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LECTURE NOTES 13 
 

ELECTROMAGNETIC RADIATION 
 

     In P436 Lect. Notes 4-10.5 (Griffiths ch. 9-10}, we discussed the propagation of macroscopic 
EM waves, but we did not discuss how macroscopic EM waves are created.  Using what we 
learned in P436 Lect. Notes 12, we can now discuss how macroscopic EM waves are created. 
 
“Encrypted” into Maxwell’s equations: 
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is the physics associated with radiation of electromagnetic waves/electromagnetic energy, arising 
from the acceleration {and/or deceleration} of electric charges (and/or electric currents). 
 
In the P436 Lecture Notes #12, we derived the (retarded) electromagnetic fields associated with 
a moving point charge q from the Liénard-Wiechert potentials: 
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r
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 and:     ( ) ( )r rˆ ˆ1 1v t c tκ β≡ − = −

GGi ir r  = “retardation” factor 

With:   ( ) ( ) ( )( )r r r, ,A r t t V r t cβ=
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 ( ) ( )r rt v t cβ ≡
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  and: 2 1 o oc ε μ=  
 
We also derived the corresponding {retarded} electric and magnetic fields associated with a 
moving point charge q:  
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Microscopically: 
 
     The acceleration {and/or deceleration} of electric charges q and/or time-varying electric 
current densities ( ). . ;  ~e g J nqv J t nq v t nqa= ∂ ∂ = ∂ ∂

G GG G G  “converts” (a portion of the) virtual 

photons (associated with the “static” Coulomb field, which individually have zero total 
energy/zero-frequency) to real photons (which individually have finite total energy/finite 
frequency f ), which then freely propagate outward/away from the source of time-varying electric 
charge and/or electric current at the speed of light, c {in vacuum / free space}.   
 
     Since real photons individually carry energy/linear momentum/angular momentum, 
macroscopic EM waves carry energy/linear momentum angular momentum away from the 
source, in an irreversible manner – these EM waves propagate away from the source ∀  time. 
Energy/momentum must be input to the charged particle for this to happen – energy/momentum 
are {both} conserved in the radiation process. 
 

{Note also that we can reverse the arrow of time t t→−  in this process and thus learn about the 
absorption of energy/linear momentum/angular momentum by electric charges/currents from 
incoming/incident EM waves. . . .} 
 

     The total instantaneous power ( )r ,P r tG associated with radiation of EM waves from a source 

(assumed to be localized) is obtained by integrating the retarded Poynting’s vector ( )r ,S r t
G G  over 

a large spherical shell of radius r a�  = characteristic dimension of localized source – this is 
known as the “far-field” limit, when r →∞ : 
 

 ( ) ( ) ( ) ( )( )r r r r
1, , , ,

S S
o
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μ⊥ ⊥′ ′
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The instantaneous power radiated is the limit of ( )r ,P r tG as r →∞ :  ( ) ( )r rlim ,rad

r
P t P r t

→∞
≡

G
 

 

     The physical reason for this definition is simple.  In the so-called “near-zone”, when r a<
�

, 
the (generalized) Coulomb field(s) (microscopically consisting of virtual photons) are dominant 
in this region – thus, time-varying but non-radiating and E B

G G
 fields are present in proximity to 

the source.  These near-zone EM fields fall off/decrease/diminish as 2~ 1 r  from the source. 
 
     In reality, for finite r, there is always a mixture of radiating and non-radiating EM fields 
present that is associated with any source.  Expressed in a graphical manner in terms of r a : 
 

                                                     r a  
. . . . 10-4   10-3   10-2   10-1   100   10   100   103   104    105. . . . .   ∞  

                                                                 =1 
 

     “near-zone” regime:                            “far-zone” regime 
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Generalized Coulomb field(s)           Radiation/acceleration field(s) 
dominant   (virtual photons)             dominant (freely propagating real photons) 
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The instantaneous EM power associated with the Generalized Coulomb field is: 
 

 ( ) ( ) ( ) ( )( )r r r r
1, , , ,GCF GCF GCF GCF

S S
o
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μ⊥′ ′
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But:  ( ) 2
r , ~ 1GCFE r t
G G r  (even faster than this, if the net charge = 0, e.g. for higher order EM 

moments associated with electric dipoles, quadrupoles, octupoles, etc. …) 
 

And: ( ) 2
r , ~ 1GCFB r t
G G r  (even faster than this, if the net charge = 0, e.g. for higher order EM 

moments associated with magnetic dipoles, quadrupoles, octupoles, etc. …) 
 

  ⇒   ( ) 4
r , ~ 1GCFS r t
G G r   (ever faster, for high-order EM moments than a point charge distribution) 

 

But:  sphere 24A π⊥ = r  = area of sphere of radius r . 
 

   ∴  ( ) 2
r 4 2

1 1, ~ ~GCFP r tG ir
r r

 ⇒    
 

Note that ( )rlim , 0GCF

r
P r t

→∞
=

G
  i.e. no EM power is associated with G.C.F. at r = ∞   

⇒ “static” sources do not radiate EM energy. 
 
On the other hand, the instantaneous EM power associated with the radiation/acceleration fields is: 
 

 ( ) ( ) ( ) ( )( )r r r r
1, , , ,rad rad rad rad

S S
o

P r t S r t da E r t B r t da
μ⊥ ⊥′ ′
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But:     r ~ 1radE
G

r  and r ~ 1radB r   ⇒    ( ) 2
r , ~ 1radS r t
G G r ,  2~sphereA⊥ r  

 

   ∴   ( )r , ~ 1  radP r tG  (i.e. ( )r ,radP r tG  is independent of the radius of the enclosing surface S ′ ) 
 

Thus, we can simply pick r →∞  to eliminate the ( )r ,GCFP r tG  contribution!!! 
 
