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LECTURE NOTES 15 
 

Electrodynamics and Relativity 
 

     In the macroscopic “everyday” world ( )v c  we are accustomed to living in, we know that 
the classical laws of mechanical physics obey Galileo’s notion (or principle) of classical 
relativity, as long as we are always in an inertial reference frame (i.e. a non-accelerating 
reference frame). 
 
     Newton’s First Law of Motion holds in an inertial reference frame (IRF): 
 

 “An object at rest remains at rest, and an object moving with (constant) 
speed ν  remains moving at (constant) speed ν  and in the same direction 
(i.e. ν = constant in an IRF), unless acted upon by a net/non-zero/ 
unbalanced force” 

 

      ⇒   0netF =  in an IRF ( )0a = ,     0netF ma≠ =  in a non-IRF ( )0a ≠  

 
           Newton’s 2nd Law. 

 

     In a Galilean transformation between two inertial references frames, e.g. one fixed ( )0v =  

and one moving ( )0v′ ≠  along the x̂ -axis. The two reference frames coincide at time t = 0: 
 
 Fixed IRF:    Moving IRF': 

 
 Fixed IRF:    Moving IRF': 
 

ˆ ˆ ˆr xx yy zz= + +   ( )ˆ ˆ ˆ ˆˆ ˆr x x y y z z x vt x yy zz′ ′ ′ ′ ′ ′ ′= + + = − + +  ˆ ˆx x′ ,  ˆ ˆy y′ ,  ˆ ˆz z′  
 

x x vt′ = − ,   y y′ = ,   z z′ =    and:  t t′ ≡  
 
In a Galilean transformation, separation distances (spatial intervals): 

 ( ) ( ) ( )2 2 2
2 1 2 1 2 1d x x y y z zΔ = − + − −   and time differences (temporal intervals): 2 1t t tΔ = −   

are the same / identical in all inertial reference frames,  i.e. d d′Δ = Δ , and t t′Δ = Δ . 
 

Thus: ( ) ( ) ( )2 2 2
2 1 2 1 2 1d x x y y z z′ ′ ′ ′ ′ ′ ′Δ = − + − + −   =  ( ) ( ) ( )2 2 2

2 1 2 1 2 1d x x y y z zΔ = − + − −  

And:                2 1t t t′ ′ ′Δ = −   =  2 1t t tΔ = −  

x̂  x̂′  

ŷ  ŷ′  

ẑ  ẑ′

ϑ  ϑ′  

r  r′

( ), ,Fixed
IRF x y z   

( ), ,Moving
IRF x y z  ′ ′ ′ ′  

ˆv vx=  
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     No matter how fast an object is moving, in a Galilean transformation, spatial separation 
distances are unchanged/constant and the rate of passage of time is also unchanged/constant. 
 
Note that in Galilean physics ∃  there also exists no notion of an absolute IRF. 
 
 
     Does the principle of relativity also apply to electrodynamics? i.e. are the physical laws of  
E & M also valid/same in all inertial reference frames? 
 
     One might initially be tempted to say no, because e.g. a stationary/fixed charge in one IRF1 
has only a static electric field E =constant associated with it, whereas an observer in another 
IRF2 moving at constant velocity, v  with respect to the first/fixed IRF1 would see a magnetic 
field B  associated with the (moving) charge.  ⇒  EM theory pre-supposes ∃  a unique IRF 
(stationary) from which/with respect to which all velocities should be measured. 
 
However, this notion is wrong/incorrect! 
 

Another example: Suppose we have a static magnetic field ( ) ( )B r A r= ∇×  in (fixed) IRF1 

e.g. due to permanent bar magnet, ( ) 3~ 1B r r  where r = observer distance from the bar 
magnet. An observer in a moving IRF2 passing by the permanent magnet will observe a  
(time varying)  electric field due to ( ) ( )E r A r t′ ′= − ∂ ∂  in her/his IRF2. 
 
Another example: In a fixed IRF1, move a circular conducting loop (of radius a) e.g. at a constant 
velocity from a 0B =  region into a 0B ≠  region. Get an induced EMF ( ) ( )1

1
IRF

mt d t dtε = − Φ .  
However, in IRF2  of the loop (e.g., imagine observer is now sitting in the center of loop as the 
loop is moved from the 0B = region into the 0B ≠  region), the observer in IRF2  will “see” a 
time-varying magnetic field, which (by Faraday’s Law) creates an electric field which induces 
{precisely} the same EMF (voltage/potential difference around the loop, ( ) ( )2 1

2 1
IRF IRFt tε ε′ ≡ .  

 
     Physicists in Maxwell’s time (mid/late 1800’s  →  early 1900’s) grappled with the principle 
of relativity and electrodynamics – the consensus thinking at that time was that the  and E B -
fields were “strains” in an invisible, all-pervasive/all-permeating medium known as the æther  
(a “jelly-like” substance, which also simultaneously had to be ~ infinitely rigid {because the of 
speed of light, 81 3 10o oc m sε μ= = × was already known to be very high at that time}. 
Transverse electromagnetic waves could not propagate without being immersed in such a 
medium, or so they thought…. 
 
     The “absolute” IRF, then, was the one in which the æther medium was at rest, i.e. the rest 
frame of the æther. 
 
      Michelson and Morley’s famous æther drift experiment carried out in the late 1880’s – to 
accurately measure the earth’s speed w.r.t. æther – this was a null result!! They found that the 
speed of light c was the same in all directions. This situation was not resolved for ~ 20 years, 
despite many theoretical and experimental efforts.  All kinds of (crazy) things were proposed 
theoretically and investigated experimentally…. (n.b. ~ 100 years from now, perhaps some of 
today’s current “theories” may also be viewed to be just as crazy ….  ⇐  think about this !!! ) 
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     It is certainly a credit to the genius and intellect of Albert Einstein, taking in all of what was 
then currently known theoretically and experimentally, to successfully develop his initial theory 
of special relativity (IRF’s only) and then later, to general relativity (including non-IRF’s). 
 
Einstein’s two postulates of special relativity: 
 
1) Principle of Relativity:  Laws of physics apply/are the same in all IRF’s 
 

2) Speed of light 81 3 10o oc m sε μ= = ×  (in vacuum) ≡ same in all IRF’s for all observers, 
regardless of the motion (i.e. the speed) of the source. 

 
     Einstein’s 1st postulate elevates Galileo’s Principle of Relativity (for classical mechanics) to 
encompass all physics. ⇒  ∃  NO  æther medium / ∃  NO  no absolute IRF for which EM waves 
“need” to propagate in. 
 
