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LECTURE NOTES 3

Conservation Laws (continued): Angular Momentum Associated with EM Fields

We have learned that the macroscopic EM fields have associated with them:

* EM Energy:
EM Energy Density: Ugy (F,t)z%(goEz(F,t)+i BZ(F,t)J (Joules/m?)
Hy
~ 1 1
EM Energy: |[Ug, (t)zj Ugy, (r,t)dr:I 2[5 E*(F,t)+—B*(F, )Jdr (Joules)
v /’lo
: <o 1= = Watts  Joules
* Poynting’s Vector: S(r,t)=—E(r,t)xB(rF,t ( = ]
oynting’s Vector (F.1) m (F,t)xB(Ft) T e

* EM Linear Momentum:
EM Linear Momentum Density:

@EM (f,t) = goyog(f,t) =
EM Linear Momentum:

ﬁEM ISOEM I’t =— J. I"[dz’ 8'[

\

1
2

- S(.t)=¢,(E(F,t)xB(T.t))| (kg/m* -sec)

(E(F,t)xB(F,t))dr (kg-m/sec)

The macroscopic EM fields can additionally have associated with them:

* EM Angular Momentum:
EM Angular Momentum Density:

Oy (Fi)=Tx - ( kg j

=&, | Tx(E(Ft)xB(r.1))] m-sec

EM Angular Momentum:

Loy (V)= e (T t)dr:j(rx@EM(r,t))drzizjv(rx§EM(r,t))dr (kg _mzj
=5, [ [Fx(E(F.t)xB(r.1))]dz sec

« Note that even STATIC E &B fields can carry net linear momentum pg,, # fcn(t)and
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net angular momentum EEM # fcn(t) as long as E xB is non-zero! Again, at the microscopic
level, virtual photons associated with the macroscopic EM fields carry angular momentum
£ as well as linear momentum p and (kinetic) energy E!

* Only when the EM field contributions are included for the total linear momentum p,,, and the

total angular momentum £, i.. Pry = Proe + Poy  and £ =L . + £ is conservation of
linear momentum and conservation of angular momentum separately, independently satisfied.
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Griffiths Example 8.4
EM Angular Momentum Associated with a Long Solenoid & Coaxial Cylindrical Capacitor.
e Consider a long solenoid of radius R and length L > R, with n turns per unit length

(n =N,/ L) carrying a steady/DC current of I Amperes.

e Coaxial with the long solenoid is a cylindrical (i.e. coaxial) capacitor consisting of two
long cylindrical conducting tubes, one inside the solenoid, of radius a < R and one
outside the solenoid, of radius b > R. The cylinders are free to rotate about the Z -axis.

e Both cylindrical conducting tubes have same length /< Lwith />a & (>D.

e The inner (outer) conducting cylindrical tube carries electric charge +Q (—Q) uniformly
distributed over their surfaces, respectively.

= When the current I in the long solenoid is slowly/gradually reduced (see e.g. Griffiths Example
7.8, p. 306-7), the cylindrical conducting tubes begin to rotate - the inner (outer) conducting
cylindrical tube rotating counter-clockwise (clockwise), respectively as viewed from above!!!

5 Long Solenoid
A
— | R L{
R S ‘C} (a<R<b)< /<L

z=+

NI

\ ~——
- A
Ba'|ll 2
’?
< $--> - D ----- Z=+3/(
+Q —Q T
L>R EcP
Ly g ” 15: (> (a,b); (<L
| et U I JLZ __1y
\ 2

' Cylindrical
Z=—1iL—Y /‘.D Capacitor

QUESTION: From where/how does the mechanical angular momentum originate?

ANSWER: The mechanical angular momentum imparted/transferred to the cylindrical
conducting tubes was initially stored in the EM fields associated with this system:

The B -field associated with the long solenoid: B!

inside

= u,nlZ (p<R,|z]<L/2)| and

= - - - - - - = 1 A a S S b1
The E -field associated with the cylindrical capacitor: |E %, = _Q (1 ) P
2re 0\ p |z|<¢/2
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n.b. E&, isnon-zero for {a< p<b .and. |z|<¢/2}, B, is non-zero for { p<R (R<b)

and. |z|<L/2 (L>¢)}. Hence, = inthe region {(a<p<R) & |z|<¢/2} only
Poynting’s Vector (Energy Flux Density):

