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LECTURE NOTES 7

ELECTROMAGNETIC WAVES IN CONDUCTORS

Inside a conductor, free charges can move/migrate around in response to EM fields contained

therein, as we saw for the case of the longitudinal E -field inside a current-carrying wire that had a
static potential difference AV across its ends. Even in the static case of electric charge residing on

the surface of a conductor, we saw that E, .. (F)=0, but recall that this actually means (as we

showed last semester) that the NET electric field inside the conductor is zero, i.e. Ejy, (F)=0.

n.b. here, we assume {for simplicity’s sake} that the conductor is linear/homogeneous/isotropic —
i.e. no crystalline structure/no anisotropies/no inhomogenities/no non-uniformities/no voids/no
defects...

From Ohm’s Law, we know that the free current density J (F,t)is proportional to the
(ambient) electric field inside the conductor: J ., (F,t)= o E(F,t) where o, = conductivity of
the metal conductor (Siemens/ m=0hm™/ m) and o, =1/p. where p. = resistivity of the metal

conductor (Ohm-m).

Thus inside such a conductor, we can assume that the linear/homogeneous/isotropic
conducting medium has electric permittivity & and magnetic permeability x . Maxwell’s

equations inside such a conductor {with J ., (F,t) 0} are thus:

Using Ohm’s Law:

1) [VE(N\t) = pres (T1)/2] 2) |V+B(F,1) =0 T (F1) = 0. E(F.1) ;>

- OE(Tt)

(F1) = 1 (Fo1) + i (1)

os ]

3) |[VxE(F,t)=- 4) |V x = uo E(T,t)+ ue

Electric charge is (always) conserved, thus the continuity equation inside the conductor is:

- 0 rt = =
V.Jfree(f,t) =_pfre;—t(r) but: Jfree(r,t) = GCE(f,t)
- 0, rt . d
. |og (V.E(f’t)):_pf%() but: V.E(F’t):pfree(r,t%
v 7V * 1% order linear,
thus: OcPlree (r,t) __ OPree (r,t) or: @O"ee—(r’t)_i_(&j Diree (F,t) =0| < homogeneous
g ot ot £ differential equation

The {physical} general solution of this differential equation for the free charge density is of
the form:

Pires (T11) = Pree (T, 1=0)e77 = p (F,t=0)e™| ie.adamped exponential!!!
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Thus, the continuity equation VeJ . (F,t)=—0p,., (F,t)/ét inside a conductor tells us that any
free charge density p,.. (f,t = O) initially present at time t = 0 is exponentially damped /

dissipated in a characteristic time z,,,, = /0. = charge relaxation time {aka time constant},
such that:

Pree (F’t) = Pree (F’t = O) e76Ct/€ = Pliree (F,t = O) eft/rre'ax

a0
frea
%S

of \aiti +
Volug

Calculation of the Charge Relaxation Time for Pure Copper:

Poy =l 0, =1.68x10°Q-m| = |og, =1/ p., =5.95%10" Siemens/m

If we assume &, ~ 3¢, =3x8.85x10"° F/m for copper metal, then:

relax

e =60,/ Ocy = Pey €y = 4-5x107 sec| 11

However, recall that the characteristic/mean collision time of free electrons in pure copper is

coll

O = poh fyS - where A" =3.9x10°m = mean free path (between successive collisions) in
pure copper, and Vgo.. = +/3KgT /M, =12x10° m/sec and thus we obtain 75, =3.2x10" sec.

coll

Hence we see that the calculated charge relaxation time in pure copper, 75> = 4.5x10 " sec

is < than the calculated collision time in pure copper, 7o =3.2x10 " sec.

coll —

Furthermore, the experimentally measured charge relaxation time in pure copper is
o™ (expt) = 4.0x10™ sec, which is ~ 5 orders of magnitude larger than the calculated charge

relaxation time 75> = 4.5x10 " sec. The problem here is that {the macroscopic} Ohm’s Law is

simply out of its range of validity on such short time scales! Two additional facts here are that
both & and o are frequency-dependent quantities { i.e. £ =¢(w) and o, = o, (@)}, which

becomes increasingly important at the higher frequencies ( f =27/w ~1/z,,,, ) associated with
short time-scale, transient-type phenomena!

So in reality, if we are willing to wait even a short time (e.g. At ~1ps=10""sec) then any
initial free charge density p,, (F,t=0) accumulated inside the conductor at t = 0 will have

dissipated away/damped out, and from that time onwards, p;... (f,t) =0 can be safely assumed.

2 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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=1ps=10"sec, then

Maxwell’s equations for a conductor become {with p.. (F,t > At) =0 from then onwards}:

1) ﬁ.E(r t):O 2) ﬁ.g(r t)=0 Maxwell’s equations for a
’ ’ charge-equilibrated conductor
3) mé(m):_%g’t) 5 wB(r,t):ﬂacﬁ(r,t)wgw:y(acé(r,t)ﬁaEg"

Now because these equations are different from the previous derivation(s) of monochromatic
plane EM waves propagating in free space/vacuum and/or in linear/homogeneous/isotropic non-
conducting materials {n.b. only equation 4) has changed}, we re-derive the wave equations for

E & B from scratch. As before, we apply Vx( ) to equations 3) and 4):

TH{7<E)=—5(7<8) R A R
-V (9€)-vE--2 WCEW% |9 (54)v78 -, B 2B
= VZE:lug?;tz “‘:“O'c% = Vzézyg?;z "‘ﬂ%%
gain: € (1,1) = e o, EOD g 1061, e L) g, BN

Note that these 3-D wave equations for E and B in a conductor have an additional term that
has a single time derivative — which is analogous to a velocity-dependent damping term,

e.g. for a mechanical harmonic oscillator.

