7 The multipole expansion

7.1 Multipole expansion of the scalar wave equation

Consider the emission and scattering of electromagnetic radiation. This type of
problem involves solving the vector wave equation. The solutions of this equation
in free space are conveniently written as an expansion in orthogonal spherical
waves. This expansion is known as the multipole expansion. Let us examine this
expansion in more detail.

Before considering the vector wave equation, let us consider the somewhat
simpler scalar wave equation. A scalar field ¢(r,t) satisfying the homogeneous
wave equation

1 0%
2
can be Fourier analyzed in time
W(r,t) = / b(r,w) o= 9 de (7.2)

with each Fourier harmonic satisfying the Helmholtz wave equation
(VQ + kz) '(,D(’l’, w) =0, (73)

where k? = w?/c?. We can write the Helmholtz equation in terms of spherical
polar coordinates (r, 6, ¢):

2
10,0, 1 0 .0, 1 38

- =z — k* |y =0. 4
r2or 8r+r28in989 00 'rQSin298cp2+ v=0 (74)

As is well known, it is possible to solve this equation via the separation of vari-
ables:

U(r,w) = 3 fim(r) Yim (0, 0). (75)
l,m

Here, we restrict our attention to physical solutions which are well behaved in the
angular variables 8 and . The spherical harmonics Y;,, (6, @) satisfy the following
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equations:

0%Yim
- 92 = m’ Yim, (7.6a)
1 0 0 1 82
- op SN0 o2+ —— o | Vi = 1)Y] _
Line 56 "% 56 T sin293¢2] im [(I+1) Yim, (7.6b)

where [ is a non-negative integer, and m is an integer which satisfies the inequality
|m| <. The radial functions f,,(r) satisfy

> 2d I(1+1)
S 4 k2 = .
[er rdr + r2 ]fl(r) 0 (7.7)
where there is no dependence on m. With the substitution
i (r)
filr) =35 (7.8)
Eq. (7.7) is transformed into
d> 1d (1+1/2)2
Ry ' S S e = 0. .
72 + - + - w(r) =0 (7.9)

It can be seen, by comparison with Eq. (5.39), that this is a type of Bessel’s
equation of half-integer order [ + 1/2. Thus, we can write the solution for f,,(r)
as
Alm Blm

flm(’l“) = —7“1/2 Jl+1/2(k7°) + —7“1/2 Y}+1/2(k'l“), (710)
where Aj,, and By, are arbitrary constants. The half-integer order Bessel func-
tions Ji11/2(2) and Y;41/2(2) have analogous properties to the integer order Bessel
functions J,,(z) and Y;,(z). In particular, the J;;/2(2) are well behaved in the
limit |z| — 0, whereas the Yj;1/2(z) are badly behaved. The asymptotic expan-
sions (5.43) remain valid when m — [ + 1/2.

It is convenient to define the spherical Bessel functions j;(r) and y;(r), where

Ji(z) = (%)I/QJIH/Q(Z), (7.11a)
yi(z) = (%)I/QYEH/Q(Z)- (7.11b)
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It is also convenient to define the spherical Hankel functions
h2(2) = ji(z) iy(2). (7.12)

For real z, hl(2)(z) is the complex conjugate of hl(l)(z). It turns out that the
spherical Bessel functions can be expressed in the closed form

az) = (=2) (%%)l (Sizz) : (7.13a)

u(z) = —(=2) (%%)l (Cosz)- (7.13b)

z

In the limit of small argument

Zl

5i(2) @ on [1+0(z%)], (7.14a)
y(z) — —% [1+0(z%)], (7.14Db)

where (2[+1)!! = (21+1)(21—1)(21—3) - -- 5-3-1. In the limit of large argument
sin(z — In/2)

qiz) — . , (7.15a)
—In/2
w(z) — —COS(ZZW ), (7.15b)
and .
hY = (i) 67 (7.16)

The inhomogeneous Helmholtz equation is conveniently solved using the Green’s
function G, (r,r’), which satisfies (see Eq. (2.109))

(V2 + kD) Gy(r,v') = =6(r — 7). (7.17)

The solution of this equation, subject to the Sommerfeld radiation condition,
which ensures that sources radiate waves instead of absorbing them, is written
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(see Section 2.13)
eliklr—r'|

Gy(r,r') = (7.18)

A |lr — |’

The spherical harmonics satisfy the completeness relation

Z Z ;0 ) Yim (6, 0) = 6(p — ') d(cos B — cos§’). (7.19)

=0 m=-1

Now the three dimensional delta function can be written

d(r—1r') = W(?(go—go')(s(cosﬁ—cosﬁ’). (7.20)

It follows that
d(r—r")
5(r—r') = Z Z Yim (6, ¢). (7.21)
=0 m=-1

Let us expand the Green’s function in the form

Zgl (r,7") 0, 0") Yim (0, ¢). (7.22)

Substitution of this expression into Eq. (7.17) yields

> 2d o LIl +1) d(r—r')
[W—{_rdr—{_k R ]gl_ rz (7.23)

The appropriate boundary conditions are that g; is finite at the origin and corre-
sponds to an outgoing wave at infinity (i.e., g oc e!*" in the limit » — o). The
solution of the above equation which satisfies these boundary conditions is

gi(r,r") = Aji(kr ) B (krs), (7.24)

where r. and r- are the greater and the lesser of r and r’, respectively. The
correct discontinuity in slope at r = r’ is assured if A = ik, since

dh{"(2)
dz

i) — D) B - L (7.25)

dz z
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Thus, the expansion of the Green’s function is

1k:|r 7|

m—lkZﬂ kre) b (krs) Z ' &) Yim(0,0).  (7.26)

=0 m=—I

This is a particularly useful result, as we shall discover, since it easily allows us to
express the general solution of the inhomogeneous wave equation as a multipole
expansion.

