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LECTURE NOTES 18 
 

RELATIVISTIC ELECTRODYNAMICS 
 
     Classical electrodynamics (Maxwell’s equations, the Lorentz force law, etc.) {unlike classical 
/ Newtonian mechanics} is already consistent with special relativity – i.e. is valid in any IRF. 
 
     However:  What one observer interprets (e.g.) as a purely electrical process in his/her IRF, 
another observer in a different IRF may interpret it (e.g.) as being due to purely magnetic 
phenomena, or a “mix” of electric and magnetic phenomena – but the particle motion(s), viewed 
/ seen / observed from different IRFs are related to each other via Lorentz transformations from 
one IRF to another (and vice versa)! 
 
    The problems / difficulties Lorentz and others had working in late 19th Century lay entirely 
with their use of non-relativistic, classical / Newtonian laws of mechanics in conjunction with 
the laws of electrodynamics.  Once this was corrected by Einstein, using relativistic mechanics 
with classical electrodynamics, these problems / difficulties were no longer encountered! 
 
The phenomenon of magnetism is a “smoking gun” for relativity!  
 
* Magnetism – arising from the motion of electric charges – the observer 

is not in the same IRF as that of the moving charge – thus magnetism is 
a consequence of the space-time nature of the universe that we live in  

   (Lorentz contraction / time dilation and Lorentz invariance x x Iμ
μΔ Δ = ). 

 
* “Magnetism” is not “just” associated with the phenomenon of electromagnetism, but ∀  four 

fundamental forces of nature: EM, strong, weak and gravity (and anything else!) – because 
space-time is the common “host” to all of the fundamental forces of nature – they all live / 
exist / co-exist in space-time, and all are subject to the laws of space-time – i.e. relativity! 

 
     We can e.g. calculate the “magnetic” force between a current-carrying “wire” and a moving 
(test) charge QT without ever invoking laws of magnetism (e.g. the Lorentz force law, the Biot-
Savart law, or Maxwell’s equations (e.g. Ampere’s law)) – just need electrostatics and relativity! 
 
     Suppose we have an infinitely long string of positive charges moving to right at speed v in the 
lab frame, IRF(S).  The spacing of the +ve charges is close enough together such that we can 
consider them as continuous / macroscopic line charge density qλ = A  (Coulombs/meter) as 
shown in the figure below: 
 
IRF(S):         x̂  

qλ = A  (> 0)  
I = λ v      ϑ   ẑ  

ˆv vz=
G  

    ŷ  
 
     Since the positive line charge density qλ = A  is moving to right with speed v, we have a 
positive filamentary / line current flowing to the right of magnitude I vλ=  (Amps). 

-gunB
G
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     Now suppose we also have a point test charge QT moving with velocity ˆu uz= +
G  (i.e. to the 

right) in IRF(S) {n.b. u u=
G  is not necessarily = v v=

G }. The test charge QT is a ⊥  distance ρ 
from the moving line charge / current as shown in the figure below. 
 
IRF(S):         x̂  

qλ = A  (> 0)  
I = λ v      ϑ   ẑ  

ˆv vz= +
G  

       ρ          ŷ  
     ˆu uz= +

G  
         QT  IRF(S') = rest frame of test charge  
 
     Let’s examine this situation as viewed by an observer in the rest frame of the test charge QT 
= the proper frame of the test charge QT.  Call this rest/proper frame = IRF(S'). 
 
     By Einstein’s “ordinary” velocity addition rule, the speed of +ve charges in the right-moving 
line charge density / filamentary line current as viewed by an observer in the rest frame IRF(S') 
of the test charge QT  {which is moving with velocity ˆu uz= +

G in the lab frame IRF(S)} is: 
 

       
21

v uv vu
c

−′ =
−

   with:  ˆv vz= +
G

  and:  ˆu uz= +
G

 

 
     However, in IRF(S'), due to Lorentz contraction the {infinitesimal} spacing between positive 
charges in the right-moving line charge / filamentary line current is also changed, which 
therefore changes the line charge density as observed in IRF(S'), relative to the lab IRF(S)! 
 

In IRF(S'):  0λ γ λ′ ′=   where: 
( )2 2

1 1
1 1 v c

γ
β

′ ≡ =
′− ′−

  and: 0 0qλ = A , qλ′ ′= A ⇒ 0 γ′ ′=A A  

 

Where 0 0qλ = A  ≡  linear charge density as observed in its own rest frame IRF(S0). 
 

Once the line charge density 0λ  starts moving at speed v in IRF(S), then: 0 →A A  and 0λ λ→ . 
 

In IRF(S):   0λ γλ=    where: 
( )2 2

1 1
1 1 v c

γ
β

≡ =
− −

  and: 0 0qλ = A , qλ = A  ⇒ 0 γ=A A  

 

But:  
( )2

1

1 v c
γ ′ ≡

′−
  and: 

21
v uv vu

c

−′ =
−

  where:  ˆv vz=
G

  and: ˆu uz=
G

 in IRF(S). 

  ∴   
( ) ( )

( )

( )
( ) ( )

2

2 2 2 22 2 2

2 22 2

2

1 1

11 1
1

c vu

v u c v u c vu c v u
c vu c vu

c

γ
−

′ = = =
− − − − −− −

⎛ ⎞ −−⎜ ⎟
⎝ ⎠
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  Or:  
( )

( ) ( )

2 2

22 22 2 2 2

1
1 1

1 1
u

uv
c uv uvc

cc v c u v u
c c

γ γγ

⎛ ⎞−⎜ ⎟− ⎛ ⎞⎝ ⎠′ = = = −⎜ ⎟
⎝ ⎠− − − ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

i  with: 
( )

( )

2

2

1

1

1

1
u

v c

u c

γ

γ

≡
−

≡
−

  

 

Thus: 21u
uv
c

γ γγ ⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

  with: ˆv vz=
G

 and: ˆu uz=
G

 

 
Thus the line charge density λ′  as observed in the rest frame of the test charge QT, i.e. in IRF(S') is: 
 

N0 0 02 2 21 1 1u u u
uv uv uv
c c c

λ

λ γ λ γγ λ γ γλ γ λ
≡

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′= = − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

Check:  If  u v=
G G

, does 0λ λ′ =  ?  
 

When u v=
G G

, the test charge QT is moving with the same velocity as the line charge, thus 
the test charge QT is in the rest frame of the line charge, i.e. IRF(S') coincides with IRF(S0)! 

 

If u v=
G G

  then:  u v=   and:  
( )2

1

1 v c
γ ≡

−
 = 

( )2

1

1
u

u c
γ ≡

−
 

 

Then: 

2

02

1

1u

u
cuv

c
λ γγ λ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞′ = − =⎜ ⎟
⎝ ⎠ 2

1 u
c

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0 0λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   YES! 0λ λ′ = . 

 
     Note that the line charge density λ  as observed in the lab frame {i.e. in IRF(S)}, in terms of 
the line charge density 0λ  in the rest frame of the line charge itself (i.e. IRF(S0)) is: 
 

 
( )

0 02

1

1 v c
λ γλ λ= =

−
  since: 

( )2

1

1 v c
γ ≡

−
 

 

Check: If  0u =
G

, does λ λ′ =  ? 
 

When 0u =
G

, the test charge QT is not moving in the lab frame IRF(S), thus IRF(S') 
coincides with IRF(S)! 

 

If 0u =
G

  then:  0u =   and:  
( )2

1 1
1

u
u c

γ ≡ =
−

 and thus: 21u
uv
c

λ γ λ λ⎡ ⎤⎛ ⎞′ = − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 Yes! 
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     An observer in the proper / rest frame IRF(S') of the test charge QT sees a radial ( )ρ̂  

electrostatic field in IRF(S') associated with the infinitely long line charge density qλ′ ′= A  of:  
 

( ) ˆ
2 o

E λρ ρ
πε ρ

′
′ =
G

  with 21u
uv
c

λ γ λ⎡ ⎤⎛ ⎞′ = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 and 0λ γλ=  

 

n.b.  ρ̂  is the radial unit vector ⊥  to ˆv vz=
G  {and ˆu uz=

G }.   
   ⇒  ρ  and ρ̂  are unaltered / unaffected by Lorentz boosts along the ẑ -direction. 
 

∴ In IRF(S'): ( ) 02 2

1 1 11 1  
2 2 2u u

o o o

uv uvE
c c

ρ λ γ λ γ γ λ
πε ρ πε ρ πε ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′= = − = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

 

              qλ = A  in IRF(S)     0 0qλ ≡ A  in IRF(S0) 
 

     In the special case when u v=
G G

  when IRF(S') ≡  IRF(S0) coincide →  the test charge QT  and 
the line charge 0λ are both at rest/in the same rest frame/same IRF: 
 

Then:  ( ) ( )0 0
1 1

2 2u v
o o

E Eρ λ λ ρ
πε ρ πε ρ=

′ ′= = ≡G G  ← Purely electrostatic field, 0 0qλ = A  

 

     n.b. Notice that when IRF(S') ≡  IRF(S0) coincide, that ( )0 0TF Q E u v= ⊥ =
G G G G :  

( ) ( )0 0 0
0

ˆ ˆ
2 2

T T
T

o o

Q Q qF Q Eρ ρ λ ρ ρ
πε ρ πε ρ

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠

G G
A

  where: 0
0

qλ =
A

  

 

     For the more general case where u v≠
G G

, the force acting on the test charge QT  in its own rest 
frame IRF(S') is: 
 

( ) ( ) 21
2 2

T T
TOT T TOT u

o o

Q Q uvF Q E
c

ρ ρ λ γ λ
πε ρ πε ρ

⎡ ⎤⎛ ⎞′ ′ ′= = = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 where: 

qλ =
A

 In IRF(S) 

 

Or: ( ) 22 2
T T

TOT u u
o o

Q Q uvF
c

ρ γ λ γ λ
πε ρ πε ρ

⎛ ⎞′ =   −  ⎜ ⎟
⎝ ⎠

  where: 
( )2

1

1
u

u c
γ ≡

−
 

Or: ( )
( ) ( )

22 2

1
2 21 1

T T
TOT

o o

Q Q uvF
cu c u c

λ λρ
πε ρ πε ρ

⎛ ⎞′ =   −  ⎜ ⎟
⎝ ⎠− −

 

 

But: I vλ≡  in IRF(S) {the lab frame} and 21 o oc ε μ= : 
 

Thus: ( )
( ) ( )2 22 21 1

oT T
TOT

o

IQ Q uF
u c u c

μλρ
πε ρ πρ

⎛ ⎞′ =   −  ⎜ ⎟
⎝ ⎠− −

 in IRF(S') 

 

Or: ( ) ( ) ( ) ( )TOT T T T TOTF Q E Q uB Q Eρ ρ ρ ρ′ ′ ′ ′= − =   and: ( ) ( ) ( )TOTE E uBρ ρ ρ′ ′ ′= −  
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Where:  ( )
( )2

1
2 1o

E
u c

λρ
πε ρ

′ =
−

  and:  ( )
( )22 1

o IB
u c

μρ
πρ

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠ −

 in IRF(S') !!! 

 

Vectorially, in the general IRF(S') / rest frame of the test charge QT, for u v≠
G G

 {necessarily} 
 

  ( ) ( )TOT T TOTF Q Eρ ρ′ ′=
G G

 ← n.b. in the radial / ρ̂  direction only. 
 

