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1 Introduction and Definitions

As far as anyone knows, there is no such thing as a free magnetic charge

or magnetic monopole, although there are people who look for them

(and occasionally claim to have found one); certainly they may exist.

Because no known phenomena require their existence, we shall develop

magnetostatics and eventually electrodynamics assuming that they do

not exist. In this case there is a fundamental difference between elec-

trostatics and magnetostatics, explaining in part why the two subjects

developed independently and were regarded as distinct rather than dif-

ferent limits or aspects of one type of phenomenon (electromagnetic

phenomena).

1.1 Magnetic Induction

In the absence of monopole moments, the most fundamental source

of magnetic effects is the magnetic dipole. In the presence of other

magnetic materials, a point dipole will experience some force. One

defines the magnetic flux density or magnetic induction B in terms of

the torque N exerted on the dipole. Given that the dipole moment is

µ, the defining relation is

N ≡ µ×B. (1)
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Thus, as for electrostatics, the basic field of magnetostatics is defined

by the effect produced on an elementary source.

1.2 Current Density and Conservation

Among the first known manifestations of magnetic phenomena were

the forces observed to act on some materials (magnets) as a conse-

quence of the earth’s magnetic field. In 1819, Hans Christian Oersted

(1777-1851) found that very similar effects could be produced by plac-

ing a magnet close to a current-carrying wire, indicating a connection

between electrical current and magnetism. Much of what we have to

say about magnetostatics will involve the use of currents as sources of

B, so let us say a few words about the properties of stationary, i.e.,

time-independent, currents. We shall write the current density as J(x);

it has dimensions of charge/area-time and is by definition such that a

component Ji is the amount of charge that crosses unit area in unit

time given that the normal to the surface is in the i-direction. Given a

charge density ρ(x) moving at a velocity v, there is a current density

J(x) = ρ(x)v. (2)

It is an experimental fact that charge is conserved. We may deter-

mine a continuity or conservation equation which expresses this fact.
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Consider
∫

V
d3x ∇ · J(x) =

∫

S
d2x J · n. (3)

The surface integral gives the rate at which charge flows out of the

domain V through the surface S. Because charge is conserved, this

must be equal to the negative of the rate at which the total charge

inside of V changes:

∫

S
d2x J(x) · n = − ∂

∂t

(∫

V
d3x ρ(x)

)
. (4)

Assuming that V is independent of time, we may move the derivative

with respect to time inside of the integral and so have

∫

V
d3x ∇ · J(x) =

∫

S
d2x J(x) · n = −

∫

V
d3x

∂ρ(x)

∂t
. (5)

Now argue in the usual fashion: Because V is an arbitrary domain, this

equation can only be true if the integrands on the two sides are the

same everywhere. Hence we have

∇ · J(x) +
∂ρ(x)

∂t
= 0. (6)

This equation is true so long as charge is locally conserved, meaning

that the only way for charge to appear in V (or to disappear from V) is

by flowing across the boundary. The equation has the typical form of a

continuity equation which is that the divergence of the current density

of some quantity plus the time derivative of the density of that quantity
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equals zero. If there are sources (or sinks) of the quantity in question,

there is an additional term in the equation expressing the contribution

of these sources.

2 Ampère’s Law

Even as currents in wires produce forces on magnetic materials, so do

they produce forces on other current loops. Félix Savart (1791-1841)

and Jean-Baptiste Biot (1774-1862) began experiments on these forces

soon after Oersted’s discovery, as did André-Marie Ampère. Ampère

continued his experiments for some years and published his collected

results in 1825. The basic law emerging from Ampère’s work deals with

the forces acting between closed current loops. Suppose that we have

a current I in one loop and a current I ′ in a second. Let F be the force

acting on the loop carrying current I.

dl’

dl

x’x I’

I

Then Ampère’s Law may be expressed as follows:

F = kII ′
∫ ∫ dl× [dl′ × (x− x′)]

|x− x′|3 (7)
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where the integrals over l and l′ are, respectively, around the loops

carrying currents I and I ′; x and x′ are the position vectors of the

integration points. The constant k depends on the units employed. For

our units, with current expressed as statcoul/sec, or statamp, k has di-

mensions of (inverse speed)2 (remember that charge has has dimensions

of M 1/2L3/2/T in our units). Hence one writes k ≡ 1/c2 where c is a

speed. From appropriate experiments one may find that its numerical

value in cgs units is c = 2.998× 1010 cm/sec. We recognize this as the

speed of light, but that is, for the moment, not important.

At this juncture we may introduce the magnetic induction by writing

the force as

F ≡ I

c

∫
dl×B(x) (8)

where B(x) is the magnetic induction produced by the other loop’s

current. It is not yet clear apparent this B is the same as the one

introduced in Eq. (1); nevertheless, it is, as we shall see presently.

Comparison of Eq. (7) with Eq. (8) shows that the magnetic induc-

tion produced by the loop carrying current I ′ may be written as an

integral over that loop,

B(x) =
I ′

c

∫ dl′ × (x− x′)

|x− x′|3 ; (9)

this equation is often called the Biot-Savart Law.

One also writes these equations in differential form, although that
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may introduce some inaccuracies and even misunderstanding. First, the

force acting on just an infinitesimal piece of the loop carrying current

I is

dF(x) =
I

c
dl×B(x). (10)

I dl

dF

+B

The correct interpretation of this equation is that it expresses the force

on the element dl of the loop carrying current I which is produced

by the current I ′ in the other loop; B(x) is the magnetic induction

produced by this other loop. There will be additional forces on the

element dl produced by the current in other parts of its own loop.

Another equation one frequently sees is an expression for the in-

finitesimal magnetic induction produced at a point x by an infinitesi-

mal element of a source loop. Given that the source loop is, as above,

the one carrying current I ′, this expression is

dB(x) =
I ′

c

dl′ × (x− x′)

|x− x′|3 . (11)

This is, however, not a correct statement in that the element dl′ of this

circuit acting alone does not produce such a magnetic induction. First,

it is impossible to have such a source acting alone if there is no time

dependence in the sources and fields; the flowing charge which gives the
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current I ′ in dl′ has to come from somewhere and go somewhere and

so if this element is the entire source current distribution, then there

must be some time dependence associated with the accumulation and

depletion of charge at the two ends of the element. When this time

dependence is included, Eq. (11) will not give the magnetic induction

correctly.

