UIUC Physics 436 EM Fields & Sources I1 Fall Semester, 2011 Lect. Notes 18.5  Prof. Steven Errede

LECTURE NOTES 18.5

The Lorentz Transformation of £ and B Fields:

We have seen that one observer’s E -field is another’s B -field (or a mixture of the two), as
viewed from different inertial reference frames (IRF’s).

What are the mathematical rules / physical laws of {special} relativity that govern the
transformations of £ = B in going from one IRF(S) to another IRF(S") 722

In the immediately preceding lecture notes, the reader may have noticed some tacit / implicit
assumptions were made, which we now make explicit:

1) Electric charge g (like ¢, speed of light) is a Lorentz invariant scalar quantity.
No matter how fast / slow an electrically-charged particle is moving, the strength of its

electric charge is always the same, viewed from any/all IRF’s: e=1.602x10""* Coulombs

{n.b. electric charge is also a conserved quantity, valid in any / all IRF’s.}

Since the speed of light c is a Lorentz invariant quantity, then since ¢ = 1/ €, 1, thensois

¢* =1/¢,u, and thus &, and p, must be separately Lorentz invariant quantities,
ie.
&, =8.85x107" Farads/meter }

u, = 4rx1077 Henrys/meter

same in any / all IRF’s

2) The Lorentz transformation rules for £ and B are the same, no matter sow the E and B fields
are produced - e.g. from sources: ¢ (charges) and/or I (currents); or from fields: e.g.

VxE=-0B/ot, etc.

The Relativistic Parallel-Plate Capacitor:

The simplest possible electric field: Consider a large ||-plate capacitor at rest in IRF(Sp).
It carries surface charges *o,, on the top/bottom plates and has plate dimensions 7, and w,

{in IRF(So)!} separated by a small distance d < ¢, w,,.

In IRF(Sp): Electric field as seen in IRF(Sy):
Eo = ﬁj’
80

No B -field present in IRF(Sy):

B, =0| no currents present!

n.b. E, is non-zero only in the
gap region between || -plates
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Now consider examining this same capacitor setup from a different IRF(S), which is moving
to the right at speed v (as viewed from the rest frame IRF(Sy) of the || -plate capacitor)

i.e. v =+y,x is the velocity of IRF(S) relative to IRF(S).

Viewed from the moving frame IRF(S), the || -plate capacitor is moving to the left (i.e. along

the —x -axis) with speed —vy. The plates along the direction of motion have also Lorentz-

contracted by a factor of

7o El/,/l—(vo/c)2

, i.e. the length of plates in IRF(S) is now

C=4,/7, :\/1_(V0/C)2£0

{n.b. the plate separation d and plate width w are unchanged in IRF(S) since both d and w are L
to direction of motion!!}

Since:

And:

Thus:

But:

Thus:

o= Oror _ Oror
Area (*w
_ Oror _ Oror
’ 4, Ly xw,

Oror =L =0yl Wy

but:  Qror= Lorentz invariant quantity
but: w=wyand d = d, since both L to direction of motion.
= |ol=0yly| = |o=0,((,/!)

ngo/?’

O =700,

5%
= |0=0y| — 77 |= 7%
A2
The surface charge density on the plates of capacitor in IRF(S)
but since: |y, >1| =|0 >0, B
is higher than in IRF(S,) by factor of 7, =1/ 4/1— (Vo /C)

To an observer in IRF(S), the plates of the ||-plate capacitor are moving in the —v,x direction.

The superscript L is to explicitly remind us that | E

Thus the electric field £ in IRF(S) is:

E* :gijjzyog_o.f/zyogvol where: |0 = 7,0,
El:7oEo ) Eolzﬂ);

go
E* =y,Ey|is for E -fields L to the direction

of motion. Here, v = +v,x between IRF’s.

2
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Now consider what happens when we rotate the {isolated} ||-plate capacitor by 90° in

IRF(Sy), then EO =903 in IRF(Sy), but in the moving framelRF(S):
2
~
. . . 9 A
The electric field in IRF(S) is: _
— /11
E=—3%=FE Dz
:, !f»
G ]~
But: |o= Oror _ Oror _ Oror =0, e E E.? i >4
Area tw L yw, g
- w2
E'=Z3=203—Ell«— E-fieldin IRF(Sy) % /
go go —Wc‘ /@--—_
B

d is now Lorentz-contracted in IRF(S): |d =d,/y, | but has no effect on E {in IRF(S)}, because

E does not depend on d! Why??? Because here, the || -plates were first charged up (e.g. from a
battery) and then disconnected from the battery!

= Potential difference AV (IRF(S))= AV, (IRF(S,))[!!!

