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till offentlig granskning f̈or avl̈aggande av teknologie doktorsexamen fredagen den
22 oktober 2004 i sal D3, Lindstedtsvägen 5, Kungl Tekniska Ḧogskolan, Stock-
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Abstract

This four-part dissertation is essentially concerned withsome theoretical as-
pects of the stability studies of power systems with large penetration levels
of distributed generation. In particular, in Parts I and II the main emphasis
is placed upon the transient rotor angle and voltage stability. The remaining
two parts are devoted to some system-theoretic and practical aspects of iden-
tification and modeling of aggregate power system loads, design of auxiliary
robust control, and a general qualitative discussion on theimpact that distrib-
uted generation has on the power systems.
One of the central themes of this dissertation is the development of analytical
tools for studying the dynamic properties of power systems with asynchro-
nous generators. It appears that the use of traditional tools for nonlinear
system analysis is problematic, which diverted the focus ofthis thesis to new
analytical tools such as, for example, the Extended Invariance Principle. In
the framework of the Extended Invariance Principle, new extended Lyapunov
functions are developed for the investigation of transientstability of power
systems with both synchronous and asynchronous generators.
In most voltage stability studies, one of the most common hypotheses is the
deterministic nature of the power systems, which might be inadequate in
power systems with large fractions of intrinsically intermittent generation,
such as, for instance, wind farms. To explicitly account forthe presence of
intermittent (uncertain) generation and/or stochastic consumption, this thesis
presents a new method for voltage stability analysis which makes an exten-
sive use of interval arithmetics.
It is a commonly recognized fact that power system load modeling has a
major impact on the dynamic behavior of the power system. To properly rep-
resent the loads in system analysis and simulations, adequate load models are
needed. In many cases, one of the most reliable ways to obtainsuch models
is to apply a system identification method. This dissertation presents new
load identification methodologies which are based on the minimization of a
certain prediction error.
In some cases, DG can provide ancillary services by operating in a load fol-
lowing mode. In such a case, it is important to ensure that thedistributed
generator is able to accurately follow the load variations in the presence of
disturbances. To enhance the load following capabilities of a solid oxide fuel
plant, this thesis suggests the use of robust control.
This dissertation is concluded by a general discussion on the possible impacts
that large amounts of DG might have on the operation, control, and stability
of electric power systems.
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Chapter 1

Introduction

“The idea is to try to give all the information to help others
to judge the value of your contribution; not just the

information that leads to judgment in one particular
direction or another .”

— Richard P. Feynman

1.1 Background and Motivation of the ProjectThe rapid development of distributed generation (DG) technology is grad-
ually reshaping the conventional power systems in a number of countries
in the Western Europe and North America. Wind power, microturbines,

and small hydropower plants are among the most actively developing distributed
generation. For instance, only for the period from January to June 2003, in the EU
countries approximately 1500 MW of wind power were installed to reach the land-
mark of 24626 MW installed capacity [1]. Moreover, it is projected that approxi-
mately 20% of all newly installed capacity will belong to DG [24]. It is important
to observe that the overwhelming majority of the aforementioned DG technologies
utilize asynchronous generators for electric power generation. As forthe “inertia-
less” generators, fuel cells are apparently the most attractive long-termalternative.
Very high efficiency and reliability, modularity, environmental friendliness,noise-
less operation, and high controllability make fuel cell-driven power plants asound
competitor on the future power market.

Presently, the impact of DG on the electric utility is normally assessed in plan-
ning studies by running traditional power flow computations, which seemingly isa
reasonable action, since the penetration ratios of the DG are still relatively small.
However, as the installed capacity of DG increases, its impact on the power system
behavior will become more expressed and will eventually require full-scalede-
tailed dynamic analysis and simulations to ensure a proper and reliable operation
of the power system with large amounts of DG. To address the need for dynamic

1



2 CHAPTER 1. INTRODUCTION

simulations, a number of models of the distributed generators were created in the
recent years [14,15,98]. However, to the best knowledge of the author, no system-
atic analytic investigations of the dynamic properties of the power systems with
large amounts of DG have been reported in the literature. That is, the immense
amount of case studies that can be found in the literature on DG focus mainly on
numerical experiments with either existing or artificial networks. While the nu-
merical experiments are of paramount importance to a better understanding of the
mechanisms which cause interaction between the DG and the utility, the develop-
ment of appropriate analytical tools for stability studies will open new perspectives
for dynamic security assessment of the power system and design of new control
systems, e.g.,L fV controllers.

One of the main objectives of this dissertation is to partially fill this gap by
presenting a systematic method for analyzing the transient stability of a large-scale,
asynchronous generator-driven distributed generation.

Another important theme of this thesis is the voltage collapse analysis of power
systems with large fractions of intermittent power generators. It is known that the
majority of available tools for voltage collapse analysis make use of the implicit
assumption that the power system parameters are deterministic. While this is a
valid engineering approximation for conventional power systems with negligibly
small uncertainties, it might become an oversimplification in power systems with
large penetration ratios of DG. To account for the uncertainty due to the fluctuating
power output of the DG and possibly some other uncertainties in the system (such
as load variations, transformer tap-changer position, certain impedances, etc.) this
thesis proposes the use of interval arithmetics which is well suited for such oper-
ations. In simple terms, we suggested to restate the voltage collapse problem in
terms of an interval-valued optimization problem and then to solve it by applying
the Generalized Newton method. In this method, it is explicitly assumed that the
variables are uncertain, but are bounded.

It is a well-known fact that power system loads have a significant impact on the
dynamic behavior of the system. It appears that both power system dampingand
voltage stability are dependent on the load properties. Therefore, the reliable deter-
mination of load characteristics becomes an important engineering task. In some
cases, it is more practical to aggregate several loads to an equivalent aggregate load
model. Several aggregate load models parameterized by 3 parameters havebeen
in use for a long time; however, no systematic effort has been made to develop an
algorithm for determining those parameters. Such an algorithm is developed and
presented in this thesis.
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1.2 Outline of the Thesis

Conceptually, the thesis consists of 4 parts describing the results of the research in
the fields of

1. Transient stability of power systems with large penetration ratios of DG

2. Voltage collapse of power systems with significant amounts intermittent dis-
tributed generation

3. Identification and modeling of aggregate power system loads

4. Design of robust controllers enhancing the performance of distributed gen-
erators and a general discussion on the impact that DG has on the operation,
control, and stability of the electric utility.

Part I briefly presents the definition of power system stability and the system-
theoretic foundations of the Lyapunov direct method as well as the concept of
Extended Invariance Principle (EIP). The framework of EIP is used for the con-
struction of new extended Lyapunov functions for a small-scale power system con-
sisting of synchronous and asynchronous machines. It is also demonstrated in this
part of the thesis that several well-known methods cannot yield a valid Lyapunov
(energy) function for the power system consisting of a single asynchronous gener-
ator.

Part II addresses some issues related to the voltage collapse analysis of uncer-
tain power systems. Here, the emphasis is placed upon finding the critical system
loading in the presence of uncertain generation and/or consumption. The uncertain
quantities are assumed to be bounded, which allows us to explicitly deal with them
by using interval analysis.

Part III presents a new method for identifying the parameters of aggregate non-
linear dynamic power system loads modeled by the Wiener-Hammerstein structure.
The properties of this new identification method [belonging to the family output
error methods] are studied both analytically and by using artificial data as well as
field measurements.

Part IV demonstrates the use of robust controllers for the enhancementof the
performance of a solid oxide fuel cell-driven DG power plant, which substantially
improves the load following capability of the power plant in the presence of system
uncertainties and bounded (structured) disturbances. Part IV also contains a dis-
cussion on the impact that large amounts of DG have on the operation, protection
system, and control of the power system.
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1.3 Main Contributions

The main results of this research project contain contributions to several fields of
electric power engineering, namely, the transient rotor angle and voltage stability
of electric power systems, as well as the applied identification of aggregate load
parameters. Other key contributions are related to the design of auxiliary robust
controllers enhancing the performance of DG and the general assessment of the
impact that large amounts of DG might have on the utility. More specifically, the
key contributions can be briefly summarized as follows.

1. An overview of DG technologies relevant to this project was made.

2. The DG technologies were qualitatively analyzed and their impact on the
power system was discussed. Here, such questions as the impact on the volt-
age control, inertia constants, power quality, fault current levels, protection
system, reliability, and stability were studied.

3. Models of asynchronous generators applicable to transient stability analysis
of the power system are discussed in detail.

4. The applicability of direct Lyapunov method to stability analysis of a power
system consisting of both synchronous and asynchronous generators was
studied theoretically.

5. It was shown that the Energy Metric Algorithm, First Integral of Motion,and
the Krasovskii method are incapable of synthesizing a valid Lyapunov/energy
function for a single asynchronous generator.

6. Extended Invariance Principle was reviewed and its application to the power
system with asynchronous generators was discussed.

7. New Extended Lyapunov functions were developed for the second and third
order models of the asynchronous generator.

8. To simplify the use of Extended Invariance Principle, the use of interval
arithmetics for certain set operations was proposed.

9. It was shown analytically that there exists an Extended Lyapunov function
for a mixed three-machine power system.

10. Several basic numerical experiments were conducted to further explore the
properties of the new Extended Lyapunov functions.
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11. The use of interval analysis is proposed for the voltage collapse analysis
of power systems with large fractions of intermittent power generation and
uncertain loading.

12. Two new methods were proposed for the identification of linear and nonlin-
ear models of aggregate power system loads.

13. The properties of the proposed methods were studied analytically and by
means of numerical experiments. The identification methods were success-
fully applied to identification of load models of a real-world paper mill.

14. The load following capabilities of a solid oxide fuel cell-driven power plant
were explored by means of a numerical experiment.

15. To enhance these load following capabilities, a two-degree-of-freedomH∞
controller was designed and verified.

1.4 List of Publications

The work on this doctoral project resulted in a number of publications, someof
which are listed below.

1. V. Knyazkin1, M. Ghandhari, and C. Cañizares, “Application of Extended
Invariance Principle to Transient Stability Analysis of Asynchronous Gen-
erators”, Proceedings of “Bulk Power System Dynamics and Control VI,
August 22-27, 2004, Italy.

2. V. Knyazkin, M. Ghandhari, and C. Cañizares, “On the Transient Stability
of Large Wind Farms”, Proceedings of “The 11th International Power Elec-
tronics and Motion Control Conference”, September 2–4, Latvia, 2004.

3. V. Knyazkin, L. S̈oder, and C. Cãnizares, “Control Challenges of Fuel Cell-
driven Distributed Generation”, Proceedings of IEEE Power Tech Confer-
ence Bologna, 2003, Volume: 2, June 23–26, 2003 Pages:564–569.

4. V. Knyazkin and T. Ackermann, “Interaction Between the Distributed Gen-
eration and the Distribution Network: Operation, Control, and Stability As-
pects”. In CIRED 17th International Conference on Electricity Distribution,
Barcelona, 12–15 May 2003.

1This is an anglicized version of the name that according to the Latvian Regulations No. 295
“On Spelling and Identification of Surnames” must be spelled as Valerijs Knazkins.
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5. V. Knyazkin, C. Cãnizares, and L. S̈oder, “On the Parameter Estimation and
Modeling of Aggregate Power System Loads”. IEEE Transactions on Power
Systems, Volume: 19, Issue: 2, May 2004 Pages:1023–1031.

6. V. Knyazkin, L. S̈oder, and C. Cãnizares, “On the Parameter Estimation
of Linear Models of Aggregate Power System Loads”. The Proceedings
of IEEE PES General Meeting, 2003, Volume: 4, 13–17 July 2003 Pages:
2392–2397 Vol. 4.
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tion And The Distribution Network: Operation Aspects”, The Proceedings
IEEE PES Transmission and Distribution Conference and Exhibition 2002:
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8. V. Knyazkin, “On the Use of Coordinated Control of Power System Com-
ponents for Power Quality Improvement”, Technical Licentiate. Royal In-
stitute of Technology, Stockholm, TRITA-ETS-2001-06, ISSN 1650-675X,
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9. L. Jones, G. Andersson, and V. Knyazkin, “On Modal Resonance and Inter-
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Starts by Using Coordinated Control and a Fast Switch”, The Proceedings
of PowerTech 2001, held September 9–13 2001, Porto, Portugal.

11. V. Knyazkin and L. S̈oder, “The Use of Coordinated Control for Voltage Sag
Mitigation Caused by Motor Start”, The Proceedings of the 9th International
Conference on Harmonics and Quality of Power, vol. 3, pp. 804–809, 2000.

12. V. Knyazkin, “The Oxel̈osund Case Study”, A–EES–0010, Internal report,
Electric Power Systems, Royal Institute of Technology, Sweden, August,
2000.
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Royal Institute of Technology, Sweden, September, 2000.



Part I

Transient Stability of Electric
Power Systems

7





Chapter 2

Background

“ Analysis of stability, . . . , is greatly facilitated by classification
of stability into appropriate categories. Classification,

therefore, is essential for meaningful practical
analysis and resolution of power system

stability problems.”
— A quotation from [75]

This chapter briefly presents the key definitions and concepts used throughout the
thesis.

2.1 Definition Of Distributed GenerationIn the literature, a large number of terms and definitions are used to des-
ignate generation that is not centralized. For instance, in Anglo-Saxon
countries the term “embedded generation” is often used, in North Ameri-

can countries the term “dispersed generation”, and in Europe and partsof Asia, the
term “decentralised generation” are used to denote the same type of generation.
This thesis will follow the general definition proposed in [13]:

Definition 1 Distributed generation is an electric power source connected directly
to the distribution network or on the customer side of the meter.

The distinction between distribution and transmission networks is based on the
legal definition. In most competitive markets, the legal definition for transmission
networks is usually part of the electricity market regulation. Anything that is not
defined as transmission network in the legislation can be regarded as distribution
network. It should be noted that Definition 1 does not specify the rating ofthe gen-
eration source, as the maximum rating depends on the local distribution network
conditions, e.g. voltage level. Furthermore, Definition 1 does neither definethe
area of the power delivery, the penetration, the ownership nor the treatment within
the network operation as some other definitions do.

9
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Table 2.1: Relative size of distributed generation

Micro distributed generation ∼ 1 Watt< 5kW
Small distributed generation 5kW < 5 MW
Medium distributed generation 5MW < 50MW
Large distributed generation 50MW <∼ 300MW

To further clarify the concept of distributed generation, it is also necessary to
define the relative size of the DG unit. The classification of distributed generators
according to their relative sizes is briefly summarized in Table 2.1. The penetration
level1 (PL) can be defined in two ways as is shown below.

PL =
PDG

PLoad
·100[%] (2.1)

PL =
PDG

PLoad+PDG
·100[%], (2.2)

wherePDG stands for the total active power of all distributed generators installed in
a given area andPLoad is the total active power of the load in the same area. In this
thesis the first definition is assumed.

2.2 Dynamic Phenomena in Power Systems

The importance of power system stability has been recognized at the early stage
of the power system development [91, 121]. The dimension and complexity of
power systems have been gradually increasing over the years, making thepower
system stability phenomenon a more important and challenging problem. For in-
stance, modern interconnected power systems are large, integrated, andcomplex
dynamic structures which are subject to constantly acting various (possiblyover-
lapping) physical phenomena ranging from very fast ones such as transients due
to lightening strokes to quite slow ones, such as, for instance, the dynamics of a
boiler.

A first step towards a better understanding of the power system stability phe-
nomenon is to adequately define and categorize the various phenomena occurring
in the power system. Normally, all power system phenomena are studied in the
framework of three general structures, i.e., administrative, physical, and time-scale

1In this thesis ‘penetration level’ and ‘penetration ratio’ are used synonymously.
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Figure 2.1: Simplified chart of dynamic phenomena in power systems [18]. Zones
A, B, C, and D denote fast transients, generator dynamics, quasi steady state, and
steady state, respectively.

structures [107]. The administrative structure regulates the political organization
of the power grid, i.e., it establishes the hierarchical structure of variouslayers
of the power grid. The physical structure describes the main components of the
power system, relations between them, control equipment, as well as the energy
conversion principles. Finally, the time-scale structure categorizes the dynamic
phenomena that occur in the power system according to the time scale of the un-
derlying physical processes. The latter structure is arguably the most appropriate
for studying the dynamics of the power system and hereby is adopted in this thesis.
Figure 2.1 shows an approximate time-scale structure of power system phenomena
of interest, which will be used in this thesis. In general, all the phenomena can be
divided in two large groups corresponding to fast and slow dynamics, depending
on the time scale of the underlying physical processes triggering the mechanisms
of power system instability. In the remainder of this chapter various definitions of
power system stability are presented and discussed.

2.3 Formal Definition of Power System Stability

The concept of stability is one of the most fundamental concepts in most engi-
neering disciplines. Due to the devastating impact that instabilities might cause in
dynamical systems, numerous definitions of stability have been formulated, em-
phasizing its various aspects that reflect the manifestation of the system’s stable
state. It is known that over 28 definitions of stability were introduced for technical
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and physical reasons in the systems theory. Some of the definitions might be quite
useful in one situation, but inadequate in many others. To avoid possible ambi-
guities and establish rigorous foundations of the subsequent discussion, the main
emphasis in this thesis is placed upon the so-called stability in the sense of A. M.
Lyapunov [103].

Technical assumptions

A1: The power system can in general be satisfactorily described by a set of first-
order ordinary differential-algebraic equations (DAE) of the form:

[
ẋ
0

]

=

[
f (t,x,y, p)
g(t,x,y, p)

]

= F(t,x,y, p), (2.3)

where variablet ∈ I ⊆ R represents time, the derivative with respect to time is
denoted as ˙x = dx/dt, x∈U ⊆ R

n designates the vector of state variables,y∈ R
m

is the vector of algebraic variables,p∈R
l is the vector of controllable parameters,

f : I ×R
n×R

m×R
l →R

n stands for a certain nonlinear function, andg :×R
n×

R
m×R

l → R
m denotes a nonlinear vector-valued function.

A2: We assume that the Jacobian matrix

Dyg(x,y, p) =
∂g
∂y

(2.4)

is nonsingular along all the trajectories of (2.3), thus ensuring that the setof DAE
can be reduced to a set of ODE’s by virtue of the Implicit Function Theorem[54,
104].
A3: It is also assumed that the functionF is sufficiently smooth to ensure ex-
istence, uniqueness, and continuous dependence of the solutions of (2.3) on the
initial conditions over the domain ofF .
A4: Without loss of generality, it will be assumed that the origin is a critical point
of (2.3).
Finally, letBr denote an open ball of radiusr, i.e.,Br = {x∈U : ‖x‖< r}, where
‖ ‖ is any norm andσ stands for the right maximal interval wherex(·, t0,x0, p) is
defined.

Definition 2 Let assumptionsA1–A4 hold. Then, the solution x= 0 is called stable
if ∀ε > 0 and∀t0 ∈ I there exists a positive numberδ such that∀x0 ∈Bδ and
∀t0 ∈ σ , the following inequality holds:‖x(t, t0,x0, p)‖< ε.
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This definition can be loosely restated in other terms: for every given positive ε
andt0 ∈I , there exists a positiveδ , which in general is a function ofε, such that
for all initial values ofx that belong to an open ball of radiusδ , the solutionx(t)
remains in an open ball of radiusε for all time.

Definition 3 The system is termed unstable if it is not stable.

Definition 4 The solution x= 0 of system (2.3) is referred to as uniformly stable if
∀ε > 0 there exists aδ (ε) > 0 :∀x0∈Bδ and∀t0∈I such that‖x(t, t0,x0, p)‖< ε.

Remark:Stated differently, uniform stability of (2.3) is obtained by relaxing the
dependence ofδ on t0.

Definition 5 The solution x= 0 of system (2.3) is called attractive if for each t0 ∈
I there is a positive numberη = η(t0), and for each positiveε and‖x(x0, p)‖< η
there is a positiveω = ω(t0,ε,x0, p) such that t0 + ω ∈ σ and‖x(t, t0,x0, p)‖ < ε
for all t ≥ t0 +ω .

Definition 6 The solution x= 0 is asymptotically stable if it is both stable and
attractive.

Note: In the definition above it is necessary to require that the system is both stable
and attractive, since attractivity does not—in general—imply stability. In other
words, it is possible to construct an example in which the origin is attractive, i.e.,
every solution tends to it ast→ ∞, but yet the origin is unstable [129].

Definition 7 Let x∗ be a hyperbolic equilibrium point. Its stable and unstable
manifolds, Ws(x∗) and Wu(x∗), are defined as follows:

Ws(x∗) = {x∈ R
n : Φ(t,x)→ x∗ as t→ ∞}

Wu(x∗) = {x∈ R
n : Φ(t,x)→ x∗ as t→−∞},

whereΦ(t,x) is the solution of (2.3). Then the stability region (or region/domain
of attraction) of a stable equilibrium x∗ is defined as

A(x∗) = {x∈ R
n : lim

t→∞
Φ(t,x) = x∗}.
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Definition 8 If there exists an energy function for system (2.3), then the stability
boundary∂A(x∗) is contained in the union of the stable manifolds of the unstable
equilibria on∂A(x∗). That is,

∂A(x∗)⊆
⋃

xi∈∂A(x∗)

Ws(xi),

where xi are the hyperbolic equilibria of (2.3).

Definition 9 The system (2.3) falls into the category of linear systems if F is a
linear function.

Most of physical dynamic systems, including power systems, are essentiallynon-
linear; however, it has become a common practice to study the local behaviorof the
original nonlinear system by linearizing it around an equilibrium point of interest.
Then some of the dynamic properties of the nonlinear system can be inferred by
analyzing the corresponding linear model. These properties, however,hold true
only in some sufficiently small neighborhood of the equilibrium point. To obtain
results that are valid globally, the nonlinear model has to be analyzed.

Definition 10 The system (2.3) is referred to as autonomous if F is not an explicit
function of time; otherwise it is termed non-autonomous.

Remark:Often studying the dynamic properties of power systems, it is assumed
that the system at hand is autonomous. This assumption allows the use of much
more simple analytical tools; however, in general, strictly speaking, power systems
are non-autonomous [47].

Some of the presented concepts are further clarified by the following two ex-
amples.

Example:Consider the system of 2 nonlinear autonomous differential equations
[

ẋ1

ẋ2

]

=

[
x2−x1x2

−0.9x1− (x2
1−0.7)x2

]

. (2.5)

Clearly, the origin is a critical point of (2.5), but no system trajectory converges
to it. However, as the simulations indicate, all the trajectories are bounded for
all sufficiently small‖x0‖. Thus, the origin of the system is unstable. Figure 2.2
shows the phase portrait of (2.5) for some initial conditions. It can be seen in the
figure that the system trajectory does not converge to a single point in the plane
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but approaches a limit cycle. The qualitative behavior of the system trajectory is
clearer when the state variables are plotted versus time, see Fig. 2.3.

Example:Consider the following system of autonomous linear ODE
[

ẋ1

ẋ2

]

=

[
−x2

x1−0.5x2

]

. (2.6)

Again, the origin is an equilibrium point of (2.6), but the behavior of this sys-
tem differs drastically from that of (2.5), as numerical simulations confirm, see
Fig. 2.4–2.5. Now, all the trajectories of (2.6) converge the unique asymptotically2

stable equilibrium point—the origin—as time progresses. This is an intrinsic prop-
erty of all autonomous linear systems: the stability property is invariant in the
whole state space. That is, if a linear system is stable it is stable globally, and
conversely: an unstable linear system is unstable for any initial condition.

2.4 Rotor Angle Stability

To better understand the mechanisms of the instability phenomenon in power sys-
tems and devise tools suitable for preventing system instabilities, the general con-
cept of stability is categorized into three different but—in general—not disjoint
concepts of rotor angle, voltage, and frequency stability. Historically, thepower
system researchers and practitioners investigating system’s stability placedempha-
sis on the rotor angle stability; only in the relatively recent years the importance of

2In fact, in this case the origin is an exponentially stable equilibrium.
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tem. Time domain

voltage stability was recognized. We therefore commence by quoting the classical
definition of power system stability due to E. Kimbark [69]:

Definition 11 Power system stability is a term applied to alternating-current elec-
tric power systems, denoting a condition in which the various synchronousma-
chines of the system remain in synchronism, or “in step,” with each other.

While this definition is valid and satisfactorily conforms to the system-theoretic
definitions presented above, a more elaborated definition of power systemstability
was proposed in [75]:

Definition 12 Power system stability is the ability of an electric power system, for
a given initial operating condition, to regain a state of operating equilibrium after
being subjected to a physical disturbance, with most system variables bounded so
that practically the entire system remains intact.

This new definition allows a more subtle distinction between various instability
scenarios based on the characteristics of the physical disturbance.

It is known that power systems are subject to continuously acting disturbances.
The vast majority of them are relatively small, compared to the power system ca-
pacity; however, more severe disturbances also occur. Therefore,it is natural to
subdivide the general concept of angle stability to the so-called small-disturbance
and transient stability. Thus, a power system is termed stable in the sense of small-
disturbance stability if the system’s generators are able to remain in step with each
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other after being subjected to a small disturbance. Similarly, a power system issaid
to be transiently stable if it remains intact when subjected to a large disturbance.
Normally, a disturbance is considered small if it does not cause significantdevia-
tions of the state variables from the pre-fault steady state equilibrium. Otherwise,
the disturbance is said to be large. Switching of a capacitor or a load are typical
examples of small disturbances; while a short circuit on a major power line is an
example of a large disturbance. Unlike the transient stability, the small-disturbance
stability is usually studied by analyzing the linearized equations of a given power
system.

2.5 Voltage Stability

In large-scale integrated power systems, the mechanisms that might lead to voltage
instability are to a certain extent interlinked with the rotor angle stability properties
of the system, making the analysis of the instability phenomenon quite compli-
cated [122]. Nevertheless, in the literature it is customary to distinguish between
voltage and rotor angle stability phenomena. To facilitate the understanding ofthe
various aspects of voltage instability mechanisms, the general and broad concept
of ‘voltage stability’ is subdivided into two subcategories, namely Small and Large
Disturbance Voltage Stability. These two concepts are defined as follows [75,122].

Definition 13 A power system is said to be small-disturbance voltage stable if it is
able to maintain voltages identical or close to the steady values when subjectedto
small perturbations.

Definition 14 A power system is said to be large-disturbance voltage stable if it is
able to maintain voltages identical or close to the steady values when subjectedto
large perturbations.

Thus, a voltage stable power system is capable of maintaining the post-fault volt-
ages near the pre-fault values. If a power system is unable to maintain the voltage
within acceptable limits, the system undergoes voltage collapse.

2.6 Frequency Stability

Loosely defined, the term ‘frequency stability’ refers to the ability of the power
system to maintain steady acceptable frequency following a severe system event
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resulting in a large generation-load imbalance. Technically, the frequencystabil-
ity is a system-wide phenomenon which primarily depends on the overall system
response to the event and the availability of substantial power reserves.

It is not very likely that distributed generation will have significant impact onthe
frequency stability phenomenon in the near future; due to this fact, the frequency
stability phenomenon is not studied in this thesis.

2.7 Summary

It can be noted that the definitions of voltage stability follow closely those of the
rotor angle. Analogously, the analytical tools for studying the voltage stability
phenomena are the same. That is, the small-disturbance stability can be effec-
tively studied with the help of linearized models of the power system. Inspection
of the eigenvalues of the state matrix provides sufficient information regarding the
small-disturbance voltage stability of the power system in some neighborhood of a
given operating point. On the other hand, the investigation of the large-disturbance
voltage stability properties of the power grid, requires the use of nonlinearsystem
analysis. This observation concludes the presentation of the various stability def-
initions relevant to the work presented in this thesis. The next section will briefly
present modeling issues of such power system components as the synchronous and
asynchronous generators, and solid oxide fuels cells.



Chapter 3

Power System Modeling

“All these constructions and the laws connecting them
can be arrived at by the principle of looking

for the mathematically simplest concepts
and the link between them.”

— A. Einstein.

“Obtaining maximum benefits from installed assets on an interconnected power
system is becoming increasingly dependent on the coordinated use of automatic
control systems. The ability to optimize the configuration of such control devices
and their settings is dependent on having an accurate power system model, as well
as controllers themselves”[5].
This compendious but neat quotation form a CIGRE report is cited here to signify
the importance of having an accurate model of the system studied. Indeed,the
development of an adequate model of the process is an essential part ofengineering
work. This chapter is therefore devoted to describing the basic models of some
relevant power system components.

3.1 Main Components of Power SystemsThe modern power systems are characterized by growing complexity and
size. For example, the energy consumption in India doubles every 10
years, which also applies to some other countries [87]. As the dimen-

sions of the power systems increase, the dynamical processes are becoming more
complicated for analysis and understanding the underlying physical phenomena.
In addition to the complexity and size, power systems do exhibit nonlinear and
time-varying behavior.

In an electrical system the power cannot be stored1, at each time instant there
should be a balance between the total produced and consumed power. Mathe-

1There are some exceptions e.g., a pump storage; however in thoseenergyrather thanpoweris
stored.

19



20 CHAPTER 3. POWER SYSTEM MODELING

matically this balance is expressed by differential and algebraic equations.The
presence of algebraic equations significantly complicates both analytical and com-
putational aspects of work when tackling with power systems.

To obtain a meaningful model of the power system, each component of the
power system should be described by appropriate equations be it algebraic equa-
tions, differential equations, or both. For example, there are differentmodels of
an electrical generator; depending on the application a model of suitable exactness
and complexity should be chosen to represent the generator in the study. On the one
hand, very simple models of a generator are rarely used in power system studies
when accuracy of the results is a great concern. On the other hand, if asystem con-
sists of 300 generators, each modeled by a set of three differential equations, the
system analyst would have to process at least 900 differential equations describing
the system as well as quite a few algebraic equations, the number of which de-
pends on the topology of the network. The presence of other equipment, e.g., high
voltage direct current (HVDC) systems, further contributes to the aforementioned
number of equations. Clearly, it is barely possible to carry out any analytical study
on such systems.

To overcome the problem of high dimension, the order of the system has to be
reduced. This can be done in several ways:

• Based on the physical insights, several generators are aggregated ina group
of coherent generators [88].

