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LECTURE NOTES 6.5 
 

Reflection & Transmission of Monochromatic Plane EM Waves at Oblique Incidence at a 
Boundary Between Two Linear / Homogeneous / Isotropic Media 

 

     Suppose we have a monochromatic plane EM wave incident at an oblique angle incθ on a 
boundary between two linear/homogeneous/isotropic media, defined with respect to the normal 
to the interface, as shown in the figure below: 

 

The incident EM wave is:      ( ) ( ), inc

inc

i k r t
inc oE r t E e ω−

=
G Gi

G GG� �     and   ( ) ( )
1

1 ˆ, ,inc inc incB r t k E r t
v

= ×
G GG G� �  

 

The reflected EM wave is:     ( ) ( ), refl

refl

i k r t
refl oE r t E e ω−

=
G Gi

G GG� �     and  ( ) ( )
1

1 ˆ, ,refl refl reflB r t k E r t
v

= ×
G GG G� �  

 

The transmitted EM wave is: ( ) ( ), trans

trans

i k r t
trans oE r t E e ω−

=
G Gi

G GG� �  and  ( ) ( )
2

1 ˆ, ,trans trans transB r t k E r t
v

= ×
G GG G� �  

 

Note that all three EM waves have the same  frequency, 2f ω π=   
 
     This is due to the fact that at the microscopic level, the energy of real photon does not change 
in a medium, i.e. vac medE E Eγ γ γ= = , and since E hfγ γ=  for real photons, then vac medhf hf hfγ γ γ= = . 

Thus the frequency of the photon does not change in a medium, i.e. vac medf f fγ γ γ= =    
{n.b. An experimental fact: colors of objects do not change when placed & viewed e.g. underwater}.  
 
     However, the momentum of a real photon does change in a medium!  This is because the 
momentum of the real photon in a medium depends on index of refraction of that medium 

medn via the relation med vac
medp n pγ γ=  where med

med propn c v= . Thus the photon momentum depends 
{inversely} on the speed of propagation in the medium!  
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From the DeBroglie relation between momentum and wavelength of the real photon p hγ γλ=   

we see that ( ) ( )med vac vac vac med
med med medp n p n h h n hγ γ γ γ γλ λ λ= = = =  and hence med vac

mednγ γλ λ= . 
 
Thus, for macroscopic EM waves propagating in the two linear/homogeneous/isotropic media  
(1) and (2), we have 1 2f f f= = , and since 2 fω π=   then 1 2ω ω ω= = .   
 

But since: kvω =   then:  1 2ω ω ω= =  ⇒  1 1 2 2 k v k v=   thus: 1 1 2inc refl transk v k v k vω = = =  
 

Now: 12inc inck k π λ= =
G

;   12refl reflk k π λ= =
G

;   22trans transk k π λ= =
G

 

And: ( ) ( )1 2 1 1 2 22 2v vω ω ω π λ π λ= = = =  

Then: 1 1 22 2 2f f fω π π π= = =   ⇒   1 2 inc refl transf f f f f= = = =  
 
                             finc      frefl       ftrans 
 

Then: 1 1o nλ λ=  2 2o nλ λ=     where:  vacuum length o c fλ = =  
 

And:   1 1v c n=   2 2v c n=         and:  vacuum wavenumber 2o ok cπ λ ω= = =  
 
Thus:  1 1 ok n k=   2 2 ok n k=  
 
From: 1 1 2inc refl transk v k v k vω = = =   

We see that: 2 2 1 1
1 2 2

1 1 2 2
inc refl trans trans

v v n nk k k k k k k
v v n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  Since    1, 2i iv c n i= =                        

 
The total (i.e. combined) EM fields in medium 1):   
 

  ( ) ( ) ( )
1

, , ,Tot inc reflE r t E r t E r t= +
G G GG G G� � �    and  ( ) ( ) ( )

1
, , ,Tot inc reflB r t B r t B r t= +

G G GG G G� � �  
 
must be matched (i.e. joined smoothly) to the total EM fields in medium 2):  
  

     ( ) ( )
2

, ,Tot transE r t E r t=
G GG G� �    and   ( ) ( )

2
, ,Tot transB r t B r t=

G GG G� �  
 
using the boundary conditions BC1) → BC4) at  z = 0  (in the x-y plane). 
 
At z = 0, these four boundary conditions generically are of the form: 
  

 (      ) ( )inci k r te ω⋅ − +
G G

(      ) ( )refli k r te ω⋅ − =
G G

(      ) ( )transi k r te ω⋅ −
G G

 
 
These boundary conditions must hold for all (x,y) on the interface at z = 0, and also must hold for 
arbitrary times/any/all times, t.  The above relation is already satisfied for arbitrary time, t, since 
the factor i te ω−  is common to all terms. 
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Thus, the following generic relation must hold for any/all (x,y) on interface at at z = 0: 
 

        (      ) ( )inci k re ⋅ +
G G

(      ) ( )refli k re ⋅ =
G G

(      ) ( )transi k re ⋅
G G

 
When z = 0 (i.e. at the interface in the x-y plane) we must have:  inc refl transk r k r k r= =

G G GG G Gi i i  
 

More explicitly:  
x y zinc inc inck x k y k z+ +

N
0

x y zrefl refl refl

z

k x k y k z
=

= + +
N

0

x y ztrans trans trans

z

k x k y k z
=

= + +

0z=
�	


 

 

 or:      
x y x y x yinc inc refl refl trans transk x k y k x k y k x k y+ = + = +  @ z = 0 in the x-y plane. 

 
The above relation can only hold for arbitrary (x, y, z = 0) iff  ( = if and only if): 
 

 
x x xinc refl transk x k x k x= =    ⇒   

x x xinc refl transk k k= =  
and: 

y y yinc refl transk y k y k y= =   ⇒   
y y yinc refl transk k k= =  

 
     Since this problem has rotational invariance (i.e. rotational symmetry) about the ẑ -axis,  
(see above pix on p. 1), without any loss of generality we can e.g. choose inck

G
 to lie entirely 

within the x-z plane, as shown in the figure below… 
 

Then:  0
y y yinc refl transk k k= = =   and thus: 

x x xinc refl transk k k= = . 
 

i.e. the transverse components of , ,inc refl transk k k
G G G

are all equal and point in the {same} x̂+ direction. 
 
The First Law of Geometrical Optics (All wavevectors  k  lie in a common plane): 
 

     The above result tells us that the three wave vectors ,  and inc refl transk k k
G G G

ALL LIE IN A PLANE 
known as the plane of incidence (here, the x-z plane) as shown in the figure below.  Note that 
the plane of incidence also includes the unit normal to the interface, {here} ˆ ˆintfn z= + -axis. 
 

The x-z Plane of Incidence: 

θtrans 
, ˆintfn  
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The Second Law of Geometrical Optics (Law of Reflection): 
 
From the above figure, we see that: 
 

      sin
xinc inc inck k θ=   =     sin

xrefl refl reflk k θ=   =  sin
xtrans trans transk k θ=  

 

But:  1inc reflk k k= =   ⇒  sin sininc reflθ θ=    
 

⇒  Angle of Incidence = Angle of Reflection  inc reflθ θ=   Law of Reflection! 
 

The Third Law of Geometrical Optics (Law of Refraction – Snell’s Law): 
 

For the transmitted angle, transθ  we see that:   sin sininc inc trans transk kθ θ=  
 

In medium 1):  1 1 1 1inc ok k v n c n kω ω= = = =  
   where  vacuum wave number 2o ok π λ= =   and  vacuum wave lengthoλ =  
 

In medium 2):  2 2 2 2trans ok k v n c n kω ω= = = =  
 

Thus:    sin sininc inc trans transk kθ θ=   ⇒   1 2sin sininc transk kθ θ=  
 

But since:  1 1inc ok k n k= =   and 2 2trans ok k n k= =  
 

Then:  1 2sin sininc transk kθ θ=    ⇒   1 2sin sininc transn nθ θ=    
 

Which can also be written as:  1

2

sin
sin

trans

inc

n
n

θ
θ

=  

 
Since transθ refers to medium 2)  and incθ  refers to medium 1) we can also write Snell’s Law as: 

   1 1 2 2sin sinn nθ θ=         or:      2 1

1 2

sin
sin

n
n

θ
θ

=  

                                  (incident) (transmitted) 
 
Because of the above three laws of geometrical optics, we see that: 
 

 0 0 0inc z refl z trans zk r k r k r= = == =
G G GG G Gi i i  everywhere on the interface at z = 0 {in the x-y plane} 

 

Thus we see that:  ( ) ( ) ( )
0 0 0

inc refl transi k r t i k r t i k r t
z z ze e eω ω ω− − −
= = == =

G G GG G Gi i i  everywhere on the interface at  
z = 0 {in the x-y plane}, valid also for arbitrary/any/all time(s) t, since ω  is the same in either 
medium (1 or 2). 
 
