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In this chapter we start by considering plane waves in infinite or semi-infinite me-

dia. We shall look at their properties in both insulating and conducting materials and

shall give some thought to the possible properties of materials of different kinds. We

will also look at the reflection and refraction of waves at planar boundaries between

different materials, a topic which forms the basis for much of physical optics. If time

allows, we shall also look at some of the more abstract aspects of wave propagation

having to do with causality and signal propagation.

1 Plane Waves in Uniform Linear Isotropic Non-

conducting Media

1.1 The Wave Equation

One of the most important predictions of the Maxwell equations is the existence of

electromagnetic waves which can transport energy. The simplest solutions are plane

waves in infinite media, and we shall explore these now.

Consider a material in which

B = µH D = εE J = ρ = 0. (1)

Then the Maxwell equations read

∇ · E = 0 ∇ ·B = 0 ∇× E = −1

c

∂B

∂t
∇×B =

µε

c

∂E

∂t
. (2)

Now we do several simple manipulations that will become second nature. First take

the curl of one of the curl equations, e.g., Faraday’s law, to find

∇× (∇× E) = ∇(∇ · E)−∇2E = −1

c

∂

∂t
(∇×B) = −µε

c2

∂2E

∂t2
, (3)

where the generalized Ampère’s law was employed in the last step. Because the

divergence of E is zero, this equation may be written as
(
∇2 − µε

c2

∂2

∂t2

)
E = 0. (4)
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Identical manipulations starting from Ampère’s law rather than Faraday’s law also

lead to (
∇2 − µε

c2

∂2

∂t2

)
B = 0. (5)

Thus any Cartesian component of E or B obeys a classical wave equation of the form
(
∇2 − 1

v2

∂2

∂t2

)
ψ(x, t) = 0, (6)

where v = c/
√
µε.

There is a simple set of complex traveling wave solutions to this equation. They

are of the form

uk(x, t) = ei(k·x−ωt) (7)

where ω = vk and k is any real vector.1 Notice that the derivatives of this function

are

∇uk = ikuk

∇2uk = −k2uk

∂uk

∂t
= −iωuk

∂2uk

∂t2
= −ω2uk. (8)

Hence (
∇2 − 1

v2

∂2

∂t2

)
uk =

(
−k2 +

ω2

v2

)
uk = 0, (9)

demonstrating that we do indeed have a solution of the wave equation.

This solution is a wave “traveling” in the direction of k in the sense that a point

of constant phase, meaning k · x− ωt = constant, moves along this direction with a

speed v which is ω/k. Furthermore, we have a plane wave, by which we mean that a

surface of constant phase is a plane; in particular, the surfaces of constant phase are

just planes perpendicular to k.

1This vector is real if ε and µ are real; they can be complex, in which case there are still solutions

of this form with complex k.
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v= /kω

Plane of stationary phase

Fig.1: A point of stationary phase moves with velocity |v| = ω/k

1.2 Conditions Imposed by Maxwell’s Equations

Next, let us see how the electromagnetic fields can be described in terms of these

scalar plane waves. Let us look for an electric field and a magnetic induction with

the forms

E(x, t) = E0e
i(k·x−ωt) B(x, t) = B0e

i(k·x−ωt) (10)

with the understanding that the true fields are the real parts of these complex ex-

pressions.

In addition to satisfying the wave equation, the complex fields must be solutions of

the Maxwell equations. Let us see what additional constraints are thereby imposed.

Consider first the divergence equations; these require that

0 = ∇ ·B(x, t) = ∇ ·
[
B0e

i(k·x−ωt)
]

= ik ·B0e
i(k·x−ωt) (11)

and

0 = ∇ · E(x, t) = ∇ ·
[
E0e

i(k·x−ωt)
]

= ik · E0e
i(k·x−ωt). (12)

Or

k ·B0 = 0 and k · E0 = 0. (13)

These conditions mean that B0 and E0 must be perpendicular to k, which is to say,

parallel to the surfaces of constant phase and perpendicular to the direction in which
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the surface of constant phase is moving. Such an electromagnetic wave is called a

transverse wave. Notice that this nomenclature is consistent with our definition in

the last chapter of a transverse vector field as one having zero divergence.

There are further conditions on the amplitudes E0 and B0 from the other Maxwell

equations. From the Ampère law one has

∇×B(x, t) =
µε

c

∂E(x, t)

∂t
(14)

which leads to

ik×B0 = − iωεµ
c

E0 (15)

or

E0 = −k×B0

k
√
µε

= −n×B0√
εµ

(16)

where n = k/k is a unit vector in the direction of propagation of the wave. From

Faraday’s Law and similar manipulations one finds the further, and final condition

that

B0 =
√
µε(n× E0); (17)

however, one may also find this relation from Eq. (16) and the condition that n·B0 = 0

and so it is not an additional constraint. Alternatively, one may derive Eq. (16) from

Eq. (17) and the condition n ·E0 = 0. As a consequence, one may, for example, write

E(x, t) = E0e
i(k·x−ωt) (18)

where the only condition on E0 is n ·E0 = 0. Then B(x, t) follows from Eq. (17) and

is

B(x, t) =
√
µε(n× E0)ei(k·x−ωt). (19)

Alternatively, we may start by writing

B(x, t) = B0e
i(k·x−ωt) (20)

where B0 is orthogonal to k, n ·B0 = 0. Then E(x, t) is given from Eq. (16) as

E(x, t) = −n×B0√
εµ

ei(k·x−ωt). (21)
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From these conditions, and those obtained in the previous paragraph, we may con-

clude that E, B and k form a mutually orthogonal set.

Before leaving this section, let’s look at the time-averaged energy density and

Poynting vector in such electromagnetic waves. We shall write them in terms of the

amplitude E0. First,

< S >=
c

8π
< [E(x, t)×H∗(x, t)] =

c

8π

√
ε

µ
< [E0 × (n× E∗0)] =

c

8π

√
ε

µ
|E0|2n. (22)

Similarly,

< u >=
1

16π
< (E(x, t) ·D∗(x, t) + B(x, t) ·H∗(x, t)] =

ε

8π
|E0|2. (23)

The time-averaged momentum density is:

< g >=
1

8πc
< [E(x, t)×H∗(x, t)] =

√
ε/µ

8πc
|E0|2n. (24)

The evaluation of the time-averaged Maxwell stress tensor is left as an exercise.

2 Polarization

In this section we address the question of the most general possible monochromatic

plane wave, which amounts to asking what are the possible choices of E0. Let us

specify that k = kε3 and suppose that we have an orthogonal right-handed set of

real unit basis vectors εi, i = 1, 2, 3. Then it must be the case that E0 · ε3 = 0 which

means that the most general amplitude E0 can be expanded as

E0 = E01ε1 + E02ε2. (25)

The scalar amplitudes in this expansion can be complex so we have in all four real

amplitudes which we may choose with complete abandon. Let us write the complex

scalar amplitudes in polar form,

E01 = E1e
iφ1 E02 = E2e

iφ2 (26)
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where Ei and φi, i = 1, 2, are real. Further, introduce

E0 = (E2
1 + E2

2)1/2 and φ = φ2 − φ1. (27)

Then the complex field becomes

E(x, t) = E0α1

(
ε1 + (α2/α1)eiφε2

)
ei(kε3·x−ωt)eiφ1 (28)

where αi = Ei/E0 and α2
1 + α2

2 = 1. In this form, the wave is seen to have just

two interesting parameters, α2/α1 and φ2 − φ1; these specify the relative phase and

amplitude of the two components of the vector amplitude. The other two parameters

simply to set the overall magnitude of the field and its absolute phase2.

Look at the real part of the complex wave as a function of time at a point in space

which is conveniently taken to be the origin. Aside from the overall magnitude and

phase, the wave looks like

E ∼ ε1 cos(ωt) + (α2/α1)ε2 cos(ωt− φ). (29)

If we map out the path traced by the tip of this vector in the space of ε1 and ε2, we

find in general an ellipse. The ellipse is characterized by two parameters, equivalent

to α2/α1 and φ, these being its eccentricity (the ratio of the semi-minor to the semi-

major axis) and the amount by which the major axis is rotated relative to some fixed

direction such as that of ε1. Such a wave is said to be elliptically polarized, the term

“polarization” referring to the behavior of the electric field at a point as a function

of time. There are two limiting special cases. One is when the eccentricity is unity in

which case the ellipse becomes a circle and the wave is said to be circularly polarized;

the second is when the eccentricity becomes zero so that the ellipse reduces to a line

and the wave is linearly polarized.

2These will, of course, be interesting if the wave meets another wave; but they are not interesting

if there is no other wave.
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α = 0 α /α =1

φ = π/2
2

1 2

Fig.2: linearly (α2 = 0) and circularly (α2/α1 = 1 φ = π/2) polarized

Often one uses a set of complex basis vectors in which ε1 and ε2 are replaced by

vectors ε± defined by

ε± ≡
1√
2

(ε1 ± iε2). (30)

These have the properties

ε± · ε3 = 0 ε± · ε∓∗ = 0 ε± · ε±∗ = 1, (31)

and it is possible to write the electric field of a general plane wave as

E(x, t) = (E+ε+ + E−ε−)ei(k·x−ωt), (32)

where E+ and E− are arbitrary complex constants. If just one of these is non-zero

and is written in polar form, then, aside from phase, the complex electric field at a

point is

E = |E±|
1√
2

(ε1 ± iε2)e−iωt. (33)

The real part then varies as ε1 cos(ωt)±ε2 sin(ωt) which is a circularly polarized wave.

In the case of the upper sign, one says that the wave is left-circularly polarized or that

it has positive helicity; in the case of the lower sign, it is right-circularly polarized

or has negative helicity. In writing the general wave in terms of these basis vectors,

we have expressed it as a superposition of positive and negative helicity waves with

amplitudes E+ and E−, respectively.
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3 Boundary Conditions; Waves at an Interface

In this section, we shall find out what plane waves must look like in semi-infinite

media or when there is a planar boundary between two nonconducting materials such

as air (or vacuum) and glass. We will need appropriate continuity conditions on the

fields at the interface. There may be derived from general kinematic considerations,

and from Maxwell equations.

