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What  is  physics?
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Physics world 
(The world of physics models)

Under what conditions 
(idealizations) can I use 

my model?

?

Real (everyday) world
(Infinitely complex)
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Modeling tools in the physics world

Words

Pictures

Physics diagrams

Mathematics Not the best place to start

Problem solving in this course will require you 
to use all of these representations.
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In order to succeed in this course, you need to learn how to 
reflect upon your own learning (of physics)

When you are working on some physics task, ask yourself ...

• What (exactly) are you doing?

• Why are you doing it?

• How is it helping you?
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Remember that not everyone learns in the same way

We all have different approaches to learning. 

Everyone constructs his or her own mental structures. 

There is no unique answer to the question: 
“What is the best way to learn a particular topic?”
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Real 
(everyday)

world

Physics world 
(shared, 

consensus 
knowledge)
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What to expect in this course ...

Lectures ... what are they good for?

Friday morning tutorials ... use these to understand your 
weekly problem sets

Tuesday afternoon tutorials ... more time to work through 
problems

Homework ... weekly problem sets, other tasks, self study

Read your textbook !     ... Reese, University Physics

Laboratories ... Tuesday afternoons 
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Where to go for help ...

• The course tutors ... Mrs Celia Spargo and Mr Trevor Volkwyn
• Your friends in the course
• Your textbook
• Students who did the course previously
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An approach to solving physics problems

Step 1. Think carefully about the problem situation and draw a 
picture of what is going on (Pictorial Representation).

• Draw one or more pictures which show all the important objects, their 
motion and any interactions.

• Now ask  “What is being asked?” “Do I need to calculate something?”
• Think about what physics concepts and principles you think will be 

useful in solving the problem and when they will be most useful.
• Construct a mental image of the problem situation  - do your friends 

have the same image?
• Specify a convenient system to use  - circle this on your picture.
• Identify any idealisations and constraints present in the situation  -

write them down!
• Specify any approximations or simplifications which you think will 

make the problem solution easier, but will not affect the result
significantly. 
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Step 2. Describe the physics (Physics Representation).

• Draw a coordinate axis (or axes) onto your picture (decide where to put the 
origin and on the direction of the axes).

• Translate your pictures into one or more diagrams (with axes) which only 
gives the essential information for a mathematical solution.

• If you are using kinematic concepts, draw a motion diagram specifying the 
object’s velocity and acceleration at definite positions and times.  

• If interactions or statics are important, draw idealised, free body and force 
diagrams. 

• When using conservation principles, draw “initial” and “final” diagrams to 
show how the system changes. 

• For optics problems draw a ray diagram. 
• For circuit problems, a circuit diagram will be useful. 
• Define a symbol for every important physics variable in your diagram and 

write down what information you know (e.g.  T1 = 30 N).
• Identify your target variable?  (“What unknown must I calculate?”).  
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Step 3. Represent the problem mathematically and plan a solution 
(Mathematical Representation).

• Only now think about what mathematical expressions relate the physics 
variables from your diagrams.

• Using these mathematical expressions, construct specific algebraic 
equations which describe the specific situation above.

• Think about how these equations can be combined to find your target 
variable.

• Begin with an equation that contains the target variable.
• Identify any unknowns in that equation
• Find equations which contain these unknowns
• Do not solve equations numerically at this time.
• Check your equations for sufficiency... You have a solution if your plan has 

as many independent equations are there are unknowns.      If not, determine 
other equations or check the plan to see if it is likely that a variable will 
cancel from your equations.

• Plan the best order in which to solve the equations for the desired variable.
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Step 4. Execute the plan

• Do the algebra in the order given by your outline.
• When you are done you should have a single equation with your target variable.
• Substitute the values (numbers with units) into this final equation.
• Make sure units are consistent so that they will cancel properly.
• Calculate the numerical result for the target variable.

Step 5. Evaluate your solution

• Do vector quantities have both magnitude and direction ?
• Does the sign of your answer make sense ?
• Can someone else follow your solution ?   Is it clear ?
• Is the result reasonable and within your experience ?
• Do the units make sense ?

Have you answered the question ?
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In this course you will need to be familiar with particular 
modeling tools in physics... 

See the  Tools and Skills for Physics I book.

In particular ...

• Using coordinate systems
• Vectors and component vectors  (           notation) 
• Vector addition and subtraction
• Dot and cross products
• Rates of change (differentiation)
• Simple integration

ˆ ˆ ˆ i j k
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Vector algebra
Right handed coordinate system:
Unit vectors     kji ˆ   ˆ   ˆ

1 ˆ   ˆ   ˆ === kji
z

y

x

k̂ ĵ
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    where         and     = ⊥ ⊥
G G G G G
G G A G B

ˆ ˆ ˆ    ( )  + ( )  + ( )  × = − − −
G G

y z z y z x x z x y y xA B A B A B A B A B A BA B i j k

( )                  0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 0           ;  ;  

× = − × × =

× = × = × = × = × = × =
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i i j j k k i j k j k i k i j

G G G GG G

easy to remember:
always

ˆ ˆ ˆ              
       

       
x y z

x y z

A A A

B B B

i j k

In polar form in 2D:

and                            

where       is the angle between tails of       and     .
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Differentiation of vector functions
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The spherical polar coordinate system

2 2 2
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The cylindrical polar coordinate system

2 2
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Cylindrical coordinates: ρ, θ, z :
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Learning how to estimate quantities realistically is an 
important skill to learn ...

