UIUC Physics 436 EM Fields & Sources 11 Fall

Semester, 2011 Lect. Notes 5

LECTURE NOTES 5
ELECTROMAGNETIC WAVES IN VACUUM

THE WAVE EQUATION FOR EAND B

In regions of free space (i.e. the vacuum), where no electric charges, no electric currents and

Prof. Steven Errede

no matter of any kind are present, Maxwell’s equations (in differential form) are:

1) 2)

3) 4)
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These are three-dimensional de-coupled wave equations for £ and B - note that they have
exactly the same structure — both are linear, homogeneous, 2" order differential equations.

Remember that each of the above equations is explicitly dependent on space and time,

ie. EzE(F,t) and E:E(F,t):

L 1 &E(F1)
V’E =—
(V,t) CZ 812
or:
- 1 0E(F1)
V?E(F,t)- —=0
(V t) C2 atZ

o 18B(F.1)
V’B =—
(l",t) c2 at2
- 1 O*B(7.t)
V?B(7,t)- =0
(l" ) c atZ

Thus, Maxwell’s equations implies that empty space — the vacuum {which is not empty, at the

microscopic scale} — supports the propagation of {macroscopic} electromagnetic waves, which

propagate at the speed of light {in vacuum}:
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EM waves have associated with them a frequency fand wavelength A, related to each other
via ¢ = f 4. At the microscopic level, EM waves consist of large numbers of {massless} real

photons, each carrying energy

angular momentum

\Z\ 1%

E=hf =hc/A

where 4= Planck’s constant = 6.626x107* Joule-sec and

, linear momentum |p|=h/A =hf /c=E/c and

h=h/2x|

EM waves can have any frequency/any wavelength — the continuum of EM waves over the
frequency region 0 < f <o (c.p.s. or Hertz {aka Hz}), or equivalently, over the wavelength
region 0 < A <o (m) is known as the electromagnetic spectrum, which has been divided up
(for convenience) into eight bands as shown in the figure below (kindly provided by Prof. Louis
E. Keiner, of Coastal Carolina University, Conway, SC):
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Monochromatic EM Plane Waves:

Monochromatic EM plane waves propagating in free space/the vacuum are sinusoidal EM
plane waves consisting of a single frequency /', wavelength A =c¢/ 1, angular frequency

o =2x f and wavenumber k =27/A. They propagate with speed ¢ = f1=aw/k .

In the visible region of the EM spectrum {~380 nm (violet) < 4 < ~ 780 nm (red)}, EM light
waves (consisting of real photons) of a given frequency / wavelength are perceived by the human
eye as having a specific, single color. Hence we call such single-frequency, sinusoidal EM
waves mono-chromatic.

EM waves that propagate e.g. in the+Z direction but which additionally have no explicit x- or
y-dependence are known as plane waves, because for a given time, ¢ the wave front(s) of the EM
wave lie in a plane which is L to the Z -axis, as shown in the figure below:

/ The planar wavefront associated

<= with a plane EM wave propagating in
the +Z direction lies in the x-y plane.

v
N>

Note that there also exist spherical EM waves — e.g. emitted from a point source
(e.g. an atom) or a small antenna — the wavefronts associated with these EM waves are spherical,

and thus do not lie in a plane 1 to the direction of propagation of the EM wave:
~

S

{\
Po(N T = Portion of a spherical wavefront
S iated with a spherical
of & #1 | 4”_7/ assoclated with a spherical wave
RADLATIS

n.b. If the point source is infinitely far away from observer, then a spherical wave — plane wave
in this limit, (the radius of curvature — 0); a spherical surface becomes planar as Rc — .

Criterion for a plane wave: |4 < R,

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 3
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Monochromatic plane waves associated with £ and B

i(kz—wt)

‘E(z, 1) :ﬂgoei(kz_”t) z,t) = g’&e

%(_)
Propagating in
+Z direction

A=y

Propagating in
+Z direction

n.b. complex vectors: n.b. complex vectors:

eg. |E =Ee°x e.g. §0 =Be’j

o o

n.b. The real, physical (instantaneous) fields are:

E(F,t)zRe(E(?,t))

Very important
to keep in mind!!

B(7.1)=Re(B(7.1))

Note that Maxwell’s equations for free space impose additional constraints on Eo and l§0 .

— Not just any 1::“0 and/or éo is acceptable / allowed !!!

Since: VeE =0 and: VB
Re(%

In Cartesian coordinates: V= 9 X+ 9 y+ 9 z
ox oy 0z
Thus: (?ol??) =0 and (ﬁoﬁ) =0 become:
94425, -(Eoe"“z-m)) 0 and | Zp+ 2949 -(ﬁoe“’”‘”’”) 0
ox oy oz ox oy oz

Now suppose we do allow: l?fo = (EOX)% +E, y+ Euzé)e’5 Eé”

polarization in 2~ -2 (3-D)

B,=(B,%+B,5+B,2)e"

|

n 6
Be

polarization in £—y—-Z (3-D)

Then: ££+i)‘;+£2 '(onﬂEg )";+E022)eiéei(kz—a)t) ~0
ox oy Oz ”
££+£)3+£2 .(Bov)%—i_Ba )’}_l_Bozé)eié'ei(kz—wt):O
ox oy~ Oz ’ 4
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ox oy Oz

[ﬁfﬁﬁ+32]-(%&+Euyﬁ+Euzé)e"<kz-wf>ew o

ox Oy

s 2)7 + O (Bx +B, y+ Bozé)e"("“”’)ei‘s =0
Oz ’ g

directions respectively.

Eo, Eoy, Eo, = Amplitudes (constants) of the electric field components in x, y, z

Box, Boy, Bo; = Amplitudes (constants) of the magnetic field components in x, y, z

We see that:

And:

And:

However:

Thus:

directions respectively.

