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LECTURE NOTES 8.5 
 

Reflection and Refraction of EM Waves at the 
Boundary of a Dispersive/Absorbing/Conducting Medium 

 
     Consider a situation where monochromatic plane EM waves are incident on a boundary 
between two media {located at z = 0 and lying in the x-y plane} as shown in the figure below.  
For the sake of simplicity, the 1st medium (z < 0) is linear/homogeneous/isotropic, non-absorbing 
/ non-dispersive and non-magnetic. The 2nd medium is also linear/homogeneous/isotropic and 
non-magnetic, but is absorbing/dispersive and conductive. 
 

 
     Because of the above-stated EM properties of the two media, in medium (1) the incident and 
reflected wavevectors inck

G
and reflk

G
are purely real, whereas in medium (2), the transmitted 

wavevector is complex: ( ) ( ) ( )trans trans transk k iω ω κ ω= +
G G G� . Note that the monochromatic plane  

EM wave(s) have the same frequency ω , independent of the medium they are propagating in. 
 
 THE ELECTRIC FIELDS: 
 

( ) ( ) ( )

( ) ( ) ( )

,Medium (1)  (non-absorbing)
,

inc

inc

refl

i k r t
inc o

k r t
refl orefl

E r t E r e

E r t E r e

ω

ω

−

−

⎧ =⎪
⎨
⎪ =⎩

G Gi

G Gi

G GG G� �

G GG G� �
  ,inc reflk k  
G G

  ⇐  real, constant wavevectors 

 

( ) ( ) ( )( )Medium 2)  ,(absorbing /
 conducting)

trans

trans

i k r t

trans oE r t E r e
ω ω−⎧

=⎨
⎩

G G� iG GG G� �   ( ) ( ) ( )trans trans transk k iω ω κ ω= +
G G G�  ⇐   

 
On the boundary/interface (lying in the x-y plane at z = 0) we must have (for arbitrary times, t): 
 

( ) ( )inc refli k r t i k r te eω ω− −
=

G GG Gi i     and:    ( ) ( )( ) ( )( ) ( )transinc trans trans
i k r ti k r t i k r t re e e e

ω ωω ω ω κ ω−− − −= =
GG GG�G G Gii i i  

 

⇒  inc reflk r k r=
G GG Gi i   and: ( ) ( ) ( )( ) ( ) ( )inc trans trans trans trans transk r k r k i r k r i rω ω κ ω ω κ ω= = + = +

G G G GG GG G G G G�i i i i i  

complex 
wavevector 
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On the interface/boundary lying in the x-y plane at z = 0: 
 

The 1st equation: inc reflk r k r=
G GG Gi i  gives usual Law of Reflection:  

  

 sin sininc inc refl reflk r k rθ θ=  
 

   but:    1 1inc reflk v k vω ω= = =   because both the incident and reflected waves are in the same 
non-dispersive/non-absorbent medium {medium (1)}. 
 

⇒  sin sininc reflθ θ=   ⇒  inc reflθ θ=  
 

The 2nd equation: ( ) ( ) ( )( ) ( ) ( )inc trans trans trans trans transk r k r k i r k r i rω ω κ ω ω κ ω= = + = +
G G G GG GG G G G G�i i i i i ,  

after equating real and imaginary parts, gives: 
 

( ) ( )Re : inc transk r k rω    =
G GG Gi i    and  ( ) ( )Im : 0 trans rκ ω    =

G Gi  

⇒  In general, ( ) ( ) and trans transk ω κ ω
G G  are not parallel to each other!!   

i.e. In general, ( ) ( ) and trans transk ω κ ω
G G  will point in different directions!!  Why/How??? 

 

     Physically, the requirement that ( ) 0trans rκ ω =
G Gi  on the interface/boundary {lying in the x-y 

plane at z = 0} means that ( ) ( )( )Imtrans transkκ ω ω=
GG �  must be ⊥  to the boundary (i.e. ˆtrans zκ +

G & ), 

since the position vector rG  {pointing from the origin ϑ ( )0,0,0 to an arbitrary point 

( ), , 0x y z = on the boundary} lies in the x-y plane.  
 
Inside Absorbing/Conducting Medium (2) (i.e. z > 0): 
  

Because trans trans transk k iκ= +
G G G� , then: ( ) ( ) ( ) ( ) ( ), trans transtrans

trans trans

i k r t i k r tz
trans o oE z t E r e E r e e

ω ωκ− −−= =
G GG� Gi iG G GG G� � ;  

 
Thus, we see that: 

( )Imtrans transkκ =
GG � defines planes (&  to the boundary/interface) of constant electric field amplitude in medium (2). 

