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Stability analysis programs are a primary tool used by power 
system planning and operating engineers to predict the response 
of the system to various disturbances. Important conclusions and 
decisions are made based on the results of stability studies. The 
conventional method of analyzing stability is to calculate the 
transient behavior of generators due to a given disturbance. By 
examining the behavior of generators, one determines whether 
stability has been maintained or lost. In contrast, direct methods 
of stability analysis identifi whether or not the system will remain 
stable once the disturbance is removed by comparing it with a 
calculated threshold value. Direct methods not only avoid the time- 
consuming solutions required in the conventional method, but also 
provide a quantitative measure of the degree of system stability. 
This additional information makes direct methods very attractive 
when the relative stability of different plans must be compared or 
when stability limits must be calculated quickly. 

This paper presents a theoretical foundation of direct methods 
for both network-reduction and network-preserving power system 
models. In addition to an overview, new results are offered. A 
systematic procedure of constructing energy functions for both 
network-reduction and network-preserving power system models 
is proposed. An advanced method, called the BCU method, of 
computing the controlling unstable equilibrium point is presented 
along with its theoretical foundation. Numerical solution algo- 
rithms capable of supporting on-line applications of direct methods 
are provided. Practical demonstrations of using direct methods and 
the BCU method for  on-line transient stability assessments on two 
power systems are described. Further possible improvements, en- 
hancements and other applications of direct methods are outlined. 

I. INTRODUCTION 

By nature, a power system is continually experiencing 
disturbances. These may be classified as event disturbances 
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and load disturbances. Event disturbances include generator 
outages, short-circuits caused by lightning or other fault 
conditions, sudden large load changes, or a combination of 
such events. Event disturbances usually lead to a change in 
the configuration of the power system. Load disturbances, 
on the other hand, are the small random fluctuations in 
load demands. The system configuration usually remains 
unchanged after load disturbances. Recent trends toward 
full utilization of existing generation and transmission sys- 
tems have increased the effects of these disturbances on 
power system security. 

Power systems are planned and operated to withstand 
the occurrence of certain disturbances. The North American 
Electric Reliability Council defines security as the preven- 
tion of cascading outages when the bulk power supply is 
subjected to severe disturbances. The specific criteria which 
must be met are set by the individual reliability councils. 
Each council establishes the types of disturbances which 
the system must withstand without cascading outages. The 
following conditions, although conservative in nature, can 
ensure cascading outages will not occur: 1) when any of a 
specified set of disturbances occurs, the system will survive 
the ensuing transient and move into a steady-state condition, 
2)  no bus voltage magnitudes during transients are outside 
their permissible ranges, 3) in this new steady-state condi- 
tion, no control devices, equipment or transmission lines are 
overloaded and no bus voltage magnitudes are outside their 
permissible ranges (say 5% of nominal). The first condition 
is related to the transient stability problem while the second 
one is related to the voltage-dip problem. The conditions 
are referred to as dynamic security. The third condition is 
referred to as static security. 

Power system security analysis deals with the power 
system dynamic response to disturbances. In dynamic se- 
curity analysis, the transition from the present operating 
condition to a new operating condition and the fact that 
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during the transient cascading outages will not be triggered 
are of concern. In static security analysis, the transition to 
a new operating condition is assumed, and the analysis is 
focused on the satisfaction of both operating and engineer- 
ing constraints (overloading, voltage, etc.) The present-day 
power system operating environment has contributed to 
the increasing importance of the problems associated with 
dynamic security assessment of power systems. To a large 
extent, this is due to the fact that most of the major power 
system breakdowns are caused by problems relating to 
system dynamic responses [32] which mainly come from 
disturbances in power systems. 

Maintaining power system dynamic security is a many- 
faceted problem in which thermal limits, transient stability, 
and voltage-dip issues must be addressed. In addition, 
adequate energy and capacity reserves must be available, 
and the frequency response of machine governors combined 
with the load characteristics must be such that frequency 
excursions are arrested within safe limits. This task is more 
complicated and difficult to accomplish due to the recent 
federally mandated open access to the transmission grids 
which is motivating providers of transmission services to 
strive to achieve higher loadings of transmission networks 
and facilities than ever before thought possible. 

Transient stability analysis is concerned with a power 
system’s ability to reach an acceptable steady-state (oper- 
ating condition) following an event disturbance. The power 
system under this circumstance can be considered as going 
through changes in configuration in three stages: from 
prefault, to fault-on, and then to postfault systems. The 
prefault system is usually in a stable steady state. The 
fault occurs (e.g., a short circuit), and the system is then in 
the fault-on condition before it is cleared by the protective 
system operation. Stability analysis is the study of whether 
the postfault trajectory will converge (tend) to an acceptable 
steady-state as time passes. 

Transient stability problems, which are the concern of 
this paper, have become a major operating constraint in 
specific regions of North America that rely on long distance 
transfers of bulk power, such as in most parts of the West- 
ern Interconnection and Hydro Quebec, and on interfaces 
between large supplies of hydro power in Canada and load 
areas to the south, such as in the Ontario/New York area and 
the ManitobaMinnesota area. Transient stability problems 
have also been of concern to peninsular-type areas that 
are not as tightly connected to the rest of the network, 
such as the southern half of Florida. And there have 
been many individual generating facilities and localized 
areas with transient stability limitations under certain event 
disturbances. With increased numbers and volume of bulk 
power transfer, the trend now is for many more parts of the 
interconnected systems to become constrained by transient 
stability considerations. Transient stability will increasingly 
be a constraint to be evaluated in long distance transfers that 
result from transmission open access. 

A major activity in utility system planning and operations 
is to test system transient stability relative to disturbances. 
Transient stability analysis programs are being used by 

power system planning and operating engineers to predict 
the response of the system to various disturbances. In these 
simulations, the behavior of a present or proposed power 
system is evaluated to determine its stability or its operating 
limits, or perhaps, to determine the need for additional 
facilities. Important conclusions and decisions are made 
based on the results of stability studies. It is therefore 
important to ensure that the results of stabil 
as timely and accurate as possible. 

Until recently, transient stability analysis has been per- 
formed in power companies exclusively by means of nu- 
merical integrations to calculate generator behaviors rela- 
tive to a given disturbance. By examining the behavior of 
the generators, one determines whether stability has been 
maintained or lost. This time-domain approach has several 
advantages: 1) it is directly applicable to any level of detail 
of power system models, 2) all the information of state vari- 
ables during transient as well as steady-state is available, 
3) simulation results can be directly interpreted by system 
operators. The chief disadvantages of this practice are: 1) 
it requires intensive time-consuming numerical integration, 
therefore it has not been suitable for on-line applications, 
2) it does not provide information regarding the degree 
of stability (when the system is stable) and the degree of 
instability (when the system is unstable), 3) it does not 
provide information as to how to derive preventive control 
when the system is deemed unstable. 

It is often desirable in practice to perform many power 
system stability studies to examine the effects of dif- 
ferent fault locations and types, various operating con- 
ditions, different network topologies, and control device 
characteristics. For a typical large power system, thousands 
of nonlinear differential and algebraic equations must be 
solved, which takes tens of minutes of CPU time on a 
modern computer. This intensive computation requirement 
imposes severe constraints on the number of cases which 
can be studied. Moreover, the current power system op- 
erating environment motivates moving transient stability 
assessment from the off-line planning area into the on- 
line operating environment. There are significant benefits 
expected from this movement. First, one may be able 
to operate with margins reduced by a factor of 10 or 
more if the security assessment is based on actual system 
configuration and operating conditions, instead of assumed 
worst case conditions, as is done in off-line studies. As 
a simple example, a power transfer corridor whose actual 
stability boundary on a given hour can be computed to be 
2500 MW could be forced to operate at a limit of 2000 MW 
based on the conservative assumptions inherent to off-line 
analysis. An on-line stability assessment using the actual 
system topology and real-time data could compute a limit 
of 2450 MW with enough certainty to allow the operator 
to load the system to that point. The savings realized 
in increased MW transaction capability can be $10 000 
per hour. Another benefit of on-line analysis is that the 
amount of analysis can be reduced to those cases relevant 
to actual operating conditions. thereby freeing engineering 
resources for other critical activities. Thus there is always 
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Time-Domain Approach 
applicable to general power system stability 

models 
provide time responses of all state variables 

Advantages 

Disadvantages slow in computation 

no measure of degree of stability 
no useful information regarding how to derive 

considerable incentive to find superior calculation methods 
for stability analysis. 

An alternative approach to transient stability analysis 
employing energy functions, called direct methods, was 
originally proposed by Magnusson [49] in the late 1940's, 
and pursued in the 1950's by Aylett [9], and in the 1960's 
by Gless [38], and El-Abiad and Nagappan [30]. In contrast 
to the time-domain approach, direct methods determine 
system stability directly based on energy functions. These 
methods determine whether or not the system will remain 
stable once the fault is cleared by comparing the system 
energy (when the fault is cleared) to a critical energy 
value. Direct methods not only avoid the time-consuming 
solutions of step-by-step time-domain stability analysis 
of the postfault system, but also provide a quantitative 
measure of the degree of system stability. This additional 
information makes direct methods very attractive when the 
relative stability of different plans must be compared or 
when stability limits must be calculated quickly. Obviously 
a full step-by-step time-domain simulation cannot be run 
for each possible contingency. The operator needs to know 
not only if the system is safe in the present state, but 
also to what limits the system can be safely loaded to 
take advantage of, for example, economic opportunities. 
Direct methods can meet this need. A merit comparison 
between direct methods and the time-domain approach is 
summarized in Table 1. 

Direct methods have a long development history span- 
ning four decades, but until recently were thought by many 
to be impractical for large-scale power systems analysis 
with detailed models. However, recent developments have 
made direct methods a more practical means of solving 
large-scale power systems with network-preserving models. 
As seen in these early applications, direct methods provide 
several key advantages in performing on-line stability as- 
sessment using the actual power system configuration and 
on-line state estimated data. One key advantage is their 
ability to assess the degree of stability (or instability). The 
second advantage is their ability to calculate sensitivities of 
the stability margin to power system parameters, allowing 
for efficient computation of operating limits. 

This paper starts with an intuitive understanding of 
direct methods and then develops energy function theory, 
followed by a theoretical foundation for direct methods 
for both network-reduction and network-preserving power 
system models. An advanced method, called the BCU 
method, of computing the controlling unstable equilibrium 

Direct Methods (Based on Energy Functions) 
fast in computation measure the degree of stability or instability 

provide useful information regarding how to derive preventive control 
only applicable to power system stability models having energy 

functions 
provide no time response of any state variables of the post-fault system 

point (u.e.p.), which is essential in determining the critical 
energy value, is presented along with its theoretical foun- 
dation. In addition to an overview, new material is offered. 
Numerical solution algorithms capable of supporting on- 
line applications of direct methods are provided. These 
algorithms provide practical solutions to problems that have 
in the past made direct methods infeasible for on-line 
applications. 

A major limitation of direct methods in the past has 
been the simplicity of the models used in various direct 
method implementations in software programs. Much of 
this limitation has been overcome and is presented in this 
paper. Another limitation has been that direct methods 
apply to first swing instability only. However, one of the 
most viable direct methods, the controlling u.e.p. method, 
is now shown in this paper to provide useful informa- 
tion for identifying multiswing unstable cases. In practical 
applications, the controlling u.e.p. method in conjunction 
with the BCU method, has shown promise as a tool 
for fast approximate contingency screening (thereby im- 
proving performance) and efficiently computing operating 
limits. This paper describes emerging applications of direct 
methods for on-line applications. Two examples include on- 
line transient stability assessments at the control center of 
Northern States Power Company and on-line transfer limit 
calculations at Ontario Hydro. 

11. MATHEMATICAL PRELIMINARIES 

dynamical systems theory. To unify our notation, let 
We next review some relevant concepts from nonlinear 

"( = f ( X ( t ) )  (1) 

be the power system model under study, where the state 
vector X ( t )  belongs to the Euclidean space R", and the 
function f: R" -+ R" satisfies the sufficient condition 
for the existence and uniqueness of solutions. The solution 
curve of (1) starting from X at t = 0 is called a (sys- 
tem) trajectory, denoted by @(x, .): R + R". Note that 

The concepts of equilibrium point (e.p.), stable and 
unstable manifolds are important in dynamical system the- 
ory. Each of these concepts is defined next. A detailed 
discussion of these concepts and their implications may be 
found in [39], [421, [601, [SO], [811. 

A state vector X is called an equilibrium point of 
system (1) if f ( X )  = 0. We denote E to be the set 
of equilibrium points of the system. A state vector X is 

@(X,O) = x. 
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called a regular point if it is not an equilibrium point. We 
say that an equilibrium point of (1) is hyperbolic if the 
Jacobian of f(.) at X ,  denoted J f ( X ) ,  has no eigenvalues 
with a zero real part. For a hyperbolic equilibrium point, 
it is a (asymptotically) stable equilibrium point if all the 
eigenvalues of its corresponding Jacobian have negative 
real parts; otherwise it is an unstable equilibrium point. 
If the Jacobian of the equilibrium point X has exactly 
one eigenvalue with positive real part, we call it a type- 
one equilibrium point. Likewise, X is called a type-k 
equilibrium point if its corresponding Jacobian has exactly 
k eigenvalues with positive real part. Throughout this 
section, it will be assumed that all the equilibrium points 
of syst:m (1) are hyperbolic. 

Let X be a hyperbolic equilibrium point. Its stable and 
unstable manifolds, W s ( X )  and W'(X),  are defined as 
follows: 

W s ( X )  := {X E R": @ ( X , t )  + X a~ t -+ 00) 

wU(X) := { X  E R": a ( ~ , t )  + X as t t -m>. 

Both stable and unstable manifolds are invariant sets.' 
For an asymptotically stable equilibrium point, it can be 

shown that there exists a number 6 > 0  such that 11x0 - 
XI1 < S implies ~ ( X O ,  t )  + X as t + 00. If 6 is arbitrarily 
large, then X is called a global stable equilibrium point. 
There are many physical systems containing stable equi- 
librium points but not global stable equilibrium points. A 
useful concept for these kinds of systems is that of stability 
region (also called region ofattraction). The stability region 
of a stable equilibrium point X ,  is defined as 

A(X,) := { X  E R": lim @ ( X , t )  = X,} .  
t+m 

From a topological point of view, the stability region A(X,) 
is an open, invariant, and connected set. The boundary of 
stability region A(X,) is called the stability boundary (or 
separatrix) of X ,  and will be denoted by BA(X,). The 
stability boundary is topologically an (n - 1)-dimensional 
closed and invariant set. 

A. Problem Formulation 
The power system stability problem due to an event 

disturbance can be expressed in the following mathematical 
manner (see Fig. 1): In the prefault regime the system is at 
a known stable equilibrium point, say X,. At some time t f ,  
the system undergoes a fault, termed the fault-on system, 
which results in a structural change in the system. Suppose 
the fault duration is confined to the time interval [tf  , t ,~] .  
During this interval, the system is governed by the fault-on 
dynamics described by 

X ( t )  = f F ( X ( t ) ) ,  tf I t<t,z (2) 

where X ( t )  is the vector of state variables of the system at 
time t .  Sometimes, the fault-on system may involve more 
than one action from system relays and circuit breakers. In 

(1) starting in M remams in M for all t 
'A set M E R" is called an invariant set of (1) if every trajectory of 

Time evolution 

System evolution 

Physical mechanism 

description 
System is operated I 
amundastable 1 ' *'-' 

I I fluctuations I ' 

Fig. 1. The hme evolution, system evolution, physical mecha- 
nism, and mathematical descriptions of the power system stability 
problem during the prefault, fault on, and postfault stages. 

these cases, the fault-on system is described by several sets 
of equations: 

"( = f i ( X ( t ) ) ,  tf L t < tF ,1  

x(t) = f ; ( X ( t ) ) ,  tF,1 I t < t F , 2  

x(t) = f : (X( t ) ) ,  t F , k  5 t < tel. 

The number of the sets of equations corresponds to the 
number of actions due to the relays and circuit breakers. 
Each set of equations depicts the system dynamics due 
to one action from relays and circuit breakers. Suppose 
that the fault is cleared at time t,l and the system, termed 
the postfault system, is henceforth governed by postfault 
dynamics described by 

X ( t )  = f ( X ( t ) )  tcz L t < 0. (3) 

Next, assume that the postfault system (3) has an asymptoti- 
cally stable equilibrium point X ,  which satisfies operational 
constraints. The fundamental problem of transient stability 
is the following: starting from the postfault initial state 
X(t, ,) ,  will the postfault system settle down to the steady 
state condition X,? In other words, power system stability 
analysis is to determine whether the initial point of postfault 
trajectory is located inside the stability region (domain 
of attraction) of an acceptable stable equilibrium point 
(acceptable steady state). 