2.1 Induction of an Arbitrary Current Density

The preceding results are capable of generalization to arbitrary current

distributions (not just filaments). One has to replace Idl by J(x)dadl

where J(x) is the current density, da is the cross-sectional area of the

filament, and dl is the magnitude of dl. Then note that dadl = d3x, a

volume element.

=>
dlda

J da dlIdl

Hence one finds that the flux produced by an extended current distri-

bution is

B(x) =
1

c

∫
d3x′

J(x′)× (x− x′)

|x− x′|3 (12)

while the force on an extended current distribution J(x) produced by
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some externally applied B(x) is

F =
1

c

∫
d3x J(x)×B(x). (13)

The corresponding force density at point x is

dF =
1

c
d3xJ(x)×B(x), (14)

and the expression for dB (not to be trusted) becomes

dB(x) =
1

c
d3x

J(x′)× (x− x′)

|x− x′|3 . (15)

Finally, let’s add to our arsenal of equations one for the torque N

felt by a current distribution J(x) acted upon by an externally applied

magnetic induction B(x). Given an object experiencing a force F, the

torque relative to a point O is just x×F where x is the location of the

object relative to O. Hence the torque on the current distribution is

N =
1

c

∫
d3x [x× (J(x)×B(x))]. (16)

2.2 An Alternate Form of Ampère’s law

Before going on to additional formalism, let us express Ampère’s law,

Eq. (7), in a more symmetric form by applying some vector manipula-

tions. First, we will make use of the general identity A × (B × C) =

(A ·C)B− (A ·B)C to have

F =
II ′

c2

∫ ∫ [dl · (x− x′)]dl′ − [dl · dl′](x− x′)

|x− x′|3 . (17)
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According to Newton, the force of the loop carrying current I should

be equal and opposite to the force on the other loop, implying certain

symmetries in the integrand above. The second term in the numerator

changes sign under interchange of x and x′, but the first does not. Let

us study the latter more closely. Consider

∫
dl′

∫
dl ·


−∇


 1

|x− x′|




 = −

∫
dl′

∫
d


 1

|x− x′|


 ≡ 0 (18)

where the last step follows from the fact we integrate over a closed

path1. Thus we find that the force F may be written simply as

F = −II
′

c2

∫ ∫ dl · dl′
|x− x′|3 (x− x′). (19)

2.3 Example: Force Between Parallel Wires

Let us look at an example. Suppose we have two parallel wires a dis-

tance d apart carrying currents I and I ′ and wish to find the force per

unit length acting on one of them. At a point x on the one carrying

current I, there is an induction B from the other one which is directed

perpendicular to the plane containing the wires. This field is given by

the integral over the sources in the other wire,

I

I’

O

dl’

x’= d + z’y ẑ^

z

y

1For example,
∮
dφ = φ(x)− φ(x), where x is an arbitrary point along the contour
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|B| = B =
I ′

c

∫ dl′ × (x− x′)

|x− x′|3 =
I ′d

c

∫ ∞
−∞

dz′

(d2 + z′2)3/2
=
I ′

cd

∫ ∞
−∞

du

(1 + u2)3/2
=

2I ′

cd
.

(20)

The consequent force on the current I in length dz is

|dF| = I

c
dz B =

2II ′

c2d
. (21)

The direction of F is such that the wires are attracted toward each

other if the currents are in the same direction and they are repelled

if the currents are in opposite directions. In doing this calculations

we have conveniently ignored the fact that we didn’t deal with closed

current loops; in principal the wires have to be bent into closed loops

somewhere far away from where we have calculated the force. With a

little work one can convince himself that for sufficiently large loops, the

contributions from the part that we ignored will be as small as desired.

3 Differential Equations of Magnetostatics

Even as we found equations for the divergence and curl of the electric

field, so can we find such equations for the magnetic induction. Our

starting point is the integral expression for the induction produced by

a source distribution J(x),

B(x) =
1

c

∫
d3x′ J(x′)× (x− x′)

|x− x′|3 , (22)
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or, proceeding in the same manner as we have done before,

B(x) = −1

c

∫
d3x′ J(x′)×∇


 1

|x− x′|


 . (23)

Now apply the identity ∇× (fA) = (∇×A)f +∇f ×A:

∇×

 J(x′)

|x− x′|


 = (∇× J(x′))

1

|x− x′| +∇

 1

|x− x′|


× J(x′). (24)

The curl (taken with respect to components of x) of J(x′) is zero, so,

upon substituting into Eq. (24), we find

B(x) =
1

c

∫
d3x′∇×


 J(x′)

|x− x′|


 =

1

c
∇×



∫
d3x′

J(x′)

|x− x′|


 . (25)

Because B(x) is the curl of a vector field, its divergence must be zero,

∇ ·B(x) = 0. (26)

This is our equation for the divergence of the magnetic induction. It

tells us that there are no magnetic charges.

To find a curl equation for B(x), we take the curl of Eq. (25),

∇×B(x) =
1

c
∇×


∇×



∫
d3x′

J(x′)

|x− x′|




 . (27)

Now employ the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (28)

valid for any vector field A(x); the last term on the right-hand side of

this identity is to be interpreted as

∇2A ≡ (∇2Ax)x̂ + (∇2Ay)ŷ + (∇2Az)ẑ; (29)
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it is important that this relation is written in Cartesian coordinates.

Using the identity, we find

∇×

∇×


 J(x′)

|x− x′|




 = ∇


J(x′) · ∇


 1

|x− x′|




−J(x′)∇2


 1

|x− x′|


 .

(30)

The second term is just 4πJ(x′)δ(x− x′), so we have

∇×B(x) =
4π

c
J(x) +

1

c
∇


∫
d3x′ J(x′) · ∇


 1

|x− x′|




 . (31)

The remaining integral may be completed as follows:

∇
∫
d3x′ J(x′) · ∇


 1

|x− x′|


 = −∇

∫
d3x′ J(x′) · ∇′


 1

|x− x′|




= −∇
∫
d3x′∇′ ·


 J(x′)

|x− x′|


 +∇

∫
d3x′
∇′ · J(x′)

|x− x′| . (32)

The first term in the final expression can be converted to a surface

integral which then vanishes for a localized current distribution which

lies totally within the domain enclosed by the surface. The integrand of

the second term involves ∇′ ·J(x′) = −∂ρ(x′)/∂t ≡ 0 for a steady-state

current distribution. Consequently we have the curl equation

∇×B(x) =
4π

c
J(x) Sometimes called Ampere’s Law (33)

The curl and divergence equations, ∇ · B(x) = 0 and ∇ × B(x) =

(4π/c)J(x) plus an appropriate statement about the behavior of B(x)

on a boundary tell us all we need to know to find the magnetic induction

for a given set of sources J(x). There are, of course, also integral
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versions of these differential equations. One finds the most common

forms of them from the Stokes theorem and the divergence theorem.

