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LECTURE NOTES 10.5

EM Standing Waves in Resonant Cavities

e One can create a resonant cavity for EM waves by taking a waveguide (of arbitrary shape)
and closing/capping off the two open ends of the waveguide.

e Standing EM waves exist in (excited) resonant cavity (= linear superposition of two counter-

propagating traveling EM waves of same frequency).

Analogous to standing acoustical/sound waves in an acoustical enclosure.

Rectangular resonant cavity — use Cartesian coordinates

Cylindrical resonant cavity — use cylindrical coordinates} to solve the EM wave eqn.

Spherical resonant cavity — use spherical coordinates

A.) Rectangular Resonant Cavity (LxW x H =axbxd ) with perfectly conducting walls
(i.e. no dissipation/energy loss mechanisms present), with 0<x<a, 0<y<b, 0<z<d.

n.b. Again, by convention: a > b > d.

Since we have rectangular symmetry, we use Cartesian coordinates - seek monochromatic EM
wave solutions of the general form:

é (X, Y, Z,'[) - éo (X, Y, Z) g it Subject to the boundary conditions
~ - . E,=0andB, =0

_ —iof
B (Xa Y, Z,t) =B, (X, Y Z) € at all inner surfaces.

Maxwell’s Equations (inside the rectangular resonant cavity — away from the walls):

(1) Gauss’ Law: (2) No Monopoles:
VE=0 = |V+E, =0 V-B=0 = |V+B, =0
(3) Faraday’s Law: (4) Ampere’s Law:
ﬁxéz—@ = ﬁxéozia)éo ?xéz%ﬁ = ?xéoz—iﬂzéo
ot c” ot c
Take the curl of (3): =0 {Gauss’ Law}
~ ~ ~ ~ ~ 2 ~
?x(ﬁx EO) =iwVxB,=Vx|V 0)—VZE0 = ia)(Vx BO) = (2] E | {using (4) Ampere’s Law}
c
@ 2
Vonx =7 C on
c p =
o 2 on:on(Xay:Z)
= Vony =—|— | Ey E, =E0y(x, y,z)p i.e. eachisafen(X,y,z)
C ~ ~
2 EOZ :Eoz(x7yﬂz)
2 =
\ Eoz =7 = Eoz
C
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For each component {X,y,z} of E, (X, Y,2) we try product solutions and then use the separation

of variables technique:

2
Eoi (X’ y,z) =X (X)Yi (Y)Zi (Z) for Voni (X, Y, Z) = —[QJ Eoi where subscript .

&', (X)
aXZ

Yi(¥)Zi(z)

Divide both sides by | X; (X)Y; (¥)Z;(z)}

1 azxi(x)+ 1 azYi(y)+ 1 a2zi(z)__(wj2
X, (x) o Y(y) &* z(z) ot

fen(x)only =fen(y)only =fen(z)only

The wave equation becomes:

0<x<a

This equation must hold/be true for arbitrary (X, Y, z) pts. interior to resonant cavity <0<y <b

0<z<d
This can only be true if:
’X. ’X.
X L ¢ a'z(x):—kf:constant = a'z(x)+kX2Xi(x):0
i(X) - (X ) - X( ) n.b. We want
1 ovi(y) .. oY, (y ) B oscillatory
W o —k; = constant| = Y +k7Y,(y)=0 (not damped)
e 27 solutions !!!
! iz(z) = -k’ = constant| = iz(z)+kui(z):0
Z(z) oz oz
2
with: [k* =k’ + ky2 +k’ = (%} < characteristic equation

General solution(s) are of the form: (i=x,y,z):

E, (X.Y.2)=[ Acos(kx)+B, sin(kxx)]x[ci cos(kyy)+ D, sin(kyy)]x[Ei cos(k,z)+F sin(k,z) |

n.b. In general, k,,k, and k, should each have subscript i =X, Y, z, but we will shortly find out

X2ty

that kXi = same forall i=X,Y,z, kyi = same for all i=X,Y,z, and kZi = same forall i=X,y,Z.

