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LECTURE NOTES 18
RELATIVISTIC ELECTRODYNAMICS

Classical electrodynamics (Maxwell’s equations, the Lorentz force law, etc.) {unlike classical
/ Newtonian mechanics} is already consistent with special relativity — i.e. is valid in any IRF.

However: What one observer interprets (e.g.) as a purely electrical process in his/her IRF,
another observer in a different IRF may interpret it (e.g.) as being due to purely magnetic
phenomena, or a “mix” of electric and magnetic phenomena — but the particle motion(s), viewed
/ seen / observed from different IRFs are related to each other via Lorentz transformations from
one IRF to another (and vice versa)!

The problems / difficulties Lorentz and others had working in late 19" Century lay entirely
with their use of non-relativistic, classical / Newtonian laws of mechanics in conjunction with
the laws of electrodynamics. Once this was corrected by Einstein, using relativistic mechanics
with classical electrodynamics, these problems / difficulties were no longer encountered!

The phenomenon of magnetism is a “smoking gun” for relativity!

* Magnetism — arising from the motion of electric charges — the observer
is not in the same IRF as that of the moving charge — thus magnetism is
a consequence of the space-time nature of the universe that we live in

(Lorentz contraction / time dilation and Lorentz invariance Ax, Ax* =1).

B-gun

* “Magnetism” is not “just” associated with the phenomenon of electromagnetism, but vV four
fundamental forces of nature: EM, strong, weak and gravity (and anything else!) — because
space-time is the common “host” to all of the fundamental forces of nature — they all live /
exist / co-exist in space-time, and all are subject to the laws of space-time — i.e. relativity!

We can e.g. calculate the “magnetic” force between a current-carrying “wire” and a moving
(test) charge Or without ever invoking laws of magnetism (e.g. the Lorentz force law, the Biot-
Savart law, or Maxwell’s equations (e.g. Ampere’s law)) — just need electrostatics and relativity!

Suppose we have an infinitely long string of positive charges moving to right at speed v in the
lab frame, IRF(S). The spacing of the +ve charges is close enough together such that we can
consider them as continuous / macroscopic line charge density A = g/¢ (Coulombs/meter) as

shown in the figure below:

>

IRE(S):
A=q/t (>0)
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Since the positive line charge density |4 = ¢/¢|is moving to right with speed v, we have a
positive filamentary / line current flowing to the right of magnitude (Amps).
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Now suppose we also have a point test charge Or moving with velocity # = +uz (i.e. to the
right) in IRF(S) {n.b. |L7 | =u is not necessarily = |\7| =v }. The test charge QOrisa L distance p

from the moving line charge / current as shown in the figure below.

IRF(S): X
A=q/l (>0)
? I=4v 9 z
A TPy =48
p y
* > U= +uz
Or IRF(S') =rest frame of test charge

Let’s examine this situation as viewed by an observer in the rest frame of the test charge Or
= the proper frame of the test charge Q7. Call this rest/proper frame = IRF(S").

By Einstein’s “ordinary” velocity addition rule, the speed of +ve charges in the right-moving
line charge density / filamentary line current as viewed by an observer in the rest frame IRF(S")
of the test charge Or {which is moving with velocity # = +uz in the lab frame IRF(S)} is:

!

1%

vV—u

=

with: |V =+v2| and: [i = +uZ]

However, in IRF(S"), due to Lorentz contraction the {infinitesimal} spacing between positive
charges in the right-moving line charge / filamentary line current is also changed, which
therefore changes the line charge density as observed in IRF(S"), relative to the lab IRF(S)!

1 1
In IRE(S"): |A'=y,| where: |y’ = == =| and: A=q/l, LA =q/l|=0=1,]y
\/l_ﬂ' \/1—(v'/c)
Where |4, = ¢/{,| = linear charge density as observed in its own rest frame IRF(Sp).
Once the line charge density A4, starts moving at speed v in IRF(S), then: |/, — /|and |4, — 4|
1 1
In IRF A=yk| where:|y= == =| and: A=q/lyb|A=q/t|=l=0,]y
\/ 1-p \/ 1-(v/c)
: 1 ,__v-u —— —.

But: |y = - and: [v' = where: \v:vz\ m:\u:uzhn IRF(S).

1-(v'/e) 1- V%z

e 1 _ 1 B (c2 - vu)
I ) A e R (e Rt}
¢’ vu Y’ ¢ —vu)
(B
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1

N ) ] T

Or: |7 = — ~ Ty )HE
= ey I " g

Thus: 7’=}/7/u(1—u—;}] with: |V = vZ| and: |ii = uZ|
c

Thus the line charge density A" as observed in the rest frame of the test charge Qy, i.e. in IRF(S") is:

, , uv uv uv
A =yd =, (1——2j% =7, (I—TJ% =7, (1——2j1
C C :,/1_» C

Check: If [ii =7, does A=20?

When , the test charge Qr is moving with the same velocity as the line charge, thus
the test charge Qr is in the rest frame of the line charge, i.e. IRF(S") coincides with IRF(Sy)!

1f[@=7] then: =] and: |y = = |7, =———
1—(v/c) 1—(u/c)

C
Then: /1'=m(l—ﬂj/10= &~ |4 =4| YES!A=24|

Note that the line charge density 4 as observed in the lab frame {i.e. in IRF(S)}, in terms of
the line charge density A, in the rest frame of the line charge itself (i.e. IRF(S)) is:

A=yl :;ﬂo since: }/E;
1—(v/c)2 Jl—(v/c)2
Check: If |ii = 0|, does |1’ = 4|2
When , the test charge Qr is not moving in the lab frame IRF(S), thus IRF(S")
coincides with IRF(S)!

If then: and: |7, z;z=l and thus: /1'={}/u(1—u—:ﬂ/1:/1 Yes!
1-(u/c) ¢
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An observer in the proper / rest frame IRF(S’) of the test charge Oy sees a radial ( ,6)

electrostatic field in IRF(S") associated with the infinitely long line charge density |4' = g//'| of:

E'(p)= 27:: p,b with /1’={7u (I—Z—l}ﬂﬁ and |4 = y4,

n.b. p is the radial unit vector L to v =vz {and u =uz }.
= p and p are unaltered / unaffected by Lorentz boosts along the Z -direction.

1 1 1
- InIRF(SY: |E'(p)= A = 7, (1—”-?) A= 7, (1—”-3 v A
2rg, p 2re, p c)|an 2me,p c )l

A=q/l|inIRF(S) |4, =q/(,|in IRF(Sy)

In the special case when when IRF(S") = IRF(So) coincide — the test charge Or and
the line charge A are both at rest/in the same rest frame/same IRF:

1 Y. 1

= = Ay = E, ()|« Purely electrostatic field, |4, =¢/¢,
= 2re,p 2re, p

Then: E'(p)

n.b. Notice that when IRF(S") = IRF(S) coincide, that Fy = 0, E, L (ii =V):

F I Or ~ O, q | q
0 (P)=0E(p) 2z, P =3 . (ﬁojp where: |4,

For the more general case where , the force acting on the test charge Or in its own rest
frame IRF(S") is:

!’ ! 12 uv
Fror (P)=0rEror (p) = 23;/) A= 27Z'Q8T0,0 {7@ (l_c_zj}/i where: |4 =% In IRF(S)
or:  |Fy (p) :&yuxl - iyﬂl(”—f} where: |7, L
2re, p 2rme, p c 1—(u/c)2
, 0, A Av ( 1 } O,u
Or:  |Fr(p)= - —
TOT( ) 27E, p (1_(u/c)2 2.0\ p 1—(u/6)2
But: in IRF(S) {the lab frame} and|l/c’ =&, u, |
Thus: |Fpo, (p)= & 4 =~ ('u"lj Oru =|in IRF(S")
2re,p 1-(u/c) 27p 1-(u/c)

Or: Fror (IO):QTE’(p)_QTuB'(p):QTEYI"OT (,0) and: | E7,; (p):E’(p)_uB'(p)
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B(

H, !

|

2mp

0|

1= (/)

in IRF(S") 1!

Vectorially, in the general IRF(S’) / rest frame of the test charge Or, for {necessarily}

FT'OT (,0) = QTE;OT (,0)

< n.b. in the radial / p direction only.