I I i I
Since: (E' =MJ=EE(')' =%J = AV AV but:\d =d,/y,| = AV _ AV,
d d, d0/70 d,

AV (IRF(S))=y,A¥, (IRF(S,))

The || -plate capacitor is deliberately not connected to an external battery (which would keep
AV = constant, but then we would have o =0, inthe L case and o # o, in the || case.
Currents would then flow (transitorially) in both situations.

Note that we also want to hang on to/utilize the Lorentz-invariant nature of Qror, which is
another reason why the battery is disconnected...

Griffiths Example 12.13: The Electric Field of a Point Charge in Uniform Motion

A point charge ¢ is at rest in IRF(Sp). An observer is in IRF(S), which moves to the right

(i.e. in the +% direction) at speed v, relative to IRF(Sy). What is the E -field of the electric
charge ¢, as viewed from the moving frame IRF(S)?

In the rest frame IRF(Sy) of the point charge ¢, the electric field of the point charge ¢ is:
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~
- 1 .
2 E, = 4 where: |17 =x, +y. +z,
0 4 2°0 0 0 0 0
T IRF(S): 27— ohserver@f 7o 1o
(% Y%, Z0) q Xo
770y E, =
W TRP(Se) | 4 %
A E, (x§+y§+z§)2
q Yo
EO, - 3
%: otigin~ (3 4~ 4z, (xg +y§ +Z§ )A
TRF(Se) q z,
E, = 3
A (R R)
But: [E* =7,E; | and: |E" = Eg| |7, :1/\/1_(“0/0)2

Then in IRF(S), which is moving to right (i.e. in the +x direction) at speed vy relative to IRF(S):

E - E = q Xg )
X 0, 3
AT, (324 324 22)
g - q YoVo n.b. These relations are currently expressed
v = Voko, dne, (x 2, 2, 2 )% > in terms of the IRF(Sy) coordinate (xo, yo, zo)
0o TV TZ of the field point P.
q Yoz
E = 70Eoz = 4 = 3
e, (x§+y§+z§)2 )

However we want/need the IRF(S) E expressed in terms of the IRF(S) coordinate (x, y, z) of
the field point P. = Use the inverse Lorentz transformation on coordinates:

. In IRF(S) at time :
M
1
Observation / field point in IRF(S) at time #:
£ (x,4,2)

Inverse Lorentz Transformation:

R

a\ Xy =7y (x+5t) = 7,R, R=RZX+R J+R:2
P "
% & x yozyERy ]/0—1/ 1—(\/'0/0)
Zy,=z=R,

4
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Xg+ Vo T2y =0 | =

VoR; +R.+R:| =

7oR’ cos’ @+ R’sin’ 0

=
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R?=R’cos’ 0|,

From above figure: |R, = Rcos &

Then since: |R* = R’ +(Rj + Rzz) = (Rf + Rzz) = R’sin’ 6| Since: |R* =R’ (cos2 0 +sin’ 9) .
. In IRF(S):
q YoR, .
E = P Picked up Lorentz factor y,, from
are, (}/0 R*cos’ 6+ R*sin” 0 ) Lorentz transformation of coordinate
\
g -4 YoR,
" Ane 2 2 %
’ (7 oR cos” 6+ R” sin 6) > Picked up Lorentz factor }, from
g -4 VoR, Lorentz transformation of field
z 3
Az, (7sR® cos® 0+ R’ sin’ 6)4
/
E=-1 7ok 7 with: ﬁszx+Ryy+R22
are, (70R2 cos” @+ R’ sin 6?)
~ R R R - s R
Or E=-1 Y y(—J where: | — =—| since: |[R=RR| or: |[R=—
47[80 (}/g COSZ 9+Sin2 0) 2\ R R R R
Fo_4 % i b 1 1_(hj2
- y 2 Wlt . 2 -
4re /( , U ap)? R 7 c
7J? | cos 9+/2 sin” @
%o
2
— q C R
Thus: |[E= -
dre, % R?
1—-sin ¢9+( ( j ]sm 0
a4 { j J R
Or E= kil
— 4re, % R?
[ )smz/ 51412/ (j sin’ 9]
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R = Heaviside expression for the retarded electric field
% F Em (F,t) expressed in terms of the present time ¢ !!!

4re, N 2
[1—((’} sin’ 0]
c

The unit vector R points along the line from the present position of the charged particle at time ¢ !!!
(See Griffiths Ch. 10, Equation 10.68, page 439)

=

E|IR

because the y, factor is present in the numerator of all of the X, ,Z components !!!

But wait!!! This isn’t the entire story for the EM fields in IRF(S) !!!

