UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011 Lect. Notes 2 Prof. Steven Errede

LECTURE NOTES 2

CONSERVATION LAWS (continued)

Conservation of Linear Momentum p

Newton’s 3™ Law in Electrodynamics — “Every action has an equal and opposite reaction”.

Consider a point charge +g traveling along the +Z -axis with constant speed v (v =v2).

Because the electric charge is moving (relative to the laboratory frame of reference), its electric
field is not given perfectly/mathematically precisely as described by Coulomb’s Law,

ie. E(F,t) *

L5,
dre, r
Nevertheless, E (17 ,t) does still point radially outward from its instantaneous position,

— the location of the electric charge q(? , t). {n.b. when we get to Griffiths Ch. 10 (relativistic

electrodynamics, we will learn what the fully-correct form of E (17 ,t) is for a moving charge..}

+q

H_I
n.b. The E -field lines of a moving electric charge are compressed in the transverse direction!

Technically speaking, a moving single point electric charge does not constitute a steady / DC
electrical current (as we have previously discussed in P435 Lecture Notes 13 & 14). Thus, the
magnetic field associated with a moving point charge is not precisely mathematically

correctly/properly given as described by the Biot-Savart Law. Nevertheless, B (F ,t) still points

in the azimuthal (i.e. ¢ -) direction. (Again, we will discuss this further when we get to Griffiths
Ch. 10 on relativistic electrodynamics...)
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Let us now consider what happens when a point electric charge +g, traveling with constant
velocity v, =—v,Z encounters a second point electric charge +¢, , e.g. traveling with constant
velocity v, =—v,Xx as shown in the figure below:

x

T B0

R ()

I (L)
3 F5 (7.1)
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v +4, A
< () >z
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The two like electric charges obviously will repel each other (i.e. at the microscopic level,
they will scatter off of each other — via exchange of one (or more) virtual photons).

As time progresses, the electromagnetic forces acting between them will drive them off of
their initial axes as they repel / scatter off of each other. For simplicity’s sake (here) let us
assume that (by magic) the electric charges are mounted on straight tracks that prevent the
electric charges from deviating from their initial directions.

Obviously, the electric force between the two electric charges (which acts on the line joining
them together — see above figure) is repulsive and also manifestly obey’s Newton’s 3" law:

Fi—;leé’t (,72,1‘) = _F;lect (ﬁ,t)

Is the magnetic force acting between the two charges also repulsive??

By the right-hand rule:
The magnetic field of ¢; at the position-location of ¢, points into the page: Bl (172,1‘) [|—p

The magnetic field of ¢, at the position-location of ¢, points out of the page: Ez (171 ,t) |+

Thus, the magnetic force |F2* (7,t) = ¢,¥, (7,t)x B, (7,,t) || +2| due to the effect of charge ¢1’s

B -field El (772, t) at charge ¢»’s position7, points in the +Z direction (i.e. to the right in the above figure).

However the magnetic force |Fyn* (7,1) = ¢,V (,¢)x B, (7,1) ||+%|due to the effect of charge

g2’s B -field Ez (ﬁ,t) at charge ¢,’s position 7, points in the +x direction (i.e. upward in the

above figure). Thus we see that |F2* (7,¢) {l|+2} # —F2 (7,t) {Il+%}

"

The electromagnetic force of ¢; acting on ¢, is equal in magnitude to, but is not opposite to the
electromagnetic force of ¢, acting on ¢y, in {apparent} violation of Newton’s 3 Law of Motion!
Specifically, it is the magnetic interaction between two charges with relative motion between
them that is responsible for this {apparent} violation of Newton’s 3" Law of Motion:
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Felect ( t) Felect (17 t) but: Fmag ( ) Fmag ( )
@: ‘Felect ‘ ‘Felect ]—/; ‘ and: ‘Fmag r2’ ‘ ‘Fmag l—; ‘
Then: Fngt (l_”;,l‘) _ F’glect (172,2‘)+F¥2mg (Fz’t) FEMmt (’”19 ) — ﬁvﬁlect (Z’t)+ﬁfag (th)
Fngt (l_”;,l‘) " I};Mmt (f’i,t) but: ‘FEMtot (Vz, )‘ ‘FEMtot (I”l,l‘)‘

n.b. In electrostatics and in magnetostatics, Newton’s 3™ Law of Motion (always) holds.

In electrodynamics, Newton’s 3" Law of Motion does not hold for the apparent relative motion of
two electric charges! (n.b. Isaac Newton could not have forseen this {from an apple falling on his
head} because gravito-magnetic forces associated with a falling apple are so vastly much feebler than
the gravito-electric force (the “normal” gravity we know & love about in the “everyday” world).

Since Newton’s 3™ Law is intimately connected/related to conservation of linear momentum,
on the surface of this issue, it would seem that electrodynamical phenomena would then also
seem to violate conservation of linear momentum — eeeeeEEEEKKKK!!!

If one considers only the relative motion of the (visible) electric charges (here ¢, and ¢») then,
yes, it would indeed appear that linear momentum is not conserved!

However, the correct picture / correct reality is that the EM field(s) accompanying the
(moving) charged particles also carry linear momentum p (as well as energy, E)!!!

Thus, in electrodynamics, the electric charges and/or electric currents plus the electromagnetic
fields accompanying the electric charges/currents together conserve total linear momentum p .