The general solution(s) to the above wave equations are usually in the form of an oscillatory
function * a damping term (i.e. a decaying exponential) — in the direction of the propagation of

the EM wave, e.g. complex plane-wave type solutions for E and B associated with the above

wave equation(s) are of the general form:

i IZZ—a)t)

and:

B(2,0)= B :[

k

(0]

<E(z,t)

SH

jlleg(z,t):

with {frequency-dependent} complex wave number: k (o) =k (@) +ix (o)

where k()= iRe(IZ(a))) and « ()= Sm(ﬁ(w)) and corresponding complex wave vector

k(@)=K (@)K =K ()2 (in the +2 direction here), i.e. k () =(k(w)+ix(0))2.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.

3




UIUC Physics 436 EM Fields & Sources Il Fall Semester, 2011  Lect. Notes 7 Prof. Steven Errede

Ez—mt) IZz—a)t)

We plug E(z,t)= Eoei( and B(z,t)= I§Oei( into their respective wave equations
above, and obtain from each wave equation the same/identical characteristic equation —
{aka a dispersion relation} between complex IZ(a)) and o {please work this out yourselves!}:

k?(0) = uew’® +ipo .0

Thus, since k(@) =k (@)+ix (), then:

K? (@) = (k(@) +ix () =K (@)~ & (@) +2ik () k(@) = pew® +iuo.o

If we {temporarily} suppress the @ -dependence of complex IZ(a)) , this relation becomes:

k? :(k+il(‘)2 =k? — k% + 2ikx = pea’ +iuo. o

We can solve this relation to determine k ()= iRe(IZ(a))) and x(@)=3m(Kk()) as follows:
First, separate this relation into two relations — i.e. separate out its real and imaginary parts:

k? —x* = uew®| and: |2ikx =iuc.o| or: |2kx = uo.w

We thus have two {separate/independent} equations k* — x* = uew® and 2kx = uc.w, and we
have two unknowns (k and k). Hence, we can solve these equations simultaneously!

From the latter relation, we see that: |x =% uo.@/K| Plug this result into the other relation:

1

K2 —x? =k* — (L pocw/k) =k? -7

(s u0.0)" = ueo?

Then multiply by k*and rearrange the terms to obtain the following relation:

k* —(yga)z)kz —(%yaca))z =0

This may look like a scary equation to try to solve (i.e. a guartic equation - eeekkk!), but it’s
actually just a guadratic equation!

Define: x=k*, a=1, b= —(/J&‘a)z) and ¢ = —(%yaca))z , then this equation becomes

“the usual” quadratic equation, of the form: x*+bx+c =0, with solution(s)/root(s):

_ —bxb*—4ac
2a

X

or: |k? = %P(ﬂga)z)i\/(yewz)z +4(%,u0ca))2 }

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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kz:%(ﬂmz) 17 1+&% Z%(ﬂng) 1F 1+((;5)2) Z%(ﬂng)ll:u 1+(Z_;T}

Now we can see that on physical grounds (k* > 0), we must select the + sign, hence:

and thus:

kz—%(ﬂewz)lu\/u(gﬂ k_\/k—z-w\/%[u\/@r_w\/%l 1+(Z—5j +1}

12

Having thus solved for k (or equivalently, k?), then we can use either of our original two
relations to solve for x, e.g. k* —x* = uew’, then:

2 2
K° =k — pear® =1(yga)2){l+ 1+($j },uga)z =1(yga)2)[ 1+(&] 1}
2 2 EQ

(40

Thus, we obtain:

k(w)—ﬂ%e(ﬁ(w))—w\/%[ 1+(:—;)2 +1]

Note that the imaginary part of k , x = Sm(IZ) results in an exponential attenuation/damping of

the monochromatic plane EM wave with increasing z:

%

and:

and, RX E’ efl(zei(kz—alt)

I?:>(z,t) — éoe—xzei(kz—wt) IEEX E(Z,t)
(7

é(Z, t) — éoe—xzei(szwt)

n.b. these solutions satisfy the above wave equations for any choice of EO :

The characteristic distance over which E and B are attenuated/reduced to /e =e™ = 0.3679
of their initial values (at z = 0) is known as the skin depth, |5, (@) =1/x(@)| (Sl units: meters).

