p
p

i
r

i
z n iN p

− 
−  

 

=
−∏ , then the higher ambiguity functions are 

obtained: 

( ) ( )
1

1
$

  n 1
     [ ( / )] exp .i

p
p

ip
p r p

over i
HAF z n iN p j n

− 
−  

 

=
Ω = − − Ω∑ ∏  (5.6) 

If the parameters are set such that 1s = , x p= , and the d, $i  and ci are 

resolved according to the principals in [56] and [62], then the HP 

functions are recovered: 

( ) ( )$

  m 0
,      [ ( )]exp .i

I
p p

p r i p
over i

HP n z n c m jd m
=

Ω = + − Ω∑ ∏   (5.7) 

Finally, to obtain the PWVD functions, one simply sets 1p =  in (5.7) to 

get (5.8): 

( ) ( )$

  m 0
,      [ ( )]exp .i

I

r i
over i

PWVD n z n c m jd m
=

Ω = + − Ω∑ ∏   (5.8) 

Therefore from the relationships just presented it can be seen that the 

GMFC provides a formalism which links various existing multi-linear 

functions. Additionally, though, the GMFC provides a framework for the 

creation of new functions. This framework can be exploited by simply 

varying the parameters in (5.5) to generate new class members. As an 

illustration of the way new class members can be designed, the next 

section will do precisely this and in doing so, introduce a new member of 
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the class which outperforms existing functions in the analysis of 4th order 

polynomial phase signals.     

5.3 Designing new GMFC members 
In this section a new member of the GMFC class will be designed to 

specifically target the analysis of 4th order polynomial phase signals. This 

is done because existing 4th order multi-linear analysis methods have 

quite high SNR thresholds.  

The approach for designing the new class member will be similar to that 

used in [56] for generalising the CP function to the HP functions. Initially 

a set of non-linear equations is set up in the GMFC “coefficients”. The 

target order for the non-linearity of the 4th order polynomial phase signal 

(PPS) analysis function will be set to 4, so that four multiplicative terms, 

only, will be in the kernel.  This represents an ambitious design as this is 

a lower order than any other existing multi-linear function for analysing 

4th order PPSs. Past experience has demonstrated that more effective 

multi-linear functions tend to be designed by setting 1s = (rather than = 

0), therefore this design will pre-set 1s = . With these initial parameters 

selected the following function is obtained in (5.9), 

( ) ( )
3

$
1

  i 0
,      ( ) exp .ip x

p r i i p
over m

T n z n c m jd mτ
=

 Ω = + + − Ω 
 

∑ ∏  (5.9) 

The remaining coefficients to be “designed” are the { , ,$ }, , ,  and i i ic d x pτ  

parameters. To ensure that the design of (5.9) is useful in the estimation 

of the polynomial phase coefficients, ( )0 1 1, , Pa a a −K , it would be 

convenient if the function in  (5.9) could yield a sharp peak when 

p paΩ =  and 0n = , for a given 4th order PPS signal. Such a desirable 

outcome would occur if the equality in (5.10) can be assured, such that, 
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0 31 2$ $$ $
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0

( ) ( ) ( ) ( )

exp( ),

s s s s

I x
p

z c m z c m z c m z c m

b jda m j

τ τ τ τ

φ

+ + + +

= +

   

(5.10) 

where φ  is an arbitrary constant and where ( )sz n  is a 4th order noise-free 

PPS, as defined in (5.1-2). 

Substituting (5.1) and (5.2) into (5.10) and simplifying by taking the loge  

yields: 

4 3

0 0
($ )( ) .k x

i i i p
k i

c m da mτ φ
= =

+ = +∑ ∑    (5.11) 

The final stages of the design process involve finding real values for the 

unknown coefficients, ({ , ,$ }, , ,  and )i i ic d x pτ , that will ensure that the 

non-linear equation in (5.11) is satisfied. Under experimentation certain 

choices for the coefficients do enable (5.11) to be satisfied. These choices 

are listed in (5.12) as, 

3p = , 2x = , $ ( 1)i
i = − , ( 1)   for 0 N/4i

iτ τ τ= − < < , 6d τ=  and 

   
1,   1, 2
1,   3,4.i

i
c

i
=

= − =
    (5.12) 

With the coefficients specified in (5.12) the newly designed function is: 

( )
2

36  3
1 3

  
,  ( ) ( ) ( ) ( ) j m

r r r r
over m

T n z n m z n m z n m z n m e ττ τ τ τ − Ω∗ ∗Ω = + + − + + − − −∑

(5.13) 

If the observation is a noise-free 4th order PPS then it can be shown for a 

given value of n, that the function in (5.13) yields a peak at: 

3 3 44 ,a a nΩ = +    (5.14) 
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as desired. The following sub-section will present an algorithm which 

uses the newly designed multi-linear function in (5.13) to estimate the 

parameters of a 4th order polynomial phase signal. 

5.3.1 Algorithm for estimating the parameters of 4th 

order PPSs based on ( )3
1 3,T n Ω  

Step 1)  Estimate two estimates, 31Ω̂  and 32Ω̂ , from ( )3
1 3,T n Ω  using the 

following estimators: 

( )3
3 1 31 1 1 3

ˆ ˆ( ) arg max ,n T n
Ω

Ω = Ω = Ω    (5.15) 

( )3
3 2 32 1 2 3

ˆ ˆ( ) arg max , .n T n
Ω

Ω = Ω = Ω   (5.16) 

Step 2)  Motivated by (5.14), α̂  is determined from the matrix equation: 

ˆˆ −= 1α X R ,     (5.17) 

where  [ ]3 4ˆ ˆ ˆ Ta a=α , 31 32
ˆ ˆ ˆ T

 = Ω Ω R  and  1

2

1 4
1 4

n
n

 
=  
 

X . 

Step 3)  Estimate 2â  by de-chirping the observation by 3 4
3 4ˆ ˆa n a n+  and  

then using the cubic phase function [62]: 

3 4
3 4ˆ ˆ( )( ) ( ) j a n a n

rd rz n z n e− +=      (5.18) 

( )
2

2

2

( 1) / 2

2
0

ˆ arg max ( ) .
N

j m
rd rd

n
a z n m z n m e

−
− Ω

Ω =
= + −∑   (5.19) 

Step 4)  Find 1̂a  by de-chirping the observation by 2 3 4
2 3 4ˆ ˆ ˆa n a n a n+ +  and 

then using the Fourier transform: 

( ) ( )2 3 44
2 3 4 1

4

ˆ ˆ ˆ
1( ) ,

N

N

j a n a n a n j n
r

n
D z n e e

−

− + + − Ω

=
Ω = ∑    (5.20) 
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1
1 1ˆ arg max ( ) .a D

Ω
= Ω      (5.21) 

Step 5)  Refine the initial 1 2 3 4ˆ ˆ ˆ ˆ,  ,  and a a a a  parameter estimates by using 

the de-chirping/filtering/phase-unwrapping refinement algorithm 

described in Section 6 of [62].  

This process initially involves de-chirping the observation to obtain a 

baseband like signal  

( ) ( )2 3 4
1 2 3 4ˆ ˆ ˆ ˆ( ) .j a n a n a n a n

rd rz n z n e− + + +
=   (5.22) 

Because of the effective down-conversion to baseband of the observation 

signal, the signal content of ( )rdz n  will be spectrally concentrated around 

0Hz. However the noise content will be evenly spread over the entire 

band, and therefore one can low-pass filter to remove most of the noise 

without significantly disturbing the signal content. The subsequent low-

pass filtered signal can then have its phase unwrapped, and from this 

linear regression can be used to estimate its polynomial phase parameters. 

The resulting estimates are essentially the “fine” estimates which are 

added to the initial coarse estimates obtained in Steps 2-4 above. 

Importantly, due to the optimality of the phase unwrapping linear 

regression approach, the final “refined” estimates (respectively denoted 

as 1 2 3 4ˆ ˆ ˆ ˆ,  ,  and f f f fa a a a ) will all have variances which approach the 

Cramér-Rao (CR) bound asymptotically above threshold. 

Step 6)  Find 0â  and 0̂b  with the following estimators: 

0 1
1ˆ ˆ( )b D a
N

=     (5.23) 

{ }0 1ˆ ˆangle ( ) .a D a=    (5.24) 
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To ensure optimal application of the above algorithm some of the values 

need to be specified. It is recommended that the following parameters are 

set such that: 1 ,
4

Nτ −
=  1 0n =  and 2 0.55 .n N=  It will be 

mathematically shown in Section 5.4, that these values enable 

asymptotically optimal final estimates to be obtained. It is important to 

highlight again that the above algorithm involves only a 4th order non-

linearity. In comparison, the equivalent HP function algorithm has a 6th 

order non-linearity [56], and the corresponding HAF algorithm has an 8th 

order non-linearity  [79]. The new class member therefore has a much 

more appealing level of non-linearity. 

