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M. Vable Intermediate Mechanics of Materials: Chapter 1

Stress and Strain

The learning objectives in this chapter are:
» Understanding the concept of stress and the use of double subscripts in
determining the direction of stress components on a surface.

» Understanding the concept of strain and the use of small strain and
finite difference approximation.

* Understanding the stress and strain transformation in three dimension.
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Internally Distributed Force System

Normal to plane

* The intensity of internal distributed forces on an imaginary cut surface
of a body is called the stress on a surface.

* The intensity of internal distributed force that is normal to the surface
of an imaginary cut is called the normal stress on a surface.

* The intensity of internal distributed force that is parallel to the surface
of an imaginary cut surface is called the shear stress on the surface.

» Relating stresses to external forces and moments is a two step process.

Static Equivalenc i
- q Y /Internal Forces Equilibrium External Forces
and Moments and Moments
Static equivalency
N | str Normal stress L}Tlniform

. ormal Stress x i 1 X shear stress
. Uniform Shear linear in y fnearinz in tangential

Uniform Norma! Stress Tyyg direction.

Stress G,y %

av, vg

M,

z

Axial Bending Bending Torsion
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Stress at a Point

Outward normal ; Internal Force

[ e ()

i

/\QA_A,

direction of the
internal force component.

AA;

l

AF;

J direction of
outward normal to the
imaginary cut surface.

« AA,; will be considered positive if the outward normal to the surface is
in the positive 1 direction.

* A stress component is positive if numerator and denominator have the
same sign. Thus o;; is positive if: (1) AF; and AA; are both positive. (2)
AF; and AA; are both negative.

Oxx Txy Txz

e Stress Matrix in 3-D: - - T
yx yy yz
Tox sz O,

Table 1.1. Comparison of number of components

Quantity 1-D 2-D 3-D
Scaler 1=1° 1=20 1=30
Vector 1=1! 2=21 3=3!

Stress 1=12 4=22 9=32
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Stress Element

 Stress element is an imaginary object that helps us visualize stress at a
point by constructing surfaces that have outward normal in the coordi-
nate directions.

Stress cube showing all positive stress components

Oxx Ty Tz
Ty Oy Ty
Tox Tzy Oz

<

| b
Gxx Txy i .
T, O, O .
0 0 0 o P .,
?Txy: XX
| E— L
,;; dz
4 dx YOy
Symmetric Shear Stresses: Ty = Ty Tz = Ty Tox = Tz

* A pair of symmetric shear stress points towards the corner or away
from the corner.
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Cl.1 Show the non-zero stress components on the A,B, and C faces
of the cube shown in Figure P1.3 and Figure P1.4.

c,.=0 Tyy = —15ksi T,..,=0
Ty = —15ksi Oy = 10ksi(C) T, = 25ksi
1,.,=0 T, = 25ksi G, = 20ksi(T)

#

=

X =

[ g

Figure P1.3
Fig. P1.1

Class Problem 1.1

*m

V=

* .

Figure P1.4
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Stress transformation in two dimension
@) ()

Outward normal

to the inclined plane. y

y

Vertical Plane

Horizontal Plaj

2 .2 .
Opp = Oy, €08 0+ 0, sin"0+ 27, sinbcosO

T

. . .2
——j— 2 —
nt G,,€0s0sin0 + Oy sinBcosH + rxy( €0s20 —sin " 0)

.2 2 .
G, = 0,8n 0+c,  cos O—ZTxycosesmO

Yy
Matrix Notation

n, = cos0 n, = sin© t, = cosh 1, = sinA
True only in 2D: A =90+6 t, = -n, t,=n,
n t c,.. T
=1 =i e = T e
n, fy Tyx Oyy

The symmetry of shear stresses [o]” = [o]

G = {n}'[o]{n}
v, = {1} [c]{n}
o, = {1} [o]{t}
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Traction or Stress vector

Mathematically the stress vector {S} is defined as:

{S} = [c]{n}
S, = Gxxnerrxyny
Sy - Tyxnernyny

e pressure 1s a scaler quantity.
* traction is a vector quantity.,
* stress is a second order tensor.

Statically equivalent force wedge.

