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LECTURE NOTES 4

A Mini-Review of “Generic” Wave Phenomena:

Waves in 1-Dimension

What is a 1-dimensional (1-D) wave?

e A (classical) 1-D traveling wave is a quasi-coherent collective phenomenon — that of a
“disturbance” associated with a localized excess of energy (above ambient thermal /
background energy) in a macroscopic, continuous medium, which propagates
(i.e. translates in 1-D space) as time progresses.

In a dissipationless (i.e. lossless), non-dispersive medium, the shape / profile /envelope
(i.e. crests and troughs) of the wave propagates with constant velocity.

¢ In a dispersive medium, a traveling wave consisting of a linear combination of several /
many different frequencies, the various frequency components of the wave will each
propagate with different speed, thus the overall shape of the wave will change with time
in a dispersive medium.

e In a dissipative (but non-dispersive) medium the wave amplitude(s) will decrease with
time (or equivalently propagation distance), Often, real media are not only dissipative,
but also dispersive, thus dissipation in a medium may also be frequency dependent.

e (lassical media can be both dispersive and dissipative — one or both or neither.

e A (classical) 1-D standing wave = a linear superposition of two counter-propagating
traveling waves (e.g. a standing wave on a stringed instrument.)

e Standing waves do not propagate in space, although they can / do evolve in time
(due to dispersion, dissipation and other processes).

Let us consider a 1-dimensional transverse traveling wave, e.g. on a taught / tight string:
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For non-dissipative, non-dispersive media, the transverse shape { = transverse displacement from
equilibrium shape of string} of a traveling wave f (z, t) is invariant under space translations and
time translations.
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Mathematically, this means that:

f(zt)=f(z=v(t,~14).t,) = f(z=v(1,=0),0) = f(z—v1,,0)
=f(z-v8,,0)
f(z,tl):f(z—v(tl—0),0):f(z—vtl,0)

=f(z-v,0)

In general, f (z,t) for a 1-D traveling wave at position z and time ¢ = a special type of function

g(z —vt). The function f (z,t) that mathematically describes the 1-D wave motion / wave

propagation is not arbitrary / will-nilly — it is a very special / very specific causal relationship of
the location(s) of the 1-D wave in both space and time: f (z, t) is restricted to the causal subset

of functions g(z — vt) , i.e. classical traveling waves obey causality.

This means that the argument of the causal g-functions, (z — vf) = constant, independent of space
(z) and time () , i.e. the argument (z - v¢) = constant V (for all) allowed (z, ?) .

The following are some examples of mathematically acceptable / causal functions describing
dissipationless, dipersionless classical traveling wave in 1-D (n.b. here, 4 and b = constants,
e.g. independent of frequency):

- 1 2 . Z
For 1-D traveling fi(z,t)=A4e™" (Gaussian wave) f‘( ’H —2
wave propagation:
(z — vt) = constant 4 i",‘b
fo(zt)=4sin (b(z-vt)) (Sine/Cosine Wave) {.zt ;t ~ /
(2t
fi (z, t) = 4 > (“Cusp” Wave) ﬂ 5 —
b (z - vt) +1 N
P

Some examples of mathematically unacceptable / a-causal 1-D “wave” functions:

filz,t)=4e” Ched) (n.b. here again, 4 and b = constants)

f+(z,t) = Asin(bz)cos(bvt)
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Example: 1-D transverse mechanical traveling waves on a string obey Newton’s 2™ Law: | F = md

If a stretched string is transversely displaced from its equilibrium position, as shown in the
figure below, the transverse displacement of the string from its equilibrium position at a point z

along the string at a given instant in time ¢ is mathematically described by the function f (z,t) .

STReEfcAEd STRING
M W/ TRANSVIIAS &

T‘r@u@mss DiSPLACEMETNT,
IIPAEWENT
.—-——bg
?éxtg%m b ’L'E‘Quttur,(; Ruwwn, B e
POSITEM o Rt ENba ST
{ BouNDARY ) STRETCHE D ( BORNBARY
CoOPDITioN | STRinG colp TN

Let us investigate / analyze the forces acting on small/infinitesimal segment of the string:

As can be seen from the figure below, at any given instant in time, ¢ the net transverse force
AF, (z,t) acting on an infinitesimal string segment (of length Az ) between z and (z+Az) on a

string with tension 7' (Newtons) is:  |AF, (z,1)= T (z+ Az,t) -T, (z,t)=Tsin@ -Tsind
For small transverse displacements: String tension 7' = constant

A
sind~ 0 ~ tanb| fm\ v

" |AF,(z,t)= T (tan @' —tan ) n.b.tan @ = slope fom@t=o} >
2
AFy(Z,l‘)=T 8f(z,t)| _6f(z,t)| :Ta f(ZZ’I)AZ T ET5 :
aZ z+Az aZ ‘z aZ 2 A% & —-"'—_““) g@-{-:@)
z 2102
0°f (2.1) . . .
Thus: |AF (z,t) =T TAZ for small transverse displacements of the string from its
’ z

equilibrium (i.e. zero excess energy) configuration.