∫

V
d3x∇ ·B(x) =

∫

S
d2xB(x) · n = 0 (34)

and

∫

S
d2x (∇×B(x)) · n =

∫

C
dl ·B(x) =

4π

c

∫

S
d2xJ(x) · n. (35)

The last of these is also commonly written as

∫

C
dl ·B(x) =

4π

c
Is (36)

where Is is the total current passing through the surface S in the direc-

tion of a right-hand normal relative to the direction in which the line

integral around C is done.

S

dl

n
I = total currect
flowing through
the contour

s

J

This relation is frequently called Ampère’s law. One interesting feature

of this equation is that the result is independent of the actual surface

S employed so long as it is an open surface that ends on the path C.

The amount of charge passing through all such surfaces per unit time

i.e., Is, is independent of S because ∇ · J(x) = 0.
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4 Vector and Scalar Potentials

In all electromagnetic systems it is possible to devise a potential which

is a vector field for B(x); it is called a vector potential. Sometimes, it

is also possible to devise a scalar potential for B(x). We shall consider

the latter first.

4.1 Scalar Potential

As we have seen in the study of electrostatics, one can write a vector

field as the gradient of a scalar if the vector field has zero divergence.

This is the case for B(x) in those regions of space where J(x) = 0.

Thus, in a source-free domain, we can write

B(x) = −∇ΦM(x). (37)

The magnetic scalar potential satisfies a differential equation which fol-

lows from the requirement that ∇ ·B(x) = 0; it is

∇2ΦM(x) = 0. (38)

Thus, wherever there is a magnetic scalar potential, it satisfies the

Laplace equation. In order to solve for it, we may apply any of the

techniques we learned for finding the electrostatic potential in charge-

free regions of space. Hence no more will be said about the magnetic

scalar potential in general in this chapter.
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4.2 Vector Potential and Gauge Invariance

Consider now the vector potential for a magnetostatic field. Because

∇ ·B(x) = 0, it is possible to write the magnetic induction as the curl

of another vector field (since ∇ · (∇×A)). We have in fact already

constructed such a vector field because in Eq. (25) we have written

B(x) = ∇×

1

c

∫
d3x′

J(x′)

|x− x′|


 . (39)

The field within the parentheses is a vector potential for B(x). We shall

write it as A(x). It is, in contrast to the electrostatic scalar potential,

not unique because one can always add to it the gradient of any scalar

field χ(x) and have a vector field whose curl is still B(x). That is, given

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| , (40)

which is such that B(x) = ∇×A(x), we can write

A′(x) = A(x) +∇χ(x), (41)

where χ(x) is arbitrary. Then it is true that B(x) = ∇×A′(x) because

the curl of the gradient of a scalar field is zero.

By writing B(x) = ∇ × A(x), we have automatically satisfied the

requirement that ∇ · B(x) = 0; Hence we may find a single (vector)

equation for the vector potential by substituting B = ∇ × A into

Ampère’s law:

∇×B(x) = ∇× (∇×A(x)) =
4π

c
J(x), (42)
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or, using ∇× (∇×A) = ∇(∇ ·A)−∇2A,

∇2A(x)−∇(∇ ·A(x)) = −4π

c
J(x). (43)

This equation would be considerably simpler if we could make the di-

vergence of A(x) vanish. It is possible to do this by using a vector

potential constructed with an appropriate choice of χ(x). The under-

lying mathematical point is the following: so far, the only condition

we have placed on the vector potential is that its curl should be the

magnetic induction. We are free to choose it so that its divergence con-

forms to our wishes because a vector field is sufficiently flexible that its

curl and divergence can both be specified arbitrarily. Consider then the

divergence of the most general vector potential. We write this potential

as

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| +∇χ(x). (44)

Then

∇ ·A(x) =
1

c

∫
d3x′ J(x′) · ∇


 1

|x− x′|


 +∇2χ(x). (45)

Now change the ∇ operator to −∇′ and then do an integration by

parts. The surface integral may be discarded if the volume integral is

over all space and J(x′) is localized (so that it vanishes on the surface

of the volume of integration). What one then has left is

∇ ·A(x) =
1

c

∫
d3x′
∇′ · J(x′)

|x− x′| +∇2χ(x) = ∇2χ(x), (46)
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where the last step follows from the fact that a time-independent set

of sources give a current distribution having zero divergence.

From this result we can see two things: first, the vector potential has

zero divergence if we forget about χ(x), i.e., if we set it equal to zero.

Second, we can make the divergence be any scalar function f(x) we

want by setting ∇2χ(x) = f(x). We would then have to solve for χ(x)

which is in principle straightforward because the differential equation

for χ is just the Poisson equation and we know how to solve that. The

solution is

χ(x) = − 1

4π

∫
d3x′

f(x′)

|x− x′| . (47)

Specifying the divergence of A(x) is called choosing the gauge of

the vector potential, and changing the function χ(x) is called making

a gauge transformation. Notice that one can make a transformation

without changing the gauge (i.e., without changing ∇ ·A); to do this

one must change χ by a function which satisfies the Laplace equation.

The particular gauge specified by ∇ ·A(x) = 0 is called the Coulomb

gauge.

Returning to our original point, we have found that we can pick a

vector potential with zero divergence. In particular,

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| (48)

has this property. In this, the Coulomb gauge, the vector potential
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satisfies the equations

∇2A(x) = −4π

c
J(x), (49)

which must be interpreted as

∇2Ai(x) = −4π

c
Ji(x) (50)

where the subscript i denotes any Cartesian component of A.

4.3 Example: A Circular Current Loop

Consider a circular loop of radius a carrying a current I. Let the loop

lie in the z = 0 plane and be centered at the origin of coordinates.