{n.b. for non-localized sources of time-varying EM radiation – e.g. infinite planes, infinitely long 
wires, infinite solenoids, etc. this requires a different approach altogether… } 
 
     In general, arbitrary configurations of localized, time-dependent electric charge and/or 
electric current density distributions, ( ) ( )r r rt t tρ ρ∂ ∂ ≡ �  and ( ) ( )r r rJ t t J t∂ ∂ ≡

G G�  can/do produce 
EM radiation/freely-propagating EM waves. 
 
     As we learned in P435 (last semester), from the principal of linear superposition, we can 
always decompose an arbitrary electric charge and/or current distribution into a linear 
combination of EM moments of the electric charge/current distribution, i.e. electric monopole 
(electric charge), electric and magnetic dipole, electric and magnetic quadrupole, etc. … 
moments. This is true {separately} for both static and time-varying EM moments of the electric 
charge and/or current distribution(s). 

EM Power associated with Generalized Coulomb 
fields is only appreciable near the source. 
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For a point electric monopole field {E(0)}, i.e. ( ) ( )( )3
r r,r t q t t cρ δ= − −

G r  
 

   ( ) ( ) ( )( )r(E0)
r '
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Where ( )q t = total electric charge of the source at the time t.  But electric charge is (always) 
conserved, and furthermore, (by definition) a localized source is one that does not have electric 
charge q flowing into or away from it.  Therefore, the electric monopole moment 
contribution/portion associated with the (retarded) potential(s) and EM fields is of necessity 
static – i.e. the electric monopole moment q has no EM radiation associated with it. In other 
words, there can be no net transversely polarized EM radiation emitted from a spherically-
symmetric charge distribution! {See e.g. J. D. Jackson Classical Electrodynamics 3rd ed. p. 410 
for additional/further details.} 
 
     The lowest-order electric multipole moment capable of producing EM radiation is that 
associated with a time-varying electric dipole moment, ( ) ( )r r, ,p r t qd r t′ ′=

GG G G
.  

⇒  Electric Dipole (E1) radiation originates from          ( )r,r tρ ′G�     
 
     The lowest-order magnetic multipole moment capable of producing EM radiation is that 
associated with a time-varying magnetic dipole moment, ( ) ( )r r, ,m r t Ia r t′ ′=

G G G G
.   

⇒  Magnetic Dipole (M1) radiation originates from         ( )r,J r t′
G G�     

 
     Each time-varying, localized, higher-order EM moment contributes in alternating succession 
between ( )r,r tρ ′G�  and ( )r,J r t′

G G�  (i.e. electric vs. magnetic): 
 
 Time-varying localized Time-varying localized 
 electric EM moments: magnetic EM moments: 
       ( ), rr tρ ′G�            ( ), rJ r t′

G G�  

 ( )0E�  electric monopole q�NO!  

  ( )0M�  magnetic monopole g� NO! 

 ( )1E�  electric dipole p qd=
GG ��                      

  ( )1M�  magnetic dipole  m Ia=
G G� �          

 ( )2E�  electric quadrupole 2EQ qdd=
GGI ��  

  ( )2M� magnetic quadrupole 2mQ Iaa=
I GG� �  

 ( )3E�  electric octupole 

  (3)M� magnetic octupole 
 ( )4E�  electric sextupole 

      … etc… ( )4M� magnetic sextupole 

no magnetic charges 
anyways…
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∴ We will consider/discuss the case of EM radiation from an oscillating E(1) electric dipole and 
then discuss case of radiation from an arbitrary localized source consisting of an arbitrary linear 

combination of time-varying EM moments, ( ) ( )( )
1

n n
n

a E n b M n
∞

=

+∑ � � , where ( ) ( ) and E n M n� �  are 

nth-order time-varying electric and magnetic multipole moments, respectively. 
 

E(1) Electric Dipole Radiation: 
     Consider an oscillating (i.e. harmonic/sinusoidally time-varying) electric dipole:    ( ) ( )p t qd t=

GG
 

where the charge separation distance varies in time as: ( ) ( ) ( )ˆ ˆcosod t d t z d t zω= =
G G

,   2 fω π=  
 

Then:   ( ) ( ) ( )ˆ ˆcos coso op t qd t z p t zω ω= =
G

, with: o op qd= . 
 

Equivalently, we can alternatively think of this as: ( ) ( )p t q t d=
GG

, with ˆd dz=
G

 = constant,  

and with time-varying/oscillating electric charge:   ( ) ( )cosoq t q tω= . 
 

