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Preface

This text is based on lecture courses given by the author, over about 40 years, at Newcastle University, to final-year applied
mathematics students. It has been written to provide a typical course that introduces the majority of the relevant ideas,
concepts and techniques, rather than a wide-ranging and more general text. Thus the topics, with their detailed discussion
linked to the many carefully worked examples, do not cover as broad a spectrum as might be found in other, more wide-
ranging texts on fluid mechanics; this is a quite deliberate choice here. Thus the development follows that of a conventional
introductory module on fluids, comprising a basic introduction to the main ideas of fluid mechanics, culminating in a
presentation of complex-variable techniques and classical aerofoil theory. (There are many routes that could be followed,
based on a general introduction to the fundamentals of the theory of fluid mechanics. For example, the course could then
specialise in viscous flow, or turbulence, or hydrodynamic stability, or gas dynamics and supersonic flow, or water waves, to
mention just a few; we opt for the use of the complex potential to model flows, with special application to simple aerofoil
theory.) The material, and its style of presentation, have been selected after many years of development and experience,
resulting in something that works well in the lecture theatre. Thus, for example, some of the more technical aspects are

set aside (but usually discussed in an Appendix).

It is assumed that the readers are familiar with the vector calculus, methods for solving ordinary and partial differential
equations, and complex-variable theory. Nevertheless, with this general background, the material should be accessible to
mathematicians, physicists and engineers. The numerous worked examples are to be used in conjunction with the large
number of set exercises — there are over 100 - for which the answers are provided. In addition, there are some appendices
that contain further relevant material, together with some detailed derivations; a list of brief biographies of the various

contributors to the ideas presented here is also provided.
Where appropriate, suitable figures and diagrams have been included, in order to aid the understanding - and to see the

relevance — of much of the material. However, the interested reader is advised to make use of the web, for example, to

find pictures and movies of the various phenomena that we mention.
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1 Introduction and Basics

We start with a working definition: a fluid is a material that cannot, in general, withstand any force without change of
shape. (An exception is the special problem of a uniform - inward - pressure acting on a liquid, which is a fluid that
cannot be compressed, so there is no change of volume.) This property of a fluid should be compared with what happens

to a solid: this can withstand a force, without any appreciable change of shape or volume - until it fractures!

We take this fundamental and defining property as the starting point for a simple classification of materials, and fluids

in particular:

materials ...
solids ? \‘ fuids S
low density gases
liquids gases /
(incompressible) (compressible)
viscous inviscid  viscous inviscid
(real) (model/ (real) (model/

ideal) ideal)

(Some materials sit somewhere between solids and fluids; these are usually called thixotropic materials — non-drip paints

are an example.)

We are interested in fluids, of which there are two main types exemplified by: air - a gas — which is easily compressed
(until it liquefies), whereas water - a liquid - is virtually incompressible. (The density of water increases by about 0-5%

under a pressure of 100 atmospheres.)

All conventional fluids are viscous; simply observe the various phenomena associated with the stirred motion of a drink
in a cup; e.g. after stirring, the motion eventually comes to a halt; also, during the motion, the particles of fluid directly

in contact with the inner surface of the cup are stationary.

In this study, we will eventually work, mainly, with a model fluid that is incompressible. This applies even to air - relevant
to the theory of flight — provided that the speeds are less than about 300mph (which is certainly the situation at take off
and landing). The role of viscosity is important in aerofoil theory, and will therefore be discussed carefully, but it turns

out that the details of viscous flow are not significant for flight.
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1.1 The continuum hypothesis

The first task is to introduce a suitable, general description of a fluid, and then to develop an appropriate (mathematical)
representation of it. This involves regarding the body of fluid on the large (macroscopic) scale i.e. consistent with the
familiar observation that fluid - air or water, for example — appears to fill completely the region of space that it occupies:
we ignore the existence of molecules and the ‘gaps’ between them (which would constitute a microscopic or molecular
model). This crucial idealisation, which regards the fluid as continuously distributed throughout a region of space, is called

the continuum hypothesis.
Now, at every point (particle), we may define a set of functions that describe the properties of the fluid at that point:

u(Xx,?) - the velocity vector (a vector field)
Pp(X,t) - the pressure (a scalar field)
P(X, 1) - the density (ditto),

where X = (X, ), z) is the position vector (expressed in rectangular Cartesian coordinates, but other coordinate systems
may sometimes be required). Here, ¢ is time and we usually write U = (&, v, W) , although there may be situations where
the components are more conveniently written as X, and #; (i =1,2,3). Note that both p and p are defined at a
point, with no preferred orientation: they are isotropic. Also, we have not included temperature, the variations of which
may be important for a gas (requiring a consideration of thermodynamics and the introduction of thermal energy). We
will mention temperature only as a consequence of other properties e.g. pressure and density implies a certain temperature,
via some equation of state. We assume, for our discussion here, that all the motion occurs at fixed temperature throughout
the fluid, or that heat transfer between regions of different temperature can be ignored (e.g. it occurs on timescales far

longer than those associated with the flow under consideration).

In our initial considerations, we shall allow the density to vary, but we will soon revert to the appropriate choice for our
incompressible (model) fluid: p = constant . Further, the three functions introduced above are certainly to be continuous

in both x and ¢ for any reasonable representation of a physically realistic flow.

Note: This description, which defines the properties of the fluid at any point, at any time - the most common one in
use — is called the Eulerian description. The alternative is to follow a particular point (particle) as it moves in the fluid,
and then determine how the properties change on this particle; this is the Lagrangian description. We shall write more

of these alternatives later.
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We are now in a position to introduce two different ways of describing the general nature of the motion in a given velocity

field which represents a fluid flow.

1.2 Streamlines and particle paths

We assume that we are given the velocity field U(X,#) (and how any particular motion is generated or maintained is, for

the moment, altogether irrelevant); the existence of a motion is the sole basis for the following descriptions.

1.2.1 A streamline is an imaginary line in the fluid which everywhere has the velocity vector as its tangent, at any instant

in time.

Let such a curve be parameterised by s, and write the curve as X = X(S,7) ; we give a reminder of the underlying idea

that we now use.

v
=

X(s+As,t)
=X(s,t)+AX
X(s,0) ™

X(s+As,1)—X(s,7) AX
As As

X = X(s,?) - a familiar result. Thus our definition of a streamline can be expressed as

We form

. . _dX
, so that, in the limit As — 0, the derivative E is the tangent to the curve

d_Xocu ord—X:ku Ord_qu(Xat)’
ds ds ds

when we redefine s. In Cartesian components, this is the set of three coupled, ordinary differential equations

& &y  dz
—=u,—=v,— =w (all at fixed ?)
ds ds ds

or, more conveniently, a pair of equations e.g.

b

Y
dx

&8

\% w
u u
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. . . dy _dz
This set is often expressed in the symmetric form — =—=—.
u v w
Note that, in 2-space (x, y), we simply have
dy v

dx u

(because there is no variation, and no flow, in the z-direction).

Example 1

Streamlines. Find the streamlines for the flow u = (@ xt,—a y,0), where & > 0 is a constant, and that family
at the instant ¢ =1.

We have (in 2D) %:X=—ﬂ:—l (at fixedt; x #0,¢#0), and so

u axt xt

tJ.d7y = —J-% ie. tln|y| = —1n|x| + constant .

Thus ytx = C (an arbitrary constant), and then at # =1 we have simply xy = C (a family of rectangular hyperbolae;

see figure).

Comment: Streamlines cannot cross except, possibly, where U = 0 (defining a stagnation point, where the flow is stationary

or stagnant) because, at such points, the direction of the zero vector is not unique.

1.2.2 A particle path is the path, X = X(?), followed by a point (particle) as it moves in the fluid according to the given

velocity vector i.e.

dX
—=1u
dt
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this is pure kinematics, determining X(¢) given u(X,?). In component form, we have
& dy  dz
—=u,—=v,—=w
dr dr dt

and here t is a variable (involved in the integration process).

Example 2

Particle paths. Find the particle paths for the flow u = (axt,— y,0), and that path which passes through

(1,2) at .
dx dy dz
Here we have — = axt,— =—ay (and — =0 = z = constant, so 2D); thus
dr dr dr

dx Cordy . 12 , 3
I?:aj.tdt, J;——aj.dt ie. ln|x|—%at + const.; 1n|y|——at+const.

Los? _
which gives x=Ae?®; y=Be™* and data at t=0 requirs A=1,B=2. The path is therefore

1o - _
x(t) = (ezat ,2¢€ “t,const.) , when expressed in 3D.

360°
thinking
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Note: A steady flow is one for which the velocity field is independent of time, and then the families of streamlines (SLs)

and particle paths (PPs) necessarily coincide (because

dX dX
E =u(X) and E =u(X) each define the same set of curves).

Example 3

t 2t =3t
Steady flow. All the particles (points) in a fluid move according to X = (ae ,be ,CC ) (written in rect.
Cart. coords.). Show that this flow field is steady, and then that the families of SLs and PPs coincide.

dx -
The PPs are given, and so U = ar = (aet > 2be ,—3ce i ) ; but these PPs can be expressed as X(¢) = (x(¢), y(¢), z(¢)),
where x(¢) = ae’ , etc., and so eliminating a, b, c we obtain the velocity field u = (x,2y,—3z) for all particles (points)
in the flow. This velocity field is steady.

d dz
Now the SLs are — = ¥ and so for example — other choices are possible -
x 2y 3z
2
a —
X2 = Ay, y322 = B ; but the PPs give x? =a%e? = Ty, y3z2 =pe¥ 27 = p3c2,

which is consistent with the representation of the SLs: the two families coincide.

Example 4

nt _
SLs and PPs II. The velocity components of a flow (in 2D) are (e, y) (= w) , where t is time and n is a
constant. Find the streamlines for this flow and the particle path which passes through (1,1) at t = 0. For what

value of n will the two families of curves coincide ?

dx o ne dy o . ) dy _
We have, for the PPs, — =u = xye ", d_ =V =y, and so we must solve the second equation first: | — = dr so
t

y
In |y| =t+const. ie. y = Ae' =¢' to satisfy the initial condition. Then

(4+n)t
— yeHmr, J‘% = je(l+”)tdt so In |x| = Lem”)t + const. = e—l;
ds X 1+n 1+n
e(l-H’l)t _1
thus X = exp| —————
1+n
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1
FortheSLs:d—yZKZ Y =—— (x#0,y#0),and so
dx nt nt

u  xye xe

Iﬂ = e”tjdy (at fixed 1) ie. In|x|= ye™ + const. or x = Cexp(ye”l ) .
x

The two families coincide for steady flow i.e. n=0.

Comment: In the laboratory, it is sometimes convenient to observe streak lines; these are all the paths through a given

point, over an interval of time.

1.3 The material (or convective) derivative

Let us consider some (scalar) property of the fluid, labelled f; in our representation of a fluid, this will be the pressure,

or the density or a velocity component. This will, in general, vary in position and time:

f=rx0.

We might be interested in ——, but a more important aspect of fis how it varies in time when it is associated with a point
d
(particle) that is moving in the fluid. So we require d—f with — = ; then we have
t

af+(%-vjf:(g+u-ij,

d
E{f(x(t)’t)} BT ot

and this operator on f is called the material (or convective) derivative (because it gives the rate of change of a material

point — a point or particle of the material, as it moves, or is ‘convected, in the fluid); it is usually written as

D
—Eeru-V.
Dt ot
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Warning:
Do not think to write w-V as V-u ! Remember that V is a differential operator and so, in the former, it

operates on whatever follows the V , and this is not u - it is some function e.g. f.

Note: If we apply this operator to the velocity vector - which we might expect is the appropriate representation of the

acceleration of a fluid particle - then we obtain

Du Ou
—=—+W-V)u,
Dt ot
which is inherently nonlinear. That this is indeed the acceleration follows directly: we have —— = for a particle path,
and so the acceleration is
2
d°X d ou dX Du
2 S ux(),=2+Z2vu=—",
de2  de ot dt Dt

relating the Lagrangian and Eulerian expressions.
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Example 5

Acceleration. Find the acceleration vector for a particle (point) which moves according to U = (ox ,—Q)) ,in

two dimensions, where & > 0 is a constant.

D
We have u =ax,v=—ay (& w=0), so —Ea—+0(x8——0(y—;thus
Dt ot ox oy

Du_@_u+ axa——a 9 u= axa——a 9 (ax,—a )—(azx o’ )
ox yay ox y@y Y @)

The notion of acceleration can be explored further:

Example 6

Velocity & Acceleration. A particle starts (f = 0) at the point (a, b, ¢), and moves according to
x=(x,y,z)= (a(l + t)z,b/(l +10),c/(1+ t)) . Find the velocity and acceleration vectors directly;
determine the velocity field in terms of x, y, z and ¢ (by eliminating a, b and c), and hence show that the

acceleration is recovered from Dll/ Dt .

Wehave%: 2a(l1+1),— b 7o . 7 |TW
dr 1+ (1+1)

correspondingly,

o dx 2b 2c
the acceleration is——= 2a,—3,—3 .
dt (I+2) (1+9)

1+¢7 1+t 1+t
this flow field is therefore unsteady.

2x z
But we may write U = ( 4 J for this velocity field i.e. for every point satisfying the given family of PPs;
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Du 8_+2x8__y6__za_u
ot l1+tox 1+toy 1+toz

__2x+4x y_ .y Z+Z:2a2b 2c
A+02 (1+02 A+0% A+0% 1+0* 1+ “A+0)7 A+1)

exactly as before.
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1.4 The equation of mass conservation

A fundamental equation (not usually expressed explicitly in elementary particle mechanics) is a statement of mass
conservation. We can readily see the need for such an equation: the fluid is, in general, in motion and can produce a
mixing of regions of different densities. Yet the total amount (mass) of material is presumably conserved; this total can
change only if matter (material) is created or destroyed - and this will arise only if we allow e.g. the conversion of mass

into energy! We now derive the equation which ensures that mass is indeed conserved.

Consider an imaginary (finite) volume V, bounded by a surface S, which is completely occupied by fluid; we shall take V'
(and S) to be stationary in our chosen frame of reference (so that fluid will cross S into and out of V). This figure shows

the configuration schematically:

where n is the outward unit normal on S, and ©(X,?) and u(X,?) are given at every point in V and on S. The total

mass of all the fluid in V; at any instant in time, is then
[ pxnydv,
14

where J. (.)dv denotes the triple integral in x over V. The rate of change of this mass is therefore

14
j—J.p(x,t)dv= J.aa—pdv
tV v t

because V is fixed in space. [See the property: ‘differentiation under the integral sign, discussed in Exercise 10.]
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Further, the net rate at which mass flows out of V across S is described in this figure:

lenéth is
{=u-n
per unit time

and so the volume of fluid (out) per unit time is approximately ¢ x AS =wu-nAS, producing a total mass flow rate

(out), over all S, in the form

Ipu-nds,
S

where I (.) ds represents the double integral over S. We now impose the condition that the only mechanism that produces
a change of mass in V is by virtue of material crossing S (into or out of V), thereby excluding the possibility of matter
(mass) being created or destroyed at any points in V or on S; thus we require
ja—pdv: —J.pu-nds.
ot

14 S

The choice of sign here is to accommodate the obvious convention that 8_p > 0 requires material to enter V across S.
t

We now invoke the Divergence (Gauss’) Theorem for the surface integral (where S bounds V), to produce

I(a—p+V~(pu)jdv=O.

Vat

However, this result must hold for all Vs (and corresponding Ss), irrespective of shape or size, which implies that the
limits of the integral (denoted by V) are arbitrary. But a—p +V -(ou) is assumed continuous, and so the requirement
t

that the integral of this expression always be zero [see the fundamental idea discussed in Exercise 11] gives

op
—+V-(pu)=0
o (pu)
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which is usually expressed [see the identities in Exercise 7] as

Dp
—+pV-u=0,
Dt p

the equation of mass conservation for a general fluid. Immediately we see that, if p = constant (> 0), then we obtain

V-u=0

which is a statement that volume is conserved. Note that the equation of mass conservation requires both p and u to be
differentiable.

_ . ou oOv ow o ,
In rectangular Cartesian coordinates, V - u = 0 becomes — +—+—— = 0 ;in cylindrical polar coordinates (7,8, z) ,
. . ox 0Oy 0z
with u = (u, v, w), this reads
1o(ru) 1ov ow
10rw) +——+—=0.

r or ;89 oz

A check list of all the relevant equations, written in both rectangular Cartesian coordinates and cylindrical coordinates,
is given in Appendix 2.

Note: The general definition of an incompressible fluid is that p = constant on each fluid particle (allowing different
constants on different particles), so that Dp _ 0, leaving the same result as above: V -u = 0. Our usual choice, appropriate
for a conventional incompressible fluid, is a special solution of this system: p = constant everywhere. The equation
V-u =0 simply states that volume is conserved (which we could have derived directly, if we wished to limit our

discussion to incompressible fluids).

0
Comment: We observe that, in the case where @ +V-(pu) is not continuous, the integral representing mass
conservation recovers a jump condition defining the relation between flow properties on either side of the discontinuity.

In the context of a gas, this describes conditions across a shock wave in supersonic flow.

Example 7
Incompressible flow. A flow is described by the velocity field u = (axx, 5y, 7z) ; what relation must exist between

the constants &, 3,7 for this to represent an incompressible flow ?

We have directly that V-u =u, + vy tw, =a+ S+ 7 (where subscripts have been used to denote partial derivatives);

thus & + S+ 7 =0 is the condition for this velocity field to represent an incompressible flow.
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A more interesting example, leading to an important, simple result used in elementary calculations for flow along a pipe,

is the following:

Example 8
Pipe flow. An incompressible flow, which is axisymmetric and non-swirling, moves along a circular pipe of

varying cross-section (radius R(z)). Find the relation between speed along the pipe and its cross-sectional area.

For incompressible flow in cylindrical coordinates, we have

19 u)+lﬂ+a—w=0; then for axisymmetry (0/00=0) and no swirl (v=0), this reduces to
r or rof oz

10 ow
=0 (and note that either condition removes this term, but the first also ensures that no functions

—(u)+—=
r or 0z
depend on ). We write this equation as (7u), +(w), =0

and then integrate across the pipe:

2 R(z)
[I’M]O(Z)+ I (rw),dr=0.
0

We now invoke the ‘differentiation under the integral sign’ ( Exercise 10) to express this as

R(2)
[ru]g(z)+d— I rwdr —Rw|r=RR'=0
0

d R(z)
Rt _[ rwdr |=0.
r= dZ 0

but 74 =0 on 7 =0, so this becomes R(u —wR'")

Download free ebooks at bookboon.com


http://bookboon.com/

Please click the advert

Fluid Mechanics and the Theory of Flight Introduction and Basics

There are two cases of interest: first, for a viscous fluid, both u and w are zero at the inner surface of the pipe (because
there can be no flow through the pipe, nor along the pipe), and so the evaluation on » = R(Zz) gives zero. On the other
hand, we might suppose that the fluid can be modelled as inviscid (zero viscosity — no friction), in which case the fluid
is allowed to flow along the inside surface of the pipe (but, as before, not through it). In this case, we must have that

the velocity vector is parallel to the pipe wall i.e. (u/ W)|r: R R'(2), and again the evaluation on 7 = R(z) is zero.

R(z) R(z)
Thus - J. rwdr |=0 and so .[ rwdr = constant, the required result.
0 0

In the special case (e.g. a model) in which the velocity profile across the pipe is essentially independent of the radius (r),
the integral produces the rule: speedxarea = constant. This type of flow is usually referred to as uniform across a section,

as depicted for a real flow which is nearly uniform across a section in the figure.
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1.5 Pressure and hydrostatic equilibrium

We now introduce the initial ideas that will, eventually, lead to an equation of motion - the corresponding Newton’s
Second Law - for a fluid. The first stage is to discuss the forces that act on a fluid; there are three (although we shall put

one of these aside, for the moment):

o force due to pressure (force/area), exerted by the fluid particles nearby
o internal friction (viscous forces) due to motion of other particles nearby

« external force (body force) that acts more-or-less equally on all fluid particles e.g. gravity.

The first two in this list are internal, local forces; in this discussion, we shall ignore any friction (and, in any event, there
will be no motion, so friction cannot play any role). The pressure, p(X,?), is defined at every point in the fluid, and is
independent of orientation (the fluid is said to be isotropic). Under the action of pressure and a body force - gravity,

perhaps - the fluid is in equilibrium; we now construct the equation that describes this scenario.

As before, let us consider an imaginary volume V, surface S, with outward normal n and totally occupied by fluid. Let

the body force acting on the fluid be F(X,7) per unit mass; the pressure (due to the surrounding fluid) acts on S.

pnAS

The total body force acting on all the fluid in V is thus

IdeV;
v

correspondingly, the total pressure force acting on S is

—jpnd&
S
There are no other forces acting, and there is no motion, so the resultant force on the fluid must be zero (the fluid is in

equilibrium under the action of these forces) i.e.

Idev—Ipnds=0,

V S
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(Note that the force, as expressed by the left-hand side, is force on.)

Again, we use the Divergence (Gauss’) Theorem, to give (for the second term)

jpnds = ijdV (see Exercise 8),
S V
and so we obtain J-(,OF -Vp)dv=0.
V

For this to be valid for all possible choices of V' (and associated S), and for a continuous integrand, we require

pF—VpZO or Vp:pF,
this is the equation of hydrostatic equilibrium (because water is a special case!).

Note that the density here, p, is not necessarily a constant: we have made no assumptions about p or the nature of the

fluid under discussion.

Example 9
Hydrostatic equilibrium. Given that the body force is due to (constant) gravity, so that F =(0,0,—g), and

that the pressure P = P, on z =(), find p(z) for an incompressible fluid (i.e. £ = constant) in hydrostatic

equilibrium.

The governing equation is Vp = pF ie. a—p,a—p,a—p
Ox Oy Oz

p=p(z).Then p'(z)=—pg,andso p=py—pgz.

= p(0,0,—g), and so a_p =0, 8_]9 =0, which gives
ox oy

Comment: On the basis of the previous example, if z = 0 is the surface of the ocean, then the pressure increases linearly
with depth. On the other hand, if z = 0 is the bottom of the atmosphere, then the pressure decreases linearly with height
(but this is not a good model for the atmosphere — compressibility is important, with p = p(p)).

In this model, also note that the rate of increase/decrease is very different for water/air, because of the very different

densities; for example, the pressure drops to about half an atmosphere at a height of about 55 km in air, but it increases

by one atmosphere at a depth of about 10 in water.
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1.6 Euler’s equation of motion (1755)

We now take the representation of forces, as developed in §1.5, and let this be the resultant force acting on a fluid that is
in motion. (Note that, using this system of forces, there is no internal friction - viscosity — which will be included later;

in the absence of friction, we usually call this model fluid an ideal fluid.)

The application of Newton’s Second Law, which is required to balance the force against the rate of change of momentum,
can be done in a very simple-minded way; this is the option we choose in this presentation. A mathematically more

complete derivation is given in Appendix 3.

Consider a (small) parcel of fluid, of volume AV ; the force acting on this parcel, based on the details given for the case

of equilibrium, is
(oF —Vp)AV approximately.

This force, according to Newton’s 2" Law, produces an acceleration (see §1.3) in the form

Du
force = massxacceleration = (PAV)—.

Dt
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Thus we obtain the (approximate) equation
Du
(PAV)E =(pF-Vp)AV,

where AV cancels; cancelling and - notionally - taking the limit to a point (i.e. AV — 0), we obtain

pg—pF—Vp or E:—le+F
Dt Y2

Dt

which is Euler’s equation of motion (1755). [L. Euler (1707-1783), Swiss mathematician, regarded as the ‘father of fluids’]

When the material derivative is written out, this equation becomes

a—u+u-Vu=—le+F,
ot o,

where, typically for us, we have F = (0,0,—g) (for constant acceleration of gravity). One component of this equation is

Oou Ou Ou ou 1 op
—tu—+Vv—t+w—=———+F,
ot ox 0Oy 0z p Ox

and correspondingly for the other two components.

Comment: We observe that we have 4 (scalar) equations (the three components of Euler and the equation of mass

conservation) for the 5 unknowns: #, Vv, w, p, 0 . This system is closed by prescribing the nature of the fluid e.g.
p =constant (incompressibility) or p = p(,0) (for certain gases).

In addition, we require appropriate boundary conditions (and also initial data for unsteady flows). Typically, we expect

information about the velocity and/or pressure at the boundary of the fluid.
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Example 10

Euler’s equation. Show that the incompressible flow field u = (#(z),0,0) for any u(z) , where X = (x, y,z),

together with the hydrostatic pressure distribution, is an exact solution of Euler’s equation with F = (0,0,— g).

We first check that V-u =0: S—u(z) +0+0=0 (correct);
X

then @-I-u -Vu= —le—FF becomes
P

a—+ua—+0.a—+0.a— (u(z),0,0)=—i a—p,a—p,a—p +(0,0,—2)
ot Ox oy 0z p\Ox Oy Oz

which is identically satisfied, with p =—pgz + const.

Another, more physically interesting problem (now in cylindrical coordinates), is provided by the next example.
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Example 11

Spinning fluid. An incompressible fluid is rotating at constant angular speed, @, in a cylindrical vessel; it is
otherwise in equilibrium under the action of (constant) gravity. Show that the surface (which is at constant

atmospheric pressure) takes the form of a paraboloid.

In cylindrical coordinates (7,6,z), we have u=(0,wr,0) (see figure), and so Euler’s equation reduces to

(0,0,0)+(—a)2r,0,0)=—l(6—p,la—p,a—pJ+(O,O,—g).Thus
p\or rol oz

op op 2. Op
L _0,L - pp?r, L - _
00 o F rg

which has the solution p(7,z) :% pw2r2 — pgz +const.; but the surface is a surface of constant pressure -
atmospheric pressure - and so the surface is described by the paraboloid: % ,06027'2 — pgz = constant (a parabola in

(r,z) coordinates).

An important final observation, before we move on - and which is explored in Exercise 35 - is the following. The
governing equations are the same, whether an object is moving at constant speed through a fluid, or the fluid flows at
this same constant speed past a fixed object. This implies that the situation in the laboratory — flow past an object in a
wind tunnel, for example — can correspond precisely with the same object flying through the air. This property of the

equations is called Galilean invariance.
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Exercises 1

1. Algebra (relevant to gases). Given that p = pRT and that p = kp’ (where R, k and ¥ are positive constants with
1<y <2), find: (a) Tinterms of ©; (b) Tin terms of p . [Here, p is pressure, T is temperature and p is density.]

2. More algebra (for gases). Repeat Ex.1 (a), (b), for the more accurate model
(p+ap*)1=bp)=pRT ; p=kp’,

where a and b are also positive constants. [This model incorporates the improvement for a gas first introduced by van

der Waals.]

3. Approximation. Use the relation between p, o and T given in Ex.2, taking a and b to be small constants, to find an

approximate expression for p in terms of T and 0 , which is correct as far as terms in ,02 .

4. Special case (relevant to our fluids). See Ex.1; given that p = kp”, p = pRT and that T = constant, show that y =1 .
What now is the constant k ? [This is the situation that we shall often encounter in our discussions because we shall
not entertain the possibility of changes in temperature; such an approach would require a consideration of thermal

energy and thermodynamics.]

5. Differential equations I. Solve the differential equation dy/ dx = v/ U, given u and v as follows, where a and ¢ are

constants :
(a) u=ax, v=2ay; (b) u=-4ay, v=ax; (c) u=xt, v=-yt; (d) u=xt, v=-y.
Now use suitable software (e.g. MAPLE) to plot

(e) for problem (a), the three curves which pass through (1,1), (1,2) and (1,3), respectively, for 0 < x <3, all

on one graph;

(f) for problem (d), the three curves which pass through (1,1), (2,1) and (3,1), respectively, for 0-5<x <5,
all on one graph, for each of £ =0,1,2.

6. Differential equations II. Solve the pair of differential equations dx/ dft =u, dy / df = v, where t is now a variable, for

u and v as given in Ex.5, with the conditions
(@& () x=xy, y=y,att=0;b) x=y=1latt=0;(d) x=x,, y=y, at t=1.

Now use suitable software (e.g. MAPLE) to plot
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(e) for problem (a), the three paths (x(),(?)), with a =1,x5 =1,y =1,2,3, respectively, for 0 < <1

all on the same graph;

(f) for problem (d), the three paths (x(¢), y(¢)) , with ¥y =1,x5 =1,2,3, respectively, for 0<¢<2,all on
the same graph.

7. Some differential identities. Given that () (x) is a general scalar function, and that u(x) and v(X) are general vector-

valued functions, use any appropriate method to show that
@ V-(gu)=(u-V)p+4(V-u);
®) VA(du)=(Vo)ru+d(V Au);
@uA(VAau)=V@-u/2)—(u-V)u;
@VAa@AV)=u(V:-v)—(u-V)v+(v-VIu-v(V-u),

and in (c) you are advised to consider one component only (if subscript notation is not adopted), since the others follow

cyclically, and work from the r.h.s to recover the Lh.s.; here, we have used A as an alternative to X (for the cross product).

8. Two integral identities. A volume V is bounded by the surface S on which there is defined the outward normal unit

vector, N. Given that @#(X) is a general scalar function, use Gauss’ theorem (the ‘divergence theorem’) to show that

> RBS Group

CAREERKICKSTART
v

Whether you’re a graduate, school leaver or student, it's a difficult time to start your career.

So here at RBS, we’re providing a helping hand with our new Facebook app. Bringing together
the most relevant and useful careers information, we’ve created a one-stop shop designed

to help you get on the career ladder — whatever your level of education, degree subject or
work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you.
So download the app and you’ll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

Download free ebooks at bookboon.com

30


http://bookboon.com/
http://bookboon.com/count/advert/d2b53358-417f-4c5a-8fac-a04600d403fd

[Vgdv=[gnds,
% S
and, for the vector function u, that

_[V/\udv=_[n/\uds.
% S

(In the first, take the vector in Gauss’ theorem to be @K , and in the second take the vector to be K A ; K is an arbitrary

constant vector in each case.]

9. Another integral identity. A surface S is bounded by the closed curve C. Use Stokes’ theorem to show that

jgpdl:j(nw(p)ds,
C S

where ¢ is an arbitrary function. [Use the same idea as in Ex.8.]

10. Differentiation under the integral sign. Given

b(x)
I(x)= J‘f(x,y)dy,
a(x)
show that oo
dr_ 0 db da
a_a{x)af(x,y)dyJrf(x,b)a f(x’“)a'

provided the integral of Of / 0x , and the functions da/dx and db/dx, exist.
(It is helpful to introduce the primitive of f(x,y) at fixed x: that is g(x, ) = If(x, y)dy.]

(a) Verify that this formula recovers a familiar and elementary result in the case :

f=f(»), b(x) = x, a(x) = constant.
3x

d .
(b) Use this result to find a J- sm[(x + y)2 :|dy
2x
R(z)
(c) Use this result to simplify d_ J. rw(r,z)dr |, and then simplify further given thath = r2 exp(— ZZ ) .
0

11. Show that, if
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jl f(x)dx=0,

for arbitrary (i.e. all) values of a and b, then f(x)=0.

[Hint: you may write f(x) = g'(x), although other, more general methods of proof are possible.]

12. Streamlines and particle paths. In the following problems, the velocity components of a flow (represented in rectangular
Cartesian coordinates X = (X, y,z), u = (u,v,w) and ¢ time) are given; find the streamlines in each case, and the
particle path which passes through X = (x,, y,,2,) at f = 0. (Here, k,c and @ are constants.)

@u=hkx,yv=—ky,w=0;0) u=2xt,v=-2yt,w=0;
@Qu=x—t,v=—y,w=0@u=xt,y=—py,w=0;
@u=2x/t,v=—y/t,w=0;0) u=xy>/t,v=t/y,w=0;
@u=ky,v=—kx+kct,w=0;0) u=kx’,v=hky>,w=-2k(x + y)z;
(i) u=0,v=—z+cos(wt) w=y+sin(ot) for ® #=x1;
(j) see (i) with @ = 0.

13. Steady flows I.
(a) Determine which of the flows discussed in Ex.12 are steady.

Now use suitable software (e.g. MAPLE) to plot

(b) for problem Ex.12(a): the three streamlines which pass through (1,1), (1,2) and (1,3), respectively, for
0-5<x <35, all on the same graph;

(c) see (b); the three particle paths, for k£ =1, which pass through (1,1), (2,1) and (3,1), respectively, at £ =0,
for 0 <¢ <1 (all on the same graph);

(d) for problem Ex.12(c): the three streamlines, at # = 1, which pass through (2,1), 2,2) and (2,3), respectively,
for 1:5< x <10, all on the same graph;

(e) see (d); the three particle paths which pass through (2,1), (3,1) and (4,1), respectively,at =0 ,for 0 <¢ <1,

all on the same graph.

14. Steady flows II. A particle (point) in a fluid flow moves according to the rule X = (Xoem , yoeﬁt ,Z()eyt ) , where

XosVosZos &y P,y are constants, x is the position vector and ¢ is time. Find an expression for the velocity vector u.
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Is this a steady flow? Find the streamlines for this flow.

15. SLs and PPs I. The velocity components of a flow are (2tax_2, 31305})—1) , where @ >—1/3 is a constant. Find the
streamlines for this flow and the particle path which passes through (1, 1) at # = 0. State (without performing a

calculation) the value of & for which the families of streamlines and particle paths coincide.
16. SLs and PPs II. See Ex. 15; repeat this for (xzem , y—le2at) )

17. SLs and PPs III. See Ex. 15; repeat this for (Olt - X, yzta) with o # —1, where the particle path passes through (0,
Datt=0.

18. Acceleration of a fluid particle. The velocity vector which describes the motion of a particle (point) in a fluid is
u =u(X,?), so that the particle follows a path defined by

% =U(¢) =u(x(?),1).

Introduce rectangular Cartesian coordinates and hence show that the acceleration of the particle

du ). du_ (u-Vyu= Du _ the material derivative.
dr ot Dt

19. Material derivative 1. (a) A fluid moves so that its velocity vector, written in rectangular Cartesian coordinates, is
u = (2xt,—yt,—zt) ,» where t is time. Show that the following property (function) is constant on — moving with -

fluid particles :
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f(x,y,z,6) = x> exp(=2t>) +(y* + 227 )exp(t).
What is the constant value of f on a particle? (This will involve arbitrary constants that arise in the integration process.)
(b) Repeat (a) for u = (—x/1,—y/(21)3z/(21)), f=xt*+yt—2"/1.

20. Material ~ derivative II.  Find a  velocity field, w=(u,v,w), for which the property
f= x? /(a2t4) + kt? (y2 /b* + 7* /C2) , where a, b, c and k are constants, is constant on fluid particles.