It is well known in quantum mechanics that Eq. (7.6b) can be written in the
form

L? Y = (1 + 1) Y. (7.27)
The differential operator L? is given by
’=L; +L7+L}7, (7.28)
where
L=—-irAV (7.29)

is 1/h times the orbital angular momentum operator of wave mechanics.

The components of L can be conveniently written in the combinations

: o[ 0 0
L, = Lx+1Ly:e‘p(69—|—1cot9%> (7.30a)
: i 0 0
L_ = Lx — lLy —e ¥ (—% +1 cot 6 %) (730b)
L, = —i % (7.30¢)

We note that L operates only on angular variables and is independent of r. From
the definition (7.29) it is evident that

r-L=0 (7.31)
holds as an operator equation. It is easily demonstrated from Egs. (7.30) that
1 0 0 1 0?
L* = — sinf — (7.32)

sin 6 06 00  sinZ 0p?’
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The following results are well known in quantum mechanics:

LiYim = VI—m)(I+m+1)Y ma1, (7.33a)
L. Yy = VI+m)(l-m+1)Ym1, (7.33b)
LY = mY,. (7.33c¢)
In addition,

I*L = LI? (7.34a)
LAL = ilL, (7.34D)
L;V? = V’L,, (7.34c)

where w 5 I
v2=r—2§r2§—r—2. (7.35)

7.2 Multipole expansion of the vector wave equation

Maxwell’s equations in free space reduce to

V-E = 0, (7.36a)
V.¢eB = 0, (7.36b)
VAE = ikcB, (7.36¢)
VAcB = -ikE, (7.36d)

assuming an e~'“? time dependence of all field quantities. Here, k = w/c. Elimi-
nating E between Egs. (7.36¢) and (7.36d), we obtain the following equations for
B:

(V2+ kB = 0, (7.37a)
V-B = 0, (7.37Db)

with E given by .
E= %v A cB. (7.38)
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Alternatively, B can be eliminated to give

(V24+EHE = 0, (7.39a)
V-E = 0, (7.39b)

with B given by '
¢B = —%v NE. (7.40)

It is clear that each Cartesian component of B and FE satisfies the Helmholtz
wave equation (7.3). Hence, these components can be written in a general expan-
sion of the form

w(r) =D [Al) D k) + AR B (k)] Yim (6, 9), (7.41)
lm

where 9 stands for any Cartesian component of E or ¢B. Note, however, that
the three Cartesian components of E or B are not entirely independent, since
they must also satisfy the constraints V- E = 0 and V-B = (0. Let us examine
how these constraints can be satisfied with the minimum labour.

Consider the scalar r- A, where A is a well behaved vector field. It is easily
verified that
Vi(r-A) =r-(V*A) +2V-A. (7.42)

It follows from Eqgs. (7.37) and (7.39) that the scalars - E and r- B both satisfy
the Helmholtz wave equation:

(V2+E*)(r-E) = 0, (7.43a)
(VZ+EH(r-B) = 0. (7.43b)
Thus, the general solutions for r- E and r-cB can be written in the form (7.41).

Let us define a magnetic multipole field of order (I, m) by the conditions

(1+1
r-cBM = (Z )gl(kr)Ylm(ﬁ,go), (7.44a)

r-EXM = (7.44b)
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where

gi(kr) = AY B (kr) + AP B (er). (7.45)

The presence of the factor [(I + 1)/k is for later convenience. Equation (7.40)
yields
kr-cB=—-ir-(VAE)=—-i(r AV)-E=L-E, (7.46)

where L is given by Eq. (7.29). With r-B given by Eq. (7.44a), the electric field
associated with a magnetic multipole must satisfy

L-E{0 (r,0,0) = 1(1+ 1) gi(kr) Yim (6, ) (7.47)

and r-El(,r]r\:[ ) — 0. Note that the operator L acts only on the angular variables

(0, ). This means that the radial dependence of El(:f ) must be given by gi(kr).
Note also, from Egs. (7.33), that the operator L acting on Y}, transforms the
m value but does not change the [ value. It is easily seen from Eqgs. (7.27) and
(7.31) that the solution to Egs. (7.44b) and (7.47) can be written in the form

EXM = gi(kr) LYy (6, ). (7.48)

Thus, the angular dependence of El(f ) consists of some linear combination of
Yi m-1, Yim, and Y] p,41. Equation (7.48), together with

Bl = - VAERD, (7.49)

specifies the electromagnetic fields of a magnetic multipole of order (I,m). Note
from Eq. (7.31) that the electric field given by Eq. (7.48) is transverse to the
radius vector. Thus, magnetic multipole fields are sometimes termed transverse
electric (TE) multipole fields.

The fields of an electric or transverse magnetic (TM) multipole of order (I, m)
are specified by the conditions

RIES
k
r-BE) = (7.50b)

r-El(g)

fi(kr) Yim (0, ¢), (7.50a)
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It follows that the fields of an electric multipole are given by

cB(E) = fi(kr) LY} (0,9), 7.51a
Im
i

SV A ¢B"?). (7.51b)

E
El(m)
The radial function f;(kr) is given by an expression like (7.45).

