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Spectral Theory

Spectral Theory

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

7.1 Eigenvalues And Eigenvectors Of A Matrix

The field of scalars in spectral theory is best taken to equal C although I will sometimes
refer to it as F when it could be either C or R.

Definition 7.1.1 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (7.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (charac-
teristic value) of the matrix M.

Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix M, is denoted by σ (M) and is referred to as
the spectrum of M.

Eigenvectors are vectors which are shrunk, stretched or reflected upon multiplication by
a matrix. How can they be identified? Suppose x satisfies 7.1. Then

(λI −M)x = 0

for some x ̸= 0. Therefore, the matrix M − λI cannot have an inverse and so by Theorem
3.3.18

det (λI −M) = 0. (7.2)

In other words, λmust be a zero of the characteristic polynomial. SinceM is an n×nmatrix,
it follows from the theorem on expanding a matrix by its cofactor that this is a polynomial
equation of degree n. As such, it has a solution, λ ∈ C. Is it actually an eigenvalue? The
answer is yes and this follows from Theorem 3.3.26 on Page 123. Since det (λI −M) = 0
the matrix λI −M cannot be one to one and so there exists a nonzero vector, x such that
(λI −M)x = 0. This proves the following corollary.

Corollary 7.1.2 Let M be an n×n matrix and det (M − λI) = 0. Then there exists x ∈ Cn

such that (M − λI)x = 0.
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Spectral Theory

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

7.1 Eigenvalues And Eigenvectors Of A Matrix

The field of scalars in spectral theory is best taken to equal C although I will sometimes
refer to it as F when it could be either C or R.

Definition 7.1.1 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (7.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (charac-
teristic value) of the matrix M.

Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix M, is denoted by σ (M) and is referred to as
the spectrum of M.

Eigenvectors are vectors which are shrunk, stretched or reflected upon multiplication by
a matrix. How can they be identified? Suppose x satisfies 7.1. Then

(λI −M)x = 0

for some x ̸= 0. Therefore, the matrix M − λI cannot have an inverse and so by Theorem
3.3.18

det (λI −M) = 0. (7.2)

In other words, λmust be a zero of the characteristic polynomial. SinceM is an n×nmatrix,
it follows from the theorem on expanding a matrix by its cofactor that this is a polynomial
equation of degree n. As such, it has a solution, λ ∈ C. Is it actually an eigenvalue? The
answer is yes and this follows from Theorem 3.3.26 on Page 123. Since det (λI −M) = 0
the matrix λI −M cannot be one to one and so there exists a nonzero vector, x such that
(λI −M)x = 0. This proves the following corollary.

Corollary 7.1.2 Let M be an n×n matrix and det (M − λI) = 0. Then there exists x ∈ Cn

such that (M − λI)x = 0.
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Spectral Theory

As an example, consider the following.

Example 7.1.3 Find the eigenvalues and eigenvectors for the matrix

A =




5 −10 −5
2 14 2
−4 −8 6


 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det


λ




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6




 = 0

When you expand this determinant, you find the equation is

(λ− 5)
(
λ2 − 20λ+ 100

)
= 0

and so the eigenvalues are
5, 10, 10.

I have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ+ 100 = (λ− 10)
2
.

Having found the eigenvalues, it only remains to find the eigenvectors. First find the
eigenvectors for λ = 5. As explained above, this requires you to solve the equation,


5




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6









x
y
z


 =




0
0
0


 .

That is you need to find the solution to




0 10 5
−2 −9 −2
4 8 −1







x
y
z


 =




0
0
0




By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is




0 10 5 0
−2 −9 −2 0
4 8 −1 0


 . (7.3)

The reduced row echelon form is



1 0 −5
4 0

0 1 1
2 0

0 0 0 0




and so the solution is any vector of the form




5
4z−1
2 z
z


 = z




5
4−1
2
1




http://bookboon.com/
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where z ∈ F. You would obtain the same collection of vectors if you replaced z with 4z.
Thus a simpler description for the solutions to this system of equations whose augmented
matrix is in 7.3 is

z




5
−2
4


 (7.4)

where z ∈ F. Now you need to remember that you can’t take z = 0 because this would
result in the zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in 7.4 results in an eigenvector. It is a good
idea to check your work! To do so, I will take the original matrix and multiply by this vector
and see if I get 5 times this vector.




5 −10 −5
2 14 2
−4 −8 6







5
−2
4


 =




25
−10
20


 = 5




5
−2
4




so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The variable, z is called a free variable or sometimes a parameter. The set of vectors in
7.4 is called the eigenspace and it equals ker (λI −A) . You should observe that in this case
the eigenspace has dimension 1 because there is one vector which spans the eigenspace. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,


10




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6









x
y
z


 =




0
0
0




That is you must find the solutions to




5 10 5
−2 −4 −2
4 8 4







x
y
z


 =




0
0
0




which reduces to consideration of the augmented matrix




5 10 5 0
−2 −4 −2 0
4 8 4 0




The row reduced echelon form for this matrix is



1 2 1 0
0 0 0 0
0 0 0 0




http://bookboon.com/
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and so the eigenvectors are of the form




−2y − z
y
z


 = y




−2
1
0


+ z




−1
0
1


 .

You can’t pick z and y both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!

However, every other choice of z and y does result in an eigenvector for the eigenvalue
λ = 10. As in the case for λ = 5 you should check your work if you care about getting it
right. 


5 −10 −5
2 14 2
−4 −8 6







−1
0
1


 =




−10
0
10


 = 10




−1
0
1




so it worked. The other vector will also work. Check it.
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The above example shows how to find eigenvectors and eigenvalues algebraically. You
may have noticed it is a bit long. Sometimes students try to first row reduce the matrix
before looking for eigenvalues. This is a terrible idea because row operations destroy the
value of the eigenvalues. The eigenvalue problem is really not about row operations. A
general rule to remember about the eigenvalue problem is this.

If it is not long and hard it is usually wrong!

The eigenvalue problem is the hardest problem in algebra and people still do research on
ways to find eigenvalues. Now if you are so fortunate as to find the eigenvalues as in the
above example, then finding the eigenvectors does reduce to row operations and this part
of the problem is easy. However, finding the eigenvalues is anything but easy because for
an n × n matrix, it involves solving a polynomial equation of degree n and none of us are
very good at doing this. If you only find a good approximation to the eigenvalue, it won’t
work. It either is or is not an eigenvalue and if it is not, the only solution to the equation,
(λI −M)x = 0 will be the zero solution as explained above and

Eigenvectors are never equal to zero!

Here is another example.

Example 7.1.4 Let

A =




2 2 −2
1 3 −1
−1 1 1




First find the eigenvalues.

det


λ




1 0 0
0 1 0
0 0 1


−




2 2 −2
1 3 −1
−1 1 1




 = 0

This is λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!

Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is



2 2 −2 0
1 3 −1 0
−1 1 1 0




and the row reduced echelon form is



1 0 −1 0
0 1 0 0
0 0 0 0




Therefore, the eigenvectors are of the form

z




1
0
1




where z ̸= 0.
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Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations
needed to find these eigenvectors is




0 −2 2 0
−1 −1 1 0
1 −1 1 0




and the row reduced echelon form is



1 0 0 0
0 1 −1 0
0 0 0 0




and so the eigenvectors are of the form

z




0
1
1




where z ̸= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations

needed to find these eigenvectors is



2 −2 2 0
−1 1 1 0
1 −1 3 0




and the row reduced echelon form is



1 −1 0 0
0 0 1 0
0 0 0 0


 .

Therefore, the eigenvectors are of the form

y




1
1
0




where y ̸= 0.

Example 7.1.5 Let

A =




2 −2 −1
−2 −1 −2
14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)2 = 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve


3




1 0 0
0 1 0
0 0 1


−




2 −2 −1
−2 −1 −2
14 25 14









x
y
z


 =




0
0
0


 .
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Using routine row operations, the eigenvectors are nonzero vectors of the form




z
−z
z


 = z




1
−1
1




Next consider the eigenvectors for λ = 6. This requires you to solve


6




1 0 0
0 1 0
0 0 1


−




2 −2 −1
−2 −1 −2
14 25 14









x
y
z


 =




0
0
0




and using the usual procedures yields the eigenvectors for λ = 6 are of the form

z




−1
8

− 1
4
1



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or written more simply,

z




−1
−2
8




where z ∈ F.
Note that in this example the eigenspace for the eigenvalue λ = 6 is of dimension 1

because there is only one parameter which can be chosen. However, this eigenvalue is of
multiplicity two as a root to the characteristic equation.

Definition 7.1.6 If A is an n× n matrix with the property that some eigenvalue has alge-
braic multiplicity as a root of the characteristic equation which is greater than the dimension
of the eigenspace associated with this eigenvalue, then the matrix is called defective.

There may be repeated roots to the characteristic equation, 7.2 and it is not known
whether the dimension of the eigenspace equals the multiplicity of the eigenvalue. However,
the following theorem is available.
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Theorem 7.1.7 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof. Suppose the claim of the lemma is not true. Then there exists a subset of this
set of vectors

{w1, · · · ,wr} ⊆ {v1, · · · ,vk}

such that
r∑

j=1

cjwj = 0 (7.5)

where each cj ̸= 0. Say Mwj = µjwj where

{µ1, · · · , µr} ⊆ {λ1, · · · , λk} ,

the µj being distinct eigenvalues of M . Out of all such subsets, let this one be such that r
is as small as possible. Then necessarily, r > 1 because otherwise, c1w1 = 0 which would
imply w1 = 0, which is not allowed for eigenvectors.

Now apply M to both sides of 7.5.

r∑
j=1

cjµjwj = 0. (7.6)

Next pick µk ̸= 0 and multiply both sides of 7.5 by µk. Such a µk exists because r > 1.
Thus

r∑
j=1

cjµkwj = 0 (7.7)

Subtract the sum in 7.7 from the sum in 7.6 to obtain

r∑
j=1

cj
(
µk − µj

)
wj = 0

Now one of the constants cj
(
µk − µj

)
equals 0, when j = k. Therefore, r was not as small

as possible after all. �
In words, this theorem says that eigenvectors associated with distinct eigenvalues are

linearly independent.
Sometimes you have to consider eigenvalues which are complex numbers. This occurs in

differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.

Example 7.1.8 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0
0 2 −1
0 1 2


 .

You need to find the eigenvalues. Solve

det


λ




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2




 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ+ 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.
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There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve


(2 + i)




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2









x
y
z


 =




0
0
0




In other words, you must consider the augmented matrix




1 + i 0 0 0
0 i 1 0
0 −1 i 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields 


1 0 0 0
0 i 1 0
0 0 0 0




Now multiply the second row by −i to obtain




1 0 0 0
0 1 −i 0
0 0 0 0




Therefore, the eigenvectors are of the form

z




0
i
1


 .

You should find the eigenvectors for λ = 2− i. These are

z




0
−i
1


 .

As usual, if you want to get it right you had better check it.




1 0 0
0 2 −1
0 1 2







0
−i
1


 =




0
−1− 2i
2− i


 = (2− i)




0
−i
1




so it worked.

7.2 Some Applications Of Eigenvalues And Eigenvec-
tors

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar decomposition, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.
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The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix U which is responsible for stretching and compressing. This
is why in continuum mechanics, the stress is often taken to depend on U which is known in
this context as the right Cauchy Green strain tensor. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts
is also important in applications to geometric measure theory an interesting field of study
in mathematics and to the study of quadratic forms which occur in many applications such
as statistics. Here I am emphasizing the application to mechanics in which the eigenvectors
of U determine the principle directions, those directions in which the material is stretched
or compressed to the maximum extent.

Example 7.2.1 Find the principle directions determined by the matrix




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .

It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is compressed, becoming locally half as long. It remains to find these
directions. First consider the eigenvector for 3. It is necessary to solve


3




1 0 0
0 1 0
0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44









x
y
z


 =




0
0
0




Thus the augmented matrix for this system of equations is




4
11 − 6

11 − 6
11 0

− 6
11

91
44 − 19

44 0
− 6

11 − 19
44

91
44 0



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The row reduced echelon form is



1 0 −3 0
0 1 −1 0
0 0 0 0




and so the principle direction for the eigenvalue 3 in which the material is stretched to the
maximum extent is 


3
1
1


 .

A direction vector in this direction is



3/
√
11

1/
√
11

1/
√
11


 .

You should show that the direction in which the material is compressed the most is in the
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direction 


0

−1/
√
2

1/
√
2




Note this is meaningful information which you would have a hard time finding without
the theory of eigenvectors and eigenvalues.

Another application is to the problem of finding solutions to systems of differential
equations. It turns out that vibrating systems involving masses and springs can be studied
in the form

x′′ = Ax (7.8)

where A is a real symmetric n × n matrix which has nonpositive eigenvalues. This is
analogous to the case of the scalar equation for undamped oscillation, x′′ + ω2x = 0. The
main difference is that here the scalar ω2 is replaced with the matrix −A. Consider the
problem of finding solutions to 7.8. You look for a solution which is in the form

x (t) = veλt (7.9)

and substitute this into 7.8. Thus

x′′ = vλ2eλt = eλtAv

and so
λ2v = Av.

Therefore, λ2 needs to be an eigenvalue of A and v needs to be an eigenvector. Since A
has nonpositive eigenvalues, λ2 = −a2 and so λ = ±ia where −a2 is an eigenvalue of A.
Corresponding to this you obtain solutions of the form

x (t) = v cos (at) ,v sin (at) .

Note these solutions oscillate because of the cos (at) and sin (at) in the solutions. Here is
an example.

Example 7.2.2 Find oscillatory solutions to the system of differential equations, x′′ = Ax
where

A =




− 5
3 − 1

3 − 1
3

− 1
3 − 13

6
5
6

− 1
3

5
6 − 13

6


 .

The eigenvalues are −1,−2, and −3.

According to the above, you can find solutions by looking for the eigenvectors. Consider
the eigenvectors for −3. The augmented matrix for finding the eigenvectors is




− 4
3

1
3

1
3 0

1
3 − 5

6 − 5
6 0

1
3 − 5

6 − 5
6 0




and its row echelon form is 


1 0 0 0
0 1 1 0
0 0 0 0


 .
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Therefore, the eigenvectors are of the form

v = z




0
−1
1


 .

It follows 


0
−1
1


 cos

(√
3t
)
,




0
−1
1


 sin

(√
3t
)

are both solutions to the system of differential equations. You can find other oscillatory
solutions in the same way by considering the other eigenvalues. You might try checking
these answers to verify they work.

This is just a special case of a procedure used in differential equations to obtain closed
form solutions to systems of differential equations using linear algebra. The overall philos-
ophy is to take one of the easiest problems in analysis and change it into the eigenvalue
problem which is the most difficult problem in algebra. However, when it works, it gives
precise solutions in terms of known functions.

7.3 Exercises

1. If A is the matrix of a linear transformation which rotates all vectors in R2 through
30◦, explain why A cannot have any real eigenvalues.

2. If A is an n×n matrix and c is a nonzero constant, compare the eigenvalues of A and
cA.

3. If A is an invertible n × n matrix, compare the eigenvalues of A and A−1. More
generally, for m an arbitrary integer, compare the eigenvalues of A and Am.

4. Let A,B be invertible n × n matrices which commute. That is, AB = BA. Suppose
x is an eigenvector of B. Show that then Ax must also be an eigenvector for B.

5. Suppose A is an n × n matrix and it satisfies Am = A for some m a positive integer
larger than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.

6. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax+ by) = λ (ax+ by) .

Does this imply that ax+ by is an eigenvector? Explain.

7. Find the eigenvalues and eigenvectors of the matrix




−1 −1 7
−1 0 4
−1 −1 5


 . Determine

whether the matrix is defective.

8. Find the eigenvalues and eigenvectors of the matrix




−3 −7 19
−2 −1 8
−2 −3 10


 .Determine

whether the matrix is defective.

9. Find the eigenvalues and eigenvectors of the matrix




−7 −12 30
−3 −7 15
−3 −6 14


 .
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10. Find the eigenvalues and eigenvectors of the matrix




7 −2 0
8 −1 0
−2 4 6


 . Determine

whether the matrix is defective.

11. Find the eigenvalues and eigenvectors of the matrix




3 −2 −1
0 5 1
0 2 4


 .

12. Find the eigenvalues and eigenvectors of the matrix




6 8 −23
4 5 −16
3 4 −12


. Determine

whether the matrix is defective.

13. Find the eigenvalues and eigenvectors of the matrix




5 2 −5
12 3 −10
12 4 −11


 . Determine

whether the matrix is defective.

10. Find the eigenvalues and eigenvectors of the matrix




7 −2 0
8 −1 0
−2 4 6


 . Determine

whether the matrix is defective.

11. Find the eigenvalues and eigenvectors of the matrix




3 −2 −1
0 5 1
0 2 4


 .

12. Find the eigenvalues and eigenvectors of the matrix




6 8 −23
4 5 −16
3 4 −12


. Determine

whether the matrix is defective.

13. Find the eigenvalues and eigenvectors of the matrix




5 2 −5
12 3 −10
12 4 −11


 . Determine

whether the matrix is defective.
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14. Find the eigenvalues and eigenvectors of the matrix




20 9 −18
6 5 −6
30 14 −27


 . Determine

whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix




1 26 −17
4 −4 4
−9 −18 9


 . Determine

whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix




3 −1 −2
11 3 −9
8 0 −6


 . Determine

whether the matrix is defective.

17. Find the eigenvalues and eigenvectors of the matrix




−2 1 2
−11 −2 9
−8 0 7


 . Determine

whether the matrix is defective.

18. Find the eigenvalues and eigenvectors of the matrix




2 1 −1
2 3 −2
2 2 −1


 .Determine whether

the matrix is defective.

19. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 .

20. Find the eigenvalues and eigenvectors of the matrix




9 6 −3
0 6 0
−3 −6 9


 . Determine

whether the matrix is defective.

21. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 . De-

termine whether the matrix is defective.

22. Find the complex eigenvalues and eigenvectors of the matrix




−4 2 0
2 −4 0
−2 2 −2


 .

Determine whether the matrix is defective.

23. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 .

Determine whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0
−2 4 0
−2 2 6


 . Deter-

mine whether the matrix is defective.

25. Here is a matrix. 


1 a 0 0
0 1 b 0
0 0 2 c
0 0 0 2



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Find values of a, b, c for which the matrix is defective and values of a, b, c for which it
is nondefective.

26. Here is a matrix. 


a 1 0
0 b 1
0 0 c




where a, b, c are numbers. Show this is sometimes defective depending on the choice
of a, b, c. What is an easy case which will ensure it is not defective?

27. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a+ ib is a complex number whose conjugate equals a− ib.

28. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvalues of a real symmetric matrix are real and for each eigenvalue, it
has a real eigenvector.

29. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1.
In words, the eigenvalues are either 0 or pure imaginary.

30. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

31. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

32. Suppose A is an n × n matrix having all real eigenvalues which are distinct. Show
there exists S such that S−1AS = D, a diagonal matrix. If

D =




λ1 0
. . .

0 λn




define eD by

eD ≡




eλ1 0
. . .

0 eλn




and define
eA ≡ SeDS−1.

Next show that if A is as just described, so is tA where t is a real number and the
eigenvalues of At are tλk. If you differentiate a matrix of functions entry by entry so
that for the ijth entry of A′ (t) you get a′ij (t) where aij (t) is the ijth entry of A (t) ,
show

d

dt

(
eAt

)
= AeAt

Next show det
(
eAt

)
̸= 0. This is called the matrix exponential. Note I have only

defined it for the case where the eigenvalues of A are real, but the same procedure will
work even for complex eigenvalues. All you have to do is to define what is meant by

ea+ib.
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33. Find the principle directions determined by the matrix




7
12 − 1

4
1
6

− 1
4

7
12 − 1

6
1
6 − 1

6
2
3


 . The

eigenvalues are 1
3 , 1, and

1
2 listed according to multiplicity.

34. Find the principle directions determined by the matrix


5
3 − 1

3 − 1
3

− 1
3

7
6

1
6

− 1
3

1
6

7
6


 The eigenvalues are 1, 2, and 1. What is the physical interpreta-

tion of the repeated eigenvalue?

35. Find oscillatory solutions to the system of differential equations, x′′ = Ax where A =


−3 −1 −1
−1 −2 0
−1 0 −2


 The eigenvalues are −1,−4, and −2.

36. Let A and B be n× n matrices and let the columns of B be

b1, · · · ,bn

and the rows of A are
aT1 , · · · , aTn .

Show the columns of AB are
Ab1 · · ·Abn

and the rows of AB are
aT1 B · · ·aTnB.
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37. Let M be an n × n matrix. Then define the adjoint of M , denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗

=

(
2 1− i
−i 3

)
.

A matrix M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real.

38. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros every-
where except on the main diagonal) having the eigenvalues of M on the main diagonal.
When this can be done the matrix is said to be diagonalizable.

39. Show that a n×n matrix M is diagonalizable if and only if Fn has a basis of eigenvec-
tors. Hint: The first part is done in Problem 38. It only remains to show that if the
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matrix can be diagonalized by some matrix S giving D = S−1MS for D a diagonal
matrix, then it has a basis of eigenvectors. Try using the columns of the matrix S.

40. Let

A =




1 2
3 4

2
0

0 1 3




and let

B =




0 1
1 1

2 1




Multiply AB verifying the block multiplication formula. Here A11 =

(
1 2
3 4

)
, A12 =

(
2
0

)
, A21 =

(
0 1

)
and A22 = (3) .

41. Suppose A,B are n×n matrices and λ is a nonzero eigenvalue of AB. Show that then
it is also an eigenvalue of BA. Hint: Use the definition of what it means for λ to be
an eigenvalue. That is,

ABx = λx

where x ̸= 0. Maybe you should multiply both sides by B.

42. Using the above problem show that if A,B are n× n matrices, it is not possible that
AB − BA = aI for any a ̸= 0. Hint: First show that if A is a matrix, then the
eigenvalues of A− aI are λ− a where λ is an eigenvalue of A.

43. Consider the following matrix.

C =




0 · · · 0 −a0
1 0 −a1

. . .
. . .

...
0 1 −an−1




Show det (λI − C) = a0+λa1+ · · · an−1λ
n−1+λn. This matrix is called a companion

matrix for the given polynomial.

44. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn}
where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these
eigenvectors. Thus

x0 =
n∑

j=1

ajvj
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Now explain why

x (k) =
n∑

j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

45. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also
suppose the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on
this. Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

46. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

47. Suppose the characteristic polynomial of an n×n matrix A is 1−λn. Find Amn where
m is an integer. Hint: Note first that A is nondefective. Why?

48. Sometimes sequences come in terms of a recursion formula. An example is the Fi-
bonacci sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.
(

xn+1

xn

)
=

(
1 1
1 0

)(
xn

xn−1

)
,

(
x1

x0

)
=

(
1
1

)

Now use the technique of Problem 44 to find a formula for xn.

49. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).

7.4 Schur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Schur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 7.4.1 Let {x1, · · · ,xn} be a basis for Fn. Then there exists an orthonormal ba-
sis for Fn, {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span (u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1,
span (u1) = span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · ,
uk have been chosen such that (uj · ul) = δjl and span (x1, · · · ,xk) = span (u1, · · · ,uk).
Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj���xk+1 −

∑k
j=1 (xk+1 · uj)uj

���
, (7.10)
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where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving 7.10 for xk+1 and it
follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) (uj · ul)


 =

C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) δlj


 = C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. �

The process by which these vectors were generated is called the Gram Schmidt process.
Here is a fundamental definition.

Definition 7.4.2 An n×n matrix U, is unitary if UU∗ = I = U∗U where U∗ is defined to
be the transpose of the conjugate of U.

Proposition 7.4.3 An n×n matrix is unitary if and only if the columns are an orthonormal
set.

Proof: This follows right away from the way we multiply matrices. If U is an n × n
complex matrix, then

(U∗U)ij = u∗
iuj = (ui,uj)

and the matrix is unitary if and only if this equals δij if and only if the columns are
orthonormal. �

Theorem 7.4.4 Let A be an n×n matrix. Then there exists a unitary matrix U such that

U∗AU = T, (7.11)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
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listed according to multiplicity as roots of the characteristic equation.

Proof: The theorem is clearly true if A is a 1 × 1 matrix. Just let U = 1 the 1 × 1
matrix which has 1 down the main diagonal and zeros elsewhere. Suppose it is true for
(n− 1)× (n− 1) matrices and let A be an n× n matrix. Then let v1 be a unit eigenvector
for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use Lemma 7.4.1 to obtain {v1, · · · ,vn}, an orthonormal
basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the above, it follows U0

is unitary. Then U∗
0AU0 is of the form




λ1 ∗ · · · ∗
0
... A1

0



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where A1 is an n − 1 × n − 1 matrix. Now by induction there exists an (n− 1) × (n− 1)

unitary matrix �U1 such that
�U∗
1A1

�U1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡
(

1 0

0 �U1

)

This is a unitary matrix and

U∗
1U

∗
0AU0U1 =

(
1 0

0 �U∗
1

)(
λ1 ∗
0 A1

)(
1 0

0 �U1

)
=

(
λ1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗
= U∗

1U
∗
0 , it follows A

is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
polynomials and since the eigenvalues of T are the diagonal entries listed according to
algebraic multiplicity, �

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 7.4.5 Let A be of the form

A =




P1 · · · ∗
...

. . .
...

0 · · · Ps




where Pk is an mk ×mk matrix. Then

det (A) =
∏
k

det (Pk) .

Also, the eigenvalues of A consist of the union of the eigenvalues of the Pj.

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
kPkUk = Tk

where Tk is upper triangular. Then it follows that for

U ≡




U1 · · · 0
...

. . .
...

0 · · · Us


 , U∗ =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s




and also



U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s







P1 · · · ∗
...

. . .
...

0 · · · Ps







U1 · · · 0
...

. . .
...

0 · · · Us


 =




T1 · · · ∗
...

. . .
...

0 · · · Ts


 .

Therefore, since the determinant of an upper triangular matrix is the product of the diagonal
entries,

det (A) =
∏
k

det (Tk) =
∏
k

det (Pk) .

From the above formula, the eigenvalues of A consist of the eigenvalues of the upper trian-
gular matrices Tk, and each Tk has the same eigenvalues as Pk. �

What if A is a real matrix and you only want to consider real unitary matrices?
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Theorem 7.4.6 Let A be a real n × n matrix. Then there exists a real unitary matrix Q
and a matrix T of the form

T =




P1 · · · ∗
. . .

...
0 Pr


 (7.12)

where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A such that QTAQ = T. The matrix T is
called the real Schur form of the matrix A. Recall that a real unitary matrix is also called
an orthogonal matrix.

Proof: Suppose
Av1 = λ1v1, |v1| = 1

where λ1 is real. Then let {v1, · · · ,vn} be an orthonormal basis of vectors in Rn. Let Q0

be a matrix whose ith column is vi. Then Q∗
0AQ0 is of the form




λ1 ∗ · · · ∗
0
... A1

0



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where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 7.4.4 up to

this point.
Now consider the case where λ1 = α + iβ where β ̸= 0. It follows since A is real that

v1 = z1 + iw1 and that v1 = z1 − iw1 is an eigenvector for the eigenvalue α − iβ. Here
z1 and w1 are real vectors. Since v1 and v1 are eigenvectors corresponding to distinct
eigenvalues, they form a linearly independent set. From this it follows that {z1,w1} is an
independent set of vectors in Cn, hence in Rn. Indeed,{v1,v1} is an independent set and
also span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there exists
{u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1). For
example,

u1 = z1/ |z1| , u2 =
|z1|2 w1 − (w1 · z1) z1∣∣∣|z1|2 w1 − (w1 · z1) z1

∣∣∣
Let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix whose
ith column is ui so Q0 is a real orthogonal matrix. Then Auj are both in span (u1,u2) for

where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 7.4.4 up to

this point.
Now consider the case where λ1 = α + iβ where β ̸= 0. It follows since A is real that

v1 = z1 + iw1 and that v1 = z1 − iw1 is an eigenvector for the eigenvalue α − iβ. Here
z1 and w1 are real vectors. Since v1 and v1 are eigenvectors corresponding to distinct
eigenvalues, they form a linearly independent set. From this it follows that {z1,w1} is an
independent set of vectors in Cn, hence in Rn. Indeed,{v1,v1} is an independent set and
also span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there exists
{u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1). For
example,

u1 = z1/ |z1| , u2 =
|z1|2 w1 − (w1 · z1) z1∣∣∣|z1|2 w1 − (w1 · z1) z1

∣∣∣
Let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix whose
ith column is ui so Q0 is a real orthogonal matrix. Then Auj are both in span (u1,u2) for
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j = 1, 2 and so uT
kAuj = 0 whenever k ≥ 3. It follows that Q∗

0AQ0 is of the form

Q∗
0AQ0 =




∗ ∗ · · · ∗
∗ ∗
0
... A1

0




=

(
P1 ∗
0 A1

)

where A1 is now an n− 2× n− 2 matrix and P1 is a 2× 2 matrix. Now this is similar to A
and so two of its eigenvalues are α+ iβ and α− iβ.

Now find �Q1 an n − 2 × n − 2 matrix to put A1 in an appropriate form as above and
come up with A2 either an n− 4× n− 4 matrix or an n− 3× n− 3 matrix. Then the only
other difference is to let

Q1 =




1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... �Q1

0 0




thus putting a 2×2 identity matrix in the upper left corner rather than a one. Repeating this
process with the above modification for the case of a complex eigenvalue leads eventually
to 7.12 where Q is the product of real unitary matrices Qi above. When the block Pi is
2 × 2, its eigenvalues are a conjugate pair of eigenvalues of A and if it is 1 × 1 it is a real
eigenvalue of A.

Here is why this last claim is true

λI − T =




λI1 − P1 · · · ∗
. . .

...
0 λIr − Pr




where Ik is the 2× 2 identity matrix in the case that Pk is 2× 2 and is the number 1 in the
case where Pk is a 1× 1 matrix. Now by Lemma 7.4.5,

det (λI − T ) =

r∏
k=1

det (λIk − Pk) .

Therefore, λ is an eigenvalue of T if and only if it is an eigenvalue of some Pk. This proves
the theorem since the eigenvalues of T are the same as those of A including multiplicity
because they have the same characteristic polynomial due to the similarity of A and T. �
Corollary 7.4.7 Let A be a real n × n matrix having only real eigenvalues. Then there
exists a real orthogonal matrix Q and an upper triangular matrix T such that

QTAQ = T

and furthermore, if the eigenvalues of A are listed in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn

Q can be chosen such that T is of the form



λ1 ∗ · · · ∗

0 λ2
. . .

...
...

. . .
. . . ∗

0 · · · 0 λn



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Proof: Most of this follows right away from Theorem 7.4.6. It remains to verify the
claim that the diagonal entries can be arranged in the desired order. However, this follows
from a simple modification of the above argument. When you find v1 the eigenvalue of λ1,
just be sure λ1 is chosen to be the largest eigenvalue. Then in the rest of the argument,
always choose the largest eigenvalue at each step of the construction. �

Of course there is a similar conclusion which can be proved exactly the same way in the
case where A has complex eigenvalues.

Corollary 7.4.8 Let A be a real n× n matrix. Then there exists a real orthogonal matrix
Q and an upper triangular matrix T such that

QTAQ = T =




P1 · · · ∗
. . .

...
0 Pr




where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A. If Pk corresponds to the two eigenvalues
αk ± iβk ≡ σ (Pk) , Q can be chosen such that

|σ (P1)| ≥ |σ (P2)| ≥ · · ·

where

|σ (Pk)| ≡
√

α2
k + β2

k

The blocks, Pk can be arranged in any other order also.

Definition 7.4.9 When a linear transformation A, mapping a linear space V to V has a
basis of eigenvectors, the linear transformation is called non defective. Otherwise it is called
defective. An n×n matrix A, is called normal if AA∗ = A∗A. An important class of normal
matrices is that of the Hermitian or self adjoint matrices. An n×n matrix A is self adjoint
or Hermitian if A = A∗.

You can check that an example of a normal matrix which is neither symmetric nor

Hermitian is

(
6i − (1 + i)

√
2

(1− i)
√
2 6i

)
.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 7.4.10 If T is upper triangular and normal, then T is a diagonal matrix.

Proof:This is obviously true if T is 1 × 1. In fact, it can’t help being diagonal in this
case. Suppose then that the lemma is true for (n− 1) × (n− 1) matrices and let T be an
upper triangular normal n× n matrix. Thus T is of the form

T =

(
t11 a∗

0 T1

)
, T ∗ =

(
t11 0T

a T ∗
1

)

Then

TT ∗ =

(
t11 a∗

0 T1

)(
t11 0T

a T ∗
1

)
=

(
|t11|2 + a∗a a∗T ∗

1

T1a T1T
∗
1

)

T ∗T =

(
t11 0T

a T ∗
1

)(
t11 a∗

0 T1

)
=

(
|t11|2 t11a

∗

at11 aa∗ + T ∗
1 T1

)
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Since these two matrices are equal, it follows a = 0. But now it follows that T ∗
1 T1 = T1T

∗
1

and so by induction T1 is a diagonal matrix D1. Therefore,

T =

(
t11 0T

0 D1

)

a diagonal matrix.
Now here is a proof which doesn’t involve block multiplication. Since T is normal,

T ∗T = TT ∗. Writing this in terms of components and using the description of the adjoint
as the transpose of the conjugate, yields the following for the ikth entry of T ∗T = TT ∗.

TT∗

� �� �∑
j

tijt
∗
jk =

∑
j

tijtkj =

T∗T� �� �∑
j

t∗ijtjk =
∑
j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above. ∑

j

|t1j |2 =
∑
j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 



∗ 0 · · · 0
0 ∗ · · · ∗
...

. . .
. . .

...
0 · · · 0 ∗


 .

Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above, ∑

j

|t2j |2 =
∑
j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form




∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 0 0 ∗




.
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Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3
rows and columns are concerned. Continuing in this way, it follows T is a diagonal matrix.
�

Theorem 7.4.11 Let A be a normal matrix. Then there exists a unitary matrix U such
that U∗AU is a diagonal matrix.

Proof: From Theorem 7.4.4 there exists a unitary matrix U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
being normal is preserved under unitary similarity transformations. That is, verify that if
A is normal and if B = U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 7.4.10 it must be
a diagonal matrix. � The converse is also true. See Problem 9 below.
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Corollary 7.4.12 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, U∗AU = D implies

AU =
(
Au1 Au2 · · · Aun

)

= UD =
(
λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = u∗
iuj ≡ uj · ui.

This proves the corollary because it shows the vectors {ui} are orthonormal. Therefore,
they form a basis because every orthonormal set of vectors is linearly independent. �

Corollary 7.4.13 If A is a real symmetric matrix, then A is Hermitian and there exists a
real unitary matrix U such that UTAU = D where D is a diagonal matrix whose diagonal
entries are the eigenvalues of A. By arranging the columns of U the diagonal entries of D
can be made to appear in any order.

Proof: This follows from Theorem 7.4.6 and Corollary 7.4.12. Let

U =
(
u1 · · · un

)

Then AU = UD so

AU =
(
Au1 · · · Aun

)
=

(
u1 · · · un

)
D =

(
λ1u1 · · · λnun

)

Hence each column of U is an eigenvector of A. It follows that by rearranging these columns,
the entries of D on the main diagonal can be made to appear in any order. To see this,
consider such a rearrangement resulting in an orthogonal matrix U ′ given by

U ′ =
(
ui1 · · · uin

)

Then
U ′TAU ′ = U ′T (

Aui1 · · · Auin

)

=




uT
i1
...

uT
in


(

λi1ui1 · · · λinuin

)
=




λi1 0
. . .

0 λin


 �
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7.5 Trace And Determinant

The determinant has already been discussed. It is also clear that if A = S−1BS so that
A,B are similar, then

det (A) = det
(
S−1

)
det (S) det (B) = det

(
S−1S

)
det (B)

= det (I) det (B) = det (B)

The trace is defined in the following definition.

Definition 7.5.1 Let A be an n× n matrix whose ijth entry is denoted as aij. Then

trace (A) ≡
∑
i

aii

In other words it is the sum of the entries down the main diagonal.

Theorem 7.5.2 Let A be an m× n matrix and let B be an n×m matrix. Then

trace (AB) = trace (BA) .

Also if B = S−1AS so that A,B are similar, then

trace (A) = trace (B) .

Proof:

trace (AB) ≡
∑
i

(∑
k

AikBki

)
=

∑
k

∑
i

BkiAik = trace (BA)

Therefore,

trace (B) = trace
(
S−1AS

)
= trace

(
ASS−1

)
= trace (A) . �

Theorem 7.5.3 Let A be an n×n matrix. Then trace (A) equals the sum of the eigenvalues
of A and det (A) equals the product of the eigenvalues of A.

This is proved using Schur’s theorem and is in Problem 17 below. Another important
property of the trace is in the following theorem.

