6 Classical Optics Derived from Maxwell Equations

This section deals with what happens when a wave encounters a discontinuity between 2
semi-infinite media.

Assumptions made:
1. The media extend to infinity on either side of the interface, avoiding mulitple reflections.
2. The media are homogeneous, iotropic, stationary and lossless.
3. The boundary is infinitely thin so there is no diffraction etc.

4. The incident wave is plane and unifrom.

6.1 Boundary conditions

Suppose we have an interface between two diferent media (1 and 2) which contain electric
and magnetic fields.

Using Faradays Law.

E-dl=—— 6.1.1
== 61
= Elt == E2t (612)

ie the tangential component of the electric field across an interface is continuous.

Using Gauss’ Law:
ﬁﬁ-dﬁ:@ (6.1.3)
= Dnl - Dn2 =0 (614)

ie the discontinuity in the component of the electric displacement normal to an interface is
equal to the surface charge density at the interface. Similarly 7{ B-dA=0 = B, = B, ie
A

the normal component of the magnetic flux density is continuous across the interface.

Finally, Ampere’s circuital law =

fﬁ-d?:[ (6.1.5)
C

= Hy;=Hy=Js=ua (616)

where a is the surface current density.
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Hence, there is a discontinuity at an interface in the component of the magnetic field parallel
to the interface equal to the surface current density. Note, however, that a surface current can
only exist on the surface of a perfect conductors (eg superconductors) where the conductivity
o — 00.

6.2 Reflection and refraction

Z
Medium 1
ky kR
%o, |0
X

ny; = refractive index of medium 1, ny = refractive index of medium 2.
Assuming the incident wave is linearly polarized,

E; = Epyexp(i(wit — kp - 7)) (6.2.1)

EZ- is real and points in the direction of propagation of the incident wave | kr |= n1ko. The
reflected and transmitted waves will be of the form:

Er = Epgexp(i(wpt — kg - 7)) (6.2.2)
Er = Epgexp(i(wrt — kp - 7)) (6.2.3)
Now recall:
-~ OE o] 1-
2F _ e—— — y—= 4+ = 6.2.4
\Y e = g T -Vp (6.2.4)

with py =0 and ff =0 we can write:
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62E_?R + M1€1W2ER = 62E_"R + ]{Z%E_"R =0 (625)

where k; = w\/u1€61. Now, since k; and kg are in the same medium, we have:
ki, + ki, + ki = kg + Ky + k. = ki (6.2.6)

and

ko + k3, + k7, = k3 (6.2.7)

Now the tangential component of E is continuous across the interface which implies that
the tangential component of E; + ER is equal to the tangential component of Er at the
interface. The same boundary condition applies to H. The relationship must exist between
EI,ER and ET at the interface for all times t and for all points 7, on the interface.
Therefore:

Wr = WR = Wr (628)

and

EI : ﬁnt = ER : 7:;nt = ET : f;nt (629)

where r;,; = direction vector of the interface between the two media.

These relationships exist for all values of x and y. Therefore, if our incident wave lies in the
y = 0 plane, k7, = 0 and, hence, kg, = kr, = 0. This means that the incident, reflected
and transmitted waves are coplanar. The x-components must also be equal, so:

ka = kITz =klz = k‘l sin(@l) (6210)
By definition:
kTr = ]{72 SiIl(eT) (6211)
SO
ki sin(0r) = ko sin(6r) (6.2.12)

sin(@l) . k‘z . Mo

sin(GT) N k?l N ny
Where 67 is the angle of refraction. This equation is Snell’s Law.
Since the x - and y-components of the incident and reflected waves are equal and the mag-
nitudes of ER and EI are equal, k:%z = k7. and, hence, kg, = —kr.. The minus sign arises
since the reflected wave travels away from the interface.

