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Classical, Non-Relativistic Theory of Scattering of Electromagnetic Radiation 
 
     We present here the theory of scattering of electromagnetic radiation from the classical, non-
relativistic physics approach. A quantum-mechanical, fully-relativistic of this subject matter can 
also be obtained via the use of relativistic quantum electrodynamics {QED}, however, this more 
sophisticated level of treatment is simply beyond the scope of this course. 
 

“Generic” Theoretical Definition of a Scattering Cross Section: 
 
     There are all sorts of scattering processes that occur in nature; generically all of them can be 
defined in terms of a scattering cross section scatσ , which has SI units of area, i.e. m2.  
 

     In classical, non-relativistic physics the total scattering cross section scatσ  for a given EM wave 

scattering process defined as the ratio of the total, time-averaged radiated power ( )radP t  (SI units: 
Watts ) radiated by a “target” object (e.g. a charged particle, an atom or molecule, etc.) undergoing 
that scattering process, normalized to the incident intensity ( ) ( )0 0,inc incI r S r t= = =

GG G  (SI units: 
2Watts m ), evaluated at the location of the target/scattering object (usually at the origin, ( )0rϑ =

G ): 
 

Total Scattering Cross Section: 
( )

( )
( )

( )0 0,
rad rad

scat
inc inc

P t P t
I r S r t

σ ≡ =
= =

GG G   (SI units of area, i.e. m2.) 

 
     This relation is known as the total scattering cross section – because it contains no angular 
( ),θ ϕ  information about the nature of the scattering process – these have been integrated out. 
 
     Physically speaking, the total scattering cross section can be thought of as an effective cross-
sectional area (hence the name cross section) per scattering object of the incident wave front that 
is required to deliver the power that is scattered out of the incident wave front and into 4π  
steradians (i.e. into any/all angles ,θ ϕ ) as shown schematically in the figure below. The 
scattering object absorbs energy/power from the cross sectional area scatσ  in the incident EM 
wave and then re-radiates (i.e. scatters) this absorbed energy. 

     Note also that the scattering cross section is explicitly defined using time-averaged (rather 
than instantaneous) quantities in both the numerator and denominator in order to facilitate direct 
comparison between theoretical prediction(s) vs. experimental measurement(s). 

Incident EM 
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     The time-averaged power radiated into a differential/infinitesimal element of solid angle 
cos sind d d d dθ ϕ θ θ ϕΩ = =  (SI units: steradians; aka sterad, and/or sr) is:  

 

( ) ( ) 2, ,
ˆ,rad

rad

d P t
S r t r r

d
θ ϕ

=
Ω

G G i  (SI units: Watts steradian Watts sr= ). 
 

     The infinitesimal vector area element ˆsph sphda da r=
G  associated with 

a sphere of radius r {centered on the scattering object - the “target” - 
located at the origin ϑ } is related to the differential solid angle 
element dΩ  via 2 2 2ˆ ˆ ˆ cos  sin  sphda r d r r d d r r d d rθ ϕ θ θ ϕ= Ω = =

G
. 

EM radiation scattered from the target object into dΩ  passes through 
this area element sphdaG . The figure on the right shows the relation 
between the differential solid angle element 

cos sind d d d dθ ϕ θ θ ϕΩ = =  and the infinitesimal area element 
( )( ) ( )( ) 2cos sinsphda rd rd r d rd r dθ ϕ θ θ ϕ= = = Ω .  

 

⇒Note also that ( ), ,radd P t dθ ϕ Ω  has no r-dependence! 
 
The differential angular scattering cross section is defined as: 
 

( ) ( )
( )

( )
( )

( )22 , , , ,, , 1 1 
cos cos0, 0,

rad radscat scat

inc inc

d P t d P td d
d d d d d dS r t S r t

θ ϕ θ ϕσ θ ϕ σ θ ϕ
θ ϕ θ ϕ

= ≡ =
Ω Ω= =

G GG G  

 

     Note that the choice of {the usual} polar and azimuthal angles ( ),θ ϕ  to describe the two 
independent scattering angles means that the EM wave that is incident on the “target” object 
(free charge q, atom or molecule, etc.) is propagating in the ẑ+ direction.  
 
      It is also instructive to write out the differential scattering relation in more explicit detail: 
 

( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

2 2

000

ˆ ˆ, , ,, ,, 1
ˆˆ , ,,,

rad rad radradscat

inc incincinc rrr

S r t r r E r t B r t r rd P td
d d E r t B r t zS r t zS r t

θ ϕσ θ ϕ

===

×
≡ = =

Ω Ω ×

G G GG G Gi i
G G GG G GGG ii

 

 

     As we derived in P436 Lecture Notes 14 (p. 1-5) from the Taylor series expansions of ( )r,r tρ ′G  

and ( )r,J r t′
G G  to first order in r′ , the only contribution to the EM power radiated is associated with 

a non-zero value of {some kind of/“generic”} time-varying electric dipole moment 
( ) ( )r r ˆ, ,p r t p r t z′ ′=
G G G  {n.b. oriented parallel to the ẑ -axis}, where, in the “far-zone” limit 

{ max 1r r′ �  and max max max2 1r c kr rω π λ′ ′ ′= = � }, the instantaneous differential retarded EM 
power radiated by the time-varying E1 electric dipole, with retarded time r ot t t r c= ≡ −  is: 
 

( ) ( ) ( )2
r 2 2

2

, ,
ˆ, sin

16

rad
o oraddP t p t

S r t r r
d c
θ ϕ μ

θ
π

=
Ω

G ��G i �  Watts
steradian

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

SI units: 
2m Sr

SI units: 
2m Sr
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The accompanying retarded electric and magnetic fields, EM energy density, Poynting’s vector 
associated with the radiating E1 electric dipole, in the “far-zone” limit are: 
 

( ) ( )
r

sin ˆ,
4

o op t
E r t

r
μ θ θ

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

G ��G � , ( ) ( )
r

sin ˆ,
4

o op t
B r t

c r
μ θ ϕ

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

G ��G �  with ( ) ( )r r
1 ˆ, ,B r t r E r t
c

= ×
G GG G

  

             i.e. { }r r
ˆˆ  B E r k⊥ ⊥

G G
&  

and:     ( ) ( )2 2

r 2 2 2

sin,
16

o orad p t
u r t

c r
μ θ

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

��G �   and: ( ) ( ) ( )r r r
1, , ,rad

o

S r t E r t B r t
μ

= ×
G G GG G G

 

 

( ) ( ) ( ) ( ) ( )
2 22 2

r r2 2 2 2

ˆ

sin sinˆ ˆ ˆ, ,
16 16
o o o orad rad

r

p t p t
S r t r cu r t

c r c r
μ μθ θθ ϕ

π π
=

⎛ ⎞ ⎛ ⎞
× = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G �� ��G G G�
�	


 with 
ˆ

ˆˆ

c cr

r k

≡
G

&
 

 
The total instantaneous retarded EM power radiated by a time-varying E1 electric dipole into 4π  
steradians, with vector area element 2 2ˆ ˆsin   da r d d r r d rθ θ ϕ⊥ = = Ω

G
 in the “far-zone” limit is:  

 

 ( ) ( ) ( ) ( )2 2
2 2

r r 2 20 0
, sin sin

16 6
o o o orad rad

S

p t p t
P t S r t da d d

c c
ϕ π θ π

ϕ θ

μ μ
θ θ θ ϕ

π π
= =

⊥ = =
= =∫ ∫ ∫

G �� ��G Gi �  (Watts) 
 
     We can then take the necessary time-averages of the instantaneous flux of incident EM energy 
(i.e. Poynting’s vector) and the instantaneous differential radiated EM power and/or total radiated 
EM power to use in the above cross section formulae. 
 

Scattering of EM Radiation from a Free Electric Point Charge: Thomson Scattering 
 

     Suppose a free electric point charge q is located at the origin ϑ ( ) ( ), , 0,0,0x y z = with a plane 
EM wave propagating in free space in the ẑ+ direction and incident on the free charge q, which 
has mass m. Noting that ˆ

inc inck kk=
G

 and that ˆ ˆinck z&  and using complex notation: 
 

( ) ( ) ( ), i kz t
inc oE r t E r e ω−=
G GG G� � ,  ( ) ( ) ( ), i kz t

inc oB r t B r e ω−=
G GG G� �  with ( ) ( )( ) ( )( )1 1ˆ ˆo inc o oB r k E r z E r

c c
= × = ×

G GG G G G� � �  

The polarization of the incident EM wave is (by convention) taken parallel to the ( )oE r
G G� direction.  

For definiteness’ sake, let us assume the incident EM plane wave to be linearly polarized in the 

x̂ -direction, and for simplicity, let us also assume that ( ) ˆo oE r E x=
G G� , and therefore:  

 

( ) ( )( ) ( )( ) ( ) ( )
ˆ

1 1ˆ ˆ ˆ ˆˆ ˆo o o
o inc o o

y

E E EB r k E r z E r z x y y
c c c c c

=−

= × = × = × = − = −
G GG G G G� � �

�	
 . 

 
Poynting’s vector for the incident EM plane wave is: 
 

( ) ( ) ( ) ( ) ( ) ( )2 22 2

ˆ

1 1 ˆ ˆ ˆ, , , i kz t i kz t
inc inc inc o o o

o o z

S r t E r t B r t E e x y cE e z
c

ω ωε
μ μ

− −

=+

= × = × = +
G G GG G G� � �

�	
   (using 1
o

o

c
c

ε
μ

= ) 
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     The EM plane wave incident on the free point electric charge q located at the origin ϑ  causes 
the point charge q to accelerate/move, because two forces act on the point charge – an electric 
force and a magnetic/Lorentz force. Noting that the resulting time-dependent position of the 
point charge is at the source position 0r′ �  (i.e. in the neighborhood/vicinity of the originϑ ): 
 

( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0,tot inc incF r t qE r t qv r t B r t ma r t′ ′ ′ ′ ′= + × =
G G GG G� � � �� � � � �  

 
The {transverse} electric field of the incident EM plane wave in the vicinity of 0r′ � is:  
 

( ) ˆ0, i t
inc oE r t E e xω−′ =
G� �  

 
The {transverse} magnetic field of the incident EM plane wave in the vicinity of 0r′ � is:  
 

( ) ( )( ) ( )( ) ( )
ˆ

1 1 1 1ˆ ˆ ˆˆ ˆ0, 0, 0, i t i t
inc inc inc inc o o

y

B r t k E r t z E r t E e z x E e y
c c c c

ω ω− −

=+

′ ′ ′= × = × = × = +
G G G
� � �� � � �	
  

 

Thus: ( ) ( ) ˆ0,
ˆ0, i t i t

tot o o

v r t y
F r t qE e x qE e

c
ω ω− − ′ ×

′ = +
G GG �G� �

( )

( )
1

0,

v c

ma r t′=

�

G G� �
���	��


.  

 
However, for non-relativistic scattering of an EM plane wave by a point electric charge q , where 
the motion of the charge is always such that v c�  ( )or:  1v cβ ≡ � , the 2nd (magnetic) Lorentz 
force term will correspondingly always be small in comparison to the 1st (electric) force term, 
hence we will neglect the magnetic Lorentz force term in our treatment here.  
 

     Physically, the transverse electric field of the incident EM plane wave ( ) ˆ0, i t
inc oE t E e xω−=
G�  

exerts a time-dependent force ( ) ( ) ( ) 2ˆ ˆ0, 0, 0,i t i t
tot o oF t qE e x ma t mx t m x e xω ωω− −= = = = −
G G G��� � �  on the 

free electric charge q, causing it to oscillate back and forth along the x̂ -axis in a time-dependent 
manner: ( ) ˆ0, i t

ox t x e xω−=
G�  with (real) amplitude ox .  Note that the wavelength of associated with 

the incident EM plane wave for non-relativistic scattering is such that the variation of the electric 
field strength in the vicinity of the free electric charge is negligible, i.e. that: ox c fλ =� . 

Note also that the instantaneous acceleration of the charge q is ( ) ( ) 2 ˆ0, 0, i t
oa t x t x e xωω −= = −

G G��� � .  
 
     The E-field induced oscillatory motion of the point electric charge q thus creates an induced 
time-dependent electric dipole moment: ( ) ( ) ˆ ˆ0, 0, i t i t

o op t qx t qx e x p e xω ω− −≡ = =
G G� �  oriented parallel 

to the electric field ( ) ˆ0, i t
inc oE t E e xω−=
G�  of the incident EM plane wave.  

 

     The induced oscillating electric dipole moment ( )0,p tG�  subsequently radiates electric dipole (E1) 
EM radiation. Energy from the incident EM wave is {temporarily} absorbed by the point charge q  
{this is necessary in order to get the charge q moving - i.e. to accelerate it}.  The incident EM 
energy absorbed by the charge q is radiated a short time later. Thus, this overall process is one type 
of scattering of EM radiation! The geometrical setup for this situation is shown in the figure below: 
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     Note also that the instantaneous mechanical power associated with the oscillating free charge q is 

( ) ( ) ( )0, 0,mech totP t F t v t=
G G� �� i , arising from the absorption of energy from the incident EM wave by the 

free charge q. The velocity of the oscillating charge is ( ) ( ) ˆ0, 0, i t
ov t dx t dt i x e xωω −= = −

G G� �  and hence 

( ) ( ) ( )2 3 2ˆ ˆi t i t i t
mech o o oP t m x e x i x e x im x eω ω ωω ω ω− − −= − − =� i . 