The two sets of multipole fields (7.48), (7.49), and (7.51), form a complete set
of vector solutions to Maxwell’s equations in free space. Since the vector spherical
harmonic LY}, plays an important role in multipole fields, it is convenient to
introduce the normalized form

Xim(8,) = ﬁ L Yim(6,9). (7.52)

It can be demonstrated that the vector spherical harmonics possess the orthogo-
nality properties

/Xl*’m"le dQ) = 5”/ 5mm’; (753&)

for all [, I’, m, and m/.

By combining the two types of fields we can write the general solution to
Maxwell’s equations in free space in the form

¢cB = Y [aE(l,m) Fi(kr) Xy — %aM(l,m) VA gz(kr)sz] :
" (7.54a)

FE =Y [% an(l,m) VA filkr) Xim + ant(l, m) g (kr) le] ,
l’m (7.54b)
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where the coefficients ag(l,m) and anr (I, m) specify the amounts of electric (I, m)
and magnetic (I, m) multipole fields. The radial functions f;(kr) and g;(kr) are
of the form (7.45). The coefficients ag(l, m) and aps (I, m), as well as the relative
proportions in (7.45), are determined by the sources and the boundary condi-
tions.

Equations (7.54) yield

1
r-cB = Z ZaM(l,m) gi(kr) L X,

Im

_ % S ane (L, m) g1 (kr) /U + 1) Vi, (7.55)
Im

and
1
r-E = —E aE(l,m)fl(k"r)Lle
l,m
1
=~ > an(lm) filkr)y/10+1) Yim, (7.56)
l,m

where use has been made of Eqs. (7.27), (7.29), and (7.31). It follows from the
well known orthogonality property of the spherical harmonics that

ant(lm) q(kr) = / Y rcBdQ, (7.57a)

k
VIl +1)
k *
—\/ﬁ/ i T dS.

Thus, knowledge of - B and r-FE at two different radii in a source free region
permits a complete specification of the fields, including the relative proportions
of K" and A{*) in f, and g,.

ag(l,m) fi(kr) = (7.57Db)
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7.3 Properties of multipole fields

Let us examine some of the properties of the multipole fields (7.48), (7.49), and
(7.51). Consider, first of all, the so-called near zone, for which kr < 1. In this
region f;(kr) is proportional to y;(kr), given by the asymptotic expansion (7.14b),
unless its coefficient vanishes identically. Excluding this possibility, the limiting
behaviour of the magnetic field for an electric (/,m) multipole is

(7.58)

where the proportionality coefficient is chosen for later convenience. To find the
electric field we must take the curl of the right-hand side. The following operator
identity is useful

iV/\L:rVQ—V(l—i—r%) (7.59)

The electric field (7.51b) is
E Yim
E” )—>—V/\L<Tl+1> (7.60)

Since Yj,, /'t is a solution of Laplace’s equation, the first term in (7.59) vanishes.
Consequently, the electric field at close distances for an electric (I, m) multipole

is
Ym
EP _ _v (rll+1> (7.61)

This, of course, is an electrostatic multipole field. Such a field is obtained in a
more straightforward manner by observing that E — —V ¢, where V?¢ = 0, in
the near zone. Solving Laplace’s equation by separation of variables in spherical
polar coordinates, and demanding that ¢ be well behaved as |r| — oo, yields

6(r,0,0) =) W- (7.62)

Im

Note that the magnetic field (7.58) (normalized with respect to ¢™1) is smaller
than the electric field (7.61) by a factor of order kr. Thus, in the near zone
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the magnetic field associated with an electric multipole is always much smaller
than the corresponding electric field. For magnetic multipole fields it is evident
from Egs. (7.48), (7.49), and (7.51) that the roles of E and B are interchanged
according to the transformation

E® o _e¢BWM) (7.63a)
¢cBE) — EM) (7.63b)

In the so-called far zone or radiation zone, for which kr > 1, the multipole
fields depend on the boundary conditions imposed at infinity. For definiteness, let
us consider the case of outgoing waves at infinity, which is appropriate to radiation
by a localized source. For this case, the radial function f;(kr) is proportional to

the spherical Hankel function hl(l)(kr). From the asymptotic form (7.16), it is
clear that in the radiation zone the magnetic field of an electric (I, m) multipole

goes as )
Im ( 1) k Im- ( : )

Using Eq. (7.51b), the electric field can be written

Y/ ikr ikr
Elﬁ)zﬂlv(e )/\LYlm—I—e V/\LY}m]. (7.65)

k2 r r
Neglecting terms which fall off faster than 1/r, the above expression reduces to

(E) TR
Elm :_(_1)+ kr [n/\L}/lm_

1

- (rV? — V)Ylm] : (7.66)

where use has been made of the identity (7.59), and n = r/r is a unit vector
pointing in the radial direction. The second term in square brackets is smaller
than the first term by a factor of order 1/kr, and can therefore be neglected in
the limit £r > 1. Thus, we find that the electric field in the radiation zone is
given by

EP) — B nn, (7.67)
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where B( ) is given by Eq. (7.64). These fields are typical radiation fields; i.e.,
they are transverse to the radius vector, mutually orthogonal, and fall off like
1/r. For magnetic multipoles we merely make the transformation (7.63).