 
 
 

Law of Refraction 
(Snell’s Law) 
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Thus, the boundary conditions BC 1) → BC 4) for a monochromatic plane EM wave incident on 
an interface at an oblique angle incθ  between two linear/homogeneous/isotropic media become: 
 

   BC 1):   Normal (i.e. z-) component of D
G

 continuous at z = 0 (no free surface charges): 
 

   ( )1 2inc refl transz z zo o oE E Eε ε+ =� � �     { }using  D Eε=
G G

 
 

   BC 2):  Tangential (i.e. x-, y-) components of E
G

 continuous at z = 0: 
 

    ( ), , ,inc refl transx y x y x yo o oE E E+ =� � �  
 

 BC 3):   Normal (i.e. z-) component of B
G

 continuous at z = 0: 
 

        ( )inc refl transz z zo o oB B B+ =� � �  
 

 BC 4):   Tangential (i.e. x-, y-) components of H
G

 continuous at z = 0 (no free surface currents): 
 

           ( ), , ,
1 2

1 1
inc refl transx y x y x yo o oB B B

μ μ
+ =� � �  

 

Note that in each of the above, we also have the relation 
1 ˆ

o oB k E
v

= ×
G G
� �  

 
For a monochromatic plane EM wave incident on a boundary between two linear / homogeneous 
/ isotropic media at an oblique angle of incidence, there are three possible polarization cases to 
consider: 
 

Case   I):   incE ⊥
G

 plane of incidence – known as Transverse Electric (TE) Polarization 

             {  incB
G

&   plane of incidence} 
 

Case  II):   incE
G

&   plane of incidence – known as Transverse Magnetic (TM) Polarization  

             { incB ⊥
G

  plane of incidence} 
 

Case III):  The most general case: is neither  nor incE ⊥
G

&  to the plane of incidence. 

              {⇒  is neither  nor incB ⊥
G

&   to the plane of incidence} 
           i.e. Case III is a linear vector combination of Cases I) and II) above! 
 

 Polarization for general case: ˆ ˆ ˆ ˆ ˆcos sin cos sinincn x yϕ ϕ ϕ ϕ⊥= + = ∈ + ∈&   
 
 ⇒  Simply decompose the linear polarization components of the general-case EM 
 plane wave into its ˆ ˆx ⊥=∈ and ˆ ˆy =∈&  vector components – i.e. the E-field components 
 perpendicular to and parallel to the plane of incidence, TE polarization and TM 
 polarization respectively. Solve separately, then combine vectorially… 
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Case I): Electric Field Vectors Perpendicular to the Plane of Incidence:  
Transverse Electric (TE) Polarization 

 
     A monochromatic plane EM wave is incident {from the left} on a boundary located at z = 0 in 
the x-y plane between two linear / homogeneous / isotropic media at an oblique angle of 
incidence. The polarization of the incident EM wave (i.e. the orientation of incE

G
is transverse  

(i.e. ⊥ ) to the plane of incidence {= the x-z plane containing the three wavevectors , , inc refl transk k k
G G G

 
and the unit normal to the boundary/interface, ˆ ˆn z= + }), as shown in the figure below: 
 

 

     Note that all three E
G

-field vectors are ŷ&  {i.e. point out of the page} and thus all three  
E
G

-field vectors are &  to the boundary/interface at z = 0, which lies in the x-y plane. 
 

     Since the three B
G

-field vectors are related to their respective E
G

-field vectors by the right-
hand rule cross-product relation 1 ˆ

vB k E= ×
G G

 then we see that all three B
G

-field vectors lie in the 
x-z plane {the plane of incidence}, as shown in the figure above. 
 

The four boundary conditions on the {complex} E
G

- and B
G

-fields on the boundary at z = 0 are: 
 

BC 1) Normal  (i.e. z-) component of D
G

 continuous at z = 0 (no free surface charges) 
 

 
0

1 inczoEε
=
�

0

reflzoE
=

+ �
0

2 transzoEε
=⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

�   ⇒  0 0 0+ =    {see/refer to above figure} 

 

BC 2)  Tangential (i.e. x-, y-) components of E
G

 continuous at z = 0: 
 

  ( )inc refl transy y yo o oE E E+ =� � �   ⇒  
inc refl transo o oE E E+ =� � �    {n.b. All ' 0s

xE = for TE Polarization} 
 

BC 3)  Normal (i.e. z-) component of B
G

 continuous at z = 0: 
 

 ( )inc refl transz z zo o oB B B+ =� � �   
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BC 3) {continued}:  n.b. Since only the z-components of 'B s
G

on either side of interface are 
involved here, and all unit wavevectors ˆ ˆ ˆ, andinc refl transk k k      lie in the plane of incidence (x-y 

plane) and all E
G

-field vectors are || to the ŷ+ direction for TE polarization, then because of the 

cross-product nature of 1 ˆ
vB k E= ×

G G
� � , we only need the x-components of the unit wavevectors, i.e.: 

 
ˆ ˆ ˆ ˆ ˆ            sin      cos

x zinc inc inc inc inck k k x zθ θ= + = +  
ˆ ˆ ˆ ˆ ˆ          sin    cos

x zrefl refl refl refl reflk k k x zθ θ= + = −  
ˆ ˆ ˆ ˆ ˆsin cos

x ztrans trans trans trans transk k k x zθ θ= + = +  
 

( )ˆ ˆ ˆ
inc refl transz z zo o oB z B z B z+ =� � �  = ( ) ( )

1 2

1 1ˆ ˆ ˆˆ ˆ ˆ
x inc x refl x transy y yinc o refl o trans ok E y k E y k E y

v v
× + × = ×� � �     { }ˆ ˆ ˆx y z× = +  

   = { } { }( ) { }( )
1 2

1 1ˆ ˆ ˆ ˆ ˆ ˆsin sin sin
inc refl transo inc o refl o transE x y E x y E x y

v v
θ θ θ× + × = ×� � �  

   = ( )
1 2

1 1ˆ ˆsin sin sin
inc refl transo inc o refl o transE E z E z

v v
θ θ θ+ =� � �  

 

BC 4)  Tangential (i.e. x-, y-) components of H
G

 continuous at z = 0 (no free surface currents): 
 

n.b. Same reasoning as in BC3 above, but here we only need the z-components of the unit 
wavevectors, i.e.: 

 

    ( )
1 2

1 1ˆ ˆ ˆ
inc refl transx x xo o oB x B x B x

μ μ
+ =� � �    {n.b. All ' 0s

yB = for TE Polarization – see above pix} 

= ( ) ( )
1 1 2 2

1 1ˆ ˆ ˆˆ ˆ ˆ
z inc z refl z transy y yinc o refl o trans ok E y k E y k E y

v vμ μ
× + × = ×� � �     { }ˆ ˆẑ y x× = −  

= { } { }( ) { }( )
1 1 2 2

1 1ˆ ˆ ˆˆ ˆ ˆcos cos cos
inc refl transo inc o refl o transE z y E z y E z y

v v
θ θ θ

μ μ
× + − × = ×� � �  

= ( )( ) ( )
1 1 2 2

1 1ˆ ˆcos cos cos
inc refl transo inc o refl o transE E x E x

v v
θ θ θ

μ μ
− + = −� � �  

 
Thus we obtain:   

inc refl transo o oE E E+ =� � �  (from BC 2)) 

Using the Law of Reflection inc reflθ θ=  on the BC 3) result: 1

2

sin
sininc refl trans

trans
o o o

inc

vE E E
v

θ
θ

⎛ ⎞
+ = ⋅⎜ ⎟

⎝ ⎠
� � �    

 
Using Snell’s Law / Law of Refraction: 

 1 2sin sininc transn nθ θ=   ⇒  1 2sin sininc trans
n n
c c

θ θ=   ⇒   
1 2

1 1sin sininc transv v
θ θ=  

    or:     2 1sin sininc transv vθ θ=   or:       1

2

sin 1
sin

trans

inc

v
v

θ
θ

⎛ ⎞
⋅ =⎜ ⎟

⎝ ⎠
 

See/refer to 
above figure 
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∴ 1

2

sin
sininc refl trans trans

trans
o o o o

inc

vE E E E
v

θ
θ

⎛ ⎞
+ = ⋅ =⎜ ⎟

⎝ ⎠
� � � �   i.e. BC 3) gives the same info as BC 1) ! 

