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LECTURE NOTES 6 
 

ELECTROMAGNETIC WAVES IN MATTER 
 

Electromagnetic Wave Propagation in Linear Media 
 

     We now consider EM wave propagation inside matter, but only in regions where there are NO 
free charges and/or free currents (e.g. the medium is an insulator/non-conductor). 
 
For this situation, Maxwell’s equations become: 
 

1)  ( ), 0D r t∇ =
G G Gi    2)  ( ), 0B r t∇ =

G G Gi  
 

3)  ( ) ( ),
,

B r t
E r t

t
∂

∇× = −
∂

G GG G G
 4)  ( ) ( ),

,
D r t

H r t
t

∂
∇× =

∂

G GG G G
 

 
     The medium in which EM waves propagate is assumed to be linear, homogeneous and 
isotropic, thus the following relations are valid in this medium: 
 

       ( ) ( ), ,D r t E r tε=
G GG G

     and     ( ) ( )1, ,H r t B r t
μ

=
G GG G

 

Where: 
  ε  =  electric  permittivity of the medium. 
  ( )1 ,   o e eε ε χ χ= +  =   electric  susceptibility of the medium. 
  μ = magnetic permeability of the medium. 
  ( )1 ,  o m mμ μ χ χ= + =magnetic susceptibility of the medium. 
  oε =   electric  permittivity  of free space = 8.85 × 10−12 Farads/m. 
  oμ = magnetic permeability of free space =   4π × 10−7  Henrys/m. 
 

     Thus, Maxwell’s equations for the E
G

and B
G

fields inside this linear, homogeneous and isotropic 
non-conducting medium become: 
 

1)  ( ), 0E r t∇ =
G G Gi   2)  ( ), 0B r t∇ =

G G Gi  
 

3)   ( ) ( ),
,

B r t
E r t

t
∂

∇× = −
∂

G GG G G
 4)  ( ) ( ),

,
E r t

B r t
t

με
∂

∇× =
∂

G GG G G
 

 
     Note that the above four relations are (almost) identical to those for EM waves in free space 
{cf  with eqns. 1) - 4) on page 1 of P436 Lect. Notes 5}. We simply replace the macroscopic EM 
parameters associated with the vacuum { },o oε μ  with those associated with the linear, 

homogeneous and isotropic medium { },ε μ . 
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• In free space/vacuum, the speed of propagation of EM waves is:  
  

1
prop

o o

v c
ε μ

= =  83 10 m s,= ×  the E
G

and B
G

fields in vacuum obey the wave equation: 

( ) ( ) ( )2 2
2

2 2 2

, ,1,  o o

E r t E r t
E r t

t c t
ε μ

∂ ∂
∇ = =

∂ ∂

G GG GG G
   ( ) ( ) ( )2

2
2 2

, ,1, o o

B r t B r t
B r t

t c t
ε μ

∂ ∂
∇ = =

∂ ∂

G GG GG G
 

 

• In a linear /homogeneous/isotropic medium, the speed of propagation of EM waves is:  
1

propv
εμ

′ =  and the E
G

and B
G

fields in the medium obey the following wave equation: 

( ) ( ) ( )2 2
2

2 2 2

, ,1,  
prop

E r t E r t
E r t

t v t
εμ

∂ ∂
∇ = =

′∂ ∂

G GG GG G
   ( ) ( ) ( )2

2
2 2

, ,1,
prop

B r t B r t
B r t

t v t
εμ

∂ ∂
∇ = =

′∂ ∂

G GG GG G
  

 
For linear / homogeneous / isotropic media: 
  

( ) ( )

( ) ( )0

1                 1   relative electric permittivity

1             1 relative magnetic permeability

e o e o e e
o

m m o m m
o

K K

K K

εε ε χ ε χ
ε
μμ μ χ μ χ
μ

= = + = = + =

= = + = = + =
 

 

∴  
1 1 1 1 1

prop
e o m o e m o o e m

v c
K K K K K Kεμ ε μ ε μ

′ = = = =   i.e.  
1

prop
e m

v c
K K

′ =  

 
Now if: 

 ( )1 1e e
o

K ε χ
ε

⎛ ⎞
= = + ≥⎜ ⎟
⎝ ⎠

  and  ( )1 1m m
o

K μ χ
μ

⎛ ⎞
= = + ≥⎜ ⎟
⎝ ⎠

    or if:  1e mK K ≥  

 
 {true for a wide variety of common/everyday materials – gases, liquids & solids} 
 

Then:  1e mK K ≥   thus: 
1 1
e mK K

≤    ⇒   
1    prop
e m

v c c
K K

′ = ≤  

 

Note also that since e
o

K ε
ε

=  and m
o

K μ
μ

=  are dimensionless quantities, then so is 
1

e mK K
. 

 
We can now define the index of refraction {n.b. a dimensionless quantity} of the linear / 
homogeneous / isotropic medium as:  
 

     e m
o o

n K K εμ
ε μ

≡ =  

 

Thus, for linear / homogeneous / isotropic media:  ( )     propv c n c′ = ≤   because  1n ≥  {usually}. 
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n.b. We will find out {soon!} that ε  and μ  are in fact not constants, instead they are  
{very often} frequency-dependent quantities, i.e. ( )ε ε ω=  and ( )μ μ ω= ,  =2 fω π .  
 

Thus:  ( ) ( ) ( )1e e e
o

K K
ε ω

ω χ ω
ε

= = = +   and  ( ) ( ) ( )1m m m
o

K K
μ ω

ω χ ω
μ

= = = +  

 

Hence:     ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )1 1e m e m
o o

n n K K
ε ω μ ω

ω ω ω χ ω χ ω
ε μ

= = = = + +  

 
For now, we will ignore/neglect any/all frequency-dependent effects, for simplicity, i.e. 
 

             prop
cv
n

′ =  = constant             ( )( )1 1e m e m
o o

n k k εμ χ χ
ε μ

= = = + +  = constant 

 

Now for many (but not all) linear/homogeneous/isotropic materials: ( )1o m oμ μ χ μ= + �   

(e.g. true for many paramagnetic and diamagnetic-type materials) ⇒  ( )8~ 10 ~ 0mχ ϑ −  
 

Thus:    ( )1 1m m
o

K μ χ
μ

= = + �   ⇒   en K�   and  prop
e

c cv
n K

′ = � . 

 

• The instantaneous EM energy density associated with a linear/homogeneous/isotropic material: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 21 1 1, , , , , , ,
2 2EMu r t E r t B r t E r t D r t B r t H r tε

μ
⎛ ⎞

= + = +⎜ ⎟
⎝ ⎠

G G G GG G G G G G Gi i  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

with ( ) ( ), ,D r t E r tε=
G GG G

  and  ( ) ( )1, ,H r t B r t
μ

=
G GG G

. 

 

• The instantaneous Poynting’s vector associated with a linear/homogeneous/isotropic material:  
 

( ) ( ) ( )( ) ( ) ( )( )1, , , , ,S r t E r t B r t E r t H r t
μ

= × = ×
G G G G GG G G G G

 2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 with ( ) ( )1, ,H r t B r t
μ

=
G GG G

 

 

• For monochromatic (i.e. sinusoidal, single frequency) plane EM waves propagating in a 
linear/homogeneous/isotropic medium, and E B

G G
 satisfy/obey the wave equation:   

 

( ) ( ) ( )2 2
2

2 2 2

, ,1,  
prop

E r t E r t
E r t

t v t
εμ

∂ ∂
∇ = =

′∂ ∂

G GG GG G
   ( ) ( ) ( )2

2
2 2

, ,1,
prop

B r t B r t
B r t

t v t
εμ

∂ ∂
∇ = =

′∂ ∂

G GG GG G
  

 
     E and B-field solutions for a linearly polarized plane EM wave with polarization vector 

ˆn̂ k⊥  propagating in this linear/homogeneous/isotropic medium are of the form: 
 

 ( ) ( ) ˆ, cosoE r t E k r t nω δ= − +
GG G Gi   and   ( ) ( )( )ˆ ˆ, cosoB r t B k r t k nω δ= − + ×

GG G Gi  
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 With: ( ) ( )1 ˆ, ,
prop

B r t k E r t
v

= ×
′

G GG G
,  thus:  ( ) ( )1, ,

prop

B r t E r t
v

=
′

G GG G
,  i.e. 

1
o o

prop

B E
v

=
′

 

 
 And:  propv f k

ωλ= =  with angular frequency 2 fω π=  and wavenumber 2k π
λ= . 

