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LECTURE NOTES 9 
 

AC Electromagnetic Fields Associated with a Parallel-Plate Capacitor 
 
Let’s investigate the nature of AC electromagnetic fields associated with a parallel-plate 
capacitor, e.g. with circular plates of radius a separated by a small distance d a� as shown in 
the figure below – we will neglect edge effects here: 
 
3-D View: 
 
 

( ) ( )0 oV V z d V z VΔ ≡ = − = =  
 
 
 
 
     At DC (f = 0 Hz), we know the static solution to this problem, namely that the {free} charge 
Qfree on the capacitor is related to the potential difference VΔ  across the capacitor’s plates by:   

freeQ C V= Δ  where the capacitance of the capacitor is: oC A dε=  (Farads) for d a� ;  

the area of one plate of the parallel plate capacitor is 2A aπ= . 
 
     Since there is no free electric charge between the plates of the parallel plate capacitor,  
then for d a� , the solution to Laplace’s Equation ( )2 0V r∇ =

G  {derived from Gauss’ Law 

( ) ( ) 0free oE r rρ ε∇ = =
G G G Gi , with ( ) ( )E r V r= −∇

G GG G } yields:  
 

( ) ( ) ( )
0

0
z d

z
V V z d V z E r d

=

=
Δ ≡ = − = = −∫

GG G i A  
 

But: ( ) ˆoE r E z= −
G G  between the plates of the parallel plate capacitor for d a�  

 

∴    ( ) ( ) ( )0 0o o oV V z d V z V V E dΔ ≡ = − = = − = = −    Side View: 
 

⇒    ( ) ( ) ( ) 1̂ˆo free oE r V d z nσ ε= − =
G G

  
 

where: free freeQ Aσ =  
 

       ⇒ ( ) free o
free

Q AC Vz d
A A

εσ Δ
= = + = = oV

A
o

o o o
V E
dd

ε ε= =   

 

And:    ( )0 free o o o
free o o o

Q AV VC Vz E
A A Ad d

εσ ε εΔ
= = − = − = − = − = −  
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We ask:  
 
What happens when we slowly raise the frequency from f = 0 Hz (static E-field) to f  > 0? 
e.g. Apply a sinusoidally time-varying potential difference across the plates of the capacitor of 
the form: ( ) [ ]cos sini t

o oV t V e V t i tω ω ωΔ = = +�   ⇐  single frequency, 2f ω π=  e.g. using a  
sine-wave function generator , as shown in the figure below: 
 
 
Function 
Generator 
 
 
 
 

For d a� :  ( ) ( ) ˆ ˆ ˆ,
i t

i to
o

V t V eE r t z z E e z
d d

ω
ωΔ

= − = − =
�

G G�   with:  o oE V d≡ −  
 

The potential difference ( )V tΔ �  and electric field ( )E t
G�  vs. time t: ( ) ( ) i t

oE t E t E e ω= =
G� �  

 
 
     Maxwell’s Equations must be obeyed in the gap-region between the parallel plates of 
capacitor, where: ( ) ( ), , 0free boundr t r tρ ρ= =

G G� �   and: ( ) ( ), , 0free boundJ r t J r t= =
G GG G� � : 

 

1)  Coulomb’s Law:     ( ), 0E r t∇ =
G G G�i  

2)  No magnetic charges / monopoles : ( ), 0B r t∇ =
G G G�i  

3)  Faraday’s Law:        ( ) ( ), ,E r t B r t t∇× = −∂ ∂
G G GG G� �   

4)  Ampere’s Law: ( ) ( ) ( ), , ,o o o DB r t E r t t J r tμ ε μ∇× = ∂ ∂ =
G G G GG G G� � �   where:  ( ) ( ), ,D oJ r t E r t tε≡ ∂ ∂

G GG G� �  
 

Maxwell’s Displacement Current: 
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Ampere’s Law (with Maxwell’s Displacement Current) in integral form tells us that: 
 

   ( )( ) ( ), ,o DS S
B r t da J r t daμ∇× =∫ ∫

G G GG G G G� �i i   ⇐  n.b. not a closed surface! 

   ( ) ( ) ( ), , ,o D o oC S S
B r t d J r t da E r t t daμ μ ε= = ∂ ∂∫ ∫ ∫

GG G GG G G G G� � �i A i iv    

      ∴  ( ) ( )( )2

1, ,
C S

B r t d E r t t da
c t

∂
= ∂ ∂

∂∫ ∫
GG GG G G� �i A iv   where: 2 1 o oc ε μ=  

 
Let us consider a contour path of integration C1 enclosing the surface S1 as shown in the figure below: 
 
 
 

ˆ ˆda dan daz= = +
G

 
 
da d dρ ρ ϕ=   
(in cylindrical 
  coordinates) 
 
 
 
 
 
 
 
 

( ) ˆ, i t
oE r t E e zω=

G G�   and:  ( ) ( )( )
1 1

2

1, ,
C S

B r t d E r t t da
c t

∂
= ∂ ∂

∂∫ ∫
GG GG G G� �i A iv    

 

Note that: ( ) ( ) ˆ, ,B r t B tρ ϕ=
G G� �  due to the circular/azimuthal symmetry associated with this problem. 