1 1

2
+ e -1
)

%
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The real part of K, i.e. k(a)):iRe(IZ(a))) determines the spatial wavelength (),

the propagation speed V(a)) of the monochromatic EM plane wave in the conductor, and also the
index of refraction:

2 27
Aw)= k(@) :iRe(IZ(a)))
V(w)= k(o) - s}{e(ﬁ(w))
and: |n(w) = V(Cw) _ Cki}”) _ C%e(:)(w))

The above plane wave solutions satisfy the above wave equations(s) for any choice of EO :
As we have also seen before, it can similarly be shown here that Maxwell’s equations 1) and 2)

(ﬁ-E =0and V+B = 0) rule out the presence of any {longitudinal} z-components for E and B

(for EM waves propagating in the +7 -direction) = E and B are purely transverse waves
(as before), even in a conductor!

If we consider e.g. a linearly polarized monochromatic plane EM wave propagating in the
+2 -direction in a conducting medium, e.g. E(z,t) = E,e e “ %, then:

é(z’t) :ll?x :(Z’t) :(EJ Eoe_,(zei(szwt)y :(k + |K‘j Eoe—iczei(kz—wt)y
w

0 0

= é(z,t) 1 E:S(z,t) 17 (+ = propagation direction)

The complex wavenumber k =k +ik = Ke' where: K E‘IZ‘ =vJk?+x* and ¢, = tan‘l(%)

In the complex k -plane:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Then we see that: |E(z,t)=E,e ™™ }| has: |E, = E e >k =Ke'
3 5 oty K = i(kz—ot) & 3 i k= Ke* i
and that: B (2,t) = Bee e = £ e e g has:|B, - B, = <€, - K g o
w [ w
) iy - ) /1,2 2
Thus, we see that: |Be'* = Ke? Ee'% = K E e'’er) = ALl E e'(%e™)
w (4 [

i.e., inside a conductor, E and B are no longer in phase with each other!!!

Phases of E and B: Oy =0c + ¢,
With phase difference: |Ap, =5 — 0z =@, | <= magnetic field lags behind electric field!!!

B K 2 % 1
We also see that: —O—lg,u 1+(&j] 2=
E @ EW c

The real/physical E and B fields associated with linearly polarized monochromatic plane
EM waves propagating in a conducting medium are exponentially damped:

E(z,t)=%e(l§(z,t)):Eoe"“cos(kz—a)t+5E)>”< 7 |G = +d |

E(z,t):ﬂ%e(é(z,t)): B,e ™ cos(kz—at+6, )y =Be " cos(kz—at+{5; +4¢})¥

e

2ol o] o oo 2]

Og =0 + 4|, @(w)ztan_{%z;j and Iz(a))=(k(a))+ilc(a)))i, E(w)=‘l?(a))‘=k(a))+llc(a))

Definition of the skin depth &, ()in a conductor:

1 1 Distance over which
«(@)= - %1 | theE and B fields fall to

x () 2
o[ 1+(%j 1 Ye=e"=0.3679 of
2 £ their initial values.

The instantaneous power per unit volume in the conductor {ultimately dissipated as heat!} is:

p(z.t)=J(z,t)E(z,t) =0 E(z,t)E(2,t) = 0.E*(z,t) = Ele * cos’ (kz -t +5; ) (Watts/m®)

—

The time-averaged power per unit volume in the conductor is thus: p(z,t)>t =1E2e™®

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 7
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ERPOPENTIALLY -DARPED
EN¥ELoPE OF &

z A
e 2 —~—
=X > 2

Special/Limiting Cases:

a) Good conductors: |o, > ew| Conductivity of good conductor |0, = (i.e. p. =1/, — 0)|

Since k =k +ik and o, > sw, ie. [&»1} then:

E®
s oc Y & el o. Y & gu| |o % Ao OO,

k=w,|— 1+(—Cj +1| =)= l+(—cj =0, =|,[—~| =0 < = =
2 EW 2 EW 2 | Vew Z,Za) 2

N e e S e N e 7
2 E® 2 E® 2 | Vew Z,Za) 2

.. In'a good conductor |0 > ew|.

k(0)=x(0)= \/wﬂTiac and skin depth: |0, (@)= K(la)) ] \/a)uTa '
C

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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FORMULAS FOR EM WAVE PROPAGATION IN A GOOD CONDUCTOR

OO _ . 1 2
k(w)= = o) = skin depth = =
(0)=x() and . (@) = skin dep () /a),uO'c
Wavenumber, k(a))sz—” = /M}):‘Z—”z on =27r§sc(a))=27r/ 2
A k WO

7

—

n.b. in a perfect conductor: |o. =« ¢ (@)=(8; -6 )=tan™ (K—w)] =tan™ (1)

k()
= |k(0)=«x(w)= ,60#2% =0 But: tan‘1(1)=45°=%

—

2 /4
A =———=0 =0, -0 =45 =—
1 2 . - .
5. (w)= = =0 = B lags E by = 45 in a good conductor.
k(o) \ ouo,

n.b. In a perfect conductor: o, =, ¢ =45 :%

ilver L) |(oc/ew)>1

For optical frequencies/visible light region: @ =10" radians/sec . A good conductor typically has
o, =107 Siemens/m and ¢ = 3¢,, and at optical frequencies: (o, /ew)=37.7 > 1 is satisfied.

If the conductor is non-magnetic (e.g. copper, aluminum, gold, silver, platinum... etc.)
= u=pu,=47x10" Henrys/m.

