4 Electromagnetic wave propagation in dielectrics

4.1 Introduction

It is easily demonstrated that the fields associated with an electromagnetic wave
propagating through a uniform dielectric medium of dielectric constant € satisty

e 02
—+5—-V*)E=0 4.1
(62 ot? ) ’ (4.1)
and 5B
VAE = ——. 4.2
Y (4.2)
The plane wave solutions to these equations are well known:
E = Eye(kr—vt), (4.3a)
B = Byellkr—wt) (4.3b)

where Ey and B, are constant vectors, with

w?  c?
— = — 4.4
and kNE
By = 9. (4.5)
w
The phase velocity of the wave is given by
w
= = 4.6

where
n =+ (4.7)

is called the refractive index of the medium. It is clear that an electromagnetic
wave propagates with a phase velocity which is slower than the velocity of light
in a conventional (i.e., € real and greater than unity) dielectric medium.
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In some dielectric media € is complex. This leads, from Eq. (4.4), to a complex
wave vector k. For a wave propagating in the x-direction we obtain

E = Ej exp[i(Re(k) x — wt)] exp[—Im(k) z]. (4.8)

Thus, a complex dielectric constant leads to the attenuation (or amplification) of
the wave as it propagates through the medium in question.

Up to now, we have tacitly assumed that € is the same for waves of all frequen-
cies. In practice, this is not the case. In dielectric media € is, in general, complex,
and varies (in some cases, strongly) with the wave frequency, w. Thus, waves of
different frequencies propagate through a dielectric medium with different phase
velocities. This phenomenon is known as dispersion. Moreover, there may exist
frequency bands in which the waves are attenuated (i.e., absorbed). All of this
makes the problem of determining the behaviour of a wave packet as it propagates
through a dielectric medium far from straightforward. Recall, that the solution
to this problem for a wave packet traveling through a vacuum is fairly trivial.
The packet propagates at the velocity ¢ without changing its shape. What is the
equivalent result for the case of a dielectric medium? This is an important ques-
tion, since nearly all of our information regarding the universe is obtained from
the study of electromagnetic waves emitted by distant objects. All of these waves
have to propagate through dispersive media (e.g., the interstellar medium, the
ionosphere, the atmosphere) before reaching us. It is, therefore, vitally important
that we understand which aspects of these wave signals are predominantly de-
termined by the wave sources, and which are strongly modified by the dispersive
media through which they have propagated in order to reach us.

The study of wave propagation through dispersive media was pioneered by
two scientists, Arnold Sommerfeld and Léon Brillouin, during the first half of
this century. In the following discussion, we shall stick as close as possible to
Sommerfeld and Brillouin’s original analysis.

4.2 The form of the dielectric constant

Let us investigate an electromagnetic wave propagating through a transparent,
isotropic, non-conducting, medium. The electric displacement inside the medium
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is given by
D = €0E + P, (49)

where P is the electric polarization. Since electrons are much lighter than ions
(or atomic nuclei), we would expect the former to displace further than the lat-
ter under the influence of an electric field. Thus, to a first approximation the
polarization P is determined by the electron response to the wave. Suppose that
the electrons displace a distance s from their rest positions in the presence of the
wave. It follows that

P = —Nes, (4.10)

where N is the number density of electrons.

Let us assume that the electrons are bound “quasi-elastically” to their rest
positions, so that they seek to return to these positions when displaced from them
by a field E. It follows that s satisfies the differential equation of the form

ms+ fs=—eFE, (4.11)

where m is the electron mass, —fs is the restoring force, and * denotes a partial
derivative with respect to time. The above equation can also be written

4+ guwos+wy’s = _£ E, (4.12)
m
where i
2
= L 4.13
Wo m ( )

is the characteristic oscillation frequency of the electrons. In almost all dielec-
tric media this frequency lies in the far ultraviolet region of the electromagnetic
spectrum. In Eq. (4.12) we have added a phenomenological damping term g wy 8,
in order to take into account the fact that an electron excited by an impulsive
electric field does not oscillate for ever. In general, however, electrons in dielectric
media can be regarded as high-Q oscillators, which is another way of saying that
the dimensionless damping constant g is typically much less than unity. Thus,
an electron “rings” for a long time after being excited by an impulse.
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Let us assume that the electrons oscillate in sympathy with the wave at the
wave frequency w. It follows from Eq. (4.12) that

(¢/m) E

2 2 _ i ‘
Wy’ —w?* —1gwwp

Note that we have neglected the response of the electrons to the magnetic compo-
nent of the the wave. It is easily demonstrated that this is a good approximation
provided that the electrons do not oscillate with relativistic velocities (i.e., pro-
vided that the amplitude of the wave is sufficiently small). Thus, Eq. (4.10)
yields

Ne? E
P= 2( eQ/m_) . (4.15)
Wy —w? —igwwy
Since, by definition,
D =¢cpe E = ¢gFE + P, (4.16)
it follows that N2
e(w) =n?(w) =1+ 2( ¢ /eom) (4.17)

we? —w? —igwwy
Thus, the index of refraction is frequency dependent. Since wg typically lies
in the ultraviolet region of the spectrum (and since g <« 1), it is clear that
the denominator wy? — w? —igwwy =~ wy? — w? is positive in the entire visible
spectrum, and is larger at the red end than at the blue end. This implies that
blue light is refracted more than red light. This is normal dispersion. Incidentally,
an expression, like the above, which specifies the dispersion of waves propagating

through some dielectric medium is usually called a dispersion relation.

Let us now suppose that there are N molecules per unit volume with Z elec-
trons per molecule, and that instead of a single oscillation frequency for all elec-
trons, there are f; electrons per molecule with oscillation frequency w; and damp-
ing constant g;. It is easily demonstrated that

Ne? fi
2 2
w)=1+ E 4.18
" ( ) €Egm - w.2—w2—igiwwi’ ( )

?

where the oscillator strengths f; satisfy the sum rule,

Z fi=2Z. (4.19)
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A more exact quantum mechanical treatment of the response of an atom, or
molecule, to a low amplitude electromagnetic wave also leads to a dispersion
relation of the form (4.18), except that the quantities f;, w;, and g; can, in
principle, be calculated from first principles. In practice, this is too difficult
except for the very simplest cases.

Since the damping constants g; are generally small compared to unity, it
follows from Eq. (4.18) that n(w) is a predominately real quantity at most wave
frequencies. The factor (w,? — w?)~! is positive for w < w; and negative for
w > w;. Thus, at low frequencies, below the smallest w;, all of the terms in the
sum in (4.18) are positive, and n(w) is consequently greater than unity. As w is
raised so that it passes successive w; values, more and more negative terms occur
in the sum, until eventually the whole sum is negative and n(w) is less than unity.
Thus, at very high frequencies electromagnetic waves propagate through dielectric
media with phase velocities which exceed the velocity of light in a vacuum. For
w =~ w;, Eq. (4.18) predicts a rather violent variation of the refractive index with
frequency. Let us examine this phenomenon more closely.

4.3 Anomalous dispersion and resonant absorption

When w is approximately equal to w; the dispersion relation (4.18) reduces to

t 2 2 _ !
w;“ —w? —1g; Ww;j

(4.20)

where n; is the average contribution in the vicinity of w = w; of all other res-
onances (also included in n; is the contribution 1 of the vacuum displacement
current, which was previously written down separately). The refractive index is
clearly complex. For a wave propagating in the z-direction

E = Ey expli(w/c)(Re(n) x — ct)] exp[—(w/c) Im(n) z]. (4.21)

Thus, the phase velocity of the wave is determined by the real part of the refractive
index via

(4.22)



Note that a positive imaginary component of the refractive index leads to the
attenuation of the wave as it propagates.

Let
a* = eivnjz? (4.23a)
r = uﬂw—ifwf’ (4.23b)
y = Re(n)Q@;Im(n)z, (4.23¢)
;= QRQ(Z)QIm(n), (4.23d)

where a, z,y, z are all dimensionless quantities. It follows from Eq. (4.20) that

’I’L-2

¥ i
= — 4.24
Y a?  z?+g*(1+z) (4.24a)

;= gvite (4.24b)

2+ g%2(1+2)

Let us adopt the physical ordering g; < 1. The extrema of the function y occur
at x = +g;. It is easily demonstrated that

n;
in | = =g)) =~ — —, 4.24
2
n, 1
max | = =—g;) =+ 4+ —. 4.24d
Yma y(z=—g:) =5 + 2 ( )

The maximum value of the function z occurs at x = 0. In fact,

1
Zmax = —. (4.25)

gi
Note that

1
z(x = +¢;) = 59, (4.26)
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Figure 5: Sketch of the variation of the functions y and z with =

Figure 5 shows a sketch of the variation of the functions y and z with x.
These curves are also indicative of the variation of Re(n) and Im(n), respectively,
with frequency w in the vicinity of the resonant frequency w;. Recall that nor-
mal dispersion is associated with an increase in Re(n) with increasing w. The
reverse situation is termed anomalous dispersion. It is clear from the figure that
normal dispersion occurs everywhere except in the immediate neighbourhood of
the resonant frequency w;. It is also clear that the imaginary part of the refrac-
tive index is only appreciable in those regions of the electromagnetic spectrum
where anomalous dispersion takes place. A positive imaginary component of the
refractive index implies that the wave is absorbed as it propagates through the
medium, so the regions of the spectrum where Im(n) is appreciable are called
regions of resonant absorption. Anomalous dispersion and resonant absorption
take place in the vicinity of the ith resonance when |w — w;| £ O(g;). Since the
damping constants g; are, in practice, very small compared to unity, the regions
of the spectrum in which resonant absorption takes place are strongly localized
in the vicinity of the various resonant frequencies.
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The dispersion relation (4.18) only takes electron resonances into account.
Of course, there are also resonances associated with displacements of the ions
(or atomic nuclei). The off-resonance contributions to the right-hand side of
Eq. (4.18) from the ions are smaller than those from the electrons by a factor of
order m/M (where M is a typical ion mass). Nevertheless, the ion contributions
are important because they give rise to anomalous dispersion and resonant ab-
sorption close to the ion resonant frequencies. The ion resonances associated with
the stretching and bending of molecular bonds typically lie in the infrared region
of the electromagnetic spectrum. Those associated with molecular rotation (these
resonances only affect the dispersion relation if the molecule is polar) occur in
the microwave region of the spectrum. Thus, both air and water exhibit strong
resonant absorption of electromagnetic waves in both the ultraviolet and infrared
regions of the spectrum. In the first case this is due to electron resonances, and
in the second to ion resonances. The visible region of the spectrum exists as a
narrow window lying between these two regions in which there is comparatively
little attenuation of electromagnetic waves.

4.4 'Wave propagation through a conducting medium

In the limit w — 0, there is a significant difference in the response of a dielectric
medium, depending on whether the lowest resonant frequency is zero or non-zero.
For insulators the lowest resonant frequency is different from zero. In this case,
the low frequency refractive index is predominately real, and is also greater than
unity. Suppose, however, that some fraction fy of the electrons are “free,” in the
sense of having wg = 0. In this situation, the low frequency dielectric constant
takes the form
2 ., . Ne? fo

com w (y0 —iw)’

(4.27)

where ng is the contribution to the refractive index from all of the other reso-
nances, and vy = lim,,,,0 gowo. Note that for a conducting medium the contri-
bution to the refractive index from the free electrons is singular at w = 0. This
singular behaviour can be explained as follows. Consider the Ampere-Maxwell
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equation

oD

Let us assume that the medium in question obeys Ohm’s law, 3; = ¢ FE, and has
a “normal” dielectric constant ny>. Here, o is the conductivity. Assuming an

exp(—iwt) time dependence of all field quantities the above equation yields

VAB
~ —iew <n02 +i i) E. (4.29)
Ko €QWw

Suppose, however, that we do not explicitly use Ohm’s law but, instead, attribute
all of the properties of the medium to the dielectric constant. In this case, the
effective dielectric constant of the medium is equivalent to the term in round
brackets on the right-hand side of the above equation. Thus,

ew) = n2(w) =ng2 +i——. (4.30)
€ W
A comparison of this term with Eq. (4.27) yields the following expression for the

conductivity )

o= JoNe (4.31)

m(yo —iw)

Thus, at low frequencies conductors possess predominately real conductivities
(i.e., the current remains in phase with the electric field). However, at higher
frequencies the conductivity becomes complex. At these sorts of frequencies there
is little meaningful distinction between a conductor and an insulator, since the
“conductivity” contribution to €(w) appears as a resonant amplitude just like the
other contributions. For a good conductor, such as Copper, the conductivity
remains predominately real for all frequencies up to and including those in the
microwave region of the electromagnetic spectrum.

The conventional way in which to represent the complex refractive index of a
conducting medium (in the low frequency limit) is to write it in terms of a real
“normal” dielectric constant, € = ny?, and a real conductivity, o. Thus, from
Eq. (4.30)

2 . 0
= —. 4.32
n‘(w) e—|—1€0w (4.32)
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For a poor conductor (0/eepw < 1) we find

k:ngzﬁg—i—i
c c

(4.33)

In this limit Re(k) > Im(k), and the attenuation of the wave, which is governed by
Im(k) [see Eq. (4.8)], is independent of the frequency. Thus, for a poor conductor
the wave is basically the same as a wave propagating through a conventional
dielectric with dielectric constant €, except that the wave attenuates gradually
over a distance of very many wavelengths. For a good conductor (o/eegw > 1)

ke~ el™* /upow. (4.34)
It follows from Eq. (4.5) that

cBy ke in/a | O
— = —=¢e'" — 4.35
Ey w ¢ €0 W ( )

Thus, the phase of the magnetic field lags that of the electric field by 45°. More-
over, the magnitude of ¢By is much larger than that of Ey (since o/epw > € 2 1).
It follows that the field energy is almost entirely magnetic in nature. It is
clear that an electromagnetic wave propagating through a good conductor has
markedly different properties to a wave propagating through a conventional di-
electric. For a wave propagating in the xz-direction, the amplitudes of the electric
and magnetic fields attenuate like exp(—z/d), where

d=—2_ (4.36)
Mo O W

This quantity is known as the skin depth. It is clear that an electromagnetic wave
incident on a conducting medium will not penetrate more than a few skin depths
into that medium.

