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LECTURE NOTES 17

Proper Time and Proper Velocity

As you progress along your world line (moving with “ordinary” velocity # in IRF(S) ) in the
ct vs. x Minkowski/space-time diagram, your watch runs slow (i.e. in your own rest frame
IRF(S") ) in comparison to clocks on the wall in the lab frame IRF(S).

The clocks on the wall in the lab frame IRF(S) tick off a time interval d¢, whereas in your

reference frame (your rest frame) IRF(S’) the time interval is: |dt’ =dt/y, =+/1- B; dt‘

n.b. this is the exact same time dilation formula that we obtained earlier, with:

1

Vi = \/ u/c \/l

Here, we use u = |L7 | =relative speed of an object as observed in an inertial reference frame

and: | B, =(u/c)

(here, u = speed of you, as observed in the lab IRF(S)). e

»
=
/
We will henceforth use v = |\7 | =relative speed between Q)| o Al I‘i\: (s')
two inertial systems — e.g. IRF(S")) relative to IRF(S): & 3 3
Because the time interval, d¢’ occurs in your own REST -~

FRAME (IRF(S")) we give it a special name: * %
= PROPER time interval (in your rest frame) = proper TIME (in your own rest frame).

The name “proper” time is due to a mis-translation of the French word “propre”, meaning “own”.
Proper time 7’ is different than “ordinary” time, .

Proper time 7’ is a Lorentz-invariant quantity, whereas “ordinary” time ¢ depends on the
choice of IRF.

The Lorentz-invariant interval: dl = dx,dx'" = dx'""dx!, = ds"” =—c*dt"” + dx" + dy" + dz"

Proper time interval; dT’E\/—dI/CZ :\/_dsrz/cz :\/dt'z —CZI)C'Z/C2 —dy'2/02 —dZ'z/C2 :\/dt'z =dt'

. ’ ’ ! Té ! té ! ! ! !
Proper time: TET,—T EI, dr =L dt'=t; -t = At' |«
7 1

. . o . ’ ! . .
Because dz'and 7'are Lorentz-invariant quantities: |d ' =dr | and: |T =T | {i.e. drop primes}.

In terms of 4-D space-time, proper time is analogous to arc length S in 3-D Euclidean space.

Y

Special designation is given to being in the REST FRAME of an object.

The rest frame of an object = the proper frame.
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 1
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Consider a situation where you are on an airplane flight from NYC to LA. The pilot comes on
the loudspeaker and announces in mid-flight that the jet stream is flowing backwards today, and

that the plane’s present velocity is u = 0.8c, due west, (S, =0.81)

What the pilot means by “velocity” is the spatial displacement ﬁ per unit time interval, dt .

The pilot is referring to the plane’s velocity relative to the ground (we assume here that the
earth is non-rotating/non-moving — let’s keep it somewhat simple, eh, so we can use IRF’s, eh?)

Thus, d_z and dt are meant to be understood as quantities as quantities as measured by an

observer on the ground (e.g. an airplane flight controller, using RADAR) in the ground-based
IRF(S).

drl d? and dt are measured

Thus: |u ZZ = “ordinary” velocity in IRF(S) in the ground-based IRF(S)

You, on the other hand are in your own rest frame (IRF(S")) in the airplane, sitting in your seat.

You know that the distance from NYC to LA is: L =2763 miles (referring to your trusty

Rand-McNally Road Atlas (back pages) that you brought along with you for your trip).

So you, from your perspective, might be more interested in the quantity known as your

proper velocity 77 , defined as:

) I ¥ ) Spatial displacement, as measured on the ground
Proper 3-Velocity: |77 = e ybrid measurement = | (in IRF(S)) per unit time interval as measured in your
T (or an object’s) rest frame (in IRF(S")).
1 1

Since: |dt =dt' =—dt =\|1- B dt = Jl—(u/c)zdt andy, =——|, |B, = (u/c)

Y -5

_dldl di di L 1

Then: n=—=—F——=y,—|, buttju=—/| .. 7=y u= u= u
e e e 7w

Vu

Of course, for non-relativistic speeds then to a high degree.

From a theoretical perspective, an appealing aspect of proper 3-velocity, 7 is that it Lorentz-
transforms simply from one IRF to another IRF.

11 = 3-D spatial component(s) of a relativistic 4-vector, 77*

dx*
The {contravariant} proper 4-velocity is: |7 = s whose zeroth/temporal component is:
y = 1
dx’  cdt dt / u=
rodr 7—dt t \/l_ﬂu \/1_(”/0) B, =(u/c)

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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u
#=dx

dr

=(n".7)=(7,c.i)

—_

nt =

S IS S
[\S)

dx’
dr
7. c dx!
v | lue| | dr
V.U, L u, | dx?
Yl u,) | de
dx’
dr

The numerator of the proper 4-velocity, dx" is the displacement 4-vector (as measured in the
ground-based IRF(S). The denominator of the proper 4-velocity, dz = proper time interval
(as measured in your (an object’s) rest frame IRF(S").

The Lorentz Transformation of a Proper 4-Velocity, n*:

Suppose we want to Lorentz transformation your proper 4-velocity from the lab IRF(S) to
another (different) IRF(S") along a common x -axis, in which IRF(S") is moving with relative
velocity with respect to IRF(S):

with:

Most generally, in tensor notation: |7" = AYn"| with A% = Lorentz boost tensor. Thus:
) (7 B 0 0\n" ) [7(n°=pn)
nl _ 00 1 nl 1 0
v 1Y L S| ] =)
7" 0 0 1 0lp 7" .
77!!3 O 0 0 1 773 77#3 773
d "u d U
Where: (7" S and: (7" = al
dr dr

Compare this result to the same Lorentz transformation of “ordinary” 3-velocities, along a
common X -axis. We can simply use the Einstein velocity addition rule:

U=uXx+uy+u,z

=N __ " "o na
u'=ugx+ugy+uz

{See Griffiths Example 12.6 (p. 497-98) and Griftiths Problem 12/14 (p.498)}

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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YA }/(1—(uxv/cz))

with:

" dr 7/(1—(uxv/cz))

"
, dz

u
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Now we can see why Lorentz transformation of “ordinary” velocities is more cumbersome
than Lorentz transformation of proper 4-velocities:

numerator, d/

J=1

denominator, dt

. o |- dl
For “ordinary” 3-velocities |u = Z, we must Lorentz transform both {
N - -
For proper 4-velocities|np” = 7 we only need to transform the numerator, d/ = d /" .
T

Relativistic Energy and Momentum: 4-Momentum:

In classical mechanics, the 3-D vector momentum, p = mass x velocity v, i.e

How do we extend this to relativistic mechanics?