7.6 Quadratic Forms

Definition 7.6.1 A quadratic form in three dimensions is an expression of the form

(
x y z

)
A




x
y
z


 (7.13)

where A is a 3× 3 symmetric matrix. In higher dimensions the idea is the same except you
use a larger symmetric matrix in place of A. In two dimensions A is a 2× 2 matrix.
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For example, consider

(
x y z

)



3 −4 1
−4 0 −4
1 −4 3







x
y
z


 (7.14)

which equals 3x2−8xy+2xz−8yz+3z2. This is very awkward because of the mixed terms
such as −8xy. The idea is to pick different axes such that if x, y, z are taken with respect
to these axes, the quadratic form is much simpler. In other words, look for new variables,
x′, y′, and z′ and a unitary matrix U such that

U




x′

y′

z′


 =




x
y
z


 (7.15)

and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
7.4.13, it follows there exists a real unitary matrix U, (an orthogonal matrix) such that
UTAU = D a diagonal matrix. Thus in the quadratic form, 7.13

(
x y z

)
A




x
y
z


 =

(
x′ y′ z′

)
UTAU




x′

y′

z′




=
(
x′ y′ z′

)
D




x′

y′

z′



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and in terms of these new variables, the quadratic form becomes

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where D = diag (λ1, λ2, λ3) . Similar considerations apply equally well in any other dimen-
sion. For the given example,




− 1
2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3







3 −4 1
−4 0 −4
1 −4 3


 ·




− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3


 =




2 0 0
0 −4 0
0 0 8



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and so if the new variables are given by



− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3







x′

y′

z′


 =




x
y
z


 ,

it follows that in terms of the new variables the quadratic form is 2 (x′)
2 − 4 (y′)

2
+ 8 (z′)

2
.

You can work other examples the same way.

7.7 Second Derivative Test

Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact was first observed by Euler around 1734. It is also called Clairaut’s theorem.

Theorem 7.7.1 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it follows

fxy (x, y) = fyx (x, y) .

Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let |t| , |s| <
r/2, t, s real numbers and consider

∆ (s, t) ≡ 1

st
{

h(t)� �� �
f (x+ t, y + s)− f (x+ t, y)−

h(0)� �� �
(f (x, y + s)− f (x, y))}. (7.16)

Note that (x+ t, y + s) ∈ U because

|(x+ t, y + s)− (x, y)| = |(t, s)| =
(
t2 + s2

)1/2

≤
(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h (t) ≡ f (x+ t, y + s)−f (x+ t, y). Therefore, by the mean value theorem
from calculus and the (one variable) chain rule,

∆ (s, t) =
1

st
(h (t)− h (0)) =

1

st
h′ (αt) t

=
1

s
(fx (x+ αt, y + s)− fx (x+ αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x+ αt, y + βs)

where α, β ∈ (0, 1).
If the terms f (x+ t, y) and f (x, y + s) are interchanged in 7.16, ∆ (s, t) is unchanged

and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x+ γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) . �

The following is obtained from the above by simply fixing all the variables except for the
two of interest.
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Corollary 7.7.2 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk
are both

continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

Thus the theorem asserts that the mixed partial derivatives are equal at x if they are
defined near x and continuous at x.

Now recall the Taylor formula with the Lagrange form of the remainder. What follows
is a proof of this important result based on the mean value theorem or Rolle’s theorem.

Theorem 7.7.3 Suppose f has n + 1 derivatives on an interval, (a, b) and let c ∈ (a, b) .
Then if x ∈ (a, b) , there exists ξ between c and x such that

f (x) = f (c) +
n∑

k=1

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
.

(In this formula, the symbol
∑0

k=1 ak will denote the number 0.)

Proof: If n = 0 then the theorem is true because it is just the mean value theorem.
Suppose the theorem is true for n−1, n ≥ 1. It can be assumed x ̸= c because if x = c there
is nothing to show. Then there exists K such that

f (x)−

(
f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)

k
+K (x− c)

n+1

)
= 0 (7.17)
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In fact,

K =
−f (x) +

(
f (c) +

∑n
k=1

f(k)(c)
k! (x− c)

k
)

(x− c)
n+1 .

Now define F (t) for t in the closed interval determined by x and c by

F (t) ≡ f (x)−

(
f (t) +

n∑
k=1

f (k) (c)

k!
(x− t)

k
+K (x− t)

n+1

)
.

The c in 7.17 got replaced by t.
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Therefore, F (c) = 0 by the way K was chosen and also F (x) = 0. By the mean value
theorem or Rolle’s theorem, there exists t1 between x and c such that F ′ (t1) = 0. Therefore,

0 = f ′ (t1)−
n∑

k=1

f (k) (c)

k!
k (x− t1)

k−1 −K (n+ 1) (x− t1)
n

= f ′ (t1)−

(
f ′ (c) +

n−1∑
k=1

f (k+1) (c)

k!
(x− t1)

k

)
−K (n+ 1) (x− t1)

n

= f ′ (t1)−

(
f ′ (c) +

n−1∑
k=1

f ′(k) (c)

k!
(x− t1)

k

)
−K (n+ 1) (x− t1)

n

By induction applied to f ′, there exists ξ between x and t1 such that the above simplifies
to

0 =
f ′(n) (ξ) (x− t1)

n

n!
−K (n+ 1) (x− t1)

n

=
f (n+1) (ξ) (x− t1)

n

n!
−K (n+ 1) (x− t1)

n

therefore,

K =
f (n+1) (ξ)

(n+ 1)n!
=

f (n+1) (ξ)

(n+ 1)!

and the formula is true for n. �
The following is a special case and is what will be used.

Theorem 7.7.4 Let h : (−δ, 1 + δ) → R have m+1 derivatives. Then there exists t ∈ [0, 1]
such that

h (1) = h (0) +
m∑

k=1

h(k) (0)

k!
+

h(m+1) (t)

(m+ 1)!
.

Now let f : U → R where U ⊆ Rn and suppose f ∈ Cm (U) . Let x ∈ U and let r > 0 be
such that

B (x,r) ⊆ U.

Then for ||v|| < r, consider
f (x+tv)− f (x) ≡ h (t)

for t ∈ [0, 1] . Then by the chain rule,

h′ (t) =
n∑

k=1

∂f

∂xk
(x+ tv) vk, h′′ (t) =

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj �

Then from the Taylor formula stopping at the second derivative, the following theorem can
be obtained.

Theorem 7.7.5 Let f : U → R and let f ∈ C2 (U) . Then if

B (x,r) ⊆ U,

and ||v|| < r, there exists t ∈ (0, 1) such that.

f (x+ v) = f (x) +

n∑
k=1

∂f

∂xk
(x) vk +

1

2

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj (7.18)
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Definition 7.7.6 Define the following matrix.

Hij (x+tv) ≡ ∂2f (x+tv)

∂xj∂xi
.

It is called the Hessian matrix. From Corollary 7.7.2, this is a symmetric matrix. Then in
terms of this matrix, 7.18 can be written as

f (x+ v) = f (x) +
n∑

j=1

∂f

∂xj
(x) vk+

1

2
vTH (x+tv)v

Then this implies f (x+ v) =

f (x) +

n∑
j=1

∂f

∂xj
(x) vk+

1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)
. (7.19)

Using the above formula, here is the second derivative test.

Theorem 7.7.7 In the above situation, suppose fxj (x) = 0 for each xj . Then if H (x) has
all positive eigenvalues, x is a local minimum for f . If H (x) has all negative eigenvalues,
then x is a local maximum. If H (x) has a positive eigenvalue, then there exists a direction
in which f has a local minimum at x, while if H (x) has a negative eigenvalue, there exists
a direction in which H (x) has a local maximum at x.

Proof: Since fxj (x) = 0 for each xj , formula 7.19 implies

f (x+ v) = f (x)+
1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)

where H (x) is a symmetric matrix. Thus, by Corollary 7.4.12 H (x) has all real eigenvalues.
Suppose first that H (x) has all positive eigenvalues and that all are larger than δ2 > 0.
Then H (x) has an orthonormal basis of eigenvectors, {vi}ni=1 and if u is an arbitrary vector,
u =

∑n
j=1 ujvj where uj = u · vj . Thus

uTH (x)u =

(
n∑

k=1

ukv
T
k

)
H (x)




n∑
j=1

ujvj


 =

n∑
j=1

u2
jλj ≥ δ2

n∑
j=1

u2
j = δ2 |u|2 .

From 7.19 and the continuity of H, if v is small enough,

f (x+ v) ≥ f (x) +
1

2
δ2 |v|2 − 1

4
δ2 |v|2 = f (x) +

δ2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reasoning.
Suppose H (x) has a positive eigenvalue λ2. Then let v be an eigenvector for this eigenvalue.
From 7.19,

f (x+tv) = f (x)+
1

2
t2vTH (x)v+

1

2
t2
(
vT (H (x+tv)−H (x))v

)

which implies

f (x+tv) = f (x)+
1

2
t2λ2 |v|2 +1

2
t2
(
vT (H (x+tv)−H (x))v

)

≥ f (x)+
1

4
t2λ2 |v|2
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whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. �

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals

(
0 0
0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

7.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
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looking at the matrix.

Theorem 7.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡


λ ∈ C : |λ− aii| ≤

∑
j ̸=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij)

∑
j ̸=i

aijxj = (λ− aii)xi.

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. �

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals

(
0 0
0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

7.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
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Therefore, picking k such that |xk| ≥ |xj | for all xj , it follows that |xk| ̸= 0 since |x| ̸= 0
and

|xk|
∑
j ̸=i

|aij | ≥
∑
j ̸=i

|aij | |xj | ≥ |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. �

Example 7.8.2 Here is a matrix. Estimate its eigenvalues.




2 1 1
3 5 0
0 1 9




According to Gerschgorin’s theorem the eigenvalues are contained in the disks

D1 = {λ ∈ C : |λ− 2| ≤ 2} , D2 = {λ ∈ C : |λ− 5| ≤ 3} ,

D3 = {λ ∈ C : |λ− 9| ≤ 1}

It is important to observe that these disks are in the complex plane. In general this is the
case. If you want to find eigenvalues they will be complex numbers.

x

iy

2 5 9

So what are the values of the eigenvalues? In this case they are real. You can compute
them by graphing the characteristic polynomial, λ3 − 16λ2 + 70λ − 66 and then zoom-
ing in on the zeros. If you do this you find the solution is {λ = 1. 295 3} , {λ = 5. 590 5} ,
{λ = 9. 114 2} . Of course these are only approximations and so this information is useless
for finding eigenvectors. However, in many applications, it is the size of the eigenvalues
which is important and so these numerical values would be helpful for such applications. In
this case, you might think there is no real reason for Gerschgorin’s theorem. Why not just
compute the characteristic equation and graph and zoom? This is fine up to a point, but
what if the matrix was huge? Then it might be hard to find the characteristic polynomial.
Remember the difficulties in expanding a big matrix along a row or column. Also, what if
the eigenvalues were complex? You don’t see these by following this procedure. However,
Gerschgorin’s theorem will at least estimate them.

7.9 Advanced Theorems

More can be said but this requires some theory from complex variables1. The following is a
fundamental theorem about counting zeros.

Theorem 7.9.1 Let U be a region and let γ : [a, b] → U be closed, continuous, bounded
variation, and the winding number, n (γ, z) = 0 for all z /∈ U. Suppose also that f is

1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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analytic on U having zeros a1, · · · , am where the zeros are repeated according to multiplicity,
and suppose that none of these zeros are on γ ([a, b]) . Then

1

2πi

∫

γ

f ′ (z)

f (z)
dz =

m∑
k=1

n (γ, ak) .

Proof: It is given that f (z) =
∏m

j=1 (z − aj) g (z) where g (z) ̸= 0 on U. Hence using
the product rule,

f ′ (z)

f (z)
=

m∑
j=1

1

z − aj
+

g′ (z)

g (z)

where g′(z)
g(z) is analytic on U and so

1

2πi

∫

γ

f ′ (z)

f (z)
dz =

m∑
j=1

n (γ, aj) +
1

2πi

∫

γ

g′ (z)

g (z)
dz =

m∑
j=1

n (γ, aj) . �

Now let A be an n × n matrix. Recall that the eigenvalues of A are given by the zeros
of the polynomial, pA (z) = det (zI −A) where I is the n × n identity. You can argue
that small changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a
very small closed circle which winds around zk, one of the eigenvalues of A, in the counter
clockwise direction so that n (γk, zk) = 1. This circle is to enclose only zk and is to have no
other eigenvalue on it. Then apply Theorem 7.9.1. According to this theorem

1

2πi

∫

γ

p′A (z)

pA (z)
dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever B is close
enough to A, the two matrices have the same number of zeros inside γk, the zeros being
counted according to multiplicity. By making the radius of the small circle equal to ε where
ε is less than the minimum distance between any two distinct eigenvalues of A, this shows
that if B is close enough to A, every eigenvalue of B is closer than ε to some eigenvalue of
A. �

Theorem 7.9.2 If λ is an eigenvalue of A, then if all the entries of B are close enough to
the corresponding entries of A, some eigenvalue of B will be within ε of λ.

Consider the situation that A (t) is an n×n matrix and that t → A (t) is continuous for
t ∈ [0, 1] .

Lemma 7.9.3 Let λ (t) ∈ σ (A (t)) for t < 1 and let Σt = ∪s≥tσ (A (s)) . Also let Kt be the
connected component of λ (t) in Σt. Then there exists η > 0 such that Kt ∩σ (A (s)) ̸= ∅ for
all s ∈ [t, t+ η] .

Proof: Denote by D (λ (t) , δ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D (λ (t) , δ) ≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A (t)) contained in
D (λ (t) , δ) and that pA(t) has no zeroes on the boundary of this disc. Then by continuity, and
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the above discussion and theorem, there exists η > 0, t+ η < 1, such that for s ∈ [t, t+ η] ,
pA(s) also has no zeroes on the boundary of this disc and A (s) has the same number
of eigenvalues, counted according to multiplicity, in the disc as A (t) . Thus σ (A (s)) ∩
D (λ (t) , δ) ̸= ∅ for all s ∈ [t, t+ η] . Now let

H =
∪

s∈[t,t+η]

σ (A (s)) ∩D (λ (t) , δ) .

It will be shown that H is connected. Suppose not. Then H = P ∪ Q where P,Q are
separated and λ (t) ∈ P. Let s0 ≡ inf {s : λ (s) ∈ Q for some λ (s) ∈ σ (A (s))} . There exists
λ (s0) ∈ σ (A (s0)) ∩ D (λ (t) , δ) . If λ (s0) /∈ Q, then from the above discussion there are
λ (s) ∈ σ (A (s))∩Q for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows
that s0 > t because λ (t) is the only element of σ (A (t)) in D (λ (t) , δ) and λ (t) ∈ P. Now
let sn ↑ s0. Then λ (sn) ∈ P for any λ (sn) ∈ σ (A (sn))∩D (λ (t) , δ) and also it follows from
the above discussion that for some choice of sn → s0, λ (sn) → λ (s0) which contradicts P
and Q separated and nonempty. Since P is nonempty, this shows Q = ∅. Therefore, H is
connected as claimed. But Kt ⊇ H and so Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η] . �

Theorem 7.9.4 Suppose A (t) is an n × n matrix and that t → A (t) is continuous for
t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0 denote the
connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) ̸= ∅ for all t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) ̸= ∅ for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup (S) . Say σ (A (t0)) = λ1 (t0) , · · · , λr (t0) .

Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S.
Now let the discs, D (λi (t0) , δ) , i = 1, · · · , r be disjoint with pA(t0) having no zeroes on γi

the boundary of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 7.9.1 and
the discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). It follows that
K0 ∩ (σ (A (t0)) +D (0, δ)) ̸= ∅ for all δ small enough. This requires at least one of the
λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 7.9.3, if t0 < 1, then K0 ∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩ σ (A (s)) = ∅ for
some s ∈ (t, t+ η) while Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η].) Therefore, t0 = 1. �

Corollary 7.9.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.
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Proof: Denote by A (t) the matrix
(
atij

)
where if i ̸= j, atij = taij and atii = aii. Thus to

get A (t) multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then A (0) = diag (a11, · · · , ann)
and A (1) = A. Furthermore, the map, t → A (t) is continuous. Denote by Dt

j the Ger-

schgorin disc obtained from the jth row for the matrix A (t). Then it is clear that Dt
j ⊆ Dj

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A (0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 7.9.4 which is determined by aii, Ger-
schgorin’s theorem implies that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j ̸=iDj) and
also, since K is connected, there are not points of K in both Di and (∪j ̸=iDj) . Since at least
one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by Theorem
7.9.4 this shows there are points of K ∩ σ (A) in Di. The last assertion follows immediately.
�

This can be improved even more. This involves the following lemma.

Lemma 7.9.6 In the situation of Theorem 7.9.4 suppose λ (0) = K0 ∩ σ (A (0)) and that
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λ (0) is a simple root of the characteristic equation of A (0). Then for all t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .
Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 ̸= λ2 are two elements of
σ (A (t0))∩K0. Then choosing η > 0 small enough, and lettingDi be disjoint discs containing
λi respectively, similar arguments to those of Lemma 7.9.3 can be used to conclude

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0. But
then there would be two different eigenvalues of A (s) contained in K0, contrary to the
definition of t0. Therefore, there is at most one eigenvalue λ (t0) ∈ K0 ∩ σ (A (t0)) . Could
it be a repeated root of the characteristic equation? Suppose λ (t0) is a repeated root of
the characteristic equation. As before, choose a small disc, D centered at λ (t0) and η small
enough that

H ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩D

is a nonempty connected set containing either multiple eigenvalues of A (s) or else a single
repeated root to the characteristic equation of A (s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0 − η, t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 + η] , A (s) has only simple eigenvalues in
D and the only eigenvalues of A (s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A (t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A (s) are either
close to these eigenvalues of A (t0) at a positive distance from K0 or they are close to the
eigenvalue λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved. �

With this lemma, the conclusion of the above corollary can be sharpened.

Corollary 7.9.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.

Proof: In the proof of Corollary 7.9.5, note that aii is a simple root of A (0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩ σ (A (t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A (0) , the ajj , are outside Di, it follows
that K ∩ σ (A (0)) = aii. Therefore, by Lemma 7.9.6, K ∩ σ (A (1)) = K ∩ σ (A) consists of
a single simple eigenvalue. �
Example 7.9.8 Consider the matrix




5 1 0
1 1 1
0 1 0




The Gerschgorin discs are D (5, 1) , D (1, 2) , and D (0, 1) . Observe D (5, 1) is disjoint
from the other discs. Therefore, there should be an eigenvalue in D (5, 1) . The actual
eigenvalues are not easy to find. They are the roots of the characteristic equation, t3−6t2+
3t+ 5 = 0. The numerical values of these are −. 669 66, 1. 423 1, and 5. 246 55, verifying the
predictions of Gerschgorin’s theorem.
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7.10 Exercises

1. Explain why it is typically impossible to compute the upper triangular matrix whose
existence is guaranteed by Schur’s theorem.

2. Now recall the QR factorization of Theorem 5.7.5 on Page 174. The QR algorithm
is a technique which does compute the upper triangular matrix in Schur’s theorem.
There is much more to the QR algorithm than will be presented here. In fact, what
I am about to show you is not the way it is done in practice. One first obtains what
is called a Hessenburg matrix for which the algorithm will work better. However,
the idea is as follows. Start with A an n × n matrix having real eigenvalues. Form
A = QR where Q is orthogonal and R is upper triangular. (Right triangular.) This
can be done using the technique of Theorem 5.7.5 using Householder matrices. Next
take A1 ≡ RQ. Show that A = QA1Q

T . In other words these two matrices, A,A1 are
similar. Explain why they have the same eigenvalues. Continue by letting A1 play the
role of A. Thus the algorithm is of the form An = QRn and An+1 = Rn+1Q. Explain
why A = QnAnQ

T
n for some Qn orthogonal. Thus An is a sequence of matrices each

similar to A. The remarkable thing is that often these matrices converge to an upper
triangular matrix T and A = QTQT for some orthogonal matrix, the limit of the Qn

where the limit means the entries converge. Then the process computes the upper
triangular Schur form of the matrix A. Thus the eigenvalues of A appear on the
diagonal of T. You will see approximately what these are as the process continues.

3. ↑Try the QR algorithm on (
−1 −2
6 6

)

which has eigenvalues 3 and 2. I suggest you use a computer algebra system to do the
computations.

4. ↑Now try the QR algorithm on (
0 −1
2 0

)

Show that the algorithm cannot converge for this example. Hint: Try a few iterations
of the algorithm. Use a computer algebra system if you like.

5. ↑Show the two matrices A ≡
(

0 −1
4 0

)
and B ≡

(
0 −2
2 0

)
are similar; that is

there exists a matrix S such that A = S−1BS but there is no orthogonal matrix Q such
that QTBQ = A. Show the QR algorithm does converge for the matrix B although it
fails to do so for A.

6. Let F be an m× n matrix. Show that F ∗F has all real eigenvalues and furthermore,
they are all nonnegative.

7. If A is a real n×n matrix and λ is a complex eigenvalue λ = a+ ib, b ̸= 0, of A having
eigenvector z+ iw, show that w ̸= 0.

8. Suppose A = QTDQ where Q is an orthogonal matrix and all the matrices are real.
Also D is a diagonal matrix. Show that A must be symmetric.

9. Suppose A is an n× n matrix and there exists a unitary matrix U such that

A = U∗DU

where D is a diagonal matrix. Explain why A must be normal.
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10. If A is Hermitian, show that det (A) must be real.

11. Show that every unitary matrix preserves distance. That is, if U is unitary,

|Ux| = |x| .

12. Show that if a matrix does preserve distances, then it must be unitary.

13. ↑Show that a complex normal matrix A is unitary if and only if its eigenvalues have
magnitude equal to 1.

14. Suppose A is an n× n matrix which is diagonally dominant. Recall this means

∑
j ̸=i

|aij | < |aii|

show A−1 must exist.

15. Give some disks in the complex plane whose union contains all the eigenvalues of the
matrix 


1 + 2i 4 2

0 i 3
5 6 7




16. Show a square matrix is invertible if and only if it has no zero eigenvalues.

17. Using Schur’s theorem, show the trace of an n × n matrix equals the sum of the
eigenvalues and the determinant of an n×n matrix is the product of the eigenvalues.

18. Using Schur’s theorem, show that if A is any complex n×n matrix having eigenvalues
{λi} listed according to multiplicity, then

∑
i,j |Aij |2 ≥

∑n
i=1 |λi|2. Show that equality

holds if and only if A is normal. This inequality is called Schur’s inequality. [19]

19. Here is a matrix. 


1234 6 5 3
0 −654 9 123
98 123 10, 000 11
56 78 98 400



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I know this matrix has an inverse before doing any computations. How do I know?

20. Show the critical points of the following function are

(0,−3, 0) , (2,−3, 0) , and

(
1,−3,−1

3

)

and classify them as local minima, local maxima or saddle points.

f (x, y, z) = − 3
2x

4 + 6x3 − 6x2 + zx2 − 2zx− 2y2 − 12y − 18− 3
2z

2.

21. Here is a function of three variables.

f (x, y, z) = 13x2 + 2xy + 8xz + 13y2 + 8yz + 10z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. Two eigenvalues are 12 and 18.

22. Here is a function of three variables.

f (x, y, z) = 2x2 − 4x+ 2 + 9yx− 9y − 3zx+ 3z + 5y2 − 9zy − 7z2
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change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. The eigenvalues of the matrix which you will work with are
− 17

2 , 19
2 ,−1.

23. Here is a function of three variables.

f (x, y, z) = −x2 + 2xy + 2xz − y2 + 2yz − z2 + x

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc.

24. Show the critical points of the function,

f (x, y, z) = −2yx2 − 6yx− 4zx2 − 12zx+ y2 + 2yz.

are points of the form,

(x, y, z) =
(
t, 2t2 + 6t,−t2 − 3t

)

for t ∈ R and classify them as local minima, local maxima or saddle points.

25. Show the critical points of the function

f (x, y, z) =
1

2
x4 − 4x3 + 8x2 − 3zx2 + 12zx+ 2y2 + 4y + 2 +

1

2
z2.

are (0,−1, 0) , (4,−1, 0) , and (2,−1,−12) and classify them as local minima, local
maxima or saddle points.

26. Let f (x, y) = 3x4 − 24x2 + 48 − yx2 + 4y. Find and classify the critical points using
the second derivative test.

27. Let f (x, y) = 3x4− 5x2+2− y2x2+ y2. Find and classify the critical points using the
second derivative test.

28. Let f (x, y) = 5x4 − 7x2 − 2− 3y2x2 +11y2 − 4y4. Find and classify the critical points
using the second derivative test.

29. Let f (x, y, z) = −2x4 − 3yx2 + 3x2 + 5x2z + 3y2 − 6y + 3− 3zy + 3z + z2. Find and
classify the critical points using the second derivative test.

30. Let f (x, y, z) = 3yx2 − 3x2 − x2z − y2 + 2y − 1 + 3zy − 3z − 3z2. Find and classify
the critical points using the second derivative test.

31. Let Q be orthogonal. Find the possible values of det (Q) .

32. Let U be unitary. Find the possible values of det (U) .

33. If a matrix is nonzero can it have only zero for eigenvalues?

34. A matrix A is called nilpotent if Ak = 0 for some positive integer k. Suppose A is a
nilpotent matrix. Show it has only 0 for an eigenvalue.

35. If A is a nonzero nilpotent matrix, show it must be defective.
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36. Suppose A is a nondefective n × n matrix and its eigenvalues are all either 0 or 1.
Show A2 = A. Could you say anything interesting if the eigenvalues were all either
0,1,or −1? By DeMoivre’s theorem, an nth root of unity is of the form

(
cos

(
2kπ

n

)
+ i sin

(
2kπ

n

))

Could you generalize the sort of thing just described to get An = A? Hint: Since A
is nondefective, there exists S such that S−1AS = D where D is a diagonal matrix.

37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a+ ib) y, y (t0) = y0 (7.20)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is given by
y (t) =

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) ≡ e(a+ib)(t−t0)y0. (7.21)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
explain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (t0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (t0) = 0

and that |y|2 (t0) = 0 and

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t) = 2a |y (t)|2 .

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 7.20 is solved by 7.21. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.
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38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty, y (t0) = Q−1x0 (7.22)

Now letting y =(y1, · · · , yn)T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n
.

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 7.22.

39. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(
x1 (t) · · · xn (t)

)
(7.23)

where
x′
k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ(t)

if and only if Φ (t) is given in the form of 7.23. Also explain why if c ∈ Fn,y (t) ≡ Φ(t) c
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solves the equation y′ (t) = Ay (t) .

40. In the above problem, consider the question whether all solutions to

x′ = Ax (7.24)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using
linear algebra.

Theorem 7.10.1 Suppose Φ(t) is an n × n matrix which satisfies Φ′ (t) = AΦ(t) .

Then the general solution to 7.24 is Φ(t) c if and only if Φ(t)
−1

exists for some t.

Furthermore, if Φ′ (t) = AΦ(t) , then either Φ(t)
−1

exists for all t or Φ(t)
−1

never
exists for any t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian
alternative.)
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Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary

constant vector in Fn. You need to verify Φ (t)
−1

exists for some t. In fact, show

Φ (t)
−1

exists for every t. Suppose then that Φ (t0)
−1

does not exist. Explain why
there exists c ∈ Fn such that there is no solution x to the equation c = Φ(t0)x. By
the existence part of Problem 38 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)
−1

exists. Next suppose

for some t0,Φ(t0)
−1

exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) c

Then both z (t) ,Φ(t) c solve

x′ = Ax, x (t0) = z (t0)

Apply uniqueness to conclude z = Φ(t) c. Finally, consider that Φ (t) c for c ∈ Fn

either is the general solution or it is not the general solution. If it is, then Φ (t)
−1

exists for all t. If it is not, then Φ (t)
−1

cannot exist for any t from what was just
shown.

41. Let Φ′ (t) = AΦ(t) . Then Φ (t) is called a fundamental matrix if Φ (t)
−1

exists for all
t. Show there exists a unique solution to the equation

x′ = Ax+ f , x (t0) = x0 (7.25)

and it is given by the formula

x (t) = Φ (t) Φ (t0)
−1

x0 +Φ(t)

∫ t

t0

Φ (s)
−1

f (s) ds

Now these few problems have done virtually everything of significance in an entire un-
dergraduate differential equations course, illustrating the superiority of linear algebra.
The above formula is called the variation of constants formula.

Hint: Uniquenss is easy. If x1,x2 are two solutions then let u (t) = x1 (t)−x2 (t) and
argue u′ = Au, u (t0) = 0. Then use Problem 38. To verify there exists a solution, you
could just differentiate the above formula using the fundamental theorem of calculus
and verify it works. Another way is to assume the solution in the form

x (t) = Φ (t) c (t)

and find c (t) to make it all work out. This is called the method of variation of
parameters.

42. Show there exists a special Φ such that Φ′ (t) = AΦ(t) , Φ (0) = I, and suppose

Φ (t)
−1

exists for all t. Show using uniqueness that

Φ (−t) = Φ (t)
−1

and that for all t, s ∈ R
Φ(t+ s) = Φ (t) Φ (s)
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Explain why with this special Φ, the solution to 7.25 can be written as

x (t) = Φ (t− t0)x0 +

∫ t

t0

Φ(t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x′
j = Axj , xj (0) = ej .

Use uniqueness as required.

43. You can see more on this problem and the next one in the latest version of Horn
and Johnson, [16]. Two n × n matrices A,B are said to be congruent if there is an
invertible P such that

B = PAP ∗

Let A be a Hermitian matrix. Thus it has all real eigenvalues. Let n+ be the number
of positive eigenvalues, n−, the number of negative eigenvalues and n0 the number of
zero eigenvalues. For k a positive integer, let Ik denote the k × k identity matrix and
Ok the k×k zero matrix. Then the inertia matrix of A is the following block diagonal
n× n matrix. 


In+

In−

On0




Show that A is congruent to its inertia matrix. Next show that congruence is an equiv-
alence relation on the set of Hermitian matrices. Finally, show that if two Hermitian
matrices have the same inertia matrix, then they must be congruent. Hint: First
recall that there is a unitary matrix, U such that

U∗AU =




Dn+

Dn−

On0




where the Dn+ is a diagonal matrix having the positive eigenvalues of A, Dn− being
defined similarly. Now let

��Dn−

�� denote the diagonal matrix which replaces each entry
of Dn− with its absolute value. Consider the two diagonal matrices

D = D∗ =




D
−1/2
n+ ��Dn−

��−1/2

In0




Now consider D∗U∗AUD.

44. Show that if A,B are two congruent Hermitian matrices, then they have the same
inertia matrix. Hint: Let A = SBS∗ where S is invertible. Show that A,B have the
same rank and this implies that they are each unitarily similar to a diagonal matrix
which has the same number of zero entries on the main diagonal. Therefore, letting
VA be the span of the eigenvectors associated with positive eigenvalues of A and VB

being defined similarly, it suffices to show that these have the same dimensions. Show
that (Ax,x) > 0 for all x ∈ VA. Next consider S

∗VA. For x ∈ VA, explain why

(BS∗x,S∗x) =
(
S−1A (S∗)

−1
S∗x,S∗x

)

=
(
S−1Ax,S∗x

)
=

(
Ax,

(
S−1

)∗
S∗x

)
= (Ax,x) > 0
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Next explain why this shows that S∗VA is a subspace of VB and so the dimension of VB

is at least as large as the dimension of VA. Hence there are at least as many positive
eigenvalues for B as there are for A. Switching A,B you can turn the inequality
around. Thus the two have the same inertia matrix.

45. Let A be an m×n matrix. Then if you unraveled it, you could consider it as a vector
in Cnm. The Frobenius inner product on the vector space of m×n matrices is defined
as

(A,B) ≡ trace (AB∗)

Show that this really does satisfy the axioms of an inner product space and that it
also amounts to nothing more than considering m× n matrices as vectors in Cnm.

46. ↑Consider the n × n unitary matrices. Show that whenever U is such a matrix, it
follows that

|U |Cnn =
√
n

Next explain why if {Uk} is any sequence of unitary matrices, there exists a subse-
quence {Ukm}∞m=1 such that limm→∞ Ukm = U where U is unitary. Here the limit
takes place in the sense that the entries of Ukm converge to the corresponding entries
of U .

47. ↑Let A,B be two n× n matrices. Denote by σ (A) the set of eigenvalues of A. Define

dist (σ (A) , σ (B)) = max
λ∈σ(A)

min {|λ− µ| : µ ∈ σ (B)}

Explain why dist (σ (A) , σ (B)) is small if and only if every eigenvalue of A is close
to some eigenvalue of B. Now prove the following theorem using the above problem
and Schur’s theorem. This theorem says roughly that if A is close to B then the
eigenvalues of A are close to those of B in the sense that every eigenvalue of A is close
to an eigenvalue of B.

Theorem 7.10.2 Suppose limk→∞ Ak = A. Then

lim
k→∞

dist (σ (Ak) , σ (A)) = 0

48. Let A =

(
a b
c d

)
be a 2 × 2 matrix which is not a multiple of the identity. Show

that A is similar to a 2 × 2 matrix which has at least one diagonal entry equal to 0.
Hint: First note that there exists a vector a such that Aa is not a multiple of a. Then
consider

B =
(
a Aa

)−1
A
(
a Aa

)

Show B has a zero on the main diagonal.

49. ↑ Let A be a complex n×n matrix which has trace equal to 0. Show that A is similar
to a matrix which has all zeros on the main diagonal. Hint: Use Problem 30 on
Page 158 to argue that you can say that a given matrix is similar to one which has
the diagonal entries permuted in any order desired. Then use the above problem and
block multiplication to show that if the A has k nonzero entries, then it is similar to
a matrix which has k− 1 nonzero entries. Finally, when A is similar to one which has
at most one nonzero entry, this one must also be zero because of the condition on the
trace.
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50. ↑An n × n matrix X is a comutator if there are n × n matrices A,B such that X =
AB − BA. Show that the trace of any comutator is 0. Next show that if a complex
matrix X has trace equal to 0, then it is in fact a comutator. Hint: Use the above
problem to show that it suffices to consider X having all zero entries on the main
diagonal. Then define

A =




1 0
2

. . .

0 n


 , Bij =

{
Xij

i−j if i ̸= j

0 if i = j
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8.1 Vector Space Axioms

It is time to consider the idea of a Vector space.

Definition 8.1.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v +w = w + v,

the commutative law of addition,

(v +w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v +w) = αv+αw, (8.1)

(α+ β)v =αv+βv, (8.2)

α (βv) = αβ (v) , (8.3)

1v = v. (8.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.
There are many examples of vector spaces.
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8.1 Vector Space Axioms

It is time to consider the idea of a Vector space.

Definition 8.1.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v +w = w + v,

the commutative law of addition,

(v +w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v +w) = αv+αw, (8.1)

(α+ β)v =αv+βv, (8.2)

α (βv) = αβ (v) , (8.3)

1v = v. (8.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.
There are many examples of vector spaces.
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Example 8.1.2 Let Ω be a nonempty set and let V consist of all functions defined on Ω
which have values in some field F. The vector operations are defined as follows.

(f + g) (x) = f (x) + g (x)

(αf) (x) = αf (x)

Then it is routine to verify that V with these operations is a vector space.

Note that Fn actually fits in to this framework. You consider the set Ω to be {1, 2, · · · , n}
and then the mappings from Ω to F give the elements of Fn. Thus a typical vector can be
considered as a function.

Example 8.1.3 Generalize the above example by letting V denote all functions defined on
Ω which have values in a vector space W which has field of scalars F. The definitions of
scalar multiplication and vector addition are identical to those of the above example.

8.2 Subspaces And Bases

8.2.1 Basic Definitions

Definition 8.2.1 If {v1, · · · ,vn} ⊆ V, a vector space, then

span (v1, · · · ,vn) ≡

{
n∑

i=1

αivi : αi ∈ F

}
.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of
scalars. Thus W ⊆ V is a subspace if ax + by ∈ W whenever a, b ∈ F and x, y ∈ W. The
span of a set of vectors as just described is an example of a subspace.

Example 8.2.2 Consider the real valued functions defined on an interval [a, b]. A subspace
is the set of continuous real valued functions defined on the interval. Another subspace is
the set of polynomials of degree no more than 4.

Definition 8.2.3 If {v1, · · · ,vn} ⊆ V, the set of vectors is linearly independent if

n∑
i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · · ,vn} is called a basis for V if

span (v1, · · · ,vn) = V

and {v1, · · · ,vn} is linearly independent. The set of vectors is linearly dependent if it is not
linearly independent.
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8.2.2 A Fundamental Theorem

The next theorem is called the exchange theorem. It is very important that you understand
this theorem. It is so important that I have given several proofs of it. Some amount to the
same thing, just worded differently.

Theorem 8.2.4 Let {x1, · · · ,xr} be a linearly independent set of vectors such that each xi

is in the span{y1, · · · ,ys} . Then r ≤ s.

Proof 1: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such
that

x1 =

s∑
i=1

ciyi. (8.5)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 8.5 for yk and obtain

yk ∈ span


x1,

s-1 vectors here� �� �
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =

s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V there
exist scalars ci and dj such that

xl+1 =

l∑
i=1

cixi +

p∑
j=1

djzj . (8.6)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (8.6) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here� �� �
z1, · · · zk−1, zk+1, · · · , zp


 = V.
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Continue this way, eventually obtaining

span (x1, · · · ,xs) = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 2: Let

xk =
s∑

j=1

ajkyj

If r > s, then the matrix A = (ajk) has more columns than rows. By Corollary 4.3.9
one of these columns is a linear combination of the others. This implies there exist scalars
c1, · · · , cr, not all zero such that

r∑
k=1

ajkck = 0, j = 1, · · · , r
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Then
r∑

k=1

ckxk =
r∑

k=1

ck

s∑
j=1

ajkyj =
s∑

j=1

(
r∑

k=1

ckajk

)
yj = 0

which contradicts the assumption that {x1, · · · ,xr} is linearly independent. Hence r ≤ s.
Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as

small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m+ j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. �

Corollary 8.2.5 If {u1, · · · ,um} and {v1, · · · ,vn} are two bases for V, then m = n.

