
University of California at Berkeley CE 130
Department of Civil and Environmental Engineering Section 2
J. Lubliner Spring 2007

Summary of Concepts and Formulas

I. General Principles

1. Statics

(a) External equilibrium (loads, reactions):
∑

F = 0,
∑

M = 0

(b) Internal forces (free-body diagram)

(c) Stress

i. stress tensor

 σx σxy τxz

τyx σy τyz

τzx τzy σz


ii. Moment equilibrium: τxy = τyx, etc.

iii. Mean stress σ0 = 1
3
(σx + σy + σz); pressure p = −σ0

iv. Equilibrium of thin shells of revolution: (cylindrical) σz = pR/2t, σθ = pR/t, σr ≈ 0;
(spherical) σθ = σφ = pR/2t, σr ≈ 0.

2. Geometry

(a) Displacement field: u(x, y, z), v(x, y, z), w(x, y, z)

(b) Strain

i. εx =
∂u

∂x
(longitudinal), γxy = γyx =

∂u

∂y
+

∂v

∂x
(shear), etc.

ii. strain tensor

 εx
1
2
γxy

1
2
γxz

1
2
γyx εy

1
2
γyz

1
2
γzx

1
2
γzy εz


3. Constitutive Properties

(a) General: relation between stress, strain and temperature

(b) Linear elastic isotropic

i. general: εx =
1

E
[σx − νσy − νσz] + α∆T etc., γxy =

τxy

G
etc.; G =

E

2(1 + ν)

ii. plane stress (in xy-plane): σz = τyz = τzx = 0, σx =
E

1− ν2
(εx + νεy) etc.

iii. plane strain: εz = γyz = γzx = 0, σx =
E

(1 + ν)(1− 2ν)
[(1− ν)εx + νεy] etc.

(c) Elastic-perfectly plastic: stress-strain curve becomes horizontal after yield, unloading is
elastic.
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(d) Yield stress: uniaxial σyp, shear τyp

(e) Yield criteria

i. Tresca: |τ |max ≤ τyp = 1
2
σyp

ii. Mises, 1
2
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + 3(τ 2
xy + τ 2

yz + τ 2
zx) ≤ σ2

yp = 3τ 2
yp

4. Work, energy

(a) Global work-energy relation: (elastic) W = U , W̄ = Ū ; (linear elastic) U = Ū

i. W =
∫

F d∆ or
∫

M dθ,

ii. W̄ =
∫

∆ dF or
∫

θ dM

(b) Linear elastic

i. Local: 1
2
(σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx) = Uo(εx, . . .) = Ūo(σx, . . .);

ii. Global: U =
∫
V UodV (strain energy), Ū =

∫
V ŪodV (complementary energy)

(c) Castigliano’s theorems for elastic systems

i. 1st Theorem: Pi =
∂U

∂∆i

, Mi =
∂U

∂θi

ii. 2nd Theorem: ∆i =
∂Ū

∂Pi

, θi =
∂Ū

∂Mi

(d) Reciprocal relations (linear elastic)

i. Finite number of degrees of freedom: U = 1
2

∑
i

∑
j

kij∆i∆j, kij = kji ([kij] = stiffness

matrix, {∆i} include displacements and rotations)

ii. Finite number of loads: Ū = 1
2

∑
i

∑
j

fijFiFj, fij = fji ([fij] = flexibility matrix, {Fi}

include both forces and moments)

(e) Potential energy: Π = U + Ω

i. Ω = −∑
(F∆ + Mθ) or −

∫ L
0 qv dx etc.: potential energy of applied loads

ii. Minimum potential energy: δΠ = 0 for equilibrium (finite number of degrees of
freedom: ∂Π/∂∆i = 0, ∂Π/∂θj = 0)

5. Transformation of axes in two dimensions

(a) Vectors: Fx′ = ex′ · F, etc.,
(

Fx′

Fy′

)
=

[
cos θ sin θ
− sin θ cos θ

] (
Fx

Fy

)

(b) Tensors:
[
σx′x′ σx′y′

σx′y′ σy′y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
σxx σxy

σxy σyy

] [
cos θ − sin θ
sin θ cos θ

]
where σxx = σx, σxy = τxy etc.

i. σx′ = σθ = 1
2
(σx + σy) + 1

2
(σx − σy) cos 2θ + τxy sin 2θ, σy′ = σθ+π/2

ii. τθ = τx′y′ = − 1
2
(σx − σy) sin 2θ + τxy cos 2θ

iii. For strains use εxx = εx, εxy = 1
2
γxy etc.

