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M. Vable Intermediate Mechanics of Materials: Chapter 3

Basic Structural Analysis

External force
and moments

ks

[]
\9‘\\30}

Static
equivalency

Internal forces
and moments

The learning objectives in this chapter are:

® Understand the limitations of basic theory and how complexities may be added to the basic
theories of axial members, torsion of circular shafts, and symmetric bending of beams.

® Understand the concept and use of discontinuity functions in analysis of structural members
subjected to discontinuous loads.
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Preliminaries

Limitations

The length of the member is significantly greater (approximately 10 times) then the greatest

dimension in the cross-section. Approximation across the cross-section are now possible as
the region of approximation is small.

We are away from regions of stress concentration, where displacements and stresses can be
three-dimensional.

The variation of external loads or changes in the cross-sectional area is gradual except in
regions of stress concentration.

The external loads are such that the axial, torsion and bending problems can be studied indi-
vidually.

Convention

LG y (V)

The displacements u, v, and w will be considered positive in the positive X, y, and z -direction,
respectively.

The rotation ¢ of the cross-section will be considered positive counter-clockwise with respect
to the x-axis.

The external distributed torque per unit length t(x) is positive counter-clockwise with respect
to the x-axis.

The external distributed force per unit length p,(x) and py(x) are considered positive in the
positive x and y direction, respectively.
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Axial
Original Grid

ishiu

Deformations

(b)

Bending

Original Grid

Torsion

Original Grid

Deformed Grid

Axial

Bending

— .
Torsion

Assumption 1 Deformations are not function of time.

Assumptions

2-A: Plane sections remain
plane and parallel.

2a-B: Squashing deformation
is significantly smaller
than deformation due to
bending.

2b-B: Plane sections before
deformation remain
plane after deformation.

2¢-B: Plane perpendicular to
the beam axis remain
nearly perpendicular

2a-T: Plane sections perpen-
dicular to the axis
remain plane during
deformation.

2b-T: All radials lines rotate
by equal angle during
deformation on a cross-
section.

2¢-T: Radials lines remain
straight during deforma-

after deformation tion.
u = u,(x) 3.1-A) v = v(x) (3.1a-B) o = d(x) 3.1-T)
"= ﬂ/% (3.1b-B)
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Strains
Axial I-Bending Torsion
Assumption 3 The strains are small.
du 2 N ()
£, = Eo(x) (3.2-A) e, = _yZ_‘;(x) (3.2-B) Tvo = P (Y) (3.2-7)
X
Stresses
Axial Bending Torsion
Assumption 4 Material is isotropic.
Assumption 5 There are no inelastic strains.
Assumption 6 Material is elastic.
Assumption 7 Stress and strains are linearly related.
Using Hooke’s du, d2 - Gt -
glaw Gxx = E% (x) (3'3-A) G)CX = *Eyd—‘;(x) (3.3-B) Txe Gpdx(x) (3‘3 T)
X
Internal Forces and Moments
Axial Bending Torsion
N = [o,d4 (B4a-A)  _ [ondd=0 (daB) T = [prdd (3.4-T)
4 Y 4
Static M, = ~[yo,d4 =0 (3.4b-A) M, = [yo,d1  (3.4b-B)
equivalency 4 v
My = —[zo,dd = 0 Bde-A) [todd  (34c-B)
4 A
- |
-4 +Gxx — ¢ +‘ny %
- | _
| =y
Sign ; - Z
convention . N ’ & | Distribution | 3
~—  Compressive
— pOSlthC ace
=
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Formulas
2
T . . . . d
Substituting stresses into equations of internal forces and moments and Noting d—zo , d—V2 , and
dx
% are functions of x only while the integration is with respect to y and z.
Axial Bending Torsion
Origin Location Jy Edd =0 (3-5-A) J yEdA = 0 (3.5-B)
A
A
d 2 d 2
N =o J Edd  (3.6-A)| M = d_VJ' Eydd (3.6B) T~ d—iJ‘GP 4 (3.6-T)
dx z d 2 A
4 X4
Assumption 8 Material is homogenous across the cross-section.
Origin is at the cen- -
d4 =0 3.7-A
troid of the cross- { d ( ) jy d4 =0 (3.7-B)
section 4
du, N dv M a4 _ T 3.8-T
& E O8N Se o esm aTg O8D
A = Area of cross-section L., = Second area moment of |J= Polar moment of the area.
EA = Axial Rigidity inertia GJ = Torsional rigidity
El,, = Bending rigidity