16 -7 7 %
Then: k(a)):zc(a)):\/wyaC z\/wﬂf’% :{10 x4z x107 x10 } =2.51x10° radians/m

2 2 2
And: |1 (@)= 27r/k ()| = wavelength in good conductor=\2.51x10’8m = 25.1nm\
8
cf w/ vacuum wavelength: |4, = i—” _2me_c % =1.885x10"m =188.5nm
o [0

f
= |A(@)=25.1nm( %% ) < 4, =188.5nm( et )

conductor wavelength

: A 188.5 . :
Vacuum/conductor A-ratio: — | = nm _ 7.52|at optical frequencies, o ~10" rad/sec.
A(w)) 25.1nm

A

L :(—w): 4.0x10°m=4.0nm| !

k(o) 27

= This explains why metals are opaque at optical frequencies, @ ~10' radians/sec
{and also explains why/how silvered sunglasses work!}

Skin depth: |5, (@) =

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Compare these results for EM waves propagating in conductors at optical frequencies to those
for EM waves propagating in conductors, but with very low frequencies — e.g. the AC line
frequency, f,. =60Hz = w,. =27 f,. =120z rad/sec, where the criterion for a good

conductor, (o /ew)=10" >1 is certainly well-satisfied:

-7 7
Kac = Kpe = /a),uac = {1207”47”10 x10 }:48.7 radians/m
2 2

Anc :z—ﬁ =0.129m=12.9cm
k

At f = 60Hz: {4, =5x10°m!!

0

/1 6
0 _ XA0M _ a7 107n
A 0.129m

60 Hz AC skin depth: 55° =/;L° =2.05x107%m=2.05cm!!
T

= Need at least 3-4x 0, = several — 10 cm to screen out unwanted 60 Hz AC signals !!

Instantaneous EM Wave Energy Densities in a Good Conductor: (&j >1

Ew
X -5 =(5,~0.)=%=45
Ugy =Ug" +Uy" =(18E2j+(i82j=(15E.EJ+( - B-BJ % (05 =3¢ ) =1
2 2u 2 2u {in a good conductor}
= — g
E(z,t)=E,e** cos(kz—wt+6;)%| and|B(z,t)=B,e ™ cos(kz—wt+5; +¢) ¥

k@, [ [ (oY |y _ [Fuon_ [roe

Where: |B, =———=E, [8/1 1+(&j ] E, = Fo¢ _ |H% E, | for a good conductor,

) EQ /a) 1)

And:  |k(@)=x(w)= /% ,
10} 1) 20 C

Y = = = = for a good conductor.

()= @)™ Tomor Vwor n(a)| " 2?
2

ug (z,t)zggEz=%5I§-E:%gEge‘z“cosz(kz—wH&E) and:

EM(z,t)ziBZ: L E-E:iBje*ZKZcosz(kz—a)t+5E+¢k)=&E§e’2“cosz(kz—a)t+5E+¢k)
2u 24 24 20

10 © Professor Steven Errede, Department of Physics, University of lllinois at Urbana-Champaign, Illinois
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Time-averaging these quantities over one complete cycle:

<UEM (z,t)> :%85532” %J:cosz (kz—awt+6;)dr = i

UEM (z,t)) = 2C EZe 2
(z.1)

20

Fall Semester, 2011
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1,
b

u(z,t)dt

1
2

1 cc
;J'O cos’ (kz—awt+65; +¢ )dr =

1

4

O¢

(_

(0]

j Ese—Zch

EM

e |g?

—2K17

(u

Tot

(z,t)>

<u§“" (z,t)>+<u5,M (z,t)> =

e

NG

5(1+

A0

e

for a good conductor, =

n.b. Exponentially attenuated in z !

(2 a1) -

uTO’(

But: (&j»l
EW
EM
u
i.e. the ratio: < EM
T (e

(z,t)>_

(z,t)>

<uhEAM (z,t)> > <u

0

-

& (2.0)

for a good conductor.

= Vast majority of EM wave energy is carried by the magnetic field in a good conductor !!!

Poynting’s Vector:

EM wave intensity (aka irradiance): ||

< 1o o - N
S=_ExB| = <S(z,t)>:;<ExB>:ZEOBOeZ cos¢kz<—¢k:%
(2) :<‘§(zt)‘> =iEOBOeZ"Z CoS @, =iE§e2“ (%cos@j

WHO
But: KCOS¢:£: 2 _ |Hoc I(z):<‘S(z,t)‘>=i(£jE§e‘2“:l iEfe_z’d
@ @ @ 20 2u\ w 2\ 2uw
b.) Special/L imiting Case of a Fair Conductor: o = éw| = Must use exact formulae!
c.) Special/Limiting Case of a Poor Conductor: (i.e. an insulator):
Here: (0. < ew|, i.e. (&j < 1| Conductivity of poor conductor: |o. = 0(ie. p. =1/o, —>© )
Ew
Complex wavenumber: K =k +ix| with |k :Re(IZ) and |x = Im(l?).
o. Y & & 1(c. Y & & 1(c. Y &
k(w)=w 2ud 1+(—Cj +1| =/ 1+—(—Cj +1| =& 2+—£—°] = wrfe
2 EQ 2 2\ cw 2\ cw

k()= ovJsu

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Likewise:
%2 P
2 2 2 2
_|eu O. &l 1( o, \é‘\/JO'C 1
—o | 12| 21| o |1+ S| 1| =a DKo -z
K(w) @ 2 [ga)j @ 2{/1/ 2(8(0) 1} © 4e2 )2 2J
1 U
" K(&))ZEO'C £ | for a poor conductor.
&
1 H
io'cyf*
In a poor conductor (i)«l,the ratio: k() = < :1(&j<<1 e |x(w)<k(w)|
Ew k(o)) oJeu 2\co

— Complex wavenumber k =k +ix is primarily real, because x <k in a poor conductor.

