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Work and Energy

The work done W by a force          in moving a particle 
from point a to point b is defined as

( )F r
G G

( )
b

a
W d= ∫ F r r

G G Gi

Unit of work:  joule (J)

Work done is a scalar quantity.
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Consider, for example, a comet moving 
along a path around the sun and let C
be the segment of this path.

is the sun’s gravitational force 
acting on the comet at position    .
Both the magnitude and direction of          varies with     .( )F r

G G

i∆rG

irG

C

i i+ ∆r rG G

rG
rG

( )F r
G G

The work done by         along the path segment C is a scalar quantity.

For the small path segment shown: 

and along the entire path C : 

Taking the limit of a 
large number of subpaths:

( )W ≈ ∆F r r
G G Gi

1

( )
n

i

W
=

≈ ∆∑F r r
G G Gi

1
( ) lim( ( ) )

n

n iC

dr
→∞

=

= ∆∑∫F r F r r
G GG G GGi i

( )F r
G G

( ) d∫F r r
G G Gi is the scalar line integral of          along the path C.( )F r

G G

C



4

Work continued ...

2 special cases:

(i)  If the force is not variable, i.e.      is constant,  and  is in a 
straight line, then

F
G

∆rG

     cos     cosW F rθ θ= ∆ = ∆ = ∆F r F r
G GG Gi

F
G

∆rG
θ



5

(ii) If     is variable, but the displacement is still in only one direction, 

then ( )
b

a
W d= ∫ F r r

G G Gi

F
G

simplifies to 2

1

( )
x

x
W d= ∫ F x x

G G Gi

x

( )F x
G G

x1 x2 

This integral may be interpreted as the area under the  F - x curve.

For example:
F

xx1 x2 

Applied force which 
varies as a function of 
position x.

Work done by F in 
moving the object 
from x1 to x2.
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The work done by a force.

A force T = 50 N acts on a block as it moves a distance of 
30 m in a straight line as shown in each case below. 
Calculate the work done by the force T in each case.

30˚
90˚T 

T 

T 
30˚

(a)                             (b)                             (c)

30˚

30˚

30˚ 30˚30˚

T 

T 

T 

(d)                              (e)                            (f)



7

Work done by a force

A force F moves a box from point A to point B along the x-axis.

x

F

A                                   B

Shown alongside is the 
force-distance graph for this 
situation.

A              B 
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(a) From the graph, calculate the 
work done by this force in 
moving the box from A to B.
(b) Using an appropriate integral, 
also calculate this work.
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Example

A force                                 N  acts on a 10 kg mass and moves it 
from an initial position                                   m to a final position          

m.    How much work is done by this force in 
moving the block through this displacement?

ˆ ˆ ˆ   3 4 4i = + −r i j kG
ˆ ˆ ˆ    5 2 3f = − −r i j kG

ˆ ˆ ˆ    3 5 2= − −F i j k
G



9

Energy

If the work done on a closed system is positive, then 
energy is transferred to the system. 
If the work done on a closed system is negative, then 
energy is removed from the system.

... but what is energy?
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Types of energy

1. Kinetic energy, K

... the energy possessed by a system by virtue of its motion.
21

2K mv=

K = 0, if the body’s speed v = 0.

Unit of energy:  joule (J)

Energy is a scalar quantity.

2. Potential energy, U

... the energy possessed by a system by virtue of its position or shape.

There are many different types of potential energy. We will focus 
on gravitational potential energy and “spring” potential energy.
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2(a). Gravitational potential energy  Ug .

Consider a mass m being lifted at a constant speed a height 
h by an external agent in the gravitational field of the earth. 

gravF mg=

exertedF

h

exerted grav= −F F
G G

exertedF mg∴ =

Work done by           :

Work done by           :gravF
GexertedF
G

   cos0   person exerted exertedW F h mgh= ∆ = ° =F r
G Gi

   cos180   grav grav gravW F h mgh= ∆ = ° = −F r
G Gi

The work done by           on the box is mgh. In other words, at height 
h, the box has the ability to do an amount of work mgh. When the 
box is released at height h, a positive amount of work is done by      
and the box accelerates and gains kinetic energy.