The problem of direct stability analysis can be translated 
into the following: given a set of nonlinear equations with 
an initial condition, determine whether or not the ensuing 
trajectories will settle down to a desired steady-state without 
resorting to explicit numerical integrations. It is assumed in 
the area of direct methods that the following conditions are 
satisfied: 

1) The prefault stable equilibrium point, Xtre- and the 
postfault equilibrium point, X, , are sufficiently close 
to each other (so a nonlinear algebraic solver, such 
as the Newton method, with Xfre as the initial guess 
will find X,)  and 
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Pre-Fault System 

Fault-On System 
i = fF(n,y) 
h< t s t ,  

Time-Domain Approach Direct Methods (Energy Function) 

* (F're-fault s.e.p.) (F're-fault s.e.p.) 

end point of fault-on x(t) end point of faulbon 
trajectory 

fault-on trajectory 

to derive the fault cm trejectory 

x(t) initial mint of DOSt-faUlt 
to derive the fault on Ixdectory 

1. The past-fault trajectory x(t) 

2. If v(x(t))c vp, x(t) is stable. 
is not required 

Otherwise, d t )  may be unstable. 
, post.fadl tlajectow 

t l t , ,  t Direct stability assessment is based on 
an energy function and the associated 

critical energy ~ v m ~ ~ ~ f o i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' $  
trajectory for etability assessment 

Fig. 2. 
methods for power system transient stability problems. 

Comparisons between time-domain approach and direct 

2) the prefault stable equilibrium point, X:'", lies inside 
the stability region of the postfault stable equilibrium 
point X,. 

Mathematical as well as physical arguments to support 
the above two assumptions can be found in [16]. 

As mentioned earlier, the most popular method of an- 
alyzing transient stability is to calculate the postfault be- 
haviors via numerical integrations. On the other hand, 
direct methods first assume that the postfault system has 
a stable equilibrium point X ,  which satisfies (power sys- 
tem) operational constraints (an acceptable steady state). 
Direct methods next determine, based on energy functions, 
whether the initial point of the postfault trajectory lies inside 
the stability region of the acceptable stable equilibrium 
point. If it does, direct methods then declare that the 
resulting postfault trajectory will converge to X ,  without 
any information regarding the transients of the postfault 
trajectory. Comparisons between time-domain approach 
and direct methods for power system transient stability 
problems is summarized in Fig. 2. The basis of direct 
methods for the stability assessment of a postfault system 
is knowledge of the stability region: if the initial condition 
of the postfault system lies inside the stability region of 
a desired postfault stable equilibrium point, then one can 
ensure without performing any numerical integrations that 
the ensuing postfault trajectory will converge to the desired 
stable equilibrium point. Therefore, knowledge of the sta- 
bility region plays an important role in direct methods. In 
the next section, a heuristic introduction of direct methods 
will be presented. 

111. A HEURISTIC INTRODUCTION OF DIRECT METHODS 
Heuristic arguments of the applicability of the direct 

methods can be derived from the classical equal area cri- 

by the following equations: 
terion. Consider one-machine-infinite-bus system described 

S = W  

Mw = -Dw - Po sin S -+ P,. 

Fig. 3. 
and reaches its local maximum at the unstable e.p.'s 61 and 52.  

The potential energy function U ( 6 )  is a function of 5 only 

Fig. 4. The position of the stable equilibrlum point (6,, 0) along 
with its stability A(S,, 0) (the shaded area). The stability boundary 
aA(6,, 0) is composed of the stable manifold of the u.e.p. (61,O) 
and the stable manifold of the u.e.p. ( 6 2 , O ) .  

There are three equilibrium points lying within the range 
of ((6,~) = -T < S < n , w  = 0}, and they are ( S , , O )  = 
(arcsin(Pm/Po), 0) which is a stable equilibrium point, 
and (S1,O) = (T - arcsin(P,/Po), 0), ( S a ,  0) = (-T - 

arcsin( P,/Po), 0) which are unstable equilibrium points. 
We consider the following function, termed energy function 

E(&, W )  = ~ M w ~  - P,S - Po COS S. 

The energy function can be divided into kinetic energy 
K(w)  and potential energy functions U ( w ) ,  

E(S, w )  = K ( w )  + U ( S )  

where K ( w )  = $Mw2 and U ( 6 )  = -P,S - Po cos 6. The 
potential energy function U (  .) as a function of S is shown 
in Fig. 3. We notice that function U ( S )  reaches its local 
maximum at the unstable e.p.'s 61 and 62. 

The system is two-dimensional (2-D). Hence, the stability 
region of (Ss, 0), shown in Fig. 4, is 2-D and the stability 
boundary dA(S,, 0) is composed of the stable manifold 
of the u.e.p. (S1,O) and the stable manifold of the u.e.p. 
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Fig. 5. The closest u.e.p. method uses the constant energy surface 
passing through the closest u.e.p. (61,O) to approximate the 
(entire) stability boundary dA(6,, 0). The shaded area is the 
estimated stability region by the closest u.e.p. method. 

(Sz, 0). The u.e.p. (S1,O) has the lowest energy function 
value among all the u.e.p.'s on the stability boundary 
dA(S,, 0). Hence, (S1,O) is termed the closest u.e.p. of 
(6, ? 0) with respect to the energy function U (  6). We notice 
that: 

1) The intersection between A( S,, 0) and the angle space 
((6,~): 6 = R,w = 0) is A6 := ((6,~): 6 E 

2)  The boundary of this one-dimensional region A6 is 
composed of two points SI and SZ, where (61,O) 
and ( S 2 , O )  are the u.e.p.'s on the stability boundary 

3) These two points S1 and 62 are characterized as being 
the local maxima of the potential energy function 

[ 6 2 , 6 l ] , W  = 0). 

BA(&? 0). 

U( . ) .  

The stability for this simple system can be directly 
assessed on the basis of the energy function U(S) :  if a given 
postfault trajectory (S, U ) ,  after reaching a local maximum 
value of U ( . ) ,  S starts to decrease, then the stability of this 
postfault trajectory is assured. The following two methods 
can be employed to assess the system's stability: 

1) Closest u.e.p. method: This method uses the constant 
energy surface { ( S , U ) :  V(6,w) = U(&)) passing 
through the closest u.e.p. (61,O) to approximate the 
stability boundary BA(S,, 0). If a given state, say 
( S c l ,  wee), whose energy function value v(6,1, we[) is 
less than U ( & ) ,  then the state (S,l,w,l) is classified 
to be lying inside the stability region of (6,, 0) (see 
Fig. 5).  Thus one can assert without numerical inte- 
gration that the resulting trajectory will converge to 
(6s, 0). This method, termed the closest u.e.p. method, 
although simple, can give considerable conservative 
stability assessments; especially for those fault-on 
trajectories crossing the stability boundary BA(S,, 0) 
through W"(Sz, 0) (see Fig. 6(a)). For example, the 
postfault trajectory starting from the state P, which 

(b) 

Fig. 6. (a) The closest U e p. method gives considerable conser- 
vative stabihty assessments for those fault-on trajectories crossing 
the stability boundary dA(6,, 0) through W " ( 6 2 , O ) )  (b) The 
postfault trajectory starting from the state P ,  which lies inside the 
stability region A(6,, O ) ,  is classified to be unstable by the closest 
u.e p method while in fact the resulting trajectory will converge 
to (6, 0) and hence it is stable 

lies inside the stability region A( S,, 0), is classified to 
be unstable by the closest u.e.p. method while in fact 
the resulting trajectory will converge to (6,, 0) and 
hence it is stable (see Fig. 6(b)). We will elaborate 
on this problem of conservativeness later on. 
Controlling U. e.p. method: This method aims to 
reduce the conservativeness of the closest u.e.p. 
method by taking the dependence of the fault- 
on trajectory into account. For those fault-on 
trajectories ( S ( t ) ,  ~ ( t ) )  whose 6 ( t )  component moves 
towards 61, the controlling u.e.p. method uses the 
constant energy surface passing through the u.e.p. 
(S1,O) which is { ( S , W ) :  E(S,w) = U ( & ) }  as 
the local approximation for the relevant stability 
boundary. In the same manner, for those fault- 
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Fig. 7. The controlling u.e.p. method uses the constant energy 
surface passing through the controlling u.e.p. to approximate the 
relevant stability boundary. 

on trajectories ( S ( t ) ,  w ( t ) )  whose S ( t )  component 
moves towards 62, the constant energy surface 
passing through the u.e.p. ( S Z , ~ ) ,  ((6,~): E(6,w) = 
U ( & ) }  is chosen as the local approximation 
for the relevant stability boundary (see Fig. 7). 
Therefore, for each fault-on trajectory, there exists 
a unique corresponding unstable equilibrium point 
whose stable manifold constitutes the relevant 
stability boundary. The constant energy surface 
passing through the controlling u.e.p. can be used 
to accurately approximate the relevant part of 
the stability boundary toward which the fault-on 
trajectory is heading. If the energy function value of 
a given state is less than that of controlling u.e.p., then 
the state is classified to be lying inside the stability 
region of (S,, 0) by the controlling u.e.p. method. 
Thus one can assert without numerical integration 
that the resulting trajectory will converge to (Sa, 0). 
This method, although more complex than the closest 
u.e.p. method, gives much more accurate and less 
conservative stability assessments than the closest 
u.e.p. method. For instance, the postfault trajectory 
starting from the state ( 3 , W )  which lies inside the 
stability region A(S,, 0) is correctly classified to be 
stable by the controlling u.e.p. method while it is 
classified to be unstable by the closest u.e.p. method 
(see Fig. 8). Again, this shows the conservativeness 
of the closest u.e.p. method which does not take the 
dependence of the fault-on trajectory in account. 

The above exposition on the one-machine-infinite-bus 
system has outlined the key bases for both the closest u.e.p. 
method and the controlling u.e.p. method and highlighted 
their differences in stability assessment. The exposition also 
reveals the following three main steps needed for direct 
methods: 

1) Constructing an energy function for the postfault 
system, say V ( 6 , w ) .  

< 

Fig. 8. The postfault trajectory starting from the state (8,a) 
which lies inside the stability region A(6, ,0)  is classified to be 
stable by the controlling u.e.p. method while it is classified to be 
unstable by the closest u.e.p. method. 

2) Computing the critical energy value V,, for a given 
fault-on trajectory (say, based on the controlling u.e.p. 
method). 

3) Comparing the energy value of the state when the 
fault is cleared, say V(S,z, w-), with the critical 
energy value K,. If V(S,l, we[ )  < V,,, the postfault 
trajectory will be stable. Otherwise, it may be unsta- 
ble. 

To extend the above justification for direct methods to 
general multimachine power systems is nontrivial. This is 
partly due to the intrinsic difference between the nonlinear 
dynamics of 2-D systems and that of high-dimensional 
systems. We next present energy function theory for high- 
dimensional nonlinear systems and then apply the theory to 
develop a theoretical foundation for direct methods. 

IV. ENERGY FUNCTION THEORY 
The basis of direct methods for the stability assessment 

of a postfault system is knowledge of the stability region: 
if the initial condition of the postfault system lies inside 
the stability region of a desired postfault stable equilib- 
rium point, then one can ensure without performing any 
numerical integrations that the ensuing postfault trajectory 
will converge to the desired point. Therefore, knowledge of 
stability region plays an important role in direct methods. 

This section reviews some analytical results associated 
with energy function theory which enable one to charac- 
terize limit sets, stability boundaries and stability regions. 
A more comprehensive development of energy function 
theory can be found in [15]. This section also shows how 
to use energy functions to estimate stability regions. 

We say a function V :  R" H R is an energy function for 
a system (1) if the following three conditions are satisfied: 

1) the derivative of the energy function V(X) along 
any system trajectory X ( t )  is nonpositive, i.e., 
V ( X ( t ) )  5 0. 
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Fig. 9. Along the trajectory X ( t ) ,  the derivative of energy func- 
tion is nonpositive and there are only countable points at which 
the derivative is zero. (for example, x,, xb, x,, X d ) .  

2) If X ( t )  is a nontrivial trajectory (i.e., X ( t )  is not 
an equilibrium point (e.p.)), then along the nontrivial 
trajectory X ( t )  the set {t E R: V ( X ( t ) )  = 0)has 
measure zero in R. 

3) If a trajectory X ( t )  has a bounded value of V ( X ( t ) )  
for 1 E R+, then the trajectory X ( t )  is also bounded. 
Stating this in brief: 

If V ( X ( t ) )  is bounded, then X ( t )  is also bounded. 

Property 1) indicates that the energy is nonincreasing 
along its trajectory, but does not imply that the energy 
is strictly decreasing along its trajectory. There may exist 
a time interval [tl,t,] such that V ( X ( t ) )  = 0 for t E 
[tl,  t z ] .  Properties 1) and 2) imply that the energy is strictly 
decreasing along any system trajectory. Property 3) states 
that along any system trajectory the energy function is a 
proper map2 but its energy need not be a proper map for 
the entire state space (see Fig. 9). Obviously, an energy 
function is not a Lyapunov function. 

In general, the behaviors of trajectories of general non- 
linear dynamical systems could be very complicated, unless 
the underlying dynamical system has some special proper- 
ties. For instance, every trajectory of system (1) having 
an energy function has only two modes of asymptotic 
behaviors: it either converges to an equilibrium point or 
goes to infinity (becomes unbounded) as time increases or 
decreases. 

Theorem 4-1: [19], [23] (Global behavior of trajectories) 
If there exists a function satisfying conditions 1) and 2) 

of the energy function for system (1), then every bounded 
trajectory of system (1) converges to one of the equilibrium 
points. 

Theorem 4-1 indicates that there does not exist any 
limit cycle (oscillation behavior) or bounded complicated 
behavior such as almost periodic trajectory, chaotic motion, 
etc. in the system. Applying this result to power system 
models, it indicates that for a power system model with an 
energy function, there is no complicated behavior such as 
chaotic motion and closed orbit (limit cycle). In Theorem 

2We say that f X -i Y is a proper map If for each compact set D In 

Y, the set F - ' ( D )  is compact in X 

1504 

4-1 we have shown that the trajectory of system (1) either 
converges to one of the equilibrium points or goes to 
infinity. However, in the following, we will show that every 
trajectory on the stability boundary must converge to one 
of the equilibrium points on the stability boundary as time 
increases. 

Theorem4-2: [21] (The behavior of trajectories on the 
stability boundary). If there exists an energy function for 
system (1), then every trajectory on the stability boundary 
dA(X,)  converges to one of the equilibrium points on the 
stability boundary BA(X,).  

The significance of this theorem is that it offers a way 
to characterize the stability boundary. It asserts that the 
stability boundary dA(X , )  is composed of several stable 
manifolds of the u.e.p.'s on the stability boundary. 

Corollary 4-3: [19], [84] (Energy function and stability 
boundary). If there exists an energy function for system (1) 
which has an asymptotically stable equilibrium point X ,  
(but not globally asymptotically stable), then the stability 
boundary BA(X,) is contained in the set which is the 
union of the stable manifolds of the u.e.p.'s on the stability 
boundary aA(X,) ,  i.e., 

We next focus on how to estimate, via an energy function, 
the stability region of a high-dimension nonlinear system. 
We consider the following set 

Sv(k) = {X E R": V(X) < k }  (4) 

where V( . ) :  R" 4 R is an energy function. Sometimes, we 
drop the subscript v of Sv(k), simply writing S ( k ) ,  if it is 
clear from the context. We shall call the boundary of set (4), 

d S ( k )  := { X  E R": V ( X )  = I C }  

the level set (or constant energy surface) and k the level 
value. If k is a regular value (i.e., V V ( X )  # 0, for all 
X E V-'(k)) ,  then by the Inverse Function Theorem 
d S ( k )  is a C' (n - 1)-dimensional submanifold of R". 
Moreover, if T > n - I, then by the Morse-Sard theorem 
the set of regular values of V is residual; in other words, 
'almost all' level values are regular. In particular, for almost 
all values of k ,  the level set d S ( k )  is a C' (n - 1)- 
dimensional submanifold. 

