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CHAPTER TWO

STRAIN

Learning objectives
1. Understand the concept of strain.
2. Understand the use of approximate deformed shapes for calculating strains from displacements.

_______________________________________________

How much should the drive belts (Figure 2.1a) stretch when installed? How much should the nuts in the turnbuckles (Figure 
2.1b) be tightened when wires are attached to a traffic gate? Intuitively, the belts and the wires must stretch to produce the 
required tension. As we see in this chapter strain is a measure of the intensity of deformation used in the design against deforma-
tion failures.

A change in shape can be described by the displacements of points on the structure. The relationship of strain to displace-
ment depicted in Figure 2.2 is thus a problem in geometry—or, since displacements involve motion, a problem in kinematics. 
This relationship shown in Figure 2.2 is a link in the logical chain by which we shall relate displacements to external forces as 
discussed in Section 3.2. The primary tool for relating displacements and strains is drawing the body’s approximate deformed 
shape. This is analogous to drawing a free-body diagram to obtain forces. 

2.1 DISPLACEMENT AND DEFORMATION

Motion of due to applied forces is of two types. (i) In rigid-body motion, the body as a whole moves without changing shape. (ii) In 
motion due to deformation, the body shape change. But, how do we decide if a moving body is undergoing deformation? 

In rigid body, by definition, the distance between any two points does not change. In translation, for example, any two 
points on a rigid body will trace parallel trajectories. If the distance between the trajectories of two points changes, then the 

  Figure 2.1 (a) Belt Drives (Courtesy Sozi). (b) Turnbuckles.

(a) (b)

  Figure 2.2 Strains and displacements.
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body is deforming. In addition to translation, a body can also rotate. On rigid bodies all lines rotate by equal amounts. If the 
angle between two lines on the body changes, then the body is deforming. 

Whether it is the distance between two points or the angle between two lines that is changing, deformation is described in 
terms of the relative movements of points on the body. Displacement is the absolute movement of a point with respect to a 
fixed reference frame. Deformation is the relative movement with respect to another point on the same body. Several exam-
ples and problems in this chapter will emphasize the distinction between deformation and displacement.

2.2 LAGRANGIAN AND EULERIAN STRAIN

A handbook cost L0 = $100 a year ago. Today it costs Lf = $125. What is the percentage change in the price of the handbook? 
Either of the two answers is correct. (i) The book costs 25% more than what it cost a year ago. (ii) The book cost 20% less a year 
ago than what it costs today. The first answer treats the original value as a reference:  The 
second answer uses the final value as the reference:  The two arguments emphasize the neces-
sity to specify the reference value from which change is calculated. 

In the contexts of deformation and strain, this leads to the following definition: Lagrangian strain is computed by using 
the original undeformed geometry as a reference. Eulerian strain is computed using the final deformed geometry as a refer-
ence. The Lagrangian description is usually used in solid mechanics. The Eulerian description is usually used in fluid mechan-
ics. When a material undergoes very large deformations, such as in soft rubber or projectile penetration of metals, then either 
description may be used, depending on the need of the analysis. We will use Lagrangian strain in this book, except in a few 
“stretch yourself ” problems.

2.3 AVERAGE STRAIN

In Section 2.1 we saw that to differentiate the motion of a point due to translation from deformation, we need to measure changes 
in length. To differentiate the motion of a point due to rotation from deformation, we need to measure changes in angle. In this 
section we discuss normal strain and shear strain, which are measures of changes in length and angle, respectively. 

2.3.1 Normal Strain 

Figure 2.3 shows a line on the surface of a balloon that grows from its original length L0 to its final length Lf as the balloon 
expands. The change in length Lf − L0 represents the deformation of the line. Average normal strain is the intensity of deforma-
tion defined as a ratio of deformation to original length.

(2.1)

where ε is the Greek symbol epsilon used to designate normal strain and the subscript av emphasizes that the normal strain is an 
average value. The following sign convention follows from Equation (2.1). Elongations (Lf > L0) result in positive normal 
strains. Contractions (Lf < L0) result in negative normal strains.

An alternative form of Equation (2.1) is:

(2.2)

change Lf  L0–( ) L0⁄[ ] 100× .=
change L0 Lf–( ) Lf⁄[ ] 100.×=

εav
Lf  L0–

L0
------------------=

  Figure 2.3 Normal strain and change in length.

A B

Lo Lf

A B

εav
δ
L0
-----=
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where the Greek letter delta (δ ) designates deformation of the line and is equal to Lf − L0.

We now consider a special case in which the displacements are in the direction of a straight line. Consider two points A
and B on a line in the x direction, as shown in Figure 2.4. Points A and B move to A1 and B1, respectively. The coordinates of 
the point change from xA and xB to xA + uA and xB + uB, respectively. From Figure 2.4 we see that  and 

. From Equation (2.1) we obtain

(2.3)

where uA and uB are the displacements of points A and B, respectively. Hence uB − uA is the relative displacement, that is, it is the 
deformation of the line.

2.3.2 Shear Strain

Figure 2.5 shows an elastic band with a grid attached to two wooden bars using masking tape. The top wooden bar is slid to the 
right, causing the grid to deform. As can be seen, the angle between lines ABC changes. The measure of this change of angle is 
defined by shear strain, usually designated by the Greek letter gamma (γ ). The average Lagrangian shear strain is defined as the 
change of angle from a right angle:

(2.4)

where the Greek letter alpha (α) designates the final angle measured in radians (rad), and the Greek letter pi (π) equals 3.14159 
rad. Decreases in angle (α < π / 2) result in positive shear strains. Increases in angle (α > π / 2) result in negative shear 
strains.

2.3.3 Units of Average Strain

Equation (2.1) shows that normal strain is dimensionless, and hence should have no units. However, to differentiate average strain 
and strain at a point (discussed in Section 2.5), average normal strains are reported in units of length, such as in/in, cm/cm, or m/
m. Radians are used in reporting average shear strains.

A percentage change is used for strains in reporting large deformations. Thus a normal strain of 0.5% is equal to a strain 
of 0.005. The Greek letter mu (μ) representing micro (μ = 10–6), is used in reporting small strains. Thus a strain of 1000 μ in/
in is the same as a normal strain of 0.001 in/in.

A B
xA xB

A1 B1

(xA+uA) (xB+uB)

Lf

Lo

L0 xB xA–=
Lf xB uB+( ) xA uA+( )– Lo uB uA–( )+= =

x

 Figure 2.4 Normal strain and displacement.

x

L0 xB xA–=

Lf  L0– uB uA–=

εav
uB uA–
xB xA–
------------------=

γav
π
2
--- α–=

 Figure 2.5 Shear strain and angle changes. (a) Undeformed grid. (b) Deformed grid.

π/2

A

B C

Wooden Bar with Masking Tape

Wooden Bar with Masking Tape

α

γ

A1

CB

A

Wooden Bar with Masking Tape

Wooden Bar with Masking Tape

(a) (b)
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EXAMPLE 2.1 

The displacements in the x direction of the rigid plates in Figure 2.6 due to a set of axial forces were observed as given. Determine the 
axial strains in the rods in sections AB, BC, and CD.

PLAN
We first calculate the relative movement of rigid plates in each section. From this we can calculate the normal strains using Equation 
(2.3).

SOLUTION
The strains in each section can be found as shown in Equations (E1) through (E3).

(E1)

ANS.  

(E2)

ANS.  

(E3)

ANS.  

COMMENT
1. This example brings out the difference between the displacements, which were given, and the deformations, which we calculated 

before finding the strains.

EXAMPLE 2.2 

A bar of hard rubber is attached to a rigid bar, which is moved to the right relative to fixed base A as shown in Figure 2.7. Determine the 
average shear strain at point A.

PLAN
The rectangle will become a parallelogram as the rigid bar moves. We can draw an approximate deformed shape and calculate the 
change of angle to determine the shear strain.

SOLUTION 
Point B moves to point B1, as shown in Figure 2.8. The shear strain represented by the angle between BAB1 is:

 (E1)

F4�2

F4�2

F3�2

F3�2

A

F1�2

F1�2

F2�2

F2�2

B C D

36 in 36 in50 in

x

y

  Figure 2.6 Axial displacements in Example 2.1.

uA 0.0100 in.–= uB 0.0080 in.=

uC 0.0045 in.–= uD 0.0075 in.=

εAB
uB uA–
xB xA–
------------------ 0.018 in.

36 in.
--------------------- 0.0005 in.

 in.
-------= = =

εAB 500 μin.  in.⁄=

εBC
uC uB–
xC xB–
------------------ 0.0125 in.–

50 in.
--------------------------- 0.00025  in.

 in.
-------–= = =

εBC 250– μin.  in.⁄=

εCD
uD uC–
xD xC–
------------------ = 0.012 in.

36 in.
--------------------- 0.0003333 in.

 in.
-------= =

εCD 333.3 μin.  in.⁄=

L � 100 mm

�u � 0.5 mm

Rubber

Rigid

A  Figure 2.7 Geometry in Example 2.2.

γ
BB1
AB
----------⎝ ⎠

⎛ ⎞
1–

tan 0.5 mm
100 mm
--------------------⎝ ⎠

⎛ ⎞1–
tan 0.005 rad= = =
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ANS.  .

COMMENTS
1. We assumed that line AB remained straight during the deformation in Figure 2.8. If this assumption were not valid, then the shear 

strain would vary in the vertical direction. To determine the varying shear strain, we would need additional information. Thus our 
assumption of line AB remaining straight is the simplest assumption that accounts for the given information.

