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LECTURE NOTES 13.5

M(1) Magnetic Dipole Radiation:

A time-varying current /(z,)=1,cos(wt,) flows in a circular loop of radius b {chosen for

convenience’s sake in to lie in the x-y plane} as shown in the figure below, and has associated
with it an oscillating magnetic dipole moment:

m (tr) - I(tr ) 2100;’ = 7Z'b2]0 Ccos (a)tr )2 W—here: Eloop = Aloopﬁloop = 7Z'b22 m ﬁloop =z :
Or:  |m(t,)=m,cos(wt,)z| where: |m, =7zb’l,
A N .
/,,/" m(tr) || z
Observation /,——’/
/Fleld POint ‘,f"/’ e >
P(F) o ) ] A
lies in v A Mo 1 2
X-z planei ]( fr)
5 X
: 9 .
| Fe7 NG Y >
i ......... > ’_;, — E _ bl’)‘
i .................... (1] ‘\‘ dZZ(
N T )‘
%

Note that there is no volume electric charge density ,0(17 , tr) associated with the current flowing

in the loop, thus the retarded scalar potential V" (7,¢)=0 and thus VI (7,£)=0 {here}.

The retarded vector potential is:

with: |t, =t—r/c| and: |F =F—F'(t,)

?1?4(”(?’”‘(% jjl coslolt=71e)]

\4n r

n.b. We know that A" (7,¢) follows the direction of (conventional) current flow

= A4 (7,7) |l ¢ -direction.
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For convenience’s sake, the observation / field point P(f) is chosen directly above the
X -axis in the x-z plane (see above figure). From (azimuthal / circular symmetry) associated with
this problem, one can see that e.g. the x -component contributions to ;11;4“) (17 , t) from

symmetrically-placed current segments / (t)d 7" on either side of the £ -axis will cancel each
other, ;II:A“) (17 , t) at this observation point in the x-z plane will point in the p -direction, but for

an arbitrary field point, we see that 4" (7,¢) points in the ¢ -direction since:

@ = —sin @x + cos @y | (in spherical-polar and/or cylindrical coordinates)
(n.b. the angle @ =0 for points in the x-z plane!)

Thus, for the choice of the observation / field point P(;7 ) in x-z plane

—

(see figure above):|d /' =bdp y-cosp =bcospde 3 |(n.b. the cos @ term simply

picks off the §-component of d/"), but note that d ¢'is actually || to ¢.

o [0 =T

cospdo ¢

From the Law of Cosines: |/ = \/r2 +b*> —2rbcosy | where: |y =cos™ (19-1;) {See above figure!

7 lies in the x-z plane: |7 =rsin@i+rcosfz]and b lies in x-y plane: b = bcos pi +bsin g

. [Feb =rbcosy =(rsin 0% +rcos 0% )«(bcos pi +bsin p) = rbsin O cos ¢

g r:\/r2 +b” —2rbcosy :\/r2 +b* —2rbsin @ cos @

Here again, we are interested in far-zone EM radiation solutions, i.e. the observer is far away
from source, such that the characteristic dimension of the source is such that .

Then keeping only the 1% non-trivial term in the Taylor series expansion of 7 with b < 7 :

bY (b). b . e e

r=r|l+|—1| —=2| — [sinfcosp =r, [1-2| — |sinfcos¢ | with: | — |« 1| and: [VI-e=1——

r r r r 2

" rzr(l—[éjsinﬁcopr for: (éj«l
r r

And: l: ! zl(l+£éjsin9cos¢)} for: (2]«1
r b) . r r r
r(l—( jsmé’coij

r
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ol o]
B ) 3

Here (again) we assume for “far-zone” radiation that |b < /1\

and since[b < 4| and |1 =c¢/f =27c/w| = b<Z| or a)—b<<1.

e e e s
ol (o2

bJ«ga:zﬁ cos [a)(tr— rjc)]

9=0

u, \1,b po=2r b] .
=| == 1+| — [sinfcos
(47r) r '[/’:0 ( (r v
r wb r .
*{cos[a)[t——ﬂ— Slnt9008¢51n|: (z——ﬂ}compdgo(p
c c c
:(&j@jgﬂ_h{cos a)(t—zj —(w—bjsinﬁcosgosin{ (t—zﬂ
drr ) r <o=0 i c)| c
b . I 1 [ @ .
+| — |sinfcos@cos| w| t — - sin® @ cos’ (psm t—— cosgodgogo
r