     Einstein’s 2nd postulate has {even more} “brain-numbing” consequences for “mere mortals”: 
 

a) Spatial intervals ( ) ( ) ( )2 2 2
2 1 2 1 2 1d x x y y z zΔ = − + − +  vs. ( ) ( ) ( )2 2 2

2 1 2 1 2 1d x x y y z z′ ′ ′ ′ ′ ′ ′Δ = − + − + −  

are NOT the same in different IRF’s, i.e. d d ′Δ ≠ Δ  !!! 
 

b) Temporal intervals 2 1t t tΔ = −  vs. 2 1t t t′ ′ ′Δ = −  are NOT the same in different IRF’s, 
      i.e. t t′Δ ≠ Δ  !!! 
 
     In special relativity, space and time are treated on an equal footing with each other, and so 
what is conserved/preserved is the so-called space-time interval, as defined below: 
 

 ( ) ( )2 2I d c t≡ Δ − Δ  = ( ) ( )2 2I d c t′ ′ ′≡ Δ − Δ  
 
In Galilean Relativity (Euclidean Space): The Velocity Addition Rule is Simple Vector Addition: 
 
                         ToTv  
             Bv       tot A Bv v v= +  
                          Av  
e.g. A man walking down corridor of train at 5 mph relative to the train, but the train is moving 
at 50 mph relative to the ground: 
 

         man train man
ground ground trainv v v= ±   parallel or anti-parallel velocity vector addition: 

 
       45 mph  (man walking to the back of the train)       = 

          55 mph  (man walking to the front of the train)       = 
 
     In Galilean Relativity, a beam of light emitted from a flashlight on a moving train will travel 
faster (or slower) than a beam of light shone from a flashlight on the ground: 
 

light train
ground groundv v c= +  x̂+ direction   light

groundv c= +   x̂+ direction 
light train
ground groundv v c= −  x̂− direction   light

groundv c= −   x̂− direction 

man
groundv = 50 ±  5 mph = 

Flashlight 
on train: 

Flashlight 
on ground: 

vs. 
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     Einstein’s 2nd Postulate of Special Relativity says this doesn’t happen!  
 
⇒ Correct Einsteinian / Special Relativity Velocity Addition Formula (1-Dimension) is: 
 

train man
ground trainman

ground train man
ground train

21

v v
v

v v
c

±
=

⎡ ⎤⎛ ⎞⋅
±⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 for parallel and/or anti-parallel velocity addition. 

 

n.b. If  v c′ , then in this limit, we obtain the Galilean Velocity Addition Rule – everyday world ! 
 

If the train is moving at the speed of light (with respect to the ground) then train
ground ,v c=  and:   

( ) ( ) ( )manman manman traintrain trainman train
ground man man man

train train train
21 1 1

c c vc v c c vc vv
c v v vc

c c c

±± ±±
= = = =

⎡ ⎤ ⎛ ⎞ ⎛ ⎞⋅
± ± ±⎜ ⎟ ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠ ⎝ ⎠
( )man

trainc v  ±
c=  !!! 

 
     While Einstein was initially motivated by relativity issues concerning electrodynamics, 
relativity actually addresses fundamental nature of space-time aspects of the universe in which 
we live – thereby encompassing all physics, all fundamental forces of nature! 
 
     As a consequence of this, the “speed of light”, c (in vacuum) is not just the maximum speed 
of EM waves /EM signals {only}, c is the maximum speed of any/all waves/signals and/or 
particles, irrespective of their nature – because this maximum speed of propagation has to do 
with the nature of space-time.  
 
Thus, the relativity of space-time tells us that:  grav weak strongEMc c c c c= = = =   
i.e. the speed of “light” c is independent of/does not depend on the type of force! 
 

     However, in E&M, we do have the relation 1 o o EMc cε μ= =   where   ando oε μ  are 
macroscopic EM properties of the vacuum / “empty”, matter-free space: 
 

C=C :  ⇒  128.85 10  Faradso mε −= ×   =  electric   permittivity  of free space/vacuum 
L=L : ⇒  7  4 10  Henryso mμ π −= ×   = magnetic permeability of free space/vacuum 

    And:  120 377o o oμ ε π= =  Ω  Ω   = impedance of free space/vacuum 
 

     The macroscopic EM parameters of free space, and o oε μ  are {intimately} related/connected 
to the microscopic QED properties of the vacuum – i.e. the electrically-charged, virtual, particle-
antiparticle pairs: ,e e+ − ,μ μ+ − ,τ τ+ − ,dd ,uu ,ss ,cc ,bb tt and .W W+ −  
 
     However, the virtual particle-antiparticle pairs of the vacuum also carry weak charges & 
weak moments (all spin-½ leptons & quarks, the spin-1 W±, Z0 bosons),  strong charges & strong 
moments (all quark-antiquark pairs ( ),  , , , , ,qq q d u s c b t= , and these particles also have mass.  
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Thus:          Q-Gravity:                   QWD:                    QCD:               QED: 
 

grav g g weak w w strong s s 1 ,  1 , 1 , 1EM o oc c c c cε μ ε μ ε μ ε μ= = = = = = = =  
 

 and:    g w s
grav weak strong

g w s

??,  ??,  ??,   120o
o

o

μ μ μ ε π
ε ε ε μ

= = = = = = = =  Ω  

 
⇒  Implies deep connections between the four fundamental forces of nature (and inter-relations 
between them – unification?) – and – space-time!!! 
 

The Geometry of Relativity 
 
     As mentioned earlier, Einstein’s postulates (esp. #2) have several striking, “non-everyday” 
consequences: 
 
a) Space intervals dΔ are not the same in all IRF’s ⇒ Lorentz contraction in (boosted) IRF’s 
b) Time  intervals tΔ  are not the same in all IRF’s ⇒ time dilation, and the relativity of simultaneity 
 
In order to elucidate these phenomena, we consider a series of “gedanken” (thought) experiments: 
 

The Relativity of Simultaneity 
 
1st Gedanken Experiment:  Consider e.g. a freight train moving at constant speed, v along a 
smooth, straight railroad track. In the center of one boxcar of the freight train is a light bulb, as 
shown in the figure below: 

 
     When the light bulb is switched on, light from the bulb spreads out in all directions / 4π  
steradians at the speed of light, c. Since the light bulb is equidistant from the two ends of the 
freight car, an observer on the train (i.e. in the IRF' of the train) will find that the light reaches 
the front end of the freight car simultaneously with light reaching the back end of the freight car 
(consistent with our “everyday” world/Galilean experience) – these two “events” are 
simultaneous in this IRF. 
 