Generally speaking, this set S ( k )  can be very compli- 
cated, with several different components even for the 2-D 
case. Let 

S ( k )  = S ' ( k )  U P ( k )  u.. . U S " ( k )  ( 5 )  

where S'(k) n SI ( k )  = q5 when z # 3. That is, each of 
these components is connected and disjoint from each other. 
Since V( . )  is continuous, S ( k )  is an open set. Because S ( k )  
is an open set, the level set B S ( k )  is of (n  - I) dimensions. 
Furthermore, each component of S ( k )  is an invariant set. 

In spite of the possibility that a constant energy surface 
may contain several disjoint connected components, there 
is an interesting relationship between the constant energy 
surface and the stability boundary. This relationship is that 
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at most one connected component of the constant energy 
surface ~ S ( T )  has a nonempty intersection with the stability 
region A ( X , )  as shown in the following theorem. 

Theorem 4-4: [ 151 (Constant energy surface and stability 
region) 

Let X ,  be a s.e.p. of the system (1) and A ( X , )  be 
its stability region. Then, the set S(T)  contains only one 
connected component which has a nonempty intersection 
with the stability region A(X , )  if and only if r > V ( X , ) .  

Motivated by Theorem 4-4, we shall use the notation 
Sx,(r) to denote the connected set of S(T) (whose level 
value is r )  containing the stable equilibrium point X,. In 
Fig. 10, the relation between the constant energy surfaces 
at different level values and the stability region A ( X , )  is 
shown. It is observed from this figure that the connected 
set S X ,  with a level value r smaller than the critical 
value is very conservative in the approximation of the 
stability boundary BA(X,).  As the set Sx,  is expanded 
by increasing the level value T ,  the approximation gets 
better until this constant energy surface hits the stability 
boundary a A ( X , )  at some point. This point can be shown 
to be an u.e.p [20]. We call this point the closest u.e.p. 
of the s.e.p. X ,  with respect to the energy function V( . ) .  
Furthermore, as we increase the level value r,  the connected 
set SX,  would contain points which lie outside the stability 
region A(X,) .  It is therefore inappropriate to approximate 
the stability boundary dA(X , )  by the connected set Sx, 
with a level value higher than that of the lowest point 
on the stability boundary BA(Xs) .  From these figures, it 
becomes obvious that, among the several disjoint connected 
sets of the constant energy surface, the connected set Sx ,  
is the best candidate to approximate the stability boundary 
BA(X,).  We remark that given a point in the state space 
(say, the initial point of the postfault system), it is generally 
difficult to determine which connected component of a level 
set contains the point. This is due to the fact that a level set 
usually contains several different components and they are 
not easy to differentiate based on an energy function value. 
Fortunately, the knowledge of a prefault stable equilibrium 
point, a fault-on trajectory and a postfault stable equilibrium 
point helps to identify the connected component of a level 
set that contains the initial point of postfault system. 

The analytical results discussed in this section above 
will be extended in the next section to develop a theo- 
retical foundation for the most viable direct method: the 
controlling u.e.p. method. 

V. THE CONTROLLING U.E.P. METHOD 
From a nonlinear system viewpoint, transient stability 

analysis is essentially the problem of determining whether 
or not the fault-on trajectory at clearing time is lying inside 
the stability region of a desired stable equilibrium point 
of its postfault system. Hence, the main point in transient 
stability analysis is not to estimate the whole stability 
boundary of the postfault system. Instead, only the relevant 
part of the stability boundary toward which the fault- 
on trajectory is heading is of concern. When the closest 

increase the level value 

,,? 
*%I. 

I increase the level vdue  

Fig. 10. The relation between the constant energy surfaces at 
different level values and the stability region A(X, ) .  

u.e.p. method is applied to power system transient stability 
analysis, this method has been found to yield conservative 
results. In fact, in the context of transient stability analysis, 
the closest u.e.p. method provides an approximated stability 
boundary for the postfault system, and is independent of the 
fault-on trajectory. Thus the closest u.e.p. method can give 
very conservative results for transient stability analysis. 

A desired method for determining the critical energy 
value would be the one which can provide the most accurate 
approximation of the part of the stability boundary toward 
which the fault-on trajectory is heading, even though it 
might provide a very poor estimate of the other part 
of stability boundary. To this end, the controlling u.e.p. 
method uses the constant energy surface passing through 
the controlling u.e.p. to approximate the part of stability 
boundary of the postfault system toward which the fault- 
on trajectory is heading. If, when the fault is cleared, the 
trajectory lies inside the energy surface passing through 
the controlling u.e.p., then the postfault system will be 
stable (i.e., the postfault trajectory will settle down to a 
stable operating point); otherwise, the postfault system may 
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Fig. 11. 
and the angle space (a,,&). 

The intersection between the stability boundary az4(Xs) 

be unstable. This is the essence of the controlling u.e.p. 
method. 

A consensus seems to have emerged that among several 
methods for determining the critical energy value, the 
controlling u.e.p. method is the most viable for direct 
stability analysis of practical power systems [21], 1151, 
[37], [57], [58].  The success of the controlling u.e.p. 
method, however, hinges upon its ability to find the correct 
controlling u.e.p. This section presents an overview and 
analysis of the controlling u.e.p. method. Section V-A uses 
a simple example to illustrate the concept of the controlling 
u.e.p. Section V-B studies the controlling u.e.p. method 
which is justified in Section V-C. 

A. Concept 
In order to illustrate the concept of the controlling u.e.p., 

we use the following simple numerical example, which 
closely represents a three-machine system, with machine 
number 3 as the reference machine. 

61 = w 1  

ij, = - sin 61 - 0.5 sin(& - 62) - 0 . 4 ~ 1  
62 =w2 

w z  = -0.5 sin 62 - 0.5sin(& - 61) - 0 . 5 ~ 2  + 0.05. 

(6) 

It is easy to show that the following function is an energy 
function for this system. 

V ( & , S 2 ,  w1, W 2 )  = wl” + w; - 2 cos 61 - cos 62 
- cos(61 - 62) - 0.162. (7) 

Point X ”  = (Sf, wf,Sg,w;) = (0.02001, 0, 0.06003, 0), is 
a stable equilibrium point of the above postfault system. 
There are six type-one equilibrium points and six type- 
two equilibrium points on the stability boundary of X’. 
Note that the unstable manifold of each of these equilibrium 
points converges to the s.e.p., X “ .  

- 4  

1 1  I I I  I I 
I 1  I 6, - 5  , 

-4  -3 - 2  - 1  0 1 2 3 

6 1 (angle of fnst machine) 
62 (angle of second machine) 

Fig. 12. The fault-on trajectory X s ( t )  leaves the stability bound- 
ary 84(X,) via passing through the stable manifold of the 
type-one e.p. X,, = (0 03333, 0, 3.10823, 0) at the exit point 
,Ti, 

The stability boundary, BA(X”),  is contained in the set 
which is the union of the stable manifolds of these six type- 
one e.p.’s and six type-two e.p.’s, as shown in Corollary 
4-3. Fig. 11 shows numerically the intersection between the 
stability boundary d A ( X ” )  and the angle space, (61 , 62) .  

For illustration purposes, we assume the fault-on trajec- 
tory, X,(t)  due to a faulL3The fault-on trajectory, X,( t ) ,  
leaves the stability boundary, a A ( X “ ) ,  via the stable man- 
ifold of the type-one e.p. X,, = (0.03333, 0, 3.10823, 0) 
at the exit point, X,. X,, is termed the controlling u.e.p. 
relative to the fault-on trajectory X,(t) .  The time duration 
between p and X ,  along the fault-on trajectory X,(t)  is 
the so-called critical clearing time. If the fault is cleared 
before the fault-on trajectory reaches X,, then the initial 
condition of the postfault trajectory lies inside the stability 
region A(X, ) ;  hence, the corresponding postfault trajectory 
will converge to X ,  . Otherwise, the corresponding postfault 
trajectory will, as stated in Theorem 5-1, either converge to 
another stable equilibrium point4 or d i ~ e r g e . ~  

In the operation or operational planning environment, 
calculating the critical clearing time relative to a fault is 
not practical because the reclosure times of protective relays 
in the system are already set. The key concern under this 
circumstance is whether, after the fault is cleared, the sys- 
tem will remain stable or not. This is explained as follows: 
Given a prefault stable equilibrium point XSpre and a fault- 
on trajectory X,(t)  with a preset fault clearing time, let X,. 
be the corresponding initial point of the postfault trajectory 
and Ws(X, , )  be the stable manifold of the corresponding 
controlling u.e.p. Xc0. The task of determining, based on 
the stable manifold W”(X,,), whether the segment of the 

3The fault-on trajectory X,( t )  in practice has nonzero components of 

4Physically, this implies a pole-slip phenomenon 
’The corresponding trajectory becomes unbounded; of course power 

system protective devices will be activated and the underlying model 
becomes invalid 

w 
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. I  

61 (angle of first machine) 
Fig. 13. Numerical relationship between the stable manifold 62 (angle of second machine) 
Ws(X, , ) ,  the stability boundary and the constant energy surface 
passing through Xco.  Fig. 15. The postfault trajectory starting from X,I will settle 

down to X ,  because X,l lies inside the stability region A(X,) .  

- 2  

- 4  :I 
-5- 6, 

-4 -3 -2 - 1  0 1 2 3 

61 (angle of first machine) 
62 (angle of second machine) 

Fig. 14. 
and the angle space (61,52). 

The intersection between the stability boundary a A ( X , )  

fault-on trajectory, X,( t ) ,  from X y  to X,Z lies inside 
the stability region A ( X , )  is numerically very difficult, if 
not impossible. The main reason for this difficulty is due 
to the lack of an explicit expression for stable manifolds. 
However, the task is relatively easy if an energy function 
instead of the stable manifold Ws(X, , )  is given. To 
elaborate on this point, let us go back to the previous 
numerical example and examine Fig. 13, which shows 
the relationship between the stable manifold W s  (X,,) 
and the constant energy surface passing through X,,. In 
order for the fault-on trajectory X f ( t )  to pass through the 
constant energy surface aS(V(X, , ) ) ,  the point X,l must 
have an energy value greater than the energy value at the 
controlling u.e.p. X,,; i.e., V(X , l )  > V(X,,) .  Hence, the 
task of determining whether the segment of the fault-on 
trajectory X,( t )  from Xfre to X,l lies inside the stability 
region A ( X , )  boils down to the task of comparing two 
scalars: V(Xc-) and V(X,,) .  If V(X , , )  5 V(X,,) ,  then 
the controlling u.e.p. method asserts that X,. lies inside 
the stability region. Indeed, the segment of the fault-on 
trajectory X,( t )  from Xzre to Xcl lies inside the stability 
region A(X , )  (see Fig. 14). In this case, the postfault 

- 5 1  6,  
- 4  -3 - 2  - 1  0 1 2 3 

6 1 (angle of first machine) 
62 (angle of second machine) 

Fig. 16. X,l lies outside the stability region A ( X , ) ,  in which 
we have V(X,,) < V(X,) < V(X,l) and the postfault trajectory 
starting from X,i will not settle down to X , .  

trajectory starting from X C l  will converge to the stable 
equilibrium point X ,  (see Fig. 15). 

On the other hand, if V(X,z) > V ( X c , ) ,  the controlling 
u.e.p. method asserts that X,l lies outside the stability 
region; however, the segment Xf" to X,l may not lie 
totally inside the stability region A(X,) .  Two cases are 
possible. In the first case, X,z lies outside the stability re- 
gion A(X , ) ,  in which we have V(Xc, )  < V ( X , )  < V(X,z) 
and the postfault trajectory starting from Xcl will not 
converge to X ,  (see Fig. 16). In the second case, Xcz 
still lies inside the stability region A ( X , ) ,  in which we 
have V(X,,)  < V(X, . )  < V ( X , )  and the postfault trajec- 
tory starting from X,. will still converge to X, (see 
Fig. 17). The second case points out the slight conservative 
nature of the controlling u.e.p. method in estimating the 
relevant stability region and the stability property of the 
postfault trajectory. The above reasoning forms the basis of 
the energy function based controlling u.e.p. method which 
will be theoretically justified later in this section. 
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Fig. 17. X,l still lies inside the stability region A(X , ) ,  in which 
we have V(X,,) < V(X,l) < V(X,) and the postfault trajectory 
starting lrom X c ~  will still settle down to X,. 

The above analysis points out that the controlling n.e.p. 
method will: 

Case 1: predict a stable postfault trajectory, either 
first-swing or multiswing, to be stable, in which case 
V(X , l )  < V(X,,)  (cf. Fig. 14); or 

Case 2: predict an unstable postfault trajectory, either 
first-swing or multiswing, to be unstable, in which case 
V(X,-) > V(X,,)  (cf. Fig. 16); or 

Case 3: predict a stable postfault trajectory, either 
first-swing or multiswing, to be unstable, in which case 
V(X,) > V ( X , , )  > V(X,,) ,  which is the only scenario 
in which the controlling u.e.p. method gives conservative 
predictions (see Fig. 18). 

The controlling u.e.p. method always classifies unstable 
trajectories to be unstable (see case 2). This nice property of 
the controlling u.e.p. method distinguishes the method itself 
from other methods. Depending on the characteristics of the 
fault-on trajectory and the property of the energy function, 
the controlling u.e.p. method may classify stable trajectories 
to be stable (see Case 1) or may classify stable trajectories 
to be unstable (see Case 3). The conservative nature shown 
in Case 3 is not surprising because the energy function, on 
which the controlling u.e.p. method is based, maps the state 
space (which is n-dimensional) into a scalar (which is 1D). 
Since this map is not one-to-one,6 the conservative nature 
of the controlling u.e.p. method is expected. 

B. The Controlling U.E.P. Method 

The controlling U e p. method for direct stability analysis 
of large-scale power systems proceeds as follows: 

1) Determination of the Critical Energy 

given fault-on trajectory X f  ( t) .  

energy function V ( . )  at the controlling u.e.p., i.e., 

Step 1.1: Find the controlling u.e.p., X,,, for a 

Step 1.2: The critical energy, vcr, is the value of 

61t maps all the points in the state space with the same energy into one 
scalar. 

62 
5 

-2 

- 4  

- 4  -3 -2 - 1  0 1 2 3 

61 (angle of first machine) 
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Fig. 18. When a fault is cleared at the portion highlighted in this 
figure in which case V(X,) > V(X , l )  > V(X,,), the controlling 
u.e.p. method will predict a stable postfault trajectory to be 
unstable. This is the only scenario in which the controlling u.e.p. 
method gives conservative stability predictions. 

Determination of Stability 

V ( . )  at the time of fault clearance (say at time t,l) 
Step 2.1: Calculate the value of the energy function 

l-'f = V ( X f ( h ) ) .  

Step 2.2: If wf < vCr, then the postfault system is 
stable. Otherwise, it may be unstable. 

The controlling u.e.p. method can be viewed as a method 
which yields an approximation of the relevant part of the 
stability boundary of the postfault system to which the fault- 
on trajectory is heading. It uses the connected constant 
energy surface passing through the controlling u.e.p. to 
approximate the relevant part of stability boundary. 

C. Analysis of the Controlling U.E.P. Method 

Theorem 5-1 below, which is a slight extension of that in 
[16], gives a rigorous justification of the controlling u.e.p. 
method. We will use the notation (Z(X,))' to stand for the 
complement of the closure of the stability region A(X,) .  

Theorem 5-1: (Fundamental theorem for the controlling 
u.e.p. method) Consider a general nonlinear system 
described by system (1) which has an energy function 
V(.): R" + R. Let X,, be an equilibrium point on the 
stability boundary BA(X, )  of this system. Let T > V ( X , )  
and 

S(T)  := the connected component of the set 
{ X :  V ( X )  < T-}  containing X, ,  and 

0 ~ S ( T - )  := the connected component of the set 
{ X :  V ( X )  = T-}  containing X,. 

Then: 

1) The connected constant energy surface BS(V(X,,))  
intersects with the stable manifold W'(X,,) only at 
point X,,; moreover, the set S(V(X,,))  has an empty 
intersection with the stable manifold W'(X,,). In 
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Fig. 19. Although set S(V(X")) contains only part of the stable 
manifold Ws(X, , ) ,  the fault-on trajectory X f ( t )  passes through 
the connected constant energy surface a S ( V ( X U ) )  before it 
passes through the stable manifold Ws(X,,). In this situation, the 
controlling u.e.p. method using Xu as the controlling u.e.p. gives 
an inaccurate stability assessment when the postfault trajectory 
starts from the portion highlighted. 

and 

and 

and 

If X,, is not the closest u.e.p., then dS(V(X,,)) n 

Any connected path starting from a point P E 
{aS(V(X, , ) )  n A ( X , ) }  and passing through the sta- 
ble manifold W " ( X c o )  must hit the set aS(V(X, , ) )  
first before it hits W"(X, , ) .  

