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Interactions  
and Motion 
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M&I 
3E 1.3 Kinds of matter 

The world around us consists of matter. 
 
Atoms & nuclei. 
Molecules. 
 – Solids 
 – Liquids 
 – Gases 
Rocks, seas, people, planets, stars, galaxies, . . . 
Universe 
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See “Powers of Ten” 
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Very often in physics we need to model the motion of moving 
bodies. In this course we will in most cases consider the body to 
be a point particle. We will discuss this later. To start we need to 
think about how to visually represent the motion of a particle in 
different ways, before we try to model this motion 
mathematically. Visual representations can be very useful models 
since they allow us to make sense of things conceptually.  

Consider a box sliding on a frictionless surface. If you were 
asked to describe the motion of the box, there are a number of 
ways that you could use … these include … 
… words … pictures … mathematics … 

However, in order to understand a particular situation, this very 
often requires us to represent the situation in a number of 
different ways … and each of these representations carry very 
particular types of information about the system in question. 



Detecting interactions 
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M&I 
3E 1.3 

Look at the properties of the particle and its motion. 
 

 ... change in direction. 
 ... change in speed. 
 ... change in velocity. 
 ... change in mass. 
 ... change in shape (of a body), . . . 
 

But what about ... change in position? 

In this course we will build models of systems we want to study by 
abstracting the key phenomena, and ignoring things that don’t make 
much difference. 
 
“Particle”:  no extent or internal structure. 
“Body”:  finite extent, internal structure, shape, can be deformed, ... 



Newton’s First Law of Motion 

Galileo Galilei (1564-1642);  
Isaac Newton (1642-1727): 

An object moves in a straight line and at constant 
speed except to the extent that it interacts with other 
objects. 

Newton 1 provides the conceptual framework for analysing 
interactions. 

Does Newton I apply in everyday life? 

M&I 
3E 1.3 
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We do not need an interaction to “keep something moving”! 



9 

Detecting interactions 
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Moving objects left the traces 
shown at left. The dots were laid 
down at equal time intervals. 
Which objects did not interact 
with another object somewhere? 

(1) A 
(2) B 
(3) C 
(4) D 
(5) A and B 

1  2  3   4   5 
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Which of the following can NOT be true for an object 
moving in a straight line at a constant speed? 

(1) Nothing is interacting with the object (it is in interstellar space, 
far from all other objects). 
(2) The object is experiencing a net interaction. 
(3) The object is experiencing multiple interactions, and these 
interactions add up to zero. 
(4) The object has no net interaction with the rest of the world. 
(5) All are true.  

1  2  3   4   5 
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An intermediate step between a movie and only drawing the 
object at its initial and final positions, is to draw in the object 
at many positions along its path.  

Look at the photograph 
alongside. It is called a 
stroboscopic photograph since 
a camera took a photograph 
(“snapshot”) of the ball every Δt 
apart (synchronized with a strobe 
light flash) and then all the 
photographs are displayed on the 
same frame. 

The time interval Δt could be a fraction of a second, of course.  

Stroboscopic photographs 
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Here are three examples of 
motion in two dimensions. 
Explain what is going on in 
each case. 

(a) 

(b) 

(c) 



What do we need to describe interactions? 

For a quantitative description we need a firm mathematical 
foundation. 
i.e. we need to measure appropriate variables, and relate them 
mathematically. 

•  Establish units to express physical measurements. 
•  Coordinate framework to describe space and time. 
•  Scalars and vectors to represent physical quantities. 
•  Express physical description in mathematical terms. 

14 
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M&I 
3E 1.4 Other indicators of interaction 

Change in velocity. 
Change in identity. 
Change in shape or configuration. 
Change in temperature. 
Change in ... 

Interactions cause change 



Coordinate systems in 3D 

The number of axes required 
is equal to the dimension of 
the space. 
  
Axes are most easily handled 
mathematically when they are 
at right angles to one another. 

We can represent the position of a point on a line by using a 
coordinate system. 

The coordinates (x, y, z) give 
the position of a point relative 
to a set of axes with some origin. 

z  

y  

x 

16 

M&I 
3E 1.5 



Vectors and scalars 

It is useful to introduce objects which represent both direction 
and the magnitude of some quantity. 
 
For example, velocity describes both the speed of something, 
and the direction it is travelling in. 
 
Such objects are called vectors. 
 
Other vectors: acceleration, momentum, electric field,. . . 
A quantity that is represented at a point by one number is known 
as a scalar. 
 
Examples: temperature, energy, mass,. . . 
 
Scalars and vectors may have units. 

17 



Vectors: notation 

An arrow is used to depict the vector in 
drawings, with the arrow pointing in the 
required direction, and the length of the 
arrow representing the magnitude. 

Note that the length is always    0. 

The information is in the direction and length of the vector 
… we can shift the position of the vector around if we don’t 
change these. 

≥

A 

B 

a

18 



Vectors: notation 

Usually, in print, vectors are denoted by bold Roman type,  
e.g.     is a vector. 

In these notes we will use    . 

M&I uses an arrow over an italicised (roman) symbol to 
denote a vector:  

The magnitude is denoted by the same symbol, in italic, 
e.g. a is the magnitude of     . 

In script, we may denote a vector as: 

a

a

a

a

19 
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Which of these arrows represents the vector  < −4, 2, 0 > ? 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) none of the above 

1  2  3   4   5 

a

b


c

d


e



Position vectors 

The coordinates of a point (x, y, z) can be interpreted as a 
vector              . 
 
This form of position is known as a position vector. 
 
This really represents a displacement from the origin. 

, ,x y z

a

3, 1,0  metres= − −a
21 



Components of vectors 

Each of the numbers in the triplet is known as a component of 
the vector. 
 

A component is the projection of a vector on an axis of the 
coordinate system. 
 

In general, the x component represents the difference between 
the x coordinate of the tip of the vector and the x coordinate of 
the tail of the vector. (… similarly for y and z.) 

, ,x y zr r r=r

When using symbols, we label the 
components with a subscript 
related to the coordinate axis,  
e.g.  

22 



Components of vectors 

The components depend on the coordinate system  
...  the system can be chosen to suit the problem. 
 

The components are signed (“head–tail”). 
 

Components have units ! 
 

3 components in 3D   (e.g. ax, ay, az). 
 

The components are unchanged by a translation of the axes 
(but are changed by a rotation). 

Vectors: equality 

Two vectors are the same if (and only if) all their components 
are equal. 
Thus                means that  ax = bx, ay = by ,  and  az = bz 

A zero vector has all components zero. 

=a b




23 



Vectors: the magnitude 

The magnitude of a vector is the 
length of the vector. 

This can be obtained by Pythagoras’ 
theorem (in 3D if necessary). 

24 

e.g. if                      then   4,3,2=r

2 2 24 3 2 5.385 mr = = + + =r

In general if                          then   , ,x y za a a=a

2 2 2
x y za a a a= = + +a



Vectors: the magnitude 

The magnitude of a vector is a scalar quantity. 
e.g. speed is the magnitude of the vector velocity. 

The magnitude of a vector is always positive. 

