2 Relativity and electromagnetism

2.1 The relativity principle

Physical phenomena are conventionally described relative to some frame of refer-
ence which allows us to define fundamental quantities such as position and time.
Of course, there are very many different ways of choosing a reference frame, but
it generally convenient to restrict our choice to the set of rigid inertial frames.
A classical rigid reference frame is the imagined extension of a rigid body. For
instance, the Earth determines a rigid frame throughout all space, consisting of
all those points which remain rigidly at rest relative to the Earth and each other.
We can associate an orthogonal Cartesian coordinate system .S with such a frame,
by choosing three mutually orthogonal planes within it and measuring x, y, and
z as distances from these planes. A time coordinate must also be defined in order
that the system can be used to specify events. A rigid frame, endowed with such
properties, is called a Cartesian frame. The description given above presupposes
that the underlying geometry of space is Euclidian, which is reasonable provided
that gravitational effects are negligible (we shall assume that this is the case).
An inertial frame is a Cartesian frame in which free particles move without ac-
celeration, in accordance with Newton’s first law of motion. There are an infinite
number of different inertial frames, each moving with some constant velocity with
respect to a given inertial frame.

The key to understanding special relativity is Einstein’s relativity principle,
which states that

All inertial frames are totally equivalent for the performance of all
physical experiments.

In other words, it is impossible to perform a physical experiment which differen-
tiates in any fundamental sense between different inertial frames. By definition,
Newton’s laws of motion take the same form in all inertial frames. Einstein gen-
eralized this result in his special theory of relativity by asserting that all laws of
physics take the same form in all inertial frames.



Consider a wave-like disturbance. In general, such a disturbance propagates
at a fixed velocity with respect to the medium in which the disturbance takes
place. For instance, sound waves (at S.T.P.) propagate at 343 meters per second
with respect to air. So, in the inertial frame in which air is stationary sound
waves appear to propagate at 343 meters per second. Sound waves appear to
propagate at a different velocity in some other inertial frame which is moving
with respect to the first frame. However, this does not violate the relativity
principle, since if the air were stationary in the second frame then sound waves
would appear to propagate at 343 meters per second in this frame as well. In other
words, exactly the same experiment (e.g., the determination of the speed of sound
relative to stationary air) performed in two different inertial frames of reference
yields exactly the same result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance which is self-regenerating and does not
require a medium through which to propagate. The most well known example of
such a disturbance is a light wave. Another example is a gravity wave. According
to electromagnetic theory the speed of propagation of a light wave through a
vacuum is
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where €y and pg are physical constants which can be evaluated by performing
two simple experiments which involve measuring the force of attraction between
two fixed changes and two fixed parallel current carrying wires. According to the
relativity principle these experiments must yield the same values for ¢y and ug in
all inertial frames. Thus, the speed of light must be the same in all inertial frames.
In fact, any disturbance which does not require a medium to propagate through
must appear to travel at the same velocity in all inertial frames, otherwise we
could differentiate inertial frames using the apparent propagation speed of the
disturbance, which would violate the relativity principle.

= 2.99729 x 10°® meters per second, (2.1)
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2.2 The Lorentz transform

Consider two Cartesian frames S(z,y,z,t) and S’(2',y’,2',t') in the standard
configuration in which S’ moves in the z-direction of S with uniform velocity v
and the corresponding axes of S and S’ remain parallel throughout the motion,



having coincided at ¢ = ¢/ = 0. It is assumed that the same units of distance
and time are adopted in both frames. Suppose that an event (e.g., the flashing
of a light-bulb, or the collision of two point particles) has coordinates (z, y, z, t)
relative to S and (2/, ¢/, 2/, t') relative to S’. The “common sense” relationship
between these two sets of coordinates is given by the Galilean transformation:

¢ = z-—ut, (2.2a)
y = v, (2.2b)
2 =z (2.2¢)
t = t (2.2d)

This transformation is tried and tested and provides a very accurate description
of our everyday experience. Nevertheless, it must be wrong! Consider a light wave
which propagates along the z-axis in S with velocity c. According to the Galilean
transformation the apparent speed of propagation in S’ is ¢ — v, which violates
the relativity principle. Can we construct a new transformation which makes the
velocity of light invariant between different inertial frames, in accordance with the
relativity principle, but reduces to the Galilean transformation at low velocities,
in accordance with our everyday experience?

Consider an event P and a neighbouring event () whose coordinates differ
from those of P by dz, dy, dz, dt in S and by dx’, dy’, dz’, dt’ in S’. Suppose
that at the event P a flash of light is emitted and that () is an event in which
some particle in space is illuminated by the flash. In accordance with the laws
of light-propagation, and the invariance of the velocity of light between different
inertial frames, an observer in S will find that

dz® + dy* + dz* — 2dt* =0 (2.3)
for dt > 0, and an observer in S’ will find that
dz'? +dy'? + d2'* — dt"”* =0 (2.4)

for dt’ > 0. Any event near P whose coordinates satisfy either (2.3) or (2.4) is
illuminated by the flash from P and therefore its coordinates must satisfy both



(2.3) and (2.4). Now, no matter what form the transformation between coordi-
nates in the two inertial frames takes, the transformation between differentials at
any fixed event P is linear and homogeneous. In other words, if

¥ = F(z,y,2,t), (2.5)

where F' is a general function, then
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It follows that

dz'? + dy'? + d2'* — 2dt’”? = adz®+bdy® + cdz? + ddt®> + gdz dt + hdy dt
+kdzdt +ldydz +mdzrdz +ndzdy, (2.7)

where a, b, ¢, etc. are functions of z, y, z, and . We know that the right-hand
side of the above expression vanishes for all real values of the differentials which
satisfy Eq. (2.3). It follows that the right-hand side is a multiple of the quadratic
in Eq. (2.3); i.e.,

dz® + dy® + dz* — 2dt* = K(dz'? + dy'* + dz'? — c2dt"?), (2.8)

where K is a function of z, y, z, and t. [We can prove this by substituting into
Eq. (2.7) the following obvious zeros of the quadratic in Eq. (2.3): (£+1,0,0,1),
(0,41,0,1), (0,0,%1,1), (0,1/v2,1/v/2,1), (1/4/2,0,1/v/2,1), (1//2,1/+/2,0,1):
and solving the resulting conditions on the coefficients.] Note that K at P is also
independent of the choice of standard coordinates in S and S’. Since the frames
are Euclidian, the values of dz? + dy? + dz? and dz'? + dy'? + dz'? relevant to P
and Q are independent of the choice of axes. Furthermore, the values of dt? and
dt'’? are independent of the choice of the origins of time. Thus, without affecting
the value of K at P we can choose coordinates such that P = (0,0,0,0) in both
S and S’. Since the orientations of the axes in S and S’ are, at present, arbitrary,
and since inertial frames are isotropic, the relation of S and S’ relative to each
other, to the event P, and to the locus of possible events () is now completely
symmetric. Thus, we can write

dz'? + dy'? + d2"* — ?dt’? = K (dz® + dy® + dz* — c*dt?), (2.9)



in addition to Eq. (2.8). It follows that K = +1. K = —1 can be dismissed
immediately, since the intervals dz?+dy?+dz? —c?dt? and dz'? +dy'?+dz'? —c2dt'?
must coincide exactly when there is no motion of S’ relative to S. Thus,

dz'? + dy'? + d2'* — Pdt’* = dx? + dy* + dz* — 2dt>. (2.10)

Equation (2.10) implies that the transformation equations between primed and
unprimed coordinates must be linear. The proof of this statement is postponed
until later.

The linearity of the transformation allows the coordinate axes in the two
frames to be orientated so as to give the standard configuration mentioned earlier.
Consider a fixed plane in S with the equation lz + my + nz +p = 0. In S’ this
becomes, say, l(a12' +b1y' +c12' +dit' +e1)+m(azz’+---)+n(azz’+--)+p =0,
which represents a moving plane unless ld; + mds + nds = 0. That is, unless the
normal vector to the plane (I, m,n) in S is perpendicular to the vector (di,d2, ds3).
All such planes intersect in lines which are fixed in both S and S’, and which
are parallel to the vector (dy,ds,ds) in S. These lines must correspond to the
direction of relative motion of the frames. By symmetry, two such frames which
are orthogonal in S must also be orthogonal in S’. This allows the choice of two
common coordinate planes.

Under a linear transformation the finite coordinate differences satisfy the same
transformation equations as the differentials. It follows from Eq. (2.10), assum-
ing that the events (0,0,0,0) coincide in both frames, that for any event with
coordinates (z,y, z,t) in S and (2’,y',2’,t") in S’ the following relation holds:

.’172 _|_y2 _|_22 . CQtQ — 213,2 +y12 +Z/2 . CQt,Q. (211)

By hypothesis, the coordinate planes y = 0 and 3’ = 0 coincide permanently.
Thus, y = 0 must imply y’ = 0, which suggests that

y' = Ay, (2.12)

where A is a constant. We can reverse the directions of the z- and z-axes in
S and S’, which has the effect of interchanging the roles of these frames. This
procedure does not affect Eq. (2.12), but by symmetry we also have

y = Ay’ (2.13)
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It is clear that A = 1. The negative sign can again be dismissed, since y = v’
when there is no motion between S and S’. The argument for z is similar. Thus,
we have

y = v, (2.14a)
2 = 2z, (2.14b)
as in the Galilean transformation.

Equations (2.11) and (2.14) yield

2 2t2

r? — 2t = 2'? — At (2.15)

Since, £’ = 0 must imply x = vt, we can write
' = B(z — vt), (2.16)

where B is a constant (possibly depending on v). It follows from the previous
two equations that
t' = Cz + Dt, (2.17)

where C and D are constants (possibly depending on v). Substituting Egs. (2.16)
and (2.17) into Eq. (2.15) and comparing the coefficients of z2, xt, and t?, we
obtain

1

B=D = :I:(l — U2/62)1/27 (218&)

—v/c?
C = . 2.18b
+(1 —v2/c2)1/2 ( )
We must choose the positive sign in order to ensure that 2’ — z as v/c — 0.
Thus, collecting our results, the transformation between coordinates in .S and S’

is given by

/ T — vt

T = (1 — /U2/C2)1/2 , (219&)

y =y, (2.19b)

7 =z, (2.19c¢)
_ 2

poo _tovele (2.194)

(1 _ ,02/62)1/2’
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This is the famous Lorentz transform. It ensures that the velocity of light is
invariant between different inertial frames, and also reduces to the more familiar
Galilean transform in the limit v/c < 1. We can solve Egs. (2.19) for z, y, z, and
t to obtain the tnverse Lorentz transform:

z’' + ot!
r = 2/ (2.20a)
y = v, (2.20b)
z = 2, (2.20c)
/ 172
N R (2.20d)

(1 _ ’02/62)1/2 )

Clearly, the inverse transform is equivalent to a Lorentz transform in which the
velocity of the moving frame is —v along the x-axis instead of +wv.

2.3 Transformation of velocities

Consider two frames S and S’ in the standard configuration. Let u be the velocity
of a particle in S. What is the particle velocity in S’? The components of the
velocity are

up = Z—?, (2.21a)

ug = Ccli—gz, (2.21Db)

uz = Z—i, (2.21c¢)
and, similarly, the components of u’ are

uy = C(ij—f:, (2.22a)

uy = Z—Z:, (2.22b)
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dz’
up = (2.22¢)
Now we can write Egs. (2.19) in the form dz’ = v(dz — vdt), dy’ = dy, dz’ = dz,
and dt' = vy(dt — vdz/c?), where

1
7= (1 _ '02/02)1/2

(2.23)

is the well known Lorentz factor. If we substitute these differentials into Egs. (2.22)
and make use of Egs. (2.21), we obtain the transformation formulae

/ U1 — v
= - 2.24
/ U2
= 2.24b
U2 7(]_—’(,[,1’0/02)’ ( )
uy = s (2.24c)

v(1 —uiv/e?)’

As in the transformation of coordinates, we can obtain the inverse transform by
interchanging primed and unprimed symbols and replacing +v with —v. Thus,

uj v

- L 2.25
“ 14 ujv/c?’ (2.25)
)
_ , 2.95b
R Ty (2.25b)
i
— . 2.25
e ) (2.25¢)

Equations (2.25) can be regarded as giving the resultant, u = (u1,u9,us),
of two velocities, v = (v,0,0) and ' = (u),uf,us), and are therefore usually
referred to as the relativistic velocity addition formulae. The following relation
between the magnitudes u = (u? + uo? + ug?)'/? and v’ = (u}> + ub” + uj”)"/?

of the velocities is easily demonstrated:

20,2 _ 2 12\(p2 _ 2
62_u2:C(C u'")(c* —v?)
(@ +ulv)?

(2.26)
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If v’ < ¢ and v < ¢ the right-hand side is positive, implying that u < ¢. In other
words, the resultant of two subluminal velocities is another subluminal velocity.
It is evident that a particle can never attain the velocity of light relative to a given
inertial frame, no matter how many subluminal velocity increments it is given.
It follows that no inertial frame can appear to propagate with a superluminal
velocity with respect to any other inertial frame (since we can track the origin of
a given inertial frame using a particle which remains at rest at the origin in that
frame).

According to Eq. (2.26), if v’ = ¢ then v = ¢ no matter what value v takes;
i.e., the velocity of light is invariant between different inertial frames. Note that
the Lorentz transform only allows one such invariant velocity (i.e., the velocity
¢ which appears in Egs. (2.19)). Einstein’s relativity principle tells us that any
disturbance which propagates through a vacuum must appear to propagate at the
same velocity in all inertial frames. It is now evident that all such disturbances
must propagate at the velocity c. It follows immediately that all electromagnetic
waves must propagate through the vacuum with this velocity, irrespective of
their wavelength. In other words, it is impossible for there to be any dispersion
of electromagnetic waves propagating through a vacuum. Furthermore, gravity
waves must also propagate with the velocity c¢. It is convenient to label ¢ as
“the velocity of light” since electromagnetic radiation is, by far, the most well
known and easily measurable type of disturbance which can propagate through
a vacuum.