§(r)=(E(F)><E(F))=%(%Me,sﬁx(%mz): nQI (/3_:32) (Watts]

m2

Very useful table:
pxp=+i  pxp=
PxI=+p z

IXp=+p my ————————
S nQl | (Watts -
S(p)—_ Q (0( asj

2ms, pl

Cylindrical
Coordinates

pri=—p
EM energy/EM power circulates in the —¢ direction in the region (

<p<R) & |z|<1/2:
EM field linear momentum density:

[P (7)= 2048 (1) = 2 (E(7 ) é(r))
o nQl | __4nQl o (K
Pem (r)zé\l\ﬂ{ 27 }ng Jz_éﬂpﬁ v (mz-gSeCj

EM angular momentum density:

Tew (F) =% sy () = %o (F) = %[, (E(7)xB(F)) ] ( . )

m-Sec

n.b. p = pp in cylindrical coordinates, thus:

i r O X (& r 3 0 I . o I ~ A | . k
EEM(r):stOEM(I")ZXp ( ’;lng\f J: ,Uzni (,OX(D):—'uzr;g 5 ( g j

m-sec
Note that: r (F)‘ ’uz 3' = constant!!! /., () points in —Z direction
T

= We then compute the EM angular momentum £.,, by integrating /., (F) over the volume v
corresponding to the region (a< p<R) & |z| < ¢/2:

G m.fr“ﬁj[%@}mmmz

constant vector!

| [T ovsen

T

) /: volume v of region {a< p<R .and. |z|<¢/2}
AL

SRy y /(Rz—az)/:—%,uoan(Rz—az)i
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Thus, the EM angular momentum is| £, = -4 ,nQl (R* —a*)2 (kg-m? /sec)

When the current | in the long solenoid is slowly/gradually reduced, the changing magnetic field

induces a changing circumferential electric field, by Faraday’s Law: (JSC Eed/= —%L B.da

7 _ -
A Since: | B = 4,012 (p<R)|then
IR
Q\—ﬁ for contour Cy (p <R):
in = uon z
A - = 1 dl A 1 dl
JPEEEE San o EN(p<R)=— ( n— #p2 j:__ -
. A o (P<R) R AP |==Z NP
\S Sl
| * for contour C; (p=R):

=< 2
= 1 dl A 1 dl ( R ).
ECYT >R)=——— n— #R%*0 |l=—= un—| —

\_T_/ (,0 ) 2/,0(/10 dt/{ @j 2/10 dt(pjgp

The {instantaneous} mechanical torque exerted on the inner conducting cylinder
(of radius a) by the tangential E -field E™ (p <R) is:

= 0(1QE" (1)), 18-S ur@ ")

NI (7, t) =7 x F (F.1)] > "

|()A

ag

|

? pxp=—p1,nQ
—

=+1

N (p=a,t)=—x,nQ dld(tt) a2 pxo

2
di (t) 25 [N-m= kg-m
dt sec

3

But torque (by its definition) = time rate of change of angular momentum, i.e. [N (t) =

dt

= The corresponding {increase} in the mechanical angular momentum the inner cylinder

acquires in the time it takes the current in the solenoid to decrease from | (t = 0) =1 to
. . — dEmECh (t) — — kg_m

I(t=t,.,)=0 by: IN™"(t)=——2 dL™" (t) = N™"(t)dt
(=) =0 isgiven by |17 ()= L o2 )= ] 42

2
jm:

final a
£ (=0)=0
=0

=0

A.é: e — ?gﬁglha(t:tﬁnal) d.Lreh = preeh (t = Uhina )_ et O) ﬁ?ﬁSTa ( = ina ) = thﬁnal N? " (t) dt

(pmec mecl =thinal = mec =thina 1 dl (t) R
A‘Q’a " ‘Bflnalha (t = tfmal ) -[t -0 Na hdt = L:O [_E:uonQ dt aZZJdt

t=tfinal dl l I(t):o 1 )
#,nQa L _EﬂmQaZL(t)zl dl (t):_gﬂonQazz[O—l]

Sec

mech nmech 1 kg'm2 - - A - .
Thus: Bfma,a(t—tfma,) AL —+2yonQa 1z < n.b. points in +Z direction.