2. The values of γ and tan   γ are roughly the same when the argument of the tangent function is small. Thus for small shear strains the 
tangent function can be approximated by its argument.

EXAMPLE 2.3 

A thin ruler, 12 in. long, is deformed into a circular arc with a radius of 30 in. that subtends an angle of 23° at the center. Determine the 
average normal strain in the ruler.

PLAN
The final length is the length of a circular arc and original length is given. The normal strain can be obtained using Equation (2.1).

SOLUTION 
The original length  The angle subtended by the circular arc shown in Figure 2.9 can be found in terms of radians:

 (E1)

The length of the arc is:
(E2)

and average normal strain is

(E3)

ANS.  

COMMENTS
1. In Example 2.1 the normal strain was generated by the displacements in the axial direction. In this example the normal strain is being 

generated by bending.
2. In Chapter 6 on the symmetric bending of beams we shall consider a beam made up of lines that will bend like the ruler and calculate 

the normal strain due to bending as we calculated it in this example.

γ 5000μrad=

L
 �

 1
00

 m
m

0.5 mm

A

�

B B1

  Figure 2.8 Exaggerated deformed shape.

L0 12 in.=

Δθ 23o( )π

180o
----------------- 0.4014 rads= =

Lf

�� � 23� R
 �

 3
0 

in
  Figure 2.9 Deformed geometry in Example 2.3.

Lf RΔθ 12.04277 in.= =

εav
Lf L0–

L0
---------------- 0.04277 in.

12 in.
--------------------------- 3.564 10 3–( ) in.

 in.
-------= = =

εav 3564 μin.  in.⁄=
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EXAMPLE 2.4 

A belt and a pulley system in a VCR has the dimensions shown in Figure 2.10. To ensure adequate but not excessive tension in the belts, 
the average normal strain in the belt must be a minimum of 0.019 mm/mm and a maximum of 0.034 mm/mm. What should be the mini-
mum and maximum undeformed lengths of the belt to the nearest 1/10th of a millimeter? 

PLAN
The belt must be tangent at the point where it comes in contact with the pulley. The deformed length of the belt is the length of belt 
between the tangent points on the pulleys, plus the length of belt wrapped around the pulleys. Once we calculate the deformed length of 
the belt using geometry, we can find the original length using Equation (2.1) and the given limits on normal strain.

SOLUTION 
We draw radial lines from the center to the tangent points A and B, as shown in Figure 2.11. The radial lines O1A and O2B must be per-
pendicular to the belt AB, hence both lines are parallel and at the same angle θ with the horizontal. We can draw a line parallel to AB
through point O2 to get line CO2. Noting that CA is equal to O2B, we can obtain CO1 as the difference between the two radii. 

Triangle O1CO2 in Figure 2.11 is a right triangle, so we can find side CO2 and the angle θ as:

(E1)

(E2)

The deformed length Lf of the belt is the sum of arcs AA and BB and twice the length AB:

(E3)
(E4)
(E5)

We are given that . From Equation (2.1) we obtain the limits on the original length: 

 (E6)

(E7)

To satisfy Equations (E6) and (E7) to the nearest millimeter, we obtain the following limits on the original length L0:

ANS.  

COMMENTS
1. We rounded upward in Equation (E6) and downwards in Equation (E7) to ensure the inequalities. 

30 mm
6.25 mm12.5 mm

O1 O2

 Figure 2.10 Belt and pulley in a VCR.

O1 O2

�

B

B

A

A

C

��
�

6.25 mm

6.25 mm

30 mm

  Figure 2.11 Analysis of geometry.

AB CO2 30 mm( )2 6.25 mm( )2– 29.342 mm= = =

θcos
CO1
O1O2
-------------- 6.25 mm

30 mm
---------------------= = or θ 0.2083( )1–cos 1.3609 rad= =

AA 12.5 mm( ) 2π 2θ–( ) 44.517 mm= =
BB 6.25 mm( ) 2θ( ) 17.011 mm= =
Lf 2 AB( ) AA BB+ += 120.212 mm=

0.019 ε 0.034≤ ≤

ε
Lf L0–

L0
---------------- 0.034≤= or         L0

120.212
1 0.034+
---------------------- mm        ≥ or L0 116.26 mm≥

ε
Lf L0–

L0
---------------- 0.019≥= or           L0

120.212
1 0.019+
---------------------- mm≤ or L0 117.97 mm≤

116.3 mm L0 117.9 mm≤ ≤
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2. Tolerances in dimensions must be specified for manufacturing. Here we have a tolerance range of 0.6 mm.
3. The difficulty in this example is in the analysis of the geometry rather than in the concept of strain. This again emphasizes that the 

analysis of deformation and strain is a problem in geometry. Drawing the approximate deformed shape is essential.

2.4 SMALL-STRAIN APPROXIMATION

In many engineering problems, a body undergoes only small deformations. A significant simplification can then be achieved by 
approximation of small strains, as demonstrated by the simple example shown in Figure 2.12. Due to a force acting on the bar, 
point P moves by an amount D at an angle θ to the direction of the bar. From the cosine rule in triangle APP1, the length Lf can 
be found in terms of L0, D, and θ:

From Equation (2.1) we obtain the average normal strain in bar AP:

(2.5)

Equation (2.5) is valid regardless of the magnitude of the deformation D. Now suppose that D / L0 is small. In such a case 
we can neglect the (D / L0)2 term and expand the radical by binomial1 expansion:

 

Neglecting the higher-order terms, we obtain an approximation for small strain in Equation (2.6).

(2.6)

In Equation (2.6) the deformation D and strain are linearly related, whereas in Equation (2.5) deformation and strain are 
nonlinearly related. This implies that small-strain calculations require only a linear analysis, a significant simplification. 

Equation (2.6) implies that in small-strain calculations only the component of deformation in the direction of the original 
line element is used. We will make significant use of this observation. Another way of looking at small-strain approximation 
is to say that the deformed length AP1 is approximated by the length AP2.

What is small strain? To answer this question we compare strains from Equation (2.6) to those from Equation (2.5). For 
different values of small strain and for θ = 45°, the ratio of D/L is found from Equation (2.6), and the strain from Equation 

1For small d, binomial expansion is (1 + d  )1/2 = 1 + d / 2 + terms of d2 and higher order.

TABLE 2.1 Small-strain approximation

εsmall, [Equation (2.6)] ε, [Equation (2.5)] % Error, 

1.000 1.23607 19.1
0.500 0.58114 14.0
0.100 0.10454 4.3
0.050 0.00512 2.32
0.010 0.01005 0.49
0.005 0.00501 0.25
0.001 0.00100 0.05

D

P
P2

P1

�

A
L0

Lf

  Figure 2.12 Small normal-strain calculations.

Lf L0
2 D2 2L0D θcos+ + L0 1 D

L0
-----⎝ ⎠

⎛ ⎞ 2
2 D

L0
-----⎝ ⎠

⎛ ⎞ θcos+ += =

ε
Lf  L0–

L0
------------------ 1 D

L0
-----⎝ ⎠

⎛ ⎞ 2
2 D

L0
-----⎝ ⎠

⎛ ⎞ θcos+ +   1–= =

ε 1 D
L0
----- θcos … …+ + +⎝ ⎠

⎛ ⎞   1–≈

εsmall
D θcos

L0
----------------=

ε εsmall–
ε

---------------------⎝ ⎠
⎛ ⎞ 100×
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(2.5) is calculated as shown in Table 2.1. Equation (2.6) is an approximation of Equation (2.5), and the error in the approxima-
tion is shown in the third column of Table 2.1. It is seen from Table 2.1 that when the strain is less than 0.01, then the error is 
less than 1%, which is acceptable for most engineering analyses.

We conclude this section with summary of our observations.

1. Small-strain approximation may be used for strains less than 0.01. 
2. Small-strain calculations result in linear deformation analysis. 
3. Small normal strains are calculated by using the deformation component in the original direction of the line element, 

regardless of the orientation of the deformed line element. 
4. In small shear strain (γ ) calculations the following approximations may be used for the trigonometric functions: tan γ

  ≈ γ, sin γ   ≈ γ, and cos γ   ≈ 1.

EXAMPLE 2.5 

Two bars are connected to a roller that slides in a slot, as shown in Figure 2.13. Determine the strains in bar AP by: (a) Finding the 
deformed length of AP without small-strain approximation. (b) Using Equation (2.6). (c) Using Equation (2.7).

PLAN
(a) An exaggerated deformed shape of the two bars can be drawn and the deformed length of bar AP found using geometry. (b) The 
deformation of bar AP can be found by dropping a perpendicular from the final position of point P onto the original direction of bar AP
and using geometry. (c) The deformation of bar AP can be found by taking the dot product of the unit vector in the direction of AP and 
the displacement vector of point P. 

SOLUTION 
The length AP used in all three methods can be found as AP = (200 mm) / cos 35o = 244.155 mm.

(a) Let point P move to point P1, as shown in Figure 2.14. The angle APP1 is 145°. From the triangle APP1 we can find the length AP1 

using the cosine formula and find the strain using Equation (2.1).

(E1)

(E2)

ANS.  
(b) We drop a perpendicular from P1 onto the line in direction of AP as shown in Figure 2.14. By the small-strain approximation, the 
strain in AP is then

(E3)

(E4)

P

A

B
200 mm

35�
�P � 0.2 mm

  Figure 2.13 Small-strain calculations.

35� 0.2 mm
35�

145�

P
P1

B

C

�AP

A

  Figure 2.14 Exaggerated deformed shape.