Very Useful Table
El,. (p)=0,E'(p)p—QuB'(p)p Cylindrical Coordinates:
PXP=Z PXp=—=Z
But: [i =uz] . |iixB'(p)=-uB'(p)p| =|B' = B'¢|then: [uB'(:xp)=—uB'p| |px2=p (CGxp=—p)
=7 ZXP=Q PXZ=—@
ﬁr'or (P) =0, L7y, (P) = QTE'(P) +0, (ﬁx E'(,D)) <« Lorentz Force Law in IRF(S") !!!
- 1 A Al s Y7, 1 .
E(p)- F(o)-[ £ ]
2re,p 1— 2 2mp ) J1—
Where: 5 (u/;) \/ (u/e) in IRF(S")
— j/u A — Wu A _ /uo A ,uo A
27e, p o 2re,p - 27zpjy"1¢ - [ Zﬂij”Io(p
I,=ivl{=Av=pAv=yIL\|I'=syrAv=pr,A4v=1r1
I'=y1 CWCCCC > 2 in IRF(S)
Pl o Bp)lle
""""""""""""" U =uz inIRF
6 > i ®
o QT A A (,uglj 1 N
Fror(P)= p — Qpu P
TOT( ) 27, p /1—(u/c)2 T 270 1—(14/0)2

7 force

= QTE’(,O)+ QTﬁXE'(p)
ttractive

force LN

repulsive

n.b. Parallel currents attract

each other!!! {2" current is

test

charge Q7 !}

For like charges g = A/ and Q7

Iful|v {remember:

I =)}

in IRF(S")

Next, we Lorentz transform the IRF(S") results (defined in the rest / proper frame of Or)
to the IRF(S) (lab frame), using the rule(s) for Lorentz transformation of forces:

1 A .
P

E

and:

Av I

A

B

,(p): 272'8002/) (1—(u/c)2 Q

Fl (p)=0rEjor (P)= O,E'(p) + QyiixB'(p)

__ O

!

(p) A'p

ToT

- 2me, p

where:

Vi =

-
1—(14/0)2

The test charge Or is moving with velocity # = uz in the lab frame, IRF(S).
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Note that {here}: (i =uz=u_z| {i.e. u=u_, ii|| Z }, note also that: FT'OT Lii|and |F/=F!=0|
Then the Lorentz transformation of the forces from IRF(S") to IRF(S):
1 1
In IRF(S): |F\ =—F/ = —(u/c)zFL' where: |7/ =———| and: F =F(=0)
Yu 1—(u/c)
- In IRF(S): Note the cancellation of ¥, factors !!!
] 1 1o .. 1£0 [V ( uvj )
F __FI - T ’ T 1__ ﬂ/
TOT (p) ] 10T (p) 272'8 }/ 27z p[}/ e P
:i(l uf}l,b: Ot 5 _ Oty ~*up but: I=Av and —=¢5,u,
2rg, p c 2rg, p 27&9 c’ c
A . 5
_QT( pj—QT[u*'u p]
2re, 2mp
. fa a i A D /uol N
Again: uzl, |Zx ¢ =—p|thus{B(p)=
27mp
~ A . - 1,
* InIRF Fm(p)=QT[ pJ + QTux[’“‘ w}
2re, p 2mp
| — —_—
=E(p) =5(p)
Fror (P)=0Eror (p)=0,E(p) + 0yii x B(p)| < Lorentz Force Law in IRF(S) !!
-
. 2. (q/0)
In IRF(S): E here: |4 =q/l|=|y4, = 14
n ) (») 2 p” "2 p where: |1 =¢/¢|= |72, =7(q/!,)
Al i A
g B(p)= 27[,0(0_ 2 = 2 where: |1 = Av=(q/0)v|=|rAv=r(q/l,)v

Thus, an observer at rest in either the lab frame IRF(S) or the rest frame of the test charge IRF(S")
will see both a static electric field {different in each IRF} and a static (but velocity-dependent)
magnetic field {different in each IRF} due to the {infinitely long} filamentary line charge density

A=q/l

that is moving with velocity in IRF(S) = filamentary line current in IRF(S).

The magnetic field arises simply from the relativistic effect(s) of electric charge in {relative} motion!

For an observer in the rest frame IRF(Sy) of the filamentary line charge density
see only a static, radial electric field!

6
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IRF(S) IRF(S RF(So)
Laboratory Frame Rest Frame of Test Charge Rest Frame of Line Charge
Moving with |t =uZ =u_Z | in lab Moving with [V =VZ =V_Z |in lab
V= YT" | Speedofline
1_(uv/cz) charge in IRF(S")
Y= 1 - ( 1 uvj y 1
- - u Y S
- (v/ 0)2 ¢ J1- u/ c)
’ ! / u
mali=ra=r(alt)|  |¥=alr=74, =m[ —(—zﬂ -
[ ’ Vv
t=Ly/y U'=ty/y =€o/77{1—(zﬂ 4
~ A . [Z N = YA~ WA A . A -
E — — 0 E' — u — u E — 0
('0) 2re, p P 2re, p p (,0) 2re, p P 2re, p p ‘ (,0) 2re,p P
n.b. In the rest
I=v=pyv=7l|l, =y |I'syAv=y 1=y Av=rr], No current in IRF(So) tLréatr]QStlc:iESe)gfr,
the Lorentz force
— I . I, .| |5 I I, I, . , F},, usesth
B(p)=tel =l g g (p)= el o Hulid i HolVilo g N Bfield in IRF(S0) o
2mp 2mp 27mp 2mp 27p velocity # of the
test charge as
= = — < observed in the lab
For=0.E + QiixB| # |F,, =Q,E' + Q,iixB' # E (p)= O,E,(p) frame IRF(S).

We see that the observed line charge densities 4 and A’ as seen in the lab frame IRF(S) and
the test charge rest frame IRF(S"), respectively are larger by factors of » and y'respectively
compared to the line charge density as observed in the rest frame IRF(S) of the line charge
density itself. This difference arises due to the effect of the {longitudinal} Lorentz contraction of
the moving line charge density 4, , as viewed from the lab frame IRF(S) and the rest frame

IRF(S") of the test charge, respectively.

Because of this, the electric fields as seen in the lab frame IRF(S) and rest frame of the test

charge IRF(S") are larger by factors of y and yy,,

respectively than that observed in the rest

frame IRF(Sp) of the line charge density itself, hence the magnitude of the electrostatic forces are
larger by these same amounts in their respective IRF’s, and are thus {in general} not equal.

An important point here is that in all 3 inertial reference frames, what we call the electric field
in each IRF is such that a.) they are all oriented in the same direction {here, the radial direction
and b.) they all have the same functional dependence (here, ~1/p), differing only by y -factors

from each other.
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In the rest frame IRF(Sy) of the line charge density A, the electromagnetic field seen there is

purely electrostatic, oriented in the radial ( p ) direction, whereas in the lab frame IRF(S) and the

rest frame of the test charge IRF(S’), the electromagnetic field observed in each of these two
reference frames is a combination of a static, radial electric field and a static, azimuthal magnetic
field.

The “appearance” of azimuthal magnetic fields in the lab frame IRF(S) and the rest frame of
the test charge IRF(S") is due to the relativistic effects associated with the motion of the line
charge density relative to an observer in the lab frame IRF(S) and/or the rest frame of the test
charge, IRF(S").

We say that the relative motion of the electric line charge density |4 = y4,| {as viewed by an

observer in the lab frame IRF(S)} constitutes an electric current |/ = Av = y4,v| {as viewed by that

same observer in the lab frame IRF(S)}.

We then connect / associate the “appearance” of azimuthal magnetic fields B and B'in the
lab frame IRF(S) and the rest frame of the test charge IRF(S"), respectively with the existence of
the electric currents 7 and /' as observed in their respective inertial reference frames.

The B -field in each IRF is linearly proportional to {the magnitude of} the electric current |7 | as
observed in that IRF, i.e.|| B|~|I |=| AV ]|

Another interesting/important aspect of the magnetic fields B that “appear” in IRF(S) and/or
IRF(S") is that they are mutually | to both E .and. I = AV in that IRF.

Note that we could instead refer to electric currents / alternatively and equivalently,
exclusively and explicitly as to what they are truly are — the {relative} motion(s) of charges gv,

line charge densities Av , surface charge densitiesov and/or volume charge densities pv .