 
     At the microscopic level, real photons of {angular} frequency ω  associated with the incident 
EM wave (e.g. real photons in a laser beam that comprise the macroscopic EM  wave output from 
the laser) are {temporarily} absorbed by the electric point charge q, and then re-emitted {a short 
time later} as {quantized} EM radiation {of the same frequency} – the emitted photons are 
associated with the outgoing, or scattered EM wave! Two space-time/Feynman diagrams showing 
examples of this QED scattering process for an electron are shown in the figure below: 

     The characteristic time interval tΔ  associated with the photon-free charge absorption-re-radiation 
process is governed by the Heisenberg uncertainty principle 1

2E tΔ Δ ≤ =  where 2h π≡=  and h is 

Planck’s constant, 34 161.0546 10 6.582 10Joule sec eV sec− −= × = ×=  
{since 191 1 - 1.602 10eV electron Volt Joules−= = × }. For an incident photon e.g. with energy 

1 E hf hc eVγ γ γλ= = = , since 1240 -hc eV nm�  this photon has a corresponding wavelength of 
1240 nmγλ =  {which is in the infra-red portion of the EM spectrum}. Then using 1 E E eVγΔ = =  

in the Heisenberg uncertainty relation, we see that the corresponding time interval tΔ  is: 

ẑ  

x̂  

ŷ  ŷ  
x̂  

Observer at 
Field Point, r 

ϑ  
ˆ p px=

G  ˆinc oE E x=
G

 

( )1 ˆ ˆ  inc inc inc ocB k E B y= × =
G G

 

( )1

ˆ ˆ
oinc inc inc

inc inc

S E B

S k z

μ= ×
G G G

G
& &

 
ˆrad

rad oE E x=
G

 

( )1

ˆ ˆ
orad rad rad

rad rad

S E B

S k r

μ= ×
G G G

G
& &

 

( )
( )

1 ˆ

ˆ ˆ    

rad rad radc

rad
o rad

B k E

B k x

= ×

= ×

G G

 

θ  ϕ−

xΘ  

r̂  

e*− 
 

Virtual / 
Off-Shell e− 

Incident / 
Incoming 
Photon 

Incident / 
Incoming 
Photon e*− 

Virtual / 
Off-Shell e− 

Radiated / 
Outgoing 
Photon 

Radiated / 
Outgoing 
Photon 

x x 

ct ct 
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( )16 16 151 1 1
2 2 2 6.582 10 1 3.261 10 0.3261 10 0.326 -t E E eV sec eV sec sec femto secγ

− − −Δ ≤ Δ = = × = × = × == =
 

Note that the period of oscillation τ associated with a 1 E hf eVγ γ= =  photon is: 
 

9 8 151 1240 10 3 10 4.13 10 4.13 -f c m m s sec femto secγ γ γτ λ − −= = = × × = × =   
 

Thus, we see that the period of oscillation τ  associated with a 1 eV photon is ~ 10× longer than 
the characteristic time interval tΔ  associated with the photon-free charge absorption-re-emission 
process.  
 

     Please also note that had we not neglected the magnetic ( )qv B×
GG Lorentz force term in the 

original force equation, the B-field induced motion of the point charge q would have corresponded 
to the creation of an induced, time-dependent magnetic dipole moment at 0r′ � : 
 

( ) ( ) ˆ ˆ0, 0, i t i t
o om t I t A I A e y m e yω ω− −

⊥ ⊥≡ = =
GG ��  

 
which in turn also would have subsequently radiated magnetic dipole (M1) EM radiation.   
 

      However, because o o oB E c E= �  we also see that o om p c� , and thus the power radiated 
by this induced, time-dependent magnetic dipole would be � than the power radiated by the 
induced, time-dependent electric dipole. As we have seen in P436 Lecture Notes 13.5 (p. 11), for 
“equal” strength dipoles ( )i.e.  o om p c= , the amount of M1 radiation is far less than that for E1 
radiation.  
 
     Note further that, formally mathematically speaking, M1 radiation appears at second-order in 
the Taylor series expansion of ( )r,r tρ ′G  and ( )r,J r t′

G G , hence another reason why we neglected this 
term, since we initially stated that we were only working to first order in this expansion. 
 
 
     In the “far-zone” limit, the instantaneous differential retarded EM power radiated by an 
oscillating E1 electric dipole {situated at the origin, n.b. oriented along the ẑ -direction} into 
solid angle element dΩ  is (see P436 Lecture Notes 14, p. 5): 
 

( ) ( ) ( )2
r 2 2

2

, ,
ˆ, sin

16

rad
o o

rad

dP t p t
S r t r r

d c
θ ϕ μ

θ
π

=
Ω

G ��G i �  Watts
steradian

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
     The angular distribution of the EM power radiated by an oscillating E1 electric dipole with 
time- dependent electric dipole moment ( ) ˆ i t

op t p ae ω−=
G  oriented parallel to an arbitrary â -axis  

(e.g. where ˆ ˆ ˆ ˆ,   or  a x y z=  axis) is shown in the figure below. The intensity {aka irradiance} 

( ) ( ),rad radI r S r t=
GG G ( )2 Watts m is proportional to the distance from the origin ( )0,0,0ϑ =  

to an arbitrary point ( ), ,r r θ ϕ=
G  on the 3-D surface of the figure. 
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However, for the problem we have at hand, our electric dipole is oriented in the x̂ -direction. 
Thus we must carry out a rotation of the above result such that it is appropriate for our situation:  
 

( ) ( ) ( )2
r 2 2

2

, ,
ˆ, , , sin

16

rad
o orad

x

dP t p t
S r t r r

d c
θ ϕ μ

θ ϕ
π

= Θ
Ω

G ��
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Here, xΘ is the opening angle between the observation/field point unit vector r̂  and the x̂ -axis.  
Thus, cos xΘ is the direction cosine between the observation/field point unit vector r̂  and the 
x̂ -axis: i.e. ˆ ˆcos sin cosx r x θ ϕΘ = =i , in terms of the usual polar ( )θ  and azimuthal ( )ϕ  angles.  

Note also that since: sin xr x r x× = Θ
G G G G

 or: ˆ ˆ sin x

r x
r x

r x
×

= × = Θ
G G
G G  then:  

 

( ) ( )
( ) ( )

2

2 2 2

ˆ ˆ ˆ ˆsin

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ            sin cos sin sin cos sin cos sin sin cos

            sin sin cos

x r x r x

x y z x x y z xθ ϕ θ ϕ θ θ ϕ θ ϕ θ

θ ϕ θ

Θ = × ×

= + + × + + ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= +

i

i  

 
which can also be obtained from: 
 

( ) ( ) ( )22 2 2 2 2 2

2 2 2 2 2 2 2 2 2

ˆ ˆsin 1 cos 1 1 sin cos 1 sin 1 sin

            1 sin sin sin cos sin sin sin sin cos
x x r x θ ϕ θ ϕ

θ θ ϕ θ θ ϕ θ ϕ θ

Θ = − Θ = − = − = − −

= − + = + = +

i
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Thus, in terms of the usual polar ( )θ  and azimuthal ( )ϕ  angles, for the oscillating E1 electric 
dipole oriented along the x̂ -axis: 
 

( ) ( ) ( )2
r 2 2

2

, ,
ˆ, , , sin

16

rad
o orad

x

dP t p t
S r t r r

d c
θ ϕ μ

θ ϕ
π

= Θ
Ω

G ��
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Becomes: 
( ) ( ) ( ) ( )

2
r 2 2 2 2

2

, , ,
ˆ, , , sin sin cos

16

rad
o oraddP r t p t

S r t r r
d c
θ ϕ μ

θ ϕ θ ϕ θ
π

= +
Ω

G ��
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The angular distribution of the EM energy radiated from the oscillating E1 electric dipole oriented 
along the x̂ -axis is thus similar to that shown in the figure below: 
 

 

In the above formula, the second time-derivative of the electric dipole moment ( )op tG��  is to be 

evaluated at the retarded time ot t r c≡ −  and also computed from the local origin, ϑ  { 0r′ =G }:  

( ) ( )0, 0,op t p t r c= −
G G�� ��� � . 

The instantaneous induced electric dipole moment is: ( ) ( ) ˆ ˆ0, 0, o oi t i t
o o o op t qx t qx e x p e xω ω− −≡ = =

G G� � .  
 

Thus: ( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆ0,  0, 0,o o oi t i t i t
o o o o o op t p e x qx e x q x e x qx t qa tω ω ωω ω ω− − −= − = − = − = =

G G G�� ��� � � .  
 

From the above force equation, we see that: ( ) ( ) ˆ0, 0, oi t
o inc o o

q qa t E t E e x
m m

ω−= =
GG ��   

 

but: ( ) ( ) 2 ˆ0, 0, oi t
o o oa t x t x e xωω −= = −

G G��� �  and thus we see that: 2
o o

qx E
m

ω− =   or: 2o o
qx E

mω
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

and therefore:  ( ) ( ) ( )
2

2 ˆ ˆ0, 0, oi ti t
o o o o

qp t qa t q x e x E e x
m

ωωω −− ⎛ ⎞
= = − = ⎜ ⎟

⎝ ⎠

G G��� �  

n.b. here, ( )0, op tG��� is independent of frequencyω , because: 
2

2 2o o o o
q qp qx q E E

m mω ω
⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

, 

i.e. 2

1
o op qx

ω
= ∝  !!!  Thus: ( ) ( ) ( )

22
22 0, 0, 0, oi t

o o o o
qp t p t p t E e
m

ω−⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

G G�� ��� ���� i .  
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The time average of {the real part of !!!} this quantity, averaged over one complete cycle of 

oscillation 1 2fτ π ω= =  is simply half of this value: ( ) ( )
22

2 21 10, 0,
2 2o o o

qp t p t E
m

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
�� ��� �   

since { } { }2 2 2

  

1 1 1Re Re  cos   
2

o oi t i t
o o o

one cycle one cycle

e e dt t dtω ω ω
τ τ

′− − ′ ′ ′= = =∫ ∫ .  

 
Note also that by carrying out the time-averaging process, this also helps us to completely side-
step/avoid the difficulty associated with experimentally dealing with the retarded time ot t r c≡ − ! 
 
Thus, the time-averaged differential power radiated by the oscillating E1 electric dipole is: 
 

( )
( )

( ) 22 2
r 2 2 2

2 2

, , 1ˆ, , , sin sin
16 2 16

rad
o o orad o o

o x x

d P t p t q ES r t r r
d c c m
θ ϕ μ μθ ϕ

π π
⎛ ⎞

= Θ = ⋅ Θ⎜ ⎟Ω ⎝ ⎠

��G
i � Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

Or: 
( )

( ) ( )
22

r 2 2 2 2
2

, , 1ˆ, , , sin sin cos
2 16

rad
o rad o o

o

d P t q ES r t r r
d c m
θ ϕ μθ ϕ θ ϕ θ

π
⎛ ⎞

= ⋅ +⎜ ⎟Ω ⎝ ⎠

G
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Likewise, the time average of the {magnitude of} the instantaneous flux of EM energy incident on 
the free charge {located at the origin ( )0rϑ =

G }, ( ) 220, oi t
inc o o oS t E ce ωε −=
G

 is half of this value, i.e.: 
 

( ) ( ) ( ) 21 10 0, 0,
2 2inc inc o inc o o oI S t S t E cε≡ = =

G G
 2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
     The scattering of EM plane waves by a free electric charge q is known as Thomson scattering 
in honor of J.J. Thomson – the discoverer of the electron {in 1897}.  
 
     Thus, the differential Thomson scattering cross section {per scattering object of charge q} for an 
incident plane EM wave propagating in the ẑ+ -direction and linearly polarized in the x̂ -direction is:  
 

( )
( )

( ), ,, 1 1 
10,
2

LPx
rad oT

inc o

d P td
d dS t

θ ϕσ θ ϕ
=

Ω Ω
�G

o Eε
2

1
2o

oc

μ
4q E

{ }

2

2
2

2

22
2 2

2

sin
16

                    sin    using  1
4

o

x

x o o
o

m

c

q c
mc

π

μ ε
πε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠ Θ

⎛ ⎞
= Θ =⎜ ⎟
⎝ ⎠

 

i.e.  

     
( ) ( )

2 22 2
2 2 2 2

2 2

,
sin sin sin cos

4 4

LPx
T

x
o o

d q q
d mc mc

σ θ ϕ
θ ϕ θ

πε πε
⎛ ⎞ ⎛ ⎞

Θ = +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠
�  ( )2m sr  
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There are three interesting things associated with this result:  
 
     The differential Thomson scattering cross section is independent of both the frequency of the 
incident EM radiation, and note also that it is independent of the strength (i.e. amplitude) of the 
incident electric field, oE !  
 
     Note also that the differential Thomson scattering cross section varies as the square of the 
electric charge, i.e. the Thomson scattering cross section is the same for +q vs. –q charged 
particles, and note also that a scattering object with free electric charge 2q e= + (such as an α-
particle) has a Thomson scattering cross section 4×  greater than that associated with a scattering 
object {of the same mass, m} that has free electric charge q e= + . 
 
Then since:  
 

( )
( ) ( )

22 2r 2 2 2
r 2 0 0

, ,
sin sin cos sin

32

rad
orad o o

o

d P t q EP t d d d
d c m

ϕ π θ π

ϕ θ

θ ϕ μ θ ϕ θ θ θ ϕ
π

= =

= =

⎛ ⎞
= Ω +⎜ ⎟Ω ⎝ ⎠
∫ ∫ ∫�  

Carrying out the azimuthal angle integrals first: 
2 2

0
sin  d

ϕ π

ϕ
ϕ ϕ π

=

=
=∫  and 

2

0
2d

ϕ π

ϕ
ϕ π

=

=
=∫ . 

 
Then carrying out the polar angle integration:  
 

2 3 3

0 0
0

1 1 1 2 6 2 4sin sin sin cos cos 1 1 2
3 3 3 3 3 3

d d
θ π

θ π θ π

θ θ
θ

θ θ θ θ θ θ θ
=

= =

= =
=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = − + = − − − + = − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫
 

And:   2 3

00

1 1 1 2cos sin cos
3 3 3 3

d
θ π θ π

θθ
θ θ θ θ

= =

==
= − = + =∫  

 

Thus: ( )2 2 2 2

0 0

4 2 4 4 8sin sin cos sin 2
3 3 3 3 3

d d
ϕ π θ π

ϕ θ

π π πθ ϕ θ θ θ ϕ π π
= =

= =

⎛ ⎞ ⎛ ⎞+ = ⋅ + ⋅ = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

Then: ( )r
4 32

rad o
oP t μ�

2π

22 8oq E
mc

⎛ ⎞
⎜ ⎟
⎝ ⎠

π
22

3 12
o oq E
c m

μ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  

 
     Thus, the total Thomson scattering cross section {per scattering object of charge q} for an 
incident plane EM wave propagating in the ẑ+ -direction and linearly polarized in the  
x̂ -direction is: 

 

( ) ( )
( )

6
12,

o

LPx
rad oTLPx

T

inc o

P td
d

d S t

μ

σ θ ϕ
σ = Ω ≡

Ω∫ �G
cπ

4 2
oq E

2

1
2

m

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

2
o oEε c

{ }
22

2
2

8    using  1
3 4 o o

o

q c
mc

π μ ε
πε

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

 

Thus: 
22

2

8  
3 4

LPx
T

o

q
mc

πσ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 ( )2m  
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     If the electrically-charged scattering object e.g. is an electron, with electric charge q = −e, and 

rest mass em  then the quantity: ( )2 2 154 2.82 10e o er e m c mπε −≡ ×�  is known as the so-called 
classical electron radius.  
 

     The classical electron radius er  is defined as the radial distance from an electron where the 

{magnitude of the} potential energy ( ) ( )e e e eU r eV r=  associated with a unit test charge q = e 

equals the rest mass energy of the electron 2rest
ee

E m c− = , i.e. 
 

