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LECTURE NOTES 7.5 
 

Dispersion: The Frequency-Dependence of the Electric Permittivity ( )ε ε ω=  

and the Electric Susceptibility ( )eχ ω : 
 

     Over the entire EM  frequency interval { }0  ,f Hz≤ ≤ ∞  the speed of propagation propv  of 
monochromatic (i.e. single-frequency) EM waves in matter is often not constant, not independent 
of frequency: propv ≠ constant; ( ) ( )frequency,prop propv fcn f v f= = , because matter is composite.  
 
     At the microscopic level, matter is comprised of atoms/molecules – these have resonances in 
energy/energy levels that are governed by the laws of quantum mechanics that are operative at 
the atomic/molecular scale… 
 

If:       ( ) ( )frequency,prop propv fcn f v f= =   but:  ( )propv f f λ=   ⇒   ( )frequency,fcn fλ =  

Thus:  ( ) ( )propv f f fλ=   or, since: 2 fω π≡   and:     2k π λ≡   ⇒   ( ) ( )2k ω π λ ω≡  

Thus:  ( ) ( ) ( ) ( )2 2propv f f kω λ ω π λ ω π ω ω= = =i  

For a monochromatic / single-frequency EM wave  ( ) ( )propv kω ω ω=  ←  
 
     The  microscopic reason for this is that in a macroscopic medium, a (real) photon’s energy 
E hfγ γ=  = constant / is unchanged / same as that in the vacuum, however the photon’s 
momentum p hγ γλ=  (De Broglie Relation) does change, relative to the {real} photon’s 

momentum in the vacuum. In a macroscopic medium, if ( )λ λ ω= , then ( ) ( )p hγ γω λ ω= . 
 

{Real} Photons Propagating Through A Finite-Thickness Macroscopic Linear Medium: 
{Optical Potential Model} 

 

EM  wave velocity 
a.k.a. phase-velocity 

Vacuum Vacuum Medium 
n > 1 

Eγ 

−Vo 

E = 0 

a 

λo λo 

λm = λo/n  

ẑ  

( )o zγψ  ( )o zγψ  

( )m zγψ  
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     Macroscopically, the frequency-dependence of the wavelength ( )λ λ ω= , or wavenumber 

( ) ( )2k ω π λ ω= , and linear momentum ( )p ω  associated with macroscopic EM waves 
propagating in a macroscopic, linear/homogeneous/isotropic medium arises from the frequency-
dependence of the macroscopic electric permittivity ( )ε ω  (or equivalently the electric 

susceptibility ( )eχ ω   since: 

     ( ) ( )( )1o eε ω ε χ ω= + .   
 

The frequency dependence of the macroscopic electric permittivity ( )ε ω  is known as dispersion; 
a medium that has ε ≠ constant with varying frequency is known as a dispersive medium. 
 
For non-magnetic/non-conducting linear/homogeneous/isotropic media, the index of refraction 

on ε ε= . Thus if  ( ) ( )( )1o eε ε ω ε χ ω= = +   then  ( ) ( ) on ω ε ω ε= . 
 
For a wave packet (= a group {= superposition/linear combination} of waves of many frequencies 
– as explained by Mssr. Fourier), the envelope of the wave packet travels with (in general, 
frequency-dependent) group velocity: 
 

( ) ( ) ( )
( ) 1" " 1

group

dkdv
dk dk d d

ωωω
ω ω ω ω

−
⎡ ⎤

≡ = = ⎢ ⎥
⎣ ⎦

 

 

A propagating wave packet:     ( ) ( ) ( )p phasev v kω ω ω ω= =  

        ( ) ( ) ( ) 1
g groupv v dk dω ω ω ω

−
= ≡ ⎡ ⎤⎣ ⎦  

 
 
 
 
 

     If the phase velocity ( ) ( )pv kω ω ω=  is frequency dependent, and 

( ) ( ) ( )1
group phasev dk d vω ω ω ω

−
= ≠⎡ ⎤⎣ ⎦  {e.g. as in the case for surface waves on water, where 

2p gv v= } the exact relationship between  and phase groupv v  depends on the detailed nature of the 
medium (as we shall soon see. . . ). 
 

     Note that energy carried by a wave packet travels at the group velocity, groupv  and not at the 
phase velocity phasev . Note that in certain circumstances, phasev  can exceed c {= speed of light in 
the vacuum} but in these situations, no energy (and/or information) is transmitted – these are 
transmitted at groupv < c always, by causality… A physical/mechanical example: calculate the 
phase velocity of the intersection point of the two halves of a scissors as the blades of the 
scissors are closed. {Ans: scissors

pv → ∞ !!!} 
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An Important Detail: 
 

Physically, the phase velocity ( ) ( )phasev kω ω ω≡  = a single point on the ω  vs. ( )k ω  curve, 

whereas the group velocity ( ) ( )" "
groupv d dkω ω ω≡  = the slope of the ω  vs. ( )k ω  curve: 

 
 
 
          ← Technically, making this plot is wrong !!! 
 
 
 
 
 
 
 
Why is this plot technically wrong ???  
 
Because ω  is the independent variable {always plotted on the axis of abscissas (i.e. the x-axis)} 
   and ( )k ω is the   dependent  variable {always plotted on the axis of ordinates (i.e. the y-axis)} 
 

Thus, the technically correct way is to plot ( )k ω  vs. ω :  {i.e. k depends on ω , not vice-versa!} 
 

Then:   ( ) ( ) ( ) 1

1group

dkdk
v

d d
ωω

ω
ω ω

−
⎡ ⎤⎛ ⎞

≡ =⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

   i.e.  ( ) ( ){ }1 slope of  .  graph :groupv k vsω ω ω≡  
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Dispersion Phenomena in Linear Dielectrics 
 
     In a non-conducting, linear, homogeneous, isotropic medium there are no free electrons  
(i.e. ( ) 0free rρ =

G ). Atomic electrons are permanently bound to nuclei of atoms comprising the 
medium.    ⇒ ∃ no preferential direction / no preferential directions in such an {isotropic} medium. 
 
     Suppose each atomic electron (charge –e) in a dielectric is displaced by a small distance rG  
from its equilibrium position, e.g. by application of a static electric field ( )E r

G G . 
 
The resulting macroscopic electric polarization (aka electric dipole moment per unit volume) is: 
 

( ) ( )er n p rΡ =
G G G G

  where: ne = (atomic) electron number density ( )3#e m   

and the {induced} atomic/molecular electric dipole moment is: ( )p r er= −
G G G  {here}, where rG  is the 

{vector} displacement of the atomic electron from its equilibrium { E
G

= 0} position. 
 