The Lorentz transformation implies that not only the velocities of material
particles but the velocities of propagation of all physical effects are limited by c in
deterministic physics. Consider a general process by which an event P causes an
event () at a velocity U > ¢ in some frame S. In other words, information about
the event P appears to propagate to the event () with a superluminal velocity.
Let us choose coordinates such that these two events occur on the z-axis with
(finite) time and distance separations At > 0 and Az > 0, respectively. The time
separation in some other inertial frame S’ is given by (see Eq. (2.19d))

At = y(At —vAz/c?) = yAt(1 —vU/c?). (2.27)

Thus, for sufficiently large v < ¢ we obtain At’ < 0; i.e., there exist inertial frames
in which cause and effect appear to be reversed. Of course, this is impossible in
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deterministic physics. It follows, therefore, that information can never appear to
propagate with a superluminal velocity in any inertial frame, otherwise causality
would be violated.

2.4 Tensors

It is now convenient to briefly review the mathematics of tensors. Tensors are
of primary importance in connection with coordinate transforms. They serve to
isolate intrinsic geometric and physical properties from those that merely depend
on coordinates.

A tensor of rank r in an n-dimensional space possesses n” components which
are, in general, functions of position in that space. A tensor of rank zero has
one component A and is called a scalar. A tensor of rank one has n components
(Ay,As,---,A,) and is called a vector. A tensor of rank two has n? components,
which can be exhibited in matrix format. Unfortunately, there is no convenient
way of exhibiting a higher rank tensor. Consequently, tensors are usually repre-
sented by a typical component; e.g., we talk of the tensor A;j; (rank 3) or the
tensor A;;x; (rank 4), etc. The suffixes i, j, k, - - - are always understood to range
from 1 to n.

For reasons which will become apparent later on, we shall represent tensor
components using both superscripts and subscripts. Thus, a typical tensor might
look like A (rank 2), or B! (rank 2), etc. It is convenient to adopt the Einstein
summation convention. Namely, if any suffix appears twice in a given term, once
as a subscript and once as a superscript, a summation over that suffix (from 1 to
n) is implied.

To distinguish between various coordinate systems we shall use primed and

multiply primed suffixes. A first system of coordinates (z!,z2,---,z") can then

be denoted by z*, a second system (:1:1',:1:2', . -,:1:”') by z¢, etc. Similarly the
general components of a tensor in various coordinate systems are distinguished
by their suffixes. Thus, the components of some third rank tensor are denoted

A;jk in the z! system, by Ajrjrg in the zt system, etc.

When making a coordinate transformation from one set of coordinates z* to

15



another :ci/, it is assumed that the transformation in non-singular. In other words,
the equations which express the 7% in terms of the z! can be inverted to express
the z' in terms of the z¢. It is also assumed that the functions specifying a
transformation are differentiable. It is convenient to write

(9:1:"' -/
= 4. (2.280)
oz’ :

Note that
p::/ pz:/ = pz:// y (229&)
pipl = 6 (2.29b)

by the chain rule, where 5; (the Kronecker delta ) equals 1 or 0 when ¢ = j or
t # 7, respectively.

The formal definition of a tensor is as follows:
(1) An entity having components A;;..., in the z* system and Ajrjr..r in the ot
system is said to behave as a covariant tensor under the transformation z¢ — z*
if _
Aifjl...kl = Aij---kp;:/pg'/ ---pz,. (230)
(i) Similarly, A¥* is said to behave as a contravariant tensor under z* — ' if

)

AR _ Aij---kpzj’p;' --'pﬁl- (2.31)

(iii) Finally, A} is said to behave as a mized tensor (contravariant in ¢ - - - j and
covariant in k- - - 1) under z* — ¥ if

Ay = AL DE D) DRl (2.32)

When an entity is described as a tensor it is generally understood that it
behaves as a tensor under all non-singular differentiable transformations of the
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relevant coordinates. An entity which only behaves as a tensor under a cer-
tain subgroup of non-singular differentiable coordinate transformations is called
a qualified tensor, because its name is conventionally qualified by an adjective
recalling the subgroup in question. For instance, an entity which only exhibits
tensor behaviour under Lorentz transformations is called a Lorentz tensor or,
more commonly, a 4-tensor.

When applied to a tensor of rank zero (a scalar), the above definitions imply
that A* = A. Thus, a scalar is a function of position only, and is independent of
the coordinate system. A scalar is often termed an invariant.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system,
then they are equal in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one) is provided
by the differentials of the coordinates, dx*, since

-/
-/ 8:(;’

dz* = o dz' = da'p? . (2.33)

The coordinates themselves do not behave as tensors under all coordinate trans-
formations. However, since they transform like their differentials under linear
homogeneous coordinate transformations, they do behave as tensors under such
transformations.

The simplest example of a covariant vector is provided by the gradient of a

function of position ¢ = ¢(z!,---,2™). Since, if we write
0¢
P = - 2.34
5= (2.34)
then we have 9 96 o'
x* ,
1 - p— - - pu— ’L 'L., . 2.

¢’L 8:13" axz 8337'1 ¢ pz ( 35)

An important example of a mixed second rank tensor is provided by the
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Kronecker delta introduced previously. Since,
8% D} ply = D% Pl = 6. (2.36)

Tensors of the same type can be added or subtracted to form new tensors.
Thus, if A;; and B;; are tensors, then C;; = A;; £ B;; is a tensor of the same
type. Note that the sum of tensors at different points in space is not a tensor if
the p’s are position dependent. However, under linear coordinate transformations
the p’s are constant, so the sum of tensors at different points behaves as a tensor
under this particular type of coordinate transformation.

If A% and B are temsors, then C,Zm = AY By, is a tensor of the type
indicated by the suffixes. The process illustrated by this example is called outer
multiplication of tensors.

Tensors can also be combined by inner multiplication, which implies at least
one dummy suffix link. Thus, CY; = A" B;; and Cy, = A" B, are tensors of the
type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher rank.
Thus, if A}, is a tensor then C}, = A%, and C} = A, ; are tensors of the type
indicated by the suffixes. The most important type of contraction occurs when
no free suffixes remain: the result is a scalar. Thus, A} is a scalar provided that

Al is a tensor.

Although we cannot usefully divide tensors, one by another, an entity like
C% in the equation A7 = C¥ B;, where A and B; are tensors, can be formally
regarded as the quotient of A* and B;. This gives the name to a particularly
useful rule for recognizing tensors, the quotient rule. This rule states that if a set
of components, when combined by a given type of multiplication with all tensors
of a given type yields a tensor, then the set is itself a tensor. In other words, if
the product A = C¥ Bj transforms like a tensor for all tensors B; then it follows
that C is a tensor.

Let .
A o
a;ml = Ay . (2.37)

-I,m
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Then if A::Jl is a tensor, differentiation of the general tensor transformation
(2.32) yields

Arll;rl......]ll,ml —_ AZ:.-?l,mp: ,..p‘;_ p”:/ ...p;, pml —|—P1 —I—P2 + "” (2.38)
where Pi, P,, etc., are terms involving derivatives of the p’s. Clearly, Z”l is
not a tensor under a general coordinate transformation. However, under a linear
coordinate transformation (p’s constant) A}, 7, , behaves as a tensor of the type
indicated by the suffixes, since the P;, Ps, etc., all vanish. Similarly, all higher
partial derivatives,

Geeej
i _0ALTY
etc., also behave as tensors under linear transformations. Each partial differenti-
ation has the effect of adding a new covariant suffix.

(2.39)

So far the space to which the coordinates z! refer has been without structure.
We can impose a structure on it by defining the distance between all pairs of
neighbouring points by means of a metric

ds® = g;jdz‘dx? (2.40)

where the g;; are functions of position. We can assume that g;; = g;; without
loss of generality. The above metric is analogous to, but more general than, the
metric of Euclidian n-space, ds? = (dz!)? + (dz?)? + - - - + (dz™)2. A space whose
structure is determined by a metric of the type (2.40) is called Riemannian. Since
ds? is invariant, it follows from a simple extension of the quotient rule that g;;
must be a tensor. It is called the metric tensor.

The elements of the inverse of the matrix g;; are denoted by g". These
elements are uniquely defined by the equations

9" g1 = ot (2.41)

It is easily seen that the g%/ constitute the elements of a contravariant tensor. This
tensor is said to be conjugate to g;;. The conjugate metric tensor is symmetric
(i.e., g” = g7*) just like the metric tensor itself.
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The tensors g;; and g* allow us to introduce the important operations of
ratsing and lowering suffizes. These operations consist of forming inner products
of a given tensor with g;; or g”/. For example, given a contravariant vector A*,
we define its covariant components A; by the equation

Ai = gijAj. (242)

Conversgly, given a covariant vector B;, we can define its contravariant compo-
nents B* by the equations _ N

B* = ¢" B;. (2.43)
More generally, we can raise or lower any or all of the free suffixes of any given
tensor. Thus, if A;; is a tensor we define A*; by the equation

Aij = gipApj. (244)

Note that once the operations of raising and lowering suffixes has been defined
the order of raised suffixes relative to lowered suffixes becomes significant.

By analogy with Euclidian space we define the squared magnitude (A)? of a
vector A* with respect to the metric g;;dz’dz? by the equation

A vector A® termed a null vector if (A)?2 = 0. Two vectors A* and B' are said to
be orthogonal if their inner product vanishes, i.e., if

gijA"B? = A;B" = A'B; = 0. (2.46)

Finally, let us consider differentiation with respect to distance s. The tangent
vector dz'/ds to a given curve in space is a contravariant tensor, since

dzt  0z' dz*  dxt ;
ds Ozt ds  ds Pi - (2.47)

The derivative d(A*7}...;)/ds of some tensor with respect to distance is not, in
general, a tensor, since

d(Ai'"jk...l) - dx™
RE Tkel) g, ST 2.4
ds Rebm = (2.48)

20



and, as we have seen, the first factor on the right is not generally a tensor.
However, under linear transformations it behaves as a tensor, so under linear
transformations the derivative of a tensor with respect to distance behaves as a
tensor of the same type.

2.5 Transformations

In this course we shall only concern ourselves with coordinate transformations
which transform an inertial frame into another inertial frame. This limits us to
four classes of transformations: displacements of the coordinate axes, rotations
of the coordinate axes, parity reversals (i.e., ,y,z — —x, —y, —z), and Lorentz
transformations. All of these transformations possess group properties. As a re-
minder, the requirements for an abstract multiplicative group are:

(i) The product of two elements is an element of the group.

(i) The associative law (ab)c = a(bc) holds.

(#4i) There is a unit element e satisfying ae = ea = a for all a.

(iv) Each element a possesses an inverse a~! such that a=la = aa™! =,

Consider Lorentz transformations (in the standard configuration). It is easily
demonstrated that the resultant of two successive Lorentz transformations, with
velocities v1 and vq, respectively, is equivalent to a Lorentz transformation with
velocity v = (v1+v2)/(1+v1v2/c?). Lorentz transformations obviously satisfy the
associative law. The unit element of the transformation group is just a Lorentz
transformation with v = 0. Finally, the inverse of a Lorentz transformation with
velocity v is a transformation with velocity —v. We can use similar arguments
to show that translations, rotations, parity inversions, and general Lorentz trans-
formations (i.e., transformations between frames which are not in the standard
configuration) also possess group properties.

If we think carefully, we can see that the group properties of the above men-
tioned transformations are a direct consequence of the relativity principle. Let
us again consider Lorentz transformations. Suppose that we have three iner-
tial frames S, S’, and S§”. According to (i), if we can get from S to S’ by a
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Lorentz transformation, and from S’ to S” by a second Lorentz transformation,
then it must always be possible to go directly from S to S” by means of a third
Lorentz transformation. Suppose, for the sake of argument, that we can find
three frames for which this is not the case. In this situation, the frame S’ could
be distinguished from the frame S because it is possible to make a direct Lorentz
transformation from S to the former frame, but not to the latter. This violates
the relativity principle and, therefore, this situation can never arise. We can use
a similar argument to demonstrate that a Lorentz transformation must possess
an inverse. The associative law and the requirement that a unit element exists
are trivially satisfied.

2.6 The physical significance of tensors

One of the central tenets of physics is that experiments should be repeatable.
In other words, if somebody performs a physical experiment today and obtains
a certain result, then somebody else performing the same experiment next week
ought to obtain the same result, within the experimental errors. Presumably, in
performing these hypothetical experiments both experimentalists find it neces-
sary to set up a coordinate frame. Usually, these two frames do not coincide.
After all, the experiments are, in general, performed in different places and at
different times. Also, the two experimentalists are likely to orientate their coor-
dinate axes differently. For instance, one experimentalist might align his z-axis
with the North Star, whilst the other might align the same axis to point towards
Mecca. Nevertheless, we still expect both experiments to yield the same result.
What exactly do we mean by this statement? We do not mean that both ex-
perimentalists will obtain the same numbers when they measure something. For
instance, the numbers used to denote the position of a point (i.e., the coordinates
of the point) are, in general, different in different coordinate frames. What we do
expect is that any physically significant interrelation between physical quantities
(i.e., position, velocity, etc.) which appears to hold in the coordinate system of
the first experimentalist will also appear to hold in the coordinate system of the
second experimentalist. We usually refer to such interrelationships as “laws of
physics.” So, what we are really saying is that the laws of physics do not depend
on our choice of coordinate system. In particular, if a law of physics is true in one
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coordinate system then it is automatically true in every other coordinate system,
subject to the proviso that both coordinate systems are inertial.

Recall that tensors are geometric objects which possess the property that if
a certain interrelationship holds between various tensors in one particular co-
ordinate system, then the same interrelationship holds in any other coordinate
system which is related to the first system by a certain class of transformations.
It follows that the laws of physics are expressible as interrelationships between
tensors. In special relativity the laws of physics are only required to exhibit
tensor behaviour under transformations between different inertial frames; i.e.,
translations, rotations, and Lorentz transformations. This set of transformations
forms a group known as the Poincaré group. Parity inversion is a special type of
transformation, and will be dealt with later on. In general relativity the laws of
physics are required to exhibit tensor behaviour under all non-singular coordinate
transformations.