     However, an observer on the ground, watching the train go by with the light bulb turned on 
will not see these two “events” as being simultaneous. From his/her perspective, he/she sees the 
train moving forward, and therefore in this observer’s IRF, since the beam of light heading 
towards the back of the freight car has a shorter distance to travel than the beam of light heading 
towards the front of the freight car, the observer on the ground will see the light hit the back of 
the freight car before the light hits the front of the freight car, as shown in the figure below: 
 

v 
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     Another , 3rd observer on an express train (e.g. moving much faster than the freight train and 
moving in the same direction) “sees” the freight train from his/her IRF'' as “going backwards”, 
hence would “see” the light from the light bulb hit the front of the freight car before the light hits 
the back of the freight car, as shown in the figure below: 
 

 
⇒ Two “events” that are simultaneous in one IRF are not in general simultaneous in other IRF’s 
n.b. If c was e.g. 100 m/s (and not 3×108 m/s) we all would have noticed/realized this, long ago... 
 

Time Dilation: 
 
2nd Gedanken Experiment:  How long a time interval does it take for light to go from the light 
bulb e.g. to the floor of the freight car? 
 
To an observer on the train (i.e. in the rest frame/IRF' of the train): 
 

  h c t′= Δ   where  h = height of light bulb above floor of train, thus: t h c′Δ =  
 
To a stationary observer on the ground/in the ground/ “laboratory” IRF, he/she sees: 

 v tΔ  = horizontal distance train moves in time interval tΔ    
 
Light (from the ground observer’s perspective) has to travel a distance d  to reach the floor: 

( )22d h v t= + Δ  , which takes a time interval 
( )22h v td ht t

c c c
+ Δ

′Δ = =   >  Δ =  for the light to 

hit the floor of freight car, from the ground observer’s perspective. 
 
⇒  Moving clocks run slow ⇒  time dilation !!! 
 

Solve for the time interval tΔ :     ( ) ( )2 22 2c t d h v tΔ = = + Δ   ⇒   ( )2 2 2 2c v t h− Δ =  
 

Thus:   
( )2 2 2 211

h h c h ct h c
c v v c

γ
β

Δ = = = =
− −−

  where: v
cβ ≡  and: 

2

1
1

γ
β

≡
−

 

 

v' 

h 

v 
h 

vΔt 

d 
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But: t h c′Δ =  ∴ 
21

tt tγ
β

Δ ′Δ = = Δ
−

   or:   
1t t
γ

′Δ = Δ   where: 1 γ≤ ≤ ∞  

      0β =   1β =  

Thus:  t t tγ ′ ′Δ = Δ ≥ Δ    or:  
1t t t
γ

′Δ = Δ ≤ Δ  

 

Time Dilation: 
 
Griffiths Example 12.1: 
 

A muon ( )μ ±  has a mean lifetime (it is unstable) of  2.2 sμτ μ′   (in its own rest frame, IRF')  

Muons e

e

e v v

e v v
μ

μ

μ

μ

+ +

− −

⎫→ ⎪
⎬

→ ⎪⎭
decay via the charged weak interaction (i.e. mediated via the W ± boson): 

 
If a muon is traveling at 3/5 of the speed of light in the laboratory (i.e. the ground) reference 
frame, what is the mean lifetime of muon observed in the lab reference frame {IRF}? 
 

From above: t tγ ′Δ = Δ   ⇒  μ μ μτ γ τ ′= ,  where: 2.2 sμτ μ′ . What is μγ ?   
 

2

1
1

μ

μ

γ
β

=
−

, and: 
3
5

v
cμβ = =  

 

  ∴   
( ) ( ) ( )

( )
2 2

1 1 1 1 5 1
416 251 9 251 3 5 4 5

μγ = = = = =    ≥
−−

 

 

  ∴   
5
4μ μ μ μτ γ τ τ′ ′= =    i.e. 

5 2.2 2.75
4

s sμτ μ μ= × =  in the lab frame {IRF}. 

 
     At Fermilab, beams of muons e.g. with momentum of 211.32 p GeV cμ =  ( )91 10GeV eV =  
can easily be produced. What is the mean lifetime of these muons, as observed in the lab frame?  
 

Again: μ μ μτ γ τ ′= , and the relativistic momentum of the muon in the lab frame {IRF} is: 
 

 2 211.32p c m c GeVμ μ μ μγ β= =   
 

The muon is a heavier “cousin” of 
the electron – it has a rest mass of 

2105.66m MeV cμ  

( )20.511em MeV c=  

( )2 6 21 10MeV c eV c=  

μ −  

vμ  

e−  

ev  

W −  
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   ∴   2

211.32 2.0 1000 2000
105.66

p c GeV
m c MeV

μ
μ μ

μ

γ β  
= = = × =

 
 

Thus: 
2

2000
1

μ
μ μ

μ

β
γ β

β
= =

−
  or:  ( )

2
2

2 2000
1

μ

μ

β
β

=
−

 

 

Solve for μβ :  ( ) ( ) ( ) ( )2 2 22 2 22000 1 2000 2000μ μ μβ β β= − = −   ⇒   ( ){ } ( )2 222000 1 2000μβ+ =  
 

Thus: 
( )

( )

2
2

2

2000
2000 1μβ =

+
  ⇒   

( )
( )

2

2

2000
2000 1μβ =

+
  or: 

6 nines

0.999999
v
c
μ

μβ = =  ⇒  0.999999875v cμ =  

 

  ∴    
2

1
1

μ μ μ

μ

γ γ β
β

=
−

 = 2000 !!! 

 

  ∴    2000 2.2 4.4 0.0044secs msμ μ μτ γ τ μ′= = × =  =  in the lab IRF !!! 
 

⇒  A 211.32 p GeV cμ =  muon lives on average 2000× longer in the lab frame {IRF} than in 
its own rest frame {IRF'}. 
 

     The “proper” decay length of an unstable particle (such as the muon) is cτ′ ′≡ , where  
τ ′  = mean lifetime {a.k.a. “proper” lifetime}of the particle in its own rest frame {IRF'}. 
 
n.b. In the particle’s own rest frame {IRF'}, the particle is at rest, so it has no decay length!  
 

Thus, the proper decay length cτ′ ′≡  has no meaning for a particle at rest/in its own rest frame. 
 

     The decay time distribution in the unstable particle’s own rest frame is: ( ) t
oN t N e τ′ ′−′ =  

where oN = # of particles at t = 0. 

     For a muon with mean/proper lifetime 2.2 sμτ μ′   the “proper” decay length of the muon is: 

 8 23 10 2.2 6.6 10 660 metersc m s s mμ μτ μ′ ′≡ = × × = × = . 
 

     Since τ γτ ′= , the decay time distribution of an unstable particle moving in the lab frame is: 
 ( ) t t

o oN t N e N eτ γτ ′− −= = . 