φ’ φ’ y
φ’̂

^

Then we may write J(x) = Jφ(x)φ̂ with

Jφ(x) =
I

a
δ(cos θ)δ(r − a). (51)

It is a natural temptation to do the following INCORRECT thing:

write A(x) = Aφ(x)φ̂ (correct so far) with

Aφ(x) =
1

c

∫
d3x′

Jφ(x
′)

|x− x′| . (52)
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This integral is not correct because the unit vector φ̂ at the field point

x is not the same as the unit vector φ̂′ at the field point x′.

What we can do instead is to make use of the azimuthal symmetry of

the system and trivially generalize to all values of φ after having first

evaluated the vector potential at some particular value of φ. Let us

look at the potential at φ = 0, i.e., in the x-z plane. Here, the vector

potential will be in the y direction, so we can say that

Aφ(r, θ) = Ay(r, θ, φ = 0) =
1

c

∫
d3x′

Jy(x
′)

|x− x′| (53)

at φ = 0. Now, Jy(x
′) = Jφ′ cosφ′, so

Aφ(r, φ) =
I

ac

∫
d3x′

δ(r′ − a)δ(cos θ′) cosφ′

(r2 + a2 − 2ar cos γ)1/2
(54)

where γ is the angle between the directions of x and x′, cos γ =

sin θ cosφ′.

The integral is an elliptic integral; rather than deal with its arcane

properties, we will expand it in the usual way:

Aφ(r, θ) =
I

ca

∫
d3x′

δ(r′ − a)δ(cos θ′) cosφ′

|x− x′|

= Re




I

ca

∫
d3x′

δ(r′ − a)δ(cos θ′)

|x− x′| eiφ
′




= Re




I

ca

∫
d3x′ δ(r′ − a)δ(cos θ′)eiφ

′∑

l,m

4π

2l + 1

rl<
rl+1
>

Y ∗l,m(θ′, φ′)Yl,m(θ, φ)|φ=0





= Re




Ia

c

∑

l,m

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (0)
rl<
rl+1
>

∫ 2π

0
dφ′eiφ

′
e−imφ

′



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=
2πIa

c

∞∑

l=1

P 1
l (0)P 1

l (cos θ)

l(l + 1)

rl<
rl+1
>

(55)

where r< and r> refer to the smaller and larger of r and a. Next one

notes that P 1
l (0) = 0 for l even and

P 1
l (0) = (−1)(l+1)/2l!/[(l − 1)!!]2 (56)

for l odd; set l = 2n+ 1 and have

Aφ(r, θ) =
2πIa

c

∞∑

n=0

(−1)n+1(2n+ 1)!

(2n+ 1)(2n+ 2)[(2n)!!]2
r2n+1
<

r2n+2
>

P 1
2n+1(cos θ)

=
πIa

c

∞∑

n=0

(−1)n+1(2n− 1)!!

2n(n+ 1)!

r2n+1
<

r2n+2
>

P 1
2n+1(cos θ). (57)

At large r, i.e., r >> a, we can keep just the leading term (n=0) and

find

Aφ(r, θ) =
πIa

c

a

r2
sin θ. (58)

The corresponding components of the magnetic induction are

Br(r, θ) =
1

r sin θ

∂

∂θ
(sin θAφ) =

2πIa2

cr3
cos θ, (59)

and

Bθ(r, θ) = −1

r

∂

∂r
(rAφ) =

πIa2

cr3
sin θ. (60)
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m
B

We recognize these as having the same form as the field of an elec-

tric powers of a/r, the current loop is treated as a magnetic dipole with

magnetic dipole moment m ≡ (πIa2/c)ẑ; the corresponding vector po-

tential, Eq. (58), is

A(x) = Aφ(r, θ)φ̂ =
|m| sin θ

r2
φ̂ =

m× x

|x|3 . (61)

We may compare this potential to that of an electric dipole which is

Φ(x) =
p · x
|x|3 . (62)

5 The Field of a Localized Current Distribution

The example of the preceding section is a special case of the field of a

localized current distribution. Let us now suppose that we have some

such distribution J(x′) around the origin of coordinates. We shall find

the potential of this distribution in the dipole approximation. To this
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end we must expand the function

1

|x− x′| ≈
1

|x|


1 +

x · x′
|x|2 + ...


 (63)

in powers of r′/r.

J x( )

x

A x( )
B x( )

r >> r’

Of particular interest to us is the first-order term in the brackets.

Using this expansion, we find that the vector potential is

A(x) =
1

c

∫
d3x′ J(x′)


 1

|x| +
x · x′
|x|3 + ...


 . (64)

The first term ∼ ∫
d3x′ J(x′) is zero for a localized steady current dis-
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tribution (Why?)2 ; the second one is

Ad(x) =
1

c|x|3
∫
d3x′ (x · x′)J(x′). (65)

However, (x · x′)J = −x× (x′ × J) + (x · J)x′, so

Ad(x) =
1

c|x|3
{∫

d3x′ (x · J(x′))x′ − x×
∫
d3x′ (x′ × J(x′))

}
. (66)

Consider the jth component of the first integral:

∫
d3x′ x′j(x · J(x′)) =

3∑

i=1

∫
d3x′ x′jxiJi(x

′). (67)

Now, it is the case that

∇′ · (x′iJ(x′)) = (∇′x′i) · J(x′) + x′i(∇′ · J(x′)) = Ji(x
′), (68)

since the divergence of J is zero. This allows us to write

∫
d3x′ (x · J(x′))x′j =

3∑

i=1

xi
∫
d3x′ [∇′ · (x′iJ(x′))]x′j

2The short answer is just that in lieu of sources or sinks of charge the total current density in a

current distribution must be zero. More formally, consider the 3-vector with components Ui

Ui = 0 =

∫

V

d3xxi∇ · J =

∫

V

d3x [∇ · (xiJ)− J · ∇xi]

Using the divergence theorem, this becomes

∫

S

d2xxiJ · n−
∫

V

d3xJ · x̂i

which follows since ∇xi = x̂i. Then if we take the surface to infinity, where there is no current

density, we obtain the desired result

0 = −
∫

V

d3xJi
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Parts integration:

= −
3∑

i=1

xi
∫
d3x′ (x′iJ(x′)) · (∇′x′j) = −

∫
d3x′ (x · x′)Jj(x′). (69)

Generalizing now to all three components of this integral, we find

∫
d3x′ (x · J(x′))x′ = −

∫
d3x′ (x · x′)J(x′). (70)

Comparison with the expressions for Ad shows that

Ad(x) = − 1

2c

1

|x|3x×
[∫
d3x′ (x′ × J(x′))

]
≡ m× x

|x|3 = ∇×

m

|x|


 (71)

where the magnetic dipole moment of the current distribution is defined

as

m ≡ 1

2c

∫
d3x′ (x′ × J(x′)). (72)

The magnetic moment density of the distribution is defined by

M(x) ≡ 1

2c
x× J(x) (73)

so that the magnetic moment is the integral of this density over all

space.

