UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 9 Prof. Steven Errede

LECTURE NOTES 9

AC Electromagnetic Fields Associated with a Parallel-Plate Capacitor

Let’s investigate the nature of AC electromagnetic fields associated with a parallel-plate
capacitor, e.g. with circular plates of radius a separated by a small distance d < a as shown in
the figure below — we will neglect edge effects here:

3-D View:

At DC (f= 0 Hz), we know the static solution to this problem, namely that the {free} charge
Qs 0n the capacitor is related to the potential difference AV across the capacitor’s plates by:
Q.. = CAV where the capacitance of the capacitor is: C =¢,4/d (Farads) for d < a;

the area of one plate of the parallel plate capacitor is 4= 7a’.

Since there is no free electric charge between the plates of the parallel plate capacitor,
then for d <« a, the solution to Laplace’s Equation VZV(F ) =0 {derived from Gauss’ Law

VeE(F) = p,. (F) /e, =0, with E(7)=-VV (F)} yields:

AV =V (z=d) -~V (z=0)=—[ " E(F)di

But: £ ( r ) =—E Z between the plates of the parallel plate capacitor for d < a

AV =V(z=d)-V(z=0)=(V,-0)=V, =—E d Side View:

o

= |E(F)=-(7,/d)2=(0,. /¢, )i

where: |0, = O, / A

Qe _CAV _ g1V,

v,
= O_ﬁ‘ee(Z:d): 4 - 4 - Xd —8og:€0E0
M: O-free (Z = 0) =- Qzee = CjV = g(jdVO = _go % = _SOEO
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We ask:

What happens when we slowly raise the frequency from = 0 Hz (static E-field) to f > 0?
e.g. Apply a sinusoidally time-varying potential difference across the plates of the capacitor of

the form: AV (¢)=V,e =V, [coswt +isinwt] <« single frequency, f = /27 e.g. usinga

sine-wave function generator , as shown in the figure below:

N
R

Function

¥
Generator A
1

|

Ford<a: é(?,t)=—

AVH="f et

Z=— "cel z=E"z| with: |[E, =-V, /d

The potential difference AV (¢) and electric field E (1) vs. time r: ‘157 (Z)‘ =E(t)=E,”
/1\

/NG, e m &

Maxwell’s Equations must be obeyed in the gap- region between the parallel plates of

capacitor, where: 5. (7,¢) = Py (F»2) =0 and: me( t)=J e (Fs1)=0:

1) Coulomb’s Law: VE(7,t)=0
2) No magnetic charges / monopoles: |VeB(7,t)=0
3) Faraday’s Law: V x 5(17, t) = —8: (;7, t)/@t Maxwell’s Displacement Current:

4) Ampere’s Law: Vxé(F,t) ,uogoaz( ,t)/&t:,uo:D(F,t) where: jD(F,t)Egoaé(F,t)/ét

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Ampere’s Law (with Maxwell’s Displacement Current) in integral form tells us that:

:

o

L(Wé(f’f))%ﬁ = LﬂjD (7.t )da

< n.b. not a closed surface!

 B(ut)dl=p,[ T, (Ftyda = g, [ OF (7.1) /oreda

Using Stokes’
Theorem

\dii = dan = +das)|

da=pdpde
(in cylindrical
coordinates)

Note that: B (7,t)=B(p,t)$ due to the circular/azimuthal symmetry associated with this problem.

(jSaE

(7.1) ot -da

where:

=1/eu,

and:

di=dlip=pdep,and di = dan =+das by the right-hand rule, dd = pdpdp?,|da=pdpde
in cylindrical coordinates, thus B||d?,and E || dad, and:

O (t) OE (t)

. P .
ot }p_zcz( ot j(p

10 ~ 1 £p*
B(p,t)27rpzc—25E(t)7zp2 = B(p,t):c—zz/x[
But: |E(t)=E,e”| = o) =iwE, " =iokE(t)
5 la)p I A lC()p iot A iwt A
B(pt)=25E(t)p="7E,¢"9p=B,(p)"P
=5,(p)
— é(p,t)=Bo (p)elwt¢)=|:12a;/2) Eo:leiruqu:i[%Eo:leirm@

n.b. é( p.t) also oscillates sinusoidally like E (¢) but is 90° out-of-phase with £ (7).
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Note also that é ( o2 t) is linearly proportional to p (the radial distance from the axis of capacitor)

and that B (p=0)=0 at the center of the capacitor:

[FA 18
2ci

NOTE: B(p>a)=0

because lf?(p> a)=0

- for d < a in our model
F of this capacitor.

a.