ˆ ˆd d dϕ ρ ϕϕ= =  
G
A A , and ˆ ˆda dan daz= = +

G  by the right-hand rule,  ˆda d d zρ ρ ϕ=  
G , da d dρ ρ ϕ=   

in cylindrical coordinates, thus B d
GG

& A , and E da
G G& , and:   

∴    ( ) ( ) 2
2

1, 2B t E t
c t

ρ πρ πρ∂
=

∂
  ⇒   ( ) 2

1,B t
c

πρ =
G� 2ρ

2π ρ
( ) ( )

2
ˆ ˆ

2
E t E t

t c t
ρϕ ϕ

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

� �
 

But: ( ) i t
oE t E e ω=�  ⇒  

( ) ( )i t
o

E t
i E e i E t

t
ωω ω

∂
= =

∂

�
�  

∴    ( ) ( )
( )

( )2 2
ˆ ˆ ˆ,

2 2
o

i t i t
o o

B

i iB t E t E e B e
c c

ω ω

ρ

ωρ ωρρ ϕ ϕ ρ ϕ

≡

= = =
G� �

�	

 

⇒    ( ) ( ) 2 2
ˆ ˆ ˆ,

2 2
i t i t i t

o o o
iB t B e E e i E e

c c
ω ω ωωρ ωρρ ρ ϕ ϕ ϕ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G�  

 

n.b. ( ),B tρ
G� also oscillates sinusoidally like ( )E t

G�  but is 90o out-of-phase with ( )E t
G� . 

Using Stokes’ 
Theorem
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Note also that ( ),B tρ
G� is linearly proportional to ρ  (the radial distance from the axis of capacitor) 

and that ( )0 0B ρ = =
G�  at the center of the capacitor: 

 
 
 
         NOTE:  ( ) 0B aρ > =

G�  

         because ( ) 0E aρ > =
G�  

          for d a� in our model 
 of this capacitor. 

 
 
     Thus, we see that for ω > 0, ∃  (i.e. there exists) an azimuthal, ρ-dependent and time-varying 

magnetic field ( ) 2
ˆ,

2
i toi EB t e

c
ωωρρ ϕ⎡ ⎤= ⎢ ⎥⎣ ⎦

G�  in the gap region of the parallel-plate capacitor,  

for d a� . Note also that the azimuthal magnetic field is also linearly proportional to 2 fω π= , 
thus as the frequency increases, this magnetic field also increases in strength.   
Note that for ω = 0, ( ) 0B ω =

G�  as we obtained for the static limit case! 
 
     Furthermore, because the capacitor now has a non-zero magnetic field associated with it, for  
ω > 0, the complex, frequency-dependent impedance ( ) ( ) ( )Z R iω ω χ ω≡ +�  (Ohms)  

{where ( )R ω  = AC resistance and ( )χ ω = AC reactance} of the parallel-plate capacitor is no 

longer just:  ( ) ( ) ( )1C CZ i i Cω χ ω ω= =�   (Ohms)  where ( ) 1C Cχ ω ω=  = the AC capacitive 

reactance of the capacitor (Ohms), with (complex) AC Ohm’s Law:  ( ) ( ) ( )V I Zω ω ωΔ =� � �i  
 

     Because of the existence of the magnetic field in gap-region of & -plate 
capacitor, EM energy can also be/is stored in the magnetic field of & -plate 
capacitor due to the inductance, LC (Henrys) associated with the parallel-
plate capacitor and hence it has an inductive reactance of ( )L Lχ ω ω=  and 
hence has an inductive complex impedance associated with it, of 

( ) ( )L L CZ i i Lω χ ω ω= =   (Ohms). Since the inductance associated with 
this capacitor is in series with its capacitance, we add the two impedances:  
 

( ) ( ) ( ) ( ) ( ) 1TOT
C C L C L CZ Z Z i i i i L

C
ω ω ω χ ω χ ω ω

ω
⎛ ⎞= + = + = +⎜ ⎟
⎝ ⎠

� � �  

( ) 1TOT
C CZ i L

C
ω ω

ω
⎛ ⎞= +⎜ ⎟
⎝ ⎠

�    

 
The {complex} form Ohm’s Law {here} is thus:  ( ) ( ) ( )TOT

CV I Zω ω ωΔ =� � �  
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  9        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

5

     Note that at low frequencies ( )0ω ≈ for the parallel-plate capacitor with d a� , the capacitive 

reactance ( ) ( )1C L CC Lχ ω ω χ ω ω= =�  and thus ( ) ( )0 0TOT
C CZ Zω ω≈ ≈� �� .  However, at very 

high frequencies (ω → ∞), ( ) ( )C Lχ ω χ ω� ⇒  ( ) ( )TOT
c LZ Zω ω→ ∞ → ∞� �� , i.e. in the very 

high frequency limit, this capacitor instead behaves like a pure inductor!!! 
 
     Note also that the electric, magnetic and total EM energy densities in the gap-region of the 
parallel plate capacitor, respectively are: 
 

( ) ( )
21, ,

2E ou r t E r tε=
GG G� ,  ( ) ( )

21, ,
2M

o

u r t B r t
μ

=
GG G�  and  ( ) ( ) ( ), , ,EM

TOT E Mu r t u r t u r t= +
G G G

 

Now because the capacitor has a non-zero time-varying magnetic field:  ( ) 2
ˆ,

2
i t

o
iB t E e

c
ωωρρ ϕ=

G�  

Faraday’s Law ( ) ( ), ,E r t B r t t∇× = −∂ ∂
G G GG G� �  tells us that there will be an additional {induced} 

electric field, because ( ),B r t
G G�  is also varying in time!!! 