Consider Newton'’s first law of motion. These take the form of three differential
equations,

d’z
d?y
d?z
m ﬁ = fza (249C)

in a general inertial frame. However, we can also write them as a single vector
differential equation,

m-—— = f. (2.50)

What is the advantage of the vector notation? Many people would say that it is
just a convenient form of shorthand. However, there is another, far more impor-
tant, advantage. Before we can accept Newton’s first law of physics as a proper
law of physics we need to convince ourselves that it is coordinate independent;
i.e., that it also holds in coordinate frames which are related to the original frame
via a general translation or rotation of the coordinate axes. It is indeed possible
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to prove this, but the demonstration is rather tedious because a general rotation
is a rather complicated transformation. A vector is a geometric object (in fact,
it is a rank one tensor in three dimensional Euclidean space) whose three compo-
nents transform under a general translation and rotation of the coordinate axes
in an analogous manner to the difference in coordinates between two fixed points
in space. This ensures that any vector equation which is true in one coordinate
frame is also true in any other coordinate frame which is related to the original
frame via a general rotation or translation of the axes. Thus, the main advantage
of Eq. (2.50) is that it makes the coordinate independent nature of Newton’s
first law of motion manifestly obvious. Of course, we cannot deny that Newton’s
first law also looks simpler when it is expressed in terms of vectors. This is one
example of a rather general feature of physical laws. Namely, when the laws of
physics are expressed in a manner which makes their invariance under various
transformation groups manifest then they tend to take a particularly simple form.
In general, the larger the group of transformations the simpler the form taken by
the laws of physics. One of the major goals of modern physics is to find the largest
possible group of transformations under which the laws of physics are invariant,
and then prove that when expressed in a manner which makes this invariance
manifest these laws reduce to a single unifying principle.

We already know how to write the laws of physics in terms of vectors and vec-
tor fields. This means that these laws are automatically invariant under transla-
tions and rotations. However, according to the relativity principle, there is a third
class of transformations under which the laws of physics must also be invariant;
namely, Lorentz transformations. There are two ways in which we could verify
that the laws of physics are Lorentz invariant. The direct method is extremely
tedious, since Lorentz transformations are rather complicated. An alternative
method is to write the laws of physics in terms of geometric objects which trans-
form as tensors under translations, rotations, and Lorentz transformations. This
method has the advantage that it makes the Lorentz invariant nature of the laws
of physics obvious. We also expect that when the laws of physics are written in
manifestly Lorentz invariant form then they will look even simpler than they do
when written just in terms of vectors. The laws of electromagnetism provide a
particularly good illustration of this effect.
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2.7 Space-time

In special relativity we are only allowed to use inertial frames to assign coordi-
nates to events. There are many different types of inertial frames. However, it
is convenient to adhere to those with standard coordinates. That is, spatial co-
ordinates which are right-handed rectilinear Cartesians based on a standard unit
of length and time-scales based on a standard unit of time. We shall continue to
assume that we are employing standard coordinates. However, from now on we
shall make no assumptions, unless specifically stated, about the relative configu-
ration of the two sets of spatial axes and the origins of time when dealing with
two inertial frames. Thus, the most general transformation between two inertial
frames consists of a Lorentz transformation in the standard configuration plus a
translation (this includes a translation in time) and a rotation of the coordinate
axes. The resulting transformation is called a general Lorentz transformation,
as opposed to a Lorentz transformation in the standard configuration which will
henceforth be termed a standard Lorentz transformation.

In Section 2.2 we proved quite generally that corresponding differentials in
two inertial frames S and S’ satisfy the relation

12

dz? + dy® + d2® — Pdt®* = da'” + dy'” + d2'” — Pdt (2.51)

Thus, we expect this relation to remain invariant under a general Lorentz trans-
formation. Since such a transformation is linear it follows that

(x2 — 1) + (Y2 —v1)® + (22 — 21)* = E(ta — t1)* =
(2 — 1) + (yy —v1)% + (25 — 21)° — (85 — 11)?, (2.52)
where (21,y1,21,t1) and (z2,y2, 22,t2) are the coordinates of any two events in

S and the primed symbols denote the corresponding coordinates in S’. It is
convenient to write

—dz? — dy? — d2* + 2dt* = ds?, (2.53)

and
—(332 — 331)2 — (y2 - y1)2 — (Zg — 21)2 + 62(t2 — t1)2 = 82. (254)

The differential ds, or the finite number s, defined by these equations is called the
interval between the corresponding events. Equations (2.51) and (2.52) express
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the fact that the interval between two events is invariant, in the sense that it has
the same value in all inertial frames. In other words, the interval between two
events is invariant under a general Lorentz transformation.

Let us consider entities defined in terms of four variables

=z 2?=y, 3=z 2'=ct, (2.55)
and which transform as tensors (see Eqs. (2.30)—(2.32) ) under a general Lorentz
transformation. From now on such entities will be referred to as /-tensors.

Tensor analysis cannot proceed very far without the introduction of a non-
singular tensor g;;, the so-called fundamental tensor, which is used to define
the operations of raising and lowering suffixes (see Eqgs. (2.42)-(2.44)). The
fundamental tensor is usually introduced using a metric ds? = g;; dz'dz?, where
ds? is a differential invariant. We have already come across such an invariant,
namely

ds? = —dz?—dy?® — dz? + 2dt?
= —(de")? — (da?)? — (d2?)? + (da®)?
= g dztdz”, (2.56)

where p, v run from 1 to 4. Note that the use of Greek suffixes is conventional
in 4-tensor theory. Roman suffixes are reserved for tensors in three dimensional
Euclidian space, so-called 3-tensors. The 4-tensor g,, has the components g1 =
922 = g33 = —1,944 = 1, and g,, = 0 when p # v, in all permissible coordinate
frames. From now on g,,, as defined above, is adopted as the fundamental
tensor for 4-tensors. g,, can be thought of as the metric tensor of the “space”
whose points are the events (z!,22 23, 2%). This “space” is usually referred to
as space-time, for obvious reasons. Note that space-time cannot be regarded as a
straightforward generalization of Euclidian 3-space to four dimensions, with time
as the fourth dimension. The distribution of signs in the metric ensures that the
time coordinate z* is not on the same footing as the three space coordinates.
Thus, space-time has a non-isotropic nature which is quite unlike Euclidian space
with its positive definite metric. According to the relativity principle, all physical
laws are expressible as interrelationships between 4-tensors in space-time.
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A tensor of rank one is called a 4-vector. We shall also have occasion to use
ordinary vectors in three dimensional Euclidian space. Such vectors are called
3-vectors and are conventionally represented by boldface symbols. We shall use
the Latin suffixes ¢, 7, k, etc. to denote the components of a 3-vector; these suffixes
are understood to range from 1 to 3. Thus, u = u® = dz'/dt denotes a velocity
vector. For 3-vectors we shall use the notation u* = u; interchangeably; i.e., the
level of the suffix has no physical significance.

When tensor transformations from one frame to another actually have to be
computed, we shall usually find it possible to choose coordinates in the standard
configuration, so that the standard Lorentz transform applies. Under it, any con-
travariant 4-vector T* transforms according to the same scheme as the difference
in coordinates =5 — ' between two points in space-time. It follows that

TV = ~y(T'=8TY, (2.57a)
T = T2 (2.57h)
T8 = T3, (2.57¢)
T = ~y(T*=8T", 2.57d)

(
where = v/c. Higher rank 4-tensors transform according to the rules (2.30)-
(2.32). The transformation coefficients take the form

(v 0 0 —B
: 0 1 0 0
7
P = o 01 0 (2.58a)
\ _'YB 0 0 i
(v 0 0 8
0 1.0 0
mo_
Py = 0 0 1 o0 (2.58b)
L8 0 0 «

Often the first three components of a 4-vector coincide with the components of
a 3-vector. For example, the 2!, 22, 23 in R* = (x!, 22, 23, %) are the components

of r, the position 3-vector of the point at which the event occurs. In such cases
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we adopt the notation exemplified by R* = (v, ct). The covariant form of such a
vector is simply R, = (—7,ct). The squared magnitude of the vector is (R)? =
R, R* = —r? 4+ c*t%. The inner product g,, RFQ" = R,Q" of R* with a similar
vector Q" = (q, k) is given by R, Q" = —r-q + ct k. The vectors R* and Q* are

said to be orthogonal if R,Q" = 0.

Since a general Lorentz transformation is a linear transformation, the partial
derivative of a 4-tensor is also a 4-tensor;

pAve
oo = A (2.59)

Clearly, a general 4-tensor acquires an extra covariant index after partial differ-
entiation with respect to the contravariant coordinate z*. It is helpful to define
a covariant derivative operator

0 10
= _— i 2.
0= g0 = (Vi) (260
where
0,A" = A" ,. (2.61)
There is a corresponding contravariant derivative operator
0 10
oH=—=|(-V,—— 2.62
oz, ( v, c (975) ’ (262)
where
OHAY = gHhmA”? . (2.63)
The 4-divergence of a 4-vector A* = (A, A°) is the invariant
10A°
o*A, =0,A" =V-A+ —aa—t. (2.64)
c

The four dimensional Laplacian operator, or d’Alembertian, is equivalent to the
invariant contraction
1 92

0= Bua“ = —V2 + Cjﬁ

(2.65)
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Recall that we still need to prove (from Section 2.2) that the invariance of the
differential metric,

ds? = da'” + dy'® + d2'° — 2dt'* = dz® + dy?® + d2* — 2dt?, (2.66)

between two general inertial frames implies that the coordinate transformation
between such frames is necessarily linear. To put it another way, we need to
demonstrate that a transformation which transforms a metric g,, dz#dz” with
constant coefficients into a metric g,/ dz* dz¥" with constant coefficients must
be linear. Now

Guv = Gu'v' pZ pzlj . (267)
Differentiating with respect to 7 we get
Iu'v' pZoPZ + Gu'v pZ Pue =0, (2.68)
where , /
/ apﬁ aZZE'u /

o= T = pt 2,
Pue = gpe = 9agrdze ~ Pon (2:69)

etc. Interchanging the indices u and o yields

G PGPl + Gurr P2 DY, = 0. (2.70)
Interchanging the indices v and o gives

Ju'v' pg’pllj;.t + Gu'v pZ,pZ:r =0, (2.71)

where the indices ' and v’ have been interchanged in the first term. It follows
from Eqgs. (2.68), (2.70), and (2.71) that

Gurv DDl = 0. (2.72)
Multiplication by pl, yields
Gurv? Dlso DY, Py = Grot Do = 0. (273)
Finally, multiplication by ¢ o’ gives
Guorg” " Phy =Py = 0. (2.74)

This proves that the coefficients pl’;' are constants and, hence, that the transfor-
mation is linear.
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2.8 Proper time

It is often helpful to write the invariant differential interval ds? in the form
ds® = c*dr?. (2.75)
The quantity dr is called the proper time. It follows that

_da:2 + dy? + dz?

dr? = 5
c

+ dt*. (2.76)

Consider a series of events on the world-line of some material particle. If the
particle has speed u then

dz? + dy? + dz? u?
2 _ 3,2 )
implying that
dt

It is clear that dt = d7 in the particle’s rest frame. Thus, d7 corresponds to the
time difference between two neighbouring events on the particle’s world-line, as
measured by a clock attached to the particle (hence, the name “proper time”).
According to Eq. (2.78), the particle’s clock appears to run slow, by a factor vy(u),
in an inertial frame in which the particle is moving with velocity u. This is the
celebrated time dilation effect.

Let us consider how a small 4-dimensional volume element in space-time trans-
forms under a general Lorentz transformation. We have

d*s’ = J d*z, (2.79)

where o
ozt %, 2% zh)
O(zt, 22, z3, )

is the Jacobian of the transformation; :.e., the determinant of the transformation
matrix p/; . A general Lorentz transformation is made up of a standard Lorentz

J =

(2.80)
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transformation plus a displacement and a rotation. Thus, the transformation ma-
trix is the product of that for a standard Lorentz transformation, a translation,
and a rotation. It follows that the Jacobian of a general Lorentz transformation
is the product of that for a standard Lorentz transformation, a translation, and a
rotation. It is well known that the Jacobian of the latter two transformations is
unity, since they are both volume preserving transformations which do not affect
time. Likewise, it is easily seen (e.g., by taking the determinant of the transfor-
mation matrix (2.58a) ) that the Jacobian of a standard Lorentz transformation
is also unity. It follows that

d*s’ = d*z (2.81)

for a general Lorentz transformation. In other words, a general Lorentz transfor-
mation preserves the volume of space-time. Since time is dilated by a factor v in
a moving frame, the volume of space-time can only be preserved if the volume of
ordinary 3-space is reduced by the same factor. As is well known, this is achieved
by length contraction along the direction of motion by a factor ~.

2.9 4-velocity and 4-acceleration

We have seen that the quantity dz* /ds transforms as a 4-vector under a general
Lorentz transformation (see Eq. (2.47) ). Since ds o d7 it follows that

dx*
po_
v dr

(2.82)
also transforms as a 4-vector. This quantity is known as the j-velocity. Likewise,

the quantity

d2gt dUP
A= = (2.83)

is a 4-vector, and is called the 4-acceleration.

For events along the world-line of a particle traveling with 3-velocity u we

© dx* dx* dt
2
U* = = = fy(u)(u, c), (2.84)
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where use has been made of Eq. (2.78). This gives the relationship between a par-
ticle’s 3-velocity and its 4-velocity. The relationship between the 3-acceleration
and the 4-acceleration is less straightforward. We have

Ar =2 22 2 —~ (2L udl) 9.
(s vdt(vu,’w) v u+va,c (2.85)

_ dU* dUH d dy dy
dr dt dt )’

where a = du/dt is the 3-acceleration. In the rest frame of the particle U* = (0, ¢)
and A* = (a,0). It follows that

U, A" =0 (2.86)

(note that U, A* is an invariant quantity). In other words, the 4-acceleration of
a particle is always orthogonal to its 4-velocity.

2.10 The current density 4-vector

Let us now consider the laws of electromagnetism. We wish to demonstrate that
these laws are compatible with the relativity principle. In order to achieve this it
is necessary for us to make an assumption about the transformation properties of
electric charge. The assumption which we shall make, which is well substantiated
experimentally, is that charge, unlike mass, is invariant. That is, the charge car-
ried by a given particle has the same measure in all inertial frames. In particular,
the charge carried by a particle does not vary with the particle’s velocity.