25 

A scalar p can also have a magnitude,     ,  
      
     ... which is p if           , 
 
     ...  or  −p  if p < 0. 

p

0p ≥
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What is the magnitude of the vector  < 3, 5, −2 > ? 

(1)   5.48 
(2)   6.16 
(3)   6.00 
(4)   30.00 
(5)   38.00 

1  2  3   4   5 



Vectors: addition 

Vectors can be added geometrically, e.g. by means of a 
scale drawing. 

Using components is usually better … 
27 

= +c a b


 

c

c

b


ab


a

Vectors addition is commutative: + = +a b b a
 

 



Vectors addition: component method 

We can add vectors by adding their components. 
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Suppose = +c a b


 

Then: 

, , , ,

, ,

, ,

x y z x y z

x x y y z z

x y z

a a a b b b

a b a b a b

c c c

= +

= + + +

=

= +c a b


 



Vector addition: some properties 
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(commutative) 

( ) ( )+ + = + +a b c a b c
 

   

(associative) 

For each     there is a        for which 

+ = +a b b a
 

 

( ) 0+ − =b b
 

−b


b


( )− = + −a b a b
 

 

+a b




b
a

−a b




−b


a
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What is   < 10, 20, −15 >  −  < 5, −8, 7 > ? 

(1)   19 
(2)   38.7 
(3)  < 15, 12, 8 > 
(4)  < 5, 28, −22 > 
(5)  < 5, 12, −8 >  

1  2  3   4   5 



Vectors and scalars 

A vector can be multiplied by a scalar ... 

31 

q=a p 

means that x x

y y

z z

a qp
a qp
a qp

=

=

=

, , , ,x y z x y zq q p p p qp qp qp= = =a p 

The magnitude of     is a a q= =a p 



Unit vectors 

Components are often useful when used with unit vector notation. 

A unit vector is a vector with magnitude 1. 
Only the direction is important. 
The unit vector has no units.(!) 

Notation: the unit vector in the direction      is    . 

It follows that            . 

32 

a â

ˆ
a

=
aa

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What is the unit vector in the direction of the vector < 3, 5, −2 > ? 

(1)   < 3, 5, −2 > 
(2)   < 1, 1, −1 >  
(3)   < 0.49, 0.81, 0.32 > 
(4)   < 0.49, 0.81, −0.32 > 
(5)   < 0.3, 0.5, −0.2 > 

1  2  3   4   5 



Unit vectors and component vectors  

We denote the unit vectors along the x, y, z axes by             . 

Suppose     has components 

Then        is a vector along the x-axis, etc. 

Write 

34 

, ,x y za a aa

ˆ ˆ ˆ ,  ,i j k

ˆ
xa i

ˆ ˆ ˆ
x y za a a= + +a i j k

ˆ 1,0,0
ˆ 0,1,0
ˆ 0,0,1

=

=

=

i

j

k

Vector addition: unit vectors  

Suppose 

Then: 

= +c a b


 

ˆ ˆ ˆ ˆˆ ˆ
x y z x y za a a b b b+ = + + + + +a b i j k i j k





( ) ( ) ( )ˆ ˆ ˆ
x x y y z za b a b a b= + + + + +i j k



Vectors: summary 
Vectors obey most of the usual rules of algebra: 

Vectors can be added: 

Vectors can be multiplied by a scalar: 

Then 

Then, e.g. so subtraction is well-defined. 

Similarly, we can do: 

Vectors can be “multiplied together”  … wait until later … 

35 

+a b




qa

q q=a a 

( )− = + −a b a b
 

 

( )p p p+ = +a b a b
 

 

Vectors: what not to do …  

Set a vector equal to a scalar. 
Add a scalar to a vector. 
Divide something by a vector. 



Polar coordinates in 2D 

The direction of                        can be 
measured by the angle from the x-axis: 

Then 

i.e. given components in one coordinate system, we can 
transform them to components in the other. 36 

y  

x 

ya

xa

a

2 2

 

 cos  
 sin  

tan   

x

y

x y

y

x

a a
a a

a a a

a
a

θ
θ

θ

=

=

= +

=

ˆ ˆ
x ya a= +a i j

 θ



The spherical polar coordinate system in 3D 

2 2 2

 

ˆ ˆ ˆ

 cos  sin  
 sin  sin  

 cos

cos   

tan   

x y z

x

y

z

x y z

z

y

x

a a a
a a
a a
a a

a a a a

a
a

a
a

φ θ
φ θ

θ

θ

φ

= + +

=

=

=

= + +

=

=

a i j k

Spherical coordinates: a, θ, φ : 

z 

y 

x 

k̂ ˆ j
î

 ax 

 

 az 

 

 ay 

 

aθ 

φ  

37 



The cylindrical polar coordinate system 

2 2

 

ˆ ˆ ˆ

 cos  
 sin  

tan   

x y z

x

y

z

x y

y

x

z

a a a
a
a
a z

a a

a
a

z a

ρ φ
ρ φ

ρ

φ

= + +

=

=

=

= +

=

=

a i j k

Cylindrical coordinates: ρ, θ, z : 

z 

y 

x 

k̂ ˆ j
î

 ax 

 

 az 

 

 ay 

 

aθ 

φ  
ρ 

z 
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ˆ ˆ ˆ( ) ( ) ( ) ( )

( )( ) ( )ˆ ˆ ˆ            ( )

x y z

yx z

t a t a t a t
da tda t da td t

dt dt dt dt

= + +

= + +

a i j k

a i j k





Differentiation of vector functions 

Also:  

 then 

 If 

39 

[ ]

( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

d d t d tt t
dt dt dt
d dc t d tc t t t c t
dt dt dt

 + = + 

= +

a ba b

aa a











 



If position                                                    m 
 
 
then the instantaneous velocity                         m s-1 

 
 
 
 
and the instantaneous acceleration                           m s-2 

 

( ) ( ) ( )ˆ ˆ ˆ( ) dx t dy t dz tt
dt dt dt

= + +v i j k

( )( ) d tt
dt

=
va




( )( ) d tt
dt

=
rv




( )( ) ( )ˆ ˆ ˆ( ) yx z
dv tdv t dv tt

dt dt dt
= + +a i j k

ˆ ˆ ˆ( ) ( ) ( ) ( )t x t y t z t= + +r i j k

Example of the time derivatives of a vector function 

40 



Units 

Physics is based on measurement and experiment. 
Units are required in order to express these measurements in a 
standard way. 

A number referring to a physical quantity is meaningless 
without units. 
Both sides of an equation must have the same units. 
Use powers of 10 and prefixes to scale units. 

Base units for basic quantities like distance, time and mass. 
Derived units are convenient combinations of base units. 

41 



Base units 

Length:  Sizes, lengths, distances are measured in metres 
    (abbreviated m).  (L) 
 
Time:  Time intervals and durations are measured in seconds 
    (abbreviated s).  (T) 
 
Mass: Masses are measured in kilograms 
    (abbreviated kg).  (M) 
 
 
Also: ampere, kelvin, mole, candela. 