Proof: By Theorem 8.2.4, m ≤ n and n ≤ m. �

Definition 8.2.6 A vector space V is of dimension n if it has a basis consisting of n vectors.
This is well defined thanks to Corollary 8.2.5. It is always assumed here that n < ∞ and in
this case, such a vector space is said to be finite dimensional.

Example 8.2.7 Consider the polynomials defined on R of degree no more than 3, denoted
here as P3. Then show that a basis for P3 is

{
1, x, x2, x3

}
. Here xk symbolizes the function

x �→ xk.

It is obvious that the span of the given vectors yields P3. Why is this set of vectors
linearly independent? Suppose

c0 + c1x+ c2x
2 + c3x

3 = 0

where 0 is the zero function which maps everything to 0. Then you could differentiate three
times and obtain the following equations

c1 + 2c2x+ 3c3x
2 = 0

2c2 + 6c3x = 0

6c3 = 0
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Now this implies c3 = 0. Then from the equations above the bottom one, you find in
succession that c2 = 0, c1 = 0, c0 = 0.

There is a somewhat interesting theorem about linear independence of smooth functions
(those having plenty of derivatives) which I will show now. It is often used in differential
equations.

Definition 8.2.8 Let f1, · · · , fn be smooth functions defined on an interval [a, b] . The
Wronskian of these functions is defined as follows.

W (f1, · · · , fn) (x) ≡

���������

f1 (x) f2 (x) · · · fn (x)
f ′
1 (x) f ′

2 (x) · · · f ′
n (x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

���������

Note that to get from one row to the next, you just differentiate everything in that row. The
notation f (k) (x) denotes the kth derivative.

With this definition, the following is the theorem. The interesting theorem involving the
Wronskian has to do with the situation where the functions are solutions of a differential
equation. Then much more can be said and it is much more interesting than the following
theorem.

Theorem 8.2.9 Let {f1, · · · , fn} be smooth functions defined on [a, b] . Then they are lin-
early independent if there exists some point t ∈ [a, b] where W (f1, · · · , fn) (t) ̸= 0.

Proof: Form the linear combination of these vectors (functions) and suppose it equals
0. Thus

a1f1 + a2f2 + · · ·+ anfn = 0

The question you must answer is whether this requires each aj to equal zero. If they all
must equal 0, then this means these vectors (functions) are independent. This is what it
means to be linearly independent.

Differentiate the above equation n− 1 times yielding the equations




a1f1 + a2f2 + · · ·+ anfn = 0
a1f

′
1 + a2f

′
2 + · · ·+ anf

′
n = 0

...

a1f
(n−1)
1 + a2f

(n−1)
2 + · · ·+ anf

(n−1)
n = 0




Now plug in t. Then the above yields




f1 (t) f2 (t) · · · fn (t)
f ′
1 (t) f ′

2 (t) · · · f ′
n (t)

...
...

...

f
(n−1)
1 (t) f

(n−1)
2 (t) · · · f

(n−1)
n (t)







a1
a2
...
an


 =




0
0
...
0




Since the determinant of the matrix on the left is assumed to be nonzero, it follows this
matrix has an inverse and so the only solution to the above system of equations is to have
each ak = 0. �

Here is a useful lemma.

Lemma 8.2.10 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.
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Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that
d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �

Given a spanning set, you can delete vectors till you end up with a basis. Given a linearly
independent set, you can add vectors till you get a basis. This is what the following theorem
is about, weeding and planting.

Theorem 8.2.11 If V = span (u1, · · · ,un) then some subset of {u1, · · · ,un} is a basis for
V. Also, if {u1, · · · ,uk} ⊆ V is linearly independent and the vector space is finite dimen-
sional, then the set, {u1, · · · ,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · · ,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.

Thus there exist vectors
{v1, · · · ,vm} ⊆ {u1, · · · ,un}

such that
span (v1, · · · ,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows
it is a basis for V and the theorem is proved. On the other hand, if the set is not linearly
independent, then there exist scalars

c1, · · · , cm
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such that

0 =

m∑
i=1

civi

and not all the ci are equal to zero. Suppose ck ̸= 0. Then the vector, vk may be solved for
in terms of the other vectors. Consequently,

V = span (v1, · · · ,vk−1,vk+1, · · · ,vm)

contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · · ,uk} and suppose a basis for V is

{v1, · · · ,vn} .

If
span (u1, · · · ,uk) = V,

then k = n. If not, there exists a vector,

uk+1 /∈ span (u1, · · · ,uk) .
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Then by Lemma 8.2.10, {u1, · · · ,uk,uk+1} is also linearly independent. Continue adding
vectors in this way until n linearly independent vectors have been obtained. Then

span (u1, · · · ,un) = V

because if it did not do so, there would exist un+1 as just described and {u1, · · · ,un+1}
would be a linearly independent set of vectors having n+1 elements even though {v1, · · · ,vn}
is a basis. This would contradict Theorem 8.2.4. Therefore, this list is a basis. �

8.2.3 The Basis Of A Subspace

Every subspace of a finite dimensional vector space is a span of some vectors and in fact it
has a basis. This is the content of the next theorem.

Theorem 8.2.12 Let V be a nonzero subspace of a finite dimensional vector space W of
dimension n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 8.2.10 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 8.2.4. �

8.3 Lots Of Fields

8.3.1 Irreducible Polynomials

I mentioned earlier that most things hold for arbitrary fields. However, I have not bothered
to give any examples of other fields. This is the point of this section. It also turns out that
showing the algebraic numbers are a field can be understood using vector space concepts
and it gives a very convincing application of the abstract theory presented earlier in this
chapter.

Here I will give some basic algebra relating to polynomials. This is interesting for its
own sake but also provides the basis for constructing many different kinds of fields. The
first is the Euclidean algorithm for polynomials.

Definition 8.3.1 A polynomial is an expression of the form p (λ) =
∑n

k=0 akλ
k where as

usual λ0 is defined to equal 1. Two polynomials are said to be equal if their corresponding
coefficients are the same. Thus, in particular, p (λ) = 0 means each of the ak = 0. An
element of the field λ is said to be a root of the polynomial if p (λ) = 0 in the sense that
when you plug in λ into the formula and do the indicated operations, you get 0. The degree
of a nonzero polynomial is the highest exponent appearing on λ. The degree of the zero
polynomial p (λ) = 0 is not defined.

Example 8.3.2 Consider the polynomial p (λ) = λ2+λ where the coefficients are in Z2. Is
this polynomial equal to 0? Not according to the above definition, because its coefficients are
not all equal to 0. However, p (1) = p (0) = 0 so it sends every element of Z2 to 0. Note the
distinction between saying it sends everything in the field to 0 with having the polynomial be
the zero polynomial.
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Lemma 8.3.3 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exists a polynomial, q (λ)
such that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0.

Proof: Suppose that f (λ)− q (λ) g (λ) is never equal to 0 for any q (λ). If it is, then the
conclusion follows.

Denote by S the set of polynomials f (λ)−g (λ) l (λ) . Out of all these polynomials, there
exists one which has smallest degree r (λ). Let this take place when l (λ) = q1 (λ). Thus

r (λ) = f (λ)− g (λ) q1 (λ) .

By assumption, r (λ) ̸= 0. It is required to show the degree of r (λ) is smaller than the
degree of g (λ) . If this doesn’t happen, then the degree of r (λ) ≥ the degree of g (λ) . Let

r (λ) = bmλm + · · ·+ b1λ+ b0

g (λ) = anλ
n + · · ·+ a1λ+ a0

where m ≥ n and bm and an are nonzero. Then let r1 (λ) be given by

r1 (λ) = r (λ)− λm−nbm
an

g (λ)

Thus

r1 (λ) = (bmλm + · · ·+ b1λ+ b0)−
λm−nbm

an
(anλ

n + · · ·+ a1λ+ a0)

which has degree at most m− 1. But

r1 (λ) =

r(λ)� �� �
f (λ)− g (λ) q1 (λ)−

λm−nbm
an

g (λ)

= f (λ)− g (λ)

(
q1 (λ) +

λm−nbm
an

)
,

and this is one of the polynomials in S, contradicting the definition of r (λ) which required
it has the smallest degree. �

In fact, the polynomials r (λ) , q (λ) are unique. Suppose (r (λ) , q (λ)) , and (r1 (λ) , q1 (λ))
are two pairs which work. Then

(q1 (λ)− q (λ)) g (λ) = r (λ)− r1 (λ)

The degree of the polynomial on the right, would need to be less than the degree of the
polynomial on the left if it is not zero. Hence r1 (λ) = r (λ). Now one can argue, by
comparing coefficients, that q1 (λ) = q (λ).

Now with this lemma, here is another one which is very fundamental. First here is a
definition. A polynomial is monic means it is of the form

λn + cn−1λ
n−1 + · · ·+ c1λ+ c0.

That is, the leading coefficient is 1. In what follows, the coefficients of polynomials are in
F, a field of scalars which is completely arbitrary. Think R if you need an example.
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Definition 8.3.4 A polynomial f is said to divide a polynomial g if g (λ) = f (λ) r (λ) for
some polynomial r (λ). Let {ϕi (λ)} be a finite set of polynomials. The greatest common
divisor will be the monic polynomial q (λ) such that q (λ) divides each ϕi (λ) and if p (λ)
divides each ϕi (λ) , then p (λ) divides q (λ) . The finite set of polynomials {ϕi} is said to be
relatively prime if their greatest common divisor is 1. A polynomial f (λ) is irreducible if
there is no polynomial with coefficients in F which divides it except nonzero scalar multiples
of f (λ) and constants.

Proposition 8.3.5 The greatest common divisor is unique.

Proof: Suppose both q (λ) and q′ (λ) work. Then q (λ) divides q′ (λ) and the other way
around and so

q′ (λ) = q (λ) l (λ) , q (λ) = l′ (λ) q′ (λ)

Therefore, the two must have the same degree. Hence l′ (λ) , l (λ) are both constants. How-
ever, this constant must be 1 because both q (λ) and q′ (λ) are monic. �

Theorem 8.3.6 Let ψ (λ) be the greatest common divisor of {ϕi (λ)} , not all of which are
zero polynomials. Then there exist polynomials ri (λ) such that

ψ (λ) =

p∑
i=1

ri (λ)ϕi (λ) .

Furthermore, ψ (λ) is the monic polynomial of smallest degree which can be written in the
above form.

Proof: Let S denote the set of monic polynomials which are of the form

p∑
i=1

ri (λ)ϕi (λ)

where ri (λ) is a polynomial. Then S ̸= ∅ because some ϕi (λ) ̸= 0. Then let the ri be chosen
such that the degree of the expression

∑p
i=1 ri (λ)ϕi (λ) is as small as possible. Letting ψ (λ)

equal this sum, it remains to verify it is the greatest common divisor. First, does it divide
each ϕi (λ)? Suppose it fails to divide ϕ1 (λ) . Then by Lemma 8.3.3

ϕ1 (λ) = ψ (λ) l (λ) + r (λ)

where degree of r (λ) is less than that of ψ (λ). Then dividing r (λ) by the leading coefficient
if necessary and denoting the result by ψ1 (λ) , it follows the degree of ψ1 (λ) is less than
the degree of ψ (λ) and ψ1 (λ) equals

ψ1 (λ) = (ϕ1 (λ)− ψ (λ) l (λ)) a

=

(
ϕ1 (λ)−

p∑
i=1

ri (λ)ϕi (λ) l (λ)

)
a

=

(
(1− r1 (λ))ϕ1 (λ) +

p∑
i=2

(−ri (λ) l (λ))ϕi (λ)

)
a
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for a suitable a ∈ F. This is one of the polynomials in S. Therefore, ψ (λ) does not have
the smallest degree after all because the degree of ψ1 (λ) is smaller. This is a contradiction.
Therefore, ψ (λ) divides ϕ1 (λ) . Similarly it divides all the other ϕi (λ).

If p (λ) divides all the ϕi (λ) , then it divides ψ (λ) because of the formula for ψ (λ) which
equals

∑p
i=1 ri (λ)ϕi (λ) . �

Lemma 8.3.7 Suppose ϕ (λ) and ψ (λ) are monic polynomials which are irreducible and
not equal. Then they are relatively prime.

Proof: Suppose η (λ) is a nonconstant polynomial. If η (λ) divides ϕ (λ) , then since
ϕ (λ) is irreducible, η (λ) equals aϕ (λ) for some a ∈ F. If η (λ) divides ψ (λ) then it must
be of the form bψ (λ) for some b ∈ F and so it follows

ψ (λ) =
a

b
ϕ (λ)

but both ψ (λ) and ϕ (λ) are monic polynomials which implies a = b and so ψ (λ) = ϕ (λ).
This is assumed not to happen. It follows the only polynomials which divide both ψ (λ)
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and ϕ (λ) are constants and so the two polynomials are relatively prime. Thus a polynomial
which divides them both must be a constant, and if it is monic, then it must be 1. Thus 1
is the greatest common divisor. �

Lemma 8.3.8 Let ψ (λ) be an irreducible monic polynomial not equal to 1 which divides

p∏
i=1

ϕi (λ)
ki , ki a positive integer,

where each ϕi (λ) is an irreducible monic polynomial. Then ψ (λ) equals some ϕi (λ) .

Proof : Suppose ψ (λ) ̸= ϕi (λ) for all i. Then by Lemma 8.3.7, there exist polynomials
mi (λ) , ni (λ) such that

1 = ψ (λ)mi (λ) + ϕi (λ)ni (λ) .

Hence
(ϕi (λ)ni (λ))

ki = (1− ψ (λ)mi (λ))
ki

Then, letting �g (λ) =
∏p

i=1 ni (λ)
ki , and applying the binomial theorem, there exists a

polynomial h (λ) such that

�g (λ)
p∏

i=1

ϕi (λ)
ki ≡

p∏
i=1

ni (λ)
ki

p∏
i=1

ϕi (λ)
ki

=

p∏
i=1

(1− ψ (λ)mi (λ))
ki = 1 + ψ (λ)h (λ)

Thus, using the fact that ψ (λ) divides
∏p

i=1 ϕi (λ)
ki , for a suitable polynomial g (λ) ,

g (λ)ψ (λ) = 1 + ψ (λ)h (λ)

1 = ψ (λ) (h (λ)− g (λ))

which is impossible if ψ (λ) is non constant, as assumed. �
Now here is a simple lemma about canceling monic polynomials.

Lemma 8.3.9 Suppose p (λ) is a monic polynomial and q (λ) is a polynomial such that

p (λ) q (λ) = 0.

Then q (λ) = 0. Also if
p (λ) q1 (λ) = p (λ) q2 (λ)

then q1 (λ) = q2 (λ) .

Proof: Let

p (λ) =
k∑

j=1

pjλ
j , q (λ) =

n∑
i=1

qiλ
i, pk = 1.

Then the product equals
k∑

j=1

n∑
i=1

pjqiλ
i+j .
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Then look at those terms involving λk+n. This is pkqnλ
k+n and is given to be 0. Since

pk = 1, it follows qn = 0. Thus
k∑

j=1

n−1∑
i=1

pjqiλ
i+j = 0.

Then consider the term involving λn−1+k and conclude that since pk = 1, it follows qn−1 = 0.
Continuing this way, each qi = 0. This proves the first part. The second follows from

p (λ) (q1 (λ)− q2 (λ)) = 0. �

The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 8.3.10 Let f (λ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ) = a

∏n
i=1 ϕi (λ) where ϕi (λ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a.

Proof: That such a factorization exists is obvious. If f (λ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ) = aϕ1 (λ)ϕ2 (λ) where these are monic
polynomials. Continue doing this with the ϕi and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a
n∏

i=1

ϕi (λ) = b
m∏
i=1

ψi (λ)

where the ϕi (λ) and the ψi (λ) are all irreducible monic nonconstant polynomials and a, b ∈
F. If n > m, then by Lemma 8.3.8, each ψi (λ) equals one of the ϕj (λ) . By the above
cancellation lemma, Lemma 8.3.9, you can cancel all these ψi (λ) with appropriate ϕj (λ)
and obtain a contradiction because the resulting polynomials on either side would have
different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. �

The following corollary will be well used. This corollary seems rather believable but does
require a proof.

Corollary 8.3.11 Let q (λ) =
∏p

i=1 ϕi (λ)
ki where the ki are positive integers and the ϕi (λ)

are irreducible monic polynomials. Suppose also that p (λ) is a monic polynomial which
divides q (λ) . Then

p (λ) =

p∏
i=1

ϕi (λ)
ri

where ri is a nonnegative integer no larger than ki.

Proof: Using Theorem 8.3.10, let p (λ) = b
∏s

i=1 ψi (λ)
ri where the ψi (λ) are each

irreducible and monic and b ∈ F. Since p (λ) is monic, b = 1. Then there exists a polynomial
g (λ) such that

p (λ) g (λ) = g (λ)
s∏

i=1

ψi (λ)
ri =

p∏
i=1

ϕi (λ)
ki
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Hence g (λ) must be monic. Therefore,

p (λ) g (λ) =

p(λ)� �� �
s∏

i=1

ψi (λ)
ri

l∏
j=1

ηj (λ) =

p∏
i=1

ϕi (λ)
ki

for ηj monic and irreducible. By uniqueness, each ψi equals one of the ϕj (λ) and the same
holding true of the ηi (λ). Therefore, p (λ) is of the desired form. �

8.3.2 Polynomials And Fields

When you have a polynomial like x2 − 3 which has no rational roots, it turns out you can
enlarge the field of rational numbers to obtain a larger field such that this polynomial does
have roots in this larger field. I am going to discuss a systematic way to do this. It will
turn out that for any polynomial with coefficients in any field, there always exists a possibly
larger field such that the polynomial has roots in this larger field. This book has mainly
featured the field of real or complex numbers but this procedure will show how to obtain
many other fields which could be used in most of what was presented earlier in the book.
Here is an important idea concerning equivalence relations which I hope is familiar.

Definition 8.3.12 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 8.3.13 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 8.3.14 Let ∼ be an equivalence class defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.
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Definition 8.3.15 Let F be a field, for example the rational numbers, and denote by F [x]
the polynomials having coefficients in F. Suppose p (x) is a polynomial. Let a (x) ∼ b (x)
(a (x) is similar to b (x)) when

a (x)− b (x) = k (x) p (x)

for some polynomial k (x) .

Proposition 8.3.16 In the above definition, ∼ is an equivalence relation.

Proof: First of all, note that a (x) ∼ a (x) because their difference equals 0p (x) . If
a (x) ∼ b (x) , then a (x) − b (x) = k (x) p (x) for some k (x) . But then b (x) − a (x) =
−k (x) p (x) and so b (x) ∼ a (x). Next suppose a (x) ∼ b (x) and b (x) ∼ c (x) . Then
a (x) − b (x) = k (x) p (x) for some polynomial k (x) and also b (x) − c (x) = l (x) p (x) for
some polynomial l (x) . Then

a (x)− c (x) = a (x)− b (x) + b (x)− c (x)
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= k (x) p (x) + l (x) p (x) = (l (x) + k (x)) p (x)

and so a (x) ∼ c (x) and this shows the transitive law. �
With this proposition, here is another definition which essentially describes the elements

of the new field. It will eventually be necessary to assume the polynomial p (x) in the above
definition is irreducible so I will begin assuming this.

Definition 8.3.17 Let F be a field and let p (x) ∈ F [x] be a monic irreducible polynomial
of degree greater than 0. Thus there is no polynomial having coefficients in F which divides
p (x) except for itself and constants. For the similarity relation defined in Definition 8.3.15,
define the following operations on the equivalence classes. [a (x)] is an equivalence class
means that it is the set of all polynomials which are similar to a (x).

[a (x)] + [b (x)] ≡ [a (x) + b (x)]

[a (x)] [b (x)] ≡ [a (x) b (x)]

This collection of equivalence classes is sometimes denoted by F [x] / (p (x)).

Proposition 8.3.18 In the situation of Definition 8.3.17, p (x) and q (x) are relatively
prime for any q (x) ∈ F [x] which is not a multiple of p (x). Also the definitions of addition
and multiplication are well defined. In addition, if a, b ∈ F and [a] = [b] , then a = b.

Proof: First consider the claim about p (x) , q (x) being relatively prime. If ψ (x) is the
greatest common divisor, it follows ψ (x) is either equal to p (x) or 1. If it is p (x) , then
q (x) is a multiple of p (x) . If it is 1, then by definition, the two polynomials are relatively
prime.

To show the operations are well defined, suppose

[a (x)] = [a′ (x)] , [b (x)] = [b′ (x)]

It is necessary to show
[a (x) + b (x)] = [a′ (x) + b′ (x)]

[a (x) b (x)] = [a′ (x) b′ (x)]

Consider the second of the two.

a′ (x) b′ (x)− a (x) b (x)

= a′ (x) b′ (x)− a (x) b′ (x) + a (x) b′ (x)− a (x) b (x)

= b′ (x) (a′ (x)− a (x)) + a (x) (b′ (x)− b (x))

Now by assumption (a′ (x)− a (x)) is a multiple of p (x) as is (b′ (x)− b (x)) , so the above
is a multiple of p (x) and by definition this shows [a (x) b (x)] = [a′ (x) b′ (x)]. The case for
addition is similar.

Now suppose [a] = [b] . This means a− b = k (x) p (x) for some polynomial k (x) . Then
k (x) must equal 0 since otherwise the two polynomials a − b and k (x) p (x) could not be
equal because they would have different degree. �

Note that from this proposition and math induction, if each ai ∈ F,
[
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

]

= [an] [x]
n
+ [an−1] [x]

n−1
+ · · · [a1] [x] + [a0] (8.7)

With the above preparation, here is a definition of a field in which the irreducible poly-
nomial p (x) has a root.
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Definition 8.3.19 Let p (x) ∈ F [x] be irreducible and let a (x) ∼ b (x) when a (x)− b (x) is
a multiple of p (x) . Let G denote the set of equivalence classes as described above with the
operations also described in Definition 8.3.17.

Also here is another useful definition and a simple proposition which comes from it.

Definition 8.3.20 Let F ⊆ K be two fields. Then clearly K is also a vector space over
F. Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.

There are some easy things to observe about this.

Proposition 8.3.21 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that

l =
n∑

i=1

xili

Now xi ∈ K so there exist fji such that

xi =

m∑
j=1

fjikj

Then it follows that

l =

n∑
i=1

m∑
j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑
i=1

m∑
j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑
j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore,
{kj li} is a basis. �

Theorem 8.3.22 The set of all equivalence classes G ≡ F/ (p (x)) described above with
the multiplicative identity given by [1] and the additive identity given by [0] along with the
operations of Definition 8.3.17, is a field and p ([x]) = [0] . (Thus p has a root in this new
field.) In addition to this, [G : F] = n, the degree of p (x) .

Proof: Everything is obvious except for the existence of the multiplicative inverse and
the assertion that p ([x]) = 0. Suppose then that [a (x)] ̸= [0] . That is, a (x) is not a multiple

of p (x). Why does [a (x)]
−1

exist? By Theorem 8.3.6, a (x) , p (x) are relatively prime and
so there exist polynomials ψ (x) , ϕ (x) such that

1 = ψ (x) p (x) + a (x)ϕ (x)
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and so
1− a (x)ϕ (x) = ψ (x) p (x)

which, by definition implies

[1− a (x)ϕ (x)] = [1]− [a (x)ϕ (x)] = [1]− [a (x)] [ϕ (x)] = [0]

and so [ϕ (x)] = [a (x)]
−1

. This shows G is a field.
Now if p (x) = anx

n + an−1x
n−1 + · · · + a1x + a0, p ([x]) = 0 by 8.7 and the definition

which says [p (x)] = [0].
Consider the claim about the dimension. It was just shown that [1] , [x] ,

[
x2

]
, · · · , [xn]

is linearly dependent. Also [1] , [x] ,
[
x2

]
, · · · ,

[
xn−1

]
is independent because if not, there

would exist a polynomial q (x) of degree n−1 which is a multiple of p (x) which is impossible.
Now for [q (x)] ∈ G, you can write

q (x) = p (x) l (x) + r (x)

where the degree of r (x) is less than n or else it equals 0. Either way, [q (x)] = [r (x)] which
is a linear combination of [1] , [x] ,

[
x2

]
, · · · ,

[
xn−1

]
. Thus [G : F] = n as claimed. �

Note that if p (x) were not irreducible, then you could find a field extension G such that
[G : F] ≤ n. You could do this by working with an irreducible factor of p (x).

Usually, people simply write b rather than [b] if b ∈ F. Then with this convention,

[bϕ (x)] = [b] [ϕ (x)] = b [ϕ (x)] .

This shows how to enlarge a field to get a new one in which the polynomial has a root.
By using a succession of such enlargements, called field extensions, there will exist a field
in which the given polynomial can be factored into a product of polynomials having degree
one. The field you obtain in this process of enlarging in which the given polynomial factors
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in terms of linear factors is called a splitting field.

Theorem 8.3.23 Let p (x) = xn+an−1x
n−1+· · ·+a1x+a0 be a polynomial with coefficients

in a field of scalars F. There exists a larger field G such that there exist {z1, · · · , zn} listed
according to multiplicity such that

p (x) =
n∏

i=1

(x− zi)

This larger field is called a splitting field. Furthermore,

[G : F] ≤ n!

Proof: From Theorem 8.3.22, there exists a field F1 such that p (x) has a root, z1 (= [x]
if p is irreducible.) Then by the Euclidean algorithm

p (x) = (x− z1) q1 (x) + r
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where r ∈ F1. Since p (z1) = 0, this requires r = 0. Now do the same for q1 (x) that was
done for p (x) , enlarging the field to F2 if necessary, such that in this new field

q1 (x) = (x− z2) q2 (x) .

and so
p (x) = (x− z1) (x− z2) q2 (x)

After n such extensions, you will have obtained the necessary field G.
Finally consider the claim about dimension. By Theorem 8.3.22, there is a larger field

G1 such that p (x) has a root a1 in G1 and [G : F] ≤ n. Then

p (x) = (x− a1) q (x)

Continue this way until the polynomial equals the product of linear factors. Then by
Proposition 8.3.21 applied multiple times, [G : F] ≤ n!. �

Example 8.3.24 The polynomial x2 + 1 is irreducible in R (x) , polynomials having real
coefficients. To see this is the case, suppose ψ (x) divides x2 + 1. Then

x2 + 1 = ψ (x) q (x)

If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax+ b.
In the latter case, −b/a must be a zero of the right side, hence of the left but x2 + 1 has no
real zeros. Therefore, the degree of ψ (x) must be two and q (x) must be a constant. Thus
the only polynomial which divides x2 + 1 are constants and multiples of x2 + 1. Therefore,
this shows x2 +1 is irreducible. Find the inverse of

[
x2 + x+ 1

]
in the space of equivalence

classes, R/
(
x2 + 1

)
.

You can solve this with partial fractions.

1

(x2 + 1) (x2 + x+ 1)
= − x

x2 + 1
+

x+ 1

x2 + x+ 1

and so
1 = (−x)

(
x2 + x+ 1

)
+ (x+ 1)

(
x2 + 1

)

which implies
1 ∼ (−x)

(
x2 + x+ 1

)

and so the inverse is [−x] .
The following proposition is interesting. It was essentially proved above but to emphasize

it, here it is again.

Proposition 8.3.25 Suppose p (x) ∈ F [x] is irreducible and has degree n. Then every
element of G = F [x] / (p (x)) is of the form [0] or [r (x)] where the degree of r (x) is less
than n.

Proof: This follows right away from the Euclidean algorithm for polynomials. If k (x)
has degree larger than n− 1, then

k (x) = q (x) p (x) + r (x)

where r (x) is either equal to 0 or has degree less than n. Hence

[k (x)] = [r (x)] . �
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Example 8.3.26 In the situation of the above example, find [ax+ b]
−1

assuming a2+ b2 ̸=
0. Note this includes all cases of interest thanks to the above proposition.

You can do it with partial fractions as above.

1

(x2 + 1) (ax+ b)
=

b− ax

(a2 + b2) (x2 + 1)
+

a2

(a2 + b2) (ax+ b)

and so

1 =
1

a2 + b2
(b− ax) (ax+ b) +

a2

(a2 + b2)

(
x2 + 1

)

Thus
1

a2 + b2
(b− ax) (ax+ b) ∼ 1

and so

[ax+ b]
−1

=
[(b− ax)]

a2 + b2
=

b− a [x]

a2 + b2

You might find it interesting to recall that (ai+ b)
−1

= b−ai
a2+b2 .

8.3.3 The Algebraic Numbers

Each polynomial having coefficients in a field F has a splitting field. Consider the case of all
polynomials p (x) having coefficients in a field F ⊆ G and consider all roots which are also
in G. The theory of vector spaces is very useful in the study of these algebraic numbers.
Here is a definition.

Definition 8.3.27 The algebraic numbers A are those numbers which are in G and also
roots of some polynomial p (x) having coefficients in F. The minimal polynomial of a ∈ A
is defined to be the monic polynomial p (x) having smallest degree such that p (a) = 0.

Theorem 8.3.28 Let a ∈ A. Then there exists a unique monic irreducible polynomial p (x)
having coefficients in F such that p (a) = 0. This polynomial is the minimal polynomial.

Proof: Let p (x) be the monic polynomial having smallest degree such that p (a) = 0.
Then p (x) is irreducible because if not, there would exist a polynomial having smaller degree
which has a as a root. Now suppose q (x) is monic and irreducible such that q (a) = 0.

q (x) = p (x) l (x) + r (x)

where if r (x) ̸= 0, then it has smaller degree than p (x). But in this case, the equation
implies r (a) = 0 which contradicts the choice of p (x). Hence r (x) = 0 and so, since q (x)
is irreducible, l (x) = 1 showing that p (x) = q (x). �

Definition 8.3.29 For a an algebraic number, let deg (a) denote the degree of the minimal
polynomial of a.

Also, here is another definition.

Definition 8.3.30 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an ex-
pression of the form ∑

k1···kn

ak1···kna
k1
1 · · · akn

n

where the ak1···kn are in F, each kj is a nonnegative integer, and all but finitely many of the
ak1···kn equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .
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Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F.
Similarly, for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of
scalars F. The following fundamental proposition is important.

Proposition 8.3.31 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏
j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.

Proof: Let the minimal polynomial be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

If q (a) ∈ F [a] , then
q (x) = p (x) l (x) + r (x)

where r (x) has degree less than the degree of p (x) if it is not zero. Thus F [a] is spanned
by {

1, a, a2, · · · , an−1
}

Since p (x) has smallest degree of all polynomial which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear

combinations of
{
ak1
1 , ak2

2 , · · · , akn
n

}
where the ki are nonnegative integers. From the first

part, it suffices to consider only kj ≤ deg (aj). Therefore, there exists a spanning set for
F [a1, · · · , am] which has

m∏
i=1

deg (ai)

entries. By Theorem 8.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in

F [a1, · · · , am]. Since

dimF [a1, · · · , am] ≡ p ≤
m∏
j=1

deg (aj) < ∞,

it follows
1, g (a1, · · · , am) , g (a1, · · · , am)

2
, · · · , g (a1, · · · , am)

p

are dependent. It follows g (a1, · · · , am) is the root of some polynomial having coefficients
in F. Thus everything in F [a1, · · · , am] is algebraic. Why is F [a1, · · · , am] a field? Let
g (a1, · · · , am) be as just mentioned. Then it has a minimal polynomial,

p (x) = xq + aq−1x
q−1 + · · ·+ a1x+ a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimal. Therefore,

g (a1, · · · , am)
(
g (a1, · · · , am)

q−1
+ aq−1g (a1, · · · , am)

q−2
+ · · ·+ a1

)
= −a0
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and so the multiplicative inverse for g (a1, · · · , am) is

g (a1, · · · , am)
q−1

+ aq−1g (a1, · · · , am)
q−2

+ · · ·+ a1
−a0

∈ F [a1, · · · , am] .

The other axioms of a field are obvious. �
Now from this proposition, it is easy to obtain the following interesting result about the

algebraic numbers.

Theorem 8.3.32 The algebraic numbers A, those roots of polynomials in F [x] which are
in G, are a field.

Proof: By definition, each a ∈ A has a minimal polynomial. Let a ̸= 0 be an algebraic
number and let p (x) be its minimal polynomial. Then p (x) is of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0

where a0 ̸= 0. Otherwise p(x) would not have minimal degree. Then plugging in a yields

a

(
an−1 + an−1a

n−2 + · · ·+ a1
)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1a

n−2+···+a1)(−1)

a0
∈ F [a]. By the proposition, every element of F [a]

is in A and this shows that for every nonzero element of A, its inverse is also in A. What
about products and sums of things in A? Are they still in A? Yes. If a, b ∈ A, then both
a+ b and ab ∈ F [a, b] and from the proposition, each element of F [a, b] is in A. �

A typical example of what is of interest here is when the field F of scalars is Q, the
rational numbers and the field G is R. However, you can certainly conceive of many other
examples by considering the integers mod a prime, for example (See Problem 34 on Page
296 for example.) or any of the fields which occur as field extensions in the above.

There is a very interesting thing about F [a1 · · · an] in the case where F is infinite which
says that there exists a single algebraic γ such that F [a1 · · · an] = F [γ]. In other words,
every field extension of this sort is a simple field extension. I found this fact in an early
version of [5].

Proposition 8.3.33 There exists γ such that F [a1 · · · an] = F [γ].

Proof: To begin with, consider F [α, β]. Let γ = α+ λβ. Then by Proposition 8.3.31 γ
is an algebraic number and it is also clear

F [γ] ⊆ F [α, β]

I need to show the other inclusion. This will be done for a suitable choice of λ. To do this,
it suffices to verify that both α and β are in F [γ].

Let the minimal polynomials of α and β be f (x) and g (x) respectively. Let the distinct
roots of f (x) and g (x) be {α1, α2, · · · , αn} and {β1, β2, · · · , βm} respectively. These roots
are in a field which contains splitting fields of both f (x) and g (x). Let α = α1 and β = β1.
Now define

h (x) ≡ f (α+ λβ − λx) ≡ f (γ − λx)

so that h (β) = f (α) = 0. It follows (x− β) divides both h (x) and g (x). If (x− η) is a
different linear factor of both g (x) and h (x) then it must be

(
x− βj

)
for some βj for some

j > 1 because these are the only factors of g (x) . Therefore, this would require

0 = h
(
βj

)
= f

(
α1 + λβ1 − λβj

)
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and so it would be the case that α1 + λβ1 − λβj = αk for some k. Hence

λ =
αk − α1

β1 − βj

Now there are finitely many quotients of the above form and if λ is chosen to not be any of
them, then the above cannot happen and so in this case, the only linear factor of both g (x)
and h (x) will be (x− β). Choose such a λ.

Let ϕ (x) be the minimal polynomial of β with respect to the field F [γ]. Then this
minimal polynomial must divide both h (x) and g (x) because h (β) = g (β) = 0. However,
the only factor these two have in common is x − β and so ϕ (x) = x − β which requires
β ∈ F [γ] . Now also α = γ − λβ and so α ∈ F [γ] also. Therefore, both α, β ∈ F [γ] which
forces F [α, β] ⊆ F [γ] . This proves the proposition in the case that n = 2. The general result
follows right away by observing that

F [a1 · · · an] = F [a1 · · · an−1] [an]

and using induction. �
When you have a field F, F (a) denotes the smallest field which contains both F and a.

When a is algebraic over F, it follows that F (a) = F [a] . The latter is easier to think about
because it just involves polynomials.

8.3.4 The Lindemannn Weierstrass Theorem And Vector Spaces

As another application of the abstract concept of vector spaces, there is an amazing theorem
due to Weierstrass and Lindemannn.

Theorem 8.3.34 Suppose a1, · · · , an are algebraic numbers, roots of a polynomial with
rational coefficients, and suppose α1, · · · , αn are distinct algebraic numbers. Then

n∑
i=1

aie
αi ̸= 0

In other words, the {eα1 , · · · , eαn} are independent as vectors with field of scalars equal to
the algebraic numbers.

There is a proof of this in the appendix. It is long and hard but only depends on
elementary considerations other than some algebra involving symmetric polynomials. See
Theorem F.3.5.

A number is transcendental, as opposed to algebraic, if it is not a root of a polynomial
which has integer (rational) coefficients. Most numbers are this way but it is hard to verify
that specific numbers are transcendental. That π is transcendental follows from

e0 + eiπ = 0.

By the above theorem, this could not happen if π were algebraic because then iπ would also
be algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being
a root of x2 + 1. This fact about π was first proved by Lindemannn in 1882 and then the
general theorem above was proved by Weierstrass in 1885. This fact that π is transcendental
solved an old problem called squaring the circle which was to construct a square with the
same area as a circle using a straight edge and compass. It can be shown that the fact π is
transcendental implies this problem is impossible.1

1Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess
Ida which opened in 1884 he has the following lines. “As for fashion they forswear it, so the say - so they
say; and the circle - they will square it some fine day some fine day.” Of course it had been proved impossible
to do this a couple of years before.
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8.4 Exercises

1. Let H denote span






1
2
0


 ,




1
4
0


 ,




1
3
1


 ,




0
1
1




 . Find the dimension of H

and determine a basis.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

3. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

4. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

5. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.

6. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.
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Is M a subspace? Explain.

7. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

9. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .

10. Consider the vectors of the form






2t+ 3s
s− t
t+ s


 : s, t ∈ R


 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.
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11. Consider the vectors of the form





2t+ 3s+ u
s− t
t+ s
u


 : s, t, u ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

12. Consider the vectors of the form





2t+ u+ 1
t+ 3u

t+ s+ v
u


 : s, t, u, v ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

13. Let V denote the set of functions defined on [0, 1]. Vector addition is defined as
(f + g) (x) ≡ f (x) + g (x) and scalar multiplication is defined as (αf) (x) ≡ α (f (x)).
Verify V is a vector space. What is its dimension, finite or infinite? Justify your
answer.

14. Let V denote the set of polynomial functions defined on [0, 1]. Vector addition is
defined as (f + g) (x) ≡ f (x)+g (x) and scalar multiplication is defined as (αf) (x) ≡
α (f (x)). Verify V is a vector space. What is its dimension, finite or infinite? Justify
your answer.

15. Let V be the set of polynomials defined on R having degree no more than 4. Give a
basis for this vector space.

16. Let the vectors be of the form a + b
√
2 where a, b are rational numbers and let the

field of scalars be F = Q, the rational numbers. Show directly this is a vector space.
What is its dimension? What is a basis for this vector space?

17. Let V be a vector space with field of scalars F and suppose {v1, · · · ,vn} is a basis for
V . Now let W also be a vector space with field of scalars F. Let L : {v1, · · · ,vn} →
W be a function such that Lvj = wj . Explain how L can be extended to a linear
transformation mapping V to W in a unique way.

18. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

19. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

20. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

21. Suppose V and W both have dimension equal to 7 and they are subspaces of a vector
space of dimension 10. What are the possibilities for the dimension of V ∩W? Hint:
Remember that a linear independent set can be extended to form a basis.

22. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max (p, q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.
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23. If b ̸= 0, can the solution set of Ax = b be a plane through the origin? Explain.

24. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

25. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
is a pivot column. Could the system of linear equations be consistent? Explain.

26. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

27. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

28. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

29. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

30. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

31. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

32. If you have not done this already, here it is again. It is a very important result.
Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

99 

Vector Spaces And Fields

Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so

Bx =
∑k

i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

33. Recall that every positive integer can be factored into a product of primes in a unique
way. Show there must be infinitely many primes. Hint: Show that if you have any
finite set of primes and you multiply them and then add 1, the result cannot be
divisible by any of the primes in your finite set. This idea in the hint is due to Euclid
who lived about 300 B.C.

34. There are lots of fields. This will give an example of a finite field. Let Z denote the set
of integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }. Also let p be a prime number.
We will say that two integers, a, b are equivalent and write a ∼ b if a − b is divisible
by p. Thus they are equivalent if a − b = px for some integer x. First show that
a ∼ a. Next show that if a ∼ b then b ∼ a. Finally show that if a ∼ b and b ∼ c
then a ∼ c. For a an integer, denote by [a] the set of all integers which is equivalent
to a, the equivalence class of a. Show first that is suffices to consider only [a] for
a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] ̸= [b]. That is, [a] = [r] where
r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes. Hint:
Recall the Euclidean algorithm. For a > 0, a = mp+ r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then
[a] + [b] = [a′] + [b′] with a similar conclusion holding for multiplication. Thus for
addition you need to verify [a+ b] = [a′ + b′] and for multiplication you need to verify
[ab] = [a′b′]. For example, if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]?
Is [2 + 3] = [8 + 7]? Clearly so in this example because when you subtract, the result
is divisible by 5. So why is this so in general? Now verify that {[0] , [1] , · · · , [p− 1]}
with these operations is a Field. This is called the integers modulo a prime and is
written Zp. Since there are infinitely many primes p, it follows there are infinitely
many of these finite fields. Hint: Most of the axioms are easy once you have shown
the operations are well defined. The only two which are tricky are the ones which
give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that
1 = px+ky and so 1−ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the
argument. What is the multiplicative identity in this collection of equivalence classes?
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Of course you could now consider field extensions based on these fields.

35. Suppose the field of scalars is Z2 described above. Show that

(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
=

(
1 0
0 1

)

Thus the identity is a comutator. Compare this with Problem 50 on Page 265.

36. Suppose V is a vector space with field of scalars F. Let T ∈ L (V,W ) , the space of
linear transformations mapping V onto W where W is another vector space. Define
an equivalence relation on V as follows. v ∼ w means v −w ∈ ker (T ) . Recall that
ker (T ) ≡ {v : Tv = 0}. Show this is an equivalence relation. Now for [v] an equiv-
alence class define T ′ [v] ≡ Tv. Show this is well defined. Also show that with the
operations

[v] + [w] ≡ [v +w]

α [v] ≡ [αv]
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this set of equivalence classes, denoted by V/ ker (T ) is a vector space. Show next that
T ′ : V/ ker (T ) → W is one to one, linear, and onto. This new vector space, V/ ker (T )
is called a quotient space. Show its dimension equals the difference between the
dimension of V and the dimension of ker (T ).

37. Let V be an n dimensional vector space and let W be a subspace. Generalize the
above problem to define and give properties of V/W . What is its dimension? What
is a basis?

38. If F and G are two fields and F ⊆ G, can you consider G as a vector space with field
of scalars F? Explain.

39. Let A denote the real roots of polynomials in Q [x] . Show A can be considered a
vector space with field of scalars Q. What is the dimension of this vector space, finite
or infinite?

40. As mentioned, for distinct algebraic numbers αi, the complex numbers {eαi}ni=1 are
linearly independent over the field of scalars A where A denotes the algebraic numbers,
those which are roots of a polynomial having integer (rational) coefficients. What is
the dimension of the vector space C with field of scalars A, finite or infinite? If the
field of scalars were C instead of A, would this change? What if the field of scalars
were R?

41. Suppose F is a countable field and let A be the algebraic numbers, those numbers in
G which are roots of a polynomial in F [x]. Show A is also countable.

42. This problem is on partial fractions. Suppose you have

R (x) =
p (x)

q1 (x) · · · qm (x)
, degree of p (x) < degree of denominator.

where the polynomials qi (x) are relatively prime and all the polynomials p (x) and
qi (x) have coefficients in a field of scalars F. Thus there exist polynomials ai (x)
having coefficients in F such that

1 =

m∑
i=1

ai (x) qi (x)

Explain why

R (x) =
p (x)

∑m
i=1 ai (x) qi (x)

q1 (x) · · · qm (x)
=

m∑
i=1

ai (x) p (x)∏
j ̸=i qj (x)

Now continue doing this on each term in the above sum till finally you obtain an
expression of the form

m∑
i=1

bi (x)

qi (x)

Using the Euclidean algorithm for polynomials, explain why the above is of the form

M (x) +
m∑
i=1

ri (x)

qi (x)

where the degree of each ri (x) is less than the degree of qi (x) and M (x) is a poly-
nomial. Now argue that M (x) = 0. From this explain why the usual partial fractions
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expansion of calculus must be true. You can use the fact that every polynomial having
real coefficients factors into a product of irreducible quadratic polynomials and linear
polynomials having real coefficients. This follows from the fundamental theorem of
algebra in the appendix.

43. Suppose {f1, · · · , fn} is an independent set of smooth functions defined on some inter-
val (a, b). Now let A be an invertible n×n matrix. Define new functions {g1, · · · , gn}
as follows. 


g1
...
gn


 = A




f1
...
fn




Is it the case that {g1, · · · , gn} is also independent? Explain why.
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Linear Transformations

9.1 Matrix Multiplication As A Linear Transformation

Definition 9.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and written L ∈ L (V,W ) if for all
scalars α and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1
...
vn


 ∈ Fn.

9.2 L (V,W ) As A Vector Space

Definition 9.2.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by
L+M according to the rule1

(L+M) v ≡ Lv +Mv.

For α a scalar and L ∈ L (V,W ) , define αL ∈ L (V,W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

1Note that this is the standard way of defining the sum of two functions.
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9.1 Matrix Multiplication As A Linear Transformation

Definition 9.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and written L ∈ L (V,W ) if for all
scalars α and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1
...
vn


 ∈ Fn.

9.2 L (V,W ) As A Vector Space

Definition 9.2.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by
L+M according to the rule1

(L+M) v ≡ Lv +Mv.

For α a scalar and L ∈ L (V,W ) , define αL ∈ L (V,W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

1Note that this is the standard way of defining the sum of two functions.

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

105 

Linear Transformations

Lemma 9.2.2 Let V and W be vector spaces and suppose {v1, · · · , vn} is a basis for V.
Then if L : V → W is given by Lvk = wk ∈ W and

L

(
n∑

k=1

akvk

)
≡

n∑
k=1

akLvk =
n∑

k=1

akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · , vn} is a basis, there is exactly one
way to write a given vector of V as a linear combination. Next, observe that L is obviously
linear from the definition. If L,M are equal on the basis, then if

∑n
k=1 akvk is an arbitrary

vector of V,

L

(
n∑

k=1

akvk

)
=

n∑
k=1

akLvk =

n∑
k=1

akMvk = M

(
n∑

k=1

akvk

)

Lemma 9.2.2 Let V and W be vector spaces and suppose {v1, · · · , vn} is a basis for V.
Then if L : V → W is given by Lvk = wk ∈ W and

L

(
n∑

k=1

akvk

)
≡

n∑
k=1

akLvk =
n∑

k=1

akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · , vn} is a basis, there is exactly one
way to write a given vector of V as a linear combination. Next, observe that L is obviously
linear from the definition. If L,M are equal on the basis, then if

∑n
k=1 akvk is an arbitrary

vector of V,

L

(
n∑

k=1

akvk

)
=

n∑
k=1

akLvk =

n∑
k=1

akMvk = M

(
n∑

k=1

akvk

)
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and so L = M because they give the same result for every vector in V . �
The message is that when you define a linear transformation, it suffices to tell what it

does to a basis.

Theorem 9.2.3 Let V and W be finite dimensional linear spaces of dimension n and m
respectively Then dim (L (V,W )) = mn.

Proof: Let two sets of bases be

{v1, · · · , vn} and {w1, · · · , wm}

for V and W respectively. Using Lemma 9.2.2, let wivj ∈ L (V,W ) be the linear transfor-
mation defined on the basis, {v1, · · · , vn}, by

wivk (vj) ≡ wiδjk

where δik = 1 if i = k and 0 if i ̸= k. I will show that L ∈ L (V,W ) is a linear combination
of these special linear transformations called dyadics.

Then let L ∈ L (V,W ). Since {w1, · · · , wm} is a basis, there exist constants, djk such
that

Lvr =
m∑
j=1

djrwj

Now consider the following sum of dyadics.

m∑
j=1

n∑
i=1

djiwjvi

Apply this to vr. This yields

m∑
j=1

n∑
i=1

djiwjvi (vr) =
m∑
j=1

n∑
i=1

djiwjδir =
m∑
j=1

djrwi = Lvr

Therefore, L =
∑m

j=1

∑n
i=1 djiwjvi showing the span of the dyadics is all of L (V,W ) .

Now consider whether these dyadics form a linearly independent set. Suppose

∑
i,k

dikwivk = 0.

Are all the scalars dik equal to 0?

0 =
∑
i,k

dikwivk (vl) =
m∑
i=1

dilwi

and so, since {w1, · · · , wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary,
this shows dil = 0 for all i and l. Thus these linear transformations form a basis and this
shows that the dimension of L (V,W ) is mn as claimed because there are m choices for the
wi and n choices for the vj . �
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9.3 The Matrix Of A Linear Transformation

Definition 9.3.1 In Theorem 9.2.3, the matrix of the linear transformation L ∈ L (V,W )
with respect to the ordered bases β ≡ {v1, · · · , vn} for V and γ ≡ {w1, · · · , wm} for W is
defined to be [L] where [L]ij = dij . Thus this matrix is defined by L =

∑
i,j [L]ij wivi. When

it is desired to feature the bases β, γ, this matrix will be denoted as [L]γβ . When there is
only one basis β, this is denoted as [L]β.

If V is an n dimensional vector space and β = {v1, · · · , vn} is a basis for V, there exists
a linear map

qβ : Fn → V

defined as

qβ (a) ≡
n∑

i=1

aivi

where

a =




a1
...
an


 =

n∑
i=1

aiei,

for ei the standard basis vectors for Fn consisting of
(
0 · · · 1 · · · 0

)T
. Thus the 1

is in the ith position and the other entries are 0.
It is clear that q defined in this way, is one to one, onto, and linear. For v ∈ V, q−1

β (v)
is a vector in Fn called the component vector of v with respect to the basis {v1, · · · , vn}.

Proposition 9.3.2 The matrix of a linear transformation with respect to ordered bases β, γ
as described above is characterized by the requirement that multiplication of the components
of v by [L]γβ gives the components of Lv.

Proof: This happens because by definition, if v =
∑

i xivi, then

Lv =
∑
i

xiLvi ≡
∑
i

∑
j

[L]ji xiwj =
∑
j

∑
i

[L]ji xiwj

and so the jth component of Lv is
∑

i [L]ji xi, the jth component of the matrix times the
component vector of v. Could there be some other matrix which will do this? No, because if
such a matrix is M, then for any x , it follows from what was just shown that [L]x = Mx.
Hence [L] = M . �

The above proposition shows that the following diagram determines the matrix of a
linear transformation. Here qβ and qγ are the maps defined above with reference to the
ordered bases, {v1, · · · , vn} and {w1, · · · , wm} respectively.

L
β = {v1, · · · , vn} V → W {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ
Fn → Fm

[L]γβ

(9.1)

In terms of this diagram, the matrix [L]γβ is the matrix chosen to make the diagram
“commute” It may help to write the description of [L]γβ in the form

(
Lv1 · · · Lvn

)
=

(
w1 · · · wm

)
[L]γβ (9.2)

with the understanding that you do the multiplications in a formal manner just as you
would if everything were numbers. If this helps, use it. If it does not help, ignore it.
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Example 9.3.3 Let
V ≡ { polynomials of degree 3 or less},

W ≡ { polynomials of degree 2 or less},

and L ≡ D where D is the differentiation operator. A basis for V is β =
{
1, x, x2, x3

}
and

a basis for W is γ = {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using 9.2,

(
0 1 2x 3x2

)
=

(
1 x x2

)
[D]γβ .

It follows from this that the first column of [D]γβ is




0
0
0




The next three columns of [D]γβ are




1
0
0


 ,




0
2
0


 ,




0
0
3




and so

[D]γβ =




0 1 0 0
0 0 2 0
0 0 0 3


 .
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Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above.

β = {e1, · · · , en} , γ = {e1, · · · , em}

Let L be a linear transformation from Fn to Fm and let A be the matrix of the transformation
with respect to these bases. In this case the coordinate maps qβ and qγ are simply the
identity maps on Fn and Fm respectively, and can be accomplished by simply multiplying
by the appropriate sized identity matrix. The requirement that A is the matrix of the
transformation amounts to

Lb = Ab

What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
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which illustrates the situation.
Fn A2−→ Fm

qβ2
↓ ◦ qγ2

↓
V L−→ W

qβ1
↑ ◦ qγ1

↑
Fn A1−→ Fm

In this diagram qβi
and qγi

are coordinate maps as described above. From the diagram,

q−1
γ1

qγ2
A2q

−1
β2

qβ1
= A1,

where q−1
β2

qβ1
and q−1

γ1
qγ2

are one to one, onto, and linear maps which may be accomplished
by multiplication by a square matrix. Thus there exist matrices P,Q such that P : Fn → Fn

and Q : Fm → Fm are invertible and

PA2Q = A1.

Example 9.3.4 Let β ≡ {v1, · · · ,vn} and γ ≡ {w1, · · · ,wn} be two bases for V . Let L
be the linear transformation which maps vi to wi. Find [L]γβ . In case V = Fn and letting
δ = {e1, · · · , en} , the usual basis for Fn, find [L]δ.

Letting δij be the symbol which equals 1 if i = j and 0 if i ̸= j, it follows that L =∑
i,j δijwivj and so [L]γβ = I the identity matrix. For the second part, you must have

(
w1 · · · wn

)
=

(
v1 · · · vn

)
[L]δ

and so
[L]δ =

(
v1 · · · vn

)−1 (
w1 · · · wn

)

where
(
w1 · · · wn

)
is the n× n matrix having ith column equal to wi.

Definition 9.3.5 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
β1

qβ2
A2q

−1
β2

qβ1
= A1.

Letting S be the matrix of the linear transformation q−1
β2

qβ1
with respect to the standard basis

vectors in Fn,
S−1A2S = A1. (9.3)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.

Recall the following.

Definition 9.3.6 Let S be a set. The symbol ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 9.3.7 [x] denotes the set of all elements of S which are equivalent to x and [x]
is called the equivalence class determined by x or just the equivalence class of x.
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Also recall the notion of equivalence classes.

Theorem 9.3.8 Let ∼ be an equivalence class defined on a set S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x ∼ y
and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Theorem 9.3.9 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈ L (V, V ) and bases {v1, · · · , vn} and {w1, · · · , wn} such that
A is the matrix of L with respect to {v1, · · · , vn} and B is the matrix of L with respect to
{w1, · · · , wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies B = SAS−1. If A ∼ B and B ∼ C, then

A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)

−1
CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B so A = S−1BS and pick a basis for

V,
β ≡ {v1, · · · , vn}.

Define L ∈ L (V, V ) by

Lvi ≡
∑
j

ajivj

where A = (aij) . Thus A is the matrix of the linear transformation L. Consider the diagram

Fn B−→ Fn

qγ ↓ ◦ qγ ↓
V L−→ V

qβ ↑ ◦ qβ ↑
Fn A−→ Fn

where qγ is chosen to make the diagram commute. Thus we need S = q−1
γ qβ which requires

qγ = qβS
−1

Then it follows that B is the matrix of L with respect to the basis

{qγe1, · · · , qγen} ≡ {w1, · · · , wn}.

That is, A and B are matrices of the same linear transformation L. Conversely, if A ∼ B,
let L be as just described. Thus L = qβAq−1

β = qβSBS−1q−1
β . Let qγ ≡ qβS and it follows

that B is the matrix of L with respect to {qβSe1, · · · , qβSen}. �
What if the linear transformation consists of multiplication by a matrix A and you want

to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The next proposition considers this.
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Proposition 9.3.10 Let A be an m×n matrix and let L be the linear transformation which
is defined by

L

(
n∑

k=1

xkek

)
≡

n∑
k=1

(Aek)xk ≡
m∑
i=1

n∑
k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. (A is the matrix of L
with respect to the standard basis.) Then the matrix M of this linear transformation with
respect to the bases β = {u1, · · · ,un} for Fn and γ = {w1, · · · ,wm} for Fm is given by

M =
(
w1 · · · wm

)−1
A
(
u1 · · · un

)

where
(
w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L
Fn → Fm

qβ ↑ ◦ ↑ qγ
Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qβ
(
x1 · · · xn

)T ≡
n∑

i=1

xiui.

Therefore, qβ can be considered the same as multiplication of a vector in Fn on the left by
the matrix

(
u1 · · · un

)
. Similar considerations apply to qγ . Thus it is desired to have

the following for an arbitrary x ∈ Fn.

A
(
u1 · · · un

)
x =

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. �
In the special case where m = n and F = C or R and {u1, · · · ,un} is an orthonormal

basis and you want M , the matrix of L with respect to this new orthonormal basis, it follows
from the above that

M =
(
u1 · · · um

)∗
A
(
u1 · · · un

)
= U∗AU

where U is a unitary matrix. Thus matrices with respect to two orthonormal bases are

unitarily similar.

Definition 9.3.11 An n× n matrix A, is diagonalizable if there exists an invertible n× n
matrix S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries
everywhere except on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal
matrix having the λi down the main diagonal.

The following theorem is of great significance.

Theorem 9.3.12 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has
a basis of eigenvectors of A. In this case, S of Definition 9.3.11 consists of the n×n matrix
whose columns are the eigenvectors of A and D = diag (λ1, · · · , λn) .
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where U is a unitary matrix. Thus matrices with respect to two orthonormal bases are

unitarily similar.

Definition 9.3.11 An n× n matrix A, is diagonalizable if there exists an invertible n× n
matrix S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries
everywhere except on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal
matrix having the λi down the main diagonal.

The following theorem is of great significance.

Theorem 9.3.12 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has
a basis of eigenvectors of A. In this case, S of Definition 9.3.11 consists of the n×n matrix
whose columns are the eigenvectors of A and D = diag (λ1, · · · , λn) .

©
 U

B
S 

20
10

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

www.ubs.com/graduates

Looking for a career where your ideas could really make a difference? UBS’s 

Graduate Programme and internships are a chance for you to experience  

for yourself what it’s like to be part of a global team that rewards your input 

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours  

by visiting www.ubs.com/graduates.

          You’re full of energy
and ideas. And that’s
    just what we are looking for.

http://bookboon.com/
http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

114 

Linear Transformations

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · · ,vn} where Avi = λivi.

Then let S denote the matrix
(
v1 · · · vn

)
and let S−1 ≡




uT
1
...
uT
n


 where

uT
i vj = δij ≡

{
1 if i = j
0 if i ̸= j

.

S−1 exists because S has rank n. Then from block multiplication,

S−1AS =




uT
1
...
uT
n


 (Av1 · · ·Avn) =




uT
1
...
uT
n


 (λ1v1 · · ·λnvn)

=




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . .
. . .

. . .

0 · · · 0 λn


 = D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · · , λn) . Then the columns
of S form a basis because S−1 is given to exist. It only remains to verify that these
columns of S are eigenvectors. But letting S =

(
v1 · · · vn

)
, AS = SD and so(

Av1 · · · Avn

)
=

(
λ1v1 · · · λnvn

)
which shows that Avi = λivi. �

It makes sense to speak of the determinant of a linear transformation as described in the
following corollary.

Corollary 9.3.13 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A be
the matrix of this linear transformation with respect to a basis on V. Then it is possible to
define

det (L) ≡ det (A) .

Proof: Each choice of basis for V determines a matrix for L with respect to the basis.
If A and B are two such matrices, it follows from Theorem 9.3.9 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .

But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)

and so
det (A) = det (B) �

Definition 9.3.14 Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces.
Define rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix
of A.

Theorem 9.3.15 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix of
A taken with respect to a pair of bases for the vector spaces X, and Y.
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Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

β = {v1, · · · , vn} X A−→ Y {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ
Fn M−→ Fm

Let {Ax1, · · · , Axr} be a basis for AX. Thus
{
qγMq−1

β x1, · · · , qγMq−1
β xr

}

is a basis for AX. It follows that
{
Mq−1

X x1, · · · ,Mq−1
X xr

}

is linearly independent and so rank (A) ≤ rank (M) . However, one could interchange the
roles of M and A in the above argument and thereby turn the inequality around. �

The following result is a summary of many concepts.

Theorem 9.3.16 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then the
following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.

4. det (L) ̸= 0

5. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let β = {vi}ni=1 be a basis. Then if
∑n

i=1 ciLvi =
0 it follows L (

∑n
i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must

be the case that
∑n

i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a
linearly independent set. Since there are n of these, it must be that this is a basis.

Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that
there are constants, {ci} such that y =

∑n
i=1 ciLvi = L (

∑n
i=1 civi) . Thus L is onto. It has

been shown that 2.) implies 3.).
Now suppose 3.). Then the operation consisting of multiplication by the matrix of L, [L],

must be onto. However, the vectors in Fn so obtained, consist of linear combinations of the
columns of [L] . Therefore, the column rank of [L] is n. By Theorem 3.3.23 this equals the
determinant rank and so det ([L]) ≡ det (L) ̸= 0.

Now assume 4.) If Lv = 0 for some v ̸= 0, it follows that [L]x = 0 for some x ̸= 0.
Therefore, the columns of [L] are linearly dependent and so by Theorem 3.3.23, det ([L]) =
det (L) = 0 contrary to 4.). Therefore, 4.) implies 5.).

Now suppose 5.) and suppose Lv = Lw. Then L (v − w) = 0 and so by 5.), v − w = 0
showing that L is one to one. �

Also it is important to note that composition of linear transformations corresponds to
multiplication of the matrices. Consider the following diagram in which [A]γβ denotes the
matrix of A relative to the bases γ on Y and β on X, [B]δγ defined similarly.

X A−→ Y B−→ Z

qβ ↑ ◦ ↑ qγ ◦ ↑ qδ
Fn [A]γβ−−−→

Fm [B]δγ−−−→
Fp
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where A and B are two linear transformations, A ∈ L (X,Y ) and B ∈ L (Y, Z) . Then
B ◦ A ∈ L (X,Z) and so it has a matrix with respect to bases given on X and Z, the
coordinate maps for these bases being qβ and qδ respectively. Then

B ◦A = qδ [B]δγ qγq
−1
γ [A]γβ q

−1
β = qδ [B]δγ [A]γβ q

−1
β .

But this shows that [B]δγ [A]γβ plays the role of [B ◦A]δβ , the matrix of B ◦A. Hence the
matrix of B ◦ A equals the product of the two matrices [A]γβ and [B]δγ . Of course it is
interesting to note that although [B ◦A]δβ must be unique, the matrices, [A]γβ and [B]δγ
are not unique because they depend on γ, the basis chosen for Y .

Theorem 9.3.17 The matrix of the composition of linear transformations equals the prod-
uct of the matrices of these linear transformations.

9.3.1 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m × n matrix
A ≡ [T ] with the property that

Ax = Tx (9.4)

for all x ∈ Fn. You simply take the matrix of the linear transformation with respect to the
standard basis. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 9.4.
Then if x ∈ Fn it follows

x =

n∑
i=1

xiei

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =
n∑

i=1

xiT (ei)

=




| |
T (e1) · · · T (en)

| |







x1

...
xn


 ≡ A




x1

...
xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the following theorem.

Theorem 9.3.18 Let T be a linear transformation from Fn to Fm. Then the matrix A
satisfying 9.4 is given by 


| |

T (e1) · · · T (en)
| |




where Tei is the ith column of A.

Example 9.3.19 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.
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�

�

e1

e2

From Theorem 9.3.18, you only need to find Te1 and Te2, the first being the first column
of the desired matrix A and the second being the second column. From drawing a picture
and doing a little geometry, you see that

Te1 =

(
cos θ
sin θ

)
, Te2 =

(
− sin θ
cos θ

)
.

Therefore, from Theorem 9.3.18,

A =

(
cos θ − sin θ
sin θ cos θ

)

Example 9.3.20 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of ϕ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + ϕ.

Let Tθ+ϕ denote the linear transformation which rotates every vector through an angle
of θ + ϕ. Then to get Tθ+ϕ, you could first do Tϕ and then do Tθ where Tϕ is the linear
transformation which rotates through an angle of ϕ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+ϕ, Aϕ,
and Aθ, you must have for every x

Aθ+ϕx = Tθ+ϕx = TθTϕx = AθAϕx.
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Consequently, you must have

Aθ+ϕ =

(
cos (θ + ϕ) − sin (θ + ϕ)
sin (θ + ϕ) cos (θ + ϕ)

)
= AθAϕ

=

(
cos θ − sin θ
sin θ cos θ

)(
cosϕ − sinϕ
sinϕ cosϕ

)
.

Therefore,

(
cos (θ + ϕ) − sin (θ + ϕ)
sin (θ + ϕ) cos (θ + ϕ)

)
=

(
cos θ cosϕ− sin θ sinϕ − cos θ sinϕ− sin θ cosϕ
sin θ cosϕ+ cos θ sinϕ cos θ cosϕ− sin θ sinϕ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

Example 9.3.21 Find the matrix of the linear transformation which rotates vectors in
R3counterclockwise about the positive z axis.
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Let T be the name of this linear transformation. In this case, Te3 = e3, Te1 =
(cos θ, sin θ, 0)

T
, and Te2 = (− sin θ, cos θ, 0)

T
. Therefore, the matrix of this transformation

is just 


cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 (9.5)

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v → proju (v) is linear,

proju (αv+βw) =

(
αv+βw · u

u · u

)
u = α

(v · u
u · u

)
u+ β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 9.3.22 Let the projection map be defined above and let u = (1, 2, 3)
T
. Find the

matrix of this linear transformation with respect to the usual basis.

You can find this matrix in the same way as in earlier examples. proju (ei) gives the ith

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1

14




1
2
3


 ,

2

14




1
2
3


 ,

3

14




1
2
3


 .

Hence the matrix is

1

14




1 2 3
2 4 6
3 6 9


 .

Example 9.3.23 Find the matrix of the linear transformation which reflects all vectors in
R3 through the xz plane.

As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is




1 0 0
0 −1 0
0 0 1


 .

Example 9.3.24 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.
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This linear transformation is just the composition of two linear transformations having
matrices 


cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 ,




1 0 0
0 −1 0
0 0 1




respectively. Thus the matrix desired is



1 0 0
0 −1 0
0 0 1







cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 =




cos θ − sin θ 0
− sin θ − cos θ 0

0 0 1


 .

9.3.2 Rotations About A Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given
unit vector which is possibly not one of the unit vectors in coordinate directions. First
consider a pair of perpendicular unit vectors, u1 and u2 and the problem of rotating in the
counterclockwise direction about u3 where u3 = u1 × u2 so that u1,u2,u3 forms a right
handed orthogonal coordinate system. Thus the vector u3 is coming out of the page.

�

�

�

�

θ
θ

u1

u2

Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.

Thus in terms of the basis γ ≡ {u1,u2,u3} , the matrix of this transformation is

[T ]γ ≡




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

I want to obtain the matrix of the transformation in terms of the usual basis β ≡ {e1, e2, e3}
because it is in terms of this basis that we usually deal with vectors. From Proposition 9.3.10,
if [T ]β is this matrix,




cos θ − sin θ 0
sin θ cos θ 0
0 0 1




=
(
u1 u2 u3

)−1
[T ]β

(
u1 u2 u3

)

and so you can solve for [T ]β if you know the ui.
Recall why this is so.

R3 [T ]γ−−→
R3

qγ ↓ ◦ qγ ↓
R3 T−−→ R3

I ↑ ◦ I ↑
R3 [T ]β−−→

R3

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

121 

Linear Transformations

The map qγ is accomplished by a multiplication on the left by
(
u1 u2 u3

)
. Thus

[T ]β = qγ [T ]γ q
−1
γ =

(
u1 u2 u3

)
[T ]γ

(
u1 u2 u3

)−1
.

Suppose the unit vector u3 about which the counterclockwise rotation takes place is
(a, b, c). Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthonor-
mal system with u3 = (a, b, c) and then use the above result. It is of course somewhat
arbitrary how this is accomplished. I will assume however, that |c| ̸= 1 since otherwise you
are looking at either clockwise or counter clockwise rotation about the positive z axis and
this is a problem which has been dealt with earlier. (If c = −1, it amounts to clockwise
rotation about the positive z axis while if c = 1, it is counter clockwise rotation about the
positive z axis.)

Then let u3 = (a, b, c) and u2 ≡ 1√
a2+b2

(b,−a, 0) . This one is perpendicular to u3. If

{u1,u2,u3} is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

(
−ac,−bc, a2 + b2

)

Now recall that u3 is a unit vector and so the above equals

1√
(a2 + b2)

(
−ac,−bc, a2 + b2

)

Then from the above, A is given by




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c







cos θ − sin θ 0
sin θ cos θ 0
0 0 1







−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c




−1

Of course the matrix is an orthogonal matrix so it is easy to take the inverse by simply
taking the transpose. Then doing the computation and then some simplification yields

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 . (9.6)
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With this, it is clear how to rotate clockwise about the unit vector, (a, b, c) . Just rotate
counter clockwise through an angle of −θ. Thus the matrix for this clockwise rotation is just

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ


 .

In deriving 9.6 it was assumed that c ̸= ±1 but even in this case, it gives the correct
answer. Suppose for example that c = 1 so you are rotating in the counter clockwise
direction about the positive z axis. Then a, b are both equal to zero and 9.6 reduces to 9.5.

9.3.3 The Euler Angles

An important application of the above theory is to the Euler angles, important in the
mechanics of rotating bodies. Lagrange studied these things back in the 1700’s. To describe
the Euler angles consider the following picture in which x1, x2 and x3 are the usual coordinate
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axes fixed in space and the axes labeled with a superscript denote other coordinate axes.
Here is the picture.

ϕ

ϕ

x3 = x1
3

x1

x1
1

x2

x1
2

θ

θ

x1
3

x2
3

x1
1 = x2

1

x1
2

x2
2

ψ

ψ

x2
3 = x3

3

x2
1

x3
1

x2
2

x3
2

We obtain ϕ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix 


cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 ≡ M1 (ϕ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
unit vector 


cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1







1
0
0


 =




cosϕ
sinϕ
0


 .

Therefore, in 9.6, a = cosϕ, b = sinϕ, and c = 0. It follows the matrix of this transformation
with respect to the usual basis is




cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ
cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ


 ≡ M2 (ϕ, θ)

Finally, we rotate counter clockwise about the positive x2
3 axis by ψ. The vector in the

positive x1
3 axis is the same as the vector in the fixed x3 axis. Thus the unit vector in the

positive direction of the x2
3 axis is




cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ
cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ







1
0
0




=




cos2 ϕ+ sin2 ϕ cos θ
cosϕ sinϕ (1− cos θ)

− sinϕ sin θ


 =




cos2 ϕ+ sin2 ϕ cos θ
cosϕ sinϕ (1− cos θ)

− sinϕ sin θ




and it is desired to rotate counter clockwise through an angle of ψ about this vector. Thus,
in this case,

a = cos2 ϕ+ sin2 ϕ cos θ, b = cosϕ sinϕ (1− cos θ) , c = − sinϕ sin θ.

and you could substitute in to the formula of Theorem 9.6 and obtain a matrix which rep-
resents the linear transformation obtained by rotating counter clockwise about the positive
x2
3 axis, M3 (ϕ, θ, ψ) . Then what would be the matrix with respect to the usual basis for the

linear transformation which is obtained as a composition of the three just described? By
Theorem 9.3.17, this matrix equals the product of these three,

M3 (ϕ, θ, ψ)M2 (ϕ, θ)M1 (ϕ) .
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I leave the details to you. There are procedures due to Lagrange which will allow you to
write differential equations for the Euler angles in a rotating body. To give an idea how
these angles apply, consider the following picture.

x1

x2

x3

� ψ

x3(t)

ϕ

line of nodes

θ

This is as far as I will go on this topic. The point is, it is possible to give a systematic
description in terms of matrix multiplication of a very elaborate geometrical description of
a composition of linear transformations. You see from the picture it is possible to describe
the motion of the spinning top shown in terms of these Euler angles.

9.4 Eigenvalues And Eigenvectors Of Linear Transfor-
mations

Let V be a finite dimensional vector space. For example, it could be a subspace of Cnor Rn.
Also suppose A ∈ L (V, V ) .

Definition 9.4.1 The characteristic polynomial of A is defined as q (λ) ≡ det (λI −A) .
The zeros of q (λ) in F are called the eigenvalues of A.

Lemma 9.4.2 When λ is an eigenvalue of A which is also in F, the field of scalars, then
there exists v ̸= 0 such that Av = λv.

Proof: This follows from Theorem 9.3.16. Since λ ∈ F,

λI −A ∈ L (V, V )

and since it has zero determinant, it is not one to one. �
The following lemma gives the existence of something called the minimal polynomial.

Lemma 9.4.3 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with arbitrary field of scalars. Then there exists a unique polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0

such that p (A) = 0 and m is as small as possible for this to occur.

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

125 

Linear Transformations

Proof: Consider the linear transformations, I, A,A2, · · · , An2

. There are n2+1 of these
transformations and so by Theorem 9.2.3 the set is linearly dependent. Thus there exist
constants, ci ∈ F such that

c0I +

n2∑
k=1

ckA
k = 0.

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,

one example is q (λ) ≡ c0 +
∑n2

k=1 ckλ
k. Dividing by the leading term, it can be assumed

this polynomial is of the form λm + cm−1λ
m−1 + · · ·+ c1λ+ c0, a monic polynomial. Now

consider all such monic polynomials, q such that q (A) = 0 and pick the one which has the
smallest degree m. This is called the minimal polynomial and will be denoted here by p (λ) .
If there were two minimal polynomials, the one just found and another,

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0.

Then subtracting these would give the following polynomial,

�q (λ) = (dm−1 − cm−1)λ
m−1 + · · ·+ (d1 − c1)λ+ d0 − c0

Since �q (A) = 0, this requires each dk = ck since otherwise you could divide by dk−ck where
k is the largest one which is nonzero. Thus the choice of m would be contradicted. �

Theorem 9.4.4 Let V be a nonzero finite dimensional vector space of dimension n with
the field of scalars equal to F. Suppose A ∈ L (V, V ) and for p (λ) the minimal polynomial
defined above, let µ ∈ F be a zero of this polynomial. Then there exists v ̸= 0,v ∈ V such
that

Av = µv.

If F = C, then A always has an eigenvector and eigenvalue. Furthermore, if {λ1, · · · , λm}
are the zeros of p (λ) in F, these are exactly the eigenvalues of A for which there exists an
eigenvector in V.
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Proof: Suppose first µ is a zero of p (λ) . Since p (µ) = 0, it follows

p (λ) = (λ− µ) k (λ)

where k (λ) is a polynomial having coefficients in F. Since p has minimal degree, k (A) ̸= 0
and so there exists a vector, u ̸= 0 such that k (A)u ≡ v ̸= 0. But then

(A− µI) v = (A− µI) k (A) (u) = 0.

The next claim about the existence of an eigenvalue follows from the fundamental theo-
rem of algebra and what was just shown.

It has been shown that every zero of p (λ) is an eigenvalue which has an eigenvector in
V . Now suppose µ is an eigenvalue which has an eigenvector in V so that Av = µv for some
v ∈ V, v ̸= 0. Does it follow µ is a zero of p (λ)?

