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Principal stresses: the algebraic approach

We begin by using the same wedge as in the geometric approach, but we do not use it to define
new axes x′, y′. Instead we define the orientation of the inclined plane by the unit normal vector n,
where nx = cos θ and ny = sin θ. We write the resultant force on the inclined plane as fA, where
A is the area of the inclined plane. Clearly f has dimensions of stress (force per unit area) but it is
not technically a stress (since there is no reference to the axes defined by the inclined plane); it is
sometimes called a stress vector, but the usual term for it is traction vector. Only if f is resolved
into components along axes x′, y′ will these components coincide with the stress components σx′ ,
τx′y′ .
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The force equilibrium equations of the wedge with the respect to the axes x, y, after dividing
by A, become

fx = σxnx + τxyny,
fy = τxynx + σyny.

The condition for the normal n to indicate a principal axis is that the shear stress on its plane
vanishes, or equivalently that f is purely normal, that is, f = σn, where σ is the normal stress on
the plane. Consequently,

σxnx + τxyny = σnx,
τxynx + σyny = σny,

or equivalently,
(σx − σ)nx + τxyny = 0,
τxynx + (σy − σ)ny = 0.

(1)

For these equations to yield a solution for nx and ny, their respective coefficients must be
proportional, that is, (σx − σ)/τxy = τxy/(σy − σ). On cross-multiplying, this equation becomes

(σx − σ)(σy − σ)− τ2
xy = 0. (2)



This can be rewritten as the quadratic equation

σ2 − (σx + σy)σ + σxσy − τ2
xy = 0,

whose roots are the principal stresses
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Once each of the principal stresses are determined, its value can be introduced into either one
of equations (1) in order to determine the ratio ny/nx = tan θ which gives the direction of the
corresponding principal axis.

Note that the left-hand side of equation (2) is just the determinant of the system (1). In fact,
it is a fundamental principle of linear algebra that a system [A]{x} = 0 has a nontrivial solution
{x} only if the determinant of [A] is zero. This makes it easy to extend the present approach to
three-dimensional stress. Instead of a two-dimensional wedge we consider the three-dimensional
tetrahedron with an inclined face of area A defined by the unit normal vector n and with the other
three faces perpendicular to the x-, y- and z-axes respectively, and with the respective areas nxA,
nyA and nzA. The three-dimensional version of equations (1) is

(σx − σ)nx + τxyny + τxznz = 0,
τxynx + (σy − σ)ny + τyznz = 0,
τxznx + τyzny + (σz − σ)nz = 0.

(3)

The condition that the determinant of this system is zero reduces to a cubic equation of the form

σ3 − I1σ
2 + I2σ − I3 = 0, (4)

where I1, I2 and I3 are known as the principal invariants of the stress tensor. They are called
“invariants” because their values are independent of the axes in which the stress components are
defined, in the same way that the magnitude of a vector is an invariant.

If, in particular, it is the principal axes that are used, then the matrix representing the stress
tensor takes the diagonal form  σ1 0 0

0 σ2 0
0 0 σ3


and the invariants are

I1 = σ1 + σ2 + σ3, I2 = σ2σ3 + σ1σ3 + σ1σ2, I3 = σ1σ2σ3.

Note that the invariants are functions of the principal stresses that are symmetric in the sense
that they are independent of the numbering.

Note also that if one of the original axes is already known to be a principal axis, then the
corresponding root of equation (4) is known, and only a quadratic equation needs to be solved.