42 



Base units 

The metre is defined as the distance light travels in vacuum in 
1/299792458 seconds.  Note that the speed of light is now, by 
definition, c = 299792458 m s-1. 
 
The second is defined using the characteristic transition 
frequency of a particular kind of caesium atom in an atomic 
clock, as 9192631770 periods. 
 
The kilogram is defined as the mass of a  
certain platinum-iridium alloy cylinder  
kept at the International Bureau 
of Weights and Measures in France. 

http://physics.nist.gov/cuu/Units/ 43 



Derived units 

Derived units are convenient combinations of the base units. 
Often they are given their own names. 
The combinations of units are termed the dimensions of the 
unit: the base units have dimensions of  L, T and M. 

The phrase [energy] can be read as “the dimensions of energy”. 

For example, we have 

The unit of energy is the joule, abbreviated J. 

Note that we can treat the combination of units algebraically. 
44 

2 2

2 2
[mass] [length] M L[energy]  =   = 

[time] T



Units: SI prefixes 

45 
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The “flavour” of mechanics that we will use is called 
“Newtonian mechanics” … developed by Sir Isaac Newton …  
 
… which has a number of conditions which are important … 
 
 
… Nature is assumed to be continuous (which was shown not to 
be quite true by Einstein’s Special Relativity, and quantum 
mechanics.) 
 
… the equations of motion are applicable only to point particles 
(in most of the situations we will consider in this course). 

Newtonian mechanics 
M&I 

3E 1.7 
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Position and velocity 

     -axis out 
of  page 

Consider a particle that follows the curved (blue) path in space. 
At time ti it is at position Pi and time tf it is at position Pf. 
To describe the motion of the particle, we use a three dimensional  
Cartesian coordinate system as shown. 
Therefore at t = ti , the particle is at position  
and t = tf , the particle is at position 

ˆ ˆ ˆ= + +


i i i ix y zr i j k
ˆ ˆ ˆ= + +



f f f fx y zr i j k

Origin 

Pi  at  ti 

Pf  at  tf yf 

yi 

xf xi 

Actual path of the 
particle in three 
dimensions 

ir

ĵ

îk̂

fr

∆r
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The displacement vector is 

( ) ( ) ( )ˆ ˆ ˆ        f i f i f i f ix x y y z z∆ = − = − + − + −r r r i j k  

Of course          is not necessarily the distance from Pi to Pf. ∆r

In general an instantaneous position vector           describes 
the position of a particle at a particular instant in time relative 
to the origin of a set of coordinate axes: 
 ˆ ˆ ˆ( )    ( ) ( ) ( )t x t y t z t= + +r i j k

( )tr

fr

∆r

ir
fr

  ( ) f i∆ = + −r r r  

i−r

  ( ) f i= + −r r 
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A proton is at location  < 0, 3, −2>  m. 
An electron is at location  < −1, 0, −6>  m.  
What is the relative position vector from the proton to the electron? 

(1)   < −1, 3, −8 >  m 
(2)   < −1, −3, −4 >  m 
(3)   < 1, 3, 4 >  m 
(4)   < 1, −3, 8 >  m 
(5)   < 1, 0, 6 >  m 

1  2  3   4   5 
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The average velocity vector     
−∆

= =
∆ −

 



 f i
av

f it t t
r rrv

The instantaneous velocity vector  ( )( )   =


 d tt
dt
rv

( ) ( ) ( )ˆ ˆ ˆ = + +
dx t dy t dz t

dt dt dt
i j k

The average acceleration vector     
−∆

= =
∆ −

 



 f i
av

f it t t
v vva

The instantaneous acceleration vector  

2 2 2

2 2 2

( ) ( ) ( )ˆ ˆ ˆ = + +
d x t d y t d z t

dt dt dt
i j k

( )( ) d tt
dt

=
va



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Instantaneous and average velocity 
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A bee flies in a straight line at constant speed.  
At 15 s after 9 a.m., the bee’s position is  < 2, 4, 0> m.  
At 15.5 s after 9 a.m., the bee’s position is < 3, 3.5, 0> m. 
  
What is the average velocity of the bee? 

(1)   < 6, 7, 0 >  m s-1 

(2)   < 0.193, 0.225, 0 >  m s-1 
(3)   2.236  m s-1  

(4)   < 0.500, −0.250, 0 >  m s-1 
(5)   < 2.000, −1.000, 0 >  m s-1   

1  2  3   4   5 
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Predicting a new position 

Rewrite the average velocity formula as 

From this we obtain an update formula for the position 

We will use this throughout the course. 

Note that this formula is exact 
(but calculating       may be difficult). 

f i av t− = ∆r r v  

( )   
f i av

i av f i

t

t t

= + ∆

= + −

r r v

r v

  

 

avv
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The update formula 

The update formula                                        is a vector equation.  ( )f i av f it t= + −r r v  

We can write it as three equations in the coordinates 

( )
( )
( )

,

,

,

f i av x f i

f i av y f i

f i av z f i

x x v t t

y y v t t

z z v t t

= + −

= + −

= + −

If        does not change in time, these are the equations for a 
straight line. 

avv
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At 15 s after 10 a.m. two bees are observed to be at position < 2, 4, 0> m. 
Bee #1 flies in a straight line with constant speed and arrives at position   
< 3, 3.5, 0 > m at 15.5 s after 10 a.m.  
Bee #2 buzzes around, repeatedly changing speed and direction, 
sometimes going quickly and other times just hovering in the air, but it 
also arrives at position < 3, 3.5, 0 > m  at 15.5 s after 10 a.m. 

Which statement about their average velocities is correct? 

(1) The magnitude of Bee #1’s average velocity is greater. 
(2) The magnitude of Bee #2’s average velocity is greater. 
(3) The two bees have the same velocity at all times. 
(4) The two bees have the same average velocity although their 
velocity at a given time may not be the same. 

1  2  3   4   5 
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At 12.18 s after 1:30 p.m., a ball’s position is < 20, 8, −12> m, 
and the ball’s velocity is  < 9, −4, 6 > m s-1.  
  
What is the (vector) position of the ball at 12.21 s after 1:30 p.m.?  
Assume that the ball’s velocity does not change significantly in 
this short time interval. 

(1)     24.75 m 
(2)   < 20.27, 7.88, −11.82 > m 
(3)   < 0.27, −0.12, 0.18 > m 
(4)   < 129.62, −40.72, 61.08 > m 
(5)   < 129.89, −40.84, 61.26 > m  

1  2  3   4   5 
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A ball travels through the air. Part of its trajectory 
is shown in red. 

Which arrow best represents the direction of the average 
velocity of the ball as it travels from location A to location B? 

1  2  3   4   5 
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A ball travels through the air. Part of its trajectory 
is shown in red. 

1  2  3   4   5 

Which arrow best represents the direction of the instantaneous 
velocity of the ball when it passes through location A? 
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Example 

The position of a  3 kg  particle as a function of time is given by: 
 
 
 
(a) What is the position of the object at  t = 2 s? 
(b) Write down an expression for the velocity of the object as a function of time. 
(c) What is the velocity of the object at  t = 2 s? 
(d) What is the displacement of the object between  t = 0 s  and  t = 2 s ? 
(e) What is the average velocity of the object between  t = 0 s  and  t = 2 s? 

