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LECTURE NOTES 19 
 

LORENTZ TRANSFORMATION OF ELECTROMAGNETIC FIELDS  
(SLIGHT RETURN) 

 
     Before continuing on with our onslaught of the development of relativistic electrodynamics 
via tensor analysis, I want to briefly discuss an equivalent, simpler method of Lorentz 
transforming the EM fields  and E B

G G
 from one IRF(S) to another IRF(S'), which also sheds some 

light (by contrast) on how the EM fields Lorentz transform vs. “normal” 4-vectors. 
 
     In P436 Lecture Notes 18.5 {p.18-22} we discussed the tensor algebra method for Lorentz 
transformation of the electromagnetic field e.g. in the lab frame IRF(S), represented by the EM 
field tensor vF μ to another frame IRF(S'), represented by the EM field tensor vF μ′ via the relation:  
 

v vF Fμ μ λσ
λ σ′ = Λ Λ . 

 
     Analytically carrying out this tensor calculation by hand can be tedious and time-consuming. 
If such calculations are to be carried out repeatedly/frequently, we encourage people to code this 
up and simply let the computer do the repetitive work, which it excels at. 
 
     For 1-dimensional Lorentz transformations (only) there is a simpler, less complicated, 
perhaps somewhat more intuitive method. Starting with the algebraic rules for Lorentz-
transforming {  and E B

G G
} in one IRF(S) to { and E B′ ′

G
} in another IRF(S') e.g. moving with 

relative velocity ˆv vx= +
G

 with respect to IRF(S): 
 

&  component(s): x xE E′ =    x xB B′ =        21 1γ β≡ −  

⊥  components: ( )y y zE E cBγ β′ = −   ( )y y zB B E cγ β′ = +       v cβ ≡  

   ( )z z yE E cBγ β′ = +   ( )z z yB B E cγ β′ = +  
 

     We can write these relations more compactly and elegantly by resolving them into their &  and 
⊥  components relative to the boost direction: here, &  is along ˆv vx= +

G
  and⊥  is perpendicular 

to vG , defined as follows {n.b in general, vG  could be &  e.g. to ˆ ˆ ˆˆ, ,  or x y z r }: 
 

E E′ =& &       v cβ ≡
G G

 

( ) ( )E E v B E c Bγ γ β⊥ ⊥ ⊥ ⊥ ⊥′ = + × = + ×
GG

  21 1γ β≡ −  
 

B B′ =& &  

2

1 1B B v E B E
c c

γ γ β⊥ ⊥ ⊥ ⊥ ⊥⎛ ⎞ ⎛ ⎞′ = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

GG
 

 

Now since ˆv vx= +
G

 {here} then xE E≡& , xB B≡&  and ˆ ˆy zB B y B z⊥ ≡ + , ˆ ˆy zE y z⊥ ≡ Ε +Ε   
{and similarly for corresponding quantities in IRF(S')}. 
 



UIUC Physics 436 EM Fields & Sources II           Fall Semester, 2011         Lect. Notes  19       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

2 

Since ˆv vx= +
G

 and  xE E≡&  then:  ˆ 0xv E v E x⊥× = × =
G G

  

And likewise, since xB B≡&  then:  ˆ 0xv B v B x× = × =&G G
. 

 

Thus, we can {safely} write: v E v E⊥× = ×
GG G

 and v B v B⊥× = ×
GG G

, as long as vG  is always &  to one 
of the components of  and E B

G G
 - e.g. ˆ ˆ ˆor  or x y z . 

 
Then we can write the Lorentz transformation of EM fields as: 
 

E E′ =& &       v cβ ≡  

( ) ( )E E v B E c Bγ γ β⊥ ⊥ ⊥′ = + × = + ×
GG GG

  v cβ ≡
G G

 

B B′ =& &  

2

1 1B B v E B E
c c

γ γ β⊥ ⊥ ⊥⎛ ⎞ ⎛ ⎞′ = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

GG GG
  21 1γ β= −  

 
This can be written more compactly in 2-D matrix form as: 
 

                 EM Fields:   “Normal” 4-Vector: 
E E
cB cB
′⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

& &

& &        →  and E E B B′ ′= =& & & &     ← compare to → x x⊥ ⊥′ =  

 

1 0
0 1

E E
cB cB
′⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

& &

& &  
E E
cB cB

γ γβ

γβ γ

⊥ ⊥

⊥ ⊥

⎛ ⎞+ ×′⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ − ×⎝ ⎠ ⎝ ⎠⎝ ⎠

G
G   ↔ 

x x
ct ct

γ γβ
γβ γ

−′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

& &

 

 
            Unit Matrix      Operator Matrix    Scalar Matrix 
 

     Thus, we see that for the EM fields vs. the 3-D space-part of a “normal” 4-vector, the &  vs. ⊥  
components are switched, B

G
 transforms “sort of” like time t, but 2 × 2 Lorentz boost matrices 

for (  and E B
G G

) vs. 4-vectors are not the same (they are similar, but they are not identical). 
 
     We can also write compact inverse Lorentz transformations (e.g. from IRF(S') rest frame → 
IRF(S) lab frame): 
 

                 EM Fields:   “Normal” 4-Vector: 
E E
cB cB

′⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

& &

& &        →   and  E E B B′ ′= =& & & &    ← compare to → x x⊥ ⊥′=  

 

1 0
0 1

E E
cB cB
′⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

& &

& &  
E E
cB cB

γ γβ

γβ γ

⊥ ⊥

⊥ ⊥

⎛ ⎞− × ′⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ′+ ×⎝ ⎠ ⎝ ⎠⎝ ⎠

G
G   ↔ 

x x
ct ct

γ γβ
γβ γ

+ ′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟+ ′⎝ ⎠⎝ ⎠ ⎝ ⎠

& &

 

 
            Unit Matrix      Operator Matrix    Scalar Matrix 
 
 
 



UIUC Physics 436 EM Fields & Sources II           Fall Semester, 2011         Lect. Notes  19       Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2011.  All Rights Reserved. 

