3 The effect of dielectric and magnetic media on
electric and magnetic fields

3.1 Polarization

The terrestrial environment is characterized by dielectric media (e.g., air, water)
which are, for the most part, electrically neutral, since they are made up of neutral
atoms and molecules. However, if these atoms and molecules are placed in an
electric field they tend to polarize. Suppose that when a given neutral molecule
is placed in an electric field E the centre of charge of its constituent electrons
(whose total charge is —q) is displaced by a distance —r with respect to the centre
of charge of its constituent atomic nuclei. The dipole moment of the molecule is
defined p = gr. If there are N such molecules per unit volume then the electric
polarization P (i.e., the dipole moment per unit volume) is given by P = Np.
More generally,

P(r) = ZNi<pi>, (3.1)

where (p;) is the average dipole moment of the ith type of molecule in the vicinity
of point 7, and /V; is the average number of such molecules per unit volume at 7.

It is easily demonstrated that any divergence of the polarization field P(r)
gives rise to an effective charge density p; in the medium. In fact,

Pb — —V.-P. (3.2)

This charge density is attributable to bound charges (i.e., charges which arise
from the polarization of neutral atoms), and is usually distinguished from the
charge density p; due to free charges, which represents a net surplus or deficit of
electrons in the medium. Thus, the total charge density p in the medium is

p=ps+ po (3.3)

It must be emphasized that both terms in this equation represent real physical
charge. Nevertheless, it is useful to make the distinction between bound and
free charges, especially when it comes to working out the energy associated with
electric fields in dielectric media.
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Gauss’ law takes the differential form

V.E=P _Prtr (3.4)
€n €0

This expression can be rearranged to give
V-D = py, (35)

where
D=¢E+P (3.6)

is termed the electric displacement, and has the same dimensions as P (dipole
moment per unit volume). The divergence theorem tells us that

}[Sp-dszfvpfdv. (3.7)

In other words, the flux of D out of some closed surface S is equal to the total
free charge enclosed within that surface. Unlike the electric field E (which is the
force acting on unit charge) or the polarization P (the dipole moment per unit
volume), the electric displacement D has no clear physical meaning. The only
reason for introducing it is that it enables us to calculate fields in the presence
of dielectric materials without first having to know the distribution of polarized
charges. However, this is only possible if we have a constitutive relation connecting
E and D. It is conventional to assume that the induced polarization P is directly
proportional to the electric field E, so that

P = oneE, (38)
where . is termed the electric susceptibility of the medium. It follows that
D = ¢ycE, (3.9)

where

e=14 xe (3.10)

is termed the dielectric constant or relative permittivity of the medium. (Likewise,
€o is termed the permittivity of free space.) It follows from Egs. (3.5) and (3.9)
that

V.E=" (3.11)

€p€
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Thus, the electric fields produced by free charges in a dielectric medium are anal-
ogous to those produced by the same charges in a vacuum, except that they are
reduced by a factor €. This reduction can be understood in terms of a polarization
of the atoms or molecules of the dielectric medium that produces electric fields
in opposition to that of given charge. One immediate consequence is that the
capacitance of a capacitor is increased by a factor € if the empty space between
the electrodes is filled with a dielectric medium of dielectric constant ¢ (assuming
that fringing fields can be neglected).

It must be understood that Eqgs. (3.8)—(3.11) are just an approzimation which
is generally found to hold under terrestrial conditions (provided that the fields are
not too large) for isotropic media. For anisotropic media (e.g., crystals) Eq. (3.9)

generalizes to
D =¢ye- E, (3.12)

where € is a second rank tensor known as the dielectric tensor. For strong elec-
tric fields D ceases to vary linearly with E. Indeed, for sufficiently strong elec-
tric fields neutral molecules are disrupted and the whole concept of a dielectric
medium becomes meaningless.

3.2 Boundary conditions for E and D

When the space near a set of charges contains dielectric material of non-uniform
dielectric constant then the electric field no longer has the same form as in vac-
uum. Suppose, for example, that the space is occupied by two dielectric media
whose uniform dielectric constants are ¢; and e3. What are the matching condi-
tions on E and D at the boundary between the two media?

Imagine a Gaussian pill-box enclosing part of the boundary surface between
the two media. The thickness of the pill-box is allowed to tend towards zero, so
that the only contribution to the outward flux of D comes from its flat faces.
These faces are parallel to the bounding surface and lie in each of the two media.
Their outward normals are dS; (in medium 1) and dS53, where dS; = —dSs.
Assuming that there is no free charge inside the disk (which is reasonable in the
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limit where the volume of the disk tends towards zero), then Eq. (3.7) yields
D.-dS1+ Dy-dS, =0, (3.13)

where D) is the electric displacement in medium 1 at the boundary with medium
2, etc. The above equation can be rewritten

(D2 — Dl)-’ngl = O, (314)

where mo; is the normal to the boundary surface, directed from medium 1 to
medium 2. If the fields and charges are non time varying then Maxwell’s equa-
tions yield VAE = 0, which give the familiar boundary condition (obtained by
integrating around a small loop which straddles the boundary surface)

(Eg — El) A Ngp = 0. (315)

In other word, the normal component of the electric displacement and the tan-
gential component of the electric field are both continuous across any boundary
between two dielectric materials.

3.3 Boundary value problems with dielectrics - I

Consider a point charge ¢ embedded in a semi-infinite dielectric €; a distance d
away from a plane interface which separates the first medium from another semi-
infinite dielectric e3. The interface is assumed to coincide with the plane z = 0.
We need to find solutions to the equations

aV-E="2 (3.16)
€0
for z > 0,
eaV-E =0 (3.17)
for z < 0, and
VAE =0 (3.18)
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everywhere, subject to the boundary conditions at z = 0 that

1B, (z=0%) = eE,(2=07), (3.19a)
E,(2=0") = E (2=07), (3.19Db)
E,(z=0%) = E,(2=07). (3.19c¢)

In order to solve this problem we will employ a slightly modified form of the
well known method of images. Since V A E = ( everywhere, the electric field can
be written in terms of a scalar potential. So, E = —V¢. Consider the region
z > 0. Let us assume that the scalar potential in this region is the same as that
obtained when the whole of space is filled with the dielectric €; and, in addition to
the real charge g at position A, there is a second charge ¢’ at the image position
A’ (see diagram). If this is the case then the potential at some point P in the
region z > ( is given by

1 qg  q
- 444 2
4meper (Rl + Rz) ’ (3.20)

where Ry = /p? + (d — 2)? and Ry = \/p? + (d + 2)?, when written in terms of
cylindrical polar coordinates (p, ¢, z). Note that the potential (3.20) clearly is a
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solution of Eq. (3.16) in the region z > 0. It gives V-E = 0, with the appropriate
singularity at the position of the point charge q.

Consider the region z < 0. Let us assume that the scalar potential in this
region is the same as that obtained when the whole of space is filled with the
dielectric €5 and a charge ¢” is located at the point A. If this is the case then the
potential in this region is given by

1 ql/

¢(Z < 0) = 47T€062 R—l

(3.21)
The above potential is clearly a solution of Eq. (3.17) in the region z < 0. It gives
V-E = 0, with no singularities.

