6 Resonant cavities and wave guides

6.1 Introduction

Let us investigate the solution of the homogeneous wave equation in regions con-
taining various geometric boundaries, particularly in regions bounded by conduc-
tors. The boundary value problem is of great theoretical significance and also
has many practical electromagnetic applications, particularly in the microwave
region of the spectrum.

6.2 Boundary conditions

Let us review the general boundary conditions on the field vectors at a surface
between medium 1 and medium 2:

n-(Dy—Dy) = T, (6.1a)
nA(E;—E;) = 0, (6.1b)
n-(B1—By) = 0, (6.1c)
nA(H, — H,) = K, (6.1d)

where 7 is used for the surface change density (to avoid confusion with the con-
ductivity), and K is the surface current density. Here, n is a unit vector normal
to the surface, directed from medium 2 to medium 1. We have seen in Section 4.4
that for normal incidence an electromagnetic wave falls off very rapidly inside the
surface of a good conductor. Equation (4.35) implies that in the limit of perfect
conductivity (0 — o0) the tangential component of E vanishes, whereas that of
H may remain finite. Let us examine the behaviour of the normal components.

Let medium 1 be a good conductor for which o/eeqw > 1, whilst medium 2 is
a perfect insulator. The surface change density is related to the currents flowing
inside the conductor. In fact, the conservation of charge requires that

_or
Ot

n-j = —iwT. (6.2)
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However, n-j = n-oEj, so it follows from Eq. (6.1)(a) that

(1 + lc"EOGI)n-El — 10 B, (6.3)

o g

It is clear that the normal component of E within the conductor also becomes
vanishingly small as the conductivity approaches infinity.

If E vanishes inside a perfect conductor then the curl of E also vanishes, and
the time rate of change of B is correspondingly zero. This implies that there
are no oscillatory fields whatever inside such a conductor, and that the boundary
values of the fields outside are given by

n-D = -, (6.4a)
nAE = 0, (6.4b)
n-B = 0, (6.4c)
nANH = -K. (6.4d)

Here, n is a unit normal at the surface of the conductor pointing into the con-
ductor. Thus, the electric field is normal and the magnetic field tangential at the
surface of a perfect conductor. For good conductors these boundary conditions
yield excellent representations of the geometrical configurations of external fields,
but they lead to the neglect of some important features of real fields, such as
losses in cavities and signal attenuation in wave guides.

In order to estimate such losses it is useful to see how the tangential and
normal fields compare when o is large but finite. Equations (4.5) and (4.34) yield
e
1% anE (6.5)
V2 '\ pow

at the surface of a conductor (provided that the wave propagates into the conduc-
tor). Let us assume, without obtaining a complete solution, that a wave with H
very nearly tangential and E very nearly normal is propagated along the surface

of the metal. According to the Faraday-Maxwell equation

H —

k
Hj| ~ 0w |EL| (6.6)
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just outside the surface, where k is the component of the propagation vector
along the surface. However, Eq. (6.5) implies that a tangential component of H
is accompanied by a small tangential component of E. By comparing these two

expressions, we obtain
E
Mgk/ 2 :i (6.7)
|E, | Howo A

where d is the skin depth (see Eq. (4.36) ) and X = 1/k. It is clear that the ratio
of the tangential component of E to its normal component is of order the skin
depth divided by the wavelength. It is readily demonstrated that the ratio of the
normal component of H to its tangential component is of this same magnitude.
Thus, we can see that in the limit of high conductivity, which means vanishing
skin depth, no fields penetrate the conductor, and the boundary conditions are
those given by Eqgs. (6.4). Let us investigate the solution of the homogeneous
wave equation subject to such boundary conditions.

6.3 Cavities with rectangular boundaries

Consider a vacuum region totally enclosed by rectangular conducting walls. In
this case, all of the field components satisfy the wave equation

1 9

20p — —Q—f =0, (6.8)

c? Ot
where 1 represents any component of E or H. The boundary conditions (6.4)
require that the electric field is normal to the walls at the boundary whereas the
magnetic field is tangential. If a, b, and ¢ are the dimensions of the cavity, then
it is readily verified that the electric field components are

E, = FEjcos(kiz)sin(kyy)sin(kszz)e ', (6.9a)
E, = Eysin(kiz)cos(kay)sin(ksz)e ™, (6.9b)
E, = Essin(kiz)sin(kyy) cos(ksz)e ™, (6.9¢)
where
[
kL, = — 1
1 p (6.10a)
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ks = "T” (6.10¢)

with [, m, n integers. The allowed frequencies are given by

2 l2 2 2
2 g (_2+7Z_2+"—>. (6.11)

c a c?