( ) ( )
2

2

4e e e e e
o e

eU r eV r m c
rπε

= = =   thus: 
2

15
2 2.82 10

4e
o e

er m
m cπε

−≡ ×�  

 
     The differential and the total Thomson scattering cross sections for free electron scattering of 
a linear polarized plane EM wave, written in terms of the classical electron radius er  are: 
 

( ) ( )2 2 2 2 2 2 
,

sin sin sin cos
LPx
T e

e x e

d
r r

d
σ θ ϕ

θ ϕ θ−
Θ = +

Ω
�  ( )2  per electronm sr  

and: 

       2
 

8
3

LPx
eT e

rπσ − =  ( )2 per electronm  where:  
2

15
2 2.82 10

4e
o e

er m
m cπε

−≡ ×�  

 
Numerically, we see that: 
 

( )22 15 30 28
 

8 8 2.82 10 66.6 10 0.67 10
3 3

LPx
eT e

rπ πσ −
− − −= × = × ×� �  ( )2 per electronm  

 
     Physicists get tired of writing down {astronomically} small numbers all the time, so we have 
defined a convenient unit of area for cross sections, known as a barn {originating from the phrase:  

“It’s as big as a barn”}:  ( ) ( ) ( )2 2 228 2 14 2 15 2 21 barn 10 10 10 10 10 100m m m fm fm− − −≡ = = × = =  

where 1 fm = 1 Fermi = 1510− m (in honor of Enrico Fermi, nuclear physicist of mid-20th century). 
 

Thus:   ( )22 15 28 2
 

8 8 2.82 10 0.67 10  per electron 0.67   per electron
3 3

LPx
eT e

r m barnsπ πσ −
− −= × × =� �  

 
     In order to obtain a more physically intuitive understanding of the magnitude of this (and 
various other) total scattering cross sections, note that the characteristic size of the nucleus of an 
atom is typically ( ) ( ) 15~ 1  1 10nucleusr few fm few m−− = − ×  whereas the characteristic size of an 

atom is typically ( ) ( ) ( )10~ 1  Ångstroms 1 10 0.1 1atomr few few m few nm−− = − × = − .  
 
     Thus, the geometrical cross-sectional area of a typical nucleus in an atom is 

( ) ( )2 28~ 0.03 1 10 0.03 1   nucleus nucleusA r m barnsπ −= − × = − , whereas the geometrical cross-sectional 

area of a typical atom is huge: ( ) ( )2 18 10~ 0.03 1 10 0.03 1  10   !!!atom atomA r m barnsπ − += − × = − × .  
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     Hence, we see that the free electron Thomson scattering cross section is comparable to the 
geometrical cross-sectional area for a typical nucleus, and is very much smaller than the 
geometrical cross-sectional area for a typical atom, i.e. 
 

( ) ( )( ) ( )( )2 10
 

8 3 0.67  ~ 0.03 1   0.03 1  10   LPx
e nucleus atomT e

r barns A barns A barnsσ π−
+= = = − = − ×�  

 
 
     Note that the Thomson scattering of a linearly-polarized EM plane wave propagating in the 
ẑ -direction has rotational invariance about the ẑ -axis. In the original problem above, we 
could have alternatively chosen the polarization of the EM plane wave to be parallel to e.g. the 

ŷ− -axis instead of the x̂ -axis, i.e. ( ) ˆ0, i t
inc oE r t E e yω−= −
G G� � , then the differential Thomson 

scattering cross section for a free charge q would instead then be: 
 

( )
( )

( )
( )

( )2
2

2

, ,, 1 1 sin
160, 0,

LPy
o orad oT

y

inc o inc

p td P td
d d cS t S t

μθ ϕσ θ ϕ
π

= Θ
Ω Ω

��
�G G  

 

where the direction cosine ( )ˆ ˆcos sin siny r y θ ϕΘ = − = −i  and: ( )ˆ ˆ sin yr y× − = Θ  thus: 
 

( )( ) ( )( ) ( ) ( )
( ) ( )

2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ            sin cos sin sin cos sin cos sin sin cos

            sin cos cos

y r y r y r y r y

x y z y x y z yθ ϕ θ ϕ θ θ ϕ θ ϕ θ

θ ϕ θ

Θ = × − × − = × ×

= + + × + + ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= +

i i

i  

 
which can also be obtained from: 
 

( ) ( ) ( )22 2 2 2 2 2

2 2 2 2 2 2 2 2 2

ˆ ˆsin 1 cos 1 1 sin sin 1 sin 1 cos

            1 sin sin cos cos sin cos sin cos cos
y y r y θ ϕ θ ϕ

θ θ ϕ θ θ ϕ θ ϕ θ

Θ = − Θ = − = − = − −

= − + = + = +

i
 

 
     Note that {importantly}, going through the same derivational steps as done originally, the 
induced dipole moment associated with an incident EM plane wave propagating in the ẑ -direction 
but linearly polarized in the ŷ− -direction is: ( ) ( ) ˆ ˆ0, 0, i t i t

o op t qy t qy e y p e yω ω− −≡ = − = −
G G� � , thus we 

see that the induced dipole moment simply follows/tracks the polarization of the incident EM plane 
wave, i.e. ( )0,p tG�  is parallel to the polarization/E-field vector of the incident EM plane wave! 
 
     The intensity maximum of the scattered radiation {here} would then be oriented perpendicular 
to the ŷ -axis instead of the perpendicular to the x̂ -axis {n.b. please see/refer to the 3-D figure on 
page 7 of these lecture notes}. 
 
     The differential Thomson scattering cross section for an incident EM plane wave propagating 
in the ẑ -direction but linearly polarized in the ŷ− -direction is: 
 

( ) ( )
2 22 2

2 2 2 2
2 2

,
sin sin cos cos

4 4

LPy
T

y
o o

d q q
d mc mc

σ θ ϕ
θ ϕ θ

πε πε
⎛ ⎞ ⎛ ⎞

Θ = +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠
�  ( )2m sr  
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     Integrating this expression over the polar and azimuthal angles ( ),θ ϕ , we obtain precisely the 
same result for the total Thomson scattering cross section as above for the original x̂ -polarization 
case: 

 
22

2

8  =
3 4

LPy LPx
T T

o

q
mc

πσ σ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 ( )2m  

 
 
     More generally, for an incident EM plane wave propagating in the ẑ -direction with arbitrary 
linear polarization ˆ ˆ ˆ cos sinx yϕ ϕ∈≡ −  and ( ) ˆ0, i t

inc oE r t E e ω−= ∈
G G� �  as shown in the figure below 

{cf with/see also the 3-D figure shown on p. 4 of these lecture notes}: 
 

 
In this more general situation, the induced dipole moment is again parallel to/tracks the 
polarization vector of the incident EM plane wave:  
 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ0, 0, cos sin cos sini t i t
o op t q t qr e x y p e x yω ωϕ ϕ ϕ ϕ− −≡ ∈ = − = −

G G� �  
 
Thus, here the differential Thomson scattering cross section for a free charge q is: 
 

( )
( )

( )
( )

( )2
2

2

, ,, 1 1 sin
160, 0,

LP
o orad oT

inc o inc o

p td P td
d d cS t S t

μθ ϕσ θ ϕ
π

∈

∈= Θ
Ω Ω

��
�G G  

 
where {here} the direction cosine associated with an arbitrary linear polarization is: 
 

( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ ˆˆcos sin cos sin sin cos cos sin sin cos sin sin cos 2r x y z x yθ ϕ θ ϕ θ ϕ ϕ θ ϕ ϕ θ ϕ∈Θ = ∈= + + − = − =i i
 

and: ˆ ˆ sinr ∈×∈ = Θ  thus: 
 
 
 

x̂  

ŷ  

ˆ ˆ ˆ cos sinx yϕ ϕ∈≡ −  

ϕ−

cosϕ

sinϕ−  

ẑ into page 
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( ) ( )
( ) ( )

2

2 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆsin                                           cos sin

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ            sin cos sin sin cos sin cos sin sin cos

            4sin cos sin cos cos

r r x y

x y z x y z

ϕ ϕ

θ ϕ θ ϕ θ θ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ

∈Θ = ×∈ ×∈ ∈≡ −

= + + ×∈ + + ×∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= +

i

i

( ) ( )
2

2 2 2 2 2

1 sin 2

2 2 2

sin sin 4cos sin cos

            sin sin 2 cos
ϕ

ϕ θ ϕ ϕ θ

θ ϕ θ

= =

+ = +

= +

���	��
 ���	��

 

 
which can also be obtained from: 
 

( )
( )

2

22 2 2 2 2 2 2 2

2 2 2 2 2 2

sin 2

ˆ ˆsin 1 cos 1 1 sin cos 2 sin cos sin cos 2

            sin 1 cos 2 cos sin sin 2 cos

r

ϕ

θ ϕ θ θ θ ϕ

θ ϕ θ θ ϕ θ
∈ ∈

=

Θ = − Θ = − ∈ = − = + −

= − + = +

i

���	��

 

 
This relation can also be obtained via a 3rd method – noting that since: 
 

( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos  cos sin cos sin cos cos sin cosx yr r x y r x r yϕ ϕ ϕ ϕ ϕ ϕ∈Θ = ∈= − = + − = Θ + Θi i i i  
 

where: ˆ ˆcos sin cosx r x θ ϕΘ = =i   and:  ( )ˆ ˆ ˆ ˆcos sin siny r y r y θ ϕΘ = − = − = −i i  then: 
 

( ) ( ) ( ) ( )( )
( ) ( )

( )
2

2222 2

22 2 2

22 2 2

cos 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin 1 cos 1 1 cos sin 1 cos sin

            1 cos sin cos sin sin sin 1 sin cos sin sin

            1 sin cos sin 1 s

r r x y r x r y

ϕ

ϕ ϕ ϕ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ ϕ

∈ ∈

=

⎡ ⎤Θ = − Θ = − ∈ = − − = − + −⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤= − + − = − −⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − = −

i i i i

���	���


( )
2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

sin 2

in cos 2 cos sin sin cos 2

            cos sin 1 cos 2 cos sin sin 2 sin sin 2 cos
ϕ

θ ϕ θ θ θ ϕ

θ θ ϕ θ θ ϕ θ ϕ θ

=

= + −

= + − = + = +
���	��


 

 
Thus, we see that: 
 

( )22 2 2ˆ ˆcos sin cosx r x θ ϕΘ = =i  

( )( ) ( ) ( )2 2 22 2 2ˆ ˆ ˆ ˆcos sin sin sin siny r y r y θ ϕ θ ϕΘ = − = − = − =i i  

( )
( )

2

22 2 2 2 2 2 2 2

2 2 2 2

cos 2

ˆ ˆcos 1 sin 1 cos sin sin 2 sin sin sin 2

             sin 1 sin 2 sin cos 2

r

ϕ

θ θ ϕ θ θ ϕ

θ ϕ θ ϕ
∈ ∈

=

Θ = ∈ = − Θ = − − = −

= − =

i

��	�

 

 

with ˆ ˆ ˆ cos sinx yϕ ϕ∈≡ − , 
 Note that when ˆ ˆ    0 :     xϕ = ∈=    and 2 2 2cos cos sinx θ∈Θ = Θ = .   
 Note that when 2 ˆ ˆ:    yπϕ = − ∈= −  and 2 2 2cos cos siny θ∈Θ = Θ = . 
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and: 
 

( ) ( )2 2 2 2ˆ ˆ ˆ ˆsin   sin sin cosx r x r x θ ϕ θΘ = × × = +i  

( )( ) ( )( ) ( ) ( )2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin sin cos cosy r y r y r y r y θ ϕ θΘ = × − × − = × × = +i i  

( ) ( )2 2 2 2ˆ ˆ ˆ ˆsin     sin sin 2 cosr r θ ϕ θ∈Θ = ×∈ ×∈ = +i  
 

 Note that when ˆ ˆ    0 :     xϕ = ∈=    and 2 2 2sin sin cosx θ∈Θ = Θ = .   
 Note that when 2 ˆ ˆ:    yπϕ = − ∈= −  and 2 2 2sin sin cosy θ∈Θ = Θ = . 
 
     Thus, the differential Thomson scattering cross section for an incident EM plane wave 
propagating in the ẑ -direction with arbitrary linear polarization in the 
ˆ ˆ ˆ cos sinx yϕ ϕ∈≡ − -direction is: 

 

 
( ) ( )

2 22 2
2 2 2 2

2 2

,
sin sin sin 2 cos

4 4

LP
T

o o

d q q
d mc mc

σ θ ϕ
θ ϕ θ

πε πε

∈

∈

⎛ ⎞ ⎛ ⎞
Θ = +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠

�  ( )2m sr  

 

Then since ( ),
 T

T

d
d

d
σ θ ϕ

σ
⎛ ⎞

= Ω⎜ ⎟Ω⎝ ⎠
∫ , carrying out the angular integration over the polar ( )θ and 

azimuthal ( )ϕ angles: ( )2 2 2

0 0
sin sin 2 cos sin d d

ϕ π θ π

ϕ θ
θ ϕ θ θ θ ϕ

= =

= =
+∫ ∫ , carrying out theϕ -integrals: 

2
2 2

0
0

sin 4 2sin 2
2 8 2

d
ϕ π

ϕ π

ϕ
ϕ

ϕ ϕ πϕ ϕ π
=

=

=
=

⎡ ⎤= − = =⎢ ⎥⎣ ⎦∫  and 
0

2d
ϕ π

ϕ
ϕ π

=

=
=∫  

Using 2 2sin 1 cosθ θ= −  and making the substitution cosu θ= , hence cos sindu d dθ θ θ= = − ; 
and when 0:  cos 0 1uθ = = = , when :  cos 1uθ π π= = = − , thus the θ -integrals are: 
 

( ) 112 2 31 1 1 1 1 1 4
3 3 3 3 3 3 30 1 1

sin sin 1 1 1 1 1 2 1
uu

u u
d u du u u

θ π

θ
θ θ θ

=+= =+

= =− =−
⎡ ⎤= − = − = − − − + = − + − = − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦∫ ∫

 

( )
1 12 2 31 1 1 1 1 2

3 3 3 3 3 310 1
cos sin

u u

uu
d u du u

θ π

θ
θ θ θ

= =+ =+

=−= =−
= = = − − = + =∫ ∫  

 
Putting all of these results together: 
 

( )2 2 2

0 0

4 2 4 4 8sin sin 2 cos sin 2
3 3 3 3 3

d d
ϕ π θ π

ϕ θ

π π πθ ϕ θ θ θ ϕ π π
= =

= =
+ = ⋅ + ⋅ = + =∫ ∫  !!! 