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Boundary Conditions: |E, = 0| @ boundaries and |B, = 0| @ boundaries:

y=0,y=b . E =0 k, =nz/b,n=1,2,3,....
E, =0at = coefficients |{ . and

z=0,z=d C,=0 k,=(xz/d, (=1,2,3,...

X=0,Xx=a , Ay=0 k,=mz/b,m=1,2,3,....
E, =0at = coefficients |{ . and

2=0,z=d E, =0 k, =(x/d, (=1,2,3,....

x=0,x=2a A =0 k,=mz/a,m=1,2,3,...
E,, =0at = coefficients || . and

y=0,y=b C,=0 ky=n7z/d, n=12,3,....

n.b. m =0, and/or n = 0 and/or ¢ = 0 are not allowed, otherwise |E (X y,Z ) = 0| (trivial solution).

Thus we have (absorbing constants/coefficients, & dropping X.y.z subscripts on coefficients):
Eo (X Y,2)= [Acos(k X)+ Bsin (k, X)]sin(k y)sin(kzz)
Eoy(x,y, ) =sin(k,x)sin ( )[ k ,Y +Dsm(k y)]sin(kzz)
E

~0X(X,y, ) =sin(k,x sm( )[ m(kzz)]
= = OE =
But (1) Gauss’ Law: |V.E =0| = O, +—2+ %y _ 0
OX oy 0z
Thus:

k [ Asin (k,x)+Bcos(K, )]sm(k y)sm(kzz)
) +Dco ( )]sin(k z)
E sin

in(k,z)+F cos(K, Z)] 0

+Bco
+ks1nkX[C (
y)

+ksmkx (

-

This equation must be satisfied for any/all points inside rectangular cavity resonator.
In particular, it has to be satisfied at (X, y,z)=(0,0,0).

We see that for the locus of points associated with (x = 0,y,z) and (X,y = 0,2) and (X,y,z = 0), we
must have ‘ B=D=F= 0‘ in the above equation.

Note also that for the locus of points associated with (x =mz/2K,,Y, z) and (x, y= nﬂ/ 2k, , z)
and (X,y,z=/(x/2k,) where m,n,/=odd integers (1, 3, 5, 7, efc. ...) we must have:

Akx + éky +Ek, = 0| Note further that this relation is automatically satisfied for m,n, ¢ =even
integers (2, 4, 6, 8, etc. ...).

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 3
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Thus:

z

. 3 kxz(m] m=1,2,34,...
Eo (X, Y,2) = Acos(kX)sin kyy)sin(kzz) a
Eoy(x,y,z):ésin(kxx)cos K,y sin(k,z) ky:(nfj n=1,2,3,4,...
E,, (X, y,z)=Esin(k x)sin(k y)sin(k,z

(y:2) (kx)sintly)sin{lo2) k, = [%”j 0=1,2,3,4,...

Prof. Steven Errede

n.b.. m=n=/=0 simultaneously is not allowed!

— i/ - =

B:—Z(VXE)

. i (0E, ©OF i < -

OX:_La) %_ 620y :_Lw[Ekysin(kxx)cos(kyy)cos(kZZ)—CkZsin(kxx)cos(kyy)cos(kzz)_

B,y =_i; %_a;zz =—ia)[,&kz cos(kxx)sin(kyy)cos(kzz)—EkX cos(kxx)sin(kyy)cos(kzz):

. i (0E, OE i -

. _La) a_;()y_ﬁg;x :_IE[CkX Cos(kxx)cos(kyy)sin(kzz)— Ak, cos(kxx)cos(kyy)sin(kzz)]

éo(x,y,z):éox>2+l_5>oy9+l§ozi

or: :—ig{(ﬁky—ékz)sm(kxx)cos(kyy)cos(kzz))2
+(Akz—Ekx)cos(kxx)sm(kyy)cos(kZZ))7
+(ékx—Aky)cos(kXX)cos(kyy)sin(kzz))7}

This expression for I§O (x,

B, =0at x=0,x=a

Y, Z) (already) automatically satisfies boundary condition (2)

B, =0at y=0,y=b

with K, E(

mz

a

)

nrx

with ky E(
n=0,1,2,...

