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LECTURE NOTES 10

WAVE GUIDES and GUIDED EM WAVES

We consider/investigate the conditions under which EM waves can propagate when confined to
the interior of some kind of “hollow” pipe — also know as a wave guide. In the real world wave
guides consisting of e.g. rectangular, cylindrical, or arbitrarily cross-section shaped conducting
and/or superconducting hollow metal pipes can be used to transport EM waves and EM energy in
the radio and microwave region of the EM spectrum, whereas, e.g. glass or plastic optical fibers act
as wave guides in the infrared, visible and even the UV portions of the EM spectrum.

We consider first the simplest type of a wave guide — a perfect conductor
(0. =%, p. =1/o, =0) such that inside the walls of the perfect conductor: E=0&B=0.

n.b. in a perfect conductor é(f,t) =0and by Faraday’s Law, if V x é(f,t) =0= aé(F,t)/at =0.
Soif

O

(F,t=0)=0, itwill remain =0Vt. A superconductor is a perfect conductor with

on
—~
=l

,t)=0 inside it (magnetic flux is expelled from a SC material — known as the Meissner effect).

The boundary conditions at the inner walls of a perfect conductor are:

cfyc Eed7 =—— [ Beda=0| = (1) Tangential E continuous: E, =0 (since E*™* =0)

cﬁs Beda =0 —(2) Normal B continuous: B, =0 (since B™* =0)

Note that free surface charges o, and free surface currents K, will be induced on the inner
surfaces of this perfectly-conducting wave guide so as to “enforce” these boundary conditions.
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We are interested in/seek monochromatic/single-frequency plane traveling wave-type
solutions - that propagate down the inside of the wave guide, e.g. in the +Z direction of the above

figure. Generically, these must be of the form:

o (xy)etr n.b. for the cases of interest to us, the

(x,y,2,t)=
wave number k, will turn out to be real.

(X’ Y Z,t) = |§0 (X, y)ei(kzl—(ot)

4 LR

E
B

In the interior region of the wave guide, away from (i.e. not inside) the walls, Maxwell’s
equations must be satisfied, which, for empty space or e.g. air with &,;, = ¢, and z,;, = p, are:

‘E=0 (2) No magnetic charges/monopoles: |V+B =0

<!

(1) Gauss’ Law:

(3) Faraday’s Law: |V xE =—0B/at| (4) Ampere’s Law: [V x B = &y, 0E/ot = (1/c2)a|§/at

The question then is, what restrictions arising from the boundary conditions (1) E' =0 and
(2) B* =0 are imposed on E and B in satisfying Maxwell’s equations (1) — (4) above?

Note also that confined EM waves (e.g. for propagation inside of wave guides) are not
(in general) purely transverse waves!

The boundary conditions (1) E' =0 and 2) B* =0 will (in general, for confined waves)

require longitudinal components: |E, (x,y) and B, (x,y)| Generically, our E and B - fields
interior to the wave guide will thus be of the form(s):

= i(k,z-at)

(x,y,2,t)=E,(xy)e
and: é(x,y,z,t)::o(x,y)ei(kzz“”t) with: éo(x,y):éox(x,y)§(+I§0y(x,y)

M

with:

M

(X ¥)=E, (x,y)%+ Eoy (xy)y+E, (x,y)2
y+B, (x.y)Z

If these expressions are inserted into (3) Faraday’s Law and (4) Ampere’s Law (above) we obtain:

(3) Faraday’s Law: (4) Ampere’s Law:
. aEO aé0 - el - aé0 aéo ia) =
Q) ~———~=lwB, (iv) r-——=-—F,
ox oy : ox oy ct -
(i) %, _6E°y —iwB (v) o, _ %, :_iﬁé Note the cyclic
|7 oy oz o |7 oy oz ¢t > permutations in
oF j B i L XY, Z f_or (|)-_(|||)
> |72 ik E, =iwB, > |22 ik B, =—2E, and (iv)-(vi).
ay v x ay y C X
... |0E, OE, 5 . |eB, oB, o
liy—|———==i Vi)—|————~—=-1—
(i) z x v oz X ¢’ ™
ke - o i g, B o
| -——=lw I ———r ==
z 0, OX 0y —> z-0, OX C2 0y
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We can use the four equations (ii), (iii), (v), and (vi) to solve for E_ ,E, ,B. and I_5>Oy

0, ' 0,1 0,

in terms of E, and B, , which, after some algebra yield:

@ |E, = K, —%+a

oE aé%J

©) |E, =

©) |B, =

(d) [B, =

We now insert (a) — (d) above into the other two Maxwell’s equations:
(1) Gauss’ Law V+E =0 and (2) No magnetic charges VeB=0:

OE, ©OE, OE, 0B, 0B, 0B,
“+—2L+—==0| and: ot —+—+=0
OX oy oz OX oy 0z

We obtain (after some more algebra): two decoupled wave equations for EOZ and L5>OZ :

— —
() 0 +5_+(2] ~kZ |E, =0

o oy> \c i
[ A2 2 2 7

(5) | 2z o[ 2] -k |8, =0
ox® oy c :

For monochromatic plane EM traveling waves propagating in the +Z direction:

v~ Longitudinal component of é
If:|[E, =0| these EM waves correspond to TE (Transverse Electric) waves.

0,

v~ Longitudinal component of B
If:|B, =0/, these EM waves correspond to TM (Transverse Magnetic) waves.