 
• The intensity of an EM wave propagating in a linear/homogeneous/isotropic medium is: 
 

     ( ) ( ) ( ) ( ) ( ) ( )2 2 21 1, ,
2 2 rmsprop EM prop o o o

c cI r S r t v u r t v E r E r E r
n n

ε ε ε⎛ ⎞ ⎛ ⎞′ ′≡ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

GG G G G G G
 

Where 
1
2rmso oE E≡ . The RMS intensity of the EM wave is: 

( ) ( ) ( ) ( ) ( )2 21 1, ,
2 2rms rms rmsrms rms prop EM prop o o

cI r S r t v u r t v E r E r
n

ε ε⎛ ⎞′ ′≡ = = = ⎜ ⎟
⎝ ⎠

GG G G G G
 

 i.e. ( ) ( )1
2rmsI r I r=

G G
,  ( ) ( )1

2, ,rmsS r t S r t=
G GG G

,  ( ) ( )1
2, ,

rmsEM EMu r t u r t=
G G

, etc. 
 

• The instantaneous linear momentum density associated with an EM wave propagating in 
a linear/homogeneous/isotropic medium is:  

 

   ( ) ( ) ( )2

1, , ,EM
prop

r t S r t S r t
v

εμ ε μ℘ = = =
′

G GG G G G 1
μ

( ) ( )( ) ( ) ( )( ), , , ,E r t B r t E r t B r tε× = ×
G G G GG G G G

   

 

• The instantaneous angular momentum density associated with an EM wave propagating 
in a linear/homogeneous/isotropic medium is:   

 

( ) ( ) ( ) ( )( ), ,  , ,EM EMr t r r t r E r t B r tε= ×℘ = × ×
G G GGG G G G G GA kg

m-sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

• And of course, an EM wave propagating in this medium has: 
 

 Total instantaneous EM energy:          ( ) ( ),EM EMv
U t u r t dτ= ∫

G
  ( )Joules  

 

 Total instantaneous linear momentum:     ( ) ( ),EM EMv
p t r t dτ= ℘∫

GG G
  kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Instantaneous EM Power:  ( ) ( ) ( ),EM
EM S

U t
P t S r t da

t
∂

= = −
∂ ∫

G G Giv   ( )Watts  

                                                                   n.b. through a closed surface 

 Total instantaneous angular momentum:  ( ) ( ),EM EMv
t r t dτ= ∫

G G GAL    
2kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 
 
 

2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠

 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

5

QUESTION:   
     What happens when an EM wave passes from one linear/homogeneous/isotropic medium into 
another (e.g. vacuum →  gas; air →  water; water →  oil; glass →  plastic; etc…? 
 
     As we saw in the case of mechanical transverse traveling waves propagating on the taught 
string which had two different mass-per-unit-lengths ( )1 2and μ μ , we anticipate that EM wave 
reflection and wave transmission phenomena will also occur at the interface/boundary between 
two different linear/homogeneous/isotropic media. 
 
     However, in the EM wave situation, what actually happens at the boundary/interface between 
two linear/homogeneous/isotropic media depends on the electro-dynamical versions of the 
boundary conditions on the  and E B

G G
-fields at that interface {as we derived last semester in P435 

from the integral form of Maxwell’s equations}: 
 

BC 1)  The NORMAL component of D
G

 is continuous across the interface  
            (true only when there are no free surface charges present @ the interface): 
 

     ( ) ( )1 2, ,
intf intf

D r t D r t⊥ ⊥=
G G

  ⇒   ( ) ( )1 1 2 2, ,
intf intf

E r t E r tε ε⊥ ⊥=
G G

  since ( ) ( ), ,D r t E r tε=
G GG G

 
 

BC 2)  The TANGENTIAL component of E
G

 is {always} continuous across the interface:  
 

     ( ) ( )1 2, ,
intf intf

E r t E r t=& &G G
 

 

BC 3) The NORMAL component of B
G

 is {always} continuous across the interface: 
 

      ( ) ( )1 2, ,
intf intf

B r t B r t⊥ ⊥=
G G

 
 

BC 4) The TANGENTIAL component of H
G

is continuous across the interface 
             (true only when there are no free surface currents flowing @ the interface): 
 

       ( ) ( )1 2, ,
intf intf

H r t H r t=& &G G
  ⇒   ( ) ( )1 2

1 2

1 1, ,
intf intf

B r t B r t
μ μ

=& &G G
 since ( ) ( )1, ,H r t B r t

μ
=

G GG G
 

 
     Note {again} that the above boundary condition relations were all obtained from the integral 
form(s) of Maxwell’s equations. 
 
 
 
 
 
 
 
 
 
 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

6 

Reflection & Transmission of Linear Polarized Plane EM Waves at Normal Incidence 
at a Boundary Between Two Linear / Homogeneous / Isotropic Media 

 
     As shown in the figure below, a boundary between two linear / homogeneous / isotropic 
media lies in x-y plane, with a monochromatic plane EM  wave of frequency ω propagating in the 

ẑ+ -direction, which is linearly polarized in x̂+ -direction. Thus this EM wave approaches the 
boundary from the left and is at normal incidence to boundary: 
 

 
 

We write down the complex amplitudes for the and E B
G G

-fields: 
 
Incident EM plane wave (in medium 1): 

Propagates in the ẑ+ -direction (i.e. 1
ˆ ˆ ˆinck k z= + = + ), with polarization ˆ ˆincn x= +  

 ( ) ( )1 ˆ,
inc

i k z t
inc oE z t E e xω−=
G
� �       with:     1 1 1 12inc inck k k k vπ λ ω= = = = =

G G
 

 ( ) ( ) ( )1

1 1

1 1ˆ ˆ, ,
inc

i k z t
inc inc inc oB z t k E z t E e y

v v
ω−= × =

G G
� � �           since:    ˆ ˆ ˆ ˆˆinc inck n z x y× = + × = +  

 
Reflected EM plane wave (in medium 1): 

Propagates in the ẑ− -direction (i.e. 1
ˆ ˆ ˆreflk k z= − = − ), with polarization ˆ ˆrefln x= +  

 ( ) ( )1 ˆ,
refl

i k z t
refl oE z t E e xω− −=
G
� �     with:     1 1 1 12refl reflk k k k vπ λ ω= = = = =

G G
 

( ) ( ) ( )1

1 1

1 1ˆ ˆ, ,
refl

i k z t
refl refl refl oB z t k E z t E e y

v v
ω− −= × = −

G
� � �      since:    ˆ ˆ ˆ ˆˆrefl reflk n z x y× = − × = −  

 
Transmitted EM plane wave (in medium 2): 

Propagates in the ẑ+ -direction (i.e. 2
ˆ ˆ ˆtransk k z= + = + ), with polarization ˆ ˆtransn x= +  

( ) ( )2 ˆ,
trans

i k z t
trans oE z t E e xω−=
G
� �    with:    2 2 2 22trans transk k k k vπ λ ω= = = = =

G G
 

( ) ( ) ( )2

2 2

1 1ˆ ˆ, ,
trans

i k z t
trans trans trans oB z t k E z t E e y

v v
ω−= × =

G
� � �     since:    ˆ ˆ ˆ ˆˆtrans transk n z x y× = + × = +  
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     Note that {here, in this situation} the E
G

-field / polarization vectors are all oriented in the 
same direction, i.e.  ˆ ˆ ˆ ˆinc refl transn n n x= = = +   or equivalently:  ( ) ( ) ( ),     ,     ,inc refl transE r t E r t E r t

G G GG G G& & . 
 
     At the interface / boundary between the two linear / homogeneous / isotropic media,  
i.e. at z = 0 {in the x-y plane} the boundary conditions 1) – 4) must be satisfied for the total 

 and E B
G G

-fields immediately present on either side of the interface between the two media: 
 

BC 1) Normal D
G

 continuous:       1 1 2 2Tot Tot
E Eε ε⊥ ⊥=   

(n.b. ⊥ refers to the x-y boundary, i.e. in the ẑ+ direction) 
 

BC 2)  Tangential E
G

continuous:       1 2Tot Tot
E E=& &   

(n.b. &  refers to the x-y boundary, i.e. in the x-y plane) 
 

BC 3)  Normal B
G

continuous:             1 2Tot Tot
B B⊥ ⊥=       (⊥ to x-y boundary, i.e. in the ẑ+ direction) 

 

BC 4)  Tangential H
G

continuous:  1 2
1 2

1 1
Tot Tot

B B
μ μ

=& &   (&  to x-y boundary, i.e. in x-y plane) 

 
     For plane EM waves at normal incidence on the boundary at z = 0 lying in the x-y plane, note 
that no components of  or E B

G G
 (incident, reflected or transmitted waves) are allowed to be along 

the ẑ± propagation direction(s) because of the and E B
G G

-field transversality requirement(s) on the 
propagation of EM waves {arising from constraints imposed by Maxwell’s equations}. 
 
Thus, because of this, we see that BC 1) and BC 3) impose no restrictions {here} on such EM 
waves since: { 1 1 0

Tot Tot

zE⊥ = Ε = ; 2 2 0
Tot Tot

zE E⊥ = = } and { 1 1 0
Tot Tot

zB B⊥ = = ; 2 2 0
Tot Tot

zB B⊥ = = } 
 
⇒The only restrictions on plane EM waves propagating with normal incidence on the boundary 
at z = 0 {lying in the x-y plane} are imposed by BC 2) and BC 4). 
 