(6.2.13)
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Putting all this together, we can write the electric field in each region as:

E; = Epexp(i(wt — ki (zsin(6;) — z cos(6;)) (6.2.14)
Egr = Epgexp(i(wt — ki (asin(0;) + z cos(6;)) (6.2.15)
ET = ETO exp(z'(wt — kQ(ZE sin(@T) —z COS(&T)) (6216)

sin(@r) ks mo
sin(@T) N ]{Zl N nq

(6.2.17)

6.3 Fresnel’s Equations

We now find relations between E 10, E ro and ETO- The equations of continuity require:
Eiz+ Epe = Ery,  Epy+ Epy = Epy (6.3.1)
Hr, + Hr, = Hry, Hp, + Hgpy = Hpy (6.3.2)
In addition because of the mutually perpendicular relationship between E , H and E,
kxE
wit

H=

(6.3.3)

Thus once we have determined E we can find H.
To find the amplitudes, we consider two oriententions (or polarizations) of £ and H. These
are:

1. E vector normal to the plane of incidence, called transverse electric (TE) wave: 2. E vec-

Transverse Electric (TE) wave 7z

Medium 1

ke Hy k

tor parallel to the plane of incidence, called transverse magnetic (TM) wave: The H must
be oriented in the direction shown so that £ x H points in the direction of propagation.

32



Transverse Magnetic (TM) wave 7
Medium 1

E 8 |0

Medium 2
oy

) H,

E. k.,

Plane waves of arbitary polariation can be expressed as a sum of these orientations.
For Transverse Electric (TE) waves, continuity of the tangential component of E implies:

E[o + ERO = ETO (634)

Likewise, continuity of the tangential components of H:

H[() COS(Q]) — HRO COS(@]) = HT() COS(@T) (635)
E
then since impedence Z = — = %, and so Z = %, where n is the refractive index, we can
n n

therefore write the above equation as:

(E]Q — ER()) COS(Q[) . ET() COS(QT)

= 6.3.6
2 7 (6.3.6)
Eon—FE Z 0
10 RO _ 1COS( T) (6.3.7)
Ero Zy cos ()
E
Where we’'ve made use of the relation Z = — = & SO0 Z1 = & and Z; = i and n =
H n ny oy

refractive index. Solving 6.3.4 and 6.3.7 gives the following expressions for the reflected
and transmitted Ej.

(ERO> B Zycosbp — Zy cosOr (6.3.8)

EIO TE— ZQCOSQ[+ZlCOSQT e

(ET0> _ 275 cos 01 (6.3.9)
Ew/)rp  ZycosOp + 7 cosOr s

These are two of Frenel’s Equations.
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If £ is parallel to the plane of incidence (Transverse Magnetic (TM)), we have:

Hypy — Hro = Hro (6.3.10)
Er— Ery  Ero
= 311
or 7 7 (6.3.11)
and
(Epo + ERo) cos ) = Epqcosfr (6.3.12)

Then once again solving 6.3.11 and 6.3.12 gives:

(ER0> _ ZycosOr — Z; cosO; (6.3.13)
Er/)ry  ZacosbOp + Zycosby
E 27 0
(To) - 260501 (6.3.14)
Er/ry  ZocosBr + Zycosby

which are the other two Fresnel Equations. At normal incidence the difference between these
equations vanish since both the electric and magnetic fields are transverse to boundary. We
then get:

E Zy— 7
o0 _ 222 (6.3.15)
FEro Zo+ 71
E 27
o0 _ o2 (6.3.16)
Er Zy+ 74
. . Z N2
If we consider non-magnetic nonconductors, then — = — so for TE waves:
2 ny
E % cosf; — cos @
( RO) — r (6.3.17)
Ero/rp 3t cosfr+ cosOr
E 2™ cos 6
(To) = T TP (6.3.18)
En/re n—;COSHI—FCOSQT

Now depending on the relative values of n; and ns, the sign of the reflected wave can be
positive or negative. The change of sign corresponds to a phase change of m between the
incident and reflected waves. If ny < ny there will be a phase change of 7w , while for
ny > ng there will be no phase change. The transmitted wave is always in phase.