• How many molecules of nitrogen are there in this room?
• How long would it take for you to walk from here to the 

Bremner Building?
• What is the temperature of the air in this room?
• What is the mass of the lecturer?
• How many hairs are there on your head?
• What is the volume of this building?
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An estimation problem ...

One hot day you find the fossil remains of a dinosaur in the 
Karoo. You estimate that the beast probably weighed five tonnes.  
Being very hot, you drink a mouthful of Coke, and suddenly 
realise that if all the water in the urine excreted by the dinosaur 
became randomly mixed with all the water molecules in the 
oceans and atmosphere over the past sixty five million years, 
there is a chance that some of the water molecules you have just
drunk may have come from the urine of that very same dinosaur. 
Aghast, you proceed to calculate just how many molecules of that
dinosaur’s urine you have just drunk!  Make reasonable 
assumptions (i.e. guesses) about any quantities that you are not
sure of.
(from DGA)
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Mechanics
... has to do with the way bodies interact with each other.

Coming up in this section ...

• Kinematics in one dimension (including falling bodies)
• Kinematics in two dimensions (projectiles)
• Relative motion
• Rotational kinematics
• Forces and Newton’s Laws (linear dynamics)
• Rotational dynamics
• Centre of mass
• Work and Energy
• Linear momentum
• Torque, moments and angular momentum
• Statics
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Kinematics

-axis out 
of  page

Consider a particle that follows the curved (blue) path in space.
At time ti it is at position Pi and time tf it is at position Pf.
To describe the motion of the particle, we use a three dimensional 
Cartesian coordinate system as shown.
Therefore at t = ti , the particle is at position 
and t = tf , the particle is at position

ˆ ˆ ˆ= + +
G

i i i ix y zr i j k
ˆ ˆ ˆ= + +

G
f f f fx y zr i j k

Origin

Pi at  ti

Pf at  tfyf

yi

xfxi

Actual path of the 
particle in three 
dimensions

irG

ĵ

îk̂

frG

∆rG
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The displacement vector is

( ) ( ) ( )ˆ ˆ ˆ        f i f i f i f ix x y y z z∆ = − = − + − + −r r r i j kG G G

frG

∆rG

irG
frG

 ( ) f i∆ = + −r r rG G G
i−rG

  ( ) f i= + −r rG G

Of course          is not necessarily the distance from Pi to Pf.∆rG

In general an instantaneous position vector describes 
the position of a particle at a particular instant in time relative 
to the origin of a set of coordinate axes:

ˆ ˆ ˆ( )    ( ) ( ) ( )t x t y t z t= + +r i j kG

( )trG
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The velocity vector
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G GGG f i
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( ) ( ) ( )ˆ ˆ ˆ = + +
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i j k
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The acceleration vector

   
−∆

= =
∆ −

G GGG f i
av

f it t t
v vvaThe average acceleration vector 

The instantaneous acceleration vector 

( )( ) d tt
dt

=
va
GG

( )( ) ( )ˆ ˆ ˆ= + +yx z
dv tdv t dv t

dt dt dt
i j k

2 2 2

2 2 2

( ) ( ) ( )ˆ ˆ ˆ = + +
d x t d y t d z t

dt dt dt
i j k
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Example 1

The position of a  3 kg  object as a function of time is given by:

(a) What is the position of the object at  t = 2 s?
(b) Write down an expression for the velocity of the object as a function of time.
(c) What is the velocity of the object at  t = 2 s?
(d) What is the displacement of the object between  t = 0 s  and  t = 2 s ?
(e) What is the average velocity of the object between  t = 0 s  and  t = 2 s?

2 ˆ ˆ( )    (5 2 ) (3 8)     metres= − + +
G t t t tr i j
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Example 2

Bugs walks 3 metres in the    -direction for 6 seconds, and then
6 metres in a direction 30 to the   -direction for another 6 seconds.
What is his average velocity? 

î
î
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Example 3

Four different mice (labeled A, B, C and D) ran the triangular maze 
shown below. They started in the lower left hand corner and followed the 
paths of the arrows. The times they took are shown below each figure.

A

t = 2 s

C

t = 4 s

D

t = 4 s

B

t = 2 s

For each item below, write down the letters of all the mice that fit 
the description.

(a)This mouse had the greatest average speed.
(b) This mouse had the greatest total displacement.
(c) This mouse had an average velocity that points in this direction  →
(d) This mouse had the greatest average velocity.
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Kinematics with constant acceleration

Galileo
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Kinematics with constant acceleration

We introduce of two kinematic equations of motion for the 
case of constant acceleration:

21
2( )        ot t t= + +r r u aG G GG

( )      t t= +v u aGG G

( )G tr

Ga
  ( 0)= =
G G tu v

  ( 0)= =
G G

o tr r
( )G tv

:  position vector at time t
:  position vector at time t = 0 (the initial position)
:  velocity vector at time t
:  velocity vector at time t = 0  (the initial velocity)
:  acceleration vector (constant)

