UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 19 Prof. Steven Errede

LECTURE NOTES 19

LORENTZ TRANSFORMATION OF ELECTROMAGNETIC FIELDS
(SLIGHT RETURN)

Before continuing on with our onslaught of the development of relativistic electrodynamics
via tensor analysis, [ want to briefly discuss an equivalent, simpler method of Lorentz
transforming the EM fields E and B from one IRF(S) to another IRF(S"), which also sheds some
light (by contrast) on how the EM fields Lorentz transform vs. “normal” 4-vectors.

In P436 Lecture Notes 18.5 {p.18-22} we discussed the tensor algebra method for Lorentz
transformation of the electromagnetic field e.g. in the lab frame IRF(S), represented by the EM

field tensor F* to another frame IRF(S"), represented by the EM field tensor F'*" via the relation:

F'™ = NYNFY .

Analytically carrying out this tensor calculation by hand can be tedious and time-consuming.
If such calculations are to be carried out repeatedly/frequently, we encourage people to code this
up and simply let the computer do the repetitive work, which it excels at.

For 1-dimensional Lorentz transformations (only) there is a simpler, less complicated,
perhaps somewhat more intuitive method. Starting with the algebraic rules for Lorentz-
transforming { £ and B} in one IRF(S) to { £’ and B’ } in another IRF(S") e.g. moving with

relative velocity with respect to IRF(S):

|| component(s):— > |E. = E_ B =B, y= l/«/l - p’
1 components: E| = 7(Ey —ﬂcBZ) B = y(By +,6'Ez/c) B=v/c
E. =y(E.+pcB,) B! =y(B.+pE,/c)

We can write these relations more compactly and elegantly by resolving them into their || and
1 components relative to the boost direction: here, || is along and L i1s perpendicular
to v, defined as follows {n.b in general, v could be || e.g.tox,y,z or 7 }:

El—El BE{,’/C

E’L:;/(EL+17><BL):7(EL+,BC><BL) 7/51/\/1—ﬂ2

B'II :BII

Bt Zy(Bl—LzVXELJZ]/(BL—l,BXElj
c c

Now since {here} then |E'=E |,|B'=B, |and|B* =B j+B.z||E* =E y+E 2
{and similarly for corresponding quantities in IRF(S")}.
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Since and |E'=E_|then: [FxE* =vxE £=0

And likewise, since |B' = B_|then: [VxB' =ixB £=0|,

Thus, we can {safely} write: |[¥x E* =¥ x E|and [V x B =V x B|, as long as v is always || to one

of the components of £ and B -e.g. X ory orz.

Then we can write the Lorentz transformation of EM fields as:

E" =y(E'+VxB)=y(E"+fcxB)

I
=
@)

=™

Il

<i
<!

9}

B — B”‘

st Y 2T [ TN

This can be written more compactly in 2-D matrix form as:

EM Fields: “Normal” 4-Vector:
E'II EH
= — [E"=E'and B"=B'| <« compareto - |x" =x"
CB'II CBH
E 1 0) E E' v  +yBx\( E* o AT
= = N PARN =
cB'" . 0 1 ' ¢B' cB'* —yB3 x y cB* ct' -y )t
W_I
Unit Matrix Operator Matrix Scalar Matrix

Thus, we see that for the EM fields vs. the 3-D space-part of a “normal” 4-vector, the || vs. L
components are switched, B transforms “sort of” like time 7, but 2 x 2 Lorentz boost matrices

for (E and B) vs. 4-vectors are not the same (they are similar, but they are not identical).