It is clear from Eq. (6.9) that at least two of the integers [, m, n must be different
from zero in order to have non-vanishing fields. The magnetic fields obtained
by the use of V A E = iwB automatically satisfy the appropriate boundary
conditions, and are in phase quadrature with the electric fields. Thus, the sum
of the total electric and magnetic energies within the cavity is constant, although
the two terms oscillate separately.

The amplitudes of the electric field components are not independent, but are
related by the divergence condition V- E = 0, which yields

ki1 E1+ ko B9 + k3 E5 = 0. (6.12)

There are, in general, two linearly independent vectors E that satisfy this condi-
tion, corresponding to two polarizations. (The exception is the case that one of
the integers [, m, n is zero, in which case F is fixed in direction.) Each vector is
accompanied by a magnetic field at right angles. The fields corresponding to a
given set of integers I, m, and n constitute a particular mode of vibration of the
cavity. It is evident from standard Fourier theory that the different modes are
orthogonal (i.e., they are normal modes) and that they form a complete set. In
other words, any general electric and magnetic fields which satisfy the boundary
conditions (6.4) can be unambiguously decomposed into some linear combination
of all of the various possible normal modes of the cavity. Since each normal mode
oscillates at a specific frequency it is clear that if we are given the electric and
magnetic fields inside the cavity at time ¢ = 0 then the subsequent behaviour of
the fields is uniquely determined for all time.

The conducting walls gradually absorb energy from the cavity, due to their
finite resistivity, at a rate which can easily be calculated. For finite o the small
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tangential component of E at the walls can be estimated using Eq. (6.5):

1—1 [pow
V2V o
Now, the tangential component of H at the walls is slightly different from that

given by the ideal solution. However, this is a small effect and can be neglected
to leading order in o~!. The time averaged energy flux into the walls is given by

2
20d

where H\|g is the peak value of the tangential magnetic field at the walls predicted
by the ideal solution. According to the boundary condition (6.4)(d), H)o is equal
to the peak value of the surface current density Ky. It is helpful to define a
surface resistance,

E” = H” An. (6.13)

~_ 1 1 Jpow - o

N = K2R, n, (6.15)
where .
= 1
R —J (6.16)

This approach makes it clear that the dissipation of energy is due to ohmic heating
in a thin layer, whose thickness is of order the skin depth, on the surface of the
conducting walls.

6.4 The quality factor of a resonant cavity

The quality factor @) of a resonant cavity is defined

energy stored in cavity

Q =2

. 6.17
energy lost per cycle to walls ( )

For a specific normal mode of the cavity this quantity is independent of the mode
amplitude. By conservation of energy the power dissipated in ohmic losses is
minus the rate of change of the stored energy U. We can write a differential
equation for the behaviour of U as a function of time:

dU . wo

il (6.18)
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where wy is the oscillation frequency of the normal mode in question. The solution

to the above equation is
U(t) = U(0) e"wot/@, (6.19)

This time dependence of the stored energy suggests that the oscillations of the
fields in the cavity are damped as follows:

E(t) = Egew0t/2Q g=ilwotAw)t (6.20)

where we have allowed for a shift Aw of the resonant frequency as well as the
damping. A damped oscillation such as this does not consist of a pure frequency.
Instead, it is made up of a superposition of frequencies around w = wy + Aw.
Standard Fourier analysis yields

E(t) = \/% /_00 E(w)e %" duw, (6.21)

where | ~
Fw) = — Ey e~ wot/2Q gl (w—wo—Aw)t gy 6.22
@=—=] B (6:22)
It follows that 1
|E(w)|? o (6.23)

(w— wo — Aw)? + (wo/2Q)?’

The resonance shape has a full width ' at half-maximum equal to wy/Q. For
a constant input voltage, the energy of oscillation in the cavity as a function
of frequency follows the resonance curve in the neighbourhood of a particular
resonant frequency. It can be seen that the ohmic losses, which determine ) for a
particular mode, also determine the maximum amplitude of the oscillation when
the resonance condition is exactly satisfied, as well as the width of the resonance
(i.e., how far off the resonant frequency the system can be driven and still yield
a significant oscillation amplitude).