It now remains to choose ¢’ and ¢” in such a manner that the boundary
conditions (3.19) are satisfied. The boundary conditions (3.19b) and (3.19c) are
obviously satisfied if the scalar potential is continuous at the interface between
the two dielectric media:

p(z=07)=¢(z=07). (3.22)

The boundary condition (3.19a) implies a jump in the normal derivative of the
scalar potential across the interface:

€ —————— =€y ———. (3.23)

te _ & (3.24)
€1 €9
whereas the second yields
q J— q, o q”_ (3.25)

Here, use has been made of

01 01 d
— - = —— —_— pr— . .2
9z (Rl)zzo oz (Rz)zzo (0% + B2 (3:26)
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Equations (3.24) and (3.25) imply that

J = _(&”_q>q, (3.27a)

€9 + €1
262
A ) 3.27b
q (62+€1)q (3.27b)
The polarization charge density is given by p, = —V - P, However, inside

either dielectric P = ¢gxF, so V-P = ¢yx. V-E = 0, except at the point charge
g. Thus, there is zero polarization charge density in either dielectric medium. At
the interface x. takes a discontinuous jump,

AXe = €1 — €9. (328)

This implies that there is a polarization charge sheet on the interface between
the two dielectric media. In fact,

Opol = —(P2 — P1)-noaa, (3.29)

where mo; is a unit normal to the interface pointing from medium 1 to medium
2 (i.e., along the positive z-axis). Since

Pi = 60(6i — 1)E = —GO(GZ' — 1)V¢ (330)
in either medium, it is easy to demonstrate that

_i €2 — €1 d
27 €1(e2 + €1) (p2 + d2)3/2°

(3.31)

Opol =

In the limit €2 > €, the dielectric e2 behaves like a conducting medium (i.e.,
E — 0 in the region z < 0), and the polarization surface charge density on the
interface approaches that obtained in the case when the plane z = 0 coincides
with a conducting surface.

The above method can clearly be generalized to deal with problems involving
many point charges in the presence of many different dielectric media whose
interfaces form parallel planes.
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E, E, E,
—_— || ——

3.4 Boundary value problems with dielectrics - 11

Consider a plane slab of dielectric € lying between z = 0 and z = b. Suppose that
this slab is placed in a uniform z-directed electric field of strength Ey. What is
the field strength F; inside the slab?

Since there are no free charges and this is a one-dimensional problem, it is
clear from Eq. (3.5) that the electric displacement D is the same in both the
dielectric slab and the vacuum region which surrounds it. In the vacuum region
D = ey Ey, whereas D = €pe E in the dielectric. It follows that

B =20 (3.32)
€
In other words, the electric field inside the slab is reduced by polarization charges.
As before, there is zero polarization charge density inside the dielectric. However,
there is a uniform polarization charge sheet on both surfaces of the slab. It is
easily demonstrated that

e—1

Opol(z = b) = —0poi(2 = 0) = €y Ep (3.33)

In the limit € > 1, the slab acts like a conductor and E; — 0.
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Let us now generalize this result. Consider a dielectric medium whose dielec-
tric constant € varies with z. The medium is assumed to be of finite extent and
is surrounded by a vacuum, so that €(z) — 1 as |z| — oco. Suppose that this
dielectric is placed in a uniform z-directed electric field Fy. What is the field
E(z) inside the dielectric?

We know that the electric displacement inside the dielectric is given by D(z) =
co€(2z) E(z). We also know from Eq. (3.5) that, since there are no free charges
and this is a one-dimensional problem,

dD(z) _  dle(2)E(2)]

T — ey ——2 2 — (). .34
7 €0 o 0 (3.34)
Furthermore, E(z) — Ej as |z| — co. It follows that
E
E(z) = =2 (3.35)

€(z)’
Thus, the electric field is inversely proportional to the dielectric constant inside
the dielectric medium. The polarization charge density inside the dielectric is
given by

e (3.36)

= €9 Ep—

dz dz

o — g 1) d[ 1 ]

3.5 Boundary value problems with dielectrics - III

Suppose that a dielectric sphere of radius a and dielectric constant € is placed in
a z-directed electric field of strength Ey (in the absence of the sphere). What is
the electric field inside and around the sphere?

Since this is a static problem we can write E = —V¢. There are no free
charges, so Egs. (3.5) and (3.9) imply that
V24 =0 (3.37)
everywhere. The boundary conditions (3.14) and (3.15) reduce to
09 0¢
— = — 3.38
c or r—a- or ,,,:a+’ ( a)
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¢ ¢

=0 . 20 . (3.38b)
Furthermore,

é(r,0,p) = —Fyr cosb (3.39)

as r — 0. Here, (7,0, ¢) are spherical polar coordinates centred on the sphere.

Let us search for an axisymmetric solution, ¢ = ¢(r,6). Since the solutions
to Poisson’s equation are unique, we know that if we can find such a solution
which satisfies all of the boundary conditions then we can be sure that this is the
correct solution. Equation (3.37) reduces to

10%(r¢) 1 0 0¢
b — [ sinf == ) = 0. A4
r Or? i r2 sin 6 06 (s1n0 80) 0 (3:40)
Straightforward separation of the variables yields
$(r,0) = > (Ayrt + Byr~ D) P(cosb), (3.41)

=0

where [ is a non-negative integer, the A; and B; are arbitrary constants, and P;(x)
is a solution to Legendre’s equation,

a
dzx

[(1 — z?) @] +I(l+1)P =0, (3.42)
dx

which is single-valued, finite, and continuous in the interval —1 < x < +1. It

can be demonstrated that Eq. (3.42) only possesses such solutions when [ takes

an integer value. The P;(z) are known as Legendre polynomials (since they are

polynomials of order [ in z), and are specified by Rodrigues’ formula

Pi(z) = = —(z* = 1)%. (3.43)

Since Eq. (3.42) is a Sturm-Liouville type equation, and the Legendre polynomi-
als satisfy Sturm-Liouville type boundary conditions at z = +1, it immediately
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follows that the Pj(cosf) are orthogonal functions which form a complete set in
f-space. The orthogonality relation can be written

1
2
/ = ,. 44
/_1 Py (z)P(z) dz ST o (3.44)

The Legendre polynomials form a complete set of angular functions, and it
is easily demonstrated that the r* and the r—(+1 form a complete set of radial
functions. It follows that Eq. (3.41), with the A; and B; unspecified, represents a
completely general axisymmetric solution of Eq. (3.37) which is well behaved in
f-space. We now need to find values of the A; and B; which are consistent with
the boundary conditions.

Let us divide space into the regions r < a and r > a. In the former region

¢(r,0) = > A;r! P(cosb), (3.45)
1=0

where we have rejected the r~(+1) radial solutions because they diverge unphys-
ically as r — 0. In the latter region

$(r,0) = > (Byrt + Crr= ) P(cos ). (3.46)

1=0

However, it is clear from the boundary condition (3.39), and Eq. (3.43), that the
only non-vanishing B; is B; = —FEj. This follows since P;(cosf) = cosf. The
boundary condition (3.38b) (which integrates to give ¢(r =a~) = ¢(r = a™) for
a potential which is well behaved in #-space) gives

C
Al =—FEo+ a—?} (3.47)
and o
l
A=~y (3.48)

for | # 1. Note that it is appropriate to match the coefficients of the P;(cos#)
since these functions are orthogonal. The boundary condition (3.38a) yields

C
€A1 = _EO —2 a—3, (349)
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and o
l
poTES) (3.50)

for I # 1. Equations (3.48) and (3.50) give A; = C; = 0 for [ # 1. Equations (3.47)

and (3.49) reduce to
3
Al = — ( ) Eo, (351&)

el Ay :—(l—l—l)

2+¢€
¢ = (92 &2 (3.51b)
1 = e+ 9 a 0- .
The solution is therefore
¢:_(2j—6> Eyrcosf (3.52)
for r < a, and
e—1 a3
¢ =—FEgrcosf + = EOT—ZCOSH (3.53)

for r > a.