 

     Faraday’s Law in integral form is: ( )( ) ( )( ) ( ), , m

S S

t
E r t da B r t da

t t
∂Φ∂

∇× = − = −
∂ ∂∫ ∫

�G G GG G G G� �i i   
 

where ( ) ( ),m S
t B r t daΦ ≡ ∫

G G G�� i  is the magnetic flux (Webers = Tesla-m2) enclosed by the surface S 

at time t.  Applying Stokes’ Theorem, we have: ( ) ( )( ) ( ), , m

C S

t
E r t d B r t da

t t
∂Φ∂

= − = −
∂ ∂∫ ∫

�GG GG G G� �i A iv  

where the contour C around a closed path of integration encloses the surface S through which 
magnetic flux ( ) ( ),m S

t B r t daΦ ≡ ∫
G G G�� i  passes. 

 

     Now ˆB Bϕ=
G� �  (i.e. points in the ϕ̂  {azimuthal} direction) and thus here we need B da

G G� & hence 

2 ˆda daϕ=
G  also, and thus we take the closed contour C2 line-integral path around the surface S2 

as shown in the side-view figure below: 
 
Side-View: 
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The induced electric field, as created by the time-varying magnetic field is: 
 

           ( ) ( )( ) ( )
2 2

2, , m
indC S

t
E r t d B r t da

t t
∂Φ∂

= − = −
∂ ∂∫ ∫

� �GG GG G G�i A iv   
 

where ( ) ( )
2

2,m S
t B r t daΦ ≡ ∫

G G G�� i  = magnetic flux enclosed by contour C2 passing through surface S2 
 

Then:  ( ) ( ) ( ) ( ) ( )
2

1 2 3 4(1) (2) (3) (4)
, , , , ,ind ind ind ind indC

E r t d E r t d E r t d E r t d E r t d= + + +∫ ∫ ∫ ∫ ∫
G G G G GG G G G GG G G G G� � � � �i A i A i A i A i Av  

 

       1 ˆd d z=
G
A A  

       2 ˆd d ρ=
G
A A   ( ˆ ŷρ =  here in ˆ ˆy z−  plane) 

       ( )3 ˆ ˆd d z d z= − = −
G
A A A  

       ( )4 ˆ ˆd d dρ ρ= − = −
G
A A A  

 
 
 

Now ( ) ( ), ,indE r t B r t t∇× = − ∂ ∂
G G GG G� �  tells us that if ˆB Bϕ=

G
 direction, then in cylindrical coordinates: 

 

( )
0

1, z
ind

EE r t
ρ ϕ

=

∂
∇× =

∂

�G G G�
0

E
z
ϕ

=

∂
−

∂

�
0

0

ˆ
E
z

ρρ

=

=

⎡ ⎤
∂⎢ ⎥ +⎢ ⎥ ∂⎢ ⎥⎣ ⎦

�

����	���


01ˆzE Eϕϕ ρ
ρ ρ ρ

=
⎡ ⎤

∂ ∂⎢ ⎥− +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

� � Eρ

ϕ
⎛ ⎞ ∂

−⎜ ⎟⎜ ⎟ ∂⎝ ⎠

� ( )
0

0

, ˆˆ zE r t
z ϕ

ρ

=

=

⎡ ⎤
∂⎢ ⎥ = −⎢ ⎥ ∂⎢ ⎥⎣ ⎦

G�

�����	����


 

 

     Thus, we see that ( ) ( ) ˆ, ,E r t E r t ϕ∇× = ∇×
G G G GG G� �  only, for all points ( ), , zρ ϕ  in the gap region of 

║-plate capacitor and for all times t.  However, we see that due to the azimuthal / rotational 
symmetry associated with the cylindrical ║-plate capacitor, neither ( ),indE r t

G G  nor ( ),B r t
G G can 

have any explicit φ-dependence, thus 0  and  0zE Eρϕ ϕ∂ ∂ = ∂ ∂ =� � , which in turn respectively 

imply that ( )0  and  0E z Eϕ ϕρ ρ∂ ∂ = ∂ ∂ =� � . Note further that Faraday’s Law tells us that we 

must also have ( ) ( ), ,indE r t B r t⊥
G GG G� � .  

 
     For d a� , the electric field in the gap region of the ║-plate capacitor cannot explicitly 
depend on z either.  Thus, 0E zρ∂ ∂ =  ⇒  ∴ the only surviving term in ( ),indE r t∇×

G G G�  is: 
 

( ) ( ), ˆ, z
ind

E r t
E r t ϕ

ρ
∂

∇× = −
∂

G�G G G� . 

 

∴ ( ) ( ) ˆ, ,ind indE r t E r t z=
G G G� �  i.e. the induced E

G� -field points in the ẑ  direction (must be ˆ B Bϕ⊥ =
G� � ) 

which is satisfied because ˆẑ ϕ⊥ . 
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Thus, if the induced electric field ( ) ( ) ˆ, ,ind indE r t E r t z=
G G G� �  {only}, then we see that: 

 

( ) ( ) ( ) ( ) ( )
2

1 2 3 4(1) (2) (3) (4)
, , , , ,ind ind ind ind indC

E r t d E r t d E r t d E r t d E r t d= + + +∫ ∫ ∫ ∫ ∫
G G G G GG G G G GG G G G G� � � � �i A i A i A i A i Av  

        
(1) (2)

ˆˆ ˆ ˆind indE z dzz E z dρρ= +∫ ∫� �i i

( )

( ) ( )
(3) (4)

  0
ˆˆ

ˆˆ ˆ ˆind ind

z

E z dzz E z d

ρ

ρρ

=
⊥

+ − + −∫ ∫� �i
���	��


( )
  0

ˆẑ ρ
=
⊥

���	��

 

