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We shall follow the approach of Jackson, which is more or less his-

torical. Thus we start with classical electrostatics, pass on to magneto-

statics, add time dependence, and wind up with Maxwell’s equations.

These are then expressed within the framework of special relativity.

The remainder of the course is devoted to a broad range of interesting

and important applications.

This development may be contrasted with the more formal and el-

egant approach which starts from the Maxwell equations plus special

relativity and then proceeds to work out electrostatics and magneto-

statics - as well as everything else - as special cases. This is the method

of e.g., Landau and Lifshitz, The Classical Theory of Fields.

The first third of the course, i.e., Physics 707, deals with physics

which should be familiar to everyone; what will perhaps not be familiar

are the mathematical techniques and functions that will be introduced

in order to solve certain kinds of problems. These are of considerable

usefulness and therefore will be important to us.

1 Coulomb’s Law

By performing experiments on small charged bodies (ideally, point

charges), Charles Augustin de Coulomb, working around the time of

the American and French revolutions (1785), was able to empirically

infer that the force between two static charged particles is proportional
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to the inverse square of the distance between them. The following has

since become known1 have as Coulomb’s Law: Given two static charges

q1 and q2, there is a force acting on each of them which is:

1. Proportional to the product of the magnitudes of the charges, be-

ing attractive for unlike charges and repulsive for like charges

2. Inversely proportional to the square of the distance between the

charges.

3. Directed along the line between the charges.

In the form of an equation, the law states that

F21 = k
q1q2

|x2 − x1|2
x2 − x1

|x2 − x1|
(1)

where charge qi is located at xi, F21 is the force on charge 2 produced by

charge 1, and k is a positive constant; vectors are denoted by boldface

type.

In addition, the force satisfies a superposition law (or principle) in

that the force F on a charge q in the presence of a number of other

charges qi at xi, i = 1,...,n, is simply the sum of the forces arising from

each of the latter as though it were the only other charge present2.

Thus,

F = kq
n∑

i=1

qi(x− xi)

|x− xi|3
, (2)

1Numerous others, such as Henry Cavendish, also may legitimately have some claim to the law.

2As we shall see, the principle of superposition follows from the linearity of Maxwell’s Equations
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given that q is at x.

The constant k has units and magnitude which depend on the system

of units employed. We shall adopt cgs Gaussian units. The units of

mass length and time are, respectively grams (g), centimeters (cm),

and seconds (sec). The unit of charge is the statcoulomb (statcoul)

which is defined by the statement that the force between two charges,

each of one statcoul, one cm apart is one dyne (dyn). Then k = 1 dyn−
cm2/(statcoul)2. In practice one may treat k as having dimension unity

while charge has dimension of M 1/2L3/2/T .

2 Electric Field

It is customary and useful to introduce the concept of the electric field

at this point. This is a vector field, i.e., a vector function of x. It is

written as E(x) and is defined as the force that would be experienced

by a charge q at x, divided by q3. Thus, for a distribution of charges

qi at xi, i=1,2,...,n,

E(x) =
n∑

i=1

qi(x− xi)

|x− xi|3
(3)

The electric field has the property of being independent of the ‘test’

charge q; it is a function of the charge distribution which gives rise to

the force on the test charge, and, of course, of the test charge’s position.

This object has dimension Q/L2 or M 1/2/L1/2T .
3This definition is not complete. The field has other attributes as well since it carries momentum

and energy: i.e. photons
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At this point let us introduce the charge density ρ(x) which is the

charge per unit volume at, or very close to, x. This object is needed if

we would like to integrate over a source distribution instead of summing

over its constituent charges. Thus a sum is replaced by an equivalent

integral,
n∑

i=1

qi →
∫
d3x ρ(x). (4)

The charge density has dimension Q/L3. In terms of ρ, the expres-

sion for the electric field can be written as

E(x) =
∫
d3x′ ρ(x′)

x− x′

|x− x′|3 (5)

In the particular case of a distribution of discrete point charges, it

is possible to recover the sum in Eq. (3) by writing the charge density

in an appropriate way. To do so we introduce the Dirac delta function

δ(x− a). It is defined by the integral

f(a) =
∫
dxf(x)δ(x− a) (6)

where f(x) is an arbitrary continuous function of x, and the range of

integration includes the point x = a. A special case is f(x) = 1 which

leads to
∫
dxδ(x− a) = 1, (7)

demonstrating the normalization of the delta function. From the arbi-

trariness of f(x), we may conclude that δ(x− a) is zero when x is not

a and sufficiently singular at x = a to give the normalization property.
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In other words, it is in essence the charge density of a point charge (in

one dimension) located at x = a.