In the first example of the “horizontal” || -plate capacitor, which was moving with relative

velocity v =—v,X as seen by an observer in IRF(S), shown in the figure below:

Side / edge-on view:

K, =Fov,x| with:

. 4 - A
T JRF(S) 3 A K= eoneh__
)
SPEUE ) DI
Yimge By=-0wd
N Yoo

6

O =7%,0,

The moving surface-charged plates of the || -plate capacitor as
viewed by an observer in IRF(S) constitute surface currents:

These two surface currents create a magnetic field in IRF(S)
between the plates of the|| -plate capacitor !!!

B-fields produced (use right-hand rule):

5 eDode] page (+F)
s ekl tas

TN,
- @F—- —é;u'\'ow("é\

e
R, Ok 3oid prett?

Ampere’s Circuital Law:

@C E.dz = /Llalencl
=2Bw=tu Kw
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- K - K
B (y>0)=—fes- AT (150) B (y>d)=+E=z-1 70
2 2 2 2
_ K ~ K | A
B+(y<0)=+L2=+ﬂ2 (y<0) B_(y<d):_'u0 — s _HOV .
2 2 2 2
Add B, and B to get the total B -field:
(1 oV oV
BTOT(y>d)=—’U" 05+ 4% 5o K =ov,| and: |0 =y,0,
2 ol
N
In IRF(S): < |Byo; (0<y<d)=- ,uo;'vo zZ— ,uoz'vo Z=—pov,Z=—u Kz
By (v <0) =+ 2% 5 £V
9 2
Thus, in IRF(S) {which moves with velocity v =+v,X relative to IRF(So)}

we have for the horizontal || -plate capacitor:

- . . . ™ O . 0() ~ 1

E only exists inregion 0< y<d:|E= g—y =70 g—y where: |0 = y,0,| and: |y, = 7

o o 1_ 0

B only exists in region 0< y<d: B= — [, OVZ ==Y H,00V,2 B, = V%

In IRF(S):

The fact that B exists / is non-zero only where E exists / is non-zero is not an accident / not a
“mere” coincidence!

The space-time properties associated with rest frame IRF(Sy) are rotated (Lorentz-transformed)
in going to IRF(S).

EO in IRF(Sy) only exists between plates in IRF(Sp)
Gets space-time rotated (Lorentz-transformed) in going to IRF(S)
— E and B in IRF(S) only exist between the capacitor plates in IRF(S).

E and B between plates in IRF(S) comes from / is associated with EO between plates in IRF(Sy)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 7
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Point is: EM field energy density ugy (x,y,z,t) must be non-zero in a given IRF in order to have

EM fields present at space-time point (x,y,z,¢)!

EM field energy densities Uy and u # 0 only in
region between plates of || -plate capacitor.

In IRF(Sy):

- 1 -
Uy (FOsto) :EgoEg (r0=t0)

«— EO only

u(7,

In IRF(S):

F.f)
4\

1

Egogz(f,migz(f,z)

\ Space-time (7,t) point functions

n.b. If up = 0 in one IRF(Sy) — u = 0 in another IRF(S).

Momentary Aside: Hidden Momentum Associated with the Relativistic Parallel Plate Capacitor.

Between plates of
|| -plate capacitor

in IRF(S):

Between plates of || -plate capacitor (only!):

= O . O, ~ 1

E=—p=y,—2p| where: |o =y,0,| and: |y, = =
&, & 1- 3
B . A v,
=—H,0Vy2 ==Y M, 00V Z B, = C

2 X 2 2 X\:XA:E

s 1 = = OoVo Tr. A OoVo Al -

S=—ExB=—y, °°(y><z)=—mx XZ=X

ﬂo 80 8() A A A

Exx=7

Poynting’s vector points in the direction of motion of the || -plate capacitor, as seen by an observer
in IRF(S), and only exists/is non-zero in the region between plates of the || -plate capacitor.

EM field linear momentum density in IRF(S):

- _ < _ 2 2.1
pEM - goﬂoS - _]/OILJOO-OVOX .

Points in the direction of motion of the || -plate capacitor, as seen by an observer in IRF(S),
only exists/is non-zero in the region between plates of the || -plate capacitor.

EM field linear momentum in IRF(S):

Dev = o ev ¥ Volume(IRF(S)) = % Vs

: 14
Where the volume (in IRF(S)): |V = (wd =—"w,d,|, where: |/ =, /7,|,|w=w,|and: |d = d,| {here}.
Yo
Define the volume (in IRF(Sy): |V, = {,w,d,|. Thus: Vi =V,/7,|
- 2 2 - 2 2 Lomd, . 2 ~ 2 -
D = VoM Oo VoV sX ==y 14,00V, * X="VokyOo Vo (fowodo)x =~V olyOo VoV o X
’ =%
: . 1/ =
The “hidden momentum” is: | Pyiuien = —2(m xE ) !
c
Note that: |72 || B| and: | =—IA, 2| with: | =J.K'a’zl = Kw|where: |K = ov|.
. . l, .
The cross-sectional area is: |4, = (sd =| =L |d,|since |/ ={(,/y,|and |d =d,|, |w=w,|.
Yo