Stress formulas
Substituting Equations (3.8-A), (3.8-B), and (3.8-T) into Equations (3.3-A), (3.3-B), and (3.3-T)

Axial Bending Torsion
N M, T
Ou = 7 394 o, - ,Zj) (3.9-B) o= L (39T
See section... for shear
stresses in bending.
Deformation formulas
Axial I-Bending Torsion
Assumption 9 Material is homogenous between x; and x».
Assumption 10 The structural member is not tapered between x; and x,.
Assumption 11 The external loads do not change with x between x; and x,.
Integrating Equations (3.8-A) and (3.8-T)
N(xy—x,) See Section 3.2.4 for beam T(x,—x,)
uy—tty = ——=—3.10-A)/ deflection. 9-0; = —57— G.10-T)
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Equilibrium Equations

Axial I-Bending Torsion
N () dx | N+dN py(x)dx r 1(x) dx
M, M, +dM,
- g —P
B dx—1 ¥ +ay, [ g ]
dN _ V. daT B
- P G1-A) %y = p,(x) (.112-B) 7 = W) (3.11-T)
M. _ V. 3.11b-B
= ~ % Gb-B)

Differential Equations

Substituting Equations (3.8-A), (3.8-B), and (3.8-T) into Equations (3.11-A), (3.11a-B), (3.11b-

B), and (3.11-T)

d

a(EA%") - p(3.12-A)

2
d
= [EIZZ
dx

2

X

Z_sz = p,(x(3.12-B)

%(GJ% — i) (3.12-T)
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C3.1  Draw the shear stress due to torsion on the stress cubes at points A and B

shown. Is the shear stress positive or negative t,,?
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Class Problem 3.1

Determine the direction of shear stress at points A, B and C (a) by inspection, and (b) by using the
sign convention for internal torque and the subscripts. Report your answer as a positive or nega-

tive Tyy Or Ty,
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C3.2  Determine the contraction of a column shown in Figure C3.2 due to its

own weight. The specific weight is y = 0.28 lb/in3, the modulus of elasticity is
E = 3,600 ksi,thelengthis L = 120 in, and the radius varies as R = /240 —x , where,

R and x are in inches.
L
XA R(x

Figure C3.2
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C3.3 A through crack of 0.07 inch was observed on a plane 22° to the axis of a
bent pipe at point A as shown. The pipe has an outside diameter of 2 in., a wall

thickness of ! in. and the critical stress intensity factor for the material of 22 ksi./in
Ifa=161n., b= 16 1n.,and ¢ = 10 in., determine the factor of safety.

P,=2001b

P,=1000 Ib
Y P.=8001Ib Z%
220 7
N k2
T —
z a z>‘< b l>|
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Shear Stress in Thin Symmetric Beams
Separate Beams Glued Beams

chla}Shdmg

Assumption of plane section perpendicular to the axis remain perpendicular during bending
requires the following limitation.

Maximum bending shear stress must be an order of magnitude
less than maximum bending normal stress.

No Relative
Sliding

Shear stress direction

A

A\ N\

\ T\ §

\ \ \

AT\ T\ T T\

Rl ate

~E
ZT :/ —
(@)
(T)CX
— —
"",’:”‘IHF( .... &===--
TZ,\’
(c) (d)
e Ar—] Vs=1,(t.) Ax
i =y T
. = 8 : -~
N : 3T Ny tav;  Ns 5 N5+ ans
172
Vs =7t Ax F— Ar——*
(e) ()
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Free surface
Free surface y

Free surface

N + dN

V=r1,)Ax
(a) (b)

Shear Flow: g = 7 .t
*  The units of shear flow ‘q” are force per unit length.

The shear flow along the center-line of the cross-section is drawn in such a direction as to satisfy
the following rules:

* the resultant force in the y-direction is in the same direction as V.

® the resultant force in the z-direction is zero.

® itis symmetric about the y-axis. This requires shear flow will change direction as one crosses
the y-axis on the center-line.
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(3.4 Assuming a positive shear force V], (a) sketch the direction of the shear

flow along the center-line on the thin cross-sections shown. (b) At points A, B, C,
and D, determine if the stress component is 1, or T,, and if it is positive or nega-

Xy
tive.
y
B | _ 4D ]
z +C
.
PR
Class Problem 3.2

Assuming a positive shear force V), (a) sketch the direction of the shear flow along the center-line

on the thin cross-sections shown.(b) At points A, B, C, and D, determine if the stress component
is T, or T, and if it is positive or negative.

