5 Radiation and scattering

5.1 Basic antenna theory

It possible to solve exactly for the radiation pattern emitted by a linear antenna
fed with a sinusoidal current pattern. Assuming that all fields and currents vary
in time like e~1“?, and adopting the Lorentz gauge, it is easily demonstrated that
the vector potential obeys the inhomogeneous Helmholtz equation

(V2 4+ kDA = —po 7, (5.1)

where k = w/c. The Green’s function for this equation, subject to the Sommerfeld
radiation condition (which ensures that sources radiate waves instead of absorbing
them), is given by Eq. (2.123). Thus, we can invert Eq. (5.1) to obtain

A(r) = Ho / g(r) et d*r'. (5.2)

4 lr — /|

The electric field in the source free region follows from the Ampere-Maxwell
equation and B =V A A,

E-= %V/\CB. (5.3)

Now

P =] =\l =2 fr 417712, (5.4)

where n = r/r. Assuming that ' < r, this expression can be expanded binomi-

ally to give
nr ' 1/2n-r"\?
—pr|l=rl1- R .
r— 7’| r[ —+353 8( . )+ ], (5.5)

where we have retained all terms up to order (r’/r)2. This expansion occurs in the
complex exponential of Eq. (5.2); i.e., it determines the oscillation phase of each
element of the antenna. The quadratic terms in the expansion can be neglected
provided they can be shown to contribute a phase shift which is significantly less
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than 27r. Since the maximum possible value of r’ is d/2, for a linear antenna which
extends along the z-axis from z = —d/2 to z = d/2, the phase shift associated
with the quadratic terms is insignificant as long as
S kd*  d?
r> —— = -

16m 8\’
where A = 27 /k is the wavelength of the radiation. This constraint is known as
the Fraunhofer limat.

(5.6)

In the Fraunhofer limit we can approximate the phase variation of the complex
exponential in Eq. (5.2) by a linear function of r':

r—7'| > r—n-r. (5.7)

The denominator | — 7’| in the integrand of Eq. (5.2) can be approximated as r
provided that the distance from the antenna is much greater than its length; i.e.,
provided that
r > d. (5.8)
Thus, Eq. (5.2) reduces to
ikr

Mo €
A('r) ~ E ”

[ty (5.9)
when the constraints (5.6) and (5.8) are satisfied. If the additional constraint

kr > 1 (5.10)

is also satisfied, then the electromagnetic fields associated with Eq. (5.9) take the
form

elkr

B(r) ~ iknnA=ikl

i /n/\j(r’)e_ik"'r' d>r’,  (5.11a)

E(r) ~ cBAn=ick(nAA)An. (5.11b)

These are clearly radiation fields, since they are mutually orthogonal, transverse
to the radius vector, and satisfy E = ¢B o r~!. The three constraints (5.6),
(5.8), and (5.10), can be summed up in a single inequality:

d < Var <. (5.12)
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The current density associated with a linear, sinusoidal, centre-fed antenna is
Jj(r) = Isin(kd/2 — k|z|) §(z) d(y) 2 (5.13)
for |z| < d/2, with j(r) = 0 for |z| > d/2. In this case, Eq. (5.9) yields
ikr

a/2 _
Afr) = zHole / sin(kd/2 — k|2]) e=1h=e0%0 (5.14)
47'(' T _d/2

where cos @ = n-2. The result of this straightforward integration is

5, Ho I2elkr [cos(kd cos0/2) — cos(kd/2)

Alr) = 47 kr

: 5.15
sin” @ ( )
Note from Egs. (5.11) that the electric field lies in the plane containing the an-
tenna and the radius vector to the observation point. The time-averaged power
radiated by the antenna per unit solid angle is

dP Re(n-EAB*)r?  ck?sin”g|A|*r?

df? 2410 2410

(5.16)

Thus,

dP  pocI? |cos(kd cos/2) — cos(kd/2) |

— 1
df? 82 sin 6 (5.17)

The angular distribution of power depends on the value of kd. In the long
wavelength limit kd < 1 the distribution reduces to

aP poc Iy
df2  128x2

where Iy = [ kd/2 is the peak current in the antenna. It is easily shown from
Eq. (5.13) that the current distribution in the antenna is linear:

1(2) = Ip(1 — 2|2|/d) (5.19)

(kd)? sin” 0, (5.18)

for |z| < d/2. This type of antenna corresponds to a short (compared to the wave-
length) oscillating electric dipole, and is generally known as a Hertzian oscillating
dipole. The total power radiated is