Thus, we see that for @ > 0, 3 (i.e. there exists) an azimuthal, p-dependent and time-varying
magnetic field é ( 0, t) = {za;p;on} €@ in the gap region of the parallel-plate capacitor,
c
for d < a. Note also that the azimuthal magnetic field is also linearly proportional to w =27 f,

thus as the frequency increases, this magnetic field also increases in strength.

Note that for @ =0, E(a)) =0 as we obtained for the static limit case!

Furthermore, because the capacitor now has a non-zero magnetic field associated with it, for
® >0, the complex, frequency-dependent impedance Z (@)= R(w)+iy(®) (Ohms)

{where R(a)) = AC resistance and ;((a)) = AC reactance} of the parallel-plate capacitor is no
longer just: Z.(@)=iy.(®)=i(1/wC) (Ohms) where y.(®)=1/oC = the AC capacitive
reactance of the capacitor (Ohms), with (complex) AC Ohm’s Law: AV (w)=1(w)Z(w)

’“%c, Because of the existence of the magnetic field in gap-region of || -plate
?LL eV capacitor, EM energy can also be/is stored in the magnetic field of || -plate
capacitor due to the inductance, L (Henrys) associated with the parallel-
W plate capacitor and hence it has an inductive reactance of y, (a)) =wL and
hence has an inductive complex impedance associated with it, of
%L pat Z,(w)=iy, (w)=iwL. (Ohms). Since the inductance associated with

.« this capacitor is in series with its capacitance, we add the two impedances:

L]

27 (0)= 2 (0)+ 2, (0)=ize(0) iz (0) =i = i,

oC
ZEOT(a)):i(i+a)Lcj

The {complex} form Ohm’s Law {here} is thus: |AV (@) =1(@)Z"" ()

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Note that at low frequencies (a) ~ O) for the parallel-plate capacitor with d < a, the capacitive
reactance . (w)=1/wC> y,(®)=woL. and thus Z*" (0~ 0)=Z.(w~0). However, at very
high frequencies (0 — ), y.(0)< z,(®) = Z/°" (0 > »)=Z,(®—> »), i.e. in the very

high frequency limit, this capacitor instead behaves like a pure inductor!!!

Note also that the electric, magnetic and total £M energy densities in the gap-region of the
parallel plate capacitor, respectively are:

2

2
Ny (7o) =——

E“(f,t) 2

u, (F.t)=~¢, B(7.1)

and |upor (F,1) =u (F,1)+u,, (7,1)

N | —

n

. . . . = 1) -
Now because the capacitor has a non-zero time-varying magnetic field: B ( o2 t) = 2—€E0e””’g0
c

Faraday’s Law V x E (F,1)= —8§(F 1) / ot tells us that there will be an additional {induced}

electric field, because B(F,t) is also varying in time!!!

Faraday’s Law in integral form is: L(ﬁ x l?f(?,t))-dc? = —g(jsé(?,t)-dc?) =—

where @ (1)= JSE (7,t)sda is the magnetic flux (Webers = Tesla-m”) enclosed by the surface S

o6, (1)
ot
where the contour C around a closed path of integration encloses the surface S through which

magnetic flux @, (¢)= J.S B(#,t)«da passes.

at time z. Applying Stokes’ Theorem, we have: gl;cl%(?,t)-dz = —%(L é(?,t)-dc?) =—