Then we also wouldn’t have to explicitly use the descriptor “magnetic” field to describe the
resulting component of the electromagnetic field that does arise from the relative motion(s) of
electric charge(s) as viewed by an observer who is not in the rest frame of these electric
charge(s). We could call it something else instead — e.g. “the relativity field”.

We humans call this field “the magnetic field” largely for historical inertia reasons. Magnetic
fields were discovered centuries before relativity and space-time were finally understood; thus
we simply keep calling this field “the magnetic field”. The magnetic field is truly and simply one
component of the overall electromagnetic field that is associated with a physical situation, and
one which only arises whenever that physical situation is viewed by an observer whose IRF(S) is
not coincident with the rest frame IRF(Sy) of the electric charge(s) that are present in that
particular physical situation.

The “traditional” way of equivalently saying the above is: “Magnetic fields are only produced
when electrical currents are present”.

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Physical Electric Currents:
It is important to understand that there exist different kinds of physical electric currents.

e A “bare” filamentary line charge density |1 = g//| e.g. moving with uniform velocity

with respect to the lab frame IRF(S), creates a filamentary line current |/ = AvZ|in the lab
frame IRF(S). This filamentary line current is not equivalent to a physical electrical current
flowing e.g. in an “infinitesimally-thin” physical wire at rest in the lab frame IRF(S). For an
observer in {any} IRF the “bare” filamentary line charge density has a net / overall electric
charge. An observer at rest in the lab frame IRF(S) sees both a static, non-zero radial electric
field and a static, non-zero azimuthal magnetic field arising from the “bare” filamentary line

charge density |4 = ¢//|and “bare” filamentary line current I =M respectively, whereas an

observer at rest in IRF(Sp) of the filamentary line charge density |4, = ¢//, | sees no magnetic

field — only a static, radial electric field!

e In aphysical wire (e.g. a copper wire, made up of copper atoms with “free” conduction
electrons), the “free” negatively-charged electrons move / drift through the macroscopic

volume of the copper wire e.g. with {mean} drift velocity |V, = —v,Z|and constitute a

ois = 2A]" =—n_ev,+A""as viewed by an observer in the lab

frame IRF(S). Microscopically, the copper wire is a 3-D “matrix” (or lattice) of bound / fixed
copper atoms with a “gas” of “free” conduction electrons drifting through it. In the lab frame
IRF(S), the copper atoms are at rest. Note importantly {also} that in the lab IRF(S), the
physical current-carrying copper wire has no net electric charge — because there is one “free”
conduction electron associated with each copper atom of the copper wire. Thus, an observer
at rest in the lab frame IRF(S) sees no net electric field but does see a static, non-zero
azimuthal magnetic field arising from the “free” conduction electron volume current density

physical electric current |/

J, =-n_ev,|, whereas an observer at rest in IRF(Sy) “free” conduction electron charge

density peo, =n" e| sees no magnetic field associated with the “free” conduction electrons, but

e

does see {the same!} non-zero azimuthal magnetic field that is associated with volume

current density |/, = +n.,ev,|of the 3-D lattice of copper atoms that are moving with

{relative} velocity |V, = +Vv,Z|to an observer at rest in IRF(Sp) !!!

¢ In semiconducting materials (e.g. silicon, germanium, graphite, diamond, SiC, gallium, ...)
electrical conduction occurs either by mobile “drift” electrons and/or “holes” {= the absence
of an electron). The number densities of electrons and/or “holes” are both typically
< number density of semiconductor atoms and depend on details associated with the
condensed matter physics of the semiconductor. In general n _ # n,,, and both are strong

(exponential) functions of {absolute} temperature. The drift velocities of electrons and holes
are not in general the same. Thus, in the lab frame IRF(S), an observer will, in general see
static electric field contributions arising from both electron and hole charge density
distributions as well as magnetic field contributions from both electron and hole current
densities. An observer at rest either in IRF(Sp) of the electrons or at rest IRF(S; ) of the holes
will again see static electric field contributions from both electrons and holes, but a B-field
contribution only from holes (electrons), respectively.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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e The situation of a “bare” filamentary line charge |1 = ¢//| moving with {relative} velocity

in IRF(S), producing a filamentary line current |/ = Av|in IRF(S) can be physically
realised e.g. as “beam” of +ve current of protons (+¢) {or e.g. +ve ions, or e.g. —ve electrons}

flowing in a vacuum (e.g. made via laser photo-ionized hydrogen, argon, or thermionic
emission of electrons, respectively):

Vacuum Chamber (Lab IRF(S))

= LAV el .
Eartusd AL FILAMERTARY LINE CupReNT

o
~ ——

OCpbOPBOOD CODCBevB0D — V=vz

-~
Ny
> .

coBDgons00 O DOOR D OO
vetone

Protons/ions moving with constant velocity
v =vzZ in drift region.

HYDOROGEN
GAS BsTTILE

Protons/ions accelerated here, gain kinetic
energy E,, =eAV =(y—1)m,’

Having discussed the EM field(s) and EM force(s) acting on a test charge Qr associated with a
single filamentary line charge / filamentary line current as observed in different IRF’s, we now
discuss the problem of two counter-moving, opposite-charged filamentary line charges /
filamentary line currents superimposed on top of each other.

Consider two opposite-charged filamentary line charges (both infinitely long) that are initially
stationary in the lab frame IRF(S). One initially stationary filamentary line charge has negative

charge per unit length |4, =—g¢//,|and the other initially stationary filamentary line charge has

positive charge per unit length |4, =+¢ /0y | The two line charges are then set in motion parallel

to / along their axes (in the Z -direction). The negative line charge moves to the left
(—z direction) with velocity |V =—vZ|in the lab frame IRF(S), and the positive line charge moves

to the right (+ Z direction) with velocity [V, = +VZ |in the lab frame IRF(S) {i.e. it has the same

exact speed, but moves in the opposite direction to that of the first line charge}.

The two counter-moving filamentary line charges are superimposed on top of each other /
coaxial with each other, but we draw them as slightly displaced (transverse to their motion) for
clarity’s sake in the figure below, as seen by an observer at rest in the lab IRF(S):

A

x
In IRF(S): Vv =—v¢ A =—qll IRF(S)
000 00000000000 .
— 0 0000000000000 —> 9 Z
A, =+q/l v, =+vZ ¥y

In IRF(S), the moving filamentary line charges have charge per unit length |4, = +¢/¢|, whereas

in the respective rest frame(s) IRF(S) of the filamentary line charges, we have |4, =%¢ [ly=%4|.

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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>

I
I+
<

Because of the respective motions of the line charge densities: [V
1 1

& \/l—(vi/c)z ) \/l—(v/c)2

In the lab frame IRF(S): A negative current /_ = A v_flowing to the left is superimposed on a

positive current /, = A, v, flowing to the right, as shown in the figure below:

H+

Then: |4, = £yA,| where:

x
In IRF(S): I =Av Vv =—vz
0000000000000 O
 0000000000000O0
I =4y, v, =+vZ 9 z

A

y

Using the principle of linear superposition, the net/total current {as observed in the lab frame
IRF(S)} is:

=1, +1 =Av,+Av|but: (A =-4|and:|v.=-v,

ITOT

Loy = Av, +(=4.)(-v, )= Av, + A,v, =2, v,|flowing to the right (i.e. in+Z direction)

= |,y =24,v, =2Av|flowing in the Z -direction: with: A, =+A=+q/(| |V, =+v2

A

0000000 00000> > and: (A =-A=—¢q/l] |Vv.=—VZ

Note that because we have superimposed these two counter-moving, filamentary oppositely-
charged line-charges / counter-moving, filamentary line currents, the net electric charge Oror
{as observed in the lab frame IRF(S)} is zero because:

Avor = A, +A_=+A—A=0]|in the lab frame IRF(S).

If Oror = 0 in IRF(S), then we also know that the net electric field £, (7)=0 in the lab

frame IRF(S) due to these two counter-moving, superimposed oppositely-charged filamentary
line charges/line currents in IRF(S).