Thus:   ( ) ( )e er n p r n erΡ = = −
G G G G G

 
 
     The atomic electrons are each elastically bound to their equilibrium positions with a force 
constant ek . The force equation for each atomic electron is thus: ( ) ( )e eF r eE r k r= − =

G GG G G  
 

The static polarization is therefore given by: ( ) ( ) ( ) ( )
2

e
e e e

e e

eE r n er n p r n er n e E r
k k

⎛ ⎞−
Ρ = = − = − = +⎜ ⎟⎜ ⎟

⎝ ⎠

G G GG G G G G G
 

 

     However, if the E
G

-field varies with time,  i.e. ( ) ( ), i kz t
oE E r t E e ω−= =

G G G� � � e.g. due to a 
monochromatic EM plane wave incident on an atom, the above relation is incorrect ! 
 
     A more correct {“semi-classical”} way to treat this situation is to consider the bound atomic 
electrons as classical, damped, forced harmonic oscillators, as mathematically described by the 
following differential equation: 
 

( )e e em r m r k r eE rγ+ + = −
GG G G G�� � �� � �  ← inhomogeneous 2nd-order differential equation 

( ) ( ) ( ) ( )
2

2 ,

e

e e e

m a

r t r t
m m k r t eE r t

t t
γ

∂ ∂
+ + = −

∂ ∂
G

G G� � GG G��
�	
 ��	�
��	�
 ��	�


  ←  

 
        
 

                   31electron  mass 9.1 10em kg−= = ×  
 
 
     Suppose the driving / forcing term varies sinusoidally/is harmonic/periodic in time with 
angular frequency ω ,  i.e. ( ) ( ) ˆ, , i t

e oF r t eE r t eE e rω−= − = −
G GG G� � �  because ( ) ˆ, i t

oE r t E e rω−=
G G� � .   

n.b. The electric field E
G

 is now complex E
G� . 

n.b. we have neglected the 

( )  ev B eE×
G GG � �� �  term here... 

Velocity-dependent 
damping term 

γ ≡ damping constant 

Potential Force 
(binding of atomic 
electrons to atom) 

Driving Force 
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Then the inhomogeneous force equation becomes:  ˆi t
e e e om r m r k r eE e rωγ −+ + = −
G G G�� �� � � �  with ( ) ( ) ˆr t r t r=

G� � . 
In the steady state, we have: 

ˆi t
e e e om r m r k r eE e rωγ −+ + = −
G G G�� �� � � �  

 

     Since rG�  physically represents the {vector} spatial displacement of each atomic electron from its 
equilibrium { 0E =

G
} position, then: ( ) ( ) ˆi t

or t r e rωω −=
G� �  {n.b. ( )r tG�  is now complex}.  

 

Thus:     ˆi t
e e e om r m r k r eE e rωγ −+ + = −
G G G�� �� � � �  

 

( ) ( ) ( ) ( )
2

2 ,e e e

r t r t
m m k r t eE r t

t t
γ

∂ ∂
+ + = −

∂ ∂

G G� � GG G��  

2 i t
e om r e ωω −− � i t

e oi m r e ωω γ −− � i t
e ok r e ω−+ � i t

oeE e ω−= − �  

( )2
e e e o om k i m r eEω ω γ− + = ��  

 

Divide this equation through by em :  2 e
o o

e e

k ei r E
m m

ω ωγ
⎛ ⎞⎛ ⎞

− + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
��    

Define:  2
0

e

e

k
m

ω
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

   or:  0
e

e

k
m

ω ≡  = characteristic/natural resonance {angular} frequency. 

Then:  ( )2 2
0 o o

e

ei r E
m

ω ω γω
⎛ ⎞

− + = ⎜ ⎟
⎝ ⎠

��   or:  ( ) 2 2
0

o
e

o

e Em
r

i
ω

ω ω γω

⎛ ⎞⎜ ⎟
⎝ ⎠=

⎡ ⎤− +⎣ ⎦

�
�   =   

 

Now: ( ) ( ) ( ) ˆ, i t
e e or t n er t n er e rωω −Ρ = − = −

G G G� �   {n.b. Ρ
G�  is now complex and frequency-dependent!!!} 

 

Thus:   ( )
( )( )

( )

22

2 2 2 2
0 0

ˆ
, ,

i t
ee oe e

ee nn E e r mmr t E r t
i i

ω

ω ω γω ω ω γω

− ⎛ ⎞− ⎜ ⎟
⎝ ⎠Ρ = = +

⎡ ⎤ ⎡ ⎤− + − −⎣ ⎦ ⎣ ⎦

� GG G G��   ⇐    

 

For 0ω = : ( )

2 2
2

2
0

ˆ ˆ ˆ0
e e

e e e
o o o

e e

e

e en nm m n eE r E r E r
k k

m

ω
ω

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠Ρ = = = = ⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟
⎝ ⎠

G� � � �   ⇐  

Note also that the phase of {complex} ( )ωΡ
G�  depends on the {angular} frequency ω  – i.e. ( )ωΡ

G�  

lags behind ( )E ω
G�  by a phase angle of: 

 

        ( )
( )( )
( )( ) ( )

1 1
2 2
0

,
tan tan

,

m r t

e r t
γωφ ω

ω ω
− −

Ρ

⎡ ⎤ ⎡ ⎤ℑ Ρ
⎢ ⎥ ⎢ ⎥= =

−ℜ Ρ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

G G
G G   ⇐  

n.b. Note the re-ordering of 
terms in the denominator

Static polarization ( )0ωΡ =
G�  

is in-phase with E
G�

Atomic electron spatial 
displacement amplitude 

{n.b. complex!}

n.b. The damping constant γ  
has the same units as ω : 

radians/sec 
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When:  0
e

e

k
m

ω ω< = ,  0φΡ >   ⇒  Ρ
G�  lags E

G� .   When:  0
e

e

k
m

ω ω> = ,  0φΡ <   ⇒ Ρ
G�  leads E

G� . 

     From the above formula, note that if the damping constant, 0γ =  then 0φΡ = , the electric 

polarization ( )ωΡ
G� is then always in-phase with ( )E ω

G� because if 0γ = , then ( )( ), 0m r tℑ Ρ =
G G� ,  

i.e. the electric polarization ( )ωΡ
G

is purely real! Physically, a damping constant of 0γ =  means 
that the width 2γ πΓ =  of the atomic/molecular resonance is infinitely narrow, and thus there are 
no dissipative processes (i.e. energy loss mechanisms) present at the microscopic atomic/molecular 
level in this macroscopic medium! Note also that γ  has physical/SI units of radians/second. 
 

     Note further that E
G�  in the above expression is actually intE

G�  − the internal macroscopic electric 

field of the dielectric: Pint extE E E E= = +
G G G G� � � �  , the sum of the macroscopic external applied electric 

field and the macroscopic electric field due to the polarization of the dielectric medium. 
 