( )ˆˆ Imtrans transkκ = �
is the unit normal to the planes of constant electric field amplitude in medium (2). 

 
Furthermore:  

( )Retrans transk k=
G G�  defines planes of constant phase in medium (2) 

( )ˆ ˆRetrans transk k= � is the unit normal to the planes of constant phase in medium (2) 

{n.b. in general, planes of constant phase could be in any direction, depending on the material!} 
 
See the following figure for a explicit diagram of exactly what is occurring in this physics problem: 

n.b. ,  and inc refl transθ θ θ  
are defined with respect 
to the ẑ+ unit normal of 
the interface/boundary. 
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On the interface/boundary {lying in the x-y plane at z = 0}, at an arbitrary point ( ), , 0x y z = : 
 

 ( ) ( )Re : inc transk r k rω    =
G GG Gi i    means:   ( )sin sininc inc trans transk r k rθ ω θ=  

     or:         ( )sin sininc inc trans transk kθ ω θ=  
 

     Because the wave vector ( )transk ω
G�  is complex, we do not have a simple relation between the 

wavenumber ( )transk ω and the {angular} frequency ω  in the dispersive, conducting medium (2),  

i.e. ( ) 2transk vω ω≠  as we did for the incident and reflected wavevectors 1 1inc reflk v k vω ω= = =   
associated with their respective EM waves propagating in the non-dispersive, non-conducting, 
non-magnetic medium (1). 
 
     In medium (1), the index of refraction 1n  is purely real and independent of frequency  
(i.e. medium (1) is non-dispersive), thus the {real} relation 1 1v c n=  is valid in medium (1),  
whereas in the dispersive, conductive medium (2), the {frequency-dependent!} complex wavenumber 

( )2k ω� and index of refraction ( )2n ω� are related to each other by ( ) ( ) ( )2 2n c kω ω ω= �� , thus the index 

of refraction in medium (2) is complex and frequency-dependent ( ) ( ) ( )2 2 2n n iω ω η ω= +� , and thus 

the speed of propagation in medium (2) ( ) ( )2 2v c nω ω=� �  is also complex. 

n.b. ,  and inc refl transθ θ θ  
are defined with respect 
to the ẑ+ unit normal of 
the interface/boundary. 
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     Note that we can also determine the relationship between complex wave vector ( )2k ω
G�  and 

complex index of refraction, ( )2n ω�  of the absorbing/dispersive, non-magnetic, conducting 

medium (2) from (either of) the wave equation(s) associated with the tranmitted E
G

and B
G

-fields 
in medium (2), which can be written (e.g. for complex transE

G
) as:  

 

( ) ( )
( ) ( ) ( )2 2 2

22
2 2 2 2
2

, ,1, trans trans
trans

E r t n E r t
E r t

v t c t
ω

ω
∂ ∂

∇ = =
∂ ∂

G GG G� �G �G�
�

 

 
     For plane harmonic (i.e. monochromatic) EM waves propagating in absorbing/dispersing non-
magnetic medium (2), noting that:  transE∇

G� gives: ( )transik ω
G�   and: transE t∂ ∂

G�  gives: iω−  
 
Thus, the characteristic equation associated with the above differential equation is: 
 

( ) ( ) ( ) ( )( )
2
2

2trans trans

n
ik ik i i

c
ω

ω ω ω ω= −
G G �� �i   ⇒  ( ) ( ) 2

22 2
trans

n
k

c
ω

ω ω
⎛ ⎞

− = −⎜ ⎟
⎝ ⎠

G ��   or: ( ) ( )
2

2 2
2transk n

c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  

 

But:  ok
c
ω⎛ ⎞≡ ⎜ ⎟

⎝ ⎠
 = vacuum wavenumber = 2

o

π
λ

,  where: o
c
f

λ = . 

 

∴  ( ) ( ) ( )
2

2 2 2 2
2 2trans ok n n k

c
ωω ω ω⎛ ⎞= =⎜ ⎟

⎝ ⎠
� � �     where:    ok

c
ω⎛ ⎞≡ ⎜ ⎟

⎝ ⎠
 = purely real quantity. 