• Having set up the system equations, one applies a model reduction technique
and eliminates the states that have little effect on the system dynamics [88].

• Using field measurements, one applies a system identification technique to
obtain an equivalent model of the system [79].

Depending on the case study, any of the methods or a combination of them canbe
used to obtain ‘best’ dynamical models.

Linear and Nonlinear Systems

As was already mentioned, the nature of power systems is essentially nonlinear.
Mathematically speaking, nonlinear systems are known to be very hard to manage.
To work around this problem, when studying the behavior of a power system in a
neighborhood of an equilibrium point, it is a common assumption that the power
system is a linear, time-invariant system [101]. That is, the initial nonlinear sys-
tem is approximated by a linear one. In many cases of practical importance, this
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assumption works quite well yielding numerous advantages. However, when tran-
sient stability of the system is investigated, the use of a linear model may not be
justified. There are several reasons for questioning the validity of the linear model;
the main reason is the dependence of the qualitative behavior of a nonlinearmodel
on the level of disturbance. This statement is further illustrated by the following

Example:Consider the following two systems described by second order homoge-
nous differential equations (DE)

ẍ1(t)+0.01ẋ1(t)+x1(t) = 0, (3.1)

ẍ2(t)+0.01ẋ2(t)+sinx2(t) = 0. (3.2)

Equation (3.1) is a linear DE, while (3.2) is a nonlinear differential equation.We
now determine the qualitative behavior of the solutions of (3.1) and (3.2).

Since the first equation is a linear equation with the eigenvalues having negative
real part (ℜ(λ1,2) = −1/200), the domain of attraction is the whole plane. This
means, for any choice of initial state of the system, the system state variables will
always converge to the origin. This is confirmed by the explicit solution of (3.1)

x1(t) = exp(−t/200)Csin(ω1t +φ) ,

whereω1 is the imaginary part of the eigenvalue, the constantsC andφ are deter-
mined by initial conditions. Clearly, lim

t→∞
x1(t) = 0,∀C,φ .

Now equation (3.2) is examined. Despite its apparent simplicity, there exists
no closed-form solution to this equation. The difficulty in finding closed-form
solutions to nonlinear differential equations2 has stimulated the search for other
methods which allow the analyst to obtain a qualitative characteristics of a solution
without actually having to solve the equation.

For the moment, this approach will not be pursued, instead the domain of at-
traction of this system will be found. This is done by integrating the equation
backwards in time [128]. The domain of attraction3 is the region which includes
the origin, see Fig. 3.1. If the initial state of the system was chosen inside the re-
gion, the system states will eventually converge to the origin, otherwise the origin
will never be reached. �
It is evident that for small deviations from the origin, equations (3.1) and (3.2) are
equivalent (sinx≈ x); as the deviations grow in magnitude, the difference in the be-
havior becomes more expressed. This example concludes the notes on qualitative
difference between linear and nonlinear models.

2Only in some exceptional cases there exist closed-form solutions to nonlinear systems [127].
3The Bendixson theorem indicates that this domain is open.
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Figure 3.1: Domain of attraction of system (3.2)

Appreciating the importance of proper modeling of power system components,
we first present the nonlinear and then linearized equations describing the basic
components of power systems.

Modeling of Synchronous Machines

Synchronous machines are one of the most important power system components.
They are also among the oldest pieces of electrical equipment in use. We com-
mence by considering the equations describing a synchronous machine.

Depending on the nature of a study, several models of a synchronous generator,
having different levels of complexity, can be utilized [74], [88]. In the simplest
case, a synchronous generator is represented by a second-orderdifferential equa-
tion, while studying fast transients in the generator’s windings would require the
use of a more detailed model, e.g., 7th order model.

In this project, fast dynamics of synchronous generators and the network are
neglected and the generators are modeled by the two-axis model [107], i.e.,it is
assumed that the dynamical characteristics of a generator can be accurately repre-
sented by four differential equations, see (3.3)–(3.6).

dδi

dt
= ωi−ωs (3.3)

Mi
dωi

dt
= TM, i−

(
E′q,i−X′d,i Id,i

)
Iq,i

−
(
E′d,i +X′q,i Iq,i

)
Id,i−Di (ωi−ωs) (3.4)

T ′do,i

dE′q,i

dt
= −E′q,i−

(
Xd,i−X′d,i

)
Id,i +Ef d,i (3.5)
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T ′do,i

dE′d,i

dt
= −E′d,i−

(
Xq,i−X′q,i

)
Iq,i (3.6)

In the equations above, the following symbols are used to denote:

• δi : The rotor shaft angle of theith generator. Normally this angle is expressed
in radians or degrees.

• ωi ,ωs: The rotor angular velocity of theith generator. This velocity is com-
monly expressed in radians per second or per unit.ωs is the synchronous
speed of the system which usually takes two valuesωs = 100π,(120π) radi-
ans per second.

• Mi : The shaft inertia constant of theith generator which has the units of
seconds squared.

• TM,i : The mechanical torque applied to the shaft of theith generator.

• E′q,i ,E
′
d,i : These symbols denominate the transient EMF’s of the machine in

theq andd axes, respectively.

• Iq,i , Id,i : Are the equivalent currents of the synchronous machine in theq and
d axes, respectively.

• Di : The damping coefficient of theith generator.

• T ′do,i ,T
′
qo,i : Are transient time constants of the open circuit and a damper

winding in theq-axis. These time constants are commonly expressed in
seconds.

• Xq,i ,Xd,i ,X′q,i ,X
′
d,i : These four symbols stand for the synchronous reactance

and transient synchronous reactance of theith machine.

Sometimes equation (3.6) is eliminated yielding the third-order model of the syn-
chronous generator. In the equations above, the indexi runs from 1 ton, wheren is
the number of synchronous generators in the system. In our case studies, the num-
ber of synchronous machines does not exceed 2; yet in many studies thisnumber
may exceed several hundred.
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Modeling the excitation system

Control of the excitation system of a synchronous machine has a very strong in-
fluence on its performance, voltage regulation, and stability [34]. Not onlyis the
operation of a single machine affected by its excitation, but also the behaviorof
the whole system is dependent on the excitation system of separate generators. For
example, inter-area oscillations are directly connected to the excitation of separate
generators [71]. These are only a few arguments justifying the necessityfor accu-
rate and precise modeling of the excitation system of a synchronous machine. This
subsection therefore presents the modeling principles of the excitation system. A
detailed treatment of all aspects of the modeling is far beyond the scope of the
thesis; we only synoptically present a literature survey on the subject.

There are different types of excitation systems commercially available in power
industry. However, one of the most commonly encountered models is the so-called
“IEEE Type DC1” excitation system. The main equations describing this model
are listed below.

TE,i
dEf d,i

dt
= −

(
KE,i +SE,i

(
Ef d,i

))
Ef d,i +VR,i (3.7)

TA,i
dVR,i

dt
= −VR,i +KA,iRf ,i−

KA,iKF,i

TF,i
Ef d,i

+KA,i (Vre f,i−Vi) (3.8)

TF,i
dRf ,i

dt
= −Rf ,i +

KF,i

TF,i
Ef d,i (3.9)

In these equations, the parameters and variables used are:

• TE,i ,KE,i ,Ef d,i ,SE,i ,: Time constant, gain, field voltage, and saturation func-
tion of the excitor.

• VR,i ,TA,i ,KA,i : Exciter input voltage, time constant and gain of the voltage
regulator (amplifier), respectively.

• Vre f,i ,Vi : The reference and actual voltage of theith node.

• Rf ,i ,KF,i ,TF,i : Transient gain reduction circuit parameters—state, gain, and
time constant.

A block diagram of the exciter given by equations (3.7)–(3.9) is shown in Fig. 3.2.
As is evident from (3.7)–(3.9), each excitor of the type DC1 adds three state vari-
ables to the state matrix.
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Figure 3.2: IEEE Type DC1 exciter system with saturation neglected

Modeling the turbine and governor

The number of poles of a synchronous generator and the speed of the prime mover
determine the frequency of the ac current produced by the generator.In order
to control the primer mover, turbine with associated controls are used in power
systems. There exist two types of turbines—hydro and steam turbines. Only steam
turbines will be presented here.

There are several models of the steam turbines in operation in power systems.
We confine ourselves to exhibiting the simplest first-order models of the turbine
and speed governor. The equations which model the dynamics of these devices are
shown below [107].

TCH,i
dTM,i

dt
= −TM,i +PSV,i (3.10)

TSV,i
dPSV,i

dt
= −PSV,i +PC,i−

1
Ri

(
ωi

ωS

)

. (3.11)

The model (3.10)–(3.11), corresponds to a steam turbine with no reheater. The
variables and parameters of equations (3.10)–(3.11) are given in [107]. While be-
ing important pieces of power system equipment, the dynamics of the turbine and
governor are normally much slower4 than that of the exciter. This fact is often used
as an argument for neglecting the dynamics of these devices.

4In [107] the following figures are given:TSV = 2 sec. andTCH = 4 sec. On the other hand,TA
is approximately 10 to 100 times smaller.
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Asynchronous Generators

It is known that the essential dynamical properties of an asynchronousgenerator
can be accurately described by the following model [73]

1
ωs

dψds

dt
= −

rsxrr

D
ψds−ψqs+

rsxm

D
ψdr +vds

1
ωs

dψqs

dt
= ψds−

rsxrr

D
ψqs+

rsxm

D
ψqr +vqs

1
ωs

dψdr

dt
= −

rrxss

D
ψdr +

rrxm

D
ψds−

ωs−ωr

ωs
ψqr + ṽdr

1
ωs

dψqr

dt
= −

rrxss

D
ψqr +

rrxm

D
ψqs+

ωs−ωr

ωs
ψdr + ṽqr

dωr

dt
=

ωs

2H
(Tm−Te) , (3.12)

wherexss= xs+xm, xrr = xr +xm, D = xssxrr −x2
m, Te = xm(ψqsψdr−ψdsψqr)/D.

xr andxs stand for the rotor and stator leakage reactances, respectively.xm and
ωr signify the magnetizing reactance and the mechanical rotor angular frequency.
The state variablesψds,ψqs,ψdr, andψqr are thed andq components of the stator
and rotor flux linkages per second. [Note that the explicit dependence of the state
variables on time is suppressed for notational ease.]rs andrr are the stator and rotor
resistances, respectively.ωs = 2π f0, where f0 is the steady-state grid frequency
(50 or 60 Hz.) Finally,vds (ṽdr) andvqs (ṽqr) denote thed andq components of the
stator (rotor) voltage. Unless otherwise specified, all the quantities are given in per
unit. For more details on the model (3.12), the reader can refer to [73].

Neglecting the asynchronous generator’s stator dynamics, i.e., assuming that
ω−1

s dψds/dt = 0,ω−1
s dψqs/dt = 0 and that the stator resistance is negligibly small,

the following model of the asynchronous generator is obtained [23]:

dψdr

dt
= ωs

[

−
rrxss

D
ψdr +

rrxm

D
vqs+

ωs−ωr

ωs
ψqr + ṽdr

]

dψqr

dt
= ωs

[

−
rrxss

D
ψqr−

rrxm

D
vdsωs−

ωs−ωr

ωs
ψdr + ṽqr

]

(3.13)

dωr

dt
=

ωs

2H
(Tm−Te) .

Introducing the constantsvdr = ωsṽdr,vqr = ωsṽqr, a1 = rrxmωs/D,a2 = rrxssωs/D
and denoting the state variablesx1 = ψdr,x2 = ψqr,x3 = ω = ωr −ωs, we arrive at
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the reduced-order model of the asynchronous generator:

dx1

dt
= −a2x1 +x2x3 +a1vqs−vdr

dx2

dt
= −a2x2−x1x3−a1vds−vqr (3.14)

dx3

dt
= c1 +c2(vdsx1 +vqsx2)

wherec1 = ωsTm/(2H) andc2 =−a1/(2Hrr).
The steady state of the asynchronous generator is characterized by theequilib-

rium pointx∗= [x∗1,x
∗
2,x
∗
3]
′ which renders the right-hand side of (3.14) zero5. There

are 2 such points:

x∗1 =
1

2a2c2v2
s
[vqs[c2p3± p4]−2a2c1vds]

x∗2 =
−1

2a2c2v2
s
[c2p3± p4 +2a2c1] (3.15)

x∗3 =
1

2c1
[c2p3± p4] ,

where the constantsp1, . . . , p4 are defined as follows:p1 = vdsvqr− vqsvdr, p2 =

vdsvdr +vqsvqr, p3 = a1v2
s + p1, andp4 =

√

c2
2p2

3 +4a2c1c2p2−4a2
2c2

1. One of the
points is asymptotically stable, while the second is unstable. For convenience of
the analytical explorations presented in this section, the stable equilibrium point of
the model (3.14) is translated to the origin by means of the change of coordinates
ξ1 := x1−x∗1,ξ2 := x2−x∗2,ξ3 := x3−x∗3. This operation yields the model:

ξ̇1 = −a2ξ1 +x∗3ξ2 +x∗2ξ3 +ξ2ξ3

ξ̇2 = −a2ξ2−x∗3ξ1−x∗1ξ3−ξ1ξ3 (3.16)

ξ̇3 = c2vdsξ1 +c2vqsξ2.

Note that the model (3.16) can be decomposed into two parts: linear and nonlinear.
That is,

ξ̇ =





−a2 x∗3 x∗2
−x∗3 −a2 −x∗1
c2vds c2vqs 0



ξ +





ξ2ξ3

−ξ1ξ3

0



 , (3.17)

5In this thesis the prime denotes the transposition operator, unless explicitly stated otherwise.
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Figure 3.3: Simplified schematic diagram of a fuel cell

whereξ denotes the vector[ξ1,ξ2,ξ3]
′. The system (3.17) can be put in a more

compact form
ξ̇ = Aξ +g(ξ ). (3.18)

For simplicity, sometimes the vector field(Aξ +g) will also be denoted byf (ξ ) in
this thesis.

3.2 Modeling of Solid Oxide Fuel Cells

A fuel cell is an electrochemical device that oxidizes fuel without combustion to
directly convert the chemical energy of the fuel cell into electrical energy [9]. In
simple terms, the fuel cell produces electric power by feeding a hydrogen-reach
gaseous fuel to porous anode as an oxidant (air) is supplied to the cathode. The
electrochemical reactions taking place at the electrodes result in electric current
injected to the external circuit. Figure 3.3 schematically shows a simplified dia-
gram of a fuel cell. The operational principle of fuel cells was discovered by the
British amateur physicist W. Grove already in 1839. However, the commercial
potential of the fuel cell technology was only recognized in the 1960’s when fuel
cells were successfully applied in the space industry. For example, the alkaline
fuel cells belonging to the first generation of fuel cells were used in the Apollo
space vehicles. Solid oxide fuel cells belong to the second generation of fuel cells.
They are characterized by high operating temperatures (600−1000◦C), use of ce-
ramic electrolyte, the absence of external reformer, and the use of relatively cheap



3.2. MODELING OF SOLID OXIDE FUEL CELLS 29

catalysts. The high operating temperatures of SOFC result in a high temperature
exhaust which can be utilized to increase the overall efficiency of the process. In
recent years, the combined use of SOFC and a small-scale gas turbine (GT) or “mi-
croturbine” has been actively discussed. Analysis and experiments show that very
high efficiencies (over 80%) can be achieved if the hot exhaust from the fuel cell
is used to power a gas turbine [9]. It is argued in [9] and [126] that the capacity of
the microturbine should be at most one third of the capacity of the SOFT/GT sys-
tem. The technical and economical advantages of SOFC/GT systems make them
attractive energy sources for distributed generation.

In addition to generating electric power at high efficiency, the SOFC/GT based
distribution generation can also provide ancillary services such as load follow-
ing and regulation. The technical feasibility of load following functionality of
SOFT/GT systems is investigated in [135]. The numerical experiment results pro-
vided in [135] indicate that the fuel cell response times are significantly greater
than those of the GT used in that study. This result implies that the GT rather than
the fuel cells should be deployed in load following. The active power set-point of
the fuel cell should only be adjusted when it is needed to substantially alter the
net output of the SOFC/GT system. In this chapter, the main emphasis is placed
upon the control challenges of the fuel cell rather than the dynamic properties of
the microturbine; therefore, no dynamic model of the microturbine are developed.
The presence of the microturbine will be indirectly accounted for by modelingthe
voltage deviations caused by the operation of the microturbine in the analysespre-
sented here.

Fuel cell systems have to be interfaced with the distribution grid by means of a
power converter, since the fuel cells produce dc power which has to beconverted
to ac. Normally, a forced-commutated voltage source inverter (VSI) is utilized
for interfacing a fuel cell system. It is known that a VSI can provide fast and
precise control of the voltage magnitude and reactive power output of theSOFT/GT
system [85]. We, therefore, assume that the fuel cell power plant is equipped with a
VSI, whose internal voltage control loops ensure an accurate controlof ac voltage
magnitude; it is also assumed that the converter losses can be neglected andthat the
time constants of the control are small enough to not be taken into account here.

Figure 3.4 depicts a one-line diagram of the fuel cell power plant along with
its power conditioning unit (VSI). In this figure,Vf c∠θ f c denotes the ac voltage of
the VSI. Although not mentioned explicitly, we assume that the fuel cell plant is
connected to the distribution grid via a transformer which is represented in Fig. 3.4
by its leakage reactanceXt ; thus,Vs∠θs is the voltage of secondary winding of the
transformer representing the bus voltage of the fuel cell. In this case, theactive
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Figure 3.4: One-line diagram of a fuel cell-driven power plant.

power generated by the fuel cell is given by the following expression:

Pf c =
kmVdcVs

Xt
sin(θ f c−θs)

=
Vf cVs

Xt
sin(θ f c−θs), (3.19)

wherek is a constant defined by the configuration of the VSI,Vdc is the dc volt-
age of the fuel cell, andm stands for the amplitude modulation index of the VSI.
The voltage source inverter is operated in such a mode that the voltageVs is kept
constant for all times. That is, when an external disturbance is encountered which
might cause a variation ofVs, the VSI controls the modulation indexm to keepVs

constant, based on the typical control strategy of ac/dc converters. Equation (3.19)
suggests that the output power of the fuel cell will change whenm and/or angleθs

vary. For instance, faults on the distribution grid might cause voltage magnitude
variations as well as jumps in the phase angleθs. Thus, variations ofVf c and∠θs

can be seen as unwanted disturbances which should be attenuated by the control of
the fuel cell in order to provide a constant active power output. Thus, itwould be
of interest to design an auxiliary controller which ensures a smooth output power
regulation that is insensitive to small variations ofm and angle of the distribution
grid voltage.

We commence the design of such a controller by a closer examination of the
controlled object, i.e., the fuel cell power plant.

Linearized model of SOFC

Making the following assuming that: (i) the fuel cell gases are ideal;(ii ) it is suffi-
cient to define only one single pressure value in the interior of the electrodes; (iii )
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the fuel cell temperature is stable at all times; and (iv) Nernst’s equation is applica-
ble, the main equations describing the slow dynamics of a solid oxide fuel cell can
be written as follows [135], [94]:

dI r
f c

dt
=

1
Te

[
−I r

f c + Ire f
]

(3.20a)

dqin
H2

dt
=

1
Tf

[

−qin
H2

+
2Kr

Uopt
I r

f c

]

(3.20b)

dpH2

dt
=

1
τH2

[

−pH2 +
1

KH2

[
qin

H2
−2Kr I

r
f c

]
]

(3.20c)

dpH2O

dt
=

1
τH2O

[

−pH2O +
2Kr

KH2O
I r

f c

]

(3.20d)

dpO2

dt
=

1
τO2

[

−pO2 +
1

KO2

[
1

τHO
qin

H2
−2Kr I

r
f c

]]

(3.20e)

Ire f =







qin
H2

Umax
2Kr

, if Ĩ > qin
H2

Umax
2Kr

qin
H2

Umin
2Kr

, if Ĩ < qin
H2

Umin
2Kr

Ĩ = Pre f/Vre f , otherwise,

(3.21)

where I r
f c is the fuel cell current;qin

H2
stands for the hydrogen input flow; and

pH2, pO2, pH2O denote the partial pressures of hydrogen, oxygen, and water, respec-
tively. The time constantsTe,Tf ,τH2,τH2O,τO2, designate the electrical response
time of the fuel cell, fuel processor response time, response times of hydrogen,
water, and oxygen flows, respectively.KH2,KH2O, andKO2, denote the valve molar
constants for hydrogen, water, and oxygen. The auxiliary constantsUopt,Umax, and
Umin stand for the optimal, maximum, and minimum fuel utilization, respectively.
Finally, Kr = N0/(4F). The numerical values of the aforementioned constants can
be found in [135] and [94].

The dc voltage across the stack of the fuel cells is governed by the Nernst equa-
tion, i.e.,

Vdc = N0

[

E0 +
RT
2F

log

(

pH2 p1/2
O2

pH2O

)]

− r I r
f c, (3.22)

wherer,R,T,E0, andN0 are the ohmic loss of the fuel cell, universal gas constant,
absolute temperature, the ideal standard potential, and the number of fuel cells is
series in the stack. The active (dc) power produced by the fuel cell is then given by
the following relation:

Pf c = VdcI
r
f c. (3.23)
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Figure 3.5: SOFC system block diagram

The dynamic equations (3.20) of the fuel cell are linear; the only nonlinearities in
these expressions are in the stack voltage and the active power equations. The block
diagram of the SOFC plant with its basic auxiliary controls is shown in Fig. 3.5.

To obtain the complete linear model, equations (3.19), (3.22), and (3.23) have
to be linearized about the equilibrium point. The resulting linear model contains5
state variables and can be represented by

ẋ(t) = Ax(t)+Bu(t) (3.24)

y(t) = Cx(t)+Du(t), (3.25)

wherex = [∆I r
f c,∆qin

H2
,∆pH2,∆pH2O,∆pO2]

′ (here, a prime denotes transposition).
For convenience of notation, in the remainder of the chapter, the symbol∆ is omit-
ted for simplicity, but small deviations from the equilibrium are assumed. Also, the
explicit dependence of the plant states, inputs, and outputs on time is suppressed
for simplicity of notation. The state matrixA∈ R

5×5 can be easily extracted from
the dynamic equations (3.20);B ∈ R

5×3; C ∈ R
1×5; andD ∈ R

1×3 are the input,
output, and direct feedthrough matrix (their numerical values are given inthe Ap-
pendix). The input vector and the output are denoted byu = [∆m,∆θs,∆Pre f ]

′ and
y = Pf c, respectively.
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3.3 Algebraic Constraints in Power Systems

As was briefly explained in Section 3.1 on page 20, the power systems are de-
scribed by a set of differential and algebraic equations. The origins ofthe differen-
tial equations have already been discussed, while those of the algebraic equations
are the main subject of this section.

The main equations relating the algebraic variables of the power system are
given below.

0 = Vie
jθi +(Rs,i + jX ′d,i)(Id,i + jIq,i)e

j(δi−
π
2)−

− [E′d,i +(X′q,i−X′d,i)Iq,i + jE ′q,i ]e
j(δi−

π
2) (3.26)

0 = −Pi− jQi +Vie
jθi (Id,i− jIq,i)e− j(δi−

π
2) +

+PL,i(Vi)+ jQL,i(Vi) (3.27)

0 = −Pi− jQi +PL,i(Vi)+ jQL,i(Vi) (3.28)

0 = −Pi− jQi +
n

∑
k=1

ViVkYi,ke
j(θi−θk−αi,k) (3.29)

In equations (3.26)–(3.29), the following notation is adopted:

• Vi ,θi The magnitude and phase angle of theith node.

• Pi ,Qi The active and reactive power injection in theith node.

• PL,i ,QL,i The active and reactive power of the load connected to theith node.
These quantities generally are nonlinear functions of the node voltage.

• Yi,kejαi,k The complex admittance of the branch connecting theith and kth

nodes.

• Rs,i The resistance of the stator ofith generator.

The rest of the variables and parameters have been introduced earlier inthis chap-
ter. The number of the algebraic equations is dependent on the topology network,
though the structure of the equations is generic and always corresponds to that
shown in this section.

It is preferable to eliminate as many algebraic variables as possible and deal
with differential equations only, which is much simpler. In the special case of
constant impedance loads, which is always the case in this thesis, it is possible
to reduce the total number of algebraic variables to 2n equations. That is, the
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only remaining variables are the complex nodal voltages. To eliminate the stator
currents one has to solve equation (3.26) forIq,i andId,i . After some manipulation,
the following expressions are obtained:

Iq, i =−
X′d, iVi sin(θi−δi)+ViRs, i cos(θi−δi)+X′d, iE

′
d, i−E′q, iRs, i

X′d, iX
′
q, i +R2

s, i

(3.30)

Id, i =
ViRs, i sin(θi−δi)+E′d, iRs, i−X′q, iVi cos(θi−δi)+X′q, iE

′
q, i

X′d, iX
′
q, i +R2

s, i

(3.31)

Having done this, one can substitute equations (3.30) and (3.31) into (3.26)–(3.29).
Moreover, one could reduce the number of algebraic states by eliminating theactive
P and reactiveQ power from equations (3.26) – (3.29).



Chapter 4

Energy Function Analysis of
Mixed Power Systems

“. . . But in this respect hardly any other method of investigation
could be said to be completely satisfactory.”

— A. A. Lyapunov
On the generality of his method.

The Direct Lyapunov Method is one of the most powerful and well understood ana-
lytical tools for investigating the dynamic properties of electric power systemsand
other nonlinear systems. Lyapunov’s method establishes a uniform framework for
the assessment of stability of the power system by analyzing an appropriate Lya-
punov or energy function. The main advantages of the Lyapunov methodare the
possibility to perform parametric stability studies and the feasibility to conclude
stability without having to solve the nonlinear differential equations describingthe
system. On the other hand, a practical application of the Lyapunov theoryto tran-
sient stability analysis is often a nontrivial task, since finding a suitable Lyapunov
function is almost always a challenge. To overcome the difficulties inherentin the
classical Lyapunov theory, the so-called Extended Invariance Principle (EIP) can
be considered [25]. The Extended Invariance Principle is an importantextension
of LaSalle’s invariance principle which is in turn an extension of Lyapunov’s direct
method. A function satisfying the conditions of the Extended Invariance Principle
is called an extended Lyapunov function. This chapter briefly presents thebasic
concepts of Lyapunov’s direct method and the Extended Invariance Principle and
reports the main findings of this thesis related to the transient stability analysis of
power systems with asynchronous generators.

35
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4.1 Mathematical Preliminaries

The Direct Lyapunov MethodThe Lyapunov theory is essentially based on the existence of a scalar (en-
ergy or Lyapunov) function that establishes the sufficient conditions for
stability of the dynamic system in question. Furthermore, the properties of

the Lyapunov function and its Lie derivative provide auxiliary information about
the attraction region of a given equilibrium point. This subsection presents arudi-
mentary introduction to the Direct Lyapunov Method1

Let the unforced system be described by the set of autonomous nonlinear dif-
ferential equations:

ẋ = f (x), (4.1)

wherex(t) ∈ U ⊆ R
n is the vector of state variables andf stands for a continu-

ous map fromR
n to R

n. Without loss of generality, assume that the origin is the
equilibrium point of (4.1). Then the origin of (4.1) is asymptotically stable if there
exists aC1 functionV(x) such that [68]

1. V(0) = 0,

2. V(x) is positive definite∀x\0,

3. L fV = ∂V/∂x′ · f (x) = dV/dt < 0, ∀x,

whereL fV is the Lie derivative ofV along the vector fieldf . Thus, the stability
properties of the system can be established by analyzing an appropriate Lyapunov
function. If a such a function is found, than the origin of (4.1) is asymptotically
stable; however, since the Lyapunov Direct Method establishes only a sufficient
condition for stability of the system of interest, the actual system can be classified
by the Lyapunov function as unstable, while in fact it could remain stable. Onthe
other hand, if a positive definite function is found such that its Lie derivative is also
positive definite, than the system can be immediately classified unstable.

Example:Consider the set of autonomous ordinary differential equations [108]

ẋ(t) =−x(t)+2y(t), ẏ(t) =−2x(t)−y3(t) (4.2)

and the following Lyapunov function candidateV(x) = ‖x‖2. The Lie derivative
of V is given by the expression

L fV(x) =−2y2(1+y2)−2x2.

1The terms ‘Direct’ and ‘Second’ Lyapunov Method are used in this chapter synonymously.
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Clearly, bothV and−L fV are positive definite in the whole state space, which
establishes global asymptotic stability of (4.2) ‘in-the-large’. �

Example:Consider the set of autonomous linear differential equations

ẋ = Ax, (4.3)

whereA∈ R
n×n has distinct eigenvalues{λi}

n
1. Changing the coordinates by the

similarity transformationz= Tx, whereT is the matrix of right eigenvalues ofA,
the system (4.3) can be transformed to diagonal form

ż= Λz,

whereΛ = diag(λ1,λ2, . . . ,λn). Let us now apply the direct Lyapunov method to
investigate the stability of (4.3). Consider the Lyapunov function candidate

V(z) =−z′(Λ+Λ∗)z,

where the symbolΛ∗ denotes the complex conjugate ofΛ. The Lie derivative of
V(z) is

L fV(z) =−z′(Λ+Λ∗)2z.

Observe thatL fV(z) at least negative semidefinite, thus the stability of (4.3) can be
determined by inspecting the Lyapunov functionV(z) alone. Indeed, if allℜ(λi) <
0, then (4.3) is globally exponentially stable. If any ofℜ(λi) > 0, then the system
(4.3) is unstable, since for anyε-neighborhood of the origin there is an escape
segment for the system trajectory. Therefore, it can be concluded thata linear
system is stable if all the eigenvalues of its state matrix have negative real parts;
and conversely: a linear system is unstable if any of the eigenvalues has positive
real part. �

Despite the fact that the Lyapunov Direct Method has proven a very useful
and practical analytical tool, it is commonly recognized that finding an appropriate
Lyapunov function for a problem at hand is often a complicated mathematical exer-
cise. As a matter of fact, there is no general systematic procedure for constructing
Lyapunov functions for nonlinear systems of orders greater than 2.

