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LECTURE NOTES 5 
 

ELECTROMAGNETIC WAVES IN VACUUM 
 

THE WAVE EQUATION FOR E
G

AND B
G

 
 
     In regions of free space (i.e. the vacuum), where no electric charges, no electric currents and 
no matter of any kind are present, Maxwell’s equations (in differential form) are: 
 
 

1)  ( ), 0E r t∇ =
G G Gi   2)  ( ), 0B r t∇ =

G G Gi  

3)  ( ) ( ),
,

B r t
E r t

t
∂

∇× = −
∂

JG GG G G
 4)  ( ) ( ) ( )

2

, ,1, o o

E r t E r t
B r t

t c t
μ ε

∂ ∂
∇× = =

∂ ∂

G GG GG G G
 

      ( )2 1 o oc ε μ=  
 
We can de-couple Maxwell’s equations e.g. by applying the curl operator to equations 3) and 4): 
 

( ) BE
t

⎛ ⎞∂
∇× ∇× = ∇× −⎜ ⎟∂⎝ ⎠

GG G G G
  ( ) 2
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2
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2
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∂
∇ =

∂
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2
2
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1 BB
c t

∂
∇ =

∂
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These are three-dimensional de-coupled wave equations for and E B

G G
 - note that they have 

exactly the same structure  – both are linear, homogeneous, 2nd order differential equations. 
 
Remember that each of the above equations is explicitly dependent on space and time,  
i.e. ( ),E E r t=

G G G  and ( ),B B r t=
G G G : 

 

( ) ( )2
2

2 2

,1,
E r t

E r t
c t

∂
∇ =

∂

G GG G
   ( ) ( )2

2
2 2

,1,
B r t

B r t
c t

∂
∇ =

∂

G GG G
 

or: 

( ) ( )2
2

2 2

,1, 0
E r t

E r t
c t

∂
∇ − =

∂

G GG G
   ( ) ( )2

2
2 2

,1, 0
B r t

B r t
c t

∂
∇ − =

∂

G GG G
 

 
     Thus, Maxwell’s equations implies that empty space – the vacuum {which is not empty, at the 
microscopic scale} – supports the propagation of {macroscopic} electromagnetic waves, which 
propagate at the speed of light {in vacuum}: 81 3 10   m so oc ε μ= = × .  
 

Set of coupled 
first-order 

partial 
differential 
equations
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     EM waves have associated with them a frequency f and wavelength λ, related to each other 
via c f λ= . At the microscopic level, EM waves consist of large numbers of {massless} real 
photons, each carrying energy E hf hc λ= = , linear momentum p h hf c E cλ= = =

G  and 

angular momentum 1=
G
A =  where h = Planck’s constant = 346.626 10  Joule-sec−× and 2h π≡= . 

 
    EM waves can have any frequency/any wavelength – the continuum of EM waves over the 
frequency region 0 f< < ∞  (c.p.s. or Hertz {aka Hz}), or equivalently, over the wavelength 
region 0 λ< < ∞  (m) is known as the electromagnetic spectrum, which has been divided up  
(for convenience) into eight bands as shown in the figure below (kindly provided by Prof. Louis 
E. Keiner, of Coastal Carolina University, Conway, SC): 
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Monochromatic EM Plane Waves:  
 
     Monochromatic EM plane waves propagating in free space/the vacuum are sinusoidal EM 
plane waves consisting of a single frequency f , wavelength c fλ = , angular frequency 

2 fω π= and wavenumber 2k π λ= . They propagate with speed c f kλ ω= = . 
 
     In the visible region of the EM spectrum {~380 nm (violet)  ≤  λ  ≤  ~ 780 nm (red)}, EM light 
waves (consisting of real photons) of a given frequency / wavelength are perceived by the human 
eye as having a specific, single color.  Hence we call such single-frequency, sinusoidal EM 
waves mono-chromatic. 
 
     EM waves that propagate e.g. in the ẑ+  direction but which additionally have no explicit x- or 
y-dependence are known as plane waves, because for a given time, t  the wave front(s) of the EM 
wave lie in a plane which is⊥  to the ẑ -axis, as shown in the figure below: 
 
 

x̂     The planar wavefront associated  
with a plane EM wave propagating in 
the ẑ+  direction lies in the x-y plane. 

           ẑ  
             ŷ  

 
 

 
 
     Note that there also exist spherical EM waves – e.g. emitted from a point source  
(e.g. an atom) or a small antenna – the wavefronts associated with these EM waves are spherical, 
and thus do not lie in a plane ⊥  to the direction of propagation of the EM wave: 
 
 
 
 
 
 
 
        Portion of a spherical wavefront 

associated with a spherical wave 
 
 

 
n.b. If the point source is infinitely far away from observer, then a spherical wave → plane wave 
in this limit, (the radius of curvature → ∞);  a spherical surface becomes planar as RC → ∞. 
 

Criterion for a plane wave: CRλ �  
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Monochromatic plane waves associated with and E B
G G

: 
 

( ) ( ), i kz t
oE z t E e ω−=

G G
� �   ( ) ( ), i kz t

oB z t B e ω−=
G G
� �  

 
Propagating in                Propagating in 

ẑ+  direction                ẑ+  direction 
 
n.b. complex vectors:            n.b. complex vectors: 
 

e.g. ˆi
o oE E e xδ=
G
�       e.g. ˆi

o oB B e yδ=
G
�  

 
n.b. The real, physical (instantaneous) fields are: 
 

       ( ) ( )( ), Re ,E r t E r t≡
GG G G�    

   ( ) ( )( ), Re ,B r t B r t≡
GG G G�    

Note that Maxwell’s equations for free space impose additional constraints on  and o oE B
G G
� � . 

→ Not just any  and/or o oE B
G G
� �  is acceptable / allowed !!! 

 

Since: 0E∇ =
G G
i        and: 0B∇ =

G G
i     

   ( )Re 0E= ∇ =
GG �i   ( )Re 0B= ∇ =

GG �i    

These two relations can only be satisfied ( ),r t∀
G  if ( )0  ,E r t∇ = ∀

GG G�i  and ( )0  ,B r t∇ = ∀
GG G�i . 

 

In Cartesian coordinates: ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

G
 

Thus: ( ) 0E∇ =
GG �i    and  ( ) 0B∇ =

GG �i   become: 

( )( )ˆ ˆ ˆ 0i kz t
ox y z E e

x y z
ω−⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

G
�i  and ( )( )ˆ ˆ ˆ 0i kz t

ox y z B e
x y z

ω−⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

G
�i  

 

Now suppose we do allow: ( )
( )ˆ ˆ ˆpolarization in  3

ˆ ˆ ˆ i i
o ox oy oz o

x y z D

E E x E y E z e E eδ δ

− − −

= + + ≡
G G�

����	���

 

( )
( )ˆ ˆ ˆpolarization in  3

ˆ ˆ ˆ i i
o ox oy oz o

x y z D

B B x B y B z e B eδ δ

− − −

= + + ≡
G G�

����	���

 

Then:  ( ) ( )ˆ ˆ ˆ ˆˆ ˆ 0i kz ti
ox oy ozx y z E x E y E z e e

x y z
ωδ −⎛ ⎞∂ ∂ ∂

+ + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
i  

( ) ( )ˆ ˆ ˆ ˆˆ ˆ 0i kz ti
ox oy ozx y z B x B y B z e e

x y z
ωδ −⎛ ⎞∂ ∂ ∂

+ + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
i  

Very important 
to keep in mind!! 
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Or:   ( ) ( )ˆ ˆ ˆ ˆˆ ˆ 0i kz t i
ox oy ozx y z E x E y E z e e

x y z
ω δ−⎛ ⎞∂ ∂ ∂

+ + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
i  

( ) ( )ˆ ˆ ˆ ˆˆ ˆ 0i kz t i
ox oy ozx y z B x B y B z e e

x y z
ω δ−⎛ ⎞∂ ∂ ∂

+ + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
i  

 
Now: Eox, Eoy, Eoz = Amplitudes (constants) of the electric field components in x, y, z 

directions respectively. 
 

Box, Boy, Boz = Amplitudes (constants) of the magnetic field components in x, y, z 
directions respectively. 

