
6 Classical Optics Derived from Maxwell Equations

This section deals with what happens when a wave encounters a discontinuity between 2
semi-infinite media.

Assumptions made:

1. The media extend to infinity on either side of the interface, avoiding mulitple reflections.

2. The media are homogeneous, iotropic, stationary and lossless.

3. The boundary is infinitely thin so there is no diffraction etc.

4. The incident wave is plane and unifrom.

6.1 Boundary conditions

Suppose we have an interface between two diferent media (1 and 2) which contain electric
and magnetic fields.

Using Faradays Law. ∮
C

~E · ~dl = −∂Φ

∂t
(6.1.1)

⇒ E1t = E2t (6.1.2)

ie the tangential component of the electric field across an interface is continuous.

Using Gauss’ Law: ∮
A

~D · ~dA = Q (6.1.3)

⇒ Dn1 −Dn2 = σ (6.1.4)

ie the discontinuity in the component of the electric displacement normal to an interface is

equal to the surface charge density at the interface. Similarly
∮

A

~B· ~dA = 0 ⇒ Bn1 = Bn2 ie

the normal component of the magnetic flux density is continuous across the interface.

Finally, Ampere’s circuital law ⇒ ∮
C

~H · ~dl = I (6.1.5)

⇒ H1t = H2t = Jδ = a (6.1.6)

where a is the surface current density.
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Hence, there is a discontinuity at an interface in the component of the magnetic field parallel
to the interface equal to the surface current density. Note, however, that a surface current can
only exist on the surface of a perfect conductors (eg superconductors) where the conductivity
σ →∞.

6.2 Reflection and refraction

n1 = refractive index of medium 1, n2 = refractive index of medium 2.

Assuming the incident wave is linearly polarized,

~EI = ~EI0 exp(i(ωit− ~kI · ~r)) (6.2.1)

~ki is real and points in the direction of propagation of the incident wave | ~kI |= n1k0. The
reflected and transmitted waves will be of the form:

~ER = ~ER0 exp(i(ωRt− ~kR · ~r)) (6.2.2)

~ET = ~ER0 exp(i(ωT t− ~kT · ~r)) (6.2.3)

Now recall:

~∇2 ~E − µε
∂2 ~E

∂t2
= µ

∂ ~J

∂t
+

1

ε
~∇ρ (6.2.4)

with ρf = 0 and ~Jf = 0 we can write:
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~∇2 ~ER + µ1ε1ω
2 ~ER = ~∇2 ~ER + k2

1
~ER = 0 (6.2.5)

where k1 = ω
√

µ1ε1. Now, since kI and kR are in the same medium, we have:

k2
Ix + k2

Iy + k2
Iz = k2

Rx + k2
Ry + k2

Rz = k2
1 (6.2.6)

and

k2
Tx + k2

Ty + k2
Tz = k2

2 (6.2.7)

Now the tangential component of ~E is continuous across the interface which implies that
the tangential component of ~EI + ~ER is equal to the tangential component of ~ET at the
interface. The same boundary condition applies to ~H. The relationship must exist between
~EI , ~ER and ~ET at the interface for all times t and for all points ~rint on the interface.
Therefore:

ωI = ωR = ωT (6.2.8)

and

~kI · ~rint = ~kR · ~rint = ~kT · ~rint (6.2.9)

where rint = direction vector of the interface between the two media.
These relationships exist for all values of x and y. Therefore, if our incident wave lies in the
y = 0 plane, kIy = 0 and, hence, kRy = kTy = 0. This means that the incident, reflected
and transmitted waves are coplanar. The x-components must also be equal, so:

kRx = kTx = kIx = k1 sin(θI) (6.2.10)

By definition:

kTx = k2 sin(θT ) (6.2.11)

so

k1 sin(θI) = k2 sin(θT ) (6.2.12)

⇒ sin(θI)

sin(θT )
=

k2

k1

=
n2

n1

(6.2.13)

Where θT is the angle of refraction. This equation is Snell’s Law.
Since the x - and y-components of the incident and reflected waves are equal and the mag-
nitudes of ~kR and ~kI are equal, k2

Rz = k2
Iz and, hence, kRz = −kIz. The minus sign arises

since the reflected wave travels away from the interface.
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Putting all this together, we can write the electric field in each region as:

~EI = ~EI0 exp(i(ωt− k1(x sin(θI)− z cos(θI)) (6.2.14)