0 = p (A) v = p (µ) v

and so µ is indeed a zero of p (λ). �
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In summary, the theorem says that the eigenvalues which have eigenvectors in V are
exactly the zeros of the minimal polynomial which are in the field of scalars F.

9.5 Exercises

1. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible?

2. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

3. Explain why Ax = 0 always has a solution whenever A is a linear transformation.

4. Review problem: Suppose det (A− λI) = 0. Show using Theorem 3.1.15 there exists
x ̸= 0 such that (A− λI)x = 0.

5. How does the minimal polynomial of an algebraic number relate to the minimal poly-
nomial of a linear transformation? Can an algebraic number be thought of as a linear
transformation? How?

6. Recall the fact from algebra that if p (λ) and q (λ) are polynomials, then there exists
l (λ) , a polynomial such that

q (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of p (λ) or else r (λ) = 0. With this in
mind, why must the minimal polynomial always divide the characteristic polynomial?
That is, why does there always exist a polynomial l (λ) such that p (λ) l (λ) = q (λ)?
Can you give conditions which imply the minimal polynomial equals the characteristic
polynomial? Go ahead and use the Cayley Hamilton theorem.

7. In the following examples, a linear transformation, T is given by specifying its action
on a basis β. Find its matrix with respect to this basis.

(a) T

(
1
2

)
= 2

(
1
2

)
+ 1

(
−1
1

)
, T

(
−1
1

)
=

(
−1
1

)

(b) T

(
0
1

)
= 2

(
0
1

)
+ 1

(
−1
1

)
, T

(
−1
1

)
=

(
0
1

)

(c) T

(
1
0

)
= 2

(
1
2

)
+ 1

(
1
0

)
, T

(
1
2

)
= 1

(
1
0

)
−

(
1
2

)

8. Let β = {u1, · · · ,un} be a basis for Fn and let T : Fn → Fn be defined as follows.

T

(
n∑

k=1

akuk

)
=

n∑
k=1

akbkuk

First show that T is a linear transformation. Next show that the matrix of T with
respect to this basis, [T ]β is 


b1

. . .

bn




Show that the above definition is equivalent to simply specifying T on the basis vectors
of β by

T (uk) = bkuk.
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9. ↑In the situation of the above problem, let γ = {e1, · · · , en} be the standard basis for
Fn where ek is the vector which has 1 in the kth entry and zeros elsewhere. Show that
[T ]γ = (

u1 · · · un

)
[T ]β

(
u1 · · · un

)−1
(9.7)

10. ↑Generalize the above problem to the situation where T is given by specifying its
action on the vectors of a basis β = {u1, · · · ,un} as follows.

Tuk =

n∑
j=1

ajkuj .

Letting A = (aij) , verify that for γ = {e1, · · · , en} , 9.7 still holds and that [T ]β = A.

11. Let P3 denote the set of real polynomials of degree no more than 3, defined on an
interval [a, b]. Show that P3 is a subspace of the vector space of all functions defined
on this interval. Show that a basis for P3 is

{
1, x, x2, x3

}
. Now let D denote the

differentiation operator which sends a function to its derivative. Show D is a linear
transformation which sends P3 to P3. Find the matrix of this linear transformation
with respect to the given basis.

12. Generalize the above problem to Pn, the space of polynomials of degree no more than
n with basis {1, x, · · · , xn} .

13. In the situation of the above problem, let the linear transformation be T = D2 + 1,
defined as Tf = f ′′ + f. Find the matrix of this linear transformation with respect to
the given basis {1, x, · · · , xn}. Write it down for n = 4.

14. In calculus, the following situation is encountered. There exists a vector valued func-
tion f :U → Rm where U is an open subset of Rn. Such a function is said to have
a derivative or to be differentiable at x ∈ U if there exists a linear transformation
T : Rn → Rm such that

lim
v→0

|f (x+ v)− f (x)− Tv|
|v|

= 0.

First show that this linear transformation, if it exists, must be unique. Next show
that for β = {e1, · · · , en} , , the standard basis, the kth column of [T ]β is

∂f

∂xk
(x) .

Actually, the result of this problem is a well kept secret. People typically don’t see
this in calculus. It is seen for the first time in advanced calculus if then.

15. Recall that A is similar to B if there exists a matrix P such that A = P−1BP. Show
that if A and B are similar, then they have the same determinant. Give an example
of two matrices which are not similar but have the same determinant.

16. Suppose A ∈ L (V,W ) where dim (V ) > dim (W ) . Show ker (A) ̸= {0}. That is, show
there exist nonzero vectors v ∈ V such that Av = 0.

17. A vector v is in the convex hull of a nonempty set S if there are finitely many vectors
of S, {v1, · · · ,vm} and nonnegative scalars {t1, · · · , tm} such that

v =

m∑
k=1

tkvk,

m∑
k=1

tk = 1.
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Such a linear combination is called a convex combination. Suppose now that S ⊆ V,
a vector space of dimension n. Show that if v =

∑m
k=1 tkvk is a vector in the convex

hull for m > n+ 1, then there exist other scalars {t′k} such that

v =
m−1∑
k=1

t′kvk.

Thus every vector in the convex hull of S can be obtained as a convex combination
of at most n + 1 points of S. This incredible result is in Rudin [23]. Hint: Consider
L : Rm → V × R defined by

L (a) ≡

(
m∑

k=1

akvk,
m∑

k=1

ak

)

Explain why ker (L) ̸= {0} . Next, letting a ∈ ker (L) \ {0} and λ ∈ R, note that
λa ∈ ker (L) . Thus for all λ ∈ R,

v =

m∑
k=1

(tk + λak)vk.

Now vary λ till some tk + λak = 0 for some ak ̸= 0.

18. For those who know about compactness, use Problem 17 to show that if S ⊆ Rn and
S is compact, then so is its convex hull.

19. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.

20. Let A be an n × n matrix of elements of F. There are two cases. In the first case,
F contains a splitting field of pA (λ) so that p (λ) factors into a product of linear
polynomials having coefficients in F. It is the second case which is of interest here
where pA (λ) does not factor into linear factors having coefficients in F. Let G be a
splitting field of pA (λ) and let qA (λ) be the minimal polynomial of A with respect
to the field G. Explain why qA (λ) must divide pA (λ). Now why must qA (λ) factor
completely into linear factors?

21. In Lemma 9.2.2 verify that L is linear.
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10.1 A Theorem Of Sylvester, Direct Sums

The notation is defined as follows.

Definition 10.1.1 Let L ∈ L (V,W ) . Then ker (L) ≡ {v ∈ V : Lv = 0} .

Lemma 10.1.2 Whenever L ∈ L (V,W ) , ker (L) is a subspace.

Proof: If a, b are scalars and v,w are in ker (L) , then

L (av + bw) = aL (v) + bL (w) = 0 + 0 = 0 �

Suppose now that A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all finite dimen-
sional vector spaces. Then it is interesting to consider ker (BA). The following theorem of
Sylvester is a very useful and important result.

Theorem 10.1.3 Let A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all vector spaces
over a field F. Suppose also that ker (A) and A (ker (BA)) are finite dimensional subspaces.
Then

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

Equality holds if and only if A (ker (BA)) = ker (B).

Proof: If x ∈ ker (BA) , then Ax ∈ ker (B) and so A (ker (BA)) ⊆ ker (B) . The following
picture may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A) �A

Now let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis for
A (ker (BA)) . Take any z ∈ ker (BA) . Then Az =

∑m
i=1 aiAyi and so

A

(
z −

m∑
i=1

aiyi

)
= 0

which means z −
∑m

i=1 aiyi ∈ ker (A) and so there are scalars bi such that

z −
m∑
i=1

aiyi =
n∑

j=1

bixi.

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
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10.1 A Theorem Of Sylvester, Direct Sums

The notation is defined as follows.

Definition 10.1.1 Let L ∈ L (V,W ) . Then ker (L) ≡ {v ∈ V : Lv = 0} .

Lemma 10.1.2 Whenever L ∈ L (V,W ) , ker (L) is a subspace.

Proof: If a, b are scalars and v,w are in ker (L) , then

L (av + bw) = aL (v) + bL (w) = 0 + 0 = 0 �

Suppose now that A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all finite dimen-
sional vector spaces. Then it is interesting to consider ker (BA). The following theorem of
Sylvester is a very useful and important result.

Theorem 10.1.3 Let A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all vector spaces
over a field F. Suppose also that ker (A) and A (ker (BA)) are finite dimensional subspaces.
Then

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

Equality holds if and only if A (ker (BA)) = ker (B).

Proof: If x ∈ ker (BA) , then Ax ∈ ker (B) and so A (ker (BA)) ⊆ ker (B) . The following
picture may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A) �A

Now let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis for
A (ker (BA)) . Take any z ∈ ker (BA) . Then Az =

∑m
i=1 aiAyi and so

A

(
z −

m∑
i=1

aiyi

)
= 0

which means z −
∑m

i=1 aiyi ∈ ker (A) and so there are scalars bi such that

z −
m∑
i=1

aiyi =
n∑

j=1

bixi.
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It follows span (x1, · · · , xn, y1, · · · , ym) ⊇ ker (BA) and so by the first part, (See the picture.)

dim (ker (BA)) ≤ n+m ≤ dim (ker (A)) + dim (ker (B))

Now {x1, · · · , xn, y1, · · · , ym} is linearly independent because if

∑
i

aixi +
∑
j

bjyj = 0

then you could do A to both sides and conclude that
∑

j bjAyj = 0 which requires that each
bj = 0. Then it follows that each ai = 0 also because it implies

∑
i aixi = 0. Thus

{x1, · · · , xn, y1, · · · , ym}

is a basis for ker (BA). Then A (ker (BA)) = ker (B) if and only if m = dim (ker (B)) if and
only if

dim (ker (BA)) = m+ n = dim (ker (B)) + dim (ker (A)) . �
Of course this result holds for any finite product of linear transformations by induc-

tion. One way this is quite useful is in the case where you have a finite product of linear
transformations

∏l
i=1 Li all in L (V, V ) . Then

dim

(
ker

l∏
i=1

Li

)
≤

l∑
i=1

dim (kerLi) .

Definition 10.1.4 Let {Vi}ri=1 be subspaces of V. Then

r∑
i=1

Vi = V1 + · · ·+ Vr

denotes all sums of the form
∑r

i=1 vi where vi ∈ Vi. If whenever

r∑
i=1

vi = 0, vi ∈ Vi, (10.1)

it follows that vi = 0 for each i, then a special notation is used to denote
∑r

i=1 Vi. This
notation is

V1 ⊕ · · · ⊕ Vr,

and it is called a direct sum of subspaces.

Now here is a useful lemma which is likely already understood.

Lemma 10.1.5 Let L ∈ L (V,W ) where V,W are n dimensional vector spaces. Then if L
is one to one, it follows that L is also onto. In fact, if {v1, · · · , vn} is a basis, then so is
{Lv1, · · · , Lvn}.

Proof: Let {v1, · · · , vn} be a basis for V . Then I claim that {Lv1, · · · , Lvn} is a basis
for W . First of all, I show {Lv1, · · · , Lvn} is linearly independent. Suppose

n∑
k=1

ckLvk = 0.
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It follows span (x1, · · · , xn, y1, · · · , ym) ⊇ ker (BA) and so by the first part, (See the picture.)

dim (ker (BA)) ≤ n+m ≤ dim (ker (A)) + dim (ker (B))

Now {x1, · · · , xn, y1, · · · , ym} is linearly independent because if

∑
i

aixi +
∑
j

bjyj = 0

then you could do A to both sides and conclude that
∑

j bjAyj = 0 which requires that each
bj = 0. Then it follows that each ai = 0 also because it implies

∑
i aixi = 0. Thus

{x1, · · · , xn, y1, · · · , ym}

is a basis for ker (BA). Then A (ker (BA)) = ker (B) if and only if m = dim (ker (B)) if and
only if

dim (ker (BA)) = m+ n = dim (ker (B)) + dim (ker (A)) . �
Of course this result holds for any finite product of linear transformations by induc-

tion. One way this is quite useful is in the case where you have a finite product of linear
transformations

∏l
i=1 Li all in L (V, V ) . Then

dim

(
ker

l∏
i=1

Li

)
≤

l∑
i=1

dim (kerLi) .

Definition 10.1.4 Let {Vi}ri=1 be subspaces of V. Then

r∑
i=1

Vi = V1 + · · ·+ Vr

denotes all sums of the form
∑r

i=1 vi where vi ∈ Vi. If whenever

r∑
i=1

vi = 0, vi ∈ Vi, (10.1)

it follows that vi = 0 for each i, then a special notation is used to denote
∑r

i=1 Vi. This
notation is

V1 ⊕ · · · ⊕ Vr,

and it is called a direct sum of subspaces.

Now here is a useful lemma which is likely already understood.

Lemma 10.1.5 Let L ∈ L (V,W ) where V,W are n dimensional vector spaces. Then if L
is one to one, it follows that L is also onto. In fact, if {v1, · · · , vn} is a basis, then so is
{Lv1, · · · , Lvn}.

Proof: Let {v1, · · · , vn} be a basis for V . Then I claim that {Lv1, · · · , Lvn} is a basis
for W . First of all, I show {Lv1, · · · , Lvn} is linearly independent. Suppose

n∑
k=1

ckLvk = 0.
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Then

L

(
n∑

k=1

ckvk

)
= 0

and since L is one to one, it follows

n∑
k=1

ckvk = 0

which implies each ck = 0. Therefore, {Lv1, · · · , Lvn} is linearly independent. If there
exists w not in the span of these vectors, then by Lemma 8.2.10, {Lv1, · · · , Lvn, w} would
be independent and this contradicts the exchange theorem, Theorem 8.2.4 because it would
be a linearly independent set having more vectors than the spanning set {v1, · · · , vn} . �

Lemma 10.1.6 If V = V1 ⊕ · · · ⊕ Vr and if βi =
{
vi1, · · · , vimi

}
is a basis for Vi, then a

basis for V is {β1, · · · , βr}. Thus

dim (V ) =
r∑

i=1

dim (Vi) .

Proof: Suppose
∑r

i=1

∑mi

j=1 cijv
i
j = 0. then since it is a direct sum, it follows for each i,

mi∑
j=1

cijv
i
j = 0

and now since
{
vi1, · · · , vimi

}
is a basis, each cij = 0. �

Here is a fundamental lemma.

Lemma 10.1.7 Let Li be in L (V, V ) and suppose for i ̸= j, LiLj = LjLi and also Li is
one to one on ker (Lj) whenever i ̸= j. Then

ker

(
p∏

i=1

Li

)
= ker (L1)⊕+ · · ·+⊕ ker (Lp)

Here
∏p

i=1 Li is the product of all the linear transformations.

Proof: First suppose p = 2. Then denote the two operators by A,B respectively. By
Sylvester,

dim (BA) ≤ dim (A) + dim (B) (10.2)

Does equality hold? By Lemma 10.1.3 it suffices to check whether A (ker (BA)) = ker (B) .
By Lemma 10.1.5, and since the operators commute,

A : ker (B) → ker (B) , one to one and onto.

If y ∈ ker (B) , is y = Az where z ∈ ker (BA)? Let z = A−1y. Then z ∈ ker (B) and

BAz = BAA−1y = By = 0.

Thus equality holds in the above Sylvester inequality 10.2. Now if a ∈ ker (A) and b ∈
ker (B) , and a+ b = 0, then

0 = A (a+ b) = Aa+Ab = Ab
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Since Ab = 0, and A is one to one on ker (B), it follows that b = 0. Similarly a = 0 and so,
since these operators commute,

ker (A) + ker (B) = ker (A)⊕ ker (B) ⊆ ker (BA)

Then it follows from Sylvester’s inequality again that

dim (ker (BA)) ≤ dim (ker (A)) + dim (ker (B))

= dim (ker (A)⊕ ker (B)) ≤ dim (ker (BA))

and so ker (BA) = ker (A)⊕ ker (B). Thus the lemma is true if p = 2. Suppose it is true for
p− 1. Then from what was just shown and induction,

ker

(
Lp

p−1∏
i=1

Li

)
= ker (Lp)⊕ ker

(
p−1∏
i=1

Li

)

= ker (Lp)⊕ ker (Lp−1)⊕ · · · ⊕ ker (L1) �

10.2 Direct Sums, Block Diagonal Matrices

Let V be a finite dimensional vector space with field of scalars F. Here I will make no
assumption on F. Also suppose A ∈ L (V, V ) .

Recall Lemma 9.4.3 which gives the existence of the minimal polynomial for a linear
transformation A. This is the monic polynomial p which has smallest possible degree such
that p(A) = 0. It is stated again for convenience.

Lemma 10.2.1 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with field of scalars F. Then there exists a unique monic polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0

such that p (A) = 0 and m is as small as possible for this to occur.

Now it is time to consider the notion of a direct sum of subspaces. Recall you can
always assert the existence of a factorization of the minimal polynomial into a product of
irreducible polynomials. This fact will now be used to show how to obtain such a direct
sum of subspaces.

Definition 10.2.2 For A ∈ L (V, V ) where dim (V ) = n, suppose the minimal polynomial
is

p (λ) =

q∏
k=1

(ϕk(λ))
rk

where the polynomials ϕk have coefficients in F and are irreducible. Now define the gener-
alized eigenspaces

Vk ≡ ker ((ϕk (A))
rk)

Note that if one of these polynomials (ϕk(λ))
rk is a monic linear polynomial, then the gen-

eralized eigenspace would be an eigenspace.

Theorem 10.2.3 In the context of Definition 10.2.2,

V = V1 ⊕ · · · ⊕ Vq (10.3)

and each Vk is A invariant, meaning A (Vk) ⊆ Vk. ϕl (A) is one to one on each Vk for k ̸= l.
If βi =

{
vi1, · · · , vimi

}
is a basis for Vi, then

{
β1, β2, · · · , βq

}
is a basis for V.
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Proof: It is clear Vk is a subspace which is A invariant because A commutes with
ϕk (A)

mk . It is clear the operators ϕk (A)
rk commute. Thus if v ∈ Vk,

ϕk (A)
rk ϕl (A)

rl v = ϕl (A)
rl ϕk (A)

rk v = ϕl (A)
rl 0 = 0

and so ϕl (A)
rl : Vk → Vk.

I claim ϕl (A) is one to one on Vk whenever k ̸= l. The two polynomials ϕl (λ) and
ϕk (λ)

rk are relatively prime so there exist polynomials m (λ) , n (λ) such that

m (λ)ϕl (λ) + n (λ)ϕk (λ)
rk = 1

It follows that the sum of all coefficients of λ raised to a positive power are zero and the
constant term on the left is 1. Therefore, using the convention A0 = I it follows

m (A)ϕl (A) + n (A)ϕk (A)
rk = I

If v ∈ Vk, then from the above,

m (A)ϕl (A) v + n (A)ϕk (A)
rk v = v

Since v is in Vk, it follows by definition,

m (A)ϕl (A) v = v

and so ϕl (A) v ̸= 0 unless v = 0. Thus ϕl (A) and hence ϕl (A)
rl is one to one on Vk for

every k ̸= l. By Lemma 10.1.7 and the fact that ker (
∏q

k=1 ϕk (λ)
rk) = V, 10.3 is obtained.

The claim about the bases follows from Lemma 10.1.6. �
You could consider the restriction of A to Vk. It turns out that this restriction has

minimal polynomial equal to ϕk (λ)
mk .

Corollary 10.2.4 Let the minimal polynomial of A be p (λ) =
∏q

k=1 ϕk (λ)
mk where each

ϕk is irreducible. Let Vk = ker (ϕ (A)
mk) . Then

V1 ⊕ · · · ⊕ Vq = V

and letting Ak denote the restriction of A to Vk, it follows the minimal polynomial of Ak is
ϕk (λ)

mk .

Proof: Recall the direct sum, V1 ⊕ · · · ⊕ Vq = V where Vk = ker (ϕk (A)
mk) for p (λ) =∏q

k=1 ϕk (λ)
mk the minimal polynomial for A where the ϕk (λ) are all irreducible. Thus each

Vk is invariant with respect to A. What is the minimal polynomial of Ak, the restriction of
A to Vk? First note that ϕk (Ak)

mk (Vk) = {0} by definition. Thus if η (λ) is the minimal
polynomial for Ak then it must divide ϕk (λ)

mk and so by Corollary 8.3.11 η (λ) = ϕk (λ)
rk

where rk ≤ mk. Could rk < mk? No, this is not possible because then p (λ) would fail
to be the minimal polynomial for A. You could substitute for the term ϕk (λ)

mk in the
factorization of p (λ) with ϕk (λ)

rk and the resulting polynomial p′ would satisfy p′ (A) = 0.
Here is why. From Theorem 10.2.3, a typical x ∈ V is of the form

q∑
i=1

vi, vi ∈ Vi

Then since all the factors commute,

p′ (A)

(
q∑

i=1

vi

)
=

q∏
i̸=k

ϕi (A)
mi ϕk (A)

rk

(
q∑

i=1

vi

)
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For j ̸= k

q∏
i̸=k

ϕi (A)
mi ϕk (A)

rk vj =

q∏
i̸=k,j

ϕi (A)
mi ϕk (A)

rk ϕj (A)
mj vj = 0

If j = k,
q∏

i̸=k

ϕi (A)
mi ϕk (A)

rk vk = 0

which shows p′ (λ) is a monic polynomial having smaller degree than p (λ) such that p′ (A) =
0. Thus the minimal polynomial for Ak is ϕk (λ)

mk as claimed. �
How does Theorem 10.2.3 relate to matrices?

Theorem 10.2.5 Suppose V is a vector space with field of scalars F and A ∈ L (V, V ).
Suppose also

V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. (AVk ⊆ Vk) Also let βk be an ordered basis for Vk and let Ak

denote the restriction of A to Vk. Letting Mk denote the matrix of Ak with respect to this
basis, it follows the matrix of A with respect to the basis

{
β1, · · · , βq

}
is




M1 0
. . .

0 Mq




Proof: Let β denote the ordered basis
{
β1, · · · , βq

}
, |βk| being the number of vectors

in βk. Let qk : F |βk| → Vk be the usual map such that the following diagram commutes.

Ak

Vk → Vk

qk ↑ ◦ ↑ qk
Fn → Fn

Mk

Thus Akqk = qkM
k. Then if q is the map from Fn to V corresponding to the ordered basis

β just described,

q
(
0 · · · x · · · 0

)T
= qkx,

where x occupies the positions between
∑k−1

i=1 |βi| + 1 and
∑k

i=1 |βi|. Then M will be the
matrix of A with respect to β if and only if a similar diagram to the above commutes.
Thus it is required that Aq = qM . However, from the description of q just made, and the
invariance of each Vk,

Aq




0
...
x
...
0




= Akqkx = qkM
kx = q




M1 0
. . .

Mk

. . .

0 Mq







0
...
x
...
0




It follows that the above block diagonal matrix is the matrix of A with respect to the given
ordered basis. �

An examination of the proof of the above theorem yields the following corollary.
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Corollary 10.2.6 If any βk in the above consists of eigenvectors, then Mk is a diagonal
matrix having the corresponding eigenvalues down the diagonal.

It follows that it would be interesting to consider special bases for the vector spaces in
the direct sum. This leads to the Jordan form or more generally other canonical forms such
as the rational canonical form.

10.3 Cyclic Sets

It was shown above that for A ∈ L (V, V ) for V a finite dimensional vector space over the
field of scalars F, there exists a direct sum decomposition

V = V1 ⊕ · · · ⊕ Vq

where
Vk = ker (ϕk (A)

mk)

and ϕk (λ) is an irreducible polynomial. Here the minimal polynomial of A was

q∏
k=1

ϕk (λ)
mk

Next I will consider the problem of finding a basis for Vk such that the matrix of A
restricted to Vk assumes various forms.

Definition 10.3.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
. This is called an A cyclic set.

The vectors which result are also called a Krylov sequence. For such a sequence of vectors,
|βx| ≡ m.

The first thing to notice is that such a Krylov sequence is always linearly independent.

Lemma 10.3.2 Let βx =
{
x,Ax,A2x, · · · , Am−1x

}
, x ̸= 0 where m is the smallest such

that Amx ∈ span
(
x, · · · , Am−1x

)
. Then βx is linearly independent.

Proof: Suppose that there are scalars ak, not all zero such that

m−1∑
k=0

akA
kx = 0

Then letting ar be the last nonzero scalar in the sum, you can divide by ar and solve for
Arx as a linear combination of the Ajx for j < r ≤ m − 1 contrary to the definition of m.
�

For more on the next lemma and the following theorem, see [14]. I am following the
presentation in Friedberg Insel and Spence [9]. See also Herstein [13]. To help organize the
ideas in the lemma, here is a diagram.

ker(ϕ(A)m)

W
v1, ..., vs

U ⊆ ker(ϕ(A))

x1, x2, ..., xp
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Lemma 10.3.3 Let W be an A invariant (AW ⊆ W ) subspace of ker (ϕ (A)
m
) for m a

positive integer where ϕ (λ) is an irreducible monic polynomial of degree d. Let U be an A
invariant subspace of ker (ϕ (A)) .

If {v1, · · · , vs} is a basis for W then if x ∈ U \W,

{v1, · · · , vs, βx}

is linearly independent.
There exist vectors x1, · · · , xp each in U such that

{
v1, · · · , vs, βx1

, · · · , βxp

}

is a basis for
U +W.

Also, if x ∈ ker (ϕ (A)
m
) , |βx| = kd where k ≤ m. Here |βx| is the length of βx, the degree of

the monic polynomial η (λ) satisfying η (A)x = 0 with η (λ) having smallest possible degree.

Proof: Claim: If x ∈ kerϕ (A) , and |βx| denotes the length of βx, then |βx| = d and so

βx =
{
x,Ax,A2x, · · · , Ad−1x

}

also span (βx) is A invariant, A (span (βx)) ⊆ span (βx).
Proof of the claim: Let m = |βx| . That is, there exists monic η (λ) of degree m and

η (A)x = 0 with m is as small as possible for this to happen. Then from the usual process of
division of polynomials, there exist l (λ) , r (λ) such that r (λ) = 0 or else has smaller degree
than that of η (λ) such that

ϕ (λ) = η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then the equation implies 0 = ϕ (A)x = r (A)x and so m was
incorrectly chosen. Hence r (λ) = 0 and so if l (λ) ̸= 1, then η (λ) divides ϕ (λ) contrary
to the assumption that ϕ (λ) is irreducible. Hence l (λ) = 1 and η (λ) = ϕ (λ) . The claim
about span (βx) is obvious because Adx ∈ span (βx). This shows the claim.

Suppose now x ∈ U \W where U ⊆ ker (ϕ (A)). Consider

{v1, · · · , vs, βx} .

Is this set of vectors independent? Suppose

s∑
i=1

aivi +
d∑

j=1

djA
j−1x = 0.

If z ≡
∑d

j=1 djA
j−1x, then z ∈ W ∩ span

(
x,Ax, · · · , Ad−1x

)
. Then also for each m ≤ d−1,

Amz ∈ W ∩ span
(
x,Ax, · · · , Ad−1x

)

because W, span
(
x,Ax, · · · , Ad−1x

)
are A invariant. Therefore,

span
(
z,Az, · · · , Ad−1z

)
⊆ W ∩ span

(
x,Ax, · · · , Ad−1x

)

⊆ span
(
x,Ax, · · · , Ad−1x

)
(10.4)

Suppose z ̸= 0. Then from the Lemma 10.3.2 above,
{
z,Az, · · · , Ad−1z

}
must be linearly

independent. Therefore,

d = dim
(
span

(
z,Az, · · · , Ad−1z

))
≤ dim

(
W ∩ span

(
x,Ax, · · · , Ad−1x

))
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≤ dim
(
span

(
x,Ax, · · · , Ad−1x

))
= d

Thus
W ∩ span

(
x,Ax, · · · , Ad−1x

)
= span

(
x,Ax, · · · , Ad−1x

)

which would require x ∈ W but this is assumed not to take place. Hence z = 0 and so
the linear independence of the {v1, · · · , vs} implies each ai = 0. Then the linear indepen-
dence of

{
x,Ax, · · · , Ad−1x

}
, which follows from Lemma 10.3.2, shows each dj = 0. Thus{

v1, · · · , vs, x, Ax, · · · , Ad−1x
}
is linearly independent as claimed.

Let x ∈ U \ W ⊆ ker (ϕ (A)) . Then it was just shown that {v1, · · · , vs, βx} is linearly
independent. Let W1 be given by

y ∈ span (v1, · · · , vs, βx) ≡ W1

ThenW1 is A invariant. IfW1 equals U+W, then you are done. If not, letW1 play the role of
W and pick x1 ∈ U\W1 and repeat the argument. Continue till span

(
v1, · · · , vs, βx1

, · · · , βxn

)
=

U +W . The process stops because ker (ϕ (A)
m
) is finite dimensional.

≤ dim
(
span

(
x,Ax, · · · , Ad−1x

))
= d

Thus
W ∩ span

(
x,Ax, · · · , Ad−1x

)
= span

(
x,Ax, · · · , Ad−1x

)

which would require x ∈ W but this is assumed not to take place. Hence z = 0 and so
the linear independence of the {v1, · · · , vs} implies each ai = 0. Then the linear indepen-
dence of

{
x,Ax, · · · , Ad−1x

}
, which follows from Lemma 10.3.2, shows each dj = 0. Thus{

v1, · · · , vs, x, Ax, · · · , Ad−1x
}
is linearly independent as claimed.

Let x ∈ U \ W ⊆ ker (ϕ (A)) . Then it was just shown that {v1, · · · , vs, βx} is linearly
independent. Let W1 be given by

y ∈ span (v1, · · · , vs, βx) ≡ W1

ThenW1 is A invariant. IfW1 equals U+W, then you are done. If not, letW1 play the role of
W and pick x1 ∈ U\W1 and repeat the argument. Continue till span

(
v1, · · · , vs, βx1

, · · · , βxn

)
=

U +W . The process stops because ker (ϕ (A)
m
) is finite dimensional.
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Finally, letting x ∈ ker (ϕ (A)
m
) , there is a monic polynomial η (λ) such that η (A)x = 0

and η (λ) is of smallest possible degree, which degree equals |βx| . Then

ϕ (λ)
m

= η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then r (A)x = 0 and η (λ) was incorrectly chosen. Hence

r (λ) = 0 and so η (λ) must divide ϕ (λ)
m
. Hence by Corollary 8.3.11 η (λ) = ϕ (λ)

k
where

k ≤ m. Thus |βx| = kd = deg (η (λ)). �
With this preparation, here is the main result about a basis V where A ∈ L (V, V ) and the

minimal polynomial for A is ϕ (A)
m

for ϕ (λ) irreducible an irreducible monic polynomial.
There is a very interesting generalization of this theorem in [14] which pertains to the
existence of complementary subspaces. For an outline of this generalization, see Problem 9
on 404.

Theorem 10.3.4 Suppose A ∈ L (V, V ) and the minimal polynomial of A is ϕ (λ)
m

where
ϕ (λ) is a monic irreducible polynomial. Then there exists a basis for V which is of the form

β =
{
βx1

, · · · , βxp

}
.

Proof: First suppose m = 1. Then in Lemma 10.3.3 you can let W = {0} and U =
ker (ϕ (A)). Then by this lemma, there exist v1, v2, · · · , vs such that

{
βv1

, · · · , βvs

}
is a

basis for ker (ϕ (A)). Suppose then that the theorem is true for m− 1, m ≥ 2.
Now let the minimal polynomial for A on V be ϕ (A)

m
where ϕ (λ) is monic and irre-

ducible. Then ϕ (A) (V ) is an invariant subspace of V . What is the minimal polynomial

of A on ϕ (A) (V )? Clearly ϕ (A)
m−1

will send everything in ϕ (A) (V ) to 0. If η (λ) is the
minimal polynomial of A on ϕ (A) (V ) , then

ϕ (λ)
m−1

= l (λ) η (λ) + r (λ)

and r (λ) must equal 0 since otherwise r (A) = 0 and η (λ) was not minimal. By Corollary

8.3.11, η (λ) = ϕ (λ)
k
for some k ≤ m − 1. However, it cannot happen that k < m − 1

because if so, ϕ (λ)
m

would fail to be the minimal polynomial for A on V . By induction,

ϕ (A) (V ) has a basis
{
βx1

, · · · , βxp

}
.

Let yj ∈ V be such that ϕ (A) yj = xj . Consider
{
βy1

, · · · , βyp

}
. Are these vectors

independent? Suppose

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1yi ≡

p∑
i=1

fi (A) yi (10.5)

If the sum involved xi in place of yi, then something could be said because
{
βx1

, · · · , βxp

}

is a basis. Do ϕ (A) to both sides to obtain

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1xi ≡

p∑
i=1

fi (A)xi

Now fi (A)xi = 0 for each i since fi (A)xi ∈ span
(
βxi

)
. Let ηi (λ) be the monic polynomial

of smallest degree such that ηi (A)xi = 0. It follows from the usual division algorithm

that ηi (λ) divides fi (λ). Also, ϕ (A)
m−1

xi = 0 and so ηi (λ) must divide ϕ (λ)
m−1

. From

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

142 

Cononical Forms

Corollary 8.3.11, it follows that, since ϕ (λ) is irreducible, ηi (λ) = ϕ (λ)
k
for some k ≤ m−1.

Thus ϕ (λ) divides ηi (λ) which divides fi (λ). Hence fi (λ) = ϕ (λ) gi (λ) . Now

0 =

p∑
i=1

fi (A) yi =

p∑
i=1

gi (A)ϕ (A) yi =

p∑
i=1

gi (A)xi.

By the same reasoning just given, since gi (A)xi ∈ span
(
βxi

)
, it follows that each gi (A)xi =

0. Therefore, fi (A) yi = gi (A)ϕ (A) yi = gi (A)xi = 0. Therefore,

∣∣∣βyj

∣∣∣∑
j=1

aijA
j−1yi = 0

and by independence of βyi
, this implies aij = 0.

Next, it follows from the definition that for W ≡ span
(
βy1

, · · · , βyp

)
,

ϕ (A) (V ) = span
(
βx1

, · · · , βxp

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)
≡ ϕ (A) (W )

Now W is an A invariant subspace of V = ker (ϕ (A)
m
). Use Lemma 10.3.3 again to obtain

βz1 , · · · , βzq such that
{
βz1 , · · · , βzq , βy1

, · · · , βyp

}
is a basis for ker (ϕ (A)) + W . From

the above, ϕ (A) (W ) = ϕ (A) (V ). Let W ′ = W + ker (ϕ (A)). Let U be the restriction of
ϕ (A) to W ′ which is also ϕ (A) invariant. Then from the above inclusion, it follows that
U (W ′) = ϕ (A) (V ) . Also ker (U) = ker (ϕ (A)). This is because if x ∈ ker (ϕ (A)) , then
x ∈ W ′ and so Ux = 0 also. If Ux = 0, then x ∈ W ′ and ϕ (A)x = 0. Hence x ∈ ker (ϕ (A)).
Thus

dim (W ′) = rank (U) + dim (ker (U))

= rank (ϕ (A)) + dim (ker (ϕ (A))) = dim (V )

This shows V = W ′ and so the above yields the desired basis. �

10.4 Nilpotent Transformations

Definition 10.4.1 Let V be a vector space over the field of scalars F. Then N ∈ L (V, V )
is called nilpotent if for some m, it follows that Nm = 0.

The following lemma contains some significant observations about nilpotent transforma-
tions.

Lemma 10.4.2 Suppose Nkx ̸= 0. Then
{
x,Nx, · · · , Nkx

}
is linearly independent. Also,

the minimal polynomial of N is λm where m is the first such that Nm = 0.

Proof: Suppose
∑k

i=0 ciN
ix = 0. There exists l such that k ≤ l < m and N l+1x = 0

but N lx ̸= 0. Then multiply both sides by N l to conclude that c0 = 0. Next multiply both
sides by N l−1 to conclude that c1 = 0 and continue this way to obtain that all the ci = 0.

Next consider the claim that λm is the minimal polynomial. If p (λ) is the minimal
polynomial, then

p (λ) = λml (λ) + r (λ)

where the degree of r (λ) is less than m or else r (λ) = 0. Suppose the degree of r (λ) is less
than m. Then you would have

0 = 0 + r (N) .
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If r (λ) = a0 + a1λ+ · · ·+ asλ
s for s ≤ m− 1, as ̸= 0, then for any x ∈ V,

0 = a0x+ a1Nx+ · · ·+ asN
sx

If for some x,Nsx ̸= 0, then from the first part of the argument, the above equation could
not hold. Hence Nsx = 0 for all x and so Ns = 0 for some s < m, a contradiction to the
choice of m. It follows that r (λ) = 0 and so p (λ) cannot be the minimal polynomial unless
l (λ) = 1. Hence p (λ) = λm as claimed. �

For such a nilpotent transformation, let
{
βx1

, · · · , βxq

}
be a basis for ker (Nm) = V

where these βxi
are cyclic. This basis exists thanks to Theorem 10.3.4. Thus

V = span
(
βx1

)
⊕ · · · ⊕ span

(
βxq

)
,

each of these subspaces in the above direct sum being N invariant. For x one of the xk,
consider βx given by

x,Nx,N2x, · · · , Nr−1x

where Nrx is in the span of the above vectors. Then by the above lemma, Nrx = 0.
By Theorem 10.2.5, the matrix of N with respect to the above basis is the block diagonal

matrix 


M1 0
. . .