4.5 The high frequency limit

Consider the behaviour of the dispersion relation (4.18) in the high frequency
limit w > w; (for all ¢). In this limit, the relation simplifies considerably to give

w2

n*(w) =1- w—pz’ (4.37)

137



where the quantity

| N Ze?
= 4.38
Wp P ( )

is called the plasma frequency. The wave-number in the high frequency limit is
given by
w P

k=n—-=Y = (4.39)

C C

This expression is only valid in dielectrics when w > wp,. Thus, the refractive
index is real and slightly less than unity, giving waves which propagate without
attenuation with a phase velocity slightly larger than the velocity of light in vac-
uum. However, in certain ionized media (in particular, in tenuous plasmas such
as occur in the ionosphere) the electrons are free and the damping is negligible.
In this case, Eqgs. (4.37) and (4.39) are valid even when w < w,. It is clear that a
wave can only propagate through a tenuous plasma if its frequency exceeds the
plasma frequency (in which case it has a real wave-number). If wave frequency
is less than the plasma frequency then the wave-number is purely imaginary, ac-
cording to Eq. (4.39), and the wave is therefore attenuated. This accounts for the
fact that long-wave and medium-wave radio signals can be received even when
the transmitter lies over the horizon. The frequency of these waves is less than
the plasma frequency of the ionosphere, which reflects them, so they are trapped
between the ionosphere and the surface of the Earth (which is also a good re-
flector of radio waves), and can, in certain cases, travel many times around the
Earth before being attenuated. Unfortunately, this scheme does not work very
well for medium-wave signals at night. The problem is that the plasma frequency
of the ionosphere is proportional to the square root of the number density of free
ionospheric electrons. These free electrons are generated through the ionization
of neutral molecules by ultraviolet radiation from the Sun. Of course, there is no
radiation from the Sun at night so the density of free electrons starts to drop as
the electrons gradually recombine with ions in the ionosphere. Eventually, the
plasma frequency of the ionosphere falls below the frequency of medium-wave
radio signals allowing them to be transmitted through the ionosphere into outer
space. The ionosphere appears almost completely transparent to high frequency
signals such as TV and FM radio signals. Thus, this type of signal is not reflected
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by the ionosphere. Consequently, to receive such signals it is necessary to be in
the line of sight of the relevant transmitter.

4.6 Faraday rotation

The electromagnetic force acting on an electron is given by
f=—-e(E+vAB). (4.40)

If the E and B fields in question are due to an electromagnetic wave propagating
through a dielectric medium then

n
B = —|E]. (4.41)

It follows that the ratio of the magnetic to the electric forces acting on the elec-
tron is nwv/c. In other words, the magnetic force is completely negligible unless
the wave amplitude is sufficiently high that the electron moves relativistically in
response to the wave. This state of affairs is rare, but can occur when intense
laser beams are made to propagate through plasmas.

Suppose, however, that the dielectric medium contains an externally gener-
ated magnetic field B. This can easily be made much stronger than the optical
magnetic field. In this case, it is possible for a magnetic field to affect the propa-
gation of low amplitude electromagnetic waves. The electron equation of motion
(4.11) generalizes to

ms+ fs=—e(E+sAB), (4.42)

where any damping of the motion has been neglected. Suppose that the direction
of B is in the positive z-direction, and that the wave propagates in the same
direction. With these assumptions the E and s vectors lie in the -y plane. The
above equation reduces to

(wo? —w?) sz —iwfs, = —% E;, (4.43a)
(wo® —w?) sy +iws, = —% E,, (4.43Db)
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provided that all perturbed quantities have an exp(—iwt) time dependence. Here,

0P
m
is the electron cyclotron frequency. Let
E, =E,+iE,,
and
S4 = Sz L 18y.
Note that
1
B, = 5(Bi+E.),
E, = — (B, —FE)
v it T
Equations (4.43) reduce to
(W —w? —w) s, = _°E
0 + m +>
(W —w?+w)s_. = - E_.
m

Defining Py = P, £1i Py, it follows from Eq. (4.10) that

(Ne?/m) Ex

2 2 :
wy” —w? Fw 2

Finally, from Eq. (4.15), we can write

Py

— 2
o

giving

(4.44)

(4.45)

(4.46)

(4.47a)

(4.47b)

(4.48a)

(4.48b)

(4.49)

(4.50)

(4.51)



According to the dispersion relation (4.51), the refractive index of a magne-
tized dielectric medium can take one of two possible values, which presumably
correspond to two different types of wave propagating along the z-axis. The first
wave has the refractive index n4 and an associated electric field [see Egs. (4.45)]

E, = Eycos[(w/c)(nsz — ct)], (4.52a)
E, = Epsin[(w/c)(nyz — ct)]. (4.52D)

This corresponds to a left-handed circularly polarized wave propagating in the z-
direction with the phase velocity ¢/ny. The second wave has the refractive index
n_ and an associated electric field

E, = FEycos[(w/c)(n_z — ct)], (4.53a)
E, = —Epsin[(w/c)(n_z— ct)]. (4.53b)

This corresponds to a right-handed circularly polarized wave propagating in the z-
direction with the phase velocity ¢/n_. It is clear from Eq. (4.51) that ny > n_.
Thus, we conclude that in the presence of a z-directed magnetic field, a z-directed
left-handed circularly polarized wave propagates with a phase velocity which is
slightly less than that of the corresponding right-handed wave. It should be
remarked that the refractive index is always real (in the absence of damping), so
the magnetic field gives rise to no net absorption of electromagnetic radiation.
This is not surprising since the magnetic field does no work on charged particles,
and can therefore transfer no energy to the particles from any waves propagating
through the medium.

We have seen that right-handed and left-handed circularly polarized waves
propagate with different phase velocities through a magnetized dielectric medium.
But, what does this imply for the propagation of a plane polarized wave? Let us
superimpose the left-handed wave whose electric field is given by Egs. (4.52) on
the right-handed wave whose electric field is given by Egs. (4.53). In the absence

of a magnetic field ny = n_ = n, and we obtain
E, = 2Ejcos|(w/c)(nz — ct)], (4.54a)
E, = 0. (4.54b)
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This, of course, is the field of a plane polarized wave (polarized along the z-
direction) propagating along the z-axis with the phase velocity ¢/n. In the pres-
ence of a magnetic field we obtain

E, = 2Ejcos|(w/c)(nz — ct)]cos[(w/2¢)(ny —n_)z], (4.55a)
E, = 2Ejcos[(w/c)(nz — ct)]sin[(w/2¢c)(ny —n_)z], (4.55Db)

where .
n=g (ny +n_) (4.56)

is the mean index of refraction. Equations (4.55) can be recognized as the field
of a plane polarized wave whose angle of polarization with respect to the z-axis,

X = tan_l(Ey/Ew)a (457)

rotates as the wave propagates along the z-axis with the phase velocity ¢/n. In

fact, the angle of polarization is given by
w

X= 5 (ny —n_)z, (4.58)

which clearly increases linearly with the distance traveled by the wave along the
direction of the magnetic field. This rotation of the plane of polarization of a
linearly polarized wave propagating through a magnetized dielectric medium is
known as Faraday rotation (since it was discovered by Michael Faraday in 1845).

Assuming that the cyclotron frequency 2 is relatively small compared to the
wave frequency w, and also that w does not lie close to the resonant frequency
wy, it is easily demonstrated that

(4.59)

and
Ne? w{?

comn (wy? — w?)?’

(4.60)

It follows that the rate at which the plane of polarization of an electromagnetic

wave rotates with the distance traveled by the wave is given by
dX /ﬁ:(w) NB”
== 4.61
dl n(w) ’ (4.61)
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where B)| is the component of the magnetic field along the direction of propagation

of the wave, and

e? w?

K(w) (4.62)

~ 2egm2c (wd — w?)?’
If the medium in question is a tenuous plasma then n ~ 1 and wg = 0. Thus,

dx e3 N B
- Y 2

(4.63)

dl — 2egm?c w

Clearly, the rate at which the plane of polarization rotates is proportional to the
product of the electron number density and the parallel magnetic field strength.
Moreover, the plane of rotation rotates faster for low frequency waves than for
high frequency waves. The total angle by which the plane of polarization is
twisted after passing through a magnetized plasma is given by

63
Ay~ ———— | N()B 4.64
=G [ NOB 0, (4.64

provided that N and B vary on length-scales which are large compared to the
wavelength of the radiation. This formula is regularly employed in radio astron-
omy to infer the magnetic field-strength in interstellar space.

4.7 Wave propagation through a magnetized plasma

For a plasma (wg = 0) the dispersion relation (4.51) reduces to

2

nfw)=1- w(w—z:;:ﬁ)' (4.65)
The upper sign corresponds to a left-handed circularly polarized wave and the
lower sign to a right-handed polarized wave. Of course, Eq. (4.65) is only valid
for wave propagation along the direction of the magnetic field. Wave propagation
through the Earth’s ionosphere is well described by the above dispersion relation.
There are wide frequency intervals where one of n_? or n_? is positive and the other
negative. At such frequencies one state of circular polarization cannot propagate
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through the plasma. Consequently, a wave of that polarization incident on the
plasma is totally reflected. The other state of polarization is partially transmitted.

The behaviour of n_?(w) at low frequencies is responsible for a strange phe-
nomenon known to radio hams as “whistlers.” As the frequency tends to zero,

Eq. (4.65) yields
w,?
n?~ P

—. 4.66

- (4.66)
At this sort of frequency n +2 is negative, so only right-hand polarized waves can
propagate. The wave-number of such waves is given by

w o ow w
k. =n_—~"P |, 4.67
n c c P ( )
Energy transport is governed by the group velocity (see later)
d Vw2
vg(w) = 0~ e Y22 (4.68)

T dk_ Wp

Thus, low frequency waves transmit energy slower than high frequency waves.
A lightning strike in one hemisphere of the Earth generates a wide spectrum of
radiation, some of which propagates along the dipolar field lines of the Earth’s
magnetic field in a manner described approximately by the dispersion relation
(4.68). The high frequency components of the signal return to the surface of the
Earth before the low frequency components (since they travel faster along the
magnetic field). This gives rise to a radio signal which begins at a high frequency
and then “whistles” down to lower frequencies.

4.8 The propagation of electromagnetic radiation through
a dispersive medium

Let us now investigate the propagation of electromagnetic radiation through a
dispersive medium by studying a simple one-dimensional problem. Suppose that
our dispersive medium extends from x = 0, where it interfaces with a vacuum,
to x = oo. Suppose further that a wave is incident normally on the medium,
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so that the field quantities only depend on = and t. The wave is specified as a
given function of £ at * = 0. Since we are not interested in the reflected wave,
let this function, f(¢), say, give the wave amplitude just inside the surface of the
dispersive medium. Suppose that the wave arrives at this surface at ¢ = 0, and

that
0 fort <0,

ft) = { sin(%t) for t > 0.

T

(4.69)

How does the wave subsequently develop in the region z > 07 In order to answer
this question we must first of all decompose f(t) into harmonic components of
the form exp(—iwt) (i.e., Fourier harmonics). Unfortunately, if we attempt this
using only real frequencies, w, we encounter convergence difficulties, since f(t)
does not vanish at ¢t = co. For the moment, we can circumvent these difficulties
by only considering finite (in time) wave forms. In other words, we now imagine
that f(t) = 0for ¢ < 0 andt > T. Such a wave form can be thought of as the
superposition of two infinite (in time) wave forms, the first beginning at ¢ = 0
and the second at ¢t = T with the opposite phase, so that the two cancel for all
time t > T.

According to standard Fourier transform theory

£(t) = % /_ " dw /_ Ty emiett=t) gy (4.70)

Since f(t) is a real function of ¢ which is zero for ¢ < 0 and ¢ > T, we can write

() = % /_ " dw /0 F(t) coslew(t — )] dt'. (4.71)

Finally, it follows from symmetry (in w) that
1 o0 T
f(t) = —/ dw/ f(t") cos[w(t —t")]dt. (4.72)
T Jo 0

Equation (4.69) yields

() = % /0 " dw /O : sin(m') cosle(t — )] dt’, (4.73)

T
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or

1) 1 [ p cos2mt' /T + w(t —t')]  cos2nt' [T —w(t —t')] v=T
= — w — :
21 Jo w—2m/T w+2m/T =0
(4.74)
Let us assume, for the sake of simplicity, that
T = Nr, (4.75)

where N is a positive integer. This ensures that f(¢) is continuous at t = T.
Equation (4.74) reduces to

f(t) = % /Ooo - _‘(Z;"W/T)Q (cosfw(t — T)] — coswt ). (4.76)

This expression can be written

() = % /_O:o — ‘(Z;"W/T)Q (cosw(t — T)] — coswt), (4.77)
f(t) = % Re/_oO w—d—;r/T (e_i“(t_T) — e_iwt> . (4.78)

It is not entirely obvious that Eq. (4.78) is equivalent to Eq. (4.77). However, we
can easily prove that this is the case by taking Eq. (4.78) and using the standard
definition of a real part (i.e., half the sum of the quantity in question and its
complex conjugate) to give

flt) = 1 /oo _dw (e—iw(t—T) B e_iwt)

dr | w—2m/T

1 [ dw

dr | w—2m/T

+ (e+i°J<t—T> . e+i‘*’t) . (4.79)

Replacing the dummy integration variable w by —w in the second integral and

then making use of symmetry, it is easily seen that the above expression reduces
to Eq. (4.77).
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Figure 6: Sketch of the integration contours used to evaluate Eqs. (4.78) and
(4.81)

Equation (4.77) can be written

f) =2 / " dw sinfw(t — T/2)] SR@T/2) (4.80)

T ) w? — (2n/7)?’

Note that the integrand is finite at w = 27 /7, since at this point the vanishing of
the denominator is compensated for by the simultaneous vanishing of the numer-
ator. It follows that the integrand in Eq. (4.78) is also not infinite at w = 27/,
as long as we do not separate the two exponentials. Thus, we can replace the
integration along the real axis through this point by a small semi-circle in the
upper half of the complex plane. Once this has been done, we can deform the
path still further and can integrate the two exponentials in Eq. (4.78) separately:

1 . 1 :
f(t) = — Re/Ce_“"tdiw - — Ret/ce_lw(t_T)diw (4.81)

27 w—2m/T 2w w—2m/T

The contour C' is sketched in Fig. 6. Note that it runs from +oo0 to —oo, which
accounts for the change of sign between Egs. (4.78) and (4.81).

We have already noted that a finite wave form which is zero for ¢ < 0 and
t > T can be through of as the superposition of two out of phase infinite wave
forms, one starting at ¢ = 0 and the other at ¢ = T'. It is plausible, therefore,
that the first term in the above expression corresponds to the infinite wave form
starting at ¢ = 0, and the second to the infinite wave form starting at ¢t = 7. If
this is the case then the signal (4.69), which starts at ¢ = 0 and ends at ¢t = oo,
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can be written in the form

1 ; dw
)= —Re [ e'¥' —— . 4.82

f®) 27 /C w—2m/T (4.82)
Let us test this proposition. In order to do this we must replace the original path
of integration C' by two equivalent paths.

