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LECTURE NOTES 6.5

Reflection & Transmission of Monochromatic Plane EM Waves at Oblique Incidence at a
Boundary Between Two Linear / Homogeneous / Isotropic Media

Suppose we have a monochromatic plane EM wave incident at an oblique angle 6, on a

boundary between two linear/homogeneous/isotropic media, defined with respect to the normal
to the interface, as shown in the figure below:
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The incident EM wave is:  |E,, (F.t)= E ‘ei(lg"”“';fwt) and l:i.nc (F.t)= 1 (X E:inc (7,1)
v
The reflected EM wave is: Z??rgﬂ (F,t)= Eo,, el §,~eﬂ (7,1)= 1 ]éreﬂ x :reﬂ (7,1)
efl g Vl g
The transmitted EM wave is: l?f,,,ans (F,t)= ]E:?om 71| g f}tmns (F,t)= 1 (X :mms (7,1)
2

Note that all three EM waves have the same frequency, f = w/2x

This is due to the fact that at the microscopic level, the energy of real photon does not change
in a medium, i.e. £ = E'’ = E, and since E, = hf, for real photons, then hf,™ = hf" = hf,.

Thus the frequency of the photon does nof change in a medium, i.e. f“ = fy’""d =/,

4
{n.b. An experimental fact: colors of objects do not change when placed & viewed e.g. underwater}.

However, the momentum of a real photon does change in a medium! This is because the
momentum of the real photon in a medium depends on index of refraction of that medium

: : med __ vac _
n,. viathe relation p’ =n, ,p,* where n, , = c/ Vrop

{inversely} on the speed of propagation in the medium!

med

. Thus the photon momentum depends
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From the DeBroglie relation between momentum and wavelength of the real photon p, = h/ A,

we see that p™ =1, P =y (/47 )= h(myey | A7) =R/ 27" and hence 27 = 2 [n

V4 med *

Thus, for macroscopic EM waves propagating in the two linear/homogeneous/isotropic media
(1) and (2), we have f, = f, = f,andsince @ =27 f then o, =0, =w.

But since: w =kv then: o, =w, =0 = kv, =ky, thus: o=k, v =k v =k, v,

trans

kinc = 27[/21 ; kreﬂ = ];rezﬂ = 27[//11 5 ktrans =
And: o= =w,=27(v,/A)=27(v,/1,)
m: o= 27[fi = 272—]; = 27[_](‘2 = fi = _f2 = f;nc = f;eﬂ = f;mns

tﬁnc tﬁeﬂ tf;mns
Then: |4, = 4,/n, A, =4, /n,| where: |4, = vacuum length =c¢/f

N—OW: k = lgtrans

mc

=24/,

And: |v, =c¢/n, v, =c/n, and: |k, = vacuum wavenumber =27/4 =w/c

Thus: |k, =nk k, =n,k

o

From:\w=k, v, =k v, =k, .V,

mc trans

We see that: |k, =k, =k = (ﬁj ks = [V—ZJ k, = (ij ks = (ﬂJ k,| Since |v, =c/n, i=1,2
V. n

| Vi 2

The total (i.e. combined) EM fields in medium 1):

Eyy (Fot)= B, (1) + By (Fot)| and |By,, (Fot)= B, (Fst)+ B, (7o1)

—

U

—

E‘Tot2 (?’t) = Etrans (?’t) and BTOIg (?’t) = Btrans (F’ t)

1)

using the boundary conditions BC1) — BC4) at z=0 (in the x-y plane).

At z =0, these four boundary conditions generically are of the form:

(w)ei(lgmci—a)t) n (w) ei(l;,eﬂ-f’—wt) _ (w) ei(lz,mm-?—wt)

These boundary conditions must hold for all (x,y) on the interface at z = 0, and also must hold for
arbitrary times/any/all times, ¢. The above relation is already satisfied for arbitrary time, ¢, since

wt

the factor ¢ is common to all terms.

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, the following generic relation must hold for any/all (x,y) on interface at at z=0:

(w)ei(Ei”“' ) +(w) ( » r) (w) ei(/?,,mf)

When z =0 (i.e. at the interface in the x-y plane) we must have: k,_«F = ];reﬂ r=k,, T
More explicitly: &, x+k,. v+ k. Z =k, x+k, , y+ y+k, .
inc, c. refl, refl, trans, ti ans,,
& & i

=

= inc, refl, trans,

Kie X+ koo Y=k, x+k, 5 y=k Kyus ¥ @ z = 0 in the x-y plane.

The above relation can only hold for arbitrary (x, y, z=0) iff (=ifand only if):

kmc X = kleﬂ X = ktmns X = k kleﬂ = ktransx
@: kmc Y= kreﬂ Y= ktrans Y = kmc - kreﬂ_l, = ktrans_l,

Since this problem has rotational invariance (i.e. rotational symmetry) about the Z -axis,

(see above pix on p. 1), without any loss of generality we can e.g. choose k . to lie entirely
within the x-z plane, as shown in the figure below...

=0 and thus: k =k =k

refl, — "Virans, *

Then: k,, =k, =k

l‘rlln&'

i.e. the transverse components of k. .k ..k, are all equal and point in the {same} +% direction.

inc® Vrefl > Vtrans

The First Law of Geometrical Optics (All wavevectors k lie in a common plane):

The above result tells us that the three wave vectors k. .k, and k. ALL LIE IN A PLANE

inc o Vrefl trans

known as the plane of incidence (here, the x-z plane) as shown in the figure below. Note that
the plane of incidence also includes the unit normal to the interface, {here} n,, =+Z -axis.

The x-z Plane of Incidence:

P

intf
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The Second Law of Geometrical Optics (Law of Reflection):

From the above figure, we see that:

k,, —k sind. | = |k

inc inc refl, — T'r trans, trans trans

Kgsin 0,41 = k... =k,,,sino,

But: |k, =k, =k| = |sin6, =sing,,

= Angle of Incidence = Angle of Reflection |6, =6.,,| Law of Reflection!