 

We see that: ( )ˆ ˆ 0i kz t i
oxx E xe e

x
ω δ−∂

=
∂

i   ←  has no explicit x-dependence 

And:  ( )ˆ ˆ 0i kz t i
oyy E ye e

y
ω δ−∂

=
∂

i   ←  has no explicit y-dependence 

 

( )ˆ ˆ 0i kz t i
oxx B xe e

x
ω δ−∂

=
∂

i   ←  has no explicit x-dependence 

And:  ( )ˆ ˆ 0i kz t i
oyy B ye e

y
ω δ−∂

=
∂

i  ←  has no explicit y-dependence 

 

However:   ( )az aze ae
z
∂

=
∂

 
 

Thus:  ( ) ( )ˆ ˆ 0i kz t i kz ti i
oz ozz E ze e ikE e e

z
ω ωδ δ− −∂

= =
∂

i   ⇐  true iff  0ozE ≡  !!! 

  ( ) ( )ˆ ˆ 0i kz t i kz ti i
oz ozz B ze e ik e e

z
ω ωδ δ− −∂

= Ε =
∂

i   ⇐  true iff  0ozB ≡  !!! 
 

• Thus, Maxwell’s equations additionally tell us/impose the restriction that an 
electromagnetic plane wave cannot have any component of or  E B

G G
&  to (or anti-&  to)  

the propagation direction (in this case here, the ẑ -direction) 
 

• Another way of stating this is that an EM wave cannot have any longitudinal components 
of  and E B
G G

 (i.e. components of and E B
G G

 lying along the propagation direction). 
 

• Thus, Maxwell’s equations additionally tell us that an EM wave is a purely transverse 
wave (at least while it is propagating in free space) – i.e. the components of  and E B

G G
 

must be ⊥  to propagation direction. 
 

• The plane of polarization of an EM wave is defined (by convention) to be parallel to E
G

. 
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Furthermore: Maxwell’s equations impose yet another restriction on the allowed form of 
 and E B
G G

 for an EM wave: 
 

BE
t

∂
∇× = −

∂

GG G
  and/or:  2

1 EB
c t

∂
∇× =

∂

GG G
 

( )Re Re BE
t

⎛ ⎞∂⎜ ⎟= ∇× = −
⎜ ⎟∂⎝ ⎠

GG �G �   ( ) 2

1Re Re EB
c t

⎛ ⎞∂⎜ ⎟= ∇× =
⎜ ⎟∂⎝ ⎠

GG �G �  

 
Can only be satisfied ( ),r t∀

G  iff: 

BE
t

∂
∇× = −

∂

GG �G �   and/or:  2

1 EB
c t

∂
∇× =

∂

GG �G �  

Thus: 

      

0

zEE
y

=

∂
∇× =

∂

G �G �
0

ˆy yxE EEx
z z x

=⎛ ⎞
∂ ∂∂⎜ ⎟− + −⎜ ⎟∂ ∂ ∂⎜ ⎟

⎝ ⎠

� ��
0

ˆ yE
y

x

=⎛ ⎞
∂⎜ ⎟

+⎜ ⎟ ∂⎜ ⎟
⎝ ⎠

� 0

xE
y

=

∂
−

∂

�
0

ˆ ˆˆ yx z
BB Bz x y

t t t

=⎛ ⎞
∂⎜ ⎟ ∂ ∂

= − − −⎜ ⎟ ∂ ∂ ∂⎜ ⎟
⎝ ⎠

�� �
ẑ  

      

0

zBB
y

=

∂
∇× =

∂

�G �
0

ˆy yxB BBx
z z x

=⎛ ⎞
∂ ∂∂⎜ ⎟− + −⎜ ⎟∂ ∂ ∂⎜ ⎟

⎝ ⎠

� ��
0

ˆ yB
y

x

=⎛ ⎞
∂⎜ ⎟

+⎜ ⎟ ∂⎜ ⎟
⎝ ⎠

�
0

xB
y

=

∂
−

∂

�
0

2 2 2

1 1 1ˆ ˆˆ yx z
EE Ez x y

c t c t c t

=⎛ ⎞
∂⎜ ⎟ ∂ ∂

= + +⎜ ⎟ ∂ ∂ ∂⎜ ⎟
⎝ ⎠

�� �
ẑ  

 

With: 
0

ˆ ˆ ˆx y zE E x E y E z
=

= + +
G
� � � � 0

ˆ ˆ ˆox oy ozE x E y E z
=

= + + ( )i kz t ie eω δ−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
0

ˆ ˆ ˆx y zB B x B y B z
=

= + +
G
� � � � 0

ˆ ˆ ˆox oy ozB x B y B z
=

= + + ( )i kz t ie eω δ−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Thus: ( ) ( )ˆ ˆ ˆ ˆ i kz t i
x y ox oyE E x E y E x E y e eω δ−= + = +

G
� � �  

 ( ) ( )ˆ ˆ ˆ ˆ i kz t i
x y ox oyB B x B y B x B y e eω δ−= + = +

G
� � �  

 

    ∴ ˆ ˆ ˆ ˆy yx xE BE BE x y x y
z z t t

∂ ∂∂ ∂
∇× = − + = − −

∂ ∂ ∂ ∂

G � �� �G �    

    ∴ 2 2

1 1ˆ ˆ ˆ ˆy yx xB EB EB x y x y
z z c t c t

∂ ∂∂ ∂
∇× = − + = +

∂ ∂ ∂ ∂

G � �� �G �   
 
 
 
 
 
 

Can only be satisfied / 
can only be true iff  the 

ˆ ˆand x y  relations are 
separately / independently 

satisfied ( )  ,r t∀
G ! 
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i.e. E∇×
GJG � :   ˆ ˆy xE Bx x

z t
∂ ∂

− = −
∂ ∂

� �
    ⇒   y xE B

z t
∂ ∂

=
∂ ∂

� �
         ⇒   oy oxikE i Bω= −     (1) 

    ˆ ˆyx BE y y
z t

∂∂
+ = −
∂ ∂

��
   ⇒   yx BE

z t
∂∂

= −
∂ ∂

��
       ⇒   ox oyikE i Bω= +     (2) 

 

 B∇×
G � :   2

1ˆ ˆy xB Ex x
z c t

∂ ∂
− =
∂ ∂

� �
  ⇒   2

1y xB E
z c t

∂ ∂
− =
∂ ∂

� �
  ⇒   2

1
oy oxikB i E

c
ω− = −   (3) 

  2

1ˆ ˆyx EB y y
z c t

∂∂
+ =
∂ ∂

��
  ⇒   2

1 yx EB
z c t

∂∂
=

∂ ∂

��
     ⇒   2

1
ox oyikB i E

c
ω= −     (4) 

 

From (1): oy oxikE i Bω= −�          ⇒   oy oxE B
k
ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

    or:    ox oy
kB E
ω
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

From (2): ox oyikE i Bω= +�          ⇒   ox oyE B
k
ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

    or:    oy ox
kB E
ω
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

From (3): 2

1
oy oxikB i E

c
ω− = −   ⇒   2

1
oy oxB E

c k
ω⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

From (4): 2

1
ox oyikB i E

c
ω= −      ⇒  2

1
ox oyB E

c k
ω⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

 

Now: ( )2
2

c f f
k

λ ωλ π
π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  and ( )1 k
c ω=   ( )2k π

λ=  

 

∴ E∇×
GG � : (1) 

1
ox oyB E

c
= −  

  (2) 
1

oy oxB E
c

= +      

     B∇×
G � : (3) 

1
oy oxB E

c
= +     

  (4) 
1

ox oyB E
c

= −  
 

So we really / actually only have two independent relations:  
1

ox oyB E
c

= −    and  
1

oy oxB E
c

= +  

 
                              But:        ˆ ˆẑ y x× = −                ˆ ˆẑ x y× = +  

          ˆ ˆ ˆx y z× =  ˆ ˆ ˆy x z× = −  
Very Useful Table:   ˆ ˆˆy z x× =  ˆ ˆẑ y x× = −  

          ˆ ˆẑ x y× =  ˆ ˆˆx z y× = −  
 

∴We can write the above two relations succinctly/compactly with one relation: ( )1 ˆo oB z E
c

= ×
G G
� �  

Maxwell’s Equations also 
have some redundancy 
encrypted into them! 
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Physically, the mathematical relation ( )1 ˆo oB z E
c

= ×
G G
� �  states that and E B

G G
 are: 

     a.)  in phase with each other. 
     b.)  mutually perpendicular to each other - i.e. ( ) ˆB zΕ ⊥ ⊥

GG
  ( ẑ  = propagation direction) 

 

     The  and E B
G G

 fields associated with this monochromatic plane EM wave are purely transverse 
{ n.b. this is as also required by relativity at the microscopic level – for the extreme relativistic 
particles – the (massless) real photons traveling at the speed of light c that make up the 
macroscopic monochromatic plane EM wave.} 
 

The real amplitudes of  and E B
G G

 are {also} related to each other by:  
1

o oB E
c

=   

 with  2 2
o ox oyB B B= +    and  2 2

o ox oyE E E= +  
 
Griffiths Example 9.2: 
 
A monochromatic (single-frequency) plane EM wave that is plane polarized/linearly polarized in 
the x̂+  direction and is propagating in the ẑ+  direction, has: 
 

ˆ E E x=
G

 ⇐  definition of linearly polarized EM wave in the x̂+  direction. 
 