First, consider ¢ < 0. In this case, —iwt has a negative real part in the upper
half plane which increases indefinitely with increasing distance from the axis.
Thus, we can replace the original path of integration by the path A (see Fig. 7).
The integral clearly vanishes along this path if we let A approach infinity in the
upper half plane. Consequently,

f(t)=0 (4.83)
for t < 0.

Next, consider ¢ > 0. Now, —iwt has a negative real part in the lower half
plane, so that the exponential vanishes at infinity in this half plane. If we attempt
to deform C' to infinity in the lower half plane, the path of integration “catches” on
the singularity of the integrand at w = 27/7 (see Fig. 7). The path of integration
B therefore consists of three parts: the part at infinity, By, where the integral
vanishes due to the exponential factor e '“*; By, the two parts leading to infinity
which cancel each other and thus contribute nothing to the integral; the path Bs
around the singularity. This latter contribution can easily be evaluated using the
Cauchy residue theorem:

1 ; 2
B = Dy Re (271 e~ 2™14/7) = sin (ﬂ) : (4.84)

s T

Thus, it is proven that the expression (4.82) actually describes a wave form be-
ginning at ¢t = 0 whose subsequent motion is specified by Eq. (4.69).

Equation (4.82) can immediately be generalized to give the wave motion in
the region = > 0:

1 .
f(z,t) = Dy Re/ e (ko—wt) 40 (4.85)
c

s w—2m/T
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Figure 7: Sketch of the integration contours used to evaluate Eq. (4.82)

This follows from standard wave theory, because we know that an unterminated
wave motion at z = 0 of the form e~ takes the form e! (2=t after moving a
distance x in the dispersive medium, provided that k£ and w are related by the
appropriate dispersion relation. For a medium consisting of a single resonant
species this dispersion relation is written (see Eq. (4.17))

kQ::Ef-(14-ah2(Ah¥/ﬂ””) ). (4.86)

c? —w?2 —igwuwy

4.9 Propagation of the wave front in a dispersive medium

It is helpful to define
s=t— . (4.87)
c

Let us consider the two cases s < 0 and s > 0 separately.

Suppose that s < 0. In this case we distort the path C', used to evaluate the
integral (4.85), into the path A shown in Fig. 8. This is only a sensible thing to
do if the real part of i (kx — wt) is negative at infinity in the upper half plane. It
is clear from the dispersion relation (4.86) that k¥ = w/c in the limit |w| — oc.
Thus,

i(kr —wt) = —iw(t — z/c) = —iws. (4.88)
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It follows that i (kz—wt) possesses a large negative real part along path A provided
that s < 0. Thus, Eq. (4.85) yields

f(z,t) =0 (4.89)

for s < 0. In other words, it is tmpossible for the wave front to propagate through
the dispersive medium with a velocity greater than the velocity of light in a vacuum.

Suppose that s > 0. In this case we distort the path C' into the lower half
plane, since i (kz—wt) = —iws has a negative real part at infinity in this region. In
doing this, the path becomes stuck not only at the singularity of the denominator
when w = 27 /7, but also at the branch points of the expression for k. After a
little algebra, the dispersion relation (4.86) yields

k:ﬂ\/“’“_‘"\/“’l—_“’, (4.90)
(& Wo+ — W Wwo—- — W
where
wot = —ip £ y/wy? — p?, (4.91)
and
wir = —ip=* \/w02 + wy? — p2. (4.92)
Here,

wp = v/ Ne2/egm (4.93)

is the plasma frequency, and

w

p=T0 < wo (4.94)
parameterizes the damping. In order to prevent multiple roots of Eq. (4.90) it is
necessary to place branch cuts between wpy and w;y and also between wgp_ and

wi— (see Fig. 8).

The path of integration B is conveniently split into the parts B; through
Bs. The contribution from Bj is negligible since the exponential in Eq. (4.85) is
vanishingly small on this part of the integration path. Likewise, the contribution
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Figure 8: Sketch of the integration contours used to evaluate Eq. (4.85)

from B, is zero since its two sections always cancel. The contribution from Bj
follows from the residue theorem:

1 )
Bs = —Re (2rie’ [kro=2mt/7]) (4.95)

™

Here, k. denotes the value of k obtained from the dispersion relation (4.86) in
the limit w — 27 /7. Thus,
-

Bs = e~ k)@ gip (271' t_ Re(k,) :1:) : (4.96)

In general, the contributions from B, and Bs cannot be simplified further. For
the moment we denote them as

1 ; dw
B — — i(kz—wt) 4.
YT o Re ]€34e w—2m/T’ (4.97)
and . p
B — — i(kzx—wt) w 4.
T on Re ]256 w—2m/T’ (4.98)
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where the paths of integration circle the appropriate branch cuts. In all, we have

f(z,t) = e7mkr) 2 gip (27r t_ Re(k;) x) + By + Bs (4.99)

T

for s > 0.

Let us now look at the special case s = 0. For this value of s we can change the
original path of integration to one at infinity in either the upper or the lower half
plane, since the integrand vanishes in each case, through no longer exponentially,
but rather as 1/w?. We can see this from Eq. (4.82), which can be written in the

form . p p
. w . w
) = — —lwt 7 +iwt ) 4.1
f®) 4 (/Ce w—27r/7'+/ce w—27r/7'> (4.100)

Substitution of w for —w in the second integral yields

f(t) = E /e—iwt — _‘(i;‘;/T)Q. (4.101)

T

Now, applying dispersion theory, we get from the above equation, just as we got
Eq. (4.85) from Eq. (4.82),

1 i(kr—w d
f(z,t) = ;/e (ke —wt) — (;UW/T)T (4.102)

—iws

Clearly, the integrand vanishes as e /w? as w becomes very large. Thus, it
vanishes as 1/w? for s = 0. Since we can calculate f(z,t) by using either path A
or path B, we can see that

t
f(x, t) = e_Im(kT) T sin (271' - — Re(kT) .CC) + B4+ B5=0 (4103)
T

for s = 0. Thus, there is continuity in the transition from the region s < 0 to the
region s > 0.

We are now in a position to make some meaningful statements about the
behaviour of the signal at depth z inside the dispersive medium. Prior to the
time ¢t = z/c there is no motion. Even if the phase velocity is superluminal, no
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electromagnetic signal can arrive earlier than one propagating with the velocity of
light in vacuum ¢. The wave motion for ¢ > z/c is conveniently divided into two
parts: free oscillations and forced oscillations. The former are given by B4 + Bs,
and the latter by

2
e~ Imkr) 2 gin (27r L Re(k.) :U> = ¢ Im(kr)@ Sin(—ﬁ [t — ﬁ]) 3 (4.104)
T

where 5
s

Vp = Re(k) (4.105)
is termed the phase velocity. The forced oscillations have the same sine wave
characteristics and oscillation frequency as the incident wave. However, the wave
amplitude is diminished by the damping coefficient, although, as we have seen,
this is generally a negligible effect unless the frequency of the incident wave closely
matches one of the resonant frequencies of the dispersive medium. The phase ve-
locity v, determines the velocity with which a point of constant phase (e.g., a peak
or trough) of the forced oscillation signal propagates into the medium. However,
the phase velocity has no effect on the velocity with which the forced oscillation
wave front propagates into the medium. This latter velocity is equivalent to the
velocity of light in vacuum ¢ . The phase velocity v, can be either greater or
less than ¢, in which case peaks and troughs either catch up with or fall further
behind the wave front. Of course, peaks can never overtake the wave front.

It is clear from Egs. (4.91), (4.92), (4.97), and (4.98) that the free oscilla-
tions oscillate with real frequencies which are somewhere between the resonant
frequency wy and the plasma frequency w,. Furthermore, the free oscillations are
damped in time like exp(—pt). The free oscillations, like the forced oscillations,
begin at time t = x/c. At t = z/c the free and forced oscillations just cancel (see
Eq. (4.103)). As t increases both the free and forced oscillations set in, but the
former rapidly damp away, leaving only the forced oscillations. Thus, the free
oscillations can be regarded as some sort of transient response of the medium to
the incident wave, whereas the forced oscillations determine the time asymptotic
response. The real frequency of the forced oscillations is that imposed exter-
nally by the incident wave, whereas the real frequency of the free oscillations is
determined by the nature of the dispersive medium, quite independently of the
frequency of the incident wave.
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One slightly surprising result of the above analysis is the prediction that the
wave front of the signal propagates into the dispersive medium with the veloc-
ity of light in vacuum, irrespective of the dispersive properties of the medium.
Actually, this is a fairly obvious result. As is well described by Feynman in his
famous Lectures on Physics, when an electromagnetic wave propagates through a
dispersive medium, the electrons and ions which make up that medium oscillate
in sympathy with the incident wave and in doing so emit radiation. Both the
radiation from the electrons and ions and the incident radiation travel at the
velocity c. However, when these two radiation signals are superposed the net
effect is as if the incident signal propagates through the dispersive medium with
a phase velocity which is different from c. Consider the wave front of the incident
signal, which clearly propagates into the medium with the velocity c. Prior to the
arrival of this wave front the electrons and ions are at rest, since no information
regarding the arrival of the incident wave at the surface of medium can propagate
faster than c. After the arrival of the wave front the electrons and ions are set
into motion and emit radiation which can affect the apparent phase velocity of
radiation which arrives somewhat later. But this radiation certainly cannot affect
the propagation velocity of the wave front itself, which has already passed by the
time the electrons and ions are set into motion (because of the finite inertia of
the electrons and ions).

4.10 The Sommerfeld precursor

Let us consider the situation immediately after the arrival of the signal; i.e., when
s is small and positive. Let us start from Eq. (4.102), which can be written in
the form

_ 1 i([k—w/clr—ws) dw
flz,t) = . /Ce w? = (/)2 (4.106)
We can deform the original path of integration C' into a large semi-circle of radius
R in the upper half-plane, plus the segments of the real axis, as shown in Fig. 9.
Because of the denominator w? — (27/7)2, the integrand tends to zero as 1/w?
on the real axis. We may add the path in the lower half plane which is shown
as a dotted line in the figure, for if the radius of the semi-circular portion of this
lower path is increased to infinity, the integrand vanishes exponentially because
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Figure 9: Sketch of the integration contour used to evaluate Eq. (4.107)

s > 0. Therefore, we may replace our original path of integration by the entire

circle S. Thus,
dw

1 .
— i([k—w/clz—ws) 4.107
f(z) T ;Se w? — (27 /71)? ( )

in the limit that the radius of the circle R tends to infinity.

The dispersion relation (4.86) yields

w w w2 w2
k— — ~ — \/1—i—1 ~__P 4.108
c c< w? > 2cw ( )

in the limit |w| — oco. Using the abbreviation

¢= 2 g, (4.109)



This expression can also be written

f1(§,t) = %fsexp [—i\/?s <i\/§+w\/§)] i—ﬁ. (4.111)
w\/gz et (4.112)

= —idu, (4.113)

dv . [s _;,
e 1\/ge du. (4.114)

Substituting the angular variable u for w as the integration variable in Eq. (4.111)
yields

Let

It follows that

giving

: 2w
fi(&,t) = %\/gfo exp(—2i\/&s cosu) e du. (4.115)

Here, we have taken \/¢/s as the radius of the circular integration path in the
w-plane. This is indeed a large radius, since s < 1. From symmetry, Eq. (4.115)
simplifies to

: 27
fi(&,t) = %\/5/0 exp(—2iy/&s cosu) cosu du. (4.116)

The following mathematical identity is very well-known'!

i—’n

27
Jn(2) = /0 e'? ©59 co5(nf) db, (4.117)

2

where J,,(z) is Bessel function of order n. It follows from Eq. (4.115) that

fi(€t) = 2§\/§Jl(2\/§’s). (4.118)
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Figure 10: The Bessel function J;(2)

Here, we have made use of the fact that J;(—z) = —J1(2)-

The properties of Bessel functions are well-known and are listed in many
standard references on mathematical functions (see, for instance, Abramowitz
and Stegun). In the small argument limit z < 1 we find that

Ji(z) = g +O(23). (4.119)

On the other hand, in the large argument limit z > 1 we obtain

2
Ji(z) =1/ — cos(z — 3m/4) + O(2~3/?). (4.120)
m
The behaviour of J;(z) is further illustrated in Fig. 10.

We are now in a position to make some quantitative statements regarding
the signal which first arrives at depth x in the dispersive medium. This sig-
nal propagates at the velocity of light in vacuum and is called the Sommerfeld

1IM. Abramowitz, and I.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Eq. 9.1.21.
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Figure 11: The Sommerfeld precursor

precursor. The first important point to note is that the amplitude of the Som-
merfeld precursor is very small compared to that of the incident wave (whose
amplitude is normalized to unity). We can easily see this because in deriving
Eq. (4.118) we assumed that |w| = 1/&/s > 27/T on the circular integration
path S. Since the magnitude of J; is always less than, or of order, unity, it is
clear that |fi| < 1. This is a comforting result, since in a naive treatment of
wave propagation through a dielectric medium the wave front propagates at the
group velocity v, (which is usually less than ¢) and, therefore, no signal should
reach depth z in the medium before time z/v,. We are finding that there is, in
fact, a precursor which arrives at ¢ = x/c, but that this signal is fairly small.
Note from Eq. (4.109) that & is proportional to . Clearly, the amplitude of the
Sommerfeld precursor decreases like one over the distance traveled by the wave
front through the dispersive medium (since J; attains its maximum value when
s ~ 1/€). Thus, the Sommerfeld precursor is likely to become undetectable after
the wave has traveled a long distance through the medium.
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Equation (4.118) can be written

f1(&,1) (s/s0), (4.121)

T
where sg = 1/4€, and
9(z) = Vz 1 (V7). (4.122)

The normalized Sommerfeld precursor g(z) is shown in Fig. 11. It can be seen that
both the amplitude and the oscillation period of the precursor gradually increase.
The roots of Jy(z) [i.e., the solutions of J;(z) = 0] are spaced at distances of
approximately 7w apart. Thus, the time interval for the mth half period of the
precursor is approximately given by

2

mm
Aty ~ . 4.123
o (4.123)
Note that the initial period of oscillation,
2
7
At — 4.124

is extremely small compared to the incident period 7. Moreover, the initial period
of oscillation is completely independent of the frequency of the incident wave. In
fact, Aty depends only on the depth z and on the dispersive power of the medium.
The period decreases with increasing distance x traveled by the wave front though
the medium. So, when visible radiation is incident on some dispersive medium it
is quite possible for the first signal detected well inside the medium to lie in the
X-ray region of the electromagnetic spectrum.