21. Eulerian vs. Lagrangian description. The Eulerian description of the motion of a fluid is represented by u(X,#), that
is, the velocity at any point and at any time. The Lagrangian description follows a given particle (point) in the fluid;
the Lagrangian velocity is W(X,,?), where X = X, labels the particle at # =0.

A particle moves according to the rule

X= (xa ya Z) = (xo exp(Zt2 )7 yo exp(_t2 )7 Z() exp(_t2 )) )

written in rectangular Cartesian coordinates, where the particle is at X = X, = (X, ,,Z,) at time £ =0.

(a) Find the velocity of the particle in terms of X, and ¢ - the Lagrangian description - and then show that
the velocity field can be written as u = (4x¢,—2 yt,—2zt) , which is the Eulerian description.

(b) Now obtain the acceleration of the particle from the Lagrangian description.
Du oOu
(c) Show that the Lagrangian acceleration (that is, following a particle) is recovered from — = —+(u-V)u
t
22. Velocity and acceleration. A vparticle starts from X=(a,b) at ¢t=0, and moves according to
x=(x,y)= (a(l + t)2 , b / (1+ 1)2) . Find the velocity and acceleration directly, and then find an expression for
the velocity field (by eliminating a and b) and hence show that the acceleration is recovered from Du/ Drt.
23. Incompressible flow 1.(a) Determine which velocity fields given in Ex.12 represent incompressible flows.

(b) Repeat (a) for Ex.19, Ex.20 and Ex.21.

(c) What relation must exist between &, IB,}/ so that the velocity field given in Ex.14 represents an

incompressible flow ?

24. Incompressible flow II. (a) A velocity field is
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u= f(r)X where r:|x|=w/x2 +y> 477

and f is a scalar function. Find the most general form of f(r) so that U represents an incompressible flow.

(b) With the same notation as in (a), find the conditions necessary on the constants a, b and ¢ which ensure

that w=(ax* —r*,bxy,cxz)/r’ represents an incompressible flow.
(c) Repeat (b) for the velocity field w = (x + ar, y + br,z+cr)/{r(x+r)}.

25. Incompressible flow III. A flow is represented by the velocity field

22
_2xyz (x Y )Z Y whered:x2+y2.
d? > d

u

Show that this describes an incompressible flow .

26. Incompressibility IV. A velocity field is given by u = (f, yzzt,zzyt) where t is time; find f'(X,,z,¢) for which
this flow is incompressible and which satisfies /' =0 on x =0 forall y, z, .

27. Mass conservation. Show that
u=(axt,—yt,—zt) and p= X2 exp(—atz) + (y2 + 222) exp(tz)
satisty the equation of mass conservation for one value of the constant ¢ ; what is this value?

28. Beltrami flow. A Beltrami flow is one for which the vorticity and velocity vectors are everywhere parallel. Write

o= ku (where k is a non-zero constant) and seek a velocity field that is consistent with this equation and of the form
u = (u(x, ,2),v(x,,2), w(x)),
but it is not necessary to find a general solution - just find any (non-zero) solution.

29. Pipe flow. A pipe with a rectangular cross-section, —a(x) < y < a(x), —b(x) <z <b(x), with its centre-line
along the x-axis, has a non-swirling, incompressible flow through it. Show that

b a
‘[ Judxdy = constant ,
~b-a

and hence recover the standard result (see §1.4, Example 8) for a flow which is uniform across every section.
30. Branching pipe. A pipe, of cross-sectional area A, branches into two, one of area nA and the other of area mA. The

speed of an incompressible fluid at area A is u and at area nA it is v; find the speed in the branch of area mA. (Assume
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that the flow is uniform at all sections away from the junction, and that the fluid completely fills both the feed pipe

and the two branch pipes, without leaks or other branches i.e. mass is conserved.)

31. Hydrostatic equilibrium I. A fluid in (vertical) hydrostatic equilibrium satisfies

(a) Given that p = kp”, where k and y are positive constants, and that p = p,, p = p, on z=0, find
p(z) and p(z) for 1 <y <2.Given, further, that p = pRT (R constant), find 7'(z) - the temperature —

= —pg (g constant) ; see Lecture Notes.

and deduce that dT° / dz = constant .

(b) Repeat (a) for ¥ =1.

(c) An ocean, in z <0, is modelled by the density variation p = p, (1 —az), where @ (presumably small

I)and p, are positive constants. Find p(z), given that p = p, on z=0.

(d) Repeat (c) for p = p,(1+av—-2z).
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(e) The atmosphere is modelled as a perfect gas, so p = PRT (R constant), with the temperature gradient

prescribed according to

dT _[-og/R, 0<z<H
dz 0, z>H,

where & is a positive constant. Given that 7' =T}, (with agH/RT, <1)and p=p, on z= 0, find 7(z) and

p(z) where both these functions are continuous on z = H . What is the behaviour of your solution for z — o0 ?

[Comment: Typically, the temperature in the Earth’s atmosphere drops linearly by about 70 °C in the first 11 km (the
troposphere), and then remains roughly constant (in the stratosphere) up to about 35 km.]

(f) See (a); find p(z) (only) given that g is replaced by 2o /A+ 0{Z)2 (g, and & positive constants). What is the

significance of this choice for g ?

32. Hydrostatic equilibrium II. A fluid is at rest, in hydrostatic equilibrium; the fluid is described p = kp, where k is a
constant, with p = py and p= pg on z = 0. Determine k and then find p(z), given that the body force is that
associated with constant gravity (F = (0,0,—g) ).

33. Archimedes’ Principle. A surface S encloses fluid of volume V which contains a solid body of volume V}, (surface Sp, ).

The fluid exerts a resultant pressure force, R, on V}, given by J pnds . Show that, in hydrostatic equilibrium,

S
R = [ pnds= [ pFdv— [ pnds
Sp Vv S

and hence deduce that R = — '[ dev (which is Archimedes’ Principle, if F = g).
Vi
34. Euler’s equation. An incompressible ( 0 = constant) flow in two dimensions [ X = (X, z) ], with F =(0,—g) , satisfies
Euler’s equation. For this flow, the velocity is U = (#,, w(x) , where u, is a constant, with w = 0 on x = 0 and

P = D, onz=0.Find the solution for w and p, and show that it contains one free parameter.

35. Galilean invariance. Consider an incompressible flow which comprises, in part, a uniform flow u = U = constant.

Write W =u( + U and hence find the appropriate forms taken by the mass conservation and Euler equations, written

in terms of U( and U . Now introduce a frame of reference that is moving at the constant velocity Uy, by setting
U=U(X,?), p=p(X,t) where X =X—ugt (= (x —upt,y—vot,z —wyt)) .
Show that the equations written in terms of U, p and X are identical to the original equations of motion.

[This important property is known as ‘Galilean invariance’; it means, for example, that the constant velocity of an object

moving through a stationary fluid is identical to the constant velocity of the fluid past a stationary object.]

222 2 2 2 X X%

656 5 5 2 55 5 5 5 6 % %
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2 Equations: Properties and Solutions

We now investigate the governing equations (Euler and mass conservation) in a little more detail. We shall describe some
general (and important) properties of flows that will be useful in our later work, and that are relevant in certain types of
studies of fluid motions. We also show how two integrals of the equation of motion can be derived - valid under slightly

different modelling assumptions — which are quite significant in the application of these ideas to practical problems.

2.1 The vorticity vector and irrotational flow

A concept that permeates much of fluid theory is the notion of vorticity. It is an important property of a fluid flow, both in
terms of what is observed in real flows and the rdle it plays in allowing theoretical headway. As we shall see, this provides

a measure of the local spin or rotation exhibited by fluid elements. It is defined by

o=VAu (i.e. @=curluor ®=Vxu)

and one simple observation follows directly. If the flow is restricted to motion and variation in only 2D - (x, y) say - then

we see that

d d d

o=|—,—,— [Alulx,y,1),v(x, y,1),0)=(0,0,v, —u, |:
(ax dy 0z ( ) ( T )

the vorticity possesses a component in only the third (z-) direction! (Note that this is valid for unsteady flows - time

dependence is permitted, although much of our work will be for steady flows.)

Vorticity has a simple interpretation, which we will show by examining a flow which is purely 2D; the idea is readily extended
to 3D (but is then more difficult to represent diagrammatically). Consider the flow in the ( Ax, Ay ) neighbourhood of a

general point (x, y), described by some general velocity field:

v+ v},Ay

1L>u +uy,Ay

+
Ay
ve u Ax Tv+vax
P —>
u+u Ax

®
$
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Here, we have approximated the velocity components near to (x,y) by invoking the simplest approximation provided by
Taylor expansions; we assume, of course, that the velocity field allows this approach. The average angular speed, relative
to the origin (labelled (x, y) here, for any point in the 2D plane) is approximately

1 vAx upAyy)

A Ty T
on noting the sign convention that we have adopted for rotations about the origin. This is one half of the z-component of
the vorticity vector ¢y =V A u (as given above). We see, therefore, that vorticity measures the local rotation (or spin)
of fluid elements. We comment that this should not be confused with solid-body rotation (and simple interpretations are
often misleading!) exhibited by a solid object in rotation. The next example may help to clarify what is, and what is not,

a flow with vorticity.

Destination MMU
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Example 12
Vorticity. (a) Sketch the flow field u = (,0,0) , where & > 0isa constant, and find its vorticity. (b) Describe

the flow field

u=(=r/G7+37).x/ (2 +7).0).

Y4 u=(@,0,0)

‘\* .
-
-

-
I
P

-

(a) Wehave # = @y, v =w = 0, and so the velocity field appears as shown in the figure (drawn for & > 0 and

only in the positive y-direction - for ease of interpretation). There is no apparent (local) spin, yet the vorticity
isw=(0,0,v, —u y) =(0,0,—a), which represents constant (negative) vorticity around the z-axis. That this
is reasonable becomes evident when we consider points for larger y as compared with those for smaller: such

points move in the positive x-direction further than those lower down, resulting in a relative rotation; see figure.

(b) In this case,

gondola does not rotate

2 2
1 2x 1 N 2y 0

X +y2 (x2+y2)2 x2+y2 (x2+y2)2
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so the vorticity is zero (but note that it is not defined at the origin). Further, it is easy to check - for example, construct
XX+ yy - that the flow is circular i.e. the PPs are circles. How can this be? A good analogy is the motion of a gondola

on a Ferris wheel: the wheel rotates, but each individual gondola does not.

Comment: Almost all real flows possess non-zero vorticity, but many have almost zero vorticity almost everywhere. Indeed,

a good model, for many flows, is obtained by assuming that ¢y = () (or ) = () except at isolated points or regions).

Regions of a flow field where ¢y = () are called irrotational (for obvious reasons). When this condition holds, we have
0= =V Au,, which implies that there exists an arbitrary scalar function, ¢(X,?) such that u =V ¢ ; this is called
the velocity potential. (The existence of ¢ follows from Stokes’ Theorem; see Exercise 39.) Once we know @(X,?), we

can obtain u directly.
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Example 13

u=(2xyz,x°z,x’y)

Velocity potential. Show that represents an irrotational flow, and find its velocity

potential.

To be irrotational, we require @=V Au=0, which here gives

0= (x2 —x? ,2xy —2xy,2xz —2xz) =0, so irrotational.

22, w=¢, = x? ¥, which give, respectively,

Now we have u = ¢ =2xyz,v=¢, =x
$=x2yz+F(y,2), p=x"yz+G(x,2), p= x*yz + H(x, y);

together, these imply that ¢ = xzyz + constant, which is the velocity potential.

2.2 Helmholtz's equation (the ‘vorticity’ equation)

We now develop an equation that describes how the vorticity evolves in a flow; this equation is then a counterpart to
Euler’s equation for the velocity field. Some aspects of fluid flow are better described by a vorticity equation, although in

this discussion of theoretical fluid mechanics we will continue to emphasise the role of u rather than w.

Du 1
Starting with Euler’s equation: — = ——Vp +F , we assume that the body force, F, is conservative: F = -V Q, for

¢
some scalar function (2(X) ; the minus ggn here is simply a convenience, and we could include dependence on time.
(This ‘conservative’ assumption implies that the work done, in moving from point to point in this force field, depends
only on the end-points — not on the path between the points.) In addition, we assume that either p = constant (as

required for our incompressible fluid) or p = p(,0) (which is used to model gases).

In this latter case, we write

1 149 op d ¢d
Lop=(Le (i
P p Ox oxdp’ p

:(aa_xjdf,...,...j:v“df];

1
similarly, in the former case, we simply have —Vp =V (EJ =V (J.d—pj .
P P P

We require one further result: u A (V Au) = V(%u -u)—(u-V)u (see Exercise 7(c)), and we note that V Au =@ .
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These three results, used in Euler’s equation, give

u,+(u-Vyju=u, +V(%u-u)—u/\(o =—V(Id—pj—VQ
yo,

d
ie. u,—uA@= —V(lu-u+.|.—p+gj .
2 p
Finally, we take the curl (i.e. operate V A ) of this equation:

VA@,))-VAa(urm)=0,

because V AV =0, and then (see Exercise 7(d)) we use

VAaro)=uV-0)+(@-Vu-oV-u)—-(u-V)o,

where V. =V .(V Au) = ( and we assume incompressibility: V -u =0. Thus we obtain

o; —(0-Vu+u-V)o=0 or I;?Q;=((:)-V)u,

which is Helmholtz’s equation. [H. von Helmholtz (1821-1894), German philosopher, mathematician, physicist and

physiologist; also made important contributions to the classification of geometries and the axioms of arithmetic.]

This equation shows that the velocity and vorticity fields are, in general, coupled — which is no surprise. But there is an
important special case, with far-reaching consequences: suppose that the flow depends on only two spatial variables, x
and y, say. Then w and V are mutually orthogonal, which gives @-V =0; thus

Do

fhadpiy |

Dt

This equation shows that w does not change on fluid particles (points) as the flow evolves; in particular, the direction of
w remains the same: this vector always points in the z-direction. This phenomenon is usually described as the vorticity

being trapped perpendicular to the plane of the flow.

Comment: This derivation can be generalised, by relaxing some of the simplifications that we have made. Thus, for any

fluid (i.e. compressible, satisfying the general equation of mass conservation), it can be shown that

R(EJ:(Q-VJu—lV(p_I)AVp,
pilp) \p p

D o 0]
and then if p = p(p) this reduces to E[—J = (— : VJU » which is our equation above, with w replaced by @/p .All
P P

this is left as an exercise for the interested reader.
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2.3 Bernoulli’s equation (or theorem)

This equation is a first (spatial) integral of the equation of motion (Euler’s equation), producing the familiar energy integral
for a conservative system. To proceed, we use an approach based on the development described for Helmholtz’s equation

(§2.2). Thus we assume

(a) F =-VQ (conservative);

(b) p =constant or p = p(p), so that in = V(Jd—pj ;
P P

(c) steady flow — a new condition.

Note that the flow may be rotational — we say nothing about w — which makes this analysis quite general and powerful.

From §2.2, we immediately have

d
U, -—uA®= —V(%u-u+.|.—p+QJ ,
Yo,
but with the extra requirement that U, = 0 (steady); with this included, we take the dot of the resulting equation with u:
1 dp
—u-(urm®)=—u-V —u'u+I—+Q .
2 p

Here, we have _y . (u A @) = () (because two of the three terms in this triple are the same); also u - V is a directional

derivative, the direction being associated with the velocity field i.e. tangent to the streamlines. Thus we have

d, d,

u -V(%u ‘u+ J.—p-i-Q =0 so that %u ‘u+ J.—p+ () = constant on streamlines;
P P

this is Bernoulli’s equation (sometimes called Bernoulli’s theorem). [D. Bernoulli (1700-1782), one of a family of 10 Swiss

mathematicians (over four generations); Daniel obtained his doctorate in medicine and was, at various times, a professor

of botany, anatomy, philosophy and mathematics.]

A special case of this result, which we note is essentially algebraic in all cases, arises for incompressible flow (p = constant)
in the presence of a gravity field ({2 = gz, g = constant):
1 P _ .
Ju-u + -+ gz = constant on streamlines,
o)
and different constants are associated with different streamlines. The terms in this energy integral are, respectively, the
kinetic energy, the work done by the pressure forces and the potential energy (all per unit mass). We now use this simple

version of Bernoulli’s equation in two straightforward, but illuminating examples.
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Example 14a

Bernoulli’s equation for the pitot-static tube.

~
S~

= ring of holes

e
e

=

entry to centre section

Po

EERRRR!

1

stagnation point

4

The pitot-static tube is used on aircraft as the device for measuring the airspeed (although some aircraft use only
the pitot part of the tube - the central tube — and the static pressure is measured elsewhere on the fuselage). A
schematic of the combined pitot and static tube is shown in the figure. We assume that the flow is horizontal
(so the body-force term will play no réle: the flow is on a line of constant z) and steady, with constant density.
The oncoming flow js of speed U and pressure py, and on a streamline that approaches the inner tube from
infinity, we obtain —U 24 Po +gz= T + gz, because the flow is stationary at the mouth of this part of
the tube, at a pressure pj. ﬁe flow oth'grwise passes the exterior of the tube, with no flow possible in or
out through the ring of holes, recording a pressure p, = p. Thus the resulting pressure difference gives
pL—pr=—pU 2 ; this pressure difference can be delivered to a speed scale, suitably calibrated (knowing

p) to give a measure of the airspeed.
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Example 14b

Bernoulli’s equation. A straight pipe through which water (P = constant) flows, slopes downwards, dropping
through a vertical height of /. At the upper end the cross-sectional area is A, the flow speed is %0 and the
pressure is p 0; at the lower end the area is A/2. Find the speed and pressure at the lower end. (Assume that
the flow is uniform at every section along the pipe.) What is the necessary condition for this flow to be

physically realistic ?

The flow is represented in the figure; to proceed, we first use mass conservation in the form: speedxarea = constant i.e.

Aug = % Av so v = 2u( . Now we apply Bernoulli’s equation along a streamline associated with the flow through the pipe:

%u% +20 4 or :%v2 + L4 gz

Thus %ug +&+g(ZO—ZI)—%4u§ =£,which gives p = py +pgh—%pu§.
P P

Any physically realistic flow must have p > 0, for pressure can never be negative (although it is quite usual to take this

condition, in simple theoretical calculations, to be p > 0, because the pressure can drop to almost zero); thus we require
3 2
Po+pgh>5puy.

N.B. If this condition is not satisfied, so that pressure apparently becomes zero or negative, then the model has broken
down. In this situation, the fluid will exhibit bubbles of gas coming out of solution: the fluid to be analysed has become

a mixture (of a liquid and a gas) for which a very different approach is required.
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Comment: In the two previous examples, we have considered the simplest case: p = constant, and then I b _ P
However, for many gas flows, the temperature hardly changes locally (because the heat diffuses relatively slgwly)pm
this situation, called an adiabatic process, it can be shown that p oc p , where y is a constant (1 < ¥ <2, and for air

y =1-4). [Adiabatic’ = ‘not” + ‘pass, referring to heat.]

On the other hand, if heat is rapidly diffused, so that the temperature equilibrates everywhere quickly, then T = constant
throughout; if we then also have a perfect gas, for which p = pRT (R constant), we obtain p o p.

So with p=k py (where k is a constant, normally fixed from knowing the pressure and density at the same point in

the flow), we have

I%p = fj—i%dp = [kyp”*dp

y—1
=k7/’0—1<7/¢1)

P

y=1p
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Example 15

Flow of a gas. The flow of a gas (described by p = kp7 ) is described by Bernoulli’s equation, in the absence
of body forces; show that ;2 — (2/(y - 1))(08 - az) ,» where a =, /dp/dp is the local speed of sound, u

is the speed of the flow and the zero subscript denotes evaluation

where u = 0.
d
Here, we have %u -u+ J‘—p + 0 = constant and then %u -u+ rr = constant, with
-1
P /4 P
d _
%u-uzu2 and —p=k7p7 ! =y£=a2;
dp p
thus we obtain
a2 a2 2 2 2
% 2 +——=const.= -0 (the value where #u =0) ie. U~ = —(a() —-a’), as required.
y—1 y—1 y—1

Comment: The speed of sound at normal temperature and pressure i.e. at ground level, is about 760 mph; at 35,000 ft
(the normal cruising height of most civil aircraft), this speed is about 660 mph. We also note that this final expression,

when divided by a? , generates the term / a =M , the Mach number of the flow.

2.4 The pressure equation

There is an unsteady counterpart to Bernoulli’s equation, valid under slightly different assumptions about the flow field.

We start, as in §2.3, with the result used in the derivation of Helmholtz’s equation:
d
u, —UAm:—V(lu-u+I—p+Q
2 P

(so p=constant or p = p(p) and F =—-VQ ie. conservative), but now we assume that the flow is irrotational:
u =0 = u=V¢. Then, for suitable differentiable functions, we have u, =(V¢@), = V(¢ ), and so we obtain

\% %+lu-u+jd—p+§2 =0
ot 2 P
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which integrates directly to give

99 1 dp -
E-FEU'U-FI?-FQ—]F(ZL),

where f(¢) is an arbitrary function (of time); this is the pressure equation.

Note: We can always remove the explicit appearance of f here by redefining @ as @ + J f(t)dt (since @ is defined only
via spatial derivatives). The only slight downside of this reformulation is that the use of, and result of using, boundary

conditions are less obvious.

This equation is so-called because, given the velocity field, which is equivalent to knowing @(X,?), we can find the
pressure essentially by an algebraic process. (Some texts may refer to this as the ‘unsteady’ Bernoulli equation — which is
certainly how it appears — but this is a serious misnomer: the pressure equation does not describe energy conservation.
The equation has an energy-source term, f(f), which allows the terms associated with the energy to change in time -

but that could be one interpretation of ‘unsteady’)

Special case: If the flow is now taken to be steady, then we obtain

%u ‘u+ P + gz = constant , the same constant everywhere;

P
for Bernoulli’s equation, this gives different constants on different streamlines (§2.3). The difference between these two
integrals then arises by virtue of the vorticity: Bernoulli holds for rotational flows - different constants on different
streamlines — but the steady version of the pressure equation is valid for irrotational flow: the same constant everywhere.

This is an important observation, showing the consequences of rotational versus irrotational flows.
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Example 16

Flow out of a container. A vertical container, of cross-sectional area A over most of its height, reduces to an
area AA at the base; across the base is placed a removable plate. The container is filled to a depth of /1y with
water ( 0 = constant ) and the plate is then removed, allowing the water to flow out. Assume that the flow is
irrotational but unsteady, and hence find the differential equation for the depth of water, A(¢), at any time

t. (You may assume that the flow is uniform across every section.)

A w(t)

mprT) TR YU S—

T w(t)

70
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Because the flow is uniform across every section, we first apply the rule: speedxarea = constant, to give AW(t) = A AW (t)

; see the figure. (In passing, we note that V -u = 0 is satisfied.) The pressure equation gives

o9 1
5+2u u+p+gz f(@),

where W(f) = ¢, i.e. ¢ = zw(t) (because any additive function is absorbed into f). Now, at any level in the tank, we have

ZW-I-;WZ-I- +gz=f(1),
P

and evaluating at the surface: z=h, w=w= h(< 0), p = pg = atmospheric pressure,
i 172 Po _
we obtain hh +§h +—+gh=f(1).
Yo,
Correspondingly, evaluating at the exit, with the plate removed, so that the water is also here open to the atmosphere:
z=0,w=W=1""%, P = Py, to give

r 2
h
0+—2+&+ 0= f(¢) which, together with the previous equation, produce the differential equation for /(?):
22

hi+L(1-272)h* + gh =0.

The initial conditions are 41(0) = Ay, h(O) = 0; this equation is discussed further in Exercise 52.
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2.5 Vorticity and circulation

We now explore the nature and properties of vorticity a little further. First, let us introduce vortex lines (just as we
considered streamlines): lines which, everywhere, have the vorticity vector as tangent. Often, we are more interested in

bundles of vortex lines, rather than individual lines; such a bundle is called a vortex tube:

This is the situation that best describes (and represents) the flow down a plug hole and the flow within a tornado, both

of which are highly rotational, comprising a bundle of vortex lines.

An important associated property (which plays a significant réle in aerofoil theory) is the circulation. The circulation is
defined by

K@) = (JSu -dl
Cc
on any simple, closed curve, C, which encloses an oriented surface S (with unit normal pointing in the right-hand-screw

sense as C is mapped out); see the figure below:
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It is the convention to measure the circulation positive in the counter-clockwise, right-hand screw sense. If the geometry

is simple, it is possible to calculate the circulation easily and directly, as we now demonstrate.

Example 17

Circulation. A velocity field, expressed in cylindrical coordinates (7,8,2),is u= (0, a/ r,0), where & is
a constant. Find the circulation around a circle with axis along the z-coordinate. [This flow is called a line

vortex - more later.]

For this flow, on a circle of radius R, we have
(04
u= Eeg and Al = RAHGH

where €y is a unit vector in the direction of increasing 8; both the velocity vector and the (vectorial) element of length

around the circle are in the same direction. Thus

o
u-Al=—RAZ0,
R
2r
and so we obtain K = I o d6@ =27 : the circulation is independent of the radius R.
0

Note: The vorticity for this velocity field is w =0, 7 > 0, but it is undefined on 7 =0.
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We now turn to another aspect of circulation, by finding an alternative — and very illuminating — expression for it: an

application of Stokes’ Theorem produces

$u-di=[Vrunds=[o-nds,
C S S

which is a measure of all the vorticity passing through the surface S, bounded by the curve C. (Consider the nature of

a tornado, from the broad, slow-moving cloud base, down to the high-speed rotation near the ground. This is a vortex

tube, and the surface S could be taken either across the broad cloud base or across the narrow tube near the ground. )

We now obtain two important, general results that relate to circulation.

efficiency reliability delivery
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(a) Circulation along a vortex tube

Consider a vortex tube, and two stations (positions) along it, defined by taking slices across the tube:

Here, there is a volume V bounded by the surface constructed from § = Sj + 8, + 83 (the two ends of the region, and

the section of vortex tube between them). Consider I o -nds ; We apply the Divergence (Gauss’) theorem to give

S

J.co-nds:_[V-codvzo,
S \%4

because V. =V -(V Au) =0 for all u. We now express the surface integral as the sum of integrals over the three

surfaces that comprise S:

jm-nlds+ I (D'(—Ilz)dS'i' J (D'l'l3dS=0,
S S2 S3

where we have used the correct directions for the unit normals outward on each part of S. But w and N3 are mutually

orthogonal on §3, so this integral is zero, leaving

Im-nlds: I ®-nyds or K| =K,,
Si S
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when we introduce the circulation at the two stations. Thus the circulation along a vortex tube remains constant. In
particular, if the cross-sectional area of the tube decreases, then |0)| must increase in order to maintain the constancy;
this has important consequences for a tornado: as the area decreases (as observed near the ground) the speed of rotation

increases dramatically.

(b) Kelvin’s circulation theorem (1869)

This involves the computation of the circulation, K, around a simple, closed contour that always contains the
same fluid particles i.e. the contogk moves with the fluid, as the fluid moves and distorts. This calculation (see
Appendix 4) leads to the result — = 0 : the circulation does not change on the same fluid particles. Thus,
for example, if the flow is initially 1rtrotational, so that K = 0 for every choice of contour, it will remain so for all
time. (We must note that this is true only for an inviscid (model) fluid; viscosity changes this picture altogether,

because one of the actions of viscosity is to generate vorticity.)

2.6 The stream function

This is the final, general, property that we discuss here. Let us restrict the motion so that variations occur only in two
spatial dimensions ((x, y) say), which will often be the situation in the geometries that we discuss. The flow may still be

unsteady. For an incompressible flow, we have

using rectangular Cartesian components (but other systems are possible); let us introduce ¥/ (X, y,) such that u = l/7y .

The equation of mass conservation then becomes
l/7xy +v), =0 andso v= W, +h(x,t),

where h is an arbitrary function; we write this last as

V= —G—(lﬁ—jh(x,t)dx).

X
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It is convenient, now, to define Y (x, y,t) = — J‘ h(x,t)dx, to give

u=y, and v=-v/,.

Thus, for arbitrary (twice differentiable) functions {(x, ), ) , we have satisfied (‘solved’) the equation of mass conservation

for a 2D, incompressible fluid (which may be both unsteady and rotational); but what is y?

Consider lines ¥/ (x, y,t) = k(t) at fixed t; we assume that this relation defines y = y(X,?), and then we form (all at
fixed 1)

d N dy_ dy_ l//y_v
al//(x,y(x,t),t)—O ie. l,//x+y/ya_0 or a_—w—x_;_

But this last statement is the definition, in 2D, of the streamlines (defined at an instant in time); see (§1.2.1). Thus lines

w(x,y,t) =k(t), at fixed ¢, are the streamlines; consequently, we call y the stream function.

Note: In plane polar coordinates, we have the equation of mass conservation (V -u = 0) in the form

0 ov 1oy oy

—(ru)+—=0 and so we define y =———, v=———.

or 00 r 06 or

Correspondingly, in cylindrical coordinates with axi-symmetry, we have

10 ow 1oy 1oy

——(ru) +—=0 and so here we define 4 =———, w=————.
ror 0z r Oz r or

We now explore two simple examples that involve the stream function.

Example 18

Stream function I. Given that u = (ax,—ay) , where @ is a constant, find the stream function, ¥ .

We first check that V-u =u  + vy = 0, which follows directly, so y exists; thus u = Wy=ax,v=—y,=-ay and

so W = aXxy is the stream function (and remember that any additive constant is irrelevant).
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Fluid Mechanics and the Theory of Flight Equations: Properties and Solutions

Example 19
Stream function II. A simple model for a vortex is described by u = (0,—K / 7), expressed in plane polars,

where K is a constant; find ¥/ (7,6).

Here, we require V -u = (ur), +vgy =0, which is clearly true, so y exists; thus

1 K . '
u=—yy=0,v=—y, =—— andso ¥ =—K Inr is the stream function.
r r

Comment: Let us now suppose that this 2D flow is also irrotational, then we obtain
u = (anavx _uy) = (Osoa_Wxx _l//yy) =0;
thus v satisfies Laplace’s equation. On the other hand, suppose, first, that the 2D flow is irrotational, then

o=Vau=0=u=Vgie u=Vod=(9,,9,,0); see §2.1. Then, if the flow is also incompressible (V -u = 0),

we obtain

¢xx + ¢J’y =0 (V2¢ =0) - Laplace’s equation again.
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In summary, therefore, we have, for two dimensional, incompressible, irrotational flow

u=¢ =y, and v=9,=-y,,
which are the Cauchy-Riemann relations relating @ and y. Thus there is a (differentiable) function W(Z,#) such that
w(Z,t)=¢(x,y,t)+iy(x,y,t) (whereZ =x+1y),

and then the techniques of complex analysis become available. We shall return to this later, and make considerable use

of this important idea.

2.7 Kinetic energy and a uniqueness theorem

In this final section of the chapter, we introduce the total kinetic energy of the fluid. Although this is of some importance
in more general studies of fluids, we use it here only as a device for developing the notion of uniqueness. We define the

kinetic energy as
1
T= Y I pu-udy,
v

and, if the reader has met the classical kinetic energy of a particle, it is evident that this takes the familiar form: %le2 .
In the fluid, this is defined for the (finite amount of) fluid in the volume V, bounded by the surface S, at any instant in
time. To proceed (particularly with our view to describing uniqueness), let us assume that the flow is irrotational; thus

u =V ¢, and then we choose to write
1
TZEIMhVWMV
V
Further, we suppose that the flow is also incompressible, in which case we have
V-[(pp)u] = (p9)V -u+u-V(pg) = pu-Vg

because V-u =0 and p =constant. (Both irrotationality and incompressibility can be ignored in more general
discussions of the energy in a flow.) We use this result in our version of the kinetic energy, and then use the Divergence

(Gauss’) theorem:
1 1 1
T==[p-Vg)dv=—[V-(ppu)dv=— ppu-nds.
25, 25, 24

In this expression for T, we see that the energy is now determined by the values of ¢ and u on the boundary S, replacing
the evaluation throughout V. The crucial observation for us is that an evaluation throughout a region has been replaced
by an evaluation on the boundary of the region. This idea provides us with a (mathematical) basis for a fundamentally

important result: uniqueness.
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The issue, now, is the following. Suppose that we have some fluid flow - here, simplified to be both irrotational and
incompressible - and some suitable boundary conditions: what form should the boundary conditions take (if any exist at
all) that will guarantee that the solution is unique? That is, so that there is just one solution of the complete problem. We
must hope that our studies are particular examples of unique flows (although there are many problems in fluids which

oscillate between two or more different solutions: some solutions based on suitable models can lead to non-uniqueness).

Consider a general incompressible, irrotational flow, with some given conditions - yet to be determined - on the boundary
of the flow field. Let the totality of the field be the volume V, with a boundary S. Suppose that there are two possible flows
satisfying the equations and boundary conditions; let these flows be designated u; =V ¢ and uy = V@, . We aim to
show that the only possibility is U] =WU, everywhere, which is uniqueness of the velocity field. Define U =u; —u,
and @ =@ — @, and form (by following the idea above)

[|uav=[Uv-Udv=[U-vodv=[oU-nds.
14 14 v S

Any particular problem will be defined by the governing equations (e.g. Euler’s equation and mass conservation) together

with boundary conditions (and note that initial data does not appear here). With prescribed conditions on the boundary,

all possible solutions must satisfy this given data so, on S, we have U-n =0 (if u-n is given on S) and ® =0 (if ¢

is given on S). (The more usual is W-N i.e. we know the normal velocity of the fluid on the boundary, and typically this

is zero: the boundary is solid and stationary.) We deduce, therefore, that if, on S, either W - is given, or ¢ is given — we

could have one or the other on different parts of S — then we obtain

0=[®U nds=[[U dv=>U=0=u =u,.
S v
Thus the velocity field is unique - there is one, and only one, flow field - and then, from Euler’s equation, we can find
the corresponding unique pressure field (up to an arbitrary constant, and this can be identified with, for example, the

constant, background atmospheric pressure).
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Exercises 2

36. Incompressibility & vorticity. For these flows, determine if they are incompressible and find the vorticity vector:
(@ u=(3z+4x,~5y,~2x+2);(b) u=(u,(a’ —y*> —z%)0,0) (U, ,a constants).

37. Vorticity I. An incompressible velocity field, written in cylindrical coordinates ( 7,8,z ), is
(0,wr,0), 0<r<a

u=
0,wa’/r0), r>a

(@ constant).

(a) Find the vorticity vector for this flow.