= the inner conducting cylinder {viewed from above} rotates counter-clockwise(@t =

tfinal ) !
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Similarly, the {instantaneous} mechanical torque exerted on the outer conducting cylindrical
tube (of radius b) by the tangential E -field E®V" (p > R) is:

R 1 dl(t)( R? ) .
FENS IR

_ 1 di(t) ,,~ ~ 1 di(t) _,. kgm
Nmech — 4 —R2 — = —R2 -m=
s (p=bt) o HNQ— (P_XA(P) HSHMQ— = RZ | N-m=—2

= The corresponding {increase} in the mechanical angular momentum the outer cylinder
acquired in the time it takes the current in the solenoid to decrease from I (t = O) =1

N'k;nech (F,t) =7x 'EE (F’t)‘p:b = FX(—QEOUT (p,t))

to I(t :tﬁna,)zo iS given by:

- - - - - t=t fina
A'eumem = d'eumeCh = B?:r?;:]b (t = Liinal )_ e (t= O) = f?.fﬁrb (t = Lina ) J.t " N et ( )dt
=0

Gmech
£500 (t=t et )

Brih (t=0)=0

[pmec mecl t=tfina) 1 dl (t . 1 _et=ten dl(t
A‘20 " ‘Bflnalhb (t = tflnal) J-t—O (+E,uonQ d(t ) Rzzjdt = +EﬂonQRZZ.[[:O %ﬂ{

(t tfmal)

1 5
oy AN =+ #nQRZ[0—1]

=+ ; yonQR“j

2
Thus: | £7, (tztﬁna,) AL = yonQIRz“ [kg m jc n.b. points in —Z direction.
sec

=> outer conducting tube rotates clockwise at (@t =t inal )viewed from above!

pmech pmech pmech mech
NOW nOte that fOf t 2 tflnal ‘Bfmal Tot — ‘Bflnal a ‘eflnal h = Z‘eflnal i
i=1

Bt =+2 QU2 -2 1,nQIR'E =~ QI (R? - )2

. : . ~ 1 R
But this is precisely the EM field angular momentum, for t<0: | £, = —Eﬂoan (R2 —az)z

ie £, (t<0)= Bﬁﬁgi‘m(tztﬁna,):—%yoan(Rz—az)i (kg-m? /sec)

Thus, we explicitly see that angular momentum is conserved — angular momentum that was
originally stored in the EM fields of this device is converted to mechanical angular momentum as
the current in the long solenoid is slowly/steadily decreased!

Again, microscopically, angular momentum is carried by virtual photons associated with the
macroscopic E & B fields in this region of space. The angular momentum, as initially carried by
the EM fields in the region (a <p<Rand |z| < 6/2) is transferred to the two charged conducting

inner/outer cylindrical tubes as the current flowing conducting in the solenoid is slowly
decreased from |1 — 0, the cylinders acquiring non-zero mechanical angular momentum,
the total of which = initial EM angular momentum! Note also the time-reversed situation
(I'increasing, i.e. from 0 — 1) also does the time-reversed thing — because the EM
force/interaction (microscopically & macroscopically) obeys time-reversal invariance!!!
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The EM Field Energy Density uy,, , Poynting’s Vector S, Linear Momentum Density Pem

and Angular Momentum Density /.,, Associated with a Point Electric Charge g,
and a Point Magnetic Monopole g,

n.b. This is a static problem —i.e. it has no time dependence!

=l
-

=r

Point electric charge at origin: E(f):[4l j%fz(éll ]q—gf
e, g,

Point magnetic monopole e.g. located at d = d? :

_| Sfo _ml’,.‘!:( /LIO )g_ml—;r FI:I,!",‘I

P observation/field point

Vectorially:
r-r=dz| = |r'=r—-dz

r'>=r?+d?-2rdcos@
r'=r2+d?—2rd cos @

origin Law of Cosines:

x>
Ve

B(F)z(_”o j In r’z(_ﬂoj On (7 —2)
13 3
ar)r ar (r2+d2—2rdcos¢9)4

2,

e (2_\: r'3

- 22
1 1 1q, A In
rl=— € — || &=
Uew (F) 2 €°_[47zgo]r2 +y0 (47zj(r2+d22rdcost9)}

b (=515 e [ | £ e e
2 1672&7r* }{ 167 (r2+d2—2rdc039)

— -2 2

1 1 9|, 1 ( j Oy —

Uem (M) =215 = | = FeF
EM( ) 2{ _[4ﬂgojr U, |\ 4r \(r2+d2—2l’d COS@)% ( )}
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UEM (f)= 4 e

1 fg, o SN P

27’ |1 (2492 Y IR 2 2
o (r*+d*-2rdcos0) e, (1+[%] —2[%]0039)

n.b. forr>d (also true for d = 0): |ug, (F)= 32;(9 (1j{ g% +g?2 /c} (Jontiiesj

Poynting’s Vector: |S(F)= 1 E(F)xB(F) [Wattsj

|

n.b.(Fx2)=-sin6p
is L tof (and Lto?Z)