The electric field due to polarization of the medium is: P
1

3 o

E
ε

= − Ρ
G G� �   

 Thus: 
1

3int ext
o

E E E
ε

= = − Ρ
G G G G� � � �   Therefore: 

2

2 2

1
3

e
e

ext
oo

en m
E

i εω ω γω

⎛ ⎞⎜ ⎟ ⎡ ⎤⎝ ⎠Ρ = − Ρ⎢ ⎥⎡ ⎤− − ⎣ ⎦⎣ ⎦

GG G�� �   where: 0
e

e

k
m

ω ≡  

Now solve for Ρ
G� :  Skipping writing out some of the {tedious} complex algebra, we obtain: 

 
2

2 2
1

e
e

ext

en m
E

iω ω γω

⎛ ⎞⎜ ⎟
⎝ ⎠Ρ =

⎡ ⎤− −⎣ ⎦

GG ��   where:  
2

2
1 0 3

e

o e

n e
mω ω ε

⎛ ⎞≡ − ⎜ ⎟
⎝ ⎠

  = 

 
     This formula is essentially identical e.g. to the {complex} displacement amplitude formula for 
a driven harmonic oscillator, and/or that for the {complex} AC voltage amplitude in an LCR 
circuit, and for many other physical systems exhibiting a {damped} resonance-type behavior. 
 

     Now if extE E=
G G� -field associated with a monochromatic plane EM wave propagating in a 

dielectric medium: ( ) ( ), i kz t
ext oE z t E e ω−=
G G� � , then because of the linear relationship between the 

polarization Ρ
G�  and ( ) ( )

for  plane wave

ˆ, i kz t
ext o

EM

E z t E e xω−=
G� �

��	�
 , Gauss’ Law becomes (since ( ) 0free rρ =
G ): 

1 0ext bound
o

E ρ
ε

∇ = − ∇ Ρ = =
G G G G� � �i i  

The wave equation {for a dielectric medium with ( ) 0free rρ =
G�  and 0freeJ =

G� } becomes: 
2

2 22
2

2 2 2 22 2
1

1 o e
eext ext

ext o

en mE EE
c t t ti

μ
μ

ω ω γω

⎛ ⎞⎜ ⎟∂ ∂∂ Ρ ⎝ ⎠∇ − = =
∂ ∂ ∂⎡ ⎤− −⎣ ⎦

G GG� ��G�    with:  2

1
o oc

ε μ=  

See P435 Lect. Notes 10, p. 1-6, 
see also P435 Lect. Notes 9, p. 26 

effective angular 
resonance frequency of 
bound atomic electrons 
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Or:  
2 2

2
2 22 2

1

1 11 e ext
ext

o e

n e EE
c m tiε ω ω γω

⎡ ⎤⎛ ⎞ ∂
⎢ ⎥∇ = + ⎜ ⎟ ∂⎡ ⎤− −⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

G�G�    with:  
2

2
1 0 3

e

o

n e
m

ω ω
ε

≡ −  

 
The general solution to this dispersive wave equation is of the form: 
 

   ( ) ( ), i kz t
ext oE z t E e ω−=

�G G� �   with complex  k k iκ= +�   and  
22

2
2 2 2

1

11 e

o e

n ek
c m i
ω

ε ω ω γω
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟ − −⎝ ⎠⎣ ⎦
� . 

 

     Thus, we also see here that the complex wavenumber k k iκ= +�  is explicitly dependent on 
the angular frequency ω , i.e. ( ) ( ) ( )k k iω ω κ ω= +� .  
 
     We further see that monochromatic plane EM waves propagating in a dispersive dielectric 

medium are exponentially attenuated, because ( ) ( ) ( ), i kz t i kz tz
ext o oE z t E e E e eω ωκ− −−= =

�G G G� � �  ,  

i.e. the ( ) ( )( )m kκ ω ω= ℑ �  term corresponds to absorption/dissipation in the macroscopic 

dielectric, and is physically related to, and thus proportional to the damping constant γ . 
 

     Note that we can also write: ( ) ( ) ( ), , , ,o e extz t E z tω ε χ ω ωΡ ≡
GG �� �  and thus the macroscopic 

electric susceptibility ( )eχ ω� {here} is also {now} complex and is also frequency-dependent, i.e. 

( ) ( ) ( )e e eiχ ω χ ω ζ ω≡ +� . The ( ) ( )( )e emζ ω χ ω= ℑ �  term corresponds to absorption/dissipation 
in the macroscopic dielectric, and is physically related to, and thus proportional to the damping 
constant γ . The corresponding dissipative energy losses at the microscopic, atomic/molecular 
level in the macroscopic dielectric ultimately wind up as heat! 
 

Since: ( ) ( ) ( )

2 2

2 2 2 2
1 1

, , ,
e e

e eo
ext ext

o

e en nm m
z t E z t E z t

i i
ε
εω ω γω ω ω γω

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠Ρ = = ⎜ ⎟⎡ ⎤ ⎡ ⎤− − − −⎝ ⎠⎣ ⎦ ⎣ ⎦

G GG � ��  with 
2

2
1 0 3

e

o e

n e
m

ω ω
ε

= −  

 

∴ The complex electric susceptibility is:  ( ) ( ) ( )
2

2 2
1

1e
e e e

o e

n e i
m i

χ ω χ ω ζ ω
ε ω ω γω

⎛ ⎞
= ≡ +⎜ ⎟ ⎡ ⎤− −⎝ ⎠ ⎣ ⎦

�  

 
     Now before we go much further with this, we need to discuss another aspect of our model  
– namely that in most linear dielectric materials, the atoms comprising the material are multi-
electron atoms, and consequently there are many different binding energies – the outer shell 
atomic electrons are weakly bound, hence have small ek , and thus small 0 e ek mω = , whereas 

the inner-shell electrons are much more tightly bound, hence have larger ek , larger 0 e ek mω = .   
 
     Furthermore, in complex media, i.e. dielectrics with more than one kind of atom, electrons 
can be shared between atoms – i.e. they are bound to molecules e.g. the π-electrons in benzene 
ring / aromatic hydrocarbon-type compounds, which can be weakly bound in some molecules. 
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     Thus, there can be also be {molecular} resonances e.g. in the microwave and infra-red 
regions of the EM spectrum – atomic resonances are typically in the optical and UV regions  
{for the outer-most shell electrons}, as well as in the far UV and x-ray regions {for the inner-
shell electrons}! 
     Allowing for all such resonances, we can write the {complex} electric polarization Ρ

G�  as a 
summation over all of the resonances present in the linear dielectric as follows: 
 

( ) ( )
2

2 2
1 1

, ,
oscn
je

ext
je j j

fn ez t E z t
m iω ω γ ω=

⎛ ⎞
⎜ ⎟Ρ =
⎜ ⎟⎡ ⎤− −⎣ ⎦⎝ ⎠
∑

GG ��  where: 
2

2
1 0 3

e
j j

o e

n e
m

ω ω
ε

≡ −  and: 0
e j

j
e

k
m

ω ≡  

and where:  osc
jf ≡  oscillator strength of jth resonance, defined such that 

1

1
n

osc
j

j

f
=

=∑   

Physically:  osc
jf = fractional strength of the jth resonance and jγ  = 2π*width of the jth resonance. 