This and some other considerations have stimulated the research in the area of
ordinary differential equations and eventually resulted in the discovery of Extended
Invariance Principle [25], [100] which allows a wider class of functionsto be used
for the assessment of the stability properties.
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4.2 Extended Invariance Principle

Consider again the set ofn autonomous ordinary differential equations (4.1) de-
scribing the power system. A simplified (weak) version of the invariance principle
is given by the following

Theorem 1 Let V : R
n→R be a continuous function. Also, let a scalar L be a con-

stant such thatΩL = {x∈R
n |V(x) < L} is bounded. Let C:= {x∈ΩL |L fV(x) >

0}, suppose thatsupx∈CV(x) = l < L. DefineΩ̄l = {x ∈ R
n | V(x) 6 L} and

E := {x ∈ ΩL | L fV(x) = 0} ∪ Ω̄l . Let B be the largest invariant set of (4.1)
contained in E. Then, all solutions of (4.1) originating inΩL converge toB, as
t→ ∞. �

A proof of the theorem can be found in [100]. Paraphrasing the theorem, it can be
said that it establishes sufficient conditions for stability of (4.1) in terms of thesets
ΩL,Ω̄l ,E and the functionV: if such sets andV exist, then the system (4.1) is stable
in the Lyapunov sense, provided the initial conditions are such thatx(0) ∈ΩL. The
sets introduced in the theorem are schematically shown in Fig. 4.1. The major
difference between LaSalle’s invariance principle and the EIP is in the fact that the
EIP allows the Lie derivativeL fV(x) to be greater than zero on some bounded
set of nonzero measure, which implies that a significantly larger class of positive
definite functions can be used as extended Lyapunov function candidates (ELFC).

A further exploration of Theorem 1 reveals that the direct application of EIP is
not straightforward, since the auxiliary requirements stated in the theorem have to
be fulfilled. That is, a suitable extended Lyapunov functionV(x) has to be found,
then it has to be shown that there exist two bounded setsΩL andC; in addition,
the constantl has to be computed, which in itself is a complicated numerical task.
Assuming that a suitable extended Lyapunov function candidate is found, verifi-
cation of the other conditions of the theorem can be simplified if the methods of
interval arithmetic are applied. The basic facts about interval arithmetics aregath-
ered in Appendix A.

A preliminary study performed within this project has indicated that the devel-
opment of a Lyapunov function for a power system with both synchronous and
asynchronous generators is a nontrivial task; therefore, it was decided to first ana-
lyze a simple power system consisting of a single generator connected to an infi-
nite bus and then extend the results to a larger number of generators. We therefore
commence by the construction of a Lyapunov function for a single asynchronous
machine-infinite bus (SAMIB) system.
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C

ΩL

Ω̄l E

x(t)

x(0)

x(∞)

Figure 4.1: Graphical illustration of the Extended Invariance Principle. Alltrajec-
toriesx(t) with x(0) ∈ΩL converge to the largest invariant set contained inE.

4.3 Single Asynchronous Machine-Infinite Bus System

Often DG power plants [e.g., microturbines and wind mills in a wind farm] consist
of a large number of individual generators. For detailed simulations, eachgenera-
tor should be modeled separately; however, for the purposes pursuedin this study,
an aggregation of the generators should be carried out. Although being an inter-
esting problem in its own right, the aggregation is not considered here; instead, it
is assumed that such an aggregation has already been done, using an aggregation
technique, e.g., that reported in [14]. That is, the DG power plant is represented
by a single aggregate, whose parameters can be readily determined from the para-
meters of the individual generators. Fig. 4.2 shows such an aggregatedDG power
plant. As can be seen in the figure, this simplified system consists of an asynchro-
nous generator denoted asAG, a step-up transformerT, a local constant impedance
load LD, and two linesL1–L2 connecting the plant to the main grid. The short
circuit capacity of the main grid is assumed to be much greater that the installed
capacity of the farm. This assumption is not limiting, since the ‘stiffness’ of the
main grid can be reduced by adjusting the impedance of the linesL1 andL2. The
power factor correcting capacitors are included in the loadLD. Figure 4.3 shows
the one-line diagram of the system studied. In the figure, the impedances ofthe
lines and the transformer are lumped into a single impedanceZ1, thus eliminating
the node 2. Let us introduce the following notation:v∞ denotes the voltage of
the main grid,vs is the terminal voltage of the asynchronous generator,Tm andTe

are mechanical and electrical torques of the generator, respectively.Applying the
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Figure 4.2: Single Asynchronous Machine Infinite Bus system	
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Figure 4.3: Impedance diagram of the SAMIB system

superposition principle, the relationship betweenvs andv∞ can be derived

vs =
Z2

Z1 +Z2
v∞, (4.4)

whereZ2 is the load impedance including the phase compensation.
In order to construct a Lyapunov function for the SAMIB system, several well-

known methods are tried. The next section summarizes the results of these at-
tempts.

4.4 Transient Stability Analysis of the SAMIB System

Verification of the Energy Metric Algorithm

The Energy Metric Algorithm has been successfully used for the construction of
energy functions for various nonlinear dynamic systems, including detailedpower
systems [47, 131]. It is therefore natural to attempt to construct a Lyapunov func-
tion for the system (3.17) using the Energy Metric Algorithm [131].
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The main steps of the algorithm for constructing a Lyapunov function for (3.17)
are outlined in Algorithm 1.
Algorithm 1:

1. Eliminate the time variable from the differential equations describing the
system

dξ1

dξ2
=
−a2ξ1 +x∗3ξ2 +x∗2ξ3 +ξ2ξ3

−a2ξ2−x∗3ξ1−x∗1ξ3−ξ1ξ3
(4.5)

dξ2

dξ3
=
−a2ξ2−x∗3ξ1−x∗1ξ3−ξ1ξ3

c2vdsξ1 +c2vqsξ2
(4.6)

dξ3

dξ1
=

c2vdsξ1 +c2vqsξ2

−a2ξ1 +x∗3ξ2 +x∗2ξ3 +ξ2ξ3
(4.7)

2. Convert the differential equations to 3 one-formsωi by multiplying and
clearing the denominator terms.

3. Reduce the one-forms to a single one-formω(ξ ) by addition and substitution
of the 3 one-forms.

4. Perform line integration ofω(ξ ) along some path, which for simplicity can
be chosen along the ‘elbow’ path. �

It appears however that no Lyapunov function can be constructed for the sys-
tem (3.17) using the Energy Metric Algorithm. This result is summarized in the
following

Proposition 1 The model (3.17) admits no energy function constructed by Algo-
rithm 1. �

Proof Consider the line integral generated by Algorithm 1.

V =
∫

Γ

{
a2c2vqsξ2 +a2c2vds(ξ1 +ξ2)+c2vds(ξ1 +x∗1)ξ3

+ c2vdsξ1x∗3} dξ1 +{c2vds(ξ1 +ξ2 +x∗2)ξ3

+ c2vds(ξ1 +ξ2)x
∗
3 +c2vqsξ2(ξ3 +x∗3)

+ a2c2vqsξ2
}

dξ2 +
{

a2
2(ξ1 +ξ2)+a2ξ1x∗3

+ a2(ξ1 +x∗1−x∗2)ξ3 +(ξ1 +x∗1)ξ3(ξ3 +x∗3)

+ ξ1x∗3(ξ3 +x∗3)}dξ3, (4.8)
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whereΓ stands for the elbow path. The Lyapunov function candidate can be rewrit-
ten in a more compact form:

V(ξ ) =
∫

Γ

3

∑
i=1

Ξi(ξ )dξi , (4.9)

where the variables entering the equation can be readily identified from (4.8).
In order to constitute a valid energy function—which is a necessary condition—
the functionsΞi(ξ ) in (4.9) must fulfil the following condition2: ∂Ξi(ξ )/∂ξk =
∂Ξk(ξ )/∂ξi ,∀i,k∈ {1,2,3}, which would guarantee the path independence of the
integral (4.8). Direct inspection of the matrix∂Ξk(ξ )/∂ξi shows that the symmetry
requirements are not fulfilled3:

∂Ξk(ξ )/∂ξi =





h11 0 0
c2vdsx∗3 h22 0

h31 0 h33



 ,h31 > 0,∀ξ . (4.10)

This observation completes the proof. �
Now a few auxiliary observations are due, which are formulated in the formof

corollary and conjecture.

Corollary 1 The [empirical] existence of a stable equilibrium of the SAMIB sys-
tem, for instance the equilibrium given by (3.15), and the converse Lyapunov the-
orems imply that there must exist a valid Lyapunov function for the model (3.18).
However, the structure of the Lyapunov function will necessarily differ from that
generated by Algorithm 1. �

Conjecture 1 The non-existence of a Lyapunov function in the form (4.8) for a
single generator suggests that no Lyapunov function of this type can be found for
a multimachine power system. On the other hand, it is possible to use a quadratic
Lyapunov functions for the estimation of the attraction region of a multimachine
power system; however, it can also be problematic due to the possible conservatism
of the estimates. �

It should however be stated that the quadratic Lyapunov functions can be quite
useful if other applications are considered, such as the design of Control Lyapunov
functions.

2For details, the reader is referred to Appendix B.
3In the equation above the elementshii are not shown as they are irrelevant.
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Verification of the First Integral of Motion Algorithm

The first integral of motion has been successfully used in power system applica-
tions for generating Lyapunov functions [95]. To facilitate the presentation, the
essential steps of the construction of a Lyapunov function using this technique are
highlighted in the following
Algorithm 2:

1. Define the quantity dt as is shown below

dt =
dξ1

−a2ξ1 +x∗3ξ2 +x∗2ξ3 +ξ2ξ3
(4.11)

=
dξ2

−a2ξ2−x∗3ξ1−x∗1ξ3−ξ1ξ3
(4.12)

=
dξ3

c2vdsξ1 +c2vqsξ2
(4.13)

2. Perform line integration of the separate pairs (4.11)–(4.13) along the sys-
tem’s post-fault trajectory.

3. Identify the energy function as the function obtained in the previous step. �

Let us now show that Algorithm 2 cannot be applied to generate a Lyapunov func-
tion for (3.17).

Proposition 2 The model (3.17) admits no Lyapunov function constructed by Al-
gorithm 2. �

Proof The necessary and sufficient condition for the existence of a Lyapunov
function generated by Algorithm 2 is the following equality

Trace∇(Aξ +g) = 0, (4.14)

where∇ denotes the gradient of the vector fieldAξ +g. As can be easily verified,
in the present case the equality (4.14) does not hold. �

Verification of Krasovskii’s method for the SAMIB system

Another well-known method for the construction of Lyapunov functions is due
to Krasovskii [68]. The mathematical machinery of Krasovskii’s method is fairly
simple and is summarized in the following theorem [19]:
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Theorem 2 Let f(ξ ) be differentiable w.r.t.ξ and let f(0) = 0; then the origin
is: (a) stable if the matrix H= ∂ f ′/∂ξ +∂ f/∂ξ ′ is negative semidefinite in some
neighborhoodN of the origin, (b) asymptotically stable if H is negative definite
in N , or (c) asymptotically stable in the large if H is negative definite for allξ
and f′ f is radially unbounded. �

Let us now show that Krasovskii’s method fails to yield a Lyapunov functionfor
the SAMIB system. This statement is formulated in the following

Proposition 3 The model (3.17) admits no Lyapunov function constructed by the
method of Krasovskii. �

Proof Clearly, the conditions of Theorem 2 are fulfilled for the system (3.17),
i.e.,(Aξ +g(ξ ))(0) = 0 and(Aξ +g(ξ )) is continuously differentiable in the entire
state space. Moreover, the function‖(Aξ +g(ξ ))‖22 = (Aξ +g(ξ ))′(Aξ +g(ξ )) is
radially unbounded, i.e., lim‖ξ‖→∞ ‖(Aξ +g(ξ ))‖22 = ∞.

Let us now determine the sign definiteness of the matrixH. Omitting the alge-
bra, this matrix can be written in the following form

H =





−2a2 0 c2vds+ξ2 +x∗2
0 −2a2 c2vqs−ξ1−x∗1

c2vds+ξ2 +x∗2 c2vqs−ξ1−x∗1 0





The application of Sylvester’s criterion indicates thatH in this particular case is
negative definite if and only if its determinant is negative. However, the determi-
nant is nonnegative for allξ ∈ R

3, as (4.15) shows.

|H|= 2a2((c2vds+ξ2 +x∗2)
2 +(c2vqs−ξ1−x∗1)

2) (4.15)

Therefore,H is sign indefinite, which implies thatf ′ f does not qualify as a valid
Lyapunov function. This concludes the proof. �

The Existence of a Quadratic Lyapunov Function

As was already stated in Corollary 1, for any dynamic system [with differentiable
vector field] possessing a stable equilibrium there exists an appropriate Lyapunov
function in some neighborhood of the equilibrium.

A näıve reasoning of this statement applied to the present system (3.17) may
include the following line of argumentation. Since the vector field(Aξ +g) in our
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case can be directly decomposed into a linear and nonlinear part, and the 2-norm
of the nonlinear part vanishes as‖ξ‖2 approaches the origin, i.e.,

lim
‖ξ‖2→0

‖g(ξ )‖2/‖ξ‖2 = 0,

in some neighborhoodN of the equilibrium the dynamics of the linear part will
dominate those of the nonlinear part4. Therefore, the stability of the equilibrium
will be solely determined by the eigenvalues of the matrixA,∀ξ ∈N . Therefore, if
all the eigenvalues have strictly negative real parts, there should exist an appropri-
ate quadratic Lyapunov function which can be found by solving the corresponding
matrix Lyapunov equation or determined as in the example on page 36. It is how-
ever known, that in practical applications such quadratic Lyapunov functions yield
overly conservative estimates of the associated attraction domain; therefore, the
application of quadratic Lyapunov functions will not be pursued in this thesis. In-
stead, the system model will be reformulated in order to facilitate the construction
of an appropriate Extended Lyapunov function.

4.5 Alternative Formulation of the System Model

Let us reformulate the model (3.13) in order to obtain an alternative representation
of the asynchronous generator in the polar coordinates(E,δ ):

E =
xm

xrr

√

ψ2
dr +ψ2

qr

δ = tan−1(−ψqr/ψdr). (4.16)

Then assuming for simplicity that the rotor voltages are zero and definingT0 =
xrr /(ωsrr), X′ = xss−x2

m/xrr the model (3.13) transforms to the following system
of equations

dδ
dt

= ωr −ωs−
Xs−X′

X′T0E
vssin(δ +φ) (4.17)

dωr

dt
= −

E
X′M

vssin(δ +φ)+
Tm

M
(4.18)

dE
dt

= −
Xs

X′T0
E +

Xs−X′

X′T0
vscos(δ +φ). (4.19)

4In most practical cases (i.e.,f ∈C1) this decomposition can also be done as follows:f (x) :=
(∂ f ′/∂x)x+{ f (x)− (∂ f ′/∂x)x}= Ax+g(x).
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Figure 4.4: Equivalent circuit of the model (4.20)–(4.22)

In equations (4.17)–(4.19) it was assumed thatvqs = vscosφ andvds = vssinφ ,
wherevs and φ are the magnitude and phase angle of the stator voltage ¯vs. To
simplify the notation, let us denoteω = ωr −ωs and introduce the following con-
stants: η1 = Xs/(X′T0),η2 = vs(Xs− X′)/(X′T0),θ = δ + φ , η3 = Tm/M, and
η4 = vs/(X′M). To make the model more realistic, a damping termD = Tf /M
proportional to the friction torqueTf is added to (4.18), resulting in the following
model

dθ
dt

= ω−
η2

E
sinθ (4.20)

dω
dt

= η3−η4Esinθ −Dω (4.21)

dE
dt

= −η1E +η2cosθ . (4.22)

It can be noticed that the model given by the equations (4.20)–(4.22) to a certain
degree resembles the equations describing a single machine system with flux decay
model; however, the physical meaning of the state variables of these two models is
quite different [95]. Figure 4.4 shows the equivalent circuit of the model.

Construction of the Lyapunov function for the simplified SAMI B
system

Construction of a suitable Lyapunov function or Extended Lyapunov function for
the system (4.20)–(4.22) has proven a very challenging mathematical task,which
confirmed the main conclusions from Section 4.4. Therefore, it was decided to
further reduce the order of the model. To do so, we postulate that

η−1
1 Ė→ 0, (4.23)
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which rendersE an algebraic variable. This approximation can be justified by the
following argument.

Consider again the differential equation describing the time evolution ofE, i.e.,
(4.22). Let us now solve the equation, assuming thatθ is an unknown function of
time. The solution is given by the expression

E(t) = E0exp(−η1t)+exp(−η1t)η2

∫ t

0
exp(η1τ)cosθ (τ)dτ. (4.24)

Taking the absolute value of both sides of (4.24) and noting that exp(η1τ)cosθ (τ)
is dominated by exp(η1τ), the following inequality can be obtained

|E(t)|6 E0exp(−η1t)+exp(−η1t)η2

∣
∣
∣
∣

∫ t

0
exp(η1τ)dτ

∣
∣
∣
∣
. (4.25)

Evaluating the integral in (4.25), the estimate ofE(t) reduces to

|E(t)|6 E0exp(−η1t)+
η2

η1
(1−exp(−η1t)) . (4.26)

Clearly, for large values ofη1, the internal voltageE(t) is mainly determined by
the quotientη2/η1. According to [106], for the typical parameter values of wind
turbines in the range 500kW to 1MW, the values ofη1 are in the range[11.1,28.9].
Recalling thatη2 is linearly proportional to the terminal voltage of the asynchro-
nous generator, we conclude that variationsE(t) follow closely the variations in
the terminal voltage.

Thus, assuming

E =
η2

η1
cosθ ,

we arrive at the following second-order model:

θ̇ = ω−η1 tanθ (4.27)

ω̇ = η3−
η2η4

2η1
sin(2θ)−Dω . (4.28)

Consider the following new energy function candidate obtained by numerous
trial-and-error experiments

V(θ ,ω) =
ω2

2
−η3θ −

η2η4

4η1
cos(2θ)+V0, (4.29)
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whereV0 is an arbitrary constant. In some neighborhood of(θ0,ω0), the function
V is locally positive definite. The Lie derivative ofV along the planar vector field
(4.27)–(4.28) is given by the expression

L fV(θ ,ω) = η1η3 tanθ −η2η4sin2 θ −Dω2. (4.30)

The functionL fV suggests that there are sets in theδ −ω plane where the Lie
derivative is positive; the boundedness of these sets needs to be checked, in order
to verify that (4.29) fulfills the conditions of Theorem 1, i.e., that it is an Extended
Lyapunov function. We will use interval arithmetics to numerically perform the
verification.

Construction of the Lyapunov function for the full SAMIB syst em

Let us now relax the assumption (4.23) and derive a new energy functionfor the full
model (4.20)–(4.22) and consider the following new Lyapunov function candidate

V(θ ,ω ,E) =
η2

2η4
ω2−

η2η3

η4
θ −η2Ecosθ +

η1

2
E2 +V0. (4.31)

The Lie derivative of (4.31) is given by

L fV(θ ,ω ,E) =−
η2D
η4

ω2−η2
2 sin2 θ +

η2
2η3

η4E
sinθ − Ė2. (4.32)

Direct inspection of (4.32) reveals that large deviations ofE from the equilibrium
point can result in positiveL fV. This observation would severely affect the use
of conventional energy function methods; however, it is less restrictivefor the Ex-
tended Invariance Principle. Technically, it is only necessary to assurethat the set
{(θ ,ω ,E) ∈ R

3 : L fV > 0} is bounded. Apparently,L fV is finite in the whole
state space, except for the manifold(θ ,ω ,0)5. For obvious reasons, it is also de-
sirable to ensure that the set on whichL fV > 0 is as small as possible. As before,
the properties ofL fV should be checked numerically.

Construction of the Lyapunov function for the three-bus power system

The construction of the energy function for the three-machine power system pre-
sented in this subsection is based on the so-called “State Function Method” [108].

5On the manifoldE = 0, the function (4.31) is not analytic; however, the model of asynchronous
generator itself is invalid on this manifold. Therefore, the state spaceU of the generator should be
restricted such thatE = 0 is excluded from it.
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Figure 4.5: Simple three-machine power system.

The development of the energy function is mainly due to [60]; however, theanaly-
sis and interpretation of the energy function are made by the author and arenovel.

The simple multimachine power system consists of two synchronous machines
(a generator and a motor) and one asynchronous generator, which are schematically
shown in Fig. 4.5. The electrical machines are interconnected in the passive net-
work whose transfer conductances are assumed to be negligibly small. Themodel
of the asynchronous generator is slightly changed in order to conform tothe model
of a synchronous generator. That is, equation (4.20) is differentiatedw.r.t time
and equation (4.21) is substituted into it, which is followed by shifting the stable
equilibrium of the three-machine system to the origin. More details can be found
in [60]. Thus, the power system is modeled by the following set of equations:

M1ẍ1 = −D1ẋ1−E1B12[(E
o
2 +x4)sin(x12+δ o

12)−Eo
2 sinδ o

12]

+ E1E3B13[sin(x13+δ o
13)−sinδ o

13] (4.33)

M2ẍ2 = −K1(x)ẋ1− (D2 +K1(x)+K3(x))ẋ2−K3(x)ẋ3−K4(x)ẋ4

− E1B12[(E
o
2 +x4)sin(x12+δ o

12)−Eo
2 sinδ o

12]

+ E3B23[(E
o
2 +x4)sin(x23+δ o

23)−Eo
2 sinδ o

23] (4.34)

M3ẍ3 = −D3ẋ3−E1E3B13[sin(x13+δ o
13)−sinδ o

13]

− E3B23[(E
o
2 +x4)sin(x23+δ o

23)−Eo
2 sinδ o

23] (4.35)

ẋ4 = T−1
2 (1−xmB22)x4 +KaM−1

2 [cosδ o
12−cos(x12+δ o

12)]

+ KbM−1
2 [cosδ o

23−cos(x23+δ o
23)], (4.36)



50 CHAPTER 4. ENERGY FUNCTION ANALYSIS

where the statesxik are defined asxi − xk. Mi andDi are the inertia constant and
the damping of machinei, respectively.Ek andT2 denote the transient EMF of
machinek and the ‘open circuit time constant’ of the asynchronous generator;Bik

is the (i,k)’s element of the reduced network matrix of the power system. The
functionsKa, Kb, andK1, . . . ,K4 are defined as follows.

Ka =
xm

T2
B12E1M2

Kb =
xm

T2
B23E3M2

K1(x) = Ka
cos(x12+δ 0

12)

x4 +E0
2

(4.37)

K3(x) = Kb
cos(x23+δ 0

23)

x4 +E0
2

(4.38)

K4(x) = −Ka
sin(x12+δ 0

12)

(x4 +E0
2)2

+Kb
sin(x23+δ 0

23)

(x4 +E0
2)2

. (4.39)

In the equations above, the state variables with superscript ‘0’ denote thesteady
state values of the corresponding state.

Defining the new constant matricesM,Ms,C,Cs,Dc, the variable matrixDv, the
new variablesσ , and the vector-valued functionf (σ) as follows,

Ms = diag(M1,M2,M3), M = diag(Ms,1), Dc = diag(D1,D2,D3,1)

Cs =





1 −1 0
1 0 −1
0 1 −1



 , C =

[
Cs 0
0 1

]

, A =

[
I3 0
0 0

]

, σ = Cx,

Dv =







0 0 0 0
−K1(x) K1(x)+K3(x) −K3(x) −K4(x)

0 0 0 0
0 0 0 0







f (σ) =







E1B12[(E0
2 +x4)sin(σ1 +δ 0

12)−E0
2 sinδ 0

12]
E1E3B13[sin(σ2 +δ 0

13)−sinδ 0
13]

E3B23[(E0
2 +x4)sin(σ3 +δ 0

23)−E0
2 sinδ 0

23]
f5(σ)







f5(σ) = T−1
2 (1−xmB22)σ4 +KaM−1

2 [cosδ 0
12−cos(σ1 +δ 0

12)]

+ KbM−1
2 [cosδ 0

23−cos(σ3 +δ 0
23)],
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equations (4.33)–(4.36) can be put in matrix form:

Aẍ+M−1(Dc +Dv)ẋ+M−1C′ f (σ) = 0. (4.40)

The energy function is sought in the following form:

V(x, ẋ) =
∫ ẋ

0
QAẋdẋ+

∫ x

0
QM−1C′ f (Cx)dx. (4.41)

The unknown nonsingular matrixQ is the main design parameter which has to be
determined. The key idea is to find such a matrixQ that the function (4.41) satisfies
the associated curl equations and the Rayleigh dissipation function ˙x′(QM−1(Dc +
Dv))ẋ > 0, which will ensure that the line integrals in (4.41) are path independent
and the Lie derivative ofV is non-positive definite.

It is shown in [60] that for somem > 0, l > −m/Trace(MS), the matrixQ
defined as

Q =

[
mMs+ lMs1Ms 0

0 mT2/xm

]

satisfies the curl equations associated withV. Thus, the following energy function
is obtained

V(x, ẋ) =
1
2

ẋ′+ [mM1 + lM11M1] ẋ+

+ m [E1B12{(E
0
2 +σ4){cosδ 0

12−cos(σ1 +δ 0
12)}−σ1E0

2 sinδ 0
12}

+ E1E3B13{cosδ 0
13−cos(σ2 +δ 0

13)−σ2sinδ 0
12}

+ E3B23{(E
0
2 +σ4){cosδ 0

23−cos(σ3 +δ 0
23)}−σ3E0

2 sinδ 0
23}

+ (2xm)−1(1−xmB22)σ2
4 ], (4.42)

wherex+ = [x1,x2,x3]
′. It can be shown that the Lie derivative of (4.42) is given

by the expression:

L fV(x, ẋ) = −
1
2

ẋ′+(QM−1(Dc +Dv)+(Dc +Dv)
′M−1Q)ẋ+

= −
1
2

ẋ′+(QM−1Dc +D′cM
−1Q)ẋ+

−
1
2

ẋ+(QM−1Dv +D′vM
−1Q)ẋ+

= −
1
2

x′+Rcx+−
1
2

x′+Rv(x)x+. (4.43)
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In order to apply (4.43) for stability studies, its properties should be clarified. In
particular, the sign definiteness ofL fV should be determined, which can be done
by a closer examination of matricesRc andRv(x). Clearly,Rc < 0, which however
does not guarantee thatL fV is non-positive. In [60], it was assumed thatE2(t)
could be linearized around the post-fault equilibrium and conditions were derived
which would assure positive definiteness ofRc +Rv. However, it should be noted
that the assumption on small changes inE2(t) might be unrealistic, sinceE2(t)
heavily depends on the terminal voltage of the asynchronous generator;should the
terminal voltage change,E2(t) will also change in fractions of a second.

Let us denote the maximum and the minimum eigenvalue ofRc andRv(x) by
λmax andλmin, respectively

λmax = max{λ (Rc)}= 2m max{(D1,D2,D3,T2x−1
m } (4.44)

λmin = min{λ (Rv(x))}= 2m (K1(x)+K3(x)). (4.45)

It is important to note that bothλmin and λmax depend linearly on the arbitrary
constantm, implying that both equalities (4.44) and (4.45) hold for any choice of
m. Therefore, in general, the negative definiteness ofL fV in (4.43) cannot be
ascertained by the choice ofm.

Recalling the inequalities from Appendix B,

x′Rcx 6 λmax‖x‖
2

x′Rv(x)x > λmin‖x‖
2,

the best and the worst-case scenarios can be considered:

Best caseThe system dynamics evolve in the [nonempty] null spaceNRv = kerRv

of the matrixRv, or alternativelyλmax+ λmin > 0 ∀x. Then, the time deriv-
ative ofV is at least nonpositive, which guarantees that(Rc +Rv) < 0, thus
renderingV a valid energy function.

Worst case If ∃ [τ1,τ2] : (Rc + Rv)(τ) ≺ 0 for all τ ∈ [τ1,τ2] and τ1 6= τ2, then
L fV(τ) > 0, which invalidates the energy function candidateV given by
expression (4.42).

Obviously, the realization of either the best or the worst case scenarios cannot be
asserted without running a time domain simulation, which makes the direct use of
V questionable. However, in the framework of the Extended Invariance Principle,
V can constitute a valid extended Lyapunov function if the conditions of Theorem 1
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are fulfilled. Thus, EIP lays a solid theoretical basis for the use of the function
(4.42) for transient stability analysis, which would be impossible in the framework
of the conventional invariance principle.

4.6 Use of Interval Arithmetics for Set Inversion

As was stated in the preceding section, in order to assess whether or not agiven
function qualifies as a valid Extended Lyapunov function, the conditions ofTheo-
rem 1 have to be checked, i.e., the setC has to be bounded and the constantsl and
L have to be computed. As this verification involves operations on sets, the useof
interval arithmetics can be attempted, since it offers tools that are able to directly
manipulate sets of numbers.

In more precise terms, the verification procedure reduces to the inversionof the
Lie derivative of the Extended Lyapunov function candidate; in other words, we
will seek the setC = {x|L fV(x) ⊂ R+} = (L fV)−1(R+). If C is bounded and
l = supx∈CV < L, thenV qualifies as an Extended Lyapunov function.

In the work reported in this chapter, the so-called SIVIA (Set InversionVia
Interval Arithmetics) algorithm was adopted to perform the set inversion [61]. The
essential steps of SIVIA are summarized below.

1. Choose a [multidimensional] box[x] enclosing the state-space domain of
interest. That is, we choose the domain that might containC. Usually, this is
some [small] neighborhood of the stable post-fault equilibrium.

2. Partition[x] into a set of non-overlapping boxes, i.e.,[x] =
⋃

[x]i .

3. Perform the test∀i, [L fV]i([x]i)⊂ R+⇒ [x]i ⊂C

4. Perform the test∃i : [L fV]i([x]i)∩R+ = /0⇒ [x]i ∩C = /0.

5. Form the union of all boxes in step (3), which yields the setC.

The major advantage of SIVIA is its ability to findall sets of interest in the given
domain of the state space.