 

From the BC 4) result: ( ) 1 1

2 2

cos
cosinc refl trans

trans
o o o

inc

vE E E
v

θμ
μ θ

⎛ ⎞
− = ⋅⎜ ⎟

⎝ ⎠
� � �  

 
Thus, {again} from BC 1) → BC 4) we actually have only  two  independent relations for the 
case of transverse electric (TE) polarization: 
 

1)  
inc refl transo o oE E E+ =� � �  

2)  ( ) 1 1

2 2

cos
cosinc refl trans

trans
o o o

inc

vE E E
v

θμ
μ θ

⎛ ⎞
− = ⋅⎜ ⎟

⎝ ⎠
� � �  

 

Now: 1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 and we define:  

cos
cos

trans

inc

θα
θ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 {n.b. Both α and β > 0} 

 

Then eqn. 2) above becomes:   
inc refl transo o oE E Eαβ− =� � �  and eqn. 1) is:  

inc refl transo o oE E E+ =� � �  
 

Add eqn’s 1) + 2) to get: ( )2 1
inc transo oE Eαβ= +� �   ⇒   

2
1trans inco oE E

αβ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
� �   eqn. (1+2) 

 

Subtract eqn’s 2) − 1) to get: ( )2 1
refl transo oE Eαβ= −� �   ⇒   

1
2refl transo oE Eαβ−⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �   eqn. (2−1) 

 

Plug eqn. (2+1) into eqn. (2−1) to obtain: 
1 2 1

2 1 1refl inc inco o oE E Eαβ αβ
αβ αβ

⎛ ⎞ ⎛ ⎞− −⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠
� � �  

 

Thus: 
1
1refl inco oE Eαβ

αβ
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
� �  and 

2
1trans inco oE E

αβ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
� �  or: 

1
1

refl

inc

o

o

E

E
αβ
αβ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

�
�  and 

2
1

trans

inc

o

o

E
E αβ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

�
�  

 

n.b. since α and β > 0, then 2
1 αβ

⎛ ⎞
⎜ ⎟+⎝ ⎠

> 0 and hence the transmitted wave is always in-phase with 

the incident wave for TE polarization. 
 
The real / physical electric field amplitudes for transverse electric (TE) polarization are thus: 
 

The Fresnel Equations for E
G
&  to Interface 

= E ⊥
G

 Plane of Incidence = Transverse Electric  (TE) Polarization 
 

1
1refl inc

TE TE
o oE Eαβ

αβ
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 and 

2
1trans inc

TE TE
o oE E

αβ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
  with 

cos
cos

trans

inc

θα
θ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 and  1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
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     Now because the incident monochromatic plane EM wave strikes the interface (lying in the x-y 
plane) at an oblique angle incθ , the instantaneous power per unit area striking the interface is not  
 

         ( )
1

1
inc inc incS E B

μ
= ×

G G G
  but instead is actually:  ˆ cosinc inc incS z S θ=

G G
i   

 
Thus, the time-averaged incident intensity (aka irradiance) for an oblique angle of incidence is: 
 

( ) ( ) ( )ˆ cos cosinc inc inc inc inc incI S t z S t S tθ θ≡ = =
G G G

i  
 
Note also that because the incident EM wave is now propagating in a physical linear / 
homogeneous / isotropic medium that Poynting’s vector becomes: 
 

( ) ( ) ( ){ }2 2

1 1 1 1 1 1 1

1 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ
inc inc inc incinc inc inc o inc o o inc o incS E B E y k E y E y k y E k

v v vμ μ μ μ
⎛ ⎞⎧ ⎫

= × = × × = × × =⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

G G G
 

 

But: ( ){ } ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆinc inc incy k y k y y y y k× × = −i i( )
 0=

��	�

  and since:  2

1 1 11v ε μ=  

 

∴ 
( )

2
2 21 1

1 1 1 1 1

1 ˆ ˆ
inc incinc o inc o inc

vS E k E k
v v

ε
μ ε μ

= = =
G

1

1v
ε 2 2

1 1
ˆ ˆ

inc inco inc o incE k v E kε=   and ( ) ( )1, ,
2inc incS r t S r t=

G GG G
 

 
Thus, for TE polarization:  
 

     ( ) ( ) ( ) ( )2 2 2

1 1 1 1 1 1
1 1 1ˆˆ ˆ cos cos
2 2 2inc inc inc

TE TE TE TE TE
inc inc o inc o inc o incI S t z v E k z v E v Eε ε θ ε θ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G
i i  

 

Likewise, the reflected intensity is:    ( ) ˆTE TE
refl reflI S t z≡

G
i         refl incθ θ= by the Law of Reflection 

Thus, for TE polarization: ( ) ( ) ( )2 2

1 1 1 1
1 1ˆ  cos cos
2 2refl refl

TE TE TE TE
refl refl o refl o incI S t z v E v Eε θ ε θ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

G
i  

 

Likewise, the transmitted intensity is: ( ) ˆTE TE
trans transI S t z=

G
i   and using:  2

2 2 21v ε μ=  

Thus, for TE polarization: ( ) ( ) ( )2 2

2 2 2 2
1 1ˆ cos cos
2 2trans trans

TE TE TE TE
trans trans o trans o transI S t z v E v Eε θ ε θ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

G
i  

 
Thus the reflection and transmission coefficients for transverse electric (TE) polarization  
(with all E

G
-field vectors oriented ⊥ to the plane of incidence) are: 

 

( )
P

( )

2
2

1 1

2

1 1

1 cos
2
1 cos
2

refl

refl refl

inc
inc

TE TETE o inc orefl
TE TE TE

TEinc o
o inc

v E EI
R

I Ev E

θ

ε θ

ε θ

=

⎛ ⎞
⎜ ⎟≡ = =
⎜ ⎟
⎝ ⎠

( )
( )

2 2
2 2

2 2
2

1 1
1 1

1 cos cos2
1 coscos
2

trans
trans

inc
inc

TE TETE o trans otrans trans
TE TE TE

TEinc inc o
o inc

v E EI vT
I v Ev E

ε θ θε
ε θε θ

⎛ ⎞⎛ ⎞⎛ ⎞
≡ = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

ẑ = unit normal 
to the interface
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But: 1 1 2 2

2 2 1 1

v v
v v

μ εβ
μ ε

⎛ ⎞ ⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    and:   

cos
cos

trans

inc

θα
θ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
    ∴ 

2

trans

inc

TE
o

TE TE
o

E
T

E
αβ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

And from above (p. 8):  
1
1

refl

inc

TE
o

TE
o

E

E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 and  
2

1
trans

inc

TE
o
TE
o

E
E αβ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

 

Thus:  

2 2
1
1

refl

inc

TE
o

TE TE
o

E
R

E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟= = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 and: 
( )

2

2
4

1
trans

inc

TE
o

TE TE
o

E
T

E
αβαβ
αβ

⎛ ⎞
= =⎜ ⎟⎜ ⎟ +⎝ ⎠

 

 

Explicit Check:  Does 1TE TER T+ = ?  (i.e. is EM wave energy conserved?) 

( )
( ) ( ) ( ) ( )

( )
( )

2 22 2 2 2

2 2 2 2 2

1 14 1 2 4 1 2
1 1 1 1 1

αβ αβαβ αβ α β αβ αβ α β
αβ αβ αβ αβ αβ

− +− + + + +
+ = = =

+ + + + +
1=   Yes!!! 