(WdC # 4. 

Parts 1 and 5 of Theorem 5-1 implies that, for any 
fault-on trajectory X,( t )  starting from a point X F  E 
A(X,) and V(X,P'") < V(X, , ) ,  if the exit point of this 
fault-on trajectory X,( t )  lies on the stable manifold of 
X,,, this fault-on trajectory X f ( t )  must pass through 
the connected constant energy surface dS( V(Xco)) be- 
fore it passes through the stable manifold of X,, (thus 
exiting the stability boundary a A ( X s ) ) .  Therefore, the 
connected constant energy surface aS(V(X, , ) )  can be used 
to approximate the relevant part of the stability boundary 
dA(X,)  for the fault-on trajectory X f ( t ) .  Parts (1) and ( 5 )  
of Theorem 5-1 also show the slight conservative nature 
of the controlling u.e.p. method in direct stability assess- 
ment. More importantly, the controlling u.e.p. method can 
directly detect both first swing and multiswing instabilities; 
although historically other direct methods have been said 
to be only applicable to first-swing stability analysis. 

On the other hand, parts ( 2 )  and (4) of Theorem 5-1 state 
that the following two situations may occur: 

Case I: Set S ( V ( X u ) )  contains only part of the stable 
manifold W" ( X,,). 

Fig. 20. Set S(V(X")) has an empty intersection with the 
stable manifold W s ( X , , )  and the fault-on trajectory X,(t) 
passes through the connected constant energy surface as( V(X")) 
before it passes through the connected constant energy surface 
aS(V(X,,)). In this situation, the controlling u.e.p. method using 
X, as the controlling u.e.p. always gives more conservative 
stability assessment than that of using the controlling u.e.p. Xco. 

Case 2: Set S ( V ( X " ) )  contains the whole stable man- 
ifold W" ( X,,). 

In case 1, the fault-on trajectory X,(t)  may pass through 
the connected constant energy surface as( V ( X u ) )  before 
it passes through the stable manifold W " ( X c o ) .  In this 
situation, the controlling u.e.p. method using X u  as the 
controlling u.e.p. still gives an accurate stability assessment. 
Yet the fault-on trajectory X,( t )  may pass through the con- 
nected constant energy surface a S ( V ( X u ) )  after it passes 
through the stable manifold W"(X, , )  (see Fig. 19). In this 
situation, the controlling u.e.p. method using X u  as the 
controlling u.e.p. gives an inaccurate stability assessment. 
In particular, it may classify a postfault trajectory (when the 
fault is cleared at the portion highlighted in Fig. 19) to be 
stable when in fact it is unstable. This is a very undesirable 
classification. 

In case 2, the fault-on trajectory X,( t )  always passes 
through the connected constant energy surface dS( V ( X u ) )  
after it passes through stable manifold W" ( X,,). Under this 
situation, the controlling u.e.p. method using X u  as the 
controlling u.e.p. always gives an inaccurate stability as- 
sessment. Again, it classifies the postfault trajectory (when 
the fault is cleared at the portion highlighted in Fig. 19) to 
be stable when in fact it is unstable. 

Parts [3] and [4] of Theorem 5-1 assert that the set 
S ( V ( X " ) )  has an empty intersection with the stable mani- 
fold W" (X,,). Under this situation, the fault-on trajectory 
X,( t )  always passes through the connected constant energy 
surface a S ( V ( X u ) )  first before it passes through the con- 
nected constant energy surface aS(V(X, , ) )  (see Fig. 20). 
Thus using V ( X u )  as the critical energy value always gives 
even more conservative stability assessments than using that 
of the exact controlling u.e.p., X,,. 
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From the above analysis, it is clear that for a given fault- 
on trajectory X,(t), if the exit point of X,( t )  lies on the 
stable manifold of an u.e.p. X,,, then using other u.e.p.’s 
instead of using X,, as the controlling u.e.p., can give 
an incorrect stability assessment in both directions: either 
too conservative or optimistic (i.e., classifying an unstable 
trajectory as stable). 

In summary, the task of finding the precise controlling 
u.e.p. of a fault-on trajectory is essential for direct transient 
stability analysis. Using the energy value of a wrong con- 
trolling u.e.p. as a critical value is likely to give inaccurate 
stability assessment. Unfortunately, the task of finding the 
exact controlling u.e.p. of a given fault for general power 
system models is very difficult because: 

The controlling u.e.p. is a particular u.e.p. embedded 
in a large-degree state-space. 
The controlling u.e.p. is the first u.e.p. whose stable 
manifold is hit by the fault-on trajectory (at the exit 
point). 
The exit point is very difficult to detect. 

A method which can find the controlling u.e.p. relative to 
any given fault has been presented in [16]. This method 
is based on the time-domain simulation approach; hence it 
is slow in nature. The role of this time-domain method is 
only to serve as a bench-mark to check the correctness of 
the controlling u.e.p. obtained by direct methods. It may 
prove fruitful to develop a tailored solution algorithm for 
finding controlling u.e.p.’s. by exploiting special properties 
as well as some physical and mathematical insights of 
the underlying power system model. In later sections, we 
will detail such a systematic method for finding controlling 
u.e.p.’s for both network-reduction and network-preserving 
power system models. 

VI. DIRECT METHODS FOR NETWORK-REDUCTION 
POWER SYSTEM MODELS 

Traditionally, direct methods have been based on the 
network-reduction model where all the load representations 
are expressed in constant impedance and the entire network 
representation is reduced to the generator internal buses. 
In this section we discuss direct methods for network- 
reduction power system models. 

A. Network-Reduction Models 

I )  The Classical Model: We review the network reduc- 
tion with the classical generator model for transient stability 
analysis. Consider a power system consisting of n genera- 
tors. Let the loads be modeled as constant impedances. The 
dynamics of the zth generator can be represented, using the 
angles of the infinite bus as a reference, by the following 
equations [6]:  

6, =w, 

M,W, = -Dzwz + P,, - P,,, i = 1, . . .  ,n (8) 
where 

Pet = 
n+l n+l 

K&B,, sin(& - 6,) + 1 KV,G,, cos(6, - 6,) 
3 i t  3 f z  

V,  is the constant voltage behind direct axis transient 
reactance. M, is the generator’s moment of inertia. D, 
is the generator’s damping constant. B,, and G,, terms 
represent the transfer susceptance and conductance of the 
( i , j )  element in the reduced admittance matrix of the 
system, respectively. Pmt is the mechanic power. 

2 )  The One-Axis Generator Model with Exciters: This 
model includes one circuit for the field winding of the rotor, 
i.e., this model considers the effects of field flux decay. As 
a result, the voltage behind the direct transient reactance 
is no longer a constant. Sasaki first included such models 
for direct stability analysis [69]. The dynamics of each 
generator are then described by the following equations: 

n 

+ c 
j=1 ,i#j 

V, (B,, cos S,, + G,, sin S,, ) . 

(9) 

3) The One-Axis Generator Plus First Order AVR Model: 
When the exciter control action is included in the generator 
model, at least one additional differential equation is needed 
to account for it: 

T v z E f d z  = - E f d z  - k & z  f 1,. 

We assume the terminal voltage Vt, of each generator has a 
linear relationship with its quadrature component Vtqz, i.e., 
V,, = kzVtqz, where k, is a positive constant. Thus using 
the relationship KqZ = z&zId, + K, the complete dynamics 
can be simplified as [Sl] 

6, =w, 
M,W, = -D,& + P,, 

- 2 KV, (B,, sin s,, + G,, cos s,,) 
3=1,2#3 

7 2 %  = -a& f P z E f d z  
n 

+ 1 V, (Bz, COS S,, + G,, sin S,,) 
3 = L z # ,  
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are constants. Here we follow the IEEE recommended 
notation [58] ,  which is somewhat different from the original 
paper [51] in which the industry notation is used. 

4) The Two-Axis Generator Model with Exciters: For gen- 
erators with the salient-pole case, due to the armature 
reaction flux alignment effect, the internal voltage dynamics 
is decomposed into two perpendicular parts with different 
time constants: direct-axis voltage EL, and quadrature- 
axis voltage E&. Using the angle of the infinite bus as a 
reference, the dynamics of the i th  generator modeled by the 
two-axis machine model with a simplified first-order exciter 
model can be represented by the following equations [37], 
[581, C64l. 

B. Exact and Numerical Energy Functions 

We next discuss a procedure to construct energy functions 
for the above four network-reduction power system models. 

If the transfer conductance of the reduced network is zero 
(i.e., G,, = 0), then the above four models, except for the 
two-axis generator model with exciters, can be written in 
the following compact form: 

d Tli: = - -U(X,  y) 
dX 

y = z  

M i  = -Dx - 

where T ,  M ,  and D are positive diagonal matrices. Con- 
sider the function 

we show that W ( z , y , z )  is an energy function for system 
(12). Differentiating W ( z ,  y, z) along the system trajectory 
gives 

i 
d W T  d W T  d W T  

* ( X ( t ) , y ( t ) , z ( t ) )  = x k  + -y + - dY d z  
dUT dU 
dz dX 

-- T-l- - z T D z  5 0. - - 

This inequality shows that condition (1) of the energy 
function is satisfied. Suppose that there is an interval 
t E [ t l , t z ]  such that l @ ( z ( t ) , g ( t ) , z ( t ) )  = 0. From (12) 
and (13), we have z ( t )  = 0 and k ( t )  = 0 for t E [ t l , t 2 ] ,  

which implies that y(t)  is a constant for t E [tl,tz]. It then 
follows from (12) that the system state is at an equilibrium 
point, hence condition (2) of the energy function also holds. 

The task of verifying condition (3) of the energy function 
(i.e., energy function is a dynamic proper map) is the most 
involved. It often requires exploring the special structure 
of the underlying model. This condition has been verified 
for the classical generator model in [21]. For the other 
network-reduction models, we will first prove that along 
every trajectory with bounded energy W ( X ,  y, z), ~ ( t )  is 
also bounded. We will then show that y(t) and z ( t )  are also 
bounded. For purpose of illustration, we will only prove the 
case for the one-axis generator model. In this model, the 
internal voltage dynamics can be put into the following 
compact form [25]: 

where 
- 

T,, =Ti,,, T,, = 0 ,  i # j ,  A(S(t)) = M N  - I ,  
Mtz = % d z  - X i L ,  MZJ = 0, i # j ,  and 
N,, = B,, COS S,, . 

Since along any nontrivial trajectory with a bounded en- 
ergy, the set r ? {t E R+: detz(S(t)) = 0} has 
measure zero and V( t )  is bounded, it follows that V ( t )  = 
A(&(t))-'(TV - Efd)  is also bounded. Since V ( t )  is 
bounded, it follows from Theorem 3.3 in [22] that 6 ( t )  
and w ( t )  are also bounded. 

For the above various network-reduction models, the 
corresponding variables z, y, z and the potential energy 
functions U(z,y)  can be found in [25].  Note that these 
energy functions can be decomposed into a sum of two 
separable functions: kinetic energy, which is related to the 
variable z only, and potential energy function, which is 
related to the variables IC and y. This observation will prove 
useful in our sequel analysis. 

To derive an energy function for network-reduction mod- 
els with nonzero transfer conductance of the reduced Y-bus 
matrix is a challenging task. Considerable efforts have been 
made to find energy functions for these models [13], [14], 
[40], [48], [53]. Unfortunately, these efforts, either based 
on the classical Lure-Postnikov-type Lyapunov function 
approach or the first integral approach, have been in vain. 
Narasimhamurthi has shown that attempts to accommodate 
line losses by a smooth transformation of the energy 
functions for power systems without losses do not lead to a 
local Lyapunov function [53]. It has been shown that there 
does not exist a general form of 'exact' energy function for 
power systems with transfer conductances [ 141. However, 
global energy functions still exist for certain network- 
reduction power system models under certain moderate 
conditions [24]. 

A compact representation of the above four network- 
reduction models with transfer conductance is 

- 

d 
dX 

Tk  =---(z,Y) +gi(z,y) 

y =z 
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where gl(z,y) and gz(z,y) account for the effects of 
the transfer conductances in the reduced network. The 
existing energy functions for power systems with transfer 
conductances are not exact in the sense that they do not 
satisfy the three conditions of energy functions and they 
are not well defined functions. We term these functions 
numerical energy functions. We next propose a numerical 
energy function for the generic network-reduction model 
(13). 

For the compact form of the network-reduction power 
system model (13), the numerical energy function 
W(z,y,z)  consists of two parts: an analytical energy 
function Wana(z,y,z) = i z T M z  + U(s ,y)  and a 
path-dependent potential energy Upath(z, y),  i.e., 

For classical generator models, the path-dependent energy 
function can be expressed as 

n-1 n 

i=l j=i+l 

If a linear trajectory is assumed in the angle space, the 
above integration can be simplified as 

Such an approximation is called the ray approximation. For 
a two-axis generator model with exciters, the numerical 
potential energy function can be written as the following 
equations [37], [72]: 

where 

Numerical energy functions can be developed for other 
network-reduction models [58]. 

C. Computing the Controlling U. E. P. 
The evolution of the concept of controlling u.e.p. (for the 

network-reduction model) can be traced back to the mid- 
1970's. In [61], Prabhakara and El-Abiad argued that the 
controlling u.e.p. is the u.e.p. which is closest to the fault-on 
trajectory. Athay et al. in [SI suggested that the controlling 
u.e.p. is the u.e.p. 'in the direction' of the fault-on tra- 
jectory. Ribbens-Pavella et al. [68] relate the controlling 
u.e.p. to the machine (or groups of machines) which first 
goes out of synchronism if the fault is sustained. Fouad et 
al. (351, associated the controlling u.e.p. with the 'mode 
of instability' of machines. These concepts have been used 
to develop several methods for computing the controlling 
u.e.p. The details of these methods can be found, for 
example in [37], [57], [58], [67]. These methods, however, 
have the following disadvantages: 1) the u.e.p.'s obtained 
by using these methods are not the exact controlling u.e.p. 
defined in the previous section, i.e. the first u.e.p. whose 
stable manifold is hit by the fault-on trajectory at the exit 
point. These methods have been found to give both over- 
estimates and very conservative stability assessments in 
many cases, 2) they have no theoretical foundations, and 
3) these methods do not have good convergence properties. 
Incidentally, several previous efforts in determining the 
critical energy value without computing the controlling 
u.e.p. can be found in [34], [44], [501, [MI, [871. 

Recently, a systematic method, called boundary of sta- 
bility region based Gontrolling unstable equilibrium point 
method (BCU method), to find the controlling u.e.p. was 
developed [15]-[17], [23]. The method was also given other 
names such as the exit point method [371, 1621, [63] and the 
hybrid method [58]. The BCU method has been evaluated in 
a large-scale power system and it compared favorably with 
other methods in terms of its reliability and the required 
computational efforts [62], [63]. The BCU method has been 
applied to the fast derivation of power transfer limits [16] 
and to real power rescheduling to increase dynamic security 
[47], and demonstrated its capability for on-line transient 
stability assessments. 

The fundamental ideas behind the BCU method can be 
explained in the following way. Given a power system 
stability model (which admits an energy function), the BCU 
method first explores special properties of the underlying 
model with the aim to define an artificial, dimension- 
reduction system such that the following conditions are 
met: 

Static Properities: 
The locations of equilibrium points of the dimension- 
reduction system correspond to the locations of equi- 
librium points of the original system. For example, 
(2 , j j )  is an e.p. of the dimension-reduction system if 
and only if (2 ,$ ,0)  is an e.p. of the original system, 
where 0 E R", m is an appropriate positive integer. 

* The types of equilibrium points of the dimension- 
reduction system are the same as those of the original 
system. For example, (zs, ys) is a stable equilibrium 
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= 
i = z  

-&u(z, Y) + gi(1, Y) 
Mi = -Dz-&U(z,y)+ga(z,y) 

Mi = -Dz -&U(c ,y )  

Static Relationship 
4 Ti = - - ( ~ U ( Z , Y ) + ~ I ( ~ , Y )  

Dynamic Relationship * zi = - & ( z , d + g 2 ( . 4 )  

Fig. 21. 
network-reduction power system and the artificial, dimension-reduction system. 

A general procedure to determine the static and dynamic relationships between the 

point of the dimension-reduction system if and only if 
(xS, ys, 0) is a stable equilibrium point of the original 
system. 

