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LECTURE NOTES 14 
 

EM RADIATION FROM AN ARBITRARY SOURCE: 
 
     We now apply the formalism/methodology that we have developed in the previous lectures  
on low-order multipole EM radiation {E(1), M(1), E(2), M(2)} to an arbitrary configuration of 
electric charges and currents, only restricting these to be localized charge and current 
distributions, contained within a finite volume v′ near the origin: 
 
      

( )rr r t′= −
G GGr  

( )rr r t′= −
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( ) ( )2 2
r r2r r t r r t′ ′= + −
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rt t t cΔ = − = r  
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     For arbitrary, localized {total} electric charge and current density distributions ( )r,Tot r tρ ′G  

and ( )r,TotJ r t′
G G , the retarded scalar and vector potentials, respectively are: 
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Again, for EM radiation, we assume that the observation / field point rG  is far away from the 
localized source charge / current distribution, such that: maxr r′ �   or:  max 1r r′ � . 
 

Then keeping only up to terms linear in r
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Now: ( ) ( ) ( )r r
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Expand ( )r,Tot r tρ ′G  as a Taylor series in the present time t about the retarded time, at the origin{ 0r′ =
G }: 
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rt t
c
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Where: ( ) ( )
r

,
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ρ
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We can drop / neglect all higher-order terms beyond the ρ�  term, provided that: 
 

max 1 1
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,  ,  ,  ...c c cr
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  is satisfied… 

 
For a harmonically oscillating system (i.e. one with angular frequency ω), each of these ratios,  

e.g. c
ρ ρ�� �

, etc. is = c
ω

 and thus we have:  max
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The two approximations max 1r
r
′
�   and  max 1r

c
ω ′

� , or more generally: max 1
r

c
ρ ρ′ �� �
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amount to keeping only the first-order {the lowest-order, non-negligible} terms in r′ . 
 

The retarded scalar potential ( )r ,V r tG  then becomes: 
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Or: ( ) ( ) ( ) ( )
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In the static limit:    monopole   dipole      vanishes in the 

           term     term           static limit 
 
The retarded vector potential, to first order in ( )r r′ �r  {with ot t r c≡ − } then becomes: 
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     Griffiths Problem 5.7 (p. 214) showed that for localized electric charge / current distributions 
contained in the source volume v′ , that: 
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     Note that ( )Tot op tG is already first order in r′  ⇒  any additional refinements are therefore 
second order in r′ ; thus, the higher-order terms can be neglected/ignored (here). 
 

     Next, we calculate the retarded and E B
G G

 fields.  Since we want the EM radiation fields  
(the “far-zone” limit), we drop / neglect 2 3 41 , 1 , 1 , .r r r etc  terms, and keep only the 1 r  
radiation-field terms. 
 
     Note that the radiation terms come entirely from those terms in the Taylor series expansions 
for ( ) ( ),  and ,Tot o Tot or t J r tρ ′ ′
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GG G . 
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Then the retarded electric field for EM radiation in the “far-zone” limit is: 
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where the second time-derivative of the total electric dipole moment ( )Tot op tG�� is evaluated at the 

retarded time o
rt t c≡ −  and computed from the origin, ϑ  { 0r′ =

G }: ( ) ( )0,Tot o Tot
rp t p t c= −

G G�� �� . 
 
The retarded magnetic field for EM radiation in the “far-zone” limit is: 
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Where in first step we have used the relation ( ) ( )r r rv t a t t∇× = − ×∇
G GG G  {see “term (3)” P436 Lect. 

Notes 12 p. 11 and/or Griffiths Equation 10.55, p. 436} and in the last step on the RHS we have 

{again} used the relation 1 ˆot r
c

∇ = −
G

. 
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4
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rc
μ
π

⎡ ⎤− ×⎣ ⎦
G G G���   

 

where the second time-derivative of the total electric dipole moment ( )Tot op tG�� is evaluated at the 

retarded time o
rt t c≡ −  and computed from the origin, ϑ  { 0r′ =

G }: ( ) ( )0,Tot o Tot
rp t p t c= −

G G�� �� . 
 

     If we use spherical-polar coordinates, with the ẑ -axis ( ) Tot op tG��& , then noting that: 
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UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  14       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved 

5
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and we also see that {again} ( ) ( )r r
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The instantaneous retarded EM radiation energy density ( ), ,u r tθ  in the “far-zone” limit is: 
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The instantaneous retarded Poynting’s vector in the “far-zone” limit is: 
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o
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ˆ
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≡
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The instantaneous retarded EM power radiated per unit solid angle in the “far-zone” limit is: 
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r 2 2
2
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d c
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The total instantaneous retarded EM power radiated into 4π steradians, with vector area element 
2 2ˆ ˆsin   da r d d r r d rθ θ ϕ⊥ = = Ω

G  in the “far-zone” limit is:  
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The instantaneous retarded EM radiation linear momentum density in the “far-zone” limit is: 
 

 ( ) ( ) ( )2 2

r r2 2 3 2

1 sin ˆ, , , ,
16

o orad rad p t
r t S r t r

c c r
μ θθ θ
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The instantaneous retarded EM radiation angular momentum density in the “far-zone” limit is: 
 

 ( ) ( )r r, , , , 0rad radr t r r tθ θ= ×℘ =
G GGA  

 
The characteristic impedance of the antenna associated with this lowest-order EM radiation is: 
 

 
r r

r
r
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o
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o

o
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ε

μ
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The radiation resistance of the antenna associated with this lowest-order EM radiation is:  
 

 
( )2

2 26
o orad

rad
o o

p t
R

I cI
μ

π
Ρ

= =
��

 

 
Note that in the above, we deliberately/conciously neglected the electric monopole {E(0)} term 
in the retarded scalar potential for “far-zone” limit, maxr r′ � : 
 

( ) ( ) ( )0E(0) 1 1 1, ,
4 4

tot
r ov

o o

Q t
V r t r t d

r r
ρ τ

πε πε′
′ ′ =∫

G G�  

 
     As mentioned previously (P436 Lect. Notes 13, p. 4), that because of electric charge 
conservation, a spherically-symmetric electric monopole moment cannot radiate transversely-
polarized EM waves – spherical symmetry of the monopole moment restricts oscillations only to 
the radial direction  – thus one could get radiation of one polarization from a certain dΩ solid 
angle element, but then radiation from other dΩ’s on the sphere also contribute, such that the net 
EM radiation from the entire sphere = 0 –  total destructive interference.  (Gauss’ Law - 

encl
tot oS

E da Q ε
′

=∫
G Gi  independent of the size of the spherically symmetric charge distribution 

enclosed by the surface S´.   
 

Note also that for EM radiation, B
G

 must be to E⊥
G

 , and with both and E B
G G ˆ to k⊥ , the 

propagation direction.  How do you do this for a spherically- symmetric source, where ˆ ˆk r= ? 
 
Note that if electric charge were not conserved, then we would get a retarded electric monopole 

field proportional to 1 r :   ( ) ( )E(0)
r

1 ˆ,
4

o

o

Q t
E r t r

c rπε

�G G �   ←  n.b. this says nothing about the 

physical size of the spherically-symmetric charge distribution. 
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     Contrast the behavior of transverse waves associated with EM radiation from a spherically- 
symmetric source ( an oscillating electric monopole moment) ( ≡  no EM radiation) to that of 
longitudinal sound waves / acoustic waves radiated from a spherically symmetric oscillating 
acoustic monopole sound source – e.g. a radially inward / outward oscillating sphere (a breathing 
bubble) – the latter of which very definitely can propagate / create sound precisely because 
sound waves are longitudinal, not transverse waves!! 
 
     Now think about the electron  – for EM radiation fields, electric dipole / quadrupole / etc. 
higher EM moments break the rotational invariance / rotational symmetry associated with the 
spherical monopole electric charge distribution of the source – thus transverse EM waves  
( EM radiation) can couple to such electric monopole {E(0)} sources – and also ones that  
lack rotational invariance!!! 
 
 

     In the above Taylor series expansions for ( )r,r tρ ′G  and ( )r,J r t′
G G , we only kept terms to first-

order in r´ in these expansions and demonstrated that the first-order “far-zone” limit radiation 
terms were associated with the electric dipole moment {E(1)} . 
 

For E(1) electric dipole EM radiation to first-order in r´ for maxr r′ �  the retarded instantaneous 
scalar and vector potentials, electric and magnetic fields are: 
 

( ) ( )(1)
r

ˆ1,
4

o

o

r p t
V r t

crπε
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⎢ ⎥⎣ ⎦
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4
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A r t
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μ
π
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⎢ ⎥⎣ ⎦
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r
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,

4
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r r p t
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r
μ
π

Ε
⎡ ⎤× ×
⎢ ⎥
⎢ ⎥⎣ ⎦
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( ) ( )(1)
r

ˆ
,

4
oo r p t

B r t
c r

μ
π

Ε ⎡ ⎤×
− ⎢ ⎥

⎢ ⎥⎣ ⎦
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     Suppose the (localized) charge / current distributions are such that there is no (time-varying) 
E(1) electric dipole moment,  ( )r, 0p r t′ =

G G   and/or: ( )r, 0p r t′ =
G G� , ( )r, 0p r t′ =

G G�� . 
 

