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Energy Methods

Minimum-energy principles are an alternative to statement of equilibrium equations.

Displacements

External
Forces
and

Internal
Forces
and
Moments

The learning objectives in this chapter are:

Understand the perspective and concepts in energy methods.

Learn the use of dummy unit load method and Castigliano’s theorem for calculating displace-

ments in statically determinate and indeterminate structures.
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Strain Energy

® The energy stored in a body due to deformation is called the strain energy.

® The strain energy per unit volume is called the strain energy density and is the area underneath
the stress-strain curve up to the point of deformation.

Ao U, = Complimentary strain energy density
dU, =& do A
7
do—|
U, = Strain energy density
0 X //dU d E
=o de
de 0
Strain Energy: U = J‘U , AV [
v
e
Strain Energy Density: U, = J.GdS
0
Units: N-m/ m3, Joules / m3, in-lbs / in3, or ft-Ib/ft.3
(3
Complimentary Strain Energy Density: U, = Jsdcs
0
Linear Strain Energy Density
e €
. . . _ _ Eg’ 1
Uniaxial tension test: U, = J-Gd{-l = J.(Es)ds = = = 30¢
0 0
1
u, = 5TV

* Strain energy and strain energy density is a scaler quantity.

1
Uo N i[cxxgxx + CyyEyy t0,,8, 7 Txy¥xy + TyzVyz - szny]
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1-D Structural Elements

| dV=Adx

Axial strain energy
* All stress components except G, are zero.
du

o, = ke, €y = %(x)

- %ngde - [j %E(%)Zd/l}dx - | B(%)zJ.EdA}dx
V L“4 L A
- {Ua dx U, = %EA(Z,I—”DZ

® U, is the strain energy per unit length.

Torsional strain energy

* All stress components except T,q in polar coordinate are zero

T.0 = GYy Pd()t(x)

IV% GylydV = {B%G(p%}sz}d - j{ (‘@ jG dA}d
UT=£U,dx U——GJ(X)

® U is the strain energy per unit length.
— —_1r
Ur = j U, dx U= 555
L

1
2
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Strain energy in symmetric bending about z-axis

There are two non-zero stress components, c,, and t

Xy.
d2
A%
Oxx = ngx Sxx = _y—z
dx
2N\2 - 2\2
I ) . 1 dv _rll{dv 2
U = | sEegdV = | D EE(yd—zJ dA}dx = | i(d_J [Ey a4
4 A X LLNax 2oy
22
Uy = [U, dx U, = %EIZZ d_‘gj
7 dx
* where Uy, is the bending strain energy per unit length.
_ _ — 1Mz2
UB_J.Ub dx Ub_fEI

L

2
. . . . T
The strain energy due to shear in bending is: v = | %Txyyxy av = j%% av

4 14
As  T,,.«C, . U, « Up
Table 7.1 Linear strain energy per unit length.
. . C 1 t trai
Strain energy per unit length eﬁggyeggfzs;ylzggtl}?
Axial 2 2
U, = 2E4 (d_@ g, =N
© 2\ ¢ 2EA
Torsion of cir- 2
cular shafts U, = lG d—i) U, = 1_.7‘.3
2°°\d 2GJ
Symmetric 2\2 2
. M
bending of _ l dv U, = l z
beams Us 2EIZZ (ﬁ] b 3EI .
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Work

* If a force moves through a distance, then work has been done by the force.
dW = Fdu

*  Work done by a force is conservative if it is path independent.

A (WI)AB = (WZ)AB (Wl +(W2 =0

)AB )AB

* In a conservative system, work done on a closed path is zero.

work done to overcome friction varies with the length of path--- non-conservative.
work done to create permanent deformation (plastic deforms)--- non-conservative.

* Elastic deformation is a conservative deformation while plastic deformation is non-conserva-
tive.

® Elastic deformation can however be linear or non-linear.