Then:  ( ) ( ) ( )ˆ ˆcos coso op t q d t z p t zω ω= =
G

,   with: o op q d= .  {n.b. same result!} 
 
     Either way one views this , the physical picture is of a harmonically time-varying/oscillating 
electric dipole moment ( ) ( ) ˆ ˆcos cosop t p t z qd tzω ω= =

G
 a picture of which, for a given 

moment/instant/snapshot in time is shown below, for 0t = : 

n.b. ∃  an electric current associated with the oscillating electric dipole: ( ) ( ) ˆ
dq t

I t z
dt

=
G

, ( )0 0I t = =
G

 
 

 
 
n.b. ∃ exist (as always) some subtleties associated with the calculation of retarded potentials 
associated with moving point charges – we will address these subsequently, but not right here / 
right now… we’ll stick with the oscillating charge ( ) ( )cosoq t q tω=  version for now… 

ẑ  

ŷ  

x̂  

p qd=
GG  

q−  

q+  

ϑ  

( )I t  
rG  

θ  
r+′
G  

r−′
G  

Observation 
/ Field Point 

( )P rG  
2z d= +  

2z d= −  

n.b. The choice of origin is deliberately chosen at 
the center of the localized charge distribution – at 

the center of the oscillating electric dipole. 

  r r+ +′= −
G GGr  

      r r− −′= −
G GGr  
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     Now ( ) ( ) ˆcosp t p t zω=
G  refers to the time-dependence associated with itself.  An observer at 

field point ( )  at P r rG G  “sees” the effects of the time-varying ( )p tG  manifest themselves at a finite 

time later, rt t c= + r   or:  rt t c= − r  due to the retarded nature of this problem. 
 

Thus, ( )p tG  used in the formulae for the retarded scalar and vector potentials needs to be 

evaluated at the retarded time rt , i.e. ( ) ( )rp t p t→
G G

. 
 

 ( ) ( ) ( ) ( ) ( )r r r rE(1)
r

        

charge at charge at
ˆ ˆ+ 2 2

cos cos cos cos
,

4 4 4
o o o

o o o

d z d z

t t t tq q qV r t
ω ω ω ω
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−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦

G
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 ( ) ( )rE(1)
r ,

4
o I t

A r t dμ
π

⎛ ⎞ ′= ⎜ ⎟
⎝ ⎠ ∫

G GG A
r

   where:  ( ) ( )r rsinoI t q tω ω= −   and: ˆd dzz′ =
G
A  

 

Explicitly putting in the retarded time: rt t c= − r : 
 

 ( ) ( )( ) ( )( )    E(1)
r

    

cos cos
,

4
o

o

t c t cqV r t
ω ω

πε
+ −

+ −

⎡ ⎤− −⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦

r r
r r

 

 

 ( ) ( )2E(1)
r 2

sin
ˆ,  

4
z do o

z d

t cqA r t dz z
ωμ ω

π
=+

=−

−⎡ ⎤⎛ ⎞ ⎣ ⎦= −⎜ ⎟
⎝ ⎠ ∫

G G r
r

 

 

Let us first focus our attention on calculating out ( )E(1)
r ,V r t . From the law of cosines {see P435 

Lecture Notes 8  r.e. the derivation of the static multipole moment expansion}: 
 

 ( )22
  cos 2r rd dθ± = +∓r  

 
However, we want to investigate EM radiation in the “far zone” when r d� .  For this situation: 
 

 
2

  
11 cos 1 cos
4

d d dr r
r r r

θ θ±
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∓ ∓r  

 

Or:   
11 cos
2

dr
r

θ±

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� ∓r  for r d� . 

 
Similarly/correspondingly: 
 

 
  

1 1 1 1 cos
211 cos

2

d
r rdr

r

θ
θ±

⎛ ⎞⎛ ⎞≈ ± ⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠⎝ ⎠
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

�
∓r

   for r d� . 
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Likewise, for ( )( )  cos t cω ±− r  we have, for the “far zone”, when r d� : 
 

    
( )( )  cos cos 1 cos cos cos

2 2

                                cos cos cos sin sin cos
2 2

r d r dt c t t
c r c c

r d r dt t
c c c c

ωω ω θ ω θ

ω ωω θ ω θ

±

⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = − ±⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ± −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

� ∓r

⎤
⎥
⎦

 

 
     In order to proceed further we need to make an additional simplifying assumption, namely 
that the characteristic spatial dimension of the source (here, a = d) is �  wavelength λ of the 
emitted radiation, i.e. d λ�  ,  where c fλ = . Thus: d c f� , where: 2f ω π= , or: 

2d cπ ω�  or: d c ω�  
 
n.b. This assumption is tantamount/physically equivalent to saying that we neglect any/all  
time-retardation effects associated with finite EM propagation delay times over the dimensions 
characteristic of/associated with the source – i.e. changes in charge/current are essentially 
coherent/ instantaneous.   

     Suppose we have a source (e.g. an atom) with 1 a d nm= = = 10Α
D

 emitting a 1 f Hz= sine-
wave.  Since EM radiation travels propagates at1 30 ft cm�  per nanosecond, a 1 nm  dimension 
source doesn’t run into finite propagation decay time problems until: 

 c t a dΔ ≈ = (here)  i.e. 1 c t nmΔ ≈ ⇒
9

17
8

10 0.3 10 sec
3 10

t
−

−Δ ×
×

� � ⇒ 173 10f Hz×�  

Thus, provided that we additionally are in the regime of d λ� , or d c ω� , i.e. 1d
c
ω⎛ ⎞
⎜ ⎟
⎝ ⎠

� . 