 

Note that at normal incidence: 0incθ =   ⇒  0reflθ =  and 0transθ =   {See/refer to above figure} 

Then: 
cos cos 0 1
cos cos 0

trans

inc

θα
θ

⎛ ⎞
≡ = =⎜ ⎟

⎝ ⎠
 ⇒   1α =  

 

Thus at normal incidence:  
2

0
1
1incTER θ

β
β=

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

   and   
( )0 2

4
1incTET θ

β
β

= =
+

 

 

     Note that these results for 0incTER θ =  and 0incTET θ = are the same/identical to those we obtained 
previously for a monochromatic plane EM wave at normal incidence on interface!!! 
 

     In the special/limiting-case situation of normal incidence, where 0inc refl transθ θ θ= = = , the 
plane of incidence collapses into a line (the ẑ axis), the problem then has rotational invariance 
about the ẑ axis, and thus for normal incidence the polarization direction associated with the 
spatial orientation of incE

G
 no longer has any physical consequence(s). 

 
 
 
 
 
 
 
 
 
 
 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6.5        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

11

Case II): Electric Field Vectors Parallel to the Plane of Incidence:  
Transverse Magnetic (TM) Polarization 

 
     A monochromatic plane EM wave is incident {from the left} on a boundary located at z = 0 in 
the x-y plane between two linear / homogeneous / isotropic media at an oblique angle of 
incidence. The polarization of the incident EM wave (i.e. the orientation of incE

G
is now parallel  

(i.e. & ) to the plane of incidence {= the x-z plane containing the three wavevectors , , inc refl transk k k
G G G

 
and the unit normal to the boundary/interface, ˆ ˆn z= + }), as shown in the figure below: 
 

 
 
     In this situation, all three E

G
-field vectors lie in the plane of incidence.  

 

     Since the three B
G

-field vectors are related to their respective E
G

-field vectors by the right-
hand rule cross-product relation 1 ˆ

vB k E= ×
G G

 then we see that all three B
G

-field vectors are ŷ&   
{i.e. either point out of or into the page} and thus are ⊥ to the plane of incidence {hence the 
origin of the name transverse magnetic polarization}; note that all three B

G
-field vectors are also 

&  to the boundary/interface at z = 0, which lies in the x-y plane as shown in the figure above. 
 

The four boundary conditions on the {complex} E
G

- and B
G

-fields on the boundary at z = 0 are: 
 

BC 1) Normal  (i.e. z-) component of D
G

 continuous at z = 0 (no free surface charges) 
 

 ( )1 2inc refl transz z zo o oE E Eε ε+ =� � �  

( ) ( )1 2sin sin sin
inc refl transo inc o refl o transE E Eε θ θ ε θ− + = −� � �   {n.b. see/refer to above figure} 

 

BC 2)  Tangential (i.e. x-, y-) components of E
G

 continuous at z = 0: 
 

( )inc refl transx x xo o oE E E+ =� � �  

( )cos cos cos
inc refl transo inc o refl o transE E Eθ θ θ+ =� � �    {n.b. see/refer to above figure} 
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BC 3)  Normal (i.e. z-) component of B
G

 continuous at z = 0: 
 

0

inczoB
=
�

0

reflzoB
=

+ �
0

transzoB
=⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

�   ⇒   0 0 0+ =     {n.b. see/refer to above figure} 

 

BC 4)  Tangential (i.e. x-, y-) components of H
G

 continuous at z = 0 (no free surface currents): 
 

( ) ( )
1 2

1 1
inc refl transy y yo o oB B B

μ μ
+ =� � �       {n.b. All ' 0s

xB = for TM Polarization} 

 

   ∴ ( ) ( )
1 2

1 1ˆ ˆ ˆ
inc refl transy y yo o oB y B y B y

μ μ
+ =� � �   n.b. Can use full cross-product(s) 1 ˆ

vB k E= ×
G G
� �  here! 

= ( ) ( )
1 1 2 2

1 1ˆ ˆ ˆ
inc refl transinc o refl o trans ok E k E k E

v vμ μ
× + × = ×
G G G
� � �    

= ( ) ( )
1 1 2 2

1 1ˆ ˆ ˆ
inc refl transo o oE y E y E y

v vμ μ
− =� � �            {n.b. see/refer to above figure} 

 

   ∴ ( ) ( )
1 2

1 1
inc refl transy y yo o oB B B

μ μ
+ =� � �    ⇒   ( )

1 1 2 2

1 1
inc refl transo o oE E E

v vμ μ
− =� � �  

 

From BC 1) at z = 0:  ( ) ( )1 2sin sin sin
inc refl transo inc o refl o transE E Eε θ θ ε θ− =� � �  

  But: inc reflθ θ=  (Law of Reflection)  and: 1
1

cn
v

= ,  2
2

cn
v

=  

  And: 1 1 2 2sin sinn nθ θ=  ⇒ ( )2 1 2

1 2 1

sinsin Snell's Law
sin sin

trans

inc

n v
n v

θθ
θ θ

= = =  

      ∴ 2 1 2 2

1 2 1 1

 
inc refl trans trans transo o o o o

n vE E E E E
n v

ε ε β
ε ε

⎛ ⎞ ⎛ ⎞
− = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� � � � �  

From BC 4) at z = 0:  1 1

2 2
inc refl trans transo o o o

vE E E E
v

μ β
μ

⎛ ⎞
− = =⎜ ⎟

⎝ ⎠
� � � �  where:  1 1 2 2

2 2 1 1

v v
v v

μ εβ
μ ε

⎛ ⎞ ⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

From BC 2) at z = 0:  ( )cos cos cos
inc refl transo inc o refl o transE E Eθ θ θ+ =� � �   but: 

cos
cos

trans

inc

θα
θ

≡  

       ∴ ( ) cos
cosinc refl trans trans

trans
o o o o

inc

E E E Eθ α
θ

⎛ ⎞
+ = =⎜ ⎟

⎝ ⎠
� � � �  

 
Thus for the case of transverse magnetic (TM) polarization: 
 

   
inc refl transo o oE E Eβ− =� � �   and  

inc refl transo o oE E Eα+ =� � �   with 1 1 2 2

2 2 1 1

v v
v v

μ εβ
μ ε

⎛ ⎞ ⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and 

cos
cos

trans

inc

θα
θ

≡  

   

Use right-hand rule for 
all cross-products 

Redundant 
info – both 
BC’s give 

same 
relation 
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Solving these two above equations simultaneously, we obtain: 
 

( )2
inc transo oE Eα β= +� �   ⇒   

2
trans inco oE E

α β
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
� �  

  and: ( )2
refl transo oE Eα β= −� �   ⇒   

2refl transo oE Eα β−⎛ ⎞= ⎜ ⎟
⎝ ⎠

� �  

⇒    
refl inco oE Eα β

α β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
� �  

 
The real / physical electric field amplitudes for transverse magnetic (TM) polarization are thus: 
 

The Fresnel Equations for B
G
&  to Interface 

= B ⊥
G

 Plane of Incidence = Transverse Magnetic  (TM) Polarization 
 

      
refl inc

TM TM
o oE Eα β

α β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 and 

2
trans inc

TM TM
o oE E

α β
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 with 

cos
cos

trans

inc

θα
θ

≡  and 1 1 2 2

2 2 1 1

v v
v v

μ εβ
μ ε

⎛ ⎞ ⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

Or: refl

inc

TM
o

TM
o

E

E
α β
α β

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

   and  
2trans

inc

TM
o
TM
o

E
E α β

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

 
Note that the Fresnel relations for TM polarization are not identical to Fresnel relations for TE 
polarization: 
 

1
1refl inc

TE TE
o oE Eαβ

αβ
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 and 

2
1trans inc

TE TE
o oE E

αβ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
  with 

cos
cos

trans

inc

θα
θ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 and  1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 

 

Or:  
1
1

refl

inc

TE
o

TE
o

E

E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

  and: 
2

1
trans

inc

TE
o
TE
o

E
E αβ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

 
We define the incident, reflected & transmitted intensities at oblique incidence for the TM case 
as we did for the TE case: 
 