8
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Yo

Side view (in IRF(S)):
£ "4 7
__r I~ m=—IA, 2 =—Kwld = —(ov, ) w,—2d,z
3 s v
¥ K+ s /
N M}/[._ﬁ_ ——\ 7 Z—(%,\Govo)wox‘j
%’;:;Gj
¢ . Oy
E=y,—y
g(]
. In IRF(S):
. 1 P e Y00, . .
Phidgden =73 %0V (ﬁowodo)* Yo _O(ny) = +%(€0W0d0)x = +7/oﬂoa§voVox
c g, A

using

Ppy =&, (Ex B) Vg = 7o thyOo VoV

is also valid in IRF(Sp).

Thus In IRF(S): | Phivsen = ciz(nﬁ X l?) =+y,14,0.v,V,%| But:

Thus, we (again) see that: | P, = —Pry | for the relativistic || -plate capacitor !!!
Note that in IRF(Sp): |B, =0| = 50 :ﬂLEO xﬁo =0|=|pg, =0|

But note that:| p, ..., = ciz(nﬁo X l?o) =0\, thus | Puien = —Pru

= The numerical value of hidden momentum is reference frame dependent, i.e. it is not a
Lorentz-invariant quantity, just as relativistic momentum p {in general} is reference frame

dependent/is not a Lorentz-invariant quantity.

Now let us return to task of determining the Lorentz transformation rules for £ and B

For the case of the relativistic horizontal || -plate capacitor, let us consider a third IRF(S") that
travels to the right (i.e. in the +x -direction) with velocity v =+vx relative to IRF(S).

In IRF(S"), the EM fields are: |E' =

o_!

&

o

y

and:

B'=—puohz

From use of Einstein’s velocity addition rule: V' is the velocity of IRF(S”) relative to IRF(Sp):

- v+,

with: |y =
w, ’

1+

1

2 1—(v'/c)2

and:

o :7'0_0

C

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources I1 Fall Semester, 2011 Lect. Notes 18.5  Prof. Steven Errede

We need to express £’ and B' {defined in IRF(S")} in terms of E and B {defined in IRF(S)}.

. o . yo. . , 1 1
E’:gyzyaoy where: |y’ = ————| and: Uo:z and: |y = ————
&, &, 1-(v'/c) Yo 1=(wy/c)
- ; ~ . . ' o .
B=L% 5 but |E=Z5|inRFS), - |E'=| = |E=| &5
7/080 80 70 }/0 gﬂ
(o}

B'=—p0Vs=—yu o,z but: |0, = }/_
0

b _(Lj #,0VE| but: | B =—y,4,00%F = —41,0v,2| {in IRF(S)}

2
’ 1=(vy/c 1+ : 1
Now (after some algebra): [LJ: ( o/ )2 = WO/CZ :7(1+v—vz° where: yET—
7)) Ji=(fe) J1=(v/e) ¢ 1-(v/e)
, (v+v0) y' ) . 1
But: V'=-———=+| and: || — :y(1+vv0/c) with: yE—
(1+vv0/c ) 7o 1-(v/c)
f
E’:ELJE: r —j/:)/(l+vv0/cz)£j/
70 ]/0 go go
. In IRF(S"):<
= y' n v+, A A
B'=—-| — ,uoavz=—7(1+ c ),uga —— = |Z=—pu,o(v+v,)z
[70] 0 WC/Z ( 0)
.
Compare these to the £ and B fields in IRF(S):
N N O, ~ 1
E=—y=y,—»| where: |0 =y,0,| and: |7, = >
In IRF(S): % % 1-5;
= A A %
B =—p,0v,2 ==y 1,0,V,2 By = %
Using: 4, =1/ c’e, | we can rewrite £’ in IRF(S") as: Very Useful Table(s):
XXP=Z| |[pxx=-Z
=, o . - o . . P N A
E=y—y+ %UoWoUJ’:7[—yj—7v(—ﬂoo'vo)y YXZ=X||ZXy=—X
£ & — NN P -
' %2’_/ inRES) Z><x=y<x><2=—y>
in IRF(S) —
where: [V = vi| and: |B = B,2| =|Vx B=vB, (ix£)=-vB.)
%/_/
=5

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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E'=E3=(yE,-yvB.)9=y(E,~vB.)p|  Orsimply: [E} =y(E, -vB.)

we can rewrite B in IRF(S") as:

Likewise, again using: | ¢, = 1/ c’e

E, _ A ~ A ~ v O | .
=—,0 (v+v) 2= —ym,0v2 — y,ovi=y(—1,0%2) — y—| — | £
%,_/ C 80
=B=B.Z [
in IRF(S) =E,
in IRF(S)

, v
B'=B2=yB: - y—Ez:= y(Bz S Ej 2| Or simply: |B! = y(BZ S Ey]
c Cc . c

Thus, we now know how the E, and B. fields transform.