iv. Chain rule for derivatives:
∂

∂x′ =
∂x

∂x′
∂

∂x
+

∂y

∂x′
∂

∂y
, etc.
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v. Strain rosettes: εθi
= 1

2
[(εx + εy) + (εx − εy) cos 2θi + γxy sin 2θi], i = 1, 2, 3; solve for

εx, εy, γxy

(c) Principal values

i. Definition: σx′ = σ1 and σy′ = σ2 when τx′y′ = 0; also
dσx′

dθ
= 0; convention: σ1 > σ2

(note that σ1 = σ2 if and only if σx = σy and τxy = 0)

ii. Principal angles: tan 2θ1,2 = 2τxy/(σx − σy)

iii. Principal values: σ1,2 = 1
2
(σx + σy)±

√
[ 1
2
(σx − σy)]2 + τ 2

xy

(d) Maximum shear

i. Definition:
dσx′y′

dθ
= 0

ii. Maximum shear angle: tan 2θs = −(σx − σy)/2τxy

iii. Maximum shear: τmax =
√

[ 1
2
(σx − σy)]2 + τ 2

xy = 1
2
(σ1 − σ2)

iv. Relation to principal angle: θs − θ1,2 = ±π/4

(e) Mohr’s circle

i. To draw: in the σθ-τθ plane, mark the points (σx, τxy and (σy, −τxy), and draw the
line between them. The intersection of this line with the σθ-axis, i.e. the point
( 1

2
[σx + σy], 0), is the center of the circle.

ii. The radius is r = τmax.

iii. The circle intersects the σθ-axis at (σ1, 0) and (σ2, 0).

iv. Rotation on the circle is twice the physical rotation and in the opposite direction.

6. Transformation of axes in three dimensions

(a) Principal values and principal directions

i. In order to solve the system


(σx − σ)nx + τxyny + τxznz = 0,
τxynx + (σy − σ)ny + τyznz = 0,
τxznx + τyzny + (σz − σ)nz = 0

, it is necessary

that

∣∣∣∣∣∣∣
σx − σ τxy τxz

τxy σy − σ τyz

τxz τyz σz − σ

∣∣∣∣∣∣∣ = 0. This is a cubic equation in σ whose roots σ1,

σ2, σ3 are the principal values (eigenvalues), and the vector n = inx + jny + knz for
each of these values (eigenvector) gives the direction of the corresponding principal
axis.

ii. If one of the principal axes is known, two-dimensional analysis can be used to find
the other two.

iii. When all three principal values are known, Mohr’s circles can be drawn. The maxi-
mum shear is the radius of the largest Mohr’s circle.

(b) Yield criteria in terms of principal stresses (no numbering convention in terms of value)

i. Tresca: max(|σ1 − σ2|, |σ2 − σ3|, |σ1 − σ3|) = 2τyp

ii. Mises: (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2 = 2σ2

yp
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II. Slender Bodies

1. Internal Forces

(a) Axial force: P =
∫
A σx dA

(b) Torque (cylindrical shaft): T =
∫
A τzθr dA

(c) Bending moment: Mz = −
∫
A σxy dA, My =

∫
A σxz dA

(d) Shear force: Vy = −
∫
A τxy dA, Vz =

∫
A τxz dA

2. Elastic energy

(a) Strain energy: U ′ =
∫
A Uo dA, U =

∫ L
0 U ′ dx

(b) Complementary energy:Ū ′ =
∫
A Ūo dA, Ū =

∫ L
0 Ū ′ dx

3. Axial loading

(a) General

i. Strain-displacement relation: ε = εx =
du

dx
ii. Elongation ∆L = u(L)− u(0) =

∫ L
0 ε dx

iii. Resultant force P =
∫
A σ dA

iv. Equilibrium (differential equation):
dP

dx
+p = 0 (p = distributed axial load per unit

length)

v. Work of virtual load: F̄∆ =
∫ L
0 P̄ ε dx (= P̄∆L if uniform), where P̄ = bar force

due to virtual load F̄ conjugate to ∆

(b) Linear elastic

i. Hooke’s Law ε = σ/E

ii. Elongation ∆L =
∫ L
0 (P/EA) dx ( = PL/EA if uniform)

iii. Strain energy: U ′ = 1
2
(
∫
A Eε2 dA)dx (= 1

2
EAε2, U = EA(∆L)2/2L if uniform)

iv. Complementary energy: Ū ′ =
∫
A(σ2/E) dA (= P 2/2EA if homogeneous, Ū =

P 2L/2EA if uniform, EA/L = axial spring constant)

v. Work of virtual load: F̄∆ =
∫ L
0 (P̄P/EA) dx (= P̄PL/EA if uniform)