Thus, Newton’s 3" Law is not violated after all, when this broader / larger perspective on the
nature of electrodynamics is properly/fully understood!!!

Microscopically, the virtual (and/or real) photons associated with the macroscopic / “mean
field” electric and magnetic fields E, (7.t), E, (7,t) and B, (#,,t), B, (7,t) do indeed carry / have

associated with them linear momentum (and {kinetic} energy) {as well as angular momentum..}!!!

In the above example of two like-charged particles scattering off of each other, whatever
momentum “lost” by the charged particles is gained by the EM field(s) associated with them!

Thus, Newton’s 3™ Law is obeyed - total linear momentum is conserved when we consider the
(true) total linear momentum of this system:

mech —mech

pTOT:pmechanical+pEM:pl +p2 +p] +p2
=my, +m,v, +p1 +p2

H_J

Non-relativistic case (here)!!!
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Note that in the above example of two moving electrically-charged particles there is an
interesting, special/limiting case when the two charged particles are moving parallel to each
other, e.g. with equal constant velocities v, =V, =+vZ relative to a fixed origin in the lab frame:

rrelect (= A
XA / F;E (r2)||+x
B, || 7 v, = z =+VZ
+ vV, =+Vv,Zz =+Vvz
B F _._._.._._.._._q.g.qz ________ 2. ............ >
—O | (1) -5
mag (=
+q, F (rl)||+x N
h V,=+vz=+vZ
_____ > 2
l9 q\}\@ szﬁllect(ri)”_x
B |l¢

y
We can easily see here that the electric force on the two electrically-charged particles acts on

the line joining the two charged particles is repulsive (due to the like-charges, here) and is such

that < (7,) =—F<* (7) || +% . Similarly, because the two like-charged particles are also

traveling parallel to each other, the magnetic Lorentz force F™* = gv x B, on the two charged
particles also acts along this same line joining the two charged particles and, by the right-hand
rule is such that F2% (7 ) =—F2 () || -%.

Thus, we also see that:

!

Fg(R)= [ R (B)+ Ry ()]
=B (7)== B (7)+ By (7)]

Thus, here, for this special case, Newton’s 3™ law is obeyed simply by the mechanical linear
momentum associated with this system — the linear momentum carried by the EM field(s) in this
special-case situation is zero.

Note that this special-case situation is related to the case of parallel electric currents attracting
each other — e.g. two parallel conducting wires carrying steady currents /,and /,. It must be

remembered that current-carrying wires remain overall electrically neutral, because real currents
in real conducting wires are carried by negatively-charged “free” conduction electrons that are
embedded in a three-dimensional lattice of positive-charged atoms. The positively-charged
atoms screen out / cancel the electric fields associated with the “free” conduction electrons,

thus only the (attractive) magnetic Lorentz force remains!

Yet another interesting aspect of this special-case situation is to go into the rest frame of the
two electric charges, where for identical lab velocities v, =V, =+vzZ, in the rest frame of the

charges, the magnetic field(s) both vanish — i.e. an observer in the rest frame of the two charges
sees no magnetic Lorentz force(s) acting on the like-charged particles!
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Maxwell’s Stress Tensor T

Let us use the Lorentz force law to calculate the total electromagnetic force

Fall Semester, 2011 Lect. Notes 2 Prof. Steven Errede

FvEM

Tot

(¢) due to the

totality of the electric charges contained within a (source) volume v :

FvEM

Tot

(0)=] Ju!' (F.)de=] {E

(F,t)+ ¥ (7.t)x B(7.1)} p(F,t)dT

where: £, (7,¢)= EM force per unit volume (aka force “density”) (SI units: N/m”),

and: J(7.t)= p(7,t)¥(7,t)| electric volume current density (SI units: A/m’).
Thus: |F' (¢)=[ {p(F.0) E(F.t)+J (F,t)x B(7,t)| dz
fiM (7,¢) = EM force per unit volume = p(7,¢)E(F,t)+J (F,t)x B(7,t)

n.b. If we talk about f,-' (7,¢) in isolation (i.e. we do not have to do the integral), then, for

transparency’s sake of these lecture notes, we will (temporarily) suppress the (17 ,t) arguments —

however it is very important for the reader to keep this in mind (at all times) that these arguments
are there in order to actually (properly/correctly) do any calculation!!!

Thus:

TEM

Tot

-

Maxwell’s equations (in differential form) can now be used to eliminate p and J :

Coulomb’s Law: VeE=ple, | = |p=¢V-E
Ampere’s Law: (with Maxwell’s displacement current correction term):
UxB=pd+p,e, | = |J=(VxB)-s, L
ot U,
Tmm:gy:pﬁ+jxgzg(6435+[i{6x§)_aéﬁjxé
H, ot
Now: Q(E x B ) = a—Ex B+ E Xa— (by the chain rule of differentiation)
ot ot ot
LB |=L(ExB)-| ExZ
ot ot ot
Faraday’s Law: (@xE)z—a—B = a—B:—ﬁxE o B —E(EXE) (Ex(ﬁxﬁ))
ot ot ot ot
Nz T8\ B Baln BV [ Bn(Sx V] O (7n 5
Thus: | f7,, =¢, _(V E)E Ex(VxE)} " [Bx(VxB } 05 (ExB)
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Without changing the physics in any way, we can add the term (@-E )E to the above expression

since VeB =0 (i.e. there exist no isolated N/S magnetic charges/magnetic monopoles in nature).