We can also write compact inverse Lorentz transformations (e.g. from IRF(S’) rest frame —
IRF(S) lab frame):

EM Fields: “Normal” 4-Vector:
EII E'H
o 17| g — |[E'=E" and B'=B"] « compareto - |x' =x"
C. C
E 1 0) E E* y x|\ E" x! y o B[ x"
= = <> =
cB'" ‘ 0 1 4 cB' cB* +7B>< 4 cB'™" ct ‘ +}/ﬂ V4 ) ct'
- -- L1 J - --
Unit Matrix Operator Matrix Scalar Matrix
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For a general Lorentz transformation (i.e. no restriction on the orientation of v {arbitrary}):

A.) Lorentz transformation from IRF(S) — IRF(S"):

E’zy(E—l—ﬁch)—yy_:lﬁ(ﬁ.E) B=v/c| |B=v/c
B ={ B-LpxE |- (55) r—N-p

operator matrix

B.) Inverse Lorentz transformation from IRF(S") — IRF(S):

Ez;/([?'—,g’cxg')— 4 B(B’E')

y+1 Switch ,B—)—B,E—)E' and
EZV(E'+1,BXE'j— 72 B(B’E') B—>B' in above relations
c y+1

operator matrix

Electrodynamics in Tensor Notation

So now that we know how to represent the £M field in relativistic tensor notation (as
F* or G*), we can also reformulate all laws of electrodynamics (e.g. Maxwell’s equations, the
Lorentz force law, the continuity equation {expressing electric charge conservation}, etc. . . ) in
the mathematical language of tensors.

In order to begin this task, we must first determine how the sources of the EM fields — the
electric charge density p (a scalar quantity) and the electric current density J (a vector quantity)
Lorentz transform.

The electric charge density | p = Q/V | = charge per unit volume (Coulombs/m’)
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Imagine a cloud of electric charge drifting by. Concentrate on an infinitesimal volume V
containing charge O moving at (ordinary) velocity u :

A w1 % Then: [p=0/V] = charge density (Coulombs/m’
Volinna £,/ en: |pP = charge density (Coulombs/m”)
CG}(‘*’Q\;\AV:ﬁ > —

U\E\QME’“ / And: |J = pii| = current density (Amps/m?).

A subtle, but important detail:

If there is only one species (i.e. kind / type) of charge carrier contained within the
infinitesimal volume V, then they all travel at the same (average / mean) speed u .

However, if there are multiple species (kinds / types) of charge carriers (e.g. with different
masses) or different signs of charge carriers contained within the the infinitesimal volume V
(e.g. electrons e~ with rest masses m.c” and protons p with rest masses mpc?) then the different
constituents / species must be treated separately in the following:

If 3 N species:

Current density |, = pii,| for the i"™ species (i = 1, . . ., N), the electric charge density |2, =0, /V

N N
And: J:Z i:zpﬁi

We also need to express p andJ in terms of the proper charge density p° = volume charge
density defined in the rest frame of the charge Q, IRF(So).

The infinitesimal rest volume / proper volume = ¥ {defined in rest/proper frame IRF(S))}

Recall that electric charge Q (like ¢) is
a Lorentz invariant scalar quantity

The proper charge density: |p, = Q/V, |«

Because the longitudinal direction of motion undergoes Lorentz contraction from the rest
frame IRF(Sp) in the Lorentz transformation — another reference frame, e.g. lab frame IRF(S)

1 1
Then: |V =—V,| where: |V, = (,w,d,| and: |V = fwd|, where: |y, = and: | S, =2
c

7, -8,

If the Lorentz transformation is along (i.e. || to) the length 7,/ of the infinitesimal volumes

1
Then: |/ =—/,|and the L components of the volumes are unchanged: |w, = w|, |d, =d|.
Y
1 = _ _
Then if: |V =—V,| — p=g=n g =1.00| - | = Pl =y, p = py (7,4)
Y 4 Y

L di —
Recall that the 3-D vector associated with the proper velocity is: |17 = 7,u (E —J =001
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dr dr

The zeroth (i.e. temporal/scalar) component of the proper 4-velocity is: |7, V€

The corresponding zeroth (i.e. temporal/scalar) component of the current density 4-vector J* is:

I’ =pt’ = poy.c=(r.p)c=pc=cp

The current density 4-vector is: |J* = (C/O, j) = (C‘P, oo JZ) (SI units: Amps/m?)

Then: |/” = py7”| where: 7" =(r.c7,4)=7,(c.i) =7, (couu,.u.)
T

constant / scalar quantity

. J* is a proper four vector, i.e. J* = proper current density 4-vector.

Thus: |J“J, =J,J"]is a Lorentz invariant quantity. Is it ???