exertedF
G

gravF
G
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2(b). The potential energy associated with a compressed or 
extended spring Us .

restore external= −F F
G G

restore k= − ∆F x
G G

Hooke’s Law:

x
externalF
G

restoreF
G

∆xG

xi xf

where  k is the “spring 
constant” [N m-1]

The work done by              to extend the spring from xi to xf :
externalF
G

21
2        f f f f

external ii i i

x x x x

F external xx x x
W d Fdx kxdx kx= = = =∫ ∫ ∫F x

G Gi

2 21 1
2 2    s f iU kx kx∆ = −

Therefore the potential energy 
stored in the spring          :

Fexternal

xi xf x 

2 21 1
2 2 f ikx kx= −

sU∆
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3. Energy lost to dissipative processes

A bullet is fired horizontally into a wall. Before it strikes the 
wall, it is travelling at 500 m s-1. After it comes to rest in the wall, 
its speed is zero. Where did all the kinetic energy go to?

Let’s look at the impact itself. Firstly, the sound of the impact 
carries away some energy. Some energy is required to distort the
wall (and the bullet). However, most energy is lost as heat. The 
impact causes vibrations of the molecules of the wall and bullet
and both are a little warmer after the impact.
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3. Energy lost to dissipative processes ... continued

Even when all attempts are made to prevent dissipative energy 
losses to the environment, there will always be some loss. Think
about all those attempts to build “perpetual motion” machines.
There is always some friction in mechanical systems.

In this course, we will only consider the energy lost due to 
sliding friction.

For a block sliding on a rough surface: kf
G

∆rG

The work done by the friction force
= the energy lost to friction 

∆rG

frictionU∆
kf

W

kf friction k kW U f r= ∆ = ∆ = − ∆f r
G Gi

Note the minus sign
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The work-energy theorem
Consider a mass m moving along the x-axis acted upon by a 
constant force F:

x

F

xi xf

m

  f f

i i

x x

x x
W Fdx madx= =∫ ∫

Then the work done by F in moving m from xi to xf :

dv dxmadx m dx m dv mvdv
dt dt

= = =

2 21 1
2 2     f f

i i

v v

f iv v
W mvdv m mvdv mv mv∴ = = = −∫ ∫

But

 f iW K K K∴ = − = ∆

If W is positive, then the mass will speed up.
If W is negative, then the mass will slow down.
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Conservative and non-conservative forces

y

y1

y2

x

h

Consider a mass m being lifted by 
an external agent in the gravitational 
field of the earth from vertical 
positions y1 to y2 along a curved 
path as shown alongside.

The work done             by the gravitational force on the mass:gravW

2 2

1 1
  cosgrav gravW d mg drθ= =∫ ∫F r

G Gi
dx

dy

mg

dr
θ

cos(180 ) dy
dr

θ°− =

( cos )dr dyθ∴ − =

2

1

y

grav y
W mgdy= −∫

2 1( )gravW mg y y mgh∴ = − − = −

is path independent (depends on y2 − y1 only).
gravW
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Conservative and non-conservative forces ... 2

Since          is path independent, we call           a conservative force.gravW gravF
G

... and the change in gravitational potential energy           when 
a mass m moves from height y1 to y2 can be defined as

gU∆

2

2 1 2 11
( )g grav gravU U U W d mg y y∆ = − = − = − = + −∫ F r

G Gi

... can write 
2

0 1
( ) ( )g gravU U r U r d∆ = − = −∫ F r

G Gi
2

01
( ) ( )gravU r d U r∴ = − +∫ F r

G Gi

... can choose                       arbitrarily. 0( ) 0U r =

Therefore only           is physically meaningful.gU∆

Not all forces are conservative.
For example, friction forces are always non-conservative.
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Three balls are thrown 
from the top of a cliff with 
the same initial speed 
along paths A,  B  and  C.  
If there is no air resistance, 
which ball will strike the 
ground with the greatest 
speed?

(A) A
(B)  C
(C) all strike with the same speed.
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Demonstration

A

B

Two identical balls are able to roll long two smooth tracks.
Track A is a straight downwards slope.  Track B has a curved path 
as shown. Both tracks start and end at the same vertical position.
If the two balls are released from rest at the top of the tracks, 
which ball will reach the bottom first?