The field produced by the source in the magnetic dipole approxima-

tion is

Bd(x) = ∇×Ad(x) = ∇×

m× x

|x|3

 . (74)

Using the identity

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B, (75)
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we can write this equation as

Bd(x) =
3n(n ·m)−m

|x|3 (76)

where n = x/|x|.
This is, as was the case for the electric dipole, only the field outside

of the current distribution. For a point magnetic dipole, it would be

the field away from the location of the dipole (the origin), and at the

origin there is a delta-function field as for the point electric dipole. We

may find the magnitude and direction of this singular field by a more

careful analysis of what happens as r → 0. To this end it is useful to

write the vector potential of the dipole as

Ad(x) = ∇×

m

|x|


 . (77)

Then we can write

B(x) = ∇×A(x) = ∇×
[
∇×

(
m

r

)]
= ∇

[
∇ ·

(
m

r

)]
−∇2

(
m

r

)
. (78)

The last term on the right-hand side is just 4πmδ(x). The first one

we have seen before, as it is the same as the electric field of an electric

dipole; we already know what singularity is contained therein but will

figure it out again as an exercise. Start by integrating this term over a

small sphere of radius ε centered at the origin and then take the limit
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as ε→ 0:

∫

r<ε
d3x∇

[
∇ ·

(
m

r

)]
=
∫

r=ε
d2xn

[
∇ ·

(
m

r

)]
, (79)

where we have used the identity, valid for any scalar function f(x):

∫
d3x∇f(x) =

∫
d2xnf(x); (80)

S is the surface enclosing the domain V and n is the usual outward unit

normal. Continuing, we have

∫

r=ε
d2xn

[
∇ ·

(
m

r

)]
= −

∫

r=ε
d2x r̂

(
m · x
r3

)
= −4π

3
m. (81)

Hence we find that∇[∇·(m/r)] contains the singular piece (4π/3)mδ(x).

Putting it into Eq. (78), we conclude that the delta-function piece of the

magnetic field is (8π/3)mδ(x), and hence the total field of the magnetic

dipole is

B(x) =
3(n ·m)n−m

r3
+

8π

3
mδ(x). (82)

The consequences of the presence of the delta-function piece are ob-

served in atomic hydrogen where the magnetic moment of the electron

interacts with that of the nucleus, or proton. Without this interaction,

all total-spin states of the atom would be degenerate. As a consequence

of the interaction, the “triplet” or “spin-one” states are raised slightly

in energy relative to the “singlet” or “spin-zero” state. The splitting

is small even on the scale of atomic energies, being about 10−17erg or
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10−5 ev. A photon which has the same energy as this splitting, and

which is thus produced or absorbed by a transition between the two

atomic energy levels, has a wavelength of 21 cm. The delta-function

part of the field also plays an important role in the scattering of neu-

trons from magnetic materials.

6 Forces on a Localized Current Distribution

We shall look next at the interaction of a localized current distribution

with an externally applied field, again using procedures reminiscent of

the multipole expansion for a localized charge distribution. First, we

expand the applied field around some suitably chosen origin (at the

center of the current distribution),

B x( )

J x( )

Source of

We will assume that B varies slowly over the region
where J is finite.

B(x) = B(0) + (x · ∇′)B(x′)|x′=0 + ...; (83)
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The force that the field exerts on a localized current distribution located

around the origin is then expanded as follows:

F =
1

c

∫
d3x (J(x)×B(x))

= −1

c
B(0)×

∫
d3xJ(x) +

1

c

∫
d3xJ(x)× [(x · ∇′)B(x′)|x′=0] + ....(84)

Now, the first integral in the last line vanishes for a localized steady-

state current distribution (there can’t be any net flow of charge in any

direction), and we can manipulate the integrand in the final integral as

follows:

(x · ∇′)B(x′) = ∇′(x ·B(x′))− x× (∇′ ×B(x′)), (85)

and we may suppose that B is due entirely to external sources so that

∇′×B(x′) = 0 for x′ around the origin. Thus we find that the force is

F =
1

c

∫
d3xJ(x)× [∇′(x ·B(x′))|x′=0]

= −1

c

∫
d3x∇′ × [(x ·B(x′))|x′=0J(x)]

= −1

c
∇′ ×

∫
d3x [x ·B(x′))|x′=0J(x)]. (86)

Now, we can write the last integral as

∫
d3x (x ·B(x′))J(x) = −

∫
d3x [B(x′)× (x× J(x))− x(B(x′) · J(x))].

(87)

Further, it is true that

∫
d3xx(B(x′) · J(x)) = −

∫
d3x (x ·B(x′))J(x); (88)
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we can demonstrate this fact by considering the ith component of the

integral.

−
∫
d3x (x ·B(x′))Ji(x) = −

∫
d3x (x ·B(x′))∇ · (xiJ(x))

=
∫
d3x [∇(x ·B(x′))] · (xiJ(x)) =

∫
d3xB(x′) · (xiJ(x))

=
∫
d3x xi(B(x′) · J(x)). (89)

Hence, from Eqs. (84), (85), and (86) we find that

F =
1

2c
∇′ ×

{∫
d3x [B(x′)× (x× J(x))]

}
|x′=0

=
1

2c
∇′ ×

{
B(x′)×

∫
d3x (x× J(x))

}
|x′=0

= ∇′ × (B(x′)×m)|x′=0 = (m · ∇′)B(x′)|x′=0 −m(∇′ ·B(x′))|x′=0

= ∇′(m ·B(x′))|x′=0 −m× (∇′ ×B(x′))|x′=0.(90)

Along the way in this derivation we have made use of the facts that

the divergence and curl of B are zero in the region near the origin. The

final result has the form of the gradient of a scalar function,

F = −∇(−m ·B(x)) (91)

where the gradient is to be evaluated at the center of the current dis-

tribution. Notice in particular that there is no force if the applied mag-

netic induction is uniform. More generally, the force is in the direction

of the gradient of the component of B in the direction of m.
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The torque N on the current distribution may be found using similar

manipulations.