(dA)
Tt S, (dA)
5 (dA) >
Oyxx ( n, dA) csxx( Ny dA) Sx (dA)
+—= >
(0 dA) Txy (0 dA)
-
- G Tyx (ny dA) Yo ntyzgly dA)
Y oyy (ny dA) yy (ny dA)

{8} = o,,{n}+1,{1}
Stress vector in different coordinate systems.

(1t}
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Principal Stresses and Directions

(S} = [ol{p} = o,(p}

OR
{S} — {Gxx Txy] Py — {Gp O] Py
’ny ny py 0 GP py
OR
(Gxx_cp) Txy Py =0
Tyx (0 =S| | Py
Characteristic equation
2 2.,
6,-6,(0,, +0,,) +(0,,0,,-1y,) = 0
. _ 2 2
Roots: 65 = [(0,+0,) % (0, +6,) ~4(c,,0,,~1)]/2

OR

c.+o G..— G \2
C1,2 = [( xxz yy)if\/( xx2 yy) +T§y}

» The eigenvalues of the stress matrix are the principal stresses.

» The eigenvectors of the stress matrix are the principal directions.
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Intermediate Mechanics of Materials: Chapter 1

i

AY
A
A, |
0. |0
A,
(a)

Stress Transformation in 3-D

(b)

S, = {n} [014n}

T, = {t} [o]{n}

o, = {1} [c]{t}

{8} = [c]in}

Equilibrium condition: {S} = o, {n} +1, {t;}

Figure 1.19 (a) Direction cosines of a unit normal. (b) Equilibrating shear stress.

S

X Ox Txy Txz
S cl =

y [ ] Tyx ny Tyz
S

z Tox sz O,
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Principal Stresses and Directions

» Planes on which the shear stresses are zero are called the principal
planes.

* The normal direction to the principal planes is referred to as the princi-
pal direction or the principal axis.

» The angles the principal axis makes with the global coordinate system
are called the principal angles.

(S} = [ol{p} = o,(p}

OR
Oxx  Txy  Taz|| Px S, 00 Py
Tx Oy U1 Py (T |00, 0P
Txx Tzp Oz | P: 00 Opl| P:
OR
(Gxx - Gp) Txy sz px
Tyx (0,,—6,) Tyz py =0
Tox sz (Gzz o cSp) P

The eigenvalues of the stress matrix are the principal stresses.

The eigenvectors of the stress matrix are the principal directions.

r_mom_slides.html

Printed from: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinte:

Principal Angles0°<6_, 0

2 2 2
p.tpr,tp, =1

Principal stress convention
Ordered principal stresses in 3-D: ¢, > 6, > o,
Ordered principal stresses in 2-D: ¢, > o,

o
-0, < 180

Characteristic equation

3 2 —
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Stress Invariants

Il - c;xx-i_cyy—i_czz

12 — xx Cxy | 4 ny Tyz + Oyx Taz

Tyx ny sz O Tzx Oz
Ooxx Txy Txz

] =
3 Tyx Oy Tz

Tox sz O

oIy A Lx—1; = 0

x, = 24cosa+1,/3 Xy 3 = —2A4cos(a%60°)+1,/3

Roots:
A= 0U,/3"-1,/3
cos3a = [2(1,/3) = (1,/3), + I]1/(247)
O
Principal Stress Matrix [c] = o,

O3
I, = o,+0,+0;4
I, = 6,6, +06,0; 10350

I3 = 6,0,0,
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Maximum Shear Stress

T
(CW)
T
o, B3
4 P P P l S
Plane Stress B ! 3& 2 : ) (T)

32

03 =0 Y 121 T

(CCW)

L

« maximum shear stress exists on two planes, each of which are 45°
away from the principal planes.

6;—0O 6, —0O 0, —0O
T, = max( 12 2|, 22 3, 32 1)
A2
rotation about principal axis 1 /
Pi
 a
G, — 63
I A
P3
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b

rotation about principal axis 2

%)

A AL ELCEEREERRY

P3
A
rotation about principal axis 3
(In-plane)
P1
010y
T T T2 T T
P3
August 2012 1-13




r_mom_slides.html

Printed from: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinte:

M. Vable

Intermediate Mechanics of Materials: Chapter 1

Octahedral stresses

» A plane that makes equal angles with the principal planes is called an
octahedral plane.