0 )%-on)%ei(kz_[”’)ei‘s =0
ox

ij}.E Jf}e[(szw[)eié‘ — 0
%y

oy

A A ilkz—wt i
2B,z =0

Oox

ij}.B )f}ei(kz—a)t)etﬁ — 0
9

oy

%(eaz):aeaz

< has no explicit x-dependence

«— has no explicit y-dependence

< has no explicit x-dependence

<« has no explicit y-dependence

154

A A i(kz—ot) i . i(kz—at) i
2eE,_2¢" e = jkE_e"* e =0

< trueiff |[E_=

4

A A d(kz— j . i(kz— j
2eB 2" = ikE, ¢ =0

< trueiff |B_=

m

m

e Thus, Maxwell’s equations additionally tell us/impose the restriction that an

electromagnetic plane wave cannot have any component of E or B || to (or anti-|| to)
the propagation direction (in this case here, the Z -direction)

e Another way of stating this is that an EM wave cannot have any longitudinal components
of E and B (i.e. components of E and B lying along the propagation direction).

e Thus, Maxwell’s equations additionally tell us that an EM wave is a purely transverse

wave (at least while it is propagating in free space) — i.e. the components of E and B
must be L to propagation direction.

e The plane of polarization of an EM wave is defined (by convention) to be parallel to E .

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
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Furthermore: Maxwell’s equations impose yet another restriction on the allowed form of
E and B for an EM wave:
ﬁxﬁz—a—B and/or: §x§=%a—E
ot c” Ot
=Re(§x§)=Re _8_B =Re(§xl§)=Re Lz@_
ot c” ot
~ YT ~ ~ Y -
Can only be satisfied V (7,¢) iff:
ﬁxl??:—a—B and/or: §x§=iza—E
ot c” ot
Thus:
_ﬁg/
- 0B
\% - %. z
ot~ Jot

~ ~ =0

_ 10 1 o

\% LX+——L P+ — FE2
R Y

With:
Thus:
Can only be satisfied /
can only be true iff the
x and y relations are

separately / independently
satisfied vV (7,¢)!
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- OF B . OE 0B
ie. VxE: |- yx=—a Lx| = | = _9B, = |ikE, =—iwB,, (1)
Oz Ot 0z Ot e
OF 0B oE. OB
2 p=— L o == = |ikE, =+iwB 2
oz’ a’ oz d ol @
. . | oB 2 0B
VxB: |- yfc=iza LX| = |- y=i2% = |—ikB, =—i2ia)on 3)
0z ¢ ot 0z ¢ Ot ¢
0B, ., 1 0F 0B, 1 0E 1
2= 2 = |——==——2| = |jkB. =——iwE 4
o> & o oz ¢ ot " @
g . () k
From (1): IkE,, =—i®B,, = |E, = —(;] B,| or: |B, = —(—j E,
@
e . [ k
From (2): IkE, =+iwB,, = |E, = +(—jB or: |B = +(—jE
[¢ ox k oy oy W ox
) . 1 1o
From (3): —ikB,, = —c—zla)on = |B, = +C—2 T E
From (4):  |ikB, ———iwE | = |B.———(2]|E
. ox 02 oy ox cz k oy

Now: c=fﬁ=(2”f)(%j:(%j

- = 1
"~ VXE: (1) B,=——FE,
c
1 .
(2) B, =+—E, Maxwell’s Equations also
< have some redundancy
VxB (3) B, = +l E,_ encrypted into them!
c
1
(4) Box = __Eoy
c
. : 1
So we really / actually only have two independent relations: |B,, =——E
rul Cx
But: IxPp=—X
XXp=z PXX=-Z
Very Useful Table: | yxz=x ZXP=—X
ZXX=p XXZ=—Y

.. We can write the above two relations succinctly/compactly with one relation: E{,

2

1
and |B, =+—FE,
yul . 4
IXX=+)
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Physically, the mathematical relation | B, = —(Z X (,) states that £ and B are:

a.) in phase with each other.
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b.) mutually perpendicular to each other - i.e. (E 1B ) 1z (z = propagation direction)

The E and B fields associated with this monochromatic plane EM wave are purely transverse
{ n.b. this is as also required by relativity at the microscopic level — for the extreme relativistic
particles — the (massless) real photons traveling at the speed of light ¢ that make up the

macroscopic monochromatic plane EM wave.}

The real amplitudes of E and B are {also} related to each other by: |B, =—E

with |B, =\/B..+B. | and |E, =\/E. +E.

Griffiths Example 9.2:

A monochromatic (single-frequency) plane EM wave that is plane polarized/linearly polarized in

the +x direction and is propagating in the +Z direction, has:

= 1 =y 1 1 1
B:— 5 = — 5 v = — Z < = — .
c(sz) c(szx) cE (zxx) cEy
=+ by right-
hand rule
. = 1/, = 1 1
With: |B=—((xE), |B=—E| and |B,=—E,
c c c

Then: E(Z,t) _ Eoei(kz—wt)fc _ Euei(kz—mt)eié)fe — Eoei(kz—wtﬁ))ﬂc

5 (Z,l‘) — Bﬁoei(kz—wt))ﬂj — Boei(kkwt)eib‘):’ — Boei(kz—wt+5)j>

E = E X| < definition of linearly polarized EM wave in the +x direction.

e =cos@+isind

The physical (instantaneous) electric and magnetic fields are given by the following expressions:

real

imaginary

E(z,t):Re(E(z,t)):Re E, cos(kz—wt+6)5+iE, sin(kz—wt +6) %

The physical

E(z,t)=E,cos(kz—wt+6)}|«<—w | (instantancous)

E and B fields

real

imaginary

are in-phase

B(z,t)= Re(ﬁ(z,t)) =Re< B, cos(kz—wt+8)p+iB, sin(kz—wt+5)p with each other

for a linearly

C

B(z,t)=B, cos(kz—a)t+5)j/:lE0 cos(kz—awt+65)p

polarized EM

wave

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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o~
+Z2=
% E A D,';Réma“ OF PROMAGATION OF EM
=X —_— NE WNE, @ Vpae = C.2
POLARZATEN A\ B —~ s e e - e e 2 TINEWNE, @Npep
DiRecrienN 5 g
= 1 7 7 T T 7 / s
7 ] E-J/SV EXB