2 ˆ ˆ( )    (5 2 ) (3 8)     metres= − + +
 t t t tr i j



60 

Example 

A particle moves 3 metres in the    -direction for 6 seconds, and then 
6 metres in a direction 30° to the   -direction for another 6 seconds. 
What is the average velocity of the particle?  

î
î
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Four different mice (labeled A, B, C and D) ran the triangular maze shown 
below. They started in the lower left hand corner and followed the paths 
of the arrows. The times they took are shown below each figure. 

A 

t = 2 s 

C 

t = 4 s 

D 

t = 4 s 

B 

t = 2 s 

For each item below, write down the letters of all the mice that fit  
the description. 
 

(a)This mouse had the greatest average speed. 
(b) This mouse had the greatest total displacement. 
(c) This mouse had an average velocity that points in this direction  → 
(d) This mouse had the greatest average velocity. 

Example 
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Momentum 

Newton’s first law of motion, 

An object moves in a straight line and at constant speed except 
to the extent that it interacts with other objects. 

is often known as the “law of inertia”. 

Inertia is the resistance of a body to changes in motion. 
We want to relate a change in velocity to the strength of 
interaction. 
 
What quantity best represents this inertial aspect? 
Both mass and velocity are important to consider. 

M&I 
3E 1.8 
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Momentum 

Momentum is a quantity that involves a product of 
mass and velocity. 
Momentum is denoted by the symbol       . 

We might expect 

However, experiment and a deeper understanding of the 
nature of space and time has shown that the momentum is 
defined by: 

where the Lorentz factor is 

and c is the speed of light (3 ×108 m s-1). 

p

m=p v 

mγ=p v 

2

2

1

1 v
c

γ =
−
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The Lorentz factor γ 

γ 

velocity   (m s-1) 

For many everyday 
speeds,  γ  is very 
close to 1. 

e.g. for a speed of  
3000000 m s-1, γ = 1.00005. 

Whether we accept this depends on how accurately we need 
the value; often the approximation is acceptable. 

So we can say that if           , say,                  , then 
1.000m m= =p v v  

v c 0.01v c
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Momentum 

The momentum is a vector in the same direction as the velocity. 
 
Note that it is not, in general, a constant multiple of the velocity. 
 
Units of momentum: kg m s-1. 
 
We will see that the momentum has important properties that 
we can exploit in analysing motion, especially if collisions are 
involved. 
 
(Conservation of momentum: to come). 
This makes it much more fundamental and useful than velocity. 
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Change in momentum 

Simple form of Newton 1: 
Momentum of a particle is constant in 
the absence of interactions. 
 
So the change in momentum is related 
to the presence of an interaction. 

f i∆ = −p p p  

The average rate of change in momentum:  

The instantaneous rate of change in momentum:  

f i

f it t t
−∆

=
∆ −

p pp
 



0
lim

t

d
dt t∆ →

∆
=

∆
p p 

M&I 
3E 1.9 
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 A child rides on a merry-go-round, 
traveling from location A to 
location C at a constant speed. 

What is the direction of      , 
the change in the child’s 
momentum, between locations 
A and C ? 

p∆

1  2  3   4   5 
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 A child rides on a merry-go-round, 
traveling from location A to 
location C at a constant speed. 

What is the direction of      , 
the change in the child’s 
momentum, between locations 
A and B ? 

p∆

1  2  3   4   5 
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Suppose you are driving a 1000 kg car at 20 m s-1 in the  
+x direction.  After making a 180 degree turn, you drive the car 
at 20 m s-1 in the –x (opposite) direction.  What is the magnitude 
of the change of the momentum of the car          ? p∆

(1)   0 kg m s-1 

(2)   2.0e4 kg m s-1 
(3)   4.0e4 kg m s-1 
(4)   6.0e4 kg m s-1 
(5)   8.0e4 kg m s-1 

1  2  3   4   5 
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Principle of relativity 

Galileo: laws of mechanics are the same for observers in 
uniform motion as for observers at rest. 
 
Einstein: laws of physics are the same for observers in 
uniform motion as for observers at rest. 
 
Equivalent to Newton’s First Law. 



M&I 
Chapter 2 

The Momentum  
Principle 



System and surroundings 

In order to apply the momentum principle we must 
separate the world into the system whose momentum 
change we will calculate, and the surroundings which 
exert the forces on the system. 
 
Only forces that are exerted across the boundary 
(‘external forces’) are important. 
 
Internal forces cancel out in pairs. 

72 

M&I 
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The momentum principle 

 net t∆ = ∆p F




for small  t∆

Change of momentum is equal to the net force acting 
on an object times the duration of the interaction. 

Newton’s first law suggests that “the stronger the interaction, 
the bigger the change in momentum”. 
 
Experience also suggests that “the longer the interaction, the 
bigger the change in momentum”. 
 
The quantitative form is expressed as the momentum principle  
(or Newton’s second law): 

73 

M&I 
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We quantify interaction by the concept of force. 
 
A force has a magnitude and is exerted in a certain direction. 
 
It is described by a vector     . 
 
Units: kg m s-2, also known as the newton, N. 
 
Examples of force: 
 Force of gravity between Earth and Sun. 
 Electrostatic force between two protons. 
 Weight. 
 Force exerted by a spring. 
 
How do we measure a force? 

Force 

74 

F

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Definition of net force 

The net force on an object is the vector sum of the 
individual forces exerted on it by all other objects. 

1 2 3 ...net i
i

= + + + =∑F F F F F
    

netF




Impulse 

The product of force and a time interval is called impulse. 

Units: Ns. 

The momentum principle: 

The change of momentum of an object is equal to 
the net impulse applied to it. 

i.e. 

impulse 

77 

t≡ ∆F


 =f i net t∆ = − ∆p p p F


  



The momentum update formula 

The Momentum Principle can be written as an update 
formula: 

Remember that this is three scalar equations: 

How do we use this? 

 f i net t= + ∆p p F


 

,

,

,

 

 

 

fx ix net x

fy iy net y

fz iz net z

p p F t
p p F t
p p F t

= + ∆

= + ∆

= + ∆

for small       … why? 

78 

M&I 
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Applying the momentum principle 

1. Separate the world into system and surroundings 
 
2. Determine which forces you need consider 

   ... make a list, draw a diagram 
 
3. Choose the time interval 
 
4. Apply the momentum principle 
 
5. Check 

To analyse the motion of a real world system. . . 

79 



Relativistic updates 

80 

For fast moving particles (        ) the momentum is 

2

2

1

1
m m

v
c

γ= =

−

p v v  

v c≈

For the position update formula, need     in terms of     . 
The formula is “easily” inverted: 

v p

2

1

m

mc

=
 

+  
 

pv
p









An object is moving in the +x direction.  
Which of the following statements about the net force acting 
on the object could be true? 
 