The proposed algorithm implementation is relatively straightforward. To 

ensure computational efficiency in arguments maximising (5.15), (5.16) 

and (5.19), sub-band decomposition techniques in the frequency-rate 

domain can be employed. Employing these techniques will ensure that the 

computational complexity of the algorithm is ( )log .O N N   

5.4 Derivation of the Asymptotic Mean Squared 
Errors 

This section derives the asymptotic (i.e. large sample) MSEs for the 

unknown parameter estimates. The estimates are compared to the values 

for Cramér-Rao lower bounds defined in [63]. For convenience the 

approximate formulae for the CRLBs are shown in Table 5-1 [63]. 
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TABLE 5-1 APPROXIMATE FORMULAE FOR CRLBS ( )1N >> [63] 

 1p =  2p =  3p =  4p =  

{ }0 p
CRLB a  2

2
02

w

Nb
σ

 
2

2
0

9
8

w

Nb
σ

 
2

2
0

9
8

w

Nb
σ

 
2

2
0

225
128

w

Nb
σ

 

{ }1 p
CRLB a  

2

3 2
0

6 w

N b
σ

 
2

3 2
0

6 w

N b
σ

 
2

3 2
0

75
2

w

N b
σ

 
2

3 2
0

75
2

w

N b
σ

 

{ }2 p
CRLB a   

2

5 2
0

90 w

N b
σ

 
2

5 2
0

90 w

N b
σ

 
2

5 2
0

2205
2

w

N b
σ

 

{ }3 p
CRLB a    

2

7 2
0

1400 w

N b
σ

 
2

7 2
0

1400 w

N b
σ

 

{ }4 p
CRLB a    

 2

9 2
0

22050 w

N b
σ

 

 

The subsequent asymptotic mean squared error derivations in this section 

follow the approach used in [16].  

First consider the estimates, 3 1 31
ˆ ˆ( )nΩ =Ω and 3 2 32

ˆ ˆ( )nΩ = Ω , determined 

in (5.15) and (5.16). These estimates are obtained through a maximisation 

of ( )3
1 3,T n Ω  at times, 1n  and 2n , respectively. An estimate based on the 

maximisation of ( )3
1 3,T n Ω  at some arbitrary time, n, is: 

3
3 1 3

3

ˆ ( ) arg max ( , )n T nΩ = Ω
Ω

,    (5.25) 

where the new member, ( )3
1 3,T n Ω , incorporating the optimal choice 

forτ is given in (5.26) as, 



Chapter 5  

 

 

140 

( ) ( ) ( )

( ) ( )

4

2
3

3 1 1
1 3 4 4

0
16

1 1 2
4 4

,  

.

N n
N N

s s
m

Nj m
N N

s s

T n z n m z n m

z n m z n m e

− ∗
− −

=
−∗ − Ω

− −

Ω = + − + + ×

− − − +

∑

K

(5.26) 

To maintain consistency with the technique in [16, 62], let the signal-to-

noise ratio (SNR) be defined as: 

 
2

0
2

bSNR
σ

= .    (5.27) 

To determine the MSE of 3
ˆ ( )nΩ the following formulae, (5.28), (5.29), 

(5.30) and (5.31) are obtained from the appendix of [16]: 

[ ]
2

3 2( )t

E B
MSE n

A

  Ω = ,   (5.28) 

where [.]E  is the expected value.  

Terms A and B are respectively defined as: 

( ) ( ) ( ) ( )2 3* 3 3*
1 3 1 3 1 33

1 3 2
3 33

, , ,
2 , t t t

t
T n T n T n

A T n
 ∂ Ω ∂ Ω ∂ Ω = ℜ Ω + ∂Ω ∂Ω∂Ω  

  (5.29) 

 

( ) ( ) ( ) ( )
3* 3

1 3 1 33 3*
1 3 1 3

3 3

, ,
2 , , ,t t

t t
T n T n

B T n T n
δ

δ
 ∂ Ω ∂ Ω = ℜ Ω + Ω ∂Ω ∂Ω  

 (5.30)
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

, N N N N
ws r r r r

N N N N
s w s w

N N N N
s w s w

N N N N
s s s w

N N N
s s w

z n m z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

= + − + + − − − +

   = + − + + − + + + + + ×    
   − − + − − − + + − +    

= + − + + − − − +

+ + − + + − −

LL

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4

N
s

N N N N
s s w w

N N N N
s w s s

N N N N
s w s w

N N N N
s w w s

N N N N
s w w w

N N
w s

n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗

− +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

 

N N
s s

N N N N
w s s w

N N N N
w s w s

N N N N
w s w w

N N N N
w w s s

N N N N
w w s w

w

z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m z n m z n m z n m

z n m

∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗

− − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ + − + + − − − +

+ +( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
4 4 4 4

4 4 4 4 .

N N N N
w w s

N N N N
w w w w

z n m z n m z n m

z n m z n m z n m z n m

∗

∗ ∗

− + + − − − +

+ + − + + − − − +

         

  (5.31) 
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In (5.29) and (5.30) the term, {.}ℜ signifies the real part of {.}.  It should 

be noted that B is a random quantity and A is deterministic. The 

deterministic character of A arises because all the constituent terms are 

derived from the noise free signal. Equations (5.28)-(5.31) were used to 

determine the results in (5.32)-(5.34) below: 

( ) ( )
628

0 48 3
45

Nb N n
A

− −
≈     (5.32) 

( )( ) { }4
0 42 3 Im ( )NB b N n n ≈ − − Γ  ,   (5.33) 

where ( )nΓ is defined as: 

( ) ( ) ( ) ( )4
2

42 2
3

0
( ) , exp .

3

N Nn
j n

ws t
m

n
n e m z n m j mφ

− ∗

=

 − Γ ≈ − Ω
 
 

∑  (5.34) 

Then 

{ }
{ } { }
( ) ( )

{ }( )

( )

2

5 54 4
0 04 4

2

10
8 12 1
0 4

45 Im ( ) 45 Im ( )1( )
3 4 4

2025 Im ( )
.

144

N N

n
N

n n
MSE n E

N b n b n

E n

b N

    Γ Γ      Ω ≈   
  − −  

 Γ  ≈
−

   

(5.35) 

Now 

{ } ( )5 8 6 2 4 4 2 6
2 0 0 04 4 6 4Im ( ) ,

11520 2
N n b b bE n σ σ σ σ−  + + + Γ ≈     

 (5.36) 
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and thus, 

( ) ( )5 8 6 2 4 4 2 6
0 0 0

3 8 12 10
0

2 5 4 3 2

4 | | 4 6 42025ˆ ( )     
11520 2144 (1/ 4 | | / )

640 1 4 6 4                     .
( 4 | |)

N n b b bMSE n
b N n N

SNRN N n SNR SNR SNR

σ σ σ σ − + + +
Ω ≈  

−  
 ≈ + + + −  

(5.37) 

Substituting 0n =  and 0.55n N=   in (5.37) gives: 

( )3 31

7 4 3 2

ˆ ˆ( (0))

640 1 4 6 4 ,

MSE MSE

SNRN SNR SNR SNR

Ω = Ω

 ≈ + + + 
 

    

(5.38) 

( )3 32

7 4 3 2

ˆ ˆ( (0.55 ))

2216.7 1 4 6 4 .

MSE N MSE

SNRN SNR SNR SNR

Ω = Ω

 ≈ + + + 
 

  

(5.39) 

Using (5.17), it follows that: 

( )3 31
ˆˆ( )MSE a MSE= Ω      (5.40) 

and hence 

{ } ( )

( )

3 2

3 2

61 4
3 7

31 1
27 4

640ˆ 4

2560 1 .

SNRSNR SNR

SNRSNR SNR

MSE a
N SNR

N SNR

≈ + + +

≈ + + +
  (5.41) 

 

The ratio of the MSE of 3â  to the CRB (see Table 5-1) at high SNR is: 
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3

3

ˆ
10

ˆ

256010log 2.62dB.
1400

a

a

MSE
CRB

 ≈ = 
 

    (5.42) 

From (5.17) 4â  is given by: 

32 31
4

2 1

ˆ ˆ
ˆ .

4( )
a

n n
Ω −Ω

=
−

    (5.43) 

If n1 = 0 and n2 = 0.055N, then, the MSE of 4â  is: 

( )4 3 2

32 31 32 31
4 2

31 1 1
32 317 7 4 2

2

32 314 3 2

{ } { } 2 { }ˆ{ }
16(0.055)

2560 8866.8 2 { }
                

16(0.055)
1 1 3 12.36077 5 41.33 {

4 2                

SNR SNR SNR SNR

MSE MSE EMSE a

E
N N

e E
SNRSNR SNR SNR

Ω + Ω − Ω Ω
=

 + + + + − Ω Ω 
 ≈

 + + + − Ω Ω 
 ≈ 9

3 2

9

}

1 1 31.305 5 2.36077 5
24  .