. di
Should we use “ordinary” velocity, |u = o for v,
: . di .
or should we use proper velocity, |7 = I for v 7?
T

In classical mechanics, 77 and u are identical.

In relativistic mechanics, 77 and u are not identical.

We must use the proper velocity 77 in relativistic mechanics, because otherwise, the law of

conservation of momentum would be inconsistent with the principle of relativity { = the laws of
physics are the same in all IRF’s} if we were to define relativistic 3-momentum as: p = mu . No!!

Thus, we define the relativistically-correct 3-momentum as:

p=mij =y,mi= =
\/l—ﬂuz \/1—(u/c)2

—

mil ) 1
with:

mu _

7/;1_

l_ﬂu

Relativistic 3-momentum

R uo__ 73 I
relativistic 4-momentum vector: , 1

p=mn= 7ulm7l is the spatial part of a

e.|p" =(p".5)|

and:

The temporal/zeroth/scalar component of the relativistic 4-momentum vector is:

1
p'=mn" =y,mec= with: |7, =—— and: |8, =(u/c)

\/ 1- ,3 \/ 1- (u/ c 1-4,
Einstein called |m,,, =y, m = = relativistic mass.

\/ 1- ,6; \/ 1- (u/ c
ThuS: p = m77 = mrelc o c= = p = m77 = 7umu = mre/u
— 2 2

JI=8] 1-(u/e)

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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n.b. Modern usage has abandoned the use of relativistic mass in favor of the relativistic energy, E.

Relativistic Energy: | E = y,mc’ =

B, =(u/c)

mc me e |y q
= with: ———| and:
\/l_ﬂuz \/l—(u/c)2 ’ 1-p;

Thus, we see that relativistic energy | £ = y,mc’ =m c’|and thus: | p° = E/c

P’ E/c
p|_|P
Therefore, the components of the relativistic 4-momentum are: |p* = , | = px
p v
p’ D

Note that relativistic energy of an massive object is non-zero even when an object is stationary
(i.e. in its own rest frame), i.e. when |y, = I/N/I—ﬂu2 =1land |5, =0|

2 . .
Then for |7, =1}, |8, =0} | E,., = mc”"| = rest energy = rest mass * c*. < Einstein’s famous formula!

The remainder of relativistic energy (if £, # 0) is attributable to the motion of the particle

—1i.e. it is relativistic kinetic energy, E

kin *

Total Relativistic Energy: |E=E;,=E,, +E, , =7 umc2 but: |E,., = mc’

" |E, =E,,—E_, =ymc—mc = (;/u —l)mc2
e . . . 2 1 2 1 2
Relativistic Kinetic Energy: |£,;, = (J/M —1)7710 = —2—1 me =\ —r—— —1|mc
J1- 5 1—(u/c)
o . 1, 3mu’ I )
In the non-relativistic regime, [u < cl: |E,, = S F et e (classical formula).
c

But for [u < c], then: [p =mul], and thus: | E,,, = L for (classical formula).
m

n.b. The total relativistic energy, E, (= E) and total relativistic momentum, p, , = | Drr| are

conserved in a closed system/every closed system.

If the system is not closed, (e.g. 3 external forces present) then £ = E, . and p,,, = | ﬁ| will not

necessarily be conserved. = Simply expand/enlarge the definition of “system” until it IS closed,
then the (new) E, , and p, , = | fym| will be conserved.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
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Relativistic mass, is also conserved in a/every closed system,

m., =y m= m n
A \/l_ﬂuz \/l—(u/c)2

2 2 2 . e e e
because |m,,, = E;,; / ¢ |or: |k, =y,mc  =m, .| = conservation of relativistic mass

= conservation of total relativistic energy, i.e. this is simply redundant information.

Same in all inertial reference frames
A

' IR
Note the distinction between a Lorentz-invariant quantity and a conserved quantity.
- J

~
Same before vs. after
a process/an “event”

Rest mass is a Lorentz-invariant quantity, but it is not {necessarily} a conserved quantity.

Example: The {unstable} charged pi-meson decays (via weak charged-current interaction, with
mean/proper lifetime z_. =26.0 ns ) to a muon and muon neutrino: 7* — x"v, . The charged

pion mass m . is not conserved in the decay, however the total relativistic energy of the charged

pion |E . =[p>.c’ +m’.c* |is a conserved, but not Lorentz-invariant quantity.
v T T

The scalar product of any relativistic 4-vector a* with itself is a Lorentz-invariant quantity

(i.e. = same numerical value in any IRF): e.g.|p,p" = p"p, =—m’c*|

p.p'=pr"p, = _(PO )2 +(pep)= —(E/c)2 +p’ = —}gz —m’c? +>§<2 =—m’c’

Griffiths Example 12.7: Relativistic Kinematics

Two relativistic lumps of clay {each of rest mass m} collide head-on with each other.
Each lump of clay is traveling at relativistic speed u =2 ¢ as shown in the figure below:

— 3.0 -

5C U,

The two relativistic lumps of clay stick together (i.e. this is an inelastic collision).
What is the total mass M of the composite lump of clay affer the collision?

Conservation of momentum before vs. after:

Since the two lumps of clay have identical rest masses and equal, but opposite velocities:

1
—before __ — — = - — . _ . —before __

DPror =Dyt DP,| but: |p, =—p,=y,mu|where: |y, = A ﬁz S |\ Pror =0
- u

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Conservation of energy before vs. after:
Before: Each lump of clay has total energy: |E =y, mc” =
\/ 1- ,3 \/l u/ ¢)
NE= mc’ =mc =mc =§ )
1_(3T \/1—9 164
5 25 25
before 2 2 5 2
Thus: |E7;" = E;p +Epy =2y,me =?mc —Emc
5
However, £, .is {always} conserved in a closed system. = |E«" = E}9" =Emc2
And p, . is also {always} separately conserved in a closed system. = |B" = proe =0
1
=1

=@ = 0] since: | pyly =7, Mi”" =0 nb. = |y, =——= 2
T=AL 1= (., o)

5
Ebef"”) SM = Sm# 2m| 11! Does this sound crazy??

5

2 2

¢ =Mc" =—mc

2 ( ToT

Then: |EJ" = Vi
This is what happens in the “everyday” world of particle physics! It’s perfectly OK !!!
e.g. The production of a neutral rho meson in electron-positron collisions: |¢* +e~ — p°|

M, =770 MeV/c* | Electron rest mass: [m, =0.511MeV /¢’