( ) t
oN t N e τ′ ′−′ =  

t' 
No/e 

t' = τ' 

Semi-log Plot of ( )N t′  vs. t' 
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     At the end of these lecture notes (see p.23), we show that the corresponding decay length for 
an unstable particle moving in the lab frame is: cγβ γβ τ′ ′= = . Note that when 0v → , 

0v cβ = → , 21 1 1γ β= − →  and thus 0cγβ γβ τ′ ′= = →  {as it should}. 
 

     Thus at Fermilab, for a beam of muons with 211.32 p GeV cμ = , they will travel a mean 

distance of:  2000 2000 660 13.2c m kmμ μ μ μ μ μ μ μγ β γ β τ′ ′ ′= = = = ×  =    
before the beam of muons decay to 1 0.368e =  of their initial number, as seen in the lab frame. 
 
⇒ Expains why FNAL has lots of shielding to “range out” (i.e. absorb) the muons after passing 
through the HEP experiments that are using them for studies. 
 

n.b. Since cγβ γβ τ′ ′= = , then cτ′ ′= =  occurs when 1γβ =   and thus cτ′ ′= =  is the  
distance a beam of unstable particles travel in the lab frame before their # falls to 1 0.368e =  
their initial #, traveling with 1γβ = .  
 

Note further that since 2pc mcγβ= , we also see that: 1γβ =  corresponds to: 2 1pc mcγβ = = . 
 
 
Griffiths Example 12.2 The Twin Paradox: Time Travel Into The Future Is Possible!!! 
 
     A pair of identical twins celebrate their 21st birthday by saying goodbye to each other.  
One is a medical doctor, the other, an astronaut. The astronaut blasts off in a rocket ship at a 
{constant} speed of  12

13v c cβ= =  and heads out towards α -centauri. After 5 years on her 
watch, she turns around and heads back to earth at the same {constant} speed to rejoin her twin 
sister doctor, who stayed at home on earth. 
 
How old is each twin at their reunion?  
 
     The traveling astronaut twin has aged 5 + 5 = 10 years in her own IRF' in making this round 
trip, and thus she arrives back home on her 31st birthday. 
 
     However, viewed from her twin sister’s earth-bound “IRF”, the astronaut’s clock has been 
running slower by a factor of:  
 

( ) ( )2 22 169 14412
13 169

131 1 1 1 1 2.6
5

t
t

γ β −Δ
= = − = − = = =

′Δ
 

 
     The elapsed time for the astronaut twin to make the round trip, as viewed from the earth’s 
“IRF” is therefore:  
 

  
13 13010 26 years
5 5

t tγ ′Δ = Δ = × = =  
 
     Thus the astronaut’s earth-bound twin sister (the doctor, who stayed on earth) is now herself  
21 + 26 = 47 years old, i.e. doctor twin is celebrating her 47th birthday.  
 
⇒ Thus the earth-bound doctor twin is 47 – 31 = 16 years older than her astronaut twin!!! 
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     The paradox associated with this situation arises when it is viewed from the astronaut twin’s 
IRF – the astronaut twin sees the earth fly off away from her at 12

13v c cβ= = , then turn around 
after 5 years, and come back toward her at the same speed. 
 
     From the astronaut twin’s perspective, she is at rest and her doctor twin is the one who is in 
motion – so shouldn’t it be that the doctor twin is younger? (i.e. < 31 years old)? 
 
     This paradox is resolved by consideration of which of the twins actually experienced 
accelerations during the experiment. If both twins had stayed on earth, neglecting the earth’s 
rotation and gravity, then they would have experienced/undergone no accelerations. 
     However, the astronaut twin does experience accelerations/decelerations while on her rocket 
ship trip to α -centauri and back – she has to go from going out: 12 12

13 130 , 0c c→      → ,  
then coming back: 12 12

13 130 ,    0c c→ → .  
 
     Thus, the traveling twin is not in an IRF at all times during her trip, while her earth-bound 
sister is in an “IRF” (neglecting earth’s rotation and gravity) at all times.  
 
     The astronaut twin cannot claim to be a stationary observer/in an IRF at all times, because of 
the accelerations/ decelerations she experiences on her journey towards α -centauri and back to 
earth. 
 
     See/work Griffiths problem 12.16 on how to analyze this problem correctly from astronaut 
twin’s perspective.  
 
 
An Actual Twin Paradox Experiment: 
 
      A twin paradox experiment was carried out in the early 1970’s using very high-precision 
cesium beam atomic clocks. Four commercial aircraft were flown around the world twice, two 
going east, and two going west. The atomic clocks were compared before and after each journey 
with identical {stationary} atomic clocks at the U.S. Naval Observatory. 
 
     Making allowances for the earth’s rotation (n.b. we’re actually living in a non-IRF!!!) and the 
gravitational red shift (due to the earth’s gravitational field – a general relativistic effect!),  
the average observed vs. calculated time differences of the aircraft-based clock vs. the ground-
based clock, in nanoseconds was: 
 

Eastward Trip:   59  10 ns (observed) obs
EtΔ = − ±   vs. 40  23 ns (predicted) pred

EtΔ =  − ±  
 

Westward Trip:  273  7 ns (observed) obs
WtΔ = + ±   vs. 275  21 ns (predicted) pred

WtΔ = + ±  
 
     The kinematic effect of special relativity is ≈  comparable to that associated with the general 
relativistic effect. 
 
⇒ Moral of the story: Always fly eastward – you will live {hundreds of nanoseconds} longer !!! 
 

     See/read J.C. Hafele and R.E. Keating, Science 177, p.166-168 (1972) for further details. 
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Lorentz Contraction: 
 
3rd Gedanken Experiment: In the IRF' of the freight train’s boxcar, set up the boxcar such that the 
light bulb is at one end of the boxcar, a mirror at the other end, such that light signal can be sent 
down and back, as shown in the figure below: 

 
In the IRF' of the freight train’s boxcar, how long does it take the light signal to complete a 
round trip? 
 

For an observer at rest on the train/in the train’s IRF', the round-trip time is there backt t t′ ′ ′Δ = Δ + Δ : 
 

     2there back
x x xt t t
c c c

′ ′ ′Δ Δ Δ′ ′ ′Δ = Δ + Δ = + =  
 

For a stationary observer on the ground/in the ground IRF, the round-trip time is there backt t tΔ = Δ + Δ : 
  

a.) The time interval required for the light signal to travel from the light bulb to the mirror = theretΔ : 

         there there
there

v t x v txt
c c c

Δ Δ + ΔΔ
Δ = + =    n.b.  x x′Δ ≠ Δ   and  t t′Δ ≠ Δ   !!! 