Now additionally suppose that we also have a test charge Q7 moving with velocity u = uz
(i.e. to the right) in IRF(S). As before, u is not necessarily = v = vz, the velocity of right
moving line charge. The test charge Orisa L distance p from the superimposed opposite-
charged, opposite-moving filamentary line charges A, and A :

X
In IRF(S): /17=—q/€ V =—vz I =Av IRF(S)
0-0-0-0-0-0-0-0-0-0-0-0-0-0 R
}ITOT:Z/IV 9 z
ﬂ#:"’Q/E T v, =tvz I =24y, b
o,
e
> 1 = +uz
O;

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Let’s examine the situation as viewed by an observer in IRF(S") — i.e. the rest frame of the test

charge QOr. There are four distinct cases to consider for the 1-D Einstein velocity addition rule:

>

a.) In the lab frame IRF(S), the test charge Or is moving with velocity |u = +uz|,
v, =+vz|.

the +ve filamentary line charge density A, = +4 is moving with velocity

Lab Frame IRF(S):

)2' = = v = Z
ﬂ+ A=+ q/f & tvz . y V- Uu | Relative
¢ > > z V. = Vil - speed of +A
2 1—— viewed from
N 9 P c? IRF(S")
Y * - A
u=+uz

0O, IRF(S’) =rest frame of test charge

b.) In the lab frame IRF(S), the test charge Qr is moving with velocity |u = +uz|,

the —ve filamentary line charge density 4 =—A is moving with velocity |[Vv. =—vz|.
Lab Frame IRF(S):
X A ==A=—qgll vV =—v¢
o C]/ V- V2 oA V' —v—u Relative
< > Z = = | speedof-A
z ¢ 1+ vu viewed from
$ 9 P o2 IRF(S")
, n.b.only vV reversed
QT IRF(S ) = rest frame of test Charge relative to case a.) above
c.) In the lab frame IRF(S), the test charge Q7 is moving with velocity |1 = —uz|,
the +ve filamentary line charge density A, =+ is moving with velocity |V, = +vZ|.
Lab Frame IRF(S):
x A =+A=+q/l vV =+2Z
i q/ i - > 2 N v+u Relative
” > = = speed of +A
z ¢ : 1+ vu viewed from
$ 9 P c? IRF(S")
———ii=-u -
, n.b.only U reversed
O, IRF(S") =rest frame of test charge relative to case a.) above
d.) In the lab frame IRF(S), the test charge Qr is moving with velocity |i =—uz|,
the —ve filamentary line charge density A = —A1is moving with velocity [V =—vZ|.
Lab Frame IRF(S):
X A =-4= —q/ﬁ v.=—vE . N —Vv+u Relative
< > Z _= = | speed of A
2 ¢ 1— Vi; viewed ffom
)3 9 1% c IRF(S")
i u=-uz n.b.both 2 and V reversed

relative to case a.) above

O, IRF(S") =rest frame of test charge

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The above four relative 1-D speed formulae can be more compactly written as two specific cases:

: = . | Tv—u n.b. Equation 12.76, p. 523 in Griffith’s p _ vtu
1.) For|u =+4uz| |v, = i R V. =
) . book is correct, however the proper use of | ~ 1324
+ c? his equation explicitly requires placing a c*
— (minus) sign in front of the formula for 1P general:
n thev' case. Note that (obviously) u must -
i i 2] |y =2V .. . . . = v—-u
i1.) For m | — also be explicitly signed in his formula for |V ==
1+ P the # = —uZ case. Then his formula agrees 1- 2
with the 4 that are explicitly given here.

Thus, for an observer in IRF(S") (= rest frame of O7) moving to the right with velocity
in IRF(S) we see that [V >V |,

Because |V > V! | for an observer in IRF(S"), the Lorentz contraction of the —ve filamentary line

charge density 4 =—¢g/¢ will be more “severe” than that associated with the +ve filamentary

line charge density A, =+¢//.

N S
1—(\/;/0)2

And: |t4, =q/!,|= filamentary line charge densities in their own rest frames.

In IRF(SY): |4 =xy. 4| where: |y =

But: |V, =2 for:|” = T in IRF(S)
_vu i =-+uz
15—
c
Thus:
1 _ 1 B 1 ~ (czivu
Vs VOV B ) (+v—u)2 cz(+v—u)2 _\/( S )2_ 2 (10 V2
1_(1) - L 2 1 * ) Fvu) - (£v—u)
¢ (mwj) (c*Fvu)
c
(C 1"”) (czivu)
\/c4$ 2+(vu) szzimz—czuz \/64—sz2—621,{2+(1;1,¢)
174
(c*Fvu) 1 i w
_\/(C2 vz)(cz uz): vY’ u\ =7 ¢
RORE
c
uv 1 1
or: |7. =w.|1¥— || where: |y =———| and: |y, =——
C v 2 u 2
s
c c

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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Then in IRF(S): (A, =ty 4, =ty 4 (1 1”—? =ty, (7/10 )(1 ¢u_:j = i}/“g(l;u_rj
c c c
1 1
where: |y, = ——=| and: |y = ———=
1-(u/c) 1-(v/c)
But: |+4 ==xy4,|= charge per unit length in the lab frame, IRF(S).
&) ()
- InIRF(SY: |4/ =+yu1(1—”—fj:/1 —Cz and: |1/ =—yu/1(1 ”—f]:—/l —Cz
£ Y
i -4
c) | i c) |
X
In IRF(S"): Vi ==VZ I'=1" A =—q/l IRF(S")
0000000O0OO00OO00OO00O000000 . L .
o o ,0 o o o o :}ITOT=2/”LV 9 z
Al =+qll T I' = V. =+VZ ¥y
Y ) > i =+uZ {inlab frame IRF(S)}
Or
At restin IRF(S")
- In the rest frame IRF(S") of the test charge Qr, the total/net line charge density is: |4, = A, + 4’|,

In IRF(S":

' ' ' uv uv uy uy
Aror = A+ 4! =7u/1(1—c—2j—7u/1£1+c—2]ZM—M(C—ZJ—M—M(C—ZJ

ﬂ’?"OT = _27/142(1/‘_‘2)) = _2/1

C

(uv/cz)

) son

«/1—(u/c)2

= In IRF(S") {= rest frame of the test charge Or (which moves with velocity # =uz in IRF(S))}

3 anet —ve line charge density

Whereas in the lab frame IRF(S), 3 no net line charge, i.e.

ﬂ;or =-24

(uv/cz)
1—(u/c)2

m

ﬂ'TOT =0

in IRF(S) 1!

= The non-zero A, observed in IRF(S”) (= rest frame of Qr) is due to / arises from the

unequal Lorentz contraction of the +ve vs. —ve filamentary line charge densities, as observed
in IRF(S") (= rest frame of Q7).

= A current-carrying “wire” that is electrically neutral (A,,, =0) in one IRF(S) will NOT be so
in another IRF(S") !!! It will have a net electrical charge in IRF(S") # IRF(S) !!!

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Y Gl N
1-(u/c)
~ ' uv/c’
E(p)=52p=nt ()y
P TP I (ufe)

Thus an observer in the rest frame IRF(S”) of the test charge O “sees” a radial-inward (i.e.
attractive) electrostatic force acting on the test charge QOr (for Or > 0) of:

F’(p):QTE’(p):QTﬂb

n.b. Lorentz-invariant !!
Valid in any/all IRF’s

2me, p
Y
~ ' Aluv/c? Aluv/c?
Bue |F(p) Lo po M) 1 AHwld) 0
2re, p \3\72'80,0 1_(u/c)2 TE, P 1_(u/c)2 c

, A & Uy 1
E'(p)=- LY

72'23&,0 \/l—(u/c)2

A

Av u 5
w1 —(u/c)2

But: in lab IRF(S).

. In IRF(S") (= rest frame of Or):

1284 u

A

< n.b. points radially inward!

Therefore equivalently, the force

_ /’IOQTI

acting on Qr in its own rest frame IRF(S") is:

u ~

F'(p)=0,E'(p)=

2mp 1—(u/c)2

n.b. Qr

towards wire if Qr > 0.

is attracted Parallel currents

attract each other !!!

{The test charge Qr is
the 2" current 111}

This force is none other than the magnetic Lorentz force acting on Qr:

In IRF(S") (= rest frame of QOr):

F'(p)=0,(iixB(p))

Where # =+uz = velocity of

test charge Or in IRF(S)
wu 1 n ul . 1
p)==2 ¢ =y,——@| where: |y, =—F——
2mp Jl—(u/c)2 2mp 1—(u/c)2

If 3 a force F' in IRF(S’) (where Q7 is at rest), then there must also be a force F in the lab
frame IRF(S) {the laws of physics are the same in all inertial reference frames...}.