%
. §(F)= 1 qegmdrx(_z) - _ d qegm E'_:S:;;
167", r3(r2+d2—2rdcosé?)% 167", r3(r2+d2—2rdcosé?)%
=-rsind ¢
S(r)=- d2 %9 y(rx2)=+ d2 %9 ysinegﬁ
1677, r3(r2+d2—2rd cos&) 2 167%¢, rz(r2+d2—2rd cosé?) 2

Note that Poynting’s vector S( )|| ¢ —i.e. EM energy is circulating in the +¢ (azimuthal)
direction in a static problem! Note also that §(F)vanishes when d = 0 (i.e. monopole g,, is on top
of electric charge g, ) and also vanishes whenever || (or anti- ||) toZ (then fxZ=sinfp=0)!

EM Field Linear momentum density: |, (F)= &,4,S (F)=S(F)/c? = £,E(F)xB(T) ( kg j

m?-s
d =-rsiné ¢ d
@EM (r.):_ Ho qegm r.xz) =+ Ho qegm - Sin (9(5

2 3 2
167 rz(rz+dz_2rdcosg)4 167 rZ(r2+d2—2rdcose)4

Here again, note that @, (F) Il —i.e. EM linear momentum density is circulating in the +¢
(azimuthal) direction in a static problem! Note also that ¢, (F) vanishes when d = 0

and also vanishes whenever f|| (oranti-||) toZ (then FxZ =sin6p vanishes)!
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EM Field Angular momentum density: /¢, (F)=Fx gy (F) (ﬁj
m-s
Loy, (F)=- ’uOdZ %9 7 Fx(fxZ) but F=rf
167 r?(r’+d*-2rdcos6)”
ﬂOd qegm

~

EM (f):—

Fx(Fx2)
167° r(r®+d*-2rd cos@)%

Now: Fx(FxZ)=F(Fe2)—2(FeF)="F(Fe2)-Z=Fco Zz,ﬁees/ feosd +0sind =0sind
where: (F-Z):f-{ F cos @ —@sin }:cos¢9 and: 7=Fcos@—@sind
e d 9.9 5l [ kg
¢ (r)——’u° em sin 69 (—j
- 167° r(r®+d*-2rd cos@)% m-5
: . . 1 1)]q? g% /c? (Joules
EM Field E Density: Uy (F)=———| = 1= m
B —— e (1) 327, rzj re +(r2+d2—2rd cosé’)2 m’

— eI 7sing
167°¢, r?(r?+d*-2rdcosg)”

Poynting’s Vector:

Watts
m’

4,0

%eInm

EM Linear Momentum Density:

2
1677 2 (r*+d?*-2rd 00349)4

—sSinf¢

H,d

Qe9n

EM Angular Momentum Density: | /g, (F)=-

3 sin Hé

(ws)

(o)

=0)and B(r =T")
' respectively) — so this is not a surprise!!!

2
167 r(r’+d*-2rd cos&)é

F)dz =0 (Joules) because E(F

The Total EM Field Energy: U, _I Ugy (
both diverge/are both singular (at r =0and r =

However, the EM Power flowing through/crossing the enclosing surface S is zero (!!!):

Pew =—(]S F da = (qeg )qgs ,

o r

1 —sinf¢-da=0

(Watts) 1!
(r2 +d?-2rd cos@)é

But: S(F)=0!!! The EM Power P,,, =0because dd =dafi =daf and ¢-f =0, i.e. ¢ is always
L to 7!l = EM field energy associated with electric charge — magnetic monopole (q, - g,,)
system circulates! (i.e. is fully contained within enclosing surface S 1)

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Total EM Field Linear Momentum:

_I ©Oew (r)dr =+ Aod % 9n 7 sinf¢ dr (kg-m]
167° v *(r*+d*-2rd cos9)”? Sec

Note that: gs ©ew (7)-dd = 0| because {{OEM (f)||¢3}L{dé|| F} = EM Field Linear Momentum
circulates (i.e. EM f|eld linear momentum is also fully contained within the enclosing surface S)!