Next, in order to obtain the Lorentz transformation rules for E. and B,, we align the capacitor
plates parallel to x-y plane instead of x-z plane as shown in the figure below:

O~
_T 3 In IRF(S) the {now} rotated fields are:
[(E/ | . E=Z:-p
E &
A &= / A —
° —> A B" =+u,0v,9 =By
-N', ) )
Use the right-hand rule to get correct sign !!!
-

Fas
Z

The corresponding E’ and B’ fields in IRF(S") are (repeating the above methodology):

! ! v
E =y(E.+vB,)|  and: By=7(3y+c—2Ezj

As we have already seen (by orienting the plates of capacitor parallel to y-z plane):

E! =E_ [— n.b. there was no accompanying B -field in this case!

= Thus we are not able to deduce the Lorentz transformation for B, (|| to direction of motion)
from the || -plate capacitor problem.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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So alternatively, let us consider the long solenoid problem, with solenoid {and current flow}
oriented as shown in the figure below:

In IRF(S): 0y In IRF(S):
E

§=)/~0V‘I;C\ C@siﬂl& CJ‘Q = - -
£ B =B x=punlx

0

2

We want to view this from IRF(S’), which is moving with velocity relative to IRF(S).

In IRF(S): |n = N/L|=# turns/unit length, N = total # of turns, L = length of solenoid in IRF(S).

Viewed by an observer in IRF(S"), the solenoid length contracts: |L' = L/y| in IRF(S")

N N

1 1
o InIRF(S"): |n' = — = y— = yn = # turns/unit length in IRF(S"), where |y = == -
L1 JI=8" J1=(v/e)

However, time also dilates in IRF(S") relative to IRF(S) — affects currents:

;=99 in IRF(S)= |I'= 9 _ (ﬂjd—g = ( di )1 in IRF(S"). But: (ﬂj =
dt dt’ dt' ) dt dr'

1.
y| y

B'=Bx=punl%=p, (X”){if}f =punli=Bx=B| . |B =B,

Longitudinal / parallel-to-boost direction B-field does not change !!!

Thus, we now have a complete set of Lorentz transformation rules for E and B , for a Lorentz
transformation from IRF(S) to IRF(S"), where IRF(S") is moving with velocity relative
to IRF(S):

E =E, B =B y=1/\1-p
E =y(E,~B,) B;zy(Berclezj ﬂ:%
E =y(E.-vB,) B =7(BZ—612EJ

Just stare at/ponder these relations for a while — take your (proper) {space-}time...

Do you possibly see a wee bit of Maxwell’s equations afoot here ??? ;)

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Two limiting cases warrant special attention:

(E5-E 2):012(15;9—5;2)

1.) If |B =0|in lab IRF(S), then in IRF(S") we have: |B' =y

But: E’=—i2(v><E“') in IRE(S") 1!

c
2.) If |E = 0] in lab IRF(S), then in IRF(S’) we have: |E' = —7\)(sz/ —Byé) = —v(BZ'f/ —B;é)

—

But: [V =+vx| . |E =V x B'|in IRF(S) « i.e. magnetic part of Lorentz force law !!!

Griffiths Example 12.14: Magnetic Field of a Point Charge in Uniform Motion

A point electric charge g moves with constant velocity in the lab frame IRF(S).

Find the magnetic field B in IRF(S) associated with this moving point electric charge.

Note that in the rest frame of the electric charge {IRF(Sy)} that |B, = 0| everywhere.

— < = |
.. In IRF(S) the electric charge ¢ is moving with Velocit and: |B = ——2(v x E )
c
2
_(v R
: : : : |z_ «q (1 (4 ) j R|l=—=
But the electric field of moving point charge g in IRF(S) is: | E = A ; TR E|IR
2
(See pages 3-6 above/Griffiths Example 12.13) ’ (1 —(%) sin’ 0)

(oo
1l

L qv(l—(%)z)sinﬁ .
e b ey b
(1—(%) sinzé?)/( j

If the point electric charge ¢ is heading directly towards you (i.e. along the +Z direction) then
¢ aims counter-clockwise:

A
5 Z (out of page)
8

~

P32

NOTE: In the non-relativistic limit (v < ¢):

where: |6 = cos™ (ﬁ-ﬁ) |[¥PxR=vsin@ |,

B=|* VxR The Biot-Savart Law for
Ar R’ a moving point charge !!!

