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LECTURE NOTES 20

RELATIVISTIC ELECTRODYNAMICS of MOVING MACROSCOPIC MEDIA

We have discussed the relativistic aspects of electrodynamics associated with moving electric

charges and electric currents: |J“ = (C,O, j) .

For macroscopic media, restricting ourselves here (for simplicity/clarity’s sake) to linear,
homogeneous, isotropic materials, such as “class A” dielectrics and magnetic materials that are
described in classical electrodynamics by the auxiliary 3-D macroscopic fields:

- - o1 - nb. & 1, K., K., %, x,, are not
D=cE H=—B Lorentz invariant quantities !1!
H L
/ C,&,, U, are Lorentz invariant !!!
& = scalar quantity 4 = scalar quantity
= macroscopic electric permittivity = macroscopic magnetic permeability
of the material. of the material.
K, = ¢/&, | = scalar quantity K, = #/ 1, | = scalar quantity
= relative electric permittivity of the = relative magnetic permeability of the material.
material (a.k.a. dielectric “constant”).
X. =K, =1 = scalar quantity Xn =K, —1] = scalar quantity
= electric susceptibility of the material. = magnetic susceptibility of the material.
Ze:‘g/go_l or: ‘9:80(1+Ze) Zm:lu//uo_l or: /J:/Jo(l-i-}(m)

Note that: |&, &, K., K, %o, x| are all defined in the rest/proper frame of the linear material.

Note also that: |C =]7/\/€0ﬂ0 , &, 1, and hence: |Z, =+/#,/¢, | are all Lorentz invariant quantities:
c 21,/\/50,% = speed of light/EM waves in free space/vacuum = 3.0x10° m/s.

&, =macroscopic electric permittivity of free space/vacuum = 8.85x107* F/m.

4, =macroscopic magnetic permeability of free space/vacuum = 4z x10~" H/m.,

Z,=\u/¢s, | = macroscopic impedance of free space/vacuum = 1207 Q =377 Q.

Thus, for linear macroscopic materials, the following 3-D vector quantities are defined in the
rest/proper frame of the linear material:

—

D(F,t)=,(1+ 7 )E(F,t)| and: |B(F,t) = &, (1+ 7, ) H (F,1)

F,t)> = electric polarization = electric dipole moment per unit volume.

)=n(m(F,t)) [= magnetization = magnetic dipole moment per unit volume,
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Thus, we obtain the {usual} constitutive/auxilliary relations for linear media defined in the
rest/proper frame of the linear material:

D(F.t)=&,E(F.t)+P(F.1)] and: |H (r,t):ﬂié(r,t)_M(r,t)

In order to go over to a relativistic formulation of these relations, we must be careful/precise
in their physical meaning. In particular, the electric permittivity, & and magnetic permeability,
u are defined in the rest frame of the material —i.e. ¢ is the proper electric permittivity and u

is the proper magnetic permeability

Thus, the macroscopic fields D,P,E and H,M, B are all defined in the rest/proper frame of
the linear material — i.e. they are proper macroscopic electromagnetic fields.

Because we already know/understand the Lorentz transformation properties of E and B,
we can write the auxiliary/constitutive relations as:

E(r,t)=—([3(r,t)—13(r,t)) and: I§(F,t)=,u0(l:l (r,t)+1\71(r,t))

The relativistic EM field tensor F** is: |F* =

“E,Jc -B, 0 B,
_Ejc B, -B, 0
o B B B
-B, 0 -E,/c E, /c 1
and its relativistic dual G*' is: G" = / /€] =&"F,,

-B, E,)c 0 -EJ/c| 2
-B, -E,/c EJc 0

We construct a rank-2 anti-symmetric tensor D (analogous to F**) for the D and H fields.
It describes the (relativistic six-component) “electromagnetic displacement” field, D*".

{n.b. again, comparing forms in different textbooks, variations for D** will be found that depend
on the choice/definition of the metric g“* used and conventions r.e. overall constants, etc. !!! }.