     ∴   ( ) ( ) ( )
ˆ  by right-

hand rule

1 1 1 1ˆ ˆ ˆˆ ˆ ˆ
y

B z E z Ex E z x Ey
c c c c

=+

= × = × = × =
G G

�	
  

With: ( )1 ˆB z E
c

= ×
G G

,       
1B E
c

=  and 
1

o oB E
c

=  
 

Then: ( ) ( ) ( ) ( )ˆ ˆ ˆ, i kz t i kz t i kz ti
o o oE z t E e x E e e x E e xω ω ω δδ− − − += = =

G
� �  

 ( ) ( ) ( ) ( )ˆ ˆ ˆ, i kz t i kz t i kz ti
o o oB z t B e y B e e y B e yω ω ω δδ− − − += = =

G
� �   cos sinie iθ θ θ= +  

 
The physical (instantaneous) electric and magnetic fields are given by the following expressions: 
 

 ( ) ( )( ) ( ) ( )ˆ ˆ, Re , Re cos sin
imaginaryreal

o oE z t E z t E kz t x i E kz t xω δ ω δ
⎧ ⎫⎪ ⎪= = − + + − +⎨ ⎬
⎪ ⎪⎩ ⎭


�������� 
��������GG �  

 ( ) ( ) ˆ, cosoE z t E kz t xω δ= − +
G

 
 

 ( ) ( )( ) ( ) ( )ˆ ˆ, Re , Re cos sin
imaginaryreal

o oB z t B z t B kz t y i B kz t yω δ ω δ
⎧ ⎫⎪ ⎪= = − + + − +⎨ ⎬
⎪ ⎪⎩ ⎭


�������� 
��������GG �  

 ( ) ( ) ( )1ˆ ˆ, cos coso oB z t B kz t y E kz t y
c

ω δ ω δ= − + = − +
G

 

The physical 
(instantaneous)

and E B
G G

 fields 
are in-phase 

with each other 
for a linearly 
polarized EM 

wave 
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Note that: ( ) ˆ ˆ ˆ,  E B z E z B z⊥ ⊥ ⇒ ⊥ ⊥
G G G G

 ( ẑ = direction of propagation of EM wave) 
 
Instantaneous Poynting’s Vector for a linearly polarized EM wave:  
 

   ( ) ( ) ( ) ( ){ } ( ){ }1 1, , , Re , Re ,
o o

S z t E z t B z t E z t B z t
μ μ

= × = ×
G G G G G� �  

 ( ) ( )( )2

ˆ

1 ˆ ˆ, coso o
o z

S z t E B kz t x yω δ
μ

=

= − + ×
G

�	
  

   ( ) ( )21 ˆ, coso o
o

S z t E B kz t zω δ
μ

= − +
G

         2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
⇒EM Power flows in the direction of propagation of the EM wave (here, the ẑ+  direction) 

 
Generalization for Propagation of Monochromatic 

Plane EM Waves in an Arbitrary Direction 
 
     Obviously, there is nothing special / profound with regard to plane EM waves propagating in 
a specific direction in free space / the vacuum.  They can propagate in any direction.  We can 
easily generalize the mathematical description for monochromatic plane EM waves traveling in 
an arbitrary direction as follows: 
 
Introduce the notion / concept of a wave vector (or propagation vector)  k

G
 which points in the 

direction of propagation, whose magnitude k k=
G

.  Then the scalar product k r
G Gi  is the 

appropriate generalization of  kz:    
 

If:          ˆk kz=
G

 with k k=
G

 and  ˆ ˆ ˆr xx yy zz= + +
G  with 2 2 2r r x y z= = + +

G  

Then: ( ) ( )ˆ ˆˆ ˆk r kz xx yy zz kz= + + =
G Gi i  

 

If:        ˆ ˆ ˆx y zk k x k y k z= + +
G

 with 2 2 2
x y zk k k k= + +

G
and ˆ ˆ ˆr xx yy zz= + +

G  with 2 2 2r x y z= + +
G  

Then: ( ) x y zk r k x k y k z= + +
G Gi  
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Now:  cosx xk k= Θ  
  cosy yk k= Θ    where cos ,  cos ,  cosx y zΘ Θ Θ  = direction cosines w.r.t.  
  cosz zk k= Θ    (with respect to) the ˆ ˆ ˆ,  ,  x y z -axes respectively 
 
  cos sin cosx θ ϕΘ =  
  cos sin siny θ ϕΘ =   in spherical-polar coordinates 
  cos cosz θΘ =  
         
Note:    2 2 2cos cos cosx y zΘ + Θ + Θ  

2 2 2 2 2sin cos sin sin cosθ ϕ θ ϕ θ= + +  
2 2sin cos 1θ θ= + =  

 
 
 
 
 

If  e.g. k r
G G&  then: k r kr=

G Gi . We explicitly demonstrate this in spherical polar coordinates: 
 

  cos sin cosx xk k k θ ϕ= Θ =    cos sin cosxx r r θ ϕ= Θ =  

For k r
G G& : cos sin siny yk k k θ ϕ= Θ =         and: cos sin sinyy r r θ ϕ= Θ =  

  cos cosz zk k k θ= Θ =    cos coszz r r θ= Θ =  
 

Then:   ( ) cos cos cosx y z x y zk r k x k y k z kx ky kz= + + = Θ + Θ + Θ
G Gi  

  2 2 2cos cos cosx y zkr kr kr= Θ + Θ + Θ  

  2 2 2 2 2sin cos sin sin coskr kr krθ ϕ θ ϕ θ= + +  

  { } ( ){ }2 2 2 2 2 2 2 2 2sin cos sin sin cos sin cos sin coskr krθ ϕ θ ϕ θ θ ϕ ϕ θ= + + = + +  

  { }2 2sin coskr krθ θ= + =  
 

Thus, most generally, we can write the ( ) ( ),  and ,E r t B r t
G GG G� � -fields as: 

 

( ) ( ) ˆ, i k r t
oE r t E e nω−

=
G Gi

G G� �      where: n̂ ≡ polarization vector n̂ k⊥
G

 

( ) ( ) ( )ˆ ˆ, i k r t
oB r t B e k nω−= ×

G Gi
G G� �     i.e.     ˆˆ 0n k =i  because E

G
�  is transverse 

         
1 ˆB k E
c

= ×
G G
� �  

 

We must have:  ( ) ( ) ˆ, ,B r t E r t k⊥ ⊥
G GG G� �   i.e.   0E B =

G G
� �i     and   ˆ 0E k =

G
� i     and   ˆ 0B k =

G
�i  

Direction 
Cosines: 
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The Direction of Propagation of a Monochromatic Plane EM Wave: k̂  
 

The Real/Physical (Instantaneous) EM Fields are: 
 

( ) ( )( ) ( ) ˆ, Re , cosoE r t E r t E k r t nω δ= = − +
G GG G G G� i

 
 
where: n̂ ≡  polarization vector ( )E

G
&  

 

( ) ( )( ) ( )( )ˆ ˆ, Re , cosoB r t B r t B k r t k nω δ= = − + ×
G GG G G G� i  

 
1

o oB E
c

⎛ ⎞=⎜ ⎟
⎝ ⎠

 in free space 

 
 
 
 
 
 