B} J~¢27rj-j 2 drsin?0dode 5

pEM - 2 3
16 r 21d2-2rd cos@)é

p=2r drsinzeded(p .
16 7 j I '[ +d2—2rdc059)%¢

Let’s do the (p-integral first (trivial — get 27 ):
_ drsin®de .
Pem = .[ J- 3 4
r’+d”-2rdcos6)”

Next, let’s do the r-integral:
s Mo = 2(2r—2d cos®)sin’ 6do .
pEM (qeg )I ( )

4
“8n o=0 (4d2—(2d cosﬁ)z)x/r2+d2—2fd cosd

r=0

4,0 0-x A (r—dcos)sin® 6dé
_+_(qegm).[9=o 2 2 2 2
87 Ad?(1-cose )\/r +d? -

J. (r—dcosé ;ml/de
;’Wrz/\/r +d? - 2rdcos€‘

_ /Llo O=r (r_d cos H)de -
_+87[d (qegm)J.H:O \/r2 +d2

N

87rd Z

~

e d(qe )j “[L+cos0]dop

Finally, we carry out the &-integral:

N . O=r ~ lLlo
P =+ 5-25(0.9,)[0+sin 0], 7 6=+ (a,9, ) [(7~0)+(0-0) ] =+ /{d(qe On) A9
= 3990 ~| [ kg-m

S LG ﬂgdg v ( sgec j

Note that the EM field linear momentum py,, is finite as long as the electric charge-magnetic
monopole separation distance d >0. When the electric charge g, is on top of the monopoleg,,,
then d =0 and P, becomes infinite.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Total EM Field Angular Momentum: |.£,, =J. (e (F)dz| (kg-m? /sec)

=sinod

(Fcos6-32) 0- odod
= #,d 9.9, rcoso—z d q gm p=27 r=» ( F COS )résin @
Lew = 1672 v 7dr: .[ .[ .[ 3
4 r(r®+d*-2rdcos6)” r*+d®—2rd cos 0"

Let’s work this out in Cartesian coordinates: f = sin &cos ¢X +sin @sin ¢y + cos 82

_ d qegm =27 smecos(px+smHsm(py+cosez]cose }r sin #d&d pdr
Ly =t [T A %
r(r +d —2rdcos€)

rw{sm@cos@cosq)x+sm0cos@smgoy+(cos 0-1)2 }rzsinededgodr

5 _ dqegm p=2r
o I I I r(r2+d2—2rdcose)é

Now note that: Fjﬂ{ }COS¢d¢=I¢=02”{ }singde
9= p=
=27 =27 R
={ }'[::0 c03¢>d¢:j:zo { }sinpdp=0

p=27 =27
={ }(=sing) ;" ={ }(cosp)[ " =0
Thus, the integrals over the ¢ -variable for both the X and ¥y terms explicitly vanish,

= X-and Y - components of éM both vanish due to manifest axial/azimuthal symmetry
(rotational invariance) of this problem about the Z -axis; only the Z-term remains:

_ x 29-1)2
2, = dqegmr’zj J (cos )2

Now: 1=sin’@+cos’d = -—sin 0:(00520—1)

r’drsin9déad e

r 2 1d%-2rd cos@)/

——
By =+ Fe= e d qegm J.w i Ig ° I sin” 0z 7 r’drsin@dade
+d2—2rd0050)

Let’s do the ¢ -integral first - (trivial), since integrand has no explicit ¢ -dependence, get:

» ——
£, = o0 qegm Ie ° J' j sin” 0z 7 r?drsin 0do
r?+d?-2rd cos@) 2

Next, let’s do the r-integral — noting that:

=00

J-r:oo ridr [ rdr _ (FCOSH—d)
0 r(r2+d2—2rdcos¢9)% 0 (r2+d2—2rdc05<9)% d(l—COSZQ)\/r2+d2—

cosd .4 _ (l+cos®) (Lreos) 1
d(1-cos’0) d (L1-cos’)d | d(i-cos’6) d(1+eesd)(1-cosd) d(1-cosd)

10 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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N>

S yoﬂ(qegmj sin®6do £.0.9, J-e—nsinzesin 6do,

- = 0=0 g (1-cosd) “ g oo (1-cos8)

Finally, let’s do the @-integral:
Let u=cosé and du=d cosé =-sindd@d, and sin>d =1—cos*d =1—u?
For =0=u=+landfor d=r=u=-1

_ w1 (1-U%)du
en: 4L, :+ﬂ°g;gm u_l( (1_3) 7| but: |1-u®=(1-u)(1+u)

—
=

PRRPTTN T R

u=+1
éM — ;uogﬂ-gm |:U+ > u :lz — luoqegm [2]2: ,quegm 2

87 Ar

u=-1

’L)_I;M = +(f_;_j qegmi (kg-mz/SeC)

Note that the EM field angular momentum associated with the electric charge-magnetic monopole
system is independent of the g, — g,, separation distance, d !!!