∴ At z = 0 in medium 1) (i.e. z ≤ 0) we must have: 
 

    ( ) ( ) ( )1 0, 0, 0,
Tot inc reflE z t E z t E z t= = = + =&
G G G
� � �   and 

( ) ( ) ( )1
1 1 1

1 1 10, 0, 0,
Tot inc reflB z t B z t B z t

μ μ μ
= = = + =&

G G G
� � �  

 
While at z = 0 in medium 2) (i.e. z ≥ 0) we must have: 
 

     ( ) ( )2 0, 0,
Tot transE z t E z t= = =&
G G
� �   and 

( ) ( )2
2 2

1 10, 0,
Tot transB z t B z t

μ μ
= = =&

G G
� �  
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Then BC 2)  (Tangential E
G

is continuous @ z = 0) requires that:  
 

1 0 2 0Tot Totz zE E= ==& &
G G
� �   or: ( ) ( ) ( )0, 0, 0,inc refl transE z t E z t E z t= + = = =

G G G
� � � . 

 

Then BC 4) (Tangential H
G

is continuous @ z = 0) requires that:  
 

1 0 2 0
1 2

1 1
Tot Totz zB B

μ μ= ==& &
G G
� �   or:  ( ) ( ) ( )

1 1 2

1 1 10, 0, 0,inc refl transB z t B z t B z t
μ μ μ

= + = = =
G G G
� � �  

Inserting the explicit expressions for the complex and E B
G G
� �  fields 

 

( ) ( )1 ˆ,
inc

i k z t
inc oE z t E e xω−=
G
� �       ( ) ( ) ( )1

1 1

1 1ˆ ˆ, ,
inc

i k z t
inc inc inc oB z t k E z t E e y

v v
ω−= × =

G G G
� � �  

( ) ( )1 ˆ,
refl

i k z t
refl oE z t E e xω− −=
G
� �     ( ) ( ) ( )1

1 1

1 1ˆ ˆ, ,
refl

i k z t
refl refl refl oB z t k E z t E e y

v v
ω− −= × = −

G
� � �  

( ) ( )2 ˆ,
trans

i k z t
trans oE z t E e xω−=
G
� �    ( ) ( ) ( )2

2 2

1 1ˆ ˆ, ,
trans

i k z t
trans trans trans oB z t k E z t E e y

v v
ω−= × =

G
� � �  

 
into the above boundary condition relations, these equations become: 
 

BC 2) (Tangential E
G

continuous @ z = 0): 
inc

i t
oE e ω−�

refl

i t
oE e ω−+ �

trans

i t
oE e ω−= �  

BC 4) (Tangential H
G

continuous @ z = 0): 
1 1

1
inc

i t
oE e

v
ω

μ
−�

1 1

1
refl

i t
oE e

v
ω

μ
−− �

2 2

1
trans

i t
oE e

v
ω

μ
−= �  

 

Cancelling the common i te ω− factors on the LHS & RHS of above equations, we have at z = 0  
{n.b. everywhere in the x-y plane, which must be independent of/valid for any time t}: 
 

BC 2) (Tangential E
G

continuous @ z = 0): 
inc refl transo o oE E E+ =� � �  

BC 4) (Tangential H
G

continuous @ z = 0): 
1 1 1 1 2 2

1 1 1
inc refl transo o oE E E

v v vμ μ μ
− =� � �  

 
Assuming that {μ1 and μ2} and {v1 and v2} are known / given for the two media, we have two 
equations {from BC 2) and BC 4)} and three unknowns { ,  ,  

inc refl transo o oE E E� � � } 

→ Solve above equations simultaneously for {  and  
refl transo oE E� � } in terms of / scaled to 

incoE� . 
 

First (for convenience) let us define: 1 1

2 2

v
v

μβ
μ

≡  

Then BC 4) (Tangential H
G

continuous @ z = 0) relation becomes:  
inc refl transo o oE E Eβ− =� � �  
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BC 2) (Tangential Ε
G

continuous @ z = 0): 
inc refl transo o oE E E+ =� � �  

BC 4) (Tangential H
G

continuous @ z = 0):  
inc refl transo o oE E Eβ− =� � �  with  1 1

2 2

v
v

μβ
μ

≡  

 

Add BC 2) and BC 4) relations: ( )2 1  
inc transo oE Eβ= +� �    ⇒    

2
1trans inco oE E

β
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
� �   (2+4) 

Subtract (BC 2) – BC 4)) relations: ( )2 1
refl transo oE Eβ= −� �     ⇒    

1
2refl transo oE Eβ−⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �   (2−4) 

 

Insert the result of eqn. (2+4) into eqn. (2−4):  
1

2refloE β−
=� 2⎛ ⎞
⎜ ⎟
⎝ ⎠

1
1 1inc inco oE Eβ

β β
⎛ ⎞ ⎛ ⎞−

=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
� �  

 

∴  
1
1refl inco oE Eβ

β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
� �   and  

2
1trans inco oE E

β
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
� �  

 

Now:  1 1

2 2

v
v

μβ
μ

≡   and: 1
1

cv
n

= ,   2
2

cv
n

=   where:  1 1
1

o o

n ε μ
ε μ

=  and  2 2
2

o o

n ε μ
ε μ

=  

 

∴  
( )
( )

1 2 21 1 2 21 1 1 2 1 2 12 1

2 12 2 2 2 2 1 2 1 22 1 1 1 1

o o

o o

c nv n
v c n n

μ ε μ ε μμ ε μμ μ μ ε με εβ
μ μμ μ μ μ ε μμ ε μ ε μ ε μ

⎛ ⎞ ⎛ ⎞
= = = = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

Now if the two media are both paramagnetic and/or diamagnetic, such that 
1,2

1mχ �  

i.e. ( )11 1o m oμ μ χ μ= + ≈  and: ( )22 1o m oμ μ χ μ= + ≈   
 
    {very common for many (but not all) non-conducting linear/homogeneous/isotropic media} 
 

Then:  1 1 1 2

2 2 2 1

v v n
v v n

μβ
μ

⎛ ⎞ ⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
�   for 1 2 oμ μ μ≈ ≈   or 

1,2
1mχ �  

 

Then:  
( )
( )

1 2 2 1

1 2 2 1

11
1 1refl inc inc inco o o o

v v v vE E E E
v v v v

β
β

⎛ ⎞− ⎛ ⎞⎛ ⎞ −−
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

� � � ��  

      
( )

2

1 2 2 1

22 2
1 1trans inc nc inco o o o

vE E E E
v v v vβ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

� � � ��  

 
We can alternatively express these relations in terms of the indices of refraction 1 2&n n : 
 

  1 2

1 2
refl inco o

n nE E
n n

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

� �   and   1

1 2

2
trans inco o

nE E
n n

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

� �  

 

n.b. these relations are identical to 
the those we obtained for traveling 
transverse waves on a taught string 
with 1 1 1m Lμ =  and 2 2 2m Lμ =  
with a {massless} knot at z = 0  
{see p. 16, P436 Lect. Notes 4}!!!
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Now since:   
inc inc

i
o oE E e δ=�  

  
refl refl

i
o oE E e δ=�     δ  = phase angle (in radians) defined at the zero of time, t = 0 

trans trans

i
o oE E e δ=�  

 

Then for the purely real amplitudes ( ,  ,  
inc refl transo o oE E E ) these relations become: 

     for 1 2 oμ μ μ� �  

     2 1 1 2

2 1 1 2

1
1refl inc inc inco o o o

v v n nE E E E
v v n n

β
β

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�   1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟
⎝ ⎠

 

2 1

1 1 1 2

2 22
1trans inc inc inco o o o

v nE E E E
v v n nβ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�  

              for 1 2 oμ μ μ� �  
 
     For a monochromatic plane EM wave at normal incidence on a boundary between two linear / 
homogeneous / isotropic media, with 1 2 oμ μ μ� �  note the following points: 
 

• If 2 1v v>  (i.e. 2 1n n< ) {e.g. medium 1) = glass ⇒  medium 2) = air}: 
 

   2 1 1 2

2 1 1 2
refl inc inco o o

v v n nE E E
v v n n

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 ⇒  

 

• If 2 1v v<  (i.e. 2 1n n> ) {e.g. medium 1) = air ⇒  medium 2) = glass}: 
 

   2 1 1 2

2 1 1 2
refl inc inco o o

v v n nE E E
v v n n

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 ⇒  

 

  i.e.       2 1 1 2

2 1 1 2
refl inc inco o o

v v n nE E E
v v n n
− −

= − = −
+ +

 ⇒  

 
• 

transoE  is always in-phase with 
incoE for all possible ( )1 2 1 2&   &v v n n  because: 

 

  2 1

1 1 1 2

2 22
1trans inc inc inco o o o

v nE E E E
v v n nβ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�  

 
 
 

Monochromatic plane 
EM wave at normal 

incidence on a 
boundary between two 
linear / homogeneous / 

isotropic media 

refloE  is precisely in-phase with 

incoE  because ( )2 1 0v v− > . 

refloE  is 180o out-of-phase with 

incoE  because ( )2 1 0v v− < . 