O ~ -
- . . E=— D_P) _ E—)iD
Taken together, the auxiliary/constitutive relations & suggest replacing &,
B =, (H +M) B> uH
~ 1 = =
- - - - - - - E % D = C D
However, it is a little “cleaner” if we also divide through by x, , i.e. replace HoEy
B—H
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0 ¢D, cb, ¢b, o Coul .~ Amps
., |—¢b, 0 H, -H, T m? T m
Then D' becomes: [D* = Sl units check:
-cb, -H, 0 H, D= Coul m _ Amp
-cD, H, -H, 0 m’> sec m

We also construct the relativistic dual of D**, which is H** (the analog of G**), defined as:

0 H, H, H,
—-H 0 —-cD, c¢D 1
H v = X z y _- vaUD
“H, ¢, 0 D, | 2°
-H, -cD, c¢cD, 0

The relativistic dual tensor H*Y may also be obtained directly from D*' by carrying out an
appropriate duality transformation on the D and H -fields, analogous to that for the E and B -fields:

E'= Ecosg, +CBsing, _ gy T E') (cosg,+sing, \(E
cB'=cBcosg, — Esing, | ° 2| % |\eB') | =sing, cose, )\ cB
cD'=cDcosg, + Hsing, Y cD") (cosgy +sing, |\(cD
H'= Heoosp, —cDsing, | © 2| & |\H" )"\ =sing, cosg, J\ H

Then for g, =—90°, we replace: [cD — +H|and: [H — —cD]in|D* - H*;

0 cD, cb, cb, 0 H, H, H,
D _ -cD, O H, -H, I -H, 0 -cb, cD, :ES““"D
—-cD, -H, 0 H, -H, cD, 0 -cD | 2 4o

-cb, H, -H, O -H, —cD, cD, 0

Likewise, we may analogously define/construct a rank-2 anti-symmetric tensor P** for the
P and M fields describing the (relativistic six-component) electromagnetic “polarization” field P*.

. ~ ) - lom - ) - ( Am
Since P has the same S| units as D(COU—Obsj and M has the same Sl units as H ( psj
meter meter
we see that:
0 cP, CPy cP, Note the minus sign reversal here for
—cP 0 -M, M, MX,My,MZreIative to PX,Py,Pzdue to
va = X z
_ _ = — -1 - .
by M, 0 M, D=¢gE+P|vs.|H=—B-M|m
—-cP, -M, M, 0 Ho

Again, we can construct a relativistic dual of P’ which we call M** {the analog of G**, for
F“ and/or H*", for D*'}, defined as:
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0 -M, -M, -M,
M 0 —cP cP
M/zv = X z y _ - /1V/10'P
M P 0 P . S = B
y O —CF D=¢E+P
M, -cP, cP, 0

Again, note the minus sign reversal here for

VS.

MX,My,MZreIative to PX,Py,Pzdue to

H

L5

H,

Again, the relativistic dual tensor M** can be obtained directly from P** by carrying out the
same duality transformation as above, but on the P and M fields. Since P has the same SI units
as D, and M has the same Sl units as H we see that:

—CP' =—cPcos¢, + Msin g,

{

M’ =+Mcos ¢, +CPsin g,

—cP’
M!

or:

T
=00 =-2
s

)

COS @, +Sin @y
—Sin ¢, COS @,

|

—cP
M

|

Then for g, =-90°, we replace: [cP — —M]and: [M — +cP|in |P* > M*'|

0 cP, cP, P, o -M, -M, -M,
pin _ —CP, 0 -M, M, I I M, 0 —CP, cP, :lgwaP
-cP, M, 0 -M, M, ¢, 0 —cP | 2 o
-cP, -M, M, 0 M, -cP, cP, 0
From the classical electrodynamic auxiliary/constitutive relations: D= EOE +P and: H = ,ui B-M

1

&,

or:|E = (lj—f’) and:

I§=yo(l:|+l\7l

0

in terms of the EM field tensors and their duals are:

G" =y, (H™ -M*™)

D,UV ZLF'UV‘FP/N m
M,
or: = = 4, (Dyv _P,uv) m:
H uo 1 v Y
n.b. If we define |D = F“+P

then we must have the + sign in

H® =

1
M,

G +M*

because the dual EM field tensor |G**

1

_ wilo
=—&""F,

connects to:

G"V=,u0(H”V—M”V)=%

E#VAO- Flo‘ = %ﬂogﬂ\llg ( D/iO' - P/iO') .