N

e e
SNRSNR SNR

N SNR

 + + + 
 ≈

         (5.44) 

The ratio of the MSE of 4â  to the CRB at high SNR is: 

4

4

ˆ
10

ˆ

1.3505 510log 7.8dB
2.2050 4

a

a

MSE e
CRB e

 ≈ ≈ 
 

   (5.45) 

2â  and 1̂a  are determined according to (5.19) and (5.21). If one uses a 

similar analysis to that which was used in [82] and [62], the MSEs for 2â  

and 1̂a  are found to be: 

{ }
3 2

2 5

1 1 36075.9 10836
24ˆ SNRSNR SNRMSE a

N SNR

 + + + 
 ≈   (5.46) 



Chapter 5 

 

 

145 

{ }
( )3 2

31 1
24

1 3

63.6 57.6
ˆ .SNRSNR SNRMSE a

N SNR

+ + +
≈    (5.47) 

The ratio of the MSEs of  2â  and 1̂a  to their respective CR bounds are: 

2

2

ˆ
10

ˆ

6075.910log 7.4dB
1102.5

a

a

MSE
CRB

 ≈ ≈ 
 

   (5.48) 

1

1

ˆ
10

ˆ

63.610log 2.3dB.
37.5

a

a

MSE
CRB

 ≈ ≈ 
 

   (5.49) 

As previously mentioned, the final parameter estimates, 

1 2 3 4ˆ ˆ ˆ ˆ,  ,  and f f f fa a a a , are obtained from the initial intermediate 

estimates, 1 2 3 4ˆ ˆ ˆ ˆ,  ,  and a a a a . The refining process applies the de-

chirping/filtering/phase unwrapping algorithm described in Section 6 of 

[62]. It should be noted that the final estimates are all asymptotically 

optimal. This is due to the asymptotically optimal results the phase 

unwrapping/least squares estimation approach provides. This optimality 

relies upon the initial intermediate estimates being close enough such that 

the down-converted signal content is truly concentrated around 0Hz. 

Therefore with the signal content at baseband it will not be unduly 

disturbed by low-pass filtering. The analysis conducted within this 

section demonstrated that all the intermediate estimates are very close, 

giving estimate variances of the same order as the CRB. Therefore this 

implies that the de-chirped signal’s spectral content will be near 0Hz and 

will not extend further than ( )1 2O N −  Hz from 0Hz. 

5.5 Simulations 
The estimation algorithm in Section 5.3 was applied to a fourth order 

polynomial phase signal submerged in additive noise for a range of 

different noise levels. The noise model applied was complex, white, zero 
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mean Gaussian noise. The additive noise levels used corresponded to the 

SNR range of 0 to 9dB. Monte-Carlo simulations were conducted over 

one hundred runs with a 1031 sample length observation. 

The signal parameters defined in (5.1) and (5.2) were set as per Table 5-2. 

TABLE 5-2 PARAMETER VALUES OF 4TH ORDER POLYPHASE SIGNAL USED 
IN SIMULATIONS 

SIGNAL PARAMETER (P = 4) VALUE 

0a  1.0  

1a  0.3927  

2a  6 - 4e  

3a  1.0 - 6e  

4a  1.0 - 9e  

0b  1.0  

 

It should be noted that the choice of coefficients, 1 4a − , in Table 5-2 

adhere to the required unambiguous bounds defined in (5.3).   

The following figures; Figure 5-1 to Figure 5-6 show the results of the 

simulations whereby: 

i) the simulated Mean Square Errors (MSEs) for the final 

parameter estimates, 1 2 3 4ˆ ˆ ˆ ˆ,  ,  and f f f fa a a a  are denoted 

with plus signs,  

ii) the CR bounds are shown as solid lines,  
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iii) the simulated MSEs of the intermediate parameter 

estimates, 1 2 3 4ˆ ˆ ˆ ˆ,  ,  and a a a a  are circled and  

iv) the theoretically derived MSEs for the intermediate 

estimates are denoted with dashed lines. 

As seen in Figure 5-1 to Figure 5-6, the final estimates are very close to 

the Cramér-Rao bounds, supporting the claim in this chapter that the final 

estimates are asymptotically optimal above the threshold. 

Also observed for the new algorithm, is the SNR threshold of 1dB. This is 

an extremely favourable improvement when compared with the threshold 

of approximately 10dB given in [83] for the HAFs. Another pleasing 

aspect is the close alignment of the simulated MSEs of the intermediate 

estimates with the theoretically derived MSEs.  

0 1 2 3 4 5 6 7 8 9

-200

-190

-180

-170

-160

-150

SNR(dB)

a 4 E
S

TI
M

A
TE

 M
S

E
 (d

B
)

 

 
initial a4 estimate

final a4 estimate

CRLB
Analytical MSE

 
Figure 5-1 a4 estimate MSE vs. SNR for the final and intermediate parameter 

estimates. 
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Figure 5-2 a3 estimate MSE vs. SNR for the final and intermediate parameter 

estimates. 
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Figure 5-3 a2 estimate MSE vs. SNR for the final and intermediate parameter 

estimates. 
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Figure 5-4 a1 estimate MSE vs. SNR for the final and intermediate parameter 

estimates. 
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Figure 5-5 a0 estimate MSE vs. SNR for the final parameter estimates. 
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Figure 5-6  b0 estimate MSE vs. SNR for the final parameter estimates. 

5.6 Application in Power System Monitoring 
A new class of multi-linear functions has been introduced and shown to 

out-perform previously available techniques. Analytical studies in the 

previous section have demonstrated the method’s effectiveness in the 

analysis of a fourth order PPS. The previous sections also established the 

low computational overhead of the method. Together these attributes are 

an attractive option in situations that require accurate parameter estimates 

of frequency varying signals in short-time frames, combined with the 

requirement of low computational overhead. As a consequence this 

section will demonstrate the value of the method by analysing real power 

system data.  

Monitoring the frequency variations of the power system is necessary 

because power system load variations and system dynamics are time-

varying. As a consequence, power flows, system modal parameters and 

frequencies are also time-varying. It has been established in earlier 
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chapters that the power system may be regarded as quasi-stationary over 

short time periods when operating under normal conditions. With the 

short-term quasi-stationary system in mind, methods to enable the rapid 

detection of sudden detrimental change were also formulated in the 

earlier chapters. These rapid detection methods employed system 

parameter estimates of modal frequency and damping which were 

established using long-term parameter estimators. The multi-linear 

functions however can present better monitoring of the frequency trends 

in the power system than the LT estimator employed in previous chapters. 

This is because the multi-linear function provides both ongoing frequency 

estimates and the rates of frequency change (chirp) in relatively short 

time frames. The higher order chirp estimates ( )2 3 4ˆ ˆ ˆ,  and a a a provide a 

clearer picture of the frequency dynamics and will indicate visibly rapid 

changes if they occur. Rapid changes are indicated because under quasi-

stationary conditions the higher order chirp estimates would ideally be 

around zero. A scenario where frequency rate information is useful is 

when the separation of a generation node occurs. Prior to separation the 

large interconnected power system will have associated modal parameters 

established through LTE. In a separation scenario, these parameters may 

no-longer be valid, as one power generation node (South Australia for 

example) is no longer connected to rest of the system (composed of 

Victoria, N.S.W and Queensland for example). Hence the system 

dynamics will change and the formulation of new modal characteristics 

will be established post-separation.  

In separation scenarios it is generally understood the remaining modal 

frequencies will shift spectrally as the swing between remaining 

generation COA’s establishes a new equilibrium within the new system 

dynamic. This also applies to the separated generation node. The sudden 

shift in frequency will be highlighted by a non-zero trajectory of 

estimates in the higher order chirp estimates. As a consequence of the 
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separation, the previously established rapid detection benchmarks at each 

COA measurement site will be invalid. This is of major concern as the 

post-separation system dynamics can be extremely vulnerable to further 

unstable behaviour and may result in the consequential loss of supply. 

Under these circumstances the establishment of a “worst case 

benchmark” to immediately monitor the system in the critical time just 

after separation may be formulated. Pre-set damping conditions combined 

with estimates of the modal frequencies can establish short-term 

approximate benchmarks until enough time has passed for more accurate 

methods (which require longer data sets) to provide the system modal 

parameters estimates.   