4.11 The method of stationary phase

Equation (4.102) can be written in the form

1) = /C 1) P(00) doo (4.125)
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where
1 1

Tw? — (27 /7)%’

F(w) = (4.126)
and

d(w) = k(w) z — wt. (4.127)

It is clear that F(w) is a relatively slowly varying function of w (except in the
immediate vicinity of the singular points w = +27/7), whereas the phase ¢(w) is
generally large and rapidly varying. The rapid oscillations of exp(i¢) over most
of the range of integration means that the integrand averages to almost zero.
Exceptions to this cancellation rule occur only when ¢(w) is stationary; i.e., when
¢(w) has an extremum. The integral can therefore be estimated by finding places
where ¢(w) has a vanishing derivative, evaluating (approximately) the integral in
the neighbourhood of each of these points, and summing the contributions. This
procedure is called the method of stationary phase.

Suppose that ¢(w) has a vanishing first derivative at w = w,. In the neigh-
bourhood of this point, ¢(w) can be expanded as a Taylor series,

B() = bo 5w — w2t (4.128)

Here, the subscript s is used to indicate ¢ or its second derivative evaluated at
w = ws. Since F(w) is slowly varying, the contribution to the integral from this
stationary phase point is approximately

fo~ Flw,)et / o i/2)00 (w=w2)? g, (4.129)

It is tacitly assumed that the stationary point lies on the real axis in w-space, so
that locally the integral along the contour C' is an integral along the real axis in
the direction of decreasing w. The above expression can be written in the form

fs ~ —F(ws) ei‘bs\/g/ooo [cos(mt?/2) + i sin(mt?/2)] dt, (4.130)

where |
th = S O (w—w)” (4.131)
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The integrals in the above expression are, Fresnel integrals'? and can be shown
to take the values

/O h cos(nt?/2) dt = /0 h sin(nt?/2) dt = % (4.132)

fo~ —y /% F(ws)el®s. (4.133)

It is easily seen that the arc length (in w-space) of the integration contour which
makes a significant contribution to f is of order Aw/ws ~ 1/4/k(ws) z. Thus,
the arc length is relatively short provided that the wavelength of the signal is
much less than the distance propagated through the dispersive medium. If there
is more than one point of stationary phase in the range of integration then the
integral is approximated as a sum of terms like the above.

It follows that

Integrals of the form (4.125) can be calculated exactly using the method of
steepest decent.®> The stationary phase approximation (4.133) agrees with the
leading term of the method of steepest decent (which is far more difficult to
implement than the method of stationary phase) provided that ¢(w) is real (i.e.,
provided that the stationary point lies on the real axis). If ¢ is complex, however,
the stationary phase method can yield erroneous results. This suggests that the
stationary phase method is likely to break down when the extremum point w = w;
approaches any poles or branch cuts in the w-plane (see Fig. 8).

4.12 The group velocity

The point of stationary phase, defined by 0¢/0w = 0, satisfies the condition

t
a—— (4.134)
’Ug X

12M. Abramowitz, and 1.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Sec. 7.3.
13Léon Brillouin, Wave propagation and group velocity, (Academic press, New York, 1960).
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where
B dw

dk
is conventionally termed the group velocity. Thus, the signal seen at position x
and time ¢ is dominated by the frequency range whose group velocity v, is equal
to x/t. In this respect, the signal incident at the surface of the medium (z = 0)
at time £ = 0 can be said to propagate through the medium at the group velocity

vg(w).

The simple one-resonance dispersion relation (4.86) yields

Vg (4.135)

c w2 w2
~ 1 4.136
Ug n(w) [ + (.(.)02 _ (_,d2 + w2 _ (.,(.)02 _ (.dp2 ( )
in the limit ¢ — 0, where
ck wo® + w,? — w?
i . 4.137
n(w) w \/ w02 2 ( )

The variation of c¢/v, and the refractive index n with frequency is sketched in
Fig. 12. With g = 0 the group velocity is less than ¢ for all w, except for

wo < w < wy =4 /wy? + wp2, where it is purely imaginary. Note that the refractive

index is also complex in this frequency range. The phase velocity v, = ¢/n is
subluminal for w < wy, imaginary for wy < w < wy, and superluminal for w > w;.

The frequency range which contributes to the amplitude at time ¢ is deter-
mined graphically by finding the intersection of a horizontal line with ordinate
ct/x with the solid curve in Fig. 12. There is no crossing of the two curves for
t < top = x/c, thus no signal arrives before this time. For times immediately
following ty the point of stationary phase is seen to be at w — oco. In this large
w limit the point of stationary phase is given by

to
s —. 4.138
Note that w = —wy is also a point of stationary phase. It is easily demonstrated
that
bs ~ —2/E(— to), (4.139)
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Figure 12: The typical variation of the functions ¢/v,(w) and n(w). Here, w; =
(w02 +Wp2)1/2-
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and

_ 10)3/2
¢~ —2 t gf;)?) : (4.140)
with
t — g
F(ws) ~ = (4.141)
T

Here, £ is given by Eq. (4.109). The stationary phase approximation (4.133) gives

1/2 — : :
fs ~ (tﬂ'i )3/2 t ;0 e—21\/£(t—to)+3ﬂ'1/4 + c.c., (4142)

where c.c. denotes the complex conjugate of the preceding term (this contribution
comes from the second point of stationary phase located at w = —w;). The above
expression reduces to

27 (t )t/

fs - 53/4

cos [2 £(t — to) — 37r/4} . (4.143)

It is easily demonstrated that the above formula is the same as the expression
(4.118) for the Sommerfeld precursor in the large argument limit ¢ — ¢to > 1/€.
Thus, the method of stationary phase yields an expression for the Sommerfeld
precursor which is accurate at all times except those immediately following the
first arrival of the signal.

4.13 The Brillouin precursor

As time progresses the horizontal line ct/z in Fig. 12 gradually rises and the
point of stationary phase moves to ever lower frequencies. In general, however,
the amplitude remains relatively small. Only when the elapsed time reaches

t, = > to (4.144)
is there a qualitative change. This time marks the arrival of a second precursor

known as the Brillouin precursor. The reason for the qualitative change is ev-
ident from Fig. 12. At ¢ = t; the lower region of the c¢/v, curve is intersected
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for the first time, and w = 0 becomes a point of stationary phase. It is clear
that the oscillation frequency of the Brillouin precursor is far less than that of
the Sommerfeld precursor. Moreover, it is easily demonstrated that the second
derivative of k(w) vanishes at w = 0. This means that ¢? = 0. The stationary
phase result (4.133) gives an infinite answer in such circumstances. Of course, the
amplitude of the Brillouin precursor is not infinite, but it is significantly larger
than that of the Sommerfeld precursor.

In order to generalize the result (4.133) to deal with a stationary phase point

at w = 0 it is necessary to expand ¢(w) about this point, keeping terms up to w>.

Thus,

d(w) ~ w(t; —t) + %k‘g' w3, (4.145)
where ; )
d’k 3w
KV = — =P 4.14
0 (dw3 ) w0 cn(0) w04 ( 6)

for the simple dispersion relation (4.86). The amplitude (4.125) is therefore given
approximately by

f(z,t) ~ F(0) / el @t =0+ (#/6)kg"w® g, (4.147)

o0

This expression reduces to

T |t —t1] [ 3 [v?
f(x’t):ﬁﬂﬂl :ka)”,/o cos[§z<§iv)] dv, (4.148)

where
z k'
= —0 4.149
v= g e (4.149)
and

2v/2 |t — t1]3/?
zZ = .
3z kp’

The positive (negative) sign in the integrand is taken for ¢t < ¢1 (¢t > ¢1).

(4.150)
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Figure 13: A sketch of the behaviour of the Brillouin precursor as a function of
time

The integral in Eq. (4.150) is known as an Airy integral. It can be expressed
in terms of Bessel functions of order 1/3, as follows:

/0°° COSBZ (2_3 - “)] dv = % Ki/3(2); (4.151)

/0°° COSBZ (? - “)] dv = % [J1/3(2) + J_1/3(2)] . (4.152)

From the well-known properties of Bessel functions the precursor can be seen
to have a growing exponential character for times earlier than ¢ = ¢;, and an
oscillating character for ¢ > ¢;. The amplitude in the neighbourhood of ¢t = ¢; is
plotted in Fig. 13.

and

The initial oscillation period of the Brillouin precursor is crudely estimated
(from z ~ 1) as

Aty ~ (z k)3, (4.153)
The amplitude of the Brillouin precursor is approximately
T
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Let us adopt the ordering
/T ~wy ~wp L &, (4.155)

which corresponds to most physical situations involving the propagation of elec-
tromagnetic radiation through dielectric media. It follows from the above results,
plus the results of Section 4.10, that

1/3
(Ato wp)brillouin ~ <w£> > 1, (4.156)
p
and
(AtO wp)sommerfeld ~ <%> < 1. (4157)
Furthermore,
o\ /3
| flbritlouin ~ (f) < 1, (4.158)
and
w
|f‘sommerfeld ~ (?p) < |f|brillouin- (4159)

It is clear that the Sommerfeld precursor is a low amplitude, high frequency signal,
whereas the Brillouin precursor is a higher amplitude, low frequency signal. Note
that the amplitude of the Brillouin precursor, whilst it is significantly higher than
that of the Sommerfeld precursor, is still much less than that of the incident wave.

4.14 Signal arrival

Let us try to establish at what time ¢ a signal first arrives at position x inside the
dielectric medium whose amplitude is comparable with that of the wave incident
at time ¢ = 0 on the surface of the medium (z = 0). Let us term this event
the “arrival” of the signal. It is plausible from the discussion in Section 4.11
regarding the stationary phase approximation that signal arrival corresponds to
the situation where the point of stationary phase in w-space corresponds to a
pole of the function F(w). In other words, when ws approaches the frequency
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Figure 14: A sketch of the signal amplitude as a function of time as seen inside
some dielectric medium subject to an incident wave which starts at some specific
time

27 /T of the incident signal. It is certainly the case that the stationary phase
approximation yields a particularly large amplitude signal when w, — 27/7.
Unfortunately, as has already been discussed, the method of stationary phase
becomes inaccurate under these circumstances. However, calculations involving
the more robust method of steepest decent'* confirm that in most cases the signal
amplitude first becomes significant when ws; = 27 /7. Thus, the signal arrival time

1S
T

vg(2m/7)’

where vy (27/7) is the group velocity calculated using the frequency of the incident
signal. It is clear from Fig. 12 that

ty = (4.160)

to < t1 < to. (4.161)
Thus, the main signal arrives later than the Sommerfeld and Brillouin precursors.

The final picture which emerges from our investigations is summarized in
Fig. 14. The main signal arrives at the group velocity corresponding to the fre-
quency of the incident wave. However, it is possible to detect the arrival of the sig-
nal before this, given sufficiently accurate detection equipment. In fact, the first
information regarding the arrival of the incident wave at the vacuum/dielectric
interface propagates at the velocity of light in a vacuum.

14Léon Brillouin, Wave propagation and group velocity, (Academic press, New York, 1960).
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4.15 The propagation of radio waves through the iono-
sphere

We have studied the transient behaviour of an electromagnetic wave incident
on a spatially uniform dielectric medium in great detail. Let us now consider
a quite different, but equally important, problem. What is the time asymptotic
steady-state behaviour of an electromagnetic wave propagating though a spatially
non-uniform dielectric medium?

As a specific example, let us consider the propagation of radio waves through

the Earth’s ionosphere. The refractive index of the ionosphere can be written [see

Eq. (4.27)]

2 P
=1-—F— 4.162
" w(w+iv)’ ( )

where v is a real positive constant which parameterizes the damping of electron
motion (in fact, v is the collision frequency of free electrons with other particles
in the ionosphere), and

Ne?

eEgm

wp = (4.163)
is the plasma, frequency. In the above formula, NN is the density of free electrons in
the ionosphere and m is the electron mass. We shall assume that the ionosphere
is horizontally stratified, so that N = N(z), where the coordinate z measures
height above the Earth’s surface (n.b., the curvature of the Earth is neglected in
the following analysis). The ionosphere actually consists of two main layers; the E-
layer, and the F-layer. We shall concentrate on the lower E-layer, which lies about
100 km above the surface of the Earth, and is about 50 km thick. The typical
day-time number density of free electrons in the E-layer is N ~ 3 x 10! m~3.
At night-time, the density of free electrons falls to about half this number. The
typical day-time plasma frequency of the E-layer is, therefore, about 5 MHz. The
typical collision frequency of free electrons in the E-layer is about 0.05 MHz.
According to simplistic theory, any radio wave whose frequency lies below the
day-time plasma frequency, 5 MHz, (i.e., any wave whose wavelength exceeds
about 60 m) is reflected by the ionosphere during the day. Let us investigate
in more detail exactly how this process takes place. Note, incidentally, that for
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mega-Hertz frequency radio waves v < w, so it follows from Eq. (4.162) that n?
is predominately real (i.e., under most circumstances, the electron collisions can
be neglected).

The problem of radio wave propagation through the ionosphere was of great
practical importance during the first half of the 20th Century, since at that
time long-wave radio waves were the principle means of military communication.
Nowadays, the military have far more reliable ways of communicating. Neverthe-
less, this subject area is still worth studying because the principle tool used to
deal with the problem of wave propagation through a non-uniform medium, the
so-called W.K.B. approximation, is of great theoretical importance. In particular,
the W.K.B. approximation is very widely used in quantum mechanics (in fact,
there is a great similarity between the problem of wave propagation through a
non-uniform medium and the problem of solving Schrodinger’s equation in the
presence of a non-uniform potential).

Maxwell’s equations for a wave propagating through a non-uniform, unmag-
netized, dielectric medium are:

V-E = 0, (4.164a)
V-eB = 0, (4.164b)
VAE = ikeB, (4.164c)
VAcB = —ikn’E, (4.164d)

where n is the non-uniform refractive index of the medium. It is assumed that all
field quantities vary in time like e~'*¢, where w = kc. Note that, in the following,
k is the wavenumber in free space, rather than the wavenumber in the dielectric
medium.

4.16 The W.K.B. approximation

Consider a radio wave which is vertically incident, from below, on the horizontally
stratified ionosphere. Since the wave normal is initially aligned along the z-axis,
and since n = n(z), we expect all field components to be functions of z only, so
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that

0 0
—=—=0. 4.165
Oor Oy ( )
In this situation, Egs. (4.164) reduce to E, = ¢B, = 0, with
E
—% = ikcBy, (4.166a)
0cB, _
5 —ikn? E,, (4.166Db)
and
Ey :
882 = ikcBy, (4.167a)
B
—822 Y= _ikn?E,. (4.167D)

Note that Eqgs. (4.166) and (4.167) are isomorphic and completely independent
of one another. It follows that, without loss of generality, we can assume that the
wave is linearly polarized with its electric vector parallel to the y-axis. This means
that we are only going to consider the solution of Egs. (4.166). The solution of
Egs. (4.167) is of exactly the same form, except that it describes a linear polarized
wave with its electric vector parallel to the z-axis.