Equation (3.52) is the potential of a uniform z-directed electric field of strength

3

 24€
Note that F; < FEy provided that € > 1. Thus, the electric field strength is re-
duced inside the dielectric sphere due to partial shielding by polarization charges.
Outside the sphere the potential is equivalent to that of the applied field Ey plus

the field of a point electric dipole, located at the origin and pointing in the z-
direction, whose dipole moment is

Ey

Eq. (3.54)

e—1
p = 4meg (6 n 2) a®Ey. (3.55)

This dipole moment can be interpreted as the volume integral of the polarization
P over the sphere. The polarization is

. e—1 X
P:EO(E—l)Elz:360 (€+2> E()Z. (356)

95



Since the polarization is uniform there is zero polarization charge density inside
the sphere. However, there is a polarization charge sheet on the surface of the
sphere whose density is given by op01 = P-7 (see Eq. (3.29) ). It follows that

—1
Opol = 3€0 (E n 2) Ey cos . (3.57)

The problem of a dielectric cavity of radius a in a dielectric medium with
dielectric constant ¢ and with an applied electric field Ey parallel to the z-axis
can be treated in much the same manner as that of a dielectric sphere. In fact, it
is easily demonstrated that the results for the cavity can be obtained from those
for the sphere by making the transformation ¢ — 1/e. Thus, the field inside the
cavity is uniform, parallel to the z-axis, and of magnitude

_ e
2% +1

FEq Ey. (3.58)
Note that F7 > Ey provided that € > 1. The field outside the cavity is the
original field plus that of a z-directed dipole, located at the origin, whose dipole
moment is

e—1
— 4 3E,. 3.59
D TEQ (26+1>a 0 ( )

Here, the negative sign implies that the dipole points in the opposite direction to
the external field.

3.6 The energy density within a dielectric medium

Consider a system of free charges embedded in a dielectric medium. The increase
in the total energy when a small amount of free charge dps is added to the system
is given by

6U = / ¢ ops d°r, (3.60)
where the integral is taken over all space and ¢(r) is the electrostatic potential.

Here, it is assumed that the original charges and the dielectric are held fixed, so
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that no mechanical work is performed. It follows from Eq. (3.5) that
6U = /¢V-5D d*r, (3.61)

where 0D is the change in the electric displacement associated with the charge
increment. Now the above equation can also be written

oU = /v-(¢5D) d3r —/V¢-5Dd3r, (3.62)
giving
oU = /¢5D-d5—/V¢-5Dd3r, (3.63)

where use has been made of Gauss’s theorem. If the dielectric medium is of finite
spatial extent then we can neglect the surface term to give

6U = —/V¢-5Dd3r = /E-5D dr. (3.64)

This energy increment cannot be integrated unless E is a known function of D.
Let us adopt the conventional approach and assume that D = e¢ye E, where the
dielectric constant € is independent of the electric field. The change in energy
associated with taking the displacement field from zero to D(r) at all points in

space is given by
D D
U= / §U = / /E-5D dr, (3.65)
0 0

E 2
5(E i
U= / / %d% =3 / coe B2 &, (3.66)
0

or

which reduces to

1
U=3 /E-D d>r. (3.67)
Thus, the electrostatic energy density inside a dielectric is given by
E-D
W = — (3.68)

This is a standard result which is often quoted in textbooks. Nevertheless, it is
important to realize that the above formula is only valid in dielectric media in
which the electric displacement D varies linearly with the electric field E.
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3.7 The force density within a dielectric medium

Equation (3.67) was derived by considering a virtual process in which true charges
are added to a system of charges and dielectrics which are held fixed, so that no
mechanical work is done against physical displacements. Let us now consider
a different virtual process in which the physical coordinates of the charges and
dielectric are given a virtual displacement dr at each point in space, but no free
charges are added to the system. Since we are dealing with a conservative system,
the energy expression (3.67) can still be employed, despite the fact that it was
derived in terms of another virtual process. The variation in the total electrostatic
energy 0U when the system undergoes a virtual displacement 7 is related to the
electrostatic force density f acting within the dielectric medium via

6U = —/f-5r dr. (3.69)

If the medium is moving with a velocity field u then the rate at which electrostatic
energy is drained from the E and D fields is given by

dU
— = —/f-ud3’r. (3.70)

Let us now consider the energy increment due to both a change dps in the
free charge distribution and a change de in the dielectric constant, caused by the
displacements. From Eq. (3.67)

1
0V = 5— [D*§(1/€) + 2D-6D /€] d°r, (3.71)
€0
or

6U = —%0 E*Sed’r + /E-cSD d*r. (3.72)

Here, the first term represents the energy increment due to the change in dielec-
tric constant associated with the virtual displacements, whereas the second term
corresponds to the energy increment caused by displacements of the free charges.
The second term can be written

ESDdr =— | Vo-6Dd’r = | ¢V-6Dd’r = | ¢pép; d’r, 3.73
!
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where surface terms have been neglected. Thus, Eq. (3.72) implies that

AU _ [ (p0s _ €0 g20€) 43
dt_/(qs o 2E8t>dr. (3.74)

In order to arrive at an expression for the force density f we need to express
the time derivatives 0p/0t and Oe/0t in terms of the velocity field w. This can be
achieved by adopting a dielectric equation of state; i.e., a relation which gives the
dependence of the dielectric constant ¢ on the mass density p,,. Let us assume
that €(p,,) is a known function. It follows that

De de Dpn,

Dt dp, Dt’ (3.75)
where N 5

is the total time derivative (i.e., the time derivative in a frame of reference which is
locally co-moving with the dielectric.) The hydrodynamic equation of continuity
of the dielectric is

Opm
IPm V- (pmu) = 0, (3.77)
ot
which implies that
Dpm
It follows that 5 q
€ €
The conservation equation for the free charges is written
91 L 5. (pu) = 0 3.80
ot (psu) = 0. (3.80)

Thus, we can express Eq. (3.74) in the form

— = - V- + —E"—ppnV-u+ | = E” Ve T. .81
. /[ dV-(psu) 5 P u (2 e) u] d (3.81)
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Integrating the first term by parts and neglecting any surface contributions, we
obtain

_/¢V-(pr) d'r = /Pf Vé-ud'r. (3.82)
Likewise,
€0 g2 de V-uddr = _/e_ov E2£ ud3r (3.83)
5 dpm Pm ) dpm Pm . .

Thus, Eq. (3.81) becomes

Z = |-pE+ 2F2ve -0 = : . 84
i /[ prE+ 5 E"Ve— V(E o, P wd’r (3.84)

Comparing with Eq. (3.70), we see that the force density inside the dielectric is
given by

— E - E - E - . .
f Pf 9 Ve + 9 V ( pm) (3 85)

The first term in the above equation is the standard electrostatic force density.
The second term represents a force which appears whenever an inhomogeneous
dielectric is placed in an electric field. The last term, known as the electrostriction
term, gives a force acting on a dielectric in an inhomogeneous electric field. Note
that the magnitude of the electrostriction force depends explicitly on the dielectric
equation of state of the material, through de/dp,,. The electrostriction term gives
zero net force acting on any finite region of dielectric if we can integrate over a
large enough portion of the dielectric that its extremities lie in a field free region.
For this reason the term is frequently omitted, since in the calculation of the total
forces acting on dielectric bodies it usually does not contribute. Note, however,
that if the electrostriction term is omitted an incorrect pressure variation within
the dielectric is obtained, even though the total force is given correctly.