Quantum mechanically L’EM is guantized in integer (or even half-integer) units of 7=h/27,
where h = Planck’s constant,

e |4u|= =245 qg,| = [q, 1, =20
27 A

However, recall the Dirac Quantization Condition (P435 Lecture Notes 18) which arose from
insisting on the single-valued nature of the electron’s wavefunction circling/orbiting a {presumed}
heavy magnetic monopole:

e . . . .
e 1,0, = gngZ =nh (Sl units) | Dirac Quantization Condition

0

These two formulae agree if 2/=n or /=n/2, thusifn=123,... then /=1,12,2... and

|8y |=th=4n1n30,20... 52 [ﬂ"jqegm (kg-m* /sec)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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The EM Field Energy Density u,, , Poynting’s Vector S, Linear Momentum Density Pem

and Angular Momentum Density /., Associated with a Point Electric Charge g,
and a Point/Pure Magnetic Dipole Moment m=mz

n.b. This is {again} a static problem — has no time dependence!

1) This time, we locate the point charge g, at d = d? : E(F):(41 ]%F':[Arl j%r’
— e, e,

2) We locate the pure/point magnetic dipole moment m =mzZ at the origin:

= Y7, m Y oave o 87\ . 3/ . .

B(r)=| == |q—|3(Mer)r—m|—{ — [MJ”(F)|<— in coordinate-free form
()={ 2 B3 Latmer)e-m]-( 5 Jmar (1) e in coor

r

B(T) =(&j{m3(2cost9f+sin eé)—(%jma?’(r)} <— in spherical coordinates

P (F) = observation/field point

Vectorially:
[F =rf|, [F'=rF]and|m=m2Z
F-f=d=d?
r=r-d=r-d?
y r-7|=d
% Law of cosines: r'>=r?>+d?—2rd cos®

r/:\/rz +d2—2rd cosé :|rl|

oo (12 Lar(r) | = L o E(FLE(F)s L B(F1E(F
Ugy (F) Z[EOE (r)+ﬂ0 B (r)]_ 2(goE(r) E(r)+ﬂo B(F) B(r)J
2 2 2|
Uem (F):E 50[ - ] 3% 2+i(ij m_6 4cos” O +sin’ @
2 Arg, ) (r*+d®-2rdcos@) Ho\47) | T reotton)

—ZT—:(%{](Z cos Of +sin Hé)o(cos Of —sin & A)53 (F)+ (8?”}2 m? (53 (r))2 }}

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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=3cos? 9-1

2 2 2r 2
uEM(f):l &, 1 % 2+i(ij m—6(3coszt9+1)
2 Arg, ) (r*+d®-2rdcos@) Ho\47) [T
2 2
—1%[%(200329—3in20)53(r)+[8§j m2(53(r))2

2
Uy (F) =216, [ -1
= 2 ’ 47[80 (r2+d2

_16Tﬂm_32(3(3052 (9—1)53 (F)'i‘(%jz m? (53 (F))z}}

r

qj l /uo ’ m2 2
5 +—| 22| | =(3cos® 0+1)
—2rd cos&) Az ) | r

Uy (F) = [ % L
= 327° |\ &, [r2+d2—2rdcos6q2

+u (T—:j{(%osz <9+1)—1GT” r*(3cos® 0-1)5%(

il
N—
+
7\
| o]
3
N
N
-
D
—_—~~
S,
w
—

!
N—
N—

N
| I |
;_\/_J

nb. If r>d (ord=0) thenforr>0:

S(7)=-(E(F)<B(F))

Poynting’s Vector:
H,

S(F)=

A eoomrmn()mec
38 mr w520

but: |F'=F-d=F-di=rf—d? MA=I¢COSH—HASin9 then:
F’x(2c056f+sin¢9§):(rf—di)x(2c056f+sineé)
=2rcosé (t +rsin@(fx0)-2dcosd(ixi)—dsind(ixo
(£ - rsinop) 28 coso ) -dsino 17
-0 =+ =+sin6p =+C0s69p
=(rsing—2dsin@cosf—dsinfcosd)p=(rsind—3dsindcosd)p
Fx2=(rf-dZ)x2=r(Fx2)-d(2x7 )=r(Fx2)
and: :rfx(fcos&—ésin@):r(f»/r)cose—r(?xé)sinez—rsin%
—
e

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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In spherical coordinates:

A

Fx0=+¢|and|Z = COSOF —sin 60
(cosef—sineé)xf

—COSHM—smH( ) +sin 6p

A

Zxfr

:—§0
Axéz(cosef—sineé)xé
_cosﬁ rxH —sind =+C0S O
= =0
= 1 g.m . dsi 87\ 4 . 3721 |
S(r):167z25 pm (rsing—3dsin&cosd)+ =) sings°(7) |@

=167izgo (%){(r wcasd)r (83 )r o )}m%

But: r'=+/r2+d2—2rd cos®

{(r—3dcos¢9)+(&[jr453(r)}
- 1 3 A (Wattsj
3 sin Op >

S(F)=z——(am)
167°, r*(r®+d*-2rd 0036)4

Note that:
1) S(F)points in the +¢-direction!!!

2.) S(¥)vanishes (for r > 0) when: (1-3(<)cosg)=01!!
I.e. when: cosé = %(%) =4 <«—equation for a line-curve (corresponds to a surface in ¢ !!)
3.) S(F) also vanishes (for r > 0) when: sin@=0 ie.at =0 and &=z ie. @ N/S poles!

4.) Note also that {here} S( ) does not vanish when d = 0 (i.e. when point electric charge
d, and point magnetic dipole moment m = mzare on top of/coincident with each other!!

5) Forr>d (or d=0,withr>0): [S(F)= 1 (qemjsine([) (Watts}

167°¢,\ r® m’

EM Field Linear Momentum Density: |©¢, ()= &,4,S (T)

r 3d cos6) + (S:fjr“ 5%?)}

16 e 3 sin Op ( 2kg j
r 2 4+d?-2rd cos@) m--Sec

—

$em (F) o:uos(

Same comments made above for S F apply here for g, ( )

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources Il Fall Semester, 2011 Lect. Notes 3 Prof. Steven Errede

— N

EM Field Angular Momentum Density: | /¢, (F)=F x @, (F)| where F =rf and fxp=-6
Very Useful Table:

{(r—3d0030)+(8”jr453(F)} FxO=+p | OxF=—¢
Tey (F)==£2(q,m) & g [sin 00| | Gxp=+t | Gxb=-7
16z r?(r®+d*-2rd cos6) oxieid | Fxp0

- —0 direction for  0<6 < 7/2
Note that for 0 <r/3d <|cosé)| that 7, (F)pointsin:4 . d
+0 direction for z/2<6<x

Energy in EM Field:

u—ju(r)d—qu—e2 L
T TR & [r2+d2—2rdcos0]2

+ﬂO(T2]{(3cos 9+1)—12 (300326—1)53(f)+(8?”j2r6(53(F))2}dr

Ugy = (E diverges at r=d, B diverges at f:O) dz =r’drsinodode

Power in EM Field crossing/passing through enclosing surface S: |P;, = CJS )eda =0

because |dd = daf = daf | but S points in the ¢-direction. = EM energy circulates within volume
v, enclosed by surface S !

Total Linear Momentum in EM Field:

{(r —3d cos 6’)+(8§j r*s® (r)}

; sinfpdzr
r*(r®+d*-2rd cos@)é

pM:IV@EM(F)dT 167 2(qe )j

Carrying out the 3-D volume integral is ~ tedious. We do not explicitly wade through this
here. The contributions from each of the 3 terms associated with the numerator in the integrand
are a.) finite, b.) logarithmically-divergent, and c.) zero respectively. Thus p,, = here, and

also note that each of these 3 terms is proportional to E (qe ) which is strongly divergent as

the electric charge g, — point/pure magnetic dipole m separation distance d — 0.

Note again that cﬁ SOEM da 0|i.e. EM field linear momentum circulates in ¢ -direction.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Total Angular Momentum in EM Field:

{(r —3d c030)+(8§j r453(f)}

‘EE = z r dT:_ qe
M '[V o () 167 2( )'[V rz(r2+d2—2rdc059)%

sin@ddr

[(r —3d cos¢9)+(8§j r*s® (F)}

—_ /uo ( / HJ N
—°—(g,m) drsin®@déde 0
167° J-V ;/2/(r2 +d?-2rd 0039)%

{(r—SdcosH){iﬂr“f(F)}
)j > drsin?0d@de 0| |dr =r’drsingdode
(r*+d*-2rdcos6)”

Loy = 16 2(qe

sin@f =rcosf—17

We again choose to work this out in Cartesian coordinates, so
(r—3d c050)+[8§) r‘s®(r)