     Then the Taylor series expansion of ( )r,r tρ ′G and ( )r,J r t′
G G  to first order in r′ would give 

nothing for potentials and fields associated with “far-zone” EM radiation.  However, higher-
order terms in these expansions might give rise to non-vanishing potentials and fields. 
 
     The second order terms in r′ correspond to M(1) magnetic dipole and E(2) electric quadrupole 
EM radiation terms – in order to see/verify this, the second-order contribution needs to be / can 
be separated out into M(1) and E(2) terms. 
 

n.b. proportional to ( )0p tG�  (first time 

derivative of ( )op tG  - “velocity”) 

n.b. proportional to ( )0p tG��  (second time 

derivative of ( )op tG  - “acceleration”) 
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Indeed, if we compare e.g. the ratio of EM power radiated for M(1) magnetic dipole vs. E(2) 
electric quadrupole radiation (in the “far-zone” limit): 
 

2

2 4

3
(1)

6
(2)

3

12

60

o o
rad
M

rad e
o zz

m
c

Q
c

μ ω
π

μ ω
π

Ε

⎛ ⎞
⎜ ⎟Ρ ⎝ ⎠
⎛ ⎞Ρ
⎜ ⎟⎜ ⎟
⎝ ⎠

�   where:  

2 2

2 2

o o

o
e
zz

m b I b q
I q

Q qdd b q
d b

π π ω
ω

π
π

= =
=

= =
=

 

 

Thus: (1)

(2)

o

rad
M

rad

μ

Ε

Ρ

Ρ
�

2 4 6bπ ω 2q

12 π 3c

oμ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

2q 4 6d ω

5
60 π 3c

( )
2 4

4 2

5 5 1 1
2

b
d

π ϑ
π

= = ≈
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

�  

 

Similarly, the third order terms in r′ in the Taylor series expansion of ( )r,r tρ ′G and ( )r,J r t′
G G  

correspond to M(2) magnetic quadrupole and E(3) electric octupole radiation terms –  
i.e. the third-order contribution needs to be / can be separated out into M(2) and E(3) terms! 
 

Similarly, the fourth order terms in r′  in the Taylor series expansion of ( )r,r tρ ′G and ( )r,J r t′
G G  

correspond to M(3) magnetic octupole and E(4) electric sextupole radiation terms –  
i.e. the fourth-order contribution can be separated out into M(3) and E(4) terms! 
 
And so on, for each successive higher-order term r′  in the Taylor series expansion of 

( )r,r tρ ′G and/or ( )r,J r t′
G G !!! 

 
 
Griffiths Example 11.2: 
 
a.) An oscillating (i.e. harmonically varying) electric dipole has time-dependent dipole moment: 
 

( ) ( )r rcosop t p tω=  where:  ( ) ( ) ( )r r rˆ ˆcosop t p t z p t zω= =
G

 

( ) ( ) ( )r
r r

r

sino

dp t
p t p t

dt
ω ω= = −�  

( ) ( ) ( ) ( )
2

r r 2
r r2

r r

coso

dp t d p t
p t p t

dt dt
ω ω= = = −

�
��  

 
Then:                        ˆˆˆ cos sinz rθ θθ= −    with:  o

rt t c≡ −  

( ) ( ) ( ) ( )(1)
r

ˆ ˆ ˆ1, sin cos sin
4 4 4

o o o
o o

o o o

r p t p pr zV r t t t
cr cr cr

ω ωω θ ω
πε πε πε

Ε ⎡ ⎤ − −⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

G�i iG �  
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And: 

( ) ( ) ( )(1)
r ˆ, sin

4 4
oo o o

o

p t pA r t t z
r r

μ μ ω ω
π π

Ε ⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

G�G G �     ˆˆˆ cos sinz rθ θθ= −  

( )
( )( ) ( ) ( ) ( )(1) 2

r

ˆ ˆ ˆ ˆ ˆ
, cos

4 4
oo o

o o

r r p t r r z
r t p t

r r
μ μ ω ω
π π

Ε
⎡ ⎤× × × ×⎡ ⎤
⎢ ⎥Ε = −⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

G��G G �  

( ) ( ) ( ) ( )(1) 2
r

ˆ ˆ ˆ
, cos

4 4
oo o

o o

r t r zB r t p t
c r c r

μ μ ω ω
π π

Ε
⎡ ⎤×Ρ ×⎡ ⎤⎢ ⎥− = − −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

G��G G �  

 

But:  ( )ˆ ˆ ˆˆ cosr z r rθ× = ×( ) ( )ˆ ˆ ˆˆsin sin sinrθθ θ θ θϕ− = − × = −  

And: ( ) ( ) ( ) ( )ˆ ˆˆˆ ˆ ˆˆ sin sin sinr r z r ϕ θ θ θ θθ× × = × ∗ − = − − = +  
 

Thus:  ( )(1)
r

cos, sin
4

o

o

p rV r t t
c r c

ω θ ω
πε

Ε ⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G �     with:  o
rt t c≡ −  

( )(1)
r

1 ˆ, sin
4
o op rA r t t z

r c
μ ω ω

π
Ε ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �    where: ˆˆˆ cos sinz rθ θθ= −  

( )
2

(1)
r

sin ˆ, cos
4

o op rE r t t
r c

μ ω θ ω θ
π

Ε ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �  

( )
2

(1)
r

sin ˆ, cos
4
o op rB r t t

c r c
μ ω θ ω ϕ

π
Ε ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �  

 
     Compare these results for the E(1) electric dipole EM radiation “far-zone” limit case with 
those we obtained P436 Lecture Notes 13 {see pages 8-11}, and/or P436 Lecture Notes 13.5  
{the E(1)/M(1) summary / comparison page 11} – they (of course) are identical! 
 
b.) A single, point electric charge q can have (by definition) an electric dipole moment 

( ) ( )r rp t qd t=
GG where ( )rd t

G
 is the position vector of the point electric charge q at the retarded 

time rt with respect to the (local) origin ϑ .  (n.b. subject to all the caveats r.e. choice of origin for 
an EDM having a net charge – see P435 Lecture Notes. . . ) 
 

However: ( ) ( ) ( ){ }
( )rr

r r
r r

d d tdp t
p t q qv t

dt dt
= = =

GG
G G�   

And:  ( ) ( ) ( ) ( )r r
r

r r
r

dp t dv t
p t q qa t

dt dt
= = =
G G�G G��  

 

( )rv tG  =     velocity   vector of point electric charge q at the (retarded) time tr 

( )ra tG  = acceleration vector of point electric charge q at the (retarded) time tr 
 

n.b. these two quantities do not 
depend on the choice of origin !!! 
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     Everything goes through as before – get the same retarded scalar and vector potentials, 
retarded  and E B

G G
 fields, u, S

G
, P, etc. 

 
     In particular, the radiated EM E(1) power associated with a moving point charge q is: 
 

     
( )2

6
o o

q

p t
P

c
μ

π
��

�   (Watts) But: ( ) ( )o op t qa t=��  

∴ 
( )2 2

6
o o

q

q a t
P

c
μ

π
�   ←  Famous Larmour Formula (EM power radiated from a point charge q) 

 
     Note that the E(1) EM power radiated by a point charge q is proportional to the square of the 
acceleration a and also to the square of the electric charge q. 
 
     This is the origin of statement:  “Whenever one accelerates an electric charge q, it radiates 
away EM energy in the form of (real) photons”. It is the E(1) electric dipole term which 
dominates this radiation process. 
 
n.b. This is also true for decelerating charged particles –  the time-reversed situation!!!   
        Pq ~ a2 ← doesn’t care about sign of aG  {The EM interaction is time-reversal invariant}!!! 
 

Radiation from accelerated / decelerated +q vs. –q charges is the same if q q+ = − . 
(Pq doesn’t care about the sign of q!) 
 

But: Pq ~ q2 → so if double q → then Pq increases by factor of 4×! 
 

⇒  For the same acceleration/deceleration, high-Z nuclei radiate EM energy {in the form of 
photons} much more than e.g. a proton (= hydrogen nucleus) – process is known as 
bremmstrahlung {= “braking radiation”, auf Deutsch}. 
 

e.g. Uranium (Zu = 92) gives 922 = 8464× more EM radiation than a proton for the same 
acceleration, a. 
 