A. The net force is in the +x direction 
B. The net force is in the –x direction 
C. The net force is zero 

(1)  A only 
(2)  B only 
(3)  C only 
(4)  A and B 
(5)  B and C 
(6)  A and C 
(7)  A, B, and C 

1  2  3   4   5 



Cart A moves to the left at nearly constant speed. 
Cart B moves to the left, gradually speeding up. 
Cart C moves to the left, gradually slowing down. 

(1)   A only 
(2)   B only 
(3)   C only 
(4)   A and B 
(5)   B and C 
(6)   A and C 
(7)   A, B, and C  

Which cart(s) experience a net force to the left? 

1  2  3   4   5 



The x-component of momentum of an object is found to 
increase with time: 
t = 0 s   px = 30 kg m/s 
t = 1 s   px = 40 kg m/s 
t = 2 s   px = 50 kg m/s 
t = 3 s   px = 60 kg m/s 

(1) Fnet,x = 0 
(2) Fnet,x is constant 
(3) Fnet,x is increasing with time 
(4) Not enough information is given to determine which is true.  

What can you conclude about the x-component of the net 
force acting on the object? 

1  2  3   4   5 



A hockey puck is sliding along the ice with nearly constant 
momentum  < 10, 0, 5 > kg m/s when it is suddenly struck by a 
hockey stick with a force < 0, 0, 2000 > N that lasts for only  
3 milliseconds (3e-3 s).  
What is the new (vector) momentum of the puck?  

(1)  < 10, 0, 11 > kg m/s 
(2)  < 0, 0, 6 > kg m/s 
(3)  14.86 kg m/s 
(4)  < 16, 0, 11 > kg m/s 
(5)  < 0, 0, 30 > kg m/s 

1  2  3   4   5 



You push a book across a table. In order to keep the book 
moving with constant momentum, you have to keep 
pushing with a constant force.  
Which statement explains this?  

(1) A net force is necessary to keep an object moving. 
(2) To make the net force on the book zero, you must push with a 
force equal and opposite to the friction force on the book. 
(3) The force you exert must be slightly larger than the friction 
force. 

1  2  3   4   5 



Inside a spaceship in outer space there is a small steel ball. 
At a particular instant, the ball has momentum  
< –8, 3, 0 > kg m/s and is pulled by a string, which exerts 
a force < 20, –10, 0 > N on the ball.  
What is the ball’s (vector) momentum 2 seconds later? 

(1)  < –28, 23, 0 > kg m/s 
(2)  < 12, –7, 0 > kg m/s 
(3)   36.2  kg m/s 
(4)  < 32, –17, 0 > kg m/s 
(5)  < 40, –20, 0 > kg m/s 

1  2  3   4   5 



Prediction and the momentum principle 

We now have a way to predict the future of a system: 

1. Identify the system and surroundings (“rest of the 
universe”) ...  identify the interactions. 

 
2. Identify the initial conditions. 
 
3. Use the momentum principle to update the momentum. 
 
4. Use the position update formula to update the position. 
 
5. Solve for any remaining unknowns. 
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Updating position when momentum is changing 

88 

We need to find the average velocity       in order to use the 
update equation for position. 

Can’t use: 

A good approximation is 

This is exact if the rate at which the velocity is changing is 
constant. 

   f i
av t t

−∆
= =
∆ ∆

r rrv
 





2
i f

av

+
=

v v
v

 



avv
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Momentum change with changing force 
M&I 

3E 2.4 

In real world situations it is common for both the 
magnitude and direction of forces to change. 

If the net force on system is not constant over a time interval, 
then divide up the time interval into several smaller intervals, 
until the net force is approximately constant over each interval. 

Then the total change in momentum is 

1 2 3 ...∆ = ∆ + ∆ + ∆ +p p p p   

where 
1 1 0

2 2 1

3 3 2

∆ = −∆

∆ = −∆
∆ = −∆

p p p
p p p
p p p

  

  

  



Iterative prediction of motion 

Calculate the (vector) forces acting on the system. 
 
Update the momentum of the system: 
 
Update the position: 
 
Repeat 

90 

M&I 
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 f i net t= + ∆p p F


 

f i av t= + ∆r r v  



The spring force 

Hooke’s law 

spring sk s=F


where 0s L L= −

1F


2F


s 2 s

0L

and     is the “spring constant” sk Units:  N m-1 

2 s

1F


2F


s

0L
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The vector spring force 

0L
L


ˆ=L L L
 

Relative position vector L


then 0s L= −L


Vector spring force 

ˆ
spring sk s= −F L


92 



Gravitational force 

See more general form of the gravitational force later. 

For an object of mass m near the surface of the Earth ... 

grav mg≈F


where g = 9.8 m s-2 near the surface of the Earth. 

mg is sometimes called the “weight” of the body. 

93 



Block on spring 1D : nonconstant net force 

0 0.2 mL =

L
mg

spring sk s=F


Spring relaxed and at rest 

Gently add a block of mass m  
Spring is compressed by s 

sk s mg=

at equilibrium 

If you press the block down further (with your hand) and  
release the spring, then what will happen? 

y 

94 



Block on spring 1D : nonconstant net force 

t 

y 

t 

Fnet,y 

t 

vy 

95 



0.1 st∆ =

0.01 st∆ =

96 

Block on spring 1D : nonconstant net force 
Computational solution 
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Special case: constant force 

Suppose we have a constant force 

In this case the average velocity is also equal to the arithmetic 
mean of initial and final velocities 

,av net net=F F
 

2
i f

av

+
=

v v
v

 



A solvable “special case”. 
 
e.g. object falling in vacuum near surface of planet. 
e.g. charged particle in uniform electric field. 

M&I 
3E 2.6 
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Special case: constant force 

Solution using momentum principle: 

21
2

net
f i i t t

m
∴ = + ∆ + ∆

Fr r v


  

 f i net t= + ∆p p F


 

 net
f i t

m
∴ = + ∆

Fv v


 

 

2

net
i i

av

t
m

 
+ ∆ + 

 ∴ =

Fv v
v



 



1
2

net
av i t

m
∴ = + ∆

Fv v


 

f i av t= + ∆r r v  
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, 2
,      

2
net x

f i i x

F
x x v t t

m
= + ∆ + ∆ ,

, .      net x
f x i x

F
v v t

m
= + ∆

…or in scalar form: 

  net
f i t

m
= + ∆

Fv v


 21
2

net
f i i t t

m
= + ∆ + ∆

Fr r v


  

, 2
,      

2
net y

f i i y

F
y y v t t

m
= + ∆ + ∆ ,

, .      net y
f y i y

F
v v t

m
= + ∆
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Nature is continuous 
The equations of motion arising from Newtonian mechanics  

… allow one to calculate the position and velocity of a 
particle at any instant in time … they are complete 
descriptions of the continuous motion of the particle … 

t 

x(t) 

t 

vx(t) 

vx0 
x0 

If one knows the initial conditions, then one is able to predict the 
motion at some time in the future … the equations are 
deterministic … later on, quantum mechanics showed that nature 
should be understood as being probabilistic and the determinism of 
Newton’s mechanics applies only to the macro scale. 