The Third Law of Geometrical Optics (Law of Refraction — Snell’s Law):

For the transmitted angle, 6,  we see that: |k, sin@, =k, sin@

trans mc trans trans

In medium 1): |k, =k, = @/v, =nw/c=nk,

where |k, = vacuum wave number =27/, | and |4, = vacuum wave length

In medium 2): |k,,,, =k, = ®/v, =n,0/c =nyk,

Thus: k,.sm@, =k, snm6 | = |ksinb, =k,sinf,
But since: k,.=k =nk,|and|k,, =k, =nk,
Law of Refraction
Then: boSin Gy =k Sin6, | = |14 510 O = 510 Oy (Snell’s Law)
. . Sln etnms _ nl
Which can also be written as: |——— =—
Sln emc n2
Since 6, refers to medium 2) and 6, refers to medium 1) we can also write Snell’s Law as:
: , sind, n
n, sin6, = n, sin 6, or: |—==—+
X X sinf, n,

(incident) (transmitted)

Because of the above three laws of geometrical optics, we see that:

=k

z=0 reﬂ

=k

r ans

._o | everywhere on the interface at z =0 {in the x-y plane}

inc

i(l;,eﬂ-f’—(ut)

i(l;l-,w-F—a)t)
2:0:

ei(/;,m,,A -V—a)t)

Thus we see that: |e ._o | everywhere on the interface at

z=0

z =0 {in the x-y plane}, valid also for arbitrary/any/all time(s) ¢, since @ is the same in either
medium (1 or 2).

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Thus, the boundary conditions BC 1) — BC 4) for a monochromatic plane EM wave incident on
an interface at an oblique angle 8. between two linear/homogeneous/isotropic media become:

mc

BC 1): Normal (i.e. z-) component of D continuous at z = 0 (no free surface charges):

inc, 0, refl, ozramz

6 (B, +E,, )=k

{using D= gE}

BC 2): Tangential (i.e. x-, y-) components of E continuous at z = 0:

(Eoim‘x'y + Eore/lxhl, ) - Eozmrmx’y

BC 3): Normal (i.e. z-) component of B continuous at z = 0:

(é +B, ) =B

Oi»rc: Otrans, z

BC 4): Tangential (i.e. x-, y-) components of H continuous at z = 0 (no free surface currents):

1/~ ~ 1 -
—(Bo +B, )=—Bor
m incy refl e

Note that in each of the above, we also have the relation B =—kxE

For a monochromatic plane EM wave incident on a boundary between two linear / homogeneous
/ isotropic media at an oblique angle of incidence, there are three possible polarization cases to
consider:
Case I): E,

mc

{B

inc

1 plane of incidence — known as Transverse Electric (TE) Polarization

|| plane of incidence}

Case II): E, || plane of incidence — known as Transverse Magnetic (TM) Polarization

{B 1 plane of incidence}

mc

Case III): The most general case: £, is neither L nor || to the plane of incidence.

{= B, _is neither || nor L to the plane of incidence}

i.e. Case Il is a linear vector combination of Cases I) and II) above!

Polarization for general case: |7,,, =COS@X +sin@y =cos@ €, +sing g

= Simply decompose the linear polarization components of the general-case EM
plane wave into its X =€ and y =& vector components —i.e. the E-field components

perpendicular to and parallel to the plane of incidence, TE polarization and TM
polarization respectively. Solve separately, then combine vectorially...

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 6.5 Prof. Steven Errede

Case 1): Electric Field Vectors Perpendicular to the Plane of Incidence:
Transverse Electric (TE) Polarization

A monochromatic plane EM wave is incident {from the left} on a boundary located at z =0 in
the x-y plane between two linear / homogeneous / isotropic media at an oblique angle of

incidence. The polarization of the incident EM wave (i.e. the orientation of E, _is transverse

(i.e. L) to the plane of incidence {= the x-z plane containing the three wavevectors k k. ..k

inc® "Vrefl > trans

and the unit normal to the boundary/interface, n = +z }), as shown in the figure below:

/‘-‘
%
meorum @ A wEDIUM S
Ek Ct"v;i,ﬁnfl ff/ G,\?_r A
(:I' C/ /! "U;‘:G/Tl:_ i

3
ﬁ: witd nwmo.ﬂ
Ha \'.dcf‘fm,
—
EIIH(.
ovﬁof
pede
ONSTRRTACK
Bourpadf

Note that all three E -field vectors are || § {i.e. point out of the page} and thus all three

E -field vectors are || to the boundary/interface at z = 0, which lies in the x-y plane.

Since the three B -field vectors are related to their respective E -field vectors by the right-
hand rule cross-product relation B = lvlg x E then we see that all three B -field vectors lie in the
x-z plane {the plane of incidence}, as shown in the figure above.

The four boundary conditions on the {complex} £ - and B -fields on the boundary at z = 0 are:

BC 1) Normal (i.e. z-) component of D continuous at z = 0 (no free surface charges)

=0 =0 =0
& [ % + % ] =&, 5/ = {see/refer to above figure}

BC 2) Tangential (i.e. x-, y-) components of £ continuous at z = 0:

) - Eofransy = E"inc + E"mﬂ

inc, y

=E oy

ans

{n.b. AILE_* = 0 for TE Polarization}

BC 3) Normal (i.e. z-) component of B continuous at z = 0:

(B, +5, )-8,

ns,

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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BC 3) {continued}: n.b. Since only the z- component s of B's on either side of interface are
involved here, and all unit wavevectors £, k and k

inc? refl trans

lie in the plane of incidence (x-y

plane) and all E -field vectors are || to the + direction for 7E polarization, then because of the

cross-product nature of B= %Ig x E , we only need the x-components of the unit wavevectors, i.e.:

>
>

inc inc + kinC: =sin emc‘x + cos emcz
+k

X

>
>

o P See/refer to
=sinf,,x —cosf,,z above figure

refl refl, refl.
=k

transx

+k

trans

bt

x+cos@

tran?

=sin@

trans trans

>

(B, 2+B, 2)=B, 2 l(lé B, §+k, xE y)zi(kxEy) (ix)=+2)

inc, Orans, v Oinc,, Orefl, v
1 2

Otrans

= l(15770 sind, {xxy}+E sing,, {* xj/}) =i(E sind,,,. {)ij/})

- 1 -~
=—(E0_ sin 6, +E serﬂ) —FE, sind
v

inc Otrans trans

2

BC 4) Tangential (i.e. x-, y-) components of A continuous at z = 0 (no free surface currents):

n.b. Same reasoning as in BC3 above, but here we only need the z-components of the unit

wavevectors, i.e.:

1= . = 1~ , . )
_(Bo,-,, +B, , ) =—2B8, {n.b. All B> = Ofor TE Polarization — see above pix}
Hy N - My
1 (» ~ A ~ 1 [~ =, N
= _(kinc XEO y+kreﬂ XE()), y):_(ktrans XEo y) {ny:—X}
/lel z incy, Itz refl, /szz z trans,
1L (£, cosf, (23} +E, , cosO,, {~2x3})=——(E, _cosd, {2x5})
J7A ' HV,
| R 1 =~
= —(Eo v(—cos@mc)+E coerQﬂ)x:—Eo (-cosb,,, )%
#] Vl inc c ﬂz vz trans
Thus we obtain: E~0m + EM = ~Om (from BC 2))

thl

. . Z >
Using the Law of Reflection 8, =6, onthe BC 3) result: |E, +E, = ( M sm%J E,
refl V2 sin trans

mc

Using Snell’s Law / Law of Refraction:

n
n, sin @, n, sin @, = |[—Lsin 8 ——sm¢9

inc trans inc trans

c c Vv, v,

) 1 .
= |—sinf,, =—sinf,

trans

v, siné

. . 1 trans _

or: ,sing, =v,sind,_ | or: =
v, sind,

mc

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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~ ~ siné, ~ ~ . .
“|E, +E, = ﬁ-.—”“’” E, =E | ie BC3)gives the same info as BC 1) !
refl Vz sin 9 trans trans

inc
mc

. . 0 -
From the BC 4) result: (E -E, ) = [ﬂ%J E,
refl ﬂz vz CcOS A trans

mc

Thus, {again} from BC 1) — BC 4) we actually have only two independent relations for the
case of transverse electric (7F) polarization:

l) Eoim‘ + Eof‘eﬂ = ~0trans
” » lulvl Cos gtrans ”
2) ( Ojne - Eorp/l ) =\ T, Eolnms
lu2v2 cos einc
0
Now: |f= [ﬂJ and we define: |« = [Mj {n.b. Both a.and > 0}
/u2V2 cos Hinc

Then eqn. 2) above becomes: E —E%ﬂ =aff E%m and eqn. 1) is: |E, +E%

9; N

- Eolruns

trans Otrans

_ _ ~ 7\ .
Add eqn’s 1) +2) to get: 2E, =(1+ap)E, | = |E =( JEO_ eqn. (1+2)

Otrans Or(’ﬂ

_ _ . 1— .
Subtract eqn’s 2) — 1) to get: |2E, =(1-ap)E, | = |E =( aﬂjE eqn. (2-1)

2

I 1 B I o 2 ~ Eo 1 — o 2
Thus: |E, = ap E, land |E, = E, |or:|="= of and | === =
refl l+a ﬂ inc vans l+a ,B inc E [ l+a ﬂ

~ 1- 2 ~ 1- ~
Plug eqn. (2+1) into eqn. (2-1) to obtain: |E, :( ap ( JEO,-W =[ a'BJE%

n.b. since o and § > 0, then ( j> 0 and hence the transmitted wave is always in-phase with

1+ap
the incident wave for TE polarization.

The real / physical electric field amplitudes for transverse electric (7F) polarization are thus:

The Fresnel Equations for £ || to Interface
=E 1 Plane of Incidence = Transverse Electric (TE) Polarization

-« 2 cosd v
E" = 1=ap E"|and |EI¥ =| —— |E”" | with|a=| —2= |land |B = An
refl l+af ) brans l+apf ) ™ cos . LV,

mc

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Now because the incident monochromatic plane EM wave strikes the interface (lying in the x-y

7

inc?

plane) at an oblique angle

but instead is actually:

\S

\S

cosO

mc

Z = unit normal
to the interface

Thus, the time-averaged incident intensity (aka irradiance) for an oblique angle of incidence is:

5. )

(5. )

cos O,

cos@

me

=|(8. (1))

me

Note also that because the incident EM wave is now propagating in a physical linear /
homogeneous / isotropic medium that Poynting’s vector becomes:

the instantaneous power per unit area striking the interface is not

S;inc = L( _)inc Xéinc) = L[Eo .);X{l(k’\inc XE() .);)}] = LE{? {j}x(lginc Xj})} = L 3 inc
H H Vi by L7
M: {j\;x(k’\inc X_)A/)} = Alnc (-j}.j})_j}( A Ainc ) m —Since: - 1/gllul
H_/
=0
N ALY X‘911521€ =& E] k| and (S, (7 r)>—l‘. (7.1)
inc Vl,ul Ojpe ' INC ( lﬂl) 0y inC \\ Oine 1 0y inC inc 2 inc
Thus, for TF polarization:
17 = KS’Z]?( )> (%vlgl (ETE )2j ]2[”6-2‘ = (%vlgl (EOTE )2jcos 0, = ;glvl (EZE ) cosd,
Likewise, the reflected intensity is: |/, = KS};?, (¢ )> 0,4 = 0,,,by the Law of ReﬂectiS
.. 1 1 1
Thus, for TE polarization: If;fl = ‘<Sf§z( )> (Evl (ETE ) 1 COS ere}z : —&, (ETE ) cosd,
Likewise, the transmitted intensity is: |/, = ‘<§£fm (t)>-2 and using: |v; =1/¢&,4,
.. R 1 2 1
Thus: for TE pOlarlZﬂthIl Ity;fns - ‘<St35m ( )> Z‘ = (EV282 (EZ:inS ) jCOS etrans = 582‘)2 (EZ:E,,S ) cos Htrans

Thus the reflection and transmission coefficients for transverse electric (7F) polarization

(with all E -field vectors oriented L to the plane of incidence) are:

*ere/l
1 TE 2 2 1 TE
TE  —&V (E ) cos@ TE TE &V (E ) cosd TE
I refl 2 i Or tne _ E”r@ﬂ T — Ilm’ls _ 22 Oirans frans ( 82 V2 j ( COS Htrans ] Eutmn.\'
TE — 2 - TE TE — TE TE
I[nc 1‘91"'1 (EUTE ) cos einc Eom Ilnc 151‘;1 (EZE ) coS emc glvl Cos emc Eo,-m,
2 inc 2 in

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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But: ﬂ: lulvl _ 82V2 d o= Cosetmns . T _aﬂ E’Z;ins
but: = 1Ly, v, and: | cosd e ETE

inc Oine

ETE 1 _ aﬂ ETE 2
And from above (p. 8): EOT; = (1 N aﬂ) and ( EZTE J = (1 7,
ETE 2 1 aﬂ 2 ETE 2 4aﬁ
Th N R = ﬂ = — . T = Otrans —
us TE E(gi (1+aﬂj M TE ﬂ EOTW (l+aﬂ)2

Explicit Check: DoesR,, +T,, =17 (i.e. is EM wave energy conserved?)

(1—aB)  _4ap _1-2ap+a’f +dap_1+2af+a’f_ (1+apf

- 1 Yes!!!
(1+ap)  (1+ap) (1+ ap) (1+af) (i ap) Yes

Note that at normal incidence: |8

inc

Then: az(cosﬁmmj:coso_l =

cosé. cos0

mc

=0| = |6,,=0|and |6,

trans

=0]| {See/refer to above figure}

2
- 4
Thus at normal incidence: |R;; ‘QW:O = (—'BJ and |17 ‘g,,m_:o -4

1+ (1+8)

Note that these results for R, ‘g_ o and T, ‘g_ _, are the same/identical to those we obtained

previously for a monochromatic plane EM wave at normal incidence on interface!!!

