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Wide-band impedance-transformation techniques make common use of magnetic-
coupling devices such as transformers (or autotransformers) and baluns for energy
transfer between sections of a circuit. Engineering solutions in this area have been well
documented in the past and are readily available to the circuit designer from dedicated
technical sources.

When operation in a narrow band of frequencies is desired, the engineer usually resorts
to a number of passive reactive networks exhibiting impedance-transformation
properties. One example is the capacitive transformer, which has received extensive use
since the very early days of radio. Surprisingly, however, technical information
regarding its operation principle and application data is scarce in the currently available
literature. Hence, design work involving this specific network alternatively uses time-
consuming trial-and-error methods.

It is the purpose of this article to present a comprehensive analysis of the capacitive
transformer and to illustrate how derived results can be incorporated into the design of a
simple RF matching network and a grounded-base AF Colpitts oscillator.

Our study begins by considering the reactive network shown in Fig.1. A sinusoidal
voltage of amplitude V and radian frequency o is applied to its input terminals. V; is the
phasor or complex gquantity describing the voltage drop across the load resistor R.
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Fiz.1 B-C type reacttve network

The following equations hold for the network:

I, = (V _Vl)jwcz
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Combining the above equations gives:

. . V
(V _Vl)Ja)CZ zvlja)Cl +El

Then:
: : : V
VieC, =V, (jaC, + jeC; )+ o

vl[%+ jol(C, +c2)}

{1+ ja)(Cl+CZ)R}

Solving for V; yields:
v, oy @R (D)
1+ jo(C, +C,)R

From the set of basic equations for the network and Eq.(1) we obtain:

joc,R .
l,=|V -V oC
2 { 1+ja)(C1+C2)R}J 2

1+ jwC,R .
— : J 1 Ja)Cz
1+ jo(C, +C,)R

Input admittance is:

| 1+ joC,R |
2= - el JaC,
V |1+ jo(C,+C,)R

_ 1+ jeCR)L- jo(C, +C,)R] .
= s jaC,
1+ ®°(C, +C, )R

_1-jo(C,+C,)R+ joC,R+®’C,R*(C, +C,) joC
1+w?(C, +C, ) R? ’

1- joC,R+@*(C, +C,)C,R? .
= > jaC,
1+ w*(C,+C,)’R?

_ 0°C,’R+ jaC, 1+ #°C,(C, +C,)R?] 2
1+ w*(C, +C,)*R?
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If ®?(C1+C2)°R*>>1, then:

l ¢! ., jc,i+ w’c,(C, +C,)R?]

~

-2
V (C,+C,)R w(C,+C, ) R?

If also ®?C1(C1+C,)R?*>>1:

1, c,’ vio C.C,
V  (C,+C,)R C, +C,

N

..(3)

Eq.(3) suggests the equivalent network depicted in Fig.2, as seen from the source side,
where:

R, =[Cl+C2J R ..(3.)

and

.(3.2)

1 =3+
L]
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Fiz 2 Equralent B-C network

It is interesting to observe that Eq.(1) reduces to:

..(3.3)

indicating that the voltage drop across the load resistor is in phase with the applied
source voltage and smaller by a fraction C,/(C1+C,) . Another equivalent network may
be drawn as indicated by Fig.3. Clearly, the R-C network can be made to act as an ideal
transformer paralleled by a capacitance C at the primary side, with the resistive load R
connected to the secondary circuit and having a 1:n turns-ratio, where:



..(34)

o)
n =
{C1+C2)

Ideal Transformer

Fig 3 Transformer-like equivalent network

We shall now define the following:

G :% ...(4.2)

Q. =w(C,+C,)R ...(4.2)
n’G :Ri ...(4.3)

Q = n“;(é ..(4.8)

Expressions (4.3) and (4.4) give, respectively, the input conductance and the “Q” at the
input port when Qg2 >>1. For this case, the relationship between Qr and Qg is:

1-n
From Eq.(2), a more general expression for input conductance can be obtained:
*C,’R

G = ..(5
“ 1+0*(C,+C,\R? ®)

Using set of definitions (4), we arrive to an equivalent form for Geg:

3 *C,’R
S QE2

’n?(C,+C, )R
1+QE2




n?Q.> 1
Geq - 2 p
1+Q.” R
2
=n°G- Qe . ..(5.1)
1+Q¢
Input conductance is then:
2
G, =N, G ...(5.2)
where:
2
N~ =N’ Qe , ...(5.3)
1+ Q¢

When Q¢ is large, the input conductance is approximated by n’G.