 

     If we explicitly write out the real and imaginary parts of  ( ) ( ) ( )trans trans transk k iω ω κ ω= +
G G G�  

associated with the above ( ) ( )trans transik ikω ω
G G� �i  term and the real and imaginary parts of  

( ) ( ) ( )2 2 2n n iω ω η ω= +�  associated with the above ( )2
2n ω� term: 

 

   ( ) ( ) ( )( ) 2
2 2 2 2trans trans trans trans ok i k i n i n i kκ κ η η+ + = + +

G GG Gi    

     ( )
2 2

2 2 2
2 2 2 2

2 cos

( 2 ) 2
trans trans transtrans trans

trans trans trans trans trans trans o

ikk

k k ik n in k
κ θ κ

κ κ κ η η
== =

+ − = − −
G G G G G Gi i i��	�
 ��	�
 ��	�
  

∴ ( ) ( ) ( ) ( )2 2 2 2 2
2 2 22 cos 2trans trans trans trans trans ok i k n i n kκ κ θ η η⎡ ⎤− + = − +⎣ ⎦  

 
Equating the real and imaginary parts of the LHS and RHS of the above equation, we see that: 
 

( ) ( )( ) ( ) ( )( )2 2 2 2 2
2 2trans trans ok n kω κ ω ω η ω− = −   and:  ( ) ( ) ( ) ( ) 2

2 2costrans trans trans ok n kω κ ω θ ω η ω=  
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Thus, for ( ) ( ) ( )trans trans transk k iω ω κ ω= +�  and ( ) ( ) ( )2 2 2n n iω ω η ω= +�  we have the complex relations:  
 

1.)  ( ) ( )( ) ( ) ( )( )2 2 2 2 2
2 2trans trans ok n kω κ ω ω η ω− = −    with vacuum wavenumber 2

o
o

k
c

π ω
λ

≡ =  

2.)  ( ) ( ) ( ) ( ) 2
2 2costrans trans trans ok n kω κ ω θ ω η ω=   and vacuum wavelength o c fλ ≡ ,  2 fω π=  

 
We also have the relation: 

3.)  ( )sin sininc inc trans transk kθ ω θ=   where:   1 1inc ok n k n
c
ω⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 
Inserting relation 3.) into relations 1.) and 2.) above, after some algebra these relations yield the 
following relation: 
 

( ) ( )
( ) ( ) ( ) ( )( ) ( )2 2 2

2 2 2 2 22 2
1 12 2

1 1

2
cos sin sintrans trans trans o inc o inc

n in n
k i n k n k

n n
ω η ω ω η ω ω

ω θ κ ω θ θ
− +

+ = − = −
�

 

 
{n.b. if medium (2) is L/H/I non-conductive/non-magnetic/non-dispersive medium (i.e. like medium (1)), then   
 2 0transκ η= =  and it is easy to show that this relation then reduces to: ( )sin sininc inc trans transk k fcnθ θ ω= ≠ } 
 

Let us define:  ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 22
2 2 2 22 2

2 2
1 1 1

2n inn n
n n n

ω η ω ω η ωω ω
ω

− +
≡ = =
� ��a   ⇐   complex! 

 

Then:    ( ) ( ) ( )2 2
1cos sintrans trans trans o inck i n kω θ κ ω ω θ+ = −�a  

 
We define the Law of Complex Refraction {for this particular boundary/interface situation} as:  
 

( ) ( )1 2sin sininc transn nθ ω θ ω= ��   
 

where:  ( )transθ ω ≡� complex angle:  ( ) ( ) ( )trans trans transiθ ω θ ω ω≡ + Θ�  
 

with: ( ) ( )( )Retrans transθ ω θ ω≡ �      and:      ( ) ( )( )Imtrans transω θ ωΘ ≡ �  
 

Physically, ( ) ( )( )Retrans transθ ω θ ω≡ � has the usual physical meaning (except that it is now 

frequency-dependent), whereas ( ) ( )( )Imtrans transω θ ωΘ ≡ �  has no simple/easy physical meaning. 
 
The Law of Complex Refraction can be rewritten as: 
 

( ) ( ) ( )
( ) ( )

2
2 2

2
1 1

sin
sin

inc

trans

n n
n n
ω ω θω

ω θ ω
≡ = =
� ��

�a  
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Then:   ( ) ( )2 2 2sin sintrans incω θ ω θ=� �a   ⇒  ( ) ( )( )2 2 21 cos sintrans incω θ ω θ− =� �a  

⇒ ( )( ) ( )2 2 21 cos sintrans incθ ω θ ω− =� �a  ⇒  ( ) ( )( )2 2cos 1 sintrans incθ ω θ ω= −� �a  
 
But: 
 

  ( ) ( ) ( ) ( ) ( )( )2 2 2 2
1 1cos sin 1 sintrans trans trans o inc o inck i n k n kω θ κ ω ω θ ω θ ω+ = − = −� � � �a a a    

 

But:  ( ) ( )( )2 2cos 1 sintrans incθ ω θ ω= −� �a  {from above} 
 

 ∴ ( ) ( ) ( ) ( )( ) ( ) ( )2 2
1 1cos 1 sin costrans trans trans o inc o transk i n k n kω θ κ ω ω θ ω ω θ ω+ = − =� � � � �a a a  