N =
1

c

∫
d3x x× (J(x)×B(x)) ≈ 1

c

∫
d3x x× (J(x)×B(0))

=
1

c

∫
d3x [(x ·B)J(x)− (x · J(x))B] = − 1

2c

∫
d3xB× (x× J(x))

−1

c
B
∫
d3x (x · J(x)) = m×B− 1

c
B
∫
d3x (x · J(x))(92)

However,

∇ · (r2J(x)) = 2x · J(x) + r2(∇ · J(x)); (93)

the final term here is zero, so it is the case that

∫
d3x (x · J(x)) =

1

2

∫
d3x∇ · (r2J(x)) = 0, (94)

the final step following from the fact that the current distribution is

localized. Thus the torque on the localized source reduces to

N = m×B, (95)

in the dipole approximation. Compare this result with Eq. (1).

7 Macroscopic Magnetostatics

If one has a macroscopic object with lots of microscopic currents flow-

ing around in it (electrons on molecules give many small current loops),

then it is best to carry out suitable averages over volumes small com-

pared to anything macroscopic but large compared to molecules and
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to calculate only the average quantities. The elementary procedure, in

which many complications are blissfully ignored, is to break the sources

up into free and bound:

1. the macroscopic current density, written as J(x)

2. the magnetization M(x) which is defined as the magnetic dipole

moment per unit volume.

The latter comes from the molecules, atoms, ions, etc., in a material

medium. The macroscopic current density comes from moving charges

which are not bound on molecules, i.e., not localized. Notice that

within this approach we can accommodate sources which cannot ac-

tually be described as the motion of charges, or currents; that is, the

spin magnetic moments of “elementary” particles such as the electron.

These may be treated as point dipoles and so simply contribute to the

magnetization.

Given these sources, use of Eqs. (48) and (71) tell us that the (macro-

scopic) vector potential is

A(x) =
1

c

∫
d3x′


 J(x′)

|x− x′| +
cM(x′)× (x− x′)

|x− x′|3

 . (96)

We can manipulate the term involving the magnetization in a manner

which should be familiar:

A(x) =
1

c

∫
d3x′





J(x′)

|x− x′| +
cM(x′)× (x− x′)

|x− x′|3




33



=
1

c

∫
d3x′





J(x′)

|x− x′| + cM(x′)×∇′

 1

|x− x′|







=
1

c

∫
d3x′





J(x′) + c(∇′ ×M(x′))

|x− x′|



−

∫
d3x′∇′ ×


 M(x′)

|x− x′|


 (97)

However, there is an identity which allows us to convert the integral of

a curl to a surface integral:

∫

V
d3x∇×V =

∮

S
d2xn×V. (98)

In the present instance, when the last integral in Eq. (97) is converted

to a surface integral, it will vanish because if the surface encloses all

of the magnetic materials, M will be zero on the boundary. Hence we

have the result

A(x) =
1

c

∫
d3x′

J(x′) + c[∇′ ×M(x′)]

|x− x′| (99)

for the macroscopic vector potential.

7.1 Magnetization Current Density

The form of this equation implies that c∇×M(x) is a current density

associated with spatial variations of the magnetization. It is possible

to imagine how the curl of the magnetization yields a current source,

if we consider each magnetic dipole as originating from a vanishingly

small current loop.
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Each microscopic current
loop represents a dipole.
The net circulation of
the loops (the current
density) is given by the
curl of the loop density

This may or may not really be the case. If the magnetization is the

consequence of the motions of bound charges on molecules, then it is

indeed a current. But if the magnetization is the consequence of the

intrinsic dipole moments of elementary particles such as the electron,

then it is not reasonable to think of the curl of the magnetization as a

current density. Nevertheless, we shall define the magnetization current

density JM(x) as3

JM(x) = c∇×M(x). (100)

In terms of the magnetization current density, we have

A(x) =
1

c

∫
d3x′

J(x′) + JM(x′)

|x− x′| . (101)

The differential field equations obeyed by the macroscopic magnetic

induction, which is the curl of the macroscopic vector potential,

B(x) = ∇×A(x), (102)

3Notice that this object has zero divergence, as a steady-state current density should.
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are easy to write down by referring to our earlier derivation; they are

∇×B(x) =
4π

c
(J(x) + JM(x)) (103)

and, of course,

∇ ·B(x) = 0. (104)

7.2 Magnetic Field

The difficulty one faces in solving these equations is much the same

as faced in macroscopic electrostatics. One generally does not know

magnetization until after solving for the induction. Further, the relation

between B(x) and M(x) depends on the material. It is customary to

define an additional macroscopic field H(x), called the magnetic field,

H(x) ≡ B(x)− 4πM(x). (105)

Then Eq. (103) can be rewritten as

∇×B(x) =
4π

c
(J(x) + c∇×M(x)) (106)

or

∇× (B(x)− 4πM(x)) =
4π

c
J(x) (107)

or

∇×H(x) =
4π

c
J(x). (108)
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We haven’t resolved anything by making this definition, of course; we

have simply phrased the problem in a somewhat different form. The

advantage in introducing the magnetic field is that it obeys a relatively

simple differential equation and that, in many materials, there is a

simple approximate relation between B and H. The simplest materials

are, like dielectrics, linear, isotropic, and uniform, in which case the

relation between B and H is

H(x) =
1

µ
B(x) (109)

where µ is a constant known as the magnetic permeability. This positive

constant can be smaller or larger than unity, leading to two classifica-

tions of magnetic materials: If µ < 1, the material is said to be a

diamagnet; if µ > 1, it is called a paramagnet.

µ< 1 µ> 1

Diamagnetism

BB

Paramagnetism

µ= 1µ= 1

For linear, isotropic materials, it is also common to introduce the mag-
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netic susceptibility χm,

χm ≡
µ− 1

4π
(110)

so that M = χmH.

Many materials have dramatically different relations among B, M,

and H. Ferromagnets are a prime example; they can have a finite mag-

netic induction with zero magnetic field as well as the converse. In

addition, as shown in the figure below the relation between these two

fields in ferromagnets is usually not single-valued; the particular mag-

netic field one finds for a given value of B depends on the “history” of

the sample, meaning it depends on what external fields it was subjected

to prior to determining B and H. We will not concern ourselves with

the origins of this behavior.

