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LECTURE NOTES 17 
 

Proper Time and Proper Velocity 
 

• As you progress along your world line (moving with “ordinary” velocity uG  in IRF(S) ) in the 
ct vs. x Minkowski/space-time diagram, your watch runs slow (i.e. in your own rest frame 
IRF(S') ) in comparison to clocks on the wall in the lab frame IRF(S). 

 

• The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your   
      reference frame (your rest frame)  IRF( S ′ ) the time interval is:  21u udt dt dtγ β′ = = −  
 

• n.b. this is the exact same time dilation formula that we obtained earlier, with: 
 

( )2 2

1 1
11

u

uu c
γ

β
≡ =

−−
 and: ( ) u u cβ ≡  

 

• Here, we use u u= =
G relative speed of an object as observed in an inertial reference frame 

(here, u = speed of you, as observed in the lab IRF(S)). 
 

• We will henceforth use v v= =
G relative speed between 

two inertial systems – e.g. IRF( S ′ )) relative to IRF(S): 
 

• Because the time interval, dt′  occurs in your own REST 
FRAME  (IRF( S ′ )) we give it a special name:  d dtτ ′ ′=  
= PROPER time interval (in your rest frame) tτ ′ ′=  = proper TIME (in your own rest frame). 

 

• The name “proper” time is due to a mis-translation of the French word “propre”, meaning “own”. 
 

• Proper time τ ′  is different than “ordinary” time, t. 
   

      Proper time τ ′  is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the     
      choice of IRF.   
 

      The Lorentz-invariant interval:       2 2 2 2 2 2dI dx dx dx dx ds c dt dx dy dzμ μ
μ μ′ ′ ′ ′ ′ ′ ′ ′ ′≡ = = = − + + +  

 

      Proper time interval: 2 2 2 2 2 2 2 2 2 2 2d dI c ds c dt dx c dy c dz c dt dtτ ′ ′ ′ ′ ′ ′ ′ ′≡ − = − = − − − = =  
 

      Proper time:      
2 2

1 1
2 1 2 1

t

t
d dt t t t

τ

τ
τ τ τ τ

′ ′

′ ′
′ ′ ′ ′ ′ ′ ′ ′≡ − ≡ = = − = Δ∫ ∫  

 

• Because dτ ′and τ ′ are Lorentz-invariant quantities: d dτ τ′ =  and: τ τ′ =  {i.e. drop primes}. 
 

• In terms of 4-D space-time, proper time is analogous to arc length S in 3-D Euclidean space. 
 

• Special designation is given to being in the REST FRAME of an object. 
 

• The rest frame of an object = the proper frame. 
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     Consider a situation where you are on an airplane flight from NYC to LA. The pilot comes on 
the loudspeaker and announces in mid-flight that the jet stream is flowing backwards today, and 
that the plane’s present velocity is 0.8u c= , due west, ( )0.8!!uβ =    

What the pilot means by “velocity” is the spatial displacement d
G
A  per unit time interval, dt . 

 
     The pilot is referring to the plane’s velocity relative to the ground (we assume here that the 
earth is non-rotating/non-moving – let’s keep it somewhat simple, eh, so we can use IRF’s, eh?) 
 

     Thus, d
G
A and dt  are meant to be understood as quantities as quantities as measured by an 

observer on the ground (e.g. an airplane flight controller, using RADAR) in the ground-based 
IRF(S).  

Thus:  
du
dt

=
G
AG

  =  “ordinary” velocity in IRF(S) 
 
You, on the other hand are in your own rest frame (IRF(S')) in the airplane, sitting in your seat.   
 
     You know that the distance from NYC to LA is:  2763 milesL =  (referring to your trusty 
Rand-McNally Road Atlas (back pages) that you brought along with you for your trip). 
 
     So you, from your perspective, might be more interested in the quantity known as your 
proper velocity ηG , defined as:  

Proper 3-Velocity: 
d
d

η
τ

≡
G

G A
 = hybrid measurement =  

 

Since: ( )221 1 1u
u

d dt dt dt u c dtτ β
γ

′= = = − = −  and:
2

1
1

u

u

γ
β

≡
−

,  ( )u u cβ ≡  

 

Then:  1 u

u

d d d
d dtdt

η γ
τ

γ

≡ = =
G G G

G A A A
,  but: 

du
dt

≡
G
AK   ∴   

( )2 2

1 1
1 1

u

u

u u u
u c

η γ
β

= = =
− −

G G G G
  

 

Of course, for non-relativistic speeds u c�  then uηG G�  to a high degree. 
 

From a theoretical perspective, an appealing aspect of proper 3-velocity, ηG  is that it Lorentz- 
transforms simply from one IRF to another IRF. 
 

ηG = 3-D spatial component(s) of a relativistic 4-vector, μη  

The {contravariant} proper 4-velocity is:  
dx
d

μ
μη

τ
≡  whose zeroth/temporal component is: 

0
0

1 u

u

dx cdt dt dtc c
d d dt

η γ
τ τ

γ

≡ = = =
dt ( )2 21 1

u

u

c cc
u c

γ
β

= = =
− −

  with: 

( )

2

1
1

u

u

u u c

γ
β

β

≡
−

≡

 

 

d
G
A and dt are measured 

in the ground-based IRF(S) 

     Spatial displacement, as measured on the ground 
(in IRF(S)) per unit time interval as measured in your 
(or an object’s) rest frame (in IRF(S')).    
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The proper 4-velocity is: 

( ) ( )0 , ,u
dx c
d

μ
μη η η γ η

τ
≡ = =

G G
  or:  

0

0
1

1

2 2

3

3

u

xu x
u

yu y

zu z

dx
d

c c dx
uu d
uu dx

duu
dx
d

μ

τ
η γ

γη τη γ
γη

τγη

τ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

     The numerator of the proper 4-velocity,  udx  is the displacement 4-vector (as measured in the 
ground-based IRF(S). The denominator of the proper 4-velocity, dτ = proper time interval  
(as measured in your (an object’s) rest frame IRF(S'). 
 

The Lorentz Transformation of a Proper 4-Velocity, μη : 
 
     Suppose we want to Lorentz transformation your proper 4-velocity from the lab IRF(S) to 
another (different) IRF(S") along a common x̂ -axis, in which IRF(S") is moving with relative 
velocity ˆv vx=

G
 with respect to IRF(S): 

 

Most generally, in tensor notation:  v
μ μ νη η′′ = Λ   with v

μΛ = Lorentz boost tensor.  Thus: 

v
μ μ νη η′′ = Λ  ⇒  

0 0

1 1

2 2

3 3

0 0
0 0

0 0 1 0
0 0 0 1

γ γβη η
γβ γη η

η η
η η

−′′⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−′′⎜ ⎟ ⎜ ⎟⎜ ⎟=
⎜ ⎟ ⎜ ⎟⎜ ⎟′′
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 ⇒

( )
( )

0 10

1 1 0

2 2

3 3

γ η βηη
η γ η βη
η η
η η

⎛ ⎞−′′⎛ ⎞ ⎜ ⎟⎜ ⎟′′ ⎜ ⎟−⎜ ⎟ = ⎜ ⎟⎜ ⎟′′ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′′⎝ ⎠ ⎝ ⎠

 with: 
2

1
1

v
c

γ
β

β

≡
−

≡

                      

Where: 
dx
d

μ
μη

τ
′′

′′ ≡  and: 
dx
d

μ
μη

τ
≡  

 
Compare this result to the same Lorentz transformation of “ordinary” 3-velocities, along a 
common x̂ -axis. We can simply use the Einstein velocity addition rule: 
 

ˆ ˆ ˆx y zu u x u y u z= + +
G

                 ( )21
x

x
x

u vdxu
dt u v c

′′ −′′ = =
′′ −

 

ˆ ˆ ˆx y zu u x u y u z′′ ′′ ′′ ′′= + +
G

                
( )( )21

y
y

x

udyu
dt u v cγ

′′
′′ = =

′′ −
  with: 

2

1
1

γ
β

≡
−

  and: 
v
c

β ≡  

                                                
( )( )2

  
1

z
z

x

udzu
dt u v cγ

′′
′′ =

′′ −
 

 
{See Griffiths Example 12.6 (p. 497-98) and Griffiths Problem 12/14 (p.498)} 
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     Now we can see why Lorentz transformation of  “ordinary” velocities is more cumbersome 
than Lorentz transformation of proper 4-velocities: 
 

• For “ordinary” 3-velocities 
du
dt

=
G
AG

, we must Lorentz transform both   numerator,
denominator,

d d
dt dt

⎧ ⎫ ⎧ ⎫′′   
⇒⎨ ⎬ ⎨ ⎬

′′  ⎩ ⎭ ⎩ ⎭

G G
A A  

• For    proper    4-velocities 
dx
d

μ
μη

τ
≡  we only need to transform the numerator, d d ′′⇒

G G
A A . 