Consider a linear superposition of electric (I, m) multipoles with different m
values, but all possessing a common [ value. It follows from Eqs. (7.54) that

cB; = Y ag(l,m) Xim h{" (kr)e ie, (7.68a)

E = %v A cB. (7.68b)
For harmonically varying fields the time averaged energy density is given by

u= %’ (E-E* + cB-cB*). (7.69)
In the radiation zone the two terms are equal. It follows that the energy density
contained in a spherical shell between radii » and r + dr is

€0 dr
2k2

m,m/’

dU = afE(l,m’)aE(l,m)/X;fm,-le dQ, (7.70)

where the asymptotic form (7.16) of the spherical Hankel function has been used.
Making use of the orthogonality relation (7.53a), we obtain

dr 2k2 Z lag(l,m) (7.71)

which is clearly independent of the radius. For a general superposition of electric
and magnetic multipoles the sum over m becomes a sum over / and m, and |ag|?
becomes |az|? +|ayr|?. Thus, the total energy in a spherical shell in the radiation
zone is an incoherent sum over all multipoles.

The time averaged angular momentum density of harmonically varying elec-
tromagnetic fields is given by

m = %ORe r A (E A B)]. (7.72)
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For a superposition of electric multipoles the triple product can be expanded and
the electric field (7.68b) substituted, to give
GOC %
m = o% Re[B*(L-B)]. (7.73)
Thus, the angular momentum in a spherical shell lying between radii » and r +dr
in the radiation zone is

eocdr

dM = =13

Re )  ap(l,m')ap(l,m) /(L-le/)*le dqQ. (7.74)

m,m/’

It follows from Egs. (7.27) and (7.52) that

dM €pC i}
o~ o e 2 ab(b ) an( m)/ylm’ L Yign a. (7.75)

m,m/’

According to Egs. (7.33), the Cartesian components of dM /dr can be written:

dM,  €oc
el 4]€3RZ[ m)(l+m+1)ayx(l,m+1)

+V/T+mI—m+1)aplm—1)]ag(l,m),  (7.76)

dM,  €oc
o = 4k3I Z[\/ m)(l+m+1)ag(l,m+1)

—VT+m=m+1)ap(lm—1)|ag(l,m),  (7.76b)

dM, €0C
- = Q(J?me];(l,m)ﬁ (7.76¢)

Thus, for a general [th order electric multipole that consists of a superposition
of different m values, only the z component of the angular momentum takes a
relatively simple form.
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7.4 Sources of multipole radiation

Let us now examine the connection between multipole fields and their sources.
Suppose that there exist localized distributions of electric change p(r,t), true
current j(r,t), and magnetization M (r,t). We assume that the time dependence
can be analyzed into its Fourier components, and we therefore only consider
harmonically varying sources, p(r)e™'“t, j(r)e~*t and M(r)e~'“!, where it is
understood that we take the real parts of complex quantities.

Maxwell’s equations can be written

V.E = 2 (7.77a)
€0
V-B = 0, (7.77Db)
VAE —ikeB = 0, (7.77c)
VAcB+ikE = puoc(j+VAM), (7.77d)
with the continuity equation
iwp=V-j. (7.78)

It is convenient to deal with divergenceless fields. Thus, we use as the field
variables, B and

E=E+—3j (7.79)
€W
In the region outside the sources E’ reduces to E. When expressed in terms of
these fields, Maxwell’s equations become

V.E = 0 (7.80a)

V.B = 0, (7.80b)

VAE —ikcB = —VAj, (7.80c)
€W

VAeB+ikE = pgeVAM. (7.80d)

The curl equations can be combined to give two inhomogeneous Helmholtz wave

equations:
(V2 4+ k*)eB = —pocV A (j+V AM), (7.81)
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and

: VA
(V2 + K2 E = —ik eV A (M + ) . (7.82)
These equations, together with V-B = 0, and V-E’ = 0, and the curl equations
giving E’ in terms of B and vice versa, are the analogues to Egs. (7.37)—(7.40)
when sources are present.

Since the multipole coefficients in Eqs. (7.54) are determined according to
Egs. (7.57) from the scalars - B and r-E’, it is sufficient to consider wave
equations for these quantities, rather than the vector fields B and E’. From
Egs. (7.42), (7.81), (7.82), and the identity

r(VANA)=(rAV)- A=iL-A (7.83)

for any vector field A, we obtain the inhomogeneous wave equations

(V2+k®)r-cB = —ipgcL-(j+V AM), (7.84a)
VAj
(Vi+EHr E = lwocL.<M+ k27>. (7.84b)

Now the Green’s function for the inhomogeneous Helmholtz equation (defined
by Eq. (7.17) ), subject to the boundary condition of outgoing waves at infinity,
is given by Eq. (7.18). It follows that Eqgs. (7.84) can be inverted to give

By = 200 [ e £ 9 AME)] B, (1850)
reB(r) = - p— J(r , .85a,
k poc eiklr—r'| \V& /\j('f")

r-E'(r) = — . pr——r L' M(r’)—I—T d>r'.
(7.85b)

In order to evaluate the multipole coefficients by means of Eqgs. (7.57), we first
observe that the requirement of outgoing waves at infinity makes Al(2) = 0 in
Eq. (7.45). Thus, we choose fi(kr) = gi/(kr) = hl(l)(kr) in Egs. (7.54) as the
radial eigenfunctions of E and B in the source free region. Next, let us consider
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the expansion (7.26) of the Green’s function for the Helmholtz equation in terms
of spherical harmonics. We assume that the point 7 lies outside some spherical
shell which completely encloses the sources. It follows that - =7’ and r~ = r in
all of the integrations. Making use of the orthogonality property of the spherical
harmonics, it follows from Eq. (7.26) that

1k |r—7’|
/ a0 = ik O (kr) i (k') Y (6, ). (7.86)

