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LECTURE NOTES 18.5 
 

The Lorentz Transformation of E
G

 and B
G

 Fields: 
 

     We have seen that one observer’s E
G

-field is another’s B
G

-field (or a mixture of the two), as 
viewed from different inertial reference frames (IRF’s). 
 
     What are the mathematical rules / physical laws of {special} relativity that govern the 
transformations of E B

G G
R  in going from one IRF(S) to another IRF(S') ??? 

 
     In the immediately preceding lecture notes, the reader may have noticed some tacit / implicit 
assumptions were made, which we now make explicit: 
 
1)  Electric charge q (like c, speed of light) is a Lorentz invariant scalar quantity.   
     No matter how fast / slow an electrically-charged particle is moving, the strength of its    
     electric charge is always the same, viewed from any/all IRF’s:  191.602 10e −= × Coulombs 
 
     {n.b. electric charge is also a conserved quantity, valid in any / all IRF’s.} 
 

     Since the speed of light c is a Lorentz invariant quantity, then since 1 o oc ε μ=  then so is      

    2 1 o oc ε μ=  and thus  and o oε μ  must be separately Lorentz invariant quantities, 
     i.e.  
         128.85 10oε

−= × Farads/meter 
         7   4 10oμ π −= ×  Henrys/meter 
 

2)  The Lorentz transformation rules for and E B
G G

are the same, no matter how the  and E B
G G

 fields  
      are produced - e.g. from sources:  q (charges) and/or I (currents); or from fields: e.g.      
     E B t∇× = −∂ ∂
G G G

, etc. 
 
The Relativistic Parallel-Plate Capacitor: 
 

     The simplest possible electric field:  Consider a large & -plate capacitor at rest in IRF(S0).  
It carries surface charges 0σ±  on the top/bottom plates and has plate dimensions 0 0 and wA   
{in IRF(S0)!} separated by a small distance 0 0, d w� A . 
 
In IRF(S0):       Electric field as seen in IRF(S0): 

         0
0 ˆ

o

E yσ
ε

=
G

 

 

No B
G

-field present in IRF(S0): 
         0 0B =

G
  no currents present! 

 

        n.b. 0E
G

 is non-zero only in the 
       gap region between & -plates 
 

same in any / all IRF’s
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     Now consider examining this same capacitor setup from a different IRF(S), which is moving 
to the right at speed v0 (as viewed from the rest frame IRF(S0) of the & -plate capacitor)   
i.e. 0 ˆv v x= +

G  is the velocity of IRF(S) relative to IRF(S0). 
 

     Viewed from the moving frame IRF(S), the & -plate capacitor is moving to the left (i.e. along 
the x̂− -axis) with speed –v0.  The plates along the direction of motion have also Lorentz-

contracted by a factor of ( )2
0 01 1 v cγ ≡ − ,  i.e. the length of plates in IRF(S) is now 

( )2
0 0 0 01 v cγ= = −A A A   

 
{n.b. the plate separation d and plate width w are unchanged in IRF(S) since both d  and w are ⊥  
to direction of motion!!} 
 

Since: TOT TOTQ Q
Area w

σ ≡ =
∗A

 but: QTOT = Lorentz invariant quantity 
 

And: 0
0 0 0

TOT TOTQ Q
A w

σ = =
∗A

 but:  w = w0 and d = d0 since both ⊥  to direction of motion. 

 

Thus: TOTQ wσ= A 0 0 0wσ= A   ⇒   0 0σ σ=A A   ⇒  ( )0 0σ σ= A A  

But: 0 γ=A A   ⇒   0
0σ σ=

A

0A
0 0

0

γ σ
γ

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

Thus:  0 0σ γ σ=   but since: 0 1γ >   ⇒ 0σ σ>    
 
 
 
     To an observer in IRF(S), the plates of the & -plate capacitor are moving in the 0 ˆv x−  direction. 

      
 Thus the electric field E

G
 in IRF(S) is: 

 

 0
0 0 0ˆ ˆ

o o

E y y Eσσ γ γ
ε ε

⊥ ⊥= = =
G G

 where: 0 0σ γ σ=  

 

0 0E Eγ⊥ ⊥=
G G

,   0
0 ˆ

o

E yσ
ε

⊥ =
G

 

       
  
 

     The superscript ⊥  is to explicitly remind us that 0 0E Eγ⊥ ⊥=
G G

 is for E
G

-fields ⊥  to the direction 
of motion. Here, 0 ˆv v x= +

G  between IRF’s. 
 

The surface charge density on the plates of capacitor in IRF(S) 

is higher than in IRF(S0) by factor of ( )2
0 01 1 v cγ = −  
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     Now consider what happens when we rotate the {isolated} & -plate capacitor by 90o in 

IRF(S0), then 0
0

0

ˆE xσ
ε

=
G

 in IRF(S0), but in the moving frameIRF(S): 

 
The electric field in IRF(S) is: 
 

ˆ
o

E x Eσ
ε

= ≡ &
G G

 

 

But: 0
0 0

TOT TOT TOTQ Q Q
Area w w

σ σ= = = =
A A

 

 

    ∴    0
0ˆ ˆ

o o

E x x Eσσ
ε ε

= = =& &
G G

       E
G

-field in IRF(S0) 

 

    ∴    0E E=& &
G G

 
 

d is now Lorentz-contracted in IRF(S):  0 0d d γ=   but has no effect on E
G

{in IRF(S)}, because 

E
G

 does not depend on d!  Why??? Because here, the & -plates were first charged up (e.g. from a 
battery) and then disconnected from the battery! 
 
⇒  Potential difference ( )( ) ( )( )0 0IRF IRFV S V SΔ ≠ Δ  !!!   
 