   ∴ ( ) ( ) ( )ˆ ˆTOT T TF Q E Q uBρ ρ ρ ρ ρ′ ′ ′= −
G

 
 

But: ˆu uz=
G

 ∴ ( ) ( ) ˆu B uBρ ρ ρ′ ′× = −
GG

 ⇒ ˆB B ϕ′ ′=
G

 then: ( )
ˆ

ˆ ˆˆuB z uB
ρ

ϕ ρ
=−

′ ′× = −�	
  

( ) ( ) ( ) ( )( )TOT T TOT T TF Q E Q E Q u Bρ ρ ρ ρ′ ′ ′ ′= = + ×
G G G GG

 ← Lorentz Force Law in IRF(S') !!! 

Where: 

( )
( )2

0

1 ˆ
2 1

ˆ ˆ
2 2

o

u u

o o

E
u c

λρ ρ
πε ρ

γ λ γγ λρ ρ
πε ρ πε ρ

′ =
−

           = =

G

  

( )
( )2

0

ˆ
2 1

ˆ ˆ
2 2

o

o o
u u

IB
u c

I I

μρ ϕ
πρ

μ μγ ϕ γγ ϕ
πρ πρ

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠ −

⎛ ⎞ ⎛ ⎞
          = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G

 in IRF(S') 

    0 0I vλ≡  0 0I v v Iλ γλ γ≡ = =  0 0u u uI v v Iγ λ γγ λ γγ′ ≡ = =  
 

  uI Iγ′ =    ẑ    in IRF(S') 

        ρ           ( ) ˆB ρ ϕ′
G

&  
 
 

( )
( ) ( )

( ) ( )

2 2

1ˆ ˆ
2 21 1

oT
TOT T

o

T T

repulsive attractive
force force

IQF Q u
u c u c

Q E Q u B

μλρ ρ ρ
πε ρ πρ

ρ ρ

⎛ ⎞′ =   −  ⎜ ⎟
⎝ ⎠− −

′ ′             = + ×

G

G GG
��	�
 ��	�


 in IRF(S') 

 

For like charges q λ= A and QT       If uG || vG   {remember: I vλ=
G G

} 
 
     Next, we Lorentz transform the IRF(S') results (defined in the rest / proper frame of QT)  
to the IRF(S) (lab frame), using the rule(s) for Lorentz transformation of forces: 
 

( )
( )2

1 ˆ
2 1o

E
u c

λρ ρ
πε ρ

′ =
−

G
  and: ( )

( )
2 2

ˆ
2 1o

v IB
c u c

λρ ϕ
πε ρ

′ =
−

G
 

( ) ( ) ( ) ( )TOT T TOT T TF Q E Q E Q u Bρ ρ ρ ρ′ ′ ′ ′= =   +  ×
G G G GG

 

( ) 2
ˆ ˆ1

2 2
T T

TOT u
o o

Q Q uvF
c

ρ λ ρ γ λρ
πε ρ πε ρ

⎡ ⎤⎛ ⎞′ ′= = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

G
  where:  

( )2

1

1
u

u c
γ =

−
 

The test charge QT is moving with velocity ˆu uz=
G  in the lab frame, IRF(S). 

Very Useful Table 
Cylindrical Coordinates: 
ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

z z
z z

z z

ρ ϕ ϕ ρ
ϕ ρ ϕ ρ

ρ ϕ ρ ϕ

× = × = −
× = × = −
× = × = −

 

ˆu uz=
G  in IRF(S) 

TQ  

n.b. Parallel currents attract 
each other!!! {2nd current is 

test charge QT !!!} 
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Note that {here}: ˆ ˆzu uz u z= =
G

  {i.e. zu u= , ˆu zG & }, note also that: TOTF u′ ⊥
G G

 and 0zF F′ ′= =& . 
 
Then the Lorentz transformation of the forces from IRF(S') to IRF(S): 
 

In IRF(S):  ( )21 1
u

F F u c F
γ⊥ ⊥ ⊥′ ′= = −

′
  where:  

( )2

1

1
u

u c
γ ′ ≡

−
   and:  F F ′=& &  (= 0) 

∴ In IRF(S): 
 

( ) ( )1 1 1ˆ
2

T
TOT TOT

u u o u

QF Fρ ρ ρλ ρ
γ γ πε γ

′ ′= = =
G G

2
T

u
o

Q γ
πε ρ 2

2 2 2

ˆ1

1ˆ ˆ ˆ1 but: and 
2 2 2

ˆ ˆ
2 2

T T T
o o

o o o

o
T T

o

uv
c

Q Q Q vuv u I v
c c c

IQ Q u

λρ

λ λλρ ρ ρ λ ε μ
πε ρ πε ρ πε

μλ ρ ρ
πε ρ πρ

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞             = − =   −  ∗        ≡      =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
             =   −  ∗⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

 

Again: ˆu uz=
G

,  ˆ ˆẑ ϕ ρ× = −  thus: ( ) ˆ
2

oIB μρ ϕ
πρ

=
G

 

 

∴ In IRF(S):   ( )

( ) ( )

ˆ ˆ
2 2

o
TOT T T

o

BE

IF Q Q u

ρρ

μλρ ρ ϕ
πε ρ πρ

≡≡

⎛ ⎞ ⎛ ⎞
=   +  ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
GG

G G

��	�
��	�

 

 

            ( ) ( ) ( ) ( )TOT T TOT T TF Q E Q E Q u Bρ ρ ρ ρ= =   +  ×
G G G GG

 ← Lorentz Force Law in IRF(S) !!! 
 

In IRF(S): ( ) ( )ˆ ˆ
2 2o o

q
E λρ ρ ρ

πε ρ πε ρ
= =

G A
        where: qλ = A  = ( )0 0qγλ γ= A  

( ) ( )ˆ ˆ ˆ
2 2 2

oo o q vI vB
μμ μ λρ ϕ ϕ ϕ

πρ πρ πρ
= = =

G A
  where: ( )I v q vλ= = A  = ( )0 0v q vγλ γ= A  

 
     Thus, an observer at rest in either the lab frame IRF(S) or the rest frame of the test charge IRF(S') 
will see both a static electric field {different in each IRF} and a static (but velocity-dependent) 
magnetic field {different in each IRF} due to the {infinitely long} filamentary line charge density 

qλ = A  that is moving with velocity ˆv vz=
G

 in IRF(S) = filamentary line current I vλ=  in IRF(S).  
 
The magnetic field arises simply from the relativistic effect(s) of electric charge in {relative} motion! 
 

For an observer in the rest frame IRF(S0) of the filamentary line charge density qλ = A , he/she will 
see only a static, radial electric field! 
 
 
 
 

Note the cancellation of uγ  factors !!! 



UIUC Physics 436 EM Fields & Sources II             Fall Semester, 2011         Lect. Notes  18       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

7

Let’s summarize these results by inertial reference frame: 
 

IRF(S)    IRF(S')     IRF(S0) 
Laboratory Frame  Rest Frame of Test Charge  Rest Frame of Line Charge 
 

    Moving with ˆ ˆzu uz u z= =
G

 in lab  Moving with ˆ ˆzv vz v z= =
G

 in lab 
 

    ( )21
v uv
uv c
−′ =

−
 

 

( )2

1

1 v c
γ =

−
  21u

uv
c

γ γγ ⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 
( )2

1

1
u

u c
γ =

−
 

 

( )0 0q qλ γλ γ= = =A A  0 021u
uvq
c

λ γ λ γγ λ⎡ ⎤⎛ ⎞′ ′ ′= = = − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
A  0 0qλ = A  

 

0 γ=A A    0 0 21u
uv
c

γ γγ ⎡ ⎤⎛ ⎞′ ′= = − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
A A A  0A  

 

( ) 0ˆ ˆ
2 2o o

E γλλρ ρ ρ
πε ρ πε ρ

= =
G

 ( ) 0ˆ ˆ
2 2

u u

o o

E γ λ γγ λρ ρ ρ
πε ρ πε ρ

′ = =
G

  ( ) 0
0 ˆ

2 o

E λρ ρ
πε ρ

=
G

 

 

0 0I v v Iλ γλ γ≡ = =  0 0I vλ≡  0 0u u u uI v I v Iγ λ γ γγ λ γγ′ ≡ = = =  No current in IRF(S0) 
 

( ) 0ˆ ˆ
2 2

o oI IB μ μ γρ ϕ ϕ
πρ πρ

= =
G

    ( ) 0ˆ ˆ ˆ
2 2 2

o o u o uI I IB μ μ γ μ γγρ ϕ ϕ ϕ
πρ πρ πρ

′
′ = = =
G

 No B-field in IRF(S0) 

 

TOT T TF Q E Q u B=   +  ×
G G GG

   ≠  TOT T TF Q E Q u B′ ′ ′=   +  ×
G G GG

 ≠  ( ) ( )0 0TOT TF Q Eρ ρ′ =
G G

 
 
     We see that the observed line charge densities λ and λ′ as seen in the lab frame IRF(S) and 
the test charge rest frame IRF(S'), respectively are larger by factors of γ  and γ ′ respectively 
compared to the line charge density as observed in the rest frame IRF(S0) of the line charge 
density itself. This difference arises due to the effect of the {longitudinal} Lorentz contraction of 
the moving line charge density 0λ , as viewed from the lab frame IRF(S) and the rest frame 
IRF(S') of the test charge, respectively.  
 
     Because of this, the electric fields as seen in the lab frame IRF(S) and rest frame of the test 
charge IRF(S') are larger by factors of γ  and uγγ , respectively than that observed in the rest 
frame IRF(S0) of the line charge density itself, hence the magnitude of the electrostatic forces are 
larger by these same amounts in their respective IRF’s, and are thus {in general} not equal. 
 
     An important point here is that in all 3 inertial reference frames, what we call the electric field 
in each IRF is such that a.) they are all oriented in the same direction {here, the radial direction 
and b.) they all have the same functional dependence (here, ~ 1 ρ ), differing only by γ -factors 
from each other. 

Speed of line 
charge in IRF(S') 

n.b. In the rest 
frame IRF(S') of 

the test charge QT, 
the Lorentz force 

TOTF ′
G

 uses the 

velocity uG of the 
test charge as 

observed in the lab 
frame IRF(S). 



UIUC Physics 436 EM Fields & Sources II             Fall Semester, 2011         Lect. Notes  18       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

8 

     In the rest frame IRF(S0) of the line charge density 0λ  the electromagnetic field seen there is 
purely electrostatic, oriented in the radial ( ρ̂ ) direction, whereas in the lab frame IRF(S) and the 
rest frame of the test charge IRF(S'), the electromagnetic field observed in each of these two 
reference frames is a combination of a static, radial electric field and a static, azimuthal magnetic 
field. 
 
    The “appearance” of azimuthal magnetic fields in the lab frame IRF(S) and the rest frame of 
the test charge IRF(S')  is due to the relativistic effects associated with the motion of the line 
charge density relative to an observer in the lab frame IRF(S) and/or the rest frame of the test 
charge, IRF(S').  
 

     We say that the relative motion of the electric line charge density 0λ γλ=  {as viewed by an 
observer in the lab frame IRF(S)} constitutes an electric current 0I v vλ γλ≡ =  {as viewed by that 
same observer in the lab frame IRF(S)}. 
 

     We then connect / associate the “appearance” of azimuthal magnetic fields B
G

 and B′
G

in the 
lab frame IRF(S) and the rest frame of the test charge IRF(S'), respectively with the existence of 
the electric currents I and I ′  as observed in their respective inertial reference frames.  
The B

G
-field in each IRF is linearly proportional to {the magnitude of} the electric current | |I

G
 as 

observed in that IRF, i.e. | | ~ | | |B I vλ   = |
G G G

.  
 