 
Instantaneous Energy & Linear Momentum & Angular Momentum in EM Waves 

 
 Instantaneous Energy Density Associated with an EM Wave: 
 

 ( ) ( ) ( ) ( ) ( )2 21 1, , , , ,
2EM o elect mag

o

u r t E r t B r t u r t u r tε
μ

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠

G G G G G
     

where: ( ) ( )21, ,
2elect ou r t E r tε=

G G
  and  ( ) ( ) ( )2 21 1, , ,

2 2mag o
o

u r t B r t E r tε
μ

= =
G G G

   

But:     2 2
2

1B E
c

=  for EM waves in vacuum, and 2

1
o oc
ε μ=  

Thus:  ( ) ( )21, ,
2

o o
EM ou r t E r t

ε μ
ε= +

G G

oμ
( ) ( ) ( )( )2 2 21, , ,

2 o oE r t E r t E r tε ε
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

G G G       

Or: ( ) ( ) ( )2 2 2, , cosEM o o ou r t E r t E k r tε ε ω δ= = − +
GG G Gi   3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

     n.b. ( ) ( ), ,elect magu r t u r t=
G G

   for EM waves propagating in the vacuum  !!!! 
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 Instantaneous Poynting’s Vector Associated with an EM Wave: 
 

 ( ) ( ) ( ) ( ){ } ( ){ }1 1, , , Re , Re ,
o o

S r t E r t B r t E z t B z t
μ μ

= × = ×
G G G G GG G G � �   2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
For a linearly polarized monochromatic plane EM wave propagating in the vacuum, e.g.: 
 

( ) ( ) ˆ, cosoE r t E kz t xω δ= − +
G G

      and:    ( ) ( ) ˆ, cosoB r t B kz t yω δ= − +
G G

 
 

Then:   ( ) ( )21 ˆ, coso o
o

S r t E B kz t zω δ
μ

= − +
G G

   but:     
1

o oB E
c

=   for EM waves in vacuum. 

 

Thus:   ( ) ( )2 21 ˆ, coso
o

S r t E kz t z
c

ω δ
μ

= − +
G G

 ← multiply RHS by 1 c
c

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

Hence: ( ) ( )2 2
2

1 ˆ, coso
o

S r t c E kz t z
c

ω δ
μ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

G G
   but:  2

1
o oc
ε μ=  

 

Thus: ( ), o oS r t c
ε μ

=
G G

oμ
( ) ( )2 2 2 2ˆ ˆcos coso o oE kz t z c E kz t zω δ ε ω δ

⎛ ⎞
− + = − +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

But:     ( ) ( ) ( )2 2 2, , cosEM o o ou r t E r t E kz tε ε ω δ= = − +
G G

 
 

∴ ( ) ( ) ˆ, ,EMS r t cu r t z=
G G G

  Here, in this example, the propagation velocity of energy: ˆpropv cz=
G

 
 

⇒Poynting’s Vector = Energy Density * (Energy) Propagation Velocity: ( ) ( ), ,EM propS r t u r t v=
G G G G

  
 
 Instantaneous Linear Momentum Density Associated with an EM Wave:   
 

 ( ) ( ) ( )2

1, , ,EM o or t S r t S r t
c

ε μ℘ = =
G GG G G G

  2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
For linearly polarized monochromatic plane EM waves propagating in the vacuum:   
 

 2

1
EM c

℘ =
G

c ( ) ( )2 2 2 21ˆ ˆcos cos
EM

o o o o

u

E kz t z E kz t z
c

ε ω δ ε ω δ
=

− + = − +�����	����
  

 

But: ( ) ( ) ( )2 2 2, , cosEM o o ou r t E r t E kz tε ε ω δ= = − +
G G

 
 

∴ ( ) ( ) ( ) ( )2

1 1 ˆ, , , ,EM o o EMr t S r t S r t u r t z
c c

ε μ℘ = = =
G GG G G G G

 2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠
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 Instantaneous Angular Momentum Density Associated with an EM wave: 
 

 ( ) ( ), ,EM EMr t r r t= ×℘
G GG G GA   kg

m-sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

But: ( ) ( ) ( ) ( )2

1 1 ˆ, , , ,EM o o EMr t S r t S r t u r t z
c c

ε μ℘ = = =
G GG G G G G

 2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
∴ for an EM wave propagating in the ẑ+  direction: 
 

 ( ) ( ) ( )( )2

1 1 ˆ, , ,EM EMr t r S r t u r t r z
c c

= × = ×
G GG G G G GA  kg

m-sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
      n.b. depends on the choice of origin 

 
The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing 
volume v (containing EM fields in the volume v) is: 
 

 ( ) ( ) ( ) ( ),
,EM EM

EM v S

U t u r t
P t d S r t da

t t
τ

∂ ∂
= = = −

∂ ∂∫ ∫
G G G Giv   (Watts) 

 
           n.b. closed surface S enclosing volume v. 

 
The instantaneous EM power crossing an (imaginary) surface (e.g. a 2-D plane – a window!) is:  
 

 ( ) ( ),EM S
P t S r t da⊥= −∫

G G Gi  
 

The instantaneous total EM energy contained in volume v is: ( ) ( ),  EM EMv
U t u r t dτ= ∫

G
 (Joules) 

 
The instantaneous total EM linear momentum contained in the volume v is: 
 

 ( ) ( ),EM EMv
p t r t dτ= ℘∫

GG G
 kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The instantaneous total EM angular momentum contained in the volume v is: 
 

 ( ) ( ),  EM EMv
t r t dτ= ∫

G G GAL  
2kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Time-Averaged Quantities Associated with  EM  Waves: 
 
     Frequently, we are not interested in knowing the instantaneous power P(t), energy / energy density, 
Poynting’s vector, linear and angular momentum, etc.- e.g. simply because experimental measurements 
of these quantities are very often averages over many extremely fast cycles of oscillation… 

(e.g. period of oscillation of light wave 15
15

11 10 sec cycle 1 femto-sec
10 cpslight lightfτ −= = =� ) 

 

∴ ⇒  We want/need time averaged expressions for each of these quantities (e.g. in order to 
compare directly with experimental data) e.g. for monochromatic plane EM light waves: 
 

If we have e.g. a “generic” instantaneous physical quantity of the form:  ( ) ( )2cosoQ t Q tω=  
 

The time-average of ( )Q t  is defined as: ( ) ( ) ( )2

0 0

1 cos
t to

t t

QQ t Q Q t dt t dt
τ τ

ω
τ τ

= =

= =
≡ = =∫ ∫  

Q(t) = Qocos2(ωt) 
      Qo 

 

( ) 1
2 oQ Q t Q= =  

t 
 

The time average of the ( )2cos tω  function: 
 

( ) ( )2

0
0

1 1 sin 2 1 sin 2 1 sin 2cos 0 0
2 4 2 2 2 2

t

t

t tt dt
τ

τ ω ωτ ωτω τ τ
τ τ ω τ ω τ ω

=

=

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎡ ⎤= + = − + − = +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∫  

 

But: 2 fωτ π τ=  and: 1f τ=   ∴ ( )2 2ωτ π τ τ π= =   ∴ ( ) ( )sin sin 2 0ωτ π= =  
 

     ∴    ( )2

0

1 1cos  
2

t dt
τ

ω
τ τ

=∫ τ 1
2

⎡ ⎤ =⎣ ⎦  ∴ ( ) 1
2 oQ t Q Q= =  

 
Thus, the time-averaged quantities associated with an EM wave propagating in free space are: 
 

EM Energy Density:   ( ) ( ), ,EM EMu r t u r t⇒
G G

  Total EM Energy:      ( ) ( )EM EMU t U t⇒  

Poynting’s Vector:       ( ) ( ), ,EMS r t S r t⇒
G GG G

 EM Power:       ( ) ( )EM EMP t P t⇒  

Linear Momentum Density:    ( ) ( ), ,EM EMr t r t℘ ⇒ ℘
G GG G

   Linear Momentum:   ( ) ( )EM EMp t p t⇒
G G

 

Angular Momentum Density:  ( ) ( ), ,EM EMr t r t⇒
G GG GA A   Angular Momentum:   ( ) ( )EM EMt t⇒

G G
L L  
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For a monochromatic EM plane wave propagating in free space / vacuum in ẑ  direction: 
 

   ( ) 21,
2EM o ou r t Eε=

G
  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   ( ) ( )21 ˆ ˆ, ,
2 o o EMS r t c E z c u r t zε= =

G G G
   2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   ( ) ( ) ( )2
2

1 1 1ˆ ˆ, , ,
2EM o o EMr t E z S r t u r t z
c c c
ε℘ = = =

GG G G G
2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   ( ) ( )( ) ( )( ) ( ) ( )2

1 1 ˆ ˆ, , , ,EM EM EMr t r r t r S r t u r t r z
c c

= × ℘ = × = ×
GGG G G G G GA kg

m-sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
We define the intensity I associated with an EM wave as the time average of the magnitude of 
Poynting’s vector:  

Intensity of an EM wave: ( ) ( ) ( ) ( ) 21, , ,
2EM o oI r S r t S r t c u r t c Eε≡ = = =

GG G G G
  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The intensity of an EM wave is also known as the irradiance of the EM wave – it is the radiant 
power incident per unit area upon a surface. 
 