4
200
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0 E,/c Ey/c E,/c 0 B, B, B,
Fﬂv = _EX/C 0 BZ _By G,uv = _BX O _EZ/C Ey/c zig,uvﬂ.crl:
-E,Jc -B, 0 B, -B, E,/c 0 -E/c| 2 4o
-E,/Jc B, -B, 0 -B, -E,Jc E]/c 0
0 cD, ch ch, 0 H, Hy H,
—cD 0 H -H -H 0 -cD, c¢D 1
Dyv_ X z H;zvE X z y :_gyVZUD
—ch -H, 0 H, —Hy ch, 0 —cD, 2 ‘o
-cD, H, -H, 0 -H, —cD, cD, 0
0 cP, cP, P, o -M, -M, -M,
—cP 0 -M M M 0 —CcP cP
Pyv = X z y Myv = X z y :_gyVlJP
P, M, 0 -M M, cP, 0 —cP, | 2 ad
-cP, -M, M, 0 M, -cP, cP, 0

Let us explicitly check the correctness/validity of these relations — assuming things are internally
correct within each of the EM field tensors T, then we only need to check two non-zero elements:

For the T components:

D01:iF01+P01
Ho H01_i601+M01
cDX=i5+cPX #o
C
IL;_O Hx:in_Mx
D,=——E, +P, Ho
/uoc or.
D, =¢,E, +P, -1 - -
_ H=—B-M
or: 4,
D=g,E+P

For the T** components:

DY :iF12+P12
Hy
Hz :iBz _Mz
Hy
or:
A-Llg-w
Hy

le:iGlz—l-Mlz
My

—cD, =———E, —CP,

HoC

D, = ! -E, +P,
HoC

D, =¢E,+P,

or:

D=¢,E+P

Thus, we obtain the relativistic auxiliary/constitutive relations and their duals:

oL

Ho

F* +P

P g, (D" —P™)

and:

=L g e

Hy

G = gy (H* M)
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Lorentz Transformations of the Relativistic Macroscopic
Electrodynamical Fields {F*,D*,p*} and Their Duals {G*,H"' ,M*'|

We already know/have shown that in the the relativistic EM fields in frame IRF(S') are related

to those in IRF(S) via:

FI/,N — A‘LJ)LAVUFZO'

and

Gwv — A/ziAng/la

transformation tensor.

, Where A*' = the Lorentz

For linear macroscopic media, we have linear relations between {f), E,P} and also between

{I—T, I§,1\7I} , which hold relativistically between

Ho

D;N:iFyV_"_P;N

and also

H v

:iGyv_,’_Myv.
Ho

.. We explicitly see using the Lorentz transformations of individual field quantities defined in

IRF(S) to the frame IRF(S"):

Dr,uv — AﬂlAvo_Dig

, F!;N :AylAvo_Fio‘

and:

1
That:

Hy

D,uv _ -

F# +p~

A“N [D“ -—

1 F“V+P“V}

Ho

Pr,uv — A/JZAVO-P),G'

1
Hy

A,U]VAVUDJ,O' — _A,U/IAVUFJ.O' +A'UZAVUPAU

=

1

D!,uv - = Fl,uv +Pr,uv

Hy

holds in IRF(S").

Likewise, for the dual tensors we explicitly see using the Lorentz transformations of individual

field quantities defined in IRF(S) to the frame IRF(S"):

and:

Muzv — A#lAvaMia

H!yv :A;A\;—H Ao

G!,uv — AylAVUGAU

That: |[H* =2 G# +M»| = A”ZAVU{H#uiGﬂuMW}
Hy Hy
! v Ao 1 ! v Ao % Ao ruv 1 ruv ruv
= A AN HY =—A" A" G+ AN A" M*| = H" =—G"" +M"™”

Hy

Hy

holds in IRF(S').

Equivalently, we can alternatively express these as a simple Lorentz transformation of the
macroscopic {E, D, P} and {B,H,M|fields, e.g. for a Lorentz transformation from the

rest/proper frame IRF(S) where the macroscopic {E, D,P} and {B,H, M| fields are defined,

to another IRF(S") which is moving with velocity v || to one of the X, ¥, or Z axes (e.g. V = +VX).

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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We have already shown {in P436 Lecture Notes 19 p. 1-3} that the components of E and B
that are || and L to the boost direction (V)transform as:

IRF(S'):

IRF(S):

IRF(S'):

IRF(S):

=

o< ol<

!

n.b. note the sign reversals here
relative to the above relations !!!

