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CHAPTER ELEVEN

STABILITY OF COLUMNS

Learning objectives
1. Develop an appreciation of the phenomenon of buckling and the various types of structure instabilities.

2. Understand the use of buckling formulas in the analysis and design of structures.

_______________________________________________

Strange as it sounds, the column behind the steering wheel in Figure 11.1a is designed to fail: it is meant to buckle during a car
crash, to prevent impaling the driver. In contrast, the columns of the building in Figure 11.1b are designed so that they do not
buckle under the weight of a building. 

Buckling is instability of columns under compression. Any axial members that support compressive axial loads, such as
the weight of the building in Figure 11.1b, are called columns—and not all structural members behave the same. If a compres-
sive axial force is applied to a long, thin wooden strip, then it bends significantly, as shown in Figure 11.1c. If the columns of
a building were to bend the same way, the building itself would collapse. And when a column buckles, the collapse is usually
sudden and catastrophic. 

Under what conditions will a compressive axial force produce only axial contraction, and when does it produce bending?
When is the bending caused by axial loads catastrophic? How do we design to prevent catastrophic failure from axial loads?
As we shall see in this chapter, we can identify members that are likely to collapse by studying structure’s equilibrium. Geom-
etry, materials, boundary conditions, and imperfections all affect the stability of columns.

11.1 BUCKLING PHENOMENON

Buckling is an instability of equilibrium in structures that occurs from compressive loads or stresses. A structure or its com-
ponents may fail due to buckling at loads that are far smaller than those that produce material strength failure. Very often
buckling is a catastrophic failure. We discuss briefly some of the approaches and types of buckling in the following sections.

11.1.1 Energy Approach

We look at the energy approach using an analogy of a marble that is in equilibrium on different types of surfaces as shown in
Figure 11.2. Left to itself, it will simply stay put. Suppose, however, that we disturb the marble to the shaded position in each

 Figure 11.1 Examples of columns.

(a) (b) (c)
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case. When the surface is concave, as in Figure 11.2a, the marble will return to its equilibrium position — and it is said to be
in stable equilibrium. When the surface is flat, as in Figure 11.2b, the marble will acquire a new equilibrium position. In this
case the marble is said to be in a neutral equilibrium. Last when the surface is convex, as in Figure 11.2c, the marble will roll
off. In this third case, a change in position also disturbs the equilibrium state and so the marble is said to be in unstable equi-
librium. 

The marble analogy in Figure 11.2 is useful in understanding one approach to the buckling problem, the energy method.
Every deformed structure has a potential energy associated with it. This potential energy depends on the strain energy (the
energy due to deformation) and on the work done by the external load. If the potential energy function is concave at the equi-
librium position, then the structure is in stable equilibrium. If the potential energy function is convex, then the structure is in
unstable equilibrium. The external load at which the potential energy function changes from concave to convex is called the
critical load at which the buckling occurs. This energy method approach is beyond the scope of this book. 

11.1.2 Eigenvalue Approach

To elaborate the eigenvalue approach in determining the load at which buckling occurs consider a rigid bar (Figure 11.3a)
with a torsional spring at one end and a compressive axial load at the other end. Figure 11.3b shows the free-body diagram of
the bar. Clearly, θ = 0 is an equilibrium position. We call it a trivial solution to the problem. But at what value of P does there
exist a nontrivial solution to the problem? This is the classical statement of an eigenvalue problem, and the critical value of P for
which the nontrivial solution exists is called the eigenvalue. At this critical value of P the rod acquires a new equilibrium.

To determine the critical value of P, we consider the equilibrium of the moment at O in Figure 11.3b.
(11.1a)

For small angles we can approximate  and rewrite Equation (11.1a) as

(11.1b)

In Equation (11.1b) θ = 0 is one solution, but if PL= Kθ then θ can have any non-zero value. Thus, the critical value of P is

(11.1c)

You may be more familiar with eigenvalue problem in context of matrices. In problems 11.7 and 11.8 there are two
unknown angles, and the problem can be cast in matrix form.

(a)
(b) (c)

  Figure 11.2 Equilibrium using marble (a) Stable. (b) Neutral. (c) Unstable.

PL θsin Kθθ=

θsin θ≈

PL Kθ–( )θ 0=

Pcr Kθ L⁄=

L

(a) (b)

P

K��

L sin �
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R
O

P

O

  Figure 11.3  Eigenvalue problem.
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11.1.3 Bifurcation Problem

To describe the bifurcation problem, we rewrite Equation (11.1a) as
(11.1d)

Figure 11.4 shows the plot of PL /Kθ versus θ. The equilibrium line separates the unstable region from the stable region.
The bar remains in the vertical equilibrium position (θ = 0) provided the load (P) increases are below point A and it will return
to the vertical position if it is disturbed (rotated) slightly to the left or right. Any disturbance in equilibrium for load values
above point A will send the bar to either to the left branch or to the right branch of the curve, where the it acquires a new equi-
librium position. Point A is the bifurcation point, at which there are three possible solutions. The load P at the bifurcation
point is called the critical load. Thus, we again see the same problem with a different perspective because of the methodology
used in solving it. 

11.1.4 Snap Buckling

In snap buckling a structure jumps from one equilibrium configuration to a dramatically different equilibrium configura-
tion. It is most often seen in shallow thin walled curved structures. To explain this phenomenon, consider a bar that can slide
in a smooth slot. It has a spring attached to it at the right end and a force P applied to it at the left end, as shown in Figure 11.5.
As we increase the force P, the inclination of the bar at the equilibrium position moves closer to the horizontal position. But
there is an inclination at which the bar suddenly jumps across the horizontal line to a position below the horizontal line

PL Kθ⁄ θ θsin⁄=

StableStable

UnstableUnstable

  Figure 11.4 Bifurcation problem.
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  Figure 11.5 Snap buckling problem. (a) Undeformed position, θ = 0. (b) 0 < θ < 45°. (c) θ > 45°. (d) Load versus θ .
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We consider the equilibrium of the bar before and after the horizontal line to understand the mathematics of snap buck-
ling. Suppose the spring is in the instructed position, as shown in Figure 11.5a. We define the inclination of the bar by the
angle θ measured from the undeformed position. Figure 11.5b and c shows the free-body diagrams of the bar before and after
the horizontal position. The spring force must reverse direction as the bar crosses the horizontal position to ensure moment
equilibrium. The deformation of the spring before the horizontal position is L cos (45o – θ) – L cos 45o. Thus the spring force
is Fs = KL[L cos(45o – θ) – L cos 45o]. By moment equilibrium we obtain

(11.2a)

In a similar manner, by considering the moment equilibrium in Figure 11.5c, we obtain

(11.2b)

Figure 11.5d shows a plot of P/KLL versus θ obtained from Equations (11.2a) and (11.2b). As we increase P, we move along
the curve until we reach point B. At B rather than following paths BC and CD, the bar jumps (snaps) from point B to point D.
It should be emphasized that each point on paths BC and CD represents an equilibrium position, but it is not a stable equilib-
rium position that can be maintained. 

11.1.5 Local Buckling

The perspectives on the buckling problem in the previous sections were about structural stability. Besides the instability
of a structure, however, we can have local instabilities. Figure 11.6a shows the crinkling of an aluminum can under compres-
sive axial loads. This crinkling is the local buckling of the thin walls of the can. Figure 11.6b shows a thin cylindrical shaft
under torsion. The stress cube at the top shows the torsional shear stresses. But if we consider a stress cube in principal coor-
dinates, then we see that principal stress 2 is compressive. This compressive principal stress can also cause local buckling,
though the orientation of the crinkles will be different than those from the crushing of the aluminum can. 

P
KLL
---------- 45° θ–( ) – cos 45°cos[ ] 45° – θ( ), 0 θ 45°< <tan=

P
KLL
---------- θ – 45°( ) – cos 45cos °[ ] tan θ – 45°( ), θ 45°>=

  Figure 11.6 Local buckling. (a) Due to axial loads. (b) Due to torsional loads.

Crinkling

Compressive 

(a)
(b)

Consolidate your  knowledge
1. Describe in your own words the various types of buckling.
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PROBLEM SET 11.1

Stability of discrete systems
11.1 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.1. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr

11.2 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.2. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr.

11.3 A linear spring that can be in tension or compression is attached to a rigid bar as shown in Figure P11.1. In terms of the spring constant
k and the length of the rigid bar L, determine the critical load value Pcr .

11.4 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.4. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr .

11.5 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.5. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr . 

  Figure P11.1
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  Figure P11.2
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K � 30 kN�m/rad

  Figure P11.4
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11.6 Linear deflection and torsional springs are attached to a rigid bar as shown Figure P11.6. The springs can act in tension or in compres-
sion and resist rotation in either direction. Determine the critical load value Pcr . 

Stretch yourself
11.7 Two rigid bars are pin connected and supported as shown in Figure 11.7. The linear displacement spring constant is k = 25 kN/m and
the linear rotational spring constant is K= 30 kN/rad. Using  θ1 and θ2 as the angle of rotation of the bars AB and BC from the vertical, write the
equilibrium equations in matrix form and determine the critical load P by finding the eigenvalues of the matrix. Assume small angles of rota-
tion to simplify the calculations.