0 M q




where Mk denotes the matrix of N restricted to span
(
βxk

)
. In computing this matrix, I

will order βxk
as follows: (

Nrk−1xk, · · · , xk

)

Also the cyclic sets βx1
, βx2

, · · · , βxq
will be ordered according to length, the length of

βxi
being at least as large as the length of βxi+1

. Then since Nrkxk = 0, it is now easy

to find Mk. Using the procedure mentioned above for determining the matrix of a linear
transformation, (

0 Nrk−1xk · · · Nxk

)
=

(
Nrk−1xk Nrk−2xk · · · xk

)




0 1 0

0 0
. . .

...
...

. . . 1
0 0 · · · 0




Thus the matrix Mk is the rk×rk matrix which has ones down the super diagonal and zeros
elsewhere. The following convenient notation will be used.

Definition 10.4.3 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . .

. . .
...

. . .
. . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number α
filling every space on the main diagonal with zeros everywhere else.

If r (λ) = a0 + a1λ+ · · ·+ asλ
s for s ≤ m− 1, as ̸= 0, then for any x ∈ V,

0 = a0x+ a1Nx+ · · ·+ asN
sx

If for some x,Nsx ̸= 0, then from the first part of the argument, the above equation could
not hold. Hence Nsx = 0 for all x and so Ns = 0 for some s < m, a contradiction to the
choice of m. It follows that r (λ) = 0 and so p (λ) cannot be the minimal polynomial unless
l (λ) = 1. Hence p (λ) = λm as claimed. �

For such a nilpotent transformation, let
{
βx1

, · · · , βxq

}
be a basis for ker (Nm) = V

where these βxi
are cyclic. This basis exists thanks to Theorem 10.3.4. Thus

V = span
(
βx1

)
⊕ · · · ⊕ span

(
βxq

)
,

each of these subspaces in the above direct sum being N invariant. For x one of the xk,
consider βx given by

x,Nx,N2x, · · · , Nr−1x

where Nrx is in the span of the above vectors. Then by the above lemma, Nrx = 0.
By Theorem 10.2.5, the matrix of N with respect to the above basis is the block diagonal

matrix 


M1 0
. . .

0 M q




where Mk denotes the matrix of N restricted to span
(
βxk

)
. In computing this matrix, I

will order βxk
as follows: (

Nrk−1xk, · · · , xk

)

Also the cyclic sets βx1
, βx2

, · · · , βxq
will be ordered according to length, the length of

βxi
being at least as large as the length of βxi+1

. Then since Nrkxk = 0, it is now easy

to find Mk. Using the procedure mentioned above for determining the matrix of a linear
transformation, (

0 Nrk−1xk · · · Nxk

)
=

(
Nrk−1xk Nrk−2xk · · · xk

)




0 1 0

0 0
. . .

...
...

. . . 1
0 0 · · · 0




Thus the matrix Mk is the rk×rk matrix which has ones down the super diagonal and zeros
elsewhere. The following convenient notation will be used.

Definition 10.4.3 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . .

. . .
...

. . .
. . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number α
filling every space on the main diagonal with zeros everywhere else.
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Then with this definition and the above discussion, the following proposition has been
proved.

Proposition 10.4.4 Let N ∈ L (W,W ) be nilpotent,

Nm = 0

for some m ∈ N. Here W is a p dimensional vector space with field of scalars F. Then there
exists a basis for W such that the matrix of N with respect to this basis is of the form

J =




Jr1 (0) 0
Jr2 (0)

. . .

0 Jrs (0)




where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = p. In the above, the Jrj (0) is a Jordan block of
size rj × rj with 0 down the main diagonal.

http://bookboon.com/
http://bookboon.com/count/advert/5aa0fd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

145 

Cononical Forms

In fact, the matrix of the above proposition is unique.

Corollary 10.4.5 Let J, J ′ both be matrices of the nilpotent linear transformation N ∈
L (W,W ) which are of the form described in Proposition 10.4.4. Then J = J ′. In fact, if
the rank of Jk equals the rank of J ′k for all nonnegative integers k, then J = J ′.

Proof: Since J and J ′ are similar, it follows that for each k an integer, Jk and J ′k are
similar. Hence, for each k, these matrices have the same rank. Now suppose J ̸= J ′. Note
first that

Jr (0)
r
= 0, Jr (0)

r−1 ̸= 0.

Denote the blocks of J as Jrk (0) and the blocks of J ′ as Jr′k (0). Let k be the first such that
Jrk (0) ̸= Jr′k (0). Suppose that rk > r′k. By block multiplication and the above observation,

it follows that the two matrices Jrk−1 and J ′rk−1 are respectively of the forms




Mr1 0
. . .

Mrk

0
. . .

0 0




,




Mr′1
0

. . .

Mr′k
0

. . .

0 0




where Mrj = Mr′j
for j ≤ k−1 but Mr′k

is a zero r′k×r′k matrix while Mrk is a larger matrix
which is not equal to 0. For example,

Mrk =




0 · · · 1
. . .

...
0 0




Thus there are more pivot columns in Jrk−1 than in (J ′)
rk−1

, contradicting the requirement
that Jk and J ′k have the same rank. �

10.5 The Jordan Canonical Form

The Jordan canonical form has to do with the case where the minimal polynomial of A ∈
L (V, V ) splits. Thus there exist λk in the field of scalars such that the minimal polynomial
of A is of the form

p (λ) =
r∏

k=1

(λ− λk)
mk

Recall the following which follows from Theorem 9.4.4.

Proposition 10.5.1 Let the minimal polynomial of A ∈ L (V, V ) be given by

p (λ) =

r∏
k=1

(λ− λk)
mk

Then the eigenvalues of A are {λ1, · · · , λr}.
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It follows from Corollary 10.2.3 that

V = ker (A− λ1I)
m1 ⊕ · · · ⊕ ker (A− λrI)

mr

≡ V1 ⊕ · · · ⊕ Vr

where I denotes the identity linear transformation. Without loss of generality, let the
dimensions of the Vk be decreasing from left to right. These Vk are called the generalized
eigenspaces.

It follows from the definition of Vk that (A− λkI) is nilpotent on Vk and clearly each
Vk is A invariant. Therefore from Proposition 10.4.4, and letting Ak denote the restriction
of A to Vk, there exists an ordered basis for Vk, βk such that with respect to this basis, the
matrix of (Ak − λkI) is of the form given in that proposition, denoted here by Jk. What is
the matrix of Ak with respect to βk? Letting {b1, · · · , br} = βk,

Akbj = (Ak − λkI) bj + λkIbj ≡
∑
s

Jk
sjbs +

∑
s

λkδsjbs =
∑
s

(
Jk
sj + λkδsj

)
bs

and so the matrix of Ak with respect to this basis is Jk + λkI where I is the identity
matrix. Therefore, with respect to the ordered basis {β1, · · · , βr} the matrix of A is in
Jordan canonical form. This means the matrix is of the form




J (λ1) 0
. . .

0 J (λr)


 (10.6)

where J (λk) is an mk ×mk matrix of the form




Jk1 (λk) 0
Jk2 (λk)

. . .

0 Jkr
(λk)


 (10.7)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk. Here Jk (λ) is a k× k Jordan block of the
form 



λ 1 0

0 λ
. . .

. . .
. . . 1

0 0 λ




(10.8)

This proves the existence part of the following fundamental theorem.
Note that if any of the βk consists of eigenvectors, then the corresponding Jordan block

will consist of a diagonal matrix having λk down the main diagonal. This corresponds to
mk = 1. The vectors which are in ker (A− λkI)

mk which are not in ker (A− λkI) are called
generalized eigenvectors.

The following is the main result on the Jordan canonical form.

Theorem 10.5.2 Let V be an n dimensional vector space with field of scalars C or some
other field such that the minimal polynomial of A ∈ L (V, V ) completely factors into powers
of linear factors. Then there exists a unique Jordan canonical form for A as described in
10.6 - 10.8, where uniqueness is in the sense that any two have the same number and size
of Jordan blocks.
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Proof: It only remains to verify uniqueness. Suppose there are two, J and J ′. Then these
are matrices of A with respect to possibly different bases and so they are similar. Therefore,
they have the same minimal polynomials and the generalized eigenspaces have the same
dimension. Thus the size of the matrices J (λk) and J ′ (λk) defined by the dimension of
these generalized eigenspaces, also corresponding to the algebraic multiplicity of λk, must
be the same. Therefore, they comprise the same set of positive integers. Thus listing the
eigenvalues in the same order, corresponding blocks J (λk) , J

′ (λk) are the same size.
It remains to show that J (λk) and J ′ (λk) are not just the same size but also are the

same up to order of the Jordan blocks running down their respective diagonals. It is only
necessary to worry about the number and size of the Jordan blocks making up J (λk) and

J ′ (λk) . Since J, J
′ are similar, so are J−λkI and J ′−λkI. Thus the following two matrices

Proof: It only remains to verify uniqueness. Suppose there are two, J and J ′. Then these
are matrices of A with respect to possibly different bases and so they are similar. Therefore,
they have the same minimal polynomials and the generalized eigenspaces have the same
dimension. Thus the size of the matrices J (λk) and J ′ (λk) defined by the dimension of
these generalized eigenspaces, also corresponding to the algebraic multiplicity of λk, must
be the same. Therefore, they comprise the same set of positive integers. Thus listing the
eigenvalues in the same order, corresponding blocks J (λk) , J

′ (λk) are the same size.
It remains to show that J (λk) and J ′ (λk) are not just the same size but also are the

same up to order of the Jordan blocks running down their respective diagonals. It is only
necessary to worry about the number and size of the Jordan blocks making up J (λk) and

J ′ (λk) . Since J, J
′ are similar, so are J−λkI and J ′−λkI. Thus the following two matrices
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are similar

A ≡




J (λ1)− λkI 0
. . .

J (λk)− λkI
. . .

0 J (λr)− λkI




B ≡




J ′ (λ1)− λkI 0
. . .

J ′ (λk)− λkI
. . .

0 J ′ (λr)− λkI




and consequently, rank
(
Ak

)
= rank

(
Bk

)
for all k ∈ N. Also, both J (λj) − λkI and

J ′ (λj)−λkI are one to one for every λj ̸= λk. Since all the blocks in both of these matrices
are one to one except the blocks J ′ (λk)−λkI, J (λk)−λkI, it follows that this requires the
two sequences of numbers {rank ((J (λk)− λkI)

m
)}∞m=1 and

{
rank

(
(J ′ (λk)− λkI)

m)}∞
m=1

must be the same.
Then

J (λk)− λkI ≡




Jk1 (0) 0
Jk2 (0)

. . .

0 Jkr (0)




and a similar formula holds for J ′ (λk)

J ′ (λk)− λkI ≡




Jl1 (0) 0
Jl2 (0)

. . .

0 Jlp (0)




and it is required to verify that p = r and that the same blocks occur in both. Without
loss of generality, let the blocks be arranged according to size with the largest on upper left
corner falling to smallest in lower right. Now the desired conclusion follows from Corollary
10.4.5. �

Note that if any of the generalized eigenspaces ker (A− λkI)
mk has a basis of eigen-

vectors, then it would be possible to use this basis and obtain a diagonal matrix in the
block corresponding to λk. By uniqueness, this is the block corresponding to the eigenvalue
λk. Thus when this happens, the block in the Jordan canonical form corresponding to λk

is just the diagonal matrix having λk down the diagonal and there are no generalized
eigenvectors.

The Jordan canonical form is very significant when you try to understand powers of a
matrix. There exists an n× n matrix S1 such that

A = S−1JS.

Therefore, A2 = S−1JSS−1JS = S−1J2S and continuing this way, it follows

Ak = S−1JkS.
1The S here is written as S−1 in the corollary.
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where J is given in the above corollary. Consider Jk. By block multiplication,

Jk =




Jk
1 0

. . .

0 Jk
r


 .

The matrix Js is an ms ×ms matrix which is of the form

Js =




α · · · ∗
...

. . .
...

0 · · · α


 (10.9)

which can be written in the form
Js = D +N

for D a multiple of the identity and N an upper triangular matrix with zeros down the main
diagonal. Therefore, by the Cayley Hamilton theorem, Nms = 0 because the characteristic
equation for N is just λms = 0. (You could also verify this directly.) Now since D is just a
multiple of the identity, it follows that DN = ND. Therefore, the usual binomial theorem
may be applied and this yields the following equations for k ≥ ms.

Jk
s = (D +N)

k
=

k∑
j=0

(
k

j

)
Dk−jN j

=

ms∑
j=0

(
k

j

)
Dk−jN j , (10.10)

the third equation holding because Nms = 0. Thus Jk
s is of the form

Jk
s =




αk · · · ∗
...

. . .
...

0 · · · αk


 .

Lemma 10.5.3 Suppose J is of the form Js described above in 10.9 where the constant α,
on the main diagonal is less than one in absolute value. Then

lim
k→∞

(
Jk

)
ij
= 0.

Proof: From 10.10, it follows that for large k, and j ≤ ms,
(
k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
���(N j

)
pq

��� for 0 ≤ j ≤ ms,

���(Jk
)
pq

��� ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

which converges to zero as k → ∞. This is most easily seen by applying the ratio test to
the series

∞∑
k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero. �
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10.6 Exercises

1. In the discussion of Nilpotent transformations, it was asserted that if two n×nmatrices
A,B are similar, then Ak is also similar to Bk. Why is this so? If two matrices are
similar, why must they have the same rank?

2. If A,B are both invertible, then they are both row equivalent to the identity matrix.
Are they necessarily similar? Explain.

3. Suppose you have two nilpotent matrices A,B and Ak and Bk both have the same
rank for all k ≥ 1. Does it follow that A,B are similar? What if it is not known that
A,B are nilpotent? Does it follow then?

4. When we say a polynomial equals zero, we mean that all the coefficients equal 0. If
we assign a different meaning to it which says that a polynomial

p (λ) =
n∑

k=0

akλ
k = 0,

when the value of the polynomial equals zero whenever a particular value of λ ∈ F
is placed in the formula for p (λ) , can the same conclusion be drawn? Is there any
difference in the two definitions for ordinary fields like Q? Hint: Consider Z2, the
integers mod 2.

5. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is any nonzero polynomial such
that ϕ (A) is not one to one and ϕ (λ) has smallest possible degree such that ϕ (A) is
nonzero and not one to one. Show ϕ (λ) must divide p (λ).

6. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is an irreducible polynomial
with the property that ϕ (A)x = 0 for some specific x ̸= 0. Show that ϕ (λ) must
divide p (λ) . Hint: First write p (λ) = ϕ (λ) g (λ) + r (λ) where r (λ) is either 0 or
has degree smaller than the degree of ϕ (λ). If r (λ) = 0 you are done. Suppose it is
not 0. Let η (λ) be the monic polynomial of smallest degree with the property that
η (A)x = 0. Now use the Euclidean algorithm to divide ϕ (λ) by η (λ) . Contradict the
irreducibility of ϕ (λ) .

7. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 8.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

8. Let

A =




1 0 0
0 0 −1
0 1 0




Find the minimal polynomial for A.
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9. Suppose A is an n × n matrix and let v be a vector. Consider the A cyclic set of
vectors

{
v, Av, · · · , Am−1v

}
where this is an independent set of vectors but Amv is

a linear combination of the preceding vectors in the list. Show how to obtain a monic
polynomial of smallest degree, m, ϕv (λ) such that

ϕv (A)v = 0

Now let {w1, · · · ,wn} be a basis and let ϕ (λ) be the least common multiple of the
ϕwk

(λ) . Explain why this must be the minimal polynomial of A. Give a reasonably

easy algorithm for computing ϕv (λ).

10. Here is a matrix. 


−7 −1 −1
−21 −3 −3
70 10 10




Using the process of Problem 9 find the minimal polynomial of this matrix. It turns
out the characteristic polynomial is λ3.

9. Suppose A is an n × n matrix and let v be a vector. Consider the A cyclic set of
vectors

{
v, Av, · · · , Am−1v

}
where this is an independent set of vectors but Amv is

a linear combination of the preceding vectors in the list. Show how to obtain a monic
polynomial of smallest degree, m, ϕv (λ) such that

ϕv (A)v = 0

Now let {w1, · · · ,wn} be a basis and let ϕ (λ) be the least common multiple of the
ϕwk

(λ) . Explain why this must be the minimal polynomial of A. Give a reasonably

easy algorithm for computing ϕv (λ).

10. Here is a matrix. 


−7 −1 −1
−21 −3 −3
70 10 10




Using the process of Problem 9 find the minimal polynomial of this matrix. It turns
out the characteristic polynomial is λ3.

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY. 
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://bookboon.com/
http://bookboon.com/count/advert/96187bc1-08b7-494f-9730-9fec00d3acd8


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

152 

Cononical Forms

11. Find the minimal polynomial for

A =




1 2 3
2 1 4
−3 2 1




by the above technique. Is what you found also the characteristic polynomial?

12. Let A be an n × n matrix with field of scalars C. Letting λ be an eigenvalue, show
the dimension of the eigenspace equals the number of Jordan blocks in the Jordan
canonical form which are associated with λ. Recall the eigenspace is ker (λI −A) .

13. For any n × n matrix, why is the dimension of the eigenspace always less than or
equal to the algebraic multiplicity of the eigenvalue as a root of the characteristic
equation? Hint: Note the algebraic multiplicity is the size of the appropriate block
in the Jordan form.

14. Give an example of two nilpotent matrices which are not similar but have the same
minimal polynomial if possible.

15. Use the existence of the Jordan canonical form for a linear transformation whose
minimal polynomial factors completely to give a proof of the Cayley Hamilton theorem
which is valid for any field of scalars. Hint: First assume the minimal polynomial
factors completely into linear factors. If this does not happen, consider a splitting field
of the minimal polynomial. Then consider the minimal polynomial with respect to
this larger field. How will the two minimal polynomials be related? Show the minimal
polynomial always divides the characteristic polynomial.

16. Here is a matrix. Find its Jordan canonical form by directly finding the eigenvectors
and generalized eigenvectors based on these to find a basis which will yield the Jordan
form. The eigenvalues are 1 and 2.




−3 −2 5 3
−1 0 1 2
−4 −3 6 4
−1 −1 1 3




Why is it typically impossible to find the Jordan canonical form?

17. People like to consider the solutions of first order linear systems of equations which
are of the form

x′ (t) = Ax (t)

where here A is an n × n matrix. From the theorem on the Jordan canonical form,
there exist S and S−1 such that A = SJS−1 where J is a Jordan form. Define
y (t) ≡ S−1x (t) . Show y′ = Jy. Now suppose Ψ (t) is an n×n matrix whose columns
are solutions of the above differential equation. Thus

Ψ′ = AΨ

Now let Φ be defined by SΦS−1 = Ψ. Show

Φ′ = JΦ.
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18. In the above Problem show that

det (Ψ)
′
= trace (A) det (Ψ)

and so
det (Ψ (t)) = Cetrace(A)t

This is called Abel’s formula and det (Ψ (t)) is called the Wronskian. Hint: Show it
suffices to consider

Φ′ = JΦ

and establish the formula for Φ. Next let

Φ =




ϕ1
...
ϕn




where the ϕj are the rows of Φ. Then explain why

det (Φ)
′
=

n∑
i=1

det (Φi) (10.11)

where Φi is the same as Φ except the ith row is replaced with ϕ′
i instead of the row

ϕi. Now from the form of J,
Φ′ = DΦ+NΦ

where N has all nonzero entries above the main diagonal. Explain why

ϕ′
i (t) = λiϕi (t) + aiϕi+1 (t)

Now use this in the formula for the derivative of the Wronskian given in 10.11 and use
properties of determinants to obtain

det (Φ)
′
=

n∑
i=1

λi det (Φ) .

Obtain Abel’s formula
det (Φ) = Cetrace(A)t

and so the Wronskian detΦ either vanishes identically or never.

19. Let A be an n× n matrix and let J be its Jordan canonical form. Recall J is a block
diagonal matrix having blocks Jk (λ) down the diagonal. Each of these blocks is of
the form

Jk (λ) =




λ 1 0

λ
. . .

. . . 1
0 λ




Now for ε > 0 given, let the diagonal matrix Dε be given by

Dε =




1 0
ε

. . .

0 εk−1



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Show that D−1
ε Jk (λ)Dε has the same form as Jk (λ) but instead of ones down the

super diagonal, there is ε down the super diagonal. That is Jk (λ) is replaced with



λ ε 0

λ
. . .

. . . ε
0 λ




Now show that for A an n×n matrix, it is similar to one which is just like the Jordan
canonical form except instead of the blocks having 1 down the super diagonal, it has
ε.

20. Let A be in L (V, V ) and suppose that Apx ̸= 0 for some x ̸= 0. Show that Apek ̸= 0
for some ek ∈ {e1, · · · , en} , a basis for V . If you have a matrix which is nilpotent,
(Am = 0 for some m) will it always be possible to find its Jordan form? Describe how
to do it if this is the case. Hint: First explain why all the eigenvalues are 0. Then
consider the way the Jordan form for nilpotent transformations was constructed in the
above.

21. Suppose A is an n×n matrix and that it has n distinct eigenvalues. How do the mini-
mal polynomial and characteristic polynomials compare? Determine other conditions
based on the Jordan Canonical form which will cause the minimal and characteristic
polynomials to be different.

22. Suppose A is a 3× 3 matrix and it has at least two distinct eigenvalues. Is it possible
that the minimal polynomial is different than the characteristic polynomial?

23. If A is an n×n matrix of entries from a field of scalars and if the minimal polynomial
of A splits over this field of scalars, does it follow that the characteristic polynomial
of A also splits? Explain why or why not.

24. In proving the uniqueness of the Jordan canonical form, it was asserted that if two
n×n matrices A,B are similar, then they have the same minimal polynomial and also
that if this minimal polynomial is of the form p (λ) =

∏s
i=1 ϕi (λ)

ri where the ϕi (λ) are
irreducible and monic, then ker (ϕi (A)

ri) and ker (ϕi (B)
ri) have the same dimension.

Why is this so? This was what was responsible for the blocks corresponding to an
eigenvalue being of the same size.

25. Show that a given complex n× n matrix is non defective (diagonalizable) if and only
if the minimal polynomial has no repeated roots.

26. Describe a straight forward way to determine the minimal polynomial of an n × n
matrix using row operations. Next show that if p (λ) and p′ (λ) are relatively prime,
then p (λ) has no repeated roots. With the above problem, explain how this gives a
way to determine whether a matrix is non defective.

27. In Theorem 10.3.4 show that the cyclic sets can be arranged in such a way that the
length of βvi+1

divides the length of βvi
.

28. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that


0 0 1
0 1 0
1 0 0







λ 1 0
0 λ 1
0 0 λ







0 0 1
0 1 0
1 0 0


 =




λ 0 0
1 λ 0
0 1 λ



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29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
∏q

i=1 ϕi (λ)
mi and let

(
βi
vi
1
, · · · , βi

vi
ri

)
be the cyclic sets

such that
{
βi
vi
1
, · · · , βi

vi
ri

}
is a basis for ker (ϕi (A)

mi). Let v =
∑

i

∑
j v

i
j . Now let

q (λ) be any polynomial and suppose that

q (A) v = 0

Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is

{
x,Ax, · · · , An−1x

}
and q (A)x = 0.

10.7 The Rational Canonical Form

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case

29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
∏q

i=1 ϕi (λ)
mi and let

(
βi
vi
1
, · · · , βi

vi
ri

)
be the cyclic sets

such that
{
βi
vi
1
, · · · , βi

vi
ri

}
is a basis for ker (ϕi (A)

mi). Let v =
∑

i

∑
j v

i
j . Now let

q (λ) be any polynomial and suppose that

q (A) v = 0

Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is

{
x,Ax, · · · , An−1x

}
and q (A)x = 0.

10.7 The Rational Canonical Form

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case

is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [9] and
there are more details given in this reference. Another good source which has additional
results is [14].

Here is a definition of the concept of a companion matrix.

Definition 10.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix




0 · · · 0 −a0
1 0 −a1

. . .
. . .

...
0 1 −an−1




Proposition 10.7.2 Let q (λ) be a polynomial and let C (q (λ)) be its companion matrix.
Then q (C (q (λ))) = 0.

Proof: Write C instead of C (q (λ)) for short. Note that

Ce1 = e2, Ce2 = e3, · · · , Cen−1 = en

Thus
ek = Ck−1e1, k = 1, · · · , n (10.12)

and so it follows {
e1, Ce1, C

2e1, · · · , Cn−1e1
}

(10.13)

are linearly independent. Hence these form a basis for Fn. Now note that Cen is given by

Cen = −a0e1 − a1e2 − · · · − an−1en

and from 10.12 this implies

Cne1 = −a0e1 − a1Ce1 − · · · − an−1C
n−1e1

and so q (C) e1 = 0. Now since 10.13 is a basis, every vector of Fn is of the form k (C) e1
for some polynomial k (λ). Therefore, if v ∈ Fn,

q (C)v = q (C) k (C) e1 = k (C) q (C) e1 = 0

which shows q (C) = 0. �
The following theorem is on the existence of the rational canonical form.

Theorem 10.7.3 Let A ∈ L (V, V ) where V is a vector space with field of scalars F and
minimal polynomial

∏q
i=1 ϕi (λ)

mi where each ϕi (λ) is irreducible and monic. Letting Vk ≡
ker (ϕk (λ)

mk) , it follows
V = V1 ⊕ · · · ⊕ Vq
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is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [9] and
there are more details given in this reference. Another good source which has additional
results is [14].

Here is a definition of the concept of a companion matrix.

Definition 10.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix




0 · · · 0 −a0
1 0 −a1

. . .
. . .

...
0 1 −an−1




Proposition 10.7.2 Let q (λ) be a polynomial and let C (q (λ)) be its companion matrix.
Then q (C (q (λ))) = 0.

Proof: Write C instead of C (q (λ)) for short. Note that

Ce1 = e2, Ce2 = e3, · · · , Cen−1 = en

Thus
ek = Ck−1e1, k = 1, · · · , n (10.12)

and so it follows {
e1, Ce1, C

2e1, · · · , Cn−1e1
}

(10.13)

are linearly independent. Hence these form a basis for Fn. Now note that Cen is given by

Cen = −a0e1 − a1e2 − · · · − an−1en

and from 10.12 this implies

Cne1 = −a0e1 − a1Ce1 − · · · − an−1C
n−1e1

and so q (C) e1 = 0. Now since 10.13 is a basis, every vector of Fn is of the form k (C) e1
for some polynomial k (λ). Therefore, if v ∈ Fn,

q (C)v = q (C) k (C) e1 = k (C) q (C) e1 = 0

which shows q (C) = 0. �
The following theorem is on the existence of the rational canonical form.

Theorem 10.7.3 Let A ∈ L (V, V ) where V is a vector space with field of scalars F and
minimal polynomial

∏q
i=1 ϕi (λ)

mi where each ϕi (λ) is irreducible and monic. Letting Vk ≡
ker (ϕk (λ)

mk) , it follows
V = V1 ⊕ · · · ⊕ Vq
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where each Vk is A invariant. Letting Bk denote a basis for Vk and Mk the matrix of the
restriction of A to Vk, it follows that the matrix of A with respect to the basis {B1, · · · , Bq}
is the block diagonal matrix of the form




M1 0
. . .

0 Mq


 (10.14)

If Bk is given as
{
βv1 , · · · , βvs

}
as described in Theorem 10.3.4 where each βvj is an A

cyclic set of vectors, then the matrix Mk is of the form

Mk =




C (ϕk (λ)
r1) 0

. . .

0 C (ϕk (λ)
rs)


 (10.15)

where the A cyclic sets of vectors may be arranged in order such that the positive integers rj
satisfy r1 ≥ · · · ≥ rs and C (ϕk (λ)

rj ) is the companion matrix of the polynomial ϕk (λ)
rj .

Proof: By Theorem 10.2.5 the matrix of A with respect to {B1, · · · , Bq} is of the
form given in 10.14. Now by Theorem 10.3.4 the basis Bk may be chosen in the form{
βv1

, · · · , βvs

}
where each βvk

is an A cyclic set of vectors and also it can be assumed the
lengths of these βvk

are decreasing. Thus

Vk = span
(
βv1

)
⊕ · · · ⊕ span

(
βvs

)

and it only remains to consider the matrix of A restricted to span
(
βvk

)
. Then you can

apply Theorem 10.2.5 to get the result in 10.15. Say

βvk
= vk, Avk, · · · , Ad−1vk

where η (A) vk = 0 and the degree of η (λ) is d, the smallest degree such that this is so, η
being a monic polynomial. Then by Corollary 8.3.11, η (λ) = ϕk (λ)

rk where rk ≤ mk. It
remains to consider the matrix of A restricted to span

(
βvk

)
. Say

η (λ) = ϕk (λ)
rk = a0 + a1λ+ · · ·+ ad−1λ

d−1 + λd

Thus
Advk = −a0vk − a1Avk − · · · − ad−1A

d−1vk

Recall the formalism for finding the matrix of A restricted to this invariant subspace.

(
Avk A2vk A3vk · · · −a0vk − a1Avk − · · · − ad−1A

d−1vk
)
=

(
vk Avk A2vk · · · Ad−1vk

)




0 0 0 · · · −a0
1 0 −a1

0 1
. . .

...
. . .

. . . 0 −ad−2

0 0 1 −ad−1




Thus the matrix of the transformation is the above. The is the companion matrix of
ϕk (λ)

rk = η (λ). In other words, C = C (ϕk (λ)
rk) and so Mk has the form claimed in

the theorem. �
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10.8 Uniqueness

Given A ∈ L (V, V ) where V is a vector space having field of scalars F, the above shows
there exists a rational canonical form for A. Could A have more than one rational canonical
form? Recall the definition of an A cyclic set. For convenience, here it is again.

Definition 10.8.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
.

The following proposition ties these A cyclic sets to polynomials. It is just a review of
ideas used above to prove existence.

Proposition 10.8.2 Let x ̸= 0 and consider
{
x,Ax,A2x, · · · , Am−1x

}
. Then this is an

A cyclic set if and only if there exists a monic polynomial η (λ) such that η (A)x = 0
and among all such polynomials ψ (λ) satisfying ψ (A)x = 0, η (λ) has the smallest degree.
If V = ker (ϕ (λ)

m
) where ϕ (λ) is monic and irreducible, then for some positive integer

p ≤ m, η (λ) = ϕ (λ)
p
.

Lemma 10.8.3 Let V be a vector space and A ∈ L (V, V ) has minimal polynomial ϕ (λ)
m

where ϕ (λ) is irreducible and has degree d. Let the basis for V consist of
{
βv1 , · · · , βvs

}
where βvk

is A cyclic as described above and the rational canonical form for A is the matrix

taken with respect to this basis. Then letting
��βvk

�� denote the number of vectors in βvk
, it

follows there is only one possible set of numbers
��βvk

��.
Proof: Say βvj is associated with the polynomial ϕ (λ)

pj . Thus, as described above���βvj

��� equals pjd. Consider the following table which comes from the A cyclic set

{
vj , Avj , · · · , Ad−1vj , · · · , Apjd−1vj

}

αj
0 αj

1 αj
2 · · · αj

d−1

vj Avj A2vj · · · Ad−1vj
ϕ (A) vj ϕ (A)Avj ϕ (A)A2vj · · · ϕ (A)Ad−1vj

...
...

...
...

ϕ (A)
pj−1

vj ϕ (A)
pj−1

Avj ϕ (A)
pj−1

A2vj · · · ϕ (A)
pj−1

Ad−1vj

In the above, αj
k signifies the vectors below it in the kth column. None of these vectors

below the top row are equal to 0 because the degree of ϕ (λ)
pj−1

λd−1 is dpj − 1, which is
less than pjd and the smallest degree of a nonzero polynomial sending vj to 0 is pjd. Also,
each of these vectors is in the span of βvj and there are dpj of them, just as there are dpj
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vectors in βvj .

Claim: The vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent.

Proof of claim: Suppose

d−1∑
i=0

pj−1∑
k=0

cikϕ (A)
k
Aivj = 0

Then multiplying both sides by ϕ (A)
pj−1

this yields

d−1∑
i=0

ci0ϕ (A)
pj−1

Aivj = 0

Now if any of the ci0 is nonzero this would imply there exists a polynomial having degree
smaller than pjd which sends vj to 0. Since this does not happen, it follows each ci0 = 0.

   Technical training on 
WHAT you need, WHEN you need it

 At IDC Technologies we can tailor our technical and engineering 
training workshops to suit your needs. We have extensive 

experience in training technical and engineering staff and 
have trained people in organisations such as General 
Motors, Shell, Siemens, BHP and Honeywell to name a few.
Our onsite training is cost effective, convenient and completely 
customisable to the technical and engineering areas you want 
covered. Our workshops are all comprehensive hands-on learning 
experiences with ample time given to practical sessions and 
demonstrations. We communicate well to ensure that workshop content 
and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on 
your premises or a venue of your choice for your convenience.

Phone: +61 8 9321 1702
Email: training@idc-online.com       
Website: www.idc-online.com

INDUSTRIAL
DATA COMMS

AUTOMATION & 
PROCESS CONTROL

ELECTRONICS

ELECTRICAL 
POWER

MECHANICAL 
ENGINEERING

OIL & GAS
ENGINEERING

For a no obligation proposal, contact us today 
  at training@idc-online.com or visit our website 
    for more information: www.idc-online.com/onsite/  

http://bookboon.com/
http://bookboon.com/count/advert/6d5a1393-8ea8-4721-88d7-a02100eae314


Download free ebooks at bookboon.com

Linear Algebra II Spectral Theory  
and Abstract Vector Spaces

160 

Cononical Forms

Thus
d−1∑
i=0

pj−1∑
k=1

cikϕ (A)
k
Aivj = 0

Now multiply both sides by ϕ (A)
pj−2

and do a similar argument to assert that ci1 = 0 for
each i. Continuing this way, all the cik = 0 and this proves the claim.

Thus the vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent and there are pjd =

���βvj

���
of them. Therefore, they form a basis for span

(
βvj

)
. Also note that if you list the

columns in reverse order starting from the bottom and going toward the top, the vectors{
αj
0, · · · , α

j
d−1

}
yield Jordan blocks in the matrix of ϕ (A). Hence, considering all these vec-

tors
{
αj
0, · · · , α

j
d−1

}s

j=1
, each listed in the reverse order, the matrix of ϕ (A) with respect

to this basis of V is in Jordan canonical form. See Proposition 10.4.4 and Theorem 10.5.2
on existence and uniqueness for the Jordan form. This Jordan form is unique up to order

of the blocks. For a given j
{
αj
0, · · · , α

j
d−1

}
yields d Jordan blocks of size pj for ϕ (A). The

size and number of Jordan blocks of ϕ (A) depends only on ϕ (A) , hence only on A. Once
A is determined, ϕ (A) is determined and hence the number and size of Jordan blocks is
determined, so the exponents pj are determined and this shows the lengths of the βvj

, pjd
are also determined. �

Note that if the pj are known, then so is the rational canonical form because it comes
from blocks which are companion matrices of the polynomials ϕ (λ)

pj . Now here is the main
result.

Theorem 10.8.4 Let V be a vector space having field of scalars F and let A ∈ L (V, V ).
Then the rational canonical form of A is unique up to order of the blocks.

Proof: Let the minimal polynomial of A be
∏q

k=1 ϕk (λ)
mk . Then recall from Corollary

10.2.3
V = V1 ⊕ · · · ⊕ Vq

where Vk = ker (ϕk (A)
mk) . Also recall from Corollary 10.2.4 that the minimal polynomial

of the restriction of A to Vk is ϕk (λ)
mk . Now apply Lemma 10.8.3 to A restricted to Vk. �

In the case where two n × n matrices M,N are similar, recall this is equivalent to the
two being matrices of the same linear transformation taken with respect to two different
bases. Hence each are similar to the same rational canonical form.

Example 10.8.5 Here is a matrix.

A =




5 −2 1
2 10 −2
9 0 9




Find a similarity transformation which will produce the rational canonical form for A.

The characteristic polynomial is λ3 − 24λ2 + 180λ− 432. This factors as

(λ− 6)
2
(λ− 12)

It turns out this is also the minimal polynomial. You can see this by plugging in A where
you see λ and observing things don’t work if you delete one of the λ − 6 factors. There is
more on this in the exercises. It turns out you can compute the minimal polynomial pretty
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easily. Thus Q3 is the direct sum of ker
(
(A− 6I)

2
)
and ker (A− 12I) . Consider the first

of these. You see easily that this is

y




1
1
0


+ z




−1
0
1


 , y, z ∈ Q.

What about the length of A cyclic sets? It turns out it doesn’t matter much. You can start
with either of these and get a cycle of length 2. Lets pick the second one. This leads to the
cycle 


−1
0
1


 ,




−4
−4
0


 = A




−1
0
1


 ,




−12
−48
−36


 = A2




−1
0
1




where the last of the three is a linear combination of the first two. Take the first two as
the first two columns of S. To get the third, you need a cycle of length 1 corresponding to

ker (A− 12I) . This yields the eigenvector
(
1 −2 3

)T
. Thus

S =




−1 −4 1
0 −4 −2
1 0 3




Now using Proposition 9.3.10, the Rational canonical form for A should be




−1 −4 1
0 −4 −2
1 0 3




−1 


5 −2 1
2 10 −2
9 0 9







−1 −4 1
0 −4 −2
1 0 3


 =




0 −36 0
1 12 0
0 0 12




Example 10.8.6 Here is a matrix.