2
2, 2 1-u
2 2 2 2, 2, 2 2 2| —C tU 2 42
J/u'])u=']lu']#:p077#77/l=p0?/u —C +ux+uy+uz =p0

: u7 ==(pc) W =—(/000)2
2 - C2 - c2

=u

S, =JJ" = ~(pe) = pon’n, = pon,n”| {we also know that: |n“n, =n,n7" = —c*|}

Yes, |J*J,=J,J"| is a Lorentz invariant quantity!

The 3-D continuity equation mathematically expresses local conservation of electric charge
(using differential vector calculus):

Y p(7,t) = scalar point function, J = J(#,¢) = 3-D vector point function

= 0. 0 . O ., . .
V =—Xx+—y+—2z|(in Cartesian coordinates)
ox oy 0z
We can also express the continuity equation in 4-vector tensor notation:
= - o), 0], o) ol op _1aJ’ aJ°
VeJ=—2+4+—"+ Zzz - And: —'0=——=—0 (J'=cp)
ox Oy oz ‘I ox o ¢ ot ox n.b. Repeated indices

implies summation!

o o 3 i 0 0 3 i 3 a]i aJ/J
Then: VoJ=—a—’O :>V'J+6—’0=O = Za‘] +8J _o +ZZJi =0|=|) —= =0
i=1 OX

ot ot o ox” oax’ ~ ox'  ox*
~ = 0, = - O aoJ"
Thus: [V+J =—8—f or|[VeJ +a—/t0= Ol= e 0| Continuity Equation (local charge conservation)
x
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]

Physically, note that o
ox*

is the 4-dimensional space-time divergence of the current density

H
oJ _0

4-vector J* = (cp, J ) . The 4-current density J* = (cp, J ) is divergenceless because o

o . . : . )
The 4-vector operator P is sometimes called the 4-D gradient operator, it is also sometimes
X

called the quad operator [1* (or “quad” for short).

0 1
The contravariant quad 4-vector operator: |[1“= = (+—

C
Th iant d 4-vect tor: [OJ =i_(_lﬁ ?]
(] covarian qua -vector opera or: u= ax# c 6t )
2 2
Then: (0“0,=00,00%= 0 6 _00 __20 :_LG_+V2E e

ox* 8xﬂ B 8xﬂ ot Gxﬂﬁx" ¢’ o’

= D’ Alembertian 4-vector operator = 4-D Laplacian operator = Lorentz invariant quantity!

So we could equivalently write the relativistic 4-D continuity equation as:

oJ"
ox*

0 J* =

0]ie.“V,eJ, =0p

Since the 4-vector product of any two (bona-fide) relativistic 4-vectors is a Lorentz invariant
quantity (i.e. the same value in any/all IRF’s):

oJ"
ox*

“J" = 0] is also a Lorentz invariant quantity !!!

— Electric charge is (locally) conserved in any/all IRF’s (as it must be!!!)

. 0 . . . .
However, because the 4-D gradient operator —— functions like a covariant 4-vector, e.g. when it

axﬂ

operates on contravariant./J“ (or any other contravariant 4-vectors), it is often given the shorthand
0 : 0 L :

u= P and because the 4-D gradient operator ) functions like a contravariant 4-
28 X

vector, e.g. when it operates on covariantJ,, (or any other covariant 4-vectors), it is given the

0
shorthand notation [0“ = x| See/work thru Griffiths Problem 12.55 {p. 543) for more details.
u°

notation |0

Thus we see {again} that:|0,6" = 0“9, =0"0,=0,0"=[T| is a Lorentz invariant quantity, and

o= r = _

u P

0]is also a Lorentz invariant quantity.
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Maxwell’s Equations:

1) Gauss’ Law:

Fall Semester, 2011

Lect. Notes 19

Maxwell’s Equations in Tensor Notation

2) No Magnetic Monopoles:

3) Faraday’s Law:

4) Ampere’s Law:

VeE=1
VeB=0
VxE--B
ot
_ . - 10E
VxB=uJ+——
/Llo cz 8t

Prof. Steven Errede

with Maxwell’s Displacement Current

Can be written as 4-derivatives of the relativistic EM field tensors F** and G*":