n.b. We see from these two relations that in the rest/proper frame

1 L
1L N Rv
EIL:}/(EL+<\_/.X§)i) B —7(8 CZ(VXE) j
o £V where: |y
Thus:
IRF(S"): IRF(S): IRF(S"): IRF(S):
1L 1 1, =5\ —-\1
D“=y|D +C—2(VXH) H'izy(Hi_(vXD) )
1 1 - —-\1 1 Pl =\t
=y D +E(/BXH) :]/H —C(ﬂXD)
And similarly:
IRF(S"): IRF(S): IRF(S"): IRF(S):
M1 =M
L T AN —\L
P==y|P —C—z(va) M'lzy(Ml+(\7xP) )
1 1 P — \L _ 1 n =\t
=y P ——(ﬂxM) =y(M +C(,B><P)
C A
And we also have \
In IRF(S") In IRF(S) IRF(S,) of a polarized dielectric with electric polarization P,
B =cE +P B=cE+P (or a magnetized material with magnetization 1\710) if the linear
u ~ material is moving e.g. with velocity V = +VX in the lab frame
H' = i B'—M' H = i B—M IRF(S), an observer in the lab frame will “see” a combination of
Ho Ho electric polarization Pand magnetization M in both cases!
1 . . .
n.b. |s,, 1,,¢ =—=—=/|are all Lorentz invariant quantities.
goﬂo
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Relativistic Invariants Associated with Macroscopic Relativistic EM Fields

We have already shown/discussed that for the E and B -field tensors F** and G**, there are

two and only two relativistic Lorentz invariant quantities:

2
1) |F*F, =F,F" =-G"G,, =-G,G" = 2(82 —(%j ]

n N v v 4 = 5
2) |[F~G, =F,G" =G"F, =G, F" :—E(E-B)

Since the (inner) product of a contravariant tensor of rank-n with any other covariant tensor of
the same rank-n is a Lorentz invariant quantity (i.e. same/valid in any inertial reference frame,

we see that for {F*',D*',P*"} and their duals {G*',H**,M*'| we can literally have a “field

day” / go wild {1} and form many additional Lorentz invariant quantities, such as:

3) [D*D,, =D,,D* =—H"H,, =—H, H" =2(H*~(cD)’)

4) |[p"H, =D, H" =H"D,, =H,D" =-4c(D-H)

5) PHVP/N = PuvP”V = _M”VM;N = _Muva = 2(M2 _(CP)Z)

6) |[P“M,, =P, M* =M"P =M P = +4c(f>.1\7[) <«——— | See these lecture notes, p.10 for details.

We can also form the “crossed” Lorentz invariants:

7) FHVD/N _ F/ND'W — D/NF/N _ D/NFW =_-G“H . :_Gva w—_H #VG/N = —H/NG#V

M

8) |F“p, =F,P" =P"F, =P F"=-G"M, =-G,M*" =-M“G,, =-M ,G"

9) [p*P, =D, P"=P"D, =P, D" =-H"M, =-H, M" =-M*"H , =M H"

As well as:

10) = ﬂVM/N _ F/NMW — M~ F/N _ M#VF'LN _ _G/NP#V _ —G/IVPW = _P#VG#V = —P/NG/UV

11) DHVGMV = D/NGHV =G" Duv = G/IVDHV =—H" Fuv = _H;NFHV =-F"H v T _FHVH "

7,

12) |p*M,, =D, M* =M*D,, =M ,D* =—H*P, =—H P* =—P"H =-P H"

Thus, we can form a total of 12 unique bi-linear Lorentz invariant quantities using the
relativistic macroscopic EM field tensors {F*,D*, P*'} and their duals {G*,H*',M*'}.

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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We explicitly work out the first four of these new Lorentz invariant quantities:
3)

D“D,, =+D”D® - D"D" - D”D™ - D*D"
- D*DY + D"D" + D¥D* + D®D"
- D?*D? + D?D?* + D?D? + D¥D?
_ D30 D30 + D31D31 + D32 D32 + D33D33

= 0 -c’D;f —c’D —c’D;
-c¢’D? +0 +H? +H;
—c’D;  +H; 0 +H?
-¢’D]  +H;  +H; +0

=2(H*-c’D?)

4) DyVHyV:+D00H00_D01H01_D02H02_D03H03
_DlOHlO+D11H11+D12H12+D13H13
—D20H20+D21H21+D22H22+D23H23
_D3OH30+D31H31+D32H32+D33H33

= 0 -cDH, -c°D,H,-cD,H,

—-¢’D? +0 +H? +H?

-c’D]  +H; 0 +H?