Since: 0
0

0

VVE E
d d

⎛ ⎞ΔΔ⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

& &   ⇒   0

0

VV
d d

ΔΔ
=

&&

 but: 0 0d d γ=   ⇒  0

0 0 0

VV
d dγ

ΔΔ
=

&&

 

 

   ∴   ( )( ) ( )( )0 0 0IRF IRFV S V SγΔ = Δ  
 

     The & -plate capacitor is deliberately not connected to an external battery (which would keep 
VΔ = constant, but then we would have 0σ σ=  in the⊥  case and 0σ σ≠  in the &  case.   

Currents would then flow (transitorially) in both situations.   
 
     Note that we also want to hang on to/utilize the Lorentz-invariant nature of  QTOT, which is 
another reason why the battery is disconnected… 
 
Griffiths Example 12.13:  The Electric Field of a Point Charge in Uniform Motion 
 
     A point charge q is at rest in IRF(S0).  An observer is in IRF(S), which moves to the right  
(i.e. in the x̂+  direction) at speed v0 relative to IRF(S0).  What is the E

G
-field of the electric 

charge q, as viewed from the moving frame IRF(S)? 
 
In the rest frame IRF(S0) of the point charge q, the electric field of the point charge q is: 
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0 02
0

1 ˆ
4 o

qE r
rπε

=
G

  where:  2 2 2 2
0 0 0 0r x y z= + +  

( )
0

0 3
2 2 2 2
0 0 0

4x
o

xqE
x y zπε

=
+ +

 

( )
0

0 3
2 2 2 2
0 0 0

4y
o

yqE
x y zπε

=
+ +

( )
0

0 3
2 2 2 2
0 0 0

4z
o

zqE
x y zπε

=
+ +

 

 

But:  0 0E Eγ⊥ ⊥=   and:  0E E=& &   ( )2
0 01 1 u cγ = −  

 
Then in IRF(S), which is moving to right (i.e. in the x̂+  direction) at speed v0 relative to IRF(S): 
 

( )
0

0 3
2 2 2 2
0 0 0

    
4xx

o

xqE E
x y zπε

= =
+ +

 

( )
0 0

0 0 3
2 2 2 2
0 0 0

4yy
o

yqE E
x y z

γγ
πε

= =
+ +

 

( )
0 0

0 0 3
2 2 2 2
0 0 0

4zz
o

zqE E
x y z

γγ
πε

= =
+ +

 

 

     However we want/need the IRF(S) E
G

 expressed in terms of the IRF(S) coordinate (x, y, z) of 
the field point P. ⇒  Use the inverse Lorentz transformation on coordinates: 
 
∴ In IRF(S) at time t:  

 
 
Observation / field point in IRF(S) at time t: 
 
Inverse Lorentz Transformation: 
 

( )0 0 0 0 xx x v t Rγ γ= + =  ˆ ˆ ˆx y zR R x R y R z= + +
G

 
 

0 yy y R= ≡    ( )2
0 01 1 v cγ = −  

 

0 zz z R= ≡  
 
 

 

n.b. These relations are currently expressed 
in terms of the IRF(S0) coordinate (x0, y0, z0) 
of the field point P. 
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Then: 2 2 2 2
0 0 0 0x y z r+ + =   =   2 2 2 2

0 x y zR R Rγ + +   =  2 2 2 2 2
0 cos sinR Rγ θ θ+   

 

From above figure: cosxR R θ=   ⇒   2 2 2cosxR R θ= .  
 

Then since: ( )2 2 2 2
x y zR R R R= + +   ⇒   ( )2 2 2 2siny zR R R θ+ =    Since:  ( )2 2 2 2cos sinR R θ θ= + . 

 
∴ In IRF(S): 
 

 
( )

0
3

2 2 2 2 2 2
0

4 cos sin
x

x
o

RqE
R R

γ
πε γ θ θ

=
+

  

 
( )

0
3

2 2 2 2 2 2
0

4 cos sin

y
y

o

RqE
R R

γ
πε γ θ θ

=
+

 

 
( )

0
3

2 2 2 2 2 2
0

4 cos sin
z

z
o

RqE
R R

γ
πε γ θ θ

=
+

 

 

     ∴   
( )

0
3

2 2 2 2 2 2
0

4 cos sino

RqE
R R

γ
πε γ θ θ

=
+

GG
   with:  ˆ ˆ ˆx y zR R x R y R z= + +

G
 

 

Or:  
( )

0
3 3

2 2 2 2
0

4 cos sino

q RE
R

γ
πε γ θ θ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠+

GG
  where:  3 2

ˆR R
R R

=
G

  since:  ˆR RR=
G

  or:  ˆ RR
R

=
G

 

 

0

4 o

qE
γ

πε
=
G

3

0γ
3 2

2
2 22

2
0

ˆ

1cos sin

R
R

θ θγ
⎛ ⎞+⎜ ⎟
⎝ ⎠

 with: 
2

0
2
0

1 1 v
cγ

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 

Thus: 

2
0

3 2
22

2 20

1
ˆ

4
1 sin 1 sin

o

v
cq RE

Rv
c

πε
θ θ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞⎛ ⎞− + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

G
 

 

Or:  

2
0

2

1

4
1 sin

o

v
cqE

πε
θ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

−

G

2sin θ+

3 2
2 2

20

ˆ

sin

R
Rv

c
θ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 

Picked up Lorentz factor 0γ  from 
Lorentz transformation of coordinate 

Picked up Lorentz factor 0γ  from 
Lorentz transformation of field 
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Thus: 

2
0

3 2
2 2

20

1
ˆ

4
1 sin

o

v
cq RE

Rv
c

πε
θ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

G
   

 

The unit vector R̂ points along the line from the present position of the charged particle at time t !!! 
(See Griffiths Ch. 10, Equation 10.68, page 439) 
 

⇒  E R
G G
&  because the 0γ  factor is present in the numerator of all of the ˆ ˆ ˆ, ,x y z  components !!! 