Then £, becomes more symmetric between the E and B fields (which is aesthetically pleasing):

o, [(ﬁ.E)E—Ex(ﬁxE)}+ﬂio[(§.§)1§—1§x(§xz§)}—go%(EXB)

Now: |V (E2 ) =2 (E-@) E+2Ex (ﬁ X E) Using Griffiths “Product Rule #4”

Or: Ex(§xE) :%§(E2)—(E-§)E {n.b. is also applied similarly for B }
Thus:

o g, [(9-E) B +(E9) E}ﬂio[(ﬁ.é)m(g.v)é}

?(EUEZ +LBZJ—EUE(EX§)
, ot

We now introduce Maxwell’s Stress Tensor 7 (a 3x3 matrix), the nine elements of which are
defined as:

T,=¢,(EE, —%é‘l.jEz)+i(Bl.Bj ~16,8%)
ILIO

Where: 7,j=1,2,3 and: i,j=1=x Lj=2=y i,j=3=z ie.thei,jindices of
Maxwell’s Stress Tensor physically correspond to the x, y, z components of the £ & B-fields.

and: 0; = Kroenecker d-function: 0;,=0fori#j, o;=1fori=j

and: E2=E-E=E5+E5+EZZ BZZE.E=33+By2+BZZ

Tjj«— Column index

Row index

Note that from the above definition of the elements of T , we see that Tis symmetric under the
interchange of the indices i <> j(with indices 7, j = 1, 2, 3 = spatial x, y, z) , i.e. one of the

symmetry properties of Maxwell’s Stress Tensor is such that: |7, =+T,

We say that T' is a symmetric rank-2 tensor (i.e. symmetric 3 x 3 matrix) because \T; =+T |

Thus, Maxwell’s Stress Tensor T actually has only six (6) independent components, not nine!!!

Note also that the 9 elements of T are actually “double vectors”, e.g. ]:le J, T W, T.2Z , etc.

6 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The six independent elements of Maxwell’s Stress Tensor are:

T,=T, = %(E2 E}-E)+ 21 (B:-B-B)
H,

I, =g (B - BB e (B - BB

Ty =T. =6, (E:- Ef—Ei)+ﬁ(Bf—Bf—Bj)<—

T,=T, =T, =T, =

1
o (E5,)+-(5.5)

T,=T,=T. =T, =

1

Lect. Notes 2

¢,(E.E.)+—(B,B.) ] generate by cyclic permutation

ILIO

]-'23:7—;2:71}7:]—'2}7:

vz

ILIO

Note also that 7' contains no E x B (etc.) type cross-terms!!

Because 7 is a rank-2 tensor, it is represented by a 2-dimensional matrix.

g, (EyEZ ) + L(B B ) J generate by cyclic permutation

Prof. Steven Errede

generate by cyclic permutation

generate by cyclic permutation

{Higher Rank Tensors: e.g. Tj; (= rank-3 / 3-D matrix), 4, (= rank-4 /4-D matrix), etc.}

We can take the dot product of a vector a with a tensor T to obtain (another) vector b

b, =(aT) Za,Ty =al,

explicit summation over
i-index; only index j remains.

n.b. this summation convention is Very important:

implicit sum over i

Note also that another vector can be formed, e.g.: |¢ = T+

b —aIY:] zat i
%f_/

™~

explicit sum over i

Compare these two types of vectors side-by-side:

S

\b=d-T

\y Implicit summation over

i-index is implied,
only index j remains.

where (here):

3
= szfaj =

J=1

<3

3
-T)_ = Zal.T. =a,T;| n.b. summation is over index i (i.e. rows in T )!!
J ; ’ ’

Tedl |c =

¢

3
(T-E)_ = ZTi].ai =T,a;| n.b. summation is over index j (i.e. columns in T )!!
; i =
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Now if the vector a in the dot product b=asT “happens” to be @ =V , then:

T = SO(EI.E]. —%@IEZ}-L(BI,B/ —%5,,32)
. 1= |+ | BB =58
(v7) =, ((W)Ej +(B9)E, _%v_/.y}ﬂl((v.é)g, +(B9)8, _%v_,gzj

Thus, we see that the total electromagnetic force per unit volume / force “density” can be written
(much) more compactly (and elegantly) as:

cpv o as
M _ 7 T gy 2
Tot leo 51‘ i
s _ 1 2 1 1 2
Maxwell’s Stress Tensor: I,=¢, EE, —Eé',jE +,U_ BB, _55’73
i = 1 /= =
Poynting’s Vector: S = —(E xB)

The total EM force acting on the charges contained within the (source) volume v is given by:

. - = = oS
et =] pitae =] [97 -a S o

Explicit reminder of the (suppressed) arguments:

]::. EM _

Tot

(6)=[ 72 (7.0)de jv{ﬁ.f(f,t)-goﬂo

Using the divergence theorem on the LHS term of the integrand:

E Toda oS & N s (7.t
Fa = Tedi-op,[ S de| i, B (6)=§, T (7.t )odi o, L% ir
— - d N R — B B
Finally: |F' = Tedd - 5,4, EL Sdz|ie.|F' (t)= . T (F,t)di—z,u, _zj §(7.1)dr
8 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Fr! =q557”°d5—60u0%L5’dr ie. F;jf”(t)=gSST(?,t).da—gouoij’j(?,z)dr

Note the following important aspects/points about the physical nature of this result:

1.) In the static case (i.e. whenever T (7,¢),S(7,¢)# fens(t)), the second term on the RHS in

the above equation vanishes — then the total EM force acting on the charge configuration
contained within the (source) volume v can be expressed entirely in terms of Maxwell’s
Stress Tensor at the boundary of the volume v, i.e. on the enclosing surface S :

Ep = T(F)eda = fen(1)

2.) Physically, gSS T(F ,t)-dc? = net force (SI units: Newtons) acting on the enclosing surface S .

Then {here} T is the net force per unit area (SI units: Newtons/m?) acting on the surface S

—ie T corresponds to an {electromagnetically-induced} pressure (!!!) or a stress acting on
the enclosing surface S .

3.) More precisely: physically, Tj; represents the force per unit area (Newtons/m?) in the /™
direction acting on an element of the enclosing surface S that is oriented in the /™ direction.

Thus the diagonal elements of T (i=)): Tii = T, Ty, T.. physically represent pressures.
The off-diagonal elements of 7 (i #)): Tj = Ty, T,., T. physically represent shears.

Griffiths Example 8.2: Use / Application of Maxwell’s Stress Tensor T

Determine the net / total EM force acting on the upper (“northern”) hemisphere of a uniformly
electrically-charged solid non-conducting sphere (i.e. uniform/constant electric charge volume

density p = Q/ 4 7R’ ) of radius R and net electric charge Q using Maxwell’s Stress Tensor T
(c.f. with Griffiths Problem 2.43, p. 107).

Disk of radius R
lying in x-y plane

= n.b. Please work through the details of this problem on your own, as an exercise!l! <

First, note that this problem is static / time-independent, thus (here): |Fy., = CJBST (17 )-dﬁ

- 1
Note also that (here) B(7)=0and thus (here): |7, =¢, (EiE ; —Eé‘,.jE 2) {only}.

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 9
2005-2011. All Rights Reserved.



UIUC Physics 436 EM Fields & Sources 11 Fall Semester, 2011

The boundary surface S of the “northern” hemisphere consists of two parts — a hemispherical

Lect. Notes 2
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bowl of radius R and a circular disk lying in the x-y plane (i.e. = z/2), also of radius R.

a.) For the hemispherical bowl portion of S, note that:

dd = R*d cos Odpr = R* sin 0d0d o7

The electric field at/on the surface of the charged sphere is:

E(r)

1

=k Ame,

0 .

FV

In Cartesian coordinates: ‘P =sin @ cos gx +sin @sin gy + cos 62 ‘

Thus:
E(r)| =E(r)|_ 5+ E ()| 5+ E() 2ot
r=R TN =R e “h =R 4re, R
= 2[sinﬁcos X +sin @sin @) +cos 67|
" 4m R ? 154
2
Thus: |7, |,.x=T.|,.x=6EE =¢, 0 > | sin@cosfcos
; 4re R
2
x=T.|, . =¢,E.E, :50[4%0sz sinf@cos@sin @
1 1 ’
T.| .=—¢e (E*-E*-E*)=—=¢ cos’ @ —sin’ @
zz | r=R 2 o( z X y) 2 0(47[80132} ( )

The net / total force (due to the symmetry associated with this problem) is obviously only in the

z -direction, thus we “only” need to calculate:

(7-da) |, =[T..da, +T,da, +T.da. ]|,
Now : dd = R*sin0d0dpr| and ‘79 =sin @ cos px +sin @sin @y +cos Oz
Then: da, = (R2 sin 0d0d(p)sinecos ox
da, = (R’ sin@dOdgp)sin OsinpP| > since |dd = da,i+da,+da,z
da, = (R’ sin 0d0dp)cos 0z
B 2
Then: (T-dﬁ) =€, _9 sin & cos @ cos @ *[(}?’{sin Hdﬁd(o) sin 6 cos gp}
zlr=R 4re, }?f
r 2
+| €, _9 sin @ cos@sin @ | * [(}?{sin Qdﬁdgo)sin fsin go}
4re, R[
- 2
+ lgo _9Q (cos2 0 —sin’ 0) * [(}?’{sin Hdﬁd(o) cos 9}
27 dns RZ

10  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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(T-da )z e /:_1\
2
0 . . . I . .
= e R {(sm2 6 cos 49) cos’ g+ (sm2 0 cos 6’) sin’ @ + E(COSZ 0 —sin’ 49) cos 6’} *(sin 0dOd )
2
_ 0 . 1
=g, 47 R {(W) COSMOS 6?} sin 8dOdp)
Q ’ 1 < 2 1 2 .
=6 1% E(sw cos@+§(cos 0)cos 0 *(sin0dbdy)
) ERPENERS
_ 0 1 :
=g, k) 2 cos 0} *(sin0d6dp)