 
 
Relativistic Energy and Momentum: 4-Momentum: 
 

     In classical mechanics, the 3-D vector momentum, = mass  velocity p v ×
G G , i.e. p mv=

G G
.   

How do we extend this to relativistic mechanics? 
 

Should we use “ordinary” velocity, 
du
dt

≡
G
AG

  for vG ,  

or should we use proper velocity,    
d
d

η
τ

≡
G

G A
  for vG ?? 

 

In   classical  mechanics,  and uηG G  are identical. 
In relativistic mechanics,  and uηG G  are not identical. 
 

We must use the proper velocity ηG  in relativistic mechanics, because otherwise, the law of 
conservation of momentum would be inconsistent with the principle of relativity { = the laws of 
physics are the same in all IRF’s} if we were to define relativistic 3-momentum as: p mu=

G . No!! 
 
Thus, we define the relativistically-correct 3-momentum as: 
 

( )2 21 1
u

u

mu mup m mu
u c

η γ
β

≡ = = =
− −

G GGG G
  with:  

2

1
1 u

μγ
β

≡
−

  and:  u
u
c

β ⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

 

 

Relativistic 3-momentum up m muη γ= =
GG G

 is the spatial part of a  

relativistic 4-momentum vector: p mμ μη≡ , i.e. ( )0 ,p p pμ =
G

. 
 
The temporal/zeroth/scalar component of the relativistic 4-momentum vector is: 
 

  
( )

0 0

2 21 1
u

u

mc mcp m mc
u c

η γ
β

≡ = = =
− −

  with:  
2

1
1 u

μγ
β

≡
−

  and:  ( )u u cβ ≡  

Einstein called 
( )2 21 1

rel u

u

m mm m
u c

γ
β

≡ = =
− −

 = relativistic mass. 

Thus:  0 0
relp m m cη= = ,  

( )
0

2 21 1
u

u

c cc
u c

η γ
β

= = =
− −

     u rep m mu m uη γ= = = A
GG G G
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n.b. Modern usage has abandoned the use of relativistic mass in favor of the relativistic energy, E. 
 

Relativistic Energy: 
( )

2 2
2

2 21 1
u

u

mc mcE mc
u c

γ
β

≡ = =
− −

  with:  
2

1
1 u

μγ
β

≡
−

  and:  ( )u u cβ ≡  

 

Thus, we see that relativistic energy 2 2
u relE mc m cγ≡ =  and thus: 0p E c≡  

 

Therefore, the components of the relativistic 4-momentum are:  

0

1

2

3

x

y

z

p E c
pp

p
pp
pp

μ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ≡⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
Note that relativistic energy of an massive object is non-zero even when an object is stationary 

(i.e. in its own rest frame), i.e. when 21 1 1u uγ β= − =  and 0uβ = . 
 

Then for 1uγ = , 0uβ = : 2
restE mc=  = rest energy = rest mass * c2. ⇐ Einstein’s famous formula! 

 

The remainder of relativistic energy (if 0uβ ≠ ) is attributable to the motion of the particle  
– i.e. it is relativistic kinetic energy, kinE . 
 

Total Relativistic Energy:   2
Tot kin rest uE E E E mcγ≡ = + =   but:  2

restE mc=  
 

∴ ( )2 2 21kin ToT rest u uE E E mc mc mcγ γ= − = − = −  
 

Relativistic Kinetic Energy:  ( )
( )

2 2 2

2 2

1 11 1 1
1 1

kin u

u

E mc mc mc
u c

γ
β

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − = − = −
⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 

In the non-relativistic regime, u c� :  
4

2 2
2

1 3 1
2 8 2kin

muE mu mu
c

= + + ≈…   (classical formula). 

But for u c� , then: p mu= , and thus: 
2

2kin
pE
m

�  for u c�   (classical formula). 
 

n.b. The total relativistic energy, ToTE (= E) and total relativistic momentum, ToT ToTp p=
G  are 

conserved in a closed system/every closed system. 
 

     If the system is not closed, (e.g. ∃ external forces present) then  and ToT ToTE E p p= =
G  will not 

necessarily be conserved. ⇒ Simply expand/enlarge the definition of “system” until it IS closed, 
then the (new)  and ToT ToT ToTE p p=

G  will be conserved. 
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Relativistic mass, 
( )2 21 1

rel u

u

m mm m
u c

γ
β

= = =
− −

 is also conserved in a/every closed system,  

because 2
re ToTm E c=A  or: 2 2

ToT u reE mc m cγ= = A   ⇒ conservation of relativistic mass  
≡  conservation of total relativistic energy, i.e. this is simply redundant information. 
 
                                           Same in all inertial reference frames 
 
Note the distinction between a Lorentz-invariant quantity and a conserved quantity. 
 
                        Same before vs. after 
                         a process/an “event” 
 
Rest mass is a Lorentz-invariant quantity, but it is not {necessarily} a conserved quantity. 
 
Example: The {unstable} charged pi-meson decays (via weak charged-current interaction, with 
mean/proper lifetime 26.0 ns

π
τ + = ) to a muon and muon neutrino: vμπ μ+ +→ . The charged 

pion mass m
π +  is not conserved in the decay, however the total relativistic energy of the charged 

pion 2 2 2 4E p c m c
π π π+ + += +  is a conserved, but not Lorentz-invariant quantity. 

 

The scalar product of  any relativistic 4-vector aμ  with itself is a Lorentz-invariant quantity  
(i.e. = same numerical value in any IRF):  e.g. 2 2p p p p m cμ μ

μ μ= = − . 
 

( ) ( ) ( )2 20 2p p p p p p p E c p pμ μ
μ μ= = − + = − + = −

G Gi
2 2 2m c p− +

2 2 2m c= −  
 
 
Griffiths Example 12.7: Relativistic Kinematics 
 
     Two relativistic lumps of clay {each of rest mass m} collide head-on with each other.  
Each lump of clay is traveling at relativistic speed 3

5u c=  as shown in the figure below: 

The two relativistic lumps of clay stick together (i.e. this is an inelastic collision).  
 
What is the total mass M of the composite lump of clay after the collision? 
 
Conservation of momentum before vs. after: 
 
   Since the two lumps of clay have identical rest masses and equal, but opposite velocities: 
 

       1 2
before
ToTp p p= +
G G G

    but:  1 2 1up p muγ= − =
G G G

 where: 
2

1
1

u

u

γ
β

=
−

   ∴  0before
ToTp =
G

 

3
2 5 ˆu cx= −
G

 3
1 5 ˆu cx= +
G

 
x̂  

m m 
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Conservation of energy before vs. after: 

     Before:  Each lump of clay has total energy: 
( )

2 2
2

2 21 1
u

u

mc mcE mc
u c

γ
β

= = =
− −

 

            ∴ 
2 2 2

2

2

5
49 163 11 25 255

mc mc mcE mc= = = =
⎛ ⎞ −− ⎜ ⎟
⎝ ⎠

 

 

     Thus:  
1 2

2 2 210 52
4 2

before
ToT ToT ToT uE E E mc mc mcγ= + = = =  

However, ToTE is {always} conserved in a closed system. ⇒  25
2

after before
ToT ToTE E mc= =  

 

And ToTpG is also {always} separately conserved in a closed system. ⇒  0after before
ToT ToTp p= =
G G

 
 

⇒ 0afteru =
G

  since: 0
after

after after
ToT up Muγ= =
G G

. n.b. ⇒  
( )2 2

1 1 1
1 1

after

after

u

u afteru c
γ

β
= = =

− −
 

 

Then: ( )2 2 25
2after

after before
ToT u ToTE Mc Mc mc Eγ= = = =  ∴ 

5 2
2

M m m= ≠  !!!  Does this sound crazy?? 
 
     This is what happens in the “everyday” world of particle physics! It’s perfectly OK !!! 
  

e.g. The production of a neutral rho meson in electron-positron collisions: 0e e ρ+ −+ → . 
The rest mass of the neutral rho meson is: 2770M MeV cρ =  Electron rest mass: 20.511em MeV c=  

Run the collision process backwards in time, e.g. the decay of a neutral rho meson: 0 e eρ + −→ +  
 

     The production of a neutral rho meson 0e e ρ+ −+ →  manifestly involves the EM interaction. 
Similarly, the time-reversed situation: the decay of a neutral rho meson 0 e eρ + −→ +  manifestly 
also involves the EM interaction.  
 

