UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 6 Prof. Steven Errede
LECTURE NOTES 6

ELECTROMAGNETIC WAVES IN MATTER

Electromagnetic Wave Propagation in Linear Media

We now consider EM wave propagation inside matter, but only in regions where there are NO
free charges and/or free currents (e.g. the medium is an insulator/non-conductor).

For this situation, Maxwell’s equations become:

1) |VeD(7,t)=0 2) |VeB(7,t)=0

3) |VxE(F.t)=~ 4y [VxH (7,1)=2)

The medium in which EM waves propagate is assumed to be linear, homogeneous and
isotropic, thus the following relations are valid in this medium:

D(F,t)=¢E(7,t)| and ﬁ(?,t)=

B(#,t)

1
7]

Where:
g = electric permittivity of the medium.

e=¢,(1+2,), x. = electric susceptibility of the medium.

M = magnetic permeability of the medium.

M= (1 + X, ) , X, =magnetic susceptibility of the medium.

g,= electric permittivity of free space = 8.85 x 107"? Farads/m.

M, = magnetic permeability of free space = 4 x 10”7 Henrys/m.

Thus, Maxwell’s equations for the E and B fields inside this linear, homogeneous and isotropic
non-conducting medium become:

1) |VeE(#,t)=0 2) |V+B(7,t)=0

OB(7,1)
ot

OE (7,t)

<

3) |VxE(F,t)=- 4) |VxB(F,t)= ue

Note that the above four relations are (almost) identical to those for EM waves in free space
{cf with eqns. 1) - 4) on page 1 of P436 Lect. Notes 5}. We simply replace the macroscopic EM

parameters associated with the vacuum {¢,, 1, } with those associated with the linear,

homogeneous and isotropic medium {&, z} .
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Vorop = \/gl_ﬂ =c|=3x10"m/s, the E and B fields in vacuum obey the wave equation:
L O’E(F,t) 1 O°E(F.t o 0B(7,t) 1 &’B(F,t
r-en T LG o P LD

In a linear /homogeneous/isotropic medium, the speed of propagation of EM waves is:

prop

prop

Vop = ﬁ and the E and B fields in the medium obey the following wave equation:
L OE(F,t) 1 OE(F.t o oB(7,t) 1 O°B(F.t
L 2 L 2] P L N R 2

For linear / homogeneous / isotropic media:

e=Ke,=(1+7,)¢, K== (1+ g, ) =relative electric permittivity
go

u=K u, = (1 + 7, ) U, K, = . (1 + ;(m) = relative magnetic permeability
H,

Vo= L _ ! _ 1 L1 clie. |V ! c

i @ \/KegOKmﬂU \/KeKr” \/goﬂo \/KeKm - e KeKm
Now if:
K, =[iJ=(1+;{e)21 and |K, =[ﬁj=(1+;(m)21 orif: [KK >1
8() /Ll()

{true for a wide variety of common/everyday materials — gases, liquids & solids}

JKK, >1

Then:

Note also that since

1 , 1
thus: <1l = [V, = c<c
KeKm KeKm
K, =% land K, - £
80 ILIO

are dimensionless quantities, then so is

1
K K

e

m

We can now define the index of refraction {n.b. a dimensionless quantity} of the linear /
homogeneous / isotropic medium as:

Thus, for linear / homogeneous / isotropic media:

2

n

e

KK, = |-
80#0

v

!’

pmp:cn(Sc

)
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because {usually} .
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n.b. We will find out {soon!} that & and g are in fact not constants, instead they are
{very often} frequency-dependent quantities, i.e. |& = e(a)) and |1 = ,u(a)) , .

thus K=K (0)= 2D 11 (0) and K, = K (0) =24 21 7, (0)
g, H,
H : 1 1
ence =K, - ,Uo \/ +7.(@))(1+ 7., (a)))

For now, we will ignore/neglect any/all frequency-dependent effects, for simplicity, i.e.

C
Vi = | = constant n=.kk, = " \/ 1+ 7,)(1+ 7,)| = constant

Now for many (but not all) linear/homogeneous/isotropic materials: | = z, (1 + ;(m) =u,

(e.g. true for many paramagnetic and diamagnetic-type materials) = | ;(m| ~ 19(10*8) ~0

Thus: |K =£=(1+;(m):1 = nz\/z and v ===

m 1, prop \/E

e The instantaneous EM energy density associated with a linear/homogeneous/isotropic material:

gy (721) = ;[gEz( e )J=%(E(F,t).f)(?,t)JrE(?,z)f[(?,t)) (J"n‘iﬁesj
with [D(7.1) = ¢E(7.1)] and ﬁ(?,t)z%ﬁ(?,t).

e The instantaneous Poynting’s vector associated with a linear/homogeneous/isotropic material:

S‘(F,t):i(E(F,t)xE(F,t)):(E(?,t)xﬁ(F,t) (Waﬁtsj with | £ (7.6) =— B (7.t)

SN—"

1
m H

e For monochromatic (i.e. sinusoidal, single frequency) plane EM waves propagating in a

linear/homogeneous/isotropic medium, E and B satisfy/obey the wave equation:

~ O*E (¥t 1 O*E(F.t L OB (7.t | 0°B(F.t
VZE(I’,f):gﬂ 852 ): — 852 ) VZB(r,t):gﬂ (at ): v'% 852 )

prop prop

E and B-field solutions for a linearly polarized plane EM wave with polarization vector
Alk propagating in this linear/homogeneous/isotropic medium are of the form:

E(7,t)=E, cos(E-?—wt+5)ﬁ and |B(F,t)=B, cos(EoF—wt+5)(l€xﬁ)
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= 1

With: |B(7,t)=——Fkx E(7,t)|, thus: \B , ie.|B, ='LE0
v

prop prop vpl‘()p

And: v, =fA= % with angular frequency and wavenumber |k = 2% )

e The intensity of an EM wave propagating in a linear/homogeneous/isotropic medium is:

, - 1, 1 - - Watts
> =V o <uEM (r,l‘)> = Evpl‘ongj (r) = E(Ej gEa2 (r) = (Ej gEozm (r) ( 5 j

n n m

E | The RMS intensity of the EM wave is:

, - 1, . 1fc ~ Watts
V=l (r,t)>=5vpmp8E§m(r)zg(;ngfm(r) ( v j
i.e.|1,, (F)=41(7)], |(

e The instantaneous linear momentum density associated with an EM wave propagating in
a linear/homogeneous/isotropic medium is:

<
—
m:
<
~—~~
=
~
N—
-~
Il
=
—_
<
y
<
—~
~
~
N—
~

, efc.