Then from the Taylor series expansion of ( )cos 1x ≈  and ( )sin x x≈  for very small x, we see  
 

That: ( )cos cos cos 0 1
2

d
c

ω θ⎡ ⎤⎛ ⎞ ≈⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
�   and:  sin cos cos

2 2
d d
c c

ω ωθ θ⎡ ⎤⎛ ⎞ ⎛ ⎞≈⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 

Thus: ( )( )  cos   cos cos sin
2

r d rt c t t
c c c

ωω ω θ ω±

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ≈ − ± −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
r  

Thus:  
 

 

( )E(1)
r

1, , 1 cos cos cos sin
4 2 2

1                                 1 cos cos cos s
2 2

o

o

q d r d rV r t t t
r r c c c

d r dt
r r c c

ωθ θ ω θ ω
πε

ωθ ω θ

⎧ ⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − −⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎩

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

�

in rt
c

ω
⎫⎡ ⎤⎡ ⎤ ⎪⎛ ⎞− ⎬⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎪⎣ ⎦⎭

 

 
 
 
 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  13        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved 

8 

Expanding this out: 
 

 

( )E(1)
r

1, , cos
4

o

o

q rV r t t
r c

θ ω
πε

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
�

2
2

cos cos
2

                     cos sin cos sin
2 4

d rt
r c

d r d rt t
c c rc c

θ ω

ω ωθ ω θ ω

⎧ ⎡ ⎤⎪ ⎛ ⎞ ⎛ ⎞+ −⎨ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪⎩

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

                                      cos rt
c

ω⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
2

2

cos cos
2

                     cos sin cos sin
2 4

d rt
r c

d r d rt t
c c rc c

θ ω

ω ωω ω θ ω

⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎫⎪
⎬
⎪⎭

 

 

Thus:   
( )E(1)

r
1, , cos cos cos sin

4

cos 1                    cos sin
4

o

o

o

o

q d r d rV r t t t
r r c c c

q d r rt t
r r c c c

ωθ θ ω θ ω
πε

θ ωω ω
πε

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

�
 

 

But:     o op p q d= =
G

 
 

  ∴   ( )E(1)
r

cos 1, , sin cos
4

o

o

p r rV r t t t
r c c r c
θ ωθ ω ω

πε
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

�  

 
     In the “far-zone” d r� , with the additional restriction that we’ve also imposed on the source 
EM radiation: d λ� . We now additionally require/impose a third restriction that the “far-zone” 
also be such that rλ � , thus we have the hierarchical relation: d rλ� �  for “far-zone” EM 

radiation, namely that for rλ �  → 
c r
ω
⎛ ⎞
⎜ ⎟
⎝ ⎠

� ,  then → 
1

c r
ω⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�   i.e. 
1 1   for r

r
λ

λ
� � . 

 

Thus for the far-zone, when d rλ� �  we can neglect the second term in the above expression 
for ( )E(1)

r , ,V r tθ . 
 

Then:  ( )E(1)
r

cos, , sin
4

o

o

p rV r t t
c r c

ω θθ ω
πε

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
�  in the far-zone, for d rλ� � . 

 

     Note that in the static limit, when 0ω →  it is necessary to retain the second term in the above 

expression; we obtain in this limit: ( )E(1)
r 2

cos,
4

o

o

pV r
r
θθ

πε
⎛ ⎞− ⎜ ⎟
⎝ ⎠

�  {cf  w/ P435 Lect. Notes – same!} 
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Now let us focus our attention on calculating ( )E(1)
r ,A r t
G G : 

     ( ) ( )2E(1)
r 2

sin
ˆ,  

4
z do o

z d

t cqA r t dz z
ωμ ω

π
=+

=−

−⎡ ⎤⎛ ⎞ ⎣ ⎦= −⎜ ⎟
⎝ ⎠ ∫

G G r
r

  

 
Because the integration itself introduces a factor of d, then to first order 

in ( ) 1d r � :  2 22 cosr rz zθ− +�r    with:  
2
dz ≤  

Thus:  
( ) ( )2

2

sin sinz d

z d

t c t c
dz d

r
ω ω=+

=−

− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ �
r r

r
 

 

Then:  ( ) ( )E(1)
r

1 ˆ, sin
4

o oq d rA r t t z
r c

μ ω
ω

π
⎛ ⎞⎡ ⎤⎛ ⎞− −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

G
�   but: o op q d=  

 

Thus:   ( )E(1)
r

1 ˆ, sin
4
o op rA r t t z

r c
μ ω ω

π
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G
�  

 

     Note that in the static limit, when 0ω → then ( )E(1)
r , 0A r t →
G

as we expect. 

     Now that we have obtained the (retarded) scalar and vector potentials ( )E(1)
r ,V r t  and 

( )E(1)
r ,A r t
G

 it is a “straight forward’ exercise to compute the associated (retarded) EM fields, 

( ) ( )E(1) E(1)
r r,  and ,E r t B r t
G G

: 

 ( ) ( ) ( )E(1)
rE(1) E(1)

r r

,
, ,

A r t
E r t V r t

t
∂

= −∇ −
∂

G GG GG G
    and:   ( ) ( )E(1) E(1)

r r, ,B r t A r t= ∇×
GG GG G

 
 
In spherical coordinates: 
 

( )

( )E (1)
r ˆn.b. ,  has no explicit  dependence

E(1)
r

2

1 1 cosˆ ˆˆ, sin
sin 4

1 cos sin cos
4

V r t

o

o

o

o

p rV r t r t
r r c r c

p r rt t
c r c rc c

ϕ

ω θθ ϕ ω
θ θ ϕ πε

ω ωθ ω ω
πε

⎧ ⎫⎡ ⎤ −∂ ∂ ∂ ⎡ ⎤⎛ ⎞∇ + + −⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎩ ⎭

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

G

������������

G G �

2

1 ˆˆ sin sin

1 ˆˆ ˆcos cos cos sin sin sin
4

o

o

rr t
r c

p r r rt r t r t
cr c c r c c

θ ω θ

ω ω ω θ θ ω θ ω θ
πε

⎧ ⎫⎛ ⎞⎤ ⎡ ⎤⎪ ⎪⎛ ⎞− −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + − + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 

 

But for “far-zone” EM radiation, d rλ� �  we have:  
1

c r
ω �  

 

  ∴  

( ) ( ) ( )~ 1 ~ 1 ~ 1

1cos cos cos sin sin sinr r rt t t
c c r c c

ϑ ϑ ϑ

ω ω θ θ ω θ ω
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

�
����	���
 ����	���
 ����	���
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So we can neglect/drop the 
1 ˆˆcos sin sin sinr rt r t
r c c

θ ω θ ω θ
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 terms. 