Let us suppose, following Lorentz, that all charge is made up of elementary
particles, each carrying the invariant amount e. Suppose that n is the number
density of such charges at some given point and time, moving with velocity wu,
as observed in a frame S. Let ny be the number density of charges in the frame
So in which the charges are momentarily at rest. As is well known, a volume of
measure V in S has measure y(u) V in Sy (because of length contraction). Since
observers in both frames must agree on how many particles are contained in the
volume, and, hence, on how much charge it contains, it follows that n = v(u) no.
If p = en and py = eng are the charge densities in S and Sy, respectively, then

p = (uw)po- (2.87)

32



The quantity pg is called the proper density and is obviously Lorentz invariant.

Suppose that x* are the coordinates of the moving charge in S. The current
density 4-vector is constructed as follows:

dz#
M pu _— = IJ,. 2.
JH = po 77 poU (2.88)
Thus,
J* = poy(u)(u,c) = (3, pc), (2.89)

where 3 = pu is the current density 3-vector. Clearly, charge density and current
density transform as the time-like and space-like components of the same 4-vector.

Consider the invariant 4-divergence of J*:

. 0
0" = V-5 + 8—5. (2.90)
We know that one of the caveats of Maxwell’s equations is the charge conservation
law

dp :
5 V=0 (2.91)

It is clear that this expression can be rewritten in the manifestly Lorentz invariant
form

o J" = 0. (2.92)
This equation tells us that there are no net sources or sinks of electric charge in
nature; i.e., electric charge is neither created nor destroyed.

2.11 The potential 4-vector

There are many ways of writing the laws of electromagnetism. However, the most
obviously Lorentz invariant way is to write them in terms of the vector and scalar
potentials. When written in this fashion, Maxwell’s equations reduce to

1 02 p

<—V2 + C_Qﬁ) ¢ - g, (2.93&)
1 0?2 .

(v 224 — i 23
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where ¢ is the scalar potential and A is the vector potential. Note that the differ-
ential operator appearing in these equations is the Lorentz invariant d’Alembertian,
defined in Eq. (2.65). The above pair of equations can be rewritten in the form

ng = P (2.94a)
C€g

OcA = L. (2.94b)
C€g

Maxwell’s equations can be written in Lorentz invariant form provided that the
entity
P+ = (cA, ¢) (2.95)

transforms as a contravariant 4-vector. This entity is known as the potential
4-vector. Tt follows from Egs. (2.89), (2.94), and (2.95) that

JH
O¢t = —. (2.96)
C€p
Thus, the field equations which govern classical electromagnetism can all be

summed up in a single 4-vector equation.

2.12 Gauge invariance

The electric and magnetic fields are obtained from the vector and scalar potentials
according to the prescription

A
E = —v¢—%g, (2.97a)

B = VAA. (2.97b)

These fields are important because they determine the electromagnetic forces
exerted on charged particles. Note that the above prescription does not uniquely
determine the two potentials. It is possible to make the following transformation,
known as a gauge transformation, which leaves the fields unaltered:

¢ — ¢+%%, (2.98a)
A — A-V, (2.98Db)
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where ¢(r,t) is a general scalar field. It is necessary to adopt some form of con-
vention, generally known as a gauge condition, to fully specify the two potentials.
In fact, there is only one gauge condition which is consistent with Egs. (2.93).
This is the Lorentz gauge condition,

1 0¢
— -A=0. 2.99
c2 Ot +V ( )
Note that this condition can be written in the Lorentz invariant form

0,9" = 0. (2.100)

This implies that if the Lorentz gauge holds in one particular inertial frame then
it automatically holds in all other inertial frames. A general gauge transformation
can be written

OF — OF + c M. (2.101)

Note that even after the Lorentz gauge has been adopted the potentials are un-
determined to a gauge transformation using a scalar field ¢» which satisfies the
sourceless wave equation

Oy = 0. (2.102)

However, if we adopt “sensible” boundary conditions in both space and time then
the only solution to the above equation is ) = 0.

2.13 Solution of the inhomogeneous wave equation

Equations (2.93) all have the general form

D¢(T7t) = g(’l",t). (2103)
Can we find a wunique solution to the above equation? Let us assume that the
source function g(7,t) can be expressed as a Fourier integral
(o ]

g(r,t) = / go(r) et dw. (2.104)

— 00
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The inverse transform is

9w (7) = /00 g(r,t) et dt. (2.105)

:% o

Similarly, we may write the general potential ¢ (r,t) as a Fourier integral

Y(r,t) = /_00 Yo (r) e ¥ duw, (2.106)

with the corresponding inverse
1 > iwt
Yo (r) = o P(r,t)e'“" dt. (2.107)
™ — 00

Fourier transformation of Eq. (2.103) yields
(V2 + k*)Yw = —gu, (2.108)

where k = w/c.

The above equation, which reduces to Poisson’s equation in the limit £ — 0,
and is called Helmholtz’s equation, is linear, so we may attempt a Green’s function
method of solution. Let us try to find a function G, (r,r’) such that

(V2 + k) Gy (r,7") = =6(r — 7). (2.109)

The general solution is then
o (r) = / Gu (1) Go(r,7') dV". (2.110)

The “sensible” spatial boundary conditions which we impose are that G, (r,r’) —

0 as |r — 7| = co. In other words, the field goes to zero a long way from the

source. Since the system we are solving is spherically symmetric about the point

r’ it is plausible that the Green’s function itself is spherically symmetric. It

follows that | 2(RC,)
w 2

R dR2 + k*G, = —46(R), (2.111)
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where R =r — v’ and R = |R|. The most general solution to the above equation
in the region R > 0 is!

AeikR + Be—ikR

Gu(R) = 47 R

(2.112)

We know that in the limit & — 0 the Green’s function for Helmholtz’s equation
must tend towards that for Poisson’s equation, which is

Gu(R) = (2.113)

1
4T R’
This is only the case if A+ B = 1.

Reconstructing (7, t) from Eqgs. (2.106), (2.110), and (2.112), we obtain

/
b(r,t) = %//&;) AeTIWURIO 4 peiWHRIO] duay’. (2.114)
T

It follows from Eq. (2.104) that

A [g(r',t-R/c) .., B [g',t+R/c) .,
o(r,t) = E/ D vy E/ S gy 2y

Now, the real space Green’s function for the inhomogeneous wave equation
(2.103) satisfies
OG(r,r";t,t")y =6(r — ") 6(t — ). (2.116)

Hence, the most general solution of this equation takes the form

b(r,t) = / / o(r' ) Glr,v's 4, ) dV'dt. (2.117)
Comparing Egs. (2.115) and (2.117) we obtain

G(r,r';t,t") = AGH) (r,r';t, ) + BGT) (r, 7', t), (2.118)

In principle, A = A(w) and B = B(w), with A + B = 1. However, later on we shall
demonstrate that B = 0, otherwise causality is violated. It follows that A = 1. Thus, it is
legitimate to assume, for the moment, that A and B are constants.
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where
St —[tF|r —r'|/c])

GE(p, r' t,¢) =
(v, ) A |r — /|

: (2.119)

and A+ B = 1.

The real space Green’s function specifies the response of the system to a point
source at position r’ which appears momentarily at time ¢’. According to the
retarded Green’s function G(*) the response consists of a spherical wave, centred
on 7', which propagates forward in time. In order for the wave to reach position
r at time ¢ it must have been emitted from the source at v’ at the retarded time
t, =t—|r —7'|/c. According to the advanced Green’s function G(~) the response
consists of a spherical wave, centred on r’, which propagates backward in time.
Clearly, the advanced potential is not consistent with our ideas about causality,
which demand that an effect can never precede its cause in time. Thus, the
Green’s function which is consistent with our experience is

o(t' — [t —[r—7'|/c])

G "tt’ :G(-|—) "tt’ —
(r?r7 bl ) (7-77-’ bl ) 47_(_|,r_r,|

(2.120)

We are able to find solutions of the inhomogeneous wave equation (2.103) which
propagate backward in time because this equation is time symmetric (i.e., it is
invariant under the transformation ¢t — —t).

In conclusion, the most general solution of the inhomogeneous wave equation
(2.103) which satisfies sensible boundary conditions at infinity and is consistent
with causality is

glr'st —|r —r'l/c) ..
= . 2.121
This expression is sometimes written
lg(r")] :
t) = d 2.122

where the rectangular bracket symbol [] denotes that the terms inside the bracket
are to be evaluated at the retarded time ¢t — |r — 7’| /c. Note, in particular, from
Eq. (2.122) that if there is no source (i.e., g(r,t) = 0) then there is no field (i.e.,
Y(r,t) = 0). But, is the above solution really unique? Unfortunately, there is a
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weak link in our derivation, between Egs. (2.110) and (2.111), where we assume
that the Green’s function for the Helmholtz equation subject to the boundary
condition G (r,r’) — 0 as |r — r’'| = oo is spherically symmetric. Let us try to
fix this problem.

With the benefit of hindsight, we can see that the Green’s function

ei kR

:47rR

Gu(R) (2.123)

corresponds to the retarded solution in real space and is, therefore, the correct
physical Green’s function. The Green’s function

e—ikR

47 R

G,(R) = (2.124)
corresponds to the advanced solution in real space and must, therefore, be re-
jected. We can select the retarded Green’s function by imposing the following
boundary condition at infinity

: oG .
This is called the Sommerfeld radiation condition; it basically ensures that sources

radiate waves instead of absorbing them. But, does this boundary condition

uniquely select the spherically symmetric Green’s function (2.123) as the solution
of
(V2 + k%G, (R,0,p) = —6(R)? (2.126)

Here, (R, 0, ) are spherical polar coordinates. If it does then we can be sure that
Eq. (2.122) represents the unique solution of the wave equation (2.103) which is
consistent with causality.

Let us suppose that there are two solutions of Eq. (2.126) which satisfy the
boundary condition (2.125) and revert to the unique Green’s function for Poisson’s
equation (2.113) in the limit R — 0. Let us call these solutions w; and wus, and
let us form the difference w = uq; — us. Consider a surface g which is a sphere
of arbitrarily small radius centred on the origin. Consider a second surface ¥
which is a sphere of arbitrarily large radius centred on the origin. Let V' denote
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the volume enclosed by these surfaces. The difference function w satisfies the
homogeneous Helmholtz equation,

(V2 4+ EHw = 0, (2.127)

throughout V. According to Green’s theorem

/(wV2 — w*V2w) dV = (/ /)( o (89:) s,  (2.128)
1% Yo

where 0/0n denotes a derivative normal to the surface in question. It is clear
from Eq. (2.127) that the volume integral is zero. It is also clear that the first
surface integral is zero, since both u; and us must revert to the Green’s function
for Poisson’s equation in the limit R — 0. Thus,

ow*™ L Ow
= 0. 2.12
/200 <w . an) dS =0 (2.129)

Equation (2.127) can be written

0?’(Rw) D(Rw)

2 —
9R? + 72 + k“ Rw =0, (2.130)
where D is the spherical harmonic operator
1 0 0 1 02
D = 0— —— . 2.131
5in 6 00 (Sm ae) T SinZ0 052 (2.131)

The most general solution of Eq. (2.130) takes the form (see Section 7)

w(R,0,¢) = i |Cim b (kR) + Dign h{*) (kR) | Yim (6, ). (2.132)

I,m=0

Here, the C},, and Dj,, are arbitrary coefficients, the Y}, are spherical harmonics,?

and
1,2 1,2
h () = / S e (2.133)

2J.D. Jackson, Classical Electrodynamics, (Wlley, 1962), p. 99
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where H!? are Hankel functions of the first and second kind.? It can be demon-
strated that?

2 (n,m)
Ly — ]2 ie—(nt1/2)n/2) L) 2.134
Hn(p) - e m:%;%” (—2i ,O)m’ ( 3 a)

2 i (n, m)
H2(0) = ]2 emilo—(n+1/2)m/2) DT (2.134b
n(p) P m:§2,m (_|_21p)m ( )

where
(4n? —1)(4n? — 9) - -- (4n? — {2m — 1}?)

22m m]
and (n,0) = 1. Note that the summations in Eqgs. (2.314) terminate after n+1/2
terms.

(n,m) = (2.135)

The large R behaviour of the hl(z) is clearly inconsistent with the Sommerfeld
radiation condition (2.125). It follows that all of the Dy, in Eq. (2.132) are zero.
The most general solution can now be expressed in the form

1kR o0

w(R,0,¢ (2.136)

where the f,, (0, ) are various weighted sums of the spherical harmonics. Substi-
tution of this solution into the differential equation (2.130) yields

21 kn n(n + 1) D
1kR
Z < R’n—+—1 Rn+2 Rn+2> fn = 0. (2137)

Replacing the index of summation n in the first term of the parentheses by n+ 1
we obtain

cikR i —2ik (n + 1) fny1 + [n(n + 1) + D] fy

o =0, (2.138)

n=0
3J.D. Jackson, Classical Electrodynamics, (Wiley, 1962), p. 104

4A. Sommerfeld, Partial differential equations in physics, (Academic Press, New York, 1964),
p- 117
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which gives us the recursion relation
2ik(n + 1) fpy1 = [n(n+ 1) + D]f,. (2.139)
It follows that if fo = 0 then all of the f,, are equal to zero.

Let us now consider the surface integral (2.129). Since we are interested in
the limit R — oo we can replace w by the first term of its expansion in (2.136),

SO
ow* ow
—w'—— | dS = -2ik 2dQ =0 2.140
/Eoo (w on 871) ' ,/|f0| ’ ( )
where df) is a unit of solid angle. It is clear that fy; = 0. This implies that
fi = fo2 = --- = 0 and, hence, that w = 0. Thus, there is only one solution of

Eq. (2.126) which is consistent with the Sommerfeld radiation condition, and this
is given by Eq. (2.123). We can now be sure that Eq. (2.122) is a unique solution of
Eq. (2.103) subject to the boundary condition (2.125). This boundary condition
basically says that infinity is an absorber of radiation but not an emitter, which
seems entirely reasonable.