This is just one possible scenario for the application of this PPS 

estimation method within the power system environment. Another is to 

supply the Kalman methods outlined in the Chapter 4 with more accurate 

frequency estimates. The Kalman innovation is very much dependant on 

the original LT estimates. Section 4.5.2 demonstrated the effect upon the 

innovation spectrum when the system had experienced a modal frequency 

shift even though there was no damping change. More accurate estimates 

of modal frequency would assist the Kalman innovation method of 

Chapter 4 to be more of a modal damping detector and identifier rather 

than modal frequency and damping detector. Without an up-to-date and 

reasonably accurate frequency estimate in the Kalman formulation, any 

spectral detections, which occur, may contribute to an ambiguous 

situation in answering the hypothesis; Has the damping changed or has 

the frequency changed or is it both?  

With the above in mind the following section will now apply the multi-

linear function method to real power system data. This section will 

estimate the chirp co-efficients, 0 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,  b a a a a a  of the observed 

signal and examine the results. 



Chapter 5 

 

 

153 

5.6.1 Real Data Analysis and Results 

Data was obtained from the Australian power system, comprising voltage 

magnitude, ( )V t , and phase measurements, ( ) ( )t V tφ = ∠ ,  from the 

Adelaide measurement site starting at 01:15 on 10/04/2004 to 01:25 on 

10/04/2004. A plot of this data is shown in Figure 5-7. 

The voltage magnitude and phase measurements represent a positive 

sequence signal originally sampled at 50 Hz. Therefore a positive 

sequence analytic signal was reconstructed from the magnitude and phase 

measurements as below: 

( ) ( ) ( ).j t
rz t V t e φ=    (5.47) 

The reconstructed Adelaide signal in (5.47) can be viewed in Figure 5-8. 

The data was then re-sampled, taking every eighth sample, providing a 

6.25Hz sampling rate. 

The choice of down-sampling by 8 samples ( )6.25sf Hz=  was devised 

through experimentation. It was observed that when the analysis was 

undertaken with a 1Hz sampled signal (down-sampling by every 50th 

sample) then the estimates displayed erratic tendencies and parameter 

trajectories were more difficult to see clearly. Higher sampling 

( ): 10seg f Hz=  however did not provide adequate signal information 

with an analytical length of 511 samples. However taking every 8th 

sample tended to demonstrate smoother transitions between estimate 

points and enhance the ability to establish reliable trends in the data. 

The following plots of parameter estimates were from 511 samples taken 

in a sliding window that incremented one sample at a time through the 

full data set. Each analytic window of 511 samples is equivalent to 

81.72sec of data when sampled at 6.25Hz. Examples of the 511 point 

window with respect to the data are shown in Figure 5-9 and Figure 5-10 
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respectively. The choice of the areas shown in Figure 5-9 and Figure 5-10 

were made to highlight parts of the signal where suddenly large frequency 

changes can be observed. 

The results for parameter estimates of 0 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,  b a a a a a are shown in 

Figure 5-11 to Figure 5-16 respectively. 
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Figure 5-7 Measured Data, (a) Voltage Magnitude and (b) Phase. 
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Figure 5-8 Reconstructed Signal ( ).rz t  
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Figure 5-9 Example of signal slice used for parameter estimation, down-sampled to 

6.25Hz. Coloured signal shown is around the first phase disturbance. 
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Figure 5-10 Second example of signal slice used for parameter estimation, down-

sampled to 6.25Hz. Coloured signal shown is around the second phase disturbance. 
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Figure 5-11 b0 estimate. 
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Figure 5-12 a0 estimate (phase deg). 
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Figure 5-13 a1 estimate, 2

ω
π=f . 
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Figure 5-14 a2 estimate (frequency rate), ω& . 
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Figure 5-15 a3 estimate, ω&& . 
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Figure 5-16 a4 estimate, ω&&& . 

5.6.2 Discussion on Real Data Analysis 

In examining the real analysis results, the first points of notable interest 

are the sudden phase shifts in the original data record (at approximately 

350 and 490 seconds, Figure 5-9 and Figure 5-10 respectively). These 

large and sudden shifts are clearly highlighted by large non-zero 

trajectories in the subsequent a2, a3 and a4 estimates. 

In Figure 5-13, the a1 estimate shows a definite increase in frequency 

between approximately 100-320 seconds. This increase in frequency is 

reflected in the original data shown in Figure 5-8. Over this time frame 

the higher order parameters, a3 and a4, do not display large non-zero 

trajectories indicating that the frequency acceleration and rate of change 

of acceleration is low. However the a2 estimate in Figure 5-14 does 

display larger non-zero trajectories confirming increase in frequency, 

indicating a slow rate of change in the signal chirp. 
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5.7 Conclusion 
A new class of multi-linear functions has been introduced which has 

subsumed a number of existing sub-classes. The formalism of the new 

class has allowed the creation of a new multi-linear function which has 

been very effective in analysing a 4th order PPS as it has outperformed 

previously available techniques of comparable complexity. Analytical 

studies and simulation results have been presented with the two 

supporting one another. Applications of the method to power system 

analysis have been presented. An example of the effectiveness in 

estimating real data and showing trends and frequency trajectories within 

this data has also been demonstrated. 
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Chapter 6 

6 Discussion  

With increasing economic pressures, power systems have become larger, 

more interconnected, and more dynamically able to provide appropriate 

levels of generation to efficiently meet the continual variation of 

consumer demand. The rationale of the interconnected power systems is 

to provide both flexibility of generation and competitive pricing of energy 

through the marketing and sale of electrical energy. Competition in 

pricing provides industry with affordable energy supply that in-turn 

underpins economic stability and growth. However for such economies to 

operate as envisaged, the power supply and distribution network must be 

both secure and reliable. To ensure secure and reliable generation and 

distribution, the power system, like any dynamic system, requires 

ongoing monitoring, feedback and control. The rationalisation to large 

interconnected power systems, though, has given rise to the phenomenon 

of inter-area modes. These particular modes have proven to be a 

challenge to monitor and estimate, especially in comparison to localised 

generation modes. As a result there has been much research into the 

estimation of inter-area modal parameters. However the estimation 

methods developed have typically required large data sets in the order of 

hours (at least when monitoring under normal power system operation is 

performed). Under quasi-stationary conditions this may be tolerable, but 

in cases of sudden detrimental changes, the power system integrity could 

be severely compromised. Such scenarios may lead to huge stresses in the 
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transmission, distribution and generation infrastructure, resulting in the 

possible loss of supply. This is clearly unacceptable. Therefore it was the 

aim of this research to develop alternative means to monitor inter-area 

modal responses to disturbances, specifically targeting the rapid alarming 

of sudden detrimental changes. 

In Chapter 2 a new and simple concept of alarming detrimental change 

was introduced. It was recognised early in Chapter 2 that for reliable 

alarming to prevail, an understanding of the possible system output 

required characterisation. The system characterisation developed in 

Chapter 2 encompassed the formulation of a probability density function 

of the expected energy of a measured signal. The formulation of the PDF 

was done theoretically, based on long term estimates of the system 

parameters during quasi-stationary conditions. Although the construction 

of the PDF requires the convolution of many ensemble weighted 

components of the system’s frequency response, this was not a 

computational issue as FFT and inverse FFT methods could easily be 

employed to maintain low computational overhead. Once the system 

characterisation was formulated, a user defined false alarm rate could 

then be used to set the threshold. In practice the implementation of the 

method to monitor rapid changes was both successful and 

computationally efficient, as only the energy of the observed signal 

required comparing to the set threshold, a reasonably simple task. The 

energy alarming method is particularly suited to smaller systems that only 

contain one major mode. This is because the method does not attribute 

any alarm state to any particular mode, it simply indicates that there is an 

undesirable level of damping currently within the system. To distinguish 

the particular mode undergoing sudden detrimental damping the method 

in Chapter 3 was developed. 

Chapter 3 extended the work in Chapter 2 and examined optimal 

detection strategies for signals embedded in noise and interference (i.e. 
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other modes). The new method attempted to separate and enhance the 

individual modal contribution with the application of optimal “whitening-

like” filters. The resulting output from the filtering and cross-correlation 

process generated a “test statistic”. Again the method in Chapter 3 was 

focused on the rapid alarming of detrimental change, but with the added 

feature of mode identification.  Therefore in a similar vein to Chapter 2, 

the method in Chapter 3 required a characteristic PDF of the test statistic. 

Once again analytical methods were used to formulate this PDF. 

Although the process was slightly more complex than in Chapter 2, 

computational efficiency in generating the PDF was again assured 

through the use of FFTs. Within the simulation, validation and real data 

analysis stages, the effectiveness of the method to rapidly alarm 

detrimental change and still maintain an acceptable level of false alarms 

during quasi-stationary phases was demonstrated. 