If both |E, = L5>OZ = 0|, these EM waves correspond to TEM (Transverse Electric & Magnetic) waves.

z

n.b. TEM waves cannot propagate in hollow wave guides.
{they can propagate e.g. in a coaxial waveguide structure with a center conductor}.
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. . = 0E, OE,
If |E, =0|{TE waves}, then Gauss’ Law (V<E =0) becomes: a—X*+ ayy =0
= - 3 oB aéo aEO
If |B, =0|{TM waves}, then Faraday’s Law (Vx E) =——= becomes: L ——x =
: 2 ot OX oy

If both [E, =B, =0|{TEM waves}, from (&) and () above, we see that k = w/c .
= we must go back and fully solve equations (i) — (vi) on page 2 (above).

Note that éo does satisfy VeE = 0 and Vx E - 0 (i.e. éo has zero divergence and zero curl)

—then V__,_satisfies Laplaces’ equation: ?-(—@\7) =-V& =0

= Eo = _vvscalar scalar

But boundary condition (1): at the inner surface of waveguide = the inner surface
of the waveguide is an equipotential, i.e. V = constant on the inner surface of the wave guide.

If the inside of the waveguide is completely hollow, since Laplace’s equation does not allow
local maxima or minima anywhere except on the surfaces, then {here} the potential V interior to

this wave guide must be a constant everywhere = E, =—VV =0 everywhere inside the

waveguide. = No TEM wave propagation can occur in hollow wave guides {*unless the
wavelength 4 <« cross-sectional dimensions a, b of the waveguide — then TEM waves are a
special / limiting case of TE waves... e.g. EM light waves in an optical fiber = waveguide!!!}.

Propagation of TE Waves in a Perfectly Conducting Hollow Rectangular Waveguide (o, = ):

Consider a perfectly conducting, hollow rectangular waveguide of (inner) height a and width b
as shown in the figure below {n.b. important: a >b by convention!!!'}:

4 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For TE waves: |E, (x,y)=0| then:
& (o) .=
(@) || 57 —2+H -k [E, =0
ox~ oy c :
@& (o) s <
—+—+|—| -k?|B. =0 B. (x,y)=0
(5) | 2z oz 2] -k |8, =0| = [B.(wy)

Fall Semester, 2011

Lect. Notes 10

= 0=0 (i.e. no information).

for TE waves.

Prof. Steven Errede

The boundary condition for E:SO (x,y) is on the inner walls of waveguide.

But: Iio(x, y)=B, (x,y)X+ B, (%, ¥)J+B, (x )2

in the X -direction:

B, (x=0,y)=B, (x=a,y)

in the y -direction:

B, (x,y=0)=B, (x,y=b)=

0
0

But from equations (c) and (d) above:

. Then, referring to the above figure:

A

n.b. These terms =0
because E,; (x,y) =0
for TI|E waves.

v

' (w/c)” —k? ox oy
then: | B, (x=0,y)=B, (x=a,y)=0| = aB"Z(gX:O' y)zaB"z();X:a’y):

- i B, (x,y) OB, (Xy)) <
d)|B, (x,y)= k - -
(@B, (x.y) (w/c)z_kf[z v T

- = 0B, (x,y=0) B, (x,y=b)
then: [ B, (x,y=0)=B, (x,y=b)=0 : = =0
then: | B, (x,y=0)=B, (x,y=b)=0= Y Y

Now, to solve the wave equation for I§OZ (x,y):

2 2 2
{8_2+8_2+(Qj —kf}éo (x,y)=0
ox~ oy c ’

Namely (3)

Use the separation of variables technique — try a product solution of the form:

By, (%, ¥)=X(x)Y(y)

. 0*X . 2y 2 L
Inserting this into the above equation (3): [Y (y) 6x£X) + X (X)Zy_t{(%j - kf} X(x)Y(y)=0
- _ 2X~ 2Y~ 2
Divide through by | X ((x)Y (y)| % tx) 4 axg)() + Y(ly) 0 ay(zy) = —K%} - kf} = constant
fen of x only fcn of y only
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The above relation can be true for arbitrary (x,y) points iff (if and only if):

1 X)) .
") (WTJ =—k; = constant
@) (ﬁ%j =k = Constant’(¢ _kxz)

Then the so-called characteristic equation becomes:

KK :_K

(0]

c

or:

2
J — kf} = constant”

2
o n.b. k()
—j —k§ —k;| «<| is frequency
C dependent:

The general solutions of the equations

We can rewrite the characteristic equation as: (%j =k:+k] +ki (0)=k" = ‘k‘ =kok
"X (x . %Y (y
axg )+kfX(x):0 and: ay(2 )+k§Y(y)=O

are of the form:

X (x)= A, cos(k,x)+B,sin(k,x)

Y (y)= Aycos(kyy)+ éysin(kyy)

Now the boundary condition requires not only:

- - 0B, (x=0,y) 0B, (x=a,y)
.| B =0,y)=B, (x=a,y)=0 t also: : =— =0
(€): | B, (x=0,y)=B, (x=a,y)=0| butalso ™ ™
- - 0B, (x,y=0) B, (x,y=b)
(d): | B, (x,y=0)=B, (x,y=b)=0| butalso: |— = -0
(6y=0)=5, (xy=b) 5 5
Since B,, (x,y)=X(x)Y(y) these LATTER boundary conditions require:
oX (x=0) :ax(x=a) _oland oY (y=0) :8Y(y:a) _o
OX OX oy
Soif: |X(x)= A cos(kx)+B,sin(kXx) and |Y(y)=A cos(k,y)+B,sin(k,y)
= - - > - -
Then axa)((x) =—k, A, sin(kx)+k,B, cos(k.x)|and GT(y) =—k, A sin(k,y)+k B, cos(k,x)
X (x = = Y(y=0 -
Thus: W:O requires: |B, =0 and %: 0| requires: |B, =0
6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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mz