 

    ∴    ( )
2

E(1)
r 2

cos ˆ, cos
4
o

o

p rV r t t r
c r c

ω θ ω
πε

⎡ ⎤⎛ ⎞∇ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

G G �  

 

And:    
( )E(1) 2

r , 1 ˆ ˆsin cos
4 4
o o o oA r t p pr rt z t z

t r t c r c
μ ω μ ωω ω

π π
∂ ⎛ ⎞∂ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

G G
�  

 

But:     ˆˆˆ cos sinz rθ θθ= −  in spherical coordinates. 
 

  ∴      
( )E(1) 2

r , ˆˆcos cos sin
4
o oA r t p rt r

t r c
μ ω ω θ θθ

π
∂ ⎡ ⎤⎛ ⎞ ⎡ ⎤− − −⎜ ⎟⎢ ⎥ ⎣ ⎦∂ ⎝ ⎠⎣ ⎦

G G
�  

 

Then for far-zone EM radiation, with d rλ� � :  ( ) ( ) ( )E(1)
rE(1) E(1)

r r

,
, ,

A r t
E r t V r t

t
∂

= −∇ −
∂

G GG GG G
 

 

            ( )
2 2

E(1)
r 2

ˆˆ ˆ, cos cos cos cos sin
4 4

o o o

o

p pr rE r t t r t r
c r c r c
ω μ ωω θ ω θ θθ

πε π
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤− − + − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

G G �  

 

But:     2 1

o o

c
ε μ

=   or:  2

1
o oc
ε μ=  

 

    ∴    
( )

2
E(1)
r ˆ, cos cos

4
o op rE r t t r

r c
μ ω ω θ

π
⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

G G �
2

ˆcos cos
4
o op rt r

r c
μ ω ω θ

π
⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2
ˆ                      cos sin

4
o op rt

r c
μ ω ω θθ

π
⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

Or:      ( )
2

E(1)
r

sin ˆ, cos
4

o op rE r t t
r c

μ ω θ ω θ
π

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �  

 

Then:  ( ) ( )E(1) E(1)
r r, ,B r t A r t= ∇×

GG GG G
     

 

with:   ( ) ( ) ( )E(1)
r

1 1 ˆˆˆ, sin sin cos sin
4 4
o o o op pr rA r t t z t rc cr r

μ ω μ ωω ω θ θθ
π π

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − = − − −⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

G
�  

 
Thus:  

( )E(1)
r

1, sin
sin

B r t A
r ϕθ

θ θ
∂

=
∂

G G 0 Aθ

ϕ

=⎛ ⎞ ∂
−⎜ ⎟ ∂⎝ ⎠

0

1 1ˆ
sin

rAr
r θ ϕ

=⎡ ⎤
∂⎢ ⎥ +⎢ ⎥ ∂

⎢ ⎥⎣ ⎦

0

r A
r ϕ

=

∂
−
∂

( )
0 1ˆ ˆrArA

r r θθ ϕ
θ

=⎡ ⎤
⎛ ⎞ ∂∂⎡ ⎤⎢ ⎥ + −⎜ ⎟ ⎢ ⎥⎢ ⎥ ∂ ∂⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
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 Thus: 

   

( ) ( )E(1)
r

1 ˆ,

1 1                  
4

r

o o

AB r t rA
r r

p
r r r

θ ϕ
θ

μ ω
π

∂∂⎡ ⎤= −⎢ ⎥∂ ∂⎣ ⎦

∂⎡ ⎤⎛ ⎞ −⎜ ⎟ ⎢ ⎥ ∂⎝ ⎠ ⎣ ⎦

G G

� ri ( ) 1 cos ˆsin sin sin

1 ˆ                  cos sin sin sin
4

                  

o o

o o

r rt t
c r c

p r rt t
r c c r c

p

θω θ ω ϕ
θ

μ ω ω ω θ ω θ ϕ
π

μ ω

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞− − − −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

−

�

�

 neglect

1 ˆcos sin sin
4

r rt t
r c c r c

ω ω ω θϕ
π

∴

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭����	���


 

 

Again, 
1

c r
ω⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�  here, because rλ � , thus  

 

∴ ( )
2

E(1)
r

sin ˆ, cos
4
o op rB r t t

c r c
μ ω θ ω ϕ

π
⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �  and: ( )
2

E(1)
r

sin ˆ, cos
4

o op rE r t t
r c

μ ω θ ω θ
π

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

G G �  

 

Now since ˆ ˆr̂ θ ϕ× = , once again we see that:  ( ) ( )E(1) E(1)
r r

1 ˆ, ,B r t r E r t
c

= ×
G GG G

, i.e. ˆ and B E B r⊥ ⊥
G G G

 

Note also that: 
 a.)  E(1) E(1)

r r and E B
G G

 both vary as ~ 1 r . 

 b.)  ( ) ( )E(1) E(1)
r r,  and ,E r t B r t
G GG G  are in phase with each other. 

 c.)  ( ) ( )E(1) E(1)
r r,  and ,E r t B r t
G GG G  have the same angular dependence ( ~ sinθ ). 