2 ˆp px= −
G

 1 ˆp px= +
G

 
x̂  

em  em  
M ρ  

0pρ =
G

 

2 ˆp p x= +
G

 1 ˆp p x= −
G

 
x̂  

em  em  
M ρ  

0pρ =
G
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     The EM interaction is invariant under time-reversal, i.e. t t→ − , thus {in the rest frame of the 
neutral rho meson} the transition rate ( )0e e ρ+ −Γ + →  (#/sec) vs. the decay rate ( )0 e eρ + −Γ → +  
(#/sec) are identical {for the same/identical electron / positron momenta in neutral rho meson 
production vs. decay}. Experimentally: ( )0 18 17.02 KeV 1.70 10 sece eρ + − −Γ → + =  = × . 
 
     For our above macroscopic inelastic collision problem, microscopically what would the new 
matter of the macroscopic mass M  be made up of, since 5 1

2 22 2M M m m m mΔ = − = − =  ??? 
 
     In a classical analysis of the inelastic collision of two relativistic macroscopic lumps of clay 
{each of mass m} the composite / stuck-together single lump of clay of mass 5

2 2M m m= >  would 
be very hot – it would have a great deal of thermal energy in fact !!! 
 

N
2 2 2

classical mass
of composite
   lump

5 2
2 thermalMc mc mc E= = +   ⇒   Ethermal = 0.5mc2!!!    E = mc2 = Einstein’s energy-mass formula 

 
 

Connection Between Conserved Quantities and Lorentz-Invariant Quantities: 
 

Before: ( ),before before beforep E c pμ =
G

  After:   ( ),after after afterp E c pμ =
G

. However, total relativistic 
energy E and total relativistic momentum pG are separately conserved quantities, thus: 

2
after beforeE E Mc= =  and 0after beforep p= =

G G
. But: 2 2p p p p M cμ μ

μ μ= = −  is Lorentz invariant: 
 

( ) ( ) ( )2 20 2 2 2 2 20p p p p p p p E c p M c M cμ μ
μ μ= = − + = − + = − + = −

G Gi  holds before & after! 
 
 

Griffiths Example 12.8:  Relativistic kinematics associated with vμπ μ+ +→  decay. 
 

 Pion  rest mass: 2139.57m MeV c
π + =  Pion mean lifetime: 926.033 nsec 26.033 10 sec

π
τ +

−= = ×  

Muon rest mass: 2105.66m MeV c
μ+ =  Muon neutrino rest mass: 0

uvm =  (assumed). 
 

In the rest frame of the π + meson: 

Energy Conservation:  Momentum Conservation: 
 

Before:  2before
ToTE m c

π +=                          0before
ToTp =
G

 
 

After:    2after
ToT vE E E m c

μμ π+ += + =         0after
ToT vp p p

μμ+= + =
G G G

  ⇒  ˆvp p px
μμ+ = − = −

G G
 

ˆvp px
μ

= +
G

 ˆp px
μ+ = −
G

 
x̂  

0vm
μ

=  m
μ+  

M
π +  

0p
π + =
G
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But:       v v vE p c p c
μ μ μ

= =
G

  since: 0vm
μ

= .      ⇒  p p
μ μ+ +=

G
 = v vp p

μ μ
=
G

 
 

And:      2 2 2 2 4E p c m c
μ μ μ+ + += +    or:  2 2 2 2 4

u
p c E m c

μ μ+ + += −  ⇒ 2 2 4p c E m c
μ μ μ+ + += −  

 

   ∴       p p
μ μ+ +=

G
 = v vp p

μ μ
=
G

 = 2 2 4E m c c
μ μ+ +−  

 

Then:    after
ToT v vE E E E p c

μ μμ μ+ += + = +   but: 
2 2 4

v

E m c
p p

cμ

μ μ

μ

+ +

+

−
= =  

 

  ∴        2 2 4 2after before
ToT v v ToTE E E E p c E E m c E m c

μ μμ μ μ μ μ π+ + + + + += + = + = + − = =  

  ∴   2 2 4 2E E m c m c
μ μ μ π+ + + ++ − =   Solve for E

μ+ : 

              ( ) ( )2
2 2 4 2 2 4 2 22E m c m c E m c m c E E
μ μ π μ π π μ μ+ + + + + + + +− = − = − +  or: 2 2 4 2 42m c E m c m c

π μ π μ+ + + += −  
 

Thus:     
( )2 2 22 4 2 4

22 2

m m cm c m c
E

m c m
π μπ μ

μ
π π

+ ++ +

+

+ +

−−
= =  and: 

2 2 4

v

E m c
p p

cμ

μ μ

μ

+ +

+

−
= =  with: vp p

μμ+ = −
G G

 

 

  as viewed from the rest frame of the π +  meson. 
 
• In classical collisions, total 3-momentum ToTpG and total mass, ToTm  are always conserved:  

before after
ToT ToTp p=
G G

,  before after
ToT ToTm m= . Total kinetic energy ToT

kinE  is not conserved ⇒  inelastic collision. 
 

• An inelastic (i.e. a “sticky”) collision generates heat at the expense of kinetic energy. 
 

• An inelastic collision of an electron (e−) with an atom {initially in its ground state} may 
leave the atom in an excited state, or even ionized, kicking out a once-bound atomic electron! 

      ⇒   Internal {quantum} degrees of freedom can be excited in inelastic e− - atom collisions. 
 

• An “explosive” collision generates kinetic energy at the expense of chemical (i.e. EM) energy, 
or nuclear (i.e. strong-force) energy, or weak-force energy. . . . 

 

• If kinetic energy is conserved (classically), ⇒  elastic (i.e. billiard-ball) collision. 
 

• In relativistic collisions, total 3-momentum and total energy are always conserved  
      (in a closed system) but total mass and total kinetic energy are not, in general, conserved. 
 
      * Once again, in relativistic collisions, a process is called elastic if the total kinetic energy 
         is conserved ⇒  total mass is also conserved in relativistic elastic collisions. 
 
       * A relativistic collision is called inelastic if the total kinetic energy is not conserved.   
          ⇒ Total mass is not conserved in a relativistic inelastic collision. 
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Griffiths Example 12.9: 
 
Compton scattering = Relativistic Elastic Scattering of Photons with Electrons. 
 

     An incident photon of energy 0 0E p cγ γ=  elastically scatters (i.e. “bounces”) off of an electron, 
which is initially at rest (in the lab frame). Find the final energy Eγ  of the outgoing scattered 
photon as a function of the scattering angle, θ  of the photon: 

 
Consider conservation of total relativistic momentum in the transverse ( ⊥ ) (i.e. ŷ -axis) direction: 
 

 0
TOT TOT

before afterp p⊥ ⊥= =  
 

0 0 0
TOT e

before before beforep p p
γ −⊥ ⊥ ⊥= + = + =  

0
TOT e

after after afterp p p
γ −⊥ ⊥ ⊥= + =  ⇒  

P Pˆ ˆ direction  direction

e

y y

after afterp p
γ −

+ −

⊥ ⊥= −  

 

Since: 
P Pˆ ˆdirection  direction

e

y y

after afterp p
γ −

+ −

⊥ ⊥= −  

Or: 
e

after afterp p
γ −⊥ ⊥=  

Or: sin sin
e

p pγ θ ϕ−=  

But: p E cγ γ=  

  ∴ sin sin
e

E
p

c
γ θ ϕ−=  

Solve for sinϕ :  sin sin
e

E
p c

γϕ θ
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

Conservation of total relativistic momentum in the longitudinal (i.e. x̂ ) direction gives: 
 

0

TOT

before E
p

c
γ=&  (n.b. 0before

e
p − = , since e− initially at rest, hence 0before

e
p − =
&

) 
 

cos cos
TOT e

after after after
e

p p p p p
γ γ θ ϕ−

−
= + = +& & &  

 

∴ Since: 
TOT TOT

before afterp p=& &   then:  0 cos cos
e

E c p pγ γ θ ϕ−= +  
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But: sin cos
e

E
p c

γϕ θ
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 thus: 

2

2 2cos 1 sin 1 sin
e

c
γϕ ϕ θ
−

⎛ ⎞Ε
= − = − ⎜ ⎟⎜ ⎟Ρ⎝ ⎠

 

 

∴  
20

2cos 1 sin
e

e

E E
p p

c p c
γ γ

γ θ θ−

−

⎛ ⎞
= + − ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

Or:  ( ) 222 2 0 2 2 0 0 2cos sin 2 cos
e

p c E E E E E E Eγ γ γ γ γ γ γθ θ θ− = − + = − +  
 

Conservation of total energy: before after
TOT TOTE E=  ⇒  0 2 2 2 2 4

before after
TOT TOT

E E

e e ee
E m c E E E p c m cγ γ γ−+ = + = + +

���� 
����

 
 

  ∴  
20 2 0 0 2 2 42 cose eE m c E E E E E m cγ γ γ γ γ γθ+ = + − + +  

 

Solve for Eγ (after some algebra): ( ) 2 0

1
1 cos e

E
m c Eγ

γθ
=

⎡ ⎤−   +  1⎣ ⎦
  

Eγ = energy of recoil photon in terms of initial photon energy 0Eγ , scattering angle of photon θ 

and rest energy of electron 2
em c .  