2
50( Q j cos@sin@dOd g
4re, R

r=R - qsbowl (T.da)z

2 z 5
=lgo Q 272'.[9_2COSHSian92= 1 QZ z
r=k 2 "\ 4ne R =0 4re, \ 8R

1 (0%).
r=R - 2 z
4re \ 8R

b.) For the equatorial disk (i.e. the underside) portion of the “northern” hemisphere:

| u=1
:J- udu:lu2
0 2

1
u=0 2

da| g =rdrde (_2 ) < | n.b. outward unit normal for equatorial disk (lying in x-y plane)
= —rdrdp? points in—Z direction on this portion of the bounding surface S
=—daz

And since we are now inside the charged sphere (on the x-y plane/at = 7/2):
- 1 Q. 1 O(rF

Epl, .= -7 = —2(—]
0=r2 Ame, R° | _ , 4me, RT\R

Q3 rsmé’cosgox+rsm9s1n¢)y+rcost92
47[5 R I ——

o
47[3 R3

O=r/2

O0=r/2

r[cos px +sin pP]

Then for the equatorial, flat disk lying in the x-y plane:

2
(Peda) =T.da| where: |T. ==, (E2 -2 E)=-—, (47&9Q R3j 4

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11
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2 2
pc N 1 Q 2 An A 1 Q 3 o)
Thus: |(Teda) =T.da. =|——¢ rozz | —rdrdpz|=+—¢ r’drdopz
~aus ( )z = [ 2 0[47250R3j ][ (p] 2 0[47IEUR3] ¢

The EM force acting on the disk portion of the “northern” hemisphere is therefore:

2 2
:lgo Q 3 27[J‘Rr3dr2: ! Q—22
2 4re R 0 4re, 16R

ﬁdiﬁz - Cﬁdisk(?.da)z 0=x/2

= 1 0’
FEM = z
W 4ge (16R2]

The total EM force acting on the upper / “northern” hemisphere is:
Fom g e L(Q 0, L [O ), 130,
or et SR Aze \8R? )T 4ze, | 16R? 47e,\ 16R’

Note that in applying ﬁTEOA; = CJQDST(F,t)-dé —&U, di-[ §(F,t)dz' that any volume v that
t v

encloses a/l of the electric charge will suffice. Thus in above problem, we could equally-well
have instead chosen to use e.g. the whole half-region z > 0 — i.e. the “disk” consisting of the
entire x-y plane and the upper hemisphere (at 7 = «), but note that since £ =0 at » = oo, this latter
surface would contribute nothing to the total EM force!!!

2
1
Then for the outer portion of the whole x-y plane (i.e. > R): T.= —i(%) —

2
= 1
Then for this outer portion of the x-y plane (» > R): ||T .da) =T da, = +g—2"( O J —drdeg

dre, ) 1’

—

The corresponding EM force on this outer portion of the x-y plane (for » > R) is:

2 2
Fd‘;?,f(r>R)=lgo[ Q jzﬂ "L gao [Q jé

2\ 4ze, Ry 4re, \ 8R’

. . _ 1 (0 ). 1 (0*). 1 (30").
Thus: |E2 = F™ (p < R)+ FE (> R) == 2+ 2= 2z
Thus: |Fror = Fas ( )+ Fas ( ) 47e,\ 16R’ 47, \ SR’ 47e, \ 16R’

n.b. this is precisely the same result as obtained above via first method!!!

Even though the uniformly charged sphere was a solid object — not a hollow sphere — the use
of Maxwell’s Stress Tensor allowed us to calculate the net EM force acting on the “northern”
hemisphere via a surface integral over the bounding surface S enclosing the volume v

containing the uniform electric charge volume density o =Q / 4 7R’ . That’s pretty amazing!!

12 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Further Discussion of the Conservation of Linear Momentum p

We started out this lecture talking ~ somewhat qualitatively about conservation of linear
momentum in electrodynamics; we are now in a position to quantitatively discuss this subject.

Newton’s 2" Law of Motion F (¢)=ma(t)=mdv(t)/dt =d {m¥ ()} /dt = dp,,, (¢)/dt
The total {instantaneous} force F (t) acting on an object = {instantaneous} time rate of change of

o dﬁmec {
P =T

. But from above, we know that:

its mechanical linear momentum dp(z)/dt i.e.

P ()= Ll § 7yt [ 5(7.0) e

where p,.., (¢) = total {instantancous} mechanical linear momentum of the particles contained

in the (source) volume v. (SI units: kg-m/sec)

- S I ¢g/-
We define: |Pey (t)Eeo,qu.vS(r,t)dr=c—2J.vS(r,t)dr {since [’ =1/&,p, | in free space}

where p,,, (t) = total {instantaneous} linear momentum carried by / stored in the (macroscopic)

electromagnetic fields (£ and B) (SI units: kg-m/sec). At the microscopic level — linear momentum
is carried by the virtual {and/or real} photons associated with the macroscopic E and B fields!

We can also define an {instantaneous} EM field linear momentum density (SI Units: kg/m*-sec):

- <o 1 -,
2 em (7’ N ) =¢&,u,S (’” N ) = ?S (i’ N ) = instantaneous £M field linear momentum per unit volume

Thus, we see that the total {instantaneous} EM field linear momentum | P, (f ) = LS%EM (77 N4 )d T

Note that the surface integral in *™ above, q.DS T (;7 , t)-dd physically corresponds to the total

{instantaneous} EM field linear momentum per unit time flowing inwards through the surface S .