 

The EM radiation energy density, ( )E(1) ,radu r tG associated with the oscillating E(1) electric dipole 
for far-zone EM radiation { d rλ� � } is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )E(1) E(1) E(1) E(1)
E(1) E(1) E(1) r r r r

2 2 4 22
2

2 2

1 1, , , , , , ,
2

1 sin                 cos
2 16

rad Erad Mrad
o

o

o o o o

u r t u r t u r t E r t E r t B r t B r t

p rt
r c

ε
μ

ε μ ω μθ ω
π

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎡ ⎤⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

G G G GG G G G G G Gi i

�
2 4
o

o

p ω
μ

2
2

22 2

2 4 2 42 2
2 2

2 2 2 2 2 2

sin cos
16

1 sin sin                   cos    cos
2 16 16

o o o o

rt
r cc

p pr rt t
c r c c r c

θ ω
π

μ ω μ ωθ θω ω
π π

⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞−⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

�

 Joules/m3 

 

n.b. ( ) ( )E(1) E(1), ,Erad Mradu r t u r t=
G G

   using:  2 1 o oc ε μ=     or:   21o ocε μ= . 
 

∴ ( )
2 4 2

2
E(1) 2 2 2

sin, cos
16

rad o op ru r t t
c r c

μ ω θ ω
π

⎛ ⎞ ⎡ ⎤⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

G �  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for:  d rλ� �   “far zone” limit 
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The EM energy radiated by an oscillating electric dipole, in the far zone { d rλ� � } is given 
by Poynting’s vector: 

 ( ) ( ) ( )( )E(1) E(1)
E(1) r r

1, , ,rad

o

S r t E r t B r t
μ

= ×
G G GG G G

  

ˆ ˆˆ
ˆ ˆ ˆ

ˆˆ ˆ

r

r

r

ϕ ϕ

θ ϕ

ϕ θ

× =

× =

× =

 

 ( )E(1)
1,rad

o

S r t
μ

G G � oμ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

2 2
2 2

ˆ

ˆ ˆsin cos
4 4

o o o

r

p p rt
r rc c
ω μ ω θ ω θ ϕ

π π
=+

⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤− ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠ �	

 

 

Or:  ( )
2 4 2

2
E(1) 2 2

sin ˆ, cos
16

rad o op rS r t t r
c r c

μ ω θ ω
π

⎛ ⎞ ⎡ ⎤⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

G G �   2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

⇐   Radial outward flow of energy 

 for:  d rλ� �  “far zone” limit 
 
The EM radiation linear momentum density associated with an oscillating electric dipole, in the 
far zone { d rλ� � } is given by:  
 

       ( ) ( ) ( )E(1) E(1) E(1)2

1, , ,rad rad rad
o or t S r t S r t

c
μ ε℘ = =

G GG G G G
 

 

Or:  ( )
2 4

2 2
E(1) 2 2 3

ˆ, cos sin
16

rad o op rr t t r
r c c

μ ω ω θ
π

⎡ ⎤⎛ ⎞℘ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

G G �  2 -sec
kg

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

⇐  Radial outward EM linear  

 momentum flow for:  d rλ� �  “far zone” limit 
 
The EM radiation angular momentum density associated with an oscillating electric dipole, in the 
far zone { d rλ� � } is given by: 
 

        ( ) ( )E(1) E(1), ,rad radr t r r t= ×℘
G GG G GA       

 

( ) ( )
2 4

2 2
E(1) 2 2 3

ˆ ˆ, cos sin 0
16

rad o op rr t t r r
r c c

μ ω ω θ
π

⎡ ⎤⎛ ⎞− × ≡⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

G
A �  

-sec
kg

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ⇐  No angular momentum flow 

 for:  d rλ� �  “far zone” limit 
 

n.b. The exact  ( )E(1) ,rad r t ≡
G GA 0  i.e. ignore restrictions on far-zone limit, keep all higher-order 

terms . . . we have neglected E(1)
r ˆ~E r
G

 term which is non-negligible in the near-zone ( )~d r  and 

also in the so-called intermediate, or inductive zone ( )~ rλ . 
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 Time-Averaged Quantities for E(1) Radiation from an Oscillating Electric Dipole: 
 

Recall the definition of time average: ( ) ( ) 2

0 0

1 1 1cos  
2

t t

o ot t
A t A t dt A t dt A

τ τ
ω

τ τ
= =

= =
≡ = =∫ ∫              

 
The time-averaged EM radiation energy density associated with an oscillating electric dipole is: 
 

 ( )
2 4 2

E(1) 2 2 2

sin,
32

rad o opu r t
c r

μ ω θ
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

G �  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

  for:   d rλ� �   “far-zone” limit 

 

The time-averaged |Poynting’s vector|, which is also the intensity E(1)
radI  of EM radiation 

associated with an oscillating electric dipole is: 
 

( ) ( ) ( )( )
2 4 22E(1)

E(1) E(1) r 2 2

1 sin, ,
2 32

rad rad o o
o

pI r S r t c E r t
c r

μ ω θε
π

⎛ ⎞⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

GG G G �  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for:   

 

We also see that:  ( ) ( ) ( )E(1) E(1) E(1), ,rad rad radI r S r t c u r t≡ =
GG G G