The basic example from which all cases may be inferred is that of a planar interface

located at z = 0 dividing space into two regions, z < 0 and z > 0. In the former, we

assume an insulating material with dielectric constant ε and permeability µ; in the

latter there is another insulating material with ε′ and µ′.

z=0reflected wave

refracted or transmitted wave

incident wave ε µε µ ’’

Now suppose that from the left, or z < 0, there is an incident wave which has

electromagnetic fields

E(x, t) = E0e
i(k·x−ωt), B(x, t) =

√
µε

k× E(x, t)

k
. (34)

Also, k = ω
√
µε/c, and k·ẑ > 0 so that the wave is approaching the interface. Finally,

E0 is such that k · E0 = 0.

The incident wave is a solution of the Maxwell equations in the region z < 0. At

the interface, however, it is not a solution; there must be other waves present in order

to satisfy the Maxwell equations (or boundary conditions) here. To phrase it another

way, when the incident wave hits the interface, additional waves, called transmitted

(or refracted) and reflected waves must be generated. The refracted waves are the
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ones that propagate into the medium at z > 0; the reflected waves are the ones that

propagate back into the other medium.

3.1 Kinematic Conditions

We can, from quite general considerations, learn a lot about the properties of the

reflected and refracted waves.

First, in order that the continuity conditions remain satisfied at all times, given

that they are satisfied at one instant of time, these waves must have the same time

dependence as the incident wave. This statement follows from the linear nature of

the field equations (each term in the equations is proportional to some component of

one of the fields). Hence, all fields vary in time as e−iωt.

In order to satisfy the B.C. at any
instant of time, the reflected and
transmitted waves must have the
same time dependence as the
incident wave (i.e. same frequency).

Second, the continuity conditions must be satisfied at all points on the interface

or z = 0 plane. Suppose that they are satisfied at one particular point, such as x = 0.

Then, in order that they remain so for other points on the interface, each wave must

vary in the same fashion as each of the other waves as one moves in the plane of the

interface. This statement follows, as does the first one, from the linearity of the field

equations. Now, since the dependence of a plane wave on position is exp(ik · x), this

condition means that all waves (incident, reflected, and refracted) must have wave

vectors whose components lying in the plane of the interface are identical.
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In order to satisfy the B.C. at any
point along the interface, the
components of k which lie in the
plane must be identical for the
incident, reflected and refracted waves.

incid
ent wave

refracted wave

reflected wave

We can express this condition as

n× k = n× k′ = n× k′′ (35)

where k′ and k′′ are, respectively, the wave vectors of any refracted and reflected

waves. This relation may also be written as

k sin i = k′′ sin r′′ = k′ sin r (36)

where i, r′′, and r are the angles between the wavevectors of the incident, reflected,

and transmitted waves and the normal to the interface. They are called the angle of

incidence, the angle of reflection, and the angle of refraction.

k’

k’’k

r

i r’’

µ ε
µ ε

’’

n

x

z

Figure 6: Definition of the angles i, r′′, and r

Finally, any reflected wave is a solution of the same wave equation as the incident

wave; consequently, it has a wave number k′′ = k. Any transmitted wave, however,

has wave number k′ = ω
√
µ′ε′/c, so k′ 6= k. If we combine these statements with

Eq. (36), we can see that r′′ = i, the angle of incidence equals the angle of reflection.
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For a transmitted wave, however, the wave equation is such that k ′ = ω
√
µ′ε′/c which

is not k; in fact, k′/n′ = k/n where

n ≡ √µε and n′ ≡
√
µ′ε′ (37)

are the indices of refraction in the two materials. Using these definitions in Eq. (36)

we find

n sin i = n′ sin r (38)

which is known in optics as Snell’s Law.

3.2 Conditions from Maxwell’s Equations

Notice that we derived Snell’s law and the statement i = r′′ without using explicitly

the continuity conditions; we had only to use the fact that there are linear continuity

conditions. Hence these properties are called kinematic properties (they don’t depend

on the particular dynamics of the fields which are given by the Maxwell equations)

and they are applicable to much more than just electromagnetic phenomena.

To fully develop the rules of reflection and refraction for electromagnetic waves,

we must use the Maxwell equations to tell us the specific relations among the fields

and then must apply the continuity conditions at a specific point on the interface,

such as x = 0, and at a specific time, such as t = 03.

∇ ·D = 4πρ, ∇ ·B = 0, ∇×H =
4π

c
J +

1

c

∂D

∂t
, ∇× E = −1

c

∂B

∂t
. (39)

3For other points and times we know that the conditions will be satisfied by making sure the

kinematic conditions derived above are satisfied.
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1
2

n

da

n’
Figure 3: Integration surfaces used for the B.C.

Application of the divergence theorem to the two divergence equations using the

familiar pillbox construction leads, as for the static case, to the continuity conditions

(D1 −D2) · n = 4πσ (40)

(B2 −B1) · n = 0 (41)

where n is a unit outward normal from material 1 and σ is the macroscopic surface-

charge density. Application of Stokes’ theorem to the curl equations in the “usual”

way leads to

n× (E2 − E1) = 0 (42)

n× (H2 −H1) =
4π

c
K (43)

where K is the macroscopic surface-current density lying inside of the loop C to

which Stokes’ theorem is applied. Notice that the time derivatives in Faraday’s law

and Ampère’s law do not contribute to the continuity conditions.4

For uncharged insulators, the surface sources σ and K are always zero; then the

continuity conditions are especially simple and state that the normal components of

D and B are continuous as are the tangential components of H and E.

At x = 0, t = 0, the fields of an incident wave, a single transmitted wave, and a

single reflected wave5 may be written as follows:

4We have assumed that there are no singular parts of the time derivatives localized at the inter-

face; were there any such contributions, they would show up in the continuity conditions.
5We don’t know at this point that we need only one reflected and one transmitted wave to obtain

a solution to the boundary value problem. By construction, we will see that such is the case.
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Incident wave:

E = E0 B =
n

k
(k× E0) (44)

Reflected wave:

E = E′′0 B =
n

k
(k′′ × E′′0) (45)

Transmitted wave:

E = E′0 B =
n′

k′
(k′ × E′0) =

n

k
(k′ × E′0). (46)

We suppose that we are given n, n′, k, and E0; we need to find k′, k′′, E′0, and E′′0. The

wave vectors follow from the kinematic relations; they all lie in the plane containing

the normal to the interface and the incident wave vector, called the plane of incidence

and make angles with the normal as discussed above. As for the amplitudes, they are

found from the continuity conditions:

1. Dn continuous:

ε(E0 + E′′0) · n = ε′E′0 · n (47)

2. Bn continuous:

(k× E0 + k′′ × E′′0) · n = (k′ × E′0) · n (48)

3. Et continuous:

(E0 + E′′0)× n = E′0 × n (49)

4. Ht continuous:

1

µ
(k× E0 + k′′ × E′′0)× n =

1

µ′
(k′ × E′0)× n. (50)

It is a messy bit of algebra to solve these equations in the general case. The task can

be made simpler by writing the incident wave’s electric field as a linear combination

of two linearly polarized waves, which is always possible. One solves each of these

cases separately. The appropriate sum of the two solutions is then the solution of the

original problem. Once again, the linearity of the field equations leads to enormous

simplification of the algebra. The two cases that we are going to treat are
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1. polarization of E0 perpendicular to the plane of incidence and

2. polarization parallel to the plane of incidence.

3.2.1 Polarization of E0 Perpendicular to the Plane

k’

k’’k

r

i

µ ε
µ ε

’’

n

i

B’

B’’B

E’

E’’E

Figure 7: Polarization of E0 perpendicular to the plane of incidence

The figure sets the conventions for the first case. They are such that E0 =

E0ŷ, E′0 = E ′0ŷ, and E′′0 = E ′′0 ŷ. Remember also that k′′ = k, k/n = k′/n′, and

n sin i = n′ sin r. Now apply the four continuity conditions. The first gives nothing

because there is no normal component of the electric displacement or electric field;

the second gives E0 + E ′′0 = E ′0; the third gives the same constraint as the second;

and the fourth results in (k/µ) cos i (E0 − E ′′0 ) = (k′/µ′) cos r E ′0. Since k′ = kn′/n

and n =
√
µε, we can write the latter as

√
ε/µ cos i (E0 − E ′′0 ) =

√
ε′/µ′ cos r E ′0. In

addition, cos r =
√

1− sin2 r =
√

1− (n/n′)2 sin2 i. Combining these relations we

find the two conditions

E ′0 − E ′′0 = E0

√
ε′

µ′

√

1−
(
n

n′

)2

sin2 i E ′0 +

√
ε

µ
cos i E ′′0 =

√
ε

µ
cos i E0. (51)

Notice that these are written entirely in terms of the angle of incidence; the angle of

refraction does not appear. Their solution is easily shown to be

E ′0 =
2n cos i

n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i

E0
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and

E ′′0 =
n cos i− (µ/µ′)

√
n′2 − n2 sin2 i

n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i

E0 (52)

3.2.2 Polarization of E0 Parallel to the Plane

k’

k’’k

r

i

µ ε
µ ε

’’

n

i

B’

B’’B

E’

E’’E

Figure 8: Polarization of E0 parallel to the plane of incidence

The second case, polarization in the plane of incidence may be similarly analyzed.