     Another interesting/important aspect of the magnetic fields B
G

 that “appear” in IRF(S) and/or 
IRF(S') is that they are mutually ⊥ to both E

G
.and. I vλ=

G G  in that IRF. 
 
     Note that we could instead refer to electric currents I alternatively and equivalently, 
exclusively and explicitly as to what they are truly are – the {relative} motion(s) of charges qvG , 
line charge densities vλ G , surface charge densities vσ G  and/or volume charge densities vρ G . 
 
    Then we also wouldn’t have to explicitly use the descriptor “magnetic” field to describe the 
resulting component of the electromagnetic field that does arise from the relative motion(s) of 
electric charge(s) as viewed by an observer who is not in the rest frame of these electric 
charge(s). We could call it something else instead – e.g. “the relativity field”.  
 
     We humans call this field “the magnetic field” largely for historical inertia reasons. Magnetic 
fields were discovered centuries before relativity and space-time were finally understood; thus 
we simply keep calling this field “the magnetic field”. The magnetic field is truly and simply one 
component of the overall electromagnetic field that is associated with a physical situation, and 
one which only arises whenever that physical situation is viewed by an observer whose IRF(S) is 
not coincident with the rest frame IRF(S0) of the electric charge(s) that are present in that 
particular physical situation. 
 
     The “traditional” way of equivalently saying the above is: “Magnetic fields are only produced 
when electrical currents are present”. 
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Physical Electric Currents: 
      It is important to understand that there exist different kinds of physical electric currents. 
 

• A “bare” filamentary line charge density qλ = A  e.g. moving with uniform velocity ˆv vz=
G

 

with respect to the lab frame IRF(S), creates a filamentary line current ˆI vzλ=
G

 in the lab 
frame IRF(S). This filamentary line current is not equivalent to a physical electrical current 
flowing e.g. in an “infinitesimally-thin” physical wire at rest in the lab frame IRF(S). For an 
observer in {any} IRF the “bare” filamentary line charge density has a net / overall electric 
charge. An observer at rest in the lab frame IRF(S) sees both a static, non-zero radial electric 
field and a static, non-zero azimuthal magnetic field arising from the “bare” filamentary line 
charge density qλ = A  and “bare” filamentary line current ˆI vzλ=

G
 respectively, whereas an 

observer at rest in IRF(S0) of the filamentary line charge density 0 0qλ = A  sees no magnetic 
field – only a static, radial electric field! 

 

• In a physical wire (e.g. a copper wire, made up of copper atoms with “free” conduction 
electrons), the “free” negatively-charged electrons move / drift through the macroscopic 
volume of the copper wire e.g. with {mean} drift velocity ˆD Dv v z= −

G
 and constitute a 

physical electric current wire wire
phys De e

I J A n ev A− −⊥ ⊥= = −
G GG Gi i  as viewed by an observer in the lab 

frame IRF(S). Microscopically, the copper wire is a 3-D “matrix” (or lattice) of bound / fixed 
copper atoms with a “gas” of “free” conduction electrons drifting through it.  In the lab frame 
IRF(S), the copper atoms are at rest. Note importantly {also} that in the lab IRF(S), the 
physical current-carrying copper wire has no net electric charge – because there is one “free” 
conduction electron associated with each copper atom of the copper wire.  Thus, an observer 
at rest in the lab frame IRF(S) sees no net electric field but does see a static, non-zero 
azimuthal magnetic field arising from the “free” conduction electron volume current density 

De e
J n ev− −= −
G G

, whereas an observer at rest in IRF(S0) “free” conduction electron charge 

density 0 0
e e

n eρ − −=  sees no magnetic field associated with the “free” conduction electrons, but 
does see {the same!} non-zero azimuthal magnetic field that is associated with volume 
current density Cu Cu DJ n ev= +

G G
 of the 3-D lattice of copper atoms that are moving with 

{relative} velocity ˆD Dv v z= +
G

 to an observer at rest in IRF(S0) !!! 
 

• In semiconducting materials (e.g. silicon, germanium, graphite, diamond, SiC, gallium, …) 
electrical conduction occurs either by mobile “drift” electrons and/or “holes” {= the absence 
of an electron). The number densities of electrons and/or “holes” are both typically 
� number density of semiconductor atoms and depend on details associated with the 
condensed matter physics of the semiconductor. In general holee

n n− ≠ and both are strong 
(exponential) functions of {absolute} temperature. The drift velocities of electrons and holes 
are not in general the same. Thus, in the lab frame IRF(S), an observer will, in general see 
static electric field contributions arising from both electron and hole charge density 
distributions as well as magnetic field contributions from both electron and hole current 
densities. An observer at rest either in IRF(S0) of the electrons or at rest IRF(S0

*) of the holes 
will again see static electric field contributions from both electrons and holes, but a B-field 
contribution only from holes (electrons), respectively. 
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• The situation of a “bare” filamentary line charge qλ = A  moving with {relative} velocity 
ˆv vz=

G
 in IRF(S), producing a filamentary line current I vλ=  in IRF(S) can be physically 

realised e.g. as “beam” of  +ve current of protons (+q) {or e.g. +ve ions, or e.g. –ve electrons} 
flowing in a vacuum (e.g. made via laser photo-ionized hydrogen, argon, or thermionic 
emission of electrons, respectively): 

 
Vacuum Chamber (Lab IRF(S)) 

 
 
 
          → ˆv vz=

G  
 
       Protons/ions moving with constant velocity 
       ˆv vz=

G  in drift region. 
 
       Protons/ions accelerated here, gain kinetic 
       energy ( ) 21kin eE e V m cγ= Δ = −  
 
 
     Having discussed the EM field(s) and EM force(s) acting on a test charge QT associated with a 
single filamentary line charge / filamentary line current as observed in different IRF’s,  we now 
discuss the problem of two counter-moving, opposite-charged filamentary line charges / 
filamentary line currents superimposed on top of each other. 
 
     Consider two opposite-charged filamentary line charges (both infinitely long) that are initially 
stationary in the lab frame IRF(S).  One initially stationary filamentary line charge has negative 
charge per unit length 0 0qλ

−
≡ − A  and the other initially stationary filamentary line charge has 

positive charge per unit length 0 0qλ
+

= + A .  The two line charges are then set in motion parallel 
to / along their axes (in the ẑ -direction).  The negative line charge moves to the left 
( ẑ− direction) with velocity ˆv vz− = −

G
 in the lab frame IRF(S), and the positive line charge moves 

to the right (+ ẑ direction) with velocity ˆv vz+ = +
G

 in the lab frame IRF(S) {i.e. it has the same 
exact speed, but moves in the opposite direction to that of the first line charge}.  
 
     The two counter-moving filamentary line charges are superimposed on top of each other / 
coaxial with each other, but we draw them as slightly displaced (transverse to their motion) for 
clarity’s sake in the figure below, as seen by an observer at rest in the lab IRF(S): 
            x̂  
In IRF(S): ˆv vz− = −

G    qλ− = − A      IRF(S) 
           ϑ        ẑ  

qλ+ = + A    ˆv vz+ = +
G              ŷ  

 

     In IRF(S), the moving filamentary line charges have charge per unit length qλ± = ± A , whereas 
in the respective rest frame(s) IRF(S±) of the filamentary line charges, we have 0 0 0qλ λ

±
= ± ≡ ±A . 

 



UIUC Physics 436 EM Fields & Sources II             Fall Semester, 2011         Lect. Notes  18       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

11

Because of the respective motions of the line charge densities: ˆv vz± = ±
G

  

Then: 0λ γλ± = ±  where: 
( ) ( )2 2

1 1

1 1v c v c
γ

±

= =
− −

 

 

     In the lab frame IRF(S): A negative current I vλ− − −= flowing to the left is superimposed on a 
positive current I vλ+ + += flowing to the right, as shown in the figure below: 
 
                  x̂  
In IRF(S): I vλ− − −=      ˆv vz− = −

G  
 

I vλ+ + +=      ˆv vz+ = +
G               ϑ            ẑ  

                 ŷ  
 

     Using the principle of linear superposition, the net/total current {as observed in the lab frame 
IRF(S)} is: 
 

TOTI I I v vλ λ+ − + + − −= + = +   but:  λ λ− += −   and: v v− += −  
 

    ∴ ( )( ) 2TOTI v v v v vλ λ λ λ λ+ + + + + + + + + += + − − = + =  flowing to the right (i.e. in ẑ+  direction) 
 

    ⇒  2 2TOTI v vλ λ+ += =  flowing in the ẑ -direction: with: qλ λ+ ≡ + = + A , ˆv vz+ = +
G

 
ẑ   and:  qλ λ− ≡ − = − A ,  ˆv vz− = −

G
 

 
     Note that because we have superimposed these two counter-moving, filamentary oppositely-
charged line-charges / counter-moving, filamentary line currents, the net electric charge QTOT  
{as observed in the lab frame IRF(S)} is zero because: 
 

0TOTλ λ λ λ λ+ −= + = + − =  in the lab frame IRF(S). 
 

     If QTOT = 0 in IRF(S), then we also know that the net electric field ( ) 0TOTE r =
G G  in the lab 

frame IRF(S) due to these two counter-moving, superimposed oppositely-charged filamentary 
line charges/line currents in IRF(S). 
 
     Now additionally suppose that we also have a test charge QT moving with velocity ˆu uz=

G  
(i.e. to the right) in IRF(S).  As before, uG  is not necessarily = ˆv vz=

G , the velocity of right 
moving line charge.  The test charge QT is a ⊥  distance ρ from the superimposed opposite-
charged, opposite-moving filamentary line charges and λ λ+ − : 
            x̂  
In IRF(S): qλ− = − A         ˆv vz− = −

G  I vλ− − −=        IRF(S) 
        2TOTI vλ=   ϑ        ẑ  

qλ+ = + A         ˆv vz+ = +
G         I vλ+ + +=              ŷ  

          ρ       
       ˆu uz= +

G  
 TQ
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    Let’s examine the situation as viewed by an observer in IRF(S') – i.e. the rest frame of the test 
charge QT. There are four distinct cases to consider for the 1-D Einstein velocity addition rule: 
 

a.) In the lab frame IRF(S),  the test charge QT  is moving with velocity  ˆu uz= +
G

, 
the +ve filamentary line charge density λ λ+ = + is moving with velocity ˆv vz+ = +

G
. 

 
Lab Frame IRF(S): 

 

21

v uv vu
c

+

−′ =
−

 =   

    
 
 

b.) In the lab frame IRF(S), the test charge QT  is moving with velocity   ˆu uz= +
G

,  
the −ve filamentary line charge density λ λ− = − is moving with velocity ˆv vz− = −

G
. 

 
Lab Frame IRF(S): 

 

21

v uv vu
c

−
− −′ =

+
 =   

    
 
 

c.) In the lab frame IRF(S),  the test charge QT  is moving with velocity  ˆu uz= −
G

, 
the +ve filamentary line charge density λ λ+ = + is moving with velocity ˆv vz+ = +

G
. 

 
Lab Frame IRF(S): 

 

21

v uv vu
c

+

+′ =
+

 =   

    
 
 

d.) In the lab frame IRF(S), the test charge QT  is moving with velocity   ˆu uz= −
G

, 
the −ve filamentary line charge density λ λ− = − is moving with velocity ˆv vz− = −

G
. 