_ pocIy? (kd)?
B 487

P

(5.20)
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In order to maintain the radiation, power must be supplied continuously to the

oscillating dipole from some generator. By analogy with the heating power pro-

duced in a resistor,

IR
2 Y

we can define the factor which multiplies I,%/2 in Eq. (5.20) as the radiation

resistance of the dipole antenna:

(P)heat = (I*)R = (5.21)

o (kd)? A%
Rraa = o 2r = 197 3 ohms. (5.22)

Since we have assumed that A > d, this radiation resistance is necessarily very
small. Typically, in devices of this sort the radiated power is swamped by the
ohmic losses appearing as heat. Thus, a “short” dipole is a very inefficient radi-
ator. Practical antennas have dimensions which are comparable with the wave-
length of the emitted radiation.

Probably the most common practical antennas are the half-wave antenna
(kd = 7) and the full-wave antenna (kd = 2m). In the former case, Eq. (5.17)

reduces to
dP  pocI? cos®(mcosf/2)

2
df? 82 sin” § (5.23)
In the latter case, Eq. (5.17) yields

dP  pocI? cos*(mcosf/2) (5.24)

df? 272 sin’ @

The half-wave antenna radiation pattern is very similar to the characteristic sin? 8
pattern of a Hertzian dipole. However, the full-wave antenna radiation pattern
is considerably sharper (i.e., it is more concentrated in the transverse directions
0 =+7/2).

The total power radiated by a half-wave antenna is

12 T 2 9
p = K€ / cos”(mcosf/2) 4y (5.25)
0

4 sin 6
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The integral can be evaluated numerically to give 1.2188. Thus,

I2
P =1.2188 “‘;‘; . (5.26)

Note from Eq. (5.13) that [ is equivalent to the peak current flowing in the an-
tenna. Thus, the radiation resistance of a half-wave antenna is given by P/(I?/2),

or
.6094
Rrad = 0609 \ [E2 = 73 ohms. (5.27)
€0

™

This resistance is substantially larger than that for a Hertzian dipole (see Eq. (5.22) ).
In other words, a half~-wave antenna is a far more efficient radiator of electromag-
netic radiation than a Hertzian dipole. According to standard transmission line
theory, if a transmission line is terminated by a resistor whose resistance matches
the characteristic impedance of the line, then all of the power transmitted down
the line is dissipated in the resistor. On the other hand, if the resistance does
not match the impedance of the line then some of the power is reflected and
returned to the generator. We can think of a half-wave antenna, centre-fed by a
transmission line, as a 73 ohm resistor terminating the line. The only difference
is that the power absorbed from the line is radiated rather than dissipated as
heat. Thus, in order to avoid problems with reflected power the impedance of a
transmission line feeding a half-wave antenna must be 73 ohms. Not surprisingly,
73 ohm impedance is one of the standard ratings for the co-axial cables used in
amateur radio.

5.2 Antenna directivity and effective area

We have seen that standard antennas emit more radiation in some directions than
in others. Indeed, it is topologically impossible for an antenna to emit transverse
waves uniformly in all directions (for the same reason that it is impossible to
comb the hair on a sphere in such a manner that there is no parting). One of the
aims of antenna engineering is to design antennas which transmit most of their
radiation in a particular direction. By a reciprocity argument, such an antenna,
when used as a receiver, is preferentially sensitive to radiation incident from the
same direction.
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The directivity or gain of an antenna is defined as the ratio of the mazimum
value of the power radiated per unit solid angle, to the average power radiated
per unit solid angle:
dP/df2)max

P/Am
Thus, the directivity measures how much more intensely the antenna radiates in
its preferred direction than a mythical “isotropic radiator” would when fed with
the same total power. For a Hertzian dipole the gain is 3/2. For a half-wave
antenna the gain is 1.64. To achieve a directivity which is significantly greater
than unity, the antenna size needs to be much larger than the wavelength. This
is usually achieved using a phased array of half-wave or full-wave antennas.

ol

(5.28)

Antennas can be used to receive, as well as emit, electromagnetic radiation.
The incoming wave induces a voltage in the antenna which can be detected in
an electrical circuit connected to the antenna. In fact, this process is equivalent
to the emission of electromagnetic waves by the antenna viewed in reverse. In
the theory of electrical circuits, a receiving antenna is represented as an e.m.f
connected in series with a resistor. The e.m.f., Vjcoswt, represents the voltage
induced in the antenna by the incoming wave. The resistor, R,.q, represents
the power re-radiated by the antenna (here, the real resistance of the antenna is
neglected). Let us represent the detector circuit as a single load resistor Rjoaq
connected in series with the antenna. The question is: how can we choose Rjy.q
so that the maximum power is extracted from the wave and transmitted to the
load resistor? According to Ohm’s law:

Vo coswt = Iy coswt (Ryad + Rioad), (5.29)
where I = Iy coswt is the current induced in the circuit.

