
UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  8        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

1

LECTURE NOTES 8 
 

A More Sophisticated Treatment of EM Wave Propagation in Conducting Media 
 
     In the previous P436 Lecture Notes 7, we discussed the propagation of EM waves in 
conducting media (e.g. metals), taking into account Ohm’s Law ( ) ( ), ,CJ r t E r tσ=

G GG G  and the 

continuity equation ( ) ( ), ,freeJ r t r t tρ∇ = −∂ ∂
G G G Gi  in the conductor. 

 
     However, this treatment of conducting media neglected certain inertial effects associated with 
the “free” / conduction electrons in the metal conductor – we need to consider more carefully the 
actual motion of the “free” / conduction electrons in the conductor, and their response e.g. to the 
application of a monochromatic plane EM wave of angular frequency ω. 
 
     Since the “free” / conduction electrons in a metal are not bound to individual atoms in a 
conductor, there are no “elastic” restoring forces acting on the “free” / conduction electrons  
{i.e. 0ek = }, as there was in the case of the polarization of bound atomic electrons, e.g. in a 
dispersive, linear non-conducting medium.  Thus, the differential equation describing the motion 
of the “free” / conduction electrons in a metal is of the general form: 
 

( ) ( ) ( ) ( ) ( ) ( ),
, , , 0 ,e e e e

dv r t
F r t m a r t m m v r t r t eE r t

dt
γ∗ ∗ ∗= = + +  = −

G GG GG G G G G G G
  

 

where the driving force ( ),eE r t−
G G  = the charge of the electron ( )e−  times the electric field 

( ),E r t
G G  of the monochromatic plane EM wave propagating in the conducting metal. 

 
 Thus, we obtain a first-order inhomogeneous differential equation of the form: 
 

     
( ) ( ) ( ),

, ,e e

dv r t
m m v r t eE r t

dt
γ∗ ∗+ = −

G G GG G G
  

 
n.b. here again, we neglect the effects of the magnetic Lorentz force term, 
 

       ( ) ( ) ( ) ( ), , , ,LorentzF r t ev r t B r t eE r t= − ×
G G GG G G G G�   because: D propv v v v= ≈

G � . 
 

     Note also that em∗  = mass of the “free” /conduction electron in the metal conductor which, 
depending on the microscopic/quantum mechanical details of the conductor is {often} not equal 
to the mass of a {truly free, isolated} electron, 319.1 10 kgem −= ×  . 
 

     The quantity em γ∗  is known as the frictional / Joule dissipation constant, associated with 
electron energy / momentum losses – i.e. “free” /conduction electron scattering losses in the 
conductor. The damping constant γ  {n.b. units of angular frequency (radians/sec)} is associated 
with dissipative/ energy loss mechanism(s) of the motion of “free” / conduction electrons in the 
metal – “free” / conduction electrons scattering off of each other, off of atoms, lattice vibrations, 
crystal defects and impurities in real metals. Thus, we can also define a relaxation time constant 

1rlxτ γ≡  associated with the “free” / conduction electrons present in the metal conductor. 
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     The free current density in the metal conductor is ( ) ( ), ,free eJ r t n ev r t= −
G G G G  {Amps/m2}, where: 

en = “free” / conduction electron number density in the metal conductor {#/unit volume = #/m3}. 
 q e= − = the electric charge of  “free” / conduction electrons {Coulombs}. 

( ),v r tG G  = the {drift} velocity ( )c� of “free” / conduction electrons in metal at ( ),r tG  {m/s}. 
 

Thus:                 
( ) ( ) ( ),

, ,e e

dv r t
m m v r t eE r t

dt
γ∗ ∗+ = −

G G GG G G
 ⇐  multiply through by en e− : 

 

( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( )( ) ( )

2

2

2

,
, ,

,
, ,

, , ,

e e e e e

e e e e e

e e e e e

dv r t
n em n em v r t n e E r t

dt
dv r t

m n e m n ev r t n e E r t
dt

dm n ev r t m n ev r t n e E r t
dt

γ

γ

γ

∗ ∗

∗ ∗

∗ ∗

      − − = +

⎛ ⎞
= − − = +⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟= − + − = +
⎜ ⎟
⎝ ⎠

G G GG G G

G G GG G G

GG G G G G
���	��
 ���	��


 

 

  ∴  
( ) ( ) ( )2,

, ,free
e e free e

dJ r t
m m J r t n e E r t

dt
γ∗ ∗+ =

G G G GG G
   or:  

( ) ( ) ( )
2,

, ,free e
free

e

dJ r t n eJ r t E r t
dt m

γ ∗

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠

G G G GG G
 

 
which is also a first-order linear, inhomogeneous differential equation.  
 
     Recall that the solution to an inhomogeneous differential equation is the sum of the solution 
to the corresponding homogeneous differential equation, plus a particular solution satisfying the 
inhomogeneous differential equation. Thus, we first need to obtain the solution to the 
homogeneous differential equation, i.e. when no EM waves are present in the conducting 
material, vis. ( ), 0E r t =

G G . 
 

a.)  If ( ), 0E r t =
G G ,  the general solution to the first-order linear, homogeneous differential 

equation: 
( ) ( )

,
, 0free

free

dJ r t
J r t

dt
γ+ =

G G G G
 

 
is of the form of a damped exponential (because γ > 0): 
 

( ) ( ) ( ), rlx

free

tt
free o oJ r t J r e J r e τγ −−= =
G GG G G

   where:  1rlxτ γ≡  

→  Transient free current(s) will decay to 11 0.3679e e−= =  of their initial t = 0 value ( ( )oJ r
G G )  

       in a characteristic relaxation time 1rlxt τ γ= ≡ . 
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     Using the continuity equation ( ) ( ), ,free freeJ r t r t tρ∇ = −∂ ∂
G G G Gi  {expressing conservation of free 

electric charge} in the above homogeneous equation, with ( ), 0E r t =
G G : 

 

( ) ( ) ( )
2

0

, , ,e
free free

e

n ed J r t J r t E r t
dt m

γ ∗

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟∇ + ∇ = ∇⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

G G G G G GG G Gi i i �	
��	�
 ��	�


( ) ( )2

2

, ,
0free freer t r t

t t
ρ ρ

γ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
= − − =

∂ ∂

G G
 

 

thus:  
( ) ( )2

2

, ,
0free freer t r t

t t
ρ ρ

γ
∂ ∂

+ =
∂ ∂

G G
  ⇒  

( ) ( )
,

, 0free
free

r t
r t

t
ρ

γρ
∂

+ =
∂

G
G

  
 

     ⇒ ( ) ( ) ( ), rlx

free free

tt
free o or t r e r e τγρ ρ ρ −−= =

G G G
.  