 
Can alternatively express this relation in terms of photon wavelengths: 
 

Before: 0 0 0E hf hcγ γ γλ= =      Useful constants: 

After:  E hf hcγ γ γλ= =      1239.841eV-nm 1240 eV-nmhc =    �  
 

Get: ( )0 2 1 cos
e

hc
m cγλ λ θ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
    2 60.511MeV 0.511 10 eVem c  = ×  �  

Define the so-called Compton wavelength of the electron: 12
2 2.426 10 me

e

hc
m c

λ −⎛ ⎞
≡ = ×⎜ ⎟

⎝ ⎠
 

Then:  ( )0 1 coseγλ λ λ θ= + −  
  
The Compton Differential Scattering Cross Section: 
 
     As we learned in P436 Lecture Notes 14.5 (p. 9-22)  non-relativistic photon-free electron 
scattering ( )0 2

eE m cγ �  is adequately described by the classical EM physics-derived differential 
Thomson scattering cross section: 
 

( )
( )2 2

, 1 1 cos
2

e

unpol
T

e

d
r

d

σ θ ϕ
θ− +

Ω
�  where: 

2
15

2 2.82 10
4e

o e

er m
m cπε

−≡ ×�  

 

Classical 
electron 
radius 
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However, when 0 2
eE m cγ ≥  from the above discussion of the relativistic kinematics of photon-

electron scattering, it is obvious that the classical theory is not valid in this regime. The fully-
relativistic quantum mechanical theory – that of quantum electrodynamics (QED) – is required to 
get it right. Without going into the gory details, the results of the QED calculation associated 
with the two Feynman graphs {the so-called s- and u-channel graphs} on p. 5 of P436 Lect. 
Notes 14.5 for the Compton differential scattering cross section – known as the Klein-Nishina 
formula is, for photon-electron scattering: 
 

( )
( )

( )
( )

( ) ( )

22
2 2

2 2

, 1 cos1 11 cos 1
2 1 cos 1 1 cos1 1 cos

e

unpol
C

e

d x
r

d xx
γ

γγ

σ θ ϕ θ
θ

θ θθ
−

⎡ ⎤−
⎢ ⎥= + +

Ω ⎡ ⎤+ + −⎢ ⎥⎡ ⎤+ − ⎣ ⎦⎣ ⎦⎣ ⎦
 

 

where: 0 2 0 2
e ex E m c hf m cγ γ γ≡ = . In the non-relativistic limit 0xγ → , the Compton scattering 

cross section agrees with the classical Thomson scattering cross section, as shown in the figure 
below of the normalized differential scattering cross section ( ) 2,

e

unpol
C ed r dσ θ ϕ

−
Ω  vs. θ .  

Note that as xγ → ∞  the Compton differential scattering cross section becomes increasingly 
sharply peaked in the forward direction, 0θ → . 
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Relativistic Dynamics 
 
     Newton’s 1st Law of Motion (“An object at rest remains at rest, an object moving with speed 
v remains moving at speed v, unless acted upon by a net/non-zero/unbalanced force”  
– the Law of Inertia) is built into/incorporated in the Principle of Relativity. 
 

Newton’s 2nd law of motion {classical mechanics}:  ( ) ( ) ( )( ),
, ,

dp r t
F r t ma r t

dt
=   =
G GG G G G

 retains its 

validity in relativistic mechanics, provided relativistic momentum is used. 
 
Griffiths Example 12.10:  1-D Relativistic Motion Under a Constant Force. 
 

     A particle of (rest) mass m is subject to a constant force: ( ) ˆ, constant vectorF r t F Fx= = =
G GG

.   
 

     If the particle starts from rest at the origin at time t = 0, find its position ( )x t as a function of t.  

Since the relativistic motion is 1-D, then: 
( )dp t

F
dt

=  = constant,  or:  
( )dp t

F
dt

=  = constant. 

⇒  ( )   constant of integrationp t Ft= + .  The particle starts from rest at t = 0.   ∴  ( )0 0p t = =   

⇒  constant of integration = 0.  ∴  ( )p t Ft=  {here} 
Relativistically: 
 

 ( ) ( ) ( ) ( )
( ) 2

1

u

mu t
p t t mu t Ft

u t
c

γ= = =
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

  where: ( )
( ) 2

1

1

u t
u t

c

γ =
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 

 

Solve for ( ),u r tG G :  
2 2 2

2 2 2 2 2 2 2
2 21 u F tm u F t F t u

c c
⎛ ⎞⎛ ⎞

= − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ⇒   
2 2

2 2 2 2
2

F tm u F t
c

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 

 

Or: 
( )
( )

2 22 2
2

2 2 2 2
2

2
1

F m tF tu
F t F mc tm
c

= =
++

  ⇒  ( )
( )21

Ft mu t
Ft mc

=
+

  =  

 

n.b.  when: Ft m c�   then:  ( )u t Ft m�   ⇐   Classical dynamics answer. 
 

Note also that as t → ∞:  ( )u t c→ ∞ →  !!!  (Relativistic denominator ensures this!) 
 

Since: ( )
( )

( )
21

dx tFt mu t
dtFt mc

= =
+

 

 

Then: ( ) ( ) ( )
( )20 0 21

t t tx t u t dt F m dt
F mc t

′
′ ′ ′= =

′+
∫ ∫  

 

Relativistic particle velocity 
for constant applied force F

G
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The motion is hyperbolic:  ( ) ( ) ( )
2 2

2 22 2

0
1 1 1

tF mc mcx t F mc t F mc t
m F F

⎛ ⎞⎛ ⎞⎛ ⎞ ⎡ ⎤′= + = +  − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
n.b. Had we done this in classical dynamics, the result would have been parabolic motion: 
 

       ( ) 2

2
Fx t t
m

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 

     Thus in relativistic dynamics – e.g. a charged particle placed in a uniform electric field E
G

,  
the resulting motion under a constant force F qE=

G G
 is hyperbolic motion (not parabolic motion, 

as in classical dynamics) – see/compare two cases, as shown in figure below:  

 
Relativistic Work: 
Relativistic work is defined the same as classical work:  W F d≡ ∫

GG
i A  

 
The Work-Energy Theorem (the net work done on a particle = increase in particle’s kinetic energy) 
also holds relativistically: 
 

kin
dp dp d dpW F d d dt u dt E
dt dt dt dt

= = = =    = Δ∫ ∫ ∫ ∫
GG G GG GG A Gi A i A i i   since: 

du
dt

=
G
AG

 
 

But: 
( )21

dp d muu u
dt dt u c

⎛ ⎞ =⎜ ⎟
⎝ ⎠ −

G GG Gi i   since:  
( )2 21 1

u

u

mu mup mu
u c

γ
β

= = =
− −

G GG G
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Thus: 

( )

( )
( ) ( )

( )
( )

( )
( )

( )

2

2

3 32 22 22 2

2

32 2 2

1 11 1

11

1 1

mu uu m udp m du du mu du duccu u u
dt dt dt dt dtu c u cu c u c

u cu c dumu
dtu c u c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠− −⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

⎧ ⎫
−⎪ ⎪

            = + =⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎣ ⎦⎩ ⎭

G GG G G G GG G Gi i i i i

GGi
( )2

u c+ ( )
( ) ( )

( ) ( )

2

3 3
2 22 2

2

3 22 2

1 1

11

du mu dumu
dt dtu c u c

mu du d mc
dt dt u cu c

⎧ ⎫
⎪ ⎪

=⎨ ⎬
⎪ ⎪⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪            = = ⎨ ⎬
⎪ ⎪−⎡ ⎤− ⎩ ⎭⎣ ⎦

G G GGi i  

 

But:     
( )2

1

1
u

u c
γ ≡

−
 ∴ { }2 tot

u
dEdp du mc

dt dt dt
γ⎛ ⎞ = =⎜ ⎟

⎝ ⎠

G Gi  

Thus: 
kin

final initialtot
tot tot tot

dp dp d dpW F d d dt udt E
dt dt dt dt

dE dt E E E
dt

= = = = = Δ

    = = − = Δ

∫ ∫ ∫ ∫

∫

GG G GG GG A Gi A i A i i

i
 

 

But: 2
tot kin rest kinE E E E mc= + = +    n.b. ( )2 2 21

kin

tot u u

E

E mc mc mcγ γ= = − +��	�
 , ( ) 21kin uE mcγ= −  

 

  ∴      2

TOT

final initial final
TOT TOT kin

E

E E E mc
=Δ

− = +���	��
 ( ) 2initial
kinE mc− +( )

kin

final initial
kin kin

E

E E
=Δ

= −���	��
  

i.e. final initial final initial
TOT TOT TOT kin kin kinW E E E E E E= Δ = − = Δ = −  

 
     As we have already encountered elsewhere in E&M, Newton’s 3rd Law of Motion  
(“For every action (force) there is an equal and opposite reaction”) does NOT (in general) extend 
to the relativistic domain, because e.g. if two objects are separated in 3-D space, the 3rd Law is 
incompatible with the relativity of simultaneity. 
 