The power input to the circuit is

V- 2
P = (VI) = ° : 5.30
< > 2(]%ra,d + Rload) ( )
The power transferred to the load is
Rioaa V2
Pload = <I2Rload> = load 70 (531)

2(}zrad + 1%load)2 .
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The power re-radiated by the antenna is

Rrad V() 2
2(Rrad + Rload)2 .

Note that P, = Pigaq + Praqa- The maximum power transfer to the load occurs

Prad = <I2Rrad> = (532)

when 0P Vo2 [ R R
load 0 load — {lrad
= = 0. 5.33
aRload 2 [(Rrad + Rload)3] ( )
Thus, the maximum transfer rate corresponds to
Ripad = Ryes. (5.34)

In other words, the resistance of the load circuit must match the radiation resis-
tance of the antenna. For this optimum case,

V02 . Pin
8}zrad B 2 .

So, even in the optimum case one half of the power absorbed by the antenna is
immediately re-radiated. If Rjoaq # Ries then more than one half of the absorbed
power is re-radiated. Clearly, an antenna which is receiving electromagnetic radi-
ation is also emitting it. This is how the BBC catch people who do not pay their
television license fee in England. They have vans which can detect the radiation
emitted by a TV aerial whilst it is in use (they can even tell which channel you
are watching!).

Pload - Prad — (535)

For a Hertzian dipole antenna interacting with an incoming wave whose elec-
tric field has an amplitude Ey we expect

Vo = Eod)2. (5.36)

Here, we have used the fact that the wavelength of the radiation is much longer
than the length of the antenna, and that the relevant e.m.f. develops between the
two ends and the centre of the antenna. We have also assumed that the antenna
is properly aligned (i.e., the radiation is incident perpendicular to the axis of the
antenna). The Poynting flux of the incoming wave is

E 2
(in) = 570, (5.37)
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whereas the power transferred to a properly matched detector circuit is

EOQ d2
32Rraud .

Pioag = (5.38)
Consider an idealized antenna in which all incoming radiation incident on some
area Aeg is absorbed and then magically transferred to the detector circuit with
no re-radiation. Suppose that the power absorbed from the idealized antenna
matches that absorbed from the real antenna. This implies that

Pload = <uin>Aeﬁ‘. (539)

The quantity A.g is called the effective area of the antenna; it is the area of
the idealized antenna which absorbs as much net power from the incoming wave
as the actual antenna. Alternatively, A.g is the area of the incoming wavefront
which is captured by the receiving antenna and fed to its load circuit. Thus,

E02d2 . €0C E02 A
32Riaa 2

Pload = effy (540)
giving
d? 3
A = ——— = = )\2, 5.41
ft 16 €gc R;aq 8 ( )

It is clear that the effective area of a Hertzian dipole antenna is of order the
wavelength squared of the incoming radiation.

We can generalize from this analysis of a special case. The directivity of a
Hertzian dipole is 3/2. Thus, the effective area of the isotropic radiator (the
mythical reference antenna against which directivities are measured) is

Ao=24 _ X (5.42)
0 — 3 Hertzian dipole — Arn’ .

or

Ay = TX%, (5.43)

where X = A\/2m. Here, we have used the formal definition of the effective area
of an antenna: Aeg is that area which, when multiplied by the time-averaged
Poynting flux of the incoming wave, equals the maximum power received by
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the antenna (when its orientation is optimal). Clearly, the effective area of an
isotropic radiator is the same as the area of a circle whose radius is the reduced
wavelength X.

We can take yet one more step and conclude that the effective area of any
antenna of directivity G is

Aer = GTX%. (5.44)

Of course, to realize this full capture area the antenna must be orientated prop-
erly.