If the mass per unit length of the string is: | =m,,,,, / L | (kg/m) (where the total string mass

= Mgying and the total length of the string = L) then Newton’s 2™ Law: AF, (z,1)= ma, (z,1)

where a, (z, t) = transverse acceleration (in the y -direction) at the point z at time ¢ is

O f(z,t
a,(z.1)= %
The string segment of infinitesimal length Az has mass (: [mstring / L] Az)
0’ f(z,t
AF, (Z,t) =ma, (z,t) = ”Az—a£2 )
0*f (2.1) . .
But: |AF, (z,t) =T TAZ from the transverse force imbalance relation (above)
/4
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. for small displacements: |7

6f(z Z)M Ma f(z t) sz(z,t):(%jﬁzf(z,t)

or:
0z* ot’

T _ Force, Newtons kg\—m/ s ( T

Note that, from dimensional analysis: = Thass
# Anit length k&/ m

From conservation of energy associated with traveling waves propagating on a taught string,

it can be shown that |v = /7/ 1 | = longitudinal speed of propagation of transverse waves on a

string. For dispersionless media, note that v = constant # fen(frequencys, f).

Thus we arrive at the 1-D wave equation for transverse traveling waves propagating e.g. on a
taught/stretched string:

azf(z,t) _iazf(z,t)

= 1th- y = T

o y Of(z1) 10/(=21)
We can re-arrange the wave equation into its more traditional form: 2 2 o =0
Z v

Thus, we see that the wave equation is a 2" order linear and homogeneous differential equation.

Solutions of wave equation are all functions f (z, t) of the form where the longitudinal

position z and time # are causally connected to each other by (z — v¢) = constant,
i.e. all of the functions g (z — v¢) = constant.

The requirement / restriction that f(z, f) = g (z— vf) explicitly means that: u = (z - vt) =

argument of the g-functions, i.e. that:

o(z—vt
o _dgou_dg| o |ou_0(z-v)
0z du oz du 82 1574
o(z—vt
6f dg 6“ —vd—g because au (Z—v):—v
ot du at du 8t ot
And thus:
af o0(dg\ d’gou d’g o' f 0 (dg a’zg ou ,d’g
1.) —S = |=F— = 2)) — = V| = V=t —=
o2 oz\ du du® 0z du ot ot \ du du ot du
1} 2 2) 2 82 l 62
dg_ dg = /- / 1-D Wave Equation

di*  di? v oor

Thus, g (1) can be any differentiable function satisfying |u = (z - vt)

Note that since the wave equation involves the square of the longitudinal propagation speed v,
then another acceptable form of a solution is: f(z, £) =g (z + v¢)

Thus there are two “generic” possible acceptable solutions:
a.) f(z, t) = g (z— vt) where (z — vt) = constant, thus if ¢ increases — z also increases
b.) f(z, t) =g (z + vt) where (z + vf) = constant, thus if ¢ increases — z decreases

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 4 Prof. Steven Errede

Physically this means that:
a.) f(z,t) =g (z—vf) represents a 1-D wave propagating in the +Z direction
b.) f(z, ) =g (z+ vi) represents a 1-D wave propagating in the —Z direction

The Linear Wave Equation & the Linear Superposition Principle

Provided that the initial (simplifying) assumption that the displacement from equilibrium is
small, such that sin@ ~ @ ~ tan @ is valid, then the principle of linear superposition tells us that:

fTOT zt Zf Zt zt)+f2(zt)+f3(zt)

is also a solution of the linear wave equation. Note that in general:

fror (2.1) Zg (z—vt) Zh‘(z+vt)

%,—/ \

A X
Traveling waves propagating in Traveling waves propagating in
the +Z direction (i.e. to the right) the —Z direction (i.e. to the left)

Most generally, i.e. f,, (z, t) = linear superposition of left & right-moving / propagating waves.