-c’D; +H;  +H; +0
:—4c(5oﬁ)

5) P,NP#V — L pYOpY _ pOlp0l _ p02p02 _ pi3p03
_PlOPIO+P11P11+P12P12+P13P13
_P20P20+P21P21+P22P22+P23P23
_P3OP30 +P31P31+P32P32+P33P33

= 0 —c’P; —c’P; —C°P;
—-c’P; +0  +MI +M]
—c’P; +M? +0  +M;
—c’P; +M; +M; +0

=2(M* -c’P?)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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6) P“M , = +PPM”™ —P*M* —P“M* - P*M*
~PM"™ + P"M" + PPM™ + PPM®
~PPM? + P*M* + P?*M* + P*M*
_P3OM30+P31M31+P32M32+P33M33
+P M, +c’P, M, +cPM,
+cP,M, +cP M,

0

+cP,M, +0

+CP .M, +cP,M,

+cP M, +cP M, +cP M, +0
= +4c(13-1\7[)

+0 +cP M,

We can also form “higher-order” tri-linear and quadri-linear invariants from combinations of
{F®, D" P*land{G" ,H" ,M*}, eg.

F“VDMPV‘ (and all allowed permutations): F“VDMPVO,G’“’ (and all allowed permutations):
Shorthand: Shorthand:

FFF GGG FFG ------- > etc FFFF ete----»

FFD GGH FFH FFFD

FFP GGM FFM FFFP

FDD GHH FFFG

FDD GHM | FFFH

FPP GMM FFFM

DDD HHH | v

PPP MMM efc. etc.

e.g. F D P G H and all allowed permutations
e.g. FDP G H M and all allowed permutations

Note: Obviously, not all of these combinations of fields will be truly unique!

e.g.

2 2
e R CE )

4

2
o rn (P, ) (rn.) -2 0 (E] |2 )

c

| Jose-ew)

10 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Maxwell’s Equations in Tensor Notation for Macroscopic Linear Media

The classical electrodynamics version of Maxwell’s equations for macroscopic linear media are:

1
g_pToT = g_(pfree + Poound ) Mi Prot = Pree + Poound

0o 0o

1.) Gauss’ Law: VeE =

The auxiliary/constitutive relation |D =¢,E +P| gives: [V+eD =¢&,V+E +V+P
1 = = =
8_10T0T = V.D = pfree and V° = _/Obound

0

V.E =

=¢E||P=¢,1.E| = e=¢,(1+ 1)

O

2.) No magnetic monopoles: |V<B =0

_ - 0B
3.) Faraday’s Law: |VxE = -
- - 10E - —
4') Ampere’s Law: V% B_C_z t :,UOJToT where: JToT = Jfree +Jbound +Jb0und

~1 - - - 01 - -
The auxiliary/constitutive relation [H =ﬂ—B—M gives: [VxH Zﬂ—Vx B-VxM

] H J aE - - _’p 813
Maxwell’s displacement current term |J, = 805 , polarization current: [ Jpoung 5
- - = D — oD E P - -
VxH=J _ +— VxM =JY N = = 22T 1T

free 8t and bound Where- 8t 0 at 8t D bound

=12l E= =
H=;B, M=y H :,u=,uo(l+;(m)

Relativistically, we have seen that Maxwell’s four equations for free space / the vacuum
{i.e. no matter present} are contained within the two tensor relations:

ok _ J1or | and: G _
8XV IUO ToT | &l 1. aXV
Given that: {D* =ﬂi F*+P*land: [H* :luiG”v + M~

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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We see that the inhomogenous relativistic Maxwell relations are:

oF * P

ox" = HoYT1or

v 6' Ij = pfree

aD: =J ﬁee = (Cpfree’ j.free) N 6[3 N

28 VeH __:‘]free

ot

aPyv N V.P = pbound
AV ‘]tﬁ)und = (_Cpbound ’ ‘]bound ) . - 6I5 - -

X ‘]bound :‘Jli)und +Jb'\(/|)und :E—'—VXM

Whereas the homogenous relativistic Maxwell relations are:

— VeH =-V.M
Ve-B=0 -
oG* . oH* oM* o < 1 oH
Vv :O — — aB :> v == Vv VXD:__Z_
OX VxE=-"% OX OX c” ot
a-t —
Vxpoq M

c” ot

The relativistic constitutive relations for linear, homogeneous, uniform, isotropic media {i.e. the
relativistic analogs of D=¢E|and|B=uH } were proposed by H. Minkowski as:

D*n, =c’eF*'n,| and: |H"n, = %G’Nﬂv

n.b.
The relativistic EM field tensors are contracted with the proper 4-velocity, r* .

The relativistic EM field tensors are defined in the rest/proper frame IRF(S) of the linear material.

& is the proper electric permittivity and g is the proper magnetic permeability.
Both guantities are defined in the rest/proper frame IRF(S) of the linear material.

n* is the (contravariant) proper 4-velocity of the material.