 
But wait!!!  This isn’t the entire story for the EM fields in IRF(S) !!! 
 

In the first example of the “horizontal” & -plate capacitor, which was moving with relative 
velocity 0 ˆv v x= −

G  as seen by an observer in IRF(S), shown in the figure below: 
 
The moving surface-charged plates of the & -plate capacitor as 
viewed by an observer in IRF(S) constitute surface currents:  

0 ˆK v xσ± =
G

∓   with:  0 0σ γ σ=  
 
These two surface currents create a magnetic field in IRF(S) 
between the plates of  the& -plate capacitor !!! 
 
 
 
 

Side / edge-on view:     B-fields produced (use right-hand rule): 
 

        
 
 
         Ampere’s Circuital Law: 
 

         
2

o enclC

o

B d I

Bw Kw

μ

μ

=

= = ±
∫

GG
i Av  

          
 
 

≡  Heaviside expression for the retarded electric field 
( ),retE r t

G G
 expressed in terms of the present time t !!! 
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( ) ( )0ˆ ˆ0   0
2 2

o oK vB y z z yμ μ σ+
+ > = − = − >
G

  ( ) 0ˆ ˆ
2 2

o oK vB y d z zμ μ σ−
− > = + = +
G

 

( ) ( )0ˆ ˆ0   0
2 2

o oK vB y z z yμ μ σ+
+ < = + = + <
G

  ( ) 0ˆ ˆ
2 2

o oK vB y d z zμ μ σ−
− < = − = −
G

 
 

Add  and B B+ −

G G
 to get the total B

G
-field: 

 

( ) 0 0ˆ ˆ 0
2 2

o o
TOT

v vB y d z zμ σ μ σ
> = − + =

G
  0K vσ=   and: 0 0σ γ σ=  

In IRF(S): ( ) 0 0
0ˆ ˆ ˆ ˆ0

2 2
o o

TOT o o
v vB y d z z v z Kzμ σ μ σ μ σ μ≤ ≤ = − − = − = −

G
 

( ) 0 0ˆ ˆ0 0
2 2

o o
TOT

v vB y z zμ σ μ σ
< = + − =

G
 

 

     Thus, in IRF(S) {which moves with velocity 0 ˆv v x= +
G  relative to IRF(S0)}  

we have for the horizontal & -plate capacitor: 
 

E
G

only exists in region 0 y d≤ ≤ : 0
0ˆ ˆ

o o

E y yσσ γ
ε ε

= =
G

  where: 0 0σ γ σ=   and: 0 2
0

1
1

γ
β

=
−

 

B
G

only exists in region 0 y d≤ ≤ : 0 0 0 0ˆ ˆo oB v z v zμ σ γ μ σ= − = −
G

   0
0

v
cβ =  

 
In IRF(S):  
 
 
 
 
 
 
 
 
 
 
 
The fact that B

G
 exists / is non-zero only where E

G
 exists / is non-zero is not an accident / not a 

“mere” coincidence! 
 
The space-time properties associated with rest frame IRF(S0) are rotated (Lorentz-transformed) 
in going to IRF(S). 
 

0E
G

 in IRF(S0) only exists between plates in IRF(S0) 
Gets space-time rotated (Lorentz-transformed) in going to IRF(S) 
→  and E B

G G
 in IRF(S) only exist between the capacitor plates in IRF(S). 

 

 and E B
G G

 between plates in IRF(S) comes from / is associated with 0E
G

 between plates in IRF(S0) 
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Point is: EM field energy density uEM (x,y,z,t) must be non-zero in a given IRF in order to have 
EM fields present at space-time point (x,y,z,t)! 

      In IRF(S0): ( ) ( )2
0 0 0 0 0 0

1, ,
2 ou r t E r tε=

G G
 0E←

G
only 

      In IRF(S):  ( ) ( ) ( )2 21 1, , ,
2 2o

o

u r t E r t B r tε
μ

= +
G G G

 

                 Space-time ( ),r tG  point functions 
n.b. If u0 = 0 in one IRF(S0) → u = 0 in another IRF(S). 
 
Momentary Aside: Hidden Momentum Associated with the Relativistic Parallel Plate Capacitor. 
 

   0
0

0 0

ˆ ˆE y yσσ γ
ε ε

= =
G

  where: 0 0σ γ σ=   and: 0 2
0

1
1

γ
β

=
−

 

   0 0 0 0ˆ ˆo oB v z v zμ σ γ μ σ= − = −
G

       0
0

v
cβ =  

Between plates of & -plate capacitor (only!): ( )
ˆ2 2 2

2 0 0 0 0 0
0

0 0 0

1 ˆ ˆˆ
x

v vS E B y z xσ γ σγ
μ ε ε

= × = − × = −

��G G G

 
ˆ ˆ ˆ
ˆ ˆˆ

ˆ ˆˆ

x y z
y z x
z x y

× =
× =
× =

 

Poynting’s vector points in the direction of motion of the & -plate capacitor, as seen by an observer 
in IRF(S), and only exists/is non-zero in the region between plates of the & -plate capacitor. 
 

EM field linear momentum density in IRF(S): 2 2
0 0 0 ˆEM o o oS v xε μ γ μ σ℘ = = −

GG
 . 

Points in the direction of motion of the & -plate capacitor, as seen by an observer in IRF(S), 
only exists/is non-zero in the region between plates of the & -plate capacitor. 
 

EM field linear momentum in IRF(S): Volume(IRF( ))EM EM EM Sp S V=℘ ∗ =℘
G GG

 
 

Where the volume (in IRF(S)):  0
0 0

0
SV wd w d

γ
≡ =

AA , where: 0 0γ=A A , 0w w=  and: 0d d=  {here}. 

 

Define the volume (in IRF(S0):  0 0 0 0V w d≡ A .   Thus: 0 0SV V γ= . 
 