11.8 Two rigid bars are pin connected and supported as shown in Figure 11.8. The linear displacement spring constant is k = 8 lb/in. and the
linear rotational spring constant is K= 2000 in.-lb/rad. Using θ1 and θ2 as the angle of rotation of the bars AB and BC from the vertical, write the
equilibrium equations in matrix form and determine the critical load P by finding the eigenvalues of the matrix. Assume small angles of rota-
tion to simplify the calculations.

k � 8 lb/in

k � 8 lb/in

30 in

P

30 in

O
K � 2000 in�lb/rad

  Figure P11.5

k � 8 lb/in
30 in

P

30 in

O
K � 2000 in�lb/rad

  Figure P11.6
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  Figure P11.8
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11.2 EULER BUCKLING

In this section we develop a theory for a straight column that is simply supported at either end. This theory was first developed
by Leonard Euler (see Section 11.4) and is named after him.

Figure 11.7a shows a simply supported column that is axially loaded with a force P. We shall initially assume that bend-
ing is about the z axis; as our equations in Chapter 7 on beam deflection were developed with just this assumption. We shall
relax this assumption at the end to generate the formula for a critical buckling load.

Let the bending deflection at any location x be given by v(x), as shown in Figure 11.7b. An imaginary cut is made at some
location x, and the internal bending moment is drawn according to our sign convention. The internal axial force N will be
equal to P. By balancing the moment at point A we obtain Mz + Pv = 0. Substituting the moment–curvature relationship of
Equation (7.1), we obtain the differential equation:

(11.3a)

If buckling can occur about any axis and not just the z axis, as we initially assumed, then the subscripts zz in the area
moment of inertia should be dropped. The boundary value problem can be written using Equation (11.3a) as

• Differential Equation 

 (11.3b)

where

(11.3c)

• Boundary Conditions
(11.4a)

(11.4b)

Clearly v = 0 would satisfy the boundary-value problem represented by Equations (11.3a), (11.4a), and (11.4b). This trivial
solution represents purely axial deformation due to compressive axial forces. Our interest is to find the value of P that would
cause bending; in other words, a nontrivial (v ≠ 0) solution to the boundary-value problem. Alternatively, at what value of P
does a nontrivial solution exist to the boundary-value problem? As observed in Section 11.1, this is the classical statement of
an eigenvalue problem. 

The solution to the differential equation, Equation (11.3b), is
(11.5)

From the boundary condition (11.4a) we obtain
(11.6a)

From boundary condition (11.4b),1 we obtain
  (11.6b)

If B = 0, then we obtain a trivial solution. For a nontrivial solution the sine function must equal zero:
(11.7)

Equation (11.7) is called the characteristic equation, or the buckling equation.
Equation (11.7) is satisfied if λL = nπ. Substituting for λ and solving for P, we obtain

  Figure 11.7 Simply supported column. 

(b)
y

x

L
AP

N = P
Mz

v(x)

AP

(a)

EIzz
d2v
dx2
-------- Pv+ 0=

d2v
dx2
-------- λ2v+ 0=

λ P
EI
------=

v 0( ) 0=

v L( ) 0=

v x( ) A λxcos B λxsin+=

v 0( ) A 0( )cos B 0( )sin+ 0 or A 0== =

v L( ) A λLcos B λLsin+ 0 or B λLsin 0== =

λLsin 0=
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(11.8)

Equation (11.8) represents the values of load P (the eigenvalues) at which buckling would occur. What is the lowest value of
P at which buckling will occur? Clearly, for the lowest value of P, n should equal 1 in Equation (11.8). Furthermore minimum
value of I should be used. The critical buckling load is

(11.9)

Pcr, the critical buckling load, is also called Euler load. Buckling will occur about the axis that has minimum area moment of
inertia. The solution for v can be written as 

(11.10)

Equation (11.10) represents the buckled mode (eigenvectors). Notice that the constant B in Equation (11.10) is undetermined.
This is typical in eigenvalue problems. The importance of each buckled mode shape can be appreciated by examining Figure
11.8. If buckled mode 1 is prevented from occurring by installing a restraint (or support), then the column would buckle at the
next higher mode at critical load values that are higher than those for the lower modes. Point I on the deflection curves
describing the mode shapes has two attributes: it is an inflection point and the magnitude of deflection at this point is zero.
Recall that the curvature d2v/dx2 at an inflection point is zero. Hence the internal moment Mz at this point is zero. If roller sup-
ports are put at any other points than the inflection points I, as predicted by Equation (11.10), then the boundary-value prob-
lem (see Problem 11.32) will have different eigenvalues (critical loads) and eigenvectors (mode shapes).

In many situations it may not be possible to put roller supports in order to change a mode to a higher critical buckling
load. But buckling modes and buckling loads can also be changed by using elastic supports. Figure 11.9 shows a water tank on
columns. The two rings are the elastic supports. Elastic supports can be modeled as springs and formulas for buckling loads
developed as shown in Example 11.3. 

1A matrix form may be more familiar for an eigenvalue problem. The boundary condition equations can be written in matrix form as

For a nontrivial solution—that is, when A and B are not both zero—the condition is that the determinant of the matrix must be zero. This yields  in
agreement with our solution.

1 0

P
EIzz
---------L⎝ ⎠

⎛ ⎞cos P
EIzz
---------L⎝ ⎠

⎛ ⎞sin
A
B⎩ ⎭

⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

P/EIzz( )L( ) 0,=sin

Pn
n2π2EI

L2
-----------------,= n 1 2 3 …, , ,=

Pcr
π2EI

L2
-----------=

v B nπ x
L
---⎝ ⎠

⎛ ⎞sin=

 Figure 11.8 Importance of buckled modes.

Mode shape 1
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L�2 L�2

Pcr

Pcr PcrI
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I I
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  Figure 11.9 Elastic supports on columns of a water tank.
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11.2.1 Effects of End Conditions

Equation (11.9) is applicable only to simply supported columns. However, the process used to obtain the formula can be used for
other types of supports. Table 11.1 shows the critical elements in the derivation process and the results for three other supports.
The formula for critical loads for all cases shown in Table 11.1 can be written as

(11.11)

where Leff is the effective length of the column. The effective length for each case is given in the last row of Table 11.1. This
definition of effective length will permit us to extend results that will be derived in Section 11.3 for simply supported imper-
fect columns to imperfect columns with the supports shown in cases 2 through 4 in Table 11.1.

TABLE 11.1  Buckling of columns with different supports

Case 1

Pinned at both ends

Case 2 

One end fixed, 
other end free

Case 3 

One end fixed, other 
end pinned

Case 4a

Fixed at both ends

a. RB and MB are the force and moment reactions.

Differential 
equation

Boundary 
conditions

Characteristic 
equation

b

b. The roots of the equations have to be found iteratively. The two smallest roots of the equation are λ L=4.4934 and λ L=7.7253.

Critical load
Pcr

Effective length 
Leff

L 2L 0.7L 0.5L

Consolidate your  knowledge
1. With the book closed derive the Euler buckling formula and comment on higher buckling modes.

Pcr
π2EI
L2

eff

-----------=

L

y

B

A

P

x
L

B

P

x

A

L

y

B

A

P

x

L

B

P

x

y A

EId2v
dx2
-------- Pv+ 0= EId2v

dx2
-------- Pv+ Pv L( )= EId2v

dx2
-------- Pv+ RB L x–( )= EId2v

dx2
-------- Pv+ RB L x–( ) MB+=

v 0( ) 0=
v L( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v L( ) 0=

v 0( ) 0=

xd
dv 0( ) 0=

v L( ) 0=

xd
dv L( ) 0=

λ P
EI
------=

λLsin 0= λLcos 0= λLtan λL= 2 1 λLcos–( )   λ– L λLsin 0=

π2EI
L2

------------ π2EI
4L2

------------ π2EI
2L( )2

-------------= 20.13EI
L2

-------------------- π2EI
0.7L( )2

------------------= 4π2EI
L2

--------------- π2EI
0.5L( )2

------------------=
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In Equation (11.9), I can be replaced by Ar2, where A is the cross-sectional area and r is the minimum radius of gyration
[see Equation (A.11)]. We obtain 

(11.12)

where Leff /r is the slenderness ratio and σcr is the compressive axial stress just before the column would buckle. 
Equation (11.12) is valid only in the elastic region—that is, if σcr < σyield. If σcr > σyield, then elastic failure will be due to

stress exceeding the material strength. Thus σcr = σyield defines the failure envelope for a column. Figure 11.10 shows the fail-
ure envelopes for steel, aluminum, and wood using the material properties given in Table D.1. As nondimensional variables
are used in the plots in Figure 11.10, these plots can also be used for metric units. Note that the slenderness ratio is defined
using effective lengths; hence these plots are applicable to columns with different supports.