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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We can easily show that these formulae give the correct constitutive relations when the linear

material is at rest, i.e. when |17, =(—c,0,0,0)|. Here the sum over v collapses to a single term:
In the D', =¢’eF*'n,| = |D*°n, = ’eF**n,| =|-cD = —¢’¢(E/c)| = [D = ¢E
rest/proper 1 . : -
frame of the v W 0 0 N _ - B
. R H#UV:_G/ 77\/ = H/’ln :_Gl 77 :>_H:__B N H:—B
linear material: P 0 P o P p

If the linear medium is moving e.g. in the lab frame IRF(S) with ordinary velocity i then:

.Thenfor G4 #0:

7, =(=r¢,y0) =y(-¢c.0)

D*'n, = c’eF “n,

For u=0:

and:

H“y, == Gy,

=
c

FOVUV _ F00770+F01771+F02772+F03773:O+%(7ux)+ (]/Uy)+%(7uz):7

1

/4

= 7C(I3oﬁ) = ng(

. DOVUV — ngFOVnV

c

2e)

or:

nd:

>

= 7/(I:|-U)=

H 0V77v = lGovnv -
p p

L (o)

or: [Heli =

(59)

Similarly for z=1:

Dlv’?v = D10770 + Dll’h + D12772 + D13773 = +7C2Dx + szuy _7/Hyuz = 7/(

F7, = F, + F'n, + FPn, + F2, = yE, + 7B,u, - 7B,u, = 7 ( E, +(U>< B)

. Dlvnv =C26‘F1277V N

7(C2DX(U><I:|)X)=

y(EX+(UxI§>X)C

>

nd:

=

E E _
G"nn =G 1y + Gl + G, + Gy = +yeBx—y—2u, +y—Lu, :Z[CZBX —(Ux E) J
C C C X
R =2l bo(H, ~(ux0) )<L e'B, ~(uxE) 2| (1) 8- S(uxe)]
H ‘ c S H c
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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rhus tor: [P =] ans [, 26,
We obtain:
5+ 2 (axH)=e[E+(ax8)]| ana H:(Uxﬁ):%[ézciz(axé)} ok
Insert ﬁ_\(ui?ﬂé_ciz(uxé)_
Into: 5+%(UXH)=S[E+(UXE)} Solve for D

c? cu ctu
Use the B(A 5)—5(5\-3) rule on the first triple cross-product:
5+ u(a f)):—uzf)}=5[E+(UxE)}—%(Uxé%%[w(uxﬁ)]
But: (U 6)=g(u E)
Thus:
— 2 — — — — — —
D(l—L;—ZJ:—CiZU(U E)+5[E+(U><B)]—%(U><B)+ﬂt4 [(E-0)u-uE]
212 1 1 = N\ (L = 1
:g{_l— ngA}E—C—Z{l— gﬂcz}(E-u)u +(UXB){1— s }}
Define:|7, = 1—$2/cz and: Vz%ﬂ = speed of propagation of EM waves in the linear medium.

_|
=
)
>
(W]
Il
=
3}
/_/H
TN
[ BN
|
c
N
<
N
~
m
TN
|_\
|
| <
N N
m
+
TN
|_\
|
) | <
N N
~
1
—_
<
X
usll
N—
|
oN| [N
—_
m
<
N—
<
L 1
%/_/

Insert: 528[E+(UX§)]—C (UXH) Solve for H :

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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o S0 )t |- 2 8- 2 () ofuxE) e ofux(uxE)]
But: |(He0) = (0+H) = (a8)

98]
c
—

Y Em and: i
R L]

Thus, the macroscopic D and H -fields in a linear medium moving with ordinary velocity G
in IRF(S) in terms of the E and B fields present in IRF(S) are:

|5=7§8{1— u;’jé{l—‘c’—g[(axB)—C%(E.U)u}} with: [, = ———

1-u?/c?

i 122 weeps(oua]l| mefre D

Note that & and u are the proper electric permittivity and the proper magnetic permeability of
the linear medium — i.e. they are defined in the rest/proper frame of the linear medium.

When [u = 0] < c|, then |y, =1|{i.e. the non-relativistic limit}.
Thus, keeping only up to terms linear in G:

- = N =\ = - 1o (1 1) =y 1

D:gE+(l—(v/c) )(UxB)ng and: H:;B+(F—C—ZJ(UXE)z;B
- " - - ~ J
Usually very small Usually very small
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2005-2011. All Rights Reserved.