Thus, any instantaneous increase in the total linear momentum (mechanical and EM field)
= the linear momentum brought in by the EM fields themselves through the bounding surface S .

dp dp — _ = |
Thus: p'"“’h(t)z— it (t)+<_|SST(F,¢).da where: | Diy (t)E8oﬂo_[vS(r,t)dr:c—zjvS(r,t)dr

dt dt
Or: D (1) + P (1) =q-> f(f,t)-dﬁ
dt dt s

m: ﬁTot (t)Eﬁmech (t)+ﬁEM (t)

dapy,, (f ) AP een (f ) 7 (l ) _ (]5 7 (7 t)° da Expresses conservation of linear
S b

dt dt dt momentum in electrodynamics

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 13
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Note that the integral formula expressing conservation of linear momentum in electrodynamics is
similar to that of the integral form of Poynting’s theorem, expressing conservation of energy in
electrodynamics and also to that of the integral form of the Continuity Equation, expressing
conservation of electric charge in electrodynamics:

P ()= AUy, (t) _ AU, (1) L Uy (1) Poynting’s Theorem:
Tot dt dt dt Energy Conservation
=% v(umech(F,t)+uEM —Cf) r, t da——.[ (V S r t))dr
P e (7 ) Continuity Equation: Electric
J‘v ot _.[ Ve Jﬁee 1)dr Charge Conservation:

Note further that if the volume v = all space, then no linear momentum can flow into / out of v
through the bounding surface S. Thus, in this situation:

ﬁTOt (t) = ﬁmech (t)+ ﬁEM (t) = constant|

ang: | Dol Beesl) Ben(0) g 77 | o | D) . P ()
dt dt dt s dt dt

We can also express conservation of linear momentum via a differential equation, just as we
have done in the cases for electric charge and energy conservation. Define:

—

[ (17 ,t) = {instantaneous} mechanical linear momentum density (SI Units: kg/m*-sec)

@5y (7,t)= {instantaneous} EM field linear momentum density (SI Units: kg/m*-sec)

- - = 1 -
[ (r,t)EgOﬂOS(r,t)=c—2S(7‘,l‘)

Pror (77 , t) = {instantaneous} total  linear momentum density (SI Units: kg/m*-sec)

@Tot (I_;’t) = (é)mech (F’t)-i_g_éEM (F’t)

Then:
B (1)= [ @ (Fo1)dz| and | Bpy (1) = [ Ppy (F.)d7|, thus:

pTot (t) IV@TM (F,t)df = J‘VI:S_O.mech (F’t) + @EM (’_;’t):l dT = ﬁTot (t) = ﬁmech (t) + ﬁEM (t)

Then: Pror (t) = P (t) + D (t) =<I) T(?,t).dft
dt dt dt s

Using the divergence theorem on the RHS of this relation, this can also be written as:

de_. . d - - de. - < =
ELSOTM(”af)df:EJ‘v@mech(”J)dﬂ'EL@m(r,t)dT=IvV‘T(V>f)d7

0§ Ft) 0@, (F,t) = = _
Thus: IV( @"’e;t(r )+ goE,gt(r )—V°T(V,t)jdr=0

14  © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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This relation must hold for any volume v, and for @/ points & times (F ,t) within the volume v:

0 F.t) Of, (F,t) = = i i ~
8§ mech (1” ) N § Eu (7’ ) .7 (F, t) - leferentlgl form of conservation
ot ot of linear momentum
0P een (Fot) 0@y (Fot) = =,
@megt( ) + @E/gt( ) =V+T'(7,t)| (Linear momentum conservation)

o . 0 . S /= , ,
Continuity Equation: 5,0(1”,1 ) =-VeJ (l” 4 ) (Electric charge conservation)

. 0 B 4 —— ,
Poynting’s Theorem: a(umh (V 1 ) +Ugy (7’ 1 )) =-Vs§ (V N ) (Energy conservation)

Thus, we see that the negative of Maxwell’s Stress Tensor, -T (17 ,t) physically represents

linear momentum flux density, analogous to electric current density J (17 , t) which physically

represents the electric charge flux density in the Continuity Equation, and analogous to Poynting’s

vector S (7,¢) which physically represents the energy flux density in Poynting’s theorem.

OPnea (F51) , 0P (Fo1)
ot ot

describing the “how” of linear momentum conservation, says nothing about the nature/origin of

why linear momentum is conserved, just as in case(s) of the Continuity Equation (electric charge
conservation) and Poynting’s Theorem (energy conservation).

=V.T (7,t), while mathematically

Note also that relation

Since —T (17 , t) physically represents the instantaneous linear momentum flux density (aka

momentum flow = momentum current density) at the space-time point (77 , t), the 9 elements of

{the negative of} Maxwell’s Stress Tensor, —T;; are physically interpreted as the instantaneous

EM field linear momentum flow in the i direction through a surface oriented in the jth direction.
Note further that because —T; =T, this is also equal to the instantaneous EM field linear
momentum flow in the /™ direction through a surface oriented in the i direction!

a<§6mech (F’t) + 8t@EM (?’t)

=V.T 7,t), noting that the del-operator
ot ot ( ) 8 P

From the equation

V= o4 +i y +£2 has SI units of m ™', we see that the 9 elements of T(F,t)
ox oy 0z

{= linear momentum flux densities = linear momentum flows} have SI units of:

length x linear momentum density/unit time = linear momentum density x length/unit time
= linear momentum density x (length/unit time) = linear momentum density x velocity
= {(kg-m/s)/m’} x (m/s) = kg/m-s>

Earlier (p. 9 of these lect. notes), we also said that the 9 elements of T(F,t) have SI units of

pressure, p (Pascals = Newtons/m® = (kg-m/s*)/m* = kg/m-s”). Note further that the SI units of
pressure are also that of energy density, u (Joules/m® = (Newton-m)/m’ = Newtons/m® = kg/m-s>)!