 
Lab Frame IRF(S): 

 

21

v uv vu
c

−
− +′ =

−
 =   

    

ϑ  

x̂  

ŷ  
ẑ  

qλ λ+ = + = + A  ˆv vz+ = +
G  

ˆu uz= +
G  

ρ  

  IRF( ) rest frame of test chargeTQ S ′ =  

ẑ
Relative 

speed of +λ 
viewed from 

IRF(S')

ϑ  

x̂  

ŷ  
ẑ  

qλ λ− = − = − A  ˆv vz− = −
G  

ˆu uz= +
G  

ρ  

  IRF( ) rest frame of test chargeTQ S ′ =  

ẑ
Relative 

speed of −λ 
viewed from 

IRF(S') 

ϑ  

x̂  

ŷ  
ẑ  

qλ λ+ = + = + A  ˆv vz+ = +
G  

ˆu uz= −
G  

ρ  

  IRF( ) rest frame of test chargeTQ S ′ =  

ẑ Relative 
speed of +λ 
viewed from 

IRF(S')

ϑ  

x̂  

ŷ  
ẑ  

qλ λ− = − = − A  ˆv vz− = −
G  

ˆu uz= −
G  

ρ  

  IRF( ) rest frame of test chargeTQ S ′ =  

ẑ
Relative 

speed of −λ 
viewed from 

IRF(S') 

n.b. both uG  and vG  reversed 
relative to case a.) above 

n.b. only uG  reversed 
relative to case a.) above 

n.b. only vG  reversed 
relative to case a.) above 
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The above four relative 1-D speed formulae can be more compactly written as two specific cases: 
 

i.)  For ˆu uz= +
G

:  
21

v uv vu
c

±

± −′ =
∓

       
2

    
1

v uv vu
c

±′ =
∓

∓
 

ii.) For ˆu uz= −
G

:  
21

v uv vu
c

±
± +′ =

±
       

2

1-D general:

1

v uv v u
c

−′ =
−

G GG G Gi  

 
Thus, for an observer in IRF(S') (= rest frame of QT) moving to the right with velocity ˆu uz= +

G
 

in IRF(S) we see that v v− +′ ′> . 
 

Because v v− +′ ′>  for an observer in IRF(S'), the Lorentz contraction of the –ve filamentary line 
charge density qλ− = − A  will be more “severe” than that associated with the +ve filamentary 
line charge density qλ+ = + A . 

In IRF(S'): 0λ γ λ± ±′ ′= ±  where:  
( )2

1

1 v c
γ ±

±

′ ≡
′−

 

 And:  0 0qλ± = A  = filamentary line charge densities in their own rest frames. 
 

But: 
21

v uv vu
c

±
± −′ =
∓

  for: 
ˆ
ˆ

v vz
u uz

= +
= +

G
G  in IRF(S) 

Thus: 

( ) ( )
( )

( )
( ) ( )

( )

2

2 2 2 2 22 2 2

2 22 2

2

2

4

1 1 1

11 1 1
1

2

c vu

v u c v uv c vu c v u
c c vu c vu

c

c vu

c vuc

γ ±

±

′ = = = =
′ ± − ± −⎛ ⎞ − ± −− − −⎜ ⎟

⎝ ⎠ ⎛ ⎞
⎜ ⎟
⎝ ⎠

     =

∓

∓
∓∓

∓

∓ ( )2 2 2 2 2vu c v vuc+ − ±

( )
( )

( )
( )( )

2

2 24 2 2 2 22 2

2 2

22 22 2 2 2

1
1 1

1 1
u

c vu

c c v c u vuc u

vu
c vu uvc

cc v c u v u
c c

γγ

=
− − +−

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠     = = = ⎜ ⎟

⎝ ⎠− − ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∓

∓∓
i ∓

 

 

   Or: 21u
uv
c

γ γγ±
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠
∓   where: 

2

1

1 v
c

γ ≡
⎛ ⎞− ⎜ ⎟
⎝ ⎠

  and: 
2

1

1
u

u
c

γ ≡
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

n.b. Equation 12.76, p. 523 in Griffith’s 
book is correct, however the proper use of 
his equation explicitly requires placing a 
− (minus) sign in front of the formula for 
the v−′  case. Note that (obviously) u must 
also be explicitly signed in his formula for 
the ˆu uz= −

G case. Then his formula agrees 
with the 4 that are explicitly given here. 
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Then in IRF(S'): ( )0 0 02 2 21 1 1u u u
uv uv uv
c c c

λ γ λ γγ λ γ γλ γ λ± ±
⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′= ± = ± = ± = ±⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∓ ∓ ∓  

 

where: 
( )2

1

1
u

u c
γ =

−
  and: 

( )2

1

1 v c
γ ≡

−
 

 

But:  0λ γλ± = ±  = charge per unit length in the lab frame, IRF(S). 
 

∴In IRF(S'): 
2

2 2

1
1

1
u

uv
uv c
c u

c

λ γ λ λ+

⎡ ⎤⎛ ⎞⎢ ⎥−⎜ ⎟⎛ ⎞ ⎢ ⎥⎝ ⎠′ = + − =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 and: 
2

2 2

1
1

1
u

uv
uv c
c u

c

λ γ λ λ−

⎡ ⎤⎛ ⎞⎢ ⎥+⎜ ⎟⎛ ⎞ ⎢ ⎥⎝ ⎠′ = − + = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
            x̂  
In IRF(S'): ˆv v z−′ ′= −

G  I vλ− − −′ ′ ′=  qλ−′ ′= − A      IRF(S') 
        2TOTI vλ′ ′ ′=   ϑ        ẑ  

qλ+′ ′= + A  I vλ+ + +′ ′ ′=  ˆv v z+′ ′= +
G              ŷ  

          ρ       
       ˆu uz= +

G  {in lab frame IRF(S)} 
 
 
∴ In the rest frame IRF(S') of the test charge QT, the total/net line charge density is: TOTλ λ λ+ −′ ′ ′= + . 
 

In IRF(S'): 2 21 1TOT u u u
uv uv
c c

λ λ λ γ λ γ λ γ λ+ −
⎛ ⎞ ⎛ ⎞′ ′ ′= + = − − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ 2u u

uv
c

γ λ γ λ⎛ ⎞− −⎜ ⎟
⎝ ⎠ 2u

uv
c

γ λ ⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

( )
( )

2

2 2
2 2 0!!!

1
TOT u

uv cuv
c u c

λ γ λ λ⎛ ⎞′ = − = − ≠  ⎜ ⎟
⎝ ⎠ −

 

 

⇒  In IRF(S') {= rest frame of the test charge QT (which moves with velocity ˆu uz=
G  in IRF(S))} 

     ∃  a net –ve line charge density 
( )

( )

2

2

/
2

1
TOT

uv c

u c
λ λ′ = −

−
 !!!  

      Whereas in the lab frame IRF(S), ∃  no net line charge, i.e. 0TOTλ =  in IRF(S) !!! 
 

⇒  The non-zero TOTλ′  observed in IRF(S') (= rest frame of QT) is due to / arises from the     
       unequal Lorentz contraction of the +ve vs. –ve filamentary line charge densities, as observed  
       in IRF(S') (= rest frame of QT). 
 

⇒  A current-carrying “wire” that is electrically neutral ( 0TOTλ = ) in one IRF(S) will NOT be so    
      in another IRF(S') !!!  It will have a net electrical charge in IRF(S') ≠ IRF(S) !!! 
 

QT 
At rest in IRF(S') 
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Thus in IRF(S'), where there exists a net –ve line charge density of:     
( )

( )

2

2

/
2

1
TOT

uv c

u c
λ λ′ = −

−
 

a corresponding (radial-inward) electric field exists: ( ) ( )
( )

2

2

/
ˆ ˆ

2 1
TOT

o o

uv c
E

u c

λ λρ ρ ρ
πε ρ πε ρ

′
′ = = −

−

G
. 

 
Thus an observer in the rest frame IRF(S') of the test charge QT “sees” a radial-inward (i.e. 
attractive) electrostatic force acting on the test charge QT (for QT > 0) of: 
 

( ) ( ) ˆ
2

TOT
T T

o

F Q E Q λρ ρ ρ
πε ρ

′
′ ′= =
G G

 

 

But: ( )
2

ˆ
2

TOT

o

E λρ ρ
πε ρ

′
′ = = −
G ( )2/

2

uv cλ

( )
( )

( )

2

2 2

/1 1ˆ ˆ
1 1oo

uv c

u c u c

λ
ρ ρ

πε ρπε ρ
= −

− −
 and: 2

1
o oc

ε μ=  

 

   ∴ ( ) oE
λ ε

ρ′ = −
G 0

o

uvμ

π ε ( ) ( )2 2

1 ˆ ˆ
1 1

o v u

u c u c

μ λρ ρ
πρρ

= −
− −

  But:  2I vλ=  in lab IRF(S). 

 

∴ In IRF(S') (= rest frame of QT):  ( )
( )2

ˆ
2 1

o I uE
u c

μρ ρ
πρ

′ = −
−

G
 ⇐  n.b. points radially inward! 

 

Therefore equivalently, the force ( ) ( )TF Q Eρ ρ′ ′=
G G

 acting on QT in its own rest frame IRF(S') is: 
 

( ) ( )
( )2

ˆ
2 1
o T

T
Q I uF Q E

u c

μρ ρ ρ
πρ

′ ′= = −
−

G G
  ⇐  

 
This force is none other than the magnetic Lorentz force acting on QT: 
 

In IRF(S') (= rest frame of QT): ( ) ( )( )TF Q u Bρ ρ′ ′= ×
G GG

 
 

 
( ) ( )

ˆ ˆˆ{ }
E u B
z

ρ ρ
ϕ ρ

′ ′= ×

× = −

G GG
 ( )

( )2

1 ˆ ˆ
2 21

o o
u

I IB
u c

μ μρ ϕ γ ϕ
πρ πρ

′ = =
−

G
  where:  

( )2

1

1
u

u c
γ ≡

−
  

 

     If ∃  a force F ′
G

 in IRF(S') (where QT is at rest), then there must also be a force F
G

in the lab 
frame IRF(S) {the laws of physics are the same in all inertial reference frames…}. 
 

     We can Lorentz transform the force in IRF(S') to obtain the force F
G

in the lab frame IRF(S), 
where we already know that 0TOTλ =  in the lab frame IRF(S). 
 
Again, since QT is at rest in IRF(S') and ( ) ˆ~F ρ ρ′

G
 {i.e. ˆ u uz⊥ =

G  in IRF(S)} 
 

n.b. Lorentz-invariant !!! 
Valid in any/all IRF’s 

Where ˆu uz= +
G

 = velocity of 
test charge QT in IRF(S) 

n.b. QT is attracted 
towards wire if QT > 0. 