Next, we shall compute the percentage error A; when n°G is used for the input
conductance instead of the exact value ne,’G.

_ (100 J%
Q:’

If Qe is made equal to 10, the percentage error is 1%. So, Geq = n’G within 1% when Qg
=10.

Eq.(2) also gives the equivalent input susceptance Beq for the more general case:

C,[1+w°C,(C, +C,)R?]
eq = . — ...(6)
1+ 0*(C,+C,FR
which corresponds to a capacitance:
o _Cali+o’C(C,+C )R] 6D

h 1+ w*(C, +C,)’R?
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or equivalently:

— Cz[l"'(l_n)QEZ]
eq 1+QE2 (62)

If Qe is large, the equivalent input capacitance is C = C;C,/(C1+Cy).

Let’s compute now the percentage error A, when using C for the equivalent input
capacitance instead of the exact value Ceq.

c-cC,
A, =100x| ——= log
Ce

ClCZ _ Cz[l""(l_n)QEz]

C,.+C 2
_100x| 2122 L+ Qe %
C,[l+(@1-n)Q.’ |
1+Q.°

o Tkt )-fra-ne?]),
—lOOx{ 1+(1—n)QE2 }A)

100n 0
- %
[ 1+(1—n)QE2J ’

In most practical cases it reduces to:

A, =(— n ]%
1-n

Two examples will follow showing practical application for the derived formulae.

when Qg = 10.

Design of an RF matching network

It is desired to transform a 50-ohm resistive load into a 5k-ohm value at a frequency of
10MHz using a capacitive transformer. The required values for C; and C, can be
readily calculated as follows.

First, we choose Qg = 10. Then, knowing that ® = 27 x 10’ Rad/sec and R = 50 ohms,
from (4.2) we obtain:

10

C.+C =— —
LT% 27 %107 x50

=3.18nF



Next, from Eq.(3.4) and given data:
n= (:2 = 50 =0.1
c,+C, V5000

C, =0.1x3.18nF =0.318nF
C, =3.18nF - 0.318nF = 2.862nF

Then:

The input capacitance is:

C,C, 2.862x0.318

= nF =0.2862nF = 286.2pF
C,+C, 3.18

with a —0.11% error. The “Q” at the input port is given by Eq.(4.5):
1-n
Qr =Q¢ (Tj =90

Fig.4 below depicts the capacitive transformer that will effect the required impedance
transformation.

r-a

RT = Sk obuus 1 cz

0_31&nF

(' = 226 2pF

Fiz 4 BF matching network using a
capacitive transformer

The capacitance C = 286.2pF can be tuned out at 10MHz by an inductance L =
0.885uH.

Design of a grounded-base AF Colpitts oscillator

Sine-wave oscillator configurations basically differ from each other in the way signal
voltages (or currents) are fed back from the output port to the input, while loop gain is
maintained slightly above unity. The Colpitts oscillator, for example, operates
successfully thanks to the correct capacitive tapping of the signal voltage existing



across the L-C tuning tank. It constitutes an excellent example of application of the
capacitive transformer in an oscillator circuit.

Fig.5 below shows the schematic diagram of a 1kHz grounded-base Colpitts oscillator
that was chosen for a proof-of-concept implementation. The inductance L of the tank
circuit was provided by a pair of 2k ohms DC-resistance high-impedance magnetic
headphones, which doubled as a hearing device. The headphones as measured on a
B&K Precision 875A LCR Meter gave L = 1.32H (series inductance) and r = 2k ohms
(series resistance), at 1kHz. The power supply was selected to be 3V DC and the
quiescent emitter current was set to 0.62mA, for best collector-voltage swing.

13V

Indurtance L iz provided by a pair of high-impedance magnetic
headphones having series L = 1.32H and r = Zkolms.

WValues for O and C2 are dermved in the text.

Chuescent erndtter current is IEQ =62y .

Fizg 5 One-kiloHertz grounded-base Colpitts oscillator

Following, loop-gain calculations will be made for the oscillator, identifying capacitive
transformer-like operation. C; and C, will then be computed with the help of previously
derived formulae.