The minus sign indicates a 180D  
phase shift occurs upon reflection 
for 2 1v v<  (i.e. 2 1n n> ) !!! 
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What fraction of the incident EM wave energy is reflected? 
 
What fraction of the incident EM wave energy is transmitted? 
 

In a given linear/homogeneous/isotropic medium with  o ov c c nε μ
εμ

= =  : 

The time-averaged energy density in the EM wave is: ( ) ( ) ( )2 21,
2 rmsEM o ou r t E r E rε ε= =

G G G
 

The time-averaged Poynting’s vector is:      ( ) ( ) ( )1, , ,S r t E r t B r t
μ

= ×
G G GG G G

 2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The intensity (aka irradiance) of the EM wave is: 
 

          ( ) ( ) ( ) ( ) ( ) ( )2 2 21 1, ,
2 2 rmsEM o o oI r S r t v u r t v E r vE r vE rε ε ε⎛ ⎞≡ = = = =⎜ ⎟

⎝ ⎠

GG G G G G G
 2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Note that the three Poynting’s vectors associated with this problem are such that ( )ˆ ,incS z+
G
&  

( )ˆreflS z−
G
&  and ( )ˆtransS z+

G
& . 

 
     For a monochromatic plane EM wave at normal incidence on a boundary between two linear / 
homogeneous / isotropic media, with 1 2 oμ μ μ� � : 

2 1 1 2

2 1 1 2

1
1refl inc inc inco o o o

v v n nE E E E
v v n n

β
β

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�    1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟
⎝ ⎠

 

2 1

1 1 1 2

2 22
1trans inc inc inco o o o

v nE E E E
v v n nβ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�  

 

Take the ratios  ( )refl inco oE E and ( )trans inco oE E , then square them: 
2 2 22

2 1 1 2

2 1 1 2

1
1

refl

inc

o

o

E v v n n
E v v n n

β
β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−
= ≈ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  and  
2 2 22

2 1

2 1 1 2

2 22
1

trans

inc

o

o

E v n
E v v n nβ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= ≈ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Define the reflection coefficient as: 
 

 ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 21
1 121

2 21
1 121

, , ,

, ,,
refl refl

inc inc

refl refl
refl o oEM EMrefl

inc inc
inc o oEM EMinc

S r t v E r E rv u r t u r tI r
R r

I r v E r E rv u r t u r tS r t

ε

ε
⎛ ⎞

≡ = = = = =⎜ ⎟⎜ ⎟
⎝ ⎠

G G G GG GG
G

GG G GG GG   

 
Define the transmission coefficient as: 
 

 ( ) ( )
( )

( )
( )

( )
( )

( )( )
( )( )

( )
( )

2 21
2 222 2 2

221
1 11 1 12

, ,

,,
trans trans

incinc

trans
trans oEM otrans

inc
inc oEM oinc

S r t v E rv u r t v E rI r
T r

I r v E rv u r t v E rS r t

ε ε
εε

⎛ ⎞
≡ = = = =⎜ ⎟⎜ ⎟
⎝ ⎠

G G GG GG
G

GG GG GG  

 
 

3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

12 

     For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary 
between two linear / homogeneous / isotropic media, with 1 2 oμ μ μ� � : 
 

Reflection coefficient:   ( ) ( )
( )

( )
( )

2

refl

inc

orefl

inc o

E rI r
R r

I r E r

⎛ ⎞⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

GG
G

G G  

Transmission coefficient:  ( ) ( )
( )

( )
( )

2

2 2

1 1

trans

inc

otrans

inc o

E rI r vT r
I r v E r

ε
ε

⎛ ⎞⎛ ⎞ ⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

GG
G

G G   

But: 

   
( )
( )

2 2 22
2 1 1 2

2 1 1 2

1
1

refl

inc

o

o

E r v v n n
E r v v n n

β
β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

G
�G   &  

   
( )
( )

2 2 22
2 1

2 1 1 2

2 22
1

trans

inc

o

o

E r v n
E r v v n nβ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

G
�G  

Thus: 

Reflection coefficient:  ( )
2 22

2 1 1 2

2 1 1 2

1
1

v v n nR r
v v n n

β
β

⎛ ⎞ ⎛ ⎞⎛ ⎞ − −−
≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

G �        1 1

2 2

v
v

μβ
μ

⎛ ⎞
≡ ⎜ ⎟
⎝ ⎠

 

Transmission coefficient:  ( )
2 22

2 2 2 2 2 2 2 1

1 1 1 1 2 1 1 1 1 2

2 22
1

v v v v nT r
v v v v v n n

ε ε ε
ε β ε ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
≡ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

G �   

 

Now:  

2 2 2

2 2 2

1 1 11 1

1

v
v

vv

ε μ
ε μ

ε με
μ

=    but: 

2
2 2 2 2

2 2 2

2
1 1 1 2

1 1 1

1 1      

1 1          

v
v

v
v

ε μ
ε μ

ε μ
ε μ

= ⇒ =

= ⇒ =
   

∴       
2 22

22 2 2 2 1 1

1 1 2 2
1 11 22

1

1
1

11

v
vv v v

v vvv
v

μ
ε μ μ β
ε μμμ

⎛ ⎞
⋅⎜ ⎟

⎝ ⎠= = = ≡
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

 !!!   i.e.    1 1 2 2

2 2 1 1

v v
v v

μ εβ
μ ε

≡ =  

                     for 1 2 oμ μ μ≈ ≈  

∴      ( )
( ) ( ) ( )

2 2
2 2 2 1 1 2

2 2 2
1 1 2 1 1 2

4 42 2 4
1 1 1

v v v n nT r
v v v n n

ε ββ
ε β β β

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠⎝ ⎠

G �  

Thus:  

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )
( )

2 2 22 2

2 2 2 2 2 2

1 1 4 14 1 2 4 1 2 1
1 1 1 1 1 1

R r T r
β β β ββ β β β β β
β β β β β β

− − + +− + + + +
+ = + = = = = =

+ + + + + +

G G

∴ ( ) ( ) 1R r T r+ =
G G

  ⇒EM energy is conserved at the interface/boundary between two L/H/I 
media in this process !!! 
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     For a linearly-polarized monochromatic plane EM wave at normal incidence on a boundary 
between two linear / homogeneous / isotropic media, with 1 2 oμ μ μ� � : 
                                                                                                              1 2 oμ μ μ� �  

Reflection coefficient:      ( ) ( )
( )

( )
( )

( )
( )

2 2 22
2 1 1 2

2
2 1 1 2

1
1

refl

inc

orefl

inc o

E rI r v v n nR r
I r E r v v n n

β

β

⎛ ⎞⎛ ⎞ − ⎛ ⎞ ⎛ ⎞− −
≡ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ + ++ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

GG
G �G G  

 

Transmission coefficient: ( ) ( )
( )

( )
( ) ( ) ( ) ( )

2

2 1 1 2
2 2 2

2 1 1 2

4 44
1

trans

inc

otrans

inc o

E rI r v v n nT r
I r E r v v n n

ββ
β

⎛ ⎞⎛ ⎞
≡ = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠

GG
G �G G  

( ) ( ) 1R r T r+ =
G G

    and     1 1 2 2

2 2 2 1

v v
v v

μ εβ
μ ε

≡ =                                   1 2 oμ μ μ� �  

 
 
EXAMPLE:   
 
A monochromatic plane EM wave is incident on an air-glass interface at normal incidence:   

Indices of refraction for air and glass (n.b. both are non-magnetic materials) 1

2

    1.0
1.5

air

glass

n n
n n
=⎛ ⎞

⎜ ⎟=⎝ ⎠

�
�

 

Reflection coefficient:      
2 2 2 2

1 2

1 2

1.0 1.5 0.5 1 1 0.04 4%
1.0 1.5 2.5 5 25

n nR
n n

⎛ ⎞− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = − = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Transmission coefficient: 
( ) ( ) ( )

1 2
2 2 2

1 2

4 4 1.0 1.5 6.0 6.0 0.96 96%
6.251.0 1.5 2.5

n nT
n n

⋅ ⋅
= = = = = =

+ +
 

      0.04 0.96 1.00R T+ = + =  
 
 
QUESTION:  Is EM  linear momentum conserved in this process? 
 