In Chapter 4 the innovation characteristic associated with the Kalman 

filter was examined. The innovation is defined as the difference between 

the observed signal and that of the Kalman filter output (i.e. the estimate 

of the observed signal). It is generally acknowledged that this innovation 

will remain white as long as the system under consideration remains 

stationary. This was the motivation behind using the Kalman innovation, 

because if the power system underwent sudden detrimental changes in 

damping then obviously the power system would no longer be stationary 

and the Kalman innovation would reflect the changes. Therefore the 

normalised spectra of the Kalman innovation was used to monitor and 

alarm detrimental changes in damping conditions. It was shown in 

simulation, verification and real data analysis that the effect of sudden 

detrimental changes was a “disturbance” in the normally white innovation 

spectra. In all cases the alarming of the change was almost instantaneous, 

strong, and even more importantly, identified the mode of interest. As 

demonstrated, the threshold for the alarm was simplistic to generate as the 
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ideal normalised innovation spectrum may be modelled by white noise. 

Hence the PDF is a simple exponential, Chi-Squared function, 2
2χ . 

Combining the innovation spectra from multi-site data provided more 

coherent alarming over the threshold with respect to the disturbance. In 

regards to computational efficiency the Kalman filter is already regarded 

as an optimal linear estimator, so with only a difference, normalisation 

and FFT stage required to provide the innovation spectrum, it can be seen 

that this method is not computationally demanding. However the method 

does have a possible ambiguity associated with it. This was clearly 

demonstrated in the simulations where both the frequency and the 

damping of the mode were changed. Therefore a means to efficiently 

determine shifts in frequency of the modes was required. The requirement 

to monitor shifts in frequency through the estimation of polynomial phase 

signals was therefore addressed in Chapter 5. 

Within this contribution of work, Chapter 5 returned to the requirement of 

estimating parameters rather than detection of change. However it must 

be noted again that the primary focus of this research was to provide 

information of modal damping and frequency status as rapidly as 

possible. Hence computational efficiency would also be a requirement of 

any polynomial phase signal estimator employed. Another point to note 

was a requirement of the estimator to operate adequately with potentially 

noisy signals. With this in mind a thorough investigation into current PPS 

estimators was undertaken. Through the understanding of current PPS 

estimators a new generalised class emerged that effectively linked many 

current methods together under a single Generalised Multi-Linear 

function Class, GMLC. In doing so, this also provided the opportunity to 

generate a new member to the class through careful and informed design. 

The new estimator specifically targeted the 4th order polynomial phase 

signal, as first, second and third order signals already had very acceptable 

estimation methodologies available through current literature. The result 
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is a new 4th order polynomial phase signal estimator that has the 

following desirable characteristics: It has a practically useful SNR 

threshold of ~1dB, it produces asymptotically optimal estimates just 

above (or on) the Cramér-Rao bounds, and importantly, was shown to be 

computationally efficient. The performance characteristics of the new 

member were shown to be very competitive in relation to the current 4th 

order PPS methods available. These characteristics are also favourable to 

the requirements of ongoing, rapid monitoring of power system signals. 

Simulation and analysis of the new method validated the performance in 

relation to MSE and CRLB. Analysis of real data demonstrated clear 

trends in frequency changes, specifically highlighting rapid changes 

through large estimates of the higher order phase co-efficients. 

Admittedly, such an optimal 4th order PPS estimator is attractive to a 

wider variety of signal analysis, than just power system frequency trends.  

Therefore it is hoped that this section of work is recognised and 

implemented accordingly in other appropriate areas. 

In this final part of the discussion it is important to note the requirement 

of a suitable long-term estimator in relation to the methods used in 

Chapters 2, 3 and 4. In all cases the methods created appropriate PDFs (in 

Chapter 2 and 3) and plant model (in Chapter 4) based on the output of a 

long term estimator. In this body of work the same LTE [13] was used 

throughout for reasons of both consistency and ease of access. In all cases 

the LTE provided adequate system estimates over from the long-term 

quasi-stationary data analysed. Therefore it should be noted that the 

methods presented in Chapters 2-4 need to be implemented in 

conjunction with a suitable LTE as presented within each Chapter. 

In the final part of this discussion, a comparison of the proposed detectors 

from Chapters 2, 3 and 4 will be presented in the following subsection. 
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6.1 Comparison of Proposed Detectors 
To finish off the discussion, a comparison of the three detector methods 

will be presented in this section. 

In this section, the data used for the Kalman innovation detector in 

Section 4.5 of Chapter 4 is again used for a comparison of the proposed 

methods presented in Chapters 2 to 4. The comparison will present the 

relative detection results and provide insight into the relative advantages, 

disadvantages, superiority and real-world viability of the different 

methods.  

For the comparison 45min of data was used by the LTE (as it was in 

Chapter 4) to estimate the system parameters and set up the relevant 

system PDFs required by the different methods. Again the data of interest 

is between 188 and 206 mins, where a clear disturbance in mode 2 occurs 

during 197-200 mins. This disturbance was clearly identified in Chapter 4 

using the Kalman Innovation Detector (KID).  

Firstly the Energy Based Detector (EBD), from Chapter 2, was 

implemented and the resulting energy measurements from the three sites 

are shown in Figure 6-1. A clear crossing of the respective thresholds 

between 196-202 minutes can be seen at all three sites. This supports the 

results in Chapter 4, namely that there is a large disturbance within this 

time frame. However the EBD does not indicate which mode has 

changed. 

Next, the data was analysed using the Optimal Individual Mode Detector 

(OIMD) proposed in Chapter 3. As can be seen in Figure 6-2 the 

disturbance in mode 2 is only strongly detected at the NSW site, with 

weak “detections” at 201 mins for the Victorian and South Australian 

sites. Mode 1, on the other hand, is clearly detected at all three sites 

between 199-202 minutes, Figure 6-3. This really is a failure of the 

OIMD method in this case. The reason for the failure may be put down to 
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the fact that mode 2 is relatively weak with respect to mode 1. The 

estimate of the spectral contribution of mode 2, at all three sites, can be 

seen in Figure 6-4. Because of the weak mode 2 spectral influence, the 

whitening of the data containing a strong disturbance may not spectrally 

decouple the modes adequately for detection purposes. It is this facet that 

limits the OIMD effectiveness when working with systems that exhibit a 

spectrally dominate mode. However, as shown in Table 6-1 the strongest 

peak was the NSW Mode 2 detection, which provides an encouraging 

scenario that with a correctly formulated hypothesis test then the correct 

mode could still be adequately detected and selected. 

The final comparison is the Kalman Innovation Detector (KID) and this 

simply draws on the previous results in Chapter 4. 

All of the results from the comparison are in Table 6-1. The results 

compare detection statistics with respect to relative thresholds at the 200 

minute measurement point of the data. It should be noted here that all of 

the methods employed a 60 second analysis window. 

As can be seen in the results, the EBD is both simple and reliable. 

Correlation between sites is strong and the detection statistic is also 

strong relative to the respective thresholds. In the case of the OIMD, the 

mode information has not been spectrally decoupled successfully; 

however an alarm situation does coincide with the other methods in four 

of the 6 tests (two modes per site). The strongest detection (NSW-Mode 2 

at 15.64 dB above threshold) indicates that mode 2 is undergoing an 

undesirable disturbance. The KID, as discussed in Chapter 4, overcomes 

the shortcomings of the previous two methods by providing a clear 

indication of the disturbance and mode identification. 

In application to real systems, the EBD is simplistic and reliable and 

easily tuned to the power system. It will provide a rapid indication of 

sudden detrimental change but not precisely which mode the change is 

associated with. Therefore it provides detection, but not identification. 
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The EBD method would be well suited to single mode power systems, but 

is still attractive to multi-modal systems to provide short-term 

monitoring. The OMID method may only be useful under certain 

conditions or hypotheses. Although one site did provide the largest 

detection statistic of all the methods (over the relative threshold) the 

comparison demonstrated the OMID’s limitations. More work may need 

to be done to ascertain whether these limitations can be relaxed and the 

OMID method exploited for application in dominant mode, multi-modal 

systems. The OMID method can provide detection, but may be 

ambiguous in identification under undesirable conditions. The KID 

method has shown to be able to provide both detection and mode 

identification but one must keep in mind the difficulty in tuning the 

Kalman filter adequately. In practice this may not be an easy task. Hence 

the more informative detector is also the most complicated to implement.  

On a final point it is important to reflect that all of these methods do rely 

on adequate long-term estimates of the power system in normal 

operation.  In the case of the comparison shown, only 45mins of data was 

used to provide a system estimate. This was mainly for the benefit of the 

Kalman detector as it tends to be more sensitive than the other methods 

and needs to be kept up to date on the system characteristics. 
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Figure 6-1 EBD outputs from three sites, NSW, VIC and SA. 
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Figure 6-2 OMID Mode 2 outputs from three sites, NSW, VIC and SA. 
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Figure 6-3 OMID Mode 1 outputs from three sites, NSW, VIC and SA. 
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Figure 6-4 Estimation of Spectral Mode Contributions from three sites, NSW, VIC 
and SA. 
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TABLE 6-1 COMPARISON OF DETECTION METHOD TEST STATISTICS. 