Some important relations involving delta functions are as follows:

∫ a2

a1

f(x)
dδ(x− a)

dx
dx = − df(x)

dx

∣∣∣∣∣∣
x=a

(8)

and
∫ a2

a1

δ[f(x)]dx =
N∑

i=1


1/

∣∣∣∣∣∣
df(x)

dx

∣∣∣∣∣∣
xi


 (9)

In the final expression the xi are the 0’s of f(x) between a1 and a2.

A delta function in three dimensions may be built as a product of

three one-dimensional delta functions. In Cartesian coordinates,

δ(x) = δ(x)δ(y)δ(z) (10)

This function has the property that

∫
d3x f(x)δ(x− x0) = f(x0) (11)

Returning to electrostatics, we can see that the charge density of a

collection of point charges can be written as a sum of delta functions:

ρ(x) =
n∑

1=i

qiδ(x− xi) (12)

Thus

E(x) =
∫
d3x′ ρ(x′)(x− x′)/|x− x′|3

=
n∑

i=1

∫
d3x′ qiδ(x

′ − xi)(x− x′)/|x− x′|3

=
n∑

i=1

qi(x− xi)/|x− xi|3. (13)
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3 Gauss’s Law

Although Coulomb’s Law is quite sufficient for finding electric fields and

forces, the integral form in which we have expressed it is not always

the most useful approach to a problem. Another integral form, called

Gauss’s Law, is often more useful.

Let us look first at a two-dimensional version of this law. Consider

a point charge q located within a closed path C. In two dimensions, the

field produced by this charge is 2q(x−x0)/|x−x0|2. Consider now the

integral around C of that component of E which is normal to the path.

This normal component is E ·n = qcosθ/r, where r is the distance from

the charge to the integration point on the loop. However, dl cos θ/r is

just the infinitesimal angle dφ subtended by dl at the charge. Hence

we just need to integrate dφ around the loop.
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q

x - x0

x 0

n

E

θ

dldφ

dφ=
| |x - x0

dl cos( )θ

C

∮

C
dlE · n =

∮

C
dl

q cos θ

|x− x0|
= q

∫
dφ (14)

Since the charge is inside, the integral is 2π; if it were outside, the

integral would be 0 because over one part of the path, cos θ is positive

and over another part it is negative with the two parts cancelling one

another when the integration is completed. Thus one finds that

∫

C
dl[n · E(x)] =





2πq, q inside of C

0, q outside of C
(15)

The three-dimensional case works out much the same way. The

field varies as 1/r2 and so one finds that d2x cos θ/r2 is the solid angle

element dΩ subtended by the infinitesimal area element d2x of S at

the position of the charge. Integration over the surface thus reduces to
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integration over the solid angle subtended by the surface at the charge,

and this is 4π if the charge in inside of the surface and 0 otherwise,

∫

S
d2x [E(x) · n] =





4πq, q inside of S

0, q outside of S
(16)

Next, the superposition principle allows us to add up the fields aris-

ing from an arbitrary collection of charges, with Gauss’s Law holding

for each bit of charge. As a consequence, we may say that

∫

S
d2x [E(x) · n] = 4πQ (17)

where Q is the total charge contained inside of the surface,

Q =
∫

V
d3x ρ(x). (18)

4 Differential Form of Gauss’s Law

A differential form of this law may be found by applying the divergence

theorem which states that, for a general vector field C(x),

∫

S
d2x [C(x) · n] =

∫

V
d3x [∇ · C(x)]. (19)

Let us apply this equation to Gauss’s Law:

4π
∫

V
d3x ρ(x) =

∫

S
d2x [E(x) · n] =

∫

V
d3x [∇ · E(x)] (20)

or
∫

V
d3x [∇ · E(x)− 4πρ(x)] = 0 (21)
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Because V is completely arbitrary, we may equate the integrand to zero

and find

∇ · E(x) = 4πρ(x) (22)

which is the differential form of Gauss’s Law.

In the process of obtaining this equation from Coulomb’s Law, we

have lost some of the information contained in it. Merely specifying

the divergence of a vector field is not sufficient to determine the field.

Hence we need an additional equation to supplement Gauss’s Law.

5 An Equation for ∇× E; the Scalar Potential

Let us start once again from Coulomb’s Law:

E(x) =
∫
d3x′ ρ(x′)

x− x′

|x− x′|3 (23)

But one may write part of the integrand as a gradient,

x− x′

|x− x′|3 = −∇

 1

|x− x′|


 , (24)

where the gradient is taken with respect to the variable x. Hence

E(x) = −∇
∫
d3x′

ρ(x′)

|x− x′| , (25)

which is to say, E can be written as the (negative) gradient of a scalar

function of x. This function we shall call the scalar potential and denote

by Φ(x):

Φ(x) ≡
∫
d3x′

ρ(x′)

|x− x′| ; (26)
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E(x) = −∇Φ(x). (27)

From this statement it follows immediately that ∇×E(x) = 0 because

the curl of the gradient of a scalar function is always zero.