Now B = B¢ (i.e. points in the ¢ {azimuthal} direction) and thus here we need B || da hence
dd, = da¢ also, and thus we take the closed contour C, line-integral path around the surface S,
as shown in the side-view figure below:

Side-View:

-

Eind o E _ A
(o) § ©|@Bo - Fodf e
Ja= dafi=—daX (fee)

] I‘\#G e

- Qo-fdw 99: X
C:f_c.iﬂ&'a"‘!& s 3__2_

Clacleoise Plove
T Fl. e
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The induced electric field, as created by the time-varying magnetic field is:

E v Y 0 B (5 = a(’Iq)m {
§ B a2 [, 3o - 500
where @ ()= '[ é(? ,t)sdd, = magnetic flux enclosed by contour C, passing through surface S

E~'ind (’_;’ t).d€4

—
=
a
B
9
A
g
U
—~
-
~
3
U
|
P
&
—~
~
®
U
)
+
=
=
LI
g
U
—~
~
(4
~4
o
=
N/
LI
g
—~
~
3
~
w
)
&
[

@ T
2=4 5 = A dfl =diz
@ j N, z dl,=dlp (p=7y herein y—2Z plane)
3 Q’fp?. C_‘@ Ag._b%_/\ di, =d((-2)=—-dlz
i X od - A A
4 ——>T ® ? f:%,j dl,=dl(-p)=—dlp

Now |V xE,, (7,t)=—0B(F,t) / ot |tells us that if B = B¢ direction, then in cylindrical coordinates:

=0

=0

L |08, GE |. 1| o ¥\ o/ | = OE.(F.1).

o+ - o+—| — e I=—"7—=0¢
oz 0p p|op @ op

=0 =0

Thus, we see that V x 57(77, t) =|Vx é(?,t) ¢ only, for all points (p, o, z) in the gap region of

|| -plate capacitor and for all times #. However, we see that due to the azimuthal / rotational
symmetry associated with the cylindrical || -plate capacitor, neither E,, (7,¢) nor B(#,t)can

have any explicit p-dependence, thus 8EZ / dp=0 and OF B / 0@ =0, which in turn respectively
imply that OF ) / 0z =0 and 6( pE ” ) / 0p = 0. Note further that Faraday’s Law tells us that we

must also have énd (7,1) L é(?,t).

For d <« a, the electric field in the gap region of the || -plate capacitor cannot explicitly

depend on z either. Thus, 0E,/0z =0 = .. the only surviving term in VxE, . (F,1) is:

i

VXE,,(F,t)=——2—"2¢|

li"md (7,t)=E,, (¥,t)% i.e. the induced E -field points in the # direction (mustbe L B = B¢)

which is satisfied because Z L ¢.

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, if the induced electric field lfl'md (7,t)=E,, (¥,t)¢ {only}, then we see that:

o (Fot)ed +j( B (Fot)ed 0y + j E,y (Fot)ed i, +

=l E, 2 dzz+W+J. de' de)JFJ. E, 2= /0,5)

I3

But E,, (7,t) has no explicit z-dependence, thus:

$. Eyy(Futydl=E, (p=0.1)[""dz = E,(p=put)[  dz=E, (p=0.1)xd+E,,(p=p.t)*d

Or: SBCZEZ""( t)ed (= [md(p=0,t)—Emd(p=p,t)]d where: |E,,(p,t)=E,,(p.t)2

= - o 3,. .
But: q;cz E, (F,t)edl = -1 B(F,t)dd,| where S, =surface enclosed by contour C,

and dd, = dan, =da¢ (i.e. S,lies in the y-z plane) = —dax {here} and da = dydz = d pdz

Now: |B(p,t)=B,(p)e“ ¢ = (lza)'?one"”’@ and ¢ =—x (.S, lies in the y-z plane)
c

j B(p,t)da, = J. r d(lw’oJE e pod pdz®| but: P =1

:( j o€ & I pd pdz ( JE iot p:)ﬂpdp and: jpdp:lpz
” 2

= . (iwp*d o
[, Bp.1)-da, —( o ]E ’