6,

trans

In the special/limiting-case situation of normal incidence, where |6, =6

inc refl =

_ =0}, the

plane of incidence collapses into a line (the Z axis), the problem then has rotational invariance
about the Z axis, and thus for normal incidence the polarization direction associated with the

spatial orientation of EMC no longer has any physical consequence(s).

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Case I1): Electric Field Vectors Parallel to the Plane of Incidence:
Transverse Magnetic (TM) Polarization

A monochromatic plane EM wave is incident {from the left} on a boundary located at z =0 in
the x-y plane between two linear / homogeneous / isotropic media at an oblique angle of

incidence. The polarization of the incident EM wave (i.e. the orientation of E, is now parallel

(i.e. ||) to the plane of incidence {= the x-z plane containing the three wavevectors lginc,lgreﬂ, K pans
and the unit normal to the boundary/interface, n =+Z }), as shown in the figure below:
mepun @D R WEDUMED)
— €y
'\fzf‘ml =
"qvw«s
" & vormol
(ot of page) £ ¥ T Reracn

",

-
-~

:Be-'
ml;:f ) THTE n.mcg/
Purje_ BauNbARY

In this situation, all three E -field vectors lie in the plane of incidence.

Since the three B -field vectors are related to their respective E -field vectors by the right-
hand rule cross-product relation B = LThx E then we see that all three B -field vectors are || hY
{i.e. either point out of or into the page} and thus are | to the plane of incidence {hence the

origin of the name transverse magnetic polarization}; note that all three B -field vectors are also
|| to the boundary/interface at z = 0, which lies in the x-y plane as shown in the figure above.

The four boundary conditions on the {complex} E - and B -fields on the boundary at z = 0 are:

BC 1) Normal (i.e. z-) component of D continuous at z = 0 (no free surface charges)

81 (Eomcz + Eore/l_. ) - ngolmns_.

& (—E% sing,, + E, sin Greﬂ) =&, (—Eo sin Htms) {n.b. see/refer to above figure}

BC 2) Tangential (i.e. x-, y-) components of £ continuous at z = 0:

(Eo +E, ) =E

incy Otrans x

(E,,_ _cos0, +E, cos G,Qﬂ) =E, c¢080,,,| {n.b.see/refer to above figure}

ine

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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BC 3) Normal (i.e. z-) component of B continuous at z = 0:

=0 =0 _=0
+ =B
Oim‘z Ore/]_. Otrans z

BC 4) Tangential (i.e. x-, y-) components of A continuous at z = 0 (no free surface currents):

= {n.b. see/refer to above figure}

—(lg’o‘ o+ Eouﬂ ) = —(B’O’ ) {n.b. All B,* =0 for TM Polarization}
oo R
(5 . 5 - 1~ . =~z
—(BOW y+B, y) = —(Bom y) n.b. Can use full cross-product(s) B=+kxE here!
Hy ’ ‘ Hy !
_[ ( E E o+ lgreﬂ o E‘O ) _ 1 ( Eoox En ) Use right-hand rule for
LV, ), ‘ rans all cross-products
1l (~ .~ =~ . I (= .
= —(E% -E, y) = (Eom y) {n.b. see/refer to above figure}
HVYy Y,
(B, +B, )=—(8,_ ) = |-—(E.-E.)=—F
/«ll incy, refl 'y #2 transy, /«ll vl inc refl /«lz vz trans
> From BC 1) atz=0: g (Eo,-,,c sin@, — EOI_E/, sin Hreﬂ) =g, (Eo sin Qms)
. c c
Redundant But: |0, =06,,|(Law of Reflection) and: |n, =v—1, n, =Z
info — both . .
. - (7
BC’s give And: |n sinf, =n,sinb,| = 51'n % _ s1'n . — ﬂ(Snell’s Law) = el
same sing, sin6,, n, v,
relation P o_p _lam)s _[em]z _5 ~
Oinc oreﬂ ((/‘1 n2 Otrans glvl Otrans Otrans
— From BC 4) atz = 0: E -E, = (ﬂ}?@ =pE, | where: |B= ( A ]: [%
. “ Y, - - HyV, &V
I T ' COS etrans
From BC 2) atz=0: (Eo_ cosd, +E cos Qreﬂ) =E cos@, | but:|og=—"L2
inc refl trans coS Hinc
(£, +E,, )=| Dl |£ - a,
inc refl coS einc trans trans
Thus for the case of transverse magnetic (TM) polarization:
= ~ ~ = ~ ~ 0,
E —-E =pE |and |[E, +E =aFE | with|f= o LA L | P Al 7
inc refl trans inc refl trans ﬂz V2 gl vl cos 9[ -

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Solving these two above equations simultaneously, we obtain:

~ = . 7 ).
Oinc (a + ﬂ) Otrans = Otrans ( a+ ﬂ j Oinc
m: 2Eore/1 = (a - ﬂ) Eolr'arys :> Eoreﬂ = ( a ; ﬂ J Eolmns

refl a_'_ﬂ inc

The real / physical electric field amplitudes for transverse magnetic (7M) polarization are thus:

The Fresnel Equations for B|| to Interface
=B 1 Plane of Incidence = Transverse Magnetic (TM) Polarization

a-— 2 cosl v £,V
E™ = B E™|and |E™ = E™ | with |a waw | nd| B = HY, || &Y
o a+p) a+p) o cosd, sV, eV,

ETM a —'B ETM 2
Or: || Zair |= and || 5 | =

E” a+p E’” a+p
Note that the Fresnel relations for 7M polarization are not identical to Fresnel relations for 7E
polarization:

- 2 cosl. v
B = 29 g and | E% <[ —2 B | with |a =| S5 || g | g =] A2
refl 1 + a,B trans 1 + aﬂ COS Gl.m, ,l,lzv2
E; ) (1-ap E," 2
o N " T\ Trap )| ™| B2 )\ Tvap

We define the incident, reflected & transmitted intensities at oblique incidence for the 7M case
as we did for the 7F case:

N R O):

mnc

= (%Vl& (ETM )zjcos 0 = %‘91"1 (EOTM )2 cosd

Oine inc inc

1 =w (S5 (1))-2

™
I trans

:(%vlgl (ETM )zjcosﬁ p :%glvl (ETM )2 cos 6,

Oreft rej Opept inc

:v2

A 1 ™ \? 1 ™ \?
= [5 v282 (Eomm ) cos etrans = 582‘)2 (E()mm ) cos Htrans

© Professor Steven Errede, Department of Physics, University of [llinois at Urbana-Champaign, Illinois 13
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Thus, the reflection and transmission coefficients for transverse magnetic (7M) polarization
(with all B -field vectors oriented L to the plane of incidence) are:

2 2 2
™ ETM 2 ™ ™ ™
R = I” efl _ Orefl _ (Of — ﬂ } T. = Itrans _ (82 V2 ] cos Htrans j E”mm: —a Eomms _ 4aﬂ
™ — yTM ~ ™ - ™ = yIM ™ - ™ - 2
I inc E Oine a+ ﬂ I inc 81 vl cos einc Eo,-m, Eol-,m (a + ﬂ )
ETM 2 2 ETM 2
. _ Orefl _ a— ﬂ —_ Otrans — 4“,6
ie. |Rp = g™ | and: |73, =af M| T 2
Oinc a+ ﬂ Oine (a + ﬂ)

Again, note that the reflection and transmission coefficients for transverse magnetic (TM)
polarization are not identical/the same as those for the transverse electric case:

En) _(1-ap) EF Y\ 4B
Fes = TZ B and: |y =af| —5| = 2
E, l+ap E, (1+ap)

Explicit Check: Does R+ Ty =17 (i.e. is EM wave energy conserved?)