* Non-linear systems and non-conservative systems are two independent description of a sys-
tem.
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Work due to forces & moments acting on 1-D structural elements
Loading Mode

Work
3 P
L
= O (- W = Pdu,
5
.00
) .
px L
S
s > @\@ — <> oW = J.p(x)Su(x)dx
0.0.0.0.0
0.0.0.0
- :
SW = T8¢,
L
SW = j 1(x)8(x)dx
0
33 v SW = Pdv,
S
o
P
_av
EEEO ’ dx 6W = M 69 L
22 \
3;5:30.. _ —
L
oW = J.p(x)Sv(x)dx
v(x)
0

p(x)

ment. The variable can be real or a mathematical.

v(x) = A+ Cofp(x)+ -+ - O+ - L0 = Y

i=1

generalized force. The variable can be real or a mathematical.

Any variable that can be used for describing deformation is called the generalized displace-

Cifi(x)

Any variable that can be used for describing the cause that produces deformation is called the

L
F, = J-hl-(x)p(x)dx
0
h;(x) are called weighting function.
M (x) = D1g(x) + Dygy(x)+ - + - +Dg(x)+ - +D,g,(x) = 3 Digix)
i=1
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Virtual Work

* Virtual work methods are applicable to linear and non-linear systems, to conservative as well

as non-conservative systems.

Principle of virtual work: The total virtual work done on a body at equilibrium is zero.
OW =10
* Symbol 6 will be used to designate a virtual quantity

6 Wext

Types of boundary conditions

y Displacement and rotation specifie
at this end

= oW,

int

Internal forces and moment specified
at this end to meet equilibrium

y
Kinematic variable Statical Variab1§
(Primary variable) (Secondary variable)
or
u - > N
v - or - I/y
_dv or
- — M,

Geometric boundary conditions (Kinematic boundary conditions) (Essential boundary condi-
tions): Condition specified on kinematic (primary) variable at the boundary.

Statical boundary conditions (Natural boundary conditions) Condition specified on statical (sec-

ondary) variable at the boundary.

Kinematically admissible functions

* Functions that are continuous and satisfies all the kinematic boundary conditions are called

kinematically admissible functions.

® actual displacement solution is always a kinematically admissible function

* Kinematically admissible functions are not required to correspond to solutions that satisfy

equilibrium equations.
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Statically admissible functions

Functions that satisfy satisfies all the static boundary conditions, satisfy equilibrium equations

at all points, and are continuous at all points except where a concentrated force or moment is
applied are called statically admissible functions.

Actual internal forces and moments are always statically admissible.
Statically admissible functions are not required to correspond to solutions that satisfy compat-
ibility equations.
Degree of static redundancy = Number of unknown reactions
—Number of equilibrium equations

In determining statically admissible internal forces and moments, the number of reactions that
can be assigned arbitrary values is equal to the degree of static redundancy.
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C 7.1 Determine a class of kinematically admissible displacement func-
tions for the beam shown in Figure P7.1.

/*\*****
X B \wL?
@%»L % L

Figure P7.1

C 7.2 For the beam and loading shown in Figure P7.1 determine a stati-
cally admissible bending moment.
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Class Problem 7.1

Determine a class of kinematically admissible axial displacement.(u)
Determine a statically admissible internal axial force.(/V)

P=10kN —®
A
4 _x B C
P=10kN » l<—1.0m —=
<7 1.5m =
Class Problem 7.2

Determine a class of kinematically admissible bending displacement field (v)
Determine a statically admissible internal bending moment (M).

T
X
<o

‘.‘
qb
L

5

5

v

5

5

=z
Petatetetetele

5

i
Petatel
Fedatels!
btetets!
botete!
btetetetetotet

5

%z
Iyt
Iyt
ettty

"
o
o
o
o
SEEEEE S

o

o

<

o
o

5

=
L
L
L
L

T
o
o
o
o
x

o

5

5

5

=
L
L
L
L
q’

o
o
o
o
o
x

o

5

5

5

5

2
o

5

5

5

5
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Virtual displacement method

The virtual displacement is an infinitesimal imaginary kinematically admissible displacement
field imposed on a body.