 

Thus, we see that the complex electric susceptibility ( ) ( ) ( )e e eiχ ω χ ω ζ ω≡ +�  is: 
 

( ) ( ) ( )
2

2 2
1 1

oscn
je

e e e
jo e j j

fn e i
m i

χ ω χ ω ζ ω
ε ω ω γ ω=

⎛ ⎞⎛ ⎞
⎜ ⎟= ≡ +⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠
∑�  

 

The complex electric permittivity ( ) ( )( ) ( ) ( )1o e iε ω ε χ ω ε ω ς ω= + ≡ +� �  of a dispersive, linear 
dielectric medium is: 
 

( ) ( )( ) ( ) ( )
2

2 2
1 1

1 1
oscn
je

o e o
jo e j j

fn e i
m i

ε ω ε χ ω ε ε ω ς ω
ε ω ω γ ω=

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= + = + ≡ +⎜ ⎟⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠
∑� �  

 

with the relations: ( ) ( )( ) ( )( )1o eeε ω ε ω ε χ ω= ℜ = +�  and ( ) ( )( ) ( )o emς ω ε ω ε ζ ω= ℑ =� . 
 
Thus, monochromatic plane EM wave solutions to the dispersive wave equation are of the form:  
 

    ( ) ( ), , i kz t
oE z t E e ωω −=

�G G� �   with {complex} wavenumber ( ) ( ) ( ) ( ) ok k iω ω κ ω ε ω μ ω= + ≡� �  
 

Thus: ( ) ( )
N

( )

exponential
  damping
of  wave

, , i kz t i kz tz
ext o o

EM

E z t E e E e eω ωκω − −−= =
�G G G� � �  

 

Introducing a {frequency-dependent} complex wavenumber ( ) ( ) ( )k k iω ω κ ω= +�  is equivalent 

to introducing a {frequency-dependent} complex index of refraction ( ) ( ) ( )n n iω ω η ω= +� .  
For a linear, dispersive dielectric, the complex index of refraction and complex wavenumber are 

{simply} related to each other by:   ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  
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 ∴  ( ) ( )( ) ( ) ( )( ) ( ) ( )k i n i n i
c c c
ω ω ωω κ ω ω η ω ω η ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

⇒   ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
   and   ( ) ( )

c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

The complex index of refraction ( )n ω� is related to the complex electric permittivity ( ) ( )1 eε ω χ ω= +� �  

and thus the complex electric susceptibility ( )eχ ω� via the relation ( ) ( ) ( )1o en ω ε ω ε χ ω= = +� �� ,  
 

Squaring both sides: ( ) ( ) ( )
2

2
2 2

1 1

1 1
oscn
je

e
jo o e j j

fn en
m i

ε ω
ω χ ω

ε ε ω ω γ ω=

⎛ ⎞⎛ ⎞
⎜ ⎟= = + = + ⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠
∑

�
��  

But: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2 2

22 2 2
2 2

1 1

1 2
oscn
je

jo e j j

fn ek k i k ik
c m i
ωω ω κ ω ω ω κ ω κ ω

ε ω ω γ ω=

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞ ⎜ ⎟⎢ ⎥= + = + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦⎝ ⎠
∑�

 

Since: ( ) ( )cn kω ω
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

��  then: 
( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

2 2
2 2

2 2
1 1

2 2 2

1

             2  

oscn
je

jo e j j

fn ecn k
m i

n i n i n

ω ω
ω ε ω ω γ ω

ω η ω ω ω η ω η ω

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= = + ⎜ ⎟⎜ ⎟ ⎡ ⎤− −⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

= + = + −

∑��
 

 

Using the “standard” trick: 2 2

1 1 x iy x iyz
x iy x iy x iy x y

+ +
= = =

− − + +
� , ( ) 2 2

xe z
x y

ℜ =
+

�  and ( ) 2 2

ym z
x y

ℑ =
+

�  

 
Then equating the real and imaginary parts of the LHS & RHS of the above equation, we obtain: 
 

( ) ( ) ( )
( )

2 22
12 2

22 2 2 21
1

1
oscn
j je

jo e j j

fn en
m

ω ω
ω η ω

ε ω ω γ ω=

⎡ ⎤
−⎢ ⎥− = + ⎢ ⎥⎡ ⎤− +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑

 ( ) ( )
( )

2

22 2 2 21
1

2
oscn
j je

jo e j j

fn en
m

γ ω
ω η ω

ε ω ω γ ω=

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤− +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑    

 

First define: ( ) ( )
( )

2 22
1

22 2 2 21
1

oscn
j je

x
jo e j j

fn e
m

ω ω
α ω

ε ω ω γ ω=

⎡ ⎤
−⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  

         ( ) ( )
( )

2

22 2 2 21
1

oscn
j je

x
jo e j j

fn e
m

γ ω
β ω

ε ω ω γ ω=

⎡ ⎤
⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑   (n.b. ( ) 0xβ ω > , is always positive) 

Then: ( ) ( ) ( )2 2 1 xn ω η ω α ω− = +   and  ( ) ( ) ( )2 xn ω η ω β ω=    ⇒   ( ) ( ) ( )2x nη ω β ω ω=  

2 equations and 2 unknowns: 
( ) ( ){ }&n ω η ω  

→ solve for ( ) ( )&n ω η ω  
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Thus: ( ) ( )
( ) ( )( )

2

2 1
2

x
xn

n
β ω

ω α ω
ω

⎛ ⎞
− = +⎜ ⎟⎜ ⎟

⎝ ⎠
 ⇐  multiply equation through by ( )2n ω  

( ) ( ) ( )( ) ( )
2

4 21
2

x
xn n

β ω
ω α ω ω

⎛ ⎞
− = +⎜ ⎟

⎝ ⎠
 

Or: ( ) ( ) ( ) ( ) 2

4 21 0
2

x
xn n

β ω
ω α ω

⎛ ⎞
− + − =⎜ ⎟

⎝ ⎠
  ⇐   

 

Define:  ( )2x n ω≡ .  Temporarily we suppress the ( )ω -dependence in the following: 
 

Then:  ( )
2

2 1 0
2

x
xx x βα ⎛ ⎞− + − =⎜ ⎟

⎝ ⎠
  →  2 0ax bx c+ + =   with  1a = ,  ( )1b α= − + ,  

2

2
c β⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

Solutions / roots of this quadratic equation are of the general form: 
2 4

2
b b acx

a
− ± −

=  

⇒   
( ) ( )

( ) ( )

2
2

2 2

1 1 4
2 1 1 1

2 2

x
x x

x x xx

βα α
α α β

⎛ ⎞+ + ± + + ⎜ ⎟
⎝ ⎠ ⎡ ⎤= = + ± + +⎢ ⎥⎣ ⎦

 

 

           i.e.   ( ) ( )

2
1 1 1 1
2 1

x
x

x

x βα
α

⎡ ⎤⎛ ⎞⎢ ⎥= + ± + ⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎢ ⎥⎣ ⎦

   n.b. the term:  
( )

2

0
1

x

x

β
α

⎛ ⎞
>⎜ ⎟⎜ ⎟+⎝ ⎠

 

 

→ Must select +ve root on physical grounds, since 2 0x n≡ > . 
 