The failure envelopes in Figure 11.10 show that as the slenderness ratio increases, the failure due to buckling will occur at
stress values significantly lower than the yield stress. This underscores the importance of buckling in the design of members
under compression.

The failure envelopes, as shown in Figure 11.10, depend only on the material property and are applicable to columns of
different lengths, shapes, and types of support. These failure envelopes are used for classifying columns as short or long.2

Short column design is based on using yield stress as the failure stress. Long column design is based on using critical buckling
stress as the failure stress. The slenderness ratio at point A for each material is used for separating short columns from long
columns for that material. Point A is the intersection point of the straight line representing elastic material failure and the
hyperbola curve representing buckling failure.

EXAMPLE 11.1

A hollow circular steel column (E = 30,000 ksi) is simply supported over a length of 20 ft. The inner and outer diameters of the cross
section are 3 in. and 4 in., respectively. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the crit-
ical buckling load. (d) If roller supports are added at the midpoint, what would be the new critical buckling load?

PLAN

(a) The area moment of inertia I for a hollow cylinder is same about all axes and can be found using the formula in Table C.2. From the
value of I the radius of gyration can be found. The ratio of the given length to the radius of gyration gives the slenderness ratio. (b)In
Equation (11.9) the given values of E and L, as well as the calculated value of I in part (a), can be substituted to obtain the critical buck-
ling load Pcr. (c) Dividing Pcr by the cross-sectional area, the critical axial stress σcr can be found. (d)The column will buckle at the next
higher buckling load, which can be found by substituting n = 2 and E, I, and L into Equation (11.8).

SOLUTION

(a) The outer diameter do = 4 in. and the inner diameter di = 3 in. From Table C.2 the area moment of inertia for the hollow cylinder, the
cross-sectional area A, and the radius of gyration r can be calculated using Equation (A.11),

(E1)

2Intermediate column is a third classification used if the critical stress is between yield stress and ultimate stress. See Equation (11.26) and Problems 11.64 and 11.65 for additional
details.

σcr
Pcr

A
------ π2E

Leff r⁄( )2
---------------------= =

  Figure 11.10 Failure envelopes for Euler columns.
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(E2)

The length L = 20 ft = 240 in. Thus the slenderness ratio is 
ANS.

(b) Substituting E = 30,000 ksi, L = 240 in., and I = 8.59 in.4 into Equation (11.9), we obtain the critical buckling load,

(E3)

ANS. Pcr = 44.15 kips
(c) The axial stress at the critical buckling load can be found as

(E4)

ANS. σcr = 8.03 ksi (C)
(d) With the support in the middle, the buckling would occur in mode 2. Substituting n = 2 and E, I, and L into Equation (11.8) we obtain
the critical buckling load,

(E5)

ANS. Pcr = 176.6 kips

COMMENTS

1. This example highlights the basic definitions of variables and equations used in buckling problems.
2. The middle support forces the column into the mode 2 buckling mode in part (d). Another perspective is to look at the column as two

simply supported columns, each with an effective length of half the column or Leff = 120 in. Substituting this into Equation (11.11),
we obtain the same value as in part (d).

EXAMPLE 11.2

The hoist shown in Figure 11.11 is constructed using two wooden bars with modulus of elasticity E = 1800 ksi and ultimate stress of
συlt =5 ksi. For a factor of safety of K = 2.5, determine the maximum permissible weight W that can be lifted using the hoist for the two
cases: (a) L = 30 in.; (b) L = 60 in.

PLAN

The axial stresses in the members can be found and compared with the calculated allowable values to determine a set of limits on W. By
inspection we see that member BC will be in compression. Internal force in BC in terms of W can be found from free body diagram of the
pulley and compared to critical buckling of BC to get another limit on W. The maximum value of W that satisfies the strength and buck-
ling criteria can now be determined.

SOLUTION

The allowable stress in wood is
(E1)

The free-body diagram of the pulley is shown in Figure 11.12 with the force in BC drawn as compressive and the force in CD as tensile. By
equilibrium the internal axial forces

(E2)

r I
A
--- 8.590 in.4

5.498 in.2
----------------------- 1.250 in.= = =

L r⁄ 240 in.( ) 1.25 in.( )⁄ .=
L r⁄ 192=

Pcr
π2EI

L2
------------ π2 30,000  ksi( ) 8.590 in.( )

240 in.( )2
----------------------------------------------------------------= =

σcr
Pcr

A
------- 44.15 kips

5.498 in.2
-------------------------= =

Pcr
n2π2EI

L2
----------------- 22π2 30,000 ksi( ) 8.590 in.( )

240 in.( )2
----------------------------------------------------------------------= =

W
P � W

30°A

B

B

A

x

y

z
B

C

L (ft)

D

  Figure 11.11 Hoist in Example 11.2.

Cross section AA

4 in

2 in

z

y

Cross section BB

5 in

2 in

σallow σult K⁄ 5 ksi( ) 2.5⁄ 2 ksi= = =

NCD 30°  sin 2W= or NCD 4W=
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(E3)

The cross-sectional areas for the two members are ABC = 8 in.2 and ACD = 10 in.2. The axial stresses in terms of W can be found, and these
should be less than the allowable stress of 2 ksi, from which we get two limits on W,

(E4)

(E5)

(a) We determine the minimum area moment of inertias for cross-section AA, 

(E6)

Substituting E = 1800 ksi, L = 30 in., and I = 2.667 in.4 into Equation (11.9), we obtain 

(E7)

NBC should be less than the critical load Pcr divided by factor of safety K ,
(E8)

The maximum value of W must satisfy Equations (E4), (E5), and (E8). 
ANS. Wmax = 4.6 kips

(b) Substituting E = 1800 ksi, L = 60 in., and I = 2.667 in.4into Equation (11.9), we obtain 

(E9)

NBC should be less than the critical load Pcr divided by factor of safety K ,
(E10)

The maximum value of W must satisfy Equations (E4), (E5), and (E10). 
ANS. Wmax = 1.5 kips

COMMENTS

1. This example highlights the importance of identifying compression members such as BC, so that buckling failure is properly
accounted for in design. 

2. The example also emphasizes that the minimum area moment of inertia that must be used is Euler buckling. Had we used Izz instead
of Iyy, we would have found Pcr = 52.7 kips and incorrectly concluded that the failure would be due to strength failure and not buck-
ling in case (b)

3. In case (a) material strength governed the design, whereas in case (b) buckling governed the design. If we had several bars of different
lengths and different cross-sectional dimensions (such as in Problems 11.18 and 11.19), then it would save a significant amount of
work to calculate the slenderness ratio that would separate long columns from short columns. Substituting σcr = σallow = 2 ksi into
Equation (11.12), we find that L/r = 94.2 is the ratio that separates long columns from short columns. It can be checked that the slen-
derness ratio in case (a) is 51.9, hence material strength governed Wmax. In case (b) the slenderness ratio is 103.9, hence buckling
governed Wmax.

W
P � W

NBC

NCD

30°

C

  Figure 11.12 Free-body diagram in Example 11.2.

NBC NCD 30°cos= or NBC 3.464W=

σCD
NCD

ACD
---------- 4W

10 in.2
---------------- 2 ksi or W 5.0 kips≤≤= =

σBC
NBC

ABC
---------- 3.463W

8 in.2
------------------- 2 ksi or W 4.62 kips≤≤= =

Iyy
1

12
------ 4 in.( ) 2 in.( )3 2.667 in.4= = Izz

1
12
------ 2 in.( ) 4 in.( )3 10.67 in.4= =

Pcr
π2EI

L2
------------= π2 1800 ksi( ) 2.667 in.4( )

30 in.( )2
------------------------------------------------------------- 52.63 kips==

NBC Pcr K⁄( ) or 3.464W 52.63 kips( ) 2.5⁄[ ]≤≤ or W 6.08 kips≤

Pcr
π2EI

L2
------------= π2 1800 ksi( ) 2.667 in.4( )

60 in.( )2
------------------------------------------------------------- 13.159 kips= =

NBC Pcr K⁄( ) or 3.464W 13.159 kips( ) 2.5⁄[ ]≤≤ or W 1.52 kips≤
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EXAMPLE 11.3

Linear springs are attached at the free end of a column, as shown in Figure 11.13. Assume that bending about the y axis is prevented. (a)
Determine the characteristic equation for this buckling problem. Show that the critical load Pcr for (b) k = 0 and (c) k = ∞ is as given in Table
11.1 for cases 2 and 3, respectively. 

PLAN

The spring exerts a spring force kvL at the upper end that must be incorporated into the moment equation, and hence into the differential
equation. The boundary conditions are that the deflection and slope at x = 0 are zero. (a) The characteristic equation will be generated
while solving the boundary-value problem. (b), (c) The roots of the characteristic equation for the two cases will give Pcr. 