(b) In the absence of body forces (and noting that the flow is steady), use Euler’s equation to find the (continuous)
pressure which satisfies P —> P as 7 —> 00. What is the condition which ensures a realistic pressure

everywhere ? [This is called the Rankine vortex.]
(Remember to use cylindrical coordinates throughout.)

38. Vorticity II. Repeat Ex. 37 for the velocity field
0,0r%/a0), 0<r<a,
(O,a)az/r 0), r>a.

u

|
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39.

40.

41.

42.

43.

44.

45.

46.

Velocity potential I. Given that o=V A u = 0, write this out in component form (in (x,y,z) coordinates) and hence
deduce that the general solution is U =V ¢ , for arbitrary ¢ (x,y,z,t). [Hint: Write, for example, © = Of / Ox and

integrate; an alternative method is to use an integral theorem.]

Velocity potential 1I. See Ex. 25; show that this flow is irrotational and hence find its velocity potential.

Branching pipe flow. See Ex. 30; the pressure where the area is A is P, ; find the pressure in the two branches of the

pipe. [Hint: Consider two separate streamlines, one into each branch (and ignore body forces).]

Another pipe flow. A pipe varies in cross-sectional area, from 9A to A to 3A. A fluid of constant density flows uniformly
through the pipe, with speed 1/, at area 94; find the speeds at areas A and 3A. The pipe is placed horizontally, and the

pressureis P, atarea 9A; find the pressures at areas A and 3A, and state the condition for all pressures to be positive.

Raising water. Water (so incompressible) flows along a horizontal pipe, which has a contraction to area A and then
enlarges to area nA further along, at which point the water is delivered at atmospheric pressure. Given that the flow is
steady, and uniform across every section, show that a side tube connected to the pipe at the contraction can raise water

(at atmospheric pressure) from a depth of (Q 2/2A? g)(1- n?),, where Q is the volumetric flow rate along the tube.

Flow in an inclined pipe. A straight pipe of varying cross-sectional area, slopes downwards, dropping through a vertical
height of h; through it flows an incompressible (constant density) fluid under gravity. At the upper, the area of the
pipe is Ay, the speed is #(and the pressure is py; the flow is assumed to be uniform across every section. At the

lower end the area is A ; find the speed and pressure in the flow here.

At a general position, which is at a vertical height z above the lower end where the area is 4(z), find the speed, u(z)
, of the flow; now use Bernoulhs equation to find an expression for dp / dz and show that this gives a local maximum

for p(z) if AA” < 3(A ) (at this point).

Maximum flow along a river. A uniform (i.e. no variation of speed, u, with depth), steady flow moves along a horizontal
channel - a river or canal - of unit width and depth h. The bottom streamline has a ‘total head’ H which is constant; this
is the constant in Bernoulli’s equation, with the pressure measured relative to the atmospheric pressure at the surface.

Use the vertical component of the hydrostatic pressure equation to find the pressure (in terms of /) that appears in

Bernoulli’s equation. Now show that there is a maximum mass flow rate (7 = puh ), given by ,, _ P 8H , and that
this occurs when © =/ gh . g\l 27

Hydraulic jump. Suppose that a flow of water suffers a dramatic change in depth (as occurs, for example, in the flow
that has passed over a weir; see also the flow from a tap into a basin). Let the depth, at any position, be 4 and the
speed in the flow (independent of depth) is correspondingly u. The mass conservation and Euler’s equations (written
in non-dimensional form) imply that the change in the values of hu and of hu® + %hz are zero across the change
in depth (usually called a jump). If the conditions on one side are /1 = /), u = 1), deduce that, on the other side
of the jump where h = Hhy, then either H=1 (no jump) or py _ L 1+m) with F'= uo/\/% >1.

Finally, using this information, deduce that the change in energy (glven y the change in/> Au~ + uh® ) is negative:
energy is lost through the jump.
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47.

48.

49.

50.

[F is the Froude number, named after W. Froude (1810-79), naval engineer.]

Flow of a gas. The local speed of sound in a gas is given by \/dp/dp (= a), where p(p) describes the gas; we take
p =kp” (k, ¥ constants) and write the speed at any station as Y. Use Bernoulli’s equation (in the absence of body

forces) to show

2 -1
(a) that lu2 + ARV constant; (b) and then that a_2 = (1 +l(7/ —l)sz ,
2 y=1)p a, 2

where M = u/a is the (local) Mach number, and the zero subscript denotes evaluation where u = 0.

Now find corresponding expressions for (c) p/ P, and (d) p/ D, - Given, further, that p = PRT (R constant),
find an expression for (e) T/TO .

[E. Mach (1838-1916), Austrian physicist and philosopher.]
Expanding gas. (a) A vessel contains a gas which is maintained at the pressure 7, which is then allowed to escape

through a small-diameter pipe into the atmosphere (pressure P, ). The gas is described by p = kp” (k, ¥ constants)
with p = p, at pressure p,; find the density at pressure 7py. Ignore body forces and assume that the speed of

the gas inside the vessel is negligible; hence show that the speed of efflux of the gasis |, _ 27 Py n Oy _ 1) .
7—1p,
(b) Given, further, that p = PRT (R constant), find an expression for the temperature (T) of the escaping
gas in terms of 7, , the temperature inside the vessel, and M = u/a (see Ex. 47). Explain the significance of this
result. [This is called the Joule-Thomson effect.]

Subsonic/supersonic flow. A gas flows horizontally (so the body force - gravity — can be ignored) along a variable-area
pipe. At any station, the density is 0, the (uniform) speed is U and the area is A; mass conservation then requires
that PUA = constant. The gas is described by p = kp” (k, ¥ constants). Treat p, p and u as functions of A; find
expressions for dp/ dA from both the mass conservation and Bernoulli’s equations, then eliminate dp/ d4 to show
that (M2 - 1)% =4 , where M is the (local) Mach number (see Ex. 47). For u > 0 (and A > 0), deduce that (a)
the speed in the pipe d%creases as A increases provided M < 1 (as expected ?); (b) the speed increases as A increases
iftM>1!

[This is the basis for the production of supersonic flow (M > 1) in the laboratory.]

1
Incompressibility. See Ex. 47 (d) (and (b)); show that, for small M, we have (approximately) ﬁ + Euz = & ,

which is the incompressible result. P on

[For air under normal conditions, we find from this result that compressibility effects produce an error of only about

2 % in Bernoulli’s equation even at 300 mph.]
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51.

52.

53.

Lift from a simple aerofoil. Use Bernoulli’s equation, in the absence of body forces, to find the lift (per unit span) on a
two-dimensional aerofoil which is placed parallel to the oncoming stream (speed i and pressure py), at infinity).
The aerofoil has a chord (the distance from leading to trailing edge) ¢, and is so shaped that the speed of the flow on
the lower surface is # = 1) = constant. On the upper surface, the corresponding speed increases linearly from 1,
at the leading edge to ku( (k >1) at a distance C/ 4 from the leading edge; thence it decreases linearly, returning
to the value () at the trailing edge. Assume that the thickness of the aerofoil may be ignored, and hence show that
the lift per unit span is %pu(%c(k - 1)(k + 2) .

Solution for vertical container. The equation taken from Example 16 is
hh+10% + gh=1 17232,
2 2
i : '\2 — . . 3 . _ \/—
for which we seek a solution (4)~ = f (/) . Hence find the equation relating /4 and h; in the case 4 =1/4/3, find

h(t) and show that the vessel empties in the time ;— ; |0, where £(0) = hg and h(0)=0.
2g

Oscillating pressure. The radius of a sphere immersed in an infinite ocean of an incompressible (density p ), inviscid
fluid varies according to the equation » =1y +a cosnt, where 7y (> 0), a and #n are constants. The fluid moves
radially, in the absence of body forces; the pressure in the fluid at infinity is p(). Assume that the velocity potential
for the motion of the fluid is given by @ = F'(¢) / 7, find F(¢) (by considering the motion at the surface of the
sphere) and then use the pressure equation to find the pressure on the sphere at any instant in time. Hence show that

the maximum pressure attained is p = pg + pnza(%a +%(1’02 /a)) (given that 7 < |5a| )-
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54.

55.

Collapse of a spherical cavity. A flow is produced by the formation, and then collapse, of a spherical cavity in an
incompressible (density ), irrotational fluid, which is at rest at infinity where the pressure is p(y . We are given the
existence of the cavity, with an initial radius of a which always maintains an internal pressure p| (< p( ). As the cavity
collapses, the fluid motion is purely radial with radial speed throughout the fluid u = 0¢@/0r , where ¢ = F(¢)/r .
First evaluate on the surface of the cavity, which enables /() to be determined in terms of the radius of the cavity,

r = ry(t) . Ignore body forces and then show that the pressure equation gives
2
1d rzdl”o 1 di"o +p0_p1
ndi\ Y dr ) 2ldr ) p p

Hence show that this equation can be integrated to give

2 3
drp | _2(po=pDifa]| _,
dr 3p n '

Streamlines & equipotential lines. A line (surface) on which f(x, y,z) = constant has Vf as its normal. For two-
dimensional, incompressible, irrotational flow there exists both a stream function, ¥/, and a velocity potential, ¢ .
By considering the form of (V)-(V @), deduce that lines ¢ = constant (equipotential lines) are everywhere

orthogonal to the streamlines.

[Hint: write in terms of the velocity components.]

56. Circulation I. See Ex. 37; find the circulation for this (model) vortex for (a) ¥ < @ ; (b) ¥ > d . Sketch the graph of

this circulation, for 0 <7 < 00,

57. Circulation II. Repeat Ex. 56 for the problem given in Ex. 38.

58. Kelvin's circulation theorem. A simple, closed contour, C(t), associated with fluid particles in a flow, is described by

x(s,¢) = (acoss +aAtsins,asins,0), for £ >0, where @ and A are constants and 0 < s <27 maps out C.
Find u(s,t) and state what happens to the points labelled by s = 0, § = 77 . Show that u = (4y,0,0). Introduce the

circulation, K(#), evaluate it for this flow and confirm that K is independent of t.

59. Hill’s spherical vortex. Assume an incompressible flow, described in cylindrical polar coordinates with axisymmetry;

thus the stream function, ¥/(7,z), generates the velocity components u = %{/l 7, W= —% W, . Write

Arz(az—rz—zz), 0<Ar +ZZSa

(r.2)= Br? 1 > 5
d L —Urz, r2+z2 >a,

(2+2)" 2
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where A, B and U are constants. [The term in B is a dipole at the centre.]

(a) Find u and w, and then the vorticity, in the region 0<+ }’2 +22 < a. Choose A so that the vorticity
attained as ¥ —> @ is @ (= constant); what is the vorticity at 7 =0?

(b) Find u and w in the region V r2 + 22 > a ; what is the flow at infinity i.e. as r2 + 22 — 00 ? [If the flow

at infinity is given as zero, then the vortex will move at the speed you have just found.]
(c) Find the vorticity in the region V 1"2 +z 2 >a.

(d) Determine B so that ¥/ is continuous at the surface of the sphere (where 7’2 + 22 = a2 ); now find the

condition which ensures that the velocity on the sphere is continuous.
(e) Use some appropriate software (e.g. MAPLE) to plot the streamlines. To do this, take a normalized form:
-3/2
wz%rz(l—rz —zz) for r?+7% <1; l/lz%rz[(rz +12) —1} for 12 +72>1,

and select e.g. W = n/64 (n=0,1,...,8) inside, and y = —n/50 (n=0,1,...,15) outside. Then, to plot a
section through the vortex ring, use —1 <7 <1 inside,and —1-5<7r<1-5, =2 <z <2, outside.

[This exact solution corresponds closely to that seen in a ring vortex e.g. a smoke ring.]

56 26 5k 2 5 56 26 6 X 5 56 54 2 5 56 56 5 2 5 56 56 5 5 5 5 X 0
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3 Viscous Fluids

Any study of fluid mechanics that aims to cover all the physical and mathematical aspects of the subject must include a
discussion of viscous flow. In the final analysis, it is these ideas that underpin the subject, and enable a very detailed and
accurate study of real flows. The important new ingredient - viscosity — leads to a new governing equation: the Navier-Stokes
equation; this is the viscous counterpart of Euler’s equation. It is beyond the scope of this text to provide a mathematically
complete derivation of this equation — which would involve a discussion of stresses and the use of the tensor calculus
- but we can outline the thinking behind the equation. (The interested reader will be able to find derivations, based on
physical and/or mathematical principles, in other, more advanced texts.) We shall then look at some important properties

and conclusions that follow from this equation.

3.1 The Navier-Stokes equation

In any study of elementary partial differential equations, one of the three standard equations that are introduced is,
usually, that of heat conduction (and the methods of separation variables and similarity solutions will also probably be
discussed). This equation takes the form
2
ou 0“u
Z_k

3 (in 1D) or, more generally, #; = szu ,
ot Ox

describing how heat diffuses through a material, where u is temperature and k is the thermal conductivity. Now consider a
stationary fluid, which sits in a half space, > 0 say, bounded by a solid wall (interpreted as a flat plate here) on y =0
for —00 < x < 00 ; the boundary (plate) is brought into motion, and this motion continues for all time, by moving it in

the x-direction:

y Sfluid Sfluid
T_, then >

X

The fluid, being viscous, ‘sticks’ to the surface of this moving plate as it moves; the internal friction (viscosity) of the fluid
then ensures that this effect diffuses in the y-direction through the fluid away from the plate. As time increases, more of
the fluid is brought into motion; indeed, as time increases indefinitely, all the fluid will tend towards the motion of the
plate. The diffusive process that brings this about, when viewed on the molecular level, is identical to the processes that
are involved in the diffusion of heat: the molecules vibrate and interact (collide). On this basis, we can expect that the
type of term in the governing equation, describing viscous action in a fluid on the macroscopic scale, should mimic that

which appears in the equation of heat conduction i.e.
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u; = kV2u would become pu; = ,uvzu.
temperature velocity component
thermal conductivity coefficient of friction

(In this simple statement, we have used the form equivalent to massxacceleration = the force (friction).) Now, for our

description of a fluid, we must incorporate this idea into Euler’s equation:

ut+(u-V)u=—le+F,
o,

which then becomes u, +(u-V)u = —le +F+ 2 v ,
P P

where y is the coefficient of Newtonian viscosity, and we usually write V = 1/ / P, the kinematic viscosity. (We shall
consider p and y to be constants throughout the applications that we discuss here.) Our new equation of motion is the
Navier-Stokes equation, developed by C.L.M.H. Navier (1785-1836) and G.G. Stokes (1819-1903), in the period 1823-1845,
with some contributions from Poisson (1831) and very significant input from Saint-Venant (1843). More advanced texts
should be consulted if a mathematically complete derivation is preferred. The first component of this equation, written
in rectangular Cartesian coordinates, is

ou Ou Ou ou 1 op %u 0%u o%u

W—=———"+vV -

— tUu—+v—+ = +
ot ox oy 0z  pox o’ oy ozt

+£.

We should note that the higher order of this equation — now two, whereas Euler is one — requires an additional spatial

boundary condition; this is the ‘no-slip’ condition at a solid boundary.

In this chapter, we will first construct a few simple, exact solutions of the Navier-Stokes (NS) equation (which are
easily generated, and provide some tests for the relevance and accuracy of the equation). Then we will see how we can
approximate the equation for the description of more complicated flows (which will be relevant to an important aspect

of flow around wing sections).

3.2 Simple exact solutions

All these examples of simple, exact solutions of the NS equation can be treated as worked examples; they provide the
basis for some of the exercises at the end of this chapter. We reiterate that, throughout our introductory studies here, we
take both p and y to be constants; we will obtain the vorticity in each case, to show the role of viscosity in the generation

of vorticity.
(a) Plane Poiseuille flow (Poiseuille 1840, 1841)
This is steady flow between two parallel, fixed planes; there is no body force and the motion is solely in the

x-direction; the motion is maintained by a constant pressure gradient Op / Ox = ¢ = constant . The motion is such
that v=w=0,u =u(y):
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y
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X
y=-b
2
. . 1dp O0u " a
The Navier-Stokes equation then reduces to 0 = ———+V yoru =—=—; thus
pOx oy pv U

u(y)=lgy2+Ay+B,
2u

where A and B are the arbitrary constants of integration. The no-slip boundary conditions require #(b) =u(—b)=0;

thus the solution is

u(y)=—2i(b2—y2>.
Y7,

Note that #(y) > 0 (where u is defined in the region between the plates) provided that & < 0 i.e. the pressure is higher
to the left, and lower to the right, driving the flow from left to right (as common sense predicts). The figure shows a sketch

of this velocity profile, which is parabolic here.

(24
The vorticity for this flow field is © =(0,0,—u,)=| 0,0,——y |, which is zero on the centre line, and a maximum at the
walls (where the viscous action is strongest, by virtue of the no-slip boundary condition). Note that this solution does

not exist if the viscosity is zero, because then the term which produces this profile (u vy ) is absent from the equation.
(b) Couette flow (Couette, about 1890)

This is again steady flow between two parallel planes (although it is convenient to label them slightly differently here);
one of the planes (the upper one, say) is moving at constant speed in the x-direction, and the other is fixed. There is no

body force and no pressure gradients. The motion is described, exactly as before, with the velocity components given by

v=w=0u=u(y):
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» 4 =U = constant
y=h
y > u(y)
u=0 y=0

u(y)=Ay+ B with u(0)=0 and u(h)=U;
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the solution is therefore the linear profile u(y) =U % .

The vorticity for this flow is @ = (0,0,—U/h), a constant independent of viscosity! This flow exists, therefore, as an

inviscid, rotational flow.
(c) Impulsively started plate (Stokes’ first problem, 1851)

The fluid exists in y > (0, —00 < X < 00, bounded by the plane y = 0 which starts impulsively from rest, instantaneously

reaching a constant speed # = U . There are no body forces and no pressure gradients; the solution is described by

Uony=0
v=w=0,u=u(y,t) with u = for all finite time.
—>0asy >
fluid u=0 fluid
> U
X
t<0 t>0

The NS equation now reduces to u; = Vu yy o and the relevant solution takes a similarity form (cf. one of the classical

solutions of the 1D heat conduction equation); thus we seek a solution
u(y,t)= f(ytn) for some constant n.
This then gives
"L () = vi*" £7(57) where = yt" or nt ' f = v £
so we choose, for >0, n=-1/2:

S0 = Af exp(-n* [4v)dn.
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The requirement that u (i.e. f) — 0 as y —> 00 for £ >0 gives (for a relabelled A)

f=4 [ exp(-r[4v)dy,
/Nt

o0
andthen u =U on y =0 for £ > 0 is satisfied if U = Aj exp(—n2/4v)d77 . We introduce x = 77/2\/; , and use

0
'[(;)o exp(—xz) dx = %\/; , to write the solution as
% )
u(y,t)=—— exp(—x~)dx.
7 A

v/ 2

For this flow, the vorticity takes a more complicated form:

o= (0, o,%exp(— y2/4w)j,

which shows how the vorticity changes in both space and time, decaying very rapidly away from the surface of the plate.
(d) Oscillating flat plate (Stokes’ second problem 1851)

This is the same geometry as in (c), but now the plate, for all time, is oscillated according to
=U coswt on y =0 for all time
u
—>0asy >

where U and w are constants. The neatest way to solve this problem is to seek a solution in the form
u(y,t)=R (Aele/ly) (denoting the real part);

it is sufficient simply to write u as this expression, without the addition of the real part, at this stage. (The equation, being
linear, will give both the real and imaginary parts as zero, and then we use one of these, as appropriate.) Thus, from

Uy =Vily,, , we obtain

b

) 2 o 1 )
1@=vA~ andso A ==, ——(1+1);
vt

but we must satisfy the condition that the flow be undisturbed at infinity, and so we select the minus sign here. Our

solution is therefore

u(y,t)= ‘R(Aeiwte_\' a)/2v(l+i)yj — fe V@Y cos(a)t —\/Ey}

2v
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where, now, A is some real constant. The condition on ) = 0 yields, immediately, A = U ; the final solution is therefore
u(y,t)=Ue ™™ cos (@t —ky) where k =.|w/2v .

This describes a disturbance that decays exponentially away from the oscillating plate, the disturbance propagating into

¥ >0 as a wave with speed @/k =~20V .

The vorticity for this flow is wave-like and decays away from the plate:
o= (o, 0, Uk {cos(er — ky) —sin(@rt — ky)}e_ky) .
(e) Flow through a pipe (Hagen, 1839; Poiseuille, 1840)

This final example is the axi-symmetric version of (a), above. Thus we have steady flow along the pipe, in the absence
of body forces, but with a constant pressure gradient in the z-direction: P _ « . The solution that we seek is then
described by u =v =0, w = w(7) (there is no dependence on 0 : axi-symmgtric); from the NS equation (in cylindrical
coordinates — see Appendix 2) we obtain

1 op ?w 1dw
e IR Y) Rl il

0=
p Oz &2 rdr

with the boundary condition W =0 on the inside wall of the pipe, say at 7 = @ . (This is only one condition; the second

arises by imposing boundedness of the function w, as we shall see.) Thus we obtain

(rw')':gr and so rw':%ﬁr2+A and then W(I’)Z%EVZ'FAIHV"'B-
7

But the solution is defined for 0 <7 < @, which requires the Inr term to be absent - this is undefined on 7 =0 - and

so we are left with
l o
w(r)=—— " +B
4 p
which, with the boundary condition on » = a, gives

w(r)= —%(a2 —rz).

This profile is again parabolic, so in (7, z) -coordinates it is identical to the profile found in (a), which then produces
a paraboloid-shaped profile for the axisymmetric flow down the pipe. We also note that the same condition on the
pressure gradient applies, in order to drive the flow along the pipe in the sense of increasing z. The vorticity, in cylindrical

coordinates (7,8,z), is

© =(0,—-w'(r),0)=(0,—ar/2u,0).
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Comment: A useful exercise is to apply this velocity profile to the problem of flow through a pipe; see Example 8. In that

calculation, we found that
R(z)

rw(r, z)dr = constant
) .
U(z)
R2

the pipe changes with distance along the pipe). This corresponds to the form used in Example 8, but now for a parabolic

and now we choose to use a profile W= (R2 — I’z) for given R = R(z) (which describes how the radius of

profile; U(z) is the maximum speed along the pipe, attained on the centre line. Integration then gives directly:

R(z)
i[lrsz —lrﬂ = lUR2 = constant,
R2L2 4 4

which is simply (maximum speed) ¥ area = constant; cf. the earlier result.
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3.3 The Reynolds number

In order to initiate this important investigation, and to introduce a fundamental idea and property of the Navier-Stokes
equation, we make some very general observations about the possible scales (sizes) associated with various flows. We are
given

Du 1
—=u+u-V)u :——Vp+F+vV2u,
Dt

and we suppose that we are considering a general class of problems that are characterised by typical scales:

« atypical speed, U, of the flow past an object

o atypical dimension (size), d, of the object (normally measured in the direction of the flow).

We use these (constant) scales to define non-dimensional variables. That is, rather than use standard measurement scales
- metres or centimetres, or miles per hour or the kilometres per second — we use the scales specifically associated with

the problem. The resulting equations will then be equally applicable to an aircraft, a bird or swimming protozoa.

To proceed, we define new variables according to
. _ d - _
X =dx,u =Uu,t =Ut,p =pU2p,

where the combination d / U gives a typical time for the flow to go past the object, and the definition for p is based on

the structure of Bernoulli’s equation. The variables with the circumflex are now non-dimensional, with e.g.

u(x,?) = U(x,7) = Ui (3,%1} .

The new non-dimensional variables are now used in the NS equation to give

2 An 2 2
U—a—‘f+U—(ﬁ-€)ﬁ=—lﬂ%+F+viﬁzﬁ,
d of d p d a2

where V' denotes the gradient operator expressed in the new variables. Rearranging this equation gives

Du - (d Vo oS2-
—— =_Vp+| — |[F+—V7a,
t U? dU
where —2F is a non-dimensional version of the body force (which will not be important in our discussions, but if

gravity were to be retained, for example, then this generates the Froude number). The important non-dimensional number
for us is V/ dU , which is usually written as

_du _pUd

=== p ;

R

e

this is the Reynolds number, introduced by Reynolds in 1883. [Osborne Reynolds, 1842-1912, British engineer and physicist;

gave the first analysis of turbulent flow; also made contributions to the study of vortex motions and the theory of propellers.]
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This property of the equations - the appearance of the Reynolds number - is often called dynamical similarity: the equation
and solutions do not depend on the individual values of U, d and v, but on the combination exhibited by this number.
Even if the values of these three constants are very different for very different flows, the flows are intrinsically the same if
the value of R, is the same: the flows are then dynamically similar. (Reynolds demonstrated that the value of R, is the

fundamental parameter that describes the transition from laminar to turbulent flow.)
For problems that are usually considered under the umbrella of fluid mechanics, there is a significant range of R,, valuese.g.

 smallest swimming protozoa: approximately 10_2
« blood flow in aorta: about 10>
o large civil aircraft: about 10%

o large ocean-going liner: about 10°.

For us, when we consider flow over the wing of an aircraft, we shall be working with very large Reynolds numbers -
typically about 108 . With this number written in the NS equation, and in the absence of the body force term (which is

unimportant for the flow over a wing, as we explain later), we obtain
Du

Du_ vp+lviy,
Dt R,

and we have taken the opportunity to dispense with the circumflex: all variables hereafter will be non-dimensional. (This

last manoeuvre is simply to make it easier to write the equations and variables.) We now see that, for very large R,,,
there is a great temptation — at least in order to generate a suitable approximate solution - to neglect the viscous terms.
If this is a reasonable manoeuvre, then it is good news: we will have reverted to the Euler equation, which is far simpler
to work with than the Navier-Stokes equation. However, if we do use this model, then the no-slip boundary condition

can never be imposed - yet this is a property of any flow of a physically realistic fluid. How is this paradox overcome?

We shall describe the essential features of this type of problem in fluid mechanics. We find that the viscous contribution
- and so the importance of the viscous terms in the equation - is relevant only very close to a solid boundary. Away
from this boundary, the flow is very accurately described by an inviscid (Euler) theory. (In the context of aerofoil theory,
this means that there is a very thin layer, over the surface of the wing, where the role of viscosity is important, but then

a small distance away from the surface of the wing, inviscid theory is sufficiently accurate.)
The mathematical (and physical) idea that is at the heart of this approach is the concept of a ‘boundary layer’ This has

important consequences for our current problem in fluid mechanics, but it also provides the basis for a related analysis

of a large class of differential equations.
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3.4 The (2D) boundary-layer equations

We now provide a discussion of the important work developed by Prandtl (and published in 1904) which explains the
mathematical difficulty and how to overcome it. [Ludwig Prandtl, 1875-1953, German applied mathematician who was
trained in solid mechanics; nowadays, he is regarded as the ‘father of modern fluid mechanics’; introduced the notion of
a boundary layer and also developed the lifting line’ theory for aerofoils.] First, we comment that the body force — gravity
- is unimportant in these flows: the variation of pressure, due to gravity, over the vertical dimension of a wing (not more
than a metre or so), is altogether negligible. We shall therefore ignore the body force hereafter. Thus in two dimensions,

and written in non-dimensional variables, we have the set of governing equations

U ULy + Vi, =—py +Re_1(uxx +ity);
Vi Huvy +vv, =-p, +Re_1(vxx +V));
uy+v, =0.

Study at one of Europe’s
leading universities

o)
e 1
!| I| = -
DTU, Technical University of Denmark, is ranked as one closely under the expert supervision of top international
of the best technical universities in Europe, and offers researchers.
internationally recognised Master of Science degrees in
39 English-taught programmes., DTU's central campus is located just north of Copenhagen
and life at the University is engaging and vibrant. At DTU,
DTU offers a unique environment where students have we ensure that your goals and ambitions are met. Tuition
hands-on access to cutting edge facilities and work is free for EU/EEA citizens.

Visit us at www.dtu.dk

Download free ebooks at bookboon.com

77


http://bookboon.com/
http://bookboon.com/count/advert/7daa994d-b45a-48c8-8273-a03800b9b4af

We now consider the simplest problem that exhibits the difficulties that we want to explore: steady, uniform flow over a
flat plate. (It is straightforward, although slightly more involved, to extend this approach to the problem over a general

curved surface; we shall comment on this later.) So we have

VA

A\ 4
<
Il
—

v

and we remember that the choice of non-dimensional variables means that the speed of the flow past the plate is unity in

this system. If we ignore the viscous terms i.e. take the limit R, —> 00 in the NS equation, then the exact solution is simply

u=1, v=0, p=constant,

and the constant pressure is the background, ambient pressure (prescribed at infinity, say). Of course, this solution does
not satisfy the no-slip boundary condition on the surface of the plate. (For simplicity, we shall discuss only the fluid
above and on the upper surface of the plate; we could consider a corresponding calculation for the lower-half plane and
the under-surface of the plate. Consistent with this interpretation of the problem, we shall ignore the existence of a front
edge to the plate; this is certainly absent if we regard the plate as infinitesimally thin. The analysis that we describe here,
based on scalings, can be extended to allow for a plate of non-zero thickness and a suitable neighbourhood at the front

of the plate — and also a corresponding description for the flow that leaves the rear of a finite plate.)

Prandt] realised that, for large R, , both physically and as a property of the differential equations, there is a ‘thin’ layer on
the surface of the plate, where the viscous contribution, and the relevant terms, are important. For the equations valid in
this thin layer, the correct, no-slip boundary condition can then be imposed. For this to be possible, the term R, lu yy
must be retained (and of the same size as other, appropriate, terms in the equations, so that a balance exists even for

R, — o0). This is accomplished by introducing a scaled variable:

1
y=—=7Y,

VRe
so that, for example, we now treat u =u(x,Y,t) =u(x, y\|R,,t). (It is fairly routine, and more general, to assume
that some scaling exists, based on a general power of R,, and to seek it; in this introductory discussion, we shall simply
use the form that is appropriate for this problem.) The interpretation of the scaling is that, for any reasonable value of
Y - we normally express this as O(1) - then, as R, —> 00, we have that the (essentially physical) y as very small (and

so we have a ‘thin layer’ on the plate).

To proceed, we make the following observation. The equation of mass conservation, as we know (see §2.6), implies the

existence of a stream function; let us write

M=V/y9 V=Y,
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and then the scaling on y gives # = /R,y . However, u cannot possibly be large, because we know that the speed of the
flow away from the plate is 1, and it should be zero on the surface of the plate (so we expect a solution u € [0,1]). This

difficulty 1is easily overcome by redefining - scaling — y according to ¥ = T‘P , which then implies that we must scale
vV

e
zero very close to the plate i.e. when described in terms of Y. Note, however, that v is not governed by the viscosity of the

(4
V', A small vis to be expected because, on the surface of the plate, we have v = 0 and it is, therefore, nearly

fluid; v =0 is simply a no-flow-through-a-solid-boundary condition. Also observe that there is no scaling associated
with x (at least, away from the front edge of the plate, and with no end to the plate i.e. it is semi-infinite); the important

variation is away from the plate, in the y-direction. Thus we scale the original (non-dimensional) equations according to

1 1
=Y, v=—u=-V
R R

and hereafter treat u, V and p as functions of x, Y and t. Thus we obtain

1 _ -
u; +uu, +FV‘1R6 uy =—p,+R, luxx +R, l(‘/Re)zuyy;
e

\/;—e \/}Tequ+ ﬁ VRV = \/7PY+R_1J7V +R_lf(\/—e)2

1
and u, +—=—=/R, Vy =0.
VR
These simplify to give

u; +uu, +Vuy =—px+Re_luxx +uyy;
1 1

1
— (Vi +uV +VVy)=—py +—=V +—Vyy.
R (VieuV+ V) ==y R ™ R

(4 e e

and u, +Vy =0.

In these equations, we now take the limit R, —> 00; this procedure generates a reduced set of equations, being the first

approximation valid in this thin layer:
u, +uu, +Vuy =—p +uyy: py =0, u, +Vy =0.

We observe that the dominant viscous term, #yy , now appears as an O(1) term, balanced by other O(1) terms in the

first equation; also note that the pressure is independent of Y in this region.
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These are the Prandtl boundary-layer equations, valid in a thin layer close to the surface of the plate; this layer, quite
naturally, is called the boundary layer. These constitute a first approximation, appropriate to the boundary layer, valid for

R, — 0; correspondingly, outside the boundary layer, the first approximation is simply the equations based on Euler:

Up T Ul + VU, = =Py VpHUVe +V), ==p iy +v), =0.

y y y

Comment: It is important to appreciate that the demarcation between the boundary layer and the outer flow is not provided
by a well-defined line. Rather, the solution of the boundary-layer problem merges into the solution of the outer-flow
problem as ¥ — o0 ; correspondingly, the solution to the outer-flow problem merges into that in the boundary layer as
y — 0. Since WWII, there has been a vast amount of analytical work done on many aspects of boundary-layer theory,
to the extent that we know a lot about the higher-order corrections to this basic solution-structure, and in many different
scenarios. These include the behaviour in the region where the boundary layer leaves the plate (and becomes a wake),

and the prediction of boundary-layer separation.
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The leading-order approximation, for R, — 00, for both the boundary-layer and outer flows, is appropriate for any curved
plate (although the higher-order correction terms are different, for various shapes of plate). That is, the presentation given

above holds for any plate, provided that x is measured along the plate, and y is always at right angles to it:

U(x,b) /' >
y
X

Now let us suppose that the flow, away from the plate, is described by © = U (X, ) ; thus the problem for the boundary-

layer equations must satisfy the boundary conditions:
u—->U(x,t)as Y —>0;u=V=0o0nY=0inx>0.
(Note that the front edge of the plate is excluded here: x # ()

Now we evaluate the first Prandtl equation (which, we see, is a version of the component of NS in the x-direction) as

Y — o0 to give

py—> U, +UU,).

But the Prandtl equations include the condition: py =0, so the pressure does not vary across the boundary layer; thus

Py =—(U, +UU,) throughout the boundary layer. The full boundary-layer problem can therefore be written
u; +uuy, +Vuy =U; +UU, +uyy; u, +Vy =0,
with u > U(x,t) as Y > 0;u=V =0 0on Y =0 (allin x>0).

Note that any unsteadiness in the boundary layer will be driven, in this model, by any time dependence on the flow in the

region away from the plate i.e. as given by U (x, ) . Consequently, a steady boundary layer is associated with U = U (x) .

3.5 The flat-plate boundary layer

We complete the discussion (as relevant to this introduction to these ideas) by examining the details for the constant-

speed, steady-flow over a semi-infinite flat plate:

VA

v
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The problem for this specific geometry is then
uu, +Vuy =uyy; u, +Vy =0,
withy >l asY >0 (x>0 u=V=0o0onY=0inx>0.

