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Symmetric Bending of Beams

• A beam is any long structural member on which loads act perpendicu-
lar to the longitudinal axis.

Learning objectives 
• Understand the theory, its limitations and its applications for strength 

based design and analysis of symmetric bending of beams.
• Develop the discipline to visualize the normal and shear stresses in 

symmetric bending of beams.
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 C6.1 Due to the action of the external moment Mext and force P, the 
rigid plate shown in Fig. C6.1 was observed to rotate by 2o from the ver-
tical plane in the direction of the moment. The normal strain in bar 1 was 
found as  . Both bars have an area of cross-section of 
A = 1/2 in2 and a modulus of elasticity of E = 30,000 ksi. Determine the 
applied moment Mext and force P. 

  Fig. C6.1

ε1 2000 μ in./in.=

 

 x

y

z

 Mext
48 in.

Bar 2

Bar 1
4 in.P

2 in.
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Internal Bending Moment

•  Above equations are independent of material model as these equa-
tions represents static equivalency between the normal stress on the 
entire cross-section and the internal moment. 

• The line on the cross-section where the bending normal stress is zero 
is called the neutral axis.

• Location of neutral axis is chosen to satisfy .

• Origin of y is always at the neutral axis, irrespective of the material 
model.

Mz yσxx Ad
A
∫–=

σxx Ad
A
∫ 0=

σxx Ad
A
∫ 0=
August 2012
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 C6.2 Steel (Esteel = 30,000 ksi) strips are securely attached to a 
wooden (Ewood = 2,000 ksi) beam as shown below. The normal strain at 
the cross-section due to bending about the z-axis is  
where y is measured in inches, and the dimensions of the cross-section 
are d =2 in, hW =4 in and hS= (1/8) in. Determine the equivalent internal 
moment Mz.

  Fig. C6.2

εxx 100y– μ=

Steel

Wood

d

Wood

Steel

Steel

y

z
hw

hs

hs
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Theory of symmetric bending of beams

Limitations
• The length of the member is significantly greater then the greatest 

dimension in the cross-section. 
• We are away from the regions of stress concentration. 
• The variation of external loads or changes in the cross-sectional areas 

are gradual except in regions of stress concentration.
• The cross-section has a plane of symmetry. 
• The loads are in the plane of symmetry. 
• The load direction does not change with deformation. 
• The external loads are not functions of time.
August 2012
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Theory objectives:
• To obtain a formula for the bending normal stress σxx, and bending 

shear stress τxy in terms of the internal moment Mz and the internal 
shear force Vy. 

• To obtain a formula for calculation of the beam deflection v(x). 

The distributed force p(x), has units of force per unit length, and is con-
sidered positive in the positive y-direction. 

v

v

August 2012
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Kinematics

Assumption 1 Squashing, i.e., dimensional changes in the y-direction, is signif-
icantly smaller than bending.

Assumption 2 Plane sections before deformation remain plane after deforma-
tion.         

Assumption 3 Plane perpendicular to the beam axis remain nearly perpendicu-
lar after deformation. . 

Assumption 4 Strains are small. 

Original Grid
x

y

z

Deformed Grid

εyy y∂
∂v 0≈=⎝ ⎠

⎛ ⎞ v v x( )=⇒

u uo ψ– y=

x
y

uo

ψ

γxy 0≈

ψ ψ≈tan
xd

dv=

u y
xd

dv x( )–=
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• bending normal strain εxx varies linearly with y and has maximum 
value at either the top or the bottom of the beam.

•  is the curvature of the deformed beam and R is the radius 

of curvature of the deformed beam.
Material Model
Assumption 5 Material is isotropic.
Assumption 6 Material is linearly elastic.
Assumption 7 There are no inelastic strains.