Parallel currents 
attract each other !!! 
{The test charge QT is 

the 2nd current !!!} 
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Then in IRF(S): 
1

u

F F
γ⊥ ⊥′=

′
 and: F F ′=& &  (= 0 here)  

     where: 
( )2

1

1
u

u c
γ ′ ≡

−
 =  

 

Then in IRF(S):  ( )21 1
u

F F u c F
γ⊥ ⊥ ⊥′ ′= = −

′
  and: F F ′=& &  (= 0 here)  

 

∴ In the lab frame IRF(S): 
( ) ( ) ( )21TF Q E u cρ ρ= = −
G G

( )22 1

o TQ I u

u c

μ
πρ

∗ −
−

( )

ˆ

ˆ
2
o T

T
Q I u Q E

ρ

μ ρ ρ
πρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          = − =
G

 

 

In the lab frame IRF(S): The test charge QT is moving with velocity ˆu uz= +
G  in IRF(S) 

 

An observer in lab frame IRF(S) “sees” a force ( ) ( )TF Q Eρ ρ=
G G

 acting on moving test charge QT. 
The “effective” electric field in lab frame IRF(S) is:  
 

( ) ( )ˆ ˆ
2 2

o oI IE u u u Bμ μρ ρ ϕ ρ
πρ πρ

⎡ ⎤
= − = × = ×⎢ ⎥

⎣ ⎦

G GG G
   where:  ( ) ˆ

2
oIB μρ ϕ
πρ

=
G

 

 
     From the perspective of a stationary observer in the lab frame IRF(S), where the net linear 
charge density 0TOTλ = , no true electrostatic field exists. However, a “magnetic”, velocity-

dependent attractive force ( )F ρ
G

 does indeed exist, acting radially inward for a +ve test charge 
QT , when it is moving with velocity ˆu uz= +

G  in IRF(S). 
 

∴ In the lab frame IRF(S): ( ) ( ) ( )ˆ
2

o
T T T

IF Q E Q u Q u Bμρ ρ ρ ρ
πρ

⎡ ⎤
= = − ∗ = ×⎢ ⎥

⎣ ⎦

G G GG
 where: 2I vλ=  

 

     Suppose the test charge QT  was instead moving with velocity ˆu uz= −
G

 in IRF(S). What 
would the resulting force ( )F ρ

G
 be in the lab frame IRF(S)? One can explicitly go through all of 

the above for this case; one will discover that one {simply} needs to change u u→ −  in all of the 
above formulae…  
            x̂  
In IRF(S'): qλ−′ ′= − A         ˆv v z−′ ′= −

G  I vλ− − −′ ′ ′=       IRF(S') 
        2TOTI vλ′ ′ ′=   ϑ        ẑ  

qλ+′ ′= + A    ˆv v z+′ ′= +
G       I vλ+ + +′ ′ ′=              ŷ  

          ρ       
       ˆu uz= −

G  {in lab frame IRF(S)} 
 
 

and ⊥ &  refer to  and ⊥ &  to 
uG - the Lorentz boost direction 

Lorentz factor to transform from IRF(S') (QT at rest) to lab frame 
IRF(S).  IRF(S) moves with velocity u−

G
with respect to IRF(S'). 

Radial E-field in 
lab frame IRF(S) 

QT 
At rest in IRF(S') 
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     An observer in the rest frame IRF(S') of the test charge QT “sees” a net +ve line charge 

density 
( )

( )

2

2 2
2 2

1
TOT u

uv cuv
c u c

λ γ λ λ⎛ ⎞′ = + = +⎜ ⎟
⎝ ⎠ −

 when the test charge QT is moving with velocity 

ˆu uz= −
G

 in the lab frame IRF(S).   

A corresponding (radial-outward) electric field thus exists in IRF(S'): ( ) ˆ
2

TOT

o

E λρ ρ
πε ρ

′
′ =
G

.  

 
The observer in IRF(S')  also “sees” a radial-outward electrostatic force acting on the test charge 

QT of: ( ) ( ) ˆ
2

TOT
T T

o

F Q E Q λρ ρ ρ
πε ρ

′
′ ′= =
G G

 

 
     Transforming these results to the lab frame IRF(S) in the same manner as we have already done 
once {see above}, an observer in lab frame IRF(S) “sees” a net force ( ) ( )TF Q Eρ ρ=

G G
 acting on 

the moving test charge QT. The “effective” electric field in the lab frame IRF(S) is:  
 

( ) ( )ˆ ˆ
2 2

o oI IE u u u Bμ μρ ρ ϕ ρ
πρ πρ

⎡ ⎤
= + = × = ×⎢ ⎥

⎣ ⎦

G GG G
   where:  ( ) ˆ

2
oIB μρ ϕ
πρ

=
G

  

 
which corresponds to a lab-frame force acting on the test charge QT of:   
 

( ) ( ) ( ) ˆ
2

o
T T T

IF Q E Q u B Q u μρ ρ ρ ϕ
πρ

⎡ ⎤
= = × = × ⎢ ⎥

⎣ ⎦

G G GG G
 where: 2I vλ=  

 
There are two limiting cases that are of special / particular interest to us: 
 

a.) When the lab velocity ˆu uz= +
G

 of the test charge QT is equal to the lab velocity ˆv vz+ = +
G

 of 
the +ve filamentary line charge density, i.e.  ˆu uz= +

G
 = ˆv vz+ = +
G

, then the rest frame IRF(S') of 
the test charge QT coincides with the rest frame IRF(S+) of the +ve filamentary line charge 
density 0 0qλ

+
= + A . Note that this corresponds to the true lab frame {i.e. the rest frame of 

copper atoms} of a physical copper wire carrying a steady {conventional} current I !!! 
 

b.) When the lab velocity ˆu uz= −
G

 of the test charge QT is equal to the lab velocity ˆv vz− = −
G

 of 
the −ve filamentary line charge density, i.e. ˆu uz= −

G
 = ˆv vz− = −
G

, then the rest frame IRF(S') of 
the test charge QT coincides with the rest frame IRF(S−) of the −ve filamentary line charge 
density 0 0qλ

−
= − A . Note that this corresponds to the rest frame of the electrons flowing in a 

physical copper wire carrying a steady {conventional} current I !!! 
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     For situation a.), when the test charge QT ′s lab velocity ˆu uz= +
G

 = ˆv vz+ = +
G

 lab velocity of 
the +ve filamentary line charge density in IRF(S), then an observer in IRF(S') = IRF(S+) will 
“see” a linear superposition of two electrostatic fields: a pure, radial-outward electrostatic field 

( )0E ρ′
G

 associated with the stationary/non-moving +ve filamentary line charge density 

0 0 0qλ λ
+

= + = + A  and a {lab velocity-dependent} radial-inward electric field ( )vE ρ′
G

 {i.e. an 

azimuthal magnetic field} associated with the ( )22 1v v β−′ = − +  left-moving −ve filamentary 

line charge density of  ( ) ( )2 2 2
01 1λ γ λ γ β λ γ β λ− − −′ ′= = − + = − + , which in turn corresponds to a 

filamentary line current of ( )21I vλ γ β− − −′ ′ ′= = + + ( )22 1vλ β⎡ ⎤ +⎢ ⎥⎣ ⎦
2

02 2v vγλ γ λ⎡ ⎤ = + = +⎢ ⎥⎣ ⎦  
 

Thus in IRF(S') = IRF(S+) with ˆu uz= +
G

 = ˆv vz+ = +
G

: 

( ) 0
0 ˆ

2 o

E λρ ρ
πε ρ

′ = +
G

  and: ( ) ( ) ( )2 2 2
01 1

ˆ ˆ ˆ
2 2 2v

o o o

E
γ β λ γ β λλρ ρ ρ ρ

πε ρ πε ρ πε ρ
−

+ +′
′ = = − = −
G

 

 
The net/total electrostatic field observed in IRF(S') = IRF(S+) is then:  
 

( ) ( ) ( ) ( ) ( )

( )

2 22 2
000

0

2 2 2 2 2 2 2 2 2
0 0 0 0 0

1 11
ˆ ˆ ˆ

2 2 2

1 2ˆ ˆ ˆ ˆ ˆ
2 2 2 2 2

TOT v
o o o

o o o o o

E E E
λ γ βγ β λλρ ρ ρ ρ ρ ρ

πε ρ πε ρ πε ρ

γ λ γ β λ γ β λ γ β λ γ β λρ ρ ρ ρ ρ
πε ρ πε ρ πε ρ πε ρ πε ρ

⎡ ⎤− ++ ⎣ ⎦′ ′ ′= + = + − =

−
= − = − − = −

G G G

 

 
     Notice the (amazing!) partial cancellation of the pure radial-outward electric field 

( )0E ρ′
G

(due to the static +ve filamentary line charge density) with a portion of the velocity-

dependent radial inward electric field ( )vE ρ′
G

(due to the –ve left-moving filamentary line current 
density) that is associated with the terms in the numerator of this equation: 
 

( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
2

11 1 1 1 1
1

1

γ β γ γ β γ γ β γ β
β

⎛ ⎞
− + = − + = − − = − −⎜ ⎟−⎝ ⎠

=
2 1β− + 2

2 2 2 2 2 2 2 2 2 2
2 2 2

1 1
βγ β γ β γ β γ β γ β

β β
⎛ ⎞

− = − − = − − = −⎜ ⎟− −⎝ ⎠

 

 

The net electric field is thus: ( ) 2ˆ
2

TOT

o

E λρ ρ
πε ρ

′
′ = = −
G 2

2
γβ λ 2 2

2
ˆ ˆ ˆ

o oo

v
c

γβ λ γ λρ ρ ρ
πε ρ πε ρπε ρ

= − = −   

 
     Thus an observer in the rest frame IRF(S') = IRF(S+) of the test charge QT / rest frame of the 
+ve filamentary line charge density “sees” a radial-inward/attractive electrostatic force (for QT > 
0) acting on the test charge QT of: 
 

( ) ( )
2 2

2
ˆ ˆ ˆ

2
TOT

T T T T
o o o

vF Q E Q Q Q
c

λ γβ λ γ λρ ρ ρ ρ ρ
πε ρ πε ρ πε ρ

′
′ ′= = = − = −
G G

  But:  2

1
o oc

ε μ=    
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∴ In IRF(S') = IRF(S+):  ( )
2

ˆo vE μ γλρ ρ
πρ

′ = −
G

  But:  2I vλ=  in the lab IRF(S). 

 

∴ In IRF(S') = IRF(S+):  ( ) ˆ
2

o IE vμ γρ ρ
πρ

′ = −
G

 ⇐  n.b. points radially inward! 

 

Therefore equivalently, the force ( ) ( )TF Q Eρ ρ′ ′=
G G

 acting on QT in its own rest frame IRF(S') is: 
 

( ) ( ) ˆ
2
o T

T
Q IF Q E vμ γρ ρ ρ
πρ

′ ′= = −
G G

  ⇐  

 
Again, this force is none other than the magnetic Lorentz force acting on QT: 
 

In IRF(S') = IRF(S+): ( ) ( )( )TF Q v Bρ ρ′ ′= ×
G GG

 
 

 
( ) ( )

ˆ ˆˆ{ }
E v B
z

ρ ρ
ϕ ρ

′ ′= ×

× = −

G GG
 ( ) ˆ ˆ

2 2
o oI IB μ γ μρ ϕ γ ϕ
πρ πρ

′ = =
G

  where:  
( )2 2

1 1
1 1 v c

γ
β

≡ =
− −

  

 

     If ∃  a force F ′
G

 in IRF(S') = IRF(S+) (where QT and +ve filamentary line charge density are at 
rest), then there must also be a force F

G
in the lab frame IRF(S) {the laws of physics are the same 

in all inertial reference frames…}. 
 

     We again Lorentz transform the force F ′
G

in IRF(S') = IRF(S+) to obtain the force F
G

in the lab 
frame IRF(S), where we already know that 0TOTλ =  in the lab frame IRF(S). Again, since QT is at 

rest in IRF(S') and ( ) ˆ~F ρ ρ′
G

 {i.e. ˆ u uz⊥ =
G  in IRF(S)} 

 

Then in IRF(S): 
1F F
γ⊥ ⊥′=

′
 and: F F ′=& &  (= 0 here)  

     where: 
( )2

1

1 v c
γ γ′ ≡ =

−
 =  

 

Then in IRF(S):  ( )21 1F F v c F
γ⊥ ⊥ ⊥′ ′= = −   and: F F ′=& &  (= 0 here)  

 

∴ In the lab frame IRF(S): ( ) ( ) ˆ
2

o
T

IF Q E vμρ ρ ρ
πρ

= = −
G G

 

 

In the lab frame IRF(S): The test charge QT is moving with velocity ˆu uz= +
G

 = ˆv vz= +
G

 in IRF(S) 
 

An observer in lab frame IRF(S) “sees” a force ( ) ( )TF Q Eρ ρ=
G G

 acting on moving test charge QT.  
 