EM Power Radiated by a Moving Point Electric Charge: 
 
     The (retarded) electric field of an electric charge q in arbitrary motion is: 
 

( )
( )

( ) ( )2 2
r 3,

4 o

qE r t c v u u a
uπε

⎡ ⎤= − + × ×⎣ ⎦
G G G G GG

GGi
r r

r
    where:  ( )rˆu c v t≡ −

G Gr  

         ( ) ( )r rwr r t r t′= − = −
G G GGr  

     The associated (retarded) magnetic field is:       ( ) ( )r rr r t c t c t t′= − = Δ = −
G Gr  

( ) ( )r r
1 ˆ, ,B r t E r t
c

= ×
G GG Gr      or:  rt t c= − r . 

     As mentioned before, the first term in ( )r ,E r t
G G ,  

( )
( )2 2

34 o

q c v u
uπε

⎡ ⎤−⎣ ⎦
G

GGi
r

r
 is known as the 

generalized Coulomb field, or velocity field. 
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     The second term in ( )r ,E r t
G G ,  

( )
( )34 o

q u a
uπε

× ×⎡ ⎤⎣ ⎦
G GG

GGi
r r

r
 is known as the acceleration field  

(a.k.a. the radiation field). 

The retarded Poynting’s vector is: ( ) ( ) ( )( )r r r
1, , ,

o

S r t E r t B r t
μ

= ×
G G GG G G

 where: ( ) ( )r r
1 ˆ, ,B r t E r t
c

= ×
G GG Gr  

 

Use the ( ) ( ) ( )A B C B A C C A B× × = −
G G G G G GG G G

i i  rule: 
 

 ( ) ( ) ( )( ) ( ) ( ) ( )2
r r r r r r

1 1ˆ ˆ ˆ, , , , ,
o o

S r t E r t E r t E r t E E r t
c cμ μ

⎡ ⎤ ⎡ ⎤= × × = −⎣ ⎦ ⎣ ⎦
G G G G GG G G G Gir r r  

 
     However, note that not all of this EM energy flux constitutes EM radiation (real photons) – 
some of it is still in the form of virtual photons,  ( ) ( ) ( )r r r, , ,virt radS r t S r t S r t= +

G G GG G G
 

 
     The metaphor Griffiths uses, that of flies “attached” to a moving garbage truck, is a 
reasonable picture to imagine here…. 
 

• n.b. – In order to “detect” the total EM power radiated by a moving point charge q, we draw a 
huge sphere of radius r  centered on the position of the charged particle ( )rw tG  at the retarded 

time rt t c= − r  and wait the appropriate time interval rt t t cΔ = − = r  for the EM radiation 
radiated at the retarded time tr to arrive at the surface of the sphere. 

 
Note that the retarded time tr is the correct retarded time for all points on the surface of the 
sphere S ′ . 

 

• Again, since the area of the sphere, 2
sphereA π= r (  ~ r2) then any term in ( )r ,S r t

G G  that varies 

as 21 r  will yield a finite answer for radiated EM power, ( )r ,rad S
P S r t da⊥′

= ∫
G G Giv . 

• However, note that terms in ( )r ,S r t
G G  that vary as 3 4 51 ,  1 ,  1r r r … etc. will contribute 

nothing to radP  in the limit r → ∞. 
• For this reason, only the acceleration fields represent true EM radiation (real photons) – 

hence their other name, that of radiation fields: 
 

( )
( )

( )3,
4rad

o

qE r t u a
uπε

= × ×⎡ ⎤⎣ ⎦
G G G GG

GGi
r r

r
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The EM velocity fields do indeed carry EM energy – as the charged particle moves through 
space-time, this EM energy is dragged along with it – but it is not in the form of EM radiation. 
 

Note that ( ),radE r t
G G  is ˆ⊥ r  (due to the ( )u a× ×⎡ ⎤⎣ ⎦

G GGr  term) 

⇒  The second term in ( ),radS r t
G G  vanishes: 

 

( ) ( ) ( )21 ˆ ˆ, , ,rad rad rad
o

S r t E r t E r t
cμ

= −
G GG G Gir r( ) ( ) ( )21 ˆ, ,rad rad

o

E r t E r t
cμ

⎡ ⎤ =⎢ ⎥⎣ ⎦
G G G r  

 

Now if the point charge  q  happened to be at rest ( ( )r 0v t =
G ) at the retarded time tr,  

then: ( ) ( )r rˆu t c v t= −
G Gr

0

ˆc
=

= r  {here}. Then in this case:     
 

( )
( )

( )
( )

( )

( ) ( )

( )

3 3

2 2 2

2

ˆ,
4 4 ˆ

1 1ˆ ˆ ˆ                 
4 4

1ˆ ˆ                       since  
4

                

rad
o o

o o

o
o o

o

q qE r t u a c a
u c

q qa a
c c r

q a
c

q

πε πε

πε πε
μ ε μ
π

μ

= × × = × ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= × × = × ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= × × =⎡ ⎤⎣ ⎦

=

G G G G GG G
GG Gi i

G GG

G

r rr r r
r r r

r r r r
r

r r
r

( ) ( )N ( )
1

ˆ ˆ ˆ ˆ ˆ ˆ
4 4

oqa a a aμ
π π

=

⎡ ⎤
− = −⎡ ⎤⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦

G G G Gi i ir r r r r r
r r

 

 

Then {here} in this case { ( )r 0v t =
G }:      

    ( ) ( ) ( )
2

22 2
2

1 ˆ ˆ ˆ, ,
4

o
rad rad

o

qS r t E r t a a
c c

μ
μ π

⎡ ⎤= = −⎣ ⎦
G G G Gir r r

r
 

 
But:  ˆ cosa a θ=

Gir  where θ = opening angle between r̂  and acceleration aG . 
 

∴ ( )
2 2 2 2 2

2
2 2

sinˆ ˆ, 1 cos
4 4

o o
rad

q a q aS r t
c c

μ μ θθ
π π

⎛ ⎞
⎡ ⎤= − = ⎜ ⎟⎣ ⎦

⎝ ⎠

G G r r
r r

 

 
Here again, we see that no power is radiated in the forward-backward directions (θ = 0 and θ = π) 
– radiated power is maximum when 2 90oθ π= = ,  i.e. when ˆ a⊥

Gr  - get a donut-shaped 
intensity pattern about the instantaneous acceleration vector ( )ra tG : 
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The power radiated by this point charge (which is instantaneously at rest at time tr) is: 
 

( ) ( ) ( )2 2 2
r

2 2

sin,
16

o
rad radS

q a t
P t S r t da

c
μ θ

π⊥′
= =∫

G G Giv r
2r

( )2 2
r

8

sin

           
16

o

d d

q a t

θ θ ϕ

μ
=

∫

2π
2

c
πi ( )2 2

r3

0
24

3

sin
8

oq a t
d

π μ
θ θ

=

=∫��	�

4

π
i ( )2 2

r

3 6
oq a t

c
μ

π
=

 

 

( ) ( )2 2
r

6
o

rad

q a t
P t

c
μ

π
= ⇐  Larmour Power Formula {again} !!! 

 

This formula was derived assuming ( )r 0v t =
G , but in fact, we get the same formula as long as 

( )rv t c�  ( non-relativistic motion). 
 

• An exact treatment of ( ) 0rv t ≠
G  is (much) more difficult / tedious. 

• Note that in special relativity {inertial (non-accelerated) reference frames}, the choice 
( )r 0v t =
G  merely represents a judicious choice of an (inertial) reference frame, with no 
loss of generality. 

• If we can determine how ( )radP t transforms from one reference frame to another, then we 

can deduce the more general ( )r 0v t ≠
G  result (Liénard) from the (Larmour) ( )r 0v t =

G  
result.  (See e.g. Griffiths problem 12.69, p. 545). 

• For the case ( )r 0v t ≠
G , ( ),radE r t

G G  is more complicated (than the ( )r 0v t =
G  case).   

• For the case ( )r 0v t ≠
G , ( ),radS r t

G G  = the rate of energy passing through the (imaginary) 

large-radius surface S ′ of the sphere, ( ),radS r t
G G is NOT the same as the rate of energy 

when it left the charged particle, at the retarded time tr. 
 