From Hooke’s Law: , we obtain

εxx
AB1 AB–

AB
------------------------ R y–( )Δψ RΔψ–

RΔψ
-------------------------------------------= =

AB CD CD1= =

εxx
u∂
x∂

-----
x∂

∂ y
xd

dv x( )–⎝ ⎠
⎛ ⎞= =

εxx
y
R---–=

εxx y
x2

2

d

d v x( )–=

Method II

Method I

C
A

y
B1

D1

O

��

��

R �
 y

y

�u

��

B1

B2

D1

D

R

1
R--- x2

2

d

d v x( )=

σxx Eεxx= σxx Ey
x2

2

d

d v x( )–=
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Location of neutral axis

 or  or 

Assumption 8 Material is homogenous across the cross-section of the beam.

• Neutral axis i.e, the origin, is at the centroid of the cross-section con-
structed from linear-elastic, isotropic, homogenous material. 

• The axial problem and bending problem are de-coupled if the origin is 
at the centroid for linear-elastic, isotropic, homogenous material

•  bending normal stress σxx varies linearly with y and is zero at the cen-
troid.

• bending normal stress σxx is maximum at a point farthest from the 
neutral axis (centroid).

σxx Ad
A
∫ 0= Ey

x2

2

d

d v x( )– Ad
A
∫ 0= Ey Ad

A
∫ 0=

y Ad
A
∫ 0=
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 C6.3 The cross-section of a beam with a coordinate system that has 
an origin at the centroid C of the cross-section is shown. The normal 
strain at point A due to bending about the z-axis, and the Modulus of 
Elasticity are as given. 

(a) Plot the stress distribution across the cross-section. 
(b) Determine the maximum bending normal stress in the cross-section.
(c) Determine the equivalent internal bending moment Mz by integration.

εxx 200 μ=

E 8000 ksi=

1 in

4 in

1 in

z C

A

y
4 in
August 2012
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 Sign convention for internal bending moment

 

• The direction of positive internal moment Mz on a free body diagram 
must be such that it puts a point in the positive y direction into com-
pression.

Mz yσxx Ad
A
∫–=
August 2012
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Sign convention for internal shear force

• Recall Assumption 3: Plane perpendicular to the beam axis remain 
nearly perpendicular after deformation. . 

• From Hooke’s Law:
• Bending shear stress is small but not zero.
• Check on theory: The maximum bending normal stress σxx in the 

beam should be nearly an order of magnitude greater than the maxi-
mum bending shear stress τxy.

• The direction of positive internal shear force on a free body diagram is 
in the direction of positive shear stress on the surface.

Internal Forces and Moment necessary for equilibrium

γxy 0≈

τxy Gγxy=

Vy τxy Ad
A
∫=
August 2012
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 C6.4 A beam and loading in three different coordinate system is 
shown. Determine the internal shear force and bending moment at the 
section containing point A for the three cases shown using the sign con-
vention.

0.5 m 0.5 m
Ax

y

Case 1

5 kN/m

0.5 m 0.5 m

A x

y

Case 2

5 kN/m

0.5 m 0.5 m
A x

y

Case 3

5 kN/m
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Flexure Formulas

For homogenous cross-sections

• Moment-curvature equation:        

•  is the second area moment of inertia about z-axis.
• The quantity EIzz is called the bending rigidity of a beam cross-sec-

tion.

• Flexure stress formula:      

Two options for finding Mz
• On a free body diagram Mz is drawn as per the sign convention irre-

spective of the loading. 
positive values of stress σxx are tensile 
negative values of σxx are compressive. 

• On a free body diagram Mz is drawn at the imaginary cut in a direction 
to equilibrate the external loads. 

The tensile and compressive nature of σxx must be determined by inspec-
tion.

σxx Ey
x2

2

d

d v x( )–=

Mz yσxx Ad
A
∫– y Ey

x2

2

d

d v x( )– Ad
A
∫–

x2

2

d

d v x( ) Ey2 Ad
A
∫⎝ ⎠

⎜ ⎟
⎛ ⎞

= = =

Mz EIzz
x2

2

d

d v=

Izz

σxx
Mzy
Izz

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=
August 2012
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 C6.3 The cross-section of a beam with a coordinate system that has 
an origin at the centroid C of the cross-section is shown. The normal 
strain at point A due to bending about the z-axis, and the modulus of elas-
ticity are as given. 