21
2

net
f i i t t

m
= + ∆ + ∆

Fr r v


     net
f i t

m
= + ∆

Fv v


 
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In most cases, when faced with a particular situation to analyze, it 
is often useful to think about the situation in other ways first, 
before diving into using (abstract) equations …  
… there are a number of diagrammatic representations which 
are often helpful to understand what is going on and to visualize 
the motion.  
It is not sufficient to be able to only calculate the correct answer 
… you need to also understand the situation fully … which means 
being able to describe the motion in a variety of ways. 

The difficulty in using visual-rich representations of a 
continuous motion is that we need to make choices with 
respect to what aspects of the motion we want to represent … 

Other representations of motion 
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Using motion (velocity vector) diagrams 

Say that in each case below, a velocity vector was drawn at 
different positions of a moving object. What can you say about the 
net force acting on the object in each case? 

(a) 

(b) 

(c) 
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(d) 
(e) 

(f) 

(g) 

(h) 

More velocity vector representations of motion…  
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… for cases of constant (or zero) acceleration 

t 

x(t) 

t 

vx(t) 

t 

ax(t) 

21
, 2( )       i i x xx t x v t a t= + +

( )21
, 2( )       i i x x

d dx t x v t a t
dt dt

= + + ,( )     x i x xv t v a t= +

( ),( )     x i x x
d dv t v a t
dt dt

= +   =  constantxa

Graphical representations of motion 

The area  
under here  

gives 
information 

about the 
displacement of 

the particle 
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Consider the x(t) versus time graphs below, for an object moving in one 
dimension. In each different case:  
(i) provide an example of a situation where the motion of the object is 
represented by the graph  
(ii) sketch the corresponding vx(t) vs t  graph.  

Using graphs of motion … Example 1 

(a) (b) 

t 

x(t) 

t 

x(t) 

0 
0 

0 
0 
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(c) (d) 

(e) (f) 

t 

x(t) 

t 

x(t) 

t 

x(t) 

t 

x(t) 

0 
0 

0 
0 

0 
0 

0 
0 
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Consider the vx(t) versus time graph below for a car travelling 
along a flat, straight road. 
(a) Write down everything you can say about the motion of the car. 
(b) Sketch the corresponding  x(t) vs t  and  ax(t) vs t  graphs.  

Using graphs of motion … Example 2 

t 

vx(t) 

0 0 



108 

A car moves along a straight 
road. The graph alongside shows 
the position of the car as a 
function of time.  
 
The graph shows that the car: 
 
(A) speeds up all the time 
(B) slows down all the time 
(C) moves at a constant velocity 

time 

x(t) 

1  2  3   4   5 
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Important worked example of motion in a straight line 

A fan cart of mass 0.5 kg is initially at rest. 
It starts to move under the action of a 
constant force of 0.375 N and reaches a 
speed of 15 m s-1 after 20 s. It travels at a 
constant speed for 2 minutes after which 
time it slows down under the action of a 
constant force of 0.25 N to stop in  
30 seconds. 
Assume that the entire motion takes place 
in a straight line in the   -direction. 

Determine the total displacement of the car. 

î
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First draw a picture of what is happening. 
Add in a coordinate system and include all known and 
unknown variables ... 

t = 0 
x(t = 0) = 0 

vx(t = 0) = 0 

t = 140 s 
x(t = 140) = ? 

vx(t = 140) = 15 m s-1 

t = 20 s 
x(t = 20) = ? 
v(t = 20) = 15 m s-1 

t = 170 s 
x(t = 170) = ? 
vx(t = 170) = 0 m s-1 

î

î

If we look a photograph of the car every 10 s then we would see 
something like this … 

… and drawing the velocity vectors at each position. 

What can you say about the direction of the net force  
acting on the cart in each region? 
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We can draw graphs of motion … 

0     20                  140     170  
t (s) 

x(t)   
(m) 

0 

…and  vx(t)  versus t  … next slide … 



112 

displacement = area under graph =        +          +         =  2175   m î

0          20                             140            170  t (s) 

vx(t)   
(m s-1) 

0 

15 
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Now the displacements ...  
We consider each of the three stages separately. 
(i) Between  t = 0  and  t = 20 s: 

(ii) Between t = 20 and t = 140 s: 

(iii) Between  t = 140 and  t = 170 s: 

21
2                     net

f i i t t
m

= + ∆ + ∆
Fr r v


  

21
2

ˆ(0.375 ) ˆ( 20)   (0)  (0)  (20)  150  m
0.5

t = = + + =
ir i

21
2

ˆ ˆ ˆ( 140)   (150 )  (15 )(120)  (0)(120)  1950  mt = = + + =r i i i

21
2

ˆ( 0.25 )ˆ ˆ ˆ( 170)   (1950 )  (15 )(30)  (30)  2175  m
(0.5)

t −
= = + + =

ir i i i

Final position of the car 

21
2                     net

f i i t t
m

= + ∆ + ∆
Fr r v


  

21
2                     net

f i i t t
m

= + ∆ + ∆
Fr r v


  
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Using graphs of motion … Example 

The   x(t)-t   graph 
for the motion of a 
3 kg object is 
shown: 

(a) Write down (using words)  
everything you can say about  
the motion of the object. 

(b) Determine the magnitude and direction of the net force acting 
on the object during the first 5 seconds. 

t 

x(t) 
80 m 

20 m 
30 m 

    5 s        9 s 
0 

0 
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Bodies in free fall 

Consider the following two situations. At each position 
shown, indicate the magnitude and direction of the  
resultant acceleration of the ball. 

The ball is dropped from rest from a 
height and allowed to fall to the floor 

The ball is thrown upwards, reaches 
some height, and falls back to the floor 

A 

B 

C 
A 

B 

C 
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Demonstration 

A large ball 
and a small ball 
are dropped 
from the same 
height in air. 
Which ball 
reaches the 
ground first? 
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Demonstration 

A book and a sheet of paper are dropped from the same 
height in air. (a) Which reaches the ground first? 
Does it make a difference if the paper is placed  
(b) under the book?     ... or (c) above the book? 

(a)                                    (b)                              (c) 
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Demonstration 
A coin (or a stone) and a disc of paper 
(or a feather) are dropped from a 
height in a cylinder filled with air. 
What will happen if the air is removed 
from the cylinder? 

cylinder is filled 
with air 

air is removed 
from the cylinder  
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If you drop an object in the absence of air 
resistance, it accelerates downward at 9.8 m s-2. 
If instead you throw it downward, then its 
downward acceleration after release is 
 
 (A) less than 9.8 m s-2 

 (B) 9.8 m s-2 

 (C) more than 9.8 m s-2 

1  2  3   4   5 



A ball is initially on the ground, and you kick it with initial 
velocity < 3, 7, 0 >  m/s.  At this speed air resistance is 
negligible. Assume the usual coordinate system. 
Which components of the ball’s momentum will change in the 
next half second?  

(1) px 
(2) py 
(3) pz 
(4) px & py 
(5) py & pz 
(6) pz & px 
(7) px, py, & pz 

1  2  3   4   5 



The mass of the ball is 500 g, and its initial velocity is  
< 3, 7, 0 > m/s. What is the net impulse acting on the ball 
during the next 0.5 seconds after you kicked it? 