3

For a general Lorentz transformation (i.e. no restriction on the orientation of vG  {arbitrary}): 
 
A.)  Lorentz transformation from IRF(S) → IRF(S'): 
 

( ) ( )
2

1
E E c B Eγγ β β β

γ
′ = + × −

+

G G GG G G G
i    v cβ =

G G
   v cβ =  

( )
21
1

B B E B
c

γγ β β β
γ

⎛ ⎞′ = − × −⎜ ⎟ +⎝ ⎠

G G GG G G G
i    21 1γ β= −  

Or: 

operator matrix

1
1

1
1

E E
cB cB

γγ ββ γβ
γ

γγβ γ ββ
γ

⎛ ⎞⎛ ⎞⎛ ⎞
− + ×⎜ ⎟⎜ ⎟⎜ ⎟+⎛ ⎞ ⎛ ⎞′ ⎝ ⎠⎝ ⎠⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟′ ⎛ ⎞⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟− × −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

G G G
iG G

G G
G G G

i
���������	��������


 

 
B.) Inverse Lorentz transformation from IRF(S') → IRF(S): 
 

( ) ( )
2

1
E E c B Eγγ β β β

γ
′ ′ ′= − × −

+

G G GG G G G
i   

( )
21
1

B B E B
c

γγ β β β
γ

⎛ ⎞′ ′ ′= + × −⎜ ⎟ +⎝ ⎠

G G GG G G G
i  

Or: 

operator matrix

1
1

1
1

E E
cB cB

x

γγ ββ γβ
γ

γγβ γ ββ
γ

⎛ ⎞⎛ ⎞⎛ ⎞
− − ×⎜ ⎟⎜ ⎟⎜ ⎟+⎛ ⎞ ⎛ ⎞′⎝ ⎠⎝ ⎠⎜ ⎟= ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎛ ⎞⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

G G G
iG G

G G
G G G

i
���������	��������


 

 
 

Electrodynamics in Tensor Notation 
 
     So now that we know how to represent the EM field in relativistic tensor notation (as 

 or v vF Gμ μ ), we can also reformulate all laws of electrodynamics (e.g. Maxwell’s equations, the 
Lorentz force law, the continuity equation {expressing electric charge conservation}, etc. . . ) in 
the mathematical language of tensors. 
 
     In order to begin this task, we must first determine how the sources of the EM fields – the 
electric charge density ρ  (a scalar quantity) and the electric current density J

G
 (a vector quantity) 

Lorentz transform. 
 

The electric charge density Q Vρ =  = charge per unit volume (Coulombs/m3) 
 

Switch β β→ −
G G

, E E′→
G G

 and 

B B′→
G G

 in above relations 
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    Imagine a cloud of electric charge drifting by.  Concentrate on an infinitesimal volume V 
containing charge Q moving at (ordinary) velocity uG : 

 
Then: Q Vρ =  = charge density (Coulombs/m3) 
 

And:    J uρ=
G G

    = current density (Amps/m2). 
 
 

A subtle, but important detail: 
 
     If there is only one species (i.e. kind / type) of charge carrier contained within the 
infinitesimal volume V, then they all travel at the same (average / mean) speed uG . 
 
     However, if there are multiple species (kinds / types) of charge carriers (e.g. with different 
masses) or different signs of charge carriers contained within the the infinitesimal volume V  
(e.g. electrons e− with rest masses mec2 and protons p with rest masses mPc2) then the different 
constituents / species must be treated separately in the following: 
 
If ∃  N species:  

Current density i i iJ uρ=
G G

  for the ith species (i = 1, . . ., N), the electric charge density i iQ Vρ =  

And:       
1 1

N N

i i i
i i

J J uρ
= =

= =∑ ∑
G G G

 

 

     We also need to express  and Jρ
G

 in terms of the proper charge density 0ρ  = volume charge 
density defined in the rest frame of the charge Q, IRF(S0). 
 
The infinitesimal rest volume / proper volume = V0 {defined in rest/proper frame IRF(S0)} 
 

The proper charge density: 0 0Q Vρ =  ←  
 
     Because the longitudinal direction of motion undergoes Lorentz contraction from the rest 
frame IRF(S0) in the Lorentz transformation →  another reference frame, e.g. lab frame IRF(S) 
 

Then: 0
1

u

V V
γ

=   where:  0 0 0 0V w d= A   and:  V wd= A ,  where: 
2

1
1

u

u

γ
β

=
−

  and: u
u
c

β =  

 

If the Lorentz transformation is along (i.e. || to) the length 0,A A  of the infinitesimal volumes 

Then:  0
1

uγ
=A A  and the ⊥  components of the volumes are unchanged: 0w w= , 0d d= . 

 

Then if: 0
1

u

V V
γ

=   →  0
0

u u
Q Q
V V

ρ γ γ ρ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 ∴ ( )0 0u uJ u u uρ γ ρ ρ γ= = =
G G G G

 

Recall that the 3-D vector associated with the proper velocity is:     u
du
d

η γ
τ

⎛ ⎞
= ≡⎜ ⎟

⎝ ⎠

JJG
G AG

 ∴ 0J ρ η=
G G

 

Recall that electric charge Q (like c) is 
a Lorentz invariant scalar quantity 
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The zeroth (i.e. temporal/scalar) component of the proper 4-velocity is: 
0

0 u
dx dtc c
d d

η γ
τ τ

≡ = =  
 

The corresponding zeroth (i.e. temporal/scalar) component of the current density 4-vector J μ  is: 
  

( )0 0
0 0 0u uJ c c c cρ η ρ γ γ ρ ρ ρ≡ = = = =  

 

The current density 4-vector is:  ( ) ( ), , , ,x y zJ c J c J J Jμ ρ ρ= =
G

  (SI units: Amps/m2) 
 

Then: 0J μ μρ η=   where:  ( ) ( ) ( ), , , , ,u u u u x y zc u c u c u u uμη γ γ γ γ= = =
G G

 
 constant / scalar quantity 

 

∴ J μ  is a proper four vector,  i.e. J μ  = proper current density 4-vector. 
 