(d) Determine the equivalent internal bending moment Mz by flexure for-
mula.

εxx 200 μ=

E 8000 ksi=
1 in

4 in

1 in

z C

A

y
4 in
August 2012
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 Class Problem 1

The bending normal stress at point B is 15 ksi. 
(a) Determine the maximum bending normal stress on the cross-section.
(b) What is the bending normal strain at point A if E = 30,000 ksi.
 

1 in

1.5 in

1 in

1 in
2.5 in

2 in

z C

B

y
4 in

D

A

August 2012
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 C6.5 Fig. C6.5(a) shows four separate wooden strips that bend 
independently about the neutral axis passing through the centroid of each 
strip. Fig. C6.5(b) shows the four strips are glued together and bend as a 
unit about the centroid of the glued cross-section. (a) Show that 

, where IG is the area moment of inertias for the glued cross-
section and IS is the total area moment of inertia of the four separate 
beams. (b) Also show , where σG and σS are the maximum 
bending normal stress at any cross-section for the glued and separate 
beams, respectively.

  Fig. C6.5

IG 16IS=

σG σS 4⁄=

(a) (b)
August 2012
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 C6.6 For the beam and loading shown, draw an approximate 
deformed shape of the beam. By inspection determine whether the bend-
ing normal stress is tensile or compressive at points A and B.

 Class Problem 2

 C6.7 For the beam and loading shown, draw an approximate 
deformed shape of the beam. By inspection determine whether the bend-
ing normal stress is tensile or compressive at points A and B.

A BM

A

B

August 2012
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 C6.8 The beam, loading and the cross-section of the beam are as 
shown. Determine the bending normal stress at point A and the maxi-
mum bending normal stress in the section containing point A
August 2012
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 C6.9 A wooden (E = 10 GPa) rectangular beam, loading and cross-
section are as shown in Fig. C6.9. The normal strain at point A in Fig. 
C6.9 was measured as . Determine the distributed force w 
that is acting on the beam.

  Fig. C6.9

εxx 600 μ–=

w kN/m

0.5 m

x

0.5 m

A

25mm

100 mm
August 2012
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Shear and Moment by Equilibrium

Differential Equilibrium Equations:    

• The above equilibrium equations are applicable at all points on the 
beam except at points where there is a point (concentrated) force or 
point moment.

 
Two Options for finding Vy and Mz as a function of x
• Integrate equilibrium equations and find integration constants by using 

boundary conditions or continuity conditions. This approach is pre-
ferred if p not uniform or linear.

• Make an imaginary cut at some location x, draw free body diagram 
and use static equilibrium equations to find Vy and Mz. Check results 
using the differential equilibrium equations above. This approach is 
preferred if p is uniform or linear.

Differential Beam Element

xd
dVy p–= xd

dMz V– y=
August 2012
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 C6.10 (a) Write the equations for shear force and bending moments 
as a function of x for the entire beam. (b) Show your results satisfy the 
differential equilibrium equations.

  Fig. C6.10

5 kN/m
x

y

3 m
August 2012
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 C6.11 For the beam shown in Fig. C6.11, (a) write the shear force 
and moment equation as a function of x in segment CD and segment DE. 
(b) Show that your results satisfy the differential equilibrium equations. 
(c) What are the shear force and bending moment value just before and 
just after point D.

  Fig. C6.11

 Class Problem 3

Write the shear force and moment equation as a function of x in segment 
AB.
August 2012
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Shear and Moment Diagrams

• Shear and Moment diagrams are a plots of internal shear force Vy and 
internal bending moment Mz vs. x.