1) Gauss’ Law

Physically, ¢« = 0 is the temporal/scalar component of any space-time 4-vector.

oF*” oG*"
= Jﬂ : = 0
o M, and: o
N - J

. Ifu=0in

1.€.

aFOV o
=uJ
o H,

aFOV aFOO aFOI 6F02 6F03
= + + +

Then: 5 - > 5 T first row of F*
ox” ox ox ox Oox
Row #
l 0 E/c EJc EJc
o _ —Ex/c 0 B, -B,
~E, / ¢ -B. 0 B,
—-E. /c B, -B, 0
Column #
OF" 1(0E. OE, OE 1= -
g =04+—| —=+—24+ "= |=—VeE|and: |xJ’ = u (c
o’ c( ox oy oz j c anc | #o(cP)
le = N 2 2 1 o 5 1
—VeE=pcp| or: |VeE=puc’p| but: |pt,c” =— VeE =g—p
c g, ;

,v=0:3

Gauss’ Law arises from the x# =0 (scalar / temporal) component of the 4-vector relation:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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- - 1 0E OF*™
4) Ampere’s Law: |VxB=u J + pEar If £=1in P = pu,J"
F]v FIO Fl] F12 F13
Then: 0 :6 5 +a - +a > +8 3 second row of F*¥
ox’ ox ox ox ox
v E OB EF oo~ -
8F __Lza X +6Bz _ Yy _ _iza_E+V><B and: IUOJI :/uo‘]r
ox" ¢ o oy oz c” ot . -
OF" 1 0E
= =4 VxB| =uJ
ox’ ( ¢’ ot ]x Ho'x

Then for =2 and g =3 (third and fourth rows of F*"), likewise we find that:

2v 3
aFV - _iza_E+§xB =u.J | and: aFV _ _iza—E+§xB =uJ.
ox ¢’ ot , : ox ¢’ ot .
oF" 1 0E - = =
axv p=13 = luo']# ‘,u:]:?s = C_ZE-’_VXB = /uo']

3-D spatial components of 4-vector J*

1 6F

Vx

¢t ot

Boyj+ Lt

Ampere’s Law with Maxwell’s Displacement Current term !!!

— Ampere’s Law arises from the £ =1:3 (3-D spatial / vector component) of 4-vector relation:

- o1
VeE=—p| (u=0 temporal / scalar component)
OF " / -
v :ﬂOJﬂ
Ox - = 10E '
\ VxB= 2ot = p,J| (1 =1:3 3-D spatial / vector component)

Thus, Gauss’ Law and Ampere’s Law form a 4-vector:

And:

8

:/10"/0
—— .
lo - 1 - - 1 0E = OF*
J'=|=VeE=—p, VxB———=pJ |= =uJ"
ut" = e Foy = He (axv H, j
[N ——
2 AN

Gauss’ Law temporal
component of x J*

/ scalar Ampere’s Law 3-D spatial / vector

component of component of x J*

. - 22
J =, J" ==pyc

= Lorentz invariant quantity {from above, page 5}.
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= 3 . : _|9G*”
2) | VB =0] no magnetic monopoles / no magnetic charges. If =0 in o =0
. . oG*" ~
4 =0 is the temporal (scalar) component of space-time “null” 4-vector pa 0" = (0, 0) =0
aGOV aGOO 6G01 6G02 aGOS
Then: =ttt = 0| First row of G**
ox" ox ox ox ox
Row #
l 0 B B, B.
G _ -B, 0 -E. Jc Ey/c
-B, E.Jc 0 -E]/c
-B, —-E [c E|Jc 0
Column #
Ov 6B . o Ov
oG :0+6B"+ y+8BZ:O=V-B=O V-B:O\ﬁaG =
ox” ox oy Oz ox"
- - OB 0G*”
3) Faraday’s Law: [V+E = o If £=1 in pea 0
ale aGIO 8G11 8G12 aGB
Then: =——t—F+—5+—5=0 " Second row of G*”
ox"  ox ox ox ox
1v aE B — —
oG :_lan_laEZJrl y_ 1 a—B+V><E _0
ox" c o c¢cO0Oy c Oz c\ ot ;
v D
oG =0]| gives 8—B+§><E =0
ox" ot .
Likewise, for =2 and g =3 (third and fourth rows of G*")
2v E _ ~ 3y E R -
oG =0| gives a—+V><E =0/ and: oG =0] gives a——i-VxE =0
ox" ot . ox" ot .
0G*” . |B - - - - OB
| = 0| gives | =m 4+ VxE =0 or VxE=-—"
7 VeB=0 (4 =0 temporal / scalar component)
Thus: |9C” —0
ox \ L oB ‘
VxE = o (x4 =1:3 3-D spatial / vector component)
: : oG™”
Arise from temporal (#=0) and spatial (x =1:3) component of the “null” 4-vector o =0
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Thus, in relativistic 4-vector / tensor notation, Maxwell’s 4 equations {written in language of
3-D differential vector calculus}:

Maxwell’s Equations:

1) Gauss’ Law: V.E = gip

2) No Magnetic Monopoles: |V+B =0

3) Faraday’s Law: VxE = —2—15

4) Ampere’s Law: VxB= ,uoj +ci2% with Maxwell’s Displacement Current

are elegantly represented by two simple 4-vector equations:

|
/7 4 =0 temporal/scalar component: |V<E = p P 1) Gauss’ Law
oF*"
=uJ”
o H,
- - 1O0E -
\ 4 =1:3 spatial/vector component: |V x B e =u,J | 4) Ampere’s Law
With Maxwell’s
Displacement Current
~__—» u=0 temporal/scalar component: VeB=0 2) No Magnetic Charges
Ny
oG 0
ox"
- - OB
\ 4 =1:3 spatial/vector component: |V xE v 0] 3) Faraday’s Law
Griffiths Problem 12.53:
— Y
We can show that Maxwell’s two equations |VeB =0]and |V x E o 0] that are contained in
oG* . . .
o = 0] can also be obtained from (the more cumbersome / inelegant relation):
H oF
oG Y N ,;V+8FM+8FM:0
ox" ox” ox" oOx'

Since there are 3 indices in the latter equation £=0:3, v=0:3, A=0:3, there are actually 64
(= 4°) separate equations!!! However many of these 64 equations are either trivial or redundant.

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Suppose two indices are the same (e.g. y=v)

oF oF,
Then: |—4+—“ 4+ - (| But the EM field tensor F (like F**) is anti-symmetric.
ot oot o -

SJF  =0] and: |F

Y = yrzs

=—F

Au

. Thus, > 2 indices the same gives the trivial relation 0 = 0.

Thus, in order to obtain a / any non-trivial result, u, v, and 4 must @/l be different from each other.

1) The indices g, v, and 4 could all be spatial indices, suchas: u=1 (x),v=2 (y),4=3 (2)
(or permutations thereof).

Or:

2) One index could be temporal, and two indices could be spatial, such as:
wu=0,v=1,1=2 (or permutations thereof), or: u=0,v=1,1=3

1) For the case(s) of all spatial indices, e.g. u=1,v=2,1=3:

OB
817132+817213+81§21 _ol- GBZJFGBer )
ox° oOx  Ox 0z Ox 0Oy

All other permutations involving the all-spatial indices {1, 2, 3} yield the same relation VeB=0

=O = @-Ezo

or minus it: i.e.|—-VeB = 0|,

2) For the case of one temporal and two spatial indices, e.g. u=0,v=1,4=2:

OF, ,OF,  0Fy _o|_| 10E 10B. 10E, _ _1682+1(6Ey_8Ex]

ox>  ox'  ox' coOdy c¢c O c Ox e ar el ox oy
= (O—B+§xﬁj =0
ot .

Other Permutations:

Forv=0,u & A=1:3and 1 =0, u & v = 1:3 get redundant results (same as above).

Ifu=0,v=1,1=3 gety— component of above relation!
Ifu=0,v=2,4=3 getx— component of above relation!