An exact solution was found by Blasius (in 1908) by constructing a similarity solution for the stream function. So first

wewrite u =Wy, V = -y  (which therefore ensures that the equation of mass conservation is satisfied), which gives
YyWyey ¥ Yy =%yyy.

We seek a solution in the form W (x,Y) = Jx f(7) wheren =Y, / 24x (and the 2 s merely an algebraic convenience);
this solution has the property that any scale length cancels: there is no scale length for a semi-infinite plate! (It was this
observation that prompted Blasius to write the solution in this form.) It is clear that this solution is valid only on the

plate, because we must use x > 0.

Thus we have ¥y = 1 f and W, =1 f / \/_ 1 Yf / X , which leads to the equation for f:

L/ 11y s 1y,
2f{17 4 x 8x\/—f} [ f}

This simplifies, in x > 0, to give
"+ ff"=0;
the boundary conditions are:
u=0onY =0 (x>0)s0 f'(0)=0;
V=0onY=0 (x>0)s0 f(0)=0;

u—>las¥ —>00(x>0)s0 f'—>2asn—>oo.
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Sadly, this problem cannot be solved analytically, but a numerical solution is quite easily computed; a typical velocity profile
through the boundary layer (for steady, laminar flow) is shown in the figure. We also provide an indication, based on
experimental data, of just how accurate this theory is for reproducing the behaviour of the flow in the laminar boundary-
layer on a flat plate. The solid line is the obtained from the (numerical) solution of the equation for f'(77), and the points

(dots) are experimental results (based on the work of Nikuradse) for various Reynolds number.
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Exercises 3

60. Simple viscous flow 1. See §3.2 (a) & (b); consider the flow © =u(y), v=w =0, between two infinite planes (
y=0, y=h>0). The plane y = 0 is stationary and the other is moving at the constant speed u = /(; there is,
in addition, a constant pressure gradient, Op / 0x = a and no body forces. Determine ().

61. Simple viscous flow II. See §3.2 (a); consider the flow between two stationary, infinite planes (y =0, y=h>0) in
the presence of the constant pressure gradient Op / Ox = A , but with the additional requirement that ¢p / &V=-pg
(= constant), being the only body force present. Find both u(y) and p(x,y), given that p = P = constanton x =y =0.

62. Cross flow. See Ex. 60 and §3.2 (b); the flow is between the two planes, one of which is stationary and the other moving
(all according to Ex. 60); there is no pressure gradient and no body forces. In this case there is a constant cross-flow:

V = —V, (= constant). Find u(y) . [This is possible if the two planes are porous.]

63. Suction. An incompressible, viscous fluid occupies the region » > 0 on one side of an infinite flat plate y = 0.The
plate is moving at the speed u# = 1((¢) in the x-direction, and fluid is being sucked through the plate with a constant
speed v = —F ; there is no variation in the x-direction, no body forces, no pressure gradients and no motion at infinity

ie. 4 —> 0 as y — 0. Show that the Navier-Stokes equation implies
Find appropriate solutions for u#(y,#) in the cases: (a) Uy =1; (b) yy = e%! (a > 0 constant).

64. Axisymmetric axial Couette flow. Cf. §3.2 (e); consider axisymmetric flow of a viscous fluid, in the absence of any
pressure gradients or body forces, between two concentric circular cylinders. The outer cylinder, r = R, is fixed, and

the inner one, 7 = AR (0 < A <1), is moving in the axial direction with a constant speed W= W, ; find w(r).

65. Vertical cylinders. Co-axial circular cylinders, of radii @ and b (b >a ) are placed with their axis vertical; an
incompressible, viscous fluid occupies the annular region between them. The outer cylinder is fixed, and the inner
one is constrained to move vertically downwards with the constant speed Wj). Seek a solution which describes steady
motion under (constant) gravity, with pressure constant everywhere in the fluid and all streamlines parallel to the axis

of the cylinders, and hence show that the speed downwards, W(7) satisfies

1

Wy +7 W, —g/v=0.

Hence find the relevant solution for w(7).

66. Two rotating cylinders. An incompressible, viscous fluid is circulating between two infinitely long cylinders; the outer
one (which is hollow) is of radius a and is rotating about its axis with an angular speed @ . The other cylinder, which
has the same axis as the first, is of radius %a and is rotating at the angular speed —2@ . Show that the fluid is at rest
at a distance a / \/5 from the axis of the cylinders. Also find the pressure difference in the fluid at the two surfaces

of the cylinders.
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67. Vorticity I. Sketch the vorticity for the flows discussed in §3.2 (c) and (d), and, for each, this could be in y at fixed t,
and then in # at fixed y.

68. Vorticity II. Find the vorticity for each of the flows found in Ex. 60, 61, 62, 63, 64.

69. Suction. In a conventional boundary layer, show that a solution of Prandtl’s equation in a region where the variation

in x is small (i.e. assume that the derivatives with respect to x are zero) is

V' ==V = constant; ;(y) = uo(l _ e—VoY) ’

where u —> 1) (constant) as ¥ —> 00 . (This is a special case of boundary-layer control, by using suction; this solution
is usually called the ‘asymptotic suction profile.) Now show that this solution is an exact solution of the full Navier-

Stokes and mass conservation equations, in the absence of body forces and for constant pressure.

70. Boundary-layer growth. A viscous fluid (of constant speed © = Uy at infinity) flows steadily overaflat, y =0, x 2 0;
write down Prandtl’s boundary-layer equations for this problem (see §3.4). Let the thickness of the boundary layer
be represented by /(x) (so that u = U and uy =0 on Y = h(x)); show that

h(x)
4 j(u—Uo)udyz—(@] .
dr 9 Y Jy_g

Suppose that i = U, sin ”—Y , 0<Y <h, is a reasonable approximation for a boundary-layer flow, and hence
2h
find A(x).

71. Blasius equation. Given the Blasius problem for f(77):

ff”+f’"=0 with f(O):f’(O)ZO, f’—)z as 7] —> o©
(where =Y, / 24/x and V= Jx £ (1)), consider the following.

(a) This problem possesses a group property; to see this, transform f — Af , n— 77/ A (where A isanon-
zero arbitrary parameter). What is the new problem? How might this be useful in a numerical solution of

the problem which ‘shoots’ from some initial conditions?
(b) Show that the order of the equation can be reduced by introducing f' = g(f’).

(c) Show that the solution f =27 —a+ F(7) (a constant, which can be found only from a numerical
solution), with 77— 00, is consistent with the Blasius equation. Find the equation for F and, under the
assumption that F (and /") approach zero as 77 — 00, approximate the equation for F and then integrate
it, to show that

F’' = AJ. exp(—y2 )dy (A is an arbitrary constant).
n
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(d) Showthatthesolution f ~ B 772 +C 7]5 ,for 77— 0, is consistent with the Blasius equation for a particular

relation between the constants B and C; find this relation.

72. Boundary layer generated by a sink. A sink is located at x = y = 0, generating the flow U(x)=—m/x (m>0

constant) outside the boundary layer (which existson y =0 in x >0).

(a) Show that Prandtl’s boundary-layer equation can be written as

m Y Y
(b) Seek a solution in the form u = —;f(ﬂ) V= —mTf(ﬂ) where 7=

uu, +Vuy =—mz/x3 +uyy.

. . . X, . .
of mass conservation is satisfied and, from the equation obtained in (a), that

fr-fr+1=0.

State the boundary conditions that f must satisfy.

(c) Show that the relevant solution is f(77) =1—3sech

of cosh(a/\/z) =3.
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73. Boundary layer with variable suction. The Prandtl boundary-layer equations can be used to describe the flow in
a boundary layer for which the exterior flow is u — U(x) = x" (as Y —> 0 ) and for which there is suction
V(x)= —Vox(m_l)/z on Y=0 in x >0 (where V) is a positive constant).

(a) Show that Prandtl’s boundary-layer equation can be written as
i, +Viy = mx>™ " fuyy .
(b) Seek a solution for which the stream function takes the form
w = x"D2 £y where = YMD/2)
and hence show that f'(77) satisfies
" Lm0 f [ em(1= 17) =0
State the boundary conditions that f must satisfy.
(c) In the case m = —1/3, integrate the equation for f'(77) to obtain
[t =dn v an+ B,

where A and B are arbitrary constants. Now show that the substitution f = 6¢’ / @ reduces the equation to a linear,

second order equation for ¢.

24 2 2 56 56 5 2 5 56 26 2 S 56 56 54 2 5 56 56 5 2 5 56 56 5 5 5 5 56 X 6 6% % %
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4 Two dimensional, incompressible,
irrotational flow

We now return to our earlier theme, based on the Euler equation; however, we shall make clear, particularly in the context
of aerofoil theory, the role of viscosity. There are many aspects of fluid mechanics that can be studied e.g. boundary-layer
theory, stability of flows, turbulent flow, gas dynamics and shock waves, vortex dynamics, statistical mechanics, and much
more. We choose to follow the route that develops the application of complex-variable theory leading to classical (two
dimensional) aerofoil theory. It will become clear that the methods that we present result in very powerful techniques for
the construction, in general, of models for fluid flows. Although there are many ideas that we shall touch upon, our main

aim is to lay the foundations for the theory of aerofoils and then to describe the ideas that underpin the generation of lift.

4.1 Laplace’s equation

In this brief discussion of a simple problem involving a fluid flow, we show how standard and familiar methods might
be used - and then explain why such methods are not likely to be useful for more realistic flows. Let us suppose that we

have a 2D flow which is incompressible and irrotational, then a velocity potential exists which satisfies Laplace’s equation:

V=0 or g +4,, =0 with u=(¢y.9,).

For simple geometry, and a simple flow configuration, elementary methods for the solution of partial differential equations

can be employed; to see what can be done, consider this example.

Example 20

Laplace’s equation. A (2D) box, 0 < x < a, 0 < y <2b, has three solid walls along x = 0, y = 0, y = 2b; it is
openonx=a (0 <y <2b) where fluid flows in and out, symmetrically about y = b. Find (X, ) for this
flow field, given @, = u(y) across the opening.
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The geometry here is

2b |
<—
¢x =0—— ¢x =u(y)
—
T

We seek a solution in the familiar form: separation of variables i.e.
d(x,y)=X(x)Y(y) andso XY+ XY"=0.
We set Y+ A2Y =0 (and then X" — 22X =0 ), with the boundary conditions

Y'(0) =Y'(2b) = 0; this is a standard eigenvalue problem, the solution of which is routine (eventually leading to the

need for a Fourier representation of #())).

This example shows that, in principle, such problems can be solved, but only if the geometry is particularly simple. What
if the shape is more general — perhaps the shape of a section through a wing? We need a better way of tackling these
problems. This, as we shall see, leads to a very powerful technique that enables quite accurate and sophisticated models

of flows to be constructed.
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4.2 The complex potential

From §2.6 (which describes two dimensional, incompressible, irrotational flow), we have

u:¢x:l//y andv:¢y:_l//x>

which are the Cauchy-Riemann relations for the two functions ¢ and y. These conditions guarantee that the function

@+1y is a differentiable function of the single complex variable Z = x +1y i..
o(x,y)+iw(x,y)=w(Z)=w(x+1iy) and W (Z) exists.

(We choose to use upper-case z here because, sometimes, we use z as one of the variables in the definition of the complex
variable e.g. a problem involving the vertical coordinate (rather than y) and x would give rise to Z = x +1z . Although
this possibility is not likely to be encountered in our work here, it is wise to become familiar with this slight change of

notation.)

Comment: All of the ideas and techniques work for unsteady flow, so we could allow W(Z,?), enabling some quite

complicated problems in unsteady flow can be handled; we shall, in our discussions here, restrict ourselves to steady flows.
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The function w is called the complex potential. From it we may obtain both the velocity potential and the stream function

but, in practice, it is more usual and helpful to extract the stream function (because this not only generates the velocity

field - as does the velocity potential — but it also gives the streamlines). An important property of w follows immediately:

take the partial x-derivative of the definition (or the y-derivative - it gives the same result; you should check this) to give
ow dwoZ

0 . .
_|_ — -|- = —= = ’Z.
ax(w W)=y iy =— Z o w(Z)

But we have ¢ +1/,, =1 —1v, and so

W(Z)=u—iv:

the complex velocity. Thus the conventional derivative of the complex function w enables the velocity components to be

obtained directly. (Do take note of the negative sign here; it is one of the common errors to work with W'(Z) =u +1iv!)

The representation of W'(Z) as the complex velocity leads to two different ways of discussing, describing and constructing

flow fields; in our presentation of these ideas, we shall make use of both. The two approaches are

« given a flow field, identify u and hence obtain w(Z)

o introduce (invent) any w(Z), find v and then describe the flow field.

Although the more natural approach is likely to be the former, the latter can be used simply by combining some elementary

functions (that represent some simple flows) and so invent more complicated flow fields.

4.3 Simple (steady) two-dimensional flows

We construct some simple flows, represented by suitable complex potentials, using — as appropriate — either one or other
of the approaches mentioned above. Each one of these simple flows should be regarded as a ‘building blocK’; individually,
they are not very interesting or important, but in combination they provide the basis for the construction of more

complicated and realistic flows.
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(a) Uniform stream (or flow)

Consider a flow which is a constant speed (U), in a fixed direction (given by the angle, «, relative to the positive x-axis);

the flow exists throughout the plane:

yﬂ

speed U

v

Thus we have u = (U cos,U sin ), and so

dw ) o _i
E=u—1v=Ucosa—1Us1na=Ue .

this gives immediately that

w(Z)=Ue %z,

and the constant of integration is altogether irrelevant. (The real part of the constant contributes to ¢, which defines, via
derivatives, the velocity components; correspondingly, the imaginary part of such a constant merely adds a constant to

y - and ¥ = constant is the definition of the stream lines.)

This is our first complex potential. Thus, for example, given any W(Z) = AZ , we can interpret the complex constant to
define a flow field: |A| (=U) is the speed of the flow throughout the plane, and —arg(A4) (= &) gives its direction

(and note the sign here).

(b) A source (or sink) [sometimes called a ‘line’ source/sink]

This flow field, in particular, is rarely used in isolation, but it will eventually be important. This represents a flow which,
in the 2D plane, issues out from (or disappears into) a point in the plane; at this point there is a singularity! This means
that, taking the whole plane, mass is not conserved - although it is conserved everywhere except at the singularity. This
indicates that, if this flow field is to be useful, then the singularity must not appear in the flow field; this apparent paradox

can be overcome (as we shall see) and practical use made of this ‘model’ flow field.
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Consider a purely radial flow outwards/inwards from the origin; we will, later, allow this point of creation/destruction to

be at any point in the plane:

2y

Let the speed at a radius r be U (and we have drawn here the case of a source: the flow is outwards); we define this flow

to be such that the mass flow rate (out) is a constant:

27zrU = m = constant .

(Think of flow crossing the surface of a circular cylinder: (2777 x1)xU , i.e. per unit length of the cylinder, together
with the areaxspeed rule; see Example 8.) But # =U cos@ and v =U sin @, and so we get

d—w=u—iv=Ucos@—iUsin49=Ue_i9.
dz

s Y g6 _m o _m 1 _m L
dz 2xr 27 e 10 27 Z

which gives W(Z) = llogz :
2r

Again, we ignore the constant of integration (for the same reason as before). Note that we have written ‘log’ here; we could

write ‘Log), but that simply changes the additive constant, which we have just ignored.

Download free ebooks at bookboon.com


http://bookboon.com/

Please click the advert

Fluid Mechanics and the Theory of Flight Two dimensional, incompressible, irrotational flow

The strength is m; for m >0, we have a source, and for 7 <0 a sink: the flow is inwards towards the origin. (The
terminology ‘line’ refers to an imaginary line at right angles to the plane, at the point of the source/sink, along which we
can think of the flow appearing/disappearing in the three-dimensional analogue of this flow.) This potential is undefined
at the origin, as is W(Z); at this point we therefore have a singularity. At every other point in the plane, w(Z) exists

(and it is unique provided that we remain on one Riemann sheet).

Note: If the source/sink is moved to Z = Z,, , we have:

Z[]

v
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and then we write log Z, =log(Z —Z,), where Z, is the coordinate measured from the singularity, as used in our

derivation (and Z = Z, + Z ;; see figure). Thus for a source/sink, of strength m at Z = Z ,, the complex potential is

w(Z) = %log(Z ~7,).

Example 21

Source + sink. Write down the complex potential for the flow generated by a source of strength m at z=a (a

real) and a sink of the same strength at z = ia. What is the velocity of the flow at the origin ?

This complex potential is obtained by simply adding the two complex potentials that describe, separately, the source and

the sink:

WZ) = log(Z —a) -~ log(Z —ia) .
2 2

We now form

d_w_m(l 1

iz 2r B

- j (= u —1v) which, at
Z—-a Z-ia

the origin, gives

) m . m m
u—iv=———>~0+1) sou=———,v=——o.
2xa 2ra 2rwa

Note that, in this example, mass is conserved globally.
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(c) Line (or point) vortex

This is a flow which moves (axi-symmetrically) in concentric circles about a fixed point, which we take to be at the origin:

b\

It is defined so that the circulation is the same constant at all radii, and so the circulation on any radius is

@u-dl =27rV = K =constant (see Example 17).

C
Thus we have
dw . . . . —if
—=u—iv=-FVsin@—1iV cos@ =—-ile
dz
and so
dw_ o K - K 1 K1
zr 27 it 2 7’

. K
which gives wW(Z) =—-1—Ilog Z.
2r
. K
If the vortex is at Z = Z(), then the potential becomes W(Z) = —12—10g(Z -Zy).
T
Note that the singularity in this potential is identical to that for a source/sink; the important difference is that, here,

the multiplicative constant is pure imaginary — for the source/sink it is pure real. (Observe the sign: for anti-clockwise

circulation, K is positive and the sign is minus.)
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Comment: The complex potential derived here could have been obtained directly from that for the source/sink. To do

this, notice that the component, V, is essentially U rotated through 72'/ 2 ; so we may construct

Ue_le - Ve_l('9+”/ 2) - —1 Ve_le , and then use V from above.

Example 22

Two line vortices. A line vortex, of strength K, is placed at z =a (a real and positive), and one of strength
—K is at z = —a . Show that the pair necessarily move, or that they must sit in a suitable uniform flow in

order for them to remain fixed in the coordinate frame.

The complex potential that represents these two line vortices is

AL
\_/ \_/

w(Z) = —ﬁlog(Z —a) +£10g(Z +a),
2r 2r

and then

dw iK( 1 1
dZ 27\Z+a Z-a
This expression, as expected, is undefined at Z = *a; however, it is instructive to examine the behaviour of this

function close to these two singularities.

dw 1K 1 1 K .
Set Z=a+0,then — =— —— | > ——+sing. as 0 — 0 (where ‘sing’ denotes the term associated
dZ 2z\2a+6 O 4ra
with the singularity at Z = a (as just mentioned)).
dw 1iK(1 . iK
Nowset Z=—a+0,then —=—/| — — sing. + as 0 > 0.
2x\ 6 2a+0 4ra
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A
\_/ \_/
t 1

K/4rza

Thus, in addition to the flow field near the centre of each line vortex, generated by the singularity there, we have a uniform-

flow contribution: v=——— i.e. the vortices move - the flow is time dependent! — and this induced motion of a pair of
za

vortices is readily produced in the laboratory. In order to fix the line vortices in our coordinate frame, we must introduce

a uniform stream to cancel this motion:
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Example 23

A row of vortices. Write down the complex potential for a row of line vortices, each of strength K, situated at

z=0,%a,*2a,...,2na (areal and positive). Now let # —> o0, use the identity

o 2
. T
sin| 2% | =22 H P (Mittag-Leffler),
a a n2 (12

n=1

and hence find the resulting potential for an infinite row of vortices.

We have

and so the complex potential for this row of line vortices is

w(Z) = —ﬁlogZ —Elog(Z —-a) —Elog(Z +a) ...
2r 2r 2r

- £log(Z —na)— £log(Z + na)
2 2

- —iﬁlog[Z(z2 —a>(Z% - 4d?)..(2* —nzaz)}
27

. 2 2 2
BRSO A I | U PR
2 a a® 4a* n’a®

to within an additive constant.
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We now let # —> 20, and use the given (Mittag-Leffler) identity, to produce the complex potential for the infinite row
1K . (7Z
w(Z)=——"1Iog|sin| — | |.
27 a

This result can be used to obtain the complex potential for two rows of line vortices as described in the next example (and

of line vortices:

this configuration has important applications).

Example 24

Von Kdrmdn street vortex. Two infinite rows of vortices (as developed in Example 23) are placed: strength
Kat (0,b),(+2a,b), (+4a,b), ...; strength —K at (£a,=b),(£3a,~b),..., for a>0, b> 0. Write
down the complex potential for this flow and find the speed at which that the pattern of vortices moves (cf.

Example 22).

The configuration is shown in the figure; the two (infinite) rows of vortices are now shifted versions of those used in

Ex.23, with a spacing replacing a by 2a, and the two rows are a distance 2b apart.

DO )N N

—4a —2a 2a 4q

YRy Ry

3a

The complex potential for this system is then

mZz)= _%loz‘% {Sin (Mﬂ + K 1og {Sin (@ﬂ ,

2a 27 a

where the first term is generated by a shift of ib, and the second by @ —1ib . Now we have

dw 1K [E(Z—ib)j 1K (ﬁ(Z—aHb)]
—=——cot| ———= |+—cot| ————= |,
dz 4a 2a 4a 2a

and then near Z =1b+ 2na we obtain

7(2na—a— ib)j

u—1iv =(sin )+£cot(
& 4a 2a
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The singular term is the expected contribution to the complex velocity — note the previous Example — and the other term

(ﬂ(iZna—a—ib)j ( T bj ( bj . ( bj
cot =cot| ——+izr— |=—tan| ixr— |=—1tanh| 7— |.
2a 2 a a a

K
Thus the second row moves, to the right, with a speed u = —tanh(ﬂ'b/ a) ; the corresponding calculation near

can be written

. a
Z =—1bt(2n+1)a gives exactly the same speed for the first row i.e. the action of each row on the other is to move
the whole configuration, at this speed, to the right; cf. Example 22.
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This example is relevant to the flow behind ‘bluff’ bodies, where there is a regular shedding of vortices, producing an
‘avenue’ of vortices moving downstream with the flow. The spacing of the vortices, and their speed, can be used (with
the formula above) to determine the strength of the vortices being shed; a typical flow patern is shown in the figure (the

von Kdrmdn street vortex):

This pattern is part of the reason why flags flutter in a moderately strong breeze: the flag pole acts as the bluff body, around

which vortices are shed; the flag then, more-or-less, follows the flow induced behind the pole.

(d) Dipole

In this, our final ‘building block’ that we shall need, we construct a complex potential essentially as a mathematical
exercise — we invent a w(Z) - and then examine the nature of the flow field that it represents. Here, we take a suitable
limit of a source and a sink, of equal strengths (so mass, globally, is conserved). Consider a source of strength m at the

point Z = ae'” , for given real constants a and «; a sink of equal strength (and so labelled —m1) is placed at the origin.

The complex potential for this flow is constructed by adding the two separate potentials:

ia
ac

WZ) = log(Z —ae'®) L log Z = log| 1-
2 2r 2r
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We now let @ — 0, at fixed «, for any Z # 0, ae'? ; this means that the source moves down the fixed straight line
towards the sink at the origin. If we take this limit in the obvious way, then we obtain

i

M 1ol 1-26 —>ﬂlog(1):0,

w(Z) =
2) 27 Z 27

which is the expected result: the source and sink cancel out, leaving nothing at all. We therefore choose to take the limit
in a special way: we let @ — 0, under the conditions already laid down, but also such that am remains fixed. Thus the
strength increases as the distance between the source and sink decreases. To perform this limit, we first use the Maclaurin

expansion of the log function:

. . SN2
1 1 1
w(Z):%log |_ae” |_m | _ae _1fae

Z 2r Z 2 Z

i 2a i
= _{am)e —l(am) ac 5 il
2nZ 2 277 2r 7

where 4 = am , which is fixed. This new potential is called a dipole (and we will explain why shortly); it is of strength
u and orientation (inclination) a. It is clearly undefined at the origin; if it is positioned at Z = Z; (where it will again
be undefined), it becomes
ia
C
wzy— -2
2r (Z-2Zy)

So what is this new flow field that we have generated? For example: what are its streamlines?

To explore this aspect, we choose to write the potential (placed at the origin, for convenience) in terms of the polar
16

. i .
representation: Z =r¢€ ~ . The potential then becomes

w=d+iy __# L@ :—il{cos(a—é’)ﬂsin(a—ﬁ)},
2rr 2rr

and so Y (r,0) = —ZLSin(a -0);
nr
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the streamlines are therefore described by the curves

r=ksin(a—0),

where k is constant, with different constants on different streamlines. These curves are the set of all circles with the line

6 = a as the tangent at the origin:
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This set of curves is typically associated with the field lines of a bar magnet: a dipole magnet. (A discussion of these curves

can be found in Exercise 77.)

We observe that, with £/ > 0 and a given inclination a (which is /4 in the figure above), the relative positions of the

source and sink imply that the flow is out at the top and in at the bottom, the path of the flow following the circles around.

Example 25

Source in a stream. Write down the complex potential for a uniform flow (speed U parallel to the x-axis) past

a source of strength m at the origin. Find the position of the stagnation point in this flow.

The flow is depicted in the figure; the complex potential for the uniform flow plus the source is then

U
q

m
<\
N

WZ)=UZ +LlogZ.
2r

dw m 1 m
Thus — = U +———, which is zero (for a stagnation point) where Z = ———

2w Z 22U

The stream function can also be obtained: set Z = relg , then

w=¢+il//:Ur(cos@+isin¢9)+2ﬁ(lnr+i6’);
Vs

thus (r,0) =Ursin 0+ — t9 = constant on SLs. The SL that passes through the stagnation point requires the choice:
constant = m/ 2. Some of theicﬁetalls of the curves represented by Ur sin @ +— 6 = — are discussed in Exercise 79;
this curve has solutions & = 77 and another branch which passes through the stagnatlon point at right angles to the real

axis, generating a special ‘bluft’ body.
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The result of this calculation has an important interpretation. The boundary of the ‘bluft’ body, which separates the flow
around the source from the external flow, can be regarded as the boundary defining the shape of a solid object. For both
a solid object and a streamline (which this is), the boundary conditions are the same (for inviscid flow): flow along and

no flow through/across. Thus we have a uniform flow past a specific shape, as shown below:

I o

I
M¥

This idea provides a basis for modelling flows past objects. Further, we see that the source — which is a singularity in
the plane - now appears only in the region occupied by the solid object (it is at the origin inside the body); the region
where the flow (fluid) exists does not contain any singularities. A more complete representation of this flow is given in

the figure below.
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Example 26

Dipole in a stream. Write down the complex potential for a uniform flow (speed U parallel to the x-axis) past
a dipole of strength — £ (< 0) situated at the origin, its alignment also being along the x-axis (i.e. & =0).
Find the position(s) of the stagnation points and hence determine the shape of the streamlines that pass through

the point(s). Describe and interpret the flow field.

The flow is depicted in the figure; the complex potential for the uniform flow past the dipole — and note the change of

orientationthat leads to — ¢ for y - is therefore

Ol

)7,

-u) 1 1
wzy=vz-SAL gy m 1

2r Z 2r Z

d

Thus v U - i—, and so the stagnation points are at
dz 27 72
Z =+ |- Weintroduce Z = re'? 1o give
2xU

w=g¢+iy :Ur(cost9+isin9)+2L(cose—isin6?),
r

and so the stream function becomes (7, 8) = Ursin 6 — H sing=|Ur—-|sing.
2rr 2rr

require ¥ =0 ie. | Ur _H sin @ = 0. These streamlines are therefore all solutions of this equation, namely,

The streamlines are lines ¥ = constant, and those through the stagnation points (0 =0,0 =7;7r =/ u / 27xU)
27r:)
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0=0(Vr);,0=r (Vr),r=Ju/27zU (V).

Thus we have produced a model for uniform flow past a circle, as depicted in the figure.

Summary: These two examples demonstrate how we can model the flow (e.g. uniform flow) past an object with a specific
shape. Typically, these shapes are constructed by placing, in the plane, suitable singularities (chosen to generate the shape)
that appear only inside the region occupied by the object: the flow field remains singularity-free (as it must, for a realistic
flow). However, we could allow vortices — and point vortices are singular at their centres — in the flow field, because mass
is still conserved and the resulting circulatory flow often appears in real flows e.g. in the form of vortices shed off a bluff
body. Even then, singularities can be avoided by choosing to have the vorticity distributed over a (small, finite) region,

as in the Rankine vortex (Exercise 37).

N
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44 The method of images

As a small digression from our main theme, we mention a simple, standard technique for coping with simple boundaries.
We will suppose that the region where the flow exists is bounded by straight walls (lines); these are solid walls which
allow flow along them - the fluid is inviscid, remember - but not through them. Thus, as we have seen above, we can

treat them as special streamlines. For example, we might have a flow in x > 0 with a wall on x = 0:

flow field

wall

but we proceed by regarding the whole plane, initially, as a flow field; we shall then be able to analyse the flow properties
in x > 0. (What happens in x < 0 is altogether irrelevant: the flow here is merely used as a device for ensuring that we get
the right shape of boundary; cf. the singularities inside the shapes in the two previous examples.) The simplest way to
represent this flow, with the given boundary, is to invoke (mirror) symmetry: we place in x < 0 the mirror image of the
given flow in x > 0. This does not alter the given flow, and ensures that the boundary - by symmetry - is exactly that: no
flow across it. We then say that the flow in x < 0 is the image of the flow in x > 0. (The same terminology can be used in
our two previous examples; thus we say that the image of a uniform flow in a circle is a dipole.) In this case, we then have

the situation shown in the figure.

flow flow
(image) (given)
wall
(streamline)
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Example 27

Source with a boundary. A source of strength m is placed at (a,0), ¢ > 0, wherex=0isa boundary. Find the
complex potential for this flow and confirm that u = 0 on x = 0; (b) find an expression for the streamlines; (c)
sketch the flow field.

We show the configuration, first without, and then with, the boundary (wall):

and then the complex potential for the two sources can be written as

w(Z)=£10g(2_a)+ﬂ10g(2+a)=ﬂ10g(22_az)
2 27 27

dw m 27 _ .
(a) So we have — = — which, on x =0 (the wall), gives
Z

b ,
u—iv:ﬂ(—zij =u=0.

2z y2 + a2

2—(1

(b) In order to address this problem, we need a general result. Suppose that we have
. m
w=g+iy =——log[f(Z)],
27
then e27P/™ [cos2zy [m)+isinQRry /m)| = f(Z) = g(x, p)+ih(x,y) (say);
Since we require y (not ¢), we take the ratio of the real and imaginary parts e.g.

h
— = tan(27y /m) = constant on sts.
g

Thus we simply need to find the ratio of the real and imaginary parts of the function inside the log term. In this case, we have

2xy

2 2 2
xX“=y“—a

f(Z2)= Z2 —a2 = x2 —y2 —a2 + 2ixy and so the SLs are = const.
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This can be expressed as Axy = X2 - y2 —a? , where A is a constant which chooses a streamline.

(c) A simple sketch of the SLs:

This idea can be extended, as the next example demonstrates.

Example 28

Source with two boundaries. Find the complex potential for the flow generated by a source of strength m at the point (a,
b) (a > 0,b > 0) with boundaries along x=0, y >0,and y =0, x > 0.

The sourceis at Z, o=a+ 1b in the first quadrant; the image system is then three other identical sources, placed so that the

complete coordinate axes are lines of symmetry; the relevant sections are therefore the walls (boundaries) that we require.
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The complex potential for this system is
w(Z) = g[log(Z —Zp)+log(Z — Zp) +log(Z + Zy) +log(Z + Zy) |
T

:%mg[(zz -73)(2> —Z&)}.

Comment: We shall eventually require a representation of a uniform flow past a more complicated shape e.g. a section

through a wing, usually called an ‘aerofoil section”:
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It is far from obvious how to generate such a shape, but a first step is based on the complex potential for any flow past a
circle. Although, in practice, we will be interested in only uniform flows, the mathematical idea here is important: it allows
us to write the potentials for circles in any flow, even those that contain singularities. These are not of any great physical
interest, with the possible exception of flows containing vortices, but they often provide useful exercises and also some
insight into the nature of various flow fields. Then, once we are able to construct potentials for these flows, it becomes
simply a matter of changing the geometry of the object — and this turns out to be surprisingly straightforward. Note: The
presence of a circle is equivalent to introducing a circular wall - a boundary - into the flow, or, when we extend to 3D,
the surface of a circular cylinder, with the plane being a slice across it. The cylinder is, of course, the usual object used in

the laboratory to test the relevance of any theory associated with the (2D) circle.

4.5 The circle theorem (Milne-Thomson, 1940)

In order to motivate the general result, we consider the problem of uniform flow past a circle (see Example 26), but with
the flow coming from a general direction. This is accomplished, based on that example, by ensuring that the flow out

from the dipole meets the uniform flow head-on:

alignment

of dipole

dipple ~ a

inside

The complex potential is therefore

. 277 i
w(Z)=Ueiaz 4 LY

where we have replaced the strength of the dipole, y, by the resulting radius of the circle generated: a =/ i / 27U so
MU / 2 = azU . Milne-Thomson noticed that this (special) result could be rewritten in the form

. —
W(Z) = (Ue %) Z + (Ue %) “7
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where the over-bar denotes the complex conjugate. This suggested, to him, that this was an example of a more general

result; this led to his circle theorem:

A flow is described by w(Z) = f(Z), where f(Z) is analytic (no singularities) inside and on the circle |Z | =qa. A circle

|Z | = a is now placed in the flow; the complex potential that represents this new flow field is then
Z)=f(Z)+ f(d*]zZ
w(Z) = f(2)+ [f(a"[Z).
where the conjugation of fis taken with the argument of this function fixed (and hence the reason for the short over-bar).

We now provide a proof of this theorem.

Proof

The proof comes in two parts. We need to show that the circle is a streamline of the new flow, so there is indeed a circle
in the flow, and also that the flow outside the circle is essentially what it was before (with distortions, of course). This
latter point amounts to the requirement that the way in which this flow is generated is not changed: it is the same flow
field before the insertion of the circle. This, in turn, means that there should be no change to the singularities in the flow
in |Z | > @ : no singularities must disappear and none should appear. In the case of most interest — a uniform flow - if

there are no singularities before the circle is inserted, there must be none afterwards.