=1 Yes I

R 4T :(a—ﬂszr 4ap :a2—2aﬂ+ﬂ2+4aﬂ:a2+2aﬂ+ﬂ2:(a+,b’)2
™ ™ (

a+f a+p) (a+pB) (a+p) (a+p)

Note again at normal incidence: 6,. =0 = 6,,=0 and 6,, =0 {See/refer to above figure}
Then: |a=| = Oras | _ €050 ==
cosd,, cos0

Thus at normal incidence: |&,

2
1- 4
o

These are identical to those for the TE case at normal incidence, as expected — due to rotational
invariance / symmetry about the Z axis:

2
1- 4
(155 | o [relea- i

At normal incidence: |R;;

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The Fresnel Equations

TE Polarization TM Polarization
TE ™
E o | _ 1- 0{,5 Eoreﬂ — a— IB
E’ 1+ap EM a+f
E,. 2 E," 2
E,. ) (1+ap) EY ) (a+p)
coséd
o= trans S 7 — 1
COsS einc 1 nl /\/ gl lul
_ KV &V, Hn, &N _ _ 1
ﬂ = = = = vV, = 7 = /
Y, &y lhh &, ’ K \érth

Reflection and Transmission Coefficients R & T

R+T=1
TE Polarization TM Polarization
TE E \? 2 ™ ™ \? 2
R = I refl _ El’,e/z — 1- aﬂ R = I refl _ EOH’/] — ao— ﬂ
Ty | EF 1+af et | EM a+p
2 2
" E* 4af3 ™ EM 4af3
Tw=| T |=0f| =5 | = 2 T =\ =0 |= 08| —nr | = 2
Iinc E()W (1 + aﬁ) Iinc EO,»,,( (a + ﬂ)

cosd

trans Vv :% — 1
cosd. : n /\/81/11

mc
B = MY, _ &Y, K, 6N v, =7 :/
n
Y, &V Ll &, 2 \NE M,

Note that since Eozl = <”m . (t)> E, / &, , the reflection coefficient/reflectance R can thus be

o

seen as the statistical/ensemble average probability that at the microscopic scale, individual
2
photons will be reflected at the interface: R = (E%] / E, ) = <nmﬂ (t)> / <n%_’m (t)> =P,
and since R+7 =1 then T'=1-R=1-F,, =F,,, since we must have P, +F, =1
Now we want to explore / investigate the physics associated with the Fresnel Equations and

the reflection and transmission coefficients — comparing results for 7E vs. TM polarization for
the cases of external reflection (n; < n;) and internal reflection n; > ny)

Just as £ can be written several different but equivalent ways (see above), so can the Fresnel
Equations, as well as the expressions for R & 7T using various relations including Snell’s Law.

© Professor Steven Errede, Department of Physics, University of [llinois at Urbana-Champaign, Illinois 15
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Starting with the Fresnel Relations as given above, explicitly writing these out alternate versions:

Fresnel Equations

TE Polarization TM Polarization
n n n n
ETE (1] Cos Hinc - (zj COs Htrans ETM (2} Cos Hinc - ( : ] cos etmm
Opeft — lul IU 2 Orept — IUZ ,U 1
ETE " n E™ n n
0”"‘ 71 COS Hinc + 72 COS etmns omf 72 COS einc + 1 COS etrHﬂS
H H, Hy Hy
n n
ETE 2(1j COs einc ETM 2(1 COs einc
Otrans _ ﬂ 1 Otrans _ ﬂ 1
ETE - " n E™ B n n
Umc 71 COS Hinc + 72 COS etrans Oin[ 72 COS Hinc + 71 COS 9[}'(1715'
H H, Hy H

If we now neglect / ignore the magnetic properties of the two media — e.g. if paramagnetic /
diamagnetic such that | ;(m| <1 then g, = u, = u, the Fresnel Relations then become:

TE Polarization TM Polarization
TE ™
_ E _
Oreft | - n, Cos einc n, cos gtrans Oreft | n, Cos einc + n, oS etrans
TE ™
Eui,,c. nl cos Hinc + I’l2 cos etrans Eo,»m. n2 cos einc + nl Cos etrans
TE ™
Eazmm 2nl Cos Hinc Eazmm 2nl Cos Hinc
TE |~ ™ |
Oine nl cos ginc + n2 cos etrans E Oine n2 cos einc + nl cos etrans

. , o . B : . : .
Using Snell’s Law n sin6, =n,sin¢, = n, sin6, =n,, sin6  and various trigonometric
identities, the above relations can also equivalently be written as:

TE Polarization TM Polarization
TE . ™
Orefl | sin (ginc - gtrans ) Eore/l _ tan (ginc - gtrans )
TE : ™ |~
Eom sm (einc + etrans ) Eo,»m tan (einc + Htrans )
TE . ™ .
Otrans —_ 2 COS Hinc *Sin etrans Otrans —_ 2 COS einc *Sin etrans
TE | s ™ |7
Eom S (einc + etrans ) Eomm sin (einc + etrans ) COs (einc - etrans )

n.b. the signs correlate to the TE & TM E -field vectors as shown in the above figures!