(1)  < 0, 2.45, 0 > N s 
(2)  < 0, –2.45, 0 > N s 
(3)  < 0, 9.8, 0 > N s 
(4)  < 0, –9.8, 0 > N s 
(5)  < 0, 4.9, 0 > N s 
(6)  < 0, –4.9, 0 > N s  

1  2  3   4   5 



Which graph correctly shows py for the ball during this 0.5 s? 

(1)                               (2)                                (3) 

(4)                               (5)                                (6) 

1  2  3   4   5 
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Example: Throwing a ball upwards 

Say that you throw a ball vertically upward at 7 m s-1 
from a balcony that is 10 m above the ground. After 
reaching a maximum height, the ball drops past the 
balcony, to the ground. 
 
We choose a coordinate system with the    direction 
upwards and the origin at the balcony. 
 
Complete the freeze frame representation of the 
motion of the ball …  
 
… and also draw a velocity vector at each of these 
positions of the ball. 
 
What is the acceleration of the ball at each of the 
positions shown? 

ĵ
0 

ˆ j

10−
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Say that you throw a ball vertically upward at 7 m s-1 from 
a balcony that is 10 m above the ground. After reaching a 
maximum height, the ball drops past the balcony, to the 
ground. 
With reference to the coordinate axis given … 
 
Initial position of the ball = 
 
Final position of the ball = 
 
Displacement of the ball when it reaches the ground = 
 
Initial velocity of the ball =  
 
Acceleration of the ball while traveling upward = 
 
Acceleration of the ball while traveling downward = 
 
Acceleration of the ball at maximum height = 
 

0 

ˆ j

10−
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Say that you throw a ball vertically upward at 7 m s-1 from a balcony that is 10 m 
above the ground. After reaching a maximum height, the ball drops past the 
balcony, to the ground. 
Draw the three graphs of motion … 

t 

y(t) 

t 

ay(t) 

t 

vy(t) 
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Say that you throw a ball vertically upward at 7 m s-1 from a balcony that is 10 m 
above the ground. After reaching a maximum height, the ball drops past the 
balcony, to the ground. 
Now determine how long it takes for the ball to reach the ground. 
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A person standing at the edge of a cliff throws one ball 
straight up and another ball straight down at the same 
initial speed. 
Neglecting air resistance, the ball to hit the ground below 
the cliff with the greater speed is the one initially thrown 
 
 (A) upward 
 (B) downward 
 (C) neither - they both hit at the same speed. 

1  2  3   4   5 
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The graph shows position as a 
function of time for two trains 
running on parallel tracks.  
Which is true: 
 
(A) At time tB both trains have the 
same velocity 
(B) Both trains speed up all the time 
(C) Both trains have the same 
velocity at some time before tB 

time 

position 

tB 

1  2  3   4   5 
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You and your brother are playing a game on the beach.  
He is standing on a ledge 15 m  above you (standing on 
the beach) and throws a ball vertically upward with an 
initial speed of  30 m s-1.  The idea is for you to 
simultaneously throw a stone vertically upward from the 
beach so that it hits the ball at the apex of its flight.    
At what speed should you throw the stone?  

Example 3 
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A passenger train and goods locomotive are travelling in the same direction 
along the same track. The passenger train is travelling at 100 km/h and 
goods locomotive at 18 km/h. The driver of the passenger train is shocked to 
see the goods locomotive 420 m ahead of him and immediately hits the 
brakes. The passenger train then immediately starts to slow down with a 
constant acceleration.   
 
(a)  Calculate what the acceleration of the passenger train needs to be in 
order for it to just touch the goods locomotive (and not smash into it). 
(b) Sketch, on the same axes, the position-time, velocity-time and 
acceleration-time graphs for the passenger train and the goods locomotive. 
Label each carefully. 

Example 4 
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Projectiles 
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Demonstration 

A ball in dropped from a height. At the same instant, a second 
ball is projected horizontally from the same height.  
Which ball hits the ground first? 



xv
0= =

 

x yv v
0=



yv
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At each position shown, draw in the x and y components of 
the velocity vectors of both balls. 



xv
0= =

 

x yv v

What is the magnitude and direction of the acceleration of each 
ball at each position shown? 
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Demonstration 
Rolling cart catches own ball 
A special car is designed with low friction axles 
and has a spring-loaded mechanism which 
projects a small steel ball vertically upward.  
A needle attached to a string is used to release the 
ball and an upward-facing funnel catches the ball.  stationary car 

What will happen if the ball is fired upward while the car is moving 
horizontally at a constant speed? Where will the ball land? 

bridge 

?? 
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At each position shown, draw in the x and y components of 
the velocity vectors of the car and the ball. 

ball is fired  
vertically here 
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A ball is projected from the origin with initial velocity    
having magnitude 50 m s-1 at an angle of 37° to the horizontal. 
We are interested in knowing the position and velocity of the ball 
as a function of time. 

,
ˆ cosi x iv θ=v i

,
ˆ sini y iv θ=v j

 θ = 37° vi = 50 m s-1 

Example 



37° 

î

ĵ

We apply the same equations of motion…  

21
2        net

f i i t t
m

= + ∆ + ∆
Fr r v


         net
f i t

m
= + ∆

Fv v


 

v

21
2

0, ,0
    0,0,0   50cos37 ,50sin37 ,0   f

mg
t t

m
−

= + ° ° ∆ + ∆r

0, ,0
    50cos37 ,50sin37 ,0  f

mg
t

m
−

= ° ° + ∆v
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Complete the table below by calculating the components of the 
position and velocity vectors for this projectile. 

6 
5 
4 
3 
2 
1 

0 0 0 
vy (m s-1) vx (m s-1) y (m) x (m) time (s) 

 

 

 

 

 

 

 

                                   40             30 
  40            25             40             20 
  80            40             40             10 
120            45             40              0 
160            40             40            −10 
200            25             40            − 20 
240             0              40            − 30 
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t 

x(t) ̂i

t 

y(t) ̂j

t 

ĵ

t 

vx(t) ̂i

vy(t)  

vi,x 

vi,y 

( ) 40  m=x t t -1
, 40 m sf xv =

2( ) 30 4.9  my t t t= −

-1( ) 30 9.8   m syv t t= −

vy = 0 at 
the apex 
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We can think of the motion of a projectile as the combination 
of a vertical projectile and an object traveling horizontally at 
a constant velocity. 

with 

x 

y 
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The figure shows the paths followed by two golf balls, A and B. 
Does Ball A spend more, the same or less time in the air than 
Ball B? 
 
(A) more  (B) the same  (C) less 

1  2  3   4   5 
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The figure shows the paths 
followed by two golf balls, A 
and B. 
Does Ball A have a greater, the 
same or smaller launch speed 
than Ball B? 
 
 (A) greater 
 (B) the same   
 (C) smaller 

1  2  3   4   5 
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Projectiles: Example 1 

Determine the minimum speed that Bugs must have as he 
leaves the incline on his motorbike in order to just make it 
across the 50 metre wide swamp. 

37° 
10 m 

50 m 

Answer: vi  =  20.2  m s-1 
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First draw the path of the projectile (in this case the motorbike) 
on your diagram. 