  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
The time-averaged EM radiated power associated with an oscillating electric dipole is: 
 

 
( ) ( )

2 4

E(1) E(1) 2 2
, ,

32
rad rad o o

S

pP r t S r t da
c r

μ ω
π

⊥= ∫
GG G Gi � 2r

2 2

0 0
cos

2 4

16

sin sin

                   
32

d

o o

d d

p

θ π ϕ π

θ ϕ
θ

θ θ θ ϕ

μ ω

= =

= =
=

∫ ∫ ��	�


�
2π 2

2
c

π
2 4

2 2
20 0

sin  cos sin  cos
16

o opd d
c

θ π θ π

θ θ

μ ωθ θ θ θ
π

= =

= =
=∫ ∫

 

 

Let cosu θ= , ( )cosdu d θ= − ,  0 1uθ = ⇒ = ,  1uθ π= ⇒ = − ,  2 2 2sin 1 cos 1 uθ θ= − = −  
 

∴  ( )
1

1 2 3

1
1

1 1 1 2 41 1 1 2
3 3 3 3 3

u du u u
+

+

−
−

⎛ ⎞− = − = + − + − = − =⎜ ⎟
⎝ ⎠∫  

 
∴ The time-averaged radiated power is: 
 

     ( )
2 4

E(1) ,
12

rad o opP r t
c

μ ω
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

G �  (Watts) for:  d rλ� �   “far-zone” limit      

 
Note that time-averaged radiated power varies as the fourth power of frequency! 
 
The time-averaged EM radiation linear momentum density associated with an oscillating electric 
dipole is: 
 

( ) ( ) ( )
2 4 2

E(1) E(1) E(1)2 2 3 2

1 1 sinˆ ˆ, , ,
32

rad rad rad o opr t S r t u r t r r
c c c r

μ ω θ
π

⎛ ⎞⎛ ⎞
℘ = = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

GG G G G �  2 -sec
kg

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

for:  

 

d rλ� �
“far-zone” limit 

n.b. ( )E(1) ,radP r tG  has 

no r-dependence! 

d rλ� �
“far-zone” limit 
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The time-averaged EM radiation angular momentum density associated with an oscillating 
electric dipole is: 
 

( ) ( ) ( )
2 4 2

E(1) E(1) 2 3

sin ˆ ˆ, , 0
32

rad rad o opr t r r t r r
c r

μ ω θ
π

⎛ ⎞⎛ ⎞
= × ℘ × ≡⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

G GG G GA �  
-sec
kg

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 for:  

 

n.b. The exact  ( )E(1)
rad r ≡
G GA 0  i.e. ignore restrictions on far-zone limit, keep all higher-order 

terms . . . we have neglected the E(1)
r ˆ~E r
G

 term which is non-negligible in the near-zone ( )~d r  

and also in the so-called intermediate, or inductive zone ( )~ rλ . 
 

Note that because: ( ) ( )
2 4 2

E(1) E(1) 2 2

sin,
32

rad rad o opI r S r t
c r

μ ω θ
π

⎛ ⎞⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

GG G �  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

⇒  ( ) ( )E(1) E(1), 0, , , 0rad radS r S rθ ϕ θ π ϕ= = = =
G G

  since:  2 2sin 0 sin 0π= =  
 
 i.e. no EM radiation occurs along the axis of the electric dipole ( ẑ  axis) 
 

 EM radiation for E(1) electric dipole is peaked/maximum at 2θ π=  (then 2sin 1θ = ) 
i.e. maximum EM radiation occurs ⊥  to the axis of the electric dipole: 
 

                ( )E(1) ,radS r θ
G

 

 
 
                      
                                              2~ sin θ  

                
2 4

2 232
o op

cr
μ ω
π

                          

                                    0θ =           2θ π=            θ π=  
 

Thus, the intensity profile ( )E(1)
radI rG  in 3-D {for fixed r} for E(1) electric dipole radiation is 

donut-shaped  -  rotationally invariant in ϕ , as shown in the figure below: 

 

d rλ� �
“far-zone” limit 
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Griffiths Example 11.1:   

The time-averaged power for E(1) electric dipole radiation is 
2 4

E(1) 12
rad o opP

c
μ ω

π
� .  

Note that 4
E(1) ~radP ω  4 4(or ~ ,  or ~ )f λ−   

For red light:      red    780 nmλ �  ⇒   
8

14
red 9

red

3 10       3.85 10
780 10

cf Hz
λ −

×
= = ×

×
�  

For violet light:  violet 350 nmλ �  ⇒   
8

14
violet 9

violet

3 10 8.57 10
350 10

cf Hz
λ −

×
= = ×

×
�  

 

Hence:  ( )
4 4violet 14

4E(1) violet
14red

redE(1)

8.57 10 2.23 24.67
3.85 10

P f
fP

⎛ ⎞ ⎛ ⎞ ⎛ ⎞×⎜ ⎟ = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠⎝ ⎠
� . 

 

⇒ 4
E(1) ~radP ω explains why the sky is blue! Sunlight {unpolarized light} incident on O2 & N2 

molecules in the earth’s atmosphere stimulates the O & N atoms – vibrates the {bound} atomic 
electrons at {angular} frequency ω , causing them to oscillate as electric dipoles! Solar EM 
radiation at a given angular frequency ω  is thus absorbed and re-emitted in this EM radiation + 
atom scattering process.   
 
