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LECTURE NOTES 4 
 

A Mini-Review of “Generic” Wave Phenomena: 
 
Waves in 1-Dimension 
 
What is a 1-dimensional (1-D) wave? 
 

• A (classical) 1-D traveling wave is a quasi-coherent collective phenomenon – that of a 
“disturbance” associated with a localized excess of energy (above ambient thermal / 
background energy) in a macroscopic, continuous medium, which propagates  

      (i.e. translates in 1-D space) as time progresses.   
 

In a dissipationless (i.e. lossless), non-dispersive medium, the shape / profile /envelope 
(i.e. crests and troughs) of the wave propagates with constant velocity.   

 

• In a dispersive medium, a traveling wave consisting of a linear combination of several / 
many different frequencies, the various frequency components of the wave will each 
propagate with different speed, thus the overall shape of the wave will change with time 
in a dispersive medium. 

 

• In a dissipative (but non-dispersive) medium the wave amplitude(s) will decrease with 
time (or equivalently propagation distance), Often, real media are not only dissipative, 
but also dispersive, thus dissipation in a medium may also be frequency dependent. 

 

• Classical media can be both dispersive and dissipative – one or both or neither. 
 

• A (classical) 1-D standing wave = a linear superposition of two counter-propagating 
traveling waves (e.g. a standing wave on a stringed instrument.) 

 

• Standing waves do not propagate in space, although they can / do evolve in time  
(due to dispersion, dissipation and other processes). 

 
     Let us consider a 1-dimensional transverse traveling wave, e.g. on a taught / tight string: 
 

For vG  = constant 

 2 1

2 1

ˆ ˆ ˆz zzv vz z z
t t t

⎛ ⎞−Δ
= = = ⎜ ⎟Δ −⎝ ⎠

G  

 
 
 
 
 
 
 
For non-dissipative, non-dispersive media, the transverse shape { = transverse displacement from 
equilibrium shape of string} of a traveling wave ( ),f z t  is invariant under space translations and 
time translations. 
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Mathematically, this means that: 
 

( ) ( )( ) ( )( )
( )

( )
2

2 2 1 1 2 2

,0

, , 0 ,0 ,0
f z vt

f z t f z v t t t f z v t f z vt
= −

= − − = − − = −
����	���


 

( ) ( )( )
( )

( )
1

1 1 1

,0

, 0 ,0 ,0
f z vt

f z t f z v t f z vt
= −

= − − = −
����	���


 

 

In general, ( ),f z t  for a 1-D traveling wave at position z and time t = a special type of function 

g(z – vt). The function ( ),f z t  that mathematically describes the 1-D wave motion / wave 
propagation is not arbitrary / will-nilly – it is a very special / very specific causal relationship of 
the location(s) of the 1-D wave in both space and time: ( ),f z t  is restricted to the causal subset 
of functions g(z – vt) , i.e. classical traveling waves obey causality. 
 
This means that the argument of the causal g-functions,  (z – vt) = constant, independent of space 
(z) and time (t) , i.e. the argument (z - vt) = constant ∀ (for all) allowed (z, t) . 
 
The following are some examples of mathematically acceptable / causal functions describing 
dissipationless, dipersionless classical traveling wave in 1-D  (n.b. here, A and b = constants,  
e.g. independent of frequency): 
 

   ( ) 2( )
1 , b z vtf z t Ae− −=              (Gaussian wave)   

  
 
 

( ) N ( )( )2
or cos

, sinf z t A b z vt= −  (Sine/Cosine Wave)  

 
 

( )
( )3 2,

1
Af z t

b z vt
=

− +
 (“Cusp” Wave)  

 
 

Some examples of mathematically unacceptable / a-causal 1-D “wave” functions: 
 

( ) 2( )
4 , b z vtf z t Ae− +=       (n.b. here again, A and b = constants) 

 
( ) ( ) ( )3

5 , sin cosf z t A bz bvt=  
 
 
 
 

 
 

For 1-D traveling 
wave propagation:  
(z – vt) = constant 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  4        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

 

3

Example: 1-D transverse mechanical traveling waves on a string obey Newton’s 2nd Law: F ma=
G G

 
 
   If a stretched string is transversely displaced from its equilibrium position, as shown in the 
figure below, the transverse displacement of the string from its equilibrium position at a point z 
along the string at a given instant in time t is mathematically described by the function ( ),f z t . 

 
 
Let us investigate / analyze the forces acting on small/infinitesimal segment of the string: 
 
     As can be seen from the figure below, at any given instant in time, t the net transverse force 

( ),yF z tΔ acting on an infinitesimal string segment (of length zΔ ) between z and (z+ zΔ ) on a 

string with tension T (Newtons) is:  ( ) ( ) ( ), , , sin siny y yF z t T z z t T z t T Tθ θ′ ′Δ = + Δ − = −  
 
For small transverse displacements: String tension T = constant 

  sin tanθ θ θ≈ ≈     
    ∴ ( ) ( ), tan tanyF z t T θ θ′Δ ≅ −    n.b. tanθ  = slope 
 

         ( ) ( ) ( ) ( )2

2

, , ,
,y

z z z

f z t f z t f z t
F z t T T z

z z z
+Δ

⎛ ⎞∂ ∂ ∂
Δ = − Δ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

�  

 

Thus: ( ) ( )2

2

,
,y

f z t
F z t T z

z
∂

Δ Δ
∂

�  for small transverse displacements of the string from its 

equilibrium (i.e. zero excess energy) configuration. 
 