AP1 AP2 PP1
2 2 AP( ) PP1( ) 145°cos–+ 244.3188 mm= =

εAP
AP1 AP–

AP
----------------------- 244.3188 mm 244.155 mm–

244.155 mm
---------------------------------------------------------------------- 0.67112 10 3–( ) mm/mm= = =

εAP 671.12 μmm/mm=

δAP 0.2 35°cos 0.1638 mm= =

εAP
δAP
AP
--------- 0.1638 mm

244.155 mm
------------------------------ 0.67101 10 3–( )  mm/mm= = =
August 2012
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ANS.  

(c) Let the unit vectors in the x and y directions be given by  and . The unit vector in direction of AP and the deformation vector  
can be written as

(E5)
The strain in AP can be found using Equation (2.7):

(E6)

(E7)

ANS.  

COMMENTS

1. The calculations for parts (b) and (c) are identical, since there is no difference in the approximation between the two approaches. The 
strain value for part (a) differs from that in parts (b) and (c) by 0.016%, which is insignificant in engineering calculations.

2. To a small-strain approximation the final length AP1 is being approximated by length AC.
3. If we do not carry many significant figures in part (a) we may get a prediction of zero strain as the first three significant figures sub-

tract out. 

EXAMPLE 2.6 

A gap of 0.18 mm exists between the rigid plate and bar B before the load P is applied on the system shown in Figure 2.15. After load P
is applied, the axial strain in rod B is – 2500 μm/m. Determine the axial strain in rods A.

PLAN  
The deformation of bar B can be found from the given strain and related to the displacement of the rigid plate by drawing an approximate 
deformed shape. We can then relate the displacement of the rigid plate to the deformation of bar A using small-strain approximation.

SOLUTION 
From the given strain of bar B we can find the deformation of bar B: 

(E1)

εAP 671.01μmm/mm=

i j D

i AP 35°i  + sin 35°j , Dcos 0.2i ,= =

δAP D i AP⋅ 0.2 mm( ) 35cos 0.1638 mm= = =

εAP
δAP
AP
--------- 0.1638 mm

244.155 mm
------------------------------ 0.67101 10 3–( )  mm/mm= = =

εAP 671.01 μmm/mm=

O

A

P
A

O

0.18 mm

60�60� C

2 mB

3 
m

Rigid

  Figure 2.15 Undeformed geometry in Example 2.6.

δB εBLB 2500( ) 10 6–( ) 2 m( ) 0.005 m contraction= = =

60�60�

A

ED

A

60�

B

F E1

D1D1

�E
�A

�D �B �D

O O

  Figure 2.16 Deformed geometry.
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Let points D and E be points on the rigid plate. Let the position of these points be D1 and E1 after the load P has been applied, as shown 
in Figure 2.16. 
From Figure 2.16 the displacement of point E is 

 (E2)
As the rigid plate moves downward horizontally without rotation, the displacements of points D and E are the same:

(E3)
We can drop a perpendicular from D1 to the line in the original direction OD and relate the deformation of bar A to the displacement of 
point D:

(E4)
The normal strain in A is then

(E5)

ANS.  

COMMENTS
1. Equation (E3) is the relationship of points on the rigid bar, whereas Equations (E2) and (E4) are the relationship between the move-

ment of points on the rigid bar and the deformation of the bar. This two-step process simplifies deformation analysis as it reduces the 
possibility of mistakes in the calculations. 

2. We dropped the perpendicular from D1 to OD and not from D to OD1 because OD is the original direction, and not OD1.

EXAMPLE 2.7 

Two bars of hard rubber are attached to a rigid disk of radius 20 mm as shown in Figure 2.17. The rotation of the rigid disk by an angle 
Δφ causes a shear strain at point A of 2000 μ rad. Determine the rotation Δφ and the shear strain at point C. 

PLAN
The displacement of point B can be related to shear strain at point A as in Example 2.2. All radial lines rotate by equal amounts of Δφ on 
the rigid disk. We can find Δφ by relating displacement of point B to Δφ assuming small strains. We repeat the calculation for the bar at C
to find the strain at C.

SOLUTION 
The shear strain at A is . We draw the approximated deformed shape of the two bars as shown in Figure 

2.18a. The displacement of point B is approximately equal to the arc length BB1, which is related to the rotation of the disk, as shown in 
Figure 2.18a and b and given as

δE δB 0.00018 m+ 0.00518 m= =

δD δE 0.00518 m= =

δA δD 60°sin 0.00518 m( ) 60°sin 0.004486 m= = =

εA
δA
LA
------ 0.004486 m

3 m
----------------------------- 1.49539 10 3–( )  m/m= = =

εA 1495 μ  m/m=

B

C

A Figure 2.17 Geometry in Example 2.7.

γA 2000 μrad 0.002 rad= =

.
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(E1)

The displacement of point B can also be related to the shear strain at A, and we can find Δφ   as

(E2)

(E3)

ANS.   
The displacement of point D can be found and the shear strain at C obtained from

(E4)

ANS.  

COMMENTS

1. We approximated the arc BB1 by a straight line, which is valid only if the deformations are small.
2. The shear strain was found from the change in angle formed by the tangent line AE and the axial line AB.
3. In Chapter 5, on the torsion of circular shafts, we will consider a shaft made up of bars and calculate the shear strain due to torsion as 

in this example.

2.4.1 Vector Approach to Small-Strain Approximation

To calculate strains from known displacements of the pins in truss problems is difficult using the small-strain approximation 
given by Equation (2.6). Similar algebraic difficulties are encountered in three-dimension. A vector approach helps address these 
difficulties. 

The deformation of the bar in Equation (2.6) is given by δ = D  cos θ and can be written in vector form using the dot prod-
uct:

(2.7)

where  is the deformation vector of the bar AP and is the unit vector in the original direction of bar AP. With point A 
fixed in Figure 2.12 the vector is also the displacement vector of point P. If point A is also displaced, then the deformation 
vector is obtained by taking the difference between the displacement vectors of point P and point A. If points A and P have coor-
dinates (xA,   yA,   zA) and (xP , yP , zP), respectively, and are displaced by amounts (uA, vA, wA) and (uP , vP , wP) in the x, y, and z
directions, respectively, then the deformation vector  and the unit vector can be written as

(2.8)

where , and  are the unit vectors in the x, y, and z directions, respectively. The important point to remember about the cal-
culation of DAP and  is that the same reference point (A) must be used in calculating deformation vector and the unit vector. 

ΔuB 20 mm( ) Δφ( )=

D

B1

E

�uD � r ��
�uB � r ��

B

C

A

��

O

 Figure 2.18 (a) Deformed geometry in Example 2.7. (b) Top view of disc. (c) Side view of bar.

B1B

A

γA

(a) (b) (c)

O

B
B1

r

rΔφ

Δφ

γA γA
BB1
AB
----------=≈tan

ΔuB
AB
---------- 20Δφ( ) mm

180 mm
----------------------------- Δφ

9
-------= = =

Δφ 9γA 9( ) 0.002( ) 0.018 rad= = =

Δφ 0.018 rad=

γC
ΔuD
CD
---------- 20Δφ

180
------------- 20 mm( ) 0.018 rad( )

180 mm
-------------------------------------------------- 0.002 rad= = = =

γC 2000 μrad=

δ DAP i AP⋅=

DAP i AP
DAP

DAP i AP

DAP uP uA–( )i  + vP vA–( )j  + wP wA–( )k =

i AP xP xA–( )i  + yP yA–( )j zP zA–( )k +=

i j , k
i AP
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EXAMPLE 2.8*

The displacements of pins of the truss shown Figure 2.19 were computed by the finite-element method (see Section 4.8) and are given 
below. u and v are the pin displacement x and y directions, respectively. Determine the axial strains in members BC, HB, HC, and HG.

 

PLAN
The deformation vectors for each bar can be found from the given displacements. The unit vectors in directions of the bars BC, HB, 
HC, and HG can be determined. The deformation of each bar can be found using Equation (2.7) from which we can find the strains.

SOLUTION
Let the unit vectors in the x and y directions be given by  and  respectively. The deformation vectors for each bar can be found for 
the given displacement as

(E1)

The unit vectors in the directions of bars BC, HB, and HG can be found by inspection as these bars are horizontal or vertical:

(E2)

The position vector from point H to C is . Dividing the position vector by its magnitude we obtain the unit vector in 
the  direction of bar HC:

 (E3)

We can find the deformation of each bar from Equation (2.7): 

(E4)

Finally, Equation (2.2) gives the strains in each bar:

(E5)

ANS.   

COMMENTS

1. The zero strain in HB is not surprising. By looking at joint B, we can see that HB is a zero-force member. Though we have yet to 
establish the relationship between internal forces and deformation, we know intuitively that internal forces will develop if a body 
deforms.

2. We took a very procedural approach in solving the problem and, as a consequence, did several additional computations. For horizon-
tal bars BC and HG we could have found the deformation by simply subtracting the u components, and for the vertical bar HB we can 
find the deformation by subtracting the v component. But care must be exercised in determining whether the bar is in extension or in 
contraction, for otherwise an error in sign can occur.

3. In Figure 2.20 point H is held fixed (reference point), and an exaggerated relative movement of point C is shown by the vector  
The calculation of the deformation of bar HC is shown graphically.