NOTE ALSO: H.C. Qersted discovered the link between electricity and magnetism in 1820.
It wasn’t until 1905, with Einstein’s special relativity paper that a handful of humans on this
planet finally understood the profound nature of this relationship — a timespan of 85 years —

approximately a human lifetime passed! (see / read handout on Qersted)

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 18.5  Prof. Steven Errede

Figure 6-9. Lines of force for a charge Q moving along the diameter of an
imaginary sphere. The dots show where lines emerge from the sphere at the
instant when the charge is at its center. The density of the dots is a measure of
the electric field intensity. The total number of dots is the same in all six ﬁgures,
so as o satisfy Gauss’s law (Section 6.8). Note how the field shifts to the region
of § = 90° as the velocity increases. For U = c the field is all concentrated at

# = 90°.

!

Figure 6-14. The electric field intensity
is the vector sum of —V} and
—dA4/ar.

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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e
P x-vi %
' an,
v
''''' > present
POSITION

Fig. 26-3. For a charge moving with
constant speed, the electric field points
radially from the “present” position of
the charge.

B =090

rigure o-15, Equipotential surfaces ¥ = Constant for a point charge Q moving
either to the right or to the left. The equipotentials near Q are not shown because
they are too close together. § Fig. 26-4. The electric fleld of @

charge moving with the constant speed
v = 0.9¢, part (b), compared with the
field of o charge at rest, part (a).

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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090

[ 1 L | i | L | 1 1 1 1

0° 30" 60° 90° 1200 1507 1807

Figure 6-10. The electric field intensity E of a moving point charge as a function
of the polar angle # of Figure 6-6, for seven values of 8 = U/c. The observer is
stationary and sees the charge moving at the uniform velocity V. For 8 = 0 the
field is isotropic. It is hardly disturbed at 8 = 0.25. As the velacily increases the
fleld increases near § = 907 and decreases both ahead of the charge (near 6 = 0)
and behind it (near # = 180°). At extremely high velocities most of the electric
field is concentrated near 8 = 90°, These curves explain qualitatively the validity
of Gauss’s law for moving charges: as the velocity increases, the flux of E shifts
from the regions where # =~ 0 and = 180° to # = 90° and the total flux of E
remains constant, (Then why are the areas under the curves not equal 7) Note that
the electric field is always symmetrical about 90°. This means that there is no
way of telling, from the shape of the field, whether the charge is moving to the
right or to the left. The vertical scale gives E divided by Q/4weyr.

B
E (6& - a) 06

04

30 60 90 120° 150° 180K

i
Figure 6-11. The magnetic induction B of a moving point charge as a function of
the polar angle 8 for seven values of A. For 8 = 0 there is no magnetic field. As
B increases, B first increases at all angles. Then B continues to increase near
6 = 90°, while decreasing both ahead of the charge and behind it. At extremely
high velocities, most of the magnetic field is concentrated near the plane # = 90°,
Note that the magnetic field is symmetrical with respect to € = %0°. The vertical
scale gives B divided by uQyc/dnr?, and thus the maximum ordinate on any
curve is .

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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v
(a) (b)

Figure 6-8. (a) Typical line of E, and (b) typical lines of B for a charge
©Q moving at a constant velocity U, as seen by a stationary observer.
The electric field is radial. The lines of B are circles centered on the
trajectory and perpendicular to it.

Fig. 26-5. The magnetic field near

@ moving charge is v X E. (Compare
with Fig. 26—4.)

The Electromagnetic Field Tensor F*’

The relations for the Lorentz transformation of E and B in the lab frame IRF(S) to £’ and B’
in IRF(S"), where IRF(S’) is moving with velocity relative to IRF(S) are:

E' components B" components

- lE=E B, =B,
E =y(E, - pcB.) B =y(B,+BE.[c) y=1/\1-p
/ E! =y(E.+ pcB,) f B =y(B.-BE,|c) B=Y.

E* components B* components

It is readily apparent that the E and B field certainly do not transform like the spatial / 3-D
vector parts of e.g. two separate contravariant 4-vectors ( E“ and B*), because the (orthogonal)
components of £ and B L to the direction of the Lorentz transformation are mixed together

{as seen in the case for B=0 in IRF(S) resulting in B'= —6%(17 x E'

S—

in IRF(S”) and the case for

E =0 in IRF(S) resulting in |E’ = ¥ x B'| in IRF(S")}.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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Note also that the form of the Lorentz transformation for || vs. L components is “switched”
{here} for the fields !!!

Recall that true relativistic 4-vectors transform by the rule |a"* = A’y‘ a’l,
e.g. for a Lorentz boost from IRF(S) — IRF(S") along |V = +vx|.