   ∴ ( ) ( )

2

2 1 1 1 1
2 1

x

x

x n βα
α

⎡ ⎤⎛ ⎞⎢ ⎥= = + + + ⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎢ ⎥⎣ ⎦

 

 
Finally, we obtain: 
 

( ) ( )( ) ( ) ( )
( )( )

2
1

1 1
2 1
x x

x

n e n
α ω β ω

ω ω
α ω

⎡ ⎤⎛ ⎞+⎛ ⎞ ⎢ ⎥≡ ℜ = + + ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟+⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

�    

 

( ) ( )( ) ( )
( )

( )

( ) ( )
( )( )

2

2
2

1
1 1

2 1

x x

x x

x

m n
n

β ω β ω
η ω ω

ω
α ω β ω

α ω

≡ ℑ = =
⎡ ⎤⎛ ⎞+⎛ ⎞ ⎢ ⎥+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

�    

 
 

n.b. This may look like a quartic equation, 
but it is actually a quadratic equation !!!

Complex index of refraction: 
( ) ( ) ( )n n iω ω η ω= +�  
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Where: 

( ) ( )
( )

2 22
1

22 2 2 21
1

oscn
j je

x
jo e j j

fn e
m

ω ω
α ω

ε ω ω γ ω=

⎡ ⎤
−⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  

( ) ( )
( )

2

22 2 2 21
1

oscn
j je

x
jo e j j

fn e
m

γ ω
β ω

ε ω ω γ ω=

⎡ ⎤
⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  

 

     Obviously, explicitly writing out the full mathematical formulae for ( )n ω  and ( )η ω  is quite 
tedious – but these can be reasonably-easily coded up {i.e. a computer program} and plots of 

( )n ω vs. ω  and ( )η ω  vs. ω  can be obtained. We can also then obtain the following: 
 

The complex relations: ( ) ( ) ( )n n iω ω η ω≡ +�  and ( ) ( ) ( ) ( )k k i n
c
ωω ω κ ω ω⎛ ⎞≡ + = ⎜ ⎟

⎝ ⎠
� �  

and thus: ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
 and  ( ) ( )

c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
.  

 

     The {frequency-dependent} intensity/irradiance ( ) ( ), , ,I z S z tω ω=
G

 associated with a 

monochromatic plane EM wave propagating in a linear, dispersive dielectric is also 
exponentially decreased by a factor of  11 e e−= of its original value in going a characteristic 
distance of: ( ) ( ) ( )1 1 2 attenz α ω κ ω ω= = ≡ A   i.e. defining: ( ) ( ) ( )1 1 2atten ω α ω κ ω≡ =A  = 
intensity attenuation length – which is ~ analogous to the skin depth, 1scδ κ≡  for metals / 

conductors. However, note that 1scδ κ≡  is associated with the attenuation of the E
G

 and B
G

-

fields, whereas attenuation effects in intensity/irradiance, I  varies as the square of the E
G

-field: 
 

        ( ) ( ) ( )2, ,extI z S z t E z t= ∝
G

,  hence: ( ) ( )22 2( ) z z
o oI z E e E eκ ω α ω− −∝ =  

 

     In the exponential z-dependent term ( )2 ze κ ω− , since the energy densit(ies) ( ), ,E Mu z t  and 

intensity ( ) ( ),I z S z t=
G

 are both proportional to E2  i.e. both proportional to ( )2 ze κ ω− ,  

we define the {frequency-dependent} absorption coefficient  ( ) ( ) ( )2 1 attenα ω κ ω ω≡ = A . 
 

Similarly, for the {frequency-dependent} complex index of refraction ( ) ( ) ( )n n iω ω η ω= +�   

we can also define the {frequency-dependent} extinction coefficient:   ( ) ( )2ξ ω η ω≡ . 
 

Since:   ( ) ( )
c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
  ⇒   ( ) ( )2 2

c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
  thus:  ( ) ( ) ( )2

c c
ω ωα ω ξ ω η ω⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 
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The absorption coefficient:      ( ) ( ) ( ) ( ) ( )2 2 1 attenc c
ω ωα ω κ ω η ω ξ ω ω⎛ ⎞ ⎛ ⎞≡ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A   and 

The extinction coefficient:    ( ) ( )2ξ ω η ω≡ . 
 

     Typical values of the (real) index of refraction ( )n ω  for solids and liquids are ( ) 1.3 1.7n ω ≈ −   

in the visible light region of EM spectrum,  e.g. ( ) 1.5glassn ω � , ( )
2

1.3H On ω � , ( ) 1.7plasticn ω � . 
 

Then if:   ( ) ( ) ( )
( )

2
1

1 1 1.5
2 1
x x

x

n
α ω β ω

ω
α ω

⎡ ⎤⎛ ⎞+⎛ ⎞ ⎢ ⎥= + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

   ⇐  

Then:      ( ) ( ) ( )
( ) ( )

2
22 1

1 1 1.5 2.25
2 1
x x

x

n
α ω β ω

ω
α ω

⎡ ⎤⎛ ⎞+⎛ ⎞ ⎢ ⎥= + + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

Thus:      ( )( ) ( )
( )

2

1 1 1 4.50
1

x
x

x

β ω
α ω

α ω

⎡ ⎤⎛ ⎞⎢ ⎥+ + + =⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎢ ⎥⎣ ⎦

  ⇐    

 
→  Need another relation / independent constraint!! 
 
Note that glass doesn’t have significant absorption in the visible light region, but typical such 
solid / liquid materials have (measured) absorption coefficients for visible light in the range of: 
 

( ) ( ) ( ) 2 1 12 10 10k m
c
ωα ω ω η ω − − −⎛ ⎞≡ = ≈ −⎜ ⎟

⎝ ⎠
  ⇐  

 

So suppose:  ( ) ( ) ( ) 1 12 10 m
c
ωα ω κ ω η ω − −⎛ ⎞≡ = ⎜ ⎟

⎝ ⎠
�  in glass for visible light, 1610 radians / secvisω �  

 

→     ( ) ( )
8

1 9
16

3 10 10 3 10 1
10

cη ω α ω
ω

− −⎛ ⎞×⎛ ⎞= = ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �  

 

    Now:        ( ) ( )
( )2

x

n
β ω

η ω
ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
   and ( ) 1.5n ω �  for glass in visible light range of EM spectrum. 