Xy
AY
A B D
r—®& ——@&|— —| — @ —
| | | |
| | | |
| |- | | |
| |Z | &C |
| | | |
| | | |
| | | |
L1 | L1 | L1 | L1 |
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SX

Bending Shear Stress Formula

Free surface

Free Slfface y \
z _Z
A \ /
$

Free surface

N, + dN,

(Ns+st)—Ns+rsxtdx =0 Tt = - —

M_y M
__ 4 _ A &gy 4]z
Tt = ajcsxdi dxj[ - jdA dx{] J.ydA}
As As zZ ZZAS

Ay is the area between the free surface and the point where shear stress is being evaluated.

d MzQz
Define: QZ = '[ydA Tl = o
As zzZ
Assumption 1 The beam is not tapered.
-t = QZdMZZ_QZVy T =1 =_VyQZ
q X [_ E Ji Sx XS ] ¢
zZ zz zz
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Calculation of Q, = | ydA
A
S
* A, is the area between the free surface and the point where shear stress is being evaluated.
* Q,1is zero at the top surface as the enclosed area Ay is zero.
* Qs zero at the bottom surface (4,=A4) by definition of centroid.
y ty Centroid of 4
s
QZ = ASyS
Line along which i
Shear stress is y
being found. s
< Neutral Axis
. Z y2 p—
Centroid of 4, Q. = 4y,
2
4;
* Q,is maximum at the neutral axis.
Bending shear stress at a section is maximum at the neutral axis.
Table 3.2. Stresses and Strains
Symmetric Bending
Axial . . Torsion
About z-axis | About y-axis
Strains
Stresses Strains Stresses Stresses Stresses Strains
= ]X Oxx - Mz - My Oxx - —
T T Ex = F Cxx = _( IZD Cwr = _(?yz) g = L O = 0 8x = 0
VGO, - _ _ VOyy -
o, =0 py = E) o, =0 o, =0 syy—f(E) G, =0 g, = 0
c._=0 _ (VO c._=0 c._=0 :_VGXX c._=0 -
zz €., —( 7 ) zz zz €., ( 7 ) zz €,
‘Exy =0 y)cy 0 — V.VQZ — V2Qy = Trs T.g = ZE = 0
Tes = 7 Tes = 7 Tes T x6 Yo =
Txz = 0 Yez = 0 (lzzt (I,V,Vt G . = g 0 G
Tyzzo yyz=0 TJ’ZZO 1:J/ZZO szzo . szzo
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C3.5 A positive shear force V=10 kN acts on the thin cross-section shown in

Figure C3.5 (not drawn to scale). The cross-section has a uniform thickness of
10 mm. Determine the equation of shear flow along the center lines and sketch it.

25 m 25 m
==y ¥
B e e
I
V4 100 mm

|
|
|
|
|
<
‘ 100 mm |

Figure C3.5
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(3.6 A bending moment of M, =30 kN-m and a shear force of V= 10 kN

acts on a thin cross-section shown in Figure C3.6 (not drawn to scale).The cross-

section has a uniform thickness of 10 mm and the material has a modulus of elastic-
ity of 200 GPa and a Poisson’s ratio of 0.25. Determine the principal strains at point
A which is just below the flange.

25m 25 m
‘<I—I> y ‘<I—I>
[ —F ==

®
A I
I I
| I
| I
|
‘ 100 mm ‘
Figure C3.6
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Class Problem 3.3

Identify the area A, that will be used in calculation of shear stress at points 4,B, D

and the maximum shear stress. Also show direction of's.

1.5 1n.

2.51n.

1 in.
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C3.7  In Timoshenko beams the assumption of planes remaining perpendicular
to the axis of the beam is dropped to account for shear by permitting the cross sec-
tion to rotate by an angle y from the vertical. Obtain the differential equations for
vibration of Timoshenko beam by starting with the following displacement field

u = —yy(x,t) v = v(x,t)
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Discontinuity Functions

e (x—a)”' f
‘ \+2>|<_2> X A

Lt

v><

- a
ir
2
P = lim Ilim (pe) Or
po>o g—>0
(a+e)
1 0 * -
(x—a)y = { T } j (x—a) 'dv =1
0 X—>a
(a—¢)
Delta Function: (x—af1
X (a—¢) (ate) *

J-(x—a)_ldx= J. (x—a)_ldx+ J- (x—a)_lder J- (x—a>_1dx=l

\ Ko

oo —0 (a—c¢) (ate)
. 0
(x—a)(): j(x—a)lde{ r=d }
1 x>a
A ()0 A ()t A 2
(x—a) (x—a) (x—a)
X X
— e >
a a a
" 0 x<a
(x-a)" = \
(x—a) xX>a
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Doublet Function: {x — a>_2 =

d{x~ a)fl
dx

d(x— a)”
dx

larity functions.