- 2
c G N

2 2
nn T O,yny + O30y

v, = (032 + 03 +oind) -2,
ng| = |no] = |ns] = 1/43

G,y = (0, +0,+03)/3

oct

1 2 2 2
Toct = §«/(51_52) t(o,-03) t(03-0y)
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Cl.2 The stress at a point is given by the stress matrix shown.
Determine: (a) the normal and shear stress on a plane that has an outward

normal at 37°, 120°, and 70.43°, to x, y, and z direction respectively. (b)
the principal stresses (c) the second principal direction and (d) the magni-
tude of the octahedral shear stress. (€) maximum shear stress

1812 9
12 12 —6|ksi
9 -6 6
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Strain

» The total movement of a point with respect to a fixed reference coordi-
nates is called displacement.

* The relative movement of a point with respect to another point on the
body is called deformation.

» Lagrangian strain is computed from deformation by using the original
undeformed geometry as the reference geometry.

* Eulerian strain 1s computed from deformation by using the final
deformed geometry as the reference geometry.

» Relating strains to displacements is a problem in geometry.

Kinematics

Displacements /<<

Average normal strain

 Elongations (Ly > L)) result in positive normal strains. Contractions
(L¢ <L) result in negative normal strains.
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Average shear strain
Undeformed grid Deformed grid

| { | { .
~ W(f)oderli Bar with l\;’lask&lg Tabe—V

ey
Wooden Bar

‘witthasl;dng ]ikape
A S = A

"
Yav_i

« Decreases in the angle (o </ 2) result in positive shear strain.
Increase in the angle (o >t/ 2) result in negative shear strain

-

Units of average strain
» To differentiate average strain from strain at a point.

* in/in, or cm/cm, or m/m (for normal strains)
* rads (for shear strains)

* percentage. 0.5% 1s equal to a strain of 0.005

» prefix: u= 10°°. 1000 p in/ in is equal to a strain 0.001 in /

August 2012 1-17




r_mom_slides.html

Printed from: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinte

M. Vable Intermediate Mechanics of Materials: Chapter 1

Small Strain Approximation

2.5

2.6

€mall EQ. 2.6 e Eq.25 % error
1.0 1.23607 19.1
0.5 0.58114 14.0
0.1 0.10454 43
0.05 0.005119 2.32
0.01 0.01005 0.49
0.005 0.00501 0.25

* Small-strain approximation may be used for strains less than 0.01

* Small normal strains are calculated by using the deformation compo-
nent in the original direction of the line element regardless of the ori-
entation of the deformed line element.

* In small shear strain (y) calculations the following approximation may
be used for the trigonometric functions: tany=~y siny ~ y cosy~ 1

* Small-strain calculations result in linear deformation analysis.

* Drawing approximate deformed shape is very important in analysis of
small strains.

August 2012 1-18
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Cl1.3 A roller at P slides in a slot as shown. Determine the deforma-
tion in bar AP and bar BP by using small strain approximation.

§p = 0.02 in
40°

J

110°

Fig. C2.3

Class Problem 1.2

Draw an approximate exaggerated deformed shape.
Using small strain approximation write equations relating 64p and Opp

to SP.
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Strain Components
y
i = _ Au
TAV _ - Exx T A—x
L o
| AT Yo Ay
| [ Ax Au/ X Aw
| | 2z Ao
o Az // Az
/_AW_ _ -
Z
V — 7
Au/, - - ‘_,,./
Ve
/ /
- e
= i / / = %-FA_V
/ b 7 AV x Av _ Au
# j/ % T T Ay Ay Tw
B Yxy) A
/‘/
z
y
A
T T2 _ Av, Aw
e T A L~ \ T2 T Az Ay
\
\ ST x v Ay Az
e \ -
A T JA
z
y
= Aw, Au
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August 2012 1-20



M. Vable Intermediate Mechanics of Materials: Chapter 1

Strain at a point

Engineering Strain

. Au  Av Ou , Ov
. Au ou = — lim (2% 42v) _ou, oV
) e g ()
Exx AxHBo Ax Ox Y . g:g Ay Ax oy Ox
ov 5
g = — _ _0Ov  Ow
T N T Y T 5 Ty
_ow ow |, Ou
= Vo = e = gy T

 tensor normal strains = engineering normal strains
* tensor shear strains = (engineering shear strains)/ 2

* The partial derivative with respect to a coordinate implies that during
the process of differentiation the other coordinates are held constant.

 If a displacement is only a function of one coordinate, then the partial
derivative with respect to that coordinate will be same as ordinary
derivative.