(a) On |Z| =a,sothat ZZ = a2 , we have
W)L, =S D+ 1 (22]2) = f@)+ [(2) = f(2)+ [(2),

which is pure real; thus ¥ =0 on |Z | = a: the circle is a streamline.

- 2
(b) The given f(Z) is analytic for |Z| <a,then f(az/Z) is analytic for aZ

<a (because conjugation changes only the
relevant signs, not the sizes (distances)). Thus f’ (a2 / Z) is analytic for | Z| > g, and so the analyticity outside (and

on) the circle is not changed: no singularities are added and none are subtracted.
o

Comment: The flow at infinity, which is likely to be of interest when we are discussing uniform flows past objects, for
example, is obtained by examining f(Z) alone, as |Z | — 00, because this same limit on the f* term corresponds to points

inside the circle. Thus the behaviour at infinity is exactly that prescribed by the flow before the insertion of the circle.

Example 29

Circle theorem. Obtain the complex potential for the flow, generated by a source of strength m situated at (0,b), past the

circular cylinder |Z| = a , where b > a. Interpret the image system.
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m .
Without the circle, the complex potential for the given flow is W(Z) =—1og(Z —1b); since b > a we may use the
- m .
MT circle theorem, with f'(.) =——1og(.+1b) . Thus the complex potentjizz;l for the same flow (due to the source outside

the circle) past the circle |Z | =a {sr

2

m m a
Z)=—-1Il0og(Z —ib)+—Ilog| —+ib |.

M) 27 & ) 2 & 7

In order to interpret this complex potential, we observe that

2 2 . .2
a4 +1bZ:ib(Z ia /b)’
z
d M 1og| iy | = M tog| 719 |- g (Z)+const
and so — — =— —-1— |- .
2 2|z 2 o\ T2 e

(where the additive constant is irrelevant). The first of these two terms represents a source (of strength m) at Z =1 a2 / b,

which is inside the circle (because b > a ), and the second is a sink, of equal strength, at the origin.
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This figure depicts the flow, generated by a source, around a circle (in the orientation used in the example).

4.6 Uniform flow past a circle

We start with Example 25 or, rather better in the current context, we use the Milne-Thomson (MT) circle theorem directly

to construct the complex potential for uniform flow past a circle:

Here, the uniform flow is speed U parallel to the x- (real-) axis, past a circle, placed at the origin, of radius a; the complex

potential is therefore

2
w(Z):UZ+U“7.

As we have done before, we choose to work with the polar form of the complex numbers, so we introduce Z = rele to give

2

. i Ua®
w=g+iy =Urel? + 22 717,

Clz .
The imaginary part of this expression then defines v as ¥/ (7,60) =U | r ——— |sin @, the stream function.
r
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But the velocity components, in polar coordinates (r, 8) (see §2.6 and Appendix 2), are
2 2

1 a a” | .
u Z(—l/lg,—l//r =\U 1——2 cosd,-U 1+—2 sinf | rza
r r r
and then on the circle, r = a, we obtain U = (0,—2U sin &) . This expression for the velocity on the surface of the circle
demonstrates two properties: (1) the circle is a streamline, because there is flow only around it (i.e. u = 0), as expected;
(2) at 0 =0, 7 there are stagnation points. In addition, surprisingly, the maximum speed on the circle is 2U, which is twice

the oncoming free stream! These occur at the positions 6 =7/2, 37/2:

2U
U
—
U
—_—
2U

We now take this investigation one step further by calculating the pressure distribution around the circle. Let us assume
that there are no body forces, and that the pressure at infinity is p(y; remember that the flow is incompressible and, we
have argued, body forces are negligible in the flows that we wish to examine. We apply Bernoulli’s equation to the streamline

that comes from infinity, goes around the circle and then moves off (to the right) back to infinity; thus we obtain

lUZ +& = constant = £+%(—2U sin 9)2 ,
o,

2 p

where p = p(6) is the pressure on (around) the circle. This result is usually expressed as a pressure coefficient, C P

=L7P0 1 _4sin? 9,
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this describes the pressure around the circle, in a normalised form. We show some typical experimental results, as compared
with the theoretical predictions (which is the curve that is drawn from 1 down to —3 and then back up to 1). The other

curves are based on experimental results, for various Reynolds numbers.

These results show that, typically, the pressure is close to this theoretical prediction only on the front of the circle (circular
cylinder in the laboratory); on the back face, the pressure deviates significantly. (There is one exception to this: very slow
flow produces the ideal flow, symmetric fore-and-aft, that was obtained in Example 26.) The deviation occurs because the

flow separates from the surface of the cylinder, thereby generating a region of turbulent flow in its wake:

wake (eddies/vortices)

hnundary IHyBI’ flow separation

4.7 Uniform flow past a spinning circle (circular cylinder)

As a precursor to our study of aerofoils and, in particular, that model which is needed to describe lift generation, we now
look at the problem of uniform flow past a spinning circle (circular cylinder). The circle is spinning about its centre, the
axis of rotation being at right angles to the (2D) flow field; the experimental evidence is that this spinning tends to remove

the separation phenomenon mentioned above.

The spin, by virtue of the viscosity of the fluid, induces a circulatory motion in the fluid, which is superimposed on the
uniform flow past the circle; this motion is what would be generated by a line vortex (at the origin) plus the uniform
flow. The resulting flow field is therefore a combination both circulation and a uniform flow past the circle. We assume
that the flow has settled to some steady state, albeit generated by viscous action, and then model the resulting flow by a
suitable complex potential. This can be constructed, as before, by using the circle theorem - but with care! We know that
we cannot allow a singularity in the flow, where the circle is to be placed, so we must start with no circulation (which will
be centred at the origin). This is no surprise: we cannot induce circulation in the laboratory, by spinning, without first
having the circle in place. When we remember that we may construct complex potentials simply by adding any (suitable)
combination of simpler potentials, we may follow this recipe: uniform stream + circle + circulation, strictly in this order.
This allows us to use the circle theorem to put the circle in the uniform stream - but we could just add the three relevant

potentials, avoiding the use of the MT circle theorem. Thus we obtain

2
w2)=UZ+U%+iK 10g 2.
VA 2
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where we take K > 0 to be the circulation (clockwise) induced in the flow by the spinning action; this potential is to be
used in |Z| >a.

Note: If the circle (cylinder) is spinning at an angular speed w, then the fluid on the surface of the circle will be similarly

rotating; thus the circulation is

2
K:qSu-dl: J aa).adgzzﬂaza),
C 0

since the speed of the flow, at r = g, in the angular (0) sense, is aw.

As before, we elect to write Z = relez
2
. ig Ua” _jp .K .
w=g+iy =Ure? +——e ¢ +i—(Inr+i6).
r 2r
2
a” | . K

andso Y (r,0)=U| r—— |sinf+—Inr;

r 2r
note that r = g is still a streamline, but now associated with the constant i = 2—ln a . The velocity field becomes

T
2 2
1 a a” | . K1
u=|—yg,~ Y, |=|Uql——tcos@,-Ul+—¢sinf ——-— |
r " 2 2 2z r
r r
and then stagnation points are where
2 2
a a” | . K
u=U|1-—|cos@=0,v=-U|1+— |sin@d—=0,
rz 7‘2 2rr
. K
and these occur on = a (as expected), but only if sin & = —m; this has (real) solutions only for 0 < K <47aU .
wa

At equality, the two stagnation points coalesce; for K > 47zaU (i.e. sufficiently high spin rates) the solution corresponds
to one stagnation point on & = 372'/ 2, outside the circle! (Some details of this can be found in Exercise 83.) These three

cases are shown below:

This is altogether amazing - but it is exactly what we find in the laboratory.
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4.8 Forces on objects (Blasius’ theorem, 1910)

We have seen that, given the velocity field, we can find the pressure (for example, from Bernoulli’s equation); the total
pressure around an object produces the resultant (pressure) force acting on the object. We develop this idea, and show that
the methods of complex analysis lead to a very neat and powerful result. Consider an element of a (1D) closed surface,

C, with inward unit normal n
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then the total pressure force on this curve is

@pnds,where dS =1xds
c
(and so the force is per unit length out of the plane). But the unit normal can be expressed in terms of the unit vectors

associated with the two coordinate directions:
n=jcosf—isinf

dx dy _ . . .
with g =co0s@ and E =sin & . Thus the resultant (i.e. total) force is

ch p(jdx—idy) (per unitlength;
C

it is convenient to define the two components of the force as
X=—¢pdy and ¥ = Cﬁpdx
C c
Similarly, we can define the moment of these forces about the origin:

M= <_f>(pde+pydy),
(o

where the corresponding moment arms are x and y. The configuration therefore takes the form shown below:

4y

\ ):

We now introduce a complex force:

X =Y =P(-pdy—ipdr) =~ p(dv—idy) = -iP pdZ.
C C C
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But on streamlines (and C is a streamline), we have Bernoulli’s equation

%u -u+ P = constant (in the absence of body forces),
P -
dw ) 2 o [dw)(dw
where we may write — =% —1v,andso W-u=u"+v~ =| — || — |; thus
dz dz )\ dz
p=- ! Y2 dw ) dw + constant
27 \dz )\dz '

However, we have (3—;] = j—; (because, for example, (3—;] =f'(Z)= ]_”(Z )), and so we obtain

X—iY:lipqS (d—WJ(d—v_‘}J+constant dz .
2 c|\dzZz )\dZ

where Cﬁ(constant)dz =0 (because a constant is an analytic function of Z -or simply do the integration directly).

Finally,%ince w=¢@+1y then W=¢—1,and so dw=dw (=d¢) on streamlines (where i = constant ); thus

— 2

@[dlj(d_vzjdz :gs(d_Wjdw _ gﬁ(d_wjdw :gs(d_WJ az.

2ldz )\dz 2\dz 2\dz 2ldz
The complex force can therefore be written as the contour integral in the complex plane:

2
x-iv=Lip$[ 2V gz,
25 s\dz

this is Blasius’ theorem for forces.

A similar argument produces an expression for the moment of these forces about the origin:
2
1 dw
M=R{—— p(ﬁZ — | dZ} (denoting the real part).
20 - \dZ

[H. Blasius did this, and the work on the flat-plate boundary layer, for his PhD (supervised by Prandtl); he wrote a book

on mechanics in 1933.]

The problem of finding the components of the force (and the moment) acting on a body in a flow has become a standard
exercise in complex integration in the complex plane. This involves the application of Cauchy’s integral theorems, following
the identification of poles and the evaluation of residues; some eaders may wish to revise this material on complex
integration at this stage. We present two examples that demonstrate how the standard techniques can be applied; the

second example here is particularly important, with far-reaching consequences (and also with some direct applications).
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Example 30

Forces. A source of strength m is situated at the point (b,0), outside the circle |Z | =a (b>a). What force is

exerted on the circular cylinder?

[The result of this calculation may surprise.]

The complex potential for this flow is

2

m m a
w(Z)=—Ilog(Z -b)+—Ilog| ——b

2) 27 & ) 27 8 Z

2

m m a m
=—-Ilog(Z -b)+—Ilog| Z—— |——1Ilog Z + constant,
27 &l ) 27 8 b 27 8

dw m| 1 1 1
- = + -
iz 22\Z-b z-d*/b Z

and so
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Now the value of the contour integral (in Blasius’ theorem) requires the residues of (dw/ dz )2 at the poles inside the
contour, C (the circle here), which areat Z =0, Z = a’ / b . Because we automatically generate the form of the relevant

terms in the Laurent expansion of this function, we need take note of only the terms of the form 1/ (Z - Z)) . Thus we write
dw)®  m’ 2 2 2
a7 ) " 42 27N - 2t
dZ) 47| (z-b)\Z-d%[b)y Z(Z-b) Zz(Z-d%/b)

where the terms omitted are the various squares obtained by squaring the expression — and these cannot contribute to

cene |1

the residue. We now ‘read off” the residues:

2 [ 2
wz=0, |22 :m_{l iz]
4r”| b a/b 27710 a
2 [ 2
2 2 m b b
wZ=dfp. 2L { __]
47[2_a2/b—b az/b 27 a? b &P

Thus, using the Residue Theorem, we obtain

2 2 2
X—iY=lip.2ﬁi.m—2{l+%+%—%}=’Om ——s>0.
2 27 a“ a” -b 27 b(b” —a”)

a

which is the value of X, and ¥ = 0. This result shows that the force on the circle (or per unit length on the circular
cylinder) is towards the source i.e. it is sucked towards the source, rather than being blown away form it (as we might

have expected).

Comment: The reason for this rather surprising result comes about because of the nature of a source flow. The speeds
are very high close to the source, and so the pressures are very low; the speeds further away, near the circle, for example,
are much lower, producing a higher pressure. This effect is stronger than the acceleration of the flow around the circle,

thereby producing a lower pressure on the face nearest the source: the circle is pushed towards the source.

Download free ebooks at bookboon.com


http://bookboon.com/

Example 31

Force on a spinning circular cylinder. Find the force on a spinning circular cylinder (circulation K, clockwise)

which is placed in the uniform flow of speed U, moving parallel to the real axis and to the right.

[The result of this calculation is important and fundamental: it constitutes the Kutta-Joukowski theorem (1902, 1906).]

The complex potential for this flow (see §4.7) is

a? K
wZ)=UZ+U—+1—1IlogZ,
Z 2z

72 2r Z

2 . 2 2 .
and then we have — =U l—a— ﬁi,so (d_w U 1_a_ 1K 1
7?) 2nZ dz

The only pole inside the circle is at Z =0, and then the only term that contributes to the residue is of the form 1/ Z:
1K
20 2— ; thus

T

X—iY=l'p.27ri.%=—ipUK.
2 T

The force is therefore X =0, Y = pUK : the force on a spinning circle (circular cylinder) is at rightangles to the

oncoming stream.

This example demonstrates how spinning objects, in a flow, generate a sideways force; this was first observed by Robins
(1742) and then investigated by Magnus (1853) - and both names have been associated with the phenomenon. The
application to the propulsion of a ship was developed by Flettner in the mid-1920s. The effect is also very evident in various
ball games e.g. golf, football and tennis; the cricket ball also uses this property, but many other effects are present in this
case! Note that the force generated by the circulation and the oncoming stream is at right angles to that stream: motion
(or flow) in one direction produces a force at right angles to this direction — we may have the basis for lift. Schematically,
we therefore have a circle with circulation (clockwise) and a flow from left to right; the force is then leftwards, relative

to the oncoming stream:
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49 Conformal transformations

In our discussions so far, we have developed techniques that enable us to construct models for flows around circles;
primarily, this involves the application of the Milne-Thomson circle theorem. Once we have the complex potential, we
can use the Blasius theorems (for forces and the moment) to find the effects of the flow on the circle (circular cylinder).
The issue that we must now address is: how do we apply these ideas to other shapes? These shapes will be described by

bounded curves - so no walls that extend to infinity — and should include shapes like aerofoils:

The technique that we develop involves mapping between two complex planes:
aerofoil — circle (which can be solved) — aerofoil

Z-plane {-plane
Z=x+1y =&+1n

with a mapping Z = F'({). This mapping must be one-to-one, at least in the region occupied by the fluid and the
boundary of the shape; it is only points in this region which are described by the complex potential - the rest of the
plane (the interior of the boundary defining the shape) is replaced by a solid body. Then the process involves mapping
from the ‘physical plane, which contains the aerofoil, to the auxiliary plane containing the circle; this problem is solved
completely (whatever that might mean) and then the results are mapped back to the physical plane. Clearly, we need to
discuss the properties of such a transformation. A suitable transformation must produce the required shape (aerofoil to
circle to aerofoil), and also generate all the required properties of the flow past the aerofoil e.g. the force and moment.
First, we will discuss the general notion of such a transformation, and then (in the next chapter) describe the particular
transformation that possesses all the properties that we require. Then we will describe, in great detail, the properties of

the relevant tgransformation, whereas here we will approach the issues within a more general framework.
The transformations that we work with are called ‘conformal’; we describe what this means. Consider three neighbouring

points in the Z-plane, and the three points that they map to in the {-plane; we assume, at the outset, that the points under

discussion satisfy the one-to-one property.
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Z=F()
41 Z

We form

Z1-Z _FQN-FQ) Z-Z F()-F)
a1-¢ a1-¢ ¢ —¢ ¢ —¢

and then perform the limiting processes: {1 —> ¢ and {5 — &, at fixed a. (It is assumed that the mapping remains

>

one-to-one at every point on the lines between { and {7, and between { and 75 .) The result, provided that F'(¢)

exists and is non-zero, is that

. F(@—F(o}z P ‘F(@)—F(g)}

4111—1?1 17¢ ) glzling_ $H-¢

y {M}l. 'F(@)—F@}_
S a-c TN a-¢

In particular, as the limit is approached, we have the geometrical property

arg(Zy —Z)—arg(¢y —¢) = arg(Z, —Z) —arg(¢, = <)
andso are(¢y &) —are(ly ~ &) =arg(Z, ~ 7)-are(Z) - Z)
ora=p.

Thus, at points where F'(¢") exists and is non-zero, the transformation Z = F'({’) preserves angles; this is the essential
feature of a conformal transformation. Indeed, even where, exceptionally, angles are not preserved - but they are everywhere
else in the plane — we still call the transformation ‘conformal. Points where conformality fails are called branch or critical
points of the transformation. At these points, either F'({’) is undefined i.e. its value approaches infinity as the point is
approached, and so the determination of a direction is impossible; similarly, if F'(<") is zero at the point, the direction

is not unique - the determination of angle again fails.
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Note: Smooth curves, where the local angle is 7 (the tangent), map into smooth curves - the same angle 7 — away from
critical points of the transformation. At the critical points, the particular transformation must be examined in order
to determine what happens at each. We shall see how this is done in the case of the transformation that we use for the

generation of aerofoil shapes, in Chapter 5.

Example 32

Conformal transformation. Consider the region 0 < @ <, ¥ > 0 in the { -plane, under the transformation
Z=F()=¢ z/a ; find the corresponding region in the Z-plane.

Thetwoplanesareshownhere,wheretheline { = 7 becomes Z = l’”/ % and ¢ = re'” becomes Z = r”/ “el% = —I’ﬂ/ “.

Further, any point interior to the ‘wedge’

; :reia

7 = rﬂ'/aeiﬂ' :_rﬂ/a 7 = rﬂ/&

{-plane Z-plane

ﬂ/aelﬁe/a

region in the {-plane, { = reie, 0<f<qa,mapsto Z=r , 0< 07[/05 < 7, which is in the upper half-

plane. Thus the wedge region, and its boundaries, map to the upper half-plane, with the real axis becoming the boundary.

T _
Note: In this previous example, we have F'({) = —é’ﬁ/a Liro< mj/a <1, then F'({) is undefined at  =0;
if 7 / a>1,then F'({) iszeroat £ =0;in both%ases, conformality fails (and here, as we have seen, the angle at the

origin changes from « to 7). If & = 77, the transformation is simply an identity: nothing changes.
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4.10 The transformation of flows

In the previous section, we considered, briefly, the problem of transforming between shapes; now we examine how this
same principle - applying a conformal transformation — works for flows represented by a complex potential. We assume
that the conformal transformations are one-to-one in the region occupied by the flow and the boundary of the object
placed in the flow; we do not apply the transformation to points inside the boundary i.e. points that are within the solid
object. Suppose that we have a complex potential w(Z), describing the flow in the Z-plane, and a conformal transformation
(in the sense developed earlier, so it may contain a finite number of points where conformality fails) represented by

Z = F({). The resulting potential in the {-plane is then
W(&)=wiF ()}

we now investigate the properties of this new potential.

(a) Streamlines (and so boundaries of objects)

A streamline, C, in the Z-plane, is defined by

3J(w) = constant (denoting the imaginary part) on C.

STEP INTO A WORLD
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Let T, a curve in the {-plane, map into the curve C; then we have

SO = AWEFEE)]| = SIM2)]| - = constant,
and so streamlines map into streamlines.

(b) Flow at infinity

The flow at infinity, in the Z-plane, is obtained by examining the behaviour of w(Z) as |Z | —> 00; correspondingly, for
the flow in the {-plane, we examine W({) as |§| — 0. Thus, if F({) has the property: F'({)= ¢ , as |§V| —> 00, then

the flows in the two planes, at infinity, are identical i.e.

W(G)=w(F ()= W) as|g]— 0.

An example with this property is the transformation

1
F({)=¢+—,
(©) §+§

which is precisely the form that we shall discuss in the next chapter. We often aim to use transforms that satisfy this
property. Then the flow past a shape maps into the same flow past a different shape e.g. uniform flow past a circle maps

to uniform flow past an aerofoil (and vice versa).

(c) Singularities

From what we have seen so far, it must be assumed that singularities (sources, dipoles, etc.) are likely to be important
in the complex potentials that we discuss (because they will be used to construct the shapes of objects in the flow). Of

course, we must hope that any singularities do not appear ‘naked’ in the flow field.

Let there be a singularity at Z = Z(y in the Z-plane, but such that Z does not coincide with a branch point of the

transformation; let this point map to ¢ = ¢y in the {-plane. For convenience, we write the potential in the Z-plane as

WZ)= f(Z~Zp).
then we obtain W) =wF () = fFE)~F(&o)}
= FUE = C)F' (o) + .} s £ =y,

which is allowed since F'({)) exists and is non-zero (because ¢ = ) is not a branch point). Thus a singularity maps
into the same type of singularity but, in general, with a change of strength (by virtue of the factor £'({(y) ). To see how
this happens, consider the dipole: W(Z) = A/(Z —Z), then

4 _AF (&)

W() =
(©) (¢ =C)F'(Cp)+... ¢=Cp

near the singularity
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(at § = in the {-plane); this is a dipole, but with a strength (and direction) given by A/ F'(y)-

Comment: An important example arises in the case of a ‘log’ singularity — a line vortex or source/sink - as we now show:

given W(Z) = Alog(Z—Z;), then

W () =Al(S—Sp)F'(p) +....] = Alog(& — &) + constant

close to the singularity at § = §y. Here, the additive constant is the only result of the transformation, and we already

know that additive constants have no affect on potentials, so we have generated here exactly the same singularity.

(d) Complex velocities

Complex velocities in the two planes transform in the obvious way:

dw  dw

Q_EF’@)'

which are exceptional only at branch points of the transformation; this turns out to be significant in what we do later.

Example 33

Transformation of a flow with a source. A source of strength m is situated at ¢ = ¢ = ae' (0<a <) in the <
-plane, with a boundary along 7 =0 (—00 < & < 00 ). Write down the complex potential for this flow. Now transform

this under { =7 " to obtain a corresponding potential in the Z-plane, and interpret this in the case n =2 .

The complex potential for the flow in the (-plane, obtained by using the method of images (§4.4), is

W(&) = log(¢ = ¢o)+ 5 log(¢ ~Zg) = log[ (£ ~£0)¢ = 5p)].
T 2 2r
Let Zy = (aeia )1 " and introduce the transformation £ = Z" to give
Ww(Z) = %log [(Z” _Z0NZ" - Z{;)} .

In the case 7 =2, this reproduces the complex potential for a source in the first quadrant with the positive axes as

boundaries (walls); see Example 28.
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Exercises 4

74. Cauchy-Riemann relations ¢ Laplace’s equation.

(a) Given W(z) =w(x+1y) = @(x,y)+1w(x, ), where both ¢ and ¥ are real functions, construct 5/ Ox and

6/ Oy of this definition and hence recover the Cauchy-Riemann relations.

2 2
ow 0w - .
(b) Given Laplace’s equation, St 5= 0, introduce the ‘haracteristic variables z=Xx+1y,z = x—1y,
ox oy

transform the equation and hence find the general solution for w. [Cf. d’Alembert’s solution of the wave equation.]

75. Laplace’s equation: solution. Use the method of separation of variables to find the solution of Laplace’s equation, written
in polar coordinates. Now use your result to find the solution to the problem of the symmetric flow from infinity

(y = +0) approaching the solid boundary which comprises the wall y = 0, x > a,x < —a, and the semicircle r
=a, 0<O0<7.

76. Potential function & stream function. (a) Find the velocity field represented by the stream function i = 2kxy , where
k is a constant. Now suppose that ¢ =k (x2 - yz) is a velocity potential (i.e. satisfies Laplace’s equation) and show
that it generates the same velocity field as for /.

(b) Find a velocity potential, @ , which is a polynomial of degree three in x and y.

efficiency reliability delivery

As a leading technology company in the field of geophysical science, PGS can offer exciting
opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other
numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

A Clearer Image
WwWww.pgs.com

AN

AR AR AR AR AR AR RN AR RR AR ARURN A AR AR AR AR RN AR ARRUAR R

Download free ebooks at bookboon.com

134


http://bookboon.com/
http://bookboon.com/count/advert/5aa0fd82-96d7-e011-adca-22a08ed629e5

77. Dipole. (a) Express the family of curves 7 = ksin(€ — ) , where & is a fixed constant and k is the parameter which
generates the family, in Cartesian coordinates; hence show that each member of the family is a circle with the line

€ = a as a tangent at the origin.
[Hint: use sin(d— «) = sinfcosa — cos@sin & , and then introduce x =rcos@, y =rsinf ]

(b) For a=7m/4, use suitable software (e.g. MAPLE) to plot the curves r=ksin(d—-«a), 0<O<x, for
k=n (n=-3,-2..3), all these 7 being on the same graph.

78. Flow past a circle. See Example 26; the equation for the stream function can be written (in Cartesians) as
w=y(1-1/ (x2 + yz)) , where we have chosen U = g/ 27 . [N.B. Can you confirm this? (No need to do it!)]
Use suitable software (e.g. MAPLE) to plot the streamlines yy = —4,—-3...4 , with 2 <x<2,-2<py<2,allon
the same graph.

79. Uniform flow + source. See Example 25; write down the complex potential for a uniform stream past a source. Find

the equation (expressed in polar coordinates) of the streamline which passes through the stagnation point. Then

(a) show that one branch of this streamline is € = 7 ;

(b) find 7at 6 =7/2,37/2;

(¢) show that rsin@(= y) = +m/2U as 0 - 0.

(d) Use suitable software (e.g. MAPLE) to plot the curves r=(nz/4-0)/sinf, n=4,5.8, for
0-027 <0 <0-987 , all 5 on the same graph.

[This uses the choice m = 27U and n = 4 gives the shape of the body; n > 4 then produces streamlines that represent

the flow around the body. This plot generates only the upper half-plane; the lower follows by symmetry.]

80. Complex potential from a velocity field. A velocity field is given by
ay b’(x*-y") ax 2b%xy
uEUl_z T 232 22 T N2 )
x+y (xX+y) x+y (xT+y7)

here a, b are constants. Find the complex potential (if one exists) and hence interpret the flow field.

81. Flow past an ellipse. Given the complex potential W(z)=U{a'z —b'(22 —a’+ bz)l/ 1, where
(a',b") = (a,b) / (a—b) and the positive square root is chosen wherever z is real and greater than a’-b* ,
show that this represents uniform flow past the ellipse X =acos@,y =bsin@. [Hint: consider the contour

3(w) =0 and also examine the behaviour of w as |Z| — 0]
2
82. Uniform flow past a boundary. Given the complex potential, w (z), such that w? =z® — 1, show that the streamline

W =1 is the curve y2 (I+x 2) = X’ Hence deduce that w(z) represents a uniform flow past the object whose
boundary is ¥/ = I.
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Use suitable software (e.g. MAPLE) to plot this shape (I = 1) and the streamlines Y= 0.5, 1.5, 2, all on the same
graph, with —3SXS3,—3S)/S3.

83. Spinning circular cylinder. See §4.7; find the stagnation points for the uniform flow past a spinning circle (circular
cylinder) in the case K > 4mqU, and show that the solution requires 6 = 372'/ 2 with only one solutionin 7 > a ,
i.e. in the flow field, and find r.

84. Source near a wall. Use suitable software (e.g. MAPLE) to plot the streamlines for the problem of a source in the presence
of a wall; see Example 27. In particular, plot the curves defined by X2 - y2 —1+2nxy =0 for n=-2,-1..2 , with
0-1<x<2, -3<y<3,all5 on the same graph.

85. Source + sink. A source of strength m is placed at (4,0), and a sink of equal strength is at (-a,0), in a fluid which is
otherwise at rest. Write down the complex potential for this flow, and show that the streamlines are circles. [Hint:

introduce z = x + iy and use the method developed for Example 27.]

86. Two sources + sink. (a) Write down the complex potential for a sink of strength 2m at the origin and sources
each of strelzlgth m at (£a,0). Show that the streamlines of this flow field can be written in the form
(X >+ yz) =a’ (x 2 - y2 + kxy) , where k is the constant which identifies each streamline.

(b) Now take the configuration in (a) and let @ — 0, m — 00, but such that azm remains finite; find the resulting
complex potential. [Cf. §4.3 for the dipole.]

87. Source + sink + stream. In a uniform stream of speed U, which moves parallel to the x-axis (in the positive x-direction),
are placed a source of strength m at (-a,0) and a sink of equal strength at (4,0). Write down the complex potential for

this flow and find the positions of all the stagnation points.

Now find a general expression for the streamlines and hence show that the streamline which has y = 0 as one branch can

be written as
(x2 +y’-a’ )tan(27sz/m): 2ay.

88. Three vortices. Two line vortices, each of strength K, are situated at (*a, 0), and another, of strength — % K, is placed
at the origin. Show that the fluid at infinity is stationary, and also find the positions of the two stagnation points. Find
an equation for the streamlines, and hence show that the streamline which passes through the stagnation points meets

the x-axis at (b, 0), where b is a solution of
2
3W3(b* -a?) =16a’.

89. Two sources + two sinks. Two sources are placed at (£a,0), and two sinks are placed at (0,£a), all four being of

equal strength. Show that one streamline is the circle which passes through all four points.
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90. Method of Images I. In these two-dimensional flows, a source of strength m, and a sink of equal strength, are positioned
as below; in all cases @ > 0 (real). The boundary to the flow, and the region of the flow, is given. In each case, use
the method of images to write down the complex potential for the flow and find the velocity components at the point

requested. Also provide a rough sketch of the flow field in the region where the flow exists.

(a) Source at z =1a and sink at z = 2ia ; boundary is = 0 and the flow is in y > 0; find the velocity components
at z=a.

(b) Sourceat z = 2a and sinkat z = @ +1a ;boundary is X = 0 and the flow isin X > 0 ; find the velocity components
at z=0.

(c) Source at z = @ andsink at z =24 +ia ;boundaryis X = 0 and the flow isin X > 0 ; find the velocity components
at z=0.

(d) Source at z =1a and sink at z = a@ +1a ; boundaryis y = 0 and the flowisin } > 0; find the velocity components
at z=0.

91. Method of Images II - source. A source of strength m is situated at the point (a,0), with @ > 0, in a fluid which occupies
the region X > 0,—00< y <00, where the axis x = 0 is a solid boundary. Show that the equation of the streamlines

L2 2 2 . . . .
isXx"+Axy—y~ =a’, where A is the constant parameter which describes the streamline.

92. Method of Images III - source. Write down the complex potential for the flow which is generated by a source of strength
m located at (a,0), with @ > 0, where the lines y =+x,x >0, are solid boundaries. Give a rough sketch of the

streamlines.

93. Method of Images 1V - source. Write down the complex potential for the flow which is generated by a source of strength
m at the point z = ae'® , where 0 < a < 72'/ 3,and where z=r,z=r¢e iz/3 are solid boundaries. [Hint: look for

six-fold symmetry.]

94. Method of Images V - source/sink. A source of strength 11 is situated at (a,b), and a sink of equal strength is at (
a,—b), in a flow field which is restricted to the region x > 0 ; both a and b are positive and the axis x = 0 is a solid
boundary. Obtain the complex potential for this flow and hence derive the equation for the streamlines. Confirm

from your equation that x = 0 is indeed a streamline, and show that another branch of the same streamline is a circle.

95. Method of Images VI - source/sink. A source of strength m is located at (— 2a,b ), and there is a sink of equal strength
at (2a,b), where both a and b are positive. Find the equation which describes the streamlines for this flow and show
that they are circles of radius 1/4a” + (A1 —b)” , centre (0, 1), where A is the constant parameter which identifies
the streamline; cf. Ex. 85. Find the speed of the flow at the origin.

A flow is generated in exactly the same fashion, but now in the presence of a solid boundary : the axis y = 0, and the flow

is restricted to the half-plane } > 0. Directly from the appropriate complex potential, deduce the speed of this new flow

at the origin, and show that it is twice that obtained in the absence of the boundary.

96. Method of Images VII - vortex. A line vortex of strength K is located at z = ib (where b > ()) and the axis y = 0 is a
solid boundary; the flow is restricted to the region ) > 0. Find the complex potential for the resulting flow. [Hint:

take care - mirror image !] Give a rough sketch of the streamlines.
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97. Method of Images VIII - vortex. A line vortex of strength K is placed at z = ae'* O<a< 7Z'/ 2), with solid

boundaries along z =r,z = rem/ 2 . Find the complex potential which describes the flow field in x > 0,y > 0.

98. Method of Images IX - vortex. A line vortex of strength K is located at (a,0), where @ > 0 and x = 0 is a solid boundary;
the flow is restricted to the half-plane x > (. Obtain the equation for the streamlines of this flow and show that the

streamline which passes through the point (£¢a,0) also passes through (a/,0), where 0 < z < 1.

99. Method of Images X - moving vortex. See Ex. 97; now find the complex velocity that describes the motion of the vortex (i.e.
ignoring the singularity associated with the vortex; cf. Example 22). Write this complex velocity as dw/ dz= X -iY
(where the dot denotes the derivative with respect to time) and hence deduce that the path of the (moving) vortex
is given by dY/dX =-Y 3 / X3 . Hence obtain the family of paths X 2 iy 2= constant, and sketch a typical
path. [Note: The vortex is at z = aeia only att=0.]

100. Elements of the Circle Theorem. For the following functions,f(Z), write down f (z) and f (a : / z) where U, a, b

and ¢ are real :
(@) Ue "z, (b) logz; (o) log(z—ia); @) ilog(z —ia); (¢) €' /(z—a —ib).

101. Simple conformal transformation. Given the conformal transformation § = 1/ z (z #0) show that (a) the region
interior to |Z| =1 maps into the exterior of |§ | =1 and (b) find into what the circle |Z| =1 maps. Then find the
result of applying the mapping to : (c) the circle of radius b (# @), centre at z = ae'?; (d) the circle of radius a,

1
centre Z = ae a‘
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102. Forces & moment. The complex velocity for a flow is written as the Laurent expansion , where

a

dw - —n
—=U+ Zanz
n=1

, are complex constants and U is a real constant. Find the moment (about the origin) of the forces which are

exerted on a contour which encloses z = 0. Now apply your result to the uniform flow about a spinning cylinder.