To summarize,

∇ · E(x) = 4πρ(x) (28)

and

∇× E(x) = 0. (29)

5.1 Conservative Potentials

From our derivation of the curl equation, we can see that this simple

result follows from the fact that the force (or electric field) is central

and depends only on the distance between charges. Such a force is also

called conservative, and the potential function is related in a simple

way to the energy of a charge in an electric field.

To find this relation, consider that a set of fixed source charges

produce a field E and that a charge q is placed at point xa. Here

it experiences an electric field force F = qE(xa) and so an equal and

opposite force Fext = −F = −qE(xa) must be applied by some external

agent to keep it in position.
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charges

q

C xb

xa

E EE

If we now move the charge along a path C from xa to xb, the work done

by the external agent is found by integrating the force along the path,

Wa→b = −
∫

C
dl · F(x), (30)

or

Wa→b = q
∫

C
dl · ∇Φ(x) = q

∫

C
dΦ = q[Φ(xb)− Φ(xa)] (31)

This result shows that qΦ(x) can be interpreted as the potential energy

of charge q in the electrostatic field at point x, aside from a constant

defining the zero of potential energy. In going from xa to xb, work

q[Φ(xb)−Φ(xa)] is done on the charge, and so the change in the energy

of the system (composed of the charge q and the sources of the field) is

just this work.

Notice especially that the work does not depend on the path C

except through the endpoints. This statement can always be made
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of conservative systems. In particular, the integral of the work done

around a closed path is 0,

∫

C
dl · E(x) = 0 (32)

It is instructive to apply Stokes’ Theorem to this relation. His theorem

states that, for an arbitrary vector field A, and a closed path C with

a surface S “linking” the path (which means that S is an open surface

with edges coinciding with C),

∫

C
dl ·A =

∫

S
d2x [∇×A(x)] · n (33)

where n is a unit normal to the surface in the right-hand sense relative

to the direction in which the path is traversed. As applied to the electric

field, we have

0 =
∫

C
dl · E(x) =

∫

S
d2x [∇× E(x)] · n. (34)

Because C is arbitrary and can in particular be any infinitesimal closed

loop, this relation implies that the integrand is zero, ∇ × E(x) = 0.

Thus the statement that E is a conservative field and ∇ × E(x) = 0

are equivalent.

6 Poisson’s and Laplace’s Equations

The differential equations we have determined for E are sufficient to

find it uniquely, given appropriate boundary conditions and the charge
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density, but they do not necessarily provide the simplest approach to

the solution of an electrostatics problem. Often, it is best to solve for

Φ from which E follows easily. Since ∇ · E = 4πρ, and E = −∇Φ, we

have

∇ · ∇Φ(x) ≡ ∇2Φ(x) = −4πρ(x) Poisson′s Equation, (35)

which is Poisson’s Equation; the operator ∇2 is the Laplacian operator.

In those regions of space where the charge density vanishes, we find the

simpler equation,

∇2Φ(x) = 0 Laplace′s Equation, (36)

which is Laplace’s Equation.

Consider the effect of operating with ∇2 on the integral expression

for Φ:

−4πρ(x) = ∇2Φ(x) =
∫
d3x′ ρ(x′)∇2


 1

|x− x′|


 , (37)

or

ρ(x) = −
∫
d3x′ ρ(x′)


 1

4π
∇2 1

|x− x′|


 . (38)

However, we defined δ(x− x′) as

f(x) =
∫
d3x′ f(x′)δ(x− x′) (39)

for general f(x). Since ρ(x) can be quite general, the quantity in large

parentheses above satisfies the condition placed on the delta function;

hence we conclude that

∇2


 1

|x− x′|


 = −4πδ(x− x′) (40)
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which is only appropriate because 1/|x − x′| is the potential of a unit

point charge, and δ(x− x′) is the corresponding charge density. Thus,

Eq. (40) expresses Poisson’s equation for a unit point charge located at

x′.

As an exercise we may derive this result in a different way. Consider

∇2


 1

|x|


 = ∇2

(
1

r

)
=

1

r

d2

dr2

(
r

1

r

)
= 0, (41)

except possibly at r = 0 where r/r is undefined. To determine what

happens here, we integrate ∇2(1/r) over a small sphere centered on the

origin:

∫

V
d3x∇2(1/r) =

∫

V
d3x∇ · ∇(1/r) =

∫

S
d2x [∇(1/r)] · n = −

∫

S
d2x (1/r2) = −

∫
r2dr sin θdθdφ(1/r2) = −4π.(42)

Thus we have shown the following:

(i) ∇2(1/r) = 0, r 6= 0

(ii)
∫
V d

3x∇2(1/r)(−1/4π) = 1, r = 0 ∈ V.
(43)

These results tell us that ∇2(1/r) = −4πδ(x).