2
However, note that: (éj < 1| and: (a)bj < 1|, thus: (a)b J = é) (a)_bj << 1
c

r c r

b’ b b
ie. (w j = (—) (a)_j is a 2"-order term, so we drop/neglect it !!!
rc r)\ c

ANO (F,1)= (f_f)j Lb J‘(F:” {cos {a)(t - iﬂ - (a)_bj sin & cos g sin {a)(t - iﬂ
) r Jo= c c c
b . r .
+ [—j sin @ cos ¢ cos {a)(t - —ﬂ} cospdp ¢
r c
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I(:M cos’pdp=r

Note that the first term in the above integral: |cos a)(t —ﬁﬂ I (p::” cospdp=0
c)|o=
_ )
b . . =27
The second term is: _(a)_j sin @sin [a)(z‘ —1) J.(p 02 cos’ pdo
c C =
; = >
=27
The third term is: +(—j sin Hcos{a)(t —KJ 'rp cos’pdop But:
r c)|ve=0
= y,
- b )
Thus: A}V (F,1)= (&ji(ﬂsin 19){l cos[a)(t —zﬂ —(Qj sin[a)(t —ﬁﬂ}(o
4 ) r r c c c
@: mo = ﬂbz[o = Alooplo
21:4(1) (F, t) = (ij%sin G{lcos {w(r —zﬂ - (QJ sin[a)(t —zﬂ}(ﬁ ek
47 ) r r c c c

Note that in the static limit (w — 0), only the 1% term in the { ... } brackets survives:

~ . m, . _. . . C
AM® (r) = %sm Op|= vector potential for a (static) magnetic dipole.
r
. .. . (&
Note also that in the “far-zone” for M(1) EM radiation, with or: [—<r
0]
c w 1 st . . . M) (=
If |—<r| then|—>| —||.. Dropthe 1" termin { ... } in the above expression for 4’ (r,t):
0] c r
M Fit)= H, M, ~
() A ) r v
- . om, . . | A
Thus: A]rw(”(r,t):— Lo | 2T Gin@sin| w| t-— o
4 ) cr c
— M) (= umo(sing) . | A
Or ANV (Fp) = - sin| w| t—— | |@
— 4rc r c
=0 M) (= M) (=
- - - 0A r,t 0A 7t
Then: |EM" (7,t)= VX7 1) —— (7.1) _ (7.1)
ot ot
=M(1) [ = umw (sin@ )| A
Thus: |E""(F,t)=+"2—— cos|o| t——||p
4rc r c
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And:
BMY (7,1) = Vx AN (7,1)
=0 =0 " =0
smé’A _ %% F 1 _1 a’—i(rA)é+li 0)—8’ D
~ rsin® @ r|sin@ 060 or' * r| or 0
Or
SM(1) (= 1 [ pumo)o . .
BV (F,t)=— —(sm 0)5111 o|t——||7
rsin @ 4zer )00 c
I(-gmae) . 0O ,/ . [ A
——| ———|sin@—| | = |sin| w|t—-7 } 0
r( 4rc j Gr((/J ( 4)J
Or
BYO (7,1) = — ugmawZMcosﬁ (t_zj ;
Arcr? Efnﬁ
_,uomoa)( szm@co{ t—— }
4rer \ ¢
Or:
ErM(l)(f:t):_(wj{Z(leOSQSin{ t—— } smé’co{ (t—iﬂé}
4rer r c
1 -
Again, |— > (—J ~. Drop the 1" term in { ... } in the above expression for BM" (7,¢)
¢ r
Ey(l)(f,t):—(wj{2(l cos Osint @] 1 —— f+(2jsin6?co{ (t——ﬂé}
4rer r c c c
=M(1) [ = wm o (siné r\la
Thus: |B"" (F,t)=—-"2="— cos|w| t——| |0
- 4rc r c