103. Forces I. Write down the complex potential, w(z), for the flow about the circular cylinder |Z| =a, produced by a

source of strength m at z =2a . Show that :
(a) the force on the cylinder is ,Om2 / 127a (per unit length), and find its direction;
(b) ff)C (dw/ dz)2 dz = 0 where C is the contour |Z| = 3a, and hence deduce the force on the source.
104. Forces II. See Ex. 103; now find the force on the cylinder when the source is at the general point z=na (n>1).

105. Forces I1I. Write down the complex potential for the flow about the circular cylinder |Z| = a , generated by a source
of strength m at (0,2a) and a second source, of strength 2m, at (2a,0) . Find the components of the force exerted

by the flow on the cylinder.

106. Forces IV. Write down the complex potential for the flow past the circular cylinder |Z| = a, produced by a source
of strength m at (2a,0) and a second source, of strength km at (—3a,0) . Find the force exerted by the flow on the
cylinder, and show that this is zero if f = E (_1 + 5\/5 ) .

7

107. Uniform flow past a boundary. A uniform flow (speed U parallel to the x-axis) past the circle |Z| =c is transformed
accordingto z =¢ +a : / ¢ ; show that the resulting potential in the g -plane relates to the same flow past a branch

of the curve

(x2+y2)(x2+y2—cz)+2a2(x2—y2)+a4 =0.
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5 Aerofoil Theory

In this final chapter, we collect together all the ideas and techniques that we have developed - including the nature of
viscous flow - and apply them to an introductory discussion of aerofoil theory. In particular, we introduce a simple
conformal transformation that generates a class of aerofoil shapes from circles; this is then applied to uniform flow past
a circle (and the same flow past an aerofoil), enabling us to provide a very simple explanation of, and a formula for, the

lift generated by the aerofoil.

In 1910 - and this should be compared with 17 December 1903, the first flight by the Wright brothers - a Russian
mathematician, N.E. Joukowski (sometimes transliterated as Zhukovsky) discovered a simple, but powerful, conformal
transformation. [N.E. Joukowski, 1847-1921; taught analytical mechanics at Moscow University from 1874; made
contributions to many branches of mechanics; developed the theory of the gyroscope.] This produces aerofoils from
circles, and otherwise has all the properties that we might expect and hope of a transformation that is of practical use.

The philosophy that we adopt is then:
aerofoil —> circle —> aerofoil
Z-plane (-plane Z-plane

given solve results

but, because we shall be able to confirm that the transformation is conformal and one-to-one, as required, and we already
know how to formulate and solve the problem for flow past a circle, it is usual to work with only the last two stages here.
That is, we set-up a suitable problem of flow past a circle (in the {-plane), determine the flow characteristics that are

relevant, and then map this to the Z-plane that contains the aerofoil that we wish to study.

The Joukowski transformation (JT) is

2
a
Z:é’+? ('a real with a > 0);

s0 ¢P-zi+a’ =00 (¢-12) =177 -d°

ie. g:%(zm/zz—%zj.
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Clearly, from the definition of the JT, we have Z = { for |§ | —> 00, but we must be able to map back again i.e. we require
a one-to-one mapping. (Note that this condition ensures that the flow at infinity, in the two planes, will be identical.) Now

=7, as |Z | —> 00, only if we select the positive sign above; thus we regard the JT, in its entirety, as

2
7=c+%
§+§

§=%(2+m)

Finally, we observe that the JT, Z = F({)=¢ +a? yhas F'({)=1-

mapping points outside and on.

2 2
a

2 b
¢

thus we have branch (critical) points of the transformation at C; =0 and é’ = ta . (The first point is where the derivative
is undefined, and the next two are where it is zero.) We now investigate what happens to various circles, in the {-plane,

which are mapped to the Z-plane under the JT.

5.1 Transformation of circles

The {-plane contains the circle, whose position is carefully chosen, particularly with regard to the positions of the branch
points. It will soon be evident that the branch point at the origin is irrelevant: it will always lie inside the circle (and points

inside are not mapped); the other two may be on the circle, or inside, but never outside.
(a) Circle |§| =b(>a)

We set { = be'? ,and then 0 <8 <27 maps out the circle; the JT therefore gives

. 2 . 2 2
Z:belg+a7e_“9: b+% cos@+i b—% sind,

2 2
and so xX= b+% cos, y= b—% sind,

which is the parametric representation of an ellipse (with semi-axes b+ a 2 / b and b—a 2 / b). Thus the circle, which
encloses all three branch points, maps into an ellipse (which encircles the points 2a and —2a into which the branch

points map):
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The solid lines show the circle and the ellipse, and we note that the resulting curve is smooth: it is conformal everywhere.
If we select points exterior to the circle — and the dotted circle selects just such a set - then these map to points exterior
to the ellipse (the dotted ellipse). Thus the region occupied by the boundary of the circle and its exterior map to the
boundary of the ellipse and its exterior; points inside the circle are not mapped. [It is left as an elementary exercise to

confirm that, indeed, the ellipse encircles the points Z =32a ie. b+ a’/b>2a for b>a ]
(b) Circle |¢]=a

This time the circle passes through the two branch points at { ==+a; we set { = ae]H , and so

-i6

Z:aei‘9+ae =2acos0;
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this is a flat plate positioned on the real axis (from —2a to 2a). Points exterior to the circle follow the discussion above:

they map to points exterior to the plate (the dotted curves below):
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This description of these exterior points enables us to identify points above and below the (infinitesimally thin) plate.
Consider the circle exterior to |§ | = a , and allow its radius to approach g; this corresponds to an ellipse which approaches
the flat plate in the Z-plane. For 0 < @ < 7 on the circle in the {-plane, the corresponding points in the Z-plane are just
above the plate; for 7 <@ <27, they are just below. Also note that the plate is flat, so everywhere along its surface,
conformality occurs - but conformality fails at the front and back (called the leading and trailing edges), where 6 =0, 7
(ie. £ =%a): the branch points.

Note: If we allow b —> a in case (a), then we recover the flat plate, although the curvature changes dramatically at

0 =0, 7 as the limit is completed.
(¢) Circle |§—ik| =r for k>0 (real) and 7’2 = a2 +k2

This circle also passes through the two branch points at { = *a , but its centre is moved up the imaginary axis, to § =1k
. Here, we set { =1k + 7’619 to give

2 2 . _

) ; a . ; a -1k +re
Z:1k+re“9+—.9:1k+re19+

ik +re

0

ik+rel? ik +re?
where, in the second term, we have multiplied top-and-bottom by the conjugate. This then becomes
a?(=ik +rcos @ —irsin @)
(rcos0)% + (k +rsin )

Z =1k +r(cos@+1sinf)+

which eventually gives — the details are unimportant in the analysis as presented here - the parametric form of the

resulting curve in the Z-plane:
o 2% (r+ksin@)cos®  2k(k+rsin)>
2 + k2 +2krsin @ 7% + k2 +2krsin 0

The curve represented by these expressions turns out to be the arc of a circle, but the upper and lower surfaces — interpreted
as such, following our discussion of the flat plate - are not mapped symmetrically. The upper surface is mapped out as
6 goes from { =a to { =—a along the upper arc of the circle in the {-plane; the lower arc of the circle - the same
shape! — in the Z-plane is recovered as 6 goes from { =—a to { = a along the lower arc in the {-plane. (This explains

the complicated structure of the parametric form for what is, apparently, a simple curve.) This is evident in the figure:
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{-plane Z-plane

The radius of the circle, whose arc is generated in the Z-plane, is k + a/ k and the intercept on the imaginary (y-axis) is
at y =2k . Like the flat plate, it is smooth — so conformality is evident — along the arc, but conformality fails at the two
end points (corresponding to { = Za, the branch points in the {-plane). This is called the cambered plate; it was the
shape chosen by the Wright brothers for their Wright Flyer I - its lift-generation is far better than for a simple flat plate

(which does generate lift, but not as much).
(d) Circle |§’ —a+ r| =r(>a)

This time, the circle has its centre moved along the real axis (to § =a —r (< 0)), but with a radius chosen so that the
circle passes through the branch point at { = @ ; the choice otherwise ensures that the circle encloses the other branch
pointat { =—a.Weset { =a—r+ rele and then the calculation follows those described earlier; the result - the

details are again unimportant — is:

az(a—r+rcosﬁ)
X=a-r+rcosf+

(a—r+rcost§?)2 +(rsin9)2 ’

azr sin @

y=rsinf— 3 5
(a—r+rcosf)” +(rsinf)
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This is a symmetric aerofoil, for which the leading edge - to the left - is round-nosed, and the trailing edge - to the right
- is sharp; indeed, the shape at the trailing edge is a cusp. This aerofoil shape satisfies conformality everywhere, except at
the trailing edge; this is consistent with the original circle, which encloses one branch point (cf. the shape of the ellipse

in (a)) and passes through the other (cf. the flat plate and the cambered plate).

(e) General Joukowski aerofoil
We now combine all the ideas exhibited in the previous examples. We select a circle, in the {-plane, which encloses the

branch pointat { = —a (resulting in a round nose), which passes through the branch pointat {’ = a (producinga sharp

trailing edge) and which has a centre moved into } > 0 (see (c)) giving a bend (camber) to the aerofoil. Thus the circle is

aSh
&J

(-plane

N

which has a centre at { = ¢, where ¢ is a suitable complex number. The resulting general Joukowski aerofoil is then

— ‘

-2a 2a
Z-plane

Other examples of Joukowski aerofoils are shown in Appendix 5.
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5.2 The flat-plate aerofoil

The problem that we formulate here is the simplest one under the umbrella of aerofoil theory, in the context of the Joukowski
transform: uniform flow past a flat plate. To accomplish this, we first consider the problem of a general uniform flow
(speed U, angle of incidence «) past a circle in the {-plane; the circle is to be of radius g, so that the flat plate is obtained
in the Z-plane. This problem comprises elements that have already been discussed: uniform flow past a circle (§4.6) and
the transformation to produce a flat plate (§5.1(b)). Because we are familiar with the appropriate problem that we need
to formulate in the {-plane, it is unnecessary, formally, to start with the Z-plane, map to the {-plane and then back again:

we shall start in the {-plane and then simply map to the Z-plane.

Thus, in the {-plane, we have the flow (see §4.5, 4.6) past a circle, which is placed at the origin, with the flow direction

given by a which, in the context of aerofoil theory, is called the angle of incidence:

The complex potential is
2
— ia 4
W(él) =Ue lag +Uela ?,

obtained, for example, by invoking the Milne-Thomson circle theorem,; this circle is of radius g, ensuring that a flat plate

is generated in the Z-plane. This potential is now transformed, according to

c-Yonl7ad)
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to produce the corresponding potential, W(Z) =W ({(Z)), for the flow in the Z-plane which, we know, contains the
plate. (Remember that we map only those points outside and on the circle i.e. for |§ | 2 @ .) It is convenient to write the

complex potential as

2
w@g)=U (cosa—isina)§’+(cosa+isina)a—

2 2
a ) a | .
=U 4’+? cosa—1| { —— [sina

and then, in the first bracketed term, we use Z =¢ + a’ / ¢ ; in the second term we use
1 [ [
¢ =5(Z+ z? —4a2j written in the form 24 —Z = 7%~ 44,
with § — a’ / § =¢—(Z—-C)=2¢ —Z . Thus the potential for the flow in the Z-plane becomes

w(Z)=U{Zcosoz—i\/Z2 —4a° sina};

we note that, for |Z | — 00, we obtain W(Z) = U (cos @ —isin@)Z which is the same uniform flow at infinity as in

the {-plane - exactly as expected for this transform.
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Although we could find, for example, the streamlines for this flow — not quite routine, but possible - it is more enlightening

to construct the complex velocity, and then evaluate this on the plate. Thus we have

) VA .
d—VZV:Ucosa—l—Usma,

NZ? - 44?
which, we note, is defined everywhere away from Z =24 ; on the flat plate where Z =2c0s@ (where 6 takes us
around the plate; see §5.1(b)) we obtain

dw ) )
—=u—-iv=Ucosa—-Usinacoté.

This expression is pure real i.e. there is no component of the velocity through the plate: the plate is a streamline. However,
the x-component of the velocity is undefined at @ =0, 77 i.e. at the leading and trailing edges of this flat-plate aerofoil.
Also,at @ = &, T+« , we have u = 0 ; these two points — one on the upper surface and one on the lower surface - are

therefore stagnation points of the flow. The resulting flow, represented by the streamlines, is

and the two aspects of the flow just mentioned are clear. The infinite speeds at the ends of the plate are evident by the flow

having to accelerate around the infinitesimally thin plate, and the two stagnation points are also obvious.

The flow is clearly symmetric above and below (but reversed); consequently, whatever the pressure distribution is on top,
it is repeated (in reverse) on the bottom: there can be no lift generated by this flow pattern past the plate. Indeed, by the
Kutta-Joukowski theorem (Example 31), we know that the lift is zero: in this flow field there is no circulation (K = 0).
(The anti-symmetry does produce a moment about the centre of the plate, tending to pitch it upwards at the front; more

of this later.) So what can we do to generate lift?

The flow past a flat plate (with the angle of incidence, «, not too large — say not more than about 10?), as observed in

the laboratory, looks rather different; typically, it has the following form:
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This flow has a number of important differences as compared with the theoretical prediction described above. Although
there is a stagnation point on the lower surface, there is not one on the upper surface. Also, although there is still a high
speed of the flow around the front of the plate — high, but not infinite, because a real plate has a non-zero thickness and
a non-zero radius of curvature at the leading edge - the flow at the trailing edge leaves smoothly and with a speed not
far different from the free-stream speed. This phenomenon can be interpreted like this: the stagnation point that was
on the upper surface moves to the trailing edge and nullifies the infinite speed that was there. (Clearly, the symmetry
- reversed — on the upper and lower surfaces is no longer evident, so perhaps we will get lift this time.) How has this

change come about?

It is the property of viscosity in a real fluid that produces the flow field that is observed in the laboratory. The flow on the
upper surface, by virtue of the viscous forces, remains attached to that surface, allowing the flow to leave the trailing edge
smoothly. The effect of viscosity is, therefore, to take the inviscid (ideal) flow and induce a rotation in it, to the extent
that the stagnation point on the upper surface is moved towards the trailing edge of the plate; this is precisely the effect
that circulation would generate. (There is NOT a corresponding forward movement of the lower stagnation point, leading
to a cancellation of the infinite speed there. Remember what happened to the spinning circle (see §4.7): both stagnation
points moved downwards (and downwards is towards the trailing edge on top, in the geometry of the plate, and away
from the leading edge on the bottom).) The general phenomenon of fluid sticking to a surface is well-known. Consider
what happens when pouring a liquid out of a jug; a poorly-designed lip causes the liquid to dribble over and down the
outside of the jug: the fluid wants to stick to the surface of the jug. A good design forces the liquid to make a clean break
at the lip, and pour away from the surface. This adhesive property of a real fluid is usually called the Coanda effect (after
the Romanian aerodynamicist H.-M. Coanda, 1885-1972, who investigated this property of fluids, and designed many
devices that use this phenomenon). It can happen that the flow over the wing does not remain attached; this occurs when
the wing stalls. The boundary layer, which is always present in the flow of a viscous fluid, gets pulled away from the surface
(due to adverse pressure gradients), causing a very turbulent region to appear behind the aerofoil, involving eddies and

vortex shedding, and resulting in a very significant loss in the lift force:
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The viscous forces, therefore, are fundamental in the realisation of these flow fields (and, as we shall see, these flows DO
produce lift on the aerofoils). However, because the Reynolds numbers are so high, the effects on the flow are otherwise
negligible - if we ignore the generation of drag! The boundary layers are very thin indeed - about 1/10,000" of the length
of the wing section from leading to trailing edge (usually called the chord of the wing) — and so the flow is barely distorted;

it is essentially inviscid away from the surface of the wing.
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So we now address the problem of modelling a flow which, although generated by the presence of viscosity, is essentially
inviscid. The method is to introduce the circulation that the viscous forces induce in the flow field around the aerofoil;
by virtue of the Kutta-Joukowski theorem, we may thus expect that lift is generated. (As we have just indicated, although
we shall be able to describe lift — surprisingly accurately - the neglect of viscosity will mean that we cannot predict the

drag on the aerofoil.)

5.3 The flat-plate aerofoil with circulation

We now consider the uniform flow past a circle, with circulation, in the {-plane; the potential for this follows directly

from our discussion in $4.7:

. 2
W) =Ue2r U 9 i K jog s
{2z

where the circle, centred at the origin, is of radius a (so that we generate the flat plate), and the circulation is clockwise of
magnitude K. When we remember that a log singularity generates the same singularity under a conformal transformation

(and points inside the circle are not mapped), we can represent the two flow fields schematically as:

/’

/

TN\

2a

Cplane Z-plane

We have seen that the most useful information is provided by the velocity field, so we find

Ul e e @ | KL
20 2n¢
dw_aw dc _ ¢
dZz dg dz 1-a?/?
¢=¢(2)
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and it is convenient to multiply this by & / ¢ to give

. .2
Ule%g -l RES
¢ 2

dz c-d¢

o
=

¢=¢(2)

The plate corresponds to the evaluation { = aelg, and then 0 takes us around the plate, and we have seen that the

velocities on the plate are the most revealing aspect of the velocity field. So we examine

Ua(ei(‘g‘“) _e i) ) +iK/2x

plate a (619 — 6_19 )

dw
dz

_ 2aUsin(@-a)+K/2x
2asin@

which is pure real (as before and as expected). At this stage we have not chosen K; we do this by imposing the condition
that W'(Z), as the trailing edge (@ = 0) is approached, remains finite. This is called the Kutta condition (introduced by
Kutta in 1902). [M.W. Kutta, 1867-1944, German mathematician; Lilienthal (and the Wright brothers) thought that curved
surfaces were better that flat ones for producing lift; Kutta worked on this problem from about 1902.] Here, W'(Z) can
remain finite as @ — O only if

—2aUsin o +£=O
27

’

for the denominator is zero in this limit. (This does not guarantee that the limit is finite, but the only possibility of obtaining

a finite limit is for the numerator to be zero on @ = 0 ; the nature of this limit will be discussed below.) Thus we choose

K=4raUsina,

which selects the circulation in terms of the free-stream speed (U) and the geometry (a and «).
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Check: We calculate the limit, with the choice of K above:

_ U(sin@cosa —cosOsina)+ K/4ra
plate sin @

w'(2)|

_Usinf@cosa+U(l1-cos)sina

sin @

U@+....)cosa +U(% 6> +....)sinx
0+....

=Ucosc,

which is the required finite limit: the flow leaves the trailing edge with a finite speed.

Finally, from our previous analyses, we know that, in the Z-plane, we have the same flow (uniform speed U, angle of
incidence «) past the flat-plate aerofoil. Furthermore, the circulation maps to the same circulation in the Z-plane; thus
the Kutta-Joukowski theorem gives the lift as pUK (per unit length out of the plane), and so the lift generated by the

flat-plate aerofoil, at right angles to the oncoming stream, is
pUK = 47Z'LZ,OU2 sina (per unit length).

Here, we have taken the density of the fluid to be p; note that the lift is proportional to the square of the speed and to the
sine of the angle of incidence. Thus the lift increases significantly with speed, and a positive angle of incidence, & >0,
is required; for zero angle the lift is zero. For sufficiently large angles — about 10°-15° for a flat plate - the wing stalls;

our current theory fails when this happens (and neither can it predict when this will occur).

The expression for the complex velocity on the plate, using the K above, gives
dw _ 2aU[sin(0-a)+sina]
dz 2asin @ '

plate

Thus there is a stagnation point where
sin(f —a) = —sina (for @ # 0, which is the trailing edge);
this has only one solution: @ = 7 + 2 , and this is on the under-side of the plate, and further back from the leading edge

than when circulation was absent; see §5.2. A schematic representation of the effect of the circulation on the stagnation

points is shown in this figure:
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The resulting flow pattern takes the form shown below, where the first figure shows the orientation in the chosen coordinate

system, and the second relative to the oncoming (horizontal) stream:

Comment: There is a technical issue that we have somewhat glossed over here. The circle in the (-plane, which maps to
the aerofoil, contains two singularities on its boundary when the mapping is performed (where we have the two branch
points, é/ ==a). This indicates that the evaluation of the contour integral, to find the complex force, may not be
straightforward — perhaps not even defined. First, the integral must be on a contour where we have the complex velocity
defined, and this must be where the fluid exists; it is a moot point whether this is the case on the circle. Certainly, we
may elect to use a contour that is strictly in the fluid, but as close as to the circle as we wish. This then ensures that all
three poles (associated with each branch point) sit inside the contour (and such a contour will map to a closed contour
that is in the fluid in the Z-plane, but as close as we wish to the flat plate). Indeed, because there are no other poles, we
could choose any contour that surrounds the circle/plate. This leaves just one critical issue: the residues of the poles at
the origin and at { = a are well-defined - the first is the expected contribution from the circulation, and the second is
certainly finite by virtue of the Kutta condition - but what of the third? The velocity here is infinite, so the contribution
to (dw/ dz )2 may not lead to a finite value for the Blasius integral. (We note that, for a realistic aerofoil, this is not
an issue: such an aerofoil will be round-nosed, with finite speeds everywhere - this third pole will certainly not be on
the contour.) A detailed evaluation, from first principles (without recourse to the Kutta-Joukowski theorem) is given in

Appendix 6; this confirms the result given by that theorem.
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The lift of an aerofoil is usually quoted as a lift coefficient (cf. §4.6):
UK
C 1%

=—=27rsina
L ,
1pU? (4ax1)

where the term (4a x 1) is the surface area of the wing: the length of the section - the chord (4a) - times per unit length
out of the plane. Typically, the maximum, without flaps extended, is about 15, but it can be about 3-0 with flaps and
slats extended. Most wings, without flaps or slats extended, will stall at about 159, or a little higher, depending on the

specific shape of the aerofoil section; see §5.2.

Comment: There is a corresponding drag coefficient, which measures the total drag (which has a number of different
contributors) on a wing or, more importantly, on the whole aircraft. The ratio of lift/drag is often quoted; for example, we

have the following approximate values (relevant to cruising or soaring flight):

Boeing 747 17
Concorde & Space Shuttle 7
Herring gull 10
Sparrow 4
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We address one final issue related to the flat-plate aerofoil: what is the line of action of the lift force? That is, along what
line must the force act (which is the resultant of the pressure distribution around the aerofoil) to produce the moment of
all the pressure forces? To answer this, we must find the moment of the forces, and Blasius’ moment theorem does that
for us; see §4.8. This calculation, which follows that for the force quite closely, produces the moment (counter-clockwise)

M =—-paUK cos« :

/'\M

the details of this, although routine, will not be developed here. We can find a version of this moment by computing

directly, using the known force:

The lift force, L, passes through a point that is a distance ¢ from the leading edge; this line of action of the force is a
perpendicular distance h from the centre of the plate (and note that the force is at right angles to the oncoming stream,

which is at an inclination «). Thus the moment of this force, clockwise, is
hL where h=(2a—/)cosa and L = pUK ,
and so we obtain (2a — /) pUK cosa = pUKacosa ie. [ =a.

Thus the line of action of the lift force is a distance a back from the leading edge of the flat plate, a position usually called
the %4-chord point i.e. one quarter of the chord from the leading edge. (All aerofoils have the line of action approximately at
the Y%-chord point, the variation depending on the detailed shape of the aerofoil and the angle of incidence. Consequently,
all aerofoils - wings - suffer a ‘pitching-up’ moment; this is readily demonstrated when an attempt is made to ‘fly’ a flat

plate e.g. a sheet of card: it will immediately flip up and rotate backwards!)
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5.4 The general Joukowski aerofoil in a flow

Finally, we consider all the ideas and techniques developed thus far, and apply them to the general Joukowski aerofoil placed
in a uniform stream at a general angle of incidence. Thus we formulate the problem, in the {-plane, of the uniform flow
(speed U), at an angle of « to the positive x-axis, past a circle with circulation. The circle has its centre at a general point
({ = ¢), but it encloses { =—a and passes through { = a; see §5.1(e). The circle is { =c+ reig , and it is convenient

to associate { = a with @ =—/3 (and note the choice of sign); the flow configuration is:

U

{-plane

Note: Increasing 3 moves the centre of the circle in the positive y-direction (but keeping all other conditions unchanged),

and so the curvature (or camber) of the aerofoil will increase.

The complex potential for this flow, with a suitable origin shift and using the radius of the given circle (r), is therefore

. 2
W()=U( —c)e ' +Ue'? r—+i£10g(g” —¢);
{—-c 2r

this is most easily obtained by following the development for the flat plate (§5.3), with the radius r, and then replacing
by { —c (to accommodate the origin shift). (We observe that this can be accomplished without bothering to ‘shift’ the
first term in this expression: the additional term so generated is a constant, which can be ignored - as we know.) From our

earlier discussions, it is sufficient to impose the Kutta condition in order to find the appropriate choice for the circulation, K.
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The Kutta condition, at Z = 2a (i.e. { = a), requires us to find, first,

Ul e @ - r eia +i£ !
P T S ) M
dz dg dz 1-a2/¢?

and remember that, although the circle used here is of radius r, the JT still involves the parameter a. This is now evaluated
i

on the aerofoil (for which ' =c+7re ", and 6 is the parameter that now maps out the aerofoil):

U(e—ia -126 1a)+1 K e—ié’

dw 27r

az

aerofoil 1—612/(04‘7’@19)2

The Kutta condition requires that this expression be finite as Z — 2a ie. @ > —f

({ = a), and so the numerator must be zero at this point (for a finite limit to exist; see §5.3). Thus we have the condition

U(e" 1(a+2ﬂ))+1 B 0o K (ei(a+,3) _e—i(a+ﬁ))’

2xr 27[1/

and so K =4zUrsin(a + f).
The lift, via the Kutta-Joukowski theorem, is then
4rr pU 2 sin(a + )

per unit length out of the plane; this force increases with the square of the speed — as we have seen previously - and with
the angle of incidence «, and now also with increased curvature (camber) of the aerofoil, which is the effect of increasing

B. A typical flow pattern for a realistic (Joukowski-type) aerofoil, as obtained in the laboratory, is shown below
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and a MAPLE programme that generates Joukowski aerofoils, and the associated streamlines, is given in Appendix 7.

Comment: An aircraft wing is designed and constructed so that its geometry changes, depending on the conditions of
flight; there are three main stages: take off, cruising flight, landing. The aim is to have the most efficient (minimum drag)
configuration during the cruising phase; for this the aerofoil shape is the most streamlined, without flaps or slats (which
are like forward flaps). However, to reduce speeds at take off and landing, the required lift is to be generated at lower
speeds - and the normal design requirements are that the lowest speed is in the landing phase. At take off, the flaps are
extended and lowered, usually to about 302 (-30° flap’); this, in the context of our result, means that both r and f3 are
increased beyond the normal resting/cruising values. Thus the lift force required to get the aircraft off the ground occurs
at a lower speed than for the same lift without flaps; of course, the drag is significantly increased so more thrust is needed.
The same procedure is adopted for landing, but now the flaps are extended further and lowered more (typically about
60° flap) and slats - a forward extension and lowering at the leading edge — are often also deployed. This produces the
required lift at an even lower speed (but with more drag and so higher thrust is required). This describes, in broad outline,

how our introductory ideas for the generation of lift are incorporated within the design and flight of aircraft.

The classical theory of lift, which does not use any details associated with the réle of viscosity, gives estimates for the lift
that are correct to within about 90% (and often considerably better that this). As we have mentioned, our theory does not
address the issue of drag (and therefore estimates for the thrust required to get the aircraft off the ground). One important
additional consequence of the neglect of viscosity is that, without a careful analysis of the boundary layer on the wing,
we cannot predict boundary-layer separation and the onset of the stall.

Concluding comments: We list a few points that provide the start of a more comprehensive study of aerofoils and flight.

(a) The forces on an aircraft are represented schematically by

pitching-up Alift

moment force
/\E up/down

which suggests that the réle of the tail is to counteract the pitching-up moment associated with the lift generated by the
wings. However, the centre of gravity (C of G) is normally adjusted so that this provides a moment sufficient to pitch the
aircraft down. (Indeed, this is the essential requirement for an aircraft that is stable: any loss of lift on the wings causes the
nose to drop, enabling the flow to reattach, so that lift is recovered.) The tail is used, primarily, to produce a downwards
force that pushes the nose up, thereby ensuring that the angle of incidence is that required to generate the lift. The tail fin
is to provide lateral stability, although turning requires the use, in addition, of ailerons — which was the main discovery
made by the Wright brothers.
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(b) Our aerofoil, a Joukowski aerofoil, has one structural draw back: there is a cusp at the trailing edge, and cusps cannot
be built! There are two comments that we should make about both this and a related issue. The first is quite general: there
is an extension of the ideas presented here that enable any shape to be represented and analysed in the complex plane
(although the technical details are, not surprisingly, rather more involved). Thus any shape of aerofoil, with or without
flaps and slats, can be investigated; in particular, the cusp in our aerofoil shapes can be removed. The second point relates

specifically to this aspect of our Joukowski aerofoils.

The JT that we used is Z = ¢ + a’ / ¢ ; this can be rewritten as
Z+2a §+a2/§+2a _(é’+a}2
Z-2a §+a2/§—2a - -a)
In turns out that the related, more general, transform which replaces 2’ by ‘2 — &’ throughout i.e.
Z+@2-8)a ({+a)l
=

Z-(2-¢8)a
generates, for small ¢, virtually identically-shaped aerofoils, but these have an included angle £77 at the trailing edge - not

a cusp. [This is called a von Karmén-Trefftz transform.]

(c) A fully three-dimensional theory is available, enabling finite wings, with wing tips, to be analysed. This is based on
the idea of circulation, producing vorticity in the flow — and observed by the vortex shedding at wing tips - the vorticity
being distributed along a line (or region) that is in the aerofoil section and then leaves it, and moves downstream. [This

is usually called the ‘horseshoe vortex’ and is an extension of ‘lifting-line’ theory.]

(d) The interaction between the inviscid (complex variable) flow and the viscous boundary layer can be analysed. Because the
boundary layer is thin — we are dealing with large Reynolds numbers - this has little effect on the flow around the aerofoil.
The technique is to solve the inviscid-flow problem (using complex variables), and then use this as the exterior flow to a
boundary layer on a curved plate. This, in turn, is analysed and used as the basis for adjusting (very slightly) the ‘shape’ as
seen by the exterior flow; this is then further iterated. [The description here is the mathematical idea, which has a robust

analytical basis; of course, much of this type of calculation can now be done, in its totality, by suitable numerical methods.]
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(e) Finally, we mention that the generation of lift for a supersonic aerofoil is rather different. Those familiar with high-
speed (usually military) aircraft will have observed that the wings are essentially flat and thin - they are not shaped,
in any fashion, like the aerofoils that we have been discussing here. The pressure difference that gives rise to the lift is
generated, in supersonic flow, by the property that pressure in the flow changes as it passes through a shock wave. The
angle of incidence in the supersonic flow produces a suitable shock wave, enabling the flow to change direction (and

correspondingly, the pressure):

_>\

This figure represents the flow over a supersonic aerofoil; the flow directions are given by the arrows and the two thinner
lines are the shock waves. Shock waves arise only if the flow turns to decrease the angles in the respective flows; if the
angle increases, then an ‘expansion fan’ is generated - the grey areas in the figure — but the essential features are the same:
the angle of the flow changes and the pressure changes. With the appropriate configuration, the pressure underneath is

greater than that on top, and so lift is generated.

Exercises 5

108. Joukowski transformation: cambered plate. Analyse the parametric representation of the cambered plate obtained
from the circle |é’ - ik| =y where k (> 0), with z=¢ + az/é’ and 7’ =a’ + k7 see §5.1(c). On the basis of
this, sketch the graph of this shape, confirming that each branch (upper/lower) is the arc of the same circle, OR use
suitable software (e.g. MAPLE) to plot the shape produced by this parametric form.

109. Symmetric aerofoil. Show that a symmetric aerofoil is obtained from the circle |§ | = q via the transformation
(a=b)’ | | |
z=(+b+ ﬁ , 0 <b < a.Now show that, for the choice b/a < 1, then the areofoil has the approximate
+

parametric representation
x =2a{cosf+ (b/a)(l —cosf—cos* )}, y =2b(1+cosH)sinf .
Use suitable software (e.g. MAPLE) to plot this shape, with a = 1 and b = 0.1.

110. Flow past ellipse. Write down the complex potential for the uniform flow (speed U, angle of incidence ¢, no
circulation) past the circle |§ | = c. Hence use the Joukowski transformation z = ¢ + a’ / ¢ (0<a<c) to find the

complex potential for the same flow in the z-plane past the ellipse
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111.

112.

113.

114.

115.

(x/cosh BY +(y/sinh B) =4a’,where B =In(c/a).

Velocity at trailing edge. Write down the complex potential for the uniform flow (speed U and angle of incidence
@ ) past the flat plate z=2ac0s@ (0 <6 <27). Include a general circulation K (clockwise), apply the Kutta

condition at z = 2a and hence determine the velocity in the flow field for z — 2a .

Symmetric Joukowski aerofoil. A uniform flow, of speed U and angle of incidence ¢ , past the symmetric Joukowski
aerofoil, is obtained by transforming the circle |§ +C| =7 (real ¢>0, r—c=a) under z=¢ + az/é’.

Introduce a circulation, apply the Kutta condition and hence state the lift (per unit span) generated by the aerofoil.

Further, given that the moment (clockwise) about the origin of this lift force is
2apU*(a” +r* —ar)sin2a,
show that the resultant lift force acts through a point which approaches the 1/ 4 -chord point as ¢ — 0.

An extended Joukowski transformation. Show that the conformal transformation

3a 3a> 9d°
Z=0+—+—+—7,
2 4 8¢

where a (> 0) is real, possesses a branch point at ¢ =3a/2 . Further, show that the circle |§ | =3a/2 maps into
the aerofoil represented by the parametric form x = a(1+ cos 9)2 , y=a(l—cos@)sin b ; give a rough sketch
of the shape of this aerofoil.

Now a uniform flow (speed U, angle of incidence & ) past the circle is mapped into the same flow past the aerofoil;
introduce circulation (K, clockwise), apply the Kutta condition to find that K = 677aU sin & and hence state the
lift (per unit span) generated by the aerofoil.

Behaviour near the trailing edge. The circle |é/ | = a is mapped into the flat-plate aerofoil under the transformation
z=(+a’ / ¢ . Show that, near z = 2a, we have the property dg _ 1 Va , approximately.

dz 2+z-2a
Thin elliptical aerofoil. The circle |é/ | =(1+¢)a, where 0 <& <1 is a parameter, maps into an ellipse under
the Joukowski transformation z = ¢ + a’ / ¢ . Show that the semi-major and semi-minor axes of the ellipse are

approximately 2a, 2&a , respectively, for small & .