∴ ( )
0

2 2 2 2 2 20 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

ˆ ˆ ˆ ˆEM o S o

V

w dp v V x v x v w d x v V xγ μ σ γ μ σ γ μ σ γ μ σ
γ

≡

= − = − ∗ = − = −
AG A��	�
  

 

The “hidden momentum” is: ( )2

1
hiddenp m E

c
= ×

GG G
.  

 

Note that:  m B
HG &   and:  ˆm IA z⊥= −

G
  with: I K d Kw⊥= =∫

GG
i A  where: 0K vσ= .  

 

The cross-sectional area is: 0
0

0

A d d
γ⊥

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

AAi  since 0 0γ=A A  and 0d d= , 0w w= . 

EM field energy densities u0 and u ≠ 0 only in 
region between plates of & -plate capacitor.

Between plates of 
& -plate capacitor 

in IRF(S): 
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Side view (in IRF(S)):   
     0 0γ σ

 
( ) 0

0 0 0
0

0

ˆ ˆ

    

m IA z Kw d v w d zσ
γ

γ

⊥= − = − = −

= −

AG A

( ) 0
0 0 0

0

v wσ
γ
A ( )( )0 0 0 0 0 0ˆ ˆd z v w d zσ= − A

 0
0 ˆ

o

E yσγ
ε

=
G

 

∴ In IRF(S): 
 

 ( ) ( ) ( )
0

ˆ
2

20 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 02 2

1 ˆ ˆ ˆˆ
x

hidden o
o o V

vp v w d z y w d x v V x
c c

σ γ σσ γ γ μ σ
ε ε

=−

≡

= − ∗ × = + = +

��G A A��	�
  using 2

1
o oc
ε μ=  

 

Thus In IRF(S): ( ) 2
0 0 0 02

1 ˆhidden op m B v V x
c

γ μ σ= × = +
GG G

  But:  ( ) 2
0 0 0 0 0 ˆEM o Sp E B V v V xε γ μ σ= × ∗ = −

G GG
 

 

Thus, we (again) see that: hidden EMp p= −
G G

 for the relativistic & -plate capacitor !!! 
 

Note that in IRF(S0): 0 0B =
G

  ⇒ 0 0 0
1 0

o

S B
μ

= Ε × =
G GG

⇒ 0EMp =
G

.  

But note that: ( )0 02

1 0hiddenp m B
c

= × =
GG G

, thus hidden EMp p= −
G G

 is also valid in IRF(S0). 
 
⇒The numerical value of hidden momentum is reference frame dependent, i.e. it is not a 
Lorentz-invariant quantity, just as relativistic momentum pG  {in general} is reference frame 
dependent/is not a Lorentz-invariant quantity. 
 
Now let us return to task of determining the Lorentz transformation rules for  and E B

G G
: 

 

     For the case of the relativistic horizontal & -plate capacitor, let us consider a third IRF(S′) that 
travels to the right (i.e. in the x̂+ -direction) with velocity ˆv vx= +

G  relative to IRF(S). 
 

In IRF(S′), the EM fields are: ˆ
o

E yσ
ε
′

′ =
G

  and:  ˆoB v zμ σ′ ′ ′= −
G

 

 
From use of Einstein’s velocity addition rule: v′G  is the velocity of IRF(S′) relative to IRF(S0): 
 

 0

0
21

v vv vv
c

+′ =
+

  with: 
( )2

1

1 v c
γ ′ =

′−
  and: 0σ γ σ′ ′=  
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We need to express  and E B′ ′
G G

 {defined in IRF(S′)} in terms of and E B
G G

{defined in IRF(S)}. 
 

 0ˆ ˆ
o o

E y yγ σσ
ε ε

′′
′ = =
G

  where: 
( )2

1

1 v c
γ ′ =

′−
  and: 0

0

σσ
γ

=  and: 
( )

0 2
0

1

1 v c
γ =

−
 

 

  ∴      
0

ˆ
o

yγ σ
γ ε
′

′Ε =
G

   but:  ˆ
o

E yσ
ε

=
G

 {in IRF(S)}   ∴    
0 0

ˆ
o

E E yγ γ σ
γ γ ε

⎛ ⎞ ⎛ ⎞′ ′
′ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G
   

 0ˆ ˆo oB v z v zμ σ γ μ σ′ ′ ′ ′ ′= − = −
G

  but:  0
0

σσ
γ

=  

   ∴    
0

ˆoB v zγ μ σ
γ

⎛ ⎞′
′ ′= −⎜ ⎟

⎝ ⎠

G
  but:  0 0 0 0ˆ ˆo oB v z v zγ μ σ μ σ= − = −

G
 {in IRF(S)} 

Now (after some algebra):  
( )
( ) ( )

2 2
0 0 0

22 2
0

1 1 1
1 1

v c vv c vv
cv c v c

γ γ
γ

−⎛ ⎞′ + ⎛ ⎞= = = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ′− −

 where: 
( )2

1

1 v c
γ ≡

−
 

 

But:  
( )

( )
0

2
01

v v
v

vv c
+

′ =
+

  and:  ( )2
0

0

1 vv cγ γ
γ

⎛ ⎞′
= +⎜ ⎟

⎝ ⎠
  with: 

( )2

1

1 v c
γ ≡

−
 

 

  ( )2
0

0 0

ˆ ˆ1
o o

E E y vv c yγ γ σ σγ
γ γ ε ε

⎛ ⎞ ⎛ ⎞′ ′
′ = = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G
 

2
0

0

ˆ 1oB v z vv cγ μ σ γ
γ

⎛ ⎞′
′ ′= − = − +⎜ ⎟

⎝ ⎠

G ( ) 0
2

01
o

v v
vv c

μ σ +

+
( )0ˆ ˆoz v v zγμ σ

⎛ ⎞
⎜ ⎟ = − +
⎜ ⎟
⎝ ⎠

 