The time-averaged linear momentum densities associated with the 3 EM waves are: 
 

 ( ) ( ) ( )2
1

1 1

1 1 1ˆ ˆ, ,
2 inc

inc inc
EM o EMr t E r z u r t z

v v
ε⎛ ⎞℘ = + = +⎜ ⎟

⎝ ⎠

G G G G
 

 ( ) ( ) ( )2
1

1 1

1 1 1ˆ ˆ, ,
2 refl

refl refl
EM o EMr t E r z u r t z

v v
ε⎛ ⎞℘ = − = −⎜ ⎟

⎝ ⎠

G G G G
 

 ( ) ( ) ( )2
2

2 2

1 1 1ˆ ˆ, ,
2 trans

trans trans
EM o EMr t E r z u r t z

v v
ε⎛ ⎞℘ = + = +⎜ ⎟

⎝ ⎠

G G G G
 

 
     In order that EM linear momentum be conserved at the interface, we must have the time-
averaged initial EM linear momentum at the interface = the time-averaged final EM linear 
momentum at the interface, i.e. ( ) ( )0 0, ,inital final

EM z EM zp r t p r t= ==
G G G G . 

 
{n.b. we (again) use time-averages here, in order to make direct comparisons with experimental 
measurements of these quantities}. 
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Now: ( ) ( ) ( ), , ,  * Volume, 
v

p r t r t d r t Vτ= ℘ = ℘ Δ∫
G GG G G G

  where the volume associated with 

the EM wave over the time interval tΔ  is V A v tA⊥ ⊥Δ = = ΔA  
 
    v t← = Δ →A  
 
Incident           cross-sectional area, A⊥  
plane EM wave    ⇒  
                                  
 
 
               
 
 
 

Thus: ( ) ( ) ( ) 1,    ,    ,inc inc inc
EM EM inc EMp r t r t V r t v t ⊥= ℘ Δ = ℘ Δ Α

G GG G G G
 

 ( ) ( ) ( ) 1,     ,    ,refl refl refl
EM EM refl EMp r t r t V r t v t ⊥= ℘ Δ = ℘ Δ Α

G GG G G G
 

 ( ) ( ) ( ) 2, , ,trans trans trans
EM EM trans EMp r t r t V r t v t ⊥= ℘ Δ = ℘ Δ Α

G GG G G G
 

 

Then:  ( ) ( )0 0, ,inital final
EM z EM zp r t p r t= ==
G G G G

 
 

⇒        ( ) ( ) ( )0 0 0, , ,inc refl trans
EM z EM z EM zp r t p r t p r t= = == +
G G G G G G

 
 

Thus:   ( ) ( ) ( )0 0 0, , ,inc refl trans
EM inc z EM refl z EM trans zr t V r t V r t V= = =℘ Δ = ℘ Δ + ℘ Δ
G G GG G G

 

  or: ( ) ( ) ( )1 0 1 0 2 0, , ,inc refl trans
EM z EM z EM zr t v t r t v t r t v t⊥ = ⊥ = ⊥ =℘ Δ Α = ℘ Δ Α + ℘ Δ Α
G G GG G G

 

  i.e: ( ) ( ) ( )1 0 1 0 2 0, , ,inc refl trans
EM z EM z EM zv r t v r t v r t= = =℘ = ℘ + ℘
G G GG G G

 
 

But:  ( ) ( )2
1

1

1 1 ˆ,
2 inc

inc
EM or t E r z

v
ε⎛ ⎞℘ = + ⎜ ⎟

⎝ ⎠

G G G
 

 ( ) ( )2
1

1

1 1 ˆ,
2 refl

refl
EM or t E r z

v
ε⎛ ⎞℘ = − ⎜ ⎟

⎝ ⎠

G G G
 

 ( ) ( )2
2

2

1 1 ˆ,
2 trans

trans
EM or t E r z

v
ε⎛ ⎞℘ = + ⎜ ⎟

⎝ ⎠

G G G
 

 

Thus: 1

1

v
v

1
2

( )2 1
1

10
inco

z

vE r
v

ε
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

G 1
2

( )2 2
1

20
reflo

z

vE r
v

ε
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

G 1
2

( )2
2

0
transo

z

E rε
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

G
 

  or: ( ) ( )( ) ( )2 2 2
1 2 00inc refl transo o o zz

E r E r E rε ε
==

+ =
G G G
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Divide this relation on both sides by ( )2
incoE rG

 
( )
( )
( )

( )
( )

( )
( )

( )

2 2 2

2 1 1 2

1 2 1 1

  

1 refl trans trans

inc inc inc

o o o

o o o

T rR r

E r E r E rv v
E r E r v v E r

ε ε
ε ε

≡=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
+ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

GG

G G G
G G G

����	���
��	�

 

  

Thus: ( ) ( )1

2

1 vR r T r
v

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠

G G
    But:  ( ) ( ) 1R r T r+ =

G G
  or: ( ) ( )1R r T r= −

G G
 

   ∴    ( )( ) ( )1

2

1 1 vT r T r
v

⎛ ⎞
+ − = ⎜ ⎟

⎝ ⎠

G G
  or:   ( ) ( )1

2

2 vT r T r
v

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠

G G
   or:   ( )1

2

2 1 v T r
v

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

G
 

 

Thus: ( ) ( ) ( )
2

1 21 2

22
1

vT r
v vv v

= =
++⎡ ⎤⎣ ⎦

G
   

But:  ( )
( ) ( ) ( )

2 1 2
2 2

1 22 1

4 24
1

v v vT r
v vv v

β
β

= ≠
++ +

G �   {from above} !!!  where 1 1 2 2

2 2 2 1

v v
v v

μ εβ
μ ε

≡ =  

 
⇒   Linear momentum carried by EM wave is NOT conserved in/at interface between two linear 
/ homogeneous / isotropic media !!!  Why???? How??? 
 
The physical reason for this is because {again} we’re not “counting all of the beans” here… 
 
    The EM waves that are present in each of the linear / homogeneous / isotropic media  
(i.e. the EM waves that exist in medium 1 and medium 2) polarize the atoms/molecules in that 
medium and create an additional co-traveling momentum in that medium – which results from 
the {mechanical} momentum of the electrons associated with the atomic/molecular induced 
electric dipole moments that arise in response to the induced polarization associated with the 
incident/reflected/transmitted traveling EM waves! Please see/read P436 Lect. Notes 7.5…. 
 
     Thus, overall linear momentum is conserved when the EM wave and its co-traveling electron / 
atom / molecule induced electric dipole mechanical momentum associated with the medium is 
included 

In medium 1:  ( ) ( ) ( ),    = ,    + ,  inc inc inc
Tot EM e dipole

p r t p r t p r t−

G G G G G G
 

In medium 1:  ( ) ( ) ( ),   = ,    + ,  refl refl refl
Tot EM e dipole

p r t p r t p r t−

G G G G G G
 

In medium 2:  ( ) ( ) ( ),  = ,  + ,  trans trans trans
Tot EM e dipole

p r t p r t p r t−

G G G G G G
 

 
     It is curious that the time-averaged energy in EM waves (alone) is conserved, whereas time-
averaged EM field linear momentum is not conserved at the interface of two L/H/I media. 
Microscopically, note that a photon’s energy E hfγ = is unchanged in such a medium, whereas a 
photon’s momentum p hγ γλ= is changed. Since macroscopic EM field linear momentum is not 
conserved at the interface of two L/H/I media, neither will EM field angular momentum / EM 
field angular momentum density be conserved {only}, since ( ) ( ), ,EM EMr t r r t= ×℘

G GG G GA . 
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For further details on this subject, see/read: 
1.) J.D. Jackson, Classical Electrodynamics,  p. 262, 3rd Ed. Wiley, NY 
2.) R.E. Peierls, Proc. Roy. Soc. London 347, p. 475 (1976). 
3.) R.E. Peierls, Proc. Roy. Soc. London 355, p. 141 (1971). 
4.) R. Loudon, L. Allen and D.F. Nelson, Phys. Rev. E55, p. 1071 (1997). 
 