METHOD CHAPTER SITE THRESHOLD 
(DB) 

TEST 
STATISTIC 

@ 200 
MINS 
(DB) 

STRENGTH 
OF 

DETECTION 
(DB ABOVE 

THRESHOLD)

EBD 2 NSW 41.20 48.44 7.24 

EBD 2 VIC 41.43 50.80 9.37 

EBD 2 SA 40.51 55.64 15.13 

OIMD 3 NSW-
MODE 1 33.77 36.95 3.18 

OIMD 3 VIC-MODE 
1 37.50 41.18 3.68 

OIMD 3 SA-MODE 
1 42.64 48.85 6.21 

OIMD 3 NSW-
MODE 2 21.38 37.02 15.64 

OIMD 3 VIC-MODE 
2 81.65 70.85 NOT 

DETECTED 

OIMD 3 SA-MODE 
2 52.80 48.11 NOT 

DETECTED 

KID 4 COMBINED -11.61 -3.28 8.33 
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Chapter 7 

7 Conclusions and Future Directions  

7.1 Conclusion 
The body of research work within this thesis is comprised of techniques 

designed to assist power utilities to rapidly ascertain the modal condition 

within a large interconnected power system. Within this work three new 

methods of rapidly detecting deteriorating modal damping have been 

presented; the energy based method, the optimal detection in Gaussian 

noise method and the Kalman innovation method. The first of these 

methods is excellent for monitoring the system output as a whole and 

would be particularly suitable for single mode systems. The latter two of 

these techniques are designed to provide both alarming of sudden 

detrimental damping and the identification of the offending mode. The 

effectiveness of the methods in simulations, verification and real data 

analysis was demonstrated in both alarming poor damping conditions as 

well as providing close to expected false alarms when the power system 

was under adequately damped quasi-stationary conditions. All three 

methods use analytical means to characterise the expected system 

measurement and determine the desired threshold. All three methods 

provide computationally efficient means to provide ongoing monitoring 

and rapid alarming. 

The final work presented in this research returned to the problem of time-

varying frequency estimation. Within this work a generalised form of 

multi-linear functions was initially defined that linked existing methods 
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under one encapsulated form. From this a new member of the multi-linear 

function class was devised that specifically focused upon the estimation 

of coefficients in a noisy 4th order polynomial phase signal. The 

ambitious aim of the design was to obtain SNR thresholds that were 

practical, produced estimates that were as close as possible to the Cramér-

Rao lower bounds and, finally, not lose sight of the need to perform the 

estimation as computationally efficiently as possible. Through careful 

design, all of these aims were met and demonstrated with the appropriate 

statistical analysis and simulation. The real power system data analysis 

demonstrated clear trends in the change and subsequent rates of change 

using short analysis windows. The ability to monitor such changes 

quickly, as opposed to estimates from long term estimators, would help 

considerably in the detector methods outlined within the earlier thesis 

chapters. 

7.2 Future Directions 
Some suggested future directions for research are presented below. 

The issue of alarming is a significant issue. The question begs to be 

asked, “…when a single alarm is “triggered”, do you act on that one 

alarm (with the knowledge of a realistic FARs) or do you wait for more 

subsequent alarms?”  With a simple single type of detector this may be 

the only possible hypothesis upon which to base a decision. Combining 

alarms from different length windows has been proposed, and may 

provide a beneficially “rounded” alarm without the false alarm jitter of 

just one analysis window. Therefore one future direction of research 

could be to statistically formulate optimal methods of combining the 

alarms from multiple data lengths. Such a study could provide a decision 

technique based on alarm level (i.e. the severity of the alarm), rather than 

a simple binary hypothesis that exists with a simple detector.  Such an 

alarm system can also make use of the analytically formulated PDF. 
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Systems with different damping conditions will provide different 

locations of the respective PDFs. In the case of the simple energy 

detector, measured energy levels can be related to certain values of 

damping with given levels of confidence. Therefore the severity of alarm 

could provide approximate estimates of damping. Although not presented 

in this thesis, such an investigation was initiated early-on and showed 

potential to provide such short-term approximate estimates. 

It would be useful to implement the techniques in this thesis into a real 

time wide-area monitoring system. Such a system would call-on long 

term estimates, updates of frequency trajectories and combine this 

information to provide analytically generated thresholds that provide a 

level of alarm, identification of the disruptive mode/s and approximate 

short-term damping estimates. A system of such nature would require 

computationally efficient coding (C or C++) and would possibly need to 

operate on a platform with parallel, real-time processing ability.  



 

 

 

 

 

 



Publications 

 

 

179 

Publications 

Conference Publications 

i. R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Rapid Detection of 

Deteriorating Modal Damping in Power Systems," Proceedings of 

Australasian Universities Power Engineering Conference 2004, 

ISBN 1-864-99775-3, Paper number 73, Brisbane, Queensland, 

Australia, Sep 26-29, 2004. 

ii. R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Monitoring of 

Individual Modal Damping Changes in Multi-Modal Power 

Systems," Proceedings of Australasian Universities Power 

Engineering Conference 2004, ISBN 1-864-99775-3, Paper 

number 74, Brisbane, Queensland, Australia, Sep 26-29, 2004. 

(Also invited for inclusion in the Australian Journal of Electrical 

and Electronic Engineering). 

iii. R. A. Wiltshire, P. O'Shea, G. Ledwich and M. Farquharson, 

"Application of Statistical Characterisation to the Rapid Detection 

of Deteriorating Modal Damping in Power Systems," presented at 

The Seventh IASTED International Conference on Signal and 

Image Processing, pp. 511-516, Honolulu, Hawaii, USA, Aug 15-

17, 2005. 

iv. R. A. Wiltshire, P. O'Shea, and G. Ledwich, “Rapid Detection of 

Changes to Individual Modes in Multimodal Power Systems” 

presented at IEEE TENCON 05 International Conference, 

Melbourne, Victoria, Australia, Nov 22-24, 2005 

 

Journal Publications 

v. R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Monitoring of 

Individual Modal Damping Changes in Multi-Modal Power 



Publications  

  

 

180 

Systems," Australian Journal of Electrical and Electronics 

Engineering, Vol 2, No 3, pp 217-222. Institution of Engineers, 

Australia, 2005. 

vi. R. A. Wiltshire, P. O'Shea, and G. Ledwich, "A Kalman Filtering 

Approach to Rapidly Detecting Modal Changes in Power 

Systems," IEEE Transactions on Power Engineering Systems, 

2007. 

 

Journal Publications under Revision 

vii. P. O'Shea and R. A. Wiltshire, "A new class of multi-linear 

functions for polynomial phase signal analysis". Under revision 

after submission to IEEE Transaction on Information Theory, 

2007.



Bibliography 

 

 

181 

Bibliography 

[1] R. Kumaresan, "On a frequency domain analog of Prony's 
method," IEEE Transactions on Acoustics, Speech, and Signal 
Processing, vol. 38, pp. 168-170, 1990. 

[2] R. Kumaresan and Y. Feng, "FIR prefiltering improves Prony's 
method," IEEE Transactions on Signal Processing, vol. 39, pp. 
736-741, 1991. 

[3] R. Kumaresan and D. W. Tufts, "Singular Value Decomposition 
and Improved Frequency Estimation Using Linear Prediction," 
IEEE Transactions on Acoustics, Speech and Signal Processing, 
vol. ASSP-30, pp. 671-675, 1982. 

[4] R. Kumaresan and D. W. Tufts, "Estimating the Parameters of 
Exponentially Damped Sinusoids and Pole-Zero Modelling in 
Noise," IEEE Transactions on Acoustics, Speech and Signal 
Processing, vol. ASSP-30, pp. 833-840, 1982. 

[5] R. Kumaresan, D. W. Tufts, and L. L. Scharf, "Prony Method for 
Noisy Data: Choosing the Signal Components and Selecting the 
Order in Exponential Signal Models," Proceedings of the IEEE, 
vol. 72, pp. 230-233, 1984. 

[6] R. Gomez Martin and M. C. Carrion Perez, "Extended Prony 
Method Applied to Noisy Data," Electronics Letters, vol. 22, pp. 
613-614, 1986. 

[7] R. T. Byerly, R. J. Bennon, and D. E. Sherman, "Eigenvalue 
Analysis of Synchronising Power from oscillations in Large 
Power Systems," IEEE Transactions, PAS-101, pp. 235-243, 
1982. 

[8] P. O'Shea, E. Palmer, and G. Frazer, "Power system disturbance 
monitoring using spectral analysis techniques," presented at 
Acoustics, Speech, and Signal Processing, ICASSP-95., 1995 
International Conference on, Detroit, Michigan, USA, vol. 4, pp. 
2731-2734, 9-12 May, 1995. 