Dynamical Properties: 
There exists an energy function for the artificial, 
dimension-reduction system. 
An equilibrium point, say (xz, yz), is on the stability 
boundary dA(z,, y3) of the dimension-reduction sys- 
tem if and only if the equilibrium point (zZ, yz, 0) is 
on the stability boundary aA(z,, ys, 0) of the original 
system. 
It is much easier to identify the stability boundary 
dA(z,, ys) of the dimension-reduction system than to 
identify the stability boundary dA(z,, ys, 0) of the 
original system. 

The BCU method then finds the controlling u.e.p. of 
the dimension-reduction system by exploring the special 
structure of the stability boundary and the energy function 
of the dimension-reduction system. Finally, it relates the 
controlling u.e.p. of the artificial system to the controlling 
u.e.p. of the original system. 

D. Network-Reduction BCU Method 
The main purpose of this subsection is to develop the 

BCU method for network-reduction power system models 
and to present a theoretical foundation for the developed 
methods. 

Given a power system stability model, there exists a 
corresponding version of the BCU method. For the purpose 
of illustration, we consider the generic network-reduction 
power system model (13). To develop the BCU method for 

the generic model (13), we define the following system as 
the artificial, dimension-reduction system associated with 
the original system 

A Conceptual Network Reduction Method: 
Step 1: From the fault-on trajectory ( ~ ( t ) ,  y(t), ~ ( t ) ) ,  

detect the exit point (x*, y*) at which the projected (fault- 
on) trajectory ( ~ ( t ) ,  y(t)) exits the stability boundary of the 
(postfault) dimension-reduction system (14). 

Step 2: Use the point (x*,y*) as an initial condition 
and integrate the postfault dimension-reduction system (14) 
to find the controlling u.e.p. of the dimension-reduction 
system, say at (z&, y;,). 

Step 3: The controlling u.e.p. with respect to the fault-on 

A nemerical implementation of the above conceptual 
network-reduction BCU method will be presented in Sec- 
tion VIII. 

We next present a theoretical foundation for the above 
conceptual BCU method for the generic model (13). In 
doing so, we establish the static as well as dynamic re- 
lationships between the original system and the artificial 
dimension-reduction system via four intermediate systems 
summarized in Fig. 21. In each step identified in the figure, 
we determine the static as well as the dynamic relationship 
between the two systems. For instance, in Step 4 we 
determine the static and dynamic relationship between the 

trajectory ( ~ ( t ) ,  ~ ( t ) ,  4 t ) )  is (G,, YZ,, 0). 
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following system 

d 
TX = - - U ( X , ~ )  

dX 

and the following system 

a Ti = - - U ( X , ~ )  
d X  

In Step 3 we determine the static as well as dynamic 
relationship between the following system 

a 
Ti = --U(z,y) 

t l X  

and the following one-parameter system d(X) ,  0 5 X 5 1 

a 
dX 

TX = --U(x,y) 

$ = ( l -  X)z - 

Note that when X = 0, the parametrized system d(X)  is 

a 
TX = --U(x,y) ax 

y = Z  

(17) 

and when X = I, the system d(X)  becomes 

a 
T i  = - -U(X ,Y)  

dX 
d 

y = --U(z,y) 
dY 

M i  = -Dz. (18) 

Through the above procedure, we can derive the follow- 
ing analytic results regarding the relationship between the 
original system (13) and the dimension-reduction system 
(14). 

Theorem 6-1 (Static relationship): Consider the original 
system (13) and the artificial dimension-reduction system 
(14). If zero is a regular value7 of (d’U/dzdy)(z,y), then 
there exists a positive number E > 0 such that if the transfer 
conductance of system (13) satisfies G,, < E ,  ( 2 ,  5 )  is a 
type-k equilibrium point of the system (14) if, and only 
if (?,$, 0) is a type-k equilibrium point of the system (13). 

7For a smooth map f X i Y ,  a point y E Y is called a regular value 
for f if af /ax IS surjective at every point z E X such that f(x) = y. 

Theorem 6-2 (Dynamic relationship): Let (xS, ys) be a 
stable equilibrium point of system (13). If zero is a regular 
value of ( a 2 U / d d y ) ( x , y ) ,  then there exists a positive 
number E > 0 such that if the transfer conductance of system 
(13) satisfies G,, < t and the intersections of the stable 
and unstable manifolds of the equilibrium points on the 
stability boundary dA(z,, ys) of the parameterized system 
d(X) satisfy the transversality condition for X E [0,1], then 

1) the equilibrium point (x,, y,, 0) is on the stability 
boundary dA(z,, ys, 0) of system (13) if, and only 
if the equilibrium point (x,, y,) is on the stability 
boundary dA(z,, ys) of system (14); moreover, 

2) the stability boundary dA(z,, ys, 0) of system (12) is 
contained in the union of the stable manifold of the 
equilibrium points (z, , yz, 0) on the stability boundary 
dA(z,, yS, O),  i.e., ~ A ( X , ,  yS, 0) C UWS(x2, yz, 0). 
The stability boundary dA(z,, ys) of system (14) is 
contained in the union of the stable manifold of the 
equilibrium points (x,, yz) on the stability boundary 
dA(zS,ys), i.e., dA(zS,ys)  C ~ W ” ( Z , , Y ~ ) .  

The analytical results derived in Theorem 6-2 support 
the plausibility of finding the controlling u.e.p. of the 
original system (13) via finding the controlling u.e.p. of 
the artificial, dimension-reduction system (14). We next 
present a sufficient condition under which the conceptual 
BCU method finds the correct controlling u.e.p. relative to a 
given fault: the exit point of the projected fault-on trajectory 
(x(t),y(t)) is on the stable manifold Ws(2,1j) if and only 
if ( ~ ( t ) , y ( t ) )  is on the stable manifold Ws(2,1j, 0). Theo- 
rem 6-2 shows that under the one-parameter transversality 
condition the equilibrium point (2,y) is on the stability 
boundary dA(O, ij) of the dimension-reduction system (14) 
if and only if the equilibrium point ( 2 ,  y,0)  is on the 
stability boundary dA(2, y, 0) of the original system (13). 
From a practical viewpoint, it would be useful to know 
whether or not the one-parameter transversality condition 
is always satisfied for practical power systems [49]. 

We next remark on the impact of using network-reduction 
power system models on the accuracy of transient stability 
analysis. First, load characteristics are known to have 
a significant effect on system dynamics. Inaccurate load 
modeling could lead to a power system operating in modes 
that result in actual system collapse or separation [27]. 
The so-called ZIP model (where the load is represented 
as a combination of constant impedance, constant current 
and constant MVA) are commonly used in current stability 
analysis programs. These static load models are adequate 
for some types of dynamic analysis but not for others (in 
which case, accurate complex static load models or dynamic 
load models are required). However, only the constant 
impedance load model (or equivalent model) is allowed 
in the network-reduction power system models. Hence, 
in the context of system modeling, the network-reduction 
power system models preclude consideration of load behav- 
iors (i.e., voltage and frequency variations) at load buses. 
Second, in the context of physical explanation of results, re- 
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duction of the transmission network leads to loss of network 
topology and, hence, precludes study of transient energy 
shifts among different components of the entire power 
network. Network-preserving models (structure-preserving 
models) have been proposed in the last decade to overcome 
some of the shortcomings of the classical model and to 
improve the modeling of generators, exciters, automatic 
voltage regulators and load representations. We next discuss 
the direct methods for network-preserving power system 
models. 

VII. DIRECT METHODS FOR 
NETWORK-PRESERVING MODELS 

There are two advantages of using the network- 
preserving power system models for direct stability 
analysis. From a modeling viewpoint, it allows more 
realistic representations of power system components, 
especially load behaviors. From a computational viewpoint, 
it allows the use of the sparse matrix technique for 
the development of faster solution methods for solving 
nonlinear algebraic equations involved in direct methods 
[3], [4]. In this section we discuss direct methods for 
network-preserving power system models. 

The first network-preserving model was developed by 
Bergen and Hill [lo], who assumed frequency dependent 
real power demands and constant reactive power demands. 
Narasimhamurthi and Musavi [54] moved a step further 
by considering constant real power and voltage dependent 
reactive power loads. Padiyar and Sastry [56] have included 
nonlinear voltage dependent loads for both real and reactive 
powers. Tsolas, Araposthasis and Varaiya [75] developed a 
network-preserving model with the consideration of flux 
decay and constant real and reactive power loads. An 
energy function for a network-preserving model accounting 
for static var compensators and their operating limits was 
developed by Hiskens and Hill [43]. For purpose of illus- 
tration, we next discuss the Tsolas-Arapostathis-Varaiya 
model. 

A. Model 

In the Tsolas-Arapostathis-Varaiya model [75], [76], each 
generator is represented by the one-axis model. The trans- 
mission network representation is preserved. The complete 
dynamic equations are described in the following way. 

1) Internal Generator Bus: one-axis generator model. 
For z = l , . . . , n ,  

s, =w, 

M,W, = -D,w, + P,, - P,, 

02) + E,, 

where 

"2. - x 
2xq;x&i 

+ &x2 sin[2(Si - Oi)]. 

2) External Generator Bus: For i = 1, ' . . , n, 
n+l 

peZ = KV,(B,, sin(8, - 0 3 )  
3 f z  

+ G,, cos(4 - 0,)) 

l=n+2 

+ G,L sin(8, - e l ) ) .  

3) Load Bus: For k = n + 2 , .  . . , n + nL + 1, 
n+m+l 

P: - Dk& = VjV,(Bk3 sin(Ok - 0,) 
3=1 

+ Gkg cos(& - 0,)) 
n+m+l 

Q:(Vi) = - v k q ( B k g  cos(8k - 0,) 
g=1  

+ Glc3 sin(& - Og)).  

The above model is a network-preserving power system 
transient stability model. In general, network-preserving 
models are mathematically described by a set of differential 
and algebraic equations (DAE's): 

where x E R" and y E Rm. Here differential equations 
describe generator and/or load dynamics while algebraic 
equations express the power flow equations at each bus. 
The above DAE system can be interpreted as an implicitly 
dynamical system on the algebraic manifold L 

L = {(x, Y): d x ,  Y) = 01. 

It has been shown that a DAE in general can be reduced 
locally to an ODE [12]. However, despite the strong anal- 
ogy between DAE's and ODE'S, major differences do exist. 
For instance, once the trajectory intersects the following 
singular surface S ,  

(2, y): (x, y) E L,  A(x, y) = det 

a DAE can not be reduced to an ODE. From a dynamical 
viewpoint, complicated dynamic behaviors will occur in 
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the vicinity of S. For instance, most of the trajectories near 
singular surfaces will not exist beyond singular surfaces; 
only when the initial conditions of the DAE satisfy certain 
conditions, the trajectories can be extended further [25]. 
Due to their intricate complicated dynamics near singular 
surfaces, DAE systems are difficult to analyze and only 
some phenomena are completely understood. We next dis- 
cuss some analytical results for DAE systems that are useful 
for stability analysis of network-preserving power system 
models. 

B. DAE Systems 

If the Jacobian (d /dy )g (z ,g )  is nonsingular, i.e, the 
system is on the regular part of the DAE (19), then by the 
Implicit Function Theorem [2, p. 401, the system equations 
(19) are locally equivalent to the following equations: 

2 = f ( 2 ,  Y) 

The existence and uniqueness of solutions of DAE in a 
neighborhood N of the initial conditions can be guaranteed 
provided functions f and g are smooth and the Jacobian 
(d/dy)g(x,y) has a full rank on N [41]. An equilibrium 
point of system (19) is a point such that f (x ,y )  = 0 and 
g(x ,  y) = 0. A regular equilibrium point is called a type- 
k equilibrium point if the corresponding equilibrium point 
of system (20) is a type-k equilibrium point. The stability 
of an equilibrium point of the DAE (19) can be analyzed 
by using a local energy function. The following lemma 
summarizes this result. 

Lemma 7-1: [41] (Stability of an Equilibrium Point). Let 
(.,a) be an equilibrium point of system (19) and N be 
a small neighborhood of (8,g) in the algebraic manifold 
{(z,y): g(z,y) = 0) .  If there exists a smooth positive 
definite function V: N -+ R such that 

then the equilibrium point (Z,7j) is stable. 
Hill and Mareels applied the above result to analyze 

network-preserving power systems [41]. Later, Hiskens and 
Hill utilized the same framework to establish a connection 
between transient stability, multiple stable equilibria and 
voltage behaviors [43]. However, it is usually very difficult 
to generalize these local results into global results because 
once the trajectory intersects the singular surface S, the 
implicit function theorem does not apply and some elements 
of the vector field become unbounded. 

The singular surface S decomposes the algebraic mani- 
fold L into several disjoint components r2.. If all the points 
on some rZ so that the Jacobian matrix (d/dz)g(z,y) 
has eigenvalues with negative real parts, then rz is called 
a stable component; otherwise, it is called an unstable 
component. Since the vector field is unbounded on the 

singular surface, it can be expected that trajectories move 
very fast near the singular surface. Once the trajectory 
reaches the singular surface, an un-smooth jump behavior 
will occur and force the trajectory to reach another adjacent 
piece of the algebraic manifold. A comprehensive analysis 
of the dynamic behaviors near the singular surface can be 
found in [77]-[79]. 

We next discuss the concept of the stability region for 
DAE systems. Let rS be a stable component of L and @(t)  
be a trajectory of the DAE system (19), then the stability 
region of a given stable equilibrium point (zs , ys) of a 
DAE system (19) is defined as 

45,; ys) = ( ( 2 ,  Y) E rs: p& q t )  = (zs, Ys)> 

Here we restrict the stability region to lie on the stable 
component rS and exclude the possibility that there may 
exist a trajectory which starts from an initial condition lying 
on another stable component, passes through the singu- 
lar surface and converges to the stable equilibrium point 
(xs, ys). Similarly, the stable manifold and the unstable 
manifold of an equilibrium point (%,a) on rS are defined 
as follows: 

ws(:,y) ={(x,y) E rs: ~izqt) = ( ~ , g ) }  
W"(:,y) ={(x,y) E I?,: lim @(t)  = (z ,~)} .  

t+-m 

Characterizations of the stability boundary dA(z, ,  ys) of 
a stable equilibrium point (xs, ys) of a DAE system have 
been studied recently. Chiang et al. show that under certain 
moderate conditions, the stability boundary dA(z,, ys) 
consists of two parts: the first part is the stable manifolds 
of the equilibrium points on the stability boundary while 
the second part contains points whose trajectories reach 
singular surfaces [26]. Venkatasubramanian et al. further 
delineated the second part with various dynamic behaviors 
near the singular surface and show the stability boundary 
can be characterized as a union of the stable manifolds of 
unstable equilibrium points, pseudo-equilibrium points and 
semi-singular points on the stability boundary and parts of 
singular surface [77]. 

As pointed out earlier, methods based on energy functions 
are more suitable for estimating stability regions of large- 
scale nonlinear systems. Regarding the applicability of the 
energy function theory to DAE systems, it is usually very 
difficult to generalize a local energy function into a global 
energy function for DAE systems. We propose to use the 
singular perturbation approach to bridge the gap between 
the DAE system and the energy function theory. 

C. Singular Perturbation Systems 

The singular perturbation approach is widely investi- 
gated in applied mathematics and control system societies 
(451, [55]. The application of such concepts in network- 
preserving power system models was initiated by Sastry et 
al. (701, [71], and considered later by Arapostathis et al. 
171, Bergen et al. [lo], [11], De Marco et al. [28], [29] and 
Chiang et al. [18]. This approach treats algebraic equations 
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as a limit of the fast dynamics: EY = g(z, y). In other words, 
as E approaches zero, the fast dynamics will approach the 
algebraic manifold. Therefore, for the DAE system (19), 
we can define an associated singularly perturbed system 

2 = f(x, Y) 

EY = dJ:, Y) (21) 

where E is a sufficiently small positive number. If f and 
g are both smooth functions and bounded for all (x,y) E 
Rn+m, then the vector field is globally well defined. The 
very different rates shown in the system can be separated in 
two distinct time scales: slow variable x and fast variable y. 
The effects of the sign in the algebraic equations for power 
system applications are worth recognizing: the algebraic 
manifold remains invariant whether there is a positive sign 
or a negative sign in front of g(x, y). However, this sign will 
affect significantly the dynamical behaviors of correspond- 
ing singularly perturbed system. It is therefore imperative to 
choose a proper sign in algebraic equations to represent an 
appropriately corresponding singularly perturbed system. 