 

But from P436 Lecture Notes 7, p. 1 we also obtained the relation ( ) ( ), C

free

t
free or t r e σ ερ ρ −=

G G . 

Thus comparing these two equations, we see that: 1C rlxγ σ ε τ= = . 
 

b.) For a static non-zero electric field ( ) oE r E=
G GG , then this static problem can have no explicit 

time dependence, hence ( ), 0freedJ r t dt =
G G  and thus the first-order linear, inhomogeneous 

equation becomes: 
 

( ) ( )
2 2

constante e
free o

e e

n e n eJ r E r E
m m

γ ∗ ∗

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G GG G
 or: ( ) ( )

2 2

constante e
free o

e e

n e n eJ r E r E
m mγ γ∗ ∗

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G GG G
 

 

     The static / DC continuity equation for free charge is: ( ) ( )
0free

free

r
J r

t
ρ∂

∇ = − =
∂

GG G Gi  

with static solution(s): ( ) ( )constant ,{or }freeJ r fcn r t= =  
G G G  and ( ) ( )free r fcn tρ ≠

G . 
 

However, Ohm’s Law (for DC / steady free electric currents) is: ( ) ( )free CJ r E rσ=
G GG G  where: 

Cσ = the static conductivity of the metal (Siemens/m) 1 Cρ=  ← 1/static resistivity ( -mΩ ). 
 

Thus, we see here that: ( ) ( ) ( )
2

e
free C

e

n eJ r E r E r
m

σ
γ∗

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

G G GG G G
 i.e. the static conductivity 

2
e

C
e

n e
m

σ
γ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

or equivalently, the static resistivity:  2

1 e
C

C e

m
n e

γ
ρ

σ

∗⎛ ⎞
≡ = ⎜ ⎟

⎝ ⎠
. {n.b. both purely real quantities} 

 

The static / DC resistance R of e.g. a long wire is thus: 2
C e

e

mR
A n e A
ρ γ∗

⊥ ⊥

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

A A
 (Ohms)  

{again, a purely real quantity} 
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c.)  For a harmonically time-dependent {in general, complex} electric field (e.g. associated with 
a monochromatic plane EM wave (or an AC current, using Ohm’s law), with angular frequency 

2 0fω π= > : 

( ) ( ), i t
oE r t E r e ω−=

G GG G� �  and:   
( ) ( ) ( )

2,
, ,free e

free
e

dJ r t n eJ r t E r t
dt m

γ ∗

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠

G G� G GG G� �  

 
We assume that the {in general, complex} free current density solution to this linear 
inhomogeneous first-order differential equation is of the general form: ( ) ( ),

free

i t
free oJ r t J r e ω−=
G GG G� � .  

 
Then the solution to this linear, inhomogeneous first-order differential equation is: 
 

( ) ( ) ( ) ( ) ( )
2 2

, , , ,e e
free C

e e

n e n ei J r t E r t E r t E r t
m m

ω γ γ γσ
γ∗ ∗

⎛ ⎞ ⎛ ⎞
− + = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G G GG G G G� � � �  since: 
2

e
C

e

n e
m

σ
γ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 

⇒   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,
1 /

C C C
free CJ r t E r t E r t E r t E r t

i i i
γσ γσ σ σ ω
ω γ γ ω ω γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�G G G G GG G G G G� � � ��  

where: 

the AC conductivity:     ( ) ( )
( )
( )

2

1 / 1 /
e eC

C

n e m
i i

γσσ ω
ω γ ω γ

∗⎛ ⎞⎛ ⎞
⎜ ⎟≡ =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

�   ⇐  n.b. complex quantity 

and the AC resistivity:  ( ) ( ) ( ) ( )2

1 1 / 1 /e
C C

C e

mi i
n e

γρ ω ρ ω γ ω γ
σ ω

∗⎛ ⎞
≡ = − = −⎜ ⎟

⎝ ⎠
�   ⇐  complex quantity 

 
Thus, we see that the {complex} AC resistance (aka impedance, Z) e.g. of a long wire is:  
 

( ) ( ) ( ) ( ) ( )21 / 1 /C C e
AC

e

mZ R i i
A A n e A

ρ ω ρ γω ω ω γ ω γ
∗

⊥ ⊥ ⊥

⎛ ⎞⎛ ⎞ ⎛ ⎞
≡ = = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

� A A A� �  ⇐  n.b. complex quantity 

 

The AC continuity equation is: ( ) ( ),
, free

free

r t
J r t

t
ρ∂

∇ = −
∂

GG G �G�i  with: ( ) ( ),
, free r t

E r t
ρ

ε
∇ =

GG G �G�i  
 

But:       ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2

, , , ,
1 / 1 /

e eC
free C

n e m
J r t E r t E r t E r t

i i
γσσ ω

ω γ ω γ

∗⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

G G G GG G G G� � � ��  

 

Thus: ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2

, , , ,
1 / 1 /

e eC
free C

n e m
J r t E r t E r t E r t

i i
γσσ ω

ω γ ω γ

∗⎛ ⎞⎛ ⎞
⎜ ⎟∇ = ∇ = ∇ = ∇⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

G G G G G G G GG G G G� � � ��i i i i  

 

∴    
( )

( )
( ), ,

1 /
free freeCr t r t

t i
ρ ρσ

ω γ ε
⎛ ⎞∂

= − = ⎜ ⎟⎜ ⎟∂ −⎝ ⎠

G G� �
   or:  

( )
( ) ( )

,
,

1 /
free C

free

r t
r t

t i
ρ σ ε ρ

ω γ
−∂

=
∂ −

G� G�  

 
 

Gauss’ 
Law
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The solution to the above differential equation for the electric charge volume density is of the 
form: ( ) ( ), i t

free or t r e ωρ ρ −=
G G� �  provided that: 

