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LECTURE NOTES 8.5

Reflection and Refraction of EM Waves at the
Boundary of a Dispersive/Absorbing/Conducting Medium

Consider a situation where monochromatic plane EM waves are incident on a boundary
between two media {located at z = 0 and lying in the x-y plane} as shown in the figure below.
For the sake of simplicity, the 1 medium gz < 0) is linear/homogeneous/isotropic, non-absorbing
/ non-dispersive and non-magnetic. The 2" medium is also linear/homogeneous/isotropic and
non-magnetic, but is absorbing/dispersive and conductive.

Because of the above-stated EM properties of the two media, in medium (1) the incident and

reflected wavevectors k. and k., are purely real, whereas in medium (2), the transmitted

wavevector is complex: Ky, (@) = Kyas (@) + 1%, (@) . Note that the monochromatic plane
EM wave(s) have the same frequency o, independent of the medium they are propagating in.

THE ELECTRIC FIELDS:

. = . _ = . i(lzinc-F—a)t)
Medium (1) E,.(T.1)=E, ()e =
(non-absorbing) | = i} k.., K| < real, constant wavevectors
E

Medium?2) |2 . = (ks (@)r-at) | [ = ~ . complex
(absorbing /) {E"ans (Ft)=E (r)e( ) Kirans (@) = Kians (@) + 1Ko (@) = wavevector
conducting)

On the boundary/interface (lying in the x-y plane at z = 0) we must have (for arbitrary times, t):

i(lzinc.r_a)t) _ ei(ktrans(a’)J*wt) _ i(lztrans(w)'r_”ﬁ) ~Ryrans (@)°F

ei(lch-r—wt) i( K -0t e o

=e and: |e

= kinc.F = kreﬂ o M: lzinc.r = R~.trans (a)).r - (k

(Cl)) + i’z:trans (a)))'r = |(trans (a))'F + i’E:trans (CO)'F
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On the interface/boundary lying in the x-y plane at z = 0:

n. b amc’ arefl and Ht

are defined with respect
to the +Z unit normal of
the interface/boundary.

rans

The 1% equation: |k, .+F =K, *F | gives usual Law of Reflection:

K, SiNG,.. =K.qrsing,

refl refl

but: |k, =®/v, =k, = ®/v,| because both the incident and reflected waves are in the same
non-dispersive/non-absorbent medium {medium (1)}.

= |0 =6,

refl

= sing,. =siné

refl

The 2™ equation: |K;,. o = Ky (@)*F :(Izm( ©)+ 1K s (@ ))F = Ky (@ )oF + 17 s () |,
after equating real and imaginary parts, gives:

Re( )1 Koo =Ky (@)F| and [IM( ): 0=7 . (@)F

= In general, k. (@ ) and &

trans

() are not parallel to each other!!

trans

i.e. In general, K, (@) and &, (@) will point in different directions!! Why/How???

Physically, the requirement that «,,, ( )-F =0 on the interface/boundary {lying in the x-y

I1+2),

trans

plane at z = 0} means that &, (@)= Im(kms( )) must be L to the boundary (i.e.

since the position vector ¥ {pointing from the origin J (0,0, O)to an arbitrary point
(x,y,z=0)on the boundary} lies in the x-y plane.

Inside Absorbing/Conducting Medium (2) (i.e. z > 0):

then: E,,.(z,t)=E

k (F)e (|£trans of— Wt) E~’ (r)e—;("ansze (ktrans of— (ut)

Because k

trans wans T irans » Otrans '

Otrans

Thus, we see that:

Kyans = IM (kmmS ) defines planes (|| to the boundary/interface) of constant electric field amplitude in medium (2).
Kians = IM (ktrans ) is the unit normal to the planes of constant electric field amplitude in medium (2).
Furthermore:

Kions = Re(ktrans) defines planes of constant phase in medium (2)

A~

k

trans

= Re(ktrans ) is the unit normal to the planes of constant phase in medium (2)

{n.b. in general, planes of constant phase could be in any direction, depending on the material!}

See the following figure for a explicit diagram of exactly what is occurring in this physics problem:
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Figure 5.5. Real and imaginary parts of the wave vector in an absorbing medium
for the case of oblique incidence of light at the boundary.