Although the DAE system and the corresponding singu- 
larly perturbed system have some different dynamic mod- 
els, they still share several similar dynamical properties. 
The following results demonstrate the invariant topological 
structure among equilibrium points between a DAE system 
and the associated singularly perturbed system. 

Fact: 
The equilibrium points of the DAE system (19) are the 

same as the equilibrium points of the singularly perturbed 
system (21). 

Lemma 7-3: Suppose that all of the equilibrium points of 
interest are on one stable component rS. Then there exists 
an E* > 0 such that for all E E (0, E * ) ,  

(?E,$ is a hyperbolic equilibrium point of the DAE 
system (19) if and only if ( E , g )  is a hyperbolic 
equilibrium point of the singularly perturbed system 
(21). 
For IC 5 n,  (Z,Y) is a type-k equilibrium point of the 
DAE system (19) if and only if (Z, j j )  is a type-k 
equilibrium point of the singularly perturbed system 
(21). 

The above lemma shows that the type of the equilibrium 
point of the DAE system (19) is the same as the type of the 
corresponding equilibrium point of the singularly perturbed 
system (21) provided E is sufficiently small. Theorem 7-4 
below generalizes this result and shows that the stability 
boundaries of such two systems contain the same set of 
equilibrium points on the stable component rS. 

Theorem 7-4 [18], [33]: Let (zs, ys) and (xu, yu )  be the 
stable and unstable equilibrium points of the DAE system 
(19) on the stable component rS, respectively. Suppose 
that for each E > 0, the associated singularly perturbed 
system (21) has an energy function and every equilibrium 
point is isolated. Then there exists E* > 0 such that for all 
E E (0, E * ) ,  (xu, yu) lies on the stability boundary of the 

DAE system dAo(x,,y,) if and only if (xu,yu) lies on 
the stability boundary of the singularly perturbed system 

Stability analysis of network-preserving models via the 
singular perturbation approach does provide some advan- 
tages in the following aspects: 

dA, ( z s ,  Ys). 

1) Energy function: The energy function of the network- 
preserving model can be easily obtained and the 
global analysis of the vector field can be extended. 

2) Computing the controlling u.e.p.: Since the final state 
of the fault-on system will not lie on the algebraic 
manifold L of the postfault system, the fault-on 
trajectory will not hit the stability boundary of its 
DAE postfault system. Instead, the fault-on trajectory 
will hit the stability boundary of its corresponding 
singularly perturbed postfault system. Hence the exit 
point of a fault-on trajectory must lie on the stable 
manifold of the controlling u.e.p. of the singularly 
perturbed postfault system. 

3) Solution trajectory: Trajectories of the singularly per- 
turbed system (21) will not be confined to the al- 
gebraic manifold L and they are not exactly the 
same as trajectories of the original DAE system. 
However, the Tikhonov' s theorem over the infinite 
time interval can be applied to provide a theoretical 
justification to ensure that the difference of solution 
trajectories between the original DAE system (19) 
and the singularly perturbed system (21) is uniformly 
bounded by the order of O ( E )  [45]. Thus trajectories 
generated by the singular perturbed system are still 
valid approximations to that of the DAE system. 

D. Exact and Numerical Energy Functions 
All existing network-preserving models can be written 

as a set of general differential-algebraic equations of the 
following compact form: 

a 
Tk = --U(U,w,z,Y) + g3(74'W,x,y) dX 

y = z  
d 

M i  = -Dz  - -U(U,  W, 5 ,  y) + g4(U, W, 2, y) (22) 
dY 

where U E T k  and w E RI are instantaneously variables 
while J: E Rn, y E T", and z E R" are state variables. 
T is a positive definitive matrix and M and D are diago- 
nal positive definite matrices. gl(u, w, x ,  y), g2(u, w, x ,  y), 
g3(u, w, 2 ,  y), and g4(u, w, x ,  y) are the vector field rep- 
resenting the effects of the transfer conductance in the 
network Y-bus matrix. 

To avoid an awkward analysis of the DAE representation, 
the algebraic equations can be treated as the limiting equa- 
tions of the singularly perturbed differential equations. The 
compact representation of the network-preserving model 
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Type-One e p. 51 w1 62 w2 Type-Two e.p. 61 
1 3.24512 0 0.31170 0 1 3.60829 
2 3.04037 0 3.24307 0 2 2.61926 
3 0.03333 0 3.10823 0 3 -2.67489 
4 -3 03807 0 0.3117 0 4 -3.66392 
5 -3 24282 0 -3.0393 1 0 5 -2.67489 
6 0.03333 0 -3.17496 0 6 2.61926 

where €1 and c2 are sufficiently small positive numbers. 

g4(u, w, 5 ,  y) are zero, the compact representation of the 
network-preserving model will become: 

If g1(u,w,x,Y)> g2(u,w,x,Y), g3(~ , 'w,x ,Y) ,  and 

w1 62 w2 
0 158620 0 
0 4 25636 0 
0 1.58620 0 
0 -2.02684 0 
0 -4.69699 0 
0 -2 02684 0 

E2W =-  

a 
ax TX = - - U ( U , W , ~ , ~ )  

y = z  

If we define 

W ( u ,  w , x ,  y, z )  = + U ( u ,  w , x , y )  

then W ( u , w , x , y , z )  is an energy function. Indeed, by 
differentiating W ( u ,  w, z, y, z )  along the trajectory, one has 

x a w ~  ~ W T  awT 
W ( u , w , 5 , y , z )  =-U+- w + 7 & -  

dU d W  

Therefore, the condition (1) of the energy function is 
satisfied. Suppose that there is an interval t E [tl,  tz]  
such that @(u(t) ,  w(t), x(t), y(t), z ( t ) )  = 0. It follows 
from (24) and (25) that z ( t )  = 0 and U ( t )  = w(t) = 
i ( t )  = 0 for t E [ t l , tz] .  This indicates that y ( t )  is a 
constant for t E [tl,  tz] .  It then follows that the system 
state is at an equilibrium point. Thus condition (2) of 
the energy function also holds. We can employ similar 
arguments used for the network-reduction model to show 
that condition (3) is also true; here we omit the detailed 

proof. Note that the additional terms in @(U, w, x ,  y, z ) ,  as 
compared with those in the network-reduction model, are 
related to the energy dissipation at load buses. Moreover, 
as t approaches zero, these terms become dominant in 
W(u, w, x,  y, z ) .  This observation also shows the impor- 
tant role of load models for stability analysis. When the 
network transfer conductance is not negligible, a general 
expression of exact energy functions does not exist. In 
this case, path-dependent numerical energy functions may 
prove adequate. This is similar to the case for network- 
reduction models. However, the transfer conductances of 
the network-preserving models are usually much smaller in 
relative value than that of the network-reduction models. 
This physical property makes numerical energy functions 
for network-preserving models 'close' to exact energy func- 
tions. This illustrates another advantage of using network- 
preserving models instead of using network-reduction mod- 
els. 

E. Controlling U.E.P. Method 

The controlling u.e.p. of the generic network-preserving 
model (22) can be found via the controlling u.e.p. of the 
associated singularly perturbed system (23). In order to 
make this picture more precise, the relationship between the 
postfault trajectory of the associated singularly perturbed 
model and that of the postfault network-preserving model 
needs to be established. With the aid of the singularly 
perturbed system, it can be shown that the postfault tra- 
jectory of the DAE system is approximately equal to the 
trajectory generated by the singularly perturbed system 
under mild conditions. This suggests that one can detect the 
controlling u.e.p. of the singularly perturbed system and use 
the constant energy surface passing the controlling u.e.p. 
of the singularly perturbed system as the relative stability 
boundary for the fault-on trajectory of network-preserving 
models. Once the fault-on trajectory is inside the energy 
surface, the trajectory generated by the DAE system will 
converge to the stable equilibrium point of the postfault 
DAE system. Thus the controlling u.e.p. of the singularly 
perturbed system can be used for stability analysis of the 
network-preserving model. 

We next present the controlling u.e.p. method for tran- 
sient 

1) 

stability analysis of network-preserving models: 

Determination of the critical energy 
Step 1.1: Find the controlling u.e.p. 

(U,, , w,, , z,, , yea, 0) relative to the fault-on DAE 
trajectory via its associated singularly perturbed 
system. 
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I I 

I I I I 

t 

t 
E l U  = -+U(u,w,z,y) 
tzw = - ~ U ( u , w , z , y )  
TX = (1 - X)z - X&U(u, w,z ,y)  

M i  = -Dz-(~-X)&U(U,W,Z,~) 
i = z-+u(u,W,z ,Y)  

I I 

r1U = - U(u,w,z,y) 
t z w  = -%(u,w,z,y) t 
TX = -%U(Z,Y) 
Y = -,U(Z,Y) 

I 

Fig. 22. A general procedure to determine the static and dynamic relationships between the generic 
network-preserving power system and the artificial, dimension-reduction system. 

Step 1.2: The critical energy value W,, is the value 
of energy function W(. ,  ., ., ., .) at the controlling 
u.e.p., i.e., W,, = W(uc0, wco, xco, yc0, 0). 

2) Determination of stability 
Step 2.1: Calculate the value of the energy 

function W(. , . , . , . , . )  at the time of fault clearance 
(say t,.) using the fault-on DAE trajectory W f  = 

Step 2.2: If W f  < W,,, then the postfault system 
W ( ( q  @cl) ,  W f  ( t c d  , x.f (id) , Yf  ( t c l ) ,  4 c l ) ) .  

is stable. Otherwise, it may be unstable. 

The key step in the above controlling u.e.p. method is 
Step 1.1. In the next subsection, a network-preserving BCU 
method which finds the controlling u.e.p. of the correspond- 
ing singularly perturbed system will be presented. 

F. A Network-Preserving BCU Method 

To develop a BCU method for the generic network- 
preserving model (22), the associated artificial dimension- 
reduction system needs to be defined first. We choose the 

following differential-algebraic system as our dimension- 
reduction system: 

a 
Y =--U(u,w,5,Y) +g4(u,w,z,y). (26) 

We propose to establish the static as well as dynamic 
relationship between the dimension-reduction DAE system 
(26) and the the original DAE system via seven steps and 
six intermediate systems shown in Fig. 22. By combining 
the relationship between Steps 1-7, the following analytic 
results can be established. 

Theorem 7-5 (Static relationship): Let (U,, ws,  x,, y,) be 
a stable equilibrium point of system (26). If zero is a regular 
value of d4U(u,  w ,  x, y)/dudwdxdy, then there exists a 
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Table 3 
Network Reduction, Classical Generators Power System Model. The Case Marked * is More 
Stressed Than the Other Cases Which Leads to Multiswing Trajectories. The Sign ** Means that 
the Corresponding Method Does Not Converge to a u.e.p. in that Case 

Simulation Results of the 50-Generator, 145-Bus IEEE Test System Modeled by the 

BCU 
Method 

102.0 
106.2 
224.1 
194.2 
235.4 
160.2 
288.3 

238.2 
187.7 

163.0 

253.6 

155.0 

165.0 
385.0 
387.0 
163.5 
172.0 
186.2 
185.0 
206.5 
196.0 
227.4 
220.0 
160.0 

114.0 

Faulted 
Bus 

Error 
(%) 

-5.73 
-1.2 

-0.18 
-9.88 
-5.63 
-6.31 
-1.43 

-3.95 
-0.15 

-6.1 

-2.46 

-9.3 

-6.8 
-0.3 
-0.1 
-6.8 
-7.3 
-9.3 
-9.8 
-3.3 
-8.9 
-2.7 
-1.7 
-5.7 

-5.0 

7 
7* 
59 
73 
112 
66 
115 
100 
101 
91 
6 
12 
6 

33 
33 
66 
106 
69 
69 
105 
73 
67 
59 
12 

105 

Opened 
Line 

7-6 
7-6 

73-84 
112-69 
66-67 

100-72 
101-73 

59-72 

115-116 

91-75 
6- 1 

12-14 
6-10 
33-39 
33-49 

66-111 
106-74 
69-32 
69-1 12 
105-73 
73-75 
67-65 
59-103 
12-14, 
12-14 

105-73 
105-73, 

ETMSP 
Method 

108.2 
107.5 
224.5 
215.5 
248.6 
171.0 
292.5 
260.0 
248.0 
188.0 
171.0 
173.5 
177.0 
386.0 
387.5 
175.5 
185.5 
205.3 
205.1 
213.5 
215.1 
233.7 
222.6 
169.7 

120.0 

MOD 
Method 

112.5 
127.5 
242.5 

237.5 

287.5 
252.9 
237.5 
187.5 

** 

** 

** 
** 
** 
** 

432.5 
** 

-172.5 
** 
** 
** 
** 
** 
** 
** 

127.5 

Error 
(%) 

3.9 
18.6 
8.0 

-4.4 

-1.7 
-2.9 
-3.5 
-0.3 

- 

** 

** 

** 
** 
** 
** 

11.6 

-7.0 
** 

** 
** 
** 
** 
** 
** 
** 

6.3 

positive number E > 0 such that the transfer conductance of 
system (26) satisfies G,, < E ,  hence (&, G,P, i j )  is a type-k 
equilibrium point of system (26) if and only if (6, w, 2 ,  i j ,  0) 
is a type-lc equilibrium point of the system (22). 

Theorem 7-6 (Dynamic relationship): Let (us, w,, x, , y,) 
be a stable equilibrium point of system (26) and zero be a 
regular value of d4U(u ,  w, x, y)/dudwdzdy. If there exists 
a positive number E > 0 such that the transfer conductance 
of system (26) satisfies G,, < E and the intersections of the 
stable and unstable manifolds of the equilibrium points on 
the stability boundary dA(u,, w,, x,, y,, 0) of the parame- 
terized system d( A) satisfy the transversality condition for 
X E [0, 11, then 

1) the equilibrium point (U,,  wz, z,, y,, 0) is on the sta- 
bility boundary dA(u,, w,, z,, ys, 0) of system (26) 
if and only if the equilibrium point (U,,  w,, x, , yz, 0) 
is on the stability boundary dA(us,ws,xs,ysI0) of 
system (22). 

2) The stability boundary dA( U,, w, , z, , y,, 0) of sys- 
tem (22) is the union of the stable manifold of the 
equilibrium points (U,,  w,, z,, y,, 0) on the stability 
boundary dA(u,, w,,z,, y,, O), i.e., 

dA(u,, w,, x s ,  !La, 0) = U WS(%, w,, z,, Yz, 0) 

The stability boundary dA(u,, w,, zs,ys) of system (26) 
is contained in the union of the stable manifold of the 
equilibrium points (U,,  w,, x,, y,) on the stability boundary 

Exit 
Point 

Method 
112.5 
142.5 
197.5 

237.5 

287.5 
252.9 
237.5 
187.5 
237.5 

** 

** 

** 
** 

347.5 
347.5 

172.5 
** 

** 
** 
** 
** 
** 

242.5 
** 

127.5 

Error 
(%I 
3.9 
32.6 
-12.0 

-4.4 

-1.7 
-2.9 
-3.5 
-0.3 
38.9 

** 

** 

** 
** 

-10.0 
-10.3 
** 

-7.0 
** 
** 
** 
** 
** 
8.9 
** 

6.3 

Hybrid 
Method 

107.5 
107.5 
222.5 
207.5 
247.5 
162.5 
292.5 
257.5 
247.5 
187.5 
167.5 
172.5 
172.5 
382.5 
382.5 
167.5 
182.5 
202.5 
207.5 
207.5 
212.5 
232.5 
222.5 
167.5 

117.5 

Error 
(%I 
- 

-0.7 
0.0 
-0.9 
-3.7 
-0.4 
-5.0 
0.0 
-1.0 
0.6 
-0.3 
-2.0 
-0.6 
-2.5 
-0.9 
-1.3 
-4.6 
-1.6 
-1.4 
1.2 
-2.8 
-1.2 
-0.5 
-0.0 
-1.3 

-2.0 

Mixed 
DEEAC 
Method 

108 
118 
227 
209 
246 
165 
29 1 
261 
244 
190 
162 
168 
173 
383 
383 
168 
181 
203 
199 
207 
209 
199 
227 
165 

127 

Error 
(%I 

-0 18 
9 7  
1.3 

-3 0 
-1 0 
-3 5 
-0 5 
0 4  
-0 8 
1 06 
-5 2 
-3 1 
-2.2 
-0 8 
-0 8 
-4 2 
-2 4 
-1 1 
-2 9 
-3 0 
-2.8 

-14 8 
2 0  
-2 8 

5.8 

Theorems 7-5 and 7-6 provide a theoretical basis for 
finding the controlling u.e.p. of the original network- 
preserving model via the controlling u.e.p. of the artificial, 
dimension-reduction model. Based on the above theoretical 
developments, a conceptual BCU method for the network- 
preserving model is presented in the following: 

G. A Conceptual Network-Preserving BCU Method 
Step 1: From the fault-on trajectory (u( t ) ,  w ( t ) ,  x ( t ) ,  

y(t), ~ ( t ) )  of the original system, detect the exit point 
(U*,  w*, z*, y*) at which the projected (fault-on) trajec- 
tory ( U @ ) ,  w(t), z ( t ) ,  y(t)) of the original system exits 
the stability boundary of the postfault dimension-reduction 
system. 