],m:0,1,2,3,...
a

|k, :(”—”j, N=0123,..
b

Likewise:
X (x=a
%:o requires: |k.a=mz, m=0,1,2,3,...|or: K, =(
X
oY(y=b
and: %zo requires: k b=nz, n=0,12.3,...| or
Then B, (X,y)= X (x)Y (y)|becomes, after absorbing the coefficients A & A into a single

coefficient B, :

m=0,123,...
B,,

n=0123,...

nzy
b

(x,y)=B, cos(mZXJcos[ j

The full (x, y, z, t) dependence is:

éz (X, y, Z,t) _ BOZ (X, y)ei(kzz_aﬁ)
The characteristic equation then becomes:

@
c

@
c

mz
a

Nz

b

(& e 35

m=0,123,...
n=0123,...

Thus, having found/determined I§OZ (x, y) and, since for the TE mode
E, .B

we can now determine E, ,E, and B, using equations (a) - (d)

0, !

E,, (x,y)=0
above:

@ e oy)e i [ Bull) | B (e¥))_ i (3, (%)
X (w/c) —k; OX oy (w/c)’ —k2| oy
(b) |E, (x,y)= i2 K, 8I§02ﬂ, y)_ 2B, (%) _ —iza) a8, (x.Y)
y (w/c) -k oy ox (w/c) -k ox
© |8, (xy) =1 Bole) BN [28, ()
x (w/c) -k OX oy (w/c) -k’ ox
) B, (x.y)= iz K, aéoz(x'y)maéozf/’ay) _ il; 3B, (x.Y)
y (o/c) -k oy ox (ofc) —k2| oy
But:|B, (x,y)= B, cos(k,x)cos(k,y)|with|k, :(%) y :(%ﬂj and ::811222
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Explicitly carrying out the spatial differentiation in (a)-(d) above, then for TE wave propagation:

- —iwk - =0,123,...
(@) |E, (x, y):(/l)#szo cos(kxx)sin(kyy) with (K, :(%], k, =(%{j : r: 0123
w/c)’ -k =0,12,3,...
2
(b) |E,, (% y)= (a);r')LkB sin(k,x)cos(k,y)|and: |k’ :(%J —ki —k?| and:
© [E, (x,y)=0
- Jkk -
(d) Box(x,y):(a)/c)—z_szosm(kxx)cos(kyy)
~ ik k
(€) |B, (x, y)—#B cos(kx)sin(k,y)| and:
! w/c) —kK;
(f) |B, (x.y)= B, cos(k,x)cos(k,y)
The full (x, y, z, t) — dependence is:
@) E, (x,y,z,t)=E, (x,y)e™ ) = lB cos (k,x)sin (k,y)e"*
A (@) -k
é ER+EV+E3 = E i(k,z-ot) _ +ok, (k,z—-ot)
=EX+E J+EZ:(b) E, (xy,2,t)=E, (X Y)€ (/)—zsz .sin(k,x)cos(k,y)e
w/c) —
(©) E,(x y,z,t)=E, (x,y)e"“ =0
(d) B, (x,y,2,t)=B, (x,y)e"" = #B sin(k,x)cos(k,y)e"*
(/o) K2
<. ~ ~ ~ ~ ik k ,
B= Bx)’i+By9+Bzi (e) By(X’ y,Z,t) o, (X y) azmet) _ (a)/(l:)—z_sz COS(k X)Sln(k y)el(kZZ_Wt)
(F) B,(x,y,z,t)=B, (x,y)e'“ ) = B, cos (k,x)cos(k, y)e"

Note that for the TE mode(s) of propagation of EM waves in a rectangular wavegwde
the E and B -fields are in phase with each other — the x, y and z-components of E and B all have

the common phase factor e'** .

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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‘ m=0123,...
The wave number [k, (o) = (2] —ki —k; = 27 with K, :(%] k, :(n—”] and
c /11 a b n=0123,...
Thus: K (0) =~ = (QT—Lk%kZ |- (QT_ (@j{n—”j
' ’ A, (o) c Y c a b

We can define a so-called {angular} cutoff frequency for the (m,n)™ TE mode as:

mz

Nz

b

]

2 2
+
< (%)
Thus, we can rewrite the above relation as:

@

11V/4

nz

@

oo T T

C a b c

Note that for {angular} frequencies below the cutoff frequency:

Then: (a)2
which means that when o <@, ,,

~},)<0 and: k" ()=

1 J@* —@?, becomes imaginary, hence: e'*?) — g™
the EM wave for the (m,n)™ mode is exponentially damped.

Note also that m=n=0 corresponds to k, =k, =0 with k;° (@) = w/c. But then, from the

above E - and B field relations on the previous page, we see that for this kind of TE wave, that:

B, = B, =B =0|

=0

E -E -E -0 6, = 0| with

and

= This is not a proper kind of propagating EM wave, because then Ig = Ezi =0 everywhere!!!

Thus, the lowest non-trivial propagating TE-type EM wave is the TE;; mode, where the notation
TEmn designates the (m,n)™ mode of propagation. Note again, that by convention, the index associated
with the largest transverse dimension (here a) with corresponding integer index m is given first.