2.14 Retarded potentials

Equations (2.94) have the same form as the inhomogeneous wave equation (2.103),
so we can immediately write the solutions to these equations as

s(rt) = 47360 / |£f’(_’"2}| v, (2.141a)
A(r,t) = Z—; |E?(_T2}|dv’. (2.141b)

Moreover, we can be sure that these solutions are unique, subject to the reason-
able proviso that infinity is an absorber of radiation but not an emitter. This
is a crucially important point. Whenever the above solutions are presented in
physics textbooks there is a tacit assumption that they are unique. After all, if
they were not unique why should we choose to study them instead of one of the
other possible solutions? The uniqueness of the above solutions has a physical
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interpretation. It is clear from Eqgs. (2.141) that in the absence of any charges
and currents there are no electromagnetic fields. In other words, if we observe
an electromagnetic field we can be certain that if we were to trace it backward
in time we would eventually discover that it was emitted by a charge or a cur-
rent. In proving that the solutions of Maxwell’s equations are unique, and then
finding a solution in which all waves are emitted by sources, we have effectively
ruled out the possibility that the vacuum can be “unstable” to the production of
electromagnetic waves without the need for any sources.

Equations (2.141) can be combined to form the solution of the 4-vector wave
equation (2.96),

1 JH
oF = / [/*] dV. (2.142)
4megc r
Here, the components of the 4-potential are evaluated at some event P in space-
time, r is the distance of the volume element dV from P, and the square brackets

indicate that the 4-current is to be evaluated at the retarded time; 7.e., at a time
r/c before P.

But, does the right-hand side of Eq. (2.142) really transform as a contravariant
4-vector? This is not a trivial question since volume integrals in 3-space are
not, in general, Lorentz invariant due to the length contraction effect. However,
the integral in Eq. (2.142) is not a straightforward volume integral because the
integrand is evaluated at the retarded time. In fact, the integral is best regarded
as an integral over events in space-time. The events which enter the integral
are those which intersect a spherical light wave launched from the event P and
evolved backwards in time. In other words, the events occur before the event P
and have zero interval with respect to P. It is clear that observers in all inertial
frames will, at least, agree on which events are to be included in the integral,
since both the interval between events and the absolute order in which events
occur are invariant under a general Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of dV/r
for each elementary contribution to the integral. Suppose that S and S’ are
two inertial frames in the standard configuration. Let unprimed and primed
symbols denote corresponding quantities in S and S’, respectively. Let us assign
coordinates (0,0,0,0) to P and (z,y, z,ct) to the retarded event @ for which r
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and dV are evaluated. Using the standard Lorentz transformation (2.19), the
fact that the interval between events P and () is zero, and the fact that both ¢
and t' are negative, we obtain
vE
r'=—ct' = —cy (t — 6_2) : (2.143)
where v is the relative velocity between frames S’ and S, v is the Lorentz factor,
and 7 = /22 + y2 + 22, etc. It follows that

t
r =y (_C_ T %) =ry (1 + Y cosH) , (2.144)
r cr c

where 6 is the angle (in 3-space) subtended between the line PQ and the z-axis.

We now know the transformation for . What about the transformation for
dV? We might be tempted to set dV’ = vdV, according to the usual length
contraction rule. However, this is wrong. The contraction by a factor v only
applies if the whole of the volume is measured at the same time, which is not the
case in the present problem. Now, the dimensions of dV along the y— and z—
axes are the same in both S and §’, according to Egs. (2.19). For the z-dimension
these equations give dz’ = y(dz — vdt). The extremities of dx are measured at
times differing by dt, where®

dt = _dr_ _de cos 6. (2.145)
¢ ¢
Thus,
- v
dz' = (1 + -, cos 0) v dx, (2.146)
giving
) v
v’ = (142 cos6) ydV. (2.147)
c

It follows from Egs. (2.144) and (2.147) that dV'/r’ = dV/r. This result will
clearly remain valid even when S and S’ are not in the standard configuration.

5Note that dr = dz cos @, despite the fact that £ = r cosf. This comes about because the
volume element dV is aligned along a radius vector.
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Thus, dV/r is an invariant and, therefore, [J#]dV/r is a contravariant 4-
vector. For linear transformations, such as a general Lorentz transformation, the
result of adding 4-tensors evaluated at different 4-points is itself a 4-tensor. It
follows that the right-hand side of Eq. (2.142) is a contravariant 4-vector. Thus,
this 4-vector equation can be properly regarded as the solution to the 4-vector
wave equation (2.96).

2.15 Tensors and pseudo-tensors

The totally antisymmetric fourth rank tensor is defined

+1 for o, 3,7,06 any even permutation of 1,2,3,4
B = 1 for a, 8,7,d any odd permutation of 1,2, 3,4
0 otherwise
(2.148)

The components of this tensor are invariant under a general Lorentz transforma-
tion, since
6 ! / ! 6/ ! ! 161 ! -l 16/
€10 ' pf ' pl = B || = BT (2.149)

where | pﬁl | denotes the determinant of the transformation matrix, or the Jacobian
of the transformation, which we have already established is unity for a general
Lorentz transformation. We can also define a totally antisymmetric third rank
tensor €% which stands in the same relation to 3-space as €*87° does to space-
time. It is easily demonstrated that the elements of €% are invariant under a
general translation or rotation of the coordinate axes. The totally antisymmetric
third rank tensor is used to define the cross product of two 3-vectors,

(@ Ab)' = €% a; by, (2.150)
and the curl of a 3-vector field,
94
i __ ijk k
(VAA) =¢ EE R (2.151)
The following two rules are often useful in deriving vector identities
ey = 83 6F — 6] ok, (2.152a)
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ke = 26F. (2.152b)

Up to now we have restricted ourselves to three basic types of coordinate trans-
formation; namely, translations, rotations, and standard Lorentz transformations.
An arbitrary combination of these three transformations constitutes a general
Lorentz transformation. Let us now extend our investigations to include a fourth
type of transformation known as a parity inversion; i.e., x,y,z, > —x, —Yy, —Z.
A reflection is a combination of a parity inversion and a rotation. As is eas-
ily demonstrated, the Jacobian of a parity inversion is —1, unlike a translation,
rotation, or standard Lorentz transformation, which all possess Jacobians of +1.

The prototype of all 3-vectors is the difference in coordinates between two
points in space, r. Likewise, the prototype of all 4-vectors is the difference in
coordinates between two events in space-time, R* = (r,ct). It is not difficult to
appreciate that both of these objects are invariant under a parity transformation
(in the sense that they correspond to the same geometric object before and after
the transformation). It follows that any 3- or 4-tensor which is directly related
to » and RF, respectively, is also invariant under a parity inversion. Such ten-
sors include the distance between two points in 3-space, the interval between two
points in space-time, 3-velocity, 3-acceleration, 4-velocity, 4-acceleration, and the
metric tensor. Tensors which exhibit tensor behaviour under translations, rota-
tions, special Lorentz transformations, and are invariant under parity inversions,
are termed proper tensors, or sometimes polar tensors. Since electric charge is
clearly invariant under such transformations (i.e., it is a proper scalar) it follows
that 3-current and 4-current are proper vectors. It is also clear from Eq. (2.96)
that the scalar potential, the vector potential, and the potential 4-vector, are
proper tensors.

It follows from Eq. (2.149) that €*#7% — —e®*?7% under a parity inversion.
Tensors like this, which exhibit tensor behaviour under translations, rotations,
and special Lorentz transformations, but are mot invariant under parity inver-
sions (in the sense that they correspond to different geometric objects before and
after the transformation), are called pseudo-tensors, or sometimes azial tensors.
Equations (2.150) and (2.151) imply that the cross product of two proper vectors
is a pseudo-vector, and the curl of a proper vector field is a pseudo-vector field.
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One particularly simple way of performing a parity transformation is to ex-
change positive and negative numbers on the three Cartesian axes. A proper
vector is unaffected by such a procedure (i.e., its magnitude and direction are the
same before and after). On the other hand, a pseudo-vector ends up pointing in
the opposite direction after the axes are renumbered.

-~

What is the fundamental difference between proper tensors and pseudo-tensors
The answer is that all pseudo-tensors are defined according to a handedness con-
vention. For instance, the cross product between two vectors is conventionally
defined according to a right-hand rule. The only reason for this is that the major-
ity of human beings are right-handed. Presumably, if the opposite were true then
cross products etc. would be defined according to a left-hand rule and would,
therefore, take minus their conventional values. The totally antisymmetric ten-
sor is the prototype pseudo-tensor and is, of course, conventionally defined with
respect to a right-handed spatial coordinate system. A parity inversion converts
left into right and vice versa and, thereby, effectively swaps left- and right-handed
conventions.

The use of conventions in physics is perfectly acceptable provided that we
recognize that they are conventions and are consistent in their use. It follows that
laws of physics cannot contain mixtures of tensors and pseudo-tensors, otherwise
they would depend our choice of handedness convention.®

Let us now consider electric and magnetic fields. We know that

oA
ot’
B = VAA. (2.153Db)

E = —-V¢- (2.153a)

We have already seen that the scalar and the vector potential are proper scalars
and vectors, respectively. It follows that E is a proper vector but that B is a
pseudo-vector (since it is the curl of a proper vector). In order to fully appreci-
ate the difference between electric and magnetic fields let us consider a thought

6Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This
is certainly the case for mechanics and electromagnetism. However, the weak interaction does
possess an intrinsic handedness; i.e., it is fundamentally different in a parity inverted universe.
So, the equations governing the weak interaction do actually contain mixtures of tensors and
pseudo-tensors.
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experiment first proposed by Richard Feynman. Suppose that we are in radio
contact with a race of aliens and are trying to explain to them our system of
physics. Suppose, further, that the aliens live sufficiently far away from us that
there are no common objects which we both can see. The question is this: could
we unambiguously explain to these aliens our concepts of electric and magnetic
fields? We could certainly explain electric and magnetic lines of force. The former
are the paths of charged particles (assuming that the particles are subject only
to electric fields) and the latter can be mapped out using small test magnets. We
could also explain how we put arrows on electric lines of force to convert them
into electric field lines: the arrows run from positive charges (i.e., charges with
the same sign as atomic nuclei) to negative charges. This explanation is unam-
biguous provided that our aliens live in a matter (rather than an anti-matter)
dominated part of the universe. But, could we explain how we put arrows on
magnetic lines of force in order to convert them into magnetic field lines? The
answer is no. By definition, magnetic field lines emerge from the north poles of
permanent magnets and converge on the corresponding south poles. The defini-
tion of the north pole of a magnet is simply that it possesses the same magnetic
polarity as the north pole of the Earth. This is obviously a convention. In fact,
we could redefine magnetic field lines to run from the south poles to the north
poles of magnets without significantly altering our laws of physics (we would just
have to replace B by —B in all our equations). In a parity inverted universe a
north pole becomes a south pole and vice versa, so it is hardly surprising that

B —-B.

2.16 The electromagnetic field tensor

Let us now investigate whether we can write the components of the electric and
magnetic fields as the components of some proper 4-tensor. There is an obvious
problem here. How can we identify the components of the magnetic field, which
is a pseudo-vector, with any of the components of a proper-4-tensor? The former
components transform differently under parity inversion than the latter compo-

"Note that it would actually be possible to unambiguously communicate to our concepts of
left and right to our hypothetical aliens using the fact that the weak interaction possesses an
intrinsic handedness.
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nents. Consider a proper-3-tensor whose covariant components are written By,

and which is antisymmetric:
B;; = —Bj;. (2.154)

This immediately implies that all of the diagonal components of the tensor are
zero. In fact, there are only three independent non-zero components of such a
tensor. Could we, perhaps, use these components to represent the components of
a pseudo-3-vector? Let us write
Bi — L ikp, 2.155
= 9 € jk- ( . )
It is clear that B® transforms as a contravariant pseudo-3-vector. It is easily seen
that
0 B, —-B,
BY=B;;=| -B, 0 B, [, (2.156)
B, —-B; 0

where B! = B; = B,, etc. In this manner, we can actually write the components
of a pseudo-3-vector as the components of an antisymmetric proper-3-tensor. In
particular, we can write the components of the magnetic field B in terms of an
antisymmetric proper magnetic field 3-tensor which we shall denote B;;.

Let us now examine Eqgs. (2.153) more carefully. Recall that ¢, = (—cA, ¢)
and 9, = (V,c™19/0t). Tt follows that we can write Eq. (2.153a) in the form

E;, = —0,P4 + 049;. (2157)

Equation (2.153b) can be written

cB' = 2 "% cBjy, = —¢'* 0, &y, (2.158)

Let us multiply this expression by €;,5, making use of the identity
€iap €97 = 535 — 516k (2.159)

We obtain .

2 (Bab — Bba) = —0,Pp + 0P, (2.160)
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or
CBij = —aiqu + aqui, (2161)

since B;; = —Bj;.
Let us define a proper-4-tensor whose covariant components are given by
Fo,=0,9,—0,9,. (2.162)
It is clear that this tensor is antisymmetric:
F,,=—-F,,. (2.163)

This implies that the tensor only possesses six independent non-zero components.
Maybe it can be used to specify the components of E and B?

Equations (2.157) and (2.162) yield
Fji = 0,®; — 8,8, = E;. (2.164)

Likewise, Egs. (2.161) and (2.162) imply that

Fij = (9,@] - 83@1 = —CBij. (2165)
Thus,
Fi = _F4i = —Ez', (2166&)

In other words, the completely space-like components of the tensor specify the
components of the magnetic field, whereas the hybrid space and time-like com-
ponents specify the components of the electric field. The covariant components
of the tensor can be written

P, = . 2.167

+E, +E, +E. 0
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Not surprisingly, F},, is usually called the electromagnetic field tensor. The above
expression, which appears in all standard textbooks, is very misleading. Taken
at face value, it is simply wrong! We cannot form a proper-4-tensor from the
components of a proper-3-vector and a pseudo-3-vector. The expression only
makes sense if we interpret B, say, as representing the component B3z of the
proper magnetic field 3-tensor B;;

The contravariant components of the electromagnetic field tensor are given

by

F4 = _F%=4F" (2.168a)
F9 = —FI"= _¢BY, (2.168b)
or
0 —cB, +cB, +E;
B 0 —cB, +E
prv — | TP CBa T hy (2.169)

—cB, +cBy 0 +F,
-FE, -E, -—E, 0

Let us now consider two of Maxwell’s equations:

vV.E = 2 (2.170a)
€0
E
VAB = pg <j+eoaa—t). (2.170D)

Recall that the 4-current is defined J* = (j, pc). The first of these equations can
be written
. . J4
OE" = 0;F'"* + 9, F** = —. (2.171)
CE€p

since F'** = 0. The second of these equations takes the form

€% 9, cBy — 04" = 7% 9;(1/2 €3qp cB®) + 04 F4 = e (2.172)
Making use of Eq. (2.159), the above expression reduces to
1 ij i 4i i 4i J!
5 8j (CB b — B’ ) + Oy F™ = 8jFJ + Oy F™ = e (2.173)
€0
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Equations (2.171) and (2.173) can be combined to give
JV

ry _
B FH =
C€p

(2.174)

This equation is consistent with the equation of charge continuity, 9,J* = 0,
because of the antisymmetry of the electromagnetic field tensor.