~ . 2 . 2
Then: _2 E(F’t).daz = _g la)pzd Eoeia)t — —la) la)pzd Eoe[wt
Ot *5: ot|\ 4c 4c

And: |(~io)(io)=(-i*i)@’ =+l0’ = ®*| {since i =+-1and —i=—/-1}

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 7
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YN N
—ajszB(l’,t)'d h = 4c E .
Then: @czij’"d( t)edil = ; Szé(?,t)-daz yields:

~ 2 2
/|:Emd (,0 0 t) ind (p p’ )i| 4pcz/ EOelwt2

Note that the d’s cancel on both sides of the above equation. Note also that because of the

explicit p° dependence on the RHS of above equation, we see that E:m y ( p=0, t) =0.

~ 2 2
Hence: Eind(p=t):_a;§ Eoeiwféz (az)fj E iot 2

Thus the fotal E -field in the capacitor gap is:

~ ~ ~ 2
s (p)=E () s () =502 22 E(l (2] JE

C C

Thus, we see here that the induced electric field caused by the time-varying magnetic field

points in the direction opposite to the initial/original E -field, reducing the overall E -field for
p >0, as we would expect from Lenz’s Law.

However, note that we now also have an additional contrlbutlon to the B -field inside the gap-region

of the parallel plate capacitor, due to the presence of the induced E -field contribution, Em (o).

Before we proceed further on this discussion, it would be best for us change our notation:
Call our original time-dependent E -field, E (F,t)=E, " = E, (7.1).

This E -field in turn creates a time-dependent é -field by Ampere’s Law:

_ OE(Ft) 1 OE/(F.1)
(1) = 12, oo & o |

sz

V x

However, because El (F , t) also varies in time, it turn creates another induced time-dependent

electric field by Faraday’s Law:

0B, (7,1)

@xé(?,t):— o

But E2 (17 ,t) is also time-varying, and so it in turn produces another time-varying contribution to

the magnetic field éz (F.1).

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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But because B, (7,¢)is also time-varying, it in turn will induce another contribution to the

I}

electric field E; (7,¢) and so on... i.e.:

And: |Byy (7.t) = B, (7.t)+ B, (7.t)+ B, (7o) + B, (7o) 4 By (Fut) 4= 3 B, (7.1)

n=1, E, (7t)
v
x - 0 = R =
O | A0 Y (7.0)
Infinite Loop v
ot - - 0 x ~ =
| gSCZEnH(r,t).dz:-5(jszgn(r,t).daz)4>Em(r,z)

A

Where contour C; enclosing surface S and area elementda, are associated with the figure drawn
on page 3 of these lecture notes, and where contour C, enclosing surface S, and area elementda,

are associated with the figure drawn on page 5 of these lecture notes.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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It can thus be shown for the parallel-plate capacitor with d < a that:

= I 1 (wpY 1 (wp) 1 (wp) | vV
Eror (p,t) = 2 (_,0) + 3 (—pj - > (—pj +..|E "z with: |E, = —(—"j
' l2e) "y lae) 3yl d
= I 1 (wp ? 1 (wp ! I (wp | iop
B )= 1- — | + - - .|B,e”p| with: |B, E,
ror (9] (1) ( 2¢ j (2!) ( 2¢ j (31 ( 2¢ j Y 2¢°
and where: n!=ne(n—1)(n—2)..2:1, 0!=1, 11=1, 21=2,31=6, 4! =24, etc.
o, o, o, io wp Y
We also see that: |B, = _/20E and: |E ,, = [—pj B = (—pj (—’?j E = —(—pj E
2c 2 2 2c 2c
. . . 2
and: B”H = la)lLZ) En+1 = la)€ @ Bn == % Bn
2c 2c 2 2c

Due to the cylindrical geometry / azimuthal symmetry associated with this problem, it should not

come as a surprise that:

Defining: x=2 kp
c
po 2
A

where

k:

A=

~|o|o |8

= wavenumber

w
f_27z

Then the quantity in square brackets on the previous page becomes:

1

(1

1

(2)°

op
2c

op
2¢

Sk

(

J“_

1

()

op
2c

(

jl

1

(1

1

(2)°

1

5) o7

31)

X

(_

2

) HE

The so-called “ordinary” Bessel function of the first kind, of order zero has a series expansion of

the form:

1

X

Jo(x)

)

1

2y

+

X

(_

2

J“_

1

@ ( (fj%—w
kzz(;kl“k+l 2 kz(;

(=

)k
lok!