EX
/{/:/:’,////{/ .. [ ll, ¥ ,///, ,Zf | l ";/,- Mo

Instantaneous Poynting’s Vector for a linearly polarized EM wave:

§(z,t):ﬂiaﬁ(z,t)xé(z,t):iRe{é(z,z)}xRe{é(z,z)}

S(z,t) :LEOBO cos’ (kz—awt+5)(%x p)
H, —

=z

S(ea)=LE g oo (e-orvs)z (Vo)
H,

m

= EM Power flows in the direction of propagation of the EM wave (here, the +Z direction)

Generalization for Propagation of Monochromatic
Plane EM Waves in an Arbitrary Direction

Obviously, there is nothing special / profound with regard to plane EM waves propagating in
a specific direction in free space / the vacuum. They can propagate in any direction. We can
easily generalize the mathematical description for monochromatic plane EM waves traveling in
an arbitrary direction as follows:

Introduce the notion / concept of a wave vector (or propagation vector) k which points in the

direction of propagation, whose magnitude ‘lg ‘ =k . Then the scalar product ko is the

appropriate generalization of kz:

If: k = kz with ‘l;‘zk and 7 =xxX+ yy+zz with |17| =r=yx"+y +2°

Then: (K+7)=kes(xk+ )9 +22) = kz

It k=kg+k k2 with €= Jk2+ k] 4k and F = xt+ i+ 22 with 7= \x* + 2+ 2
Then: (k+F)=kx+k,y+k.z

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Now: k. =kcosO,

k,=kcosO, where cos® , cos 0, cos®_ = direction cosines w.r.t.

k. =kcos®_ | (withrespect to) the X, y, Z -axes respectively
— cos® =sinfcose
Direction . . . . .
Cosines: cos®, =sinfsing ~ in spherical-polar coordinates
cos®_ =cosd %
/\.
Note: \/cosz ©, +cos’ O, +cos’ O, i
. .2 2 : 2 =2 2 @
=4/sin” @cos” @+sin” @sin” ¢ +cos” ¢ @3
3 A~
=+/sin” @+cos’ O =1 Y
Ex
v—'."/'
AL
X

If eg. k|| 7 then: keF =kr. We explicitly demonstrate this in spherical polar coordinates:

k. =kcos® =ksinfcos¢p x=rcos®_ =rsinfcosp
For k || 7: k,=kcos® , =ksinOsingp and: y=rcos® =rsinfsing
k. =kcos®, =kcosd z=rcos®, =rcosd

Then: (/;-;7) =kx+k,y+k.z=kxcos®, +kycos® +kzcos®,
=krcos’ @, +krcos’ O, +krcos’ O,
= krsin® @ cos’ @ + krsin® @sin® ¢+ kr cos” 6
= kr{sin2 O cos’ @ +sin’ @sin” @ + cos’ 6’} = kr{sin2 H(cos2 @ +sin’ (p) +cos’ 0}

= kr{sin2 6+ cos’ 6’} =kr

Thus, most generally, we can write the E (7,t) and B (7,) -fields as:

E(F,t)= Noel(k.H”) n where: 7 =polarization vector | L k
E(F,t) = ~oei<k'F_M) (lgx fz) i.e. |Ask =0|because E is transverse
= 1~ =
B=—kxE
c

We must have: Z§(f,t)L§(f,t)Lk ie. EB=0 and Eeb=0 and Bk =0

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.
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The Direction of Propagation of a Monochromatic Plane EM Wave: k

g‘ The Real/Physical (Instantaneous) EM Fields are:

A A
Axn,
.S =

/-@z E(F,t)=Re(E(F,t))=EO cos(EoF—wt+5)ﬁ

where: 7 = polarization vector (|| E )

B(F,t)= Re(g(F,t)) =B, cos(E-f—wt+5)(/€xﬁ)

1
(B = —on in free space

Instantaneous Energy & Linear Momentum & Angular Momentum in EM Waves

Instantaneous Energy Density Associated with an EM Wave:

o () =3 2 ()L ) |t () 1 (0
H,
where: [ty (7o) =~ &, (F,1)| and [t (7.1) = —— B? (Ft) =~ 2, B (7.1)
. elect 2 o mag 2/,!0 2 o
> 1, i 1
But: |B =C—2E for EM waves in vacuum, and ?=€O,UO

Thus: uEM(F,t)=%[€0E2(F,t)+8;//‘{EZ(F,t) :%(80E2(;7,t)+80E2(;7,t))

Or: Upy (F,t) =¢ E’ (77,1) = ¢ E’ cos’ (lgof—a)t+5) (Joulesj

m3

N L7 (77 N ) = Uy (17 3 ) for EM waves propagating in the vacuum !!!!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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with an EM Wave:

(7.1) = B (7.0)x B(

S F,t):LRe

{Ig(z,t)}

H, H,

Watts

2
m

xRe{g’(z,t)} (

J

For a linearly polarized monochromatic plane EM wave propagating in the vacuum, e.g.:

Then:

Thus:

Hence:

Thus:

But:

E(¥,t)=E,cos(kz—awt+5)%| and: |B(F,t)=B,cos(kz—awt+35)7
S(7,t)= LEOBO cos’ (kz—wt+06)Z| but: |B, :lEO for EM waves in vacuum.
4, c
S(7.t) =LE3 cos’ (kz—wt + ) 2| «— multiply RHS by lz(fj
e ¢
S’(F,t)zc(luocZ]Ef cos’ (kz—wt+5)Z| but: c%zgo,uo

c@f

JE; cos’ (kz—wt+8)Z =ce,

E:cos’ (kz—wt+6)Z

gy (F,t)=¢,E*(F,t)=¢,E; cos’ (kz—wt +5)