Do (7.1) = a3 (7.1) == (7t) = X s (B (7ot < B(7.0)) = o (B (7o)< B(7.0) ( ke j

m?-sec

e The instantaneous angular momentum density associated with an EM wave propagating
in a linear/homogeneous/isotropic medium is:
kg
m-sec

e And of course, an EM wave propagating in this medium has:

—

Vo (F)=F %y, (Fot) =€ Fx(E(F,t)xE(?,t)

S—"

Total instantaneous EM energy: Uy (t) = IV Uy, (F, t) dr (Joules)
Total instantaneous linear momentum: | py,, (1) = J. Oy (Ft)dr (kg—mj
v sec
oU _
Instantaneous EM Power: P, (1)= U (1) = —4} S(7,t)«da| (Watts)
o so

n.b. through a closed surface

v S€C

2
Total instantaneous angular momentum: |£,,, (7) = .[ o (7 1)dz (kg—m J
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QUESTION:

What happens when an EM wave passes from one linear/homogeneous/isotropic medium into
another (e.g. vacuum — gas; air — water; water — oil; glass — plastic; etc...?

As we saw in the case of mechanical transverse traveling waves propagating on the taught
string which had two different mass-per-unit-lengths ( 4, and yz) , we anticipate that EM wave

reflection and wave transmission phenomena will also occur at the interface/boundary between
two different linear/homogeneous/isotropic media.

However, in the EM wave situation, what actually happens at the boundary/interface between
two linear/homogeneous/isotropic media depends on the electro-dynamical versions of the

boundary conditions on the £ and B -fields at that interface {as we derived last semester in P435
from the integral form of Maxwell’s equations}:

BC 1) The NORMAL component of D is continuous across the interface
(true only when there are no free surface charges present @ the interface):

Dy (7,t)

= |gE; (F.1)

=¢&,E; (7,1)

since 5(F,t): cE (7.t)

, =D, (7,t)

int

intf’ intf’ intf

BC 2) The TANGENTIAL component of E is {always} continuous across the interface:

£ (7)), = EL(7.0)

int)

intf

BC 3) The NORMAL component of B is {always} continuous across the interface:

B (7.)

=B ()

intf intf

BC 4) The TANGENTIAL component of H is continuous across the interface
(true only when there are no free surface currents flowing @ the interface):

intf - H|2| (F,t)

1 Ll since |H (F,t) =

= | LBl (m0), =B (7)

Hl” (F,t) intf /u intf - lu
1 2

B(7,t)

1
intf #

Note {again} that the above boundary condition relations were all obtained from the integral
form(s) of Maxwell’s equations.
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Reflection & Transmission of Linear Polarized Plane EM Waves at Normal Incidence
at a Boundary Between Two Linear / Homogeneous / Isotropic Media

As shown in the figure below, a boundary between two linear / homogeneous / isotropic
media lies in x-y plane, with a monochromatic plane EM wave of frequency @ propagating in the
+Z -direction, which is linearly polarized in +x -direction. Thus this EM wave approaches the
boundary from the left and is at normal incidence to boundary:

N1

e

é‘:fa\.&‘i

‘\5;

e
B'tmns

L — IMTI:’RB*CE/ Boun ey

Ted %= TPLANE

We write down the complex amplitudes for the £ and B -fields:

Incident EM plane wave (in medium 1):

Propagates in the +Z -direction (i.e. /2 = +k +2), with polarization |71, = +X
E, (z,t)=E, " with: |k, ‘k ‘ 27/ = @fv,
= 1~ = 7 - . A ~ o "
B, (zt)=—k, xE, (z.1)=—E, """ since: |k, X7, = +Zx %=+
v v o
Reflected EM plane wave (in medium 1):
Propagates in the —Z -direction (i.e. k,, = —k, =~Z), with polarization |7,,, =+X
=, = i(—kz—wt) ~ . 7
Ereﬂ (Z’t) = Eo,.eﬂe( l )x Wlth: kreﬂ = kreﬂ 27[//,{1 a)/vl
By (2, t)zlA x (z f):—lE 5 since: |k, xA = —ExE=—)
refl v refl refl s v Opept e refl refl y
1 1

Transmitted EM plane wave (in medium 2):

k

Propagates in the +Z -direction (i.e. k,,, =+k, =+Z), with polarization |, =+X
- — I i(kyz=oot) » the — — _r = —
trans (Z’ t) - Eo,,me x| with: ktrans | Morans | T k2 - ‘kZ ‘ - 27[//12 - C!)/Vz
~ 1 ~ ~ ~ ik ~
_ _ zz—wt) A . A _ ~ A
Btrans (Z’ t) = Kirans X Liyans (Z’ t) - v_Eo“.me Y since ktrans trans TIXX=+Y
2 2

6
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Note that {here, in this situation} the E -field / polarization vectors are all oriented in the

A

same direction, i.e. |A, =#,, =#,, =+%| orequivalently: |E, (¥,t) || E,,(7.t) || E,,, (F.1)].

in trans

At the interface / boundary between the two linear / homogeneous / isotropic media,
i.e. at z=0 {in the x-y plane} the boundary conditions 1) — 4) must be satisfied for the total

E and B -fields immediately present on either side of the interface between the two media:

BC 1) Normal D continuous: & E;

sz

_ 1
€2E2TI

(n.b. L refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous:  |E! =E!

lTaz 2Tat

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)

BC 3) Normal B continuous: B =By | (Ltox-yboundary,i.e.inthe +Z direction)
S ) 1 1 )
BC 4) Tangential H continuous: | —B/ =—B, | (|| tox-y boundary, i.e. in x-y plane)
I

For plane EM waves at normal incidence on the boundary at z = 0 lying in the x-y plane, note
that no components of E or B (incident, reflected or transmitted waves) are allowed to be along

the +2 propagation direction(s) because of the E and B -field transversality requirement(s) on the
propagation of EM waves {arising from constraints imposed by Maxwell’s equations}.