The small-signal equivalent model for loop-gain calculation is shown in Fig.6, where:

e (MA
On = £ = i = L = 0.0248mhos
25  h, 4032

and:
1

2
S

L = L[1+ ]:1.39H

R, = r{L+Q,?)=36.39kohms

WL 27x10°x1.32
r 2000

Q = 4.147




L’ and Rp are calculated using the known series-to-parallel impedance transformation
pair. If we refer to the parallel combination of R, and hj, as R, it is not difficult to
identify a capacitive transformer-like action due to C, , R and C;.

Reg, Ceqy
Weh = -Vhe

|
|
1
1
|
L

Zm Vh'e

Fiz & Srall-signal equrvalent rmodel for loop-gain calenlation

Loop gain at the oscillation frequency is given by (please refer to Appendix for proof):

2
Vie g (Ra Ry ) -2
Vb‘e 1+QE

using capacitive-transformer terminology. If Req = 1/Geq >>Rp, then:

is 1 1+Q.°
_RPgm QE2

min

for oscillations to be sustained. The capacitive transformer comprising C;, C,, Re and
hip imposes an equivalent capacitance:

C = Cz[l'"(l_ n)QEZ]
- 1+QE2

across L’. The oscillation frequency wosc = 2ntfosc 1S given in the Appendix as:

a)osc2= ,1 (1+ L j
LCeq QEQIN

where:

QIN =



The design procedure for the oscillator simplifies if we select:

C,

n= <<1
C,+C,

which readily makes C ., ~ C,. Thus, we may write:

Ce
C,+C, = .

o.C R

o0sc ~eq
E

n

and:

Cl _ (1_ :)Ceq

The design steps for our grounded-base Colpitts oscillator will be then:

Choose Qe such that nmin<<1. This will make C,, ~C,.

Obtain C, from the expression for wosc.
From that for Qg obtain the value of n. Check that n>np;n.
Compute C;.

Eal A

Applying the above procedure to our 1kHz oscillator:

1. We select Qg = 1 to obtain nyj, = 0.0022 << 1.
36.39x10°

2. For this value of Qg, and knowing that =
Qe g that Qu = 107 x1.39

=4.17, we get:
C. ~C, =22.59nF

3. Knowing that R = R¢//hj, = 37.78 ohms, we obtain:

a)oscCeqR
n=—%"49"-0.00536>n_

E
(l-n)Cy, _1-0.00536

4. Cyis computed from C, = 0.00536
n .

C., =185.57C,, = 4.19uF
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APPENDIX

The grounded-base Colpitts oscillator may be modelled as depicted in the figure below,
where H(jw) is a functional block equivalent to Eq.(1) from the previous section:

H(ja)):V1 _ JnQE

Vo 1+ Q.

0 -¥he

Bt vb'e L ¢ RpiReq ‘L Ceg Hlja)
Il

J?EQE
1+ i,

Hija)=

Fiz &-1 Ilodel for loop-gain calewlation showing capacittve transformer-like operation i the
grounded-base Colpitts oscillator

If Reg™>>Rp, loop gain will be expressed by:

Vie VoV o ~Gnjol .[—inQEj

Ve Ve YV (1_a)2|_'Ceq)+j% 1+ Qe
Rp
__gmaﬂ;an

1+ jQp — @?LC, (L+ jQ¢ )+ j%— oL Qe
R. R,

_'ngDangE
[1—0)2L'Ceq —a’;%J+ j(QE +(|:L—a)2L'CquE]

P P

For oscillations to occur:

Ve _14 o

be
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Then:

Q: +C;—L—w2L'cquE -0

or:

R -
where Q,, =—"—. In a much more familiar form:

0sc

O = ,1 [l+ L j
LCeq QEQIN

which gives the frequency of the oscillation o, = 2xf

osc *

Loop gain remains as:

Vbe gma)osanQE

Vble In) 2|_IC _1+a)05‘37|_QE

0sC eq R
P

_ gmwosc LInQE
1, Qe
QEQIN QIN

— gmnRPQE2
1+QE2

For sustained oscillations:

gmnRP(DE2

;=1
1+ Q¢

Then:

21+QE2 1

n 2
QE ngP

min
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The condition Reg>>Rp implies:

R RO+Q.7)
W= 2= 572 >>Re
neq n QE
or:
1+Q.° R
n? << £ . —
Q” Re

which imposes an upper limit on n.

...(A-3)

..(A-4)

In the more general case, the condition for oscillation may be shown to be:

2
QE >1

9, (Re /1R,) ik
E

...(A-5)

which requires solving a second-degree algebraic equation for n, due to the
relationship existing between Req and this variable, as stated by Eq. (A-3) above.
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