The figure shows the conventions for this case. They are such that E0 = E0(sin i ẑ−
cos i x̂), E′0 = E ′0(sin r ẑ− cos r x̂), and E′′0 = E ′′0 (sin i ẑ + cos i x̂). The first boundary

condition implies that ε sin i (E0 + E ′′0 ) = ε′ sin r E ′0; the second gives nothing; the

third gives cos i (−E0 + E ′′0 ) = − cos r E ′0; and the fourth gives a condition that is

redundant with the first when Snell’s law is invoked. Thus we may write the two

conditions, after removing all occurrences of r as in the first case, as

√
ε

µ
(E0 + E ′′0 ) =

√
ε′

µ′
E ′0 cos i (E0 + E ′′0 ) =

√
1− (n/n′)2 sin2 i E ′0. (53)

Their solution is

E ′0 =
2nn′ cos i

(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i

E0

and

E ′′0 =
(µ/µ′)n′2 cos i− n

√
n′2 − n2 sin2 i

(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i

E0 (54)

Our solutions to the reflection-refraction problem have the following characteris-

tics by design. First, as mentioned above, they involve only the angle of incidence,
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the angle of refraction having been removed wherever it appeared by using Snell’s

law; second, the material properties enter through the permeabilities and indices of

refraction as opposed to the permeabilities and dielectric constants. The reason is

that for most of the materials one encounters, µ = µ′ = 1 and so the permeabilities

drop out of the relations. Second, one is generally more likely to be given an index

of refraction than a dielectric constant and so expressing the amplitudes in terms of

n makes them more readily applicable.6

Equations (52) and (54) are known as Fresnel’s equations; with them we can

calculate the reflection and transmission of a plane wave at a planar interface for

arbitrary initial polarization. Such an incident wave gives rise to a single reflected

plane wave and a single transmitted plane wave, meaning that there is just one

reflected wave vector k′′ and one transmitted wave vector k′.

3.3 Parallel Interfaces

With a little thought we may see how to generalize to the case of two (or more)

parallel interfaces. Consider the figure showing two parallel interfaces separating

three materials. If we follow the consequences of an incident plane wave from the

first material on one side we can see that the reflection processes within the middle

material of the “sandwich” generate many plane waves in here, but that these waves

have just two distinct wave vectors.

E’
E’’

E

E E

0 0
0

rr

6Of course, the relation between n and ε is sufficiently simple that there is really no great

difference.
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Figure 9: Plane wave incident on a sandwich.

Also, all waves transmitted into the third material have the same wave vector, and

the “reflected” waves in the first medium all have a single wave vector. Hence one

finds that in the first medium, there are just two waves with electric fields

E = E0e
i(k·x−ωt) Er = Er0e

i(kr·x−ωt); (55)

in the middle medium there are again just two distinct waves with fields

E′ = E′0e
i(k′·x−ωt) E′r = E′r0e

i(k′r·x−ωt) (56)

and in the third medium there is just one plane wave with field

E′′ = E′′0e
i(k′′·x−ωt). (57)

To find the four amplitudes Er0, E′0, E′r0, and E′′0, one must apply the boundary

conditions at the two interfaces, leading to four distinct linear relations involving

these amplitudes and that of the incident wave, E0. Solving these equations, one

finds the amplitudes of all waves in terms of that of the incident wave.

Returning briefly to Fresnel’s equations for reflection and refraction at a single

interface, let us look at the special case of normal incidence, i = 0. then r = 0 also,

and the first set (polarization normal to the plane of incidence) of Fresnel equations

tells us that 7

E ′0 =
2n

n+ (µ/µ′)n′
E0 E ′′0 =

n− (µ/µ′)n′

n+ (µ/µ′)n′
E0. (58)

These are simple results, especially when µ = µ′. They clearly tell us that when the

two materials have comparable indices of refraction and permeabilities, the wave is

mostly transmitted and when they have very different properties (an engineer would

7Actually, both sets of Fresnel equations are applicable for normal incidence. The second set,

however, will produce a result with some signs switched as a consequence of the different conventions

used for the directions of the electric fields in the two cases.
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call that impedance mismatch), reflection is the rule. Notice also that if n′µ/µ′ > n,

the reflected amplitude is opposite in sign to the incident one, meaning that the

electric field of the reflected wave is phase shifted by π radians relative to that of the

incident one under these circumstances.

4 Reflection and Transmission Coefficients

In this section we look at the power or energy transmitted and reflected at an interface

between two insulators. To do so, we must evaluate the time-averaged power in the

incident, reflected, and transmitted waves which is done by calculating the Poynting

vector. The energy current density toward or away from the interface is then given by

the component of the Poynting vector in the direction normal to the interface. In the

second medium, where there is just a single (refracted) wave, the normal component

of S is unambiguously the transmitted power per unit area. But in the first medium,

the total electromagnetic field is the sum of the fields of the incident and reflected

waves. In evaluating E × H, one finds three kinds of terms. There is one which

is the cross-product of the fields in the incident wave, and its normal component

gives the incident power per unit area. A second is the cross-product of the fields

in the reflected wave, giving the reflected power. But there are also two cross-terms

involving the electric field of one of the plane waves and the magnetic field of the

other one. It turns out that the time-average of the normal component of these terms

is zero, so that they may be ignored in the present context. Bearing this in mind, we

have the following quantities of interest:

The time-averaged incident power per unit area:

P =< S > ·n =
c

8π

√
ε

µ
|E0|2

k · n
k

(59)

The time-averaged reflected power per unit area:

P ′′ = − < S′′ > ·n =
c

8π

√
ε

µ
|E′′0|2

k′′ · n
k

(60)
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The time-averaged transmitted power per unit area:

P ′ =< S′ > ·n =
c

8π

√
ε′

µ′
|E′0|2

k′ · n
k′

d (61)

The reflection coefficient R and the transmission coefficient T are defined as the ratios

of the reflected and transmitted power to the incident power.

We may calculate the reflection and transmission coefficients for the cases of po-

larization perpendicular and parallel to the plane of incidence by using the Fresnel

equations. If an incident wave has general polarization so that its fields are linear

combinations of these two special cases, then there is once again the possibility of

cross terms in the power involving an electric field with one type of polarization and

a magnetic field with the other type. Fortunately, these turn out to vanish, so that

one may treat the two polarizations individually.

For the case of polarization perpendicular to the plane of incidence, we

use the Fresnel equations (52) and (54) for the reflected and transmitted amplitudes

and have

T =

√
ε′
µ′

4n2 cos2 i cos r

(n cos i+(µ/µ′)
√
n′2−n2 sin2 i)2

√
ε
µ

cos i
(62)

Making use of the relations n =
√
εµ, n′ =

√
ε′µ′, sin r = (n/n′) sin i, and cos i =

√
1− sin2 i, one finds that

T =
4n(µ/µ′) cos i

√
n′2 − n2 sin2 i

[n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i ]2

. (63)

By similar means one can write the reflection coefficient as

R =
[n cos i− (µ/µ′)

√
n′2 − n2 sin2 i ]2

[n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i ]2

(64)

By inspection one can see that R+T = 1 which expresses the conservation of energy;

what is not transmitted is reflected.

The case of polarization in the plane of incidence is treated similarly. One

finds

T =
4nn′2(µ/µ′) cos i

√
n′2 − n2 sin2 i

[(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i ]2

(65)
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and

R =
[(µ/µ′)n′2 cos i− n

√
n′2 − n2 sin2 i ]2

[(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i ]2

. (66)

Once again, R + T = 1.

5 Examples

5.1 Polarization by Reflection

From inspection of Fresnel’s equations, we can see that the relative amounts of trans-

mitted and reflected amplitude depend on the state of polarization and are distinctly

not the same for both polarizations.

n’- n
n’+n( )2

R

i
i B π/2

1

µ=µ =1
n’>n

’
tan ( )i - r

tan ( )i +r2

2

R ==

sin ( )i - r

sin ( )i +r2

2

R =⊥

Figure 10: Reflection Coefficient when n′ > n, and µ′ = µ = 1

That means that in the general case, the polarizations of the transmitted and reflected

waves will not be the same as that of the incident one. A very special case has to do

with the reflected wave given incident polarization in the plane of incidence. We see

that the reflected amplitude will vanish if8

n′2 cos i = n
√
n′2 − n2 sin2 i. (67)

Squaring this relation we find

n′4 cos2 i = n2n′2 − n4 sin2 i = n′4(1− sin2 i) or sin2 i =
n′2

n′2 + n2
or tan i =

n′

n
. (68)

8We let µ = µ′ in this section unless explicitly stated otherwise; keeping the permeability around

usually contributes nothing but extra work and obfuscation.
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This special angle of incidence is called the Brewster angle,

iB = arctan(n′/n); (69)

i

r

B

E

E’

Figure 11: No reflected wave when i = iB and the field is polarized in the plane.

a wave polarized in the plane of incidence and incident on the interface at the Brew-

ster angel is completely transmitted with no reflected wave. If a wave of general

polarization is incident at the Brewster angle, then the reflected wave is completely

(linearly) polarized perpendicular to the plane of incidence. Hence this phenomenon

provides a method for obtaining a linearly polarized wave from an unpolarized one.

More generally, if the angle of incidence is reasonably close to the Brewster angle, the

reflected light is to a large degree polarized perpendicular to the plane of incidence.

This fact is utilized by polarizing sun glasses which screen out most of the light po-

larized parallel to the surface of the earth, which is to say, most of the light reflected

by the earth.

sun

beach

ocean

E⊥

E⊥

=E

Figure 12: Light reflected from the ocean (glare) is largely polarized along the

horizon, and may be removed with polarized sunglasses.
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5.2 Total Internal Reflection

As a second example we look at the phenomenon of total internal reflection which

is the opposite of the one just considered in that no energy is transmitted across an

interface under appropriate conditions. Suppose that n > n′. As shown in the figure,

this means that r > i.

n

n’

ic

Figure 13: A series of angles when n > n′.