 

Solve for theretΔ :  ( )1 1there there there there
v v xt t t t
c c c

β Δ⎛ ⎞Δ − Δ = − Δ = − Δ =⎜ ⎟
⎝ ⎠

 ∴ 
( )

1
1there

xt
c β

Δ
Δ =

−
 

 

b.) The time required for the light signal to travel from the mirror back to the light bulb = backtΔ :  

   back back
back

v t x v txt
c c c

Δ Δ − ΔΔ
Δ = − =  

 

Solve for backtΔ :  ( )1 1back back back back
v v xt t t t
c c c

β Δ⎛ ⎞Δ + Δ = + Δ = + Δ =⎜ ⎟
⎝ ⎠

∴ 
( )

1
1back

xt
c β

Δ
Δ =

+
 

 

mirror x′Δ  

v 

backv tΔ  

xΔ  

Light bulb location @ backtΔ  

Mirror location @ theretΔ  

v 

therev tΔ  

xΔ  
Mirror location @ theretΔ  Light bulb location 

@ 0t t′ = =  
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∴ For a stationary observer on the ground/in the ground IRF, the round-trip time is:  
 

      

( ) ( ) ( ) ( )

( ) ( )
( )( )

1 1 1 1
1 1 1 1

11 1
1 1

there back
x x xt t t

c c c

x
c

β β β β

ββ β
β β

⎡ ⎤Δ Δ Δ
Δ = Δ + Δ = + = +⎢ ⎥− + − +⎣ ⎦

⎡ ⎤ ++ + − Δ
= =⎢ ⎥− +⎣ ⎦

1 β+ −

( )

( )

2

2
2

1

12 2
1

x
c

x x
c c

β

γ
β

⎡ ⎤ Δ
⎢ ⎥

−⎢ ⎥⎣ ⎦
Δ Δ

= =
−

 with: 

2

1
1

v
c

β

γ
β

≡

≡
−

 

Round trip time as seen by stationary observer on ground/in the ground IRF: 22 xt
c

γ Δ⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

 

Round trip time as seen by stationary observer on the train/in the train IRF':   2 xt
c

′Δ⎛ ⎞′Δ = ⎜ ⎟
⎝ ⎠

 

But the Time Dilation Formula is:  t tγ ′Δ = Δ   or:   
1t t
γ

′Δ = Δ  

 
                                                               on ground  on train     on train   on ground 
 

Since:  22 xt
c

γ Δ⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

 = Round trip time as seen by a stationary observer on the ground.     

And:    2 xt
c

′Δ⎛ ⎞′Δ = ⎜ ⎟
⎝ ⎠

   = Round trip time as seen by a stationary observer on train, and x x′Δ ≠ Δ  

And:    t tγ ′Δ = Δ           = Time dilation formula. 
 

   ⇒     22 xt t
c

γ γ Δ⎛ ⎞′Δ = Δ = ⎜ ⎟
⎝ ⎠

   or:  2 xt
c

γ Δ⎛ ⎞′Δ = ⎜ ⎟
⎝ ⎠

   but:  2 xt
c

′Δ⎛ ⎞′Δ = ⎜ ⎟
⎝ ⎠

  ∴  2 2x x
c c

γ
′Δ Δ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

   ⇒         x xγ′Δ = Δ     or:     
1    x x
γ

′Δ = Δ  

 
                on              on                    on                 on 
              train         ground             ground            train  
 

            
1   t t
γ

′Δ = Δ      or:          t tγ ′Δ = Δ  
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Therefore, for a stationary observer on the ground/in the ground IRF:  
 

Lorentz Contraction: A moving meter stick is shortened: 
1x x
γ

′Δ = Δ  

 

Time Dilation:           A moving clock runs slow:               t tγ ′Δ = Δ  
  

Where: ,  x tΔ Δ = length and time interval in the rest frame of meter stick and clock. 
 
     However, for a stationary observer in the rest frame {IRF'} of the railroad car – his/her meter 
sticks are contracted by the same Lorentz factor γ , so all of his/her spatial measurements that 
he/she makes in the rest frame of the box car will come out the same as if the box car were at rest 
(with respect to the ground) !!! 
 
     From the stationary observer’s perspective/IRF' on the train it’s the objects on the ground that 
are shortened!  
 
How is it possible that both observers (A on the train, B on the ground) could be correct??  
 
They both are !!!   Huh??? 
 
We simply need to examine the details of the process whereby a length is actually measured. 
 
     In order to measure the length of a board at rest (w.r.t. the measurer/observer), one simply 
lays a ruler down along it and measures it – i.e. record the readings of the ruler at each end of the 
board and subtract them:  2 1x x xΔ = − . 
 
     However, if the board is moving, then one must read the ends of the board at the same instant 
of time (in the measurer/observer’s reference frame). 
 
⇒  Due to the simultaneity of relativity, two observers (in two different IRF’s) will disagree on 
what constitutes “the same instant of time” !!! 
 
     When stationary person on the ground measures the length of a moving box car, he/she reads 
position of the two ends of the boxcar at the same instant of time in his/her IRF. 
 
     When a stationary person on the train watches the person on the ground making this 
measurement, the train observer see the ground person reading the front-end of the box car first, 
then the rear-end of the box car second – i.e. observer on train sees these ground-based 
measurements take place at different times/non-simultaneously !!! 
 
     Both observers measure lengths in their own IRF’s correctly and each discover the other’s 
meter stick to be shortened !!! 
 
⇒ There is no inconsistency in this from the perspective of special relativity – it is {simply} a 
feature of special relativity !!! 

 

 

n.b. only along the 
direction of motion !!! 

= ground IRF {here} 
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Griffiths Example 12.3: The Barn & Ladder Paradox – Another Gedanken Experiment: 
 
n.b. ∃  no direct experimental macroscopic confirmation of Lorentz contraction !!! 
           (unlike time dilation – which has been experimentally verified). 
 
 The technology doesn’t yet exist to accelerate macroscopic objects to relativistic speeds, v c≈ . 
 
     A farmer has a ladder that is too long to store in his barn. 
 
     The farmer figures that if he gets e.g. his daughter (who run much faster than the farmer) to 
move the ladder into barn at a high enough speed, the ladder would Lorentz-contract, and thus  
the fast-moving ladder would then fit into barn!  
 
The farmer would then slam the barn door shut at instant the whole ladder fits into the barn. 
 
     However, the farmer’s daughter pointed out to him that from her moving reference frame 
{IRF'}, the barn would Lorentz contract, not the ladder!! ⇒ Thus, from her perspective  
(i.e. her IRF) the problem of fitting the ladder into barn would be aggravated by running 
relativistically fast into the barn with the ladder !!! 
 
Who’s right???  Will the ladder fit or won’t it??? 
 
Again, they’re both correct!!! 
 
The statement: “the ladder is in the barn” means that all parts of the ladder (including both ends) 
are inside the barn at the same instant of time. ⇐  This a condition that depends on the observer 
– i.e. his/her IRF.  
 