® The entire class of functions
nuity functions.

(x-a)"

x n+1
j(x—a)nde% n=0
{O X#a . ) -1
I (x—a) “dx = {(x—a)
0 xX—a
0
_ (x—a)_z ;l_ix—a) _ (x—a)_l
= n(x—a)n_l n>1

) . -1 . =) e
® The function delta function (x—a) = and the doublet function {(x—a) become infinite
at x = a. Alternatively stated these functions are singular at x = a. and are referred to as singu-

for positive and negative ‘n’ are called the disconti-
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Axial Displacement

du _ N dN _

Ix  EA dx —Px(x)

Differential Equation: %(EA%) = —p . (x)

Boundary Conditions # or N

\ —» F }—‘V
.<_ a 4>{
I — X
Example 3.7
ZF 2 kips A¢ 2 kips
25 in X
y
% B
60in 4 kips 4 kips

;
o
AL

p. = (10 +4000(x—25)" +8000(x—85) ") Ib/in

* Differential equation
%(EA%) — _[10+4000(x —25)"" + 8000 (x — 85) ']

* Boundary Conditions
u(0) =0
u(105) = 0

Template equations
N = -F{(x- a)o

-1
P, = F{x—a)

(ET)

(E2)

(E3)
(E4)
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Torsional Rotation

dop _ T dT _ _
dx GJ dx 1x)

. . .od o) _
Differential Equation: a(GJ?;—)) 1(x)
Boundary Conditions ¢ or T

T T Template equations

T = —T(x—a)o

( K O
DH{X —J (= T(x-a) '
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C3.8

chuck.

The external torque on a drill bit varies as a quadratic function to a maxi-

mum intensity of g in-1b/in as shown Figure C3.8. If the drill bit diameter is d, its
visible length L, and modulus of rigidity G, determine (a) the maximum shear stress
on the drill bit. (b) the relative rotation of the end of the drill bit with respect to the

Figure C3.8
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C3.9  An aluminum alloy (G = 28 GPa) hollow shaft has a critical stress inten-

sity factor of 22 ksi./in. The shaft has a thickness of 1/4 in. and an outer diameter of
2 in. and is loaded as shown in Figure C3.9. What is the critical crack length at
which the shaft be taken out of service?

T = 60 in-kips
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Figure C3.9
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2nd order differential equation:

Equilibrium equations:

Beam Deflection

> M,
i EL.
av

A

e Py(x)

2 2
4th order differential Equation: %{Elzzd—‘;] = py(x)
dx

Boundary Conditions
* Group 1 \%
dv
° 2 -
Group e

Ay

=0

{0 x<a
M =
-M x>a

Template equations

0
M, = -M{x-a)

-2
p, = ~M(x-a)

dx

or

Ay P Mz,

=%

0 x<a
M =
¢ {—P(x—a) x>a

Template equations

M, = —P(x—a)1

-1
p, = —Plx-a)

- W. DMz

<~ |y

3 x<a
z ) wkx-a)
2

xX>a

Template equations

2
(x—a)
M = —
W

0
Py = —wlx—a)
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C3.10 The displacement of the beam in the y-direction, in section AB of the

beam shown in Figure C3.10 is given by v, = 5 (x3 - 20x2) (1076) in and in section
BC is given v, = 5(x° — 800x +8000) (10™°) in.If the bending rigidity (EI) is

135 (10%) Ibs-in,, determine the moment Mg and the reaction force at B.

y Some complex Loading
% T
o

\A%x JQL <
Figure C3.10 A 5 ln_ﬁ_ 20 iW%<'_40'

7))

>

.
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C3.11 Interms of w, L, E, and I, determine the deflection and slope at x = L of
the beam shown in Figure C3.11.

B
Figure C3.11
><’ L wL
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C3.12 (a) Determine the deflection of the beam at point C in terms of E, I, w, and

L for the beam shown in
moment and shear force.

Figure C3.12.(b) Determine the maximum bending

&wL kN ‘

12
ﬁx 3 (CwL kN-m D

{ t i fwkN/m

’<'— L m—‘>{<'— L m—'>{<'— L m—>
Figure C3.12
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