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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We now use Snell’s Law n,,.sin6, =n,, sin6@,  toeliminate 6, :

mc trans trans trans

olarization olarization
TE Pol t TM Pol t
2 2 2
n . n n .
2 2 2 2 2
ETE Cos einc - [J —Ssim einc ETM _(j Cos Hinc + (] —Ssin Hinc
Oret | __ n, o | _ n, n,
ETE 2 ETM 2 2
One 0 & a2 P Oine & 0 & ein2 0
cos@, + sin~ g, cos@, + sin“ g,
n n n
n
2
ETE b 0 E™ Z(HJCOS Ornc
Ouans | COS inc Ouans_ | 1
ETE 2 ETM 2 P
Ojne n X Oine n n .
COS Hinc + 72 - S1n2 einc 72 COS 0[’16 + 72 - SIHZ Hinc
n, n n

The variation of Z LA E‘)‘ and the reflection coefficient (aka the reflectance) R = 7 i

Oinc Oinc

’ \/(n2/n1 )2 _Sinz einc

Oine

and transmission coefficient (aka the transmittance) T = aff EL = 5 EL
cos 6,
0, mnc 0;,

inc inc

as a function of the angle of incidence 8, for external reflection (n; < ny) and internal reflection
(ny > ny) for TE & TM polarization are shown in the figures below:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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External Reflection (n1 =1.0<n, =1.5):

Extemal Refiection in1 < n2): TE Polarization Extemal Reflection (n1 < n2) TM Polanzation

TE ErefiEinc |
TE Elram/Ew |

LEL

a4t
o8l ™ EreVEne |
- T™ ExransEinc
sl
L] L o0 w 40 50 & ™0 L o0 L] L o0 w 40 50 & ™0 L o0
Angle of Incidence (degrees) Argie of Inadence (degrees)
Extemal Refiection in1 < n2): TE Polarization Extemal Reflection (n1 < n2) TM Polanzation

TM Reflectance, R
TM Transmittance, T

TE Reflectarce, R

TE Transmitance. T

% m  m w s e m #@ I . R
Angle of Incidence (degrees) Angle of Incidence (degrees)
Internal Reflection (n; =1.5>n, =1.0):
) L'mr\u “"‘"“f""‘ .\fol. TE Detan.z&m Inlunfl?d\eu»mcn‘ > n2|. ™ Dolrn.num

TE ErefVEinc = TM ErefiEinc

08 TE Etrany/Einc | 0sf + TM ElranaEinc

) oﬁ
a8t | ast \

o 10 E) 0 40 50 8 70 0 w0 T 10 E) 0 40 50 8 70 0 E)

Angle of Incidence (degrees) Anghe of Incidence (degress)
Irbernal Refection (m1 = A1 TE Polarization Inemal Refiection (n1 > n2) TM Pelasization

1 r - . N 1 r - N
B | . __/W
08} as! :
orf . o7} :
o} ] asl .
05t ‘ - TE Reflectance. R 05t TM™ Reflectance, R

: + TE Transmittance, T |+ TMTransmitance. T/

Ly £, a4l
a3} [ a3} .
ozt ozl .
LER a1t i

, ; OH“‘\—/

o 10 E] 3 40 50 50 0 £l E] a 10 E] 0 40 50 60 0 £l E]
Angle of Incidence (degrees) Anghe of Incidence (degress)
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Comment 1):
When (Ereﬂ / Eim,) <0, E, is 180° out-of-phase with E, since the numerators of the

original Fresnel Equations for TE & TM polarization are (1-a/) and (« — ) respectively.

Comment 2):
For TM Polarization (only), there exists an angle of incidence where (Ereﬂ / Eim,) =0,

i.e. no reflected wave occurs at this angle for 7M polarization! This angle is known as Brewster’s
angle 6, (also known as the polarizing angle 8, - because an incident wave which is a linear

combination of 7E and TM polarizations will have a reflected wave which is 100% pure-TE
polarized for an incidence angle 6, =6, =0,!!). * n.b. Brewster’s angle 6, exists for both

mc

external (n; < ny) & internal reflection (n; > ny) for TM polarization (only). *
Brewster’s Angle 6, / the Polarizing Angle 6, for Transverse Magnetic (TM) Polarization

a —_—
From the numerator of (EOTM / E™ ) = p
refl inc l04 +

j of the originally-derived expression for TM

polarization, when this ratio = 0 at Brewster’s angle 6, = polarizing angle 6, , we see that this

occurs when (a— ) =0, i.e. when a=f.

cos@ n, n
But: |a=—omm| and |g=fl2T) g L=y =
CoS einc ﬂ2n1 nl
. _ . 2 , . . _ . . | .
Now: cos@,, =+/1-sin" 6, and Snell’s Law: n sinf, =n,sin6, = sinf, = n—] siné,
2

. at Brewster’s angle 6,

mc

= 0, = polarizing angle 6, where o = £, this relation becomes:

1,
; (_J y

az—COSH"“’”:ﬁz’u‘nz:& for (=pm=p| = |a=
cos 6, o cos 0, n,
1 . .
or l-—sin’ @, =B’ cos’ 6, =p (1 —sin’ 49,.”(,) «— Solve for sin’ @,
2 1— 2 2
1—ﬂ2=[%—ﬂ2}in29jm = |sin’g, =" (=)
B /ﬂz—ﬂ (1-*)
But: [1-4'=(1-5")(1+ %)
1_ 2 2 2
in’g = ( s )ﬂ2 i ey R
(1-8°)(1+5°) 1+5 [+

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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. sid
Geometrically: sinf, . = s _|_Opp. s1de€
1+ 5 hypotenuse
cos @ 1 |_| adjacent
" 1+ 4| |hypotenuse
tand, =p3 _|opp. side | (1, .
- adjacent n,

Thus, at an angle of incidence 8, =6.° =0, = Brewster’s angle / the polarizing angle for a

mc

TM polarized incident wave, where no reflected wave exists, we have:

inc inc n
tan g, =tan 0, = [n_zJ for u =p, =p,
1

: we  SINGY n

From Snell’s Law: n,sin6, =n,sind,,  we also see that: tan &, = ;m =2
cos n

B 1

or: msin, =n,cosb, for p =u =u,.
Thus, from Snell’s Law we see that: cos#, =sin6, when 6, =6, =0,°.

trans mc

So what’s so interesting about this???

trans trans

=0
. inc __ _: z _ pincy\ _ o z inc _ g4 : inc . inc
Well: [cos 0, —s1n(2 o) )—51n(2)cost93 cos(%) sin6,“ =sind,,, | i.e. sm(2 -0 ) sin 6

. When 6, =0, =0, for an incident TM-polarized EM wave, we see that 6,

Thus: 07 +6, =7r/2, ie 67=60" and 0,

trans

_ 72_/2 emc

trans

are complimentary angles !!!

TM Polarized EM Wave Incident at Brewster’s Angle 6,

/\

NmEDIUM A /K MEDIUM 22
S [ e
“LpMe - Sz, /“1-
"Ny 5%\;{_ NG = e

>&
é\ (909

Mo RIGHT 2 BETWEEN (Nol-EXSTENT)
) REFURTED BEAM S TANSHITTED BEAN,
H BPEEAUSE = @mﬁl: %‘ Sleoms I !