Distributed force
• An integral represent area under the curve.
To avoid subtracting positive areas and adding negative areas, define 

 

• If Vy is linear in an interval then Mz will be a quadratic function in that 
interval.

• Curvature rule for quadratic Mz curve.
The curvature of the Mz curve must be such that the incline of the tangent 
to the Mz curve must increase (or decrease) as the magnitude of the V 
increases (or decreases). 

or
The curvature of the moment curve is concave if p is positive, and convex 
if p is negative.

V Vy–=

V2 V1 p xd

x1

x2

∫+= M2 M1 V xd

x1

x2

∫+=

x

y

V1
V2=V1-w(x2-x1) 

V

Mz

x2

x2

V1
V2=V1+w(x2-x1)

MzM1

M2

Increasing incline of tangent

x1 x2

x1 x2

V1 V2=V1-w(x2-x1)

Mz

M1

M2

Increasing incline of tangent

x1

x1

x2

x2

x1 x2

V1
V2=V1+w(x2-x1)

MzM1

M2

Decreasing incline of tangent

x1

x1

x2

x2

(a) (b) (c) (d)
w w

x1 x2x1 x2

x1

x1

M1

Decreasing incline of tangent
x1

x1 x2

M2

-Vy

V

-Vy

V

-Vy

V

-Vy
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Point Force and Moments
• Internal shear force jumps by the value of the external force as one 

crosses the external force from left to right.

• Internal bending moment    jumps by the value of the external moment 
as one crosses the external moment from left to right.

• Shear force & moment templates can be used to determine the direc-
tion of the jump in V and Mz.

A template is a free body diagram of a small segment of a beam created 
by making an imaginary cut just before and just after the section where 
the a point external force or moment is applied.

• The jump in V is in the direction of Fext

Fext

V2V1

V2 V1 Fext+=

Δx Δx

Shear Force Template

Mext
M2M1

Δx Δx

Moment Template

M2 M1 Mext+= Template Equations
August 2012
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 C6.12 Draw the shear and moment diagram and determine the val-
ues of maximum shear force Vy and bending moment Mz.

Mext
M2M1

Δx Δx

M2 M1 Mext+=
August 2012
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 C6.13 Two pieces of lumber are glued together to form the beam 
shown Fig. C6.13. Determine the intensity w of the distributed load, if 
the maximum tensile bending normal stress in the glue limited to 800 psi 
(T) and maximum bending normal stress is wood is limited to 1200 psi.

  Fig. C6.13

1 in

2 in
w (lb/in)

30 in 70 in
August 2012
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)

C.6 Geometric Properties Of Structural Steel Members
  
Table  C.1  Wide-flange sections (FPS units)

 
Designation
(in. × lb/ft)

Depth
d

(in.)

Area
A

(in.2)

Web
Thickness

tW
(in.)

Flange z Axis y Axis

Width
bF

(in.)

Thickness
tF

(in.)
Izz

(in.4)
Sz

(in.3)
rz

(in.)
Iyy

(in.4)
Sy

(in.3)
ry

(in.)
W12 × 35 12.50 10.3 0.300 6.560 0.520 285.0 45.6 5.25 24.5 7.47 1.54
W12 × 30 12.34 8.79 0.260 6.520 0.440 238 38.6 5.21 20.3 6.24 1.52
W10 × 30 10.47 8.84 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W10 × 22 10.17 6.49 0.240 5.75 0.360 118 23.2 4.27 11.4 3.97 1.33
W8 × 18 8.14 5.26 0.230 5.250 0.330 61.9 15.2 3.43 7.97 3.04 1.23
W8 × 15 8.11 4.44 0.245 4.015 0.315 48 11.8 3.29 3.41 1.70 0.876
W6 × 20 6.20 5.87 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50
W6 × 16 6.28 4.74 0.260 4.03 0.405 32.1 10.2 2.60 4.43 2.20 0.967

Table  C.2  Wide-flange sections (metric units)