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 15
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Griffiths Example 8.3 EM Field Momentum:
A long coaxial cable of length ¢ consists of an inner conductor (radius a) and outer conductor
(radius b). The coax cable is connected to a battery at one end and a resistor at the other end, as

shown in figure below:

Pa— |
2i[ Aier <O /
Val [ F ¥ F T—S ¥ ¥ + N .
oM UF + + + + + + + + ¥+ U e 7
o * )
=N\ 2
e < (> a,b > ©

The inner conductor carries uniform charge / unit length 4, =+0,,.. /¢ and a steady/DC

current I = I (i.e. flowing to the right). The outer conductor has the opposite charge and
current. Calculate the EM momentum carried by the EM fields associated with this system.

Note that this problem has no time dependence associated with it, i.e. it is a static problem.
.. The static EM fields associated with this long coaxial cable are:

E(p)= ! i,[? p =+/x>+»" in cylindrical coordinates
2re, p
B(p) S—ULA n.b. E(p) and B(p)only non-zero for a< p<b
7 p
E(p) B(p) S(p)
p=a p=b " p=a p=b 7" p=a p=b "
. I N (U A=A,
Poynting’s vector is: S(p):Z(E(p)XB(p)):W(pX¢):WZ (for a< p<b)

= Even though this is a static problem (i.e. no explicit time dependence), EM energy contained
/ stored in the EM fields {n.b. only within the region a < p <b } is flowing down the coax cable

in the +Z -direction, from battery to resistor!

16 © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The instantaneous EM power (= constant # fcn (t)) transported down the coax cable is obtained
by integrating Poynting’s vector S ( p)Il+Z (= energy flux density) over a perpendicular / cross-
sectional area of 4, =7 (b2 -a’ ) , with corresponding infinitesimal area element

da, =2npdpz:

Al ppb 1 A b
P=|S(p)da, = —2mpd p = In| — <p<b
[S(p)-da, > I, mpdp =5 (aj (a<p<b)

A b
But: |AV = 3 In (—j = EM Power = EM Power dissipated in the resistor!

e, \a

. , - . g Al
Inside the coax cable (i.e. a < p <b), Poynting’s vector is: S(p) = ﬁz (a<p<h)
&P

The linear momentum associated with / carried by / stored in the EM field(s) (a < p<b) is:

- - = Al pp=b 1
Bo = [, Pou (P)dr = 5,10, S(p)dr =EL0 2" —{2ntpdp}| (a< p<b)

47 p=a p
Al .
Deu =’uo—ln[éjz (agp<bh)

2 a

The EM field(s) E and B (via S = ﬂL(E x B ) ) in the region a < p < b are responsible for
transporting EM power / energy as well as linear momentum p,,, down the coaxial cable!
Microscopically, EM energy and linear momentum are transported down the coax cable by the

{ensemble of} virtual photons associated with the E and B fields in the region a < p<b.

Transport of non-zero linear momentum down the coax cable might seem bizarre at first
encounter, because macroscopically, this is a static problem — we have a coax cable (at rest in the lab

frame), a battery producing a static £ -field and static electric charge distribution, as well as a steady
/ DC current [ and static B -field. How can there be any net macroscopic linear momentum?

The answer is: There isn’t, because there exists a “hidden” mechanical momentum:

Microscopically, virtual photons associated with macroscopic £ and B fields are emitted (and
absorbed) by electric charges (e.g. conduction / “free” electrons flowing as macroscopic current /
down / back along coax cable and as static charges on conducting surfaces of coax cable (with
potential difference AV across coax cable). As stated before, virtual photons carry both kinetic
energy K.E. and momentum p .

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 17
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In the emission (and absorption) process — e.g. an electron emitting a virtual photon, again,
energy and momentum are conserved (microscopically) — the electron “recoils” emitting a virtual
photon, analogous to a rifle firing a bullet:

e

< Q@ \_\_\_ > virtual photon @—>

electron recoil

n.b. emission / absorption of virtual photons e.g. by an isolated electron is responsible for a
phenomenon known as zitterbewegung — “trembling motion” of the electron...

The sum total of all electric charges emitting virtual photons gives a net macroscopic
“mechanical” linear momentum that is equal / but in the opposite direction to the net EM field
momentum. At the microscopic level, individually recoiling electrons (rapidly) interact with the
surrounding matter (atoms) making up the coax cable — scattering off of them — thus this (net)
recoil momentum (initially associated only with virtual photon-emitting electric charges) very
rapidly winds up being transferred (via subsequent scattering interactions with atoms) to the
whole/entire macroscopic physical system (here, the coax cable):

AY 7
O ) Dot Py ( O
7

ﬁ/ coax cable

—hidden __ =
mech  —  PEm

Total linear momentum is conserved in a closed system of volume v (enclosing coax cable):

— hidden

Diot = Pest + P = Pive — Pt =0

Now imagine that the resistance R of the load resistor “magically” increases linearly with
time {e.g. imagine the resistor to be a linear potentiometer (a linear, knob-variable resistor), so
we can simply slowly rotate the knob on the linear potentiometer CW with time} which causes
the current / flowing in the circuit to (slowly) decrease linearly with time.