 

i.e. ( ) ( ) ( ) ( )1cos costrans trans trans o transk i n kω θ κ ω ω θ ω+ =� � �a    
 

Solve for ( )ω�a : 
 

   ( ) ( ) ( )
( )

( )2

11

cos
cos

trans trans trans

o trans

k i n
nn k

ω θ κ ω ω
ω

θ ω
+

= =
� ��
�a  ⇒  ( ) ( ) ( )

( )2

cos
cos

trans trans trans

o trans

k i
n

k
ω θ κ ω

ω
θ ω

+
=

�
� �  

 

The {complex}  and E B
G G

 fields involved at the interface are: 
 

Incident wave:        ( ) ( ) ( ), inc

inc

i k r t
inc oE r t E r e ω−

=
G GiG GG G� �  ( ) ( )1, ,inc inc incB r t k E r t

ω
= ×

GG G G� �  

Reflected wave:      ( ) ( ) ( ), refl

refl

i k r t
refl oE r t E r e ω−

=
G GiG GG G� �  ( ) ( )1, ,refl refl incB r t k E r t

ω
= ×

GG G G� �  

Transmitted wave:  ( ) ( ) ( ), trans

trans

i k r t

trans oE r t E r e
ω−

=
G G� iG GG G� �           ( ) ( )1, ,trans trans transB r t k E r t

ω
= ×

GG GG G�� �  

                                                   =  ( ) ( )( )1 ,  ,trans trans trans transk E r t i E r tκ
ω

× + ×
G G GGG G� �  

 
The boundary conditions at the interface {lying in the x-y plane at z = 0} are: 
 

BC 1) (normal D
G

 continuous):      1 1 2 2E Eε ε⊥ ⊥=� ��     ( 0freeσ =  on the interface/boundary) 

BC 2) (tangential E
G

 continuous):     1 2E E=& &� �  

BC 3) (normal B
G

continuous):          1 2B B⊥ ⊥=� �  

BC 4) (tangential H
G

continuous): 1 2
1 2

1 1B B
μ μ

=& &� �  ( 0freeK =
G

on the interface/boundary) 

                                                      ⇒  1 2B B=& &� �   if  1 2 oμ μ μ� �   
 
 (medium (1) and medium (2) both non-magnetic) 
 

n.b. this form of 
B – takes care of 

everything!!!
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On the interface/boundary at z = 0 (for any arbitrary space-point, e.g. (x, y, z) = (0, 0, 0) and time t): 
 
TE Polarization Case: 
 

BC 2)  
inc refl transo o oE E E+ =� � �   2o ok cω π λ= = , o c fλ =  

 

BC 4)  cos cos cos
inc refl transo inc o refl o transB B Bθ θ θ+ =� � �       1inc ok n k= , 1refl ok n k=   and inc reflθ θ=  

        = ( )cos cos cos
inc refl trans transinc o inc refl o refl trans o trans trans ok E k E k E i Eθ θ θ κ− + = − +� � � �  

        = ( ) ( )1 cos cos
inc refl transo o o inc trans trans trans on k E E k i Eθ θ κ− − = − +� � �  

        = ( ) ( )1 cos cos
inc refl transo inc o o trans trans trans on k E E k i Eθ θ κ+ − = + +� � �  

 

  or:     ( )
1

cos
cosinc refl trans

trans trans trans
o o o

o inc

k iE E E
n k

θ κ
θ

⎛ ⎞+
− = ⎜ ⎟

⎝ ⎠
� � �  

 

but from BC 2)  
trans inc reflo o oE E E= +� � �   ∴ ( ) ( )

1

cos
cosinc refl inc refl

trans trans trans
o o o o

o inc

k iE E E E
n k

θ κ
θ

⎛ ⎞+
− = +⎜ ⎟

⎝ ⎠
� � � �   

 

Skipping the details of the algebra, but using:  ( ) ( ) ( )
( )

( )2

11

cos
cos

trans trans trans

o trans

k i n
nn k

ω θ κ ω ω
ω

θ ω
+

= =
� ��
�a  

It can be shown that: 
 

TE Polarization:   
( )
( )

cos cos
cos cos

refl

inc

o inc trans

o inc transTE

E

E
θ ω θ
θ ω θ

⎛ ⎞ −
⎜ ⎟ =
⎜ ⎟ +⎝ ⎠

� � �
� � �

a

a
 

 
Similarly, it can also be shown that:        
 

TM Polarization:  
( )
( )

cos cos
cos cos

refl

inc

o inc trans

o inc transTM

E

E
ω θ θ
ω θ θ

⎛ ⎞ − +
⎜ ⎟ =
⎜ ⎟ +⎝ ⎠

� � �
� � �

a

    a
 

 