     The above formula for EM power radiated as E(1) electric dipole radiation by such atoms, by 
time-reversal invariance of the EM interaction, is also the EM power absorbed by atoms, thus we 
see that because of the 4ω -dependence of E(1)

radP , the higher frequency/shorter wavelength 
radiation (i.e. blue/violet light) is preferentially scattered much more so than the lower 
frequency/longer wavelength radiation (i.e. red light). 
 
     The Earth’s sky appears blue {e.g. to an observer on the ground, or even e.g. a space shuttle 
astronaut in orbit around the earth} because the light from the sky is scattered (i.e. re-radiated) 
light, which is preferentially in the blue/violet portion of the visible light EM spectrum. The 
scattering of EM radiation off of atoms is known as Rayleigh Scattering. 
 
     Note that precisely same physics also simultaneously explains why the Sun appears red e.g. to 
an observer on the ground at sunrise and sunset – because at these times of the day, path that the 
sunlight takes through the atmosphere is the longest, relative to that associated e.g. with its 
position at {local} noon. If the higher-frequency blue/violet light is preferentially scattered out of 
the beam of sunlight, what is left in the beam of sunlight after traversing the entire thickness of 
the Earth’s atmosphere is the lower-frequency, orange-red light. 
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     Note that the Sun is a black-body radiator – its EM spectrum peaks in the infra-red region – 
thus it is NOT flat by any means {also is affected by frequency-dependent absorption in the 
atmosphere}: 
 

 
 
     Note the log scale on the vertical axis! Thus, there is not much violet light in the Sun’s EM 
spectrum, and hence there is a delicate “balancing” act of flux of EM radiation from the Sun 
{convoluted} with its black-body spectrum and the scattering of this radiation by atoms in the 
Earth’s atmosphere – thus we see the sky as blue.  Thus, if the black-body temperature of the sun 
was different, then the color of the Earth’s sky in the visible portion of the EM spectrum would 
also be different – compare the black-body spectra of our Sun e.g. with that of Spica (260 ly 
away in the Virgo constellation) and Antares (a red giant 600 ly away in the Scorpio 
constellation): 
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     Light from the Sun is unpolarized (i.e. it consists of all polarizations, randomly oriented over 
time).  However, because EM waves are transversely polarized (defined by the orientation of 
the E

G
-field vector) an incident EM plane wave from the Sun with polarization in a given 

direction (⊥  to k
G

-propagation direction) will (transitorily) induce electric dipole moments in 
gas atoms in earth’s atmosphere, via ( ) ( )mol molp Eω α ω=

GG , where ( )molα ω  is the molecular 
polarizability at {angular} frequency ω {see P435 Lect. Notes 12 and P436 Lect. Notes 7.5}. 
 
     The axis of induced electric dipole moments will be || to the plane of polarization of incident 
wave at that instant, hence the scattered radiation emitted by the atom will be preferentially at 

90 2θ π= =D  (i.e. ⊥ ) to the axis of the (induced) electric dipole of gas atoms in earth’s 
atmosphere. There are two specific/limiting cases to consider – (a) when the incident E

G
-field 

vector is vertical and (b) when the incident E
G

-field vector is horizontal. Random polarization is 
then an arbitrary linear combination of these two limiting cases: 
 

(a.) incE
G

vertical: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b.) incE

G
horizontal: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Earth 

Atom 

incB
G

 

inck
G

 

incE
G

 
inducedpG  

scatE
G

 

scatB
G

 

scatk
G

 

90o
scatθ =  

= Line of sight 

Earth 

Atom 

incB
G

 
inck
G

 

incE
G

 
inducedpG  

scatE
G

 
scatB
G

 

scatk
G

 

90o
scatθ =  

= Line of sight 

  Same atom and same 
observer, but observer 
doesn’t see this scattered 
radiation – E(1) electric 
dipoles oscillating along 
the line-of-sight do not 
radiate in that direction. 

Note: Escat || pinduced || Einc for θscat = 90o 
(max probable direction of emission). 
E(1) electric dipoles oscillating ⊥ to line 
-of-sight preferentially tend to radiate 
in the line-of-sight direction.
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     Because the blue light an observer sees from a given portion of the sky is due to the 
preferential scattering of E(1) electric dipole-type Rayleigh scattering of sunlight/solar EM 
radiation off of gas atoms in the Earth’s atmosphere, with scatE ⊥

G
to the line-of-sight, this 

radiation has a net polarization – i.e. the light from the sky is polarized, especially so away from 
the sun, i.e. in the northern portions of the sky {in the northern hemisphere} !!! You can very 
easily observe/explicitly verify this using a pair of polaroid sunglasses – try it some time!!! 
 
     It is beneficial to wear polaroid sunglasses e.g. when out boating on a lake – in order to 
reduce “glare” from {polarized} sunlight reflected off of the surface of the water!!! 
 
    As mentioned above, at sunrise or sunset, the sun appears red when an observer is looking 
directly at the sun, because the blue/violet light is ~ 25× more preferentially scattered out of the 
beam of light incident from the sun {per unit thickness of atmosphere} than read light. Thus 
sunlight at the ground consists predominantly of what remains – red light.  
 
     Note that this is also true for moonrise and moonset – the moon will {likewise} have a 
reddish hue at these times, and note that this is also true e.g. for the case of an eclipse of the 
moon by the Earth. 
 
     One can also observe this same phenomenon e.g. using a glass pitcher of milk diluted with 
water – because milk molecules are efficient Rayleigh scatterers of visible light! Here’s a simple 
experiment that you can carry out at home, e.g. using a flashlight: 

 
 