( ) ( ) ( )2 2

1 1 1 1 1
1 1ˆ cos cos
2 2inc inc

TM TM TM TM
inc inc o inc o incI v S t z v E v Eε θ ε θ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

G
i  

( ) ( ) ( )2 2

1 1 1 1 1
1 1ˆ cos cos
2 2refl refl

TM TM TM TM
refl refl o refl o incI v S t z v E v Eε θ ε θ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

G
i  

( ) ( ) ( )2 2

2 2 2 2 2
1 1ˆ cos cos
2 2trans trans

TM TM TM TM
trans trans o trans o transI v S t z v E v Eε θ ε θ⎛ ⎞= = =⎜ ⎟

⎝ ⎠

G
i  
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Thus, the reflection and transmission coefficients for transverse magnetic (TM) polarization  
(with all B

G
-field vectors oriented ⊥ to the plane of incidence) are: 

 
2 2

refl

inc

TMTM
orefl

TM TM TM
inc o

EI
R

I E
α β
α β

⎛ ⎞ ⎛ ⎞−
⎜ ⎟≡ = = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ ( )

2 2

2 2
2

1 1

cos 4
cos

trans trans

inc inc

TM TMTM
o otrans trans

TM TM TM TM
inc inc o o

E EI vT
I v E E

θε αβαβ
ε θ α β

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
≡ = = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 

i.e.     

2 2
refl

inc

TM
o

TM TM
o

E
R

E
α β
α β

⎛ ⎞ ⎛ ⎞−
⎜ ⎟= = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

     and:     
( )

2

2
4trans

inc

TM
o

TM TM
o

E
T

E
αβαβ

α β

⎛ ⎞
= =⎜ ⎟⎜ ⎟ +⎝ ⎠

 

 
Again, note that the reflection and transmission coefficients for transverse magnetic (TM) 
polarization are not identical/the same as those for the transverse electric case: 
 

          

2 2
1
1

refl

inc

TE
o

TE TE
o

E
R

E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟= = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 and: 
( )

2

2
4

1
trans

inc

TE
o

TE TE
o

E
T

E
αβαβ
αβ

⎛ ⎞
= =⎜ ⎟⎜ ⎟ +⎝ ⎠

 

 
Explicit Check:   Does RTM + TTM = 1?  (i.e. is EM wave energy conserved?) 
 

( ) ( ) ( )
( )
( )

2 22 2 2 2

2 2 2 2
4 2 4 2 1TM TMR T

α βα β αβ α αβ β αβ α αβ β
α β α β α β α β α β

+⎛ ⎞− − + + + +
+ = + = = = =⎜ ⎟+ + + + +⎝ ⎠

 Yes !!! 

 

Note again at normal incidence: 0incθ =   ⇒  0reflθ =  and 0transθ =   {See/refer to above figure} 

Then: 
cos cos 0 1
cos cos 0

trans

inc

θα
θ

⎛ ⎞
≡ = =⎜ ⎟

⎝ ⎠
 ⇒   1α =  

 

Thus at normal incidence:  
2

0
1
1incTMR θ

β
β=

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

   and   
( )0 2

4
1incTMT θ

β
β

= =
+

 

 

These are identical to those for the TE case at normal incidence, as expected − due to rotational 
invariance / symmetry about the ẑ  axis: 
 

        At normal incidence:  
2

0
1
1incTER θ

β
β=

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

   and   
( )0 2

4
1incTET θ

β
β

= =
+
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The Fresnel Equations 
 

TE Polarization   TM Polarization 

1
1

refl

inc

TE
o
TE
o

E

E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

   refl

inc

TM
o
TM
o

E

E
α β
α β

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

( )
2

1
trans

inc

TE
o
TE
o

E
E αβ

⎛ ⎞
=⎜ ⎟⎜ ⎟ +⎝ ⎠

   ( )
2trans

inc

TM
o
TM
o

E
E α β

⎛ ⎞
=⎜ ⎟⎜ ⎟ +⎝ ⎠

 

    
cos
cos

trans

inc

θα
θ

≡    1
1 1 1

1cv n ε μ
= =  

    1 1 2 2 1 2 2 1

2 2 1 1 2 1 1 2

v v n n
v v n n

μ ε μ εβ
μ ε μ ε

≡ = = =   2
2 2 2

1cv n ε μ
= =   

 
Reflection and Transmission Coefficients R & T 

R + T = 1 
 

TE Polarization    TM Polarization 
2 2

1
1

refl

inc

TETE
orefl

TE TE TE
inc o

EI
R

I E
αβ
αβ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟≡ = = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

  

2 2
refl

inc

TMTM
orefl

TM TM TM
inc o

EI
R

I E
α β
α β

⎛ ⎞ ⎛ ⎞−
⎜ ⎟≡ = = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

( )

2

2
4

1
trans

inc

TETE
otrans

TE TE TE
inc o

EIT
I E

αβαβ
αβ

⎛ ⎞⎛ ⎞
≡ = =⎜ ⎟⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

 
( )

2

2
4trans

inc

TMTM
otrans

TM TM TM
inc o

EIT
I E

αβαβ
α β

⎛ ⎞⎛ ⎞
≡ = =⎜ ⎟⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

 

cos
cos

trans

inc

θα
θ

≡     1
1 1 1

1cv n ε μ
= =  

1 1 2 2 1 2 2 1

2 2 1 1 2 1 1 2

v v n n
v v n n

μ ε μ εβ
μ ε μ ε

≡ = = =   2
2 2 2

1cv n ε μ
= =   

 

     Note that since ( )
1,2 1,2

2
1,2oE n t Eγ γ ε= , the reflection coefficient/reflectance R can thus be 

seen as the statistical/ensemble average probability that at the microscopic scale, individual 

photons will be reflected at the interface: ( ) ( ) ( )
2

refl inc refl inco o reflR E E n t n t Pγ γ= = = ,  

and since 1R T+ =  then 1 1 refl transT R P P= − = − = , since we must have 1refl transP P+ =  !!! 
 
     Now we want to explore / investigate the physics associated with the Fresnel Equations and 
the reflection and transmission coefficients – comparing results for TE vs. TM polarization for 
the cases of external reflection (n1 < n2) and internal reflection n1 > n2) 
 

     Just as β  can be written several different but equivalent ways (see above), so can the Fresnel 
Equations, as well as the expressions for R & T using various relations including Snell’s Law.   
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Starting with the Fresnel Relations as given above, explicitly writing these out alternate versions: 
 

Fresnel Equations 
 

TE Polarization     TM Polarization 
 

1 2

1 2

1 2

1 2

cos cos

cos cos

refl

inc

TE inc trans
o

TE
o

inc trans

n n
E

E n n

θ θ
μ μ

θ θ
μ μ

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

2 1

2 1

2 1

2 1

cos cos

cos cos

refl

inc

TM inc trans
o

TM
o

inc trans

n n
E

E n n

θ θ
μ μ

θ θ
μ μ

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1

1

1 2

1 2

2 cos

cos cos

trans

inc

TE inc
o
TE
o

inc trans

n
E
E n n

θ
μ

θ θ
μ μ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠=⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  

1

1

2 1

2 1

2 cos

cos cos

trans

inc

TM inc
o
TM
o

inc trans

n
E
E n n

θ
μ

θ θ
μ μ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠=⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 
If we now neglect / ignore the magnetic properties of the two media – e.g. if paramagnetic / 
diamagnetic such that 1mχ �  then 1 2 oμ μ μ� �   the Fresnel Relations then become: 
 

TE Polarization     TM Polarization 
 

1 2

1 2

cos cos
cos cos

refl

inc

TE
o inc trans
TE
o inc trans

E n n
E n n

θ θ
θ θ

⎛ ⎞ −
⎜ ⎟
⎜ ⎟ +⎝ ⎠

�    2 1

2 1

cos cos
cos cos

refl

inc

TM
o inc trans
TM
o inc trans

E n n
E n n

θ θ
θ θ

⎛ ⎞ − +
⎜ ⎟
⎜ ⎟ +⎝ ⎠

�  

1

1 2

2 cos
cos cos

trans

inc

TE
o inc
TE
o inc trans

E n
E n n

θ
θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟ +⎝ ⎠

�    1

2 1

2 cos
cos cos

trans

inc

TM
o inc
TM
o inc trans

E n
E n n

θ
θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟ +⎝ ⎠

�  

 
Using Snell’s Law  1 1 2 2sin sinn nθ θ=   ⇒  sin sininc inc trans transn nθ θ=  and various trigonometric 
identities, the above relations can also equivalently be written as: 
 