7 Energy in the Electric Field; Capacitance; Forces

The energy of the static electric field, or of a static charge distribution,

is of some importance. Let us start our investigation by constructing

the energy of interaction of n point charges qi located at xi. As we have
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seen, the work required to move a charge q from one point to another in

an applied electric field is q times the difference in the electric potentials

at the end points. If we suppose that this potential is produced by our

collection of point charges, then it is given by

Φ(x) =
n∑

i=1

[qi/|x− xi|] (44)

and the work done to bring q from infinitely far away, where Φ(x) = 0,

to point x is

W = q
n∑

i=1

[qi/|x− xi|]. (45)

This is therefore the increase in the total energy of the system of charges

when a charge is added to it at some particular point.

We may use this result to calculate the energy of the collection of

charges by bringing them in one at a time from points at infinity where

they are assumed to be widely separated. The first charge is brought

in to x1, and this costs no energy because Φ = 0 when there are no

other charges present. The second charge costs energy

W2 =
q1q2

|x1 − x2|
. (46)

The third then costs

W3 = q3

2∑

j=1

qj
|x3 − xj|

, (47)

and so on. The amount of work which must be done to bring in the ith

particle is

Wi = qi
i−1∑

j=1

qj
|xi − xj|

. (48)

17



If we add up these energies to find the total work done, it is

W =
n∑

i=2

i−1∑

j=1

qiqj
|xi − xj|

(49)

which is the sum over all pairs, each pair taken once; it may also be

written as

W =
1

2

′∑

i,j

qiqj
|xi − xj|

; (50)

the prime on the summation sign means that the terms with i = j

are omitted. In this sum, we include each pair i, j with i 6= j twice

and so have to multiply by a factor of 1/2. Given a continuous charge

distribution, the same argument can be applied using as the elementary

charges infinitesimal charge elements located in infinitesimal volume

elements. The result must be

W =
1

2

∫
d3x d3x′

ρ(x)ρ(x′)

|x− x′| (51)

where the integrations are unrestricted and include the points x = x′

because the interaction energy of an infinitesimal continuously dis-

tributed charge element with itself vanishes in the limit of zero extent.

However, if the charge distribution contains finite point charges, repre-

sented by delta functions in ρ(x), then one has to omit the interaction

of each of these charges with itself, as in the original sum, Eq. (50), in

order to obtain a finite result.

The expression for W can be cast into a number of other useful

forms. Recall that

Φ(x) =
∫
d3x′

ρ(x′)

|x− x′| ; (52)
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substitution into the expression for W gives

W =
1

2

∫
d3x ρ(x)Φ(x). (53)

Further, ρ(x) = −∇2Φ(x)/4π, so

W = − 1

8π

∫
d3xΦ(x)∇2Φ(x). (54)

Let us now do an integration by parts in three dimensions. This oper-

ation is easy to achieve by making use of the divergence theorem; for a

vector field f(x)A(x) consider the integral

∫

V
d3x∇ · [f(x)A(x)] =

∫

S
d2x f(x)[A(x) · n]

=
∫

V
d3x [∇f(x) ·A(x)] +

∫

V
d3x f(x)[∇ ·A(x)] (55)

or

∫

V
d3x f(x)[∇ ·A(x)] = −

∫

V
d3x [∇f(x)] ·A(x) +

∫

S
d2x f(x)[A(x) ·n],

(56)

where V and S are related in the usual way. As applied to the integral

for W , this useful formula gives, letting V be all space,

W = − 1

8π

∫
d3xΦ(x)∇ · ∇Φ(x) (57)

=
1

8π

∫
d3x∇Φ(x) · ∇Φ(x)−

∫
d2xΦ(x)[∇Φ(x) · n] (58)

or

W =
1

8π

∫
d3x [E(x) · E(x)]. (59)
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The surface integral has vanished because Φ falls off at distances r

which are large compared to the extent of the charge distribution at

least as fast as 1/r. Hence the integrand in the surface integral falls

off at least as fast as 1/r3 while the area of the surface at distance r

varies as r2. This integral therefore falls off at least as fast as 1/r and

so vanishes when the surface is at infinity.

An interesting and plausible interpretation of the final expression is

that the integrand is the energy density u(x) of the electric field,

u(x) =
1

8π
E(x) · E(x). (60)

This is only an interpretation, however. All we really know is that the

total energy is the integral of this quantity over all space. The idea

is plausible because u(x) so defined is everywhere positive or zero (a

negative energy density would be disturbing). Note, too, that our other

expression for the energy as an integral over a single position variable

has an integrand that can be both positive and negative which makes

it unreasonable to interpret that integrand, ρ(x)Φ(x)/2, as the energy

density.