     If the mass per unit length of the string is: stringm Lμ =  (kg/m) (where the total string mass  

= mstring and the total length of the string = L) then Newton’s 2nd Law: ( ) ( ), ,y yF z t ma z tΔ =  

where ( ),ya z t  = transverse acceleration (in the ŷ -direction) at the point z at time t is  

   ( ) ( )2

2

,
,y

f z t
a z t

t
∂

=
∂

 

The string segment of infinitesimal length zΔ  has mass m zμ= Δ   ( )stringm L z⎡ ⎤= Δ⎣ ⎦  

∴    ( ) ( ) ( )2

2

,
, ,y y

f z t
F z t ma z t z

t
μ

∂
Δ = Δ

∂
�  

But: ( ) ( )2

2

,
,y

f z t
F z t T z

z
∂

Δ Δ
∂

�  from the transverse force imbalance relation (above) 
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∴ for small displacements: 
( )2

2

,f z t
T z

z
∂

Δ
∂

zμ= Δ
( )2

2

,f z t
t

∂
∂

   or:  
( ) ( )2 2

2 2

, ,f z t f z t
z T t

μ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠
 

 

Note that, from dimensional analysis:   
kgForce, Newtons

mass
unit length

T
μ
= =

2-m s
kg

22

2

m m
s sm

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

     From conservation of energy associated with traveling waves propagating on a taught string, 
it can be shown that v T μ=  = longitudinal speed of propagation of transverse waves on a 
string. For dispersionless media, note that v = constant ≠ fcn(frequency, f). 
 
     Thus we arrive at the 1-D wave equation for transverse traveling waves propagating e.g. on a 
taught/stretched string: 

     
( ) ( )2 2

2 2 2

, ,1f z t f z t
z v t

∂ ∂
=

∂ ∂
     with:    v T μ=  

We can re-arrange the wave equation into its more traditional form: 
( ) ( )2 2

2 2 2

, ,1 0
f z t f z t

z v t
∂ ∂

− =
∂ ∂

   

Thus, we see that the wave equation is a 2nd order linear and homogeneous differential equation. 
 

     Solutions of wave equation are all functions ( ),f z t of the form where the longitudinal 
position z and time t are causally connected to each other by (z – vt) = constant,  
i.e. all of the functions g (z – vt) = constant. 
 

     The requirement / restriction that  f (z, t) = g (z – vt)  explicitly means that: ( )u z vt≡ − = 
argument of the g-functions, i.e. that: 
 

f dg u dg
z du z du
∂ ∂

= =
∂ ∂

      because   
( ) 1
z vtu

z z
∂ −∂

= =
∂ ∂

 

f dg u dgv
t du t du

∂ ∂
= = −

∂ ∂
  because   

( )z vtu v
t t

∂ −∂
= = −

∂ ∂
 

And thus: 

1.) 
2 2 2

2 2 2

f dg d g u d g
z z du du z du

∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂⎝ ⎠
 2.) 

2 2 2
2

2 2 2

f dg d g u d gv v v
t t du du t du

∂ ∂ ∂⎛ ⎞= − − = +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

∴        
1) 2)2 2

2 2

d g d g
du du

=   ⇒   
2 2

2 2 2

1f f
z v t

∂ ∂
=

∂ ∂
 1-D Wave Equation 

 

Thus, g (u) can be any differentiable function satisfying ( )u z vt= −  
 
Note that since the wave equation involves the square of the longitudinal propagation speed v, 
then another acceptable form of a solution is:  f (z, t) = g (z + vt) 
 
Thus there are two “generic” possible acceptable solutions: 
     a.)  f (z, t) = g (z – vt) where (z – vt) = constant, thus if  t  increases  →  z  also increases 
     b.)  f (z, t) = g (z + vt) where (z + vt) = constant, thus if  t  increases  →  z  decreases 
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Physically this means that: 
     a.)  f (z, t) = g (z – vt) represents a 1-D wave propagating in the ẑ+  direction 
     b.)  f (z, t) = g (z + vt) represents a 1-D wave propagating in the ẑ−  direction 
 

The Linear Wave Equation & the Linear Superposition Principle 
 
Provided that the initial (simplifying) assumption that the displacement from equilibrium is 
small, such that sin tanθ θ θ≈ ≈  is valid, then the principle of linear superposition tells us that:  
 

( ) ( ) ( ) ( ) ( )1 2 3
1

, , , , , ...
n

TOT i
i

f z t f z t f z t f z t f z t
=

= = + + +∑    

 
is also a solution of the linear wave equation. Note that in general: 
 

  ( ) ( ) ( )
1 1

,
n m

TOT i j
i j

f z t g z vt h z vt
= =

= − + +∑ ∑
���	��
 ���	��


 

Traveling waves propagating in   Traveling waves propagating in  
the ẑ+  direction (i.e. to the right)   the ẑ−  direction (i.e. to the left) 
 

Most generally, i.e. ( ),TOTf z t =  linear superposition of left & right-moving / propagating waves. 
 

Standing Waves: 
 
     A standing wave (one which is stationary in space) is formed by superposing two identical 
traveling waves, except that one is a is left-going traveling wave and the other is right-going:  
 

( ) ( ) ( ),TOTf z t g z vt g z vt= − + +   where e.g.  

( ) [ ]( ) ( )sin sing z vt A k z vt A kz tω− = − = −   and:  ( ) [ ]( ) ( )sin sing z vt A k z vt A kz tω+ = + = +   
 
Definition of nomencature used in wave propagation: 
 
A = amplitude (= absolute value of maximum displacement from equilibrium)  (m) 
v = fλ = longitudinal speed of propagation of wave (m/s) 
f  = frequency of vibration of wave (cycles per sec = c.p.s. = Hz (Hertz)) 

period of wave 1 fτ = =  (seconds, per cycle of oscillation) 
λ  = wavelength (m) = spatial oscillation distance 

2 fω π≡  = “angular” frequency (radians/sec = rad/sec) 
2k π λ≡  = wavenumber (radians/meter = rads/m)  

          
 
 
 
 
 
 

2
2

fv f kπλ ω
π λ

= = =
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Returning to the discussion of standing waves as a linear superposition of a left-going and a 
right-going traveling wave: 