. _ a1 1
Phase angle in a poor conductor: |¢, =&, —J, =tan™* M =tan' —(&) :—(&j <1
k() 2\ cw 2\ cw

= 8, =S +¢, =5, 1.e. B and E are nearly in phase with each other in a poor conductor
(i.e. losses very small in a poor conductor).

In a typical poor conductor, e.g. pure water:

Water has a huge static electric permittivity (due to permanent electric dipole moment of
water molecule): &, , =81g, (at zero Hz, ie. f =0) (at P=1ATM and T = 20°C), however, at

optical frequencies (@ ~10' rad/sec): &, ,(@)~1.777¢, , where ¢, =8.85x10 " Farads/m.

Since water is non-magnetic: s, , = 4, =4z x10" Henrys/m

= index of refraction: nHzo(a)):\/gHzo(a))szo/goyo =1.333 at optical frequencies.

The conductivity of pure water is: ;2% =1/ pf*° =1/2.5x10°Q-m = 4.0x10°® Siemens/m
(at P=1ATM and T =20°C). Thus, the criteria for a poor conductor (o /e@)=254x10" <1
is certainly satisfied at optical frequencies.

The wavenumber in pure H,O at optical frequencies is:

Ko (@) = 0rJep = o, [e11, =10°~/1.777x8.85x 47 x10™" = 4.45x10 radians/m

The wavelength in pure H,Ois: |4, , = Zﬂ/kHzo =1.413x107"m =141.3nm | at optical frequencies.

cf w/ the vacuum wavelength: |4, = ¢/ f = 27¢/® =1.885x10"m =188.5nm

12  © Professor Steven Errede, Department of Physics, University of lllinois at Urbana-Champaign, Illinois
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A 188.5nm
Note that the optical wavelength ratio: | = =1.333 =n
J [;LHZOJ 141.3nm "0

since 4, =4,/Ny,o inapoor conductor!!!

1 1 lof
Skin depth: |5, (@) = = for a poor conductor (—Cj <1|
k(o) focule

For pure H,O at optical frequencies:

-7
Ko (@ \/Z /&:l( 1 5)\/ A0 5 65x10 rad/m
: ¢ ¢ 2\25x10° )\1.777x8.85x10

n.b. neglects/ignores Rayleigh scattering process — visible light

=1.7688x10°m =1.77km ) )
photons elastically scattering off of H,O molecules. Y5 =10m

32 (o) =

Kn,0

1 |u
1, |«
K @ C
Ratio:{ o )JZZ g :E(&jzl( ! j ! —1.27x10" <1

Kio(®) )  wJeu 2\sw) 2(25x10°)1.777x8.85x10™ 10"

i.e.|0 =0 +¢ =O;

H,0

K
Phase difference: |¢, = 0 — 5 = tan‘l( M0 J =1.27x10"radians (<1)

= B and E are nearly in phase with each other in pure H,O at optical frequencies.

For pure H,O at low frequencies — e.q. 60 Hz AC line frequency (w,. =27 f,. =120z rad/sec):

The electric permittivity at f=60 Hz is &, (f = 60Hz) =805, =80x8.85x10"* Farads/m
and i, = p1, =47 x107" Henrys/m. Conductivity of pure H,0: o*° =4.0x10™° Siemens/m

6
Note that the criteria for a poor conductor: ACGC = 40 Xl(?lz =15«1
EnoWpac ) 80x8.85x107-1207

is not satisfied at the 60 Hz AC line frequency — i.e. at low enough frequencies,
even poor conductors such as pure water are actually quite good conductors !!!

Thus, for the following, we must use the good conductor approximations:

6
k:éo (a)) = /(":CZO (a)) = AC:uAC Oc _ ~ | AC:uoUC \/12071' 47x107"-4x10 _308x10°° rads/m

2
27 =2.04x10°m| cf w/ vacuum wavelength: |4, =c/f,. = s

kﬁl\-lczo (a)) Wpc

=5.00x10°m

L8 (0) =

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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: A . 6
Vacuum/good conductor wavelength ratio: || —5 |= > 00><105m = 24.495
NG 2.04x10°m

Skin depth for pure H,0O at 60 Hz AC line frequency: 5% =1/x/}% =3.25x10*m =32.5km

This may seem like a large distance scale associated with the attenuation of the 60 Hz EM
waves propagating in pure water, however compare the skin depth to the wavelength at this
frequency: &4, =32.5km vs. 2,¢° =1.77x10°m, i.e. we see that &, < A}, @s we expect

for the case of a good conductor !!!