3.8 The Clausius-Mossotti relation

Let us now investigate what a dielectric equation of state actually looks like.
Suppose that a dielectric medium is made up of identical molecules which develop
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a dipole moment
p=oaeFE (3.86)

when placed in an electric field E. The constant « is called the molecular polar-
1zability. If N is the number density of such molecules then the polarization of
the medium is
P =Np= NaeE, (3.87)

or
Napma

€
where p,,, is the mass density, N4 is Avogadro’s number, and M is the molecular
weight. But, how does the electric field experienced by an individual molecule
relate to the average electric field in the medium? This is not a trivial question
since we expect the electric field to vary strongly (on atomic length-scales) inside
the dielectric.

P= oE, (3.88)

Suppose that the dielectric is polarized with a mean electric field Eqy which is
uniform (on macroscopic length-scales) and directed along the z-axis. Consider
one of the molecules which constitute the dielectric. Let us draw a sphere of ra-
dius a about this particular molecule. This is intended to represent the boundary
between the microscopic and the macroscopic range of phenomena affecting the
molecule. We shall treat the dielectric outside the sphere as a continuous medium
and the dielectric inside the sphere as a collection of polarized molecules. Ac-
cording to Eq. (3.29) there is a polarization surface charge of magnitude

Opol = —P cosf (3.89)

on the inside of the sphere, where (7,0, ¢) are spherical polar coordinates, and
P = Pz = ¢y(e — 1)Ey 2 is the uniform polarization of the dielectric. The
magnitude of E, at the molecule due to the surface charge is

1 o
E, = / o1 €080 ;g (3.90)

4mreg a?

where dS = 2ma? sin 6 df is a surface element of the sphere. It follows that

P [T P
E,=— cos?f sinfdf = —. (3.91)
260 0 360
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It is easily demonstrated that Fg = E, = 0 at the molecule. Thus, the field at
the molecule due to the surface charges on the sphere is

P
E=_—. 3.92
3eC (3.92)

The field due to the individual molecules within the sphere is obtained by
summing over the dipole fields of these molecules. The electric field at a distance

r from a dipole p is
1 [p 3(rr
E=— = — . .

41eg [7"3 rd (3-93)

It is assumed that the dipole moment of each molecule within the sphere is the
same, and also that the molecules are evenly distributed throughout the sphere.
This being the case, the value of E, at the molecule due to all of the other
molecules within in the sphere,

E, = (3.94)

r3 rd

_ 1 Z &_3(pwxz+pyyz+pzz2)
4reg ’

mols

is zero, since

ZxZZZyQZZZQZ%ZTQ (3.95)

mols mols mols mols
and
Za:y:Zyz:sz:O. (3.96)
mols mols mols

It is easily seen that Fg = E, = 0. Hence, the electric field at the molecule due
to the other molecules within the sphere vanishes.

It is clear that the net electric field seen by an individual molecule is

P
E=F —. 3.97
0+ 3¢ ( )

This is larger than the average electric field Ey in the dielectric. The above
analysis indicates that this effect is ascribable to the long range (rather than the
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short range) interactions of the molecule with the other molecules in the medium.
Making use of Eq. (3.88) and the definition P = ¢y(e — 1) Ey, we obtain

e—1  Nypna
e+2  3M

(3.98)

This is called the Clausius-Mossottirelation. This formula is found to work pretty
well for a wide class of dielectric liquids and gases. The Clausius-Mossotti relation
yields
d -1 2
¢ _(e=Dle+2) (3.99)
dpm 3Pm

3.9 Dielectric liquids in electrostatic fields

Consider the behaviour of an uncharged dielectric liquid placed in an electrostatic
field. If p is the pressure in the liquid when in equilibrium with the electrostatic
force density f, then force balance requires that

Vp=Ff. (3.100)
It follows from Eq. (3.85) that
v D p2yeq Oy g2 €oPm (2 _d€ (3.101)
= — — € —_— m — — . .
P=77 2 dpm ¥ ) dpm

We can integrate this equation to give

D2
[2-3(r]-lrg]). e
p1 Pm 2 dpm 2 d,Om 1

where 1 and 2 refer to two general points in the liquid. Here, it is assumed that
the liquid possesses an equation of state, so that p = p(py,). If the liquid is
essentially incompressible (p,, ~ constant) then

2
€0Pm o de
—p; = Ec——| . 3.103
Pamh 2 [ dprn]l ( )
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Finally, if the liquid obeys the Clausius-Mossotti relation then

B2 (e—1)(e+2)7°
2 3 -

P2 —p1= (3.104)

According to Eqgs. (3.54) and (3.104), if a sphere of dielectric liquid is placed
in a uniform electric field E( then the pressure inside the liquid takes the constant
value

3 g€e—1
P = 5 COEO et 9 .
It is clear that the electrostatic forces acting on the dielectric are all concentrated
at the edge of the sphere and are directed radially inwards; i.e., the dielectric is
compressed by the external electric field. This is a somewhat surprising result
since the electrostatic forces acting on a rigid conducting sphere are concentrated
at the edge of the sphere but are directed radially outwards. We might expect
these two cases to give the same result in the limit ¢ —+ oo. The reason that
this does not occur is because a dielectric liquid is slightly compressible and is,
therefore, subject to an electrostriction force. There is no electrostriction force
for the case of a completely rigid body. In fact, the force density inside a rigid
dielectric (for which V-u = 0) is given by Eq. (3.85) with the third term (the
electrostriction term) missing. It is easily seen that the force exerted by an electric
field on a rigid dielectric is directed outwards and approaches that exerted on a
rigid conductor in the limit ¢ — 0.

(3.105)

As is well known, when a pair of charged (parallel plane) capacitor plates are
dipped into a dielectric liquid the liquid is drawn up between the plates to some
extent. Let us examine this effect. We can, without loss of generality, assume
that the transition from dielectric to vacuum takes place in a continuous manner.
Consider the electrostatic pressure difference between a point A lying just above
the surface of the liquid in between the plates and a point B lying just above the
surface of the liquid well away from the capacitor where £ = 0. The pressure
difference is given by

B
PA —PB = —/ f-dl. (3.106)
A
Note, however, that the Clausius-Mossotti relation yields de/dp,, = 0 at both A
and B, since € = 1 in a vacuum (see Eq. (3.99) ). Thus, it is clear from Eq. (3.85)
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that the electrostriction term makes no contribution to the line integral (3.106).
It follows that 5

pa—pp=2[ E2Ve.dl. (3.107)

2 Ja

The only contribution to this integral comes from the vacuum/dielectric interface
in the vicinity of point A (since € is constant inside the liquid, and F = 0 in the
vicinity of point B). Suppose that the electric field at point A has normal and
tangential (to the surface) components E,, and FE, respectively. Making use of
the boundary conditions that E; and eF,, are constant across a vacuum/dielectric
interface, we obtain

‘d
PA —PB = %0 [Et2(6 - 1)+ 62En2(6)/ 6—;] ) (3.108)
1
giving
€o(e—1 E?
PA—PB = o 5 ) [Et2 + ?”] : (3.109)

This electrostatic pressure difference can be equated to the hydrostatic pressure
difference p,,, g h to determine the height h that the liquid rises between the plates.
At first sight, the above analysis appears to suggest that the dielectric liquid
is drawn upward by a surface force acting on the vacuum/dielectric interface
in the region between the plates. In fact, this is far from being the case. A
brief examination of Eq. (3.104) shows that this surface force is actually directed
downwards. According to Eq. (3.85), the force which causes the liquid to rise
between the plates is a volume force which develops in the region of non-uniform
electric field at the base of the capacitor, where the field splays out between
the plates. Thus, although we can determine the height to which the fluid rises
between the plates without reference to the electrostriction force, it is, somewhat
paradoxically, this force which is actually responsible for supporting the liquid
against gravity.