 

( )
( ) ( )

,
,

1 /
free C

free

r t
r t

t i
ρ σ ε ρ

ω γ
−∂

=
∂ −

G� G�   ⇒   
( )1 /

Ci
i

σ εω
ω γ

=
−

  n.b. implies ( )ε ε ω→ � {complex!} 

 

i.e. that: ( ) ( )
1

1 /
C

i i
σε ω

ω ω γ
=

−
�   but: ( ) ( )

( )
( )

2

1 / 1 /
e eC

C

n e m
i i

γσσ ω
ω γ ω γ

∗⎛ ⎞⎛ ⎞
⎜ ⎟≡ =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

�  

 

Thus, we see that:     ( ) ( )
( )

1
1 /

C C

i i i
σ ω σε ω

ω ω ω γ
= =

−

�
�   ⇐     

 
 

Technically-speaking, this relation should be:  ( ) N
( )C

o

empty
space metal

i
σ ω

ε ω ε
ω

= +
�

�
�	


  

 
because the vacuum pervades all space – however, the conducting medium and the vacuum 
coexist in the same region of space-time, invoking the superposition principle , the two electric 
permittivities (n.b. both scalar quantities) are additive.  
 
     However, it can be seen that because the {DC} conductivity of metals is so high  
{typically 7~ 10 Siemens/mCσ }, that even for {angular} frequencies in the optical region 
{ 16~ 10 radians/secω } the electric permittivity of free space, oε is dwarfed by the second term, 

i.e. ( ) ( ) ( )128.85 10 1 /    /o C Ci i i Farads mε σ ω ω σ ω ω γ−= × = −� , so often the oε term is 
neglected/dropped in many textbooks... For technical correctness / completeness’ sake, we will 
include it here. Thus, we see that even for metal conductors:  
 

( ) ( ) ( )1 1C o
e

o i
ε ω σ ω ε

χ ω
ε ω

= + = +
� �

� . 

 

     For pure copper metal at low frequencies, i.e. 0ω → , the static conductivity is 76 10Cu
Cσ ≈ ×  

Siemens/m; the number density of free electrons in pure copper metal is 28 38.5 10 /mCu
en ×�  and 

using ( )2
C e en e mσ γ∗=  ⇒ ( ) ( )2 2 13 14 10 secCu Cu Cu Cu

Cu e e C e e Cn e m n e mγ σ σ∗ −= ≈ ×� , which 
corresponds to a relaxation time for “free” / conduction electrons in pure copper of   

141 2.5 10 secCu
rlx Cuτ γ −×� � . 

 
 
 
 
 
 

∃ a connection between complex AC electric 
permittivity ε(ω) and complex AC 

conductivity σC(ω) in a metal / conductor. 
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For Conducting Metals with “Free” Electrons:  ( ) ( ) ( ), ,free CJ r t E r tσ ω=
G GG G� ��  

Note that in the static limit (ω → 0): 
 

( ) ( ) ( ), i t
o oE r t E r e E rω−= →

G G GG G G� �   static / constant CJ Eσ=
G G

 

( ) ( ) ( ), i t
o oJ r t J r e J rω−= →

G G GG G G� �    static / constant J
t
ρ∂

∇ = −
∂

G G
i  

( ) ( ) ( ), i t
o or t r e rωρ ρ ρ−= →

G G G� �    static / constant 
 

( ) ( )
1

1 /
C

C C
Ci

σσ ω σ ρω γ
⎛ ⎞

= → =⎜ ⎟⎜ ⎟−⎝ ⎠
�      static / constant  

2
e

C
e

n e
m

σ
γ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

( ) ( ) ( )1 1 /C C C
C

iρ ω ρ ω γ ρ
σ ω

= = − →�
�

 static / constant 

( ) ( )
( ) ( )1 / /

C C C
o o oi i i i

σ ω σ σε ω ε ε ε
ω ω ω γ ω ω γ

= + = + = + → ∞
− +

�
�   singular !!! 

 
     In the previous P436 Lecture Notes 7.5 on dispersion in non-conducting, non-magnetic linear 
/ homogeneous / isotropic media, we showed / derived the complex electric permittivity (due to 
bound atomic electrons) of the dielectric medium to be: 
 

        ( ) ( )( )
2

2 2
1 1

1 1
oscn
je

o e o
jo e j j

fn e
m i

ε ω ε χ ω ε
ε ω ω γ ω=

⎛ ⎞⎛ ⎞
⎜ ⎟= + = + ⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠

∑� �  with: ( ) ( ) ( )1e e
o

K
ε ω

ω χ ω
ε

= = +
�� �  

 

and: ( ) ( ) ( ) ( )1o e en Kω ε ω ε ω χ ω= = = +�� �� . 
 
If only one / a single resonance exists, then this relation reduces to: 
 

( )
2

1 2 2
1

11 e
o

o e

n e
m i

ε ω ε
ε ω ω γω

⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠ ⎣ ⎦⎝ ⎠

�      with:    
2

2
1 0 3j

e
j

o e

n e
m

ω ω
ε

⎛ ⎞
≡ − ⎜ ⎟

⎝ ⎠
 

( )
2

1 2 2
1

1e
o

e

n e
m i

ε ω ε
ω ω γω

⎛ ⎞
= + ⎜ ⎟ ⎡ ⎤− −⎝ ⎠ ⎣ ⎦

�      0 j

ej

e

k
m

ω ≡  

 
Comparing this expression to that for conducting media with “free” / conduction electrons: 

( ) ( )/
C

free o i
σε ω ε

ω ω γ
= +

+
�  with static conductivity:   

2
e

C
e

n e
m

σ
γ∗

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 

    ∴    ( ) [ ]
2 2

2

1 1 1
/

e e
free o o

e e

n e n e
m i m i

ε ω ε ε
γω ω γ ω γω∗ ∗

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ + ⎡ ⎤+⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦

�  

   or:    ( )
2

2 2
0

1e
free o

e

n e
m i

ε ω ε
ω ω γω∗

⎛ ⎞
= − ⎜ ⎟ ⎡ ⎤− −⎝ ⎠ ⎣ ⎦

�  with 0 0ω ≡  ← i.e. a resonance at zero frequency! 
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Note that the – sign in the above formula {relative to that for bound atomic electrons} arises because 
of fact that “free” / conduction electrons in metal are not bound (i.e. ∃ phase shift of 180o @ f = 0 Hz). 
 