Now consider an incident wave with i large enough that n sin i > n′. How can we

have a refracted wave with r such that Snell’s law, n sin i = n′ sin r is satisfied? Recall

our argument for Snell’s law; it was based on the fact that the wave vector k′ of the

refracted wave had to have a component k′t parallel to the interface equal to the same

component of the incident wave. Given that n sin i > n′, this condition means that k′t

is larger than ωn′/c which is supposed to be the magnitude of k′, according to the

wave equation. But there is a way around this. The condition that comes from the

wave equation is that, if k′t and k′n are respectively the components of k′ tangential

and normal to the interface, then k′2t + k′2n = ω2n′2/c2. If k′t > ωn′/c, we can satisfy

this condition by having k′n be imaginary. In particular,

k′n = ±inω
c

√
sin2 i− (n′/n)2. (70)

The choice of sign has to be such as to produce a wave that damps away to nothing

in the second medium; otherwise it becomes exceedingly large (which is unphysical

behavior) as one moves far away from the interface. Now that we have figured out

what is k′; that is, k′t = (nω/c) sin i and k′n is given by Eq. (70), we can see the
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character of the transmitted electric field. It is

E′ ∼ eik
′
txe−|k

′
n|ze−iωt (71)

where x̂ is the direction of the tangential component of k.

The Poynting vector for a wave of this sort has no component directed normal to

the interface although there is one parallel to the interface. To see this, take E to be

in the y-direction.

x

z

ic

E

Figure 14: Polarization ⊥ to the plane of incidence.

Then

E′ = E′0e
i(k′tx−ωt)e−|k

′
n|z

so that

S ′z =
c

8π
< (E′ ×B′∗)z =

c

8π
<
(
E ′y ×B′∗x

)
.

We may use Faraday’s law to relate E to B

∇× E = −1

c

∂B

∂t
→ iω

c
B′x = |k′n|E ′y .

Thus,

S ′z =
c

8π
<
{
−E ′y

c|k′n|
−iω E

′∗
y

}
= 0

Thus, as shown in the figure below, when i > ic, the power is totally reflected.
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n’- n
n’+n( )2

R

i
i B

π/2

1

µ=µ =1
n’<n

’

tan ( )i - r

tan ( )i +r2

2

R ==

sin ( )i - r

sin ( )i +r2

2

R =⊥

Figure 15: Reflection Coefficient when n > n′, and µ′ = µ = 1

What we have is therefore a surface wave confined to the region close to the interface

and transporting energy parallel to it. Moreover, by evaluating the Poynting vector

of the reflected and incident waves, one finds that as much energy is reflected from

the interface as is incident upon it. Hence we have the phenomenon of perfect or

total reflection of the incident wave. This phenomenon is utilized in fiber optics; an

electromagnetic wave is propagated inside of a thin tube of some material having a

large index of refraction and surrounded by another material having a much smaller

index. Wherever the wave is incident upon the wall of the tube, it is completely

reflected.

air n=1

glass n>1
i

i is large

Figure 16: Total internal reflection occurs within a fiber optic tube.

There is some natural attenuation of the wave because of imperfect dielectric prop-

erties of the material itself or its coating; nevertheless, a beam of light, for example,

can be transmitted long distances and around many curves (as long as they aren’t

too sharp) in such a “pipe.”
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6 Models of Dielectric Functions

The dielectric “constant” of almost any material is in fact a function of frequency,

meaning that it has different values for waves of different frequencies.

v1

v2

v1 v2=

Figure 17: In a dispersive medium waves of different frequencies have different

phase velocities v = c/
√
ε(ω)µ.

We can make a simple model of the dielectric “function” of an insulating material

as follows: Suppose that the charges which primarily respond to an electric field are

electrons bound on atoms or molecules. Let one such electron be harmonically bound,

meaning that the binding forces are treated as linear in the displacement of the charge

from its equilibrium position. Also, let there be a damping force proportional to the

velocity v of the electron. Then, if the mass and charge of the electron are m and −e,
the equation of motion of the electron under the influence of an electric field E(x, t)

is

m

(
d2x

dt2
+ γ

dx

dt
+ ω2

0x

)
= −eE(x, t). (72)

The harmonic restoring force is expressed through a “natural” frequency of oscillation

ω0 of the electron. We have ignored the possible influence of a magnetic induction

B(x, t) on the electron’s motion. Typically this force is much smaller than the electric

field force because the electron’s speed is much smaller than c; there can be exceptions,

however, and one of them is explored below.

Next, the typical magnitude of the electron’s displacement |x| is on the order of

an atomic size.
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λ

e -x

If x << , then E(x,t) ~ E(0,t)λ

Figure 18: If the wavelength of the incident wave is much larger than the electronic

displacement, then we may neglect the spacial dependence of E(x, t).

If the electric field E(x, t) is that of visible or even ultraviolet light, then the displace-

ment is much smaller than distances over which E(x, t) varies significantly, meaning

that we can approximate E(x, t) ≈ E(0, t) = E0 exp(−iωt). In this limit, the solution

we seek is of the form x(t) = x0 exp(−iωt). Substituting into the equation of motion,

we find that the equation for the amplitude of the motion is

m(−ω2 − iωγ + ω2
0)x0 = −eE0 (73)

or

x0 =
−eE0

m(ω2
0 − iωγ − ω2)

. (74)

The amplitude of the dipole moment associated with the motion of this electron

is p0 = −ex0. To find the polarization, we need to compute the dipole moments of

all electrons in some finite volume of material. These electrons will not all have the

same damping or natural frequencies, so let us say that there are n molecules per unit

volume with z electrons each. If fi of the electrons on each molecule have resonant

frequency ωi and damping constant γi, then we get a polarization or dipole moment

per unit volume which varies harmonically with an amplitude

P0 = e2E0n
∑

j

(
fj

m(ω2
j − iωγj − ω2)

)
; (75)

this is also the relation between E(x, t) and P(x, t). If we further say that E(x, t)
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is the macroscopic field9, then we can write D = E + 4πP = εE with the preceding

expression for the polarization. The result is an expression for ε(ω):

ε(ω) = 1 +
4πne2

m

∑

j

(
fj

ω2
j − iωγj − ω2

)
(76)

or

ε(ω) = 1 +
4πnze2

m

∑

j

(
fj
z

)(
ω2
j − ω2 + iωγj

(ω2
j − ω2)2 + ω2γ2

j

)
≡ ε1 + iε2 (77)

where ε1 and ε2 are real.

In a typical term of the sum, different regimes of the relative sizes of ω, ωj, and

γj give rise to very different behaviors. The resonant frequencies are, when Planck’s

constant is thrown in, comparable to binding energies of electrons which are on the

order of a few electron-volts, so that ωj is of order 1015 sec−1, much the same as

optical frequencies. The damping constants tend to be somewhat smaller, perhaps

of order 1012 sec−1 (see below). Starting from low frequencies, ω << ω2
j and also

ωγj << ω2
j , then we can approximate the dielectric function as

ε(ω) ≈ 1 +
4πne2

m

∑ fj
ω2
j

(78)

which is a constant. Now, as ω increases from a low value, the real part of ε will also

increase (slowly at first); when it gets to within about γj of the smallest ωj, there is a

resonance (the electron is being “pushed” by the electric field at a frequency close to

its natural frequency) which will show up in ε1 as a sudden rise, fall, and rise. After

this, ε1 is again roughly constant. There are as many such resonances as there are

distinct resonant frequencies or terms in the sum over j.

The rapid variation of the dielectric function in the vicinity of a resonance also

produces a rapidly varying index of refraction, meaning that waves with relatively

9In this we follow Jackson, but remember the Clausius-Mossotti relation from last quarter; we

argued that the electric field which produces the polarization should be the local field and not the

macroscopic field. It is not difficult to make the necessary corrections to what is given here.
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Figure 1: Real and imaginary parts of ε near resonances

close frequencies propagate with quite different speeds. The frequency regime where

ε1 decreases with increasing ω is known as a region of anomalous dispersion.

The imaginary part of ε also behaves in an interesting fashion near a resonance.

Because the denominator of the resonant term in ε(ω) gets quite small at ω = ωj

while the numerator for the imaginary part does not get small, there is a pronounced

peak in ε2 here. The smaller the value of γj, the bigger the peak. A large imaginary

part of the dielectric function produces strong damping or absorption of the wave, so a

region of anomalous dispersion is also a region of strong absorption, termed resonant

absorption.

Finally, for ω very large in comparison with any other frequency in the system

ω À ωj, the dielectric function once again becomes simple and has the form

ε(ω) = 1− 4πnze2

mω2
≡ 1− ω2

p

ω2
(79)

where we have introduced the plasma frequency of the electron system,

ωp ≡
√

4πnze2

m
. (80)
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For typical values of n in solids, this frequency is of order 1016 sec−1 which is as large

as or larger than the frequency of visible light. Our result is interesting in that the

dielectric function is smaller than unity in this regime of frequency, meaning that a

point of constant phase in a harmonic wave actually travels faster than the speed

of light c. Even more remarkable is the possibility that ε(ω) < 0 in some range of

frequency. For this to occur it is necessary to have ω < ωp but at the same time

ω must be considerably larger than any resonant frequency ωj and also larger than

the damping parameters γj. Such conditions can be attained in some materials; a

simple example is a tenuous plasma, or gas of charged particles. Then the resonant

frequencies are all zero, the plasma frequency is rather low because the density of

charges is not large, and the damping is small. See the following section.

6.1 Dielectric Response of Free Electrons

Some special cases are also worthy of mention. One is the case of free electrons.