Let us consider another paradox concerning the electrostatic forces exerted in
a dielectric medium. Suppose that we have two charges embedded in a uniform
dielectric €. The electric field generated by each charge is the same as that in
vacuum, except that it is reduced by a factor €. Therefore, we expect that the
force exerted by one charge on another is the same as that in vacuum, except
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that it is also reduced by a factor €. Let us examine how this reduction in
force comes about. Consider a simple example. Suppose that we take a parallel
plate capacitor and insert a block of solid dielectric between the plates. Suppose,
further, that there is a small vacuum gap between the faces of the block and each
of the capacitor plates. Let o be the surface charge densities on each of the
capacitor plates, and let =0, be the polarization charge densities which develop on
the outer faces of the intervening dielectric block. The two layers of polarization
charge produce equal and opposite electric fields on each plate, and their effects
therefore cancel each other. Thus, from the point of view of electrical interaction
alone there would appear to be no change in the force exerted by one capacitor
plate on the other when a dielectric slab is placed between them (assuming that
o remains constant during this process). That is, the force per unit area (which
is attractive) remains

02

However, in experiments in which a capacitor is submerged in a dielectric liquid
the force per unit area exerted by one plate on another is observed to decrease to

fs (3.110)

0.2

fs (3.111)

2€0€

This apparent paradox can be explained by taking into account the difference
in liquid pressure in the field filled space between the plates and the field free
region outside the capacitor. This pressure difference is balanced by internal
elastic forces in the case of the solid dielectric discussed earlier, but is transmitted
to the plates in the case of the liquid. We can compute the pressure difference
between a point A on the inside surface of one of the capacitor plates and a point
B on the outside surface of the same plate using Eq. (3.107). If we neglect end
effects then the electric field is normal to the plates in the region between the
plates and is zero everywhere else. Thus, the only contribution to the line integral
(3.107) comes from the plate/dielectric interface in the vicinity of point A. Using
Eq. (3.109), we find that

1 : 1
pA_pB:%)<1——)E2:;—(1——), (3.112)



where F is the normal field strength between the plates in the absence of dielectric.
The sum of this pressure force and the purely electrical force (3.110) yields a net

attractive force per unit area

0.2

=7 11
fo=ges (3.113)

acting between the plates. Thus, any decrease in the forces exerted by charges
on one another when they are immersed or embedded in some dielectric medium
can only be understood in terms of mechanical forces transmitted between these
charges by the medium itself.

3.10 Magnetization

All matter is built up out of atoms, and each atom consists of electrons in mo-
tion. The currents associated with this motion are termed atomic currents. Each
atomic current is a tiny closed circuit of atomic dimensions, and may therefore
be appropriately described as a magnetic dipole. If the atomic currents of a given
atom all flow in the same plane then the atomic dipole moment is directed normal
to the plane (in the sense given by the right-hand rule) and its magnitude is the
product of the total circulating current and the area of the current loop. More
generally, if j(7) is the atomic current density at the point r then the magnetic
moment of the atom is

1
m =g /'r A jdir, (3.114)

where the integral is over the volume of the atom. If there are N such atoms or
molecules per unit volume then the magnetization M (i.e., the magnetic dipole
moment per unit volume) is given by M = Nm. More generally,

M(r) = ZNi<mi>, (3.115)

where (m;) is the average magnetic dipole moment of the ith type of molecule in
the vicinity of point r, and NV; is the average number of such molecules per unit
volume at 7.

Consider a general medium which is made up of molecules which are polar-
izable and possess a net magnetic moment. It is easily demonstrated that any
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circulation in the magnetization field M (r) gives rise to an effective current den-
sity 7., in the medium. In fact,

gm =V AM. (3.116)

This current density is called the magnetization current density, and is usually
distinguished from the true current density 3;, which represents the convection
of free charges in the medium. In fact, there is a third type of current called a
polarization current, which is due to the apparent convection of bound charges.
It is easily demonstrated that the polarization current density j, is given by

oP

)y = ——. 3.117
Thus, the total current density 7 in the medium is given by
. oP
J:Jt—l—V/\M-{-W. (3.118)

It must be emphasized that all terms on the right-hand side of this equation
represent real physical currents, although only the first term is due to the motion
of real charges (over more than atomic dimensions).

The Ampere-Maxwell equation takes the form

) OF
VAB = pog+ poco R (3.119)
which can also be written
) oD

where use has been made of the definition D = ¢y + P. The above expression
can be rearranged to give

D
V/\H:jt—i—a—, (3.121)
ot
where B
H=—-M (3.122)
Mo
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is termed the magnetic intensity, and has the same dimensions as M (i.e., mag-
netic dipole moment per unit volume). In a steady-state situation, Stokes’s the-

orem tell us that
]{ H.dl = / 7¢-dS. (3.123)
c S

In other words, the line integral of H around some closed curve is equal to
the flux of true current through any surface attached to that curve. Unlike the
magnetic field B (which specifies the force e v A B acting on a charge e moving
with velocity v) or the magnetization M (the magnetic dipole moment per unit
volume), the magnetic intensity H has no clear physical meaning. The only
reason for introducing it is that it enables us to calculate fields in the presence of
magnetic materials without first having to know the distribution of magnetization
currents. However, this is only possible if we possess a constitutive relation
connecting B and H.

3.11 Magnetic susceptibility and permeability

In a large class of materials there exists an approximately linear relationship
between M and H. If the material is isotropic then

M =y H, (3.124)

where x,, is called the magnetic susceptibility. If x,, is positive the material is
called paramagnetic, and the magnetic field is strengthened by the presence of
the material. If x,, is negative then the material is diamagnetic and the magnetic
field is weakened in the presence of the material. The magnetic susceptibilities
of paramagnetic and diamagnetic materials are generally extremely small. A few
sample values are given in Table 1.1°

A linear relationship between M and H also implies a linear relationship
between B and H. In fact, we can write

10Data obtained from the Handbook of Chemistry and Physics, Chemical Rubber Company
Press, Baca Raton, FL
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Material Xm

Aluminium 2.3 x 10~°
Copper —0.98 x 107°
Diamond —2.2x107°
Tungsten 6.8 x 107°

Hydrogen (1 atm) | —0.21 x 1078
Oxygen (1 atm) 209.0 x 1078
Nitrogen (1 atm) | —0.50 x 1078

Table 1: Magnetic susceptibilities of some paramagnetic and diamagnetic mate-
rials at room temperature

where
p=po(l+ xm) (3.126)

is termed the magnetic permeability of the material in question. (Likewise, pug
is termed the permeability of free space.) It is clear from Table 1 that the per-
meabilities of common diamagnetic and paramagnetic materials do not differ
substantially from that of free space. In fact, to all intents and purposes the
magnetic properties of such materials can be safely neglected (i.e., u = po).