~ER = ~ER0 exp(i(ωt− k1(x sin(θI) + z cos(θI)) (6.2.15)

~ET = ~ET0 exp(i(ωt− k2(x sin(θT )− z cos(θT )) (6.2.16)

sin(θI)

sin(θT )
=

k2

k1

=
n2

n1

(6.2.17)

6.3 Fresnel’s Equations

We now find relations between ~EI0, ~ER0 and ~ET0. The equations of continuity require:

EIx + ERx = ETx, EIy + ERy = ETy (6.3.1)

HIx + HRx = HTx, HIy + HRy = HTy (6.3.2)

In addition because of the mutually perpendicular relationship between ~E, ~H and ~k,

~H =
~k × ~E

ωµ
(6.3.3)

Thus once we have determined ~E we can find ~H.
To find the amplitudes, we consider two oriententions (or polarizations) of ~E and ~H. These
are:

1. ~E vector normal to the plane of incidence, called transverse electric (TE) wave: 2. ~E vec-

tor parallel to the plane of incidence, called transverse magnetic (TM) wave: The ~H must

be oriented in the direction shown so that ~E × ~H points in the direction of propagation.
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Plane waves of arbitary polariation can be expressed as a sum of these orientations.

For Transverse Electric (TE) waves, continuity of the tangential component of E implies:

EI0 + ER0 = ET0 (6.3.4)

Likewise, continuity of the tangential components of ~H:

HI0 cos(θI)−HR0 cos(θI) = HT0 cos(θT ) (6.3.5)

then since impedence Z =
E

H
=

cµ

n
, and so Z =

cµ

n
, where n is the refractive index, we can

therefore write the above equation as:

(EI0 − ER0) cos(θI)

Z1

=
ET0 cos(θT )

Z2

(6.3.6)

⇒ EI0 − ER0

ET0

=
Z1 cos(θT )

Z2 cos(θI)
(6.3.7)

Where we’ve made use of the relation Z =
E

H
=

cµ

n
so Z1 =

cµ

n1

and Z2 =
cµ

n2

and n =

refractive index. Solving 6.3.4 and 6.3.7 gives the following expressions for the reflected
and transmitted ~E0. (

ER0

EI0

)
TE

=
Z2 cos θI − Z1 cos θT

Z2 cos θI + Z1 cos θT

(6.3.8)

(
ET0

EI0

)
TE

=
2Z2 cos θI

Z2 cos θI + Z1 cos θT

(6.3.9)

These are two of Frenel’s Equations.
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If ~E is parallel to the plane of incidence (Transverse Magnetic (TM)), we have:

HI0 −HR0 = HT0 (6.3.10)

or
EI0 − ER0

Z1

=
ET0

Z2

(6.3.11)

and
(EI0 + ER0) cos θI = ET0 cos θT (6.3.12)

Then once again solving 6.3.11 and 6.3.12 gives:(
ER0

EI0

)
TM

=
Z2 cos θT − Z1 cos θI

Z2 cos θT + Z1 cos θI

(6.3.13)

(
ET0

EI0

)
TM

=
2Z2 cos θI

Z2 cos θT + Z1 cos θI

(6.3.14)

which are the other two Fresnel Equations. At normal incidence the difference between these
equations vanish since both the electric and magnetic fields are transverse to boundary. We
then get:

ER0

~EI0

=
Z2 − Z1

Z2 + Z1

(6.3.15)

ET0

~EI0

=
2Z2

Z2 + Z1

(6.3.16)

If we consider non-magnetic nonconductors, then
Z1

Z2

=
n2

n1

so for TE waves:

(
ER0

EI0

)
TE

=
n1

n2
cos θI − cos θT

n1

n2
cos θI + cos θT

(6.3.17)

(
ET0

EI0

)
TE

=
2n1

n2
cos θI

n1

n2
cos θI + cos θT

(6.3.18)

Now depending on the relative values of n1 and n2, the sign of the reflected wave can be
positive or negative. The change of sign corresponds to a phase change of π between the
incident and reflected waves. If n1 < n2 there will be a phase change of π , while for
n1 > n2 there will be no phase change. The transmitted wave is always in phase.