For these electrons there is no restoring force and so we may set the corresponding

ωj, called ω0, to zero. This has a profound effect on the dielectric function at low

frequencies. If we extract the free-electron term from the remainder of the dielectric

function and regard the latter as some constant ε0 at low frequencies (see Eq. (78)),

then we have

ε = ε0 −
4πnf0e

2

mω(ω + iγ0)
= ε0 + i

4πnf0e
2

mω(γ0 − iω)
. (81)

This thing is singular as ω → 0, reflecting the fact that in the zero-frequency limit,

the free electrons will be displaced arbitrarily far from their initial positions by any

small electric field, producing a very large polarization. The singular term in ε in fact

represents the conductivity of the free-electron material. To see how it is related to

the conductivity, let us examine Ampère’s law using this dielectric function and no

macroscopic current J, as this current will be included in the dielectric response (the
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polarization produced by the free electrons). From ∇×H = c−1∂D/t, we find

∇×H = −iω
c

(
ε0 + i

4πnf0e
2

mω(γ0 − iω)

)
E =

4π

c

nf0e
2

m(γ0 − iω)
E− iω

c
ε0E. (82)

By contrast, we may choose not to include the free electrons’ contribution to the

polarization in which case ε = ε0. Then, however, we have to include them as macro-

scopic current J; assuming linear response and isotropy, we may write J = σE

where σ is the electrical conductivity. Using these relations, and Ampère’s law,

∇×H = (4π/c)J + c−1∂D/∂t, we find

∇×H =
4π

c
σE− iω

c
ε0E. (83)

Comparison of the two preceding equations shows that by including the contribution

of the free electrons in the polarization we have actually derived a simple expression

for the conductivity,

σ =
nf0e

2

m(γ0 − iω)
→ nf0e

2

mγ0

, (84)

the last expression holding in the zero-frequency or static limit.

Comparison of measured conductivities with this result gives one an estimate of

the damping constant. In very good metallic conductors such as Cu or Ag, σ ∼
1017 sec−1. The free-electron density is of order 1022 cm−3 and so one is led to γ0 ∼
1013 sec−1 which is considerably smaller than typical resonant frequencies (for bound

electrons, of course).

7 A Model for the Ionosphere

The ionosphere is a region of the upper atmosphere which is ionized by solar radiation

(ultraviolet, x-ray, etc.). It may be simply described as a dilute gas of charged

particles, composed of electrons and protons or other heavy charged objects. The

dielectric properties of this medium are mainly produced by the lighter electrons, so

we shall include only them in our description. We then have just one kind of charge
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and it has zero resonant frequency. Because the medium is dilute, the damping is

small; we shall ignore it. This is the approximation of a collisionless plasma and it

leaves us with a very simple dielectric function,

ε(ω) = 1− ω2
p

ω2
. (85)

For frequencies smaller than the plasma frequency, ε(ω) < 0, meaning that the wave

number is pure imaginary since k = ω
√
ε/c; the corresponding wave will not propagate

because its dependence on position is proportional to exp(ik · x) or exp(−|k|z) given

that k ‖ ẑ10.

In the case of the ionosphere there is an additional complicating factor (which also

makes the problem more interesting); the earth has a magnetic field which influences

the motions of the electrons and hence the dielectric function. The equation of motion

of the charges, including this field B0 is

m
d2x

dt2
= −e

[
E +

1

c

(
dx

dt
×B0

)]
. (86)

We ignore the effect of the wave’s magnetic induction. We shall also restrict (for

simplicity) attention to the case of k ‖ B0 and shall ignore the spatial variations

of E. In addition, and without loss of generality, we can let the wave have circular

polarization. Hence we write the electric field as E = E0ε±e−iωt.

Under these conditions, x will be of the form x = x0e
−iωt; using this relation in

the equation of motion, we find

−mω2x0 = −e
[
E0ε± −

iω

c
B0(x0 × ẑ)

]
. (87)

The solution of this equation is x0 = x0ε±; one can see this easily if one realizes that

ε± × ẑ = ±iε±:

ε± × ẑ =
1√
2

(x̂± iŷ)× ẑ =
1√
2

(−ŷ ± ix̂) = ± i√
2

(x̂± iŷ) = ±iε±. (88)

10For most laboratory plasmas, this occurs at microwave frequencies
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Hence the equation of motion, using x0 = x0ε±, is

−mω2x0ε± = −e[E0 ±
ωB0x0

c
]ε±. (89)

or

x0 =
eE0/m

ω(ω ∓ ωB)
(90)

where ωB ≡ eB0/mc is the cyclotron frequency. From this point we may determine

the dielectric function by repeating the arguments used in the preceding section and

find

ε(ω) = 1− ω2
p

ω(ω ∓ ωB)
. (91)

Our result tells us that waves with different polarization elicit different dielectric

responses from the medium; such a phenomenon is known as birefringence. If a wave

of general polarization is incident upon the plasma, it is in effect broken into its two

circularly polarized components and these propagate independently. It is possible to

have a wave with a frequency such that for one component ε(ω) < 0 and for the

other, ε(ω) > 0. Hence, one will propagate and the other will not, providing a (not

particularly practical) way of producing a circularly polarized wave.

In the specific case of the ionosphere, ωp, ωB, and ω can all be quite compa-

rable. The density of electrons, which varies with the time of day and solar ac-

tivity, is typically ∼ 105 − 106 cm−3, leading to ωp ∼ 107 sec−1. The earth’s field

B0 ∼ 0.1 − 1.0 gauss, leading to ωB ∼ 107 sec−1. A wave with ω ∼ 107 sec−1 is in

the AM band; short-wave radio frequencies are somewhat higher, and FM radio or

television have considerably higher frequencies. This means that FM and television

signals are at frequencies so large that ε ≈ 1 and they propagate right through the

ionosphere without significant reflection or attenuation. For this reason, the signals

can be received only at locations where there is a direct path through the atmosphere

from transmitter to receiver. For the lower frequency signals (short-wave and AM),

however, there can be strong reflection from the ionosphere, making it possible to

receive them relatively far from the transmitter. The higher the point in the iono-

sphere where the reflection takes place, the greater the effective range of the signal.
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Figure 2: Dielectric constants vs. ω for the ionosphere
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Figure 3: Electron density vs. height in the ionosphere

Because the electron density increases with height (and then decreases again), the

higher frequencies tend to be reflected at greater heights (if they are reflected at all)

than the lower ones, thereby giving greater range. That is why short-wave signals

have longer range than AM signals, at least some of the time.

What happens if k is not parallel to B0? The medium is still birefringent so that

a wave of arbitrary polarization is broken into two components that propagate inde-

pendently; however, the two components are not simple circularly polarized waves.

In addition, the dielectric functions and hence the indices of refraction for these two

waves depend on the angle between B0 and k, so the medium is not only birefringent

but also anisotropic.

8 Waves in a Dissipative Medium

We have seen in the preceding sections that the dielectric function will is general be

complex, reflecting the fact that a wave will be dissipated or damped under many

conditions. It therefore behooves us to learn more about the properties of waves

when dissipation is present. As we have seen, we can do this by employing a complex

dielectric function, and we can also do it, with the same basic results, by letting ε

be real while introducing a real conductivity and thus a macroscopic current density.
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We shall do the latter, for no particular reason.

Suppose that once again we have some linear medium with D = εE, B = µH,

and J = σE; ε, µ, and σ are taken as real. Then the Maxwell equations become

∇ ·B = 0, ∇ · E = 0, ∇× E = −1

c

∂B

∂t
, (92)

and

∇×B =
4πµ

c
σE +

εµ

c

∂E

∂t
. (93)

We have set ρ equal to zero in these equations. It may be that there is initially some

macroscopic charge density within a conductor. If this is the case, that density will

decay to zero with a characteristic time on the order of γ−1 where γ is the damping

constant introduced in the section on dielectric functions; see Jackson, Problem 7.7.

Let us look for plane wave solutions to the field equations. Set E(x, t) = E0e
i(k·x−ωt)

and B(x, t) = B0e
i(k·x−ωt). The divergence equations then tell us that B0 · k = 0 and

E0 · k = 0 as in a nondissipative medium. From Faraday’s law we find the familiar

result

B0 =
c

ω
(k× E0), (94)

and from the Ampère’s law we find

i(k×B0) =
4πµσ

c
E0 − i

ωµε

c
E0. (95)

If we take the cross product of k with Eq. (94) and substitute Eq. (95) into the result

where k×B0 appears, we find, after using k× (k× E0) = −k2E0, that

−i4πµσ
c

E0 −
ωµε

c
E0 = −ck

2

ω
E0 (96)

or

k2 =
ω2µε

c2
+ i

4πµσω

c2
. (97)

Taking the point of view that ω is some given real frequency, we can solve this relation

for the corresponding wavenumber k, which is complex. If we write k = k0 + iα, then
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the real and imaginary parts of Eq. (97) give us two equations which may be solved

for k0 and α:

k2
0 − α2 =

ω2εµ

c2
2k0α =

ω2εµ

c2

(
4πσ

εω

)
. (98)

The solution is



k0

α





=
√
µε
(
ω

c

)




√
1 +

(
4πσ
ωε

)2 ± 1

2





1/2

. (99)

where the + sign refers to k0 and the - sign to α.

This expression appears somewhat impenetrable although it doesn’t say anything

unexpected or remarkable. It takes on simple forms in the limits of high and low

conductivity. The relevant dimensionless parameter is 4πσ/εω. It if is much larger

than unity, corresponding to a good conductor, then

k0 ≈ α ≈
√

2πωµσ

c
≡ 1

δ

4πσ

εω
À 1 . (100)

where we have introduced the penetration depth δ. This is the distance that an

electromagnetic wave will penetrate into a good conductor before being attenuated to

a fraction 1/e of its initial amplitude. Since the wavelength of the wave is λ = 2π/k0,

δ is also a measure of the wavelength in the conductor.

For a poor conductor, by which we mean 4πσ/ωε << 1, one has

k0 + iα ≈ √µεω
c

+ i
2π

c

√
µ

ε
σ. (101)

Notice that in the latter case, the real part of the wavenumber is the same as in

a nonconducting medium and the imaginary part is independent of frequency so

that waves of all frequencies are attenuated by equal amounts over a given distance.

Also, α << k0 which tells us that the wave travels many wavelengths before being

attenuated significantly.

For a given σ, α is an increasing function of ω and saturates at high frequencies.

Therefore, if one wants a wave to travel as far as possible, one wants to use as low

freqency a wave as possible. Then one should be in the good-conductor limit where
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the attenuation varies as
√
ω and vanishes as ω → 0. A well-known application of this

rule has to do with radio communication with submarines; sea water is a reasonably

good conductor σ ∼ 1011 sec−1 and so to communicate with a submerged boat, one

should send out low frequency signals which will penetrate to greater depths in the

ocean than more standard signals.

ocean

Figure 22: Low frequency waves can propagate through sea water.

Given that we have found the complex wave number, and letting k point in the

z-direction, we have

E(x, t) = E0e
i(k0z−ωt)e−αz; (102)

the corresponding magnetic induction is found in the usual way (take k× E):

B(x, t) =
c

ω
(k0 + iα)(ẑ× E0)ei(k0z−ωt)e−αz. (103)

Define the complex index of refraction

n ≡ c

ω
k =

c

ω
(k0 + iα), (104)

so that

B = n(ẑ× E). (105)

Notice that because n is complex, B is not in phase with E; to make the phase

difference explicit, let us write n in polar form:

n = |n|eiφ where φ = arctan
(
α

k0

)
. (106)
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We can find |n| and φ in terms of other parameters; let γ ≡ (4πσ/ωε)2. Then

φ = arctan

[√
1 + γ − 1√
1 + γ + 1

]1/2

. (107)

Consider tan(2φ):

tan(2φ) =
2 tanφ

1− tan2 φ
= 2

[(
√

1 + γ − 1)/(
√

1 + γ + 1)]1/2

1−
√

1+γ−1√
1+γ+1

= [(
√

1 + γ − 1)(
√

1 + γ + 1)]1/2 =
√
γ (108)

Thus,

φ =
1

2
arctan

√
γ =

1

2
arctan

(
4πσ

ωε

)
. (109)

Also,

|n| = c

ω

√
k2

0 + α2 =
√
µε

[
1 +

(
4πσ

ωε

)2
]1/4

. (110)

Using these results in Eq. (105), we have

B(x, t) =
√
µε

[
1 +

(
4πσ

ωε

)2
]1/4

e
i
2

arctan( 4πσ
ωε )(ẑ× E0). (111)

The amount by which B(x, t) is phase-shifted from E(x, t) is easily seen from this

expression to lie between 0 and π/4; it is zero in the small σ/ω limit and π/4 in the

large σ/ω limit. Another significant feature of the expression for B(x, t) is that in the

small σ/ω limit, the amplitude of B relative to that of E is just
√
µε as for insulators.

But in the opposite limit, one finds that the relative amplitude is
√

4πσµ/ω which

is much larger than unity. Here the wave has, relatively speaking, a much larger

magnetic induction than electric field.

8.1 Reflection of a Wave Normally Incident on a Conductor

As an example, let us calculate the reflection of a wave normally incident on a con-

ductor from vacuum.
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Figure 23: Wave normally incident on a conductor.

Then

k =
ω

c
ẑ k′ =

ω

c
nẑ, n =

√
µε(1 + γ)1/4eiφ. (112)

The relevant boundary conditions are Ht and Et continuous. Let E0 = E0x̂, E′′0 =

E ′′0 x̂, and E′0 = E ′0x̂. The corresponding magnetic field amplitudes are H0 = E0ŷ,

H′′0 = −E′′0ŷ, and, for the transmitted wave in the conductor,

H′0 =

√
ε

µ
(1 + γ)1/4eiφE ′0ŷ. (113)

Our boundary conditions give immediately

E0 + E ′′0 = E ′0 E0 − E ′′0 =

√
ε

µ
(1 + γ)1/4eiφE ′0. (114)

These may be combined to yield

E ′0 =
2

1 +
√
εµ(1 + γ)1/4eiφ

E0 (115)

and

E ′′0 =
1−

√
ε/µ(1 + γ)1/4eiφ

1 +
√
ε/µ(1 + γ)1/4eiφ

E0. (116)

Let us calculate the Poynting vector in the conductor. Its time average is

< S′ >=
c

8π
<(E′ ×H′∗) =

c

8π
<




4|E0|2
√
ε/µ(1 + γ)1/4e−iφ

|1 +
√
ε/µ(1 + γ)1/4eiφ|2



 e
−2αzẑ. (117)
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Using the interpretation of this vector as the energy current density, we may find the

power per unit area transmitted into the conductor by evaluating < S′ > ·ẑ at z = 0,

P ′ = c

2π
|E0|2

√
ε

µ

(1 + γ)1/4 cosφ

1 + 2
√
ε/µ cosφ (1 + γ)1/4 + (ε/µ)(1 + γ)1/2

. (118)

The incident power per unit area is P = c|E0|2/8π, so the fraction of the incident

power which enters the conductor, where it is dissipated as Joule heat, is

T =
P ′
P = 4

√
ε

µ

(1 + γ)1/4 cosφ

1 + 2
√
ε/µ cosφ (1 + γ)1/4 + (ε/µ)(1 + γ)1/2

. (119)

This expression is much simplified in the limit of a good conductor where φ = π/4,

cosφ = 1/
√

2, and γ >> 1. Then

T ≈ 4

√
ε

µ

γ1/4(1/
√

2)

εγ1/2/µ
= 2
√

2

√
µ

ε

√
ωε

4πσ
=

2µω

c

c√
2πσωµ

=
2µω

c
δ. (120)

For a good conductor such as Cu, σ ∼ 1017 sec−1 and so a wave with frequency around

1010 sec−1 will have δ ∼ 10−4 cm or 1µm. Also, the better the conductor, the smaller

the fraction of the incident power lost in the reflection process. For the example just

given, T ≈ 10−4, meaning that the wave can be reflected some ten thousand times

before becoming strongly attenuated.

9 Superposition of Waves; Pulses and Packets

No wave is truly monochromatic, although some waves, such as those produced by

lasers, are exceedingly close to being so. Fortunately, in the case of linear media,

the equations of motion for electromagnetic waves are completely linear and so any

sum of harmonic solutions is also a solution. By making use of this superposition

“principle” we can construct quite general solutions by superposing solutions of the

kind we have already studied.
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Figure 24: Any pulse in a linear media may be decomposed into a superposition

of plane waves.

This procedure amounts to making a Fourier transform of the pulse. For simplicity

we shall work in one spatial dimension which simply means that we will superpose

waves whose wave vectors are all in the same direction (the z-direction). For the

same reason, we shall also employ scalar waves; these could, for example, be the x

components of the electric fields of the waves. One such wave has the form ei(kz−ω(k)t)

where we shall not initially restrict ω(k) to any particular form. Given a set of such

waves, we can build a general solution of this kind (wave vector parallel to the z-axis)

by integrating over some distribution A(k) of them:

u(z, t) =
1√
2π

∫ ∞

−∞
dk A(k)ei(kz−ω(k)t). (121)

At time t = 0, this function is simply

u(z, 0) =
1√
2π

∫ ∞

−∞
dk A(k)eikz (122)

and the inverse transform gives A in terms of the zero-time wave:

A(k) =
1√
2π

∫ ∞

−∞
dz u(z, 0)e−ikz. (123)

All of the standard rules of Fourier transforms are applicable to the functions A(k)

and u(z, 0). For example, if A(k) is a sharply peaked function with width ∆k, then

the width of u(z, 0) must be of order 1/∆k or larger, and conversely. One may make

this statement more precise by defining

(∆z)2 ≡< z2 > − < z >2 (∆k)2 ≡< k2 > − < k >2, (124)
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where

< f(k) >≡
∫∞
−∞ dk f(k)|A(k)|2
∫∞
−∞ dk |A(k)|2 (125)

and

< f(z) >≡
∫∞
−∞ dz f(z)|u(z, 0)|2
∫∞
−∞ dz |u(z, 0)|2 . (126)

The relation between these widths which must be obeyed is

∆z∆k ≥ 1/2. (127)

Now, given a “reasonable” initial wave form u(z, 0)11 with some ∆z and a Fourier

transform A(k) with some ∆k, the question we seek to answer is what will be the

nature of u(z, t)? The answer is simple in principle because all we have to do is

Fourier transform to find A(k) and then do the integral specified by Eq. (121) to find

u(z, t). One can always do these integrals numerically if all else fails. Here we shall

do some approximate calculations designed to demonstrate a few general points.

Suppose that we have found A(k) and that it is some peaked function centered at

k0 with a width ∆k. If ω(k) is reasonably well approximated by a truncated Taylor’s

series expansion for k within ∆k of k0, then we may write

ω(k) ≈ ω0 +
dω

dk

∣∣∣∣∣
k0

(k − k0) ≡ ω0 + vg(k − k0) (128)

where

ω0 ≡ ω(k0) and vg = dω/dk|k0 ; (129)

vg is called the group velocity of the packet; notice that it can depend on the wave

number k0 which characterizes the typical wave numbers in the wave. In this approx-

imation, one finds

u(z, t) =
1√
2π

∫ ∞

−∞
dk A(k)eik(z−vgt)e−iω0teivgk0t = ei(vgk0−ω0)tu(z − vgt, 0). (130)

11Its time derivative ∂u(z, t)/∂t|t=0 must also be given to allow a unique solution of the initial

value problem; our discussion is therefore incomplete but can be corrected easily.
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This result tells us that the wave packet retains its initial form and translates in space

at a speed vg. It does not spread (disperse) or distort in any way. In particular, the

energy carried by the wave will move with a speed vg.

The group velocity is evidently an important quantity. We may write it in terms

of the index of refraction by using the defining relation k = ωn(ω)/c. Take the

derivative of this with respect to k:

1 =

(
n

c
+
ω

c

dn

dω

)
dω

dk
(131)

or

vg =
c

n+ ω dn
dω

. (132)

As an example consider the collisionless plasma relation n =
√

1− ω2
p/ω

2. One easily

finds that

vg = c
√

1− ω2
p/ω

2. (133)

For ω < ωp, the group velocity is imaginary which corresponds to a damped wave;

for ω > ωp, it is positive and increases from zero to c as ω increases.

Our calculations thus far have not resulted in any spreading or distortion of the

wave packet because we did not include higher-order terms in the relation (called a

dispersion relation) between ω and k. Let’s treat a simple example in which A(k) is

a gaussian function of k − k0,

A(k) =
(
A0

δ

)
e−(k−k0)2/2δ2

. (134)

Further, let ω(k) be approximated by

ω(k) = ω0 + vg(k − k0) + α(k − k0)2. (135)

The corresponding u(z, t) is

u(z, t) =
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2

eikz−i[ω0+vg(k−k0)+α(k−k0)2]t
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=
A0

δ
√

2π
ei(k0z−ω0t)

∫ ∞

−∞
dk ei(k−k0)(z−vgt)e−(1/2δ2+iαt)(k−k0)2

=
A0√

1 + 2iαδ2t
e−(z−vgt)2δ2/[2(1+2iαδ2t)]ei(k0z−ω0t). (136)

If α = 0, this is a Gaussian-shaped packet which travels at speed vg with a constant

width equal to δ−1. If α 6= 0, it is still a Gaussian-shaped packet traveling at speed

vg; however, it does not have a constant width any longer. To make the development

of the width completely clear, consider |u(z, t)|2 which more nearly represents the

energy density in the wave:

|u(z, t)|2 =
A2

0√
1 + 4α2δ4t2

e−(z−vgt)2δ2/(1+4α2δ4t2). (137)

The width of this traveling Gaussian is easily seen to be

w(t) =
√

1 + 4α2δ4t2/δ. (138)

At short times the width increases as the square of the time, while at long times it

becomes linear with t.

When the packet spreads, or disperses, in this fashion, to what extent does it make

sense to think about the wave as a localized object? One measure is the width of

the packet as compared with the distance it has moved. After a long time the width

is approximately 2αδt while the distance the packet has moved is vgt. The ratio of

these distances is 2αδ/vg, so our condition for having a localized object is

2αδ/vg << 1. (139)

v tg
v tg

xx

2αδ
vg

2αδ
vg

<< 1 > 1∼
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Figure 25: When δ is small, the wave is composed of few wavenumbers.

In addition, of course, the initial width of the packet must be small compared to vgt

which is always possible if one waits long enough. Our inequality clearly puts a limit

on the allowable size of α, for a given δ, necessary to have a well-defined pulse. For

smaller δ, one can get away with larger α, a simple consequence of the fact that small

δ means the width of the packet in k-space is small, leading to less dispersion.

9.1 A Pulse in the Ionosphere

Let’s look also at the fate of a wave packet propagating in the ionosphere; we found in

an earlier section, treating the ionosphere as a collisionless plasma and with k parallel

to B0, that ε(ω) = 1 + ω2
p/ω(ωB − ω) for one particular polarization of the wave. If

ω is small enough compared to other frequencies, we may approximate in such a way

that n(ω) = ωp/
√
ωωB, which gives rise to anomalous dispersion indeed. Defining

ω0 ≡ ω2
p/ωB, one finds that the group velocity of a signal is vg = 2c

√
ω/ω0.

Let us see how a pulse with the same A(k) as in the previous example propagates.

We have

u(z, t) =
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2+ikz−ic2k2t/ω0

=
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2+i(k−k0)z+ik0z−ic2t(k−k0)2/ω0−i2c2k0t(k−k0)/ω0−ic2k2

0t/ω0

=
A0

1 + 2iδ2c2t/ω0)1/2
ei(k0z−c2k2

0t/ω0)e
− (z−2c2k0t/ω0)2δ2

2(1+2iδ2c2t/ω0) (140)

This is a traveling, dispersing Gaussian. Its speed is the group velocity vg(k0). The

width of the Gaussian is

w(t) =
√

1 + 4δ4c4t2/ω2
0/δ → 2δc2t/ω0 (141)

at long times. The packet spreads at a rate given by vw = 2δc2/ω0. The ratio of

this spreading rate to the group velocity is δ/k0 and so we retain a well-defined pulse

provided the spread in wavenumber is small compared to the central wavenumber.

47



Pulses of this general type are generated in the ionosphere by thunderstorms.

They have a very broad range of frequencies ranging from very low ones up into at

least the AM radio range. The electromagnetic waves tend to be guided along lines

of the earth’s magnetic induction, and so, if for example the storm is in the southern

hemisphere, the waves travel north in the ionosphere along lines of B and then come

back to earth in the northern hemisphere.

Earth B

Figure 26: Lightning in the southern hemisphere yields wistlers in the north.

By this time they are much dispersed, with the higher frequency components arriving

well before the lower frequency ones since vg = 2c
√
ω/ω0 for ω << ω0. Frequencies

in the audible range, ω ∼ 102 or 103 sec−1 take one or more seconds (a long time for

electromagnetic waves) to arrive. If one receives the signal and converts it directly

to an audio signal at the same frequency, it sounds like a whistle, starting at high

frequencies and continuing down to low ones over a time period of several seconds.

This characteristic feature has caused such waves to be known as whistlers.

10 Causality and the Dielectric Function

A linear dispersive medium is characterized by a dielectric function ε(ω) having phys-

ical origins that we have just finished exploring. One consequence of having such a

relation between D(x, ω) and E(x, ω), that is,

D(x, ω) = ε(ω)E(x, ω), (142)
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is that the relation between D(x, t) and E(x, t) is nonlocal in time. To see this we

have only to look at the Fourier transforms of D and E. One has

D(x, t) =
1√
2π

∫ ∞

−∞
dωD(x, ω)e−iωt (143)

and its inverse

D(x, ω) =
1√
2π

∫ ∞

−∞
dtD(x, t)e−iωt; (144)

similar relations hold for E(x, t) and E(x, ω). Using the relation D(x, ω) = ε(ω)E(x, ω),

we have

D(x, t) =
1√
2π

∫ ∞

−∞
dω ε(ω)E(x, ω)e−iωt. (145)

We can write E(x, ω) here as a Fourier integral and so have

D(x, t) =
1

2π

∫ ∞

−∞
dω ε(ω)e−iωt

∫ ∞

−∞
dt′ eiωt

′
E(x, t′)

=
1

2π

∫ ∞

−∞
dt dω [ε(ω)− 1 + 1]E(x, t′)e−iω(t−t′) =

E(x, t) +
1

2π

∫ ∞

−∞
dt dω [ε(ω)− 1]E(x, t′)e−iω(t−t′) ≡ E(x, t) + 4πP(x, t). (146)

The final term, 4πP(x, t), can be written in terms the Fourier transform12 of ε(ω)−1;

introduce the function

G(t) ≡ 1

2π

∫ ∞

−∞
dω [ε(ω)− 1]e−iωt. (147)

Then we have

D(x, t) = E(x, t) +
∫ ∞

−∞
dt′G(t− t′)E(x, t′) (148)

which may also be written as

D(x, t) = E(x, t) +
∫ ∞

−∞
dτ G(τ)E(x, t− τ). (149)

This equation makes it clear that when the medium has a frequency-dependent dielec-

tric function, as all materials do, then the electric displacement at time t depends on

12Provided the order of integration can be reversed and the transform exists.
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the electric field not only at time t but also at times other than t. This is somewhat

disturbing because one can see that, depending on the character of G, we could get

a polarization P(x, t) that depends on values of E(x, t′) for t′ > t, which means we

get an effect arising from a cause that occurs at a time later than the effect. This

behavior can be avoided if the function G(τ) vanishes when τ < 0, and that is what

in fact happens.

Let’s look at a simple example with

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωγ . (150)

Then

G(τ) =
ω2
p

2π

∫ ∞

−∞
dω

e−iωτ

ω2
0 − ω2 − iωγ (151)

This integral was made for contour integration techniques. The poles of the integrand

are in the lower half-plane in complex frequency space at

ω± =
1

2
[±
√

4ω2
0 − γ2 − iγ]; (152)

without producing a contribution to the integral, we can close the contour in the

upper (lower) half-plane when τ is smaller (larger) than zero. Because there are poles

only in the lower half-plane, we can see immediately that G(τ) will be zero for τ < 0.

That is pleasing since we don’t want the displacement (that is, the polarization) to

respond at time t to the electric field at times later than t.

τ>0G( ) = 0τ

G( ) = 0τ τ<0

Figure 27: Because there are poles only in the lower half-plane, we can see imme-

diately that G(τ) will be zero for τ < 0.
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Applying Cauchy’s theorem to the case of τ > 0, one finds that, for all τ ,

G(τ) = ω2
pe
−γτ/2 sin(ν0τ)

ν0

θ(τ) (153)

where θ(x) is the step function, equal to unity for x > 0 and to zero otherwise,

and ν0 =
√
ω2

0 − γ2/4. The characteristic range in time of this function is γ−1 and

hence the nonlocal (in time) character of the response is not important for frequencies

smaller than about γ; it becomes important for larger ones.

One may naturally wonder whether there should also be nonlocal character of the

response in space as well as in time. In fact there should and will be under some con-

ditions. If we look back at our derivation of the model dielectric function, we see that

the equation of motion of the particle was solved using E(0, t) instead of E(x, t); the

latter is of course the more correct choice. The difference is not important so long as

the excursions of the charge from the point on which it is bound are much smaller than

the wavelength of the radiation, which is the case for any kind of wave with frequencies

up to those of soft X-rays. Hence the response can be expected to be local in space in

insulating materials. However, if an electron is free, it can move quite far during a cy-

cle of the field and if it does so, the response will be nonlocal in space as well as time.

λ

e -x

If x << , then G(x,t) ~ G(0,t)λ

Figure 28: G(τ,x) will not be x dependent if the excursions of the charge from the

point on which it is bound are much smaller than the wavelength of the radiation.

Returning to the question of causality, we have seen that the simple model di-

electric function produces a function G(t) which is zero for t < 0, as is necessary if

“causality” is to be preserved, by which we mean there is no response in advance of

the “cause” of that response. It is easy to see what are the features of the dielectric
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function that give rise to the result G(t) = 0 for t < 0. One is that there are no

simple poles of the dielectric function in the upper half of the complex frequency

plane. Another is that the dielectric function goes to zero for large ω fast enough

that we can do the contour integral as we did it.

More generally, if one wants to have a function G(t) which is consistent with

the requirements of causality, this implies certain conditions on any ε(ω). Additional

conditions can be extracted from such simple things as the fact that G(t) must be real

so that D is real if E is. Without going into the details of the matter (see Jackson)

let us make some general statements. The reality of G requires that

ε(−ω) = ε∗(ω∗). (154)

That G is zero for negative times requires that ε(ω) be analytic in the upper half

of the frequency plane. Assuming that G(t) → 0 as t → ∞, one finds that ε(ω) is

analytic on the real axis. This last statement is actually not true for conductors which

give a contribution to ε ∼ iσ/ω so that there is a pole at the origin. Finally, from the

small-time behavior of G(t), one can infer that at large frequencies the real part of

ε(ω) − 1 varies as ω−2 while the imaginary part varies as ω−3. This is accomplished

by repeatedly integrating by parts

ε(ω)− 1 =
∫ ∞

0
dτG(τ)eiωτ ≈ iG(0+)

ω
− G′(0+)

ω2
+
iG′(0+)

ω3
+ · · · (155)

This series is convergent for large ω. The first term vanishes if G(τ) is continuous

accross τ = 0. Thus

< (ε(ω)− 1) ∼ 1

ω2
= (ε(ω)− 1) ∼ 1

ω3
(156)

From inspection, one may see that the various dielectric functions we have contrived

satisfy these conditions.

Given that the dielectric function has the analyticity properties described above,

it turns out that by rather standard manipulations making use of Cauchy’s integral
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theorem, one can write the imaginary part of ε(ω) in terms of an integral of the real

part over real frequencies and conversely. That one can do so is important because it

means, for example, that if one succeeds in measuring just the real (imaginary) part,

the imaginary (real) part is then known. The downside of this apparent miracle is

that one has to know the real or imaginary part for all real frequencies in order to

obtain the other part.

To see how this works, notice that as a consequence of the analytic properties of

the dielectric function, it obeys the relation

ε(z) = 1 +
1

2πi

∮

C
dω′

ε(ω′)− 1

ω′ − z (157)

where the contour does not enter the lower half-plane (where ε may have poles)

anywhere and where z is inside of the contour. Let C consist of the real axis and a

large semicircle which closes the path in the upper half-plane.

C

Figure 29: Contour C: ε(ω) is analytic inside an on C..

Then, given that ε falls off fast enough, as described above, at large ω, the semicircular

part of the path does not contribute to the integral. Hence we find that

ε(z) = 1 +
1

2πi

∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − z . (158)

At this juncture, z can be any point in the upper half-plane. Let’s use z = ω + iη

and take the limit of η → 0, finding

ε(ω + iη) = 1 +
1

2πi

∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − ω − iη . (159)

The presence of the η in the denominator means that at the integration point ω ′ = ω,

we must be careful to keep the singularity inside of, or above, the contour. Here we
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pick up 2πi times the residue, and the residue is just ε(ω) − 1. This relation shows

identity but is not useful otherwise. However, one can also pull the following trick:

If we integrate right across the singularity, taking the principal part (denoted P ) of

the integral plus an infinitesmal semicircle right below the singularity that amounts

to taking iπ times the residue. Hence we can make the replacement

1

ω′ − ω − iη → P
(

1

ω′ − ω
)

+ iπδ(ω′ − ω) (160)

where P stands for the principal part; this substitution leads to

ε(ω) = 1 +
1

πi
P
∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − ω (161)

Let us write separately the real and imaginary parts of this expression:

<[ε(ω)] = 1 +
1

π
P
∫ ∞

−∞
dω′
=[ε(ω′)]

ω′ − ω
=[ε(ω)] =

1

π
P
∫ ∞

−∞
dω′
<[ε(ω′)− 1]

ω′ − ω (162)

These equations are known as the Kramers-Kronig relations for the dielectric function.

They may be written as integrals over only positive frequencies because of the fact

that the real part of ε(ω) is an even function of ω while the imaginary part is odd.

It should also be pointed out that we have assumed there is no pole in ε(ω) at

ω = 0; if there is one (conductors have dielectric functions with this property) some

modification of these expressions will be necessary.

11 Arrival of a Signal in a Dispersive Medium

Most of the wave trains one receives, such as radio signals, messages from within or

without the galaxy (sent by stars, pulsars, neutron stars, etc), and so on, have to

traverse dispersive media to get wherever they go. Consequently it is of consider-

able importance to know how the signals are distorted by the intervening material.

The basic idea is this: we have seen how a pulse centered at some particular wave
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number or frequency tends to travel with the group velocity of the central frequency

and also spreads some as a consequence of the frequency-dependence of the index

of refraction or dielectric function. If the dispersion is very large, as in regions of

anomalous dispersion, the pulse will not simply spread some but will be distorted

beyond recognition. In addition, frequency components in this region will be strongly

attenuated and so will disappear from the wave train after awhile. If a signal is ini-

tially very broad in frequency, having components ranging from very low ones, where

the group velocity is roughly constant and equal to c/
√
ε(0), to very high ones where

ε(ω) ≈ 1 and the group velocity is about c, then the signal that arrives after traveling

through a significant length of medium will be very different indeed from the initial

one. All of the frequency components around the regions of anomalous dispersion

will be gone. There will be some high-frequency component which travels at a speed

around c and so arrives first; it is generally called the “first precursor.” Then after

awhile the remainder of the signal will arrive. The leading edge of this part is called

the “second precursor” and it consists of those lower frequency components which

have the largest group velocity and which are not appreciably attenuated. These are

usually13 the very low frequency components.

It is a straightforward matter to determine what the signal will be, using the

superposition principle. Consider a pulse in one dimension with an amplitude u(z, t).

Given that one knows the form of this pulse and its first space derivatives as functions

of time at some initial position in space14, called z0, then one may determine by

Fourier analysis the amplitude A(ω) of the various frequency components in it. Since

a frequency component ω propagates according to exp[i(ωn(ω)z/c − ωt)], it is then

easy in principle to find u(z, t):

u(z, t) =
1√
2π

∫ ∞

−∞
dω A(ω)ei(ωn(ω)z/c−ωt). (163)

13But not always; the whistler provides a a counter example.
14Notice that instead of solving an initial value problem in time, we here rephrase it as an initial

value problem in space.
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If we can do this integral for the index of refraction of our choice, we can find the

form of the wave train at all space points at any later time. Among other things, one

can show by making use of the analyticity properties of the dielectric function that

it is impossible for an electromagnetic signal to travel faster than the speed of light.

See Jackson.

As a very simple example, consider a single-resonance dielectric function with no

absorption,

ε(ω) = 1 +
ω2
p

ω2
0 − ω2

= n2(ω) (164)

or

n(ω) =

(
ω2

0 − ω2 + ω2
p

ω2
0 − ω2

)1/2

. (165)

Then

2n
dn

dω
= 2ω

ω2
p

(ω2
0 − ω2)2

(166)

so

nω
dn

dω
+ n2 =

ω2ω2
p

(ω2
0 − ω2)2

+ 1 +
ω2
p

ω2
0 − ω2

=
ω4

0 − 2ω2
0ω

2 + ω4 + ω2
pω

2
0

(ω2
o − ω2)2

. (167)

Hence

vg =
c

ω dn
dω

+ n
= c

(
ω2

0 − ω2 + ω2
p

ω2
0 − ω2

)1/2
(ω2

0 − ω2)2

(ω2
0 − 2ω2

0ω
2 + ω4 + ω2

pω
2
0)

(168)

The first plot shows the character of vg and of n(ω). The group velocity is largest

for the largest frequencies; these will combine to provide the first precursor which
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may well be weak to the extent that the initial pulse does not contain many high-

frequency components. The first precursor continues as lower frequency components

(but still larger than
√
ω2

0 + ω2
p) come through. While this is going on, all of the

very low frequency components arrive. This is the second precursor. Finally, if the

pulse is actually a long wave train which has one predominant frequency in it, then

after some time the received pulse settles down to something more or less harmonic,

showing just this frequency.
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A Waves in a Conductor

When we discussed the propagation of waves in an ideal dielectric, we showed that

the fields were transverse to the direction of propagation. This corresponds to an

isulating material, with a vanishing electrical conductivity. When we extend our

discussion to include media of finite conductivity σ, there is no a priori reason that

the fields will still be transverse to the direction of propagation.

Let’s show that we need not worry about any longitudinal fields. Suppose that

once again we have some linear medium with D = εE, B = µH, and J = σE; ε, µ,

and σ are taken as real. Then the Maxwell equations become

∇ ·B = 0, ∇ · E = 0, ∇× E = −1

c

∂B

∂t
, (169)

and

∇×B =
4πµ

c
σE +

εµ

c

∂E

∂t
. (170)

Let’s look for solutions to Maxwell’s equations in the form of logitudinial waves,

E = ẑE(z, t) ; B = ẑB(z, t) (171)

Since ∇ · B = ∇ · E = 0, E and B can be functions of time only. Thus ∇ × E =

∇×B = 0, and the other two Maxwell’s equations become

∂B

∂t
= 0 ;

4πσ

c
E +

ε

c

∂E

∂t
= 0 (172)

The first says that B must be constant. The second says that E while uniform in

space has a time dependence

E(t) = E(0)e−4πσt/ε (173)

In a conductor, σ ≈ 1016 sec−1. Thus E(t) falls off very rapidly and may be neglected.

Thus as worst there is a constant logitudinal B-field as part of our wave in a conduc-

tor. Since Maxwell’s equations are linear, we may drop this trivial solution and just

consider the transverse fields.
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