Thus: J J J Jμ μ
μ μ=  is a Lorentz invariant quantity. Is it ??? 

 

( ) ( )
2

2
2 2 22 22 2 2 2 2 2 2 2

0 0 0 0 02 2
2 2

1

1 1
u x y z

u

u
c u cJ J J J c u u u c c

u u
c c

μ μ μ
μ μ μρ η η ρ γ ρ ρ ρ

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ −− +⎜ ⎟ ⎜ ⎟⎜ ⎟= = = − + + + = = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
��	�


 

( )2 2 2
0 0 0J J J J cμ μ μ μ

μ μ μ μρ ρ η η ρ η η= = − = =    {we also know that: 2cμ μ
μ μη η η η= = − } 

 

Yes,    J J J Jμ μ
μ μ=   is a Lorentz invariant quantity! 

 
The 3-D continuity equation mathematically expresses local conservation of electric charge 
(using differential vector calculus): 
 

( ) ( ),
,

r t
J r t

t
ρ∂

∇ = −
∂

GG G Gi   ( ),r tρ G  = scalar point function, ( ),J J r t=
G G G  = 3-D vector point function 

 

ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

G
 (in Cartesian coordinates) 

 
We can also express the continuity equation in 4-vector tensor notation: 
 

3

1

i
yx z

i
i

JJ J JJ
x y z x=

∂∂ ∂ ∂
∇ = + + =

∂ ∂ ∂ ∂∑
G G
i    And:  

0 0

0

1 J J
t c t x
ρ∂ ∂ ∂
= =

∂ ∂ ∂
  ( 0J cρ= ) 

 

Then: J
t
ρ∂

∇ = −
∂

G G
i  ⇒ 0J

t
ρ∂

∇ + =
∂

G G
i  ⇒  

0 03 3

0 0
1 1

0
i i

i i
i i

J J J J
x x x x= =

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂∑ ∑  = 
3

1
0

i

i
i

J J
x x

μ

μ
=

∂ ∂
= =

∂ ∂∑           

Thus: J
t
ρ∂

∇ = −
∂

G G
i  or 0J

t
ρ∂

∇ + =
∂

G G
i ⇒  0J

x

μ

μ

∂
=

∂
  Continuity Equation (local charge conservation) 

 

n.b. Repeated indices 
implies summation!
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     Physically, note that J
x

μ

μ

∂
∂

 is the 4-dimensional space-time divergence of the current density  

4-vector ( ),J c Jμ ρ=
G

. The 4-current density ( ),J c Jμ ρ=
G

is divergenceless because 0J
x

μ

μ

∂
=

∂
 

     The 4-vector operator 
xμ

∂
∂

 is sometimes called the 4-D gradient operator, it is also sometimes 

called the quad operator μ  (or “quad” for short). 
 

The contravariant quad 4-vector operator: 
1 ,

x c t
μ

μ

∂ ∂⎛ ⎞≡ = + ∇⎜ ⎟∂ ∂⎝ ⎠

G
   

The     covariant   quad 4-vector operator: 
1 ,

x c tμ
μ

∂ ∂⎛ ⎞≡ = − ∇⎜ ⎟∂ ∂⎝ ⎠

G
 

 

Then:   
2 2

2 2
2 2

1
x x x x x x c t

μ μ
μ μ μ μ μ

μ μ μ

∂ ∂ ∂ ∂ ∂ ∂
= = = = = − +∇ ≡

∂ ∂ ∂ ∂ ∂ ∂ ∂
  

           = D’Alembertian 4-vector operator = 4-D Laplacian operator = Lorentz invariant quantity! 
 
So we could equivalently write the relativistic 4-D continuity equation as: 
 

0JJ
x

μ
μ μ

μ

∂
= =
∂

 i.e. “ 4 4 0J∇ =
G G
i ” 

 
Since the 4-vector product of any two (bona-fide) relativistic 4-vectors is a Lorentz invariant 
quantity (i.e. the same value in any/all IRF’s): 
 

   ∴     0JJ
x

μ
μ μ

μ

∂
= =
∂

  is also a Lorentz invariant quantity !!! 
 
→  Electric charge is (locally) conserved in any/all IRF’s (as it must be!!!) 
 

However, because the 4-D gradient operator 
xμ

∂
∂

 functions like a covariant 4-vector, e.g. when it 

operates on contravariant J μ (or any other contravariant 4-vectors), it is often given the shorthand 

notation 
xμ μ

∂
∂ ≡

∂
 and because the 4-D gradient operator 

xμ

∂
∂

 functions like a contravariant 4-

vector, e.g. when it operates on covariant Jμ (or any other covariant 4-vectors), it is given the 

shorthand notation 
x

μ

μ

∂
∂ ≡

∂
. See/work thru Griffiths Problem 12.55 {p. 543) for more details. 