     Consider the example of a person firing a stream of bullets (photons) out the window of a 
moving car, parallel to the direction of motion of the car: 

 
     The rate at which the bullets strike a target, Rtgt (#/sec) is not the same as the rate of bullets 
leaving the gun, Rgun (#/sec) because of the relative motion of the car with respect to the target.  
This is again related to the Doppler effect.  It is purely a geometrical factor (i.e. it is not due to 
special relativity). For bullets moving parallel to the car’s velocity vector: 
 

( )( )r1gun tgtR t Rβ= −     or: 
( )r

1
1tgt gunR R

tβ
=

−
     where:   ( ) ( )r

r
v tt cβ ≡  
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Whereas for bullets moving anti-parallel to the car’s velocity vector: 
 

( )( )r1gun tgtR t Rβ= +      or: 
( )r

1
1tgt gunR R

tβ
=

+
       where:   ( ) ( )r

r

v t
t

c
β ≡

GG
 

 
And for arbitrary directions, with ˆ ≡r unit vector from car to target: 
 

( )( )rˆ1gun tgtR t Rβ= −
G
ir   or: 

( )( )r

1
ˆ1tgt gunR R

tβ
=

−
G
ir

  where:  ( ) ( )r
r

v t
t

c
β ≡

GG
 

So if dW
dt

= rate of energy passing through sphere of radius r then the rate at which energy leaves the 

charge q is: r

r r

ˆdW dW dt u dWtdW
dt tdt dt dt c dt

∂ ⎛ ⎞= = = ⎜ ⎟∂ ⎝ ⎠

Gii r
  since:  r

ˆ
t c c
t u u

∂
= =

∂
G GGi i

r
r r

 with ( )rˆu c v t≡ −
G Gr . 

                (see P436 Lect. Notes 12, p. 14-15, and/or Griffiths problem 10.17, p. 441) 
 

But:     
( )( ) ( ) ( )r

r r

ˆ ˆˆ ˆ ˆ1 1
c v tu v t c t

c c
β κ

−
= = − = − ≡

GG Gii Gi i
r rr r r  = retardation factor  ( ) ( )r

r

v t
t

c
β ≡

GG
 

 

Then: ( )( )r
r

ˆ ˆ1dW u dW dW dWt
dt c dt dt dt

β κ⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

G Gi ir
r  

 

Thus, the power radiated into a patch of area 2 2sinda d d dθ θ ϕ= = Ωr r  on the sphere S ′ , where 
sind d dθ θ ϕΩ =  = solid angle into which the EM power is radiated into area element da on the 

surface of the sphere S ′ , with ( )
( )

( )3,
4rad

o

qE r t u a
uπε

= × ×⎡ ⎤⎣ ⎦
G G G GG

GGi
r r

r
 is given by: 

 

( ) ( ) ( ) ( )

( )
( )( )

( ) ( )( )

( ) ( )( )
( )( )

r r r2 2 2

2 2 2r
r r62 2

r

2
2

r r
52

r

ˆ ˆ 1,

ˆ1 ˆ                
16

ˆ
                

16 ˆ

rad
rad rad

o

o o

o

dP t u t u t
S r t E

d c c c

u tq u t a t
c c u t

u t a tq
u t

μ

π ε μ

π ε

⎛ ⎞ ⎛ ⎞
= ∗ =⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠

⎛ ⎞
= × ×⎜ ⎟

⎝ ⎠

× ×
=

G Gi iG

Gi G G
GGi

G G

Gi

r r
r r

r r
r

r

r

r

 

 

Thus:   
( ) ( ) ( )( )

( )( )

2
2

r r
52

r

ˆ

16 ˆ
rad

o

u t a tdP t q
d u tπ ε

× ×
=

Ω

G G

Gi

r

r
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Integrating ( )rad

S

dP t
d

d′
Ω

Ω∫  over the sphere S ′  (i.e. over θ and φ angles) is a pain…. 

However, the result of this integration {again!} yields the famous Liénard Formula: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
22 2 2r r6 2 6 2

r r r r6 6
o o

rad

v t a tq qP t a t a t t a t
c c c

μ μγ γ β
π π

⎛ ⎞×
⎜ ⎟= − = − ×
⎜ ⎟
⎝ ⎠

G G G G
 

 

Where: ( ) ( )r rt v t cβ ≡
G G

 and ( )
( )r 2

r

1
1

t
t

γ
β

≡
−

 = Lorentz Factor. 

       0 1β≤ ≤         1 γ≤ ≤ ∞  
 
Note that when v → c, the γ6 factor goes “berserk” –  as the charged particle travels closer and 
closer to the speed of light c, the more one tries to accelerate it (to make it travel even closer to 
the speed of light, c), it radiates away more and more of the (absorbed) energy as v → c!!! 
 

⇒  very high energy electron accelerators are problematic in this regard, because the electron is  
so light, mass-wise, e.g. relative to the proton: 20.511em MeV c= whereas 2938.28pm MeV c= . 
 
 
Griffiths Example 11.3: 
 

   Suppose ( ) ( )r r and  v t a tG G  are instantaneously collinear (i.e. parallel to each other). Find the angular 

distribution of radiated power ( )raddP t
dΩ

 when ( ) ( ) ( ) ( )r r r rv t a t v t a t=
G Gi   (i.e. when ( ) ( )r rv t a tG G& ) 

 

Then in this case:  ( ) ( )( )r rˆu t c v t= −
G Gr                         because ( ) ( )r rv t a tG G&  

Thus: ( ) ( ) ( )( ) ( ) ( ) ( ) ( )r r r r r r rˆ ˆu t a t c v t a t c a t v t a t× = − × = × − ×
G G G G G G Gr r ( )

0

rˆc a t
=

= ×

������

Gr   
 

Then: 
( ) ( ) ( )( )

( )( )
( )( )

( )( )

2 2
2 2 2

r r r
5 52 2

r r

ˆ ˆ ˆ

16 16ˆ ˆ
rad

o o

u t a t a tdP t q q c
d u t u tπ ε π ε

× × × ×
= =

Ω

G G G

G Gi i

r r r

r r
  ( ) ( )r

r

v t
t

c
β ≡

GG
   

 
Work on denominator term: ( ) ( )( ) ( ) ( )( )r r r rˆ ˆ ˆ ˆ ˆ1u t c v t c v t c t cβ κ= − = − = − =

GG G Gi i i ir r r r r  
 

Work on numerator term:     ( )( ) ( )( ) ( )
P

( ) ( )( ) ( )
1

r r r r rˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa t a t a t a t a t
=

× × = − = −
G G G G Gi i ir r r r r r r r         

 

        Thus:     ( )( ) ( ) ( )( )2 22
r r rˆ ˆ ˆa t a t a t× × = −

G Gir r r  
 

( )rˆ1 tκ β≡ −
G
ir
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Then: 
( ) ( ) ( )( )

( )( )
( ) ( )( )

( )( )

2 22 2
2 2 2r r r r

5 52 2 35
r r

ˆ ˆ

16 16ˆ ˆ1 1
rad

o o

a t a t a t a tdP t q c q
d cc t tπ ε π εβ β

⎡ ⎤ ⎡ ⎤− −
⎣ ⎦ ⎣ ⎦= =

Ω − −

G Gi i
G G
i i

r r

r r
 

 

If we let the ẑ -axis point along ( )rv tG –  along ( ) ( )r rt v t cβ =
G G  {and hence also along ( )ra tG }:  

 

Then: ˆ cosa a θ=
Gir   and:  ˆ cosv v θ=

Gir   or:  ˆ cosβ β θ=
G
ir  where θ = opening angle  

between r̂  and acceleration aG , as shown on page 12 above. 
 

Thus: 
( ) ( ) ( )

( )( )

22 2
r

52 3
r

1 cos
16 1 cos

rad

o

dP t q a t
d c t

θ

π ε β θ

−
=

Ω −
     but:   2

1
o oc

ε μ=  

 

   ∴ 
( ) ( )

( )( )
2 2 2

r
52

r

sin
16 1 cos

rad odP t q a t
d c t

μ θ
π β θ

=
Ω −

  with: ( ) ( )r
r

v t
t

c
β =  

 

When β → 0: 
( ) ( ) ( )

2 2
r 2 0 2

2 ˆsin ,
16

rad o v
rad

dP t q a t
S r t

d c
μ

θ
π

== =
Ω

GG G ir r  
 

When β → 1: The donut of EM radiation intensity is folded forward by the factor ( )51 1 cosβ θ− : 

 
Note that there is still no radiation precisely in the forward direction, rather it is in a cone which 
becomes increasingly narrow as β → 1, of half-angle: 
 

( )max 1 2θ β≈ −     {see Griffiths problem 11.15, p. 465} 
 

The total EM power radiated into 4π steradians by the point charge for v aG G&  is: 
 

( ) ( ) ( )
( )( )

( )
( )( )

2 2 2
r

52
r

2 2 2
r

50
r

sin sin
16 1 cos

sin sin
8 1 cos

rad o
rad

o

dP t q a t
P t d d d

d c t

q a t
d

c t

θ π

θ

μ θ θ θ ϕ
π β θ

μ θ θ θ
π β θ

=

=

= Ω =
Ω −

           =
−

∫ ∫

∫
 

 
Let:   u =   cosθ θ = 0 → u = +1 
 du = −sinθdθ θ = π → u = −1 
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Then:   ( ) ( ) ( )
( )

22 2
1r

51

1
8 1

o
rad

uq a t
P t du

c u
μ

π β−

−
=

−∫    Integrate by parts: vdu uv udv= −∫ ∫  

 

( ) ( ) ( )( ) ( )
( )( )

2 2 2 2
3r r2

r 32
r

4 11
8 3 6 1

o o
rad

q a t q a t
P t t

c c t

μ μ
β

π π β

−
⎡ ⎤

⎡ ⎤ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦
 

 

But: ( )
( )r 2

r

1
1

t
t

γ
β

≡
−

    with:   ( ) ( )r rt v t cβ ≡
G G

 

 

   ∴     ( ) ( ) ( )
2 2

r 6
r6

o
rad

q a t
P t t

c
μ

γ
π

=  
 
     This is the same/identical result as obtained directly from the Liénard formula when 

( ) ( )r rv t a tG G& . It is also known as the classical formula for bremmstrahlung. 
 