Then, the slowly linearly-decreasing current will correspondingly have associated with it a

slowly linearly-decreasing magnetic field; thus the linearly changing magnetic field will induce
. dB| | .- dga
an electric field - via Faraday’s Law - using either |V x £ =——/|or Cf) Eedl!=——| Beday|
dt c dt s

. dl (t
E™ (p,t)= [;—;#ln p+K } Z| {where K = a constant of integration}

This induced E -field exerts a net force [AF;* (t)= " (p=a,t)—F" (p=b,t)|on the +A

charges residing on the inner/outer cylinders of the coax cable {where ™ = Q.E™ | i = a,b} of:

AR (1)= M[&—dl(t) lna+K}2—/1€ {&—d[(’) lnb—i—K}é R YLUG) h{QJs {.b. points in
27 dt 27 dt 2r dt a
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The total net mechanical linear momentum imparted to the coax cable as the current slowly

decreases from /(1=0)=1 to I( fnal) 0, using d[Af)meeh (t)] = AF (t)dt|is:
8(Apye) = | ;‘i;;f,’ 0’; A A (1) ] = AP (1= 1) - Ap”"’ff =0) =Appet (1=t

J‘f:fﬁnaz Aﬁind
t=0

ab
1(t=t 4,4 )=0
Al [ |
1(1=0)=1

(t)dt=-

Hy
27

Ho

27

d,(ﬂln(gy_

Al

{J” L final dl
t=0

)

/1112 (

b
a

)

b

which is precisely equal to the original EM field momentum (¢ <0):

Py

HALL

In (—J z
a
Note that the coax cable will not recoil, because the equal, but opposite impulse is delivered

to the coax cable by the “hidden” momentum, microscopically (and macroscopically), in just the

same way as described above.

27

Note further that energy and momentum are able to be transported down the coax cable

because there exists a non-zero Poynting’s vector § = #L(E X B) # 0 and a non-zero linear

momentum density ©,,, =S (7,t) / ¢? due to the {radial} electric field £ in the region a < p<b,
arising from the presence of static electric charges on the surfaces of the inner & outer cylinders,
in conjunction with the {azimuthal} magnetic field B associated with the steady current /

flowing down the coax cable. If either E or B were zero, or their cross-product E x B were zero,
there would be no transport of EM energy & linear momentum down the cable.

Recall that the capacitance C of an electrical device is associated with the ability to store

energy in the electric field £ of that device, and that the {self-} inductance L of an electrical

device is associated with the ability to store energy in the magnetic field B of that device.
We thus realize that:

C=Q/AV =2z¢,(/In(b/a)|=

for the presence of the surface charges o, =+0Q/4

QO = CAV |is responsible
_Q/ outer On the inner &

outer conductors of the coax cable when a potential difference AV is imposed between the
inner/outer conductors, which also gives rise to the existence of the transverse/radial electric

The capacitance of the coax cable

and o

inner

field £ =—-VV inthe region a < p <b . The energy stored in the electric field £ of the coax
Uy =+CAV? = 2= 2*(In(b/a)| (Joules).

cable is

The {self-} inductance of the coax cable |L =D, /I =4=(In(b/a)|= is

®, =Ll =] Beda|i

associated with the azimuthal magnetic field B for the in the region a < p < b resulting from
the flow of electrical current / down the inner conductor. The energy stored in the magnetic

field B of the coax cable is

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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£ 1°0In(b/a)

(Joules).
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e The total EM energy stored in the coax cable {using the principle of linear superposition}
is the sum of these two electric-only and magnetic-only energies:

4re,

Upy =Uy +Uy =4CAV + L LI = 1= 2201 (bfa) + # I*0In (bfa) =52 +£(1/e) ) ¢In (bfa)

e EM power transport in a electrical device occurs via the electromagnetic field and necessarily

requires S = ﬂi(E x B ) # 0 (i.e. both E and B must be non-zero, and must be such that they
also have non-zero cross-product Ex B ).

e EM power transport in a electrical device necessarily requires the utilization of both the
capacitance C and the {self-}inductance L of the device in order to do so!

e The EM power transported from the battery down the coax cable to the resistor (where it is
ultimately dissipated as heat/thermal energy) is: |P = 5— A/ In(b/ a) = AV *I|(Watts = J/sec)

27e,

{n.b. the EM power is proportional to the product of the charge {per unit length} and the
current A7 }. But|AV =Q/C|and |l =®,,/L|, from Gauss’ Law |®, ELE-dé =0,../&,

we see that|P=5—AIIn(b/a)=AV*I=0®,, [CL=¢,® D, /CL

2re,

>

i.e. EM power transport in/through an electrical device manifestly involves:
a.) the product of the electric and magnetic fluxes: ®,®, and

b.) the product of the device’s capacitance and its inductance: CL!!!
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