There are two relevant “events” in ladder – barn problem: 
 
a.) The back  end of the ladder makes it in the door of barn. 
 
b.) The front end of the ladder hits far wall of barn. 
 
The   farmer,   at rest in the  barn’s  IRF,  sees a.) occur before b.) !!! 
 
The daughter, at rest in the ladder’s IRF′, sees b.) occur before a.) !!! 
 
Contradiction???  No !!! 
 
Just due to a difference in the simultaneity of “event” times due to different IRF’s!!! 
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The Nature of Lorentz Contraction: 
 
   A moving object is shortened only along (i.e. parallel to) its direction of motion/velocity vector. 
 
Spatial dimensions transverse/perpendicular to the direction of motion/velocity vector are not 
contracted/not affected. 
 
A Gedanken Experiment for Lorentz-Noncontraction in the Transverse Direction(s): 
 
     Is the height of a railroad boxcar {running along straight, horizontal railroad track} the same 
in all IRF’s??? 
 
     Build a tall wall along the side of the railroad tracks. Bring up the railroad car and stop it at 
the wall and mark its height h on the wall, e.g. using blue paint. Now back off the train, get a 
running relativistic start and use e.g. red paint to mark the height of the train boxcar on the wall 
as the train flies past the wall. 
 
     If the transverse directions are Lorentz-contracted, a stationary observer on the ground would 
predict the red line to be lower than the blue one, whereas an observer on the train would predict 
the opposite – i.e. the red line would be higher than the blue line. Which line is lower? 
 
     The principle of relativity says both observers/both IRF’s are equally justified, but (here) both 
cannot be correct. 
 
The answer: The red and blue lines exactly coincide ⇒ there is no Lorentz contraction  
(or expansion) in the transverse direction.  
 
Lorentz contraction only occurs in the longitudinal direction/direction of motion! 
 
Lorentz Transformations: 
 
     Any physical process consists of one or more “events”.  
 
     An “event” is something that occurs at a specific location (x, y, z) in space at a precise instant 
in time (t), e.g. the explosion of a firecracker. 
 
     A Lorentz Transformation is the mathematical prescription for (properly) transforming the 
physics associated with an “event” as seen/observed in one IRF to another IRF.  
 
     e.g. Suppose we have {4-dimensional} space-time coordinates ( ), , ,x y z t  in IRF(S) for an 

event, “E”, and we want to know the space-time coordinates ( ), , ,x y z t′ ′ ′ ′ for the same event “E” 
in another IRF(S'). 
 
     Suppose IRF(S') is moving at a velocity ˆv vx=  relative to IRF(S). The axes of the two 
coordinate systems coincide at time t = 0, i.e. the instant when the two origins  and ϑ ϑ′ coincide, 
as shown in the figure below: 
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     The Situation as Seen by a Stationary Observer in IRF(S) at Time t, for Event “E”:  

 

At time t, origin ( )in Sϑ′ ′ will be a distance vt  from origin ( )in Sϑ .   
∴ x d vt= +  where d = distance from to A ϑ′ ′  at time t, when event “E” occurs, as 
measured/observed in IRF(S). 
 
If we carry out a Galilean transformation from IRF(S) to IRF(S'): 
 

d x x vt′= = −  ← no spatial contraction along direction of motion. 
y y′ =  
z z′ =  
t t′ =                 ← no time dilation. 

 

Where does the Galilean transformation go wrong? d x′=  {and t t′ = }. 
 

d  = distance from  to A ϑ′ ′  as measured in IRF(S) 
x' = distance from  to A ϑ′ ′  as measured in IRF(S') 

 

Factually: d x′≠  (because of (special) relativity) !!! 
 
Because  and A ϑ′ ′ are at rest in IRF(S'),  then from the perspective of an observer the lab frame 
IRF(S), x′  is the “moving meter stick”, which appears Lorentz-contracted in IRF(S).  
 

Thus: 
1d x
γ

′=   where:  
2

1
1

γ
β

≡
−

   and:  
v
c

β =  

 

Then: 
1d x x vt
γ

′= = −   or:  ( )x x vtγ′ = −  

 
     However, the same argument can be made from the perspective of an observer in IRF(S'), as 
shown in the figure below: 
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     The Situation as Seen by a Stationary Observer in IRF(S') at Time t′, for Event “E”:  

 
     If observers in IRF(S) and IRF(S') both start their clocks 0t t′= =  when the origins and ϑ ϑ′  
coincide, then at time t′  in IRF(S'), origin ϑ  will be a distance from vt ϑ′  and thus: x d vt′ ′ ′= −  
where d ′ = the distance from  and A ϑ′ ′  as measured in IRF(S') when even “E” occurs at time t′ . 
 
The times t (in IRF(S)) and t′  (in IRF(S')  represent the same physical instant at event “E”, 
viewed from/in these two IRF’s, respectively. 
 
  x = distance from  and A ϑ′  as measured in IRF(S). 
d ′ = distance from  and A ϑ′  as measured in IRF(S'). 
 
Because  and A ϑ′  are at rest in IRF(S),  here x is the “moving meter stick” which appears 
Lorentz-contracted in IRF(S'). 
 

Thus:  
1d x
γ

′ =    where:  
2

1
1

γ
β

≡
−

   and:  
v
c

β =  

 

Then:  
1x d vt x vt
γ

′ ′ ′ ′= − = −    or:  ( )x x vtγ ′ ′= +  

 
Time Dilation: 
 

We have: (1)  ( )x x vt x vtγ γ γ′ = − = −  

                (2)  ( )x x vt x vtγ γ γ′ ′= + = +  
 
Insert (1) into (2) and solve for t′  in terms of t and x: 
 

      ( ) 2 2x x vt x vt vt x vt vtγ γ γ γ γ γ γ γ γ′ ′ ′ ′= + = − + = − +  
 

Or: 2 2vt vt x xγ γ γ′ = − +   ⇐   divide both sides by vγ  
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( )2 1

t t x
v

γ
γ

γ

−
′ = −    ⇐   multiply both sides by c 

 

       
( ) ( )2 21 1cct ct x ct x

v
γ γ

γ γ
γ γβ

− −⎛ ⎞′ = − = −⎜ ⎟
⎝ ⎠

   where:  
v
c

β =   and:  
2

1
1

γ
β

=
−

,    2
2

1
1

γ
β

=
−

 

 

       

2

2 22

1 11 1
1 11ct ct x ct x

β
β ββ

γ γ
γβ γβ

⎛ ⎞−⎛ ⎞ −− ⎜ ⎟⎜ ⎟ − −−⎝ ⎠ ⎝ ⎠′ = − = −  

 

       

1

ct ctγ′ = −

1− 2 2

2 2 21 1
x ct x ct

β β
β β γγ γ

γβ γβ

⎛ ⎞+ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠= − = −

2β
γ β

( )x ct x ct xγ γβ γ β= − = −  

 

∴   ( )ct ct xγ β′ = −  
 
Likewise, if we insert (2) into (1) and {instead} solve for t in terms of and t x′ ′ , we obtain: 
 

       ( )ct ct xγ β′ ′= +  
 
Thus, we now have all the ingredients needed for specifying our Lorentz transformation to/from 
IRF(S)  IRF(S'). 
 