6.5 Axially symmetric cavities

The rectangular cavity which we have just considered has many features in com-
mon with axially symmetric cavities of arbitrary cross section. In every cavity
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the allowed values of the wave vector k, and thus the allowed frequencies, are
determined by the geometry of the cavity. We have seen that for each set of
ki, ko, k3 in a rectangular cavity there are, in general, two linearly independent
modes; ¢.e., the polarization remains arbitrary. We can take advantage of this
fact to classify modes into two kinds according to the orientation of the field vec-
tors. Let us choose one type of mode such that the electric field vector lies in the
cross-sectional plane, and the other so that the magnetic field vector lies in this
plane. This classification into transverse electric (TE) and transverse magnetic
(TM) modes turns out to be possible for all axially symmetric cavities, although
the rectangular cavity is unique in having one mode of each kind corresponding
to each allowed frequency.

Suppose that the direction of symmetry is along the z-axis, and that the
length of the cavity in this direction is L. The boundary conditions at z = 0
and z = L demand that the z dependence of wave quantities be either sin k3z or
cos ksz, where k3 = nm/L. In other words, every field component satisfies

82
(@ - k32>¢ =0, (6.24)
as well as
(V2 + k%)Y =0, (6.25)

where 1 stands for any component of E or H. The field equations

VAE = iwugH, (6.26a)
VAH = —iwekFE (6.26Db)
must also be satisfied.

Let us write each vector and each operator in the above equations as the sum
of a transverse part, designated by the subscript s, and a component along z. We
find that for the transverse fields

iwuoHs = VsANE,+V, A E;, (6.27a)
—iwegEs = Vo AH,+V,AH,. (6.27h)
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When one side of Egs. (6.27) is substituted for the transverse field on the right-
hand side of the other, and use is made of Eq. (6.24), we obtain

Vs(0E,/0z) iwpg
k2 _ k32 k2 _ k32
Vs(0H,/0z) iweg

H, = — SANE,. 6.28b
k2 — ky? k2 — kJ? v ( )

E, Vs ANH,, (6.28a)

Thus, all transverse fields can be expressed in terms of the z components of the
fields, each of which satisfies the differential equation

[VZ+ (k* — k5?)] A, =0, (6.29)

where A, stands for either E, or H,, and Vg is the two-dimensional Laplacian
operator.

The conditions on E, and H, at the boundary (in the transverse plane) are
quite different: F, must vanish on the boundary, whereas the normal derivative
of H, must vanish so that H; in Eq. (6.28)(b) satisfies the appropriate boundary
condition. When the cross section is a rectangle, these two conditions lead to the
same eigenvalues of (k? — k3?) = k.2 = k;? + k2, as we have seen. Otherwise,
they correspond to two different frequencies, one for which E, is permitted but
H, = 0, and the other where the opposite is true. In every case, it is possible to
classify the modes as transverse magnetic or transverse electric. Thus, the field
components F, and H, play the role of independent potentials, from which the
other field components of the TE and TM modes, respectively, can be derived
using Egs. (6.28).

The mode frequencies are determined by the eigenvalues of Egs. (6.24) and
(6.29). If we denote the functional dependence of E, or H, on the plane cross
section coordinates by f(z,y), then we can write Eq. (6.29) as

V2f = -k f. (6.30)
Let us first show that k,2 > 0, and hence that k > k3. Now,

fV2f =V, (fVsf) = (Vsf)2 (6.31)
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It follows that
—ks2/f2dv+/(vsf)2dV:/fo-dS, (6.32)

where the integration is over the transverse cross section. If either f or its normal
derivative is to vanish on S, the conducting surface, then

k 2 _ f(vSf)2dV
S [ f2av

> 0. (6.33)

We have already seen that k3 = nm/L. The allowed values of k; depend both on
the geometry of the cross section and the nature of the mode.