Reflectance / Reflection Coefficient:    

2

refl

inc

o

o

E
R

E
=
�
�  

 
 
 
 
 
 
 
 
 

n.b. these have the identical functional 
forms of those the lossless dielectric case!
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     Using the above ratios for TE and TM polarization plus realistic/detailed/full-blown ( )2n ω�  
expression for metal, reflection coefficient/reflectance vs angle of incidence for TE and TM 
polarized EM waves (in visible light/optical region of EM spectrum) is shown below for a typical 
air-metal interface: 

     For TM polarization, a metal has no Brewster angle where ( ) 0BR θ = , but instead has a dip  
(i.e. minima) where Bθ  (for a lossless dielectric) used to be. The angular location of this minima 
/ dip for TM polarization is known as the principal angle of incidence, 1θ . 
 

At normal incidence 0inc refl transθ θ θ= = = , both TE and TM polarization give the same ratio:   
 

    
( )
( )

0

1
1

refl

inc
inc

o

o

E

E
θ

ω
ω

=

⎛ ⎞ −
⎜ ⎟ =
⎜ ⎟ +⎝ ⎠

� �
� �

a

a
 

 

Thus the reflectance of the metal/conductor at normal incidence, 0incθ =  is : 
 

 ( ) ( )
( )

2 2

0

1
0

1
refl

inc
inc

o
inc

o

E
R

E
θ

ω
θ

ω
=

−
= = =

+

� �
� �

a

a
     where:      ( ) ( ) ( )2

2 2
2

1 1

n n
n n

ω ω
ω ≡ =�a  

 

If (for simplicity) medium 1) is the vacuum, then:  1 1.0 airn n= ≈  
 

Then:  ( ) ( )( ) ( )
( )( ) ( )

2 2
2 2

2 2
2 2

1
0

1
inc

n
R

n

ω η ω
θ

ω η ω

− +
= =

+ +
 

For lossless/dispersionless dielectrics ( )2 0η ω = , then: ( ) ( )( )
( )( )

2
2

2
2

1
0

1
inc

n
R

n

ω
θ

ω

−
= =

+
. 
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For metals, the extinction coefficient ( ) ( )2 22ζ ω η ω≡  is large, e.g. in the visible light range. 

⇒ ( ) ( )0 unity 85 95%   for many metals in visible light range.incR θ = → ≈ −  

In the low frequency region, we have shown that:  ( ) ( )
2

C

o

n σω η ω
ε ω

≈ �  where: 
2

e
C

e

n e
m

σ
γ∗=  

Then: ( )low 
frequency

820 1 1 o
inc

C

R
n

ε ωθ
σ

= − ≈ −�  ⇐  known as the Hagen-Rubens formula  

 
{Works well for metals in the far-infrared portion of the EM spectrum – experimentally verified} 
 
     The high reflectivity of metals at optical and higher frequencies is caused by (essentially) the 
same physics as that for a tenuous plasma! 
 
The complex total electric permittivity for an absorptive/dispersive conducting medium is: 
 

 ( ) ( ) ( ) ( )
2 2

2 2 2
1 1

1

bound
oscb n
je P

Tot bound free o
jo e j j o

fn e
m i i

ωε ω ε ω ε ω ε
ε ω ω γ ω ω γ ω∗

=

⎛ ⎞
⎛ ⎞⎜ ⎟= + = + −⎜ ⎟⎜ ⎟⎡ ⎤− − +⎝ ⎠⎜ ⎟⎣ ⎦⎝ ⎠

∑� � �  

 
Where: 

bound
osc
jf = oscillator strength of jth bound resonance, with 

1

1
boundn
osc
j

j

f
=

=∑  

( )2 2
1 0 3b

j j e o en e mω ω ε ∗= −  = {angular} frequency of jth resonance of bound valence electrons. 

0 jj e ek mω ∗≡ = “natural” {angular} frequency of jth resonance of bound valence electrons. 

em∗  = electron mass in medium ( em≠ for electron e.g. in vacuum!) 

jγ = width/damping constant of jth resonance of bound valence electrons.  
b
en = # density (#/m3) of bound atomic electrons in the valence bands. 

oγ =  width/damping constant of  “free”/conduction electrons’ resonance at 0 0ω =  rad/sec  
2f

P e o en e mω ε ∗≡ = plasma frequency associated with “free”/conduction electrons 

#f
en = density (#/m3) of “free”/conduction electrons in the metal. 