Note that in the static limit (w0 — 0), first going back to using the expression for ;11:4“) (;7 ,t)

as given in ##* on the previous page, and then using

B (F.1) =V x AY0 (7,1)),

ﬂum
Ay

obtain the familiar result:

B ()=

2 j(Zcos Or +sin 6’9) )

we do indeed
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Therefore, for M(1) magnetic dipole radiation, in the “far-zone”, with , we have:

VrM“)(?,t)=O
211:4(”(F,t):—’u”m”a)(smejsin[a)(t—zﬂé) where: |m, = zb’I,
4rc r c
~ oAMM Pt 2/
ErM(l)(F,t):— r (7” ):+ﬂom00) (Slne cos a)(l—zj P
ot 4rc r c
BYO(F,6) = Vx AV (7,1) = - E 2 (Sm‘gjcos[w(z-lﬂé
4rc r c
- - 1. = . A
Here again, note that: BrM(l)(V,l‘)=—’”><ErM(l)(’”,t) with: (fx(?):—ﬁ)
c
{since: Fx0=¢ PxF=0 Oxp="r}

Note that £ (7,¢) and BM" (7,¢):

a) both have same ~ 1/r dependence (as does A™" (7,7)).

b) both have same ~ sin 6 dependence (as does A¥" (7,¢)).
c) both are in phase with each other — both have same cos [a)(t — % )J factors.
d) both are 90° out of phase with A¥" (#,¢).

e) BMV(#,t)is L to EMV(7,¢) as it must be.

Note also that: 4M® (7,¢), EY(7,t) and B (7,t) vanish (i.e. = 0) when =0 and ==

i.e. at the poles, along the Z -axis (as we also saw in the case of E(1) electric dipole radiation).

z
A
M1 A
. ~ E7 o
—_ B -6
P ) . k7
r VIR
10
9 >y
F ¢ .... 1 i @

=>
~
—_
T~
~
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The EM radiation energy density ulf,‘l’?l) (77 , t) associated with the oscillating M1 magnetic dipole

for far-zone EM radiation {b <K A < r} is:

YO (7,0 B (F,t)J

wd (Fot) = uﬁ(l)(?,z)mﬁm(f,t):%(QEW)(?J).E}M(f,t) p
0

Uny
1 wmlw' (sin® @ cos> (t__j 1 ,uzm *(sin’ @ cos> w(t—ﬁJ
}/ 167%c r c

> 2

217 16t |

1 1 . _ N
But: |¢° = or: |&, =——/, so again we see that uy, (7,¢)=uy, (7,¢) in the “far-zone
EH, H,C

limit b < A < r, and thus:

2 4 .2
0
,m; o j(sm ]cos2 {a)(t—ﬁﬂ (Jouiesj forwith m =nbl,
m

uﬁ?l) (I" t) { 167T2C4 2 c

r
The EM energy radiated by oscillating magnetic dipole in the far-zone limit {h < A <7} is

>

~>

X

>
Il

given by Poynting’s vector:

1
AS)
X
D>
| I—
>
X
ASH
Il
>\ O

5
|

Sy () =B () B0 ) == B

[

ASH
X
~>

Il
N

2 4/ . 2
S rad (= m @ [ sin” @ NI tt )
SMZ) (r,t) =+ ,L1167zzc3 [ 2 jCOSZ {w(f —ZH” (Waz Sj < Radial outward flow of EM energy

m
for: |b < A < r|“far zone” limit

The EM radiation linear momentum density associated with an oscillating magnetic dipole, in the

far zone limit {h < A < r } is given by:

ra _.ra - 1 _.ra -
Py (7.1) = ﬂogl>SMg)(rat):c_z oy (75)

2 4 . 29 .
HolM1, @ (sm cos’| w| t S ( kg jc Radial outward EM linear

= rad —
. +
Oor: | @i, (751) lores | 2 . T co

momentum flow for: |b < A < r|“far zone” limit

The EM radiation angular momentum density associated with an oscillating magnetic dipole, in
the far zone {bh < A < r} is given by:

2 4 . 2
pra = ra lLlomoa) Sin 0 7 A k
N e P (| (R (e

= No angular momentum flow for: |6 < A < r|“far zone” limit
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ra

n.b. Again, the exact EE(I)