Suppose the 3-D force of A acting on B at some instant t is: ( ) ( ), ,B BABF r t F r t= +JJJG
G GG G

  

and the 3-D force of B acting on A at the same instant t is:   ( ) ( ), ,A ABAF r t F r t= −JJJG
G GG G

 
 
Then Newton’s 3rd Law does apply in this reference frame. 
 
     However, a moving observer {moving relative to the above IRF(S)} will report that these 
equal-but-opposite 3-D forces occurred at different times as seen from his/her IRF(S'), thus in 
his/her IRF(S'), Newton’s 3rd Law is violated (the two 3-D forces ( ),BABF r t′ ′ ′JJJG

G G  and ( ),ABAF r t′ ′ ′JJJG
G G  at 

the same time t′  in IRF(S') are quite unlikely to be equal and opposite, e.g. if they are changing 
in time in IRF(S)). 
 

(final-initial) difference in 
total energy = (final-initial) 
difference in kinetic energy  

= work done on particle. 

As 
observed 
e.g. in lab 

IRF(S) 
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     Only in the case of contact interactions (i.e. 2 point particles at same point in space-time =  
(xA, tA)) where the two 3-D forces ( ),BABF r tJJJG

G G  and ( ),ABAF r tJJJG
G G  are applied at the same point (xA) at 

the same time, and in the {trivial} case where forces are constant, does Newton’s 3rd Law hold! 
 

( ) ( ),
,

dp r t
F r t

dt
=
G GG G

 

     The observant student may have noticed that because ( ),F r t
G G  is the derivative of the 

(relativistic) momentum ( ),p r tG G  with respect to the ordinary (and not the proper) time t, it 
“suffers” from the same “ugly” behavior that “ordinary” velocity does, in Lorentz-transforming 

it from one IRF to another:  both numerator and denominator of ( ),dp r t
dt

G G
 must be transformed. 

 
     Thus, if we carry out a Lorentz transformation from IRF(S) to IRF(S′), along the x̂ -axis 
where ˆv vx=

G
 is velocity vector of IRF(S′) as observed in IRF(S), and uG  is the velocity vector of 

a particle of mass m as observed in IRF(S): 
 

Then: 
2

1
1

γ
β

≡
−

  where:   
v
c

β ≡  with: ˆv vx=
G

 

 

The and γ β  factors are needed for the 
Lorentz transformation of kinematic quantities 
from IRF(S) → IRF(S′). 
 
 
 
 
 
 

     First, let us work out the ŷ′and ẑ′  (i.e. the transverse) components of the 3-D force ( ),F r t′ ′ ′
G G  

as seen in IRF(S′) {they are simpler / easier to obtain. . . }: 
 

Noting that: 
dpF
dt

=
GG

, 
dpF
dt

′
′ =

′

GG
 and that: dt dt dx

c
γβγ′ = −   and:  x

dxu
dt

=  
 

In IRF(S′): 
( )( )11

y

y y y
y

x

dp
dp dp FdtF

dxdt u cdt dx
c c dt

γβ β γ βγ γ

′
′ = = = =

′ −⎛ ⎞− −⎜ ⎟
⎝ ⎠

 

Similarly:  
( )( )11

z

z z z
z

x

dp
dp dp FdtF

dxdt u cdt dx
c c dt

γβ β γ βγ γ

′
′ = = = =

′ −⎛ ⎞− −⎜ ⎟
⎝ ⎠
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Now calculate the x̂′ -component of the force ( ),F r t′ ′ ′
G G in IRF(S′): 

In IRF(S′): x
x

dpF
dt

γ′
′ = =

′
xdp γ− 0dpβ

γ dt
γ

−

( )
( )

0

11

x TOT
x

x

dp dEdp F c
dt dt dt

dx u c
dx c dtc

β β

β ββ

− −
= =

−−
  where: 0 TOTEp

c
=  

 

But we have calculated TOTdE
dt

 above / earlier:  TOTdE dp u F u u F
dt dt

= = =
G G GG G Gi i i   since: 

dpF
dt

=
GG

 

 
 

    ∴       
( )

( )( )1
x

x
x

F u F c
F

u c

β

β

−
′ =

−

GGi
 

      ( )( )1
y

y
x

F
F

u cγ β
′ =

−
 

                  ( )( )1
z

z
x

FF
u cγ β

′ =
−

 

 

     We see that only when the particle of mass m is instantaneously at rest in IRF(S) (i.e. ( ) 0u t =
G ) 

will we then have a “simple” Lorentz transformation of the “ordinary” force F F ′→
G G

: 
 

x xF F′ =          ⇒   F F′=& &   ←  n.b. || force components are same/identical !!! 

   0u =
G

: y yF F γ′ =  

  z zF F γ′ =      ⇒ F F γ⊥ ⊥′ =  
 

Note that for 0u =
G , the component of F

G
&  to the Lorentz boost direction is unchanged. 

For 0u =
G , the component of  F ⊥

G
 to the Lorentz boost direction is reduced by the factor 1 γ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Relativistic “ordinary” x, y, z force components 
observed in IRF(S′) acting on particle of mass m, for a 
Lorentz transformation from lab IRF(S) to IRF(S′). 
 
    IRF(S′) moving with velocity ˆv vx=

G
 relative to 

IRF(S) (as seen in IRF(S)), 21 1γ β≡ − , v cβ ≡ . 
   
    Particle of mass m is moving with “ordinary” velocity 
uG  as seen in IRF(S). 

Where the subscripts &  ( ⊥ ) refer to the parallel 
(perpendicular) components of the force with respect to 
the motion of IRF(S′) relative to IRF(S), respectively.



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  17       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

18 

Proper Force – The Minkowski Force: 
     In analogy to the definition of the proper time interval dτ and the proper velocity d dη τ=

GG A  

versus the “ordinary” time interval dt and the “ordinary” velocity u d dt=
GG A , we define a proper 

force K
G

 (also known as the Minkowski force), which is the derivative of the relativistic 
momentum pG  with respect to proper time dτ : 
 

dp dt dpK
d d dtτ τ

⎛ ⎞≡ = ⎜ ⎟
⎝ ⎠

G GG
  but:  

2 2

1 1
1

1
u

u

dt dt
d dt u

c

γ
τ β

= = ≡ =
′ − ⎛ ⎞− ⎜ ⎟

⎝ ⎠

 

 

∴ u
dp dt dpK F
d d dt

γ
τ τ

⎛ ⎞≡ = =⎜ ⎟
⎝ ⎠

G GG G
  where:  

dpF
dt

=
GG

 

Thus:   
2 2

1 1
1

1
u

u

K F F F
u
c

γ
β

= = =
− ⎛ ⎞− ⎜ ⎟

⎝ ⎠

G G G G
  where: 

2 2

1 1
1

1
u

u u
c

γ
β

≡ =
− ⎛ ⎞− ⎜ ⎟

⎝ ⎠

 and:  u
u
c

β ≡  

 
We can “4-vectorize” the Minkowski Force, because it’s plainly / clearly a 4-vector: 
 

ct: 
0

0 1 TOTdEdpK
d c dτ τ

≡ =   since:  0 TOTEp
c

=  ⇒ 0K =  

x: 
( )

1
1 1 1 1

2 2

1 1
1 1

u

u

dpK F F F
d u c

γ
τ β

≡ = = =
− −

 

y: 
( )

2
2 2 2 2

2 2

1 1
1 1

u

u

dpK F F F
d u c

γ
τ β

≡ = = =
− −

       with:  
( )2 2

1 1
1 1

u

u u c
γ

β
≡ =

− −
 

z: 
( )

3
3 3 3 3

2 2

1 1
1 1

u

u

dpK F F F
d u c

γ
τ β

≡ = = =
− −

 

 

Thus:   
dpK
d

μ
μ

τ
≡  ← Minkowski 4-vector force = proper 4-vector force. 