We can Lorentz transform the force in IRF(S") to obtain the force F in the lab frame IRF(S),
where we already know that A4,,, =0 in the lab frame IRF(S).

Again, since Qris at rest in IRF(S") and F'(p)~ p {i.e. L ii =uZ in IRF(S)}

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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: 1 ;
Then in IRF(S): |F, =— F/|and: |F; = F'|(= 0 here) | L and [[referto L and || to
Y u - the Lorentz boost direction
where: 7:: = ; = | Lorentz factor to transform from IRF(S") (Qr at rest) to lab frame
1— (u / c)z IRF(S). IRF(S) moves with velocity —# with respect to IRF(S").

1
Then in IRF(S): |F, =—F/ :\/1—(u/c)2Fl’ and: |F, = F/| (= 0 here)

Vu
= — 2 1 u .
F(p)=0,E(p) = I=tle) | -4 -
.. In the lab frame IRF(S): N
_ MO Radial £-field in
B 27p up= QTE('O) lab frame IRF(S)

In the lab frame IRF(S): The test charge Q7 is moving with velocity u =+uz in IRF(S)

An observer in lab frame IRF(S) “sees” a force F ( p) = QTE ( p) acting on moving test charge QOr.
The “effective” electric field in lab frame IRF(S) is:

I . _ I . . = - I .
E(p):—gljpup:ux{;”[p(o}:uxB(p) where: B(p)zél#pgo

From the perspective of a stationary observer in the lab frame IRF(S), where the net linear
charge density 4,,, =0, no true electrostatic field exists. However, a “magnetic”, velocity-

dependent attractive force F ( p) does indeed exist, acting radially inward for a +ve test charge

QOr, when it is moving with velocity # =+uz in IRF(S).

where: |1 =2v)

. In the lab frame IRE(S): |F (p)=0,E(p)=-0, *u Bfi}ﬁ =Q,iixB(p
7P

N—

Suppose the test charge Oy was instead moving with velocity in IRF(S). What
would the resulting force F ( p) be in the lab frame IRF(S)? One can explicitly go through all of

the above for this case; one will discover that one {simply} needs to change in all of the
above formulae...
x

In IRF(S): IRF(S")

<>

Atrestin IRF(S")

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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An observer in the rest frame IRF(S") of the test charge Or “sees” a net +ve line charge
(uv/ cz)
1-(u/ 0)2

uv . . . .
— when the test charge Q7 is moving with velocity

]=+22
C

density |47, = "‘27/1(

U =—uz|in the lab frame IRF(S).
A corresponding (radial-outward) electric field thus exists in IRF(S"): E '( p)

5l

B 2me, p

The observer in IRF(S’) also “sees” a radial-outward electrostatic force acting on the test charge

Qr of: 17“'(10):QTE'(10):QTZ/ZTOTID/3

o

Transforming these results to the lab frame IRF(S) in the same manner as we have already done
once {see above}, an observer in lab frame IRF(S) “sees” a net force F (p)=Q,E(p) acting on
the moving test charge Or. The “effective” electric field in the lab frame IRF(S) is:

- ul . o \wul | . = Y75 A
E = 9 = _0 = B : B = 9
(p) toup ux[Z;zp go} uxB(p)| where: |B(p) 27rp¢

which corresponds to a lab-frame force acting on the test charge Oy of:

ﬁ(p)=QTE(p)=QTﬁxB(p)=QTﬁxB‘OI @} where:

p

There are two limiting cases that are of special / particular interest to us:

a.) When the lab velocity of the test charge QOr is equal to the lab velocity [V, = +vZ|of

the +ve filamentary line charge density, i.e. = |V, =+vZ|, then the rest frame IRF(S") of

the test charge Oy coincides with the rest frame IRF(S) of the +ve filamentary line charge
density /10+ =+gq / ¢, |. Note that this corresponds to the true lab frame {i.e. the rest frame of

copper atoms} of a physical copper wire carrying a steady {conventional} current / !!!

b.) When the lab velocity of the test charge Oris equal to the lab velocity |V. = —vZ|of
the —ve filamentary line charge density, i.e. =|V_ =—vz|, then the rest frame IRF(S") of

the test charge Q7 coincides with the rest frame IRF(S_) of the —ve filamentary line charge
density |4, =—g//,|. Note that this corresponds to the rest frame of the electrons flowing in a

physical copper wire carrying a steady {conventional} current / !!!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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For situation a.), when the test charge Q7 's lab velocity =

the +ve filamentary line charge density in IRF(S), then an observer in IRF(S’) = IRF(S;) will
“see” a linear superposition of two electrostatic fields: a pure, radial-outward electrostatic field

E"(; ( p) associated with the stationary/non-moving +ve filamentary line charge density

/10+ =+4 =+Q/€0

v, =+vz|lab velocity of

and a {lab velocity-dependent} radial-inward electric field Ev' ( p) {i.e. an

azimuthal magnetic field} associated with the [v_ = —2v/ (1 +p 2) left-moving —ve filamentary
line charge density of |4’ =y'4 = —}/(1 + ) A=—y° (1 + ) Ao, which in turn corresponds to a

filamentary line current of

=2 =+ 71

8 ﬂ}[ZV/M} =+2)v =+2y° AV

Thus in IRF(S’) = IRF(S,) with =y, =2 |
N i . A 1+p°)4 1+ p%)A
Ej(p)=+=—"" and: |E. (p) = p= ( ) p=- ( ) k
2re, p 2re, p 2re, p 2re, p
The net/total electrostatic field observed in IRF(S’) = IRF(S}) is then:
2 2 2 2
N b s V()4 A (48]
E; =E (p)+E (p)=+—2—p = %
ror ()= Es (p)+ £ (p) 27e, p 27e, p P 27e, p P
(=) PBA - PBA A P 27 B
= pP= P pP= P
2re, p 2re, p 2re, p 2re, p 2re,p

Notice the (amazing!) partial cancellation of the pure radial-outward electric field

E(; ( p) (due to the static +ve filamentary line charge density) with a portion of the velocity-

dependent radial inward electric field EV' ( p) (due to the —ve left-moving filamentary line current

density) that is associated with the terms in the numerator of this equation:

1

1)1 817N =1

\1\_182"'\\ 2 2 ﬂz 2 02 2 02 2 02 2 02
= —|[— = - - = - :—2

[ s Y y e A P

’ 2 2 2
The net electric field is thus: E'(p)= o _p= Mﬂl A }/Vj, P
2re, p \Xﬂg p E, P me,cop

Thus an observer in the rest frame IRF(S’) = IRF(S}) of the test charge Qr/ rest frame of the
+ve filamentary line charge density “sees” a radial-inward/attractive electrostatic force (for Oy >
0) acting on the test charge Qr of:

i,
c2 Oﬂ()

But:

18  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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- v )
- InIRF(S) = IRF(S,): |E'(p)=—-2L"" p| But: [T=24v]in the lab IRF(S).
P

- I . . . .
- InIRF(S") =IRF(S,): |E'(p)= —'Lzl”—}/vp < n.b. points radially inward!
P

Therefore equivalently, the force F '( p) = QTE ’( p) acting on Qr in its own rest frame IRF(S") is:

Parallel currents

. B =, 3 /JOQT}/] R n.b. Qr is attracted attract each other !!!
F (p) =0, F (p) =——"=——VP| < | wardswireif Q:>0. {The test charge Qr is
2mp E— the 2™ current 11}

Again, this force is none other than the magnetic Lorentz force acting on Qr:

Where ‘IZ = +u2‘ = ‘\7 = +V2| = velocity of test charge
Or and +ve filamentary line charge density in IRF(S)

In IRF(S") = IRF(S.): |[F'(p) = O, (\7>< B'( p))

E'(p):’u"—ﬂ D= ’u—”lé) where:

1 1
o=y V= =
2xp=-p} 2mp ~ " 27p V-8 Ji=(v/ey

If 3 a force F' in IRF(S’) = IRF(S;) (where Or and +ve filamentary line charge density are at

rest), then there must also be a force F in the lab frame IRF(S) {the laws of physics are the same
in all inertial reference frames...}.