S (7.t)=cupy, (7,1)2

Here, in this example, the p

= Poynting’s Vector = Energy Density * (Energy) Propagation Velocity:

ropagation velocity of energy:

S(F,t)=ug, (F,1)V,,,

Instantaneous Linear Momentum Density Associated with an EM Wave:

kg

1
2

C

S(7,t)

SZEM (?at) = goluog(?,t)

[

l’Il2 -S€C

J

For linearly polarized monochromatic plane EM waves propagating in the vacuum:

But:

D ar :Lz/goEj 0052(kz—a)t+5)2:lguEu2 cos’ (kz—awt+6)z
C C

SUpm

up, (F.t)=¢,E*(F,t)=¢,E. cos’ (kz—awt +6)

1 1

2
C

SZEM(?’t):goluoS;(F’t)z g(?’t)z

C

—uy, (F,1)2

m’-sec

)

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Instantaneous Anqular Momentum Density Associated with an EM wave:

Copy (7P,1) =7 %P (F.1) ( kg j

m-S€cC

C

- - = 1 -, 1 . A
But: SOEM(V,t)=50ﬂ0S(V,t):—2S(r,t)=ZUEM(V,f)z( zkg j

.. for an EM wave propagating in the+Z direction:

P () =i xS (70 = tu (R (x| (K
KEM(r,l):c_zl’xS(r,t):Z”EM(’”st)(rxz) (m—sgec]

T n.b. depends on the choice of origin

The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing
volume v (containing EM fields in the volume v) is:

P, (t) _ 8U,;A; (t) _ J’V augMagf,f) dr = _Sﬁsg(?’t).da (Watts)

T— n.b. closed surface S enclosing volume v.

The instantaneous EM power crossing an (imaginary) surface (e.g. a 2-D plane — a window!) is:

Py (t)=—[ S(F.t)dd,

The instantaneous total EM energy contained in volume v is: Uy, (l ) = .[VMEM (77 N ) dt | (Joules)

The instantaneous total EM linear momentum contained in the volume v is:

e ()=[Pue ()e] - [2E2)

S€C

The instantaneous total EM angular momentum contained in the volume v is:

B (0= o (71) d (kg'sz

S€C

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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Time-Averaged Quantities Associated with EM Waves:

Frequently, we are not interested in knowing the instantaneous power P(¢), energy / energy density,
Poynting’s vector, linear and angular momentum, etc.- e.g. simply because experimental measurements

Lect. Notes 5
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of these quantities are very often averages over many extremely fast cycles of oscillation...

(e.g. period of oscillation of /ight wave 7, = 1/ Siign =

_r
10" cps

=10"" sec/cycle = 1 femto-sec )

. = We want/need time averaged expressions for each of these quantities (e.g. in order to
compare directly with experimental data) e.g. for monochromatic plane EM light waves:

If we have e.g. a “generic” instantaneous physical quantity of the form:

0(t)=0, cos’ (awt)

The time-average of Q(¢) is defined as:

(o(1))

<Q> = %J:OT Q(t)dt = %j: cos’ (a)t) dt

O(t) = Qcos™(@f) 4

t
The time average of the cos’ (wr) function:
. =7 . .
—J'Tcosz (wr)di :l{LJF sm2wt} _ 1 (T_O)+(sm2a)z' _Oj :L[r+ s1n2an'}
‘ 712 4 =0 27 2w 27 20

But:

and: |f =1/t

Lot =2x(t/t)=2x

. |sin(w7)=sin(27)=0

T

1ee 1 1]
_J'Ocos (a)t)a’t:g[/]ZE s

Thus, the time-averaged quantities associated with an EM wave propagating in free space are:

EM Energy Density: upy (7ot) = (ugy, (.1))| Total EM Energy: U, (t)=(Up, (1))
Poynting’s Vector: S(7.1)=> Sy, (7.1))| EM Power: By (1) = (B, (1))

Linear Momentum Density: |y, (7.1) = (#, (7.¢))| Linear Momentum: |p,, (£)=> (B, (¢))
Angular Momentum Density: |7y, (7,¢) = (7,,, (7.¢))| Angular Momentum: | £,,, (1) = (£, (1))

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For a monochromatic EM plane wave propagating in free space / vacuum in Z direction:

4 .
Time — <uEM (r,t)> = %%Ef (Jorlrlllsesj
averaged = . Wait
quantities for <S(77,t)> :EcgoEff — C<”EM (F,t)>2 ( a2 s)
EM plane < m
ave N _ 1 . 1 /= 1 R
progagating <SOEM (”af)> = —801502 = c—2<S(r,t)> = ;<uEM (r,t)>z (mk-iec)
in the+2
direction <€EM (F’t» :(FX<‘(;‘)EM (F’t)>) :Ciz(?x<§(’7’t)>) :%<”EM (F’t)>(fX2) (ml—(sgecj
N

We define the intensity I associated with an EM wave as the time average of the magnitude of
Poynting’s vector:

Intensity of an EM wave: |1 (7)= <S(17,t)> = <‘§(’7J)‘> = C<”EM (F’t)> = %CEUEUZ (Wa‘;tsj

m

The intensity of an EM wave is also known as the irradiance of the EM wave — it is the radiant
power incident per unit area upon a surface.

