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Inelastic Structural Behavior

The learning objectives of this chapter are:
• Understand the incorporation of thermal and initial strains in the theory and analysis of axial 

members.
• Understand the analysis techniques for incorporating elastic-perfectly plastic material behav-

ior in axial members, circular shafts, and symmetric beams.
• Understand the incorporation of non-linear material models into the basic simplified theories 

on structural members. 

 The following assumptions regarding material models will be dropped.

Assumption 5: There are no inelastic strains.
Assumption 6: Material is elastic. 
Assumption 7: Stress and strains are linearly related.
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Effects of Temperature

• No thermal stresses are produced in a homogenous, isotropic, unconstrained body due to uni-
form temperature changes.

N
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�

Normal strain �

Test performed at T0 � �T 

Test performed at T0 

�

� �T

O O1

E
�

ε σ
E--- αΔT+=

εxx σxx ν σyy σzz+( )–[ ] E⁄ α ΔT+=

εyy σyy ν σzz σxx+( )–[ ] E⁄ α ΔT+=

εzz σzz ν σxx σyy+( )–[ ] E⁄ α ΔT+=
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 C5.1 The stress at a point, material properties, and change in temperature are as given below. 
Calculate εxx, εyy, γxy, εzz, and σzz (a) assuming plane stress, and (b) assuming plane strain.

σxx 300 MPa C( )= σyy 300 MPa T( )= τxy 150 MPa=

G 15 GPa= ν 0.2= α 26.0μ Co⁄= ΔT 75oC=
August, 2012 1-3
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Initial strain in axial members

Examples of initial strain & stresses. 
Tightening a nut pretensions the bolt. 
Tolerances during assembly may introduce strains and stresses in some members.
Steel bars may be prestressed in reinforced concrete to introduce residual stresses.

For thermal strains 

Assume an initial strain of εo

Kinematics: 

Stresses:  or 

Internal Axial Force: 

Assume material homogeneity across the cross-section and εo is uniform.

 

 

 Assumptions 9 through 11 are assumed valid. N, E and A are constant between x1 and x2 

Assume  εo also does not change with x 

  or 
• Pre-strains (stresses) can be analyzed by using εo as negative to the actual initial strain.
•  δ is the deformation of the bar in the undeformed direction. 
• If N is a tensile force then δ is elongation.
• If N is a compressive force then δ is contraction. 
• The sign of εoL must be consistent with the force N shown on the free body diagram.
• Deformation of a member shown in the drawing of approximate deformed geometry must be 

consistent with the internal force in the member that is shown on the free body diagram.
• No thermal stresses are produced in statically determinate structures.
• In displacement method displacements of points or deformation members are treated as 

unknowns. 
• In force method reaction forces or internal forces are treated as unknowns.

εo αΔT=

εxx xd
du x( )=

εxx
σxx
E-------- εo+ xd

du= = σxx E xd
du εo–⎝ ⎠

⎛ ⎞=

N σxx Ad
A
∫=

N E xd
du Eεo–⎝ ⎠

⎛ ⎞ Ad
A
∫ xd

du E Ad
A
∫ Eεo Ad

A
∫– xd

duEA EAεo–= = =

xd
du N

EA------- εo+= σxx
N
A----=

u2 u1–
N x2 x1–( )
EA-------------------------= εo x2 x1–( )+ δ NL

EA-------- εoL+=
August, 2012 1-4
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General Procedure for Indeterminate Structure 
The procedure outlined can be used for solving statically indeterminate structure problems by 
either the force method or by the displacement method.

1. If there is a gap, assume it will close at equilibrium.
2. Draw free-body diagrams, noting the tensile and compressive nature of internal forces. 

3. Write equilibrium equations relating internal forces to each other.

or
Write internal forces in terms of reaction forces using equilibrium equations.

4. Draw an exaggerated approximate deformed shape, ensuring that the deformation is consis-
tent with the free body diagrams of step 2. Write compatibility equations relating deformation 
of the bars to each other.

or
Write compatibility equations in terms of unknown displacements of points on the structure, if 
displacement method is to be used.

5. Write internal forces in terms of deformations using  ensuring consistency in 

sign for the three terms. 