On the interface/boundary {lying in the x-y plane at z = 0}, at an arbitrary point(x, y,Z= O):

— — nb.g . 6

| » Bq and 6,
Re( ) : k 'r = ktrans (0))'? means: kinchin ginc = ktrans (w) rSin etrans i '

trans

Inc

are defined with respect

or: k sin@. =k w)sin é. to the +Z unit normal of
inc ¢ trans ( ) trans the interface/boundary.

Because the wave vector k.

trans

(o) is complex, we do not have a simple relation between the
wavenumber K, (a)) and the {angular} frequency w in the dispersive, conducting medium (2),
.. Kyans (@) # @/v, as we did for the incident and reflected wavevectors k. = @/Vv, =k, = /v,
associated with their respective EM waves propagating in the non-dispersive, non-conducting,
non-magnetic medium (1).

refl

In medium (1), the index of refraction n, is purely real and independent of frequency
(i.e. medium (1) is non-dispersive), thus the {real} relation v, = c/n, is valid in medium (1),
whereas in the dispersive, conductive medium (2), the {frequency-dependent!} complex wavenumber
k, (@)and index of refraction fi, (w)are related to each other by i, (@) = (c/w)k, (@), thus the index

of refraction in medium (2) is complex and frequency-dependent i, (@) =n, (®)+in, (), and thus

the speed of propagation in medium (2) v, (a)) = c/ﬁ2 (a)) is also complex.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 3
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Note that we can also determine the relationship between complex wave vector IZZ (a)) and

complex index of refraction, f, (a)) of the absorbing/dispersive, non-magnetic, conducting

me

in medium (2), which can be written (e.g. for complex E

magnetic medium (2), noting that: Vliransglves |ktrans(a)) and: OF

dium (2) from (either of) the wave equation(s) associated with the tranmitted E and B -fields
) as:

trans

%}
|

~ ) B > . -
VZEtranS (F t) - 2 1 a transz(r,t) = n2 (2(0) a Etransz(rvt)
Vv, (a)) ot c ot

For plane harmonic (i.e. monochromatic) EM waves propagating in absorbing/dispersing non-
/8t gives: —iw

trans

Thus, the characteristic equation associated with the above differential equation is:

3 = fi; T i, (o)) :
Iktrans ( ) k trans ( ) 20(2 ) (_Ia))(la)) = _ktfans ( ) = _[#] a)2 or: ktfans ( ) = (%] n22 (a))
But: k, = (%) = vacuum wavenumber = i—” where: A, =—

2
Koo (@) = (%j f; () =05 (w)k?| where: |k, z(%) = purely real quantity.

If we explicitly write out the real and imaginary parts of ktrans (@) = Kyans (@) + &y (@)

associated with the above |ktram( )e |ktrans( ) term and the real and imaginary parts of

fi, (@) =n,(w)+in, () associated with the above f; () term:

(lztrans + i’2‘trans ).( iztrans + i’ztrans) = (nz + ”72 )(nz + ”72 ) ko2
k. + 2ik,

=2iKyrans Kirans €08 Grans

(lztrans - ’z‘trans Ktrans) ( 2II’]2772 7, ) k2

_ 2
=Kirans

- (ktians trans ) +i (ZktransKtransCOS etrans ) |:(n =1, ) +i (2n772 )} ko2

trans trans trans

:ktrans

Equating the real and imaginary parts of the LHS and RHS of the above equation, we see that:

(ktfans( w)- Ktzrans(a))):(nzz(a))—n:'(a)))kf and: [Kyans (@) Kiyans (@) €08 Gy = N, (@) 77, (@) K

4
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Thus, fOr Kyas (@) = Kyas (@) + i

trans

(w) and fi,(w)=n,(w)+in, (») we have the complex relations:

1) |(Keu (@) = Kiaps (@) = (15 (@) — 75 () )kZ| with vacuum wavenumber k, Ei_ﬁ :%

(]

2.) {Kigans (@) Kipans (@) €0S 6,0 =1, (@), (@) kZ | and vacuum wavelength 4, =c/f, o=2xf

We also have the relation:

3.) |Kine SiNGye = Kyyans (@)8IN G| Where: [k, = (%) n =k,n

— Mrans

Inserting relation 3.) into relations 1.) and 2.) above, after some algebra these relations yield the
following relation:

2 2

nZ(w)—n?(w)+2in 72
kmw)cosem+ixtrans<w>=nlkoJ( A 2(”)’7*“’))_9%:nlkoJM i 6
1 1

{n.b. if medium (2) is L/H/I non-conductive/non-magnetic/non-dispersive medium (i.e. like medium (1)), then

Kiyans =11, =0 and it i easy to show that this relation then reduces to: K;., SN 6. = Ky s SiN Gans = (@) }
- A A2 nZ (@)-n: (w)+2in, (e @
Let us define: |/ (o) = n(0) _ |7 (2(0) =\/( :(0)=m. () S (@) () < complex!
nl nl nl
Then: Kigans (@) COS Oy + Kiyas (@) = NK, \/J}lf‘z (@)-sin® 6,

We define the Law of Complex Refraction {for this particular boundary/interface situation} as:

nl Sin einc = ﬁz (a))Sin étrans (a))

where: 6, (@) =complex angle: |G, (@) = O (@) +10,, (@)

m. Htrans (a)) = Re(etrans (a))) m. ®trans (a)) = Im (étrans (0)))

Physically, 6,,., (@)= Re(@

trans

(a))) has the usual physical meaning (except that it is now

frequency-dependent), whereas ©,,, (@) = Im(6’

trans

(a))) has no simple/easy physical meaning.

The Law of Complex Refraction can be rewritten as:

inc

0 \ni(0) sing,,()

(o) i, (@) ﬁzz(a)) siné

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
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Then: |47 %(@)Sin? G (@) =5in* 6| = |17 (@)(1-€05" b, () ) =5iN° 6,
=5{(1=C0S” Gy (@)) =8IN? Oy 172 ()] = €03 Gy (@) = \/1 sin” 6.,/ /17 ())
But:
Kirans () COS B s + iKypas (@) = MK \/ W (w)-sin G, ; a))\/l sin® @, /17 (a)))
But: |cos Htrans = \/1—(sin - / /1”2 ) {from above}
K () 008 Oy + Ky () = 1k, 17 (0)\[L= (SN By /172 () = Mk 1 (0) 008 Gy ()
ie ktrans ( )COS etrans Ktrans (a)) = nlko}[ ( )COS etrans ( )
Solve for /" (@):
}!;‘(a)) — ktrans ( )COS etrans + IKtrans (CO) — nZ (CU) — ﬁz (a)) — ktrans ( )COS etrans + IKtrans (a))
n, k CcoSs Gtrans ( ) n, k Cos Htrans ( )
The {complex} E and B fields involved at the interface are:
—InCident Wwave. EN)inc (F,t) = E’zomc (F)e (kmc " “’t) éinc (F’t) = i ﬁinc X Einc (th) n.b. this form of
- @ B - takes care of
Reflected wave:  |E, (7,t)=E,_ (r)e!™" By (F 1) = 2K,y x E,, (F,t)| L_CSverytingtt
w
. N R = - (ﬁlrans e a)’[) = R 1= = -
Transmitted wave: |E,, (F,t)=E, (F)e Birans (T11) == Kiyans X Eypans (T 1)
w
1/~ fod ) fod
= g( ktrans E trans ( )+ trans E trans ( ))

The boundary conditions at the interface {lying in the x-y plane at z = 0} are:

=0 on the interface/boundary)

= 0 on the interface/boundary)

BC 1) (normal D continuous):  |&E =&E,| (04
BC 2) (tangential E continuous): |E/=E!
BC 3) (normal B continuous): B =B;
BC 4) (tangential H continuous): L B| _t Bl (K.,
H H,
= |Bl =B} if | = g, = s,

(medium (1) and medium (2) both non-magnetic)

6
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On the interface/boundary at z = 0 (for any arbitrary space-point, e.g. (x, y, z) = (0, 0, 0) and time t):

TE Polarization Case:

BC2) |[E, +E, =E, k, =w/c =27/, |4, =¢/ f
BC 4) éo— cos Hinc + B COS erefl - B COS Htrans kinc = nlko ' I(refl = nlko and Hinc = erefl
= klnc Eo cos 9 + krefl Eo cos erefl (ktrans Eotrans cos etrans Ktrans Eomalns )
= _nlko ( E )COS 9 (ktrans cos Htrans + IKtrans) EoTrans
= +n k Cos 9 ( Orefl ) =+ ( ktrans C0s etrans trans) Eotrans
or: (Eo- _ Eo ) — ktrans Cos Htrans + IK‘trans Eo
inc refl nlko cos Hmc 'trans
= = = = = ktrans cos etrans + IKtrans = =
butfromBC?2) |E, =E, +E, | .- (EO —E, ): (Eo +E, )
trans inc refl inc refl nlko COS ginc inc refl
~ ¢ cosf,. _ +i A
Skipping the details of the algebra, but using: |1 (@) =—" ()€OS G + Ky () =2 (@)
nK, €0S G, o0 (@) n,

It can be shown that:

Orefl

TE Polarization:

E

Oinc

TE

086, — N (
~c0sb,, + 4 (w)c

Similarly, it can also be shown that:

=

Orefl

(@)

cos g, +cos 0

trans

TM Polarization:

/(

Oinc

™

(@)

cosd,. + cosd

trans

Reflectance / Reflection Coefficient:

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Using the above ratios for TE and TM polarization plus realistic/detailed/full-blown 1, (a))

expression for metal, reflection coefficient/reflectance vs angle of incidence for TE and TM
polarized EM waves (in visible light/optical region of EM spectrum) is shown below for a typical
air-metal interface:

TE

™

1
i

[

!
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|

I
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Figure 5.6. Reflectance as a function of angle of incidence for a typical metal.

B, = PRINCIPAL ANGLE ofF INC|DENCE Fof. T PotARLZATION

For TM polarization, a metal has no Brewster angle where R(6,)=0, but instead has a dip
(i.e. minima) where &, (for a lossless dielectric) used to be. The angular location of this minima

/ dip for TM polarization is known as the principal angle of incidence, 4,.

At normal incidence 6, =6, = 6,,,, =0, both TE and TM polarization give the same ratio:

(i] 1= (o)
E, "o 1+ (o)

Thus the reflectance of the metal/conductor at normal incidence, 6, =0 is:

1

~ 2 - )
— o ~ 2
R(@inc _ 0) _ ~O,ef| _ 1 //]~ (a)) Where ﬂﬁ(a)) = n2 (a)) _ n2 (2(0)
o |, o I (@) n, n’
If (for simplicity) medium 1) is the vacuum, then: n, =1.0~n,,
2
1— 2
Then: [R(6,, =0)= (2-n, (w))z +77, (@)
(1+n,(0)) +7; ()
2
: : : : (1-n, (@)
For lossless/dispersionless dielectrics 7, () =0, then: |R(6,, =0) = ;
(1+n,(w))

8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources Il Fall Semester, 2011  Lect. Notes 8.5 Prof. Steven Errede

For metals, the extinction coefficient ¢, (@)= 27, (@) is large, e.g. in the visible light range.

= R(6,, =0) — unity (=85-95%) for many metals in visible light range.
2
In the low frequency region, we have shown that: n(e)=~n (@)= /2% where: o, = f:ie
&, 4

8¢,

2
Then:|R,, (6, =0) :1_H ~1- < known as the Hagen-Rubens formula

frequency

O¢

{Works well for metals in the far-infrared portion of the EM spectrum — experimentally verified}

The high reflectivity of metals at optical and higher frequencies is caused by (essentially) the
same physics as that for a tenuous plasma!

The complex total electric permittivity for an absorptive/dispersive conducting medium is:

bound

e o o
~ _z ~ _ 1 N _
gTot (C()) gbound (a)) + ‘9free (C()) go + [(%m: J; |:C()12j _ C()2 _ |}/JCU:| (602 N i}/oa))

bound n bound

foc = oscillator strength of j™ bound resonance, with z f> =1
j=1

w,; = \/wjj —(nfez/Sgom:) = {angular} frequency of j" resonance of bound valence electrons.

y; = /kej / m, = “natural” {angular} frequency of j™ resonance of bound valence electrons.

m, = electron mass in medium (= m, for electron e.g. in vacuum!)

y; = width/damping constant of j™ resonance of bound valence electrons.

nY =# density (#/m>) of bound atomic electrons in the valence bands.