A B C D E

H G FP2

P1

3 m

4 m

3 m 3 m 3 m
x

y

  Figure 2.19 Truss in Example 2.8.

uB 2.700 mm= vB 9.025 mm–=

uC 5.400 mm= vC 14.000 mm–=

uG 8.000 mm= vG 14.000 mm–=

uH 9.200 mm= vH 9.025 mm–=

i j ,

DBC uC uB–( ) i vC vB–( ) j+ 2.7 i 4.975 j–( ) mm= =

DHC uC uH–( ) i vC vH–( ) j+ 3.8– i  4.975 j–( ) mm= =

DHB uB uH–( ) i  vB vH–( ) j+ 6.5– i ( ) mm= =

DHG uG uH–( )i vG vH–( ) j+ 1.2– ii 4.975 j–( ) mm= =

 iBC  i          iHB  j          iHG–  i= = =

HC 3 i 4 j–=

 i HC
HC
HC
----------- 3 mm( ) i 4 mm( ) j–

3 mm( )2 4 mm( )+
2

----------------------------------------------------- 0.6 i 0.8 j–= = =

δBC DBC  iBC⋅ 2.7 mm= =

δHB DHB  iHB⋅ 0= =

δHG DHG  iHG⋅ 1.2 mm–= =

δHC DHC  iHC⋅ 0.6 mm( ) 3.8–( ) 4.975 mm–( ) 0.8–( )+ 1.7 mm= = =

εBC
δBC
LBC
--------- 2.7 mm

3 10× 3 mm
----------------------------- 0.9 10 3–  mm mm⁄×= = =

εHB
δHB
LHB
---------- 0= =

εHG
δHG
LHG
---------- 1.2 mm–

3 10× 3 mm
----------------------------- 0.4 10 3–  mm mm⁄×–= = =

εHC
δHC
LHC
---------- 1.7 mm

3 10× 3 mm
----------------------------- 0.340 10 3–×   mm mm⁄= = =

εBC 900 μmm mm⁄= εHG 400– μmm mm⁄= εHB 0= εHC 340 μmm mm⁄=

DHC.
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4. Suppose that instead of finding the relative movement of point C with respect to H, we had used point C as our reference point and 
found the relative movement of point H. The deformation vector would be  which is equal to  But the unit vector direc-

tion would also reverse, that is, we would use  which is equal to  Thus the dot product to find the deformation would 
yield the same number and the same sign. The result independent of the reference point is true only for small strains, which we have 
implicitly assumed.

PROBLEM SET 2.1

Average normal strains
2.1  An 80-cm stretch cord is used to tie the rear of a canoe to the car hook, as shown in Figure P2.1. In the stretched position the cord forms the side 
AB of the triangle shown. Determine the average normal strain in the stretch cord.

2.2  The diameter of a spherical balloon shown in Figure P2.2 changes from 250 mm to 252 mm. Determine the change in the average circumferential 
normal strain.

2.3  Two rubber bands are used for packing an air mattress for camping as shown in Figure P2.3. The undeformed length of a rubber band is 7 in. 
Determine the average normal strain in the rubber bands if the diameter of the mattress is 4.1 in. at the section where the rubber bands are on the mattress.

H

C

�HC

vC � vH 
DHC

uC � uH

  Figure 2.20 Visualization of the deformation vector for bar HC.

DCH, DHC.–

i CH, i HC– .

  Figure P2.1 

A

B C

132 cm

80 cm

A

B

  Figure P2.2 

  Figure P2.3 
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2.4  A canoe on top of a car is tied down using rubber stretch cords, as shown in Figure P2.4a. The undeformed length of the stretch cord is 
40 in. Determine the average normal strain in the stretch cord assuming that the path of the stretch cord over the canoe can be approximated as 
shown in Figure P2.4b. 

2.5  The cable between two poles shown in Figure P2.5 is taut before the two traffic lights are hung on it. The lights are placed symmetrically at 
1/3 the distance between the poles. Due to the weight of the traffic lights the cable sags as shown. Determine the average normal strain in the cable.

2.6  The displacements of the rigid plates in x direction due to the application of the forces in Figure P2.6 are uB  = −1.8 mm, uC = 0.7 mm, and 
uD = 3.7 mm. Determine the axial strains in the rods in sections AB, BC, and CD. 

2.7  The average normal strains in the bars due to the application of the forces in Figure P2.6 are εAB = −800 μ, εBC = 600 μ, and εCD = 1100 μ. 
Determine the movement of point D with respect to the left wall.

2.8  Due to the application of the forces, the rigid plate in Figure P2.8 moves 0.0236 in to the right. Determine the average normal strains in 
bars A and B. 

2.9  The average normal strain in bar A due to the application of the forces in Figure P2.8, was found to be 2500 μ in./in. Determine the nor-
mal strain in bar B.

2.10  The average normal strain in bar B due to the application of the forces in Figure P2.8 was found to be -4000 μ in./in. Determine the nor-
mal strain in bar A.

2.11  The rigid bar BD in Figure P2.11 pivots about support C. Due to the application of force P, point B moves upward by 0.06 in. If the length 
of bar A is 24 in., determine the average normal strain in bar A.

18 in

12 i
17 in

A

B
C

A

B

C

6 in

B

A

 Figure P2.4 

(a) (b)

27 ft

15 in.

  Figure P2.5 

F1 F2 F3

F3F2F1

x

DCBA

1.5 m 2.5 m 2 m
  Figure P2.6 

Bar A Bar B

Rigid plate

0.02 in

P

P
60 in 24 in Figure P2.8 

C
D

Rigid
B

125 in 25 in

A

P

  Figure P2.11 
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2.12  The average normal strain in bar A due to the application of force P in Figure P2.11 was found to be –6000  μ in./in. If the length of bar A
is 36 in., determine the movement of point B. 

2.13  The rigid bar BD in Figure P2.13 pivots about support C. Due to the application of force P, point B imoves upward by 0.06 in. If the length 
of bar A is 24 in., determine the average normal strain in bar A. 

2.14  The average normal strain in bar A due to the application of force P in Figure P2.13 was found to be –6000  μ in./in. If the length of bar A
is 36 in., determine the movement of point B.

2.15  The rigid bar BED in Figure P2.15 pivots about support C. Due to the application of force P, point B moves upward by 0.06 in. If the 
lengths of bars A and F are 24 in., determine the average normal strain in bars A and F. 

2.16  The average normal strain in bar A due to the application of force P in Figure P2.15 was found to be –5000  μ in./in. If the lengths of bars A
and F are 36 in., determine the movement of point B and the average normal strain in bar F.

2.17  The average normal strain in bar F due to the application of force P, in Figure P2.15 was found to be -2000 μ in./in. If the lengths of bars A and 
F are 36 in., determine the movement of point B and the average normal strain in bar A.

2.18  The rigid bar BD in Figure P2.18 pivots about support C. Due to the application of force P, point B moves left by 0.75 mm. If the length of 
bar A is 1.2 m, determine the average normal strain in bar A. 

2.19  The average normal strain in bar A due to the application of force P in Figure P2.18 was found to be –2000 μ m /m. If the length of bar A
is 2 m, determine the movement of point B.

2.20  The rigid bar BD in Figure P2.20 pivots about support C. Due to the application of force P, point B moves left by 0.75 mm. If the length of 
bar A is 1.2 m, determine the average normal strain in bar A. 

0.04 in

CD

Rigid

P

B

125 in 25 in

A  Figure P2.13 

0.04 in

CD

Rigid

P

B

125 in

25 in

30 in

A

E

F  Figure P2.15 

Rigid

2.5 m

1.25 m

A

D

B
P

C

  Figure P2.18 

Rigid

2.5 m
1 mm

1.25 m

A

D

P
B

C

  Figure P2.20 
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2.21  The average normal strain in bar A due to the application of force P in Figure P2.20 was found to be –2000 μ m/m. If the length of bar A
is 2 m, determine the movement of point B.

2.22  The rigid bar BD in Figure P2.22 pivots about support C. Due to the application of force P, point B moves left by 0.75 mm. If the lengths 
of bars A and F are 1.2 m, determine the average normal strains in bars A and F. 

2.23  The average normal strain in bar A due to the application of force P in Figure P2.22 was found to be –2500 μ m/m. Bars A and F are 2 m 
long. Determine the movement of point B and the average normal strain in bar F.

2.24  The average normal strain in bar F due to the application of force P in Figure P2.22 was found to be 1000 μ m/m. Bars A and F are 2 m 
long. Determine the movement of point B and the average normal strain in bar A.

2.25  Two bars of equal lengths of 400 mm are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ as shown in Figure P2.25. The distance between the bars is h =  50 mm. The average nor-
mal strains in bars AB and CD were determined as -2500 μ mm/mm and 3500 μ mm/mm, respectively. Determine the radius of curvature R 
and the angle ψ. 

2.26  Two bars of equal lengths of 30 in. are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ= 1.25o as shown in Figure P2.25. The distance between the bars is h =  2 in. If the average 
normal strain in bar AB is -1500 μ in./in., determine the strain in bar CD.

2.27  Two bars of equal lengths of 48 in. are welded to rigid plates at right angles. The right angles between the bars and the plates are pre-
served as the rigid plates are rotated by an angle of ψ as shown in Figure P2.27. The average normal strains in bars AB and CD were determined 
as -2000 μ in./in. and 1500 μ in./in., respectively. Determine the location h of a third bar EF that should be placed such that it has zero normal 
strain. 

Rigid

2.5 m
A

E
F

C

P

0.8 m

0.45 m

1 mm D

B

  Figure P2.22 

ψ ψ
A B

C D

h

  Figure P2.25 

R

ψ ψ

A B

C D

4 in.

  Figure P2.27 

h

E F
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Average shear strains
2.28  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.28. Determine the average shear strain at point A.

2.29  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.29. Determine the average shear strain at point A.