Given Eq. (59) for W , we can see that the energy will be positive

definite. Yet the energy of, e.g., a pair of point charges q and −q at

x and x′ is negative, −q2/|x − x′|. The reason is that the expression

we have for the energy of a set of point charges does not include the

(infinite) energy required to assemble each of the point charges in the

first place, but Eq. (59) would include this (positive) energy. A more
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concrete example involves two oppositely charged masses. The energy

required to bring them together from infinity is negative,

-+
whereas the energy required to assemble the entire charge distribution

-+
∞

at its final location is positive.

7.1 Conductors

Consider now the special case that our electrostatic system consists of

a collection of n electrically isolated conductors; for our present pur-

poses, a conductor may be defined as an object which cannot support

an electric field (because it contains “free” charges which move under

the influence of a field until there is no field). Thus the interior of a

conductor is an equipotential. Using Eq. (53), we see that for such a

system,

W =
1

2

∫
d3x ρ(x)Φ(x) =

1

2

n∑

i=1

QiVi (61)

where Qi and Vi are, respectively, the charge and potential on the ith

conductor. Now, because the potential is a linear function of charge
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(superposition theorem), it is true that

Vi =
n∑

j=1

pijQj. (62)

The coefficients pij are independent of the charges; they depend only

on the distribution and shapes of the conductors and are called the

coefficients of potential. To see that this relation is valid, one need only

think of the potentials produced on each conductor given charge Qj

on the jth conductor and zero charge on all others; then superpose the

solutions to each of the problems of this kind. Inversion of Eq. (62)

yields the charges Qi as linear combinations of the potentials Vj,

Qi =
n∑

i=1

CijVj. (63)

The coefficients Cij are called coefficients of capacitance; the diagonal

elements Cii are more commonly referred to simply as capacitances

while the off-diagonal ones Cij are called coefficients of electrostatic

induction and are not to be confused with the inductances introduced in

connection with Faraday’s Law. The capacitance of a single conductor,

Cii, is thus the total charge on that conductor when it is maintained at

unit potential while all other conductors are held at zero potential.

As an example the capacitance of a pair of conductors with equal and

opposite charge is defined as the ratio of the charge on one conductor

to the potential difference between them when all other conductors are

maintained at zero potential.
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Q -Q

V V
1 2




Q

−Q


 =



C11 C12

C21 C22






V1

V2


 (64)



V1

V2


 =




C22 −C21

−C12 C11







Q

−Q




C11C22 − C12C21
(65)

The capacitance C(1, 2) = Q/|V1 − V2| turns out to be

C(1, 2) = (C11C22 − C2
12)/(C11 + C22 + 2C12). (66)

The energy of the system of conductors may be written in terms of

potentials and the coefficients Cij as

W =
1

2

n∑

i=1

QiVi =
1

2

n∑

i,j=1

CijViVj. (67)

7.2 Forces on Charged Conductors

Another useful application of the expressions for the energy is in the

calculation of forces on charged conductors. Consider the surface of a
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conductor. The field at the surface can be inferred from ∇ · E(x) =

4πρ(x) and ∇ × E(x) = 0. Consider an integral of the first of these

equations over a “pillbox” or short right circular cylinder oriented with

the “drumhead” parallel to the surface of a conductor and situated half

inside and half outside of the conductor.

conductor

n
a

V

h

E=0

∫

V
d3x∇ · E =

∫

S
d2xE · n = En(x)π a2 = 4π

∫

V
d3x ρ(x) = πa24πσ(x)

(68)

Using the divergence theorem, we may convert to a surface integral.

Given that the height h of the cylinder is much smaller than its radius,

h << a, the only important contribution to the surface integral must

come from the drumheads. But E(x) = 0 on the one inside of the

conductor, so we pick up only the contribution from the component of

E normal to the surface of the conductor on the outside. Given that a

is much smaller than distances over which the field varies appreciably,

we get simply πa2En(x) where x is a point just outside of the surface
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of the conductor and the subscript n designates the outward (from the

conductor) normal component of the field. The volume integral of ρ(x),

on the other hand, yields the total charge within the pillbox. Because

h << a, we will get a vanishingly small contribution from any finite

volume density of charge. However, we get an important contribution

from a surface charge density; we shall denote such a thing by σ(x). It

can be written as a volume charge density by using a δ function:

ρ(x) = σ(x)δ(ξ(x)) (69)

where ξ is the normal distance of the point x from the surface of the

conductor. When this surface charge density is integrated over the

volume of the pillbox, it reduces to a surface integral of the surface

charge density over a disc on the conductor surface and having the

area of the crosssection of the pillbox, i.e., πa2. Hence one finds

πa2(4πσ(x)). Putting the two sides of the equation together, we find

the following relation between the charge density on the surface of a

conductor and the normal component of the electric field just outside

of the conductor:

En(x) = 4πσ(x) (70)

We may also find an equation for the tangential component of the

electric field at the surface of a conductor. Consider the line integral of

dl · E(x) around a rectangle which straddles the conductor’s surface.
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conductor

h

E=0

C

w

∫

S
d2x (∇× E) · n =

∮

C
dl · E = Eth = 0 =⇒ Et = 0 (71)