For TM modes H, = 0, and the z dependence of E, is given by cos(nm z/L).
Equation (6.30) must be solved subject to the condition that f vanish on the
boundaries of the plane cross section, thus completing the determination of E,
and k. The transverse fields are special cases of Egs. (6.28):

1 oL,

ES = ]{:—82 ng, (634&)
iweo ~

H = —32AV.E.. (6.34b)

S

For TE modes, in which £, = 0, the condition that H, vanish at the ends of
the cylinder demands the use of sin(nm z/L), and ks must be such that the normal
derivative of H, is zero at the walls. Equations (6.28), giving the transverse fields,
then become

1 O0H,
H, = —5V,—, :
AL (6.35a)
1wpo

S

and the mode determination is completed.
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6.6 Cylindrical cavities

Let us apply the methods of the previous section to the TM modes of a right
circular cylinder of radius a. We can write

— Af(r, ) cos(kzz) e *t, (6.36)
where f(r, ) satisfies the equation

10/ of\ 18%F .
rar( ar)+r—2ﬁ+ksf_o, (6.37)

and (7, ¢, z) are cylindrical polar coordinates. Let

fr,p) = g(r)e'™?. (6.38)
It follows that p p )
1 g o m
— k. — — = 6.39
rdr( dr)+<s 'r'2>g 0, ( )
or P J
52 g g m?2
¢9 hatd — 40
2040 (2 m) g =0, (6.40)

where z = kgr. The above equation is known as Bessel’s equation. The two
linearly independent solutions of Bessel’s equation are denoted J,,(z) and Y, (2).
In the limit |z| < 1 these solutions behave as z™ and z~™, respectively, to lowest
order . More exactly!®

Z\™ = (—22/4)k
Im(z) = (5) kzzom, (6.41a)

P —m M~ 1 m . 2 k
Vole) = —CEEE N e R 4 e g
k=0
m 0 _22 4 k
];) —I—v,b(m—i—k—i—l)]ﬁ

(6.41D)

16M. Abramowitz, and I.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Cha. 9
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for |z| < 1, where

v(1) = -, (6.42a)

n—1
d(n) = —y+ Y k7 (6.42b)
k=1

and v = > 7o k7! = 0.57722 is Euler’s constant. Clearly, the J,, are well
behaved in the limit |2| — 0, whereas the Y, are badly behaved.

The asymptotic behaviour of both solutions at large |z| is

2

Im(2) = — —cos(z —mm/2 —7w/4) 4+ O(1/=z), (6.43a)
Vo(z) = :z sin(z — mm/2 — 7/4) + O(1/2). (6.43b)

Thus, for |z| > 1 the solutions take the form of gradually decaying oscillations
which are in phase quadrature. The behaviour of Jy(z) and Yj(z) is shown in
Fig. 21.

Since the axis » = 0 is included in the cavity the radial eigenfunction must be
regular at the origin. This immediately rules out the Y,,(ksr) solutions. Thus,
the most general solution for a TM mode is

E, = AJp(kir)e ™ cos(ksz) e @0, (6.44)
The k; are the eigenvalues of ks, and are determined by the solutions of
JIm(kia) = 0. (6.45)

The above constraint ensures that the tangential electric field is zero on the
conducting walls surrounding the cavity (r = a).

The most general solution for a TE mode is

H, = AJy(kir)e' ™ sin(ksz) et (6.46)
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Figure 21: The Bessel functions Jy(z) (solid line) and Yy(z) (dotted line)

In this case, the k; are determined by the solution of

J (ka) =0, (6.47)

where ' denotes differentiation with respect to the argument. The above con-
straint ensures that the normal magnetic field is zero on the conducting walls

surrounding the cavity. The oscillation frequency of both the TM and TE modes
is given by

w? n2m?
5 = k= k,? T (6.48)
If [ is the ordinal number of a zero of a particular Bessel function of order m (I
increases with increasing values of the argument), then each mode is characterized
by three integers, [, m, n, as in the rectangular case. The [th zero of J,, is
conventionally denoted ji 1 [s0, Jim(jm,) = 0]. Likewise, the lth zero of J}, is
denoted j; ,. Table 2 shows the first few zeros of Jy, Jy, Ji, and Ji. It is clear
that for fixed n and m the lowest frequency mode (i.e., the mode with the lowest
value of k;) is a TE mode. The mode with the next highest frequency is also a
TE mode. The next highest frequency mode is a TM mode, and so on.
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Jo,1 J1,1 Jo.1 1

2.4048 3.8317 0.0000 1.8412
5.5201 7.0156 3.8317 5.3314
8.6537 10.173 7.0156 8.5363
11.792 13.324 10.173 11.706