A =




12 −3 −19 −14 8
−4 1 1 6 −4
4 5 5 −2 4
0 −5 −5 2 0
−4 3 11 6 0




Find a basis such that if S is the matrix which has these vectors as columns S−1AS is in
rational canonical form assuming the field of scalars is Q.

First it is necessary to find the minimal polynomial. Of course you can find the character-
istic polynomial and then take away factors till you find the minimal polynomial. However,
there is a much better way which is described in the exercises. Leaving out this detail, the
minimal polynomial is

λ3 − 12λ2 + 64λ− 128

This polynomial factors as

(λ− 4)
(
λ2 − 8λ+ 32

)
≡ ϕ1 (λ)ϕ2 (λ)

where the second factor is irreducible over Q. Consider ϕ2 (λ) first. Messy computations
yield

ker (ϕ2 (A)) = a




−1
1
0
0
0




+ b




−1
0
1
0
0




+ c




−1
0
0
1
0




+ d




−2
0
0
0
1




.
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Now start with one of these basis vectors and look for an A cycle. Picking the first one, you
obtain the cycle 



−1
1
0
0
0




,




−15
5
1
−5
7




because the next vector involving A2 yields a vector which is in the span of the above two.
You check this by making the vectors the columns of a matrix and finding the row reduced
echelon form. Clearly this cycle does not span ker (ϕ2 (A)) , so look for another cycle. Begin
with a vector which is not in the span of these two. The last one works well. Thus another
A cycle is 



−2
0
0
0
1




,




−16
4
−4
0
8




It follows a basis for ker (ϕ2 (A)) is






−2
0
0
0
1




,




−16
4
−4
0
8




,




−1
1
0
0
0




,




−15
5
1
−5
7







Finally consider a cycle coming from ker (ϕ1 (A)). This amounts to nothing more than find-

ing an eigenvector forA corresponding to the eigenvalue 4. An eigenvector is
(
−1 0 0 0 1

)T
.

Now the desired matrix for the similarity transformation is

S ≡




−2 −16 −1 −15 −1
0 4 1 5 0
0 −4 0 1 0
0 0 0 −5 0
1 8 0 7 1




Then doing the computations, you get

S−1AS =




0 −32 0 0 0
1 8 0 0 0
0 0 0 −32 0
0 0 1 8 0
0 0 0 0 4




and you see this is in rational canonical form, the two 2×2 blocks being companion matrices
for the polynomial λ2−8λ+32 and the 1×1 block being a companion matrix for λ−4. Note
that you could have written this without finding a similarity transformation to produce it.
This follows from the above theory which gave the existence of the rational canonical form.

Obviously there is a lot more which could be considered about rational canonical forms.
Just begin with a strange field and start investigating what can be said. One can also derive
more systematic methods for finding the rational canonical form. The advantage of this is
you don’t need to find the eigenvalues in order to compute the rational canonical form and
it can often be computed for this reason, unlike the Jordan form. The uniqueness of this
rational canonical form can be used to determine whether two matrices consisting of entries
in some field are similar.
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10.9 Exercises

1. Letting A be a complex n × n matrix, in obtaining the rational canonical form, one
obtains Cn as a direct sum of the form

span
(
βx1

)
⊕ · · · ⊕ span

(
βxr

)

where βx is an ordered cyclic set of vectors, x, Ax, · · · , Am−1x such that Amx is in
the span of the previous vectors. Now apply the Gram Schmidt process to the ordered
basis

(
βx1

, βx2
, · · · , βxr

)
, the vectors in each βxi

listed according to increasing power
of A, thus obtaining an ordered basis (q1, · · · ,qn) . Letting Q be the unitary matrix
which has these vectors as columns, show that Q∗AQ equals a matrix B which satisfies
Bij = 0 if i − j ≥ 2. Such a matrix is called an upper Hessenberg matrix and this
shows that every n×n matrix is orthogonally similar to an upper Hessenberg matrix.
These are zero below the main sub diagonal, like companion matrices discussed above.

2. In the argument for Theorem 10.2.3 it was shown that m (A)ϕl (A) v = v whenever
v ∈ ker (ϕk (A)

rk) . Show that m (A) restricted to ker (ϕk (A)
rk) is the inverse of the

linear transformation ϕl (A) on ker (ϕk (A)
rk) .

3. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 8.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

4. Find the minimal polynomial for

A =




1 2 3
2 1 4
−3 2 1




by the above technique assuming the field of scalars is the rational numbers. Is what
you found also the characteristic polynomial?

5. Show, using the rational root theorem, the minimal polynomial for A in the above
problem is irreducible with respect to Q. Letting the field of scalars be Q find the
rational canonical form and a similarity transformation which will produce it.

6. Letting the field of scalars be Q, find the rational canonical form for the matrix




1 2 1 −1
2 3 0 2
1 3 2 4
1 2 1 2




7. Let A : Q3 → Q3 be linear. Suppose the minimal polynomial is (λ− 2)
(
λ2 + 2λ+ 7

)
.

Find the rational canonical form. Can you give generalizations of this rather simple
problem to other situations?
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8. Find the rational canonical form with respect to the field of scalars equal to Q for the
matrix

A =




0 0 1
1 0 −1
0 1 1




Observe that this particular matrix is already a companion matrix of λ3 − λ2 + λ− 1.
Then find the rational canonical form if the field of scalars equals C or Q+ iQ.

9. Let q (λ) be a polynomial and C its companion matrix. Show the characteristic and
minimal polynomial of C are the same and both equal q (λ).

10. ↑Use the existence of the rational canonical form to give a proof of the Cayley Hamilton
theorem valid for any field, even fields like the integers mod p for p a prime. The earlier
proof based on determinants was fine for fields like Q or R where you could let λ → ∞
but it is not clear the same result holds in general.

11. Suppose you have two n×n matrices A,B whose entries are in a field F and suppose G
is an extension of F. For example, you could have F = Q and G = C. Suppose A and
B are similar with respect to the field G. Can it be concluded that they are similar
with respect to the field F? Hint: First show that the two have the same minimal
polynomial over F. Next consider the proof of Lemma 10.8.3 and show that they have
the same rational canonical form with respect to F.
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Markov Processes

11.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 11.1.1 An n × n matrix A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

It may also be called a stochastic matrix. A matrix which has nonnegative entries such that
∑
j

aij = 1

will also be called a stochastic matrix. A Markov or stochastic matrix is called regular if
some power of A has all entries strictly positive. A vector, v ∈ Rn, is a steady state if
Av = v.

Lemma 11.1.2 The property of being a stochastic matrix is preserved by taking products.

Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
denoted by (aij) and (bij) respectively,

∑
i

∑
k

aikbkj =
∑
k

(∑
i

aik

)
bkj =

∑
k

bkj = 1.

A similar argument yields the same result in the case where it is the sum over a column
which is equal to 1. It is obvious that when the product is taken, if each aij , bij ≥ 0, then
the same will be true of sums of products of these numbers.

The following theorem is convenient for showing the existence of limits.

Theorem 11.1.3 Let A be a real p× p matrix having the properties

1. aij ≥ 0

2. Either
∑p

i=1 aij = 1 or
∑p

j=1 aij = 1.

3. The distinct eigenvalues of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞ An = A∞ exists in the sense that limn→∞ anij = a∞ij , the ijth entry A∞.

Here anij denotes the ijth entry of An. Also, if λ = 1 has algebraic multiplicity r, then
the Jordan block corresponding to λ = 1 is just the r × r identity.
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Markov Processes

11.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 11.1.1 An n × n matrix A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

It may also be called a stochastic matrix. A matrix which has nonnegative entries such that
∑
j

aij = 1

will also be called a stochastic matrix. A Markov or stochastic matrix is called regular if
some power of A has all entries strictly positive. A vector, v ∈ Rn, is a steady state if
Av = v.

Lemma 11.1.2 The property of being a stochastic matrix is preserved by taking products.

Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
denoted by (aij) and (bij) respectively,

∑
i

∑
k

aikbkj =
∑
k

(∑
i

aik

)
bkj =

∑
k

bkj = 1.

A similar argument yields the same result in the case where it is the sum over a column
which is equal to 1. It is obvious that when the product is taken, if each aij , bij ≥ 0, then
the same will be true of sums of products of these numbers.

The following theorem is convenient for showing the existence of limits.

Theorem 11.1.3 Let A be a real p× p matrix having the properties

1. aij ≥ 0

2. Either
∑p

i=1 aij = 1 or
∑p

j=1 aij = 1.

3. The distinct eigenvalues of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞ An = A∞ exists in the sense that limn→∞ anij = a∞ij , the ijth entry A∞.

Here anij denotes the ijth entry of An. Also, if λ = 1 has algebraic multiplicity r, then
the Jordan block corresponding to λ = 1 is just the r × r identity.
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Proof. By the existence of the Jordan form for A, it follows that there exists an invertible
matrix P such that

P−1AP =




I +N
Jr2 (λ2)

. . .

Jrm (λm)


 = J

where I is r × r for r the multiplicity of the eigenvalue 1 and N is a nilpotent matrix for
which Nr = 0. I will show that because of Condition 2, N = 0.

First of all,
Jri (λi) = λiI +Ni

where Ni satisfies N
ri
i = 0 for some ri > 0. It is clear that Ni (λiI) = (λiI)N and so

(Jri (λi))
n
=

n∑
k=0

(
n

k

)
Nkλn−k

i =
r∑

k=0

(
n

k

)
Nkλn−k

i

which converges to 0 due to the assumption that |λi| < 1. There are finitely many terms
and a typical one is a matrix whose entries are no larger than an expression of the form

|λi|n−k
Ckn (n− 1) · · · (n− k + 1) ≤ Ck |λi|n−k

nk

which converges to 0 because, by the root test, the series
∑∞

n=1 |λi|n−k
nk converges. Thus

for each i = 2, . . . , p,
lim
n→∞

(Jri (λi))
n
= 0.

By Condition 2, if anij denotes the ijth entry of An, then either

p∑
i=1

anij = 1 or

p∑
j=1

anij = 1, anij ≥ 0.

This follows from Lemma 11.1.2. It is obvious each anij ≥ 0, and so the entries of An must
be bounded independent of n.

It follows easily from

n times� �� �
P−1APP−1APP−1AP · · ·P−1AP = P−1AnP

that
P−1AnP = Jn (11.1)

Hence Jn must also have bounded entries as n → ∞. However, this requirement is incom-
patible with an assumption that N ̸= 0.

If N ̸= 0, then Ns ̸= 0 but Ns+1 = 0 for some 1 ≤ s ≤ r. Then

(I +N)
n
= I +

s∑
k=1

(
n

k

)
Nk

One of the entries of Ns is nonzero by the definition of s. Let this entry be ns
ij . Then this

implies that one of the entries of (I +N)
n
is of the form

(
n
s

)
ns
ij . This entry dominates the

ijth entries of
(
n
k

)
Nk for all k < s because

lim
n→∞

(
n

s

)
/

(
n

k

)
= ∞
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Therefore, the entries of (I +N)
n
cannot all be bounded. From block multiplication,

P−1AnP =




(I +N)
n

(Jr2 (λ2))
n

. . .

(Jrm (λm))
n




and this is a contradiction because entries are bounded on the left and unbounded on the
right.

Since N = 0, the above equation implies limn→∞ An exists and equals

P




I
0

. . .

0


P−1 �

Are there examples which will cause the eigenvalue condition of this theorem to hold?
The following lemma gives such a condition. It turns out that if aij > 0, not just ≥ 0, then
the eigenvalue condition of the above theorem is valid.

Lemma 11.1.4 Suppose A = (aij) is a stochastic matrix. Then λ = 1 is an eigenvalue. If
aij > 0 for all i, j, then if µ is an eigenvalue of A, either |µ| < 1 or µ = 1. In addition to
this, if Av = v for a nonzero vector, v ∈ Rn, then vjvi ≥ 0 for all i, j so the components of
v have the same sign.

Proof: Suppose the matrix satisfies

∑
j

aij = 1.

Then if v =
(
1 · · · 1

)T
, it is obvious that Av = v. Therefore, this matrix has λ = 1

as an eigenvalue. Suppose then that µ is an eigenvalue. Is |µ| < 1 or µ = 1? Let v be an
eigenvector and let |vi| be the largest of the |vj | .

µvi =
∑
j

aijvj

and now multiply both sides by µvi to obtain

|µ|2 |vi|2 =
∑
j

aijvjviµ =
∑
j

aij Re (vjviµ)

≤
∑
j

aij |µ| |vi|2 = |µ| |vi|2
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Therefore, |µ| ≤ 1. If |µ| = 1, then equality must hold in the above, and so vjviµ must be
real and nonnegative for each j. In particular, this holds for j = 1 which shows µ and hence
µ are real. Thus, in this case, µ = 1. The only other case is where |µ| < 1.

If instead,
∑

i aij = 1, consider AT . Both A and AT have the same characteristic poly-
nomial and so their eigenvalues are exactly the same. �

Lemma 11.1.5 Let A be any Markov matrix and let v be a vector having all its components
non negative with

∑
i vi = c. Then if w = Av, it follows that wi ≥ 0 for all i and

∑
i wi = c.

Proof: From the definition of w,

wi ≡
∑
j

aijvj ≥ 0.

Also ∑
i

wi =
∑
i

∑
j

aijvj =
∑
j

∑
i

aijvj =
∑
j

vj = c.

The following theorem about limits is now easy to obtain.
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Theorem 11.1.6 Suppose A is a Markov matrix (The sum over a column equals 1) in
which aij > 0 for all i, j and suppose w is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to this, if
the vector, w satisfies wi ≥ 0 for all i and

∑
i wi = c, then the vector v will also satisfy the

conditions, vi ≥ 0,
∑

i vi = c.

Proof: By Lemma 11.1.4, since each aij > 0, the eigenvalues are either 1 or have absolute
value less than 1. Therefore, the claimed limit exists by Theorem 11.1.3. The assertion that
the components are nonnegative and sum to c follows from Lemma 11.1.5. That Av = v
follows from

v = lim
n→∞

Anw = lim
n→∞

An+1w = A lim
n→∞

Anw = Av. �

It is not hard to generalize the conclusion of this theorem to regular Markov processes.

Corollary 11.1.7 Suppose A is a regular Markov matrix, on for which the entries of Ak

are all positive for some k, and suppose w is a vector. Then for each i,

lim
n→∞

(Anw)i = vi

where Av = v. In words, Anw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and

∑
i wi = c, Then the vector v will also satisfy the

conditions vi ≥ 0,
∑

i vi = c.

Proof: Let the entries of Ak be all positive. Now suppose that aij ≥ 0 for all i, j and
A = (aij) is a transition matrix. Then if B = (bij) is a transition matrix with bij > 0 for
all ij, it follows that BA is a transition matrix which has strictly positive entries. The ijth

entry of BA is ∑
k

bikakj > 0,

Thus, from Lemma 11.1.4, Ak has an eigenvalue equal to 1 for all k sufficiently large, and
all the other eigenvalues have absolute value strictly less than 1. The same must be true of
A, for if λ is an eigenvalue of A with |λ| = 1, then λk is an eigenvalue for Ak and so, for
all k large enough, λk = 1 which is absurd unless λ = 1. By Theorem 11.1.3, limn→∞ Anw
exists. The rest follows as in Theorem 11.1.6. �

11.2 Migration Matrices

Definition 11.2.1 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
assumption requires

∑
i aij = 1. Thus (aij) is a Markov matrix referred to as a migration

matrix.

If v =(x1, · · · , xn)
T
where xi is the population of location i at a given instant, you obtain

the population of location i one year later by computing
∑

j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. Furthermore, Corollary 11.1.7 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.
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As an example of the above, consider the case where n = 3 and the migration matrix is
of the form 


.6 0 .1
.2 .8 0
.2 .2 .9


 .

Now 


.6 0 .1

.2 .8 0

.2 .2 .9




2

=




. 38 .0 2 . 15

. 28 . 64 .0 2

. 34 . 34 . 83




and so the Markov matrix is regular. Therefore,
(
Akv

)
i
will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

. 6x+ . 1z = x

. 2x+ . 8y = y
. 2x+ . 2y + . 9z = z

along with the stipulation that the sum of x, y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x, z = 4x, x = x} .

If the total population at the beginning is 150,000, then you solve the following system

y = x
z = 4x

x+ y + z = 150000

whose solution is easily seen to be {x = 25 000, z = 100 000, y = 25 000} . Thus, after a long
time there would be about four times as many people in the third location as in either of
the other two.

11.3 Markov Chains

A random variable is just a function which can have certain values which have probabilities
associated with them. Thus it makes sense to consider the probability that the random
variable has a certain value or is in some set. The idea of a Markov chain is a sequence of
random variables, {Xn} which can be in any of a collection of states which can be labeled
with nonnegative integers. Thus you can speak of the probability the random variable, Xn

is in state i. The probability that Xn+1 is in state j given that Xn is in state i is called
a one step transition probability. When this probability does not depend on n it is called
stationary and this is the case of interest here. Since this probability does not depend on n
it can be denoted by pij . Here is a simple example called a random walk.

Example 11.3.1 Let there be n points, xi, and consider a process of something moving
randomly from one point to another. Suppose Xn is a sequence of random variables which
has values {1, 2, · · · , n} where Xn = i indicates the process has arrived at the ith point. Let
pij be the probability that Xn+1 has the value j given that Xn has the value i. Since Xn+1

must have some value, it must be the case that
∑

j aij = 1. Note this says that the sum over
a row equals 1 and so the situation is a little different than the above in which the sum was
over a column.
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As an example, let x1, x2, x3, x4 be four points taken in order on R and suppose x1

and x4 are absorbing. This means that p4k = 0 for all k ̸= 4 and p1k = 0 for all k ̸= 1.
Otherwise, you can move either to the left or to the right with probability 1

2 . The Markov
matrix associated with this situation is




1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1


 .

Definition 11.3.2 Let the stationary transition probabilities, pij be defined above. The
resulting matrix having pij as its ijth entry is called the matrix of transition probabilities.
The sequence of random variables for which these pij are the transition probabilities is called
a Markov chain. The matrix of transition probabilities is called a stochastic matrix.

The next proposition is fundamental and shows the significance of the powers of the
matrix of transition probabilities.

Proposition 11.3.3 Let pnij denote the probability that Xn is in state j given that X0 was

in state i. Then pnij is the ijth entry of the matrix Pn where P = (pij) .

Proof: This is clearly true if n = 1 and follows from the definition of the pij . Suppose
true for n. Then the probability that Xn+1 is at j given that X0 was at i equals

∑
k p

n
ikpkj

because Xn must have some value, k, and so this represents all possible ways to go from i
to j. You can go from i to 1 in n steps with probability pi1 and then from 1 to j in one step
with probability p1j and so the probability of this is pni1p1j but you can also go from i to 2
and then from 2 to j and from i to 3 and then from 3 to j etc. Thus the sum of these is
just what is given and represents the probability of Xn+1 having the value j given X0 has
the value i. �

In the above random walk example, lets take a power of the transition probability matrix
to determine what happens. Rounding off to two decimal places,




1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1




20

=




1 0 0 0
. 67 9. 5× 10−7 0 . 33
. 33 0 9. 5× 10−7 . 67
0 0 0 1


 .

Thus p21 is about 2/3 while p32 is about 1/3 and terms like p22 are very small. You see this
seems to be converging to the matrix




1 0 0 0
2
3 0 0 1

3
1
3 0 0 2

3
0 0 0 1


 .
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After many iterations of the process, if you start at 2 you will end up at 1 with probability
2/3 and at 4 with probability 1/3. This makes good intuitive sense because it is twice as far
from 2 to 4 as it is from 2 to 1.

Theorem 11.3.4 The eigenvalues of




0 p 0 · · · 0
q 0 p · · · 0

0 q 0
. . .

...
... 0

. . .
. . . p

0
... 0 q 0




have absolute value less than 1. Here p+ q = 1 and both p, q > 0.
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Proof: By Gerschgorin’s theorem, if λ is an eigenvalue, then |λ| ≤ 1. Now suppose v
is an eigenvector for λ. Then

Av =




pv2
qv1 + pv3

...
qvn−2 + pvn

qvn−1




= λ




v1
v2
...

vn−1

vn




Suppose |λ| = 1. Then the top row shows p |v2| = |v1| so |v1| < |v2| . Suppose |v1| < |v2| <
· · · < |vk| for some k < n. Then

|λvk| = |vk| ≤ q |vk−1|+ p |vk+1| < q |vk|+ p |vk+1|

and so subtracting q |vk| from both sides,

p |vk| < p |vk+1|

showing {|vk|}nk=1 is an increasing sequence. Now a contradiction results on the last line
which requires |vn−1| > |vn|. Therefore, |λ| < 1 for any eigenvalue of the above matrix. �

Corollary 11.3.5 Let p, q be positive numbers and let p+ q = 1. The eigenvalues of



a p 0 · · · 0
q a p · · · 0

0 q a
. . .

...
... 0

. . .
. . . p

0
... 0 q a




are all strictly closer than 1 to a. That is, whenever λ is an eigenvalue,

|λ− a| < 1

have absolute value less than 1.

Proof: Let A be the above matrix and suppose Ax =λx. Then letting A′ denote



0 p 0 · · · 0
q 0 p · · · 0

0 q 0
. . .

...
... 0

. . .
. . . p

0
... 0 q 0




,

it follows
A′x = (λ− a)x

and so from the above theorem,
|λ− a| < 1. �

Example 11.3.6 In the gambler’s ruin problem a gambler plays a game with someone, say
a casino, until he either wins all the other’s money or loses all of his own. A simple version
of this is as follows. Let Xk denote the amount of money the gambler has. Each time the
game is played he wins with probability p ∈ (0, 1) or loses with probability (1− p) ≡ q. In
case he wins, his money increases to Xk +1 and if he loses, his money decreases to Xk − 1.
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The transition probability matrix P, describing this situation is as follows.

P =




1 0 0 0 · · · 0 0
q 0 p 0 · · · 0 0

0 q 0 p · · · 0
...

0 0 q 0
. . .

... 0
...

... 0
. . .

. . . p 0

0 0
... 0 q 0 p

0 0 0 0 0 0 1




(11.2)

Here the matrix is b+1× b+1 because the possible values of Xk are all integers from 0 up
to b. The 1 in the upper left corner corresponds to the gambler’s ruin. It involves Xk = 0
so he has no money left. Once this state has been reached, it is not possible to ever leave
it. This is indicated by the row of zeros to the right of this entry the kth of which gives the
probability of going from state 1 corresponding to no money to state k1.

In this case 1 is a repeated root of the characteristic equation of multiplicity 2 and all
the other eigenvalues have absolute value less than 1. To see that this is the case, note that
the characteristic polynomial is of the form

(1− λ)
2
det




−λ p 0 · · · 0
q −λ p · · · 0

0 q −λ
. . .

...
... 0

. . .
. . . p

0
... 0 q −λ




and the factor after (1− λ)2 has zeros which are in absolute value less than 1. Its zeros are
the eigenvalues of the matrix

A ≡




0 p 0 · · · 0
q 0 p · · · 0

0 q 0
. . .

...
... 0

. . .
. . . p

0
... 0 q 0




and by Corollary 11.3.5 these all have absolute value less than 1.
Therefore, by Theorem 11.1.3 limn→∞ Pn exists. The case of limn→∞ pnj0 is particularly

interesting because it gives the probability that, starting with an amount j, the gambler
eventually ends up at 0 and is ruined. From the matrix, it follows

pnj0 = qpn−1
(j−1)0 + ppn−1

(j+1)0 for j ∈ [1, b− 1] ,

pn00 = 1, and pnb0 = 0.

To simplify the notation, define Pj ≡ limn→∞ pnj0 as the probability of ruin given the initial
fortune of the gambler equals j. Then the above simplifies to

Pj = qPj−1 + pPj+1 for j ∈ [1, b− 1] , (11.3)

P0 = 1, and Pb = 0.

1No one will give the gambler money. This is why the only reasonable number for entries in this row to
the right of 1 is 0.
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Now, knowing that Pj exists, it is not too hard to find it from 11.3. This equation is
called a difference equation and there is a standard procedure for finding solutions of these.
You try a solution of the form Pj = xj and then try to find x such that things work out.
Therefore, substitute this in to the first equation of 11.3 and obtain

xj = qxj−1 + pxj+1.

Therefore,
px2 − x+ q = 0

and so in case p ̸= q, you can use the fact that p+ q = 1 to obtain

x =
1

2p

(
1 +

√
(1− 4pq)

)
or

1

2p

(
1−

√
(1− 4pq)

)

=
1

2p

(
1 +

√
(1− 4p (1− p))

)
or

1

2p

(
1−

√
(1− 4p (1− p))

)

= 1 or
q

p
.

Now it follows that both Pj = 1 and Pj =
(

q
p

)j

satisfy the difference equation 11.3.

Therefore, anything of the form

α+ β

(
q

p

)j

(11.4)

will satisfy this equation. Find a, b such that this also satisfies the second equation of 11.3.
Thus it is required that

α+ β = 1, α+ β

(
q

p

)b

= 0
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and so

α+ β = 1, α+ β

(
q

p

)b

= 0

Solution is :

{
β = − 1

−1+( q
p )

b , α =
( q

p )
b

−1+( q
p )

b

}
. Substituting this in to 11.4 and simplifying,

yields the following in the case that p ̸= q.

Pj =
pb−jqj − qb

pb − qb
(11.5)

Note that

lim
p→q

pb−jqj − qb

pb − qb
=

b− j

b
.

Thus as the game becomes more fair in the sense the probabilities of winning become closer
to 1/2, the probability of ruin given an initial amount j is b−j

b .
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Alternatively, you could consider the difference equation directly in the case where p =
q = 1/2. In this case, you can see that two solutions to the difference equation

Pj =
1

2
Pj−1 +

1

2
Pj+1 for j ∈ [1, b− 1] , (11.6)

P0 = 1, and Pb = 0.

are Pj = 1 and Pj = j. This leads to a solution to the above of

Pj =
b− j

b
. (11.7)

This last case is pretty interesting because it shows, for example that if the gambler
starts with a fortune of 1 so that he starts at state j = 1, then his probability of losing all
is b−1

b which might be quite large, especially if the other player has a lot of money to begin
with. As the gambler starts with more and more money, his probability of losing everything
does decrease.

11.4 Exercises

1. Suppose the migration matrix for three locations is



.5 0 .3

.3 .8 0

.2 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.

2. Show that if
∑

i aij = 1, then if A = (aij) , then the sum of the entries of Av equals
the sum of the entries of v. Thus it does not matter whether aij ≥ 0 for this to be so.

3. If A satisfies the conditions of the above problem, can it be concluded that limn→∞ An

exists?

4. Give an example of a non regular Markov matrix which has an eigenvalue equal to
−1.

5. Show that when a Markov matrix is non defective, all of the above theory can be proved
very easily. In particular, prove the theorem about the existence of limn→∞ An if the
eigenvalues are either 1 or have absolute value less than 1.

6. Find a formula for An where

A =




5
2 − 1

2 0 −1
5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2




Does limn→∞ An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 1

2 ,
1
2 .

7. Find a formula for An where

A =




2 − 1
2

1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2
3 − 1

2
1
2 −2



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Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar
to a diagonal matrix but you can find the Jordan form and consider this in order to
obtain a formula for this product. The eigenvalues are 1,−1, 1

2 ,
1
2 .

8. Find limn→∞ An if it exists for the matrix

A =




1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1




The eigenvalues are 1
2 , 1, 1, 1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞ An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞ An = 0.

11. Find an example of a 3 × 3 matrix A such that limn→∞ An does not exist but
limr→∞ A5r does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 11.1.3 suppose everything is unchanged except that you assume either∑
j aij ≤ 1 or

∑
i aij ≤ 1. Would the same conclusion be valid? What if you don’t

insist that each aij ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈ V and x ̸= 0. Consider βx ≡
x,Ax, · · · ,Am−1x where

Amx ∈ span
(
x,Ax, · · · ,Am−1x

)

and m is the smallest such that the above inclusion in the span takes place. Show
that

{
x,Ax, · · · ,Am−1x

}
must be linearly independent. Next suppose {v1, · · · ,vn}

is a basis for V . Consider βvi
as just discussed, having length mi. Thus Amivi is a

linearly combination of vi,Avi, · · · ,Am−1vi for m as small as possible. Let pvi (λ) be
the monic polynomial which expresses this linear combination. Thus pvi (A)vi = 0
and the degree of pvi (λ) is as small as possible for this to take place. Show that the
minimal polynomial for A must be the monic polynomial which is the least common
multiple of these polynomials pvi (λ).

15. If A is a complex Hermitian n×n matrix which has all eigenvalues nonnegative, show
that there exists a complex Hermitian matrix B such that BB = A.

16. ↑Suppose A,B are n× n real Hermitian matrices and they both have all nonnegative
eigenvalues. Show that det (A+B) ≥ det (A)+det (B). Hint: Use the above problem
and the Cauchy Binet theorem. Let P 2 = A,Q2 = B where P,Q are Hermitian and
nonnegative. Then

A+B =
(
P Q

)( P
Q

)
.
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17. Suppose B =

(
α c∗

b A

)
is an (n+ 1)× (n+ 1) Hermitian nonnegative matrix where

α is a scalar and A is n × n. Show that α must be real, c = b, and A = A∗, A is
nonnegative, and that if α = 0, then b = 0. Otherwise, α > 0.

18. ↑If A is an n× n complex Hermitian and nonnegative matrix, show that there exists
an upper triangular matrix B such that B∗B = A. Hint: Prove this by induction. It
is obviously true if n = 1. Now if you have an (n+ 1)× (n+ 1) Hermitian nonnegative

matrix, then from the above problem, it is of the form

(
α2 αb∗

αb A

)
, α real.

19. ↑ Suppose A is a nonnegative Hermitian matrix which is partitioned as

A =

(
A11 A12

A21 A22

)

where A11, A22 are square matrices. Show that det (A) ≤ det (A11) det (A22). Hint:
Use the above problem to factor A getting

A =

(
B∗

11 0∗

B∗
12 B∗

22

)(
B11 B12

0 B22

)

Next argue that A11 = B∗
11B11, A22 = B∗

12B12 +B∗
22B22. Use the Cauchy Binet theo-

rem to argue that det (A22) = det (B∗
12B12 +B∗

22B22) ≥ det (B∗
22B22) . Then explain

why

det (A) = det (B∗
11) det (B

∗
22) det (B11) det (B22)

= det (B∗
11B11) det (B

∗
22B22)

20. ↑ Prove the inequality of Hadamard. If A is a Hermitian matrix which is nonnegative,
then

det (A) ≤
∏
i

Aii
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Inner Product Spaces

12.1 General Theory

It is assumed here that the field of scalars is either R or C. The usual example of an inner
product space is Cn or Rn as described earlier. However, there are many other inner product
spaces and the topic is of such importance that it seems appropriate to discuss the general
theory of these spaces.

Definition 12.1.1 A vector space X is said to be a normed linear space if there exists a
function, denoted by |·| : X → [0,∞) which satisfies the following axioms.

1. |x| ≥ 0 for all x ∈ X, and |x| = 0 if and only if x = 0.

2. |ax| = |a| |x| for all a ∈ F.

3. |x+ y| ≤ |x|+ |y| .

This function |·| is called a norm.

The notation ||x|| is also often used. Not all norms are created equal. There are many
geometric properties which they may or may not possess. There is also a concept called an
inner product which is discussed next. It turns out that the best norms come from an inner
product.

Definition 12.1.2 A mapping (·, ·) : V × V → F is called an inner product if it satisfies
the following axioms.

1. (x, y) = (y, x).

2. (x, x) ≥ 0 for all x ∈ V and equals zero if and only if x = 0.

3. (ax+ by, z) = a (x, z) + b (y, z) whenever a, b ∈ F.

Note that 2 and 3 imply (x, ay + bz) = a(x, y) + b(x, z).
Then a norm is given by

(x, x)
1/2 ≡ |x| .

It remains to verify this really is a norm.

Definition 12.1.3 A normed linear space in which the norm comes from an inner product
as just described is called an inner product space.
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Inner Product Spaces

12.1 General Theory

It is assumed here that the field of scalars is either R or C. The usual example of an inner
product space is Cn or Rn as described earlier. However, there are many other inner product
spaces and the topic is of such importance that it seems appropriate to discuss the general
theory of these spaces.

Definition 12.1.1 A vector space X is said to be a normed linear space if there exists a
function, denoted by |·| : X → [0,∞) which satisfies the following axioms.

1. |x| ≥ 0 for all x ∈ X, and |x| = 0 if and only if x = 0.

2. |ax| = |a| |x| for all a ∈ F.

3. |x+ y| ≤ |x|+ |y| .

This function |·| is called a norm.

The notation ||x|| is also often used. Not all norms are created equal. There are many
geometric properties which they may or may not possess. There is also a concept called an
inner product which is discussed next. It turns out that the best norms come from an inner
product.

Definition 12.1.2 A mapping (·, ·) : V × V → F is called an inner product if it satisfies
the following axioms.

1. (x, y) = (y, x).

2. (x, x) ≥ 0 for all x ∈ V and equals zero if and only if x = 0.

3. (ax+ by, z) = a (x, z) + b (y, z) whenever a, b ∈ F.

Note that 2 and 3 imply (x, ay + bz) = a(x, y) + b(x, z).
Then a norm is given by

(x, x)
1/2 ≡ |x| .

It remains to verify this really is a norm.

Definition 12.1.3 A normed linear space in which the norm comes from an inner product
as just described is called an inner product space.
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Example 12.1.4 Let V = Cn with the inner product given by

(x,y) ≡
n∑

k=1

xkyk.

This is an example of a complex inner product space already discussed.

Example 12.1.5 Let V = Rn,

(x,y) = x · y ≡
n∑

j=1

xjyj .

This is an example of a real inner product space.

Example 12.1.6 Let V be any finite dimensional vector space and let {v1, · · · , vn} be a
basis. Decree that

(vi, vj) ≡ δij ≡
{

1 if i = j
0 if i ̸= j

and define the inner product by

(x, y) ≡
n∑

i=1

xiyi

where

x =

n∑
i=1

xivi, y =

n∑
i=1

yivi.

The above is well defined because {v1, · · · , vn} is a basis. Thus the components xi

associated with any given x ∈ V are uniquely determined.
This example shows there is no loss of generality when studying finite dimensional vector

spaces with field of scalars R or C in assuming the vector space is actually an inner product
space. The following theorem was presented earlier with slightly different notation.

Theorem 12.1.7 (Cauchy Schwarz) In any inner product space

|(x, y)| ≤ |x||y|.

where |x| ≡ (x, x)
1/2

.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x+ tyω, x+ tωy).

Then from the axioms of the inner product,

F (t) = |x|2 + 2tRe(x, ωy) + t2|y|2 ≥ 0.

This yields
|x|2 + 2t|(x, y)|+ t2|y|2 ≥ 0.

If |y| = 0, then the inequality requires that |(x, y)| = 0 since otherwise, you could pick large
negative t and contradict the inequality. If |y| > 0, it follows from the quadratic formula
that

4|(x, y)|2 − 4|x|2|y|2 ≤ 0. �
Earlier it was claimed that the inner product defines a norm. In this next proposition

this claim is proved.
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Proposition 12.1.8 For an inner product space, |x| ≡ (x, x)
1/2

does specify a norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

|x+ y|2 ≡ (x+ y, x+ y) ≡ |x|2 + |y|2 + 2Re (x, y)

≤ |x|2 + |y|2 + 2 |(x, y)|
≤ |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2. �

The best norms of all are those which come from an inner product because of the following
identity which is known as the parallelogram identity.

Proposition 12.1.9 If (V, (·, ·)) is an inner product space then for |x| ≡ (x, x)
1/2

, the
following identity holds.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

It turns out that the validity of this identity is equivalent to the existence of an inner
product which determines the norm as described above. These sorts of considerations are
topics for more advanced courses on functional analysis.

Definition 12.1.10 A basis for an inner product space, {u1, · · · , un} is an orthonormal
basis if

(uk, uj) = δkj ≡
{

1 if k = j
0 if k ̸= j

.

Note that if a list of vectors satisfies the above condition for being an orthonormal set,
then the list of vectors is automatically linearly independent. To see this, suppose

n∑
j=1

cjuj = 0

Then taking the inner product of both sides with uk,

0 =
n∑

j=1

cj (uj , uk) =
n∑

j=1

cjδjk = ck.

12.2 The Gram Schmidt Process

Lemma 12.2.1 Let X be a finite dimensional inner product space of dimension n whose
basis is {x1, · · · , xn} . Then there exists an orthonormal basis for X, {u1, · · · , un} which has
the property that for each k ≤ n, span(x1, · · · , xk) = span (u1, · · · , uk) .

Proof: Let {x1, · · · , xn} be a basis for X. Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) =
span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · , uk have
been chosen such that (uj , ul) = δjl and span (x1, · · · , xk) = span (u1, · · · , uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1, uj)uj���xk+1 −

∑k
j=1 (xk+1, uj)uj

���
, (12.1)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · , xk) = span (u1, · · · , uk)
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Thus by induction,

uk+1 ∈ span (u1, · · · , uk, xk+1) = span (x1, · · · , xk, xk+1) .

Also, xk+1 ∈ span (u1, · · · , uk, uk+1) which is seen easily by solving 12.1 for xk+1 and it
follows

span (x1, · · · , xk, xk+1) = span (u1, · · · , uk, uk+1) .

If l ≤ k,

(uk+1, ul) = C


(xk+1, ul)−

k∑
j=1

(xk+1, uj) (uj , ul)




= C


(xk+1, ul)−

k∑
j=1

(xk+1, uj) δlj




= C ((xk+1, ul)− (xk+1, ul)) = 0.
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The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. �

The process by which these vectors were generated is called the Gram Schmidt process.
The following corollary is obtained from the above process.