4.7 Numerical Examples

In this section the theoretical foundations presented in the previous sections will be
further explored by means of numerical examples. The main aim of the examples
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Table 4.1: Parameters of the equivalent model of the wind farm. All values are
given in per unit on the base of the generator

H, [s] rr rs xs xr xm vs

4 0.0073 0 0.1248 0.0884 1.8365 0+ j1

is to illustrate the use of the proposed extended Lyapunov functions determining
the attraction region of simple power systems.

Example:Consider a wind farm consisting of 10 wind turbines. The total installed
capacity of the farm is 10 MW. It is also assumed that the turbines have been
aggregated in one equivalent turbine having the parameters shown in Table 4.1.
The damping termD is set to 0.05 p.u.

It has been shown in Section 4.4 that for any model having the structure (3.17),
certain commonly known Lyapunov functions cannot be constructed; therefore, the
wind turbine model will be reformulated in the polar coordinates and an Extended
Lyapunov function will be sought.

With these parameters, the model (4.20)–(4.22) can be written as follows

θ̇ = ω−9.9816E−1sinθ
ω̇ = 365.21−1877.68Esinθ −19.635ω
Ė = −11.173E +9.9816cosθ

Numerically, the corresponding simplified second-order model (4.27)–(4.28) is

θ̇ = ω−11.173tanθ (4.46)

ω̇ = 365.21−838.729sin(2θ)−19.635ω . (4.47)

Using expression (4.29), the Extended Lyapunov function candidate and its Lie
derivative can be readily computed as

V =
1
2

ω2−365.21θ −419.36cos(2θ)+456.69 (4.48)

L fV = 4080.5tanθ −18742.3sin2 θ −19.635ω2. (4.49)

The boundedness of the setC for (4.49) is checked with the help of the SIVIA
algorithm. The results of set inversion are shown in Fig. 4.6. As can be seen in the
figure,C has multiple components, one of which is bounded. In practice, it suffices
for V to have a single bounded component ofC to qualify as an Extended Lyapunov
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Figure 4.6: SetC found by the SIVIA algorithm. Only two components ofC are
shown.

function. In the case of the second-order model it is relatively easy to find the set
C by direct inspection of the level curves ofL fV; however, in general the direct
inspection can be complicated, especially ifC has multiple components. Fig. 4.7
shows the level curves of the Lyapunov function (4.48) and its Lie derivative. In
the figure, the interiors of the level curves labeled with ‘0’ show the setC, while
the sets bounded by the level curves with labels ‘35’ and ‘346’ designatethe sets
Ω̄l andΩL, respectively.

It should be noted that the performance of SIVIA was significantly improved
by reformulating the Lie derivative

L fV = η1η3 tanθ −η2η4sin2 θ −Dω2

= tanθ(η1η3−
η2η4

2
sin(2θ))−Dω2,

which is easily explained by recalling the basic properties of interval arithmetics
(A.2)–(A.4). In this example interval arithmetics not only was used to determine
the boundedness of the setC, but also to estimate the constantl = supV on this set.
The constantl was found to be numerically equal to 35.

In the present case study, the constantL = 346 was computed by evaluatingV at
the nearest unstable equilibrium point. It is interesting to note thatL could also be
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Figure 4.8: Potential energy curve vs. time for the system (4.46)–(4.47).The poten-
tial energy was computed for a hypothetic fault on the transmission system, which
resulted in a 60% voltage drop at the terminals of the asynchronous generator.
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Table 4.2: System parameters for 3-machine power system. All values are given
in per unit, exceptδ0 andT2. With minor modifications, the parameters values are
similar the values in [60].

M D x′d E0 δ0[rad] xm T2 [s] slip(0)

G1 0.0132 0.0132 0.15 1.48 0.3 — — 0
G2 0.004 0 0.137 1 0.2 2.15 0.235−0.0193
G3 0.065 0.0325 0.15 1.05 0 — — 0

determined be applying the argument of the PEBS method with the potential energy
defined asVp =−η3θ −η2η4/(4η1)(cos(2θ +2θ0)−cos(2θ0)), see Fig. 4.8.

Since the conditions of Theorem 1 are fulfilled, it can be concluded that the
function (4.48) is an Extended Lyapunov function and all trajectories initiated in
ΩL will eventually converge to the largest invariant set contained in the union of
Ω̄l and{x∈ΩL : L fV = 0}.

Example:Let us now consider the three-machine power system. The power system
consists of one synchronous generatorG1, one asynchronous generatorG2, and a
synchronous motorG3 which are interconnected by 3 power lines connected in a
star. The one-line diagram of the power system is shown in Fig. 4.9. The parame-
ters of the generators are shown in Table 4.2. The power lines have the following
reactances in per unit:Z1 = j0.2, Z2 = j0.1, andZ3 = j0.1. The synchronous fre-
quency was set to 120π. In this example a bolted6 three-phase fault is applied to
the terminals ofG3 which is then cleared. The main purpose of this example is
to further explore and validate the extended Lyapunov function (4.42) and its Lie
derivative (4.43).

A series of nonlinear time-domain experiments were performed on the three-
machine power system in MATLAB . Some of the results from the experiments
will be presently discussed. It is instructive to begin inspection of the numerical
results by observing the statex4 = E2−E2,0 and the phase portraits of the electrical
machines, see Fig. 4.10–4.14.

The simulations in this example confirm that the state variablex4 does devi-
ate significantly from its steady state. For instance, in the present case under the
fault, E2 reduced to approximately 25% of its steady state value, see Fig. 4.10.
Physically, this is easily explained by the fact that the asynchronous generator does
not have an excitation winding to supportE2 during the fault. Therefore,E2 can be

6To be exact, the fault reactance wasj10−5 p.u.
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Figure 4.9: Three-machine power system
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generator as a function of time
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Figure 4.14: Phase portrait ofG3

expected to fall rapidly as its terminal voltage decreases. This reduction in the mag-
nitude ofE2 has an important implication – an increase of the absolute values of the
variables{Ki(x)}41, see (4.37)–(4.39). As a consequence,λmin in (4.45) increases in
magnitude, which in turn results in positiveL fV(x). Thus, strictly speaking, from
the view point of the classical invariance principle, the positive definite function
(4.42) is neither a Lyapunov nor an energy function, since the measure of the set
on whichL fV > 0 is nonzero, as Fig. 4.11 shows. The conditions of Theorem 1
were in this example verified numerically, using both interval arithmetics and the
conventional real analysis.

A comparison of the critical clearing time computed by the step-by-step method
and the extended Lyapunov function, reveals that the estimates are not overly con-
servative. For instance, for this example the step-by-step methods yieldstcc = 0.25
s, while the Direct method suggeststcc = 0.241 s. That is, the error in the estimate
in this case does not exceed 3.6% �
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4.8 Summary

This chapter reports preliminary results of a study concerned with the questions
related to the transient stability of power systems with asynchronous generators. In
this study the asynchronous generators represent a large-scale windfarm consisting
of fixed-speed wind turbines with fixed pitch. For a better understanding of the
dynamic properties of the asynchronous generators, it is assumed that the necessary
turbine aggregation has been carried out and the farm can be readily represented
by a single asynchronous machine connected to an infinite bus via a transmission
system.

The objective of the study was to develop a framework for studying the transient
stability of the asynchronous generators similar to that of synchronous generators.
That is, an attempt was made to apply a Lyapunov/energy function method to the
simple power system with an asynchronous generator.

Detailed analysis was performed in order to verify the existence of a proper
Lyapunov function for the system at hand. It was demonstrated analytically that
three commonly known method for construction Lyapunov functions cannotyield
a Lyapunov function for the SAMIB system. Even though it does not imply that an
appropriate Lyapunov function does not exist, it does indicate that the construction
of such a function might be a very difficult mathematical task. This fact suggests
that other analytical tools should be be used for the stability studies of the power
system with asynchronous generators.

The Extended Invariance Principle was found capable of constructing afunc-
tion that could be used in the stability studies reported in this chapter. In particular,
an extended Lyapunov function was found for a simple power system. Theuse
of Extended Invariance Principle allows a larger class of functions to be applied
for stability studies of power systems; however, this comes at the expense of hav-
ing to perform certain operations on sets of reals. To overcome the difficulty of
manipulating the sets, the utility of interval arithmetics is proposed.

Numerical examples are used to illustrate the application of Extended Invari-
ance Principle and interval arithmetics for system stability analysis of a simplified
model of a wind farm consisting of fixed-speed wind turbines and a model of a
three-machine power system.
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Chapter 5

Assessment of Voltage Stability of
Uncertain Power Systems

“The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Therefore the true logic for this world is the calculus
of Probabilities, which takes account of the magnitude of the probability

which is, or ought to be, in a reasonable man’s mind.”
— James Clerk Maxwell (1850)

This chapter presents an application of interval arithmetics to voltage collapse
analysis. The problem of calculating the power system critical loading conditions
and determining the maximal loadability of a power system in a nondeterministic
setting are treated. The methodology for assessment of voltage stability in de-
terministic power systems is well-established in the literature; however, voltage
stability analysis of nondeterministic power systems has not yet received much
attention. In this chapter, the uncertain power system parameters such as, for in-
stance, loads and partly controllable generation are treated as intervals and the
analysis is performed using the framework of interval arithmetics. The voltage sta-
bility problem is restated in terms of an interval-valued optimization problem and
is solved by applying the Generalized Newton method.

Numerical experiments are performed in order to demonstrate the technicalities
of the proposed methodology. For the examples presented, the numerical results are
found to be reliable and nonconservative.

5.1 IntroductionReliable assessment of voltage stability of an electric power system is es-
sential for its operation and control. To accommodate the need for accu-
rate analysis of voltage stability a number of analytical and computational

tools have been developed [28], [58]. Typically, two voltage stability problems are
analyzed:

1. Determination of the maximum loadability problem and

65
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2. Computation of the critical loading of the power system [67].

In the former case, a loading scenario is assumed and the maximum power
transfer to the load buses is computed. In the latter case, a minimum system loading
is sought that would render the power system voltage unstable, i.e., the loading
that would cause voltage collapse. Such a loading is referred to as criticalsystem
loading. From the standpoint of the system operator, the power system should
be controlled is such a way that the critical loading is prevented. A recent paper
reported a new method for the assessment of voltage stability in power systems
with probabilistic nodal loading model [67].

It is shown in the literature that the voltage stability analysis problem can be
reduced to a constrained optimization problem, see [28] and references therein.
This consideration allows well-established techniques from optimization theorybe
used in voltage stability analysis (VSA) studies. Typically, the direct optimization
of a certain objective function is performed, which yields the critical points which
are the solutions to either the maximum loadability or critical loading problem.
Alternatively, the continuation method is used to solve the optimization problem
[28], [67].

In all of the aforementioned publications, it is implicitly assumed that the power
system is deterministic, with possibly one exception–the system loading which, in
some cases, is assumed to be uncertain. While in some power systems this can-
not be considered a problem, there are power systems which contain significant
amounts of uncontrollable energy sources such as, for example, large wind farms
and for these power systems the uncertainty in power generation can be significant.
As the voltage stability is—to a certain extent—a local problem, the uncertainty in
the power system parameters need to be explicitly accounted for. This chapter
presents a methodology for addressing the issue of uncertainty in the power sys-
tem generation. The uncertain parameters of a power system are represented by
intervals, i.e., it is explicitly assumed that although uncertain, the parameters are
bounded. The VSA problem is reformulated in the form of an interval-valued op-
timization and then solved using the methods of interval arithmetics.

5.2 Voltage Stability Formulation

System Modeling

In power systems analysis it is customary to model the network components with
the help of differential-algebraic equations which—in the general case—have the
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following form [28]

[
ẋ
0

]

=

[
f (t,x,y,λ , p)
g(t,x,y,λ , p)

]

= F(z,λ , p). (5.1)

In equation (5.1), the vectorx ∈ R
n typically represents the state variables of the

various power system devices and their respective controls;y ∈ R
m is the vector

of algebraic variables which normally represent nodal voltages and angles of the
load buses. Finally, the vectorsλ ∈R

l andp∈R
k stand for the set of slowly vary-

ing parameters e.g., system loading variations and the set of control parameters,
respectively. It is assumed that the system operator does not have director control
over the parametersλ , as opposed to the parametersp which can directly or indi-
rectly be altered by the operators. The vector-valued functionsf andg are defined
as f : R×R

n×R
m×R

l ×R
k→ R

n andg : R×R
n×R

m×R
l ×R

k→ R
m. For

convenience, let us introduce the variablez= (x′,y′)′. Without significant loss of
generality, it is assumed in this chapter that the parametersp are kept constant and
equal numerically to somep = po.

It is commonly assumed that the variablez evolves on such a manifoldM that
the mappingDyg remains bijective for all time [54]. If this is the case, then the
system (5.1) can be shown to have a unique solution and the algebraic equations
can be eliminated by means of the Implicit Function Theorem [104]. In this chapter
it is assumed thatDyg∈M along all system trajectories.

Depending on the nature of the VSA studies, either the conventional power-flow
equations or the complete set of differential-algebraic equations (5.1) areused in
the analysis and simulations. Nevertheless, as is reported in the literature, in many
practical cases the load-flow equations alone might be inappropriate for the needs
of rigorous voltage stability analysis [29], [30].

Voltage Collapse

The operational principles of power systems are such that at an given timein-
stant, the power system is subjected to the action of various perturbations. For
the convenience of analysis, the perturbations can be subdivided into twocate-
gories: slow and fast. All the systems considered in this chapter are assumed to be
perturbed by slow variations in the parametersλ . As the parameter vectorλ al-
ters, the equilibrium point(z∗,λ∗) of (5.1) moves in some domainΩ⊂R

n+m×R
l .

Upon approaching a local maximum of loading, the system (5.1) undergoesa local
saddle-node bifurcation, which is characterized by a unique zero eigenvalue of the
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Jacobian matrixDx f (z∗,λ∗) and the transversality conditions

Dx f ·v = D′x f ·w′ = 0 (5.2)

w′Dλ f = 0 (5.3)

w′ ·D2
x f ·v = 0. (5.4)

In equation (5.3), the variablesv andw stand for the normalized right and left
eigenvectors corresponding to the zero eigenvalue ofDx f . Note that the Jacobians
Dx f ,Dλ and HessianD2

x f in equations (5.2)–(5.4) are evaluated at the equilibrium
(z∗,λ∗).

In order to ensure a reliable and proper operation of power systems, thecurrent
equilibrium should not approach the local bifurcation point. Moreover, acertain
voltage stability margin should be identified [possibly based on practical experi-
ence] and power system operated within this stability margin. On the other hand,
because of certain economical and environmental considerations, many power sys-
tems are presently operated in a proximity to their stability limits. Thus, it becomes
an important task to reliably determine the local loadability limit for a given power
system.

There exists a dual problem to the aforementioned one, namely, the determining
of the minimal load increase that causes a system bifurcation. This problem is
commonly referred to as ‘minimum distance to collapse.’

Both these problems can be reformulated as optimization problems in which the
loadingλ is maximized and the distance‖λ −λo‖ is minimized, respectively. That
is, the maximum loadability problem reduces to the optimization of the objective
function

min
λ ,z

J1(λ ,z) =−λ (5.5)

s.t. F(z,λ ) = 0

while, the critical system loading can be computed by optimizing the following
objective function

min
λ ,z,w

J2(λ ,z,w) = ‖λ −λo‖
2 (5.6)

s.t. (F(λ ,z)′,w′DzF(λ ,z))′ = 0.
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Analytical Tools for VSA

Normally the constrained optimization problems (5.5)–(5.6) are solved either di-
rectly by applying the Lagrange multipliers technique or using the so-called the
continuation method. The direct method is less expensive numerically and only
yields the set(λ∗,z∗,w∗). The latter technique is essentially based on repetitive
computation of the system equilibria as the parameterλ (usually a scalar) is varied
and thus is more expensive numerically, as compared to the direct method. The
direct method is applied for all optimization tasks treated in this chapter.

In the discussion above, all the variables and parameters have been assumed
known exactly, which in certain situations might not be entirely true. For instance,
in power systems with substantial penetration levels of distributed generation utiliz-
ing uncontrollable energy sources, for instance wind energy, the power produced
at a given time instant is not known in advance. On the other hand, the actual
loading of a small power system also is to some extent uncertain. In large power
systems, the various loads are normally aggregated, which reduces the impact of
the load uncertainty on the stability analysis. Nevertheless, the voltage instability
phenomenon is considered to be a local one making a general discussion on the
suitability of aggregation of large loads a nontrivial task. It is therefore of interest
to develop a VSA technique capable of accounting for uncertainties in the system
parameters. One of possible alternatives is to use intervals arithmetics to perform
the constrained optimization tasks (5.5)–(5.6).

5.3 Application of Interval Arithmetics to Voltage
Collapse Analysis

Let us reformulate the two constrained optimization problems (5.5)–(5.6) stated
in Section 5.2 placing emphasis on the fact that some of the parameters are now
treated as intervals. That is, now it is assumed that bothλ andz are uncertain, but
bounded quantities. Then, the objective functionsJ1 andJ2 in (5.5)–(5.6) become

min
[λ ],[z]

J1([λ ], [z]) =−[λ ] (5.7)

s.t.F([λ ], [z]) = 0

min
[λ ],[z],[w]

J2([λ ], [z], [w]) = ‖[λ ]−λo‖
2 (5.8)

s.t. (F([λ ], [z])′,w′DzF([λ ], [z]))′ = 0.
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To solve either of (5.5) or (5.6), the method of Lagrange multipliers can be applied.
A series of experiments was performed and it was observed that the so-called

näıve Newton method was able to yield acceptable results for the problems in
which the interval parameters had relatively small uncertainties. To enhance the
numerical properties of the optimization, the Generalized Newton method (GN)
was implemented, in which the Newton iterate is given by the expression [48]:

[uk+1] = uk∩ [ǔk−DuF
−1(uk) ·F (ǔk)], (5.9)

where[uk] = [zk]× [λk]× [wk] andF is the Lagrangian defined as

F = ‖[λ ]−λo‖
2 +s′1F([u])+s′2D′zF ·w, (5.10)

DuF stands for the gradient of the Lagrangian evaluated at[uk], ands1 and s2

are the respective Lagrange multipliers. The variablesu are treated as unknown
intervals, the active powerP1 andP2 are assumed to be known intervals. All the
computations are performed in MATLAB with the help of the package INTLAB
[105].

Numerical Experiments

To exemplify the ideas presented in the preceding sections and facilitate the dis-
cussion on the results obtained, a simple power system is chosen1. The power
system consists of a slack node, three transmission lines, and twoPV nodes, see
Fig. 5.1. The relevant parameters of the system are shown in the figure. It is as-
sumed that the [aggregate] generators connected to nodesN1 andN2 maintain the
voltage magnitude of the respective nodes constant, while the voltage anglesare
considered to be state variables. For simplicity the dynamics of the generatorsand
loads are neglected. The net active power injected into the nodesN1 andN2 are
the differential between the local generation and consumption. It is also assumed
that the net active powers are uncertain, i.e.,Pi = [Pi ,Pi ], i = 1,2. In a real power
system this uncertainty can be attributed to either variable loads or generation, or
both. The power system is described by the following set of equations:

F =

[
λ1P1 +V1V2sin(δ2−δ1)−V1sin(δ1)
λ2P2 +V1V2sin(δ1−δ2)−V2sin(δ2)

]

(5.11)

Let us now solve the maximul loadability problem and also find the critical loading
of this simple power system.

1This power system was originally introduced and studied in [82].
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Figure 5.1: Three-bus power system
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Figure 5.3: Variation of the Saddle-node bifurcation point inδ1−δ2 plane

Due to the uncertainP1 andP2, the critical points of the system assume certain
values which can be computed by a repetitive use of either the direct method i.e.,
minimizing (5.5) [or (5.6)] for various combinations(p1, p2) : p1 ∈ [P1], p2 ∈ [P2]
or by using the continuation method. However, both these methods can be quite
expensive numerically. Alternatively, the objective function (5.7) [or (5.8)] can be
minimized only once yielding the desired result directly. That is, upon minimizing
the interval-valued objective functions, we can directly find such an enclosure[u∗]
that contains the set ofall values which the critical points of interest assume for
the parameters[P1] and[P2].

In the first experiment the following numerical values are chosen[P1] = [0.5±5·
10−3] and[P2] = [−0.5±5·10−3] and a local minimum of (5.7) is sought. This op-
timization problem was solved and the following numerical values were obtained:
[λ1] = [3.4903,3.5504], [λ2] = [3.4903,3.5504]. Fig. 5.2 further illustrates the re-
sults of the optimization. In the figure, the large box encloses the subset of the
δ1− δ2 plane that is guaranteed to contain all critical points corresponding the
maximal loadability of the system for allp1 ∈ [P1] andp2 ∈ [P2].
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To verify the interval computations and assess the conservatism of results, the
objective function (5.5) was minimized on the grid(p1, p2) : p1 ∈ [P1], p2 ∈ [P2]
and plotted in Fig. 5.2. As is seen in the figure, the enclosure is computed correctly
and indeed contains all the values that the critical point assumes on[P1]× [P2].

The second experiment is conducted on the same system, but in this case the
critical loading conditions are identified; that is, the objective function (5.8)is now
minimized. Assuming the same values of[P1] and[P2], the optimization is solved
and the results are depicted in Fig. 5.3. Again, the enclosure[u∗] is found that
contains all the values that the critical point assumes on[P1] and[P2]. In particular,
[λ1] = [−0.4408,−0.3807], [λ2] = [3.2610,3.3211]. That is, based on the results
obtained, it can be concluded that the power system under considerationwill re-
main voltage stable if the load at nodeN1 is not greater than sup[λ1] · [P1] and the
load at nodeN2does not exceed the value inf[λ2] · [P2]. The dotted line in Fig. 5.3
shows the enclosure[u∗] (large box) and the movement of the critical point (saddle
node) as the function of(p1, p2) : p1 ∈ [P1], p2 ∈ [P2]. Direct inspection of Fig. 5.3
indicates that the enclosure is not exceedingly conservative.

5.4 Summary

This chapter considers an application of interval arithmetics to voltage stability
analysis. In particular, the problem of calculating the power system criticalloading
conditions and determining the maximal loadability of a power system in an un-
certain setting are treated. The application of the method presented in this chapter
allows the power system operator to assess the location of critical points of inter-
est directly without having to perform repeated optimization of the corresponding
objective function in order to account for the system uncertainties.

Numerical experiments are performed in order to demonstrate the technicalities
of the proposed methodology. The numerical results are found to be reliable and
nonconservative.
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Chapter 6

Identification and Modeling of
Aggregate Power System Loads

“A basic rule in estimation is not to estimate
what you already know.”

— A quotation from [113]

This chapter addresses some theoretical and practical issues relevant to the prob-
lem of modeling and identification of aggregate power system load. Two identifi-
cation techniques are developed in the theoretical framework of stochasticsystem
identification. The identification techniques presented in this chapter belong to
the family of output error models; both techniques are based on well-established
equations describing load recovery mechanisms having a commonly recognized
physical appeal. Numerical experiments with artificially created data werefirst
performed on the proposed techniques and the estimates obtained provedto be as-
ymptotically unbiased and achieved the corresponding Cramér-Rao lower bound.
The proposed techniques were then tested using actual field measurements taken at
a paper mill, and the corresponding results were used to validate a commonly used
aggregate load model.

The results reported in this chapter indicate that the existing load models sat-
isfactorily describe the actual behavior of the physical load and can be reliably
estimated using the identification techniques presented herein.

6.1 IntroductionAccurate models of power system loads are essential for analysis and sim-
ulation of the dynamic behavior of electric power systems [5]. Having
accurate models of the loads that are able to reliably reflect underlying

phenomena of the physical loads is important for the purposes of designing auto-
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matic control systems and optimization of their configuration. More importantly,
the dynamic properties of power system loads have a major impact on system sta-
bility [5, 66, 122]. In particular, previous work on the subject of voltagestability
reported in the literature indicates that the parameters of both static and dynamic
loads have significant impact on voltage stability of the power systems [53, 122].
On the other hand, the impact of power system load models on inter-area oscilla-
tions is discussed in [5], demonstrating the influence that load parameters have on
the dominant system eigenvalues. This dependence reveals the link between the
effectiveness of power system damping controllers (e.g., power systemstabilizers
or PSS) and the correctness of the eigenstructure of the system, which is dependent
on the load model.

To be able to predict the behavior of a system, reliable models of system compo-
nents are needed that faithfully reflect the dynamical behavior of the actual physical
components of the system. Most of the power system components can be satisfac-
torily modeled by considering the physical laws which govern the respective com-
ponents. There are, however, some cases when power system modelingis quite a
complicated exercise. Modeling power system loads is one of them. It is known
that at high voltage levels, the power system loads have to be aggregated inorder
to obtain manageable models suitable for analysis and simulations [5]. Depending
on the load type (e.g. lighting, motor load, heating, etc.), the parameters of the
aggregate load model may vary in a wide range. When the parameters of all load
components are well known, the parameters of the aggregate load models can be
readily determined. If the parameters of separate loads are not known orthe load
structure is known, but the proportion of various load components is not, deriving
an aggregate load becomes more difficult.

It can be argued that in the absence of precise information about a power sys-
tem load, one of the most reliable ways to obtain an accurate model of the load is
to apply an identification technique. That is, if field measurements of load quan-
tities (e.g., the voltage and current/power) adequately describing its behavior are
available, then a dynamic and/or static equivalent of the load can be obtainedby
analyzing functional relationships between these quantities.

The current chapter is concerned with theoretical and numerical aspects of iden-
tification of an aggregate model of power system loads. Identification of both lin-
ear and nonlinear models of a power system load is treated. Two identification
techniques are presented that belong to the so-called family of output error models.
First, the estimation of the load parameters using a linear model is presented, which
is followed by the presentation of a nonlinear identification technique. The statisti-
cal properties of the proposed identification methods are studied both numerically
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and analytically. Thus, artificially created data are analyzed numerically andthe
variance of the obtained estimates is compared with the corresponding Cramér-
Rao lower bound. Then, in order to benchmark the identification techniquesand
validate the analytical load models, field measurements taken at a paper mill were
used. The results obtained indicate that the load models describe the actual be-
havior of the load with high accuracy. Moreover, it is shown that the load model
parameters can be accurately identified using the proposed techniques.

6.2 Aggregate Models of Power System Loads

In general, obtaining detailed models of power system loads is a more complicated
task than modeling a particular power system component, such as, for instance, a
synchronous machine. The problem is two-fold:

(a) Loads are time variant and stochastic;

(b) In most cases, at high voltage levels the loads must be aggregated.

The latter is due to the large number and types of loads connected at the transmis-
sion system level, which makes the consideration of each separate load numerically
impractical and provides no insight into the system analysis. The time varianceof
loads can be accounted for by the explicit modeling their dynamic behavior by
differential and/or difference equations.

Power system load aggregation can be performed in two ways:

(i) Analytically, by lumping similar loads and then using pre-determined values
for each parameter of the load (e.g. [3] and [4]) or

(ii) Selecting a load model and then performing parameter estimation using an
appropriate identification technique.

Static load models

Due to the importance of adequate load modeling, a large number of various static
models of power system loads have been developed. Despite this diversity, in prin-
ciple, they all serve one common goal: to reflect the voltage and possibly frequency
dependence of the active and reactive components of the loads. For example, in [4]
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the following standard load models used for dynamic studies in established stabil-
ity programs (e.g., EPRI’s LOADSYN and ETMSP packages) are suggested:

P = P0

[

Pa1

[
VL

V0

]Kpv1

[1+Kp f1( f − f0)]+(1−Pa1)

[
VL

V0

]Kpv2
]

(6.1)

Q = P0

[

Qa1

[
VL

V0

]Kqv1

[1+Kq f1( f − f0)]

+ [1+Kq f2( f − f0)]

[
Q0

P0
−Qa1

][
VL

V0

]Kqv2
]

(6.2)

whereVL and f are the load bus voltage and frequency, respectively. In equations
(6.1)–(6.2),Kpv1 andKpv2 represent the voltage exponents for frequency dependent
and frequency independent active power load;Kqv1 andKqv2 stand for the voltage
exponents for the uncompensated and compensated reactive power load; Kp f1 and
Kq f1 are the frequency sensitivity coefficients for active and uncompensated reac-
tive power load;Kq f2 is the frequency sensitivity coefficient for reactive compen-
sation; andPa1 andQa1 represent the frequency dependent fraction of active load
and reactive load coefficient of uncompensated reactive load to activepower load,
respectively.V0, P0, andQ0 denote the nominal values of the load voltage and ac-
tive and reactive power of the load. It is important to note that in the models above
some fraction of the load is explicitly modeled as a function of bus voltage, while
the other fraction is as an explicit function of frequency.

The usefulness of a load model is directly related to the correctness of the para-
meters of the model. The parameters can be obtained in two ways: pre-determined
values can be chosen based on the load type, or the parameters can be estimated
based on field measurements. The latter is more expensive but it is preferable, since
it can yield more accurate values of the load parameters.

The estimation of the parameters of a static load is relatively simple, as the load
model does not involve dynamical variables; in this case, the task of parameter
estimation is practically reduced to curve fitting. References [35] and [132] report
successful attempts to estimate static load parameters using a modified algorithm
of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) and a least squares technique,
respectively. It should however be noted that the application of any gradient-based
optimization routine can potentially lead to hitting a local optimum of the associ-
ated objective function, and thus obtaining inaccurate parameter values.
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Dynamic load models

Nonlinear Dynamic Load Models

The impact that loads have on the dynamics of a power system has stimulated
significant research efforts directed towards proper modeling of certain character-
istics of power system loads. In many cases the use of static load models may be
inappropriate due to their failure to accurately reflect the influence of the load on
system stability [4], [81]; hence, since some loads do exhibit dynamical behavior
(e.g., motor loads), these are represented by means of dynamical models.