 

Arbitrary/Generalized Polarization States of a Plane EM Wave; 
Elliptical, Circular and Linear Polarization 

 
     As we saw in the previous discussion, a monochromatic, linearly-polarized plane EM wave 
e.g. propagating in the ẑ+ direction in medium 1, which is also at normal incidence to a 
boundary between two linear / homogenous / isotropic media {located as before at z = 0 in the x-
y plane} has the following mathematical forms {for linear polarization in the x̂+ direction} for 
the complex E

G
and B

G
fields: 

 
Incident monochromatic, linearly-polarized EM plane wave (in medium 1): 

Propagates in the ẑ+ -direction (i.e. 1
ˆ ˆ ˆinck k z= + = + ), with linear polarization ˆ ˆincn x= +  

 ( ) ( )1 ˆ,
inc

i k z tLP
inc oE z t E e xω−=
G
� �    with:  1 1 1 12inc inck k k k vπ λ ω= = = = =

G G
  and: 

inc inc

i
o oE E e δ=�  

 ( ) ( ) ( )1

1 1

1 1ˆ ˆ, ,
inc

i k z tLP LP
inc inc inc oB z t k E z t E e y

v v
ω−= × =

G G
� � �       since:    ˆ ˆ ˆ ˆˆinc inck n z x y× = + × = +  

 
     In general, this monochromatic, linearly-polarized EM plane wave incident on the boundary 
between two linear / homogenous / isotropic media can be polarized in any direction in the x-y 
plane. More generally then, we can write the polarization vector ˆincn  as: 
 

  ˆ ˆ ˆcos sinincn x yϕ ϕ= +   where  0 2ϕ π≤ <  
 
 
      0 :oϕ =  ⇒  LP in x̂+ -direction 
  90 :oϕ =  ⇒  LP in ŷ+ -direction 
 
 
 
Thus, more generally, we can write the complex E

G
and B

G
fields for the incident monochromatic, 

but arbitrarily linearly-polarized EM plane wave (in medium 1) as: 
 
Incident monochromatic, arbitrarily linearly-polarized EM plane wave (in medium 1): 

ẑ+ propagation direction (i.e. 1
ˆ ˆ ˆinck k z= + = + ), arbitrary linear polarization ˆ ˆ ˆcos sinincn x yϕ ϕ= +  

 ( ) ( ) ( ) [ ]1 1ˆ ˆ ˆ, cos sin
inc inc

i k z t i k z tLP
inc o inc oE z t E e n E e x yω ω ϕ ϕ− −= = +
G
� � �    

with: 1 1 1 12inc inck k k k vπ λ ω= = = = =
G G

  and: 
inc inc

i
o oE E e δ=�  

 ( ) ( ) ( ) ( )1

1 1

1 1ˆ ˆ ˆ, ,
inc

i k z tLP LP
inc inc inc o inc incB z t k E z t E e k n

v v
ω−= × = ×

G G G
� � �  

ŷ  

x̂  

ˆincn  

ϕ  

cosϕ  

sinϕ  
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But:  [ ] ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆcos sin cos sin cos sininc inck n z x y z x z y y xϕ ϕ ϕ ϕ ϕ ϕ× = + × + = × + × = + −  
 
              Very Useful Table: 
 

      
ˆ ˆ ˆ ˆˆ ˆ         
ˆ ˆ ˆ ˆˆ ˆ         

ˆ ˆ ˆ ˆˆ ˆ         

x y z y x z
y z x z y x
z x y x z y

× = + × = −
× = + × = −
× = + × = −

 

 

Thus, the complex B
G

-field can be equivalently written as: 
 

       ( ) ( ) ( ) ( ) ( ) [ ]1 1

1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ, , cos sin
inc inc

i k z t i k z tLP LP
inc inc inc o inc inc oB z t k E z t E e k n E e y x

v v v
ω ω ϕ ϕ− −= × = × = −

G G
� � � �  

 

As always, the physical E
G

and B
G

fields associated with this EM wave are of the form: 
 

 

( ) ( ){ } ( ) [ ]{ }
( ) [ ]{ } ( ) [ ]{ }

( ){ }

1

1 1

1

ˆ ˆ, Re , Re cos sin ,     but :   

ˆ ˆ ˆ ˆ                Re cos sin Re cos sin

ˆ                Re cos

inc inc inc

inc inc

inc

i k z tLP LP i
inc inc o o o

i k z t i k z ti
o o

i k z t
o

E z t E z t E e x y E E e

E e e x y E e x y

E e

ω δ

ω ω δδ

ω δ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ

−

− − +

− +

= = + =

= + = +

=

GG � � �

[ ]
( ) ( ){ }[ ]

( )[ ]
1 1

1

ˆsin

ˆ ˆ                Re cos sin cos sin

ˆ ˆ                cos cos sin
inc

inc

o

o

x y

E k z t i k z t x y

E k z t x y

ϕ

ω δ ω δ ϕ ϕ

ω δ ϕ ϕ

+

= − + + − + +

= − + +

 

 

 
( ) ( ){ } ( ) ( )( )

( )[ ]

1
1 1

1
1

1 1ˆ ˆ ˆ, Re , , cos

1 ˆ ˆ                cos cos sin

inc

inc

LP LP LP
inc inc inc inc o inc inc

o

B z t B z t k E z t E k z t k n
v v

E k z t y x
v

ω δ

ω δ ϕ ϕ

= = × = − + ×

= − + −

GG G�

 

 
     Now, for a circularly-polarized monochromatic plane EM wave, propagating in the 

ẑ+ direction in medium 1 incident on the boundary between two linear / homogenous / isotropic 
media at normal incidence, the physical E

G
and B

G
fields can be written mathematically as follows: 

 

 ( ) ( ) ( )1 1ˆ ˆ, cos sin
inc

CP
inc oE z t E k z t x k z t yω δ ω δ= − + ± − +⎡ ⎤⎣ ⎦
G

  with  1
ˆ ˆ ˆinck k z= + = +  

 

( ) ( ) ( ) ( ){ }
( )( ) ( )( )
( ) ( )

1 1

1

1

1 1
1 1

1
1 1

1
1 1

ˆ ˆ ˆˆ, ,  cos sin

ˆ ˆˆ ˆ                  cos sin

ˆ ˆ                 cos sin

inc

inc

inc

CP CP
inc inc inc ov v

ov

ov

B z t k E z t E z k z t x k z t y

E k z t z x k z t z y

E k z t y k z t x

ω δ ω δ

ω δ ω δ

ω δ ω δ

= × = × − + ± − +⎡ ⎤⎣ ⎦

= − + × ± − + ×⎡ ⎤⎣ ⎦
= − + − +⎡ ⎤⎣ ⎦

G G

∓

 

 

     Note that the ±  signs between the 90o out-of-phase x̂  and ŷ  components for E
G

(and the 
corresponding ∓  signs for B

G
) denote the handedness of the circularly polarized EM wave  

– i.e. whether it is right- or left-circularly polarized! 
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     A right- (left-) circularly-polarized monochromatic plane EM wave, propagating in the 
ẑ+ direction in medium 1 incident on the boundary between two linear / homogenous / isotropic 

media at normal incidence, the physical E
G

and B
G

fields can be written mathematically as follows: 
 

   ( ) ( ) ( )1 1ˆ ˆ,      cos sin
inc

RCP
inc oE z t E k z t x k z t yω δ ω δ= − + + − +⎡ ⎤⎣ ⎦
G

 

   ( ) ( ) ( )1 1
1

1 ˆ ˆ,  cos sin
inc

RCP
inc oB z t E k z t y k z t x

v
ω δ ω δ= − + − − +⎡ ⎤⎣ ⎦

G
 

 

   ( ) ( ) ( )1 1ˆ ˆ,      cos sin
inc

LCP
inc oE z t E k z t x k z t yω δ ω δ= − + − − +⎡ ⎤⎣ ⎦
G

 

   ( ) ( ) ( )1 1
1

1 ˆ ˆ,  cos sin
inc

RCP
inc oB z t E k z t y k z t x

v
ω δ ω δ= − + + − +⎡ ⎤⎣ ⎦

G
 

 

Note that at ( ) ( ), 0,0z t = these EM fields at that point/at that time are: 
 

( ) [ ]ˆ ˆ0,0      cos sin
inc

RCP
inc oE E x yδ δ= +
G

 

   ( ) [ ]
1

1 ˆ ˆ0,0  cos sin
inc

RCP
inc oB E y x

v
δ δ= −

G
 

 

   ( ) [ ]ˆ ˆ0,0      cos sin
inc

LCP
inc oE E x yδ δ= −
G

 

   ( ) [ ]
1

1 ˆ ˆ0,0  cos sin
inc

LCP
inc oB E y x

v
δ δ= +

G
 

 
Or more generally for circularly-polarized EM waves (right- or left-handed): 
 

( ) [ ]ˆ ˆ0,0      cos sin
inc

CP
inc oE E x yδ δ= ±
G

  (+  = RCP, −  = LCP) 

   ( ) [ ]
1

1 ˆ ˆ0,0  cos sin
inc

CP
inc oB E y x

v
δ δ=

G
∓   (−  = RCP, +  = LCP) 

 
If we compare these formulae to their equivalents for arbitrarily linearly-polarized EM waves, 
with ˆ ˆ ˆ ˆcos sinLP incn n x yϕ ϕ= ≡ + : 
 

   ( ) [ ]ˆ ˆ ˆ ˆ0,0      cos cos sin cos  cos  
inc inc inc

LP
inc o o LP o incE E x y E n E nδ ϕ ϕ δ δ= + = =
G

 