(31)° (gjé '

SR

A5

k'=k (k 1)(

2).

30201

In general, the

where:

V=3

k=0

k

k'l n+k+1)[

2

I(k+1)=k!

(for k = integer)

series expansion of the ordinary Bessel functions of the first kind, of order # are:

n+2k
x)

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, for the cylindrical || -plate capacitor with d < a the electric and magnetic fields in the gap
region are of the form:

E(p.t)=J,(2L)E,e"s=J,(kp)E,e2| with |k=

o |

and |E :—ﬂ
d

B is 90° out-of-phase with E {here}:

B(p)= 1, (2)8.(0)e" =1, (k0) B, (0)"3] with 8,(p)= 225, =i 22 |,

Note that for p =0 that: E:(pzo,t)zEuei“” but: é(p:O,t):O.

The {Radial} Zeroes of Jy(x): x=kp= [QJ o,
c
/
Je0 i_\
j;(x) . 38,6537

n.b. the zeroes of J,(x) are not integer related!!

Since i?(p,t) =J,(kp)E,e”z and é(p,t) =J,(kp)B,(p)e”§ we see that the zeroes x,
of J, (x)are physically where the electric and magnetic fields vanish (!!!), i.e. £(p,)=0 and

B(p,t)=0 when p, =x, /k =cx, /o with x, =2.4048 ,x, =5.5201,x, =8.6537 , etc.!!!

So let’s now examine the frequency-dependence of the E and B fields of the || -plate capacitor:

E(p.t)=Jy(22) E,e” 2=, (kp)E,e" 2 with: k:% and: |E, =‘%

, ot it A . . k
(p:1)=1,(2) B, (p)¢" ¢ =1, (kp) B, (p)e“¢| with: |B,(p)="5E, ==L,

o

@) When: 0 =0, f=0 then: k=2=0= 4= (static case). Then: x=kp =0 and J,(0)=1
C

l:?(p,t)=E§=——0§ with: |[E =—22| and: é(p,t)=0 | nb.Sameresultas original

static calculation

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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b.) When: >0, e.g. f=60 Hz — w =2af= 120x rad/sec

Then: k = 277[ _O_ M =1.257x10"%rad /meter

¢ 3x10°m/ sec
Suppose the radius of the capacitor is @ =1 c¢m =107 m (reasonable/typical diameter)

Then: ka=1.257x10" = x (dimensionless)

And: Jo(ka)=J, (1 257 10*8) =1.0 (n.b. see/refer to above graph of Jy(x) vs. x)
Thus, we see that at /= 60 Hz, the E -field is = that of the DC E -field, and e.g. if V,=10 V and
d=01mm < a=1cm, i.e.d=10" m<a=10"7 m, then: E = —z:— 1041/ =—10" Volts/m
d 107 m
wa ka 1.257x10°®
and: |B =a)=—E, =—E, =——"— x10° =2.1x107"* Tesla {i.e. is very small}.
0(10 )‘ 202 0 2¢ 0 2><3X108 { Yy }

Another way to see this: C‘BO (p= a)‘ =6.3x107 Volts/m < |E,| =10’ Volts/m

EO

¢.) Now suppose: f=1MHz=10°Hz and w=2xf =27x10°rads/ sec

o 2rx 2xx10°

Then: k=—=—= = 2.1x107 =0.021 radians/m andif a=1cm=0.01 m
c A 3x10
Then: (ka)=0.021 x 0.01 =2.1 x 107" and Jy(ka) =1Jo (2.1 x 107*) = 1 (still).
V ka 3 )
— E, = —7} (constant), and: |B,(p = a)‘ = Z_E" =3.5x10"Tesla =35 nT (still very small)
¢

for £, =—-10°Volts/meter and {still} ¢|B,(p= a)‘ =10.5 Volts/m < |E0| =10 V/m
for V,=10 Volts, d=0.1 mm and a=lcm=10"m.

