
9  412Mechanics of Materials: Strain TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

CHAPTER NINE

STRAIN TRANSFORMATION

Learning Objectives
1. Learn the equations and procedures of relating strains at a point in different coordinate systems.

2. Learn the analysis in using strain gages.

_______________________________________________

To minimize the likelihood of occupants being thrown from the vehicle as a result of impact, Federal Motor Vehicle Safety Stan-
dard specifies requirements for attaching of doors. Automobile companies conduct and sponsor research to understand the
stresses near bolts attaching doors to the car body. The door’s own weight subjects the bolts to bending loads. 

In the experiment shown in Figure 9.1, a composite plate is subjected to bending loads like those at the attachment points of the 
car door to a fiber glass body. Strain gages—the most popular strain-measuring devices—are used to determine the strains (and 
hence the stresses) in the critical region. In previous chapters, we obtained formulas for predicting strain. How do we relate the 
experimentally measured strains to those obtained from theory in Cartesian or polar coordinates? This chapter discusses strain 
transformation, which relates strains in different coordinate systems.

The idea of strain transformation is very similar to stress transformation. We shall rely on this similarity to develop the key 
definitions and equations for strain transformation. But there are also differences, and they are critical to a successful under-
standing of the methods. 

9.1 PRELUDE TO THEORY: THE LINE METHOD

In the wedge method of stress transformation (see Section 8.1), the key idea was to convert stresses into forces—that is, to con-
vert a second-order tensor into a vector. We adopt a similar strategy for strain transformation. By multiplying a strain component
by the length of a line, we obtain the deformation, which is a vector quantity. Using the small-strain approximation, we can then
find the component of deformation in a given direction (see Problems 2.40-2.47). Section 9.1.1 elaborates this strategy. 

We restrict ourselves to plane strain problems (see Section 2.5.1), where all strains with subscript z are zero. We further 
assume that the strains in the global Cartesian coordinate system (εxx, εyy, and γxy) at a point are known. We define a right-handed 
local coordinate system n, t, z, as shown in Figure 9.2. As in stress transformation, only those coordinate systems that can be 
obtained by rotation about the z axis are considered. Our objective is to find εnn, εtt, and γnt.

  Figure 9.1 Measurement of strains using strain gages. (Courtesy Professor I. Miskioglu.)
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Recall that normal strains are a measure of change in the length of a line, whereas shear strains are a measure of change in 
the angle between two lines. By finding the change in length and the rotation each axes we can find the strains in that coordinate 
system. This process is formally described in next section and elaborated in Example 9.1.

9.1.1 Line Method Procedure

The normal and shear strains in the local coordinate system can be found by the following steps:
Step 1: Consider each strain component one at a time and view the n and t directions as two separate lines.
Step 2: Construct a rectangle with a diagonal in the direction of the line. Relate the length of the diagonal to the lengths of the
rectangle’s sides. 
Step 3: Draw the deformed shape assuming one side is fixed and apply the deformation on the opposite side. Find the deforma-
tion and rotation of the diagonal using small-strain approximations. 
Step 4: Calculate the normal and shear strains in the n and t directions. 
Step 5: Repeat steps 2 through 4 for each strain component. Superpose the results to obtain the strains in the n and t directions. 

Because the line method is repetitive and tedious, we will consider problems with only one nonzero strain component. 
However, the same principle will be used to develop the equations of strain transformation.

EXAMPLE 9.1

At a point, the only nonzero strain component is εxx = 200 μ. Determine the strain components in the n, t coordinate system that is rotated
25° counterclockwise to the x axis. 

PLAN

We follow the procedure described in Section 9.1.1.

SOLUTION

Step 1: View the axes of the n, t coordinate system as two lines, as shown in Figure 9.3a. Due to the normal strain in the x direction, the
lines in the n and t directions deform to n1 and t1, as shown in Figure 9.3a. 
Calculations in the n direction
Step 2: We can draw a rectangle with a diagonal in the n direction, as shown in Figure 9.3a. The diagonal length be Δn can be related to
Δx as shown.

Step 3: Let point P move to point P1 due to strain εxx. The deformed shape can be drawn as shown in Figure 9.3c.

  Figure 9.2 Global and local coordinate system.
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  Figure 9.3 (a) (b) Movement of n and t lines. Deformation calculations (c) in the n direction; (d) in the t direction in Example 9.1.
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Step 4: A perpendicular line from P1 to the n direction is drawn. The sides of the triangle PnPP1 are

(E1)

(E2)
The angle φ1 can be found from triangle PnOP1 as

(E3)

Calculations in the t direction
Step 2: We can draw a rectangle with a diagonal representing the t direction, as shown in Figure 9.3d. The diagonal length Δt can be
related to Δx as shown.
Step 3: Let point P move to point P1 due to strain εxx. The deformed shape can be drawn as shown in Figure 9.3d.
Step 4: A perpendicular line from P1 to the t direction is drawn. The sides of triangle Pt PP1 are

(E4)

(E5)
We can calculate the angle φ2 from triangle PtOP1 as

(E6)

Step 5: The normal strain in the n and t directions are

(E7)

(E8)

ANS.

COMMENTS

1. In Figure 9.3a the displacement of point P to P1 is in the positive x direction, whereas in Figure 9.3d the displacement is in the nega-
tive x direction. But notice that both rectangles show elongation to reflect positive εxx. Both rectangles represent the same point. This
emphasizes once more the difference between displacements and deformations.

2. The negative sign in Equation (E8) reflects the increase in angle between n and t as shown in Figure 9.3. 
3. We repeated the calculations for n and t directions for one strain component. For all three components we would do similar calcula-

tions six times, making the line method a repetitive, tedious process. We will develop formulas using this method to overcome the
tedium.

PROBLEM SET 9.1

Line method
In Problems 9.1 through 9.4, determine the rotation of line OP and the normal strain in the direction OP due to the strain given in each problem. 

Problem Strain Use 

9.1 Figure P9.1 Figure P9.1

9.2 Figure P9.1

9.3 Figure P9.3 Figure P9.3

9.4 Figure P9.3

PP1 εxx Δx 200 10 6–( )Δn 25°cos 181.3Δn 10 6–( )= = =

PPn PP1 25°cos 164.3Δn 10 6–( )= = PnP1 PP1 25°sin 76.6Δn 10 6–( )= =

OPn OP PPn+ Δn 1 164.3 10 6–( )+[ ] Δn≈= = φ1tan φ1≈
PnP1

OPn
------------ 76.6 10 6–( )  rad= =

PP1 εxx Δx 200 10 6–( )Δt 65°cos 84.5Δt 10 6–( )===

Pt P1 PP1 65°sin 76.58Δt 10 6–( )= = PPt PP1 65°cos 35.7Δt 10 6–( )= =

OPt OP PPt+ Δt 1 35.7 10 6–( )+[ ] Δ t≈= = φ2tan φ2≈
PtP1

OPt
----------- 76.6 10 6–( )= =

εnn
PPn

Δn
---------- 164.3Δn 10 6–( )

Δn
------------------------------------ 164.3 10 6–( )= = = εtt

PPt

Δt
--------- 35.7Δt 10 6–( )

Δt
-------------------------------- 35.7 10 6–( )= = =

γnt φ1 φ2+( )– 76.6 10 6–( ) 76.6 10 6–( )+[ ]– 153.2 10 6–( )–= = =

εnn 164.3 μ= εtt 35.7 μ= γnt 153.2 μ–=

εxx 500 μ=
y

x
O

P

50�

γxy 300 μ=

εyy 400– μ=
y

xO

P

50�

γyx 300 μ=
August 2012
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In Problems 9.5 through 9.13, at a point, the nonzero strain component are as given in each problem. Determine the strain components in the
n, t coordinate system shown.

9.2 METHOD OF EQUATIONS

In this section we develop strain transformation equations using the line method.1 We assume the point is in plane strain and the
strains εxx, εyy, and γxy are known. As in stress transformation, we consider only those coordinate systems that can be obtained by
rotation about the z axis shown in Figure 9.2. Our objective is to find the strains εnn, εtt, and γnt. 

Sign Convention: The angle θ describing the orientation of the local coordinate system is positive in counterclockwise 
direction from the x axis. 

We will follow the procedure outlined in Section 9.1.1 to determine the deformation and rotation of a line in the n direction. 
By substituting 90o + θ in place of θ in the expressions obtained in the n direction, we will obtain the expressions in the t direc-
tion. 

Calculations for εxx acting alone
Step 1: View the axes of the n, t coordinate system as two lines, as shown in Figure 9.4a. Due to the normal strain in the x direction,
the lines in the n and t directions deform to n1 and t1, as shown.

Step 2: Draw a rectangle with a diagonal at an angle θ as shown in Figure 9.4b. The diagonal length Δn can be related to Δx as
shown.

Problem Strain Use 

9.5 Figure P9.5

Figure P9.5
9.6 Figure P9.5

9.7 Figure P9.5

9.8 Figure P9.8

Figure P9.89.9 Figure P9.8

9.10 Figure P9.8

9.11 Figure P9.11

Figure P9.11

9.12 Figure P9.11

9.13 Figure P9.11

εxx 400–  μ= y
t

x

n
30

εyy 600 μ=

γxy 500– μ=

εxx 600–  μ= y

t

x

n

70�

εyy 1000–  μ=

γxy 500 μ=

εxx 600 μ= y

t

x

n

40�
εyy 600 μ=

γxy 600 μ=

1See Problems 9.78 through 9.80 for an alternative derivation of the strain transformation equations.
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  Figure 9.4 Strain transformation with εxx only.
August 2012



9  416Mechanics of Materials: Strain TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

Step 3: Let point P move to point P1 due to strain εxx. Draw an exaggerated deformed shape as shown in Figure 9.4b. A perpen-
dicular line from P1 to the n direction is drawn. The sides of the triangle PnPP1 are

(9.1.a)

(9.1.b)

(9.1.c)

Now OPn = OP + PPn = OP(1 + PPn/OP) = OP(1 + εnn). For small strain,  and hence can be neglected, giving OPn = OP

= Δn. For small strain the tangent function can be approximated by its argument. With these two approximations, we obtain the
rotation φ1 from triangle PnOP1,

Step 4: The normal strain in the n direction can be found as 

(9.1.d)

The superscript 1 differentiates the strains calculated from εxx from those calculated from εyy and γxy. We note that the t axis is a

line like the n axis, but at an angle of 90o + θ instead of θ. We can obtain the normal strain in the t direction and the rotation  of

the t axis by substituting 90o + θ in place of θ. 

(9.1.e)

(9.1.f)

The angle between the n and t directions increases, as seen from the rectangle in Figure 9.4a. This implies that the shear strain
will be negative and is given as

(9.1.g)

Calculations for εyy acting alone
The preceding calculations can be repeated for εyy. The calculations for Steps 1–3 are shown in Figure 9.5. Based on small strain,

we once more approximate  and  to obtain

(9.2.a)

Step 4: The normal strain in the n direction can be found as

(9.2.b)

We can obtain the normal strain in the t direction and the rotation  of the t axis by substituting 90o + θ in place of θ. 

(9.2.c)

(9.2.d)

The angle between the n and t directions decreases, as seen from the rectangle in Figure 9.5a. This implies that the shear strain
will be positive:

(9.2.e)

PP1 εxx Δx εxx Δn θcos= =

PPn PP1 θcos εxx θ2cos( ) Δn( )= =

PnP1 PP1 θsin εxx θsin  θcos( ) Δn= =

εnn < 1<

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------  

εxx θ  θcossin( ) Δn
Δn

------------------------------------------------=≈ εxx θsin θcos= =

εnn
1( ) PPn Δn⁄ εxx cos2θ= =

φ2

εtt
1( ) εxx 90° θ+( )2cos εxx θ2sin= =

φ2 εxx 90° θ+( )sin 90° θ+( )cos εxx θ  sin θcos= =

γnt
1( ) φ1 φ2+( )– 2εxx θsin  θcos–= =

OPn OP≅ φ1tan φ1≈

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------≈ εyy θsin  θcos= =

εnn
2( ) PPn Δn⁄ εyy θ2sin= =

φ2

εtt
2( ) εyy 90° θ+( )2sin εyy θ2cos= =

φ2 εyy 90° θ+( )sin 90° θ+( )cos εyy θ  sin θcos= =

γnt
2( ) φ1 φ2+ 2εyy θsin  θcos= =
August 2012
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Calculations for γxy acting alone
The preceding calculations can be repeated for γxy. The calculations for Steps 1–3 are shown in Figure 9.6. Based on small strain,

we once more approximate  and  to obtain 

(9.3.a)

Step 4: The normal strain in the n direction can be found as 

(9.3.b)

We can obtain the normal strain in the t direction and the rotation  of the t axis by substituting 90o + θ in place of θ.