The rest mass of the neutral rho meson is:
= 0

=+pX P D, =—pX
_@_> <_@7 —> X

M

P
Run the collision process backwards in time, e.g. the decay of a neutral rho meson: |p” — e +e

p=-pPX Pl p,=+p X
<—@— O > —» X
me me
M p
e" +e” — p°|manifestly involves the EM interaction.
p’ — e' +e | manifestly

The production of a neutral rho meson
Similarly, the time-reversed situation: the decay of a neutral rho meson

also involves the EM interaction.
7

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The EM interaction is invariant under time-reversal, i.e. t — —t, thus {in the rest frame of the

neutral rho meson} the transition rate

F(e++e* —>p°)

(#/sec) vs. the decay rate

F(po —e +e’)

(#/sec) are identical {for the same/identical electron / positron momenta in neutral rho meson

production vs. decay}. Experimentally:

[(p"—>e +e )=7.02KeV =

1.70x10"® sec™

For our above macroscopic inelastic collision problem, microscopically what would the new

matter of the macroscopic mass M be made up of, since

AM =M -2m=sm-2m=1m

m

In a classical analysis of the inelastic collision of two relativistic macroscopic lumps of clay

{each of mass m} the composite / stuck-together single lump of clay of mass

be very hot — it would have a great deal of thermal energy in fact !!!

Mc?

=—mc

5 5

+F

thermal

2
= 2mc
—_—
classical mass
of composite
lump

= ElhermalM' "

M

=>m>2m

2 o,
E = mc” = Einstein’s energy-mass formula

Connection Between Conserved Quantities and Lorentz-Invariant Quantities:

Before:

H
p before ( before / c p before )

After:

u -
paﬁer - (Eaﬁer /C ’ paﬁer ) .

However, total relativistic

energy E and total relativistic momentum p are separately conserved quantities, thus:

E

after

_ _ 2
- Ebefore = Mc

and

p after

= p before

=0/ But:

p.p"=p"p,

=-M?*c’

1s Lorentz invariant;

p,p'=p"p,=

(") +(pP)=

—(E/c)2 +p’=-M?c+0=-M"¢’

holds before & after!

Griffiths Example 12.8: Relativistic kinematics associated with 7" — x"v, decay.

Pion rest mass:

Muon rest mass:

m_, =139.57 MeV/c?

Pion mean lifetime:

7 . =26.033nsec =26.033x 107 sec

would

Before:

m, = 105.66MeV/ ¢’ | Muon neutrino rest mass: m, = 0| (assumed).
In the rest frame of the 7" meson:
A + O
—px p =+px
«—@— —@—» —i
M .
Energy Conservation: Momentum Conservation:

before __ 2 —before __
Ery = m_.c ror =0

after 2 —after __ — — _ —- _ _ A
Err _E +E m_.c Pror _p#++pv/,_0 = |Py="P, =7PX

After:

8
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But: Evﬂ =p,c= Z)Vﬂ c| since: m, =0\ =P, = ﬁM =Py, = f’vﬂ
And: E; = pfﬁc2 +mi+c4 or: pfl+ 2 =Euz+ —mi+c4 =P, C= Eft+ —mfﬁc4
p,=\b.|=|p, =|b,|=|E. —m.’ /c
E2+ _m2+c4
u u

Then: |Ejy =E,.+E, =E.+p,c|but|p, =p, =

after __ _ _ 2 2 4 _ pbefore _ 2
E;, = EM +Evﬂ = EM +pvﬂc = E/f + ,E/f m.c = ET = m_.c
2 2 4 2 .
E + JE° —m" . c"=m . c”| Solve forE . :
H u u z — T u

u

2
2 2 4 2 2 4 2 2 2 2 4 2 4
E'—-m.c"=\m. cc—FE.) =m".c"-2\m c’E , |+E . |or:|2m ¢c°E .=m".c—m".c
u z u z z u u z u z u

Thus: |E .= —= and:|p, =p , =——"—|with:|p ., =D,

as viewed from the rest frame of the 7* meson.

e In classical collisions, total 3-momentum p,, ,and total mass, m, . are always conserved:

—b — after befor ; . . ToT - . . c e
Do = paler | \mpde = mi | Total kinetic energy E." is not conserved = inelastic collision.

e An inelastic (i.e. a “sticky”) collision generates heat at the expense of kinetic energy.

e An inelastic collision of an electron (e”) with an atom {initially in its ground state} may
leave the atom in an excited state, or even ionized, kicking out a once-bound atomic electron!
= Internal {quantum} degrees of freedom can be excited in inelastic e - atom collisions.

e An “explosive” collision generates kinetic energy at the expense of chemical (i.e. EM) energy,
or nuclear (i.e. strong-force) energy, or weak-force energy. . . .

o If kinetic energy is conserved (classically), = elastic (i.e. billiard-ball) collision.

e In relativistic collisions, total 3-momentum and total energy are always conserved
(in a closed system) but total mass and total kinetic energy are not, in general, conserved.

* Once again, in relativistic collisions, a process is called elastic if the total kinetic energy
is conserved = total mass is also conserved in relativistic elastic collisions.

* A relativistic collision is called inelastic if the total kinetic energy is not conserved.
= Total mass is not conserved in a relativistic inelastic collision.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Griffiths Example 12.9:

Compton scattering = Relativistic Elastic Scattering of Photons with Electrons.

An incident photon of energy elastically scatters (i.e. “bounces”) off of an electron,

0_ 0
E =p,c

which is initially at rest (in the lab frame). Find the final energy E, of the outgoing scattered
photon as a function of the scattering angle, & of the photon:

BEFoRE" AETER - 3
- B, 7 themt
Phoon @ (o vest) I LD
AN g 9) ;Z
Eg
o~

Consider conservation of total relativistic momentum in the transverse (L) (i.e. y -axis) direction:

before __ y __ . after
pimr =0= piror
before __ __before before __ _
P =p "+ p " =0+0=0
+y direction — direction
after after after after after
P, =Py + pL[ =0/= p., = pi;
+3 direction —7 direction
—— ——
AFTETL% f’ Since' pafter - _ pafter
P sin® Since: | p!/
o) ¥ 2
) afier| _| _ afier
PO | ~ Or: |lpy, |=|PL_
¥ X 7 ¢
Pe Con Or- 0= .
J "D S ) ur: p}/ Sinv = pe’ Sm @
2SinD -
'F But: p, = E}' / ¢
-
—sinf=p _sing
c e
Solve for sing: [sing = —— |sind
p.c

Conservation of total relativistic momentum in the longitudinal (i.e. x) direction gives:

before __

llror

EO

4 (nb ) pbefore

=

after

after

after

=0, since ¢ 1nitially at rest, hence p

before

lle”

=0)

Dyy =P, TP =P

,C080+p _cosg

.. Since:

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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2
E E
sin(p:[ L ]cos@ thus: |cos@ =+/1—sin’ ¢ = 1—(1) L ] sin® @

pc

c

0
_r

C

=p,cosf+p_ -

2
E
r J sin” @
p.c

or: [p’c* =(E) -E, cosé?)2 +E?sin?@=E" —~2E°E, cos0 + E?