   ( ) [ ] ( )
1 1

1 1 ˆˆ ˆ ˆ0,0  cos cos sin cos
inc inc

LP
inc o o incB E y x E k n

v v
δ ϕ ϕ δ= − = ×

G
 

 
Then we see that we can {analogously} define right- and left-circular transverse polarization unit 
vectors (i.e. lying in the x-y plane,⊥ to the direction of propagation {here, in the ẑ+ direction}): 
 

 RCP EM Wave:  ˆ ˆ ˆ ˆcos sinRCPn n x yδ δ+= ≡ +  
 LCP EM Wave:  ˆ ˆ ˆ ˆcos sinLCPn n x yδ δ−= ≡ −  
 

RCP 
EM 

Wave 

LCP 
EM 

Wave 

RCP 
EM 

Wave 

LCP 
EM 

Wave 

CP 
EM 

Wave 

LP 
EM 

Wave 
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     Thus, we can write the physical E
G

and B
G

fields at ( ) ( ), 0,0z t = associated with a right- (left-) 
circularly-polarized monochromatic plane EM wave, propagating in the ẑ+ direction in medium 
1 incident on the boundary between two linear / homogenous / isotropic media at normal 
incidence as follows, for ˆ ˆ ˆ ˆcos sinRCPn n x yδ δ+= ≡ +  and ˆ ˆ ˆ ˆcos sinLCPn n x yδ δ−= ≡ − : 
 

( ) [ ]ˆ ˆ ˆ ˆ0,0      cos sin
inc inc inc

RCP
inc o o RCP oE E x y E n E nδ δ += + = =
G

 

  ( ) [ ] ( ) ( )
1 1 1

1 1 1ˆ ˆˆ ˆ ˆ ˆ0,0  cos sin
inc inc inc

RCP
inc o o inc RCP o incB E y x E k n E k n

v v v
δ δ += − = × = ×

G
 

 

  ( ) [ ]ˆ ˆ ˆ ˆ0,0      cos sin
inc inc inc

LCP
inc o o LCP oE E x y E n E nδ δ −= − = =
G

 

  ( ) [ ] ( ) ( )
1 1 1

1 1 1ˆ ˆˆ ˆ ˆ ˆ0,0  cos sin
inc inc inc

LCP
inc o o inc LCP o incB E y x E k n E k n

v v v
δ δ −= + = × = ×

G
 

 
Or more generally for circularly-polarized EM waves (right- or left-handed): 
 

( ) [ ]ˆ ˆ ˆ0,0      cos sin
inc inc

RCP
inc o oE E x y E nδ δ ±= ± =
G

 

  ( ) [ ] ( )
1 1

1 1 ˆˆ ˆ ˆ0,0  cos sin
inc inc

RCP
inc o o incB E y x E k n

v v
δ δ ±= = ×

G
∓  

 
Defining right and left complex circular-polarization unit vectors, respectively as: 
 

  [ ]1
2

ˆ ˆ ˆ ˆRCP x iy−∈ =∈ ≡ −    and   [ ]1
2

ˆ ˆ ˆ ˆLCP x iy+∈ =∈ ≡ + : 
 
The corresponding complex CP (RCP or LCP) EM waves are of the following forms 
 

  ( ) ( ) [ ] ( ) ( )1 1 1ˆ ˆ ˆ ˆ,  2  2  
inc inc inc

i k z t i k z t i k z tRCP
inc o o RCP oE z t E e x iy E e E eω δ ω δ ω δ− + − + − +

−= − = ∈ = ∈
G
�  

  ( ) ( )
1

1 ˆ,  ,RCP RCP
inc inc incB z t k E z t

v
= ×

G G
� �  

 

  ( ) ( ) [ ] ( ) ( )1 1 1ˆ ˆ ˆ ˆ,  2  2  
inc inc inc

i k z t i k z t i k z tLCP
inc o o LCP oE z t E e x iy E e E eω δ ω δ ω δ− + − + − +

+= + = ∈ = ∈
G
�  

  ( ) ( )
1

1 ˆ,  ,LCP LCP
inc inc incB z t k E z t

v
= ×

G G
� �  

 

  ( ) ( ) [ ] ( )1 1ˆ ˆ ˆ,  2  
inc inc

i k z t i k z tCP
inc o oE z t E e x iy E eω δ ω δ− + − += = ∈∓
G
� ∓  

  ( ) ( )
1

1 ˆ,  ,CP CP
inc inc incB z t k E z t

v
= ×

G G
� �        (n.b. −  = RCP, +  = LCP here !!!) 

 
 
 
 
 
 

RCP 
EM 

Wave 

LCP 
EM 

Wave 

CP 
EM 

Wave 

RCP 
EM 

Wave 

LCP 
EM 

Wave 

CP 
EM 

Wave 
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     At a fixed point in space (e.g. z = 0), an observer looking into the oncoming/incident LCP EM 
wave sees the electric field vector ( )0,LCP

incE z t=
G

spinning/rotating counter-clockwise (CCW) in a 
circle at angular frequency ω  for a LCP EM wave as time progresses. A LCP EM wave is said to 
have positive helicity, because a LCP EM wave propagating in the ẑ+ direction has positive 
angular momentum density, i.e. ( ) ˆ,LCP

EM EMz t z= +A A .  
 
   Similarly,  at a fixed point in space (e.g. z = 0), an observer looking into the oncoming/incident 
RCP EM wave sees the electric field vector ( )0,RCP

incE z t=
G

spinning/rotating clockwise (CW) in a 
circle at angular frequency ω  for RCP light as time progresses. A RCP EM wave is said to have 
negative helicity, because a RCP EM wave propagating in the ẑ+ direction has negative angular 
momentum density, i.e. ( ) ˆ,RCP

EM EMz t z= −A A .  
 
     Note that both linearly-polarized and circularly-polarized EM waves are limiting/special cases 
of the more general class of elliptically-polarized EM waves.  
 
      For a generally-polarized monochromatic plane EM wave propagating in the ẑ+ direction 

( ) ( )1ˆ ˆ, i k z t
ox oyE z t E x E y e ω−⎡ ⎤= +⎣ ⎦

G
� � � , if the x̂  and ŷ components of the complex electric field have the 

same phase, i.e. i
ox oxE E e δ=�  and i

oy oyE E e δ=� , then this is a linearly-polarized monochromatic 

plane EM wave propagating in the ẑ+ direction:  ( ) ( )1ˆ ˆ, i k z tLP
ox oyE z t E x E y e ω δ− +⎡ ⎤= +⎣ ⎦

G
� . If the x̂  

and ŷ components of the complex electric field have the same amplitude and the same phase, i.e. 
i

ox oE E e δ=�  and i
oy oE E e δ=� , then this is monochromatic plane EM wave a linearly-polarized at 

+45o (wrt the x̂ -axis) propagating in the ẑ+ direction:  ( ) [ ] ( )1ˆ ˆ, i k z tLP
oE z t E x y e ω δ− += +

G
� .  Other 

special cases of linear polarization, such as LP in the x̂ -only, or the ŷ -only direction, or the −45o 
(wrt the x̂ -axis) can also be easily worked out. 
 

     If the x̂  and ŷ components of the complex electric field ( ) ( )1ˆ ˆ, i k z t
ox oyE z t E x E y e ω−⎡ ⎤= +⎣ ⎦

G
� � �  of the 

generally-polarized monochromatic plane EM wave propagating in the ẑ+ direction have 
different phases, i.e. xi

ox oxE E e δ=�  and yi
oy oyE E e δ=� , then this EM wave is elliptically-polarized. 

 

     If the x̂  and ŷ components of the complex electric field ( ) ( )1ˆ ˆ, i k z t
ox oyE z t E x E y e ω−⎡ ⎤= +⎣ ⎦

G
� � �  of the 

generally-polarized monochromatic plane EM wave propagating in the ẑ+ direction have the 
same amplitudes {i.e. ox oy oE E E= = } and their phases differ by 90 2o

x yδ δ π− = ± = ±  radians, 

i.e. xi
ox oE E e δ=�  and ( )2 2y x x xi i i ii

oy o o o o oxE E e E e E e e iE e iEδ δ π δ δπ= = = = =∓ ∓� �∓ ∓    

{since ( ) ( )2 cos 2 sin 2ie i iπ π π= =∓ ∓ ∓ }, hence [ ]ˆ ˆ ˆ ˆ ˆ2  ox oy o oE x E y E x iy E⎡ ⎤+ = = ∈⎣ ⎦ ∓
� � ∓  and thus 

we see that this EM wave is circularly-polarized. 
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Reflection & Transmission of Circularly Polarized Plane EM Waves at Normal Incidence 
at a Boundary Between Two Linear / Homogeneous / Isotropic Media 

 
     A circularly-polarized monochromatic plane EM wave propagating in the ẑ+ direction is 
normally incident on a boundary {in the x-y plane} between two linear, homogeneous and 
isotropic media as shown in the figure below: 

The complex amplitudes for the CP E
G

and B
G

fields are summarized below: 
 