    When working with time-averaged quantities such as ( ),EMu r tG , ( ),S r t
G G , ( ),EM r t℘

G G , 

( ),EM r t
G GA , etc. it is convenient/useful to define the so-called root-mean-square (≡  RMS) 

values of the  and E B
G G

 electric and magnetic field amplitudes (using the mathematical definition 
of RMS from probability and statistics): 
 
For a monochromatic (i.e. single frequency, sinusoidally-varying) EM wave (only): 
 

  
1
2rmsE E≡

G G
    ⇒  

1 0.707
2rmso o oE E E≡ =  

  
1
2rmsB B≡

G G
    ⇒  

1 0.707
2rmso o oB B B≡ =  

 

     Where: Eo = peak (i.e. max) value of the E
G

-field = amplitude of the E
G

-field. 
Bo = peak (i.e. max) value of the B

G
-field = amplitude of the B

G
-field. 

 

             ( ),E z t
G

 
Eo 

      1
2rmso oE E≡          Eo           

1 0.707
2rmso o oE E E≡ =  

 
 
 
 

Time –
averaged 

quantities for 
EM plane 

wave 
propagating 

in the ẑ+  
direction 

z or t 
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Thus we see that: 
 

1 1 1
22 2rms rmsE E E E E E⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

G G G G G G
i i  and 

1 1 1
22 2rms rmsB B B B B B⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

G G G G G G
i i  

i.e.  that: 2 2 21 1
2 2rms peakE E E= =  ⇒ 2 21

2rmso oE E=  and 2 2 21 1
2 2rms peakB B B= =  ⇒ 2 21

2rmso oB B=  
 

Then:  ( ) ( ) 2 2 21 1 1 1 1
2 2 2 4 2 rms

rms
EM EM o o o o o ou t u t E E Eε ε ε⎧ ⎫= = = =⎨ ⎬

⎩ ⎭
  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( ) ( ) ( ) ( )1 1 ˆ ˆ
2 2

rms
rms EM EMS t S t c u t z c u t z= = =
G G

  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( ) ( ) ( ) ( ) ( )2 2

1 1 1 1ˆ ˆ
2 2

rms rms
EM EM rms EMt S t u t z S t u t z

c c c c
℘ = = = =

G GG
  2

kg
m -sec

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( ) ( ) ( ) ( )( ) ( ) ( )2

1 1 1 ˆ
2

rms rms rms
EM EM EM rms EMt r t r t r S t u t r z

c c
= × ℘ = × ℘ = × = ×

G GG GG G G GA  

( ) ( ) ( ) ( ) 21 1 1
2 2 2 rms

rms
rms rms rms EM o oI S t S t I S t c u t c Eε= = = = = =

G G G
  2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Real world example: 120 Vac/60 Hz “wall power” refers to the RMS AC voltage!  
The peak voltage (i.e. voltage amplitude) is 2 2  120 169.7 170.0peak rmsV V= = ⋅ = � Volts. 
n.b. For EM waves ≠ sinusoidal waves, the root-mean-square (RMS) must be defined properly / 
mathematically – e.g. the RMS value of square     or triangle      wave 
amplitudes (from Fourier analysis these consist of linear combinations of infinite # of harmonics) 

1  
2rmsΕ ≠ Ε   1  

2rmsΕ ≠ Ε         (See/refer to probability & statistics reference books!!) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For mono-
chromatic 
EM plane 

waves 
(only): kg

m-sec
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Radiation Pressure: 2

Newtons  
mrad

⎛ ⎞Ρ ⎜ ⎟
⎝ ⎠

 

 
     When an EM wave impinges (i.e. is incident) on a perfect absorber (e.g. a totally black object 
with absorbance {aka absorption coefficient}  A = 1, as “seen” at the frequency of the EM wave), 
all of the EM energy (by definition) is absorbed {ultimately winding up as heat…}. 
 
     By conservation of energy, linear momentum & angular momentum the object being 
irradiated by the incident EM wave acquires energy, linear momentum & angular momentum 
from the incident EM wave. 
 
The EM Radiation Pressure acting on a perfect absorber for a normally incident EM wave is 
defined as: 

( ){ }
( )

perfect

absorber 1
Time-Averaged Force

Unit Area

net
EMRad

AEM

F t

A
=

⊥

Ρ = =
⊥

G

  2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
However, the time-averaged EM force is defined as: 
 

( ) ( ) ( )EM EMnet
EM

d p t p t
F t

dt t
Δ

≡ =
Δ

G GG
 =  

 

∴ the EM Radiation Pressure at normal incidence is:  ( ){ }
( )

perfect

absorber 1
1EMRad

AEM

p t

t A
=

⊥

Δ
Ρ =

Δ

G
 2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

     In a time interval 1t fτΔ =� , the time-averaged magnitude of the EM  linear momentum 
transfer ( )EMp tΔ

G  at normal incidence to a perfect absorber of EM radiation is: 
 

( ) ( )  EM EMp t t VΔ = ℘ Δ
GG

 
 
    EM Linear momentum density      Volume of EM wave associated with time interval tΔ  
 
The volume associated with an EM wave propagating in free space over a time interval tΔ  is:  

( )V A c t⊥Δ = ⋅ Δ   where c tΔ = distance traveled by the EM wave in the time interval tΔ . 
 

     ∴   ( ){ }
( ) ( ) ( )

perfect

absorber 1
1 1EM EM EMRad

AEM

p t t V t A

t A t A
⊥

=

⊥ ⊥

Δ ℘ Δ ℘
Ρ = = =

Δ Δ

G GG c tΔ

tΔ  A⊥

( )EMc t= ℘
G

 

 
Thus, we see that for a monochromatic EM plane wave propagating in free space normally 
incident on a perfect absorber (A = 1): 
 

( ){ } ( )perfect

absorber

2
1

1
2

Rad
AEM EM o o EM

Ic t E u cε=Ρ = ℘ = = =
G

  2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

time rate of change of the time-
averaged linear momentum 
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For a perfect reflector (e.g. a perfect mirror, with reflection coefficient (aka reflectance) R = 1 
{A = 0}), note that:  

( ) ( )2
perfect perfect
reflector absorber

EM EMp t p tΔ = × Δ
G G

 
 

     Since initial final
EM EM EMp p pΔ ≡ −
G G G  and final initial

EM EMp p= −
G G  for an EM wave reflecting off of a perfect 

reflector, then 2initial final initial initial initial
EM EM EM EM EM EMp p p p p pΔ ≡ − = + =
G G G G G G   

 
     i.e. an EM wave that reflects off of (i.e. “bounces” off of) a perfect reflector delivers twice 
(2×) the momentum kick (i.e. impulse) to the perfect reflector than the same EM wave that is 
absorbed by a perfect absorber! Thus at normal incidence: 
 

∴ ( ){ } ( ){ } ( )perfect perfect

reflector absorber1 12 2Rad Rad
R AEM EM

I
c= =Ρ = Ρ =   2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
     Note that for a partially reflecting surface, with reflection coefficient R < 1, since R + A = 1,  
the radiation pressure associated with an EM wave propagating in free space and reflecting off of 
a  partially reflecting surface at normal incidence is given by:  
 

( ){ } ( ){ } ( ){ } ( )( )partial perfect perfect

reflector absorber absorber1 1 12 2Rad Rad Rad
R A A REM EM EM

IA R A R c+ = = =Ρ = ⋅Ρ + ⋅Ρ = +  2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Since  A = 1 – R, we can equivalently re-write this relation as: 
 