 

     At high frequency, oω γ�  the total complex permittivity of the metal/conductor takes the 
approximate form: 

  ( ) ( ) ( ) ( )
2

P
Tot bound free bound o

ωε ω ε ω ε ω ε ω ε
ω

⎛ ⎞= + ≈ − ⎜ ⎟
⎝ ⎠

� � � �    for oω γ�  

     For even higher frequencies, but Pω ω� , but also where 1 jω ω�  of {all of} the bound/valence 
band resonances in the metal, the complex electric permittivity is given approximately by: 

 ( )
2

1 P
Tot o

ωε ω ε
ω

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
� �  for oω γ� , 1 jω ω�  of valence band resonances, but Pω ω� .  
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     Visible light penetrates only a very short distance ( ) ( )1sc vis vis Pcδ ω κ ω ω= �  into the metal 
and is almost entirely reflected. 
 
     When the frequency of the incident EM wave is increased still further, into the UV and x-ray 
region then Pω ω≥  and the metal suddenly becomes transparent – the transmittance T increases 
from zero and the reflectance 1R T= −  therefore decreases. 
 
 
A Simplified Model of EM Wave Propagation in the Earth’s Ionosphere and Magnetosphere 
 
     Propagation of EM waves in the earth’s ionosphere is very similar to that in a tenuous plasma, 
however, the earth’s weak DC magnetic dipole field: 
 

 40.3 Gauss 0.3 10  Tesla 30 Tesla earthB μ−≈ = × =
G

at the earth’s surface 
 
significantly changes the nature of EM wave propagation in the earth’s ionosphere, and thus 
cannot be neglected in the theory formalism. 
 

     Consider a tenuous electronic (i.e. e− -only) plasma of uniform number density with a strong, 
static and uniform magnetic field oB B=

G G
 with monochromatic plane EM waves propagating in 

the direction parallel to ˆoB B z= +
G G

& . 
 

     If the {complex} displacement amplitude rG�  of the electronic motion is small and 
damping/collisions are neglected, then the approximate equation of motion is given by the 
following inhomogeneous 2nd order differential equation:  
 

   ( ) ( ) ( ), , i t
e om r r t eB r r t eE r e ω−− × = −

G GG G G G G�� � �� �   
 

     Note that we can safely neglect the influence of  the magnetic Lorentz force term ev B− ×
GG ��  acting 

on the electrons associated with the {complex} B
G

-field of the EM wave, as long as EM oB B
G G� � . 

 
     We specifically/deliberately consider here circularly polarized monochromatic plane EM waves 
propagating in the ẑ+ direction ( )oB B=

G G
& , which in complex notation can be succinctly written as: 

    LCP 

 ( ) ( ) ( )1 2ˆ ˆ, ,E r t i E r t= ∈ ± ∈
G G G� �   where the polarization vectors are e.g.  1ˆ x̂∈ =  and: 2ˆ ŷ∈ =  

          RCP 
     If the monochromatic plane EM wave’s polarization vectors are: 1ˆ x̂∈ =  and 2ˆ ŷ∈ =  and: 

ˆoB B z=
G

, then we see that: ( )1̂ ˆB xε⊥ =
G

 and also that: ( )2ˆ ˆB yε⊥ =
G

. 

     The magnetic Lorentz force term ( ) ( )( )ˆ, ,o oeB r r t eB z r r t− × = − ×
G G G G G� �� �  can then only have 

components in the x-y plane - i.e. it can only have components along the ˆ ˆx y−  or 1 2ˆ ˆ∈ −∈ axes. 
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     A steady-state solution to the above 2nd order inhomogeneous differential equation for the 
electron’s {complex} displacement amplitude ( )er rG G at the space point rG  is:  
 

 ( ) ( ) ( )e
e B

er r E r
m ω ω ω

=
GG G G��

∓
    i.e.   ( ) ( ) ( ) ( ), i t i t

e e
e B

er r t r r e E r e
m

ω ω

ω ω ω
− −= =

GG G G G G�� �
∓

 

 

where B o eeB mω ≡  = electron precession frequency spiraling around the magnetic field lines 
and the ∓ sign depends on the handedness of the circular polarization {TBD, momentarily}. 
 
     We can understand this relation better in the rest frame of electrons precessing with frequency 

Bω  about the direction of ˆoB B z=
G

 (= direction of propagation of the EM wave) – the static B
G

-
field is eliminated – it is replaced by a rotating electric field of effective frequency ( )Bω ω∓ , 
where again the ∓ sign depends on the handedness of the circular polarization. 
 

     The {complex} harmonic oscillation of each electron’s displacement ( ) ( ), i t
e er r t r r e ω−=
G G G G� �   

also constitutes a {complex} oscillating electric dipole moment ( ) ( ) ( ), , i t
e ep r t er r t er r e ω−= =  

G G G G G G� � � ,  

and thus results in a corresponding {complex} macroscopic electric polarization ( ),r tΡ
G G�   

(= electric dipole moment/unit volume)  ( ) ( ), ,er t n p r tΡ =
G G G G� � ,  where en = electron # density  

and corresponding {complex} relation ( ) ( ) ( ), ,o er t E r tε χ ωΡ =
GG G G��  and thus has a corresponding 

{real!} macroscopic electric permittivity ( ) ( )( )1o eε ω ε χ ω= + . 