B~ W N | S

Table 2: The first few values of joi, ji,i, jo, and jj

6.7 Wave guides

Let us consider the transmission of electromagnetic waves along the axis of a
wave guide, which is simply a long, axially symmetric, hollow conductor with
open ends. In order to represent a wave propagating along the z-direction, we
can write the dependence of the fields on the coordinate variables and the time
as

f(z,y)elkaz=wt), (6.49)

The guide propagation constant, kg, is just the k3 of previous sections, except
that it is no longer restricted by the boundary conditions to take discrete values.
The general considerations of Section 6.5 still apply, so that we can treat TM
and TE modes separately. The solutions for f are identical to those for axially
symmetric cavities already discussed. Although kg is not restricted in magnitude,
we note that for every eigenvalue of the two-dimensional equation, kg, there is a
lowest value of k, namely k = k; (often designated k. for wave guides), for which
kg is real. This corresponds to the cutoff frequency below which waves are not
transmitted by that mode, and the fields fall off exponentially with increasing z.
In fact, the wave guide dispersion relation for a particular mode can easily be

shown to take the form
w? — w,?

kg =Y —“c (6.50)

C

where
we=kec=ksc (6.51)

is the cutoff frequency. There is an absolute cutoff frequency associated with the
mode of lowest frequency; i.e., the mode with the lowest value of k..
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For real k4 (i.e., w > w,) it is clear from Eq. (6.50) that the wave is propagated
along the guide with a phase velocity

Up = — = < (6.52)

kg /1—-wz2/w?

It is evident that the phase velocity is greater than that of electromagnetic waves
in free space. This velocity is not constant, however, but depends on the fre-
quency. The wave guide thus behaves as a dispersive medium. The group velocity
of a wave pulse propagated along the guide is given by

d
Ug = % =cy/1—w2?/w?, (6.53)
9

It can be seen that u, is always smaller than ¢, and also that

Up Uy = C. (6.54)

For a TM mode (H, = 0) Egs. (6.34) yield
ik,

B, = 33V (6.55)
H, = “9:aE, (6.55b)
kg

where use has been made of 0/0z = ik,. For TE modes (E, = 0) Egs. (6.35)
give

H, = k—;Vst, (6.56a)
E, = —%2/\1{3. (6.56b)
g9

The time-average z component of the Poynting vector IN is given by

F: |E3/\HS*|

p 5 (6.57)
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It follows that
Evan Mo 1 Hs(z)

N, =, /20
: € /1 —w2/w? 2

(6.58)

for TE modes, and
_ H 2
N, = @\/1—w62/w2—30 (6.59)
€0 2

for TM modes. The subscript 0 denotes the peak value of a wave quantity.

Wave guide losses can be estimated by integrating Eq. (6.14) over the wall of
the guide for any given mode. The energy flow of a propagating wave attenuates
as e K2, where

o power loss per unit length of guide (6.60)
~ power transmitted through guide '

Thus,
1 _
K=— [ (H?+H? /Nz 61
2(,d/(s+ z)dS/ ds , (6.61)

where the numerator is integrated over unit length of the wall and the denomi-
nator is integrated over the transverse cross section of the guide. It is customary
to define a guide impedance Z, by writing

— Z
/ N,dS = 79 / H,dS. (6.62)

It follows from Egs. (6.58) and (6.59) that

(6.63)

1
Zy= |22
€0 /1 —w,?/w?
for TE modes, and

Zy= /‘:—2\/1 — w2 )W (6.64)

for TM modes. For both types of mode Hs; = (1/Z,) 2 A\ E;.
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6.8 Dielectric wave guides

We have seen that it is possible to propagate electromagnetic waves down a
hollow conductor. However, other types of guiding structures are also possible.
The general requirement for a guide of electromagnetic waves is that there be a
flow of energy along the axis of the guiding structure but not perpendicular to it.
This implies that the electromagnetic fields are appreciable only in the immediate
neighbourhood of the guiding structure.

Consider an axisymmetric tube of arbitrary cross section made of some di-
electric material and surrounded by a vacuum. This structure can serve as a
wave guide provided that the dielectric constant of the material is sufficiently
large. Note, however, that the boundary conditions satisfied by the electromag-
netic fields are significantly different to those of a conventional wave guide. The
transverse fields are governed by two equations; one for the region inside the
dielectric, and the other for the vacuum region. Inside the dielectric we have

2 w? 2
[VS =+ (61 =z k:g )] = 0. (6.65)

In the vacuum region we have
2 w? 2

Here, v (z,y) e'*s% stands for either E, or H,, € is the relative permittivity of
the dielectric material, and k, is the guide propagation constant. The guide
propagation constant must be the same both inside and outside the dielectric
in order to satisfy the electromagnetic boundary conditions at all points on the
surface of the tube.