The ratio (K,f,‘zco/k,ﬁfo) =1 for pure H,O at 60 Hz AC line frequency, which is what we expect for
a good conductor {this ratio should be <1 for a poor conductor}.

Thus, the phase difference is: ¢, = 5, — 5, =tan ™ (x5 /ki% ) = tan ™ (1) :%: 45°

which again is what we expect for a good conductor, i.e. B lagsE by 45°!

Instantaneous EM energy densities in a poor conductor: (—C] <1

1 1 1 - -
A)=utM (z,t)+uEM (z,t)=| = ¢E? — B? |=| =¢EsE
Uy (2,t) =ug" (z,t)+uy" (z,1) (25 jJ{Z,u j (25 +(

The physical E and B fields are:

E(z,t)=E,e™ cos(kz wt + 6, ) and|B(z,t)=B,e** cos(kz— ot + 5 +4 )y
K Oc
where: |B, =—E, =| gu 1+ for a poor conductor, || — |« 1|
w Ew
K=aweu=— where = —f = and: [n= [-Z| fora poor conductor.
V gOILlO
1 ~
and: 2 / <k=aweu|, |K= ‘k‘ /e | for a poor conductor.

Then: uEM(z,t)=%gE2=%ch|§=%5E§e‘2’“cosz(kz—a)t+5E) and:

o (z,t):iB2 =22 :iBjeZKZ cos’(kz -t +5; +¢)

Time-averaging these quantities:

1

<u,§M (z,t)> %gE2 e and: <u5,“" (z,t)>=4—Bje‘2’fZ :é(a/)Efe‘z“ :%gEje‘z’fZ
Y7

14 © Professor Steven Errede, Department of Physics, University of lllinois at Urbana-Champaign, Illinois
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<uTEO“t” (z,t)> = <UEM (z,t)>+<u5 (z,t)> = %gEjeZKZ +%5E2e2’<Z _LiEe

0 2 0

1
Thus: <uTEO“{' (z,t)> == ¢E2e™*|for a poor conductor (&J <1|.
2 EW

The ratio of {time-averaged} electric/magnetic energy densities for a poor conductor:

<uEM (Z,t)> lgEse—Zm B 1
< £ :if =1 ¢kz55—5E=tan‘1(kHzo]<<l K’HZO:EO'C,/&<<|(HZO:0) e,
g

ull\EllM (Z,t)> ZgEje_ZKZ H,0

— EM wave energy is shared ~ equally by the E and B fields in a poor conductor!

Instantaneous Poynting’s Vector for EM waves propagating in a poor conductor:

§ Z,t)= 0
(21) 1 241, —

~1

v
E(z,t)xB(z,t)| = <§(zt)> =i<|§(z,t)>< Bﬁ(z,t)>:@E2e‘2’(Z cosg, 2

N

" <§(zt)> = %\/ﬂzEje‘mi for a poor conductor.

Intensity of EM waves propagating in a poor conductor:

|(2)= (S (z0)) =5 EESQM

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Reflection of EM Waves at Normal Incidence from a Conducting Surface:

In the presence of free surface charges o, and/or free surface currents, K. the boundary

conditions obtained from (the integral forms of) Maxwell’s equations for reflection and
refraction at e.g. a dielectric-conductor interface become:

BC 1): (normal D at interface): B —&,Ey =0, 1 =normal to plane of interface
|| = parallel to plane of interface

BC 2): (tangential E at interface): |E/ ~E) =0| = |E/=E!

BC 3): (normal Batinterface): |B,'—B, =0|= [B, =B,

o 1 1 -
BC 4): (tangential H at interface): | —B! ——B} =K

H H

free xn,
21

where A, is a unit vector L to the interface, pointing from medium (2) into medium (1).
21

{n.b. do not confuse f , with the EM wave polarization vector n '}
21

Note: For Ohmic conductors (i.e. “normal” conductors obeying Ohm’s Law J, ., = o.E)

there can be no free surface currents, i.e. K, =0 because K. =0 would require an infinite

free free

E -field at the boundary/interface!

Suppose 3a boundary/interface (located in the x-y plane at z = 0) between a non-conducting
linear/homogeneous/isotropic medium (1) and a conductor (2). A monochromatic plane EM
wave is incident on the interface, that is linearly polarized in +X direction, traveling in the
+2Z direction, approaching the interface/boundary from the left, in medium (1) as shown in the

figure below:
EDUMED
e ® o
Gl / 2, M
\ Q=C (qm> ; g0 € Pcfé GD>
\ 4 ~
] —> Z
TRADEN T //
EYN PLANE WAVE