6. Solve the equations of steps 3, 4, and 5 simultaneously for the unknown.

7. Check whether the assumption of gap closure in step 1 is correct.

δ NL
EA-------- εoL+=
August, 2012 1-5
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 C5.2 The rigid bar in Fig. C5.2 is horizontal when the unit is put together by finger-tightening 
the nut. The pitch of the threads is 0.125 inch. Develop a table in steps of quarter turn of the nut 
that can be used for prescribing the pre-tension in bar B. Maximum number of quarter turns is 
limited by the yield stress.

 C5.3 Determine the axial stress in bar A of problem C5.2 assuming that the nut is turned 1 full 
turn and the temperature of bar A is decreased by 50oF. The coefficients of thermal expansion for 
bar A is αst = 22.5 μ / oF.

A B

Rigid

5 in 15 in

50 in

  Fig.  C5.2

Bar A Bar B

Modulus of Elasticity 10,000 ksi 30,000 ksi

Yield Stress 24 ksi 30 ksi

Area of cross-section 0.5 in2 0.75 in2
August, 2012 1-6
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 Class Problem 5.1

Write equilibrium equations, compatibility equations, and    for each 

member using the given data.   No need to solve.
Data: ΔT = 100oFα =  20 μ/oF E = 10,000 ksi A = 5 in2 

Use displacement of point E  as unknown.

δ NL
EA-------- εoL+=

A
B

C
D

E
P = 20 kips.

40 in

10 in

20 in

10 in

40 in

Rigid

αΔTL 0.08=

EA 50 000,=

L EA⁄ 0.8 10 3–( )=

δE
August, 2012 1-7
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 Class Problem 5.2

Write equilibrium equations, compatibility equations, and    for each 

member using the given data. No need to solve.Use reaction force at A (RA) as unknown. 
ΔT = 100oF α =  20 μ/oF E = 10,000 ksi A = 5 in2 

δ NL
EA-------- εoL+=

A B
12.5 kips 17.5 kips

17.5 kips

C D

18 in

d � 3 in

24 in 36 in
0.01 in

αΔT 2 10 3–( )=

EA 50 000,=
August, 2012 1-8
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Non-linear material models
• Elastic-perfectly plastic in which the non-linearity is approximated by a constant. 
• Linear strain hardening model in which the non-linearity is approximated by a linear function.
• Power law model in which the non-linearity is approximated by one term non-linear function.

Elastic-perfectly plastic

• The set of points forming the boundary between the elastic and plastic region on a body, is 
called the elastic-plastic boundary. 

1. On the elastic-plastic boundary the strain must be equal to the yield strain, and stress equal to 
yield stress.

2. Deformations and strains are continuous at all points including points at the elastic plastic 
boundary.

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield
�

 �
 E

�

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield

� 
�

 G
�

σ

σyield
Eε

σ– yield⎩
⎪
⎨
⎪
⎧

=

ε εyield≥

εyield– ε εyield≤ ≤

ε ε– yield≤

τ

τyield
Gγ

τ– yield⎩
⎪
⎨
⎪
⎧

=

γ γyield≥

γyield– γ γyield≤ ≤

γ γ– yield≤
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Linear strain hardening material model

Power Law

� � �yield � E2(� � �yield)

� � ��yield � E2(� � �yield) � � ��yield � G2(� � �yield)

�

�

�yield

�yield

�yield

�yield

�
 �

 E
1
�

�

�

�yield

�yield

�yield

�yield

� 
�

 G
1
�

� � �yield � G2(� � �yield)

σ

σyield E2 ε εyield–( )+

E1ε

σ– yield E2 ε εyield+( )+⎩
⎪
⎨
⎪
⎧

=

ε εyield≥

εyield– ε εyield≤ ≤

ε εyield≥

�

�

Strain hardening
0 � n � 1

Strain softening
n � 1

n � 1

� � �E(��)n

� � E�n

0 � n � 1

�

�

Strain hardening
0 � n � 1

Strain softening
n � 1

n � 1

� � �G(��)n

� � G�n

0 � n � 1

σ
Eεn

E ε–( )n–⎩
⎨
⎧

= ε 0≥
ε 0<
August, 2012 1-10
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Elastic-perfectly plastic axial members
• The plot of the applied force vs. the deflection at that point in the direction of the applied force 

is called the load deflection curve.
• The load at which the structure exhibits unbounded deformation is called the collapse load.

