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M. Vable Intermediate Mechanics of Materials: Review

MEEM 4150 REVIEW

Stress
1. Stress is an internal quantity.
AF. 2. Stress has units of force per unit area.
.. = lim _J 3. Stress at a point needs a magnitude and two directions to specify it (i.e. stress is a second-
y Ad. =0 AA. order tensor).

direction of / \ ! 4. The sign of a stress component is determined from the direction of the internal force and

outward normal to the direction of the the direction of the outward normal to the imaginary cut surface.

imaginary cut surface. internal force.
Stress Transformation: o, = {n}'[c]{n} 1, = {t} [c]{n} s, = {t}/[o]{t} (S} = [o]{n} G, (n}+1, 1}

Principal Stresses:

1. The eigenvalues of the stress matrix are the principal stresses.

2. The eigenvectors of the stress matrix are the principal directions.
3. Principal stresses are unique at a point.

.. T G, T .. T Oxx Ty Tz
3_7 &2 _I. = = = XX xy yy vz xx Xz =
o,—1y6, t1,6,~I; =0 Iy =o,t0,*c, I, + + Iy Ty Oy Tpo
Tyx ny sz Oz Tzx Oz
Tox sz O
I} = o, +to,t 0y I, = 6,0, +06,0;+0650 I; = 6,0,0;

The roots of the equation x3—11x2 +Lx—I; =0 are x, = 24cosa.+1,/3,and x, ; = ~24cos(a+60°)+1,/3, where 4 = /(11/3)2—12/3 and

cos3a = [2(1,/3) = (I,/3), + I;]/(24°)

Strain

1. Measure of relative movement of two points on the body. (deformation)

2. Needs magnitude and two direction to specify it.

3. Is related to the first partial derivative of deformation.

4. Strain is a symmetric. In 3-D: 6 components are needed to specify strain at a point. In 2-D: 3 components are needed to specify strain at a point.
5. Elongations are positive normal strains. Decrease from right angle results in positive shear strains.

6. Normal small strain (¢ < 0.01) can be calculated using just the deformation in the original direction of the line.

T L g =Ou Oy g = ow g =Ow, Ou
Engineering Strain XX Ox Yy 0oy zz Oz Txy T Tyx 0y Ox Yyz " Y2y T 5z oy Yox T Vxz T O Gz
7. tensor normal strains = engineering normal strains and tensor shear strains = (engineering shear strains)/ 2
e el 1. . Upp 1~ Y . U~y . I[Uje — U U~ Uy
Finite difference: Forward Difference: (¢,,), = ———— . Backward difference (¢,,), = ——— . Central difference (¢,,), = —[ + }
Xiv1 7% X=X X X XX

Strain transformation: Convert Engineering strain to tensor strain and use the formulas for stress transformation.
Second area moment of inertiay, can be positive or negative. It is a second order tensor. Buckling occurs about the axis of minimum moment of inertia.
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Material Description

*  The most general linear anisotropic material requires 21 independent constants.

*  Monoclinic material requires 13 independent material constants. Has one plane of symmetry.

e Orthotropic material requires 9 independent constants. Has two orthogonal planes of symmetry.

e Transversely isotropic material requires 5 independent material constants. Material are isotropic in a plane.

e The stress strain law for anisotropic material is described in a coordinate system using material axis.

*  Isotropic material requires only two independent material constants.Stress-strain relationships is independent of the coordinate system at a point.
*  Homogenous material has same properties at all points on the body. The material constants are not functions of the coordinates X, y, or z,

*  Principal axis for stress and strain is same only for isotropic material and no other.

Generalized Hooke’s Law for isotropic material: Applicable to any orthogonal system.
Assuming no temperature change, we have the following:

o T Generalized
XX v Xy 5 0
= _=_2 + + = =2 c T 0 € Y
o T E B O T Ny T Plane Stress — g | ¥ Hooke’s Law | oy .
= = = 2= A%
fyy T E B O TeAT 1 TG 0 00 0 0 &.=-glo,T0oy)
GZZ A% TZX )
€2 = F FOxx T Oy TOAT x TG . -
- . Generalized O Ty 0
= - € Y s
G TIEEY] Yxx 8xy . Hooke’s Law T O, 0
1 yx yy R _
Plane Strain —p» A 0 0 o,.=v(o,*c,)

. Maximum Str
Stress Concentration Factor: K, = -aaximumStress
conc¢ Nominal Stress

. _ _ _ 2, 2
Stress Intensity Factor: K; = oy, ;.4 K1 = TominaiN @ Koquivaient = K7 T Ky

»  Stress intensity factor depends upon the stress level and the length of the crack.

»  Critical stress intensity factor is a material property that is independent of the stress level or crack length.

e A crack becomes unstable (material breaks) when stress intensity factor exceeds the critical stress intensity factor.
*  Microcracks will be assumed to grow in Mode I due to principal stress one if it is in tension.

e The area under the stress-strain curve (strain energy density) at rupture is called Modulus of Toughness.
Maximum Shear Stress Theory: |max(c, - 6,, 6, - 63,05~ 0})| <0,,,,,---ductile material

Maximum Octahedral Shear Stress Theory (Von-Misses): ¢, = —1—,\/(01 - 02)2 +(o,— 03)2 + (05— 01)2 <6014 ---ductile material

von ﬁ

Maximum Normal Stress Theory |max(c,, 5,, 0;3)| <o, ----brittle material

Modified Mohr’s Theory:|c,/c.~c,/c,| < 1 ---brittle material for which compressive and tensile strengths are different.
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Structural Mechanics