The word infinitesimal implies that neither the internal nor the external forces or moments
change during the imposition of the virtual displacement.

actual displacement

FREL kinematically admissible displacement

Ov = virtual displacement

Of all the virtual displacements the one that satisfies the virtual work principle is the actual
displacement field.

In virtual displacement methods, zero virtual work implies all equilibrium equations are met.
When the virtual work condition is approximately met we obtain an approximate solution to
the displacement function such as in Rayleigh-Ritz method.

Virtual Force Method

The virtual force is an infinitesimal imaginary statically admissible force field imposed on a
body.

The word infinitesimal implies that the body does not go through additional deformation due
to the imposition of a virtual force or virtual moment.

Of all the virtual force fields the one that satisfies the virtual work principle is the actual force
field.

In virtual force methods, zero virtual work implies all compatibility equations are met.
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C 7.3 The roller at P shown in Figure P7.3 slides in the slot due to the

force F = 20kN. Both bars have a cross-sectional area of A = 100 mm?
and a modulus of elasticity E = 200 GPa. Bar AP and BP have lengths of
L op=200 mm and Lgp= 250 mm respectively. Determine the axial stress

in the member AP by virtual displacement method.

Figure P7.3

August 2012 7-12



slides.html

mom_s

m: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinter

Printed fror

M. Vable Intermediate Mechanics of Materials: Chapter 7

C 7.4 A force F = 20kN is applied to pin shown in Figure P7.4. Both bars

have a cross-sectional area of A = 100 mm? and a modulus of elasticity
E =200 GPa. Bar AP and BP have lengths of L ,p= 200 mm and Lgp=

250 mm respectively. Using virtual force method determine the move-
ment of pin in the direction of force F.

A 1100/‘
P

40°

F
Figure P7.4
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Dummy unit load method

® This is a virtual force method that is formalized.

® Can be used for axial, torsion or bending problems.

Application to axial members

Consider two axial rods.
Rod 1: Actual rod with actual internal axial force V;(x) and actual displacement u;(x).

Rod 2: A rod with same supports as rod 1 with a unit force placed at point x;, at which we want to
calculate the displacement. /NV,(x) be the statically admissible bending moment and u,(x) be the
kinematically admissible displacement for rod 2.

Rod 1 Rod 2
-
OF =1
ol —>( L
| |
— x=|xp -« xIZxP

Note: No relationship between N, and u,

The internal and external virtual work for rod 2:
L L

du,
W, , = jzvz(x)du2 = sz(x)E dx
0 0
OW,., = (OF = Du,(xp)
L
) du,
By theorem of virtual work:  (8F = 1)u,(xp) = '[Nz(x)% dx
0
u;(x) is a kinematically admissible displacement field, hence can be used for u,(x).
L L
du, N, (x)N{(x)
(8F = u,(xp) = sz(x)% dx = IT dx
0 0
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Application to beam bending

Deflection Calculations
BEAM 1: Actual beam with actual internal moment M;(x) and actual displacement v{(x).
BEAM 2: A beam with same supports as beam 1 with a unit force placed at point x;, at which we
want to calculate the displacement. M,(x) be the statically admissible bending moment and v,(x)
be the kinematically admissible displacement for beam 2.

BEAM 1 BEAM 2

$8F1

/\
L _e
—
_

- -
—

L L
X =|xp T
Note: No relationship between M, and v,
The internal and external virtual work for beam 2:
L L o L g L d2
2 _ d Vz) _ V2
SW, j M,(x)d0, = j My(x) =" dx = j Mz(x)E(E dx j Mz(x)g dx
0 0 0 0
dW,., = (8F = l)vz(xP)
2

By theorem of virtual work: (OF = 1)vy(xp) = I (x)

v1(x) is a kinematically admissible displacement ﬁeld, hence can be used for v5(x).

) }Mzu)Ml(x) N

(BF = 1)vy(xp) = j <x) =

0
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Slope Calculations
BEAM 1: Actual beam with actual internal moment M;(x) and actual displacement v{(x).

BEAM 2: A beam with same supports as beam 1 with a unit moment placed at point x, at which
we want to calculate the slope. M,(x) be the statically admissible bending moment and v,(x) be
the kinematically admissible displacement for beam 2.

BEAM 1 BEAM 2

|
XZXP T

Note: No relationship between M, and v,
The internal and external virtual work for beam 2:

Wi j ,(x)do, j (x)— dx—j ( ) j (x)
dv,
Wy = (BM = 1)"(xp)

By theorem of virtual work: (OM = 1)%(\/2) (xp) = I (x)

v1(x) is a kinematically admissible displacement field, hence can be used for v,(x).

L 2 L
(5M = 1)— (xp) = [M <x) jwcxx
0 0
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Table 1.2 Synopsis of Dummy Unit Load Method

Axial

(OF = Duy(xp) =

IJ:NI(X)Nz(X) n

EA
0

Torsion

(BT = Do (xp) =

}Tz(x)Tl(m n

GJ
0

Symmetric
Bending

L

(38F = 1)v,(xp) = [
0
L

dv,
(BM =1 (xp) = |
0

MZ(X)MI(X)dx

ET

Mz(x)Ml(x)d
El *
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C 7.5 Using dummy unit load method, find the reaction force at A and
deflection at B in terms of P, E,I, and L for the beam shown in Figure
P7.5.

P
| *B ‘//%
L —=fe 2L 4%

Figure P7.5
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C 7.6 Using dummy unit load method determine the elastic curve for the
beam and loading shown.
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Castigliano’s theorem

* Simple and more elegant way of finding reaction forces and/or moments for statically indeter-
minate structures.

Instead of a unit force we consider a force F applied at X, in the dummy unit load method. For lin-

ear systems the corresponding statically admissible moment (M, ) would be F multiplied by M,.

M,=FM, or M,= %le
MM, () ot
i) = [~ jEl( M, (x) )
0 0

The actual moment is a statically admissible moment, and hence we can substitute M, = M, we

obtain the following'

L0
oM, | (oM)) ol M | ol
ntep) = [ E](GF M (x))dx - Tm(a_;]dx =7 l3E® |~ aF

0 0 0
® The derivative of the complimentary strain energy with respect to a force at x;, gives the
deflection in the direction of the force at x,,.

dVl . GUB

J— x _
dx (xp oM
® The derivative of the complimentary strain energy with respect to a moment at x, gives the

slope in the direction of the moment at x,,.

® Performing the derivative with respect to force and moment before performing integration
will generally result in less algebra.

* The integrals obtained after taking the derivative with respect to force and moment result in
integrals that are identical to the dummy unit load method for finding reactions.
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Table 1.3 Synopsis of Castigliano’s Theorem

Axial

oU, _ 1N
ul(xP) = ﬁv UA = Emdx
0
Torsion = L
oU _
b1(xp) = == STy
oT r—J2GJ
0
Symmetric 7 L 2
) oU _
Bending vi(xp) = 8_FB g = J%E[Z dx
dv, B oUpg 0
ax ) T am

® The partial derivative of complementary strain energy of a structure with respect to a force is
equal to the displacement at the point of application of the force, and partial derivative of
complementary strain energy with respect to a moment is equal to the rotation at the point of
application of the moment.
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C 7.7 Using Castigliano’s theorem, find the reaction force at A and
deflection at B in terms of P, E,I, and L for the beam shown in Figure
P7.5.

ENSN

P
Y
B
= 2L

A‘ =X

20
////é//z
L

August 2012 7-22




r_mom_slides.html

Printed from: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinte:

M. Vable Intermediate Mechanics of Materials: Chapter 7

C 7.8 Determine the slope of the beam at B.
P

2PL< A —>x {/-\P
B i
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C 7.9 Determine the reaction forces at 4 and B.
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Class Problem 7.3

Write the equations to determine the reaction forces at 4 and B. Do not
evaluate the integrals.

VVVVVVV
A 77797774

<;L —|>{<}—L —>]<—L

AN

N\

Class Problem 7.4

Write the equations to determine the reaction forces at A and B. Do not
evaluate the integrals.

6\? vy V vV Y
gAy X C °
Z Vi ﬁ” .

|l<— L —>{<—L

N
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