Thus we see {again} that: 2 μ μ μ μ
μ μ μ μ∂ ∂ = ∂ ∂ = = =  is a Lorentz invariant quantity, and 

 0JJ J
x

μ
μ μ μ

μ μ

∂
∂ = = =

∂
 is also a Lorentz invariant quantity. 
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Maxwell’s Equations in Tensor Notation 
 
Maxwell’s Equations: 

1)  Gauss’ Law:  
1

o

E ρ
ε

∇ =
G G
i    

2)  No Magnetic Monopoles: 0B∇ =
G
i  

3)   Faraday’s Law:  
BE
t

∂
∇× = −

∂

GG G
 

4)   Ampere’s Law:  2

1
o

EB J
c t

μ ∂
∇× = +

∂

GG G G
   

 

Can be written as 4-derivatives of the relativistic EM field tensors vF μ  and vGμ : 
 

v

ov

F J
x

μ
μμ∂

=
∂

   and:   0
v

v

G
x

μ∂
=

∂
 

 
Summation over v = 0:3 implied 

 

1)  Gauss’ Law  
1

o

ρ
ε

∇ Ε =
G G
i .  If μ = 0 in 

v

ov

F J
x

μ
μμ∂

=
∂

,  i.e. 
0

0
v

ov

F J
x

μ∂
=

∂
, v = 0:3 

 
Physically, μ = 0 is the temporal/scalar component of any space-time 4-vector. 
 

Then: 
0 00 01 02 03

0 1 2 3

v

v

F F F F F
x x x x x

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
   first row of vF μ  

 
Row # 

0
0

0
0

x y z

x z yv

y z x

z y x

E c E c E c
E c B B

F
E c B B
E c B B

μ

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

Column # 
 

∴
0

0

1 10
v

yx z
EE EF

x c x y z c
∂⎛ ⎞∂ ∂∂

= + + + = ∇ Ε⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

G G
i  and: ( )0

o oJ cμ μ ρ=  

 

∴ 
1

oE c
c

μ ρ∇ =
G G
i   or: 2

oE cμ ρ∇ =
G G
i   but: 2 1

o
o

cμ
ε

=   ∴ 
1

o

E ρ
ε

∇ =
G G
i  

 

Gauss’ Law arises from the 0μ =  (scalar / temporal) component of the 4-vector relation: 
 

v

ov

F J
x

μ
μμ∂

=
∂

 

with Maxwell’s Displacement Current 
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4)  Ampere’s Law:  2

1
o

EB J
c t

μ ∂
∇× = +

∂

GG G G
  If 1μ =  in 

v

ov

F J
x

μ
μμ∂

=
∂

 
 

Then: 
1 10 11 12 13

0 1 2 3

v

v

F F F F F
x x x x x

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
                second row of vF μ  

1

2 2

1 1v
yx z

v
x

BBF E B
x c t y z c t

∂ ⎛ ⎞∂Ε ∂∂ ∂
= − + − = − +∇×⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

G G G
   and:  1

0 o xJ Jμ μ=  

  ∴ 
1

2

1v

o xv
x

F E B J
x c t

μ
⎛ ⎞∂ ∂

= − +∇× =⎜ ⎟∂ ∂⎝ ⎠

G G G
 

 

Then for 2 and 3μ μ= =  (third and fourth rows of vF μ ), likewise we find that: 
 

2

2

1v

o yv
y

F E B J
x c t

μ
⎛ ⎞∂ ∂

= − +∇× =⎜ ⎟∂ ∂⎝ ⎠

G G G
  and: 

3

2

1v

o zv
z

F E B J
x c t

μ
⎛ ⎞∂ ∂

= − +∇× =⎜ ⎟∂ ∂⎝ ⎠

G G G
 

 

  ∴ 1:3 1:3

v

ov

F J
x

μ
μ

μ μμ= =

∂
=

∂
  ⇒  2

1
o

E B J
c t

μ∂
+∇× =

∂

G G G G
 

 

3-D spatial components of 4-vector J μ  
 

Or: 2

1
o

EB J
c t

μ ∂
∇× = +

∂

GG G G
 Ampere’s Law with Maxwell’s Displacement Current term !!! 

 

→  Ampere’s Law arises from the 1: 3μ =  (3-D spatial / vector component) of 4-vector relation: 
 

1

o

E ρ
ε

∇ =
G G
i  ( 0μ =  temporal / scalar component) 

 

2

1
o

EB J
c t

μ∂
∇× = =

∂

GG G G
 ( 1: 3μ =  3-D spatial / vector component) 

 
Thus, Gauss’ Law and Ampere’s Law form a 4-vector: 
 

P0

2

1 1 1,   

o J

v

o o ov
o

E FJ E B J J
c c c t x

μ

μ
μ μμ ρ μ μ

ε

=⎛ ⎞
⎜ ⎟ ⎛ ⎞∂ ∂

= ∇ = ∇× − = = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

GG G G G G
i

����	���
���	��

 

 
Gauss’ Law temporal / scalar   Ampere’s Law 3-D spatial / vector 
component of o J μμ     component of component of o J μμ  

 

And: 2 2
0J J J J cμ μ

μ μ ρ= = −  = Lorentz invariant quantity {from above, page 5}. 