(9.3.c)

(9.3.d)

From Figure 9.6a it is seen that the movement of the line in the n direction to n1 increases the initial angle, and the movement of the
line in the t direction to t1 decreases the initial angle. The final angle between the n1 and t1 directions is π/2 + φ1 − φ2. Thus from the
definition of shear strain in Chapter 2, we obtain

(9.3.e)

Total strains
Step 5: As we are working with small strains, we have a linear system, and the total strain in the n and t directions is the superpo-
sition of the strains due to the individual components. That is,

We obtain the following equations:

(9.4)

  Figure 9.5 Strain transformation with εyy only.
(a) (b)

nt
n1t1
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�y � �n sin �

�yy �y
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�1
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�
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P1

n1

Pn

O

PPn � PP1 cos � � �yy �y sin � � (�yy sin2 �) �n

PnP1 � PP1 cos � � �yy �y cos � � (�yy cos � sin �) �n

OPn OP≅ φ1tan φ1≈

φ1tan φ1≈
PnP1

OPn
------------ PnP1

OP
------------≈ γxy θ2sin= =

εnn
3( ) PPn Δn⁄ γxy θsin θcos= =

φ2

εtt
3( ) γxy 90° θ+( )sin   90° θ+( )cos γ– xy θsin  θcos= =

φ2 γxy 90° θ+( )2cos γxy θ2cos= =

γnt
3( ) φ1 φ2– γxy θ2cos θ2sin–( )= =

  Figure 9.6 Strain transformation with γxy only.
(a) (b)

n

t n1

t1

�1�2

�x

�y � �n sin �
�xy �y

�n

�1

�

�
x

y
n

P
P1

n1

Pn

O

PPn � PP1 cos � � �xy �y cos � � (�xy sin � cos �) �n

PnP1 � PP1 sin � � �xy �y sin � � (�xy sin2 �) �n

εnn εnn
1( )= εnn

2( ) εnn
3( ) εtt εtt

1( )= εtt
2( ) εtt

3( ) γnt γnt
1( )= γnt

2( ) γnt
3( )+ ++ ++ +

εnn εxx θ2cos εyy θ2sin γxy θsin θcos+ +=
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(9.5)

(9.6)

Equations (9.4), (9.5), and (9.6) are similar to the stress transformation equations, Equations (8.1), (8.2), and (8.3). However, the
coefficient of the shear strain term is half the coefficient of the shear stress term. This is because we are using engineering strain
instead of tensor strain.2 With this difference accounted for, we can rewrite the results from stress transformation for strain trans-
formation, as described next.

9.2.1 Principal Strains

Analogous to the case of stress transformation, we have the following definitions. 

• The principal directions are the coordinate axes in which the shear strain is zero. 
• The angles the principal axes make with the global coordinate system are called principal angles. 
• Normal strains in the principal directions are called principal strains. 
• The greatest principal strain is called principal strain 1 (ε1). By greatest principal strain we refer to the magnitude and

the sign of the principal strain. Thus a strain of −600 μ is greater than one of −1000 μ

Note that the coefficient of the shear strain in strain transformation equations is half the coefficient of shear stress in the 
stress transformation equations. We therefore obtain the principal angle θp and principal strains [see Equations (8.6) and (8.7)],

(9.7)

(9.8)

Here ε1,2 represents the two strains ε1 and ε2. The plus sign is to be taken with ε1 and the minus sign with ε2. Like principal 
stresses, the principal strains correspond to the maximum and minimum normal strains at a point. 

Adding Equations (9.4) and (9.5) and the principal strains in Equation (9.8), we obtain 
(9.9)

Equation (9.9) shows that the sum of the normal strains at any point in an orthogonal coordinate system does not depend on the
orientation of the coordinate system.

The angle of principal axis 1 from the x axis is reported only in describing the principal coordinate system in two-dimen-
sional problems. Counterclockwise rotation from the x axis is defined as positive. 

Two values of θp satisfy Equation (9.7), separated by 90°. The direction θ1 corresponding to ε1 is 90° from the direction θ2 
corresponding to ε2. In other words, the principal directions are orthogonal. It is not clear whether the principal angle found 
from Equation (9.7) is associated with ε1 or ε2. We will resolve this problem as we did in stress transformation, as elaborated in 
Example 9.4. 

In plane strain, the shear strains with subscript z are zero. Therefore the z direction is a principal direction and the normal 
strain εzz is a principal strain of zero value. In plain stress the shear strains with subscript z are again zero, but εzz is not zero; as 

shown in Figure 3.27, it is equal to . If we add Equations (3.12a) and (3.12b) for plane stress problems, we obtain 

. Thus [See Equation (3.18)], 

2An alternative is to let γxy = 2εxy and γnt = 2εnt in Equations (9.4) through (9.6), where it is understood that εxy is the tensor shear strain and
γxy is the engineering shear strain. In such a case the equations of stress and strain transformation have identical forms.

εtt εxx θ2sin εyy θ2cos   γxy θsin θcos–+=

γnt 2– εxx θ sin θcos 2εyy θ sin θcos γxy θ2cos θ2sin–( )+ +=

2θptan
γxy

εxx εyy–
-------------------=

ε1,2
εxx εyy+

2
------------------- εxx εyy–

2
-------------------⎝ ⎠

⎛ ⎞
2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+±=

εnn εtt+ εxx εyy+ ε1 ε2+= =

ν σxx σyy+( )

σxx σyy+ E εxx εyy+( ) 1 ν–( )⁄[ ]=

εzz
ν

1 ν–
------------– εxx εyy+( )=
August 2012
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and we can write the third principal strain as

(9.10)

9.2.2 Visualizing Principal Strain Directions

A circle at a given point will deform into an ellipse with the major axis in the direction of maximum normal strain (principal
strain 1) and the minor axis in the direction of minimum normal strain (principal strain 2). We make use of this observation to
estimate the direction of the principal strains within a 45° quadrant.
Step 1: Visualize or draw a square with a circle inside.
Step 2: Visualize or draw the deformed shape of the square due to only normal strains. 

The deformed shape will be a rectangle. The circle within the square has now become an ellipse with the major axis either 
along the x direction or along the y direction, depending which normal strain is greater.
Step 3: Visualize or draw the deformed shape of the rectangle due to the shear strain. 

The rectangle will deform into a rhombus, and the ellipse inside would have rotated such that the major axis is in the direc-
tion of the longer diagonal of the rhombus. The major axis can rotate at most 45° from its orientation in Step 2. The major axis 
represents principal direction 1 and the minor axis represents principal direction 2. 
Step 4: Using the eight 45° sectors shown in Figure 9.7, report the orientation of principal direction 1. Also report principal
direction 2 as two sectors counterclockwise from the sector reported for principal direction 1.

As in stress transformation, principal directions 1, 2, and 3 form a right-handed coordinate system. The z direction is the 
third principal direction. Once principal direction 1 is determined, the right-hand rule places principal direction 2 at two sectors 
(90°) counterclockwise from it.

EXAMPLE 9.2

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 500 μ, and γxy = 600 μ. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7.

PLAN

We will follow the steps outlined in section Section 9.2.2.

SOLUTION

Step 1: We draw a circle inside a square, as shown in Figure 9.8a. 

  Figure 9.8 (a) Undeformed shape. (b) Deformation due to normal strains. (c) Additional deformation due to shear strain.

ε3

0, plane strain
v

1 v–
----------- εxx εyy+( )  ν

1 ν–
------------– ε1 ε2+( ),=– plane stress

⎩
⎪
⎨
⎪
⎧

=

4

5

6 7

8

1

23

y

x

  Figure 9.7 The eight sectors in which the principal axis will lie.

y

x

y

x

Principal
direction 1

Principal
direction 2

(a) (b) (c)
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Step 2: As εyy > εxx, the extension in the y direction is greater than that in the x direction. The square becomes a rectangle and the circle
becomes an ellipse, as shown Figure 9.8b.
Step 3: As γxy is positive, the angle between the x and y axes must decrease and we obtain the rhombus shown in Figure 9.8c.
Step 4: The two solutions follow by inspection.

ANS. 

COMMENTS

1. In Figure 9.8b the major axis is along the y axis. This major axis can rotate at most 45° clockwise or counterclockwise, as dictated by
the shear strain. Thus principal axis 1 will be either in sector 2 or in sector 6, according to Figure 9.8c.

2. We will always obtain two answers for principal angle 1 as we did in stress transformation. Both answers are correct, and either can
be reported.

EXAMPLE 9.3

At a point in plane strain, the strain components are εxx = −200 μ, εyy = −400 μ, and γxy = −300 μ. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7.

PLAN

This time we will visualize but not draw any deformed shapes. 

SOLUTION

Step 1: We visualize a square with a circle.
Step 2: Due to normal strains, the contraction in the y direction is greater than that in the x direction. Hence the rectangle will have a
longer side in the x direction, that is, the major axis is along the x axis. 
Step 3: As the shear strain is negative, the angle will increase. The major axis will rotate clockwise, and it will lie either in sector 8 or in
sector 4.
Step 4: Principal axis 1 is either in sector 8 or in sector 4, giving the solution.

ANS. 

9.2.3 Maximum Shear Strain

As in stress transformation, we differentiate between in-plane maximum shear strain and maximum shear strain. The maximum
shear strain in coordinate systems that can be obtained by rotating about the z axis is called in-plane maximum shear strain. Since
the coefficient of shear strain in strain transformation equations is half the coefficient of shear stress in stress transformation equa-
tions, we obtain the in-plane maximum shear strain as 

(9.11)

The maximum shear strain at a point is the maximum shear strain in any coordinate system given by

(9.12)

Equation (9.12) shows that the value of the maximum shear strain depends on the value of principal strain 3.Equation (9.10) shows
that the value of principal strain 3 depends on the plane stress or plane strain problem. As in stress transformation, the maximum
shear strain exists in two coordinate systems that are at 45° to the principal coordinate system.

Principal axis 1 is in sector 2 and principal axis 2 is in sector 4.
or

Principal axis 1 is in sector 6 and principal axis 2 is in sector 8.

Principal axis 1 is in sector 8 and principal axis 2 is in sector 2.
or

Principal axis 1 is in sector 4 and principal axis 2 is in sector 6.

γp

2
----

ε1 ε2–
2

---------------=

γmax

2
--------- max ε1 ε2–

2
---------------   ε2 ε3–

2
---------------   ε3 ε1–

2
---------------, ,⎝ ⎠

⎛ ⎞=
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EXAMPLE 9.4

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 1000 μ, and γxy = –600 μ. Determine (a) the principal strains and
principal angle 1; (b) the maximum shear strain; (c) the strain components in a coordinate system that is rotated 25° counterclockwise, as
shown in Figure 9.9.

PLAN

(a) Using Equation (9.7), we can find θp. We can substitute θp into Equation (9.4) and find one of the principal strains. Using Equation
(9.9), we find the other principal strain and decide which is principal strain 1. (b) We can find the maximum shear strain using Equa-
tion (9.12). (c) We can find the strains in the n and t coordinates by substituting θ = 25° in Equations (9.4), (9.5), and (9.6). 

SOLUTION

(a) From Equation (9.7) we obtain the principal angle, 

(E1)

Substituting θp into Equation (9.4), we obtain one of the principal strains, 

(E2)
Now εxx + εyy = 1200 μ. From Equation (9.9) we obtain the other principal strain as 1200 − 100 = 1100 μ, which is greater than the prin-
cipal strain in Equation (E2). Thus 1100 μ is principal strain 1, and principal angle 1 is obtained by adding (or subtracting) 90° from
Equation (E1). As the point is in plane strain, the third principal strain is zero. We report our results as

ANS.
We can check the principal strain values using Equation (9.8), 

Intuitive check orientation of principal axis 1:  We visualize a circle in a square, as shown in Figure 9.10a. As εyy > εxx, the rectangle will
become longer in the y direction than in the x direction and the circle will become an ellipse with major axis along the y direction,
as shown in Figure 9.10b. As γxy < 0, the angle between the x and y directions will increase. The rectangle will become a rhombus and
the major axis of the ellipse will rotate counterclockwise from the y axis. Hence we expect principal axis 1 to be in either the third sector
or the seventh sector, confirming our result.

(b) We can find the maximum shear strain from Equation (9.12), that is, the maximum difference is between ε1 and ε3, thus the maximum
shear strain is 

ANS.

(c) Substituting θ = 25° in Equations (9.4), (9.5), and (9.6), we obtain 

(E3)

(E4)

(E5)

ANS.
We can use Equation (9.9) to check our results. We note that εnn + εtt = 1200 μ, which is the same value as for εxx + εyy, confirming the
accuracy of our results. 