We again Lorentz transform the force F"in IRF(S’) = IRF(S.) to obtain the force F in the lab
frame IRF(S), where we already know that A4,,, =0 in the lab frame IRF(S). Again, since QOr s at

rest in IRF(S") and F'(p)~ p {i.e. L ii =uz in IRF(S)}

: 1 ’ ’
Then in IRF(S): |F, =— F/|and:|F, = F'| (=0 here) | L and [[referto L and || to
4 i - the Lorentz boost direction
where: 7/' = ; =y|= Lorentz factor to transform from IRF(S”) (QOr at rest) to lab frame
1— (v/ C)z IRF(S). IRF(S) moves with velocity —2i with respect to IRF(S").

1
Then in IRE(S): |F, =~ F/ =/1-(v/c)'F|| and: |F, = F| (= 0 here)
y

. BN Bl ML A Radial E-field in
~. In the lab frame IRF(S): |F (p) = O;E(p) = 275 VP || b frame IRF(S)

In the lab frame IRF(S): The test charge Q7 is moving with velocity ‘I:i =+uz|= ‘\7 = +v2‘ in IRF(S)

An observer in lab frame IRF(S) “sees” a force | F ( p) = QTE ( p) acting on moving test charge QOr.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 19
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The “effective” electric field seen by a test charge Or moving with velocity ‘ﬁ =
in the lab frame IRF(S) is:

E(p)=—%\/ﬁ=\7x{§;{)(p}:ﬁ xB(p)| where: B(p):%@ and: |7 =2Av|.

From the perspective of a stationary observer in the lab frame IRF(S), where the net linear
charge density 4,,, =0, no true electrostatic field exists. However, a “magnetic”, velocity-

dependent attractive force F ( p) does indeed exist, acting radially inward for a +ve test charge

Or, when it is moving with velocity i = +uZ|= |V = +vZ|in IRF(S).

where: [/ =24v]

\—/

. In the lab frame IRF(S): F(p)=QTE( ) QT*\{QJ"I}) 0,V x E(
P

For situation b.), when the test charge Or lab velocity M =|v_ =—vz|lab velocity of the

—ve filamentary line charge density in IRF(S), then an observer in IRF(S’) = IRF(S_) will “see” a
linear superposition of two electrostatic fields: a pure, radial-inward electrostatic field E(; ( p)

associated with the stationary/non-moving —ve filamentary line charge density
A =—4 =—q/l,|and a {lab velocity-dependent} radial-outward electric field E' (p) {ie.an

azimuthal magnetic field} associated with the [v| = +2v/ (1 + 4 2) right-moving +ve filamentary

line charge density of (A =74, = +)/(1 + )/1 =+y° (1 + p? )/10 , which in turn corresponds to a

filamentary line current of |1} = AV, = +[ 7 (T8 /1} [2\// M} = +2yAv = +2y° AV

Thus in IRF(S’) = IRF(S_) with =5 =2

~ A B, P C i VA B S VA
Ei —_ 0 : E! — + — —
(p) p| and: |E(p) 27, p p=t 27e, p p=r 27, p

2me, p

The net/total electrostatic field observed in IRF(S”) = IRF(S.) is then:

Yo PE)A L A7)

E! =E/(p)+E (p)=- + =
tor (P)=Es(P)+E/(P) e s P 2
2
(i-r )ﬂomfﬂzﬂobz A S
2re, p 2re, p 2re, p 2re, p 2re, p

Notice again the (amazing!) partial cancellation of the pure radial-outward electric field
E(; ( p) (due to the static —ve filamentary line charge density) with a portion of the velocity-

dependent radial inward electric field E! (o) (due to the +ve right-moving filamentary line

current density) that is associated with the terms in the numerator of this equation:
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_1+72(1+ﬂ2)=—1+(72+}/2ﬂ2)=—(1—}/2)+]/2,6’2 ==( _1_1ﬂ2j+72ﬂ2
=—[%]+72ﬂ2=+1_ﬂﬂ2+}/2,52=+72,52+72ﬂ2=+272ﬂ2

T ; A 22« A 2&& A 22« A
The net electric field is thus: E'(p)zﬂp—+\xyﬂ p:+7ﬂ AR

2, p’ Xme,p e, p me,c’ p

Thus an observer in the rest frame IRF(S") = IRF(S-) of the test charge Q7 / rest frame of the
—ve filamentary line charge density “sees” a radial-outward/repulsive electrostatic force (for Oy >
0) acting on the test charge Q7 of:

2
A . 1
Al p| But: |5 =¢,4,

' 2
! ™ ~ 2/ A
Fl(p)=0E(p)=0, 222 p=+0, 2L -0, T2
2re, p E P we,cop c

o

- A 2 . .
- InIRF(S) = IRF(S.): |E'(p)=+22"" j| But: [I=24v]in the lab IRF(S).
P

- I . . .
- InIRF(S") = IRF(S.): |E'(p)= +MV/) < n.b. points radially outward!

Therefore equivalently, the force F '( ,0) = QTE '( p) acting on Qr in its own rest frame IRF(S") is:

Opposite currents

' ol H QT7/I A n.b. Qris repelled from repell each other !!!
r (p) = QTE (,0) =+ Vp| & (\?vTire ifQr >0. {The test charge Qr is
2mp the 2" current 111}

Again, this force is none other than the magnetic Lorentz force acting on QOr:

ol = D Where ‘ﬁ =—uz ‘ = ‘\7 =—VZ ‘ = velocity of test charge
RF =]IRF(S.): |F = x B
InIRF(SH=1 (S—) (p) QT (V (p)) Or and —ve filamentary line charge density in IRF(S)

E'(p)=vxB'(p) E'(p)z—ﬂ"ﬂ D= 'u—”]§5 where:
X

1 1
v V= =
2xp=—p) 2ap ~ " 27p V=8 Ji=(v/e)y

If 3 a force F' in IRF(S") = IRF(S_) (where Or and +ve filamentary line charge density are at

rest), then there must also be a force F in the lab frame IRF(S) {the laws of physics are the same
in all inertial reference frames...}.

We again Lorentz transform the force F'in IRF(S") = IRF(S.) to obtain the force F in the lab
frame IRF(S), where we already know that A4,,, =0 in the lab frame IRF(S). Again, since QOris at

rest in IRF(S") and F'(p)~ p {i.e. L ii =u in IRF(S)}
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1
Then in IRF(S): |F, =— F/|and: |F, = F;'| (= 0 here) L and || referto L and || to

/4 u - the Lorentz boost direction
where: ;/' = ; = y|= | Lorentz factor to transform from IRF(S") (Qr at rest) to lab frame
1— (v/ c)2 IRF(S). IRF(S) moves with velocity —# with respect to IRF(S").

Then in IRF(S): FlleJZ = J1-(v/c)'F|| and:|F, = F/|(= 0 here)
Y

. . _ L% Radial E-field in
.. In the lab frame IRF(S): F(p) = QTE(p) =+ 2 VPl b frame IRE(S)

In the lab frame IRF(S): The test charge Q7 is moving with velocity \ﬁ = —u2| = \17 = —vﬁ\ in IRF(S)

An observer in lab frame IRF(S) “sees” a force | F ( p) = QTE ( ,0) acting on moving test charge QOr.
The “effective” electric field in lab frame IRF(S) is:

E(p):+’u”1 v,b:ﬁx{’u”] @}zﬁxé(p) where: |B(p)= 'u"[(i) and: |1 =2v].
2mp 2mp 2mp

From the perspective of a stationary observer in the lab frame IRF(S), where the net linear
charge density 4,,, =0, no net electrostatic field exists. However, a “magnetic”, velocity-

dependent repulsive force F ( p) does indeed exist, acting radially outward for a +ve test charge

Or, when it is moving with velocity [i = —uz|=|V = —vZ|in IRF(S).

<. In the lab frame IRE(S): |F (p) = 0,E(p)=+0, *v{;(’l }5 =0,V x B(p)| where:
7

Before leaving this subject, we wish to point out some additional fascinating aspects of the
physics:

As mentioned above, situation a.) corresponds to the true lab frame of a physical wire
carrying steady {conventional} current / where the lattice of {e.g.} copper atoms of the physical
wire are at rest in IRF(S;), whereas situation b.) corresponds to the rest frame IRF(S-) of the drift
electrons in the physical wire. What we have been calling the “lab” frame IRF(S) is the inertial
reference frame which is intermediate/“splits-the-difference” between these two “extremes”,

with right- (left-) moving +ve (-ve) filamentary line charge densities A, (l_)moving with

velocities (in IRF(S)) of v, =+vZ (V. =—vZ) respectively.