8FV 8E1 aF/lt . = = — -
E 8); + 8x“i+ 8x: =0| contains: |VeB=0] and: VXE:_E

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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Duality Transformation of the Relativistic EM Field Tensors F*"and G*”:

The duality transformation for the specific case of space-time “rotating” E — ¢B and

B = —E | (@ auaiity = 90°) takes , and can be mathematically represented in tensor
notation as:

1
G,uv — EE,UMO'F]J

where: F,_ is the {doubly} covariant form of the contravariant tensor F*°.

uvioc

and: ¢ is the totally anti-symmetric rank-four tensor.

+1 for all even permutations of u=0,v=1,1=2, 6 =3 (and)
£ =<4 0 if any two indices are equal/identical/the same.
—1 for all odd permutations of u=0,v=1,1=2,06=3

Since &*"*? is a rank-four tensor (= 4-dimensional “matrix”’) we can’t write it down on 2-D
paper all at once! £*° has (i, v, 4, o = 0:3) — 4* elements = 256 elements!!!

We could write out 16 {4x4} matrices — e.g. one x-v matrix for each unique combination of 4 and o:

=0 VU Q=0 VO H =0 VO 420 VK
’;:% (4x4)V ! ’1:(1) (4xd)\ ! :% (4xd)\V ! ;1:2 (4x4)V

=1 VU, Q=1 M M Q=1 7
civio _| a=0 AV} ool (DY | 5= (V| 53 (Y

ﬂo‘ — . . . Ao = B 1 0 + 1 + 1
Define ¢ totally anti-symmetric rank-two tensor: | & 1 -1 0 +1
-1 -1 -1 0

#%% in terms of product of two g™ 's: |

Thus, we can define ¢

12  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11

The Minkowski / Proper Force on a Point Electric Charge

The Minkowski force (a.k.a. proper force) K* acting on a point electric charge ¢ can be
written in 4-vector / tensor notation in terms of the EM field tensor F** and the proper
4-velocity n* . Recall that:

However, we can equivalently write the Minkowski/proper force as: |K* = gn, F*"

H

dr

e ="

H

dp
Y dt

Fall Semester, 2011 Lect. Notes 19 Prof. Steven Errede

]

y d,
= 7,F*| where the ordinary force: | F"* = f; and: |7, El/\/l—ﬂ“z

where 77, is the covariant form of the contravariant proper 4-velocity 77" .

i.e. we contract the EM field tensor F*" with the covariant proper 4-velocity 7, .

Since:

If u=1 (1.e. row #1):

K/J :]/MF#

and: |77, = 7,u,|, where:

7, =V \1- B |and: [ B, = u/e

K*=qn F*"| = |r,F" =qyu,F*"

or: F’uzqqu’w

K! :q77vF1v :q(_nOF10+771F11+772F12+773F13)

nv = (7140’71417) = 7uuv

where: |7, =1/\/1—ﬂu2 and: | =u/c

z y
- z BX
B, -B, 0

Column #

[ =g e ey b v ()], [, b8, ]=ar, (B i)

«— Minkowski 3-D Force Law

Klzq;/u(E+ﬁxl§)x ) I€=qyu(E+zZ><§)
Similarly, for y =2, u=3:

kg (BraxB)| [ Bu[K=rF

K3:q7/u(177+ﬁx§)z ) ﬁ=q<E+ﬁxE

) «— Lorentz 3-D Force Law

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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For i = 0 (the temporal / scalar component) {see/work Griffiths Problem 12.54, page 541}:

K’=gqy, (—c-0+ux (E.[c)+u,(E,[c)+u, (Ex/c)) =qy i-E/c
— _ 770F00 + 771F01 + 772F02 + 773F03 — 77VFOV

n.b. this relation explicitly shows that £, E, E_are temporal-spatial (or spatial-temporal)

components of F**, whereas B,, B, B, are pure spatial-spatial components of /" !!!

dp’ 1dE 1dtdE 1 dE _ -, 1 dE
We also know that: |K° T N N -V, — - K° = qj/uu-E/c ==y —
dt cdr cdrdt c " dt c = dt
dE L= ) o . . . .
or:|F, = T =q (LPE ) = {ordinary} relativistic power delivered to point electric charged particle (> 0)
dE I 1/ 4 Time rate of change of work done
Pq - ; - q(u-E) - (qE)-u =Feu= ? - on changed particle by EM field

Note: The {ordinary} Lorentz force F=gE+q (ft xB )

Feii = g (ii-E)+ q[ﬁ-(ﬁx E)} = q(i-E)

But: (ﬁxB) Lol ﬁ-(ﬁ E) =(0| = Magnetic Forces do no work !!!