2.30  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.30. Determine the average shear strain at point A.

2.31  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.31. Determine the average shear strain at point A.

2.32  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.32. Determine the average shear strain at point A.

2.33  A rectangular plastic plate deforms into a shaded shape, as shown in Figure P2.33. Determine the average shear strain at point A.

A   

  

0.84 mm0.84 mm

600 mm

350 mm

  Figure P2.28 

A

  

0.0051 in  

0.0051 in 

3.5 in

1.7 in

  Figure P2.29 

A
3.0 in

1.4 in

0.007 in0.007 in

  Figure P2.30 

  Figure P2.31 A

  

450 mm

0.65 mm

0.65 mm

250 mm

A 3.0 in
0.0042 in

0.0056 in

1.4 in

  Figure P2.32 

  Figure P2.33 A

350 mm

0.6 mm

0.6 mm
600 mm
August 2012



2   64Mechanics of Materials: Strain
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

M. Vable
2.34  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.34. During deformation, point A moves vertically 
down by δA = 0.005 in. Determine the average shear strains at point A. 

2.35  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.35. During deformation, point A moves vertically 
down by δA = 0.006 in. Determine the average shear strains at point A.

2.36  A thin triangular plate ABC forms a right angle at point A, as shown in Figure P2.36. During deformation, point A moves vertically 
down by δA = 0.75 mm. Determine the average shear strains at point A. 

2.37  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.005 in., as shown 
in Figure P2.37. Determine the average shear strains at point A.

2.38  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.008 in., as shown 
in Figure P2.38. Determine the average shear strains at point A. 

2.39  A thin triangular plate ABC forms a right angle at point A. During deformation, point A moves horizontally by δA =0.90 mm, as shown 
in Figure P2.39. Determine the average shear strains at point A. 

25� 65�

A

CB

�A

8 in

 Figure P2.34 

A

CB

�A

5 in

3 
in

 Figure P2.35 

A

CB

�A

1300 mm

500 m
m

  Figure P2.36 

25° 65°

A

CB

�A

8 in

  Figure P2.37 

A

CB

�A

5 in

3 
in

  Figure P2.38 

A

CB

�A

1300 mm

50
0 

m
m

  Figure P2.39 
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2.40  Bar AB is bolted to a plate along the diagonal as shown in Figure P2.40. The plate experiences an average strain in the x direction 
. Determine the average normal strain in the bar AB. 

2.41  Bar AB is bolted to a plate along the diagonal as shown in Figure P2.40. The plate experiences an average strain in the y direction 
. Determine the average normal strain in the bar AB. 

2.42  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average normal strain in AB.

2.43  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average normal strain in BC.

2.44  A right angle bar ABC is welded to a plate as shown in Figure P2.42. Points B are fixed. The plate experiences an average strain in the 
x direction . Determine the average shear strain at point B in the bar.

ε 500 μin.  in.⁄=

10 in.

5 in.

x

y

  Figure P2.40 
A

B

ε 1200 μ– mm mm⁄=

100 mm

45 mm

x

y

  Figure P2.41 A

B

ε 1000– μmm mm⁄=

150 mm

300 mm

x

y

A C

B

 Figure P2.42 
450 mm

B

ε 700 μmm mm⁄=

ε 800– μmm mm⁄=
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2.45  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average normal strain in AB.

2.46  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average normal strain in BC.

2.47  A right angle bar ABC is welded to a plate as shown in Figure P2.45. Points B are fixed. The plate experiences an average strain in the 
y direction  Determine the average shear strain at B in the bar.

2.48  The diagonals of two squares form a right angle at point A in Figure P2.48. The two rectangles are pulled horizontally to a deformed 
shape, shown by colored lines. The displacements of points A and B are δA = 0.4 mm and δB = 0.8 mm. Determine the average shear strain at 
point A.

2.49  The diagonals of two squares form a right angle at point A in Figure P2.48. The two rectangles are pulled horizontally to a deformed 
shape, shown by colored lines. The displacements of points A and B are δΑ = 0.3 mm and δB = 0.9 mm. Determine the average shear strain at 
point A δΑ = 0.3 mm and δB = 0.9 mm.

Small-strain approximations
2.50  The roller at P slides in the slot by the given amount shown in Figure P2.50. Determine the strains in bar AP by (a) finding the 
deformed length of AP without the small-strain approximation, (b) using Equation (2.6), and (c) using Equation (2.7). 

2.51  The roller at P slides in the slot by the given amount shown in Figure P2.51. Determine the strains in bar AP by (a) finding the 
deformed length of AP without small-strain approximation, (b) using Equation (2.6), and (c) using Equation (2.7).

ε 800 μin.  in.⁄=

1.0 in.

2 in.

x

y

A

C

B

  Figure P2.45 

3.0 in.

B

ε 500– μin.  in.⁄=

ε 600 μin.  in.⁄=

B B1A A1
�A �B

300 mm

300 mm 300 mm

  Figure P2.48 

�P � 0.25 mm

20
0 

m
m

50°

P

A  Figure P2.50 

�P � 0.25 mm

50°

30°P

A

20
0 

m
m

  Figure P2.51 
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2.52  The roller at P slides in a slot by the amount shown in Figure P2.52. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.53  The roller at P slides in a slot by the amount shown in Figure P2.53. Determine the deformation in bars AP and BP using the small-
strain approximation. 

2.54  The roller at P slides in a slot by the amount shown in Figure P2.54. Determine the deformation in bars AP and BP using the small-
strain approximation. 

2.55  The roller at P slides in a slot by the amount shown in Figure P2.55. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.56  The roller at P slides in a slot by the amount shown in Figure P2.56. Determine the deformation in bars AP and BP using the small-
strain approximation.

�P � 0.25 mm

110°
A

P

B

  Figure P2.52 

  Figure P2.53 
�P � 0.25 mm

60°A
P

B

�P � 0.25 mm

75°
30°

A
P

B

  Figure P2.54 

�P � 0.02 in

110�

40�PA

B  Figure P2.55 

�P � 0.01 in

25°25°
A

P

B B

  Figure P2.56 
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2.57  The roller at P slides in a slot by the amount shown in Figure P2.57. Determine the deformation in bars AP and BP using the small-
strain approximation.

2.58  A gap of 0.004 in. exists between the rigid bar and bar A before the load P is applied in Figure P2.58. The rigid bar is hinged at point C. 
The strain in bar A due to force P was found to be –600 μ in./in. Determine the strain in bar B. The lengths of bars A and B are 30 in. and 50 in., 
respectively.

2.59  A gap of 0.004 in. exists between the rigid bar and bar A before the load P is applied in Figure P2.58. The rigid bar is hinged at point C. 
The strain in bar B due to force P was found to be 1500 μ in./in. Determine the strain in bar A. The lengths of bars A and B are 30 in. and 50 in., 
respectively.

Vector approach to small-strain approximation
2.60  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members AB, BF, FG, and GB.

2.61  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members BC, CF, and FE.

2.62  The pin displacements of the truss in Figure P2.60 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.60. Determine the axial strains in members ED, DC, and CE.

�P � 0.02 in

60�

50�

20�

P

B

A

  Figure P2.57 

B

A

C

P 24 in
36 in 60 in

75°

  Figure P2.58 

P

A B

F E DG

C

2 m

2 m

2 m 2 m

x

y
  Figure P2.60 

TABLE P2.60   

uB 12.6 mm= vB 24.48 mm–=

uC 21.0 mm= vC 69.97 mm–=

uD 16.8– mm= vD 119.65 mm–=

uE 12.6– mm= vE 69.97 mm–=

uF 8.4– mm= vF 28.68 mm–=
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2.63  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63. Determine the axial strains in members AB, BG, GA, and AH.

2.64  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63.Determine the axial strains in members BC, CG, GB, and CD.

2.65  The pin displacements of the truss in Figure P2.63 were computed by the finite-element method. The displacements in x and y direc-
tions given by u and v are given in Table P2.63.Determine the axial strains in members GF, FE, EG, and DE.

2.66  Three poles are pin connected to a ring at P and to the supports on the ground. The ring slides on a vertical rigid pole by 2 in, as shown 
in Figure P2.66. The coordinates of the four points are as given. Determine the normal strain in each bar due to the movement of the ring. 

  Figure P2.63 

4 m 4 m

3 m

3 m

A

B

C
D

E

P1

P2

F
G

H

TABLE P2.63   

uB 7.00 mm=

uC 17.55 mm=

uD 20.22 mm=

uE 22.88 mm=

uF 9.00 mm=

uG 7.00 mm=

uH 0=

vB 1.500 mm=

vC 3.000 mm=

vD 4.125– mm=

vE 32.250 mm–=

vF 33.750 mm–=

vG 4.125 mm–=

vH 0=

P (0.0, 0.0, 6.0) ft 

A
(5.0, 0.0, 0.0) ft 

B 
(�4.0, 6.0, 0.0) ft

C
(�2.0, �3.0, 0.0) ft    

�P � 2 in

y

z

x
  Figure P2.66 
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MoM in Action: Challenger Disaster
On January 28th, 1986, the space shuttle Challenger (Figure 2.21a) exploded just 73 seconds into the flight, killing 

seven astronauts. The flight was to have been the first trip for a civilian, the school-teacher Christa McAuliffe. Classrooms 

across the USA were preparing for the first science class ever taught from space. The explosion shocked millions watching 

the takeoff and a presidential commission was convened to investigate the cause. Shuttle flights were suspended for nearly 

two years.