(7.1) £0 i.e. ignore restrictions on far-zone limit, keep all higher-

order terms . . . we have neglected ErM“) ~ 7 term which is non-negligible in the near-zone
(d ~ r) and also in the so-called intermediate, or inductive zone (A ~r).
Time-Averaged Quantities for M(1) Radiation from an Oscillating Magnetic Dipole:

The time-averaged EM radiation energy density associated with an oscillating magnetic dipole is:

2 4 )
vad {— um o | sin” @
it )= e |

The time-averaged |Poynting’s vector|, which is also the intensity / ”’(dl) of EM radiation

Joules .
( 3 Jfor:“far—zone” limit

associated with an oscillating magnetic dipole is:

S 2 4N[ . 2
) e ) - 255 )
Siaty (70)) = e (uiz (7.0)) (Wazz‘ts)

m

1, (7)=(

= “far-zone” limit

(WaltSJ for- b<i<r
or

We also see that: |1y, (7)= <

The time-averaged EM radiated power associated with an oscillating magnetic dipole is:

(it 70 = (5t (7t = S22 (i osnio

Ayt
3773

. The time-averaged radiated power is:

127c has no r-dependence!

‘o’ rad (=
<P]J[“(‘f)(17,t)>:(w} (Watts) for: “far-zone” limit nb. <PM(”(V’t)>

The time-averaged EM radiation linear momentum density associated with an oscillating
magnetic dipole is:

ra 1 ara - 1 ra = A luomja)4 Sinze - k b ﬂ“
(Pt (7)) = {5 () = oty () = S (I | 0=

m -S€C

The time-averaged EM radiation angular momentum density associated with an oscillating
magnetic dipole is:

ra — ra - 0 5 ) i 29 AN o k
(Bt () =P x(@5t, () = A | S0ty =of () g et

7 “far-zone” limit

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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n.b. Again, the exact <?1’\Zi’1) (17 )> ;:Z 0 i.e. ignore restrictions on far-zone limit, keep all higher-

order terms . . . we have neglected the E*" ~ 7 term which is non-negligible in the near-zone

(d ~ r) and also in the so-called intermediate, or inductive zone (A ~r).
( Watts j
mZ

= <§1\’,f(d1)(r,9=0,(p)>=<§1\%)(r,0=7r,(p)>=0 since: ‘sin20=sin2ﬂ=0‘

327%¢° P’

‘ q N j 2_4 102 2]
Again, note that because: | /i, (7) = <‘S1%) (r’t)D = [ﬂgmga) ](Sm j

i.e. no EM radiation occurs along the axis of the magnetic dipole (Z axis)

EM radiation for M(1) electric dipole is {also} peaked/maximum at € = 7/2 (then sin*@=1)

i.e. maximum EM radiation occurs _L to the axis of the magnetic dipole:

<

St (r.0)) s

Thus, the intensity profile / ;j(dl) (77 ) in 3-D {for fixed r} for M(1) magnetic dipole EM radiation

is {again} donut-shaped {as in the case of E(1) electric dipole EM radiation} - it is rotationally
invariant in ¢, as shown in the figure below:

A

Dipole axis

Dipole axis

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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It is useful / illuminating to compare sources, retarded potentials, retarded fields, energy
densities, Poynting’s Vector, power radiated, linear and angular-momentum densities associated
with E(1) electric dipole radiation vs. M(1) magnetic dipole radiation in the far-zone limit, with
d=rb< i<rl

E(1) Oscillating Electric Dipole M(1) Oscillating Magnetic Dipole

Source Charge: q(?,tr)=qg5(zid/2)cos(a)tr) q(?,tr)=0
Source Currents: 1(7,t.)=—q,wsin(wt,) I(7,t.)=1,cos(at,)
{on Z -axis, |z|<d/2} {in x-y plane, radius b}
EM Moments: p(F.t)=q(F.t)d, d=d? m(7.t)=1(7.t)A,, =7b"1(7.t,)
p,=q,d=|p|=4q, c?\ m, = xb’I, = ||
Rt er(m):_M(ws@jm{w@_tﬂ V0 (7.)=0
Potential drec\ r c
v zsm(r,t):_w(ljsi {w |
Potential 4r \r

n
S

o |~

Retarded B R
Electric | FED ( 7 t) __Mp,0 [ sSIn 0 -
Field r ? A _I’