3

B,=0at z=0,z=d

'%/4

with K, E(
1=0,12,...

;)

m=0,1,2,...

4
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Does|V+B, (x,y,2)=0[???

0B, 0B, 0B
+ +

0x 0z

OX oy 0z

=—i5{kx(|§ky—(sz)cos(kxx)cos(kyy)cos(kzz) _ 1 %—M
+ky(,5\kZ —Ekx)cos(kxx)cos(kyy)cos(kzz) +M—%

ékx—Aky)cos(kxx)cos(kyy)cos(kzz)} +K¥,C —M}

?-ée (%,y,2)=

+K,

—

~|V+B,(x,y,2)=0| YES!!

For TE modes:

z

E, =0| = coefficient . Then | Ak, + éky +Ek, = 0| tells us that: | Ak, + éky =0/or:|C=-A

T

[ Eo (X, Y,2)=

cos(kxx)sin(kyy)sin(kzz) k =(m7z ,m=12,...

(n=01is NOT allowed for TE modes!!!)

m,n,/
mode <
(a>b>d) < i [k :
B, (X, Y,2)= ——A| = |k, sin(k,x)cos(k,y)cos(k,z
o] Butera= A s (aeos(l)eos(k2)

B,, (X,y,2)= —IZAcos(kxx)sin(kyy)cos(kzz)

\ B, (X,y,2) = +L@AH%J k, + ky}cos(kxx)cos(kyy)sin(kzz)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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= ~ - ~ ~(k
B, =0|= |(Ck, — Ak, )=0|or: C:+A(—yj
kX
/ Eo (X, Y,2)= Acos(kxx)sin(kyy)sin(kzz) K, :(?ﬂj,m =1,2,
- ~( K
E, (X, y,2)= A(k—y)sin(kxx)cos(kyy)cos(kzz) ky:(%{j,nzlﬂ,..
The m;llowed for TM modes!!!) k, = (%),f =1,2,..
lowest
™ ~ ~
mon,¢ < Ee. (X, y,z):—AK }sm k,x)sin (k,y)cos(k,2)
mode
(a>b>d)
is: TM - i k
i Box(x,y,2)=+lg{ { }[k—y }sin(kxx)cos(kyy)cos(kZZ)
3 (.
B,, (X, y,z)——g{Akz+A{kX (k—}k }(k—x]}cos(k X)sm(k y)cos(k z)
\ B, (X,¥,2)=0
2
For either TE or TM modes: |k* =k; +k; +k; ( j with:
kX:(m],mzl,z,... ky:(n—ﬂj,nzl,z,.. kZ:(&],E:I,Z,...
a b d

The angular cutoff frequency for m,n, /"™ mode is the same for TE/TM modes in a rectangular

cavity:

mz

a

i

mn/

)%

Nz

(5

;

6

and:

prop

=C=V

phase

2005-2011. All Rights Reserved.

no dispersion.
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The general problem of EM modes in a spherical cavity is mathematically considerably more

involved (e.g. than for the rectangular cavity) due to the vectorial nature of the E and B -fields.
= For simplicity’s sake, it is conceptually easier to consider the scalar wave equation, with a

scalar field l//(f,t) satisfying the free-source wave equation

which can be Fourier-analyzed in the time domain

Fourier component 1//(?, a)) satisfying the Helmholtz Wave Equation:

with

K = (w/c)’

Vi (F,t)-

12y (rt)
cc ot

w(F.t)= J.jo y(F,0)e " do

with each

i.e. no dispersion.

In spherical coordinates the Laplacian operator is:

(V2 +k2)1//(F,a))=0

1o
Vzl//(l’,a) :Fw(rl//

) (F,

a)))+

L o
r’sin@ o060

oy (F,m)

1 oy (f,o)

(sin 0

00

J+

r’sin®@ o’

To solve this scalar wave equation — we again try a product solution of the form:

2 fin(1)Yin (6:0)
&m spherical
harmonics

The Y,, (9, (0) satisfy

the angular portion of
scalar wave equation...