2.17 The dual electromagnetic field tensor

We have seen that it is possible to write the components of the electric and
magnetic fields as the components of a proper-4-tensor. Is it also possible to
write the components of these fields as the components of some pseudo-4-tensor?
It is obvious that we cannot identify the components of the proper-3-vector E
with any of the components of a pseudo-tensor. However, we can represent the
components of F in terms of those of an antisymmetric pseudo-3-tensor E;; by
writing
1

E' = 5 R E,),. (2.175)

It is easily demonstrated that
EY=E;=| —-E, 0 E, |, (2.176)

in a right-handed coordinate system.
Consider the dual electromagnetic field tensor G*¥, which is defined

1
G =2 e PF, 5. (2.177)

This tensor is clearly an antisymmetric pseudo-4-tensor. We have

1, 1 .. 1 .. ;
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plus

GY = 5 (621k4Fk;4 + 6”4kF4k) = 61‘7ka47 (2179)
where use has been made of F,, = —F,,. The above expression yields
G = —ek |, = 9 € Fepap B0 = — B, (2.180)
It follows that
G* = —GY = -cB', (2.181a)
GY = -GV =_-FEY, (2.181b)
or
0 -FE, +E, —cB;
—f—Ez 0 _E:c —cB
aw — vl 2.182

+cB; +c¢By +cB, 0

The above expression is, again, slightly misleading, since E, stands for the compo-
nent E?3 of the pseudo-3-tensor E¥ and not for an element of the proper-3-vector
E. Of course, in this case B, really does represent the first element of the pseudo-
3-vector B. Note that the elements of G*¥ are obtained from those of F#¥ by
making the transformation ¢cB% — EY and E' — —cB".

The covariant elements of the dual electromagnetic field tensor are given by

Gia = -Gy = +cB;, (2183&)
Gij = —Gj=—E, (2.183b)
or
0 —E, +E, +cB,
E., 0 -E, B
Go=| T By (2.184)

-E, +E; 0 +cB,
—cB; —cB, —cB, 0

The elements of G, are obtained from those of F},, by making the transformation
CBij — Eij and E;, — —cB;.
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Let us now consider the two Maxwell equations

V-B = 0, (2.185a)

VAE = —88—1:. (2.185b)

The first of these equations can be written
—0;cB" = 0;G™ 4 0,G** = 0, (2.186)
since G** = 0. The second equation takes the form
¢%0; By = €'%0;(1/2 €xap E®°) = 0, E" = —04cB", (2.187)

or

0,G7" 4 9,G* = 0. (2.188)
Equations (2.186) and (2.188) can be combined to give
8,G* = 0. (2.189)

Thus, we conclude that Maxwell’s equations for the electromagnetic fields are
equivalent to the following pair of 4-tensor equations:

Jv
o= .
8, p (2.190a)
8,G* = 0. (2.190b)

It is obvious from the form of these equations that the laws of electromagnetism
are invariant under translations, rotations, special Lorentz transformations, par-
ity inversions, or any combination of these transformations.

2.18 The transformation of electromagnetic fields

The electromagnetic field tensor transforms according to the standard rule

FHY = prephpy, (2.191)
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This easily yields the celebrated rules for transforming electromagnetic fields:

|’| = E”, (2.192&)
1 = By (2.192b)
E| = ~(E_+vAB), (2.192c)
B, = ~(B.—-vAE/&), (2.192d)

where v is the relative velocity between the primed and unprimed frames, and the
perpendicular and parallel directions are, respectively, perpendicular and parallel
to v.

At this stage we may conveniently note two important invariants of the elec-
tromagnetic field. They are

1
5 Fu F" = ¢*B* - E?, (2.193)

and .
1 G,WF‘“’ =cF-B. (2.194)

The first of these quantities is a proper-scalar and the second is a pseudo-scalar.

2.19 The potential due to a moving charge

Suppose that a particle carrying a charge e moves with uniform velocity u through
a frame S. Let us evaluate the vector potential A and the scalar potential ¢ due
to this charge at a given event P in §.

Let us choose coordinates in S so that P = (0,0,0,0) and v = (,0,0). Let
S’ be that frame in the standard configuration with respect to S in which the
charge is (permanently) at rest, say at the point (z’,3’,2’). In S’ the potential
at P is the usual potential due to a stationary charge

A = 0, (2.195a)
(&

9 = — (2.195b)

Amegr!’
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where 7' = /x'2 + y'2 + 2'2. Let us now transform these equations directly into
the frame S. Since A* = (cA,¢) is a contravariant 4-vector, its components
transform according to the standard rules (2.57). Thus,

u Yu e

A, = ( A4+ Y ’) — _Tque 2.196
A T\¢ 1—|_c¢ dmegcer! ( 2)
cAs = cA, =0, (2.196D)
cAs = cA;=0, (2.196¢)

!/ u / fye

_ YA ) =€ 2.196d
¢ K <¢ + c 1 4megr! ( )
since f = —u/c in this case. It remains to express the quantity r’ in terms of

quantities measured in S. The most physically meaningful way of doing this is
to express v’ in terms of retarded values in S. Consider the retarded event at
the charge for which, by definition, »’ = —ct’ and r = —ct. Using the standard
Lorentz transformation (2.19) we find that

r' = —ct' = —cy(t —uz/c?) = ry(1 4+ u, /c), (2.197)

where u, = ux/r = r-u/r denotes the radial velocity of the change in §. We can
now rewrite Egs. (2.196) in the form

_ Hoe€ [u]
A = (2.198a)
6 = - ! (2.198b)

Areg [r +r-u/c]’

where the square brackets, as usual, indicate that the enclosed quantities must
be retarded. For a uniformly moving charge the retardation of u is, of course,
superfluous. However, since

o= ! / " 4y (2.199)
4meg r

it is clear that the potentials depend only on the (retarded) velocity of the charge

and not on its acceleration. Consequently, the expressions (2.198) give the correct

potentials for an arbitrarily moving charge. They are known as the Liénard-

Wiechert potentials.
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2.20 The electromagnetic field due to a uniformly moving
charge

Although the field generated by a uniformly moving charge can be calculated
from the expressions (2.198) for the potentials, it is simpler to calculate it rela-
tivistically from first principles.

Let a charge e, whose position vector at time ¢ = 0 is 7, move with uniform
velocity w in a frame S whose z-axis has been chosen in the direction of u. We
require to find the field strengths E and B at the event P = (0,0,0,0). Let S’ be
that frame in standard configuration with S in which the charge is permanently
at rest. In S’ the field is given by

B = 0, (2.200a)

e 7
B = - (2.200D)

This field must now be transformed into the frame S. The direct method, using
Eqgs. (2.192), is somewhat simpler here, but we shall use a somewhat indirect
method because of its intrinsic interest.

In order to express Eq. (2.200) in tensor form, we need the electromagnetic
field tensor F'* on the left, and the position 4-vector R* = (7, ct) and the scalar
e/(4meg %) on the right. (We regard r’ as an invariant for all observers.) To
get a vanishing magnetic field in S’ we multiply on the right by the 4-velocity
U* = v(u)(u, c), thus tentatively arriving at the equation

=% _UMRY (2.201)
dregcr!
Recall that F* = —FE* and F¥ = —cB%. This equation cannot be correct,

because the antisymmetric tensor F'#¥ can only be equated to another antisym-

metric tensor. Consequently, we try the equation
P = __(UMR” — U"RM). (2.202)

dmegcr! 3

This is found to give the correct field at P in S’ as long as R refers to any event
at the charge, no matter which. It only remains to interpret (2.202) in S. It is

a7



convenient to choose for R* that event at the charge at which ¢ = 0 (not the
retarded event). Thus,

Pt = —oBTt = s ) (/= o), (2.203)
0
giving
1 .
B; 3 EijkBjk = —4’;():3 v(u) eijku’rk, (2.204)
or e
B —ZO Tunr. (2.205)
mr
Likewise,
F4% — _pi = 4W‘207T,3 r (2.206)
or ey
B=- (2.207)

Lastly, we must find an expression for r’ % in terms of quantities measured in §
at time ¢ = 0. If ¢’ is the corresponding time in S’ at the charge, we have

2,22 2, 2
L R u2a: = 2 (1 + 7 Zr ) : (2.208)
c c
Thus,
€ Y
B - _ 2.209
4req r3(1 + u,2 2 /c?)3/2 T ( a)
Po € gl 1
B = - Ar=—=ulE. 2.209b
4 r3(1 + u,2~2/c?)3/2 unr=24 ( )

Note that E acts in line with the point which the charge occupies at the instant
of measurement despite the fact that, owing to the finite speed of propagation of
all physical effects, the behaviour of the charge during a finite period before that
instant can no longer affect the measurement. Note also that, unlike Egs. (2.198),
the above expressions for the fields are not valid for an arbitrarily moving charge,
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not can they be made valid by merely using retarded values. For whereas accel-
eration does not affect the potentials, it does affect the fields, which involve the
derivatives of the potential.

For low velocities, u/c — 0, Egs. (2.209) reduce to the well known Coulomb
and Biot-Savart fields. However, at high velocities, y(u) > 1, the fields exhibit
some interesting behaviour. The peak electric field, which occurs at the point of
closest approach of the charge to the observation point, becomes equal to v times
its non-relativistic value. However, the duration of appreciable field strength at
the point P is decreased. A measure of the time interval over which the field is
appreciable is

At~ (2.210)

ve
where b is the distance of closest approach (assuming v > 1). As v increases, the
peak field increases in proportion, but its duration goes in the inverse proportion.
The time integral of the field is independent of 4. As v — oo the observer at P
sees electric and magnetic fields which are indistinguishable from the fields of a
pulse of plane polarized radiation propagating in the z-direction. The direction
of polarization is along the radius vector pointing towards the particle’s actual
position at the time of observation.

2.21 Relativistic particle dynamics

Consider a particle which, in its instantaneous rest frame Sy, has mass mg and
constant acceleration in the z-direction ag. Let us transform to a frame .5, in the
standard configuration with respect to Sy, in which the particle’s instantaneous

velocity is u. What is the value of a, the particle’s instantaneous x-acceleration,
in S7

The easiest way in which to answer this question is to consider the acceleration
4-vector (see Eq. (2.85))

d d
AP = (lu+7a,cl>. (2.211)
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Using the standard transformation (2.57) for 4-vectors, we obtain

d
d—Zu—I—fya = ayo, (2.212a)
dy _ ua (2.212b)
d 2 '
It follows that a
a= 7—2 (2.213)

The above equation can be written

du
= 3 2.214

where f = mgag is the constant force (in the z-direction) acting on the particle
in So.

Equation (2.214) is equivalent to

d(mu)
= 2.21
where
m = ymy. (2.216)

Thus, we can account for the ever decreasing acceleration of a particle subject
to a constant force (see Eq. (2.213)) by supposing that the inertial mass of the
particle increases with its velocity according to the rule (2.216). Henceforth, mg
is termed the rest mass, and m the inertial mass.

The rate of increase of the particle’s energy E satisfies

dFE 3 du
= fu= —. 2.21
o fu=moy°u o (2.217)
This equation can be written
dE  d(mc?)
= 2.218
dt dt ’ ( )
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which can be integrated to yield Einstein’s famous formula

E = mc>. (2.219)

The 3-momentum of a particle is defined
p = mu, (2.220)

where u is its 3-velocity. Thus, by analogy with Eq. (2.215), Newton’s law of
motion can be written

dp
= — 2.221
where f is the 3-force acting on the particle.

The 4-momentum of a particle is defined
P¥ = moU* = ymo(u,c) = (p, E/c), (2.222)

where U* is its 4-velocity. The 4-force acting on the particle obeys

FH = Z— = myA¥, (2.223)

_ dm _ (g I
P (18 =1 (1.79), 28
since IE
i f-u. (2.225)

2.22 The force on a moving charge

The electromagnetic 3-force acting on a charge e moving with 3-velocity w is
given by the well known formula

f=e(E+uAB). (2.226)
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When written in component form this expression becomes
fi = e(E; + €, u? BY), (2.227)

or
fi = G(EZ + Bij uj), (2228)

where use has been made of Eq. (2.155).

Recall that the components of the E and B fields can be written in terms of
an antisymmetric electromagnetic field tensor F),, via

Fi = _F4i = _Ei, (2229&)
Fi‘ = —Fji = —CBZ'j. (2229b)

Equation (2.228) can be written
fi = _i(FM U* + F; UY), (2.230)
Y

where U* = 7(u, ¢) is the particle’s 4-velocity. It is easily demonstrated that

fv = CE = E(Fu Ut + Fiu UY). (2.231)
c c c Yy

Thus, the 4-force acting on the particle,

e (1), -

c
can be written in the form

F, = Z F,, U (2.233)

The skew symmetry of the electromagnetic field tensor ensures that

FL U = ZF,W UrUY = 0. (2.234)
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This is an important result since it ensures that electromagnetic fields do not
change the rest mass of charged particles. In order to appreciate this, let us
assume that the rest mass mg is not a constant. Since

d(moUM) dmo
—_ — A i 2.2
7 o =moAu+ — = U, (2.235)
we can use the standard results U,U* = ¢ and A,U* =0 to give
dmo
fHU'u = C2 ?. (2236)

Thus, if rest mass is to remain an invariant it is imperative that all laws of
physics predict 4-forces acting on particles which are orthogonal to the particles’
4-velocities. The laws of electromagnetism pass this test.