22  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11

Fall Semester, 2011

Lect. Notes 18 Prof. Steven Errede

In situation a.), the rest frame IRF(S}) of the e.g. copper atoms of a physical filamentary wire,
an observer in IRF(S+) “sees” both a static, radial-outward electric field (due to the static +4,)

and a velocity-dependent radial-inward electric field (due to the moving A'). In IRF(S.):

] B 2 v (1+8°) 4 1
— ' Er — 0 N 2 — .
((P)+HE (p)=+ 27 p 27 p P M, e and:
_ /10 " }/2/10 A 7/2\}220 b /’L_’ :_}/(1+ﬂ2)/1
2 2 27e, ¢
ﬂ:c"op ”gop 72'806’ p m :_7/2 (1+ﬁ2)/10
(7 _l)ﬂ“o ~ Y 2) A T YA
A Y VX—O(EI_)(D I' =2V =+2ydv
2me, p 2mp 5
=2y Av=yl
= E(p) + VxB (p) [=2v=L]y

The EM field energy density, Poynting’s vector, linear momentum density and angular
momentum density as seen by an observer in IRF(S.) respectively are:

1 = =, 1 = . 4 422 0112 2

URFs,) (p) =580ES+ (/O)oE& (,0)+§BS+ (p)OB& (p) = 87/7[2‘ ,002 = 357[2102 Z_Z (Joules)
; 1 = B} (P-0)AL . . (P-4l )
S =—F; B =~ =———F"——72|(Watts/

IRF(SJ(IO) H, (o)~ > (p) 87’e,p’ ( /it(D) 8¢, p’ | (Watts/n)

2 '

- - y =1 A0

@ﬁzﬁ(&) (,0) = 80/'[0SIRF(S+) (,0) =—H, %Z (kg/mz-s)
2 ’ 2 '
- oL y -nAll y =141
fﬁzﬁg(&)(P)=P><Sﬂﬁzﬂg<s+>(/7)=ﬂo(8ﬂ—2)po(/7><iz)=+ﬂo(8ﬂ—2);(ﬂ (kg/m-s)
+¢

In situation b.), the rest frame IRF(S_) of the drift electrons in a physical filamentary wire, an
observer in IRF(S_) also “sees” both a static, radial-outward electric field (due to the static—A4,))

and a velocity-dependent radial-outward electric field (due to the moving A!). In IRF(S_):

E;OT (,0)

i} . AL P(1+B) A 1
— ! E’ J—— 0 — .
0 (,0)+ v(p) 272'80,0 + 27Z_gop luo 8002 and‘
I TP 4 PSR a. 5 A=+y(1+4%)2
2
27[250,0 2re, p 2re,cp with: =+72(1+,32)ﬂo
-1)4
:+u/5 + ;xi(%ﬁ)gg I' =2V =+2ydv
2me, p 2mp 5
=2y Ayv=yl
— E(p) + vxB(p) [=2mv=L]y
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The EM field energy density, Poynting’s vector, linear momentum density and angular
momentum density as seen by an observer in IRF(S-) respectively are:

2

s (P) =32 (VL ()45 B, (P)B. (o) =t e = ot
Swrs ) (P)= #Logé (p)x B (p)= %w = +%2 (Watts/m?)
Priis) (P)= &4, wics, (P) =+, %Z (kg/m’-s)
Yo,
Ik ) (P) = PxPises ) () = 1, %(ﬁi) =4, %cﬁ (kg/m-s)
5

We see that observers in IRF(S,) vs. IRF(S_) “see” the same energy densities. Observers in
IRF(Sy) vs. IRF(S.) “see” the respective magnitudes of Poynting’s vector, the EM linear
momentum and angular momentum densities as being the same, however the directions of these
3 vector quantities in IRF(S_) are opposite to what they are to an observer in IRF(S;) !!!

An observer in IRF(S;) “sees” that both the EM energy flow and EM linear momentum
density are pointing in the —z direction, which physically makes sense because the negative
electrons {moving in the —Z direction} are the only objects in motion in IRF(S;). Thus, an
observer in IRF(S:) concludes that the EM power/energy present in the EM fields associated with
the infinitely long pair of filamentary wires in IRF(S}) is supplied from the negative terminal of
the battery (or power supply) driving the circuit. In IRF(S}), an observer “sees” the EM field
angular momentum density pointing in the +¢ direction.

Contrast this with an observer in IRF(S-) who “sees” that both the EM energy flow and EM
linear momentum density are pointing in the +Z direction, which physically makes sense
because the positive-charged copper atoms {moving in the +Z direction} are the only objects in
motion in IRF(S-). Thus, an observer in IRF(S-) concludes that the EM power/energy present in
the EM fields associated with the infinitely long pair of filamentary wires in IRF(S_) is supplied
from the positive terminal of the battery (or power supply) driving the circuit. In IRF(S-), an
observer “sees” the EM field angular momentum density pointing in the —¢ direction.

Let’s now compare these two sets of results for IRF(S-) and IRF(S-) with those obtained in
our “original” rest frame, IRF(S), where both filamentary line current densities are in motion.

In our “original” lab frame IRF(S), the net line charge density is|4,,; =4, +4 =+41-4=0

where |1, =+1=+¢q/{ =+)4, v_ =—vz|, however the net

A =-A=—q/l==yl|and |V, =+VZ

> >

current in IRF(S) is non-zero: |1, = A, v, + A v = Av+Av =24y =2y v| flowing in the +Z -

direction. Thus, to an observer in IRF(S) there is no net electrostatic field, only a non-zero static
magnetic field.
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In IRF
= A . A Z I = A A . Z I
EJr(p): ks =+ = —70 pm Eﬁ(p): p:— p:— 7/0 p
2re, p 2re, p 2re, p 2re, p 2re, p 2re, p
The filamentary line currents in IRF(S) are: |/, = A, v, =+y4,v| and: |/ =A v =+y4v| thus:

and:

1 =1=1I

Lor =1 +1 =21=2v=2y4v|

The magnetic fields associated with the currents /, and / are equal, and both point in the +¢ -

direction: | B, (p):+/;"72¢ and: |B (p)=+§;; b
Then:
Eny” (p)=E. (p)+E (p)+7xB.(p)+VxB, (p)=vxBg, (p)
R
=0
-3 luoITOT A v s A v
o’ ﬂeoczp(zw) 7E,cp

Thus, an observer in IRF(S) “sees” a non-zero static magnetic field:

— — — I . ul . 2ul . 730 PO
BIRE(S) - B B _ M s B — L ZHL s Holror
or (P)=B.(p)+B_(p) 2 o P T e P 0 ?
which is equivalent to an electric field seen by a test charge Or moving with velocity v in IRF(S) of:
= — — — I v v
ERO(p)=vxB, (p)+vxB (p)=vxB =y x tetror Exp)=—
ToT (p) + (p) - (p) 0T (p) 27p @ 7. p ( (/’) e cp

A

which gives rise to an attractive, radial-inward force acting on the test charge QOr (for Or > 0) of:

5 5 Hlor ~

FZIRF(S) = QTﬁ X BTOT (p) = QTV 5
P

wor (P)=0rErgr™”

v?

T 2
necop

(2><(ﬁ)= 0

Av?

T 2
ne.cop

A

Thus, in IRF(S), even though there is no net 4, , a non-zero current /,,, = 2Av # 0 exists.

If Or>0and v=+vz {or Or<0and v =—vz } the {radial-inward} force acting on the test
charge Qris attractive — parallel currents attract!