        ( ) ( ) ( ),
right left

TOTf z t g z vt g z vt= − + +

���� 
����

 
 

where:      ( ) ( )sing z vt A kz tω− = −    and:  ( ) ( )sing z vt A kz tω+ = +  
   

then:      ( ) ( ) ( ), sin sinTOTf z t A kz t A kz tω ω= − + +  
 

now:         ( )sin sin cos cos sina b a b a b± = ±  
 

∴      ( ), sin cos cos sinTOTf z t A kz t kz tω ω= − sin cos cos sinkz t kz tω ω+ + }{ 2 sin cosA kz tω≡  
 

Thus: ( ), sin cos 2 sin cosTOTf z t A kz t A kz tω ω′= =   i.e. define 2A A′ ≡  
   = 1-D standing wave (i.e. does not propagate/move in longitudinal ẑ± -direction) 

 

Explicit check: Does ( ), sin cosTOTf z t A kz tω′=  obey the wave equation?  

i.e. does ( ) ( )2 2

2 2 2

, ,1TOT TOTf z t f z t
z v t

∂ ∂
=

∂ ∂
  ?? 

  ( ),
cos cos

f z t
kA kz t

z
ω

∂
′=

∂
  ( ),

sin sin
f z t

A kz t
t

ω ω
∂

′= −
∂

 

  ( )2
2

2

,
sin cos

f z t
k A kz t

z
ω

∂
′= −

∂
 ( )2

2
2

,
sin cos

f z t
A kz t

t
ω ω

∂
′= −

∂
 

2k A′− sin kz cos tω 2
2

1 A
v

ω ′= − sin kz cos tω( )  

22
2k v

ω− = −      ⇒     ( )222
2v kk

ω ω= =  

∴  v k
ω=  Yes! 

 
The Sinusoidal Traveling Wave: 
     The most familiar wave: ( ) ( )( ), cosf z t A k z vt δ= − +  
 
Amplitude wave number  speed of propagation  phase (radians) = constant 
   2k π λ=       (usually phase is defined 

   between 0 and 2π) 

Note:  ( )
P

cos 2k z vt
δ

π
=⎛ ⎞

− ±⎜ ⎟⎜ ⎟
⎝ ⎠

   but: ( )cos cos cos sin sina b a b a b± = ∓  

 ( )( ) ( ) ( )( ) ( )cos cos 2 sin sin 2k z vt k z vtπ π= − ± −∓  
 
 

 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  4        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

 

7

 
 
               2π+  
But: ( )sin 2 1π+ = +   and ( )sin 2 1π− = −     sin  all 

∴ ( )( ) ( )( )cos 2 sink z vt k z vtπ− ± = −∓    π    0 
         tan  cos 
                

     3 2 2π π= −  
Note also: fTOT (z, t) = g (z – vt) + g (z + vt) 

      Two waves in phase (δ = 0) with each other 
     fTOT (z, t) = g (z – vt) − g (z + vt) 

      180o (= π radians) out-of-phase (δ = 180o = π radians) 
 
Thus the function f (z, t) = A cos (k(z – vt) + δ) at t = 0 appears as shown in the following figure: 
 

    f(z, t = 0) = snapshot of wave at t = 0: 
 

central maximum (shifted  
back to –z for +ve δ) 
 
 
 
 
 
 

( )2 2k
δ δδ λ
π π
λ

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

  
2
δ
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = fractional phase 

 
Note the various alternate/equivalent mathematical forms describing the same traveling wave: 
 

    f (z, t) = A cos (k(z-vt) + δ)   v f k
ωλ= =   (m/s) 

   ( )( )cosA kz kvt δ= − +   2 fω π=  (rads/s) 

   ( )( )cosA kz tω δ= − +   2k π
λ=  (1/m) 

   2cos 2zA ftπ π δ
λ

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  kvω =  

   cos 2 zA ftπ δ
λ

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   

   cos 2
2

zA ft δπ
λ π

⎡ ⎤⎧ ⎫⎛ ⎞= − +⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦
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Note that because cos (x) is an even function of x,  i.e.  cos (−x) = cos (x) 
Then: ( ) ( ), cosf z t A kz tω δ= + −  = left-moving wave ( ẑ−  direction) 

( )cosA kz tω δ= − − +  

But:     ( ) ( )* , cosf z t A kz tω δ= − +  = right-moving wave ( z+�  direction) 
 
→  Switching the sign of k produces a wave with the same amplitude, phase, frequency and 
wavelength, but one which is traveling in the opposite direction. 
 
 
 
 
 
 
 
 
 
 
 
 
Complex Notation: 
Euler’s Formula: cos sinie iθ θ θ= +   cos sinie iθ θ θ− = −  

( )1
2cos i ie eθ θθ −= +   ( )1

2sin i i
i e eθ θθ −= −  

1i ≡ −  * 1i i= − = − −  * * 1i i ii= = +  
 

The magnitude of ie θ is defined as ie θ :  

( ) ( ) 2 21 cos sin * cos sin cos sini i ie e e i iθ θ θ θ θ θ θ θ θ−≡ = = + − = +  
 

Projections of a complex unit vector cos sinie iθ θ θ= +  in the complex plane: 
 

      Im  (“imaginary” axis) 
 
 
       Unit circle in the complex plane 

        sin θ   1 
     θ 

Re (“real” axis) 
  cos θ 
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We will use the tilde symbol (~) over/above a physical variable to denote its complex nature: 
 

Complex #:    z x iy= +�   ( )Re z x=�   ( )Im z y=�  

Complex conjugate (i → i* = −i): ( )* *z x iy x iy= + = −�  ( )Re *z x=�   ( )Im *z y= −�  
 

Suppose: ( ) complex #iz ae θθ = =�   where real  constanta =  

         ( )cos sin cos sina i a iaθ θ θ θ= + = +  
 

The magnitude of ( )z θ� :    ( )z aθ =�      ( ) ( ){ } ( ){ }2 2
Re Imz z zθ θ θ= +� � �  

 

   ( ){ }Re cosz aθ θ=�   and   ( ){ }Im sinz aθ θ=�  
 

      ( ){ }Im z θ�   (“imaginary” axis) 
 