2.23 The electromagnetic energy tensor

Consider a continuous volume distribution of charged matter in the presence of
an electromagnetic field. Let there be ng particles per unit proper volume (unit
volume determined in the local rest frame), each carrying a charge e. Consider
an inertial frame in which the 3-velocity field of the particles is w. The number
density of the particles in this frame is n = (u) ng. The charge density and the
3-current due to the particles are p = en and 3 = en u, respectively. Multiplying
Eq. (2.233) by the proper number density of particles ng, we obtain an expression

1
fu=_FuwJ” (2.237)

for the 4-force f, acting on unit proper volume of the distribution due to the
ambient electromagnetic fields. Here, we have made use of the definition J# =
engU*. Tt is easily demonstrated, using some of the results obtained in the
previous section, that

E-j
j= (,;E +jAB, 7“) . (2.238)

The above expression remains valid when there are many charge species (e.g.,
electrons and ions) possessing different number density and 3-velocity fields. The
4-vector f* is usually called the Lorentz force density.
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We know that Maxwell’s equations reduce to

JV
Frr = — 2.2
Oy o (2.239a)
.G = 0, (2.239b)

where F* is the electromagnetic field tensor and G*¥ is its dual. As is easily
verified, Eq. (2.239b) can also be written in the form

OuFye + 0, Fyy + 0, F,, = 0. (2.240)
Equations (2.237) and (2.239a) can be combined to give
fo =€ Fpo 0,F". (2.241)
This expression can also be written
fo =€0(0u(F*° Fyp) — FH° 0, F,;). (2.242)

Now,
1
F*0,F,, = §F“"(8“F,,a + 0o Fuv), (2.243)

where use has been made of the antisymmetry of the electromagnetic field tensor.
It follows from Eq. (2.240) that

1 1
Fre O, Fye = —§F“U 0 Fp, = Z6,,(F“”FW). (2.244)
Thus,
1
fu = €0 ((%(F’“’FW) — ZaV(FMF“U)) i (2.245)

The above expression can also be written
fl/ = _8,uT“u; (2246)

where .
TF, = ¢ (F“"Fa,, + Zd{j(Fp”Fpa)) (2.247)

64



is called the electromagnetic energy tensor. Note that T*, is a proper-4-tensor.
It follows from Egs. (2.167), (2.169), and (2.193) that

. : BiB; 1 B*B
sz = GOEZEJ' + - 5; - (60EkEk + k) , (2248&)
o 2 o

, UkE.B

T, = -T%=°""3"F (2.248b)
Mo C
1 B*B
T = = (eOE’“Ek + ’“) : (2.248¢)
2 Ho
Equation (2.246) can also be written
f*=-0,T"", (2.249)
where T is a symmetric tensor whose elements are
g . BiBi .1 B?
TY = —eFE'E’ — + 0% = <60E2 + —) , (2.250a)
JI% 2 o

. . (EAB)

riv = i = (EAB) (2.250D)
Mo €

1 B?

T = - (60E2 + —) : (2.250c)
2 Ho

Consider the time-like component of Eq. (2.249). It follows from Eq. (2.238)
that

= _ e, — 9, (2.251)
c
This equation can be rearranged to give
ow
—+4+V.e=—-E-j 2.252
where W = T%* and €' = ¢T**, so that
€0E2 32
W = 2.253
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and

EAB
=203 (2.254)

Ho
The right-hand side of Eq. (2.252) represents the rate per unit volume at which
energy is transferred from the electromagnetic field to charged particles. It is
clear, therefore, that Eq. (2.252) is an energy conservation equation for the elec-
tromagnetic field. The proper-3-scalar W can be identified as the energy density
of the electromagnetic field, whereas the proper-3-vector € is the energy flux due
to the electromagnetic field. The latter quantity is called the Poynting vector.

Consider the space-like components of Eq. (2.249). It is easily demonstrated
that these reduce to

0 .
a—'j-i—V-P: —pE -3 N\ B, (2.255)
where P¥ = T% and ¢' = T*%/c, or
y . BiBi 1 B?
P = —¢yB"E7 — + 6" — (€0E2 + —) , (2.256)
1% 2 1o
and c
c

Equation (2.255) is basically a momentum conservation equation for the electro-
magnetic field. The right-hand side represents the rate per unit volume at which
momentum is transferred from the electromagnetic field to charged particles. The
symmetric proper-3-tensor P% is called the Mazwell stress tensor. The element
P gives the flux of electromagnetic momentum parallel to the ith axis crossing a
surface normal to the jth axis. The proper-3-vector g represents the momentum
density of the electromagnetic field. It is clear that the energy conservation law
(2.252) and the momentum conservation law (2.255) can be combined together
to give the relativistically invariant energy-momentum conservation law (2.249).

2.24 The electromagnetic field due to an accelerated charge

Let us calculate the electric and magnetic fields observed at position z* and time
.. . i/ .
t due to a charge e whose retarded position and time are z* and t’, respectively.
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From now on (z',t) is termed the field point and (a;i,,t’ ) is termed the source
point. It is assumed that we are given the retarded position of the charge as a
function of its retarded time; i.e., 2 (/). The retarded velocity and acceleration
of the charge are ,

dx®

u' = T (2.258)
and s
0 = d—;‘,, (2.259)

respectively. The radius vector r is defined to extend from the retarded position
of the charge to the field point, so that ri = 2 — 2%, (Note that this is the
opposite convention to that adopted in Sections 2.19 and 2.20). It follows that

dr
dt’

The field and the source point variables are connected by the retardation condition

= —u. (2.260)

! }1/2 = c(t—t). (2.261)

r(zt,z') = [(:1:’ — ") (z; — z;')

The potentials generated by the charge are given by the Liénard-Wiechert
formulae

i Ho €U
= —— 2.262
. e 1
') = - 2.262b
$(,1) Ameg s ( )

where s = r — r-u/c is a function both of the field point and the source point
variables. Recall that the Liénard-Wiechert potentials are valid for accelerating
as well as uniformly moving charges.

The fields E and B are derived from the potentials in the usual manner

E = —Vqﬁ—%—?, (2.263a)

B = VAA. (2.263b)
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However, the components of the gradient operator V are partial derivatives at
constant time ¢, and not at constant time ¢’. Partial differentiation with respect to
the 2° compares the potentials at neighbouring points at the same time, but these
potential signals originate from the charge at different retarded times. Similarly,
the partial derivative with respect to ¢ implies constant z*, and, hence, refers to
the comparison of the potentials at a given field point over an interval of time
during which the retarded coordinates of the source have changed. Since we
only know the time variation of the particle’s retarded position with respect to
t' we must transform 9/0t|,: and 8/0z|; to expressions involving 0/0t|,: and

(9/(9.’132 |t’ .
Now, since 7' is assumed to be given as a function of ¢/, we have
r(@, 2 (') = r(@',t) = c(t — t), (2.264)

which is a functional relationship between z¢, ¢, and t’. Note that

or U
— = ——. 2.265
(815’ ) i r ( )
It follows that 5 oy B 8¢ oy
r t r Ot r-u Ot
1 =)= =7 2.266
ot C( 8t> ot ot r ot (2:266)
where all differentiation is at constant z*. Thus,
ot 1 r
N 2.2
ot 1—r-u/rc s’ (2:267)
giving
0o r o
= 2.2
ot sot (2.268)
Similarly,
or T ru
VT = —th' = V’r + % Vt' = ; — T Vt’, (2269)

where V' denotes differentiation with respect to z¢ at constant ¢'. It follows that

Vit = ——, (2.270)

SC
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so that

r 0
V=V - ——.
sc Ot
Equation (2.263a) yields
4reg E— E B g u |
e 52 Ot sc2
or
47reOE_ V's r 0s r ru 0s
e g2 s3c Ot  s2¢2 s3¢2 ot
However,
Vs=__4Y
r c’
and
33_87“ U uu _ Tu r-u+2
ot ot c c r c c
Thus,
0 g (r =) (r = T ru_u rw) v
e s2r c s3c c r c c 52

which reduces to

e s3

Similarly,

Am u Vs ANu
—B=VA—=— 5

Lo € s s

or

4 A
WB:_TQ’U,_L E_}_%

Lo € s%r sc s s

4reg 1 ru 1
EZ—(”“—)G‘§)+§§@A

(2.271)



A comparison of Egs. (2.277) and (2.280) yields

E
B="" % (2.281)
rc

Thus, the magnetic field is always perpendicular to E and the retarded radius
vector r. Note that all terms appearing in the above formulae are retarded.

The electric field is composed of two separate parts. The first term in Eq. (2.277)
varies as 1/r? for large distances from the charge. We can think of 7, = r—7ru/c
as the virtual present radius vector; i.e., the radius vector directed from the posi-
tion the charge would occupy at time ¢ if it had continued with uniform velocity
from its retarded position to the field point. In terms of 7, the 1/r? field is simply

e 1—u?/c?

4reg s3

E;nduction = Ty- (2282)
We can rewrite the expression (2.209a) for the electric field generated by a uni-
formly moving charge in the form

e 1—u?/c?

E—
Ameg o3 (1 — u2/c? 4 u,2/c?)3/2 "o

(2.283)

where 7 is the radius vector directed from the present position of the charge at
time ¢ to the field point, and u, = w-rg/rg. For the case of uniform motion the
relationship between the retarded radius vector » and the actual radius vector rg

is simply
r

To=T— —U. (2.284)
c
It is straightforward to demonstrate that
s =ro\/1—u2/c2+u?/c (2.285)

in this case. Thus, the electric field generated by a uniformly moving charge can

be written
e 1—u?/c?

E =
47eg s3

Since 7, = 7¢ for the case of a uniformly moving charge, it is clear that Eq. (2.282)
is equivalent to the electric field generated by a uniformly moving charge located
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at the position the charge would occupy if it had continued with uniform velocity
from its retarded position.

The second term in Eq. (2.277),

e TA(ryAu)
4Amegc? s3 ’

E.adiation = (2287)
is of order 1/r and, therefore, represents a radiation field in the sense of con-
tributing to the energy flux over a large sphere. Similar considerations hold for
the two terms of Eq. (2.280).

2.25 The Lamor formula

Let us transform to the inertial frame in which the charge is instantaneously at
rest at the origin at time ¢ = 0. In this frame u < ¢, so that r, ~ r and s ~ r, for
events which are sufficiently close to the origin at ¢ = 0 that the retarded charge
still appears to travel with a velocity which is small compared to that of light. It
follows from the previous section that

e rA(rAu)

Eoq ~ , 2,288
ad 4megc? r3 ( 2)
e uUAr
B, 2.288b
ad Ameged 12 ( )

Let us define spherical polar coordinates whose axis points along the direction of
instantaneous acceleration of the charge. It is easily demonstrated that

e sind
Fy ~ — 2.289
0 Amegc? 7 “ ( 2)
e sinf
B ~ 1. 2.289b
¢ Ameged 7 “ ( )

These fields are identical to those of a radiating dipole whose axis is aligned along
the direction of instantaneous acceleration. The Poynting flux is given by

Ey¢B 2 sin%4
— 07 ¢ PP U2 (2.290)

€r =
Lo 16m2€pc3 2
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We can integrate this expression to obtain the instantaneous power radiated by
the charge

62 .9

pP= (2.291)

— u”.
6megcd

This is known as Lamor’s formula. Note that zero net momentum is carried off
by the fields (2.289).

In order to proceed further it is necessary to prove two useful theorems. The
first theorem states that if a 4-vector field T# satisfies

8,T" = 0, (2.292)

and if the components of T# are non-zero only in a finite spatial region, then the
integral over 3-space,

I= / T* d’z, (2.293)

is an invariant. In order to prove this theorem we need to use the 4-dimensional
analog of Gauss’s theorem, which states that

/ 0, THd*z = 7{ T dS,,, (2.294)
\% S

where dS), is an element of the 3-dimensional surface .S bounding the 4-dimensional
volume V. The particular volume over which the integration is performed is indi-
cated in Fig. 1. The surfaces A and C are chosen so that the spatial components
of T# vanish on A and C. This is always possible because it is assumed that
the region over which the components of T# are non-zero is of finite extent. The
surface B is chosen normal to the z*-axis whereas the surface D is chosen normal
to the z* -axis. Here, the z* and the 7+ are coordinates in two arbitrarily chosen
inertial frames. It follows from Eq. (2.294) that

/ T4 dS, + / T dSy = 0. (2.295)

Here, we have made use of the fact that T# dS,, is a scalar and, therefore, has the
same value in all inertial frames. Since dS; = —d3z and dSy = d3z’ it follows
that I = [T 4 d3z is an invariant under a Lorentz transformation. Incidentally,
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Figure 1: The region of integration for proving the theorem associated with
Eq. (2.293)

the above argument also demonstrates that I is constant in time (just take the
limit in which the two inertial frames are identical).

The second theorem is an extension of the first. Suppose that a 4-tensor field
Q*" satisfies

0,Q" =0, (2.296)

and has components which are only non-zero in a finite spatial region. Let A, be
a 4-vector whose coeflicients do not vary with position in space-time. It follows
that TH = A, Q" satisfies Eq. (2.292). Therefore,

I= / A, QY d3x (2.297)
is an invariant. However, we can write
I=A,B*, (2.298)
where
Bt = / Q" . (2.299)
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It follows from the quotient rule that if A,B* is an invariant for arbitrary A,
then B* must transform as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation laws into
integral conservation laws. For instance, in differential form the conservation of
electrical charge is written

0, J" = 0. (2.300)
However, from Eq. (2.293) this immediately implies that

Q = %/J‘ld?’x:/pd?’:c (2.301)

is an invariant. In other words, the total electrical charge contained in space is
both constant in time and the same in all inertial frames.

Suppose that S is the instantaneous rest frame of the charge. Let us consider
the electromagnetic energy tensor T#" associated with all of the radiation emitted
by the charge between times ¢t = 0 and ¢t = dt. According to Eq. (2.249) this tensor
field satisfies

0,T"" =0, (2.302)

apart from a region of space of measure zero in the vicinity of the charge. Fur-
thermore, the region of space over which T"" is non-zero is clearly finite, since we
are only considering the fields emitted by the charge in a small time interval, and
these fields propagate at a finite velocity. Thus, according to the second theorem

1
Pt = / T d3x (2.303)

Cc

is a 4-vector. It follows from Section 2.23 that we can write P* = (dp,dE/c),
where dp and dF are the total momentum and energy carried off by the radiation
emitted between times ¢ = 0 and ¢ = dt, respectively. As we have already men-
tioned, dp = 0 in the instantaneous rest frame S. Transforming to an arbitrary
inertial frame S’ in which the instantaneous velocity of the charge is u, we obtain

dE = y(u) (dE + udp') = vdE. (2.304)
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However, the time interval over which the radiation is emitted in S’ is dt’ = ~dt.
Thus, the instantaneous power radiated by the charge,

dE' dE
= = _— =P 2.
dt! dt ’ (2.305)

is the same in all inertial frames.