1

Thus, for the lowest TE mode, TE; o:

klO

c

,la) a)lo

3]

2 2 _ 2
O =, =

—(#c/a)’ >0

and we see that k,, >0 {i.e. is a purely real quantity} when:

i.e. when: or:

o> w,, =(zc/a)(radians/sec)

f>f,=(m,/27)=c/2a (Hz)|

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Suppose the rectangular wave guide’s transverse internal dimensions are a=2cm and b=1cm

Then: |@,, = 7¢/a =37 x10° m/s/0.02m =1.57 x10" radians/sec = 4.71x 10 radians/sec

This corresponds to a cutoff frequency of: |f,, =@, /27 =3x10" /s=75GHz

which is in the microwave portion of the EM spectrum, and corresponds to a wavelength of:

A% =c/f,,=3x10°m/s/$x10" /s=4x10"m=

4.0cm

Thus, we see that if 4, > 21° =2a, we cannot propagate TE; waves because: |f < f,, =

ie.

We also see that if 4, < A}° =2a, then we can propagate TE; o wave because: |f > f,, =

A% =2allll
Lt _°
A0 2al
Lt _°
A0 2af

Precisely at the angular cutoff frequency for the TE1o mode, i.e. @ = @, , = zc/a, we see that the
wavenumber k(o) =1,/ - @, =0=27/2"(w) and thus 1;° (@) =00 for o=,

where A1° (a)) = the wavelength of the EM wave in the waveguide for the TE; o mode.

Now suppose that @ > @, then: [k;"" (a)):%:%w/a)z —w}, :\/(
., \@

(0]

c

I (2 +(

nx

b

]|

The higher the angular frequency @ is, it then becomes possible to propagate TE,, waves in
more than just one mode. There exists an angular cutoff frequency for each TE,, mode:

m
Angular cutoff frequency for each TEn, mode: |@,, , = c\/(?ﬂ

(5

;

10 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Suppose that: f =20GHz =2x10"Hz, thus: o =27 f =47 x10" =12.56x10" radians/sec with

corresponding vacuum wavelength A4, =c/f =1.5cm.

2 2
Which TE,, modes are accessible ? |@,, , = c\/(%j +£n{j

12\ (xc
= (—j =( j 4.71x10" radians/sec
' a

98

Il

(@]
—=
o'| §
~—

Il
/_\\

ch 9.42x10" radians/sec

p 2 p 2 1 2 1 2
@®,,=C (—j +(—j =7C (—j +(—j =10.53x10" radians/sec
' a b a b

2
w,,=C 2—”) _27C _ g 42x10° radians/sec
’ a a
ar) 3rc
W, =C ?j _?_14 14x10" radians/sec <——TOO HIGH m
272' 10
@,, =c,/ ? — =7zc / c‘/z =13. 33><10 radians/sec

Thus, for f =20GHz = @ =12.56x10" radians/sec we can access/can propagate TEp, waves in

the following 4 modes:

TE,,. @,= 4.71x10" radians/sec

. . 10 .
TE,;: @, = 9.42x10" radians/sec|<«—[ Degenerate,

TE,o. ®,, = 9.42x10" radians/sec|<—| Decausea=2btu

TE,,: @, =10.53x10" radians/sec

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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TEnn, Wavenumbers and Wavelengths Inside the Wavequide: [a=2cm and b=1cm|

2 2
TE,,: kK (w)= (‘;’j —(9 ~388.31m, 210 (w)= 2"

2
TE,, : k(@)= (QJ —(%) =277.06m*, A% (@)= ——
f=20GHz ¢

=2.268cm
o, (@) bl
=2x10'" Hz

Deaenerate !

? 27 ? T

otz510° | TE, = k(@) = (2) _(_j = 277.06m, 22° (@) = —— = 2.268 cme—
radians/sec ' c a k2 0 (0))

TE,,: k(@)= \/(‘é’jz —Kg +(%ﬂ =228.23m™, 2 (0)= kl,lj(rw) = 2.750cm

418.88 m*and vacuum wavelength A, =1.5cm
Note that the wavenumbers and wavelengths inside the wave guide will change when the

frequency f (or @=2xf) changes, because

=1.620cm

2r
Compare these to vacuum wavenumber k, = —

2r oY mz Y (nz)

g (2] 4
A (@) c a b

Physically, the phase velocity (also known as the wave velocity) v;'" (@) is the speed of

propagation of planes of constant phase ¢, , (@)= [kzm'” (0)z— a)t} = constant and is associated

with the €'Y phase-factor of the EM wave for each individual TEqm, mode.

Since ¢, , (@)= [kz”"” (w)z— a)t] = constant, then: dg, , (@)/ot =0 which means that:

—a(pmgt(a)) :g[kzm*" (0)z(t) -t ] =kI"" (w)_azé(tt) —~=0), or that: |k™" (a))—aza(tt) =w| or:
82('[) 7 . nn 52('[) 7
= . The ph locity |v,’ = =
K@) e phase velocity |v;'" (@) K (@)

Thus, the phase velocity of a TE,, wave for the (m,n)"™ mode is:
m,n w w
V(ﬂz (w) -

- e T ()]

2 2
(%) + [ nt;[j then we see that the phase velocity of a TEp , wave is:

" (o)

o c
= > c| for the (m,n)" allowed TEn, mode!!!
kz (Cl)) \/1—(a)m'n/a))2

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For the (m,n)" TEx,, mode, EM energy in the waveguide propagates at the group velocity:

k™ () (dk () - See P436 HW #7,
vy (@)= z =| 2 = Griffiths problem
: do do 9.29, page 411
Let’s calculate v;" (w):
dk?‘"(a)):i{l PRI }:20) 1 ___ofc
da) da) mn 2C \/a)z — a)ri,n \/a)z — a)ri,n