Let us calculated the coupling or insertion loss of an antenna-to-antenna com-
munications link. Suppose that a generator delivers the power P, to a transmit-
ting antenna, which is aimed at a receiving antenna a distance r away. The
receiving antenna (properly aimed) then captures and delivers the power Pgy
to its load circuit. From the definition of directivity, the transmitting antenna
produces the time-averaged Poynting flux

P
=Gy — 5.45
() = Ge " (5.45)

at the receiving antenna. The received power is
Pout = <U> Gr AO- (5.46)

Here, G; is the gain of the transmitting antenna, and G, is the gain of the
receiving antenna. Thus,

Pout
P;

2
A A,
A ) = (5.47)

A2r2”’

= GtGr <

47y

where A; and A, are the effective areas of the transmitting and receiving antennas,
respectively. This result is known as the Friis transmission formula. Note that it
depends on the product of the gains of the two antennas. Thus, a properly aligned
communications link has the same insertion loss operating in either direction.

A thin wire linear antenna might appear to be essentially one dimensional.
However, the concept of an effective area shows that it possesses a second dimen-
sion determined by the wavelength. For instance, for a half~-wave antenna, the
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gain of which is 1.64, the effective area is

A
Aeﬂ‘ — 164A0 — § (
Thus, we can visualize the capture area as a rectangle which is the physical length
of the antenna in one direction, and approximately one quarter of the wavelength
in the other.

0.26 A). (5.48)

5.3 Antenna arrays

Consider a linear array of N half-wave antennas arranged along the z-axis with
a uniform spacing A. Suppose that each antenna is aligned along the z-axis, and
also that all antennas are driven in phase. Let one end of the array coincide with
the origin. The field produced in the radiation zone by the end-most antenna is
given by (see Eq. (5.15))

po ! 2 cos(mcosf/2) oi (kr—wt)

A = 2
(r) =2 4 kr sin’ @

(5.49)

where I is the peak current flowing in each antenna. The fields produced at a
given point in the radiation zone by successive elements of the array differ in
phase by an amount a = kA sin# cos . Here, r, 8, ¢ are conventional spherical
polar coordinates. Thus, the total field is given by

. ol 2 cos(mcosf/2)
z R
A kr sin” @

% 1_{_eia+62ia+“.+e(N—1)ia:| ei (br=wt) (550

A(r)

The series in square brackets is a geometric progression in § = exp(ia), the sum
of which is

2 N1 BV -1
Thus, the term in square brackets becomes
iNa __ . :
e -1 iv-1)ay2 Sin(Ne/2) (5.52)
el —1 sin(a/2)
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It follows from Eq. (5.16) that the radiation pattern due to the array takes the

form
ar (,uocI2 COS2(7TCOSH/2)) (sin2(Na/2)) (5.53)
d? \ 8r? sin” 6 sin®(a/2) ) '

We can think of this formula as the product of the two factors in large parentheses.
The first is just the standard radiation pattern of a half-wave antenna. The
second arises from the linear array of N elements. If we retained the same array,
but replaced the elements by something other than half-wave antennas, then
the first factor would change, but not the second. If we changed the array,
but not the elements, then the second factor would change but the first would
remain the same. Thus, we can think of the radiation pattern as the product
of two independent factors, the element function and the array function. This
independence follows from the Fraunhofer approximation (5.6), which justifies
the linear phase shifts of Eq. (5.7).

The array function in this case is

_ sin®(Na/2)
fla) = int(a/2) (5.54)
where
a = kA sinf cos p. (5.55)

The function f(«) has nulls whenever the numerator vanishes; that is, whenever

_ 2m 4w (N—1)27T.(N+1)27T
N’ N’ N ’ N

+a (5.56)
However, when +£a = 0, 27, - - -, the denominator also vanishes, and the I’Hopital
limit is easily seen to be f(0,2m,---) — N2. These limits are known as the
principle mazima of the function. Secondary maxima occur approximately at the
maxima, of the numerator; that is, at

3m b7 (2N —3) 27 (2N + 3) 27

ENYNT N N

(5.57)

There are (N — 2) secondary maxima between successive principal maxima.
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Now, the maximum possible value of « is kA = 27 A/AX. Thus, when the
element spacing A is less than the wavelength there is only one principle maximum
(at @ = 0), directed perpendicular to the array (i.e., at ¢ = +m/2). Such
a system is called a broadside array. The secondary maxima of the radiation
pattern are called side lobes. In the direction perpendicular to the array, all
elements contribute in phase, and the intensity is proportional to the square of
the sum of the individual amplitudes. Thus, the peak intensity for an N element
array is N2 times the intensity of a single antenna. The angular half-width of the
principle maximum (in ¢) is approximately Ap ~ A/NA. Although the principle
lobe clearly gets narrower in the azimuthal angle ¢ as NV increases, the lobe width
in the polar angle # is mainly controlled by the element function, and is thus little
affected by the number of elements. A radiation pattern which is narrow in one
angular dimension, but broad in the other, is called a fan beam.