     For circularly-polarized monochromatic plane EM waves propagating parallel to ˆoB B z=
G

, 
the macroscopic electric permittivity is: 
 

( ) ( )
2

1 P
o

B

ωε ω ε
ω ω ω

± ⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠∓
    where:   

2
2 e
P

o e

n e
m

ω
ε

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
   and:   o

B
e

eB
m

ω =  

 

where the upper sign (−) in the denominator is for a LCP EM wave, the lower sign (+) in the 
denominator is for a RCP EM wave. 
 

     For circularly-polarized monochromatic plane EM waves propagating anti-parallel to ˆoB B z=
G

, 
the macroscopic electric permittivity is: 
 

          ( ) ( )
2

1 P
o

B

ωε ω ε
ω ω ω

± ⎛ ⎞
= −⎜ ⎟⎜ ⎟±⎝ ⎠

 

 

where the upper sign (+) in the denominator is for a LCP EM wave, the lower sign (−) in the 
denominator is for a RCP EM wave. 
 

⇒  LCP and RCP monochromatic plane EM waves propagate differently in a tenuous electronic 
plasma, depending on whether the EM wave propagation direction is || to (or anti-||) to B

G
. 

 
⇒  The earth’s ionosphere is bi-refringent !!! 
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      If the direction of EM wave propagation not perfectly || to (or anti-||) to B
G

, then one simply 
replaces cosB Bω ω→ Θ   in the above formulae, where Θ ≡ opening angle between propagation 

wavevector  and k B
G G

, i.e. ( )ˆˆ ˆ coso o ok B k B z kB k z kB= = = Θ
G GG
i i i  

 
⇒  A tenuous electronic plasma is also anisotropic !!! 
 
     A typical maximum number density of free electrons in the tenuous electronic plasma of the 
earth’s ionosphere is 10 12~ 10 10en −  electrons/m3, which corresponds to a plasma frequency of  

2 6 76 10 6 10p e o en e mω ε= × − ×�  (radians/sec). 
 
⇒   The precession frequency of electrons in this plasma, in the earth’s magnetic field is:     
       ( ) 65.3 10B o eeB mω = ×�  (radians/sec)  for 30  o earthB B Teslaμ= � . 
 

( ) ( )
2

: 1 P
o

B

k B ωε ω ε
ω ω ω

± ⎛ ⎞
    = −⎜ ⎟⎜ ⎟

⎝ ⎠

G G
&

∓
   ( ) ( )

2

anti- : 1 P
o

B

k B ωε ω ε
ω ω ω

± ⎛ ⎞
     = −⎜ ⎟⎜ ⎟±⎝ ⎠

G G
&  

 

      Note that circularly polarized EM waves with ( ) 0ε ω± <  cannot propagate in plasma because 
they are exponentially attenuated. 
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⇒  An incident monochromatic plane EM wave with circular polarization such that ( ) 0ε ω± <  
      in the tenuous electronic plasma of the earth’s ionosphere will be totally reflected, the other 

circular polarization state (with ( ) 0ε ω± > ) will be partially transmitted/partially reflected. 
 
⇒  A linearly-polarized monochromatic plane EM wave incident on the tenuous electronic 

plasma of the earth’s ionosphere will have a reflected wave that is elliptically polarized with 
its major axis rotated away from the direction of the polarization of incident wave. 

 
     The earth’s ionosphere has several layers of plasma with electron densities characteristic of 
that/each layer, which can also vary in time and space, e.g. depending on the solar wind / solar 
storms, as well as earth’s own weather (thunderstorms, etc.) as well as geological stresses in 
earth’s crust – fault lines/earth quakes and volcanic activity…. 
 
     The number density of free electrons in each ionosphere layer has a maximum at a certain 
height – inferred from studying reflected pulses of varying frequency, sent vertically upwards 
from the ground. 
 

     A short EM wave pulse of frequency 1ω  sent upwards from the ground actually enters the 
bottom of the ionospheric layer, because the number density of electrons is small there and also 
because the slope edn dh  is shallow. However, when the electron number density en  reaches a 

critical value for the incident, upward-going EM wave, i.e. 2
1 P e o en e mω ω ε= = , the EM wave 

is reflected back, as shown in the figure below: 
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     The behavior of ( )ε ω− at low frequencies is responsible for the magnetospheric propagation 

phenomenon known as “whistlers”.  As 0ω → , ( )ε ω− → ∞  (see graph on page 12) because: 
 

( )
2
P

o
B

ωε ω ε
ωω

− ⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
 for 0ω →  

 
     Propagation in the tenuous electronic plasma of the earth’s ionosphere occurs {because 

( ) 0ε ω− > } but the wavenumber P

B

k
c

ω ω
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠
�  corresponds to a highly dispersive medium!   