0

v

v

F J
x

μ
μμ∂

=
∂
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2)  0B∇ =
G G
i   no magnetic monopoles / no magnetic charges. If 0μ =  in 0

v

v

G
x

μ∂
=

∂
   

0μ =  is the temporal (scalar) component of space-time “null” 4-vector   ( )0 0,0 0
v

v

G
x

μ
μ∂

= = =
∂

G
 

Then: 
0 00 01 02 03

0 1 2 3 0
v

v

G G G G G
x x x x x

∂ ∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂ ∂
         First row of vGμ  

 
Row # 

0
0

0
0

x y z

x z yv

y z x

z y x

B B B
B E c E c

G
B E c E c
B E c E c

μ

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

Column # 
 

  ∴  
0

0 0 0
v

yx z
v

BB BG B
x x y z

∂∂ ∂∂
= + + + = = ∇ =

∂ ∂ ∂ ∂

G G
i    ∴  

0

0 0
v

v

GB
x

∂
∇ = =

∂

G G
i U  

 

3)  Faraday’s Law: 
BE
t

∂
∇ = −

∂

GG G
i   If 1μ =  in 0

v

v

G
x

μ∂
=

∂
 

 

Then: 
1 10 11 12 13

0 1 2 3 0
v

v

G G G G G
x x x x x

∂ ∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂ ∂
        Second row of vGμ  

 
1 1 1 1 1 0
v

yx z
v

x

EB EG B E
x c t c y c z c t

∂ ⎛ ⎞∂ ∂∂ ∂
= − − + = − +∇× =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

G G G
 

  ∴  
1

0
v

v

G
x

∂
=

∂
   gives  0

x

B E
t

⎛ ⎞∂
+∇× =⎜ ⎟∂⎝ ⎠

G G G
 

Likewise, for 2 and 3μ μ= =  (third and fourth rows of vGμ ) 
2

0
v

v

G
x

∂
=

∂
  gives  0

y

B E
t

⎛ ⎞∂
+∇× =⎜ ⎟∂⎝ ⎠

G G G
  and:  

3

0
v

v

G
x

∂
=

∂
  gives  0

z

B E
t

⎛ ⎞∂
+∇× =⎜ ⎟∂⎝ ⎠

G G G
 

  ∴ 1:3 0
v

v

G
x

μ

μ=
∂

=
∂

  gives  0B E
t

∂
+∇× =

∂

G G G
  or:   

BE
t

∂
∇× = −

∂

GG G
 

 

   0B∇ =
G G
i         ( 0μ =  temporal / scalar component) 

Thus:  

   
BE
t

∂
∇× = −

∂

GG G
 ( 1: 3μ =  3-D spatial / vector component) 

Arise from temporal ( 0μ = ) and spatial ( 1: 3μ = ) component of  the “null” 4-vector 0
v

v

G
x

μ∂
=

∂
 

0
v

v

G
x

μ∂
=

∂
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      Thus, in relativistic 4-vector / tensor notation, Maxwell’s 4 equations {written in language of 
3-D differential vector calculus}: 
 
Maxwell’s Equations: 

1)  Gauss’ Law:  
1

o

E ρ
ε

∇ =
G G
i    

2)  No Magnetic Monopoles: 0B∇ =
G
i  

3)   Faraday’s Law:  
BE
t

∂
∇× = −

∂

GG G
 

4)   Ampere’s Law:  2

1
o

EB J
c t

μ ∂
∇× = +

∂

GG G G
   

 
are elegantly represented by two simple 4-vector equations: 
 

  0μ =  temporal/scalar component: 
1

o

E ρ
ε

∇ =
G G
i    1)  Gauss’ Law 

v

ov

F J
x

μ
μμ∂

=
∂

 

1: 3μ =  spatial/vector component: 2

1
o

EB J
c t

μ∂
∇× − =

∂

GG G G
  4)  Ampere’s Law  

 
 

  0μ =  temporal/scalar component: 0B∇ =
G G
i    2) No Magnetic Charges 

0
v

v

G
x

μ∂
=

∂
 

1: 3μ =  spatial/vector component: 0BE
t

∂
∇× − =

∂

GG G
  3)  Faraday’s Law 

 
 
Griffiths Problem 12.53: 

We can show that Maxwell’s two equations 0B∇ =
G G
i  and 0BE

t
∂

∇× − =
∂

GG G
 that are contained in 

0
v

v

G
x

μ∂
=

∂
 can also be obtained from (the more cumbersome / inelegant relation): 

 

0
v

v

G
x

μ∂
=

∂
 U  0v v v

v

F F F
x x x
μ λ λ
λ μ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

 

    Since there are 3 indices in the latter equation 0 : 3,   0 : 3,    0 : 3vμ λ= = = , there are actually 64 
(= 43) separate equations!!! However many of these 64 equations are either trivial or redundant. 
 

with Maxwell’s Displacement Current 

With Maxwell’s 
Displacement Current 
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Suppose two indices are the same (e.g. vμ = ) 
 

Then:  0
F F F
x x x
μμ μλ λμ
λ μ μ

∂ ∂ ∂
+ + =

∂ ∂ ∂
.  But the EM field tensor vFμ  (like vF μ ) is anti-symmetric. 

 

∴ 0Fμμ =   and: F Fμλ λμ= − . Thus, ≥  2 indices the same gives the trivial relation 0 = 0. 
 
Thus, in order to obtain a / any non-trivial result, μ, v, and λ must all be different from each other. 
 
1)  The indices μ, v, and λ could all be spatial indices, such as:  μ = 1 (x), v = 2 (y), λ = 3 (z)  
     (or permutations thereof). 
 
Or: 
 
2)  One index could be temporal, and two indices could be spatial, such as: 

μ = 0, v = 1, λ = 2 (or permutations thereof), or:  μ = 0, v = 1, λ = 3 
 
1)  For the case(s) of all spatial indices, e.g. μ = 1, v = 2, λ = 3: 
 

 23 3112
3 1 2 0F FF

x x x
∂ ∂∂

+ + =
∂ ∂ ∂

 = 0yxz
BBB

z x y
∂∂∂

+ + =
∂ ∂ ∂

 = 0B∇ =
G G
i  

All other permutations involving the all-spatial indices {1, 2, 3} yield the same relation 0B∇ =
G G
i  

or minus it: i.e. 0B−∇ =
G G
i . 