TE Polarization     TM Polarization 
 

( )
( )

sin
sin

refl

inc

TE
o inc trans
TE
o inc trans

E

E
θ θ
θ θ

⎛ ⎞ −
⎜ ⎟ −
⎜ ⎟ +⎝ ⎠

�     
( )
( )

tan
tan

refl

inc

TM
o inc trans
TM
o inc trans

E

E
θ θ
θ θ

⎛ ⎞ −
⎜ ⎟ −
⎜ ⎟ +⎝ ⎠

�  

( )
2cos sin
sin

trans

inc

TE
o inc trans
TE
o inc trans

E
E

θ θ
θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟ +⎝ ⎠

i�     ( ) ( )
2cos sin

sin cos
trans

trans

TM
o inc trans
TM
o inc trans inc trans

E
E

θ θ
θ θ θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟ + −⎝ ⎠

i�  

 

n.b. the signs correlate to the TE & TM E
G

-field vectors as shown in the above figures!   
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We now use Snell’s Law sin sininc inc trans transn nθ θ=  to eliminate transθ : 
 

TE Polarization     TM Polarization 
 

2
22

1

2
22

1

cos sin

cos sin

refl

inc

TE inc inc
o

TE
o

inc inc

n
E n
E n

n

θ θ

θ θ

⎛ ⎞
− −⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

⎜ ⎟ ⎛ ⎞⎝ ⎠
+ −⎜ ⎟

⎝ ⎠

�  

2 2
22 2

1 1

2 2
22 2

1 1

cos sin

cos sin

refl

inc

TM inc inc
o

TM
o

inc inc

n n
E n n
E n n

n n

θ θ

θ θ

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

�  

2
22

1

2cos

cos sin

trans

inc

TE
o inc
TE
o

inc inc

E
E n

n

θ

θ θ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠ ⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

�  

2

1

2 2
22 2

1 1

2 cos

cos sin

trans

inc

TM inc
o
TM
o

inc inc

n
E n
E n n

n n

θ

θ θ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠ ⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

�  

 

The variation of refl

inc

o

o

E

E
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 , trans

inc

o

o

E
E

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 and the reflection coefficient (aka the reflectance) 
2

refl

inc

o

o

E
R

E
⎛ ⎞

≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

and transmission coefficient (aka the transmittance) 
( )

2 22 2
2 1 sin

cos
trans trans

inc inc

inco o

o inc o

n nE E
T

E E
θ

αβ
θ

⎛ ⎞ ⎛ ⎞−
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

as a function of the angle of incidence incθ  for external reflection (n1 < n2) and internal reflection  
(n1 > n2) for TE & TM polarization are shown in the figures below: 
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External Reflection (n1 = 1.0 < n2 = 1.5): 
 

 
 

Internal Reflection (n1 = 1.5 > n2 = 1.0): 
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Comment 1): 
     When ( ) 0refl incE E < , 

refloE  is 180o out-of-phase with 
incoE since the numerators of the 

original Fresnel Equations for TE & TM polarization are ( )1 αβ−  and ( )α β− respectively. 
 
Comment 2): 
     For TM Polarization (only), there exists an angle of incidence where ( ) 0refl incE E = ,  
i.e. no reflected wave occurs at this angle for TM polarization! This angle is known as Brewster’s 
angle Bθ (also known as the polarizing angle Pθ - because an incident wave which is a linear 
combination of TE and TM polarizations will have a reflected wave which is 100% pure-TE 
polarized for an incidence angle inc B Pθ θ θ= = !!).  * n.b. Brewster’s angle Bθ exists for both 
external (n1 < n2) & internal reflection (n1 > n2) for TM polarization (only). * 
 
Brewster’s Angle Bθ  / the Polarizing Angle θΡ  for Transverse Magnetic (TM) Polarization 

From the numerator of ( )refl inc

TM TM
o oE E α β

α β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 of the originally-derived expression for TM 

polarization, when this ratio = 0 at Brewster’s angle Bθ  = polarizing angle θΡ , we see that this 
occurs when ( ) 0α β− = , i.e. when α β= . 
 

But:    
cos
cos

trans

inc

θα
θ

≡  and   1 2 2

2 1 1

n n
n n

μβ
μ

≡ �     for   1 2 oμ μ μ� �  

 

Now: 2cos 1 sintrans transθ θ= −   and Snell’s Law: 1 2sin sininc transn nθ θ=  ⇒  1

2

sin sintrans inc
n
n

θ θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

∴ at Brewster’s angle inc Bθ θ=  = polarizing angle θΡ where α β= , this relation becomes: 

1 2 2

2 1 1

cos
cos

trans

inc

n n
n n

θ μα β
θ μ

≡ = ≡ �    for   1 2 oμ μ μ� �   ⇒   

2
21

2 2

1

1 sin

cos

inc

inc

n
n n

n

θ
α β

θ

⎛ ⎞
− ⎜ ⎟

⎛ ⎞⎝ ⎠= =⎜ ⎟
⎝ ⎠
�  

 

or: ( )2 2 2 2 2
2

11 sin cos 1 sininc inc incθ β θ β θ
β

− = = −  ← Solve for 2sin incθ  

2 2 2
2

11 sin incβ β θ
β

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
  ⇒   

( )
( )

2 22
2

42
2

11sin 1 1inc

β ββθ
βββ

−−
= =

−−
 

But: ( )( )4 2 21 1 1β β β− = − +  

  ∴  
( )

( )( )
2 2 2

2
22 2

1
sin

11 1inc

β β βθ
ββ β

−
= =

+− +
  ⇒   

2
sin

1
inc

βθ
β

=
+
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Geometrically: 
2

sin
1

inc
βθ

β
=

+
  = 

opp. side
hypotenuse

        21 β+  

 
2

1cos
1

incθ
β

=
+

 = 
adjacent

hypotenuse
            θinc = θB   β 

 tan incθ β=          = 
opp. side
adjacent

  2

1

n
n

⎛ ⎞
⎜ ⎟
⎝ ⎠
�      1 

Thus, at an angle of incidence inc inc
inc B Pθ θ θ= ≡  = Brewster’s angle / the polarizing angle for a 

TM polarized incident wave, where no reflected wave exists, we have: 
 

2

1

tan taninc inc
B P

n
n

θ θ
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠
�   for  1 2 oμ μ μ� �  

From Snell’s Law: 1 2sin sininc transn nθ θ=  we also see that: 2

1

sintan
cos

inc
inc B
B inc

B

n
n

θθ
θ

= �    

or:  1 2sin cosinc inc
B Bn nθ θ�   for  1 2 oμ μ μ� � . 

 

Thus, from Snell’s Law we see that:  cos sininc
B transθ θ=  when inc inc

inc B Pθ θ θ= ≡ .  
 
So what’s so interesting about this??? 
 

Well: ( ) ( ) ( )
0

2 2 2cos sin sin cos cosinc inc inc
B B B

π π πθ θ θ
=

= − = − sin sininc
B transθ θ=   i.e.  sin sin

2
inc
B trans

π θ θ⎛ ⎞− =⎜ ⎟
⎝ ⎠

 

 

∴ When inc inc
inc B Pθ θ θ= ≡  for an incident TM-polarized EM wave, we see that 2 inc

trans Bθ π θ= −  
Thus: 2inc

B transθ θ π+ = ,  i.e.  and inc inc
B transθ θ θΡ≡  are complimentary angles !!! 

 

TM Polarized EM Wave Incident at Brewster’s Angle inc
Bθ : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6.5        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

21

     Thus, e.g. if an unpolarized EM wave (i.e. one which contains all polarizations/random 
polarizations) or an EM wave which is a linear combination of TE and TM polarization is 
incident on the interface between two linear/homogeneous/isotropic media at Brewster’s angle 

inc inc
Bθ θΡ≡ , the reflected beam will be 100% pure TE polarization!!  Hence this is why Brewster’s 

angle βθ  is also known as the polarizing angle Pθ . 
 