47r|r — 7/

Finally, Egs. (7.57), (7.85), and (7.86) yield

pocik® VAJY 3

ag(l,m) \/ﬁ Ji(kr) Y, L-< > > d°r, (7.87a)
_HoCr k? . 3

ap (1, m) Ji(kr) Y, L-(3 + VAM)d’r. (7.87b)

\/ (I+1)

The expressions (7.87) give the strengths of the various multipole fields outside
the source in terms of integrals over the source densities 3 and M. They can be
transformed into more useful forms by means of the following arguments. The
results

L-A = iV (rANA), (7.88a)
19(r*V-A)

L-(VANA) = iVQ(r-A)—i;T (7.88b)

follow from the definition (7.29) of L, and simple vector identities. Substituting
into Eq. (7.87a), we obtain

poc k3

TV
2 (. 2

L YVirg) e 0(r7p)

k2 kr Or

ag(l,m) i [V (7 A M)

d*r, (7.89)

where use has been made of Eq. (7.78). Use of Green’s theorem on the second

term replaces V2 by —k? (since we can neglect the surface terms, and 7, (kr) Y}*,
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is a solution of the Helmholtz equation). A radial integration by part on the
third term (again neglecting surface terms) casts the radial derivative over onto
the spherical Bessel function. The result for the electric multipole coefficient is

poc k2 v !Cp d[r ji(kr)]
NI dr

—ikV-(r A M) ji(kr)] d°r. (7.90)

ag(l,m) = +ik(r-g) ji(kr)

The analogous set of manipulations using Eq. (7.87b) leads to an expression for
the magnetic multipole coefficient:

poc k2 . o dlr ji(kr)]
apm(l,m) W Yim [V'(T AJ)J!(kT)+V'MT
— k* (r-M) ji(kr)] d°r. (7.91)

Both the above results are exact, and are valid for arbitrary wavelength and
source size.

In the limit in which the source dimensions are very small compared to a
wavelength (i.e., kr < 1) the expressions for the multipole coefficients can be
considerably simplified. Using the asymptotic form (7.14a), and keeping only
lowest powers in kr for terms involving p, 7, and M, we obtain the approximate
electric multipole coefficient

ck!*? [1+1
ag(l,m) ~ i/lo (

1/2
(204 1! l ) (Qum + Qi) (7.92)

where the multipole moments are

Qim = / r' Y, cpd’r, (7.93a)
Qi = =1 | " Yim V-(r A M)d’r. (7.93b)

The moment (), has the same form as a conventional electrostatic multipole
moment. The moment )}, is an induced electric multipole moment due to the
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magnetization. It is generally a factor kr smaller than the normal moment Q..
For the magnetic multipole coefficient aps(l,m) the corresponding long wave-
length approximation is

pocik!*? (141 1/2
an(l,m) = (;’l BT l (M + M., ), (7.94)

where the magnetic multipole moments are

- 1 I v % . 3
Mim = 1] i Ve(r Ag)dor, (7.95a)
M, = -— / rl Y V-M dr (7.95b)

Note that for a system with intrinsic magnetization the magnetic moments My,
and M, are generally of the same order of magnitude.

Thus, in the long wavelength limit the electric multipole fields are determined
by the charge density p, whereas the magnetic multipole fields are determined by
the magnetic moment densities » A /2 and M.

7.5 Radiation from a linear centre-fed antenna

As an illustration of the use of a multipole expansion for a source whose di-
mensions are comparable to a wavelength, consider the radiation from a linear
centre-fed antenna. We assume that the antenna lies along the z-axis, and ex-
tends from z = —d/2 to z = d/2. The current flowing along the antenna vanishes
at the end points, and is an even function of z. Thus, we can write

I(z,t) = I(|z]) e "*?, (7.96)

where I(d/2) = 0. Since the current flows radially, » A 5 = 0. Furthermore, there
is no intrinsic magnetization. Thus, according to Eq. (7.91), all of the magnetic
multipole coefficients aps (I, m) vanish. In order to calculate the electric multipole
coeflicients ag (I, m), we need expressions for the charge and current densities. In
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spherical polar coordinates the current density 73 can be written in the form

: . I(r)
jr)=r 2mr?
for r < d/2, where the delta functions cause the current to flow only upwards

and downwards along the z-axis. From the continuity equation (7.78), the charge
density is given by

[0(cos@ — 1) — §(cos b + 1)], (7.97)

(7.98)

o(r) = 1 dI(r) [5(0059 — 1) — §(cos b + 1)] |

iw dr 27?2

for r < d/2.

These expressions for j and p can be substituted into Eq. (7.90) to give

B poc k2 d/2 , 1dI(r) d[r ji(kr)]
/ OV [5(cos 6 — 1) — 6(cosf+1)] . (7.99)

The angular integral has the value
/dQ i [0(cos@ — 1) — 6(cos @ + 1)] = 27 50 [Yi0(0) — Yio(7)], (7.100)

showing that only m = 0 multipoles occur. This is hardly surprising given the
cylindrical symmetry of the antenna. The m = 0 spherical harmonics are even
(odd) about 8 = 7 /2 for [ even (odd). Hence, the only nonvanishing multipoles
have [ odd. So, the angular integral takes the value

/dQ i [0(cos@ — 1) — §(cos 8 + 1)] = /4w (21 + 1), (7.101)

for [ odd and m = 0. After some slight rearrangement, Eq. (7.99) can be written

CR = : [l

| 21,
+rji(kr) W—Fk Iy dr (7.102)
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kd ap(1,0) az(3,0)/ag(1,0) ax(5,0)/ag(l,0)

m | 467 (pocl/4md) 4.95 x 1072 1.02 x 1073
2m | 4m/67 (pocI/4md) 0.325 3.09 x 102