Thus, because of this, we see that BC 1) and BC 3) impose no restrictions {here} on such EM
waves since: { E;, =E; =0; E; =E, =0}and {B,_ =B =0;B, =B, =0}

= The only restrictions on plane EM waves propagating with normal incidence on the boundary
at z = 0 {lying in the x-y plane} are imposed by BC 2) and BC 4).

. Atz=0in medium 1) (i.e. z <0) we must have:

1z 1 = 1z
_BIHT, (z =0,t)=—28,, (z 0,t)+— el (z =0 t)
o H H
While at z= 0 in medium 2) (i.e. z > 0) we must have
E| (:=0.)=E,,, (z=0.1) and
1 = 1 =
_BZT, (Z = O’t) = Dyuns (Z :0 t)
Hy Hy
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 7
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En

2Tul

EH
th

u 2:0:

z=0

=
E inc

or:

—

(z=0,6)+E,, (z=0,6)= E,,,, (z=0,¢)|

Then BC 4) (Tangential H is continuous @ z = 0) requires that:

1 = 1 = 1 = 1 = 1 3

_BH z= :_B” z= or: _Binc Z:O’t +_Bre Z:()’t __Brans z O’t
| 1To/ 0 5 2Tol 0 ﬂl ( ) ﬂl ﬂ( ) qu 2 . ( )
Inserting the explicit expressions for the complex E and B fields
137 (z,t)=E, "% ﬁm (z,1) = 1 c X :W (z.6)=—E, "5
mc vl vl e
Ereﬂ (Z,t) = Eureﬂ i(~kjz—ot) » ]}reﬂ (Z, t) = Vl]éreﬂ X :rgfl (Z’ t) = _VLEOIW i(~kz—wt) A
1 1
EWWIS (Z’ t) = EO ei(k2szt)£ gtrans (Z’t) = _kAtrans x :trans (Z’t) = Eo i(kZZ_M) %
trans vz vz trans

into the above boundary condition relations, these equations become:

BC 2) (Tangential E continuous @ z = 0):

BC 4) (Tangential H continuous @ z = 0):

Eofnc M + E"mﬂ /‘ﬂf/ B E

/67»,1{

refl

mvy HVY

,th/

1 ~
HV,

Cancelling the common e ™ factors on the LHS & RHS of above equations, we have at z=0
{n.b. everywhere in the x-y plane, which must be independent of/valid for any time ¢}:

BC 2) (Tangential E continuous @ z=0): |E,

BC 4) (Tangential H continuous @ z=0):

+E =

inc refl

Otrans

1 ;
HVY

g

Oreft
HV

1
HyV,

inc

Otrans

Assuming that {x; and 1} and {v; and v»} are known / given for the two media, we have two

equations {from BC 2) and BC 4)} and three unknowns {EO[_M , Eu,e,,

JE

Otrans

}

— Solve above equations simultaneously for {Eo , and Eo, } in terms of / scaled to Eo .

First (for convenience) let us define:

Then BC 4) (Tangential H continuous @ z = 0) relation becomes:

J7AY
ﬂE 171

HyV,

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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BC 2) (Tangential E continuous @ z = 0): E +

1§
1§

Oinc Orept Otrans
BC 4) (Tangential H continuous @ z=0): |E, —E, L= BE, | with |f= A%
inc refl trans ,U2 V2
. = = ~ 2 )=
Add BC 2) and BC 4) relations: 2E, =(1+B)E, | = |E, = ﬁj E, | (2+4)
mnc trans trans + mc

_ _ . 1-8) -
Subtract (BC 2) — BC 4)) relations: |2E, =(1-p)E, | = E, = (—ﬂj E, |(2-4)

Insert the result of eqn. (2+4) into eqn. (2—4): E%ﬂ = (%} (%] Eo,-m - [%j Eom

E =2 |&
trans 1 + ﬂ inc

c & le
L and: |v, =—|, |v, =—| where: |n, = | and n, = L tar )
lu2V2 nl n2 SOIUO goluo

_ MV /‘1(‘7/”1) _ M ﬂl\jgzﬂz/g H, ,U1 \lgzﬂz 52,111

Now:

Now if the two media are both paramagnetic and/or diamagnetic, such that

ie.

Then:

2 7 )
o 1+

and

2

y7nY
ﬂE 171

Y, H, (C/nz

Ly 1h)\€ 1/"1/‘9 H,

<1

Kom,

=, (1+ 7, )~ 4,

and:

1=, (14 2, ) = 1,

{very common for many (but not all) non-conducting linear/homogeneous/isotropic media}

n,

Then: (£ = A (ij = (—
HV, v, n

<1

/’{ml‘z

) for |1 = 1, = p,| or

1+p

N
~ 1— 1—(v, /v - v.—v | ~ n.b. these relations are identical to
E, = ( 'B) = (1(—1/2)] E, = (#] E, the those we obtained for traveling

rej nc + inc inc

(n/v:)

Vv, tV,

> transverse waves on a taught string
with g4 =m, /L, and p1, =m, /L,

Eo - L Eo. - # E‘o = 2v, Eo, with a {massless} knot atz =0
e 1+ B) 7 1+ (v/v,) ) " v+ '"“/ {see p. 16, P436 Lect. Notes 4}!1!