( ){ } ( )( ) ( )( ) ( )( )partial

reflector 1 2 1 2 1Rad
R AEM

I I IA R R R Rc c c+ =Ρ = + = − + = +  2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
      If the EM wave is not at normal incidence on the absorbing/reflecting surface, but instead 
makes a finite angle θ  with respect to the unit normal of the surface, these relations need to be 
modified, due to the cosine θ  factor ˆ cos cosS n S Iθ θ= =

G G
i  associated with the flux of EM 

energy/momentum ( ) ( ) ( ) ( )2 2
1 1ˆ cos cos cos cosEM EM o o c c

t n t S t S t Iθ ε μ θ θ θ℘ = ℘ = = =
G GG G

i  

crossing the surface area A⊥  at a finite angle θ : 
 

  ( ){ } ( )perfect

absorber 1 cosRad
AEM

I
c θ=Ρ =   2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

( ){ } ( )perfect

reflector 1 2 cosRad
REM

I
c θ=Ρ =   2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

        ( ){ } ( )( ) ( )( )partial

reflector 1 2 cos 1 cosRad
R AEM

I IA R Rc cθ θ+ =Ρ = + = +  2

Newtons
m

⎛ ⎞
⎜ ⎟
⎝ ⎠
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     Maxwell’s equations (and relativity) for the macroscopic and  E B
G G

 fields associated with an 
EM wave propagating in free space mandate / require that E B⊥ ⊥

G G
 propagation direction  

(here = ẑ ) { }ˆpropv cz=
G , as shown in the figure below: 

 
     Macroscopic EM waves propagating in free space are purely transverse waves, i.e. E B⊥

G G
, 

and both of the  and  E B
G G

 fields are also ⊥  to the propagation direction of the EM wave,  
e.g. ˆpropv cz=

G . Thus, ˆpropE v cz⊥ =
G G  and ˆpropB v cz⊥ =

G G .  
 

     The behavior of the macroscopic and E B
G G

 fields associated with e.g. a monochromatic EM 
plane wave propagating in free space, at the microscopic scale is simply the sum over (i.e. linear 
superposition of) the  and E B

G G
-field contributions from {large numbers of} individual real 

photons making up the EM field. 
 

     Each real photon has associated with it, its own and E B
G G

 field – e.g. a linearly polarized real 
photon, polarized in x̂+  direction: 
 

   x̂  ( ) ˆcosoE E kz t xγ γ ω δ= − +
G

 ( x̂+  = polarization direction) 
 

     Photon  Real Photon Momentum: 
               ẑ  ˆhp zγ λ=

G  

          Photon Poynting’s vector: ( )1 ˆ
o

S E B zγ γ γμ= × +
G G G

&  

         ŷ      ( ) ˆcosoB B kz t yγ γ ω δ= − +
G

 
 

1 ˆB k E
cγ γ= ×

G G
 where the unit wavevector ˆ ˆk z= +  {here} and 

1
o oB E

cγ γ=  in vacuum. 

Real photon energy: E hf p c p cγ γ γ= = =
G   (Total Relativistic Energy2 = 

0
2 2 2 2 4E p c m cγ γ γ

=

= + ) 

Real photon momentum (deBroglie relation):      2 0m cγ ≡  for real photon 
hpγ λ=   and c f λ=  c = speed of light (in vacuum) = 3 × 108 m/sec 

 
 
 

Compare this 
microscopic picture 
to that of a classical 
/ macroscopic EM 

plane wave, 
polarized in the  
x-hat direction: 
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Question:  How many real photons per second are emitted e.g. from a 10 mW laser? 
(mW = milli-Watt = 10−3 Watt) 

 
Answer:    Depends on the color (i.e. wavelength λ, frequency f, photon energy) of the laser beam! 

Eγ = hf 
 
When we say 10 mW laser, what precisely does this refer to?  
 
It refers to the time-averaged EM power: 
 

 ( ) ( )310 mW 10 10 Watts 0.010 Watts 0.010Joules seclaserP t −= = × = =  
 
Let’s assume that the laser beam points in the ẑ+  direction. 
 
Also assume that the diameter of the laser beam is D = 1 mm = 0.001 m (typical). 
Further assume (for simplicity’s sake): Power flux density = intensity profile I(x,y) is uniform in 
x and y over the diameter of the laser beam (not true in real life –  laser beams have ~ Gaussian 
intensity profiles in x and y (i.e. ( ) 2 22

oI I e ρ σρ −= ); note that there also exist e.g. diffraction 
{beam-spreading} effects that should/need to be taken into account…) 
 
    ( ) ( ), , ,I x y S x y t=

G
 

 
 
In tΔ  = 1 second, the time-averaged energy associated with the 10 mW laser beam is:  
 

( ) ( )laser laserE t P t tΔ = Δ  

( ) 0.010 Watts 1 seclaserE tΔ = ∗  

( ) Joules0.010 1 sec
seclaserE tΔ = ∗  

( ) 0.010 JouleslaserE tΔ = = Time-averaged energy of laser beam 
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The {instantaneous} energy of the laser beam crosses an imaginary planar surface that is ⊥  to 
the laser beam. 
 

     If the laser has red  light, e.g. λred  = 750 nm (n.b. 1 nm = 1 nano-meter = 10−9 meters) 
or if the laser has blue light, e.g. λblue = 400 nm 
 
Since  f = c/λ the corresponding photon frequencies associated with red and blue laser light are: 

8
14

9

3 10 / 4.0 10
750 10red

red

c m sf
m

γ
γλ −

×
= = = ×

×
 cycles/sec (= Hertz, or Hz) 

8
14

9

3 10 / 7.5 10
400 10blue

blue

c m sf
m

γ
γλ −

×
= = = ×

×
 cycles/sec (= Hertz, or Hz) 

 

The energy associated with a single, real photon is: E hf hcγ γ
γ λ= = , where h = Planck’s 

constant: h = 6.626 x 10−34 Joule-sec and c = 3 x 108 m/sec (speed of light in vacuum). 
Thus, the corresponding photon energies associated with red and blue laser light are: 
 

  red
red redE hf hcγ γ

γ λ= =  and:   blue
blue blueE hf hcγ γ

γ λ= =    since  f = c/λ 
 

34 14 19    6.626 10 Joule / sec   4.0 10 / sec 2.6504 10 Joulesred
redE hf γ

γ
− −= = × × × = ×  (red  light) 

34 14 196.626 10 Joule / sec   7.5 10 / sec 4.9695 10 Joulesblue
blueE hf γ

γ
− −= = × × × = ×  (blue light) 

 
     In a time interval of 1tΔ =  sec, the time-averaged energy ( ) ( )laserE t N t Eγ γΔ = Δ  where 

( )N tγΔ is the {time-averaged} number of photons crossing a ⊥ area in the time interval tΔ . 
 
     Thus, the number of red (blue) photons emitted from a red (blue) laser in a 1tΔ = sec time 
interval is: 

# red photons:   ( ) ( ) 16
19

0.010 Joules 3.7730 10
2.6504 10 Joules/photon

laserred
red

E t
N t

Eγ
γ

−

Δ
Δ = = = ×

×
 

# blue photons: ( ) ( ) 16
19

0.010 Joules 2.0123 10
4.9695 10 Joules/photon

laserblue
blue

E t
N tγ

γ
−

Δ
Δ = = = ×

Ε ×
 

 
Thus, the {time-averaged} rate of emission of red (blue) photons from a red (blue) laser is: 
 

( )
( ) 16    3.7730 10

red
red

N t
R t

t
γ

γ

Δ
= = ×

Δ
 red  photons/sec 

( )
( ) 162.0123 10

blue
blue

N t
R t

t
γ

γ

Δ
= = ×

Δ
 blue photons/sec 

 

Note: In a time interval of 1tΔ =  sec, photons (of any color / / /f Eγ γ
γλ ) will travel a distance  

      of 8 8 3 10 m/s  1 s   3 10 metersd c t= Δ = × × = ×  
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     If the flux of photons is assumed (for simplicity) to be uniform across the D = 1 mm diameter 
laser beam, then the time-averaged flux of photons (#/m2/sec) is: 
 

( )
( ) ( ) ( )