_du
€. = d_x(x)
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Finite Difference Approximation

» Forward difference approximates the slope of the tangent using the
point ahead of point 1 as:

Ui —UY;

(8y); = ——
XX

* Backward difference approximates the slope of the tangent using the
point behind 1 as:

» Central difference takes the average value using the point ahead and
behind as:

N —

Uppp— U U= U
(e,). = [ ! + J
1

Xig1— X X=X

Central difference
approximation of tangent

Actual function

Forward difference
approximation of tangent
Actual tangent —

iy b=——- Backward difference

|
| approximation of tangent
|
|

-

Figure 1.27 The three finite difference methods.
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Cl4

The displacements u and v in the x and y directions respec-

Point |\ nmy | (ummy || PO | () | ()
1 0.000 | 0.000 9 0.128 | 0.384
2 -0.112 | 0.144 10 -0.048 | 0.336
3 -0.128 | 0.256 11 -0.128 | 0.256
4 -0.048 | 0.336 12 -0.112 | 0.144
5 0.112 | 0.176 13 0.048 | 0.624
6 -0.032 | 0.224 14 -0.160 | 0.480
7 -0.080 | 0.240 15 -0.272 | 0.304
8 -0.032 | 0.224 16 -0.288 | 0.096
Determine the strains ¢ ,e,, ,and v,

tively were measured by Moire' interferometry. Displacements of 16
points on the body and are as given below.

Ay
ft = 0.0004 mm
T3 14 15 16
f
% 9 10 112
h
) (i} 7 8
h
Eal 2 3 4]
le— h—eo— h —ofa— h —

at points 1 and 4.

August 2012

1-23




r_mom_slides.html

Printed from: http://www.me.mtu.edu/~mavable/MEEM4150/Slidinte:

. Vable Intermediate Mechanics of Materials: Chapter 1

Class Problem 1.3

In terms of u, v, x, y, and node numbers, write the equations to determine the

strains ¢

o 5 €,y sand v, at point 6.
Ay
h = 0.0004 mm

3 14 15 16
It
% 9 10 112
h
% 5 6 7 8
h
KAl 2 34l

lo— h —fa— h —of— h -
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Strain Transformation

Strain transformation equations in 2-D

2 .2 . .2 2 .

€,y = £€,,COS 6+syys1n 6+yxys1n60056 €, = €SN 9+8yyCOS 6—yxys1necose
) . 2 .2

Yor = —28xxsmecose+28yysm90059+yxy(cos 0 —sin"0)

Stress transformation equations in 2-D

2
G,, = 0,,c0s0+c

.2 . .2 2 .
n yysin 0+ 21, sinBcos® o, = o,,8in"0+05,,c0s°0 - 21, cosOsin0d

yy
T, = —0,_c0s0sin0+c  sinBcosO+1 (cosze— sinze)
nt XX yy xy

* tensor normal strains = engineering normal strains
* tensor shear strains = (engineering shear strains)/ 2

Tensor strain matrix from engineering strains

€xx 8xy - 'ny/z €z T 'sz/z
[e]l = |e,, =v,,/2 s, £, = 1,./2
€xx T sz/2 82y - yzy/z €,

o T . T N T .
€, = An} [elin} g, = {t} [elin} g, = {t} [e]{t} Yo = 2€,,
Characteristic equation

2 _
Strain invariants
Il - 8xx—i_syy—}_szz - 81+82+83
& ted el el el el
12 _ xx Txy | 4 vy “yvz | 4 xx “xz | _— 8182+8283+8381
8yx 8yy 8zy €, €x &2
€xx Sxy €xz
Iy = € &, & | T 818283
€y 8Zy €.,
Maximum shear strain

Ymax _ max(
2

)

b

2 2 2
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	The learning objectives in this chapter are:
	. Understanding the concept of stress and the use of double subscripts in determining the direction of stress components on a surface.
	. Understanding the concept of strain and the use of small strain and finite difference approximation.
	. Understanding the stress and strain transformation in three dimension.


	Internally Distributed Force System
	. The intensity of internal distributed forces on an imaginary cut surface of a body is called the stress on a surface.
	. The intensity of internal distributed force that is normal to the surface of an imaginary cut is called the normal stress on a surface.
	. The intensity of internal distributed force that is parallel to the surface of an imaginary cut surface is called the shear stress on the surface.
	. Relating stresses to external forces and moments is a two step process.