( )
(1) (3)

ˆ ˆ ˆ ˆind indE z dzz E z dzz= + −∫ ∫� �i i  

( ) ( )
z=d z=d

z=0 z=0
0   ind indE dz E dzρ ρ ρ= = − =∫ ∫� �  

 
 
 
But ( ),indE r t

G G�  has no explicit z-dependence, thus: 
 

( ) ( ) ( ) ( ) ( )
2 0

, 0, , 0, ,
z d z d

ind ind nd ind indC z o z
E r t d E t dz E t dz E t d E t dρ ρ ρ ρ ρ ρ

= =

= =
= =   −  = = = ∗ + = ∗∫ ∫ ∫
GG G� � � � �i Av    

 

Or:     ( ) ( ) ( )
2

, 0, ,ind ind indC
E r t d E t E t dρ ρ ρ⎡ ⎤= = − =⎣ ⎦∫

GG G� � �i Av     where:   ( ) ( ) ˆ, ,ind indE t E t zρ ρ=
G� �  

 

But:   ( ) ( )
2 2

2, ,indC S
E r t d B r t da

t
∂

= −
∂∫ ∫

GG GG G G� �i A iv   where 2S = surface enclosed by contour 2C  

and 2 2 ˆˆda dan daϕ= =
G  (i.e. 2S lies in the y-z plane) ˆdax= − {here} and da dydz d dzρ= =  

 

Now: ( ) ( ) 2
ˆ ˆ,

2
i t i t

o o
iB t B e E e

c
ω ωωρρ ρ ϕ ϕ⎛ ⎞= = ⎜ ⎟

⎝ ⎠

G�     and ˆ x̂ϕ = −  ( 2S lies in the y-z plane) 

 

∴      ( )
2

2 020 0
ˆ ˆ,

2
z d i t

S z

iB t da E e d dz
c

ρ ρ ω

ρ

ωρρ ϕ ρ ϕ
= =

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫ ∫

G G� i i   but: ˆ ˆ 1ϕ ϕ =i  

                                 02 20 0 02 2
z di t i t

o z

i i dE e d dz E e d
c c

ρ ρ ρ ρω ω

ρ ρ

ω ωρ ρ ρ ρ
= = =

= = =

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫   and: 21

2
dρ ρ ρ=∫  

 

∴      ( )
2

2

2 02,
4

i t

S

i dB t da E e
c

ωωρρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫
G G� i  

 

Then:  ( )
2

2 2

2 0 02 2,
4 4

i t i t

S

i d i dB r t da E e i E e
t t c c

ω ωωρ ωρω
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

− = − = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∫
G G G� i  

 
And:   ( )( ) ( ) 2 2 21i i i iω ω ω ω ω− = − ∗ = + =   {since 1i = − and 1i− = − − } 
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  ∴       ( )
2

2 2

2 02,
4

i t

S

dB r t da E e
t c

ωω ρ∂
− =

∂ ∫
G G G� i . 

Then:   ( ) ( )
2 2

2, ,indC S
E r t d B r t da

t
∂

= −
∂∫ ∫

GG GG G G� �i A iv   yields:  

d ( ) ( )
2 2

0, ,ind ind
dE t E t ω ρρ ρ ρ⎡ ⎤= − = =⎢ ⎥⎣ ⎦

G G� �
02 ˆ

4
i tE e z

c
ω  

 
Note that the d’s cancel on both sides of the above equation. Note also that because of the 
explicit 2ρ  dependence on the RHS of above equation, we see that ( )0, 0indE tρ = =

G� . 
 

Hence:  ( )
22 2

2 ˆ ˆ,
4 2

i t i t
ind o oE t E e z E e z

c c
ω ωω ρ ωρρ ⎛ ⎞= − = −⎜ ⎟

⎝ ⎠

G�  

 

Thus the total E
G

-field in the capacitor gap is: 
 

  ( ) ( ) ( )
2 2

ˆ ˆ ˆ, , 1
2 2

i t i t i t
ToT ind o o oE t E t E t E e z E e z E e z

c c
ω ω ωωρ ωρρ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞= + = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

G G G� � �  

 
     Thus, we see here that the induced electric field caused by the time-varying magnetic field 
points in the direction opposite to the initial/original E

G� -field, reducing the overall E
G� -field for 

0ρ > , as we would expect from Lenz’s Law. 
 

     However, note that we now also have an additional contribution to the B
G� -field inside the gap-region 

of the parallel plate capacitor, due to the presence of the induced E
G� -field contribution, ( ),indE tρ

G� . 
 
     Before we proceed further on this discussion, it would be best for us change our notation:  
Call our original time-dependent E

G� -field, ( ) ( )1, ,i t
oE r t E e E r tω= =

G GG G� � .  
 

This E
G� -field in turn creates a time-dependent B

G� -field by Ampere’s Law: 
 

( ) ( ) ( )1 1
1 2

, ,1, o o

E r t E r t
B r t

t c t
μ ε

∂ ∂
∇× = =

∂ ∂

G GG G� �G G G� . 
 

However, because ( )1 ,B r t
G G�  also varies in time, it turn creates another induced time-dependent 

electric field by Faraday’s Law:  
 

( ) ( )1
2

,
,

B r t
E r t

t
∂

∇× = −
∂

G G�G G G� . 
 

But ( )2 ,E r t
G G�  is also time-varying, and so it in turn produces another time-varying contribution to 

the magnetic field ( )2 ,B r t
G G� .   
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But because ( )2 ,B r t
G G� is also time-varying, it in turn will induce another contribution to the 

electric field ( )3 ,E r t
G G�  and so on… i.e.: 

 

( )1 ,E r t
G G� . .A L

→ ( )1 ,B r t
G G� . .F L

→ ( )2 ,E r t
G G� . .A L

→ ( )2 ,B r t
G G� . .F L

→ ( )3 ,E r t
G G� . .A L

→ ( )3 ,B r t
G G� . .F L

→ ( )4 ,E r t
G G� . .A L

→ ( )4 ,B r t
G G� . .F L

→  . . . .   
 

Then: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5
1

, , , , , , ... ,TOT n
n

E r t E r t E r t E r t E r t E r t E r t
∞

=

= + + + + + = ∑
G G G G G G GG G G G G G G� � � � � � �  

And: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5
1

, , , , , , ... ,TOT n
n

B r t B r t B r t B r t B r t B r t B r t
∞

=

= + + + + + = ∑
G G G G G G GG G G G G G G� � � � � � �  

 
So thus we see that: 

  ( ) ( )( )
1 1

1 1 12

1, ,
C S

B r t d E r t da
c t

∂
=

∂∫ ∫
GG GG G G� �i A iv  

( ) ( )( )
2 2

2 1 2, ,
C S

E r t d B r t da
t

∂
= −

∂∫ ∫
GG GG G G� �i A iv  

  ( ) ( )( )
1 1

2 2 12

1, ,
C S

B r t d E r t da
c t

∂
=

∂∫ ∫
GG GG G G� �i A iv  

( ) ( )( )
2 2

3 2 2, ,
C S

E r t d B r t da
t

∂
= −

∂∫ ∫
GG GG G G� �i A iv  

( ) ( )( )
1 1

3 3 12

1, ,
C S

B r t d E r t da
c t

∂
=

∂∫ ∫
GG GG G G� �i A iv  

( ) ( )( )
2 2

4 3 2, ,
C S

E r t d B r t da
t

∂
= −

∂∫ ∫
GG GG G G� �i A iv   

….  etc. 
 
Algorithmically, this infinite sequence can be written as: 
 

      ( )11, ,n E r t=   
G G�  

 

( ) ( )( )
1 1

12

1, ,n nC S
B r t d E r t da

c t
∂

=
∂∫ ∫

GG GG G G� �i A iv    ( ),nB r t
G G�  

         Infinite Loop 

( ) ( )( )
2 2

1 2, ,n nC S
E r t d B r t da

t+

∂
= −

∂∫ ∫
GG GG G G� �i A iv   ( )1 ,nE r t+

G G�  

 
1n n= +  

 
 

Where contour C1 enclosing surface S1 and area element 1daG  are associated with the figure drawn 
on page 3 of these lecture notes, and where contour C2 enclosing surface S2 and area element 2daG  
are associated with the figure drawn on page 5 of these lecture notes. 
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It can thus be shown for the parallel-plate capacitor with d a�  that: 
 

( )
( ) ( ) ( )

2 4 6

2 2 2
1 1 1 ˆ, 1 ...

2 2 21! 2! 3!
i t

TOT oE t E e z
c c c

ωωρ ωρ ωρρ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

G�    with:  o
o

VE
d

⎛ ⎞= −⎜ ⎟
⎝ ⎠

  

( )
( ) ( ) ( )

2 4 6

2 2 2
1 1 1 ˆ, 1 ...

2 2 21! 2! 3!
i t

TOT oB t B e
c c c

ωωρ ωρ ωρρ ϕ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

G�    with:  22o o
iB E

c
ωρ

=  

     
and where: ( ) ( )! 1 2 ...2 1n n n n≡ − −i i i ,  0! 1= ,  1! 1= , 2! 2= , 3!= 6, 4! = 24, etc.  
 

We also see that:  22n n
iB E

c
ωρ

=    and:  
2

1 22 2 2 2n n n n
i i iE B E E

c c
ωρ ωρ ωρ ωρ

+
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

     and:  
2

1 12 22 2 2 2n n n n
i i iB E B B

c c c
ωρ ωρ ωρ ωρ

+ +
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Due to the cylindrical geometry / azimuthal symmetry associated with this problem, it should not 
come as a surprise that: 
 

Defining: x k
c

ωρ ρ≡ =  where k
c
ω

=  = wavenumber 

2k π
λ

=   
c
f

λ =   
2

f ω
π

=  

 
Then the quantity in square brackets on the previous page becomes: 
 

( ) ( ) ( ) ( ) ( ) ( )

2 4 6 2 4 6

2 2 2 2 2 2
1 1 1 1 1 11 ... 1 ...

2 2 2 2 2 21! 2! 3! 1! 2! 3!
x x x

c c c
ωρ ωρ ωρ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + = − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
The so-called “ordinary” Bessel function of the first kind, of order zero has a series expansion of 
the form: 

( )
( ) ( ) ( )

2 4 6

0 2 2 2
1 1 11 ...

2 2 21! 2! 3!
x x xJ x ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( )
( )

( ) ( )
( )

2 2 2

0 2
0 0 0

1 1 1
! 1 2 ! ! 2 2!

k k kk k k

k k k

x x xJ x
k k k k k

∞ ∞ ∞

= = =

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ + ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑i

 

( ) ( )! 1 2 ...3 2 1k k k k≡ − −i i i i  where: ( )1 !k kΓ + =    (for k = integer) 
 
In general, the series expansion of the ordinary Bessel functions of the first kind, of order n are: 
 

( ) ( )
( )

2

0

1
! 1 2

k n k

n
k

xJ x
k n k

+∞

=

− ⎛ ⎞= ⎜ ⎟Γ + + ⎝ ⎠
∑  
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Thus, for the cylindrical ║-plate capacitor with d a� the electric and magnetic fields in the gap 
region are of the form: 

( ) ( ) ( )0 0ˆ ˆ, i t i t
o ocE t J E e z J k E e zωρ ω ωρ ρ= =

G�  with  k
c
ω

=   and o
o

VE
d

= −  

B
G

 is 90o out-of-phase with E
G

 {here}:  

( ) ( ) ( ) ( ) ( )0 0ˆ ˆ, i t i t
o ocB t J B e J k B eωρ ω ωρ ρ ϕ ρ ρ ϕ= =

G�  with ( ) 2 22 2o o o
iB E i E

c c
ωρ ωρρ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

 

Note that for 0ρ =  that: ( )0, i t
oE t E e ωρ = =

G�   but: ( )0, 0B tρ = =
G� .  

 

The {Radial} Zeroes of J0(x):    x k
c
ωρ ρ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

 
 
n.b. the zeroes of Jn(x) are not integer related!! 
 

     Since ( ) ( )0 ˆ, i t
oE t J k E e zωρ ρ=

G�  and ( ) ( ) ( )0 ˆ, i t
oB t J k B e ωρ ρ ρ ϕ=

G�   we see that the zeroes xn  

of ( )0J x are physically where the electric and magnetic fields vanish (!!!), i.e. ( ), 0E tρ =
G

 and 

( ), 0B tρ =
G�  when n n nx k cxρ ω= =  with 1 2.4048x = , 2 5.5201x = , 3 8.6537x = , etc.!!! 

 

     So let’s now examine the frequency-dependence of the and E B
G G

 fields of the ║-plate capacitor: 
 

( ) ( ) ( )0 0ˆ ˆ, i t i t
o ocE t J E e z J k E e zωρ ω ωρ ρ= =

G�              with: k
c
ω

=   and:  o
o

VE
d

= −  
 

( ) ( ) ( ) ( ) ( )0 0ˆ ˆ, i t i t
o ocB t J B e J k B eωρ ω ωρ ρ ϕ ρ ρ ϕ= =

G�  with: ( ) 22 2o o o
i ikB E E

c c
ωρ ρρ = =  

 

a.) When: ω = 0,  f = 0  then:  0k
c
ω λ= = ⇒ = ∞   (static case). Then: 0x kρ= =  and ( )0 0 1J =  

 ( ) ˆ ˆ, o
o

VE t E z z
d

ρ = = −
G�   with: o

o
VE
d

= −   and: ( ), 0B tρ =
G�   ←   

 
 

n.b. Same result as original 
static calculation 
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b.) When: 0ω ≥ , e.g.  f = 60 Hz → ω = 2πf = 120π rad/sec 

      Then: 6
8

2 120  / 1.257 10 /
3 10 /

rad seck rad meter
c m sec

π ω π
λ

−= = = = ×
×

 

      Suppose the radius of the capacitor is  a = 1 cm = 10−2 m  (reasonable/typical diameter) 
 

      Then: 81.257 10ka x−= × =   (dimensionless) 
 

      And: ( ) ( )8
0 0 1.257 10 1.0J ka J −= × �   (n.b. see/refer to above graph of J0(x) vs. x) 

 

      Thus, we see that at  f = 60 Hz, the E
G

-field is ≈ that of the DC E
G

-field, and e.g. if  Vo = 10 V and  

      d = 0.1 mm �  a = 1 cm,  i.e. d = 10−4 m� a = 10−2 m, then: 5
4

10 10  /
10

o
o

V VE Volts m
d m−= − = − = −    

      and: ( )
8

5 12
0 02 8

1.257 10 10 2.1 10  
2 2 2 3 10o

a kaB a E E Tesla
c c

ωρ
−

−×
= = = = × = ×

× ×
 {i.e. is very small}. 

 

      Another way to see this:  ( ) 4 56.3 10 / 10  /o oc B a Volts m E Volts mρ −= = ×  =�  
 
c.) Now suppose:  f = 1 MHz = 106 Hz  and  62 2 10 /f rads secω π π= = ×  

      Then: 
6

2
8

2 2 10 2.1 10 0.021 /
3 10

k radians m
c
ω π π

λ
−×

= = = × =
×

�   and if  a = 1 cm = 0.01 m 

      Then: (ka) = 0.021 x 0.01 = 2.1 x 10−4  and  J0(ka) = J0 (2.1 x 10−4) ≈ 1 (still). 
 

      → o
o

VE
d

= −  (constant),  and:  ( ) 83.5 10 35 
2o o
kaB a E Tesla nT
c

ρ −= = = × = (still very small) 

      for 510 Volts/meteroE = − and {still}  ( ) 510.5 / 10  /o oc B a Volts m E V mρ = = =�  

      for  Vo = 10 Volts,  d = 0.1 mm  and   a = 1 cm = 10−2 m. 
 
d.) Now suppose:   f = 100 GHz = 1011 Hz   and  ω = 2πf = 6.3 x 1011 rads/sec 

      Then: 
11

3
8

2 6.3 10 2.1 10
3 10

k
c
ω π

λ
×

= = = = ×
×

radians/m 

      Then: (ka) = 2.1 x 103 x 10−2 = 21 → J0 (kρ)  has 5 zeroes in it !!! 
      EEK!! → the E

G
-field points in the reverse direction depending on 0 ≤ ρ ≤ a value !!! 