For a TM wave:

(
ER0

EI0

)
TM

=
− cos θI + n1

n2
cos θT

cos θI + n1

n2
cos θT

(6.3.19)

(
ET0

EI0

)
RM

=
2n1

n2
cos θI

cos θI + n1

n2
cos θT

(6.3.20)
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Again the transmitted wave is in phase. However EI0 and ER0 can be in or out of phase.
They are in phase if:

n1

n2

cos θT > cosθI (6.3.21)

or sin(θT − θI)cos(θT + θI) > 0 (6.3.22)

This requires either:

θT > θI and θT + θI <
π

2
(6.3.23)

or θT < θI and θT + θI >
π

2
(6.3.24)

6.4 The Brewster Angle

If the expression sin(θT − θI)cos(θT + θI) = 0 or equivalently 6.3.19 is zero, then there is

no reflected wave if ~E is parallel to the plane of incidence. This means that cos((θT + θI) =

0 ⇒ θT + θI = ±π

2
. ie Geometrically this means the electric field of the transmitted wave

is parallel to the direction of propagation of the reflected wave.
Note that the only other possible solution is θI − θT = 0 which is not a valid solution. The
angle of incidence, θI , at which the condition is satisfied is called the Brewster Angle (θIB).
At the Brewster angle

n1

n2

=
sin θT

sinθIB

=
1

tan θIB

(6.4.1)

This effect can be used to produce polarized light. If unpolarized light is incident on the
surface of a dielectric at the Brewster angle, then only the component of the wave with its
electric field perpendicular to the plane of incidence will be reflected.
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6.5 Coefficients of Reflection and Transmission

Setting µr = 1 and looking at the time averaged Poynting vector gives:

PIav =
1

2

√
ε1

µ0

E2
I0n̂I (6.5.1)

PRav =
1

2

√
ε1

µ0

E2
R0n̂R (6.5.2)

PTav =
1

2

√
ε2

µ0

E2
T0n̂T (6.5.3)

The unit vectors n̂I , n̂R, and n̂T point in the direction of propagation of the incident,
reflected and and transmitted waves respectively. For example:

n̂I =
~k1

k1

(6.5.4)

Then the coefficient of reflection, R, is:

R =| PRav · n̂
PIav · n̂

|= E2
R0

E2
I0

(6.5.5)

where n̂ is a normal to the interface. Similarly, the coefficient of transmission, T, is:

T =| PTav · n̂
PIav · n̂

|=
(

εr2

εr1

) 1
2 E2

T0 cos θT

E2
I0 cos θI

=
n2E

2
T0 cos θT

n1E2
I0 cos θI

(6.5.6)

Therefore,

R⊥ =

[
n1 cos θI − n2 cos θT

n1 cos θI + n2 cos θT

]2

(6.5.7)

T⊥ =
4n1 cos θI cos θT

[n1 cos θI + n2 cos θT ]2
(6.5.8)

RII =

[
−n2 cos θI + n1 cos θT

n2 cos θI + n1 cos θT

]2

(6.5.9)

TII =
4n1 cos θI cos θT

[n2 cos θI + n1 cos θT ]2
(6.5.10)

It can be shown that
R + T = 1 (6.5.11)

which is expected, and that at the Brewster Angle RII = 0 and TII = 1.
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6.6 Non-uniform plane waves

The formula for electric and magnetic fields are:

~E = ~E0 exp(i(ωt− ~k · ~r)) (6.6.1)

~H = ~H0 exp(i(ωt− ~k · ~r)) (6.6.2)

We have investigated the case of interfaces where the vector ~k is real. If, however, we put

~k = ~β − i~α (6.6.3)

where ~α and ~β are not in the same direction, then the wave decays exponentially in a
direction which is not that in which the wave is travelling.
Now waves of constant phase are perpendicular to β and planes of constant amplitude are
perpendicular to α. For example, since

k2 = ~k · ~k = ω2εµ− iωσµ = (β2 − α2 − 2i~α · ~β) (6.6.4)

then
β2 − α2 = ω2εµ > 0⇒ β > α (6.6.5)

Also 2~α · ~β = ωσµ⇒ θ ≤ π

2
and ~α ⊥ ~β if σ = 0.