 

 
22

2

8  =
3 4

LP LPx LPy
T T T T

o

q
mc

πσ σ σ σ
πε

∈ ⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 ( )2m  

 
     Thus we have explicitly shown that we obtain precisely the same result for the total Thomson 
scattering cross section for an arbitrary polarization ˆ ˆ ˆ cos sinx yϕ ϕ∈≡ −  of an incident EM plane 
wave as that obtained above for either the original x̂ - and/or the ŷ− - polarization cases. 
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     Due to the manifest rotational invariance/symmetry of this problem about the ẑ -axis {the 
propagation direction of the incident EM plane wave}, intuitively we can understand why this 
must be true, since the orientation of the induced electric dipole moment ( )0,p r t′G G� �  is such that 
it is always parallel to/tracks the polarization vector ∈̂  of the incident EM plane wave.  
 
     Thus, we see that while the polarization vector ∈̂ of the incident EM plane wave certainly 
matters greatly for the differential Thomson scattering cross section ( ),Td dσ θ ϕ Ω , the total 
Thomson scattering cross section Tσ is unaffected/does not depend on the polarization vector 
ˆ ∈ of the incident EM plane wave.  

 
     Since left- and right-circularly polarized EM plane waves are {complex, but} linear orthogonal 
combinations of linearly-polarized EM plane waves: ( )1

2
ˆ ˆ ˆLCP x iy∈ ≡ +  and ( )1

2
ˆ ˆ ˆRCP x iy∈ ≡ −   

{note that we have normalized these polarization vectors such that * *ˆ ˆ ˆ ˆ 1LCP LCP RCP RCP∈ ∈ =∈ ∈ =i i }, 
then we can also see that the total Thomson scattering cross section for LCP or RCP incident EM 
plane waves is also: 
  

 
22

2

8  
3 4T

o

q
mc

πσ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 ( )2m  

 
     We leave it to the interested reader to determine the analytic form of the differential Thomson 
scattering cross sections for LCP or RCP incident EM plane waves. 
 
 
     Using the same line of reasoning, we can additionally see that the total Thomson scattering 
cross section for unpolarized EM plane waves incident on a free charge q is also 
 

 
22

2

8  
3 4

unpol
T T

o

q
mc

πσ σ
πε

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 ( )2m  

 
because an unpolarized EM plane wave is equivalent to a randomly-polarized EM plane wave, 
whose time-dependent polarization vector ( )ˆ t∈  changes randomly from one moment to the next 
within the azimuthal interval 0 2ϕ π≤ < . For a randomly-distributed ϕ  variable, note that the 
probability distribution function ( )dP dϕ ϕ  is flat within the azimuthal interval 0 2ϕ π≤ < .  
 

     The instantaneous orientation of the induced electric dipole moment ( )0,p r t′G G� � is parallel to 

the polarization vector ( )ˆ t∈ of the randomly-polarized incident EM plane wave on a moment-to-
moment basis; thus, while the differential angular distribution of the scattered radiation is 
changing on a moment-to-moment basis, the total Thomson scattering cross section Tσ  is 
unchanged/time-independent for an unpolarized/randomly-polarized incident EM plane wave, 
because the ( ),θ ϕ  angular dependence has been integrated out. We explicitly prove this, below. 
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     The probability is unity (i.e. 100%) for a randomly-polarized EM plane wave to have linear 
polarization ( )ˆ t∈  instantaneously oriented somewhere within the azimuthal interval 0 2ϕ π≤ < . 

Mathematically this means that theϕ -integral of the probability density 
( )2

0
1

d
d

d
ϕ π

ϕ

ϕ
ϕ

ϕ
=

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫

P
. 

Since the azimuthal probability density ( )d
d
ϕ
ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠

P
is flat {i.e. is constant} for a randomly-

distributed ϕ  distribution, then we can take ( )d
d
ϕ
ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠

P
 outside of this integral, and then since 

2

0
2d

ϕ π

ϕ
ϕ π

=

=
=∫ ,  we see that the probability density 

( ) 1
2

d
d
ϕ
ϕ π

=
P

 for an unpolarized/randomly-

polarized EM plane wave, as shown in the figure below: 
 

 

     If the polarization state ( )ˆ t∈  of the incident EM plane wave is changing randomly from 
moment-to-moment, one might worry that the process of averaging the instantaneous differential 
radiated power ( ), ,rad od P t dθ ϕ Ω over one period/one cycle of oscillation τ  would be 
insufficient – i.e. it would be very “noisy” due to rapid fluctuations/random temporal changes in 
the polarization state ( )ˆ t∈  with time t.  
 
    At the microscopic level, an unpolarized macroscopic EM plane wave consists of real photons, 
each with a randomly oriented E

G
-field/randomly oriented polarization vector ˆ γ∈ . Individual 

photons which Thomson scatter off of a free charge q are first absorbed by the charge q and then 
re-radiated a short time later, e.g. with characteristic time interval 0.326t fsΔ ≤  for a 1 eV 
photon, compared to the period of oscillation for a 1 eV photon of 4.13 fsγτ = , ~ 10× longer 
than tΔ .  
 
     Thus, for EM plane waves incident on a free charge q one might well worry that averaging 
over a single period of oscillation/single cycle τ would likely to yield a noisy result due to 
fluctuations. However, in actual/real-life scattering experiments, precisely because of such 
concerns, the averaging time interval avgtΔ is frequently orders of magnitude longer than either of 
these two time scales, typically avgtΔ  is micro-seconds, to milli-seconds, seconds and/or even 
longer in order to significantly reduce the level of such {statistical} fluctuations. 
 
 
 
 
 

ϕ  

( ) 1
2

d
d
ϕ
ϕ π

=
P

 

0ϕ =  2ϕ π=  
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    Since ( ) ( )ˆ ˆ sinr t t∈×∈ = Θ , then with no loss of generality, we can very easily modify the 
time-averaging of the differential power/differential scattering cross section formulae simply by 
moving the ( )2sin t∈Θ  factor {n.b. previously assumed to time-independent in the above 
examples} inside the time-averaging process, i.e.: 
 

( )
( )

( )
( )

( ) ( )

( )
( ) ( )( )

2 2

2

2 2 2 2

2

sin, ,, 1 1
160, 0,

sin sin 2 cos1                     
160,

unpol
o orad oT

inc o inc o

o o

inc o

p t td P td
d d cS t S t

p t t

cS t

μθ ϕσ θ ϕ
π

μ θ ϕ θ

π

∈Θ=
Ω Ω

+
=

��
�G G

��
G

 

 

Note that the polar angle θ  is fixed by the observer being at the field/observation point P. 
The time-averaged value of the ( )2sin 2 otϕ  factor is actually a probability-weighted integral 
over all possibleϕ -values that can/do occur during the time-averaging process over avgtΔ : 
 

( ) ( ) ( ) ( )

( )

2 22 2 2

0 0

2
2 2

0
0

1sin 2 sin 2 sin 2
2

1 1 sin 4 1                     sin 2
2 2 2 8 2

o o o

o

d
t t d t d

d

t d

ϕ π ϕ π

ϕ ϕ

ϕ π
ϕ π

ϕ
ϕ

ϕ
ϕ ϕ ϕ ϕ ϕ

ϕ π

ϕ ϕϕ ϕ
π π π

= =

= =

=
=

=
=

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎡ ⎤= = − =⎢ ⎥⎣ ⎦

∫ ∫

∫

P

2π
⋅

1
2 2

=

 

 
Thus, the differential Thomson scattering cross section for an unpolarized macroscopic EM plane 
wave incident on a free electric charge q, averaged over a long time interval avgtΔ  is: 
 

 

( ) ( )( )

( )

2 22 2
2 2 2 2

2 2

2 22 2
2 2 2 2

2 2

2

2

,
sin sin sin 2 cos

4 4

1 1                      sin cos sin 2cos
4 2 2 4

1                      
2 4

unpol
T

o
o o

o o

o

d q q t
d mc mc

q q
mc mc

q
mc

σ θ ϕ
θ ϕ θ

πε πε

θ θ θ θ
πε πε

πε

∈

⎛ ⎞ ⎛ ⎞
Θ = +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜

⎝ ⎠

�

{ } ( )
2 22

2 2 2 2
2

1

1sin cos cos 1 cos
2 4 o

q
mc

θ θ θ θ
πε

=

⎛ ⎞ ⎛ ⎞⎜ ⎟+ + = +⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
���	��


 

 

 
( ) ( )

22
2

2

, 1 1 cos
2 4

unpol
T

o

d q
d mc

σ θ ϕ
θ

πε
⎛ ⎞

+⎜ ⎟Ω ⎝ ⎠
�  ( )2m sr  ⇐   n.b. has no ϕ -dependence! 

 
     Hence, we see that for an unpolarized macroscopic EM plane wave incident on a free electric 
charge q, averaged over a long time interval avgtΔ , the differential Thomson scattering cross 
section has no ϕ -dependence, as we anticipated. 
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     The total Thomson scattering cross section for an unpolarized macroscopic EM plane wave 
incident on a free electric charge q, averaged over a long time interval avgtΔ  is: 
 

( ) ( )
22 2 2

2 0 0

, 1 1 cos sin
2 4

Tunpol
T

o

d qd d d
d mc

ϕ π θ π

ϕ θ

σ θ ϕ
σ θ θ θ ϕ

πε
= =

= =

⎛ ⎞ ⎛ ⎞
= Ω = +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠
∫ ∫ ∫  

But: 

( )2 2

0 0

1 21 cos sin
2

d d
ϕ π θ π

ϕ θ
θ θ θ ϕ

= =

= =
+ =∫ ∫ 2

π ( )2

0

2

0 0

1 cos sin

2 6 2 8sin cos sin 2
3 3 3 3

d

d d

θ π

θ

θ π θ π

θ θ

θ θ θ

π π ππ θ θ π θ θ θ π π

=

=

= =

= =

+

= + = + ⋅ = + =

∫

∫ ∫
 

 
Thus, here again we see that the Thomson scattering cross section for an  unpolarized / 
randomly-polarized macroscopic EM plane wave incident on a free electric charge q, averaged 
over a long time interval avgtΔ  is: 
 

 
22

2

8  =
3 4

unpol
T T

o

q
mc

πσ σ
πε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 ( )2m  

 
 
     Even though an incident EM plane wave may be unpolarized, this does not mean that an 
observer at the field/observation point ( ) ( ), ,P r P r θ ϕ=

G will observe unpolarized scattered 
radiation – quite the contrary! The reason for this is simple – for a specific field/observation 
point ( ), ,P r θ ϕ the EM radiation that is scattered into that specific ( ),θ ϕ angular region depends 
sensitively on the incident polarization state! We can easily see this from the following: 
 

Consider an observer located in the x-z plane at ( ), , 0P r θ ϕ =  as shown in the figure below: 

 

x̂  
ŷ  

r̂

ẑ  

θ  

ϑ  ˆ ˆinck z&  

ˆ ˆradk r&  

ˆ ˆinc y⊥∈ = −  

ˆ ˆrad y⊥∈ = −  

ˆ ˆinc x∈ =&  
ˆ ˆ ˆcos sinrad x zθ θ∈ = −&  

x-z plane = 
scattering  

plane 

Incident EM 
Plane Wave 

(unpolarized) 

Observer 
Position ( ) ( ) ( )

( ) ( )
ˆ ˆ ˆcos sin

ˆ ˆ         cos sin

inc

inc inc

t t x t y

t t

ϕ ϕ

ϕ ϕ ⊥

∈ = −

= ∈ − ∈&

 

ϕ−  

( )ˆ inc t∈  

ˆ ˆˆscat rad incn k k= ×  
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     In the above figure, note that the x-z scattering plane is defined by the two wavevectors: 
ˆ ˆinck z&  and ˆ ˆradk r& , where {here, with 0ϕ = } ˆ ˆ ˆˆ ˆsin cos cos sin cosr x z x zθ ϕ θ θ θ= + = + .  

The unit normal to the scattering plane ˆscatn  is defined by: ˆ ˆˆscat rad incn k k= × . 
 
     For an unpolarized/arbitrary/random polarization of the incident EM plane wave, from the 
above figure, it can also be seen that the {instantaneous} polarization unit vector ( )ˆ inc t∈  
associated with the incident unpolarized EM plane wave can be decomposed into a component 
parallel to/lying within the x-z scattering plane ˆ inc∈& and a component perpendicular to the x-z 

scattering plane ˆ inc
⊥∈ :   ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆcos sin  cos sininc inc inct t x t y t tϕ ϕ ϕ ϕ ⊥∈ = − = ∈ − ∈& .  

 

     Likewise, for the scattered EM radiation, whatever instantaneous polarization ( )ˆ rad t∈ exists 

can be decomposed into a component parallel to/lying within the x-z scattering plane ˆ rad∈& and a 

component perpendicular to the x-z scattering plane ˆ rad
⊥∈ . 

 

     However, as we have seen above for Thomson scattering with x̂  and ŷ−  linearly-polarized 
incident EM waves, the orientation of the incident vs. scattered polarization vectors is unchanged 
by the scattering process in the following sense:  
 

     In the above figure, for an incident EM plane wave with linear polarization ˆ ˆinc x∈ =&  parallel to  

(i.e. lying in) the x-z scattering plane, the scattered polarization is ˆ ˆ ˆcos sinrad x zθ θ∈ = −&  which 
also lies in the x-z scattering plane – notice the two blue polarization vectors in the above figure.  
 

     For an incident EM plane wave with linear polarization ˆ ˆinc y⊥∈ = −  perpendicular to the x-z 
scattering plane, the scattered polarization is ˆ ˆ ˆrad incy⊥ ⊥∈ = − =∈  which is also perpendicular to the  
x-z scattering plane – notice the two magenta polarization vectors in the above figure.  
 