It has been shown in [5] and [53] that the following models of aggregate loads
can successfully capture the dominant nonlinear steady-state behavior of the load
as well as load recovery and overshoot:

ẋ(t) =−
x(t)
Tp

+P0

[
VL(t)

V0

]Nps

−P0

[
VL(t)

V0

]Npt

Pd(t) =
x(t)
Tp

+P0

[
VL(t)

V0

]Npt
(6.3)

ż(t) =−
z(t)
Tq

+Q0

[
VL(t)

V0

]Nqs

−Q0

[
VL(t)

V0

]Nqt

Qd(t) =
z(t)
Tq

+Q0

[
VL(t)

V0

]Nqt
(6.4)

In the equations abovePd(t) andQd(t) are the active and reactive power demand
of the load,P0, Q0, andV0 stand for the nominal active, reactive power and voltage,
respectively; the parametersTp andTq denote the time constant of the load internal
state variablesx(t) andz(t); and the exponentsNps, Nqs, Npt, andNqt are the steady
state and transient voltage indices. Observe that neglecting the frequency depen-
dence in the static load model (6.1)–(6.2), the nonlinear load model (6.3)–(6.4) is
equivalent to this model in steady state, i.e., for ˙x(t) = 0.

In the remainder of the chapter, the following notation will be usedy(t) := Pd(t)
andθ = [Nps,Npt,T−1

p ]′= [θ1,θ2,θ3]
′. In general, for a given load the exponentsθ1

andθ2 are not known exactly; however, similarly to the case of static load models,
average values for many load types have been pre-determined. For example, [5]
gives the following lower and upper bounds for these indices:

0 6 θ1 6 3, 0.5 6 θ2 6 2.5. (6.5)
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For simplicity, henceforth, the voltageV0, active and reactive powerP0,Q0 will
be assumed to be known values. Thus, the system voltage can be normalizedand
denoted by:V(t) := VL(t)/V0. In the subsequent sections of this chapter only the
model of active power (6.3) will be considered. The reactive power model given
by (6.4) can be treated in exactly the same manner.

It should be noted that the load models (6.3)–(6.4) are linear in the states; the
nonlinearities enter the equations as inputs and outputs. Thus, strictly speaking,
the model in the identification procedure discussed here should be referred to as
a “Hammerstein-Wiener” model structure [42]. However, since these models are
actually used in stability analysis of power systems, where load voltage magnitudes
are treated as either algebraic or state variables, the model is typically referred to
as a nonlinear model in this context. For this reason, and for the simplicity of
the comparisons between the two different load models discussed here, thepresent
model is referred to as a “nonlinear model” in the remainder of the chapter.

Linear Dynamic Load Models

When studying the behavior of a system in a small proximity of a given operating
point, the original nonlinear model can be approximated by a linear counterpart.
That is, the nonlinear system can be linearized around the equilibrium point.Since
the functionsVθ1(t) andVθ2(t) are smooth for a smoothV(t), the right-hand sides
of (6.3) can be expanded in a Taylor series, resulting in the linearized model of the
load [53]:

∆ẋ(t) = −θ3∆x(t)+P0(θ1−θ2)∆V(t)

= −A(θ)∆x(t)+B(θ)∆V(t)

∆y(t) = θ3∆x(t)+P0θ2∆V(t)

= A(θ)∆x(t)+D(θ)∆V(t). (6.6)

In principle, to obtain a rough estimate of the system behavior, pre-determined
values of the steady state and transient voltage indices can be used in simulations.
However, as the transmission systems become more stressed, it becomes important
to have more accurate estimates of the indices, since they directly influence im-
portant system characteristics such as damping; that is, incorporation ofinaccurate
load characteristics in power system simulation models can lead to overestimation
of system damping [81].
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As in the case of static load models, the load characteristics can be identified
based on field measurements. The use of identification techniques can yield accu-
rate estimates of load parameters, provided certain care has been exercised when
selecting input signals and setting up the measurement circuits. These and related
questions are treated in more detail in the next section.

6.3 System Identification

System identificationcan be defined as a collection of techniques which aim at ex-
tracting a mathematical model of a given process by analyzing relations between
the input and output quantities of the process. Modern system identificationhas de-
veloped into a mature engineering discipline which is intensively applied in many
branches of modern engineering. In this chapter, only identification techniques
that are relevant to the problem at hand will be reviewed; for a detailed treatment
of system identification theory and practice the reader is referred to [79,80,89].

AutoRegressive Moving Average with eXternal input (ARMAX)
method

In its simplest form, the procedure of process identification may be formulatedas
follows:

Given two vectors u,y find three sets of parameters ai ,bk,cl , i = 1,2, . . . ,n; k =
1,2, . . . ,m; l = 1,2, . . . , p of a transfer function such that the model outputŷ best
fits the measured data y, being subjected to the same excitation signal u.
The desired parameters can be found as shown below. Assume that the process

can be described by the model (6.7)

y(t)+a1y(t−1)+ · · ·+any(t−n)
︸ ︷︷ ︸

A(q)y(t)

= b1u(t−1)+ · · ·+bmu(t−m)
︸ ︷︷ ︸

B(q)u(t)

+e(t)+c1e(t−1)+ · · ·+cpe(t− p)
︸ ︷︷ ︸

C(q)e(t)

(6.7)

or introducing the backward shift operatorq, equation (6.7) can be cast in the form

A(q)y(t) = B(q)u(t)+C(q)e(t), (6.8)

with the parameter vector

θ = [a1, . . . ,an,b1, . . . ,bm,c1, . . . ,cp]
′ .
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Equation (6.8) can be reshaped by introducing ˆy(t|θ)–an estimate ofy(t):

C(q)ŷ(t|θ) = B(q)u(t)+ [C(q)−A(q)]y(t) (6.9)

and further rearrangement of (6.9) yields:

ŷ(t|θ) = B(q)u(t)+ [1−A(q)]y(t)+ [C(q)−1] [y(t)− ŷ(t|θ)]
︸ ︷︷ ︸

ε(t|θ)

(6.10)

= φ ′(t|θ)θ . (6.11)

Minimization of the prediction errorε(t|θ) will yield the desired result–the pa-
rameterθ , i.e., the parametersai ,bk, andcl . Once an objective function has been
chosen, the minimization can be done in many ways. If the analyst has decidedthat
the objective function should be a quadratic function inθ , e.g., 1/2ε(t|θ)′ε(t|θ),
then the optimization results in the closed form solution:

θ̂ =

[

1
N

N

∑
t=1

φ(t)φ ′(t)

]−1
1
N

N

∑
t=1

φ(t)y(t) (6.12)

State space identification methods

Now suppose that a model of the process is given by the state space model:
{

x(t +1) = Ax(t)+Bu(t)+v(t)
y(t) = Cx(t)+Du(t)+w(t),

(6.13)

wherev(t) andw(t) are the process and measurement noise [118]. The following
statistical characteristics are given:

E [v(t1)v
′(t2)] = R1(θ)δt1,t2

E [v(t1)w
′(t2)] = R12(θ)δt1,t2 (6.14)

E [w(t1)w
′(t2)] = R2(θ)δt1,t2,

whereR are covariance matrices. The aim of the identification is to obtain the
matricesA,B, andC such that the response of model (6.13) best fits the measured
data.

The task is solved in several steps which involve solving a Riccati equation
associated with (6.13) and (6.14):

P = APA′+R1−
[
APC′+R12

][
CPC′+R2

]−1[
CPA′+R′12

]
. (6.15)
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Note that in (6.15) the argument of matricesR(θ) is suppressed for conciseness.
Having foundP, one should compute the Kalman gain as

K =
[
APC′+R12

][
CPC′+R2

]−1
(6.16)

Next, one-step ahead predictions are calculated which can be further used for the
unknown parameter determination:

x̂(t +1|t) = Ax̂(t|t−1)+Bu(t)+Kỹ(t)
y(t) = Cx̂(t|t−1)+ ỹ(t).

(6.17)

Subspace identification methods

Subspace identification methods are relatively new; however, they have already
proven to be a sound alternative to well-established identification algorithms.

The power of the subspace algorithms lies in the following facts:

• They provide a clear link to the “old” identification methods

• They are of intrinsic Multi-Input-Multi-Output (MIMO) nature

• They allow the engineer to robustly estimate a possible order of the plant
(done through inspection of singular values of the identified model)

• They allow for a lucid geometrical interpretation which actively connects
human’s intuition [93].

Recent research [40] indicates that the use of subspace identification techniques can
be utilized for the model-free Linear Quadratic Gaussian (LQG) controller design,
which can be viewed as a very useful feature enabling the user to obtain an LQG
controller without the need for identification of a process model.

Subspace identification methods exploit the so-called orthogonal projections of
“the future outputs onto past and future inputs and the past outputs”. Mathemati-
cally the task of system identification is solved in several steps [40].

Step 1
Given two measurementsui andyk, i,k = 1,2, · · · ,N, form the input matrices for
the ‘past’ and ‘future’ signals:

U1 =








u0 u1 · · · uk−1

u1 u2 · · · uk
...

...
...

...
uBH−1 uBH · · · uBH+k−2








, (6.18)
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U2 =








uBH uBH+1 · · · uBH+k−1

uBH+1 uBH+2 · · · uBH+k
...

...
...

...
uBH+FH−1 uBH+FH · · · uBH+FH+k−2








, (6.19)

wherek is the number of columns1, BH andFH stand for the backward and for-
ward prediction horizons (number of data samples used for backward/forward pre-
diction), respectively. According to [93], the prediction horizons must be “large
enough”.U1 andU2 denote matrices containing the ‘past’ and ‘future’ signals. In
a similar manner matricesY1 andY2 for the outputyk are formed.

Step 2
Define the new matrixW1 = [Y′1,U

′
1]
′ and then calculate the matricesLw andLu:

Y2/

[
W1

U2

]

= Y2
[
W′1U

′
2

]
[

W1W′1 W1U ′2
U2W′1 U2U ′2

]†[
W1

U2

]

(6.20)

= LwW1 +LuU2 (6.21)

In equation (6.20), the operator ‘†’ is understood as the Moore-Penrose pseudo-
inverse. For any square nonsingular matrixR, its pseudo-inverseR† = R−1. If R
is a non-square matrix and the following holds:R†RR† = R†,RR†R= R,(R†R)′ =
R†R,(RR†)′ = RR†, thenR† is the pseudo-inverse ofR.

Step 3
The procedure terminates by computing the singular value decomposition (SVD)
of Lw and estimating of the future output ˆx1 [45]:

Lw = [Ua Ub]

[
Sa 0
0 Sb

][
V ′a
V ′b

]

, (6.22)

whereUa,Ub are the output singular vectors,Va,Vb are the input singular vectors,
andSa,Sb are the singular values of the matrixLw.

x̂1 = S1/2
a V ′aW1. (6.23)

Concluding remarks on system identification

The main reasons for using identification techniques in power systems are the
uncertain nature of the power system and ageing of power system components.

1In [40], it is noted thatk has to approach infinity in order to attain unbiased estimates.
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Of course, it is preferable to explore every possibility of developing models of
the system based on physical insights in order “not to estimate what we already
know” [113]. Often a combination of modeling based on physical insights and
system identification yields best results.

Power System Load Identification

In the context of this chapter, the load voltage and load power comprise the pair of
input and output signals. It can be noticed that both models (6.3) and (6.4)describe
the dynamic behavior of a load as functions of the nodal voltage in a noise-free
environment i.e., the presence of noise is not reflected in the models. Hence, to
account for the presence of noise in the measurements and since no information
is available regarding the noise model, an output error model is chosen, which
is known to be robust and have a plausible physical interpretation. To simplify
notation, two new functionsu1(θ) andu2(θ) are introduced:

u1(θ) := P0V
θ1(t)−P0V

θ2(t)

u2(θ) := P0V
θ2(t)

Now, the model (6.3) can be reformulated in a stochastic framework as:

ẋ(t) =−θ3x(t)+u1(θ)

y(t) = θ3x(t)+u2(θ)+e(t)

= ŷ(t)+e(t).

(6.24)

In the equation above, the terme(t) represents white Gaussian noise with known
statistics. Similar arguments apply to the model of reactive power.

Model discretization

Since measurements used in system identification are collected at predefinedin-
stants of time, the continuous-time load equations (6.24) should be converted to
discrete-time counterparts. In this work, the discrete-time description of the load
equations is based on the Zero-Order Hold method (ZOH) and is obtained asfol-
lows [124]:

x(kℓ+ ℓ) = F(θ)x(kℓ)+H(θ)u1(kℓ) (6.25)

y(kℓ) = θ3x(kℓ)+u2(kℓ)+e(kℓ) (6.26)
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whereℓ := tk+1− tk,∀k ∈ I ⊆ N, stands for the sampling interval, and the vari-
ablesF(θ) andH(θ) are:

F(θ) := exp(−θ3ℓ), (6.27)

H(θ)u1(kℓ) =
∫ kℓ+ℓ

kℓ
{exp(θ3(kℓ+ ℓ− τ))u1(τ)}dτ

= (1−F(θ))θ−1
3 u1(kℓ). (6.28)

In equation (6.28), it is assumed that the input functionu1(τ) is constant and equal
to u1(kℓ) for kℓ 6 τ 6 kℓ+ ℓ.

Several numerical experiments conducted in the framework of this thesis con-
firmed that ZOH discretization yields the least error as compared with other meth-
ods such as, for instance, the forward Euler and the trapezoidal methods. Thus,
ZOH is used here to discretize the nonlinear equations (6.24).

Prediction Error for the Nonlinear Load Model

The discretized equations can be utilized as a basis for the prediction of future
outputs of the dynamic system, i.e.,

qx(kℓ) − F(θ)x(kℓ) = H(θ)u1(kℓ)

x(kℓ) = (q−F(θ))−1H(θ)u1(kℓ)

y(kℓ|θ) = θ3
{
(q−F(θ))−1H(θ)u1(kℓ)

}
+u2(kℓ)e(kℓ)

=
1−F(θ)

q−F(θ)
u1(kℓ)+u2(kℓ)+e(kℓ)

= ŷ(kℓ|θ)+e(kℓ). (6.29)

In equation (6.29), the symbolq denotes the forward shift operator. It is interesting
to observe that the predicted value of the system output ˆy(k|θ) at timek equals the
sum of the pre-filtered input functionu1(k) and input functionu2(k). Finally, the
prediction error is defined as the difference between the predicted and actual output
of the system

ε(k|θ) = y(k)− ŷ(k|θ), ∀k∈I . (6.30)
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Prediction Error for the Linear Load Model

Similarly to the nonlinear load model, let us assume that the dynamic response of
the load can be satisfactorily described by a linear output error model, i.e.,

∆y(t) = A(θ)∆x(t)+D(θ)∆V(t)+e(t). (6.31)

Applying the ZOH method to linearized load model (6.6), one readily obtains the
discrete load model:

∆x(kℓ+ ℓ|θ) = F(θ)∆x(kℓ)+Γ(θ)∆V(kℓ)

∆y(kℓ|θ) = A(θ)∆x(kℓ)+D(θ)∆V(kℓ)+e(kℓ), (6.32)

where (6.32),Γ(θ) = H(θ)P0(θ1− θ2), whereF(θ) andH(θ) are defined as in
(6.27) and (6.28), respectively.

Eliminating the state variable∆x(kℓ), the discretized output error model (6.32)
can be rewritten in the form of a transfer function:

∆y(kℓ|θ) =
θ3Γ(θ)

q−F(θ)
∆V(kℓ)+e(kℓ)

= P0
1−F(θ)

q−F(θ)
(θ1−θ2)∆V(kℓ)+e(kℓ)

= ∆ŷ(kℓ|θ)+e(kℓ). (6.33)

The prediction error for the linearized model is formulated as the difference be-
tween the measured output∆y(kℓ) and the predicted output∆ŷ(kℓ):

ε(k|θ) = ∆y(kℓ)−∆ŷ(kℓ|θ), ∀k∈I . (6.34)

Minimization of the Prediction Error

Ideally, in a noise-free environment the prediction error is zero at all times, if both
load model and the values of the parameter vectorθ are known exactly. In practice,
however, this is not achievable due to the fact that these conditions are not satisfied;
moreover, field measurements always contain noise. Therefore, in the best case
scenario, one can hope for keeping the prediction error reasonably small, which
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can be accomplished by formulating an optimization problem in which certain ob-
jective function—often a 2-norm of the prediction error vector—is minimized by
varying the parameter vectorθ over the feasible parameter space. We thus follow
the system identification tradition and define the optimization problem as

θ ∗ = argmin
θ∈Ω

1
2N
‖ε(θ)‖22 . (6.35)

In the expression above,N is the number of data samples,θ ∗ and Ω stand for
the optimal parameter vector and the feasible parameter space defined by (6.5),
respectively.

The success of prediction error minimization depends on a number of factors,
namely,

(i) The optimization technique applied

(ii) The availability of a reasonable initial vectorθ0, and

(iii) The properties of the objective function.

While the first two factors in most practical cases can be relatively easy overcome,
non-convexity of the objective function can in general represent a significant chal-
lenge for all gradient-based optimization techniques. In order to avoid the traps of
local minima, a robust minimization technique capable of finding the global opti-
mum has been applied in the work reported in this chapter. A brief descriptionof
this optimization method as well as the techniques used to determine the variance
of the estimates are given below.

Adaptive Simulated Annealing

Simulated annealing (SA) can be defined as a family of general-purpose con-
strained optimization algorithms whose operational principles imitate the process
of crystal formation in solids during gradual cooling [92], [119].

The key idea behind SA algorithms is the analogy with the thermodynamical
process of cooling of a substance and subsequent formation of regular crystals.
It has been discovered that when slowly cooled, the molecules of the substance
tend to assume spatial positions which minimize the total potential energy of the
substance. Analogously, in SA optimization routines a certain objective function
represents the potential energy of the substance, the parameters to be optimized
can be thought of as the molecules of the substance. The analogy is completed by
introducing an artificial parameter that represents the temperature of the substance.
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The invention of SA is credited to Metropolis [83]; however, its widespread
use was initiated by Kirkpatrick’s work [70]. Simulated annealing algorithms have
already been applied to a large number of optimization problems such as power
system planning and dynamic security assessment, spectral analysis estimation,
signal detection, image processing and many other.

The main strength of SA algorithms lies in the fact that they are capable of
finding the global optimum of a given objective function. This is achieved byin-
troducing the so-called acceptance probability which allows avoiding local optima.
The simplest implementation of an SA algorithm involves the following steps.

• Selection of an initial guessθ0 of the parameter vectorθ .

• Formulation of the objective functionJ(θ) and temperature scheduleTk(∆Jk,k),
wherek is the iteration number. Evaluation of the objective function atθ0.

• Setting the so-called generating probability function, i.e., the function that
will govern the formation of random perturbations to the current parameter
vectorθ .

• Setting the acceptance probability which is described by the Boltzmann dis-
tribution pk(∆Jk,Tk).

• Generation ofr perturbationsθ (r) in proximity toθ0 and computing the cor-
responding∆J(r)

k = J(r)
k −Jk. If θ (r) yields an increase of the objective func-

tion, it is accepted as the new parameter vector, i.e.,θ ← θ (r), otherwise it is
accepted with the probabilityp(r)

k = exp(∆J(r)
k /Tk).

• Selection of a stopping criterion and checking if the stopping criterion is
satisfied.

• The iteration number is increased and the temperature is reduced.

It is known that simulated annealing algorithms are statistically guaranteed to find
global optima, provided the temperature schedule, generating probability function,
and acceptance probability are properly chosen [111]. It should however be noted
that simulated annealing has some drawbacks, one of which is slow convergence
rate.

Several modifications have been made to the basic SA algorithms in an attempt
to improve its performance. One of the most successful SA variations was devel-
oped by L. Ingber [59] and termedAdaptive Simulated Annealing(ASA). Due to a
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new temperature schedule withTk decreasing exponentially in time and utilization
of re-annealing ASA performs significantly better that the basic SA algorithmand
algorithms based on Cauchy annealing.

The reasonable performance of ASA combined with the ability to locate global
optima make its use suitable for the optimization tasks studied in this chapter.

Cramér-Rao Lower Bound for the nonlinear load model

Determination of an optimalθ ∗ satisfying (6.35), constitutes the first step of the
load identification procedure presented in this chapter. The second step involves the
computation of the variance of the estimates to assess the “quality” of the proposed
identification procedure. The variance of the estimates depends on several factors,
among which the most important for the application discussed here are the number
of data samples available, the variance of noisee(t), the model of the load, and the
input signal.

To assess the minimum variance of the unknown parameters, the so-called
Craḿer-Rao Lower Bound (CRLB) is often used. By definition, CRLB is an in-
verse of the Fisher Information Matrix (FIM)

FIM = E

((
∂ lnL(θ ,N)

∂θ

)′ ∂ lnL(θ ,N)

∂θ

)

, (6.36)

whereN is the number of data samples available andE (ξ ) is the expected value
of ξ . The maximum likelihood function lnL(θ ,N) is defined in terms of the corre-
sponding probability density functionL(θ ,N) as follows:

L(θ ,N) =
(2π)−N/2
√

det(W)
exp

[

−
1
2

[y− ŷ]′W−1 [y− ŷ]

]

=
(2π)−N/2
√

det(W)
exp

[

−
1
2
‖y− ŷ‖2W−1

]

(6.37)

In equation (6.37),W is a symmetric matrix representing the covariance of white
Gaussian noisee(t). This matrix can be used as an instrument to accentuate reliable
parts of the measured datay. Often it is assumed thatW = σ2IN, whereIN is the
identity matrix andσ2 is the variance ofe(t). Without significant loss of generality,
in the remainder of this chapter it is assumed thatW ≡ IN, which renders the two
norms‖ · ‖2 and‖ · ‖W−1 equivalent.

The derivation of CRLB for the parameter vectorθ requires the computation
of the gradient of the maximum likelihood function, which is equivalent to the
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gradient of the objective function in (6.35). The gradient is computed as follows:
(for notational simplicity the argumentθ is suppressed in the following)

1
2N

∂‖ε(θ)‖22
∂θ

=
1

2N
∂ (ε ′ε)

∂θ

=
1

2N

[
∂ε ′

∂θ
ε +
(
ε ′⊗ In

) ∂ε
∂θ

]

=
1
N

∂ε ′

∂θ
ε, (6.38)

where the Jacobian matrix∂ε ′/∂θ is defined by

∂ε ′

∂θ
=










∂ε1

∂θ1

∂ε2

∂θ1
· · ·

∂εn

∂θ1
∂ε1

∂θ2

∂ε2

∂θ2
· · ·

∂εn

∂θ2
∂ε1

∂θ3

∂ε2

∂θ3
· · ·

∂εn

∂θ3










(6.39)

and the partial derivatives are

∂εk

∂θ1
=

F(θ)−1
q−F(θ)

P0V
θ1(k) lnV(k)

∂εk

∂θ2
=

1−q
q−F(θ)

P0V
θ2(k) lnV(k)

∂εk

∂θ3
= ℓF

1−q
(q−F(θ))2u1(k).

(6.40)

It should also be noted that for the load model adopted in this chapter, i.e., that
given by (6.25)–(6.26), the CRLB explicitly depends on both the input signalV(k)
and the sampling intervalℓ. Moreover, by direct inspection of equations (6.39)
and (6.40), one can immediately conclude that forV(k)≡ 1∀k, the matrix∂ε ′/∂θ
looses rank and as a resultFIM becomes singular indicating that the variance of
θ is infinite; that is, the parametersθ are not identifiable, when the voltage is at
steady state(V(t) = V0).

It should be noted that the Jacobian (6.39) can be utilized to enhance the iden-
tification procedure by excluding the parametersθi that are weakly identifiable or
non-identifiable [27], [57]. That is, one can use the algorithm proposed in [27] to
determine which load parametersθi cannot be reliably identified from the available
field measurements. This can be done in the following 5 steps.
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1. Decompose∂ε ′/∂θ := VΛV ′.

2. Inspect the eigenvalues of the Jacobian, i.e., the diagonal elements of the ma-
trix Λ. Determine the numberρ which is equal to the number of eigenvalues
of the Jacobain which are greater than some threshold value. This number
indicates the number of identifiable parameters.

3. PartitionV := V1⊕V2, whereV1 ∈ R
N×ρ consists of the firstρ columns of

matrixV.

4. FactorizeV ′1 to obtain the orthonormal basis of the range space ofV ′1, the
upper triangular matrixR, and the permutation matrixP, i.e.,V ′1P := QR.

5. UseP to determine the parametersθi that should not be identified but rather
set to some (approximate) values which are know beforehand.

The study reported in [27] indicates that this algorithm allows a significant reduc-
tion of the variance of the estimates of theρ parameters even when the exact values
of the non-identifiable parameters are unknown. A more detailed descriptionof the
algorithm and its applications can be found in [27], [57]. Numerical experiments
conducted in the framework of this study show that for the typical values ofthe
load parameters the Jacobian matrix is always well-conditioned implying that all
3 parameters are identifiable; thus this algorithm is not applied in the case study
discussed here.

6.4 Application Examples

Artificial data

In order to investigate the statistical properties of the identification procedure pre-
sented in this chapter, a series of experiments is conducted using artificially created
data. Thus, in this section, the following issues are addressed:

• It is shown numerically that the estimates are asymptotically unbiased, which
would not have been the case if an unreasonable predictor was chosen.

• A rough estimate of the magnitude of bias that can be expected for the lin-
earized model (6.33) is obtained, which is a basic issue in system identifica-
tion that has not yet been addressed in the current literature in load modeling.
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• The adequacy of the optimization routine, i.e. an adaptive simulated anneal-
ing algorithm, used in the chapter is demonstrated, as the method is able to
locate the global minimum of the objective function in all experiments.

The data vectory(tk) is generated with the help of a model with known parameters
θ ; the outputy(tk) is then corrupted by Gaussian noise having known statistics,
i.e.,e(t)∼N (0,σ2I) and the identification procedure is applied. The estimates of
the parameter vectorθ are analyzed in this case to assess the performance of the
proposed technique.

The main goal of the numerical experiments in this section is to investigate the
asymptotic behavior of the variance of the estimatesθ̂(N). In other words, the
following relation has to be verified numerically:

lim
N→∞

varθ̂(N) = 0 (6.41)

for both linear and nonlinear load models. In expression (6.41) the operator var
is defined as varξ = E (ξ 2), whereξ is a stochastic variable. To study the vari-
ance of estimates, the value ofN is steadily increased and for each value ofN, a
series of Monte-Carlo simulations is performed. The variance is then computed
and plotted versus the number of samplesN. In this case study, the data are gen-
erated using the discrete-time model (6.25)–(6.26). The Monte-Carlo simulations
involve 30 runs for eachN, and the noise has the statisticsN (0,0.0015) with
θ = [1.2 2.7 0.3448]′. The adaptive simulated annealing optimization routine is
initialized with θ0 = [0.5 2.0 1.7]′; and the feasible regionΩ is given by (6.5), and
the additional inequality 06 θ3 6 10.

The results of the Monte-Carlo simulations are shown in Figures 6.1 and 6.2.
Several important observations can be made regarding the performanceof the

nonlinear model-based identification technique:

• All three parametersθi are accurately estimated by applying the identifica-
tion algorithm to noisy data.

• The variance of the estimates decreases as the number of samples increases.
This result indicates that the estimateθ̂ is asymptotically unbiased, i.e.,
equation (6.41) holds. This could be expected since minimization of (6.35)
is equivalent to maximization of the maximum likelihood function, which
yields asymptotically unbiased estimates [79].

• For allN the variance of the estimates is insignificantly greater than the cor-
responding CRLB, which implies that the proposed estimator is statistically
efficient.
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Figure 6.1: Variance of the estimated parameter vectorθ̂ versus number of sam-
ples and the corresponding Cramér-Rao Lower Bounds for the artificial data set.
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Comparing the results obtained with the linear and nonlinear model-based iden-
tification methods, the following can be concluded:

• The linear model-based identification method yields estimates of the para-
metersθ̂ L acceptable for most practical purposes, since the maximum vari-
ance for this model does not exceed 2×10−2 for the given level of noise and
number of data samples.

• The variance of̂θ L decreases as the number of data samples increases; how-
ever, in all cases, the decrease rate is not very large.

• In all cases, the variance of the estimatesθ̂ NL obtained with the nonlinear
model is smaller than that obtained with the linear model. This is due to the
bias induced by the use of the linearized model. In other words, for the linear
model, (6.41) does not hold.

It should therefore be expected that the use of linear model may yield reasonable
estimates of the parametersθ ; however, the estimates will be biased. In general,
the use of the nonlinear load model always provides more accurate estimatesof the
load parameters as compared to the linear model; nevertheless, in the real world
applications the estimates obtained with the nonlinear model will also be biased,
since the nonlinear model (6.24) is only an idealization of the actual load and thus
has its limitations in terms of the accuracy of the estimates.

Application to field measurements

After verifying the adequacy of the proposed technique, it is then appliedto field
measurements taken at a paper mill located in the neighborhood the town of Grums,
Sweden. The electrical network of the paper mill is schematically shown in Fig.6.3;
in this figure, only the part of the network relevant to the present case study is de-
picted. The network consists of two synchronous backup generators G1 and G3,
four high-priority loads LD1–LD4, and six transformers T1–T6.

In normal conditions, the paper mill is fed by the grid denoted as NET. During
the hours of high risk of having power supply interruptions (due to thunderstorms),
the load LD1–LD4 are entirely fed by the backup generators.

In order to assure the proper and reliable operation of the paper mill, detailed
dynamic simulations with accurate load models are needed; thus, a series of field
measurements was obtained on May 15, 2001, in order to obtain aggregate models
of LD1–LD4 and some other equipment. To the best knowledge of the author, the
load in question mainly consists of lighting, heating devices, and electrical motors.
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Figure 6.3: Electrical diagram of the studied part of Grums paper mill

The motors are in almost all cases equipped with power converters. The load
voltage was used as the input and load current as the output. Since the loadmodels
(6.3)–(6.4) use the activePd and reactiveQd power signals as outputs,Pd andQd

were synthesized off-line. The sampling rate was set to 2 kHz.
An interruption of power supply to the paper mill may result in a substantial

monetary loss. It should be noted that a step-wise voltage change could cause
excessive shock to the system and trigger a power interruption. Moreover, a voltage
step could result in an ill-conditioned Fisher information matrix and thus estimates
with a large variance. Therefore, the backup generators were used tovary the load
voltage in a smooth manner in a±3% range. Extensive studies reported in [132]
also suggest that the variations of voltage magnitude has little effect on the success
of the parameter identification procedure, as long as the magnitude variation isa
few per cent of the nominal voltage.