Table 3: The first few electric multipole coefficients for a half-wave and a full-wave
antenna

In order to evaluate the integral (7.102) we need to specify the current I(z)
along the antenna. In the absence of radiation, the sinusoidal time variation
at frequency w implies a sinusoidal space variation with wavenumber k£ = w/c.
However, the emission of radiation generally modifies the current distribution.
The correct current I(z) can only be found be solving a complicated boundary
value problem. For the sake of simplicity, we assume that (z) is a known function;
specifically,

I(z) = I sin(kd/2 — k|z|), (7.103)

for z < d/2, where I is the peak current. With a sinusoidal current the sec-
ond term in curly brackets in Eq. (7.102) vanishes. The first term is a perfect
differential. Consequently, Eqgs. (7.102) and (7.103) yield

. - 1/2 2
an(1,0) = 12 d[ [41((z2l++1)1)] (%) ji(kd)2), (7.104)

for [ odd.

Let us consider the special cases of a half-wave antenna (kd = m; i.e., the
length of the antenna is half a wavelength) and a full-wave antenna (kd = 2).
For these two values of kd the [ = 1 coefficient is tabulated in Table 3, along with
the relative values for [ = 3, 5. It is clear from the table that the coefficients
decrease rapidly in magnitude as [ increases, and that higher [ coefficients are
more important the larger the source dimensions. However, even for a full-wave
antenna it is generally adequate to retain only the [ = 1 and [ = 3 coefficients
in order to calculate the angular distribution of the radiation. It is certainly
adequate to keep only these two harmonics in order to calculate the total power
radiated (which depends on the sum of the squares of the coefficients).
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In the radiation zone the multipole fields (7.54) reduce to

ei(kr—wt) N
CB ~ T IZ(_I) [aE(l7 m) le
—}—aM(l, m) n A le] , (7.105&)
E ~ cBAn, (7.105b)

where use has been made of the asymptotic form (7.16). The time-averaged power
radiated per unit solid angle is given by
dP  Re(n-EAB*)r?
df? N 2,U/0

: (7.106)

or

P 1 ,
0= T S (D) ap(lm) Xim + anr(l,m)n A Xi]| . (7.107)
l

7

Retaining only the [ = 1 and [ = 3 electric multipole coefficients, the angular
distribution of the radiation from the antenna is given by

dP  |ag(l,0)[? _ ap(3,0)
A2~ dpgck? B0 VB as(1,0)

where use has been made of Eq. (7.52). The various factors in the absolute square
are

LYso| , (7.108)

3 .
|ILY1,0)*> = y sin® 6, (7.109a)
2 63 . o 2 2
|ILY30/° = —— sin“6(5cos”0 —1)%, (7.109b)
’ 167
V21
(LY10)*-(LY30) = 5 sin®@ (5cos? 4 — 1). (7.109c)
T
With these angular factors, Eq. (7.108) becomes
2
dP 3pgeI? 3 sin? 6 \/7 agp(3,0) )
— = 1—4/= f—1 11
a0 3 8n 8 an(1,0) (5 cos )| (7.110)
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where )\ equals 1 for a half-wave antenna and 72/4 for a full-wave antenna. The
coefficient in front of (5cos?6 — 1) is 0.0463 and 0.304 for the half-wave and
full-wave antenna, respectively. It turns out that the radiation pattern from the
two-term multipole expansion given above is almost indistinguishable from the
exact result for the case of a half-wave antenna. For the case of a full-wave
antenna the two-term expansion yields a radiation pattern which differs from the
exact result by less than 5%.

The total power radiated by the antenna is
k2 Z lag(,0)] (7.111)

where use has been made of Eq. (7.71). It is evident from Table 3 that a two-term
multipole expansion gives an accurate expression for the radiated power for both
a half-wave and a full-wave antenna. In fact, a one-term multipole expansion
gives a fairly accurate result for the case of a half-wave antenna.

It is clear from the above analysis that the multipole expansion converges
rapidly when the source dimensions are of order the wavelength of the radiation.
It is also clear that if the source dimensions are much less than the wavelength
then the multipole expansion is likely to be completely dominated by the term
corresponding to the lowest value of [.

7.6 Spherical wave expansion of a vector plane wave

In discussing the scattering or absorption of electromagnetic radiation by localized
systems, it is useful to be able to express a plane electromagnetic wave as a
superposition of spherical waves.

Consider, first of all, the expansion of a scalar plane wave as a set of scalar
spherical waves. This expansion is conveniently obtained from the expansion
(7.26) for the Green’s function of the scalar Helmholtz equation. Let us take the
limit 7" — oo of this equation. We can make the substitution |r —r/| ~ 7' —n-r
on the left-hand-side, where n is a unit vector pointing in the direction of »’. On
the right-hand side, r. = r and r~ = r’. Furthermore, we can use the asymptotic
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form (7.16) for hl(l)(kr). Thus, we obtain

ikr' e ikr!