//%ﬁ BoWNDARY | INTERFY <

16 © Professor Steven Errede, Department of Physics, University of lllinois at Urbana-Champaign, Illinois
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8= (kxE)
v
- - = YO 5 1 yalo]
Incident EM wave {medium (1)}:  |E,.(z,t)=E, e %] and: B (z, t)_v—Emce(kl vy
1
- = = i(—kiz=mt) & = 1= i(—kjz—ot) ~
Reflected EM wave {medium (1)}: |E,, (z,t)=E, e %| and: |B, (z,t)= - E, ey
1
. . = ~ i(Kyz—at) A = R ~ i(Kyz—t) ~
Transmitted EM wave {medium (2)}: E,., (z,t)=E, (2| and: By, (2,t) =2 E, €™
rans a) trans
n.b. complex wavenumber in {conducting} medium (2): [k, =k, +ix,
In medium (1) EM fields are: [Ey,, (2,t) = Eye (2,t)+ g (2,t)] and: [Bry, (2,t) = B (2,t)+ By (2,1)
In medium (2) EM fields are: Iimz(z,t):étrans(z,t) and: BTot (z,t)= ~trans(z,t)
Apply BC’s at the z = 0 interface in the x-y plane:
BC1): |6,E, —6,E; =0 |but: |E =E, =0| and: |E; =E, =0| .. [0-0=0 4| = |0 =0
BC 2)' E” E” E Eoinc + EOreﬂ = Eotrans
BC 3): |B; =B}| but: B/ =B, =0| and: B, =B, =0| = [0=0]
BC 4) iBll.l i Bg = Kfree X ﬁ* M I‘_<fl’ee = 0 i( Nomc - E‘:)refl )_L Otrans =
H 2 2l HhVy H, 0
- - = _ K .
or: |E,, —E,, =FE,, | with E(”lvl 2]=(”1V1J 2
M0 H,®0
. ~ 1- ~ 2 .
Thus we obtain: [E, ﬂ and: |E, = —E,
refl l+lB Oinc rans (1+ﬂ) inc
E..| (1-7 E, 2 . K -
g _ refl — ﬂ~ m Ntrans — - With ﬂ = llllvl 2 — lLLlVl k2
B, ) \1+/5 E,. ) (1+5) @ L@

Note that these relations for reflection/transmission of EM waves at normal incidence on a
non-conductor/conductor boundary/interface are identical to those obtained for reflection /
transmission of EM waves at normal incidence on a boundary/interface between two non-

conductors, except for the replacement of 4 with a now complex /4 for the present situation.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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=1o. =0}

= both |k, =x, = ‘/% =oo| and since: |k, =k, +ix,| then: |k, =oo+ico=00(1+i)
. -~ k. ~
and since: ﬂs{ﬂlvl ij(#lvljkz =
H,0 M0
Thus, for a perfect conductor, we see that: [E, =-E, |and|E_=0|and thus for a perfect

i

conductor the reflection and transmission coefficients are:
Orefl

E_Y E Y

R = — _ refl —
E Eoinc

We also see that for a perfect conductor, for normal incidence, the reflected wave undergoes a

180° phase shift with respect to the incident wave at the interface/boundary at z = 0 in the x-y
plane. A perfect conductor screens out all EM waves from propagating in its interior.

Eoreﬂ
‘ Eoinc

Orefl

1

and: [T=1-R=0

E

Oinc Oinc

For the case of a good conductor, the conductivity o is finite-large, but not infinite.

The reflection coefficient R for monochromatic plane EM waves at normal incidence on a good
conductor is not unity, but close to it. {This is why good conductors make good mirrors!}

2 e P2 ~ .
. — Ec'refl _ Eorefl _ E Orefl Ore | ﬁ| ﬂ
For a good conductor: |R = =|= =| = —
Ew. ) |Ea| \Eo \E ) [1+B] 1+ ﬁ 1+p
Where: |3 = (ﬂlvl - ] =[ﬂlvljl€2 and: |k, =k, +ix,|. For a good conductor: |k, = x, = /%
H, 0 H, 0 2
Thus: ﬁz(ﬂlvljlzzz(ﬂlvlj P (141) = vy [ (1+i)
M0 M0 2 H, 0
Define: |y = v, 9¢_| Then: |f = 7 (1+1)
21,0

Thus, the reflection coefficient R for monochromatic plane EM waves at normal incidence on
a good conductor is:

z P (1 A1 AT _ .

R = ~O,»efl :|1_ﬂ~| =(1—€J[1—@] ={1—]/—|}/j(l—]/+|7/j= (—7/) _+_7

‘E 1+p] 1+ \1+8) \1+y+iy \1+y-iv) | (@4y) +°
with: Y=V, %
21,00

18 © Professor Steven Errede, Department of Physics, University of lllinois at Urbana-Champaign, Illinois
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Obviously, only a small fraction of the normally-incident monochromatic plane EM wave is
transmitted into the good conductor, sinceR<1and [T =1-R| i.e.

T =1—R=1{—(1_7)z+72} (<1)

(1+ 7/)2 +7/2

Note that the transmitted wave is exponentially attenuated in the z-direction; the E and

B fields in the good conductor fall to 1/e of their initial {z = 0} values (at/on the interface) after
the monochromatic plane EM wave propagates a distance of one skin depth in z into the

conductor:
1 2
5sc )= =
O

Note also that the energy associated with the transmitted monochromatic plane EM wave is
ultimately dissipated in the conducting medium as heat.

In {bulk} metals, since the transmitted wave is {rapidly} absorbed/attenuated in the metal, we
can only study/measure the reflection coefficient R. A full/detailed mathematical description of the
physics of reflection from the surface of a metal conductor as a function of angle of incidence i.e.