The displacement vector is then    ( )∆ = −
G G G

otr r r
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When the motion is only in one dimension, we can use 
slightly different notation:

21
2( )       = + +
GG G G

o x xt t tx x u a ( )      = +
GG G

x x xt tv u a

21
2( )       = + +
GG G G

o y yt t ty y u a ( )      = +
GG G

y y yt tv u a

... which sometimes helps to remind us what is going on. 
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Graphical representations of constant accelerated motion 

t

x(t)

t

vx(t)

t

ax(t)

21
2( )       = + +o x xx t x u t a t

( )21
2( )       = + +o x x

d dx t x u t a t
dt dt

( )     x x xv t u a t= +

( )   (   )x x x
d dv t u a t
dt dt

= +  =  constantxa
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A car moves along a straight 
road. The graph below shows the 
position of the car as a function 
of time. 
The graph shows that the car:

(A) speeds up all the time
(B) slows down all the time
(C) moves at a constant velocity

time

position
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The graph shows position as a 
function of time for two trains 
running on parallel tracks. 
Which is true:

(A) At time tB both trains have the 
same velocity
(B) Both trains speed up all the time
(C) Both trains have the same 
velocity at some time before tB

time

position

tB
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Example of motion in a straight line

A car is initially at rest. It starts to move, accelerating 
uniformly, and reaches a speed of 15 m s-1 after 20 s. It 
travels at a constant speed for 2 minutes after which time it 
slows down uniformly to stop in 30 seconds.
Assume that the entire motion takes place in a straight line 
in the   -direction.î

Determine:
(a) the average acceleration of the car during (i) the first 20 
seconds; (ii) the last 30 seconds; and (iii) the whole trip.
(b) the total displacement of the car.
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First draw a picture of what is happening.
Add in a coordinate system and include all known and 
unknown variables ...

î
a = ?                        a = 0                         a = ?

t = 170 s
x(t = 170) = ?
v(t = 170) = 0 m s-1

t = 0
x(t = 0) = 0
v(t = 0) = 0

t = 20 s
x(t = 20) = ?
v(t = 20) = 15 m s-1

t = 140 s
x(t = 140) = ?
v(t = 140) = 15 m s-1
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We can draw position versus time and velocity versus time 
graphs for this situation:

0     20                  140     170 
t (s)

x  (m)î

0

0     20                 140      170 
t (s)

v  (m s-1)î

0

15
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Finally, use the equations of motion:

First calculate the accelerations:

-2
ˆ15 0 ˆ   0.75    m s

20 0
− −

= = =
− −

G G
G f i

av
f it t

v v ia i

-2 0  m s

(i) Between  t = 0  and  t = 20 s:

=
G

avaBetween t = 20 and t = 140 s:

(ii) Between  t = 140 and  t = 170 s:
-2

ˆ0 15 ˆ   0.50    m s
170 140

− −
= = = −

− −

G G
G f i

av
f it t

v v ia i

(iii) Between  t = 0 and  t = 170 s:

0 0   0
170 0

− −
= = =

− −

G G
G f i

av
f it t

v v
a
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Now the displacements ... 
We consider each of the three stages separately.

(i) Between  t = 0  and  t = 20 s:
21

2( )                    = + +
GG G G

o x xt t tx x u a
21

2
ˆ ˆ( 20)   (0)  (0)  (0.75 )(20)  150  m= = + + =

G tx i i

(ii) Between t = 20 and t = 140 s:
21

2( )                              = + +
GG G G

o x xt t tx x u a
21

2
ˆ ˆ ˆ( 140)   (150 )  (15 )(120)  (0)(120)  1950  m= = + + =

G tx i i i
(iii) Between  t = 140 and  t = 170 s:

21
2( )                                  = + +
GG G G

o x xt t tx x u a
21

2
ˆ ˆ ˆ ˆ( 170)   (1950 )  (15 )(30)  ( 0.5 )(30)  2175 m= = + + − =

G tx i i i i

Final position of the car
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Back to our velocity versus time graph:

0           20                            140            170 t (s)

v  (m s-1)î

15

0-2

slope of line
 accleration

ˆ15 0  
20 0

ˆ 0.75    m s

=

−
=

−
=

i

i

-2

slope of line
accleration

ˆ0 15  
170 140

ˆ0.50    m s

=

−
=

−
= −

i

i

displacement = area under graph =        +          +         = 2175   mî
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An example involving two moving bodies

You are driving at a speed of  60 km h-1 and see a truck  
20 m  ahead coming directly towards you at a constant 
speed of  40 km h-1.  If you immediately hit the breaks and 
your car starts to slow down at  8.0 m s-2, how long is it 
before the truck smashes into you?

The general approach when dealing with two moving bodies is 
to apply a single set of coordinate axes to the situation and 
then apply the equations of motion separately to each object. 
The equations will be linked to each other usually by one or 
more parameters, such as time, or the final positions (if they 
are the same for each object).
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Another example involving two moving bodies

You want to visit your friend in Durban over the Winter 
vacation. To save money, you decide to travel there by train. 
But you are late finishing your physics exam, so you are late 
in arriving at the train station. You run as fast as you can, but 
just as you reach one end of the platform your train departs, 
30 metres ahead of you down the platform. You can run at a 
maximum speed of 8 m s-1 and the train is accelerating at 
1 m s-2. You can run along the platform for 50 m before you 
reach a barrier. Will you catch your train?
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Pictorial representation
train starts from rest and 
accelerates at 1 m s-2

Student runs at a 
constant 8 m s-1

30 m 50 m

end of platform 
(will they meet 
before here?)