Lorentz Transformation from IRF(S) → IRF(S'):              Lorentz Transformation from IRF(S') → IRF(S): 
 

 

( ) ( )

( )

2

ˆ            in IRF
1                          = ,   

1

x x ct v vx S
vy y
c

z z

ct ct x

γ β

β γ
β

γ β

′ = − = +

′ = =
−

′ =

′ = −

    

( ) ( )

( )

2

ˆ           in IRF S
1                          = ,   

1

x x ct v vx
vy y
c

z z

ct ct x

γ β

β γ
β

γ β

′ ′ ′= + = −

′= =
−

′=

′ ′= +
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Griffiths Example 12.4:  Simultaneity, Synchronization and Time Dilation 
 

In lab frame IRF(S), suppose event “A” occurs at 0,  0A Ax t= =  and event “B” occurs at ,  0B Bx b t= = . 
The two events “A”  and “B”  are simultaneous in IRF(S), because both occur at 0A Bt t t= = = . 
 
However, events “A”  and “B”  are not simultaneous in IRF(S') {rest frame moving with relative 
velocity x̂β  to lab frame} because the Lorentz transformation from IRF(S) to IRF(S') gives: 
 

( )

( )

0

0

A A A

A A

A A

A A A

x x ct
y y
z z
ct ct x

γ β

γ β

′ = − =

′ =
′ =

′ = − =

   and:  

( )

( )

B B B

B B

B B

B B B

x x ct b
y y
z z
ct ct x b

γ β γ

γ β γβ

′ = − =

′ =
′ =

′ = − = −

 

 

     Thus, in IRF(S) {lab frame}:    0,  0A Ax t= =  and: ,  0B Bx b t=   =  
 

Whereas in IRF(S') {rest frame} : 0,  0A Ax t′ ′= =  but:  ,  B Bx b t b cγ γβ′ ′= = −  
 
Thus, we see that in IRF(S'), event “B”  occurred before event “A” !!!  
 

n.b. Event “A” occurs at 0 and 0A At t′= =  (simultaneously) in IRF(S) and IRF(S'), respectively, 
because the origins ( ) ( ) and S Sϑ ϑ′ ′  coincide (in space) at 0A Bt t t= = = . 
 

⇒  Clocks that are synchronized in one IRF(S) are not synchronized in another IRF(S'), as can be 
seen in the following figure: 

 
     Suppose in IRF(S) at the time t = 0, an observer in IRF(S) decides to examine all clocks in 
IRF ( )S ′ . He/she discovers that clocks in IRF(S') all read different times, due to each of their 
seven different x-locations in IRF(S), and will vary/differ according to: 
 

    
x xt t
c c

γ β γβ⎛ ⎞ ⎛ ⎞′ = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 {since t = 0 in IRF(S) for all seven x-points} 

 

⇒ For x < 0, clocks to the  left  of the origin ( )0x′ <  in IRF(S') are increasingly ahead  ( )0t′ > . 

⇒ For x > 0, clocks to the right of the origin ( )0x′ > in IRF(S') are increasingly behind ( )0t′ < . 
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⇒  Non-synchronization of clocks in an IRF(S') follows directly from the Lorentz transformation 
from (the synchronized) IRF(S) → IRF(S'). 
 
n.b. From the viewpoint of an observer in IRF(S'), if his/her clocks are synchronized in IRF(S')  
(e.g. all 0t′ = ) then it will be the clocks in IRF(S) that are non-synchronized: 
 

    
x xt t
c c

γ β γβ
′ ′⎛ ⎞ ⎛ ⎞′= + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  {since t'  = 0 in IRF(S')} 

 

⇒ For 0x′ < , clocks to the  left  of the origin ( )0x <  in IRF(S) are increasingly behind ( )0t < . 

⇒ For 0x′ > , clocks to the right of the origin ( )0x >  in IRF(S) are increasingly ahead   ( )0t > . 
 
     If observer in lab frame IRF(S) focuses his/her attention on a single clock in IRF(S'),  
e.g. the clock located at x a′ =  and watches it over a time interval tΔ , how much time  
elapses on the moving clock?  Here x′ is fixed in IRF(S')  and:  2 1t t tΔ ≡ − ,   2 1t t t′ ′ ′Δ ≡ − . 
 

           Then:  
xt t
c

γ β
′⎛ ⎞′= +⎜ ⎟

⎝ ⎠
                  x a′ =  is fixed in IRF(S') 

 

           Thus:  2 2
at t
c

γ β⎛ ⎞′= +⎜ ⎟
⎝ ⎠

 

            And:  1 1
at t
c

γ β⎛ ⎞′  = +⎜ ⎟
⎝ ⎠

 

 

              ∴    

2 1 2 1

2

a at t t t t
c c

at
c

γ β γ β

γ γβ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′Δ = − = + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞′     = + ⎜ ⎟
⎝ ⎠

1
at
c

γ γβ ⎛ ⎞′− − ⎜ ⎟
⎝ ⎠

( )

2 1

2 1

t t

t t t

γ γ

γ γ

′ ′= −

′ ′ ′     = − = Δ

 

 

              ⇒    t tγ ′Δ = Δ ,  or:  
1t t
γ

′Δ = Δ  

 
              Time Dilation Formulae 
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Griffiths Example 12.5:  Lorentz Contraction 
 
     Consider a stick moving with velocity ˆv vx= + .  
 

Its rest length (as measured in the moving frame IRF(S')) is: 2 1x x x′ ′ ′Δ ≡ −  
 
     An observer in lab frame IRF(S) wants to measure the length of this stick in his/her reference 
frame, e.g. at the same instant t = 0 in his/her IRF(S). Thus in IRF(S): 2 1x x xΔ ≡ −  at t = 0. 
 

Then in IRF(S'):  ( )2 2 2x x vt xγ γ′ = − =  

                ( )1 1 1x x vt xγ γ′  = −   =  
 

                     ∴   ( )2 1 2 1 2 1x x x x x x x xγ γ γ γ′ ′ ′Δ = − = − = − = Δ  
 

               ⇒    x xγ′Δ = Δ    or:   
1x x
γ

′Δ = Δ  

 
               Lorentz Contraction Formulae 
 
 

Example: Show invariant interval(s) are invariant/independent of inertial reference frame: 
 
For the most general case in space-time: 
 

In lab frame IRF(S):         Event 1 is at ( )1 1,x t ,  Event 2 is at  ( )2 2,x t , corresponding to: 
 

In moving frame IRF(S'): Event 1 is at ( )1 1,x t′ ′ ,  Event 2 is at  ( )2 2,x t′ ′ . 
 