     Again, note that because ( ) ( )2
r~radP t a t , the EM power radiated doesn’t depend on the sign 

of ( )ra tG  –  i.e. whether the charged particle is accelerating or decelerating. 
 

     Now it can also be shown that the Lorentz factor 2E mcγ = , where ( ) ( )22 2E pc mc= +  

= total relativistic energy associated with a charged particle moving with ( ) ( )r rt v t cβ ≡
G G .  

Thus, when v → c, for a given {high} total energy E, then 2~ 1 mcγ  and thus: ( ) 6~ 1radP t m .  
 

     Comparing EM bremmstrahlung radiation from an accelerated electron { 20.511em MeV c= } 
vs. that of e.g. an accelerated muon { 2105.66m MeV cμ = }, for the same total energy E, an 

electron will radiate ( ) ( )6 6 13206.8 7.8 10em mμ = ×� times more EM energy than a muon.  
This explains why muons have such high penetrating power in traversing matter – they lose 
relatively little energy via bremmstrahlung, whereas high-energy electrons radiate EM energy  
“like crazy” in matter. 
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The Radiation Reaction on a Radiating Charged Particle 
 
     According to the laws of classical electrodynamics, an accelerating electric charge radiates 
electromagnetic energy in the form of real photons ( = quanta of the EM radiation field). 
 
    By conservation of energy, the EM radiation carries off / carries away energy – which must 
come at the expense of the charged particle’s kinetic energy {since its rest mass cannot change}. 
 
     In other words, one puts in energy to accelerate the charged particle, but the charged particle 
winds up being accelerated less than e.g. an electrically neutral particle {of the same rest mass of 
the charged particle}, for the same amount of input energy!  
    The devil is in the microscopic details of precisely how this is accomplished in both cases. 
At the microscopic level, an electrically charged particle of mass m is accelerated/increases its 
{kinetic} energy ( ) 21T mcγ= −  by absorbing EM energy (either in the form of virtual or real 
photons) from a source of EM field(s). In order to accelerate/increase the {kinetic} energy 

( ) 21T mcγ= −  of an electrically neutral particle, it too must interact, at the microscopic level, 
via one of the four fundamental forces of nature, with a source {of fields} associated with that 
fundamental force. 

 
     In the electromagnetic case, if an electrically charged particle is decelerated and radiates EM 
energy away in the form of {real} photons, by energy conservation, the change in the kinetic 
energy of the charged particle must equal the sum of the energies associated with each of the  
n individual {real} photons radiated by the charged particle, : 
 

1 1
i i

n n

q
i i

KE E hfγ γ
= =

Δ = =∑ ∑  

 
 
 
 
 
 

e+  

e+  

e−  

e−  

γ

x {space} 

ct {time} 
Feynman/Space-Time Diagram for 

Electron-Positron Scattering {QED} 
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     This implies that the radiation must {somehow!} exert a force, radF
G

 back on the electrically 
charged particle –  i.e. a recoil force, analogous to that associated with firing a bullet from a gun.  
Thus, linear momentum  p must also conserved in this process. In the emission of EM radiation 
{real photons}, linear momentum 

i i i
p h hf cγ γ γλ= =  is also carried away by each of the {real} 

photons.  This comes at the expense of the charged particle’s momentum qpG  and  

(non-relativistically, for qv c� ): 2 2q qKE p m=  
 

1 1 1

ˆ ˆ
i i i i

i

n n n
recoil
q

i i i

hp c p c ck hf kγ γ γ γ
γλ= = =

Δ = = =∑ ∑ ∑G G
   

i
Eγ

G
 

             ˆ
i

kγ  = wave vector for the ith photon             ˆ
i

kγ  
 
              

i
Bγ

G
 

     Thus, if a similarly accelerated/decelerated neutral particle doesn’t radiate force quanta {of 
some kind} because it is accelerated/decelerated, then because the electrically-charged particle 
does radiate EM quanta {real photons} in the acceleration/deceleration process, then we can see 
that the final-state q oKE KE<  for similarly accelerated / decelerated neutral particle of the same 
mass m and initial/original kinetic energy as that of the electrically-charged particle. 
 

The Radiation Reaction Force on a Charged Particle 
 

     For a non-relativistic particle ( qv c� ) the Larmour Formula for the total instantaneous  
EM radiated power is: 

( ) ( )2 2
r

6
o

rad

q a t
P t

c
μ

π
�   (Watts) 

 
     Conservation of energy would then imply that this radiated EM power = the instantaneous 
rate at which the charged particle loses energy, due to the effect of the EM radiation back-
reaction / recoil force ( )rradF t

G
: 

 

( ) ( ) ( ) ( ) ( )2 2
r r

r r r 6
o

q rad

dW t q a t
P t F t v t

dt c
μ

π
= = = −

G Gi   (Watts) 
 
This relation / equation is actually wrong.  Why??? 
 
     The reason is, that we calculated the radiated EM power by integrating Poynting’s vector 

( ),radS r t
G G  for the EM radiation associated with the accelerating point charged particle over an 

“infinite” sphere of radius r ; in this calculation the EM velocity fields played no role, since they 
fall off too rapidly as a function of r  to make any contribution to ( )radP t . However, the EM 
velocity fields do carry energy – because the total retarded electric field associated with the 
electrically charged particle is the sum of two terms – the EM velocity field  and  the EM 
acceleration field terms: 

( ) ( ) ( )r r r, , ,tot v aE r t E r t E r t= +
G G GG G G
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The total retarded EM energy density associated with the total retarded electric field is: 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2

2 2

2
1 1

r r r2 2

1
r r r r2

, , , ,

               , 2 , , ,

tot tot v a
o o

v v a a
o

u r t E r t E r t E r t

E r t E r t E r t E r t

ε ε

ε

Ε = = +

⎡ ⎤= + +⎣ ⎦

G GG G G G

G GG G G Gi
 

 
 Energy stored in velocity   Cross term!!!  Energy stored      Energy stored in 
field only (virtual photons)     in mixture of velocity and  acceleration field only 
          acceleration field (both       (real photons) 
    Generalized Coulomb      virtual & real photons!!) 
             fields only 
             “Conversion” field     Radiation fields only 
           virtual → real photons 
             {and vice versa!} 
Note that: 
   The   Generalized Coulomb fields vary as 4~ 1 r     Neither the Generalized Coulomb field 
   The “Conversion” fields vary as 3~ 1 r      nor the “Conversion” field contribute to 
   The    Radiation     fields vary as 2~ 1 r      EM radiation in the “far-zone” limit r r′�  
 
     Clearly, the first two terms in the EM energy density formula associated with the electric field 
have energy associated with them.  However, this energy stays with the charged particle – it is 
not radiated away. 
 
     As the charged particle accelerates / decelerates, energy is exchanged between the charged 
particle and the velocity and acceleration fields. For the latter term (the last/ 3rd  term in ( ),totu r tΕ

G  
above), this energy is irretrievably carried away (by real photons) out to r = ∞. 
 

     Thus, ( ) ( ) ( ) ( ) ( )2 2
r r

r r r 6
o

q rad

dW t q a t
P t F t v t

dt c
μ

π
= = = −

G Gi  only accounts for the last / 3rd term 

( ( )2

r ,aE r tG ) in ( ),totu r tΕ
G  above. 

 
     If we want to know the total recoil force exerted by the EM velocity and the EM acceleration 
fields on the point charge, then we need to know the total instantaneous power lost, not just the 
radiation-only contribution. 
 
     Thus, in this sense, the term “radiation” (back)-reaction is a misnomer because it should more 
appropriately be called an EM field (back)-reaction. Note further that this EM field (back)-
reaction is also intimately connected with the issue of the so-called “hidden” EM momentum. 
 