Specifically, recall that |x" = A%x"|is explicitly:

ct' = ;/(ct —ﬂx)
Parallel components: —>|x' = y (x— fBct) E' =E, B! =B,
Perpendicular ” E = 7(Ey —ﬂch) B = y(By + ,BEZ/C)
Components: { 2/ =] E' = }/(EZ +ﬂcBy) B = }/(Bz —ﬂEy/c)

For a Lorentz transformation | x'* = A#x"| from IRF(S) — IRF(S") along ,

the A tensor has the form:

Row index

|

=

is)

=
o = o o
_- o o O

Column index

Thus, there is no way that the £ and B fields can be construed as being the spatial / 3-D
vector components of contravariant 4-vectors £ and B* .

(What would be their temporal components/ scalar counterparts: E° and B’= 2??)

It turns out that the 3-D spatial vectors E and B are the components of a 4 x 4 rank-two
EM field tensor, F*" 11!

A 4 x 4 rank two tensor ' Lorentz transforms via two A -factors (one for each index):

(yv AyAv Ao

Where % is

Row index Column index Column# 0 1 2 3 Row#

553
(=}

~ ~ ~ ~
- o
s 8
- o
= B8

~ ~ ~ ~
— o
5 S
— o VY
(9%} (9%}
—_ O

)
)

~ N N N
)
o
\S)
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The 16 components of the 4 x 4 second rank tensor " need not all be different (e.g. A*)
— the 16 components of #*” may have symmetry / anti-symmetry properties:

Symmetric 4 x 4 rank two tensor: |t/ = +t™

Anti-symmetric 4 x 4 rank two tensor:  |t*7 =—t”

e For the case of a symmetric 4 x 4 rank two tensor , of the 16 total components,
10 are unique, but 6 are repeats:

Pl =410, P2 =20 03— 30
12 =2 PEN
A2 23
tOO tOI t02 t03
o tOl t“ tlZ tl3
sym. t02 t12 t22 t23
t03 t13 t23 t33

e For the case of an anti-symmetric 4 x 4 rank two tensor , of the 16 total

components, only 6 are unique, 6 are repeats (but with a minus sign!) and the 4 diagonal
elements must all be = 0 (i.e. ="' = =17 = 0):

P =0, 2= 0 PP
A2=_p 13_ g1
Pr=_p3

0 tOI t02 t03
om. | —t t 0
4% BB

So it would seem that the spatial / 3-D E and B vectors can be represented by an
anti-symmetric 4 x 4 rank two contravariant tensor !!!

Let’s investigate how the Lorentz transformation rule |t = A4ALt*" | for a 4 x 4 rank two

Ao
tanti
sym.

Column # 0 1 2 3 Row#

anti-symmetric tensor works (6 unique non-zero components). Starting with [¢""' = AJA! £*7);

y =y 0 0) 0 0o 2 "

- 0 0 1 0 M 8

Ag (OI‘ A;) = ]/ﬂ 7/ tj;,* = 02 12 23
0 0 1 0 2 sym. —t —t 0 ¢

0 0 0 1 3 L ()

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 19
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L Row # Ag A}

We see that A =0, unless 2 =0 or 1: y or —yf
Column #
Row # Ay A,

We also see that AL =0, unless =0 or 1: = or y

" Column #
.. There are only 4 non-zero terms in the sum:

But: M=0and /' = 0, whereas =40

£ = AOALET = SN+ AAL + AVAL + ATA

. :(AgA} —A?Ag)tm :(7-7—(—7/ﬂ)(—7/ﬂ))t01 :(yz_yzﬂz)tm :7/2(1—,32>t01

01

But: ;/2:1/1—ﬂ2 Y =t

One (e.g. you!!!) can work through the remaining 5 of the 6 distinct cases for |t = AJAt r

(or for completeness’ sake, why not work out all 16 cases explicitly!!!) . . .

The complete set of six rules for the Lorentz transformation of a 4 x 4 rank two contravariant

. . ' A
anti-symmetric tensor [£*" = AJA 1| are:

thl — tOl PN E! — E

1 =y(”-p") o~ |E =y(E, -BcB.)

123 _ .23

£ = ]/(Z03 —ﬂt“) PR Ez

=1 o |B=B

= ]/(l‘31 +,3t03) - B

12 = y(tlz —ﬂtm) PR B =

As can be seen, the above Lorentz transformation rules for this tensor are indeed precisely
those we derived on physical grounds for the EM fields!