The width w of the rectangle, which is its size in the direction normal to

the interface, is much smaller than its height h, which is its size parallel

to the interface. The dominant contribution to the line integral, which

is zero, comes from the two sides parallel to the interface. On the

inside, E(x) is zero, so we have only the integral along the side which is

exterior to the conductor. Since the whole integral is zero, the integral

along this single side must be zero, and hence we can conclude that the

tangential component of E(x), or Et(x), just outside of a conductor

must vanish,

Et(x) = 0 at the surface of a conductor. (72)
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dA

E=0
E = 4n πσ

dx

n

Now we are in a position to consider the force on the surface of

a conductor. We use the method of virtual work. Imagine moving a

small element dA of the conductor’s surface, along with the charge on

it, a distance dx from its initial position in the direction normal to the

surface. It will sweep out a volume dAdx. In this volume, to a first

approximation 4, there will no longer be any electric field (since the

field is zero within a conductor) while the electric field elsewhere will

be unchanged. Hence there will be a change in the field energy of

dW = −dAdx 1

8π
E2
n = −2πσ2dAdx+O(dAd2x, d2Adx) (73)

where Eq. (70) has been used for the normal component of the electric

field. Energy conservation demands that the amount of work done on

the system in making this displacement is equal to dW . It is also dx

times the negative of the electric force acting on the area element dA.

4This approximation improves as the ratio of dx to
√
A goes to zero
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Thus,

−Fdx = dW or F = 2πσ2 dA. (74)

Hence the force per unit area on the surface of the conductor is 2πσ2; it

is directed normally outward from the conductor (“negative pressure”).

A second way of looking at this problem is to calculate the force

directly. It must be the charge on dA, or σdA, times the electric field

which acts on this charge, i.e., that part of the electric field at the

surface which is produced by charges other than those on dA. This

field is just 2πσ (Why?), so the force comes out at before.

8 Green’s Theorem

In everything we have discussed thus far, we have assumed that ρ(x)

is known, and that there is a simple boundary condition on φ(x) at

infinity (that it must at least as fast as 1/r). This is not generally true!

Usually, we only know ρ(x) within some finite volume V , and the value

of φ(x) on the corresponding surface S.
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V

ρ( )x

is specified
on the surface
of V

φ( )x

For these problems Green’s theorem and functions are useful. The

simplest greens function is that for free space

Gfree(x,x
′) =

1

|x− x′| , (75)

and the corresponding potential is

φ(x) =
∫

V
d3x′Gfree(x,x

′)ρ(x′) . (76)

Note that Gfree(x,x
′) gives the response at x, due to a unit point charge

at x′. For the response due to a collection of charges ρ(x), superposition

yields the integral above.

For the more general problem of a collection of charges and boundary

conditions on a surface, we might expect that this integral relation will

become

φ(x) =
∫

V
d3x′G(x,x′)ρ(x′) + surface term (77)

Before we can proceed further, we must develop some formalism.
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8.1 Green’s Theorem

To this end, let us develop Green’s Theorem, starting from the diver-

gence theorem as applied to a vector field A:

∫

V
d3x [∇ ·A(x)] =

∫

S
d2x [A(x) · n] (78)

where S is the surface bounding the domain V. Consider the special

case A(x) = φ(x)∇ψ(x); then

∇ ·A(x) = ∇φ(x) · ∇ψ(x) + φ(x)∇2ψ(x) (79)

and

n ·A(x) = φ(x)[n · ∇ψ(x)] = φ(x)
∂ψ(x)

∂n
(80)

where ∂ψ
∂n is the outward normal derivative of ψ at the surface. Substi-

tution into the divergence theorem produces

∫

V
d3x [∇φ(x) · ∇ψ(x) + φ(x)∇2ψ(x)] =

∫

S
d2xφ(x)

∂ψ(x)

∂n
, (81)

a result known as Green’s first identity. We may also start from a vector

field A(x) = ψ(x)∇φ(x) and wind up with

∫

V
d3x [∇ψ(x) · ∇φ(x) + ψ(x)∇2φ(x)] =

∫

S
d2xψ(x)

∂φ(x)

∂n
. (82)

Subtract the second expression from the first and obtain

∫

V
d3x [φ(x)∇2ψ(x)−ψ(x)∇2φ(x)] =

∫

S
d2x


φ(x)

∂ψ(x)

∂n
− ψ(x)

∂φ(x)

∂n


 ,

(83)

which is Green’s second identity, also known as Green’s Theorem.
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8.2 Applying Green’s Theorem 1

We next make a particular choice of the scalar functions and also change

the integration variable to x′:

φ(x′) = Φ(x′) and ψ(x′) = 1/|x− x′| ≡ 1/R. (84)