Incident CP monochromatic plane EM wave: 
 

 ( ) ( ) [ ] ( ) [ ]1 1ˆ ˆ ˆ ˆ,   
inc inc

i k z t i k z tCP
inc o oE z t E e x iy E e x iyω ω δ− − += =
G
� � ∓ ∓     n.b.  1

ˆ ˆ ˆinck k z= = +  

 ( ) ( ) ( ) [ ] ( ) [ ]1 1

1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ,  ,
inc inc

i k z t i k z tCP CP
inc inc inc o ov v vB z t k E z t E e y ix E e y ixω ω δ− − += × = ± = ±
G G
� � �  

 
Reflected CP monochromatic plane EM wave: 
 

 ( ) ( ) [ ] ( ) [ ]1 1ˆ ˆ ˆ ˆ,   
refl refl

i k z t i k z tCP
refl o oE z t E e x iy E e x iyω ω δ− − += =
G
� � ∓ ∓     n.b.  1

ˆ ˆ ˆreflk k z= − = −  

 ( ) ( ) ( ) [ ] ( ) [ ]1 1

1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ,  ,
refl refl

i k z t i k z tCP CP
refl refl refl o ov v vB z t k E z t E e y ix E e y ixω ω δ− − += × = − = − ±
G G
� � � ∓  

 
Transmitted CP monochromatic plane EM wave: 
 

 ( ) ( ) [ ] ( ) [ ]2 2ˆ ˆ ˆ ˆ,   
trans trans

i k z t i k z tCP
trans o oE z t E e x iy E e x iyω ω δ− − += =
G
� � ∓ ∓     n.b.  2

ˆ ˆ ˆtransk k z= = +  

 ( ) ( ) ( ) [ ] ( ) [ ]2 2

2 2 2

1 1 1ˆ ˆ ˆ ˆ ˆ,  ,
trans trans

i k z t i k z tCP CP
trans trans trans o ov v vB z t k E z t E e y ix E e y ixω ω δ− − += × = ± = ±
G G
� � �  

 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  6        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

22 

     The boundary conditions on the CP E
G

and B
G

fields @ z = 0 in the x-y plane are summarized 
below: 
 

BC 1) Normal D
G

 continuous:       1 1 2 2Tot Tot
E Eε ε⊥ ⊥=   

(n.b. ⊥ refers to the x-y boundary, i.e. in the ẑ+ direction) 
 

BC 2)  Tangential E
G

continuous:       1 2Tot Tot
E E=& &   

(n.b. &  refers to the x-y boundary, i.e. in the x-y plane) 
 

BC 3)  Normal B
G

continuous:             1 2Tot Tot
B B⊥ ⊥=       (⊥ to x-y boundary, i.e. in the ẑ+ direction) 

 

BC 4)  Tangential H
G

continuous:  1 2
1 2

1 1
Tot Tot

B B
μ μ

=& &   (&  to x-y boundary, i.e. in x-y plane) 

Thus, at z = 0: 
 

Again, because the transversality requirements (from Maxwell’s equations) of the E
G

and B
G

fields, 
we see that BC 1) and BC 3) impose no restrictions {here} on such CP EM waves since: 
{ 1 1 0

Tot Tot

zE⊥ = Ε = ; 2 2 0
Tot Tot

zE E⊥ = = } and { 1 1 0
Tot Tot

zB B⊥ = = ; 2 2 0
Tot Tot

zB B⊥ = = } 
 

⇒Again, the only restrictions on plane EM waves propagating with normal incidence on the 
boundary at z = 0 {lying in the x-y plane} are imposed by BC 2) and BC 4). 
 
∴ At z = 0 in medium 1) (i.e. z ≤ 0) we must have: 
 

    ( ) ( ) ( )1 0, 0, 0,
Tot

CP CP
inc reflE z t E z t E z t= = = + =&

G G G
� � �   and 

( ) ( ) ( )1
1 1 1

1 1 10, 0, 0,
Tot

CP CP
inc reflB z t B z t B z t

μ μ μ
= = = + =&

G G G
� � �  

 
While at z = 0 in medium 2) (i.e. z ≥ 0) we must have: 
 

     ( ) ( )2 0, 0,
Tot

CP
transE z t E z t= = =&

G G
� �   and 

( ) ( )2
2 2

1 10, 0,
Tot

CP
transB z t B z t

μ μ
= = =&

G G
� �  

 

Then BC 2)  (Tangential E
G

is continuous @ z = 0) requires that:  
 

1 0 2 0Tot Totz zE E= ==& &
G G
� �   or: ( ) ( ) ( )0, 0, 0,CP CP CP

inc refl transE z t E z t E z t= + = = =
G G G
� � � . 

 

Then BC 4) (Tangential H
G

is continuous @ z = 0) requires that:  
 

1 0 2 0
1 2

1 1
Tot Totz zB B

μ μ= ==& &
G G
� �   or:  ( ) ( ) ( )

1 1 2

1 1 10, 0, 0,CP CP CP
inc refl transB z t B z t B z t

μ μ μ
= + = = =

G G G
� � �  
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Inserting the explicit expressions for the complex and E B
G G
� �  fields 

 

( ) ( ) [ ]1 ˆ ˆ,     
inc

i k z tCP
inc oE z t E e x iyω−=
G
� � ∓      ( ) ( ) ( ) [ ]1

1 1

1 1ˆ ˆ ˆ,  ,
inc

i k z tCP CP
inc inc inc ov vB z t k E z t E e y ixω−= × = ±
G G
� � �  

 

( ) ( ) [ ]1 ˆ ˆ,    
refl

i k z tCP
refl oE z t E e x iyω−=
G
� � ∓      ( ) ( ) ( ) [ ]1

1 1

1 1ˆ ˆ ˆ,  ,
refl

i k z tCP CP
refl refl refl ov vB z t k E z t E e y ixω−= × = −
G G
� � � ∓  

 

( ) ( ) [ ]2 ˆ ˆ,  
trans

i k z tCP
trans oE z t E e x iyω−=
G
� � ∓    ( ) ( ) ( ) [ ]2

2 2

1 1ˆ ˆ ˆ,  ,
trans

i k z tCP CP
trans trans trans ov vB z t k E z t E e y ixω−= × = ±
G G
� � �  

 
into the above boundary condition relations, these equations become: 
 

BC 2) (Tangential E
G

continuous @ z = 0): 
inc

i t
oE e ω−�

refl

i t
oE e ω−+ �

trans

i t
oE e ω−= �  

BC 4) (Tangential H
G

continuous @ z = 0): 
1 1

1
inc

i t
oE e

v
ω

μ
−�

1 1

1
refl

i t
oE e

v
ω

μ
−− �

2 2

1
trans

i t
oE e

v
ω

μ
−= �  

 

Cancelling the common i te ω− factors on the LHS & RHS of above equations, we have at z = 0 { 
n.b. everywhere in x-y plane, independent of/valid for any time t}: 
 

BC 2) (Tangential E
G

continuous @ z = 0): 
inc refl transo o oE E E+ =� � �  

BC 4) (Tangential H
G

continuous @ z = 0): 
1 1 1 1 2 2

1 1 1
inc refl transo o oE E E

v v vμ μ μ
− =� � �  

 
     Note that these last two relations for circularly-polarized plane EM waves are identical to 
those we obtained for the linearly-polarized monochromatic plane EM wave propagating in the 

ẑ+ direction is normally incident on a boundary {in the x-y plane} between two linear, 
homogeneous and isotropic media.   
 

⇒The BC constraints on the  and E B
G G
� �  are decoupled from their polarization states!  

 
     Thus, we obtain precisely the same reflection and transmission coefficients for the circularly-
polarized plane EM wave as we did for the linearly-polarized monochromatic plane EM wave 
propagating in the ẑ+ direction is normally incident on a boundary {in the x-y plane} between 
two linear, homogeneous and isotropic media:  
                                                                                                              1 2 oμ μ μ� �  

Reflection coefficient:      ( ) ( )
( )

( )
( )

( )
( )

2 2 22
2 1 1 2

2
2 1 1 2

1
1

refl

inc

orefl

inc o

E rI r v v n nR r
I r E r v v n n

β

β

⎛ ⎞⎛ ⎞ − ⎛ ⎞ ⎛ ⎞− −
≡ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ + ++ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

GG
G �G G  

 

Transmission coefficient: ( ) ( )
( )

( )
( ) ( ) ( ) ( )

2

2 1 1 2
2 2 2

2 1 1 2

4 44
1

trans

inc

otrans

inc o

E rI r v v n nT r
I r E r v v n n

ββ
β

⎛ ⎞⎛ ⎞
≡ = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠

GG
G �G G  

( ) ( ) 1R r T r+ =
G G

    and     1 1 2 2

2 2 2 1

v v
v v

μ εβ
μ ε

≡ =                                   1 2 oμ μ μ� �  

 