When working with time-averaged quantities such as <uEM (F,t)>, <§(77,t)> , <55EM (F,t)> ,

<_l; o (7 t)>, etc. it is convenient/useful to define the so-called root-mean-square (= RMS)

values of the E and B electric and magnetic field amplitudes (using the mathematical definition
of RMS from probability and statistics):

For a monochromatic (i.e. single frequency, sinusoidally-varying) EM wave (only):

E

rms

o
y
A

1l

E, =0.707E,

>of!

y
o)
Il

B

-6~

B, =0.707B,

rms

Where: E, = peak (i.e. max) value of the E -field = amplitude of the E -field.
B, = peak (i.e. max) value of the B -field = amplitude of the B -field.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Thus we see that;:

o (L) Taa s s (L) s) 1sa
EVWS.E””’S: —=E | —=E |=7EF d Brms.Brms: = —B |=—B-B
ok i i i 0730 A
1

i.e. that: E.. =%E2 =%E12yeak = Ea2 =%E§ and B>, =%B2 =5 ieak — BO2 =%B§
[
o e e
For mono- < Qrms (t)> = %<§(I)> - %C<MEM (t)>2 - C<ug‘l’ls (t)>2 (“jjztsj
chromatic — 1 — - )
Ez\vfa%l:;le < <gz);7;(t)>=g<s(t)>=2—c<uw (z)>2=6—2<sm(r)>=z<u;’;;(t)>2 (mz_gsec)
(only): = = — T
(72 (0) =3 7(Bon (1)) = 7 (75 () == (7 (S, (1) ==z () x2) (m-sgeJ
e =l = {5 ) 1= (B0 = el () =5 e, 22 ("Vljﬁts

Real world example: 120 Vac/60 Hz “wall power” refers to the RMS AC voltage!
The peak voltage (i.e. voltage amplitude) is V. = V2V =42-120=169.7 =170.0 Volts.

rms

n.b. For EM waves # sinusoidal waves, the root-mean-square (RMS) must be defined properly /
mathematically — e.g. the RMS value of square _I.I"L or triangle AN\ wave
amplitudes (from Fourier analysis these consist of linear combinations of infinite # of harmonics)

1 1 o .
EM «—E E «—E™ (See/refer to probability & statistics reference books!!)

rms \/5 rms \/5

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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2
m

- Newt
Radiation Pressure: P, (M)

When an EM wave impinges (i.e. is incident) on a perfect absorber (e.g. a totally black object
with absorbance {aka absorption coefficient} A4 =1, as “seen” at the frequency of the EM wave),
all of the EM energy (by definition) is absorbed {ultimately winding up as heat...}.

By conservation of energy, linear momentum & angular momentum the object being
irradiated by the incident EM wave acquires energy, linear momentum & angular momentum
from the incident EM wave.

The EM Radiation Pressure acting on a perfect absorber for a normally incident £M wave is
defined as:

Rad ( perfect _
PEM { absorber (A:l)} -

Time-Averaged|F0rce| B <‘F i (¢ )‘> (Newtonsj

1 Unit Area A, m’

However, the time-averaged EM force is defined as:

ey d <]3EM (t)> <A]3EM (t)> time rate of change of the time-
<FEM (t)> - dt - At - averaged linear momentum
APy (E)]) 1
. the EM Radiation Pressure at normal incidence is: P {::Z:e,(/lzl)} = <‘EA+()‘>A_ (NL‘[ZOHSJ
" m

In a time interval A¢z> 7 =1/, the time-averaged magnitude of the EM linear momentum

transfer <‘A13EM (t)D at normal incidence to a perfect absorber of EM radiation is:

<‘AﬁEM (t)‘> - <‘855M (f)‘> AV
7

A
EM Linear momentum density Volume of EM wave associated with time interval At

The volume associated with an EM wave propagating in free space over a time interval At is:

AV = A, -(cAt)| where cAr= distance traveled by the EM wave in the time interval At .

(870 ) 1 {Pen OhAr 1 (P () el

Al A%_ A A A (@ (1))

Rad ( perfect _
PEM {absorber (A=1)} -

Thus, we see that for a monochromatic EM plane wave propagating in free space normally
incident on a perfect absorber (4 = 1):

L L e A ey

m

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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For a perfect reflector (e.g. a perfect mirror, with reflection coefficient (aka reflectance) R = 1
{4 = 0}), note that:

perfect
> absorber

perfect
>,~¢ﬂect0" =2 <‘A]315M (t)

(|ABe (1)

—initial — final = final __ —initial

Since Apyy, = Pry — Dy and poy’ =—pp,“ for an EM wave reflecting off of a perfect

reflector, then A, = B ~ Pl = P + B =254

i.e. an EM wave that reflects off of (i.e. “bounces” off of) a perfect reflector delivers twice
(2x) the momentum kick (i.e. impulse) to the perfect reflector than the same EM wave that is
absorbed by a perfect absorber! Thus at normal incidence:

[P e ey = 2P ) =2( 1) (M]

m

Note that for a partially reflecting surface, with reflection coefficient R < 1, since R+ A4 =1,
the radiation pressure associated with an EM wave propagating in free space and reflecting off of
a _partially reflecting surface at normal incidence is given by:

PR {2 (e = A- PR (I (o) + 2R P {550 (oo} = (4+2R)( ) [—Newi"“sj
m

Since 4 =1 — R, we can equivalently re-write this relation as:

P = (resm) = (4+2R)(1/) = (1= R+2R) (1) = (1+ R)( /) (MJ

m

If the EM wave is not at normal incidence on the absorbing/reflecting surface, but instead
makes a finite angle @ with respect to the unit normal of the surface, these relations need to be

modified, due to the cosine & factor <§ >~ﬁ = <‘§ ‘> cos@ =1 cos@ associated with the flux of EM

energy/momentum <855M (t)>-ﬁ = <‘57JEM (t)D cosf=¢&, 1, <‘§(t)‘>cosé? = }2< §(t)‘>cosé? =Lt 1Icosd

crossing the surface area 4, at a finite angle 6:

Pt {1 (a1} =(1/ )cos 0 (NW—tJ

m

PR (e} =2( 1) cos (—Newi"“s

m

m

Pﬁ‘j{fjgj"w(ama)}=(A+2R)(%)cost9=(1+R)(%)cost9 [NCW—EOHSJ

18  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11

Fall Semester, 2011

Lect. Notes 5

Prof. Steven Errede

Maxwell’s equations (and relativity) for the macroscopic E and B fields associated with an
EM wave propagating in free space mandate / require that £ L B 1 propagation direction