Conservation of total energy: | E), o7

Ebgfore — Eaﬁer

before
E T0T

0 2 2.2 2 4
= |E, +mc"=E +E_=E +4p;c+mgc

after
ETO T

E'+mc*=E +\/E°2—2E°E cos@+ E* +m’c*
14 e T Ty 7 7y 7 e

Solve for £, (after some algebra): E, = [(l—cos 0)/’" O l/EOJ
e 4

1

_ . . . .o, . 0 .
E = energy of recoil photon in terms of initial photon energy £, scattering angle of photon ¢

and rest energy of electron m c’.

Can alternatively express this relation in terms of photon wavelengths:

Before:

After:

Get:

E)=hf) =hc/ )
E, =hf, =hc/A,

A, =/10+[ ch(l—cosﬁ)

Define the so-called Compton wavelength of the electron:

Then:

A, =2+, (1-cos8)

The Compton Differential Scattering Cross Section:

Useful constants:
[1c =1239.841 eV-nm = 1240 eV-nm |

mc’ =0.511MeV =0.511x10° eV

e 2
m,c

A s( he j=2.426x1012m

As we learned in P436 Lecture Notes 14.5 (p. 9-22) non-relativistic photon-free electron

scattering (E f < mecz) is adequately described by the classical EM physics-derived differential

Thomson scattering cross section:

dQ

doy (6.¢)

= %rf (1+cos’ )

where:

r,=

2

e Classical

electron
radius

=2.82x10"m

2

4re m,c

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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However, when E f >m,c® from the above discussion of the relativistic kinematics of photon-

electron scattering, it is obvious that the classical theory is not valid in this regime. The fully-
relativistic quantum mechanical theory — that of quantum electrodynamics (QED) — is required to
get it right. Without going into the gory details, the results of the QED calculation associated
with the two Feynman graphs {the so-called s- and u-channel graphs} on p. 5 of P436 Lect.
Notes 14.5 for the Compton differential scattering cross section — known as the Klein-Nishina
formula is, for photon-electron scattering:

dol™ (0,9)
dQ

1 -, x; (1—0056?)2
[1+Xy (1_C059)]2 (1+cos2 9)[1+x7 (1—0056’)]

= %rj (1+C082 0)

where: |x, =E) [m,c® = hf’ /m,c? | In the non-relativistic limit x, = 0, the Compton scattering

cross section agrees with the classical Thomson scattering cross section, as shown in the figure
below of the normalized differential scattering cross section do " (9,(0) / r2dQ vs. 0.

13

Note that as x, — oo the Compton differential scattering cross section becomes increasingly

sharply peaked in the forward direction, € — 0.

Unpolarized y-e Compton Scattering

1.0 4 = L
094+— t; ~ L /
0.8 1 N \ /
07 +——7 \\ \ Thomson Scattering/Classical Limit /

N TN B

0.6 +— b -
~ Ve
is | X el | e

0.4 \
P,

0.3 ¥ o=1
‘ x5 =10 | U Rl
N
0.2 ‘|x7=1uu ’“— i ————]
0.1 |
- l | ; ‘ | | 1 | | | | | i i |

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Theta (degrees)
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Newton’s 1* Law of Motion (“An object at rest remains at rest, an object moving with speed
v remains moving at speed v, unless acted upon by a net/non-zero/unbalanced force”
— the Law of Inertia) is built into/incorporated in the Principle of Relativity.

Newton’s 2™ law of motion {classical mechanics}:

F(7,t)=

dt

dp(7.t)

(-

—

r

1)

)

retains its

validity in relativistic mechanics, provided relativistic momentum is used.

Griffiths Example 12.10: 1-D Relativistic Motion Under a Constant Force.

A particle of (rest) mass m is subject to a constant force:

F(F, t) = F = F% = constant vector|,

If the particle starts from rest at the origin at time ¢ = 0, find its position x(t) as a function of ¢.

. o | dp(t)] Cldp(t) ]
Since the relativistic motion is 1-D, then: |F = 7 = constant, or: 7 = F'| = constant.
= | p(¢)=Ft + constant of integration|. The particle starts from rest at ¢ = 0. p(t=0)=0
— constant of integration = 0. .. |p(¢)=Ft| {here}
Relativistically:
p(t)z}/u (t)mu where:
2 2.2
Ft
Solve for u(7,t): =F*t (1—{”—2 J:F%Z— - juz =F*
c c
2
Or: [u? = F*t? B (F / m) . = lu (t 3 L _ | Relativistic particle velocity
== - 2,2 2 5 - S| . =
4 F 22‘ 1+ (F/mc) ¢ 1+ (Ft/m c) for constant applied force
c
n.b. when: |Ft/m < c| then: |u(r)=Ft/m| < Classical dynamics answer.

Note also that as 1 — oo:

u(t—)oo)—)c

I (Relativistic denominator ensures this!)

d
Since: |u(t)= Fejm == x(t)
1+(Ft/mc) dt
Then: |x(7)= tu(t =(F/m) £ dt’
'[0 J- \/l+ F/mc 1"

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois

2005-2011. All Rights Reserved.

13



UIUC Physics 436 EM Fields & Sources I1 Fall Semester, 2011 Lect. Notes 17  Prof. Steven Errede

e AR

n.b. Had we done this in classical dynamics, the result would have been parabolic motion:

m

2
The motion is hyperbolic: |x(¢)= (Ej (%j \/l +(F/me) 1

Thus in relativistic dynamics — e.g. a charged particle placed in a uniform electric field E,

the resulting motion under a constant force F =qE|is hyperbolic motion (not parabolic motion,
as in classical dynamics) — see/compare two cases, as shown in figure below:

x® } CLASSICAL
PARPEOLA

B

S RELATIUISTIC
HYPER®BOLA

= (5 A+ Gde -1
e iL[GﬂT CONE
f % % BouNDARY
7,4' > ot

Relativistic Work:
Relativistic work is defined the same as classical work: | = j Fed/

The Work-Energy Theorem (the net work done on a particle = increase in particle’s kinetic energy)
also holds relativistically:

W:jﬁ-d?:j%-d‘é jdp g jdp udt=AE,, Sinceiﬁzd—z

dt dt
But: (

dp ﬁj d mi | mii
U (=— U | sINCe:
dt

i 1—(u/c)2 - mu_\/l B \/1 u/c

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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mu du d mc?