 
 

        asin θ   a 
     θ 

        ( ){ }Re z θ�  (“real” axis) 
  acos θ 

         

        
( ){ }
( ){ }

Im
tan

Re
z
z
θ

θ
θ

=
�
�

 

 

( ) 2 2 2 2 2 2cos sin cos sini iz ae a e a a a a aθ θθ θ θ θ θ= = = = + = + =�   
 
For a purely real wave function ( ),f z t :  ( ) ( ), cosf z t A kz tω δ= − +   we can equivalently write 

this using complex notation as:                 ( ) ( ) ( ), cos Re i kz tf z t A kz t Ae ω δω δ − +⎡ ⎤= − + = ⎣ ⎦  

 
For a complex wave function i ( ),f z t :     i ( ) i ( ) i ( ) i ( ), cos sini kz tf z t Ae A kz t i A kz tω ω ω−≡ = − + −  

with complex amplitude iA :                 i iA Ae δ≡    
            A = Real number 
 

Then: i ( ) i ( ) ( ) ( ) ( ) ( ){ }, cos sini kz ti kz t i kz tif z t Ae Ae e Ae A kz t i kz tω δω ωδ ω δ ω δ− +⎡ ⎤− − ⎣ ⎦≡ = = = − + + − +  
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Griffiths Example 9.1 - Linear Superposition of Two Sinusoidal Waves: 
 
     Suppose that we have a situation where two real sinusoidal traveling waves 
( ) ( )1 1 1, cosf z t A kz tω δ= − + and ( ) ( )2 2 2, cosf z t A kz tω δ= − + are simultaneously present at the 

same point z that have the same frequency f (and thus same wavelength λ, angular frequency ω, 
and wavenumber k) but have different amplitudes 1A , 2A  and (absolute) phases 1δ , 2δ {defined 
relative to a common chosen origin of time, t = 0}.  
 

We can simply add the two waves together: ( ) ( ) ( )3 1 2, , ,f z t f z t f z t= +  however, this approach 

will involve some rather tedious algebra and use of trigonometric identities to obtain ( )3 ,f z t .  
 
A much easier method is to carry this out using complex notation: 
 

( ) ( ) ( ) ( ){ } ( ){ } ( ) ( ){ } ( ){ }3 1 2 1 2 1 2 3, , , Re , Re , Re , , Re ,f z t f z t f z t f z t f z t f z t f z t f z t= + = + = + =� � � � �  

with: ( ) ( ) ( )3 1 2, , ,f z t f z t f z t= +� � �  ( ) ( )
1 1, i kz tf z t A e ω−≡� �  ( ) ( )

2 2, i kz tf z t A e ω−≡� �  ( ) ( )
3 3, i kz tf z t A e ω−≡� �  

 

         ( ) ( ) ( ) ( ) ( ) ( )
3 3 1 2 1 2, , ,i kz t i kz t i kz tf z t A e f z t f z t A e A eω ω ω− − −≡ = + = +� � �� � �  

 

thus: ( ) ( ) ( )
3 1 2

i kz t i kz t i kz tA e A e A eω ω ω− − −= +� � �   ⇒  3 1 2A A A= +� � �   or:  3 1 2
3 1 2

i i iA e A e A eδ δ δ= +  
 
writing this last relation out in its explicit complex form: 
 

3 3 3 3 1 1 1 1 2 2 2 2cos sin cos sin cos sinA iA A iA A iAδ δ δ δ δ δ+ = + + +  
 
Thus we see that: 

( )3 3 3 1 1 2 2Re cos cos cosA A A Aδ δ δ= = +�  ( )3 3 3 1 1 2 2Im sin sin sinA A A Aδ δ δ= = +�  
 

We can either use the so-called Phasor Diagram in the complex plane to obtain ( )3Re A�  and 

( )3Im A� ,or wade through the tedious trigonometry and algebra.  

 
The use of the phasor diagram does not allow us to evade the use of algebra and trigonometry… 

( )Re z�  

( )Im z�  

3A�  

1A�  

2A�  

1δ  

2δ  

3δ  
Phasor Diagram:  

n.b. phases are 
always defined 
relative to the 

Real axis 
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     What we are essentially doing here is nothing more than adding two 2-dimensional vectors 
together, i.e. C A B= +

G G G
 where 1 1ˆ ˆ ˆ ˆcos sinx yA a x a y a x a yθ θ≡ + = +

G
 

2 2ˆ ˆ ˆ ˆcos sinx yB b x b y b x b yθ θ≡ + = +
G

  and 3 3ˆ ˆ ˆ ˆcos sinx yC c x c y c x c yθ θ≡ + = +
G

  
 

Then: 3 1 2cos cos cosx x xc c a b a bθ θ θ= = + = +   and  3 1 2sin sin siny y yc c a b a bθ θ θ= = + = + .  
 

The magnitudes of A
G

, B
G

 andC
G

are 2 2
x yA a a a= = +

G
, 2 2

x yB b b b= = +
G

 and 2 2
x yC c c c= = +

G
 

 

The phase angles are: ( )1
1 tan y xa aδ −= , ( )1

2 tan y xb bδ −=  and ( )1
3 tan y xc cδ −= . 