. m,n _ 1 Va) a) ) . mrz ? nrz ?
Thus: vy (@)= & (@) a / where: wm,n=0\/(?j +(Tj

deo

It can be seen from the above relation that vi"" (@) < ¢ {always!}, as required by causality...

a)mn/a)
,/ a)mn/a) ) -

The instantaneous surface charge and current densities induced on the inner surfaces of the
{perfectly conducting} waveguide due to the EM fields within the waveguide can be obtained from:

Note further that: |v)" (@ ) 2

?,

;B?f (X y Z t) goEsurf (X’ yizit)'ﬁsurf (X1 y,Z)

and:

Ko (x,y,2,t) =+ i (XY, 2) % By (X, Y,2,1)

where A, (X,Y,2) is the local {inward-pointing} unit normal at (x, y, z)associated with a given

inner surface of the waveguide, and E_ (X, y,z,t), By, (X, V,2,t) are the instantaneous

surf

electric, magnetic fields evaluated at (X, y, z,t) on that surface.

Note that E,, (X,Y,2,t)*A,, (X, y,2) is the instantaneous local normal (i.e. L) component of
the electric field at (x, y, z,t) on that surface, whereas A, (X, y,z)x By, (X, V,2,t) is the
instantaneous local tangential (i.e. ||) component of the magnetic field at (x, Y, z,t) on that surface.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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The Physical Picture of EM Waves Propagating Inside a Wave Guide.

Consider an ordinary monochromatic EM plane wave initially propagating at speed ¢ = a)/‘ﬂ

in the k -direction, making an angle & with respect to the Z -axis, as shown in the figure below:

Wave fronts

Because the inner walls of the wave guide are perfectly conducting, they are lossless,
i.e. perfectly reflecting. The EM waves are thus multiply-reflected {n.b. with 7 phase shift at
each reflection} as they “bounce” down the wave guide — interfering with each other in such a

way as to form standing wave patterns of wavelength A, =2a/m in the X -direction and
A, =2b/n in the ¥ -direction!!!

The x, y wavelengths respectively correspond to the x, y-wavenumbers k, = 27r/ A, =mr/a
in the X -direction, and k, = 27z//1y =nzx/b inthe y -direction. In the Z -direction, the ensemble
(i.e. group) of reflected waves results in a traveling wave, with z-wavenumber:

s RSN O (Rl T

where: |@,,, = c\/(mﬂ/a)2 +(nz/b)’

The propagation wavevector associated with the initial plane wave is:

K k, =ksing
S At 9 i &9 DDEREN
a b g
k, =k, =kcos@

Thus, because m, n =0, 1, 2, 3,... (n.b. both m = n = 0 simultaneously is not allowed),
only certain angles 6, , will lead to one of the allowed standing wave patterns in x and y:

cosd, , = k(@) _ (@ ~n, /C =,/1—(a)m’n/a))2 where: |@,,., zc\/(mfz/a)2 +(nz/b)’

I

This “original” plane EM wave, traveling at angle 6, . with respect to the Z -axis travels at
speed ¢ = a)/‘IZ‘ (i.e. we assume that the medium (e.g. air, or vacuum) inside the wave guide has
e=¢g, and u=pu,).

14 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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But because this plane EM wave makes an angle €, , with respect to the Z -axis,
the component of the initial wave’s speed projected along the Z -axis is less than ¢ :

v,(w)=ccosd, , (w)=c, /1—(a’m,n/0))2 =v;" (@) = group velocity!

The phase velocity (aka wave velocity) is the speed at which wavefronts (planes of constant
phase) (e.g. point A in the figure on the previous page) propagate down the wave guide — these
can move much faster than c, because:

V. (@) : - =l \w

08 0nn (@) 1~ (@, /) (A) HIGH FREQUENCY

Note that if g, =90°(i.e. cosd,, ,=0),

{i.e.when w=w, ,}, for which v{"" (@) =0 /\\/\/

and V" (@) = oo 11! (B) MEDIUM FREQUENCY

Physically, this corresponds to standing waves
in (x,y), i.e. NO propagation along Z -direction \/W
= i.e. a 2-D resonant cavity!!!

(C) LOW FREQUENCY

Thus, the allowed solution(s) that we obtained on p. 8 above for the x, y and z components of
the electric and magnetic fields for TE mode propagation of electromagnetic waves down a
waveguide actually/physically represent the steady-state ensemble (i.e. group) wave solution
associated with the collective effect(s) of the multiply-reflected waves interfering with each other
as they propagate down the waveguide!

This group of waves for the (m,n™) TE (and/or TE) mode propagates down the waveguide at

the group velocity v;" (@) = c /1—(a)myn/a))2 =ccosd, , (@) (hence the origin of its name!).
In the two figures below, we show plots of 8" (f)=v]"(w)/c=\1-(f, /f )2 vs. f

and 6, , :cosl(,b’g":'“(f) v;”;“(a))/ca/l—(fmvn/f)zj vs. f:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Group Velocity for Rect. Waveguide - TE Modes (a = 3cm, b =1 cm)
L \ i = =

Fall Semester, 2011 Lect. Notes 10 Prof. Steven Errede
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3-D Picture of E and B -fields in Rectangular Wave Guide for TE; , Mode:

MEfiigerl]:ie te Magnetic
4 field
s
x"{ a8 Electric
7 field
o
Y.
Wave
I Electric propagation
TEmode  fleld TM mode

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

Fig. 34-4. Lines of E (dots and
crosses) and of & (ovals) for the TEs
y mode.