Bibliography  

 

 

182 

[9] P. O'Shea, "The use of sliding spectral windows for parameter 
estimation in power system disturbance monitoring," Power 
Systems, IEEE Transactions on, vol. 15, pp. 1261-1267, 2000. 

[10] P. O'Shea, "A high-resolution spectral analysis algorithm for 
power-system disturbance monitoring," Power Systems, IEEE 
Transactions on, vol. 17, pp. 676-680, 2002. 

[11] G. Ledwich and E. Palmer, "Modal estimates from normal 
operation of power systems," Power Engineering Society Winter 
Meeting, IEEE, vol. 2, pp. 1527-1531, 2000. 

[12] M. Banejad and G. Ledwich, "Correlation based mode shape 
determination of a power system," presented at Acoustics, Speech, 
and Signal Processing, 2002 IEEE International Conference on, 
Orlando, Florida, vol. 4, pp. 3832-3835, 13-17 May, 2002. 

[13] C. L. Zhang and G. F. Ledwich, "A new approach to identify 
modes of the power system based on T-matrix," presented at 
Advances in Power System Control, Operation and Management, 
2003. ASDCOM 2003. Sixth International Conference on (Conf. 
Publ. No. 497), Hong Kong, vol. 2, pp. 496-501, 11-14 Nov, 
2003. 

[14] J. Huillery, F. Millioz, and N. Martin, "On the Probability 
Distributions of Spectrogram Coefficients for Correlated Gaussian 
Process," presented at Acoustics, Speech and Signal Processing, 
2006. ICASSP 2006 Proceedings. 2006 IEEE International 
Conference on, Toulouse, France, vol. 3, pp. III-436-III-439, May 
15-19, 2006. 

[15] H. Urkowitz, "Energy detection of unknown deterministic 
signals," Proceedings of the IEEE, vol. 55, pp. 523-531, 1967. 

[16] P. O'Shea, "A new technique for instantaneous frequency rate 
estimation," Signal Processing Letters, IEEE, vol. 9, pp. 251-252, 
2002. 

[17] V. Vittal, "Consequence and impact of electric utility industry 
restructuring on transient stability and small-signal stability 
analysis," Proceedings of the IEEE, vol. 88, pp. 196-207, 2000. 

[18] M. Begovic, D. Novosel, D. Karlsson, C. Henville, and G. Michel, 
"Wide-area protection and emergency control," Proceedings of the 
IEEE, vol. 93, pp. 876-891, 2005. 



Bibliography 

 

 

183 

[19] M. Zima, M. Larsson, P. Korba, C. Rehtanz, and G. Andersson, 
"Design aspects for wide-area monitoring and control systems," 
Proceedings of the IEEE, vol. 93, pp. 980-996, 2005. 

[20] J. Bertsch, C. Carnal, D. Karlson, J. McDaniel, and K. Vu, "Wide-
area protection and power system utilization," Proceedings of the 
IEEE, vol. 93, pp. 997-1003, 2005. 

[21] K. E. Holbert, G. I. Heydt, and H. Ni, "Use of satellite 
technologies for power system measurements, command, and 
control," Proceedings of the IEEE, vol. 93, pp. 947-955, 2005. 

[22] C. L. Zhang and G. F. Ledwich, "Analysis of Major Australian 
Events Using an Angle Measurement System," presented at 
AUPEC 2005, Hobart, Tasmania Australia, vol. 1, pp. 159-164, 
25-28 Sep, 2005. 

[23] E. W. Palmer and G. Ledwich, "Optimal placement of angle 
transducers in power systems," Power Systems, IEEE 
Transactions on, vol. 11, pp. 788-793, 1996. 

[24] M. Klein, G. J. Rogers, and P. Kundur, "A fundamental study of 
inter-area oscillations in power systems," Power Systems, IEEE 
Transactions on, vol. 6, pp. 914-921, 1991. 

[25] N. Uchida and T. Nagao, "A new eigen-analysis method of 
steady-state stability studies for large power systems: S matrix 
method," Power Systems, IEEE Transactions on, vol. 3, pp. 706-
714, 1988. 

[26] D. M. Lam, H. Yee, and B. Campbell, "An efficient improvement 
of the AESOPS algorithm for power system eigenvalue 
calculation," Power Systems, IEEE Transactions on, vol. 9, pp. 
1880-1885, 1994. 

[27] P. W. Sauer, C. Rajagopalan, and M. A. Pai, "An explanation and 
generalization of the AESOPS and PEALS algorithms [power 
system models]," Power Systems, IEEE Transactions on, vol. 6, 
pp. 293-299, 1991. 

[28] G. R. B. Prony, "Essai experimental et analytique, etc.," Paris, J. 
de L'Ecole Polytechnique, vol. 1, pp. 24-76, 1795. 

[29] J. F. Hauer, "Application of Prony analysis to the determination of 
modal content and equivalent models for measured power system 
response," Power Systems, IEEE Transactions on, vol. 6, pp. 
1062-1068, 1991. 



Bibliography  

 

 

184 

[30] D. J. Trudnowski, J. M. Johnson, and J. F. Hauer, "Making Prony 
analysis more accurate using multiple signals," Power Systems, 
IEEE Transactions on, vol. 14, pp. 226-231, 1999. 

[31] D. Vowles (UA), M. Gibbard (UA), and D. Bones (NEMMCO), 
"Testing Continuous-Monitoring Modal-Estimation Methods: 
Assessment of the QUT Energy-Based Method (QUT Version)," 
The University of Adelaide, Adelaide, South Australia, 
Confidential Report AIR C00120, 10 August 2004. 

[32] P. Kundur and P. L. Dandeno, "Practical Applications of 
Eigenvalue Techniques in the Analysis of Power Systems 
Dynamic Stability Problems," presented at 5th Power System 
Computation Conference, Cambridge, England, September, 1975. 

[33] C. E. Grund, J. J. Paserba, J. F. Hauer, and S. L. Nilsson, 
"Comparison of Prony and eigenanalysis for power system control 
design," Power Systems, IEEE Transactions on, vol. 8, pp. 964-
971, 1993. 

[34] J. F. Hauer, C. J. Demeure, and L. L. Scharf, "Initial results in 
Prony analysis of power system response signals," Power Systems, 
IEEE Transactions on, vol. 5, pp. 80-89, 1990. 

[35] M. K. Donnelly, D. J. Trudnowski, and J. F. Hauer, "Advances in 
the Identification of Transfer Functions Models using Prony 
Analysis," presented at Proceedings of the 1993 American Control 
Conference, San Francisco, CA, vol. 2, pp. 1561-1562, 21-23 Jun, 
1993. 

[36] A. H. Nuttall, "Spectral Analysis of a Univariate Process with bad 
data points via Maximum Entropy and Linear Predictive 
Techniques," NUSC Scientific and Engineering Studies, Spectral 
Estimation, NUSC, New London, CT, 1976. 

[37] N. Kannan and D. Kundu, "Estimating parameters in the damped 
exponential model," Signal Processing, vol. 81, pp. 2343-2351, 
2001. 

[38] A. A. Beex and P. Shan, "Time-varying Prony method for 
instantaneous frequency estimation at low SNR," Proceedings - 
IEEE International Symposium on Circuits and Systems, vol. 3, 
pp. III-5 - III-8, 1999. 

[39] K. K.-P. Poon and K.-C. Lee, "Analysis of transient stability 
swings in large interconnected power systems by Fourier 



Bibliography 

 

 

185 

transformation," Power Systems, IEEE Transactions on, vol. 3, 
pp. 1573-1581, 1988. 

[40] P. O'Shea, "The use of sliding spectral windows for parameter 
estimation of decaying sinusoidal signals," presented at TENCON 
'97. IEEE Region 10 Annual Conference. Speech and Image 
Technologies for Computing and Telecommunications'., 
Proceedings of IEEE, Brisbane, Australia, vol. 2, pp. 827-830, 2-4 
Dec, 1997. 

[41] K. C. Lee and K. P. Poon, "Analysis of power system dynamic 
oscillations with beat phenomenon by Fourier transformation," 
Power Systems, IEEE Transactions on, vol. 5, pp. 148-153, 1990. 

[42] P. O'Shea, "A high resolution spectral analysis algorithm for 
power system disturbance monitoring," Transactions on Power 
Systems, vol. 17, 2001. 

[43] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time 
signal processing, 2nd ed. Upper Saddler River, N.J.: Prentice 
Hall, 1999. 

[44] P. Swerling, "Parameter Estimation for Waveforms in Additive 
Gaussian Noise," Journal of the Society for Industrial and Applied 
Mathematics, vol. 7, pp. 152-166, 1959. 

[45] R. E. Kalman, "A New Approach to Linear Filtering and 
Prediction Problems," Transactions of the ASME - Journal of 
Basic Engineering, vol. 82, pp. 35-45, 1960. 