For a TM wave:

E —cosf; + 2L cos b
(RU) - I T ny 770 (6.3.19)
Erwn/)rm cos@lJr%cos@T
E 2™ cos 6
<T°> = (6.3.20)
Er/ ru COSHI—i-Z—;COSGT
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Again the transmitted wave is in phase. However E;y and Egy can be in or out of phase.
They are in phase if:

™M cos O > cost (6.3.21)
N2
or sin(Or — 0r)cos(0r +6r) >0 (6.3.22)
This requires either:
Or > 0; and 07 +0; < g (6.3.23)
or Or <0; and Or +0; > g (6.3.24)

6.4 The Brewster Angle

If the expression sinﬁ@T — 01)cos(Or + 0;) = 0 or equivalently 6.3.19 is zero, then there is
no reflected wave if E is parallel to the plane of incidence. This means that cos((0r +0;) =
0 =0r+60;= :l:z. ie Geometrically this means the electric field of the transmitted wave
is parallel to the direction of propagation of the reflected wave.

Note that the only other possible solution is 8y — 67 = 0 which is not a valid solution. The

angle of incidence, 67, at which the condition is satisfied is called the Brewster Angle (01p).
At the Brewster angle

n sin O 1

= = 6.4.1
ny  sinfrg  tanbrg ( )

This effect can be used to produce polarized light. If unpolarized light is incident on the
surface of a dielectric at the Brewster angle, then only the component of the wave with its
electric field perpendicular to the plane of incidence will be reflected.

Medium 1

GI(D///

Medium 2

ke

X

8
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6.5 Coefficients of Reflection and Transmission

Setting i, = 1 and looking at the time averaged Poynting vector gives:

Pray = ;\ﬁfﬁom (6.5.1)

Prtos = 1\FE,%OﬁR (6.5.2)
2\ 1o

Prov = 1\/EE%OTAIT (6.5.3)
2\ 1o

The unit vectors ny, ng, and ny point in the direction of propagation of the incident,
reflected and and transmitted waves respectively. For example:

Fiy
Ny = — 6.5.4
= (6.5.4)
Then the coefficient of reflection, R, is:
av * L E2
R=| Prov B (6.5.5)

N ‘_ 2
PICLU N EIU

where n is a normal to the interface. Similarly, the coefficient of transmission, T, is:

1
oo+ T o\ 2 B2 0 E? 0
7| Pr 7} _ <62> 7;Ocos TN TQOCOS T (6.5.6)
Prav - 1 €r1 Ef,cosO; ny B, cos 0
Therefore,
2
11 cos 0r — ny cos O
R, — 6.5.7
+ [nl cos 0 + no cos GTl ( )
4 0 )
TJ__ N1 COSUfCOSUT . (658)
[y cos O + ngy cos O]
2
—ng cos B 4+ nq cos Op
R, = 6.5.9
i l ng cos 0; + ny cosOr 1 ( )

4 0 0
Ty = ——LEBIICSIT (6.5.10)
[ng cos O + ny cos O]

It can be shown that
R+T=1 (6.5.11)

which is expected, and that at the Brewster Angle R;; =0 and T7; = 1.
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6.6 Non-uniform plane waves

The formula for electric and magnetic fields are:

E = Eyexp(i(wt — k - 7)) (6.6.1)
H = Hyexp(i(wt — k- 7)) (6.6.2)

We have investigated the case of interfaces where the vector k is real. If, however, we put

—

k=3—ia (6.6.3)

where @ and ﬁ are not in the same direction, then the wave decays exponentially in a
direction which is not that in which the wave is travelling.

Now waves of constant phase are perpendicular to 3 and planes of constant amplitude are
perpendicular to a. For example, since

2=k k=weu —iwop = (62 — o — 2id - f) (6.6.4)

then
F-at=w?eu>0= pf>a (6.6.5)

AlsoQ&-Ezwaué@Sg and&J_g if o =0.

o< () c=10

Another useful, but “difficult to understand” concept is that of complex angles, ¢, where

exp(i¢) — exp(—ig)
2i

sin ¢ = (6.6.6)

and
exp(i¢) + exp(—i¢)
2

cos ¢ = (6.6.7)
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Note that sin® ¢+cos* ¢ = 1 still. Returning to Snell’s Law, n; sin #; = nysin @7 and noting

that if " sin O; > 1, then sinfr > 1 and, thus 67 must be complex, O = a + ib, so we
U
always have:
sin O = L sin 6, (6.6.8)
Ny

using the real and imaginary parts we have:

2
0=4/—— so (6.6.9)
o pw
Sy — exp(i(a + b)) — ‘ech(—'i(a + b)) _ exp(ia) exp(—b) - exp(—ia) exp(b) (6.6.10)
21 21
also we have:
cos O — exp(i(a + b)) —i—;a:p(—z(a + b)) _ exp(ia) exp(—b) —;—exp(—za) exp(b) (6.6.11)
sinfr is real (via 6.6.8) so a = 7 (ie. Op = g +ib) and so
sinfp = exp(b) —|—2exp(—b) = cosh b (6.6.12)
) —b) — b
cos O = i{exp( )2 xp(b) = —isinhb (6.6.13)

If 67 is complex then we have total reflection, the critical angle of incidence, 0;., occurs

when 67 = 90deg. ie.
U]

sin 010 = — (6614)
ny
The magnitude of the reflected wave is now unity (exercise) so we can write
E
(RO> = exp(ip,) (6.6.15)
Ern /.
where 5
Vsin2p — 1
¢, = 2tan”! [San] (6.6.16)
=k cos 01

This is the phase of the reflected wave with respect to the incident wave, the phase shift
on reflection. The value of 61 after total reflection can be readily obtained from the above

equations:
n
a= z, b= cosh™ (— sin f;) (6.6.17)
2 N9

The equations for the Incident, Reflected and Transmitted waves have the same forms as
before:
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E; = Epexpli(wt — ky(zsinf; — zcos ;)] (6.6.18)
Er = Epgexpli(wt — ky(2sin 0 + z cos 0;)] (6.6.19)
Ep = Ergexpli(wt — ky (2 sin 0y — 2z cos 0r)] (6.6.20)

However now that 6, is complex the transmitted wave does not represent energy transferred
to medium 2.
We note that the wavenumber of the transmitted wave is:

ET = BT — i = ko(sin Orx — cosOrz) = kg(E sin 0;2 + isinh bz2) (6.6.21)
L)
Thus: . . n
Er = Ergexp(sinh(b)ksz) exp(i(wt — ko(— sin 6;)x) (6.6.22)
N2

So no energy is transferred in the —Z direction although there is some non-zero electric
field for z < 0. Instead the transmitted wave propagates in the Z directions and decays
exponentially into medium 2.

For TE waves (L) we can show:

ETO) 2 cos B Xoxt
210 ZCOPT (i Pk 6.6.23
(52). e (6.6.23)
We know: L
ﬁT = 7}%7“ X ET (6624)
w2

SO .

Brx Ay = 2T« (hy x Br) = ——(| By 2 o — (By - B2)E2) (6.6.25)

T - wiis T T) — Wits T T T T T M

For 1 polarized waves, Er is in the y direction so the second term is zero. Thus the
Poynting vector points in the # direction. These waves are referred to as evanescent since
they decay exponentially into the second medium and propagate along the interface.

6.7 Reflection and Transmission at the surface of a good conduc-
tor

Consider expressions for the reflected and trasmitted waves where medium 1 is a dielectric
and medium 2 is now a conductor.

Egr = Eggexp(i(wt — kyzsin0; — kyz cos 6;)) (6.7.1)
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Er = Epgexp(i(wt — ky(xsinfp — z cos 7))

= ETO exp(i(wt — kyxsin@; — kyz cosOr))

. 2
= Eppexp(i(wt — kyzsinf; + kgz\/l _ M %in? 1)) (6.7.4)

no

From earlier work we have:

]{}1 w,/elulé )
— = = k 6.7.5
ky  1—i  1—i ' (6.7.5)

1
= k= 52 (6.7.6)
Now since ks is a good conductor | kg |[>>| ki | this implies

ny 2 .9

cosfp = /1 — () sin® 0y ~ 1 (6.7.7)
N2

So 07 ~ 0 and hence the wave propagates“normally” into a good conductor. Our expression
for Er is now:

Er =~ Ergexpli(wt — kjzsinf; + i Zz)] (6.7.8)
1
Since kq sinf; < 5 (exercise) we get:
- - , z, 2
ET ~ ETO exp[z(wt + 5) + g] (679)

- n
For Ery; (normal to plane of incidence), then since | — |< 1,
N2

E A cos @ — cos 6
(R) —m Laol (6.7.10)
ErJrm 3k cosOp + cosOr

This is true for any angle of incidence. Now we calculate the transmitted electric field, we
also use cosfr ~ 1,

E 2™M cosf
(T) — T P o™ s, ~ 0 (6.7.11)
Er/ Z—;COSQIqLCOS@T N9

This is also true for any angle of incidence.
Now for Ergp E parallel to the plane of incidence and using the same approximations:

ny _ n_
(ER> s cos 01 — cos 61 o — cos 01
TE

Er)ow ~

~ ~ —1 6.7.12
%COS@T—FCOSQ[ %—l—cos@; ( )
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However this approximation is not valid at grazing incidence, where 6; ~ 90 deg. Finally the
transmitted component of the parallel component is given by

E 22 cos 6 2110
(ET> S T BRPOR L S L [ (6.7.13)
1

%COSQT + cos 0y - ny 1—1i
Once again this approximation is not valid where ; ~ 90 deg .

6.8 Radiation Pressure

Consider a wave Wlth it’s E vector normal to the plane of incidence. In the conductor, the

current density is ocEr. H is perpendicular to the moving electrons and we therefore have
a (QU x poH) force.

This force is directed away from the interface and into the conductor. The resulting pressure

is referred to as the radiation pressure. Now lets calculate it’s effects.

Taking a piece of the material of side lengths a,b and depth dz, the total charge Q, is related

to the charge density p, the current density J and electron velocity ¥ via:

L

HRUEIDRIRQ XRVIIID

E electric field

—_— .
Magnetic field direction into the page
Force on electrons in conducter=qvxB= o©E xB

= direction of radiation

Z

o Lr

]
Va//%

T
Q = pabdz = Habdz (6.8.1)
= QU= Jabdz (6.8.2)
= QU =ocEpabdz (6.8.3)

So we get the force on this piece, dE as:

dF = aboEp x poHdz (6.8.4)
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The pressure dp'is just the force per unit area, so:
dp = oEr x poHdz (6.8.5)
Now we plug in our equations for E:

Br = Eroexp((i(wt + g) i g)

o T 1—1
Hr = W — B = E 6.8.7
T w1t exp(z4) T Y T ( )

The magnitude of the pressure is

(6.8.6)

and we use:

dp O o 2 ) . z Z\ 9
— = E 1— t+—)+ = 6.8.8
L = ZH% ) B Pl (1= D expl(ist + 5+ 3)| (658)
Taking the time average gives:
dpav o 2 z
— E70 a 2= 6.8.9
I = 205 | Proa " exp(25) (6.8.9)
To get the total pressure we integrate and get:
o 0 z o
w=—=|F ¢w2/ 22)dz = — | Ero a0 |? 8.1
pow = 5os | Broan P [ exp(2)ds = | Ero o | (6:5.10)
ET n . .
Recall <> = 2—cosf; so in terms of the input field
Er/.  n
av — —F av 0 6.8.11
Por = 3> | 7 Bracost | (6511)

Finally expression in terms of input power flux:

2
Pav = — €05” 0 Pray (6.8.12)

U1
where vy is the speed of the wave in medium 1, and Py, is the initial Poynting Vector. The
derivation is left as an exercise. The analysis of waves parallel to the plane of incidence is

more complex but leads to the same result.

6.9 Momentum density in an electromagentic wave
P

. . . ITav . .
At normal incidence in a vacuum, pg, — 2———. Since the COHduCtng surface acts as a near
C

perfect reflector the change in momentum of the wave is 2% per unit time per unit area.
Then:
Plav

Momentum Flux Density = (6.9.1)

42



Now Momentum Flux Density = Momentum Volume Density x c. Therefore:

Momentum Volume Density = PI;U (6.9.2)
c

Generalizing to a vector field:

(6.9.3)
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