 
     Relativistic dynamics can be formulated in terms of either “ordinary” quantities or “proper” 
(particle rest frame) quantities.  The latter is much neater / elegant, but it is (by its nature) 
restricted to the particle’s rest frame IRF(S′) {n.b. We can always easily Lorentz boost this 
“proper” result to any other inertial reference frame. . . } 
 
     There is a very simple reason for this!  Since we humans live in the lab frame IRF(S) – we 
want to know everything about particle’s trajectory, the forces acting on it, etc. in the lab because 
this is the only IRF that we can (easily) make physical measurements in – often, it is not possible 
to make physical measurements in a particle’s rest frame / proper frame, especially if the 
particles are in relativistic motion (e.g. at Fermilab…). 

Proper rate at which energy of particle 
increases (or decreases) 

= (Proper power delivered to the particle)/c ! 
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     In the long run, we will (usually) be interested in the particle’s trajectory as a function of 
“ordinary” time, so in fact the “ordinary” 4-force F dp dtμ μ≡  is often more useful, even if it is 
more painful / cumbersome to calculate / compute… 
 
     We want to obtain the relativistic generalization of the classical Lorentz force law 

CF qE qu B= + ×
G G GG

 {uG  = particle’s “ordinary” velocity in IRF(S)}. Does the classical formula CF
G

 

correspond to the “ordinary” relativistic force F
G

, or to the proper / Minkowski force K
G

? 
 

Thus, for the relativistic Lorentz force, should we write:    ( )F qE qu B q E u B= + × = + ×
G G G G GG G

 ??? 

Or rather, should the relativistic Lorentz force relation be: ( )K qE qu B q E u B= + × = + ×
G G G G GG G

 ??? 
 
     Since proper time and “ordinary” time are identical in classical physics / Euclidean / Galilean 
3-space, classical physics can’t tell us the answer. 
 

     It turns out that the Lorentz force law is an “ordinary” relativistic force law: ( )F q E u B= + ×
G G GG

 

We’ll see why shortly…  
 
We’ll also construct the proper / Minkowski electromagnetic force law, as well . . .  
 
 
But first, some examples: 
 

Griffiths Example 12.11: Relativistic Charged Particle Moving in a Uniform Magnetic Field 
 
We’ve discussed this before, from a classical dynamics point of view: 
 
     The typical trajectory of a charged particle (charge Q, mass 
m) moving in a uniform magnetic field is cyclotron motion.   
If the velocity of particle (uG ) lies in the x-y plane and ˆoB B z=

G
, 

then ( )ˆ ˆo oF Qu B QuB r QuB r= × = − = −
G GG

 as shown on the right: 
 
     The magnetic force points radially inward – it provides the 
centripetal acceleration needed to sustain the circular motion. 
However, in special relativity the centripetal force is not 2mu R  

(as it is in classical mechanics).  Rather, it is: 
1dp d R d Rd uF p p p p

dt dt R dt R dt R
θ θ θ⎛ ⎞= = = = =⎜ ⎟

⎝ ⎠
. 

                   Top View:   Vector Diagram:   

 

( )ˆuF p r
R

= −
G

 (n.b. Classically: p mu=
G G

  thus, classically: ( )
2

ˆuF m r
R

= −
G

) 
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Thus, relativistically: ( ) ( )ˆ ˆo
uQuB r p r
R

− = −   or:  o
uQuB p
R

=   or: op QB R=   
 
The relativistic cyclotron formula is identical to classical / non-relativistic formula! 
 

However here, p is understood to be the relativistic 3-momentum, up m muη γ= =
GG G

. 
 
 
Griffiths Example 12.12:  Hidden Momentum 
 

     Consider a magnetic dipole moment mG  modeled as a rectangular loop of wire (dimensions 
w×A ) carrying a steady current I.  Imagine the current as a uniform stream of non-interacting 

positive charges flowing freely through the wire at constant speed u.  (i.e. a fictitious kind of 
superconductor.)  A uniform electric field E

G
 is applied as shown in the figure below: 

     The application of the external uniform electric field ˆoE E y=
G

 changes the physics – the 
electric charges are accelerated in the left segment of the loop and decelerated in the right 
segment of the loop.  [n.b. admittedly this is not a very realistic model, but other more realistic 
models do lead to the same result – see V. Hnizdo, Am. J. Phys. 65, 92 (1997)]. 
Find the total momentum of all of the charges in the loop. 
 
     The momenta associated with the electric charges in the left and right segments of the loop 
cancel each other (i.e. pG (in left segment) = − pG  (in right segment), so we only need to consider 
the momenta associated with the electric charges flowing in the top and bottom segments of the 
loop. 
 

     Suppose there are N+  charges flowing in the top segment of the loop, moving in x̂+  direction 

with speed ( )0u u E+ > =
G

{because they underwent acceleration traveling on the LHS segment} 

and N−  charges flowing in the bottom segment of the loop, moving in the x̂−  direction with 

speed ( )0u u E− < =
G

{because they underwent deceleration traveling on the RHS segment}. 

     Note that the current I uλ=  must be the same in all four segments of the loop, otherwise 
charges would be piling up somewhere. 
 

In particular:  I I+= (top segment of loop) = I− (bottom segment of loop), i.e. I I I+ −= = . 
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Since: TOTQ NQλ ≡ =
A A

  then:  
QI u N uλ+ + + + +

⎛ ⎞= = ⎜ ⎟
⎝ ⎠A

 = 
QI u N uλ− − − − −

⎛ ⎞= = ⎜ ⎟
⎝ ⎠A

 

 

   ∴    
Q QN u N u I+ + − −

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠A A

  ⇒  
IN u N u
Q+ + − −= =
A

 

 

     Classically, the linear momentum of each electric charge is classical Qp m u=
G G  where Qm  = mass 

of the charged particle. 
 
     The total classical linear momentum of the charged particles flowing to the right in the top 

segment of the loop is:  ( )top segment

1

ˆ
classical

N

Q Q
i

p m u N m u x
+

+ + + +
=

    = = +∑G G
 

 
     The total classical linear momentum of the charged particles flowing to the left in the bottom 

segment of the loop is:  ( )bottom segment

1

ˆ
classical

N

Q Q
i

p m u N m u x
−

− − − −
=

= = −∑G G
 

 
The NET (or total) classical linear momentum of the charged particles flowing in the loop is: 
 

left segmentTOT
classical classicalp p=
G G top segment right segment

classical classicalp p++ +
G G

( ) ( )

bottom segment top segment bottom segment

ˆ ˆ ˆ ˆ 0 !!!
classical classical classical

Q Q Q Q

p p p

N m u x N m u x N u N u m x I Q I Q m x
− + −

+ + − − + + − −

+ = +

            = − = − = − =   

G G G

A A
 

 

Thus, 0TOT
classicalp =
G

 as we expected, since we know the loop is not moving. 
 
However, now let us consider the relativistic momentum: 

rel u Qp m uγ=
G G

 (even if u u c=
G � )  where:  

( )2 2

1 1
1 1

u

u u c
γ

β
≡ =

− −
 

 
     The total relativistic linear momentum of the charged particles flowing to the right in the top 

segment of the loop is:  ( )top segment ˆ
rel Qu

p N m u xγ ++ + +   = +
G

  where: 
( )2 2

1 1
1 1

u
u c

γ
β

+

+ +

≡ =
− −

. 

 
     The total relativistic linear momentum of the charged particles flowing to the left in the bottom 

segment of the loop is:  ( )bottom segment ˆ
rel Qu

p N m u xγ −− − −= −
G

 where: 
( )2 2

1 1
1 1

u
u c

γ
β

−

− −

≡ =
− −

. 

      The net / total relativistic momentum is:  
 

( ) ( )top segment bottom segment ˆ ˆ
rel rel

TOT
rel Q Q Qu u u u

p p p N m u N m u x N u N u m xγ γ γ γ+ − + −+ − + + − − + + − −= + = − = −
G G G

 
 

But I I I+ −= =  gave us: 
IN u N u
Q+ + − −= =
A

 ∴ ( ) ˆ 0TOT
rel Qu u

Ip m x
Q

γ γ+ −

⎛ ⎞
= − ≠⎜ ⎟

⎝ ⎠

AG
 because u u

γ γ+ −≠  !!! 
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Charged particles flowing in the top segment of the loop are moving faster than those flowing in 
the bottom segment of the loop. 
 

     The gain in energy ( )2
umcγ  of the charged particles going up the left segment of the loop  

= the work done on the charges by the electric force ( oW QE w= ) (w = height of the rectangle). 
 