 
Thus, for the addition of two complex amplitudes, we see that: 
 

( ) ( ) ( )( )
( ) ( )

( )

1 2 1 2

1 2 1 2

**
3 3 3 1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2 2 1

2 2
1 2 1 2 12 21 2 1

       2cos

       2 cos       where   

i i i i

i i i i

A A A A A A A A e A e A e A e

A A A A e e e e A A A A

A A A A

δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ

− −

− −

= = + + = + +

= + + + = + + −⎡ ⎤⎣ ⎦

= + + Δ Δ ≡ −

� � � � � � �i i

  

 

Then: 2 2
3 3 1 2 1 2 122 cosA A A A A A δ= = + + Δ�   with  ( )21 2 1δ δ δΔ ≡ −  

 

The {absolute} phase angle 3δ can be obtained from: 

  3 3 3 1 1 2 2
3

3 3 3 1 1 2 2

sin sin sin sintan
cos cos cos cos

A A A
A A A

δ δ δ δδ
δ δ δ δ

+
= = =

+
 i.e. 1 1 1 2 2

3
1 1 2 2

sin sintan
cos cos

A A
A A

δ δδ
δ δ

− ⎧ ⎫+
= ⎨ ⎬+⎩ ⎭

  radians 

    
Why Use Complex Notation? ( ) ( ) ( ), i kz t i kz tf z t Ae Aeω ω δ− − += =� �  
 
     Whenever we have two or more waves, if ∃  (there exists) a definite phase relation (defined at 
some specific origin of time t = to) between them (i.e. the two or more waves are coherent) then 
the waves will interfere with each other at a given point in space, z. 
 
     Interference phenomena occurs at the amplitude level – i.e. wave amplitudes interfere for 
waves that are coherent / have a (well defined) definite phase-relation. 
 
     Using complex notation, phase information can be explicitly {and relatively easily} carried 
out mathematically properly describing the interference of two (or more) amplitudes of waves.   
∃  does exist other ways to do this, but they are more tedious, algebraically… 
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     Note also that the use of complex notation allows us to explicitly describe properly / 
mathematically the phase-shifts that can / do occur in the response of a system (a “black box”)  
to an input stimulus / input signal: 

 
Classical Systems – Interference of Wave Amplitudes 
 
     Consider two traveling waves interfering with each other in a non-dispersive medium with 
different frequencies and amplitudes. For a non-dispersive medium, this means that 

1 1 2 2 1 21 2v f f k kλ λ ω ω= = = =   with angular frequencies of 1 12 fω π= , 2 22ω πλ=   
and wavenumbers 1 12k π λ= ,  2 22k π λ= .   
 
Then: ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2

1 2 1 2, , , i k z t i k z t
TOTf z t f z t f z t A e A eω δ ω δ− + − += + = +� � �  

 
Easy cases of phase relations between the two waves:  
 

1.)  1 2δ δ=  (in phase). Then 21 2 1 0δ δ δΔ = − =  radians = 0o 
      Phasor diagram:   

AR = A1 + A2 
Constructive interference 

A1  A2 
 
2.) 2 1δ δ π= +  (180o out of phase). Then: 21 2 1 radians 180oδ δ δ πΔ = − = =  
 

A2     21 2 1 radians 180oδ δ δ πΔ = − = =  
Destructive interference 

       AR = A1 – A2       A1 
 
 
 
 

Generic “Black Box” 
(any physical system) 

Input Stimulus: 
(e.g. incident wave) 

( ) ( ), i kz t
inputf z t Ae ω−=�  

Output Response: 
(e.g. outgoing wave) 

( ) ( ) ( ), i kz t i
outputf z t Be eω δ ω−=�  

@ z = 0, t = 0:

( ){ }Im 0, 0f z t= =�  

( ){ }Re 0, 0f z t= =�  
( )0,0inputf A=�  

( ) ( )0,0 i
outputf Be δ ω=�  

( )δ ω  
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3.) The General Case: 
 

AR        A2 
 

Rδ          21 2 1δ δ δΔ = −  
 

       A1 
 

From the diagram, we see that the magnitude of the resultant (i.e. net or total) amplitude RA  is: 
 

        
i ( ) ( )

( )

2 2
1 2 1 2 21

2 2
1 2 1 2 2 1

, 2 cos

                           2 cos

R TOTA f z t A A A A

A A A A

δ

δ δ

= = + + Δ

= + + −
  (n.b. this is simply the Law of cosines!!!)    

 

        ( ) ( )*, ,R TOT TOTA f z t f z t= ∗� �  

                             Complex conjugate of ( ),TOTf z t�  
 

Thus if:  ( ) ( )1
1 1, i kz tf z t A e ω δ− +=�   and   ( ) ( )2

2 2, i kz tf z t A e ω δ− +=�  
 

Then:    ( ) ( ) ( ) ( )
1 2, , , Ri kz t

TOT Rf z t f z t f z t A e ω δ− += + =� � �  
 

Where: ( ) ( )2 2 2 2
1 2 1 2 2 1 1 2 1 2 1 22 cos 2 cosRA A A A A A A A Aδ δ δ δ= + + − = + + −  

 
  n.b. Cosine is an even function of its argument, thus 21δ δΔ = Δ  

 

Then if the two waves have equal amplitudes, i.e. 1 2A A A= = : 
 

1.)  If  1 2δ δ=  (in phase with each other),  then 2 1 0δ δ δΔ = − =  and hence: 
     ( )2 1cos δ δ−  = 1 ⇒  {total} constructive interference. 

      Resultant Amplitude: 2 2 2 22 cos 0 4 2RA A A A A A= + + = =  
 

2.)  If  2 1δ δ π= ±  ⇒  2 1 180oδ δ δ πΔ = − = ± = ± out of phase with each other and hence: 
     ( ) ( )2 1cos cos 1δ δ π− = ± = −  ⇒{total} destructive interference. 

      Resultant Amplitude: 2 2 2 2 2 22 cos 2 0RA A A A A A Aπ= + + = + − =  
 
Note that classical wave interference effects can/do occur at the amplitude level even if f1 ≠ f2 
e.g. Sound waves on strings, in air, … 
 

 Electronic signals  1 2f f≈   → beats phenomena           (this is a form of interference) 
  EM waves   1 2f f� → modulation phenomena  (also a form of interference) 
    etc.    (or vice versa) 
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     Note also that amplitude interference effects occur in the world of quantum mechanics – i.e. 
matter waves – but is somewhat more complicated – e.g. by line width effects and/or uncertainty 
principle effects. Only identical particles with the exact same quantum numbers (external and 
internal) can interfere with each other… 
 

Fourier’s Theorem – Fourier Transforms 
 
Any wave {whose derivatives exist / are well defined everywhere} can be expressed 
mathematically precisely as a linear combination of sine-type waves: 
 

( ) ( ) ( ), i kz tf z t A k e dkω∞ −

−∞
= ∫� �       ω = vk 

 

The integral over negative wavenumbers, −k simply means that those waves are propagating in 
the ẑ−  direction.  Thus technically speaking, we really should write λ = spatial wavelength = 

2 kλ π=  and 2 f k vω π= = . 
 