Arranging a set of antennas in a regular array has the effect of taking the
azimuthally symmetric radiation pattern of an individual antenna and concen-
trating it into some narrow region of azimuthal angle of extent Ap ~ A\/NA.
The net result is that the gain of the array is larger than that of an individual

antenna by a factor of order
2n NA

A

It is clear that the boost factor is of order the linear extent of the array divided by
the wavelength of the emitted radiation. Thus, it is possible to construct a very
high gain antenna by arranging a large number of low gain antennas in a regular
pattern and driving them in phase. The optimum spacing between successive
elements of the array is of order the wavelength of the radiation.

. (5.58)

A linear array of antenna elements which are spaced A = A/2 apart and driven
with alternating phases has its principle radiation maximum along ¢ = 0 and ,
since the field amplitudes now add in phase in the plane of the array. Such a
system is called an end-fire array. The direction of the principle maximum can
be changed at will by introducing the appropriate phase shift between successive
elements of the array. In fact, it is possible to produce a radar beam which sweeps
around the horizon, without any mechanical motion of the array, by varying the
phase difference between successive elements of the array electronically.
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5.4 Thomson scattering

When an electromagnetic wave is incident on a charged particle, the electric
and magnetic components of the wave exert a Lorentz force on the particle,
setting it into motion. Since the wave is periodic in time, so is the motion of
the particle. Thus, the particle is accelerated and, consequently, emits radiation.
More exactly, energy is absorbed from the incident wave by the particle and re-
emitted as electromagnetic radiation. Such a process is clearly equivalent to the
scattering of the electromagnetic wave by the particle.

Consider a linearly polarized, monochromatic, plane wave incident on a par-
ticle carrying a charge gq. The electric component of the wave can be written

E = eEge'(kr—uwt) (5.59)

where Fj is the peak amplitude of the electric field, e is the polarization vector,
and k is the wave vector (of course, e-k = 0). The particle is assumed to un-
dergo small amplitude oscillations about an equilibrium position which coincides
with the origin of the coordinate system. Furthermore, the particle’s velocity
is assumed to remain sub-relativistic, which enables us to neglect the magnetic
component of the Lorentz force. The equation of motion of the charged particle

is approximately
f =qE = ms, (5.60)

where m is the mass of the particle, s is its displacement from the origin, and
" denotes 0/0t. According to Eq. (2.321), the time-averaged power radiated per
unit solid angle by an accelerating, non-relativistic, charged particle is given by

dP  ¢*(5?)

. 2
= 0 5.61
df?  16m2¢yc3 S ( )
where (---) denotes a time average. However,
2 27 2
. q L
(8%) = W(E% = ng : (5.62)
Hence, the scattered power per unit solid angle is given by
dP ¢\ ecE? .,
0= (47T€0 ch) 5 sin” 6. (5.63)

224



The time-averaged Poynting flux of the incident wave is

(u) = @ (5.64)

It is convenient to define the scattering cross section as the equivalent area of
the incident wavefront which delivers the same power as that re-radiated by the

particle:

y total re—ragli?ted power. (5.65)
u

By analogy, the differential scattering cross section is defined

do  dP/df?
0" W (5.66)
It follows from Egs. (5.63), (5.64), and (5.66) that
do q? ? .
75 = (W) sin” 4. (5.67)
The total scattering cross section is then
do 8T q? 2
o /0 70 21 sin @ df = 3 <47r€0 m62> (5.68)

The quantity 6 appearing in Eq. (5.67) is the angle subtended between the di-
rection of acceleration of the particle and the direction of the outgoing radiation
(which is parallel to the unit vector m). In the present case, the acceleration
is due to the electric field, so it is parallel to the polarization vector e. Thus,
cosf = en.