(e ] % @ =Gy

. :; . dﬁ.“’ =i 2 — dEtut

T ~(u/c) - (df uj dt{y”mc ! dt
W:jﬁ-d?:j@-dz jdp dedz_jdp viidt = AE,,
Thus: dt dt dt dt
- dE
_j ot ot = Etoftna/ E[l:tltla/ — AE
But: |E, =E, +E  =E, +mc’| nb.|E, =y mc = (7. —l)mc2 +mc’||E,, = (;/u —l)mc2
Elin

Bl il _ ( E™ 4 me” ) ( Erl 4 e ) E/m! — gl | | (final-initial) difference in
—_— ————| | total energy = (final-initial)
difference in kinetic energy
. _ _ g final _ yoinitial _ final initial — :

L.€. W =AEy,,, =Ejo;r —Epr =AE, =E," —Eg, work done on particle.

_AETOT _AEkin

As we have already encountered elsewhere in E&M, Newton’s 3™ Law of Motion
(“For every action (force) there is an equal and opposite reaction”) does NOT (in general) extend
to the relativistic domain, because e.g. if two objects are separated in 3-D space, the 3™ Law is
incompatible with the relativity of simultaneity.

. . N . = As
Suppose the 3-D force of 4 acting on B at some instant 7 is: | F° (rB,t) =+F (rB,t observed
. . T (2 N (= e.g. in lab
and the 3-D force of B acting on 4 at the same instant 7 is: |F; (rA,t) = F(rA,t) IRF(S)

Then Newton’s 3™ Law does apply in this reference frame.

However, a moving observer {moving relative to the above IRF(S)} will report that these
equal-but-opposite 3-D forces occurred at different times as seen from his/her IRF(S”), thus in

his/her IRF(S"), Newton’s 3™ Law is violated (the two 3-D forces F/;_B (;71;, t') and 17% (F/;,t') at

the same time ¢ in IRF(S”) are quite unlikely to be equal and opposite, e.g. if they are changing
in time in IRF(S)).

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Only in the case of contact interactions (i.e. 2 point particles at same point in space-time =

(x4, t4)) where the two 3-D forces F_ (7,,t) and F_(7,,t) are applied at the same point (x,) at

the same time, and in the {trivial} case where forces are constant, does Newton’s 3" Law hold!

Lo dp(7,t
F(r,t)=—£h )

The observant student may have noticed that because F (17 , t) is the derivative of the

(relativistic) momentum p (17 , t) with respect to the ordinary (and not the proper) time ¢, it

“suffers” from the same “ugly” behavior that “ordinary” velocity does, in Lorentz-transforming

) . dp(7,t
it from one IRF to another: both numerator and denominator of %) must be transformed.
t

Thus, if we carry out a Lorentz transformation from IRF(S) to IRF(S"), along the x -axis
where is velocity vector of IRF(S") as observed in IRF(S), and # is the velocity vector of
a particle of mass m as observed in IRF(S):

A 1 )
A Then: here: =—|with: [V = vx
WIRF(g ) Lhnen: 1y W where: | | ™

DA IRFE)) = WK

The y and g factors are needed for the

Lorentz transformation of kinematic quantities

o’ 4 from IRF(S) > IRF(S).

DY

First, let us work out the 7" and 2" (i.e. the transverse) components of the 3-D force F '(7', t’)

as seen in IRF(S") {they are simpler / easier to obtain. . . }:

- ol g p
Noting that: F:_p, F'= p, and that: dt'zydt—ﬁdx and: |u, &
dt dt c dt
d d i
; T F
In IRF(S"): | ! = b dt )
dt 7dt—ﬁdx }/(l_ﬂdx) 7(1_(ﬂ”x/c))
c c dt
dp.
Similarly: |F = dpf = deﬂ — dt y _ F,
At g -7 gy y(l_ﬂdx) y(1-(Bu,/c))
c c dt

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Now calculate the &' -component of the force F'(7,¢') in IRF(S"):

pr dp Eror
\dex \Kﬂdp B 'B (ﬂ/ ) o _ Eror
In IRF(S"): | F; dt' Xﬂ = B dx = (,3 ] ) where: |p” =——
—(fu_/c c
Xdt-—~Zdx 1= *
c dt
dE . dE dp . = . . =| . ~ dp
But we have calculated =297 above / earlier: |“—22C = “L.uji = Fuii = iieF | since: |F = £
dt dt dt dt
F - ,B 1}’ . F’) / c ) Relativistic “ordinary” x, y, z force components
X' observed in IRF(S") acting on particle of mass m, for a
) ( / c )) Lorentz transformation from lab IRF(S) to IRF(S").
P F, > IRF(S") moving with velocity ¥V = vX relative to
Y 7(1—(,6’%/0)) IRF(S) (as seen in IRF(S)), y = 1/\/1—,82 , B=v/c.
F' = Fz Particle of mass m is moving with “ordinary” velocity
: y(l—(ﬂux/c)) ) U as seen in IRF(S).

We see that only when the particle of mass m is instantaneously at rest in IRF(S) (i.e. u (t) =0)

will we then have a “simple” Lorentz transformation of the “ordinary” force F — F':

F!=F, = |F/=F| < nb.|| force components are same/identical !!!

u=0f F y' =F, / 4 Where the subscripts || (L) refer to the parallel

" r_ (perpendicular) components of the force with respect to
r= FZ/ y| =E=E / 4 the motion of IRF(S") relative to IRF(S), respectively.

Note that for u =0, the component of F || to the Lorentz boost direction is unchanged.
For i =0, the component of F L to the Lorentz boost direction is reduced by the factor 1/y.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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Proper Force — The Minkowski Force:

In analogy to the definition of the proper time interval dz and the proper velocity |77 = d ?/ dr

versus the “ordinary” time interval df and the “ordinary” velocity |u = d 2/ dt|, we define a proper

force K (also known as the Minkowski force), which is the derivative of the relativistic
momentum p with respect to proper timedr :

- dp D
KE_P:(ﬂ)d_p but: |- o L
dr)dt|— |dr dt -5 \/
u 1_

1

1)

- _dp (dt)\dp = = dp
K=—=|— |—=v F \F ==
dr ( r] qr [t | where: {5 =0
I 1 - 1 - 1 1 u
Thus: |K=y,F = F= F| where: |7, = = and: |5, =—
o Ji-g | U - | U ¢
C C

We can “4-vectorize” the Minkowski Force, because it’s plainly / clearly a 4-vector:

dn® 1dE Proper rate at which energy of particle
ct: k' = - Lror since: |p° = h = K= increases (or decreases)
dr ¢ dr C 47 (Proper power delivered to the particle)/c !
dp' 1 1
1 1 1 1
x K =—=yF = Fl=———F
dr ﬂl-ﬁuz ,H—(u/c)z
dp’ 1 1 1 1
X KzEL:}/uFZZ 2F2= 2F2 >Wlth Vo = 2: 2
r V=8 i=(uje) T =B i=(u/e)
3
dr 1-5, 1-(u/c)
J
. _ dp” . :
Thus: |K* = ;; «— Minkowski 4-vector force = proper 4-vector force.