 
 

Where ˆu uz= +
G

 = ˆv vz= +
G

 = velocity of test charge 
QT  and +ve filamentary line charge density in IRF(S) 

n.b. QT is attracted 
towards wire if QT > 0. 

and ⊥ &  refer to  and ⊥ &  to 
uG - the Lorentz boost direction 

Lorentz factor to transform from IRF(S') (QT at rest) to lab frame 
IRF(S).  IRF(S) moves with velocity u−

G
with respect to IRF(S').

Radial E-field in 
lab frame IRF(S) 

Parallel currents 
attract each other !!! 
{The test charge QT is 

the 2nd current !!!} 
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The “effective” electric field seen by a test charge QT moving with velocity ˆu uz= +
G

 = ˆv vz= +
G

 
in the lab frame IRF(S) is: 
 

( ) ( )ˆ ˆ
2 2

o oI IE v v v Bμ μρ ρ ϕ ρ
πρ πρ

⎡ ⎤
= − = × = ×⎢ ⎥

⎣ ⎦

G GG G
   where:  ( ) ˆ

2
oIB μρ ϕ
πρ

=
G

 and: 2I vλ= . 

 
     From the perspective of a stationary observer in the lab frame IRF(S), where the net linear 
charge density 0TOTλ = , no true electrostatic field exists. However, a “magnetic”, velocity-

dependent attractive force ( )F ρ
G

 does indeed exist, acting radially inward for a +ve test charge 
QT, when it is moving with velocity ˆu uz= +

G
 = ˆv vz= +
G

 in IRF(S). 
 

∴ In the lab frame IRF(S): ( ) ( ) ( )ˆ
2

o
T T T

IF Q E Q v Q v Bμρ ρ ρ ρ
πρ

⎡ ⎤
= = − ∗ = ×⎢ ⎥

⎣ ⎦

G G GG
 where: 2I vλ=  

 

For situation b.), when the test charge QT  lab velocity ˆu uz= −
G

 = ˆv vz− = −
G

 lab velocity of the 
−ve filamentary line charge density in IRF(S), then an observer in IRF(S') = IRF(S−) will “see” a 
linear superposition of two electrostatic fields: a pure, radial-inward electrostatic field ( )0E ρ′

G
 

associated with the stationary/non-moving −ve filamentary line charge density 
0 0 0qλ λ

−
= − = − A  and a {lab velocity-dependent} radial-outward electric field ( )vE ρ′

G
 {i.e. an 

azimuthal magnetic field} associated with the ( )22 1v v β+′ = + +  right-moving +ve filamentary 

line charge density of  ( ) ( )2 2 2
01 1λ γ λ γ β λ γ β λ+ + +′ ′= = + + = + + , which in turn corresponds to a 

filamentary line current of ( )21I vλ γ β+ + +′ ′ ′= = + + ( )22 1vλ β⎡ ⎤ +⎢ ⎥⎣ ⎦
2

02 2v vγλ γ λ⎡ ⎤ = + = +⎢ ⎥⎣ ⎦  
 

Thus in IRF(S') = IRF(S−) with ˆu uz= −
G

 = ˆv vz− = −
G

: 

( ) 0
0 ˆ

2 o

E λρ ρ
πε ρ

′ = −
G

  and: ( ) ( ) ( )2 2 2
01 1

ˆ ˆ ˆ
2 2 2v

o o o

E
γ β λ γ β λλρ ρ ρ ρ

πε ρ πε ρ πε ρ
+

+ +′
′ = = + = +
G

 

 

The net/total electrostatic field observed in IRF(S') = IRF(S−) is then:  
 

( ) ( ) ( ) ( ) ( )

( )

2 22 2
000

0

2 2 2 2 2 2 2 2 2
0 0 0 0 0

1 11
ˆ ˆ ˆ

2 2 2

1 2ˆ ˆ ˆ ˆ ˆ
2 2 2 2 2

TOT v
o o o

o o o o o

E E E
λ γ βγ β λλρ ρ ρ ρ ρ ρ

πε ρ πε ρ πε ρ

γ λ γ β λ γ β λ γ β λ γ β λρ ρ ρ ρ ρ
πε ρ πε ρ πε ρ πε ρ πε ρ

⎡ ⎤− ++ ⎣ ⎦′ ′ ′= + = − + = −

−
= − + = + + = +

G G G

 

 
     Notice again the (amazing!) partial cancellation of the pure radial-outward electric field 

( )0E ρ′
G

(due to the static −ve filamentary line charge density) with a portion of the velocity-

dependent radial inward electric field ( )vE ρ′
G

(due to the +ve right-moving filamentary line 
current density) that is associated with the terms in the numerator of this equation: 
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( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
2

11 1 1 1 1
1

1

γ β γ γ β γ γ β γ β
β

⎛ ⎞
− + + = − + + = − − + == − +⎜ ⎟−⎝ ⎠

= −
2 1β− + 2

2 2 2 2 2 2 2 2 2 2
2 2 2

1 1
βγ β γ β γ β γ β γ β

β β
⎛ ⎞

+ = + + = + + = +⎜ ⎟− −⎝ ⎠

 

 

The net electric field is thus: ( ) 2ˆ
2

TOT

o

E λρ ρ
πε ρ

′
′ = = +
G 2

2
γβ λ 2 2

2
ˆ ˆ ˆ

o oo

v
c

γβ λ γ λρ ρ ρ
πε ρ πε ρπε ρ

= + = +   

 

     Thus an observer in the rest frame IRF(S') = IRF(S−) of the test charge QT / rest frame of the 
−ve filamentary line charge density “sees” a radial-outward/repulsive electrostatic force (for QT > 
0) acting on the test charge QT of: 
 

( ) ( )
2 2

2
ˆ ˆ ˆ

2
TOT

T T T T
o o o

vF Q E Q Q Q
c

λ γβ λ γ λρ ρ ρ ρ ρ
πε ρ πε ρ πε ρ

′
′ ′= = = + = +
G G

  But:  2

1
o oc

ε μ=    

∴ In IRF(S') = IRF(S−):  ( )
2

ˆo vE μ γλρ ρ
πρ

′ = +
G

  But:  2I vλ=  in the lab IRF(S). 

 

∴ In IRF(S') = IRF(S−):  ( ) ˆ
2

o IE vμ γρ ρ
πρ

′ = +
G

 ⇐  n.b. points radially outward! 

 

Therefore equivalently, the force ( ) ( )TF Q Eρ ρ′ ′=
G G

 acting on QT in its own rest frame IRF(S') is: 
 

( ) ( ) ˆ
2
o T

T
Q IF Q E vμ γρ ρ ρ
πρ

′ ′= = +
G G

  ⇐  

 
Again, this force is none other than the magnetic Lorentz force acting on QT: 
 

In IRF(S') = IRF(S−): ( ) ( )( )TF Q v Bρ ρ′ ′= ×
G GG

 
 

 
( ) ( )

ˆ ˆˆ{ }
E v B
z

ρ ρ
ϕ ρ

′ ′= ×

× = −

G GG
 ( ) ˆ ˆ

2 2
o oI IB μ γ μρ ϕ γ ϕ
πρ πρ

′ = =
G

  where:  
( )2 2

1 1
1 1 v c

γ
β

≡ =
− −

  

 

     If ∃  a force F ′
G

 in IRF(S') = IRF(S−) (where QT and +ve filamentary line charge density are at 
rest), then there must also be a force F

G
in the lab frame IRF(S) {the laws of physics are the same 

in all inertial reference frames…}. 
 

     We again Lorentz transform the force F ′
G

in IRF(S') = IRF(S−) to obtain the force F
G

in the lab 
frame IRF(S), where we already know that 0TOTλ =  in the lab frame IRF(S). Again, since QT is at 

rest in IRF(S') and ( ) ˆ~F ρ ρ′
G

 {i.e. ˆ u uz⊥ =
G  in IRF(S)} 

 
 
 

Where ˆu uz= −
G

 = ˆv vz= −
G

 = velocity of test charge 
QT and −ve filamentary line charge density in IRF(S)

n.b. QT is repelled from 
wire if QT > 0. 

Opposite currents 
repell each other !!! 

{The test charge QT is 
the 2nd current !!!} 
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Then in IRF(S): 
1F F
γ⊥ ⊥′=

′
 and: F F ′=& &  (= 0 here)  

     where: 
( )2

1

1 v c
γ γ′ ≡ =

−
 =  

 

Then in IRF(S):  ( )21 1F F v c F
γ⊥ ⊥ ⊥′ ′= = −   and: F F ′=& &  (= 0 here)  

 

∴ In the lab frame IRF(S): ( ) ( ) ˆ
2

o
T

IF Q E vμρ ρ ρ
πρ

= = +
G G

 

 

In the lab frame IRF(S): The test charge QT is moving with velocity ˆu uz= −
G

 = ˆv vz= −
G

 in IRF(S) 
 

An observer in lab frame IRF(S) “sees” a force ( ) ( )TF Q Eρ ρ=
G G

 acting on moving test charge QT. 
The “effective” electric field in lab frame IRF(S) is: 
 

( ) ( )ˆ ˆ
2 2

o oI IE v v v Bμ μρ ρ ϕ ρ
πρ πρ

⎡ ⎤
= + = × = ×⎢ ⎥

⎣ ⎦

G GG G
   where:  ( ) ˆ

2
oIB μρ ϕ
πρ

=
G

 and: 2I vλ= . 

 
     From the perspective of a stationary observer in the lab frame IRF(S), where the net linear 
charge density 0TOTλ = , no net electrostatic field exists. However, a “magnetic”, velocity-

dependent repulsive force ( )F ρ
G

 does indeed exist, acting radially outward for a +ve test charge 
QT , when it is moving with velocity ˆu uz= −

G
 = ˆv vz= −
G

 in IRF(S). 
 

∴ In the lab frame IRF(S): ( ) ( ) ( )ˆ
2

o
T T T

IF Q E Q v Q v Bμρ ρ ρ ρ
πρ

⎡ ⎤
= = + ∗ = ×⎢ ⎥

⎣ ⎦

G G GG
 where: 2I vλ=  

 
 
     Before leaving this subject, we wish to point out some additional fascinating aspects of the 
physics: 
 
     As mentioned above, situation a.) corresponds to the true lab frame of a physical wire 
carrying steady {conventional} current I where the lattice of {e.g.} copper atoms of the physical 
wire are at rest in IRF(S+), whereas situation b.) corresponds to the rest frame IRF(S−) of the drift 
electrons in the physical wire. What we have been calling the “lab” frame IRF(S) is the inertial 
reference frame which is intermediate/“splits-the-difference” between these two “extremes”, 
with right- (left-) moving +ve (−ve) filamentary line charge densities ( )λ λ+ − moving with 

velocities (in IRF(S)) of ˆv vz+ = +
G  ( )ˆv vz− = −

G  respectively. 
 