Up to now, we have only considered the scattering of linearly polarized ra-
diation by a charged particle. Let us now calculate the angular distribution of
scattered radiation for the commonly occurring case of randomly polarized inci-
dent radiation. It is helpful to set up a right-handed coordinate system based on
the three mutually orthogonal unit vectors e, e A k: and k. In terms of these unit
vectors, we can write

n =sinpcosty e +sinypsiny e Ak + cos pk, (5.69)
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where ¢ is the angle subtended between the direction of the incident radiation and
that of the scattered radiation, and v is an angle which specifies the orientation
of the polarization vector in the plane perpendicular to k (assuming that n is
known). It is easily seen that

cosf = e-n = cosp siny, (5.70)

S0
sin? @ = 1 — cos? 1 sin® . (5.71)

Averaging this result over all possible polarizations of the incident wave (i.e., over
all possible values of the polarization angle 1)), we obtain

1+ cosZ

sin@ = 1 — cos2 1) sin®p = 1 — (sin? ) /2 = 5

(5.72)

Thus, the differential scattering cross section for unpolarized incident radiation
(obtained by substituting sin? § for sin®# in Eq. (5.67)) is given by

d 2 24 2
(_") _ ( g 2) T CosTe (5.73)
df? unpolarized dmeg me 2

It is clear that the differential scattering cross section is independent of the fre-
quency of the incident wave, and is also symmetric with respect to forward and
backward scattering. The frequency of the scattered radiation is the same as that
of the incident radiation. The total scattering cross section is obtained by inte-
grating over the entire solid angle of the polar angle ¢ and the azimuthal angle
Y. Not surprisingly, the result is exactly the same as Eq. (5.68).

The classical scattering cross section (5.73) is modified by quantum effects
when the energy of the incident photons, Aiw, becomes comparable with the rest
mass of the scattering particle, mc?. The scattering of a photon by a charged
particle is called Compton scattering, and the quantum mechanical version of the
Compton scattering cross section is known as the Klein-Nishina formula. As the
photon energy increases, and eventually becomes comparable with the rest mass
energy of the particle, the Klein-Nishina formula predicts that forward scattering
of photons becomes increasingly favored with respect to backward scattering.
The Klein-Nishina cross section does, in general, depend on the frequency of the
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incident photons. Furthermore, energy and momentum conservation demand a
shift in the frequency of scattered photons with respect to that of the incident
photons.

If the charged particle in question is an electron then Eq. (5.68) reduces to
the well known Thomson scattering cross section

9 2
OThomson = 8?” (MJW) = 6.65 x 1072 m?. (5.74)
The quantity e?/(4meg mec?) = 2.8 x 107 1° m is called the classical electron radius
(it is the radius of spherical shell of total charge e whose electrostatic energy
equals the rest mass energy of the electron). Thus, as a scatterer the electron
acts rather like a solid sphere whose radius is of order the classical electron radius.
Since this radius is extremely small, it is clear that scattering of radiation by a
single electron (or any other charged particle) is a very weak process.

5.5 Rayleigh scattering

Let us now consider the scattering of electromagnetic radiation by a harmonically
bound electron; e.g., an electron orbiting an atomic nucleus. We have seen in
Section 4.2 that such an electron satisfies an equation of motion of the form

N . e
5+78+w’s=——E, (5.75)
Me
where wyg is the characteristic oscillation frequency of the electron, and vy < wy

is the damping rate of such oscillations. Assuming an e~'“* time dependence of
both s and E, we find that

w2 €

§ = E. 5.76
wo? — w? —iypw me (5.76)
It follows, by analogy with the analysis in the previous section, that the total

scattering cross section is given by

w4

wo' —w?)? + (o w)?*

(5.77)

0 = OThomson (
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The angular distribution of the radiation is the same as that in the case of a free
electron.

The maximum value of the cross section (5.77) is obtained when w ~ wy; i.e.,
for resonant scattering. In this case, the scattering cross section can become very
large. In fact,

2
0 = OThomson (ﬂ) ) (578)
Y0

which is generally far greater than the Thomson scattering cross section.

For strong binding, w < wp, Eq. (5.77) reduces to

4
w
0 == 0OThomson <—> 3 (579)
wo

giving a scattering cross section which depends on the inverse fourth power of the
wavelength of the incident radiation. Equation (5.79) is known as the Rayleigh
scattering cross section, and is appropriate to the scattering of visible radiation
by gas molecules. This is Rayleigh’s famous explanation of the blue sky: the air
molecules of the atmosphere preferentially scatter the shorter wavelength compo-
nents out of “white” sunlight which grazes the atmosphere. Conversely, sunlight
viewed directly through the long atmospheric path at sunset appears reddened.
The Rayleigh scattering cross section is much less than the Thompson scattering
cross section (for w < wy). However, this effect is offset to some extent by the
fact that the density of neutral molecules in a gas (e.g., the atmosphere) is much
larger than the density of free electrons typically encountered in a plasma.
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