Relativistic dynamics can be formulated in terms of either “ordinary” quantities or “proper”
(particle rest frame) quantities. The latter is much neater / elegant, but it is (by its nature)
restricted to the particle’s rest frame IRF(S’) {n.b. We can always easily Lorentz boost this
“proper” result to any other inertial reference frame. . . }

There is a very simple reason for this! Since we humans live in the lab frame IRF(S) — we
want to know everything about particle’s trajectory, the forces acting on it, etc. in the lab because
this is the only IRF that we can (easily) make physical measurements in — often, it is not possible
to make physical measurements in a particle’s rest frame / proper frame, especially if the
particles are in relativistic motion (e.g. at Fermilab...).

18  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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In the long run, we will (usually) be interested in the particle’s trajectory as a function of

“ordinary” time, so in fact the “ordinary” 4-force | F* = dp” / dt|is often more useful, even if it is

more painful / cumbersome to calculate / compute...

We want to obtain the relativistic generalization of the classical Lorentz force law

FC =gE +qiix B {u = particle’s “ordinary” velocity in IRF(S)}. Does the classical formula 13C

correspond to the “ordinary” relativistic force F', or to the proper / Minkowski force K ?

Thus, for the relativistic Lorentz force, should we write: |F =gE +qiixB=gq (E + U x B) 777

Or rather, should the relativistic Lorentz force relation be: |[K = qE + qu x B= q (E + 1 x E) 77?

Since proper time and “ordinary” time are identical in classical physics / Euclidean / Galilean
3-space, classical physics can’t tell us the answer.

It turns out that the Lorentz force law is an “ordinary” relativistic force law: | ' =¢ (E +iixB )

We’ll see why shortly...

We’ll also construct the proper / Minkowski electromagnetic force law, as well . . .

But first, some examples:

Griffiths Example 12.11: Relativistic Charged Particle Moving in a Uniform Magnetic Field

We’ve discussed this before, from a classical dynamics point of view:

The typical trajectory of a charged particle (charge O, mass
m) moving in a uniform magnetic field is cyclotron motion.

If the velocity of particle (ii ) lies in the x-y plane and B = Bz,
then |F = Qii x B = QuB, (—#) = —QuB, 7| as shown on the right:

The magnetic force points radially inward — it provides the
centripetal acceleration needed to sustain the circular motion. x

However, in special relativity the centripetal force is not mu’ / R
B0 R0, (M)

“a P T PR a4 PR

dt )

(as it is in classical mechanics). Rather, it is: |/ p 7l

Top View: Vector Diagram:
T <7 ®
“ > 40 G(—“ do=pd '? d
= . o‘ > e o =
ot Pl Frop R )

C‘S =7 9”)

F’zp%(—f

N—"

(n.b. Classically: thus, classically: |F = m%(—f))

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 19
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Thus, relativistically: |QuB, (—) = pE(—f) or: |QuB, = p% or:|p=0B,R

The relativistic cyclotron formula is identical to classical / non-relativistic formula!

However here, p is understood to be the relativistic 3-momentum, | p = m7j = y,mii |,

Griffiths Example 12.12: Hidden Momentum

Consider a magnetic dipole moment 7 modeled as a rectangular loop of wire (dimensions
I xw) carrying a steady current /. Imagine the current as a uniform stream of non-interacting
positive charges flowing freely through the wire at constant speed u. (i.e. a fictitious kind of

superconductor.) A uniform electric field E is applied as shown in the figure below:

The application of the external uniform electric field £ = E_ y changes the physics — the

electric charges are accelerated in the left segment of the loop and decelerated in the right
segment of the loop. [n.b. admittedly this is not a very realistic model, but other more realistic
models do lead to the same result — see V. Hnizdo, Am. J. Phys. 65, 92 (1997)].

Find the total momentum of all of the charges in the loop.

The momenta associated with the electric charges in the left and right segments of the loop
cancel each other (i.e. p (in left segment) = — p (in right segment), so we only need to consider

the momenta associated with the electric charges flowing in the top and bottom segments of the
loop.

Suppose there are N, charges flowing in the top segment of the loop, moving in +x direction
with speed u, >u (E = O) {because they underwent acceleration traveling on the LHS segment}
and N_ charges flowing in the bottom segment of the loop, moving in the —x direction with
speed u_<u (E = O) {because they underwent deceleration traveling on the RHS segment}.

Note that the current / = Au must be the same in all four segments of the loop, otherwise
charges would be piling up somewhere.

In particular: 7/ =1 (top segment of loop) = /_ (bottom segment of loop), i.e. [/ =1, =1_|

20 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Since: =S _NO then: |/, =Au, =N, (gjm =/l =Au =N_ (gju
14 14 14 14
N+(gju+:N(gju:I = N+M+ZN7M7:I—£
/ / 0

Classically, the linear momentum of each electric charge is p, .. = Mot Where m,,

of the charged particle.

The total classical linear momentum of the charged particles flowing to the right in the top

segment of the loop is: |p

— top segment

Felassical

N,
= z my, =N myu, (+fc)
i=1

= mass

The total classical linear momentum of the charged particles flowing to the left in the bottom

segment of the loop is: |p

—bottom segment

“classical

N_
= ZmQﬁf =N_myu_ (—)E)
i=1

The NET (or total) classical linear momentum of the charged particles flowing in the loop is:

—=T0T _ = left segmrent —top segment —right s It —bottom segment __ — top segment — bottom segment
classical dssical Felassical + dassical + “eclassical =P Felassical + “classical
= N,myu X~ N_myu_x = (N+u+ -Nu_ )mQx = (M/Q —M/Q)mQx =0
=T0T . . .
Thus, | P, = 0| as we expected, since we know the loop is not moving.