30 m

-1ˆ8   m ssu = iG 0tu =
G

0sa =
G -2ˆ1   m sta = iG

0

Physics representation

îxmeet

Mathematics representation

21
2( ) ox t x ut at= + +

G G G GStudent: Train:
21

2( ) ox t x ut at= + +
G G G G

 0  8   0meetx t= + + 21
230 0 (1)meetx t= + +

solve for xmeet

Is xmeet < 50 m? 
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Physics representation

x0 30 m xmeet

-1ˆ8   m ssu = iG 0tu =
G

0sa =
G -2ˆ1   m sta = iG

Other useful physics representations:

Motion diagram: Student:
Train:

Graphical: x

t t

vx
xmeet

8

0 0

30
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Bodies in free fall

Consider the following two situations. At each position, 
indicate the magnitude and direction of the resultant 
acceleration of the ball.

A

B

A C

B

C

The ball is dropped from rest from a 
height and allowed to fall to the floor

The ball is thrown upwards, reaches 
some height, and falls back to the floor
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Demonstration

A large ball 
and a small ball 
are dropped 
from the same 
height in air.
Which ball 
reaches the 
ground first?
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Demonstration

A book and a sheet of paper are dropped from the same 
height in air. (a) Which reaches the ground first?
Does it make a difference if the paper is placed 
(b) under the book?     ... or (c) above the book?

(a)                                    (b)                      (c)
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Demonstration
A coin (or a stone) and a disc of paper 
(or a feather) are dropped from a 
height in a cylinder filled with air. 
What will happen if the air is removed 
from the cylinder?

air is removed 
from the cylinder 

cylinder is filled 
with air
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If you drop an object in the absence of air 
resistance, it accelerates downward at 9.8 m s-2.
If instead you throw it downward, then its 
downward acceleration after release is

(A) less than 9.8 m s-2

(B) 9.8 m s-2

(C) more than 9.8 m s-2
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Example
Bugs throws a ball vertically upward at 7 m s-1 from a 
balcony that is 10 m above the ground. After reaching a 
maximum height, the ball drops past the balcony, to the 
ground. With reference to the coordinate axis given, 
answer the questions below:

Initial position of the ball =

Final position of the ball =

Displacement of the ball when it reaches the ground =

Initial velocity of the ball = 

Acceleration of the ball while travelling upward =

Acceleration of the ball while travelling downward =

Acceleration of the ball at maximum height =

0

ĵ

ˆ0     mj
ˆ10  m − j

-2ˆ9.8   m s− j

ˆ10  m − j
-1ˆ7     m sj

10−
-2ˆ9.8   m s− j

-2ˆ9.8   m s− j
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A person standing at the edge of a cliff throws one ball 
straight up and another ball straight down at the same 
initial speed.
Neglecting air resistance, the ball to hit the ground below 
the cliff with the greater speed is the one initially thrown

(A) upward
(B) downward
(C) neither - they both hit at the same speed.
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You are throwing a ball straight up in the air.
At the highest point, the ball’s ...

(A) velocity and acceleration are zero
(B) velocity is non-zero but its acceleration is zero
(C) acceleration is non-zero but its velocity is zero
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A cart on a roller-coaster slides down the track shown above. 
As the cart moves beyond the point shown, what happens to its 
speed and acceleration in the direction of motion?

(A) both decrease
(B) the speed increases, but acceleration decreases
(C) the speed decreases, but acceleration increases
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Example

Bugs throws a ball vertically upward at 4 m s-1 from the edge of a 
cliff. It rises to its maximum height and then falls straight past 
him on the way down. How long does it take for the ball to reach
a position 5 m below his feet? 
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Example

You and your brother are playing a game on the beach.  He is 
standing on a ledge  15 m  above you and throws a ball 
vertically upward with an initial speed of  30 m s-1.  The idea is 
for you to simultaneously throw a stone vertically upward so 
that it hits the ball at the apex of its flight?   At what speed
should you throw the stone?
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Two balls are thrown straight up in the 
air at the same time but from different 
heights above the ground.  They both 
hit the ground at the same time. 
Neglecting air resistance, how many 
times will they pass each other in 
flight not counting the time when they 
hit the ground together?

(A) Zero
(B) One
(C) Two
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As she falls faster and 
faster through air, her 
acceleration:

(a) increases
(b) decreases
(c) remains the same
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Air resistance and terminal velocity

When an object begins to fall through a fluid (such as a 
skydiver falling through the air), initially the only force acting 
on the object is gravity, and its acceleration is g.
As the object picks up speed, the frictional force (“air 
resistance” in air)  increases, and the acceleration of the 
object decreases in magnitude.

Weight

Air resistanceEventually the two forces will be 
balanced, and the object falls at a 
constant velocity, called the 
terminal velocity.