This ellipse is placed in a uniform flow of speed U and angle of incidence « ; introduce a suitable circulation, K, and
choose it to satisfy the Kutta condition at the trailing edge. For small &, find approximations to (a) the circulation,
K; (b) the lift (per unit span); (c) the position of the stagnation point; (d) the velocity near to the leading edge (
z==-2a).

2656 5 2 26 56 5 2 2 56 5 2 2 56 56 2 2 56 5 3 5 56 5 5 2 56 56 3 5 5 56 4 5 2 5 5 5 2 65 5 5 2 % %
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Appendixes

Appendix 1: Biographical Notes

We provide a set of brief biographical notes on the various individuals who have contributed to the development of fluid

mechanics, and aerofoil theory, and who are mentioned in this text.

Bernoulli, Daniel (1700-1782)

Daniel was a Dutch-born member of the famous Swiss family of about 10 mathematicians (fathers,
sons, uncles, nephews) - he was the son of Johann and his uncle was Jacob - best known for his
work on fluid flow and the kinetic theory of gases; his equation for the flow of an inviscid fluid
first appeared in 1738. He qualified, initially, as a medical doctor, then was appointed a professor
of mathematics (in St Petersburg), but then moved to anatomy and botany and, eventually, physics!
It was during this period that he defined the nodes and frequencies of an oscillating system, and
showed that the movement of strings in musical instruments could be represented as an infinite

number of harmonic modes. However, his most important work at this time was his analysis of

fluid motion, culminating in his work Hydrodynamica, which gave us the word ‘hydrodynamics’ In his studies, he also

made contributions to astronomy and magnetism, and was the first to solve the Riccati equation, but his general and

main interests were in trigonometry, the calculus and probability. He was a close friend of both Euler and d’Alembert.

Blasius, P.R.H. (1883-1970)

Blasius was a student of Prandtl (in Gottingen 1902-1906) and then, from 1908, a research assistant
at a hydraulics laboratory in Berlin; from 1912 he became a teacher at a technical college in
Hamburg - he claimed to have been a scientist for only 6 years, thereafter becoming a teacher. He
wrote a few papers (in addition to his important two) on various problems in hydraulic engineering

and aircraft stability, and undergraduate texts on heat transfer and mechanics.

Coanda, Henri (1886-1972)

Coanda was born in Bucharest (Romania), where his father was a professor of mathematics at the
National School of Bridges and Roads; he claimed that he was always interested in the ‘miracle
of wind. Although he graduated as an artillery officer, he was intrigued by the technical aspects
of flight. He joined a French aircraft company, and also spent three years (1911-1914) with the

Bristol Aircraft Company, designing a number of early aircraft. Throughout the first and second

World Wars, he worked in France. The ‘Coanda effect, in which a flow is attracted to, and remains

attached to, a nearby solid boundary, was investigated by Coanda between the wars.
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Couette, M.M.A. (1858-1943)

Couette was born, and spent his life, in France. He first obtained a baccalauréat in humanities, and
then bachelor’s degrees in mathematics (1877) and physics (1879); after this, he studied at the Sorbonne
under Boussinesq, finally obtaining (1890) his PhD at the Physics Research Laboratory, working on
the friction of fluids. He was appointed a professor of physics at the Catholic University of Angers,
and lived there for the rest of his life, but he was poorly paid, so took extra teaching jobs at various

colleges nearby. He designed a concentric-cylinder viscometer (to measure the viscosity of fluids),

and demonstrated the correctness of the ‘no-slip’ boundary condition.

Euler, Leonhard (1707-1783)

Euler, a Swiss mathematician (born in Basle), is regarded as the most prolific mathematician
(ever); his powers of calculation (without the aid of paper) was prodigious - he continued
to work throughout the years at the end of his life when he was totally blind. (He lost his
sight in the right eye in about 1733, and in the left about 1768.) He studied under Johann
Bernoulli, obtaining his master’s degree at the age of 16; because of his age, he was unable
to find a university post, but by the age of 20 he was appointed to the Naval College in St

Petersburg (and served as a medical lieutenant in the Russian navy), becoming Professor of

Physics there in 1730. During this period, he shared rooms with Daniel Bernoulli (who held

the mathematics chair), and when Daniel returned to Basle, Euler was appointed in his place.

Euler contributed to all the (classical) fields in pure and applied mathematics: analysis, calculus, trigonometry (where
he was the first to treat sin, cos, etc., as functions), analytical geometry, series (with convergence), ordinary and partial
differential equations, number theory, mechanics, celestial mechanics, fluid mechanics, acoustics, optics; he also laid the
foundations for analytical mechanics He made popular the notation ‘77’ (which had been used first by William Jones in

1706), and introduced ‘¢, i’ and T} as well as the (now) very familiar notation for a function: f(x).

He was not as rigorous in his approach as, say, Gauss or Cauchy, but he had the ability to see structure by intuition or
by developing new approaches; he could be regarded as one of the foremost mathematicians (just behind Archimedes,

Newton and Gauss - the big three).

Flettner, Anton (1885-1961)

Flettner was a German aviation engineer and inventor, specialising in the application of circulatory motion
in an air flow. He invented the servo tab (fitted to flaps), initially for use on the Graf Zeppelin; while
working for this company in WWI, he developed remote control and pilotless aircraft, and wire-guided

ground-to-air missiles. Between the wars, he directed a research institute in Amsterdam. It was during

this period that he had the idea for a rotating cylinder as the basis for propulsion on ships. He developed
and built the Baden-Baden which sailed across the Atlantic (1926); a second ship, the Barbara, was built
and sailed to America (but it was destroyed in a storm). Under moderate wind conditions, his device could out-perform

a conventional sailing vessel.
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During and after WWII (when he moved to the US), he specialised in helicopter design, although he made his fortune

with the invention of the rotary ventilator (still used on many vehicles as a non-powered device for ventilation).

Froude, William (1810-1879)

Froude was an English engineer, specialising in hydrodynamics and naval architecture,
although he started with a first in mathematics from Oxford University (Oriel College).
He worked with Brunel as a surveyor on the South Eastern Railway, being responsible for
the section between Bristol and Exeter. He developed the standard methods for laying out
track transition curves, but he was then encouraged by Brunel to examine the stability of
ships under steam. Thus he was able to identify the most efficient hull shapes — minimum
drag with stability — and in the process showed how scale-model results could be used

with accuracy on the full-scale ship. On the back of his successes, the Admiralty funded

the construction of the first ship-testing tank — at his home in Torquay!
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Gauss, (J.)K.E. (1777-1855)

Appendixes

Gauss was the pre-eminent German mathematician (and astronomer and physicist) of
all time, regarded as one of the top three (with Archimedes and Newton, yet his interests
| went far beyond both these). He came from a poor, and ill-educated family, but his
talents were soon recognised: it is reported that he was correcting his father’s arithmetic
by the age of 3 and by 8 years he was adding large arithmetical sequences (based on
| new general principles that he had discovered). He received his doctorate (from the
J University of Helmstadt) in 1799, although most of his lectures were at Géttingen. He
was making fundamental discoveries in mathematics from the age of about 14, although
much of this was not published (but we know about his work because he kept detailed

notebooks, which have been thoroughly examined since his death). He had considerable

knowledge of, and skills in, many languages — he almost became a philologist — and then

at the age of about 22 he decided to develop his interests in astronomy. Indeed, by 1807 he was Professor of Mathematics at

Goéttingen and also director of its observatory.

His discoveries, many of which were rediscovered by others decades later, would fill many texts. He did fundamental

work in: number theory (particularly the problem of the distribution of primes), quadratic residues, extended Euclidean

geometry - the first to do so for 2000 years (and he was then about 20), introduced non-Euclidean geometries, analysed the

role of complex numbers in solving all algebraic equations, found efficient calculation schemes for the motion of celestial

bodies, complex analysis, elliptic functions, theories of surfaces, topology, conformal mapping, geodesy, mathematical

physics, electromagnetism, optics — and much, much more. It has been argued that, if he had published at the time of

discovery, mathematics would have advanced by at least 50 years, during the 19" century, as compared with the actual

developmental time scales.

Hagen, G.H.L. (1797-1884)

Hagen is credited with the first observation of laminar and turbulent flows, reported in
1839, and expanded in 1855, and with the measurement of velocity profiles for flows
through pipes. (The transition from laminar to turbulent flows was explored and developed
by Reynolds in 1883.) He was born in what is, today, Kaliningrad in Russia, and studied
mathematics, architecture and civil engineering; he joined his alma mater (University of
Konigsberg), being responsible for projects in hydraulic engineering. Thereafter, he was a
construction official for the local mercantile community, then harbour inspector and finally

(from 1830) he worked on constructions in Berlin, also teaching at the university there.

—

N

Download free ebooks at bookboon.com

168


http://bookboon.com/

Fluid Mechanics and the Theory of Flight Appendixes

Helmbholtz, H.L.F von (1821-1894)

Helmboltz originally planned to study physics, but his family’s financial position made
this impossible, so he opted for medicine (for which there was a government stipend
avaijlable). Although he completed his medical studies, he spent most of his time
studying all the work then currently in print on both physics and mathematics. This
interest continued even after his appointment as surgeon to the Potsdam regiment
(which is where he was born). In 1855, he was appointed to the chair of anatomy
and physiology at the University of Bonn, where he found it difficult to continue his
work in physics - even though he was gaining a considerable reputation in this area.
He was able, eventually, to develop his real interests, first at Heidelberg and then at

Berlin University.

He was the first to suggest the importance of vorticity — he introduced the word - and the réle of vortex filaments and
vortex sheets; he was also the first to use the term ‘velocity potential, and showed its relevance to fluid flows. In short, he
explained the difference between rotational and irrotational flows. He also introduced the concept of energy conservation,
as well as making important contributions to the theories of electricity and magnetism; he added to our understanding

of the physiology of sight and colour vision, and he measured the speed of nerve impulses.

Joukowski, N.E. (or Zhukovsky or Zhukovskii) (1847-1921)

His father was a communications engineer, so it was only natural that he studied in the Faculty
of Physics and Mathematics at Moscow University, where he chose to specialise in applied
mathematics. Thereafter, he taught mathematics — mainly mechanics - and also obtained his
master’s degree (equivalent to a modern doctorate). He moved, first, to the Moscow Technical
School, and then (in 1882) to Moscow University. He wrote over 200 papers and, perhaps more

significantly, founded the Russian schools of hydromechanics and aerodynamics; indeed, he is

often regarded as the ‘father of Russian aviation’

He began an extensive study of flight dynamics in 1891, visiting Lilienthal and purchasing one of his gliders. His publications
in 1906 gave the theoretical expressions for lift: the Kutta-Joukowski theorem (because Kutta had produced something

similar in 1902). During WWT he taught a special course for Russian pilots.

Joukowski also made contributions to general hydrodynamics and hydraulics, analysing shock waves in water pipes, for
example, and to the design of dams. In addition, he wrote on the theory of pendulums, on the rotation of solid bodies

and gave the first comprehensive analysis of the gyroscope.
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Kelvin, Lord (W. Thomson) (1824-1907)

William Thomson was born in Belfast, where his father was a professor of engineering
but, when William was 8, he father was appointed to a chair in mathematics at Glasgow
University. He started he studies at this university at the age of 10 — not all that unusual
at this time, as Scottish universities acted as schools for able students - but he did begin
degree-level mathematics at the age of 14; he later moved to Cambridge (graduating in
1845). He was appointed Professor of Natural Philosophy, at Glasgow, at the age of 22,
and remained there for the rest of his working life. (He had produced some important
results in electrostatics while an undergraduate, and was awarded a gold medal (age 15)

for an analysis on the shape of the Earth. By the age of 16 he had mastered Fourier’s

work on heat transfer and Laplace’s on celestial mechanics.)

He was the foremost physicist and electrical engineer of his time, pioneering the studies of electrodynamics and
thermodynamics, and planning and directing the laying of the first transatlantic telegraph cable. He consolidated the
electrical and magnetic work of Faraday, and developed the theory of heat transfer beyond the work of Fourier and Carnot.
He introduced the absolute temperature scale and formulated the Second Law of Thermodynamics (also developed by
Clausius). He worked on hydrodynamical problems with Stokes, between 1847 and 1849, these two exchanging no less

than 656 letters on the subject over this period.

He was probably the first scientist to make a personal fortune — on the back of his cable work - but he hated vectors! (He

never used them, and so made many calculations far more cumbersome than they need be.)

Kutta, M.W. (1867-1944)

Kutta was born in Pitschen (Germany), which is now in Poland; his parents died when he was
young, and so he was brought up by an uncle in Breslau. He studied, first, at the University of
Breslau, and then at the University of Munich, followed by the appointment as an assistant in the
mathematics department at the Technische Hochschule in Munich; he spent a year at Cambridge
and then received a PhD from Munich University (1902) on aerodynamic lift. (His interest in
flight was sparked by the flights, and experimental observations, made by Lilienthal.) He then
held a number of professorships, culminating in a post at Stuttgart (Technische Hochschule)

in 1911; he remained there until he retired in 1935.

His thesis contains the Runge-Kutta method for the numerical solution of differential equations, and in his ‘habilitation’
thesis — required for university teaching in Germany - he developed his theory for flight (the Kutta condition, and his
version of the Kutta-Joukowski theorem). However, he devoted most of his time to teaching mathematical techniques
and ideas to engineers. Nevertheless, he did some important work on the motion of glaciers; he also maintained a keen

interest in the history of mathematics.
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Lagrange, J.-L. (1736-1813)

Lagrange was born in Italy (Turin), and he originally had an Italian name, but his family
had strong French connections, and he generally thought of himself as French (so he would
often sign his name ‘Lodovico LaGrange’ or ‘Luigi Lagrange); the French regard him as

French and the Italians as Italian! He studied at the College of Turin, initially specialising

in Latin - he was not excited by mathematics (and found Euclidean geometry particularly

| boring). But he read Halley (on algebra in optics) and attended some good lectures on
physics, so decided to devote himself to mathematics. Indeed, he was appointed a professor

at Turin’s Royal Artillery School at the age of 19.

He regularly corresponded with Euler and, in 1766, succeeded him as Director of the Berlin Academy, when Euler returned
to St Petersburg. In 1787 he moved to Paris, as a member of the Académie des Sciences, joining the newly-formed Ecole
Normale in 1795, as a full professor. He first important work was on the calculus of variations - but not called that for
another dozen years (by Euler) — and these techniques he then applied to a number of problems. He also worked on the
foundations of dynamics, based on the principle of least action, and on the theory of sound. At various times he also worked
on: the three-body problem, and more general problems of stability in celestial mechanics, probability, fluid mechanics,
the foundations of calculus, number theory (proving some of Fermat’s unproven theorems). In 1788, his important text
(started when he was 19) entitled Mécanique Analytique was published, which transformed the study of mechanics into
a branch of mathematical analysis. He also produced a text on the theory of analytic functions. He was a member of the

committee that developed and introduced the metric system of weights and measures.
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Laplace, P.-S. (1749-1827)

Laplace was born to a poor farming-family in Normandy, and he attended the local
Benedictine school; in 1766 he entered the University of Caen to study theology, but after
about a year he decided to move to Paris - his interests in science and mathematics had been
awakened by one of his teachers. There he met dAlembert (probably based on a letter of
introduction) and immediately solved a problem that dAlembert had proposed; d’Alembert

was so impressed that he secured a professorship for him at the Ecole Militaire in Paris and, [
by 1785, he held a senior position in the Académie des Sciences where he worked closely

with Lagrange. He then started to produce a steady output of quite exceptional mathematical

papers.

His first few papers were on determinants, on maxima and minima, and on aspects of the integral calculus, on difference
equations and differential equations, and on the theory of probability. But then he turned to celestial mechanics and, in
a sequence of important papers, discussed various aspects of the stability of gravitational orbits. In order to develop his
arguments, he introduced the potential function for the first time, and then moved on to work with — as we now describe
them - Laplace coefficients, orthogonal functions and the Laplace Transform. Between 1799 and 1825, he published his

Meécanique Céleste, in five volumes, his most important work.

Lilienthal, Otto (1848-1896)

Lilienthal was of Swedish parentage, although he was born in Anklam (in the Pomeranian province of Prussia) and,
while still at school, studied the flight of birds and thought of ways of emulating them. He moved to a technical school
in Potsdam, and then trained with an engineering company, becoming a professional design engineer; his main work
involved the design of machines for mining. He also invented a small steam engine, much smaller and lighter than those

then currently available, which gave him financial freedom to spend time on his investigations into manned flight.

He began experimenting in 1867, in his own time, on the flow of air and how this flowed over shapes to generate lift.
He eventually developed gliders that would lift him - he was the father of the hang-glider - making over 2,000 flights,
starting in 1891, learning how best to generate lift and to control his flight. His flights were made, either from natural hills
(obviously), but also from an artificial hill that he built near Berlin. His main control mechanism was the position of his
body, but he supported the glider on his shoulders - rather than the modern technique of hanging below the frame - so
only his lower body could move; there was a tendency for the glider to pitch down, from which recovery was difficult. He
died in a crash, when he stalled and was unable to recover. The Wright brothers (see below) credited him with providing
the main inspiration for their decision to design the first aircraft, although they found his technical data of little use (and

so obtained their own from a wind tunnel they had built).
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Magnus, H.G. (1802-1870)

Born to a wealthy merchant family, Magnus studied (receiving a private education) mainly
mathematics and physics, graduating from Berlin University with a degree in chemistry and
physics, and a doctorate (1827) based on his discussion of the properties of tellurium. He spent
some time in Paris, working with Gay-Lussac and Thénard, returning to the University of Berlin
as a lecturer in physics and technology, rising to a full professor in 1845. He had a reputation
as an excellent teacher. His main research interests were in chemistry and physical chemistry,
and he was, primarily, an experimental scientist rather than a theorist. It was in 1852 that he
did some experiments, probably prompted by the observations of Robins (see below), on the

forces exerted on spinning projectiles (from firearms). He confirmed what Robins had noted -

and Euler had rejected as ‘spurious’ — and so this side force is still, often, referred to as the ‘Magnus effect. However, any

explanation for it had to wait until we had the work that was to underpin classical aerofoil theory.

Milne-Thomson, L.M. (1891-1974)

Milne-Thomson first went to Clifton College (in Bristol) and then studied mathematics
at Cambridge. He taught mathematics at Winchester College (1914) and then (1921) was
appointed Professor of Mathematics at the Royal Naval College in Greenwich, where he
remained throughout his working life. He taught various aspects of mathematics, but initially
specialised in the construction of mathematical tables; this work led to his first text on the
calculus of finite differences. Then, in 1938, he wrote an important text on hydrodynamics

(which ran to five editions), and a book on aerodynamics (which had four editions). The

second edition of ‘theoretical Hydrodynamics’ contains some new material, in particular his ‘circle’ theorem. After his

work on tables, he produced a few papers covering various aspects of hydrodynamics, as well as a study of wind-tunnel

interference and some contributions to stress analysis.

When he retired in 1956, he moved to the USA, being a visiting professor at a number of American universities, as well

as, for short periods, in Italy and Australia; he returned to the UK in 1971.
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Mittag-Leffler, M.G. (1846-1927)

He initially took the surname of his family - Leffler - but when a student, at the age of
20, changed it to ‘Mittag-Leffler, Mittag being his mother’s maiden name. He originally
trained (in Stockholm) as an accountant, but then moved to mathematics, studying at
Uppsala University (Sweden). He received his doctorate there and then studied for a
brief period in Paris (from 1873) and Berlin (from 1875); he was appointed to a chair
at the University of Helsinki in 1876, and then to a chair at Stockholm University
in 1881, where he stayed for the rest of his life. His is best remembered for his work
on the analytic representation of meromorphic functions (being a generalisation
of Weierstrass’ work), for his work on divergent series and for his founding of the

journal Acta Mathematica (which his wife’s money helped to support). He also

made contributions to more general aspects of the calculus and limits, to analytical
geometry and to probability theory. His grand home, in the suburbs of Stockholm (in Djursholm) had one of the
finest mathematical libraries in the world, at that time. This home, and its library, were bequeathed to the Swedish

Academy of Sciences in 1916, and it has now become a major mathematical research centre: the Mittag-Leffler Institute.

Navier, C.L.M.H. (1785-1836)

Navier’s father died when he was 8 years old, and his mother left him in Paris in the care of her
uncle; she returned to her home town. He was encouraged to study at the Ecole Polytechnique,
entering in 1802, but he was only barely of the sufficient standard at entry. Nevertheless, within
a year he was one of the very best in mathematics, where he attended lectures by Fourier; he

graduated from the Ecole des Ponts et Chaussées (bridge and road engineering) as one of the top

students in 1806. He undertook field work away from Paris, but returned to teach mechanics at

=] the Ponts in 1819, becoming a professor in 1830.

He specialised in the design of bridges - mainly suspension - but had interests in general engineering, elasticity and
fluid mechanics, as well as doing some work on Fourier series (prompted by his continuing friendship with Fourier). It
is evident that Navier did not understand the nature of stresses in fluids, but he did have a grasp of the general principles
underlying molecular interactions, and used this as the basis to extend Euler’s equation for a fluid. From 1830, he acted

as a government adviser on science and technology generally, and on road and rail policy.

Pitot, Henri (1695-1771)

Pitot was trained as a hydraulic engineer; he designed the Aqueduc de Saint-Clément (in Montpellier)
and the extension of the Pont du Gard (in Nimes). He became a member of the French Academy of

Sciences in 1724 and was elected a foreign member of the Royal Society in 1740.

His hydraulic engineering work led him to study (1832) the flow at various depths in the river Seine -
it was thought by many scientists that the speed increased with depth - and invented his ‘pitot tube’ to

measure the flow speed by using the height of fluid in the pipe. He is also associated with a theorem in

plane geometry, relating the two sums of lengths of opposite sides of a quadrilateral that is inscribed by a circle.
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Poiseuille, J.L.M. (1797-1869)

Poiseuille studied, initially, mathematics and physics at the Ecole Polytechnique in Paris (1816),
and then obtained a DSc (1828) with a thesis on the flow through the human aorta. Using
experiments, he obtained (1838) the relation between pressure gradient and volumetric flow rate
through a pipe, assuming that the flow is laminar. (Hagen produced something similar, so both

names are often associated with this law.) He formulated this result as a mathematical law - but

(B | without relating it in anyway to stresses and viscosity - publishing the results in 1840 and 1846.

{ Throughout his work, he was always striving to understand the flow through narrow tubes, with

the aim of applying his observations to flow through veins and arteries. (The unit associated with

the coeflicient of viscosity, in CGS units, is called the ‘poise; because ‘poiseuille’ never caught on!)

Poisson, S.D. (1781-1840)

The hope of Poisson’s father was that his son would enter the medical profession - it would
mean a secure future, but in his studies at the Ecole Centrale in Fontainebleau he showed
little interest in the relevant topics, and he lacked manual dexterity. However, he learned
most other things very quickly, and especially mathematics. He was encouraged to sit the

entrance examination for the Ecole Polytechnique in Paris; he came top of his year (1798).

He studied under Laplace and Legendre, with considerable success (both these teachers

remained his friends for life), although he was very poor at geometry: his lack of coordination

made it almost impossible for him to draw figures! He was appointed a deputy professor

at the Ecole in 1802, becoming a full professor in 1806 (replacing Fourier). He was also

appointed a professor of mechanics and worked as an astronomer at the Bureau des Longitudes.

In his early career, he studied various types of differential equation, and their applications e.g. pendulum with resistance,
and the theory of sound. He also introduced the technique of series expansions to find approximate solutions to problems
related to perturbed planetary orbits. In addition, he worked on problems of heat transfer and the distribution of electrical
charge on spheres, on probability theory (developing the notion of random events), on gravitation, on elasticity and stresses.
Although he did not, it is argued, develop any very specific, deep, new mathematical results, he introduced many ideas

that we use nowadays e.g. Poisson brackets, Poisson’s equation in potential theory, Poisson distribution.

Download free ebooks at bookboon.com


http://bookboon.com/

Prandtl, Ludwig (1875-1953)

Prandtl was born in Freising, near Munich; he entered the Technische Hochschule in Munich,
specialising in solid mechanics, leading to a doctorate (1900), although he had to design a
suction pump for some factory equipment — and so got involved in fluid mechanics. He was
appointed (1901) a professor of fluid mechanics at what was to become the Technical University

of Hannover; this is where he developed most of his important results in aerodynamics and

fluid mechanics. In 1904, he delivered a paper on fluid flow with weak friction, in which he
introduced the concept of a boundary layer. This was so significant an advance that, later

the same year, he was appointed director of the Institute for Technical Physics at Gottingen

University, where he remained until his death. Over the next 40 years or so he and his group
developed the theory of aerodynamics into the form we use nowadays; he has become known as the ‘father of modern
fluid mechanics’ His work was based on a rigorous application of mathematical techniques to the various problems of

fluid flow, which laid the basis for the subject as it is currently used and understood.

Following the early work of Lanchester, he introduced various mathematical tools that enabled the prediction of lift (and
drag) on realistic, three-dimensional aerofoils, publishing the results towards the end of WWI. In particular, he gave us
lifting-line theory and a comprehensive theory of thin aerofoils; the réle of wing-tip vortices was examined, and induced
drag analysed. Between the wars, he moved on to supersonic flow, developing the first theories of shock waves and
supersonic flight, including the design of supersonic wind tunnels. He also developed a theory for the corrections to the
aerodynamic characteristic, due to compressibility, as the flow speed neared sonic — which was important in the design
of aircraft towards the end of WWII, as aircraft speeds increased. Of his many influential students, we should mention

Ackeret, Blasius, Busemann, Schlichting, Tollmien, von Kdrman.

Reynolds, Osborne (1842-1912)

Reynolds was born in Belfast, but soon moved to Dedham (Essex) where his father had
been appointed headmaster of the local school there; he was also the Anglican priest in the
town. Osborne’s initial education was by private tutoring, and then he took an engineering
apprenticeship (1861), but then entered Cambridge University to study mathematics, graduating
as seventh in his year (1867). In 1868, he was appointed the first Professor of Engineering at
Owens College (which would later (1880) become Manchester University); he remained in this

chair until his retirement in 1905.

His early work was on various aspects of electricity and magnetism, but he soon transferred his interests to hydraulics
and hydrodynamics, and concentrated solely on fluid dynamics after about 1873. In 1883, he announced his observations
on the transition from laminar to turbulent flow, introducing at this time his ‘Reynolds’ number. In 1886 he developed a

theory of lubrication and, in 1889, an insightful model for turbulent flow.

He was regarded as a man with high standards, which he expected of his engineering students — and such a discipline was
then new at university level. He insisted that all these students should have a sound grounding in mathematics, physics
and classical mechanics. He developed the applied mathematics course at Manchester, which remains one of the premier

such courses in the country.
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Robins, Benjamin (1707-1751)

Benjamin’s parents were Quakers and rather poor - his father was a tailor in Bath. There
is no record of any formal education, but he must have learnt (for himself) both languages
and mathematics; he showed considerable promise, so his parents sent him to be coached in
| mathematics in London. He was coached by Dr Henry Pemberton who had been impressed
by his attempts at exercises that he had been set; Pemberton was, at this time, preparing the
third edition of Newton’s Principia. Robins then read, in English translation, all the classical
Greek mathematical texts, as well as all the current mathematical works (Newton, Barrow,
Gregory, Fermat, et al.). In 1727, he had begun to publish important extensions of work done,

for example, by Newton and Bernoulli; this work was regarded so highly that, in this same

year, he was elected a Fellow of the Royal Society.

His fame grew to the extent that he attracted many paying students whom he tutored for Cambridge entry. However,
this was not particularly financially-rewarding, so he gradually moved towards engineering, designing bridges, mills
and harbours, as well as directing the dredging of rivers (to make them navigable) and draining fens. He also did some
important work on gunnery and the design of fortifications. In 1741, the Royal Military Academy (in Woolwich) was
founded; Robins failed to get the position of Professor of Fortifications, and so (in 1842) published his New Principles of
Gunnery, to show the world that he really should have been appointed! This was based on a course that he had hoped to
give at the Academy, if he had been appointed; this text soon became the standard work on the theory of artillery and
projectiles. Indeed, the text was translated into German (by Euler, who gave it much praise), and into French; it became a
standard text for most of mainland Europe. Here, he described his ballistic pendulum (used for the accurate measurement
of a projectile’s speed), and his work on the motion, including the effects of air resistance, on projectiles fired into the air.
Indeed, he introduced the drag law for high-speed motion (proportional to the square of the speed), and recognised the
effects of spinning: the Magnus effect.

He was appointed Engineer General with the British East India Company in 1749, and was sent to India the next year;

he died after contracting a severe fever.
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Saint-Venant, A.J.C.B. de (1797-1886)

Saint-Venant was a student at the Ecole Polytechnique, in Paris, from 1813-1816, and then
worked as civil engineer, first for the Service des Poudres et Salpétres (until 1823), and then for
the Service des Ponts et Chaussées (until 1843). Throughout this period, he worked on various
mathematical problems, but did not publish them (although he referred to many of them later,
when disputes arose, and he certainly used much of his own material when he taught); his
main interests were in mechanics, elasticity and hydrodynamics. He studied at the College de

France, attending classes given by Liouville, and then taught at Ecole des Ponts et Chaussées;

he was elected to the Académie des Sciences in 1868.

Appendixes

His most significant work was published in 1843, where he gave a derivation of the Navier-Stokes equation based on

fluid stresses — two years before Stokes gave a similar analysis — making Navier’s work more mathematically correct. It is

rather surprising that Saint-Venant’s name is not associated with this fundamental equation, although it is often called the

Saint-Venant equation in France. He also worked on the analysis of stress in solid bodies, giving the complete solution

for torsion in non-circular cylinders, and extending work on the bending of beams. One of the mathematical tools that

he invented and developed was a version of the vector calculus.
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Stokes, G.G. (1819-1903)

Stokes was the youngest of six children; his father was the protestant minister in Skreen
| (County Sligo, Ireland), who ensured that all his children had a religious and general
education. In 1832 he was sent to Dublin, where he attended school (but not as a
boarder - the family were too poor for that to be possible, so he lived with an uncle). At
the age of 16 he then moved to England, studying at Bristol College for two years prior
to entering Cambridge University in 1837 where he was tutored by William Hopkins
| (one of the most famous tutors at the time). Stokes went on to graduate the top of all
mathematicians (Senior Wrangler) in 1841 and, following the advice of Hopkins, he

decided to work on hydrodynamics at Pembroke College where he was immediately

given a fellowship.

He worked, initially, on the general form of incompressible flow (1842-1843) and then embarked (1845) on the analysis
of viscous flow, producing the now-accepted complete and comprehensive derivation of the Navier-Stokes equation (two
years after Saint-Venant had achieved the same!). He developed this work on fluids, in conjunction with studies on the
aberration of light, on the motion of pendulums (in fluids) and on aspects of geodesy; he was appointed Lucasian Professor
of Mathematics at Cambridge — Newton’s chair — in 1849. This post, however, was poorly paid, so he also took up the chair
of Professor of Physics at the School of Mines in London (which was to become, eventually, one of the three founding
schools of Imperial College). He continued to produce fundamental results in fluid mechanics (e.g. the resistance of flow
past small spheres) and on the wave theory of light, as well as explaining (and naming) the phenomenon of fluorescence,

and analysing Fraunhofer lines in the solar spectrum.

After 1857, he became much involved in administration; he was appointed secretary to the Royal Society (1854) and
the President (1885), Master of Pembroke College in 1902, and served as the MP for Cambridge University 1887-1892.

von Karman, Theodore (1881-1963)

Theodore was born in Budapest, and was tutored at home by a former student of his father
- and his father totally dominated the home and his education. When he was 9, he entered
the Minta Gymnasium, in Budapest, a school set-up by his father and run according to his
principles for educating bright children. On completion of his studies, he won a prize as the best

mathematics and science student in all of Hungary. However, his father insisted that he study

engineering, and so, much as he hated it, he completed his studies in mechanical engineering ]

at the Palatine Joseph Polytechnic in Budapest. (His father had a nervous breakdown while

he was at the polytechnic, but Theodore went on to complete the course.) In 1903 he was
appointed as an assistant in hydraulics at his old polytechnic, but he was also a consultant

for a German locomotive manufacturer.
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His interests, at this time, circulated around fluids in general, and also on the compression of structures. In 1906, he
received a fellowship that allowed him to follow-up his contacts in Germany: he studied at Géttingen (and for a short
while in Paris), where his was introduced to the problems of flight. However, he first worked on the buckling of plates,
and received his doctorate for this in 1908; then he joined the staff at Gottingen. In 1911, he analysed the flow behind
a bluff body - the von Karman street vortex — and also (with Max Born) looked at the properties of vibrating atoms. In
1913 he accepted the post of director of the Aeronautical Institute at Aachen, and the Chair of Aeronautics and Mechanics
at Aachen University. During WWI, when he was called-up by the Austro-Hungarian army, he worked on the design of
military aircraft; after the war, he returned to Aachen. He then initiated an extensive programme to study general fluid

flows, and especially resistance, turbulence and the theory of lift generation.

He visited the USA regularly from about 1926, and in 1930 he was invited to be the director of the Aeronautical Laboratory
at Caltech, where he continued his research, expanding into the theories of supersonic flight. In 1944, he was also appointed
director of the Jet Propulsion Laboratory at Caltech, which eventually made significant contributions to the American

space programme.

Wright, Wilbur (1867-1912) and Orville (1871-1948)

The Wright brothers invented, and flew, the first controlled and powered aircraft;
indeed, from the outset, their aim was to construct a craft that would carry a
human and be reliably controllable by the pilot. Their father was of English-Dutch
descent - their mother was German-Swiss — and a bishop in the Church of the
United Brethren in Christ, first in Millville (Indiana) and then in Dayton, Ohio.
Wilbur was born in Millville, and Orville in Dayton, but Wilbur was barely able to
finish his high-school education before the sudden move to Ohio in 1884; Orville

dropped out of school. A further complication to their lives was the injury to
Wilbur (accidental during a game of ice hockey) which made him housebound for about four years, during which time

he cared for his mother who was terminally ill with TB.