  Figure 9.9 25�

n

x

yt

tan 2θp
600 μ–

200 μ 1000 μ–
-------------------------------------- 0.75 36.87°tan= = = or θp 18.43°ccw=

εp 200 μ( ) 18.43°2cos 1000 μ( ) 18.43°2sin 600 μ–( ) 18.43°sin 18.43° 100 μ=cos+ +=

ε1 1100 μ= ε2 100 μ= ε3 0= θ1 108.4o ccw or 71.6o cw=

ε1,2
200 μ( ) 1000 μ( )+

2
------------------------------------------------ 200 μ 1000 μ–

2
--------------------------------------⎝ ⎠

⎛ ⎞
2 600 μ–

2
------------------⎝ ⎠

⎛ ⎞
2

+± 600 μ 500 μ----Checks±= =

  Figure 9.10  (a) Undeformed shape. (b) Deformation due to normal strains. (c) Additional deformation due to shear strain.
(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1

γmax 1100 μ=

εnn 200 μ( ) 25°2cos 1000 μ( ) 25° 600 μ–( )+2sin+ 25° 25°cossin 113.1 μ= =

εtt 200 μ( ) 25° 1000 μ( ) 25° 600 μ–( )–2cos+
2

25° 25°cossinsin 1086.9 μ= =

γnt 2 200 μ( )– 25° 25° 2 1000 μ( )  25° 25°cossin  600 μ–( )  25°  2 - 25°2sincos( )+ +cossin 227.2 μ= =

εnn 113.1 μ= εtt 1086.9 μ= γnt 227.2 μ=
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COMMENTS

1. It can be checked that if we substitute θ = 25° + 180° = 205° or θ = 25° − 180° = −155° in Equations (9.4), (9.5), and (9.6), we
will obtain the same values for εnn, εtt, and γnt as in part (c). In other words, adding or subtracting 180° from the angle θ in Equa-
tions (9.4), (9.5), and (9.6) does not affect the results. This emphasizes that the strain at a point in a given direction (coordinate
system) is unique and does not depend on how we describe or measure the orientation of the line.

2. If the point were in plane stress on a material with a Poisson’s ratio of , then the third principle strain would be ε3 = –[ν/(1 – ν)](εxx

+ εyy) = –600 μ and the maximum shear strain would be γmax = 1700 μ which is different than the value we obtained in part (b) for
plane strain. 

EXAMPLE 9.5

For the wooden cantilever beam shown in Figure 9.11 determine at point A (a) the principal strains and the angle of first principal direc-
tion θ1; (b) the maximum shear strain. Use the modulus of elasticity E = 12.6 GPa and Poisson’s ratio ν = 0.3. 

PLAN

The bending stresses σxx and τxy at point A can be found using Equations (6.12) and (6.27), respectively. Using Hooke’s law, the strains
εxx, εyy, and γxy can be found. Using Equation (9.7), θp can be found and substituted into Equation (9.4) to obtain one of the principal
strains. Using Equation (9.9), we find the other principal strain and decide which is principal strain 1. The maximum shear strain can be
found using Equation (9.12). 

SOLUTION

Bending stress calculations: Recall that As is the area between the free surface and the parallel line passing through point A, where shear
stress is to be found. The area moment of inertia Izz and the first moment Qz of the area As shown in Figure 9.12a are 

(E1)

(E2)

Figure 9.12b shows the free-body diagram of the right part of the beam after making the imaginary cut through point A in Figure 9.11.
The shear force Vy and the bending moment Mz are drawn according to our sign convention. By balancing forces and moment we obtain 

 (E3)

(E4)
Substituting Equations (E1), (E4), and yA = 0.015 m into Equation (6.12), we obtain the bending normal stress, 

(E5)

By visualizing the beam deformation, we expect σxx to be tensile consistent with the calculations above.

1
3
---

0.4 m 0.4 m 6 mm

30 mm
15 mm

A

900 Ny

z

30 mm

6 mm
  Figure 9.11 Beam and loading in Example 9.5.

Izz
12 mm( ) 60 mm( )3

12
----------------------------------------------- 0.216 106( ) mm4 0.216 10 6–( )  m4= = =

Qz 12 mm( ) 15 mm( ) 15 mm 7.5 mm+( ) 4.050 103( )  mm3 4.050 10 6–( )  m3= = =

(a) (b)

0.4 m
Vy

Mz

900 N

12 mm

60 mm
15 mm

z

y

7.5 mm

  Figure 9.12 Calculation of geometric and internal quantities.

A

Vy 900 N–=

Mz 0.4 m( ) 900 N( )– 360 N·m–= =

σxx
Mzy
Izz

----------– 360–  N·m( ) 0.015 m( )

0.216 10 6–( )  m4
--------------------------------------------------------– 25 106( )  N m2⁄= = =
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Substituting Equations (E1), (E2), and (E3) and t = 0.012 m into Equation (6.27), we obtain the magnitude of τxy. Noting that τxy must
have the same sign as Vy, we obtain the sign of τxy (see Section 6.6.6) as given by 

(E6)

Bending strain calculations: The shear modulus of elasticity can be found from G = E/2(1 + ν). Substituting E = 12.6 GPa and ν = 0.3,
we obtain G = 4.85 GPa. The only two nonzero stress components are given by Equations (E5) and (E6). Using the generalized Hooke’s
law [or Equation (6.29)], we obtain the bending strains,

(E7)

(E8)

(E9)

(a) Stress transformation calculations: From Equation (9.7) we obtain the principal angle,

(E10)

Substituting θp into Equation (9.4) we obtain one of the principal strains, 

(E11)
Now εxx + εyy = 1389 μ. From Equation (9.9) we obtain the other principal strain as 1389 μ – 1992 μ = –603 μ, which is less than the prin-
cipal strain in Equation (E11). Thus 1992 μ is principal strain 1, and principal angle 1 is obtained from Equation (E10). The third princi-
pal strain will be the same as the second principal strain. We report our results as 

ANS.
Check on principal strains: We can check the principal strain values using Equation (9.8),

 or

Intuitive check orientation of principal axis 1:  We visualize a circle in a square. As εxx > εyy the rectangle will become longer in the x
direction. The circle will become an ellipse with its major axis along the x direction. As the shear strain is negative, the angle will increase.
The major axis will rotate clockwise, and it will lie either in sector 8 or in sector 4, confirming our result.
(b) We can find the maximum shear strain from Equation (9.12), as the difference between ε1 and ε2 (or ε3). 

ANS.

COMMENT

1. The example demonstrates the synthesis of the theory of symmetric bending of beams and the theory of strain transformation. A sim-
ilar synthesis can be elaborated for axial and torsion members. 

9.3 MOHR’S CIRCLE

As for stress transformation, Mohr’s circle is graphical technique for solving problems in strain transformation. We eliminate θ
from Equations (9.4) and (9.6) written in terms of double angles, to obtain 

(9.13)

Comparing Equation (9.13) with the equation of a circle, (x – a)2 + y2 = R2, we see that Equation (9.13) it represents a circle with
a center that has coordinates (a, 0) and radius R, where 

 (9.14)

The circle is called Mohr’s circle for strain. Each point on Mohr’s circle represents a unique direction passing through the point at
which the strains are specified. The coordinates of each point on the circle are the strains (εnn, γnt/2). These represent the normal

τxy
VyQz

Izzt
------------ 900 N–( ) 4.050 10 6–( )  m3[ ]

0.216 10 6–( ) m4[ ] 0.012 m( )
-------------------------------------------------------------------- 1.41 106( )  N m2⁄= = = or τxy 1.41– 106( )  N m2⁄=

εxx
σxx

E
------- 25 106( )  N m2⁄

12.6 109( )  N m2⁄
----------------------------------------- 1.984 10 3–( ) 1984 μ= = = =

εyy
νσxx

E
-----------– νεxx– 0.3 1984 μ( )– 595.2 μ–= = = =

γxy
τxy

G
------ 1.41– 106( )  N m2⁄

4.85 109( ) N m2⁄
--------------------------------------------- 0.2907 10 3–( )– 290.7 μ–= = = =

2θptan 290.7 μ–
1984 μ 595.2 μ–( )–
--------------------------------------------------- 0.1124– 6.41°tan–= = = or θp 3.21°–=

εp 1984 μ( ) 3.21°–( )2cos 595.2 μ–( ) 3.21°–( )2sin 290.7 μ–( ) 3.21°–( )sin 3.21°–( )cos  1992 μ=+ +=

ε1 1992 μ= ε2 603– μ= ε3 603– μ= θ1 3.21ocw=

ε1,2
1984 μ 595.2 μ–( )+

2
--------------------------------------------------- 1984 μ 595.2 μ–( )–

2
---------------------------------------------------⎝ ⎠

⎛ ⎞
2 290.7 μ–

2
----------------------⎝ ⎠

⎛ ⎞
2

+± 694.4 μ 1297.7 μ±= =

ε1 1992.1 μ ε2 603.3 μ----checks–==

γmax 2595 μ=

εnn
εxx εyy+

2
-------------------–⎝ ⎠

⎛ ⎞
2 γnt

2
------⎝ ⎠

⎛ ⎞
2

+
εxx εyy–

2
-------------------⎝ ⎠

⎛ ⎞
2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+=

a
εxx εyy+

2
-------------------= R

εxx εyy–
2

-------------------⎝ ⎠
⎛ ⎞
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2
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⎛ ⎞
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strain of a line in the n direction and half the shear strain, which represents the rotation of the line passing through the point at
which strains εxx, εyy, and γxy are specified. 

9.3.1 Construction of Mohr’s Circle for Strains

The construction of Mohr’s circle for strain is very similar to that for stress. However, there are two important differences. (i) In
stress transformation we talked about planes, while here we talk about directions. The directions are the outward normals of the
planes. (ii) The vertical axis is shear strain divided by 2. All values of shear strain that are plotted on Mohr’s circle or calculated from
Mohr’s circle must take into account that the vertical coordinate is shear strain divided by 2.

The steps in the construction of Mohr’s circle for strain are as follows. 
Step 1: Draw a square with a shape deformed due to shear strain γxy. Label the intersection of the vertical plane and the x axis as V
and the intersection of the horizontal plane and the y axis as H, as shown in Figure 9.13.

Unlike in stress transformation, where V and H represented planes, here V and H refer to directions. The outward normal to 
the vertical plane is the x axis, and V is the label associated with it. Similarly, the outward normal to the horizontal plane is the 
y axis, which is represented by point H.
Step 2: Write the coordinates of points V and H,

The arrow of rotation along side the shear strains corresponds to the rotation of the line on which the point lies, as shown in Figure
9.13. 
Step 3: Draw the horizontal axis to represent the normal strain, with extensions (E) to the right and contractions (C) to the left, as
shown in Figure 9.14a. Draw the vertical axis to represent half the shear strain, with clockwise rotation of a line in the upper plane
and counterclockwise rotation of a line in the lower plane. 

As this step emphasizes, the value of shear strain read from Mohr’s circle does not tell us whether shear strain is positive or 
negative. Rather, it shows that the shear strain will cause a line in a given direction to rotate clockwise or counterclockwise. This 
point is further elaborated in Section 9.3.2.
Step 4: Locate points V and H and join the points by drawing a line. Label the point at which line VH intersects the horizontal axis
as C.
Step 5: The horizontal coordinate of point C is the average normal strain. Distance CE can be found from the coordinates of points
E and C and the radius R calculated using the Pythagorean theorem. With C as the center and CV or CH as the radius, draw Mohr’s
circle.

Step 6: Calculate the principal strains by finding the coordinates of points P1 and P2 in Figure 9.14a.

(a)

�xy � 0

y

x

H

V

  Figure 9.13 Deformed cube for construction of Mohr’s circle. (b)

�xy � 0
x

H

V

V εxx γxy 2⁄   ,( ) H εyy γxy 2  ⁄,( ) for , γxy 0>

(a) (b)

�

H

C2�p

2�p

R

E
D (E)

P1P2P3

�3

��2

�2

�1

(C)

ccw

cw

R

V

�yx

2

�xy

2�xx � �yy

2
�xx � �yy

2

��max�2 �

P1P2P3 �

(E)(C)

��max�2 �

��p�2 �

��p�2 �

��2

ccw

cw

D
E

γ/2 γ/2

  Figure 9.14 Mohr’s circle for strains.
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Step 7: Calculate principal angle θp from either triangle VCD or triangle ECH. Find the angle between lines CV and CP1 if θ1 is dif-
ferent from θp. 

In Figure 9.14a, θp and θ1 have the same value, but this may not always be the case, as elaborated in Example 9.6. θ1 is the 
angle measured from the x axis, which is represented by point V on Mohr’s circle, and principal direction 1 is represented by 
point P1. 
Step 8: Check your answer for θ1 intuitively using the visualization technique of Section 9.2.2. 
Step 9: The in-plane maximum shear strain γp/2 equals R, the radius of the in-plane circle shown in Figure 9.14a. To find the abso-
lute maximum shear strain, locate point P3 at the value of the third principal strain. Then draw two more circles between P1 and P3

and between P2 and P3, as shown in Figure 9.14b. The maximum shear strain at a point is found from the radius of the largest circle.
For plane strain P3 is at the origin, as shown in Figure 9.14b. But for plane stress, the third principal strain must be found 

from Equation (9.10) and located before drawing the remaining two circles. Notice that the radii of the circles yield half the 
value of the maximum shear strain. 

9.3.2 Strains in a Specified Coordinate System

The strains in a specified coordinate system are found by first locating the coordinate directions on Mohr’s circle and then determin-
ing the coordinates of the point representing the directions. This is achieved as follows.
Step 10: Draw the Cartesian coordinate system and the specified coordinate system along with a square in each coordinate system,
representing the undeformed state. Label points V, H, N, and T to represent the four directions, as shown in Figure 9.15a.
Step 11: Points V and H on Mohr’s circle are known. Point N on Mohr’s circle is located by starting from point V and rotating by
2θV in the same direction, as shown in Figure 9.15a. Similarly, starting from point H on Mohr’s circle, point T is located as shown in
Figure 9.15b.