Plug this (F, a)) into the above scalar wave equation, use the separation of variables technique: f

Get radial equation:

dr®  rdr

|

d> 2d
+__

, L(1+1)
-2

+k

|

Let

. Then we obtain Bessel’s equation with index

d_2+li+ k2 _M
dr? rdr 2

u,(r)=0

Solutions of the (radial) Bessel’s equation are of the form:

f,(r)=0[ where /=0,1,2,...
v=/_+11
A//m Bém
f, (r)= J . (kr N . (kr
fm() \/F /,+7( )+\/F é+7( )

Bessel fen of 2nd
kind of order /+%

Bessel fen of 1st
kind of order /+1

It is customary to define so-called spherical Bessel functions and spherical Hankel functions:

2x

i 00+

where:

-
2X

n[(x)z(

J

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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and: h/(l’z)

-1

(%)= (-

x)' (li

X dx

)

sin(x)

&

n (9=~ 15

cos(x)

)

»

X dx
jO(X)= sin)fx)
no(X):_cosx(x)

n.b. If x = kr is real, then

1 ()= (x)

X X
For|x<1, /|
: X x?
~ 1- .
B (x) (2£+1)!!( 2(2z+3)+

(20+1)11=(20+1)(20-1)(20-3)..x5x3x1

J where:

(2e-nnf

n,(x)=- X 4
ATy 2(1-2¢)

For|x>1, /|

. 1 . l

j(x)= ;Sm(x_%[j

The general solution to Helmholtz’s equation in spherical coordinates can be written as:

¢,m

()= 2] A 003 AL ) 1, 00
Hf—‘(\*‘\

Coefficients are determined by boundary conditions.

For the case of EM waves in a spherical resonant cavity we will (here) only consider TM modes,
which for spherical geometry means that the radial component of B, B, =0. We further assume

(for simplicity’s sake) that the E and B -fields do not have any explicit ¢ -dependence.

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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If|B

But:

r

0 VeB=0 B #0

4

=

and B # explicit function of ¢, then:

xgE-_B
ot

=0

requires: |E 0

{necessarily}

— TM modes with no explicit ¢ -dependence involve onlyE, , E,and B,

- = 0B - = 10E
Combining |VxE = -y and |VxB = Za with harmonic time dependence €~
® 2
We obtain: (—j B-VxVxB=0
C

The ¢ -component of this equation is:

sin@ 060

] ()

0’ 1 0 0 (.
iﬁ“%*ﬁﬁﬂ _4mm%ﬂﬂ>

o(rB rB
But: i[ '1 i(sinHl’B )}= .1 2 sind ( (p) -——
00| sin8 06 v sin@ 00 00 sin” @
~Legendré equation with m=x+1
. . _u(r)
= Try product solutions of the form: B, (r,6)= . P/ (cos®)

iwt

Prof. Steven Errede

Associated Legendré Polynomial

of solutions,

Substituting this into the above equation gives a differential equation for u, (r) of the form of:

Bessel’s equation:

d?u, (r)

0

dr? C r

il

o) A

angular dependence of the TM modes.

with /=0, 1, 2, 3, ... defining the

Let us consider a resonant spherical cavity as two concentric, perfectly conducting spheres of
inner radius a and outer radius b.

It

Bw(r,é?):uf‘fr)

P/ (cos0)
ic> 0. ic’ u,(r)
Er(r,e):a)rSmH%(smeBw)z—Ez(éﬂ) ‘r P, (cos8)

ic’ 0 ic? ou, (r)
—(rB(p) R P/ (cos &)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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But|E, = E | which must vanishatr=aandr=b =

The solutions of the radial Bessel equation are spherical Bessel functions (or spherical Hankel
functions).

ou,(r
The above radial boundary conditions on é( ) .. =0 lead to transcendental equations for the
r r=b
characteristic frequencies, @, {eeeEEK}!!!
s : C(e+1) £(0+1)
However {don’t panic!}, if: (b —a)=h is such that h <« a then: = r . = constant!!!