However, now let us consider the relativistic momentum:

prel = }/quu

(even if |ﬁ| =u < c) where:

1

— 1 —
" \/l—ﬂf \/1—(u/c)2

The total relativistic linear momentum of the charged particles flowing to the right in the top

segment of the loop is:

— top segment

p+re[

=y N myu, (+X)

The total relativistic linear momentum of the charged particles flowing to the left in the b.

segment of the loop is:

—bottom segment

2

rel

= 7/14’ N*mQu* (_)%)

The net / total relativistic momentum is:

where:

where:

1

— 1 — i
= \/l—ﬂf \/l—(u+/c)2

1

- 1 —
SN J1-(u

Je)

ottom

prol = ”i‘z’] segment . ﬁf’:ﬁ‘om segment (;/u+ N.myu, -y N myu_ ) X= (714* Nu, -y Nu ) myx
10 - 10 .
But{/=1, =1 |gaveus:|N,u, =N u_ :E pol = (7u+ -7, )mQ (5}6 # 0| because Vo EV,

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Charged particles flowing in the top segment of the loop are moving faster than those flowing in
the bottom segment of the loop.

The gain in energy ( yumcz) of the charged particles going up the left segment of the loop
= the work done on the charges by the electric force (W = QF w) (w = height of the rectangle).

Thus, for a charged particle going up the left segment of the loop, the energy gain is:
_QEw

AE =y, myc® 7, myc* =(7,. =7, mpc* =W = QE,w| = |(7,.~7,) —
0

Where E = the magnitude of the {uniform/constant} electric field.

b TR )

- E 14 = - E
But: = area of the loop. .. | =—%5—%| but: \m=|m|=14| = |pL" = m—z"x
c

rel 2
C

But: |m =m(—2)| (see picture above) and: E=E| ie. here.

=+X

. ~ror _ 1 (- & — YRS
Thus, vectorially we {actually} have: |P,; = c—z(m xE ) where: |(mxE)=mE,(-2x})

Thus a magnetic dipole moment 7 in the presence of an electric field E carries relativistic
linear momentum p , even though it is not moving !!!

—

n.b. it also (therefore) carries relativistic angular momentum (L, =7 x p_,|.

How big is this effect? Explicit numerical example - use “everyday” values:

E,=1000 V/m

I =1Amp

A =(10 cm)*=0.01 m*
m =14=0.01 A-m’

E  107x10"
= T X _10kgm/s| Tiny !!! The 1/¢ factor kills this effect 1!

2

70T
rel 2

c (3><108)

This so-called macroscopic hidden linear momentum is strictly relativistic, purely mechanical

But note that it precisely cancels the electromagnetic linear momentum stored in the E and B
fields!!! (Microscopically, the momentum imbalance arises from the imbalance of virtual photon
emission on top segment of the loop vs. the bottom segment of the loop.)

Likewise, the corresponding hidden angular momentum precisely cancels the electromagnetic
angular momentum stored in the £ and B fields.

— Now go back and take another look at Griffiths Example 8.3, pages 356-57. (the coax cable
carrying uniform charge / unit length 4 and steady current / flowing down / back cable.)

22  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Let’s pursue this problem a little further...

Suppose there is a change in the current, e.g. suppose the current drops / decreases to zero.

D dl . . oy
For simplicity’s sake, assume Z =—K (i.e. the current decreases linearly with time)
t

Iw
é_'z/“j—-f='[< = -veslope.

>t

Classically: |I(7)=1,(¢t)=1_(t)| (as before)

j% N, (z)(%% N (r)(%u

I (=N (¢ u We assume that u, u, and u_ are
N ( ) - ( )( ] - unaffected by the change in the
current with time.

(Qj% dn. (1) —(qu dN_(1) _

Then: = |\ =
dt dt dt ! dt 1 dt
dN,(t)  dN_(t) K/ : :
u, = u_=———|= constant (no time dependence on RHS of equation)
dt dt 0
Then:
dp t K/ K/
p+cl{:}i€al ( ) — dN; (t) myit, (+)’e) - _ My (+)’(‘;) - _ g x
— ‘ y ! KKQ KZQ Constant
t
D sca ( ) — N (t) mg_ (—)%) - _ Mgy (—)?I) =+ Mo X
dt dt 0 Q

.. The net / total classical time-rate of change of linear momentum is:

rtot (t) — dﬁ:l);ssital (t) — dﬁJrL./m,m/ (t) + dl_jnmﬂmz (t) - _ KEmQ )’e_'_ Kme )% =0

dt dt dt 0 0

classical

| ot _ d[_j Z(l);ssical (t) _ : 1 1
Thus: |Fica (t) =4 - 0|as we expected, since the loop is not moving.

Now, let’s investigate this situation relativistically:

e |7 — " 5 = = dr = = For individual charges
Since: | Py = V,Mglt| =>|P,,, =7, Mgl and: | p_ =y, mgli_| | (LT mo

23
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1 1
Then: |p"**"™"(¢) =y N, (t)mgu, (+%)| where: |y .= = .
: Q 57 T
1 1
And: 13‘_’”{“"“ eement () = 7, N (t)myu_(—%)| where: y, = = .
= ¢ \/l—ﬂ,z \/l—(u_/c)2
ftOP segment ¢ K/
And: A]T() —y my, ch;t(t) (;2) = constant =—y . ( QmQ }2
d—»bottom segment t K g
And: D-, — (?) =y _myu_ de;t(t)(—fc) = constant =+y _ [ ng ]fc
The net / total time rate of change of relativistic momentum is:
70T d—- top segment t d~b0ttom segment t K é K E
dﬁrel (t)z el ()+ p‘,-e/ ():_]/+[ mgj)’(‘:_'_}/[ mgj)’e
dt dt dt “\ 0 ‘L0
Kim, \
:(7u+—7u)[ Q]x;tO (7. =7, )
0
OF w . .
From above (p. 20): (;/u+ -7, ) ==—"-| where: E = electric field amplitude
my,c
dp" (1) __ \Q\EOW KK%Q fo_ Eowa)ﬂc __EK4 2 A =/{xw = cross-
dt }% ch \Q c? c? sectional area of the loop

dil dm dI
Now: |—=-K| and: LTy (Since A4 = constant).

dt dt dt
dm dl ) L
= —KA= EA = time rate of change of the magnetic dipole moment of the loop.

dp,, (t) 1dm(t) . . B} , L
- L= S but (7 =m(-2)) L(E=E,})

—TO0T -
F(t)= —dp”zt ) =C—12(—dm(t) xE} #0

dt
Thus, 3 anet “hidden” force acting on the magnetic dipole, when dI/dt #0.