Thus we have the relations: | K* =y, F*|=|K* =qn F*'|and also: |F* = qu F*'| with|n, =y,u,|

The Relativistic 4-Vector Potential 4*

We know that the electric and magnetic fields £ and B can be expressed in terms of a scalar
potential /" and a vector potential A as:

E(f,t):_ﬁv(f,t)-aAg”) and: [B(F.1) =V A(7.0)

Thus, it should not be surprising to realize that the scalar potential ¥ and the vector potential 4
form the temporal and spatial components (respectively) of the relativistic 4-vector potential A* :

The 4-Vector Potential: |4” = (V/ c, ;1) = (V/ c, A, 4, Az) SI Units: Newtons/Amp = “p/q”

{momentum per Coulomb!}

n.b. SI units of V: |Volts = Newton-meters then: 4 = N-m /m _Nsec_ Newtons
Coulomb ¢ Coul/ sec Coul Amp

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The EM field tensor F** can be written in terms of covariant space-time derivatives of the
4-vector potential field 4* as:

w_ 04" 04" o -
F" = - < n.b. covariant differentiation here!!
ox, Ox,
: o 0 0 .
For the covariant derivatives . and . we need to change the sign of the temporal / scalar
‘xy xv
. . o 0 0
component relative to the contravariant derivatives and )
ox" ox"
Explicitly evaluate a few terms: |4 = (V/ c, Zl)
Foru=0andv=1:
: 0 oV A - = A
o _04 oA oA, ( /c):_l A4, o) 1 o 04| _E
ox, Ox d(ct) ox c\ ot c o) ¢
Likewise, for (u =0, v=2) and (u = 0, v = 3) we obtain:
F* :l _ﬁy_a_A =—| and: |F" :l _61/_6_‘4 = £,
c o) ¢ c a) ¢
Foru=1andv=2:
2 (04 .
F1z:8A _8A _ y_an :(VXA) :Bz
ox, Ox, ox Oy z
Likewise, for (u=1, v=13) and (u =2, v=3) we obtain:
B _ (e 4\ — ) 23 _ (e 4\ —
F —(VXA)y =B,| and: |F —(VXA)X =B,

Note that the relativistic 4-potential formulation automatically takes care of the homogeneous
6G”v - _ - aE aGyv
Maxwell equation P 0] {it gives|VeB=0] and: |VX E = vy } because P 0]is
. aF v aE/ aFl 7]
equivalent to ax/; + 8x ot Gx: =0].

{See/read pages 10-11 of these lecture notes — also see/work Griffiths Problem 12.53, page 541}.

0A"
Oox B

And since:

|

0A*
ox

v

o4, 04,

My

|
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) is satisfied /

OF oF
Thus: 2t oF, +—# =0
ox ox*  ox’
o (04, ©04,) 0 (aAi aAvj 0 (04, o4,
= - + - + - =
ox* \ox* ox' ) ax*\ox” ox*) ox'\oxt  ox*
_ 884_8514# 66A1_684+86Aﬂ_i%_0
ox’ ox*  ox* ox’  oxM ox'  oxM ox* ox” ox* ox’ ox*
[a 04, 0 8A] o0 04, o 04, [a 04, aaAﬂj
= v _ L VI [ - + - =0
ox* ox* ox* ox” ox” ox* ox” ox ox" ox"  ox" ox"
:(618_8 64)AV+(8 al_ala]Aﬁ(a o 0 ﬁjAﬂ=0
ox” ox* ox" Ox ox" ox* ox" ox’ ox* ox" ox" ox"
_ =0 - =0 . =0
0 0 o 0 |. . oy
But: - = —| 1.e. can change the order of differentiation — no effect!
Oox” ox"  Ox" Ox
-2
ox*ox*  ox*ox”
L . : w_| 04" 04" : : :
.. The relativistic 4-potential formulation | " = o o does indeed automatically satisfy
)7 v
oG*" OF oF. OF oGH
=0 Loy Mo i =0
o because o o T o (shown to be equivalent to o
04" 04"
for | F*" = - .
obeyed for { ox, on, }
L : : w_| 04" 04" : :
Does the relativistic 4-potential formulation | F*" = o ox satisfy the inhomogeneous
) v
oF,,
Maxwell relation |—>- = #,J“| 22?
ox
oF,, _ 0 |od” 04" _ 0’ A B 0’ A" "
ox"  ox"\ox, oOx, ) ox'ox, ox'ox,
Switching the order of derivatives:
GFL,VZ 0 (04") 0 [o4d" o
ox’  ox,\ox' ) ox, | ox

A

This is an intractable equation, as it stands now...
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However, from our formulation of F*" in terms of (differences) in space-time derivatives of

oA

+— !

. w | 04" oA | .
the 4-vector potential A*: [F'" = 2 it is clear that we can add to the 4-vector
x, OX,
potential 4“ the space-time gradient of any scalar function A: | 4" — 4™ = 4*

Ox

u

The scalar and vector potentials /" and A are not uniquely determined by the EM fields E and B.

Thus:
[ 047 _8A**‘J_£8Av L0 @j_LaAﬂ L0 ]_(MV _aAﬂJ+ AL N\A
ox,  Ox, ox, 0x, Ox, ox, 0x, Ox, ox, Ox, ox ﬂbx‘\ 8xvé)3,\
-0
_| oA oA pw
ox, Ox,
* v * a/l . . . . .
W = FT by A" - AF = A" + —|is gauge invariance associated with the EM field F*!!!

ﬁxﬂ

We can exploit the gauge invariant properties of F*" to simplify the seemingly intractable relation:

OF" 0 (o4") 0 (04" _ g
ox"  ox,\ ox" ) oOx, |\ Ox' Ho
= = 1oV = - 1oV 04"
. i Ve = —— 20 Ved+——"=0 =0
Using the Lorenz gauge condition: el e R = |0
=011
v v u 2 qu 82/1”
We see that: OF _0 |04 ofot ) S == o4 =u J"| or: —=—u,J"
ox"  ox,\ox" ) ox,{ ox’ Ox,Ox" Ox,0x
2 2 2
But 0--2, O~ |t [p=om o2 -2 |y 1O
ox" ox, Ox,0x" Ox'Ox, c” Ot

D’ Alembertian operator (4-dimensional Laplacian operator)

> = The most elegant and simple
NP =—, g |2 04" T Sinele 4 ¢ tion! formulation of Maxwell’s
) Hou Ox Ox” Ho < »Single a-vector equation: equations — it contains all four
- of Maxwell’s equations!!

Taken together with the continuity equation (charge conservation): |2 J* = 0] these two
relations compactly describe virtually all of {non-matter/free space} EM phenomena!!!
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Note that the choice of the (instantaneous) Coulomb gauge Ved=0[isa bad one for use in

relativistic electrodynamics, because VoA {alone} is not a Lorentz invariant quantity!

However: |VeA(7,t)+

4G

1) _ oA4" (F,t)

¢’ ot

ox*

. 0
the product of two relativistic 4-vectors: — and A”.

ox

=0l is a Lorentz invariant quantity because it is

nb. |Ve4=0[is “destroyed” by any Lorentz transformation from one IRF(S) to another IRF(S") !!!

= In order to restore

Ved=0

, one must perform an appropriate gauge transformation for each
new inertial system entered, in addition to carrying out the Lorentz transformation itself !!!

In the Coulomb gauge, A4* is not a “true” relativistic 4-vector, because [4“ 4, = 4, 4"

Lorentz invariant quantity in the Coulomb gauge !!!

n.b. The Coulomb gauge

Ved=0

1S not a

is useful when v <« ¢, i.e. for non-relativistic problems.
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