And thus in this situation, the solutions of Bessel’s equation:

M{(QJZ—M}UZ(Q:O = M+k2u//(r):0 where: kzz(ﬁJz—g(“l)

dr? c a’ dr? c a’
are simply sin (kr) and cos (kr) ! i.e. |u,(r)=Acos(kr)+Bsin(kr)
ou, . ou, .
Then: E =—kAsin(ka)+kBcos(ka)=0| and E =—kAsin (kb)+kB cos(kb) =0
r=a r=b

For |(b—a)=h < a|an approximate solution is: |u, (r)= Acos[kr —ka]
with: kh:k(b—a):nn, n=0,1,2,...

2 2

£(0+1 n

Thus: kni,:(ﬁj U i L(—”J, N=0,1,2,3,...and £=0,1,2,3, ...
) c a h

The corresponding angular cutoff frequency is:

((0+1 2ou(e+1
a)n[:c‘/kf+ (aj ):c\/(%”) +% for[h<al, n=0,1,2,3,...and £=0,1,2,3,...

Because |h < a|, we see that the modes withn=1, 2, 3, . . . turn out to have relatively high

. Nz . .
frequencies |@,, ~ C(Tj for n>1. However, the n = 0 modes have relatively low frequencies:

L(L+1) ¢
@y, =C % =g,/z(£+1) for[h < a],
An exact solution (correct to first order in (h/a) expansion) for n =0 is: |@,, = (a-::—lh) ! (Z + 1)
2

These eigen-mode frequencies are known as Schumann resonance frequencies. /=1,2,3, ...
(W.O. Schumann — Z. Naturforsch. 72, 149, 250 (1952))

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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For n = 0, the EM fields are: [E; =0
Very Useful Table:
Fx0=p Oxf=—¢
Oxp=Ff Gx0=—Ff
oxf=0 Fxp=—0

Poynting’s vector:

o -

r—2 P, (cos 9)

Lect. Notes 10.5 Prof. Steven Errede

and

B(g({ ~ % P/ (cos8)

Spp =—

1
Ho

(Ew x|§01{)~(l’x([)) !

r3

P, (cos @) P/ (cosb)

r3

! P, (cos @) P/ (cos 9)(—9)

Circumpolar
N-S waves!

For the n = 0 Schumann resonances:

The Earth’s surface and the Earth’s ionosphere behave as a spherical resonant cavity (!!!)
with the Earth’s surface {approximately} as the inner spherical surface: a=r, =r, =6378km
=6.378x10°m (= Earth’s mean equatorial radius), the height h (above the surface of the Earth)
of the ionosphere is: h=100 km=10"m(<«a)— b=a+h =6.478 x 10° m.

[ ek
— " (a+ih)
=2: o ~—C\/g
— " (a+1ih)
3y = cV12
- 03_(a+%h)
4 |y o £N20
— | (a+1ih)
P /30
- 05_(a+%h)

Wy =

c

—Jl(l+1
@V U

)

for .

fo=20_105Hz

N

27

f, =22 -18.3 Hz

27

f, =208 2257 He

27

f,, = =% =332 Hz

1)
27

fs =—=>=46.7 Hz

a,

27

L/

n.b. Forthen=1
Schumann resonances:
f, =1.5KHz

(...etc.)

The n = 0 Schumann resonances in the Earth-ionosphere cavity manifest themselves as peaks
in the noise power spectrum in the VLF (Very Low Frequency) portion of the EM spectrum —
VLF EM standing waves in the spherical cavity of the Earth-ionosphere system!!!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Schumann resonances in the Earth-ionosphere cavity are excited by the radial E -field
component of lightning discharges (the frequency component of EM waves produced by
lightning at these Schumann resonance frequencies).

Lightning discharges (anywhere on Earth) contain a wide spectrum of frequencies of EM
radiation — the frequency components fo;, foy, fo3, fos, . . excite these resonant modes — the Earth
literally “rings like a bell” at these frequencies!!! The n =0 Schumann resonances are the
lowest-lying normal modes of the Earth-ionosphere cavity.

Schumann resonances were first definitively observed in 1960. (M. Balser and C.A. Wagner,
Nature 188, 638 (1960)).