It should be emphasized that we could start from point H on Mohr’s circle and reach point N by rotating 2θH, as shown in 

Figure 9.15b. In Figure 9.15a, θH + θV = 90°, and in Figure 9.15b we see that 2θH + 2θV is 180°, which once more emphasizes that 
each point on Mohr’s circle represents a unique direction, and it is immaterial how one reaches it.
Step 12: Calculate the coordinates of points N and T. 

This is the reverse of Step 2 in the construction of Mohr’s circle and is a problem in geometry. As seen in Figure 9.15b, the 
coordinates of points N and T are

The rotation of the line at point N is clockwise, as it is in the upper plane, whereas the rotation of the line at point T is coun-
terclockwise, as it is in the lower plane in Figure 9.15b. 
Step 13: Determine the sign of the shear strain. 

To draw the deformed shape we rotate the n coordinate in the direction shown for point N in Step 3. Similarly, we rotate the 
t coordinate in the direction shown for point T in Step 3, as illustrated in Figure 9.15c. The angle between the n and t directions 
increases, and hence the shear strain γnt is negative.

  Figure 9.15 Strains in specified coordinate system.
(b) (c)
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EXAMPLE 9.6

At a point in plane strain, the strain components are εxx = 200 μ, εyy = 1000 μ, and γxy = –600 μ. Using Mohr’s circle, determine (a) the
principal strains and principal angle 1; (b) the maximum shear strain; (c) the strain components in a coordinate system that is rotated
25° counterclockwise, as shown in Figure 9.16.

PLAN

We can follow the steps outlined for the construction of Mohr’s circle and for the calculation of the various quantities as outlined in this
section.

SOLUTION

Step 1: The shear strain is negative, and hence the angle between the x and y axes should increase. We draw the deformed shape of a
square due to shear strain γxy. We label the intersection of the vertical plane and the x axis as V and the intersection of the horizontal
plane and the y axis as H, as shown in Figure 9.17. 

Step 2: Using Figure 9.17a, we can write the coordinates of points V and H,

(E1)
Step 3: We draw the axes for Mohr’s circle as shown in Figure 9.17b.
Step 4: Locate points V and H and join the points by drawing a line. 
Step 5: Point C, the center of Mohr’s circle, is midway between points A and B—that is, at 600 μ. The distance BC can thus be found as
400 μ, as shown in Figure 9.17b. From the Pythagorean theorem we can find the radius R,

(E2)
Step 6: The principal strains are the coordinates of points P1 and P2 in Figure 9.17b. By adding the radius CP1 to the coordinate of point
C, we can obtain the principal strains, ε1 = 600 + 500 = 1100 and ε2 = 600 – 500 = 100. Note that for plane strain the third principal strain
is zero. 

ANS.
Step 7: Using triangle BCH we can find the principal angle θp,

(E3)

Principal angle 1 can be found from θp as shown in Figure 9.18.
ANS.

Step 8: Intuitive check: We visualize a circle in a square, as shown in Figure 9.18b. As εyy > εxx the rectangle will become longer in the y
direction than in the x direction, and the circle will become an ellipse with the major axis along the y direction, as shown in Figure 9.18c.
As γxy < 0, the angle between the x and y directions will increase. The rectangle will become a rhombus, and the major axis of the ellipse
will rotate counterclockwise from the y axis, as shown in Figure 9.18d. Hence we expect principal axis 1 to be either in the third sector or
in the seventh sector, confirming the result.

t y

x

n

25�  Figure 9.16

  Figure 9.17 (a) Deformed cube. (b) Mohr’s circle.
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Step 9: The circles between P1 and P2 and between P2 and P3 will be inscribed in the circle between P1 and P3. Thus the maximum shear
strain at the point can be determined from the circle between P1 and P3,

(E4)

Step 10: We can draw the Cartesian coordinate system and the specified coordinate system with a square representing the undeformed
state. Label points V, H, N, and T to represent the four directions, as shown in Figure 9.19.

Step 11: Starting from point V on Mohr’s circle, we rotate by 50° counterclockwise and obtain point N on Mohr’s circle in Figure 9.17.
Similarly, by starting from point H and rotating by 50° counterclockwise, we obtain point T on Mohr’s circle in Figure 9.17. 
Step 12:  Angle ACN and angle BCT can be found as 50 – 2θp = 13.13°. From triangle ACN in Figure 9.21, the coordinates of point N are 

(E5)
From triangle BCT, the coordinates of point T are 

(E6)
Step 13: In Figure 9.19 line ON rotates in the counterclockwise direction to ON1, as seen in Equation (E5), and line OT rotates in the
clockwise direction to OT1, as seen in Equation (E6). Angle N1OT1 is less than angle NOT, and hence the shear strain in the n, t coordi-
nate system is positive.

ANS.

COMMENT 

1. Example 9.4 and this example solve the same problem. But unlike with the method of equations used in Example 9.4, this example
shows that we do not need an equation to solve the problem by Mohr’s circle. Once Mohr’s circle is constructed, the problem of strain
transformation becomes a problem of geometry.

C

R

2�p
2�1

2�1

�

H

V

P2P3 P1

��2
cw

ccw

2�1 � 180 � 2�p � 143.1�

2�1 � 180 � 2�p � 216.87�

  Figure 9.18 (a) Two values of principal angle 1. (b) Un-deformed shape. (c) Deformation due to normal strains. (d) Additional 
deformation due to shear strain.
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ε1 ε3–
2

--------------- 1100
2

------------ or ANS. γmax 1100 μ== =

H
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25�

y
t

T

N

N1
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n

x
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  Figure 9.19 n, t coordinate system in Example 9.6 

εnn 600 500 13.13°cos– 113.1= = γnt 2⁄ 500 13.13°sin 113.58= =

εtt 600 500  13.13°cos+ 1086.9= = γnt 2⁄ 500 13.13°sin 113.58= =

εnn 113.1 μ= εtt 1086.9 μ= γnt 227.2 μ=
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QUICK TEST 9.1 Time: 15 minutes/Total: 20 points

Grade yourself with the answers given in Appendix E. Each question is worth two points.
In Questions 1 through 3, associate the strain states with the appropriate Mohr’s circle given. 

1. εxx = −600 μ, εyy = 0, and γxy = −600 μ. 
2. εxx = 0, εyy = 600 μ, and γxy = 600 μ. 
3. εxx = 300 μ, εyy = −300 μ, and γxy = −600 μ.
In Questions 4 and 5, the Mohr’s circles corresponding to the states of strain εxx = −500 μ, εyy = 1100 μ, and γxy = −
1200 μ are shown. Identify the circle you would use to find the strains in the n, t coordinate system in each question.

4.  5.

In Questions 6 and 7, the Mohr’s circles for a state of strain are given. Determine the two possible values of principal
angle 1 (θ1) in each question. 

6. 7.

In Questions 8 through 10, the Mohr’s circles for points in plane strain are given. Report principal strain 1 and maximum
shear strain in each question.

8. 9.   10. 

Circle A Circle B Circle C Circle D Circle E Circle F

Circle A Circle B

T

N

50�

H

V

T

N50�

H

V
50�

Circle D

N

T

H

V

Circle C

N

T

50�

H

V

H

25�

y
t

T

N n

xV
25�

y
t

T
n

xV

H

N

H

V

36�

V

H

36�

700 �
1300 �

300 �
2300 �

300 �
2300 �
August 2012



9  429Mechanics of Materials: Strain TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

9.4 GENERALIZED HOOKE’S LAW IN PRINCIPAL COORDINATES

In Section 3.5 it was observed that the generalized Hooke’s law is valid for any orthogonal coordinate system. We have seen that the
principal coordinates for stresses and strains are orthogonal.

It has been shown mathematically and confirmed experimentally that for isotropic materials the principal directions for 
strains are the same as the principal directions for stresses. In Example 9.9, we will see that the principal directions for stresses 
and strains are different when the material is orthotropic. For isotropic materials, we can write the generalized Hooke’s law relat-
ing principal stresses to principal strains as follows:

(9.14.a)

(9.14.b)

(9.14.c)

Note that there are no equations for shear stresses and shear strains, as both these quantities are zero in the principal coordinate sys-
tem. Now that we know that, at a point, principal axis 1 for stresses and strains is the same for isotropic material, we can extend our
intuitive check to stress transformation. This can be done by viewing σxx, σyy, and τxy as analogous to εxx, εyy, and γxy in the visualiza-
tion procedure outlined in Section 9.2.2. 

EXAMPLE 9.7

The stresses σxx = 4 ksi (T), σyy = 10 ksi (C), and τxy = 4 ksi were calculated at a point on a free surface of an isotropic material. Deter-
mine (a) the orientation of principal axis 1 for stresses, using Mohr’s circle for stress; (b) the orientation of principal axis 1 for strains,
using Mohr’s circle for strain. Use the following material constants: E = 7500 ksi, G = 3000 ksi, and ν = 0.25. 

PLAN

By substituting the stresses and material constants into the generalized Hooke’s law in Cartesian coordinates, we can find the strains εxx,
εyy, and γxy. We can draw Mohr’s circle for stress to find principal direction 1 for stress, and we can draw Mohr’s circle for strain to find
principal direction 1 for strain.

SOLUTION

As the point is on a free surface, the state of stress is plane stress; hence σzz = 0. Substituting the stresses and the material constants into
Equations (3.12a), (3.12b), and (3.12d), we obtain

(E1)

(E2)

 (E3)

(a) We draw the stress cube and record the coordinates of planes V and H, 

(E4)
We then draw Mohr’s circle for stress, as shown in Figure 9.20a. The angle θp can be found from triangle BCH (or ACV) and is given by 

(E5)

For this example θ1 = θp and we obtain the result for the orientation of principal axis 1.
ANS.

(b) Since γxy is positive, the angle between the x and y coordinates decreases, as shown by the deformed shape in Figure 9.20b. Noting
that the vertical coordinate is γ/2, we record the coordinates of points V and H,

(E6)

ε1
σ1 ν σ2 σ3+( )–

E
--------------------------------------=

ε2
σ2 ν σ3 σ1+( )–

E
--------------------------------------=

ε3
σ3 ν σ1 σ2+( )–

E
--------------------------------------=

εxx
σxx

E
------- ν

E
---σyy– 4 ksi

7500 ksi
-------------------- 0.25

7500 ksi
-------------------- 10 ksi–( )– 0.867 10 3–( ) 867  μ= = = =

εyy
σyy

E
------- ν

E
---σxx– 10 ksi–

7500 ksi
-------------------- 0.25

7500 ksi
-------------------- 4 ksi( )– 1.467 10 3–( )– 1467  μ–= = = =

γxy
τxy

G
------ 4 ksi

3000 ksi
-------------------- 1.333 10 3–( ) 1333  μ= = = =

V 4 4   ,( ) H 10 4   ,–( )

 2tan θp
4
7
--- or θp 14.87°==

θ1 14.87°  ccw=

V 867 666.7  ,( ) H 1467 666.7  ,–( )
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We then draw Mohr’s circle for strain, as shown in Figure 9.20b. The angle θp can be found from triangle BCH (or ACV) and is given by

(E7)

For this example θ1 = θp and we obtain the result for the orientation of principal axis 1.
ANS.

COMMENTS

1. The example highlights that for isotropic materials the principal axes for stresses and strains are the same.
2. The principal stresses can be found from Mohr’s circle for stress as

σ1 = −3 ksi + 8.06 ksi = 5.06 ksi σ2 = −3 ksi − 8.06 ksi = −11.06 ksi
Noting that σ3 = 0 because of the plane stress state, we obtain the principal strains from Equations (9.21a) and (9.21b), 

(E8)

3. From Mohr’s circle for strain we obtain the same values,
(E9)

The preceding highlights that the sequence of using the generalized Hooke’s law and Mohr’s circle does not affect the calculation of the
principal strains.
4. We can conduct an intuitive check on the orientation of principal axis 1 for strain. We visualize a circle in a square, as shown in this

example (Figure 9.21). Since εxx > εyy, the rectangle will become longer in the x direction than in the y direction, and the circle will
become an ellipse with its major axis along the x direction. Since γxy > 0, the angle between the x and y directions will decrease. The
rectangle will become a rhombus, and the major axis of the ellipse will rotate counterclockwise from the x axis. Hence we expect
principal axis 1 to be either in the first sector or in the fifth sector of Figure 9.6. The result given in Equation (E7) puts principal axis
1 in sector 1, which is one of our intuitive answers.

(a) (b)

H

y

x
V

y

x

10 ksi
4 ksi

4 ksi4 ksi
H

H

V V

�

4

4
4

10 2�p

2�p

H

V

R
B

C A

P2 P1

�

7 3

��2

�
867

666.7

666.7

1467 2�p

2�p

H

V

R
B

C A

P2 P1

1167 300

τ γ/2

  Figure 9.20 Mohr’s circles in Example 9.7. (a) Stress. (b) Strain.