For a skydiver, terminal velocity is 
between 160 to 240 km h-1.
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When a tabletennis ball dropped from 
the top of a high building reaches 
terminal speed, its acceleration is zero. 
Now suppose that the same ball is 
projected upward with an initial speed 
greater than this terminal speed. At the 
instant its speed equals this terminal 
speed on the way up, the magnitude of 
its acceleration is

(A) zero
(B) g
(C) more than g
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Projectiles
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Kinematics in two dimensions: projectiles

We apply the same two equations of motion:  
21

2( )        = + +
G G GG

ot t tr r u a
( )      = +

GG Gt tv u a

by analyze the motion independently in the     and     directions.î ĵ

ˆ directionjˆ directioni
21

2( )       = + +
GG G G

o x xt t tx x u a 21
2( )       = + +
GG G G

o y yt t ty y u a
( )      = +

GG G
x x xt tv u a ( )      = +

GG G
y y yt tv u a

ˆ cosθ=
G

x uu i ˆsinθ=
G

y uu jwhere
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Demonstration

A ball in dropped from a height. At the same instant, a second 
ball is projected horizontally from the same height. 
Which ball hits the ground first?

G
xv

0
0= =

G G
x yv v

=
G

yv
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At each position shown, draw in the x and y components of 
the velocity vectors of both balls.

G
xv

0= =
G G

x yv v

What is the magnitude and direction of the acceleration of each 
ball at each position shown?
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stationary car

Demonstration
Rolling cart catches own ball
A special car is designed with low friction axles 
and has a spring-loaded mechanism which 
projects a small steel ball vertically upward. 
A needle attached to a string is used to release the 
ball and an upward-facing funnel catches the ball. 

What will happen if the ball is fired upward while the car is moving 
horizontally at a constant speed? Where will the ball land?

bridge

??
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At each position shown, draw in the x and y components of 
the velocity vectors of the car and the ball.

ball is fired 
vertically here
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Example

A ball is projected from the origin with initial velocity   
having magnitude 50 m s-1 at an angle of 37° to the horizontal.
We are interested in knowing the position and velocity of the ball 
as a function of time.

ˆ cosθ=
G

x uu i ˆsinθ=
G

y uu j

θ = 37°u = 50 m s-1
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37°

î

ĵ

We apply the same equations of motion  
21

2( )        = + +
G G GG

ot t tr r u a ( )      = +
GG Gt tv u a

but analyze the motion independently in the     and     directions.
21

2( )       = + +
GG G G

o x xt t tx x u a 21
2( )       = + +
GG G G

o y yt t ty y u a
( )      = +

GG G
x x xt tv u a ( )      = +

GG G
y y yt tv u a

where ˆ cosθ=
G G

xu u i ˆsinθ=
G G

yu u j

The     and    equations are linked by the time-of-flight  t.

Gu

î ĵ

î ĵ
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-1ˆ ˆ ˆcos   50cos37   40  m sθ= = ° =
G G

xu u i i iIn this case:
-1ˆ ˆ ˆsin   50sin 37   30  m sθ= = ° =

G G
yu u i j j

 0=
G

xa -2ˆ10  ms= = −
G G

ya g jIn addition:

Note that we use                             here, 
but usually we will use  

-2ˆ10   m s= −g jG
-2ˆ9.8  ms= −

Gg j

Our equations of motion therefore become:

21
2( )       = + +
GG G G

o x xt t tx x u a
Position:

21
2( )       = + +
GG G G

o y yt t ty y u a
ˆ( )   (0)  (40 )   (0) m= + +

G t tx i

( )      = +
GG G

x x xt tv u a

21
2

ˆ ˆ( )   (0) (30 ) ( 10 )  m= + + −
G t t ty j j

Velocity:
( )      = +

GG G
y y yt tv u a

-1ˆ ˆ( )    (30 ) + ( 10 )   m s= −
G

y t tv j j-1ˆ( )    40   m s=
G

x tv i



73

Complete the table below by calculating the components of the 
position and velocity vectors for this projectile.

6
5
4
3
2
1

000
vy (m s-1)vx (m s-1)y (m)x (m)time (s)

40             30
40            25             40             20
80            40             40 10

120            45             40              0
160            40             40 −10
200            25             40            − 20
240             0              40            − 30
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t t

vx(t) î
ux

x(t)î

t

y(t) ĵ

t

ĵvy(t)
uy

−uy

( ) 40  m=x t t -140 m s=xv

2( ) 30 5  m= −y t t t
-1( ) 30 10   m s= −yv t t

vy = 0 at 
the apex
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We can think of the motion of a projectile as the combination
of a vertical projectile and an object traveling horizontally at
a constant velocity.

with

x

y
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The figure shows the paths followed by two golf balls, A and B.
Does Ball A spend more, the same or less time in the air than 
Ball B?

(A) more (B) the same (C) less
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The figure shows the paths 
followed by two golf balls, A 
and B.
Does Ball A have a greater, the 
same or smaller launch speed 
than Ball B?

(A) greater
(B) the same
(C) smaller



78

Example 1

Determine the minimum speed that Bugs must have as he 
leaves the incline on his motorbike in order to just make it 
across the 50 metre wide swamp.

37°
10 m

50 m
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First draw the path of the projectile (in this case the motorbike) 
on your diagram.