We can alternatively express these relations in terms of the indices of refraction n, & n,:

~ n—n ~
EO = : 2 ED i
refl nl + n2 inc

~ 2n ~
and [E, = — |E,
trans nl + nz inc

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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o0 = phase angle (in radians) defined at the zero of time, = 0

Otrans

Then for the purely real amplitudes (£, , E, B, ) these relations become:

%

p [ for|p =p =4,
Monochromatic plane -4 % v —p —n ’
EM wave at normal o = (—] E, = [#] E, = ( L2 j E, ||B= [hJ
incidence on a y 1+p vy TV n o+, Vs
boundary between two 2 2v, 2n,
linear / homogeneous / s m E, = oty E, = et E,
isotropic media g ANT N 1"
for |y = 41, = p,

For a monochromatic plane EM wave at normal incidence on a boundary between two linear /
homogeneous / isotropic media, with |14, = 1, = p | note the following points:

o Ifv,>v (ie. n,<n) {e.g medium 1) = glass = medium 2) = air}:

v, =, n —n, E, is precisely in-phase with
EO ofl = E()‘ . = EO . :
v, +V, n, +n, E, because (v2 - vl) >0.
o Ifv,<v (ie n,>n) {e.g medium 1)=air = medium 2) = glass}:
>SN 2 71 g
. o .
(mv)y _(mem), E,  is 180" out-of-phase with
o |\ powy | o |\ o | O = E, because (v,—v,)<0
2N 17" Ope —————m \72 1 )
Ve —v n—n The minus sign indicates a 180°
: _ 2 1 _ 1 2 . .
Le. o = |7 |E0,. =~ |7 ——1£.,.| = | phase shift occurs upon reflection
v, +v, n,+n, .
for v, <v, (i.e. n, >mn ) !

E

Otrans

is always in-phase with £, for all possible v, & v, (n, &n,) because:

s

2

E, =—“|E =
trans 1 + ﬂ inc

2v,
v+

2n,
n, +n,

E

Oinc

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11

Fall Semester, 2011

What fraction of the incident EM wave energy is reflected?

What fraction of the incident EM wave energy is transmitted?

In a given linear/homogeneous/isotropic medium with

The time-averaged energy density in the EM wave is:

The time-averaged Poynting’s vector is:

Lect. Notes 6

Prof. Steven

Errede

The intensity (aka irradiance) of the EM wave is:

1

1(7) = (|5 (7ot = vt (7o) = v(EgEj (;)] - Lol (7) =2 (7)

(

v= %c:c/n

&u
(e ()= 58 (7) =08 (7) [ 225
S(7 _l*r < B(7 Watts
(S0 = E )< B () [ )

Watts

=

Note that the three Poynting’s vectors associated with this problem are such that S, _|| (+2),

and S

trans

1(+2).

greﬂ I (_2)

For a monochromatic plane EM wave at normal incidence on a boundary between two linear /

homogeneous / isotropic media, with |4 = @, = p |:
(=8 L[nvp (Mg | || A%
o \1+B) " v, 4y, ) T \m+n, ) H,V,
E - 2 E = 2v, E - 2n, E
trans 1+8) ™ \v+y ) ™ n+n, ) "

Take the ratios (EW /E,,. ) and (Eom /E, ) , then square them:

E, . ’ _ 1-p ’ (v ’ _[nm-n ’ ond E, 2 _ 2 Y [ 2y ’ _ 2n, ’
E, 1+ v, +V, n, +n, E, 1+ 4 v, +V, n +n,
Define the reflection coefficient as:
(1, Bal) sl Ga) () e () EL ()
R (7") = - = = = inc (= = inc (= = 1 2 e = 2 e
Iinc (7") <Sinc (’_’:,t)‘> Vl <MEM (V,t)> <HEM (V,t)> 581V1Eo, (I") b:o,,,C (I")

Define the transmission coefficient as:

vans (F)) _ gzszz

Otrans (r )

inc (

7))

evE, (7)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary
between two linear / homogeneous / isotropic media, with |z, = 1, = p |:

Ly ()] (B ()]
a7 o,
Reflection coefficient: R(F)= ( e 3 j = { = J

[inc ( Eom (’_;)
2
1. (7 E (7
Transmission coefficient: T (7 ) = { ;mm ((;))J = ( 22:2 ]( E ((17 ))J
inc 171 Ojne
But:
-\ \2 2 2
Eoﬂ(r) _ - 2: VTV (T &
E, (F) 1+ 4 v, +v, n,+n,
E, (’7) 2_ 2 2~ 2v, ’ 2n, ’
E, (7)) U+p) (v,+y n +n,
Thus:

Reflection coefficient: R(7)=

2 2 2
1- || _|hTh b= Y,
1+ 4 v, +V, n +n, J7A'A
2 Y 2, Y R
[ &V £,V v £,V n
Transmission coefficient: T(F)E( : zj[ ] =2 2[ : j = 2[ ] ]

ev, \1+ /0 eV, v, +V, gv, \ n +n,
E MLV, 2__ - — i
Vz_glu 352:“2_‘}2
&,V 24 2
Now: #=% but: | |
&V 1H
o v = = &M =5
H s H, Vi

gV 1 y L,V T Ly, &V
171 (z.vl ]/#2 ﬂlvl 272 272 171

/_\for B ==,

T(;):(‘QZVZ](LJQ:ﬂ( 2 I: 48 j dvy  _ Ann,
ev, \1+p 1+ 4 (1+ﬂ)2 (v2+v1)2 (111+r12)2

2

R(F)er(r)2B) 48 () +4f _1-28+F" +4p _1+2+5 _(1+4)

2

(1+8) (1+8)Y  (1+8) (1+BY (1+8)7  (1+8)

- |R(7)+T(7)=1| = EM energy is conserved at the interface/boundary between two L/H/I

media in this process !!!