(assuming external E -field is constant in time)

One might think that this net “hidden” force would be exactly cancelled / compensated for by
a countering force due to the electromagnetic fields, as we saw in the static case (dl/dt=0),

with a steady current /. But it isn’t!! Why??
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As we saw for M(1) magnetic dipole radiation, a time-varying current in a loop produces EM
radiation. Essentially there is a radiation reaction / back-force that acts on the “antenna” — a
radiation pressure — much like the recoil / impulse from firing a bullet out of a gun — the short
explosive “pulse” launches the bullet, but the gun is also kicked backwards, too.

The same thing happens here when dI/dt # 0 - the far zone EM radiation fields are produced
(i.e. real photons) while dI/dt # 0 and carry away linear momentum, and since dl/dt #0,

3 a net force imbalance on the radiating object! (n.b. — e.g. by linear momentum conservation, a
laser pen has a recoil force acting on it from emitting the laser radiation — a radiation back
reaction)

Likewise, the net “hidden” time rate of change of relativistic angular momentum is:

JL (1)

rel

—T0T
i Pe () Ldm(t) oy

dt dt A odt °

Which will also not be exactly cancelled either, for the same reason — the EM radiation field can
/ will carry away angular momentum...

dL" (1)

back and integrate infinitesimal contributions along the (short)
segments of upper and lower / top and bottom segments of the

loop because |17 X [9| =rpsinf, 6 =X between ¥ and p .

In reality, in order to calculate , we need to go

M
9

:

Same for |F x sind .

@‘:rd_l?

Will get result that has geometrical factor of order <1.
— Conclusions won’t be changed by this, just actual #.

: dL .

As we know, the time rate of change of angular momentum: o =T |=torque.

Thus, the time rate of change of the net / total “hidden” relativistic angular momentum
defZT (t ) ) . ~T0T
—“——= = net “hidden” relativistic torque, 7, (¢).

dl rel

dL" (1 dp!" (¢ . 1. (dm(t) -
Thus: |7, (¢) =L()= ?XL(): FxFT (1) =—Fx —()xE #0
dt dt c dt

Which is not completely / exactly cancelled when I (¢)/dt =0 1!

Linear momentum, angular momentum, energy, etc. are all conserved for this whole system,
it’s just that the EM radiation emitted from the antenna is free-streaming, carrying away all these
quantities with it!
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In the static situation / = constant, the “hidden” relativistic linear momentum and angular
momentum is exactly cancelled by the linear momentum and angular momentum (respectively)

carried by the (macroscopic) static electromagnetic fields £ and B. Microscopically, the field
linear and angular momentum is carried by the static, virtual photons associated with the

macroscopic £ and B fields, cancelling the (macroscopic) “hidden” linear and angular
relativistic momentum of the magnetic dipole in a uniform £ -field.

In the non-static situation d/ (t) / dt # 0, virtual photons undergo space-time rotation,

becoming real photons, which carry away real linear and angular momentum. “Hidden”
relativistic linear and angular momentum is no longer exactly cancelled by the (now) real field
linear and angular momentum associated with the EM radiation fields. It is only partially
cancelled by remaining / extant virtual / near-zone / inductive zone EM fields.

Griffiths Problem 12.36: Relativistic “Ordinary” Force

In classical mechanics Newton’s 2™ Law is: | F' = ma|,

~ dp
The relativistic “ordinary” force relation; F, = 712 cannot be so simply expressed.

- dp d N d 1 . 1
F,=—=—(y,mii)=—| ———=—=—=mii || where: |y, =———=

"Tdt dt dt| J1-(u/c) 1—(ufc)’

du 1 2;,.“% =
Fo=m dt + *(—lj ¢ di where: |d = d_u = “ordinary” acceleration
el 2 A ’ dt ’
1=(u/e) (1-(w/e)’)

] mo | (@) m | a(iea)
F,= a+ = a+ Q.E.D.

1 1—(u/c)2 c’ (1—(u/c)2) 1—(u/c)2 { (cz—uz)}

Griffiths Problem 12.38: Proper Acceleration

We define the proper four-vector acceleration in the obvious way, as:

,_dn*  d’x" L dx” .
=0 =g | where: [77 === proper four-velocity

y?

a) Find « and @ in terms of % and @ ( = “ordinary” velocity, “ordinary” acceleration):

0 0 1 1
o_dn _dn dt _ d ¢ since: |dt =—dt :>£=7u: 1

d_T_WE—\/l—(u/C)ZE \/l—(u/c)2 Y dz 1_(”/0)2
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1 1 -
a’ = - (,Zj(c'zj3u.a_ d 7| where: =%
1-(ufc)’ (1——(u/c)2)/é ‘7(1-(u/c)2) S dt
Similarly:
a= dq d77 dr_ : 4 u since: |17 =y, u| and: IR
dr  di dr - (u/c) dt{m} since: |17 = 7,¢| and: |7, (/)
1
PPN a ( ZJ(Z)Z%w
ey [y (1=(uey)”
&:( (:[/0)2){5+ c — } ( j « see Problem 12.36 above.

b) Express « " interms of 4 and a :

1 (@ea) N 1

“ OV 4 Geg
a :—(CZ)-I—O{O{

¢? (1 - (u/c)2 )4 (1 - (u/c)2 )4

] < n.b. Lorentz invariant quantity — same in all IRFs.

c) Show

Recall that the “dot-product” of (any) two relativistic four-vectors is a Lorentz-invariant quantity.

Thus, if we deliberately/consciously choose to evaluate

nn=n‘n,=

(1) +iji

in the rest

frame of an object, we see that in the rest frame of the object, and therefore:

e

- _(770 )2 +@ = = constant.

=0

nn" =n‘n,

27
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Note that |7“a, =n* % is also the “dot-product” of two relativistic four vectors {7“ and «, }.
T
d dn*
Note also that: |—(7"“n, )=
Note also that: |—— ("7, )

dn
d’l' 77” +nﬂd_;:aﬂ77ﬂ+77ﬂa/‘ _20[#77;1\
d d

. )2 _ A2 _ . _ o2\ _ . u _
But: |77°77,, = —¢"| = constant (from above). Thus: d_r(nﬂn”)_d_z'( c )—O—> oo lefn, =0l

V%

K,u — dp

in terms of the
dr

d) Write the Minkowski / proper force version of Newton’s 2" law,

proper acceleration a” .

I
3
I
3
Q

k=B ) T

¢) Evaluate the Lorentz-invariant 4-product |K“7_|:

K*n,=ma’n,| but: |a“n, = 0|from part c) above.

K“nﬂ =0
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