Given the restrictions imposed in the measuring procedure as well as the costs
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Figure 6.4: Application of the proposed identification scheme to field measure-
ments. Estimation of the parameters of active power load. Linearized model

associated with obtaining these measurements, it was only feasible to gather one
set of data at the given operating conditions. Hence, the cross-validation procedure
applied here is based on a comparison between the linear (6.6) and nonlinear (6.24)
load models identified using the proposed procedure and based on the sameset of
field measurements. Figures 6.4 and 6.5 depict the field measurements, i.e., the
load voltage and active power, as well as the simulated outputsPd(t) of the linear
and nonlinear models. Visual comparison of the measured and simulated power
indicate that both models capture the relevant dynamics of the load; however, the
nonlinear model yields better results, showing a very close match with the field
measurement, as these two curves are practically indistinguishable.

Table 6.1 presents the numerical values of the parameters obtained with both
linear and nonlinear system identification techniques. In the table, the erroris de-
fined as(θ̂ NL

i − θ̂ L
i )/θ̂ NL

i ·100%, whereθ̂ L
i and θ̂ NL

i , i = 1,2,3 are the estimates
of the linearized and nonlinear model parameters, assuming the nonlinear model is
the reference for these calculations, given the close match between this model and
the actual measurements. The table reveals that the parameters identified with the
linear model do not deviate significantly from those obtained with the nonlinear
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ments. Estimation of the parameters of active power load. Nonlinear Identification

Table 6.1: Comparison of the load parameters identified using linear and nonlinear
models

Linear model Nonlinear model Error [%]

Nps [p.u.] 2.3326 2.3131 −0.8430
Npt [p.u.] 1.8778 1.9445 3.4302
T−1

p [s] 0.1002 0.1161 13.6951
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load identification technique. This is mainly due to the fact that the voltage devia-
tion was not large and hence nonlinear effects were not very significant. However,
observe that the maximum error introduced by the use of linearized model is still
greater than 13%; hence, we may conclude from these results that the nonlinear
model is a more accurate representation of the given aggregate load.

Notice that at different operating conditions, one would expect to obtain differ-
ent values for the load parameters. However, based on the results depicted here and
the fact that the load composition is not expected to change significantly for typical
operating conditions, it is reasonable to expect similar trends in terms of the accu-
racy of the linear and nonlinear load models for representing the given aggregate
load.

It is interesting to compare the values of load parameters obtained in this study
with those reported in the literature. For instance, [132] cites the following value
for Nps = 0.72 for an industrial load. This value differs significantly from the one
shown in Table 6.1, which can be mainly explained by a different composition of
the load. The steady state and transient voltage indices determined in [66] match
those of the present case study somewhat more closely; however, the time constants
Tp differ significantly, which can be explained by the absence of devices having
slow dynamics, e.g., OLTC in the present study.

6.5 Summary

Two power system load identification techniques are proposed in this chapter. Well
established equations describing the nonlinear recovery mechanisms of load form
the basis of both techniques, which are formulated in the framework of stochas-
tic system identification theory. Specifically, a linear and nonlinear output error
estimators are introduced and analyzed, and generic equations applicableto iden-
tification of aggregate models of power system loads are developed and studied in
detail.

The asymptotic behavior of the estimates is studied by means of numerical ex-
periments with artificially created data, demonstrating that the estimates are as-
ymptotically unbiased for the nonlinear load model and their variance attains the
Craḿer-Rao lower bound. To avoid numerical problems associated with possible
multiple minima of the objective function, a global minimization technique was
utilized. The enhanced numerical features of the minimization routine enable fast
convergence to the global minimum of the objective function with a probability
of 1.
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LOADS

The theoretical foundations presented in this chapter were applied to field mea-
surements taken at a paper mill located in the neighborhood of the town of Grums,
Sweden. Both linear and nonlinear models were utilized in order to estimate the
load parameters. The results show that, in principle, the linear model yields valid
estimates that differ from the estimates obtained using the nonlinear model. When-
ever the accuracy requirements on the numerical values of the load parameters are
not stringent, linear identification can be applied for the estimation of the parame-
ters. Alternatively, the nonlinear load modeling and identification technique pre-
sented in this thesis can be used to better model the load and obtain more accurate
estimates of the load parameters.
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Chapter 7

Design of Robust Control for
Enhancing the Performance of
SOFC Power Plant

“He was under the impression that a system description
(like the transfer function) is exactly the same

as a system in a concrete physical sense.”
— R. Kalman [65]

On the flaws in the Wiener formulation.

This chapter presents a discussion on the load following capabilities of a power
plant that consists of solid oxide fuel cells (SOFC) and microturbines. Such a
power plant, in theory, is capable of operating at unprecedented efficiencies which
can be above 80%. However, as the analysis in this chapter shows, the load fol-
lowing capabilities of this power plant can be unsatisfactory, due to certain con-
trol limitations. To enhance the load following capabilities of the power plant,
attenuate possible disturbances from the distribution grid, and avoid interaction
between the control functionalities of the fuel cells and the microturbines, two
H∞ controllers are designed. The main emphasis in this chapter is placed upon
the behavioral features of the fuel cell plant itself rather than on the studying the
integrated system “fuel cell–distribution grid”. The exposition of the theoretical
material in this chapter is rather axiomatic; however, this approach will certainly
suffice for the practical purposes of this work. We commence by giving abrief
overview ofH∞ control theory.

7.1 Robust ControlModeling of electric power systems is not a trivial task even if the engi-
neer has succeeded in collecting all the necessary information about the
power system. Aging of power equipment and uncertain load1 complicate

1More specifically, both the level and composition of the load at a given instant of time are
uncertain. In system planning studies, power system loads can be forecasted; however, neither type

105



106CHAPTER 7. DESIGN OF ROBUST CONTROL FOR SOFC POWER PLANT

modeling, analysis, and control of electric power systems.
This feature of power systems suggests the choice of control strategy—robust

control—if precise and “guaranteed” control of some quantities, e.g., active power
output is required. It is quite likely that the potential of robust and optimal control
techniques will have the commanding influence on power engineering; however,
this time is yet to come. For this and other reasons, the foundations ofH∞ control
theory are presented in detail in this chapter. It is hoped that this will help in
disseminating these techniques among practicing electrical engineers.

The origins ofH∞ optimal control theory were established in the early 1980’s
by G. Zames, see e.g., [133]. Since then it has been intensively studied bythe con-
trol community. A brief introduction to this fascinating theory is given below. This
sections establishes the relationship between the robustness issue andH∞ -norm
minimization. Most of the section makes an extensive use of frequency domaindue
to nice geometrical interpretations of the main concepts and follows chiefly [76];
however, time-domain solutions to the standardH∞ problem are also presented. It
should be noted that the presentation is fairly general, and the theory is applicable
to a large class of linear time-invariant systems, whose transfer functions or state
space realizations are represented by either the capitalP or G, respectively. There
is however a simple relationship between these two representations. For details on
the SOFC plant studied, the reader should refer to Section 3.2 and Appendix C.

The standardH∞ control problem can now be formulated. However, prior to the
introduction of theH∞ theory, it is instructive to introduce the main configuration
of the controlled plant and controller itself. Fig. 7.1 shows the standard block
diagram of the dynamic system which is controlled by an external controllerK. It
should be stressed that the so-called weighting functions which are the main tools
for fulfilling the control specifications are already absorbed into the plantG. At the
present time, this will not be discussed, as the structure of the plant is different in
the setting for the frequency and time domains.

The main purpose of the linear robust controllers in this chapter is to provide
tight active power output control of the tandem SOFC–microturbines. Further-
more, the models of the SOFC is assumed be deterministic; however, the terminal
voltage variations are treated as unstructured model uncertainty. The voltage vari-
ations are assumed to be caused either by the operation of the microturbines or by
the disturbances on the distribution grid. Thus, in this study, the presence of the
microturbines is accounted for only indirectly.

Now the problem ofH∞ -controller synthesis can be stated

nor dynamical characteristics of the load are specified.
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Figure 7.2: Single-input single-output plant

H∞ CONTROLLER PROBLEM FORMULATION

Given the generalized plant G, exogenous inputs w, outputs z, and control speci-
fications, find all admissible controllers K such that theH∞ -norm of the transfer
matrix from w to z is minimized, subject to the constraint that all K’s stabilize the
plant G.
We commence by reviewing frequency-domain methods forH∞ controller synthe-
sis.

Frequency domain solutions toH∞ control problem

The system to be controlled is depicted in Fig. 7.2. For simplicity, the system
is assumed to be a single-input single-output (SISO) system. As the analysisis
somewhat more lucid in the frequency domain, the plant studied is represented by
the transfer functionP = C(sI−A)−1B+ D, whereA,B,C, andD are the system
matrices.

In Fig. 7.2,P(s) is the controlled plant,C(s) is the controller,w represents a
disturbance, andz is the output. The resultant transfer function fromr to z is given
by the expression:

H(s) =
C(s)P(s)

1+C(s)P(s)
(7.1)
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The ratio(1+C(s)P(s))−1 is called thesensitivity functionof the feedback sys-
tem, which characterizes the sensitivity of the compensated plant to various distur-
bances.

Usually the sensitivity function is denoted by capitalS. In the ideal case, the
sensitivity functionS should be zero. In practice it is, however, unrealistic to re-
quire zero sensitivity. Instead, an upper bound on the peak value of thesensitivity
function is specified for a certain range of frequencies. That is, one sets an upper
limit on ‖S‖∞:

‖S‖∞ = sup
ω∈R

|S( jω)| . (7.2)

As is seen in (7.2), the sensitivity function is a function of frequency, assuming
different values for different frequencies. As this dependence is undesirable (due
to the possible magnification of noise and the influence of neglected dynamics), a
weighting functionW( jω) is introduced in order to reduce the dependence.

‖WS‖∞ = sup
ω∈R

|W( jω) ·S( jω)| . (7.3)

The loop gainL = PC is another quantity which plays an important role inH∞ op-
timization and is closely connected to robustness of the system, see Fig. 7.2.

Due to the plant uncertainties (in power systems this can be the level of loading
of the system), the actual plant parameters differ from the nominal ones. To distin-
guish between them, the loop gain of the actual plant is denoted byL and that of
the nominal plant asL0. Both these plants are stable if the corresponding Nyquist
plots do not encircle the point(−1, j · 0). Following in steps of [76], it may be
noted that plant is stable if the following inequality holds:

|L( jω)−L0( jω)|< |L0( jω)+1| , ∀ω ∈ R. (7.4)

Graphical interpretation of the inequality is given by Fig. 7.3. Inequality (7.4) can
be rearranged as follows:

|L( jω)−L0( jω)|

|L0( jω)|
·
|L0( jω)|

|L0( jω)+1|
< 1, ∀ω ∈ R (7.5)

The complementary sensitivity functionT0 of the closed loop plant is defined as:

T0 = 1−S0 = 1−
1

1+L0
=

L0

1+L0
(7.6)
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Figure 7.3: Nyquist plot of the SISO system

In equation (7.6),S0 stands for the sensitivity function of the nominal plant. Equa-
tions (7.5)–(7.6) can be combined to produce:

|L( jω)−L0( jω)|

|L0( jω)|
· |T0( jω)|< 1, ∀ω ∈ R. (7.7)

The multiplier |L( jω)−L0( jω)|
/
|L0( jω)| is called therelative sizeof the per-

turbation of the gain loopL from its nominal valueL0. If the relative size of the
perturbation is bounded, we can write:

|L( jω)−L0( jω)|

|L0( jω)|
6 |W( jω)| , ∀ω ∈ R, (7.8)

whereW( jω) is the aforementioned (given) weighting function. The following
expression can be obtained after simple manipulations:

|L( jω)−L0( jω)|

|L0( jω)|

1
|W( jω)|

|T0( jω)W( jω)| < |W( jω) ·T0( jω)| , (7.9)

|W( jω) ·T0( jω)| < 1, ∀ω ∈ R. (7.10)

The last result can be interpreted as follows: for any disturbance that isbounded
byW( jω) (inequality (7.10) holds) the closed-loop plant remains stable (inequality
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(7.9) holds). SinceH∞ is essentially norm minimization, the last equation should
be written in terms of norm notation:

‖W( jω) ·T0( jω)‖∞ < 1. (7.11)

Thus, the open loop plant remains stable for any disturbance that is bounded by
equation (7.8), if inequality (7.11) holds. However, it must be explicitly statedthat
stability alone is not the ultimate goal. For most practical systems there are two
competing requirements: stability and performance. Not all stable systems perform
well, though all systems performing well must be stable, except explosive devices,
of course. This consideration in some sense discourages the direct useof inequal-
ity (7.11) for anH∞ loop shaping and requires a new minimization objective. The
so-calledmixed sensitivity problemwas presented in [76] to incorporate the per-
formance specification into theH∞ controller design. In mathematical terms it is
usually expressed by

∥
∥
∥
∥

W1SV
W2UV

∥
∥
∥
∥

∞
, (7.12)

whereW1 andW2 are weighting functions that are the “knobs” of theH∞ -norm
minimization,S andU are the sensitivity function and input sensitivity function,
respectively. The new functionV is introduced to increase the design flexibility.

There is a nonunique solution to the standardH∞ -optimal regulator problem
[50], [76] [

X
Y

]

= Z−1
λ

[
A
B

]

, (7.13)

where the optimal controller isC = YX−1, normallyA = I , B = 0, andZλ is deter-
mined from equation (7.14)

[
0 I
−P̃∗12 −P̃∗22

][
λ 2I − P̃11P̃∗11 −P̃11P̃∗21
−P̃21P̃∗11 −P̃21P̃∗21

]−1[
0 −P̃12

I −P̃22

]

= Z∗λ JZλ , (7.14)

where(·)∗ operates asX∗(s) = X′(−s) and the plant transfer matrix̃P is defined as

P̃ =

[
P̃11 P̃12

P̃21 P̃22

]

=





W1V W1P
0 W2

−V −P



 . (7.15)

Time domain solutions toH∞ control problem

Time-domain solutions to standardH∞ control problem have been in the focus of
attention of control society for quite a long time and resulted in neat, compact, and



7.1. ROBUST CONTROL 111

relatively “simple” expressions. Below we replicate the ones that will shortlybe
used in the present thesis.

Some mathematical preliminaries which will facilitate the further treatment
open this subsection.

Lemma 1 Let matrix H be defined as

H ,

[
A R
Q −A′

]

,

and suppose H∈ dom(Ric) and X= Ric(H). A,Q and R∈ R
n×n with Q and R

symmetric. Then:

1 X is symmetric.

2 λi(A+RX) < 0,∀ i.

3 X satisfies the algebraic Riccati equation A′X +XA+XRX−Q = 0. �

A proof of the lemma and details on the notation used can be found in [36] and
[134]. For now, the most important detail is thatX satisfies the associated Riccati
equation. This fact will be used when tackling with suboptimalH∞ controllers.

Unlike the situation with LQR, in the present case close-form solutions to the
optimalH∞ control problem cannot be obtained as the optimal control requires an
iterative search over the set of all admissible controllers.

Let the transfer matrix of the plantG be partitioned as

G =





A B1 B2

C1 0 D12

C2 D21 0



 (7.16)

and the following assumptions hold

a (A,B1) and (A,B2) are stabilizable.

b (C12,A) and (C21,A) are detectable2.

c D′12 = [0, I ].

d
[

B1

D21

]

D′21 =

[
0
I

]

.

2The pair(C,A) is said to be detectable if for someL the matrixA+LC is a Hurwitz matrix.



112CHAPTER 7. DESIGN OF ROBUST CONTROL FOR SOFC POWER PLANT

We now present closed-formsuboptimalH∞ controllers which are given by

Theorem 3 Let the following two matrices be defined as

H∞ ,

[
A γ−2B1B′1−B2B′2

−C′1C1 −A′

]

J∞ ,

[
A′ γ−2C′1C1−C′2C2

−B1B′1 A

]

,

whereγ is a given real number. There exists an admissible controller s.t.‖Tzw‖∞ <
γ if and only if the following conditions hold:

a H∞ ∈ dom(Ric) and X∞ , Ric(H∞) > 0.

b J∞ ∈ dom(Ric) and Y∞ , Ric(J∞) > 0.

c ρ(X∞Y∞) < γ2.

In addition, if these conditions hold, one such controller is given by

Ksub=

[
Â∞ −Z∞L∞
F∞ 0

]

, (7.17)

where the matriceŝA∞,F∞,L∞ and Z∞ are defined as

Â∞ , A+ γ−2B1B′1X∞ +B2F∞ +Z∞L∞C2

F∞ ,−B′2X∞
L∞ ,−Y∞C′2
Z∞ ,

[
I − γ−2Y∞X∞

]−1
.

�

Again, a proof of the theorem can be found in [36]. It is possible to parameterize
all the suboptimal controllersKsub that are given by Theorem 3; here only the final
result is shown. For technicalities and a proof, the reader can consult [36] or [134].

Theorem 4 Suppose the conditions of Theorem 3 are satisfied. Then, for any
choice of Q : ‖Q‖∞ < γ and Q∈ RH ∞, the set of all admissible suboptimal
controllers with‖Tzw‖∞ < γ is

M∞ =





Â∞ −Z∞L∞ Z∞B2

F∞ 0 I
−C2 I 0



 .

�



7.1. ROBUST CONTROL 113

M∞

Q �

-
- -y u

Figure 7.4: Parametrization of all suboptimalH∞ controllers

Figure 7.4 shows a schematic block diagram of the parameterized sub-optimal
H∞ controllers.

To exemplify the theory presented earlier in this chapter, let us design anH∞ -
controller for a single machine infinite bus (SMIB) system.

Example: Consider the SMIB system, which represents a simplified linearized
model of single generator connected to an infinite bus. The classical modelof
the generator is used in this example; that is, the generator is modeled by equations
(3.3)–(3.4). The quantitiesE′q andE′d in equations (3.4) are assumed to be constant.
The parameters of the system are chosen such that the generator exhibitsquite an
oscillatory behavior. In this example we seek anH∞ controller that is capable of
stabilizing the SMIB system by regulating the mechanical power of the generator.

[
δ̇
ω̇

]

=

[
0 100π

−0.05 −0.01

][
δ
ω

]

+

[
0

0.1

]

u(t), (7.18)

y = C [δ ,ω ]′+Du, C = [1,0], D = 0.

The following frequency-domain control specifications are set3:

Closed-loop bandwidth: ωB = 12 rad/sec.

Peak of sensitivity function: Smax= 1.1.

Steady state: Approximate integral action at low frequencies.

Obj. function: For this example, selectingε = 10−6, the objective functions is
chosen as

J(S,K) = argmin
K

∥
∥
∥
∥

wPS
KS

∥
∥
∥
∥

∞
, wP =

0.67s+10
s+ ε

.

3These control specifications are set arbitrarily for demonstration purposes only; however, these
values are quite realistic.
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TheH∞ -norm minimization is performed with the help of theµ-toolbox in MAT-
LAB [20], which yields the value ofγ = 1.08. The resultant suboptimal controller
K(s) has following structure

K(s) =
4617s2 +46.17s+7.254e4

s3 +4451s2 +3.64e4s+0.01348
.

The SMIB system controlled byK has the following eigenvalues:λ1 = −4443

andλ2,3 =−1.8044± j4.3542. The input to theH∞ optimal controller is the angle
deviation of the generator’s shaft and the output is the control signalu(t). �

Note: It is worth mentioning that selection of weighting functions for the design
of H∞ controller synthesis plays an essential role. As yet, selection of weights
in robust and optimal control is more art than science, since from case to case,
different ad hoc approaches have to be tried in order to obtain “the bestdesign.”
This example concludes the introduction to basics of theH∞ controller synthesis.

7.2 Application of Robust Control to the SOFC Plant

Motivation

Recent advances in the fuel cell technology significantly improved the technical
and economical characteristics of modern fuel cells making them more suitable
and beneficial for the decentralized use of energy generation [55]. Environmental
friendliness, practically noise free operation, and very high efficiencycombined
with the forecasted shift to gaseous fuels make fuel cells a very sound competitor
on the future electricity markets [22], [12]. In addition, it should be noted that
fuel cell-based generators possess other important properties such as compact size,
modularity, and controllability.

It is shown in [56] and [135] that load following and regulation comprise a
substantial part of total interconnected operation services, which is likelyto stim-
ulate the owners of DG’s to participate in the provision of this particular ancillary
service. There are, however, some technical challenges associated with the fuel
cell technology which can represent certain difficulties for these services. One of
the most important challenges is the slow output power ramping [135]. Therefore,
a series of questions concerning the adequacy of some fuel cell powerplants for
stationary operation in conventional distribution grids has to be addressed. These
questions are closely related to that of the fundamental control limitations of fuel
cell-driven power plants.
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Thus, effective methods should be devised to overcome the control barrier im-
posed by the inability of some fuel cell power plants (e.g., solid oxide fuel cells, or
SOFC) to ramp up the power output quickly. Physically, the inability of the SOFC
power plant to ramp the output very quickly is caused by the dynamics of the fuel
cell reformer which itself is slow.

One the most economic solutions is to build an integrated system consisting
of a fuel cell module and a small-scale gas turbine. Typically, the rating of the
microturbine is one third of that of the fuel cell plant, which enables a more efficient
use of the hot exhaust of the SOFC.

Normally, the contracts of DG owners require either maintaining a constant
output power level of the DG or following the local load demand4.

Irrespectively of the DG operation mode, the fuel cell module and the gas tur-
bine will have different control objectives, i.e., the fuel cell will controlthe volt-
age magnitude (short-term control) and the reactive power generation, supplying a
constant active power, while the gas turbine will perform load following. Here it
is worth recalling that usually microturbines utilize asynchronous generators that
are incapable of controlling the terminal voltage, while their active power output
can be easily controlled by manipulating the mechanical torque applied to the gen-
erator. The voltage source inverter of the fuel cell plant, on the other hand, is able
to accurately control the terminal voltage of the plant as well as the output power
and the frequency. However, ultimately the inverter itself does not produce ac-
tive power, which implies that its output power control is as effective as thepower
control of the fuel cell power plant.

If the contractual obligations of the DG owner require load following capabili-
ties, then most likely it will be effective to utilize both the fuel cell system and the
microturbines, since the rating of the microturbine is relatively small compared to
the rating of the fuel cell. If both the fuel cell and the microturbine are deployed in
the active power regulation, it is likely to result in undesirable interactions between
the fuel cell system and the microturbine turbine, which can adversely affect the
performance of the overall system.

To ensure the proper operation of this control scheme, undesirable interactions
between the fuel cell and turbine controls should be eliminated. In order to avoid
these dynamic interactions, an auxiliary controller can be designed that is able to
sustain the output power of the fuel cell constant irrespective of the output power
of the gas turbine.

4This theme will be further discussed in more detail in Chapter 8.
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Figure 7.5: Transfer function of a fuel cell plant

In this chapter, two robust controllers are designed to achieve the aforemen-
tioned control objective. Both controllers are synthesized by solving the associated
H∞ mixed sensitivity problem. In particular, the controllers are expected to enable
the fuel cell power plant to reject disturbances affecting the plant’s output and en-
hance the set-point tracking of the plant. Figure 7.6 shows the interconnection of
the plantG and the controllerK to be designed5. To validate the controller design,
the performance of the fuel cell power plant compensated by each of thecontrollers
is assessed by running several nonlinear numerical simulations.

The mixed-sensitivity S/KS optimization

According to the theory presented in the previous section [e.g., equation (7.12)],
the mixed sensitivity problem can be solved by minimizing the following objective
function

K = arg min
K∈K

∥
∥
∥
∥

wpS
wuKS

∥
∥
∥
∥

∞
. (7.19)

In equation (7.19),Sdenotes the sensitivity function of the compensated plant and
is defined asS= (I −GK)−1. As usual, the performance weighting function and
the input weighting functionwp(s) andwu(s) are the main design mechanisms of
theH∞ optimization and are used for shaping the response of the closed-loop plant.
Let us consider the following two weighting functions

wu = 1 (7.20)

wp1 =
0.9s+10
s+10−5 . (7.21)

5For more details on the SOFC plant modeling, the reader should also referto Section 3.2,
Appendix C, and [135].
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Figure 7.6: Preliminary control configuration of the fuel cell plant

This particular choice of the performance weighting function gives a peakof the
sensitivity functionS= 1.1 and the effective bandwidth of the closed loopωB = 10
rad/s.In addition, the controller will provide an approximate integral action, thus
enhancing tracking properties of the closed loop plant.

Let us now recall that the model (3.24)–(3.25) of the SOFC power plant has 3
inputs and 1 output. The inputs entering the model represent the set-point devia-
tions and the disturbances. The exact numerical values of the disturbances [which
are deviations of the terminal voltage magnitude and angle] are assumed unknown,
but bounded as is shown below

‖∆m‖2 6 0.1 p.u. (7.22)

‖∆θs‖2 6 20◦. (7.23)

The plant’s output is the fuel cell active power injected into the distribution grid.
Note that disturbances represented in such a way are fairly general, since this form
can model network voltage variations due to the operation of the microturbine and
any other bounded disturbances occurring on the grid.

The model (3.24)–(3.25) can be cast in the form of transfer matrix as shown in
Fig. 7.5, where the plant transfer matrixG(s) is defined asG(s) =C(sI−A)−1B+
D, and the outputy= G(s)Pre f +D1(s)m+D2(s)θs. In the latter expression,D1(s)
andD2(s) denote the transfer functions fromm andθs to the outputy. Inspection
of the transfer functionsG(s), D1(s), andD2(s) reveals that they share the same
dynamics and therefore the disturbancesm andθs can be transferred to the plant’s
input (the argumentswill be dropped in the remainder of the section for simplicity
of notation).
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Figure 7.7: Disturbance rejection by one degree-of-freedom controller.

One-degree-of-freedom controller

An H∞ mixed sensitivity problem is solved with the help of the MATLAB ’s µ-
Analysis and Synthesis Toolbox, resulting in a 6th orderH∞ controller. The closed
loop performance of the compensated plant is shown in Figs. 7.7 and 7.8. Fig-
ure 7.7 demonstrates the ability of the compensated plant to reject disturbances
induced by variations in the magnitude ofVf c. One can see that the controller
shaped by the weighting functionwp1, which will henceforth be called one-degree-
of-freedom controller (1DOF), is capable of fast disturbance rejection. However,
as Fig. 7.8 shows, the set-point tracking is unsatisfactory, as the overshoot is ap-
proximately 50%.

Two-degrees-of-freedom controller

The results obtained in the previous subsection suggest a new controller should
be sought which would be able to ensure acceptable performance in terms of both
disturbance rejection and tracking. One way of improving the performanceof the
closed-loop plant is to consider another configuration of controller. Thus, a two-
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Figure 7.8: Step response by one degree-of-freedom controller.

GCpre

wu

Σ

wp

-

DΣ

Σ K
?- -

6

-

6

-Pre f

6 6
?

6

-
– e

z1 z2 dΣ

Pf c
u
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Figure 7.10: Disturbance rejection by the two degrees-of-freedom controller.

degree-of-freedom (2DOF) controller is designed. The 2DOF controller consists of
2 blocks: a compensatorK and a pre-filterCpre, as is shown in Fig. 7.9. The design
procedure follows closely that applied to the design of the 1DOF controller;thus,
the compensator block is found by solving anH∞ mixed sensitivity problem. The
only new step involves the design of a pre-filter (normally a lead-lag block) whose
main purpose is to improve the tracking response of the overall system. It was also
decided to decrease the effective bandwidth of the closed-loop plant towB = 0.08
rad/s by modifying the performance weighting function accordingly. That is, the
following wp is used in the 2DOF controller design:

wp2 =
0.9s+0.08
s+10−5 (7.24)

The input weighting functionwu remains unchanged in this design. The controller
is again synthesized with the help ofµ-Analysis and Synthesis Toolbox in MAT-
LAB . The pre-filter (Cpre) was tuned manually by the “trial-and-error” method.
Satisfactory results were obtained withCpre = (2s+1)−1.

The performance of the fuel cell power plant compensated with the 2DOF con-
troller is depicted in Figs. 7.10 and 7.11. It can be observed in Fig. 7.10 thatthe
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Figure 7.11: Step response of the plant with the two degrees-of-freedom controller.

reduction of the bandwidthwB has some adverse impact on the disturbance re-
sponse. Nevertheless, it can be concluded that the 2DOF controller satisfactorily
rejects disturbances caused by fluctuations of the voltageVf c and the output power
of the fuel cell returns back to the reference value reasonably fast. On the other
hand, a significant improvement of the tracking response was achieved,as Fig. 7.11
indicates, since the closed loop plant has a negligibly small overshoot, while the
response time is practically unchanged. Observe also that the steady-stateerror of
the compensated plant is eliminated by the integral action of the 2DOF controller.

7.3 Discussion

It is important to observe that neither 1DOF nor 2DOF controllers were ableto
significantly improve the step response of the fuel cell power plant. Even if“ex-
cessive” use of the inputu signal was allowed—which normally would not be
the case due to the potential risk of damaging the fuel cell—no significant im-
provement could be achieved in the step response of the originalnonlinearmodel
(3.20)–(3.21), since hard limits on the inputu are built in the controls of the SOFC,
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as follows from (3.21). The presence of the limits in the model is justified by
the necessity to avoid under- or over-utilization of the fuel cell, which is mainly
accomplished by limiting the currentI r

f c of the fuel cell.
The response time of a SOFC is limited by the time constants of the fuel proces-

sor, which are normally large and cannot be made smaller for a given fuelcell plant
due to physical limitations imposed by the parameters of the corresponding chem-
ical reactions. Therefore, the response time of the plant cannot be enhanced by
manipulating its input, technological change in the fuel cell plant are required if
the fuel cell power plant is to operate in a stand alone mode which requires load-
following capabilities. Alternatively, other technical solutions should be sought;
for example, the combined use of fuel cell modules and a gas turbine, or theuse
of an external energy storage, such as batteries, a flywheel, or a superconducting
magnetic energy storage device.