R(w,6,,) requires the use of a complex dispersion relation k (o) = /¥(w)=(w/c)i(e) with

complex k(@) =k (@)+ix(w) and complex propagation speed v(a)):v w)+iv(w)=c/f(w
with accompanying complex index of refraction fi(w)=n(w)+in(w), and thus is fairly

complicated. So-called ellipsometry measurements of the EM radiation reflected from the surface
of the metal as a function of angle of incidence yields information on the real and imaginary parts

of the complex index of refraction of the metal fi(w)=n(w)+in(w), and thus the real and
imaginary parts of the complex dielectric constant and/or the complex electric susceptibility of the

metal, since fi( \/g w)/&, :\/1+)~(e(60) or i*(w)=é(w)/e, =1+ 7, (o).

If interested in learning more about this, e.g. please see/read Optics, M.V. Klein, p. 588-592,
Wiley, 1970 {P436 reference book on reserve in the Physics library}. Please see/read also the UIUC
P402 Optics/Light Lab Ellipsometry Lab Handout C4 and especially the references at the end.
Available at: http://online.physics.uiuc.edu/courses/phys402/exp/C4/C4.pdf

We will discuss the dispersive nature of dielectric, non-conducting materials in the next lecture...
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The electromagnetic state of matter at a given observation point 7 at a given time t is described
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Full Maxwell Equations in Matter:

by four macroscopic quantities:

1.) The volume density of free charge:
2.) The volume density of electric dipoles:
3.) The volume density of magnetic dipoles:

4.) The free electric current/unit area:

< aka magnetization

< aka electric polarization

< aka {free} current density

Prof. Steven Errede

All four of these quantities are macroscopically averaged - i.e. the microscopic fluctuations
due to atomic/molecular makeup of matter have been smoothed out.

The four above quantities are related to the macroscopic E and B fields by the four Maxwell
equations for matter (see Physics 435 Lect. Notes 24, p. 14):

1) Gauss’ Law:
Auxiliary relation:

Electric polarization

80 0o

§°E :& :gi(pfree +pbound) ’

where:

Phound = _6'1_5

2) No magnetic charges/monopoles:

Auxiliary relation:

3) Faraday’s Law:

Magnetization:

4) Ampere’s Law:

Total current density:

A & constitutive relation:

D=

¢E

, electric susceptibility

1swm

H =

Hy

with

, magnetic susceptibility

_0E

Jp=¢6,—
D o} Eat

& constitutive relation:

I

7

H,

|

_ 7 7 mag TP
ToT — J free + ‘Jbound +J

bound

bound

Jres =VxM

—

bound

2|

§XB.=/JOJfree+/JO§X|\7|+/JO

P e
ot Ho&,

oE
ot

. = oD
VxH=unJd__ +u—
luo free /uo 61:

20 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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B = .. - = 0
We also have Ohm’s Law: |J = o.E| and the 3 continuity eqn(s): |V<J, = —%

associated with « = free, bound and total electric charge conservation.

For many/most (but not all!!!) physics problems, e.g. in optics/condensed matter physics,
materials of interest are frequently non-magnetic (or negligibly magnetic) and have no (free)

charge densities present, i.e. p,,, =0. If z=,,then M=0 and thus H = B/, in such

non-magnetic materials.

Then Maxwell’s equations in matter, for p,.. =0 and M =0 reduce to:

— - 1 -
1) Gauss’ Law: VeD=0| or: |V.E=-—V-P=p,. /¢,
&

0

2) No magnetic charges: |V+B =0

- - 0B
3) Faraday’s Law: VxE = _E

. oE P -
4) Ampere’s Law: VxB :ﬂogoEJrﬂo - v,

We also have Ohm’s Law |J

wee =0.E | and the Continuity eqn. |V+J .. =0| {here}.

Then applying the curl operator to Faraday’s Law:

’E P 04
oz Hear Moy

Vx(VxE)=-2

~V(V-E)-VE-— L9, _vE

O

(¥x8)=-se,

We thus obtain the inhomogeneous wave equation:

- 10°E_1 P ad,
VE-—= —Vv + ree
p bound /uo 8 2 :uo 8t

2 2
c”ot” g,
source terms

{and a similar/analogous one for B }

For nonconducting/poorly-conducting media, i.e. insulators/dielectrics, the first two terms on
the RHS of the above equation are important — e.g. they explain many optical effects such as
dispersion (wavelength/frequency-dependence of the index of refraction), absorption, double —
refraction/bi-refringence, optical activity, . . . .

Note that the Vp,, = —?(?-ﬁ) term is often zero, e.g. if the electric polarization P is uniform,
P PP o 0. 0, 0,

ox oy oz oXx oy oz

e.g. for Poc E (i.e. P proportional to E) where: E(z,t) = E, cos(kz — ot + ) X

or since: VP =
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a‘j.free _ o E

o "%
is the most important, because it explains the opacity of metals (e.g. in the visible light region)
and also explains the high reflectance of metals.

For good conductors (e.g. metals), the conduction term |,

All source terms on the RHS of the above inhomogeneous wave equation are of importance
for semiconductors — however a proper/more complete physics description of EM wave
propagation in semiconductors also requires the addition of quantum theory for rigorous
treatment...
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