7, = width/damping constant of “free”/conduction electrons’ resonance at @, =0 rad/sec
w, =+/n; €% /e,m; =plasma frequency associated with “free”/conduction electrons

n, = #density (#/m3) of “free”/conduction electrons in the metal.

At high frequency, @ > y, the total complex permittivity of the metal/conductor takes the
approximate form:

2
~ ~ ~ ~ [0
gTOI (a)) = gbound (0)) + gfree (a)) ~ gbound (0)) - {;‘0 (;PJ fOf w > 70

For even higher frequencies, but @ < @, , but also where @ > w,; of {all of} the bound/valence
band resonances in the metal, the complex electric permittivity is given approximately by:

2
~ a,
G (@) =&, (1—(—1 J for o> y,, @> w,; of valence band resonances, but » < @, .
[

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
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Visible light penetrates only a very short distance &, (@, ) =1/x (@, )= ¢/, into the metal
and is almost entirely reflected.

When the frequency of the incident EM wave is increased still further, into the UV and x-ray
region then @ > @, and the metal suddenly becomes transparent — the transmittance T increases

from zero and the reflectance R=1-T therefore decreases.

A Simplified Model of EM Wave Propagation in the Earth’s lonosphere and Magnetosphere

Propagation of EM waves in the earth’s ionosphere is very similar to that in a tenuous plasma,
however, the earth’s weak DC magnetic dipole field:

—

B....|* 0.3 Gauss =0.3x10™* Tesla =30xTesla at the earth’s surface

earth

significantly changes the nature of EM wave propagation in the earth’s ionosphere, and thus
cannot be neglected in the theory formalism.

Consider a tenuous electronic (i.e. e -only) plasma of uniform number density with a strong,
static and uniform magnetic field B = B, with monochromatic plane EM waves propagating in

the direction parallel to B=B,_ ||+Z.

If the {complex} displacement amplitude F of the electronic motion is small and
damping/collisions are neglected, then the approximate equation of motion is given by the
following inhomogeneous 2" order differential equation:

m,T (F.t)—eB, T (,t) = —eE (F)e

Note that we can safely neglect the influence of the magnetic Lorentz force term —ev x B acting

B., | <|B,.

on the electrons associated with the {complex} B -field of the EM wave, as long as

We specifically/deliberately consider here circularly polarized monochromatic plane EM waves
propagating in the +Z direction (|| B= E§o) , Which in complex notation can be succinctly written as:
— LCP

Ii(r,t) =(§ J;ri &,)E(T,t)| where the polarization vectors are e.9. &=X and: &,=§

—RCP
If the monochromatic plane EM wave’s polarization vectors are: €= X and &,=y and:

B =B,Z, then we see that: B L & (=X) and also that: B L &,(=Y).

The magnetic Lorentz force term —eB, x T (F,t) = —eB, (Zx ?(f,t)) can then only have

components in the x-y plane - i.e. it can only have components along the X—y or €, — &, axes.

10 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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A steady-state solution to the above 2" order inhomogeneous differential equation for the
electron’s {complex} displacement amplitude T, (F)at the space point F is:

LN = B e [R(R)=E (M) =SB (e

where @, =eB,/m, = electron precession frequency spiraling around the magnetic field lines
and the F sign depends on the handedness of the circular polarization {TBD, momentarily}.

We can understand this relation better in the rest frame of electrons precessing with frequency
w, about the direction of B = B,Z (= direction of propagation of the EM wave) — the static B-

field is eliminated — it is replaced by a rotating electric field of effective frequency (au—r a)B) :
where again the ¥ sign depends on the handedness of the circular polarization.

The {complex} harmonic oscillation of each electron’s displacement ?e(f,t) = ﬁ( )e““’t

r’
er,(F)e ™,

also constitutes a {complex} oscillating electric dipole moment f)(F,t) —er, (r.1)
and thus results in a corresponding {complex} macroscopic electric polarization P(F,t)

(= electric dipole moment/unit volume) f’(F,t) = nef)(F,t) , where n, =electron # density

and corresponding {complex} relation I:’(F,t) =& Xe (a)) E(F,t) and thus has a corresponding
{real!} macroscopic electric permittivity &(w)=¢, (1+ 7, (®)).