37°
10 m

50 m

−10 m

50 m

Now draw a set of Cartesian coordinates. Usually it makes sense to 
set the origin at the initial position of the projectile. Mark the final 
position on the axes, using symbols for unknowns, if necessary.

î
ĵ
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Only now use your equations of motion
21

2( )       = + +
GG G G

o x xt t tx x u a
ˆ ˆ(50 )   (0)  ( cos37 )   (0)= + ° +u ti i

or 50   0.8 = ut ... 1

21
2( )       = + +
GG G G

o y yt t ty y u a
21

2
ˆ ˆ ˆ( 10  )  (0) ( sin 37 ) ( 10 )− = + ° + −u t tj j j

or ... 2210  0.6 5− = −ut t

Solving equations 1 and 2 for u (and t) gives

u =  20.2  m s-1

Does this answer makes sense?
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A projectile is fired from a horizontal spring-loaded gun 
aimed directly (along the line of sight) at a distant target. 
The pull of gravity causes the projectile to fall in flight and 
hit a distance y beneath the bull’s eye. To hit the bull’s eye, 
the gun should be aimed along a line of sight above the 
bull’s eye a vertical distance

(A) of y, exactly
(B) slightly lower than y
(C) slightly higher than y
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Example 2

You are on the target range preparing to shoot a new rifle when 
it occurs to you that you would like to know how fast the bullet
leaves the gun (the muzzle velocity).  You bring the rifle up to
shoulder level and aim it horizontally at the target centre.  
Carefully you squeeze off the shot at the target which is  100 m
away.  When you collect the target you find that your bullet hit
22 cm  below where you aimed.
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Example 3

You did so well at university you get a job in the airforce as a 
helicopter pilot.   One of the maneuvers that you have to practice 
is to drop a package from a moving helicopter onto a moving 
truck on the ground.  The difficulty is to know what speed to fly 
relative to the ground. You are flying horizontally at an altitude 
of  100 m  and you know that when you drop the package, the 
truck will be 125 m  ahead of you (measured along the road) and 
it will be traveling along the flat road at  60 km h-1.  
You estimate the height of the truck above the road to be  3 m.
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A battleship simultaneously fires two shells at the same initial
speed at enemy ships. If the shells follow the parabolic 
trajectories shown, which ship gets hit first?

A B

(A)  A
(B)  B
(C)  both at the same time



85

Something to think about:  For a given (fixed) launch velocity  , 
what launch angle θ of the projectile will given the largest range 
on horizontal ground?

Gu

θ

Gu

î

ĵ

xmax

For this simple case, our equations for the position are:

( )max cosθ=x u t and ( ) 21
20 sinθ= −u t gt

2

max
2 cos sinθ θ

=
ux

g
Substituting the one into the other:

Giving: 2

max
sin 2 Range,   θ

= =
ux R

g since sin 2 2cos sinθ θ θ=
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2 sin 2Range,   θ
=

uR
g

For a projectile on horizontal ground:

It is clear that for a given u, and since g is constant, R is 
maximum when                 is maximum ( = 1 ) ,
i.e.   when 2θ = 90° or   θ = 45° .

sin 2θ

We can also see that (except for θ = 45°), there are always two 
angles that give the same R.

For example, θ = 30° and θ = 60° will give the same R, since
sin (2 × 30°)  =  sin (60°)  =  sin (120°)  =  sin (2 × 60°) 

x

y

θ = 45°

θ = 30°

θ = 60°

For the same 
launch speed u:
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Relative velocities

Say that you are travelling in train A 
moving at 20 m s-1 î

-1ˆ   20   m s=
G

AEv i
(velocity of train A relative to the earth E)

A second train (B) moving at 
20 m s-1           (towards you). 

-1ˆ    20( )  m s= −
G

BEv i
(velocity of train B relative to the earth E)

Then we can write

G
AEv

Then

ˆ( )−i
G

BEv

At what velocity does train B appear to be approaching you 
(in train A)?

In other words, what is         ?
(the velocity of B relative to A, or as “seen” by A, or in 
the reference frame of A)

G
BAv
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= +
G G G

BA BE EAv v vVector equation:

= −
G G

BE AEv v
-1ˆ ˆ 20( )  20( ) m s= − −i i

-1ˆ  40   m s= − i
The velocity of train B in the reference frame 
of train A is                     .
It is as if we (in train A) are at rest and we attribute all the
velocity to train B.

-1ˆ 40   m s− i

In general:

...= + + + + + +
G G G G G G G

AX AB BC CD DE VW WXv v v v v v v

note
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Another example

Bugs walks with a velocity of                     .  At the same time 
Magobbi is walking nearby with a velocity of                    .
What is the velocity of Bugs in the reference frame of Magobbi?

-1ˆ12   m s− i
-18   m s−

G
j

= +
G G G

BM BE EMv v v

= −
G G

BE MEv v
-1ˆ ˆ 12  ( 8 ) m s= − − −i j

-1ˆ ˆ 12 8  m s∴ = − +
G

BMv i j
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... and another example

Bugs walks with a velocity of                    .  The velocity of Bugs 
relative to Magobbi is 3 m s-1 at 30 ° to the    -axis.
What is the velocity of Magobbi relative to the Earth?