Thus, we can now explicitly construct the electromagnetic field tensor F*'—a 4 x 4 rank two

contravariant anti-symmetric tensor:

FOO = 0 FO] F02 F03 O Ex Ey Ez
#v FlO — _FOI Fll = O F12 Fl3 — _F3l B _Ex 0 CBZ _CBy
= FO__p2 g2 Fo F2 = Fo - _Ey —¢B, 0 ¢B.
F30 — _F03 F31 F32 — _F23 F33 = O _EZ cBy _CB)c O

20 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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0 E E E
x y z E-field representation of F“” (SI units:
o -E. 0 cB, —cB, Volts/m). Note the space-time structure of
| —E —cB 0 cB anti-symmetric '*’ — all non-zero elements
V4 X . .
7 have space-time attributes — there are no
—-E, ¢B, —cB, 0 time-time or space-space components!!!

Note that there are simple alternate / equivalent forms of the field tensor F*".
If we divide our F*” by ¢, we get Griffith’s definition of F*":

0 Ejfc Efc E.Jc
e F& = lF”V _ —k, /c 0 B. _By B-field representation of
e Griiths = Owrs -E / ¢ -B, 0 B, F*" (ST units: Tesla)
~-E.[c B, -B, 0

Note that there exists an equivalent, but different way of embedding E and B in an
anti-symmetric 4 x 4 rank two tensor:

Instead of comparing:

a) |[E.=E,| |E,=y(E,—pcB.), |E.=y(E. +pcB,)
tOI,

with:  a") £ = £ = y(toz _ﬂtlz) , £ = }/(t03 +ﬂt31)

and also comparing:

b) |cB,=cB,| |cB, =y(cB,+ BE,)| |cB. =y(cB,- BE,)

with:  b') ’ /= ]/(t31 +ﬁt03) = }/(tIZ _ﬂtoz)

We could instead compare {a) with b")} and {b) with a')}, and thereby obtain the so-called
anti-symmetric rank two dual tensor G*" :

0 ¢B, c¢B, B,

G = -cB, 0 -E E E-field representation of
B —cB, E, 0 -E G"” (SI units: Volts/m)

~cB. -E, E, 0

X

Note that the G** elements can be obtained directly from F*" by carrying out
a duality transformation (!!): |E — B, ¢B ——E

Note that the duality transformation leaves the Lorentz transformation of E and B unchanged !!!
(i.e. ¢ duality = 90°).

Again, note that our representation of the dual tensor G** is simply related to Griffiths by
dividing ours by ¢, i.e.:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 21
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X
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_BZ

B, B,
0 -E/c

E Jc 0

~E,Jc E]c

BZ
Ey/c
-E Jc

0
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B-field representation of
G"” (SI units: Tesla)

With Einstein’s 1905 publication of his paper on special relativity, physicists of that era soon

realized that the E and B -fields were indeed intimately related to each other, because of the
unique structure of space-time that is associated with the universe in which we live.

Prior to Qersted’s 1820 discovery that there was indeed a relation between electric vs.
magnetic phenomena, physicists thought that electricity and magnetism were separate / distinct
entities. Maxwell’s theory of electromagnetism “unified” these two phenomena as one, but it
was not until Einstein’s 1905 paper, that physicists truly understood why they were so related!

It is indeed amazing that the electromagnetic field is a 4 x 4 rank two anti-symmetric
contravariant tensor, F** (or equivalently, G*") !!! (six components of which are unique.)

- We have learned that the 4-vector product of any two (bona-fide) relativistiv 4-vectors,

e.g.

up o _ u
a b#—a#b

- Likewise, the tensor product

a Lorentz invariant quantity.

- Thus, the tensor products of EM field tensors F** and G**

F"G,,

=F,G"

= Lorentz invariant quantity (i.e.

up u
a'b,=a,b

A"B,,

=A,B"

v

are all Lorentz invariant quantities.

, namely

= same value in all / any IRF)

of any two relativistic rank-2 tensors is also

F"F,,

G¢"G,,|, and

- Specifically, it can be shown that (see Griffiths Problem 12.50, page 537 — P436 HW#14):

F*F,

-GG, 2(

1
~—E
cZ

e ()

And:

F*G, =F,G" = —%(E-E)

- Obviously,

« Lorentz invariant quantity !!!

F™F, =F, F"

v v

>

G¢"G,

=G, G"

and

F"G,

=F

v
#VG

invariants that can be formed / constructed using F** and G** !!!

<« Lorentz invariant quantity !!!

are the only Lorentz

- Note that this is by no means as obvious / clear, trying to form Lorentz invariant quantities

starting directly from the E and B fields themselves !!!

= n.b. Since EM energy density

EM field linear momentum density

Loy =F X9 gy

Z’lEM

le B> +5- B

2u,

P

=¢,44,S

cannot be formed from any linear combinations of

, Poynting’s vector

g:

>

LExB
H,

and EM field angular momentum density

F*"F

v P

G¢"G,

uv
or [ F*'G,

. and /., cannot be Lorentz invariant quantities!
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