Another useful, but “difficult to understand” concept is that of complex angles, φ, where

sin φ =
exp(iφ)− exp(−iφ)

2i
(6.6.6)

and

cos φ =
exp(iφ) + exp(−iφ)

2
(6.6.7)
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Note that sin2 φ+cos2 φ = 1 still. Returning to Snell’s Law, n1 sin θI = n2 sin θT and noting

that if
n1

n2

sin θI > 1, then sin θT > 1 and, thus θT must be complex, θT = a + ib, so we

always have:

sin θT =
n1

n2

sin θI (6.6.8)

using the real and imaginary parts we have:

δ =

√
2

σµω
so (6.6.9)

sin θT =
exp(i(a + ib))− exp(−i(a + ib))

2i
=

exp(ia) exp(−b)− exp(−ia) exp(b)

2i
(6.6.10)

also we have:

cos θT =
exp(i(a + ib)) + exp(−i(a + ib))

2
=

exp(ia) exp(−b) + exp(−ia) exp(b)

2
(6.6.11)

sin θT is real (via 6.6.8) so a = π
2

(ie. θT =
π

2
+ ib) and so

sin θT =
exp(b) + exp(−b)

2
= cosh b (6.6.12)

cos θT =
i(exp(−b)− exp(b))

2
= −i sinh b (6.6.13)

If θT is complex then we have total reflection, the critical angle of incidence, θIc, occurs
when θT = 90 deg. ie.

sin θIC =
n2

n1

(6.6.14)

The magnitude of the reflected wave is now unity (exercise) so we can write(
ER0

EI0

)
⊥

= exp(iφ⊥) (6.6.15)

where

φ⊥ = 2 tan−1

[√
sin2θT − 1
n1

n2
cos θI

]
(6.6.16)

This is the phase of the reflected wave with respect to the incident wave, the phase shift
on reflection. The value of θT after total reflection can be readily obtained from the above
equations:

a =
π

2
, b = cosh−1(

n1

n2

sin θI) (6.6.17)

The equations for the Incident, Reflected and Transmitted waves have the same forms as
before:
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~EI = ~EI0 exp[i(ωt− k1(x sin θI − z cos θI)] (6.6.18)

~ER = ~ER0 exp[i(ωt− k1(x sin θI + z cos θI)] (6.6.19)

~ET = ~ET0 exp[i(ωt− k1(x sin θT − z cos θT )] (6.6.20)

However now that θt is complex the transmitted wave does not represent energy transferred
to medium 2.
We note that the wavenumber of the transmitted wave is:

~kT = ~βT − i~αT = k2(sin θT x̂− cos θT ẑ) = k2(
n1

n2

sin θI x̂ + i sinh bẑ) (6.6.21)

Thus:
~ET = ~ET0 exp(sinh(b)k2z) exp(i(ωt− k2(

n1

n2

sin θI)x) (6.6.22)

So no energy is transferred in the −ẑ direction although there is some non-zero electric
field for z < 0. Instead the transmitted wave propagates in the x̂ directions and decays
exponentially into medium 2.
For TE waves (⊥) we can show:(

ET0

EI0

)
⊥

=
2 cos θI√
1− n2

n1

exp(i
φ⊥
2

) (6.6.23)

We know:
~HT =

k

ωµ2

K̂T × ~ET (6.6.24)

so

~ET × ~H∗
T =

~ET

ωµ2

× (k̂T × ~ET ) =
1

ωµ2

(| ~ET |2 ~k∗T − ( ~ET · ~K∗
T ) ~E∗

T ) (6.6.25)

For ⊥ polarized waves, ~ET is in the ŷ direction so the second term is zero. Thus the
Poynting vector points in the x̂ direction. These waves are referred to as evanescent since
they decay exponentially into the second medium and propagate along the interface.

6.7 Reflection and Transmission at the surface of a good conduc-
tor

Consider expressions for the reflected and trasmitted waves where medium 1 is a dielectric
and medium 2 is now a conductor.

~ER = ~ER0 exp(i(ωt− k1x sin θI − k1z cos θi)) (6.7.1)
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~ET = ~ET0 exp(i(ωt− k2(x sin θT − z cos θT )) (6.7.2)

= ~ET0 exp(i(ωt− k1x sin θI − k2z cos θT )) (6.7.3)

= ~ET0 exp(i(ωt− k1x sin θI ± k2z

√
1− n1

n2

2

sin2 θI)) (6.7.4)

From earlier work we have:

k1

k2

=
ω
√

ε1µ1δ

1− i
=

δ

1− i
k1 (6.7.5)

⇒ k2 =
1− i

δ
(6.7.6)

Now since k2 is a good conductor | k2 |�| k1 | this implies

cos θT =

√
1−

(
n1

n2

)2

sin2 θI ≈ 1 (6.7.7)

So θT ≈ 0 and hence the wave propagates“normally” into a good conductor. Our expression
for ~ET is now:

~ET ≈ ~ET0 exp[i(ωt− k1x sin θI ±
1 + i

δ
z)] (6.7.8)

Since k1 sin θI �
1

δ
(exercise) we get:

~ET ≈ ~ET0 exp[i(ωt +
z

δ
) +

z

δ
] (6.7.9)

For ~ETM (normal to plane of incidence), then since | n1

n2

|� 1,

(
ER

EI

)
TM

=
n1

n2
cos θI − cos θT

n1

n2
cos θI + cos θT

≈ −1 (6.7.10)

This is true for any angle of incidence. Now we calculate the transmitted electric field, we
also use cos θT ≈ 1, (

ET

EI

)
TM

=
2n1

n2
cos θI

n1

n2
cos θI + cos θT

≈ 2
n1

n2

cos θI ≈ 0 (6.7.11)

This is also true for any angle of incidence.
Now for ETE E parallel to the plane of incidence and using the same approximations:(

ER

EI

)
TE

=
n1

n2
cos θT − cos θI

n1

n2
cos θT + cos θI

≈
n1

n2
− cos θI

n1

n2
+ cos θI

≈ −1 (6.7.12)
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However this approximation is not valid at grazing incidence, where θI ≈ 90 deg. Finally the
transmitted component of the parallel component is given by

(
ET

EI

)
TE

=
2n1

n2
cos θI

n1

n2
cos θT + cos θI

≈ 2
n1

n2

=
2n1δ

1− i
= n1δ(1 + i) (6.7.13)

Once again this approximation is not valid where θI ≈ 90 deg .

6.8 Radiation Pressure

Consider a wave with it’s ~E vector normal to the plane of incidence. In the conductor, the
current density is σ ~ET . ~H is perpendicular to the moving electrons and we therefore have
a (Q~v × µ0

~H) force.
This force is directed away from the interface and into the conductor. The resulting pressure
is referred to as the radiation pressure. Now lets calculate it’s effects.
Taking a piece of the material of side lengths a,b and depth δz, the total charge Q, is related
to the charge density ρ, the current density ~J and electron velocity ~v via:

Q = ρabdz =
| ~J |
| ~v |

abdz (6.8.1)

⇒ Q~v = ~Jabdz (6.8.2)

⇒ Q~v = σ ~ET abdz (6.8.3)

So we get the force on this piece, d~F as:

d~F = abσ ~ET × µ0
~Hdz (6.8.4)
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The pressure d~p is just the force per unit area, so:

d~p = σ ~ET × µ0
~Hdz (6.8.5)

Now we plug in our equations for ~E:

~ET = ~ET0 exp((i(ωt +
z

δ
) +

z

δ
) (6.8.6)

and we use:

HT =

√
σ

ωµ0

exp(i
π

4
)ET =

1− i

ωµ0δ
ET (6.8.7)

The magnitude of the pressure is

dp

dz
=

σµ0

ωµ0δ
| ET0 |2| (1− i) exp((iωt +

z

δ
) +

z

δ
) |2 (6.8.8)

Taking the time average gives:

dpav

dz
=

σ

2ωδ
| ET0 av |2 exp(2

z

δ
) (6.8.9)

To get the total pressure we integrate and get:

pav =
σ

2ωδ
| ET0 av |2

∫ 0

−∞
exp(2

z

δ
)dz =

σ

4ω
| ET0 av |2 (6.8.10)

Recall
(

ET

EI

)
⊥

= 2
n1

n2

cos θI so in terms of the input field

pav =
σ

4ω
| n1

n2

EIav cos θI |2 (6.8.11)

Finally expression in terms of input power flux:

pav =
2

v1

cos2 θIPIav (6.8.12)

where v1 is the speed of the wave in medium 1, and PIav is the initial Poynting Vector. The
derivation is left as an exercise. The analysis of waves parallel to the plane of incidence is
more complex but leads to the same result.

6.9 Momentum density in an electromagentic wave

At normal incidence in a vacuum, pav = 2
PIav

c
. Since the conducting surface acts as a near

perfect reflector the change in momentum of the wave is 2P
c

per unit time per unit area.
Then:

Momentum Flux Density =
PIav

c
(6.9.1)
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Now Momentum Flux Density = Momentum Volume Density× c. Therefore:

Momentum V olume Density =
PIav

c2
(6.9.2)

Generalizing to a vector field:

M.V.D. = ~p =
~E × ~H

c2
(6.9.3)
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