Standing \Waves:

A standing wave (one which is stationary in space) is formed by superposing two identical
traveling waves, except that one is a is left-going traveling wave and the other is right-going:

Jror (z,t) = g(z—vt)+g(z+vt) where e.g.

g(z—-vt)= Asin(k[z—vt]) = Asin(kz—wt)| and: |g(z+vt) = Asin(k[z+vt]) = Asin (kz + or)

Definition of nomencature used in wave propagation:

A = amplitude (= absolute value of maximum displacement from equilibrium) (m)
v = fJ = longitudinal speed of propagation of wave (m/s)
f frequency of vibration of wave (cycles per sec = c.p.s. = Hz (Hertz))
7 = period of wave =1/ f (seconds, per cycle of oscillation)
A =wavelength (m) = spatial oscillation distance _fi= 2nf /i
w=2rxf =“angular” frequency (radians/sec = rad/sec) V= 27/ A -9

k =2x/A = wavenumber (radians/meter = rads/m)
Cad A fe) oA f&;ﬂ 12
7 2 +
¢ e g4 L —*’(
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Returning to the discussion of standing waves as a linear superposition of a left-going and a
right-going traveling wave:

right left

Jror (z,t) = g(z—vt)+g(z+vt)

where: g(z—vt)=Asin(kz—ot)| and: |g(z+vt)= Asin(kz + wt)
then: fror (2,t) = Asin (kz — ot ) + Asin (kz + wt )
now: sin(a+b)=sinacosbh+cosasinb

fror (2,1) = A{sin kz cos wt — coskzsii ot + sin kz cos wt +m} =2 Asin kz cos wt

Thus: | f;or (z,t) = A'sinkzcoswt =2Asinkzcoswt| i.e. define M

= 1-D standing wave (i.e. does not propagate/move in longitudinal +Z -direction)

Explicit check: Does f,, (z,t) = A'sinkzcos wt obey the wave equation?
O fror (2:8) _ 1 & fror (2:8) .,

i.e. does Py 3 o

M =kA' cos kz cos wt af(z,t) =—wA'sin kz sin wt
1574 ot

0’ 0’

M = —k*A'sin kz cos wt M =—w’ A'sin kz cos wt
0z ot

—kZA/MM=i2(—w2/MM)
v

AR/
v=% Yes!

The Sinusoidal Traveling Wave:

The mOWA cos k(z—fvt)+ 5)\

Amplitude ~ wave numbe speed of propagation phase (radians) = constant
k=2x/A (usually phase is defined
between 0 and 2m)

=5
Note: cos(k(z—vt)i;/EJ but: cos(aib)=cosacosb¢sinasinb

= cos(k(z—vr))cos(+z/2)Fsin(k(z—vr))sin(7/2)
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Y z)2
But: sin(+7/2)=+1 and sin(-7/2)=-1 sin all
. |cos(k(z—vt)+/2)=Fsin(k(z-vt)) n >0
tan cos
3n/2=-7x/2

Note also: fror (z, 1) =g (z—vt) + g (z + vt)
Two waves in phase (0 = 0) with each other

Jror(z, ) =g (z—vt) L g (z+ W)
e (= m radians) out-of-phase (6 = 180° = x radians)

Thus the function f'(z, ) = A cos (k(z — vf) + 0) at ¢ = 0 appears as shown in the following figure:
Az, t = 0) = snapshot of wave at ¢ = 0:

A

central maximum (shifted

back to —z for +ve 9) \

PN TR
NN

le— A —=]

% = @ = (%) A (%} = fractional phase

Note the various alternate/equivalent mathematical forms describing the same traveling wave:

£(z, 1) = 4 cos (k(z-vt) + ) v=2 f=% (m/s)
= Acos((kz—kvt)+5) w=21f (rads/s)
:Acos((kz—a)t)+5) k:27f}L (1/m)
= Acos (%+27zﬁj+5} @ = kv

= Acos 2%(%—ﬁj+5j

_ ACOS:2”{(%_ﬁj+%H
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Note that because cos (x) is an even function of x, i.e. cos (—x) = cos (x)
Then: f(z,t)= Acos(kz+wt—&) = left-moving wave (—Z direction)

= Acos(—kz—wt +5)

But: f~ (z, t) = 4 cos (kz —wt+90 ) = right-moving wave (+; direction)

— Switching the sign of k produces a wave with the same amplitude, phase, frequency and
wavelength, but one which is traveling in the opposite direction.

(|

2+) = Acsg (fez - mJHé'\ "‘(‘6?‘{' s

Complex Notation:
Euler’s Formula: ¢’ =cosf+isinf ‘ e’ =cos@—isinf ‘
cosf=1(e” +e ™) sin@=2%(e"—e™)

i=v-1 i=—i=—/-1 li=ii" =+1
The magnitude of ¢ is defined as ‘e’p‘ :
Vele™ =1= \/(cosl9+isin 0)*(cos@—isinf) = Jeos? @ +sin 0

l

Projections of a complex unit vector € =cos@+isiné in the complex plane:

Im (“imaginary” axis)

Unit circle in the complex plane

» Re (“real” axis)

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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We will use the tilde symbol (~) over/above a physical variable to denote its complex nature:

Complex #: Re(Z)=x Im(%)=y

Complex conjugate (i — i* =—i):  |Z*=(x+iy)*=x—iy|Re(Z*)=x Im(2%)=—y
Suppose: Z(6)=ae"” = complex #| where a =real constant

:a(c050+isin¢9)=ac056’+iasin0

The magnitude of ‘2(9)‘ : ‘2(9)‘ =a ‘5(9)‘ = \/‘Re{f(‘g)}r +‘Im{2(¢9)}‘2

Re{Z(#)} =acosf| and |Im{Z(0)}=asind

Im { Z( 49)} (“imaginary” axis)

Q
<,
5
D
K_H
[
1
Q 1
S |
_/ |
1

—— > Re{Z(@)} (“real” axis)

Im{Z(9);}
Re{Z(0)}

‘2(6?)‘ :‘aeig‘:a‘eig‘ —a=+a’cos?O+a’sin® @ = avcos® O+sin’ 0 = a

tan @ =

For a purely real wave function f(z,t): |f(z,¢)= Acos(kz— ot +5)| we can equivalently write

this using complex notation as: f(z,t)=Acos(kz—wt+6) = Re[Ae"('m””‘s)]

For a complex wave function f(z,¢): |f(z.t)= A" = Acos (kz— wt ) +idsin (kz - ot )

with complex amplitude A : A= Ae”
A 4=Real number

Then: | f(z,t)= A = gt glemen) = gollemenrd] _ 4 {cos (kz -t +6)+isin(kz— ot + 5)}

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Griffiths Example 9.1 - Linear Superposition of Two Sinusoidal Waves:

Suppose that we have a situation where two real sinusoidal traveling waves
fi(z,t)=4,cos(kz—wt +6,)and f,(z,t)= A, cos(kz — wt + 5, ) are simultaneously present at the

same point z that have the same frequency f'(and thus same wavelength A, angular frequency o,
and wavenumber k) but have different amplitudes A4,, 4, and (absolute) phases o,, J, {defined

relative to a common chosen origin of time, = 0}.

We can simply add the two waves together: | f; (z,¢) = f,(z.t)+ f, (z,¢)| however, this approach

will involve some rather tedious algebra and use of trigonometric identities to obtain f, (z, t) :

A much easier method is to carry this out using complex notation:

fi(z:0)= /i (z0)+ /(2 {ﬁ(zf)}+Re{f‘z(ZJ)}=Re{f(Zt)+f2 )} =Re{f,(z.1)}

f)=R
with: |/, (z.0)= /i (z.0)+ [, (2:1)|| /i (2:0) = 4| | ], (z.0) = 4. | /i (2.0) = A

]’;3 (Z,t) = A}ei(kZ*wf) = ji (Z,t) +j‘2 (Z,t) — Alei(szwt) + I'izei(szwt)

m: y ei(szwt) — Alei(szwt) +;lzei(szwt) — A3

3

h;a

+A4,| or: |4, = A€ + A,e*

writing this last relation out in its explicit complex form:

A, c0s 0, +i4,sin 5, = A cos O, +i4,sin S, + A, cos 5, +iAd, sin o,

Thus we see that:
Re(%) = A, 050, = 4, coso, + A4, cos o, Im(;g) = A;sin o, = A sino, + 4,sin 5,

We can either use the so-called Phasor Diagram in the complex plane to obtain Re(;g) and

Im(ﬁ3 ) ,or wade through the tedious trigonometry and algebra.

A

Im(z) .

Phasor Diagram: —
~ n.b. phases are
7 4, always defined
’ relative to the
3 ;} Real axis
R SR R
A > Re(2)

The use of the phasor diagram does not allow us to evade the use of algebra and trigonometry...

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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What we are essentially doing here is nothing more than adding two 2-dimensional vectors

together, i.e.

C=A+B

where

A= aXx+a,y=acos@x+asingy

Ebe)2+byj/=bcosé’2)2+bsin€2j/ and|C=c X+c,y=ccos@x+csinb,y

Then: ¢, =ccosb, =a, +b =acos +bcosb,| and |c, =csinb, =a, +b, =asinb +bsinb,|

The magnitudes of A, B andC are

The phase angles are:

|4 =a=\Ja2+a’ |||B|=b=\b2+b] |and||C|=c=Jc} +¢]

=tan

( a,/a, ), S, :tanfl(by/bx) and |0.

. =tan” ( c,/c, )

Thus, for the addition of two complex amplitudes, we see that:

‘23‘ = m = \/(1211 + 1;]2 )-(1"11 + 22 )* _ \/(Aleigl n Azeié2 )(Ale—i(?1 n Aze,[(sz )

= \/Alz + 47 +2A44,c0osAS,  where AS, =(5,-5,)

_ \/Af F A7+ A (e v e e ) = [ 42+ 43 + 4,.4,[ 2c08(8,-6,) |

Then: ‘;13‘ =4, = \/Al2 + A} +2 4,4, cosAS,,

with A§21 = (52 _51)

The {absolute} phase angle J, can be obtained from:

tan o, =

A, sin &,

_ sind;

_ A;sind, + 4,sin 0,

4, cos 0,

cosod, A coso,+ A4,cos0,

A, sind, + A4, sin 6.