The Presidential commission established that combustible gases from the solid rocket boosters had ignited, causing the 

explosion. These gases had leaked through the joint between the two lower segments of the boosters on the space shuttle’s 

right side. The boosters of the Challenger, like those of the shuttle Atlantis (Figure 2.21b), were assembled using the O-ring 

joints illustrated in Figure 2.21c. When the gap between the two segments is 0.004 in. or less, the rubber O-rings are in con-

tact with the joining surfaces and there is no chance of leak. At the time of launch, however, the gap was estimated to have 

exceeded 0.017 in. 

But why? Apparently, prior launches had permanently enlarged diameter of the segments at some places, so that they 

were no longer round. Launch forces caused the segments to move further apart. Furthermore, the O-rings could not return 

to their uncompressed shape, because the material behavior alters dramatically with temperature. A compressed rubber O-

ring at 78o F is five times more responsive in returning to its uncompressed shape than an O-ring at 30o F. The temperature 

around the joint varied from approximately 28o F on the cold shady side to 50o F in the sun. 

Two engineers at Morton Thiokol, a contractor of NASA, had seen gas escape at a previous launch and had recom-

mended against launching the shuttle when the outside air temperature is below 50o F. Thiokol management initially backed 

their engineer’s recommendation but capitulated to desire to please their main customer, NASA. The NASA managers felt 

under political pressure to establish the space shuttle as a regular, reliable means of conducting scientific and commercial 

missions in space. Roger Boisjoly, one of the Thiokol engineers was awarded the Prize for Scientific Freedom and Respon-

sibility by American Association for the Advancement of Science for his professional integrity and his belief in engineer’s 

rights and responsibilities.

The accident came about because the deformation at launch was in excess of the design’s allowable deformation. An 

administrative misjudgment of risk assessment and the potential benefits had overruled the engineers.

 Figure 2.21 (a) Challenger explosion during flight (b) Shuttle Atlantis (c) O-ring joint.

(a) (b)
(c)

O-rings

gap
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2.5 STRAIN COMPONENTS

Let u, v, and w be the displacements in the x, y, and z directions, respectively. Figure 2.22 and Equations (2.9a) through (2.9i) define 
average engineering strain components:

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.9f)

(2.9g)

(2.9h)

(2.9i)

Equations (2.9a) through (2.9i) show that strain at a point has nine components in three dimensions, but only six are independent 
because of the symmetry of shear strain. The symmetry of shear strain makes intuitive sense. The change of angle between the x
and y directions is obviously the same as between the y and x directions. In Equations (2.9a) through (2.9i) the first subscript is 
the direction of displacement and the second the direction of the line element. But because of the symmetry of shear strain, the 

εxx
uΔ
xΔ

------=

εyy
vΔ
yΔ

------=

εzz
wΔ
zΔ

-------=

γxy
uΔ
yΔ

------ vΔ
xΔ

------+=

γyx
vΔ
xΔ

------ uΔ
yΔ

------+ γxy= =

γyz
vΔ
zΔ

------ wΔ
yΔ

-------+=

γzy
wΔ
yΔ

------- vΔ
zΔ

------+ γyz= =

γzx
wΔ
xΔ

------- uΔ
zΔ

------+=

γxz
uΔ
zΔ

------ wΔ
xΔ

-------+ γzx= =

(a)

�v

�w

�u

y

�y

�z
�x

x

z

�y

�v
�x

�u

�–
2 � �xy(        )

y

x

z

(b)

�v

�y

�z

�w

�–
2 � �yz(        )

z

x

y

(c)

�u

�x
�w�z

x

y

(d)

z

�–
2 � �zx(        )

Figure 2.22 (a) Normal strains. (b) Shear strain γxy. (c) Shear strain γyz. (d ) Shear strain γzx.
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order of the subscripts is immaterial. Equation (2.10) shows the components as an engineering strain matrix. The matrix is sym-
metric because of the symmetry of shear strain.

(2.10)

2.5.1 Plane Strain

Plane strain is one of two types of two-dimensional idealizations in mechanics of materials. In Chapter 1 we saw the other type, 
plane stress. We will see the difference between the two types of idealizations in Chapter 3. By two-dimensional we imply that one 
of the coordinates does not play a role in the solution of the problem. Choosing z to be that coordinate, we set all strains with 
subscript z to be zero, as shown in the strain matrix in Equation (2.11). Notice that in plane strain, four components of strain are 
needed though only three are independent because of the symmetry of shear strain.

(2.11)

The assumption of plane strain is often made in analyzing very thick bodies, such as points around tunnels, mine shafts in 
earth, or a point in the middle of a thick cylinder, such as a submarine hull. In thick bodies we can expect a point has to push a 
lot of material in the thickness direction to move. Hence the strains in the this direction should be small. It is not zero, but it is 
small enough to be neglected. Plane strain is a mathematical approximation made to simplify analysis.

EXAMPLE 2.9 

Displacements u and v in x and y directions, respectively, were measured at many points on a body by the geometric Moiré method (See 

Section 2.7). The displacements of four points on the body of Figure 2.23 are as given. Determine strains   and   at point A.

PLAN
We can use point A as our reference point and calculate the relative movement of points B and C and find the strains from Equations 
(2.9a), (2.9b), and (2.9d).

SOLUTION 
The relative movements of points B and C with respect to A are

(E1)

(E2)
The normal strains εxx and εyy can be calculated as

(E3)

(E4)

εxx  γxy  γxz

γyx  εyy  γyz

γzx  γzy  εzz  

εxx γxy 0

γyx εyy 0

0   0    0

εxx  , εyy, γxy

A B

C D

4 mm

2 
m

m

x

y

 Figure 2.23 Undeformed geometry in Example 2.9.

uA 0.0100 mm–= vA 0.0100 mm=

uB 0.0050 mm–= vB 0.0112–  mm=

uC 0.0050 mm=  vC 0.0068 mm=

uD 0.0100 mm= vD 0.0080 mm=

uB uA– 0.0050 mm= vB vA– 0.0212 mm–=

uC uA– 0.0150 mm= vC vA– 0.0032 mm–=

εxx
uB uA–
xB xA–
------------------ 0.0050 mm

4 mm
---------------------------- 0.00125 mm mm⁄  = = =

εyy
vC vA–
yC yA–
------------------ 0.0032 mm–

2 mm
------------------------------- 0.0016 mm mm⁄–= = =
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ANS.  
From Equation (2.9d)  the shear strain can be found as

(E5)

ANS. 

COMMENT

1. Figure 2.24 shows an exaggerated deformed shape of the rectangle. Point A moves to point A1; similarly, the other points move to B1, 
C1, and D1. By drawing the undeformed rectangle from point A, we can show the relative movements of the three points. We could 

have calculated the length of A1B from the Pythagorean theorem as  which 
would yield the following strain value:

 

The difference between the two calculations is 1.1%. We will have to perform similar tedious calculations to find the other two strains if 
we want to gain an additional accuracy of 1% or less. But notice the simplicity of the calculations that come from a small-strain approx-
imation.

2.6 STRAIN AT A POINT

In Section 2.5 the lengths Δx, Δy, and Δz were finite. If we shrink these lengths to zero in Equations (2.9a) through (2.9i), we 
obtain the definition of strain at a point. Because the limiting operation is in a given direction, we obtain partial derivatives and 
not the ordinary derivatives:

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

Equations (2.12a) through (2.12f) show that engineering strain has two subscripts, indicating both the direction of defor-
mation and the direction of the line element that is being deformed. Thus it would seem that engineering strain is also a sec-

εxx 1250 μmm mm⁄= εyy 1600 μmm mm⁄–=

γxy
vB vA–
xB xA–
------------------

uC uA–
yC yA–
------------------+ 0.0212 mm–

4 mm
------------------------------- 0.0150 mm

2 mm
----------------------------+ 0.0022 rad= = =

γxy 2200 μrads=

A1B1 4 0.005–( )2 0.0212–( )2+ 3.995056 mm,= =

εxx
A1B1 AB–

AB
-------------------------- 1236 μmm mm⁄ .= =

D1

vB � vA

v C
 �

 v
A

uB � uA

uC � uA

A1

x

y

C1

B1

  Figure 2.24 Elaboration of comment.

εxx
uΔ
xΔ

------⎝ ⎠
⎛ ⎞

xΔ 0→
lim u∂

x∂
-----= =

εyy
vΔ
yΔ

------⎝ ⎠
⎛ ⎞

yΔ 0→
lim v∂

y∂
-----= =

εzz
wΔ
zΔ

-------⎝ ⎠
⎛ ⎞

zΔ 0→
lim w∂

z∂
------= =

γxy γyx
uΔ
yΔ

------ vΔ
xΔ

------+⎝ ⎠
⎛ ⎞

xΔ 0→
yΔ 0→

lim u∂
y∂

----- v∂
x∂

-----+= = =

γyz γzy
vΔ
zΔ

------ wΔ
yΔ

-------+⎝ ⎠
⎛ ⎞

yΔ 0→
zΔ 0→

lim v∂
z∂

----- w∂
y∂

------+= = =

γzx γxz
wΔ
xΔ

------- uΔ
zΔ

------+⎝ ⎠
⎛ ⎞

xΔ 0→
zΔ 0→

lim w∂
x∂

------ u∂
z∂

-----+= = =
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ond-order tensor. However, unlike stress, engineering strain does not satisfy certain coordinate transformation laws, which we 
will study in Chapter 9. Hence it is not a second-order tensor but is related to it as follows:

In Chapter 9 we shall see that the factor 1 / 2, which changes engineering shear strain to tensor shear strain, plays an important 
role in strain transformation. 