Then for dispersive conducting media containing “free” electrons, Maxwell’s equations become: 
 

1)  freeD ρ∇ =
G G� �i   ⇒  freeE ρ ε∇ =

G G� �i   5)  Ohm’s Law: 
1

C
free CJ E

i
σσ

ω γ
= =

−

G G� ��  

2)  0B∇ =
G G�i      6)  Continuity Equation:    free

freeJ
t

ρ−∂
∇ =

∂

G G ��i  

3)  
BE
t

∂
∇× = −

∂

G�G G�  

4)  o free o o free o
D EB J J
t t

μ μ μ μ ε∂ ∂
∇× = + = +

∂ ∂

G G� �G G G G� � �   ⇐    
 
Again, we use the curl operator on equations 3) and 4) to obtain wave equation(s) for EM waves 
propagating in a dispersive metal / conductor, e.g. for equation 3): 
 

( ) ( )
2

2
free

o o

J EE B
t t t

μ μ ε
∂∂ ∂

∇× ∇× = − ∇× = − −
∂ ∂ ∂

G G� �G G G G G� �  

E∇× ∇
G G G�i

2
2

2o C o
E EE
t t

μ σ μ ε∂ ∂⎛ ⎞ − ∇ = − −⎜ ⎟ ∂ ∂⎝ ⎠

G G� �G� �  and: 
2

2 2

1
o

n
c v

μ ε= �   ⇐    

 

      0freeρ ε= →� �   in 1210 sec 1t ps−< = for charge-equilibrated conductors. 
 

Thus, for times 1210 sec 1t ps−> = we obtain: 
( )

2
2

2 2

1
1

C
o C o

E E EE
v t t i t

σμ σ μ
ω γ

∂ ∂ ∂
∇ − = =

∂ ∂ − ∂

G G G� � �G� �   

 

Using equation 4) above, an identical wave equation is obtained for the magnetic field ( ),B r t
G G� : 

 

( )
2

2
2 2

1
1

C
o C o

B B BB
v t t i t

σμ σ μ
ω γ

∂ ∂ ∂
∇ − = =

∂ ∂ − ∂

G G G� � �G� �  

 
Monochromatic plane wave solutions to above wave equation(s) for EM waves propagating in 
dispersive conducting media with “free” electrons will (again) be of the form  
e.g. ( ) ( ), i kz t

oE r t E e ω−=
�G GG� �  for monochromatic plane EM waves propagating in the ẑ+ direction, 

again with ( ) ( ) ( )ˆ, , i kz t
o

kB r t k E r t B e ω

ω
−= × =
��G G GG G� � � .  

 

     Note that here again the wavenumber k�  is complex and frequency-dependent: 
( ) ( ) ( )k k iω ω κ ω≡ +�  with ( ) ( )( ) ( )2k e kω ω π λ ω= ℜ =�  and ( ) ( )( )m kκ ω ω= ℑ �  {related to 

absorption/dissipation of the EM wave as it propagates in the dispersive conductive medium.} 

Assume dispersive conducting 
medium is non-magnetic ( )oμ μ�  

here, for non-magnetic 
conductors ( )oμ μ�  
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We can (again) associate complex wavenumber ( )k ω�  with complex index of refraction ( )n ω� : 
 

  ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  or: ( ) ( )cn kω ω

ω
⎛ ⎞= ⎜ ⎟
⎝ ⎠

��  where the complex index of refraction:  

 

( ) ( ) ( )n n iω ω η ω≡ +�  thus: ( ) ( )( ) ( )cn e n kω ω ω
ω

⎛ ⎞= ℜ = ⎜ ⎟
⎝ ⎠

�  and: ( ) ( )( ) ( )cm nη ω ω κ ω
ω

⎛ ⎞= ℑ = ⎜ ⎟
⎝ ⎠

� . 

 

Plugging in the expression ( ) ( ), i kz t
oE r t E e ω−=

�G GG� �  for monochromatic plane EM waves propagating  
in a dispersive, non-magnetic conducting medium into the above wave equation, we obtain the  
so-called characteristic equation for this situation {Exercise - explicitly work this out yourselves!}: 
 

 ( ) ( )

2
2

1
o Cik

c i
ωμ σωω

ω γ
⎛ ⎞= +⎜ ⎟ −⎝ ⎠

�   with:  2 1

o o

c
ε μ

=   and: 
2

e
C

e

n e
m

σ
γ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 or: 

2
e

e C

n e
m

γ
σ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 

Then: ( ) ( )
2

2 2cn kω ω
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

��  = (Complex Index of Refraction)2 ⇒  ( ) ( )
2 1

1
C oin
i

σ εω
ω ω γ

= +
−

�   

 
The Low Frequency Behavior of a Dispersive, Non-Magnetic Conducting Medium: 

 

 Definition of low frequency: ( ) 1ω γ �    where:  
2

e

e C

n e
m

γ
σ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    and:    ( )C oω σ ε� . 

 
    In this regime, the characteristic/mean/average time between successive collisions experienced 
by the “free” / conduction electrons in the dispersive, non-magnetic conducting medium collτ is 

short compared to the oscillation period of EM waves, 1 2fτ π ω= = , i.e. collτ τ� . 
 

For 0ω ≈  (but not 0≡ !):  ( ) ( )

2
2

1
o Cik

c i
ωμ σωω

ω γ
⎛ ⎞= +⎜ ⎟ −⎝ ⎠

�   ⇒   ( )2

1
o C

o C
ik iωμ σω ωμ σ≈ =�  

 

Now note that: 
11

2
ii +⎛ ⎞= − = ⎜ ⎟

⎝ ⎠
 ⇐ {Please work this out/derive this yourselves!} 

Thus for ( )0  . .  1i eω ω γ≈ � : ( )2
o Ck iω ωμ σ≈�  ⇒  ( ) ( ) ( ) ( )1

2
o C

o Ck k i i iμ ωσω ω κ ω ωμ σ= + ≈ = +�  

 
From which we see immediately that for monochromatic plane EM waves propagating in a 

dispersive, non-magnetic conducting medium, that ( ) ( )
2

o Ck μ ωσω κ ω≈ =  and thus here 

{again} we see that the B
G

-field lags the E
G

-field by: ( )1 1tan tan 1 45
4

o
k B E k

κ πφ δ δ − −⎛ ⎞= − = ≈ = =⎜ ⎟
⎝ ⎠

. 