 

→     ( ) ( )1
3 xη ω β ω=   or:  ( ) ( ) 93 9 10xβ ω η ω −= ×�   

 

Then:          ( )( ) ( )
( )

2

1 1 1 4.50
1

x
x

x

β ω
α ω

α ω

⎡ ⎤⎛ ⎞⎢ ⎥+ + + =⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎢ ⎥⎣ ⎦

  and: ( ) 99 10xβ ω −×� .  

 

index of refraction of 
glass in the visible 

light region 

i.e. intensity I falls off to 11 0.3679e e−= =  of initial 
(z = 0) value after light travels a distance ~ 10 – 100 m 

One equation & two unknowns: 
( ) ( ) and x xα ω β ω  

1�  in the visible light range for glass 
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Now solve for ( )xα ω : 
 

       
( )

( ) ( )( )
2

4.501 1
11

x

xx

β ω
α ωα ω

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟ ++⎝ ⎠

  ⇒   
( )

( ) ( )( )

22
4.501 1

1 1
x

x x

β ω
α ω α ω

⎡ ⎤⎛ ⎞
+ = −⎢ ⎥⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎣ ⎦

 

 

⇒   
( )

( ) ( )( )

2

4.50 1 1
1 1

x

x x

β ω
α ω α ω

⎡ ⎤⎛ ⎞⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 ⇒  ( ) ( )( ) ( )( )

2

4.501 1 1
1x x

x

β ω α ω
α ω

⎡ ⎤⎛ ⎞
= + − −⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 

 

This has a solution when: ( ) 1.25xα ω �   for:  ( ) ( )99 10x xβ ω α ω−= × �   ⇐  
 

     Thus, for ( ) 1.5n ω =  for glass in the visible light region of the EM spectrum 

with ( ) 1.25xα ω �  and ( ) 99 10xβ ω −= ×  (i.e. ( ) ( )( )1 1x xβ ω α ω+ � ), as an explicit check, we 
see that: 
 

( ) ( ) ( )
( )

2 291 1 1.25 9 10 1 1.251 1 1 1 1 1
2 1 2 1 1.25 2

1 1.25
2

x x

x

n
α ω β ω

ω
α ω

−⎡ ⎤ ⎡ ⎤⎛ ⎞+⎛ ⎞ ⎛ ⎞+ × +⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎡ ⎤= + + = + + ≈ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥ ⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

+
         = 2⎛ ⎞

⎜ ⎟
⎝ ⎠

2.25 1.5⎡ ⎤ = =⎣ ⎦

 

Thus we also see that: ( ) ( ) ( )
( )

2 22
12

22 2 2 21
1

1
oscn
j je

x
jo e j j

fn en
m

ω ω
α ω ω

ε ω ω γ ω=

⎡ ⎤
−⎛ ⎞ ⎢ ⎥≈ − ≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  i.e. ( ) ( )2 1 xn ω α ω+�   

 
for typical materials – glass, water, plastic – in the visible light region of the EM spectrum, 

1610 radians / secω ≈ . 
 

      Whereas:           ( )
( )

2

22 2 2 21
1

1
oscn
j je

x
jo e j j

fn e
m

γ ω
β ω

ε ω ω γ ω=

⎡ ⎤
⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑ �    

 
for these same materials – glass, water, plastic – in the visible light region of the EM spectrum, 

1610 radians / secω ≈ . 
 

     Our original equations were: ( ) ( ) ( )2 2 1 xn ω η ω α ω− = +   and  ( ) ( ) ( )2 xn ω η ω β ω=   or:  

( ) ( ) ( )2x nη ω β ω ω=   with: ( ) 1.25xα ω �  and ( ) 99 10xβ ω −×�   for ( ) 1.5n ω =  (for glass) 

with visible light and: ( ) ( ) ( ) 92 3 10x nη ω β ω ω −= ×� . 
 

Obtained via numerical 
methods using a computer 
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     We now see more clearly that: ( ) ( )nη ω ω�  in the visible light region of the EM spectrum 

for glass, i.e. the complex index of refraction ( ) ( ) ( ) 91.25 9 10n n i iω ω η ω −= + + ×� �  for glass is 
predominantly real in the visible light region of the EM spectrum.  
 
Thus, for glass in the visible light region of the EM spectrum: 
 

 ( ) ( ) ( ) ( ) ( )
( )

( )
2 22

22 2 2
22 2 2 21

1

1 1 1.5 2.25
oscn
j je

x
jo j j

fn en n
m

ω ω
ω η ω ω α ω

ε ω ω γ ω=

⎡ ⎤
−⎛ ⎞ ⎢ ⎥− = + = + =⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑� �  

 
and:  

( ) ( ) ( )
( )

2
9

22 2 2 210 1

2 9 10
oscn
j je

x
j

j j

fn en
m

γ ω
ω η ω β ω

ε ω ω γ ω
−

=

⎡ ⎤
⎛ ⎞ ⎢ ⎥= ≡ ≈ ×⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  

                        ( ) ( )
( )

2 22

22 2 2 21
1

1.25
oscn
j je

x
jo j j

fn e
m

ω ω
α ω

ε ω ω γ ω=

⎡ ⎤
−⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑ �  

 
     Note that these results that we just obtained for glass in the visible light region of the EM 
spectrum do not hold true for all frequencies of EM waves {visible light region is in fact only 
narrowl portion of the EM spectrum}!!!  In particular, these results do not hold at {or near} an 
atomic (or molecular) resonance! 
 
     Let us consider a “simplified” atomic/molecular system, that of having only a single 
resonance frequency (i.e. a single bound-state quantum energy level), then: 
 

2
2

1 0 12
3

e

o e

n e f
m

ω ω π
ε

⎛ ⎞
≡ − =⎜ ⎟

⎝ ⎠
  with:  0

e

e

k
m

ω ≡  

        or: 
2

2
1 1 0

1 1
2 2 3

e

o e

n ef
m

ω ω
π π ε

⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠
 

 

Then: ( ) ( ) ( )
( )

21 1

1

1
1 1

2 1
x x

x

n
α ω β ω

ω
α ω

⎡ ⎤⎛ ⎞⎛ ⎞+ ⎢ ⎥= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

     ( ) ( )
( )

2 22
1 11

22 2 2 2
1 1 1

osc
e

x
o e

fn e
m

ω ω
α ω

ε ω ω γ ω

⎡ ⎤
−⎛ ⎞ ⎢ ⎥≡ ⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

( ) ( )
( )

( )( )
( ) ( )

11

21 1

1

2
2

1
1 1

2 1

xx

x x

x

n
β ωβ ω

η ω
ω

α ω β ω
α

= =
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n.b. Oscillator strength 1 1oscf =  {here} 
because only have a single resonance! 
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1 0 
n 

η

ω = ωo 

ω = 0 ω = ∞ 

     The figure on the left (immediately below) shows the behavior of the real and imaginary parts 
of the complex index of  refraction of a dispersive, linear medium, i.e. { ( )n ω  vs. ω } and 