CW CW

CCW CCW

2θptan 666.7
1167
------------- or θp 14.87°==

θ1 14.87°  ccw=

ε1
5.06 ksi 0.25 11.06 ksi–( )–

7500 ksi
------------------------------------------------------------------- 1044  μ= = ε2

-11.06 ksi( ) 0.25 5.06 ksi( )–
7500 ksi

----------------------------------------------------------------------- 1644–  μ= =

ε1 300  μ– 1344  μ+ 1044  μ= = ε2 300  μ– 1344  μ– 1644  – μ= =

  Figure 9.21 Estimating principal directions in Example 9.7 (a) Undeformed shape. (b) Deformation due to normal strains. (c) Addi-
tional deformation due to shear strain.

(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1
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EXAMPLE 9.8

For an isotropic materials show that G = E/2(1 + ν).

PLAN

We can start with a state of pure shear and find principal stresses in terms of shear stress τ and principal strains in terms of shear strain γ.
Using Equation (9.14.a) we can relate principal strain 1 to the principal stresses and then obtain a relationship between shear stress τ and
shear strain γ. This relationship will have only E and ν in it. Comparing this to the relationship τ = Gγ, we can obtain the relationship
between E, ν, and G.

SOLUTION

We start by assuming that all stress components except τxy = τ are zero in the Cartesian coordinate system. We draw the stress cube and
Mohr’s circle in Figure 9.22a and find the principal stresses in terms of τ,

(E1)

We then start with all strains except γxy = γ as zero. Using Mohr’s circle in Figure 9.22b, we find the principal strains,
(E2)

Noting that σ3 = 0, we substitute Equations (E1), (E2), and (E3) into Equation (9.14.a) to obtain

(E3)

Comparing Equation (E5) to τ = Gγ, we obtain G = E/2(1 + ν).

COMMENTS

1. Principal axes 1 in Mohr’s circles for stress and for strain are seen to be at 90° counterclockwise from plane V. This implies that for
isotropic materials the principal direction for stresses is the same as the principal direction for strains.

2. The state of pure shear can be produced by applying tensile stress in one direction (σ1) and a compressive stress of equal magnitude in
a perpendicular direction (σ2). Then on a 45° plane a state of pure shear will be seen.

EXAMPLE 9.9

The stresses σxx = 4 ksi (T), σyy = 10 ksi (C), and τxy = 4 ksi were calculated at a point on a free surface of an orthotropic composite mate-
rial. An orthotropic material has the following stress–strain relationship at a point in plane stress:

(9.15)

Determine (a) the orientation of principal axis 1 for stresses using Mohr’s circle for stress; (b) the orientation of principal axis 1 for
strains using Mohr’s circle for strain. Use the following values for the material constants: Ex = 7500 ksi, Ey = 2500 ksi, Gxy = 1250 ksi,
and νxy = 0.3.

σ1 +τ= σ2 τ–=

  Figure 9.22 Mohr’s circles for pure shear in Example 9.8. (a) Stress. (b) Strain.

y

�

�

�1�2

�

�

x

H
H

H

V

V

V

V(0, �  )

H(0, �  )

V

H

(a)

y

�1�2

��2

��2

x

H

V

V(0, ��2  )

H(0, ��2  )

(b)

ε1 +γ 2⁄= ε2 -γ 2⁄=

γ
2
--- τ ν -τ 0+( )–

E
------------------------------- 1 ν+

E
------------τ or τ E

2 1 ν+( )
--------------------γ== =

εxx
σxx

Ex
-------

νyx

Ey
-------σyy εyy

σyy

Ey
-------

νxy

Ex
-------σxx–=–= γxy

τxy

Gxy
--------

νyx

Ey
-------

νxy

Ex
-------==
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PLAN

By substituting the stresses and material constants into Equation (9.15), we can find the strains εxx, εyy, and γxy. We can draw Mohr’s cir-
cle for stress to find principal direction 1 for stress, and we can draw Mohr’s circle for strain to find principal direction 1 for strain.

SOLUTION

From νyx/Ey = νxy/Ex, we obtain

(E1)

Substituting the stresses and the material constants into Equation (9.15), we obtain

(E2)

(E3)

(E4)

(a) We draw the stress cube and record the coordinates of points V and H. We then draw Mohr’s circle for stress, as shown in Figure 9.23a, and
obtain 

(E5)

For this example θ1 = θp, and we obtain the result for the orientation of principal axis 1.
ANS.

(b) Since γxy is positive, the angle between the x and y coordinates decreases, as shown by the deformed shape in Figure 9.23b. Noting
that the vertical coordinate is γ/2, we record the coordinates of points V and H. We then draw Mohr’s circle for strain, as shown in Figure
9.23b. The angle θp can be found from triangle BCH (or ACV ):

(E6)

For this example θ1 = θp, and we obtain the result for the orientation of principal axis 1.
ANS.

νyx
Eyνxy

Ex
------------- 2500 ksi( ) 0.3( )

7500 ksi( )
--------------------------------------- 0.1= = =

εxx
σxx

Ex
-------

νyx

Ey
-------σyy– 4 ksi

7500 ksi
-------------------- 0.1

2500 ksi
-------------------- 10 ksi–( )– 0.933 10 3–( ) 933 μ== = =

εyy
σyy

Ey
-------

νxy

Ex
-------σxx– 10 ksi–( )

2500 ksi
----------------------- 0.3

7500 ksi( )
------------------------- 4 ksi( )– 4.160 10 3–( )–  4160– μ== = =

γxy
τxy

Gxy
-------- 4 ksi

1250 ksi
-------------------- 3.200 10 3–( )  3200 μ== = =

2θptan 4
7
--- or θp 14.87° ccw= =

  Figure 9.23 Mohr’s circles in Example 9.9. (a) Stress. (b) Strain.
(a) (b)
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10 2�p

2�p

H

V

R
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P2 P1
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�
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1600

1600

4160 2�p

2�p

H
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P2 P1

2546.5 1613.5

V(933, 1600  )

H(�4160, 1600  )

V(4, 4  )
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θ1 14.87°  ccw=

2θptan 1600
2546.5
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COMMENTS

1. The stress state in this example is the same as in Example 9.7. In Example 9.7 we concluded that for isotropic materials the principal
directions for stresses and strains are the same. Equations (E5) and (E6) show that for orthotropic materials the principal directions
for stresses and strains are different. 

2. In Example 9.7, if we change the material constants for the isotropic material, then the stress values will be different, but the result for the
principal angle for stress will not change. If we change the material constants for orthotropic materials, then we not only change the stress
values but we may also change the principal angle for stress. This is because we may change the degree of orthotropicness—that is, the
degree of difference in the material constants in the x and y directions.

3. The preceding two comments highlight some of the reasons why intuition based on isotropic materials can be misleading when work-
ing with composite materials. In such cases mathematical rigor can provide answers that once confirmed by experiment, can form a
new knowledge base for the development of intuitive understanding.

PROBLEM SET 9.2

Visualization of principal axis
In Problems 9.14 through 9.18, the state of strain at a point in plane strain is as given in each problem. Estimate the orientation of the principal
directions and report your results using the sectors shown in Figure 9.7. 

Method of Equations and Mohr’s circle
9.19 Starting from Equation (9.4), show that maximum or minimum normal strain will exist in the direction of θp, as given by Equation
(9.7). (Hint: See the similar derivation in stress transformation.)

9.20 Show that the values of the maximum and minimum normal strains are given by Equation (9.8). (Hint: See the similar derivation in
stress transformation.)

9.21 Show that angle θp as given by Equation (9.7) is the principal angle, that is, shear strain is zero in a coordinate system that is at an angle θp to the
Cartesian coordinate system. (Hint: See the similar derivation in stress transformation.)

9.22 Show that the coordinate system of maximum in-plane shear strain is 45° to the principal coordinate system. (Hint: See the similar deriva-
tion in stress transformation.)

9.23 Show that the maximum in-plane shear strain is given by Equation (9.11). (Hint: See the similar derivation in stress transformation.)

9.24 Starting from Equations (9.4) and (9.6), obtain the expression of Mohr’s circle given by Equation (9.13). (Hint: See the similar deriva-
tion in stress transformation.)

9.25 Solve Problem 9.5 by the method of equations.

9.26 Solve Problem 9.5 by Mohr’s circle.

9.27 Solve Problem 9.6 by the method of equations.

9.28 Solve Problem 9.6 by Mohr’s circle.

9.29 Solve Problem 9.7 by the method of equations.

9.30 Solve Problem 9.7 by Mohr’s circle.

Problem

Strains

εxx εyy γxy 

9.14  −400 μ 600 μ −500 μ
9.15 −600 μ −800 μ 500 μ.
9.16 800 μ 600 μ −1000 μ
9.17 0 600 μ, −500 μ
9.18  −1000 μ −500μ 700 μ
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In Problems 9.31 through 9.34, at a point in plane strain, the strain components in the x, y coordinate system are as given. Using the associated
figure, determine (a) the principal strains and principal angle 1; (b) the maximum shear strain; (c) the strain components in the n, t coordi-
nate system.

In Problems 9.35 through 9.38, at a point in plane strain, the strain components in the n, t coordinate system are as given. Using the associated
figure, determine (a) the principal strains; (b) the maximum shear strain; (c) the strain components in the x, y coordinate system.

Problem

Strains

εxx εyy γxy

9.31 −400 μ 600 μ −500 μ

Figure P9.31

9.32  −600 μ −800 μ, 500 μ

Figure P9.32

9.33 250 μ 850 μ, 1600 μ

Figure P9.33

9.34  −1800μ −3600 μ  −1500 μ

Figure P9.34

Problem

Strains

εnn εtt γnt

9.35 2000 μ −800 μ 750 μ 

Figure P9.35

9.36  −2000 μ −800 μ −600 μ 

Figure P9.36

9.37  350 μ  700 μ 1400 μ 

Figure P9.37

9.38 −3600 μ 2500 μ −1000 μ

Figure P9.38
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In Problems 9.39 through 9.42, the principal strains ε1 and ε2 and the direction of principal direction 1 θ1 from the x axis are given. Determine
strains εxx, εyy, and γxy at the point.

Generalized Hooke’s law in principal coordinates 
In Problems 9.43 through 9.45, the stresses in a thin body (plane stress) in the xy plane are as shown on each stress element. The modulus of
elasticity E and Poisson’s ratio ν are given in each problem. Using the associated figure, determine (a) the principal strains and principal
angle 1 at the point; (b) the maximum shear strain at the point. 

In Problems 9.46 through 9.48, the stresses in a thick body (plane strain) in the xy plane are as shown on each stress element. The modulus of
elasticity E and Poisson’s ratio ν are given in each problem. Using the associated figure, determine (a) the principal strains and principal
angle 1 at the point; (b) The maximum shear strain at the point.

Problem

Principal Strains Principal Angle 1

ε1 ε2 θ1

9.39 1200 μ  300 μ 27.5°

9.40  900 μ −600 μ −20°
9.41 −200 μ −2000 μ 105°
9.42 1400 μ  −600 μ  −75°

Problem E ν

9.43 70 GPa ν = 0.25

Figure P9.43

9.44 70 GPa ν = 0.25

Figure P9.44

9.45 30,000 ksi 0.28 

Figure P9.45

Problem E ν

9.46 105 GPa ν = 0.35

Figure P9.46

60 MPa
40 MPa

30 MPa

15 MPa
20 MPa

45 MPa

20 ksi
30 ksi

10 ksi

40 MPa
40 MPa

20 MPa
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Orthotropic materials

In Problems 9.49 through 9.52, the properties of an orthotropic material and the stresses or strain are given at a point on a free surface. Using Equa-
tion (9.15), determine the principal direction for stresses and strains.

9.5 STRAIN GAGES

Strain gages are strain-measuring devices based on the changes in resistance in a wire with changes in its length. Since strain causes
a length change, the change in resistance can be correlated to the strain in the wire by conducting an experiment. By bonding a wire
to a stressed part, we can assume that the deformation of the wire is the same as that of the material. Hence, by measuring changes in
the resistance of a wire, we can get the strains in the material. Strain gages are a sophisticated application of this technique. 

Strain gages are usually manufactured by etching a thin foil of material, as shown in Figure 9.24. The back-and-forth pattern 
increases the sensitivity of the gage by providing a long length of wire in a very small area. Strain gages can be as small in length 

as  in., which for many engineering calculations is equivalent to measuring strain at a point.

Since we are measuring changes in the length of a wire, a strain gage measures only normal strains directly and not shear strains. In
this section it will be shown how shear strains are calculated from the measured normal strains. Because of the finite sizes of strain

9.47 70 GPa ν = 0.25

Figure P9.47

9.48 30,000 ksi 0.28 

Figure P9.48

Problem Ex Ey  Gxy νxy Stresses / Strains

9.49  7500 ksi 2500 ksi 1250 ksi 0.25 εxx = −400 μ, εyy = 600 μ, and γxy = −500 μ

9.50  7500 ksi 2500 ksi 1250 ksi 0.25 σxx = 10 ksi (T), σyy = 7 ksi (C), and τxy = 5 ksi.