Equations (4.166) can be combined to give

d*E
5 Tk’ By =0. (4.168)

Since E, is a function of z only, we now use the total derivative sign d/dz instead
of the partial derivative sign 0/0z. The solution of the above equation for the
case of a uniform medium, where n is constant, is straightforward:

E, = Ae'?) (4.169)

where A is a constant, and
¢ =tknz. (4.170)
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Note that the e”*! time dependence of all wave quantities is taken as read
during this investigation. The solution (4.169) represents a wave of constant
amplitude A and phase ¢(z). According to Eq. (4.170), there are, in fact, two
independent waves which can propagate through the medium in question. The
upper sign corresponds to a wave which propagates vertically upwards, and the
lower sign corresponds to a wave which propagates vertically downwards. Both
waves propagate with the constant phase velocity c¢/n.

In general, if n = n(z) the solution of Eq. (4.168) does not remotely resemble
the wave-like solution (4.169). However, in the limit in which n(z) is a “slowly
varying” function of z (exactly how slowly varying is something which we shall
establish later), we expect to recover wave-like solutions. Let us suppose that
n(z) is indeed a “slowly varying” function, and let us try substituting the wave
solution (4.169) into Eq. (4.168). We obtain

dp\* 5 5, . d%
(E) 29 (4.171)

This is a non-linear differential equation which, in general, is very difficult to
solve. However, we note that if n is a constant then d?¢/dz? = 0. It is, therefore,
reasonable to suppose that if n(z) is a “slowly varying” function then the last
term on the right-hand side of the above equation can be regarded as being small.
Thus, to a first approximation Eq. (4.171) yields

d¢
X ~ 4k 4.172
and d2¢ p
n
— ~ 4k —. 4.1
dz? dz (4.173)

It is clear from a comparison of Egs. (4.171) and (4.173) that n(z) can be regarded
as a “slowly varying” function of z as long as its variation length-scale is far longer
than the wavelength of the wave. In other words, provided that (dn/dz)/(kn?) <
1.

The second approximation to the solution is obtained by substituting Eq. (4.173)
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into the right-hand side of Eq. (4.171):

d¢ 2 2 ., dn 12
— ~ =+ |k +ik— ) 4.174
dz ( e dz) ( )
This gives
dé i dn\'? i dn
— ~ +k 1+ —— ~ —— 4.1
dz n( k n? dz) ikn+2ndz’ (4.175)

where use has been made of the binomial expansion. The above expression can
be integrated to give

¢ ~ ik/ ndz + 1 log(n'/?). (4.176)

Substitution of Eq. (4.176) into Eq. (4.169) yields the final result

E, ~ An~Y2 exp (iik/ ndz) : (4.177)

It follows from Eq. (4.166a) that

N 1/9 N iA dn Y
¢By ~ FAn'Y? exp (:I:lk/ ndz)—mg exp (:l:lk’/’ﬂdZ). (4.178)

Note that the second term is small compared to the first, and can usually be
neglected.

Let us test to what extent the expression (4.177) is a good solution of Eq. (4.168)
by substituting this expression into the left-hand side of the equation. The result

is

A [3(1dn\® 1 d%n (7
This must be small compared with either term on the left-hand side of Eq. (4.168).
Hence, the condition for Eq. (4.177) to be a good solution of Eq. (4.168) becomes

3/1dn\> 1 dn <
4 \ n?dz 2n3 dz?2
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The solutions
E, ~ An"'2exp (iik/ ndz), (4.181a)

¢B, ~ TFAn'?exp <:i:ik/ ndz), (4.181b)

to the non-uniform wave equations (4.166) are most commonly called the W.K.B.
solutions, in honor of G. Wentzel, H.A. Kramers, and L. Brillouin, who are cred-
ited with independently discovering these solutions (in a quantum mechanical
context) in 1926. Actually, H. Jeffries wrote a paper on these solutions (in a
wave propagation context) in 1923. Hence, some people call these the W.K.B.J.
solutions (or even the J.W.K.B. solutions). In fact, these solutions were first dis-
cussed by Liouville and Green in 1837, and again by Rayleigh in 1912. We shall
refer to Egs. (4.181) as the W.K.B. solutions, since this is what they are most
commonly called. However, it should be understand that, in doing so, we are
not making any statement as to the credit due to various scientists in discovering
these solutions. After all, this is not a history of science course!

Recall, that when a propagating wave is normally incident on an interface,
where the refractive index suddenly changes (for instance, when a light wave
propagating in the air is normally incident on a glass slab), there is generally
significant reflection of the wave. However, according to the W.K.B. solutions
(4.181), when a propagating wave is normally incident on a medium in which the
refractive index changes slowly along the direction of propagation of the wave,
then the wave is not reflected at all. This is true even if the refractive index varies
very substantially along the path of propagation of the wave, as long as it varies
slowly. The W.K.B. solutions imply that as the wave propagates through the
medium its wavelength gradually changes. In fact, the wavelength at position
z is approximately A(z) = 27/kn(z). Equations (4.181) also imply that the
amplitude of the wave gradually changes as it propagates. In fact, the amplitude
of the electric field component is inversely proportional to n!/2, whereas the
amplitude of the magnetic field component is directly proportional to n'/2. Note,
however, that the energy flux in the z-direction, given by the the Poynting vector
—(EyB," + E,*Bg)/(4p0), remains constant (assuming that n is predominately
real).
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Of course, the W.K.B. solutions (4.181) are only approzimations. In reality, a
wave propagating into a medium in which the refractive index is a slowly varying
function of position is subject to a small amount of reflection. However, it is easily
demonstrated that the ratio of the reflected amplitude to the incident amplitude
is of order (dn/dz)/(kn?). Thus, as long as the refractive index varies on a much
longer length-scale than the wavelength of the radiation, the reflected wave is
negligibly small. This conclusion remains valid as long as the inequality (4.180)
is satisfied. There are two main reasons why this inequality might fail to be
satisfied. First of all, if there is a localized region in the dielectric medium in
which the refractive index suddenly changes (i.e., if there is an interface), then
(4.180) is likely to break down in this region, allowing strong reflection of the
incident wave. Secondly, the inequality obviously breaks down in the vicinity of a
point where n = 0. We would, therefore, expect strong reflection of the incident
wave from such a point.

4.17 The reflection coefficient

Consider an ionosphere in which the refractive index is a slowly varying function
of height z above the surface of the Earth. Let n? be positive for z < zp, and
negative for z > zp. Suppose that an upgoing radio wave of amplitude Ej is
generated at ground level (z = 0). The complex amplitude of the wave in the
region 0 < z < zg is given by the upgoing W.K.B. solution

E, = Eon_l/Qexp(ik/ ndz), (4.182a)
0

cB, = —Eonl/zexp(ik/ ndz). (4.182b)
0

The upgoing energy flux is given by —(E, B,*+E,* B;)/(4uo) = (€0/ o)/ ? | Eo|?/2.
In the region z > zy the W.K.B. solutions take the form

E, = Ae'™*|n|7Y2exp (ik/ |n|dz>, (4.183a)

¢B, = LAe ™4 |n|Y2exp <:|:k/ |n|dz>, (4.183b)
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where A is a constant. These solutions correspond to exponentially growing and
decaying waves. Note that the magnetic components of the waves are in phase
quadrature with the electric components. This implies that the Poynting fluxes
of the waves are zero; i.e., the waves do not transmit energy. Thus, there is a
non-zero incident energy flux in the region z < 2p, and zero energy flux in the
region z > zg. Clearly, the incident wave is either absorbed or reflected in the
vicinity of the plane z = zy (where n = 0). In fact, as we shall prove later on,
the wave is reflected. The complex amplitude of the reflected wave in the region
0 < z < zg is given by the downgoing W.K.B. solution

E, = EyRn '?exp (—ik/ ndz), (4.184a)
0

¢B, = EyRn'%exp (—ik/ ndz), (4.184b)
0

where R is the coefficient of reflection. Suppose, for the sake of argument, that
the plane z = zp acts like a perfect conductor, so that E,(zp) = 0. It follows

that 2
R = —exp (2ik/ ndz) . (4.185)
0

In fact, as we shall prove later on, the correct answer is

20
R = —iexp (Qik/ 'n,dz) : (4.186)
0

Thus, there is only a —m/2 phase shift at the reflection point, instead of the
—m phase shift which would be obtained if the plane z = 2z acted like a perfect
conductor.

4.18 Extension to oblique incidence

We have discussed the W.K.B. solutions for radio waves propagating vertically
through an ionosphere whose refractive index varies slowly. Let us now generalize
these solutions to allow for radio waves which propagate at an angle to the vertical
axis.
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The refractive index of the ionosphere varies continuously with height z. How-
ever, let us, for the sake of clarity, imagine that the ionosphere is replaced by a
number of thin discrete strata in which the medium is homogeneous. By mak-
ing these strata sufficiently thin and numerous we can approximate as closely as
is desired to the real ionosphere. Suppose that a plane wave is incident on the
ionosphere, from below, and suppose that the wave normal lies in the z-z plane
and makes an angle #; with the vertical axis. At the lower boundary of the first
stratum the wave is partially reflected and partially transmitted. The transmit-
ted wave is partially reflected and partially transmitted at the second boundary
between the strata, and so on. However, in the limit of many strata, where
the difference in refractive indices between neighbouring strata is very small, the
amount of reflection at the boundaries becomes negligible. In the nth stratum,
let n,, be the refractive index, and let 6,, be the angle between the wave normal
and the vertical axis. According to Snell’s law,

Np—1 Sin6,_1 =n, sinb,. (4.187)
Below the ionosphere n = 1, and so
Ny, sin 6, = sin6;. (4.188)

For a wave in the nth stratum, any field quantity depends on z and x through
factors
Aexplikn,(£zcosb, + zsinb,)], (4.189)

where A is a constant. The + signs denote upgoing and downgoing waves, re-
spectively. When the operator 0/0x acts on the above expression, it is equivalent
to multiplication by ik n, sinf, =ik sinf;, which is independent of x and z. It
is convenient to use the notation S = sin §;. Hence, we may write symbolically

o

—am = 1 k S, (4’]‘90&)
0

— = ; 4.1

5 0 (4.190b)

This result is true no matter how thin the strata are, so it must also hold for the
real ionosphere. Note that, according to Snell’s law, if the wave normal starts off

177



in the z-z plane then it will remain in this plane as it propagates through the
ionosphere.

Equations (4.164) and (4.190) can be combined to give

E
_% = ikecB,, (4.191a)
ikSE, = ikcB,, (4.191b)

By . :
dc —ikScB, = -—ikn’E,, (4.191c¢)
0z
and
Ey . :

a@z —ikSE, = ikcBy, (4.192a)

B
—ang‘f = —ikn?E,, (4.192D)
ikScB, = -ikn’E.,. (4.192¢)

As before, Maxwell’s equations can be split into two independent groups, corre-
sponding to two independent polarizations of radio waves propagating through
the ionosphere. For the first set of equations, the electric field is always parallel
to the y-axis. The corresponding waves are, therefore, said to be horizontally
polarized. For the second set of equations, the electric field always lies in the
x-z plane. The corresponding waves are, therefore, said to be vertically polarized
(n.b., the term “vertically polarized” does not necessarily imply that the electric
field is parallel to the vertical axis). Note that the equations governing horizon-
tally polarized waves are not isomorphic to those governing vertically polarized
waves, so both types of waves must be dealt with separately.

For the case of horizontally polarized waves, Egs. (4.191b) and (4.191c¢) yield

0cB, .
5, = ~ikq® By, (4.193)
where
¢* =n*—S° (4.194)



The above equation can be combined with Eq. (4.191a) to give

0’E

Sz Tk By =0. (4.195)
Equations (4.193) and (4.195) have exactly the same form as Eqgs. (4.166b) and
(4.168), except that n? is replaced by g2, so the results of Section 4.16 can be

immediately employed to find the W.K.B. solutions, which take the form
E, = Aq'?exp (iik / qdz) , (4.196a)

cB, = FAq/%exp (iik / qdz), (4.196D)

where A is a constant. Of course, both expressions should also contain a multi-
plicative factor e!(¥S2=wt) hut this is usually omitted for the sake of clarity. By
analogy with Eq. (4.180), the W.K.B. solutions are valid as long as

3/ 1dgq 2 1 d?q
4 \ q? dz 2q3 dz?
This inequality clearly fails in the vicinity of ¢ = 0, no matter how slowly ¢
varies with z. Hence, ¢ = 0, or n? = S?, specifies the height at which reflection

takes place. By analogy with Eq. (4.186), the reflection coefficient at ground level
(z =0) is given by

1
< 1. (4.197)

20
R = —iexp (21 k/ qdz) , (4.198)
0
where z( is the height at which ¢ = 0.
For the case of vertical polarization, Egs. (4.192a) and (4.192c) yield

E, 2
a(?z =ik % cB,. (4.199)

This equation can be combined with Eq. (4.192b) to give

0’B, 1 d(n?) 0B, 5 o
—= B, =0. 4.2
0z2 n? dz 0Oz k¢ By =0 (4.200)
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Clearly, the differential equation which governs the propagation of vertically po-
larized waves is considerably more complicated than the corresponding equation
for horizontally polarized waves.

The W.K.B. solution for vertically polarized waves is obtained by substituting
the wave-like solution '
cB, = Ae'?®) (4.201)

where A is a constant and ¢(z) is the generalized phase, into Eq. (4.200). The
differential equation thus obtained for the phase is

% (@)2 i d(n?) d¢

- — 4+ k2?9 =0. 4.202
1d22 dz n? dz dz+ ¢¢=0 (4.202)

Since the medium is slowly varying, the first and third term in the above equation
are small, and so to a first approximation

d¢
— = +k 4.203
dz % ( a)
d’¢ dgq
— = —. 4.2
o i< (4.203)

These expressions can be inserted into the first and third terms of Eq. (4.202) to
give the second approximation

9 1/2
W@ _ 4 [k%%ik(ﬁ——qd—")] . (4.204)

The final two terms on the right-hand side of the above equation are small, so
expanding the right-hand side using the binomial theorem yields

p . .
— = 4kgd —— — —— (4.205)
z

This expression can be integrated, and the result inserted into Eq. (4.201), to
give the W.K.B. solution

cBy, = Ang /% exp (iik / qdz) : (4.206)
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The corresponding W.K.B. solution for F, is obtained from Eq. (4.199):

E,=+4An"1¢"% exp (iik / qdz> : (4.207)

Here, any terms involving derivatives of n and ¢ have been neglected.