 
 
 
 
 
 
Designation
(mm × kg/m)

Depth
d

(mm)

Area
A

(mm2)

Web 
Thickness

tW
(mm)

Flange
z Axis y Axis

Width
bF

(mm)

Thickness
tF

(mm)
Izz

(106  mm4)
Sz

(103  mm3)
rz

(mm)
Iyy

(106  mm4)
Sy

(103  mm3)
ry

(mm

W310 × 52 317 6650 7.6 167 13.2 118.6 748 133.4 10.20 122.2 39.1
W310 × 44.5 313 5670 6.6 166 11.2 99.1 633 132.3 8.45 101.8 38.6
W250 × 44.8 266 5700 7.6 148 13.0 70.8 532 111.3 6.95 93.9 34.8
W250 × 32.7 258 4190 6.1 146 9.1 49.1 381 108.5 4.75 65.1 33.8
W200 × 26.6 207 3390 5.8 133 8.4 25.8 249 87.1 3.32 49.9 31.2
W200 × 22.5 206 2860 6.2 102 8.0 20.0 194.2 83.6 1.419 27.8 22.3
W150 × 29.8 157 3790 6.6 153 9.3 17.23 219 67.6 5.54 72.4 28.1
W150 × 24 160 3060 6.6 102 10.3 13.36 167 66 1.844 36.2 24.6

y

z

tF

tW
d

bF

y

z

tF

tW
d

bF
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Shear Stress in Thin Symmetric Beams

• Motivation for gluing beams

•

• Assumption of plane section perpendicular to the axis remain perpen-
dicular during bending requires the following limitation.

Maximum bending shear stress must be an order of magnitude 
less than maximum bending normal stress.   

IG 16IS= σG σS 4⁄=

Relative Sliding
No Relativ
Sliding

Separate Beams Glued Beams
August 2012
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Shear stress direction

Shear Flow: 
• The units of shear flow ‘q’ are force per unit length.

The shear flow along the center-line of the cross-section is drawn in such 
a direction as to satisfy the following rules:

•  the resultant force in the y-direction is in the same direction as Vy.
• the resultant force in the z-direction is zero.
• it is symmetric about the y-axis. This requires shear flow will change 
direction as one crosses the y-axis on the center-line. 

q τxst=
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 C6.14 Assuming a positive shear force Vy, (a) sketch the direction of 
the shear flow along the center-line on the thin cross-sections shown.(b) 
At points A, B, C, and D, determine if the stress component is τxy or τxz 
and if it is positive or negative.

 Class Problem 4

 C6.15 Assuming a positive shear force Vy, (a) sketch the direction of 
the shear flow along the center-line on the thin cross-sections shown.(b) 
At points A, B, C, and D, determine if the stress component is τxy or τxz 
and if it is positive or negative.

y

z

A

B

C

D

y

z

A B

C

D
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Bending Shear Stress Formula

              

 

• As is the area between the free surface and the point where shear stress 
is being evaluated.

Define:          

Assumption 9 The beam is not tapered. 

    

(b)

(c)
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Calculation of Qz 

• As is the area between the free surface and the point where shear stress 
is being evaluated.

• Qz is zero at the top surface as the enclosed area As is zero. 
•  Qz is zero at the bottom surface (As=A) by definition of centroid.
 

•  Qz is maximum at the neutral axis.
• Bending shear stress at a section is maximum at the neutral axis.

Qz y Ad
As

∫=

y

z

ys

As

Line along which 
Shear stress is
being found.

Qz Asys=

Neutral Axis

Centroid of As

y2 Qz A2y2=Centroid of A2

A2
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 C6.16 For the beam, loading and cross-section shown, determine: (a) 
the magnitude of the maximum bending normal and shear stress. (b) the 
bending normal stress and the bending shear stress at point A. Point A is 
on the cross-section 2 m from the right end. Show your result on a stress 
cube. The area moment of inertia for the beam was calculated to be 
Izz = 453 (106) mm4.
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 Class Problem 5

Identify the area As that will be used in calculation of shear stress at points A,B, D

and the maximum shear stress. Also show direction of s.