     Shortly, we’ll see that ( )rradF t
G

 is determined by the time derivative of the acceleration ( )ra tG , 

and can be non-zero even when the acceleration ( )ra tG  is instantaneously zero!   
(Thus the charged particle is not radiating at that {retarded} instant in time!) 
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     By energy conservation, the energy lost by the electrically charged particle in a given 
(retarded) time interval ( )2 1 2 1r r r r r  t t t t tΔ ≡ − >  must equal the energy carried away by the EM 
radiation, plus whatever extra energy has been pumped into the EM velocity/generalized 
Coulomb field. 
 
     If we consider time intervals 

2 1r r rt t tΔ = −  such that “the system” (consisting of the point-
charged particle q and the EM velocity field – see drawing on following page) returns to its 
initial state, then (assuming that the energy in the EM velocity fields is the same at time 

2r
t  as at 

time 
1r

t , then the only net energy loss is in the form of EM radiation (due to the emission of  
n real photons). 
 

 

     Thus, while instantaneously  ( ) ( ) ( ) ( ) ( )2 2
r r

r r r 6
o

q rad

dW t q a t
P t F t v t

dt c
μ

π
= = = −

G Gi  is incorrect,  

by suitably averaging this relation over a finite time interval, it is valid, with the restriction that 
state of  “the system” is identical at the {retarded} times 

1r
t and 

2r
t : 

 

   ( ) ( ) ( )r r r r2 2

r r r r1 1

2
2

r r r r r
r r

1 1
6

t t t to
radt t t t

qF t v t dt a t dt
t t c

μ
π

′ ′= =

′ ′= =
′ ′ ′ ′ ′= −

Δ Δ∫ ∫
G Gi  

 
     For the case of periodic / harmonic motion, this means that the above integrals must be 
carried out over at least one (or more) complete / full cycles,  

2 1r r r  t t t nτΔ ≡ − = ,  n = 1, 2, 3, . . . 
 

     For non-periodic motion, the condition that “the system” be identical at times 
1r

t and 
2r

t is 
more difficult to achieve – it is not enough that the instantaneous velocities and accelerations be 
equal at

1r
t and 

2r
t , since the (retarded) fields farther out (at the {present} time rt t c= + r ) 

depend on ( )rv tG  and ( )ra tG  at the earlier {retarded} time tr !!! 
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     For non-periodic motion, the condition that “the system” be identical at times 
1r

t and 
2r

t  

technically requires that not only ( ) ( )1 2r rv t v t=
G G  and ( ) ( )1 2r ra t a t=

G G , but all higher derivatives of 

( )rv tG  must also likewise be equal at times 
1r

t and 
2r

t !!! 
 
     However, in practice, for non-periodic motion, since the EM velocity fields fall off rapidly with 
r , it is sufficient that ( ) ( )1 2r rv t v t=

G G  and ( ) ( )1 2r ra t a t=
G G , for a brief time interval, 

2 1r r rt t tΔ = − . 
 
The RHS of the above equation can be integrated by parts: 
 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )
r2

r r r r r r2 2 2

r r r r r r1 1 1
r1

r

2
r r r r2

r r r r r r2
r r r r

t
t t t t t t

t t t t t t
t

a t

dv t dv t dv t d v t
a t dt dt v t v t dt

dt dt dt dt
′ ′ ′= = =

′ ′ ′= = =

′≡

′ ′ ′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞
′ ′ ′ ′ ′ ′= = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ ∫ ∫

G�

G G G G
G Gi i

��	�

 

 

Because of the restriction on ( ) ( )1 2r rv t v t=
G G  and ( ) ( )1 2r ra t a t=

G G  at the time endpoints 
1r

t and 
2r

t ,  
 

The term:  ( ) ( ) ( ) ( )
r2

r2

r1
r1

r
r r r

r

0
t

t

t
t

dv t
v t v t a t

dt
′⎛ ⎞

′ ′ ′= =⎜ ⎟
⎝ ⎠

G
G G Gi i  

 

Thus:       ( ) ( )( ) ( ) ( )( )r r r r2 2

r r r r1 1

2

r r r r r r6
t t t to

radt t t t

qF t v t dt a t v t dt
c

μ
π

′ ′= =

′ ′= =
′ ′ ′ ′ ′ ′= +∫ ∫

G G G G�i i  
 

Or:       ( ) ( ) ( )r r2

r r1

2

r r r r 0
6

t t o
radt t

qF t a t v t dt
c

μ
π

′ =

′ =

⎛ ⎞
′ ′ ′ ′− =⎜ ⎟

⎝ ⎠
∫

G G G� i  

 
     Mathematically, there are lots of ways this integral equation can be satisfied, but it will 
certainly be satisfied if: 

( ) ( )
2

r r6
o

rad
qF t a t
c

μ
π

′ ′=
G G�   ⇐  Abraham-Lorentz formula 

 
     This relation is known as the Abraham-Lorentz formula for the EM “radiation reaction” force. 

 ( ) ( )
2

r r6
o

rad
qF t a t
c

μ
π

′ ′=
G G�  is the simplest possible form the EM radiation reaction force can take. 

 
     Physically, note that this formula tells us only about the time-averaged force {albeit} over a 
very brief time interval 

2 1r r rt t tΔ = − , of the force component parallel to ( )rv tG  - because of the 

original term ( ) ( )( )r rradF t v t′ ′
G Gi . As such, it tells us nothing about ( ) ( )r r  to radF t v t

⊥
⊥

G G . 
 

     n.b. These averages are also restricted to time intervals such that 
2 1r r rt t tΔ = −  is chosen to 

ensure that ( ) ( )1 2r rv t v t=
G G  and ( ) ( )1 2r ra t a t=

G G . 
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     The Abraham-Lorentz radiation reaction force ( ) ( )
2

r r6
o

rad
qF t a t
c

μ
π

′ ′=
G G�  also has disturbing, 

seemingly unphysical implications that are still not fully understood today, despite the passage of 
nearly a century! 
 
     Suppose a charged particle is subject to NO external forces.  Then Newton’s 2nd law says that: 
 

  ( ) ( ) ( )
2

r r r6
o

rad
qF t a t ma t
c

μ
π

′ ′= =
G G G�   where m = (real) rest mass of the charged particle. 

 

Then:  ( ) ( ) ( ) ( )
2

r r r r6
o

rad
qF t ma t m a t ma t
mc

μ τ
π

′ ′ ′= = =
G G G G� �   or:  ( ) ( ) ( )

2

r r r6
oq a t a t a t
mc

μ τ
π

= =
G G G� �   

 

The solution to this linear, first-order homogeneous differential equation is: ( ) r
r

t
oa t a e τ+=  

where ao = acceleration at the {retarded} zero of time, tr = 0, and 
2

6
oq
mc

μτ
π

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
, which for the 

electron is a time constant of : 246 10 seceτ −×� . 
 
If  ao ≠ 0, the acceleration exponentially increases  
(+ve, if ao > 0, −ve, if ao < 0) as time progresses! 
This is a runaway solution, which is CRAZY !!! 
This can only be avoided if ao ≡  0. 
 
     However, if the runaway solutions are excluded 
on physical grounds, then the charged particle 
develops an acausal behavior – e.g. if an external 
force is applied, the charged particle responds before 
the force acts!!  This acausal “pre-acceleration” 
“jumps the gun” by only a short time 

246 10eτ −×� sec, and since we know that quantum 
mechanics and uncertainty principle are operative on short distance/short timescales, perhaps this 
classical behavior shouldn’t be too unsettling to us. Nevertheless, to many it is….  (see Griffiths 
Problem 11.19, p. 469 for more aspects/ramifications of the Abraham-Lorentz formula…) 
 
    Such difficulties also persist in the fully-relativistic version of the Abraham-Lorentz equation. 
 
Griffiths Example 11.4 – EM Radiation Damping: 
 
     Calculate the EM radiation damping of an electrically charged particle attached to a spring of 
natural angular frequency ωo with driving frequency = ω 
 
The 1-dimensional equation of motion is: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

r r r r

2
r r r

spring rad driving

o driving

mx t F t F t F t

m x t m x t F tω τ

=    +   +

           = − + +

��

���
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With the system oscillating at the driving frequency ω: 
 

Instantaneous position: ( ) ( )r rcosox t x tω δ= +  

Instantaneous velocity: ( ) ( )r rsinox t x tω ω δ= − +�  

Instantaneous acceleration: ( ) ( )2
r rcosox t x tω ω δ= − +��  

Instantaneous jerk:  ( ) ( ) ( )( )
( )r

3 2
r r rsin sino o

x t

x t x t x tω ω δ ω ω ω δ
=

= + + = − − +
�

���
����	���
  

Thus: ( ) ( )2
r rx t x tω= −��� �  

Thus: ( ) ( ) ( ) ( )2 2
r r r ro drivingmx t m x t m x t F tτ ω ω+ + =�� �  

 

Define the damping constant: 2γ ω τ≡   (SI units:  1 sec ) 
 

Then: ( ) ( ) ( ) ( )2
r r r ro drivingmx t m x t m x t F tγ ω+ + =�� �  ← 2nd-order linear inhomogeneous diff. eqn. 