The complex amplitudes ( )A k�  can be obtained from initial conditions @ t = 0: 

( ), 0f z t = =               and   ( ) ( ), 0
, 0

f z t
f z t

t

• ∂ =
= ≡ =

∂
 

and use of the Fourier transform: ( ) ( ) ( )1 ,
2

i kz tA k f z t e dzω

π
∞ − −

−∞
= ∫ ��  

Obtaining:   ( ) ( ) ( )1 ,0 ,0  
2

ikziA k f z f z e dz
π ω

•∞ −

−∞

⎡ ⎤= +⎢ ⎥⎣ ⎦∫�   

 
Wave Intensity, I: 
 

     Wave intensities are proportional to ( )*AA� � . Thus, the total intensity I ( ) ( )( )*, ,TOT TOTf z t f z tα � �i  
 

In above previous example, the individual normalized intensities are:  2
1 1I A=  and 2

2 2I A= . 
 

The corresponding resultant normalized intensity is:    ( )1 2 1 2 2 12 cosRI I I I I δ δ= + + −  
 
Then for the special case of A1 = A2 = A or equivalently I1 = I2 = Io, Then e.g. for (z = 0, t = 0): 
 

1.) 2 1δ δ=        then:  2 1 0δ δ δΔ = − = ,  ( )2 1cos 1δ δ− = + :  IR = 4 Io constructive interference. 
 

2.) 2 1δ δ π= ± then:  2 1δ δ δ πΔ = − = ± , ( )2 1cos 1δ δ− = − :  IR = 0 destructive  interference. 
 
 
 
 
 
 
 

See Griffiths 
Problem 9.32 
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Let’s consider our vibrating string problem again: 
 
Boundary Conditions (End Conditions), Wave Reflection and Wave Transmission 
 
     Mechanical wave behavior / wave motion e.g. on a string as a function of time and space 
depends critically on the end conditions / boundary conditions – i.e. on how rigidly (or not)  
the string is attached at its ends. 
 
     Or, e.g. could have two dispersionless strings tied together in a knot (say @ z = 0), but one 
string has mass per unit length ( )1 0zμ < , the second string has mass per unit length ( )2 0zμ > .  
Both strings are stretched and rigidly attached at LHS and RHS ends (string is infinitely long)  
@ z = ± ∞. 

     For this latter situation, the longitudinal speed of propagation of waves on a dispersionless 
string is v T μ=  where the string tension T = same in both strings {otherwise F ≠ 0 in 
equilibrium – this can’t happen, because if F ≠ 0, then Newton’s 2nd Law F = ma → something 
accelerates → therefore must have F = 0 in equilibrium}. 
 

Thus, for the 1st string with ( )1 0zμ < : ( )1 1 0v T zμ= <   

  and for the 2nd string with ( )2 0zμ > : ( )2 2 0v T zμ= >  
 
However, the frequencies of oscillation associated with a single vibrating string composed of  2 
different strings types of tied together @ z = 0 are the same - i.e. f1 = f2 = f  and thus the angular 
frequencies are the same, i.e. ω1 = 2πf1 = ω2 = 2πf2 = ω. 
 

∴ 1 1 1 2

2 2 2 1

2
2

v k
v k

λ λ π
λ λ π

= = =  

 
Suppose that an incident traveling wave propagates in the ẑ+  direction, initially coming from 
the LHS portion (z < 0) of string, i.e. to left of the knot @ z = 0:   ( ) ( )1, i k z t

inc incf z t A e ω−=� �   (z < 0). 
 
This wave is incident on the knot @ z = 0. 
 
However, because of the mismatch / discontinuity in materials of the string to the left (z < 0) and 
to the right (z > 0) of z = 0, some portion of incident wave is reflected from knot and propagates 
in ẑ−  direction (i.e. traveling backwards along string 1):  ( ) ( )1, i k z t

refl reflf z t A e ω− −=� �   (z < 0). 
 
Some portion of the incident wave is transmitted past / through knot @ z = 0 and propagates in 
the ẑ+  direction (traveling along string 2):  ( ) ( )2, i k z t

trans transf z t A e ω−=� �   (z > 0). 
 
Assuming that both strings are ideal (i.e. they are dissipationless), then energy and linear 
momentum are both conserved in this scattering process at the discontinuity / knot @ z = 0. 
 
 
 

But: 1 1 1

2 2 2

v f
v f

λ
λ

=  

knot @ 
z = 0 

( )1 0zμ <  ( )2 0zμ >  
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For simplicity’s sake, if the incident wave is an infinitely long sinusoidal wave, the net 
disturbance (net / total displacement amplitude, using the superposition principle is: 
 

   ( ) ( ) ( )1 1, i k z t i k z tLHS
TOT inc reflf z t A e A eω ω− − −= +� � �  (z < 0) 

( ) ( )2, i k z tRHS
TOT transf z t A e ω−=� �    (z > 0) 

 

     However @ z = 0: ( ) ( )( )( ),  Re ,TOT TOTf z t f z t�  must be continuous {recall that physically, 

( ),TOTf z t corresponds to the transverse displacement of the string at the space-time point ( ),z t }. 
Mathematically, this translates to a Dirichlet-type boundary condition @ z = 0: 

( ) ( )0, 0,LHS RHS
TOT TOTf t f t=  = transverse displacement = same value on both sides of “point” knot. 