d.) Now suppose: f=100 GHz=10" Hz and o =2xf=6.3 x 10" rads/sec
11
Then: k=2 = 2z = % =2.1x10’radians/m
c A 3x10
Then: (ka)=2.1 x 10* x 102=21 — J, (kp) has 5 zeroes in it !!!
EEK!! — the E -field points in the reverse direction depending on 0 < p < g value !!!

(see above graph of J, (x) vs. x on page 11 of these lecture notes)

Suppose instead that we pick: ka = 2.4048 = x| = 1*' zero of Jo(x) = Jo(kp) (@ =107 m =1 cm)

Then: k = 240.48 radiansim = 2 — f=1.15 x 10'° Hz = 11.5 GHz (in the microwave region)
C

Then: |E (p,1) = J, (kp) E, ¢ 2 and l=27ﬁ=2~610m, B(p.t)=J,(kp)B,e" ) Bo=ﬂ;_pEo
C

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Electric field
=0atp=a f =11.5 GHz
when a=0.01m
ka =2.4048
> p
Magnetic field
=0atp=a f =115 GHz
when a=0.01m
ka =2.4048
o,
The Inductance of a Parallel-Plate Capacitor
Equate: |V, = %uz - 3ar| [av=12,,), T=a7/Z,,| [a7=ve"
~ ~ 1
Capacitance: |C = % (for d< a) L, =Z.+7Z, = i(_C+Q)LJ
0]
. V it - V it — V2
I= o ) = o€ then: |1|2 =" = 2 -
A1 1 1
i| —+ol —i| —+ oL — +wlL
wC oC wC
Thus: |, =~ LI =——L A [ az=[7z(x )k2p252 d pdpdz
. m 2 2#0 ( 1 jZ 2/,[0 v 0 p 402 Up p
—+wlL
oC

2,75 (ko) pdp

(kp)p’dp with L—g,uo,co ck, k=wfc

dZ(VOZ/dZ) \2\7[/{ k* B2
Fd
oC j

=+L
7;:/ 1 Zu, A’

oC+ oL

e ﬁb\k ﬂ/ j J2
1
( + ol ﬁ”\

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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L e, e, s, |
:>( 1 T {ZCzdeo(kp)pdp}az\
—+wlL
oC
:>L:02\($+a)LJ :aq[Lj +202\§§ + AL = aq(i] +202\(éj+02\w2ﬁ

| A0 +[2A_ )L
or: czzlaa) L +[ C 1)L+02\(wcj 0

=b =

b+ \/b2 —4ac

= Quadratic equation of the form: ‘aL +bL+c=0], solve for L: |L =

) J(I-Q"z‘/ 2 e | 2"2‘/ ) -(%)

2A° 2A®

e e A A PN e

Physically, we want L — 0 when @ — 0 .. must choose — (negative) sign in above formula!
1-2A/C)—1-4A/C 1 1 4
=( A/ ) 3 A/ Now: |Wl—e=1—-—e+=€’ —..| for ezé«l,m:
2A® 2 8 C
2
=3\ C ) _ A __ 2 rd .[Jz(kp) 3d,o— dez(kp) dp
2A0° o'C’ ngAz T2 g,A% 70 247

Where the capacitance and inductance of the parallel-plate capacitor, for d <« a are:

g A wrd o, ; (4A) | 270 e
C= g and |L = B j Jo (kp) p*d p|for e:( c j={ e LJ(f(kp)p3dp}<<1.