(a) A
(b) B
(c) both A and B at the same time.
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Demonstration

A cylinder rolls down the incline (big deal!)

But the other object appears to be rolling uphill!

What is going on?
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Principle of Conservation of Energy

For an isolated, closed system energy can be transformed from 
one form to another, but the total energy remains constant. 
If an external force acts on the system, then energy may either be 
added to the system or taken away.

For a particular isolated system:
(other forms of energy)  =  0g sK U U∆ + ∆ + ∆ + ∆

If external forces and friction act on the system:

(other forms of energy)  =  g s ext frictionK U U W U∆ + ∆ + ∆ + ∆ −∆

Energy lost to friction

Work done by an external force
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Conservation of Energy

For an isolated system:

                       =   g s ext frictionK U U W U∆ + ∆ + ∆ −∆

( ) ( ) ( )  =  f i f i f i
g g s s frictionK K U U U U W U− + − + − −∆or

initial situation final situation

                       i i i f f f
g s ext g s frictionK U U W K U U U+ + + = + + + ∆

2 2 2 21 1 1 1
2 2 2 2        i i i external f f f kmv mgy kx mv mgy kx+ + + ∆ = + + + ∆∑F r f r

GG G Gi i
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Conservation of Energy

Solving physics problems by using the principle of conservation 
of energy is essentially an energy “book-keeping” exercise.

1. Identify your system carefully.
2. Identify the initial and final situations.
3. Identify which of                                            are present.

Note that usually either yi or  yf will be set as zero.
4. Is there a frictional force acting? (Is                  zero?)
5. Are there other external forces acting on the system? (Is    zero?)
6. Apply the master energy equation to the problem:

, ,   ,   ,   , i f i f i f
g g s sK K U U U U

frictionU∆
extW

                     i i i f f f
g s ext g s frictionK U U W K U U U+ + + = + + + ∆

7. Simply this equation down to the required components.
8. Solve for what is required.
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Example 1

A  15 kg  block is held against a spring having  k = 8000 N m-1, 
compressing it by 20 cm. The block is released to slide down a 
rough slope inclined at 10˚. What distance down the slope is the 
block moving at 2 m s-1?   The coefficient of kinetic friction 
between the block and the slope is 0.6 .

y

yf

yi ∆r

10°

vi = 0 

10°

vf = 2 m s-1

initial final

                     i i i f f f
g s ext g s frictionK U U W K U U U+ + + = + + + ∆

set  yf =  0 
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                     i i i f f f
g s ext g s frictionK U U W K U U U+ + + = + + + ∆

2 21 1
2 2      i i f kmgy kx mv+ = + ∆f r

G Gi
2 21 1

2 2      i i f kmgy kx mv N rµ+ = + ∆

( ) ( )2 21 1
2 2sin10       cos10i f kmg r kx mv mg rµ∆ ° + = + ° ∆

y

x
kf

mg

N

10°

( ) 21
2

21
2

(15)(9.8) sin10 (8000)(0.2)    

          (15)(2)  (0.6)(15)(9.8)(cos10 )

r

r

∴ ∆ ° +

= + ° ∆

  1.69  mr∴∆ =
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Example 2

37˚

100 kg
50 kg

A 100 kg block, initially at rest, slides down a 37º frictionless 
incline. A rope attached to the back of the block passes over a 
massless, frictionless pulley and down to a 50 kg hanging mass.
Determine the speed of the two blocks after moving 10 m.
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Example 3

A block of mass 5 kg is held against a spring with a spring 
constant of 2000 N m-1 and which is compressed by 20 cm. 
The block is then released and is pushed to slide down a 
frictionless hill and across a rough surface having µk = 0.4 and 
then up a frictionless slope included at 37º to the horizontal. 
How far along this slope does the block come to rest?

k

25 m
µk = 0.4

3 m

37º

frictionless
m
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In which car will you 
be moving fastest at the 
very bottom of the 
incline?

(A) front car
(B) middle car
(C) rear car
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Power

Power  P is the rate at which work  W is done.