 

Compare these to the and E B
G G

fields in IRF(S): 
 

0
0

0 0

ˆ ˆE y yσσ γ
ε ε

= =
G

  where: 0 0σ γ σ=   and: 0 2
0

1
1

γ
β

=
−

 

  0 0 0 0ˆ ˆo oB v z v zμ σ γ μ σ= − = −
G

       0
0

v
cβ =  

 

Using: 21o ocμ ε=  we can rewrite E′
G

 in IRF(S′) as:    Very Useful Table(s): 

( )0 0

    
in IRF( )    

in IRF( )

ˆ ˆ ˆ ˆ    
z

y

o o
o o B

SE
S

E y vv y y v v yσ σγ γμ σ γ γ μ σ
ε ε

=
=

⎛ ⎞
′ = + = − −⎜ ⎟

⎝ ⎠

G
��	�


�	

   

ˆ ˆ ˆ
ˆ ˆˆ

ˆ ˆˆ

x y z
y z x
z x y

× =
× =
× =

  
ˆ ˆ ˆ

ˆ ˆˆ
ˆ ˆˆ

y x z
z y x
x z y

× = −
× = −
× = −

 

 

where: ˆv vx=
G

  and: ˆzB B z=
G

 ⇒ ( )
ˆ

ˆ ˆˆz z

y

v B vB x z vB y
=−

× = × = −
GG

�	
  

 

∴ In IRF(S′): 

In IRF(S): 
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   ∴   ( ) ( )ˆ ˆ ˆy y z y zE E y E vB y E vB yγ γ γ′ ′= = − = −
G

        Or simply:  ( )y y zE E vBγ′ = −  
 

Likewise, again using: 21o ocμ ε=  we can rewrite B′
G

 in IRF(S′) as: 
 

( ) ( )
N

0 0 0 2

ˆ
in IRF( )    

in IRF( )

ˆ ˆ ˆ ˆ ˆ        
z

y

o o o o
o

B B z
S E

S

vB v v z v z vz v z z
c

σγμ σ γμ σ γμ σ γ μ σ γ
ε

= =
=

⎛ ⎞
′ = − + = − − = − − ⎜ ⎟

⎝ ⎠G

G
��	�
  

 

   ∴   2 2ˆ ˆ ˆ ˆ    z z y z y
v vB B z B z E z B E z
c c

γ γ γ ⎛ ⎞′ ′= = − = −⎜ ⎟
⎝ ⎠

G
  Or simply:  2z z y

vB B E
c

γ ⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 
Thus, we now know how the Ey and Bz fields transform.   
 
Next, in order to obtain the Lorentz transformation rules for Ez and By, we align the capacitor 
plates parallel to x-y plane instead of x-z plane as shown in the figure below: 

 
In IRF(S) the {now} rotated fields are: 
 

ˆ ˆr r
z

o

E z E zσ
ε

= =
G

 

 

 0 ˆ ˆr r
o yB v y B yμ σ= + =

G
 

 
Use the right-hand rule to get correct sign !!! 
 
 
 

 
The corresponding  and E B′ ′

G G
 fields in IRF(S') are (repeating the above methodology): 

 

( )z z yE E vBγ′ = +  and: 2y y z
vB B E
c

γ ⎛ ⎞′ = +⎜ ⎟
⎝ ⎠

 

 
As we have already seen (by orienting the plates of capacitor parallel to y-z plane): 
 

x xE E′ =  ←  n.b. there was no accompanying B
G

-field in this case!  
 

⇒  Thus we are not able to deduce the Lorentz transformation for Bx (&  to direction of motion) 
from the & -plate capacitor problem. 
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     So alternatively, let us consider the long solenoid problem, with solenoid {and current flow} 
oriented as shown in the figure below: 
 
In IRF(S):  In IRF(S): 
 

          0E =
G

 
 

ˆ ˆx oB B x nIxμ= =
G

 
 
 
 

We want to view this from IRF(S'), which is moving with velocity ˆv vx= +
G

 relative to IRF(S). 
 

In IRF(S): n N L=  = # turns/unit length, N = total # of turns, L = length of solenoid in IRF(S). 
 

Viewed by an observer in IRF(S'), the solenoid length contracts: L L γ′ =   in IRF(S') 
 

∴ In IRF(S'): 
N Nn n
L L

γ γ′ = = =
′

= # turns/unit length in IRF(S'), where 
( )2 2

1 1
1 1 v c

γ
β

= =
− −

 

However, time also dilates in IRF(S') relative to IRF(S) – affects currents: 
 

dQI
dt

=   in IRF(S)⇒   
dQ dt dQ dtI I
dt dt dt dt

⎛ ⎞ ⎛ ⎞′ = = =⎜ ⎟ ⎜ ⎟′ ′ ′⎝ ⎠ ⎝ ⎠
  in IRF(S').  But: 

1dt
dt γ

⎛ ⎞ =⎜ ⎟′⎝ ⎠
  ∴ 

1I I
γ

′ =  

 

   ∴   ˆ ˆx o oB B x n I xμ μ γ′ ′ ′ ′= = =
G ( ) 1n

γ
ˆ ˆ ˆo xI x nIx B x Bμ

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠

G
  ∴ x xB B′ =  

 
 Longitudinal / parallel-to-boost direction B-field does not change !!! 
 