 
 
 
 
 

and ⊥ &  refer to  and ⊥ &  to 
uG - the Lorentz boost direction 

Lorentz factor to transform from IRF(S') (QT at rest) to lab frame 
IRF(S).  IRF(S) moves with velocity u−

G
with respect to IRF(S').

Radial E-field in 
lab frame IRF(S) 
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     In situation a.), the rest frame IRF(S+) of the e.g. copper atoms of a physical filamentary wire, 
an observer in IRF(S+) “sees” both a static, radial-outward electric field (due to the static 0λ+ ) 
and a velocity-dependent radial-inward electric field (due to the moving λ−′ ). In IRF(S+): 
 

( ) ( ) ( ) ( )

( ) ( )

( )

2 2
00

0

2 2 2
0 0 0

2

2
0 1

2

1
ˆ ˆ

2 2

ˆ ˆ ˆ              
2 2 2

1
ˆ ˆ                  

2 2

                              

TOT v
o o

o o o

o

o

S

E E E

v
c

v I

E

γ β λλρ ρ ρ ρ ρ
πε ρ πε ρ

λ γ λ γ λρ ρ ρ
πε ρ πε ρ πε ρ

γ λ μρ ϕ
πε ρ πρ

ρ
+

−

+
′ ′ ′= + = + −

= + − −

−
′= − + ×

′= +

G G G

G

���	��
���	��

G

( )      Sv B ρ
+

′×
GG

 with: 

( )
( )

2

2

2 2
0

2
0

1   and:

1

    1

2

2
2

o
oc

I v v

v I
I v I

μ
ε

λ γ β λ

γ β λ

λ γλ

γ λ γ
λ γ

−

− − −

−

=

′ = − +

= − +

′ ′ ′= = +

= + =
′= =

 

 
The EM field energy density, Poynting’s vector, linear momentum density and angular 
momentum density as seen by an observer in IRF(S+) respectively are: 
 

( ) ( ) ( ) ( ) ( )
4 4 2 2 2

0
IRF( ) 2 2 2 2 2

1 1
2 2 8 32

o
S o S S S S

o o

I vu E E B B
c

γ β λ μρ ε ρ ρ ρ ρ
μ π ε ρ π ρ+ + + + +

−′′ ′ ′ ′= + = =
G G G G

i i  (Joules) 

( ) ( ) ( ) ( ) ( ) ( )2 2
0 0

IRF( ) 2 2 2 2

ˆ

1 11 ˆ ˆ ˆ
8 8S S S

o o oz

I I
S E B z

γ λ γ λ
ρ ρ ρ ρ ϕ

μ π ε ρ π ε ρ+ + +

− −

=−

′ ′− −
′ ′= × = − × = −

G G G
��	�
  (Watts/m2) 

( ) ( ) ( )2
0

IRF( ) IRF( ) 2 2

1
ˆ

8
EM

S o o S o

I
S z

γ λ
ρ ε μ ρ μ

π ρ+ +

−′−
℘ = = −

GG
 (kg/m2-s) 

( ) ( ) ( ) ( ) ( )2 2
0 0

IRF( ) IRF( ) 2 2

ˆ

1 1
ˆ ˆˆ

8 8
EM EM

S S o o

I I
z

ϕ

γ λ γ λ
ρ ρ ρ μ ρ μ ϕ

π ρ π ρ+ +

− −

+

′ ′− −
= ×℘ = × − = +

G GGA ��	�
  (kg/m-s) 

 

     In situation b.), the rest frame IRF(S−) of the drift electrons in a physical filamentary wire, an 
observer in IRF(S−) also “sees” both a static, radial-outward electric field (due to the static 0λ− ) 
and a velocity-dependent radial-outward electric field (due to the moving λ+′ ). In IRF(S−): 
 

( ) ( ) ( ) ( )

( ) ( )

( )

2 2
00

0

2 2 2
0 0 0

2

2
0 1

2

1
ˆ ˆ

2 2

ˆ ˆ ˆ              
2 2 2

1
ˆ ˆ                  

2 2

                              

TOT v
o o

o o o

o

o

S

E E E

v
c

v I

E

γ β λλρ ρ ρ ρ ρ
πε ρ πε ρ

λ γ λ γ λρ ρ ρ
πε ρ πε ρ πε ρ

γ λ μρ ϕ
πε ρ πρ

ρ
−

+

+
′ ′ ′= + = − +

= − + +

−
′= + + ×

′= +

G G G

G

���	��
���	��

G

( )      Sv B ρ
−

′×
GG

 with: 

( )
( )

2

2

2 2
0

2
0

1   and:

1

    1

2

2
2

o
oc

I v v

v I
I v I

μ
ε

λ γ β λ

γ β λ

λ γλ

γ λ γ
λ γ

+

+ + +

−

=

′ = + +

= + +

′ ′ ′= = +

= + =
′= =
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The EM field energy density, Poynting’s vector, linear momentum density and angular 
momentum density as seen by an observer in IRF(S−) respectively are: 
 

( ) ( ) ( ) ( ) ( )
4 4 2 2 2

0
IRF( ) 2 2 2 2 2

1 1
2 2 8 32

o
S o S S S S

o o

I vu E E B B
c

γ β λ μρ ε ρ ρ ρ ρ
μ π ε ρ π ρ− − − − −

+′′ ′ ′ ′= + = =
G G G G

i i  (Joules) 

( ) ( ) ( ) ( ) ( ) ( )2 2
0 0

IRF( ) 2 2 2 2

ˆ

1 11 ˆ ˆ ˆ
8 8S S S

o o oz

I I
S E B z

γ λ γ λ
ρ ρ ρ ρ ϕ

μ π ε ρ π ε ρ− − −

+ +

=+

′ ′− −
′ ′= × = + × = +

G G G
��	�
  (Watts/m2) 

( ) ( ) ( )2
0

IRF( ) IRF( ) 2 2

1
ˆ

8
EM

S o o S o

I
S z

γ λ
ρ ε μ ρ μ

π ρ− −

+′−
℘ = = +

GG
 (kg/m2-s) 

( ) ( ) ( ) ( ) ( )2 2
0 0

IRF( ) IRF( ) 2 2

ˆ

1 1
ˆ ˆˆ

8 8
EM EM

S S o o

I I
z

ϕ

γ λ γ λ
ρ ρ ρ μ ρ μ ϕ

π ρ π ρ− −

+ +

−

′ ′− −
= ×℘ = × + = −

G GGA ��	�
  (kg/m-s) 

 

     We see that observers in IRF(S+) vs. IRF(S−) “see” the same energy densities. Observers in 
IRF(S+) vs. IRF(S−) “see” the respective magnitudes of Poynting’s vector, the EM linear 
momentum and angular momentum densities as being the same, however the directions of these 
3 vector quantities in IRF(S−) are opposite to what they are to an observer in IRF(S+) !!! 
 
     An observer in IRF(S+) “sees” that both the EM energy flow and EM linear momentum 
density are pointing in the ẑ−  direction, which physically makes sense because the negative 
electrons {moving in the ẑ−  direction} are the only objects in motion in IRF(S+). Thus, an 
observer in IRF(S+) concludes that the EM power/energy present in the EM fields associated with 
the infinitely long pair of filamentary wires in IRF(S+) is supplied from the negative terminal of 
the battery (or power supply) driving the circuit. In IRF(S+), an observer “sees” the EM field 
angular momentum density pointing in the ϕ̂+  direction. 
 

     Contrast this with an observer in IRF(S−) who “sees” that both the EM energy flow and EM 
linear momentum density are pointing in the ẑ+  direction, which physically makes sense 
because the positive-charged copper atoms {moving in the ẑ+  direction} are the only objects in 
motion in IRF(S−). Thus, an observer in IRF(S−) concludes that the EM power/energy present in 
the EM fields associated with the infinitely long pair of filamentary wires in IRF(S−) is supplied 
from the positive terminal of the battery (or power supply) driving the circuit. In IRF(S−), an 
observer “sees” the EM field angular momentum density pointing in the ϕ̂−  direction. 
 

     Let’s now compare these two sets of results for IRF(S−) and IRF(S−) with those obtained in 
our “original” rest frame, IRF(S), where both filamentary line current densities are in motion. 
In our “original” lab frame IRF(S), the net line charge density is 0TOTλ λ λ λ λ+ −= + = + − =  
where 0qλ λ γλ+ ≡ + = + = +A , 0qλ λ γλ− ≡ − = − = −A  and ˆv vz+ = +

G
, ˆv vz− = −
G

, however the net 
current in IRF(S) is non-zero: 02 2TOTI v v v v v vλ λ λ λ λ γλ+ + − −= + = + = =  flowing in the ẑ+ -
direction. Thus, to an observer in IRF(S) there is no net electrostatic field, only a non-zero static 
magnetic field. 
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In IRF(S): 
 

   ( ) 0ˆ ˆ ˆ
2 2 2o o o

E γλλ λρ ρ ρ ρ
πε ρ πε ρ πε ρ

+
+ = = + = +
G

 and: ( ) 0ˆ ˆ ˆ
2 2 2o o o

E γλλ λρ ρ ρ ρ
πε ρ πε ρ πε ρ

−
− = = − = −
G

 

 
The filamentary line currents in IRF(S) are: 0I v vλ γλ+ + +≡ = +   and: 0I v vλ γλ− − −≡ = + , thus: 
I I I+ −= =  and: 02 2 2TOTI I I I v vλ γλ+ −= + = = = . 

 

The magnetic fields associated with the currents I+  and I− are equal, and both point in the ϕ̂+ -

direction: ( ) ˆ
2

oIB μρ ϕ
πρ

+
+ = +
G

 and: ( ) ˆ
2

oIB μρ ϕ
πρ

−
− = +
G

 

 
Then: 

( ) ( ) ( ) ( ) ( ) ( )

( )

IRF( ) IRF( )

0

2 2

2 2
ˆ ˆ ˆˆ                 

2

S S
TOT TOT

o TOT

o o

E E E v B v B v B

I v vv z
c c

ρ ρ ρ ρ ρ ρ

μ λ λϕ ϕ ρ
πρ πε ρ πε ρ

+ − − +

=

= + + × + × = ×

= × = × = −

G G G G G GG G G
���	��


G
 

 
Thus, an observer in IRF(S) “sees” a non-zero static magnetic field:  
 

( ) ( ) ( )IRF( ) 2ˆ ˆ ˆ ˆ
2 2 2 2

S o o o o TOT
TOT

I I I IB B B μ μ μ μρ ρ ρ ϕ ϕ ϕ ϕ
πρ πρ πρ πρ

+ −
+ −= + = + + = + = +

G G G
 

 

which is equivalent to an electric field seen by a test charge QT moving with velocityvG in IRF(S) of: 
 

( ) ( ) ( ) ( ) ( )
2 2

IRF( )
2 2

ˆ ˆ ˆˆ
2

S o TOT
TOT TOT

o o

I v vE v B v B v B v z
c c

μ λ λρ ρ ρ ρ ϕ ϕ ρ
πρ πε ρ πε ρ+ −= × + × = × = × = × = −

G G G GG G G G
 

 
which gives rise to an attractive, radial-inward force acting on the test charge QT (for QT > 0) of: 
 

( ) ( ) ( )
2 2

IRF( ) IRF( )
2 2

ˆ ˆ ˆˆ
2

S S o TOT
TOT T TOT T TOT T T T

o o

I v vF Q E Q v B Q v Q z Q
c c

μ λ λρ ρ ϕ ϕ ρ
πρ πε ρ πε ρ

= = × = × = × = −
G G GG G

 

 
Thus, in IRF(S), even though there is no net TOTλ , a non-zero current 2 0TOTI vλ= ≠ exists. 
 