4. Torsion

(a) General (cylindrical shaft)

i. Strain-displacement(twist) relation: γ = γzθ = rφ′ (φ′ =
dφ

dz
)

ii. Total rotation ∆φ = φ(L)− φ(0) =
∫ L
0 φ′ dz

iii. Resultant torque T = 2π
∫ c
b τr2 dr

iv. Equilibrium (differential equation):
dT

dz
+ t = 0 (t = distributed torque per unit

length)
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v. Work of virtual load: M̄θ or F̄∆ =
∫ L
0 T̄ φ′ dz

(b) Linear elastic (cylindrical shaft)

i. Hooke’s Law γ = τ/G

ii. Torque T = GJφ′, J =
∫
A r2 dA = π(c4 − b4)/2 (c = outer radius, b = inner radius)

iii. Stress τ = Tr/J

iv. Total rotation ∆φ =
∫ L
0 (T/GJ) dz

v. Strain energy: U ′ = 1
2

∫
A Gγ2 dA (= 1

2
GJφ′2 if homogeneous, U = GJ(∆φ)2/2L if

uniform, GJ/L = torsional spring constant)

vi. Complementary energy: Ū ′ =
∫
A(τ 2/2G) dAdz (= T 2/2GJ if homogeneous, Ū =

T 2L/2GJ if uniform)

vii. Work of virtual load: M̄θ =
∫ L
0 (T̄ T/GJ) dz (= T̄ TL/GJ if uniform)

(c) Elastic-perfectly plastic (cylindrical shaft)

i. Yield torque: Typ = τypJ/c

ii. Ultimate torque: Tu = τyp

∫
A r dr = (2π/3)(c3 − b3)

iii. Solid shaft: T = Tu[1− (1/4)(rp/c)
3], Tu = (4/3)Typ

iv. In unloading strain change is linear, leading to residual stress τres = τinit − Tinitr/J ,
and residual twist φ′

res = (dφ/dz)init − Tinit/GJ .

v. At elastic-plastic interface: γ = γyp = rpφ
′

(d) Thin-walled closed tubes

i. Shear Flow q = τt = constant

ii. Equilibrium T =
∮

rq ds = 2q A© (where A© = area enclosed by mean curve of tube)

iii. Complementary elastic energy Ū ′ = 1
2

∮
(τ 2/G)t ds dz = 1

2
q2

∮
(1/Gt)ds

iv. Twist φ′ = 1
2
[T/(2A©)2]

∮
(1/Gt)ds

v. Torsional stiffness: if G = constant, J = T/Gφ′ = (2A©)2/
∮
(1/t)ds

5. Bending

(a) General (loading in xy-plane)

i. Geometry: assume section symmetric about y-axis, origin of yz axes at the centroid
of the section

ii. Kinematics

A. Strain-curvature relation: εx = −(y − y0)κ (where y0 is the y-coordinate of the
neutral axis)

B. Curvature-displacement relation: κ ≈ v′′,

C. Rotation-displacement relation: θ ≈ v′

iii. Equilibrium (differential equations)
dV

dx
= q,

dM

dx
= V (where V = Vy, M = Mz,

q = transverse load per unit length)
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iv. Work of virtual force: F̄∆ =
∫ L
0 M̄κ dx (M̄(x) = bending moment due to virtual

load F̄ , which may be either a force or a moment, conjugate to the displacement
[rotation] ∆)

(b) Elastic pure bending about z-axis (V = 0, P = 0, My = 0)

i. Hooke’s Law σ = Eε

ii. Moment M = Mz = EIκ, (transformed sections) M = Eref Îκ

iii. Second moment of area (“moment of inertia”): I = Iz =
∫
A y2 dA (y measured from

centroid); rectangle I = bh3/12, circle I = πc4/4; for sections composed of simple
subsections use parallel-axis theorem I = Io + Ad2 (where Io is calculated about the
centroid of the subsection and d is the y-distance from there to the centroid of the
whole section)

iv. Neutral axis (
∑

Fx = 0): y0 =
∫
A Ey dA/

∫
A E dA (= 0 if homogeneous, i.e. E =

constant)

v. Stress σ = −Eκ(y − y0) (= −My/I if homogeneous)

vi. Strain energy: U ′ = 1
2

∫
A Eε2 dA (= 1

2
EIκ2 if homogeneous)

vii. Complementary energy: Ū ′ =
∫
A(σ2/2E) dA (= M2/2EI if homogeneous)

viii. Work of virtual load: F̄∆ or M̄θ =
∫ L
0 (M̄M/EI) dx

(c) Elastic bending with shear

i. Shear flow: q = V Q/I, Q =
∫
A′ y dA = ȳA′

ii. Average shear stress: τ ≈ q/t; rectangular: τ(y) = (V/2I)[(h/2)2 − y2], τmax =
3V/2A; I-beam: τmax ≈ V/Aweb