3.12 Ferromagnetism

There is, however, a third class of magnetic materials called ferromagnetic ma-
terials. Such materials are characterized by a possible permanent magnetization,
and generally have a profound effect on magnetic fields (i.e., u/ug > 1). Unfor-
tunately, ferromagnetic materials do not exhibit a linear dependence between M
and H or B and H, so that we cannot employ Eqgs. (3.124) and (3.125) with
constant values of x,, and u. It is still expedient to use Eq. (3.125) as the defi-
nition of u, with u = u(H), however this practice can lead to difficulties under
certain circumstances. The permeability of a ferromagnetic material, as defined
by Eq. (3.125), can vary through the entire range of possible values from zero
to infinity, and may be either positive or negative. The most sensible approach
is to consider each problem involving ferromagnetic materials separately, try to
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Figure 2: Magnetization curve and relative permeability of commercial iron (an-
nealed)

determine which region of the B-H diagram is important for the particular case
in hand, and then make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic material. If
the magnetic intensity, which is initially zero, is increased monotonically, then
the B-H relationship traces out a curve such as that shown in Fig. 2. This is
called a magnetization curve. It is evident that the permeabilities y derived from
the curve (according to the rule y = B/H) are always positive, and show a wide
range of values. The maximum permeability occurs at the “knee” of the curve.
In some materials this maximum permeability is as large as 10° y9. The reason
for the knee in the curve is that the magnetization M reaches a maximum value

in the material, so that
B = uo(H + M) (3.127)
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Figure 3: Typical hysteresis loop of a ferromagnetic material

continues to increase at large H only because of the pugH term. The maximum
value of M is called the saturation magnetization of the material.

Next, consider a ferromagnetic sample magnetized by the above procedure.
If the magnetic intensity H is decreased, the B-H relation does not follow back
down the curve of Fig. 2, but instead moves along a new curve, shown in Fig. 3,
to the point R. The magnetization, once established, does not disappear with
the removal of H. In fact, it takes a reversed magnetic intensity to reduce the
magnetization to zero. If H continues to build up in the reversed direction, then
M (and hence B) becomes increasingly negative. Finally, when H increases
again the operating point follows the lower curve of Fig. 3. Thus, the B-H curve
for increasing H is quite different to that for decreasing H. This phenomenon is
known as hysteresis.

The curve of Fig. 3 is called the hysteresis loop of the material in question. The
value of B at the point R is called the retentivity or remanence. The magnitude
of H at the point C is called the coercivity. It is evident that u is negative in the
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second and fourth quadrants of the diagram and positive in the first and third
quadrants. The shape of the hysteresis loop depends not only on the nature of the
ferromagnetic material but also on the maximum value of H to which the material
is subjected. However, once this maximum value, H,.x, becomes sufficient to
produce saturation in the material the hysteresis loop does not change shape with
any further increase in H .

Ferromagnetic materials are used either to channel magnetic flux (e.g., around
transformer circuits) or as sources of magnetic field (permanent magnets). For
use as a permanent magnet, the material is first magnetized by placing it in a
strong magnetic field. However, once the magnet is removed from the external
field it is subject to a demagnetizing H. Thus, it is vitally important that a
permanent magnet should possess both a large remanence and a large coercivity.
As will become clear later on, it is generally a good idea for the ferromagnetic
materials used to channel magnetic flux around transformer circuits to possess
small remanences and small coercivities.

3.13 Boundary conditions for B and H

What are the matching conditions for B and H at the boundary between two
media? The governing equations for a steady state situation are

V-B =0, (3.128)

and
VANH = y. (3.129)

Integrating Eq. (3.128) over a Gaussian pill-box enclosing part of the boundary
surface between the two media gives

(32 — Bl)-’n21 = 0, (3130)

where n,; is the unit normal to this surface directed from medium 1 to medium
2. Integrating Eq. (3.129) around a small loop which straddles the boundary

surface yields
(Hg — Hl) A ngp = 0, (3131)
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assuming that there is no true current sheet flowing in this surface. In general,
there is a magnetization current sheet flowing in the boundary surface whose
density is given by

Jm = N9 N\ (M2 — Ml), (3132)

where M is the magnetization in medium 1 at the boundary, etc. It is clear that
the normal component of the magnetic field and the tangential component of the
magnetic intensity are both continuous across any boundary between magnetic
materials.

3.14 Permanent ferromagnets

Let us consider the magnetic field generated by a distribution of permanent ferro-
magnets. Let us suppose that the magnets in question are sufficiently “hard” that
their magnetization is essentially independent of the applied field for moderate
field strengths. Such magnets can be treated as if they contain a fixed, specified
magnetization M (r).

Let us assume that there are no true currents in the problem, so that 3; = 0.
Let us also assume that we are dealing with a steady state situation. Under these
circumstances Eq. (3.121) reduces to

VAH =0. (3.133)

It follows that we can write
H = -V, (3.134)

where ¢,, is called the magnetic scalar potential. Now, we know that
V-B = puyV-(H+ M) =0. (3.135)
Equations (3.134) and (3.135) combine to give
V2hm = —Pm, (3.136)

where

pm = —V-M. (3.137)



Thus, the magnetostatic field H is determined by Poisson’s equation. We can
think of p,, as an effective magnetic charge density. Of course, this magnetic
charge has no physical reality. We have only introduced it in order to make
the problem of the steady magnetic field generated by a set of permanent mag-
nets look formally the same as that of the steady electric field generated by a
distribution of charges.

The unique solution of Poisson’s equation, subject to sensible boundary con-
ditions at infinity, is well known:

(3.138)

b 47r |’r—r’|

This yields

1 VI-M(r") 5,

If the magnetization field M (r) is well behaved and localized we can integrate

by parts to obtain
bo(F) = / M)V [ —— ) &3 (3.140)
" 47 lr — /| ' '

V() =¥ (52e) (3141)

so our expression for the magnetic potential can be written

1 M (r")
=-——V- d’r'. 3.142
Om(r) A / r — 7/ " ( )
Far from the region of non-vanishing magnetization the potential reduces to

1 .
by (1) =~ —V(m> ./M(rf)d3r' ~ 'Z:rrg, (3.143)

where m = [ M d3r is the total magnetic moment of the distribution. This
is the scalar potential of a dipole. Thus, an arbitrary localized distribution of
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magnetization asymptotically produces a dipole magnetic field whose strength is
determined by the net magnetic moment of the distribution.

It is often a good approximation to treat the magnetization field M (r) as a
discontinuous quantity. In other words, M (r) is specified throughout the “hard”
ferromagnets in question, and suddenly falls to zero at the boundaries of these
magnets. Integrating Eq. (3.137) over a Gaussian pill-box which straddles one
of these boundaries leads to the conclusion that there is an effective magnetic

surface charge density,
Om =n-M, (3.144)

on the surface of the ferromagnets, where M is the surface magnetization, and

n is a unit outward directed normal to the surface. Under these circumstances
Eq. (3.139) yields

/ / / /
Om(T) = —— w 3y + 1 M, (3.145)
A |y | — 7| At J¢ |r — 7|
where V represents the volume occupied by the magnets and S is the bounding
surface to V. Here, dS is an outward directed volume element to S. It is clear
that Eq. (3.145) consists of a volume integral involving the volume magnetic
charges p,, = —V-M and a surface integral involving the surface magnetic charges
om = n-M. If the magnetization is uniform throughout the volume V then the
first term in the above expression vanishes and only the surface integral makes a

contribution.