 
2)  For the case of one temporal and two spatial indices, e.g. μ = 0, v = 1, λ = 2: 
 

 01 2012
2 0 1 0F FF

x x x
∂ ∂∂

+ + =
∂ ∂ ∂

 = 
1 1 1 0yx z

EE B
c y c t c x

∂∂ ∂
− + + =

∂ ∂ ∂
 = 

1 1 0y xz
E EB

c t c x y
∂⎛ ⎞∂∂

+ − =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

 = 0
z

B E
t

⎛ ⎞∂
+∇× =⎜ ⎟∂⎝ ⎠

G G G
 

Other Permutations:  
 
     For v = 0, μ & λ = 1:3 and λ = 0, μ & v = 1:3 get redundant results (same as above). 
 
     If μ = 0, v = 1, λ = 3 get y – component of above relation! 
     If μ = 0, v = 2, λ = 3 get x – component of above relation! 
 

∴ 0v v
v

F FF
x x x
μ λμλ
λ μ

∂ ∂∂
+ + =

∂ ∂ ∂
  contains:  0B∇ =

G G
i   and:  

BE
t

∂
∇× = −

∂

GG G
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Duality Transformation of the Relativistic EM Field Tensors vF μ and vGμ : 
 

     The duality transformation for the specific case of space-time “rotating” E cB→
G G

 and 
cB E→−
G G

 (ϕ duality = 90o) takes v vF Gμ μ→ , and can be mathematically represented in tensor 
notation as: 

1
2

v vG Fμ μ λσ
λσε=  

 

where: Fλσ  is the {doubly} covariant form of the contravariant tensor F λσ . 
and: vμ λσε  is the totally anti-symmetric rank-four tensor. 
 
     +1 for all even permutations of μ = 0, v = 1, λ = 2, σ = 3 (and) 

vμ λσε  =      0 if any two indices are equal/identical/the same. 
     −1 for all  odd  permutations of μ = 0, v = 1, λ = 2, σ = 3 
 

Since vμ λσε  is a rank-four tensor (= 4-dimensional “matrix”) we can’t write it down on 2-D 
paper all at once! vμ λσε  has (μ, v, λ, σ = 0:3) → 44 elements = 256 elements!!! 
 

We could write out 16 {4×4} matrices – e.g. one μ-v matrix for each unique combination of λ and σ: 
 

  

         0 0 0
(4 4) (4 4) (4 4)0 1 2
         1 1 1
(4 4) (4 4) (4 4)0 1 2
         2 2 2
(4 4) (4 4) (4 4)0 1 2
      3 3 3
(4 4) (4 4)0 1 2

  

v v v

v v v
v

v v v

v v

μ μ μλ λ λ
σ σ σ

μ μ μλ λ λ
σ σ σμ λσ

μ μλ λ λ
σ σ σ

μ μλ λ λ
σ σ σ

ε

→ → →= = =
× × ×= = =
→ → →= = =
× × ×= = =
→ → →= = =
× × ×= = =
→ →= = =
× ×= = =

=

   0
(4 4)3
   1
(4 4)3
   2
(4 4)3

     3
(4 4) (4 4)3

 

v

v

v

v v

μλ
σ

μλ
σ

μ μλ
σ

μ μλ
σ

→=
×=
→=
×=
→=
×=

→ →=
× ×=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

Define λσε  = totally anti-symmetric rank-two tensor: 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

λσε

+ + +⎛ ⎞
⎜ ⎟− + +⎜ ⎟=
⎜ ⎟− − +
⎜ ⎟
− − −⎝ ⎠

 

 

Thus, we can define vμ λσε in terms of product of two λσε 's:    vμ λσ λμ λσε ε ε=  
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The Minkowski / Proper Force on a Point Electric Charge 
 

     The Minkowski force (a.k.a. proper force) K μ  acting on a point electric charge q can be 
written in 4-vector / tensor notation in terms of the EM field tensor vF μ  and the proper  
4-velocity μη . Recall that: 
 

 u u
dp dpK F
d dt

μ μ
μ μγ γ

τ
≡ = =  where the ordinary force: 

dpF
dt

μ
μ =  and: 21 1u uγ β≡ −   

 

However, we can equivalently write the Minkowski/proper force as: v
vK q Fμ μη=   

where vη  is the covariant form of the contravariant proper 4-velocity vη .  
i.e. we contract the EM field tensor vF μ  with the covariant proper 4-velocity vη . 
 

Since:  uK Fμ μγ=   and: v u vuη γ= , where: 21 1u uγ β≡ −  and: u u cβ =  
 

  ∴  v
vK q Fμ μη=  ⇒  v

u u vF q u Fμ μγ γ=   or: v
vF qu Fμ μ=  

 

If  μ = 1 (i.e. row #1): ( )1 1 0 10 1 11 2 12 3 13v
vK q F q F F F Fη η η η η= = − + + +  

 

 ( ),vu c u≡
G

 ↔ ( ),v u u u vc u uη γ γ γ≡ =
G

 where: 21 1u uγ β= −  and: u cβ =  
 
 Row # 

 

0
0

0
0

x y z

x z yv

y z x

z y x

E c E c E c
E c B B

F
E c B B
E c B B

μ

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 Column # 
 

∴ ( ) ( ) ( )1 0u x x y z z y u x y z z y u x
K q c E c u u B u B q E u B u B q E u Bγ γ γ⎡ ⎤ ⎡ ⎤= − − + + + − = + − = + ×⎣ ⎦⎣ ⎦

G GGi  
 

     ( )1
u x

K q E u Bγ= + ×
G GG

  ( )uK q E u Bγ= + ×
G G GG

 ← Minkowski 3-D Force Law 
 
Similarly, for μ = 2, μ = 3:  

     ( )2
u y

K q E u Bγ= + ×
G GG

  But: uK Fγ=
G G

 

     ( )3
u z

K q E u Bγ= + ×
G GG

    ∴  ( )F q E u B= + ×
G G GG

 ←  Lorentz 3-D Force Law 
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For μ = 0 (the temporal / scalar component) {see/work Griffiths Problem 12.54, page 541}: 
 

 
( ) ( ) ( )( )0

0 00 1 01 2 02 3 03 0

0

                            
u x x y x z x u

v
v

K q c u E c u E c u E c q u E c

F F F F F

γ γ

η η η η η

= − + + + =

= − + + + =

GGi i
  

 

n.b. this relation explicitly shows that xE , yE , zE are temporal-spatial (or spatial-temporal) 

components of vF μ , whereas xB , yB , zB are pure spatial-spatial components of vF μ !!! 
 