     Thus, we can decompose the differential Thomson scattering cross section into that in which 
the polarization vector of the scattered EM radiation lies in (i.e. parallel to) the x-z scattering 
plane and that in which the polarization vector of the scattered radiation is perpendicular to the  
x-z scattering plane, which we already have (!) from our above LPx and LPy results, namely: 
 

( ) ( ) ( )
2 2

2 2
2

22
2 2

2

, 0 , 01 1 sin                 
2 2 4

1                             sin sin
2 4

unpol LPx
T T

x
o

o

d d q m sr
d d mc

q
mc

σ θ ϕ σ θ ϕ
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θ ϕ
πε

= = ⎛ ⎞
= Θ⎜ ⎟Ω Ω ⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

&

�

( )
22

2 2
2

1cos cos
2 4 o

q
mc

θ θ
πε

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠

 

( ) ( )

( )

2 22 2
2 2 2 2

2 2
1

2 22 2
2 2

2 2

1

, 0 , 01 1 1sin sin cos cos
2 2 4 2 4

1 1                             sin cos         
2 4 2 4

unpol LPy
T T

y
o o

o o

d d q q
d d mc mc

q q
mc mc

σ θ ϕ σ θ ϕ
θ ϕ θ

πε πε

θ θ
πε πε

⊥

=

=

⎛ ⎞= = ⎛ ⎞ ⎛ ⎞
= Θ = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Ω Ω ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

� �	


���	��
 ( )2                          m sr

 

n.b. The 1/2 factor in the above arises from statistically projecting ( )ˆ inc t∈ onto ˆ ˆinc x∈ =&  and ˆ ˆinc y⊥∈ = − . 
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Thus, for an observation point ( ), , 0P r θ ϕ =  lying in the x-z scattering plane: 
 

( ) 2 2
2

2

, 0 1 cos
2 4

unpol
T

o

d q
d mc

σ θ ϕ
θ

πε
= ⎛ ⎞

= ⎜ ⎟Ω ⎝ ⎠

&

 ( )2m sr  

And: 

( ) 22

2

, 0 1
2 4

unpol
T

o

d q
d mc

σ θ ϕ
πε

⊥ = ⎛ ⎞
= ⎜ ⎟Ω ⎝ ⎠

 ( )2m sr   ⇐   n.b. has no θ -dependence! 

 
Note further that:  
 

( ) ( ) ( )

( ) ( )

 

2 22 2
2

2 2

22
2 2

2

, 0 , 0 , 0

1 1                            cos
2 4 2 4

1                            1 cos       
2 4

unpol unpol unpol
T T T

o o
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d d d
d d d
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mc mc
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mc

σ θ ϕ σ θ ϕ σ θ ϕ
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θ
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= +

Ω Ω Ω
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= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
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Thus: 

 
( ) ( ) ( )22

2
2

, 0 ,1 1 cos
2 4

unpol unpol
T T

o

d dq
d mc d

σ θ ϕ σ θ ϕ
θ

πε
= ⎛ ⎞

+ =⎜ ⎟Ω Ω⎝ ⎠
�  ( )2m sr  

 

     We now introduce a quantity known as “the polarization” ( ), 0θ ϕ =P which is formally a 

specific type of asymmetry parameter ( )xA – the normalized/fractional difference between two 

related variables ( ) ( ) ( )
( ) ( )

a x b x
x

a x b x
−

≡
+

A . Thus, in general ( )xA  ranges between ( )1 1x− ≤ ≤ +A . 

(n.b. Sometimes ( )xA is expressed in terms of a percentage).  
 
     Here, for our current Thomson scattering physics situation, the polarization {asymmetry} 
( ), 0θ ϕ =P is defined as the normalized/fractional difference (i.e. asymmetry) between the 

perpendicular ( )⊥  vs. parallel ( )&  differential Thomson scattering cross sections: 
 

( )
( ) ( )

( ) ( )

 

2 2

 2 2

, 0 , 0
1 cos sin, 0

, 0 , 0 1 cos 1 cos

unpol unpol
T T

unpol
T unpol unpol

T T

d d
d d

d d
d d

σ θ ϕ σ θ ϕ
θ θθ ϕ

σ θ ϕ σ θ ϕ θ θ

⊥

⊥

= =
− −Ω Ω= ≡ = =

= = + +
+

Ω Ω

&

&P  

 
Here, we see that due to the physics associated with Thomson scattering of an unpolarized EM 
plane wave from a free electric charge, ( ), 0unpol

T θ ϕ =P ranges between ( )0 , 0 1unpol
T θ ϕ≤ = ≤P . 

Due the geometrical constraints imposed in the overall scattering process, the instantaneous 
orientation of the induced electric dipole yields useful non-zero time-averaged information! 
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     The angular dependence of the normalized differential Thomson scattering cross sections 

( ) ( )
22

2
2

, 0 1 1 cos
4 2

unpol
T

o

d q
d mc

σ θ ϕ
θ

πε
⎛ ⎞= ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠
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=⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

, 

( ) 2 2
2

2

, 0 1 cos
4 2

unpol
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o

d q
d mc

σ θ ϕ
θ
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⎛ ⎞= ⎛ ⎞

=⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠
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 and the polarization ( )
2

2

sin, 0
1 cos

unpol
T

θθ ϕ
θ

= =
+

P  

for unpolarized Thomson scattering as a function of θ  are shown together in the figure below: 
 

 
Various things can be seen/learned from the four curves on the above graph: 
 
a.) As mentioned above, the ⊥  differential Thomson scattering cross section is constant/flat,  
     independent of the scattering angle θ . The &  component is maximal at 0oθ =  and 180oθ = . 
 

b.) At 0oθ =  (forward scattering) and at 180oθ =  (backward scattering) the ⊥  vs. &  differential  
     Thomson scattering cross sections are equal to each other, and because of this, the  
     polarization {asymmetry} vanishes, i.e. ( ) ( )0, 0 180 , 0 0unpol unpol o

T Tθ ϕ θ ϕ= = = = = =P P . 
 

c.) At 90oθ = the &  differential Thomson scattering cross section vanishes, and because of this,       

     the polarization {asymmetry} is maximal, i.e. ( )90 , 0 1unpol o
T θ ϕ= = =P  , thus at 90oθ = ,  

     the Thomson scattering of an unpolarized EM wave by a free charge q is purely/100%    
     due to the perpendicular ( )⊥  polarization component (only) of the incident EM wave!!! 
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Scattering of EM Radiation by Neutral Atoms and/or Molecules 
 
     As discussed previously in P436 Lecture Notes 7.5 (Dispersion Phenomena in Linear Dielectric 
Media) atoms and molecules are composite objects – consisting of {relatively light} electrons bound 
to {relatively massive} nuclei. When a monochromatic (i.e. single-frequency) EM plane wave is 
incident on a neutral atom (or molecule) – for simplicity’s sake, assumed to be spherical in shape – 
the electric field of the incident EM plane wave ( ),incE r t

G G�  induces electric dipole moment(s) in the 
neutral atom/molecule {primarily} due to jiggling the light electrons at the angular frequency ω  of 
the incident EM plane wave, arising from the driving force ( ),inceE r t−

G G� acting on the bound electrons: 

( ) ( ) ( ) ( ),e e e incm r t m r t k r t eE r tγ+ + = −
GG G G�� �� ���  ← inhomogeneous 2nd-order differential eqn. 

( ) ( ) ( ) ( )
2

2 ,

e

e e e

m a

r t r t
m m k r t eE r t

t t
γ

∂ ∂
+ + = −

∂ ∂
G

G G� � GG G��
�	
 ��	�
��	�
 ��	�


  ←  

 
        
    
                   31electron  mass 9.1 10em kg−= = ×  
 
     For a driving force term sinusoidally varying in time with angular frequency ω  associated 
with a monochromatic EM plane wave with linear polarization in the x̂ -direction incident on the 

atom/molecule {located at the origin, ( )0rϑ =
G }: ( ) ˆ0, i t

inc oeE r t eE e xω−− = = −
G G�   

the inhomogeneous force equation becomes:       ˆi t
e e e om x m x k x eE e xωγ −+ + = −
G G G�� �� � � . 

 

The solution of this inhomogeneous second order differential equation is: ( ) ˆ0, i t
ox r t x e xω−= =

G G� �  

where: 
( )2 2

0

o e
o

eE mx
iω ω γω

=
⎡ ⎤− +⎣ ⎦

�   = 

and:     0 e ek mω ≡  (radians/sec) = characteristic/natural resonance {angular} frequency. 
 

The corresponding {complex} induced electric dipole moment ( )0,p r t=
G G�  is: 

 

( ) ( )
( )

2

2 2
0

1ˆ ˆ0, i t i to
o

e

e Ep r t ex t ex e x e x
m i

ω ω

ω ω γω
− −⎛ ⎞

= = − = − = −⎜ ⎟ ⎡ ⎤− +⎝ ⎠ ⎣ ⎦

G G G� � �  

 

Using the “standard trick” 2 2

1 1 x iy x iyz
x iy x iy x iy x y

− −
= = =

+ + − +
 with ( )2 2

0x ω ω≡ −  and y γω≡  

we can rationalize/rewrite this as: 
 

( ) ( )
( )

2 22
0

22 2 2 2
0

ˆ0, i to

e

ie Ep r t e x
m

ω
ω ω γω

ω ω γ ω
−

⎧ ⎫
− −⎛ ⎞⎪ ⎪= = − ⎨ ⎬⎜ ⎟ ⎡ ⎤⎝ ⎠ − +⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

G G�  

n.b. we have {again} neglected 

the ( )  ev B eE×
�G GG �� �  term here... 

Velocity-dependent 
damping term 

γ ≡ damping constant 

Potential Force 
(binding of atomic 
electrons to atom) 

Driving Force 

Atomic electron spatial 
displacement amplitude 

{n.b. complex!}
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     The above expression describes the induced electric dipole moment ( )0,p r t=
G G�  of an atom / 

molecule associated with a single QM transition/resonance at angular frequency 0 e ek mω ≡  

and natural linewidth ( )2  FWHMγ πΓ ≡  sec−1. However, real atoms/molecules are governed 
by quantum mechanics and in general have many possible quantum mechanical bound states of 
the atomic electrons, with transitions between them {resonances} with associated transition 
energies 0 jjE ωΔ = = and linewidths jΓ , as dictated by quantum mechanical selection rules.  
Thus, a more realistic model of the atom/molecule that takes into account the various QM transitions 
/ resonances present in an atom/molecule, properly weighted for each such resonance, gives: 
 

( )
( )
( )

2 22
0

2
2 2 2 21

0

ˆ0, j

j

n josc i to
tot j

je
j

ie Ep r t f e x
m

ω
ω ω γ ω

ω ω γ ω

−

=

⎧ ⎫
− −⎪ ⎪⎛ ⎞⎪ ⎪= = − ⎨ ⎬⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎪ ⎪− +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑G G�  

 
where the angular frequency and natural linewidth associated with the jth resonance are: 

0 j je ek mω ≡  rad/sec and ( )2  j j FWHMγ πΓ ≡  sec−1respectively, and the so-called 

“oscillator strength” osc
jf associated with the jth resonance is such that: 

1
1

n
osc
j

j
f

=

=∑ . 

     In the above expression for ( )0,totp r t=
G G� , note that the n individual contributions to the overall 

/ total induced electric dipole moment of the atom/molecule are coherently added together, i.e. 
added together at the amplitude level – the tacit assumption that has been made here is that the 
wavelength λ  associated with the incident monochromatic EM plane wave/outgoing 
scattered/radiated EM wave is much larger than the characteristic size of the atom/molecule, i.e. 

,atom moleculer rλ � and thus variation of phase(s) ~i ikre eϕ associated with the incoming/outgoing EM 
waves, e.g. over the diameter of the atom/molecule are negligible and hence can be/are neglected. 
Note that this approximation is certainly valid e.g. for EM radiation in the optical portion of the 
EM spectrum (and below), since for visible light: ~ 400 violet nmλ , ~ 650 red nmλ  whereas 
typically ( ), ~ 0.1atom moleculer r few nm− . 
 

Then evaluating ( )0,totp r t=
G G���  at the retarded time ot :  

 

( )
( )
( )

2 22
02

2
2 2 2 21

0

ˆ0, j o

j

n j i tosco
tot o j

je
j

ie Ep r t f e x
m

ω
ω ω γ ω

ω
ω ω γ ω

−

=

⎧ ⎫
− −⎪ ⎪⎛ ⎞⎪ ⎪= = + ⎨ ⎬⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎪ ⎪− +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑G G���  

And thus: 
 

( ) ( ) ( )
( )
( )

2

2 222
0 22 4

2
2 2 2 21

0

0, 0, 0, j o

j

n j i tosco
tot o tot o tot o j

je
j

ie Ep t p t p t f e
m

ω
ω ω γ ω

ω
ω ω γ ω

−

=

⎧ ⎫
− −⎪ ⎪⎛ ⎞ ⎪ ⎪= = ⎨ ⎬⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎪ ⎪− +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑G G�� ��� ���� i  
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     From the discussion above (p. 3-9) for Thomson scattering of a monochromatic EM plane 
wave linearly polarized in the x̂ -direction incident on a free electric charge  q  located at the 
originϑ , the instantaneous differential power radiated by an induced atomic/molecular electric 
dipole moment, oriented along the x̂ -axis {due to the polarization of the incident EM radiation} is: 
 

( ) ( ) ( )2
r 2 2

2

, , 0,
ˆ, , , sin

16

rad
o o tot orad

o x

dP t p t
S r t r r

d c
θ ϕ μ

θ ϕ
π

= Θ
Ω

��G �
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

where ( )2 0, op t��  is given above; and: ( )2 2 2 2sin sin sin cosx θ ϕ θΘ = + .  
 

Thus:  
( ) ( ) ( ) ( )

2
r 2 2 2 2

2

, , 0,
ˆ, , , sin sin cos

16

rad
o o tot orad

o

dP t p t
S r t r r

d c
θ ϕ μ

θ ϕ θ ϕ θ
π

= +
Ω

��G �
i �  Watts

steradian
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
     Again, carrying out the time-averaging process on this quantity, and taking only the real part 
of it for the physically-meaningful result for “far-zone” radiation associated with this scattering 
process, however, because the above expression for ( )2 0,tot op t�� is extremely complicated, for the 
purpose of discussing the salient physics features/behavior, we will assume for simplicity’s sake 
that only a single resonance exists (with 1 1oscf = ), rather than n  of them. The full-blown 
expression for n resonances can e.g. be coded up on a computer and results obtained numerically. 
 