MM‘{/::MEQM
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2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 6.5 Prof. Steven Errede

Thus, e.g. if an unpolarized EM wave (i.e. one which contains all polarizations/random
polarizations) or an EM wave which is a linear combination of 7E and TM polarization is
incident on the interface between two linear/homogeneous/isotropic media at Brewster’s angle

0, =6, the reflected beam will be 100% pure TE polarization!! Hence this is why Brewster’s

angle 0, is also known as the polarizing angle 6,.

Comment 3):

For internal reflection (n; > n) there exists a critical angle of incidence " = past which no

critical
transmitted beam exists for either TE or TM polarization. The critical angle does not depend on
polarization — it is actually dictated / defined by Snell’s Law:

T n n
inc _ _ : R . inc 2 . inc —ain ] 2
Sln ecrzttcal n2 Sln Htmm n2 SIH( 2 j - n2 or: Sln ecrltlca/ ( ] or: Hcrltlcal sin ( J

nl n]
Mmeoum L % W EDIUM 2
ﬁl}ﬁ, Nf‘%}\ j{\L Cl) jU;} =%y
Heans
YDA /
TINSTERNAL
REFLECTION
R ertHER.
TE T )
/\
—_— ¥ 5

RS R T e

\ZT\
!

NTERFAC
Bou»nmys/

For 6, > 6" . no transmitted beam exists — incident beam is totally internally reflected.

inc critical ?

For 8, >@"  the transmitted wave is actually exponentially damped — becomes a so-called:

inc critical °

eSTH!

Evanescent Wave:

- [kzxsmﬁ [:j a)tj n 2
trans (F’t) =E . e’e ’ a= kz —L | sin 9 —

L —) n2 inc

al —~

Exp. damping inz  Oscillatory along interface in x-direction
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For Total Internal Reflection 6, > .-
N3=Ls N, =40
(quss) g 70, Vo AR

—
Dratron o S TOYNTING VSCRR
@ WoUNDARY/ INTERFACE

Experimental demonstration that transmitted £M wave for 8, > 8.  is exponentially damped

= Microscopically, this is an example of quantum mechanical barrier penetration / quantum
mechanical tunneling phenomenon (using real photons)!!!

Use two 45° prisms — (e.g. glass {for light}, or earafﬁn {for microwave% )

. Y .
UIUC Physics 401 experiment !!!

“Tadct DENT VATUUM,
—'ﬁ d '(" Wl ,__CL_‘
—_
2 | .
fh\ic.
\ “TRANSMATYED
WANE
R e da I
z!ﬁ ExPaNERTIAL
'Ce_Eﬂ ATTEnUAT o0

> einc

critical

Phase shifts occur in reflected wave when 6, for total internal reflection (n; > ny).

mc

Using the (last) version of Fresnel Equations (p. 17 of these lecture notes):

TE Polarization TM Polarization
2 2 2
n . n n .
2 2 2 2 2
TE COs einc - (j —Ssin Hinc ™ _£] Cos einc + [j —Ssin einc
Oret | nl Oreft | __ nl nl
TE |~ 5 E™ - 2 D
Ojne n Oine n n
2 s 02 2 2 s 02
cos@,, + [J —sin” 6, [] cos@, + (J —sin” g,
n, n, n,
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nc nc b b
When 6, >0, ., Snell’s Law is: sin @y, =(n,/n;) {since sin§

trans

=sin90° =1}
The above ratios of E-field amplitudes become complex for internal reflection, because for

(n,/n) <1 when sin® 6, > (n,/n,)<1, then \/(nz/nl) —sin’ @, becomes imaginary.

mc

Thus for 8, >, =sin™ (n,/n,) for n; > n, (internal reflection), we can re-write the above

E -field ratios as:

TE Polarization TM Polarization
2 2 2
n n n
. 2 2 2
ETE COS ezm l SlIl emc ( } ETM - (] Cos Hmc + l Sln ezm [ J
o | _ n o | \Th n
ETE o 5 E™ o 5 2
Oinc 9 0 7’12 Ojnc l’l2 9 9 }’l2
cos@, +i,[sin" O, —% | cos@, +i,[sin" 6,
n n n

It is easy to verify that these ratios lie on the unit circle in the complex plane — simply multiply
them by their complex conjugates to show 44" =1, as they must for total internal reflection.

These formulae imply a phase change of the reflected wave (relative to incident wave) that
depends on the angle of incidence 8, > .., =sin™' (n,/n,) for total internal reflection.

inc critical

E
We set: || —2= |=¢ =L |5 and |tan(5/2)=tan(a)

Where 6 = phase change (in radians) of the reflected wave relative to the incident wave.

Thus we see that (from the numerators of the above formulae) that:

2 2
o o
tan (éﬂ) = h tan(gTM J = k
2

%13 - 2
cos@ 2 n
72 COS emc
n,

Then the relative phase difference A = 6,,, —0,, between total internally-reflected 7M vs. TE
polarized waves can also be calculated:

tan (%) = tan(5TM > ) €08 6, \/sm O — ”2 /nl)

sin’ @,

mc

Phase shifts of the reflected wave relative to the incident wave for external, internal reflection
and for TE, TM polarization are shown in the following graphs:
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Phase Shifts Upon Reflection:

External Reflection (n1=1.0<n, =1.5): Internal Reflection (n; =1.5>n,=1.0):

External Reflection (n < n2): TE Polarization Irberral Reflection (1 > A1 TE Polarizaton
- . . - . - . . - .

200
150 150
100 100
5 50 = 50|
) £
£ H
# #
& &
E s
50/ S 5ol
~100 | -100~
R 1 150 -
200! i i L L L L L 200 i i i i i i i
] 10 E 0 40 50 1 w ] 50 (] 10 20 30 40 50 60 70 80 90
Angle of Incidence (degrees) Angle of Incidence (degrees)
External Reflection (v <n2) TM Pelarization Intemal Fiefiection in1 > AZ). TM Pelasization
150 150
100 100
- -
g g
= z 0 —_—
= =
E L
100 100
150 150
L] L o0 30 40 50 & ™0 L L L] L o0 30 40 50 & ™0 L o0
Angle of Incidence (degrees) Argie of Inadence (degrees)
Extemal Reflection (0 < n2y TM-TE Phase Difference > n2) TH-TE
150 150
100 100

g

&
g

Delta-TM - Delta-TE (degrees]
o

Deita-TM - Ditita-TE (degrees)
o

100 100
150 150
- | I | i I i 200! L i L L L
0 10 20 30 40 60 70 80 %0 (] 10 E] 0 40 50 & ] 50 El
Angle of Incidence (degrees) Angle of Incidence (degrees)

Note that a phase shift of —180° is equivalent to a phase shift of +180°.
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An Example of the {Clever} Use of Internal Reflection Phase Shifts - The Fresnel Rhomb:

From last graph of the internal reflection phase shifts (above), we see that the relative
difference in TM vs. TE phase shifts for total internal reflection at a glass-air interface

(m1 = 1.5 {glass}, no = 1.0 {air})is A=5,, —5,, =7/4=45" when 0, =54.6°

Fresnel used this TM vs. TE relative phase-shift fact associated with total internal reflection
and developed / designed a glass rhomb-shaped prism that converted linearly polarized light to
circularly polarized light, as shown in the figure below.