î

-12   m s
G
j

= +
G G G

BM BE EMv v v
= −

G G G
BM BE MEv v v

∴ = −
G G G

ME BE BMv v v



91

Relative velocities continued ...

Suppose we have a boat that can travel at a maximum 
speed of 40 km h-1 in still water. However, the river is 
flowing at 10 km h-1 parallel to the river bank. 
In what direction should we head in order to travel directly 
across the river?
At what velocity will we be travelling relative to someone 
standing on the shore?
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Use a velocity vector diagram:

G
BEv

G
WEv

G
BWv

G
WEv velocity of the water relative to the 

earth (the river current)
G

WEv = 10 km h-1

G
BWv velocity of the boat relative to the water

G
BWvθ = 40 km h-1

velocity of the boat relative to the 
shore (the resultant)

G
BEv

= +
G G G

BE BW WEv v v

The resultant is what an observer on the river 
bank sees the boat doing.
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The speed of an airplane relative to the ground is affected by 
wind. When an airplane flies in the direction of a wind (tailwind), 
then it has a greater groundspeed. When an airplane flies directly 
into the wind (headwind), then it has a smaller groundspeed.
Suppose an airplane flies with a 90-degree crosswind (the nose 
pointing in a direction perpendicular to the wind direction). Will 
its groundspeed be more, less, or the same as in still air?

(A) more           (B) less (c) the same



94

An airplane makes a straight back-and-forth round 
trip, always at the same airspeed, between two cities. 
If it encounters a mild steady tailwind going, and the 
same steady headwind returning, will the round trip 
take more, less, or the same time as with no wind? 

(A) more time
(B) less time
(C) the same time
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Relative motion ... a harder problem

An aeroplane A can travel at a maximum speed of 500 km h-1 in 
still air. It is required to intercept plane B which is initially 
60 km NE of A and flying west at 250 km h-1. There is no wind.
In what direction must A fly in order to intercept B?
How long will it take before they meet?

G
AEv -1 =  500 km hG

AEvvelocity of A relative to the earth
G

BEv -1ˆ250( )  km h= −
G

BEv ivelocity of B relative to the earth
G

ABv velocity of A relative to B

= +
G G G

AB AE EBv v v
G G G

G
ABvThe direction of          is NE

î

ĵ
N

EW

S
= −AB AE BEv v vor

This effectively brings B to rest.
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( )= + −
G G G

AB AE BEv v v
−
G

BEv
Get angle θ using the sine rule:

G
ABv

G
AEv

θ

45°

45° sin sin 45
250 500
θ °
=

Giving θ = 20.7°

Therefore plane A must fly in direction 
45° + 20.7° = 65.7 °

G
ABvGet           using the cosine rule:

2 2 2 cos(180 65.7 )= + − °− °
G G G G G

AB AE BE AE BEv v v v v
-1644.5  km hAB∴ =vG

Time taken for plane A to get to plane B:

-1

60 km  =  0.093 hours =  5.6 minutes
644.5  km h

= =G
AB

dt
v
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Suppose that you and a pair of life 
preservers are floating down a fast 
flowing river, as shown.
You wish to get to either of the life 
preservers for safety. One is 3 metres
downstream from you and the other is 
3 metres upstream from you. 
Which can you swim to in the shortest 
time?

(A) the preserver upstream
(B) the preserver downstream
(C) both require the same time.
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Uniform circular motion y

∆
Gr

irG

x

G
iv

G
fr

G
fv

θ

Consider a particle travelling along 
a circular path at a constant speed v, 
where         is the linear (or 
tangential) velocity.
We consider two positions as shown 
(“initial” and “final”). 

Gv

∆ = −
G G G

f iv v v
∆ = −
G G GThen

and f ir r r
Since both      and      are both time dependent, we can write:

( ) ( )∆ = + ∆ −
G G Gt t tv v v

( ) ( ) ∆ = + ∆ −
G G Gt t tr r r

Even though     is constant, there is an acceleration acting since the 
direction of       is different at each     .
What is the magnitude and direction of this acceleration?

Gv

GvGv Gr

Gr

and
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What is the direction of the acceleration of the particle?

∆
Gv

( )=
G G

i tv v
( )= + ∆

G G
f t tv v

θ

As                ,             and the direction  of         points towards 
the centre of the circle (at right angles to       itself).

0t∆ → 0θ → ∆vG

vG

We call this acceleration the centripetal acceleration     .       caG

Whenever a body is moving in a 
circle, there must be a centripetal 
acceleration present (and hence a 
centripetal force - see later.)

vG
caG



101

It is useful to define an alternative coordinate system when 
describing rotation. Instead of defining a set of Cartesian 
coordinates            with the origin at the axis of the rotation, it 
is sometimes useful to define a set of Cartesian axes with the 
origin at the position of the rotating object, where:

radial direction
tangential direction
vertical direction

ˆ ˆ ˆ ,  ,  i j k

r̂

ŷ
t̂

r̂
t̂

ŷ

r̂

t̂

ŷ out the page
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The centripetal acceleration is then       ˆc ca=a rG

What about the magnitude of       ?

... centripetal acceleration continued ... 