Corollary 12.2.2 Let X be a finite dimensional inner product space of dimension n whose
basis is {u1, · · · , uk, xk+1, · · · , xn} . Then if {u1, · · · , uk} is orthonormal, then the Gram
Schmidt process applied to the given list of vectors in order leaves {u1, · · · , uk} unchanged.

Lemma 12.2.3 Suppose {uj}nj=1 is an orthonormal basis for an inner product space X.
Then for all x ∈ X,

x =
n∑

j=1

(x, uj)uj .

Proof: By assumption that this is an orthonormal basis,

n∑
j=1

(x, uj)

δjl� �� �
(uj , ul) = (x, ul) .

Letting y =
∑n

k=1 (x, uk)uk, it follows

(x− y, uj) = (x, uj)−
n∑

k=1

(x, uk) (uk, uj)

= (x, uj)− (x, uj) = 0

for all j. Hence, for any choice of scalars c1, · · · , cn,

x− y,

n∑
j=1

cjuj


 = 0

and so (x− y, z) = 0 for all z ∈ X. Thus this holds in particular for z = x− y. Therefore, x
= y. �

The following theorem is of fundamental importance. First note that a subspace of an
inner product space is also an inner product space because you can use the same inner
product.

Theorem 12.2.4 Let M be a subspace of X, a finite dimensional inner product space and
let {xi}mi=1 be an orthonormal basis for M . Then if y ∈ X and w ∈ M,

|y − w|2 = inf
{
|y − z|2 : z ∈ M

}
(12.2)

if and only if
(y − w, z) = 0 (12.3)

for all z ∈ M. Furthermore,

w =

m∑
i=1

(y, xi)xi (12.4)

is the unique element of M which has this property. It is called the orthogonal projection.
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Proof: Let t ∈ R. Then from the properties of the inner product,

|y − (w + t (z − w))|2 = |y − w|2 + 2tRe (y − w,w − z) + t2 |z − w|2 . (12.5)

If (y − w, z) = 0 for all z ∈ M, then letting t = 1, the middle term in the above expression

vanishes and so |y − z|2 is minimized when z = w.
Conversely, if 12.2 holds, then the middle term of 12.5 must also vanish since otherwise,

you could choose small real t such that

|y − w|2 > |y − (w + t (z − w))|2 .

Here is why. If Re (y − w,w − z) < 0, then let t be very small and positive. The middle
term in 12.5 will then be more negative than the last term is positive and the right side of
this formula will then be less than |y − w|2. If Re (y − w,w − z) > 0 then choose t small
and negative to achieve the same result.

It follows, letting z1 = w − z that

Re (y − w, z1) = 0

for all z1 ∈ M. Now letting ω ∈ C be such that ω (y − w, z1) = |(y − w, z1)| ,

|(y − w, z1)| = (y − w,ωz1) = Re (y − w,ωz1) = 0,

which proves the first part of the theorem since z1 is arbitrary.
It only remains to verify that w given in 12.4 satisfies 12.3 and is the only point of M

which does so. To do this, note that if ci, di are scalars, then the properties of the inner
product and the fact the {xi} are orthonormal implies




m∑
i=1

cixi,
m∑
j=1

djxj


 =

∑
i

cidi.

By Lemma 12.2.3,

z =
∑
i

(z, xi)xi

and so (
y −

m∑
i=1

(y, xi)xi, z

)
=

(
y −

m∑
i=1

(y, xi)xi,
m∑
i=1

(z, xi)xi

)

=
m∑
i=1

(z, xi) (y, xi)−




m∑
i=1

(y, xi)xi,
m∑
j=1

(z, xj)xj




=

m∑
i=1

(z, xi) (y, xi)−
m∑
i=1

(y, xi) (z, xi) = 0.

This shows w given in 12.4 does minimize the function, z → |y − z|2 for z ∈ M. It only
remains to verify uniqueness. Suppose than that wi, i = 1, 2 minimizes this function of z
for z ∈ M. Then from what was shown above,

|y − w1|2 = |y − w2 + w2 − w1|2

= |y − w2|2 + 2Re (y − w2, w2 − w1) + |w2 − w1|2

= |y − w2|2 + |w2 − w1|2 ≤ |y − w2|2 ,

the last equal sign holding because w2 is a minimizer and the last inequality holding because
w1 minimizes. �
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12.3 Riesz Representation Theorem

The next theorem is one of the most important results in the theory of inner product spaces.
It is called the Riesz representation theorem.

Theorem 12.3.1 Let f ∈ L (X,F) where X is an inner product space of dimension n.
Then there exists a unique z ∈ X such that for all x ∈ X,

f (x) = (x, z) .

Proof: First I will verify uniqueness. Suppose zj works for j = 1, 2. Then for all x ∈ X,

0 = f (x)− f (x) = (x, z1 − z2)

and so z1 = z2.
It remains to verify existence. By Lemma 12.2.1, there exists an orthonormal basis,

{uj}nj=1 . Define

z ≡
n∑

j=1

f (uj)uj .

Then using Lemma 12.2.3,

(x, z) =


x,

n∑
j=1

f (uj)uj


 =

n∑
j=1

f (uj) (x, uj)

= f




n∑
j=1

(x, uj)uj


 = f (x) . �

Corollary 12.3.2 Let A ∈ L (X,Y ) where X and Y are two inner product spaces of finite
dimension. Then there exists a unique A∗ ∈ L (Y,X) such that

(Ax, y)Y = (x,A∗y)X (12.6)

for all x ∈ X and y ∈ Y. The following formula holds

(αA+ βB)
∗
= αA∗ + βB∗
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Proof: Let fy ∈ L (X,F) be defined as

fy (x) ≡ (Ax, y)Y .

Then by the Riesz representation theorem, there exists a unique element of X, A∗ (y) such
that

(Ax, y)Y = (x,A∗ (y))X .

It only remains to verify that A∗ is linear. Let a and b be scalars. Then for all x ∈ X,

(x,A∗ (ay1 + by2))X ≡ (Ax, (ay1 + by2))Y

≡ a (Ax, y1) + b (Ax, y2) ≡
a (x,A∗ (y1)) + b (x,A∗ (y2)) = (x, aA∗ (y1) + bA∗ (y2)) .

Since this holds for every x, it follows

A∗ (ay1 + by2) = aA∗ (y1) + bA∗ (y2)
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which shows A∗ is linear as claimed.
Consider the last assertion that ∗ is conjugate linear.

(
x, (αA+ βB)

∗
y
)
≡ ((αA+ βB)x, y)

= α (Ax, y) + β (Bx, y) = α (x,A∗y) + β (x,B∗y)

= (x, αA∗y) +
(
x, βA∗y

)
=

(
x,

(
αA∗ + βA∗) y) .

Since x is arbitrary,
(αA+ βB)

∗
y =

(
αA∗ + βA∗) y

and since this is true for all y,

(αA+ βB)
∗
= αA∗ + βA∗. �

Definition 12.3.3 The linear map, A∗ is called the adjoint of A. In the case when A : X →
X and A = A∗, A is called a self adjoint map. Such a map is also called Hermitian.

Theorem 12.3.4 Let M be an m × n matrix. Then M∗ =
(
M

)T
in words, the transpose

of the conjugate of M is equal to the adjoint.

Proof: Using the definition of the inner product in Cn,

(Mx,y) = (x,M∗y) ≡
∑
i

xi

∑
j

(M∗)ij yj =
∑
i,j

(M∗)ijyjxi.

Also
(Mx,y) =

∑
j

∑
i

Mjiyjxi.

Since x,y are arbitrary vectors, it follows that Mji = (M∗)ij and so, taking conjugates of
both sides,

M∗
ij = Mji

which gives the conclusion of the theorem.
The next theorem is interesting. You have a p dimensional subspace of Fn where F = R

or C. Of course this might be “slanted”. However, there is a linear transformation Q which
preserves distances which maps this subspace to Fp.

Theorem 12.3.5 Suppose V is a subspace of Fn having dimension p ≤ n. Then there exists
a Q ∈ L (Fn,Fn) such that

QV ⊆ span (e1, · · · , ep)
and |Qx| = |x| for all x. Also

Q∗Q = QQ∗ = I.

Proof: By Lemma 12.2.1 there exists an orthonormal basis for V, {vi}pi=1 . By using the
Gram Schmidt process this may be extended to an orthonormal basis of the whole space,
Fn,

{v1, · · · ,vp,vp+1, · · · ,vn} .
Now define Q ∈ L (Fn,Fn) by Q (vi) ≡ ei and extend linearly. If

∑n
i=1 xivi is an arbitrary

element of Fn,

�����Q
(

n∑
i=1

xivi

)�����
2

=

�����
n∑

i=1

xiei

�����
2

=

n∑
i=1

|xi|2 =

�����
n∑

i=1

xivi

�����
2

.
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It remains to verify that Q∗Q = QQ∗ = I. To do so, let x,y ∈ Fn. Then

(Q (x+ y) , Q (x+ y)) = (x+ y,x+ y) .

Thus
|Qx|2 + |Qy|2 + 2Re (Qx,Qy) = |x|2 + |y|2 + 2Re (x,y)

and since Q preserves norms, it follows that for all x,y ∈ Fn,

Re (Qx,Qy) = Re (x,Q∗Qy) = Re (x,y) .

Thus
Re (x,Q∗Qy − y) = 0 (12.7)

for all x,y. Let ω be a complex number such that |ω| = 1 and

ω (x,Q∗Qy − y) = |(x,Q∗Qy − y)| .

Then from 12.7,

0 = Re (ωx, Q∗Qy − y) = Reω (x,Q∗Qy − y)

= |(x,Q∗Qy − y)|

and since x is arbitrary, it follows that for all y,

Q∗Qy − y = 0

Thus
I = Q∗Q.

Similarly QQ∗ = I. �

12.4 The Tensor Product Of Two Vectors

Definition 12.4.1 Let X and Y be inner product spaces and let x ∈ X and y ∈ Y. Define
the tensor product of these two vectors, y ⊗ x, an element of L (X,Y ) by

y ⊗ x (u) ≡ y (u, x)X .

This is also called a rank one transformation because the image of this transformation is
contained in the span of the vector, y.

The verification that this is a linear map is left to you. Be sure to verify this! The
following lemma has some of the most important properties of this linear transformation.

Lemma 12.4.2 Let X,Y, Z be inner product spaces. Then for α a scalar,

(α (y ⊗ x))
∗
= αx⊗ y (12.8)

(z ⊗ y1) (y2 ⊗ x) = (y2, y1) z ⊗ x (12.9)

Proof: Let u ∈ X and v ∈ Y. Then

(α (y ⊗ x)u, v) = (α (u, x) y, v) = α (u, x) (y, v)

and
(u, αx⊗ y (v)) = (u, α (v, y)x) = α (y, v) (u, x) .
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Therefore, this verifies 12.8.
To verify 12.9, let u ∈ X.

(z ⊗ y1) (y2 ⊗ x) (u) = (u, x) (z ⊗ y1) (y2) = (u, x) (y2, y1) z

and
(y2, y1) z ⊗ x (u) = (y2, y1) (u, x) z.

Since the two linear transformations on both sides of 12.9 give the same answer for every
u ∈ X, it follows the two transformations are the same. �

Definition 12.4.3 Let X,Y be two vector spaces. Then define for A,B ∈ L (X,Y ) and
α ∈ F, new elements of L (X,Y ) denoted by A+B and αA as follows.

(A+B) (x) ≡ Ax+Bx, (αA)x ≡ α (Ax) .

Theorem 12.4.4 Let X and Y be finite dimensional inner product spaces. Then L (X,Y )
is a vector space with the above definition of what it means to multiply by a scalar and add.
Let {v1, · · · , vn} be an orthonormal basis for X and {w1, · · · , wm} be an orthonormal basis
for Y. Then a basis for L (X,Y ) is

{wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} .

Proof: It is obvious that L (X,Y ) is a vector space. It remains to verify the given set
is a basis. Consider the following:




A−

∑
k,l

(Avk, wl)wl ⊗ vk


 vp, wr


 = (Avp, wr)−

∑
k,l

(Avk, wl) (vp, vk) (wl, wr)

= (Avp, wr)−
∑
k,l

(Avk, wl) δpkδrl

= (Avp, wr)− (Avp, wr) = 0.
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Letting A −
∑

k,l (Avk, wl)wl ⊗ vk = B, this shows that Bvp = 0 since wr is an arbitrary
element of the basis for Y. Since vp is an arbitrary element of the basis for X, it follows
B = 0 as hoped. This has shown {wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} spans L (X,Y ) .

It only remains to verify the wj ⊗ vi are linearly independent. Suppose then that

∑
i,j

cijwj ⊗ vi = 0

Then do both sides to vs. By definition this gives

0 =
∑
i,j

cijwj (vs, vi) =
∑
i,j

cijwjδsi =
∑
j

csjwj

Now the vectors {w1, · · · , wm} are independent because it is an orthonormal set and so the
above requires csj = 0 for each j. Since s was arbitrary, this shows the linear transformations,
{wj ⊗ vi} form a linearly independent set. �

Note this shows the dimension of L (X,Y ) = nm. The theorem is also of enormous
importance because it shows you can always consider an arbitrary linear transformation as
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a sum of rank one transformations whose properties are easily understood. The following
theorem is also of great interest.

Theorem 12.4.5 Let A =
∑

i,j cijwi⊗vj ∈ L (X,Y ) where as before, the vectors, {wi} are
an orthonormal basis for Y and the vectors, {vj} are an orthonormal basis for X. Then if
the matrix of A has entries Mij , it follows that Mij = cij .

Proof: Recall
Avi ≡

∑
k

Mkiwk

Also

Avi =
∑
k,j

ckjwk ⊗ vj (vi) =
∑
k,j

ckjwk (vi, vj)

=
∑
k,j

ckjwkδij =
∑
k

ckiwk

Therefore, ∑
k

Mkiwk =
∑
k

ckiwk

and so Mki = cki for all k. This happens for each i. �

12.5 Least Squares

A common problem in experimental work is to find a straight line which approximates as
well as possible a collection of points in the plane {(xi, yi)}pi=1. The usual way of dealing
with these problems is by the method of least squares and it turns out that all these sorts
of approximation problems can be reduced to Ax = b where the problem is to find the best
x for solving this equation even when there is no solution.

Lemma 12.5.1 Let V and W be finite dimensional inner product spaces and let A : V → W
be linear. For each y ∈ W there exists x ∈ V such that

|Ax− y| ≤ |Ax1 − y|

for all x1 ∈ V. Also, x ∈ V is a solution to this minimization problem if and only if x is a
solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 12.2.4 on Page 383 there exists a point, Ax0, in the finite dimen-
sional subspace, A (V ) , of W such that for all x ∈ V, |Ax− y|2 ≥ |Ax0 − y|2 . Also, from
this theorem, this happens if and only if Ax0 − y is perpendicular to every Ax ∈ A (V ) .
Therefore, the solution is characterized by (Ax0 − y,Ax) = 0 for all x ∈ V which is the
same as saying (A∗Ax0 −A∗y, x) = 0 for all x ∈ V. In other words the solution is obtained
by solving A∗Ax0 = A∗y for x0. �

Consider the problem of finding the least squares regression line in statistics. Suppose
you have given points in the plane, {(xi, yi)}ni=1 and you would like to find constants m
and b such that the line y = mx + b goes through all these points. Of course this will be
impossible in general. Therefore, try to find m, b such that you do the best you can to solve
the system 


y1
...
yn


 =




x1 1
...

...
xn 1




(
m
b

)
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which is of the form y = Ax. In other words try to make

�������
A

(
m
b

)
−




y1
...
yn




�������

2

as small

as possible. According to what was just shown, it is desired to solve the following for m and
b.

A∗A

(
m
b

)
= A∗




y1
...
yn


 .

Since A∗ = AT in this case,

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m
b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)

Solving this system of equations for m and b,

m =
− (

∑n
i=1 xi) (

∑n
i=1 yi) + (

∑n
i=1 xiyi)n

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2

and

b =
− (

∑n
i=1 xi)

∑n
i=1 xiyi + (

∑n
i=1 yi)

∑n
i=1 x

2
i

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you solve as well as possible for a, b, and c the system




x2
1 x1 1
...

...
...

x2
n xn 1







a
b
c


 =




y1
...
yn




using the same techniques.

12.6 Fredholm Alternative Again

The best context in which to study the Fredholm alternative is in inner product spaces.
This is done here.

Definition 12.6.1 Let S be a subset of an inner product space, X. Define

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 12.6.2 Let A : V → W where A is linear and V and W are inner product spaces.
Then A (V ) = ker (A∗)

⊥
.

Proof: Let y = Ax so y ∈ A (V ) . Then if A∗z = 0,

(y, z) = (Ax, z) = (x,A∗z) = 0

showing that y ∈ ker (A∗)
⊥
. Thus A (V ) ⊆ ker (A∗)

⊥
.
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Now suppose y ∈ ker (A∗)
⊥
. Does there exists x such that Ax = y? Since this might

not be immediately clear, take the least squares solution to the problem. Thus let x be a
solution to A∗Ax = A∗y. It follows A∗ (y −Ax) = 0 and so y−Ax ∈ ker (A∗) which implies
from the assumption about y that (y −Ax, y) = 0. Also, since Ax is the closest point to
y in A (V ) , Theorem 12.2.4 on Page 383 implies that (y −Ax,Ax1) = 0 for all x1 ∈ V.

In particular this is true for x1 = x and so 0 = (y −Ax, y) −
=0︷ ︸︸ ︷

(y −Ax,Ax) = |y −Ax|2 ,
showing that y = Ax. Thus A (V ) ⊇ ker (A∗)

⊥
. �

Corollary 12.6.3 Let A, V, and W be as described above. If the only solution to A∗y = 0
is y = 0, then A is onto W.

Proof: If the only solution to A∗y = 0 is y = 0, then ker (A∗) = {0} and so every vector

from W is contained in ker (A∗)
⊥

and by the above theorem, this shows A (V ) = W . �

12.7 Exercises

1. Find the best solution to the system

x+ 2y = 6
2x− y = 5
3x+ 2y = 0
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2. Find an orthonormal basis for R3, {w1,w2,w3} given that w1 is a multiple of the
vector (1, 1, 2).

3. Suppose A = AT is a symmetric real n× n matrix which has all positive eigenvalues.
Define

(x,y) ≡ (Ax,y) .

Show this is an inner product on Rn. What does the Cauchy Schwarz inequality say
in this case?

4. Let
||x||∞ ≡ max {|xj | : j = 1, 2, · · · , n} .

Show this is a norm on Cn. Here x =
(
x1 · · · xn

)T
. Show

||x||∞ ≤ |x| ≡ (x,x)
1/2

where the above is the usual inner product on Cn.
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5. Let

||x||1 ≡
n∑

j=1

|xj | .

Show this is a norm on Cn. Here x =
(
x1 · · · xn

)T
. Show

||x||1 ≥ |x| ≡ (x,x)
1/2

where the above is the usual inner product on Cn. Show there cannot exist an inner
product such that this norm comes from the inner product as described above for
inner product spaces.

6. Show that if ||·|| is any norm on any vector space, then

|||x|| − ||y||| ≤ ||x− y|| .

7. Relax the assumptions in the axioms for the inner product. Change the axiom about
(x, x) ≥ 0 and equals 0 if and only if x = 0 to simply read (x, x) ≥ 0. Show the Cauchy
Schwarz inequality still holds in the following form.

|(x, y)| ≤ (x, x)
1/2

(y, y)
1/2

.

8. Let H be an inner product space and let {uk}nk=1 be an orthonormal basis for H.
Show

(x, y) =
n∑

k=1

(x, uk) (y, uk).

9. Let the vector space V consist of real polynomials of degree no larger than 3. Thus a
typical vector is a polynomial of the form

a+ bx+ cx2 + dx3.

For p, q ∈ V define the inner product,

(p, q) ≡
∫ 1

0

p (x) q (x) dx.

Show this is indeed an inner product. Then state the Cauchy Schwarz inequality in
terms of this inner product. Show

{
1, x, x2, x3

}
is a basis for V . Finally, find an

orthonormal basis for V. This is an example of some orthonormal polynomials.

10. Let Pn denote the polynomials of degree no larger than n− 1 which are defined on an
interval [a, b] . Let {x1, · · · , xn} be n distinct points in [a, b] . Now define for p, q ∈ Pn,

(p, q) ≡
n∑

j=1

p (xj) q (xj)

Show this yields an inner product on Pn. Hint: Most of the axioms are obvious. The
one which says (p, p) = 0 if and only if p = 0 is the only interesting one. To verify this
one, note that a nonzero polynomial of degree no more than n− 1 has at most n− 1
zeros.
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11. Let C ([0, 1]) denote the vector space of continuous real valued functions defined on
[0, 1]. Let the inner product be given as

(f, g) ≡
∫ 1

0

f (x) g (x) dx

Show this is an inner product. Also let V be the subspace described in Problem 9.
Using the result of this problem, find the vector in V which is closest to x4.

12. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,

(p (x) y′)
′
+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t ∈ [a, b] and also there are boundary
conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.

There is an immense theory connected to these important problems. The constant, λ
is called an eigenvalue. Show that if y is a solution to the above problem corresponding
to λ = λ1 and if z is a solution corresponding to λ = λ2 ̸= λ1, then

∫ b

a

q (x) y (x) z (x) dx = 0. (12.10)

and this defines an inner product. Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a)−z′ (a) y (a) =
0 and y′ (b) z (b) − z′ (b) y (b) = 0. The formula, 12.10 is called an orthogonality rela-
tion. It turns out there are typically infinitely many eigenvalues and it is interesting
to write given functions as an infinite series of these “eigenfunctions”.

13. Consider the continuous functions defined on [0, π] , C ([0, π]) . Show

(f, g) ≡
∫ π

0

fgdx

is an inner product on this vector space. Show the functions
{√

2
π sin (nx)

}∞

n=1
are

an orthonormal set. What does this mean about the dimension of the vector space

C ([0, π])? Now let VN = span
(√

2
π sin (x) , · · · ,

√
2
π sin (Nx)

)
. For f ∈ C ([0, π]) find

a formula for the vector in VN which is closest to f with respect to the norm determined
from the above inner product. This is called the N th partial sum of the Fourier series
of f . An important problem is to determine whether and in what way this Fourier
series converges to the function f . The norm which comes from this inner product is
sometimes called the mean square norm.
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14. Consider the subspace V ≡ ker (A) where

A =




1 4 −1 −1
2 1 2 3
4 9 0 1
5 6 3 4




Find an orthonormal basis for V. Hint: You might first find a basis and then use the
Gram Schmidt procedure.

15. The Gram Schmidt process starts with a basis for a subspace {v1, · · · , vn} and pro-
duces an orthonormal basis for the same subspace {u1, · · · , un} such that

span (v1, · · · , vk) = span (u1, · · · , uk)

for each k. Show that in the case of Rm the QR factorization does the same thing.
More specifically, if

A =
(
v1 · · · vn

)

and if
A = QR ≡

(
q1 · · · qn

)
R

then the vectors {q1, · · · ,qn} is an orthonormal set of vectors and for each k,

span (q1, · · · ,qk) = span (v1, · · · ,vk)

16. Verify the parallelogram identify for any inner product space,

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

Why is it called the parallelogram identity?

17. Let H be an inner product space and let K ⊆ H be a nonempty convex subset. This
means that if k1, k2 ∈ K, then the line segment consisting of points of the form

tk1 + (1− t) k2 for t ∈ [0, 1]

is also contained in K. Suppose for each x ∈ H, there exists Px defined to be a point
of K closest to x. Show that Px is unique so that P actually is a map. Hint: Suppose
z1 and z2 both work as closest points. Consider the midpoint, (z1 + z2) /2 and use the
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parallelogram identity of Problem 16 in an auspicious manner.

18. In the situation of Problem 17 suppose K is a closed convex subset and that H
is complete. This means every Cauchy sequence converges. Recall from calculus a
sequence {kn} is a Cauchy sequence if for every ε > 0 there exists Nε such that
whenever m,n > Nε, it follows |km − kn| < ε. Let {kn} be a sequence of points of K
such that

lim
n→∞

|x− kn| = inf {|x− k| : k ∈ K}

This is called a minimizing sequence. Show there exists a unique k ∈ K such that
limn→∞ |kn − k| and that k = Px. That is, there exists a well defined projection map
onto the convex subset of H. Hint: Use the parallelogram identity in an auspicious
manner to show {kn} is a Cauchy sequence which must therefore converge. Since K
is closed it follows this will converge to something in K which is the desired vector.

19. LetH be an inner product space which is also complete and let P denote the projection
map onto a convex closed subset, K. Show this projection map is characterized by
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the inequality
Re (k − Px, x− Px) ≤ 0

for all k ∈ K. That is, a point z ∈ K equals Px if and only if the above variational
inequality holds. This is what that inequality is called. This is because k is allowed
to vary and the inequality continues to hold for all k ∈ K.

20. Using Problem 19 and Problems 17 - 18 show the projection map, P onto a closed
convex subset is Lipschitz continuous with Lipschitz constant 1. That is

|Px− Py| ≤ |x− y|

21. Give an example of two vectors in R4 x,y and a subspace V such that x · y = 0 but
Px·Py ̸= 0 where P denotes the projection map which sends x to its closest point on
V .

22. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear regression
line using the formulas derived above. Then graph the given data along with your
regression line.

23. Generalize the least squares procedure to the situation in which data is given and you
desire to fit it with an expression of the form y = af (x)+bg (x)+c where the problem
would be to find a, b and c in order to minimize the error. Could this be generalized
to higher dimensions? How about more functions?

24. Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank (A) ≡ dim (A (X)) and nullity(A) ≡ dim (ker (A)) .
Show that nullity(A) + rank (A) = dim (X) . Hint: Let {xi}ri=1 be a basis for ker (A)

and let {xi}ri=1 ∪ {yi}n−r
i=1 be a basis for X. Then show that {Ayi}n−r

i=1 is linearly
independent and spans AX.

25. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗) ≤

= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}rj=1 of A (Fn) and verify {A∗Axj}rj=1

is a basis for A∗A (Fn) .

26. Let A be a real m × n matrix and let A = QR be the QR factorization with Q
orthogonal and R upper triangular. Show that there exists a solution x to the equation

RTRx = RTQTb

and that this solution is also a least squares solution defined above such that ATAx =
ATb.

12.8 The Determinant And Volume

The determinant is the essential algebraic tool which provides a way to give a unified treat-
ment of the concept of p dimensional volume of a parallelepiped in RM . Here is the definition
of what is meant by such a thing.
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inequality holds. This is what that inequality is called. This is because k is allowed
to vary and the inequality continues to hold for all k ∈ K.

20. Using Problem 19 and Problems 17 - 18 show the projection map, P onto a closed
convex subset is Lipschitz continuous with Lipschitz constant 1. That is

|Px− Py| ≤ |x− y|

21. Give an example of two vectors in R4 x,y and a subspace V such that x · y = 0 but
Px·Py ̸= 0 where P denotes the projection map which sends x to its closest point on
V .

22. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear regression
line using the formulas derived above. Then graph the given data along with your
regression line.

23. Generalize the least squares procedure to the situation in which data is given and you
desire to fit it with an expression of the form y = af (x)+bg (x)+c where the problem
would be to find a, b and c in order to minimize the error. Could this be generalized
to higher dimensions? How about more functions?

24. Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank (A) ≡ dim (A (X)) and nullity(A) ≡ dim (ker (A)) .
Show that nullity(A) + rank (A) = dim (X) . Hint: Let {xi}ri=1 be a basis for ker (A)

and let {xi}ri=1 ∪ {yi}n−r
i=1 be a basis for X. Then show that {Ayi}n−r

i=1 is linearly
independent and spans AX.

25. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗) ≤

= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}rj=1 of A (Fn) and verify {A∗Axj}rj=1

is a basis for A∗A (Fn) .

26. Let A be a real m × n matrix and let A = QR be the QR factorization with Q
orthogonal and R upper triangular. Show that there exists a solution x to the equation

RTRx = RTQTb

and that this solution is also a least squares solution defined above such that ATAx =
ATb.

12.8 The Determinant And Volume

The determinant is the essential algebraic tool which provides a way to give a unified treat-
ment of the concept of p dimensional volume of a parallelepiped in RM . Here is the definition
of what is meant by such a thing.

Definition 12.8.1 Let u1, · · · ,up be vectors in RM ,M ≥ p. The parallelepiped determined
by these vectors will be denoted by P (u1, · · · ,up) and it is defined as

P (u1, · · · ,up) ≡




p∑
j=1

sjuj : sj ∈ [0, 1]


 .

The volume of this parallelepiped is defined as

volume of P (u1, · · · ,up) ≡ v (P (u1, · · · ,up)) ≡ (det (ui · uj))
1/2

.

If the vectors are dependent, this definition will give the volume to be 0.

First lets observe the last assertion is true. Say ui =
∑

j ̸=i αjuj . Then the ith row is
a linear combination of the other rows and so from the properties of the determinant, the
determinant of this matrix is indeed zero as it should be.

A parallelepiped is a sort of a squashed box. Here is a picture which shows the relation-
ship between P (u1, · · · ,up−1) and P (u1, · · · ,up).

�

�

�

P (u1, · · · ,up−1)

up

�

N

θ

In a sense, we can define the volume any way we want but if it is to be reasonable, the
following relationship must hold. The appropriate definition of the volume of P (u1, · · · ,up)
in terms of P (u1, · · · ,up−1) is

v (P (u1, · · · ,up)) = |up| |cos (θ)| v (P (u1, · · · ,up−1)) (12.11)

In the case where p = 1, the parallelepiped P (v) consists of the single vector and the one

dimensional volume should be |v| =
(
vTv

)1/2
. Now having made this definition, I will show

that this is the appropriate definition of p dimensional volume for every p.

Definition 12.8.2 Let {u1, · · · ,up} be vectors. Then

v (P (u1, · · · ,up)) ≡

≡ det







uT
1

uT
2
...
uT
p




(
u1 u2 · · · up

)



1/2

As just pointed out, this is the only reasonable definition of volume in the case of one
vector. The next theorem shows that it is the only reasonable definition of volume of a
parallelepiped in the case of p vectors because 12.11 holds.
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Theorem 12.8.3 With the above definition of volume, 12.11 holds.

Proof: To check whether this is so, it is necessary to find |cos (θ)| . This involves finding
the vector perpendicular to P (u1, · · · ,up−1) . Let {w1, · · · ,wp} be an orthonormal basis
for span (u1, · · · ,up) such that span (w1, · · · ,wk) = span (u1, · · · ,uk) for each k ≤ p. Such
an orthonormal basis exists because of the Gram Schmidt procedure. First note that since
{wk} is an orthonormal basis for span (u1, · · · ,up) ,

uj =

p∑
k=1

(uj ·wk)wk

and if i, j ≤ k

uj · ui =
k∑

k=1

(uj ·wk) (ui ·wk)

Therefore, for each k ≤ p

det







uT
1

uT
2
...
uT
k




(
u1 u2 · · · uk

)



is the determinant of a matrix whose ijth entry is

uT
i uj = ui · uj =

k∑
r=1

(ui ·wr) (wr · uj)

Thus this matrix is the product of the two k× k matrices, one which is the transpose of the
other.




(u1 ·w1) (u1 ·w2) · · · (u1 ·wk)
(u2 ·w1) (u2 ·w2) · · · (u2 ·wk)

...
...

...
(uk ·w1) (uk ·w2) · · · (uk ·wk)


 ·




(u1 ·w1) (u2 ·w1) · · · (uk ·w1)
(u1 ·w2) (u2 ·w2) · · · (uk ·w2)

...
...

...
(u1 ·wk) (u2 ·wk) · · · (uk ·wk)



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It follows

det







uT
1

uT
2
...
uT
k




(
u1 u2 · · · uk

)



=


det




(u1 ·w1) (u1 ·w2) · · · (u1 ·wk)
(u2 ·w1) (u2 ·w2) · · · (u2 ·wk)

...
...

...
(uk ·w1) (uk ·w2) · · · (uk ·wk)







2

and so from the definition,
v (P (u1, · · · ,uk)) =
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���������
det




(u1 ·w1) (u1 ·w2) · · · (u1 ·wk)
(u2 ·w1) (u2 ·w2) · · · (u2 ·wk)

...
...

...
(uk ·w1) (uk ·w2) · · · (uk ·wk)




���������
Now consider the vector

N ≡ det




w1 w2 · · · wp

(u1 ·w1) (u1 ·w2) · · · (u1 ·wp)
...

...
...

(up−1 ·w1) (up−1 ·w2) · · · (up−1 ·wp)




which results from formally expanding along the top row. Note that from what was just
discussed,

v (P (u1, · · · ,up−1)) = ±A1p

Now it follows from the formula for expansion of a determinant along the top row that for
each j ≤ p− 1

N · uj =

p∑
k=1

(uj ·wk) (N ·wk) =

p∑
k=1

(uj ·wk)A1k

where A1k is the 1kth cofactor of the above matrix. Thus if j ≤ p− 1

N · uj = det




(uj ·w1) (uj ·w2) · · · (uj ·wp)
(u1 ·w1) (u1 ·w2) · · · (u1 ·wp)

...
...

...
(up−1 ·w1) (up−1 ·w2) · · · (up−1 ·wp)


 = 0

because the matrix has two equal rows while if j = p, the above discussion shows N · up

equals ±v (P (u1, · · · ,up)). Therefore, N points in the direction of the normal vector in the
above picture or else it points in the opposite direction to this vector. From the geometric
description of the dot product,

|cos (θ)| = |N · up|
|up| |N|

and it follows

|up| |cos (θ)| v (P (u1, · · · ,up−1)) = |up|
|N · up|
|up| |N|

v (P (u1, · · · ,up−1))

=
v (P (u1, · · · ,up))

|N|
v (P (u1, · · · ,up−1))

Now at this point, note that from the construction, wp ·uk = 0 whenever k ≤ p− 1 because
uk ∈ span (w1, · · · ,wp−1). Therefore, |N| = |A1p| = v (P (u1, · · · ,up−1)) and so the above
reduces to

|up| |cos (θ)| v (P (u1, · · · ,up−1)) = v (P (u1, · · · ,up)) . �
The theorem shows that the only reasonable definition of p dimensional volume of a

parallelepiped is the one given in the above definition.
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12.9 Exercises

1. Here are three vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
, (0, 0, 1, 2)

T
. Find the three

dimensional volume of the parallelepiped determined by these three vectors.

2. Here are two vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
. Find the volume of the paral-

lelepiped determined by these two vectors.

3. Here are three vectors in R2 : (1, 2)
T
, (2, 1)

T
, (0, 1)

T
. Find the three dimensional

volume of the parallelepiped determined by these three vectors. Recall that from the
above theorem, this should equal 0.

4. Find the equation of the plane through the three points (1, 2, 3) , (2,−3, 1) , (1, 1, 7) .

5. Let T map a vector space V to itself. Explain why T is one to one if and only if T is
onto. It is in the text, but do it again in your own words.

6. ↑Let all matrices be complex with complex field of scalars and let A be an n×n matrix
and B a m×m matrix while X will be an n×m matrix. The problem is to consider
solutions to Sylvester’s equation. Solve the following equation for X

AX −XB = C

where C is an arbitrary n×m matrix. Show there exists a unique solution if and only
if σ (A)∩ σ (B) = ∅. Hint: If q (λ) is a polynomial, show first that if AX −XB = 0,
then q (A)X − Xq (B) = 0. Next define the linear map T which maps the n × m
matrices to the n×m matrices as follows.

TX ≡ AX −XB

Show that the only solution to TX = 0 is X = 0 so that T is one to one if and only if
σ (A)∩σ (B) = ∅. Do this by using the first part for q (λ) the characteristic polynomial

for B and then use the Cayley Hamilton theorem. Explain why q (A)−1
exists if and

only if the condition σ (A) ∩ σ (B) = ∅.

7. Compare Definition 12.8.2 with the Binet Cauchy theorem, Theorem 3.3.14. What is
the geometric meaning of the Binet Cauchy theorem in this context?

8. For W a subspace of V, W is said to have a complementary subspace [14] W ′ if
W ⊕ W ′ = V. Suppose that both W,W ′ are invariant with respect to A ∈ L (V, V ).
Show that for any polynomial f (λ) , if f (A)x ∈ W, then there exists w ∈ W such
that f (A)x = f (A)w. A subspace W is called A admissible if it is A invariant and
the condition of this problem holds.

9. ↑ Return to Theorem 10.3.4 about the existence of a basis β =
{
βx1

, · · · , βxp

}
for V

where A ∈ L (V, V ) . Adapt the statement and proof to show that if W is A admissible,
then it has a complementary subspace which is also A invariant. Hint:

The modified version of the theorem is: Suppose A ∈ L (V, V ) and the minimal poly-
nomial of A is ϕ (λ)

m
where ϕ (λ) is a monic irreducible polynomial. Also suppose

that W is an A admissible subspace. Then there exists a basis for V which is of

the form β =
{
βx1

, · · · , βxp
, v1, · · · , vm

}
where {v1, · · · , vm} is a basis of W . Thus

span
(
βx1

, · · · , βxp

)
is the A invariant complementary subspace for W . You may want

to use the fact that ϕ (A) (V ) ∩W = ϕ (A) (W ) which follows easily because W is A
admissible. Then use this fact to show that ϕ (A) (W ) is also A admissible.
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