Thus, with the simplifying assumption of a single resonance in the atom/molecule: 
 

( )
( )

( ){ }

( )

2
r 2 2

2

24 2 2 2 222 0

2

Re 0,, , 1ˆ, , , sin
2 16

1                              
2 16

rad
o oo rad

o x

o o

e

p td P t
S r t r r

d c

e E
c m

μθ ϕ
θ ϕ

π

ω ω ω γ ωμ
π

= Θ
Ω

⎡ ⎤− +⎢ ⎥⎛ ⎞ ⎣ ⎦
= ⋅ ⎜ ⎟

⎝ ⎠

���G
i �

( )
222 2 2 2

0ω ω γ ω⎡ ⎤− +⎢ ⎥⎣ ⎦

( )
( )

2
2

22 4
2 2 2 2

2 22 2 2 2
0

1sin   and using:  

1                              sin sin cos
2 4

x o
o

o o
o e

c

eE c
m c

μ
ε

ωε θ ϕ θ
πε ω ω γ ω

⎧ ⎫
⎪ ⎪⎪ ⎪ Θ =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

⎛ ⎞
= +⎜ ⎟ ⎡ ⎤⎝ ⎠ − +⎢ ⎥⎣ ⎦

Watts
sr

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
The time average of the {magnitude of} the instantaneous flux of EM energy incident on the electric 

dipole {located at the originϑ } is: ( ) ( ) ( ) 21 10 0, 0,
2 2inc inc o inc o o oI S t S t E cε= = =

G G
 2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

and thus: 

 

( )
( )

( )
21

, ,, 1 2
0,

o o
rad oatom

inc o

E cd P td
d dS t

εθ ϕσ θ ϕ
≡

Ω Ω
�G

21
2 o oE cε ( )

( )
( )

22 4
2

2 22 2 2 2
0

22 4
2 2 2

2 22 2 2 2
0

sin
4

                     sin sin cos
4

x
o e

o e

e
m c

e
m c

ω
πε ω ω γ ω

ω θ ϕ θ
πε ω ω γ ω

⎛ ⎞
Θ⎜ ⎟ ⎡ ⎤⎝ ⎠ − +⎢ ⎥⎣ ⎦

⎛ ⎞
= +⎜ ⎟ ⎡ ⎤⎝ ⎠ − +⎢ ⎥⎣ ⎦

2m
sr

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Since the classical electron radius is: 2 2 154 2.82 10e o er e m c mπε −≡ ×� , we can write the 
differential scattering cross section {per atom/molecule} for an incident EM plane wave 
propagating in the ẑ+ -direction and linearly polarized in the x̂ -direction in terms of er  as:  
 

( )
( )

( )
4

2 2 2 2
22 2 2 2

0

,
sin sin cos

LPx
atom

e

d
r

d
σ θ ϕ ω θ ϕ θ

ω ω γ ω
+

Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

�  ( )2  per atom/moleculem sr  

 
Hence, we see that this result is very similar to that obtained for electron Thomson scattering for an 
incident EM plane wave propagating in the ẑ+ -direction and linearly polarized in the x̂ -direction: 
 

( ) ( )2 2 2 2 2 2 
,

sin sin sin cos
LPx
T e

e x e

d
r r

d
σ θ ϕ

θ ϕ θ−

Θ = +
Ω

�  ( )2  per electronm sr  
 
For the atomic/molecular differential scattering cross section, we simply have the additional 

dimensionless factor ( )24 2 2 2 2
0ω ω ω γ ω⎡ ⎤− +⎢ ⎥⎣ ⎦

 arising from the physics associated with the 

{quantum mechanical} internal structure of the atom/molecule! 
 
     Thus, since the total cross section for Thomson scattering of an EM plane wave incident on an 

electron is: 28
3T er
πσ =  ( )2 per electronm , the total cross section for atomic/molecular scattering 

of an EM plane wave is: 
( )

4
2

22 2 2 2
0

8
3atom er
π ωσ

ω ω γ ω
=

⎡ ⎤− +⎢ ⎥⎣ ⎦

 ( )2 per atom/moleculem . 

 
    Similarly, for each of the other polarizations of the incident monochromatic EM plane wave 
discussed above for Thomson scattering, we obtain very similar results for atomic/molecular 
scattering: 
 

( )
( )

( )
4

2 2 2 2
22 2 2 2

0

,
sin cos cos

LPy
atom

e

d
r

d
σ θ ϕ ω θ ϕ θ

ω ω γ ω
+

Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

�  ( )2  per atom/moleculem sr  

 

( )
( )

( )
4

2 2 2 2
22 2 2 2

0

,
sin sin 2 cos

LP
atom

e

d
r

d
σ θ ϕ ω θ ϕ θ

ω ω γ ω

∈

+
Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

�  ( )2  per atom/moleculem sr  

 

( )
( )

( )
4

2 2
22 2 2 2

0

, 0 1 1 cos
2

unpol
atom

e

d
r

d
σ θ ϕ ω θ

ω ω γ ω

=
+

Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

�  ( )2  per atom/moleculem sr  
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( )
4

22 2 2 2
0

ω

ω ω γ ω⎡ ⎤− +⎢ ⎥⎣ ⎦

( )
4

22 2 21

x

x x y⎡ ⎤− +⎢ ⎥⎣ ⎦

with: 
( )

( )
4

2
22 2 2 2

0

, 0 1
2

unpol
atom

e

d
r

d
σ θ ϕ ω

ω ω γ ω

⊥ =
Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

�  ( )2  per atom/moleculem sr  

and: 
( )

( )
 4

2 2
22 2 2 2

0

, 0 1 cos
2

unpol
atom

e

d
r

d
σ θ ϕ ω θ

ω ω γ ω

=
Ω ⎡ ⎤− +⎢ ⎥⎣ ⎦

&

�  ( )2  per atom/moleculem sr  

 
Thus, we also see that the polarization {asymmetry} for atomic/molecular scattering by an 
unpolarized EM plane wave is the same as that for Thomson scattering: 
 

( )
( ) ( )

( ) ( )

 

2 2

 2 2

, 0 , 0
1 cos sin, 0

, 0 , 0 1 cos 1 cos

unpol unpol
atom atom

unpol
atom unpol unpol

atom atom

d d
d d

d d
d d

σ θ ϕ σ θ ϕ
θ θθ ϕ

σ θ ϕ σ θ ϕ θ θ

⊥

⊥

= =
− −Ω Ω= ≡ = =

= = + +
+

Ω Ω

&

&P  

 
Hence the results on the graph shown on page 22 of these lecture notes for differential Thomson 
scattering are in fact also valid for atomic/molecular scattering by an unpolarized EM plane wave. 
 
     Whereas the Thomson/free electron scattering cross section results are independent of the 
frequency of the incident EM plane wave, from the above results, it is manifestly apparent that 
the atomic/molecular bound electron scattering cross section results depend very sensitively on 
the frequency of the incident EM plane wave. 
 
Let us examine the frequency behavior of the resonance lineshape factor   
in the above atomic/molecular scattering cross section results.  
 
Noting that in atoms/molecules, the natural line widths associated with resonances/transitions 
between distinct quantum states {typically in the UV portion of the EM spectrum for atoms} are 
quite narrow, i.e. that:  

( ){ } { }02  e eFWHM k mγ π ωΓ ≡ ≡� . 
 

Defining 0x ω ω≡  and 0y γ ω≡ , a log-log plot of the resonance lineshape 
vs. x is shown in the figure below. 
 

Below the peak of the resonance ( )0ω ω< , note the linear 4 decade increase in the lineshape per 

1 decade increase in 0x ω ω≡ which is due to the 4ω dependence of the lineshape.  
 

Above the peak of the resonance ( )0ω ω> , note that the lineshape is flat with frequency, i.e. it is 
independent of frequency! 
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( )
4

22 2 2 2
0

ω

ω ω γ ω⎡ ⎤− +⎢ ⎥⎣ ⎦

 

 
 
Referring to the above plot of the resonance lineshape, we see that there are three distinct 
frequency regions to consider: 
 

1.) Low frequencies: 0ω ω�  

     When 0ω ω� , the factor ( )22 2 4
0 0ω ω ω− ≈  in the resonance lineshape    

      and additionally, since 0γ ω� , then for 0ω ω� : 
 

( )
( )44 4 4

4 22 4 2 22 2 2 2 000

,1 atom

o e

d
r d

σ θ ϕω ω ω ω
ω ωω γ ωω ω γ ω

⎛ ⎞
≈ ≈ = =⎜ ⎟ Ω⎡ ⎤ ⎡ ⎤+ ⎝ ⎠− + ⎣ ⎦⎢ ⎥⎣ ⎦

. 

    

     Thus, at low frequencies ( )0ω ω�  the differential and total atomic/molecular scattering cross     
     sections are strongly frequency-dependent, and behave as: 
 

( ) { }
4

2,
Angular Factoratom

e
o

d
r

d
σ θ ϕ ω

ω
⎛ ⎞

≈ ×⎜ ⎟Ω ⎝ ⎠
 ( )2  per atom/moleculem sr  

     and: 

       
4

28
3atom e

o

rπ ωσ
ω
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

 ( )2 per atom/moleculem  
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          This is type of atomic/molecular scattering of EM plane waves at low frequencies ( )0ω ω�    
     is known as Rayleigh scattering, in honor or Lord Rayleigh, who carried out early theoretical  
     work associated with this topic in the latter part of the 19th century.  
 

          The strong 4ω frequency dependence of the Rayleigh scattering cross section explains why  
     the sky and e.g. pure water (!) appears blue. Blue light is Rayleigh-scattered ~ 4-5× more than   
     red light!  The following picture shows the gorgeous blue color arising from Rayleigh scattering  
     of light in the ultra-pure H2O tank of the Super-Kamiokande experiment (located in Japan): 
 

 
          The behavior of the polarization {asymmetry} ( ) ( )2 2, 0 sin 1 cosunpol

atom θ ϕ θ θ= = +P  for  
     unpolarized incident EM plane waves in the visible portion of the EM spectrum also explains  
     why the light from the sky is polarized, and especially so at ( )90 , 0oθ ϕ= = ! Please go back/ 
     refer to/look at P436 Lecture Notes 13, p. 17-18 where we discussed this originally. 
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2.) Resonance: 0ω ω≈  
     On (or near) a resonance 0ω ω≈  (typically in the UV portion of the spectrum for atoms) the  

     factor ( )22 2
0 0ω ω− ≈ and thus for 0ω ω≈ : 

 

( )
( )24 24

0 0 0
2 2 2 222 2 2 2 00

,1 atom

e

d
r d

σ θ ϕω ω ωω
γ ω γ γω ω γ ω

⎛ ⎞
≈ = = =⎜ ⎟ Ω⎡ ⎤ ⎝ ⎠− +⎢ ⎥⎣ ⎦

 

 

     Since ( )0γ ω ω≈� then ( )2
0 1ω γ � and thus we see that on (or near) a resonance the    

     differential and total atomic/molecular resonant scattering cross sections become extremely  
     large – incident EM radiation is absorbed/re-emitted/scattered prolifically on/near a resonance: 
 

( ) { }
2

2,
Angular Factoratom o

e

d
r

d
σ θ ϕ ω

γ
⎛ ⎞

≈ ×⎜ ⎟Ω ⎝ ⎠
 ( )2  per atom/moleculem sr  

     and: 

       
2

28
3

o
atom er

ωπσ
γ

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
 ( )2 per atom/moleculem  

 

3.) High frequencies: 0ω ω�  
      For high frequencies ( )0ω ω� the bound atomic/molecular electrons behave as if they are free –  

       i.e. as in Thomson scattering of free electrons! When 0ω ω� the behavior of the factor ( )22 2
0ω ω−     

       in 
( )

4

22 2 2 2
0

ω

ω ω γ ω⎡ ⎤− +⎢ ⎥⎣ ⎦

  is ( )22 2 4
0ω ω ω− ≈  and additionally, since 0γ ω� , then for 0ω ω� : 

 

( )
( )4 4 4 2 2

2 22 4 2 2 2 2 2 2 22 2 2 2
0

,11 atom

e

d
r d

σ θ ϕω ω ω ω ω
ωω γ ω ω ω γ ω γω ω γ ω

≈ = = ≈ = =
Ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +− + ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. 

 

     Thus, at high frequencies ( )0ω ω�  the differential and total atomic/molecular scattering  
     cross sections are frequency-independent, and behave essentially identical to those associated     
     with Thomson scattering of free electrons: 
 

       
( ) { }2,

Angular Factoratom
e

d
r

d
σ θ ϕ

≈ ×
Ω

 ( )2  per atom/moleculem sr  

     and: 

       28
3atom er
πσ ≈  ( )2 per atom/moleculem  
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4.) Extremely High frequencies: 2
em cω ≈= (and beyond). 

      At extremely high frequencies, when 2
eE m cγ ω= ≈= the scattering of EM radiation by   

      atoms/molecules is no longer in the non-relativistic regime, and n.b. also violates the second  
      condition of our original Taylor series expansion for EM radiation in the “far-zone” limit  
      { max 1r r′ �  and max max max2 1r c kr rω π λ′ ′ ′= = � } because for 2

eE m cγ ω= ≈= (and beyond),  
      the wavelength λ is comparable to (and/or smaller than) the size of the atom/molecule maxr′ ,  
      thus the requirement max2 1rπ λ′ �  is not satisfied. Thus use of (any) of the above formulae        
      would be extremely precarious in this regime.  
 

           This is the regime of hard x- and γ -ray scattering by {essentially free} electrons bound to        
      atoms/molecules, and is known as Compton scattering, which is essentially “billiard-ball”  
      x- and/or γ -ray photon-electron elastic scattering. In this high frequency/high energy regime,     
      the scattered EM radiation has a different (i.e. lower) frequency than the incident radiation.  
      The classical theory of the scattering of EM radiation is unable to explain, in terms of any 
      kind of macroscopic EM wave phenomena.  
 
           Only the relativistic quantum mechanical theory of photons interacting with electrons 
      {QED} succeeds in properly explaining Compton scattering of  high-energy x- and γ -rays  
      by electrons (and other charged particles).  
 

           For 2
em cω= � the frequency shift is small, but not precisely zero. The classical theory  

       works adequately well in this regime. We will discuss Compton scattering in more detail 
       when we get to the subject of relativistic kinematics (P436 Lect. Notes 17). 
 
 

Scattering of EM Radiation by a Collection of Free Charges, Neutral Atoms and/or Molecules 
 
     Thus far, we have discussed scattering of EM radiation by a single free charge q and/or a 
single neutral atom/molecule. What happens when a macroscopic EM plane wave scatters from a 
collection/ensemble of many such objects? 
 
     Consider what happens when an incident EM plane wave scatters from just two such objects. 
Suppose the first scattering object is located at the origin ( )1 0rϑ =

G  (as before), the other is 
located at an arbitrary position 2 2 2 2ˆ ˆ ˆr x x y y z z= + +

G .  
 
     Since the incident EM wave is a plane wave, the solutions of the two corresponding 
inhomogeneous force equations are such that, at the common retarded time ot  the magnitudes of 

the {complex} induced electric dipole moments are equal to each other: ( ) ( )1 1 2 2, ,o op r t p r t=
G G G G� � , 

i.e. ( )2 2 , op r tG G�  can only differ from ( )1 1, op r tG G�  by a relative phase 
 

( ) ( ) ( ) ( ) 221 21
2 2 1 1 1 1 1 1, , , , incik ri i t

o o o op r t p r t e p r t e p r t eδ ωΔ= = =
G GiG G G G G G G G� � � � . 