2.6.1 Strain at a Point on a Line

In axial members we shall see that the displacement u is only a function of x. Hence the partial derivative in Equation (2.12a)
becomes an ordinary derivative, and we obtain

(2.13)

If the displacement is given as a function of x, then we can obtain the strain as a function of x by differentiating. If strain 
is given as a function of x, then by integrating we can obtain the deformation between two points —that is, the relative dis-
placement of two points. If we know the displacement of one of the points, then we can find the displacement of the other 
point. Alternatively stated, the integration of Equation (2.13) generates a constant of integration. To determine it, we need to 
know the displacement at a point on the line.

EXAMPLE 2.10 

Calculations using the finite-element method (see Section 4.8) show that the displacement in a quadratic axial element is given by 

Determine the normal strain εxx at x = 1 cm.

PLAN
We can find the strain by using Equation  at any x and obtain the final result by substituting the value of x = 1.

SOLUTION 
Differentiating the given displacement, we obtain the strain as shown in Equation (E1).

(E1)

ANS.   

EXAMPLE 2.11 

Figure 2.25 shows a bar that has axial strain  due to its own weight. K is a constant for a given material. Find the total 

extension of the bar in terms of K and L.

PLAN
The elongation of the bar corresponds to the displacement of point B. We start with Equation (2.13) and integrate to obtain the relative 
displacement of point B with respect to A. Knowing that the displacement at point A is zero, we obtain the displacement of point B.

tensor normal strains engineering normal strains;= tensor shear strains engineering shear strains
2

-----------------------------------------------------------=

εxx
du
dx
------ x( )=

u x( ) 125.0 x2 3x– 8+( )10 6–  cm,= 0 x 2 cm≤ ≤

εxx x 1=( ) xd
du

x 1=
125.0 2x 3–( )10 6–

x 1= 125 10 6–( )–= = =

εxx x 1=( ) 125 μ–=

εxx K L x–( )=

B

A

x

L

  Figure 2.25 Bar in Example 2.11.
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SOLUTION 
We substitute the given strain in Equation (2.13):

(E1)

Integrating Equation (E1) from point A to point B we obtain

(E2)

Since point A is fixed, the displacement uA = 0 and we obtain the displacement of point B.

ANS.   

COMMENTS
1. From strains we obtain deformation, that is relative displacement . To get the absolute displacement we choose a point on the 

body that did not move. 

2. We could integrate Equation (E1) to obtain . Using the condition that the displacement u at x = 0 is zero, 
we obtain the integration constant C1 = 0. We could then substitute x = L to obtain the displacement of point B. The integration con-
stant C1 represents rigid-body translation, which we eliminate by fixing the bar to the wall.

QUICK TEST 1.1 Time: 15 minutes/Total: 20 points

Grade yourself using the answers in Appendix E. Each problem is worth 2 points.

1. What is the difference between displacement and deformation?
2. What is the difference between Lagrangian and Eulerian strains?
3. In decimal form, what is the value of normal strain that is equal to 0.3%?
4. In decimal form, what is the value of normal strain that is equal to 2000 μ?
5. Does the right angle increase or decrease with positive shear strains?
6. If the left end of a rod moves more than the right end in the negative x direction, will the normal strain be neg-

ative or positive? Justify your answer.
7. Can a 5% change in length be considered to be small normal strain? Justify your answer.
8. How many nonzero strain components are there in three dimensions?
9. How many nonzero strain components are there in plane strain?
10. How many independent strain components are there in plane strain?

εxx
du
dx
------ K L x–( )= =

ud
uA

uB

∫ K L x–( ) xd
xA=0

xB=L

∫= or uB uA– K Lx x2

2
-----–⎝ ⎠

⎛ ⎞=
0

L

K L2 L2

2
-----–⎝ ⎠

⎛ ⎞=

uB KL2( ) 2⁄=

uB uA–

u x( ) =K Lx x2 2⁄–( ) + C1

Consolidate your  knowledge
1.  Explain in your own words deformation, strain, and their relationship without using equations.
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PROBLEM SET 2.2

Strain components

2.67  A rectangle deforms into the colored shape shown in Figure P2.67. Determine εxx, εyy  , and γxy at point A.

2.68  A rectangle deforms into the colored shape shown in Figure P2.68. Determine εxx, εyy  , and γxy at point A.

2.69  A rectangle deforms into the colored shape shown in Figure P2.69. Determine εxx, εyy  , and γxy at point A.

2.70  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as give below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

2.71  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

A

0.0042 in

0.0056 in
0.0042 in

1.4 in

0.0036 in

x

y

3.0 in  Figure P2.67 

A
0.65 mm

x

0.45 mm  

y

0.032 mm
250 mm

0.30 mm

45
0 

m
m

  Figure P2.68 

  Figure P2.69 

x

y

A

3 mm

6 mm
0.009 mm

0.006 mm

0.033 mm

0.024 mm

x

0.0005 mm

0.
00

05
 m

m

y

C D

A B

  Figure P2.70 

uA 0.500μmm=

uB 1.125μmm=

uC 0=

uD 0.750μmm=

vA 1.000– μmm=

vB 1.3125– μmm=

vC 1.5625– μmm=

vD 2.125– μmm=

uA 0.625μmm=

uB 1.500μmm=

uC 0.250μmm=

uD 1.250μmm=

vA 0.3125μmm–=

vB 0.5000μmm–=

vC 1.125– μmm=

vD 1.5625– μmm=
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2.72  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A. 

2.73  Displacements u and v in x and y directions, respectively, were measured by the Moiré interferometry method at many points on a body. 
The displacements of four points shown in Figure P2.70 are as given below. Determine the average values of the strain components εxx  , εyy  , and 
γxy at point A.

Strain at a point
2.74  In a tapered circular bar that is hanging vertically, the axial displacement due to its weight was found to be

Determine the axial strain εxx at x = 24 in.

2.75  In a tapered rectangular bar that is hanging vertically, the axial displacement due to its weight was found to be

Determine the axial strain εxx at x = 100 mm.

2.76  The axial displacement in the quadratic one-dimensional finite element shown in Figure P2.76 is given below. Determine the strain at 
node 2.

2.77  The strain in the tapered bar due to the applied load in Figure P2.77 was found to be εxx = 0.2/(40  −  x)2. Determine the extension of the 
bar.

2.78  The axial strain in a bar of length L was found to be 

where K is a constant for a given material, loading, and cross-sectional dimension. Determine the total extension in terms of K and L. 

uA 0.500– μmm=

uB 0.250μmm=

uC 1.250– μmm=

uD 0.375– μmm=

vA 0.5625– μmm=

vB 1.125– μmm=

vC 1.250– μmm=

vD 2.0625– μmm=

uA 0.250μmm=

uB 1.250μmm=

uC 0.375– μmm=

uD 0.750μmm=

vA 1.125– μmm=

vB 1.5625– μmm=

vC 2.0625– μmm=

vD 2.7500– μmm=

u x( ) 19.44– 1.44x 0.01x2– 933.12
72 x–
----------------⎠

⎞ 10 3–  in.–+⎝
⎛=

u x( ) 7.5 10 6–( )x2 25 10 6–( )x– 0.15 1 0.004x–( )ln–[ ] mm=

Node 3Node 2Node 1

x

x1 � 0 x2 � a x3 � 2a

  Figure P2.76 

u x( )
u1

2a2
-------- x a–( ) x 2a–( )

u2

a2
-----– x( ) x 2a–( )

u3

2a2
-------- x( ) x a–( )+=

P

20 in

x

  Figure P2.77 

εxx
KL

4L 3x–( )
-----------------------= 0 x L≤ ≤
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2.79  The axial strain in a bar of length L due to its own weight was found to be 

where K is a constant for a given material and cross-sectional dimension. Determine the total extension in terms of K and L.

2.80  A bar has a tapered and a uniform section securely fastened, as shown in Figure P2.80. Determine the total extension of the bar if the 
axial strain in each section is

Stretch yourself
2.81  N axial bars are securely fastened together. Determine the total extension of the composite bar shown in Figure P2.81 if the strain in the 
i th section is as given.

2.82  True strain εT is calculated from , where u is the deformation at any given instant and L0 is the original unde-
formed length. Thus the increment in true strain is the ratio of change in length at any instant to the length at that given instant. If ε represents 
engineering strain, show that at any instant the relationship between true strain and engineering strain is given by the following equation:

(2.14)

2.83  The displacements in a body are given by 

Determine strains εxx  , εyy , and γxy at x = 5 mm and y = 7 mm.

2.84  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 9 in. Determine the average normal strain in 
the metal strip.

2.85  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 200 mm. Determine the average normal 
strain in the metal strip. 

Computer problems
2.86  A metal strip is to be pulled and bent to conform to a rigid surface such that the length of the strip OA fits the arc OB of the surface 

shown in Figure P2.84. The equation of the surface is  and the length OA = 9 in. Determine the average nor-
mal strain in the metal strip. Use numerical integration.