SOLUTION

By equilibrium of moment about point O in Figure 11.14, we obtain an expression for moment Mz,

(E1)
Substituting into Equation (7.1), we obtain the differential equation

(E2)

(a) Using Equation (11.3c), Equation (E2) can be written as:
• Differential equation:

(E3)

The zero deflection and slope boundary condition are also written to complete the statement of the boundary-value problem,
• Boundary Conditions:

(E4)

(E5)

The homogeneous solution vH to Equation (E3) is given by Equation (11.5). The particular solution is

(E6)

Thus the total solution vH + vP can be written as 

k

L

y

P

x
  Figure 11.13 Column with elastic support in Example 11.3.

Mz P vL v–( )– kvL L x–( )+ 0= or Mz Pv+ PvL kvL L x–( )–=

EIzz
d2v
dx2
-------- Pv+ PvL kvL L x–( )–=

d2v
dx2
-------- λ2v+ λ2vL

kvL

EI
-------- L x–( )–=

P

O

kv(L)

L � x

v(L)

v(x)

Mz
Vy

N � P  Figure 11.14 Free-body diagram in Example 11.3.

vL

vL

v

v 0( ) 0=

dv
dx
------ 0( ) 0=

vP vL
kvL

λ2EI
------------ L x–( )–=
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(E7)

Substituting x = 0 into Equation (E7) and using Equation (E4), we obtain

(E8)

Differentiating Equation (E7), then substituting x = 0 and using Equation (E5), we obtain

(E9)

Substituting the values of A and B into Equation (E7), we obtain

(E10)

Substituting x = L into Equation (E7), we obtain

(E11)

Since vL is a common factor, Equation (E11) can be simplified to the following characteristic equation:

ANS.

(b) Substituting k = 0 into Equation (E11), we obtain cos λL = 0, which is the characteristic equation for case 2 in Table 11.1. Thus the
Pcr value corresponding to the smallest root will be as given in Table 11.1 for case 2.
(c) We rewrite Equation (E11) as

(E12)

As k tends to infinity, the second term tends to zero and we obtain tan λL = λL, which is the characteristic equation for case 3 in Table
11.1. Thus the Pcr value corresponding to the smallest root will be as given in Table 11.1 for case 3.

COMMENTS

1. This example shows that a spring could simulate an imperfect support that provides some restraint to deflection. The restraining effect
is more than zero (free end) but not as much as a roller support. 

2. The spring could also represent other beams that are pin connected at the top end. These pin-connected beams provide elastic restraint
to deflection but no restraint to the slope. If the beams were welded rather than pin connected, then we would have to include a tor-
sional spring also at the end.

3. The example also demonstrates that the critical buckling loads can be changed by installing some elastic restraints, such as rings, to
support the columns of the water tank in Figure 11.9.

EXAMPLE 11.4

Determine the maximum deflection of the column shown in Figure 11.15 in terms of the modulus of elasticity E, the length of the col-
umn L, the area moment of inertia I, the axial force P, and the intensity of the distributed force w. 

PLAN 

The moment from the distributed load can be added to the moment for case 1 in Table 11.1 and the differential equation written. The
boundary conditions are that the deflection at x = 0 and x = L is zero. The boundary-value problem can be solved, and the deflection at
x = L/2 evaluated to obtain the maximum deflection.

SOLUTION

The reaction force in the y direction is half the total load wL acting on the beam. An imaginary cut at some location x can be made and
the free-body diagram of the left part drawn as shown in Figure 11.16. By balancing the moment at point O, we obtain an expression for
the moment Mz,

v x( ) A λxcos B λxsin vL
kvL

λ2EI
------------ L x–( )–+ +=

v 0( ) A 0( ) B  0( ) vL
kvL

λ2EI
------------ L 0–( ) 0=–+sin+cos= or A kL

λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ vL=

dv
dx
------ 0( ) λA 0( ) Bλ 0( )

kvL

λ2EI
------------+cos+sin– 0= = or B k

λ3EI
------------vL–=

v x( ) kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λxcos k
λ3EI
------------– λxsin 1 k

λ2EI
------------ L x–( )–+ vL=

v L( ) kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λLcos  k
λ3EI
------------– λLsin 1 0–+ vL vL= =

kL
λ2EI
------------ 1–⎝ ⎠

⎛ ⎞ λL  cos k
λ3EI
------------– λLsin 0=

λLtan λL λ3EI
k

------------–=

y

x

L

w

P A  Figure 11.15 Buckling of beam with distributed load in Example 11.4.
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(E1)

Substituting Equation (E1) into Equation (7.1), we obtain the differential equation

(E2)

Using Equation (11.3c), Equation (E2) can be written as
• Differential Equation

(E3)

The zero-deflection boundary conditions at either end are written to complete the statement of the boundary-value problem.
• Boundary Conditions

(E4)

(E5)

To find the particular solution, we substitute vP = a + bx + cx2 into Equation (E3) and simplify, 

(E6)

If Equation (E6) is to be valid for any value of x, then each of the terms in parentheses must be zero and we obtain the values of constants
a, b, and c,

 (E7)

Hence the particular solution is

(E8)

The homogeneous solution vH to Equation (E3) is given by Equation (11.5). Thus the total solution vH + vP can be written as

(E9)

Substituting x = 0 into Equation (E9) and using Equation (E4), we obtain

(E10)

Substituting x = L into Equation (E9) and using Equation (E5), we obtain

 (E11)

Since sin λL = 2 sin (λL/2) cos (λL/2) and 1 – cos λL = 2 sin2 (λL/2) the above equation can be simplified as

(E12)

By symmetry the maximum deflection will occur at midpoint. Substituting x = L/2, A and B into Equation (E9), we obtain

(E13)

Equation (E13) can be simplified by substituting the tangent function in terms of the sine and cosine functions to obtain

Mz Pv x( ) wL
2

-------x– wx2

2
---------+ + 0=

P

O

A

x

x�2
wx

v(x)

N � P

wL
2

Mz

  Figure 11.16 Free-body diagram in Example 11.4.

v

EIzz
d2v
dx2
-------- Pv+ wL

2
-------x wx2

2
---------–=

d2v
dx2
-------- λ2v+ wLx

2EI
---------- wx2

2EI
---------–=

v 0( ) 0=

v L( ) 0=

2c λ2 a bx cx2+ +( )+ wLx
2EI
---------- wx2

2EI
---------–= or 2c λ2a+( ) λ2b wL

2EI
---------–⎝ ⎠

⎛ ⎞ x λ2c w
2EI
---------+⎝ ⎠

⎛ ⎞ x2+ + 0=

c w
2λ2EI
--------------- b wL

2λ2EI
---------------= a 2c

λ2
------– w

λ4EI
------------= =–=

vP
w

λ4EI
------------ wL

2λ2EI
---------------x w

2λ2EI
---------------x2–+=

v x( ) A λxcos B λxsin w
λ4EI
------------ wL

2λ2EI
---------------x w

2λ2EI
---------------– x2+ + +=

v 0( ) A 0( ) B 0( ) w
λ4EI
------------+sin 0 0 0=–+ +cos= or A w

λ4EI
------------–=

v L( ) A λLcos B+ λLsin w
λ4EI
------------ wL2

2λ2EI
--------------- wL2

2λ2EI
---------------–+ + 0= = or w

λ4EI
------------– λLcos B+ λLsin w

λ4EI
------------+ 0=

B w
λ4EI
------------ 1  λLcos–

 λLsin
---------------------------– w

λ4EI
------------ λL

2
-------⎝ ⎠

⎛ ⎞tan–==

vmax v L
2
---⎝ ⎠

⎛ ⎞ A λL
2

-------⎝ ⎠
⎛ ⎞cos B   λL

2
-------⎝ ⎠

⎛ ⎞  w
λ4EI
------------ wL2

4λ2EI
--------------- wL2

8λ2EI
---------------–+ +sin+= = or

vmax= w
λ4EI
------------ λL

2
-------⎝ ⎠

⎛ ⎞cos– λL
2

-------⎝ ⎠
⎛ ⎞tan– λL

2
-------⎝ ⎠

⎛ ⎞sin  w
λ4EI
------------ wL2

8λ2EI
---------------+ +
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(E14)

Substituting for λ, the maximum deflection can be written as

ANS.

COMMENTS

1. In Equation (E13), as λL → π, the secant function tends to infinity and the maximum displacement becomes unbounded, which
means the column becomes unstable. λL = π corresponds to the Euler buckling load of Equation (11.9). Thus the transverse distrib-
uted load does not change the critical buckling load of a column.

2. However the failure mode can be significantly affected by the transverse distributed load. The maximum normal stress will be the
sum of axial stress and maximum bending normal stress, σmax = P/A + Mmaxymax/I. The maximum bending moment will be at x = L/2
and can be found from Equation (E1) as Mmax = wL2/8 – Pvmax. Substituting and simplifying gives the maximum normal stress:

(E15)

By equating the maximum normal stress to the yield stress, we obtain a failure envelope, which clearly depends on the value of w. 

PROBLEM SET 11.2

Euler buckling
11.9 A hollow circular steel column (E = 200 GPa) is simply supported over a length of 5 m. The inner and outer diameters of the cross sec-
tion are 75 mm and 100 mm. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load.
(d) If roller supports are added at the midpoint, what would be new critical buckling load? 

QUICK TEST 11.1 Time: 15 minutes/Total: 20 points

Answer true or false. If false, give the correct explanation. Each question is worth two points. Use the solutions given in
Appendix E to grade yourself. 

1. Column buckling can be caused by tensile axial forces.
2. Buckling occurs about an axis with minimum area moment of inertia of the cross section.
3. If buckling is avoided at the Euler buckling load by the addition of supports in the middle, then the column will

not buckle.
4. By changing the supports at the column end, the critical buckling load can be changed.
5. The addition of uniform transversely distributed forces decreases the critical buckling load on a column.
6. The addition of springs in the middle of the column decreases the critical buckling load.
7. Eccentricity in loading decreases the critical buckling load.
8. Increasing the slenderness ratio increases the critical buckling load.
9. Increasing the eccentricity ratio increases the normal stress in a column.
10. Material strength governs the failure of short columns and Euler buckling governs the failure of long columns.

vmax
w

λ4EI
------------– λL

2
-------⎝ ⎠

⎛ ⎞sec 1– wL2

8λ2EI
---------------+=

vmax
wEI
P2

----------– L
2
--- P

EI
------⎝ ⎠

⎛ ⎞sec 1– wL2

8P
----------+=

σmax
P
A
---

wEymax

P
------------------ L

2
--- P

EI
------⎝ ⎠

⎛ ⎞sec 1–+=
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11.10 A 30-ft-long hollow square steel column (E = 30,000 ksi) is built into the wall at either end. The column is constructed from

sheet metal and has outer dimensions of 4 in. × 4 in. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial

stress at the critical buckling load.

11.11 A 10 ft long lumber (E = 1,800 ksi) column with a rectangular cross section of 4 in. x 6 in. is pinned at both ends. (a) Determine the
critical buckling load P. (b) What is the next higher buckling load? 

11.12 A 4 m long column is constructed from a steel (E = 210 GPa) sheet of thickness 10 mm. The sheet metal is bent to form a hollow rect-
angular cross section with outer dimension of 120 mm x 80 mm. One end of the column is fixed and the other is a free end as in case 2 of Table
11.1 (a) Determine the critical buckling load P. (b) What is the next higher buckling load? 

11.13 A 12 ft long lumber (E = 1,800 ksi) column with a rectangular cross section of 6 in. x 8 in. is pinned at one end and fixed at the other
as in case 3 of Table 11.1. (a) Determine the critical buckling load P. (b) What is the next higher buckling load?

11.14 A 5 m long column is constructed from a steel (E = 210 GPa) sheet metal of thickness 15 mm. The sheet metal is bent to form a hol-
low rectangular cross section with outer dimension of 120 mm x 90 mm. The ends of the column are fixed as in case 4 of Table 11.1. Determine
the critical buckling load P.

11.15 A 20-ft-long wooden column (E = 1800 ksi) has cross-section dimensions of 8 in. × 8 in. The column is built in at one end and simply
supported at the other end. Determine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. 

11.16 A W12 × 35 steel section (see Appendix E) is used for a 21-ft column that is simply supported at each end. Use E = 30,000 ksi and deter-
mine (a) the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. (d) If roller supports are added at inter-
vals of 7 ft, what would be the critical buckling load? 

11.17 An S200 × 34 steel section (see Appendix E) is used as a 6-m column that is built in at each end. Use E = 200 GPa and determine (a)
the slenderness ratio; (b) the critical buckling load; (c) the axial stress at the critical buckling load. 

11.18 Columns made from alloy will be used in the construction of a frame. The cross section of the columns is a hollow square of 0.125-in.
thickness and outer dimensions of a in. The modulus of elasticity E = 9000 ksi and the yield stress σyield = 90 ksi. Table 11.18 lists the lengths
L and outer square dimensions a. Identify the long and short columns. Assume the ends will be simply supported.

11.19 Columns made from alloy will be used in the construction of a frame. The cross section of the columns is a hollow cylinder of 10-mm
thickness and an outer diameter of d mm. The modulus of elasticity E = 100 GPa and the yield stress σyield = 600 MPa. Table P11.19 lists the
lengths L and outer diameters d. Identify the long and short columns. Assume the ends of the column are built in. 

TABLE P11.18 Column geometric properties 

L
(ft)

a
(in.)

1.0 1.125
1.5 1.500

2.0 1.750
2.5 2.750
3.0 3.000
3.5 3.000
4.0 3.000

TABLE P11.19 Column geometric properties 

L
(m)

d
(mm)

1 60
2 80
3 100
4 150
5 200
6 225
7 250

1
2
--- -in.-thick
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11.20 Three column cross sections are shown in Figure P11.20. The area of each of the three cross sections is equal to A. Determine the
ratios of critical loads Pcr1: Pcr2: Pcr3 assuming (a) the ends are simply supported; (b) the ends are built in. (c) How do you expect the ratios to
change if the end conditions were as in cases 2 and 3 of Table 11.1? 

11.21 Figure P11.21 shows two steel (E = 30,000 ksi, σyield = 30 ksi) bars of a diameter d = in. on which a force F = 750 lb is applied.

Bars AP and BP have lengths LAP = 8 in. and LBP = 10 in. Determine the factor of safety for the assembly. 

11.22 Figure P11.22 shows two steel (E = 30,000 ksi, σyield = 30 ksi) bars of a diameter d = in. on which a force F = 600 lb is applied.

Bars AP and BP have lengths LAP = 7 in. and LBP = 10 in. Determine the factor of safety for the assembly.

11.23 Figure P11.23 shows two copper (E = 15,000 ksi, σyield = 12 ksi) bars of a diameter d = in. on which a force F = 500 lb is applied.

Bars AP and BP have lengths LAP = 7 in. and LBP = 9 in. Determine the factor of safety for the assembly.

11.24 Figure P11.24 shows two (E = 200 GPa, σyield = 200 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 350 mm. Determine the factor of safety for the assembly.

11.25 Figure P11.25 shows two (E = 200 GPa, σyield = 360 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 300 mm. Determine the factor of safety for the assembly.

1. Square 3. Equilateral
    triangle

2. Circle
  Figure P11.20

1
4
---

B

F
110° 30°

PA Figure P11.21

1
4
---

  Figure P11.22

B

F

60°

25°
P

A

1
4
---

  Figure P11.23

30�

40�

75�A

F

P

B

F

110°

P

A

B

  Figure P11.24
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11.26 Figure P11.26 shows two (E = 200 GPa, syield = 200 MPa) bars of a diameter d =10 mm on which a force F = 10 kN is applied. Bars
AP and BP have lengths LAP = 200 mm and LBP = 300 mm. Determine the factor of safety for the assembly.

Formulation and solutions 
11.27 (a) Solve the boundary-value problem for case 2 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value? 

11.28 (a) Solve the boundary-value problem for case 3 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value? 

11.29 (a) Solve the boundary-value problem for case 4 in Table 11.1 and obtain the critical load value Pcr that is given in the table. (b) If
buckling in mode 1 is prevented, then what would be the Pcr value?

11.30 A torsional spring with a spring constant K is attached at one end of a column, as shown in Figure P11.30. Assume that bending about
the y axis is prevented. (a) Determine the characteristic equation for this buckling problem. (b) Show that for K = 0 and K = ∞ the critical load Pcr

is as given in Table 11.1 for cases 1 and 3, respectively.

11.31 A torsional spring with a spring constant K is attached at one end of a column, as shown in Figure P11.31. Assume that bending about
the y axis is prevented. (a) Determine the characteristic equation for this buckling problem. (b) Show that for K = 0 the critical load Pcr is as given
for case 2 in Table 11.1. (c) For K = ∞ obtain the critical load Pcr.
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11.32 Consider the column shown in Figure P11.32. (a) Determine the critical buckling in terms of E, I, L, and α. (b) Show that when
α = 0.5, the critical load corresponds to mode 2, as shown in Figure 11.8. 

11.33 For the column shown in Figure P11.33 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

11.34 For the column shown in Figure P11.34 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

11.35 For the column shown in Figure P11.35 determine (a) the deflection at x = L; (b) the critical load Pcr  in terms of the modulus of elas-
ticity E, the column length L, the area moment of inertia I, and the force P.

Design problems
11.36 Steel (E = 210 GPa) rectangular bars of 15 mm x 25 mm cross section form an assembly shown in Figure P11.36. Determine the max-
imum load P that can be applied without buckling of any bar. Use a = 1 m, b = 0.7 m, and c = 1 m. 

11.37 Steel (E = 210 GPa) rectangular bars of 15 mm x 25 mm cross section form an assembly shown in Figure P11.36. Determine the max-
imum load P that can be applied without buckling of any bar. Use a = 1 m, b = 0.7 m, and c = 1.4 m. 

11.38 Steel (E= 30,000 ksi) rectangular bars of 1/2 in. x 1 in. cross section form an assembly shown in Figure P11.38. Determine the maxi-
mum load P that can be applied without buckling of any bar.
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11.39 Steel (E= 30,000 ksi) rectangular bars of 1/2 in. x 1 in. cross section form an assembly shown in Figure P11.39. Determine the maxi-
mum load P that can be applied without buckling of any bar.

11.40 A hoist is constructed using two wooden bars to lift a weight of 5 kips, as shown in Figure P11.40. The modulus of elasticity for wood
E = 1800 ksi and the allowable normal stress is 3.0 ksi. Determine the maximum value of L to the nearest inch that can be used in constructing the hoist.

11.41 Two steel cylinders (E = 30,000 ksi and σyield = 30 ksi) AB and CD are loaded as shown in Figure P11.41. Determine the maximum
load P to the nearest lb, if a factor of safety of 2 is desired. Model the ends of column AB as built in

11.42 A spreader is to be made from an aluminum pipe (E = 10,000 ksi) of  thickness and an outer diameter of 2 in., as shown in Figure

P11.42. The pipe lengths available for design start from 4 ft in 6-in. steps up to 8 ft. The allowable normal stress is 40 ksi. Develop a table for
the lengths of pipe and the maximum force F the spreader can support. 

11.43 Two 200-mm × 50-mm pieces of lumber (E = 12.6 GPa) form a part of a deck that is modeled as shown in Figure P11.43. The allow-
able stress for the lumber is 18 MPa. (a) Determine the maximum intensity of the distributed load w. (b) What is the factor of safety for column
BD corresponding to the answer in part (a)? 
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11.44 Two 200-mm × 50-mm pieces of lumber (E = 12.6 GPa) form a part of a deck that is modeled as shown in Figure P11.44. The allow-
able stress for the lumber is 18 MPa. (a) Determine the maximum intensity of the distributed load w. (b) What is the factor of safety for column
BC corresponding to the answer in part (a)? 

11.45 A rigid bar hinged at point O has a force P applied to it, as shown in Figure P11.45. Bars A and B are made of steel with a modulus of
elasticity E = 30,000 ksi and an allowable stress of 25 ksi. Bars A and B have circular cross sections with areas AA = 1 in.2 and AB = 2 in.2,
respectively. Determine the maximum force P that can be applied.

Stretch yourself
11.46 Show that for a beam with a constant bending rigidity EI, the fourth-order differential equation for solving buckling problems is
given by

(11.13)

where P is a compressive axial force and py is the distributed force in the y direction.

11.47 Using Equation (11.13), solve Example 11.4.

11.48 Show that the critical change of temperature at which the beam shown in Figure P11.48 will buckle is given by the equation below.

where α is the thermal coefficient of expansion and r is the radius of gyration.

11.49 A column with a constant bending rigidity EI rests on an elastic foundation as shown in Figure P11.49. The foundation modulus is k,
which exerts a spring force per unit length of kv. Show that the governing differential equation is given by Equation (11.15). (Hint: See Prob-
lems 7.48 and 11.46.)

11.50 Show that the buckling load for the column on an elastic foundation described in Problem 11.49 is given by the eigenvalues

(11.15)

Note: For n = 1 and k = 0 Equation (11.15) gives the Euler buckling load.
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11.51 For a simply supported column with a symmetric composite cross section, show that the critical load Pcr is given by

(11.16)

where Leff = the effective length of the column, Ei is the modulus of elasticity for the ith material, Ii is the area moment of inertia about the buck-
ling axis, and n is the number of materials in the cross section. [See Equations (6.36) and (11.3a).]

11.52 A composite column has the cross section shown in Figure P11.52. The modulus of elasticity of the outside material is twice that of
the inside material. In terms of E, d, and L, determine the critical buckling load.

11.53 Two strips of material of a modulus of elasticity of 2E are attached to a material with a modulus of elasticity E to form a composite
cross section of the column shown in Figure P11.53. In terms of E, a, and L, determine the critical buckling load. The column is free to buckle
in any direction.

11.3* IMPERFECT COLUMNS

In the development of the theory for axial members and the symmetric bending of beams, we obtained that the condition for
decoupling axial deformation from bending deformation for linear, elastic, and homogeneous material: the applied loads must
pass through the centroid of the cross sections, and the centroids of all cross sections are on a straight line. However, the
requirements for decoupling the axial from the bending problem may not be met for a number of reasons, some of which are
given here:

• The column material may contain small holes, minute cracks, or other material inclusions. Hence the homogeneity
requirement or the requirement that the centroids of all cross sections be on a straight line may not be met. 

• The material processing may cause local strain hardening. Hence the condition of linear and elastic material behavior
across the entire cross section may not be met. 

• The theoretical design centroid and the actual centroid are offset due to manufacturing tolerances.
• Local conditions at the support cause the reaction force to be offset from the centroid.
• The transfer of loads from one member to another may not occur at the centroid.

This partial list can be considered as imperfections in the column, which cause the application of axial loads to be offset
from the centroid of the cross section. This offset loading is termed eccentric loading on columns. In this section we study the
impact of eccentricity in loading on buckling.

Figure 11.17a shows a simply supported column on which an eccentric compressive axial load is applied at a distance e
from the centroid of the cross section. Figure 11.17b shows the free-body diagram of the column segment. By balancing the

Pcr
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  Figure P11.52
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 Figure 11.17 Eccentrically loaded column.
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moment at point A we obtain Mz + P(v + e) = 0. Substituting the moment–curvature relationship of Equation (7.1), we obtain
the differential equation

(11.17)

where λ is given by Equation (11.3c). The boundary conditions are that displacements at x = 0 and x = L are zero, as given by
Equation (11.4a) and (11.4b). The homogeneous solution to Equation (11.17) is given by Equation (11.5), that is, vH(x) =
A cos λx + B sin λx. The particular solution to Equation (11.17) is vP(x) = –e. Thus the total solution vH + vP is

(11.18)
From boundary condition (11.4a) we obtain

(11.19a)

From boundary condition (11.4b) we obtain

(11.19b)

(11.19c)

Substituting for A and B in Equation (11.18), we obtain the deflection as

(11.20)

As λL/2 → π/2, the function tan(λL/2) → ∞ and the displacement function v(x) becomes unbounded. Thus the critical load
value can be found by substituting for λ in the equation λL/2 = π/2 to obtain the same critical value as given by Equation
(11.9). In other words, the buckling load value does not change with the eccentricity of the loading. We will make use of this
observation to extend our formulas to other types of support conditions.

In the eigenvalue approach discussed in Section 11.2, we were unable to determine the displacement function because we
had an undetermined constant B in Equation (11.10). But here the displacement function is completely determined by Equa-
tion (11.20). The maximum deflection (by symmetry) will be at the midpoint. Substituting  x = L/2 into Equation (11.20), we
obtain

(11.21a)

Using trigonometric identities, this equation can be simplified as vmax = e[sec (λL/2) – 1]. Substituting for λ from Equation
(11.3c), we obtain

(11.21b)

We can write

(11.21c)

We obtain the maximum deflection equation as

(11.22)

The maximum normal stress is the sum of compressive axial stress and maximum compressive bending stress:

(11.23a)

d2v
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The maximum bending moment will be at the midpoint of the column, and its value is Mmax = P(e + vmax). Substituting for vmax

we obtain 

(11.23b)

Equation (11.23b) was derived for simply supported columns. We can extend the results to other supports by changing the
length of the column to the effective length Leff, as given in Table 11.1. We also substitute ymax = c, where c represents the max-
imum distance from the buckling (bending) axis to a point on the cross section. Substituting I = Ar2, where A is the cross-sec-
tional area and r is the radius of gyration, we obtain

(11.24)

Equation (11.24) is called the secant formula. The quantity ec/r2 is called the eccentricity ratio. 
By equating σmax to failure stress σfail in Equation (11.24), we obtain the failure envelope for an imperfect column. The

failure envelope equation can be written in nondimensional form as

(11.25)

Equation (11.25) can be plotted for different materials, as shown in Figure 11.18. These curves can be used for metric as well
for U.S. customary units, since the variables used in creating the plots are nondimensional. The curves can be used for any
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 Figure 11.18 Failure envelopes for imperfect columns.
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material that has the same value for σyield/E. The failure stress in the cases of steel and aluminum would be the yield stress
σyield, whereas for wood it would be the ultimate stress σult. The curves can also be used for different end conditions by using
the appropriate Leff as given in Table 11.1. 

EXAMPLE 11.5

A wooden box column (E = 1800 ksi) is constructed by joining four pieces of lumber together, as shown in Figure 11.19. The load
P = 80 kips is applied at a distance of e = 0.667 in. from the centroid of the cross section. (a) If the length is L = 10 ft, what are the
maximum stress and the maximum deflection? (b) If the allowable stress is 3 ksi, what is the maximum permissible length L to the
nearest inch? 

PLAN

The cross-sectional area A, the area moment of inertia I, the radius of gyration r, and the maximum distance c from the bending (buck-
ling) axis can be found from the cross-section dimensions. The effective length is the actual length L as the column is pin held at each
end. (a) Substituting Leff = 120 in. and the values of the other variables into Equations (11.22) and (11.24), we can find the maximum
stress and the maximum deflection. (b) Equating σmax in Equation (11.24) to 3 ksi and substituting the remaining variables, we find the
length L. 