     Thus, we now have a complete set of Lorentz transformation rules for  and E B
G G

, for a Lorentz 
transformation from IRF(S) to IRF(S'), where IRF(S') is moving with velocity ˆv vx= +

G
 relative 

to IRF(S): 
 

x xE E′ =    x xB B′ =     21 1γ β= −  

( )y y zE E vBγ′ = −   2y y z
vB B E
c

γ ⎛ ⎞′ = +⎜ ⎟
⎝ ⎠

   
v
c

β =  

( )z z yE E vBγ′ = −   2z z y
vB B E
c

γ ⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 
 
Just stare at/ponder these relations for a while – take your (proper) {space-}time… 
 
Do you possibly see a wee bit of Maxwell’s equations afoot here ???  ;)  
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Two limiting cases warrant special attention: 

1.)  If  0B =
G

 in lab IRF(S), then in IRF(S') we have:  ( ) ( )2 2
ˆ ˆˆ ˆz y z y

v vB E y E z E y E z
c c

γ′ ′ ′= − = −
G

 

But:  ˆv vx= +
G

  ∴ ( )2

1B v E
c

′ ′= − ×
G GG

  in IRF(S') !!! 

2.)  If  0E =
G

 in lab IRF(S), then in IRF(S') we have:  ( ) ( )ˆ ˆˆ ˆz y z yE v B y B z v B y B zγ′ ′ ′= − − = − −
G

 

But:  ˆv vx= +
G

  ∴ E v B′ ′= ×
G GG

 in IRF(S')  ←  i.e. magnetic part of Lorentz force law !!! 
 
 
Griffiths Example 12.14:  Magnetic Field of a Point Charge in Uniform Motion 
 

     A point electric charge q moves with constant velocity ˆv vz= +
G

 in the lab frame IRF(S). 
 

Find the magnetic field B
G

in IRF(S) associated with this moving point electric charge. 
 

Note that in the rest frame of the electric charge {IRF(S0)} that 0 0B =
G

 everywhere. 
 

∴ In IRF(S) the electric charge q is moving with velocity ˆv vz= +
G

 and: ( )2

1B v E
c

= − ×
G GG

. 
 

But the electric field of moving point charge q in IRF(S) is: 
( )

( )

2

3 2
2 2

2

1 ˆ

4
1 sino

v
cq RE

Rv
c

πε
θ

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟
⎝ ⎠

G
  ˆE R
G
&  

   ∴  ( )
( )

( )

2

32 2
2 2

2

1 sin1 1 ˆ
4

1 sin

o

vqv c
B v E

c Rv
c

θμ ϕ
π

θ

⎛ ⎞−⎜ ⎟ ⎛ ⎞⎝ ⎠= − × = ⎜ ⎟
⎝ ⎠⎛ ⎞−⎜ ⎟

⎝ ⎠

G GG
 where: ( )1 ˆˆcos v Rθ −= i , ˆ ˆsin  v R v θ ϕ× =

G
. 

 
If the point electric charge q is heading directly towards you (i.e. along the ẑ+  direction) then  
ϕ̂  aims counter-clockwise: 
              (out of page) 
 
 
 
 

NOTE:  In the non-relativistic limit ( v c� ): 2

ˆ

4
o v RB q

R
μ
π

⎛ ⎞×⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

GG
 ⇐    

 
NOTE ALSO:  H.C. Øersted discovered the link between electricity and magnetism in 1820.   
It wasn’t until 1905, with Einstein’s special relativity paper that a handful of humans on this 
planet finally understood the profound nature of this relationship – a timespan of 85 years – 
approximately a human lifetime passed!  (see / read handout on Øersted) 

(See pages 3-6 above/Griffiths Example 12.13)

The Biot-Savart Law for 
a moving point charge !!! 
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The Electromagnetic Field Tensor vF μ  

 

     The relations for the Lorentz transformation of and E B
G G

 in the lab frame IRF(S) to and E B′ ′
G G

 
in IRF(S'), where IRF(S') is moving with velocity ˆv vx= +

G
 relative to IRF(S) are: 

 

Ε&  components  B&  components 
x xE E′ =    x xB B′ =  

( )y y zE E cBγ β′ = −   ( )y y zB B E cγ β′ = +   21 1γ β= −  

( )z z yE E cBγ β′ = +   ( )z z yB B E cγ β′ = −   v
cβ =  

⊥Ε  components   B⊥  components 
 

     It is readily apparent that the  and E B
G G

field certainly do not transform like the spatial / 3-D 
vector parts of e.g. two separate contravariant 4-vectors ( and E Bμ μ ), because the (orthogonal) 
components of  and E B

G G
 ⊥  to the direction of the Lorentz transformation are mixed together  

{as seen in the case for 0B =
G

 in IRF(S) resulting in ( )2

1B v E
c

′ ′= − ×
G GG

 in IRF(S') and the case for 

0E =
G

 in IRF(S) resulting in E v B′ ′= ×
G GG

 in IRF(S')}. 
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      Note also that the form of the Lorentz transformation for &  vs. ⊥  components is “switched” 
{here} for the fields !!! 
 

     Recall that true relativistic 4-vectors transform by the rule va aμ μ
γ′ = Λ ,  

e.g. for a Lorentz boost from IRF(S) → IRF(S') along ˆv vx= +
G

.  
 

Specifically, recall that v
vx xμ μ′ = Λ  is explicitly: 

 

  ( )ct ct xγ β′ = −  

Parallel components:   ( )x x ctγ β′ = −  x xE E′ =   x xB B′ =  

Perpendicular    y y′ =   ( )y y zE E cBγ β′ = −  ( )y y zB B E cγ β′ = +  

Components:    z z′ =   ( )z z yE E cBγ β′ = +  ( )z z yB B E cγ β′ = −  
 

For a Lorentz transformation v
vx xμ μ′ = Λ  from IRF(S) →  IRF(S') along ˆv vx= +

G
,  

the v
μΛ  tensor has the form:   

 
Row index 

0 0
0 0

0 0 1 0
0 0 0 1

v
μ

γ γβ
γβ γ

−⎛ ⎞
⎜ ⎟−⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Column index 
 

     Thus, there is no way that the  and E B
G G

 fields can be construed as being the spatial / 3-D 
vector components of contravariant 4-vectors and E Bμ μ .  
  