—ikn-r : l / /
e = ik = S ()i (k) Y (0, ¢) Yim (8, 9). (7112)

lm

Canceling the factor elkr’ /7’ on either side, and taking the complex conjugate,
we get the following expansion for a scalar plane wave,

—47r21 Ji(kr) Z Yii (0,0) Yim (€', ¢), (7.113)

m=—I1

where k is the wave vector with the spherical coordinates k, 6, ¢'. The well
known addition theorem for the spherical harmonics states that

+1

4r .
Pl (COS 7) = 2l + 1 Z Ylm (97 ()0) Yim (0,7 (10,)7 (7']‘]‘4)
m=—1

where 7 is the angle subtended between the vectors » and r’. Consequently,
cosy = cos @ cosb’ + sinf sin 6’ cos(p — ¢'). (7.115)
It follows from Eqgs. (7.113) and (7.114) that

o0

e'*™ =3 i (20 + 1) ji (kr) Py(cos ), (7.116)
=0
or
Z 4 (21 + 1) ji(kr) Yio(7), (7.117)
since

20+1
Yio(6) = \/% Py(cos 8). (7.118)

Let us now make an equivalent expansion for a circularly polarized plane wave
incident along the z-axis:

E(r) = (z+ig)e'*, (7.119a)
cB(r) = 2ANE=7FiE. (7.119b)
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Since the plane wave is finite everywhere (including the origin), its multipole

expansion (7.54) can only involve the well behaved radial eigenfunctions j;(kr).
Thus,

B = 3 [awlm) k) X+ 5 bs(0,m) ¥ () Xim
I,m
(7.120a)
B = Y [% 0 (1,m) ¥ A i (k) Xim + b (1, m) j (r) xlm] .
lm
(7.120b)

To determine the coefficients a4 (I,m) and by (I, m) we make use of a slight gen-
eralization of the standard orthogonality properties (7.53) of the vector spherical
harmonics:

/[fl(T)Xl’m’]* Na(r) Xim]d2 = f g1 6w Smme, (7.121a)
/[fz(?“)Xz'm'}* [[VAg(r)Xim]d2 = 0. (7.121b)

The first of these follows directly from Eq. (7.53a). The second follows from
Egs. (7.31), (7.53b), (7.59), and the identity

V=-——-—7rAL. (7.122)

The coefficients a4 (I, m) and by (I, m) are obtained by taking the scalar prod-
uct of Eqgs. (7.120) with X and integrating over all solid angle, making use of
the orthogonality relations (7.121). This yields

ar(l,m)ji(kr) = /X[fm-EdQ, (7.123a)

bi(l,m) ju(kr) — / X7 .cBdf. (7.123b)
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Substitution of Egs. (7.52) and (7.120a) into Eq. (7.123a) gives
: (Lg Yim)™ ik
a+(l,m) ji(kr) = e'"?

(m)(hr) = [ TR

where the operators Ly are defined in Egs. (7.30). Making use of Egs. (7.33), the
above expression reduces to

\/(Z:I:m [Fm+1)
VIIE+T)

02, (7.124)

as(l,m) i (kr) = / ARSLEp ) (7.125)

If the expansion (7.117) is substituted for e!*?  and use is made of the orthogo-
nality properties of the spherical harmonics, then we obtain the result

ax(l,m) =i /47 (20 + 1) 61y 1. (7.126)

It is clear from Egs. (7.119b) and (7.123b) that
bi(l,m) = ;iai(l,m). (7.127)

Thus, the general expansion of a circularly polarized plane wave takes the form
: 1 :
E(r) = Z (20 +1) |gi(kr) X0 £ -V A ji(kr) Xz |

(7.128a)

=
3

[
WK

: —1 : ..
d Am (20 + 1) [? VAgi(kr)X; 41 F 1jl(kr)Xl,i1] .

=1

(7.128b)

The expansion for a linearly polarized plane wave is easily obtained by taking the
appropriate linear combination of the above two expansions.

7.7 Mie scattering

Consider a plane electromagnetic wave incident on a spherical obstacle. In gen-
eral, the wave is scattered, to some extent, by the obstacle. Thus, far away from
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the sphere the electromagnetic fields can be expressed as the sum of a plane wave
and a set of outgoing spherical waves. There may be absorption by the obstacle,
as well as scattering. In this case, the energy flow away from the obstacle is
less than the total energy flow towards it: the difference represents the absorbed
energy.

The fields outside the sphere can be written as the sum of incident and scat-
tered waves:

E(r) = Ep+ Eq, (7.129a)
B(r) = Bin+ B, (7.129b)

where Ej,. and By, are given by (7.128). Since the scattered fields are outgoing
waves at infinity, their expansions must be of the form

DN

E, = Z Var (20 +1) (7.130a)

k

| — |

l
ax (1) b (kr) X 11 fell) ¢ h{ (kr) X,,ﬂ] ,

o
oy

I
DN | =
NE

A (20 + 1) (7.130b)

~
Il
[y

[%ﬂl) VAR (kr) Xp 21 T i B2(1) Y (kr) Xl,ﬂ] .
The coefficients a4 (I) and S4(I) are determined by the boundary conditions on
the surface of the sphere. In general, it is necessary to sum over all m har-
monics in the above expressions. However, for the restricted class of spherically
symmetric scatterers only m = £1 harmonics need be retained (since only these
harmonics occur in the spherical wave expansion of the incident plane wave (see
Eqgs. (7.128) ), and a spherically symmetric scatterer does not couple different m
harmonics).

The angular distribution of the scattered power can be written in terms of the
coefficients «a(l) and B(I) using the scattered electromagnetic fields evaluated on
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the surface of a sphere of radius a surrounding the scatterer. In fact, it is easily
demonstrated that

dPsc a’
- E,. N B;
0 o Re[n-Egs. A B, ] —
a2
= ———Re[Es-(n A B)]p—a, (7.131)
210

where n is a radially directed outward normal. The differential scattering cross
section is defined as the ratio of dPs./df? to the incident flux 1/ugc. Hence,

2
— _% Re [Esc-(n A ¢BY,)]r=a.- (7.132)

dose

df?