3

i e. |0, =tan
He L {Alcosé'1 + 4, coso

Why Use Complex Notation?

]‘(Z,f) = gei(kz_“’t) — Aei(kz—a)t+b‘)

radians

Whenever we have two or more waves, if 3 (there exists) a definite phase relation (defined at
some specific origin of time ¢ = ¢,) between them (i.e. the two or more waves are coherent) then
the waves will interfere with each other at a given point in space, z

Interference phenomena occurs at the amplitude level — i.e. wave amplitudes interfere for
waves that are coherent / have a (well defined) definite phase-relation.

Using complex notation, phase information can be explicitly {and relatively easily} carried
out mathematically properly describing the interference of two (or more) amplitudes of waves.
3 does exist other ways to do this, but they are more tedious, algebraically...

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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Note also that the use of complex notation allows us to explicitly describe properly /
mathematically the phase-shifts that can / do occur in the response of a system (a “black box”)
to an input stimulus / input signal:

Input Stimulus:

Output Response:

(e.g. incident wave) — Generic “Black Box” - (e.g. outgoing wave)
];mpm (z.1) = PR (any physical system) j;utput (z.t)=B Gleon) (o)
im{f(z=0,6=0)|
A
@ zZ= 05 =0 -f;)utput (0’ 0) Bel(S(W)

Classical Systems — Interference of Wave Amplitudes

g >—> Re{/(z=0,t=0)]
Sy (0,0) = 4

Consider two traveling waves interfering with each other in a non-dispersive medium with
different frequencies and amplitudes. For a non-dispersive medium, this means that

V:fl/%:fz/lz:a)l/kl:a)z/kz

with angular frequencies of

and wavenumbers |k, =27/ 4,

>

k,=2x/2,|

W =2rf,

o

®, =274,

MI fmr (Z,l‘) _ f~1 (Z,t) n ]~2 (Z,t) _ Alei(klz—mlt+6l) + Azei(kzz—a)zt+52)

Easy cases of phase relations between the two waves:

1.) 6, =0, (in phase). Then A6, =J, — 8, =0 radians = 0°

Phasor diagram:

Ar=A, + A4,

>

A

w

A

Constructive interference

2.) 8, =6, +x (180° out of phase). Then: AS,, =8, -0, = z radians =180°

A, M: 0, — 0, = rr radians = 180"
e . :
< »-——--—-- Destructive interference
AR = Al - Az Al

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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3.) The General Case:

From the diagram, we see that the magnitude of the resultant (i.e. net or total) amplitude 4, is:

AR = ‘7TOT (Z:t)‘ = \/Alz + A22 +2A1A2 COS(A521)

(n.b. this is simply the Law of cosines!!!)
= 42 + A2 +24.4, cos(5, - )

AR = \/J;Tor (Z’t)*\f;OT (Z’t),

Y«——— Complex conjugate of ., (z,1)

Thus if: ./;i (Z,t) _ Alei(kz—mt+51) and fz (Z, Z) _ Azei(kz—a;Héz)

Then: f‘TOT (Z’[):ﬁ(z,t)+ﬁ(Z’t)zARei(szwHJR)

Where: | A, =4+ 4; +24,4,008(8,—5,) = | A} + 4; +24,4,c05(5, -5, )|

N A

n.b. Cosine is an even function of its argument, thus |Ad,, = Ao

Then if the two waves have equal amplitudes, i.e. |4, = 4, = A|:

1.) If 6, =0, (in phase with each other), then Ad =6, -6, =0 and hence:

cos(8,—6,) =1 = {total} constructive interference.

Resultant Amplitude: (4, = \/AZ + A*+2A4%cos0 = \/41412 =24

2) If 6,=6,tn = A =0,-06, =+ ==%180°out of phase with each other and hence:

cos (8, —6,) =cos(£7)=—1 = {total} destructive interference.

Resultant Amplitude: |4, = \/Az A 4242 cosw =N A + AP —24> =0

Note that classical wave interference effects can/do occur at the amplitude level even if f; # f>
e.g. Sound waves on strings, in air, ...

Electronic signals /i = f, — beats phenomena (this is a form of interference)
EM waves f, > f, — modulation phenomena (also a form of interference)
etc. (or vice versa)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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Note also that amplitude interference effects occur in the world of quantum mechanics — i.e.
matter waves — but is somewhat more complicated — e.g. by line width effects and/or uncertainty
principle effects. Only identical particles with the exact same quantum numbers (external and
internal) can interfere with each other...