Loy = a.m)| -
" 16”( )IV (r2+d2—2rdcose)%

=[Fcos&—17]drsinodode

Then f =sin & coseX+sindsin ¢y +cosd7 , thus:
[ cos6—2]sin @ = sin @ cos O cos pX +sin O cos Osin o +cos® 02— 7 |sin @

=sin” @ cos @ cos X +sin” @ cos @sin ¢y +sin @ cos” 87 —sin H7
=sin’ 6c0s 0.cos pX +sin’ O cos dsin p§ —sin O(1-cos’ 4) 2
=sin® @ cos @ cos X +sin® @cos dsin gy —sin® 67
Again, the integrals for the X and ycomponents of EEM will contribute nothing when the

integrals of j cos pdgand j sm opd g are carried out — only the Z term survives the

Q- mtegratlon.

) {(F—Bd cose)+(8:]r453(F)}

Loy —+— (g.m drsin®0d6 2
J. J. (r2+d2—2rdcose)%

Carrying out the remainder of the integration is ~ somewhat tedious, so we don’t explicitly

wade through this here, but interestingly enough, it yields a finite result (for d >0)
— point magnetic dipole

L., = - (qe )[4—7]Z]|, which diverges as the electric charge g,
moment m separation distance d — 0, which coincides with that of a real/physical electron
en

—i.e. a point electric charge —e with point magnetic dipole moment of magnitude |z = o |
e

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The main purpose of the above example, aside from its instructional use as academic exercise to
illustrate a simple static electromagnetic system in which energy, linear momentum and angular
momentum are all involved, is also to emphasize/underscore the important point that real/physical
electrons simultaneously have both a point electric charge and a point magnetic dipole moment —
both of which are necessary ingredients in order to be able to transfer {apparently} arbitrarily large
amounts of energy, linear and angular momentum to other such particles via the electromagnetic
interaction. Without the simultaneous presence of both an electric charge and a magnetic dipole
moment, transfer of linear & angular momentum could not occur!

It is not surprising that “classical” macroscopic electrodynamics “fails” here to correctly
quantitatively explain the physics operative at the microscopic scale — the domain of quantum
mechanics (and beyond — i.e. the structure of space-time itself at the smallest distance scales).

Despite more than 100 years of collective effort, since explicit discovery the electron by
J.J. Thompson in 1897, and the discovery of electron spin and the electron’s magnetic dipole
moment by first observed experimentally by O. Stern & W. Gerlach in 1922 and subsequently
explained theoretically by W. Pauli and S. Goudsmit and G. Uhlenbeck in 1925, today, we still
have gained no fundamental insight as to what precisely electric charge is, nor do we understand
the physics origins of intrinsic spin angular momentum (associated with either spin-% fermions
{and the accompanying Pauli exclusion “principle”} or integer spin bosons, such as the photon
{and their accompanying “gregarious” nature at the quantum level — the opposite of that for
fermions!}, nor any fundamental explanation of the existence of the intrinsic magnetic dipole
moment(s) associated with all of the fundamental, point-like electrically-charged particles — three

generations of integer-charged point-like leptons (e, x,7)and six point-like quarks +2/3:(u,c,t)
and —1/3:(d,s,b). Note that the W *boson — the spin-1 electrically-charged mediator of the weak

interactions also has a magnetic dipole moment, as well as an electric quadrupole moment. These
same fundamental particles also interact via the weak interaction and thus have weak charges and
weak magnetic moments {the W * boson also additionally has a weak quadrupole moment}. The
spin-¥2 quarks additionally interact via the strong interactions, and hence have strong “chromo-
electric” charges (“red”, “green” & “blue”) as well as strong *“chromo-magnetic” dipole moments.

Thus, point “charge” and point magnetic dipole moments, etc. associated with the all of the
fundamental particles we know and love transcends each of the individual forces, and in fact
points to/hints at a single common explanation. We do know that intrinsic spin and the
accompanying magnetic dipole moments of these particles are indeed manifestly fully-relativistic
phenomena, and thus “hint” at an explanation operative only at the smallest conceivable distance
scale, where the quantum behavior of space-time itself becomes manifest — i.e. the so-called

Planck distance scale, also known as the Planck length: L, = /%G, /c® =1.61624x10"* meters,

with corresponding Planck time t, = L, /c = \/#G,, /c® =5.39056 x10 *seconds! It may seem

surprising that Newton’s gravitational constantG,, enters here — however, Einstein’s general

theory of relativity tells us that there is an intrinsic link between the gravitational “force” as we
understand it macroscopically in the every-day world and the curvature of space-time!
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