Pl

We can make use of the fact that the power radiated by an accelerating charge
is Lorentz invariant to find a relativistic generalization of the Lamor formula
(2.291) which is valid in all inertial frames. We expect the power emitted by the
charge to depend only on its 4-velocity and 4-acceleration. It follows that the
Lamor formula can be written in Lorentz invariant form as

62

P=—-AA" 2.306
6mreged - M ( )
since the 4-acceleration takes the form A* = (u,0) in the instantaneous rest
frame. In a general inertial frame
dy ) 2 dy 2
—A AF =42 (E u+ fyu) — y2c? (E) : (2.307)

where use has been made of Eq. (2.85). Furthermore, it is easily demonstrated

that :
dry 3U-U

a7

It follows, after a little algebra, that the relativistic generalization of Lamor’s
formula takes the form

5 (2.308)
C

2

e 6 |2 (u A 1)?
P = — 0l [u = | (2.309)

2.26 Radiation losses in charged particle accelerators

Radiation losses often limit the maximum practical energy attainable in a charged
particle accelerator. Let us investigate radiation losses in various different types
of accelerator device using the relativistic Lamor formula.
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For a linear accelerator the motion is one dimensional. In this case, it is easily

demonstrated that p
d—f = moy® 1, (2.310)

where use has been made of Eq. (2.308), and p = ymyu is the particle momentum
in the direction of acceleration (the z-direction, say). Here, mg is the particle
rest mass. Thus, Eq. (2.309) yields

e? dp 2
 J . S— . 9.311
(%) (2311)

6megmyic?

The rate of change of momentum is equal to the force exerted on the particle in
the z-direction, which in turn equals the change in the energy, F, of the particle
per unit distance. Consequently,

2 2
p=—"° (ﬁ) . (2.312)

6megm e’

Thus, in a linear accelerator the radiated power depends on the external force
acting on the particle, and not on the actual energy or momentum of the particle.
It is obvious from the above formula that light particles such as electrons are
going to radiate a lot more than heavier particles such as protons. The ratio of
the power radiated to the power supplied by the external sources is

P e? 1 dE e? 1 dFE
dE/dt 6megmy’ed u dz 67reom062 moc? dz’

(2.313)

since u ~ c¢ for a highly relativistic particle. It is clear from the above ex-
pression that the radiation losses in an electron linear accelerator are negligi-
ble unless the gain in energy is of order m.c? = 0.511 MeV in a distance of
e?/(6meg mec?) = 1.28 x 10~ meters. That is 3 x 10! MeV/meter. Typical
energy gains are less that 10 MeV /meter. It is, therefore, obvious that radiation
losses are completely negligible in linear accelerators, whether for electrons or for
other heavier particles.

The situation is quite different in circular accelerator devices such as the
synchrotron and the betatron. In such machines the momentum p changes rapidly
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in direction as the particle rotates, but the change in energy per revolution is
small. Furthermore, the direction of acceleration is always perpendicular to the
direction of motion. It follows from Eq. (2.309) that

o2 i 2 ~tut

P 5

= = 2.314
6megc3 6reged  p ( )

where p is the orbit radius. Here, use has been made of the standard result
@ = u?/p for circular motion. The radiative energy loss per revolution is given

by

2mp e? ytud
0k =—P = 2.315
u 3epcd  p ( )
For highly relativistic (u =~ ¢) electrons this expression yields
E(GeV)]*
SE(MeV) = 8.85 x 1072 LE(GeV)]? (2.316)
p(meters)

In the first electron synchrotrons, p ~ 1 meter, F . ~ 0.3 GeV. Hence, 0 E,ax ~
1 keV per revolution. This was less than, but not negligible compared to, the en-
ergy gain of a few keV per turn. For modern electron synchrotrons the limitation
on the available radio-frequency power needed to overcome radiation losses be-
comes a major consideration, as is clear from the E* dependence of the radiated
power per turn.

2.27 The angular distribution of radiation emitted by an
accelerated charge

In order to calculate the angular distribution of the energy radiated by an ac-
celerated charge we must think carefully about what is meant by the “rate of
radiation” of the charge. This quantity is actually the amount of energy lost by
the charge in a retarded time interval dt’ during the emission of the signal. Thus,

dE

P(t,) - —@,

(2.317)
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where F is the energy of the charge. The Poynting vector

E..q N\ B
e=red N Trad _ g2 T (2.318)
Ho r
where use has been made of Byyq = (7 A Eyaq)/rc (see Eq. (2.281) ), represents
the energy flux per unit actual time, £. Thus, the energy loss rate of the charge
into a given element of solid angle df? is
dP(t') dE(8, ¢) dt 2 S 2
de.Q: —T df? = |€|%'r‘ dQZGOCErad;T dQ, (2319)
where use has been made of Eq. (2.267). Here, 6 and ¢ are angular coordinates
used to locate the element of solid angle. It follows from Eq. (2.287) that
dP(t") e’r [rA(ry A))?

i 1672¢pc3 s . (2.320)

Consider the special case where the direction of acceleration coincides with the
direction of motion. Let us define spherical polar coordinates whose axis points
along this common direction. It is easily demonstrated that the above expression

reduces to ) . )
dP(t’ ' sin” 0
) _ e - (2.321)
ds? 1672¢egc3 [1 — (u/c) cos6]?

in this case. In the non-relativistic limit u/c — 0 the radiation pattern has
the familiar sin? @ dependence of dipole radiation. In particular, the pattern is
symmetric in the forward (8 < 7/2) and backward (8 > 7 /2) directions. However,
as u/c — 1 the radiation pattern becomes more and more concentrated in the

forward direction. The angle 0, for which the intensity is a maximum is
| 1
3u/c
This expression yields Omax — 7/2 as u/c — 0 and Omax — 1/(27) as u/c — 1.
Thus, for a highly relativistic charge the radiation is emitted in a narrow cone

whose axis is aligned along the direction of motion. In this case, the angular
distribution (2.321) reduces to

dP(t') _ 2e°%* ¢ (v6)?
A2~ w2ecd | [+ (1025

(V1+15u2/c2 —1)]. (2.322)

0max = COS

(2.323)
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The total power radiated by the charge is obtained by integrating Eq. (2.321)
over all solid angles. We obtain

2 -9 T -3 2 -2 +1 2
Pt = e u / sin® 6 d6 _eu / (1 —p)du (2.324)
8meocd Jo [1 — (u/c) cosB]5  8meged J_1 [1 — (u/c)ul®

It is easily verified that

T —ph)dy 4 g
_ 2.9, 2.32
[ aceme=a (2.925)
Hence,
/ 62 6 -2
P(t") = 6rec3 & (2.326)

which agrees with Eq. (2.309) provided that w A @ = 0.

2.28 Synchrotron radiation

Synchrotron radiation (i.e., radiation emitted by a charged particle constrained
to follow a circular orbit by a magnetic field) is of particular importance in as-
trophysics, since much of the observed radio frequency emission from supernova
remnants and active galactic nuclei is thought to be of this type.

Consider a charged particle moving in a circle of radius a with constant angular
velocity wg. Suppose that the orbit lies in the xz-y plane. The radius vector
pointing from the centre of the orbit to the retarded position of the charge is
defined

p = a(cos ¢,sin ¢,0), (2.327)

where ¢ = wgt’ is the angle subtended between this vector and the z-axis. The
retarded velocity and acceleration of the charge take the form

d

u = d—z = u (—sin ¢, cos ¢, 0), (2.328a)
d

W = d—;f — 4 (cos ¢, sin ¢, 0), (2.328b)
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where u = awg and % = awy?. The observation point is chosen such that the ra-
dius vector r, pointing from the retarded position of the charge to the observation
point, is parallel to the y-z plane. Thus, we can write

r =r (0, sin o, cos a), (2.329)

where « is the angle subtended between this vector and the z-axis. As usual,
we define 6 as the angle subtended between the retarded radius vector r and the

retarded direction of motion of the charge u. It follows that
cos = 2" — sina cos b. (2.330)
ur

It is easily seen that
U-r = —4r sina sin ¢. (2.331)

A little vector algebra shows that

[P APy Aw)]? = —(r-4)?r? (1 —u?/?) + a?r* (1 — r-u/re)?, (2.332)
giving
[P A (ry Aw))? =02 r? [(1 — % Ccos 9)2 — <1 — z—j> tan? ¢ cos? 9] . (2.333)

Making use of Eq. (2.320), we obtain

dP(t')  e*4® [1—(u/c) cosh)]? — (1 —u?/c?)tan® ¢ cos® 0
d?  16m2epc3 [1— (u/c) cosf]5 . (2.334)

It is convenient to write this result in terms of the angles o and ¢, instead of 6
and ¢. After a little algebra we obtain
dP(t") e?u? [1— (u?/c?)]cos? a+ [(u/c) — sina cos ¢)?

_ . 2.335
ds? 1672¢pc3 [1 — (u/c) sina cos ¢]° ( )

Let us consider the radiation pattern emitted in the plane of the orbit; i.e.,
a = 7/2, with cos¢ = cosf . It is easily seen that
dP(t) e?u?  [(u/c) — cosf)?

— ) 2.
d2 ~ 16m%eoc [1 — (u]c) cos b5 (2:336)
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In the non-relativistic limit the radiation pattern has a cos? # dependence. Thus,
the pattern is like that of dipole radiation where the axis is aligned along the
instantaneous direction of acceleration. As the charge becomes more relativistic
the radiation lobe in the forward direction (i.e., 0 < 6 < m/2) becomes more
more focused and more intense. Likewise, the radiation lobe in the backward
direction (i.e., 7/2 < 8 < m) becomes more diffuse. The radiation pattern has
zero intensity at the angles

o = cos™(u/c). (2.337)

These angles demark the boundaries between the two radiation lobes. In the

non-relativistic limit 6y = +7/2, so the two lobes are of equal angular extents.

In the highly relativistic limit 3 — 41/7, so the forward lobe becomes highly

concentrated about the forward direction (6 = 0). In the latter limit Eq. (2.336)
reduces to

dr(t) | e’u? g [1-—(v6)*

A2~ 2n%ecd | [+ (70)2

Thus, the radiation emitted by a highly relativistic charge is focused into an
intense beam of angular extent 1/ pointing in the instantaneous direction of
motion. The maximum intensity of the beam scales like ~°.

(2.338)

Integration of Eq. (2.335) over all solid angle (using df2 = sin a da d¢) yields

(not very easily!)

62

P(t') = Greccd a2, (2.339)

which agrees with Eq. (2.309) provided that w-% = 0. This expression can also

be written
P 2 w02r0

moc? 3 ¢

824, (2.340)

where 7g = e?/(4meg moc?) = 2.82 x 10715 meters is the classical electron radius,
myg is the rest mass of the charge, and 5 = u/c. If the circular motion takes place
in an orbit of radius a perpendicular to a magnetic field B, then w; satisfies
wo = eB/mg7y. Thus, the radiated power is

P 2(eB\’ro,. .
_c(e2) o 2.341
moc? 3 (mo) c (B7)" (2.341)
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and the radiated energy AFE per revolution is

= —— . 2.342
moc? 3 a chl ( )

Let us consider the frequency distribution of the emitted radiation in the
highly relativistic limit. Suppose, for the sake of simplicity, that the observation
point lies in the plane of the orbit (i.e., « = 7/2). Since the radiation emitted
by the charge is beamed very strongly in the charge’s instantaneous direction
of motion, a fixed observer is only going to see radiation (at some later time)
when this direction points almost directly towards the point of observation. This
occurs once every rotation period when ¢ ~ 0, assuming that wg > 0. Note
that the point of observation is located many orbit radii away from the centre
of the orbit along the positive y-axis. Thus, our observer sees short periodic
pulses of radiation from the charge. The repetition frequency of the pulses (in
radians per second) is wg. Let us calculate the duration of each pulse. Since the
radiation emitted by the charge is focused into a narrow beam of angular extent
Af ~ 1/, our observer only sees radiation from the charge when ¢ < Af. Thus,
the observed pulse is emitted during a time interval At = Af/wy. However, the
pulse is received in a somewhat shorter time interval

At =20 (1 - 9) , (2.343)

wo C

because the charge is slightly closer to the point of observation at the end of the
pulse than at the beginning. The above equation reduces to

Al 1

At ~ ~
2woy?  wo Y3

(2.344)

since ¥ > 1 and Af ~ 1/+4. The width Aw of the pulse in frequency space obeys
Aw At ~ 1. Hence,
Aw = v° wy. (2.345)

In other words, the emitted frequency spectrum contains harmonics of frequency
up to 73 times that of the fundamental, wy.
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More involved calculations® show that in the ultra-relativistic limit v > 1 the
power radiated in the /th harmonic (whose frequency is w = lwy) is given by

2
P = 0.52( ° ) w2 13 (2.346)

TTeEQC

for 1 < 1 < 3, and

P= ( e )w02 (g)mexpu—z/sxzm:”)] (2.347)

4rege

for I > ~3. Note that the spectrum cuts off approximately at the harmonic order
73, as predicted earlier. It can also be demonstrated® that seven times as much
energy is radiated with a polarization parallel to the orbital plane than with a
perpendicular polarization. A P(w) w!/3 power spectrum at low frequencies
coupled with a high degree of polarization are the hallmarks of synchrotron radi-
ation. In fact, these two features are used in astrophysics to identify synchrotron
radiation from supernova remnants, active galactic nuclei, etc.

8L. Landau, and E. Lifshitz, The classical theory of fields, (Addison-Wesley, 1951), pp. 215
fI.

91.D. Jackson, Classical electrodynamics, (Wiley, 1962), pp. 672 fF.
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