Substituting Eq. (4.206) into the differential equation (4.200), and demanding
that the result be small compared to the original terms in the differential equation,
yields the following condition for the validity of the above W.K.B. solutions:

3/1dg\> 1 d>¢ 1 |1dn 5 (Ldn 2
4 (q2 dz> 2¢3 dz? i q? | n dz? (n dz)

This criterion fails close to ¢ = 0, no matter how slowly n and q vary with z.
Hence, ¢ = 0 gives the height at which reflection takes place. The condition also
fails close to n = 0, which does not correspond to the reflection level. If, as is
usually the case, the electron density in the ionosphere increases monotonically
with height, then the level where n = 0 lies above the reflection level, where g = 0.
If the two levels are well separated then the reflection process is unaffected by the
failure of the above inequality at the level n = 0, and the reflection coefficient is
given by Eq. (4.198), just as for the case of horizontal polarization. If, however,
the level n = 0 lies close to the level ¢ = 0 then the reflection coefficient may

be affected, and a more accurate treatment of the differential equation (4.200) is
required in order to obtain the true value of the reflection coefficient.

1

o) < 1. (4.208)

4.19 Pulse propagation in the ionosphere

Suppose that we possess a generator of radio waves which sends radio pulses
vertically upwards into the ionosphere. For the sake of argument, we shall assume
that these pulses are linearly polarized such that the electric field vector lies
parallel to the y-axis. The pulse structure can be represented as

E,(t) = / h F(w)e™'“! dw, (4.209)

— o0
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where E, () is the electric field produced by the generator (i.e., the field at z = 0).
Suppose that the pulse is a signal of roughly constant (angular) frequency wy,
which lasts a time T, where T is long compared to 1/wg. It follows that F(w)
possesses narrow maxima around w = £wq. In other words, only those frequencies
which lie very close to the central frequency wy play a significant role in the
propagation of the pulse.

Each component frequency of the pulse yields a wave which travels indepen-
dently up into the ionosphere, in a manner specified by the appropriate W.K.B.
solution [see Eqgs. (4.181)]. Thus, if Eq. (4.209) specifies the signal at ground level
(2 = 0), then the signal at height z is given by

_ > F(W) id(w,z,t)
where s
bd(w, z,t) = c_u/ n(w, z)dz — wt. (4.211)
¢ Jo

Here, we have used k = w/c.

Equation (4.210) can be regarded as a contour integral in w-space. The quan-
tity F//n'/? is a relatively slowly varying function of w, whereas the phase ¢ is a
large and rapidly varying function of w. As described in Section 4.11, the rapid
oscillations of exp(i¢) over most of the path of integration ensure that the in-
tegrand averages almost to zero. However, this cancellation argument does not
apply to those points on the path of integration where the phase is stationary; i.e.,
those points where 0¢/0w = 0. It follows that the left-hand side of Eq. (4.210)
averages to a very small value, expect for those special values of z and ¢ at which
one of the points of stationary phase in w-space coincides with one of the peaks
of F(w). The locus of these special values of z and t can obviously be regarded
as the equation of motion of the pulse as it propagates through the ionosphere.
Thus, the equation of motion is specified by

0¢ B
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which yields

t = %/O [a%":)] ds (4.213)

Suppose that the z-velocity of a pulse of central frequency wy at height z
is given by w,(wp, z). The differential equation of motion of the pulse is then
dt = dz/u,. This can be integrated, using the boundary condition z =0 at ¢t = 0,
to give the full equation of motion:

*dz
0 Uz

A comparison of Egs. (4.213) and (4.214) yields

us(wo, 2) = c / {W}w:wo . (4.215)

The velocity u, is usually called the group velocity. It is easily demonstrated that
the above expression for the group velocity is entirely consistent with that given
previously [see Eq. (4.135)].

t= (4.214)

The dispersion relation (4.164) yields

0 1/2
n(w, z) = (1 _ Y gz)> : (4.216)

in the limit where electron collisions are negligible. The phase velocity of radio
waves of frequency w propagating vertically through the ionosphere is given by

) ~1/2
v (w, 2) = R (1 _ Y gz)> . (4.217)

n(w, z) w

According to Egs. (4.215) and (4.216), the corresponding group velocity is

0 1/2
uy(w,z) =c¢ (1 _ gz)> : (4.218)

w
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It follows that
v, u, = 2. (4.219)

Note that as the reflection point z = z; [defined as the solution of w = w,(2¢)] is
approached from below, the phase velocity tends to infinity, whereas the group
velocity tends to zero.

Let 7 be the time taken for the pulse to travel from the ground to the re-
flection level, and back to the ground again. The product ¢7/2 is termed the
equivalent height of reflection, and is denoted h(w), since it is a function of the
pulse frequency, w. The equivalent height is the height to which the pulse would
have to go if it always traveled with the velocity c. Since we know that a pulse of
dominant frequency w propagates at height z with the z-velocity u,(w, z) (this is
true for both upgoing and downgoing pulses), and also that the pulse is reflected
at the height zo(w), where w = wy,(2p), it follows that

20 (w)
=2 / _dz (4.220)
0 Uz

(w,2)

Hence,

zo(w) c
h(w) = /0 @) dz. (4.221)

w, 2)

Note that the equivalent height of reflection, h(w), is always greater than the
actual height of reflection, zg(w), since the group velocity u, is always less than
the velocity of light. The above equation can be combined with Eq. (4.218) to

give
zo(w W 2 p —1/2
h(w) :/O ( )(1— p ( )> dz. (4.222)

w2

Note that the integrand diverges as the reflection point is approached, but the
integral remains finite.

4.20 Determining the ionospheric electron density profile

We can measure the equivalent height of the ionosphere in a fairly straightfor-
ward manner, by timing how long it takes a radio pulse fired vertically upwards
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to return to ground level again. We can, therefore, determine the function h(w)
experimentally by performing this procedure many times over, using pulses of dif-
ferent central frequencies. But, is it possible to use this information to determine
the number density of free electrons in the ionosphere as a function of height? In
mathematical terms, the problem is as follows. Does a knowledge of the function

w

zo(w)
h(w) = /O e (4.223)

where wp2(zo) = w?, necessarily imply a knowledge of the function wp2(z)? Note,

of course, that w,?(z) o< N(2).

Let w? = v and w,?(z) = u(z). Equation (4.223) then becomes

Z()(’Ul/2) d
—1/2 p(p1/2) = i 4.924
v (v'/?) /0 o (2 ( )

where u(z9) = v, and u(z) < v for 0 < z < zg. Let us multiply both sides of the
above equation by (w — v)~'/2 /7 and integrate from v = 0 to w. We obtain

1/2
1 [ -1/2 -1/2 1/2 1/w /zo(v ) dz
— - h dv = — dv.
e R e L A R e cemr e L

(4.225)
Consider the double integral on the right-hand side. The region of v-z space over
which this integral is performed is sketched in Fig. 15. It can be seen that, as long
as zo(vl/ %) is a monotonically increasing function of z, we can swap the order of
integration to give

1 zo(w1/2) w dv
L [ [ o] &= (1.226)

Here, we have used the fact that the curve z = zo(v'/?) is identical with the curve
v = u(z). Note that if z(v'/?) is not a monotonically increasing function of v
then we can still swap the order of integration, but the limits of integration are,
in general, far more complicated than those indicated above. The integral over v
in the above expression can be evaluated using standard methods (by making the
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substitution v = w cos® 6§ +u sin? 6): the result is simply m. Thus, the expression
(4.226) reduces to zo(w'/2). It follows from Eq. (4.225) that

1 / v~ Y2 (w — v) Y2 h(w'/?) do. (4.227)
0

zo('wl/Q) =
T

Making the substitutions v = w sin? @ and w'/? = w, we obtain

/2
zo(w) = z/0 h(w sin a) da. (4.228)

T

By definition, w = w, at the reflection level z = z3. Hence, the above equation

reduces to
2

w/2
z(wp) = ;/ h(w, sin o) da. (4.229)
0

Thus, we can obtain z as a function of w, (and, hence, w, as a function of
z) simply by taking the appropriate integral of the experimentally determined
function h(w). Since wp(z) x 4/N(z), this means that we can determine the
electron number density profile in the ionosphere provided we know the variation
of the equivalent height of the ionosphere with pulse frequency. The constraint
that zo(w) must be a monotonically increasing function of w translates to the
constraint that N (z) must be a monotonically increasing function of z. Note that
we can still determine N(z) from h(w) for the case where the former function is
non-monotonic, it is just a far more complicated procedure than that outlined
above. Incidentally, the technique by which we have inverted Eq. (4.222), which
specifies h(w) as some integral over wy(2), to give wp(z) as some integral over
h(w) is known as Abel inversion.

4.21 Ray tracing in the ionosphere

Suppose that we possess a radio antenna which is capable of launching radio
waves of constant frequency w into the ionosphere at an angle to the vertical. Let
us consider the paths traced out by these waves in the z-z plane. For the sake of
simplicity, we shall assume that the waves are horizontally polarized, so that the
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R .

Figure 15: A sketch of the region of v-z space over which the integral on the
right-hand side of Eq. (4.223) is evaluated

electric field vector always lies parallel to the y-axis. The signal emitted by the
antenna (located at z = 0) can be represented as

E,(z) = /01 F(S)e'*57 g, (4.230)

where k = w/c. Here, the e7'*! time dependence of the signal is neglected for
the sake of clarity. Suppose that the signal emitted by the antenna is mostly
concentrated in a direction making an angle ; with the vertical. It follows that
F(S) possesses a narrow maximum around S = Sy, where Sy = sin 6;.

If Eq. (4.230) represents the signal at ground level, then the signal at height
z in the ionosphere is easily obtained by making use of the W.K.B. solutions for
horizontally polarized waves described in Section 4.18. We obtain

VRS
E = | i@ gg 4.231
y(z,2) /0 q1/2(z,S) € 3 ( )
where N
o(z,2,8) = k/ q(z,5)dz+ kS =x. (4.232)
0
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Equation (4.231) is basically a line integral in S-space. The quantity F/q'/? is a,
relatively slowly varying function of S, whereas the phase ¢ is a large and rapidly
varying function of S. As described in Section 4.11, the rapid oscillations of
exp(i¢) over most of the path of integration ensure that the integrand averages
almost to zero. In fact, only those points on the path of integration where the
phase is stationary (i.e., where 0¢/0S = 0) make a significant contribution to
the integral. It follows that the left-hand side of Eq. (4.231) averages to a very
small value, except for those special values of z and z at which one of the points
of stationary phase in S-space coincides with the peak of F(S). The locus of
these special values of x and z can clearly be regarded as the trajectory of the
radio signal emitted by the antenna as it passes through the ionosphere. Thus,
the signal trajectory is specified by

Y B
<5§>SESO__0, (4.233)

z 8q )
r=— — dz. (4.234)
/0 (65 S=So

We can think of this equation as tracing the path of a ray of radio frequency
radiation, emitted by the antenna at an angle 7 to the vertical (where Sy =
sinfr), as it propagates through the ionosphere.

which yields

Now
¢ =n®- 5% (4.235)

so the ray tracing equation becomes

z
x:S/ z (4.236)
0 /n2(z) —S?
where S is the sine of the initial (i.e., at the antenna) angle of incidence of the ray
with respect to the vertical axis. Of course, Eq. (4.236) only holds for upgoing
rays. For downgoing rays, a simple variant of the previous analysis using the
downgoing W.K.B. solutions yields

(4.237)

Z()(S) Zo(S)
x—S/ dz +S/
\/n2(z) — 52 \/n? — 52’
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where n(z9) = S. Thus, the ray ascends into the ionosphere after being launched
from the antenna, reaches a maximum height zy above the surface of the Earth,
and then starts to descend. The ray eventually intersects the Earth’s surface
again a horizontal distance

Zo(S)
mO::ZS}[ dz (4.238)
0

away from the antenna.

The angle £ which the ray makes with the vertical is given by tan ¢ = dz/dz.
It follows from Egs. (4.236) and (4.237) that

S
tané = + )5 (4.239)

where the upper and lower signs correspond to the upgoing and downgoing parts
of the ray trajectory, respectively. Note that £ = 7/2 at the reflection point,
where n = S. Thus, the ray is horizontal at the reflection point.

Let us investigate the reflection process in more detail. In particular, we wish
to prove that radio waves are reflected at the ¢ = 0 surface, rather than being
absorbed. We would also like to understand the origin of the —m/2 phase shift
of radio waves at reflection which is evident in Eq. (4.198). In order to achieve
these goals, we shall need to review the mathematics of asymptotic series.

4.22 Asymptotic series: A mathematical aside

It is often convenient to expand a function of the complex variable f(z) in inverse
powers of z:

.WFM@%+%+%+m, (4.240)

where ¢(z) is a function whose behaviour for large values of z is known. If

f(2)/#(2) is singular as |z| — oo then the above series diverges. Nevertheless,
under certain circumstances, the series may still be useful.
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The circumstance needed to make this possible is that the difference between
f(2)/¢(2) and the first n + 1 terms of the series be of order 1/2"*! so that for
sufficiently large z this difference becomes vanishingly small. More precisely, the
series is said to represent f(z)/¢(z) asymptotically, that is

f(2) ~ ¢(2) —, (4.241)

provided that

: W [ F(2) - Ap
lim {z [gb(z) Zzp

Z|—00
B s

} — 0. (4.242)

In other words, for a given value of n, the first n 4+ 1 terms of the series may be
made as close as desired to the ratio f(z)/#(z) by making z sufficiently large. For
each value of z and n there is an error of order 1/z"*1. Since the series actually
diverges, there is an optimum number of terms in the series used to represent
f(2)/¢(z) for a given value of z. Associated with this is an unavoidable error. As
z increases, the optimal number of terms increases and the error decreases.

Consider a simple example. The exponential integral is defined

Fa(z) = / h eT_t dt. (4.243)

The asymptotic series for this function can be generated via a series of partial
integrations. For example,

—T oo —t
Ei(z)= > — / ° . (4.244)

dt (4.245)



The infinite series obtained by taking the limit n — oo diverges, since the Cauchy
convergence test yields

Un+1
Unp

lim
n— o0

— lim m — 0. (4.246)

n—oo LI

Note that two successive terms in the series become equal in magnitude for n = z,
indicating that the optimum number of terms for a given z is roughly the integer
nearest x. To prove that the series is asymptotic, we need to show that

0 ,—t
: n+l_ z/_1\n+1 | € —
:}1_% " e (=) (n + 1)/.1: s dt = 0. (4.247)

This immediately follows, since

0 gt 1 * e~ %
/x s dt < e /m e " dt = sy (4.248)

Thus, the error involved in using the first n terms is less than (n + 1)!e™% /2" 12
which is exactly the next term in the series. We can see that as n increases, this
estimate of the error first decreases and then increases without limit. In order to
visualize this phenomenon more exactly, let f(z) = zexp(z) E(x), and let

n

fa(z) = i (4.249)

p=0 xp
be the asymptotic series representation of this function which contains n+1 terms.
Figure 16 shows the relative error in the asymptotic series |f,(z) — f(z)|/f(z)
plotted as a function of the approximate number of terms in the series n for
x = 10. It can be seen that as n increases the error initially falls, reaches a
minimum value at about n = 10, and then increases rapidly. Clearly, the optimum
number of terms in the asymptotic series used to represent f(10) is about 10.