Unit of power:   the watt, W      (1 watt = 1 joule second-1)

    av
W UP

t t
∆

= =
∆ ∆

Average power:

  dWP
dt

=Instantaneous power:

( )  =  =    dW d dP
dt dt dt

= =
rF r F F v
GG G GG Gi i i... can also write:
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Linear momentum

m=p vG G
Linear momentum for a single particle: 

ext
d
dt

=
pF
GG

Recall that Newton II can be expressed as 

For a system of particles:

1 1 2 2 ...i n n i i cm
i i

m m m m M= = + + + = =∑ ∑p p v v v v vG G G G G G G

Newton II for a system of particles:

     cm
cm ext

dd M M
dt dt

= = =
vp a F

G G GG
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Principle of the conservation of linear momentum

ext
d
dt

=
pF
GG

If the external force on a system of particles is zero          ,
then

0d
dt

=
pG

0ext =F
G

= constantpGor

If there is no resultant external force acting on an 
isolated system, then the total linear momentum 
remains constant.
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Impulse and momentum

A collision is when two bodies interact over a short time interval. 
The forces that the bodies exert on each other are usually so 
strong during the collision that all forces acting on a body may be 
ignored.

During a collision between two 
bodies (1 and 2), the contact force 
exerted by one body on the other 
jumps from zero to a very large 
value and then abruptly drops to 
zero again.

F12

ti tf t 

The time interval                      is usually very small.f it t t∆ = −

Note that                    for the collision 12 21= −F F
G G
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Impulse and momentum ... 2

d
dt

=
pF
GG

dt d→ =F pfor each object
G G

F

ti tf t 

Integrating over the time of the collision:

    f f

i i

t p

t p
dt d=∫ ∫F p
G G

Impulse        f i= − = ∆J p p p
G G G G

Sometimes it is useful to use 
the average force       acting 
for time      to give the same 
impulse       and         . ∆pG

t∆
J
G

avF
G

avF
G

=
Then av t∆ = = ∆F J p

G G G
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Impulse and momentum ... 3

The impulse      is the same in each case.J
G

                            m t= ∆F
G

∆vG

                           m = F
G t∆∆vG



Thinking about momentum 1
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I.
(a) The magnitude of the momentum of A equals that of  B after release.
(b) The magnitude of the momentum of A is greater than B after release.
(c) The magnitude of the momentum of A is less than B after release.
II.
(a) The total momentum of the blocks after release is the same as before release.
(b) The total momentum of the blocks after release is greater than before release.
(c) The total momentum of the blocks after release is less than before release.
III.
(a) The speed of block A is the same as that of B at all times after release.
(b) The speed of block A is greater than that of B after release.
(c) The speed of block A is less than that of B after release.

Two blocks A and B, rest on a horizontal 
frictionless table. The blocks are separated by a 
compressed spring of negligible mass. The mass 
of block A is twice that of block B. When the 
blocks are released, they move apart. Which one 
of the following statements is true?

A             B
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Thinking about momentum 2

Identical constant forces 
continuously push identical 
blocks A and B from the start 
line to the finish line. 
Block A is initially at rest. 
Block B is initially moving to 
the right. 

B

A

start                               finish

F

F

I.   Which block has the larger change in momentum?
(a) A
(b) B
(c) They have the same momenta change.

II.   My reason for my answer to I is
(a)  The same force acts on identical blocks for the same distance.
(b)  Block B already has some momentum, so its change isn’t as great.
(c)  The impulse on block B is less since the force acts for a shorter time interval.
(d)  Block B is moving faster at the finish line, so its change is greater.
(e)  The initial and final velocities are not given. 
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Strictly speaking, when a gun is 
fired, compared with the 
momentum of the recoiling gun, 
the opposite momentum of the 
bullet is

(A) less
(B) more
(C) the same
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Suppose a cannon is propped against a 
massive tree to reduce recoil when it fires, 
Then the range of the cannonball will be

(A) increased
(B) decreased
(C) unchanged
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More on collisions

Consider the collision of two bodies:

1 2

1 2               i ip pG G
1 2

1 2      f fp pG G
1 2

1 1 1 21     f

i

t

f i t
dt∆ = − = ∫p p p F

GG G G

2 2 2 12     f

i

t

f i t
dt∆ = − = ∫p p p F

GG G Gand

21 12= −F F
G G

But

1 2  ∴∆ = −∆p pG G

1 1 2 2  =  ( )f i f i∴ − − −p p p pG G G G
Momentum is conserved.