For TEq; mode, rotate above pix by 90°
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For TEmo modes - 3 nodes at the mid-plane:

Tes . e

) le—o T
A wobE
B %
(ws:i; \gé—@= : =

A mgocdaw& + o}

TEae> /’/lt—;ﬁ\ 2NobE | Apnaling uae
Lv:): ) ' vgvj@‘r"

1%‘&-‘-%?\%:—'—"5’ G~ O

'?NODES
TEu: W
(m=4) = Wy —
<le. ’

Time-Averaged Power Transmitted Down a
Rectangular Wave Guide in TE,, , Modes:

In order to calculate the time-averaged power transmitted down a rectangular wave guide
{of cross-sectional area A =ab (= hxw)} we integrate the time-averaged Poynting vector,

<§ (F,t)>t over the cross-sectional area of the waveguide:
n = +Z direction (here)
— ¥
(P (z,)) =], <Sm’n (x,y,2,t > .da, = J. < (%, y,z,t)>-ﬁdxdy da, = fi dxdy = 2 dxdy

From Griffiths Problem 9.11 (p.382): <§m,n(x, y,z,t)>:2LERe( (XY, 2,t)x B 2 (X y,z,t))
M,

{Because/( f g)=1 Re(f § ) where * denotes complex conjugation}

18 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For the TEy , modes in a rectangular wave guide:

Prof. Steven Errede

o (% y,2,0)=E, (xy)e"| and:|B;  (x, y,z,t)=§;‘my (x,y)e " mn=0123,..]
a ? w ? msz ? Nz ? mrz Nz
i = EJH Lk JJH {H %) } ()5
and with: |E, (x,y)=E, %X+E, §+E, 2| and B, (xy)=B, %+B, y+B, 7
. la)(—ky ) ) y
w (X Y)= B, cos(k, x)sin(k, y ( j ( j (—j
mn( ) |:(a)/C)2—kZm:| ( ) ( ) O)/C _k2 b
. —ieo(—k, ) y
o (XY B, sin(k, x)cos(k, y ( jB sm( j (—]
L Py (ke x)cos(k, y) = ey _kz b
~oz (X y):
-~ —ikp (K, ) ik —mrx mzx nzy
w (X, y)= B, sin(k, x)cos(k, y m ( jBosin(—jcosi—j
- [COENN (ki x)eos(l, )= [(oyc) -2 |\ a a b
- —iKp (K, ) ik Nz mzx nzy
B, (X Y)= n /B, cos(k, x)sin(k, y m [ jB os( )sm[—j
e (%:9)= [COENN (ke xjsin(k, ¥)= [(o/c) -2 ]\ b a a
B, (xy)= B, cos(k, x)cos(k, y)= B, cos(mzxjcos(nzyj
= 1 = =, Note: All time dependence
Then: |(S(x,y.z.t iRe(E,,,tB,,,t)
= < (X V.2 )> 2,uO (xyz )X (xyz ) < vanlshes{e ik zot) factor}
XxY=7 | yxX=-12 XxX=0
Very Useful Table: [yxZ=X | Ixy=-X yxy=0
IxR=§ | kxi=—§ | 2x7=0
Then: (é: E,X+E, ¥+ Ezi)x(é*: BX+B,y+B,
=E,B, (X ¥)+EB; (Xx%)=E,B)Zi-E,B;§
+E,B; (§xX)+E,B; (§x2)-E,BZ+E,B;%
+E,B; (2xX)+E,B;(2x¥)-E,B,y-E,BX
=(EVB:—EZI§;)>‘<+(|§ZI§:—EXB:)9+(EXB;—EYE§:)2
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But|E, =0|for TEn,, modes, and skipping (much) algebra:
1 i7wB? (mj (mzxj (mnx] (nny]A
o X mm): . — |sin| —= |cos| —= |cos X
2u, (a)/c) _kjmn a a a b
i7B? (nj z(mzrx} : (nﬁyj (nﬁy]A
+———°—| —Icos sin cos ¥
(/e -k B)7 a7 s
z’wk, B; nY L (mzx) . ,(nz mY . (mzx)__ ,(nzy)|.
+ 0 _ (_j cos (_js.n (_H_j sin (—jcos (_j ;
[(a)/c)z—kz } b a b a a b
_ 1 ot
hen: < o (X0 y,z,t)>:2—iRe(Em,n(x, y,z,t)xB; . (X, Y,2, t))
2 2
) cos (mﬁxjsn (mj+(mj sinz(—mﬁxjcos2 (mj
b a b a a b

Sn (X, y,z,t)‘>2 < points in +Z direction, as it should!!

on

-
—_
M

—
=
D
=

>

/\
|
—~
<
<
_N
~—+
N—
Ny
S
N
)
S
N
SE
l w
SN
| E—
1
7\
| =

Note that: ((S,,, (% ¥,2,t)) =

—

hen: <Pr;fﬁ”s(z,t)>:jh<q 2xyzt > I < (xY,2, t)> -Adxdy| |dad, =1 dxdy = Z dxdy

3
>

i) ( o (3] 2 2 o 5 o
But: Lasinz(%de:J‘:coszﬁ%jdX:(gj and: _[ sin ( jdy Icos ( ngdxzigJ

trans 4 a’k B ab . Im=0,1,2,... (mnnotbhoth=0
<Pmn (z,t)> = (Watts) with: _
' gﬂ a,/c n =0,12,... simutaneously!)
mz 9 cV[(mzY (nzY]
a c ® a b ) |
Now: (Q =k, _ where: k, =vacuum wavenumber |k, :(Mj K, :(n_”]
C /10 ‘m a n b

= |4 =27Z[£j where: A, = vacuum wavelength
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N