 

due to relative arrival time difference ( )21 2inct k r ωΔ =
G Gi  of the incident EM wave at the 2nd 

scattering object, at position 2r
G  relative to the first, located at origin ( )1 0rϑ =

G . 
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     However, this is only half of the story. Because 1pG�  is located at position 1 0r =
G and 2pG�  is located 

at position 2 2 2 2ˆ ˆ ˆr x x y y z z= + +
G , the EM waves simultaneously radiated by each of the two electric 

dipoles at the common retarded time ot  will arrive at the observation/field point position 

( ), , ,P r tθ ϕ  such that the EM  “far-zone” radiation fields associated with dipole # 2 have associated 

with them an additional {relative} phase shift of  221 21 radik ri i te e eδ ω′ ′ −Δ= =
G Gi  due to relative arrival time 

difference ( )21 2radt k r ω′Δ = −
G Gi  of the scattered EM wave at the observation point ( ), , ,P r tθ ϕ  from 

the 2nd scattering object, at position 2r
G  relative to the first, located at origin ( )1 0rϑ =

G . 
 

     Thus, there is an overall phase shift for scatterer # 2 at position 2r
G  relative to scatterer # 1 located 

at origin ( )1 0rϑ =
G of: ( ) 22 221 21 21 21 2inc radinc rad

i k k rik r ik ri i i t i t i k re e e e e e e eδ δ ω ω −′ ′ −Δ Δ Δ= = = =
G G GG G GG G Gii i i  where: inc radk k kΔ ≡ −

G G G
. 

 
     In general, the scattered EM wave(s) radiated from the two induced electric dipole moments 

( )1 1,p r tG G�  and ( )2 2 ,p r tG G� , since the radiation electric fields also obey the superposition principle,  

will subsequently interfere with each other in the “far-zone” at the observation point ( ), , ,P r tθ ϕ . 
 
    We can therefore generalize the above 2-scatterer result for the scattering of an incident EM 
wave to that for a collection of  N  identical scattering objects, each of which is located at position 

ˆ ˆ ˆn n n nr x x y y z z= + +
G  for the nth scattering object, n = 1, 2,3,… N.  Via use of the principle of linear 

superposition, each such identical scattering object will contribute ( )r ,
n

scatE r t
G G  to the overall “far-

zone” EM radiation field at the observation point ( ), , ,P r tθ ϕ . Since the differential and total 
scattering cross sections are both proportional to the modulus-squared of the overall/total EM 

radiation field ( )
2

r ,
tot

scatE r t
G G , where: 

  

( ) ( ) ( ) ( )
1 1r r r r

1 1 1

, , , ,n n

tot n

N N N
i k r i k rscat scat scat scat

n n n

E r t E r t E r t e E r t eΔ Δ

= = =

= = =∑ ∑ ∑
G GG Gi iG G G GG G G G

 where ( ) ( )
1r r, , n

n

i k rscat scatE r t E r t e Δ=
G GiG GG G

 

 

where ( )
1r

,scatE r t
G G  is the scattered “far-zone” radiation field at the observation point ( ), , ,P r tθ ϕ  

associated with a single scattering object located at the origin ( )1 0rϑ =
G . 

 

Then we see that: ( ) ( )
1

2
2 2

r r
1

, ,n

tot

N
i k rscat scat

n

E r t e E r tΔ

=

= ∑
G GiG GG G

 

Defining the so-called complex structure factor:  ( )( ) ( )
2

,

1

, n
N

i k r

n

k e θ ϕθ ϕ Δ

=

Δ ≡ ∑
G GiG

F   

 
and neglecting multiple scattering effects1, the differential scattering cross section associated with 
an incident macroscopic, monochromatic EM plane wave scattering off of a collection/ensemble 
of  N  identical scattering objects (e.g. free electrons, atoms/molecules, etc) can be written as: 
 

                                                 
1 i.e. the mean free path for scattering is large compared to the overall spatial dimensions of the collection of scatterers. 
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( ) ( )( ) ( ) ( ) ( )2
,1 1

1

, , ,
, n

N
i k rN

n

d d d
k e

d d d
θ ϕσ θ ϕ σ θ ϕ σ θ ϕ

θ ϕ Δ

=

= Δ =
Ω Ω Ω∑

G GiG
F  

 

where ( )1 ,d dσ θ ϕ Ω  is the differential scattering cross section associated with a single 

scattering object located at the origin ( )1 0rϑ =
G . 

     It can be seen that the numerical effect of the structure factor  ( )( ) ( )
2

,

1

, n
N

i k r

n

k e θ ϕθ ϕ Δ

=

Δ ≡ ∑
G GiG

F   

on the overall differential scattering cross section ( ),Nd dσ θ ϕ Ω  depends very sensitively on 
the exact/precise details of the spatial distribution of the  N  identical scattering objects. 
 
     First, let us consider again the case of only two scattering objects for forward scattering, when 

0θ = . Then for two identical scattering objects, the structure factor: 
 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

2 2 2 2

2 2

22
, , , , ,

1

, ,
2 2

, 1 1 1 1

                      2 2 2cos , 2 1 cos ,

ni k r i k r i k r i k r i k r

n

i k r i k r

k e e e e e

e e k r k r

θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ

θ ϕ

θ ϕ θ ϕ

Δ Δ − Δ Δ − Δ

=

Δ − Δ

Δ ≡ = + + = + + +

⎡ ⎤= + + = + Δ = + Δ⎣ ⎦

∑
G G G G GG G G G Gi i i i i

G GG Gi i

G

G GG Gi i

F
 

 

     However, for forward ( )0θ =  scattering this means that:  ˆrad inck k z= =
G G

   i.e. ˆrad inck k z
G G
& &   

and thus:  ( )0, 0inc radk k kθ ϕΔ = = − =
G G G

  and hence:  ( )( ) ( )0, 0 2 1 cos 0 4k θ ϕΔ = = = + =⎡ ⎤⎣ ⎦
G

F .  
 
     Thus we see that two identical scattering objects always constructively interfere with each 
other for forward ( )0θ =  scattering, independent of the location 2r

G  of the 2nd scatterer relative to 

that of the first, located at the origin ( )1 0rϑ =
G . For forward ( )0θ =  scattering the {relative} 

time delay 2 2t z cΔ =  in the arrival of the incident EM  plane wave at the z-location of the 2nd 
scattering object is exactly compensated by the {relative} decrease in the arrival time 

2 2t z cΔ = −  of the scattered/radiated wave in the “far-zone” at the observer’s position at 

( ), 0,r θ ϕ= . 
 

     Noting that since: ( )0, 0inc radk k kθ ϕΔ ≡ = − =
G G G

 for all  N  identical scattering objects for 

forward ( )0θ ≡  scattering, we see that for forward ( )0θ ≡ scattering of an incident EM plane 

wave by N identical scattering objects, the structure factor ( )( )0, 0k θ ϕΔ ≡ =
G

F becomes: 
 

( )( ) ( ) 1 2

2

2 22 2 2 20 0 00 0 2

1 1

0, 0 ... 1 1 ... 1n n Ni k r i r i ri r i r

n n
N

k e e e e e Nθθ ϕ Δ =

= =
=

Δ ≡ = = = = + + + = + + + =∑ ∑
G G GG GG G GG Gi i ii i

G
���	��
F  

 
and thus we see that  N  identical scattering objects always constructively interfere with each 
other for forward ( )0θ ≡  scattering, independent of the z-location of the nth scatterer relative to 

that of the first {located at the origin ( )1 0rϑ =
G }. 
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Thus, the forward ( )0θ ≡  differential scattering cross section associated with  N  identical 
scatterers is: 

( ) ( )120, 0,Nd d
N

d d
σ θ ϕ σ θ ϕ≡ ≡

=
Ω Ω

 
 

It can also be seen that for backward ( )θ π≡ scattering the situation is not the same as for forward 

( )0θ ≡  scattering. Again, we consider the two-scatterer case: when θ π=  then: ˆrad inck k z= − = −
G G

 

and: ( ), 2 0inc rad inck k k kθ π ϕΔ ≡ = − = ≠
G G G G

 and: ( )( ) ( )2, 2 1 cos 2 inck k rθ π ϕ ⎡ ⎤Δ ≡ = +⎣ ⎦
G G GiF . 

 

When: ( )22 2 ,  1, 2,3...inck r n nπ= =
G Gi  {i.e. certain (angular) frequencies 2n nck n c zω π= = }  

Then:  ( ) ( )2cos 2 cos 2 1inck r nπ= =
G Gi  and: ( )( ), 4k θ π ϕΔ = =

G
F  resulting in constructive 

interference for backward ( )θ π≡  scattering. 
 

When: ( ) ( )22 2 1 ,  1, 2,3...inck r n nπ= − =
G Gi  {i.e. certain other (angular) frequencies 

( )1
22 2 1n nck n c zω π′ ′= = − } then: ( ) ( )( )2cos 2 cos 2 1 1inck r n π= − = −

G Gi  and: ( )( ), 0k θ π ϕΔ ≡ =
G

F  

resulting in destructive interference for backward ( )θ π=  scattering! 
 

     Thus, for backward ( )θ π≡  scattering with  N  identical scatterers, only if the scatterers are 
arranged in some kind of highly-organized, regular array/3-D lattice (e.g. such as a crystal), will 
coherent backward scattering effects (i.e. constructive/destructive interference effects) be observable.  
 
     In general, if the  N   identical scatterers are randomly organized, such as in a plasma, a gas, a 
liquid or an amorphous solid, then it can be shown that the terms with m n≠  in the structure factor: 
 

( )( ) ( ) ( ) ( )
2

,,

1 1 1

, n mn
N N N

i k r ri k r

n n m

k e e θ ϕθ ϕθ ϕ Δ −Δ

= = =

Δ ≡ =∑ ∑∑
GG G GG iiG

F  

 

contribute very little to the overall value of ( )( ),k θ ϕΔ
G

F , due to stochastic cancellations  

{n.b. the same principle is used to balance turbine blade assemblies in constructing jet engines}. 
 

Thus, for a random collection of  N  identical scatterers, when m n=  the double series associated 
with ( )( ),k θ ϕΔ

G
F  becomes: 

( )( ) ( ) ( ) ( ) ( ), , 0

1 1 1
, 1n n

N N N
i k r r i k

n n n
k e e Nθ ϕ θ ϕθ ϕ Δ − Δ

= = =

Δ = = = =∑ ∑ ∑
G GG Gi iG

F  

and thus the differential scattering cross section associated with  N  randomly distributed 
identical scatterers (except for the precisely 0θ ≡  forward scattering) is: 

( ) ( )10, 0,Nd d
N

d d
σ θ ϕ σ θ ϕ> >

=
Ω Ω

 

The overall scattering in this randomly-distributed situation is known as “incoherent scattering”. 
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     For the situation associated with the scattering of a macroscopic, monochromatic EM plane 
wave incident on a highly regular, cubical 3-D crystalline-type array/lattice consisting of  N  
identical scattering objects (e.g. atoms or molecules) of dimensions x y zW H D L L L× × = × ×  and 

lattice constant / lattice spacing a  and ( ) ( ) ( )x y z x y zN N N N L a L a L a= = ⋅ ⋅  where the jN are 
the # of lattice sites in the jth direction, the structure factor for this highly regular array of  N  
identical scatterers is: 
 

( )( ) ( ) ( )
( )

( )
( )

( )
( )

2 22 211 1
2, 2 22

2 2 2 22 21 11
1 2 22

sinsin sin
,

sin sinsin
n

N
y yi k r x x z z

n x x z zy y

N k aN k a N k a
k e N

N k a N k aN k a
θ ϕθ ϕ Δ

=

⎧ ⎫⎛ ⎞Δ⎛ ⎞ ⎛ ⎞Δ Δ⎪ ⎪⎜ ⎟Δ ≡ = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ΔΔ⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
∑

G GiG
F  

 

     At low frequencies/long wavelengths ( )aλ � , only the forward-scattering peak at 0jk aΔ =  

contributes to ( )( ),k θ ϕΔ
G

F because {here} the maximum possible value of jk aΔ  is: 2 4 1ka aπ λ= � . 

In this forward-scattering/small angle regime, using the small-angle Taylor series approximation 
for ( ) ( )22 1 1

2 2sin x xk a k aΔ Δ� , the structure factor becomes: 
 

( )( ) ( )
( )

( )
( )

( )
( )

( ) ( ) ( )

22 211 1
22 22

2 2 21 11
2 22

2 2 2 21 1 1
2 2 2

sinsin sin
0,

                            sinc sinc sinc

y yx x z z

x x z zy y

x x y y z z

N k aN k a N k a
k N

N k a N k aN k a

N N k a N k a N k a

θ ϕ
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ΔΔ Δ⎪ ⎪⎜ ⎟⎜ ⎟ ⎜ ⎟Δ ≈ ⋅ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ΔΔ⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

= Δ ⋅ Δ ⋅ Δ

G
�F

 where ( ) sinsinc xx
x

≡  

 
A graph sinc(x) vs. x is shown in the figure below: 
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     In the low-frequency/long-wavelength regime, from the above graph of  sinc(x) vs. x  it can 
be seen that the structure factor ( )( )0,k θ ϕΔ ≈

G
F  is only appreciable when 1

2 j jN k a πΔ ≤ , 

which corresponds to an angular region of forward scattering 2j jk a Nθ πΔ ≈ Δ ≤ , which 

becomes exceedingly small as jN →∞ .  
 

     Note that for a typical lattice constant 105Å 0.5 5 10a nm m−= = ×∼  and a typical macroscopic 
sample size of  1 0.01 jL cm m= =   then: 2 10 710 5 10 2 10j jN L a − −= ≈ × = × , corresponding to a 

forward scattering angular region of:  7 72 2 10 10 0.3radians radθ π π μ−Δ ≤ × ≈ × ∼  !!! 
 
    Thus, in regular crystalline arrays of scattering objects, e.g. single crystals of transparent 
minerals such as diamond, emerald, quartz, rock salt, etc. there is essentially no scattering at long 
wavelengths {except in the extreme forward direction}. The very small amount of large-angle 
scattering that does occur in such samples is caused by/due to transitory thermal vibrations of the 
atoms in the lattice away from the “perfect” configuration of the 3-D crystalline lattice. 
 

     At high frequencies/short wavelengths ( )2 ~ 1 a nmλ <  i.e. when ka π>  – typically in the  

x-ray region of the EM spectrum – the structure factor ( )( ),k θ ϕΔ
G

F  has maxima when the  

so-called Bragg scattering condition is satisfied: 2jk a nπΔ =   or:     

  
4 22 sin sinj inc j j

nk k
a

π πθ θ
λ

Δ = = = , i.e. when 2 sin jn aλ θ= . 
 