 

keeping only 
terms linear in ω 
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Similarly, for ( )0  . .  1i eω ω γ≈ �  since: ( ) ( )
2

2 2cn kω ω
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

��   

 

Then: ( ) ( )
2 2

2 2
o C

c cn k i iω ω ωμ σ ω
ω ω

⎛ ⎞ ⎛ ⎞= ≈ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�� oμ 1
C

o o

σ
ε μ 2ω

C

o

iσ
ε ω

⎛ ⎞
⎜ ⎟ = +
⎜ ⎟
⎝ ⎠

. Using: 
1

2
ii +⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

⇒  ( ) ( ) ( ) ( )1
2

C C

o o

in n i iσ σω ω η ω
ε ω ε ω

= + = = +�  which again implies that  ( ) ( )
2

C

o

n σω η ω
ε ω

≈ = . 

Here again, we can define a low-frequency skin depth: ( ) ( )
1 2

sc
o C

δ ω
κ ω μ ωσ

≡ ≈  

which is the characteristic distance scale that the E
G

 and B
G

 fields fall to 11 0.3679e e−= =  of 
their original {z = 0} values. 
 

We define a low-frequency absorption coefficient:          ( ) ( ) ( )2 2 2sc o Cα ω κ ω δ ω μ ωσ≡ = �  

and corresponding low-frequency extinction coefficient: ( ) ( )2
2

C

o

σξ ω η ω
ε ω

≡ ≈  

 
     The characteristic “distance” scales over which the {time-averaged} EM wave energy density 

( )u z  and intensity ( )I z  fall to 11 0.3679e e−= =  of their initial (z = 0) values, respectively are: 

( ) ( )0 z
EM EMu z u e α−=  and  ( ) ( )0

z
cI z I e
ωξ ⎛ ⎞− ⎜ ⎟

⎝ ⎠=  
 

For pure copper metal, for which 13 14.1 10 secCuγ −×�   and 76 10 /Cu
C Siemens mσ ×�  and thus 

186.5 10 /Cu
C o secσ ε ×� , then for low frequencies, e.g. 122 10f Hzω π= ≤  we see that pure 

copper metal is in the low-frequency regime for vacuum wavelengths of: 
 

8
4

12

3 10 3 10 300
10o

c m m
f

λ μ−×
= ≥ × =�   cf  w/ ( ) ( )

( ) 622 2 10 1
2

Cu
o C

Cu

f
f m m

k f
μ π σπλ π μ−= = ≥ =  

 

     In pure copper metal, the skin depth ( )scδ ω  associated with monochromatic EM waves of 
frequency  f ~ 1012 Hz = 1 THz = 106 MHz is: 
 

( ) 8
7 12 7

2 21 , 300 6.5 10 65 
4 10 2 10 6 10

cu
sc o

o C

f THz m m nmδ λ μ
μ ωσ π π

−
−= = = × =

× × × × ×
� �  

 
Thus at “low” frequencies, we see that:  
 

( ){ } ( ){ } { }12 1210 65 10 1 300sc Cu oHz nm Hz m mδ λ μ λ μ= = =� �  

 

same as before, 
but with oμ μ�  

Since both are proportional to 2E
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     In pure copper metal, the skin depth ( )scδ ω  associated with monochromatic EM waves of 
frequency f ~ 1010 Hz = 10 GHz = 104 MHz (e.g. cell phones) {which corresponds to a vacuum 
wavelength of 8 10 23 10 10 3 10 3 o c f m cmλ −= = × = × � } is: 
 

( ) ( )
10 7

7 10 7

1 2 210 6.5 10 m 650 nm
4 10 2 10 6 10

cu
sc

o C

Hzδ
κ ω μ ωσ π π

−
−≡ = × =

× × × × ×
� �  

 

The wavelength of EM waves with frequency 1010f Hz= propagating in the pure copper metal is: 

( ) ( )
( ) 522 2 10 m 10 m

2

Cu
o C

Cu

f
f

k f
μ π σπλ π μ−= = = =  

 
Thus at “low” frequencies, we {again} see that:  
 

( ){ } ( ){ } { }10 1010 650 10 10 3.0 sc Cu oHz nm Hz m cmδ λ μ λ= = =� �  

 
The High Frequency Behavior of a Dispersive, Non-Magnetic Conducting Medium: 

 

Definition of high frequency: ( ) 1ω γ �    where:  
2

e

e C

n e
m

γ
σ∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    and:    ( )C oω σ ε� . 

 

The square of the complex index of refraction for a metal is:  ( ) ( )
2 1

1
C oin
i

σ εω
ω ω γ

= +
−

�  

 
     At high frequencies, the “free” / conduction electrons in a metal will undergo a great many 
oscillations before scattering – i.e. the period of oscillations 1 2fτ π ω= =  is short compared to 
the mean time between scatterings, essentially the relaxation time, 1relaxτ γ= . 
 
     In the high-frequency regime, the volume charge densities of “free” electrons and positive 
ions in metal together can be thought of as a plasma – whose charge density oscillates 
longitudinally { i.e. in the direction of propagation of the EM wave) at the {natural} angular 
frequency of ρω  known as the plasma frequency, defined as: 
 

The plasma frequency in a metal/conductor: 
2

e
P

o e

n e
m

ω
ε ∗≡   (radians/sec) and  

2
P

Pf
ω

π
=   (Hz). 