Comment 3):  
 

     For internal reflection (n1 > n2) there exists a critical angle of incidence inc
criticalθ  past which no 

transmitted beam exists for either TE or TM polarization.  The critical angle does not depend on 
polarization – it is actually dictated / defined by Snell’s Law: 
 

max
1 2 2 2sin sin sin

2
inc
critical transn n n nπθ θ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
  or:  2

1

sin inc
critical

n
n

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  or:  1 2

1

sininc
critical

n
n

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
 

For inc
inc criticalθ θ≥ , no transmitted beam exists → incident beam is totally internally reflected. 

For inc
inc criticalθ θ> , the transmitted wave is actually exponentially damped – becomes a so-called: 

 

Evanescent Wave: ( ) N
1

2
2

sin

,
inc

trans

ni k x t
nz

trans oE r t E e e
θ ω

α

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠=

G GG� � ���	��
  
2

21
2

2

sin 1inc
nk
n

α θ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

Exp. damping in z Oscillatory along interface in x-direction 
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For Total Internal Reflection inc
inc criticalθ θ≥ : 

 

 
 
Experimental demonstration that transmitted EM wave for inc

inc criticalθ θ≥  is exponentially damped 
⇒  Microscopically, this is an example of quantum mechanical barrier penetration / quantum 
mechanical tunneling phenomenon (using real photons)!!! 
 
Use two 45o prisms – (e.g. glass {for light}, or paraffin {for microwaves} ) 
 

     UIUC Physics 401 experiment !!! 

 
Phase shifts occur in reflected wave when inc

inc criticalθ θ≥  for total internal reflection (n1 > n2). 
Using the (last) version of Fresnel Equations (p. 17 of these lecture notes): 
 

TE Polarization    TM Polarization 
 

2
22

1

2
22

1

cos sin

cos sin

refl

inc

TE inc inc
o

TE
o

inc inc

n
E n
E n

n

θ θ

θ θ

⎛ ⎞
− −⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞⎝ ⎠
+ −⎜ ⎟

⎝ ⎠

 

2 2
22 2

1 1

2 2
22 2

1 1

cos sin

cos sin

refl

inc

TM inc inc
o

TM
o

inc inc

n n
E n n
E n n

n n

θ θ

θ θ

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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When inc
inc criticalθ θ≥ , Snell’s Law is: ( )2 1sin inc

critical n nθ =    {since sin sin 90 1o
transθ = = } 

 
The above ratios of E-field amplitudes become complex for internal reflection, because for  

( )2 1 1n n <  when ( )2
2 1sin 1inc n nθ > < , then ( )2 2

2 1 sin incn n θ−  becomes imaginary. 
 

Thus for ( )1
2 1sininc

inc critical n nθ θ −≥ =  for n1 > n2 (internal reflection), we can re-write the above  

E
G

-field ratios as: 
 

TE Polarization    TM Polarization 
 

2
2 2

1

2
2 2

1

cos sin

cos sin

refl

inc

TE inc inc
o

TE
o

inc inc

ni
E n
E ni

n

θ θ

θ θ

⎛ ⎞
− − ⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞⎝ ⎠
+ − ⎜ ⎟

⎝ ⎠

 

2 2
22 2

1 1

2 2
22 2

1 1

cos sin

cos sin

refl

inc

TM inc inc
o

TM
o

inc inc

n ni
E n n
E n ni

n n

θ θ

θ θ

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟ =

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 
It is easy to verify that these ratios lie on the unit circle in the complex plane – simply multiply 
them by their complex conjugates to show 1AA∗ = , as they must for total internal reflection. 
 
     These formulae imply a phase change of the reflected wave (relative to incident wave) that 
depends on the angle of incidence ( )1

2 1sininc
inc critical n nθ θ −≥ =  for total internal reflection. 

 

We set:  refl

inc

i
o i

i
o

E aee
E ae

α
δ

α

−
−

+

⎛ ⎞
⎜ ⎟− = =
⎜ ⎟
⎝ ⎠

 ⇒   2δ α=   and  ( ) ( )tan 2 tanδ α=  

 
Where δ = phase change (in radians) of the reflected wave relative to the incident wave. 
 
Thus we see that (from the numerators of the above formulae) that: 
 

2
2 2

1

sin
tan

2 cos

inc
TE

inc

n
n

θ
δ

θ

⎛ ⎞
− ⎜ ⎟

⎛ ⎞ ⎝ ⎠=⎜ ⎟
⎝ ⎠

      and:     

2
2 2

1
2

2

1

sin
tan

2
cos

inc
TM

inc

n
n

n
n

θ
δ

θ

⎛ ⎞
− ⎜ ⎟

⎛ ⎞ ⎝ ⎠=⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 

Then the relative phase difference  TM TEδ δΔ ≡ −  between total internally-reflected TM vs. TE 
polarized waves can also be calculated: 
 

( )22
2 1

2

cos sin
tan tan

2 2 sin
inc incTM TE

inc

n nθ θδ δ
θ

−−Δ ⎛ ⎞⎛ ⎞ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
     Phase shifts of the reflected wave relative to the incident wave for external, internal reflection 
and for TE, TM polarization are shown in the following graphs: 
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Phase Shifts Upon Reflection: 
 

External Reflection (n1 = 1.0 < n2 = 1.5): Internal Reflection (n1 = 1.5 > n2 = 1.0): 
 

 

 

 
 
 

Note that a phase shift of −180o is equivalent to a phase shift of +180o. 
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An Example of the {Clever} Use of Internal Reflection Phase Shifts - The Fresnel Rhomb: 
 
     From last graph of the internal reflection phase shifts (above), we see that the relative 
difference in TM vs. TE phase shifts for total internal reflection at a glass-air interface  
(n1 = 1.5 {glass}, n2 = 1.0 {air}) is 4 45o

TM TEδ δ πΔ ≡ − = =  when 54.6o
incθ =  

 
     Fresnel used this TM vs. TE relative phase-shift fact associated with total internal reflection 
and developed / designed a glass rhomb-shaped prism that converted linearly polarized light to 
circularly polarized light, as shown in the figure below. 
 
     He used light incident on the glass rhomb-shaped prism with polarization angle at 45o with 
respect to face-edge of the glass rhomb (thus the incident light was a 50-50 mix of TE and TM 
polarization).  Note that the transmitted wave actually undergoes two total internal reflections 
before emerging from rhomb at the exit face, with a −45o relative phase TM-TE phase shift 
occurring at each total internal reflection.  Thus, the first total internal reflection converts a 
linearly polarized wave into an elliptically polarized wave, the second total internal reflection 
converts the elliptically polarized wave into a circularly polarized wave!!! 
 

The total phase shift (for 2 internal reflections):  ( )2 2 2 90o
tot TM TEδ δ πΔ = Δ = − = =  

(for rhomb apex angle θA = 54.6o,  nair = 1.0 and nglass = 1.5) 
 

 
NOTE:  By time-reversal invariance of the EM interaction, we can also can see from the above 
that Fresnel’s rhomb can also be used to convert circularly-polarized incident light into linearly 
polarized light!!! 
 
Thus, the Fresnel relations for TE / TM polarization for internal / external reflection are valid / 
useful for any type of EM wave – linear, elliptic or circular polarization. 
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The general case is an EM wave which is a linear combination (of some kind, depending on 
nature and type of EM wave polarization state) of TE and TM polarization… more complicated! 
 
Finally, again for the special / limiting case of normal incidence (where the plane of incidence 
collapses) the reflectance / reflection coefficient for both TE and TM polarization at 0incθ = . 
 

     { }1

2

22

2
2

1.0 (air)1 1 2
1.5 (glass)

1 22

1

1
4%  for

1

n
n

n
n n nR

n nn
n

=
=

⎛ ⎞⎛ ⎞
⎜ ⎟− ⎜ ⎟ ⎛ ⎞−⎜ ⎟⎝ ⎠= = ≈⎜ ⎟⎜ ⎟ +⎛ ⎞ ⎝ ⎠⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
 
 
 
 
 
 

Can There be a Brewster’s Angle inc
Bθ  for Transverse Electric (TE) Polarization  

Reflection / Refraction at an Interface? 
 