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary
between two linear / homogeneous / isotropic media, with |z, = 1, = p |:

AT

= 7 2 B 2 v 2 2
Reflection cocfficient:  |R(7) I’q’(r)}{E%ﬂ( )J _(1-5) :[vz—vlj :(nl—ﬂ

1. (77) E()m (77) (1+,3)2 v, + v, n +n,
2
1 F E 7
Transmission coefficient: |7 (F)E L(f)jz Yij [ S (f)J = 45 5 = vy, > = 4, >
L. (F) E, () (1+5) T(V2+V1) (m +n,)
R(F)+T(7)=1| and p=t=5n L,ulz,uzz,uo
Y, &V

EXAMPLE:

A monochromatic plane EM wave is incident on an air-glass interface at normal incidence:
n=n, = l.OJ

n,=n, =1.5

Indices of refraction for air and glass (n.h. both are non-magnetic materials) (
— "glass

2 2 2 2
- 1.0-1.5 —0.5 1 1
Reflection coefficient: (R =| 22 | = =|—1| =| —=| ==—=0.04=4%
1.0+1.5 2.5 5) 25

n, +n2

dnm, 41015 60 _ 60
(m+n) (1.0+15) (25) 625
|[R+T=0.04+0.96=1.00]

=0.96 =96%

Transmission coefficient: |7 =

QUESTION: Is EM linear momentum conserved in this process?

The time-averaged linear momentum densities associated with the 3 EM waves are:

e NG R e ACDIE
1 1
(65 ()=~ a2, (7) 2= {ugt ()2
1 1
(i (7.0)) = +VLGgE (F)jé g (7))

In order that EM linear momentum be conserved at the interface, we must have the time-
averaged initial M linear momentum at the interface = the time-averaged final EM linear

o=( Bl (7.1))

{n.b. we (again) use time-averages here, in order to make direct comparisons with experimental
measurements of these quantities}.

momentum at the interface, i.e. < it (F,t)> o -

© Professor Steven Errede, Department of Physics, University of [llinois at Urbana-Champaign, Illinois 13
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Now: <13(F,t)>:jv<g%(i7,t)>dr:<g5(77,t)> * Volume, AV | where the volume associated with
the EM wave over the time interval At is |[AV =/(A, =vAiA,
— l=vAt >

Incident cross-sectional area, A4
plane EM wave = z4/ )
Thus: (B, (F.1)) = (@0 (Fo0)) AV, = (@i (7)) mAtA,

(Bii (7o) = (@ (F0) AV, = (@ (F0))mAeA,

(P (7.1)) = (9" (70)) AV, = (@ (Fu1))VaMA,
Then: |( B (7)) .co=( D" (F.0))] oo
= [ (7))o = (Bl (Fot))] o + (B (721))] o
Thus: |(@ff (7.0)) AV, |.o = (@50 (Fo0) AV, o H(@00" (Fo1)) AV, ] g
or: (@ (FOWAA, | =@ (F))MALA, |y + (@ (7, )>
ier v (@ (Fot))] oo = (@50 (Fo0)) o+, (800 (7)) .
[ )= (L )

(b5 ()=~ (S22, () ):

(o () =+ 32 ()
s | fez )] ¥ feen )] <[ fer )

1 2=0 ! ‘ =0 /2 A 2=0
o e (B (F)+E;, (7)) =e Bl (7

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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Divide this relation on both sides by

1+ Eoreﬂ (f) 2 8 V2 Eom,,,x (’_;) 2
E,. (’7) 51"1 E, (’7)
G =)
Thus: [1+R(7)= (ljr(f) But: |R(F)+T(F)=1| or:|R(F)=1-T(F)
VZ
1+(1—T(F)):[:—jT(F) or 2—T(7):[:—le(F) or 2:{”[:_;}%(;)
o\ 2 A
Thus: T(r)_[1+(vl/v2)]_(vl+v2)
_ 4B Avy 2v, _ MV _ &Y,
But: T(r)_(1+ﬂ)2 _(v2+v] )2 (vl+v2) {from above} !!! where ﬂ_ﬂzvz o

= Linear momentum carried by EM wave is NOT conserved in/at interface between two linear
/ homogeneous / isotropic media !!! Why???? How???

The physical reason for this is because {again} we’re not “counting all of the beans” here...

The EM waves that are present in each of the linear / homogeneous / isotropic media
(i.e. the EM waves that exist in medium 1 and medium 2) polarize the atoms/molecules in that
medium and create an additional co-traveling momentum in that medium — which results from
the {mechanical} momentum of the electrons associated with the atomic/molecular induced
electric dipole moments that arise in response to the induced polarization associated with the
incident/reflected/transmitted traveling EM waves! Please see/read P436 Lect. Notes 7.5....

Thus, overall linear momentum is conserved when the EM wave and its co-traveling electron /
atom / molecule induced electric dipole mechanical momentum associated with the medium is
included

In medium 1:

In medium 1:

= (B (7.0)) (B, (70))

(55 (7)) = (55 () +{

ﬁ:fja,llipole (F’ t)>

(Pra (Fa0)) = (B (7o) +( B, (7))

It is curious that the time-averaged energy in EM waves (alone) is conserved, whereas time-
averaged EM field linear momentum is not conserved at the interface of two L/H/I media.
Microscopically, note that a photon’s energy E, = Af is unchanged in such a medium, whereas a

In medium 2:

photon’s momentum p, = h/ 4, is changed. Since macroscopic EM field linear momentum is not

conserved at the interface of two L/H/I media, neither will EM field angular momentum / EM
Cong (Fot) =Fx @, (F,1)].

field angular momentum density be conserved {only}, since

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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For further details on this subject, see/read:

1.) J.D. Jackson, Classical Electrodynamics, p. 262, 3" Ed. Wiley, NY
2.) R.E. Peierls, Proc. Roy. Soc. London 347, p. 475 (1976).

3.) R.E. Peierls, Proc. Roy. Soc. London 355, p. 141 (1971).

4.) R. Loudon, L. Allen and D.F. Nelson, Phys. Rev. E55, p. 1071 (1997).