1

c

[0

mmz

T

a

Nz

b

~
g lo

N——

TN

m

a5 ﬂ

2a

kzﬂj (&)

oY m;r 2 (i Y
Thus: |k = Jk?-k? —k? = || =] - 0
mhus: |, (o) =, = (2] (=] J . Zb”
2 2
(s ()] +(—j Nl[( Hm
Buy | (w/c) -k J LM 2/ LD 2a ) "\ 2
2p2(1 1 2 2 2 2
or: <Ptrans(z t)> 1 o Bo(Za)(sz (mﬂ'j +(n_7fj ko 1— (mﬂvoj +(n2,0]
2u,0 |:(0)/C)2—k22:| a b 2a 2b
But: I <I§ (xyzt)2>dxdy_wzkyanf(ﬁa)(éb)=a)252(§a)(%b)(n_”j2 with: [k E(n_ﬁj
I (o) k2 | AN
J <E (x.y.2 t)2>dxdy_wzkme"z(éa)(éb)za’zBoz(%a)(%b)(m”jz with: [k E(M
S (oy -k | [leoy-k Jla)) [ La
Defining:
Emn| = a)kyn B, a)Bo (nﬂj ) M itud
o | = - o agnitudes
(/o) k2 ] [(we) -k, U | ofx
- ok, B wB, [m,,j electric field
o, _[(w/c)z—kfm}_[(W/C)Z—kfm} a amplitudes
J
2 2
Then: (RS (2.0))= - (E?”2+E:"“2j(3j(9j\/1[(m%j {”ﬂo”
' 2u,o\! > ! 2)\ 2 2a 2a
But: k_1 = , =i(£j: 1 but: |c = L = _ Nk :\/g
@ C lLlOa) ILIO lLlOC 80/10 lLlOa) /'lOC ILIO ILIO
e a2 [ Yol « e Yo | (T o || e e
PN AT o 4l 41 a b length =c/f

= The time-averaged power transported down the hollow rectangular waveguide for the
TEm" mode is proportional to the square of the E-field amplitudes in the X and § direction!!
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/Ii(f)/,uo

= the EM wave impedance of free space (n.b. Z_is a purely real, scalar quantity because there is no

dissipation!). For TE, modes of EM wave propagation in a waveguide that has perfectly conducting
walls (i.e. no dissipation/no losses); the EM wave impedance of the waveguide is also purely real:

5 () /|8 (1) | =2, (27 (@) ) = 24 (. &, (@)}

We introduce the parameter ZO(F)E Ii(f)

= 1,C =1/, /&, =120 Q =377Q

ZTmE’n(a))E

Then since:

e R O

or equivalently | 4" (@) > 4,| we see that: |Z{" (@) = Z, (4™ (@)/4,) = Z, (ko/kzm (a))) > 3770

for TEn » modes of EM wave propagation in a waveguide.

We can thus write the EM power transmitted down the waveguide for TEn,, modes as:
2 m,n
jAl Ze" ()

Note that this expression is analogous to (P)=4V2_ /R, since E*A, ~ (Volts/m)® * m? = Volts®.

1 Egm
4 y

2 1
+7
4

=m,n 2 =m,n

1 (1 2 A 1(1
P (z,t))=——| Z|E A o _|==|2|E
(7 a0) -3l jl(ﬂ?”(m)J 2

Where A =ab= cross-sectional area of the rectangular waveguide.

Em,n
Oy
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The Energy Density (u, ) Stored in a Rectangular Waveguide - TE,, Mode

Again, from Griffiths Problem 9.11 (p. 382) since <fg> :%Re( f g*)

1

hen: |(u) :Zﬂf{e{goéo =t = B.B’ }
Hy

—
UJH

- 1 = :’* l = :’*
Then in the (m,n") TE mode: ((u, , ) :Zme{goEm,n'Em,n +— Bm,n°Bm,n}
Ho

0 for TE modes
Where: E,.=E, X+ Eym’n9+ﬁm‘n2 n.b. ||Af =

B

Xm,n

2+‘B

Ymn

H[

et [ o et

The time-averaged energy per unit length (Joules/m) in the waveguide for the (m,n™) TE mode is:

(Epn)/L= J' Uy, ) da, —j J. ,) dxdy| where L (meters) is the length of the waveguide.

(B, )i % :@,/f)‘?i;m: HE[BRE]

2

I [eealld S BRGINE O
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ﬂkm,n BO

[CRES

+

Ay,

|

GEREES

ab) (n m

[ RG]

Zmy

ab) (n m ab

BZ

0

Prof. Steven Errede

. k_ BZab mz\’ (nz) ]
Now: (PRI (2,t)) =, (S, e, = —— o {( j +(___j
< , ( )> J.AJ_< > L SIUO[(a)/(;) —kzzmnj|2 a b |
A2 o\ mz) (nz) o) mz ' nﬂz_a’nzq,n
e T TETE] - [T
T e a b c “m a b c?
s )], (5 - 2o
Enn 2ab
A:nd < L >=J-AL<um,n>d 2l =8Z0—a):mBo2
| (P watts  Joulesisec  m |
Note that the ratio of: <Em,n>/L_ Joules/m_ Joules/m =~ e (i.e. speed)
wk, ab g
(Pex) _eor, ° km&_(zykc)
<Em,n>/|— w’ab B2 o o)™
8Lt

But:

H%

2

]
)L

R

mn

Ptrans >

v (@)

9;

Cr{wmf 6

Enn)/L

Thus we see that:

()=

(@)-(Bnn)/1
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Propagation of TM Waves in a Hollow Rectangular Waveguide