Another alternative could be the use of a phosphoric acid fuel cell (PAFC)
power plant which possesses significantly better load following capabilities.For
instance, the commercial PAFC PC-25 according to [9]: “can be ramped at10
kW/s up or down in the grid connected mode. The ramp rate for the grid indepen-
dent mode is idle to full power in approximately one cycle or essentially one-step
instantaneous from idle to 200 kW (nominal power). Following the initial ramp
to full power, the unit can adjust at an 80 kW/s ramp up or down in one cycle.”
It should however be mentioned that the efficiency of PAFC plants is somewhat
smaller than that of SOFC/GT power plants.

7.4 Summary

In this chapter, a linearized model of a solid oxide fuel cell power plant was ob-
tained. The linear model was used in order to design robust controllers capable of
rejecting disturbances caused by fluctuations of the magnitude and/or angleof the
SOFC terminal voltage, which could in real world applications be caused by either
the fluctuation of the utility voltage (e.g., due to faults) or by the operation of the
microturbines. TwoH∞ controllers were synthesized and their performance was
analyzed. To validate the performance of the controllers, nonlinear simulations of
a SOFC were performed. The load following capabilities of various fuel cell power
plants were briefly discussed. Apparently, further research in this area should in-
volve numerical experiments with a more realistic model of the distribution grid
and microturbines in order to assess the impact of the microturbine dynamics on
the operation of the solid oxide fuel cell power plant.



Chapter 8

Interaction Between DG and the
Power System: Operation,
Control, and Stability Aspects

“With so much new distributed generation being
installed, it is critical that the power system

impacts be assessed accurately.”
— A quotation from [21]

This chapter presents qualitative analysis of the impact that distributed generation
(DG) might have on the operation, control, and stability of electric power networks
with large penetration ratios. The impact of DG on network losses, power quality,
short circuit power, as well as on system protection and on power system stability
is discussed. Based on the discussion, it can be concluded that the impact of DG to
a large extent depends on the penetration level of DG in the distribution network as
well as on the type of DG technology, and mode of its operation. If DG is properly
sized, sited, and selected in terms of technology, it can clearly provide benefits to
control, operation and stability of the power system. It should however benoted
that distribution networks have traditionally a rather inflexible design (e.g., a uni-
directional power flow), which in principle can cause integration problemswith
higher DG penetration levels or different technologies. Nonetheless, those issues
can usually be solved by modifying the distribution network, including the control
and/or operation approach, or by other technical means.

8.1 IntroductionSeveral technical, political, and environmental considerations have stimu-
lated the relatively rapid growth of the number of various DG installations.
While the total installed capacity of the distributed generation remained

small, its impact on the operation of the power grid remained marginal; however,
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as the installed capacity of DG increases, the impact which it has on the grid will
intensify. The characterization and quantification of this impact apparently isquite
a complicated engineering task, since such aspects of grid operation as voltage
control, relay protection coordination, power losses, power quality, reliability, and
many other will have to be simultaneously analyzed. Some of these aspects are
also intimately related to the stability phenomena of the grid and therefore they
will have to be explicitly addressed in the studies of the overall power systemsta-
bility.

To assist in making a systematic assessment of the impact that large amounts
of DG have on the operation, control, and stability of the power grid, this chap-
ter provides basic qualitative analysis of the interaction between large amounts of
distributed generation and the power network.

8.2 Historical Background

The importance of the impact that DG might have on the operation, stability, and
control of the power system has already been recognized in the late 1970’s. One
of the most interesting publications on this subject was presented at the conference
“Research needs for the effective integration of new technologies into the Electric
Utility” held by the U.S. Department of Energy (DoE) in 1982 and was entitled
“Impacts of new technology and generation and storage processes on power sys-
tem stability and operability” [109]. Over the last two decades the number of
publications discussing various areas of the interaction between DG and theutility
has been gradually increasing. Historically, until the 1990’s the main focusof the
research was placed upon the impact that renewable power sources had on network
operation, [46], [99]; however, also distributed generation in general was inves-
tigated [2]. In the late 1990’s, this theme gained more interest in academia and
industry, which resulted in a large number of publications [6,7,10,11].

Recently, also the results of two extensive simulation case studies have been
reported: (i) Simulation of interaction between wind farm and power system, by the
Risø National Laboratory, Denmark [120], and (ii) DG Power Quality, Protection
and reliability Case Studies Report, by GE Corporate Research and Development,
USA [97].
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Table 8.1: Technologies for distributed generation [13].

Technology Typical available size p. module

1. Combined Cycle Gas T. 35−400MW
2. Internal Combustion Engines 5kW−10MW
3. Combustion Turbine 1−250MW
4. Micro-Turbines 35kW−1 MW
5. Small Hydro 1−100MW
6. Micro Hydro 25kW−1 MW
7. Wind Turbine 200W−3 MW
8. Photovoltaic Arrays 20W−100kW
9. Solar Thermal, Central Receiver 1−10MW
10. Solar Thermal, Lutz System 10−80MW
11. Biomass Gasification 100kW−20MW
12. Fuel Cells, PhosAcid 200kW−2 MW
13. Fuel Cells, Molten Carbonate 250kW−2 MW
14. Fuel Cells, Proton Exchange 1−250kW
15. Fuel Cells, Solid Oxide 250kW−5 MW
16. Geothermal 5−100MW
17. Ocean Energy 0.1−1 MW
18. Stirling Engine 2−10kW
19. Battery Storage 0.5−5 MW

8.3 Distributed Generation Technology

One of the most essential factors influencing the interaction between the DG and
grid is the technology utilized in the DG, as well as the mode of DG control and
operation.

Table 8.1 provides a brief overview of the most commonly used distributed
generation technologies and their typical module size. The technologies 5− 11,
16 and 17 can be considered renewable DG. The other technologies could also
be called renewable DG if they are operated with biofuels. Also fuel cells could
be considered renewable DG if the hydrogen is produced using renewable energy
sources, e.g. wind power.

Similarly to the centralized generation, the following three generation technolo-
gies are normally used for distributed generation: synchronous generator, asyn-
chronous generator, and power electronic converter interface [8,51,62,90]. These
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DG technologies will now be briefly discussed.

Synchronous Generator

The advantageous ability of the synchronous generator—the primary generator
technology for centralized generation—to produce both active and reactive power
also provides benefits for distributed generation applications.

Synchronous generators are typically utilized by the following DG applications
if the generation capacity exceeds a few MW: biomass, geothermal, diesel/gas en-
gines driven generators, solar thermal generation, solar parabolic systems, solar
power towers, solar dish engines, gas turbines, and combined cycle gasturbines.

Asynchronous Generator

In contrast to synchronous generators, asynchronous (induction)generators are
only used for distributed generation, but not for centralized generation. An asyn-
chronous generator is basically an induction machine which is connected to a
prime-mover. When the generator is connected to the power network, the mechan-
ical power is converted into electrical power by the action of the prime-moverthat
drives the machine above synchronous speed. Hence, the asynchronous generator
is not capable of operating independent from a relatively strong grid. Asynchro-
nous generators are used for many distributed generation technologies as long as
the generation capacity does not exceed a few MW due to its competitive price
compared to synchronous generators. Squirrel cage asynchronous generator used
to be very common in the wind energy industry; however, this type of induction
generator is now being gradually superseded by asynchronous generators equipped
with a converter, i.e., double-fed induction generators.

Power Electronic Converter

Power converters normally use high power electronics to provide the desired power
output. For example, it is quite common that wind turbines use double-fed, variable
speed induction generators with an IGBT converter in the rotor circuit. Power elec-
tronic converters are also used in photovoltaic systems, fuel cells, micro turbines,
Sterling engine as well as battery storage, and magnetic storage systems.
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8.4 General Impact of DG on Power System Operation
and Control

To make a qualitative assessment of the impact that DG has on the distribution
grid, a simple example is considered. Such aspects of power system operation as
voltage control, power losses, power quality, and protection system are analyzed.
Based on the analysis, more generic statements are made. Clearly, there canexist
distribution grids to which these statements might not apply to full extent; however,
an effort is made to preserve the generality of discussion.

Difference Between Distribution and Transmission Networks

Technically speaking, distribution and transmission networks are designedfor a
somewhat different purposes. The main difference is that distribution systems are
usually not designed for the connection of active power generators. Furthermore,
distribution networks usually have a radial or loop design, rather than a meshed
design typical for transmission networks. Therefore, the power flow in distribution
networks usually is unidirectional and little or no redundancy exists. In addition,
in transmission and urban distribution systems, the effect of line or cable resistance
(R) on voltage drop is small, since its magnitude is generally much less than the
reactive component (X) of the conductor impedance, i.e.,X/R > 5. Therefore,
active as well as reactive power production within the distributed generation will
influence the voltage level.

It is also noteworthy mentioning that the low voltage ends of distribution sys-
tems are rarely connected to Supervisory Control and Data Acquisition (SCADA)
systems. The data gathering required for the control of the distribution system as
well as the distributed generation units is therefore difficult at present.

Distribution Network Operation Issues

For the explanation of the relevant operation issues, a hypothetical distribution net-
work is used, see Fig. 8.1. Even though, the example is hypothetic, it possesses all
the relevant attributes of a basic distribution grid necessary for subsequent analy-
sis. The network is a six-bus system (B1, . . . ,B6), with load connected to each bus
(LD1, . . . ,LD6) and three distributed generators (DG1, . . . ,DG3) connected to buses
B2, B4, andB6. Regarding the generation compared to the load in the system, the
following cases are possible:
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Figure 8.1: Hypothetical Distribution Network

Load case 1:The load rating at each bus is always larger than or equal to that of
the distributed generator at each bus, or:

LDi ≥ DGi ∀i

This load case is typical for DG applications such as photovoltaic (PV) systems,
Sterling engines, microturbines, or small wind turbines.
Load case 2:The DG generation at least at one bus is larger than the load at the
same bus, however, the total power of DG in the distribution network is less than
the sum of all loads in the system, or:

∃i ∈ N : (LDi < DGi)∧ (
n

∑
k=1

LDk >
n

∑
k=1

DGk),

whereN = {k}6k=1. This load case might occur if one of the DG units is a wind
farm or biomass system.
Load case 3: The distributed generation at least at one bus is larger than the load
at the same bus, and the sum of all DG generation in the distribution network is
larger than the sum of all loads in the system, i.e.:

n

∑
k=1

LDk <
n

∑
k=1

DGk

This load case might occur if a large wind farm is connected to the end of a dis-
tribution network. Since load centers usually are not located in areas with high
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Figure 8.2: Simplified model of a power system with DG

wind speeds, the power output of a wind farm often can exceed the localpower
demand. Finally, it must be mentioned that the load cases within a distribution net-
work might change over time. It is, for example, quite common that a wind farm
provides a significant amount of the load in a distribution network for most ofthe
time (Load case 2). The other two load cases, however, can also occur.Load case
1 during times with little wind and load case 3 during times with very high wind
speeds and low loads, for example, during the night.

Impact on Losses

To explain the impact of DG on distribution network operation under consideration
of differentX/R ratios, the simplest model—a single distribution line and a load—
is used.

In the model presented in Fig. 8.2,E represents the sending end voltage,V is
the receiving end voltage. If we assume that the receiving voltageV as well as the
load currentI are known, then the following equations establish the relationship
between the power produced by DG and associated reduction of losses on the line.
Suppose no DG is connected. Then the power losses are

Sloss= (E−V)I∗ = (E−V)(ILD,a− jILD,r),

whereILD,a andILD,r denote the active and reactive components of the load current.
Now assume that DG producing only active power (cosφ = 1) is connected and
also assume for simplicity that the voltageV at the receiving end is kept constant.
Then it is easy to see that the new power losses are:

SDG
loss= (E−V)(ILD,a− IDG− jILD,r).
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Therefore, the presence of DG reduces the power loss by the amount

Sloss−SDG
loss= (E−V)IDG.

With this approximate expression, the variations of the voltage at the receiving end
are not considered; however, the inclusion of the receiving voltage variations is not
essential for the analysis. In summary, it can be concluded that the introduction
of distributed generation reduces the current flowing through the distribution line,
thus reducing the active as well as reactive power losses.

Based on three load cases defined at the beginning of this section, the following
can be said:

Load case 1DG will always result in reduced losses on all lines in the distribution
network.

Load case 2DG might lead to an increase of the losses on some lines, but the total
losses within the [realistic] distribution network will be reduced.

Load case 3DG might lead to an increase of the losses on some lines, but the total
losses within the [realistic] distribution network will be reduced as long as
the total DG production is less than approximately twice the total load in the
distribution network.

If the DG production is larger than approximately twice the total load in the distri-
bution network, the losses in the distribution network will be larger with DG con-
nected than without DG. In addition, it should be noted that a power loss reduction
in the distribution network entails a loss reduction in the transmission network.

Voltage Control

The voltage level in a distribution network must be kept within a certain range,as
some power system equipment and customer applications function only properly if
the voltage is maintained within this range. The voltage range for normal operation
is defined in different national and international standards.

In a distribution system voltage fluctuations occur when the load current flow-
ing through the resistive and reactive impedances of the lines varies. Thevoltage
variations in distribution networks without DG are caused by the variations ofthe
active and reactive load in the distribution network over time. The fluctuations
are generally larger towards the end of the line, due to the high impedance ofdis-
tribution lines. Also, the voltage fluctuations are more expressed if the load is
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concentrated near the end of the (radial) system. Practically, for typical distribu-
tion lines the distance before the voltage drop exceeds the allowable fluctuation at
rated current is only a few km. However, a line is normally not designed to operate
at such loading levels. An in-depth analytical discussion of the impact of DGon
the voltage profile in LV networks can be found in [32].

Traditionally, voltage control in distribution networks is performed in two ways:

1. The control of the source voltage at the network substation by using tap
changing transformers and;

2. The control of the reactive power throughout the system, by using shunt
capacitors/shunt reactors [this is very seldom done in distribution networks],
series capacitors, synchronous condenser or Static VAr Compensator(SVC).

DG can influence the voltage variations in two ways:
(i) DG is operated in correlation with the local load requirements, meaning when-
ever the local load in the distribution network increases, the DG production in-
creased as well, and vise versa. In this case, DG contributes to the reduction of the
variations between the maximum and minimum voltage levels, compared to the
situation without DG. This mode of DG operation provides no challenges to the
traditional voltage control approach. This situation was thoroughly investigated
in [77]. This DG control mode is well suited for photovoltaic distributed genera-
tors, if the local loading [e.g., air conditioning equipment] is naturally correlated
to the solar radiation and thus the power output of the photovoltaic cells.
(ii ) DG power output is controlled independently of the local loading of the area.
This control mode is implemented if DG operation follows price signals, which
might or might not correspond to the local load variations, or DG follows the avail-
ability of natural resources, like solar or wind power. In this case, DG might ad-
versely affect the voltage control functionality of the network by increasing the
variations between the maximum and minimum voltage level, compared to a situa-
tion without DG, since the minimum voltage level could remain (usually at a high
load, no DG situation) but the maximum voltage level could increase, e.g. in low
load situations with DG operating at maximum production and at a unity power
factor. Generally speaking, DG can provide some challenges to the traditional
voltage control. For example, during a high load situation in the hypothetical net-
work shown in Fig. 8.1, the tap changing transformer (not shown) at the substation
would increase the source voltage to keep the voltage at the end of the lines (busB4

and busB6) within the required voltage range. Now with a large DG unit at busB6,
but no DG at busB4, the voltage at busB6 is raised due to DG and might reach the
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overvoltage limits, while the voltage at busB4 could reach the lower voltage limits
due to the high load. The traditional operation approach of tap changing trans-
former at the substation is not suitable for such situation, as it assumes a similar
voltage drop on all lines downstream from the transformer.

One simple approach to solve this problem is to reduce the power output of the
DG unit. This solution will be the most economic solution for the network operator
but probably not for the DG owner. In case of intermittent renewable generation,
particular wind power, there is a low likelihood that the maximum availability of
the natural resources, e.g. very high wind speeds, correlates with very low load
situation. On the Swedish island of Gotland, for example, such a situation occurs
around 10 hours per year. Another, more costly solution would be the installation
of a more intelligent and flexible voltage control scheme within the distribution
system, based on substation automation and modern communication technology.
This technology would allow sensing the voltage level at different points in the
network, usually at the end of different lines. Hence, the tap changer setting at
the substation could be dynamically adjusted according to the input data from the
measurements. In addition, if the applied DG technology has the capability of dy-
namically changing the power factor it could be used to locally control the voltage.
The aim would be to keep the voltage variations in the distribution network within
tolerable limits. This is already done within some wind power projects, where
the power electronic converter is used for dynamic voltage control in the distri-
bution system [31]. In general, DG technologies using either a power electronics
converter [114] or a synchronous generator could be used for dynamic voltage con-
trol. The approach, however, is rather seldom used—the author is only aware of 3
projects worldwide—due to the following two reasons:
(i) Interconnection rules usually do not allow an active participation in the control
of the distribution network. This might change with the new IEEE Standard for
Distributed Resources Interconnected with Electric Power Systems, which iscur-
rently under discussion. A change of the interconnection rules still leavesopen
questions: What is the economic value of dynamic voltage control with DG, or
in other words: How much must the network operator pay the DG operator for
the voltage control service. In most projects where DG current provides dynamic
voltage control, the service was requested by the network operator.
(ii ) If DG provides active voltage control the remaining voltage control system,
for example tap changer or capacitor banks, might have to be coordinatedwith
the DG voltage control system to avoid voltage hunting. Voltage control results in
fast change of voltage level in the distribution system due to interaction between
different voltage control systems. The coordination between the different voltage
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control systems could be done with the help of modern communication systems.

Power Quality

When discussing the impact of DG on power quality, there are typically two major
concerns, namely, voltage flicker and harmonics.

Voltage Flicker

As defined in [37], voltage flicker is an impression of unsteadiness of visual sen-
sation induced by a light stimulus whose luminance or spectral distribution fluc-
tuates with time. In distribution networks the most common cause of flicker is a
rapid variation of load current. However, not only load variations causeflicker, but
also DG can directly or indirectly contribute to voltage flicker. The main causesof
flicker are

(i) Starting of a large DG unit

(ii) Sudden and large variations of the output of DG

(iii) Interactions between DG and the voltage controlling equipment of the feeder.

Voltage flicker mitigation method and its effectiveness depend on many factorsand
can be quite complicated. If the rating of DG is significant and the output of DGis
subject to frequent and significant change, then voltage flicker may be felt by some
customers. The simplest mitigation method in such a case would be to require the
owner of DG to reduce the number of DG starts and/or large variation of the output
power. If DG is interfaced with the grid via a converter, then reduction of starting
currents is relatively easy to accomplish. In particular, wind farms have been seen
as potential cause of voltage flicker due to wind speed variations or poweroutput
variation due to passage of the wind turbine blades through the tower shadow.
However, the design of modern wind turbines has been changed such that large
variations of the output power within a short time period can be effectively avoided
(variable speed).

Harmonics

It is widely recognized that the presence of nonlinear components of power sys-
tems, e.g., power converters or saturated transformers, manifests in the appearance
of harmonics [37]. The presence of harmonics in a power system is undesirable for
a number of reasons, some of which are:
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(i) Harmonics increase power loss in both utility and customer equipment

(ii) Sometimes harmonics may provoke malfunctioning of sensitive load or control
equipment [86]

(iii) Harmonics having significant magnitudes can cause a reduction of lifetime of
motors, transformers, capacitor banks, and some other equipment.

Power electronic devices, as used for DG, might cause harmonics. The magni-
tude and the order of harmonic currents injected by dc/ac converters depend on
the technology of the converter and the mode of its operation. For example, a
forced-commutated converter with pulse-width-modulation operated in the linear
range, will introduce only harmonics in the range of high frequencies, i.e.,at and/or
around multiples of the carrier frequency [85]. Recent advances in semiconductor
technology (e.g. IGBT’s) allow the use of higher carrier frequencies;which, for
example, allows the generation of quite clean current waveform in compliantwith
the IEEE 519 standard. IGBT based converter are used for many DG technologies.
It can therefore be concluded that modern high power electronics technology can
be used to solve the relevant power quality phenomena associated with DG.

Voltage Sags

Theoretically, distributed generation based on power converters can beused to re-
duce the depth of voltage sags. In this case, the converter must act as a static VAr
compensator or dynamic voltage restorer. In principle, power electronic converter
can be designed to operate in those modes; however, presently most of distrib-
uted generation converters seem to be incapable of performing this task. Abasic
requirement is that the distributed generation system has sufficient capacity to com-
pensate for the utility voltage reduction and maintain acceptable voltage level for
the duration of the voltage sag. As is stated in [37], the improvement of powerqual-
ity in respect to voltage sags by using distributed generation is “a good function to
consider in the future”. In quasi-stationary operation the qualitative impactof dis-
tributed generation on voltage magnitude is practically indistinguishable from that
of a large [negative] load. Indeed, switching of a large load causes voltage magni-
tude variations, which is similar to the effect that DG output power variation has.
The output power variations of a large load and a distributed generator utilizing
renewable energy source e.g. wind or solar energy are subject to dailyand seasonal
variations. On the other hand, in many respects DG affects power quality ofthe
grid in a very specific way. For example, the owner of a distributed generator—
if the DG technology allows—has full control of the output power and voltage
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Table 8.2: Fault currents levels of some DG [21].

Type of generator Fault currents, [%] of the rated current

Inverter 100−400
Separately excited SG First few cycles: 500−1000

Permanent: 200−400
Induction generator or self First few cycles: 500−1000
excited SG Permanent: nearly 0

magnitude of DG. This is different from the situation with large loads which are
often controlled by industrial processes. Furthermore, the installation of new load
never improves the quality of electric power, while DG has the ability to reduce the
harmonic contamination of the current/voltage wave shapes thus enhancing power
quality. Therefore comparing the impact of a distributed generator and a load hav-
ing comparable ratings, it can be concluded that in general the impact of DGon
quality of electric power should be more positive than that of the equivalentload.

Change in Short Circuit Power

The distribution power systems are designed and built to withstand certain thermal
and mechanical stresses in both normal and emergency states. The presence of
DG changes the designed regimes of operation of the grid, which also results in
an increase of fault current levels. Quantitatively the impact on the fault currents
depends on the capacity/penetration of DG and the DG technology deployed. De-
tailed assessment of the impact that DG might have on the fault currents is very
challenging as the impact largely depends upon a number or factors, e.g., itsoper-
ation mode, interface of the DG, system voltage prior to the fault, and some other.
Table 8.2 provides a qualitative estimation of fault currents for synchronous and
asynchronous generators, as well as inverters. The values given inthe table only
apply to faults at the terminals of the respective generator. As the impedanceof
distribution lines is high compared to that of transmission lines, the fault currents
will decrease rapidly with distance from the distributed generator.

It should be noted that those DG technologies which do not possess energy
storage devices, e.g., storage of kinetic or potential or chemical energy are unable
to essentially contribute to short circuit power. A photovoltaic element withouta
battery is one such typical example.
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Protection System

By definition, protective relays and systems are power system componentswhich
should “operate the correct circuit breakers so as to disconnect onlythe faulty
equipment from the system as quickly as possible, thus minimizing the trouble and
damage caused by faults when they do occur” [125]. There are a number of power
system protection devices whose functionality ranges from overcurrent protection
to bus-zone protection [17]. The section will focus on overcurrent protection, the
most commonly used protection in distribution systems. As mentioned before, the
power flow in distribution systems is usually in one direction-from the source to
the customers. Correspondingly, the protection schemes of distributions grids are
designed for this mode of operation. The presence of DG may alter the topology of
the distribution grid and the pattern of the power flow. Depending on the charac-
teristics of DG (its rated power, technology used, mode of operation), the location
of DG and network configuration, the impact of DG on the overcurrent protec-
tion may vary. To exemplify the statement, consider the distribution grid shown in
Fig. 8.1. Normally, the protection of power systems is tuned in such a way that only
faulted parts of the system are isolated at a fault. This tuning is termed “protection
coordination.” Suppose now that all the DG units is disconnected from the grid
and a fault located atB occurs on the system, see Fig. 8.1. The overcurrent pro-
tection coordination assures that the protection deviceP3 reacts, thereby avoiding
much interruption of power delivery to the other customers. Alternatively, suppose
that DG is now connected to the grid. Clearly, under some operating conditions
the power on the lines may flow either downstream or upstream. This has cer-
tain implications on the operation of the protection schemes. Assume again a fault
located atB. Then the short circuit current flowing through the protection device
P3 is greater than that of the deviceP2. On the other hand, if a fault located atA
is encountered, the fault current ofP2 is greater than the current flowing through
deviceP3. This example clearly indicates that DG will certainly impact the protec-
tion scheme of the distribution grid. More examples similar to this can be found
in [44]. There are at least two solutions to the problem described above.Appar-
ently, the simplest solution is to require all DG units be disconnected when a fault
occurs on the grid. This is the current practice for most DG interconnections. If the
protection system of DG units are able to detect the fault and rapidly disconnect
from the network, DG will not interfere with the normal operation of the protection
system. Most interconnection standards therefore require disconnection of DG if a
fault occurs. However, this is not always desired, particular when DGpenetration
is high in a distribution network. Nowadays, more and more distribution networks
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are automated and equipped with SCADA systems. The primary objective of these
systems is to improve reliability of the grid, but they can also be helpful in dynamic
coordination of the system protection relays. In brief, a SCADA system might al-
low the coordinated control of the protection system, by analyzing the relevant
data (system voltages, level of loading, the DG production, etc.) and operating the
reclosers/circuit breakers that would isolate the fault without much disturbance to
other customers or unnecessary disconnection of DG.

Reliability

The assessment of impacts that DG might have on the grid is complicated by sev-
eral considerations, including the following ones

• Main application of DG.

• Plans concerning the future development of the grid.

• The technology of DG.

Combination of the aforementioned factors determines the overall impact that DG
can have on the system reliability. Let us examine qualitatively these factors.To
simplify analysis, let us only consider distributed generators with fully control-
lable output power. That is, such DGs as photovoltaic arrays or wind turbines are
left outside the scope of the analysis. According to [26], there are threemain ap-
plications of DG, namely, providing back up power, peak load shaving, and net
metering. It can be argued that the impact of DG on the overall system reliability
depends on the application. For instance, DG installed with the purpose to provide
back up power will certainly increase the reliability of power supply to the critical
load it is protecting. However, the positive impact on the reliability of the power
delivery to other customers will be only marginal. Positive impacts that DG can
have on the grid are more expressed when the main aim of the DG is to reduce
the peak power demand. The positive impact originates from the fact that electric
power is generated and consumed on-site thereby unloading the main feeder, which
is likely to increase the overall system reliability due to a reduced rate of failures
on the distribution grid.

The impact of net metering on the overall system reliability can be two-fold.
On the one hand, net metering may contribute to peak load shaving and thus en-
hance reliability of power delivery. On the other hand, this application, in principle,
causes bidirectional power flows, which under certain circumstances can depress
reliability of the grid. In addition, the presence of such distributed generators can
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mask the load growth and therefore increase the number of customers whichcan
be affected by power interruption due to a failure of the DG. For instance,if a dis-
tributed generator is installed in the middle of a feeder, then at the substation end of
the feeder an increase of the load behind the DG may be difficult to recognize. This
might lead to an increased number of customers affected by a fault on the feeder or
the DG itself. In conclusion it can be stated that major impacts that DG can have
on the system reliability is highly dependent on the DG characteristics, grid char-
acteristics as well as the application of DG. The same DG technology utilized for
different applications will affect system reliability in different ways, ranging from
very positive impact (peak load shaving) to quite negative (load growth masking,
changing the load flow pattern). A more detailed treatment of the impact of distrib-
uted generation on the power grid and methods useful for quantifying the impact
can be found in [26]. It must however be stated that “despite these conflicts, DG
installations on utility distribution systems can nearly always be successfully engi-
neered” [37].

8.5 Network Control and Stability Issues

The following sections will briefly discuss what impact a significant penetration of
DG might have on control and stability of power systems. Within the discussion
about DG and control/stability issue often the question about a critical penetration
level of DG emerges. In the author’s opinion, the critical penetration leveldoes
not necessarily have to be defined as it will depend on the network designand
the technology used, if there is actually any critical penetration level for DG. It
is sometimes speculated in the literature on DG that distributed generators will
certainly lead to control and stability issues. In what follows an attempt is made
to qualitatively show thatin generalsuch a statement cannot be made, at least
for relatively small penetration levels. The discussion in this section echoesthe
conclusions from the previous chapters in this thesis; however, an attemptis made
to extrapolate these conclusions to a general multimachine power system, which—
at present—can only be done by performing basic qualitative analysis.

Islanding

A loss-of-main or islanding problem can occur if a circuit breaker in a distribution
system opens, which could results in an islanding of a DG unit. If the loss-of-main
is not detected by the DG unit, for example due to insufficient fault current,the DG
unit will continue to operate. If the DG unit is able to match active and reactive
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power of the load in the islanded system precisely, then the islanded system could
continue to operate. In this case a safety issue remains, as the network staff might
assume that the islanded network is not energized. It is, however, veryunrealis-
tic that DG will exactly match the load in the system during the time the circuit
breaker opens, hence large frequency or voltage variations will occur when the DG
unit tries to supply load. Hence, most interconnection rules require a loss-of-main
detection system which automatically disconnects the DG unit in case of a loss-
of-main and the unit remains disconnect until the grid is restored. In the UK,G59
recommendations requires that all DG units connected to MV or LV with a rating
greater than 150 kVA have a loss-of-main detection system [63]. Apparently, many
customers have an interest to operate DG in parallel to the network as long asthe
network is available, but if a network outage occurs they would like to operate the
DG unit as emergency power supply or back-up unit. In this case, the DG unit must
disconnect from the main grid and must quickly match the local load demand.

Availability of Relevant Data

When analyzing stability of a power system, both dynamic and transient stability
issues should be addressed in order to numerically assure the proper and reliable
operation. Be it dynamic or transient stability study, it is extremely important to
have models of the system reflecting the main dynamical features of the system
with reasonable accuracy. Thus, to obtain reliable results from a study, one ulti-
mately needs the data of the system components. This implies that the owners of
DG should make all relevant technical characteristics of DG available. Here, not
only the static characteristics of the DG unit are important, but also the character-
istics of the main controls such as the governor, voltage regulator, and excitation
system of a synchronous generator, etc. should be available.