Elastic: 

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield

�
 �

 E
�

�

�

�yield

�yield

�yield

�yield

� � ��yield

� � �yield

� 
�

 G
�

δ NL
EA--------=
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 C5.4 A force F is applied to the roller that slides inside a slot as shown in Fig. C5.4. Both bars 
have an area of cross-section of A = 100 mm2, modulus of elasticity E = 200 GPa, and a yield 
stress of 250 MPa. Bar AP and BP have lengths of LAP= 200 mm and LBP= 250 mm respectively. 
Draw the load deflection curve and determine the collapse load.

F

110°

P

A

B

  Fig.  C5.4
August, 2012 1-12



M. Vable Intermediate Mechanics of Materials: Chapter 5
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
EE

M
41

50
/S

lid
in

te
r_

m
om

_s
lid

es
.h

tm
l

 C5.5 Three steel (E = 200 GPa, σyield = 200 MPa) bars shown in Fig. C5.5 have lengths of 
LA=4 m, LB=3 m and LC= 2 m respectively. All bars have the same cross-sectional area of 
  500 mm 2. Draw the load deflection curve for the structure and determine the collapse load.

A

50�

5 m

4 m 3 m

0.0009 mD E

C

B

F

O
Rigid

5

  Fig.  C5.5
August, 2012 1-13
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Elastic-perfectly plastic circular shafts

• Before yield stress the material stress-strain relationship is represented by Hooke’s Law and 
after yield stress the stress is assumed to be constant.

• To determine the strain (deformation) in the horizontal portion AB of the curve we have to use 
the requirement that deformation must be continuous. 

• Unloading (elastic recovery) from a point in the plastic region is along line BC which is paral-
lel to the linear portion of the stress strain curve OA.

Kinematic: 

Elastic: 

At the elastic-plastic boundary: 

If  is not a function of x:  

Stress distribution:

Internal equivalent torque:

�

�

�yield��

�yield��

�yield��

�yield��

� � ��yield��

� � �yield��

� 
�

G
�

U
nl

oa
di

ng

A B

O
C

γxθ ρ xd
dφ x( )=

τxθ
Tρ
J------= φ2 φ1–

T x2 x1–( )
GJ-------------------------=

γyield ρy xd
dφ=

ρy φ2 φ1–
γyield
ρy

------------ x2 x1–( )=

τ

τyieldρ
ρy

---------------- ρ ρy≤

τyield ρ ρy≥⎩
⎪
⎨
⎪
⎧

=

T ρτxθ Ad
A
∫=
August, 2012 1-14
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 C5.6 The shaft shown in Fig. C5.6 made from elastic - perfectly plastic material has a shear 
yield stress of 200 MPa and a shear modulus of G = 80 GPa. The plastic zone in section AB is 25 
mm deep. Determine: (a) the torque Text (b) the rotation of section at B. (c) the residual stress in 
AB when the external torque Text is removed.

  Fig.  C5.6
1.5 m

3 m

Text

B
A

C
100 mm
August, 2012 1-15



M. Vable Intermediate Mechanics of Materials: Chapter 5
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
EE

M
41

50
/S

lid
in

te
r_

m
om

_s
lid

es
.h

tm
l

 Class Problem 5.3 

A shaft made from elastic-perfectly plastic. Due to the action of the torque the depth 
of plastic zone in AB was 1 in. Draw the shear strain and shear stress distribu-
tion in section AB and BC.

Data: 

Section AB 

Section BC 

γy 1.25 10 3–( )= τy 15 ksi= G 12 000 ksi,=

Text

A C 3 inB

50 in 70 in

ρ

γxθ

ρ

τxθ

ρ

γxθ

ρ

τxθ
August, 2012 1-16
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Elastic-perfectly plastic beams

• Before yield stress, the material stress-strain relationship is represented by Hooke’s Law and 
after yield stress, the stress is assumed to be constant.