{ ( )η ω  vs. ω } for a single atomic resonance. The figure on the right (immediately below) shows 

the behavior of { ( ) 1n ω −  vs. ω } and the absorption coefficient { ( ) ( )2α ω κ ω≡  vs. ω } for a 
single atomic resonance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n.b. The above curves are “classic” features of a 
complex resonance – with center / resonance frequency 

1 jω  and damping constant 2 1 2 Γjγ ω ω π≡ − =  = 2π * 
width (FWHM) of the resonance. In the complex plane: 
 
 
 
 
 
     In the visible light region of the EM spectrum, the graph below shows both the frequency and 
wavelength behavior of the {real} index of refraction of glass, i.e. ( )n f vs. f  {dotted line} and 

( )n λ vs. λ  {solid line}. Note that since propv f λ=  ⇒ propf v λ=  or  propv fλ =  
 
 
 
 
 
           
 
         
 
 
       {1 Ångstrom = 10−10 m = 0.1 nm} 

FWHM
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     n.b. Media which are very transparent e.g. in the visible light region are often almost (or are) 
opaque in the so-called anomalous dispersion region of a resonance, 1 2Rω ω ω< <  – i.e. the 
FWHM region of the atomic resonance, where the extinction coefficient ( )η ω  becomes very 
large – EM waves near the resonance frequency Rω  are very rapidly exponentially attenuated! 
 
The General Behavior of “Classic” Complex Resonance:  ( ) ( ) ( )z x iyω ω ω= +�  
 
         n.b. in some complex systems 
         e.g. the resonance of a LCR  
         circuit, { }e zℜ �  & { }m zℑ � are 
         interchanged from what is 
         drawn here! 
 
         i.e.  { } { }e z m zℜ ℑ� �R  
 
 
 
 
Note that the shape of the curve for the magnitude of z� , ( ) ( ) ( ) ( ) ( )* 2 2z z z x yω ω ω ω ω= = +� � �i ,   

is very similar to shape of the ( )( )Im z ω  curve {as shown here}. 
 

Trajectory of ( )z ω� in the complex plane: 
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A more realistic microscopic picture of an atomic system – with many electrons with many 
quantum bound states →  many resonances in a dispersive, linear macroscopic dielectric!!! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise(s): Draw out the corresponding trajectories of complex ( ) ( ) ( )n n iω ω η ω= +�  and 

( ) ( ) ( )iε ω ε ω ξ ω= +�  for the above triple-resonance cases in the complex plane! 
 
In the high-frequency region, above the highest resonant frequency (typically in UV or x-ray region), 
the index of refraction is predicted to be ( ) 1.0n ω <  (i.e. actually less than that of the vacuum).  
Indeed, this phenomenon has been explicitly observed / measured e.g. in quartz (SiO2) using x-rays: 
 
 
 
Note 
Suppressed 
Zero! 
 
 
 
 
 
 
 

     Note that physically the damping constant jγ = width of the thj resonance is inversely related to 
the lifetime jτ  associated with the corresponding excited state of the constituent atoms/molecules of 
the dispersive, linear dielectric, since at the microscopic level, the {real} photons associated with the 
monochromatic plane EM wave have energy E hfγ = and {assuming the atoms/molecules of the 
dispersive, linear dielectric to all be in their ground state, with ground state energy 1E }, then if the 
monochromatic plane EM wave has {angular} frequency 2R Rfω ω π= =  = the resonance frequency 
of the bound atomic electrons, then we see that 1 1j j RE E E E hfγΔ = − = =  at resonance!  
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     At a resonance, e.g. when 1 jω ω= , the {real} photons in the monochromatic plane EM wave 
easily stimulate the atomic electrons, causing them to resonate – the {real} photons are absorbed, 
enabling the atomic electron to make a transition from the ground state {with energy 1E } to the 

thj  excited state {with energy jE } via an electric dipole transition, if so allowed by quantum-

mechanical selection rules. The thj excited atomic state has {mean} lifetime jτ  associated with it, 
thus the atomic electron de-excites back to the ground state by emitting a {real} photon of this 
same frequency. The miracle of all of this is that {real} photons associated with the EM field are 
actually interacting simultaneously with all of the atoms in the dispersive linear dielectric (within 
the coherence length of the photon) at any given instant in time, thus the resultant “scattered” 
photon that is {ultimately} emitted, actually must be summed over the response of the ensemble 
of many atoms – the miraculous result of which is forward scattering of the photons associated 
with the macroscopic EM wave, but with a {frequency-dependent} phase shift, which is related 
to the resonance lineshape and the finite lifetime jτ  of the excited state of the atom! 
 

     At a resonance, e.g. when 1kω ω= , a large, transitory/transient {complex and frequency-

dependent} electric dipole moment ( ) ( ) ( ) ˆ,p r er er rω ω ω= − = −
G G G� � �  is induced in the atom, where: 

 

( ) ( ) ( )
2

2 2
1 1

oscn
je

o
jo e j j

fn er r r i
m i

ω ω ρ ω
ε ω ω γ ω=

⎛ ⎞⎛ ⎞
⎜ ⎟= ≡ +⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠
∑�  

 
     Note that here we can also make a direct connection with quantum mechanics – the electric 
dipole moment operator ( ),p r ωG G�   and position operator ( )r ωG�  operating e.g. on the ground state 

wavefunction of the atom/molecule ( )1 rψ G , i.e.  ( ) ( )1,p r rω ψG G G�  and ( ) ( )1r rω ψG G� .  
 
     We can e.g. compute the expectation value of the modulus squared of the electric dipole 

moment ( ) ( ) ( )
2

1 1,r p r rψ ω ψG G G G�  of the atom/molecule. Inserting a complete set of states 

( ) ( ) ( ) ( )
1 1

1j j j j
j j

r r r rψ ψ ψ ψ
∞ ∞

= =

= =∑ ∑G G G G  into this expression, we can then obtain quantum 

mechanical predictions for the {squares} the oscillator strengths osc
jf :  

 

         ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2*

1 1 1
1 1

, , ,j j j
j j

r p r r r p r r r p r rψ ω ψ ψ ω ψ ψ ω ψ
∞ ∞

= =

=∑ ∑G G G G G G G G G� � �  

 

     The transition rate 1 jΓ JJG  (= # atoms/molecules per second) from the ground state to the thj  
excited state {via an electric dipole transition, as allowed by quantum mechanical selection 
rules} is proportional to ( ) ( ) ( )1,j r p r rψ ω ψG G G� ,  
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whereas the transition rate 1jΓ JJG  (= # atoms/molecules per second) from the thj  excited state to 
the ground state {via an electric dipole transition, as allowed by quantum mechanical selection 
rules} is proportional to ( ) ( ) ( )*

1 , jr p r rψ ω ψG G G� . 
 