9.51 50 GPa 18 GPa 9 GPa 0.25 εxx = 800 μ, εyy = 200 μ, and γxy = 300 μ.

9.52 50 GPa 18 GPa 9 GPa 0.25 σxx = 70 MPa (C), σyy = 49 MPa (C), and τxy = −30 MPa

Problem E ν

25 MPa
20 MPa

35 MPa

15 ksi
20 ksi

25 ksi

8
1000
------------

  Figure 9.24 Typical strain gage.

Tabs for 
wire
attachments 

Gage Length
used in measurement
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gages, strain gages give an average value of strain at a point. To protect the strain gage from damage, no force is applied on its top.
Hence strain gages are bonded to a free surface; that is, measurements take place in plane stress. We record the following observa-
tions: 

1. Strain gages measure only normal strains directly.

2. Strain gages are bonded to a free surface. That is, the strains are in a state of plane stress and not plane strain.

3. Strain gages measure average strain at a point

In plane stress there are three independent strain components εxx, εyy, and γxy. To determine these, we need three observations at a
point. In other words, we need to find normal strains in three directions. Figure 9.25 shows an assembly of three strain gages called
a strain rosette. The strain gage readings εa, εb, and εc can be related to εxx, εyy, and γxy by Equation (9.4) as

(9.16.a)

(9.16.b)

(9.16.c)

The three equations can be solved for the three unknowns  εxx, εyy, and γxy since θa, θb, and θc are known. 

The angles at which strain gages are attached are chosen to reduce the algebra in the calculation of εxx, εyy, and γxy. Figure 
9.26 shows two popular choices of angles in a strain rosette. Notice in Figure 9.26b that angle θc can be 120° or −60° (or 300° 
or −240°). This emphasizes that Equation (9.4) does not change if 180° is added to or subtracted from angle θ. (See Problem 
9.53.) An alternative explanation is that normal strain is a measure of the deformation of a line and deformation is the relative 
movement of two points on a line. Hence the value does not depend on whether the two points on the line have positive or nega-
tive coordinates. We can summarize our observation simply:

• A change in strain gage orientation by ±180° makes no difference in the strain values.

Once strains εxx, εyy, and γxy are found, then the principal strains can be found. The principal stresses can be found next, if 
needed, from the generalized Hooke’s law in principal coordinates. Alternatively, the stresses σxx, σyy, and τxy may be found first 
from the generalized Hooke’s law, and then the principal stresses can be found. But it is important to remember that the point 
where strains are being measured is in plane stress, and hence σzz = 0. The strain in the z direction is the third principal strain and 
can be found from Equation (9.10).

εa εxx θ2
acos εyy θ2

asin γxy θasin θacos+ +=

εb εxx θ2
bcos εyy θ2

bsin γxy θbsin θbcos+ +=

εc εxx θ2
ccos εyy θ2

csin γxy θcsin θccos+ +=

y

x

�a

�b

�c

  Figure 9.25 Strain rosette.

  Figure 9.26 Strain rosettes. (a) 45°. (b) 60°.

y

x
45�

45�

c

a

b

�a � 0� 
�b � 45� 
�c � 90�

(a)

y

x60� 60�

c

a

b

�a � 0� 
�b � 60� 
�c � 120� or �60�

(b)
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EXAMPLE 9.10

Strains εa = 900 μin./in., εb = 200 μin./in., and εc = 700 μin./in. were recorded by the three strain gages shown in Figure 9.27 at a point on
the free surface of a material that has a modulus of elasticity E = 30,000 ksi and a Poisson ratio ν = 0.3. Determine the principal stresses,
principal angle 1, and the maximum shear stress at the point. 

PLAN: METHOD 1

We note that εa = εxx. We can find strains εyy and γxy from the two equations obtained by substituting θb = +60° and θc = −60° into Equa-
tion (9.4). We can then find principal strains 1 and 2 and principal angle 1 by using either Mohr’s circle or the method of equations. Prin-
cipal strain 3 can be found from Equation (9.10), and the maximum shear strain from the radius of the biggest circle. Using the
generalized Hooke’s law in principal coordinates we can find the principal stresses.

SOLUTION

Strain gages: The strain in the x direction is given by the strain gage a reading. Thus 
(E1)

Substituting θb = +60° and θc = −60° into Equation (9.4), we obtain

(E2)

(E3)
Solving Equations (E2) and (E3), we obtain 

(E4)
Mohr’s circle for strain: We draw the deformed shape as shown in Figure 9.28a and write the coordinates of points V and H as

(E5)
We then draw Mohr’s circle for strain shown in Figure 9.28b and calculate the principal strains. From the Pythagorean theorem we can
find the radius R,

(E6)

The principal strains are the coordinates of points P1 and P2 in Figure 9.28b,
(E7)

As the point is on a free surface, the state is in plane stress. Hence the third principal strain from Equation (9.10) is

y

x60�
60�

a

c

b

  Figure 9.27 Strain rosette in Example 9.10.

εxx 900 μ=

εb 900( ) 602cos εyy 602sin γxy 60sin 60cos+ + 200= = or 0.75εyy 0.433γxy+ 25–=

εc 900( ) 60–( )2cos εyy 60–( )2sin γxy 60–( )sin 60–( )cos+ + 700= = or 0.75εyy 0.433γxy– 475=

εyy 300 μ= γxy 577.4–  μ=

V 900 288.7  ,( ) H(300, 288.7   )

R CB2 BV 2+  = 3002 288.72+  416.4==

  Figure 9.28 Mohr’s circle in Example 9.4.

H

V

(a) (b)

x

y

��2

514.2 300
900

300600

2�p

288.7

P3

P2 P1
A

H

C B
	

R

V

γ/2
CW

CCW

ε1 600 416.4+ 1016.4= = ε2 600 416.4– 183.6= =
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(E8)

Using triangle BCV in Figure 9.28b, we can find the principal angle θp,

(E9)

From Figure 9.28b we see that θ1 = θp, and the direction is clockwise:
(E10)

Intuitive check: We visualize a circle in a square, as in Figure 9.29a. Since εxx > εyy, the rectangle will become longer in the x direction
than in the y direction, and the circle will become an ellipse with its major axis along the x direction, as shown in Figure 9.29b. Since γxy

< 0, the angle between the x and y directions will increase. The rectangle will become a rhombus, and the major axis of the ellipse will
rotate clockwise from the x axis, as shown in Figure 9.29c. Hence we expect principal axis 1 to be either in the eighth sector or in the
fourth sector, confirming the result given in Equation (E10).

Locating point P3, which corresponds to the third principal strain in Figure 9.28b, we note that the circle between P1 and P3 will be a big-
ger circle than between P2 and P3, or between P1 and P2. Thus the maximum shear strain at the point can be determined from the circle
between P1 and P3,

(E11)

Hooke’s law: For plane stress σ3 = 0. From Equations (9.14.a) and (9.14.b) we obtain

(E12)

(E13)

Solving Equations (E12) and (E13), we obtain σ1 = 35.31 ksi and σ2 = 16.11 ksi. For isotropic materials the principal direction for
stresses and strains is the same.

ANS.
The shear modulus of elasticity is

(E14)

The maximum shear stress can be found from Hooke’s law as

(E15)
Check: We can also find the maximum shear stress as half the maximum difference between principal stresses. That is, from Equation
(8.13), , confirming Equation (E15).

ANS.

COMMENT

This example combines three concepts: the use of strain gages to find strain components in Cartesian coordinates, the use of Mohr’s cir-
cle for finding principal strains, and the use of Hooke’s law in principal coordinates for finding principal stresses.

PLAN: METHOD 2

We can find εxx, εyy, and γxy from the values of the strains recorded by the strain gages, as we did in Method 1. We can use Hooke’s law in
Cartesian coordinates to find σxx, σyy, and τxy. Using Mohr’s circle for stress (or the method of equations), we can then find the principal
stresses, principal angle 1, and the maximum shear stress.

ε3 εzz
0.3

1 0.3–
---------------- 900 300+( )– 514.2 μ–= = =

2θpcos CB
CV
-------- 300

416.4
-------------= =

2θp 43.9° θ1 θp 21.9°  cw= = =

  Figure 9.29 Estimating principal directions in Example 9.10. (a) Un-deformed shape. (b) Deformation due to normal strains. (c) Addi-
tional deformation due to shear strain.

(a)

y

x

(b) (c)

y

x

Principal
direction 2

Principal
direction 1

γmax

2
---------

ε1 ε3–
2

--------------- 765.3 γmax 1531 μ== =

ε1
σ1 νσ2–

30,000 ksi
------------------------- 1016 10 6–( )= = or σ1 0.3σ2– 30.48  ksi=

ε2
σ2 νσ1–

30,000 ksi
------------------------- 184 10 6–( )= = or σ2 0.3σ1– 5.52  ksi=

σ1 35.3 ksi T( )= σ2 16.1 ksi T( )= σ3 0= θ1 21.9o CW=

G E
2 1 ν+( )
-------------------- 11,538 ksi= =

τmax Gγmax 11 538,( ) 1531( ) 10 6–( ) 17.65 ksi= = =

τmax 35.3 0–( ) 2⁄ 17.65 ksi= =

τmax 17.65 ksi=
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SOLUTION

Strain gages: From Equations (E1) and (E4),
(E16)

Hooke’s law: We note that for plane stress σzz = 0. Using Equations (3.12a) and (3.12b), we can write

(E17)

(E18)

Solving Equations (E17) and (E18), we obtain From Equations (3.12d) and (E14) we obtain the
shear stress as 

(E19)
Mohr’s circle for stress
We draw the stress cube as shown in Figure 9.30a and record the coordinates of points V and H as

(E20)
We then draw Mohr’s circle for stress as shown in Figure 9.30b and calculate the principal stresses. From the Pythagorean theorem we
can find the radius R,

(E21)
The principal stresses are the coordinates of points P1 and P2 in Figure 9.30b. As the point is on free surface, the state is in plane stress.
Hence the third principal stress is zero,

(E22)
Using triangle BCV in Figure 9.30b we can find the principal angle θp, From Figure 9.30b we see that θ1 = θp and the direction is clock-
wise:

(E23)

ANS.  
The biggest circle will be between P1 and P3. The maximum shear stress is the radius of this circle and can be calculated as

.

ANS.

COMMENT

1. As in Method 1, three concepts are combined, but the sequence in which the problem is solved is different. In Method 1 we used
Mohr’s circle (for strain) first and Hooke’s law (in principal coordinates) second. In Method 2 we used Hooke’s law (Cartesian coor-
dinates) first and Mohr’s circle (for stress) second. The number of calculations differs only with respect to ε3, which is not calculated
in Method 2.

εxx 900 μ= εyy 300 μ= γxy 577.4– μ=

εxx
σxx νσyy–
30,000 ksi
------------------------- 900 10 6–( ) or σxx 0.3σyy– 27 ksi= = =

εyy
σyy νσxx–
30,000 ksi
------------------------- 300 10 6–( ) or σyy 0.3σxx– 9 ksi= = =

σxx 32.63 ksi and σyy 18.79 ksi==

τxy Gγxy 11 538,( ) 577.4–( ) 10 6–( ) 6.66 ksi–= = =

V 32.63 6.66  ,( ) H(18.79, 6.66   )

R CB2 BV 2+ 6.922 6.662+ 9.60= = =

σ1 25.71 9.60+ 35.31 ksi= = σ2 25.71 9.60– 16.11 ksi= = σ3 0=

2θpcos CB
CV
-------- 6.92

9.6
----------= = or 2θp 43.9° θ1 θp 21.9°  cw= ==

  Figure 9.30 Mohr’s circle in Example 9.10.
(b)(a)

y

x

18.79
6.66

32.63
H

H

V V

�

18.79
32.63

6.9225.71

2�p
6.66

P2P3 P1

A

H

C B
�

R

V
γ/2

CW

CCW

σ1 35.3 ksi(T)= σ2 16.1 ksi(T)= σ3 0= θ1 21.9o  cw=

τmax 35.3 ksi 0–( ) 2⁄ 17.65 ksi= =

τmax 17.65 ksi=
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EXAMPLE 9.11

The strain gage at point A recorded a value of εA = −200  μ. Determine the load P that caused the strain for the three cases shown in Fig-
ure 9.31. In each case the strain gage is 30° clockwise to the longitudinal axis (x axis). Use E = 10,000 ksi, G = 4000 ksi, and ν = 0.25.

PLAN

The axial stress σxx in case 1, the bending normal stress σxx in case 2, and the bending shear stress τxy in case 3 can be found in terms of
P using Equations (4.8), (6.12), and (6.27), respectively. All other stress components are zero. Strains εxx, εyy, and γxy can be found in
terms of P for each case, using the generalized Hooke’s law. Substituting the strains and θA = −30° into Equation (9.4), the strain in the
gage can be found in terms of P and equated to the given value of −200 μ to obtain the value of P.