1 in.

1 in.

2 in.

1 in.

y

z
C

D

B

A

2.5 in.

4 in.

1 in. 1.5 in.
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Bending stresses and strains

Top or 
Bottom

Neutral
Axis

Point in 
Web

Point in 
Flange

y

x

z

�xx� �xx� �xx� �xx� �xx� �xx�

(a)

y

z

x x

z z

�yx��

�xy�

(b)

y

(c)

y

x

�xz�

�zx�

(d)

�yx��

�xy�

εxx
σxx
E--------= εyy

νσxx
E-----------⎝ ⎠

⎛ ⎞– νεxx–= = εzz
νσxx

E-----------⎝ ⎠
⎛ ⎞– νεxx–= =

γxy
τxy
G-------= γxz

τxz
G------=
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 C6.17 A wooden cantilever box beam is to be constructed by nailing 
four 1 inch x 6 inch pieces of lumber in one of the two ways shown. The 
allowable bending normal and shear stress in the wood are 750 psi and 
150  psi, respectively. The maximum force that the nail can support is 
100 lbs. Determine the maximum value of load P to the nearest pound, 
the spacing of the nails to the nearest half inch, and the preferred nailing 
method.

Joining Method 1 Joining Method 2
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 C6.18 A cantilever, hollow-circular aluminum beam of 5 feet length 
is to support a load of 1200-lbs. The inner radius of the beam is 1 inch. If 
the maximum bending normal stress is to be limited to 10 ksi, determine 
the minimum outer radius of the beam to the nearest 1/16th of an inch.
August 2012


	Symmetric Bending of Beams
	. A beam is any long structural member on which loads act perpendicular to the longitudinal axis.
	Learning objectives
	. Understand the theory, its limitations and its applications for strength based design and analysis of symmetric bending of beams.
	. Develop the discipline to visualize the normal and shear stresses in symmetric bending of beams.

	C6.1 Due to the action of the external moment Mext and force P, the rigid plate shown in Fig. C6.1 was observed to rotate by 2o ...
	Fig. C6.1


	Internal Bending Moment
	. Above equations are independent of material model as these equations represents static equivalency between the normal stress on the entire cross-section and the internal moment.
	. The line on the cross-section where the bending normal stress is zero is called the neutral axis.
	. Location of neutral axis is chosen to satisfy .
	. Origin of y is always at the neutral axis, irrespective of the material model.
	C6.2 Steel (Esteel = 30,000 ksi) strips are securely attached to a wooden (Ewood = 2,000 ksi) beam as shown below. The normal st...
	Fig. C6.2


	Theory of symmetric bending of beams
	Limitations
	. The length of the member is significantly greater then the greatest dimension in the cross-section.
	. We are away from the regions of stress concentration.
	. The variation of external loads or changes in the cross-sectional areas are gradual except in regions of stress concentration.
	. The cross-section has a plane of symmetry.
	. The loads are in the plane of symmetry.
	. The load direction does not change with deformation.
	. The external loads are not functions of time.

	Theory objectives:
	. To obtain a formula for the bending normal stress sxx, and bending shear stress txy in terms of the internal moment Mz and the internal shear force Vy.
	. To obtain a formula for calculation of the beam deflection v(x).
	The distributed force p(x), has units of force per unit length, and is considered positive in the positive y-direction.
	Kinematics
	Assumption 1 Squashing, i.e., dimensional changes in the y-direction, is significantly smaller than bending.
	Assumption 2 Plane sections before deformation remain plane after deformation.
	Assumption 3 Plane perpendicular to the beam axis remain nearly perpendicular after deformation. .
	Assumption 4 Strains are small.
	. bending normal strain exx varies linearly with y and has maximum value at either the top or the bottom of the beam.
	. is the curvature of the deformed beam and R is the radius of curvature of the deformed beam.