(here = £) {V

prop

= c2} , as shown in the figure below:

%, E

}‘ A '—_j_‘ ~
g 2E 4 Vpmps 2
F=21El¢
;V_f/&.ebs’oa.w,

Compare this
microscopic picture
to that of a classical

/ macroscopic EM
plane wave,
polarized in the
x-hat direction:

Macroscopic EM waves propagating in free space are purely transverse waves, i.e. E L B,
and both of the £ and B fields are also L to the propagation direction of the EM wave,

e.g. V,,, =cz.Thus,

ELlV =c;tand BLV

prop

=cz.

prop

The behavior of the macroscopic E and B fields associated with e.g. a monochromatic EM
plane wave propagating in free space, at the microscopic scale is simply the sum over (i.e. linear
superposition of) the £ and B -field contributions from {large numbers of} individual real
photons making up the EM field.

Each real photon has associated with it, its own E and B field — e.g. a linearly polarized real

photon, polarized in

+x direction:

s A
x}\

E =E, cos(kz—awt+5)%

Photon

>

(+x = polarization direction)

Real Photon Momentum:

z py

»
>

>

B7

<>

=B, cos(kz—awt+5)y

B =

/4

o |~

where the unit wavevector

—//Photon Poynting’s vector:

A

k=+z

{here} and

in vacuum.

=0
Real photon energy: E, =hf =p,c= ‘ ﬁy‘c (Total Relativistic Energy” = Ef = pfc2 + %4 )

Real photon momentum (deBroglie relation):

=1

and ¢c= f4

m,c* =0 for real photon

¢ = speed of light (in vacuum) = 3 x 10° m/sec

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Question: How many real photons per second are emitted e.g. from a 10 mW laser?
(mW = milli-Watt = 10~ Watt)

Answer: Depends on the color (i.e. wavelength 4, frequency £, photon energy) of the laser beam!
E,=hf
When we say 10 mW laser, what precisely does this refer to?

It refers to the time-averaged EM power:

(P

(t)> =10 mW =10x10" Watts = 0.010 Watts (= 0.0lOJoules/sec)
Let’s assume that the laser beam points in the+Z direction.

Also assume that the diameter of the laser beam is D = 1 mm = 0.001 m (typical).
Further assume (for simplicity’s sake): Power flux density = intensity profile /(x,y) is uniform in
x and y over the diameter of the laser beam (not true in real life — laser beams have ~ Gaussian

intensity profiles in x and y (i.e. 1 ( p) =/e” /2ot ); note that there also exist e.g. diffraction

{beam-spreading} effects that should/need to be taken into account...)

I(x,y) = <‘§(x, y,t)‘>

In At =1 second, the time-averaged energy associated with the 10 mW laser beam is:

(AE e (1)) = (P (1))

AE t 0.010 Watts*1 sec

laser

=

0.010 *] sec

AEI

aser

t))=0.0101J oules = Time-averaged energy of laser beam

(AE,, (1)) =
< - (t)> Joules
(B, ()

20 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The {instantaneous} energy of the laser beam crosses an imaginary planar surface thatis L to
the laser beam.

If the laser has red light, e.g. 4rea = 750 nm (n.5. 1 nm = 1 nano-meter = 107 meters)
or if the laser has blue light, e.g. Apye = 400 nm

Since f= c/A the corresponding photon frequencies associated with red and blue laser light are:

8
7 = i _ 3x10 m_g/s =4.0x10" cycles/sec (= Hertz, or Hz)
27 750x10°m
8
fr = /; = :OXOI 01 ’On‘(’{ > =7.5%x10" cycles/sec (= Hertz, or Hz)
X107 m

blue

The energy associated with a single, real photon is: |E, = hf” = hc/ A’ |, where h = Planck’s

constant: 4 = 6.626 x 10* Joule-sec and ¢ = 3 x 10® m/sec (speed of light in vacuum).
Thus, the corresponding photon energies associated with red and blue laser light are:

E =hfl, =hc/A,|and: |EM =hf},, =hc/A,.| since f=cli

E* =hf!, =6.626x107Joule/sec x 4.0x10"/sec =2.6504x10"" Joules| (red light)
E}" = hf;),, =6.626x107 Joule/sec x 7.5x10"/sec =4.9695x10™" Joules | (blue light)

In a time interval of Az =1 sec, the time-averaged energy <AE,[M (t)> = <AN , (t)>Ey where

<AN , (t)> is the {time-averaged} number of photons crossing a | area in the time interval Af.

Thus, the number of red (blue) photons emitted from a red (blue) laser in a A =1sec time
interval is:

re <AElaser (t)> 0010 Joules
#red photons: (AN (1)) = Ef " 2.6504x10 " Joules/photon 37730107
AE t
# blue photons: <AN;””Q (t)> = < r )> 0.010 Joules =2.0123x10"

B T 4.9695x10°") oules/photon

Thus, the {time-averaged} rate of emission of red (blue) photons from a red (blue) laser is:

AN (1
<R;ed(t)>:< 7At()>
blue
(R (1)) = w =2.0123x10'*| blue photons/sec

=3.7730x10'°|red photons/sec

Note: Ina time interval of Az =1 sec, photons (of any color/ A"/ f”/ E,) will travel a distance

of d =cAt= 3x10°m/s x 1s = 3x10%meters

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 21
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If the flux of photons is assumed (for simplicity) to be uniform across the D = 1 mm diameter
laser beam, then the time-averaged flux of photons (#/m”/sec) is:

R (4 3.7730><1016(7 )
<Zred (t)> :< 71 ( )> _ éec — 4.8039x]0% (rede )
Afser (10_31’11} m-/sec
T
2

blue 2.0123x10' (7 )
<R7 (t)> Kec =2.562x% 1022 (blue %nz /sec)

<Zblu€ (f)> = Afser = [103m

2

If each photon has £, Joules of energy, then power associated with red (blue) laser beam:

<Pyred (t%wr =‘<§;ed (t)>‘ =E7red.<;;red (t)> =2.6504x10"" Joules x 4.8039x10* (red%z/sec)

=1.2732x10* Watts/m*

<Pyblue(t%ser =[(81 (1)) = B2 77 (1)) = 4.9695 %10 Joules x 2.5621x10% (blue%n ; /Sec)

=1.2732x10* Watts/m?