(What would be their temporal components/ scalar counterparts:  0 0and E B = ???) 
 

     It turns out that the 3-D spatial vectors and E B
G G

 are the components of a 4 × 4 rank-two 
EM field tensor, vF μ !!! 
 

A 4 × 4 rank two tensor tλσ  Lorentz transforms via two Λ -factors (one for each index): 
 

v vt tμ μ λσ
λ σ′ = Λ Λ  

Where tλσ  is: 
 
Row index Column index     Column # 0     1      2     3      Row # 
 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

0
1

   
2
3

t t t t
t t t t

t
t t t t
t t t t

λσ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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The 16 components of the 4 × 4 second rank tensor tλσ  need not all be different (e.g. v
μΛ ) 

 – the 16 components of tλσ may have symmetry / anti-symmetry properties: 
 

    Symmetric     4 × 4 rank two tensor:       t tλσ σλ= +  
Anti-symmetric 4 × 4 rank two tensor:       t tλσ σλ= −  

 

• For the case of a symmetric 4 × 4 rank two tensor t tλσ σλ= + , of the 16 total components,  
      10 are unique, but 6 are repeats: 
 

t01 = t10,       t02 = t20,   t03 = t30 
t12 = t21, t13 = t31 

t32 = t23 

 
00 01 02 03

01 11 12 13

. 02 12 22 23

03 13 23 33

sym

t t t t
t t t t

t
t t t t
t t t t

λσ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

• For the case of an anti-symmetric 4 × 4 rank two tensor t tλσ σλ= − , of the 16 total 
components, only 6 are unique, 6 are repeats (but with a minus sign!) and the 4 diagonal 
elements must all be ≡  0 (i.e. t00 = t11 = t22 = t33 ≡  0): 

 

t01 = −t10,       t02 = −t20,   t03 = −t30 
t12 = −t21, t13 = −t31 

t32 = −t23 

 
01 02 03

01 12 13

02 12 23
.

03 13 23

0
0

0
0

anti
sym

t t t
t t t

t
t t t
t t t

λσ

⎛ ⎞
⎜ ⎟
−⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

 

     So it would seem that the spatial / 3-D and E B
G G

 vectors can be represented by an  
anti-symmetric 4 × 4 rank two contravariant tensor !!! 
 

     Let’s investigate how the Lorentz transformation rule v vt tμ μ λσ
λ σ′ = Λ Λ  for a 4 × 4 rank two  

anti-symmetric tensor 
.

anti
sym

tλσ works (6 unique non-zero components).  Starting with 01 0 1t tλσλ σ′ = Λ Λ : 

Column # 0     1      2     3      Row # 
 

         ( )
0 0 0
0 0 1

or     
0 0 1 0 2
0 0 0 1 3

vμ
λ σ

γ γβ
γβ γ

−⎛ ⎞
⎜ ⎟−⎜ ⎟Λ Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

01 02 03

01 12 13

02 12 23
.

03 13 23

0
0

0
0

anti
sym

t t t
t t t

t
t t t
t t t

λσ

⎛ ⎞
⎜ ⎟
−⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− − −⎝ ⎠
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Row #   0
0Λ  0

1Λ  

We see that 0 0λΛ = , unless 0λ =  or 1: γ    or γβ−  
Column # 
 
Row #   1

0Λ  1
1Λ  

We also see that 1 0σΛ = , unless 0σ =  or 1: γβ−  or γ  
Column # 

∴ There are only 4 non-zero terms in the sum: 01 0 1 0 1 00 0 1 01 0 1 10 0 1 11
0 0 0 1 1 0 1 1t t t t t tλσ

λ σ′ = Λ Λ = Λ Λ +Λ Λ +Λ Λ +Λ Λ  
 

But:  t00 = 0 and t11 = 0, whereas t01 = −t10. 
 

∴ ( ) ( )( )( ) ( ) ( )01 0 1 0 1 01 01 2 2 2 01 2 2 01
0 1 1 0 1t t t t tγ γ γβ γβ γ γ β γ β′ = Λ Λ −Λ Λ = ⋅ − − − = − = −  

 

But: 2 21 1γ β= −   ∴ 01 01t t′ =  
 

     One (e.g. you!!!) can work through the remaining 5 of the 6 distinct cases for v vt tμ μ λσ
λ σ′ = Λ Λ   

(or for completeness’ sake, why not work out all 16 cases explicitly!!!) . . .  
 

     The complete set of six rules for the Lorentz transformation of a 4 × 4 rank two contravariant 
anti-symmetric tensor v vt tμ μ λσ

λ σ′ = Λ Λ  are: 
 

01 01t t′ =   ↔ x xE E′ =  

( )02 02 12t t tγ β′ = −  ↔ ( )y y zE E cBγ β′ = −  

( )03 03 31t t tγ β′ = −  ↔ ( )z z yE E cBγ β′ = +  
23 23t t′ =   ↔ x xB B′ =  

( )31 31 03t t tγ β′ = +  ↔ ( )y y zB B E cγ β′ = +  

( )12 12 02t t tγ β′ = −  ↔ ( )z z yB B E cγ β′ = −  
 
     As can be seen, the above Lorentz transformation rules for this tensor are indeed precisely 
those we derived on physical grounds for the EM fields! 
 