	Material Model
	Assumption 5 Material is isotropic.
	Assumption 6 Material is linearly elastic.
	Assumption 7 There are no inelastic strains.
	From Hooke’s Law:, we obtain

	Location of neutral axis
	or or
	Assumption 8 Material is homogenous across the cross-section of the beam.
	. Neutral axis i.e, the origin, is at the centroid of the cross-section constructed from linear-elastic, isotropic, homogenous material.
	. The axial problem and bending problem are de-coupled if the origin is at the centroid for linear-elastic, isotropic, homogenous material
	. bending normal stress sxx varies linearly with y and is zero at the centroid.
	. bending normal stress sxx is maximum at a point farthest from the neutral axis (centroid).


	C6.3 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point A due to bending about the z-axis, and the Modulus of Elasticity are as given.
	(a) Plot the stress distribution across the cross-section.
	(b) Determine the maximum bending normal stress in the cross-section.
	(c) Determine the equivalent internal bending moment Mz by integration.
	Sign convention for internal bending moment
	. The direction of positive internal moment Mz on a free body diagram must be such that it puts a point in the positive y direction into compression.

	Sign convention for internal shear force
	. Recall Assumption 3: Plane perpendicular to the beam axis remain nearly perpendicular after deformation. .
	. From Hooke’s Law:
	. Bending shear stress is small but not zero.
	. Check on theory: The maximum bending normal stress sxx in the beam should be nearly an order of magnitude greater than the maximum bending shear stress txy.
	. The direction of positive internal shear force on a free body diagram is in the direction of positive shear stress on the surface.


	C6.4 A beam and loading in three different coordinate system is shown. Determine the internal shear force and bending moment at the section containing point A for the three cases shown using the sign convention.
	Flexure Formulas
	For homogenous cross-sections
	. Moment-curvature equation:
	. is the second area moment of inertia about z-axis.
	. The quantity EIzz is called the bending rigidity of a beam cross-section.
	. Flexure stress formula:

	Two options for finding Mz
	. On a free body diagram Mz is drawn as per the sign convention irrespective of the loading.
	positive values of stress sxx are tensile
	negative values of sxx are compressive.

	. On a free body diagram Mz is drawn at the imaginary cut in a direction to equilibrate the external loads.
	The tensile and compressive nature of sxx must be determined by inspection.




	C6.3 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point A due to bending about the z-axis, and the modulus of elasticity are as given.
	(d) Determine the equivalent internal bending moment Mz by flexure formula.
	Class Problem 1
	The bending normal stress at point B is 15 ksi.
	(a) Determine the maximum bending normal stress on the cross-section.
	(b) What is the bending normal strain at point A if E = 30,000 ksi.


	C6.5 Fig. C6.5(a) shows four separate wooden strips that bend independently about the neutral axis passing through the centroid ...
	Fig. C6.5

	C6.6 For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points A and B.
	Class Problem 2

	C6.7 For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points A and B.
	C6.8 The beam, loading and the cross-section of the beam are as shown. Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A
	C6.9 A wooden (E = 10 GPa) rectangular beam, loading and cross- section are as shown in Fig. C6.9. The normal strain at point A in Fig. C6.9 was measured as. Determine the distributed force w that is acting on the beam.
	Fig. C6.9


	Shear and Moment by Equilibrium
	Differential Equilibrium Equations:
	. The above equilibrium equations are applicable at all points on the beam except at points where there is a point (concentrated) force or point moment.

	Two Options for finding Vy and Mz as a function of x
	. Integrate equilibrium equations and find integration constants by using boundary conditions or continuity conditions. This approach is preferred if p not uniform or linear.
	. Make an imaginary cut at some location x, draw free body diagram and use static equilibrium equations to find Vy and Mz. Check results using the differential equilibrium equations above. This approach is preferred if p is uniform or linear.