In the latter function, x is to be regarded as a parameter which will

eventually become the point at which we evaluate the potential. Sub-

stitution into Green’s Theorem gives

∫

V
d3x′ [Φ(x′)∇′2(1/R)− (1/R)∇′2Φ(x′)] (85)

=
∫

S
d2x′


Φ(x′)

∂(1/R)

∂n′
− 1

R

∂Φ(x′)

∂n′


 , (86)

or

−4πΦ(x) + 4π
∫

V
d3x′

ρ(x′)

|x− x′| =
∫

S
d2x′


Φ(x′)

∂(1/R)

∂n′
− 1

R

∂Φ(x′)

∂n′




(87)

where we have assumed x is inside of V. With a little rearrangement,

the final equation can be written as

Φ(x) =
∫

V
d3x′

ρ(x′)

|x− x′| +
1

4π

∫

S
d2x′


 1

R

∂Φ(x′)

∂n′
− Φ(x′)

∂(1/R)

∂n′


 (88)

The first term on the right is the familiar volume integral over the

charge density, but notice that it no longer is over all space. The charge

outside of V does, of course, contribute to Φ(x); its contribution is now

taken into account by the integral over the surface surrounding V. Note,

too, that if the point x is outside of V, then the left-hand side (LHS)
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of the equation is zero. Further, if V is all space so that S is at infinity,

then the surface integral will vanish and we recover the volume integral

over all space. Note also that if ρ(x′) = 0 for all x′ in V, then the

potential is found simply from the surface integral of Φ and its normal

derivative.

8.3 Applying Green’s Theorem 2

This equation is not the best one of its kind. It is in fact (as we

shall see) possible to find Φ(x) from the charge density in V and from

either Φ(x′) or ∂Φ(x′)/∂n′ on the surface S; that is, it is not necessary

to know both of these things on the surface. When Φ is specified,

that is called Dirichlet boundary conditions; when the normal derivative

of Φ is given, that is called Neumann boundary conditions. Various

combinations are also possible, such as Dirichlet conditions on part of

S and Neumann conditions on the remainder, a case known as mixed

boundary conditions.

specification Boundary Condition

φ(x′) specified on S Dirichlet

∂Φ(x′)/∂n′ specified on S Neumann

φ(x′) specified on part of S Mixed

∂Φ(x′)/∂n′ specified on remainder
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Let us demonstrate that it is sufficient to know either Φ(x′) or its

normal derivative on S in order to obtain a unique solution to

∇2Φ(x) = −4πρ(x) (89)

with some volume V bounded by S. Start by supposing that either

type of boundary condition is given and that there are two distinct

solutions Φ1 and Φ2. Define U = Φ1 − Φ2. This function is such that

∇2U(x) = 0 inside of V (90)

and

either U(x) = 0, for x on S (Dirichlet)

or ∂U(x)
∂n = 0, for x on S (Neumann).

(91)

In Green’s first identity Eq. (81), let ψ = φ = U :

∫

V
d3x [U(x)∇2U(x) +∇U(x) · ∇U(x)] =

∫

S
d2xU(x)

∂U(x)

∂n
. (92)

Now, since U satisfies the Laplace equation, the first term in brackets on

the left vanishes. From the boundary condition for either the Neumann

or the Dirichlet problem, the surface integral also vanishes. Hence we

have just
∫

V
d3x |∇U(x)|2 = 0 (93)

from which it follows that∇U(x) = 0 in V. Therefore U(x) is a constant

in V and so the two solutions Φ1 and Φ2 are the same up to a constant.

For Dirichlet conditions, this constant is zero since the two functions
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are the same on the boundary. For Neumann conditions it is arbitrary

and amounts only to a choice of the zero of potential.

The preceding proof is also valid for the case of mixed boundary

conditions because the surface integral vanishes in this case also. Fi-

nally, one cannot in general specify both Φ(x) and ∂Φ
∂n everywhere on

S (Cauchy boundary conditions); either one alone is sufficient to de-

termine a unique solution and the two solutions so determined are not

necessarily the same. However, if Cauchy boundary conditions are given

on just an appropriate part of S, that can be sufficient to give a unique

solution for the potential.

In the light of what we have learned, it is evident that our integral

expression for Φ(x), Eq. (88), which involves surface integrals of both

the potential and its normal derivative, is not a very effective way to

solve an electrostatic boundary value problem; it requires more input

information than is actually needed to determine a solution and so is

an integral equation as opposed to a solution in the form of an integral.