Inside the dielectric the transverse Laplacian must be negative, so that the

constant

w2

k=€ — —k,° (6.67)

S C2

is positive. Qutside the cylinder the requirement of no transverse flow of energy
can only be satisfied if the fields fall off exponentially (instead of oscillating).
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Thus,
2 2 w?

must be positive.

The oscillatory solutions (inside) must be matched to the exponentiating so-
lutions (outside). The boundary conditions are the continuity of normal B and
D and tangential E and H on the surface of the tube. These boundary condi-
tions are far more complicated than those in a conventional wave guide. For this
reason, the normal modes cannot usually be classified as either pure TE or pure
TM modes. In general, the normal modes possess both electric and magnetic field
components in the transverse plane. However, for the special case of a cylindrical
tube of dielectric material the normal modes can have either pure TE or pure
TM characteristics. Let us examine this case in detail.

Consider a dielectric cylinder of radius a and dielectric constant €;. For the
sake of simplicity, let us only search for normal modes whose electromagnetic
fields have no azimuthal variation. Equations (6.65) and (6.67) yield

2d—2+ri+r2k2 Y =0 (6.69)
"o dr y B '

for r < a. The general solution to this equation is some linear combination of the
Bessel functions Jy(ksr) and Yp(ksr). However, since Yy(ksr) is badly behaved
at the origin (r = 0) the physical solution is ¢ o< Jo(ksr).

Equations (6.66) and (6.68) yield

fr2—d2 —i—ri—'erQ =0 (6.70)
dr? dr ¢ e '
This can be rewritten
d? d
2 2 _
(Z E—FZE—Z)?ﬁ—O, (671)

where z = k;r. This is type of modified Bessel’s equation, whose most general
form is

[% < 22 (2 + m2)] ¥ = 0. (6.72)



The two linearly independent solutions of the above equation are denoted I,,,(2)
and K,,(z). The asymptotic behaviour of these solutions at small |z| is as fol-
lows:

W) = (2)" Z Al (6.734)
Kn@) = 5(5)77 2 P+ () e 2) )
k=0
ml [z > 22 /4)™
g (3) z:: ) Fm k1) k!((m/—i—)k)!'

(6.73b)

Hence, I, is well behaved in the limit |z| — 0, whereas K,, is badly behaved.
The asymptotic behaviour at large |z| is

(S

Im(z) =~ \/R [1+0(§)], (6.74a)

\/ge_z [1 +0 G) ] : (6.74b)

Hence, I,, is badly behaved in the limit |z| — oo, whereas K, is well behaved.
The behaviour of Iy(z) and K(z) is shown in Fig. 22. It is clear that the physical
solution to Eq. (6.70) (i.e., the one which decays as |r| = 00) is ¢ o< Ko(kir).

=
3
X
.

The physical solution is
Y = Jo(ksr) (6.75)

for » < a, and

Y = A Ko(kir) (6.76)

for 7 > a. Here, A is an arbitrary constant, and (r) e!*s* stands for either E,
or H,. It follows from Egs. (6.28) (using /00 = 0) that

. kg OH,

H,
k2 or '’

(6.77a)
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Figure 22: The Bessel functions Iy(z) (solid line) and Ky(z) (dotted line)

By, = —“Hopg. (6.77b)
kg
. Weper 8Ez
Hg = ITS2 87’* y (677C)
kg
E, = Hy (6.77d)
WeEp€r

for r < a. There are an analogous set of relationships for r > a. The fact that
the field components form two groups; (H,., Ep), which depend on H,, and (Hy,
E.), which depend on E,; means that the normal modes take the form of either
pure TE modes or pure TM modes.