	C6.10 (a) Write the equations for shear force and bending moments as a function of x for the entire beam. (b) Show your results satisfy the differential equilibrium equations.
	Fig. C6.10

	C6.11 For the beam shown in Fig. C6.11, (a) write the shear force and moment equation as a function of x in segment CD and segme...
	Fig. C6.11
	Class Problem 3
	Write the shear force and moment equation as a function of x in segment AB.



	Shear and Moment Diagrams
	. Shear and Moment diagrams are a plots of internal shear force Vy and internal bending moment Mz vs. x.
	Distributed force
	. An integral represent area under the curve.
	To avoid subtracting positive areas and adding negative areas, define
	. If Vy is linear in an interval then Mz will be a quadratic function in that interval.
	. Curvature rule for quadratic Mz curve.
	The curvature of the Mz curve must be such that the incline of the tangent to the Mz curve must increase (or decrease) as the magnitude of the V increases (or decreases).



	or
	The curvature of the moment curve is concave if p is positive, and convex if p is negative.
	Point Force and Moments
	. Internal shear force jumps by the value of the external force as one crosses the external force from left to right.
	. Internal bending moment jumps by the value of the external moment as one crosses the external moment from left to right.
	. Shear force & moment templates can be used to determine the direction of the jump in V and Mz.
	. The jump in V is in the direction of Fext


	C6.12 Draw the shear and moment diagram and determine the values of maximum shear force Vy and bending moment Mz.
	C6.13 Two pieces of lumber are glued together to form the beam shown Fig. C6.13. Determine the intensity w of the distributed lo...
	Fig. C6.13
	C.6 Geometric Properties Of Structural Steel Members
	Table C.1 Wide-flange sections (FPS units)
	Table C.2 Wide-flange sections (metric units)



	Shear Stress in Thin Symmetric Beams
	. Motivation for gluing beams
	.
	. Assumption of plane section perpendicular to the axis remain perpendicular during bending requires the following limitation.
	Maximum bending shear stress must be an order of magnitude less than maximum bending normal stress.

	Shear stress direction
	Shear Flow:
	. The units of shear flow ‘q’ are force per unit length.

	The shear flow along the center-line of the cross-section is drawn in such a direction as to satisfy the following rules:
	. the resultant force in the y-direction is in the same direction as Vy.
	. the resultant force in the z-direction is zero.
	. it is symmetric about the y-axis. This requires shear flow will change direction as one crosses the y-axis on the center-line.


	C6.14 Assuming a positive shear force Vy, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) At points A, B, C, and D, determine if the stress component is txy or txz and if it is positive or negative.
	Class Problem 4

	C6.15 Assuming a positive shear force Vy, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) At points A, B, C, and D, determine if the stress component is txy or txz and if it is positive or negative.

	Bending Shear Stress Formula
	. As is the area between the free surface and the point where shear stress is being evaluated.
	Define:
	Assumption 9 The beam is not tapered.


	Calculation of Qz
	. As is the area between the free surface and the point where shear stress is being evaluated.
	. Qz is zero at the top surface as the enclosed area As is zero.
	. Qz is zero at the bottom surface (As=A) by definition of centroid.
	. Qz is maximum at the neutral axis.
	. Bending shear stress at a section is maximum at the neutral axis.
	C6.16 For the beam, loading and cross-section shown, determine: (a) the magnitude of the maximum bending normal and shear stress...
	Class Problem 5
	Identify the area As that will be used in calculation of shear stress at points A,B, D
	and the maximum shear stress. Also show direction of s.



	Bending stresses and strains
	C6.17 A wooden cantilever box beam is to be constructed by nailing four 1 inch x 6 inch pieces of lumber in one of the two ways ...
	C6.18 A cantilever, hollow-circular aluminum beam of 5 feet length is to support a load of 1200-lbs. The inner radius of the bea...