Arbitrary/Generalized Polarization States of a Plane EM Wauve;
Elliptical, Circular and Linear Polarization

As we saw in the previous discussion, a monochromatic, linearly-polarized plane EM wave
e.g. propagating in the +Z direction in medium 1, which is also at normal incidence to a
boundary between two linear / homogenous / isotropic media {located as before at z = 0 in the x-
y plane} has the following mathematical forms {for linear polarization in the +x direction} for

the complex E and B fields:

Incident monochromatic, linearly-polarized EM plane wave (in medium 1):

Propagates in the +Z -direction (i.e. lgim, = +l€l =+2), with linear polarization |7, = +X

E,LP(Z,Z‘):EO yei(klz_wt))% with: |k = ];im.

mc mc

:klz‘l;l

=27/4 =w/v,| and: |E, =E, €°

Ul nc

~ 1 ~ ~ 1 ~ o ~
LP _ LP _ i(kjz—ot) ~ . . A AL A
Binc (Z’t)__kinchinc (Z’t)__Eme l y Simce: kincxninc _+Z><x_+y

Vi Vi

In general, this monochromatic, linearly-polarized EM plane wave incident on the boundary
between two linear / homogenous / isotropic media can be polarized in any direction in the x-y
plane. More generally then, we can write the polarization vector 7, as:

. y
n,. =cos@x+singy| where 0< <27 A

_________ ﬁinc
@= 0°: = LPin +x -direction smgp{ ? \ i X
@ =90°: = LP in +y -direction —
cos @

Thus, more generally, we can write the complex E and B fields for the incident monochromatic,
but arbitrarily linearly-polarized EM plane wave (in medium 1) as:

Incident monochromatic, arbitrarily linearly-polarized EM plane wave (in medium 1):
+Z propagation direction (i.e. k,, =+k, =+Z), arbitrary linear polarization |7

= COS X +Sin @y

inc

EL (z.t)=E, ehp = Eul_me"(k‘zf“”) [cos @z +sinp)]

]ginc =k :‘lgl

=27/4 =w/v,| and: |E, =E, €°

[

with: |k, =

mc

B (20)= Lk x B (20) =T B, &% (k, x4,

Vi Vi

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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But: |k, x A, =+2x[cos p% +sin pP] = cos p(£x &) +sing(2x ) = +cos pj —sin pi

Very Useful Table:

XXy=+zZ PXX=—Z
yxz=+x | (Exyp=-X%
@ XXZ=—)

Thus, the complex B -field can be equivalently written as:

1E ) (k X, ) 1z ei(k‘zfm)[cosgo)?—singoﬁ]

BY () =k < EL (2.1) =
Y "

Vi Vi

inc

As always, the physical E and B fields associated with this EM wave are of the form:

EfT(z,t)= Re{ELP( z, )} :Re{EOim‘e"(k‘Z_”’) [cos px +sin goj/]}, but: £, =E, €°

= Re{Eo,m‘ eiéei(klz—a)t) [COS ¢)% +sin (0_)/\/]} =Re {E"nm ei(klz—wt+5) [COS ¢)’(‘: +sin (0)3]}
=E, Re {e"(k‘zf’””‘s) } [cos px +sin )]

=E, Re{cos(klz —ot+6)+isin(kz -t + 5)}[005 px+singy|

=E, cos(kz—at+5)[cospx +sinpy]

BLP(Z t) Re{BLP (Z t)} —ik xElﬁ‘f( )—lEav cos(klz—a)t—i-é‘)(lgmc xﬁim,)
v

inc inc inc v
1 1

= lEO, cos(k,z— ot + 5)[cos pp —sin px|
g,

Now, for a circularly-polarized monochromatic plane EM wave, propagating in the
+z direction in medium 1 incident on the boundary between two linear / homogenous / isotropic

media at normal incidence, the physical E and B fields can be written mathematically as follows:

A

k, =+k =+zZ

E (z,t)=E, [cos (kz—ot+8) X tsin(kz—wt+5) y] with

inc Oinc

B (z, ):Lk xEf (z,t)=+E, {éx[cos kz—ot+6)%+sin(kz cot—i—é)j/]}

mc % mnc mc

=+E, [cos (kz—at+6)(2xx)*sin(kz—wt+8)(2x )]
—1E [cos kz— a)t+5) 1n(kz ot+06 x]

Note that the + signs between the 90° out-of-phase % and § components for £ (and the
corresponding F signs for B ) denote the handedness of the circularly polarized EM wave

— i.e. whether it is right- or left-circularly polarized!

17
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A right- (left-) circularly-polarized monochromatic plane EM wave, propagating in the
+z direction in medium 1 incident on the boundary between two linear / homogenous / isotropic

media at normal incidence, the physical E and B fields can be written mathematically as follows:

RCP EN"(z,t)= E, [cos(kz—at+5)%+sin(kz—ot+5)7]

EM 4 seer 1 i :

Wave By (z,t)=—E, [cos(kz—ot+8)p—sin(kz—at+5)%]
1

LCP EL(z.t)= E, [cos(kz—awt+08)%—sin(kz—at+5)7]

EM -

Wave Bl.ffP(z,t):lEo, [ cos(kz—t+8) §+sin(kz—aot+5) %]
v

Note that at (z,7)=(0,0) these EM fields at that point/at that time are:

RCP Ep"(0,0)= E, [cosS%+sindP]

EM -

wave | | |B(0.0)="E, [cos5—sin 6]
g, o

LCP EX” (0,0)= E, [cos 5% —sin&]

Vgi\{e aiszC"P (0, O) = 1 E, [cos Oy +sin 5)2]

Vi

Or more generally for circularly-polarized EM waves (right- or left-handed):

CP E(0,0)= E, [cosS%+sindP]| (+ =RCP, — = LCP)

EM - -
Wave B’ (0,0) lEoi [cos 8P Fsinsx]| (— =RCP, + = LCP)
o o

1

If we compare these formulae to their equivalents for arbitrarily linearly-polarized EM waves,
with |7, =71, =cos@X +sin@y|:

LP E,. (0,0)= E, cosd[cospi+singpy|=E, cosén,,=E, cosdn,

EM ~ A
Wave B, (0,0)= lEa cos 5 [cos P —sin px]= lEoi cos 5(k X, )
vy o v

Then we see that we can {analogously} define right- and left-circular transverse polarization unit
vectors (i.e. lying in the x-y plane, L to the direction of propagation {here, in the +Z direction}):

RCP EM Wave: |fip., =1, =C0SOX+Sinoy

A

LCP EM Wave: |ii,., =1_=C0SOX—sinoy

18  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, we can write the physical E and B fields at (z,1)=(0,0)associated with a right- (left-)

circularly-polarized monochromatic plane EM wave, propagating in the +Z direction in medium

1 incident on the boundary between two linear / homogenous / isotropic media at normal

incidence as follows, for

RCP
EM
Wave

LCP
EM
Wave

Rpep =N, =C0sOX+sinoy|and |,., =1 =cosdX—sinoy|.
Ey"(0,0)= E, [cosS%+sindP|=E, Ay, =E, A,
B (0.0)= 8, [eosoi—singi)=E, (£ iy )= E, (£ <)
Ey"(0,0)= E, [cosoX—sinSPp|=E, A, =E, i
B (0,0)= VLE [cos 57 +sin 53] = VLE (i) = VLE (i)

Or more generally for circularly-polarized EM waves (right- or left-handed):

CP
EM
Wave

ERCP (0 O)

mc

E, [cosdx*sinsP|=E, A,

Oinc *

BRCP (O 0)

mc

1

E, [cos&yFsindx]= v_E”"””
1

Defining right and left complex circular-polarization unit vectors, respectively as:

A

Srep=€_=

FE

and |, ,=& =5 [X+iP]]

zy]

The corresponding complex CP (RCP or LCP) EM waves are of the following forms

RCP
EM
Wave

LCP
EM
Wave

CP
EM
Wave

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois

gizsccp (z.1) =Eo,-me(klz or+6) [ 7] = \/’E (kz—ar+5) _ \/7E (h—or+0)
BR (2,0) =1k, x EX (z.1)

vl
E:ifp(z’t):Egl.’wei(kleré [x—i—ly] \/’E e i(kyz—ot+5) &, p= \/’E i(kyz-wt+8) e,
Bil';CC"P (Z’t): l Ainc X E‘il;tfp (Z9t)

vl
EI?CD (Z,t) :Eo,-,we i(kjz—ot+6) [ 1 ] \/—E W i(kjz—awt+5)
B (z0)=—k, xES (2,t)|  (n.h. — =RCP, + = LCP here !11)

Vi

19
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At a fixed point in space (e.g. z = 0), an observer looking into the oncoming/incident LCP EM

wave sees the electric field vector E-" (z =0,7) spinning/rotating counter-clockwise (CCW) in a

circle at angular frequency @ for a LCP EM wave as time progresses. A LCP EM wave is said to
have positive helicity, because a LCP EM wave propagating in the +Z direction has positive

angular momentum density, i.e. |(5y, (z,1) =+, 2|,

Similarly, at a fixed point in space (e.g. z = 0), an observer looking into the oncoming/incident
RCP EM wave sees the electric field vector E/ " (z = 0,¢) spinning/rotating clockwise (CW) in a

circle at angular frequency @ for RCP light as time progresses. A RCP EM wave is said to have
negative helicity, because a RCP EM wave propagating in the +Z direction has negative angular

momentum density, i.e. (5, (z,0) =~ Z|.

Note that both linearly-polarized and circularly-polarized EM waves are limiting/special cases
of the more general class of elliptically-polarized EM waves.

For a generally-polarized monochromatic plane EM wave propagating in the +Z direction

E (z, t) = [onfc + Eoy )7] ") if the % and » components of the complex electric field have the

. ~ 6 ~ b‘ . . . . b
same phase, i.e.|E, = E, €”|and |E, = E, €|, then this is a linearly-polarized monochromatic

plane EM wave propagating in the + direction: |E" (z,¢) = [onfc +E, j/] ¢ )| If the %

and y components of the complex electric field have the same amplitude and the same phase, i.e.

E, =E,’|and |E, = E,e”|, then this is monochromatic plane EM wave a linearly-polarized at

+45° (wrt the % -axis) propagating in the +2 direction: |E* (z,¢)=E, [%+ ﬁ]ei(k‘z_”'+5) . Other

special cases of linear polarization, such as LP in the X -only, or the y -only direction, or the —45°
(wrt the X -axis) can also be easily worked out.

If the % and § components of the complex electric field |E(z,¢) = [EDX)G +E, ﬂ ¢ of the

generally-polarized monochromatic plane EM wave propagating in the +z direction have

different phases, i.e. on =E e |and Eoy = Eoyeig)’ , then this EM wave is elliptically-polarized.

If the £ and § components of the complex electric field | £ (z,1)= [on)% + Eoy j/} ¢ of the

generally-polarized monochromatic plane EM wave propagating in the +Z direction have the
same amplitudes {i.e.|E, =E, =E, |} and their phases differ by |6, =6, =£90° = + /2| radians,

ie |E, =Ee”|and|E, = Ee” = E,¢"™) = [ ¢ e""? = 3iE ¢ =i
{since [e""* = cos(7/2)Fisin(7/2) =Fi|}, hence [E' i+ E j;] =E,[xFi]= V2E & |and thus

we see that this EM wave is circularly-polarized.