We need to evaluate this expression using the electromagnetic fields specified in
Egs. (7.128), (7.129), and (7.130). The following identity, which can be estab-
lished with the aid of Eqgs. (7.29), (7.52), and (7.59), is helpful in this regard:

F(r) Yim + %w n A Xim. (7.133)

V A f(’l‘)le =n M

For instance, using this result we can write n A cB,. in the form

1 oo
nAcBy = EZIA/@T (21 + 1 (7.134)

=1

[iaim Ldfrhy" (kr)
k. r dr

X 41 FiBe() RV (kr)n A X,,ﬂ] .

It can be demonstrated, after considerable algebra, that

2

dos.
70 = 2]{72 Z\/Ql—l— [aj:()lezl lﬂi()’n/\le:l] (7135)
In obtaining this formula, use has been made of the standard result
d df; (z 21
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where f;(z) = i! hl(l)(z). The total scattering cross section is obtained by inte-
grating Eq. (7.135) over all solid angle, making use of the following orthogonality
relations for the vector spherical harmonics (see Egs. (7.53) ):

/ X Ximd2 = S St (7.137a)
/ X5 (A X)) d2 = 0, (7.137b)
/ (A XS ) (A Xim)d2 = S . (7.137c)
Thus,
Ose = oy Z 20+ 1) [lax O + 18] (7.138)

According to Egs. (7.135) and (7.138), the total scattering cross section is inde-
pendent of the polarization of the incident radiation (i.e., it is the same for both
the 4 signs). However, the differential scattering cross section in any particular
direction is, in general, different for different circular polarizations of the incident
radiation. This implies that if the incident radiation is linearly polarized then the
scattered radiation is elliptically polarized. Furthermore, if the incident radiation
is unpolarized then the scattered radiation exhibits partial polarization, with the
degree of polarization depending on the angle of observation.

The total power absorbed by the sphere is given by
2

Pirs = ——Re/[n-E/\B*]r:a ds?
2p0

_ —Re/[E (A B*)]ye d02. (7.139)
2110

A similar calculation to that outlined above yields the following expression for
the absorption cross section,

Tabs = 2% S @+ 1)[2— Jax () + 12 - 82(0) + 17 (7.140)
l
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The total or extinction cross section is the sum of os. and o.ps:

(20 + 1) Re [as (1) + B (D). (7.141)
l

7r
O = k2
Not surprisingly, the above expressions for the cross sections closely resemble
those obtained in quantum mechanics from partial wave expansions.

Let us now consider the boundary conditions at the surface of the sphere
(whose radius is a, say). For the sake of simplicity, let us suppose that the sphere
is a perfect conductor. In this case, the appropriate boundary condition is that
the tangential electric field is zero at » = a. According to Eqgs. (7.128), (7.129),
and (7.133), the tangential electric field is given by

Fian Z LAr(2l+ 1 {[ azx(l) h(”] X, 41

d
+ %d— [:c (jl + BiT(l) h,“))] n A Xl,ﬂ} , (7.142)

where = ka, and all of the spherical Bessel functions have the argument z.
Thus, the boundary condition yields

)

ar(l)+1 = —W, (7.143a)
T (2) z) )

Bi()+1 = _[—szj(”ic;;] R (7.143D)

where ' denotes d/dz. Note that ay(l) + 1 and S+(I) + 1 are both numbers of
modulus unity. This implies, from Eq. (7.140), that there is no absorption for the
case of a perfectly conducting sphere (in general, there is some absorption if the
sphere has a finite conductivity). We can write a4 () and S (1) in the form

ar(l) = &% 1, (7.144a)
Be(l) = &1 —1, (7.144D)
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where the phase angles 0; and J; are called scattering phase shifts. It follows from
Egs. (7.143) that

_ Ju(ka)
tand, = si(ka)’ (7.145a)
o [@i@)
tand [(wyl(x)),]m:ka. (7-1450)

Let us specialize to the limit ka < 1, in which the wavelength of the radiation
is much greater than the radius of the sphere. The asymptotic expansions (7.14)
yield

N 2i (ka)2+1
) = ~GrDE—nE
Be(l) =~ —(Hl_l) ot (1), (7.146a)

for I > 1. It is clear that the scattering coefficients a4 (1) and 54 (1) become small
very rapidly as [ increases. In the very long wavelength limit only the [ = 1
coefficients need be retained. It is easily seen that

CBe(1) o 2i

ax(l) = ——5— = 3(ka,)3. (7.147)

In this limit, the differential scattering cross section (7.135) reduces to

‘;0;; ~ 2?” a?(ka)* | X111 F2in A Xy 11]°. (7.148)
It can be demonstrated that
nA Xy 1)? =|X141)° = % (1 4+ cos? ), (7.149)
and
[Fi(n A X7 1) X141] = _?%r cos 6. (7.150)
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Thus, in long wavelength limit the differential scattering cross section limits to

dose

df?

~ a®(ka)? g (14 cos? ) — cosd| . (7.151)

The scattering is predominately backwards, and is independent of the state of
polarization of the incident radiation. The total scattering cross section is given
by

107 o
Osc — 70,

This well known result was first obtained by Mie and Debye. Note that the
cross section scales as the inverse fourth power of the wavelength of the incident
radiation. This scaling is generic to all scatterers whose dimensions are much

smaller than the wavelength. In fact, it was first derived by Rayleigh using
dimensional analysis.

(ka)*. (7.152)
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