External

Internal
Forces
and
Moments

Static Equivalency
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Displace- | u(x,y,2) = u(x) $(x,,2) = 0(x) dv d
Y, SV, L _ _— _ av dw _ _
ments u(x,y, z) Y v v(x) w u(x, y,z) YT Y v(x) w = w(x)
Strains T y y z
e = du Yinax dz dz dz
xx—a €. — @ p Fes =7_V Exx e = -y V_Z w Exx Exx
- ¥xo de Yx ydxz o dx2 x2 B &
Stresses du 40 2 2 2
o, = Fe . = E— = = p— d
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Axial (Rods) Torsion (Shafts) Symmetric Bending (Beams) Unsymmetric Bending
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dx d x dx\ d —| El_—| = p,(x)
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Py, = —P(x—a) Py, = —-w(x—a)

Shear Center

Shear center is a point in space at which the shear stress due to bending can be replaced by statically equivalent internal shear forces and no internal torque.

or

Shear center is a point in space such that if the line of action of external forces pass through the point then the cross-section will not twist.

*  Each cross-section has a unique shear center associated with it.
*  Shear center depends only on the geometry and is independent of the loading.

*  Shear center lies on the axis around which the shear stress distribution is symmetric.

*  Shear center de-couples the shear stresses due to bending from the shear stresses due to torsion.

R-5
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Thin Closed Section ¢ = ¢, +qg ¢ =< - _(’sz’yIzzQyj Vy_(fzznyyzQzJ Vo %) - s - 0

2
Iyyl zz” yz Iyy[zz N Iyz
Material Models
*  Linear, Elastic, Homogenous, Isotropic Material with no temperature change. o, = Ee Origin: centroid of cross-section
*  Linear, Elastic, Homogenous, Isotropic Material with temperature change. o, = E(g,, — aAT) Origin: centroid of cross-section
n n
*  Linear, Elastic, Non-homogenous (Composite), Isotropic Material. (s, ). = E¢,, Origin: n, = z nA4; |/ z 4;
i=1 i=1
*  Non-linear Material Models Origin: N = chdi =0
4
(i) Elastic-perfectly plastic in which the non-linearity is approximated by a constant.
cSyield €= ‘C'yield Tyield vz yyield
G = Ee _Syield ses yield T = Gy Vyield sys Yyield
~Oyield S “Eyield “yield ys Vyield

(i1) Linear strain hardening model in which the non-linearity is approximated by a linear function.

Oyieta T E2(E—€y010) €2€,q Yieta T C2(Y = Vyiera) Y2 Yyield
G = Ee “Eyield <es< yield T = Gy Vyield svs Vyield
“Cyield + EZ(8 + Syield) €2 Syield “Yield + GZ(Y + yyie‘ld) y< yyield
(iii) Power law model in which the non-linearity is approximated by one term non-linear function.
E¢" >0 GY" y=0
c = T =
E(e) <0 -G(-p" 70

1. The set of points forming the boundary between the elastic and plastic region on a body, is called the elastic-plastic boundary.
2. On the elastic-plastic boundary the strain must be equal to the yield strain, and stress equal to yield stress.
3. Residual stresses are calculated by subtracting the elastic stresses corresponding to the load at which the unloading starts.

Energy Methods

*  The strain energy per unit volume is called the strain energy density and is the area underneath the stress-strain curve up to the point of deformation. U, = jcds

*  The energy stored in a body due to deformation is called the strain energy. U = IUD dv
4

&€

0
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(e}
«  Complimentary strain energy density. U, = I edo
0

. . . 1 1
Linear Strain Energy Density: U, = -c¢ U, = 5l08 T 0,8, T 06 TT 7+ 1,7, +1,7,,]

o 2 o 2 XX XX
Axial (Rods) Torsion (Shafts) Bending (Beams)

Strain energy per 2 > 2 <2
unit length u,= %EA(%) U, = %GJ(Z:_CD U, = lE[ [d v]

b 272z Ty

dx

Complimentary 2 2
strain energy U, = IN U, = 1 __T_i T, = lM_z
per unit length 2EA 2GJ 2EIZZ

*  Any variable that can be used for describing deformation is called the generalized displacement.
*  Any variable that can be used for describing the cause that produces deformation is called the generalized force.
Virtual work theorem: The total virtual work done on a body at equilibrium is zero. sw, , = 8w,

int

*  Functions that are continuous and satisfies all the kinematic boundary conditions are called kinematically admissible functions.

*  Functions that satisfy satisfies all the static boundary conditions, satisfy equilibrium equations at all points, are continuous at all points except where a concentrated force
or moment is applied are called statically admissible functions.

*  In determining statically admissible internal forces and moments, the number of reactions that can be assigned arbitrary values is equal to the degree of redundancy.

e The virtual displacement is an infinitesimal imaginary kinematically admissible displacement field imposed on a body.

*  Virtual work is the work done by the forces in moving through a virtual displacement.

e The virtual force is an infinitesimal imaginary statically admissible force field imposed on a body.

Dummy Unit Load Method:

Castigliano’s Method

L

(F=1v(xp) = |

0

Mz(x)Ml (X)d
El o

d
=17 ) = |

L

Mz(X)Ml(X)dx
El

0

A positive sign for v, implies that the deflection is in the same direction as the applied unit force. A positive sign for ﬂl implies that the slope is in the same direction as

the applied unit moment.

vi(xp) = F Tc (xp) = M

dx

A positive sign for v| implies that the deflection is in the same direction as the applied force. A positive sign for d_vl implies that in the same direction as the applied
dx

moment.
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