If Or>0and v=—vz {or Or<0 and v =+vz } the {radial-outward} force acting on the test
charge Qris repulsive — opposite currents repell!
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It is also interesting to note that the two superimposed, oppositely-charged, counter-moving
filamentary line charge densities / line current densities are attracted to each other {parallel

currents attract!!!}, because in IRF(S) the force F, (p) (F‘_ ( p)) seen by {any! one of the

+ve (—ve) “test charges” +qr (—qr) associated with the moving positive (negative) filamentary
line charge density A, (A_) is, respectively:

\
~ .= wl . . v A Y/ AT
F (p)= B (p)= 0 - __
(p)=+ar7. B (p)=+ayv 27p (2x9) 27e,c’p (2x9) 27e,c’p T’f&iglcl);l?
And: >| inward
2 5« B ul . . W’ A A A ?:rlget;?l?
=— =+ 0 = = —
(P)==4;7-xB,(p)=+qv > - (£x9) 27 (£x9) 27
%
InIRF(S): V. =—v¢ A =-q/l [ =Av =+lvi=+[t lﬁ_ (p) T IRF(S)

000000000 00000
— 000000000000 00—

V=4 A =+q/l I =iv. =+Avi=+E

1E () #5 ’ 2

Since this mutually-attractive, radial-inward force between opposite-moving line charges 4, & 4.

exists in IRF(S), this must also be true in all other inertial reference frames, e.g. IRF(S;), IRF(S.), etc.
— the laws of physics are the same in all IRF’s... we leave this as an exercise for the interested reader!

Obviously, since we have infinite-length line charge densities 4, & 4_, the net attractive force in
each case is infinite, even for slightly transversely-displaced line charge densities.

In IRF(S), the EM field energy density is non-zero, finite positive (except at o =0):

1 rnet rnet | D
uﬁzAg(S) (p) = uf]{]é)(TS) (p) += uf]{]g(TS) (p) = Ego EIRF(S) (p)'EIRF(S) (,0) + gB;l({)FT(S) (p)'B;li)FT(S) (,0)
=0 =0 °
1 — — — — 1 r= - - -
:580 |:E+ (p)+E_ (p):|o|:E+ (p)+E_ (p):|+g|:B+ (p)+B_ (p):H:B+ (p)+B_ (p):l
1 — - 1 - -
=3¢, {E+2 (p)+2E, (p)E_(p)+E: (p)} +Z{Bf (p)+2B,(p)B_(p)+B (p)} (Joules)
1 1
=2 Bl (p)-2E2(p)+ E(p)} +Z{Bf (p)+2B(p)+B:(p)|
=0 ’ ~BE ()
— ﬂoI]%OT » — /12 ﬁ
87°p> " 2nte,p’ C’

with: |1, =21 =2Av =2y4v
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The net Poynting’s vector S, (£) . net EM field linear momentum density @pays, (£)and

net £M field angular momentum density 25%( 5, () as seen by an observer in IRF(S) are all zero,

because | Ejx s, (£) =0}

However, these net physical quantities are all zero because of the superposition principle —
each are sums of two counter-propagating contributions that cancel each other!

- 1 R 1 R

SIRF(S) (,0) = S;IE:(S) (/0) + S;l;:F(S) (,0) = /I_{E+ (p)x B (,0)} +,u_{E (p)x B, (P)}
’ ° (Watts/m®)
- AL o) (pxp)=r—L M sy
Ar’e, p’ Ar’e p’ Ar’e p’  Arle,p’
. G G Al
Thus, we explicitly see that: | Sy, (£) = =Siecs, (£) = —Wz .
S_éﬁzA;(S) (,0) = 5oﬂo§1RF(S) (/0) = 5,;#051;(5) (/0) + ‘90/“103;1;;(5) (P)
Consequently/similarly: . . u Al . p Al (kg/m?*-s)
= re(s) (,0) T £recs) (,0) =+ 47[2/02 zZ= 47[2p2 z=0
.. - . uAl
Thus, we explicitly see that: |@rcs) (£) = = Precs) (£) = _Wz
zgiﬁl/-{(S) (p) =px @ﬁ%m (,0) = px SB;R_F(S) (,0) + px @I_I:Fm (,0) = ZE{_F(S) (,0) + zl_l:F(S) (,0)
Similarly: Al .. Al .. . Al Al . (kg/m-s)
=+ (px2) T (pxE) = L g =0
47" p 47" p 47" p 47" p
.. - 4 ~ AL .
Thus, we explicitly see that: | {15z s, (£) = —Cies, (£) =+ A 9|
Tp

Thus, an observer in IRF(S) “sees” two counter-propagating fluxes of EM energy, linear
momentum density and angular momentum density, which respectively cancel each other out
such that the net fluxes of EM energy, linear momentum density and angular momentum density
are all zero in IRF(S)!

An observer in IRF(S) concludes that the EM power/energy present in the EM fields
associated with the infinitely long pair of oppositely-charged, opposite-moving filamentary line
charge densities 4, & 4 in IRF(S) is supplied equally from both the positive and negative

terminals of the battery (or power supply) driving the circuit!

Thus, we finally understand how electrical power is transported down a physical wire — it is
a manifestly relativistic effect; electrical power in a wire is transported by the combination of
the radial £-field and the azimuthal B-field associated with a current flowing in the wire!
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Because we have an infinitely-long filamentary 1-D physical wire (i.e. zero radius), consisting
of an infinitely long pair of oppositely-charged, opposite-moving filamentary line charge

densities 4, & 4 , in any IRF the EM field energy \U,, = J‘ i Uew ( p)dz' = oo|. Similarly, the EM

space

power transported down such a wire | Py, = | S(p)-da, =»|, the EM ficld linear momentum
space

— —

Doy = I ui Py (p)dr =] and EM field angular momentum | £;,, = I ar Ly (p)dT =] except

space space

in IRF(S), where the latter two quantities are zero.

For a real, finite-length physical wire of finite radius a, these four quantities are all finite, as
long as A, & A_are both finite and v, & v_are both <c.

Using the superposition principle, a real, finite-length physical wire of finite radius a can be
thought of as a collection of 2N parallel filamentary “infinitesimal” 1-D line charge densities. In
IRF(S), the N right-moving A, lines represent 1-D parallel strings of {e.g. copper} atoms and the

N left-moving A lines represent 1-D parallel strings of drift electrons, as shown schematically in
the figure below:

In IRF X
/ goooooooooooio \
IRF
l A
- 000000000000 QO0 A, 4 z

S 00/00000000O0O0 00 V.=t
B qoBooooooooooos /
Even though the net volume charge density in IRF(S) for a real physical wire of radius a is
Pror=pP.+p. =NA, /A +NA |A =NA/A, —NA/ A, =0| while there is no net pure
electrostatic field in IRF(S) (the net charge on the wire is zero), there is again a non-zero

azimuthal magnetic field Bjy "’ (p), which has two contributions — one from the N right-

moving A, lines (copper atoms) and another, equal contribution from the N left-moving A lines
(drift electrons). For an infinitely long real physical wire of radius a, we know that:

7. 1.
By (p<a)= /;ﬂ f ¢| and: B}Ié?(s’(pZa)Z;ﬁpqo

An interesting phenomenon occurs in a real physical wire, due to the fact that parallel currents

attract each other. The radial-inward Lorentz force | F ( p) =—q;V_X li ( p) acting on the “gas”

of left-moving drift electrons exerts a radial-inward pressure on the “free” electron gas, and

compresses it (slightly)! The radial-inward Lorentz force |F, () =+¢,V, x B_( p)| acting on the

3-D lattice of right-moving copper atoms exerts a radial-inward pressure on the copper atoms,
but because they are bound together in the 3-D lattice, they undergo very little compression, if
any!
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This manifest asymmetry between the “free” electron “gas” and the 3-D lattice of copper
atoms thus gives rise to a {slight} differential compression between electrons and copper atoms
—resulting in a {very thin} “skin” of positive charge {of thickness o } on the surface of the wire
{n.b. the skin thickness o is much thinner than the diameter of an atom, for “normal”/everyday
currents!}. Inside this “skin” of positive charge on the outer surface of the wire, there exists a

slightly higher negative volume charge density p_ ( p<a—o ) than positive volume charge

density p, (p <a—5). The net charge on the wire still remains zero.

The compression of the “free” electron “gas” is only a slight, but non-negligible amount.

The radial-inward Lorentz force |F (p)=—¢,V_x B, (p)|is countered by the repulsive, radial-

outward force associated with (local) electric charge neutrality of electrons & copper atoms, and
also by a quantum effect — since electrons are fermions {no two electrons can simultaneously
occupy the same quantum state}, there also exists a radial-outward quantum pressure on the
electrons preventing them from becoming too dense!

From the above discussion(s), while it can be seen that gaining an insight of the underlying
physics associated with electrical power transport, etc. in a wire via use of special relativity may
be somewhat more tedious than using the “standard” E&M approach, special relativity makes it
profoundly clear what the underlying physics actually is, whereas the “standard” E&M approach
does not do a very good job in elucidating the actual physics...
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