The Fresnel Equations: 
 

TE Polarization   TM Polarization 
 

1
1

refl

inc

TE
o

TE
o

E
r

E
αβ
αβ⊥

⎛ ⎞ ⎛ ⎞−
⎜ ⎟≡ = ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

       0

0

refl

inc

TE

TEr α β
α β

⎛ ⎞Ε ⎛ ⎞−
⎜ ⎟≡ = ⎜ ⎟⎜ ⎟Ε +⎝ ⎠⎝ ⎠

&  

with: 
cos
cos

trans

inc

θ
α

θ
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

  and:  1 1 2 2 1 2 2 1

2 2 1 1 2 1 1 2

v v n n
v v n n

μ ε μ εβ
μ ε μ ε

≡ = = =  

1
1 1 1

1cv n ε μ
= =  2

2 2 2

1cv n ε μ
= =    1 1

1
0 0

n ε μ
ε μ=    2 2

2
0 0

n ε μ
ε μ=  

 

     We saw P436 lecture notes above (p. 19-21) that for TM polarized EM Waves (where B ⊥
G

 
plane of incidence {i.e. B

G
&  to plane of the interface}, with unit normal to the plane of incidence 

defined as ˆ ˆˆinc inc refln k k≡ ×  )  that when inc
inc Bθ θ= = Brewster’s angle (a.k.a. = inc

Pθ = Polarizing 

angle), that 0
refl

TM
oE =  because the numerator of ,r& , ( ) 0α β− =  i.e. α β=  when inc inc

inc B Pθ θ θ= =  
Thus, for a incident TM polarized monochromatic plane EM wave, when: 
 

 inc
inc Bθ θ

α β
=

=   ⇒   1 1 2 2 1 2 2 1

2 2 1 1 2 1 1 2

cos
cos

TM
trans
TM
inc TM

v v n n
v v n n

θ μ ε μ ε β
θ μ ε μ ε

⎛ ⎞
= = = = =⎜ ⎟

⎝ ⎠
 

or:  1 2 1 2 2 2 1 2 1 1 2 1

2 1 2 1 1 1 2 1 2 2 1 2

n n
n n

μ μ ε μ ε μ ε ε μ εβ
μ μ ε μ ε μ ε ε μ ε

= = = = =  
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For non-magnetic media:    1mχ �     i.e.  1 2 0μ μ μ� �     then:  2 2

1 1

cos
cos

TM
trans
TM
inc

n
n

θ ε
θ ε

⎛ ⎞
=⎜ ⎟

⎝ ⎠
�     

 

We also derived the Brewster angle relation for TM polarization:  2

1

tan taninc inc
B P

n
n

θ θ≡ �   

 

For the case of  TE polarization, we see that: 0
refl

TE
oE =  when the numerator of ,r⊥  ( )1 0αβ− =  

i.e.  when: 1αβ =  or: 1β α= .  What does this mean physically?? 
 

For TE Polarization:  1β α=   ⇒   2 1

1 2

coscos1
cos cos

inctrans

inc trans

θε μ θ
θε μ θ

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

For non-magnetic media where:  1mχ �    i.e.  1 2 oμ μ μ� �    then:  2 2

1 1

cos
cos

trans

inc

n
n

θ ε
θ ε

⎛ ⎞
=⎜ ⎟

⎝ ⎠
�     

Thus:  
2 2 2 2

2
2 2 2

1

cos cos 1 sin
cos 1 sin 1 sin

inc inc inc

trans trans trans

n
n

θ θ θ
θ θ θ

⎛ ⎞ −
= = =⎜ ⎟ − −⎝ ⎠

 

 

From Snell’s Law:  1 1 2 2sin sinn nθ θ=           or:   1 2sin sininc transn nθ θ=  

1

2

sin sintrans inc
n
n

θ θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

    or:   
2

2 21

2

sin sintrans inc
n
n

θ θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 

Then:  
( )2 2

2
2

1 21

2

1 sin

1 sin

inc

inc

n
n n

n

θ

θ

−⎛ ⎞
=⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎛ ⎞

⎜ ⎟− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    or:     
2

22

1

sin inc
n
n

θ
⎛ ⎞

−⎜ ⎟
⎝ ⎠

21 sin incθ= −  

  ⇒      
2

2

1

1n
n

⎛ ⎞
=⎜ ⎟

⎝ ⎠
  or: 1 2n n=  ⇒  can get inc inc

B Pθ θ=  for TE Polarization only when 1 2n n=  

 

  i.e.  no interface boundary, for non-magnetic material(s), where 1mχ �  and 1 2 0μ μ μ� � . 
 
Is there a possibility of a Brewster’s angle for incident TE polarization for magnetic materials??? 
 

For incident TE polarization, we still need to satisfy the condition 1β α= . 
 

i.e. 2 1

1 2

cos
cos

B
inc

trans

θε μ
ε μ θ

=   or:  
2 2 2

2 1
2 2

21 2 1

2

cos 1 sin 1 sin
cos 1 sin

1 sin

B B B
inc inc trans

Btrans trans
inc

n
n

θ θ θε μ
ε μ θ θ

θ

⎛ ⎞ − −
= = =⎜ ⎟ − ⎛ ⎞⎝ ⎠ − ⎜ ⎟

⎝ ⎠

 

 

but: 
2

1 1 1

2 2 2

n
n

ε μ
ε μ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  thus:  

2
2 1

21 2 1 1

2 2

1 sin

1 sin

B
inc

B
inc

θε μ
ε μ ε μ θ

ε μ

⎛ ⎞ −
=⎜ ⎟ ⎛ ⎞⎝ ⎠ − ⎜ ⎟

⎝ ⎠
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     thus:  22 1

1 2

εε μ
ε μ

⎛ ⎞
−⎜ ⎟

⎝ ⎠

1

1

μ
ε

1

2

ε
μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

1

2

μ
ε

2 2

2

sin 1 sinB B
inc incθ θ

μ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

   ( )
2

2 22 1 1

1 2 2

sin 1 sinB B
inc inc

ε μ μ θ θ
ε μ μ

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  multiply both sides of this eqn. by 2

1

μ
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   2 22 1 2 2

1 2 1 1

sin sinB B
inc inc

ε μ μ μθ θ
ε μ μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

   22 2 1 2

1 1 2 1

sin B
inc

ε μ μ μ θ
ε μ μ μ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
   0B o

incθ =  90B o
incθ =  

⇒   

2 2

1 12

1 2

2 1

sin B
inc

ε μ
ε μ

θ
μ μ
μ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞
−⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞

−⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

   Note: 20 sin 1B
incθ≤ ≤  

 

Define:       

2 2

1 1

1 2

2 1

sin B
inc A

ε μ
ε μ

θ
μ μ
μ μ

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= ≡
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 i.e.   

2 2

1 1

1 2

2 1

A

ε μ
ε μ
μ μ
μ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞
−⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥≡
⎢ ⎥⎛ ⎞ ⎛ ⎞

−⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 

Brewster’s angle for TE polarization:   

2 2

1 11 1

1 2

2 1

sin sinB
inc
TE

A

ε μ
ε μ

θ
μ μ
μ μ

− −

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Let us assume that 1 2 and ε ε  are fixed {i.e. electric properties of medium 1) and 2) are fixed} 
but that we can engineer/design/manipulate the magnetic properties of medium 1) and 2) in such 
a way as to obtain a ratio ( )1 2 1μ μ ≠  to give 0 ≤ A ≤ 1!!! 

Then if 1sinB
inc
TE

Aθ −=   can be achieved, it might also be possible to engineer the magnetic 

properties ( )1 2μ μ  such that A < 0 – i.e. B
incθ  becomes imaginary!!! 

 

Note also that in the above formula that ( )1 2 1μ μ =  does not mean sin incθ = ∞  because the 

original formula for ( )1 2 1μ μ = was:  
 

( )
2 2

2 22 1

1 2

1 sin 1 sininc inc
n n
n n

θ θ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

which is perfectly mathematically fine/OK for ( )2 1 1n n = . 