Thus we see that;:

<P7red (t%ser _ <pyb1"€ (;%]m _ Kg;ed (t)>‘ _ Kgflue (t)>‘ =1.2732x10* Watts/m*| <10 mW laser

n.b. This is precisely why you shouldn’t look into a laser beam {with your one remaining eye}!!!

Time-averaged linear momentum density:
- re are 1
(@ () = et |[(S ()| ==

C
(@0 ()| = 2.,

<§;€d (t)>‘ :l<u”d (t)>2 =1.4147x10 " kg/m’-sec
c

e

4

(S ()| = L |(5 (t)>‘=%<ubl"e (1))2=1.4147x10 " kg/m’-sec

c

=1.4147x107"3 kg /m?-sec Momentum density, Poyntings vector, energy density are
independent of frequency / wavelength / photon energy

Thus: ||(@7)|=[()

The time-averaged linear momentum contained in Az =1 second’s worth of laser beam:

Time averaged linear momentum: <‘Af77 (t)‘> = momentum density <‘557 (I)D X volume AV

Volume [AV = A/* * (CAAt) (m3)
L Distance light travels in At sec.

22  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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(apy (1)) = (@ (¢) ‘>cAtAl=1.4147><10‘13><3><108><1><7r><(

o.omj2

=3.3333x10"" kg-m/sec

Blue licht momentum:

(|apy () = (|@) (1)) eaea, =1.4147x10° ‘3><3><108><1><7z>{

0.001]2

=3.3333x10"" kg-m/sec

Thus:

<‘A]3red ‘> <‘A]3b’“e D 3.3333x107" kg-m/sec

{*TRICK"}:

The time-averaged energy density <u oy (t)> = time-averaged momentum density <‘55 oy (t)‘> %

(Since photon energy, E, = p,c¢). Thus:

re = re — kg _
(e (1)) = (@ (1)) e =1.4147%10°" [me3x108(m/s)=4.2441x10 * (Joules/m* )
ue — blue - kg _
(' (1)) = (| (1)) e =1.4147%107" (mjx3x108(m/s):4.2441x10 * (Joules/m’
kg-m’ Joule k
Joule = g52 = e :m/iz

The time-averaged energy contained in Atz = 1 second’s worth of laser beam is:

The time-averaged energy <U . (t)> = time-averaged energy density <u7 (t)> *volume AV

AV = A7 *(cAt)

", <U}'/‘ed (l‘)> = <u;ed (Z)>*ALCAt —4.2441x10°° (

Joules
3 * T X
m

[

0.001Y’

T) *3x108*1(m3)

1=0.010Joules = 10mlJ]|

<U}ljlue (l‘)> _ <uflue (t)> * A cAt =4.2441x 107 (

Joules

2
- j*ﬁx(wj #3x10° +1(m’ )
m 2

1=0.010Joules = 10mlJ]|

The time-averaged power in the laser beam:

<

P red

laser

At

Ulaser (t)> — IOmW

<>>=<

laser

<Pblue

(1))

Time-averaged Power (Watts) = @(JOUIG%%)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Note: Pser (laser power) 1s measured by the total time-averaged energy <U (t)> deposited in
(a very accurately) known time interval Az using an absolutely calibrated photodiode (e.g. by NIST).

A typical time interval Az= 10 secs — At > 7 (oscillation period) = 1/ f !!

T = %, =2.500x10"" sec = 2.500 femto-sec = 2.500 fs
red

T, = %, =1.333x10"" sec =1.333 femto-sec =1.333 fs
blue

— The laser power measured is time-averaged power, i.e. <Bm, (t)> = %P,;fi‘;k (7)

Consider (the time-averaged) energy density associated with this 10 mW laser:
(g (1)) = 4244110 (Joulesj

m3

1

Now: (it (1)) = (it (1)) {1t (1)) =5 2, = %uﬁ;k (1)

And because: ‘E (t)‘ = l‘E (t)‘ for EM waves propagating in free space / vacuum ( Lz =g, u,)
c c

We showed that: <ue,m (t)> = <umag (t)>

() =3{ge)|  |EegE-cuE
1|1 1]é& M, 1
<umag (t)>:§{2_1u033}:§{ :}O/Eoz}: {—&‘OE(?}

Now: E, = amplitude of the macroscopic electric field:  |E (z,t)=E, cos(kz—at+6)x

N | —
\9)

B, = amplitude of the macroscopic magnetic field: B (z,t) =B, cos(kz —wt+0 ) hY

Define the RMS (Root-Mean-Square) amplitudes of the £ and B fields:

E, ELEU = |E. =1Eo2
Tms 2 ms 2
1 SR S Bl B
B, =—=B,| = |B, =—B, =—F,|in free space / vacuum
Tm 2 ms 2 2c

Then: <udm (t)> = £ Ez} =—¢ E’ ; (Joules/m®)

1 1 1
{ BZ} B’ ==¢ E2 in free space / vacuum

24  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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So if:

<uelect (t)> + <umag (t)> =2 <uelm (t)>

Then:

=2¢,E} =42441x10"

Thus:

Elaser _
0m15

4.2441x107°Joules/m

o

1 %
—(U., (t)) =
2& < EM( )> {2x8.85x10_12Farads/m}

(Volts/m)

0 Tms

E'™" =1.5485%10° Volts/m =1548.5 Volts/m

Lect. Notes 5

Prof. Steven Errede

in free space / vacuum

Joules/m’

where g, =8.85x107" Farads/m = electric permittivity of free space

(n.b. same for red vs. blue laser light!)