[46] N. Funk, "A Study of the Kalman Filter Applied to Visual 
Tracking," University of Alberta 7th December 2003. 

[47] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering 
and Prediction Theory," Transactions of the ASME - Journal of 
Basic Engineering, vol. 83, pp. 95-107, 1961. 

[48] A. Stubberud and H. Wabgaonkar, "Approximation and 
Estimation Techniques for Neural Networks," presented at 28th 
Conference on Decision and Control, Honolulu, Hawaii, pp. 2736-
2740, 5-7 Dec, 1990. 

[49] S. J. Julier and J. K. Uhlmann, "A New Extension of the Kalman 
Filter to Nonlinear Systems," presented at The proceedings of 
AeroSense; The 11th International Symposium on 
Aerospace/Defense Sensing, Simulation and Controls, SPIE, 



Bibliography  

 

 

186 

Orlando, FL, USA, vol. Tracking and Resource Management II, 
April 21–24, 1997. 

[50] R. K. Mehra and J. Peschon, "An innovations approach to fault 
detection and diagnosis in dynamic systems," Automatica, vol. 7, 
pp. 637-640, 1971. 

[51] T. Kailath, "An innovations approach to least-squares estimation--
Part I: Linear filtering in additive white noise," Automatic 
Control, IEEE Transactions on, vol. 13, pp. 646-655, 1968. 

[52] F. Caliskan and C. M. Hajivyev, "Innovation sequence application 
to aircraft sensor fault detection: comparison of checking 
covariance matrix algorithms," presented at Decision and Control, 
Proceedings of the 38th IEEE Conference on, Phoenix, USA, vol. 
4, pp. 3956-3961, 7-10 Dec, 1999. 

[53] C. M. Hajiyev and F. Caliskan, "Fault detection in flight control 
systems based on the generalized variance of the Kalman filter 
innovation sequence," presented at American Control Conference, 
Proceedings of the, San Diego, CA, USA, vol. 1, pp. 109-113, 2-4 
June, 1999. 

[54] W. Martin and A. Stubberud, "An additional requirement for 
innovations testing in system identification," Automatic Control, 
IEEE Transactions on, vol. 19, pp. 583-584, 1974. 

[55] A. S. Willsky, "A survey of design methods for failure detection 
in dynamic systems," Automatica, vol. 12, pp. 601-611, 1976. 

[56] M. Farquharson, P. O'Shea, and G. Ledwich, "A computationally 
efficient technique for estimating the parameters of polynomial-
phase signals from noisy observations," Signal Processing, IEEE 
Transactions on [see also Acoustics, Speech, and Signal 
Processing, IEEE Transactions on], vol. 53, pp. 3337-3342, 2005. 

[57] S. Peleg and B. Friedlander, "The discrete polynomial-phase 
transform," IEEE Transactions on Signal Processing, vol. 43, pp. 
1901-1914, 1995. 

[58] S. Barbarossa, A. Scaglione, and G. B. Giannakis, "Product high-
order ambiguity function for multicomponent polynomial-phase 
signal modeling," Signal Processing, IEEE Transactions on [see 
also Acoustics, Speech, and Signal Processing, IEEE 
Transactions on], vol. 46, pp. 691-708, 1998. 



Bibliography 

 

 

187 

[59] B. Boashash and P. O'Shea, "Polynomial Wigner-Ville 
distributions and their relationship to time-varying higher order 
spectra," Signal Processing, IEEE Transactions on [see also 
Acoustics, Speech, and Signal Processing, IEEE Transactions on], 
vol. 42, pp. 216-220, 1994. 

[60] M. Benidir and A. Ouldali, "Polynomial phase signal analysis 
based on the polynomial derivatives decompositions," Signal 
Processing, IEEE Transactions on [see also Acoustics, Speech, 
and Signal Processing, IEEE Transactions on], vol. 47, pp. 1954-
1965, 1999. 

[61] B. Barkat and B. Boashash, "Design of higher order polynomial 
Wigner-Ville distributions," Signal Processing, IEEE 
Transactions on [see also Acoustics, Speech, and Signal 
Processing, IEEE Transactions on], vol. 47, pp. 2608-2611, 1999. 

[62] P. O'Shea, "A fast algorithm for estimating the parameters of a 
quadratic FM signal," Signal Processing, IEEE Transactions on 
[see also Acoustics, Speech, and Signal Processing, IEEE 
Transactions on], vol. 52, pp. 385-393, 2004. 

[63] B. Ristic and B. Boashash, "Comments on The Cramer-Rao lower 
bounds for signals with constant amplitude and polynomial 
phase," Signal Processing, IEEE Transactions on [see also 
Acoustics, Speech, and Signal Processing, IEEE Transactions on], 
vol. 46, pp. 1708-1709, 1998. 

[64] Matlab, "Statistics Toolbox: skewness," vol. Release 6.1, 2001. 

[65] T. George, J. Crisp, and G. Ledwich, "Advanced tools to manage 
power system stability in the National Electricity Market," 
presented at AUPEC, Brisbane, Australia, 26-29 Sep, 2004. 

[66] H. VanTrees, Detection, Estimation and Modulation Theory, Part 
1. New York: John Wiley, 1968. 

[67] S. Kay, Modern Spectrum Analysis: Prentice-Hall, 1988. 

[68] P. Z. Peebles, Probability, random variables, and random signal 
principles, 4th ed. New York, NY: McGraw Hill, 2001. 

[69] Matlab, "Control Systems Toolbox: Kalman," 2001. 

[70] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control 
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley, 
1998. 



Bibliography  

 

 

188 

[71] D. G. Lainiotis, K. N. Plataniotis, M. Papanikolaou, and P. 
Papaparaskeva, "Discrete Riccati Equation Solutions: Distributed 
Algorithms," Mathematical Problems in Engineering, vol. 2, pp. 
319-332, 1995. 

[72] K. Ogata, Discrete-time control systems, 2nd ed. Englewood 
Cliffs, N.J: Prentice Hall, 1995. 

[73] R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Rapid Detection of 
Changes to Individual Modes in Multimodal Power Systems," 
presented at TENCON 2005 IEEE Region 10, Melbourne, 
Australia, pp. 1-6, 22-24 Nov, 2005. 

[74] R. A. Wiltshire, P. O'Shea, G. Ledwich, and M. Farquharson, 
"Application of Statistical Characterisation to the Rapid Detection 
of Deteriorating Modal Damping in Power Systems," presented at 
The Seventh IASTED International Conference on Signal and 
Image Processing, Honolulu, Hawaii, USA, 15-17 Aug, 2005. 

[75] R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Rapid Detection of 
Deteriorating Modal Damping in Power Systems," presented at 
AUPEC 2004, Brisbane, Australia, pp. Paper 73, 26-29 Sep, 2004. 

[76] R. A. Wiltshire, P. O'Shea, and G. Ledwich, "Monitoring of 
Individual Modal Damping Changes in Multi-Modal Power 
Systems," Journal of Electrical & Electronics Engineering 
Australia, JEEEA, vol. 2, pp. 217-222, 2005. 

[77] J. A. R. Macias and A. G. Exposito, "Kalman filter tuning for 
digital protection applications," presented at Power Tech 
Conference Proceedings, 2003 IEEE Bologna, Italy, vol. 4, pp. 5, 
23-26 June, 2003. 

[78] B. R. J. Haverkamp, M. Verhaegen, C. T. Chou, and R. 
Johansson, "Tuning of the continuous-time Kalman filter from 
sampled data," presented at American Control Conference, 
Proceedings of the, San Diego, CA, USA, vol. 6, pp. 3895-3899, 
2-4 June, 1999. 

[79] S. Peleg and B. Porat, "Estimation and classification of 
polynomial-phase signals," Information Theory, IEEE 
Transactions on, vol. 37, pp. 422-430, 1991. 

[80] S. Peleg and B. Friedlander, "The discrete polynomial-phase 
transform," Signal Processing, IEEE Transactions on [see also 
Acoustics, Speech, and Signal Processing, IEEE Transactions on], 
vol. 43, pp. 1901-1914, 1995. 



Bibliography 

 

 

189 

[81] B. Boashash and P. O'Shea, "Polynomial Wigner-Ville 
distributions and their relationship to time-varying higher order 
spectra," IEEE Transactions on Signal Processing, vol. 42, pp. 
216-220, 1994. 

[82] S. Peleg and B. Porat, "Linear FM signal parameter estimation 
from discrete-time observations," Aerospace and Electronic 
Systems, IEEE Transactions on, vol. 27, pp. 607-616, 1991. 

[83] B. Porat and B. Friedlander, "Asymptotic statistical analysis of the 
high-order ambiguity function for parameter estimation of 
polynomial-phase signals," Information Theory, IEEE 
Transactions on, vol. 42, pp. 995-1001, 1996. 

 