• To determine the strain (deformation) in the horizontal portion AB of the curve we have to use 
the requirement that deformation must be continuous. 

• Unloading (elastic recovery) from a point in the plastic region is along line BC which is paral-
lel to the linear portion of the stress-strain curve OA.

Stress distribution and changes in neutral axis location

• The moment at which the maximum bending normal stress just reaches the yield stress is 
called the elastic moment and will be designated by Me.

• The internal moment for which the entire cross-section becomes fully plastic is called the 
plastic moment and will be designated by Mp

• The ratio of the plastic moment to the elastic moment is called the shape factor for the cross-
section and will be designated by f. 

B

O
C

A

Unl
oa

di
ng

� �
 E

�

�

�

�yield

�yield

�yield

�yield
� � ��yield

� � �yield

y y

�
a

a

�yield

�yield

A

B

z

A

B

C

y

z

y

�
a

a

�yield

�A

( ) (b)

Symmetric Stress Distribution Asymmetric Stress Distribution

N σxxdA
A
∫ 0= = Mz yσxxdA

A
∫–= f Mp Me⁄=
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 C5.7 An elastic - perfectly plastic material has a yield stress of σyield = 40 ksi. Point A in Fig. 
C5.8 is at yield stress due to bending of the beam. (a) Determine the location of the neutral axis 
assuming it is in the web.(b) The applied moment that produced the state of stress. 

 C5.8 For the cross-section shown in Fig. C5.8 determine the shape factor

0.5 in

0.5 in

0.5 in

4 in

8 in

7 in

A  Fig.  C5.8
August, 2012 1-18
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 Class Problem 5.4

Point A on the cross-section shown just reaches yield stress in compression at a 
given load. Parameter ‘a’ represent the location of the elastic plastic boundary from 
the neutral axis, which we assume is in the web. Sketch the strain and stress dis-
tribution as a function of y. Write coordinates at each line.
Data:  

.
σyield 30 ksi= εyield 0.001= E 30 000 ksi,=

2 in

1 in

9 in

4 in
A

εxx

y

σxx

y

August, 2012 1-19
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Non-linear models in structural members

Kinematics

Static equivalency (Internal Forces and Moments)

Axial Bending Torsion

Axial Bending Torsion

εxx xd
du x( )= εxx y

x2

2

d
d v x( )–= γxθ ρ xd

dφ x( )=

σ
Eεn

E ε–( )n–⎩
⎨
⎧

= ε 0≥
ε 0<

τ
Gγn

G γ–( )n–⎩
⎨
⎧

= γ 0≥
γ 0<

N σxx Ad
A
∫= N σxx Ad

A
∫ 0= =

Mz yσxx Ad
A
∫–=

Vy τxy Ad
A
∫=

T ρτxθ Ad
A
∫=
August, 2012 1-20
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 C5.9 A circular solid shaft of radius R is made from a non-linear material that has a shear stress-
shear strain relationship given by τ = Κ γ0.4. Show

where τmax is the maximum shear stress at a section, T is the internal torque at the section, φ2 , and 
 φ1 are the rotation of section at x1 and x2.

τmax 0.5411 T
R3------= φ2 φ1– 0.2154 x2 x1–( ) T

KR3.4-------------⎝ ⎠
⎛ ⎞ 2.5

=

August, 2012 1-21
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 C5.10 The stress-strain curve in tension, for a material is given by . For a rectangular 
cross-section show that the bending normal stress is given by:

σ Kε0.5=

σxx

5 2–
bh2------------- yh---⎝ ⎠

⎛ ⎞ 0.5
Mz

5 2
bh2---------- y–

h-----⎝ ⎠
⎛ ⎞ 0.5

Mz
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
y 0>

y 0<
h

b

y

z
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	Initial strain in axial members
	Examples of initial strain & stresses.
	For thermal strains
	Assume an initial strain of eo
	Kinematics:
	Stresses: or
	Internal Axial Force:
	Assume material homogeneity across the cross-section and eo is uniform.
	Assumptions 9 through 11 are assumed valid. N, E and A are constant between x1 and x2
	Assume eo also does not change with x
	or
	General Procedure for Indeterminate Structure
	The procedure outlined can be used for solving statically indeterminate structure problems by either the force method or by the displacement method.
	1. If there is a gap, assume it will close at equilibrium.
	2. Draw free-body diagrams, noting the tensile and compressive nature of internal forces.
	3. Write equilibrium equations relating internal forces to each other.