1 2 1 2 +  =  i i f f∴ +p p p pG G G G

1 1 2 2 1 1 2 2m m m m+ = +u u v vG G G Gor
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Another case ... an exploding object

MuG

1 1m vG

2 2m vG

1 1 2 2M m m= +u v vG G G

2 2m vG1 1m vG

MuG
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Elastic collisions ... 
both linear momentum         and      kinetic energy      are conserved.

1 1 2 2 1 1 2 2m m m m+ = +u u v vG G G G and 2 2 2 21 1 1 1
1 1 2 2 1 2 2 22 2 2 2m u m u m v m v+ = +

Three examples for    m1 =  m2 :

1 1=u uG G

2 0=uG

1 0=vG

2 1=v uG G

1 1=u uG G

2 1= −u uG G

1 1= −v uG G

2 1=v uG G

1 1=u uG G

2 10 < <u uG G

1 2=v uG G

2 1=v uG G



42

Demonstration: “Newton’s cradle”

Five spheres of equal mass hang at 
the end of strings.

One ball is pulled back and 
released to strike the other 
stationary balls...

... and one ball flies off on 
the other side.
Kinetic energy is conserved so the 
collision is elastic. 
But why don’t two balls fly out with 
half the speed?
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If two balls fly off with half the speed of the incoming 
ball, then that would conserve momentum, since

1 1
2 2mv mv mv= +

But it wouldn’t conserve kinetic energy.

The incoming ball has kinetic energy 21
2 mv

and two outgoing balls with half the speed have kinetic energy:
2 2 2 21 1 1 1 1 1

2 2 2 2 4 2( ) ( )m v m v mv mv+ = ≠

On the other hand, in the case of inelastic collisions, 
momentum is conserved in the collision, but not kinetic energy.
“Perfectly inelastic collision” ... when the two bodies stick together.
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Demonstration: The ballistic pendulum

1. A bullet is fired into a pendulum, which is initially at rest.
2. The bullet lodges in the pendulum, which moves to the right.
3. The bullet and pendulum swing to a height h.

h
bpv

bu

( )b b p p b p bpm u m u m m v+ = +
0 ( )b b b p bpm u m m v+ = +

21
2 ( ) ( )b p bp b pm m v m m gh+ = +
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Whenever an interaction occurs in a system, forces occur in 
equal and opposite pairs. Which of the following do not 
always occur in equal and opposite pairs?

(A) Impulses
(B) Accelerations
(C) Momentum changes
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Example 1

A 60 kg person standing on a 40 kg trolley are travelling to the 
right at a speed of 10 m s-1 on a horizontal surface. The person 
jumps off the trolley and flies through the air at a speed of 
2 m s-1 to the left. Determine the velocity of the trolley relative 
to the ground immediately after the person jumps off. Assume 
that the axles of the trolley have a very low coefficient of 
friction.
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Example 2

Ball A of mass 10 kg is moving at 30 m s-1 at 180 º. 
Ball B of mass 20 kg is moving at 15 m s-1 at 300º. 
They collide elastically and thereafter ball A is moving at 
25 m s-1 at 45°. 
All angles are measured anticlockwise from the positive x-axis.
What is the final velocity of ball B after the collision?

[Answer:  -16.3   - 21.8    m s-1]ĵî
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Rotational Dynamics

Torque

Also called the moment of the force      
about the turning point (axis of rotation).

F
G

= ×τ r F
GGG τ : “tau”

e.g. a metre stick is free to rotate about 
a fixed axis at one end as shown.