 

For pure copper: 161.644 10 rad / secCu
Pω = ×   ⇒   152.616 10 Hz

2

Cu
Cu P

Pf
ω

π
= ≈ ×  

 

The corresponding plasma wavelength in copper is: 71.147 10 m = 114.7 nmCu
P Cu

P

c
f

λ −= = ×  

 
⇒ Operative in the optical → UV portion of the EM spectrum – typical for many metals !!! 
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We can rewrite the (complex index of refraction)2 in terms of the plasma frequency ρω : 
 

( ) ( )
( ) ( ) ( )

2

2 2
2 1 11 1 1

1 1 1

P

C o e e

o e o e

i n e n en i
i m i m i i

ω

σ ε
ω

ω ω γ ε γω ω γ ε γω ω γ∗ ∗

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= + = + = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

�
��	�


  

 

Thus: ( ) ( )
2

2
2

1 Pn
i

ωω
ω γω

= −
+

�   where: 
2

e
P

o e

n e
m

ω
ε ∗≡  and: 

( )
2 2 2

e o e P

e C C o e C o

n e n e
m m

ε ωγ
σ σ ε σ ε∗ ∗

⎛ ⎞ ⎛ ⎞⎛ ⎞
≡ = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

Now: ( ) ( )2 2 22n n i n i n inη η η η= + + = + +� i  with ( )2 2 2Re n n η= −�   and   ( )2Im 2n nη=�  
 

Equating the real and imaginary portions of ( ) ( )2 2 2 2n n i nη η= − +�  − use the following “trick”: 
 

   ( ) ( )
( )

( )
2 2 22 2

2 4 2 22 2 2 2 2

1 1 ii i
i i i

ω ω γ ω ωω γω ω γω
ω γω ω γ ωω γω ω γω ω ω γ

−− −
= = = =

+ ++ − +
i ( )

2

1 iγ ω

ω

−

( ) 2 22 2

1 iγ ω
ω γω γ
−

=
++

 

 

∴ ( ) ( )

( )

( ) ( ) ( )
2 2

2 22 2
2 2 2

2 2 2 2 2 2 2

2

1
1 1 1 2P PP P

nn

i
n i n i n

i
ηη

ω γ ω γ ω ωω ωω η η
ω γω ω γ ω γ ω γ

== −

⎛ ⎞− ⎡ ⎤
= − = − = − + = − +⎜ ⎟⎢ ⎥+ + + +⎣ ⎦ ⎝ ⎠

�
���	��
 ��	�


 

 

∴ ( ) ( ) ( )
2

2 2
2 2

1 Pn ωω η ω
ω γ

− = −
+

  and ( ) ( ) ( ) 2

2 22 Pn
γ ω ω

ω η ω
ω γ

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
  

 

Now define: ( ) ( )
2

2 2
P

x
ωα ω

ω γ
≡

+
 and ( ) ( )xβ ω γ ω≡ . 

 

Then: ( ) ( ) ( )2 2 1 xn ω η ω α ω− = −   and:  ( ) ( ) ( ) ( ) ( ) ( )2 x x xn ω η ω γ ω α ω β ω α ω= =  
 

Thus: 
2
x x

n
β αη =  ⇒  2 2 1 xn η α− = −  ⇒   ( )

2 2
2

2 1
4
x x

xn
n

β α α− = −  or: ( )
2

4 21 0
2
x x

xn n β αα ⎛ ⎞− − − =⎜ ⎟
⎝ ⎠

  

 

Let 2x n≡ , then: ( )
2

2 1 0
2
x x

xx x β αα ⎛ ⎞− − − =⎜ ⎟
⎝ ⎠

 which is a quadratic equation of the form:  

2 0ax bx c+ + =   with:  a = 1,   b = ( )1 xα− −   and  c = 
2

2
x xα β⎛ ⎞−⎜ ⎟

⎝ ⎠
.  

  must select +ve root on physical grounds! 

The solution is: 
( ) ( )2 2 22 1 14

2 2
x x x xb b acx

a
α α α β− ± − +− ± −

= =  

 

  used:

1
1

i
i i

≡ −
= −
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The Complex Index of Refraction:  ( ) ( ) ( )n n iω ω η ω= +�  
 

   ( ) ( )( ) ( ) ( )
( )

2

2 1
1 1

2 1
x x x

x

n
α ω α ω β ω

ω
α ω

⎡ ⎤− ⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥⎣ ⎦

  ( ) ( )
2

2 2
P

x
ωα ω

ω γ
≡

+
 

 

Where:   ( ) ( )( ) ( ) ( )
( )

2
1

1 1
2 1
x x x

x

n
α ω α ω β ω

ω
α ω

⎡ ⎤− ⎛ ⎞⎢ ⎥= + + ⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥⎣ ⎦

   

 

And:       ( ) ( ) ( )
( )2

x x

n
α ω β ω

η ω
ω

=     where:   
2

e
P

o e

n e
m

ω
ε ∗≡    and:  

( )
2 2

e P

e C C o

n e
m

ωγ
σ σ ε∗

⎛ ⎞
≡ =⎜ ⎟

⎝ ⎠
 

 

Typical plasma frequencies for metals are 1610 rad / secPω � . 
 

Typical γ-factors for metals are 13 141 10 10 rad / secrelaxγ τ= −∼ . 
 

Hence, in a typical metal/conductor we see that: 2 3~ 10 -10 1P P relaxω γ ω τ= �  i.e. Pω γ� . 
 

Thus, at high frequencies ( )Pω ω γ� � :   
 

Then:   ( ) ( )
22

2 2
1P P

x
ω ωα ω

ωω γ
⎛ ⎞≡ ≈ ⎜ ⎟+ ⎝ ⎠

�    and:  ( ) 1x
γβ ω
ω

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

�   at high frequencies. 

 

And:    

2 2

2

2 2 1
1

1 1

P P

x x P

x P P

ω ωγ
α β ωγ γω ω ω

α ω ω ωω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎝ ⎠⎝ ⎠ ⎝ ⎠≈ = ∗ ≈⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

�  

 

Then: ( ) ( )
2 211 1 1 1

2
P P

xn ω ωω α ω
ω ω

⎛ ⎞ ⎛ ⎞− − ≈ − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� �   {Using 2 21
21 1−∈ ≈ − ∈ for 1∈� } 

 

And:    ( ) ( ) ( )
( )

( )
2

2

2

1 1
2 212 1

2

P

x x

P
n

ρ

ωγ
ω ωα ω β ω γωη ω

ω ω ωω
ω

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎝ ⎠= ≈ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� �  at high frequencies. 

 

⇒  At high frequencies, for Pω ω�  the complex index of refraction ( )n ω�  is predominantly real,     

      i.e. the imaginary part ( )η ω � real part ( )n ω  at high frequencies. 
 