SOLUTION

Stress calculations: Recollect that As is the area between the free surface and point A, where shear stress is to be found. The cross-sec-
tional area A, the area moment of inertia Izz, and the first moment Qz of the area As shown in Figure 9.32a can be calculated as

(E1)

Figure 9.32b and c shows the free-body diagrams of the axial member and the beam after making the imaginary cut through point A.
Using force and moment equilibrium equations, we find the internal forces and moment,

(E2)
Substituting Equations (E1) and (E2) into Equation (4.8), we find the axial stress in case 1,

(E3)

Substituting Equations (E1), (E2), and y = 2 in into Equation (6.12), we find the bending normal stress in case 2,

(E4)

Substituting Equations (E1), (E2), and t = 1 into Equation (6.27), we find the magnitude of τxy in case 3,

(E5)

Noting that τxy must have the same sign as Vy, we obtain the sign of τxy (see Section 6.6.6),
(E6)

Strain calculations: The only two nonzero stress components are given by Equations (E3), (E4), and (E6) for each case. Using the gen-
eralized Hooke’s law [or Equations (4.13) and (6.29)], we obtain the strains for each case. Substituting the strains and θA = −30° into
Equation (9.4) and equating the result to −200 μ give the value of load P for each case:

20 in 20 in

2 in

2 in

y

PA

0.5 in

Case 1 Case 2 Case 3

0.5 in

20 in 20 in

2 in

2 in

y

P

zz z

0.5 in
0.5 in

P

A

20 in 20 in

2 in

2 in

y

A

0.5 in
0.5 in

  Figure 9.31 Three beams in Example 9.11.

A 1( ) 4( ) 4 in2= = Izz
1 in.( ) 4 in.( )3

12
---------------------------------- 5.33 in.4= = Qz  1 in.( ) 2 in.( ) 1 in.( )  2 in.3==

  Figure 9.32 Calculation of geometric and internal quantities in Example 9.11
(a)

1 in

4 in
1 in

z

y

A

(b)

20 in
N P

P

(c)

20 in

Mz

Vy

N P  kips–= Vy P kips= Mz 20P  in.· kips=

σxx
N
A
---- P  kips–

4 in.2
------------------ 0.25P  ksi–= = =

σxx
Mzy
Izz

----------– 20P in.· kips( ) 2 in.( )

5.33 in.4
----------------------------------------------------– 7.5P  ksi–= = =

τxy
VyQz

Izzt
------------ P kips( ) 2 in.3( )

5.33 in.4( ) 1 in.( )
------------------------------------------ 0.375P  ksi= = =

τxy 0.375P ksi=
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• Case 1:

(E7)

(E8)

ANS.
• Case 2:

(E9)

(E10)

ANS.
• Case 3:

(E11)

(E12)

ANS.

COMMENTS

1. This example demonstrates one of the basic principles used in the design of load transducers, also called load cells. Load transducers
are used for measuring, applying, and controlling forces and moments on a structure. This example showed how one may measure a
force by using strain gage readings and mechanics of materials formulas. The electrical signal from the strain gage can be processed
and correlated with the intensity of the force and moment. It can be used to apply and control these quantities. 

2. In this example the strain in the gage was caused by a single force. When there are multiple forces or moments acting on a structure,
then to correlate strain gage readings to the applied forces and moments we need to supplement the formulas of mechanics and mate-
rials with the formulas for the Wheatstone bridge. See Section 9.6 for additional details on the Wheatstone bridge.

3. In Examples 9.5 and 9.10 and in this example we saw the use of the generalized Hooke’s law. An alternative is to use formulas that
are derived from the generalized Hooke’s law. This is one important reason for memorizing the generalized Hooke’s law.

PROBLEM SET 9.3

Strain gages
9.53 Show that upon substituting θ ± 180° in place of θ, the strain transformation equation, Equation (9.4), is unchanged.

9.54 At a point on a free surface the strain components in the x, y coordinates are calculated as εxx = 400 μin./in., εyy = –200 μin./in., and γxy = 500
μrad. Predict the strains that the strain gages shown in Figure P9.54 would record.

9.55 At a point on a free surface the strains recorded by the three strain gages shown in Figure P9.54 are εa = 200 μin./in., εb = 100 μin./in.,
and εc = –400 μin./in. Determine strains εxx, εyy, and γxy.

9.56 At a point on a free surface of an aluminum machine component (E = 10,000 ksi and G = 4000 ksi) the stress components in the x, y
coordinates were calculated by the finite-element method as σxx = 22 ksi (T), σyy = 15 ksi (C), and τxy = −10 ksi. Predict the strains that the
strain gages shown in Figure P9.56 would show.

εxx
σxx

E
------- 0.25P ksi–

10000 ksi
-------------------------- 25P μ–= = = εyy

νσxx

E
-----------– νεxx– 6.25P μ= = = γxy 0=

εA 25P μ–( )  30°–( )2cos 6.25P μ( )  30°–( )2sin+ 17.19P μ– 200 μ–= = = or P 11.6 kips=

P 11.6 kips=

εxx
σxx

E
------- 7.5P  ksi–

10000 ksi
----------------------- 750P μ–= = = εyy

νσxx

E
-----------– νεxx– 187.5P μ= = = γxy 0=

εA 750P μ–( ) 30°–( )2cos 187.5P μ( ) 30°–( )2sin+ 515.63P μ– 200 μ–= = = or P 0.39 kips=

P 0.39 kips=

εxx 0= εyy 0= γxy
τxy

G
------ 0.375P  ksi

4000 ksi
-------------------------- 93.75P μ= = =

εA 93.75P μ( ) 30°–( )sin 30°–( )cos 40.59P μ– 200 μ–= = = or P 4.93 kips=

P 4.93 kips=

y

a

b

c

x
30�

60�

Figure P9.54
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9.57 At a point on a free surface of aluminum (E = 10,000 ksi and G = 4000 ksi) the strains recorded by the three strain gages shown in Fig-
ure P9.56 are εa = –600 μin./in., εb = 500 μin./in., and εc = 400 μin./in. Determine stresses σxx, σyy, and τxy.

9.58 At a point on a free surface of a machine component (E = 80 GPa and G = 32 GPa) the stress components in the x, y coordinates were
calculated by the finite-element method as σxx = 50 MPa (T), σyy = 20 MPa (C), and τxy = 96 MPa. Predict the strains that the strain gages
shown in Figure P9.58 would show.

9.59 At a point on a free surface of a machine component (E = 80 GPa and G = 32 GPa) the strains recorded by the three strain gages shown in Fig-
ure P9.58 are εa = 1000 μm/m, εb = 1500 μm/m, and εc = μm/m. Determine stresses σxx, σyy, and τxy.

9.60 On a free surface of steel (E = 210 GPa and ν = 0.28) the strains recorded by the three strain gages shown in Figure P9.60 are εa = –800
μm/m, εb = –300 μm/m, and εc = –700 μm/m. Determine the principal strains, principal angle 1, and the maximum shear strain

9.61 On a free surface of steel (E = 210 GPa and ν = 0.28) the strains recorded by the three strain gages shown in Figure P9.60 are εa = 200
μm/m, εb = 100 μm/m, and εc = 0. Determine the principal stresses, principal angle 1, and the maximum shear stress.

9.62 On a free surface of an aluminum machine component (E = 10,000 ksi and ν = 0.25) the strains recorded by the three strain gages
shown in Figure P9.62 are εa = −100 μin./in., εb = 200 μin./in., and εc = 300 μin./in. Determine the principal strains, principal angle 1, and the
maximum shear strain.

9.63 On a free surface of an aluminum machine component (E = 10,000 ksi and ν = 0.25) the strains recorded by the three strain gages
shown in Figure P9.62 are εa = 500 μin./in., εb = 500 μin./in., and εc = 500 μin./in. Determine the principal stresses, principal angle 1, and the
maximum shear stress.

Figure P9.56

y

a

c

x45�

b

60�

Figure P9.58

y

a

b

c

x

25�

450–

Figure P9.60

y

a

b

c

x45�

y

b

c

a

x
60�

Figure P9.62
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Strain gages on structural elements
9.64 An aluminum (E = 70 GPa, G = 28 GPa) 50-mm × 50-mm square bar is axially loaded with a force F = 100 kN as shown in shown in Fig-
ure P9.64. Determine the strain that will be recorded by the strain gage.

9.65 An aluminum (E = 70 GPa, G = 28 GPa) 50-mm × 50-mm square bar is axially loaded as shown in shown in Figure P9.64. Determine
applied force F when the gage shows a reading of 200 μ. 

9.66 A circular steel (E = 30,000 ksi, ν = 0.3) bar has a diameter of 2 in. and is axially loaded as shown in Figure P9.66. If the applied axial
force F = 100 kips, determine the strain the gage will show.

9.67 A circular steel (E = 30,000 ksi, ν = 0.3) bar has a diameter of 2 in. and is axially loaded as shown in Figure P9.66. Determine the
applied axial force F when the strain gage shows a reading of 1000 μin./in.

9.68 A circular shaft of 2-in diameter has a torque applied to it as shown in Figure P9.68.The shaft material has a modulus of elasticity of
30,000 ksi and a Poisson’s ratio of 0.3. Determine the strain that will be recorded by a strain gage. 

9.69 A circular shaft of 50-mm diameter has a torque applied to it as shown in Figure P9.69. The shaft material has a modulus of elasticity E = 70
GPa and a shear modulus G = 28 GPa. If the applied torque T = 500 N-m, determine the strain that the gage will show.

9.70 A circular shaft of 50-mm diameter has a torque applied to it as shown in Figure P9.69. The shaft material has a modulus of elasticity E = 70
GPa and a shear modulus G = 28 GPa. If the strain gage shows a reading of −600 μ, determine the applied torque T.

9.71 The steel cylindrical pressure vessel (E = 210 GPa and ν = 0.28) shown in Figure P9.71 has a mean diameter of 1000 mm. The wall of the
cylinder is 10 mm thick and the gas pressure is 200 kPa. Determine the strain recorded by the two strain gages attached on the surface of the cylinder.

9.72 An aluminum beam (E = 70 GPa and ν = 0.25) is loaded by a force P = 10 kN and moment M = 5 kN·m at the free end, as shown in
Figure P9.72. If the two strain gages shown are at an angle of 25° to the longitudinal axis, determine the strains in the gages.

F

30�

F

Figure P9.64

F F

45�Figure P9.66

60�

T � 30 in�kips

T

Figure P9.68

40�

T

T

Figure P9.69

b
a

40�
50�

Figure P9.71

0.5 m 0.5 m

y

P

z
30 mm

30 mm

10 mm
10 mm

a

b
M

Figure P9.72
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9.73 An aluminum beam (E = 70 GPa and ν = 0.25) is loaded by a force P and a moment M at the free end, as shown in Figure P9.72. Two
strain gages at 30° to the longitudinal axis recorded the following strains: εa = –386 μm/m and εb = 4092 μm/m. Determine the applied force P and
applied moment M.

9.74 A steel rod (E = 210 GPa and ν = 0.28) of 50-mm diameter is loaded by axial forces P = 100 kN, as shown in Figure P9.74. Determine
the strain that will be recorded by the strain gage.

\

9.75 The strain gage mounted on the surface of the solid axial steel rod (E = 210 GPa and ν = 0.28) illustrated in Figure P9.74 showed a
strain of −214 μm/m. If the diameter of the shaft is 50 mm, determine the applied axial force P.

9.76 A steel shaft (E = 210 GPa and ν = 0.28) of 50-mm diameter is loaded by a torque T = 10 kN·m, as shown in Figure P9.76. Determine
the strain that will be recorded by the strain gage.

9.77 The strain gage mounted on the surface of the solid steel shaft (E = 210 GPa and ν = 0.28) shown in Figure P9.76 recorded a strain of
1088 μm/m. If the diameter of the shaft is 75 mm, determine the applied torque T.

Stretch yourself
In Problems 9.78 through 9.80, Equations (9.17.a) and (9.17.b) are transformation equations relating the x, y coordinates to the n, t coordi-
nates of a point (Figure P9.77). Equations (9.17.c) and (9.17.d) are transformation equations relating displacements u and v in the x and y
directions to the displacements un and ut in the n and t directions, respectively. Solve each problem using Equations (9.24a) through (9.24d).

9.78 Starting with εnn = ∂un/∂n and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.4).

9.79 Starting with εtt = ∂ut/∂t and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.5).

9.80 Starting with γnt = ∂ut/∂n + ∂un/∂t and using Equations (9.24a) through (9.24d) and the chain rule for differentiation, derive Equation (9.6).

9.81 Starting from Equation (9.15), show that for isotropic materials Ex = Ey and Gxy = Ex /2(1 + ν).

Computer problems
9.82 The displacements u and v in the x and y directions are given by the equations

Assuming plane strain, determine the principal strains, principal angle 1, and the maximum shear strain every 30° on a circle of radius 1 around
the origin. Use a spreadsheet or write a computer program for the calculation.