 

     n.b. In this situation, the EM radiation damping is proportional to ( )rv t�� . Compare this to  

e.g. “normal” mechanical damping, which is proportional to ( )rv t  (e.g. friction / dissipation). 
 

The Physical Basis of the Radiation Reaction 
 

   We derived the Abraham-Lorentz EM radiation reaction force ( ) ( )
2

r r6
o

rad
qF t a t
c

μ
π

′ ′=
G G�  from 

consideration of conservation of energy in the EM radiation process, from what was observable 
in the far-field region, r → ∞. 
 
     Classically, if one tries to determine this radiation reaction force at the radiating point charge, 
we run into mathematical difficulties due to the mathematical point-behavior of the electric 
charge (e.g. at its origin) where the (static) electric field and corresponding scalar potential 
become singular, this problem correspondingly has infinite energy density at the point charge. 
 
This singular nature is also the present for the retarded EM fields associated with a moving point 
charge: 

( )
( )

( ) ( )2 2
r 3,

4 o

qE r t c v u u a
uπε

⎡ ⎤= − + × ×⎣ ⎦
G G G G GG

GGi
r r

r
 

( ) ( )r r
1 ˆ, ,B r t E r t
c

= ×
G GG Gr    with:   ˆu c v= −

G Gr  
 
Today, we know that quantum mechanics is operative, e.g. from the Heisenberg uncertainty 
principle on {e.g. 1-dimensional} distance scales of: 
 

xx pΔ Δ ≤ =   where:  2h π==   = Planck’s Constant / 2π,  346.626 10 J-sech −= ×  
 

Then:  xx pΔ ≤ Δ=  but: 2
x ep c m cΔ <  {for electrons} 
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Note that: hc = 1240 eV-nm and: 1 nm = 10−9 m 
 

∴ 12
2

1240 eV-nm / 2 0.386 10 m 386 fm
0.511 meVe

cx
m c

π −Δ ≤ = × =
= �  (1 fm = 10−15 m) 

 

The quantity 2    386 fm
2

e
e

e

c
m c

λ
π

≡ ≡ =
=�  = reduced Compton wavelength of the electron 

         And:  2 2427 fme
e

hc
m c

λ ≡ =  = Compton wavelength of electron 

Thus: 15
2 386 fm 386 10 me

e

cx
m c

−Δ ≤ = = = ×
=�  

 

  for short distance scales of order 2 386 fme ex c m cΔ ≤ = =� =  {and less} the behavior of an 
electron will be manifestly quantum mechanical in nature. Thus, we should not be surprised that 
when extrapolating classical EM theory into this short-distance regime, we obtain erroneous 
answers – we have no reason to expect classical theory to {continue to} hold in this quantum 
domain !!! 
 
 

( ) 1
4e

o

qV r
rπε

= −  

 
 
 
 
 
 
 
 
 
 
 
Similarly, we have no business extrapolating quantum mechanics to distance scales less than: 
 

( )
11 3 1 1 31

57
22 8

2 2 6.673 10 m kg s 9.109 10 kg 1.35 10 m
3 10 m / s

BH N e
e

G mr
c

− − − −
−× × × ×

= = ×
×

�   =           

 
Where GN = Newton’s gravitational constant 
 
     The electron is a black hole at this distance scale – the Schwartzschild radius/event horizon of 
an electron is where space & time interchange roles! 
 
     However, long before this regime is reached, at distance scales corresponding to the Planck 
energy / Planck mass 2 3 8 19 282.2 10 1.2 10 GeV 1.2 10 eVp Nm c c G kg−= × = × = ×= �   

Schwartzschild radius of 
electron (event horizon) 
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{1 GeV = 109 eV}, is the regime of quantum gravity, where space-time itself becomes  
“foam-like” (not continuous) – quantized {somehow}. The distance scale where quantum gravity 
is operative is the Planck length 3 351.6 10 mP NL G c −= ×= � . Note that the Planck length 
corresponds to a time-scale {known as the Planck time} of 

5 445.4 10 secP P Nt L c G c −= = ×= � . 
 
     Nevertheless, back in the early 1900’s, ignorance of quantum gravity and quantum mechanics 
did not stop Abraham, Lorentz, Poincaré {and many others} from applying classical EM theory - 
electrodynamics to calculate the self-force / radiation back-reaction on a point electric charge. 
 
     These efforts by-and-large modeled the point electron as {some kind of} spatially-extended 
electric charge distribution (of finite, but very small size), calculations could then be carried out 
and then (at the end of the calculation) the limit of the size of the charge distribution → 0.   
 
     In general (as we have already encountered this before in electrodynamics), the {retarded} 
classical/macroscopic EM force of one part (A) acting on another part (B) is not equal and 
opposite to the force of B acting on A,  Newton’s 3rd Law is seemingly violated: 
 

( ) ( )r r, ,AB BA
B AF r t F r t≠ −

JJJG JJJGG GG G
 

 
     Adding up the imbalances of such force pairs, we obtain the net force (imbalance) of a charge 
on itself –  the “self-force” acting on the charge. 
 
 
     H.A. Lorentz originally calculated the self-force using a 
     spherical charge distribution – tedious – see J.D. Jackson’s 
     Classical Electrodynamics, 3rd ed., sec. 16.3 and beyond if 
     interested in these details…. 
 
 
 
 
 
 
A “less realistic” model of a charge is to use a rigid dumbbell 
in which the total charge q is divided into 2 halves separated  
by a fixed distance d  (simplest possible charge arrangement  
to elucidate the self-force mechanism): 
 
 
 
Assume that the dumbbell moves in x̂ -direction and (for simplicity) assume that the dumbbell is 
instantaneously at rest at the retarded time tr. Then the retarded electric field at (1) due to (2) is: 
 

( )
( )

( ) ( )
( )

( ) ( )
1

21 2 22
r 1 3 3,

4 8o o

q qE r t c a u u a c a u u a
u uπε πε

⎡ ⎤ ⎡ ⎤= + − = + −⎣ ⎦ ⎣ ⎦
JJGG G G G G G G G G GG G G Gi i i iG GG Gi i

r rr r r r
r r
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Here:        ˆu c=
G r  {because ( )r 0v t =

G } 
 

Note that: ˆ ˆ ˆx dy= + =G Ar rr  and thus: 2 2d= +Ar .   
 

Note also that: ( )fcn a=
GA , and ( ) ( )r r ˆa t a t x=

G
. 

 

  ∴  ( ) ( )r ˆ ˆ ˆ ˆ ˆu t x dy c c c= + = =
GGi A i ir r rr r r    and:  ( ) ( ) ( ) ( )r r rˆ ˆ ˆa t x dy a t x a t= + =

GGi A i Ar  

     We are in fact only interested in the x̂ -component of ( )21
r ,E r t
JJGG G , since the ŷ -components of 

( )21
r ,E r t
JJGG G  and ( )12

r ,E r t
JJGG G  will cancel when we add forces on the two ends of the dumbbell.   

 
     Note further that since the two charges on the dumbbell are both moving in the same direction 
/ parallel to each other, the magnetic forces associated one charge acting on the other will also 
cancel, thus Newton’s 3rd Law is manifestly obeyed {here}, in this particular situation / 
configuration. 

If  ˆu c=
G r ,  then:  ˆ ˆx

cu u x x= =
GG Gi ir

r
  and since:  ˆ ˆx dy= +G Ar   then:  ( )ˆ ˆ ˆx

c cu lx dy x= + =
Ai

r r
 

 

Thus: ( )
( )( )

( )( ) ( )( ) ( )21 2
r 1 r r r3

r

,
8x x x

o

qE r t c a t u u t a t
u tπε

⎡ ⎤= + −⎣ ⎦
JJG G G GG Gi iGGi

r
r r

r
 

 

And: ( )( )ru t c=
GGir r  and: ( )( ) ( ) ( ) ( )r r rˆ ˆ ˆa t x dy a t x a t= + =

GGi A i Ar  since: ( ) ( ) ( )r r rˆ ˆxa t a t x a t x= =
G

 
 
Then: 

( ) ( )( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

21 2
r 1 r r3 3

2
r r2 2

22
r

r2 2

2 22
r r

2 2

,
8

1               
8

1               
8

1               
8

           

x
o

o

o

o

q cE r t c a t c a t
c

q c a t a t
c

a tq c a t
c

a t a tq c
c

πε

πε

πε

πε

⎡ ⎤= + −⎢ ⎥⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
⎡ ⎤−

= +⎢ ⎥
⎣ ⎦

JJG AG A

AA

AA

AA

r r
r r

r
r r

r
r r r

r
r r r

( ) ( )