∆
Gv

G
ivG

fv
θ

∆
Gr

irG

G
fr

θ

G
ca

We have two similar triangles:

f i f i∆ ∆∆ ∆r r r v v vG G G G G G&and

∆ ∆
∴ =

r v
r v

= =
G G

f i rr r= =
G G

f i vv vsince and

therefore ∆ ∆
≈

v s
v r

For small θ : ∆ = ∆r s the path length

∆ ≈ ∆
vv s
r

∆
Gr

irG

G
fr

θ

s∆

or
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... centripetal acceleration continued ... 

∆ ≈ ∆
vv s
r

As                    :0∆ →t ∆ ≈ ∆
vv s
r

0 0
lim lim
∆ → ∆ →

∆ ∆⎛ ⎞= ⎜ ⎟∆ ∆⎝ ⎠t t

v v s
t r t

So

0
      lim

∆ →

∆
=

∆c t

v sa
r t

v

2

     ∴ =c
va
r

2

ˆ    =
G

c
v
r

a ror

Whenever you observe a body moving in a circle or other 
curved path, there must be a centripetal force acting (which is 
provided by some centripetal force ... see later).
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Non-uniform circular motion

Apart from the centripetal acceleration        which is always acting 
when a body is moving in a circle, there may also be a tangential 
acceleration        acting, if v is no constant (i.e. the body is 
speeding up or slowing down as it travels on its circular path.)

G
ca

G
ta

( )( ) =
GG

t
d tt

dt
vawhere

= +
G G G

t ca a aThe total acceleration acting on the body is

Note that at any position on the circle,       is always 
perpendicular to       .

G
caG

ta
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Circular motion in terms of angular variables

Consider a particle of 
mass m rotating in the 
x-y plane about the 
z-axis.

x

rG

θ

y

t = 0

t = t

s(t)

z out
We can, of course, use 
(x, y) to specify the 
position of the particle, 
but sometimes it’s 
more convenient to use 
(r,θ).

Remember ?                    radians
s
r

θ =
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Then similarly, as for translational kinematics for 1D linear 
motion, we can define:

2 1

2 1
av t t t

θ θ θω − ∆
= =

− ∆
average
angular speed

rad s-1

0

( )( ) lim  = 
t

d tt
t dt
θ θω

∆ →

∆
=

∆
instantaneous
angular speed

rad s-1

average
angular acceleration 
(magnitude)

2 1

2 1
av t t t

ω ω ωα − ∆
= =

− ∆
rad s-2

instantaneous
angular acceleration
(magnitude)

0

( )( ) lim
t

d tt
t dt
ω ωα

∆ →

∆
= =

∆
rad s-2
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What about the direction of these angular variables?

It is possible to use a vector to describe a rotational 
variable, if we follow the following convention:

Using your right hand with your 
fingers curling in the sense of the 
rotation:

clockwise 
rotationDirections of       : ωG anticlockwise 

rotation

ωGωG into pageout of page
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At any instant the object has a linear (tangential) velocity    
and a linear (tangential) acceleration       

( )t tvG

( )t taG

where                                        and 
t

( )( )   d tt
dt

=
rv
GG t

t
( )( ) d tt

dt
=

va
GG

ˆ =      sin  t rω θ× =v ω r tG GG
However

(For circular motion               ) tv wr=

ˆ =    sin  t rα θ× =a α r tG G Gand

(For circular motion               ) ta rα=

Then in      directionr̂
2 2 2

2 t
c

v r r
r r

ω ω= = =aG
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So we can write for circular motion :

( )  ( ) ( )t t t rω=vG t̂(   )t m s-1

( )  ( ) ( )t t t rα=aG t̂(   )t m s-2

2( )  ( )  ( )c t t rω=aG t m s-2 r̂(   )

We can use the same kinematic equations what we used for 
the linear motion in the case of circular motion

linear motion circular motion
21

2( )        or t r ut at= + + 21
0 2( )        ot t tθ θ ω α= + +

( )      v t u at= + 0( )      t tω ω α= +
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A ladybug sits at the outer edge of a merry-go-round, and a 
gentleman bug sits halfway between her and the axis of rotation.
The merry-go-round makes a complete revolution once every 
second.  

The gentleman bug’s angular speed is

(A)  half the ladybug’s
(B)  the same as the ladybug’s
(C)  twice the ladybug’s
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A ladybug sits at the outer edge of a merry-go-round that is 
turning and slowing down. 

The vector expressing her angular velocity is in the

(A) direction

(B) direction

(C) direction

k̂

ˆ−k

 ̂−j

k̂ ĵ

î
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A ladybug sits at the outer edge of a merry-go-round that is 
turning and slowing down. 

The vector expressing her angular acceleration is in the

(A) direction

(B) direction

(C) direction

k̂ ĵ

î

k̂

ˆ−k

 ̂−j
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Example 1

A 5 kg mass is moving in a circle of radius 2 m. 
At t = 0 it is at θ = 45º and at t = 6 s, it is at  θ = 105º.

(a) If the tangential acceleration of the mass is 12 m s-2, 
what was its initial angular velocity (i.e. at t = 0) ?

(b) What is the tangential velocity of the mass at θ = 105º ?
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Example 2

If the angular position of a body is given by    

radians, 

what is the angular acceleration of the body at   t = 2 seconds?

2 3ˆ ˆ ˆ( )    (3     5 )       5      5  t t t t tθ = + + −i j k
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