SOLUTION

From the given cross section, the cross-sectional area A, the area moment of inertia I, and the radius of gyration r can be found:

(E1)

(E2)

(a) Since the column is pinned at both ends, Leff = L = 10 ft = 120 in. Substituting Leff, I, and E = 1800 ksi into Equation (11.11) give the
critical buckling load:

(E3)

Substituting e = 0.667in., P = 80 kips, and Equation (E3) into Equation (11.22), we obtain the maximum deflection,

(E4)

ANS. vmax = 0.21 in.

Substituting c = 4 in., e = 0.667 in., r = 2.582 in., P = 80 kips, E = 1800 ksi, and A = 48 in.2 into Equation (11.24), we obtain the maxi-
mum normal stress,

(E5)

ANS. σmax = 2.5 ksi (C)

(b) Substituting σmax = 3 ksi, c = 4 in., e = 0.667 in., r = 2.582 in., P = 80 kips, E = 1800 ksi, and A = 48 in.2 into Equation (11.24), we
can find Leff = L in. can be found,

(E6)

(E7)

Rounding downward, the maximum permissible length is: thus L = 177 in.
ANS. L = 177 in.

  Figure 11.19 Eccentrically loaded box column.
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COMMENTS

1. The axial stress P/A = (80 kips)/(48 in.2) = 1.667 ksi, but the normal stress due to bending from eccentricity causes the normal stress
to be significantly higher, as seen by the value of σmax.

2. If the right end of the column shown in Figure 11.19 were built in rather than held by a pin, then from case 3 in Table 11.1, Leff = 0.7L
= 84 in. Using this value, we can find Pcr = 805.7 kips, vmax = 0.091 in., and σmax = 2.42 ksi. 

3. In Equation (E7) we rounded downward, as shorter columns will result in a stress that is less than allowable.

EXAMPLE 11.6

A wooden box column (E = 1800 ksi) is constructed by joining four pieces of lumber together, as shown in Figure 11.19. The ultimate
stress is 5 ksi. Determine the maximum load P that can be applied.

PLAN

The eccentricity ratio and the slenderness ratio can be found using the values of the geometric quantities calculated in Example 11.5.
Noting that σult/E = 0.0028, the failure envelopes for wood that are shown in Figure 11.18 can be used and (P/A)/σult can be found, from
which the maximum load P can be determined.

SOLUTION

From Equation (E2) in Example 11.5, r = 2.582 in. Thus the slenderness ratio Leff/r = (120 in.)/(2.582 in.) = 46.48. From Figure 11.19,
c = 4 in. and e = 0.667 in. Thus the eccentricity ratio ec/r2 = 0.400.

For a slenderness ratio of 46.48 and an eccentricity ratio of 0.4, we estimate the value of (P/A)/σult = 0.6 from the failure envelope
for wood in Figure 11.18. Substituting σult = 5 ksi and A = 48 in.2, we obtain the maximum load Pmax = (0.6) (5 ksi) (48in.2).

ANS. Pmax = 144 kips

COMMENT

1. If we let x represent (P/A)/σult and substitute the remaining variables in Equation (11.25), we obtain the following nonlinear equation:

 The root of the equation can be found using a numerical method such as discussed in Section B.2.2.
The value of the root to the third-place decimal is 0.593, which would yield a value of Pmax = 142.3 kips, a difference of 1.18% from
that reported in our example. The difference is small and an acceptable engineering approximation. Use of the plots in Figure 11.18
was a quick way of finding the load value with reasonable engineering approximation.

PROBLEM SET 11.3

Imperfect columns
11.54 A column built in on one end and free at the other end has a load that is eccentrically applied at a distance e from the centroid, as
shown in Figure P11.54. Show that the deflection curve is given by the equation below.

where λ is as given by Equation (11.3c). 

11.55 On the cylinder shown in Figure P11.55 the applied load P = 3 kips, the length L = 5 ft, and the modulus of elasticity
E = 30,000 ksi. What are the maximum stress and the maximum deflection? 
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  Figure P11.54
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11.56 On the cylinder shown in Figure P11.55 the applied load P = 3 kips and the modulus of elasticity E = 30,000 ksi. If the allow-
able normal stress is 8 ksi, what is the maximum permissible length L of the cylinder? 

11.57 The length of the cylinder shown in Figure P11.55 is L = 5 ft. The yield stress of steel used in the cylinder is 30 ksi, and the modulus
of elasticity E = 30,000 ksi. Determine the maximum load P that can be applied. Use the plot for steel in Figure 11.18. 

11.58 On the column shown in Figure P11.58 the applied load P = 100 kN, the length L = 2.0 m, and the modulus of elasticity
E = 70 GPa. What are the maximum stress and the maximum deflection?

11.59 On the column shown in Figure P11.58 the applied load P = 100 kN and the modulus of elasticity E = 70 GPa. If the allowable
normal stress is 250 MPa, what is the maximum permissible length L of the column? 

11.60 The length of the column shown in Figure P11.58 is L = 2.0 m. The yield stress of aluminum used in the column is 280 MPa, and the
modulus of elasticity E = 70 GPa. Determine the maximum load P that can be applied. Use the plot for aluminum in Figure 11.18. 

11.61 A wide-flange W8 × 18 member is used as a column, as shown in Figure P11.61. The applied load P = 20 kips, the length L = 9 ft,
and the modulus of elasticity E = 30,000 ksi. What are the maximum stress and the maximum deflection? 

11.62 On the column shown in Figure P11.61 the applied load P = 20 kips and the modulus of elasticity E = 30,000 ksi. If the allow-
able normal stress is 24 ksi, what is the maximum permissible length L of the column? 

11.63 The length of the column shown in Figure P11.61 is L = 9 ft. The yield stress of steel is 30 ksi, and the modulus of elasticity E =
30,000 ksi. Determine the maximum load P that can be applied. Use the plot for steel in Figure 11.18. 

Stretch yourself
In Problems 11.64 and 11.65, the critical stress in intermediate columns is between yield stress and ultimate stress. The tangent modulus theory of
buckling accounts for it by replacing the modulus of elasticity by the tangent modulus of elasticity (see Figure 3.7), that is,

(11.26)

where Et is the tangent modulus, which depends on the stress level Pcr/A. Using an iterative trial and error procedure and Equation (11.26), the
critical buckling load can be determined.

11.64 A simply supported 6-ft pipe has an outside diameter of 3 in. and a thickness of in. The pipe material has the stress–strain curve

shown in Figure P11.64. Using Equation (11.26), determine the critical buckling load.
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11.65 A square box column is constructed from a sheet of 10-mm thickness. The outside dimensions of the square are 75 mm × 75 mm and
the column has a length of 0.75 m. The material stress–strain curve is approximated as shown in Figure P11.65. Using Equation (11.26), deter-
mine the critical buckling load.

11.66 A column that is pin held at its ends has a small initial curvature, which is approximated by the sine function shown in Figure P11.66.
Show that the elastic curve of the column is given by the equation below.

11.67 In double modulus theory, also known as reduced modulus theory for intermediate columns, it is recognized that the bending action
during buckling increases the compressive axial stress on the concave side of the beam but decreases the compressive stress on the convex side
of the beam. Thus the use of the tangent modulus of elasticity Et is appropriate on the concave side, but on the convex side of the beam it may
be better to use the original modulus of elasticity. Modeling the cross section material with the two moduli Et and E and using Equation (11.26),
show

(11.27)

where Er is the reduced modulus of elasticity, I1 and I2 are the moments of inertia of the areas on the concave and convex sides of the axis passing

through the centroid, and I is the moment of inertia of the entire cross section. 

Computer problems
11.68 A circular marble column of 2-ft diameter and 20-ft length has a load P applied to it at a distance of 2 in. from the center. The modulus
of elasticity is 8000 ksi and the allowable stress is 20 ksi. Determine the maximum load P the column can support, assuming that both ends are
(a) pinned; (b) built in.

11.69 Determine the maximum load P to the nearest newton in Problem 11.60.

11.70 Determine the maximum load P to the nearest pound in Problem 11.63.
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MoM in Action: Collapse of World Trade Center

On September 11, 2001, at 8:46 A.M, five terrorists flew a plane (Figure 11.20a) containing 10,000 gallons of fuel 
into tower 1 of the World Trade Center (WTC 1). Seventeen minutes later, five other terrorists flew a second plane con-
taining 9,100 gallons of fuel into tower 2 (WTC 2). Within an hour, the floors of WTC 2 started collapsing vertically 
downward, and WTC 1 collapsed just 29 minutes later. A total of 2749 people apart from the terrorists died that day in 
New York. It is a tragic story of how social forces affect engineering design.