Using the 1-D Lorentz transformations: 
 

1 1 1x x ctγ γβ′  = −   and: 2 2 2x x ctγ γβ′  = −   ⇒   ( ) ( ) ( )2 1 2 1 2 1x x x x x c t t x c tγ γβ γ γβ′ ′ ′Δ = −   = − − − = Δ − Δ  
 

1 1 1ct ct xγ γβ′  = −  and: 2 2 2ct ct xγ γβ′  = −  ⇒ ( ) ( ) ( )2 1 2 1 2 1c t c t t c t t x x c t xγ γβ γ γβ′ ′ ′Δ = −   = − − − = Δ − Δ  
 
Does the invariant interval I I′ = ??? 
 

( ) ( ) ( ) ( )
( ) ( )

2 2 2 22 2

22 2    2

I x c t x c t c t x

x xc t

γ β γ β

γ γ β

′ ′ ′≡ Δ − Δ = Δ − Δ − Δ − Δ

= Δ − Δ Δ ( ) ( ) ( )2 22 2 2 22c t c t xc tγ β γ γ β+ Δ − Δ + Δ Δ ( )

( )( ) ( )( ) ( )

( ) ( )

22 2

2 22 2 2 2 2 2

1 1
2 2

    1 1     but:   1 1

        Yes!!!

x

x c t

x c t I

γ β

γ β γ β γ β
= =

− Δ

= − Δ − − Δ = −

= Δ − Δ ≡

 

 
 
 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  15       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

22 

Griffiths Example 12.6:   Einstein’s 1-D Velocity Addition Rule 
 
     Suppose a particle moves a distance dx in a time dt in IRF(S).  
 

The speed of the particle as observed in lab frame IRF(S) is then:  
dxu
dt

=   (in IRF(S)) 

However, in IRF(S') it has moved a distance: ( )dx dx cdtγ β′ = −   in a time: 
dxdt dt
c

γ β⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

  

 
Thus, the speed of the particle as observed in the moving frame IRF(S') is therefore: 
 

                
dxu
dt

γ′
′ = =

′
( )dx cdtβ

γ

−

21 11

dx cdx cdt u c u vdt
uvdx dxdx udtdt c cc c dtc

ββ β
ββββ

−− − −
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − −− −− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

  (in IRF(S′)) 

 
Einstein’s 1-D Velocity Addition Rule for IRF(S′) moving with velocity ˆv vx=  relative to IRF(S): 

 

21

u vu uv
c

−′ =
−

 or:  1
u

u
u

β ββ
β β′
−′ =

−
  where: 

v
c

β = ,  u
u
c

β = ,  u
u
c

β ′

′
′ =  

 
If the situation is reversed for the two IRF’s, then the speed of the particle as observed in IRF(S) 
in terms of its speed as observed in IRF(S') is given by:   
 
Einstein’s 1-D Velocity Addition Rule for IRF(S) moving with velocity ˆv vx′ = −  relative to IRF(S′): 
 

       
21

u vu u v
c

′ +
= ′

+
   or:  

1
u

u
u

β ββ
β β

′

′

′ +
=

′−
 

 
n.b. Compare e.g. this last 1-D velocity addition result to that originally given at top of  p. 4 
above – they are the same/identical for ˆv vx= ± : 
 

train man
ground trainman

ground train man
ground train

21

v v
v

v v
c

±
=

⎡ ⎤⎛ ⎞⋅
±⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
 
 
 
 
 
 
 
 

n.b. IRF(S′) is moving with velocity 
ˆv vx=  relative to IRF(S) 
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Derivation of Lab Frame Decay Length and Decay Time Relations cγβ τ ′=  and τ γτ ′=  
for Unstable Relativistic Particles 

 
     In the rest frame IRF(S′) of an unstable particle (e.g. a muon), this particle is: 
 

Created at the IRF(S′) space-time coordinate:     ( ) ( )1 1 1 1, , ,   0,0,0,0  x y z t′ ′ ′ ′ =   

Decays  at the IRF(S′) space-time coordinate:     ( ) ( )2 2 2 2, , , 0,0,0,x y z t τ′ ′ ′ ′ ′=  
 

And:  2 1 0x x x′ ′ ′Δ ≡ − =   and:  2 1t t t τ′ ′ ′ ′Δ ≡ − = .   {n.b. the unstable particle is not moving in IRF(S′).} 
 
     In the lab frame IRF(S), if the unstable particle has velocity only in the x̂ -direction,  
i.e. ˆv vx= , then if the two reference frames IRF(S) and IRF(S′) coincide at 1 1 0t t′= = ,  
then in the lab frame IRF(S), this particle is: 
 

Created at the IRF(S) space-time coordinate:      ( ) ( )1 1 1 1, ,  ,   0,0,0,0  x y z t =  

Decays at the IRF(S) space-time coordinate:       ( ) ( )2 2 2 2, , ,  ,0,0,  x y z t τ=  
 

And:  2 1x x xΔ ≡ − =    and:  2 1t t t τΔ ≡ − = . 
 

Next, we need to use the Lorentz Transformation from IRF(S') → IRF(S): 
 

( ) ( )

( )

2

ˆ            in IRF S
1                          = ,   

1

x x ct v vx
vy y
c

z z

ct ct x

γ β

β γ
β

γ β

′ ′ ′= + = −

′= =
−

′=

′ ′= +

 

 
Then: 
 

( ) ( )2 2 2 0x x ct c cγ β γ β τ γβ τ′ ′ ′ ′= + = + =   and:  ( ) ( )2 2 2 0ct ct x c cγ β γ τ β γ τ′ ′ ′ ′= + = + =   or:  2t γτ ′=  

( ) ( )1 1 1    0 0   0x x ct cγ β γ β′ ′= + = + =         and:  ( ) ( )1 1 1   0 0   0ct ct x cγ β γ β′ ′= + = + =       or:  1 1 0t t′= =  
 

Thus in the lab frame IRF(S): 2 1x x x cγβ τ ′= Δ ≡ − =   and:  2 1t t tτ γτ ′= Δ ≡ − =  
 
∴ The decay length and decay time of an unstable particle in the lab frame IRF(S) are respectively: 

cγβ τ ′=  and: τ γτ ′= , where τ ′ = the decay time of the particle in its own rest frame IRF(S′). 
 

Where τ ′ = the decay time 
of the particle in IRF(S′) 

Where τ = the decay time 
and  = decay length of 

the particle in IRF(S) 