	or
	4. Draw an exaggerated approximate deformed shape, ensuring that the deformation is consistent with the free body diagrams of step 2. Write compatibility equations relating deformation of the bars to each other.

	or
	5. Write internal forces in terms of deformations using ensuring consistency in sign for the three terms.
	6. Solve the equations of steps 3, 4, and 5 simultaneously for the unknown.
	7. Check whether the assumption of gap closure in step 1 is correct.

	C5.2 The rigid bar in Fig. C5.2 is horizontal when the unit is put together by finger-tightening the nut. The pitch of the threa...
	Fig. C5.2

	C5.3 Determine the axial stress in bar A of problem C5.2 assuming that the nut is turned 1 full turn and the temperature of bar A is decreased by 50oF. The coefficients of thermal expansion for bar A is ast = 22.5 m / oF.

	Class Problem 5.1
	Write equilibrium equations, compatibility equations, and for each member using the given data. No need to solve.
	Data: DT = 100oF a = 20 m/oF E = 10,000 ksi A = 5 in2
	Use displacement of point E as unknown.

	Class Problem 5.2
	Write equilibrium equations, compatibility equations, and for each member using the given data. No need to solve.Use reaction force at A (RA) as unknown.
	DT = 100oF a = 20 m/oF E = 10,000 ksi A = 5 in2


	Non-linear material models
	Elastic-perfectly plastic
	1. On the elastic-plastic boundary the strain must be equal to the yield strain, and stress equal to yield stress.
	2. Deformations and strains are continuous at all points including points at the elastic plastic boundary.

	Linear strain hardening material model
	Power Law

	Elastic-perfectly plastic axial members
	Elastic:
	C5.4 A force F is applied to the roller that slides inside a slot as shown in Fig. C5.4. Both bars have an area of cross-section...
	Fig. C5.4

	C5.5 Three steel (E = 200 GPa, syield = 200 MPa) bars shown in Fig. C5.5 have lengths of LA=4 m, LB=3 m and LC= 2 m respectively...
	Fig. C5.5


	Elastic-perfectly plastic circular shafts
	Kinematic:
	Elastic:
	At the elastic-plastic boundary:
	If is not a function of x:
	Stress distribution:
	Internal equivalent torque:
	C5.6 The shaft shown in Fig. C5.6 made from elastic - perfectly plastic material has a shear yield stress of 200 MPa and a shear...
	Fig. C5.6

	Class Problem 5.3
	A shaft made from elastic-perfectly plastic. Due to the action of the torque the depth of plastic zone in AB was 1 in. Draw the shear strain and shear stress distribution in section AB and BC.
	Data:
	Section AB
	Section BC


	Elastic-perfectly plastic beams
	Stress distribution and changes in neutral axis location
	C5.7 An elastic - perfectly plastic material has a yield stress of syield = 40 ksi. Point A in Fig. C5.8 is at yield stress due ...
	C5.8 For the cross-section shown in Fig. C5.8 determine the shape factor
	Fig. C5.8


	Class Problem 5.4
	Point A on the cross-section shown just reaches yield stress in compression at a given load. Parameter ‘a’ represent the locatio...
	Data:


	Non-linear models in structural members
	Kinematics
	Axial
	Bending
	Torsion

	Static equivalency (Internal Forces and Moments)
	Axial
	Bending
	Torsion
	C5.9 A circular solid shaft of radius R is made from a non-linear material that has a shear stress- shear strain relationship given by t = K g0.4. Show
	where tmax is the maximum shear stress at a section, T is the internal torque at the section, f2 , and f1 are the rotation of section at x1 and x2.

	C5.10 The stress-strain curve in tension, for a material is given by . For a rectangular cross-section show that the bending normal stress is given by:



