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Summary of Concepts and Formulas

I. General Principles
1. Statics

(a) External equilibrium (loads, reactions): > F =0, > M =0
(b) Internal forces (free-body diagram)
(c) Stress

Or Ozy Tzz
1. stress tensor | 7,, Oy Ty
Tz  Tzy P
ii. Moment equilibrium: 7., = 7,,, etc.
iii. Mean stress o9 = %(O’w + 0y, + 0.); pressure p = —oy
iv. Equilibrium of thin shells of revolution: (cylindrical) o, = pR/2t, 0y = pR/t, 0, =~ 0;
(spherical) 0y = 04 = pR/2t, 0, ~ 0.

2. Geometry

(a) Displacement field: u(x,y, z), v(z,vy, 2), w(z,y, )
(b) Strain
ou ou Ov
i. ¢, = — (longitudinal), v,, = 7,» = =— + — (shear), etc.
i 5 (longitudinal), v, = 7, o o ( r)
€x  3Vey ez
.. . 1 1
1. strain tensor | 5Vye €y 3y
Ver Ve Es
3. Constitutive Properties

(a) General: relation between stress, strain and temperature

(b) Linear elastic isotropic

- E
i. general: g, = E[O'x —voy, — vo,] + aAT ete., vy = % etc.; G = 201 7)

5 (€2 +vgy) ete.

ii. plane stress (in zy-plane): 0, =7, = 7,, =0, 0, = T2

E
(1+v)(1—-2v)
(c) Elastic-perfectly plastic: stress-strain curve becomes horizontal after yield, unloading is

elastic.

ili. plane strain: €, = v,, = 7., =0, 0, = (1 —v)e, + vey| ete.



(d) Yield stress: uniaxial oy, shear 7y,

(e) Yield criteria

i.

ii.

) 1
Tresca: [T|max < Typ = 50yp

Mises, 3[(0z — 0y)? + (0y — 0.)? + (0. — 04)?] + 3(72, + 72, + 72,) < 02, = 372,

4. Work, energy

(a) Global work-energy relation: (elastic) W = U, W = U; (linear elastic) U = U

1.

11.

W =[FdAor [ Mde,
W = [AdF or [0dM

(b) Linear elastic

i.

ii.

Local: L(oue, + 0yey + 0262 + TuyVay + Ty Vyz + TeaVew) = Uo(Exs - - .) = Up(0s, - . .);
Global: U = [, U,dV (strain energy), U = [;, U,dV (complementary energy)

(c) Castigliano’s theorems for elastic systems

i.

11.

ou ou
st eorem: I on Mi= 3¢
oU oU

(d) Reciprocal relations (linear elastic)

i.

ii.

Finite number of degrees of freedom: U = %Z Zk‘iinAj, ki; = kj; ([kij] = stiffness
(]
matrix, {A;} include displacements and rotations)
Finite number of loads: U = DN fiiFiE;, fij = fii ([fi] = flexibility matrix, {F;}
(2

include both forces and moments)

(e) Potential energy: I1 = U + 2

1.

ii.

Q=—-(FA+ M0) or — fOL qu dx etc.: potential energy of applied loads

Minimum potential energy: I = 0 for equilibrium (finite number of degrees of
freedom: OI1/0A; = 0, 0I1/06; = 0)

5. Transformation of axes in two dimensions

(a> VeCtOI'S: F:l?/ = ey -F’ etC.7 <Fx/> — |: COSQ Sln9:| <FLE>

(b) Tensors: {sz

E, F

Yy Yy
)t O'x/yl:| B { cos 0 sinq [am axy] {cos@ —sin@}
| —sinf cosf sinf  cosf

—sinf@ cosd

Oxry’ Oy'y Ozy Oyy

where 0., = 04, 05y = T4y etc.

1.
11.
1il.

1v.

Oy =09 = 30y + 0y) + (04 — 0y) 0520 + T4, SN 20, 0y = Op iy /o
Ty = Tyry = —1(0p — 0y) sin 20 + 7, cos 26

For strains use €,, = ¢, Eay = 37Vzy €LC.

Chain rule for derivatives: — Oz g Oy 9

0r  ovox | ow oy ¢
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V.

Strain rosettes: €, = 1[(€; +¢&y) + (65 — €y) €08 20; + Y4y 8in 26, i = 1,2, 3; solve for
617 gya %y

(c) Principal values

1.

ii.

111.

dO'x/

Definition: o, = 0y and o,y = 05 when 7./, = 0; also o 0; convention: oy > 0y
(note that oy = oy if and only if 0, = ¢, and 7., = 0)

Principal angles: tan 26, = 27,,/(0, — 0y)

Principal values: 015 = L(0, + 0,) £ \/[%(gm — 0,2+ Tﬁy

(d) Maximum shear

1.
11.
1il.

1v.

dO 1oy
Definition: TV —

do

Maximum shear angle: tan20; = —(o, — 0,,) /274,

Maximum shear: Tyax = \/[é(ax —0oy)]?+ 72, = o1 — 09)

Relation to principal angle: 8, — 610 = £7/4

(e) Mohr’s circle

i.

ii.
111.

v.

To draw: in the oy-7y plane, mark the points (o, 7, and (o,, —74y), and draw the
line between them. The intersection of this line with the oy-axis, i.e. the point
(L[oy + 0y],0), is the center of the circle.

The radius is r = Tyax.
The circle intersects the oyp-axis at (¢1,0) and (02, 0).

Rotation on the circle is twice the physical rotation and in the opposite direction.

6. Transformation of axes in three dimensions

(a) Principal values and principal directions

i.

ii.

1il.

(03 — 0Ny + Tuyny + Tyon, = 0,
In order to solve the system ToyNa + (0 — a)ny + 7y.n, =0, », it is necessary
TuzNg + Tysy + (0, —0)n, =0

Op — O Tay Tuz
that | 7 Oy —0 Tyz = (0. This is a cubic equation in ¢ whose roots o,
Tz Tyz 0, — 0

09, 03 are the principal values (eigenvalues), and the vector n = in, + jn, + kn, for
each of these values (eigenvector) gives the direction of the corresponding principal
axis.

If one of the principal axes is known, two-dimensional analysis can be used to find
the other two.

When all three principal values are known, Mohr’s circles can be drawn. The maxi-
mum shear is the radius of the largest Mohr’s circle.

(b) Yield criteria in terms of principal stresses (no numbering convention in terms of value)

i.

ii.

Tresca: max(|oy — o3|, |09 — 03], |01 — 03]) = 273,

Mises: (01 — 02)* + (02 — 03)* + (01 — 03)* = 207,
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I1. Slender Bodies

1. Internal Forces

a) Axial force: P = [,0,dA

b) Torque (cylindrical shaft): T = [, T,or dA

(c) Bending moment: M, = — [, 0,ydA, M, = [,0,2dA
(d) Shear force: V, = — [4 Tpy dA, V, = [4 Tur dA

2. Elastic energy

(a) Strain energy: U’ = [, U,dA, U = [ U dx
(b) Complementary energy:U’ = [, U,dA, U = [} U’ dx

3. Axial loading

(a) General

du
dr
ii. Elongation AL = u(L) — u(0) = [\ edx
iii. Resultant force P = [, 0dA

i. Strain-displacement relation: ¢ = ¢, =

dP
iv. Equilibrium (differential equation): T +p =0 (p= distributed axial load per unit
T
length)
v. Work of virtual load: FA = J& Pedx (= PAL if uniform), where P = bar force
due to virtual load F' conjugate to A

(b) Linear elastic

i. Hooke’s Law ¢ = o /FE
ii. Elongation AL = [{(P/EA)dz ( = PL/EA if uniform)
iii. Strain energy: U’ = 1([, Fe?*dA)dzx (= 1EAe?, U = FA(AL)?/2L if uniform)
iv. Complementary energy: U’ = [,(0?/E)dA (= P%/2EA if homogeneous, U =
P?L/2E A if uniform, FA/L = axial spring constant)

v. Work of virtual load: FA = [}(PP/EA)dxz (= PPL/EA if uniform)
4. Torsion

(a) General (cylindrical shaft)

d
i. Strain-displacement(twist) relation: v = v,y = r¢’ (¢' = d(b)
z
ii. Total rotation A¢ = ¢(L) — ¢(0) = [F ¢ dz
iii. Resultant torque T' = 27 [; 71 dr
aT
iv. Equilibrium (differential equation): — + ¢ = 0 (¢ = distributed torque per unit

dz
length)



v. Work of virtual load: M@ or FA = fOL T dz
(b) Linear elastic (cylindrical shaft)

i.
il.
iii.
iv.

V.

vi.

vii.

Hooke’s Law v = 7/G

Torque T = GJ¢', J = [,r*dA = 7(c* — b*)/2 (c = outer radius, b = inner radius)
Stress 7 =1Tr/J

Total rotation A¢ = [1(T/G.J)dz

Strain energy: U’ = 1 [, Gy2dA (= 1GJ¢'” if homogeneous, U = GJ(A$)? /2L if
uniform, GJ/L = torsional spring constant)

Complementary energy: U’ = [,(72/2G) dAdz (= T?/2GJ if homogeneous, U =
T?L/2GJ if uniform)

Work of virtual load: M@ = [F(TT/GJ)dz (= TTL/GJ if uniform)

(c) Elastic-perfectly plastic (cylindrical shaft)

1.
ii.
1il.

1v.

V.

Yield torque: Ty, = 7y J/c

Ultimate torque: Ty, = 7y, [, rdr = (27/3)(c* — b%)

Solid shaft: T'=T,[1 — (1/4)(r,/¢)?], Tu = (4/3)Ty,

In unloading strain change is linear, leading to residual stress Ties = Tinit — Tinis?/J,

and residual twist ¢/, = (d¢/d2)init — Tinit/GJ -

res

At elastic-plastic interface: v = vy, = 1p¢’

(d) Thin-walled closed tubes

1.
11.

1ii.

v.

V.

5. Bending

Shear Flow ¢ = 7t = constant

Equilibrium T = § rqds = 2¢@ (where @ = area enclosed by mean curve of tube)
Complementary elastic energy U’ = 1 §(72/G)tdsdz = 1¢* §(1/Gt)ds

Twist o = 3T/ (@) §(1/Gt)ds

Torsional stiffness: if G = constant, J =T/G¢' = (2@)?/ $(1/t)ds

(a) General (loading in xy-plane)

i.

ii.

111.

Geometry: assume section symmetric about y-axis, origin of yz axes at the centroid
of the section

Kinematics

A. Strain-curvature relation: €, = —(y — yo)x (where yo is the y-coordinate of the
neutral axis)

B. Curvature-displacement relation: k ~ v”,

C. Rotation-displacement relation: 6 =~ v’
s . . . av dM
Equilibrium (differential equations) il Ul V (where V. =1V, M = M,,
x x
q = transverse load per unit length)



1v.

Work of virtual force: FA = J& Mk dz (M(z) = bending moment due to virtual
load F', which may be either a force or a moment, conjugate to the displacement
[rotation] A)

(b) Elastic pure bending about z-axis (V =0, P =0, M, = 0)

i.
ii.

111.

v.

V.
vi.
Vil.

viii.

Hooke’s Law 0 = Ee

Moment M = M, = Elk, (transformed sections) M = E.lk

Second moment of area (“moment of inertia”): I = I, = [, y*dA (y measured from
centroid); rectangle I = bh3/12, circle I = mc/4; for sections composed of simple
subsections use parallel-axis theorem I = I, + Ad* (where I, is calculated about the
centroid of the subsection and d is the y-distance from there to the centroid of the
whole section)

Neutral axis (3 F, = 0): yo = [4 EydA/ [, EdA (= 0 if homogeneous, i.e. E =
constant)

Stress 0 = —Fk(y — yo) (= —My/I if homogeneous)

Strain energy: U’ =L [, Ee? dA (= JEIk? if homogeneous)

Complementary energy: U’ = [,(0%/2F)dA (= M?/2EI if homogeneous)

Work of virtual load: FA or M0 = [F(MM/EI)dx

(c) Elastic bending with shear

1.

11.

Shear flow: ¢ =VQ/I, Q = [, ydA =yA
Average shear stress: 7 & ¢/t; rectangular: 7(y) = (V/2D)[(h/2)? — ¥?], Tmax =
3V/2A; I-beam: Typax = V/Agen

(d) Elastic bending with axial loads

i.

ii.

Tensile P, use superposition for stresses (o0 = P/A — My/I)
Compressive P, use superposition for stresses; check for buckling

(e) Elastic-perfectly plastic pure bending about z-axis

1.

11.

1ii.

1v.

vi.

Initial yield: My, = oyp! /Ymax

Rectangular section: My, = o,,bh?/6, M = M,[1 — (1/3)(yp/(h/2))?], M, =
(3/2) My,

Neutral axis: T = C, (ultimate state) [, o dA = [, 05 dA; Ao = Ap = 1A if

T _ C __
yp = Typ = Oyp

Ultimate moment: Tly + Cle = My; if o), = 05 = oy, My = 0,,Ad/2, where d is
the distance between the centroids of the half-areas

Unloading: strain change is linear, resulting in residual stress ores = Oinit + Minity/ 1
and residual curvature Kres = Kinit — Minit/E 1.

At elastic-plastic interface: € = ey, = —ypk

(f) Singularity functions

1.

11

x, x>0

0, <0

r—a)", Tr>a
0, r<a

Ramp function: <> = {

General (n > 0): <z —a>" = { (



iii. Special: Heaviside H(z—a) = (d/dx)<xz—a>, Dirac delta §(x—a) = (d/dx)H(x—a),
doublet ¢'(z — a) = (d/dx)é(z — a).
iv. Integration rules: [¢'(z —a)dr = 0(z —a) +C, [d(z —a)de = H(x — a) + C,
JH(z —a)de =<x—a>+C, [<z—a>"de =<z —a>""/(n+1)+C
(g) Deflections due to elastic bending
i. Differential equation: (E1v")" = q or EIv" = g for constant ET

ii. Boundary conditions
A. Fixed (built-in): § =0, v =0,
Pin or roller: M = EIv" =0, v =0,
Free: M = EIv" =0, V = EIv" = 0;
Intermediate roller support: v =0 (v and v" are continuous),

=9 aw

Intermediate hinge: M = EIv” =0 (v is continuous)

FL?/3EI end—loaded cantilever
iii. Particular results: |v]ma = { FL*/48E1 center—loaded simple beam
5wL*/384E1 uniformly loaded simple beam

6. Elastic stability and buckling

(a) General

i. Potential energy: II = U + ), where 2 = —PA (A = displacement conjugate to P)

d
ii. Equilibrium (single-degree-of-freedom system): 0 0
2 2
iii. Equilibrium is stable when 02 > 0 and unstable when 02 < 0, neutral (limiting
d*11
condition) when Tz 0

(b) Linearized

i. Critical load P, is (a) the value of P allowing non-zero solutions of the equilibrium
equation (initially perfect system), (b) the asymptotic value of P as the deflection
grows large (initially imperfect system)

ii. Multi-degree-of-freedom systems: critical loads are eigenvalues of equilibrium equa-
tions, buckling modes are eigenvectors.

(c) Elastic column

i. Linearized equilibrium: (general) (EIv")" + Pv"” = 0; (constant EI and P) EIv"" +
Pv" =0

ii. General solution (constant EI and P): v = A 4+ Bx + C cos Az + D sin Az, where

A =/P/EI; find \,L (n=1,2,...) such that the boundary conditions are satisfied
with A, B, C, D not all zero

iii. Critical loads for uniform columns: P, = NE[ = n?EI/L?, where L, = 7/); is the
effective length (length of equivalent pinned-pinned column)
A. Pinned-pinned (Euler): P, = n*EI/L? = Pg, L. = L



B. Clamped-free (cantilever): P.. = Pg/4, L. = 2L
C. Pinned-clamped: P.. = 2.05Pg, L. = 0.699L
D. Clamped-clamped (no sidesway): P., = 4Pg, L. = 0.5L

E. Clamped-clamped (with sidesway): P, = Pg, L. = L
2

E
iv. Critical stress oo, = Py /A = JW, where r = \/[/7

v. Elastic limit: oo = 0yp, 80 Lo /7 = (Le /7)o = T/ E /0y