Fourier’s Theorem — Fourier Transforms

Any wave {whose derivatives exist / are well defined everywhere} can be expressed
mathematically precisely as a linear combination of sine-type waves:

F(zt)=]" A(k)e"“"dk| &=vk

The integral over negative wavenumbers, —k simply means that those waves are propagating in
the —Z direction. Thus technically speaking, we really should write A = spatial wavelength =

/1:27z/|k| and a)=27zf=|k|v.

The complex amplitudes zzl(k) can be obtained from initial conditions @ ¢ = 0:

f(zt=0)= and }(z,tzO)EW:
and use of the Fourier transform: ;l(k) = 2L j : f~ (z,t)eii(l(zfml)dz
T Y
L Y14 AL b i ke See Griffiths
Oblaining: A(k) Y —w{f(270)+ a)f(z,O)} ¢dz Problem 9.32

Wave Intensity, I:

Wave intensities are proportional to (;L:I*) . Thus, the total intensity / « ( Fror (2:0) fror (2, t))

In above previous example, the individual normalized intensities are: |/, = A’|and |1, = 4; |.

The corresponding resultant normalized intensity is: |/, =1, +1, + 2\/Z \/Z cos(5, —6,)

Then for the special case of A4} = 4, = A or equivalently /; = I, = I,, Then e.g. for (z=0, t = 0):

1) 6,=6, then: A6=6,-6,=0, cos(5,—5,)=+1: Iz =4I, constructive interference.

2) 0,=06,trthen: Ad6=0,-06 =+x ,cos(é'2 —51) =-1: Ir =0 destructive interference.

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Let’s consider our vibrating string problem again:

Boundary Conditions (End Conditions), Wave Reflection and Wave Transmission

Mechanical wave behavior / wave motion e.g. on a string as a function of time and space
depends critically on the end conditions / boundary conditions — i.e. on how rigidly (or not)
the string is attached at its ends.

Or, e.g. could have two dispersionless strings tied together in a knot (say @ z = 0), but one
string has mass per unit length 4, (z <0), the second string has mass per unit length , (z >0).

Both strings are stretched and rigidly attached at LHS and RHS ends (string is infinitely long)
@ z==%o0.

@
1 (z<0) knot @ 1, (z>0)

For this latter situation, the longitudinal speed of propagation of waves on a dispersionless
string isv = /T/u where the string tension 7= same in both strings {otherwise F # 0 in

equilibrium — this can’t happen, because if ' # 0, then Newton’s 2" Law F = ma — something
accelerates — therefore must have F = 0 in equilibrium}.

Thus, for the 1* string with 2 (z <0):|v, =T/ (2<0) But. | 12
But: [ ==L
and for the 2" string with 4, (z>0):|v, =T/, (z>0) v, S

However, the frequencies of oscillation associated with a single vibrating string composed of 2
different strings types of tied together (@ z = 0 are the same - i.e. f; = f, =f and thus the angular
frequencies are the same, i.e. @ = 2nf; = @, = 27/, = .

[w A _Apr K
v, A4 A)2zm Kk

Suppose that an incident traveling wave propagates in the +Z direction, initially coming from
the LHS portion (z < 0) of string, i.e. to left of the knot @ z=0: |, (z,1)= A M) (z<0).

mc

This wave is incident on the knot @ z = 0.

However, because of the mismatch / discontinuity in materials of the string to the left (z < 0) and
to the right (z > 0) of z = 0, some portion of incident wave is reflected from knot and propagates

in —z direction (i.e. traveling backwards along string 1): fmﬂ (z, t) = zzlre/le[(fk‘szt) (z<0).

Some portion of the incident wave is transmitted past / through knot @ z = 0 and propagates in

the +2 direction (traveling along string 2): | £, (2,2) = 4,0 ™| (z>0).

Assuming that both strings are ideal (i.e. they are dissipationless), then energy and linear
momentum are both conserved in this scattering process at the discontinuity / knot @ z = 0.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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For simplicity’s sake, if the incident wave is an infinitely long sinusoidal wave, the net
disturbance (net / total displacement amplitude, using the superposition principle is:

7LHS ( )
T0T

oS (2,8) = A (z>0)

A i(kyz—ot) +2"eﬂe[(—klz—a)t) (Z < 0)

However @ z=0: fr,;(2,1) (Re( Fror (2, t))) must be continuous {recall that physically,

Jror (2,t) corresponds to the transverse displacement of the string at the space-time point (z,¢) }.

Mathematically, this translates to a Dirichlet-type boundary condition @ z =0

ror (0,2)= fror (0,¢)|= transverse displacement = same value on both sides of “point” knot.

If the knot physically has zero (or negligible) mass, then the slopes of f;,, (z = O,t) are the
same on both sides of the “point” knot. Mathematically, this translates to a Neumann-type
A (=) _ o (=)

aZ z=0 82

boundary condition @ z = 0:

z=0

Note that the above boundary conditions (BC’s) technically apply only to Re[ fmr (z,t)] at
z =0, but note that Im[ Fror (z,t)] differs from Re[ Fror (z,t)} simply by replacing cosine ()
with sine ( ). — Hence, the BC’s apply to f,,, (2,¢).

BC1 @ z = 0: The complex value of total amplitude @ z = 0: NTLOI;S (z=0,¢)= }’;’;S (z =0, t)
o | Fror (1) _ Fror (2:1)
aZ z=0 aZ

BC2 @ z = 0: The complex value of amplitude slopes @ z =

z=0

Physically, continuity of the slope implies that there are no additional forces operative at the knot (z = 0).

FromBCl @z=0: |4, + ;lr o= A n.b. We thus have two equations

trans

From BC2 @ z = 0: kl(A —A,eﬂ)zk A
A A

A

and three unknowns (,:1. reﬂ,AmS)

inc trans inc?

| |
ki and k; are assumed to be known / given (e.g. T= 100 N, /=100 Hz)

—> Can express 4, o and A, interms of 4 _— Solve BCI and BC2 simultaneously to obtain:

trans
‘2)‘6/‘7 = kl — k2 Iainc = VZ — Vl A’;]jnc < USing & =
) kl + kz Y + v, kl
Iatram = 2k Iamc 2V2 Ainc < USing & = h
bk +k, v+, k, v,

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The real amplitudes and the phases are thus related by:

Lect. Notes 4

Y, =™V

A eiﬁR —

refl A e

inc

()

Vv, +Vv,

s,

Vi +V2

. 2v )
iop 2 io;
‘/47)‘11715 e - ( Ainc e

Prof. Steven Errede

If string 2 (on the RHS, z > 0) is lighter than string 1 (on the LHS, z <0), ie. u, <, = v, >,

since

v, =T/, (z>0)

i VIZM(Z<O)

then

(v,

—W)>O

have the same phase angle, i.e.

Thus for x, <, (or v, >v,),

5, =6,=0
0, = 0, = 0| and hence:
sy _| Y2™ N is _| N
Areﬂe f= Aince = Areﬂ - Ainc
V| + V, V| + V,
« 2v ~ 2v.
oy _ 2 i0, _ 2
‘/47mnse '= Aince = ‘/47)‘11715 - Ainc
V| + v, V| + v,

— all three wave amplitudes

If string 2 (on the RHS, z > 0) is heavier than string 1 (on the LHS, z <0), i.e. s, > 1ty = v» <vp:

then:

(v2 —vl)<0

— the reflected wave is 180° (= & radians) out of phase with the incident

wave i.e. cos(—kz—at+68, —r)=—cos(—kz—wt+6,). The polarity of reflected wave is

flipped relative to incident wave, i.e.

Thus for g, > g, (or vo <

5 =0, +1=0,

Vl):

0, =

0, T 7 =9J,|and hence:

! Note that: |eii” =cosmtisinzg = —1‘

Areﬂ &% = [u) Amcei61 — Areﬂ — _( V, =V ] A4 = (vz -V J A
v, +v, v, +v, v, +v,
, 2 . 2
AtrameléT = vz Aincelél = Atram = vz Ainc
) vV +V, ) v+,
If e.g. string 2 (on the RHS, z > 0) is infinitely massive, i.e. |1, =©| =|v, =/T/u, =0 (z > 0)

Then we see that:

Areﬂ = Ainc

and

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Wave Polarization

Depending (largely) on the type of wave and the nature of the medium that the waves are
propagating in / on, the waves can have another degree of freedom known as polarization.

Waves propagating in £z direction with small transverse displacement amplitude on a string are
known as transverse waves because the displacement of string (relative to its equilibrium

position) is transverse to the direction of propagation —(i.e. v, =£Z).

Thus the transverse displacement amplitude |/ (z,) = 4¢'“*)|is oriented e.g. in +% and/or +5

directions for a traveling transverse wave propagating in/along the +Z direction.

— Thus transverse traveling waves have two polarization states, either the £x or the £y

direction, or equivalently 2 orthogonal {i.e. mutually-perpendicular} linear combinations of the
+x and +7 basis states for waves propagating in the +Z direction:

AY A AY

X
4

Z out of page

Propagation of e.g. longitudinal sound waves in solid or non-solid media, e.g. normal gases,
liquids and solids also has longitudinal polarization — because longitudinal sound waves have
longitudinal displacements of atoms / molecules — i.e. along / against (i.e. parallel/anti-parallel to)
the direction of propagation of the longitudinal wave, e.g. in the +Z direction.

Here, the longitudinal displacement amplitude is (also) of the form: f(z.t)= A

— Longitudinal traveling waves have only one polarization state, e.g. the Z direction.

62]7(2,1,‘) :Lﬁzf(z,t)

oz’ viooor

Both longitudinal and transverse waves obey the same wave equation:

Longitudinal Waves: e.g. sound waves / acoustic waves — liquids, gases and solids and
e.g. large amplitudes in strings (compression waves)

Transverse Waves: e.g. Small and large amplitudes in strings, long solid rods, solid
bars, efc. (shear waves). EM waves are transverse waves.

3 Two orthogonal polarization states for transverse waves — thus, we can represent the transverse
displacement amplitude as a vector quantity, indicating its polarization state:

Transverse displacement is e.g. in:

(Z, t) = 4%

(Z,I) _ Izlei(kz—wt)j;7

Vertical Plane  — “vertical” polarization (up & down):

vert

Horizontal Plane — “horizontal” polarization (sideways):

horiz

18  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 4 Prof. Steven Errede

(Direction of propagation)

The polarization unit vector 7 lying in the transverse plane defines the plane of polarization:
(i.e. plane of transverse vibrations {here})

Note that: |nez=0 . n

4
<>

n=cosx+sinfy <— cos 0 —>

Define the polarization angle 8 wrt to X axis: l '\9 i

Linearly Polarized Transverse Waves

A linearly polarized transverse wave that propagates in the Z direction is such that both the
x and y components of the vector transverse displacement amplitude of the wave are either

precisely in-phase with each other (i.e. have 0° relative phase), or they can also be precisely
+ 180° out-of-phase with each other.

) = 2 COS eei(kz—wt))fe + 121 sin eei(la—wt)j}

Examples of Linearly Polarized Transverse Waves: f (
f

(

z,t
z,t)= Acos 0“3 — Asin O™

Circularly Polarized Transverse Waves

A circularly polarized transverse wave that propagates in the Z direction is such that
the x and y components of the transverse wave have a.) equal amplitudes, but 4.) the x and y

components of the vector transverse displacement amplitude of the wave differ in phase by
+90° =+ /2 from each other (e.g. 8,,, =0°, 5,,,.. =+90° =+ /2 radians)

ert horiz

Example #1: |f,, (z,t) = Acos(kz—at)z
Fro: (2,1) = Acos[(kz — ot) +90”]j/ =—Asin(kz—at)p

But note that| /2, + £, = A°|thus | £ (z,¢) = .., (2,2) + f,o. (2,¢)|lies on a circle of radius A.

Attimer=0: |f(z,¢t=0) =Acos(kz)%— Asin(kz))

Attimes =2 f(z,t:lj: Acos(kz—90”)fc—Asin(kz—90”)f/:Asin(kz)fc+Acos(kz)j;

20 2w
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— At a fixed position in space, f(z, t) rotates counter-clockwise CCW (in the x-y plane) as time

increases, for a wave propagating in the +Z direction.

— Known as LCP = Left Circular Polarization.

f(zt)at t=7/2e and z = 0:

% 1 Polarization vector rotates
CCW as time increases
(\ > X
+2 f(zt)att=0andz=0
(out of page)

Example #2: |f,,, (z,t) = Acos(kz—wt)%
Frori: (2,8) = Acos[(kz—wt)—90”]j/ =+Asin(kz—wt)p

Again|f. + f. . = A|and thus| f (z, t) = ﬁm (z,t) + fhm.z (z,t) lies on a circle of radius A.

Attimet=0: |f(z,6=0)=Acos(kz)%— Asin(kz)7

. r 7 o\ A : o\ A . . .
Attlmet=%: f(z,t:%j:/lcos(kz—% )x+Asm(kz—9O )y:Asm(kz)x—Acos(kz)y

— At a fixed position in space, f (z, ?) rotates clockwise CW (in the x-y plane) as time increases,
for a wave propagating in the+Z direction

— Known as RCP = Right Circular Polarization.

A

VA

/ >% f(z,t)att=0and z=0

Polarization vector rotates
CW as time increases

+z
(out of page) |

f(z1) at t:%and z=0
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If interested, information on the propagation of acoustical waves, acoustic wave phenomena in general and e.g.
solving the wave equation in 1-, 2- & 3-dimensions is available online (PDF format) from Professor Errede’s lecture
notes for the UIUC Physics 498 Physics of Music / Musical Instruments Course. The URL for the online lecture
notes for the UIUC P498POM course is:

http://online.physics.uiuc.edu/courses/phys498pom/498pom_lectures.html
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