Dynamic Models of DG Technologies

As the distribution grids are becoming more active their behavior will more resem-
ble that of a transmission network. When the penetration level passes a certain
threshold it will no longer be appropriate to model the distribution networks as
just static loads characterized by the amount of active and reactive power being
consumed. Just as in the case of the transmission grid, it will be necessaryto ac-
curately model both the distributed generators and their loads in order to address
such issues as stability and control of DG resources. The importance of the mod-
eling of the new DG technologies has already been realized by the researchers and
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engineers and resulted in a number of scientific articles reporting the development
of dynamic models of fuel cell systems, microturbines, double fed induction ma-
chines, and generic loads [38,41,72,78,94,115–117,123,135]. Depending on the
dynamical phenomena of interest, various models can be used in the analysisand
simulations; however, it should be noted that presently most of the commercially
available power simulation packages do not have detailed models of such DG tech-
nologies as a fuel cell or doubly-fed induction machines. Therefore, presently the
system analyst has to face the challenge of modeling various components without
relying on the availability of well-established models. If for some reason analytical
modeling is inaccurate or infeasible, alternative ways of obtaining reliable models
should be sought. One such solution is to apply a system identification technique.
System identification techniques have proven useful and robust numerical tools for
obtaining reliable models of dynamical systems in various fields of modern en-
gineering, e.g., biomedicine, signal processing, aerospace industry and are now
gaining more momentum in power system applications. Certain results have al-
ready been obtained in identification of linear and nonlinear models of fuel cell
stack and an aggregate industrial load [72], [112]. In conclusion it can be stated
that the choice of the dynamic model to be used in a particular case strongly de-
pends in the nature of the study. That is, when assessing the dynamic stabilityof a
power system, linear models—possibly obtained with the help of a linear identifi-
cation method—will suffice. When a linear system is obtained by linearization of
a nonlinear model, an explicit assumption is made on the magnitude of deviations
of the system’s states from an equilibrium point-the deviations should be small
for all times. If this assumption is violated, the results from the linearized model
may not be reliable. If this is the case, the use of linear tools becomes a choiceof
questionable value and application of nonlinear techniques should be considered
as a viable alternative. When studying transient stability issues in electric power
systems, nonlinear models are commonly used [88]. The necessity to model power
systems with nonlinear differential equations originates from the following fact:
When a power system is subjected to a sudden and severe disturbance, itsstates
(generators shaft angular frequencies, exciter voltages, etc.) may deviate signif-
icantly from the pre-fault steady state. Moreover, a new post-fault equilibrium
may be different from the pre-fault, which implies that linear models for pre-and
post-fault are also different. All these considerations suggest that nonlinear system
analysis should be applied to a certain class of power system studies. There are
many nonlinear analysis tools that can be used for stability studies in power system
applications. One of the most commonly used techniques is the Lyapunov direct
method and its modifications presented in Chapter 4 and [43,64,95].
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Change of Short Circuit Capacity

The installation of new distributed generators on the distribution networks poten-
tially brings a number of benefits; however, it also may cause some side effects.
One of those effects is the increased level of short circuit capacity (SCC) of the
distribution networks. Although sometimes it is desirable to have a high SCC, e.g.,
at the point of connection of the inverter of a line commutated HVDC station or in
the presence of large loads with rapidly varying demands, in general the increase
of the SCC potentially indicates a problem. The problem is two-fold:

(i) Increased fault currents and

(ii) Voltage control issues.

Now these topics will be considered in more detail. To facilitate the exposition,
assume a DG unit has been installed at a busbarA of an abstract distribution grid.
Prior to the installation of DG, busbarA was a pure PQ node; with the distributed
generator installed it becomes active and produces a certain amount of power at a
constant power factor. Suppose a fault occurred in a neighborhoodof busbarA. As
Tab. 8.2 suggests, during a fault a distributed generator can inject into thebusbar
fault currents of a magnitude ten times greater than its rated current. Such currents
can cause two types of problems: thermal and mechanical stress to the busbar.
It is well known that the mechanical force acting on a busbar during a fault is
proportional to the square of the fault current. In addition to the mechanical stress
under faulted conditions the busbar will also be exposed to thermal stress,which
can also cause damage to the busbar. Another issue to be addressed in connection
with the increase of SCC is the voltage control problem. If the voltage ofA at
steady state is 1 p.u., then after a sudden load level reduction the voltage of Amight
increase beyond the desirable limits. The presence of shunt capacitors and/or filters
installed to compensate for the reactive power or harmonics absorption may further
worsen the situation. We would like however to mention that so far only the worst
case scenarios have been considered. In reality the situation might actuallybe less
severe. That is, normally low voltage lines and cables do have resistance values of
a comparable magnitude with that of the reactance. Thus, the relative impedance
[Ω/km] of the distribution lines is greater than that of transmission lines. Therefore,
the fault currents will quickly dwindle as the distance betweenA and the fault
increases causing less or no damage toA.

It should be noticed that the overwhelming majority (up to 70–80%) of the
faults are one-phase-to ground and are of temporary character, which also reduces
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the severity of the impact that the fault currents have onA. Finally, it is worth
mentioning that the fault currents heavily depend in the grounding of both thedis-
tributed generator and distribution grid. Among the positive sides of an increased
SCC is the fact thatA becomes a more stiff voltage source thus reducing the mag-
nitude of voltage sags caused by a remote earth fault or switching of large nearby
loads.

Inertia Constant

As was already discussed in Section 8.3, presently there are available a number
of various DG technologies which might differ significantly from a conventional
synchronous generator in many respects. For instance, some distributedgenerators
are interfaced with the grid via a converter, which is uncommon for conventional
synchronous generators.

It can be argued that when conducting rotor angle stability studies, the mostsig-
nificant features of new DG units (except those built on SG’s) are reduced damping
and low inertia constants. In extreme cases, e.g., fuel cell systems, the inertia con-
stant is undefined. To elucidate the latter statement, let us consider a synchronous
generator. The swing equation for the generator is shown below:

2H
ω0

d2δ
dt2 = Tm−Te(δ , δ̇ ),

whereδ , Tm, andTe are the rotor angle, mechanical torque of the turbine, and
the electrical torque produced by the generator, respectively. The quantity H =
Jω2

m,base/Pbase is termed the inertia constant and is related to the kinetic energy of
the rotating mass of the generator [88]. Clearly, this definition does not apply to
systems without rotating masses. Let us now assess implications that reducediner-
tia constants have on the rotor angle stability of the power system. As an example
a wind turbine having light rotor and relatively large installed capacity is analyzed.
For this purpose the swing equation can be rewritten in per unit as

2H
ω0

d2δ
dt2 = Tm,pu−Te,pu(δ , δ̇ ).

Assume now that a solid three-phase short circuit has occurred at the terminals of
the wind turbine, i.e.,Te,pu = 0. Then the critical clearing time can be calculated as
follows

tcr =

√

4δcr

ω0

H
Tm,pu

.
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Thus, as the ratioH/Tm,pu decreases, so does the critical clearing timetcr. There-
fore, in order to preserve stability of the wind turbine, the protection systemhas to
isolate the fault faster compared to the case of an equivalent synchronous generator
having the same rating. It should however be noted that the low inertia constants of
new DG technologies also impact such an important quantity of the power system
as frequency. To show this, we postulate that DG units which do not utilize the
conversion of mechanical energy into electrical have zero inertia constant, than the
ratio

∑k Hk

∑ j Tm,pu, j

decreases as the penetration level increases and a fraction of the newlyinstalled
DG consists of “massless” generators such as, for example, fuel cells.This implies
that when a contingency occurs on the power system which leads to the lossof
some conventional generators, the system frequency will experience adeeper sag
that would have been shallower had one chosen synchronous generator-based DG.
This is evident from the equation

d2δ
dt2 =

ω0

2H
(Tm,pu−Te,pu) ,

which indicates that the system frequency will reduce at a greater rate whenH is
reduced. It can also be stressed that low inertia constants not only represent dif-
ficulties under a fault conditions, but also during normal operation the control of
output power of a low-inertia generator is more complicated. This phenomenon
has been observed in [135], where a step increase of the output power of a mi-
croturbine caused significant rotor oscillations for approximately 20 seconds. This
type of response can severely affect the ability of microturbines to follow rapid
load variations.

Voltage Stability

Voltage stability of an electric power system can be defined in several waysde-
pending on the desirable emphasis: small or large signal stability, possible causes
of instability, etc. For now let the following definition be adopted:
A power system at a given operating state and subject to a given disturbance is
voltage stable if voltages near loads approach post-disturbance equilibrium values.
The disturbed state is within the region of attraction of the stable post-disturbance
equilibrium.
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In simpler terms, a power system is voltage stable if the voltages of nodes in some
proximity of loads (load centers) following a disturbance approach an acceptable
post-disturbance steady state values.

Among the most important factors determining voltage stability of a power sys-
tem are characteristics of the load and voltage control equipment of the network.
To emphasize the importance of this fact, voltage stability is sometimes referred
to as load stability. Normally, the reactive power component of the load and reac-
tive power losses play the major role in causing voltage stability problems. Due
to adverse effects of asynchronous motor and constant energy loadsare considered
to be especially prone to provoking voltage stability problems [122]. Generally
speaking, voltage stability is a dynamic phenomenon, which implies that full-scale
modeling of the power system behavior might be needed for rigorous analysis of
voltage stability [96, 130]. In some cases involving slow forms of voltage insta-
bility, detailed dynamic analysis is not needed; voltage stability can be assessed
by adequately modified load flow analysis [96]. For simplicity, in this section
the load response is assumed slow, which allows the use of load flow analysis
for voltage stability studies. As stated earlier in this section, one of the most im-
portant factors affecting voltage stability is the ability of system generation and
transmission to match the reactive power consumption due to the reactive load and
losses [33,84,122]. We thus conjecture that the major impact of DG on voltage sta-
bility of the grid will be determined by the power angle of the distributed generator.
Let us now consider the DG technologies listed in Section 8.3 from the perspective
of their impact on the grid voltage stability, i.e., their ability to generate reactive
power.

Synchronous generator

Conventional synchronous generators are capable of both generating and absorbing
reactive power. Therefore, the use of DG’s utilizing overexcited synchronous gen-
erators will allow the production of reactive power on-site. The local generation
of reactive power reduces its import from the feeder, thus reducing theassociated
losses, and improving the voltage profile. As a consequence, the voltage security
is also improved.

P-V curves have been traditionally used as a graphical tool for studying voltage
stability in electric power systems. Figure 8.3 shows conceptually the impact of a
synchronous generator on voltage stability of a hypothetic node. As can be seen in
the figure, the installation of a distributed generator of∆P MW shifts the operation
point on the associatedP-V curve from pointA to pointB, which results in a raise
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Figure 8.3:P-V curve: Enlargement of voltage stability margin

of the node voltage by the amountVDG−V0 and enhanced voltage security: the
stability margin increases fromm0 to mDG. An immediate conclusion to be drawn
here is: the installation of a distributed generation will most likely enhance the
voltage stability of the grid as long as the DG rating is smaller than twice the
local loading level. This conclusion has been confirmed by computer simulations
reported in reference [84]. DG interfaced with the grid by self-commutatedpower
electronic converters The utilization of self-commutated converters allows fast and
precise control of the output voltage magnitude and angle. Therefore, reactive
power can be either generated or absorbed, depending on the controlmode. Since
normally the power factor of such a converter is close to unity, no reactivepower
is injected in the network; however, the overall impact of the distributed generator
on the voltage stability is positive. This is due to the improved voltage profiles as
well as decreased reactive power losses, as the equation below suggests.

Qloss=
(Pload−PDG)2 +(Qload−QDG)2

V2 Xline.

In the expression abovePload, Qload, PDG, and QDG are the active and reactive
power of the load and DG, respectively.Xline is the aggregate reactance of the
line connecting the load to the feeding substation. Note that for simplicity the
resistance of the line is neglected. Clearly, as the active power injected by the
distributed generator increases, the reactive power loss decreases.Thus, positive
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impact on the voltage stability. Case studies presented in reference [110] report a
significant improvement of transient stability by a fuel cell power plant interfaced
with a power electronics converter.

Asynchronous generators

An asynchronous generator possesses a number of features that make it very suit-
able for DG. Among these features are: relatively inexpensive prices,insignificant
maintenance requirements, in addition these motors are robust. On the other hand,
when directly connected to the grid, this type of DG will always consume reactive
power thus contributing to the factors increasing the probability of encountering
voltage stability problems. The reactive power consumption of asynchronous gen-
erators is normally compensated by shunt capacitor banks. This howeveris only
a partial solution to the voltage stability problem, since a voltage reduction will
decrease the amount of reactive power generated by the capacitor banks, while
increasing the reactive power consumption of the asynchronous generator. There-
fore, there is a risk that instead of supporting the grid at an undervoltagesituation
the asynchronous generator will further depress the system voltage. This might in
principle trigger a voltage stability problem. There exist however effectiveways to
alleviate possible voltage stability problems with asynchronous generators, namely,
installation of a static VAr system or using a self-commutated converter to inter-
face the generator with the grid. As the overwhelming majority of newly installed
asynchronous generators are equipped with a self-commutated power converter, the
detrimental impact of the induction generator on voltage stability of the network is
to a great extent eliminated. Moreover, the injection of active power reduces the
power losses thus further enhancing voltage stability of the grid.

Line Commutated Converters

It is a well-known fact that conventional line commutated converters always con-
sume reactive power. The amount of the consumed reactive power is canbe as
high as 30% of the rated power of the converter [the number has to be double-
checked]. To compensate for theQ demand, capacitor banks are normally installed
on the ac side of the converter. This makes a line commutated converter quali-
tatively equivalent to a directly connected induction generator. Therefore, under
certain circumstances, the presence of such a converter can negatively affect volt-
age stability. We would like however draw the reader’s attention to the following
chain of facts: the latest achievements in high power electronics which resulted
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in the advent of relatively inexpensive devices possessing excellent technical char-
acteristics. Moreover, often the capacities of DG are quite small, which makes
the utilization of advanced power electronics devices economically beneficial. It
can therefore be anticipated with certain degree of confidence that in the near future
most of the power electronics converters will be self-commutated. In general, it can
be concluded that the presence of DG does not adversely affect voltage stability.
The utilization of asynchronous generators directly connected to the can potentially
cause voltage stability problems; however, the present trends in the manufacturing
of asynchronous generators indicate that the fraction of converter interfaced gen-
erators gradually grows, reducing the likelihood of encountering voltagestability
related problems. The qualitative analysis performed in this section only concern
steady state operation of the tandem DG–distribution network.

On the Quantification of Maximum Penetration Levels

Quantification of the maximum allowable amount of DG that can be connected to
a distribution network without jeopardizing the operation standards is highly case
specific depending upon the specific circumstances related to the operationof both
DG and the utility. For instance, one of the key factors is the mode of DG oper-
ation, i.e., if the DG output is following the load variations or not. If DG is not
following the load variations, increasing DG penetration will usually violate volt-
age standards, before reaching any other limitation. In some cases, if synchronous
generators are placed in meshed low voltage grids, the short circuit levelmight
reach unacceptable levels before voltage standards are violated. Technically, both
these issues can be solved by reconfiguration or upgrading of the network.

In distribution networks already reconfigured for DG, thermal limits on some
lines or substations can be the limiting factors defining the maximum penetration
levels. Some network operators might be willing to except those overloadings, if
they occur only for a very short time. Some European network operatorsactually
accept a 20% overloading of their overhead lines, if the overloading is cased by
wind power, as it is expected that the high wind speed at the times of the overload-
ing will also cool the overhead lines. If overloading is excepted, the network must
be further upgraded or reconfigured. It should be emphasized that, ifreconfigu-
ration and upgrading of the distribution network is taking into account, virtually
there are only a few technical limitations for the penetration ratio of DG.

With increasing DG penetration ratios, the network will be reconfiguring and
upgrading, thereby becoming more flexible and may be evolving from a LV to a
MV grid system. Hence, the integration of DG into distribution systems becomes
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an economic issue rather than a technical one. There are a few real-world existing
wind-diesel systems in operation which support this statement. Such system, for
example on Rathlin Island (Northern Island), Froya Island (Norway), or Denham
(Australia) achieve a wind power penetration ratio of up to 100% for shortperiods
of times and annual average wind penetrations of 70% to 94%, [39,49]. The wind-
diesel system in the Australian city of Esperance, for example, supplies power
to around 12000 of its inhabitants. It consists of eight diesel generatorswith a
combined capacity of 14 MW and two wind farms with a combined capacity of 2.4
MW. It is reported that the system is capable of adequately responding to all power
fluctuations, including wind power fluctuation and load fluctuations. At nightswith
low system loads and high wind speeds, the wind farms provide up to 75% of the
total system load without problems. In average the wind farms supplies around
14% of the system demand, [102].



Chapter 9

Closure

“In all human affairs there are efforts, and there are results,
and the strength of the effort is the measure of the result.”

— J. Allen [16]

This chapter recapitulates the main results obtained in the framework of this
project by providing general conclusions and discussions on the key findings, which
is followed by suggestions for possible extensions of the work reported in thedis-
sertation.

9.1 ConclusionsThe main focus of this project has been placed upon the development of
analytical tools for stability analysis of power systems with large amounts
of distributed generation. The results obtained can be roughly categorized

into four main groups, namely, (i) transient stability analysis, (ii ) voltage collapse
analysis of power systems with intermittent generation and/or stochastic loads,(iii )
identification of aggregate power system loads, and (iv) design of robust control
for the enhancement of load following capabilities of solid oxide fuel cell-driven
power plants.

Along these lines, the main conclusions obtained in this project can be summa-
rized as follows.

Transient Stability

• Numerous attempts were made in order to construct a Lyapunov or Lyapunov
energy-like function for a single asynchronous generator, which, however,
did not lead to the discovery of a suitable Lyapunov function. In particular,
the Krasovskii method, the Energy Metric algorithm, and the First Integral of
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Motion failed in synthesizing an energy function for the single asynchronous
generator model [with damping neglected].

• The difficulties associated with the construction of a Lyapunov (or energy)
function for a single generator strongly suggest that the construction ofa
practical Lyapunov function for a multimachine power system consisting of
both synchronous and asynchronous generators might be a very challenging
task. The Converse Lyapunov theorems combined with the empirical exis-
tence of a stable equilibrium in such power systems imply that there always
exists a Lyapunov function for the system, e.g., a quadratic Lyapunov func-
tion. However, it is very likely that the use of quadratic Lyapunov functions
is impractical due to the excessive conservatism of the estimates of the re-
gion of attraction. At present it is not clear if a suitable practical Lyapunov
or energy function can be found for a multimachine power system.

• It was demonstrated in this thesis that the use of Extended Invariance Prin-
ciple can yield a family of extended Lyapunov functions that could be used
in the transient stability analysis. In addition, has been demonstrated in the
thesis that there exists an extended Lyapunov function for the three-machine
power system.

• Numerical time-domain simulations of both single asynchronous machine
and the three-machine power systems confirmed that the estimated attraction
regions are reasonable accurate. For instance, for the three-machinepower
system the conservatism amounted to approximately 3.6%.

• It was observed in the literature that for power systems without asynchronous
generators the attraction region estimates obtained with the help of extended
Lyapunov functions are more conservative than the estimates which conven-
tional energy functions give. Therefore, it is quite likely that for multima-
chine power systems the extended Lyapunov functions might yield attrac-
tion region estimates that are somewhat conservative. However, at present
the only alternative is to use the extended Lyapunov functions for analyti-
cal stability studies of such power systems, since to date no pure Lyapunov
or energy function has been found for a power system with asynchronous
generators.
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Voltage Stability

• The intrinsic intermittent behavior of wind farms has stimulated research in
the area of voltage stability analysis of power system with large amounts of
wind power.

• It was demonstrated in this dissertation that the problems of calculating the
critical loading and the maximal loadability in a power system can be treated
in a stochastic framework, i.e., certain system parameters could be treated as
bounded stochastic parameters.

• It is known that the problems of calculating the critical loading and the max-
imal loadability can be reduced to certain optimization problems. It has been
proposed in this thesis that these optimization problems can be reformulated
such that the parameters become interval-valued. Then the methods of inter-
val arithmetic could be applied to solve these optimization problems. Thus,
performingoneoptimization, it is possible to determine the set ofall values
that the critical loading or maximal loadability assume for any combinations
of the uncertain parameters.

• To exemplify the application of the proposed methodology, a simple three-
bus power system was used. For this sample power system the results ob-
tained have been found accurate and nonconservative.

Identification of Aggregate Power System Loads

• Two power system load identification techniques are proposed in this thesis.
The load models are based on well established equations describing the non-
linear recovery mechanisms of load. The models are then reformulated in
the framework of stochastic system identification theory.

• A linear and nonlinear output error estimators are introduced and analyzed,
and generic equations applicable to identification of aggregate models of
power system loads are developed and studied in detail.

• The asymptotic behavior of the estimates is studied by means of numerical
experiments with artificially created data, demonstrating that the estimates
are asymptotically unbiased for the nonlinear load model and their variance
attains the Craḿer-Rao lower bound.
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• To avoid numerical problems associated with possible multiple minima of
the objective function, a global minimization technique was utilized.

• The load identification techniques were applied in order to identify the load
of a paper mill. Field measurements taken and linear and nonlinear load
models were accurately identified.

Robust Controller Design

• The load following capabilities of a solid oxide fuel cell-driven power plant
were explored by means of numerical experiments. It was found that aux-
iliary control could improve the load following functionality of the SOFC
plant.

• To enhance these load following capabilities, a robust two-degree-of-freedom
H∞ controller was designed.

• Nonlinear dynamic simulations were used in order to verify the performance
of the compensated SOFC power plant. It appeared that the robust controller
was capable of improving the set point tracking of the plant and significantly
enhanced rejection of disturbances acting on the plant.

General Discussion on the Impact of DG on the Utility

The DG technologies were qualitatively analyzed and their impact on the power
system was discussed. Here, such questions as the impact on the voltage control,
inertia constants, power quality, fault current levels, protection system, reliability,
and stability were studied.

Based on the discussion, it can be concluded that the impact of DG depends on
the penetration level of DG in the distribution network as well as on the type of DG
technology. If DG is properly sized, sited and selected in terms of technology it
can clearly provide benefits to control, operation and stability of the power system.

9.2 Suggestions for Future Work

Transient Stability

In the future work the following issues should be addressed
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• Using the extended Lyapunov function for the three-machine power system
considered in this thesis, it would be interesting to study analytically the
impact that asynchronous generators have on the dynamic performanceof
the power system. From such a study more insights could be gained about
the role of asynchronous generators in providing additional damping.

• Generalization of the results obtained in this chapter to a multi-machine
power system.

• Estimation of the conservatism of the estimates of the domain of attraction
provided by the EIP for multimachine power systems.

Voltage Stability

• Application of the methodology described in this dissertation to larger power
systems.

• Rigorous evaluation of the numerical properties of the interval optimization.

• Analysis of the conservatism of the enclosures

• Convergence analysis of the proposed method for voltage collapse analysis
of large-scale power systems.





Appendix A

Interval Arithmetics

“Pure mathematics is, in its way,
the poetry of logical ideas.”

— A. Einstein

One of the most natural and convenient ways to analyze sets of numbers is
to use interval arithmetic. The key concept of interval arithmetics is that of
an interval. An interval[x] is unambiguously defined as a closed connected

set of reals [52], i.e.,

[x] = {x∈ R | x≤ x≤ x} ∈ IR. (A.1)

In the equation above,x andx stand for the lower and upper bound of the inter-
val [x], respectively. In this Appendix, we enclose all interval variables in square
brackets to distinguish them from the real numbers. Many of the main operations
from real analysis can be readily extended to interval arithmetic. For instance, for
two intervals[x] = [x,x] and[y] = [y,y] the operations of summation, subtraction,
and multiplication are defined as

[x]+ [y] = [x+y,x+y] (A.2)

[x]− [y] = [x−y,x−y] (A.3)

[x] · [y] = [min{xy,xy,xy,xy},

max{xy,xy,xy,xy}] (A.4)

Division of two intervals is defined in a slightly different way

[x]/[y] = [x] · [1/y,1/y], if 0 /∈ [y].

In addition to the basic arithmetic operations, several new operators are introduced,
e.g., the width and midpoint of an interval:

w([x]) = x−x

x̌ = mid([x]) =
x+x

2
.
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It is worthwhile noticing thatw([x]) can be viewed as a norm in the spaceIR;
however, it is only a seminorm, sincew(ξ ) = 0,∀ξ ∈ R. As can be easily verified
by direct inspection of (A.2)–(A.4),[x]− [x] 6= 0,∀[x] : w([x]) 6= 0.

The concepts of interval vectors and operations on them are trivially extended
from the real analysis, i.e., an interval vector[x] ∈ IR

n is defined as a Cartesian
product of intervals[xi ]

[x] = [x1]× [x2]×·· ·× [xn], (A.5)

ξ [x] = (ξ [x1])× (ξ [x2])×·· ·× (ξ [xn]),ξ ∈ R, (A.6)

[x]′[x] =
n

∑
k=1

[xk] · [yk], (A.7)

Interval matrix operations are defined similarly to the operations on real matrices.
Finally, an interval-valued functionf is defined as follows

f ([x]) = { f (ξ ) | ξ ∈ [x]∩ dom( f )}, (A.8)

where ‘dom(f )’ designates the domain off .
Using the interval operations introduced in this section, the properties of the

setsΩL andΩ̄l can be readily studied.
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Some Mathematical Facts

B.1 Linear AlgebraConsider the matrixH ∈ R
n×n. Suppose thatH is positive definite, i.e.,

H ≻ 0. Then the following statements are equivalent

1. x′Hx > 0,∀ x.

2. If λi is an eigenvalue ofH, thenλi > 0,∀ i.

3. All leading minorsMk of H are positive definite (Sylvester’s criterion).

If matrix H is negative definite, i.e.,H ≺ 0, the opposite to facts 1 – 3 holds.
For positive semidefiniteH < 0, the strict inequalities in facts 1 – 3 are relaxed.

Assume thatH hasn distinct eigenvalues{λi}
n
1. Then there exists a nonsingular

matrixT : T−1HT = Λ, whereΛ = diag(λ1,λ2, . . . ,λn).
Suppose thatH is symmetric, i.e.,H = H ′. Then,λi ∈ R,∀ i. Let us order the

real eigenvalues ofH such thatλ1 > λ2 > · · · > λn. Then, for allx, the following
inequalities hold

λn‖x‖
2
2 6 x′Hx (B.1)

x′Hx 6 λ1‖x‖
2
2. (B.2)

The trace operator of a matrix is defined as the sum of the diagonal elements of the
matrix, i.e.,

TraceH =
n

∑
k=1

hkk.

157



158 APPENDIX B. SOME MATHEMATICAL FACTS

B.2 Calculus

Differentiation of quadratic forms

Consider the quadratic formq = 1/2x′Qx. Differentiation ofq with respect to the
argument is done as is shown below.

∂q
∂x

=
1
2

∂ (x′Qx)
∂x

=
1
2

[
∂x′

∂x
Qx+

(
x′⊗ In

) ∂Qx
∂x

]

=
1
2
(Q+Q′)x. (B.3)

In the special caseQ = Q′, the derivative∂q/∂x simplifies toQx.

Line integral independent of path

Consider the vector-valued functionf ∈ C1 in some domainD. Then, the line
integral

∫

Γ
f (x)dx

is path independent iff:

• f = ∇ F , whereF is some function, or

• curl f = 0, assuming thatD is simply connected.

Taylor series expansion

Consider the vector-valued functionf ∈Cn in some domainD ∈ R
m. Then, inD,

f can be approximated by a Taylor series expanded around anx0 as follows.

f (x0 +δ )≈
n

∑
k=1

1
k!

(δ ′∇)k f |x0, (B.4)

where(δ ′∇)k denotes an operator that acts onf (x) k times.∇ f is often referred to
as the Jacobian off , while ∇2 f is known as the Hessian off . If it is known that
(B.4) exists and that‖δ‖ is small, thanf (x0+δ ) can be satisfactorily approximated
by the sumf (x0)+δ ′∇ f |x0. This procedure of truncating the higher order terms is
commonly termed linearization.
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Linearized Model of SOFC

L inearizing the nonlinear fuel cell model (3.20)–(3.22) and using equation
(3.19), the following state-space model of the solid oxide fuel cell is ob-
tained

A =









−1.336 6.459·103 −379.934 9.69·103 0
0 0 0 0 0.2
0 0 −0.013 0 0
0 0 0 −3·10−4 0.175
0 0 0 0 −0.2









B =









18.87 37.4 299.6
0 0 0
0 0 0
0 0 0
0 0 0









C =
[

3.9·10−3 21.56 −1.268 32.35 0
]

D = 0

The numerical values of the system parameters can be found in Table C.1 [135].
The rated voltage of the fuel cell is equal to 333.8 V under rated power output. In
this model it is assumed that the fuel cell inverter was operated at a unity power
factor.
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Table C.1: Parameters in SOFC plant model

Parameter Representation Value

Prate Rated power 100kW
Pre f Active power reference 100kW
T Absolute temperature 1273K
F Faraday’s constant 96487C/mol
R Universal gas constant 8314J/(kmol K)
E0 Ideal standard potential 1.18V
N0 Number of cells in the stack 384
Kr Constant,Kr = N0/4F 0.996×10−6 kmol/(s A)
Umax Maximum fuel utilization 0.9
Umin Minimum fuel utilization 0.8
Uopt Optimal fuel utilization 0.85
KH2 Valve molar constant for hydrogen 8.43×10−4 kmol(s atm)
KH2O Valve molar constant for water 2.81×10−4 kmol(s atm)
KO2 Valve molar constant for oxygen 2.52×10−4 kmol(s atm)
τH2 Response time for hydrogen 26.1s
τH2O Response time for water 78.3s
τO2 Response time for oxygen 2.91s
r Ohmic losses 0.126Ω
Te Electrical response time 0.8s
Tf Fuel processor response time 5s
rH O Ratio of hydrogen to oxygen 1.145
cosφ Power factor 1.0
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