2.87  Measurements made along the path of the stretch cord that is stretched over the canoe in Problem 2.4 (Figure P2.87) are shown in 
Table P2.87. The y coordinate was measured to the closest in. Between points A and B the cord path can be approximated by a straight 

εxx K 4L 2x– 8L3

4L 2x–( )2
--------------------------–= 0 x L,≤ ≤

P

750 mm 500 mm

x

  Figure P2.80 

ε 1500 103×
1875 x–

-------------------------- μ 0 x 750 mm

ε

≤ ≤,

1500 μ 750 mm x 1250 mm≤ ≤,

=

=

Px
i N � 1

xi�1
xi

1 2 N

  Figure P2.81 

εi ai xi 1– x xi≤ ≤,=

dεT du L0 u+( )⁄=

εT 1 ε+( )ln=

u 0.5 x2 y2–( ) 0.5xy+[ ] 10 3–( ) mm= v 0.25 x2 y2–( ) xy–[ ] 10 3–( ) mm=

f x( ) 0.04x3 2⁄  in.=

A

B

O

 

y

y � f(x)

x  Figure P2.84 

f x( ) 625x3 2⁄= μmm

f x( ) 0.04x3 2⁄ 0.005x–( )  in.=

1
32
------
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line. Determine the average strain in the stretch cord if its original length it is 40 in. Use a spread sheet and approximate each 2-in. x interval 
by a straight line.   

2.7* CONCEPT CONNECTOR

Like stress there are several definitions of strains. But unlike stress which evolved from intuitive understanding of 
strength to a mathematical definition, the development of concept of strain was mostly mathematical as described briefly in 
Section 2.7.1. 

Displacements at different points on a solid body can be measured or analyzed by a variety of methods. One modern 
experimental technique is Moiré Fringe Method discussed briefly in Section 2.7.2.

2.7.1 History: The Concept of Strain

Normal strain, as a ratio of deformation over length, appears in experiments conducted as far back as the thirteenth century. Tho-
mas Young (1773–1829) was the first to consider shear as an elastic strain, which he called detrusion. Augustin Cauchy (1789–
1857), who introduced the concept of stress we use in this book (see Section 1.6.1), also introduced the mathematical definition 
of engineering strain given by Equations (2.12a) through (2.12f). The nonlinear Lagrangian strain written in tensor form was 
introduced by the English mathematician and physicist George Green (1793–1841) and is today called Green’s strain tensor. The 
nonlinear Eulerian strain tensor, introduced in 1911 by E. Almansi, is also called Almansi’s strain tensor. Green’s and Almansi’s 
strain tensors are often referred to as strain tensors in Lagrangian and Eulerian coordinates, respectively.

2.7.2 Moiré Fringe Method

Moiré fringe method is an experimental technique of measuring displacements that uses light interference produced by two equally 
spaced gratings. Figure 2.26 shows equally spaced parallel bars in two gratings. The spacing between the bars is called the pitch. 
Suppose initially the bars in the grating on the right overlap the spacings of the left. An observer on the right will be in a dark region, 
since no light ray can pass through both gratings. Now suppose that left grating moves, with a displacement less than the spacing 
between the bars. We will then have space between each pair of bars, resulting in regions of dark and light. These lines of light and 
dark lines are called fringes. When the left grating has moved through one pitch, the observer will once more be in the dark. By 
counting the number of times the regions of light and dark (i.e., the number of fringes passing this point) and multiplying by the 
pitch, we can obtain the displacement. 

Note that any motion of the left grating parallel to the direction of the bars will not change light intensity. Hence displace-
ments calculated from Moiré fringes are always perpendicular to the lines in the grating. We will need a grid of perpendicular lines 
to find the two components of displacements in a two-dimensional problem. 

xi

yi

17 in

A

C

B

18 in

12 in

  Figure P2.87 

TABLE P2.87  

xi yi

 0 17

 2 16

 4 16

 6 16

 8 16

10 15

12 14

14 13

xB = 16   yB = 12

xA = 18  yA = 0

30
32
------

29
32
------

19
32
------

3
32
------

16
32
------

24
32
------

28
32
------
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The left grating may be cemented, etched, printed, photographed, stamped, or scribed onto a specimen. Clearly, the order 
of displacement that can be measured depends on the number of lines in each grating. The right grating is referred to as the 
reference grating. 

Figure 2.26 illustrates light interference produced mechanical and is called geometric Moiré method. This method is used 
for displacement measurements in the range of 1 mm to as small as 10 μm, which corresponds to a grid of 1 to 100 lines per 
millimeter. In U.S. customary units the range is from 0.1 in. to as small as 0.001 in., corresponding to grids having from 10 to 
1000 lines per inch. 

Light interference can also be produced optically and techniques based on optical light interference are termed optical 
interferometry. Consider two light rays of the same frequency arriving at a point, as shown in Figure 2.27. The amplitude of 
the resulting light wave is the sum of the two amplitudes. If the crest of one light wave falls on the trough of another light 
wave, then the resulting amplitude will be zero, and we will have darkness at that point. If the crests of two waves arrive at the 
same time, then we will have light brighter than either of the two waves alone. This addition and subtraction, called construc-
tive and destructive interference, is used in interferometry for measurements in a variety of ways. 

In Moiré interferometry, for example, a reference grid may be created by the reflection of light from a grid fixed to the 
specimen, using two identical light sources. As the grid on the specimen moves, the reflective light and the incident light 
interfere constructively and destructively to produce Moiré fringes. Displacements as small as 10–5 in., corresponding to 
100,000 lines per inch, can be measured. In the metric system, the order of displacements is 25 × 10–5 mm, which corresponds 
to 4000 lines per millimeter.

Reference grating

Light rays

Displacement � (pitch)(number of fringes)

Pitch Observer

  Figure 2.26 Destructive light interference by two equally spaced gratings.

A1 � A2

Amplitude

Time

Light wave 2

Light wave 1

Resulting light wave

A2

A1

  Figure 2.27 Superposition of two light waves.
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In an experiment to study mechanically fastened composites, load was applied on one end of the joint and equilibrated by 
applying a load on the lower hole, as shown in Figure 2.28a. Moiré fringes parallel to the applied load on the top plate are 
shown in Figure 2.28b.

2.8 CHAPTER CONNECTOR

In this chapter we saw that the relation between displacement and strains is derived by studying the geometry of the deformed 
body. However, whenever we approximate a deformed body, we make assumptions regarding the displacements of points on the 
body. The simplest approach is to assume that each component of displacement is either a constant in the direction of coordinate 
axis, or else a linear function of the coordinate. From the displacements we can then obtain the strains. 

The strain–displacement relation is independent of material properties. In the next chapter we shall introduce material 
properties and the relationship between stresses and strains. Thus, from displacements we first deduce the strains. From these 
we will deduce stress variations, from which we can find the internal forces. Finally, we relate the internal forces to external 
forces, as we did in Chapter 1. We shall see the complete logic in Chapter 3. 

We will study strains again in Chapter 9, on strain transformation which relates strains in different coordinate systems. 
This is important as both experimental measurements and strains analyses are usually performed in a coordinate system cho-
sen to simplify calculations. Developing a discipline of drawing deformed shapes has the same importance as drawing a free-
body diagrams for calculating forces. These drawing provide an intuitive understanding of deformation and strain, as well as 
reduce mistakes in calculations.

(a) (b)

  Figure 2.28 Deformation of a grid obtained from optical Moiré interferometry.
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POINTS AND FORMULAS TO REMEMBER

• The total movement of a point with respect to a fixed reference coordinate is called displacement.
• The relative movement of a point with respect to another point on the body is called deformation.
• The displacement of a point is the sum of rigid body motion and motion due to deformation.
• Lagrangian strain is computed from deformation by using the original undeformed geometry as the reference geometry.
• Eulerian strain is computed from deformation by using the final deformed geometry as the reference geometry.

•   (2.1)   (2.2)   (2.3)

• where ε is the average normal strain, L0 is the original length of a line, Lf  is the final length of a line, δ  is the deformation 
of the line, and uA and uB are displacements of points xA and xB, respectively. 

• Elongations result in positive normal strains. Contractions result in negative normal strains.
•  (2.4)

where α is the final angle measured in radians and  is the original right angle.

• Decreases in angle result in positive shear strain. Increases in angle result in negative shear strain.
• Small-strain approximation may be used for strains less than 0.01. 
• Small-strain calculations result in linear deformation analysis.
• Small normal strains are calculated by using the deformation component in the original direction of the line element, 

regardless of the orientation of the deformed line element.
• In small shear strain (γ   ) calculations the following approximation may be used for the trigonometric functions:
•
• In small strain,

•  (2.7)
• where DAP is the deformation vector of the bar AP and iAP is the unit vector in the original direction of the bar AP. 
• The same reference point must be used in the calculations of the deformation vector and the unit vector. 

•     

• where u, v, and w are the displacements of a point in the x, y, and z directions, respectively. 
• Shear strain is symmetric.
• In three dimensions there are nine strain components but only six are independent.
• In two dimensions there are four strain components but only three are independent.
• If u is only a function of x,

 (2.13)

ε
Lf L0–

L0
----------------= ε δ

L0
-----= ε

uB uA–
xB xA–
------------------=

γ π 2⁄ α–=

π 2⁄

γtan γ≈ γsin γ≈ γcos 1≈

δ DAP i AP⋅=

εxx
Δu
Δx
-------= γxy γyx

Δu
Δy
------- Δv

Δx
-------+= =

εyy
Δv
Δy
-------= γyz γzy

Δv
Δz
------- Δw

Δy
--------+= =

εzz
Δw
Δz
--------= γzx γxz

Δw
Δx
-------- Δu

Δz
-------+= =

Average strain

(2.9a)
through
(2.9i)

εxx x∂
∂u= γxy γyx y∂

∂u
x∂

∂v+= =

εyy y∂
∂v= γyz γzy z∂

∂v
y∂

∂w+= =

εzz z∂
∂w= γzx γxz x∂

∂w
z∂

∂u+= =

Strain at a point

(2.12a)
through
(2.12f)

εxx
du x( )

dx
--------------=
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