He used light incident on the glass rhomb-shaped prism with polarization angle at 45° with
respect to face-edge of the glass rhomb (thus the incident light was a 50-50 mix of 7E and TM
polarization). Note that the transmitted wave actually undergoes fwo total internal reflections
before emerging from rhomb at the exit face, with a —45° relative phase TM-TE phase shift
occurring at each total internal reflection. Thus, the first total internal reflection converts a
linearly polarized wave into an elliptically polarized wave, the second total internal reflection
converts the elliptically polarized wave into a circularly polarized wave!!!

The total phase shift (for 2 internal reflections): A, =2A =2(6,, — 6, )=7/2=90°
(for rhomb apex angle 6= 54.6°, nair = 1.0 and ngjass = 1.5)
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NOTE: By time-reversal invariance of the EM interaction, we can also can see from the above
that Fresnel’s thomb can also be used to convert circularly-polarized incident light into linearly

polarized light!!!

B i

Thus, the Fresnel relations for 7E / TM polarization for internal / external reflection are valid /
useful for any type of EM wave — linear, elliptic or circular polarization.
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The general case is an EM wave which is a linear combination (of some kind, depending on
nature and type of EM wave polarization state) of TE and TM polarization... more complicated!

Finally, again for the special / limiting case of normal incidence (where the plane of incidence
collapses) the reflectance / reflection coefficient for both 7E and TM polarization at 6, =0.
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FIGURE 4,49 Reflectance ot normal incidence in air (n, = 1.0} ot
a single interface. N=Nge=l0

Can There be a Brewster’s Angle 8, for Transverse Electric (TE) Polarization
Reflection / Refraction at an Interface?

The Fresnel Equations:

TE Polarization TM Polarization

TE TE
- Eo,.eﬂ _ 1- aﬁ r = EO,—gﬂ _ o — ﬂ
1 E | T = TE |~
E"im- 1 + aﬂ Eomc a+ ﬂ

with: la = [COS gtmnsj and: |8 = HYy _ &V, _ Hn, _ &1y
cos 6, HY, &V B &n,

mc

v=¢ =1 v:7:1 n:fgl'ly n:fgz‘uz/
1 A‘ /\/‘91#1 ’ " /\/gzluz l Eobly | | ok

We saw P436 lecture notes above (p. 19-21) that for TM polarized EM Waves (where B L
plane of incidence {i.e. B|| to plane of the interface}, with unit normal to the plane of incidence

defined as 7, = l%.nc X ler , ) that when 6, =6, = Brewster’s angle (a.k.a. = 6, = Polarizing

)

angle), that E," =0 because the numerator of 7,, (¢ = $)=0 i.e. &= when 6,, =6, =6;"

mc

Thus, for a incident 7M polarized monochromatic plane EM wave, when:

™
= (COS gtrans} — ll’llvl — SZVZ — /'lln2 — San —
™
cos einc ™ lu2v2 glvl lu2n] 81”2

or: ﬂ:ﬂlnz _H /52/‘2 _ "92/11 _& ’glﬂl _&n
o M Hy \ E L s, & \&EH,  En,
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For non-magnetic media:

We also derived the Brewster angle relation for 7M polarization:
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= 44, then:
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cos@™

trans

cos O™

mnc

}

inc __ inc __
tan g, =tan @, =

& n
n
n,

For the case of TE polarization, we see that: £,” =0 when the numerator of r,, (I1-ef)=0

i.e. when: a8 =1or: f=1/a. What does this mean physically??

Thus:

Then:

o £ cosd cosd,.
For TE Polarization: fS=1/a = /z—ﬂl = / [ trans J =[ e J
81 IUZ cos einc cos etrans
cosd g n
. . . . . . . trans | _ |22 _ "2
For non-magnetic media where: | ;(m| <1 ie gy =p =p then: | —|= =
cos einc 6‘1 nl
2
2 2 c 2
{&j _cosf, cosf, _1-sin"6,
2 : a2 s 2
nl COos etrans 1 — S etrans 1 —Ssim Htrans
, ) o ) : .
From Snell’s Law: n,sin @, = n, sin G, or: |nsinf,  =n,sinb,
2
Sln etmns = _1 Sln einc Or: Sln2 Htmns = _l Sln2 Hinc
n, n,
2 .2 2
n, _ (I_SIH Hinc) n, ) -1 .2
- | = o or — | — st e — 17 SL inc
n , n,
)
1-| —+|sin" 6,
n,
2
[n—zj =1| or:|n, =n,| = can get 4, =6, for TE Polarization only when n, =n,
1

i.e. NO interface boundary, for non-magnetic material(s), where | K

<land y, = pu, = y,.

Is there a possibility of a Brewster’s angle for incident TE polarization for magnetic materials???

For incident TE polarization, we still need to satisfy the condition S =1/« .

i.e.

but:
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thus: || 24 ]— éx'ul %ﬂl sin® @2 =1-sin?0®
ek, /31//1 >X/flz " "

2
2
%] —(ﬂ} sin” 07 = (1 —sin’ Hlffc) multiply both sides of this eqn. by (&]
S, H, H

ﬁj _ (ﬂ} sin2@? = (&j _ [&j sin? 6”

((/‘1 ﬂz mc ﬂl ﬂl mc

(i] _ {&H _ H&j _[&ﬂ sin? 6% 9% =0° 6% =90°
gl ﬂl ﬂz mc mc

mc
H

Define:

Brewster’s angle for TE polarization:

Let us assume that &, and ¢, are fixed {i.e. electric properties of medium 1) and 2) are fixed}
but that we can engineer/design/manipulate the magnetic properties of medium 1) and 2) in such
a way as to obtain a ratio (£, /s, )#1 to give 0 <4 < 111!

Then if @7 =sin"'v/4 can be achieved, it might also be possible to engineer the magnetic

mc

TE

properties (,/,) such that 4 <0 —i.e. §, becomes imaginary!!!

Note also that in the above formula that (s /4,)=1 does not mean sing, = because the

original formula for (z /u,)=1was:

2 2
[&J [l(ﬂj Sinz 0’“} = (I_Sinz einc)
n, n,

which is perfectly mathematically fine/OK for (n,/n,)=1.
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