We can also write B = V A A in order to satisfy V-B = 0 automatically. It
follows from Egs. (3.121) and (3.122) that

VAH =V A(B/u— M) =0, (3.146)

which gives
V2A = — g jm, (3.147)

since j,, = V A M. The unique solution to Eq. (3.147), subject to sensible
boundary conditions at infinity, is very well known:

/ - r,| ) iy (3.148)
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Thus,

A(r) = Z—;/ VA M(r) d>r'. (3.149)

[ — 7|

If the magnetization field is discontinuous it is necessary to add a surface
integral to the above expression. It is straightforward to show that

' M(r') A dS'
VA d3 g . (3.150)
r — r’l

Ir—?"l

It is clear that the above expression consists of a volume integral involving the
volume magnetization currents 3,, = V A M and a surface integral involving
the surface magnetization currents J,, = M A n (see Eq. (3.132)). If the mag-
netization field is uniform throughout V then only the surface integral makes a
contribution.

3.15 A uniformly magnetized sphere

Consider a sphere of radius a, with a uniform permanent magnetization M =
My z, surrounded by a vacuum region. The simplest way of solving this problem
is in terms of the scalar magnetic potential introduced in Eq. (3.134). From
Egs. (3.136) and (3.137), it is clear that ¢, satisfies Laplace’s equation,

V¢ =0, (3.151)

since there is zero volume magnetic charge density in a vacuum or a uniformly
magnetized magnetic medium. However, according to Eq. (3.144), there is a
magnetic surface charge density,

Om = 17-M = My cos®b, (3.152)

on the surface of the sphere. One of the matching conditions at the surface of
the sphere is that the tangential component of H must be continuous. It follows
from Eq. (3.134) that the scalar magnetic potential must be continuous at r = q,
so that

Pm(r =ay) = ¢m(r =a-). (3.153)
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Integrating Eq. (3.136) over a Gaussian pill-box straddling the surface of the
sphere yields
Eo

r = —0,, = —Mgycosf. (3.154)

r=a—

In other words, the magnetic charge sheet on the surface of the sphere gives rise
to a discontinuity in the radial gradient of the magnetic scalar potential at r = a.

The most general axisymmetric solution to Eq. (3.151) which satisfies physical
boundary conditions at r = @ and r = ¢ is

P (1, 0) = Z Ay r' Py(cos 6) (3.155)
1=0
for r < a, and
Pm (r,0) = Z B, r~ U+ Py(cos ) (3.156)
1=0

for » > a. The boundary condition (3.153) yields
B; = A; gt (3.157)
for all [. The boundary condition (3.154) gives

[+1)B _
_{U+1) B al+)2 LA dtt = — Moo (3.158)

for all [, since Pj(cos ) = cosf. It follows that

Aj=B =0 (3.159)
for | # 1, and
M,
A = 70 (3.160a)
M. 3
Bi = ga’ . (3.160b)
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Thus,

Moya? r
Gm (1, 6) = 5 o2 cos 0 (3.161)
for r < a, and
Mya® a
Gm(r,0) = 5 2 cos 6 (3.162)

for r > a. Since there is a uniqueness theorem associated with Poisson’s equation,
we can be sure that this axisymmetric potential is the only solution to the problem
which satisfies physical boundary conditions at » = 0 and infinity.

In the vacuum region outside the sphere
B = puoH = —gVo,. (3.163)
It is easily demonstrated from Eq. (3.162) that

_ | m  3(mr)r

where 1
m= 2 ra* M. (3.165)

This, of course, is the magnetic field of a magnetic dipole m. Not surprisingly,
the net dipole moment of the sphere is equal to the integral of the magnetization
M (which is the dipole moment per unit volume) over the volume of the sphere.

Inside the sphere we have H = —V¢,,, and B = po(H + M), giving

M
H=——, (3.166)
3
and 5
B = 3 oM. (3.167)

Thus, both the H and B fields are uniform inside the sphere. Note that the
magnetic intensity is oppositely directed to the magnetization. In other words,
the H field acts to demagnetize the sphere. How successful it is at achieving
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Figure 4: Schematic demagnetization curve for a permanent magnet

this depends on the shape of the hysteresis curve in the negative H and posi-
tive B quadrant. This curve is sometimes called the demagnetization curve of
the magnetic material which makes up the sphere. Figure 4 shows a schematic
demagnetization curve. The curve is characterized by two quantities: the reten-
tivity Bg (i.e., the residual magnetic field strength at zero magnetic intensity)
and the coercivity puoH,. (i.e., the negative magnetic intensity required to demag-
netize the material: this quantity is conventionally multiplied by ug to give it the
units of magnetic field strength). The operating point (i.e., the values of B and
poH inside the sphere) is obtained from the intersection of the demagnetization
curve and the curve B = pH. It is clear from Eqgs. (3.166) and (3.167) that

w=—2pug (3.168)

for a uniformly magnetized sphere in the absence of external fields. The magne-
tization inside the sphere is easily calculated once the operating point has been
determined. In fact, My = B — puoH. It is clear from Fig. 4 that for a magnetic
material to be a good permanent magnet it must possess both a large retentivity
and a large coercivity. A material with a large retentivity but a small coercivity
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is unable to retain a significant magnetization in the absence of a strong external
magnetizing field.

3.16 A soft iron sphere in a uniform magnetic field

The opposite extreme to a “hard” ferromagnetic material, which can maintain a
large remnant magnetization in the absence of external fields, is a “soft” ferro-
magnetic material, for which the remnant magnetization is relatively small. Let
us consider a somewhat idealized situation in which the remnant magnetization
is negligible. In this situation there is no hysteresis, so the B-H relation for the

material reduces to
B = u(B) H, (3.169)

where p(B) is a single valued function. The most commonly occurring “soft”
ferromagnetic material is soft iron (i.e., annealed, low impurity iron).

Consider a sphere of soft iron placed in an initially uniform external field
By = Byz. The upoH and B fields inside the sphere are most easily obtained
by taking the solutions (3.166) and (3.167) (which are still valid in this case),
and superimposing on them the uniform field By. We are justified in doing this
because the equations which govern magnetostatic problems are linear. Thus,
inside the sphere we have

woH = Bo— oM, (3.170a)
B = By+ ;uOM. (3.170b)
Combining Egs. (3.169) and (3.170) yields
oM = 3 (:;2’2’0) By, (3.171)
with
B= (u f’;m) B, (3.172)
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where, in general, uy = p(B). Clearly, for a highly permeable material (i.e.,
p/ o > 1, which is certainly the case for soft iron) the magnetic field strength
inside the sphere is approximately three times that of the externally applied field.
In other words, the magnetic field is amplified inside the sphere.

The amplification of the magnetic field by a factor three in the high perme-
ability limit is specific to a sphere. It can be shown that for elongated objects
(e.g., rods), aligned along the direction of the external field, the amplification
factor can be considerably larger than this.

It is important to realize that the magnetization inside a ferromagnetic mate-
rial cannot increase without limit. The maximum possible value of M is called the
saturation magnetization, and is usually denoted M. Most ferromagnetic mate-
rials saturate when they are placed in external magnetic fields whose strengths
are greater than, or of order, one tesla. Suppose that our soft iron sphere first

attains the saturation magnetization when the unperturbed external magnetic
field strength is Bs. It follows from (3.170b) and (3.171) (with u > uo) that

B = By + 2B, (3.173)

inside the sphere, for By > B;. In this case, the field amplification factor is

B B

Bo 142 By’ (3.174)
Thus, for By > B, the amplification factor approaches unity. We conclude that
if a ferromagnetic material is placed in an external field which greatly exceeds
that required to cause saturation then the material effectively loses its magnetic
properties, so that u ~ pg. Clearly, it is very important to avoid saturating the
soft magnets used to channel magnetic flux around transformer circuits. This sets
an upper limit on the magnetic field strengths which can occur in such circuits.