⇒   Metals are ≈ transparent to γ-rays and x-rays for Pω ω� !!! 
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Some {alkali} metals are transparent / begin to be transparent in the UV region of the EM spectrum! 
 

Metal        2
P

P P

c c
f

πλ
ω

= =    
2

e
P

o e

n e
m

ω
ε ∗≡  

7
3 Li   155.0 nm 
23
11 Na   209.0 nm 
39
19 K   287.0 nm 
63
29 Cu   114.7 nm 

Alkali Metals  85
37 Rb   322.0 nm ← UV 

 

 

Above the plasma frequency ( )Pω ω> : ( ) ( ) ( )k k iω ω κ ω= +�  and ( ) ( )kκ ω ω� ,  

with: ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  and thus: ( ) ( )k n

c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
  and:  ( ) ( )

c
ωκ ω η ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

 

Thus, since ( ) ( )kκ ω ω�  in the high-frequency ( )Pω ω�  regime, we see that: 
 

( )
( )

1tan 0k B k
κ ω

φ δ δ
ω

−
Ε

⎛ ⎞
= − = ≈⎜ ⎟⎜ ⎟

⎝ ⎠
  for Pω ω�  

 

and thus we see that B
G�  is {nearly} in-phase with E

G� for EM waves propagating in 
metals/conductors with frequency above the plasma frequency ( )Pω ω> . 
 

Above the plasma frequency, we also haveγ ω� , such that: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),
, , , , , ,e e e e e

dv r t
F r t m a r t m m v r t eE r t m a r t eE r t

dt
γ∗ ∗ ∗ ∗= = + = − ≈ = −

G G�G G GG G G G G G G G� � �� ��   
 

⇒ Because ( ) ( ), i kz t
oE r t E e ω−=

�G GG� � , and ( ) ( ) ( )2 2,a r t r t r t t= = ∂ ∂
G G G G�� �� �  we see that the “free” electrons 

in a metal oscillate in-phase with the driving E
G

of the monochromatic EM wave for Pω ω> . 
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Above the plasma frequency Pω , a metal’s complex index of refraction is ≈ real (i.e. absorption is 
small), and the conductor becomes increasingly transparent as ω is increased beyond Pω . 
 

Note also that ( ) 1n ω <  for Pω ω>  {i.e. in the anomalous dispersion region}!!! 
 

          ( )
2

1 Pn ωω
ω

⎛ ⎞≈ − ⎜ ⎟
⎝ ⎠

 for ( Pω ω> )   and:  ( )
2

Pωγη ω
ω ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
�   for ( Pω ω> ) 

 

Since ( ) ( )2
on ω ε ω ε= ��  for non-magnetic conductors, ⇒ ( )ε ω� is {also} predominantly real  

for non-magnetic conductors at high frequencies ( Pω ω> ) , i.e. ( ) ( ) 1o eKε ω ε ω= �� �  for pω ω> ; 

the skin depth for pω ω>  is: ( ) ( ) ( )

2
1 1

sc
P

c c ωδ ω
κ ω ω η ω γ ω

⎛ ⎞⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

�  

 

Below the plasma frequency Pω , the index of refraction is complex, i.e. ( )η ω  is large and 
therefore non-negligible; Metals are thus opaque for Pω ω< . 
 

Well below the plasma frequency ρω ω� :  ( ) ( )k ω κ ω�   

and 
( )
( ) ( )1 1tan tan 1 45

4
o

k k
κ ω πφ

ω
− −⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

� �   ⇒   B
G�  lags E

G�  by 45o for Pω ω�    

 

The “free” / conduction electrons in a dispersive conductor also lag E
G

-field by ≈ same phase lag. 
 

     For Pω ω< , since the incident EM wave is not transmitted, much of the EM wave is reflected. 
⇒  Metals have high reflectance / high reflection coefficient ( )R ω  for Pω ω< . 
 
     In certain situations, such as EM waves propagating in the Earth’s ionosphere, or e.g. in a 
tenuous electronic plasma in the laboratory, the electrons are {truly} free, hence damping is 
negligible ( 0γ ≈ ) in such situations. 
 

Then for situations with negligible damping, i.e. 0γ ≈ , the above relations simply somewhat: 
 

( ) ( ) ( ) ( )( ) ( )( )2 21e e
o

n K e n
ε ω

ω ω χ ω ω
ε

= = = + ℜ ��   ⇒  ( )
2

2 1 Pn ωω
ω

⎛ ⎞≈ − ⎜ ⎟
⎝ ⎠

  with: 
2

e
P

o e

n e
m

ω
ε

≡  

 

The above relation holds {i.e. is valid} over a wide range of frequencies, including ρω ω< . 

For situations with 0γ ≈ , the imaginary part of complex ( )n ω� ,   

( ) ( )( )
2

0Pm n ωγη ω ω
ω ω

⎛ ⎞⎛ ⎞= ℑ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � �  because 0γ ≈ . 

In this regime, where 0γ ≈ , the wavenumber k is: 
2

1 Pk
c

ωω
ω

⎛ ⎞− ⎜ ⎟
⎝ ⎠

�  
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which is sometimes expressed as:  2 2 2
P ckω ω= +   ←  dispersion relation for k(ω) 

 

n.b. In dispersive conducting media, γ is not small, so the above formulae apply only for ρω ω�  
 

In a tenuous plasma: 
2

1 Pk
c

ωω
ω

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 for Pω ω<  implies that k is purely imaginary!!! 

 

⇒  EM waves with Pω ω<  incident on such a plasma are reflected for Pω ω< , because the EM 
fields inside tenuous plasma are exponentially attenuated by the factor kze− .  
 
     It is precisely this fact that enables e.g. short-wave radio communication around the globe – 
the short-wave radio waves reflect off of the plasma in the earth’s ionosphere! {see handout…} 
 
For tenuous electron plasmas in the laboratory: 
 

18 22 310 10 electrons/men −�  ⇒  
2

10 126 10 6 10 radians/sece
P

o e

n e
m

ω
ε

= × − ×�  

 

At ω = 0, the (static) attenuation constant is: ( ) Pm k cκ ω= ℑ � �   at ω = 0. 