H

B
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7.3 Boundary Conditions

We have the general differential equations of magnetostatics

∇×H(x) =
4π

c
J(x) (111)

and

∇ ·B(x) = 0. (112)

These are valid for any system, independent of the particular relation

between the magnetic induction and the magnetic field. From them we

can derive general boundary or continuity conditions. From the diver-

gence equation, we infer that the normal component of the magnetic

induction is continuous at an interface between two materials,

n

21

∫ d x ∇ ⋅ B = ∫ B ⋅ n d x

    ( B  - B  ) ⋅ n = 0
   
          B   = B

23

12

1n2n

(B2 −B1) · n = 0 (113)

where the subscripts 1 and 2 refer to the induction in each of two
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materials meeting at an interface, and n is a unit vector normal to the

interface and pointing into medium 2.

From the curl equation, one finds that the tangential components

of H can be discontinuous. The discontinuity is related to the current

flowing along (parallel to) the interface. Consider Stokes’ theorem as

applied to the curl equation.

n

21

a
h

⋅n’
n

C

∫ d x ∇ × H ⋅ n’ =
∫ dl ⋅ H = 
h ( H  - H  ) ⋅ n’ × n =
4π/c ∫ d x J ⋅ n’

4π/c ∫ d x J ⋅ n’ = 




      0            ;  if K is zero                    

h 4π/2 K ⋅ n’;  if K is finite

Thus,
∫

S
d2x [∇×H(x)] · n′ =

∮

C
dl ·H(x) =

4π

c

∫

S
d2xJ(x) · n′ (114)

where the unit vector n′ is directed normal to the surface S over which

the integration is done. Using a rectangle of dimensions a by h, where

a << h and a is directed perpendicular to the interface while h is

parallel to it, we find that the line integral comes down to
∮

C
dl ·H(x) = h(H2 −H1) · (n′ × n) (115)
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which is to say, we find the discontinuity in a particular tangential

component of H across the interface. The integral over the current, on

the other hand, gives, for a finite, slowly varying current,

4π

c

∫

S
d2xJ(x) · n′ ∼ ahJ · n′; (116)

this is proportional to a and so is insignificant for a << h assuming a fi-

nite well-behaved current density. In this case, there is no discontinuity

in the tangential components of H,

(H2 −H1)× n = 0. (117)

There is also the possibility of a singular term in J(x) which would

be of the form

Js(x) = K(x)δ(ξ) (118)

where ξ is the distance from the interface and the vector K points in

a direction parallel to the interface. This vector is a surface-current

density and has dimensions of charge per unit length per unit time.

This expression is, of course, an idealization. When currents run along

the surface of a material, they typically are not localized precisely at the

surface (i.e., , within an atomic size) but are spread over a surface layer

of thickness ranging from a few hundred Angstroms to some microns. If

the length a is significantly larger than this layer’s thickness, then it is

reasonable to talk about a surface-current density and quite acceptable
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to regard it as being localized at the interface. Proceeding on this basis,

we find that the continuity condition becomes

h(H2 −H1) · (n′ × n) = h
4π

c
K · n′. (119)

This relation can be written in the more general form

n× (H2 −H1) =
4π

c
K (120)

as may be shown by (1) realizing that K · n = 0 and (2) taking the

inner product of Eq. (120) with any vector (such as n′) lying in the

plane of the interface.

8 Examples of Boundary-Value Problems in Mag-

netostatics

8.1 Uniformly Magnetized Sphere

The principal example is a uniformly magnetized sphere meaning a

material that maintains a constant magnetization M0 in the absence

of any applied field.

M

42



We shall let the direction of M be the z-direction and so have

M(x) =





M0ẑ r < a

0 r > a.
(121)

In the region r > a, B = H. For r < a, B = H + 4πM. However, M

is constant here and so has no curl or divergence. This means that the

curls of both B and H are zero everywhere except at the boundary of

the sphere.

Consider the magnetization current density, JM = c∇×M; it is non-

zero only at r = a where it is singular. By applying Stokes’ theorem

to this equation in the same manner as was done to find the continuity

condition on the tangential components of H at an interface, one finds

that there is a magnetization surface-current density KM given by

KM = cn× (M2 −M1) (122)

where n is the unit normal at the surface pointing into material 2. In

the present application, M1 = M0 and M2 = 0. Since r̂× ẑ = − sin θφ̂,

we have KM = KM φ̂ where KM = cM0 sin θ.

8.1.1 Scalar Potential for the Induction

Now that we have identified the sources, let’s look at some methods of

solution. First, consider a scalar potential approach. Because the curl

of B is zero for r < a and r > a, we can devise scalar potentials for

43



the magnetic induction in these two regions. Because ∇ · B(x) = 0,

the potentials satisfy the Laplace equation. Further, the system is

invariant under rotation around the z-axis, implying that the potential

is independent of φ. Hence it must be possible to write

Φ<(x) = M0a
∑

l

Al

(
r

a

)l
Pl(cos θ) for r < a (123)

and

Φ>(x) = M0a
∑

l

Cl

(
a

r

)l+1

Pl(cos θ) for r > a. (124)

Given that B = −∇Φ(x), the condition that the normal component of

B is continuous at r = a becomes (making use of the orthogonality of

the Legendre polynomials in the usual way)

lAl = −(l + 1)Cl (125)

for all l. The other boundary condition is that the tangential compo-

nent of H, or Hθ is continuous. Since B = H + 4πM, and since the θ-

component of the magnetization is−M0 sin θ (and sin θ = −dP1(cos θ)/dθ,

this second condition leads to

Al = Cl for l not equal to 1 (126)

and

C1 = A1 + 4π. (127)

¿From these equations it is easy to see that Al = Cl = 0, l 6= 1, while

C1 = 4π/3 and A1 = −8π/3.
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Having found the potential, we may compute the fields. The mag-

netic induction at r > a has the familiar dipolar form; the field within

the sphere is a constant:

B< =
8π

3
M0 and H< = −4π

3
M0. (128)

8.1.2 Scalar Potential for the Field

A second approach to this problem is to devise a scalar potential for

the magnetic field. Since J(x) = 0 everywhere, the curl of H is zero

everywhere and so there is a potential ΦH for H everywhere such that

H(x) = −∇ΦH(x). The divergence of H obeys

∇·H(x) = −∇2ΦH(x) = ∇·B(x)−4π∇·M(x) = −4π∇·M(x). (129)