( )

2

2 2 2 2 2 2 2 2 2
r2 3

2 2
r2 3

1       but:      or:   
8

1               
8

o
d

o

q c a t d d
c

q c d a t
c

πε

πε

=

⎡ ⎤
⎢ ⎥= − − = + − =⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= −⎣ ⎦

A A A A
��	�


A

r r r
r

r

 

 

Thus:   ( )
( )( )

( )

2 2
r21

r 1 3
2 2 2 2

,
8x

o

c d a tqE r t
c dπε

−
=

+

JJG AG

A
  since: 2 2d= +Ar  
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Then by symmetry: ( ) ( )21 12
r 1 r 2, ,
x x

E r t E r t=
JJG JJGG G

 
 
∴ The net {retarded} force on the rigid dumbbell is: 
 

( ) ( ) ( ) ( ) ( )
( )( )

( )

2 22
r21 12 21 121 1

r r 1 r 2 r 1 r 22 2 32
2 2 2

ˆ, , , , ,
8

self

o

c d a tqF r t F r t F r t qE r t qE r t x
c dπε

−
= + = + =

+

JJG JJG JJG JJGG G G G G AG G G G G

A
⇐Exact 

     We now expand ( )r ,selfF r t
G G  in powers of d. Then when the size d of the electrically-charged 

dumbbell is taken to its limit of d → 0, all positive powers will disappear. 
 
Taylor’s Theorem: 
 

( ) ( ) ( )( ) ( )( ) ( )( )2 3
r r r r r r

1 1 ...
2! 3!rx t x t x t t t x t t t x t t t= + − + − + − +� �� ���  

 

Recall that: ( ) ( )r r 0x t v t= =�   and that:  ( )( )rfcn a t=
GA  

 

Then:  ( ) ( ) ( ) ( )2 3
r r r r r r

1 1 ...
2 6

x t x t a t t a t t= − = Δ + Δ +⎡ ⎤⎣ ⎦ �A   where:  ( )r rt t tΔ ≡ −  
 

But:  2 2
rc t dΔ = = +Ar   ⇒   2 2 2 2 2

rc t dΔ = = +Ar  
 
Or: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) { }

2
2 2 2 2 2 2 2 2 3

r r r r r r

2 22 2
r r r r r r r r2 2 2 2

r r r

2
r 3 4

r r r

1 1 ...
2 6

   ... 1 ...
2 6 2 6

   ...
8

d c t c t a t t a t t

a t t a t t a t t a t t
c t c t c t

c c c c

a t
c t t t

c

⎛ ⎞= − = Δ − = Δ − Δ + Δ +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞Δ Δ Δ Δ
= Δ − Δ + + = Δ − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= Δ − Δ + Δ +

�A A

� �

r

 

 

We want rtΔ  in terms of d. From above, it can be seen that we can solve for d in terms of rtΔ .  
But we can solve for rtΔ  in terms of d using the reversion of series technique, which is a formal 
way / formal method that can be used to obtain an approximate value of rtΔ  by ignoring all 
higher powers of rtΔ ,  to first order, we have: 
 

   rd c tΔ�  ⇒ r
dt
c

Δ �  ←  use this as an approximation for obtaining a cubic correction term: 
 

   
( ) 32

r
r 8

a t dd c t
c c

⎛ ⎞Δ − ⎜ ⎟
⎝ ⎠

�  ⇒
( )2 3

r
r 58

a t ddt
c c

Δ +�   

   Keep going. . .  
( ) { }

2
r 3 4

r 5

1 ...
8

a t
t d d d

c c
Δ + + +�  
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Thus: ( ) ( ) ( ) ( ) ( ) ( ) { }r r2 3 2 3 4
r r r r r 3

1 1 ... ...
2 6 2 6

a t a t
x t x t a t t a t t d d d

c c
= − = Δ + Δ + + + +⎡ ⎤⎣ ⎦

�
�A �  

 

Then: ( )
( )( )

( )
( ) ( ) { }

2 22 2
r r r

r 32 2 3
2 2 2

ˆ ˆ, ...
8 4 4 12

self

o o

c d a t a t a tq qF r t x d x
c c d cdπε πε

− ⎡ ⎤
= − + + +⎢ ⎥

⎣ ⎦+

G A �G �
A

 

{Note that ( )ra t  and ( )ra t�  are evaluated at the retarded time tr.} 

Using the Taylor series expansion of ( )ra t , we can rewrite this result in terms of the present time: 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )r r r... ... ...da t a t a t t t a t a t t a t a t
c

= + − + = − Δ + = − +� � �  
 

Then:  ( ) ( ) ( ) { }
2

r 2 3 ˆ, ...
4 4 3

self

o

a t a tqF r t d x
c d cπε

⎡ ⎤
− + + +⎢ ⎥

⎣ ⎦

G �G �  

 
     The first term inside the brackets on the RHS is proportional to acceleration of the charge q.  
If we put it on LHS, then by Newton’s 2nd Law F ma=

G G , we see that it adds to the mass m of the 
dumbbell –  there is inertia associated with accelerating an electrically-charged particle. 
 
The total inertial mass of the dumbbell is therefore: 
 

( )22 1
2

2 2

1 1
4 4 4tot dumbbell dumbbell

o o

qqm m m
dc dcπε πε

⎛ ⎞⎛ ⎞
⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

Or:  
( )21

22 2 1
4tot dumbbell

o

q
m c m c

dπε

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 ⇐  rest mass energy, 2mcΕ =  

 
Note that the {repulsive} electrostatic potential energy associated with this dumbbell is: 
 

( ) ( ) ( ) ( ) ( )2 21 1
2 21

2
1

4 4E
o o

q q
U r d q V r d

d dπε πε

⎛ ⎞
⎜ ⎟= = = = =
⎜ ⎟
⎝ ⎠

 (Joules) 

 
     The fact that this works out “perfectly” is simply due to the fact that the initial choice of the 
dumbbell’s orientation was deliberately/consciously chosen to be transverse to the direction of 
motion.  For a longitudinally-oriented dumbbell, the EM mass correction is half this amount.   
For a spherical charge distribution, the EM mass correction is a factor of  ¾ !! 
 

     The second term inside the brackets on the RHS of the ( )r ,selfF r t
G G  relation is the EM radiation 

reaction term: 

( ) ( ) ( )2 2
int

3
ˆ ˆ,

12 12
o

rad
o

q a t q a t
F r t x x

c c
μ

πε π
= =

G � �G
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Note that ( )int ,radF r t
G G  differs from Abraham-Lorentz result by a factor of 2×: 

    ( ) ( )
2

- ,
6

A L o
rad

qF r t a t
c

μ
π

=
G G G�  

     The reason for the factor of 2 difference is that physically, ( )int ,radF r t
G G  is force of one end of the 

dumbbell acting on the on other –  an EM interaction between the two ends. 
 
     There is also a force of each end of the dumbbell acting on itself –  an EM self-interaction 

( ),self
radF r t
G G  for each end. When the EM self-interactions for each end are included (see Griffiths 

Problem 11.20, p. 473), then the total EM radiation reaction becomes: 
 

       ( ) ( ) ( ) ( ) ( )2 2
int 1 1 1 ˆ ˆ, , 2 ,

6 2 4 4 6
o otot self

rad rad rad

q a t q a t
F r t F r t F r t x x

c c
μ μ

π π
⎡ ⎤= + = + + =⎢ ⎥⎣ ⎦

G G G � �G G G
 

 
which agrees perfectly with Abraham-Lorentz radiation-reaction force formula.  
 
Thus, physically we see that the EM radiation reaction is due to the force of the charge acting on 
itself –  an {apparent} self-force! 
 

Note also that ( ),radF r t
G G  does NOT depend on  d  ( ( ),radF r t

G G  is valid/well-behaved in limit of 
the size of the dumbbell, d → 0). 
 

However, note that: 
( )21

22 2 1
4tot dumbbell

o

q
m c m c

dπε

⎛ ⎞
⎜ ⎟= + → ∞
⎜ ⎟
⎝ ⎠

  when d → 0 !!! 

 
The inertial mass of the classical electron becomes infinite when when d → 0, because: 
 

        ( ) ( ) ( ) ( ) ( )2 21 1
2 21

2
1

4 4E
o o

q q
U r d q V r d

d dπε πε

⎛ ⎞
⎜ ⎟= = = = = → ∞
⎜ ⎟
⎝ ⎠

 when d → 0 !!! 

 
{But we already knew this, as we learned long ago, in P435/last semester…} 

 
     Note that this unpleasant/awkward problem also persists in the fully-relativistic, quantum 
electrodynamical theory {QED}. Infinities/singularities there are dealt with/side-stepped by a 
process known as mass renormalization, so as to avoid such infinities – look only at mass 
differences / energy differences… 