τ = ×r F
GG

sinrFτ θ= =τG

θ is the angle between the tails of the     and      rG F
G

rG
F
GrG

120º

rG

F
G

60º

(1)(4)sin120    =   3.46 N mτ∴ = °

axis of 
rotation
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τGDirection of       :

If       causes a clockwise 
rotation            then      is 
into the page (                  )

F
G

τG Fingers of 
right hand in 
direction of 
rotation

ˆ(- )τ=τ kG τG

If       causes a clockwise 
rotation          then      is into 
the page (                   )ˆ( )τ= −τ kG

F
G

τG

ˆ3.46 ( ) N m= −τ kGIn example above:
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Examples
For each situation below, determine the resultant torque acting 
on the axis of rotation O.  Use a coordinate system with the    

- axis out of the page.k̂

(b) 10º

100 N

40º
3 m

(a)

50º

100 N

30º

2 m
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30º

10 N

20 N(c)

2 m
30 N

60º
100 N

37º

3 m 5 m 140 N

160 N

120 N

(d)
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Moment of Inertia

τ  sinr F θ=
tangential r F=

The tangential component of the 
force gives rise to a tangential 
acceleration,     , and therefore 
angular acceleration α.

ta

t tF ma mrα∴ = =
2

trF mr Iτ α α∴ = = =

rG
F
GtF

G

rF
G

m
θ

where 2I mr=

I : moment of inertia (rotational inertia) of mass m, a 
distance  r from the fixed axis of rotation.

I can be thought of as the ‘resistance’ of a body to being rotated.

Unit of I : kg m2
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Roll a pair of identical cans of carbonated cooldrink down an 
incline. You won’t be surprised to find they roll at the same rate. 
Now shake one of them so bubbles form inside, then repeat the 
experiment. 

Now...

(A) the shaken can wins the race
(B) the shaken can loses the race
(C) both cans still roll together.
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Moment of inertia cont.

We treat a rigid body (e.g. a plate, wheel) as consisting of many 
particles located at various distances from the axis of rotation. 

Then the sum of the total torques                               

where        is the perpendicular distance of particle i from the 
fixed axis of rotation.

2
i im r⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ ∑τ αGG

ir

2
i iI m r=∑For a system of particles:

2I r dm= ∫For a rigid body:
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Moment of inertia cont.

So we can see that the moment of inertia  I is a measure of the 
rotational inertia of a body, and plays the same role for 
rotational motion that the mass does for translational motion. 
We can see that I depends both on the mass of the body and 
how that mass is distributed.

Moments of inertia can be calculated for any shape of body for 
rotation about any axis from the formula 

2  I r dm= ∫



56

Some moments of inertia for rigid bodies axis of rotation

a thin hoop of 
radius r

a thin rod of 
length l

a thin rod of 
length l a solid cylinder 

of radius r

21
12I ml=

21
3I ml=

2I mr= 21
2I mr=

a hollow sphere 
of radius r

a solid sphere 
of radius r a thin plate a hollow cylinder 

of inner radius r1

22
5I mr= 2 21

1 22 ( )I m r r= +

a
b

22
3I mr= 2 21

12 ( )I m a b= +
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Demonstration

A solid cylinder and a hollow cylinder are raced 
down an incline.  
Which reaches the bottom first, and why?
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A pair of upright metre sticks, 
with lower ends against a wall, 
are allowed to fall to the floor. 
One is bare, and the other has a 
heavy weight attached to its 
upper end. The stick to hit the 
floor first is the

(A)  bare stick
(B)  weighted stick
(C) …both the same

Try it and see !
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Rotational Kinetic Energy

CM

ω
2 21 1

1 1 2 22 2 ...RotK m v m v= + +

2 21 1
1 1 2 22 2 ...m r m rω ω= + +

For a rigid body
rotating about 
fixed axis

2 21
2 ( ) mr ω= ∑

21
2RotK Iω∴ =

A body that rotates while its CM undergoes translational 
motion will have KTotal :

2 21 1
2 2     

CMTotal Trans Rot CM CMK K K mv I ω= + = +
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y
ω

v

v = 0h Consider a solid sphere 
(mass m and radius r0) 
rolling without slipping 
down an incline of height h.0