For propagation TM waves in a hollow waveguide, E, #0, but B, =0.

a2 oy \c ’

subject to boundary conditions on the inner walls of rectangular waveguide: |E,=0and B, =0

o & (o)
. We need to solve 3-D wave equation: +—+(—j -k’ |E, =0

Following the procedure we developed for the TE mode case, let: Ii (x,y)=X(x)Y(y)

X (x)= A coskx+B,sinkx=0{atx=0andx=a} = A =0| = [X(x)=B,sink,x
Y(y)=A, cosk,y+B,sink,y=0{aty=0andy=b} = A =0| = |Y(y)=B,sink,y

Because m,n=0,1,2,3... the lowest non-trivial TM,, mode is TM11

kxE[mTj’ m=123... nb.m=0isNOT allowed here!!! (=X (x)=0 everywhere!!!)
k s[%’fj n=123...  nb.n=0isNOT allowed here!!! (=Y y)=0 everywhere!!!|

M

Then: |E,(x,y)=E,sin(k, x)sm(k y): sm(mzxjsin[mb”(] With‘m,n=1,2,3,...|

All the rest is the {nearly} the same as for TE waves — <Pn§fﬁ”s>,<umyn>, etc.

Then: |k, = \/(co/c)z —(mz/a)’ —(nz/b)” | (as before)

The cutoff angular frequency: |®,,, = c\/(mﬂ/a)2 +(n7z/b)2 =k, =

Zmn

A — Oy,

E 2 2
C

Phase (aka wave) velocity:  |v;" =¢ 1 —| Group velocity: |vg" (@) = c4 /1—(a)myn/a))2
\/l—(a)m'n/a))

One difference for TM modes vs. TE modes is that the wave impedance is:
Zh (@)= Z, (A /A" (@) = Z, (K, (@)/k, )| vs.|ZR" (@) = Z, (A" (@) /4, ) = Z, (K, /K., (@)}

Since 4" (@) > A,and Z, =/u, /&, =1207 Q =377Q) then we see that:

247 () =2, (421" (0)) <3770 whereas: 27 (o) =2, (2" ()/4,) >3770

The ratio of the lowest TM mode to the lowest TE mode is:

(@ JalE )= (' Joif ) = (Wa) +(wb) [Wa) =L+ (a/b)
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Propagation of TEM Waves in a Coaxial Transmission Line

e We have previously shown that a hollow waveguide cannot support TEM waves {EZ =B, = O}

e However, a coaxial transmission line, consisting of an inner, long straight wire of radius a,
surrounded by a cylindrical conducting sheath of radius b > a does support the propagation
of TEM waves:

—L&TK

For TEM waves: k = w/c. TEM waves travel at speed of light c = non-dispersive!

For TEM waves, Maxwell’s equations give:

(1) Gauss’ Law: V+E =0 (2) No monopoles; V+B =0
anx 8E0V 0 aBox aBOY _O
OX o, ox oy
| By _ |5, 3B,
OX oy OX oy
(3) Faraday’s Law: VxE=_B (4) Ampere’s Law: ?xéz%ﬁ
ot c” ot
=0 =0
= = - oB 3 i ~
(i) |22 - B i/ — 0 (iv) | Bo_ _0p/_g
OX oy OX oy c
A: A:0
(ii) %Eé—ikléoy —iwB, v [Pu_ l0g
oy oy c
=0 =0
oo OB, . < N oB i
IkE, ——7~=iwB ikB, ——F+%=——E
(i) |KE,, %EXZ o8, vy [ikB,, - P = —TE,
which can be rewritten:
(l) aEOV — aéox (lV) aBOY — aé0>(
OX oy OX oy
~ K = 1- ~ o~ 1=
ii) B, =——E =-=E v) |B,=—E_ =-E
() ox @ oy c oy><() oy C2k ox c ox
~ Kk -~ 1~ ~ W = 1-
iii) [B, =—E_ =+-E i) |B,=———E_=—-E
(“I) oy ® 0X c 0X (VI) 0X Czk oy c oy
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Note that equations (iii) and (v) above give the same relation

as do equations (i) and (vi),

The following six relations:

B, = i E,
oE,  OE,
W - OX
6E0x 6Eoy

OX __W

Fall Semester, 2011

8, =2,
C
éox = _% Eoy
aBOX 660)/
W X
aBOX aéoy
x oy
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M

oy oX

Ok

Avre precisely the same equations of electrostatics and magnetostatics for empty space
(i.e. the vacuum) in two dimensions.

Since a coaxial cable has cylindrical geometry/cylindrical symmetry, the TEM electric field
(as in case of the infinite line charge) must be of the form:

M

o (p0)=

—p
P

A . .
where A =constant.

Similarly, the TEM magnetic field (as in the case of infinite line current) must be of the form:

on

o (P )=

—¢
C

A

Then for TEM wave propagation in a coaxial transmission line:

M

(pv @, Z,t) = éo (p, ¢)ei(kz’“’t) — Aei(kz—mt)b\
P

é(p,¢, Z,t) = éo (plw)ei(kz—wt) _ A

A
C

i(kz—(ut) ~

k =

@
C

v

group

=V

phase

=C

= no dispersion!

Note that there are no restrictions on the value of k for TEM waves in a coaxial cable.

For TEM EM wave propagation in a coaxial transmission line that has perfectly conducting walls
(i.e. no dissipation/no losses), the EM wave impedance is (again) purely real:

2% (0)=

=
ETEM r

=

BTEM

(7)) | =

1, /e, =2, =1207 Q=377Q)|
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