For circularly-polarized monochromatic plane EM waves propagating parallel to B =B 7,
the macroscopic electric permittivity is:

2 2
& (w)=¢, (l—LJ where: |w; E[ ks J and: |@g = =,
o(oF wy) &,M,

where the upper sign (=) in the denominator is for a LCP EM wave, the lower sign (+) in the
denominator is for a RCP EM wave.

For circularly-polarized monochromatic plane EM waves propagating anti-parallel to B = B,Z,
the macroscopic electric permittivity is:

where the upper sign (+) in the denominator is for a LCP EM wave, the lower sign (-) in the
denominator is for a RCP EM wave.

= LCP and RCP monochromatic plane EM waves propagate differently in a tenuous electronic
plasma, depending on whether the EM wave propagation direction is || to (or anti-||) to B .

= The earth’s ionosphere is bi-refringent !!!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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If the direction of EM wave propagation not perfectly || to (or anti-||) to B, then one simply
replaces w, — w, cos® in the above formulae, where ® =opening angle between propagation

wavevector k and B, i.e. keB =k+B,Z2=kB, (IZ-?) =kB, cos©
= A tenuous electronic plasma is also anisotropic !!!

A typical maximum number density of free electrons in the tenuous electronic plasma of the
earth’s ionosphere is n, ~10' —10" electrons/m®, which corresponds to a plasma frequency of

w, =+/ne*/e,m, =6x10°—6x10" (radians/sec).

= The precession frequency of electrons in this plasma, in the earth’s magnetic field is:

wg =(eB,/m,)=5.3x10° (radians/sec) for B, =B,,,, =30 uTesla.
— _ — . a)z
k||B: & kanti-||B: ¢ (0)=¢,|1-————
(o o)
| [3)
20 4 | @7;:0'5
. I
10 2= 4‘
|
5 1 e/_%__/k
|
$ I & . i ; ! ‘
eley k exley 1: 2@
| E_ 5*4;'
-5 -1 : B
|
-10 -2 :
|
-15 -3 E
I
20 . }

Figure 7.10 Dielectric constants as functions of frequency for model of the ionosphere
(tenuous electronic plasma in a static, uniform magnetic induction). e-(w) apply to thel
right and left circularly polarized waves propagating parallel to the magnetic field. g is
the gyration frequency; w, is the plasma frequency. The two sets of curves correspond

to w/wg = 2.0, 0.5.

Note that circularly polarized EM waves with &* (@) <0 cannot propagate in plasma because
they are exponentially attenuated.

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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= An incident monochromatic plane EM wave with circular polarization such that &* (a)) <0

in the tenuous electronic plasma of the earth’s ionosphere will be totally reflected, the other
circular polarization state (with &* (a)) > 0) will be partially transmitted/partially reflected.

= A linearly-polarized monochromatic plane EM wave incident on the tenuous electronic
plasma of the earth’s ionosphere will have a reflected wave that is elliptically polarized with
its major axis rotated away from the direction of the polarization of incident wave.

The earth’s ionosphere has several layers of plasma with electron densities characteristic of
that/each layer, which can also vary in time and space, e.g. depending on the solar wind / solar
storms, as well as earth’s own weather (thunderstorms, etc.) as well as geological stresses in
earth’s crust — fault lines/earth quakes and volcanic activity....

The number density of free electrons in each ionosphere layer has a maximum at a certain
height — inferred from studying reflected pulses of varying frequency, sent vertically upwards
from the ground.

A short EM wave pulse of frequency @, sent upwards from the ground actually enters the

bottom of the ionospheric layer, because the number density of electrons is small there and also
because the slope dn, /dh is shallow. However, when the electron number density n, reaches a

critical value for the incident, upward-going EM wave, i.e. @, = w, =+/n.e*/e,m, , the EM wave
is reflected back, as shown in the figure below:

1
g |
|

nolhy) === =———————

|

i :
imp(hl} =@ Figure 711 Electron density as a
i function of height in a layer of the
h

1 h—=  ionosphere (schematic).
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The behavior of &~ (a)) at low frequencies is responsible for the magnetospheric propagation
phenomenon known as “whistlers”. As ® -0, & (w) — oo (see graph on page 12) because:

2
g(a))zgo[ Do j for @ —0

O

Propagation in the tenuous electronic plasma of the earth’s ionosphere occurs {because

¢ (w)>0} but the wavenumber k = (&j /ﬁ corresponds to a highly dispersive medium!

c )\ o,
Energy transport is governed by the group velocity, here: |v, (@) =2v, (») = 2c a)Bzw
Wp

= Pulses of EM waves (e.g. created in/during a lightning discharge) have frequency
components that propagate in the earth’s ionosphere at different speeds — higher @ — higher
propagation speeds, lower @ — lower propagation speeds.
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Spectral Analysis of a Whistler - Frequency vs. Time Plot:
P ST S Mo—— 1 (00 (1 ot

If interested in reading more about
“whistlers”:

L e o See e.g. R. A. Helliwell, “Whistlers
19204282 o = SRy S Su=s & Related lonospheric

2 : -~ 3 : Phenomena”, Stanford University
Press, Stanford, CA (1965).

Google “whistlers” & “sferics” —
there are many websites where you
can hear recordings of them!

i
=
1200tz |
'

640 Hz l'_
® 13 sec
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Finally, we consider the complex index of refraction fi(w)=n(w)+in () or equivalently,
the complex wave number, k (@) =k (@)+ix (w) of pure water (H,0): k(@)= (%} ()
The top graph in the figure below shows n( f )vs.f , the bottom graph shows the absorption
coefficient, o = 2x = 2[%)77 vs.f,2 and E, (eV ). Note that both plots are log-log plots!!!
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Figure 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid
water as a function of linear frequency. Also shown as abscissas are an energy scale
(arrows) and a wavelength scale (vertical lines). The visible region of the frequency
spectrum is indicated by the vertical dashed lines. The absorption coefficient for
seawater is indicated by the dashed diagonal line at the left. Note that the scales are
logarithmic in both directions.
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Note the following aspects of the above plots for pure H,O:

* Atlow frequencies n(f)=9 (n®(f)=z(f)/s, =K, (f)=8111) arises from partial
orientation of the permanent electric dipole moment p of the H,O molecule (Langevin
equation) — the partial orientation of py, ., is due to finite-temperature thermal energy
density fluctuations....

e The n( f) vs. f curve falls smoothly through the infrared region — 3 some “glitches” in
n(f) and 7 ( f) due to molecular vibrational excitations/resonances in infrared region!!

e Jmore resonances in the UV region — due to excitations in the oxygen atom

e The absorption coefficient « is very small at low frequencies, but starts to rise steeply at
f =10°Hz. At f =10"Hz(~ far infrared), o ~10°m™ = &, =100xm in HO!!!

= In the microwave region, 3 strong absorption by H,O — can use for microwave ovens!!!

= Strong absorption by H,O limited the trend of RADAR { During WWI1} of going to
shorter and shorter wavelengths, to achieve better spatial resolution . . .

e Inthe infrared region, the absorption coefficient for H,O is very large, due to vibrational
resonances of the H,O molecule, o =10*m™.

e Inthe visible light region, there are no resonances of the H,O molecule, so the absorption
coefficient « drops by ~ 7-8 orders of magnitude {!!'} Thus in the visible light region
H,O/water is transparent/invisible.

e However, getting into the UV region, 3 oxygen atom resonances (due to inner L, K-shell
electrons), thus « rises again dramatically, even higher, & =10°m™ in the UV region.

= Jan absorption window in the visible light region: 4—8x10"Hz - not very wide!!!

red light  blue/violet light
Ay =750nm Ay, =375nm

= The H,0O absorption window is of fundamental importance to the evolution of life on earth
Life started off in the water/ocean, aquatic critter vision/sight developed in that
environment and specifically in the H,O absorption window, where significant amounts
of EM energy are present {thanks to the sun!} to be of use/benefit for survival...

= The co-incidence of the H,O absorption window and our (and other creature’s) ability
today to see in the visible light region of the EM spectrum is not a mere coincidence!

= Green grass/plants at the center of visible light absorption window! Because green =
reflected light, plants have absorption in both the red and blue/violet regions.

= On either side of the H,O absorption window there is not much/very little infrared or UV
radiation in water after ~ few 5.5 ~100um &.’ ~1um - because strongly attenuated !!!
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