       (see above graph of ( )0J x vs. x on page 11 of these lecture notes) 
 

      Suppose instead that we pick: ka = 2.4048 = x1 = 1st zero of J0(x) = J0(kρ)  (a = 10−2 m = 1 cm) 

      Then:  k = 240.48 radians/m = 
c
ω → f = 1.15 x 1010 Hz = 11.5 GHz (in the microwave region) 

      Then: ( ) ( )0 ˆ, i t
oE t J k E e zωρ ρ=

G�  and 
2 2.61 cm
k
πλ = = ,  ( ) ( )0 ˆ, i t

oB t J k B e ωρ ρ ϕ=
G� ,  

2o o
ikB E

c
ρ

=  
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The Inductance of a Parallel-Plate Capacitor 

 

Equate:  
221 1

2 2m v
o

W LI B dτ
μ

= = ∫ �      ToTV IZΔ =� � � ,   ToTI V Z= Δ� � �      i t
oV V e ωΔ =�  

 

Capacitance: ( )for o AC d a
d

ε
= �   

1
ToT C LZ Z Z i L

C
ω

ω
⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

� � �  

 

   
1

i t
oV eI

i L
C

ω

ω
ω

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

� ,   
1

i t
oV eI

i L
C

ω

ω
ω

−
∗ =

⎛ ⎞− +⎜ ⎟
⎝ ⎠

�   then: 
2

2 *
21

oVI II
L

C
ω

ω

= =
⎛ ⎞+⎜ ⎟
⎝ ⎠

��  

 

Thus: ( )
2 2 222 2 2

02 2

1 1 1
2 2 2 41

o
m ov

o o

V kW L I L B d J k E d d dz
c

L
C

ρτ ρ ρ ρ ϕ
μ μ

ω
ω

= = = =
⎛ ⎞+⎜ ⎟
⎝ ⎠

∫ ∫�  

 

     = 1
2

2d
L

( )2 2

2
2

1
oV d

C Lω ω

 
=

⎛ ⎞
⎜ ⎟+⎝ ⎠

dπ
2

2

4o

k
μ

( )2 2 3
02 0

2

a

oE J kp d
c

ρ ρ∫  

     = 
2
oE

L 21
o od

L
C

πε μ

ω
ω

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

2 2
ok E

2 oμ
( )2 3

0

a

o
J k dρ ρ ρ∫   with  2

1
o oc

ε μ= , ckω = , k cω=  

f  = 11.5 GHz 
a = 0.01 m

( )E ρ
G�  

ρ

ρ

( )c B ρ
G�  

oE  

aρ =

aρ =

1
2o ocB kaE=  

0  

0  

Magnetic field 
 = 0 at aρ =  

when
2.4048ka =  

Electric field 
 = 0 at aρ =  

when
2.4048ka =  

f  = 11.5 GHz 
a = 0.01 m

( )0 0B =
G

 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  9        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

14 

⇒ ( )
2

2 3
02 221

ao
o

L J kp d
c d

L
C

πε ω ρ ρ
ω

ω

⎡ ⎤
= ≡⎢ ⎥

⎛ ⎞ ⎣ ⎦+⎜ ⎟
⎝ ⎠

∫ A  

⇒
2 21 1 2L L

C C
ωω

ω ω
⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A A A L
ω

2
2 2 2 21 2 LL L

C CC
ω ω

ω
⎛ ⎞ ⎛ ⎞+ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A A A A  

           or: 
2

2 2 2 11 0
a

b c

L L
C C

ω
ω

=
= =

⎛ ⎞ ⎛ ⎞+ − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠�	

��	�
 ��	�


AA A  

⇒ Quadratic equation of the form: 2 0aL bL c+ + = ,  solve for L: 
2 4

2
b b acL

a
− ± −

= . 

( ) ( )2 2 22 2 41 1C C
L

ω− ± − −
=

A A A
2ω ( ) ( ) ( )2 2

2

2 2

2 2 21 1

2 2
C C CC

ω ω

− ± − −
=

A A A

A A
 

 

( ) 2

2
2 4 41 1C C CL

− ± − +
=

A A A 2

2
4

C− A ( )
2 2

2 41 1

2 2
C C

ω ω

− ± −
=

A A

A A
 

 
Physically, we want 0L →  when 0ω →   ∴  must choose – (negative) sign in above formula! 
 

∴ 
( )

2

1 2 1 4
2
C C

L
ω

− − −
=

A A
A     Now:  21 11 1 ...

2 8
−∈ − ∈ + ∈ −�   for 

4 1
C

∈≡ �A
, thus: 

2

2 2 2

1 4
8

2

o

CL
C

π ε

ω ω

⎛ ⎞
⎜ ⎟
⎝ ⎠ = =�

A
A

A

2ω
22c d

( )2 3
00

2

a
J k dρ ρ ρ

ω

∫
2

oε 2

2

A
d

( ) ( )2 3 2 3
0 02 2 20 02 2

a ao

o

dd J k d J k d
c A A

μ ππ ρ ρ ρ ρ ρ ρ
ε

= =∫ ∫

Where the capacitance and inductance of the parallel-plate capacitor, for d a�  are: 
 

o AC
d

ε
=  and ( )2 3

02 02
ao dL J k d

A
μ π ρ ρ ρ∫�  for ( )

2
2 3
02

4 2 1
a

o
J kp d

C Ac
πω ρ ρ

⎡ ⎤⎛ ⎞∈≡ =⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

∫ �A
. 