24048 — 1% )

5.5201 — 2™
8.6537 — 31
11.7915 — 4t
14.9309 — 5™ > zeroes of Jy(ka)
18.0711 — 6

Note that for ka=

_
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The electric field l?? ( p= a) =0 for these values of ka, corresponding to wavelengths A = 277[

. c o ck
and frequencies f PRy
Compare with radius (3 =261 cm o fi=1.15x10""Hz=11.5 GHz
a =1.0 cm and J=1.14cm e f5=2.64x 10" Hz =26.4 GHz
diameter D =2a=2.0 cm 23=0.73 cm — 3 =4.13x 10" Hz=41.3 GHz
of || -plate cylindrical < 2s=0.53 cm e f3=5.63x 10" Hz = 56.3 GHz
capacitor, as well as As=0.42 cm < f5=T7.13 X 10" Hz =71.3 GHz
the gap dimension of leé =0.35 cm < f3=8.63x 10" Hz = 86.3 GHz

d=0.1mm=0.01 cm

Note that because the electric field lf? ( p= a) =0 for these specific frequencies

(corresponding to the zeroes of Jy(x)=Jo(ka)), this means that physically, we could actually short
out the capacitor at p = a and it wouldn’t make any difference to the behavior / physics of this
“capacitor” at these specific frequencies f, f, f3,..!!!

For ka = zero of Jy(ka) {i.e. Jo(ka) = 0), we can short out the capacitor by wrapping it e.g. with
sheet metal at p = a , thus turning it into a cylindrical, fully-enclosed can with d < a !

— No change in physics for frequencies fi, f2, f3, . .
because E ( p= a) =0 for these frequencies!

Thus, at these frequencies f1, f>, f3, . . f, corresponding

to the zeroes of the Bessel Function Jy(ka) (i.e. Jo(ka) = 0),
a cylindrical conducting metal can of radius a and height
d < a 1is actually a resonant cavity with electric field:

E(p,t)=J,(k,p)E,€™'2 and magnetic field:

B(p.t)=J,(k,p)B,(p)e"p
subject to the boundary conditions that:
EH (p = a,t) = EZ (p = a,t) =0 and also that:

B (p=at)=B,(p=at)=0

for: k, =—, o =27nf, n=1,2,3,...
c
. ikp 14
with: B =——F and: E =-"¢
2c d
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We will see shortly in the next set of P436 Lecture Notes (# 10) that the resonant frequencies
of a resonant cavity and the allowed modes of EM wave propagation in wave guides can be
derived directly from the wave equation for EM waves in these structures, as determined by the
boundary conditions imposed on the EM waves by the conducting walls of these devices and also
the allowed polarization states of these EM waves.

Here in these lecture notes, we obtained harmonic EM wave solutions for £ and B in the gap
region of a parallel plate capacitor (and cylindrical can capacitor, subject to boundary condition
E =0 at p = a) via a perturbative technique, analogous to what we did last semester in P435 for

the E -field associated with a dielectric sphere immersed in an initially uniform external E -field
and the B -field associated with a magnetizable sphere immersed in an initially uniform external

15 -field. (See/work Griffiths Problems 4.23 and 6.18).

“Homework’ Exercises:

1.) Calculate the electric, magnetic and total energy densitiesu, ( p,¢,z,t), u, (p,p,z,t) and
U, ( 2, P, z,t) and their time averages; make e.g. plots of these vs. p . Investigate/plot their
behavior for low frequencies (@ ~ 0)and at higher frequencies, when @, = ck, =c(x, /a)
where x, = k,a = zeroes of J,(x,)=0.

2.) Calculate Poynting’s vector S(p,,z,t)= LE‘ (p,9,2,1)x B (p,9,z,t) and its time average;

o

S(p)

when @, =ck, =c(x,/a).

make plots of

vs. p, investigate/plot its behavior for low frequencies (@~ 0)and

3.) Calculate the linear EM momentum density, @, (p,9,z,t)=¢&,1,S(p,p,z,t) and angular
momentum density, 7,,, (p,0,z,t)=Fx g% o (P59, 2,1) , and their time averages; make plots

of Py, (p) and 7 = (P) vs. p; investigate/plot their behavior for low frequencies

(o ~0)and when @, =ck, =c(x,/a).
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