We also know that: 
0

0 1 1 1
u

dp dE dt dE dEK
d c d c d dt c dt

γ
τ τ τ

≡ = = =   ∴ 0 1
u u

dEK q u E c
c dt

γ γ= =
GGi  

 

or: ( )q
dEP q u E
dt

= =
GGi  = {ordinary} relativistic power delivered to point electric charged particle (> 0) 

 

     ( ) ( )q
dE dWP q u E qE u F u
dt dt

= = = = =
G G GG G Gi i i  =  

 

Note: The {ordinary} Lorentz force ( )F qE q u B= + ×
G G GG

 
 

 ∴  ( ) ( ) ( )F u q u E q u u B q u E⎡ ⎤= + × =⎣ ⎦
G G G GG G G G Gi i i i  

 

But: ( )   u B u× ⊥
GG G

 ∴ ( ) 0u u B× ≡
GG Gi   ⇒  Magnetic Forces do no work !!! 

 

Thus we have the relations: uK Fμ μγ=  = v
vK q Fμ μη=  and also: v

vF qu Fμ μ=   with v u vuη γ= . 
 
 

The Relativistic 4-Vector Potential Aμ  
 

     We know that the electric and magnetic fields and E B
G G

 can be expressed in terms of a scalar 
potential V and a vector potential A

G
 as: 

 

  ( ) ( ) ( ),
, ,

A r t
E r t V r t

t
∂

= −∇ −
∂

G GG GG G
  and:  ( ) ( ), ,B r t A r t= ∇×

GG GG G
 

 

   Thus, it should not be surprising to realize that the scalar potential V and the vector potential A
G

 
form the temporal and spatial components (respectively) of the relativistic 4-vector potential Aμ : 
 

The 4-Vector Potential:  ( ) ( ), , , ,x y zA V c A V c A A Aμ ≡ =
G

 
 

n.b.  SI units of V: 
Newton-metersVolts

Coulomb
=   then: N-m m N-sec Newtons= =

Coul sec Coul Amp
V
c
=  

 

Time rate of change of work done 
on changed particle by EM field 

SI Units: Newtons/Amp = “p/q” 
{momentum per Coulomb!}
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     The EM field tensor vF μ  can be written in terms of covariant space-time derivatives of the  
4-vector potential field Aμ  as: 
 

            
v

v

v

A AF
x x

μ
μ

μ

∂ ∂
= −
∂ ∂

 ⇐  n.b. covariant differentiation here!! 

 

For the covariant derivatives  and 
vx xμ

∂ ∂
∂ ∂

 we need to change the sign of the temporal / scalar 

component relative to the contravariant derivatives  and vx xμ

∂ ∂
∂ ∂

. 
 

Explicitly evaluate a few terms: ( ),A V c Aμ =
G

 

For μ = 0 and v = 1: 
 

 
( )

( )1 0
01

0 1

1 1x x

x x

V cA EA A A AF V V
x x ct x c t c t c

⎛ ⎞ ⎛ ⎞∂∂∂ ∂ ∂ ∂
= − = − − = − +∇ = −∇ − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

G GG G
 

 
Likewise, for (μ = 0, v = 2) and (μ = 0, v = 3) we obtain: 
 

 02 1 y

y

EAF V
c t c
⎛ ⎞∂

= −∇ − =⎜ ⎟∂⎝ ⎠

GG
  and:  03 1 z

z

EAF V
c t c
⎛ ⎞∂

= −∇ − =⎜ ⎟∂⎝ ⎠

GG
 

 
For μ = 1 and v = 2: 
 

 ( )
2 1

12

1 2

y x
zz

A AA AF A B
x x x y

∂⎛ ⎞∂∂ ∂
= − = − = ∇× =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

GG
 

 
Likewise, for (μ = 1, v = 3) and (μ = 2, v = 3) we obtain: 
 

 ( )13
yy

F A B= ∇× =
GG

  and:  ( )23
xx

F A B= ∇× =
GG

 
 
     Note that the relativistic 4-potential formulation automatically takes care of the homogeneous 

Maxwell equation 0
v

v

G
x

μ∂
=

∂
 {it gives 0B∇ =

G G
i  and: 

BE
t

∂
∇× = −

∂

GG G
} because 0

v

v

G
x

μ∂
=

∂
 is 

equivalent to 0v v
v

F FF
x x x
μ λμλ
λ μ

∂ ∂∂
+ + =

∂ ∂ ∂
.  

 
{See/read pages 10-11 of these lecture notes – also see/work Griffiths Problem 12.53, page 541}. 
 