Asymptotic series are fundamentally different to conventional power law ex-

pansions, such as

23 25 T
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Figure 16: The relative error in a typical asymptotic series plotted as a function
of the number of terms in the series

This series representation of sin z converges absolutely for all finite values of z.
Thus, at any z the error associated with the series can be made as small as is
desired by including a sufficiently large number of terms. In other words, unlike
an asymptotic series, there is no intrinsic, or unavoidable, error associated with
a convergent series. It follows that a convergent power law series representation
of a function is unique inside the domain of convergence of the series. On the
other hand, an asymptotic series representation of a function is not unique. It is
perfectly possible to have two different asymptotic series representations of the
same function, as long as the difference between the two series is less than the
intrinsic error associated with each series. Furthermore, it is often the case that
different asymptotic series are used to represent the same single-valued analytic
function in different regions of the complex plane.

For example, consider the asymptotic expansion of the confluent hypergeomet-
ric function F(a,c, z). This function is the solution of the differential equation

zF"+(c—2)F' —aF =0 (4.251)

which is analytic at z = 0 [in fact, F(a,c,0) = 1]. Here, ' denotes d/dz. The
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asymptotic expansion of F'(a,c, z) takes the form:

I'(a)T(c —a)
I'(c)

F(a,c,z) =~ T(c—a)z?"°e*[14+0(1/2)]
+T(a) 277" [1+0(1/2)] (4.252a)
for —m < arg(z) < 0, and

['(a)'(c— a)
I'(c)

F(a,c,z) =~ T(c—a)z® e’ [14+0(1/2)]
+T(a)z7%e'™ [1 4+ 0(1/2)]  (4.252b)

for 0 < arg(z) <, and

Fla,c,z) ~ T(c—a)z2 e 12779 e?[1 4+ 0(1/2)]

+T(a) z7%e' ™ [1 4+ O(1/2)] (4.252c¢)

for m < arg(z) < 2m, etc. It can be seen that the expansion consists of a linear
combination of two asymptotic series (only the first term in each series is shown).
For |z| > 1, the first series is exponentially larger than the second whenever
Re(z) > 0. We say that the first series is dominant in this region, whereas the
second series is subdominant. Likewise, the first series is exponentially smaller
than the second whenever Re(z) < 0. We say that the first series is subdominant
and the second series is dominant in this region.

Consider a region in which one or other of the series is dominant. Strictly
speaking, it is not mathematically consistent to include the subdominant series
in the asymptotic expansion because its contribution is actually less than the
intrinsic error associated with the dominant series [this error is O(1/z) times the
dominant series, since we are only including the first term in this series]. Thus,
at a general point in the complex plane the asymptotic expansion simply consists
of the dominant series. However, this is not the case in the immediate vicinity
of the lines Re(z) = 0: these are called the anti-Stokes lines. When an anti-
Stokes line is crossed, a dominant series becomes subdominant and vice versa. In
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the immediate vicinity of an anti-Stokes line neither series is dominant, so it is
mathematically consistent to include both series in the asymptotic expansion.

The hypergeometric function F(a,c,z) is a perfectly well behaved, single-
valued, analytic function in the complex plane. However, our two asymptotic se-
ries are, in general, multi-valued functions in the complex plane [see Eq. (4.252a)].
Can a single-valued function be represented asymptotically by a multi-valued
function? The short answer is no. We have to employ different combinations of
the two series in different regions of the complex plane in order to ensure that
F(a, c, z) remains single-valued. Equations (4.252) show how this is achieved. Ba-
sically, the coefficient in front of the subdominant series changes discontinuously
at certain values of arg(z). This is perfectly consistent with F(a,c, z) being an
analytic function because the subdominant series is “invisible”; i.e., the contribu-
tion of the subdominant series to the asymptotic solution falls below the intrinsic
error associated with the dominant series, so it does not really matter if the co-
efficient in front of the former series changes discontinuously. Imagine tracing a
large circle, centred on the origin, in the complex plane. Close to an anti-Stokes
line, neither series is dominant, so we must include both series in the asymptotic
expansion. As we move away from the anti-Stokes line, one series becomes dom-
inant, which means that the other series becomes subdominant and, therefore,
drops out of our asymptotic expansion. Eventually, we approach a second anti-
Stokes line, and the subdominant series reappears in our asymptotic expansion.
However, the coefficient in front of the subdominant series when it reappears is
different to that which it had when it disappeared. This new coefficient is carried
across the second anti-Stokes line into the region where the subdominant series
becomes dominant. In this new region, the dominant series becomes subdominant
and disappears from our asymptotic expansion. Eventually, a third anti-Stokes
line is approached and the series reappears, but, again, with a different coefficient
in front. The jumps in the coefficients of the subdominant series are chosen in
such a manner that if we perform a complete circuit in the complex plane then
the value of the asymptotic expansion is the same at the beginning and the end
points. In other words, the asymptotic expansion is single-valued, despite the
fact that it is built up out of two asymptotic series which are not single-valued.
The jumps in the coefficient of the subdominant series, which are needed to keep
the asymptotic expansion single-valued, are called Stokes phenomena, after the
celebrated nineteenth century British mathematician Sir George Gabriel Stokes,
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who first drew attention to this effect.

Where exactly does the jump in the coefficient of the subdominant series
occur? All we can really say is “somewhere in the region between two anti-Stokes
lines where the series in question is subdominant.” The problem is that we only
retain the first term in each asymptotic series. Consequently, the intrinsic error
in the dominant series is relatively large and we lose track of the subdominant
series very quickly after moving away from an anti-Stokes line. However, we
could include more terms in each asymptotic series. This would enable us to
reduce the intrinsic error in the dominant series and, thereby, expand the region
of the complex plane in the vicinity of the anti-Stokes lines where we can see
both the dominant and subdominant series. If we were to keep adding terms
to our asymptotic series, so as to minimize the error in the dominant solution,
we would eventually be forced to conclude that a jump in the coefficient of the
subdominant series can only take place on those lines in the complex plane on
which Im(z) = 0: these are called Stokes lines. This result was first proved by
Stokes in 1857.15 On a Stokes line the magnitude of the dominant series achieves
its maximum value with respect to that of the subdominant series. Once we know
that a jump in the coefficient of the subdominant series can only take place at a
Stokes line, we can retain the subdominant series in our asymptotic expansion in
all regions of the complex plane. What we are basically saying is that, although,
in practice, we cannot actually see the subdominant series very far away from an
anti-Stokes line because we are only retaining the first term in each asymptotic
series, we could, in principle, see the subdominant series at all values of arg(z)
provided that we retained a sufficient number of terms in our asymptotic series.

Figure 17 shows the location in the complex plane of the Stokes and anti-
Stokes lines for the asymptotic expansion of the hypergeometric function. Also
shown is a branch cut, which is needed to make z single-valued. The branch cut
is chosen such that arg(z) = 0 on the positive real axis. Every time we cross an
anti-Stokes line the dominant series becomes subdominant and vice versa. Every
time we cross a Stokes line the coefficient in front of the dominant series stays
the same, but that in front of the subdominant series jumps discontinuously [see
Egs. (4.252)]. Finally, the jumps in the coefficient of the subdominant series are
such as to ensure that the asymptotic expansion is single-valued.

15G.G. Stokes, Trans. Camb. Phil. Soc. 10, 106-128 (1857)
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anti-Stokes line

O Stokes line

branch cut

Figure 17: The location of the Stokes lines (dashed), the anti-Stokes lines (solid),
and the branch cut (wavy) in the complex plane for the asymptotic expansion of
the hypergeometric function
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4.23 The W.K.B. solutions as asymptotic series

We have seen that the W.K.B. solution

E, =n""? exp (iik / ndz) (4.253)
is an approximate solution of the differential equation
d’E
dZ;J + k*n®(2) E, =0 (4.254)

in the limit where the typical wavelength, 27 /nk, is much smaller than the typical
variation length-scale of the refractive index. But, what sort of approximation is
involved in writing this solution?

It is convenient to define the scaled variable
z
2 = — 4.255
z L ) ( )
where L is the typical variation length-scale of the refractive index, n(z). Equa-
tion (4.254) can then be written

w” + h?quw =0, (4.256)

where w(2,h) = E,(LZ2), q(2) = n*(L2),’ = d/d%, and h = kL. Note that, in
general, q(2), ¢'(2), ¢ (2), etc. are O(1) quantities. The non-dimensional constant
h is of order the ratio of the variation length-scale of the refractive index to the
wavelength. Let us seek the solutions to Eq. (4.256) in the limit A > 1.

We can write

w(z,h) =exp[ih (2, h)]. (4.257)
Equation (4.256) transforms to
@ o (4258
Expanding in powers of 1/h, we obtain
¢ =+q'% + ﬁ% +0 <%> , (4.259)
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which yields

w(2,h) = ¢ /* exp (iih/éqc&) [1 +0 (%)] . (4.260)

Of course, we immediately recognize this expression as a W.K.B. solution.

Suppose that we keep expanding in powers of 1/h in Eq. (4.259). The appro-
priate generalization of Eq. (4.260) is a series solution of the form

_ o [F =L Ay(3)

s 1y —1/4 5 P

w(2z,h) =¢q /* exp (:l:lh/ qdz) 1+ E e
p=1

This is, in fact, an asymptotic series in h. We can now appreciate that a W.K.B.
solution is just a highly truncated asymptotic series in h, in which only the first
term in the series is retained.

(4.261)

But, why is it so important that we recognize that W.K.B. solutions are
highly truncated asymptotic series? The point is that the W.K.B. method was
initially rather controversial after it was popularized in the 1920s. A lot of people
thought that the method was completely wrong. Let us try to understand what
the problem was. Suppose that we have never heard of an asymptotic series.
Looking at Eq. (4.261), we would imagine that the expression in square brackets
is a power law expansion in 1/h. The W.K.B. approximation involves neglecting
all terms in this expansion except the first. This sounds fine, as long as h is
much greater than unity. But, surely, to be mathematically rigorous, we have to
check that the sum of all of the terms in the expansion which we are neglecting
is small compared to the first term? However, if we attempt this we discover,
much to our consternation, that the expansion is divergent. In other words, the
sum of all of the neglected terms is infinite! Thus, if we interpret Eq. (4.261)
as a conventional power law expansion in 1/h, the W.K.B. method is clearly
nonsense: the W.K.B. solution is the first approximation to infinity. However,
once we appreciate that Eq. (4.261) is actually an asymptotic series in h, the
fact that the series diverges becomes irrelevant. If we retain the first n terms
in the series, the series approximates the exact solution of Eq. (4.261) with an
intrinsic (fractional) error which is of order 1/h™ (i.e., the first neglected term in
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the series). The error is minimized at a particular value of h. As the number of
terms in the series is increased, the intrinsic error decreases, and the value of A
at which the error is minimized increases. In particular, we can see that there is
an intrinsic error associated with a W.K.B. solution which is of order 1/h times
the solution.

It is amusing to note that if Eq. (4.261) were not a divergent series then it
would be impossible to obtain total reflection of the W.K.B. solutions at the point
g = 0. As we shall discover, the reflection is directly associated with the fact that
the expansion (4.261) exhibits a Stokes phenomenon. It is, of course, impossible
for a convergent power series expansion to exhibit a Stokes phenomenon.

4.24 Stokes constants

We have seen that the differential equation
w” + h?q(2)w =0, (4.262)

where ' = d/dZ, possesses approximate W.K.B. solutions of the form

(a,2) = g4 exp (ih/ q'/? dﬁ) [1—}—0 <%)], (4.263a)
(2,a) = ¢ *exp (—ih/ q1/2d2> [1+0 (%)] (4.263b)

Here, we have adopted an arbitrary phase reference level Z = a. The convenient
notation (a, 2) is fairly self explanatory: a and % refer to the lower and upper
bounds of integration, respectively, inside the exponential. It follows that the
other W.K.B. solution can be written (2,a) (we can reverse the limits of inte-
gration inside the exponential to obtain minus the integral in Z from 2z = a to
zZ=2).

Up to now we have thought of Z as a real variable representing scaled height
in the ionosphere. Let us now generalize our analysis somewhat and think of 2
as a complex variable. There is nothing in our derivation of the W.K.B. solutions
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which depends crucially on 2z being a real variable, so we expect these solutions to
remain valid when Z is reinterpreted as a complex variable. Incidentally, we must
now interpret g(z) as some well behaved function of the complex variable. An
approximate general solution of the differential equation (4.262) in the complex

Z plane can be written as as a linear superposition of the two W.K.B. solutions
(4.263).

The parameter h is assumed to be much larger than unity. It is clear from
Egs. (4.263) that in some regions of the complex plane one of the W.K.B. solutions
is going to be exponentially larger than the other. In such regions, it is not
mathematically consistent to retain the smaller W.K.B. solution in the expression
for the general solution, since the contribution of the smaller W.K.B. solution is
less than the intrinsic error associated with the larger solution. Adopting the
terminology introduced in Section 4.22, the larger W.K.B. solution is said to be
dominant, and the smaller solution is said to be subdominant. Let us denote
the W.K.B. solution (4.263a) as (a, )4 in regions of the complex plane where it
is dominant, and as (a, £)s in regions where it is subdominant. An analogous
notation is adopted for the second W.K.B. solution (4.263b).

Suppose that g(Z) possesses a simple zero at the point 2 = Zy (chosen to
be the origin for the sake of convenience). It follows that in the immediate
neighbourhood of the origin we can write

g=a12+a 2 +---, (4.264)

where a1 # 0. It is convenient to adopt the origin as the phase reference point
(i.e., a = 0), so the two W.K.B. solutions become (0, 2) and (2,0). We can define
anti-Stokes lines in the complex Z plane (see Section 4.22). These are lines which
satisfy

Re

i / q'/? dﬁ] = 0. (4.265)
0

As we cross an anti-Stokes line, a dominant W.K.B. solution becomes subdom-
inant, and wvice versa. Thus, (0,2)q < (0,2)s and (2,0)q <> (2,0)s. In the
immediate vicinity of an anti-Stokes line the two W.K.B. solutions have about
the same magnitude, so it is mathematically consistent to include the contribu-
tions from both solutions in the expression for the general solution. In such a
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region, we can drop the subscripts d and s, since the W.K.B. solutions are neither
dominant nor subdominant, and write the W.K.B. solutions simply as (0, 2) and
(£,0).