If QT > 0 and ˆv vz= +

G  {or QT < 0 and ˆv vz= −
G } the {radial-inward} force acting on the test 

charge QT is attractive – parallel currents attract!  
 
If QT > 0 and ˆv vz= −

G  {or QT < 0 and ˆv vz= +
G } the {radial-outward} force acting on the test 

charge QT is repulsive  – opposite currents repell!  
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     It is also interesting to note that the two superimposed, oppositely-charged, counter-moving 
filamentary line charge densities / line current densities are attracted to each other {parallel 
currents attract!!!}, because in IRF(S) the force ( )F ρ+

G
 ( )( )F ρ−

G
 seen by {any} one of the  

+ve (−ve) “test charges” +qT (−qT) associated with the moving positive (negative) filamentary 
line charge density λ+ ( )λ−  is, respectively: 
 

( ) ( ) ( ) ( )
2 2

2 2
ˆ ˆ ˆˆ ˆ

2 2 2
o

T T T T
o o

I v vF q v B q v z q z q
c c

μ λ λρ ρ ϕ ϕ ρ
πρ πε ρ πε ρ+ + −= + × = + × = × = −

G GG
 

And: 

( ) ( ) ( ) ( )
2 2

2 2
ˆ ˆ ˆˆ ˆ

2 2 2
o

T T T T
o o

I v vF q v B q v z q z q
c c

μ λ λρ ρ ϕ ϕ ρ
πρ πε ρ πε ρ− − += − × = + × = × = −

G GG
 

 
            x̂  
In IRF(S): ˆv vz− = −

G     qλ− = − A     ˆ ˆI v vz Izλ λ− − −= = + = +
G

    ( )F ρ−

G
    IRF(S) 

                     ϑ        ẑ  
ˆv vz+ = +

G     qλ+ = + A   ˆ ˆI v vz Izλ λ− − −= = + = +
G

     ( )F ρ+

G
         ŷ  

 

     Since this mutually-attractive, radial-inward force between opposite-moving line charges λ+ & λ−  
exists in IRF(S), this must also be true in all other inertial reference frames, e.g. IRF(S+), IRF(S−), etc. 
– the laws of physics are the same in all IRF’s… we leave this as an exercise for the interested reader! 
 

     Obviously, since we have infinite-length line charge densities λ+ & λ− , the net attractive force in 
each case is infinite, even for slightly transversely-displaced line charge densities. 
 

In IRF(S), the EM field energy density is non-zero, finite positive (except at 0ρ = ): 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

IRF( ) IRF( )
IRF( ) IRF( ) IRF( ) IRF( ) IRF( )
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μ
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+ − + − + − + −
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G G
i i

��	�
 ��	�


G G G G G G G G
i i
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2 2 2 2 2 2

0
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ˆ            
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S
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o
o

o
o

B

o TOT

o

E E E E B B B B

E E E B B B

I v
c

ρ

ε ρ ρ ρ ρ ρ ρ ρ ρ
μ

ε ρ ρ ρ ρ ρ ρ
μ

μ λϕ
π ρ π ε ρ

+ + − − + + − −

+ + + + + +

= =

= + + + + +

= − + + + +

= =

G G G G
i i

������	�����
 ������	�����


2

 (Joules) 

with: 02 2 2TOTI I v vλ γλ= = =  
 
 
 

n.b. Both 
radially-
inward 
pointing 
forces!!! 
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     The net Poynting’s vector ( )IRF( )SS ρ
G

, net EM field linear momentum density ( )IRF( )
EM

S ρ℘
G

and 

net EM field angular momentum density ( )IRF( )
EM

S ρ
G
A as seen by an observer in IRF(S) are all zero, 

because ( )IRF( ) 0net
SE ρ =

G
.  

 
     However, these net physical quantities are all zero because of the superposition principle – 
each are sums of two counter-propagating contributions that cancel each other! 
 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ){ }

( ) ( )

IRF( ) IRF( ) IRF( )

2 2 2 2 2 2 2 2

1 1

ˆ ˆ ˆ ˆ ˆ ˆ                 0
4 4 4 4

S S S
o o

o o o o

S S S E B E B

I I I Iz z

ρ ρ ρ ρ ρ ρ ρ
μ μ

λ λ λ λρ ϕ ρ ϕ
π ε ρ π ε ρ π ε ρ π ε ρ

+− −+
+ − − +

+ − − +

= + = × + ×

= × + × = + − =

G G G G G G G

 (Watts/m2) 

Thus, we explicitly see that: ( ) ( )IRF( ) IRF( ) 2 2 ˆ
4S S

o

IS S zλρ ρ
π ε ρ

−+ +−= − = −
G G

. 

 

Consequently/similarly: 
( ) ( ) ( ) ( )

( ) ( )

IRF( ) IRF( ) IRF( ) IRF( )

IRF( ) IRF( ) 2 2 2 2ˆ ˆ                 0
4 4

EM
S o o S o o S o o S

o o
S S

S S S

I Iz z

ρ ε μ ρ ε μ ρ ε μ ρ

μ λ μ λρ ρ
π ρ π ρ

+− −+

+− −+

℘ = = +

=℘ +℘ = + − =

G G GG

G G  (kg/m2-s) 

 

Thus, we explicitly see that: ( ) ( )IRF( ) IRF( ) 2 2 ˆ
4

o
S S

I zμ λρ ρ
π ρ

−+ +−℘ = −℘ = −
G G

. 

 

Similarly: 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

IRF( ) IRF( ) IRF( ) IRF( ) IRF( ) IRF( )

2 2 2 2
ˆ ˆ ˆ ˆˆ ˆ                0

4 4 4 4

EM EM
S S S S S S

o o o oI I I Iz z

ρ ρ ρ ρ ρ ρ ρ ρ ρ

μ λ μ λ μ λ μ λρ ρ ϕ ϕ
π ρ π ρ π ρ π ρ

+− −+ +− −+= ×℘ = ×℘ + ×℘ = +

= + × − × = − + =

G G GG G GG G GA A A
 (kg/m-s) 

 

Thus, we explicitly see that: ( ) ( )IRF( ) IRF( ) 2
ˆ

4
o

S S
Iμ λρ ρ ϕ

π ρ
−+ +−= − = +
G G
A A . 

 
     Thus, an observer in IRF(S) “sees” two counter-propagating fluxes of EM energy, linear 
momentum density and angular momentum density, which respectively cancel each other out 
such that the net fluxes of EM energy, linear momentum density and angular momentum density 
are all zero in IRF(S)!  
 
      An observer in IRF(S) concludes that the EM power/energy present in the EM fields 
associated with the infinitely long pair of oppositely-charged, opposite-moving filamentary line 
charge densities λ+ & λ− in IRF(S) is supplied equally from both the positive and negative 
terminals of the battery (or power supply) driving the circuit! 
 
     Thus, we finally understand how electrical power is transported down a physical wire – it is  
a manifestly relativistic effect;  electrical power in a wire is transported by the combination of 
the radial E-field and the azimuthal B-field associated with a current flowing in the wire! 
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     Because we have an infinitely-long filamentary 1-D physical wire (i.e. zero radius), consisting 
of an infinitely long pair of oppositely-charged, opposite-moving filamentary line charge 
densities λ+ & λ− , in any IRF the EM field energy ( )  EM EMall

space
U u dρ τ= = ∞∫ . Similarly, the EM 

power transported down such a wire ( )  
  EM all
space

P S daρ ⊥= = ∞∫
G Gi , the EM field linear momentum 

( )  EM EMall
space

p dρ τ= ℘ = ∞∫
GG

 and EM field angular momentum ( )  EM EMall
space

dρ τ= = ∞∫
G G

AL  except 

in IRF(S), where the latter two quantities are zero. 
 
     For a real, finite-length physical wire of finite radius a, these four quantities are all finite, as 
long as λ+ & λ− are both finite and v+ & v− are both < c. 
 
     Using the superposition principle, a real, finite-length physical wire of finite radius a can be 
thought of as a collection of 2N parallel filamentary “infinitesimal” 1-D line charge densities. In 
IRF(S), the N right-moving λ+ lines represent 1-D parallel strings of {e.g. copper} atoms and the 
N left-moving λ− lines represent 1-D parallel strings of drift electrons, as shown schematically in 
the figure below: 
 
In IRF(S):          x̂  
 
            IRF(S) 

 ϑ        ẑ  
                ŷ  
 
 
     Even though the net volume charge density in IRF(S) for a real physical wire of radius a is 

0TOT N A N A N A N Aρ ρ ρ λ λ λ λ+ − + ⊥ − ⊥ ⊥ ⊥= + = + = − = , while there is no net pure 
electrostatic field in IRF(S) (the net charge on the wire is zero), there is again a non-zero 
azimuthal magnetic field ( )IRF( )S

TOTB ρ
G

, which has two contributions – one from the N right-
moving λ+ lines (copper atoms) and another, equal contribution from the N left-moving λ− lines 
(drift electrons). For an infinitely long real physical wire of radius a, we know that: 
 

 ( )IRF( )
2

ˆ
2

S o
TOT

IB a
a

μ ρρ ϕ
π

≤ =
G

 and: ( )IRF( ) ˆ
2

S o
TOT

IB a μρ ϕ
πρ

≥ =
G

 

 
     An interesting phenomenon occurs in a real physical wire, due to the fact that parallel currents 
attract each other. The radial-inward Lorentz force ( ) ( )TF q v Bρ ρ− − += − ×

G GG
 acting on the “gas” 

of left-moving drift electrons exerts a radial-inward pressure on the “free” electron gas, and 
compresses it (slightly)! The radial-inward Lorentz force ( ) ( )TF q v Bρ ρ+ + −= + ×

G GG
 acting on the 

3-D lattice of right-moving copper atoms exerts a radial-inward pressure on the copper atoms, 
but because they are bound together in the 3-D lattice, they undergo very little compression, if 
any!  
 

ˆv vz− = −
G  

λ+  λ−  

ˆv vz+ = +
G  
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     This manifest asymmetry between the “free” electron “gas” and the 3-D lattice of copper 
atoms thus gives rise to a {slight} differential compression between electrons and copper atoms 
– resulting in a {very thin} “skin” of positive charge {of thickness δ } on the surface of the wire 
{n.b. the skin thickness δ is much thinner than the diameter of an atom, for “normal”/everyday 
currents!}. Inside this “skin” of positive charge on the outer surface of the wire, there exists a 
slightly higher negative volume charge density ( )aρ ρ δ− < −  than positive volume charge 

density ( )aρ ρ δ+ < − . The net charge on the wire still remains zero. 
 
     The compression of the “free” electron “gas” is only a slight, but non-negligible amount.  
The radial-inward Lorentz force ( ) ( )TF q v Bρ ρ− − += − ×

G GG
 is countered by the repulsive, radial-

outward force associated with (local) electric charge neutrality of electrons & copper atoms, and 
also by a quantum effect – since electrons are fermions {no two electrons can simultaneously 
occupy the same quantum state}, there also exists a radial-outward quantum pressure on the 
electrons preventing them from becoming too dense! 
 
     From the above discussion(s), while it can be seen that gaining an insight of the underlying 
physics associated with electrical power transport, etc. in a wire via use of special relativity may 
be somewhat more tedious than using the “standard” E&M approach, special relativity makes it 
profoundly clear what the underlying physics actually is, whereas the “standard” E&M approach 
does not do a very good job in elucidating the actual physics… 