Step 2: Use the point ( U * ,  w*,z* ,y*)  as the initial 
condition and integrate the postfault dimension-reduction 
system (26) to find the controlling u.e.p. of the postfault 
dimension-reduction system, say ( U;,, wz, , zzo, yz,). 

Step 3: The controlling u.e.p. with respect to the fault-on 
trajectory ( U @ ) ,  w ( t ) ,  z ( t ) ,  y(t)) of the original system is 

Recall that the essence of the BCU method is that it 
finds the controlling u.e.p. of the original system via the 
controlling u.e.p. of the dimension-reduction system whose 
controlling u.e.p. is easier to compute. Step 1 and Step 2 

(GJ, w;,, IC$, U,*,, 0)’ 
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Table 3 (Continued) 
Faulted 
Bus 

66 
6 

6 

33 

33 

66 

73 

73 

Opened 
line 

66-8, 66-8 
6-1, 6-2, 
6-7 
6-9, 6-10, 
6-12, 6-12 
33-37, 
33-38, 
33-39, 
33-40, 
33-49, 
33-50 
33-37, 
33-38, 
33-39, 
33-40 
66-11 1, 
66-111, 
66-111 
73-26, 
73-72, 
73-82, 
73-101 
73-69, 
73-75, 
73-91, 
73-96, 
73-109 

ETMSP 
Method 

178.5 
39.4 

81.5 

360.5 

378 

83.0 

214.5 

190.5 

BCU 
Method 

171.0 
39.2 

77.0 

355.0 

373.4 

80.0 

195.0 

190.1 

Error 
(%) 

-4.2 
-0.5 

-5.5 

-1.4 

-1.2 

-3.6 

-9.1 

-0.20 

MOD 
Method 

** 
72.5 

** 

>600 

352.5 

** 

** 

** 

of the conceptual BCU method find the controlling u.e.p. 
of the dimension-reduction system and Step 3 relates the 
controlling u.e.p. of the dimension-reduction system to the 
controlling u.e.p. of the original system. 

VIII. NUMERICAL ASPECTS OF BCU METHODS 
This section presents practical numerical implementa- 

tions of BCU methods for both network-reduction models 
and network-preserving models. The numerical BCU meth- 
ods are then applied to two sets of practical power system 
data. Practical demonstrations of the BCU method for on- 
line transient stability assessment will be described in the 
next section. 

A. A Numerical Network-Reduction BCU Method 

A numerical implementation of the conceptual BCU 
method for network-reduction power system models dis- 
cussed in Section VI-D is proposed below. 

Step I :  From the (sustained) fault-on trajectory ( x ( t ) ,  
y(t), z(t)),* compute the exit point (x*, y*) at which the 
projected trajectory ( z ( t ) ,  y(t)) reaches its first local max- 
imum of the numerical potential energy U,,,(., .). 

Step 2: Use the point (x* , y*) as the initial condition and 
integrate the postfault dimension-reduction system (14) to 
the (first) local minimum of //-(d/6’x)U(x, y)Sgl(x, y)II+ 
1 1  - (d/dy)U(x,y) +g2(x,y)ll. Let the local minimum be 
(XT,,Yo*). 

8When the fault is cleared, the projected fault-on trajectory may not 
exit the stability boundary of the postfault dimension-reduction system. 
However, it must exit the stability boundary if the fault is sustained. 

Error 
(%) 

** 
84.0 

** 

** 

-6.7 

** 

** 

** 

Exit 
Point 
Method 

52.5 

>500 

>700 

** 

>700 

112.5 

** 

77.5 

- 
Error 
(%) 
- ** 
33.2 

** 

** 

** 

35.5 

** 

-59.3 

Hybrid 
Method 

167.5 
22.5 

77.5 

352.5 

372.5 

82.5 

207.5 

187.5 

- 
Error 
(”/.I 

-6.2 
-42.9 

-4.9 

-2.2 

- 

-1.5 

-0.6 

-3.3 

-1.6 

- 

Mixed 
DEEAC 
Method 
173 
- 

69 

344 

368 

82 

209 

179 

Error 
(”/.I 

-3.1 
- 

-15.3 

-4.5 

-2.6 

-1.2 

-2.5 

-6.0 

Step 3: Use the point (xE,y,*) as the initial guess and 
solve the following set of nonlinear algebraic equations 

Let the solution be (z:~, y$). 
Step 4: The controlling u.e.p. with respect to the fault-on 

Remarks: There are basically three major computational 
tasks in the BCU method: 1) compute the point with 
the first local maximum of potential energy along the 
projected fault-on trajectory, 2)  compute the trajectory of 
the postfault dimension-reduction system until the first local 
minimum is reached, and 3 )  compute the controlling u.e.p. 
via solving the nonlinear algebraic equations of the postfault 
dimension-reduction system. 

The heuristic criterion that along the projected trajectory 
( x ( t ) ,  ~ ( t ) ) ,  the first local maximum of the numerical 
potential energy U,,,(., .) occurs at the exit point of the 
projected fault-on trajectory is used in Step 1 to compute the 
exit point. We have found through our numerical experience 
that the heuristic criterion works quite well. 

The dimension-reduction system (14) can be stiff. In such 
a case, a stiff differential equation solver is recommended 
to implement Step 2. 

There is no quarantee that the point with the (first) 
local minimum is always suuficiently close to the control- 
ling u.e.p.; especially when the stability boundary of the 
postfault dimension-reduction system is very “ragged.” In 
this case, techniques can be developed to circumvent this 
difficulty. 

trajectory (x(t) ,y(t) ,  4 t ) )  is (xZ0, Y$, 0). 
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Table 4 Simulation Results of the 50-Generator, 145-Bus IEEE 
Test System Modeled by the Network-Reduction, Two-Axis 
Generator with a First-Order Exciter Power System Model 

Faulted 
Bus 
59 
112 
115 
101 
106 
102 
97 
98 
108 
82 
100 
103 
89 
135 

Opened 
Line 
59-72 
112-69 
115-116 
101-73 
106-74 
63-102 
97-66 
98-72 
108-75 
82-75 
100-72 
103-59 
89-59 

135-138 

CCT 
BCU 
210 
230 
287 
233 
123 
184 
244 
186 
264 
265 
245 
255 
250 
130 

CCT 
ETMSP 

224 
248 
288 
246 
174 
202 
26 1 
206 
279 
3 14 
259 
300 
274 
136 

Relative 
Error (%) 

-6.25 
-7.3 
-1 

-5.25 
-29 

-9.00 
-6.51 
-9.70 
-3.65 
-15.6 
-4.30 
-15.0 
-9.70 
-4.50 

It is likely that other versions of numerical implemen- 
tation of the conceptual BCU method will appear in the 
future. Numerical experience with the above numerical 
BCU method on some large network-reduction power sys- 
tem models can be found in [22], [16], [46], [54], 1641, 1651. 

I )  Numerical Studies on Two Systems: 

The numerical network-reduction BCU method has been 
tested on several power systems. The numerical simulation 
results presented in this section are a 50-generator, 145-bus 
power system which is a IEEE test system [65] and a 202- 
generator, 1293-bus power system. The type of faults are 
three-phase faults with fault locations at both generator and 
load buses. Both severe and mild faults are considered. 

Table 3 displays the estimated critical clearing times of 
several faulted systems by using six different methods on 
the IEEE test system. In this study, the test system is 
modeled by the network-reduction power system model 
with classical generators. The six different methods are: 
the time-domain (numerical integration) method (ETMSP), 
the BCU method, the MOD method, the exit point method, 
the hybrid method and the mixed DEEAC method. The 
MOD method attempts to find the controlling u.e.p. based 
on the mode of disturbances. The hybrid method is a hybrid 
of a direct method and a time-domain method. The mixed 
DEEAC method is based on a dynamic equivalent equal 
area criterion. A description of each of these methods can 
be found in [36], [37], [501, [67], [74], [83]. The results 
from the time-domain method are used as a benchmark. 
The second line of Table 3 states that a three-phase fault 
occurs at bus 7 and the postfault system is the system with 
the transmission line between buses 6 and 7 tripped, due 
to the openings of circuit breakers at both ends of the line. 
The CCT estimated by the BCU method due to this type 
and location of fault with the way of ‘clearing’ the fault is 
102 ms while the exact CCT obtained by the time-domain 
simulation method is 108 ms. The CCT estimated by the 
MOD method, the exit point method, the hybrid method 
and the mixed DEEAC method is 112.5, 112.5, 107.5, and 
108 ms, respectively. Table 3 also lists the relative error 

Table 5 
1293-Bus Network-Reduction Power System 
with Classical Generator Models 

Simulation Results of the 202-Generator, 

Faulted 
Bus 
77 
74 
75 
136 
248 
360 
559 
634 
661 
702 
221 
175 
198 
245 
319 
360 

Opened 
Line 

77-124 
74-76 
75-577 
136-103 
248-74 
360-345 

634-569 
661-669 

702- 1376 
221-223 
175-172 
198-230 
245-246 
319-332 

559-548 

360-362 

CCT 
BCU 
320 
3 13 
212 
260 
133 

197 
197 
103 
214 
191 
269 
145 
224 
198 
262 

262 

CCT 
ETMSP 

320 
330 
210 
260 
160 
270 
210 
210 
120 
220 
220 
270 
150 
230 
230 
270 

Relative 
Error (%) 

0 
-5.10 
0.95 

0 
-16.8 
-2.90 
-6.10 
-6.10 
-15.10 
-2.70 
-13.10 
-0.30 
-3.30 
-2.61 
-13.90 
-3.90 

of each method compared against the time-domain method. 
The sign ** in the Table 3 means that the corresponding 
method does not converge to a u.e.p. in that case. All these 
simulation results except for those by the BCU method 
display in Table 3 were taken from [26] and [67, pp. 203 
and 2351. 

It should be pointed out that in these simulation results 
the BCU method consistently gives slightly conservative 
results in estimating CCT. These results are in compliance 
with the analytical results of the controlling u.e.p. method 
presented in Section V confirming that the critical energy 
value based on the controlling u.e.p. should give slightly 
conservative stability assessments if exact energy functions 
are used. The simulation results also reveal that the CCT’s 
estimated by the other methods can be either overestimates 
or underestimates. Overestimating CCT is undesirable be- 
cause it could lead to classifying an unstable case to be 
stable. Note that numerical energy functions were used in 
these simulations. 

The numerical network-reduction BCU method is also 
applied to estimate the CCT of several faulted systems, 
modeled by the network-reduction, two-axis generator with 
a first-order exciter models. Table 4 lists some simulation 
results on the IEEE test system with 6 generators equipped 
with exciters. Table 6 lists some simulation results on the 
202-generator, 1293-bus power system with the classical 
generator model. Two methods were used in these sim- 
ulations: the time-domain method and the BCU method. 
The results from the time-domain method are used as a 
benchmark. Again, the BCU method consistently gives 
slightly conservative results in estimating CCT. These 
results are in compliance with the analytical results of the 
controlling u.e.p. method, despite the fact that numerical 
energy functions were used in these simulations. 

B. Network-Preserving Power System Models 

A numerical implementation of the conceptual BCU 
method for network-preserving power system models dis- 
cussed in Section VII-F is presented below. 
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A Numerical Network Preserving BCU Method: 

Step I :  From the (sustained) fault-on trajectory ( ~ ( t ) ,  
w(t), IC@), y ( t ) ,  x ( t ) )  of the DAE system, detect the exit 
point (U* ,  w*, IC*, y * )  at which the projected trajectory 
( ~ ( t ) ,  w(t), z ( t ) ,  y ( t ) )  reaches the first local maximum of 
the numerical potential energy function U,,,( ., ., ., .). 

Step 2: Use the point ( U * ,  w*,z*,y*) as the initial 
condition and integrate the postfault, dimension-reduction 
system (26) to the (first) local minimum of 

Let the local minimum be (U:,  w: , x:, y:). 
Step 3: Use the point (U:,  w;, x:, y,*) as the initial guess 

and solve the following set of nonlinear algebraic equations 

Let the solution be (U:, , w&, z:~, y,*,). 
Step 4: The controlling u.e.p. with respect to the fault-on 

trajectory (u( t ) ,  w(t), ~ ( t ) ,  y ( t ) ,  ~ ( t ) )  of the DAE system 

Steps 1-3 find the controlling u.e.p. of the artificial, 
dimension-reduction system and Step 4 relates the con- 
trolling u.e.p. of the dimension-reduction system to the 
controlling u.e.p. of the original system. In Step 2, the 
integration of the postfault dimension-reduction system can 
be replaced by the integration of the boundary-layer system 
of the postfault dimension-reduction system to acceler- 
ate the computational procedure. The remarks made on 
the numerical implementation of the conceptual network- 
reduction BCU method also apply to the above numerical 
network-preserving BCU method. 

nu- 
merical network-preserving BCU method has also been 
tested on several power systems, modeled by a network- 
preserving, classical generator with static nonlinear load 
representations. The static nonlinear load model is a 
combination of constant power, constant impedance and 
constant current. The simulation results presented in this 
subsection are on the IEEE 50-generator, 145-bus test 

is (U:,, w:,, e x  YZ,, 0) .  

I )  Numerical Studies on the IEEE Test System: The 

Table 6 Simulation Results of the SO-Machine, 145-Bus IEEE 
Test System Modeled by the Network-Preserving Power System 
with Classical Generators and Static Nonlinear Loads 
Comprised a Combination of 20% Constant Power, 20% 
Constant Current, and 60% Constant Impedance 

Faulted 
Bus 

7 
59 
73 
112 
66 
115 
110 
101 
91 
6 
12 
6 
66 
106 
69 
69 
105 
73 
67 
59 
12 

105 
66 
66 

73 

73 

Opened 
Line 

7-6 
59-72 
73-74 
1 12-69 
66-69 

110-72 
115-1 16 

101-73 
9 1-75 
6- 1 

12-14 
6-10 

66-1 11 
106-74 

69-112 
105-73 
73-75 
67-65 

59-103 
12-14, 12-14 

105-73, 105-73 
66-8, 66-8 

66-111, 66-111, 
66-111 

73-26, 73-72, 
73-82, 73-101 
73-69, 73-75, 

69-32 

73-96, 73-109 

CCT 
BCU 

Method 
97 
208 
190 
235 
156 
288 
245 
232 
187 
153 
163 
162 
157 
170 
186 
110 
191 
194 
230 
22 1 
156 
110 
167 
70 

192 

182 

CCT 
ETMSP 

103 
222 
215 
248 
168 
292 
260 
248 
189 
170 
173 
177 
172 
186 
202 
118 
21 1 
210 
23 1 
223 
167 
118 
174 
80 

212 

190 

Relative 
Error 

(%o) 
-5.8 
-6.3 
-11.8 
-5.2 
-7.1 
- 1.3 
-5.7 
-6.4 
-1.1 

-10.0 
-5.8 
-9.4 
-9.7 
-9.6 
-7.9 
-6.7 
-9.4 
-7.6 
-0.4 
-0.9 
-6.5 
-6.7 
-4.0 
- 12.5 

-9.4 

-4.2 

system and the 202-generator, 1293-bus system discuss in 
the previous subsection. 