If we had made a better choice of ψ(x′) at the outset, we could have

come up with a better result. Let’s try again, choosing for ψ(x′) a

function we shall call G(x,x′); it is given by 1/|x − x′| plus an as yet

undetermined function F (x,x′) which is to be a solution of the Laplace

equation in V,

∇′2F (x,x′) = 0 (94)
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for x and x′ in V. Since

G(x,x′) =
1

|x− x′| + F (x,x′), (95)

it is the case that

∇′2G(x,x′) = −4πδ(x− x′) (96)

for x and x′ in V. Physically, the function G, viewed as a function of

x′, is a solution of Poisson’s equation in V given a unit point charge at

x. The function F (x,x′) is a solution of Laplace’s equation; we shall

presently determine its properties further by requiring that it satisfy

certain conditions on S. Using G(x,x′) for ψ(x′) and Φ(x) for φ(x) in

Green’s Theorem, we can easily show that

Φ(x) =
∫

V
d3x′G(x,x′)ρ(x′)+

1

4π

∫

S
d2x′


G(x,x′)

∂Φ(x′)

∂n′
− Φ(x′)

∂G(x,x′)

∂n′


 .

(97)

8.3.1 Greens Theorem with Dirichlet B.C.

Now consider in turn two different sets of boundary conditions for G.

First, require that G(x,x′) = 0 for x′ on S and denote this function by

GD. Then the preceding equation becomes

Φ(x) =
∫

V
d3x′GD(x,x′)ρ(x′)− 1

4π

∫

S
d2x′

∂GD(x,x′)

∂n′
Φ(x′). (98)

This is a useful equation when we have a Dirichlet problem with Φ(x′)

specified for x′ on S. Then we have in principle the information we need
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to complete the integration and so find Φ(x) in which case Eq. (98) is

an integral solution for Φ(x) as opposed to an integral equation for the

potential.

The question naturally arises, does the function GD exist? That is,

is it possible to find the Dirichlet Green’s function GD which is specified

by the conditions

∇2GD(x,x′) = −4πδ(x− x′); x,x′ in V (99)

and

GD(x,x′)|x′ on S = 0? (100)

The answer is that this function does exist; further, it is unique. The

preceding two conditions are sufficient to determine it completely. We

know this without resorting to a mathematical proof because we can

see that GD(x,x′) is just the scalar potential at x′ given a unit point

charge at x inside of a cavity with conducting walls coincident with S

and held at zero potential.

V
S

q=1

This is the physical interpretation of the Dirichlet Green’s function.

Notice in particular that this is a strongly geometry-dependent func-

tion (it depends on S very much) but it is not dependent on any other
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properties of the system. In other words, we can solve any Dirichlet

problem for a given geometry if we can solve the “point charge with

grounded conducting surfaces” problem for the same geometry in the

sense that we can reduce the solution to a quadrature, i.e., to an inte-

gral.

An important property of the Dirichlet Green’s function is that it

is invariant under interchange of x and x′, G(x,x′) = G(x′,x). To

demonstrate this property, let φ(y) = G(x,y) and ψ(y) = G(x′,y).

Then insert these functions into Green’s Theorem (with y as the inte-

gration variable)

∫

V
d3y [G(x,y)∇2G(x′,y)−G(x′,y)∇2G(x,y)] =

∫

S
d2y


G(x,y)

∂G(x′,y)

∂n
−G(x′,y)

∂G(x,y)

∂n


 , (101)

and make use of the properties of the Dirichlet Green’s function that

∇2
yG(x,y) = −4πδ(x − y) and G(x,y) = 0 for y on S. The result is

that G(x,x′) = G(x′,x).

8.3.2 Greens Theorem with Neumann B.C.

The second case of boundary conditions we consider onG is ∂G(x,x′)/∂n′ =

0 for x′ on S. Then application of Green’s Theorem (Eq. (97)) leads to

Φ(x) =
∫

V
d3x′G(x,x′)ρ(x′) +

1

4π

∫

S
d2x′

∂Φ(x′)

∂n′
G(x,x′). (102)
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Unfortunately, this G does not exist as we may show by applying

Gauss’s Law,

0 =
∫

S
d2x′

∂G(x,x′)

∂n′
=
∫

S
d2x′ [n′·∇′G(x,x′)] =

∫

V
d3x′∇′2G(x,x′) = −4π.

(103)

Clearly, we cannot have a G with zero normal derivative everywhere on

S. The next simplest possibility is that

∂GN(x,x′)

∂n′
|x′ on S = −4π

S
, (104)

where S is the area of the surface. Given such a function, we can use it

in Green’s Theorem and will be led to the following integral expression

for the scalar potential:

Φ(x) =< Φ >S +
∫

V
d3x′GN(x,x′)ρ(x′) +

1

4π

∫

S
d2x′

∂Φ(x′)

∂n′
GN(x,x′)

(105)

where < Φ >S is the average of the potential over the surface S,

< Φ >S≡
1

S

∫

S
d2x′Φ(x′) (106)

One can understand the necessity of the presence of this term from the

fact that the Neumann boundary condition problem can only be solved

up to an arbitrary constant.

The Dirichlet Green’s function is the one that we shall use most

often as one more commonly specifies the potential on the boundary

than the normal component of the electric field.
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