37° 
10 m 

50 m 

−10 m 

50 m 

Now draw a set of Cartesian coordinates. Usually it makes sense to 
set the origin at the initial position of the projectile. Mark the final 
position on the axes, using symbols for unknowns, if necessary. 

î
ĵ
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A battleship simultaneously fires two shells at the same initial 
speed at enemy ships. If the shells follow the parabolic 
trajectories shown, which ship gets hit first? 

A B 

(A)  A 
(B)  B 
(C)  both at the same time 

1  2  3   4   5 
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Projectiles: Example 2 

You are on the target range preparing to shoot a new rifle when 
it occurs to you that you would like to know how fast the bullet 
leaves the gun (the muzzle velocity).  You bring the rifle up to 
shoulder level and aim it horizontally at the target centre.  
Carefully you squeeze off the shot at the target which is  100 m  
away.  When you collect the target you find that your bullet hit  
22 cm  below where you aimed.  
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Projectiles: Example 3 

You did so well at university you get a job in the airforce as a 
helicopter pilot.   One of the maneuvers that you have to practice 
is to drop a package from a moving helicopter onto a moving 
truck on the ground.  The difficulty is to know what speed to fly 
relative to the ground. You are flying horizontally at an altitude 
of  100 m  and you know that when you drop the package, the 
truck will be 125 m  ahead of you (measured along the road) and 
it will be traveling along the flat road at  60 km h-1.   
You estimate the height of the truck above the road to be  3 m.  
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Something to think about:  For a given (fixed) launch velocity    , 
what launch angle θ  of the projectile will given the largest range 
on horizontal ground? 

iv

θ  
iv

î

ĵ

xmax 

For this simple case, our equations for the position are: 

( )max cosix v tθ= ∆ and ( ) 21
20 siniv t g tθ= ∆ − ∆

2

max
2 cos sinivx

g
θ θ

=Substituting the one into the other: 

Giving: 2

max
sin 2 Range,   ivx R
g

θ
= = since sin 2 2cos sinθ θ θ=
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2 sin 2Range,   ivR
g

θ
=For a projectile on horizontal ground: 

It is clear that for a given vi , and since g is constant, R is 
maximum when                 is maximum ( = 1 ) , 
i.e.   when 2θ = 90°   or   θ = 45° . 

sin 2θ

We can also see that (except for θ = 45°), there are always two 
angles that give the same R. 

For example, θ = 30° and θ = 60° will give the same R, since 
sin (2 × 30°)  =  sin (60°)  =  sin (120°)  =  sin (2 × 60°)  

x 

y 

θ = 45° 

θ = 30° 

θ = 60° 

For the same  
launch speed u: 
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A collision is when two bodies interact over a short time interval. 
The forces that the bodies exert on each other are usually so 
strong during the collision that all forces acting on a body may be 
ignored. 

During a collision between two 
bodies (1 and 2), the contact force 
exerted by one body on the other 
jumps from zero to a very large 
value and then abruptly drops to 
zero again. 

F12 

ti        tf           t   

The time interval                      is usually very small. f it t t∆ = −

Note that                    for the collision  12 21= −F F
 

Estimating interaction times M&I 
3E 2.7 
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t
∆

=
∆
pF


F 

ti         tf           t   

Impulse  =     f i− = ∆p p p  

Sometimes it is useful to use 
the average force       acting 
for time      to give the same 
impulse  and       .  ∆p

t∆
avF


avF


= Then av t∆ = ∆F p




Estimating interaction times 
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The impulse is the same in each case. 

                            m t= ∆F


∆v

                           m = F
 t∆∆v

Estimating interaction times 



Two running students collide head-on. 

One student exerts a force of magnitude F on the other 
student. Suppose we choose BOTH students as the 
“system” to which to apply the momentum principle. 
What is the net force acting on this system? 

(1) < F, 0, 0 > 
 
(2) < 2F, 0, 0 > 
 
(3)  < 0, 0, 0 > 

1  2  3   4   5 



Real world  
(phenomena) 

Physical model  
(shared, contextual) 

idealization 

Physical theories  
(shared, acontextual) 

particularization 

When making sense of the 
ideas in this course, it’s 
useful to think about both the 
nature of physics and how 
you learn physics yourself ... 
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•  Draw one or more pictures which show all the important objects, their 
motion and any interactions. 

• Now ask  “What is being asked?”  “Do I need to calculate something?” 
• Think about what physics concepts and principles you think will be 

useful in solving the problem and when they will be most useful. 
• Construct a mental image of the problem situation  -  do your friends 

have the same image? 
• Specify a convenient system to use  -  circle this on your picture. 
• Identify any idealisations and constraints present in the situation  -  

write them down! 
•  Specify any approximations or simplifications which you think will 

make the problem solution easier, but will not affect the result 
significantly.  

An approach to solving physics problems 

Step 1. Think carefully about the problem situation and draw a 
picture of what is going on (Pictorial Representation). 
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• Draw a coordinate axis (or axes) onto your picture (decide where to put the 
origin and on the direction of the axes). 

• Translate your pictures into one or more diagrams (with axes) which only 
gives the essential information for a mathematical solution. 

• If you are using kinematic concepts, draw a motion diagram specifying the 
object’s velocity and acceleration at definite positions and times.   

• If interactions or statics are important, draw idealised, free body and force 
diagrams.  

• When using conservation principles, draw “initial” and “final” diagrams to 
show how the system changes.  

• For optics problems draw a ray diagram.  
• For circuit problems, a circuit diagram will be useful.  
• Define a symbol for every important physics variable in your diagram and 

write down what information you know (e.g.  T1 = 30 N). 
• Identify your target variable?  (“What unknown must I calculate?”).   

Step 2. Describe the physics  (Physics Representation). 
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• Only now think about what mathematical expressions relate the physics 
variables from your diagrams. 

• Using these mathematical expressions, construct specific algebraic 
equations which describe the specific situation above. 

• Think about how these equations can be combined to find your target 
variable. 

• Begin with an equation that contains the target variable. 
• Identify any unknowns in that equation 
• Find equations which contain these unknowns 
• Do not solve equations numerically at this time. 
• Check your equations for sufficiency... You have a solution if your plan has 

as many independent equations are there are unknowns.      If not, determine 
other equations or check the plan to see if it is likely that a variable will 
cancel from your equations. 

• Plan the best order in which to solve the equations for the desired variable. 

Step 3. Represent the problem mathematically and plan a solution 
(Mathematical Representation). 
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• Do the algebra in the order given by your outline. 
• When you are done you should have a single equation with your target variable. 
• Substitute the values (numbers with units) into this final equation. 
• Make sure units are consistent so that they will cancel properly. 
• Calculate the numerical result for the target variable. 

Step 4. Execute the plan 

Step 5. Evaluate your solution  

• Do vector quantities have both magnitude and direction ? 
• Does the sign of your answer make sense ? 
• Can someone else follow your solution ?   Is it clear ? 
• Is the result reasonable and within your experience ? 
• Do the units make sense ? 
  
    Have you answered the question ? 
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