Then: |E* = E™% =2 E™“ =2190 Volts/m [
Then: |B“* = lEé““” =5.1616x10°Tesla(=5.1616x10~ Gauss)
ms C ms

SI (MKS)

1

Thus: Béaser — _Eéaser
C

=2 B =7.2996x10™ Gauss

|
1 Tesla = 10" (%auss

CGS Units

Now earlier (above) we calculated the (time-averaged) number of photons present in the
{red and blue} laser beams that were emitted in a time interval of Az =1 sec.

#red photons emitted in Az =1 sec:

# blue photons emitted in Az =1 sec:

(AN7 (1)) =3.7730x10'°

(AN (1)) =2.0123x10'°

red photons

blue photons

The volume associated with a D = 1 mm diameter laser beam turned on for Ar =1 sec is:

0.001

2 2
AV =4 cAt= 7{%) cAt = ”(TJ 3x10%1=235.6194 m’

The (time-averaged) number density

beam is:

AN, (1))

X

) AN (1)) 3.7730x10'¢
(" (1)) ! G = 2356007 00010
ANblue ¢ 16
<n1y;/ue (t)> _ < LV( )> _ 22(;2262>< 11(())2 —8.5405%10"
_ X

of {red and blue} photons in the laser

red photons/m’

blue photons/m’

Then the (time-averaged) energy density <u v (t)> of the {red and blue} laser beam is:

Red photon energy:
Blue photon energy:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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(ugs (1))

(! (6))E = 1.6009%10"+2.6504x10™" = 4.2442x107 (Joules/m” )

(e (1)) = (e (£)) EL" =8.5405x10"+4.9695x 107" = 4.2442x10~* (Joules/m’

The (time-averaged) energy <U o (t)> = <u oy (t)> * AV of the {red and blue} laser beams is:

(U (6)) = (usg (1)) * AV =4.2442x107 %2.3562x10” =0.010 Joules = 10 mJoules
(U (1)) = (uphs (1)) AV = 4.2442x107° %2.3562x10° =0.010 Joules = 10 mJoules

Now here is something quite interesting: Given that |E, =E, / V2

for a monochromatic EM

wave propagating in free space/the vacuum, with time-averaged EM energy density:

<”EM (t)> = ZEOEfm =g E’ (JOuiesj

m

m

But: <uEM (t)> = <ny (t)> E, (Joul;:sj <ny (t)>= photon number density (#/m’) in laser beam

E =hf, = hc/ A, = energy/photon (Joules)

0o, This formula explicitly connects the amplitudes of the
i < n ( t)> macroscopic £ and B fields (since B, = E, /c ) with the
E = E _ -
Or: 15, 2, 7 microscopic constituents of the E and B fields (i.e. the photons)!!!

n.b. This formula physically says that the number of {real} photons in the EM wave (each of
photon energy E ) is proportional to E’ = the square of the macroscopic electric field amplitude!

We can write this as: <7l > 2¢,E> / E | and note also that:

E, =,|——E| I

Thus, we can now see that the {time-averaged} EM energy density:

<uEM(F,t)>:2goEjm(;7):<ny(17,t)>Ey with: IV<MEM (F,t)>dr:UEM

plays a role analogous to that of the probability density in quantum mechanics:

P(F.t)= < (7, t)|l//rt> ‘l//l’l“ with: J‘P(F,t)drzl

v

Since: <ny (F,t)>:<uEM (F,t)>/Ey :Za‘oEf‘ms (F)/Ey and: jv<n7 (F,t)>dr:<ANy>,

Then: <Py (F,t)>s<ny (F,t)>/<AN >:<t,//y (r t)|t,//y r, t >

"

b, (f

Thus, we also see that the electric field £ (r, t) plays a role analogous to that of the probability

density amplitude y (7,¢) in quantum mechanics!!!
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. . (AN, (1) (AN, ()| ( #
The (real) photon number density in the laser beam is: <ny (t)>— AV ey (Fj
AN (t
Then: 2,E. A,cAt=(AN,(¢))E,| or: |E; =< 3 )>E
™ e AeAt 7
But: <Ry (t)>:< At > = the time averaged rate of photons in laser beam (#/sec)
R
g LB
™ 2e,  Ac
AN (t
<;7;(¢)>:< Ayt( )>/Al :<R;/ (t)> 4, (mﬁ-s]: flux of photons in the laser beam
1 1 Joules
L |E2 = o C<;7;( ))E,| and ((u, (t))=2¢,E, =;<Z(t)>Ey (n, (7.1))E, ( ;3 j

Thus, we see that the {real} photon flux:

(Z(0)=e{n, (7))

Thus, the intensity {aka irradiance} of the laser beam is:

<‘S ‘> c(ug, (1) =26,E;

(Z()E, =e(n (1)E,

Watts

2
m

)

The {time-averaged} <longitudinal separation distance> between photons is defined as:

For Ar=1 sec:

Recall that:
Thus:

(1 nm=10"" m)

cAt
<Ad||(t)>zm (m)
V4
8
<Ad'?‘ed (t)>:37;;1?0?61 —=7.85x10"m ~8x10”"m =8 nm
. X 7 S
8
(A (1)) = XA0M 1 49%10%m ~15%10m = 15 nm
: 2.0123x10°y's

ﬂ;ed =750 nm and /1;’1”" =400 nm

2, > (Ad, (1))

for either red or blue laser light.

The {time-averaged} <transverse separation distance> between photons is defined as:

(ad, (1))
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(o.omj
L[ 9:001
y\ 2 )

(Ad1 (1)) = g 235107 m
. X
(o.oolj2
T2
<Adilue (t)> = m = 440 X 10_201'11
. X
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