20 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Reflection & Transmission of Circularly Polarized Plane EM Waves at Normal Incidence
at a Boundary Between Two Linear / Homogeneous / Isotropic Media

A circularly-polarized monochromatic plane EM wave propagating in the +Z direction is
normally incident on a boundary {in the x-y plane} between two linear, homogeneous and
isotropic media as shown in the figure below:

MeDt @)
Cl})‘{i JW"C/M

WMEDIUM &)

C‘L}/A‘L) = %l

e o o

% s
E
i >%)2

—
AS”

2
N
L
o
B S SN N NN SRS NSNS > R

The complex amplitudes for the CP E and B fields are summarized below:

Incident CP monochromatic plane EM wave:

ECP (Z,t) :Eu,-,mei(klkw) [)21 iA] -F Cei(klszmé) [fc$ iA] nb. |k, = ]€1 =

mc

B (z,8)= Lk, xES (2,6) =L E, ¢* ) [pxif]=LE, ") [jxif]

mc nc mc

Erce;( ):E e/ [XFiP]=E, e/hzor) [XFiD]| nb. léreﬂ = —/21 =-Z

Oreft

B (z,1)= Lk, XET (2,6)=LE T [—pxit]=-LE, T [HLit]

Transmitted CP monochromatic plane EM wave:

A

=k, =+z

trans

:%E n ei(kzz—a)t) [)A; l')AC]ZLE ei(kzz—wt+5)[)f>il-)%]

(z,t)=E Sei(kzzfm)[fcii)?]:E nlvei(kzsz’+5)[£¢iA] n.b. |k
B, (2.)= Lk < EL (2.1) +

V2 Otrans

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 21
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The boundary conditions on the CP E and B fields @ z = 0 in the x-y plane are summarized
below:

BC 1) Normal D continuous: 8]E¢0/ =¢,E;

2Tot

(n.b. L refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous:  |E! =E)

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)

BC 3) Normal B continuous: Bltm = ler y (L to x-y boundary, i.e. in the +Z direction)
_ 1 1
BC 4) Tangential H continuous: —Bl”T =—B) | (]| to x-y boundary, i.e. in x-y plane)
/Lll ot /«lz Tot

Thus, at z=0:

Again, because the transversality requirements (from Maxwell’s equations) of the E and B fields,
we see that BC 1) and BC 3) impose no restrictions {here} on such CP EM waves since:

L _ vz _n. L _ pz _ L _nz _n. L _ pz _
{Elm - ElTot =0 ’ Ezm - Ezrm =0 } and {Blrm - Blrm =0 ? Bzm - Bzm =0 }

= Again, the only restrictions on plane EM waves propagating with normal incidence on the
boundary at z = 0 {lying in the x-y plane} are imposed by BC 2) and BC 4).

. Atz=01n medium 1) (i.e. z < 0) we must have:

—

(z=0,6)=E (z=0,6)+ EZ (2=0,¢)| and
(2=0,0) == B (2=0,1) +—— B (2=0.1)

H, H H

1Tat

While at z= 0 in medium 2) (i.e. z > 0) we must have:

E! (z=0.)=E, (z=0.1)| and

trans

1 =
z=0,t)=—B" (z=0,¢
Hy ( ) tHy t ( )

Then BC 2) (Tangential E is continuous @ z = 0) requires that:

E' o= B || o [ES (2= 0,0)+ ET (2= 0,0) = E< (2 =0,1)|
Then BC 4) (Tangential H is continuous @ z = 0) requires that:
1 = 1 = 1 = 1 = 1 =
—B! |.,=—B8, |..,| or: | =B, (z=0,t)+—B;(z=0,1)=—B,, (z=0.1)
e M Hy H, H,

22  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Inserting the explicit expressions for the complex E? and g’ fields

EX (z1) =E, ™= [55i]

inc Oipe

oy
8
—_
N
~
~
Il
|
=
X
=\
Q
—_
\’N
=~
N
Il
< |._.
oS}
QN.
=
[}
¢
—
>
[+
>3
| )

Ercg; (Z,t) _E ei(klszt) [521 l'A] érce; (Z,t)= Lkreﬂ XE;rCe; (Z,t) — VLIEomﬂei(klz—wt) [_)"} il')AC]

Opeft

ES (2.0)=E, e [53)| B, (2.)= Lty < ED, (2.0) = L E,

trans rans

into the above boundary condition relations, these equations become:

BC 2) (Tangential E continuous @ z = 0): Eo,-m ,V_“’{ + Eumﬂ f“t/ =E

f7'4)t/
UIV ans
1

_ - , 1 - , 1 -
BC 4) (Tangential H continuous @ z=0): |—F, ;7"{ -—F, ;7”{ =—F
’ )V,

;7‘”{

9, Otrans

v HVY

Cancelling the common e ™ factors on the LHS & RHS of above equations, we have at z=0 {
n.b. everywhere in x-y plane, independent of/valid for any time ¢} :

BC 2) (Tangential E continuous @ z = 0): ~0m + E%ﬂ = Eg
. 1 - 1 - 1 =
BC 4) (Tangential H continuous @ z=0): |——£, ———FE, = E,
Ay, vy,

Note that these last two relations for circularly-polarized plane EM waves are identical to
those we obtained for the linearly-polarized monochromatic plane EM wave propagating in the
+z direction is normally incident on a boundary {in the x-y plane} between two linear,
homogeneous and isotropic media.

= The BC constraints on the £ and B are decoupled from their polarization states!

Thus, we obtain precisely the same reflection and transmission coefficients for the circularly-
polarized plane EM wave as we did for the linearly-polarized monochromatic plane EM wave
propagating in the +Z direction is normally incident on a boundary {in the x-y plane} between
two linear, homogeneous and isotropic media:

AT

(l_ﬂ)zf Va7V 2: n—n 2
Vv, +V n +n,

Reflection coefficient:  |[R(F)
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Transmission coefficient: |7'(7) = WL(T)JEB[ - (f)J = 4'32: L 4nln22
L. (7) E, (7) (1+8) T(v2+v1) (n,+n,)
R(F)+T(7F)=1] and |p=£-5% [r=m=n
Y, &V

© Professor Steven Errede, Department of Physics, University of [llinois at Urbana-Champaign, Illinois 23
2005-2011. All Rights Reserved.