 
Note that for     ka =    2.4048 – 1st 

  5.5201 – 2nd 
  8.6537 – 3rd 
11.7915 – 4th   
14.9309 – 5th  zeroes of J0(ka) 
18.0711 – 6th 

. 

. 

. 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  9        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

15

The electric field ( ) 0E aρ = =
G�  for these values of ka, corresponding to wavelengths 2

k
πλ =  

and frequencies 
2 2

c ckf ω
λ π π

= = =  
 
Compare with radius   λ1 = 2.61 cm ↔ f1 = 1.15 x 1010 Hz = 11.5 GHz 
a  = 1.0 cm and    λ2 = 1.14 cm ↔ f2 = 2.64 x 1010 Hz = 26.4 GHz 
diameter D = 2a = 2.0 cm  λ3 = 0.73 cm ↔ f3 = 4.13 x 1010 Hz = 41.3 GHz 
of ║-plate cylindrical   λ4 = 0.53 cm ↔ f4 = 5.63 x 1010 Hz = 56.3 GHz 
capacitor, as well as   λ5 = 0.42 cm ↔ f5 = 7.13 x 1010 Hz = 71.3 GHz 
the gap dimension of   λ6 = 0.35 cm ↔ f6 = 8.63 x 1010 Hz = 86.3 GHz 
d = 0.1 mm = 0.01 cm    .  .   . 
       .  .   . 
     Note that because the electric field ( ) 0E aρ = =

G�  for these specific frequencies 
(corresponding to the zeroes of J0(x)=J0(ka)), this means that physically, we could actually short 
out the capacitor at ρ = a and it wouldn’t make any difference to the behavior / physics of this 
“capacitor” at these specific frequencies f1,  f2,  f3, . .!!! 
 
   For ka = zero of J0(ka) {i.e. J0(ka) = 0), we can short out the capacitor by wrapping it e.g. with 
sheet metal at ρ = a , thus turning it into a cylindrical, fully-enclosed can with d a� ! 
 

→  No change in physics for frequencies  f1,  f2,  f3, . .  
because ( ) 0E aρ = =

G
 for these frequencies! 

Thus, at these frequencies f1,  f2,  f3,  . . fn corresponding  
to the zeroes of the Bessel Function J0(ka) (i.e. J0(ka) = 0),  
a cylindrical conducting metal can of radius a and height 
d a�  is actually a resonant cavity with electric field: 

( ) ( )0 ˆ, ni t
n oE t J k E e zωρ ρ=

G�  and magnetic field: 

( ) ( ) ( )0 0 ˆ, i t
nB t J k B e ωρ ρ ρ ϕ=

G�   
subject to the boundary conditions that: 

( ) ( ), , 0zE a t E a tρ ρ= = = =&
� �  and also that:    

( ) ( ), , 0B a t B a tρρ ρ⊥ = = = =� �  

for:    n
nk

c
ω

= ,    2n nfω π= ,   n = 1, 2, 3, . . .  

        with: 
2o o

ikB E
c
ρ

=   and:  o
o

VE d= −  
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     We will see shortly in the next set of P436 Lecture Notes (# 10) that the resonant frequencies 
of a resonant cavity and the allowed modes of EM wave propagation in wave guides can be 
derived directly from the wave equation for EM waves in these structures, as determined by the 
boundary conditions imposed on the EM waves by the conducting walls of these devices and also 
the allowed polarization states of these EM waves. 
 

     Here in these lecture notes, we obtained harmonic EM wave solutions for  and E B
G G� �  in the gap 

region of a parallel plate capacitor (and cylindrical can capacitor, subject to boundary condition 
E = 0 at ρ = a) via a perturbative technique, analogous to what we did last semester in P435 for 
the E

G
-field associated with a dielectric sphere immersed in an initially uniform external E

G� -field 
and the B

G
-field associated with a magnetizable sphere immersed in an initially uniform external 

B
G� -field.  (See/work Griffiths Problems 4.23 and 6.18). 

 

“Homework” Exercises: 
 

1.) Calculate the electric, magnetic and total energy densities ( ), , ,Eu z tρ ϕ ,  ( ), , ,mu z tρ ϕ  and 

( ), , ,Totu z tρ ϕ  and their time averages; make e.g. plots of these vs. ρ . Investigate/plot their 

behavior for low frequencies ( )0ω ≈ and at higher frequencies, when ( )n n nck c x aω = =  

where n nx k a= = zeroes of ( )0 0nJ x = . 
 

2.) Calculate Poynting’s vector ( ) ( ) ( )1, , , , , , , , ,
o

S z t E z t B z tρ ϕ ρ ϕ ρ ϕ
μ

= ×
G G G� � �  and its time average; 

make plots of ( )S ρ
G�  vs. ρ , investigate/plot its behavior for low frequencies ( )0ω ≈ and 

when ( )n n nck c x aω = = . 
 

3.) Calculate the linear EM momentum density, ( ) ( ), , , , , ,EM o oz t S z tρ ϕ ε μ ρ ϕ℘ =
GG ��  and angular 

momentum density, ( ) ( ), , , , , ,EM EMz t r z tρ ϕ ρ ϕ= ×℘
G GG� �A , and their time averages; make plots 

of ( )EM ρ℘
G�  and ( )EM ρ

G�A  vs. ρ ;  investigate/plot their behavior for low frequencies 

( )0ω ≈ and when ( )n n nck c x aω = = . 