Table 6 displays the estimated CCT of the IEEE 50- 
generator, 145-bus test system with different locations of 
three-phase faults using the time-domain method and the 
network-preserving BCU method. The load model used 
in this numerical study is a combination of 20% constant 
power, 20% constant current, and 60% constant impedance. 
The network-preserving BCU method is also applied to a 
nonlinear static load model, which is a combination of 20% 
constant power, 20% constant current, and 60% constant 
impedance. Table 7 contains the simulation results of the 
202-generator, 1293-bus. The simulation results are the 
estimated CCT’s of the system with different locations of 
three-phase faults using the time-domain method and the 
BCU method with 1) constant impedance loads, and 2) 
a nonlinear static load which is a combination of 20% 
constant power, 20% constant current, and 60% constant 
impedance. Again, the computational performance of the 
network-preserving BCU method is that it consistently 
gives slightly conservative results in estimating CCT which 
is in compliance with the controlling u.e.p. method, despite 
the fact that numerical energy functions were used in these 
simulations. Moreover, the computational performance of 
the network-preserving BCU method seems to be very 
consistent when applied to different static load models. 
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Table 7 Simulation Results of the 202-Machine, 1293-Bus System Modeled by the 
Network-Preserving Power System with (1) Classical Generators and Constant Impedance Load 
Models, and (2) Classical Generators and Static Nonlinear Loads Comprised a Combination of 
20% Constant Po\ 

Faulted Bus 

77 
74 
75 
136 
248 
360 
559 
634 
66 1 
702 
22 1 
175 
198 
245 
319 
360 

r, 20% Constant Current. and 60% Constant Impedance 

Opened Line 

77.124 
74-76 
75-577 
136-103 
248-74 
360-345 
559-548 
634-569 
661-669 

702-1376 
221-223 
175-172 
198-230 
245-246 
319-332 
360-362 

LOAD(2) 
CCT CCT 

ETMSP 
0.325 
0.343 
0. 210 
0.262 
0.165 
0.273 
0.215 
0.212 
0.123 
0.233 
0.220 
0.276 
0.156 
0.230 
0.230 
0.272 

LOAD(1) 
CCT 

BCU Method 
0.320 
0.313 
0.212 
0. 260 
0.160 
0.262 
0.197 
0.197 
0.103 
0.224 
0.214 
0.269 
0.145 
0. 224 
0.198 
0.262 

C. A Sensitivity-Based BCU Method 

Quite often, power system operators need to cope with the 
following situation: for a given power system with a given 
contingency, called the base case, if some of the parameters 
in the system change (due to a disturbance, perhaps), called 
the new case, one must know how these changes affect 
the system stability as quickly as possible. Also, there is a 
great need of a fast, yet accurate method to determine the 
transient stability-constrained loading limits, power transfer 
limits and, furthermore, to decide how to make changes in 
the parameters, such as generation rescheduling, and load 
shedding in order to improve system transient behaviors. 

Numerous previous methods [31], [59], [73], [82] have 
attempted to use the sensitivity of energy functions to 
changes in system parameters to determine the stability 
limits of systems. It is assumed in these methods that 
the mode of the controlling u.e.p. does not change. In 
general, this assumption may not be true for every case. 
A counterexample of the assumption on a 50-generator, 
145-bus system was provided in [16]. 

The sensitivity-based BCU method also allows one to 
quickly determine the extent to which one may change 
real power generations in the system before jeopardizing 
its transient stability, or how much change is necessary 
in order to gain stability. The chief advantage of the 
sensitivity-based BCU method is that it does not make 
the assumption that the new case will have roughly the 
same controlling u.e.p. as the base case. The main idea 
behind the sensitivity-based BCU method is that the values 
of the state variables at the fault clearing time, Xcl, (i.e., 
the initial state of the postfault system) and at the exit point, 
X,, (of the artificial, dimension-reduction system) can be 
quickly estimated when changes are made to the parameters 
of the base case to which the BCU method has already been 

I 

Relative Enror 1 CCT * 0.325 
-9.7 
-0.9 
-0.7 
-3.1 
-4.1 
-9.3 
-7.1 
-6.3 
-3.8 
-3.2 
-3.5 
-7.1 
-2.6 
-13.9 
-3.6 

0.336 
0.210 
0.262 
0.165 
0.271 
0.212 
0.205 
0.123 
0.230 
0.216 
0.272 
0.155 
0.228 
0.229 
0.272 

BCU Method 
0 320 
0.305 
0.212 
0 260 
0 160 
0 261 
0.190 
0 188 
0 103 
0.222 
0 209 
0 262 
0 145 
0 220 
0.198 
0.261 

Relative Error 
(%I 

-1.6 
-9.2 
-0.9 
-0.7 
-3.1 
-3.6 
-11.3 
-9.2 
-16.3 
-3.4 
-3.2 
-3.6 
-6.4 
-3.5 
-13.5 
-4.1 

applied. The controlling u.e.p. of the new case is then found 
following Steps 2-4 of the BCU method. 

IX. PRAC~CAL DEMONSTRATIONS 
This section summarizes some practical demonstrations 

of using direct methods and the BCU method for on-line 
transient stability assessments on two power systems. The 
role of the BCU method is to determine critical energy 
values for direct methods. The first demonstration to be 
discussed involves a prototype of an on-line transient 
stability assessment function which was tested on a 161- 
generator power system model at the Northern States Power 
Company (NSP) under the sponsorship of EPRI [52]. 
This application consists of two major components: a 
contingency screen program made up of a sequence of 
filters based on the BCU method and an on-line transient 
simulation program based on EPRI’ s Extended Transient 
and Midterm Stability Program (ETMSP). A framework 
for on-line dynamic contingency screening, selection, and 
ranking is presented in Fig. 23. 

In the prototype, a sequence of three contingency filters is 
applied to a list of contingencies. These three contingency 
filters are based on the three steps of the BCU method. The 
first filter, based on step one of the BCU method, is the 
fastest one. It uses the exit point on the stability boundary 
of the dimension-reduction system as an approximation for 
computing the energy margin. The second filter uses the 
minimum semigradient point, which is the second step of 
the BCU method. The third and most exact filter uses the 
controlling u.e.p. to compute the critical energy, which is 
the third step of the BCU method. Contingencies which 
are definitely stable are dropped from further analysis at 
each filter step. The computations for each contingency are 
cumulative through the three filters, avoiding the need to 
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Topological *-I& Analysis State Estimation 

Contingencies 
Topology 

Dynapic Contingency Screening and Selection 

+ c f definitely stable Stable 
contingencies First BCU filter 

uncertain contingencies 

uncertain contingencies 

definitely stable 
contingencies 

t 
I I 

A Ranked List of Potentially Harmful Contingencies 

Ranked 
(ETMSP) Stable 

Contingencies 

1 Ranked Unstable Contingencies I 

Fig. 23. 
ing, selection and ranking. 

A framework for on-line dynamic contingency screen- 

repeat computations. Cases identified as requiring further 
analysis are sent to the ETMSP for detailed time-domain 
assessments. Each filter is intended to be conservative 
and has been tested to be so (i.e., no unstable cases are 
misclassified as stable). The speed up achieved by using 
the BCU filters, developed by the Empros and Iowa State 
University, is more than six times faster than what would 
have been required to run a time-domain simulation on each 
contingency. 

The prototype has been integrated into the control center 
at NSP and is intended to allow increased MW transfers 
from the north. The program has undergone an evaluation 
by NSP engineers and operators and is expected to provide 
significant dollar savings when completed as a production 
program. 

Direct methods have also been demonstrated under EPRI 
sponsorship at the control center of Ontario Hydro [46]. 
This program is an on-line transfer limit calculation based 
on the BCU method. The program uses a time-domain 
simulation program supplied by Ontario Hydro to compute 
the exit point at which the projected fault-on trajectory 
crosses the stability boundary of the artificial, dimension- 
reduction system. From there, a minimum gradient point 
search and a calculation of the controlling u.e.p. are com- 
pleted. The results of the program include energy margins 
and sensitivities to power system parameters. This pro- 
gram has been integrated into the energy management 
system at Ontario Hydro and demonstrated to the in- 
dustry at a workshop in December 1993. The program 
was validated using off-line analysis with a simulation 
program. 

Previous EPRI-sponsored project results have shown 
that direct stability analysis is feasible for large power 
systems and it has several important applications. The EPRI 
software-DIRECT is a production-grade computer pack- 
age for direct stability analysis of large-scale power sys- 
tems. The latest version of DIRECT 4.0 uses the network- 
preserving BCU method to compute the critical energy. 

X. PERSPECTIVE 
Direct methods provide advantages which make them 

a good complement to the traditional time-domain sim- 
ulation approach. The current direction of development 
is to include direct methods within the simulation pro- 
grams themselves. For example, the energy margin and 
its sensitivity to certain power system parameters are an 
effective complement which can significantly reduce the 
number of simulations required to compute power transfer 
limits. In the future one should expect direct methods will 
become components of commercial grade transient stability 
simulation programs. Yet, direct methods will need some 
improvements to be used as a reliable complement to the 
traditional time-domain simulation approach. 

Direct methods have been based on the energy function 
theory for nonlinear autonomous systems. As such, there 
are several limitations on the applications of current direct 
methods; some of them are inherent to direct methods. 
These limitations may be classified as: the modeling limi- 
tation, the scenario limitation, the function limitation, and 
the accuracy limitation. Roughly speaking, the modeling 
limitation stems from the requirement of having an energy 
function for a given power system model, but not every 
power system model has an energy function associated 
with it [48], [20]. The scenario limitation comes from 
the requirement of the initial condition of the postfault 
system, which must be obtained using the time-domain 
approach and which may not be available beforehand. This 
is an inherent limitation in direct methods. The function 
limitation shows that in theory several of the current 
direct methods are only applicable to power system models 
described by pure differential equations and work only for 
first-swing transient stability analysis. 

A major limitation of direct methods in the past has been 
the simplicity of the models used in various direct method 
implementations in software programs. Recent work in 
this area has overcome much of this limitation. As to the 
function limitation stipulating that direct methods are only 
applicable to first swing instability, the direct method based 
on the controlling u.e.p. method has now been shown in this 
paper to provide useful information for identifying multi- 
swing unstable cases. Regarding the accuracy and reliability 
of direct methods, this limitation can be significantly im- 
proved by the work (BCU method) presented in this paper 
for network-preserving power system models. In practical 
applications, the controlling u.e.p. method, in conjunction 
with the BCU method, has shown promise as a tool for 
fast approximate contingency screening (thereby improving 
performance) and efficiently computing operating limits. 
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The scenario limitation of direct methods still needs to be 
solved. 

Given a power system stability model, the existence 
of an energy function and the ability to compute the 
controlling u.e.p. are essential for direct stability analy- 
sis of the underlying model. A systematic procedure of 
constructing energy functions for both network-reduction 
and network-preserving power system models is proposed 
in this paper. The BCU method extensively described 
in this paper is a systematic method of computing the 
controlling u.e.p. for large-scale power systems. It explores 
the special structure of the underlying model so as to define 
an artificial, dimension-reduction system which can capture 
all of the equilibrium points on the stability boundary of 
the underlying system. The BCU method then finds the 
controlling u.e.p. of the original system via the controlling 
u.e.p. of the dimension-reduction system which is much 
easier to find than that of the original system. Given a power 
system stability model with certain properties, there exists 
a corresponding version of the BCU method. The paper has 
demonstrated, through an exposition of the BCU method, 
that analytical results can sometimes lead to the develop- 
ment of reliable yet fast solution algorithms for solving 
problems. This further enhances the authors’ belief that 
solving practical problems efficiently can be accomplished 
through a thorough understanding of the underlying theory, 
in conjunction with exploring the features of the practical 
problem under study. 

This paper has also presented a general framework for 
the BCU method and developed a theoretical foundation 
for the BCU method for both the network-reduction and 
the network-preserving power system stability models. In 
addition to demonstrating its practical applications to on- 
line transient stability analysis, sufficient conditions for the 
BCU method to find the correct controlling u.e.p. relative 
to a given fault have also been derived. From a practical 
viewpoint, it would be usefulto know whether or not these 
sufficient conditions are always satisfied for practical large- 
scale power systems. There are certainly other avenues we 
may explore in order to improve the reliablity, accuracy, 
and computational speed of the BCU method. For instance, 
the issue of how to find an optimal artificial dimension- 
reduction system such that, in addition to satisfying the 
static and dynamic properties presented in Section VI-C, 
it also has a desired level of smoothness on its stability 
boundary or it offers much milder sufficient condition for 
the BCU method to work (e.g., it removes part of the 
requirement of the one-parameter transversality condition). 

A stability problem causing great concerns in power 
industry is the voltage-dip problem. This problem can be 
stated as follows: following a disturbance (event distur- 
bance or load disturbance), whether or not the underlying 
power system will settle down to an acceptable steady-state 
(in the context of frequency and voltage) and during the 
transient, the system voltage will not dip to un-acceptable 
values (see Fig. 24). The problem is particularly significant 
in the current operating condition of the North America’s 
interconnected power network whose systems are now 

~ P z f a u l t  trajectory 

(Voltage Dip) 

T 
Fig. 24. Following a disturbance (event disturbance or load dis- 
turbance), whether or not the underlying power system will settle 
down to an acceptable steady-state and during the transient, the 
system voltage will not dip to un-acceptable values 

operated very close to their security limits. Mathematically, 
the voltage dip problem can be stated 
a set of nonlinear equations with an 
determine whether or not the ensuing trajectories will 
settle down to a desired steady-state without resort to 
explicit numerical integrations of a whole set of nonlinear 
equations; furthermore, one wants to know whether during 
the transient, part of the state variables (related to voltage 
magnitudes at load buses) drop below a certain value, say 
0.9 p.u. Alternatively, from a nonlinear system viewpoint, 
the problem can be stated in the following way: given a set 
of nonlinear equations with an initial condition, determine 
1) whether or not the initial condition lies inside the stability 
region (region of attraction) of a desired stable equilibrium 
point and, 2) whether or not the projected system trajectory 
on the subspace spanned by the voltage magnitudes at load 
buses does not fall below a certain value. Obviously, the 
voltage-dip problem is very unique and challenging. It is 
imperative to extend the functionality of direct methods for 
solving the voltage-dip problems. 

Further improvements in direct methods’ limited mod- 
eling capability are desirable, especially to include an 
appropriate dynamic load modeling in the model. It is well 
known that inaccurate load modeling can lead to a power 
system operating in modes that result in actual system 
collapse or separation. Accurate load models capturing 
load behaviors during dynamics are therefore necessary 
for more precise calculations of power system controls 
and stability limits. Most of the load models used in 
direct methods are limited to the so-called static load 
models, where loads are represented as constant impedance, 
constant current, constant MVA, or some combinations of 
these three. These static load models may not adequately 
capture load behaviors during transient. Hence, it may prove 
rewarding to show that direct methods can be extended 
to structure-preserving stability models with sufficiently 
detailed load models (more accurate static load models or 
even adequate dynamic load models) and generator models 
with adequate nonlinear representations. 

In recent years, practical experience has shown that a 
power system may become unstable ten to thirty seconds 
after a disturbance, even if it is stable in transient states. The 
power system is short-term stable and midterm unstable. 
One mechanism that may contribute to this phenomenon is 
that the initial state of the postfault system lies inside the 
stability region of the short-term power system model but 

1526 PROCEEDINGS OF THE IEEE, VOL 83, NO 11, NOVEMBER 1995 



lies outside the stability region of the midterm power system 
model [15]. This points out the necessity of extending 
direct methods for midterm power system models. In this 
regard, it may prove useful to develop general functions 
(more general than the energy function) such that any 
nonlinear system having such a function has the following 
dynamic properties: 1) the w-limit set of any of its bounded 
trajectories consists only of equilibrium points and limit 
cycles, and 2) the function is nonincreasing along its 
trajectories. Such a development will allow one to apply 
direct methods to detailed power system models whose 
stability boundaries contain equilibrium points and limit 
cycles. An example of such a model can be found in [75]. 

Due to the upcoming practice of power wheeling and 
open access to transmission systems, the utilities are more 
often concerned with determining the limiting power trans- 
fer across a boundary or the limits on the real power 
generation sent out of a power station. This concern coupled 
with the need to share full utilization of transmission among 
utilities for economic transfer have made the problem 
associated with transient-stability constrained transfer lim- 
its a pressing issue. The determination of power transfer 
limits becomes much more important than ever. Direct 
methods should be capable of providing such information 
more timely and readily than the conventional time-domain 
simulation approach. Extension of direct methods in this 
direction will be welcome. 

The major breakthroughs presented in this paper include 
a solid mathematical foundation for direct methods, de- 
velopment of a systematical procedure for constructing 
energy functions for both network-reduction and network- 
preserving power system models, development of BCU 
methods for computing the controlling u.e.p. for network- 
preserving models and practical demonstrations of on-line 
stability assessments based on the controlling u.e.p. method 
in conjunction with the BCU method. The remaining hur- 
dles include the resolution of detailed modeling involving 
high-level nonlinearity limitations in loads and generators 
and the removal of the scenario limitation. 
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