Energy transport is governed by the group velocity, here: ( ) ( ) 22 2 B
g p

P

v v c ω ωω ω
ω

≈�  

 
⇒  Pulses of EM waves (e.g. created in/during a lightning discharge) have frequency 
components that propagate in the earth’s ionosphere at different speeds – higher ω →  higher 
propagation speeds, lower ω →  lower propagation speeds. 

 
Spectral Analysis of a Whistler - Frequency vs. Time Plot: 

Hear the audio file(s) of whistlers! 
 
If interested in reading more about 
“whistlers”: 
 
See e.g. R. A. Helliwell, “Whistlers 
& Related Ionospheric 
Phenomena”, Stanford University 
Press, Stanford, CA (1965).  
 
 Google “whistlers” & “sferics” – 
there are many websites where you 
can hear recordings of them! 
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     Finally, we consider the complex index of refraction ( ) ( ) ( )n n iω ω η ω= +�  or equivalently, 

the complex wave number, ( ) ( ) ( )k k iω ω κ ω= +�  of pure water (H2O):  ( ) ( )k n
c
ωω ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
� �  

The top graph in the figure below shows ( ) .n f vs f , the bottom graph shows the absorption 

coefficient, ( )2 2  vs. ,  and f E eV
c γ
ωα κ η λ⎛ ⎞≡ = ⎜ ⎟

⎝ ⎠
. Note that both plots are log-log plots!!!  

191 1.6 10eV J− = ×
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Note the following aspects of the above plots for pure H2O:  
 

• At low frequencies ( ) ( ) ( ) ( )( )29 81!!!o en f n f f K fε ε  = =� �  arises from partial 
orientation of the permanent electric dipole moment pG  of the H2O molecule (Langevin 
equation) – the partial orientation of 

2H OpG  is due to finite-temperature thermal energy 
density fluctuations…. 

 

• The ( )  vs. n f f  curve falls smoothly through the infrared region – ∃ some “glitches” in  

      ( ) ( ) and n f fη  due to molecular vibrational excitations/resonances in infrared region!! 
 

• ∃ more resonances in the UV region – due to excitations in the oxygen atom 
 

• The absorption coefficient α is very small at low frequencies, but starts to rise steeply at 
810f Hz� .  At ( )12 4 110 ~ far infrared ,  ~ 10 100scf Hz m mα δ μ− ⇒� �  in H2O!!! 

 
⇒  In the microwave region, ∃ strong absorption by H2O →  can use for microwave ovens!!! 
 
⇒  Strong absorption by H2O limited the trend of RADAR { During WWII} of going to  
      shorter and shorter wavelengths, to achieve better spatial resolution . . . 
 

• In the infrared region, the absorption coefficient for H2O is very large, due to vibrational 
resonances of the H2O molecule, 4 110 mα −� . 

   

• In the visible light region, there are no resonances of the H2O molecule, so the absorption 
coefficient α drops by ~ 7-8 orders of magnitude {!!!} Thus in the visible light region 
H2O/water is transparent/invisible. 

 

• However, getting into the UV region, ∃ oxygen atom resonances (due to inner L, K-shell 
electrons), thus α rises again dramatically, even higher, 6 110 mα −�  in the UV region. 

 

⇒ ∃ an absorption window in the visible light region: 144 8 10 Hz− ×  - not very wide!!! 
 
                                                                 red light      blue/violet light 
       750 nmRλ =      375 nmBVλ =   
⇒ The H2O absorption window is of fundamental importance to the evolution of life on earth    
      Life started off in the water/ocean, aquatic critter vision/sight developed in that   
      environment and specifically in the H2O absorption window, where significant amounts  
      of EM energy are present {thanks to the sun!} to be of use/benefit for survival… 
 
⇒ The co-incidence of the H2O absorption window and our (and other creature’s) ability  
      today to see in the visible light region of the EM spectrum is not a mere coincidence! 

 
⇒  Green grass/plants at the center of visible light absorption window! Because green =  

reflected light,  plants have absorption in both the red and blue/violet regions. 
 
⇒ On either side of the H2O absorption window  there is not much/very little infrared or UV  
     radiation in water after ~ few ~ 100IR

sc mδ μ  ~ 1UV
sc mδ μ  - because strongly attenuated !!! 