16

22
223

3.7730 10 sec red     4.8039 10 m / sec10 m
2

red
red

laser

R t
t

A
γ

γ

γ
γ

π
−

⊥

×
= = = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

F  

( )
( ) ( ) ( )

16

22
223

2.0123 10 sec blue 2.562 10 m / sec10 m
2

blue
blue

laser

R t
t

A
γ

γ

γ
γ

π
−

⊥

×
= = = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

F  

 
If each photon has Eγ  Joules of energy, then power associated with red (blue) laser beam: 
 

( ) ( ) ( ) ( )19 22
2

red        2.6504 10 Joules  4.8039 10 m /sec

red
red red red

laser
P t

S t E tA
γ

γ γ γ
γ−

⊥

= = = × × ×
G

i F

        4 21.2732 10  Watts m= ×  
 

( ) ( ) ( ) ( )19 22
2

blue 4.9695 10 Joules  2.5621 10 m /sec

blue
blue blue blue

laser
P t

S t E tA
γ

γ γ γ
γ−

⊥

= = = × × ×
G

i F

        4 21.2732 10  Watts m= ×  
Thus we see that: 
 

( ) ( ) ( ) ( ) 4 21.2732 10 Watts/m
red blue

red blue
laser laser

P t P t
S t S tA A

γ γ
γ γ

⊥ ⊥

= = = = ×
G G

 ←10 mW laser 

 
n.b. This is precisely why you shouldn’t look into a laser beam {with your one remaining eye}!!! 
 
Time-averaged linear momentum density: 
 

( ) ( ) ( ) ( ) 13 2
2

1 1 ˆ        1.4147 10 kg/m -secred red red red
o ot S t S t u t z

c cγ γ γ γε μ −℘ = = = = ×
G GG

 

( ) ( ) ( ) ( ) 13 2
2

1 1 ˆ 1.4147 10 kg/m -secblue blue blue blue
o ot S t S t u t z

c cγ γ γ γε μ −℘ = = = = ×
G GG

 

 
Thus:   13 21.4147 10 kg/m -secred blue

γ γ
−℘ = ℘ = ×

G G
  

 
The time-averaged linear momentum contained in 1tΔ =  second’s worth of laser beam: 
Time averaged linear momentum: ( )p tγΔ

G = momentum density ( )tγ℘
G

 x volume VΔ  

Volume ( )laserV A c t⊥Δ = ∗ Δ   ( )3m  
     Distance light travels in tΔ  sec. 

Momentum density, Poyntings vector, energy density are 
independent of frequency / wavelength / photon energy
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Red light momentum:  
 

 ( ) ( )
2

13 8 0.001    1.4147 10 3 10 1
2

red redp t t c tAγ γ π−
⊥

⎛ ⎞Δ = ℘ Δ = × × × × × ×⎜ ⎟
⎝ ⎠

GG
 kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

       113.3333 10  kg-m sec−= ×  
Blue light momentum: 

 ( ) ( )
2

13 8 0.0011.4147 10 3 10 1
2

blue bluep t t c tAγ γ π−
⊥

⎛ ⎞Δ = ℘ Δ = × × × × × ×⎜ ⎟
⎝ ⎠

GG
 kg-m

sec
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

       113.3333 10  kg-m sec−= ×  

Thus: ( ) ( ) 113.3333 10  kg-m secred bluep t p tγ γ
−Δ = Δ = ×

G G
 

 
{“TRICK”}: 
 

The time-averaged energy density ( )EMu t = time-averaged momentum density ( )EM t c℘ ∗
G

 

(Since photon energy, E p cγ γ= ). Thus: 
 

     ( ) ( ) ( ) ( )13 8 5 3
2

kg    1.4147 10 3 10 m/s 4.2441 10 Joules/m
m /sec

red redu t t cγ γ
− −⎛ ⎞= ℘ = × × × = ×⎜ ⎟
⎝ ⎠

G
 

     ( ) ( ) ( ) ( )13 8 5 3
2

kg1.4147 10 3 10 m/s 4.2441 10 Joules/m
m /sec

blue blueu t t cγ γ
− −⎛ ⎞= ℘ = × × × = ×⎜ ⎟
⎝ ⎠

G
 

         
2

2

kg-mJoule
s

=     ⇒     2 2

Joule kg
m m/s

=  
 

The time-averaged energy contained in tΔ  = 1 second’s worth of laser beam is: 
The time-averaged energy ( )U tγ = time-averaged energy density ( ) volume u t Vγ ∗ Δ  

    ( )laserV A c t⊥Δ = ∗ Δ  

∴  ( ) ( ) ( )
2

5 8 3
3

Joules 0.001    4.2441 10 3 10 1 m
m 2

red redU t u t A c tγ γ π−
⊥

⎛ ⎞ ⎛ ⎞= ∗ Δ = × ∗ × ∗ × ∗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

      0.010 Joules 10 mJ= =  
 

      ( ) ( ) ( )
2

5 8 3
3

Joules 0.0014.2441 10 3 10 1 m
m 2

blue blueU t u t A c tγ γ π−
⊥

⎛ ⎞ ⎛ ⎞= ∗ Δ = × ∗ × ∗ × ∗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

      0.010 Joules 10 mJ= =  
 

The time-averaged power in the laser beam: ( ) ( ) ( )10mWlaserred blue
laser laser

U t
P t t

t
= = = Ρ

Δ
 

Time-averaged Power (Watts) = 
( ) ( )Joules

sec
d U t

dt
        tΔ  = 1 sec 
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Note:  Plaser (laser power) is measured by the total time-averaged energy ( )U t deposited in  
(a very accurately) known time interval tΔ  using an absolutely calibrated photodiode (e.g. by NIST). 
 

A typical time interval tΔ = 10 secs → t τΔ � (oscillation period) = 1 f  !! 
 

151    2.500 10 sec 2.500 femto-sec 2.500 fsred
redfτ −= = × = =  

151 1.333 10 sec  1.333 femto-sec  1.333 fsblue
bluefτ −= = × = =  

 

→ The laser power measured is time-averaged power, i.e. ( ) ( )1
2

peak
laser laserP t P t=  

Consider (the time-averaged) energy density associated with this 10 mW laser:   

    ( ) 54.2441 10EMu t −= ×   3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Now: ( ) ( ) ( ) ( )21 1
2 2

peak
EM elect mag o o EMu t u t u t E u tε= + = =  

And because: ( ) ( )1B t E t
c

=
G G

 for EM waves propagating in free space / vacuum ( 2

1
o oc
ε μ= ) 

 

We showed that:  ( ) ( )elect magu t u t=  

     ( ) 21 1
2 2elect o ou t Eε⎧ ⎫= ⎨ ⎬
⎩ ⎭

          2 2 2
2

1
o o o o oB E E

c
ε μ= =  

     ( ) 21 1 1
2 2 2

o o
mag o

o

u t B
ε μ

μ
⎧ ⎫

= =⎨ ⎬
⎩ ⎭ 2 oμ

2 21 1
2 2o o oE Eε

⎧ ⎫⎪ ⎪ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

 

 

Now: Eo = amplitude of the macroscopic electric field: ( ) ( ) ˆ, cosoE z t E kz t xω δ= − +
G

 

 Bo = amplitude of the macroscopic magnetic field: ( ) ( ) ˆ, cosoB z t B kz t yω δ= − +
G

 
 

Define the RMS (Root-Mean-Square) amplitudes of the and E B
G G

fields: 
 

rms

1
2o oE E≡   ⇒   

rms

2 21
2o oE E=  

rms

1
2o oB B≡   ⇒   

rms

2 2 2
2

1 1
2 2o o oB B E

c
= =  in free space / vacuum 

 

Then: ( )
rms

2 21 1 1
2 2 2elect o o o ou t E Eε ε⎧ ⎫= =⎨ ⎬
⎩ ⎭

  (Joules/m3) 

 ( )
rms rms

2 2 21 1 1 1
2 2 2 2mag o o o o

o o

u t B B Eε
μ μ

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
  in free space / vacuum 
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So if: ( ) ( ) ( ) ( )2EM elect mag electu t u t u t u t= + =  in free space / vacuum 

                
rms

2 52 4.2441 10o oEε −= = ×  Joules/m3 

Then: ( )
rms

2 1
2o EM

o

E u t
ε

=  where 128.85 10oε
−= ×  Farads/m = electric permittivity of free space 

 

Thus:   ( )
rms

1
5 2

12

1 4.2441 10 Joules/m
2 2 8.85 10 Farads/m

laser
o EM

o

E U t
ε

−

−

⎡ ⎤×
= = ⎢ ⎥× ×⎣ ⎦

  (Volts/m) 

3
 rms 1.5485 10  Volts/m 1548.5 Volts/mlaser

oE × =�  (n.b. same for red vs. blue laser light!) 
 