However, Orville soon set up a printing business (1889), using a printing press designed and built with the help of Wilbur
— this occupation helped him to overcome the depression following his accident. They edited and published a number
of local newspapers, with some success. They then joined the new bicycle craze, opening a bicycle repair and sales shop
(1892), and then manufacturing and selling their own design of bicycle (1896). This venture was so successful that they
were able to use the funds generated to support their aeronautical investigations. They followed the flights of Lilienthal,
through the news reports, and it seems that his death was one of the main events that spurred their aim to construct a
controllable aircraft. In 1899, Wilbur wrote to the Smithsonian Institute requesting all the relevant background information
(describing the work of, for example, Cayley, Chanute and Lilienthal). They first followed Lilienthal, despite his tragic
death using hang-gliders, by designing and building gliders in order to learn how to control flight safely. Throughout their

approach to solving the ultimate problem of manned flight, they were absolutely systematic and thorough.
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The first task they addressed was where to carry out their flight tests. With the advice of Chanute (from France), and the
weather data they had obtained from the US Weather Bureau, with specific information from the government meteorologist
stationed at Kitty Hawk (North Carolina), they chose this location. They made numerous glider flights - many unmanned -
during 1901-1903, gradually perfecting the control system. The manned flights, which the two brothers shared so that each
would learn the relevant skills, involved the pilot laying prone across the lower wing - all their craft were biplanes - in the
centre. Eventually they realised the need, when turning, to require differential lift on the wings, which they accomplished
by twisting (wing warping); this is equivalent to the modern ailerons. But this alone produced a differential drag that
caused the glider to rotate about a vertical axis, changing the direction of travel. So they added a fixed vertical tail, but
then the glider would often not level off, and gradually slide sidewards into the ground. The solution, they found - and
this was their most important discovery — was to move the tail (making it a rudder) and then to hinge the rudder to the
warping. In short, they had discovered that directional control was provided by the wing warping (the ailerons), and the

moveable rudder ensured the correct alignment of the aircraft in the turn and when straightening up.
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In addition to this fundamental breakthrough, they found that the data on aerofoil shapes, and the lift that they generated,
was not sufficiently accurate or reliable, so they built a small wind tunnel (about 2m long) and, towards the end of 1901,
conducted numerous, systematic tests on minjature wings and aerofoil shapes. They were able, by balancing forces, to
measure both the lift and the drag of their models. Furthermore, they also designed, built and tested various types of wooden
propeller. Finally, they needed a suitable engine to drive the propellers; they contacted several engine manufacturers, but
none were able to produce the light-weight engine, with sufficient power, that they required. So, with the help of their
shop mechanic (Charlie Taylor), they designed and built - in six weeks — an engine that satisfied their requirements.
(Very unusually, the engine block was cast from aluminium - to keep the weight down - which in itself was a novel
feature.) The resulting complete Wright Flyer (later I) had a wing span of 12.3m, weighed 274kg, with a 12-horsepower
engine weighing 82kg.

They commenced flight testing on 14 December 1903, at Kill Devil Hills (at the edge of the Kitty Hawk area), but their
inexperience led to some stalling and minor damage. They had tossed a coin to decide who was to pilot the aircraft first,
and so it fell to Orville to make the first successful flight (37m and 12 secs) on 17 December; this was followed, on the
same day by Wilbur (53m) and then Orville (61m). The final flight of the day was by Wilbur (252m and 59secs). After that,
they made many improvements, and learnt much about how to pilot their craft, so that by November 1904, the Wright
Flyer IT had flown 536m in 40secs, and the Wright Flyer III flew 20 miles, staying aloft for 1/2 hour, in October 1905.

The brothers contacted the US government, and then those of Britain, France and Germany, with the aim of selling the
idea - and an aircraft - to them, but nothing came of it. (The reason appears to be that the Wrights insisted on a signed
contract before any demonstration flights had been made!) They did no flying in 1906-1907, as they negotiated with the US
and European governments, but in May 1906 they were granted a US patent for their flying machine. This led, in 1909, to
the completion of proving flights for the US Army; they demonstrated a two-seater aircraft that flew for an hour at a speed
of 64km/h (and landed undamaged!). Their craft exceeded the required specification; they sold an aircraft for $30,000. By
the end of 1909, they had formed the Wright Company, and then they sold their patents for $100,000, and received one
third of the shares in a million-dollar stock issue, and a 10% royalty on every aircraft sold. (In 1910, they redesigned the

Flyer, so that the horizontal elevator was at the rear, and wheels were added, although the skids were retained.)
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Wilbur died in 1912, after contracting typhoid following a trip to Boston. Orville continued as president of the Wright
Company until 1915, when he sold it, moving to a grand mansion in Oakwood, Ohio. He died in 1948; he had been

instrumental in the development of controlled, powered flight, and lived to see the dawn of the supersonic age.
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Appendix 2: Check-list of basic equations
Coordinates

Cartesian : X = ()C,y,Z) , U= (u, v, W);
Cylindrical polars : X = (I”, 0,2) ,TU=E (u, v, W).

Mass conservation (incomp.)

V-u=0;@+@+aw—

—=0;
ox oy Oz

——(ru)+-—+—=0.
ror rod oz

Euler’s equation

Du_ (@ 6 0. 8 8 1
D (aﬁ“ )“ (aﬁ“ax” +Waz)“ o PrE

o Leul v il vy =— {2 P D\, (g p R
. o\ oy y

and

0 0 v o 0 v ouv I(dp 10p Gp)
IR IRl +|— — 0 |=—| L == 2L \+(F..F,. F
(az uar r 00 wazj(u,v,w) ( roor’ ] p(@r’r 060’ oz ( ro Z)

Navier-Stokes equation

Du_ 1 o)
Dr - pr+ Weu+F

Bernoulli’s equation

l u-u+ I% +Q=constant on streamlines;

2

Laplace’s equation

2 2 2
vpe0.00, 58 0
ox~ oy° oz
2 2 2
09 1og 109 ¢

o ror 12o0> or
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Velocity potential

_Us. _|9¢ 0¢ 0¢) op 10¢ 09
u=Vve: V¢_(8x’8y’02)’ Vo= (81’ r 06’ 82)

Pressure equation

a¢ +— ll u +I p +Q= f(l) for irrotational flow.
o 2 yo,

Stream function
u+v,=0:u=y, , v=—y,;
1 1 1
—(ru), +—v,=0:u=—y, v=—y, .
r r r
Vorticity (w=V Au)
O =(W), =V, Uy =Wy, Vy —Uy)

0= 1w —Vy, Uy — W, 1(rv) —1u
—| 7 0 Vz Uz o e 0

Blasius’ theorem

L. rfdwY
forforces:X—iY:Ejpi(EWj dz ;

f M=nl-L §Z(d—w)2dz
or moments : 2,OC dz .
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Appendix 3: Derivation of Euler’s equation (which describes an inviscid fluid)

This handout describes how we apply, in a mathematically careful way, Newton’s Second Law to a fluid. In this model we
take the fluid to be acted on by a body force F (per unit mass) and by a pressure, p, the only internal force (so the fluid

is assumed to be inviscid i.e. it is frictionless).

We consider an (imaginary) volume V, with a bounding surface S (and outward unit normal n), which is fixed in our
chosen coordinate system and totally occupied by fluid; the fluid therefore, in general, moves across S, into and out of

the volume V.
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The total force acting on the fluid in V (see §1.5) is

I (pF —Vp)dv.
-
To apply Newton’s Second Law we must first appreciate that, simply because the fluid is in motion, fluid may cross S and

enter V, thereby carrying momentum into V. If we compute the rate of change of momentum of the fluid in V (that is,
the more correct statement of ‘mass X acceleration’), and subtract the rate of change of momentum contributed by the

fluid entering V, any residual rate of change of momentum can come about due only to the action of forces.

The rate of flow of momentum into V across S is

S

N~ un

ds

~[ pu(u-n)ds,
S
since W-NAs is the volume flow (out) per unit time, and the mass flux this carries is PU, the product being the
momentum carried out; the change of sign then provides the momentum crossing into V.
The total momentum of the fluid in V' at any instant is

J poudv
V

and so the rate of change of momentum is therefore

since V is fixed in our coordinate system.

Thus Newton’s Second Law is written

J %(P“)dv + fpu(ll ‘n)ds = _[(,oF ~Vp)dv. (*)
V S Vv
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This equation is now expressed as a single integral over V, and so we first write

Ipu(u ‘m)ds = J.pu(u~n)ds, very... |, thatis, in component form.
S s

Then, by Gauss’ theorem, we have for the first component :
[ pu(u-myds = [ () -nds = [ V- (pruw)dv=[ ¥ - (pu)+ p(u-Vyujdy
N N Vv Vv

and similarly for the other two components. (Do not confuse the velocity vector, W, with the first component of this

vector, U .)

Recombining the three components, we obtain

[ pu(u-nyds = [uV-(pu)+ p(u-Vyujdv.

The full equation (*) now reads

£ Gou) +u¥ - (ow)+ plu- Vyujdv= [ (oF ~Vp)av,

and expanding the integrand on the left hand side yields

j{p% +ué)—/) +uV-(pu)+ p(u-Vyuldv.
Vv

ot

The second and third terms inside this integral are y {?_’; +V-(pu)}=0, by virtue of the equation of mass conservation.

Thus we are left with

A Du
= Vu-pF+Vpidv=|{p——— pF+Vpldv=0,
l{pé,tw(u Ju—pF+Vpidv l{th PF+Vpidy

where we have introduced the material derivative.

Finally, if this is to be valid for arbitrary Vs that contain fluid, then we require

@—pF+Vp=0 or @z—le+F,

P D D p

as we developed in a rather cavalier fashion in §1.6. This final equation is Euler’s equation, which describes the motion

of an inviscid fluid.
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Appendix 4: Kelvin's circulation theorem (1869)

The circulation is defined by K (¢) = § -d1 ; the simple closed curve C is defined by the points X = X(s,7), where
0 <5<, maps out C (just once) and S is a constant.

Thus we have
5,
K(t)= f u(X(s.0).0)- SXds
0 os

and now we take d/ dt of this equation to give

N 2
ac _faufox o)) ox,, Xy,
dt o o Os

Osot

But the curve C moves with the fluid, so

X
=u(X,?) ; thus we obtain
t

{@H -Vu j 5X+u-@}ds
o os os

Further, if F is conservative and the fluid has either 0 = constant or is barotropic (i.e. p = p( ,O) ), then the material-
derivative term can be replaced (Euler’s equation) to give

%
[ it 2]

0

dK
d

I
I

if all these functions are single-valued in space (which is certainly the case for a physically realistic flow)

Thus K = constant around any simple closed contour that moves with the fluid; this turns out to be a result with far-

reaching consequences, some of which we shall meet when we consider aerofoil theory.
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Appendix 5: Some Joukowski aerofoils

Appendixes

Using z=(;+l with ¢ = ¢+ re”” where [a —c|=r and c=—a +ib.
9
/ g‘;"'
0.2+ \
01 -
— ' T ! 1 ;
a=01 b5=01
047
02+
jz‘ -1 { O
a=015 5=02

a=02

—~
0.8
0.6
0.2
I

b=04
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Appendix 6: Lift on a flat-plate aerofoil

The force, according to the Blasius Theorem for forces, is

2
x-iv="Lip § g,
2 aerofoil dZ
deg ¢ (dmrdg)
Jip | dz=ip § S

273 “dzag)

=—1
2

aerofoil circle

Now the integrand here is

a IKI — a lKl
;,2 Ue % _ a4
4’2 27[{

—d?/2 B (& —a)¢+a)

which has poles at g = 0, £ @ ; because there are no other poles, we may use any contour exterior to the plate (which
is equivalent to taking a contour in the region where the fluid exists, just around the plate, for example — precisely what
we need in order to find the force on the plate). The pole at (f =0 is an intrinsic element of this problem; the one at
é/ = A is accommodated by the Kutta condition i.e. the fluid velocities near here remain finite; the third one, at é/ =—da
, is not removable and so may imply that this special aerofoil cannot lead to a meaningful result. (Note that the aerofoils

of interest have a rounded nose, so this singularity does not arise.) Let us evaluate this integral directly.

Based on the integrand, and using K = 4 7qU sina :
il K( 1 iUKe'" . i
the residue at é’ =0is —2a2Uela — | = | = 14CZU2€1a

3 sina ;
YA T

the residue at é/ =da is

a? .. 1 2 Ar neyr . )
—[U(—21s1na)+—K} =—[2iUsina +2iUsina|” =0;
a 2m 2

2

the residue at é/ =—a is

. 2
[U(—2i sin) — LK} = —g[—4iUsina}2
2m 2
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Thus the complex force becomes
. I. . . i - a .
X—iY= Sipx 2771 % [41aUzela sina +§16U2 sin’ a}
= —47ran2(iela sinazcosa +2sin’ a)

— _47zan2(sin2 o+ isinacosa),

andso X = —47rapU2 sin @ and Y = 47za,0U2 sin@cosa .

These are the components of the force 477 pU 2 sin¢ at right angles to the oncoming stream, precisely according to the
Kutta-Joukowski: the flow at infinity in each plane is the same, as is the logarithmic singularity: the vortex of strength —K .

Comment

Because we may use any contour outside the flat plate — there are no other poles in the flow field - we may take the

contour to be that approaching infinity: ‘q —> 0. In this case, the integrand is written

2 o P 2\ 72
Ueio _pgiad_ K11 _a

42 ;ré/ §2

with |¢] —> oo,

_iy 1K
and then the coefficient of the term é/_ 1 is 2Ue la 2— Thus we obtain
T

X —-1iY = %ip x 27 x iUe ‘% 4qUsina = —47rapU2 (sin2 a +1sinacosq)

exactly as above.
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Appendix 7: MAPLE program for plotting Joukowski aerofoils

This Maple program generates the streamlines for the complex potential flow which represents the uniform stream past
a Joukowski aerofoil with circulation. The circle has centre zi0 and radius ¢, and zi0 can be chosen by selecting a and b;
you may investigate the effect of changing a and b. The circulation is k, and the program selects this to ensure that the

velocity at the trailing edge (ut) is finite.
You may wish to interpret the program, and relate it to the theory of the Joukowski aerofoil and the flow around it.

with(plots,contourplot,display):

readlib(addcoords)(z_cylindrical,[z,r,theta],[r*cos(theta),r*sin(t

heta) ,z]);

ut:=1.0+0.2%T:c:=1.0:a2:=0.9:b:=0.1:

zi0:=-c+a+I*b:ubar:=conjugate (ut):

alpha:=arcsin(b/c) :argu:=argument (ut) :

k:=2.0%abs (ut) *¢*sin (alphat+argu) :

wi=proc (zi) ubar*zi+ut¥*c*c/zi+I*k*1ln(zi/c) end:

f:=proc(zi) zi+a*a/zi end:

g:=proc(z) 0.5%z*(1.0+sqrt(1.0-4.0%a*a/(z*z))) end:

flow:=contourplot(evalf(Im(w(g(r*exp(I*theta))—ziO))),r=0.2..4,the

ta=0..2*Pi,coords=z_cylindrical,grid=[60,60],contours=16,color=bla

- ck):

> wing:=plot([evalf(Re(f(ziO+c*exp(I*t)))),evalf(Im(f(ziO+c*exp(I*t)
y)),t=-Pi..Pi],x=-4..4,y=-4..4,color=black) :

7> display({flow,wing},title="Flow past Joukowski aerofoil with

.circulation’)
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Answers

All the exercises are numbered sequentially throughout the text. Any calculation that leads to an answer that is not provided

in the question is given below; all other details are omitted. (We adopt the notation that A, B, ... are arbitrary constants.)
ko 41 K 1-1/
L@ T=—p" ) T=—-p /7.
VTR R
1 y—1
2. (a) T=E(kp +ap)(1—bp);
) T = %( K7 7 g V7 Yy ) A—bkV7 V7).

3. p~ pRT +(bRT —a)p*. 4. k=RT.

5.() y=Ax?;(0) x> +4y° = 4; (0 =45 0 = 4.

s (e)

6.(a) x= x()eat, y= yoezm;

(b) x =cos(2at)—2sin(2at), y =cos(2at) +%sin(2at) ;

(c) x= xoetz/z, y= yoe_tz/z;
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10. () 4sin(16x%) ~3sin(9x); (©) R* (R'+1R)e™ .

12. (a) xy =4, x:xoekt,yzyoe_kt, zZ=12p;

£ -
) xy=A4,x=x9€ , y=Yo€ »Z=2);
(© y(x—t)=4, x:1+t+(x0—1)et, y:yoe_t, Z=12y;
2

1 _
@ x' =4, xzxoezt » V=Y0¢ f zZ=2;

(e) xy2 =4, x= At? , ¥t = B (cannot use condition on ¢ =0);

4 4/ y2 142 2: 2 2 _
f) * = Ae” / s x=At"e? R Y Yo+t R Z=20 (cannot use the given condition on x at t:O);

() x>+ y? =2ctx+ A, x = xq cos(kt) + (o —c/k)sin(kr),

y =—xq sin(kt) +(yo —c/k)cos(kt) +c/k , z = zy;

2
(1+4x) Xo Yo 2 2
(h) y= »yZ=B——F——, x= , V= , z=zo(1—kxgt)"(1=kyot)”;
Y T 4 a gt~ 1=kt o(1=hkxot)” (1= kypt)
. . i t
() %y2+ysm(a)t)+%22—Zcos(a)t):A, y:As1nt+Bcost—Slle),
)
z=—Acost+ Bsint+ cos(e!) 3
l1-w

G y2+(z-1)? =4, x=xq, y = ygcost—(zy —1)sint,

z=ygsint+1+(zy—1)cost.
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13. (a), (h), (j) are steady.

130 3@/
Y
13(e)

)

14. U = (ax, BY,72) (so steady), y* = AxP , z% = Bx” .
13

15 )2 =293 1 4, x= 1+Lt1+a ,y=\/l+LtH3a.

I+ 1+ 3c
16. y2+zeat/x:A’ x:%, yZ\/1+(€2at—1)/a;steadyf0r a=0.

l+a—¢

- - I+
l+a—-t"%

19. (a) x=Ae’2, y=Be_t2/2, z=Ce_’2/2 then f=A2 +B*+2C2.
20. u=2x/t,v=—y/t, w=—z/t.
21, (b) X = (4x0(1+4r2)e2’2,2y0(—1+ 22)e™" 220 (<14 26%)e™" )

zz.u{ﬁ,—z—yj,x: 20|,
1+t 1+t A+

23. (a) (d), (e), (f) NO - the rest YES; (b) all YES; (c) a + B+ y =0.
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24. (a) f=A/r3;(b) a=b=c=3;5;()a=1,b=c=0.
26. f=—4xyzt.27. a=2.
28.E.g. u=(Asinkz + Bcoskz, Dsinkx + C coskx+ Acoskz — Bsinkz, —Csin kx + D cos kx).

30. w=(u—nv)/m.

_p \Woh _p Yo
zj » D= Do [1 - 4 z] ,
4

31.(a) p=py (1 —
7 Po Po

T:&[l_gpoy_—lzj, ar __(r-Dg,

Rpy 7Po &z Ry

—gz/k —gz/k
) p=poe /%, p=poe /¥, T = py/Rpys

2a
© P=po+}pog(az’ =22); @ P=Po+Pog (—z +7(—z)3/2 J ;

po(1-agz/RL)* 0<z<H

— <z<
(e)T:{To agz/R, 0<z<H _

3 p _ z>H;
Ty-agH/R, z>H po(l—agH/RTO)l/aexp{— z-H }

RT,/g—aH

T —const, p >0 z—> o,

Y(r-1)

-1

f) p= Py {1 — E Y j 0/ (1 +Z j} (relevant to Newton’s law of gravity).
Y ) Po az

32. k=py/py> p:poexp{—gl;oo z}.
0

34. w=ax, p=py— p(g+auy)z («is a free parameter).

36. Both are incompressible and @ =(0,5,0); (b) ®=(0,—2uz,2uy).

(0,0,20),0<r <a po—pota® +1 po*r?,0<r<a
37.(a) O = ;(b) p=
0, r>a Po—5 PO 2, r>a
(0,0,3r/a),0<r<a 3 pwa’ +1 po r4/a 0<r<a
38.(a) ®= ;(b)pz
0, r>a Zpa) a4/r

22
w1thp0>4pa)a
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2 2 -
40. p=———.41. p; = py +5 p(u” —v ),pz=po+%/{u ——
x +y

2 2 2
42. p1 = po—40puy, py = po—4puys po>40puy.

2
4. v=%uo, p=p0+pgh+%p 1—% ug.
1
P 1 A p ! y1 /- T 1 7!
47.(c) —=|1+5(y-DM s d) —=|1+5(y-DM s(e) —=|1+L(y—DHM
£o |: 2 :| Do |: 2 :| TO |: 2 :|

-1
48. (b) T' =1 [1 + % (yr—-HMm 2} so T decreases as M increases: refrigeration.
1 .| 2g
52. h(t)=—=hy|1+sin| —— /— .
" 2 " l: ( 2 ho ]}

53. p=po— p[an R cos(nt)— a 2n? sin (nt)} T
56. (a) K = 2 mor? ;(b) K = 2mwa’ .
57.(a) K = 27m)r3/a; (b) K = 21wa’ .

58. u=(alsins,0,0) (=0at s=0,7) =(1,0,0); K =—a’Ax.

59. (a) u =—2Arz, w=-2A4(a’> —z> - 2r?), u =(0,—-104r,0);

2 5.2
(b) u=— % —U+B%,u—>(0,0,U) as 12 + 22 —> o0;
r-+z r-+z
() ®=0;(d) B—IU A—2— (and then U———aa))
a
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u o (04

60. u(y) =—Ly——y(h—y).61. u(y)=——y(h—y), p= py +ax—pgy.
h 2u 2u

62. u(y) = uo I_G—W

63. (a) u:e_Vy/V;(b) u =exp at—zﬂ(1+\/1+4av/V2)y .
v

The Wake
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_ Yo _ 8,2 2 Wby g 2 -
64.w—ln/lln(r/R).Gs.w—4V(r b°)— 1(/b){w 4v(b a)]

66. vV = aa)[l +iln(r/a)} 5
In2

Ina )’ 2 I
p(a)—p(%a):pa 10} [(1 2&—;) In2+ ln2(1 2ln—aj((lna) (ln(%a))z)

+

3(In2)? ((ln a)’ - (In(za))’ )}

(and various levels of simplification are possible).

67. (c) .
(@
68. (60): ® = ( (éh y)j (61): = (0,0,%(%h—y)}

Vo /v
62): © ( u()VO/V_ eh/ j (638): m:(O’O,KG—Vy/V);
_wh/v v

(63b): m: 00ke“f "y) (64): &= (0 0 0)

X

70. h(X) = m
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71.G) ff"+ " =0, f(0)=f'(0)=0, /"> 2/12 as 7] — 00 ; any numerical solution,

using f(0)= f'(0)=0, and any f"(0)+# 0, will generate some f' as 77 — o0 set this value equal to

2/ 22 , determine A and then rescale the numerical solution to find the solution to the original problem.
b) fg'+(g)* +gg" =050 (2n—a+F)F"+F"=0;() C=-B*/30.

72.(b) f(0)=0, f > 1 as n > 0.

73. (b) f(0)=101af'(0)=0,f’%1 as 17 =03 (0) ¢"—(n” +Cn+D)p=0.
m+
o%w _ 1 2 a*t
74. (b) P =0so w=F(2)+G(2).75. ¢:_§U(r +r—2Jcos(2¢9).

76. (a) u =2kx,v=-2ky;(b) ¢ = A(x3 —3xyz)+B(y3 —3x2y) .

77. (b)
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78.

79. Ursin6’+m—0:ﬁ; (c)
2 2

/"”‘“///// &
N

(d)

80. w=Uz—iaUlogz— Ub? / Z (uniform flow + line vortex & dipole both at the origin).
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81. z=acos@+ibsin@ then w=U (aa'—bb")cos 0.

82.

Answers

85. w:ﬂlog(z_a];x2 +y2—a2 =24ay so X2 +(y—aﬂ)2 =a2(1+/12).

2 z+a

2 2
m z" —a y 1 2
86. (a) w=—1I0og| ———— |[; () W > ——— =a“m).
(a) = g 2 (b) 27 2 (y )

2 am

m z+a
87. W=UZ+—10g( j with stag. pts.at z =%, [a” +—.

27 z—a zU

iK .
88. w=—-Iog _Z with stag. pts. at z = ila/\/g.
A Z2 _a2

203
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m Zz—az
89. w=—log -
7 z"+a
22 +a? 3m

m
90. (@) w=—L1o u=
! 2 8 22 4+ 442 10ar

22 —44°
(b) w=——Ilog 3 o U=
7 (z—1a)" —a
2 2
(© w=—tlog| ——2 | u=0,v="r,
g 2,2
2 (z—1a)" —4a Sar
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91. w=ﬂlog(z2 —az). 92. w=ﬂlog(z4 —a4).
2r 2r

3 _a3e310.’)(z

93. w=ﬂlog((z 3 —a3e_3ia)).
2

_m (z—zp)z+Zp) s
94'W_27r10g[(z—70)(z+zo)} (zg =a+1b),

x(x2 —y2 —a? —b2)+2xy2 = l[(xz —y2 —a? —bz)2 —4b2y2 +4)€2(y2 —bz):|.

oy,

y —
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95.W:ﬂ10g(mj;atzzo:uzml; = 0;

2 z—2a-1 T 4q% + b2’

dam 1
newﬂowu=—— V:().

T 44’ +b?

1K (z—ibj
96. w=——1Ilog — |.
2 z+1b

o ~ iKl ZZ_a2e21a
T OB 2 2t |

. 2
98. w=£log(z+aj; (x* +y% —a?)? +4a?y? =/1[(x—a)2 +J’2} .
T

99. The complex velocity in addition to the singularity at z =z is

dw iK{ 1 1 1}
= -

dZ B 272' ZO —EO ZO +EO 2Z0

v 7 —YZ/[X(X2+Y2)J 73
awox e s] X3

.2 2 2
100. (a) Ue'® £ b) —logz; (0) log[a—Jrib}; (d) —ilog(a—+ib}
z z y4
e—ia

(€ —F/—mm.
az/z—a+ib
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101. (b) Unit circle, mapped in the reverse direction;

(a circle for a # b);

(c) |§| = %‘g—a_le_ia

@ [¢] =‘§ —a'e7%| (a straight line).
102. M = —%p R [27zi(2Ua2 +a12 )} and then M =0.

m, ((z-2a)z-}a)
103. w=—7Iog

27 z

; (b) force is equal and opposite to that on the

circular cylinder.

2

m 1
104.X:p 2—(>O),Y:O.
2ar n(n” -1)
m . at . a’
105. w=—-7Iog| (z—12a)(z-2a)| —+12a || ——2a | |;
2 z z
10 ~m? 12 Am?
Sgfa ™
T T oaf \\\
Y . it}
_—T?.;;?-— — _-'1 ' Y 0.5 1 1.6 !,'
B 0.4 F y,
= T ,//
-0.2 p T e
F S =
. 2
110. W =Ue "% +Ue'* —.
¢
dw
111. — > Ucosa as 8 > 0.
dz
2 a2
112. 47rpU~ sin @ per unit length; h=r+——a —>a as ¢ > 0.
r

113. 67mpU2 sina per unit length.

33z ]
=z

Answers
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115. (a) K =4raUsina ; (b) pUK = 47wt,oU2 sina ;

2U sin &

(c) stag. pt. at x ® —2acos2a, y~—-2&casin2a;(d) u=0,v=
&
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Index

Acceleration
adiabatic

adverse pressure gradient

aerofoil cambered plate

flat plate

flat plate with circulation

general Joukowski

section
simple
supersonic
symmetric
thin elliptical

aerofoil theory

ailerons

analytic function

angle of incidence

angle preserving transformation

anti-symmetry of flow field

Archimedes’ principle

asymptotic suction profile

atmosphere model for
stratosphere
troposphere

atmospheric pressure

avenue of vortices

axi-symmetry

axi-symmetric Couette flow

axi-symmetric flow

Ball cricket, golf, tennis

bar magnet
Beltrami flow
Bernoulli, D.
Bernoulli’s equation
for pipe flow
Bernoulli’s theorem
Blasius equation
Blasius, PR.H.

16,33,34
47

151

163

148

153
147.191
112

64

163
147.163.164
164

140

161

90
148.161
129

150

37

85

37

37

37
24,28
102

57

84

21

126

105

35

165
44.117.123.184
46

44

85

82.123.165
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Blasius’ theorem

blood flow

bluff body

body force

boundary condition (no-slip)
boundary conditions

boundary layer

boundary-layer equations
branch point

branching pipe

building blocks

Cambered-plate aerofoil
Cauchy-Riemann relations
Cauchy’s integral theorems
cavity

centre of gravity
characteristic variables
chord (of a wing)

circle

circle theorem (Milne-Thomson)

circular cylinders

circulation

circulation theorem

civil aircraft (large)
Coanda effect

Coanda, H.-M.

co-axial circular cylinders

coefficient

flat plate

generated by a sink
growth

separation

with variable suction

collapse of

transformation of

co-axial

rotating

along a vortex tube
around flat plate
around Joukowski aerofoil

line vortex

lift
Newtonian viscosity

pressure

121.123.185
76
102.105
23

76

26
76,80
81

86

85

161

87

77

141
35,62
91.102

145.163
59,90,134
123

65

161

134

152

141
113.148
84

84
52,55,65,96,119
150.155
55

153

159

53
56,65,189
76

151
151.165
84

157

68

117
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collapse of spherical cavity
complex force

complex potential

complex velocity

compressible

conformal transformation
conformality fails
conservative force
continously distributed
continuous integrand
continuum hypothesis
convective derivative

coordinates

Couette flow

Couette, M.M.A.
cricket ball
critical point
cross flow

cup

curl

curve

cusp (at trailing edge)

cylindrical coordinates

dipole

dipole in a stream

flow past a circle

flow past spinning circle
sink

source

source in a stream
uniform flow/stream
velocity field

vortex

under transformation

cylindrical
cylindrical, axi-symmetric
plane polar

rectangular Cartesian

axial

stirring

parameterised

tangent to

with axi-symmetry

65

122
90,91,92
102

107
113.116.135
119

92

92

105

92

135

96
91.150
133

8
128.129.138
130.144
42,44

9

19,24

9

14
20,28,61,184
57

57
9,20,184
69

84
69.166
126

141

84

8

38

10

10

162
20,28,57
61
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D’Alembert’s solution (wave eqn)

density

derivative convective
directional
material

differentiable function
differential identities
differentiation under the integral sign
dimensionless variables
dipole
in a stream
dipole magnet
directional derivative
divergence theorem

dynamical similarity
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134
9
14
44
14
90
30

18,21,31
75
102.103.113.135
107
105
44
19,24,30,55,59
76
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Eddies

energy kinetic
potential
thermal

energy integral

equation Bernoulli’s
Blasius
boundary layer
Euler’s
Helmholtz’s
hydrostatic equilibrium
Laplace’s
mass conservation
Navier-Stokes (NS)
of motion
of state
Prandtl boundary layer
pressure
unsteady Bernoulli
vorticity

equation of motion

equation of state

equilibrium

equipotential lines

Euler, L.

Eulerian description

Euler’s equation of motion

expanding gas

expansion fan

external force

Failure of conformality

Ferris wheel

flaps

flat-plate aerofoil

flat-plate aerofoil with circulation
flat-plate boundary layer

Flettner, A.

119.151

44

44

9

44
44.117.123.184
85

77
25,26,37,184,186
42,43

23,24
58,88,134,184
18,20,184
67,68,184
25,26

9

80

48,49,185

49

42

25,26

9

23

65

26.166

9,15
25,26,27,37,184,186
63

163

23

130

41

161

148

153

81
126.166
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flow 2D 91

2D incomp irrot 88
along a river 62
axi-symmetric 21
axi-symmetric Couette 84
Beltrami 35
blood 76
building blocks 91
Cross 84
incompressible 34,35
inviscid, pipe 22
irrotational 38
laminar 76
model 92
near trailing edge 164
non-swirling 21
past a circle 113.116.135
past a spinning circle 119
past an ellipse 135.163
pipe 21,35
plug hole 52
purely radial 93
separation 119
sink 92
source 92
source + sink 136
source in a stream 105
source near a wall 136
spinning circle 136
steady 13
three vortices 136
through inclined pipe 62
transformation of 131
turbulent 76
two sources + sink 136
two sources + two sinks 136
uniform + source 135
uniform across a section 22
uniform past a boundary 135.139
uniform past circle 108
viscous, pipe 22
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flow at infinity

under transformation

flow leaves trailing edge smoothly

flow of a gas

flow past a circle
flow through pipe
flow with a wall

fluid

football

force

compressible
ideal
incompressible
local spin
rotation

spinning

body
conservative
external
internal

viscous

Index

132
151

48
113.116
73

109

8

25
8,20
38

38

28

126
23.139
23
42,44
23

23

23
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force on spinning circle
forces on objects
friction

Froude number

Froude, W.

Galilean invariance

gas

Gauss, K.E.

Gauss’ theorem

general Joukowski aerofoil

golf ball
gravity

group property

Hagen, G.H.L.

heat conduction

heat diffusion
Helmholtz, H.L.E. von
Helmholtz’s equation
Hill’s spherical vortex
horseshoe vortex
hydraulic jump

hydrostatic equilibrium

Ideal fluid

image of a uniform flow in a circle

images

impulsively started plate

inclined pipe

incompressible

integral

integral identities

adiabatic
expanding
flowing
perfect

van der Waals

in a flow

field

method of
flow through
flow

fluid

energy

126
121.124
23
63,75
167

28,37
8

47

63

48
37,47
29
168
19,24,30,55,59
147
159
126
23

44

85

73.168

67

67

43.169
42,43

65

162

62
23,24,36,37

8,25

109
109.137

71

62

8,9,61
34,35,44,63
20

44

30

Download free ebooks at bookboon.com


http://bookboon.com/

internal friction
invariance
inviscid pipe flow
irrotational flow

isotropic

Joukowski aerofoil

Joukowski, N.E.

Joukowski transformation

Joule-Thomson effect

jump

Karman, T. von

Kelvin, Lord

Kelvin’s circulation theorem
kinematic viscosity
kinematics

kinetic energy

Kutta condition

Kutta, M.W.

Kutta-Joukowski theorem

Lagrange, J.-L.
Lagrangian description
laminar flow

Laplace, P-S.

Laplace’s equation
leading edge

lift

lift coefhicient
lifting-line theory
Lilienthal, O.

line of action (of a force)

line

Galilean

MAPLE program

extended

condition

hydraulic

flat plate
Joukowski aerofoil

Z€ro

sink
source

vortex

23,67
28,37

22
38,41,49
9,23

147.191
193
140.169
140

164

63

20

62

179

170
56,65,189
68

12

44,59
154.160
154.170
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