     Thus, for a charged particle going up the left segment of the loop, the energy gain is: 

( )2 2 2
Q Q Q ou u u u

E m c m c m c W QE wγ γ γ γ+ − + +Δ = − = − = =   ⇒   ( ) 2
o

u u
Q

QE w
m c

γ γ+ −− =  

 Where  oE = the magnitude of the {uniform/constant} electric field. 
 

 ∴  ( ) ˆTOT
rel Qu u

QIp m x
Q

γ γ+ −

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

AG oE w
m 2

Q

m
c

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

Q
I
Q
A

2
ˆ ˆoE I wx x

c
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

A
   

 

But: w A=A  = area of the loop.  ∴  2
ˆTOT o

rel
E IAp x
c

=
G

 but: m m IA= =
G

  ⇒   2
ˆTOT o

rel
mEp x
c

=
G

 
 

But: ( )ˆm m z= −
G

  (see picture above) and: ˆoE E y=
G

  i.e. m ⊥ Ε
GG

 here. 

Thus, vectorially we {actually} have: ( )2

1TOT
relp m E

c
= ×

GG G
  where:  ( ) ( )

ˆ

ˆˆ
x

om E mE z y
=+

× = − ×

����G

 

     Thus a magnetic dipole moment mG  in the presence of an electric field E
G

 carries relativistic 
linear momentum pG , even though it is not moving !!!  

n.b. it also (therefore) carries relativistic angular momentum rel relL r p= ×
G G G

. 
How big is this effect? Explicit numerical example - use “everyday” values: 
 

Eo = 1000 V/m 
I   = 1 Amp 
A  = (10 cm)2 = 0.01 m2 
m  = IA = 0.01 A-m2 

 

( )
2 3

16
22 8

10 10 10 kg m / s
3 10

TOT o
rel

mEp
c

− +
−×

= = =
×

  Tiny !!!  The 1/c2 factor kills this effect !!! 

 
     This so-called macroscopic hidden linear momentum is strictly relativistic, purely mechanical  
But note that it precisely cancels the electromagnetic linear momentum stored in the  and E B

G G
 

fields!!!  (Microscopically, the momentum imbalance arises from the imbalance of virtual photon 
emission on top segment of the loop vs. the bottom segment of the loop.) 
 
     Likewise, the corresponding hidden angular momentum precisely cancels the electromagnetic 
angular momentum stored in the  and E B

G G
 fields. 

 
→  Now go back and take another look at Griffiths Example 8.3, pages 356-57.  (the coax cable 
carrying uniform charge / unit length λ and steady current I flowing down / back cable.) 
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Let’s pursue this problem a little further… 
 
     Suppose there is a change in the current, e.g. suppose the current drops / decreases to zero. 

For simplicity’s sake, assume  dI K
dt

= −  (i.e. the current decreases linearly with time) 

Classically: ( ) ( ) ( )I t I t I t+ −= =  (as before) 
 

( ) ( ) QI t N t u+ + +
⎛ ⎞= ⎜ ⎟
⎝ ⎠A

  ( ) ( )Q QN t u N t u+ + − −
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠A A

 

( ) ( ) QI t N t u− − −
⎛ ⎞= ⎜ ⎟
⎝ ⎠A

 

 
 

Then: 
( ) ( )dI t dI tdI

dt dt dt
+ −= =   ⇒   

( ) ( )dN t dN tQ Qu u K
dt dt
+ −

+ −
⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠A A

 

   ∴     
( ) ( )dN t dN t Ku u

dt dt Q
+ −

+ −= = −
A

 = constant (no time dependence on RHS of equation) 

 
 
Then:   

( ) ( ) ( ) ( )ˆ ˆ ˆclassical Q Q
Q

dp t K m K mdN t
m u x x x

dt dt Q Q
+ +

+= + = − + = −
G A A

 

( ) ( ) ( ) ( )ˆ ˆ ˆclassical Q Q
Q

dp t K m K mdN t
m u x x x

dt dt Q Q
− −

−= − = − − = +
G A A

 

 
∴ The net / total classical time-rate of change of linear momentum is: 
 

( ) ( ) ( ) ( )
ˆ ˆ 0classical classical

tot
Q Qclassicaltot

classical

dp t dp t K m K mdp t
F t x x

dt dt dt Q Q
+ −= = + = − + =
G GGG A A

 

 

Thus: ( ) ( ) 0
tot
classicaltot

classical

dp t
F t

dt
= =
GG

 as we expected, since the loop is not moving. 
 
Now, let’s investigate this situation relativistically: 
 

Since: rel u Qp m uγ=
G G

 ⇒
rel Qu

p m uγ ++ +=
G G

 and: 
rel Qu

p m uγ −− −=
G G

 
 

We assume that u, u+ and u− are 
unaffected by the change in the 
current with time. 

Constant 

For individual charges 
with mass mQ 
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Then: ( ) ( ) ( )top segment ˆ
rel Qu

p t N t m u xγ ++ + +    = +
G

   where:  
( )2 2

1 1
1 1

u
u c

γ
β

+

+ +

≡ =
− −

. 

And: ( ) ( ) ( )bottom segment ˆ
rel Qu

p t N t m u xγ −− − −= −
G

   where:  
( )2 2

1 1
1 1

u
u c

γ
β

−

− −

≡ =
− −

. 

 

And: 
( ) ( ) ( )

top segment

ˆ ˆ constant rel Q
Qu u

dp t K mdN t
m u x x

dt dt Q
γ γ+ +

+ +
+

⎛ ⎞
    =     = = − ⎜ ⎟

⎝ ⎠

G A
 

And: 
( ) ( ) ( )

bottom segment

ˆ ˆ constant rel Q
Qu u

dp t K mdN t
m u x x

dt dt Q
γ γ− −

− −
−

⎛ ⎞
= − = = + ⎜ ⎟

⎝ ⎠

G A
 

 
The net / total time rate of change of relativistic momentum is: 
 

( ) ( ) ( )

( ) ( )

top segment bottom segment

ˆ ˆ

ˆ 0

rel rel

TOT
Q Qrel

u u

Q
u u u u

dp t dp t K m K mdp t
x x

dt dt dt Q Q

K m
x

Q

γ γ

γ γ γ γ

+ −

+ − + −

+ − ⎛ ⎞ ⎛ ⎞
= + = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

               = − ≠       ≠⎜ ⎟
⎝ ⎠

G GG A A

A
 

 

From above (p. 20): ( ) 2
o

u u
Q

QE w
m c

γ γ+ −− =  where: oE = electric field amplitude 

 

( )TOT
rel Qdp t
dt

= −
G

oE w
m 2

Q

K m
c

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

A Q

Q 2 2
ˆ ˆ ˆo oE K w E KAx x x

c c
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟
⎝ ⎠

A
 

 

Now: 
dI K
dt

= −   and:  m IA=   → 
dm dI A
dt dt

=   (Since A = constant). 
 

   ∴     
dm dIKA A
dt dt

= − =  = time rate of change of the magnetic dipole moment of the loop. 

 

   ⇒     
( ) ( )

2

1 ˆ
TOT
rel

o

dp t dm t
E x

dt c dt
=

G
  but:  ( )( ) ( )ˆˆ om m z E E y= − ⊥ =

GG  

 

   ∴     ( ) ( ) ( )
2

1 0
TOT
rel

rel

dp t dm t
F t E

dt c dt
⎛ ⎞

= = × ≠⎜ ⎟
⎝ ⎠

G GG G
   (assuming external E

G
-field is constant in time) 

Thus, ∃  a net “hidden” force acting on the magnetic dipole, when 0dI dt ≠ . 
 
     One might think that this net “hidden” force would be exactly cancelled / compensated for by 
a countering force due to the electromagnetic fields, as we saw in the static case ( 0dI dt = ), 
with a steady current I.  But it isn’t!!  Why?? 
 

A w= ×A  = cross-
sectional area of the loop
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     As we saw for M(1) magnetic dipole radiation, a time-varying current in a loop produces EM 
radiation.  Essentially there is a radiation reaction / back-force that acts on the “antenna” – a 
radiation pressure – much like the recoil / impulse from firing a bullet out of a gun – the short 
explosive “pulse” launches the bullet, but the gun is also kicked backwards, too. 
 