Then:  rms2  2190 Volts/mlaser laser laser

o peak oE E E= = �  

Then: ( )
rms rms

6 21 5.1616 10 Tesla 5.1616 10 Gausslaser laser
o oB E

c
− −= × = ×�   1 Tesla = 104 Gauss 

SI (MKS)  CGS Units 

Thus:    
rms

21 2  7.2996 10  Gausslaser laser laser
o o oB E B

c
−= = ×�  

 
Now earlier (above) we calculated the (time-averaged) number of photons present in the  
{red and blue} laser beams that were emitted in a time interval of tΔ  = 1 sec. 
 

# red   photons emitted in tΔ  = 1 sec:  ( ) 163.7730 10redN tγΔ = ×   red  photons 

# blue photons emitted in tΔ  = 1 sec:  ( ) 162.0123 10blueN tγΔ = ×  blue photons 
 

The volume associated with a D = 1 mm diameter laser beam turned on for tΔ  = 1 sec is: 
 

2 2
8 30.001 3 10 1 235.6194 m

2 2
DV A c t c tπ π⊥

⎛ ⎞ ⎛ ⎞Δ = Δ = Δ = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i i  

 

The (time-averaged) number density ( )
( )N t

n t
V
γ

γ

Δ
=

Δ
 of {red and blue} photons in the laser 

beam is: 

( )
( ) 16

14
2

3.7730 10    1.6009 10
2.3562 10

red
red

N t
n t

V
γ

γ

Δ ×
= = = ×

Δ ×
  red  photons/m3 

( )
( ) 16

13
2

2.0123 10 8.5405 10
2.3562 10

blue
blue

N t
n t

V
γ

γ

Δ ×
= = = ×

Δ ×
 blue photons/m3 

 

Then the (time-averaged) energy density ( )EMu t  of the {red and blue} laser beam is: 
 

Red photon energy: 19   2.6504 10 Joulesred redE hfγ γ
−= = ×  

Blue photon energy: 194.9695 10 Joulesblue blueE hfγ γ
−= = ×  
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( ) ( ) ( )14 19 5 3      1 .6009 10 2.6504 10 4.2442 10 Joules/mred red red
EMu t n t Eγ γ

− −= = × × = ×i  

( ) ( ) ( )13 19 5 38.5405 10 4.9695 10 4.2442 10 Joules/mblue blue blue
EMu t n t Eγ γ

− −= = × × = ×i  
 

The (time-averaged) energy ( ) ( )EM EMU t u t V= ∗Δ  of the {red and blue} laser beams is: 
 

( ) ( ) 5 2    4.2442 10 2.3562 10 0.010 Joules  10 mJoulesred red
EM EMU t u t V −= ∗Δ = × ∗ × = =  

( ) ( ) 5 24.2442 10 2.3562 10 0.010 Joules  10 mJoulesblue blue
EM EMU t u t V −= ∗Δ = × ∗ × = =  

 

Now here is something quite interesting: Given that 
rms

2o oE E≡  for a monochromatic EM 
wave propagating in free space/the vacuum, with time-averaged EM energy density:   

( )
rms

2 22EM o o o ou t E Eε ε= =   3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

But:  ( ) ( )EMu t n t Eγ γ=  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

    ( )n tγ = photon number density (#/m3) in laser beam 

            E hf hcγ γ γλ= = = energy/photon (Joules) 

∴ ( )
rms

22 o oE n t Eγ γε =   

Or: 
( )

rms

2

2o
o

n t
E Eγ

γε
=   

 
n.b. This formula physically says that the number of {real} photons in the EM wave (each of 
photon energy Eγ ) is proportional to 2

oE  = the square of the macroscopic electric field amplitude! 

We can write this as:   ( )
rms

22 o on t E Eγ γε=   and note also that:  
( )

rms 2o
o

n t
E Eγ

γε
=   !!! 

Thus, we can now see that the {time-averaged} EM energy density:  
 

( ) ( ) ( )
rms

2, 2 ,EM o ou r t E r n r t Eγ γε= =
G G G

  with:  ( ),EM EMv
u r t d Uτ =∫

G
 

 
plays a role analogous to that of the probability density in quantum mechanics:  
 

( ) ( ) ( ) ( ) 2
, , | , ,r t r t r t r tψ ψ ψ= =
G G G GP     with:       ( ), 1

v
r t dτ =∫
GP  

 

Since:   ( ) ( ) ( )
rms

2, , 2EM o on r t u r t E E r Eγ γ γε= =
G G G

 and: ( ),
v

n r t d Nγ γτ = Δ∫
G

,  
 

Then:  ( ) ( ) ( ) ( ) ( ) 2
, , , | , ,r t n r t N r t r t r tγ γ γ γ γ γψ ψ ψ≡ Δ = =
G G G G GP  !!! 

Thus, we also see that the electric field ( ),E r t
G G  plays a role analogous to that of the probability 

density amplitude ( ),r tψ G  in quantum mechanics!!! 

This formula explicitly connects the amplitudes of the 
macroscopic and E B

G G
 fields (since o oB E c= ) with the 

microscopic constituents of the and BΕ
GG

 fields (i.e. the photons)!!! 
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The (real) photon number density in the laser beam is: ( )
( ) ( )N t N t

n t
V A c t
γ γ

γ
⊥

Δ Δ
= =

Δ Δ
  3

#
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Then:  ( )
rms

22 o oE A c t N t Eγ γε ⊥ Δ = Δ    or:  
( )

rms

2

2o
o

N t
E E

A c t
γ

γε ⊥

Δ
=

Δ
 

But: ( )
( )N t

R t
t
γ

γ

Δ
=

Δ
 =  the time averaged rate of photons in laser beam  (#/sec) 

   ∴ 
( )

rms

2 1
2o

o

R t
E E

A c
γ

γε ⊥

=   and      

( )
( ) ( )N t R t

t A At
γ γ

γ ⊥
⊥

Δ
= =

Δ
F  2

#
m -s

⎛ ⎞
⎜ ⎟
⎝ ⎠

= flux of photons in the laser beam 

 

   ∴  ( )
rms

2 1
2o

o

E t E
c γ γε

= F   and  ( ) ( ) ( )
rms

2 12 ,EM o ou t E t E n r t E
c γ γ γ γε= = =

GF  3

Joules
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, we see that the {real} photon flux: ( ) ( ),t c n r tγ γ=
GF   2

#
m -s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, the intensity {aka irradiance} of the laser beam is:  
 

( ) ( ) ( ) ( )
rms

22EM o oI S t c u t E t E c n t Eγ γ γ γε≡ = = = =
G

F    2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 
The {time-averaged} <longitudinal separation distance> between photons is defined as: 
 

( )
( )

c td t
N tγ

Δ
Δ ≡&   (m) 

 

For tΔ = 1 sec: ( )
8

9 9
16

3 10 m 7.85 10 m ~ 8 10 m 8 nm
3.773 10 '

redd t
sγ

− −×
Δ = = × ×

×& �   (1 nm = 10−9 m)  

 ( )
8

8 9
16

3 10 m 1.49 10 m ~ 15 10 m 15 nm
2.0123 10 '

blued t
sγ

− −×
Δ = = × ×

×& �  

 

Recall that: 750 nmred
γλ =    and 400 nmblue

γλ =  

Thus:  ( )d tγλ Δ &�  for either red or blue laser light. 
 
The {time-averaged} <transverse separation distance> between photons is defined as:  
 

( )
( )

A
d t

N tγ

⊥
⊥Δ ≡  
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Thus: 

( )

2

20
16

0.001
2 2.35 10 m

3.773 10
redd t

π
−

⊥

⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = = ×

×
 

  ( )

2

20
16

0.001
2 4.40 10 m

2.0123 10
blued t

π
−

⊥

⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = = ×

×
 