B

P

PA C
2 m

0.75 m

20�

Figure P9.74

Figure P9.76
BA

0.75 m

T

C
2 m

20�

Figure P9.77

yt

n

x�

�

(9.17.a)

(9.17.b)

(9.17.c)

(9.17.d)

n x θcos y θsin+=

t x– θsin y θcos+=

un u θcos v θsin+=

ut u– θsin v θcos+=

u 0.5 x2 y2–( ) 0.5xy 0.25x+ +[ ]10 3–  mm= v 0.25 x2 y2–( )  xy–[ ]10 3–  mm=
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9.83 On an aluminum beam (E = 70 GPa and ν = 0.25) two strain gages were attached to monitor loads P and w, which vary slowly over time (Fig-
ure P9.83). The strain gage readings are given in Table 9.83. Determine the values of P and w at the times the strains were measured.

QUICK TEST 9.2 Time: 15 minutes/Total: 20 points

Grade yourself with the answers given in Appendix E. Each question is worth two points.
1.The strain gage recorded a strain of 800 μ. What is εyy for the two cases shown? 

In Questions 2 through 4, report the smallest positive and the smallest negative angle θ that can be substituted in the
strain transformation equation relating the strain gage reading to strains in Cartesian coordinates.

4. 3. 4.

In Questions 5 through 7, Mohr’s circles for strains for points in plane stress are as shown. The modulus of elasticity of
the material is E = 10,000 ksi and Poisson’s ratio is 0.25. What is the maximum shear strain in each question?

4. 6. 7.

In Questions 8 through 10, answer true or false. If false, then give the correct explanation.
8. In plane strain there are two principal strains, but in plane stress there are three principal strains.
9. Since strain values change with the coordinate system, the principal strains at a point depend on the coordinate

system used in finding the strains.
10. The principal coordinate axis for stresses and strains is always the same, irrespective of the stress–strain rela-

tionship. 

0.4 m 0.4 m
6 mm

30 mm
15 mm

y
w

z

30 mm

6 mm

P

y

b a

x45� 45�

Figure P9.83

TABLE P9.83 Strain values

εa
(μ)

εb
(μ)

1 1501 2368
2 1433 2276
3 1385 2193
4 1483 2336
5 1470 2331
6 1380 2191
7 1448 2282
8 1496 2366
9 1398 2223
10 1411 2228

y

x

y

x

(a) (b)

25�

x

y y

x

25�

y

x

25�

800 �
1300 �

100 �
2300 �

100 �
1300 �
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MoM in Action: Load Cells

Load cells are everywhere in our lives, even if we do not call them by their name. A load cell is a device that mea-

sures, controls, or applies a force or a moment. Bathroom scales, tire pressure gauges, hydraulic presses, and pressure pads 

are all load cells, based on variety of mechanical principles. 

Scales for weighing were the first kind of load cell. They have been in existence at least since Archimedes (Syra-

cuse, Greece, 287– 212 BCE) stated the lever principle. These mechanical load cells can measure weights with high preci-

sion (Figure 9.33a) over a large range, provided the fulcrum point is a fine knife edge. A pointer, attached at the fulcrum 

point, allows the readings to be calibrated and amplified (Figure 9.33a). In this way measurements can be made from a 

few milligrams in chemistry laboratories to thousands of kilograms on truck scales. In spring scales, it is the extension of 

a spring that is calibrated. However, the familiar pointers from bathroom scales are now being replaced by digital read-

ings.

Today most load cells are constructed using strain gages. Trucks that had to come to a stop for weighing by 

mechanical scales now simply drive over scales that have been strain gaged. The popularity of strain gages comes from 

two facts, one in the mechanics of materials and the other electrical: the formulas relating the force or moment on struc-

tural members to the strains (see Example 9.11) are very reliable; and the signal from strain gages can be processed for 

reading, storage, or control. A vast variety of load cells are manufactured ready for use; others are custom build for spe-

cific applications. Figure 9.33b shows a load cells built around axial-member.

Load cells are used to maintain proper tension in manufacturing rolls of paper or metal sheets. They are also used 

for monitoring tension in the cables and compression in the towers of a suspension bridge. Load cells embedded in 

masonry can detect cracks in structures during construction and operation. Accurate drug dosages can be delivered by cal-

ibrating the weight of fluid to load cell readings. The field of robotics and assembly-line automation also uses a vast vari-

ety of load cells, from earthbound applications to the Rovers on the Moon and Mars. 

For all their complexity and variety, from mundane applications to the cutting edge, the heart of a load cell is the 

predictable deformation of a structural member, according to the simple formulas we have studied in this book. Such is the 

breath and importance of mechanics of materials.

  Figure 9.33 Load cells: (a) weighing scale (b) tension/compression (Courtesy Celsum Technologies Ltd.).

(a) (b)
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*9.6 CONCEPT CONNECTOR

The history of strain gages is interesting in its own right. As we see in Section 9.6.1, however, it also heralds the pitfalls for mod-
ern universities in maintaining the delicate balance between pure research for knowledge and its potential commercial benefits.
Section 9.6.2 then looks ahead at how strain gage resistance is measured using a Wheatstone bridge.

9.6.1 History: Strain Gages

Two Americans invented the strain gage nearly simultaneously. In 1938 Arthur C. Ruge of the Massachusetts Institute of Tech-
nology (MIT) wanted to measure low-level strains in an elevated thin-walled water tank during an earthquake. He solved this
problem by inventing the strain gage. When Ruge sought to register his invention with the MIT patent committee in 1939, the
committee felt that the invention was unlikely to have significant commercial use and released the invention to him. Around the
same time, Edward E. Simmons, then a graduate student at the California Institute of Technology, was studying the stress–strain
characteristics of metals during impact. He invented the strain gage independently, as part of a dynamometer for measuring the
power of impact. Caltech and Simmons waged a legal battle for the rights to the patent, but Simmons won because, as a student,
he was not a salaried employee. Ruge and Simmons subsequently resolved their patent claims to each one’s satisfaction.

Today strain gages are the most popular strain-measuring devices. Strain gages are also used in applications involving mea-
surements or control of forces and moments. Pressure transducers, force transducers, torque transducers, load cells, and dyna-
mometers are all examples of industrial applications of strain gages, whereas a bathroom scale is an example of a household 
product using strain gages. The popularity of strain gages comes from their cost-effectiveness in measuring strains as small as 
1 μmm/mm to strains as large as 50,000 μmm/mm over a large range of temperatures.

The sensitivity of a strain gage is called the gage factor, which is the ratio of percentage change in resistance to percent-
age change in length (strain). Metal foil gages have gage factors of between 2 and 4. Ideally we would like a linear relation-
ship between changes in resistance to strain—in other words, a constant gage factor over the range of measurements. To keep 
the value as close as possible to a constant, strain gages are constructed with different materials for different applications. The 
most common material is constantan or Advance, an alloy of copper (55%) and nickel (45%). The thermal conductivity of the 
two metals is such that the gage does not undergo significant thermal expansion over a large range of temperatures (−75°C to 
175°C); the gage is thus said to be self-temperature-compensated. Annealed constantan is useful in large strain measurements 
(as high as 20%). For high-temperature applications, an alloy of iron (70%), chromium (20%), and aluminum (10%), called 
Armour D, is used. Strain gages using semiconductors (doped silicon wafers) have gage factors of between 50 to 200 and are 
used for small-strain measurements, but they require extreme care during installation because of the brittle nature of the sili-
con wafers.

9.6.2 Wheatstone Bridge Application to Strain Gages

Early strain gages were built by taking a very thin wire and going back and forth a number of times over a small area. This 
construction technique is based on the observation that the resistance R of a wire is related to its length L, its cross-sectional area 
A, and the material-specific resistance ρ by the expression R = ρL/A. For a given value of strain, a longer wire results in a larger 
change in L, and hence a larger change in the resistance, which can be measured more easily. At the same time, the small cross-
sectional area reduces the transverse effect of Poisson’s ratio. Winding the long wire in a small region therefore leads to a better 
average strain value. Though the idea of using a long thin conductor in a small region still dictates the design of modern strain 
gages, the manufacturing process has changed. Photoetching, in which material is removed chemically to produce a desired pat-
tern, has replaced winding a wire. 

By measuring the change in resistance and knowing the gage factor, one can find the strain from a strain gage. The most 
common means of measuring changes in resistance is the Wheatstone bridge circuit, shown in Figure 9.34. The bridge was 
invented by Samuel Hunter Christie in 1833 and made popular by Charles Wheatstone in 1843.

The voltage V0 in Figure 9.34 can be related to V as follows:

V0 V
R1R3 R2R4–

R1 R2+( ) R3 R4+( )
----------------------------------------------=
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Clearly, if R1R3 = R2R4 then the voltage V0 is be zero, and the bridge is said to be balanced. Suppose that one of the resistor is a
strain gage—say, R1. Before the material is loaded (and strained) the bridge is balanced. When the load is applied, the resistance
R1 changes. By adjusting the values of the other resistances by a known amount, we can again balance the bridge, and from R1R3

= R2R4 the resistance of R1 can again be found. The strain can then be calculated from the change in R1. A Wheatstone bridge is
so important in strain measurements because it is sensitive to very small changes in resistance. And since we need to use only
one of the resistances to balance the bridge, strains due to different causes can be separated by creative combinations of two or
more gages.

9.7 CHAPTER CONNECTOR

In this chapter we studied the relationship of strains in different coordinate systems, and we found methods to determine the
maximum normal strains and maximum shear strains. We noted that the principal axes form an orthogonal coordinate system.
Hence we can determine the principal stresses from the principal strains by using the generalized Hooke’s law. These principal
stresses will be used in Chapter 10 to determine whether a material would fail. 

We also learned about strain gages as a means of measuring strains at a point on a material. In Chapters 4 through 7 we stud-
ied one-dimensional structural elements and developed theories that let us compute the strains in an x, y, z coordinate system that 
an applied load produces. From these predicted strains, we are able to determine what a strain gage will record at any orientation. 
This same idea, of relating external loads to the reading of a strain gage, can be used in monitoring and controlling the applied 
forces and moments on a structure.

V

R1 R2

V0

R3R4

  Figure 9.34 Wheatstone bridge circuit.
August 2012



9  450Mechanics of Materials: Strain TransformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

POINTS AND FORMULAS TO REMEMBER

• Strain transformation equations relate strains at a point in different coordinate systems:

(9.4)

(9.6)
• Directions of the principal coordinates are the axes in which the shear strain is zero.
• Normal strains in principal directions are called principal strains. 
• The greatest principal strain is called principal strain 1. 
• The angles the principal axis makes with the global coordinate system are called principal angles. 
• The angle of principal axis 1 from the x axis is only reported in describing the principal coordinate system in two-dimen-

sional problems. Counterclockwise rotation from the x axis is defined as positive.
• Principal directions are orthogonal.
• Maximum and minimum normal strains at a point are the principal strains.
• The maximum shear strain in coordinate systems that can be obtained by rotating about one of the three axes (usually the

z axis) is called in-plane maximum shear strain. 
• The maximum shear strain at a point is the absolute maximum shear strain that can be obtained in a coordinate system by

considering rotation about all three axes.
• Maximum shear strain exists in two coordinate systems that are 45° to the principal coordinate system.

(9.7) (9.8) (9.11)

• where θp is the angle to either principal plane 1 or 2, ε1 and ε2 are the principal stresses, γp is the in-plane maximum shear
stress.

• (9.9)

• (9.10) (9.12)

• Each point on Mohr’s circle represents a unique direction passing through the point at which the strains are specified. The
coordinates of each point on the circle are the strains (εnn, γnt /2). 

• The maximum shear strain at a point is the radius of the biggest of the three circles that can be drawn between the three
principal strains.

• The principal directions for stresses and strains are the same for isotropic materials.
• Generalized Hooke’s law in principal coordinates:

• (9.14.a) (9.14.b) (9.14.c)

• Strain gages measure only normal strains directly. 
• Strain gages are bonded to a free surface, i.e., the strains are in a state of plane stress and not plane strain. 
• Strain gages measure average strain at a point.
• The change in strain gage orientation by ±180° makes no difference to the strain values.

εnn εxx θ2cos εyy θ2sin γxy θsin  θcos+ +=

γnt −2εxx θsin  θcos 2εyy θsin   θcos γxy θ2cos θ2sin–( )+ +=

 2θptan
γxy

εxx εyy–
------------------= ε1,2

εxx εyy+
2

------------------- εxx εyy–
2

------------------⎝ ⎠
⎛ ⎞

2 γxy

2
------⎝ ⎠

⎛ ⎞
2

+±= γp

2
---- ε1 ε2–

2
---------------=

εnn εtt+ εxx εyy+ ε1 ε2+= =

ε3

0,

ν
1 ν–
------------ εxx εyy+( )–

⎝
⎜
⎜
⎛

=
plane strain

plane stress

γmax

2
-------- max

ε1 ε2–
2

--------------- ε2 ε3–
2

--------------- ε3 ε1–
2

---------------, ,⎝ ⎠
⎛ ⎞=

ε1
σ1 ν σ2 σ3+( )–

E
--------------------------------------= ε2

σ2 ν σ3 σ1+( )–
E

--------------------------------------= ε3
σ3 ν σ1 σ2+( )–

E
--------------------------------------=
August 2012