It is clear from Eqgs. (4.263) that the W.K.B. solutions are not single-valued
functions of 2, since they depend on ¢/ 2(2), which is a double-valued function.
Thus, if we wish to write an approximate analytic solution to the differential
equation (4.262) we cannot express this solution as the same linear combination
of W.K.B. solutions in all regions of the complex z-plane. This implies that there
must exist certain lines in the complex Z-plane across which the mix of W.K.B.
solutions in our expression for the general solution changes discontinuously. These
lines are called Stokes lines (see Section 4.22), and satisfy

Im [i / q1/2d2] = 0. (4.266)
0

As we cross a Stokes line, the coefficient of the dominant W.K.B. solution in our
expression for the general solution must remain unchanged, but the coefficient of
the subdominant solution is allowed to change discontinuously. Incidentally, this
is perfectly consistent with the fact that the general solution is analytic: the jump
in our expression for the general solution due to the jump in the coefficient of the
subdominant W.K.B. solution is less than the intrinsic error in this expression
due to the intrinsic error in the dominant W.K.B. solution. Once we appreciate
that the coefficient of the subdominant solution can only change at a Stokes line,
we can retain both W.K.B. solutions in our expression for the general solution
throughout the complex Z plane. In practice, we can only see a subdominant
solution in the immediate vicinity of an anti-Stokes line, but if we were to evaluate
the W.K.B. solutions to higher accuracy [i.e. retain more terms in the asymptotic
series in Eqgs. (4.263)]we could, in principle, follow a subdominant solution all the
way to a neighbouring Stokes line.

In the immediate vicinity of the origin
: 2,/a;
/ ¢ ds ~ % 33/2, (4.267)
0

It follows from Eqs. (4.265) and (4.266) that three Stokes lines and three anti-
Stokes lines radiate from a zero of g(2). The general arrangement of Stokes and
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Figure 18: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
around a simple zero of ¢(2). Also shown is the branch cut (wavy line). All of
the lines radiate from the point ¢ = 0.

anti-Stokes lines in the vicinity of a ¢ = 0 point is sketched in Fig. 18. Note that
a branch cut must also radiate from the ¢ = 0 point in order to uniquely specify
the function ¢'/2(%). Thus, in general, seven lines radiate from a zero of ¢(%),
dividing the complex Z plane into seven domains (numbered 1 through 7).

Let us write our general solution as
w(2,h) = A(0,2) + B(%,0) (4.268)

on the anti-Stokes line between domains 1 and 7, where A and B are arbitrary
constants. Suppose that the W.K.B. solution (0, %) is dominant in domain 7.
Thus, in domain 7 the general solution takes the form

w(7)=A(0,2)q + B(2,0)s. (4.269)
Let us move into domain 1. In doing so, we cross an anti-Stokes line, so the

dominant solution becomes subdominant, and wice versa. Thus, in domain 1 the
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general solution takes the form
w(l) = A(0,2)s + B(2,0)q. (4.270)

Let us now move into domain 2. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution, B, must remain constant, but the coefficient
of the subdominant solution, A, is allowed to change. Suppose that the coefficient
of the subdominant solution jumps by ¢ times the coefficient of the dominant
solution, where ¢ is an undetermined constant. It follows that in domain 2 the
general solution takes the form

w(2) = (A+tB)(0,%)s + B (2,0)a. (4.271)

Let us now move into domain 3. In doing so, we cross an anti-Stokes line, so the
the dominant solution becomes subdominant, and vice versa. Thus, in domain 3
the general solution takes the form

w(3) = (A+tB)(0,2)q+ B (2,0)s. (4.272)

Let us now move into domain 4. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution must remain constant, but the coefficient of
the subdominant solution is allowed to change. Suppose that the coefficient of the
subdominant solution jumps by u times the coefficient of the dominant solution,
where v is an undetermined constant. It follows that in domain 4 the general
solution takes the form

w(4) = (A+1B)(0,2)q + (B +u[A+tB)) (3,0).. (4.273)

Let us now move into domain 5. In doing so, we cross an anti-Stokes line, so the
the dominant solution becomes subdominant, and vice versa. Thus, in domain 5
the general solution takes the form

w(5) = (A+tB)(0,%)s + (B +u[A+tB])(20). (4.274)

Let us now move into domain 6. In doing so, we cross the branch cut in an anti-
clockwise direction. Thus, the argument of Z decreases by 27. It follows from
Eq. (4.264) that ¢'/2 — —¢'/? and ¢'/* — —iq'/%. The following rules for tracing
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the W.K.B. solutions across the branch cut (in an anti-clockwise direction) ensure
that the general solution is continuous across the cut [see Eqgs. (4.261)]:

0,2) — —i(3,0), (4.275a)
(3,0) — —i(0,2). (4.275b)

Note that the properties of dominancy and subdominancy are preserved when
the branch cut is crossed. It follows that in domain 6 the general solution takes
the form

w(6) = —i(A+tB)(2,0)s —i(B+ul[A+tB])(0,2)q (4.276)

Let us, finally, move into domain 7. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution must remain constant, but the coefficient of
the subdominant solution is allowed to change. Suppose that the coefficient of the
subdominant solution jumps by v times the coefficient of the dominant solution,
where v is an undetermined constant. It follows that in domain 7 the general
solution takes the form

w(7) = —i(A+t B+v{B+u[A+t B]}) (2,0)s—i(B+u[A+t B]) (0, 2)4. (4.277)

Now, we expect our general solution to be an analytic function, so it follows
that the solutions (4.269) and (4.277) must be identical. Thus, we can compare
the coefficients of the two W.K.B. solutions, (2,0)s and (0, 2)4. Since A and B
are arbitrary, we can also compare the coefficients of A and B. Thus, comparing
the coefficients of A (0, 2)4, we find

1=—iu. (4.278)
Comparing the coefficients of B (0, 2)4 yields

0=1+ut. (4.279)
Comparing the coefficients of A (2,0), gives

0=1+vu. (4.280)
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Finally, comparing the coefficients of B (Z,0), yields
1= —i(t+v+out). (4.281)
Equations (4.278)—(4.281) imply that
t=u=v=1i (4.282)

In other words, if we adopt the simple rule that every time we cross a Stokes line
in an anti-clockwise direction the coefficient of the subdominant solution jumps
by i times the coefficient of the dominant solution, then this ensures that our
expression for the general solution (4.268) behaves as an analytic function. Here,
the constant i is usually called a Stokes constant. Note that if we cross a Stokes
line in a clockwise direction then the coefficient of the subdominant solution has
to jump by —i times the coefficient of the dominant solution in order to ensure
that our general solution behaves as an analytic function.

4.25 The reflection coefficient

Let us write Z = x 4+ iy, where z and y are real variables. Consider the solution
of the differential equation

w” 4+ h? q(z) w = 0, (4.283)

where ¢(x) is a real function, A is a large number, ¢ > 0 for z < 0, and ¢ < 0 for
z > 0. It is clear that 2 = 0 represents a simple zero of ¢(2). Here, we assume,
as seems eminently reasonable, that we can find a well behaved function of the
complex variable g(Z) such that ¢(2) = ¢(z) along the real axis. The arrangement
of Stokes and anti-Stokes lines in the immediate vicinity of the point Z = 0 is
sketched in Fig. 19. The argument of ¢(2) on the positive z-axis is chosen to be
—m. Thus, the argument of ¢(2) on the negative z-axis is 0.

On OB, the two W.K.B. solutions (4.261) can be written

0,2) = q Y42 exp(ih /0 qu/Q(x)dx>, (4.284a)
(2,0) = ¢ '*=z) exp <—ih /0 wa/Z(w)da:). (4.284b)
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Figure 19: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
in the complex z plane. Also shown is the branch cut (wavy line).
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Here, we can interpret (0,z) as a wave propagating to the right along the z-axis,
and (z,0) as a wave propagating to the left. On OA, the W.K.B. solutions take
the form

(0,2)g = e'™*|g(z)|"}/* exp<+h/ \Q(w)\1/2d:v), (4.2852)
0

(2,0)s = e'™*g(z)|"Y* exp (-h/ox\q(x)\lﬂdx). (4.285b)

Clearly, (z,0)s represents an evanescent wave which decays to the right along the
z-axis, whereas (0, )4 represents an evanescent wave which decays to the left. If
we adopt the boundary condition that there is no incident wave from the region
r — 400, the most general asymptotic solution to Eq. (4.283) on OA is written

w(z,h) = A(z,0)s, (4.286)
where A is an arbitrary constant.

Let us assume that we can find an analytic solution w(2, h) to the differential
equation
w” 4+ h? q(2)w = 0, (4.287)

which satisfies w(2, h) = w(z, h) along the real axis, where w(z, h) is the physical
solution. From a mathematical point of view, this seems eminently reasonable.
In the domains 1 and 2 the solution (4.286) becomes

w(1) = A(2,0),, (4.288)

and
w(2) = A(2,0)s. (4.289)

Note that the solution is continuous across the Stokes line O A, since the coefficient
of the dominant solution (0, 2) is zero: thus, the jump in the coefficient of the
subdominant solution is zero times the Stokes constant, i; i.e., it is zero. Let us
move into domain 3. In doing so, we cross an anti-Stokes line, so the solution
becomes

w(3) = A(2,0)q. (4.290)
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Let us now move into domain 4. In doing so, we cross a Stokes line. Applying
the general rule derived in the preceding section, the solution becomes

w(4) =A(2,0)g +1A(0, 2)s. (4.291)
Finally, on OB the solution becomes

w(z,h) = A(z,0) +1A(0,x). (4.292)

Suppose that there is a point a on the negative z-axis where g(z) = 1. It
follows from Eqgs. (4.286) and (4.292) that we can write the asymptotic solution
to Eq. (4.283) as

w(z,h) = g /4 exp(ih/ q1/2d$> (4.293)

0 T
—1i exp (Qih/ ql/2 dx) q_l/4 exp <—ih/ ql/2 da:) ,

in the region x < 0, and

0 x
w(z, h) = exp (ih/ q*/? dm) e im/4 g7/ exp (—h/ Iq|/? dm) (4.294)
a 0

in the region x > 0. Here, we have chosen

0
A= —iexp (ih/ q*/? dx) : (4.295)

If we interpret x as a normalized altitude in the ionosphere, g(x) as the square
of the refractive index in the ionosphere, the point a as ground level, and w as
the electric field strength of a radio wave propagating vertically upwards into the
ionosphere, then Eq. (4.293) tells us that a unit amplitude wave fired vertically
upwards from ground level into the ionosphere is reflected at the level where the
refractive index is zero. The first term in Eq. (4.293) is the incident wave and
the second term is the reflected wave. The reflection coefficient (i.e., the ratio of
the reflected to the incident wave at ground level) is given by

0
R=—iexp <2ih / q'’? d:z;> : (4.296)
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Note that |R| = 1, so the amplitude of the reflected wave equals that of the
incident wave. In other words, there is no absorption of the wave at the level
of reflection. The phase shift of the reflected wave at ground level, with respect
to that of the incident wave, is that associated with the wave propagating from
ground level to the reflection level and back to ground level again, plus a —m/2
phase shift at reflection. According to Eq. (4.294), the wave attenuates fairly
rapidly (in the space of a few wavelengths) above the reflection level. Of course,
Eq. (4.296) is completely equivalent to Eq. (4.186).

Note that the reflection of the incident wave at the point where the refractive
index is zero is directly associated with the Stokes phenomenon. Without the
jump in the coefficient of the subdominant solution, as we go from domain 3 to
domain 4, there is no reflected wave on the OB axis. Note, also, that the W.K.B.
solutions (4.293) and (4.294) break down in the immediate vicinity of ¢ = 0 (i.e.,
the reflection point). Thus, it is possible to demonstrate that the incident wave
is totally reflected at the point ¢ = 0, with a —m/2 phase shift, without having
to solve for the wave structure in the immediate vicinity of the reflection point.
This demonstrates that the reflection of the incident wave at ¢ = 0 is an intrinsic
property of the W.K.B. solutions, and does not depend on the detailed behaviour
of the wave in the region where the W.K.B. solutions break down.

4.26 The Jeffries connection formula

In the preceding section there is a tacit assumption that the square of the refrac-
tive index, q(z) = n?(x), is a real function. As is apparent from Eq. (4.162), this
is only the case in the ionosphere as long as electron collisions are negligible. Let
us generalize our analysis to take electron collisions into account. In fact, the
main effect of electron collisions is to move the zero of ¢(2) a short distance off
the real axis (the distance is relatively short provided that we adopt the physical
ordering ¥ < w). The arrangement of Stokes and anti-Stokes lines around the
new zero point, located at z = Zg, is sketched in Fig. 20. Note that electron
collisions only significantly modify the form of ¢(2) in the immediate vicinity of
the zero point. Thus, sufficiently far away from Z = 2y in the complex Z-plane,
the W.K.B. solutions and the locations of the Stokes and anti-Stokes lines are
exactly the same as in the preceding section.
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Figure 20: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
in the complex z plane. Also shown is the branch cut (wavy line).
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The W.K.B. solutions (4.284) and (4.285) are valid all the way along the
real axis, except for a small region close to the origin where electron collisions
significantly modify the form of ¢(2). Thus, we can still adopt the physically
reasonable decaying solution (4.286) on the positive real axis. Let us trace this
solution in the complex z-plane until we reach the negative real axis. We can
achieve this by moving in a semi-circle in the upper half-plane. Since we never
move out of the region in which the W.K.B. solutions (4.284) and (4.285) are
valid, we conclude, by analogy with the preceding section, that the solution on
the negative real axis is given by Eq. (4.292). Of course, in all of the W.K.B.
solutions the point Z = 0 must be replaced by the new zero point z = Z3. The new
formula for the reflection coefficient, which is just a straightforward generalization

of Eq. (4.296), is
2o
R = —iexp (2ih/ q'/? dé> . (4.297)

This is called the Jeffries connection formula, after H. Jeffries, who discovered it
in 1923. The general expression for the reflection coefficient is incredibly simple.
We just integrate the W.K.B. solution in the complex Z-plane from the phase
reference level Z = a to the zero point, square the result, and multiply by —i.
Note that the path of integration between Z = a and 2 = Z; does not matter,
because of Cauchy’s theorem. Note, also, that since ¢!/2 is, in general, complez
along the path of integration, we no longer have |[R| = 1. In fact, it is easily
demonstrated that |R| < 1. Thus, when electron collisions are included in the
analysis we no longer obtain perfect reflection of radio waves from the ionosphere.
Instead, some (small) fraction of the radio energy is absorbed at each reflection
event. This energy is ultimately transfered to the particles in the ionosphere with
which the electrons collide.
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