     The same thing happens here when 0dI dt ≠  - the far zone EM radiation fields are produced 
(i.e. real photons) while 0dI dt ≠  and carry away linear momentum, and since 0dI dt ≠ ,  
∃  a net force imbalance on the radiating object!  (n.b. – e.g. by linear momentum conservation, a 
laser pen has a recoil force acting on it from emitting the laser radiation – a radiation back 
reaction) 
 
     Likewise, the net “hidden” time rate of change of relativistic angular momentum is: 
 

( ) ( ) ( ) ( )2

1 ˆ
TOT TOT
rel rel

o

dL t dp t dm t
r E r x

dt dt c dt
= × = ×

G G
G G

 
 
Which will also not be exactly cancelled either, for the same reason – the EM radiation field can 
/ will carry away angular momentum… 

     In reality, in order to calculate ( )TOT
reldL t
dt

G
, we need to go 

back and integrate infinitesimal contributions along the (short) 
segments of upper and lower / top and bottom segments of the 
loop because sinr p rp θ× =

G G , θ =(  between and r pG G .   
 

Same for sindp dpr r
dt dt

θ× =
GG .  

 
     Will get result that has geometrical factor of order 1≤ . 
→ Conclusions won’t be changed by this, just actual #.  

     As we know, the time rate of change of angular momentum: 
dL
dt

τ=
G

G
 = torque. 

     Thus, the time rate of change of the net / total “hidden” relativistic angular momentum 
( )TOT

reldL t
dt

G
 = net “hidden” relativistic torque, ( )TOT

rel tτG . 
 

Thus: ( ) ( ) ( ) ( ) ( )
2

1 0
TOT TOT
rel relTOT TOT

rel rel

dL t dp t dm t
t r r F t r E

dt dt c dt
τ

⎛ ⎞
= = × = × = × × ≠⎜ ⎟

⎝ ⎠

G G GG GG G G G
 

 

Which is not completely / exactly cancelled when ( ) 0dI t dt ≠ !!! 
     Linear momentum, angular momentum, energy, etc. are all conserved for this whole system, 
it’s just that the EM radiation emitted from the antenna is free-streaming, carrying away all these 
quantities with it! 
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     In the static situation I = constant, the “hidden” relativistic linear momentum and angular 
momentum is exactly cancelled by the linear momentum and angular momentum (respectively) 
carried by the (macroscopic) static electromagnetic fields and E B

G G
.  Microscopically, the field 

linear and angular momentum is carried by the static, virtual photons associated with the 
macroscopic  and E B

G G
 fields, cancelling the (macroscopic) “hidden” linear and angular 

relativistic momentum of the magnetic dipole in a uniform E
G

-field. 
 

     In the non-static situation ( ) 0dI t dt ≠ , virtual photons undergo space-time rotation, 
becoming real photons, which carry away real linear and angular momentum.  “Hidden” 
relativistic linear and angular momentum is no longer exactly cancelled by the (now) real field 
linear and angular momentum associated with the EM radiation fields.  It is only partially 
cancelled by remaining / extant virtual / near-zone / inductive zone EM fields. 
 
 
Griffiths Problem 12.36: Relativistic “Ordinary” Force 
 

In classical mechanics Newton’s 2nd Law is: F ma=
G G

.   

The relativistic “ordinary” force relation;      rel
dpF
dt

=
GG

 cannot be so simply expressed. 
 

       ( )
( )2

1

1
rel u

dp d dF mu mu
dt dt dt u c

γ
⎛ ⎞
⎜ ⎟= = =
⎜ ⎟−⎝ ⎠

GG G G
  where:  

( )2

1

1
u

u c
γ ≡

−
 

       
( ) ( )( )

2

32 2 2

1 21
21 1

rel

du duu
dt c dtF m u
u c u c

⎧ ⎫
⎪ ⎪⎛ ⎞= + −⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪− −
⎩ ⎭

G GGiG G
  where:  

dua
dt

≡
GG

 = “ordinary” acceleration. 

∴   
( )

( )
( )( ) ( )

( )
( )2 2 22 22 11 1

rel

u u a u u am mF a a
c uc u cu c u c

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + = +⎨ ⎬ ⎨ ⎬
−−⎪ ⎪ ⎪ ⎪− − ⎩ ⎭⎩ ⎭

G G G G G GG i iG G
 Q.E.D. 

 
Griffiths Problem 12.38:  Proper Acceleration 
 
     We define the proper four-vector acceleration in the obvious way, as: 
 

     
2

2

d d x
d d

μ μ
μ ηα

τ τ
≡ =   where: 

dx
d

μ
μη

τ
≡  = proper four-velocity  

 

a)  Find 0  and α αG  in terms of  and u aG G  ( = “ordinary” velocity, “ordinary” acceleration): 
 

     
( ) ( )

0 0
0

2 2

1

1 1

d d dt d c
d dt d dtu c u c

η ηα
τ τ

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟− −⎝ ⎠

  since: 
1

u

d dtτ
γ

=  ⇒   
( )2

1

1
u

dt
d u c

γ
τ

= =
−
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( )

0

2

1
2

1

c

u c
α

−
=

−

2
1 2
c

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )( ) ( )( )3 222 2

1

11

u a
u a

c u cu c
=

−−

G Gi G Gi
  where:  

dua
dt

≡
GG

 

 
Similarly: 

       

( ) ( )2 2

1

1 1

d d dt d u
d dt d dtu c u c

η ηα
τ τ

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟− −⎝ ⎠

G G GG
  since:  uuη γ=

G G
  and:  

( )2

1

1
u

u c
γ =

−
 

     
( ) ( )2 2

1
1 2

1 1

a u
u c u c

α
−

= +
− −

GG G 2
1 2
c

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )( )
3

2 21

u a

u c

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪−
⎪ ⎪⎩ ⎭

G Gi
 

     
( )( )

( )
( )2 2 2

1
1

rel
u

u u a Fa
mc uu c

α γ
⎧ ⎫ ⎛ ⎞⎪ ⎪= + =⎨ ⎬ ⎜ ⎟

−− ⎝ ⎠⎪ ⎪⎩ ⎭

GG G GiG G
   ← see Problem 12.36 above. 

 

b)  Express μ
μα α  in terms of  and u aG G : 

       

( ) ( )
( )( ) ( )( )

( )( ) ( )

( )( )
( ) ( )( ) ( )( )( ) ( )

( )( )
( )( ) ( )

2 2
2 20

4 42 22 2

22 2 2 2 22 2
4 2 2 42

2 2 2222
4 22

1 1 11
1 1

1 1 2 11 1
1

1 1 1 2 2
1

u a
a u c u u a

c cu c u c

u a a u c u c u a u u a
c c cu c

u a u ua u c
c c cu c

μ
μα α α α α ⎡ ⎤= − + = − + − +⎢ ⎥⎣ ⎦− −

⎧ ⎫          = − + − + − +⎨ ⎬
⎩ ⎭−

⎛ ⎞⎛ ⎞ ⎛ ⎞          = − + − + − +⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝−

G GiG G G G G Gi i

G G G G G Gi i i

G Gi⎧ ⎫⎪ ⎪
⎟⎨ ⎬⎟⎪ ⎪⎠⎩ ⎭

 

Or:  
( )( )

( )
( )

2
2

4 2 22

1

1

u a
a

c uu c

μ
μα α

⎡ ⎤
⎢ ⎥= +

−⎢ ⎥− ⎣ ⎦

G Gi
  ← n.b. Lorentz invariant quantity – same in all IRFs. 

 
c)  Show 0μ

μη α = .   
 
Recall that the “dot-product” of (any) two relativistic four-vectors is a Lorentz-invariant quantity.  
 

Thus, if we deliberately/consciously choose to evaluate  ( )20μ μ
μ μη η η η η η η= = − +

G Gi  in the rest 

frame of an object, we see that 0η η =
G Gi  in the rest frame of the object, and therefore:  

 

                ( ) N ( )2 20 0 2

0

cμ μ
μ μη η η η η η η η

=

= = − + = − = −
G Gi  = constant. 
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Note that 
d
d

μμ μ
μ

η
η α η

τ
=  is also the “dot-product” of two relativistic four vectors { μη  and μα }. 

 

Note also that:  ( ) 2
dd d

d d d

μ
μμ μ μ μ μ

μ μ μ μ μ

ηηη η η η α η η α α η
τ τ τ

= + = + =  
 

But: 2cμ
μη η = −  = constant (from above). Thus: ( ) ( )2 0d d c

d d
μ

μη η
τ τ

= − =            ∴  0μ
μα η = . 

 

d) Write the Minkowski / proper force version of Newton’s 2nd law, 
dpK
d

μ
μ

τ
=  in terms of the 

proper acceleration μα . 
 

( )dp d dK m m m
d d d

μ μ
μ μ μηη α

τ τ τ
= = = =  

 

e)  Evaluate the Lorentz-invariant 4-product K μ
μη : 

 

K mμ μ
μ μη α η=   but: 0μ

μα η =  from part c) above. 
 

                  ∴  0K μ
μη =  