For a TE mode (E, = 0) we find that

H, = Jo(ksr), (6.78a)
H, = —i];—ng(ksr), (6.78b)
Ey = i%h(ksm (6.78¢)
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for r < a, and

H, = AKo(kr), (6.79a)
k
Hy = 1A Ki(kr), (6.79b)
t
Ey = —iA%Kl(ktr) (6.79¢)
t

for » > a. Here we have used
Jo(z) = —Ji(2), (6.80a)
K(')(z) = —Ki(2), (6.80Db)

where ’ denotes differentiation with respect to z. The boundary conditions require
H,, H,., and Ey to be continuous across » = a. Thus, it follows that

AKy(kia) = Jo(ksa), (6.81a)
Ki(ker)  Ji(ksa)
R (6.81b)

Eliminating the arbitrary constant A between the above two equations yields the
dispersion relation

J1(ksa) N K;(kta)

= .82
ba Jo(ea) T e Ko(la) (6:82)

where )

b+ k= (0 —1) = (6.82)

Figure 23 shows a graphical solution of the above dispersion relation. The
roots correspond to the crossing points of the two curves; —Ji(ksa)/ksJo(ksa)
and K (kta)/kiKo(kia). The vertical asymptotes of the first curve are given by
the roots of Jy(ksa) = 0. The vertical asymptote of the second curve occurs when
ki = 0; i.e., when k2a® = (e1—1) w?a?/c?. Note from Eq. (6.82) that k; decreases
as ks increases. In Fig. 23 there are two crossing points, corresponding to two
distinct propagating modes of the system. It is evident that if the point k; = 0
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Figure 23: Graphical solution of the dispersion relation (6.82). The curve A
represents —Ji(ks/a)/ksJo(ksa). The curve B represents K;(kia)/kiKo(kia).
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corresponds to a value of ks;a which is less than the first root of Jo(ksa) = 0,
then there is no crossing of the two curves, and, hence, there are no propagating
modes. Since the first root of Jy(z) = 0 occurs at z = 2.4048 (see Table 2) the
condition for the existence of propagating modes can be written

2.4048 ¢
ver—Tla
In other words, the mode frequency must lie above the cutoff frequency wgy, for
the TEp; mode (here, the 0 corresponds to the number of nodes in the azimuthal
direction, and the 1 refers to the 1st root of Jy(z) = 0). It is also evident that
as the mode frequency is gradually increased the point k£, = 0 eventually crosses
the second vertical asymptote of —Jy(ks/a)/ksJo(ksa), at which point the TEqo

mode can propagate. As w is further increased more and more TE modes can
propagate. The cutoff frequency for the TEq mode is given by

(6.83)

w > wol =

Joi €
= — 6.84
e Ta (050
where jo; is Ith root of Jy(z) = 0 (in order of increasing z).
At the cutoff frequency for a particular mode k; = 0, which implies from

Eq. (6.68) that k; = w/c. In other words, the mode propagates along the guide
at the velocity of light in vacuum. Immediately below this cutoff frequency the
system no longer acts as a guide but as an antenna, with energy being radiated
radially. For frequencies well above the cutoff, k; and &k, are of the same order
of magnitude, and are large compared to ks. This implies that the fields do not
extend appreciably outside the dielectric cylinder.

For a TM mode (H, = 0) we find that

E, = Jo(ksr), (6.85a)

Hy = —i “’2061 1 (ksr), (6.85b)

E, = -i % J1(ksr) (6.85¢)
for r < a, and

E, = AKy(kr), (6.86a)
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Hy = iA?Kl(ktr), (6.86b)
t

k
B = 1AL Ki(kr) (6.86¢)
t

for r > a. The boundary conditions require E,, Hy, and D, to be continuous
across r = a. Thus, it follows that

AKy(kia) = Jy(ksa), (6.87a)
g Btk ilksa) (6.87b)
ki ks

Eliminating the arbitrary constant A between the above two equations yields the
dispersion relation

J1(ksa) K (kia)
€1
ks J()(ksa) kt K()(kta)

= 0. (6.88)

It is clear from this dispersion relation that the cutoff frequency for the TMyy;
mode is exactly the same as that for the TEqy mode. It is also clear that in the
limit €; > 1 the propagation constants are determined by the roots of Jy (ksa) ~
0. However, this is exactly the same as the determining equation for TE modes
in a metallic wave guide of circular cross section (filled with dielectric of relative
permittivity €;).

Modes with azimuthal dependence (i.e., m > 0) have longitudinal components
of both E and H. This makes the mathematics somewhat more complicated.
However, the basic results are the same as for m = 0 modes: for frequencies well
above the cutoff frequency the modes are localized in the immediate vicinity of
the cylinder.
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