Total energy at height y is Ktrans+ Krot + Ug
2 21 1

2 2mv I mgyω= + +

Total energy at the top (v = 0, w = 0)   =  m g h

Total energy at the bottom 2 21 1
2 2mv Iω= +

22
05 mrI for a solid sphere for axis of rotation through centre = 

Conservation of energy:

and since tangential 0v v rω= =
2

2 21 1 2
02 2 5 2

0

   ( ) vmgh mv mr
r

= +

... giving ... 10
7v gh=

If the ball slipped (no friction): 10
72     rollv gh v gh= > =
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Angular Momentum

rG

pG
tangentialpG

m radialpG

= ×L r p
G G G

  sinr p θ=L
G

tangential r p=

tangential  r m v=

Direction of       given by right-hand rule

thumb in direction of

fingers of hand in direction of rotation

L
G

L
GL

G



62

For a rigid body rotating about a fixed axis:

i i iL l r p= =∑ ∑

( )2
i i i i i i i i i ir m v rm r m rω ω= = =∑ ∑ ∑

irG
ipG

I

    I∴ =L ω
G G unit: kg m2  rad s-1
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Now, starting with Newton II:

d
d t

=
pF
GG d

d t
× = ×

pr F r
GGG G d

d t
∴ = ×

pτ r
GGG

( )d d
d t d t

= ×
L r p
G

G G= ×L r p
G G G

But 

  d d d d m
d t d t d t d t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∴ = × + × = × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

L p r pr p r v v
G G G GG G G G G

τG 0
d d
d t d t

= × =
p Lτ r

GGGGor

   ( )      d I I
d t

= =τ ω αG GG
or

(Newton II for rotational motion)
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Conservation of angular momentum

   ( )      d I I
d t

= =τ ω αG GG

then                        or                           =  constant.

0=∑ τG

0d
d t

=
L
G

I=L ω
G G

If the net torque acting on a body is zero, i.e.

in itia l f in a l  =L L
G G

i.e. 
Law of conservation of 

angular momentumi i f fI I=ω ωG Gor 

The total angular momentum of a rotating body remains 
constant if the net torque acting on it is zero.
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Conservation of 
angular momentum
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Example 1

3 kg 3 kgA man stands on a rotating stool  
which is free to rotate without 
friction. He holds 3 kg in each 
hand at a distance of 1 m from 
the centre of this body.

(a) Suppose that you give one of the 
masses a push if 4 N at an angle of 45°
as shown and the man rotates. If you 
apply this force for only 0.5 s, what is 
the final angular velocity of the man 
and the weights? Use Iman = 6 kg m2.

45°
4 N

(b) If the man brings the masses straight towards his chest 
until they are a distance of 0.2 m from the centre of his body, 
what will now be his angular velocity?
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Example 2

10 kg

r = 2.5 m

20 kg A 10 kg block is attached to a light 
rope which is wound around a 
20 kg cylindrical pulley of radius 
r = 2.5 m. 
How long will it take for the speed 
of the 10 kg block to increase from 
zero to 4.0 m s-1 after the system is 
released?
Use Icylinder = 6 kg m2.

Note that the pulley is not massless, hence we need 
to include the moment of inertia of the pulley.
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Example 3

Two 1 kg blocks are connected 
to each other by a light string.
The string loops over a pulley of 
mass 20 kg and radius 0.2 kg.
If the coefficient of kinetic 
friction between the block and 
the surface is 0.5, what is the 
acceleration of the blocks? 

1 kg

1 kg

µk = 0.5

m = 20 kg
r = 0.2 m
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Statics
... forces in equilibrium

The system is in equilibrium when the vector sum 
of all external forces acting on the system is zero.

1st condition:   

2nd condition:

0=∑F
G

ˆ ˆ ˆ0 ;  0 ;  0= = =∑ ∑ ∑ ki j
F F F
G G G

i.e.

0=∑τG around any axis
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Statics example 1

A beam is balanced on a fulcrum (triangle) with three masses 
hung from the positions shown.
What is the mass of m2?
Assume that the beam is massless.

1 kg                          ?                                 3 kg

m1 m2 m3

1 m
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Statics example 2

15 kg
45º

90º

A beam of mass 5 kg and length 
10 m is held at an angle of 45º by 
a cable as shown. If a 15 kg mass 
hangs from the end of the beam, 
determine the force of the wall on 
the beam and the tension in the 
cable. 
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The broom balances at its centre of mass. If you cut the broom 
into two parts through the centre of mass and then weigh each 
part on a sale, which part will weigh more?

(A)  the longer piece
(B)  the shorter piece
(C)  both the same