	Stress at a Point
	. DAi will be considered positive if the outward normal to the surface is in the positive i direction.
	. A stress component is positive if numerator and denominator have the same sign. Thus sij is positive if: (1) DFj and DAi are both positive. (2) DFj and DAi are both negative.
	. Stress Matrix in 3-D:
	Table 1.1. Comparison of number of components


	Stress Element
	. Stress element is an imaginary object that helps us visualize stress at a point by constructing surfaces that have outward normal in the coordinate directions.
	Stress cube showing all positive stress components
	Plane Stress: All stress components on a plane are zero.
	Symmetric Shear Stresses:
	. A pair of symmetric shear stress points towards the corner or away from the corner.



	C1.1 Show the non-zero stress components on the A,B, and C faces of the cube shown in Figure P1.3 and Figure P1.4.
	Fig. P1.1
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	Traction or Stress vector
	Mathematically the stress vector {S} is defined as:
	. pressure is a scaler quantity.
	. traction is a vector quantity.,
	. stress is a second order tensor.
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	. The eigenvalues of the stress matrix are the principal stresses.
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	Equilibrium condition:
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	Maximum Shear Stress
	. maximum shear stress exists on two planes, each of which are 45o away from the principal planes.

	Octahedral stresses
	. A plane that makes equal angles with the principal planes is called an octahedral plane.


	C1.2 The stress at a point is given by the stress matrix shown. Determine: (a) the normal and shear stress on a plane that has a...
	Strain
	. The total movement of a point with respect to a fixed reference coordinates is called displacement.
	. The relative movement of a point with respect to another point on the body is called deformation.
	. Lagrangian strain is computed from deformation by using the original undeformed geometry as the reference geometry.
	. Eulerian strain is computed from deformation by using the final deformed geometry as the reference geometry.
	. Relating strains to displacements is a problem in geometry.
	Average normal strain
	. Elongations (Lf > Lo) result in positive normal strains. Contractions (Lf < Lo) result in negative normal strains.

	Average shear strain
	. Decreases in the angle (a < p / 2) result in positive shear strain. Increase in the angle (a > p / 2) result in negative shear strain

	Units of average strain
	. To differentiate average strain from strain at a point.
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	. rads (for shear strains)
	. percentage. 0.5% is equal to a strain of 0.005
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	Small Strain Approximation
	. Small-strain approximation may be used for strains less than 0.01
	. Small normal strains are calculated by using the deformation component in the original direction of the line element regardless of the orientation of the deformed line element.
	. In small shear strain (g) calculations the following approximation may be used for the trigonometric functions:
	. Small-strain calculations result in linear deformation analysis.
	. Drawing approximate deformed shape is very important in analysis of small strains.


	C1.3 A roller at P slides in a slot as shown. Determine the deformation in bar AP and bar BP by using small strain approximation.
	Fig. C2.3
	Class Problem 1.2
	Draw an approximate exaggerated deformed shape.
	Using small strain approximation write equations relating dAP and dBP to dP.

	Strain Components
	Strain at a point
	Engineering Strain
	. tensor normal strains = engineering normal strains
	. tensor shear strains = (engineering shear strains)/ 2
	. The partial derivative with respect to a coordinate implies that during the process of differentiation the other coordinates are held constant.
	. If a displacement is only a function of one coordinate, then the partial derivative with respect to that coordinate will be same as ordinary derivative.


	Finite Difference Approximation
	. Forward difference approximates the slope of the tangent using the point ahead of point i as:
	. Backward difference approximates the slope of the tangent using the point behind i as:
	. Central difference takes the average value using the point ahead and behind as:


	C1.4 The displacements u and v in the x and y directions respectively were measured by Moire' interferometry. Displacements of 16 points on the body and are as given below.
	Determine the strains at points 1 and 4.
	Class Problem 1.3
	In terms of u, v, x, y, and node numbers, write the equations to determine the strains at point 6.

	Strain Transformation
	Strain transformation equations in 2-D
	Stress transformation equations in 2-D
	. tensor normal strains = engineering normal strains
	. tensor shear strains = (engineering shear strains)/ 2

	Tensor strain matrix from engineering strains
	Characteristic equation
	Strain invariants
	Maximum shear strain