     Note that by the {microscopic} manifest time-reversal invariance of the electromagnetic 
interaction, the transition rates are identical, i.e. 1 1 2jj j γ πΓ ≡ Γ =JJG JJG  = “damping constant”  
in our semi-classical model! 
 

   Note further that the lifetimes jτ  of the excited states of atoms are {inversely} related to the 

widths jγ  of the thj resonances/widths of the thj excited states by the Heisenberg uncertainty 
principle: E tΔ Δ ≥ = , where 2h π≡=  and h = Planck’s constant. If we set this relation to its 
minimum, i.e. E tΔ Δ = =  then: 
 

( )j jγ τ∗ == =   ⇒   = jγ = = jτ   or: 1 11 2j jj jτ γ π= Γ ≡ Γ =JJG JJG  
 
 
 
     If one stays well away / far from the resonance frequencies of bound-state atomic electrons, 
then far from a resonance, the resonance factor: 
 

 
( ) ( )2 22 2 2 2 2 2

1 1

1 1

j j jω ω γ ω ω ω
≈

− + −
    i.e. far from a resonance:  ( )22 2 2 2

1 j jω ω γ ω− �  

 
     Thus, far from a resonance / resonances, relatively little absorption/dissipation occurs  
{i.e. ( ) ( )2 2nη ω ω� , such that ( ) ( ) ( ) ( )n n nω ω η ω ω= + �� �  is predominantly real} and hence: 
 

( ) ( ) ( )
2

2 2 2
2 2

1 1

1
oscn
je

jo e j

fn en n
m

ω η ω ω
ε ω ω=

⎡ ⎤⎛ ⎞
− + ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦

∑� �  
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1
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1 1 1 1 11
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ω ω ω
ω ω ω ω ω ωω ω
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= ≈ + = +⎜ ⎟⎜ ⎟− ⎡ ⎤− ⎝ ⎠⎣ ⎦

 

 

Then:  ( ) ( ) ( )
2

2 2 2 2
2 4

1 11 1

1
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j jo e j j
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m

ω η ω ω ω
ε ω ω= =
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− + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑� �  

 
                           If  2 1n = + ∈  and  1∈ �   ⇒  1

21 1n = + ∈ + ∈�  
 

Thus, far from a resonance/resonances:  ( )
2

2
2 4

1 1

11
2
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j je
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ω ω
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But: 
2 2

o
o

c
k
π πλ

ω
= =  = vacuum wavelength ⇒  Cauchy’s Formula: ( ) 21 1o

o

Bn Aλ
λ

⎛ ⎞
≈ + +⎜ ⎟

⎝ ⎠
  

 
Where:  A = Coefficient of Refraction   and   B = Coefficient of Dispersion. 
 

Since:  ( ) ( ) ( )n n iω ω η ω= +�   and/or:  ( ) ( ) ( )k k ikω ω ω= +�   and:  ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  

Then:   ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
   and:   ( ) ( )

c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
,  thus:  

The phase velocity: 
( )phase
cv c

k n
ω

ω
= = >   if ( )n ω < 1 

The group velocity: 
( ) ( ) 1" "

1group

dkdkdv
ddk d

ωωω
ω ω

−
⎡ ⎤⎛ ⎞= = = ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
 

 

     Note that at the “turning points” of either the { ( )n ω  vs. ω } or { ( )k ω  vs. ω } graphs, i.e. at 

{angular} frequencies 1ω ω=  and/or 2ω ω=  where the slope ( ) 0dk dω ω =  ⇒  groupv = ∞  !!!  
 

     Note further that in the {angular} frequency region 1 2ω ω ω< <  {the “anomalous dispersion” 
region}, since the slope ( ) 0dk dω ω <   then the group velocity ( ) ( )( )1 0groupv dk dω ω ω= <  !!! 
{Hence the name anomalous dispersion…}  
 

1 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  7.5        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

21

     This phenomenon has been experimentally verified (see e.g. C.G.B. Garrett & D.E. 
McCumber, Phys. Rev. A, 1, p. 305 (1970).  If the medium is not too thick, a Gaussian pulse 
with a central frequency near an absorption line (i.e. near a resonance, Rω ) and with pulse width 

1R Rt τ γΔ =�  propagates with appreciable absorption, but (more or less) retains its shape.  
 
The peak of the Gaussian pulse propagates at vgroup even when the group velocity is negative!!! 
 
→  Useful for pulse re-shaping applications - leading edge is less attenuated than trailing edge. 
→  Can actually have the peak of a greatly attenuated pulse emerge from the absorber before the  
      peak of  the incident pulse enters the absorber ( ≡  definition of negative group velocity)!!! 
     {i.e. microscopically, if the absorber is not too thick, then some photons can make it all the 
       way through the absorber w/o interacting at all – this probability is exponentially suppressed.  
→  Has applications/uses e.g. in optical mammography/breast cancer screening for women...} 
→  See J.D. Jackson’s Electrodynamics, 3rd Edition, pages 325-26 for more details! 
 
 
     Finally, if we set 0ω ≡ , then we obtain the static (i.e. zero-frequency) limit of {all of} these 
quantities; note also that they become purely real in this limit: 
 

Static Polarization: 
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Static Electricity Susceptibility: 
2
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Static Index of Refraction:     ( ) ( )0 1 0 1 (0) (0)x e en Kα χ= + = + =     
 

But:  ( ) ( ) ( )( )1e o eK ω ε ω ε χ ω= = +   ⇒   ( ) ( )( )0 1 0o eε ε χ= +  and thus:     
 

Static Dielectric Constant:  ( ) ( ) ( )( ) ( ) ( )20 0 1 0 1 0 0e o e xK nε ε χ α= = + = + =  
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⇒  Note that the static dielectric constant {as measured at f = 0 Hz/DC} is ( )0 1.0eK >  because it 
contains information about all of the {quantum mechanical} resonances/excited states 1 0jω >  

present in the dispersive, linear medium, even into the x-ray region at 18 19
1 10jω −≈  Hz and beyond !!! 
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⇒  Equivalently, armed now with this knowledge of the microscopic behavior of a dispersive, 
linear medium, an electric susceptibility ( )0eχ > 0 {or equivalently, a dielectric constant 

( )0eK >1} instantly tells us that there are indeed {quantum mechanical} resonances/excited 
states present in the {composite} atoms/molecules that make up the macroscopic material of the 
dispersive, linear medium!!!  
 

⇒  A wonderful macroscopic example of dispersion is the rainbow. However, at the microscopic 
level, the wavelength-dependence of the index of refraction of light arises as a consequence of 
the resonant behavior of quantum mechanical bound states of electrons in atoms of the water 
molecule (H2O) responding to EM light waves{= visible light photons} coming from our sun.  
If no such composite behavior existed at the microscopic level, there would be no rainbows to 
enjoy in the macroscopic everyday world! 
 