⇒   Skin depth in a metal (at ω = 0): 
 

       ( ) ( )
310 0.5 5 10

0sc
P

c cm cmδ ω
κ ω ω

−= = = ≈ − ×
=

 for static (or low-frequency) EM fields 

 
     Expulsion of EM fields within a plasma is well-known phenomena, e.g. in controlled thermo-
nuclear processes, and can also be exploited e.g. in attempts at confinement of a hot plasma. 
 
 

Electromagnetic Wave Propagation in a Linear, Homogeneous, 
Isotropic Dispersive Conductive Medium 

 
     In a conducting medium, metals in particular, the optical / EM properties of many metals are 
dominated by the “free” electrons in the metal, resulting in high reflectance R ~ 85-95%, nearly 
independent of the frequency / wavelength of the incident light, at least in the visible light region 
of the EM spectrum (~ 350 nm < λ < 780 nm).  These “free” electrons in such metals as aluminum, 
tin, sodium, potassium, cesium, vanadium, niobium, gadolinium, holmium, yttrium, scandium, 
osmium, and even iron have a silvery-gray appearance {due to visible light photons scattering off 
of the “free” electrons in the metal} – essentially these metals are colorless because of their 
wavelength-independent reflectance, but remember / realize that the physical color of an object 
illuminated e.g. by white light (= flat distribution in frequency) is reflected light – hence the 
illuminated object is a poor absorber of light at that wavelength – indeed, the object preferentially 
absorbs light at other frequencies / wavelengths, and not so much at the frequency / wavelength 
associated with the color we perceive it to be, from reflected light – see figure below: 
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     Some conducting metals, such as gold and copper, as well as various alloys – e.g. bronze and 
brass (zinc, tin and copper) – do not have a silvery-gray appearance, but have a yellow / orange / 
red “tinge” to them.  This is because these metals preferentially absorb (i.e. transmit) in the 
green-blue region and thus reflect more-so in the yellow / orange / red region of the visible light 
spectrum, giving these metals their characteristic hues / colors. 
 
     Indeed, e.g. gold-metalized sun glasses – having a very thin layer of gold deposited on them – 
have transmittance T(f) which is peaked in the green portion of the visible spectrum.  Goggles 
coated with a thin gold layer are used e.g. by people who work around high-temperature furnaces 
because while visible light from the furnace (which is peaked in the green) is transmitted, 
infrared light (i.e. heat) is strongly absorbed by gold! 
 
     Because “free” / conduction electrons in a metal have no resonances (except the one at ω = 0) 
because there are no restoring forces acting on them.  In such metals as gold and copper, bound 
electrons e.g. in the so-called valence bands of the metal also play a non-negligible role e.g. in 
the optical properties of the metal – i.e. in the visible light portion of the EM spectrum! 

 
 
    Since (i.e. we assume) the response of the “free” electrons in the conduction band is separable 
/ independent of the response of the bound electrons in the valence band(s) to incident EM waves 
(valid as long as the amplitudes of /E B

G G
 are not too large). Thus we {again} use the principle of 

linear superposition e.g. for the complex electric permittivity: ( ) ( ) ( )tot bound freeε ω ε ω ε ω= +� � �  

where: ( )
2

2 2
1 1

1

bound
oscb n
je

bound o
jo e j j

fn e
m i

ε ω ε
ε ω ω γ ω∗

=

⎛ ⎞
⎛ ⎞⎜ ⎟= + ⎜ ⎟⎜ ⎟⎡ ⎤− −⎝ ⎠⎜ ⎟⎣ ⎦⎝ ⎠

∑�   with: 
1

1
boundn
osc
j

j

f
=

=∑  

n.b. e
bn  = # density (= #/m3) of bound atomic electrons in the dispersive conducting medium 
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and where: ( ) ( )
2 2 2

2 2 2 2
0 0 0 0

1f
e P P

free o o o
o e

n e
m i i i

ω ωε ω ε ε ε
ε ω ω γ ω ω γ ω ω γ ω∗

⎛ ⎞
= = − = −⎜ ⎟ ⎡ ⎤ ⎡ ⎤− − + + +⎝ ⎠ ⎣ ⎦ ⎣ ⎦

�   

 

where: 0 0ω =  and f
en = # density (#/m3) of “free” conduction-band electrons in the dispersive 

conducting medium, and the plasma frequency of the dispersive conducting medium is:  
 

2f
e

P
o e

n e
m

ω
ε ∗≡  

 

Then: ( ) ( )( )
2 2

2 2 2
1 1 0

1 1

bound
oscb n
j tote P

tot o o e
jo e j j

fn e
m i i

ωε ω ε ε χ ω
ε ω ω γ ω ω γ ω∗

=

⎛ ⎞
⎛ ⎞⎜ ⎟= + − = +⎜ ⎟⎜ ⎟⎡ ⎤ ⎡ ⎤− − +⎝ ⎠⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑� �  

 
          ( )tot

eχ ω= �  

( ) ( )( )1 tot
tot o eε ω ε χ ω= +� �  

 

     If the dispersive conducting medium is non-magnetic ( )oμ μ� , the complex index of 

refraction ( ) ( ) ( )n n iω ω η ω= +�  is related to the complex permittivity ( ) ( ) ( )iε ω ε ω ζ ω= +�  by: 
 

 ( ) ( ) ( ) ( )( )
2 2

2
2 2 2

1 1 0

1 1

bound
oscb n
jtot tote P

e
jo o o e j j

fn en
m i i

ε ω ε ω ωω χ ω
ε ε ε ω ω γ ω ω γ ω∗

=

⎡ ⎤
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= = = + − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎡ ⎤ ⎡ ⎤− − +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∑
� �

��  

 

with:  ( ) ( )( ) ( ) ( )2 2 2 2n n i n i n i nω η η η η= + + = − +�  
 

Complex ( ) ( ) ( )n n iω ω η ω= +�  is again related to complex ( ) ( ) ( )k k iω ω κ ω= +�  by: 
 

( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �    or:   ( ) ( )cn kω ω

ω
⎛ ⎞= ⎜ ⎟
⎝ ⎠

��   with:  ( ) ( )cn kω ω
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  and:  ( ) ( )cη ω κ ω
ω

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 