Looking upon this as a Poisson equation, we can immediately see that

the solution for the potential is

ΦH(x) = −
∫
d3x′
∇′ ·M(x′)

|x− x′| = −
∫
d3x′


∇′ ·


 M(x′)

|x− x′|


−M(x′) · ∇′


 1

|x− x′|






(130)

The first term in the final expression may be converted to a surface

integral which is seen to be zero from the fact that the magnetization

is non-zero only within the sphere. Hence

ΦH(x) = M0ẑ ·
∫

r′<a
d3x′∇′


 1

|x− x′|


 = −∇ ·


M0ẑ

∫

r′<a

d3x′

|x− x′|




= −∇ ·
[
M0ẑ

∫ a
0
r′2dr′4π

1

r>

]
(131)
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where r> is the larger of a and r. For r > a, we find

ΦH(x) = −∇ ·

M0ẑ4π

a3

3r


 =

4π

3
a3M0

cos θ

r2
, (132)

and for r < a,

ΦH(x) = −∇ ·

M0ẑ4π


a

2

2
− r2

6




 =

4π

3
M0z. (133)

Notice how the preceding calculation avoids having to think about

what happens at the surface of the sphere; the integration by parts

leaves us with a simpler integration over the magnetization. It is, of

course, possible to evaluate the divergence of the magnetization and

complete the integral directly without using the integration by parts.

To this end, write the magnetization as

M(x) = M0ẑθ(a− r) (134)

where the θ-function is a step function,

θ(x) =





1, x > 0

0, x < 0.
(135)

Then

∇ ·M(x) = M0
∂

∂z
θ(a− r) = −M0δ(a− r)

∂r

∂z
(136)

since
dθ(x)

dx
= δ(x). (137)
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Hence

ΦH(x) =
∫
d3x′
∇′ ·M(x′)

|x− x′| = M0a
2
∫
dΩ′

cos θ′

|x− x′| (138)

= M0a
2 4π

3

3

4π

4π

3

r<
r2
>

cos θ =
4π

3
M0a

2r<
r2
>

cos θ. (139)

Here, x′, after integrating over r′, has the magnitude a.

8.1.3 Direct Calculation of B

Another approach to this problem is to calculate the vector potential

for B(x) directly. Since J(x) = 0 everywhere, only the curl of the

magnetization acts as a source of this potential. Thus we have

A(x) =
1

c

∫
d3x′

c∇′ ×M(x′)

|x− x′| =
∫
d3x′


∇′ ×


 M(x′)

|x− x′|


−∇′


 1

|x− x′|


×M(x′)




=
∮

S
d2x′ n′ ×


 M(x′)

|x− x′|


 +∇×



∫
d3x′

M(x′)

|x− x′|




= ∇×M0ẑ4π





a3/3r, r > a

a2/2− r2/6, r < a.
(140)

One may easily work out the curl to find

A(x) =
4π

3
M0a

3 sin θ

r2
φ̂ for r > a (141)

and

A(x) =
4π

3
M0r sin θφ̂ for r < a. (142)
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These expressions may be summarized as

A(x) =
4πM0

3
a2


r<
r2
>


 sin θφ̂. (143)

The preceding example is a typical one involving a permanently

magnetized material. Then one knows M(x) and so can proceed with

a solution of the equations for B or H via the route of one’s choice. A

quite different sort of problem is one involving linear, isotropic magnetic

materials with J(x) = 0. These are entirely equivalent to problems in

macroscopic electrostatics (Laplace equation problems) with which we

have extensive experience. The point is that one has

∇×H(x) = 0 (144)

which means there is a potential ΦH(x) such that

H(x) = −∇ΦH(x). (145)

Further, since ∇ ·B(x) = 0, and B(x) = µH(x), we have

0 = ∇·B(x) = ∇·(µH(x)) = (∇µ)H(x)+µ∇·H(x) = −(∇µ)∇ΦH(x)−µ∇2ΦH(x),

(146)

or

∇2ΦH(x) = −∇µ
µ
∇ΦH(x). (147)

In any region of space where µ is a constant, this is just the Laplace

equation,

∇2ΦH(x) = 0. (148)
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Hence we may write down an appropriate solution of the Laplace equa-

tion for ΦH(x) in each region of space where the magnetic properties

are uniform and then make sure the continuity conditions on the tan-

gential components of H(x) and on the normal components of B(x)

are satisfied on the boundaries between such regions. The techniques

used are the same as for boundary value problems in electrostatics.

Notice that in problems of this kind, we can equally well make a

scalar potential for B(x) in each of the regions where µ is constant.

8.2 Shielding by a Paramagnetic Cylinder

A standard example is magnetic shielding in which a shell of magnetic

material with a very large value of µ (a strongly paramagnetic material)

is placed around some region of space. Suppose, for example, that a

long cylindrical shell of inner radius a and outer radius b is placed

around the z-axis and that this system is subjected to a transverse

applied field H0 = H0x̂. Then we have three regions, ρ < a, a < ρ < b,

and b < ρ, in which we may make potentials ΦH which satisfy the

Laplace equation. These potentials will have the forms

(i) ρ < a:

ΦH(x) = H0Aρ cosφ (149)
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(ii) a < ρ < b:

ΦH(x) = H0

[
Cρ cosφ+Da2 cosφ/ρ

]
(150)

(iii) b < ρ:

ΦH(x) = H0

[
−ρ cosφ+ Eb2 cosφ/ρ

]
. (151)

Here, we have guessed (on the basis of long experience) that the only

terms in the potential will be the ones with the same dependence on φ

as the potential of the applied field. The latter is −H0x = −H0ρ cosφ.

Continuing, one has the boundary conditions at ρ = a and ρ = b

which are that Hφ and Bρ must be continuous. These lead to the four

equations

A = C +D

C +D
a2

b2
= −1 + E

A = µC − µD

and

µC − µDa
2

b2
= −1− E. (152)

The solution for A in particular is

A = −

 4µ

(µ+ 1)2 − (a2/b2)(µ− 1)2


 , (153)

from which one finds that the field inside of the shield is

H(x) = B(x) =
4µ

(µ+ 1)2 − (a2/b2)(µ− 1)2
H0. (154)
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The field inside is decreased relative to the applied field by a factor of

A. If one employs a “high-µ” material with a permeability of order 104

or 105, then a ∼ 4/{µ[1 − (a2/b2)]} which will be much smaller than

unity if a is significantly smaller than b. This is the limit in which the

sleeve acts as a good shield against the applied magnetic field.
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