And since: 
v

v

v

A AF
x x

μ
μ

μ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

  ⇒  v
v v

AAF
x x

μ
μ μ

∂⎛ ⎞∂
= −⎜ ⎟∂ ∂⎝ ⎠
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Thus:    0v v
v

F FF
x x x
μ λμλ
λ μ

∂ ∂∂
+ + =

∂ ∂ ∂
 

 

 = 0v v
v v v

A AA A A A
x x x x x x x x x

μ μλ λ
λ μ μ λ λ μ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 

 = 0v v
v v v v

A AA A A A
x x x x x x x x x x x x

μ μλ λ
λ μ λ μ μ λ λ μ

∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
− + − + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

 

 = 0v v
v v v v

A AA A A A
x x x x x x x x x x x x

μ μ λ λ
λ μ μ λ λ λ μ μ

∂ ∂⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

 = 

0 0 0

0v v v v vA A A
x x x x x x x x x x x xμ λλ μ μ λ λ λ μ μ

= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠����	���
 ����	���
 ����	���

 

 

But:     
x x x xλ μ μ λ

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
  i.e. can change the order of differentiation – no effect! 

 = 
2 2

x x x xλ μ μ λ

∂ ∂
=

∂ ∂ ∂ ∂
       ∴ 0 0=  

∴ The relativistic 4-potential formulation 
v

v

v

A AF
x x

μ
μ

μ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 does indeed automatically satisfy 

0
v

v

G
x

μ∂
=

∂
 because 0v v

v

F FF
x x x
μ λμλ
λ μ

∂ ∂∂
+ + =

∂ ∂ ∂
 (shown to be equivalent to 0

v

v

G
x

μ∂
=

∂
) is satisfied / 

obeyed for 
v

v

v

A AF
x x

μ
μ

μ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. 

     Does the relativistic 4-potential formulation 
v

v

v

A AF
x x

μ
μ

μ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 satisfy the inhomogeneous 

Maxwell relation v
ov

F
J

x
μ μμ

∂
=

∂
 ??? 

 
2 2v v

v
ov v v v

v v

F A A A A J
x x x x x x x x

μ μ
μ μ

μ μ

μ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= − = − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
   

Switching the order of derivatives: 
v

v
ov v v

v

F A A J
x x x x x

μ
μ μ

μ

μ
∂ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠�����	����

 

 
This is an intractable equation, as it stands now… 
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     However, from our formulation of vF μ  in terms of (differences) in space-time derivatives of 

the 4-vector potential Aμ :  
v

v

v

A AF
x x

μ
μ

μ

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 it is clear that we can add to the 4-vector 

potential Aμ  the space-time gradient of any scalar function λ: *A A A
x

μ μ μ

μ

λ∂
→ = +

∂
 !!! 

 

The scalar and vector potentials V and A
G

 are not uniquely determined by the EM fields and E B
G G

. 
 
Thus: 
 

* * 2
*

v v v
v

v v v v v v

A A A A A AF
x x x x x x x x x x x x

μ μ μ
μ

μ μ μ μ μ μ

λ λ λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = + − + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

vx xμ

λ∂
−
∂ ∂

0

          !!!
v

v

v

A A F
x x

μ
μ

μ

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞∂ ∂
= − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

����	���


 

∴ * v vF Fμ μ=  by *A A A
x

μ μ μ

μ

λ∂
→ = +

∂
 is gauge invariance associated with the EM field vF μ !!! 

 

We can exploit the gauge invariant properties of vF μ  to simplify the seemingly intractable relation: 
 

v v

ov v v
v

F A A J
x x x x x

μ μ
μ

μ

μ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

 

Using the Lorenz gauge condition: 2

1 VA
c t

∂
∇ = −

∂

GG
i  ⇒  2

1 0VA
c t

∂
∇ + =

∂

GG
i  ⇒  0A

x

μ

μ

∂
=

∂
 

 

We see that: 

0 !!

v v

ov v v
v

F A A J
x x x x x

μ μ
μ

μ

μ

=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠


��

 = 
2

ov
v

A J
x x

μ
μμ∂

− =
∂ ∂

  or: 
2

ov
v

A J
x x

μ
μμ∂

= −
∂ ∂

  

 

But:  ,   v
vv

vx x
∂ ∂

= =
∂ ∂

 and: 
2 2 2

2 2
2 2

1v v
v v v v

v vx x x x c t
⎛ ⎞∂ ∂ ∂

≡ = = = = ∇ −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 

         D’Alembertian operator (4-dimensional Laplacian operator) 
 

∴ 2
oA Jμ

μμ= −  = 
2

ov
v

A J
x x

μ
μμ∂

= −
∂ ∂

 ⇐   Single 4-vector equation!  

 
 

Taken together with the continuity equation (charge conservation): 0Jμ μ = , these two 
relations compactly describe virtually all of {non-matter/free space} EM phenomena!!! 
 

= The most elegant and simple 
formulation of Maxwell’s 

equations – it contains all four 
of Maxwell’s equations!! 
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     Note that the choice of the (instantaneous) Coulomb gauge 0A∇ =
GG
i  is a bad one for use in 

relativistic electrodynamics, because A∇
GG
i  {alone} is not a Lorentz invariant quantity! 

 

However: ( ) ( ) ( )
2

, ,1, 0
V r t A r t

A r t
c t x

μ

μ

∂ ∂
∇ + = =

∂ ∂

G GGG Gi  is a Lorentz invariant quantity because it is 

the product of two relativistic 4-vectors: and A
x

μ
μ

∂
∂

. 
 

n.b. 0A∇ =
GG
i  is “destroyed” by any Lorentz transformation from one IRF(S) to another IRF(S') !!!  

 

⇒ In order to restore 0A∇ =
GG
i  , one must perform an appropriate gauge transformation for each 

new inertial system entered, in addition to carrying out the Lorentz transformation itself !!! 
 

     In the Coulomb gauge, Aμ  is not a “true” relativistic 4-vector, because A A A Aμ μ
μ μ=  is not a 

Lorentz invariant quantity in the Coulomb gauge !!! 
 

n.b.  The Coulomb gauge 0A∇ =
GG
i  is useful when v c� , i.e. for non-relativistic problems. 

 