     Thus, we can now explicitly construct the electromagnetic field tensor vF μ – a 4 × 4 rank two 
contravariant anti-symmetric tensor: 
 

    

00 01 02 03

10 01 11 12 13 31

20 02 21 12 22 23

30 03 31 32 23 33

00
00

00
00

x y z

x z yv

y z x

z y x

E E EF F F F
E cB cBF F F F F F

F
E cB cBF F F F F F
E cB cBF F F F F F

μ

⎛ ⎞⎛ ⎞≡
⎜ ⎟⎜ ⎟ − −= − ≡ = − ⎜ ⎟⎜ ⎟≡ = ⎜ ⎟⎜ ⎟ − −= − = − ≡
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −= − = − ≡⎝ ⎠ ⎝ ⎠
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0
0

0
0

x y z

x z yv

y z x

z y x

E E E
E cB cB

F
E cB cB
E cB cB

μ

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 

    Note that there are simple alternate / equivalent forms of the field tensor vF μ .   
If we divide our vF μ  by c, we get Griffith’s definition of vF μ : 
 

i.e. 

0
01

0
0

x y z

x z y
Griffiths Ours

y z x

z y x

E c E c E c
E c B B

F F
E c B Bc
E c B B

μν μν

⎛ ⎞
⎜ ⎟− −⎜ ⎟= = ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 

     Note that there exists an equivalent, but different way of embedding and E B
G G

 in an  
anti-symmetric 4 × 4 rank two tensor: 
 
Instead of comparing: 
 

a)  x xE E′ = ,    ( )y y zE E cBγ β′ = − ,    ( )z z yE E cBγ β′ = +  

with:    a') 01 01t t′ = , ( )02 02 12t t tγ β′ = − , ( )03 03 31t t tγ β′ = +  
 
and also comparing: 
 

b)  x xcB cB′ = ,  ( )y y zcB cBγ β′ = + Ε ,  ( )z z ycB cBγ β′ = − Ε  

with:    b')  23 23t t′ = ,     ( )31 31 03t t tγ β′ = + ,    ( )12 12 02t t tγ β′ = −  
 
     We could instead compare {a) with b')} and {b) with a')}, and thereby obtain the so-called 
anti-symmetric rank two dual tensor vGμ : 
 

0
0

0
0

x y z

x z yv

y z x

z y x

cB cB cB
cB E E

G
cB E E
cB E E

μ

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 

     Note that the vGμ  elements can be obtained directly from vF μ  by carrying out  
a duality transformation (!!!): ,   E cB cB E→ →−

G G G G
 

 

     Note that the duality transformation leaves the Lorentz transformation of  and E B
G G

 unchanged !!! 
(i.e. φ  duality = 90o). 
 

     Again, note that our representation of the dual tensor vGμ  is simply related to Griffiths by 
dividing ours by c, i.e.: 

E-field representation of vF μ (SI units: 
Volts/m). Note the space-time structure of  

anti-symmetric vF μ – all non-zero elements 
have space-time attributes – there are no 
time-time or space-space components!!!

B-field representation of 
vF μ (SI units: Tesla) 

E-field representation of 
vGμ (SI units: Volts/m) 
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     With Einstein’s 1905 publication of his paper on special relativity, physicists of that era soon 
realized that the  and E B

G G
-fields were indeed intimately related to each other, because of the 

unique structure of space-time that is associated with the universe in which we live. 
 
     Prior to Øersted’s 1820 discovery that there was indeed a relation between electric vs. 
magnetic phenomena, physicists thought that electricity and magnetism were separate / distinct 
entities.  Maxwell’s theory of electromagnetism “unified” these two phenomena as one, but it 
was not until Einstein’s 1905 paper, that physicists truly understood why they were so related! 
 

     It is indeed amazing that the electromagnetic field is a 4 × 4 rank two anti-symmetric 
contravariant tensor, vF μ  (or equivalently, vGμ ) !!!  (six components of which are unique.) 
 
- We have learned that the 4-vector product of any two (bona-fide) relativistiv 4-vectors,  
   e.g. a b a bμ μ

μ μ=  = Lorentz invariant quantity (i.e. a b a bμ μ
μ μ=  = same value in all / any IRF) 

 

- Likewise, the tensor product v v
v vA B A Bμ μ

μ μ=  of any two relativistic rank-2 tensors is also  
   a Lorentz invariant quantity. 
 

- Thus, the tensor products of EM field tensors vF μ  and vGμ , namely v
vF Fμ

μ , v
vG Gμ

μ , and    

   v v
v vF G F Gμ μ

μ μ=  are all Lorentz invariant quantities. 
 
- Specifically, it can be shown that (see Griffiths Problem 12.50, page 537 – P436 HW#14): 

( )2 2
2

12     v v
v v M EF F G G B E u u

c
μ μ

μ μ
⎛ ⎞= − = − ∝ −⎜ ⎟
⎝ ⎠

 ← Lorentz invariant quantity !!! 

And: ( )4v v
v vF G F G E B

c
μ μ

μ μ= = −
G G
i   ← Lorentz invariant quantity !!! 

 

- Obviously, v v
v vF F F Fμ μ

μ μ= , v v
v vG G G Gμ μ

μ μ=  and v v
v vF G F Gμ μ

μ μ=  are the only Lorentz      

   invariants that can be formed / constructed using vF μ  and vGμ !!! 
 
- Note that this is by no means as obvious / clear, trying to form Lorentz invariant quantities    
  starting directly from the  and E B

G G
 fields themselves !!! 

 

⇒  n.b.  Since EM energy density 2 21 1
2 2 oEM ou E Bμε= + , Poynting’s vector 1

o
S E Bμ= ×
G G G

,  

EM field linear momentum density EM o oSε μ℘ =
GG

 and EM field angular momentum density 

EM EMr= ×℘
G GGA  cannot be formed from any linear combinations of v

vF Fμ
μ , v

vG Gμ
μ  or v

vF Gμ
μ , 

then EMu , S
G

, EM℘
G

 and EM

G
A  cannot be Lorentz invariant quantities! 

B-field representation of 
vGμ (SI units: Tesla) 

n.b. For the sake of 
compatibility with 
Griffiths book, we will 
use his definitions of the 
field strength tensors. 
Please be aware that 
these definitions do vary 
in different books! 