— Nikola Tesla may have observed them before 1900!!! (Before the ionosphere was known to
even exist!!!) He also estimated the lowest modal frequency to be fy; ~ 6 Hz!!!

n = 0 Schumann Resonances:

o

I
“

~

~

Spectral density {arhitrary units)

ro
[

Frequency {Hz)

Figure 8.9 Typical noise power spectrum at low frequencies (integrated over 30 s),
observed at Lavangsdalen, Norway on June 19, 1965. The prominent Schumann,

resonances at 8, 14, 20, and 26 Hz. pius peaks at 32, 37, and 43 Hz as well as smaller
structure are visible [After A. Fgeland and T. R. Larsen, Phys. Norv. 2, 85 (1967) ]

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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The observed Schumann resonance frequencies are systematically lower than predicted,

1+i
primarily) due to damping effects: |@” = @] | 1-—— || where Q = Quality factor = —> = “Q”
' Q

|8

of resonance, and I' = width at half maximum of power spectrum:

The Earth’s surface is also not perfectly conducting. I
Seawater conductivity o, =0.1 Siemens!! F

Neither is the ionosphere! — Ionosphere’s conductivity o, =10 —10"" Siemens

e OnJuly9, 1962, a nuclear explosion (EMP) detonated at high altitude (400 km) over
Johnson Island in the Pacific {Test Shot: Starfish Prime, Operation Dominic I}.
- Measurably affected the Earth’s ionosphere and radiation belts on a world-wide scale!
Sudden decrease of ~ 3 — 5% in Schumann frequencies — increase in height of ionosphere!

Change in height of ionosphere: |Ah =h"—h =2:(0.03-0.05) R, =~ 400—600 km | !!!

Height changes decayed away after ~ several hours.
Artificial radiation belts lasted several years!

e Note that # of lightning strikes, (e.g. in tropics) is strongly correlated to average temperature.
= Scientists have used Schumann resonances & monthly mean magnetic field strengths to
monitor lightning rates and thus monitor monthly temperatures — they all correlate very
well!!!

e Monitoring Schumann Resonances — Global Thermometer — useful for Global Warming
studies!!

Earth Coordinate System

C
27z(a++1h)
E) =0 (north — south)

0(0+1)

fO/, =

;1
EX ~ = P,(cos®)| (up—down)

;1
B, ~ - P/ (cos8)| (east — west)

S,, ~ r_13 P, (cos @) P/ (cos 9)(—9) (north — south)

For the n = 0 modes of Schumann Resonances:
E|f (up — down) Bl @| (east— west) S| -0 (north — south)
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We can observe Schumann resonances right here in town / (@ UIUC!! Use e.g. Gibson P-90
single-coil electric guitar pickup (LFU)0 =10 Henrys, ~10K turns #2AWG copper Wire) for

detector of Schumann waves and a spectrum analyzer (e.g. HP 3562A Dynamic Signal Analyzer)
—read out the HP 3562A into PC via GPIB.

— Orientation/alignment of Gibson P-90 electric guitar pickup is important — want axis of

pickup aligned ||| Bllo (i.e. oriented east — west) as shown in figure below. n.b. only this

orientation yielded Schumann-type resonance signals {also tried 2 other 90° orientations
{up-down} and {north-south} but observed no signal(s) for Schumann resonances for these.}

Electric guitar PU’s are very sensitive — e.g. they can easily detect car / bus traffic on street
below from 6105 ESB (6™ Floor Lab) — can easily see car/bus signal from PU on a ‘scope!!!

up (+v? ) SCHUMANN ~ TYPE RESD wmct—;
NoRTH SIGNALS (TQ{EO 2 oTHER 90 )
E.‘;.. SRIGNTATIONS |
(-9)

- EAST (;’6)

HP3562A
DYNAMMAC. SIGNAL
Bsoh P96 ANALYZGR.
ﬂ"'—%\lcm? 4
(Lpas~10%)

n.b. PU housed in 47 closed, grounded aluminum sheet-metal box to suppress electric noise.
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