- e gL
c 4rc r c)|
2/ r
a)[t H&’ EM(”(?,t)=+M Slnejcos a)(t—Z
r | c
Retarded | .
Meagr:efic BrE(l)(?,l‘): Ll (sm@ co{a)(t
r

2 . I
~ 0 r
ol BNV (F,t = MO [SNT ) os] @] 1L
Field 4rc ﬂgo () ? r | c

o |~

Density

Time-Avg’d v N /N0) 51n 2] vad (= yomozco4 sin2 0
EM En_ergy <uE((1i) (I’ t)> (/31272_ ( ] <uM(dl) (r’t)> :{ 3272-204 j( rz

Time-Avg’d vad (— = ad " \( sin 9 vad (= Srad (= m’w* \( sin’ @
A IE(?) (r) = < SE(il) (r,t)‘ 4P, [M<dl) (’”) = < SM<dl) (F)D = 53 3
Vector/Intensity 327%c 32r°c r
Time-Avg’d 2a)4 m2w4
Radiated EM <f§“ld (,7,;)> ~ | HoPo® <P1\r4mf (,‘;’t)> ~| KD
Power ® 127¢ o 1272'03
Time-Avg'd EM |, _ *0* \(sin’ 0 ). . mo* \(sin’ 6 ).
Linear Momentum <((/r);a(al’) (17",2‘)> = :uopoz : _ 9 7 <<@${?1) (F,t)> =~ H, 02 g . 0 7
Density 32x°c r 32x°c r
Time-Avg’d EM = rad {— “pra =
Angular Momentum <€E(all) (I’,t)> =0 <€M?1) (l’,t)> =0
Density

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Note that for “equal” strength EM moments, where | p, = q,d|and |m, = zb°I |, and |1, = g, @|and
we let|d = 7b|:

Then: <P;Z?1> (7. > H, 1y @" ppo0"\ _ my [ m, 2 _[ 7L, 2
' <Pg’(dl) (F.t > 127¢’ 127c pc® \pc q,dc
(Piity (7.1)) [—)
<P1r~:ag>( r,t )> ¢
. . wb
But in the “far-zone” limit ‘d =rh< Ak r‘ we have: (—j < I
c
(Piiy (7)) [w_bjz <1
<P1r~:ag>(7 ’ )> ¢
Thus, for “equal” strength EM moments (as defined above), the oscillating E(1) electric

dipole radiates vastly more power in the form of EM waves than does an oscillating M(1)
magnetic dipole.

= This is why e.g. all commercial radio & television stations use electric dipole antennae to
broadcast their signals!

Note also that the structure of the £ and B fields for E(1) electric dipole vs. M(1) magnetic
dipole radiation, in the “far-zone” limit |d = 7b < 1 < r|are very similar, except that the £ and

B field vectors for the M(1) case are rotated by 90° (i.e. 0 and ¢ are interchanged), compared
to the E(1) case:

E(1): |EFV~6 B*V ~ ¢
B(): |EMV ~—¢| |BM" ~-0

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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The Characteristic Impedance of an Antenna:

The characteristic impedance of an antenna is exactly as we defined the characteristic impedance
of a waveguide; noting here that we are dealing with manifestly transverse waves for EM wave
radiation from e.g. either an E(1) electric dipole or M(1) magnetic dipole antenna:

. (?) _ ‘Eiad (7)‘ _ ‘Eiad (]7)‘ ‘Emd( )‘
antenna ‘Hiad (,‘;)‘ RS Biad (’—;)‘ ; Brad (77)‘

Let’s check the SI units of this definition {referring to the trusty 1-page handout that I gave out

at beginning of semester}:

(Voltsm)

o)

Volts

{ E
B/u,

Jz(m e [ ) () e

= Ohms

For both E(1) electric dipole and M(1) magnetic dipole radiation, we see that the characteristic

impedances of these antennae in the “far-zone” limit (d = 7b < A < r) with

c=1/e,u,

arc:

250 (F) =200 (F) = me= B2 =7, 12070 =377Q
gO
Where:
u,=47x107  Henrys/m = magnetic permeability of free space / vacuum

&, =8.85x107"* Farads/m = electric permittivity of free space / vacuum

And:

7 - &_\/4ﬂx10‘7Henrys/m
Ve V8.85x10?Farads/m

=1207 Q=377Q

free space/the vacuum.

is the characteristic impedance of

Thus we see that E(1) electric dipole and M(1) magnetic dipole antennae (in the “far-zone”
limit (d = 7b < A < r)) are perfectly impedance-matched for propagation of E(1) and/or M(1)

EM waves into free space / vacuum!

Note also that in the “far-zone” (d =7b < A < r) that Z

7 -dependence.

E()

antenna

ZM(l)

antenna

(),

(7) have no

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The Radiation Resistance of an Antenna:

The radiation resistance of an antenna R,,, is defined relative to the antenna power P,,4 and the
amplitude of current flowing in the antenna /,:

Pantenna
antenna antenna antenna __ rad
I)rad - ] Rrad or: Rrad = 12 (Oth)

p=qd  ForE(1) electric dipole antenna: I, = g, = amplitude of current flowing in dipole
m=nb*I, For M(1) magnetic dipole antenna: I, = amplitude of current flowing in loop

In the “far-zone” limit, i.e. d =7b<K A <K r:

2 d2 212

( lLlOp() >>\ ﬂ a) d

Bl = ome 1zzc>M«f e (D] ] nb. R are both
frequency-dependent

ay _ M@ ﬁzb‘l\&«w 770" b’ —
T 1240 )g“ 12¢°

In the “far-zone” limit, i.e. d =7b<K A <K r:

RE(I) B ﬂoa)ZdZ _ a)ZdZ ( c) 2d2 B deZ ZE(I)
rad 127¢ 1272 1272¢° 6‘0 127

474 474 474 474
zw'b”  mw'b 7w b 7w b
R = B = 2 () = Lo T2 7000 But: |2, = [Fe =20 =z

12¢* \ ¢ 12¢*

o

. In the “far-zone” d=7b< A< r:

242 1 a)d 70'b* 1 (wrb)
REO - 24 5 7 RN < 7 = Z
x0T 1on e o i P °

] wd orb
However, in the “far-zone” (d = 7b < A < r) we have: || — |= <1
c c

Thus, we see that the radiation resistances R","™" associated with E(1) electric dipole and

M(1) magnetic dipole antennae in the “far-zone” limit (d = 7b < A < r) are much less than the

characteristic impedances |Z-"M" = Z =1207 Q =377 Q| of these antennae:

4
R, = 1 (a)d Z, < Z,=377Q| and: |R}" :% b Z,<Z =377Q
127 — 127 c
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Taking the ratio of these EM radiation resistances {in “far-zone” limit, i.e. d =7b <K A K r}
we also see that for d = zb:

2 2
RMM 1 (wd 1 (wd
d — M) _ E(1) E(1)
( Rrg(l) - ? c < 1 or: Rmd - ? c Rrad < Rrad

i.e. the M(1) magnetic dipole EM radiation resistance is much less than the E(1) electric dipole
EM radiation resistance, for “equal” strength moments, as defined by |/, = g,w|and .

Polarization of E(1) Electric Dipole and M(1) Magnetic Dipole EM Radiation:

The EM radiation from E(1) electric dipole and/or M(1) magnetic dipole is linearly polarized
in the “far-zone” limit d =7rb <K A K r:

2 . 2 :
Ef(”(F,t):——#op"a) (—Smejcos a)(t—zj 0 Ef‘“”(?,t)z+—ﬂ0m0w (Smgjcos a)(t—zJ 1
47 r c d7c r c

But: |k = @/c|and note that cos (x) = cos (—x) = even fcn (x).