   
           Crystal planes spaced distance  a  apart   Typical X-ray diffraction pattern 
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Experimental Aspects, Applications and Uses of 
the Measurement of Differential and Total Scattering Cross Sections 

 
     At the beginning of these lecture notes, the theoretical/mathematical definitions of the 
differential and total scattering cross sections were given: 
 

Differential Scattering Cross Section {SI units: 2m sr  per scattering object}:  
 

( )
( )

( )
( )

( ) ( )
( )

2

00

ˆ,, , , ,, 1 1
0 ˆ,,

radrad radscat

inc incinc rr

S r t r rd P t d P td
d I r d d S r t zS r t

θ ϕ θ ϕσ θ ϕ

==

≡ = =
Ω = Ω Ω

G G i
GG G GG i

 

 
     The differential scattering cross section {SI units: m2/sr} is the time-averaged differential/ 
angular EM power {SI units: Watts/sr} radiated by a scattering object (or a collection/ensemble 
of scattering objects) into solid angle ( ), cos sind d d d dθ ϕ θ ϕ θ θ ϕΩ = = , normalized to the  
time-averaged flux of EM energy (= EM intensity incI , aka irradiance) {SI units: Watts} incident 
on the scattering object/objects located at the origin ( )0rϑ =

G . 
 
From the RHS of the above equation, we also see that: 
 

( ) 2

2

      ,
  

     
scat Scattered Flux of EM Radiation Unit Solid Angled Watts sr m
d Incident Flux of EM Radiation Unit Area Watts m sr

σ θ ϕ ⎛ ⎞⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟Ω ⎝ ⎠ ⎝ ⎠

 

 

Total Scattering Cross Section {SI units: Area, i.e. 2m  per scattering object}: 
 

( )
( )

( )
( )

( )
( )

( )
( )

( )2

0 0 0

ˆ,, , ,
0 , , ,

radradrad rad scat
scat

inc inc inc inc
r r r

d S r t r r dd P t dP t P t d
d

I r dS r t S r t S r t

θ ϕ σ θ ϕ
σ

= = =

ΩΩ
≡ = = = = Ω

= Ω
∫∫ ∫

G G i
G G G GG G G

 
   The total scattering cross section{SI units: m2} is the time-averaged total EM power {SI units: 
Watts} radiated into all angles {i.e. 4π steradians (sr)} by a scattering object (or a collection / 
ensemble of scattering objects) normalized to the time-averaged flux of EM energy (= EM 
intensity incI , aka irradiance) {SI units: Watts} incident on the scattering object/objects located 
at the origin ( )0rϑ =

G . 
 
From the RHS of the above equation, we also see that: 
 

( )2
2

       4  
  

     scat

Total Scattered Flux of EM Radiation into sr Watts m
Incident Flux of EM Radiation Unit Area Watts m

π
σ

⎛ ⎞
≡ =⎜ ⎟

⎝ ⎠
 

 
 
 
 
 
 
 

per 
scattering 

object 

per 
scattering 

object 
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     In many common experimental situations associated with the scattering of a macroscopic EM 
plane wave incident on a collection/ensemble of  N  identical scattering objects – e.g. free 
electrons/ions in plasmas, or e.g. neutral atoms/molecules in solids, liquids and/or gases,  the 
{instantaneous} 3-D positions of the scattering objects are randomly distributed. For a collection 
of  N  identical randomly distributed scattering objects, we have shown that the structure factor 

( )( ),k Nθ ϕΔ =
G

F  {except for precisely 0θ ≡ forward scattering, where ( )( ) 20,k Nθ ϕΔ ≡ =
G

F } 

and thus the so-called incoherent differential scattering cross section associated with the 
collective scattering of an incident EM plane wave by N  identical randomly distributed scatterers 
(except for precisely 0θ ≡  forward scattering) is: 
 

( ) ( )10, 0,Nd d
N

d d
σ θ ϕ σ θ ϕ> >

=
Ω Ω

 
 
     Next, we consider a monochromatic macroscopic EM plane wave propagating in the  

ẑ+ -direction normally incident on a target consisting of a slab of “generic” matter (plasma, gas, 
liquid or solid) of macroscopic volume ( )3V H W D m= × ×  consisting of a total of  N  randomly 

distributed identical scattering objects, characterized by a number density ( )3#n N V m=  and 

mass volume density ( )3M V kg mρ = . The incident EM plane wave uniformly illuminates the 

cross sectional area A H W⊥ = × of the target slab of “generic” matter. 
 
     The macroscopic EM plane wave enters the front face of the target at normal incidence at  
z = 0, and after propagating an infinitesimal longitudinal distance dz into the target, the 

( )dN N dz D=  randomly-distributed scattering objects contained within this infinitesimal 
thickness dz of the target have collectively absorbed and then re-radiated into 4π steradians a 
time-averaged amount of power odP  from the incident EM plane wave of  {n.b. turning the 

total cross section (per scattering object!) relation around: ( ) ( )rad scat oP t I Wattsσ=  per 
scattering object}: 
 

( ) ( ) ( ) ( )o o o o o odP dN I N dz D I N dz A D I A N V dz I A n dzI A Wattsσ σ σ σ σ⊥ ⊥ ⊥ ⊥= = = = =  
 

which corresponds to a decrease/reduction/loss in the incident intensity oI over the infinitesimal 
distance dz of: 
 

( )2o
o o

dP
dI n I dz Watts m

A
σ

⊥

= = −  with corresponding –ve slope: ( )3o
o

dI n I Watts m
dz

σ= −  

 
Then for propagation of the macroscopic EM wave a longitudinal distance z into the target, this 
latter relation becomes: 
 

( ) ( )( )3dI z
n I z Watts m

dz
σ= −   which can be rearranged as: 

( ) ( ) 0
dI z

n I z
dz

σ+ =  
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This relation is a simple homogeneous first-order differential equation with boundary conditions: 
( )0 oI z I= =  and: ( ) 0I z = ∞ = . The specific solution to this differential equation is: ( ) n z

oI z I e σ−= . 
 

     Thus we see that the incident EM plane wave is exponentially attenuated to 11  0.368e e−= =  
of its initial intensity oI  in propagating a characteristic longitudinal distance known as the 

attenuation length  1atten nλ σ≡  ( )m  into the target. Then: ( ) attenz n z
o oI z I e I eλ σ− −= = .  

 

     The reciprocal of the attenuation length attenλ  is known as the absorption coefficient: 

1 atten nα λ σ≡ =  ( )1m− . Then: ( ) attenzz n z
o o oI z I e I e I eλα σ−− −= = = . 

 

Using an isothermal model of the earth’s atmosphere (i.e. the density ρair varies exponentially 
with altitude), 25~ 2.7 10airn × molecules/m3 , typical value(s) of the attenuation length for 
Rayleigh scattering of visible light by N2 and O2 molecules in the earth’s atmosphere are: 
 

Red light    (λ = 650 nm): ~ 188 atten kmλ  
Green light (λ = 520 nm): ~   77atten kmλ  
Violet light (λ = 410 nm): ~   30atten kmλ  

 
          The % scattering of {direct} sunlight in the earth’s atmosphere as a function of wavelength  
     λ  is shown in the figure below: 

 
 Image: Copyright Robert A. Rohde, 2007  
 http://en.wikipedia.org/wiki/Image:Rayleigh_sunlight_scattering.png 
 
     Note also that Rayleigh scattering of the sun’s light by air molecules in the earth’s atmosphere 
is also is responsible for giving the sky its apparent height above the ground. 
 



UIUC Physics 436 EM Fields & Sources II        Fall Semester, 2011       Lect. Notes  14.5       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

40 

Plots of the attenuation/absorption length attenλ and the absorption coefficient 1 attenα λ≡ for pure 
water (& ice) vs. wavelength are shown in the figures below:  
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Typical Experimental Apparatus to Measure a Differential Scattering Cross Section 
 
     A typical experimental setup used to measure a differential scattering cross section is shown 
in a plan view in the figure below, in the x-z scattering plane: 
 

     The “generic” EM radiation detector, located a distance R away from the center of the target 
at polar angle θ  subtends a solid angle dΩ  from a point target. If the target has finite spatial 
extent, then one obtains the solid angle subtended by the detector for a finite-volume target by 
integrating over the volume of the target to obtain the target-weighted solid angle. In principle, 
corrections also need to be made for a.) attenuation of the incident EM intensity in propagating 
through the target and b.) multiple scattering of the incident EM radiation and also of the 
scattered EM radiation in getting out the target; all of which become increasingly important for a 
thick target. 
 
     Depending on the physics associated with the scattering of incident EM radiation in the target, 
a specific choice must be made for the detector that is used for measuring the EM radiation 
scattered into solid angle ( ), 0d θ ϕΩ = . For example, for if  one is interested in measuring the 
differential scattering cross section associated with a continuous, high-intensity beam of incident 
EM radiation in the infra-red (IR), visible or ultra-violet (UV) light region, use of an absolutely-
calibrated {NIST-traceable} spectro-photometer with associated readout electronics {aka 
radiometer} is frequently used, as shown in the figures below: 
 

ẑ  

x̂  

θ  

ϑ  

dΩ  

r̂  

Generic EM 
Radiation 
Detector 

Incident EM 
Plane Wave

Target

R
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International Light IL1700 Research Radiometer + Photometer: 

 

Absolute calibration of photometer response (Ampere-cm2/Incident Watt) vs. wavelength λ: 

         ← UV → | ←Visible →  |  ← IR →        Wavelength, λ (nm) 
 
     The spectrophotometer {of active area spA } is frequently some kind of photodiode.  
The photocurrent {in Amperes} produced in the junction of the photodiode by the EM radiation 
incident on the spectrophotometer is accurately measured by the accompanying electronics of the 
radiometer. Note that there is great flexibility in the experimental setup – it could use incident 
EM radiation that is polarized in some manner (e.g. LPx, LPy, RCP, LCP etc) and/or for e.g. 
unpolarized EM radiation incident on the target, polarizing filters can be placed in front of the 
spectrophotometer to measure e.g. ( ), 0unpold dσ θ ϕ = Ω&  and ( ), 0unpold dσ θ ϕ⊥ = Ω  and the 

polarization {asymmetry} ( ), 0unpol
atom θ ϕ =P , etc.  
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     In some physics situations, the illuminated target is e.g. a biological sample of some kind and 
the detector of the scattered radiation is e.g. a microscope + CCD (or CMOS) camera, usually 
oriented at fixed scattering angle, e.g. ( )2, 0θ π ϕ= = . Again the incident EM radiation could 
{additionally} be polarized in some manner, or if unpolarized EM radiation is incident, then  
polarizing filters placed upstream of the camera can be used to analyze the &  vs. ⊥  polarization 
states of the scattered EM radiation. 
 
    In other physics situations where the intensity of the incident EM radiation is extremely low, 
the photodetector of choice often is a low-noise photomultiplier tube (PMT) or avalanche 
photodiode (APD), often thermo-cooled {or even LN2 or LHe-cooled!} in order to reduce finite 
temperature/thermal “dark noise”. These detectors then count single photons scattered from the 
target. The {wavelength-dependent} quantum efficiency (QE) of the photon detector used in 
such scattering experiments must therefore be accurately known; typical QE’s are on the order of 
~ 10-20%. 
 
     In P436 Lecture Notes 5 (p. 18-26) we discussed the connection between intensity I  and the 
{time-averaged} number of photons ( )n tγ  e.g. associated with a laser beam with photon 

energy E hf hcγ γ γλ= = : 
 

( ) ( ) ( ) ( )
rms

22EM o oI S t c u t E t E c n t Eγ γ γ γε≡ = = = =
G

F    2

Watts
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Thus, counting photons {quanta of the EM field} within solid angle dΩ  at fixed scattering angle 
( ), 0θ ϕ = is equivalent to measuring intensity scatI  within solid angle dΩ  at fixed scattering 

angle ( ), 0θ ϕ = . 
 
     Sometimes an EM wave scattering experiment involves e.g. microwaves or radio waves – e.g. 
such as in RADAR applications. In engineering parlance, the type of scattering cross section(s) 
that we have been discussing here in these lecture notes are all known as bi-static cross section 
measurements, because the location of the source used to illuminate the target with EM radiation 
is distinct from the location of the detector of the scattered EM radiation. A mono-static cross 
section measurement is where the source and detector are co-located at the same point – i.e. the 
detector only measures back-scattered ( )θ π=  EM radiation. Additionally, engineers define the 

RADAR differential scattering cross sections (RCS) differently than physicists, as: ( )4 d dπ σ Ω . 
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     A typical differential RCS e.g. for a B-26 Invader 
is shown as a polar plot in the figure on the right.  
 
     All airplanes {unless “stealthified”} have a 
characteristic/distinct type of differential RCS that 
can be useful e.g. in identifying the type of plane. 
 
     In plasma physics – e.g. fusion/tokamak 
applications, the differential Thomson scattering 
cross section {at small scattering angles} is 
commonly used as a diagnostic tool e.g. using a 
{fairly high-powered} laser to monitor the number 
density and also the temperature of the plasma.  
 
     Thomson scattering of electrons in the tenuous 
plasma surrounding our sun can be seen e.g. during a 
total eclipse of the sun – this is the sun’s corona! 
NASA’s STEREO mission generates 3-D images of 
the sun by measuring the sun’s so-called K-corona using  
two satellites, as shown in the RHS picture below: 
 
     The maximum possible EM luminosity of a star is 
determined by the balance between the inward-directed 
gravitational force 2

grav N star pF G M m r=  and the 
outward-directed force due to radiation pressure 
associated with Thomson scattering of electrons 

24e
rad star TF crσ π

−

= L  on the plasma surrounding the 
star (assumed here to be 100% ionized hydrogen).  
The condition that grav radF F≥  constrains the maximum 
luminosity of the star, known as the Eddington limit  
(in honor of Sir Arthur S. Eddington):  
 

( )

31

4

4 1.3 10

       3.3 10

e
star N star p T

star

G M m c Watts

M M

π σ
−

≤ ×

≤ × : :

�L

L
 

 

where the sun’s mass: 302 10M kg×: � and our  
suns’ solar luminosity: 263.85 10  Watts×: �L  
 
     The cosmic microwave background (CMB) 
 – a relic of the Big Bang – is partially linearly 
polarized due to Thomson scattering on electrons. 
CMB experiments such as WMAP and the future 
Planck mission measure/will measure the 
polarization of the CMB radiation. 
 
 