3.17 Magnetic shielding

There are many situations, particularly in experimental physics, where it is de-
sirable to shield a certain region from magnetic fields. This can be achieved by
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surrounding the region in question by a material of high permeability. It is vitally
important that a material used as a magnetic shield does not develop a permanent
magnetization in the presence of external fields, otherwise the material itself may
become a source of magnetic fields. The most effective commercially available
magnetic shielding material is called Mumetal, and is an alloy of 5% Copper, 2%
Chromium, 77% Nickel, and 16% Iron. The maximum permeability of Mumetal
is about 10° yg. This material also possesses a particularly low retentivity and
coercivity. Unfortunately, Mumetal is extremely expensive. Let us investigate
how much of this material is actually required to shield a given region from an
external magnetic field.

Consider a spherical shell of magnetic shielding, made up of material of per-
meability u, placed in a formerly uniform magnetic field By = By z. Suppose
that the inner radius of the shell is a and the outer radius is b. Since there are
no free currents in the problem, we can write H = —V¢,,,. Furthermore, since
B = yH and V-B = 0, it is clear that the magnetic scalar potential satisfies
Laplace’s equation, V2¢,, = 0, throughout all space. The boundary conditions
are that the potential must be well behaved at » = 0 and » — oo, and also that
the tangential and the normal components of H and B, respectively, must be
continuous at r = a and r = b. The boundary conditions on H merely imply that
the scalar potential ¢,, must be continuous at »r = @ and » = b. The boundary
conditions on B yield

O (r =a—) 0pm(r = a+)
= 1
Ho or . or ’ (3:175a)
O (r = b+) O (r = b—)
= . .175b
Ho or H or (3-175b)
Let us try the following test solution for the magnetic potential:
B
bm = ——2 rcosf + %COSH (3.176)
Ho r
for r > b,
b = (m + rlz) cos 6 (3.177)
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for b > r > a, and
Gm = 67 cosb (3.178)

for r < a. This potential is certainly a solution of Laplace’s equation throughout
space. It yields the uniform magnetic field By as r — 0o, and satisfies physical
boundary conditions at » = 0 and infinity. Since there is a uniqueness theorem
associated with Poisson’s equation, we can be certain that this potential is the
correct solution to the problem provided that the arbitrary constants «, 3, etc.
can be adjusted in such a manner that the boundary conditions at r = a and
r = b are also satisfied.

The continuity of ¢,, at »r = a and r = b requires that

Ba+ a12 = §a, (3.179)

and

B
5b+b7—2:—u—3b+ % (3.180)

The boundary conditions (3.175) yield

Hod = 1 ( - Q—Z) , (3.181)
and B ) )
o (—H—;’ - b—§‘> _— ( - b—;’) . (3.182)
It follows that
_ (2u + po) (1 — o) ] 3 3
00 = | G T s )
(3.183a)
| 3(2u + po)po ]
KB = = o) (it 2p0) — 2(a¥ ) (i — po)p) D (B183D)
_ ] 3(k — po) ko | s
MY = it ) (a F 2p0) — 2(a® 50 (a — )7 | @ Bor (3:183¢)
| utio ]
w00 = | G ) — S G| P (31830
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Consider the limit of a thin, high permeability shell for which b = a + d,
d/a < 1, and pu/pg > 1. In this limit, the field inside the shell is given by
~ 3 Mo a

B~ -—"——-DB,. 184
> 450 (3.184)

Thus, if u ~ 10°ug for Mumetal, then we can reduce the magnetic field strength
inside the shell by almost a factor of 1000 using a shell whose thickness is only
1/100th of its radius. Clearly, a little Mumetal goes a long way! Note, however,
that as the external field strength, By, is increased, the Mumetal shell eventually
saturates, and pu/po gradually falls to unity. Thus, extremely strong magnetic
fields (typically, By 2 1 tesla) are hardly shielded at all by Mumetal, or similar
magnetic materials.

3.18 Magnetic energy

Consider an electrical conductor. Suppose that a battery with an electromotive
field E’ is feeding energy into this conductor. The energy is either dissipated as
heat or is used to generate a magnetic field. Ohm’s law inside the conductor gives

ji=o(E+ E'), (3.185)

where 7; is the true current density, o is the conductivity, and E is the inductive
electric field. Taking the scalar product with j;, we obtain

g’
o

E'-j, = — E-j;. (3.186)
The left-hand side of this equation represents the rate at which the battery does
work on the conductor. The first term on the right-hand side is the rate of Joule
heating inside the conductor. We tentatively identify the remaining term with
the rate at which energy is fed into the magnetic field. If all fields are quasi-
stationary (i.e., slowly varying) then the displacement current can be neglected,
and the Ampere-Maxwell equation reduces to V A H = 3;. Substituting this
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expression into Eq. (3.186) and integrating over all space, we get

H 2
/E’-(V/\H)d?’r:/Md?’r—/E-(VAH)d?’r. (3.187)
o
The last term can be integrated by parts using the relation
V(ENH)=H-(VANE)—E-(VANH). (3.188)
The divergence theorem plus the Faraday-Maxwell equation yield
B
/E-(VAH)d3r= —/H-aa—td?’r—/(E/\H)-dS. (3.189)

Since E A H falls off at least as fast as 1/r® in electrostatic and quasi-stationary
magnetic fields (1/r? comes from electric monopole fields, and 1/73 from magnetic
dipole fields), the surface integral in the above expression can be neglected. Of
course, this is not the case for radiation fields, for which E and H fall off like
1/r. Thus, the constraint of “quasi-stationarity” effectively means that the fields
vary sufficiently slowly that any radiation fields can be neglected.

The total power expended by the battery can now be written

2
/E’-(V/\H) d%z/md?’r—l—/ﬂ-%—?d?’r. (3.190)

g

The first term on the right-hand side has already been identified as the energy
loss rate due to Joule heating. The last term is obviously the rate at which energy
is fed into the magnetic field. The variation U in the magnetic field energy can
therefore be written

§U = /H-5Bd3r. (3.191)

This result is analogous to the result (3.64) for the variation in the energy of an
electrostatic field.

In order to make Eq. (3.191) integrable, we must assume a functional relation-
ship between H and B. For a medium which magnetizes linearly the integration
can be carried out in much the same manner as Eq. (3.67), to give

1
U=3 /H-Bd3r. (3.192)
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Thus, the magnetostatic energy density inside a linear magnetic material is given

by
H-B

Unfortunately, most interesting magnetic materials, such as ferromagnets, exhibit
a nonlinear relationship between H and B. For such materials, Eq. (3.191) can
only be integrated between definite states, and the result, in general, depends on
the past history of the sample. For ferromagnets, the integral of Eq. (3.191) has
a finite, non-zero value when B is integrated around a complete magnetization
cycle. This cyclic energy loss is given by

AU = /}[H-dBd?’r. (3.194)

In other words, the energy expended per unit volume when a magnetic material
is carried through a magnetization cycle is equal to the area of its hysteresis loop
as plotted in a graph of B against H. Thus, it is particularly important to ensure
that the magnetic materials used to form transformer cores possess hysteresis
loops with comparatively small areas, otherwise the transformers are likely to be
extremely inefficient.
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