EFO (7,t) ~—cos(kr—at) 6 and: EMO(7,t) ~ cos(kr—wt)
B A
Note that: |cos (kr — a)t) is associated with spherical outgoing waves, (k = kﬁ) m % e £
n
However for » — oo, spherical outgoing waves — plane outgoing waves. a“' ©
A
If: 7 = propagation direction, e.g. 7 = Z, then: cos (kr — wt) — cos (kz — wt). %’\
Thus, in the “far-zone” limit, (d =zb <k A <K r) forr — o (i.e. r> A): X
Polarization of lto Polarization of
E(1) Electric Dipole Radiation: M(1) Magnetic Dipole Radiation:
+9, 4%
. Bl .8
x
A~
-— ?okmfanﬂ:l‘
aly,
k¥
)
E* =0 {|| p = q,d? when 6=90°} ENMY| ¢ {&BM" || it =m, 2 when 6 =90}
SFO ~—Ox—p =+7 SMO < px—0 = +7
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Recall from P435 Lecture Notes 8 on the {generalized} multipole expansion of V(f,t)
{fand A(7,¢)} the order ¢ of the multipole was related to the spherical harmonic ¥, , (6,¢).

E(1) linear electric dipole and M(1) linear magnetic dipole radiation corresponds to the
¢ =1,m=0 terms in the multipole expansion.

Rotating electric and magnetic dipoles (see e.g. Griffiths Problem 11.4, p. 450) correspond to
¢ =1,m ==1 terms in the multipole expansion.

Electric and magnetic quadrupoles {of various kinds} correspond to ¢ =2,m =+£2,+1,0 terms
in the multipole expansion, and so on...

The polarization of the EM radiation associated with each such multipole therefore depends
on the ¢ & m values, and thus on the associated spherical harmonic Y, , ((9, (p) , and thus can be

linearly polarized (LP), or circularly polarized (RCP and/or LCP) !!!

The Time-Averaged Power Radiated by an EM Source:

The time-averaged EM radiated power associated with an oscillating electric and/or magnetic
multipole of order 7 {in the “far-zone” limit d = 7b < A < r }is:

(Prse (7)) = [ (S0, (Fot))edai,

Where: |dd, = sin 0d0d pi = r*dcosOd o = r*d Q7

And where: |dQ(8,¢) = dcos8dp = sin 0d0d p| = solid angle (units = steradians)

O=r =27 O=rx =2z
And:|[d©(6,0)= L:O j:o dcosOdgp = L:o j:o sin 0d0dp = 4r | (steradians)

Arc ] ‘H\.ﬁrmw"
..;’:‘3‘_@”

o S(A\-Fa,cg, fah ¢ -F-N
S rd<as) (rd
:_(zd‘fc&e%i?) ?

=t dfL
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dQ

We see that the angular power associated with an ¢” -order multipole is:

e 1) St () = (28 ()| [ )

— Irad - <
dQ (mpole (r ) steradian

Then, for the “far-zone” limit {d =7b <K A < r }:

P (7.1))

d

|
~
s
U
—~~
N

=

dQ 0

d—Q=1KZ‘£"1)(F)r2=<

Again, the ratio of:

[d@;% >>] /[d@% )WZZHZZ J (j;if]( )t o

in the “far-zone” limit {d =7rb<K A < r}.

Since: |{ P, (7. )>Jﬂ£d<ﬂr%e(ﬁ >] j(p 2”( <ij0}6(? )>Jd0059d¢’ )

Watts

2 4 .2 9 ILI p2a)4
Grad 7 > 5 Y78 0, sin o Po sin’ @ e
E(l)( )‘ [ 327%¢ / / 327%¢ steradian

Watts

- 2 4 .2 0 m2w4
S (7, 2| A, @ ) SN _| £ @\ || ——
M(1) (r t)‘>r ( 32723 / / 327°¢ - steradian

J
)

I, =q0

d=rnb

Thus, we see that for the same & and ¢, the {time-averaged} angular power radiated by an
M(1) magnetic dipole is < than the angular power radiated by an E(1) electric dipole in the

and

“far-zone” limit {d = 7b < A < r }, for “equal” strength moments, as defined by |/, =g, @
d =7b|

d(Rii, (7.1)) | _ (@b d{RE(F.0) | _[d(RE(.0)

_ o = — _ RS T A ] = =

{ o ( : j 0 20 | S 20 for[7, = g,0]ana

in the “far-zone” limit {d =7b < A K r}.
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