The construction of WTC complex began in 1968. The twin towers were to be the symbol of world commerce and 
for years the world’s tallest buildings, at 110 stories each. Their innovative design maximized usable space by having all 
supporting columns only on the perimeter of each floor. There were 4 major structural subsystems: (i) the exterior wall 
(Figure 11.20b), with 59 columns on each side; (ii) a rectangular inner core of 47 columns; (iii) a system of bridging steel 
trusses (Figure 11.20c) on each floor, connecting the exterior wall to the inner core using angle clips. Viscoelastic dampers 
reduced the swaying motion on higher floors due to wind; and (iv) a truss system between 107th and 110th floor—further 
bridged the inner core to the exterior wall. 

The exterior wall (like flanges in beam cross section increase area moment of inertia) was designed to resist the 
force of 140-mph hurricane winds. The inner core, like an axial column, supported most of the weight of building, equip-
ment, and people. Insulation on the steel and a sprinkler system in the event of fire met building codes at that time. The 
design even planned for the impact of an airliner lost in fog, and it stood long enough so that most of the 14,500 people in 
the towers escaped that morning. But it was not designed for a Molotov cocktail of 10,000 gallons of jet fuel. 

Even so, it took several factors to initiate the collapse. First, the angle clips on the exterior wall of several floors—
at the height of plane—broke, transferring the floors’ weight as compressive loads to the inner core. Second, the breaking 
of the clips in turn removed elastic support from the core column, decreasing the critical buckling loads (see Figure 11.8). 
Third, the temperature increase from burning fuel introduced another mechanism of buckling failure (see Problem 11.48). 
Finally, the insulation of the inner core on the floors of impact broke, exposing the steel to high temperatures. This signif-
icantly decreased the modulus of elasticity, the critical buckling load, and the ultimate strength. The towers would have 
survived the first three failures. But the design did not take into account prolonged high temperature and its impact on the 
stiffness and strength of steel. No one could imagine a fuel-laden plane deliberatively flown into a building. 

The floors suffering a direct impact buckled after nearly an hour of intense fire, and the floors above started falling 
on the weakened floors below. The moving mass of the floors gathered momentum, lending their downward motion to the 
floors below.

The WTC towers were well designed for the physical forces conceivable at the time. New skyscraper designs will 
incorporate greater insulation on the steel beams and columns to counter future threats. A collapse happened, but it will hap-
pen no more.
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  Figure 11.20 (a) World Trade Center Towers; (b) Plan form; (c) Floor.
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*11.4 CONCEPT CONNECTOR

As with the deflection of beams (Chapter 7), mathematicians played a key role in developing the theory of buckling. The his-
tory of buckling also shows that original ideas are not enough if the ideas cannot be communicated to others. The importance
to engineering of oral and written skills in technical communications is a thus lesson over two hundred years old.

11.4.1 History: Buckling

Leonard Euler (1707–1782) is one of the most prolific mathematicians who ever lived (Figure 11.21). Born in Basel, he went
to the University of Basel, then renowned for its research in mathematics. After studying under John Bernoulli (see Section
7.6), he started work in 1727 at the Russian Academy at St. Petersburg, where he developed analytical methods for solving
mechanics problems. At the invitation of King Frederick II of Prussia, he moved to Berlin in 1741, where he wrote his book-
length Introduction to Calculus, Differential Calculus, and Integral Calculus, in addition to his remarkable original contribu-
tions to mathematics. In 1766, Catherine II, the empress of Russia, wooed him back to St. Petersburg. Even as he was going
blind from cataract, he continued his prolific publications with the help of assistants. In fact, with a bibliography that runs to
866 entries, one could easily miss his pioneering insight into buckling and the formula he derived [Equation (11.9)].

Even after Euler, the early development of buckling was primarily mathematical. Joseph-Louis Lagrange (1736–1813),
another pioneer in the establishment of analytical methods for mechanics (Figure 11.21), took the next step. He developed a
complete set of buckling loads and the associated buckling modes given by Equations ((11.8) and (11.10). Columns with
eccentric loads (Problem 11.54) and columns with initial curvatures (Problem 11.66) were first formulated and studied by
Thomas Young (1773–1829). Young was also the first to consider columns of variable cross section. Unfortunately, he was
neither a good teacher nor a writer, and much of his work went unappreciated. As his biographer, Lord Rayleigh, said,3

“Young.... from various causes did not succeed in gaining due attention from his contemporaries. Positions that he had already
occupied were in more than one instance reconquered by his successors at great expense of intellectual energy.”

There was another reason why in the early 1800s developments in column buckling were unappreciated by the practicing
engineer. Euler buckling did not accurately predict compression failure in the structural members then in use. The effects of
end conditions and imperfections, as well as the formula’s range of validity, were not yet understood It took the experiments
of Eaton Hodgkinson in 1840 on cast-iron columns to give new life to the Euler buckling theory. In 1845, Anatole Henri
Ernest Lamarle, a French engineer, proposed correctly that the Euler formula should be used below the proportional limit,
while experimentally determined formulas should be used for shorter columns. 

In 1889 F. Engesser, a German engineer, proposed the tangent modulus theory (see Problems 11.64 and 11.65), in which
the elastic modulus is replaced by the tangent modulus of elasticity when proportional stress is exceeded. Also in 1889, the
French engineer A. G. Considère, based on a series of tests, proposed that if buckling occurs above yield stress, then the elastic
modulus in the Euler formula should be replaced by a reduced modulus of elasticity, between the elastic modulus and the tan-
gent modulus. On learning of Considère’s work, Engesser incorporated the suggestion into his reduced modulus theory, also
known as double modulus theory (see Problem 11.66). Yet the two approaches competed for almost 50 years. In 1905 J. B.
Johnson, C. W. Bryan, and F. E. Turneaure recommended a modification of the Euler formula for steel columns, using an

3Quotation is from S. P. Timoshenko, History of Strength of Materials.

  Figure 11.21 Buckling theory pioneers.
Leonard Euler. Joseph-Louis Lagrange.
August 2012



11 527Mechanics of Materials: Stability of ColumnsM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

experimentally determined constant for different supports. It was the beginning of the concept of effective length to account
for different end conditions, and their text on Theory and Practice of Modern Framed Structures remained in print for ten edi-
tions. In 1946 F. R. Shanley, an American aeronautical engineering professor, refined these theories and finally resolved “the
column paradox,” as he called it, that had separated proponents of the reduced modulus theory and the tangent modulus the-
ory. 

For all its refinements and limitations, the Euler buckling formula is still used three centuries later for column design and
is still valid for long columns with pin-supported ends. Such is the power of logical thinking. 

11.5 CHAPTER CONNECTOR

In past chapters, our analysis was based on the equilibrium of forces and moments. This chapter emphasized that not only
equilibrium, but the stability of the equilibrium is an important consideration in design. There are many types of instabilities.
We studied how coupled axial and bending deformation, for example, can produce buckling in columns. This case emphasizes
the need for caution in decoupling phenomena for ease of understanding.

All our theories have relied on an equilibrium approach. An alternative approach can be used to replace the last link in the
logic Figure 3.12. Though our theories will have the same assumptions and limitations, the energy method has a very different
perspective from equilibrium methods, as discussed in the next and last chapter of this book.
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POINTS AND FORMULAS TO REMEMBER

• Buckling is the instability in equilibrium of a structure due to compressive forces or stresses. 
• Structural members that support compressive axial loads are called columns.
• Study of buckling as a bifurcation problem requires determining the critical buckling load at the point where two or more

solutions exist for deformation.
• Study of buckling by the energy method requires determining the critical buckling load at the point the potential energy

changes from a concave to a convex function.
• Study of buckling as an eigenvalue problem requires determining the critical buckling load at the point where a nontrivial

solution exists for bending deformation due to axial loading.
• In snap buckling the structure snaps (or jumps) from one equilibrium configuration to a very different equilibrium config-

uration at the critical buckling load.
• Local buckling of thin structural members occurs due to compressive stresses.
• Buckling of columns occurs about an axis that has a minimum value of area moment of inertia.

• The Euler buckling load is (11.9)

where Pcr is the critical buckling load, E is the modulus of elasticity, L is the length of the column, and I is the minimum
area moment of inertia of the cross section.

• Equation (11.9) is valid only for elastic columns with pin-held ends.
• The effect of supports at the end can be incorporated by defining an effective length Leff for a column and calculating the

critical buckling load from

(11.11)

• The Slenderness ratio is defined as Leff/r, where r is the radius of gyration about the buckling axis.
• The slenderness ratio at which the maximum normal stress is equal to the yield stress separates the short columns from

the long columns in Euler buckling.
• The failure of short columns is governed by material strength.
• The failure of long columns is governed by Euler buckling loads.
• Eccentricity in loading does not affect the critical buckling load, but the maximum normal stress becomes significantly

larger than the axial stress due to the addition of bending normal stress,

(11.22) (11.24)

where vmax is the maximum deflection, e is the eccentricity in loading, P is the applied axial load, Pcr is the Euler buckling
load for the column, σmax is the maximum normal stress in the column, r is the radius of gyration about the buckling
(bending) axis, c is the maximum distance perpendicular to the buckling (bending) axis, A is the cross-sectional area, and
Leff is the effective length of the column.

• The eccentricity ratio is defined as ec/r2.
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