(d) Elastic bending with axial loads

i. Tensile P , use superposition for stresses (σ = P/A−My/I)

ii. Compressive P , use superposition for stresses; check for buckling

(e) Elastic-perfectly plastic pure bending about z-axis

i. Initial yield: Myp = σypI/ymax

ii. Rectangular section: Myp = σypbh
2/6, M = Mu[1 − (1/3)(yp/(h/2))2], Mu =

(3/2)Myp

iii. Neutral axis: T = C, (ultimate state)
∫
AT

σT
yp dA =

∫
AC

σC
yp dA; AC = AT = 1

2
A if

σT
yp = σC

yp = σyp

iv. Ultimate moment: T lT + ClC = Mu; if σT
yp = σC

yp = σyp, Mu = σypAd/2, where d is
the distance between the centroids of the half-areas

v. Unloading: strain change is linear, resulting in residual stress σres = σinit + Minity/I
and residual curvature κres = κinit −Minit/EI.

vi. At elastic-plastic interface: ε = εyp = −ypκ

(f) Singularity functions

i. Ramp function: <x> =
{

x, x > 0
0, x ≤ 0

ii. General (n > 0): <x− a>n =
{

(x− a)n, x > a
0, x ≤ a
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iii. Special: Heaviside H(x−a) = (d/dx)<x−a>, Dirac delta δ(x−a) = (d/dx)H(x−a),
doublet δ′(x− a) = (d/dx)δ(x− a).

iv. Integration rules:
∫

δ′(x − a) dx = δ(x − a) + C,
∫

δ(x − a) dx = H(x − a) + C,∫
H(x− a) dx = <x− a> + C,

∫
<x− a>n dx = <x− a>n+1/(n + 1) + C

(g) Deflections due to elastic bending

i. Differential equation: (EIv′′)′′ = q or EIv′′′′ = q for constant EI

ii. Boundary conditions

A. Fixed (built-in): θ = 0, v = 0,

B. Pin or roller: M = EIv′′ = 0, v = 0,

C. Free: M = EIv′′ = 0, V = EIv′′′ = 0;

D. Intermediate roller support: v = 0 (v and v′ are continuous),

E. Intermediate hinge: M = EIv′′ = 0 (v is continuous)

iii. Particular results: |v|max =


FL3/3EI end−loaded cantilever
FL3/48EI center−loaded simple beam

5wL4/384EI uniformly loaded simple beam

6. Elastic stability and buckling

(a) General

i. Potential energy: Π = U + Ω, where Ω = −P∆ (∆ = displacement conjugate to P )

ii. Equilibrium (single-degree-of-freedom system):
dΠ

dθ
= 0

iii. Equilibrium is stable when
d2Π

dθ2
> 0 and unstable when

d2Π

dθ2
< 0, neutral (limiting

condition) when
d2Π

dθ2
= 0

(b) Linearized

i. Critical load Pcr is (a) the value of P allowing non-zero solutions of the equilibrium
equation (initially perfect system), (b) the asymptotic value of P as the deflection
grows large (initially imperfect system)

ii. Multi-degree-of-freedom systems: critical loads are eigenvalues of equilibrium equa-
tions, buckling modes are eigenvectors.

(c) Elastic column

i. Linearized equilibrium: (general) (EIv′′)′′ +Pv′′ = 0; (constant EI and P ) EIv′′′′ +
Pv′′ = 0

ii. General solution (constant EI and P ): v = A + Bx + C cos λx + D sin λx, where

λ =
√

P/EI; find λnL (n = 1, 2, . . .) such that the boundary conditions are satisfied
with A, B, C,D not all zero

iii. Critical loads for uniform columns: Pcr = λ2
1EI = π2EI/L2

e, where Le = π/λ1 is the
effective length (length of equivalent pinned-pinned column)

A. Pinned-pinned (Euler): Pcr = π2EI/L2 = PE, Le = L
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B. Clamped-free (cantilever): Pcr = PE/4, Le = 2L

C. Pinned-clamped: Pcr = 2.05PE, Le = 0.699L

D. Clamped-clamped (no sidesway): Pcr = 4PE, Le = 0.5L

E. Clamped-clamped (with sidesway): Pcr = PE, Le = L

iv. Critical stress σcr = Pcr/A =
π2E

(Le/r)2
, where r =

√
I/A

v. Elastic limit: σcr = σyp, so Le/r = (Le/r)cr = π
√

E/σyp
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