 

     If the knot physically has zero (or negligible) mass, then the slopes of ( )0,TOTf z t=  are the 
same on both sides of the “point” knot. Mathematically, this translates to a Neumann-type 

boundary condition @ z = 0: 
( ) ( )

0 0

, ,LHS RHS
TOT TOT

z z

f z t f z t
z z= =

∂ ∂
=

∂ ∂
 

 

Note that the above boundary conditions (BC’s) technically apply only to ( )Re ,TOTf z t⎡ ⎤⎣ ⎦
�  at  

z = 0, but note that ( )Im ,TOTf z t⎡ ⎤⎣ ⎦
�  differs from ( )Re ,TOTf z t⎡ ⎤⎣ ⎦

�  simply by replacing cosine ( ) 

with sine ( ). → Hence, the BC’s apply to ( ),TOTf z t� . 
 

BC1 @ z = 0: The complex value of total amplitude @ z = 0:     ( ) ( )0, 0,LHS RHS
TOT TOTf z t f z t= = =� �   

BC2 @ z = 0: The complex value of amplitude slopes @ z = 0: 
( ) ( )

0 0

, ,LHS RHS
TOT TOT

z z

f z t f z t
z z= =

∂ ∂
=

∂ ∂

� �
  

 
Physically, continuity of the slope implies that there are no additional forces operative at the knot (z = 0). 
 

From BC1 @ z = 0: inc refl transA A A+ =� � �   n.b. We thus have two equations  

From BC2 @ z = 0: ( )1 2inc refl transk A A k A− =� � �  and three unknowns ( ), ,inc refl transA A A� � �  
 

k1 and k2 are assumed to be known / given (e.g. T = 100 N, f = 100 Hz) 
 

→ Can express  and refl transA A� �  in terms of incA� − Solve BC1 and BC2 simultaneously to obtain: 
 

1 2 2 1

1 2 1 2

     refl inc inc
k k v vA A A
k k v v

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

� � �   ⇐   using  2 1

1 2

k v
k v

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

1 2

1 2 1 2

2 2
trans inc inc

k vA A A
k k v v

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

� � �   ⇐   using  2 1

1 2

k v
k v

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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The real amplitudes and the phases are thus related by: 
 

     2 1

1 2

   R Ii i
refl inc

v vA e A e
v v

δ δ⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

2

1 2

2
T Ii i

trans inc
vA e A e

v v
δ δ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

 

If string 2 (on the RHS, z > 0) is lighter than string 1 (on the LHS, z < 0),  i.e. 2 1μ μ<  ⇒  2 1v v>  

since  ( )2 2 0v T zμ= > ,  ( )1 1 0v T zμ= <   then  ( )2 1 0v v− >  → all three wave amplitudes 

have the same phase angle, i.e. I R Tδ δ δ= = .  
 

Thus for 2 1μ μ<  (or 2 1v v> ), I R Tδ δ δ= =  and hence: 
 

 2 1

1 2

R Ii i
refl inc

v vA e A e
v v

δ δ⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

  ⇒   2 1

1 2
refl inc

v vA A
v v

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

2

1 2

2
T Ii i

trans inc
vA e A e

v v
δ δ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

  ⇒   2

1 2

2
trans inc

vA A
v v

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

 

If string 2 (on the RHS, z > 0) is heavier than string 1 (on the LHS, z < 0), i.e. 2 1μ μ>  ⇒  v2 < v1: 

then: ( )2 1 0v v− <  →  the reflected wave is 180o (= π radians) out of phase with the incident 

wave i.e.  ( ) ( )1 1cos cosI Ik z t k z tω δ π ω δ− − + − = − − − + . The polarity of reflected wave is 

flipped relative to incident wave, i.e. I R Tδ δ π δ= ± = !  Note that: cos sin 1ie iπ π π± = ± = −  
 

Thus for 2 1μ μ>  (or v2 < v1), I R Tδ δ π δ= ± =  and hence: 
 

 2 1

1 2

R Ii i
refl inc

v vA e A e
v v

δ δ⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

  ⇒   2 1 2 1

1 2 1 2
refl inc inc

v v v vA A A
v v v v

⎛ ⎞ ⎛ ⎞− −
= − = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

2

1 2

2
T Ii i

trans inc
vA e A e

v v
δ δ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

  ⇒   2

1 2

2
trans inc

vA A
v v

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

 
If e.g. string 2 (on the RHS, z > 0) is infinitely massive, i.e. 2μ = ∞  ⇒ 2 2 0  v T μ= =  ( )0z >  

Then we see that: refl incA A=  and 0transA = . 
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Wave Polarization 
 
     Depending (largely) on the type of wave and the nature of the medium that the waves are 
propagating in / on, the waves can have another degree of freedom known as polarization. 
 
Waves propagating in ẑ±  direction with small transverse displacement amplitude on a string are 
known as transverse waves because the displacement of string (relative to its equilibrium 
position) is transverse to the direction of propagation – (i.e. ˆpropv z= ±

G ). 

Thus the transverse displacement amplitude ( ) ( ), i kz tf z t Ae ω−=� �  is oriented e.g. in x̂±  and/or ŷ±  
directions for a traveling transverse wave propagating in/along the ẑ+ direction. 
 

→ Thus transverse traveling waves have two polarization states, either the x̂±  or the ŷ±  
direction, or equivalently 2 orthogonal {i.e. mutually-perpendicular} linear combinations of the 

x̂±  and ŷ± basis states for waves propagating in the ẑ±  direction: 
 
     ŷ′        x̂   x̂′  

            ϕ  
ŷ  

 
 
 
     Propagation of e.g. longitudinal sound waves in solid or non-solid media, e.g.  normal gases, 
liquids and solids also has longitudinal polarization – because longitudinal sound waves have 
longitudinal displacements of atoms / molecules – i.e. along / against (i.e. parallel/anti-parallel to) 
the direction of propagation of the longitudinal wave, e.g. in the ẑ±  direction. 
 

Here, the longitudinal displacement amplitude is (also) of the form:          ( ) ( ), i kz tf z t Ae ω−=� �  
 
→ Longitudinal traveling waves have only one polarization state, e.g. the ẑ direction. 
 

Both longitudinal and transverse waves obey the same wave equation:  
( ) ( )2 2

2 2 2

, ,1f z t f z t
z v t

∂ ∂
=

∂ ∂

� �
 

 
Longitudinal Waves: e.g. sound waves / acoustic waves – liquids, gases and solids and 

e.g. large amplitudes in strings (compression waves) 
 
Transverse Waves: e.g. Small and large amplitudes in strings, long solid rods, solid 

bars, etc. (shear waves).  EM waves are transverse waves. 
 
∃Two orthogonal polarization states for transverse waves – thus, we can represent the transverse 
displacement amplitude as a vector quantity, indicating its polarization state: 
 
Transverse displacement is e.g. in: 

Vertical Plane     – “vertical” polarization (up & down): ( ) ( ) ˆ,    i kz wt
vertf z t Ae x−=
G
� �  

Horizontal Plane – “horizontal” polarization (sideways): ( ) ( ) ˆ, i kz wt
horizf z t Ae y−=
G
� �  

 

ẑ out of page 
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         (Direction of propagation) 
 
 
 
The polarization unit vector n̂  lying in the transverse plane defines the plane of polarization: 
(i.e. plane of transverse vibrations {here}) 

ŷ  
 Note that:  ˆ ˆ 0n z ≡i         n̂  
 

       sin θ 
 
Define the polarization angle θ  wrt to x̂ axis:    θ 
            x̂  

ˆ ˆ ˆcos sinn x yθ θ= +           cos θ 
 
Linearly Polarized Transverse Waves 
 
     A linearly polarized transverse wave that propagates in the ẑ  direction is such that both the 
ˆ ˆ and x y  components of the vector transverse displacement amplitude of the wave are either 

precisely in-phase with each other (i.e. have 0o relative phase), or they can also be precisely  
± 180o out-of-phase with each other. 
 

Examples of Linearly Polarized Transverse Waves:  ( ) ( ) ( )ˆ ˆ, cos sini kz t i kz tf z t A e x A e yω ωθ θ− −= +
G
� � �  

( ) ( ) ( )ˆ ˆ, cos sini kz t i kz tf z t A e x A e yω ωθ θ− −= −
G
� � �  

Circularly Polarized Transverse Waves 
 
     A circularly polarized transverse wave that propagates in the ẑ direction is such that 
the ˆ ˆ and x y  components of the transverse wave have a.) equal amplitudes, but b.) the ˆ ˆ and x y  
components of the vector transverse displacement amplitude of the wave differ in phase by 

90 2o π± = ±  from each other (e.g. 0o
vertδ = , 90 2o

horizδ π= ± = ±  radians) 
 

Example # 1: ( ) ( ) ˆ,    cosvertf z t A kz t xω= −
G

 

( ) ( ) ( )ˆ ˆ, cos 90 sino
horizf z t A kz t y A kz t yω ω⎡ ⎤= − + = − −⎣ ⎦
G

 
 

But note that 2 2 2
vert horizf f A+ =  thus ( ) ( ) ( ), , ,vert horizf z t f z t f z t= +

G G G
 lies on a circle of radius A. 

 

At time t = 0:    ( ) ( ) ( )ˆ ˆ, 0       cos sinf z t A kz x A kz y= = −
G

 

At time
2

t π
ω

= :  ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, cos 90 sin 90 sin cos
2

o of z t A kz x A kz y A kz x A kz yπ
ω

⎛ ⎞= = − − − = +⎜ ⎟
⎝ ⎠

G
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→ At a fixed position in space, ( ),f z t
G

 rotates counter-clockwise CCW (in the x-y plane) as time 
increases, for a wave propagating in the ẑ+  direction.  
 
→ Known as LCP = Left Circular Polarization. 
 

     ( ),f z t
G

at 2t π ω=  and z = 0: 
 

 ŷ  
  
         x̂  

  ẑ+             ( ),f z t
G

 at t = 0 and z = 0 
      (out of page) 

 
 
Example # 2: ( ) ( ) ˆ, cosvertf z t A kz wt x= −  

( ) ( ) ( )ˆ ˆ, cos 90 sino
horizf z t A kz wt y A kz wt y⎡ ⎤= − − = + −⎣ ⎦  

 

Again 2 2
vert horizf f A+ =  and thus ( ) ( ) ( ), , ,vert horizf z t f z t f z t= +

G G G
 lies on a circle of radius A. 

 

At time t = 0:      ( ) ( ) ( )ˆ ˆ, 0 cos sinf z t A kz x A kz y= = −
G

 

At time
2

t π
ω

= :  ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, cos 90 sin 90 sin cos
2

o of z t A kz x A kz y A kz x A kz yπ
ω

⎛ ⎞= = − + − = −⎜ ⎟
⎝ ⎠

 

 
→ At a fixed position in space, f (z, t) rotates clockwise CW (in the x-y plane) as time increases,  
     for a wave propagating in the ẑ+  direction 
 
→ Known as RCP = Right Circular Polarization. 
 

 ŷ  
 

         x̂   ( ),f z t
G

at 0t =  and 0z =  
  ẑ+  

      (out of page)  
 

( ),f z t
G

 at 
2

t π
ω

= and 0z =  

 

Polarization vector rotates 
CCW as time increases 

Polarization vector rotates  
CW as time increases 
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     If interested, information on the propagation of acoustical waves, acoustic wave phenomena in general and e.g. 
solving the wave equation in 1-, 2- & 3-dimensions is available online (PDF format) from Professor Errede’s lecture 
notes for the UIUC Physics 498 Physics of Music / Musical Instruments Course.  The URL for the online lecture 
notes for the UIUC P498POM course is: 
 

http://online.physics.uiuc.edu/courses/phys498pom/498pom_lectures.html 
 
 


